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Topologie et transport électronique dans des systèmes
de Dirac sous irradiation

Résumé :
Cette thèse présente un travail théorique effectué dans le domaine de la physique de

la matière condensée, et plus particulièrement la physique des solides. Ce domaine de la
physique décrit le comportement des électrons dans les cristaux à très basses températures
dans le but d’observer des effets quantiques à l’échelle mésoscopique.

Cette thèse se situe à l’interface entre deux types de matériaux : le graphène et les
isolants topologiques. Le graphène est une couche d’épaisseur monoatomique d’atomes
de carbone arrangés en réseau nid d’abeilles, qui présente de nombreuses propriétés im-
pressionnantes en optique, en mécanique et en électronique. Les isolants topologiques
sont des matériaux qui sont isolants en volume et conduisent l’électricité sur les bords.
Cette caractéristique découle d’une propriété topologique des électrons dans le volume. La
topologie est une branche des mathématiques qui décrit des objets dans leur globalité en
ne retenant que les caractéristiques invariantes par certaines déformations continues. Les
états de bords des isolants topologiques sont robustes à certaines perturbations comme le
désordre créé par des impuretés dans le matériau. Le lien entre ces deux sujets est double.
D’une part les premiers modèles d’isolants topologiques de bande ont été formulés pour
le graphène, par Haldane en 1988 et Kane et Mele en 2005, ouvrant ainsi la voie à la
découverte des isolants topologiques à 2D et 3D dans des matériaux à fort spin-orbite.
D’autre part, il a été prédit que le graphène, même sans spin-orbite, devient un isolant
topologique lorsqu’il est irradié par une onde électromagnétique. Dans cette thèse, nous
suivons deux directions en parallèle : décrire les caractéristiques topologiques d’une part
et les propriétés de transport électronique d’autre part.

En premier lieu, nous passons en revue le modèle des liaisons fortes pour le graphène,
puis le modèle effectif qui décrit les électrons de basse énergie comme des fermions de
Dirac sans masse. Nous introduisons ensuite le modèle de Haldane, un modèle simple
défini sur le réseau en nid d’abeille et qui présente des bandes non triviales caractérisées
par un invariant topologique, le nombre de Chern, non nul. Du fait de cette propriété
topologique, ce modèle a un état de bord chiral se propageant au bord de l’échantillon
et une conductance de Hall quantifiée. Lorsque le graphène est irradié par une onde
électromagnétique polarisée circulairement ayant une fréquence plus large que la largeur
de bande du graphène, il acquiert un gap dynamique similaire au gap topologique du
modèle de Haldane. Lorsque la fréquence est réduite, nous montrons que des transitions
topologiques se produisent et que différents états de bords apparaissent.

Le travail principal de cette thèse est l’étude du transport électronique dans le graphène
irradié dans un régime de paramètres réalisables expérimentalement. Une feuille de
graphène est connectée à deux électrodes avec une différence de potentiel qui génère un
courant. Nous calculons la conductance différentielle de l’échantillon selon le formalisme
de Landauer-Büttiker étendu aux systèmes soumis à une modulation périodique. En util-
isant ce formalisme simple, il nous est possible d’obtenir la conductance en fonction de
la géométrie de l’échantillon et de différents paramètres tels que le potentiel chimique, la
fréquence et l’intensité de l’onde.

Un autre type d’isolant topologique est l’isolant d’effet Hall quantique de spin. Ce type
de phase possède deux états de bords dans lesquels les spins opposés se propagent dans
des directions opposées. Le second travail de cette thèse concerne le transport électron-
ique à travers cet état de bord irradié. Nous observons l’apparition d’un courant pompé
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en l’absence de différence de potentiel. Nous distinguons deux régimes : un pompage
adiabatique quantifié à basse fréquence, et un régime de réponse linéaire non quantifiée
à hautes fréquences. Par rapport aux études précédentes existantes, nous montrons un
effet important de la présence des électrodes de mesure.

Mots-clés :
Graphène, Isolants topologiques, Theorie de Floquet, Isolants topologiques de Floquet,

Physique mésoscopique, Transport électronique, Formalisme de Landauer-Buttiker

Topology and electronic transport in Dirac systems
under irradiation

Abstract :
This thesis presents a theoretical work done in the field of condensed matter physics,

and in particular solid state physics. This field of physics aims at describing the be-
haviour of electrons in crystalline materials at very low temperature to observe effects
characteristic of quantum physics at the mesoscopic scale.

This thesis lies at the interface between two types of materials : graphene and topolog-
ical insulators. Graphene is a monoatomic layer of carbon atoms arranged in a honeycomb
lattice that presents a wide range of striking properties in optics, mechanics and electron-
ics. Topological insulators are materials that are insulators in the bulk and conduct
electricity at the edges. This characteristic originates from a topological property of the
electrons in the bulk. Topology is a branch of mathematics that aims to describe objects
globally retaining only characteristics invariant under smooth deformations. The edge
states of topological insulators are robust to certain king of perturbations such as disor-
der created by impurities in the bulk. The link between these two topics is two-fold. On
one hand, the first models of band topological insulators were formulated for graphene,
by Haldane in 1988 and Kane and Mele in 2005, opening the way to the discovery of
2D and 3D topological insulators in materials with strong spin-orbit coupling. On the
other hand, it was predicted that graphene, even without spin-orbit coupling, turns to
a topological insulator under irradiation by an electromagnetic wave. In this thesis, we
follow two directions in parallel : describe the topological properties on one hand, and
the electronic transport properties on the other hand.

First, we review the tight-binding model of graphene, and the effective model that
describes low-energy electrons as massless Dirac fermions. We then introduce the Haldane
model, a simple model defined on the honeycomb lattice that presents non-trivial bands
characterised by a topological invariant, the Chern number. Due to this topological
property, this model possesses a chiral edge state that propagates around the sample and
a quantized Hall conductance. When graphene is irradiated by a circularly polarized
electromagnetic wave with a frequency larger than the graphene bandwidth, it acquires a
dynamical gap similar to the topological gap of the Haldane model. When the frequency
is lowered, we show that topological transitions happens and that different edge states
appear.

The main work of this thesis is the study of electronic transport in irradiated graphene
in a regime of experimentally achievable parameters. A graphene sheet is connected to
two electrodes with a potential difference that generates a current. We compute the
differential conductance of the sample according to Landauer-Büttiker formalism extended
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to periodically driven systems. Using this simple formalism, we are able to obtain the
conductance as a function of the geometry of the sample and of several parameters such
as the chemical potential, the frequency and the intensity of the electromagnetic wave.

Another kind of topological insulator is the quantum spin Hall insulator. This type of
phase possesses two edge states in which opposite spins propagate in opposite directions.
The second work of this thesis concerns electronic transport through this irradiated edge
state. We observe the apparition of a pumped current in the absence of a potential
difference. We observe two regimes : a quantized adiabatic at low frequency, and a non-
quantized linear response regime at high frequency. Compared to previous studies, we
show an important effect originating from the presence of electrodes.

Keywords : Graphene, Topological insulators, Floquet theory, Floquet topological
insulators, Mesoscopic physics, electronic transport, Landauer-Buttiker formalism

Laboratoire Ondes et matière d’Aquitaine (LOMA)
351 cours de la Libération
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Introduction

Since its experimental discovery in 2004 [1], graphene has been the subject of an
intense experimental and theoretical effort to synthesize [2], manipulate and characterize
[3] its physical properties. Graphene has very good electrical and thermal conduction
and shows striking properties in several domains such as optics, chemistry, mechanics
or electronics. It can be synthesized very easily by mechanical exfoliation, meaning by
pealing graphite repeatedly using tape, until only one layer subsists. It is a purely two-
dimensional material with a honeycomb lattice of carbon atoms which makes it very simple
to model theoretically using a tight-binding formalism. Moreover, its band structure is
linear at low-energy, analogously to massless relativistic fermions in two-dimensions, which
allows it to be modelled by a Dirac-Weyl like equation. Due to its two-dimensional nature,
the carrier density can be tuned by electrostatic gating. All of these properties makes
graphene a very promising material for technological applications and a very interesting
material to study from a fundamental point of view.

Another field of physics that surged in the recent years is the one of topological insu-
lators [4, 5]. Such materials are insulators in the bulk but conduct electricity in a robust
way along their edges for two-dimensional materials or at their surface in three dimen-
sions. These edge states are robust against disorder because they arise from a topological
property of the bulk of the material. Topology aims at describing the global properties
of objects which are invariant under smooth deformations. For example, a sphere and a
torus are not topologically equivalent because the torus possesses one "hole" which means
that it cannot be deformed continuously to a sphere without closing the hole. In the field
of topological insulators, one can assign a topological invariant to the Bloch Hamiltonian
of the material without edges. This topological invariant is an integer that is robust under
small perturbations of the Hamiltonian as long as the gap remains open. One can thus
have a topological phase transition only when the bulk gap closes and reopens. The rela-
tion between the number of the edge states and the bulk topological invariant is expressed
through the bulk-boundary correspondence.

Historically, the first system to present both bulk topological invariant and robust
edge states is the quantum Hall effect. A two-dimensional gas of electrons subjected to
an intense magnetic field forms Landau levels, which are highly degenerated flat bands.
Close to the edges of the material, the Landau levels acquire an energy dispersion and
thus conduct current. When the Fermi level is in the gap, the longitudinal conductance
vanishes while the Hall conductance is quantized according to :

σH = ν e2

h
, (1)

where e2/h is the quantum of conductance and ν is the number of filled Landau levels.
Using the linear response theory, the quantized Hall conductance was found to originate
from a bulk property, which was labelled as TKNN integer according to the original
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2 Introduction

paper by Thouless, Kohmoto, Nightingale and Den Nijs [6]. Later on, it was realized
that this integer ν was in fact the Chern number of the filled magnetic Bloch bands. The
Chern number is a topological invariant that characterizes systems in which time-reversal
symmetry is broken and counts the number of chiral edge states (which all propagate in
the same direction) in the case of a two-dimensional topological insulator. However, the
quantum Hall effect arises in the presence of an external magnetic field and defining the
Bloch bands is non trivial in presence of a magnetic field because translational invariance
is broken.

In 1988, Haldane proposed a model that exhibits a quantized Hall conductance in
presence of a magnetic flux pattern with the same periodicity as the lattice. In this
model, based on the graphene honeycomb lattice, defining Bloch bands is natural. The
valence and conduction bands present a Chern number +1 or −1 with the Hall conduc-
tance quantized accordingly. This topological insulator was coined Chern insulator or
quantum anomalous Hall insulator due its similarity with the quantum Hall effect. It
was then thought that it was necessary to break time-reversal invariance to obtain non-
trivial topological phases. However, in 2005, Kane and Mele [7] introduced a new type of
topological insulator based on graphene with spin-orbit coupling for which time-reversal
symmetry is conserved. It was also predicted to exist in HgTe/CdTe quantum well het-
erostructures [8]. It wasn’t discovered in graphene because spin-orbit coupling is too weak,
but it was observed in 2007 in the quantum well heterostructure [9]. Instead of having
chiral edge states, this topological insulator possesses two counter-propagating edge states
whose directions are locked to the spin of the electron. This kind of topological insulator
is characterized by a Z2 topological invariant that counts the parity of the number of pairs
of counter-propagating edge states.

More recently, it was shown that non-trivial topological phases could be generated
by shining light on a trivial insulator. Irradiating graphene with a circularly polarized
electromagnetic wave with a frequency larger than the bandwidth opens a mass gap
similar to the Haldane model [10]. Similarly, when the irradiation is on-resonance with
the conduction and valence bands of a material, band inversion occurs at the crossing
between two bands which in turn leads to a non-zero Chern number associated with
the band crossing [11]. These systems are called Floquet topological insulators because
they are usually studied using the Floquet theorem. Floquet theory, which takes into
account for the time periodicity of the driving, allows for the definition of a new quantum
number, the quasi-energy, which is analogous to the quasi-momentum in Bloch bands. The
spectrum is now h̵ω-periodic where ω is the frequency of the driving, and non-equivalent
gaps open at ε = 0 and ε = h̵ω/2 which can both host edge states.

In this context, wa have studied in this thesis the transport properties of Dirac systems
under irradiation. We consider two systems in particular : first, graphene irradiated by
an electromagnetic wave, and second, an edge state of the quantum spin Hall insulator
also under irradiation. We consider a two-terminal setting where electrons are injected in
one lead and can be scattered towards both leads after having absorbed or emitted one
or more photons. In the irradiated region, the electrons are dressed coherently by the
driving, and we assume that the dissipation occurs solely in the leads.

The first three chapters is a review of the systems under study, while Chapters 4 and
5 represent the main work of this thesis, namely the transport properties of irradiated
bulk or edge Dirac systems.

In Chapter 1, we introduce the reader to the electronic properties of graphene. We
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describe the dispersion relation of graphene using the tight-binding formalism. We then
derive the low-energy Hamiltonian analogous to the Dirac equation. This simple low-
energy description will be used frequently in the next chapters. Graphene possesses sev-
eral discrete symmetries : time-reversal symmetry, particle-hole symmetry, parity and
sublattice symmetry. We derive the constraints that these symmetries impose on the
Bloch Hamiltonian, and discuss several symmetry breaking terms analogous to a mass in
the Dirac equation.

Chapter 2 is dedicated to the geometrical structure encoded in the Bloch wavefunctions
of two-dimensional crystals, namely the Berry connection and curvature. To each point in
the Brillouin zone is associated a point on the Bloch sphere corresponding to the state of
a two-band model. If the phase of the wavefunction winds around the Bloch sphere as the
momentum spans the Brillouin zone, the bands possess a non-trivial topology which in
turn leads to a quantized Hall conductance. To picture these geometrical and topological
properties, we present the Haldane model defined on the graphene lattice. Depending on
the parameters of the model, different mass terms at low-energy are generated and we
observe topological phases with a non-zero Chern number. In the topological phase, we
obtain the dispersion relation of the edge states in a ribbon geometry using two different
procedures : direct diagonalization of a tight-binding ribbon Hamiltonian, and resolution
of the Dirac equation with proper boundary conditions.

In Chapter 3, we briefly review the Floquet formalism for systems driven by a time-
periodic excitation. The effective Hamiltonian of graphene irradiated by a circularly
polarized electromagnetic wave at high frequency can be mapped to the Haldane model.
When the valence band and the conduction band are on resonance with the driving, we
observe edge states bridging the non-equivalent gaps in the Floquet quasi-energy spectrum
of a ribbon. When the frequency is small compared to the bandwidth of graphene, we
can use the Floquet formalism applied to the Dirac equation to obtain the spectrum.
We observe a set of nested gaps corresponding to anti-crossing between the valence and
conduction bands corresponding to n-photon processes. We introduce a simple model to
obtain the Chern number associated with a band crossing corresponding to one-photon
resonance. We present results concerning the edge states of irradiated graphene obtained
using the Dirac equation and a description of the associated wavefunctions.

Chapter 4 is devoted to the main work of this thesis. We investigate transport through
an irradiated graphene sheet connected to two reservoirs. We use the Landauer-Büttiker
formalism extended to Floquet systems to obtain the DC conductance as a function of
the different parameters of the system such as the geometry of the sample, the frequency
and strength of the driving, and the chemical potential in the irradiated region. We find
that the conductance is identical to the conductance of the non-irradiated sheet except
in the quasi-energy gaps where the conductance is significantly reduced. In these gaps,
the current is carried by a set of evanescent states with different characteristic lengths
corresponding to the number of photons associated to the anti-crossing. We observe a
competition between these evanescent states as a function of the driving strength and the
length of the sample.

Chapter 5 presents a preliminary work concerning transport through the helical edge
state of the quantum spin Hall effect irradiated by an electromagnetic wave. This system
was studied in Ref. [12] in the absence of leads, and a quantized pumped current was
generated. We show that this pumped current is related to the topological charge pumping
mechanism introduced by Thouless [13]. The novelty of our work is to include the effect of
the leads on the generated photocurrent. We observe the same quantized charge pumping
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at low frequency but obtain a different behavior at high frequency due to the presence of
leads.



Chapter 1

Graphene

Graphene is the first available truly two-dimensional crystal. It is a one-atom thick
material made of carbon atoms arranged in a honeycomb structure. Graphene has com-
pleted the series of allotropic forms of carbon : fullerenes in 0D, carbon nanotubes in 1D,
and graphite in 3D. These materials are all made of the same building block : a 2D sheet
of graphene. However, strictly 2D materials were expected to be thermodynamically un-
stable due to important thermal fluctuations. The experimental discovery of graphene in
2004 by the group of Geim and Novoselov in Manchester [1] proved that such a material
was in fact stable. This discovery earned them the Nobel prize of physics in 2010 and
led to the rise of graphene [14], a material that is now very widely studied in condensed
matter physics due to its striking physical properties. Following this breakthrough dis-
covery and a decade of research, a whole new family of 2D crystals was then realized
in the laboratory : Van der Waals heterostructures. These materials include hexagonal
Boron-Nitride, MoS2, and other transition dichalcogenoid metals [15].

We focus here on the electronic properties of graphene [3]. The electronic band struc-
ture of graphene was first studied by Wallace [16] in 1947 as the building block of graphite.
Graphene is a semi-metal, which means that the conduction band and the valence band
touch at different points, called Dirac points. Around these points, the dispersion relation
is linear, which corresponds to a two-dimensional gas of massless Dirac fermions [17], ex-
cept that the electrons travel at the Fermi velocity vF , which is 300 times smaller than the
velocity of light. Moreover, because the unit cell is made of two sites, the wavefunction
has an isospin structure, allowing to describe accurately the electron motion with the
Dirac-Weyl equation in 2D. Graphene was thereby advertized as a good playground to
study quantum electrodynamics in condensed matter [18].

Another fundamental interest of graphene arises because of its crystalline nature.
Because the wavefunctions of the electrons in a crystal are labelled by their wavevector
defined over the compact Brillouin zone, they possess a geometrical structure encoded in
the phases of the corresponding Bloch wavefunctions. These properties that derive from
the Berry phase [19] are the Berry connection and the Berry curvature. We will study in
detail these properties in Chap. 2. The graphene lattice possesses discrete symmetries
: time-reversal, space inversion, particle-hole symmetry and chiral symmetry. These
symmetries have implications on the electronic band structure and on the geometrical
quantities defined in momentum space.

One of the reasons that makes graphene so interesting in the scientific community is the
ability to tune the carrier density in a reversible way using the electric field effect [1]. In 3D
semiconductors, the doping can only be tuned chemically, which is an irreversible process

5



6 Chapter 1. Graphene

and introduces disorder in the host material. Due to the purely two-dimensional structure
of graphene, it can be doped very effectively by electrostatic gating. The graphene sheet
is either suspended or deposited on an insulating substrate, with a remote metallic gate
located under or on top. This tunability gives an extra degree of freedom to study electrical
transport in graphene in comparison to metals where the Fermi energy is large and fixed.

This chapter is organized as follows. In Sec. 1, we study the full electronic band
structure of graphene using a nearest neighbours tight-binding formalism. In Sec. 2,
we describe the low-energy electronic excitation which behave like massless chiral Dirac-
Weyl fermions in 2D. In Sec. 3, we detail the discrete symmetries of the graphene lattice
and of the Dirac Hamiltonian and explain the constraints they impose on the electronic
properties. Finally, in Sec. 4 we discuss the different mass terms allowed depending on
the presence or the absence of these symmetries.

1 Lattice description of graphene

x

y

A

B

δ3

δ2
δ1

a1

a2

Figure 1.1 – Hexagonal lattice of graphene. The elementary unit cell (in the rectangle)
is made of two atoms, the crystallographically non-equivalent A (red) and B (blue) sites.
The vectors a1 and a2 are elementary cell vectors, and δ1, δ2 and δ3 link a site A to its
nearest neighbours. The distance between the nearest neighbours is a ≈ 1,42 Å.

An isolated carbon atom has 6 electrons in the configuration 1s22s22p2, which means
that the inner 1s orbital is filled with two electrons, and the outer 2s and 2p orbitals are
also filled with two electrons each. In graphene, the 2s, 2px and 2py orbitals hybridize
in sp2 configuration. Three covalent bonds are formed in the xy plane with an angle of
120○, and a distance between two carbon atoms of a ≈ 1,42 Å. These bonds form the
honeycomb structure of graphene which is pictured on Fig. 1.1. The remaining electron
occupies the out-of-plane 2pz orbital which is weakly coupled to the 2pz orbitals from the
other atoms. The coupling between the 2pz orbitals creates the valence and the conduction
bands of graphene. Because there is only one electron per 2pz orbital and two spin states,
the valence band is completely filled and the conduction band is empty in the absence
of doping. Graphene is naturally at half-filling and the Fermi level consists in two Dirac
points.
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Due to the peculiar geometry of the honeycomb lattice, the different sites are not
equivalent in a crystallographic point of view, because a translation of the lattice from
one site to its neighbour is not a symmetry of the lattice. In fact, the elementary unit cell
is composed of two sites that we call the A and B sites (see Fig. 1.1). Physically, the A
and B are both made of the same orbitals and the energy of an electron is the same on
both sites. Because there are two orbitals per unit cell, the band structure is composed
of two bands, the valence and the conduction band.

In the next sections, we will consider second quantized Hamiltonians acting in the
Fock space, that we denote by a calligraphic letter : H. We will also consider single
particle operators such as the Bloch Hamiltonian acting on a (usually two-dimensional)
Hilbert space, and labelled by the quasi-momentum k.

1.1 Tight-binding Hamiltonian of graphene

Because the outer 2pz orbitals are decoupled from the in-plane orbitals, the electronic
properties of graphene are very accurately described by a tight-binding model involving
only 2pz orbitals with no mixing with lower or higher bands. This tight-binding descrip-
tion makes graphene a very simple material to study analytically, and is therefore very
interesting for theoreticians. Here, we only take into account hoppings between nearest
neighbours, namely the A and B sites. Introducing next-nearest neighbour hoppings is
not mathematically complicated but we will keep a nearest-neighbour description here for
simplicity. The non-interacting second-quantized graphene Hamiltonian H is expressed
as :

H = t∑
rA

3∑
α=1 b

†(rA + δα)a(rA) +H.c. , (1.1)

where a†(rA) is the creation operator on a site A at position rA, b†(rB) is the creation
operator on a site B (see Fig. 1.1), and t is the interatomic matrix element that represents
the coupling between neighbouring sites. Ab initio calculations give t ≈ −2.7eV [20] and
show that this description is accurate. Finally, δa corresponds to the vectors linking a
site A to it nearest neighbours B with α ∈ {1,2,3}, such that :

δ1,2 = ±
√

3a

2
ex + a

2
ey, and δ3 = −aey, (1.2)

where a is the inter-atomic distance.
To diagonalize this Hamiltonian, we expand the operators on the plane wave basis :

a(rA) = 1√
N
∑
k

a(k)eikrA , and b(rB) = 1√
N
∑
k

b(k)eikrB , (1.3)

where N is the total number of atoms and k is the wavevector belonging to the first
Brillouin zone. Here, we have used a representation where the atoms A and B have
different phases in real space because we defined the Fourier transform of the a and b
operators relative to their positions rA and rB, with rB = rA + δ1. Another definition of
the Fourier decomposition would be to choose a position r as the "origin" of the unit cell
(e.g. rA or rB) and operate the Fourier transform relative to this position. This choice of
definition doesn’t affect the observables of the system, however, one has to use the same
basis to calculate measurable quantities [21].
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In reciprocal space, the Hamiltonian is diagonal :

H = t∑
k

3∑
α=1 b

†(k)a(k)eikδα +H.c. , (1.4)

=∑
k

Ψ†(k)H(k)Ψ(k) , (1.5)

where Ψ†(k) = (a†(k), b†(k)) and H(k) is the Bloch Hamiltonian that reads :

H(k) = t( 0 ∑α e−ikδα∑α eikδα 0
) , (1.6)

A generic two-band single-particle Bloch Hamiltonian can be expressed as :

H(k) = ε0(k)1 + d(k).σ, (1.7)= ε(k)1 + dx(k)σx + dy(k)σy + dz(k)σz, (1.8)

= ε0(k)1 + ( dz(k) dx(k) − idy(k)
dx(k) + idy(k) −dz(k) ) , (1.9)

where σx,y,z are the Pauli matrices :

σx = (0 1
1 0

) , σy = (0 −i
i 0

) , σz = (1 0
0 −1

) , (1.10)

that act on the sublattice isospin (A,B). For the case of graphene, according to Eq. (1.6),
we find that ε0(k) = 0, and the vector d(k) is equal to :

d(k) = ⎛⎜⎝
t∑α cos(kδα)
t∑α sin(kδα)

0

⎞⎟⎠ , (1.11)

We note that in that case, dx(k) is even in k while dy(k) is even in k. This vector is
of fundamental importance to study the underlying geometric structure of the phases of
the wavefunctions, in particular around the Dirac points. We will study these geometric
properties in Chap. 2.

1.2 Dispersion relation and eigenvectors

Using the fact that the Pauli matrices anti-commute with each other, it is easy to find
the dispersion relation by squaring the Hamiltonian :

H(k)2 = ∣d(k)∣21 ⇔ Es(k) = s∣d(k)∣, (1.12)

where s = {+1,−1} refers to the conduction and valence band respectively. The dispersion
relation is therefore given by the modulus of d(k) :

∣d(k)∣2 = t2 ∣ 3∑
a=1 e

ikδa∣2 . (1.13)

Using Eq. (1.13) combined with the vectors (1.2), we find the dispersion relation :

Es(k) = st
¿ÁÁÀ3 + 2 cos (√3akx) + 4 cos(3

2
aky) cos(√

3

2
akx). (1.14)
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(a)

(b)
kx

ky

K’

K’

K’ K

K

K

(c)

hopping parameter as vF!106 ms−1 and t!3 eV, respec-
tively. Experimental observation of the "n dependence
on the cyclotron mass provides evidence for the exis-
tence of massless Dirac quasiparticles in graphene #No-
voselov, Geim, Morozov, et al., 2005; Zhang et al., 2005;
Deacon et al., 2007; Jiang, Henriksen, Tung, et al.,
2007$—the usual parabolic #Schrödinger$ dispersion im-
plies a constant cyclotron mass.

2. Density of states

The density of states per unit cell, derived from Eq.
#5$, is given in Fig. 5 for both t!=0 and t!!0, showing in
both cases semimetallic behavior #Wallace, 1947; Bena
and Kivelson, 2005$. For t!=0, it is possible to derive an
analytical expression for the density of states per unit
cell, which has the form #Hobson and Nierenberg, 1953$

!#E$ =
4

"2

%E%
t2

1
"Z0

F&"

2
,"Z1

Z0
',

Z0 =(&1 + )E
t
)'2

−
*#E/t$2 − 1+2

4
, − t # E # t

4)E
t
) , − 3t # E # − t ∨ t # E # 3t ,,

Z1 =(4)E
t
) , − t # E # t

&1 + )E
t
)'2

−
*#E/t$2 − 1+2

4
, − 3t # E # − t ∨ t # E # 3t ,, #14$

where F#" /2 ,x$ is the complete elliptic integral of the
first kind. Close to the Dirac point, the dispersion is ap-
proximated by Eq. #7$ and the density of states per unit
cell is given by #with a degeneracy of 4 included$

!#E$ =
2Ac

"

%E%
vF

2 , #15$

where Ac is the unit cell area given by Ac=3"3a2 /2. It is
worth noting that the density of states for graphene is
different from the density of states of carbon nanotubes
#Saito et al., 1992a, 1992b$. The latter shows 1/"E singu-
larities due to the 1D nature of their electronic spec-
trum, which occurs due to the quantization of the mo-
mentum in the direction perpendicular to the tube axis.
From this perspective, graphene nanoribbons, which
also have momentum quantization perpendicular to the
ribbon length, have properties similar to carbon nano-
tubes.

B. Dirac fermions

We consider the Hamiltonian #5$ with t!=0 and the
Fourier transform of the electron operators,

an =
1

"Nc
-
k

e−ik·Rn a#k$ , #16$

where Nc is the number of unit cells. Using this transfor-
mation, we write the field an as a sum of two terms,
coming from expanding the Fourier sum around K! and
K. This produces an approximation for the representa-
tion of the field an as a sum of two new fields, written as

an . e−iK·Rn a1,n + e−iK!·Rn a2,n ,

bn . e−iK·Rn b1,n + e−iK!·Rn b2,n , #17$
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FIG. 5. Density of states per unit cell as a function of energy
#in units of t$ computed from the energy dispersion #5$, t!
=0.2t #top$ and t!=0 #bottom$. Also shown is a zoom-in of the
density of states close to the neutrality point of one electron
per site. For the case t!=0, the electron-hole nature of the
spectrum is apparent and the density of states close to the
neutrality point can be approximated by !#$$% %$%.

114 Castro Neto et al.: The electronic properties of graphene
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Figure 1.2 – (a) Dispersion relation of the valence (blue) and conduction (red) band.
These two bands touch at the Dirac points. (b) Brillouin zone showing the location of
the Dirac points K and K ′. The equivalent Dirac points can be linked an elementary
reciprocal unit vector. (c) Density of states of graphene. For ε ≪ t, the density is linear
in ε, and diverge at the van Hove singularity for ε = t. (Image taken from Castro Neto et
al [3]).

Fig. 1.2.(a) shows the dispersion relation of graphene, and Fig. 1.2.(b) shows the
first Brillouin zone of graphene. We see that the bands touch at the six corners of the
Brillouin zone. These points are called Dirac points, because at low-energy, the dispersion
is linear, similar to massless (or ultra-relativistic) Dirac fermions. We see 6 of them on the
figure, however, only two are inequivalent because they can’t be linked by the elementary
vectors of the reciprocal lattice. Graphene is called a semi-metal because the valence band
and the conduction band touch each other. Fig. 1.2.(c) shows the density of states of
graphene. The density vanishes at the Dirac points and is linear in energy for E ≪ t. At
E = t, the density of states diverges, which corresponds to a van Hove singularity. At zero
doping, there is only one electron on each 2pz orbital so the valence band is filled, and
the conduction band is empty. The fermi level is pinned at the Dirac point, also called
charge neutrality point (CNP).

The eigenvectors can be expressed as :

∣usk⟩ = 1√
2
( 1
seiφk

) , (1.15)

with φk = arctan (dy(k)dx(k)), where dx(k) and dy(k) are the elements of the vector (1.11).
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2 Effective low-energy excitations : the Dirac equation
The lattice model is accurate in a broad range range of energy ±3t ≈ 9eV. In the

range E ≪ t, the dispersion is conical and the density of states is linear, it is therefore
useful to define a low energy model around the Dirac points. In this case, the validity of
the model corresponds to experimentally achievable range of Fermi energy EF . Typical
electron concentration n ≈ 1012cm−2 corresponds to a Fermi energy of ≈ 100 meV.

The Dirac points are defined by the zeros of the dispersion relation (the zero of energy
is defined as the common energy of the 2pz orbital) :

∣d(K)∣ = 0 ⇒ dx(K) + idy(K) = 3∑
a=1 e

iKδa = 0. (1.16)

We see from Eq. (1.16) that if K is a Dirac point, then K′ = −K is also one. The valley
index is denoted by ξ such that ξ = + corresponds to the valley K and ξ = − to the valley
K′. The position of the Dirac point ξ is :

Kξ = ξ 4π

3
√

3a
ex. (1.17)

The Dirac points are located at the corners of the Brillouin zone, and it is possible to
give alternate locations for equivalent Dirac points by a translation with a reciprocal unit
vector as illustrated on Fig. 1.2.(b).

2.1 Massless Dirac fermions

The low-energy excitations have a momentum q relative to the Dirac points, such that
q = k −Kξ with ∣q∣ ≪ ∣K ∣. The low-energy dispersion relation is obtained by developing
H(k) around Kξ :

3∑
a=1 e

i(ξK+q)δa ≈ −3a

2
(ξqx + iqy). (1.18)

This dispersion relation is linear in q close to the Dirac points, the Hamiltonian can be
written as :

HξK(q) = −3at

2
( 0 ξqx − iqy
ξqx + iqy 0

) . (1.19)

We introduce the velocity :

v = −3at

2h̵
= 3a∣t∣

2h̵
≈ c

300
≈ 106 m.s−1, (1.20)

such that the Hamiltonian in the valley ξ can be expressed as :

Hξ = v(ξσxpx + σypy), (1.21)

where we have reinserted the momentum operator p = (px, py) = −ih̵(∂/∂x, ∂/∂y) for
long-wavelength excitations relative to the Dirac points.

In the valley K, the Hamiltonian can be expressed as :

H = vσp, (1.22)
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where σ = (σx, σy). This equation presents similarities with the Dirac equation introduced
by Dirac in 1928 to describe the motion of relativistic electrons [22] :

ih̵∂tΨ = (cαp + βmc2)Ψ, (1.23)

where p is the momentum operator in 3D space, and α = (α1, α2, α3) and β are 4 anti-
commuting matrices. Because these matrices anti-commute with each other, the eigen-
value equation of the Dirac equation corresponds to the relativistic equation for a particle
of mass m : E2 = p2c2 +m2c4. These matrices are 4 × 4 matrices acting on the spin and
particle/antiparticle space. In 2D, only three anti-commuting matrices are necessary, two
for the two momentum directions and one for the mass, therefore the three Pauli matrices
satisfy this condition. In the low-energy description of graphene, the Hamiltonian is anal-
ogous to the Dirac equation with 2× 2 matrices acting on the sublattice isospin and with
the mass set to zero. This analogy is only approximate and originates from the peculiar
crystalline arrangement of the atomic sites of the graphene lattice. A term proportional
to σz is therefore allowed in this equation that would be analogous to a mass in the Dirac
equation. We will discuss in detail the different mass terms allowed in the Dirac equation
in Sec. 4.

It is thus very simple to model the low-energy excitations in graphene using the mass-
less Dirac equation. Due to the fact that the Dirac cones come in pairs, the electrons near
the Dirac points come in two flavours, giving rise to a new pseudo-spin quantum number
: the valley index. In the valley-isospin representation, the Dirac Hamiltonian has the
expression :

H = v(τzσxpx + τ0σypy), (1.24)

where τz is the Pauli matrix and τ0 is the identity acting in the valley space with eigenval-
ues τz = ξ. In this representation, the spinor has four components : u = (uKA, uKB, uK′A, uK′B).
In the absence of short-range scatterers, the valley are decoupled and are two-fold degen-
erate : gv = 2. Taking into account also the spin degeneracy, we obtain a four-fold
degeneracy gvgs = 4. When making calculations using a single Dirac cone, we have to take
into account this valley and spin degeneracy.

The dispersion relation is obtained by squaring the Hamiltonian H2 = v2(p2
x + p2

y),
which gives us :

E = ±h̵vq, (1.25)

where q = ∣q∣. In analogy with the Dirac equation, negative energy states exist for s = −1,
which, instead of describing anti-particles, correspond here to holes in the valence band
with opposite charge. The linear dispersion relation is only valid in the continuum limit,
for long wavelength excitations. The wavefunction of an electron in the valley ξ is uξ =(uAξ , uBξ )T , where uAξ (resp. uBξ ) is the envelope function on the A (resp. B) sublattice.
In this limit, one can ignore the lattice effects, and the electrons behave identically to
massless Dirac fermions. This long-wavelength approximation is valid for wavevectors
q ≪K ≈ (0.1nm)−1.

In the (A,B) basis, the eigenvectors have the expression :

∣usξ,q⟩ = ( 1
seiϕξ,q

) , (1.26)

where ϕξ,q = arctan( ξqyqx ), and s is the valence (s = −) or conduction (s = +) band index.
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Because of the 2D nature of graphene, and the linear dispersion close to the Dirac
points, the density of states is also linear in E :

ρ(E) = 2E

π(h̵v)2
, (1.27)

where we have taken into account the spin and valley degeneracy.

2.2 Chiral fermions

Another interesting analogy can be made between graphene and high-energy physics.
The Hamiltonian (1.22) presents similarities with the Hamiltonian of the Weyl equation
[23]. This equation describes massless Dirac fermions in three dimensions, as opposed to
graphene where the fermions are restricted to two dimensions. When the mass is set to
zero in the Dirac equation, it possible to separate it in two decoupled equations :

ih̵∂tΨL = icσpΨL (1.28)
ih̵∂tΨR = −icσpΨR, (1.29)

where σ = (σx, σy, σz) are the three Pauli matrices (one for each space dimension), while
ΨL and ΨR are the wavefunctions of left-handed and right-handed fermions. This hand-
edness describes a property of massless fermions : the chirality, namely the projection of
its spin on its momentum. It is equal to +1 when the spin is aligned with the momentum
(left-handed fermions), and −1 when it is anti-aligned (right-handed). This equation was
originally used to describe neutrinos, because the mass of the neutrinos was thought to
be null.

The chiral operator in the valley K is defined as :

χK = σ.p∣p∣ . (1.30)

This operator commutes with the Hamiltonian (1.22), it is therefore possible to define a
chiral quantum number +1(−1) which tells if the isospin is parallel (anti-parallel) to the
momentum. We find that :

χ∣usξ,q⟩ = s∣usξ,q⟩, (1.31)

which tells us that electrons in the conduction band have χ = +1, while holes in the valence
band have χ = −1. This property derives from the peculiar arrangement of the A and B
sublattices which induces a coupling between the orbital momentum and the pseudospin.
This property is valid because the lattice is bipartite, meaning that there are only anti-
diagonal terms linking the A sublattice to the B sublattice, and no-diagonal terms. In
fact, if we were to introduce a mass term proportionnal to σz in the Hamiltonian, the
chiral operator would not commute with the Hamiltonian, and the fermions would not
have a definite chirality.

The chirality has important consequences on the transport properties of graphene.
The wavefunction of an electron with momentum q in one valley is orthogonal to the
wavefunction of the electron with momentum −q in the same valley. This means that
if we were to introduce a potential term that would commute with the chiral operator
(proportional to the identity), it would not couple electrons with opposite chiralities.
This property protects the fermions from back-scattering, and therefore increases the
conductivity of graphene compared to other metals.
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2.3 Electric field effect in graphene

When the graphene sheet is connected to Fermi reservoirs (for example leads), it is
possible to change the number of particles in the graphene sheet. This can be done by
applying an electric potential generated by a metalic gate parallel to the graphene sheet,
such that varying the gate voltage allows to tune the chemical doping of the bands with
the electric field effect [1]. Depending on the sign of the gate voltage, graphene can be
doped either with electrons in the conduction band or holes in the valence band.

We consider a graphene sheet separated from the gate by a dielectric plate. The carrier
density (number of electrons per unit area) in the classical picture is given by [24] :

n = CgVg
e

, (1.32)

where Cg is the capacitance of the dielectric substrate, Vg is the gate voltage, and e is
electric charge of the electron. This limit is valid for plates thicker than a few angströms
[25], when the graphene sheet can effectively screen the electrostatic potential. For thinner
plates, one has to take into account for the quantum capacitance effects.

The chemical potential (or Fermi level) is the energy required to add one electron in
the system. The Fermi-Dirac distribution for the population of the bands in a solid has
the expression :

f(E) = 1

1 + eβ(E−µ) , (1.33)

where µ is the chemical potential, and β is the inverse temperature. Using the expression
for the density of states (1.27) close to the Dirac point, we find that the electron density
is equal to :

n = ∫ ∞
0

ρ(E)f(E)dE = ∫ µ

0
ρ(E)dE = µ2

π(h̵v)2
⇒ µ = h̵v√πn, (1.34)

where we have set T = 0 .
We choose a convention where the fermi level is located at E = 0 which gives us the

expression of the low-energy Bloch Hamiltonian as :

H = vσp − µ1, (1.35)

so that the spectrum is :
Es(q) = sh̵vq − µ. (1.36)

This doping modifies the spectrum only by a shift of µ in energy, while the Fermi level is
located at zero energy. The eigenvectors are left unchanged by the presence of this doping
since it is independent of the momentum.

3 Discrete symmetries of the graphene lattice
A system is said to be invariant under a certain transformation when its Hamiltonian

remains invariant under this transformation. The second quantized Hamiltonian is invari-
ant under a unitary or anti-unitary transformation U if it commutes with the operator
corresponding to this transformation :

U is a symmetry of the system ⇔ [H,U] = 0, (1.37)
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Figure 1.3 – Doping of a Dirac cone for positive doping (left) and negative doping (right).
The orange regions corresponds to filled state. The Fermi level is always at E = 0.

where U acts in the Fock space of the system.
In quantum mechanics, basic transformations such as rotations or translations are

described by unitary operators with continuous parameters. However, there also exists
symmetries described by anti-unitary (and anti-linear) operators, such as time-reversal
(T ) and charge conjugation (C) symmetries. An anti-unitary operator is the product of a
unitary operator times the complex conjugate operation denoted K such that Kc = c∗K
where c is a complex number and c∗ is its complex conjugate. Here, we will study the effect
of the discrete symmetries of graphene and the restriction it imposes on different properties
of the electrons such as the Hamiltonian or the wavefunctions. We will consider the three
fundamental symmetries, time-reversal, charge conjugation and chiral symmetry, denoted
by the operators T , C and S respectively. These fundamental symmetries are useful when
studying Anderson localization or in the classification of topological insulators as we will
see in Chap. 2. In certain scenarios, breaking the symmetries can turn graphene into a
topological insulator. We will also consider space-inversion symmetry (also named parity),
which is less fundamental because it is broken in the presence of disorder. However, in our
case, we will consider clean crystals and we will consider the constraints of the symmetries
on the Bloch Hamiltonian for simplicity.

When applying a transformation on the spinor fields, it can mix the different compo-
nents of the spinor. Its action on the field operators can thus be expressed as :

UΨαU−1 = UαβΨβ, (1.38)

where the indices α and β run over the lattice sites i for spinless particles or (i, σ) for
spinfull particles where σ = ± corresponds to the spin of the particle, and U is a matrix
acting on these indices. In order to see the action of these transformations on the Bloch
Hamiltonian, we will assume translationnal invariance. Eq. (1.38) can be generalized to
the case where the transformation mixes the creation and annihilation operators, such as
the case of particle-hole symmetry. Under a transformation U , the state ∣ψ⟩ transforms
into ∣ψU⟩ as : ∣ψU⟩ = U ∣ψ⟩. (1.39)
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3.1 Time-reversal symmetry

The time-reversal operation reverses the direction of the arrow of time. It is described
by the anti-unitary operator T . This operation reverses the direction of propagation of
a particle, the angular momentum, and thus also the spin. The time-reversal operation
leaves the position of the particle unchanged :

T Ψα(r)T −1 = (UT )αβΨβ(r), (1.40)

where α runs over the (A,B) sites and the spin degree of freedom (↑, ↓) sites, and we have
used the einstein summation rule over same indices. If we consider spinless fermions, the
time-reversal operation acts only in sublattice space without affecting the sublattice index
and thus has the expression :

UT = σ0s0, (1.41)

where σ0 is the identity matrices in sublattice space and s0 is the identity in spin space. In
the case of spinfull fermions, the time-reversal operation reverses the spin of the electron
and according to the usual expression for the time-reversal operation [26], we have :

UT = isyσ0, (1.42)

where sy is the Pauli matrix acting in spin space. In k-space, the field operators are
transformed as :

T Ψα(k)T −1 = 1√
N
∑
r

T Ψα(r)T −1T eikrT −1 = 1√
N
∑
r

(UT )αβΨβ(r)e−ikr (1.43)

= (UT )αβΨβ(−k). (1.44)

Here, to describe the operation in k-space, we have used the fact that the system is
translationaly invariant. However, it is more general than that, because if we consider a
disordered lattice, the matrix UT is extended to the whole space of the lattice sites and
doesn’t need translationnal invariance. In the disorded case, UT is much more complicated,
so for simplicity we consider translationaly invariant system. Applying the time-reversal
operation twice on a single-particle state gives :

T 2∣uk⟩ = T 2Ψ†(k)∣0⟩ = T 2Ψ†(k)T −2T 2∣0⟩, = U∗
TUT ∣uk⟩ (1.45)

In the case of spinless fermions, according to Eq. (1.41), we have :

U∗
TUT = 1 ⇔ T 2 = 1. (1.46)

For spinfull fermions, using Eq. (1.42), we find :

U∗
TUT = −1 ⇔ T 2 = −1. (1.47)

In the case of graphene in the absence of spin-orbit coupling, the Bloch Hamiltonian (1.6)
acts in sublattice space and the real spins are always degenerate. Thus, for simplicity,
we consider spinless fermions with the property T 2 = 1 and omit s0 in Eq. (1.41). The
second quantized Hamiltonian in momentum space :

H =∑
k

∑
αβ

Ψ†
α(k)Hαβ(k)Ψβ(k), (1.48)
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transforms as :

T HT −1 =∑
k

∑
αβ

(T Ψ†
αk)T −1)H∗

αβ(k)(T Ψβ(k)T −1), (1.49)

=∑
k

∑
γδ

Ψ†
γ(k)(U †

TH
∗(−k)UT )γδΨδ(k). (1.50)

Therefore, the Hamiltonian is invariant under time-reversal if :

[H,T ] = 0 ⇔ U †
TH

∗(k)UT =H(−k) (1.51)

which gives :
H∗(k) =H(−k) (1.52)

for the case of spinless fermions in graphene.
We can see that from Eqs. (1.6) and (1.22) that this condition is fullfilled, which is

consistent with the fact that graphene is time-reversal invariant. We can see that the
time-reversal operation relates the Hamiltonian at k to the one at −k, because as we said
earlier, the operation reverses the direction of the velocity of the particle. If we consider
the effect of time-reversal in the low energy description of graphene, we see that the time-
reversal operation exchanges the valleys. Thus, in the 4 × 4 valley-isospin representation,
the time reversal operation acts as :

UT = σ0τx, (1.53)

where τx is the Pauli matrix acting in valley space. The condition for time-reversal
invariance reads :

τxH
∗(q)τx =H(−q), (1.54)

where q = k − ξK is the wavevector relative to the Dirac points. We can see that Eq.
(1.24) respect this condition.

The single particle states are obtained as :

∣uk⟩ = Ψ†(k)∣0⟩, (1.55)

where ∣0⟩ is the vaccum state. Upon time-reversal, the single particle states transform as
:

T ∣uk⟩ = T Ψ†(k)T −1T ∣0⟩, (1.56)= U∗
TΨ†(−k)K ∣0⟩, (1.57)= U∗
TK ∣u−k⟩, (1.58)

where K is the complex conjugation operation. From the eigenvalue equation we have :

H(k)∣uk⟩ = E(k)∣uk⟩ ⇒ H(−k)T ∣uk⟩ = E(k)T ∣uk⟩, (1.59)

which tells us that T ∣uk⟩ is an eigenstate of the Hamiltonian H(−k) with the eigenvalue
E(k). Therefore, for every state in the Brillouin zone, there always exist an eigenstate at
momentum −k which is degenerate. The spectrum is thus symmetric under inversion of
the momentum :

E(k) = E(−k). (1.60)

This property is responsible for the fermion doubling of electrons in a lattice : when TR
is conserved, the Dirac point always come in pairs.
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3.2 Particle-hole symmetry

Particle-hole symmetry, also called charge conjugation in high-energy, expresses the
symmetry between a particle and its anti-particle. Under charge conjugation, the charge
of the particle is reversed while space and time variables are kept unchanged. In condensed
matter systems, the antiparticle of an electron in the valence band is a hole in the con-
duction band. The charge conjugation operator C is also anti-unitary and can square to+1 or −1. The case of C2 = −1 happens usually in Bogoliubov-de Gennes Hamiltonians of
superconductors, so we are not concerned here. Once again, the charge conjugation sym-
metry is valid in the presence of disorder, but we consider here a space-inversion invariant
Hamiltonian for simplicity. The charge conjugate partner of an electron of momentum
k in the conduction band is a hole of momentum −k in the valence band, because the
velocity of the electron and of the hole have the same direction. The action of the charge
conjugation operator on the field operators can thus be expressed as :

Cc†+(k)C−1 = c−(−k), (1.61)

Cc+(k)C−1 = c†−(−k), (1.62)

where the operator c†+ creates an electron in the conduction band, and c− annihilates an
electron in the valence band, which is equivalent to creating a hole in the valence band.

We now need to find the expression of the charge conjugation on the creation operators
a(k) and b(k) on the A and B sublattices respectively (defined in Eq. (1.3)). This can
be done by the change of basis using the expression for the eigenstates (1.15). We get :

a†(k) = c†+(k) + c†−(k), (1.63)

b†(k) = e−iφk(c†+(k) − c†−(k)). (1.64)

The action of the charge conjugation on the operators a(k) and b(k) is therefore :

Ca†(k)C−1 = a(−k), (1.65)Cb†(k)C−1 = −b(−k), (1.66)

that can be written in matrix form :

CΨ†
α(k)C−1 = (UC)αβΨβ(−k), (1.67)

with :
UC = σz (1.68)

The simple expression of the matrix UC comes from the fact that we have considered here
the case of graphene with no term in σz. However C can also be defined for more general
quadratic Hamiltonians and UC has a more complicated expression that depends on k.

When acting on the Hamiltonian, we obtain :

CHC−1 =∑
k

∑
αβ

CΨ†
α(k)C−1H∗

αβ(k)CΨβ(k)C−1, (1.69)

=∑
k

∑
αβγδ

(UC)αγΨγ(−k)H∗
αβ(k)(U∗

C)βδΨ†
δ(−k), (1.70)

= −∑
k

∑
αβγδ

Ψ†
δ(k)(U †

CH
∗(−k)UC)δγΨγ(k) (1.71)
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where we have used the anti-commutation relations of the electron field operators in the
third line. The particle-hole symmetry is thus expressed on the Bloch Hamiltonian as :

[H,T ] = 0 ⇔ U †
CH

∗(−k)UC = −H(k) → σzH
∗(−k)σz = −H(k). (1.72)

Because of the minus sign in front of the Bloch Hamiltonian, this symmetry is rather a
reality condition on the Bloch Hamiltonian than a symmetry in the traditionnal sense.
Once again, we can see that this condition is satisfied from Eqs. (1.19) and (1.22) for the
case of graphene. The charge-conjugate of a state in the conduction band is :

C∣u+k⟩ = CΨ†(k)C−1C∣0⟩, (1.73)= UCΨ(−k)K ∣0⟩, (1.74)= UCK ∣u−−k⟩, (1.75)

where we have used the fact that the vacuum is made of a full valence band and an empty
conduction band. Therefore the charge conjugate of a state in the valence band (+) is
a hole in the condution band (-). Particle-hole symmetry implies the condition on the
spectrum :

E(k) = −E(−k) (1.76)

3.3 Chiral symmetry

Time-reversal and particle-hole symmetries are two anti-unitary symmetries that relate
the matrix elements of the Hamiltonian to their complex conjugate. Combining these two
symmetries gives another symmetry called chiral or sublattice symmetry. Its particularity
is that it can be present even when time-reversal and particle-hole symmetry are not. The
chiral operator is : S = CT . (1.77)

Its action on the field operators has therefore the expression :

SΨ†
α(k)S−1 = (US)αβΨβ(k), (1.78)

with :
US = UCUT = σz (1.79)

in the case of spinless fermions in graphene. We don’t need to go through the derivation
to find the constraints it imposes on the Bloch Hamiltonian as just need to combining
Eqs. (1.51) and (1.72). We find that :

[H,T ] = 0 ⇔ U †
SH(k)US = −H(k) ⇔ {H(k), σz} = 0, (1.80)

where {A,B} corresponds to the anticommutator of the operators A and B. This condi-
tion is valid for graphene since its Hamiltonian involves only σx and σy terms. The chiral
conjugate of the state uk is : S ∣uk⟩ = σz ∣uk⟩, (1.81)

which means that this transformation reverses the sign of the wavefunction on the B
lattice. If ∣uk⟩ is an eigenstate with energy E, then S ∣uk⟩ is an eigenstate with energy −E.
The spectrum of a chiral symmetric system is thus symmetric over the plane E = 0. For
every momentum k, there are two eigenvalues in the conduction and valence band. A term
ε0 proportional to the identity will trivially break chiral symmetry by shifting the origin of
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the energy, but if its independent of k, the spectrum will still be symmetric about E = ε0.
Eq. (1.80) is fulfilled because we have chosen the energy of the 2pz orbital in graphene
as the origin of the energy. This symmetry is also not exact because second nearest
neighbour hopping terms introduce a k-dependent term proportional to the identity [3].

The crucial consequence of chiral symmetry in graphene is :

dz(k) = 0. (1.82)

This symmetry is characteristic of fermions on bipartite lattices (two sites per unit cell),
with only nearest neighbour hoppings. This is the case for graphene where only the
nearest-neighbour hoppings are taken into account. This constraint has important conse-
quences when considering the topological properties of a material, as we will see in Chap.
2.

The analogy with the Weyl fermions considered in Sec. 2.2 can thus be extended to
the lattice description of graphene. Chiral symmetry forbids the σz term analogous to a
mass in the Dirac equation, which implies that chirality is a good quantum number. The
action of the operator S reverses the chirality of the particle while the eigenvalue of χ
gives the chirality of the particle.

3.4 Parity

The parity operation consists in reversing the space coordinates, which implies also
reversing the momentum of the particle. Parity is a unitary operation, and therefore
doesn’t affects complex numbers. Considering the graphene lattice on Fig. (1.1), we can
choose the center of inversion either at the center of a hexagon, or in the middle of a bond
between two site. This transformation inverts the A and B sublattices such that :

Pa(r)P−1 = b(−r), (1.83)Pb(r)P−1 = a(−r). (1.84)

This transformation can be expressed in the reciprocal space using the operators a(k)
and b(k) defined in Eq. (1.3) :

Pa(k)P−1 = 1√
N
∑
r

Pa(r)P−1eikr = 1√
N
∑
r

b(r)e−ikr = b(−k), (1.85)

and similarly Pb(k)P−1 = a(−k). In matrix representation, we find the transformation of
the field operator :

PΨα(k)P−1 = (UP )αβΨβ(−k), with UP = σx (1.86)

We now consider how the second quantized Hamiltonian transforms under the action of
the parity operator. Therefore, the system remains invariant under space inversion if the
Bloch Hamiltonian obeys the relation :

U †
PH(k)UP =H(−k) ⇔ σxH(k)σx =H(−k), (1.87)

while the eigenvectors transform as :

∣uk⟩P = σx∣u−k⟩, (1.88)

From Eq. (1.11), we deduce that graphene is invariant under space inversion because
dx(k) is even and dy(k) is odd. In the valley-isospin representation, the parity operation
also reverses the valleys :

U †
PH(q)UP =H(−q) with UP = σxτx (1.89)
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3.5 Summary

In this section, we have derived the expression for the symmetry operators of graphene
and the constraints they impose on the Bloch Hamiltonian. Graphene is a two-dimensional
material with two sites per unit cell and is therefore described by a two-band Bloch
Hamiltonian as introduced in Eq. (1.7). We have considered the generic symmetries
time-reversal T , charge conjugation C and chiral symmetry S that are independent of
disorder. They are defined for a lattice for which the Bloch theorem is not necessarily
applicable. However, we will not consider disordered systems, so we have studied their
expression on the Bloch Hamiltonian. The symmetries T , C and S have the expression
for graphene :

T ∶H∗(k) =H(−k), (1.90)C ∶ σzH∗(k)σz = −H(−k), (1.91)S ∶ σzH(k)σz = −H(k). (1.92)

As we will see later, these symmetries allow to classify the topological insulators and
their topological invariants according to their symmetries. Space inversion, in contrary,
is present only on clean materials where the Bloch theorem applies. It has the expression
for graphene : P ∶ σxH(k)σx =H(−k) (1.93)

In the next section, we consider the presence of mass terms in the graphene Hamiltonian,
and what are the constraints imposed by the symmetries on the massive Hamiltonian.

4 Masses in the Dirac equation
Relativistic electrons in free space are described by the Dirac equation which is a

4×4 matrix equation that lives in the spin and particle/antiparticle space. At low-energy,
electrons in graphene are described by a 2×2 Hamiltonian made of the Pauli matrices that
presents similarities with the Dirac equation. Instead of acting on the real spin, the Pauli
matrices in the graphene Hamiltonian act on the sublattice space. In two dimensions,
only two anti-commutating Pauli matrices are needed to obtain the massless dispersion
relation E2 = p2c2, namely the matrices σx and σy of Eq. (1.22). This fact opens the
possibility to introduce a term proportional to σz that anti-commutes with σx and σy to
obtain the massive Dirac dispersion relation E2 = p2c2 +m2c4.

However, we have seen that there are two non-equivalent Dirac cones labelled by their
valley index. The low-energy graphene Hamiltonian can thus be expressed in a 4×4 space
that includes the valley index such as in Eq. (1.24). In that space, there exists additional
anti-commuting matrices that can generate mass-like terms in the low-energy description
of graphene. There exists 16 4 × 4 matrices acting in the valley-sublattice space that can
be denoted as :

αij = σi ⊗ τj, (1.94)

where σi and τj with i, j ∈ {0, x, y, z} are Pauli matrices acting in the sublattice and valley
indices respectively and σ0 and τ0 are the identity. In order to generate mass-like term
at low-energy, the matrices αij must anticommute with the matrices αxz and αy0 of the
Hamiltonian (1.24). There exists only 4 matrices that satisfy this condition [27], namely
:

αz0, αzz, αxx and αxy. (1.95)
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The first is called the Semenoff mass, the second is the Haldane mass and the other two
are generated by a Kekule distortion. The Semenoff and the Haldane mass are diagonal in
valley space, while the Kekule distorsion mixes the valleys. We will not analyze in detail
the Kekule distortion as it is not of interest in this thesis.

Because the Semenoff and Haldane masses are diagonal in valley space, it is possible
to define a mass term in each valley. In the Hamiltonian (1.8), the mass at the K point is
equal to M+ = dz(K), while at K′, we have M− = dz(K′). The presence of space-inversion
given by Eq. (1.87) imposes the constraint :

PHP−1 = H ⇔ dz(k) = −dz(−k) → M+ = −M−, (1.96)

whereas from Eq. (1.51), we see that time-reversal invariance imposes :

T HT −1 = H ⇔ dz(k) = dz(−k) → M+ =M−. (1.97)

We can see that the combination of P and T implies that dz(k) = 0 which protects the
degeneracy of the Dirac point [28]. To generate a mass term, it is thus necessary to break
one of them. The Semenoff mass term has identical sign in both valleys and therefore
breaks space-inversion symmetry, while the Haldane mass term has opposite sign in the
different valleys and thus breaks time-reversal invariance. In Sec. 4.1 we consider the
microscopic origin of the Semenoff mass, while in sec. 4.2, we introduce the Haldane
mass.

4.1 Semenoff mass

In 1984, in context of simulation of gauge theories on a lattice, Semenoff [29] introduced
an additionnal term on the graphene Hamiltonian. This term corresponds to on-site
energies +M and −M on the A and B sublattices respectively :

H = H0 +M (1.98)M =m ∑
rA,rB

(a(rA)†a(rA) − b(rB)†b(rB)), (1.99)

where H0 is the bare graphene Hamiltonian and M is the additionnal mass term. This
term generates a term dz(k) =m in the Bloch Hamiltonian which breaks explicitely space
inversion symmetry. This is coherent with the fact that the A and B sublattices are no
longer identical. This term is diagonal in k-space, so we can obtain directly the expression
of the low-energy graphene Hamiltonian in the valley spinor representation :

H = v(τzσxpx + σypy) +mσzτ0, (1.100)

where τ0 is the identity in valley space. The mass term mσzτ0 is identical in both val-
leys, which respects time-reversal invariance (1.97). Such a mass term is not present in
graphene, but is present in hexagonal Boron-Nitride for example.

4.2 Haldane mass

In 1988, Haldane [30] proposed a model that possesses a non-zero Hall conductance in
the absence of an external magnetic field. He introduced complex next-nearest neighbour
hopping terms on the honeycomb lattice, which is realized by an alterning magnetic flux
threading the unit cell with a zero total magnetic flux. The alterning magnetic flux has
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the same period that the lattice, so this model is invariant under space-inversion and
we can define Bloch states. Because of the presence of a magnetic flux, time-reversal is
broken. According to the symmetry conditions from Eqs. (1.96) and (1.97), close to the
Dirac points, the mass term has the expression :

dz(q) =mσzτz, (1.101)

which means that the sign is opposite in the different valleys. Although it is not realized in
a condensed matter context, this model is very interesting because it is the first example
of a topological insulator. Due to the presence of a mass gap, the system is insulating but
it possesses a metallic state that propagates at the edge of the material. We will analyze
with more detail this model in Chap. 2.

5 Conclusion
In this chapter, we studied the tight-binding model of graphene. We find that the

spectrum is made of two bands that touch in two non-equivalent points in the Brillouin
zone. These points are called Dirac points and the dispersion is linear around these points.
At low-energy, we find that the excitations can be described by a Dirac-Weyl equation for
massless fermions in two-dimensions. These fermions are chiral and have the property to
be protected against backscattering.

We have derived the discrete symmetries : time-reversal, charge conjugation, sublattice
symmetry and space-inversion of graphene and found the constraints they impose on the
Bloch Hamiltonian. In certain conditions, breaking these symmetries allows to generate
mass-like terms that can turn graphene into an insulator. In the case of spinless fermions,
two mass terms are of importance : the Semenoff mass that breaks space-inversion sym-
metry, and the Haldane mass that breaks time-reversal symmetry and is at the origin of
a non-trivial topological phase. These two mass terms will be analyzed in detail in Chap.
2.

If we take into account for the real spin of the electron, the Dirac equation lives in a
8 × 8 space and 16 mass terms are allowed [27]. Only one of them respects time-reversal
invariance : the Kane-Mele mass term. This term consists of a Haldane mass term with
opposite sign for each spin species, namely :

mσzτzsz, (1.102)

where sz is the Pauli matrix acting in spin space. The Kane-Mele model possess two
counter-propagating edge states locked to their spin orientation. We will consider this
model with more detail in Chap. 5.

Chap. 2, will be devoted to the Haldane model. We will analyze the geometrical and
topological properties encoded the Berry phase, while Chap. 3 will show how a Haldane
mass term can be generated by irradiation.



Chapter 2

Geometry, topology and the Haldane
model

Physicists have always strived to classify the states or phases of matter according
to the parameters of the system. Landau theory of phase transitions [31] relies on a
symmetry breaking mechanism between phases with different local order parameters. The
ferromagnetic or paramagnetic phases are described by a particular orientation of spin
originating from the interaction between neighbouring atoms. This ferromagnetic phase
is characterized by the absence of invariance of the system under arbitrary spin rotations.
Superconductivity is characterized by the breaking of U(1) gauge symmetry. Another way
of classifying electronic states in crystals was introduced by Bloch with his famous Bloch
theorem [32]. Electrons in a crystal are arranged in a band structure and are indexed by
their quasi-momentum in the reciprocal space called Brillouin zone. Depending on the
filling or these bands, the crystal can be a metal, an insulator or a semi-conductor.

In the modern theory of bands, a new kind of phase of matter has been discovered
which emerges from a global characteristic of the Bloch wavefunctions in the Brillouin
zone. These materials, called topological insulators [4, 5], possess a topological quan-
tum number that characterizes the winding of the phase of the wavefunction when the
wavevector spans the whole Brillouin zone. This ordering is robust in the sense that the
topological number, which is an integer, is a global property of the band that can only be
changed by closing the gap. It is therefore possible to classify the different Hamiltonians
according to characteristic classes, labelled by a topological invariant. The Hamiltonians
of a same class can be deformed continuously into each other. When the Fermi level is
in the gap, the material is an insulator and has a quantized Hall conductivity which is
proportional to this topological invariant. The Hall conductivity is carried by gapless
metallic states located at its edges which are robust to moderate disorder. The connec-
tion between the topological invariant of the bulk states and the number of edge states
is expressed in the bulk-boundary correspondence, which is a mathematical theorem that
can be formulated for various systems, such as the quantum Hall effect [33, 34], chiral
symmetric systems [35], Dirac Hamiltonians [36] or in the presence of interactions [37].
The presence of edge states can be understood intuitively by considering the vacuum as
a trivial insulator. At the interface between a non-trivial insulator and a trivial one, the
gap has to interpolate continuously between the two domains and therefore has to close
at the boundary.

The discovery of the existence of such topological phases in materials started with
the experimental discovery of the quantum Hall effect in the eighties. It was realized

23
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by Thouless et al. [13] that the quantization of the Hall conductance arose from the
impossibility to have a well-defined and continuous phase for the wavefunction of the
electron across the Brillouin zone. The phase of the wavefunction is encoded in geometrical
properties such as the Berry connection and the Berry curvature. In the case of the
quantum Hall effect, the topological invariant is the Chern number which is expressed as
the integral of the Berry curvature over the Brillouin zone. However, in the presence of an
external magnetic field, the Bloch theorem can be applied only under specific conditions
and the band structure is a complex fractal called the Hofstadter butterfly[38].

The first example of a topological insulator to present a non-zero Chern number with-
out the application of an external magnetic field was introduced by Haldane in 1988 [30].
This model based on the graphene lattice possesses a chiral edge state that propagates
along one direction at its boundary and therefore breaks time-reversal symmetry. The
Haldane model has not been realized experimentally in graphene but it anticipated the
field of topological insulators. However, later on, it has been realized in thin Bi2Te3 films
with induced ferromagnetism [39], and in cold atoms systems [40]. Another example
of a topological insulator, called quantum spin Hall insulator, was predicted to exist in
graphene when the spin-orbit interaction is present [7]. Spin-orbit opens a gap and two
counterpropagating edge states cross the gap such that the spin is locked to the direction
of propagation. Backscattering between these edge states is forbidden as long as time-
reversal symmetry is present. This effect was not observed in graphene because spin-orbit
is too weak, however it was realized in 2007 in HgTe/CdTe quantum wells structures [41],
or more recently in WTe2 two-dimensional crystals [42].

In this section, we focus mainly on the Haldane model as a prototype of a two-
dimensional topological insulator with time-reversal symmetry breaking. In Sec. 1, we
introduce the different geometrical and topological aspects of the Bloch wavefunction de-
fined over the Brillouin zone using the Berry phase as a starting point. In Sec. 2, we
introduce the Haldane model. In Sec. 3, we investigate the Berry connection, the Berry
curvature and the Chern number of the Haldane model as a function of the different pa-
rameters of the model. Finally, in Sec. 4, we calculate the dispersion relation of ribbons
and observe the presence of edge states crossing the gap.

1 Berry phase, quantum Hall effect and topological in-
sulators

In a seminal paper, Berry [43] introduced a phase factor accumulated by the wave-
function of a particle when the parameters of its Hamiltonian are evolved in an adiabatic
manner. Originally, this phase factor was neglected because it could be redefined by
a gauge transformation and was thought to be not measurable. However, if the system
comes back to its original state after a closed path in parameter space, this phase becomes
gauge independent and can therefore be measured. This phase does not depend on the
duration of the path but only on the geometry of the path. It can thus be expressed as
a line integral of a vector potential called the Berry connection along the path, or as the
flux of the Berry curvature through the surface enclosed by the path. We see that an ele-
gant geometrical interpretation of Berry’s phase has emerged in parameter space. These
geometrical aspects are physical expressions of the mathematical field of fiber bundles.

Berry’s phase was subsequently found to have a broad range of applications in both
classical and quantum physics. The Foucault pendulum is a prime example of a classical
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geometric phase [44], while the Aharonov-Bohm effect was shown to originate from a Berry
phase effect. After Berry’s discovery, several experiments were performed to measure this
phase. At a classical level, this phase appeared in the rotation of the angle of polarisation
of photons in optical fibers [45], whereas at the quantum level, it was observed in magnetic
resonance spectra [46, 47].

Geometrical phases have also important applications in condensed matter systems,
as was first pointed out by Zak [48] who noticed that the Bloch quasi-momentum could
serve as parameter for the Bloch Hamiltonian. It allowed to establish a modern theory of
polarization which stated that only the differential polarization was relevant and could be
quantified according to the Berry phase [49]. Orbital magnetism in crystals has also found
an elegant description in terms of geometrical quantities [50]. Soon after the experimental
discovery of the quantum Hall effect, it was realized that the Hall conductance could be
expressed as the flux of the Berry curvature [51] over the Brillouin zone. When the
parameter space is a compact manifold, the integral of the Berry flux is quantized and it
corresponds to the Chern number of the Berry connection over the Brillouin zone.

In Sec. 1.1, we introduce the concept of Berry phase, and the associated Berry con-
nection and curvature. We also briefly introduce the reader to the field of fiber bundles
and their topological properties. In Sec. 1.2, we introduce the quantum Hall effect and
explain how the quantized Hall conductance is the expression of a non-trivial fiber bundle.
Finally, in Sec. 1.3, we present the classification of the topological insulators according
to their symmetries.

1.1 Berry phase, geometry and topology

We consider a system governed by the Hamiltonian H(R) which depends on the
values of several external parameters gathered in the vector R = (R0,R1, ...). We follow
one eigenstate ∣n(R)⟩ of the spectrum which is given by solving :

H(R)∣n(R)⟩ = En(R)∣n(R)⟩, (2.1)

where En is a non-degenerate level of the system. The parameters are now changed
adiabatically such that R ≡R(t). The adiabatic approximation is valid when the charac-
teristic time of evolution is much smaller than the time of transition between two states
n and n′.

In this approximation, the system remains in an instantaneous eigenstate ∣n(R(t))⟩
of H(R(t)), but its phase can change. Berry [43] showed that if the system is prepared
in the state ∣n(R(0))⟩ at t = 0, and evolves in a closed loop C in parameter space, then
its wavefunction at time t = T will be :

∣Ψ(R(T ))⟩ = eiγn(C)e− ih̵ ∫ T0 dtEn(R(t))∣n(R(0))⟩, (2.2)

where the path is parametrized by the variable t ∈ [0, T ] such that R(0) = R(T ). The
second phase term is the dynamical phase, while the first term is called the Berry phase
that reads :

γn(C) = ∫
C
dR.An(R), (2.3)

where An(R) is called the Berry connection. The Berry connection is defined as :

A
n(R) = i⟨n(R)∣∇R∣n(R)⟩. (2.4)



26 Chapter 2. Geometry, topology and the Haldane model

We can see that the variable t used to parametrize the path has disappeared, and the
Berry phase depends only on the shape of the path in parameter space. The Berry
phase is therefore the circulation of the Berry connection along the closed path. The
Berry connection is analogous to the vector potential of an electromagnetic field but
in parameter space rather than in three-dimensional space. This connection is gauge
dependent because the wavefunction of the electrons are defined up to a phase. Under a
gauge transformation, the wavefunction and the Berry connection transform respectively
as :

∣n(R)⟩Ð→ eiχ(R)∣n(R)⟩, (2.5)
A
n(R)Ð→An(R) −∇Rχ(R). (2.6)

Because the Berry phase is defined over a loop, it is obvious that the Berry phase is gauge
independent.

Once again, in analogy with electromagnetism, it is possible to define a magnetic field
in parameter space as the curl of the Berry connection. This field is called the Berry
curvature. Using Stokes’ theorem, the Berry phase can be expressed as :

γn(C) = ∫
Σ
dS.Fn(R), (2.7)

with :
F
n(R) = ∇R ×An(R), (2.8)

where Fn(R) is the Berry curvature. The Berry phase of a path C in parameter space
is therefore the flux of the Berry curvature through the surface Σ delimited by the path
such that C = ∂Σ. When the parameter space is two-dimensional, such as in the case of a
two-dimensional crystal, the Berry connection has only two components Anx and Any , and
the Berry curvature of the band n is a one-component object :

Fnxy(k) = ∂kxAny(k) − ∂kyAnx(k). (2.9)

We see that a geometrical structure analogous to a gauge vector potential has emerged
in the parameter space. This geometrical structure is embedded in the mathematical field
of fiber bundles. Fiber bundles are spaces that possess a geometrical structure and a
topological structure, which will be useful in the case of Bloch Hamiltonian. We introduce
very briefly the concepts of vector bundles. Introduction on fiber bundles in the context
of geometrical phases can be found in the books [52] and [44] or in the thesis of Michel
Fruchart [53].

A vector bundle E associates to each point of the base spaceX a vector field, called the
fiber. In the case of a two-dimensional crystal, the base space X is the two-dimensional
Brillouin zone torus T2, and the fiber is the Hilbert space CN of the physical Bloch
eigenstates ∣uk⟩ ∈ CN of the N × N Bloch Hamiltonian. The total space E has the
dimension of the product of the dimension of the base space X and the dimension of the
fiber. Locally, it looks like the cartesian product R2 × CN but not necessarily globally.
A choice of vector ∣k, uk⟩ (up to a gauge transformation) is thereby the fiber associated
to the point k of the base manifold. If the projection map is smooth (continuous) from
the bundle space E to the whole base space X, then the bundle is called trivial and is
isomorphic to the space T2 × CN in our case. If it is not, the bundle has a non-trivial, or
twisted, topology.
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The connection describes the geometrical structure of the fiber bundle, and therefore
encodes the global topological structure of the bundle. An example of a non-trivial fiber
bundle is the Möbius bundle [54] which assigns to each point of the base space S1 the
fiber R. Locally, this bundle is the direct product of S1 × R, but not globally because
when coming back to the origin point after a rotation of 2π in S1, a point of coordinate
x on the fiber is now located at −x. To define the bundle globally, one must separate the
bundle in different sections that are locally the direct product of the base space S1 and
the fiber R, and provide transition functions at the intersection between the sections.

It is possible to classify the topological properties of the fiber bundles according to
their characteristic classes. Fiber bundles that belong to the same class have identical
topological invariants that are integers. Later on, we will consider a topological invariant
called the first Chern number, which is defined for even dimensional base spaces. For
the case of vector bundles defined on a two-dimensional Brillouin zone, the first Chern
number is an integer that has the expression :

Cn = 1

2π ∫BZ d2kFnxy(k). (2.10)

After having introduced the mathematical background for the topological effects, we
now turn on to physical realization in condensed matter systems such as the quantum
Hall effect.

1.2 Quantum Hall effect

In 1980, von Klitzing, Dorda and Pepper [55] discovered experimentally that the Hall
conductance of a 2D gas of electrons subjected to a perpendicular magnetic field was
quantized in units of e2/h. This phenomenon is called the quantum Hall effect (QHE),
and the quantization of the transverse conductance was shown to be extremely accurate
and independent of the shape of the edges and of the amount of disorder. It was therefore
first advertised as a metrological way to measure the quantum of conductance e2/h and
to serve as a new definition of the Ohm in the metric system.

When subjected to a perpendicular magnetic field, the electrons confined in two di-
mensions form highly degenerate Landau levels. When the Fermi energy is between two
Landau levels, the material is insulating, and the current is carried by states localized at
the edges of the sample [56]. Because the material is confined by the vacuum, the edges
are dispersing at the interfaces (see Fig 2.1.(a)). When the Fermi level is in a gap, the
Hall conductance is given by :

G = ν 2e2

h
, (2.11)

where ν is the number of filled Landau levels, and the factor 2 corresponds to the spin
degeneracy. ν also coincides with the number of chiral edge states. There is one edge state
per Landau level and each contributes to one unit of the quantum of conductance. These
edge states are chiral in the sense that they propagate along one direction around the
material. This can be understood qualitatively within the classical skipping orbit picture
[Fig 2.1.(b)].

In their analysis of the QHE, Laughlin [57] and Halperin [56] considered a gas of
massive electrons without taking into account the lattice periodicity. However, Hofstadter
[38] showed than when the unit cell of a lattice is threaded by a rational magnetic flux
φ = p/q, a Bloch band splits into p subbands with periodicity qa along one direction, where
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Figure 2.1 – (a) Landau levels in the Landau gauge of an infinite ribbon with width r2−r1.
In this gauge, the states belonging to a Landau level are degenerate and are labelled by
the position of their center of motion. Close to the edge of the sample, the states disperse
and generate a Hall response. Image taken from [56] (b) Skipping orbit picture. The
electrons in the bulk have a cyclotron orbit motion, while the states close to the edge are
reflected at the boundary and therefore propagate along the edge. We can see with this
simple picture the chirality of the edge states, they are right-moving at the upper edge
while they are left-moving at the

a is the lattice spacing. This scheme allows the definition of a magnetic Brillouin zone
which is q times smaller than the normal Brillouin zone. Thouless, Kohmoto, Nightingale
and den Nijs (TKNN) [6] showed that such a band possesses an integer quantum number,
and that the Hall conductance of the band is quantized as G = νe2/h, where ν is the
sum of the Chern number of the filled bands. This TKNN integer relates the change of
the phase of the wavefunction upon realizing a loop in the Brillouin zone. A remarkable
property comes from the fact this integer characterizes an infinite system without edges,
and is therefore independent of the edge shape. Also, this integer can only change if the
gap closes.

It was soon realized by Avron, Seiler and Simon [58] that the Hall conductance quan-
tization originated from a topological invariant, the Chern number, which is naturally an
integer. Simon [59] established a connection between the Berry phase and the TKNN
invariant. The phase of the wavefunction un(k) attached to each point k of the Brillouin
zone forms a U(1) line bundle over the torus T 2. Using the Kubo formalism, the Hall
conductance of the band n is found to be equal to [51] :

σnH = e2

h
Cn, (2.12)

where Cn is the Chern number defined in Eq. (2.10). The Berry connection A(k) intro-
duced in Sec. 1.1 is defined in the Brillouin zone as :

An(k) = i⟨un(k)∣∇k∣un(k)⟩, (2.13)

where ∣un(k)⟩ is the Bloch wavefunction of the band n. Applying Stokes’ theorem to Eq.
(2.10), one would naively expect the Hall conductance to vanish because the Brillouin
zone torus has no boundary. However, because the phase is ill-defined at the zeros of
the wavefunction, the Berry connection is not defined smoothly over the Brillouin zone
and one needs to separate the Brillouin zone in different patches and apply a transition
function at each interface. This obstruction is the expression of the non-triviality topology
of the bundle.
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We follow the simple example used in [51] to demonstrate the quantization of the
Chern number. The Bloch wavefunction ∣un(k)⟩ defined on the Brillouin zone torus T2

vanishes at only one point k0. The torus T 2 is divided in two pieces RI and RII such
that k0 is located in RII . One needs to apply a gauge transformation at the boundary
between the two patches such that :

∣unI (k)⟩ = eiξ(k)∣unII(k)⟩ (2.14)
An
I (k) =An

II(k) −∇kξ(k). (2.15)

Using Stokes’ theorem, the Chern number can therefore be rewritten as :

Cn = 1

2π
{∫

RI
d2k [∇k ×An

I (k)]z + ∫
RII

d2k [∇k ×An
II(k)]z } (2.16)

= 1

2π ∫∂R dk [An
I (k) −An

II(k)] (2.17)

= 1

2π ∫∂R dk∇kξ(k), (2.18)

where ∂R is the boundary between RI and RII . The phase change must be continuous
along the closed path and is thus a multiple of 2π. Therefore, the Chern number must be
an integer.

We have shown here the quantization of the Chern number in a simple case where the
phase is ill-defined only in one point in the Brillouin zone. However, the phase of the
wavefunction is usually more complex and can have several zeros.

In this section, we have analyzed the conductance of the quantum Hall effect, which is
found to be quantized according to a topological number characterizing the fiber bundle
defined over the Brillouin zone torus. However, the band structure of the quantum Hall
effect, as described by Hofstadter, is very complex and depends critically on the rationality
of the magnetic flux per plaquette φ. To compute the Chern number, one must work in
the magnetic Brillouin zone, and have a very precise knowledge of the wavefunction.

A breakthrough discovery was to realize that such non-trivial topological phases ex-
isted intrinsically in crystal in the absence of an external magnetic field. Such materials
are called topological insulators and are characterised by different kinds on topological
invariants, including the Chern number. In the next section, we present a general classi-
fication of the topological insulators depending on their symmetries and the dimension of
space.

1.3 Classification of topological insulators

We have seen that a new way of classifying phases of matter has emerged. These
phases are characterized by topological invariants which are defined for a Bloch band of
a gapped Hamiltonian. This invariant expresses the obstruction to define the phase of
the Bloch wavefunction globally in the Brillouin zone. The first example of a non-trivial
topological insulator is the integer quantum Hall effect (QHE), for which the Bloch bands
are characterized by their Chern number. However, the QHE necessitates the application
of an external magnetic field and relies on the Landau levels structure or magnetic bands.
The anomalous quantum Hall effect, namely the Haldane model [30], is a model which
breaks time-reversal symmetry and is also characterized by a non-zero Chern number.
The Chern number is a topological invariant that characterizes two-dimensional crystals
where time-reversal symmetry is broken and that belongs to the set Z. In the anomalous
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QHE, also called Chern insulator, the Hall conductance is proportional to the Chern
number and is quantized in units of the quantum of conductance e2/h.

The interest for topological insulators surged with the experimental discovery of the
quantum spin Hall (QSH) effect [41]. The particularity of the QSH insulator is that it is
time-reversal invariant. Because the Hall conductivity violates time-reversal symmetry,
the Chern number vanishes in the QSH effect. However, one can picture the QSH effect as
two copies of the Haldane model with opposite Chern number for each spin when one spin
component is conserved. To characterize the topology of time-reversal invariant systems,
Kane and Mele introduced a new kind of topological invariant, namely the Z2 invariant
which can take only two values, 0 and 1 [60]. It was soon realized that such a topological
invariant could be generalized to three dimensional materials [61, 62], which led to the
rise of 3D topological insulators.

Depending on the presence or the absence of time-reversal symmetry, we see that two
different kinds of topological order emerge, characterized by Z and Z2 invariants. One can
ask the question if there exists a broader classification of topological invariants depending
on the symmetries of the system. The characteristic of a topological insulators is that it
possesses edge states which are topologically protected against disorder. More specifically,
a topological invariant characterizes Hamiltonians that can be continuously deformed into
each other as long as the gap remains closed. Altland and Zinbauer classified fermionic
systems, including superconducting ones, in ten different classes [63] according to the
presence of time-reversal symmetry (T ), charge conjugation (C) and chiral symmetry
(S = T C). The antiunitary symmetries T and C symmetries can be present and square to+1 or −1, or be broken, which makes a total of nine possible classes. In the absence of bothC and T , the lattice can still have chiral symmetry, which makes the tenth class. The edge
states of topological materials are robust against disorder, which means in particular that
the topological phases are present even if space-inversion is broken. Therefore, only the
"extremely generic" symmetries like T , C and S allow to classify topological insulators.
For example, the QSH state is protected by time-reversal symmetry. It is therefore possible
to classify the topological insulators and superconductors in the "ten-fold way" [64, 65, 66].
Table 2.2 shows the classification of topological insulators and superconductors.

der and interactions on the Z2 topological insulator have been
less well studied in the 3D case than in the 2D case, there are
known to exist gapless surface modes in the topologically
nontrivial 3D phase which are robust against arbitrary strong
disorder as long as the latter does not alter the bulk topologi-
cal properties, in analogy to the quantum spin Hall effect
!QSHE" in two dimensions.12,21,24–27 These delocalized sur-
face states, whose Fermi surface encloses an odd number of
Dirac points, form a two-dimensional “Z2 topological
metal.”12,27,28

Recently, a series of experiments have been performed on
certain candidate materials for Z2 topological insulators. For
example, the QSH effect has been observed in HgTe/
!Hg,Cd"Te semiconductor quantum wells.29–33 Moreover, a
3D Z2 topological phase has been predicted for strained
HgTe and for bismuth-antimony alloys.12,33,34 Indeed, photo-
emission experiments on the latter system have revealed an
odd number of Dirac points inside the Fermi surface on the
!111" surface, thereby providing !indirect" evidence for the
existence of a nontrivial topological phase in three spatial
dimensions.12,35

In this paper we provide an exhaustive classification of
topological insulators and superconductors. Our classifica-
tion is for noninteracting systems of fermions. However,
since there is a gap, our results also apply to interacting
systems as long as the strength of the interactions is suffi-
ciently small as compared to the gap. As the majority of
previous works studied two-dimensional topological phases,

we shall be mostly concerned with the classification of 3D
systems, and only briefly comment on one- and two-
dimensional topological insulators in Sec. VIII. In the same
spirit as in the treatments of Z2 topological insulators, we
impose several discrete symmetries on a family of quantum
ground states. We then ask if different quantum states can be
transmuted into each other, without crossing a quantum
phase transition, by a continuous deformation respecting the
discrete symmetries.

If we are to include spatially inhomogeneous deforma-
tions of quantum states, such as those arising, e.g., from the
presence of random impurity potentials, the natural discrete
symmetries we should think of would be those considered in
the context of disordered systems.36 It is at this stage that we
realize that the existence of the classification of random
Hamiltonians, familiar from the theory of random matrices,
will become very useful for this purpose.

Specifically, following Zirnbauer37 and Altland and
Zirnbauer38 !AZ", all possible symmetry classes of random
matrices, which can be interpreted as Hamiltonians of some
noninteracting fermionic system, can be systematically enu-
merated: there are ten symmetry classes in total. !For a sum-
mary, see Table I." The basic idea as to why there are pre-
cisely ten is easy to understand. Roughly, the only generic
symmetries relevant for any system are TRS and charge con-
jugation or particle-hole symmetry !PHS". Both can be rep-
resented by antiunitary operators on the Hilbert space on
which the single-particle Hamiltonian !a matrix" acts, and

TABLE I. Ten symmetry classes of single-particle Hamiltonians classified in terms of the presence or
absence of time-reversal symmetry !TRS" and particle-hole symmetry !PHS", as well as “sublattice” !or
“chiral”" symmetry !SLS" !Refs. 37 and 38". In the table, the absence of symmetries is denoted by “0.” The
presence of these symmetries is denoted by either “+1” or “−1,” depending on whether the !antiunitary"
operator implementing the symmetry at the level of the single-particle Hamiltonian squares to “+1” or “−1”
!see text". #The index !1 equals "c in Eq. !1b"; here #c= +1 and −1 for TRS and PHS, respectively.$ For the
first six entries of the table !which can be realized in nonsuperconducting systems", TRS= +1 when the SU!2"
spin is an integer #called TRS !even" in the text$ and TRS=−1 when it is a half-integer #called TRS !odd" in
the text$. For the last four entries, the superconductor “Bogoliubov–de Gennes” !BdG" symmetry classes D,
C, DIII, and CI, the Hamiltonian preserves SU!2" spin-1/2 rotation symmetry when PHS=−1 #called PHS
!singlet" in the text$, while it does not preserve SU!2" when PHS= +1 #called PHS !triplet" in the text$. The
last three columns list all topologically non-trivial quantum ground states as a function of symmetry class and
spatial dimension. The symbols Z and Z2 indicate whether the space of quantum ground states is partitioned
into topological sectors labeled by an integer or a Z2 quantity, respectively.

TRS PHS SLS d=1 d=2 d=3

Standard A !unitary" 0 0 0 - Z -
!Wigner-Dyson" AI !orthogonal" +1 0 0 - - -

AII !symplectic" −1 0 0 - Z2 Z2

Chiral AIII !chiral unitary" 0 0 1 Z - Z
!sublattice" BDI !chiral orthogonal" +1 +1 1 Z - -

CII !chiral symplectic" −1 −1 1 Z - Z2

BdG D 0 +1 0 Z2 Z -
C 0 −1 0 - Z -

DIII −1 +1 1 Z2 Z2 Z
CI +1 −1 1 - - Z

SCHNYDER et al. PHYSICAL REVIEW B 78, 195125 !2008"

195125-2

Figure 2.2 – Periodic table of topological insulators and superconductors. The integers +1
and −1 represents how the time-reversal (TRS) and particle-hole (PHS) symmetry square.
Image taken from [64].
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The three classes A, AI and AII correspond to the standard Wigner-Dyson [67] classes
which are defined by the absence of particle-hole symmetry. The unitary class A cor-
responds to systems when no symmetry is present, which is the case of the integer and
anomalous quantum Hall effects in two-dimensions. The AI class is the orthogonal class
for time-reversal invariant systems with T 2 = 1 (spinless fermions). The AII class cor-
responds to symplectic systems where time-reversal is present with T 2 = −1 (spinfull
fermions). The QSH effect belongs to the symplectic class.

The classes AIII, BDI and CII corresponds to chiral systems which are usually im-
plemented on a bipartite lattice. Graphene belongs to the BDI class if one considers
spinless fermions. BDI corresponds to systems having sublattice chiral symmetry and
time-reversal invariance with T 2 = +1. We see that no topological invariant exists in this
class in two dimensions. The 4 other classes introduced by Altland and Zirnbauer occur
generally for the Bogoliubov-de Gennes Hamiltonians of superconducting systems that we
will not discuss here.

In the next section, we introduce the Haldane model as a representative of the class
A, which presents a quantum Hall effect without Landau levels. This model is a band
insulator with translational symmetry.

2 The Haldane model
In a seminal paper, Haldane [30] introduced a model that presents a quantized Hall

conductance where time-reversal symmetry is broken but with a net zero magnetic flux per
unit cell. Because the lattice periodicity is preserved, one can define a simple Brillouin
zone in opposite with the QHE where one needs to define a magnetic Brillouin zone.
The electronic structure is made of two bands, the valence and the conduction band.
The total Chern number is zero, but the valence and the conduction band have a non-
zero and opposite Chern numbers [54]. This model possesses a chiral edge state that
propagates in one direction along the boundary. This edge state is topologically protected
from backscattering and is therefore a characteristic feature of the non-trivial topology.
Because of the features shared with the quantum Hall effect, this model was dubbed as
quantum anomalous Hall effect.

This model hasn’t been realized in graphene as originally introduced. However, it is a
good starting point for understanding topological phases because of its simplicity. It also
allows to visualize topological transitions by varying the parameters of the model. In the
context of cold atoms, the Haldane model has been realized by modulating periodically
a honeycomb optical lattice [40]. It was also realized in thin Bi2Se3 thin films[39] doped
with chromium.

The Haldane model is defined on the honeycomb lattice (see Fig. 2.3), and its Hamil-
tonian is composed of three terms :

HHal = Hgr +Hφ +HS. (2.19)

The first term is the usual bare graphene Hamiltonian given by Eq. (1.1). The second
term is an on-site staggered potential with opposite sign on the A and B sublattice as
seen in the previous chapter, which we call a Semenoff mass term [29] :

HS =MS ∑
rA,rB

(a†(rA)a(rA) − b†(rB)b(rB)) , (2.20)
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while the third term corresponds to complex valued second neighbours hoppings :

Hφ = t2∑
rA

3∑
i=1 a

†(rA + ai)a(rA)eiφ + t2∑
rB

3∑
i=1 b

†(rB + ai)b(rB)e−iφ +H.c.. (2.21)

The phases of the second neighbour hoppings are chosen according to the pattern of Fig.
2.3. The arrows on Fig. (2.3) represent the positive phase φ accumulated for second
neighbour hoppings.

The Semenoff term breaks space inversion symmetry while the fluxes break time-
reversal invariance. The non-trivial topological properties arise from the second-neighbour
hopping with a complex phase with φ ≠ 0 and φ ≠ π. The Semenoff term doesn’t generate
a topological phase but allows us to visualize a topological transition by allowing a gap
closing between a non-trivial topological phase and a trivial one.

x

y

A

Bδ3

δ2 δ1

a1

a2

a3

φ

Figure 2.3 – Lattice of the Haldane model. The phase acquired during second neighbour
hoppings is shown by the arrows on the dashed lines. The vectors a1 = √

3aex and
a2,3 = −√3a

2 ex ± 3a
2 ey are the vectors linking a site to its second neighbours.

Because the magnetic fluxes have the periodicity of the lattice, it is possible to apply
Bloch theorem and define a Brillouin zone. Using the Fourier transform of the operators
defined in Eq. (1.3), we obtain the Hamiltonian in k space :

H =∑
k

Ψ†(k)(MS + 2t2∑i cos(k.ai + φ) t∑a e−ik.δa
t∑a eik.δa −MS + 2t2∑i cos(k.ai − φ))Ψ(k), (2.22)

with Ψ†(k) = (a†(k), b†(k)). Using the expression for a two-band Hamiltonian of Eq.
(1.7), we find the expression of d0(k) and of the vector d(k) :

d0(k) = 2t2 cos(φ)∑
i

cos(k.ai), (2.23)

d(k) = ⎛⎜⎝
t∑α cos(k.δα)
t∑α sin(k.δα)

MS − 2t2 sin(φ)∑i sin(k.ai)
⎞⎟⎠ . (2.24)
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We can see that the second-neighbour couplings add two terms over the bare graphene
Hamiltonian that depend on k : the term d0(k) in cos(φ) proportional to the identity,
and the term dz(k) in sin(φ) proportional σz that call we a Haldane mass term. In the
case MS = 0, these terms are even and odd in k respectively :

d0(k) = d0(−k) (2.25)
dz(k) = −dz(−k) (2.26)

Both terms break the chiral symmetry S = σz. We observe two opposite situations :

• when t2 = 0 and MS ≠ 0, the term dz(k) is even in k and therefore breaks space
inversion according to Eq. (1.96) but preserves time-reversal invariance. Thereby,
we recover the Semenoff mass term introduced in Sec. 4.1, which has the same sign
in both valleys : M+ =M−.

• when t2 ≠ 0, φ ≠ 0 and MS = 0, according to Eqs. (1.97) and (1.96), time-reversal
is broken, space inversion symmetry is valid and the mass term is opposite in each
valley : M+ = −M−. The dispersion relation is the same as for a Semenoff mass,
however the difference is important in regard of the topological properties of the
bands.

Fig. 2.4 shows the dispersion relation E±(k) = ±∣d(k)∣ for different sets of parameters.
Because the Haldane mass term is odd in k, the mass term can have a different value in
the different valleys. In Fig. 2.4.(a), we observe a Dirac point in valley K, while the valley
K′ is gapped. In Fig. 2.4.(c), we observe the opposite scenario, while in Fig 2.4.(b), the
Semenoff mass is set to zero and the Haldane mass has opposite sign in the valleys, which
however doesn’t reflect on the spectrum.

To obtain the low-energy dispersion relation, we linearize around the Dirac points ξK
where ξ = ± is the valley index. Setting k = ξK + q such that q≪K gives us :

d0(q) = −3
√

3t2 cos(φ) (2.27)

dξ(q) = ⎛⎜⎝
ξqx
qy
Mξ

⎞⎟⎠ , (2.28)

where we have set h̵ = v = 1. We recover the massive Hamiltonian Dirac with the dispersion
relation E2 = p2 +M2

ξ with a valley-dependent mass :

Mξ =MS + ξ3√3t2 sin(φ) (2.29)

When time-reversal symmetry and space-inversion are broken, the mass gap is not identi-
cal in both valleys. In fact, it is possible to have a single Dirac cone in the valley ξ when
the condition :

MS = −ξ3√3t2 sin(φ) (2.30)

is fulfilled.
We have shown here that the Haldane model allows for mass terms with opposite signs

in the valley space. This fact has important consequences on the topological properties
of this model which allows for a quantized Hall conductance. In the next section, we will
study the geometrical and topological aspects of this model.
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(a) (b)

(c)

Figure 2.4 – Dispersion relation of the Haldane model for φ = π/2 for : (a) MS = −3
√

3t2,
(b) MS = 0 and (c) MS = 3

√
3t2. In (a), we have M+ = 0 and M− = 6

√
3t2, so that there

is a band touching in valley K while valley K ′ is gapped. In (b), the Semenoff mass is
zero, so the gap originates from the complex second neighbour hoppings. The sign of the
mass is opposite in each valley such that M+ = −M−, however, this doesn’t reflect on the
spectrum. In (c), we observe the opposite situation as in (a) except that the gap vanishes
in valley K ′ instead of K. (a) and (c) are located at topological transitions because there
is a gap closing.

3 Berry phases and Chern number in the Haldane model

In this section, we analyze the geometrical properties of the Haldane model encoded
in the Berry connection. Depending on the parameters MS, t2 and φ, this model allows
to study different limiting cases such as massless graphene (semimetal), the Semenoff
insulator (trivial insulator) and the Haldane insulator (non-trivial insulator).

In Sec. 3.1, we derive the expression of the Berry connection and curvature of a generic
two-band Hamiltonian. In Sec. 3.2, we calculate the Chern number of the Haldane model.
In Sec. 3.3, we analyze the constraints imposed by the symmetries of the model. In
Sec. 3.4, we study the Berry connection of graphene where the mass term vanishes, and
observe a winding of the phase around the Dirac points characteristic of chiral symmetric
systems. In Sec. 3.5, we describe the Berry connection and curvature of a Semenoff
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insulator (t2 = 0). Finally, in Sec. 3.6, we study the Haldane insulator (MS = 0).

3.1 Berry connection and curvature of a two-level system

To study these different phases, we consider first the generic Bloch Hamiltonian for a
two-band model as described in Eq. (1.7) :

H(k) = d(k).σ. (2.31)

The dispersion relation is given by E(k) = ±d(k) with d(k) = ∣d(k)∣, which describes an
insulator if the condition ∣d(k)∣ ≠ 0 is satisfied everywhere in the Brillouin zone. In this
case, the vector d(k) lives in the space R3 − {0} which can be mapped onto the sphere
S2. We can therefore define the unit vector d̂(k) = d(k)∣d(k)∣ for all k, and use the spherical
angles θ and φ such that :

d̂(k) = ⎛⎜⎝
sin θk cosϕk

sin θk sinϕk

cos θk

⎞⎟⎠ , (2.32)

with :

ϕk = arctan(dy(k)
dx(k)) , and θk = arccos(dz(k)

d(k) ) . (2.33)

The eigenstates of this model have the expressions :

∣u−k⟩ = ( sin θ
2− cos θ2e
iϕ) , ∣u+k⟩ = ( cos θ2

sin θ
2e
iϕ) , (2.34)

where ± is the band index, and we have dropped the index k for simplicity. These
eigenstates are defined up to a gauge transformation. We can see that the eigenstates
are independent of d(k) and are therefore characterized only by the angles θ and ϕ. The
wavefunctions live on the two-dimensional sphere, so this model describes a S2 bundle on
the Brillouin zone torus T 2.

Figure 2.5 – Mapping from the Brillouin zone torus to the Bloch sphere d̂(k) = d(k)/∣d(k)∣
of the eigenstates (2.34). Image taken from Cayssol [68].

We thus wish to describe the geometrical properties of the valence band with eigen-
states ∣u−k⟩. We can see that the phase is ill-defined for θ = 0. It is possible to make a
gauge transformation by multiplying ∣u−k⟩ by e−iϕ, but then the phase would not be defined
at θ = π. We can already see that such a bundle has a non-trivial topology if both the
poles θk = 0 and θk = π are reached in the Brillouin zone. To describe the geometry of
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the bundle, we separate the sphere into two hemisphere : north (θ ∈ {0, π2 + ε}) and south
(θ ∈ {π2 − ε, π}) where ε≪ 1. We define the vectors ∣uN−k ⟩ and ∣uS−k ⟩ :

∣uN−k ⟩ = (sin θ
2e

−iϕ− cos θ2
) , ∣uS−k ⟩ = ( sin θ

2− cos θ2e
iϕ) , (2.35)

The phase of ∣uN−k ⟩ is well defined over the north hemisphere while the phase of ∣uS−k ⟩ is
well defined over the south hemisphere. The wavefunctions are related by the transition
function ∣uN−k ⟩ = tNS ∣uS−k ⟩ at the equator θ = π

2 with :

tNS = e−iϕ. (2.36)

This transition function is an element of the U(1) group, which we will see later is related
to the topology of the bundle. In the north pole, the Berry connection of the valence
band in spherical coordinates has the expression :

A
N−(k) = i⟨uN−k ∣∇k∣uN−k ⟩ = sin2 (θk

2
)∇kϕk. (2.37)

In the south pole, we find :

A
S−(k) = i⟨uS−k ∣∇k∣uS−k ⟩ = − cos2 (θk

2
)∇kϕk. (2.38)

They are related by the gauge transformation :

A
N−(k) =AS−(k) + it−1

NS∇ktNS =AS−(k) +∇kϕk. (2.39)

A pole is reached when dx(k∗) = dy(k∗) = 0, and dz(k∗) ≠ 0. According to Eq. (2.28), we
deduce that this condition is fulfilled at the Dirac points k∗ = K±. The sign of the mass
at the Dirac point tells us which pole is reached :

dz(Kξ) =Mξ > 0 ⇒ θKξ
= 0 (2.40)

dz(Kξ) =Mξ < 0 ⇒ θKξ
= π (2.41)

When both poles are reached when scanning the Brillouin zone, it is not possible to define
a continuous gauge over the Brillouin zone, and the bundle is not trivial. This is the case
when the mass term has a different sign at the Dirac points. In that case, we need to
separate the Brillouin zone in two parts and apply the transition function at the interface.
From Eq. (2.9), we find that the Berry curvature has the expression :

F−
xy(k) = 1

2
sin θ (∂θk

∂kx

∂φk

∂ky
− ∂φk

∂kx

∂θk
∂ky

) , (2.42)

This quantity is gauge independent and can therefore be measured. To obtain the ex-
pression of the Berry connection and curvature in function of k we need the expression
for the derivatives of the angles ϕk and θk as a function of the vector d(k). We find :

∇kϕk = 1

d2
x + d2

y

[(∇kdy)dx − (∇kdx)dy] , (2.43)

∇kθk = −1

d
√
d2
x + d2

y

[(∇kdz)d − (∇kd)dz] , (2.44)
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3.2 Chern number

We have seen in Sec. 1.2 that, according to the Kubo formula, the Hall conductance
of a filled band of a 2D material is proportionnal to the TKNN integer or equivalently
the Chern number of the band. The Chern number is a topological invariant defined for
two-dimensional materials where time-reversal symmetry is broken. It can be computed
using different methods [54, 68, 69]. We present here two methods : first, the calculation
of the Chern number as the integral of the Berry curvature over the whole Brillouin zone,
as presented in Refs [51] or [54]. Second, we will see that the Chern number can be
expressed as the winding number of the vector d(k) around the Bloch sphere.

The Hall conductivity of a filled valence band calculated using Kubo formalism given
by (see Annex B) :

σxy = e2

h
C−, (2.45)

where C− is the Chern number of the valence band defined as :

C− = 1

2π ∫BZ d2kF−
xy(k) (2.46)

such that : F−
xy(k) = [∇ ×A−(k)]z , (2.47)

where [...]z corresponds to the z component of the vector. Using Stokes’ theorem naively
gives a vanishing Chern number because the Brillouin zone has no boundary. However,
we have seen in Sec. 3 that it is impossible to define a continuous gauge over the whole
Brillouin zone when the Dirac points have opposite mass. The procedure consists in
separating the Brillouin zone in two parts UN and US defined as :

{k ∈ UN ∣θk ∈ {0, π/2 + ε}} (2.48){k ∈ US ∣θk ∈ {π/2 − ε, π}} (2.49)

We define the boundary ∂U between UN and US as the ensemble of points k ∈ ∂U that
obey the condition θk = π/2 : {k ∈ ∂U ∣θk = π

2
} (2.50)

This ensemble corresponds to a closed loop in the Brillouin zone defined by dz(k) = 0.
Using the expression for dz(k) from Eq. (2.24) with MS = 0, we find that :

θk = π
2

⇔ ky = kx√
3

(2.51)

If the masses are opposite in the Dirac points sign(M+) = −sign(M−), the Chern
number of the valence band defined in Eq. (2.46) has the expression :

C− = 1

2π ∫UN d2k [∇ ×AN−(k)]
z
+ 1

2π ∫US d2k [∇ ×AS−(k)]
z
, (2.52)

= 1

2π ∫∂UN dk.AN−(k) + 1

2π ∫∂US dk.AS−(k), (2.53)

where the integral in the second line is operated along the equator of the Bloch sphere
∂U . It is operated anti-clockwise around the north pole and clockwise around the south
pole. The boundaries ∂UN and ∂US have opposite orientation, such that we can write :

C− = 1

2π ∮∂U dk [AN−(k) −AS−(k)] , (2.54)
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Figure 2.6 – Phase diagram of the Haldane model as a function of the parameters MS, t2
and φ calculated using Eq. (2.59). C− denotes the Chern number of the occupied valence
band. There are two non-trivial phases with Chern number +1 and −1 indicated in red
and blue respectively. Outside these regions in parameter space, the Chern number is
zero. The red dots correspond to the coordinates in parameter space of the plots of Fig.
2.10.

where we have set the convention that the integral is operated anti-clockwise along ∂U .
Using Eq. (2.39), we find :

C− = i

2π ∫∂U dkt−1
NS∇ktNS, (2.55)

= i

2π ∫ d log tNS, (2.56)

where tNS is defined in Eq. (2.36). Therefore, the Chern number of the valence band can
be expressed as the winding number of the U(1) transition function tNS between the two
regions. Using the expression of the transition function for the case of the Haldane model
(2.36), we find that the Chern number can be expressed as [69] :

C− = 1

2
(sign(M+) − sign(M−)), (2.57)

because the winding of the transition function along the equator depends on the orien-
tation of the integral along the equator. If the mass is negative in valley K and positive
in valley K ′, then the north hemisphere is located at the Dirac point K ′ and the inte-
gral along ∂U is performed anti-clockwise around K ′. In the opposite scenario, the north
hemisphere is at the Dirac point K, and the integral along ∂U is performed anti-clockwise
around K and thus clockwise around K ′. Thus, depending on the sign of the masses at
the Dirac point, the phase winds in opposite directions along the equator.

We can see that each Dirac point carries a topological charge 1/2 and that depending
on the sign of mass in each valley, we can define different phases. At first sight, there
are 4 phases depending on the sign of the masses which are (sign(M+), sign(M−)) =(1,1), (1,−1), (−1,1) and (−1,−1). When the mass has opposite sign in the valleys, the
Chern number is ±1, while if the mass has the same sign, the Chern number is zero. A
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transition between these phases happens when the gap closes in one valley, namely :

MS

t2
= ±3

√
3 sinφ. (2.58)

Fig. 2.6 shows the topological phase diagram of the Haldane model as a function of the
parameters MS, t2 and φ such that :

C− = 1

2
(sign(MS + 3

√
3t2 sinφ) − sign(MS − 3

√
3t2 sinφ)). (2.59)

It is possible to obtain phases with higher Chern number by engineering models with
additional Dirac points whose "topological charges" are equal to the sign of the masses
at the corresponding Dirac point[69]. Another path to engineer phases with higher Chern
number is to include distant neighbours hopping in the Haldane model [70].

There exist another formulation of the Chern number, which is the winding number
of the vector d̂(k) = d(k)/∣d(k)∣ around the Brillouin zone (see Ref. [69] and Annex B) :

C− = 1

4π ∫BZ d2k(∂kxd̂(k) × ∂ky d̂(k)).d̂(k) (2.60)

When integrating over a portion of the Brillouin zone, this formula gives the solid angle
of the Bloch sphere traced by the vector d̂(k). Thus, this formula counts the number of
times the vector d̂(k) wraps around the Bloch sphere when k is varied across the Brillouin
zone. Because the Brillouin zone is periodic in k, this number is an integer. This formula
is useful in order to picture the non-triviality of a model by considering how the vector
d̂(k) winds around the Bloch sphere when the parameters are varied.

3.3 Symmetries

The presence of symmetries in the Hamiltonian of the system impose some constraints
over the Berry connection and curvature. From the expression (1.58) of the time-reversed
state, we find that if the system has time-reversal symmetry, the Berry connection and
curvature must satisfy (see Annex A) :

A(k) =A(−k) +∇ζ(k), (2.61)Fxy(k) = −Fxy(−k), (2.62)

which means that the Berry curvature must have opposite sign in each valley. From this
argument, we can see that the Chern number, which is the integral of the Berry curvature
over the Brillouin zone must vanish for a time-reversal symmetric system .

Using the same reasoning, we find that the Berry connection and curvature of a space-
inversion invariant system must obey :

A(k) = −A(−k) +∇ζ(k), (2.63)Fxy(k) = Fxy(−k). (2.64)

Therefore, in the case of a time-reversal and space-invariant system, which is the case of
graphene, the Berry curvature must vanish everywhere in the Brillouin zone :

Fxy(k) = 0 ∀ k ∈ BZ (2.65)

However, a system where time-reversal symmetry is broken can have a non-zero Chern
number. We will see in the next section three special cases of the Haldane model as a
function of the presence or absence of these symmetries.
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3.4 Graphene
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Figure 2.7 – Berry connection (blue arrows) and Berry connection (color coding) of (a)
graphene and (b) the Haldane model with a positive Semenoff mass such that MS = 0.3t
and t2 = 0. The Berry connection is plotted in the north pole gauge using Eqs. (2.37)
and (2.43). In the case of a Semenoff insulator with positive mass, the south pole defined
by θk = π is not reached and the north pole gauge is continuous over the Brillouin zone.
The Berry connection winds around the Dirac points in opposite direction. The Berry
curvature is peaked around the Dirac points and has opposite sign in the different valleys.

In the case of graphene, the lattice has chiral symmetry which means that the term
in σz is forbidden. The Berry connection is thus restricted to the equator of the Bloch
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sphere θk = π/2 and only one gauge is necessary to describe the Berry connection over
the Brillouin zone. Fig. 2.7.(a) shows the Berry connection of graphene in the Brillouin
zone in the north pole gauge using Eqs. (2.37) and (2.43) with θk = π/2. We can see
that the Berry connection winds around the Dirac points in opposite direction in each
valley. Because graphene has both time-reversal and space-inversion symmetry, the Berry
curvature vanishes everywhere.

Using Eq. (2.28) for the expression for the vector dξ(q) around the Dirac points with
the mass set to zero, Eq. (2.37) reduces to :

A
N
ξ (q) = 1

2
∇qϕq = ξ

2q
eϕ, (2.66)

A
S
ξ (q) = − ξ2qeϕ, (2.67)

where we have used the polar coordinates (q,ϕq) centered on a Dirac point :

q = √
q2
x + q2

y, (2.68)

ϕq = arctan(ξqy/qx), (2.69)

and eϕ is the polar unit vector corresponding to the angle ϕ around the Dirac point. The
Berry connection winds around the Dirac point in opposite direction, and the direction of
rotation depends on the gauge. We can see from Eq. (2.66) that in the north gauge, the
Berry connection winds anti-clockwise around the Dirac point K and clockwise around
K ′ which is consistent with Fig. 2.7.(a). The Berry connection diverges at the Dirac
point, which is due to the fact that the Dirac point are degeneracy points between the
conductance and valence band which means that the Berry connection is ill-defined at the
Dirac points.

It is interesting to calculate the Berry phase around a path in momentum space close
to the Dirac points. The Berry phase γ(C) corresponding to the path C around the Dirac
point ξ has the expression :

γξ(C) = ∫
C
dq.Aξ(q) = ±1

2 ∫C dq.∇qϕq = ±ξ
2 ∫C dϕ, (2.70)

where the ± sign depends on the chosen gauge. Therefore, if the path encloses the Dirac
point, the angle φ runs from 0 to 2π around the equator of the Bloch sphere, which gives
a Berry phase of :

γξ(C) = ±ξπ, (2.71)

whereas if it doesn’t encloses the Dirac point we have γξ(C) = 0. The Berry phase has
opposite sign in both valleys, however, the sign depends on the gauge. The gauge freedom
implies that the Berry phase is defined modulo 2π [71].

This Berry phase has a topological origin, because its value doesn’t depend on the
shape of the path, but rather on the presence or the absence of a Dirac point inside
the loop. This topological property is named winding number, because it corresponds to
the phase of the wavefunction accumulated when winding around a Dirac point. Due to
chiral symmetry, a path in the Brillouin zone is restricted to the equator of the Bloch
sphere, and the angle spanned by the vector d(k) is 0 if the path doesn’t wind around
the origin of the Bloch sphere or 2π if it winds around the origin. The winding number in
graphene is at the origin of a zero-energy edge state linking both valleys [35]. In a ribbon
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of graphene, this winding number can also be expressed as the zak phase of a closed line
in the Brillouin zone characterized by a fixed momentum k∥ parallel to the boundary [72]
and expresses the presence or absence of an edge state at momentum k∥.

When making a circle in two-dimensions enclosing a Dirac point, the electron acquires
a phase of ±π independently to the shape of the path. This phase is analogous to the π
phase acquired by an electron under a 2π rotation in real space. If we consider a path
enclosing the two Dirac points, the total phase vanishes because the Dirac points have
opposite velocities. Such a property is related to the Chern number that vanishes in the
case of graphene.

Because graphene has both time-reversal and space inversion symmetry, the Berry
curvature vanishes everywhere in the Brillouin zone. However, because the expression for
the Berry phase can be expressed as the flux of the Berry curvature through the surface
enclosed by the path, there must be a non-zero flux at the Dirac points. The Berry
curvature of graphene can thus be expressed as :

F−
xy(k) = ±π(δ(k −K) − δ(k −K′)), (2.72)

which gives us the correct expression for the Berry phase (2.71) around a Dirac point.
The Dirac points are degeneracy points between the valence and conduction bands and
act therefore as source and sink of Berry curvature. Each Dirac point carries therefore a
topological charge ±1/2, and the Berry connection is analogous to the field generated by
a magnetic monopole located at the Dirac points [73, 71] in two dimensions.

3.5 Semenoff insulator

In the case of a Semenoff insulator, the second neighbour hopping are set to zero
(t2 = 0), and thus the presence of magnetic fluxes doesn’t affect the electronic properties.
In that case, time-reversal symmetry is present, however, due to the non-vanishing on-site
potential (Semenoff mass), space-inversion is broken. In a Semenoff insulator, the sign
of the mass is identical in both valleys and is equal to MS. The image of a circle in
q-space centered on the Dirac point is a circle on the Bloch sphere at latitude θ such that
cos θq =MS/√M2

S + q2. For a Semenoff mass with positive sign, the vector d(q) reaches
the north pole θq = 0 at the Dirac points, but never reaches the south pole. Therefore, for
a positive mass, we only need the expression of the Berry connection in the north pole
gauge over the Brillouin zone.

Fig. 2.7.(b) shows the Berry connection vector field and the Berry curvature over the
Brillouin zone calculated using the north pole gauge (2.37) for a Semenoff massMS = 0.3t.
The Berry curvature for a Semenoff insulator was obtained analytically in [74]. We see
that the Berry connection winds around the Dirac points with opposite direction, counter-
clockwise in the valley K and clockwise in valley K ′. Because the system is time-reversal
symmetric, the Berry curvature has opposite sign in both valleys. The Berry curvature
is located mainly around the Dirac points. When the Berry connection winds clockwise,
the Berry curvature is negative, and inversely.

The Berry connection around the Dirac point ξ in the north pole gauge simplifies to :

A
N
ξ (q) = sin2 (θq

2
)∇qϕq,= ξ

2q

⎛⎝1 − MS√
q2 +M2

S

⎞⎠eϕ = Aϕeϕ, (2.73)

where we have used the expression of the vector dξ(k) given in Eq. (2.28) and∇φq = 1/qeϕ.
At the Dirac points, the Berry connection vanishes which is consistent with the fact that
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the phase of the wavefunction is zero at the Dirac point. Using polar coordinates (q, φ),
we find that the Berry curvature equals :

F−
xy(q) = 1

q

∂(qAϕ)
∂q

= −ξMS

2
(q2 +M2

S)−3/2. (2.74)

in both gauges. Because the Dirac points are related by time-reversal symmetry, the
Berry curvature has opposite sign in both valleys. The Berry curvature is maximal at
the Dirac point and decreases away from it. The Berry curvature at a Dirac point equalsF−
xy(0) = −ξM2

S/2.
We have seen that the Chern number is defined as the integral of the Berry curvature

over the whole compact base space, namely the Brillouin zone. Although it is not math-
ematically exact, it is interesting to evaluate the Chern number c−ξ of the valence band
carried by the Dirac point Kξ :

c−ξ = 1

2π ∫R2
dSF−

xy(q) (2.75)

= 1

2π ∫
2π

0
dϕ∫ ∞

0
dq
∂(qAϕ)
∂q

(2.76)

= ξ 1

2
sign(MS), (2.77)

Therefore, each Dirac point carries a Chern number 1/2 of opposite sign in both valleys
whose sign depends on the sign of the mass term. Thus, when integrating over the
Brillouin zone, the contribution from the two points vanishes and the Chern number is
zero.

3.6 Haldane insulator

We name Haldane insulator a phase of the Haldane model where the Semenoff mass
is set to zero (MS = 0). In that phase, the system is invariant under space inversion,
however due to non-vanishing magnetic fluxes (t2 ≠ 0), time-reversal symmetry is broken.
In that case, the masses at the dirac points have opposite sign :

Mξ = ξ3√3t2 sin(φ) = ξMH , (2.78)

such that M+ = −M− ≡MH , where MH = 3
√

3t2 sin(φ) is the Haldane mass defined as the
mass in valley K. The sign of the masses at the Dirac point is given by the value of φ.
For simplicity, we restrict φ to the interval [−π,π]. We have :

φ ∈ [−π,0] ⇒ M+ < 0 and M− > 0 (2.79)
φ ∈ [0, π] ⇒ M+ > 0 and M− < 0 (2.80)

Because both poles are reached, one needs to use the two gauges defined by Eqs. (2.37)
and (2.38). Fig. 2.8 shows the Berry connection and curvature over the Brillouin zone in
both gauges for a flux of φ = π/2 which corresponds to a positive Haldane mass MH . In
that case, the north pole is reached at K, while the south pole is reached at K ′. We can
see that in the north gauge [Fig. 2.8.(a)], the Berry connection diverges around K ′ while
it vanishes at K which is consistent with the fact that the Berry connection is ill-defined
at the Dirac point K ′. The Berry connection winds counter-clockwise around K. In the
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Figure 2.8 – Berry connection (vector field) and Berry curvature of the Haldane model
for a Haldane mass t2 = 0.1/√3t, φ = π/2 and MS = 0 over the Brillouin zone plotted
using the expression of the Berry connection at : (a) the north pole (2.37) and (b) at the
south pole (2.38). In the north pole gauge, the Berry phase winds anti-clockwise around
the Dirac point K, while it diverges at K′. In contrary, in the south pole gauge, the
Berry connection winds anti-clockwise around K′ and diverges at K. Thus, the Berry
connection winds in the same direction around both Dirac points.

south gauge [Fig. 2.8.(a)], the scenario is opposite, but the Berry connection winds also
counter-clockwise around K ′. In the two gauges, the Berry connection around the Dirac
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points is given by :

A
N
K(q) = sin2 (θq

2
)eϕ = 1

2q

⎛⎝1 − MH√
q2 +M2

S

⎞⎠eϕ, (2.81)

A
S
K′(q) = cos2 (θq

2
)eϕ = 1

2q

⎛⎝1 − MH√
q2 +M2

S

⎞⎠eϕ, (2.82)

which means that both Dirac point wind in the same direction in their own gauge and
therefore add up when considering the total circulation of the Berry connection. If we
reverse the sign of the flux, then the sign of the masses is reversed and so is the direction
of rotation. The Berry curvature has the same value in both valleys, namely :

F−
xy(q) = MH

2
(q2 +M2

H)−3/2. (2.83)

As we have done in the previous section, although it is not mathematically exact, we
calculate the Chern number carried by a Dirac point :

c−ξ = 1

2
sign(MH) (2.84)

Thus, each Dirac point carries the Chern number 1/2, which leads to a total Chern number
C− = +1 in the case of a flux φ = π/2. This is consistent with the value of the Chern number
of Fig. 2.6.

4 Edge states
Topological insulators are classified according to their bulk topological invariants and

a characteristic feature of a non-trivial topology is the presence of edge states at the
boundary of the material. The edge states are topological solitons that live at the bound-
ary between two topologically distinct regions. The first example of a solitonic edge state
was introduced by Jackiw and Rebbi in the context of field theory in one-dimension [75].
Such a solitonic state has zero-energy and exists at the boundary between two regions
with opposite mass scalar field. At the boundary, the sign of the mass changes and there-
fore closes locally the mass gap. In condensed matter, one-dimensional solitonic states
exist in the Su, Shrieffer and Hegger model used to describe polyacetylene [76]. This
model consists of a dimerized chain of atoms and a bound state exist at a the interface
between two phases with a different dimerization scheme. In general, if the total space
has dimension D, then the interface soliton has dimension D-1.

In two-dimensional topological insulators, one-dimensional metallic states exist at the
interface between two regions with different topological invariants. When no symmetry is
present, the topological invariant is the Chern number [65]. The vacuum is considered as
a topologically trivial region, so the number of edge states at the boundary is equal to the
topological invariant of the filled bands. The edge states are robust to moderate disorder
because the topological invariant can only change if the bulk band gap closes. These edge
states are related to the bulk topological invariant by the bulk-boundary correspondence,
which is robust under disorder and certain types of interactions [37].

In the quantum Hall effect, the relation between the quantized Hall conductance and
the presence of edge states was first shown by Halperin [56]. Thereafter, the correspon-
dence between the bulk topological invariant and the number of edge states was proved
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by Hatsugai [33, 34]. The edge states are chiral in the sense that they propagate along
one-direction at the boundary. Backscattering is forbidden because there exist no state
propagating in the opposite direction. In the quantum Hall effect, the number of edge
states is proportional to the number of filled Landau levels.

The topology of the Haldane model is characterized by its Chern number. The Haldane
model possesses one chiral edge state whose direction of propagation is dictated by the
sign of the Chern number. The presence of such a metallic state can be understood by
the fact that the sign of the mass is inverted in one valley and thus the gap has to close
at the boundary. In this section, we wish to study the properties of the edge state of the
Haldane model in relation with the bulk topological properties that we studied in the last
section.

In Sec. 4.1, we calculate numerically the dispersion relation of a ribbon of the Haldane
model in the tight-binding formalism. In Sec. 4.2, we calculate the dispersion relation of
the edge states in the Haldane gap.

4.1 Tight-binding ribbon

x

y

i=N-1

i=4

i=3

i=2

i=1

i=0

A

B

Figure 2.9 – Geometry of the zig-zag ribbon. The ribbon is infinite along the x direction
and is made of N unit cells along y labelled by the index n. The edges are located at
y = 0 and y = N 3a

2

We consider a ribbon infinite along x and with boundaries at y = 0 and y = W as
shown in Fig. 2.9. We separate the ribbon in several layers along y labelled by the index
n. In this geometry considered, because of the shape of the edges, the ribbon is called a
zig-zag ribbon. The boundary conditions consists in cancelling the wavefunction at the
missing spots at the edges namely uB(i = −1) = 0 and uA(i = N) = 0.

We consider the Haldane Hamiltonian in real space of Eq. (2.19) and operate the
Fourier transform of the operators a(r) and b(r) along x such that :

a(r) = 1√
2πN

∑
kx

ai(kx)e−ikxx and, b(r) = 1√
2πN

∑
kx

bi(kx)e−ikxx, (2.85)

where i labels the position of a site along the y direction, such that rAy = i3a
2 ey with

i ∈ {0,N − 1} where N is the number of sites of the ribbon along y (see Fig. 2.9), and kx
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(a) (b)

(c) (d)
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momentum. Replacing expression (2.65) in Eq. (2.22), we obtain :

H = t�
kx,i

�b†
i(kx)ai(kx)2 cos�√3a

2
kx� + b†

i−1ai +H.c.�
+�

kx,i

�a†
i(kx)ai(kx)�M

2
+ t2 cos(√3akx + �)� + a†

i+1(kx)ai(kx)2t2 cos�√3a

2
kx − �� +H.c.�

+�
kx,i

�b†
i(kx)bi(kx)�−M

2
+ t2 cos(√3akx − �)� + b†

i+1(kx)bi(kx)2t2 cos�√3a

2
kx + �� +H.c.� ,

(2.66)

which can be expressed as :

H =�
kx

�
↵�

�
ij

 †↵
i (kx)H↵�

ij (kx) �
j (kx), (2.67)

where ↵,� = A,B is the sublattice index and i, j ∈ {0,N−1}. For a ribbon with N unit cells along
the transverse direction, the Hamiltonian for each kx has size 2N×2N because there are two sites
per unit cell. The dispersion relation is obtained by diagonalizing the Hamiltonian numerically
H↵�

mn(kx) for each kx in the Brillouin zone, and the boundary condition is automatically imposed
because there is no hopping at the sites n = −1 and n = N . Fig. 2.8 shows the dispersion relation
of Haldane ribbons for different sets of parameters. The color coding represents the difference
of the density of probability of the electron wavefunction at the edges such that :

⇢(y = 0) − ⇢(y =W ) = �uA(i = 0)�2 + �uB(i = 0)�2 − �uA(i = N − 1)�2 + �uB(i = N − 1)�2 (2.68)

The states in green correspond to the bulk states, the yellow states are localized at the edge
y = 0 while the indigo states are localized at the edge y = W . The dispersion relation of a
ribbon is similar to the projection of the bulk dispersion relation on the axis of the longitudinal
momentum (except for the presence of edge states). In a zig-zag ribbon the two valleys are
projected at different longitudinal momentum kx (see Fig. 1.2.b) and are located at K ′x =
2⇡�3√3a and Kx = 4⇡�3√3a. Because the lattice has periodicity a0 =√3a along x, the Brillouin
zone has periodicity 2⇡�a0. In the case of an armchair ribbon (edges along x) where ky is a
good quantum number, the two valleys project at the same momentum Ky = 0. We will not
study this case, but the properties of the edge states are analogous (chirality, velocity).

In Fig. 2.8.a), the mass is a purely Semenoff mass, and is identical in both valleys. We
observe two flat states linking both valleys. Because these states don’t appear in the bulk
dispersion relation,we deduce that they are edge states. These edge states are analogous to the
flat zero-energy states linking both valleys in graphene as we have seen in Sec. 2.2.1. They
have a topological origin in the sense that the Berry phase around the Dirac points is opposite
in both valleys, but their energy is non-zero because chiral symmetry is broken. These edge
states don’t cross the gap so they are not edge states that characterise a topological insulator.

In Fig. 2.8.b), we have added a small coupling between next-nearest neighbours with a
phase, which gives rise to a Haldane mass term. The masses in the valleys K and K ’ are
different, however, because the Haldane mass is smaller than the Semenoff mass, the sign of the
mass is identical in the valleys. Because there is no band inversion, the model is topologically
trivial and doesn’t possess metallic edge states in the gap.

In Fig. 2.8.c), we can see that upon increasing second neighbour couplings, the Haldane
mass increases and becomes more important than the Semenoff mass, which leads a different
mass sign in the valleys. In that case, there is a band inversion and we can see that the edge
state crosses the gap which signals a non-trivial topology. Finally, in Fig. 2.8.d), the Semenoff

Figure 2.10 – Dispersion relation of tight-binding Haldane ribbons with N = 30 sites for
different parameters indicated by the red dots in the phase diagram in Fig. 2.6. The phase
is φ = π/2 for all the plots. (a) t2 = 0 andMS = 3

√
3×0.05t. (b) t2 = 0.05t andMS = 4

√
3t2.

(c) t2 = 0.05t and MS = 2
√

3t2. (d) t2 = 0.05t and MS = 0. The colorbar represent the
electronic probability density difference between the edge ρ(y = 0) − ρ(y = W ). A state
colored in yellow is located at y = 0, while a state colored in indigo is located at y = W .
Two edge states link the valleys K and K’. These edge states cross the gap in (c) and (d),
and characterize a non-trivial topological phase. These plots represent a topological phase
transition between a Semenoff insulator with C = 0 in (a) and a Haldane insulator with
C = +1 in (d). The transition happens at MS = 3

√
3t2. The mass M− =MS −3

√
3t2 sin(φ)

in the valley K′ closes and reopens while changing of sign along the transition. The dots
in (d) correspond to the edge state whose wavefunction is plotted on Fig. 2.11. The
periodicity of the lattice along x is a0 = √

3a, so we have kxa0 = √
3kxa.

is the longitudinal momentum. Replacing expression (2.85) in Eq. (2.19), we obtain :

H = t∑
kx,i

[b†i(kx)ai(kx)2 cos(√
3a

2
kx) + b†i−1ai +H.c.]

+∑
kx,i

[a†
i(kx)ai(kx) (M2 + t2 cos(√3akx + φ)) + a†

i+1(kx)ai(kx)2t2 cos(√
3a

2
kx − φ) +H.c.]

+∑
kx,i

[b†i(kx)bi(kx) (−M2 + t2 cos(√3akx − φ)) + b†i+1(kx)bi(kx)2t2 cos(√
3a

2
kx + φ) +H.c.] ,

(2.86)
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which can be expressed as :

H =∑
kx

∑
αβ

∑
ij

Ψ†α
i (kx)Hαβ

ij (kx)Ψβ
j (kx), (2.87)

where α,β = {A,B} is the sublattice index and i, j ∈ {0,N −1}. For a ribbon with N unit
cells along the transverse direction, the Hamiltonian for each kx has size 2N ×2N because
there are two sites per unit cell. The dispersion relation is obtained by diagonalizing the
Hamiltonian numerically Hαβ

ij (kx) for each kx in the Brillouin zone, and the boundary
condition is automatically imposed because there is no hopping at the sites n = −1 and
n = N . Fig. 2.10 shows the dispersion relation of Haldane ribbons for different sets of
parameters. The color coding represents the difference of the density of probability of the
electron wavefunction at the edges such that :

ρ(y = 0) = ∣uA(i = 0)∣2 + ∣uB(i = 0)∣2 and, (2.88)
ρ(y =W ) = ∣uA(i = N − 1)∣2 + ∣uB(i = N − 1)∣2. (2.89)

The states in green correspond to the bulk states, the yellow states are localized at the
edge y = 0 while the indigo states are localized at the edge y =W . The dispersion relation
of a ribbon is similar to the projection of the bulk dispersion relation on the axis of the
longitudinal momentum (except for the presence of edge states). In a zig-zag ribbon the
two valleys are projected at different longitudinal momentum kx (see Fig. 1.2.(b)) and
are located at K ′

x = 2π/3√3a and Kx = 4π/3√3a. Because the lattice has periodicity
a0 = √

3a along x, the Brillouin zone has periodicity 2π/a0. In the case of an armchair
ribbon (edges along x) where ky is a good quantum number, the two valleys project at
the same momentum Ky = 0. We will not study this case, but the properties of the edge
states are analogous (chirality, velocity).

In Fig. 2.10.(a), the mass is a purely Semenoff mass, and is identical in both valleys.
We observe two flat states linking both valleys. Because these states don’t appear in
the bulk dispersion relation,we deduce that they are edge states. These edge states are
analogous to the flat zero-energy states linking both valleys in graphene as we have seen
in Sec. 3.4. They have a topological origin in the sense that the Berry phase around
the Dirac points is opposite in both valleys, but their energy is non-zero because chiral
symmetry is broken. These edge states don’t cross the gap so they are not edge states
that characterize a topological insulator.

In Fig. 2.10.(b), we have added a small coupling between next-nearest neighbours
with a phase, which gives rise to a Haldane mass term. The masses in the valleys K and
K ′ are different, however, because the Haldane mass is smaller than the Semenoff mass,
the sign of the mass is identical in the valleys. Because there is no band inversion, the
model is topologically trivial and doesn’t possess metallic edge states in the gap.

In Fig. 2.10.(c), we can see that upon increasing second neighbour couplings, the
Haldane mass increases and becomes more important than the Semenoff mass, which
leads a different mass sign in the valleys. In that case, there is a band inversion and we
can see that the edge state crosses the gap which signals a non-trivial topology. Finally,
in Fig. 2.10.(d), the Semenoff mass is set to zero, and the mass is opposite in the valleys.
In that case, the system is invariant under space inversion, and the edge states crosses
the gap. This phase corresponds to the Haldane insulator with Chern number C− = +1.

Fig. 2.11 shows the square modulus of the wavefunction corresponding to the edge
states at energy and momentum indicated by the markers on Fig. 2.10.(d), which corre-
sponds to the Haldane insulator. The group velocity of the edge state along the direction
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x is given by :

vx = 1

h̵

∂E(kx)
∂kx

, (2.90)

The red circle on Fig. 2.10.(d) corresponds to the wavefunction of Fig. 2.11.(a). We
can see that it is located at the lower edge y = 0. According to (2.90), the dispersion
relation of the edge state indicates that it propagates in the direction −x. The blue circle
on Fig. 2.10.(d) corresponds to the wavefunction of Fig. 2.11.(b) and is located at the
upper edge y =W . This edge state propagate along the direction +x. We conclude from
this analysis that for a Haldane insulator with Chern number +1, the edge state rotates
clockwise along the boundary of the sample, while for a Chern number −1, the edge states
rotates counterclockwise.

(a) (b)

Figure 2.11 – Square modulus of the wavefunctions of the edge states of the Haldane
model with parameters φ = π/2, t2 = 0.05t and MS = 0 at momentum kx = 5π/6. The
absissa corresponds to the index of the site along y such that yn = n3a

2 (see Fig. 2.9). The
color indicates the wavefunction over sites A and B. (a) Edge state corresponding to the
red dot on Fig. 2.10.(d). (b) Edge state corresponding to the blue dot on Fig. 2.10.(d).
The edge states have opposite group velocity and are located at the opposite edge, which
indicates that they are chiral. We can see that the edge state on the lower edge has a
weight mainly on lattice B, while the upper edge has a weight mainly on lattice A.

In the next section, we compare this analysis with the case of a ribbon modelled by the
Dirac equation with an inverted Haldane mass at the interface with a Semenoff insulator.

4.2 Ribbon in the Dirac equation

Another method to calculate the spectrum of a ribbon is to model the dispersion rela-
tion using the Dirac equation for the Haldane model and to choose appropriate boundary
conditions. There exists several types of boundary conditions for the Dirac equation that
can be classified according to their symmetries [77]. In the case of graphene, zero-energy
edge states can exist depending on the orientation of the edge [78]. In the microscopic
description of the honeycomb lattice, the boundary condition consists in setting the wave-
function to zero at the missing sites. However, there exist other types of boundary condi-
tion, such as the one introduced by Berry and Mondragon [79]. This boundary condition
consists in confining the Dirac fermions by an infinite mass potential. In that case, the
vacuum is considered as a Semenoff insulator with infinite gap, which corresponds to a
topologically trivial material. We expect therefore to observe edge states at the boundary
of the Haldane ribbon.
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For a zig-zag ribbon with boundaries along y at y = 0 and y =W , the Berry-Mondragon
boundary conditions can be expressed as a restriction on the spinors :

Ψ(y =W ) = −σxΨ(y =W ) (2.91)
Ψ(y = 0) = σxΨ(y = 0), (2.92)

which is consistent with [78].
In a ribbon infinite along x, the Dirac equation (for a Haldane ribbon) has the expres-

sion : ((τzσxkx − iσy∂y) +MHσzτz)Ψ(y) = εΨ(y), (2.93)

where we have considered a Haldane mass MHσzτz with opposite sign in the valleys and
we have set h̵v = 1. This model has a Chern number C− = sign(MH). To obtain the
dispersion relation of the edge states, we consider the edges separately. For the upper
edge, we consider that the Haldane region is located at y < 0 and apply the boundary
condition (2.91) at y = 0, while for the lower edge, we consider the Haldane region at y > 0
and apply the boundary condition (2.92) at y = 0.

Upper edge We first consider the upper edge at y = 0, such that the Haldane insulator
is located at y < 0. In a first attempt, we look for the existence of a state located in the
gap at ε = kx = 0. The Dirac equation simplifies to :

iσy∂yΨ(y) =MHσzτzΨ(y), (2.94)⇒ ∂yΨ(y) =MHσxτzΨ(y) (2.95)

For the upper edge located at y = 0, the boundary condition is Ψ(y = 0) = −σxΨ(y = 0)
which implies that Ψ(y) must be an eigenstate of σx. Thus, we find that an edge state
must obey the equation :

∂yΨ(y) = −MHτzΨ(y). (2.96)

Therefore, a bounded state such that Ψ(y → −∞) = 0 exists only in the valley ξ =−sign(MH) with a wavefunction that is an eigenstate of σx with eigenvalue −1 :

Ψ(y) = c( 1−1
) e∣MH ∣y, (2.97)

where c is a normalization factor. If we insert this expression for Ψ(y) in Eq. (2.93),
using τzσxΨ(y) = sign(MH)Ψ(y), we find that Ψ(y) is still an eigenstate, which leads to
the dispersion relation :

ε = sign(MH)h̵vkx, (2.98)

where we have reinserted h̵v. For a positive Haldane mass, this edge state is located at
the upper edge and has a positive velocity along x, which is consistent with the case of a
tight-binding ribbon. Thus, for a Haldane model with Chern number +1, the edge state
exists only in the valley K ′ because the band inversion occurs in the valley K ′.

Lower edge To study the lower edge, we consider that the Haldane region is located
at y > 0. For ε = kx = 0, Eq. (2.95) still applies, but we apply the boundary condition
Ψ(y = 0) = σxΨ(y = 0), such that we have the equation for the edge state :

∂yΨ(y) =MHτzΨ(y). (2.99)
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This time, the bounded state must exist at y > 0, which is satisfied only in the valley
τz = −sign(MH), and the wavefunction is the eigenstate of σx with eigenvalue +1 :

Ψ(y) = c(1
1
) e−∣MH ∣y, (2.100)

Reinserting this expression in Eq. (2.93), with τzσxΨ(y) = −Ψ(y) we find that the disper-
sion is :

ε = −sign(MH)h̵vkx, (2.101)

This edge state located at the lower edge has a negative velocity along x and lives in the
valley K′.

(a)

C=+1 C=-1

(b)

C=+1 C=-1

Figure 2.12 – Direction of propagation of the edge states around a sample in the Haldane
phase with Chern number (a) C− = +1 and (b) C− = −1. For a Chern number +1, the edge
state rotates clockwise, while if the Chern number is −1, the rotation is anticlockwise.

We have studied the edge states of the Haldane ribbon modelled by the massive Dirac
equation with opposite mass sign in the different valleys. The boundary conditions are
modelled as an interface with a Semenoff insulator which corresponds to confinement
by an infinite mass gap. When the Semenoff mass is positive, the Semenoff insulator is
topologically equivalent to the vacuum. We find that an edge state exists in the valley
with negative mass sign, which expresses the fact that the gap must close at the boundary
between two topologically distinct regions. If the Haldane mass MH is positive, the sign
of the mass is negative in the valley K ′ and the edge state is polarized in the valley K ′.
In that case, according to Eq. (2.57), the Chern number of the valence band is C− = +1
and the edge state rotates clockwise. If the Haldane mass is negative, the edge state
is polarized in K, the Chern number is −1 and the edge state rotates anti-clockwise.
This analysis is coherent with the direction of propagation of the edge state found by
diagonalizing numerically ribbons.

From this analysis, we conclude that the two types of boundary conditions give similar
physical results. The tight-binding boundary conditions consists in setting to zero the
wavefunction on one sublattice for an edge and on the other sublattice on the opposite
edge. The Berry-Mondragon boundary conditions impose a restriction on the spinor at the
edge, and thus treats both sublattice on equal foot. The wavefunction has approximately
the same weight on both sublattices while in a tight-binding ribbon the wavefunction is
polarized on one sublattice. In the next chapter, we will use these two types of boundary
conditions depending on the procedure used to obtain the dispersion relation of the edge
states.
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5 Conclusion
In this chapter, we have investigated the geometrical and topological properties of the

Haldane model. In crystalline materials, due to Bloch theorem, one can label the states
according to their quasi-momentum. This quasi-momentum belongs to the Brillouin zone
which is periodic in reciprocal space. The Brillouin zone is a manifold that is topologically
equivalent to a two-dimensional torus. To each point of this torus, from the expression
of the Bloch states, it is possible to define the Berry connection and the Berry curvature
in k-space. These objects define a geometrical structure for the Bloch wavefunctions in
the Brillouin zone. They are analogous to a gauge potential and a gauge field which are
embedded in the mathematical field of fiber bundles. Besides their geometrical structure,
fiber bundles also possess a topological structure. Topological insulators are materials that
exhibit a Hall conductance quantized in units of a topological invariant defined for the
fiber bundle of the Bloch Hamiltonian. Depending on the symmetries of the Hamiltonian,
the topological invariant can be either the Chern number (when time-reversal symmetry
is broken) or a Z2 invariant when time-reversal symmetry is present. The first example
of a topological insulator is the quantum Hall effect, which however necessitates the
application of an external magnetic field and one cannot apply easily the Bloch theorem.

We have analyzed the Haldane model, a model based on the graphene lattice where
time-reversal symmetry is broken by the introduction of periodic magnetic fluxes with the
period of the lattice. The valence band of this model possess a non-zero Chern number,
and there exist a chiral edge state propagating around the sample. Because there are
two sites per unit cell, the wavefunction of the electrons in the bands are spinors labelled
by their quasi-momentum. The state of a two-level system can be described as a point
on the Bloch sphere. The Bloch Hamiltonian characterizes therefore a mapping from the
Brillouin zone to the Bloch sphere. In the Haldane model, the mass gap has opposite sign
in both valley and the poles of the Bloch sphere are reached at the Dirac points, which
signals that the phase of the Bloch wavefunction has a non-trivial winding around the
whole Bloch sphere when the quasi-momentum spans the Brillouin zone.

We have then studied the edge states of this model. When the valence band is filled
and the conduction band is empty, the Fermi level is in the gap and the material is an
insulator. Because the mass gap is inverted in one valley, the gap has to close at the
boundary and there are edge states that conduct current. Depending on the flux pattern
in real space, the filled band can have a Chern number +1 or −1 and the edge states
rotates clockwise or anti-clockwise around the sample. We have obtained the dispersion
relation of the edge states in a ribbon geometry. First, we have diagonalized numerically a
tight-binding ribbon, and second, we have considered the Dirac equation with boundary
conditions corresponding to an interface with the vacuum as a trivial insulator. From
these two procedure, we have obtained the direction of propagation of the edge states as
a function of the sign of the Chern number.



Chapter 3

Floquet theory description of irradiated
graphene

In crystalline materials, the eigenstates are labelled by their quasi-momentum. As
we have seen in the previous chapter, the non-trivial winding of the wavefunction in the
Brillouin zone characterizes topological phases like the Haldane insulator. However, the
topological properties are defined for the bulk of the material and few external parameters
allow to tune the topological properties. A topological phase transition happens only by
closing the gap which requires fine tuning of several parameters. Driving the material
with a periodic excitation leads to additional knobs that can be used to induce non-
trivial topological properties in out-of-equilibrium matter. Tuning the parameters of the
driving can lead to topological phases which do not exist at equilibrium. Such topological
insulators are dubbed Floquet topological insulators [68] because the description of the
bands is often studied within the Floquet formalism.

First, several studies have shown that irradiating graphene with circularly polarized
electromagnetic wave at high-frequency compared to the bandwidth of graphene generates
a Haldane mass at the Dirac points, which turns graphene into the quantum anomalous
Hall phase [10, 80]. Second, it has been proven that driving a trivial two-band semi-
conductor with a frequency on resonance with the valence and conduction band generates a
band inversion which leads to a non-zero Chern number of the bands [11]. Experimentally,
signatures of Floquet-Bloch states have been observed at the surface of an irradiated
topological insulator [81], and in photonic crystals [82].

When the Floquet band structure is gapped, it can be described by an effective time-
independent Hamiltonian. It is possible to classify topologically this effective Hamil-
tonian according to the usual classification scheme of static Hamiltonians, and to have
bands with non-zero topological invariants [83]. However, it was realized that some quasi-
energy bands have a vanishing Chern number, while the material still possesses edge
states crossing the gaps [83, 84]. This indicates that the bulk-edge correspondence works
differently than at equilibrium. This fact led to an important research activity aiming at
characterizing the topology of driven Hamiltonian beyond the effective static description
[85, 86, 87, 88]. The topological characterization of the quasi-energy bands is not encoded
in the Hamiltonian, but rather in the time-evolution operator U(k, t) and its winding
during one period of the driving [85]. The resulting topological invariant is associated to
a gap in the quasi-energy spectrum.

In Sec. 1, we introduce the Floquet theory for time-periodic Hamiltonian, deriving an
expression for the Floquet Hamiltonian and the effective Hamiltonian at high frequency.

53
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In Sec. 2, we apply these tools to the lattice description of graphene and observe the
edge states characteristic of a Floquet topological insulator. In Sec. 3, we consider the
low-energy description of graphene by the Dirac equation where the driving creates a set
of nested gaps with associated edge states.

1 Floquet formalism
The electronic properties of the electrons in a crystal are encoded in the band structure.

According to the Bloch theorem, the electrons are labelled by their quasi-momentum
defined in a compact Brillouin zone. When the electrons are subjected to a periodic
driving, energy is not a good quantum number anymore. Instead, according to Floquet
theorem, each eigenstate is characterized by its quasi-energy, which lives inside a Floquet
zone. Analogously with the Brillouin zone, the Floquet zone is periodic in quasi-energy
and is therefore compact. If the lattice has space dimension D, the eigenstates live in the
Floquet-Bloch space which has dimension D+1 [89], including the space of time-periodic
and space-periodic functions. In this space, it is possible to define an effective Floquet-
Bloch Hamiltonian, which can eventually have a non-trivial topology.

The presence of driving introduces several parameters that allow to have a more de-
tailled tunability of the Floquet-Bloch band structure. In the high frequency-regime, the
direct transitions are forbidden. It is thus possible to define an effective Hamiltonian
for the electrons, which is the usual Bloch Hamiltonian renormalized by virtual photon
absorption processes.

In Sec. 1.1, we present the Floquet theorem applied to time-periodic Hamiltonians.
In Sec. 1.2, we derive the expression of the Floquet Hamiltonian in the Sambe space
of time-periodic functions, while in Sec. 1.3, we derive an expression for the effective
Hamiltonian in the case of high-frequency off-resonant driving.

1.1 Floquet theorem

The dynamical properties of a quantum system are encoded in its Hamiltonian. The
time evolution of the system is ruled by the Schrödinger equation. If the Hamiltonian is
time-independent, the time-evolution of a state with energy E consists in a phase factor
e−iEt/h̵. However, when the Hamiltonian depends on the time variable, the time-evolution
is usually more complex and there are no stationary states. Floquet theorem is the analo-
gous of Bloch theorem for systems with a time-periodic Hamiltonian. Instead of energies,
the quantum states are described by a quasi-energy which describes the "stroboscopic"
evolution of the state on time scales larger than the period of the Hamiltonian.

We wish to obtain the eigenstates of a time-periodic Hamiltonian described by the
time-dependent Schrödinger equation :

ih̵∂tΨ(t) =H(t)Ψ(t), (3.1)

where H(t+T ) =H(t) with T the period of the driving. Floquet theorem [90] states that
the eigenfunctions of the Schrödinger equation (3.1) can be expressed as [91] :

Ψε(t) = e−iεt/h̵uε(t), (3.2)

where ε is the quasi-energy that characterizes the state Ψ(t). This quasi-energy describes
the evolution of the system over long time-scales such that a state acquires a phase e−iεT /h̵
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during one period of the driving. The quasi-energies are periodic with period ω. In analogy
with a Bloch state, uε(t) is a time-periodic function called a Floquet state. This function
encodes the evolution of the system over short time-scales. Inserting the expression for
the states (3.2) into Eq. (3.1) gives us the eigenvalue equation for εα :

HF (t)∣uα(t)⟩ = εα∣uα(t)⟩, (3.3)

where we have defined the Floquet Hamiltonian :

HF (t) =H(t) − ih̵∂t, (3.4)

and α labels the eigenstates of the Hamiltonian. In the extended space of time-periodic
functions, the scalar product is expressed as :

⟨⟨uα∣uβ⟩⟩ = 1

T ∫
T

0
dt⟨uα(t)∣uβ(t)⟩, (3.5)

and the average value of the operator O(t) is ⟨⟨O(t)⟩⟩.
We can see from Eq. (3.2) that it is always possible to redefine ε and u(t) by the

gauge transformation :

ε→ ε + qh̵ω, (3.6a)
u(t)→ u(t)eiqωt. (3.6b)

This set of states represents physically equivalent states. Therefore, we can choose a
gauge such that ε belongs to a Floquet zone defined by ε ∈ [ε0 − h̵ω/2, ε0 + h̵ω/2) for any
real number ε0. It is possible to express the evolution operator over one period of driving
as :

U(T ) = e−iHeffT , (3.7)

where Heff is an effective Hamiltonian whose eigenvalues are the quasi-energies.

1.2 Sambe space

Because the Hamiltonian H(t) and the Floquet states uε(t) are periodic in time, it is
possible and useful to develop them in Fourier series. We define the Fourier coefficients
of the Hamiltonian and of the states as :

H(t) = ∞∑
n=−∞Hne

inωt, (3.8)

u(t) = ∞∑
n=−∞une

inωt, (3.9)

so that the eigenproblem Eq. (3.3) can be written as :

∑
n

(Hm−n + nh̵ωδmn1)uα,n = εαuα,m, (3.10)

where 1 is the identity in the Hilbert space of the system. This equation is an infinite
matrix equation whose eigenvalues are the quasi-energies, and whose eigenstates are com-
posed of the Fourier components of the Floquet state uα(t). In this representation, a
Floquet state belongs to an extended Hilbert space S = T ×H composed of the Hilbert
space H of the Hamiltonian H(t), and the space T of time-periodic functions. We name
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this extended Hilbert space Sambe space [92], and we rewrite Eq. (3.3) in a matrix
equation :

H̃F ∣ũα⟩ = εα∣ũα⟩, (3.11)

where H̃F is the Floquet Hamiltonian in Sambe space, and ∣ũα⟩ is a Floquet state in
Sambe space. In matrix form, Eq. (3.11) can be expressed as :

H̃F =
⎛⎜⎜⎜⎜⎜⎜⎝

⋱ ⋮ ⋮ ⋮ ⋱⋯ H0 + (p + 1)h̵ω H1 H2 ⋯⋯ H−1 H0 + ph̵ω H1 ⋯⋯ H−2 H−1 H0 + (p − 1)h̵ω ⋯⋰ ⋮ ⋮ ⋮ ⋰

⎞⎟⎟⎟⎟⎟⎟⎠
and, ∣ũα⟩ =

⎛⎜⎜⎜⎜⎜⎜⎝

⋮∣uα,p+1⟩∣uα,p⟩∣uα,p−1⟩⋮

⎞⎟⎟⎟⎟⎟⎟⎠
.

(3.12)
Therefore, the full Floquet Hamiltonian in Sambe space H̃F consists in a set of the bare
Hamiltonians H0 on the diagonal which are "dressed" with p photons and are coupled
to each other via the Fourier components Hn with n ≠ 0 of the driving. We call these
dressed Hamiltonians "Floquet replicas" because in absence of driving, those blocks simply
duplicate H0 with a shift ph̵ω. The quasi-energy spectrum repeats itself with period h̵ω.
The quasi-energies are therefore redundant and one needs only the spectrum in a region of
frequency [−h̵ω/2, h̵ω/2]. The first harmonic of the time-dependent Hamiltonian couples
two Floquet replicas with a difference of one photon, the second harmonic couples Floquet
replicas with a difference of two photons, etc... This Hamiltonian is infinite and in practice
one needs to operate a truncation.

Finally, we note that the scalar product (3.5) in Sambe space can be expressed as :

⟨⟨uα∣uβ⟩⟩ = ⟨ũα∣ũβ⟩ =∑
p

⟨uα,p∣uβ,p⟩. (3.13)

1.3 Effective Hamiltonian for high-frequency driving

The quasi-energies can be expressed as the eigenvalues of the Floquet Hamiltonian,
however it is not easy to compute them because the matrix equation is infinite. In
this section, we describe the expression of an effective Hamiltonian in the limit of high-
frequency driving. We consider time-periodic driving potential with a frequency ω much
larger than the characteristic energy scale U of the Hamiltonian H(t) which allows us to
define the small parameter :

λ = U

h̵ω
≪ 1. (3.14)

This condition allows us to avoid resonances between the eigenvalues of the bare Hamilto-
nian. In this limit, light does not excite electrons but dresses the states through emission
and re-absorption of virtual photons. We can thus derive a time-independent effective
Hamiltonian that describes the system.

To derive the expression of the effective Hamiltonian, we fix a gauge such that the
quasi-energies are restricted to the domain [−h̵ω/2, h̵ω/2). We can always obtain the
quasi-energies and Floquet states in another gauge using Eq. (3.6). The eigenvalue
problem (3.10) can be rewritten as :

∑
n

Hm−nun = (ε −mh̵ω)um ⇒ um = 1

ε −mh̵ω∑n Hm−nun. (3.15)
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ħω

ħω

U

Figure 3.1 – Floquet replicas for high-frequency driving. The energy scale of the original
bandwidth U of the Hamiltonian is much smaller than the frequency of the driving h̵ω.
In that regime, the bare Hamiltonian is dressed by the driving and there is an infinite set
of Floquet replicas at quasi-energy multiples of h̵ω.

We also consider that couplings between replicas with a difference of photons greater than
one are negligible i.e. :

Hm = 0 ∀ ∣m∣ > 1, (3.16)

The zeroth Fourier component of the Floquet state has therefore the expression :

u0 = 1

ε
∑
n

H−nun ≈ 1

ε
(H0u0 +H1u−1 +H−1u1) ⇒ u0 ∼ λ0. (3.17)

The first and second order components are given by :

u±1 ≈ ∓ 1

h̵ω
(H±1u0 +H0u±1 +H∓1u±2) ⇒ u1 ∼ λ1, (3.18)

u±2 ≈ ∓ 1

2h̵ω
(H±1u±1 +H0u±2 +H∓1u±3) ⇒ u2 ∼ λ2, (3.19)

where we have used the condition :
ε≪ h̵ω, (3.20)

which derives from Eq. (3.14). In the limit of high-frequency, combing Eqs. (3.17) and
(3.18), and keeping only terms linear in λ leads to an approximate eigenvalue equation
for the the zero component of the wavefunction :

(H0 + [H1,H−1]
h̵ω

+O(λ2))u0 = εu0. (3.21)

Thus, we define the effective Hamiltonian as :

Heffu0 = εu0, with Heff =H0 + [H1,H−1]
h̵ω

, (3.22)

and the first harmonics of the Floquet state are given by :

u±1 = ∓H±1

h̵ω
u0. (3.23)
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Therefore, in the regime given by Eqs. (3.14) and (3.16), the wavefunction is described by
an effective Hamiltonian where the original Hamiltonian is "dressed" by the irradiation.
In that case, no real electrons can be emitted or absorbed and the dressing arises from
processes corresponding to emission and re-absorption of a virtual electron for H1H−1 and
the reverse process H−1H1. In the next section, we derive an expression for the effective
Hamiltonian of graphene.

2 Irradiated graphene : lattice description
In this section, we apply the Floquet formalism introduced in the previous section to

the case of graphene irradiated by an electromagnetic wave. In that case, it is possible to
open a gap at quasi-energy ε = 0 and to manipulate the Dirac points using the amplitude
and polarization of the wave [93, 94]. This opens the possibility to generate topological
phases with non-zero Chern number. In the case of a circularly polarized electromagnetic
wave, the high-frequency effective Hamiltonian is analogous to the Hamiltonian of the
Haldane model [10, 80]. Hence, under circular polarization, graphene becomes insulat-
ing and possesses a chiral edge state crossing the gap, whose chirality depends on the
polarization of the electromagnetic wave.

When the frequency is lowered, the driving couples the bands through emission and
absorption of real photons and it is not easy to define a simple effective Hamiltonian. In
this regime, the original Bloch bands are folded inside the first Floquet zone and some
gaps open at the Floquet zone edges ε = ±h̵ω/2 due to anti-crossing between the Bloch
bands. If the reshuffled bands have a non-zero topological invariant, some edge states can
eventually cross the gap at ε = h̵ω/2.

In this section, we analyze the graphene lattice irradiated by a circularly polarized
electromagnetic wave. In Sec. 2.1, we derive the effective Hamiltonian for high-frequency
driving, and obtain the expression for the Haldane mass gap. In Sec. 2.2, we diagonalize
the Hamiltonian of an irradiated ribbon of graphene for any driving frequency and obtain
edge states crossing the gaps at ε = 0 and ε = ±h̵ω/2.
2.1 Effective Hamiltonian

We now derive the effective Hamiltonian introduced in Eq. (3.22) for the honey-
comb lattice of graphene irradiated by a circularly polarized electromagnetic wave. The
high-frequency condition (3.14) is valid if the frequency is larger than the bandwidth of
graphene :

h̵ω ≫ 6τ, (3.24)

where we have renamed the hopping parameter as τ to avoid confusion with the time
parameter. The non-irradiated graphene Hamiltonian has the expression :

Hg(k) = ( 0 ρ(k)
ρ∗(k) 0

) , (3.25)

where ρ(k) = τ ∑α eik.δα . We consider irradiation by a circularly polarized electromagnetic
wave described by the time-dependent vector potential A(t) = A0(cos(ωt), χ sin(ωt))
where χ = ±1 is the polarization of the EM wave. The electric field is given by E(t) =−∂tA(t) = A0ω(sin(ωt),−χ cos(ωt)), which means that the polarization is left-handed for
χ = +1 and right-handed for χ = −1. The coupling of electrons to light is introduced
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through the Peierls substitution k → k + eA(t), where we have set h̵ ≡ 1. The time-
dependent Bloch Hamiltonian has therefore the expression :

H(k, t) = ( 0 ρ(k, t)
ρ∗(k, t) 0

) , (3.26)

where ρ(k, t) = τ ∑α ei(k+eA(t)).δα . The Fourier coefficients of the Hamiltonian (3.26) are :

Hq(k) = ∫ T

0

dt

T
H(k, t)e−iqωt = ( 0 ρq(k)

ρ∗−q(k) 0
) , (3.27)

with :
ρq(k) =∑

α

eik.δατα,q, (3.28)

and :

τα,q = τ ∫ T

0

dt

T
eieA(t)δαe−iqωt, (3.29)

= τ ∫ T

0

dt

T
eieA0(cos(ωt)δα,x+χ sin(ωt)δα,y)e−iqωt, (3.30)

are the Fourier components of the hopping amplitudes that depend on the bond. Using
the Jacobi-Anger expansion for the exponential of sine and cosine function, we get :

τα,q = τiqJq(eA0a)eiχqθα , (3.31)

where θα = arctan ( δαyδαx
) is the angle of the bond relative to the x axis, Jn(x) is the Bessel

function of the first kind, and we have used the identity :

∑
m

Jm+q(α)Jm(β)eimπ
2 = Jq(√α2 + β2)e−iq arctan ( β

α
), (3.32)

introduced in Ref. [93]. We obtain finally :

ρq(k) = τiqJq(eA0a)∑
α

eikδαeiχqθα . (3.33)

In order to neglect higher order couplings, according to Eq. (3.16), the terms Hq with
q > 1 must be negligible. The characteristic energy of the Hamiltonian Hq is τJq(A),
where A = eA0a represents the dimensionless coupling strength. For weak driving A≪ 1,
we have Jq(A) ≈ (A2 )q. Condition (3.16) is valid if couplings with higher order than unity
are negligible :

Jq(A) ≪ 1 ∀q > 1. (3.34)

In the high frequency (h̵ω ≫ 6τ) and weak coupling (A ≪ 1) regime, the effective
Hamiltonian (3.22) has the expression :

Heff(k) =H0(k) + dz(k)σz, (3.35)

where H0(k) is the graphene Hamiltonian with the hoppings renormalized by the field :

H0(k) = J0(A)Hg(k). (3.36)

Although for A ≪ 1, we have J0(A) ≈ 1, we choose to keep the factor J0(A) in order
to discuss the effect of the irradiation over the bare Hamiltonian. The function dz(k)
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is generated by the commutator [H1,H−1] arising from the dressing of the bands by the
irradiation :

dz(k)σz = [H1,H−1]
h̵ω

= (∣ρ1(k)∣2 − ∣ρ−1(k)∣2
h̵ω

)σz, (3.37)

where ∣ρ±1(k)∣2 are given by :

∣ρ±1(k)∣2 = τ 2A2

4
[3 + 2∑

i

cos(k.ai ∓ χ2π

3
)] , (3.38)

where we have used J1(A) ≈ A/2, the expression for the next nearest neighbour vectors
a1 = δ1 − δ2, a2 = δ2 − δ3 and a3 = δ3 − δ1 and that θi − θi+1 = 2π

3 . Replacing ∣ρ±1(k)∣2 into
(3.37) leads to :

dz(k) = χ
√

3

2

τ 2A2

h̵ω
∑
i

sin(k.ai). (3.39)

This term is analogous to the term dz(k) in the Haldane model given in Eq. (2.24).
Identifying with this term gives us :

t2 sin(φ) = −χ√
3

4

τ 2A2

h̵ω
. (3.40)

From the expression (2.29) for the mass at the Dirac point, we find that the effective mass
term for irradiated graphene is equal to :

M I
ξ = −ξχ9

4

τ 2A2

h̵ω
= −χξ (evA0)2

h̵ω
(3.41)

Because dz(k) is odd in k, the irradiation generates a mass gap with opposite signs in
the valleys, analogous to the Haldane model. The sign of the Haldane mass depends on the
polarization of the EM wave. This term is proportional to the square of the dimensionless
coupling and originates from the lifting of the degeneracy at the Dirac points due to
second order exchange of virtual photons. In real space the term H1H−1 is analogous
to second neighbour hoppings between sites of the A sublattice with hopping amplitude
t2 = √3

4
τA
h̵ω e

iφ with φ = π
2 , while H−1H1 generate the same term with opposite phase on the

B sublattice [80].
The Hamiltonian Heff represents therefore a Chern insulator whose valence band

Chern number is equal to :

C− = 1

2
(sign(M I+) − sign(M I−)) = −χ. (3.42)

The Chern number is equal to +1 for a right-handed polarization and −1 for a left-handed
polarization. Comparing the value of the Chern number and the direction of propagation
of the edge state obtained in Sec. 4.1, we deduce that the edge state rotates around the
sample in the same direction as the rotation of the electric field of the electromagnetic
wave. In the limits h̵ω ≫ 6t and A≪ 1, irradiated graphene is an insulator and possesses
a chiral edge state at its boundaries whose direction depends on the polarization of the
electromagnetic wave.

This mass term also exists for driving with smaller frequency, however, for frequencies
smaller than the bandwidth, one needs to take into account real processes emerging from
the coupling between the valence and the conduction band. In the next section, we analyze
the effect of irradiated graphene in a ribbon geometry to study the edge states.
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2.2 Dispersion relation of an irradiated graphene ribbon

We consider the same geometry of the zig-zag ribbon shown in Fig. 2.9, where the
longitudinal wavevector kx is a good quantum number. The tight-binding Hamiltonian
for the irradiated honeycomb lattice is :

H(t) = τ∑
ra

3∑
α=1 b

†(rA + δα, t)a(rA, t)eieA(t)δα +H.c., (3.43)

where the effect of the driving is introduced through the Peierls substitution τ → τe
ie ∫ rA+δα

rA
A(t).

We perform the Fourier expansion along the axis x as in Eq. (2.85) such that the Hamil-
tonian can be expressed as :

H(t) =∑
kx

∑
ij

Ψ†
i(kx, t)Hij(kx, t)Ψj(kx, t), (3.44)

where Ψ†
i(kx, t) = (a†

i(kx, t), b†i(kx, t)) is the spinor in the basis i ∈ [0,N − 1] of the sites
along the y direction. The Bloch Hamiltonian has the expression :

Hij(kx, t) = ( 0 ρij(kx, t)
ρ∗ji(kx, t) 0

) , (3.45)

with :

ρij(kx, t) = τ(e−i√3a
2
kxe−ieA(t)δ1 + ei√3a

2
kxe−ieA(t)δ2)δij + τe−ieA(t)δ3δij+1 (3.46)

In Sambe space, the Floquet Hamiltonian (3.10) has the expression :

H̃mn
Fij = (nh̵ωδmnδij ρm−nij (kx)

ρ∗n−mji (kx) nh̵ωδmnδij
) , (3.47)

where :

ρqij(kx) = τJq(A) [2 cos(√
3a

2
kx − χq2π

3
) δij + (−1)χqδi,j+1] , (3.48)

is the Fourier component q of ρij(kx, t) calculated using Eq. (3.31). In Sambe space,
H̃F is an infinite matrix, so one needs to truncate it. In the truncation procedure, the
gauge invariance (3.6) is broken and thus the spectrum is not periodic in ε. For small
coupling strength A, the coupling strength Jn−n′(A) between replicas dressed with n and
n′ photons decreases with n − n′. If we consider 2M + 1 replicas such that n ∈ [−M,M],
the gauge invariance is almost restored around the replica n = 0 if M ≫ 1. We focus
therefore on the central replica n = 0 and choose a sufficient number of replicas so that
the spectrum around n = 0 converges as we increase M .

For a ribbon with N sites along y, the matrix H̃F has size 2N(2M+1)×2N(2M+1) and
there are 2N(2M + 1) eigenstates. The quasi-energies on the n = 0 replicas are restricted
to ε ∈ [−h̵ω/2, h̵ω/2]. In this first Floquet zone, there are 2N eigenstates for each value
of kx. In this procedure, we always check the convergence of the spectrum n = 0 with
increasingM . We mention in the caption of the figures the numberM of Floquet replicas
used in the calculation.
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(a)

(b)
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(a) (b)

Figure 3.1 – Quasi-energy spectra of a zig-zag ribbon with N = 30 sites along y and M = 1
replicas, irradiated by a circularly polarized electromagnetic wave with frequency �h! = 6t,
amplitude A = 1 and polarization : (a) � = +1, (b) � = −1. . We can see that the driving
generates a mass at the Dirac points, and observe the presence of edge states crossing the
gap which are characteristic of the Haldane model. The dots correspond to the wavefunction
plotted on Fig.

coding represents the time averaged electronic density at the edges such that ⇢̄(y = 0) = ��uA(i =
0)�uA(i = 0)�� + ��uB(i = 0)�uB(i = 0)��, and identically ⇢̄(y =W ) at the other edge i = N − 1.

⇢̄(y = 0) − ⇢̄(y =W ) (3.46)

For A = 1, we have J2(A) ≈ 0.1 which means that the weak coupling approximation is still
applicable. The spectrum is identical to the one of the Haldane model, with a mass given in
Eq. (3.38) : for A = 1 the mass term equals M I ≈ 0.5t, which is consistent with the figures. In
Fig. 3.1.a), the polarization fo the wave is � = 1 which means that the Chern number of the
valence band is C− = −1. According to the color coding, we see that the edge states rotate

There are two edge states crossing the gap, one for each edge of the ribbon. When reversing
the polarization of the driving, the direction of propagation of the edge states is reversed. This
fact signals that the phases have opposite Chern number, which is given by Eq. 3.39. We can
see that the bandwidth of graphene is significantly reduced. This is due to the fact that the
zeroth order coupling are renormalized by the driving and are equal to ⌧J0(A). The bandwidth
is thereby equal to 6⌧J0(1) ≈ 4.6⌧ which is consistent with Fig. 3.1.

a) b)

Figure 3.2 – Square modulus of the wavefunctions of the edge states of the graphene irradiated
by an electromagnetic wave with frequency �h! = 6t, amplitude A = 1 polarization � = 1
corresponding to the dots on Fig. 3.1.

Figure 3.2 – Quasi-energy spectra of a zig-zag ribbon with N = 30 sites along y andM = 1
replicas, irradiated by a circularly polarized electromagnetic wave with frequency h̵ω = 6t,
amplitude A = 1 and polarization : (a) χ = +1, (b) χ = −1. Only the central replica n = 0
is represented. We can see that the driving generates a mass at the Dirac points, and
we observe the presence of edge states crossing the gap which are characteristic of the
Haldane model. The dots correspond to the wavefunction plotted on Fig. 3.3.

a) High-frequency limit

Fig. 3.2 shows the spectrum of irradiated graphene ribbons in the out-of-resonance
frequency regime h̵ω = 6t which corresponds to the case studied in Sec. 2.1. In that case,
the first Floquet zone range is [−h̵ω/2, h̵ω/2] = [−3t,3t]. We have plotted only the first
Floquet zone. The color coding represents the time averaged electronic density at the
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edges such that :

ρ̄(y = 0) = ⟨⟨uA(i = 0)∣uA(i = 0)⟩⟩ + ⟨⟨uB(i = 0)∣uB(i = 0)⟩⟩, (3.49)

and identically ρ̄(y = W ) at the other edge i = N − 1. For A = 1, we have J2(A) ≈ 0.1
which means that the weak coupling approximation is still applicable.

We can compare the ribbon spectrum to the analytical spectrum obtained in Sec. 2.1.
The spectrum is identical to the one of the effective Haldane model, with a mass given by
Eq. (3.41). For A = 1 the value of the mass is equal to ∣M I ∣ ≈ 0.5t. We observe two edge
states crossing the gap, one at each edge of the ribbon. In Fig. 3.2.(a), the polarization
of the wave is χ = 1 which means that, according to Eq. (3.42), the Chern number of
the valence band is C− = −1. According to the color coding, we find that the edge states
rotates counter-clockwise, which is coherent with the direction of rotation shown in Fig.
2.12.(b). When reversing the polarization of the driving, we see on Fig. 3.2.(b) that the
direction of propagation of the edge states is reversed. This fact signals that the phases
have opposite Chern number.

We can see that the bandwidth of graphene is significantly reduced. This is due to the
fact that the zeroth order hopping parameters are renormalized by the driving and are
equal to τJ0(A). The bandwidth is thereby equal to 6τJ0(1) ≈ 4.6τ which is consistent
with Fig. 3.2.

Fig. 3.3 shows the wavefunction of the edge state corresponding to the blue and the
red dot in Fig. 3.2.(a) for M = 1 replicas. In Sambe space, the wavefunction is a spinor
with 2(2M + 1) components, a two-component spinor for each replica. For an eigenstate
α and M = 1, the spinor has the expression : ũTα = (u1

α,A, u
1
α,B, u

0
α,A, u

0
α,B, u

−1
α,A, u

−1
α,B). Eq.

(3.22) tells us that the wavefunction u0
α on the replica n = 0 should be identical to the

wavefunction of the Haldane model represented on Fig. 2.11, which means that it is
mainly polarized on the B sublattice for the edge state at y = 0 and the components on
the replica m = ±1 of the A sublattice are given by Eq. (3.23) such that :

u1
A = −ρ1u0

B, and, u−1
A = ρ−1u0

B, (3.50)

in matrix notation, where ρ±1 is given by (3.48).

(a) (b)

Figure 3.3 – Square modulus of the wavefunctions of the edge states of the graphene irra-
diated by an electromagnetic wave with frequency h̵ω = 6t, amplitude A = 1 polarization
χ = 1 corresponding to the dots on Fig. 3.2.

b) Resonant frequency

As the frequency is decreased, the Floquet sidebands get closer in quasi-energy. A
topological phase transition happens when the gap at ε = h̵ω/2 closes. We have seen that
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under irradiation, according to Eq. (3.14), the zeroth component of the nearest neighbour
hoppings in the graphene Hamiltonian is renormalized by a factor J0(A). The band
touching happens when the bandwidth equals the frequency of the irradiation, namely
when h̵ω = 6tJ0(A). When the frequency further decreases, the gap reopens because of the
allowed transitions between the bands. This gap closing corresponds thus to a topological
transition.

Figs. 3.4 shows the quasi-energy spectra of irradiated graphene ribbon for a frequency
smaller than the bandwidth of graphene. At ε = 0, we still observe the edge states
characteristic of the effective Haldane model. However, the electromagnetic field is at
resonance so the irradiation also couples the valence band and the conduction band of the
Haldane model. At quasi-energy ε = ±h̵ω/2, the original bands create an anti-crossing,
which opens a gap. There are now two quasi-energy bands ε−(kx) such that −h̵ω/2 < ε− < 0
and ε+(kx) restricted to 0 < ε+ < h̵ω/2. The spectrum possesses two non-equivalent gaps
∆0 at ε = 0 and ∆ω/2 at ε = h̵ω/2. In Figs. 3.4, two Floquet zones are shown in order to
visualize the original bands and the dispersion of the edge states. We can see that the
spectrum is identical in the range [−h̵ω,0] and in [0, h̵ω], which expresses the fact that the
Floquet quasi-energy spectra are invariant under the gauge transformation ε→ ε + nh̵ω.

In Fig. 3.4.(a), there is a band inversion occurring at ε = h̵ω/2 such the original
bands are reshuffled. The quasi-energy band ε+ is now a mixture of the original valence
and conduction bands of graphene. This band inversion leads to an exchange of Chern
number and the apparition of edge states at ε = h̵ω/2. We observe four edge state crossing
the gap, two per edge. Because of this exchange of Chern number between the original
graphene bands, one needs introduce a Floquet Chern number C±

F which characterizes
the Floquet quasi-energy bands ε+ and ε−. Computing this Chern number is a difficult
task since the bands are reshuffled and we don’t have a bulk expression for the effective
stroboscopic Hamiltonian. One needs to have a new topological invariant that takes into
account the time-periodicity of the problem.

Such a new topological invariant was introduced by Rudner et al. [85] to characterize
the topological phases of periodically driven systems. In this scheme, the Brillouin zone
base space T 2 is extended to the circle S1 of time-periodic functions, and the topological
properties are encoded in the time-evolution operator U(k, t) in this three-dimensional
space. This invariant is a winding number W [U] that characterizes the mapping of the
compact space S1 × T 2 to the space of unitary time-evolution operators U(N). Rudner
et al. showed that this winding number is defined for a gap in the quasi-energy spectrum
and is equal to the number of chiral edge states nedge(ε) crossing the gap at quasi-energy
ε. The winding numbers of the gaps at energy ε are related to the Chern number as :

CF,εε′ =W [Uε′] −W [Uε] = nedge(ε′) − nedge(ε). (3.51)

CF,εε′ is the Chern number of the bands between the gaps around quasi-energies ε and ε′.
We can see that according to Eq. (3.51), it is possible to have a vanishing Chern number
if the number of chiral edge states is identical in the gaps ∆0 and ∆ω/2.

We now apply this expression to Figs. 3.4 in order to calculate the Chern number of
the Floquet quasi-energy bands. In Fig. 3.4.(a), there is one chiral edge state crossing the
gap ∆0 which is the usual Haldane edge state. This edge state corresponds to a winding
number of the gap nedge(ε = 0) = W0 = 1. In the gap ∆ω/2, we observe two edge states
whose chirality is opposite than the edge state at ε = 0. They contribute thus to a winding
number Wω/2 = −2. The Chern number of the band ε+ is thus C+

F =W0 −Wω/2 = 3. Hence,
because of the apparition of two edge states, the original conduction band has exchanged
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(a)

(b)
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(a) (b)

Figure 3.1 – Quasi-energy spectra of a zig-zag ribbon with N = 30 sites along y and M = 1
replicas, irradiated by a circularly polarized electromagnetic wave with frequency �h! = 6t,
amplitude A = 1 and polarization : (a) � = +1, (b) � = −1. . We can see that the driving
generates a mass at the Dirac points, and observe the presence of edge states crossing the
gap which are characteristic of the Haldane model. The dots correspond to the wavefunction
plotted on Fig.

coding represents the time averaged electronic density at the edges such that ⇢̄(y = 0) = ��uA(i =
0)�uA(i = 0)�� + ��uB(i = 0)�uB(i = 0)��, and identically ⇢̄(y =W ) at the other edge i = N − 1.

⇢̄(y = 0) − ⇢̄(y =W ) (3.46)

For A = 1, we have J2(A) ≈ 0.1 which means that the weak coupling approximation is still
applicable. The spectrum is identical to the one of the Haldane model, with a mass given in
Eq. (3.38) : for A = 1 the mass term equals M I ≈ 0.5t, which is consistent with the figures. In
Fig. 3.1.a), the polarization fo the wave is � = 1 which means that the Chern number of the
valence band is C− = −1. According to the color coding, we see that the edge states rotate

There are two edge states crossing the gap, one for each edge of the ribbon. When reversing
the polarization of the driving, the direction of propagation of the edge states is reversed. This
fact signals that the phases have opposite Chern number, which is given by Eq. 3.39. We can
see that the bandwidth of graphene is significantly reduced. This is due to the fact that the
zeroth order coupling are renormalized by the driving and are equal to ⌧J0(A). The bandwidth
is thereby equal to 6⌧J0(1) ≈ 4.6⌧ which is consistent with Fig. 3.1.

a) b)

Figure 3.2 – Square modulus of the wavefunctions of the edge states of the graphene irradiated
by an electromagnetic wave with frequency �h! = 6t, amplitude A = 1 polarization � = 1
corresponding to the dots on Fig. 3.1.

Figure 3.4 – Quasi-energy spectra of a zig-zag graphene ribbon with N = 30 sites irradiated
by an EM wave amplitude A = 0.5, polarization χ = 1 and frequency : (a) h̵ω = 3.5t (b)
h̵ω = 2t. We have kept M = 2 replicas. The quasi-energy runs from −h̵ω to h̵ω which
corresponds to two Floquet zones. The red lines on (a) demarcate the original bands of
graphene renormalized by J0(A). We still observe the edge states of the effective Haldane
model at ε = 0 and for (a), we see the appearence of two additional anti-chiral edge states
at ε = h̵ω/2 and in (b), another edge state appears at ε = 0.

a Chern number of +2 with the valence band. Identically, the band ε− has Chern number
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C−
F = −3.
Upon further decreasing the frequency of the driving (Fig. 3.4.(b)), another band

inversion occurs at ∆0. We observe the apparition of a new edge state crossing the ε = 0
gap. Because this edge state has opposite chirality than of the edge state at ε = 0 of Fig.
3.4.(b), it contributes to a winding number W0 = −1. The total winding number of the
gap ∆0 is now W0 = 0 and the band ε+ has thus a Chern number C+

F = 2. The band ε−
has Chern number C−

F = −2.
If we decrease further the frequency of the irradiation, the number of resonances

between the valence band and the conduction band increases. This fact leads to a complex
quasi-energy band structure where each band inversion leads to exchange of Chern number
between the bands. Computing the Chern number is a difficult task when the frequency
of the driving decreases. This calculation has been performed numerically for graphene
by Gomez et al. [94]. The first steps are ∣CF ∣ = 1, ∣CF ∣ = 3 and ∣CF ∣ = 2 which is what we
have deduced from the number and the chirality of the edge states plotted in Figs. 3.4.
Our analysis gives results which are consistent with [94].

In this section, we have studied irradiated graphene in a ribbon geometry, and have
observed the presence of edge states at the non-equivalent quasi-energy gaps ε = 0 and
ε = h̵ω/2. We have seen that as the frequency of the driving is decreased, more resonances
are allowed between the original conduction and valence band which lead to an increasingly
complex quasi-energy spectrum. The Chern number of the quasi-energy bands can be
computed by counting the edge states crossing the gaps. However, as the number of edge
states increases, it becomes harder to count the number of edge states and one needs to
use numerical methods to compute the edge states. In Sec. 3, we analyze the case of
irradiated graphene for frequencies small compared to the bandwidth so that we can use
the Dirac equation.

3 Irradiated graphene : continuum Dirac description

We have seen that upon decreasing the frequency of the electromagnetic wave in ir-
radiated graphene, resonant transitions are allowed, which open gaps in the quasi-energy
band structure at ε = 0 and ε = h̵ω/2. However, frequencies of the order of the bandwidth
(in the ultraviolet range) cannot be matched experimentally by chemical potential vari-
ation. Our goal in the next chapter is to study the Floquet spectrum in an accessible
range of energy using chemical potential variation. This is experimentally achievable us-
ing lasers with frequencies in the Terahertz or infrared, corresponding to 10 to 100 meV.
In that range, graphene can be modelled using the Dirac equation. Due to multi-photon
resonances, gaps open at frequencies multiple of h̵ω/2. Because of the linear dispersion
of graphene, the quasi-energy spectrum is made of an infinite number of nested gaps as
a function of the momentum [95] whose size depends on the number of photons involved
in the resonance. These gaps host chiral edge states propagating at the boundaries of the
sample [96].

In Sec. 3.1, we derive the effective Hamiltonian close to the Dirac points which is
analogous to the Haldane Hamiltonian. In Sec. 3.2, we analyze the Floquet spectrum
when the frequency is maller than to bandwidth of graphene. In Sec. 3.3, we study the
nested gap structure. In Sec. 3.4, we derive an effective Hamiltonian near a band crossing,
and compute the Chern number associated with this crossing. Finally, in Sec. 3.5, we
plot the dispersion relation of the edge states in a ribbon geometry.
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3.1 Effective Hamiltonian

The time-dependent Hamiltonian describing the Dirac fermions in the valley-isospin
representation is written as :

H(k, t) =H0(k) + V (t) , (3.52)

where H0 is the bare graphene Hamiltonian and V (t) is the coupling with the time-
periodic driving. The vector potential A(t) = A0(cosωt,χ sinωt) couples to the electric
charge via the Peierls substitution p → p − qA(t), where q = −e is the electron charge.
The Hamiltonian for the coupling between electrons and the electromagnetic field can
therefore be expressed as :

V (t) = (V1e
iωt + V−1e

−iωt), (3.53)

where the matrices V1 and V−1 read :

V1 = evA0

2
(τzσx − iχσy), and V−1 = evA0

2
(τzσx + iχσy). (3.54)

Because of the linear dispersion relation of graphene, the irradiation generates only terms
linear in the coupling strength. Therefore, a Floquet replica couples only to replicas
with ±1 photons. This formulation is analogous to a one-dimensional lattice with nearest
neighbour couplings in quasi-energy space.

In the high-frequency limit, we can derive the effective Hamiltonian given by Eq.
(3.22) to obtain :

Heff(k) =H0(k) − χ(evA0)2

h̵ω
σzτz, (3.55)

where the second term comes from the commutator [V1, V−1] and corresponds to a mass
term with opposite sign in the valleys identical to the one given in Eq. (3.41). We see that
in the high-frequency limit, the low-energy Hamiltonian is identical to the one obtained
by linearising the lattice Hamiltonian near the Dirac points.

An important dimensionless parameter is :

β = evA0

h̵ω
, (3.56)

which quantifies the electromagnetic driving strength. Following a simple quasi-classical
argument, evA0 is simply the energy gained by an electron traveling at speed v in an
electric field E0 = ωA0 during a period of the electromagnetic wave (1/ω), while h̵ω is the
minimal energy quantum which can be absorbed by the electron.

3.2 Dirac-Floquet spectrum

The quasi-energy spectrum of an irradiated graphene sheet can be obtained by diag-
onalizing the Hamiltonian in Sambe space. The spectrum is made of an infinite number
of Floquet replicas coupled to their nearest neighbours by the driving. In Sambe space,
the matrix equation reads :

∑
n

Hξ
F,mnun =∑

n

(Hξ
0F,mn + V ξ

F,mn)un = εum , (3.57)
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(a)

(b)

Figure 3.5 – Dispersion relation εα(k) (k = ∣k∣) of an infinite graphene sheet irradiated
by an electromagnetic wave at driving strengths : (a) β = 0.1, (b) β = 0.3, using N = 3
Floquet replicas. The non-equivalent Floquet bands are ε+ ∈ [0, h̵ω/2] and ε− ∈ [−h̵ω/2,0],
the other bands are identical Floquet replicas. The dashed lines correspond to the non-
irradiated case in the Floquet representation with dispersion ε = ±h̵vk + nh̵ω. The circles
on (a) and (b) indicate the non-equivalent gaps ∆m, located at momenta k =mω/2v, and
at quasi-energies ε = 0 and ε = h̵ω/2, alternatively.
where (m,n) ∈ Z2 and ξ = ±1 is the valley index. The graphene Hamiltonian Hξ

0F,mn

dressed with m photons is defined as :

Hξ
0F,mn = (h̵v(ξσxkx + kyσy) +mh̵ω)δmn, (3.58)

which is diagonal in the Floquet basis. In contrast, the driving Hamiltonian V ξ
F,mn,

V ξ
F,mn = V ξ

1 δm,n−1 + V ξ−1δm,n+1, (3.59)

couples distinct Fourier components Φn. The matrices V ξ
1 and V ξ−1 defined in Eq. (3.54)

read :

V ξ
1 = evA0

2
( 0 ξ − χ
ξ + χ 0

) , and, V ξ−1 = evA0

2
( 0 ξ + χ
ξ − χ 0

) . (3.60)

In this Floquet representation, the wave function is an infinite vector containing all
the different Fourier harmonics of the wave function. Since the Floquet matrix is infinite,
we need to set a cut-off M in the number of Floquet replicas considered. The size of the
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(a)

(b)

Figure 3.6 – Dispersion relation εα(k) (k = ∣k∣) of the irradiated graphene sheet at strong
driving : (a) β = 0.6 and (b) β = √

3/2 using N = 3 Floquet replicas. As β increases, the
gap ∆0 increases until it reaches ∆0 = h̵ω for β = √

3/2, which leads to a gap closing at
ε = h̵ω/2
matrix is thus 2(2M + 1) × 2(2M + 1) (taking into account the sublattice isospin index).
Due to rotational invariance around k = 0, the spectrum only depends on the norm k = ∣k∣
of the wave vector. The spectrum consists of 2(2M + 1) bands having the dispersion
relation εα(k) for α ∈ [1,2(2M + 1)].

The spectrum is periodic in energy (with period ω), so we restrict ourselves to the
study of the reduced bands where ε ∈ [−h̵ω/2, h̵ω/2]. The gaps are located at different
momenta because of the folding of the dispersion relation in the reduced Floquet zone[−h̵ω/2, h̵ω/2]. In this representation, there are two non-equivalent set of gaps centered
at ε = 0 and at ε = h̵ω/2 [Fig. 3.5.(b)]. The gaps of even order (∆0,∆2,∆4...) are located
at the center of the Floquet zone (ε = 0) and the even order ones (∆1,∆3...) are located
at the edge (ε = ±h̵ω/2) [Fig. 3.5.(b)].

For weak driving, β = 0.1 [Fig 3.5.(a)], the bands corresponding to the irradiated
case (solid curves) follow closely the non-irradiated ones (dashed curves) except around
the avoided crossing ∆1 located at k = ±ω/2v and centered around ε = ±h̵ω/2. Upon
increasing the driving, more gaps open at momenta km = ±mω/2v, with m integer [Fig
3.5.(b)]. These gaps correspond to the anti-crossing of two Dirac bands dressed with n
and n′ photons such that ∣n − n′∣ = m. For example, at the gap ∆3 in Fig. 3.5.(b), the
electron is in a coherent superposition of a valence band electron dressed with 2 photons
(having absorbed two quanta of the electromagnetic field) and a conduction band electron
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dressed with −1 photon (meaning having emitted one quantum of the field).
For strong driving, multi-photon processes are more likely, leading to a strong mod-

ification of the quasi-energy spectrum [Fig. 3.6]. The gaps are bigger, and the location
of the gaps get closer in momentum to k = 0 as β increases. For β = √

3/2 [Fig. 3.6.(b)],
the size of the gap ∆0 reaches h̵ω while the two gaps ∆1 originally located at k = ±ω/2v
merge into one gap at k = 0, which leads to a band touching at the Floquet zone edges
ε = ±ω/2.
3.3 Gap structure

(a)
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Figure 3.7 – Size of the gaps at (a) ε = 0 and (b) ε = h̵ω/2 as a function of the driving
strength β calculated using the numerical Floquet method (solid lines) and the rotating
wave approximation (RWA), namely Eqs. (3.61) and (3.62) (dashed curves). The numer-
ical calculations (solid lines) agrees with RWA estimations for weak driving. The gap ∆1

closes while the gap ∆0 tends to h̵ω for β = √
3/2.

The Floquet spectrum has a very rich gap structure [95] that depends strongly on
the driving strength β. In this section, we compare analytical expressions of the gap size
obtained within the generalized rotating wave approximation scheme (see Annex D) and
the results that we get from diagonalizing numerically in Floquet space. The RWA fits
very well the numerics for low β, and describes qualitatively the size of the gaps for β ≲ 1
(Fig. 3.7). The gap ∆0 and the gaps ∆m with m ⩾ 1 have different origins.

The central gap ∆0 at quasi-energy ε = 0 and momentum k = 0 originates from the
emission and re-absorption of virtual photons. Oka and Aoki [10] first discussed this gap
and found that its size equals :

∆0

h̵ω
= √

1 + 4β2 − 1 ≈ 2β2, (3.61)

where the last approximation correspond to weak driving β ≪ 1 and is consistent with Eq.
(3.55) because the gap size equals twice the mass term : ∆0 = 2M = 2β2h̵ω. The quadratic
dependence in β for weak driving points out that this gap originates from a second order
process in the coupling. The analytic expression Eq. (3.61) fits perfectly our numerics.
For weak driving, the evolution is quadratic in β, and as the driving increases, it becomes
linear until the gap size reaches the size of the Floquet zone ∆0 = h̵ω for β = √

3/2.
Multiphoton processes of order m induce the gaps ∆m. For m ⩾ 1, the gap amplitudes

have been derived within the generalized rotating wave approximation. When the driving
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is at resonance with m photons, the gap size is found to be (see Annex D) :

∆m

h̵ω
≈ β∣Jm+1(2β) − Jm−1(2β)∣ ≈ βm(m − 1)! , (3.62)

where Jm is the m-th order Bessel function, and the last approximation is only valid
for β ≪ 1. For weak driving, the size of the gap ∆m (m ⩾ 1) is strongly reduced upon
increasing m. Increasing the driving strength β, the gaps evolve in a non-monotonic way
and can also close.

For weak driving, the gap ∆1 is located at wave-vector k = ±ω/2v, at quasi-energy
ε = h̵ω/2 and has size ∆1/h̵ω = β for weak driving. This gap originates from the anti-
crossing of the bands n = 1 and n′ = 0, and therefore it is a first order process in β
(exchange of one photon). This explains why ∆1 is the largest gap for weak driving (Figs.
3.5). The size of this gap first increases linearly with β, then it reaches a maximum value
around β ≈ 0.5, and starts decreasing until it reaches zero [Fig. 3.7.(b)]. We see that at
the same value of β, the gap ∆0 reaches h̵ω, and as we have seen earlier, this happens
for β = √

3/2 (first vertical dashed line on Fig. 3.7.(b)). We conclude that this value
corresponds to a band touching at the Floquet zone edges ε = h̵ω/2. The corresponding
spectrum is plotted on Fig. 3.6.(b). Upon increasing the driving strength, the gap ∆1

reopens and is now centered at k = 0.
The gap ∆2 originates from the anti-crossing of two Dirac bands dressed with n = 1

and n′ = −1 photons. This is therefore a second order process in the coupling and is
proportional to β2 for weak driving, and the gap size is ∆2/h̵ω = β2. Another band
touching happens at ε = 0 when the gap ∆2 vanishes while ∆1 = h̵ω. This band touching
happens for β ≈ 1.42 (second vertical dashed line).

The idea is the same for the gaps ∆3 and ∆4, they originate from the anti-crossing
of bands dressed with a difference of 3 or 4 photons respectively. They are is thus pro-
portional to β3 and β4 for weak driving. As driving strength increases, the same band
touching scenario will occur with all the gaps. The gap ∆m closes while the gap ∆m−1

reaches the Floquet zone size, which leads to a band touching. From expression (3.62),
we see that the band touchings happen when :

∆m = 0 ⇔ Jm+1(2β) ≈ Jm−1(2β) (3.63)

Our numerical diagonalizations go beyond the RWA estimations which are valid only at
low β.

3.4 Berry curvature and Chern number

Irradiating graphene in the high frequency limit generates a Haldane mass term. Such
a term leads to a non-trivial topology and the Chern number of the valence band equals
C− = ±1 depending on the polarization of the wave. Reducing the frequency of the
electromagnetic wave generates band inversions which open gaps and host chiral edge
states in the non-equivalent gaps ε = 0 and ε = h̵ω/2. In the regime of frequencies of
the order of the bandwidth, h̵ω ∼ t, calculating the Chern number and the number of
edge states necessitates a more complicated numerical treatment because the number of
anti-crossings between the original bands increases as the frequency decreases. If the
frequency is small compared to the the bandwidth h̵ω ≪ t, one can model low-energy
graphene using the Dirac equation, and obtain spectra with rotational invariance around
q = 0. In that case, the original bands of graphene dressed by the electromagnetic wave
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generate anti-crossings at momentum qn = nω/2v, leading to dynamical gaps (see Figs.
3.5). Each of these anti-crossings corresponds to a band inversion and hosts chiral edge
states [96]. In this section, we compute the Berry curvature and the Chern number of
irradiated graphene at the different anti-crossings. In the Floquet formalism, the Berry
curvature is now expressed as a time-averaged quantity [10] :

A
α(k) = i⟨⟨uαk ∣∇k∣uαk⟩⟩ = i∑

n

⟨uαkn∣∇k∣uαkn⟩ (3.64)

In Sec. a), we compute the Berry curvature numerically as a function of the momentum
q relative to the Dirac point. In Sec. b), we derive an effective two-band Hamiltonian
close to the band crossing at q = h̵ω/2v and calculate the associated Chern number.
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Figure 3.8 – Berry curvature of the quasi-energy band ε−(q) calculated numerically as
a function of the modulus of the momentum q = ∣q∣ for polarization χ = +1 and driving
strength β = 0.3. The curve is identical for both valleys ξ = ±1. We can see that the
Berry curvature is peaked at momentum qn = nω/2v. The green squares corresponds to
the Berry curvature associated with the Haldane gap at q = 0 fitted using Eq. (2.83)
with a Haldane mass MH/h̵ω = −β2. The red circles corresponds to the peak in the Berry
curvature calculated with the effective Hamiltonian near the band crossing at q = ω/2v
between the replicas n = 0 and n = −1 such that the Berry curvature equals Eq. (3.76).

a) Berry curvature around the Dirac point

Because the Hamiltonian has rotational symmetry around the Dirac point, it is con-
venient to use polar coordinates. In this system of coordinates, the Berry curvature can
be expressed as :

F−
ϕq(q,ϕ) = i

q
⟨⟨∂ϕu−q∣∂qu−q⟩⟩ − i

q
⟨⟨∂qu−q∣∂ϕu−q⟩⟩ (3.65)

= 2

q
Im⟨⟨∂ϕu−q∣∂qu−q⟩⟩ (3.66)
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Fig. 3.8 shows the Berry curvature of the quasi-energy band ε−(q) as a function of the
norm of the momentum q = ∣q∣. We observe a series of peaks when q is a multiple of
nω/2v. The peak at q = 0 and at q = nω/2v for n ≥ 1 have different origins.

The peak at q = 0 corresponds to Berry curvature generated by the effective Haldane
mass term in the Dirac equation that we studied in Chap. 2. The Berry curvature is
peaked at the Dirac point and decreases away from it with a characteristic decay length
MH/h̵v. The green empty squares on Fig. 3.8 are calculated using the expression for the
Berry curvature of the Haldane model near a Dirac point as given by Eq. (2.83) with a
Haldane mass :

MH = −β2h̵ω (3.67)

The sign of the Berry curvature at q = 0 indicates that the Haldane mass term is negative,
which corresponds to a Chern number c− = −1/2 per valley and therefore to a total Chern
number C = −1 for polarization χ = +1.

b) Effective Chern number near the band crossing ∆1

The peaks at nω/2v for n ≥ 1 happen around the anti-crossings between the valence
band and conduction bands of graphene dressed with ∣n−n′∣ photons. To understand the
origin of these peaks, we consider the peak at q = ω/2v which corresponds to the gap ∆1

located at quasi-energy ε = h̵ω/2. For q < ω/2v, the quasi-energy band ε+(q) is made of the
original conduction band of graphene, while for q > ω/2v, it is made of the valence band
dressed with one photon. Thus, as q increases, the spinor switches from a conduction
band spinor (1, eiϕ)T to a valence band spinor (1,−eiϕ)T , which leads to a non-trivial
winding of the wavefunction. The same mechanism happens for all the gaps : near an
anti-crossing, the quasi-energy band switches from a valence-type band to a conduction-
type band, or inversely, which in turn generates a non-zero Berry curvature. For weak
driving, each of these peaks are well separated for each other and one can compute an
effective Hamiltonian near a band crossing [95].

To picture this non-trivial winding of the vector d(q) near a band crossing, we derive
an effective 2 × 2 Hamiltonian near the gap ∆1 at ε = h̵ω/2. To do so, we keep only the
replicas m = 0 and m = 1 of Eq. (3.57), hence a 4 × 4 Hamiltonian. Next, we rotate the
Hamiltonian to its diagonal basis using the unitary operator :

Pξ = ( 1 1
eiξϕ −eiξϕ) , (3.68)

where ϕ = arctan(qy/qx). After these operations, the Hamiltonian is equal to :

H̃ξ(q) = P †
ξHξ(q)Pξ =

⎛⎜⎜⎜⎝
vq + ω 0 ξ evA0

2 e−iϕ evA0

2 e−iϕ
0 −vq + ω − evA0

2 e−iϕ −ξ evA0

2 e−iϕ
ξ evA0

2 eiϕ − evA0

2 eiϕ vq 0
evA0

2 eiϕ −ξ evA0

2 eiϕ 0 −vq
⎞⎟⎟⎟⎠ , (3.69)

where q = ∣q∣. Around the gap ∆1, the driving couples the bands at energy vq and−vq + ω. We restrict ourselves to the two levels that cross at q = ω/2v. Therefore, the
effective Hamiltonian around ∆1 is a 2 × 2 matrix which correspond to the subspace of
these two bands coupled by the driving, namely :

Heff(q) = ( −vq + ω − evA0

2 e−iϕ− evA0

2 eiϕ vq
) , (3.70)
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which is identical in both valleys. This Hamiltonian can be expressed as Heff(q) = ε0(q)+
d(q).σ with :

ε0(q) = h̵ω
2
, and d(q) = ⎛⎜⎝

− evA0

2 cos(ϕq)− evA0

2 sin(ϕq)
ω
2 − vq

⎞⎟⎠ . (3.71)

The eigenvalues of this Hamiltonian are given by :

ε±(q) = ω/2 ∓ d(q), (3.72)

d(q) =
√

(vq − ω/2)2 + (evA0

2
)2

, (3.73)

where the minus sign in (3.72) originates from the fact that the conduction band of
the effective Hamiltonian corresponds the quasi-energy band ε−(q), while the band with
negative energy corresponds to ε+(q). This dispersion relation is analogous to a massive
Dirac dispersion relation with a mass Meff = evA0/2. The effective mass is consistent with
the size of the gap ∆1 = 2Meff = βh̵ω obtained in Sec. 3.3.

The effective vector d(q) can be parametrized by the angles θq and ϕq of the Bloch
sphere introduced in Eq. (2.32) in analogy with the Haldane model. When q → ∞, we
have cos(θq) = −1 and the vector d(q) points towards the south pole. It is tempting to
argue that when q → −∞, we have cos(θq) = 1, so d(q) points towards the north pole,
but of course, here, the limit q → −∞ is not relevant because we consider the modulus
of the vector q. However, in the limit β → 0, the north pole is reached for q < ω/2v and
the south pole for q > ω/2v. For q = ω/2v, the vector d(q) is at the equator. Thus, in
the limit of vanishing β, we can see that the vector d(q) switches from the south pole
to the north pole as q passes through ω/2v. When the angle ϕ winds around the Dirac
point at momentum q, the vector d(q) winds around the Bloch sphere at latitude cos θq.
Therefore, the effective Hamiltonian has a non-trivial winding around the sphere when
varying q. In the north gauge, the Bloch vector ∣u−Nq ⟩ of the quasi-energy band ε−(q)
near this band crossing corresponds to the Bloch vector of the conduction band (2.34) of
the effective Hamiltonian :

∣u−Nq ⟩ = (cos θ2e
iϕ

sin θ
2

) . (3.74)

Thus the Berry connection in the north gauge has the expression :

A
N−(q) = − sin2 (θq

2
)∇ϕq = − 1

2q

⎛⎝1 + vq − ω/2√(vq − ω/2)2 + (β/2)2

⎞⎠eϕ, (3.75)

and the Berry curvature equals :

F−
xy(k) = − v2q (β

2
)2 ((vq − ω/2)2 + (β

2
)2)−3/2

. (3.76)

This expression is plotted as the red circles on Fig. 3.8. We can see that it fits approx-
imately the numerical estimation (blue line) for the Berry curvature. As we have done
earlier for the case of a single Dirac cone, we wish to derive an explicit expression for the
Chern number of the effective Hamiltonian (3.70) considered as an isolated system, which
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is the case for β → 0. We find that the Chern number carried by the anti-crossing in the
gap ∆1 equals :

c−1,ξ = −1

2

⎛⎝1 + 1√
1 + β2

⎞⎠ , (3.77)

for which we find c−1,ξ = −1 to first order in β for polarization χ = 1. This Chern number
is identical in both valleys, and therefore, the total Chern number of the band ε−(q)
associated to the gap ∆1 is :

c−1 = −2. (3.78)

We have seen that an anti-crossing generates a band inversion, which in turn leads to a
winding of the vector d(q) around the Bloch sphere and a peak in the Berry curvature.
We have considered the case of a single anti-crossing corresponding to the gap ∆1 at
q = ω/2v. For q < ω/2v, the quasi-energy ε−(q) band corresponds to the conduction
band of graphene, and the vector d(q) points towards the north pole in the limit β → 0.
For q > ω/2v, the quasi-energy band ε−(q) corresponds to the valence band of graphene
dressed with one photon, and the vector d(q) points now towards the south pole.

Extending this reasoning to each anti-crossing of the quasi-energy band, we expect
that for the crossings at quasi-energy ε = h̵ω/2, the vector d(q) switches from the north
pole to the south pole, which leads to a negative peak in the Berry curvature and a local
negative Chern number associated with the crossing. At the crossings at ε = 0, the vector
d(q) switches from the south pole to the north pole, which leads to a positive peak in the
Berry curvature, and we expect a positive Chern number associated with the crossing.
This analysis is consistent with the numerical calculation of the Berry curvature as shown
on Fig. 3.8. The calculation of the Chern number associated with each anti-crossing was
done analytically in Ref. [95] using a projected green’s function technique to obtain an
effective Hamiltonian near each crossing. Our calculation for the first anti-crossing and
the qualitative analysis for the next anti-crossings is consistent with their results.

3.5 Edge states

We now consider the edge states of the irradiated graphene sheet. At low-energy, it is
relevant to use the Dirac equation to obtain the dispersion relation of the edge states. We
use the Berry-Mondragon boundary conditions as introduced in Chap. 2 for the Haldane
model.

We consider a ribbon of width W along y and infinite along x so the longitudinal
wavevector kx is a good quantum number. The procedure consists in fixing the momentum
kx and finding the energy of the eigenstates that satisfy the boundary conditions. We
multiply the Hamiltonian (3.57) by σy and rearrange to obtain :

∑
n

[((ε −mh̵ω)σy + iξh̵vkxσz) δmn − σyV ξ
1 δm,n−1 − σyV ξ−1δm,n+1]uαn(y) = h̵vqαuαm(y),

(3.79)
where qα represents the transverse wavevector that can be imaginary. A state correspond-
ing to the wavevector qα has the form Φα(y, t)eikxx with :

Φα(y, t) = eiqαy∑
n

uαme
imωt, (3.80)

As we have said previously, one needs to apply a cut-off in order to diagonalize Eq. (3.79).
There exists therefore 2(2M + 1) eigenstates, and a Floquet state with quasi-energy ε is
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a superposition of these states with weights aα such that :

Ψε(y, t) = e−iεt 2(2M+1)∑
α=1 aαe

iqαy∑
m

uαme
imωt, (3.81)

and α ∈ [1,2(2M + 1)].
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Figure 3.9 – Dispersion relation of graphene nanoribbons of width W = 33lω and driving
strength β = 0.4 for polarization χ = 1 using M = 1 Floquet replicas in (a) valley K′ and
(b) valley K. We observe chiral edge states bridging the gaps ε = 0 and ε = h̵ω/2 in valley
K′.

To find the eigenstates, we need to impose the boundary conditions on Eq. (3.81).
The Berry-Mondragon boundary conditions imply the following restriction on the spinors
at the boundaries :

ΨA(y = 0, t) = ΨB(y = 0, t), (3.82)
ΨA(y =W, t) = −ΨB(y =W, t), (3.83)
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which must be valid at any time t. Identifying to Fourier components of Eq. (3.81), we
find :

∑
α

aα(uA,αm − uB,αm ) = 0, (3.84a)

∑
α

aα(uA,αm + uB,αm )eiqαW = 0, (3.84b)

which must be valid for all m ∈ [−M,M]. This is an homogeneous matrix equation with
2(2M + 1) equations and 2(2M + 1) unknown coefficients aα. Eq. (3.84) can be written
in matrix form :

M(ε, kx)a = 0, (3.85)

where a = (a1, ..., a2(2M+1)) is the vector composed of the coefficients aα. ε is an eigenlevel
when the determinant of the matrix M(ε, kx) is zero :

det(M(ε, kx)) = 0 ⇔ ε(kx) is an eigenlevel (3.86)

The procedure to find the eigenstates and eigenvectors numerically consists in setting a
longitudinal momentum kx, and to vary ε.

Fig. 3.9 shows the dispersion relation of graphene nanoribbons with M = 1 Floquet
replicas in the valleys K and K ′. We observe the central replica n = 0 and the two
sidebands dressed with n = +1 and n = −1 photons. We observe the gap ∆0 at kx = 0
with size ∆0h̵ω = 2β2 which originates from the second order process of emission and re-
absorption of virtual photons. Also, at ε = 0, we observe the gap ∆2 of size ∆2/h̵ω = β2,
which originates from the coupling of the n = +1 and n = −1 replicas. Finally, we observe
the gaps at ε = ±h̵ω/2, originating from the coupling between the n = 0 and n = ±1
replicas. Inside these gaps, we observe propagative states which correspond to bulk state
of the n = ±1 replicas. These states have a small contribution on the time-average density
of state ρ̄(ε) = ⟨⟨Ψε∣Ψε⟩⟩. We haven’t represented more replicas, because as we increase
the number of replicas, there exists more propagative states that belong to the additional
replicas.

For χ = 1, we observe edge states only in valley K ′. This can be understood using the
same reasoning as explained for the edge states of the Haldane model. Berry-Mondragon
boundary conditions correspond to an interface with a trivial insulator and if the gaps
are inverted in valley K ′, then the edge states are polarized in this valley. We observe
chiral edge states bridging the non equivalent gaps ∆0 and ∆h̵ω/2. The edge states in the
inequivalent gaps all have the same chirality, namely they rotate clockwise around the
sample.

Figs. 3.10 shows the weight of the wavefunction on the nth Floquet replica for the
different edge states corresponding to the red dot in the inset such that :

Ψm(y) = 2(2M+1)∑
α=1 aαu

α
me

iqαy (3.87)

In the gap at ε = 0 (Fig. 3.9), there are three edge states : one edge state centered on
kx = 0, and two lateral edge state that live close to the gap ∆2 at kx = ±ω/v. From the
analysis of the Chern number carried by the gaps in Sec. 3.4, we can postulate that each
edge state is associated to a band inversion.

The edge state centered on kx = 0 that links the gaps at kx = ±ω/v originates from the
inverted Haldane-like gap ∆0 in the dispersion relation. There is only one edge state and
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Figure 3.10 – Wavefunction Ψm(y) of the edge states at the edge y = 0 for W = 33lω and
β = 0.4 with energy and momentum corresponding to the red dot in the inset. The label(µ,m) correspond to the weight of the wavefunction on the sublattice µ = A,B and on
the mth Floquet replica according to Eq. (3.87). For (a), the weight of the wavefunction
is mainly on the replicas n = +1 and n = −1, it has long characteristic length and shows
oscillations. For (b) the weight of the wavefunction is mainly on the replica n = −1. The
wavfunction is localized much closer to the edge. For (c), the weight in mainly in the
replica n = 0.

thus we expect this edge state to be associated with the Chern number c− = −1 carried
by the gap ∆0. We can see from Fig. 3.10.(a) that this edge state has weight mainly
on the n = 1 and n = −1 Floquet sidebands which is consistent with the fact that it
originates from a second order process of emission and re-absorption of a virtual photon.
This edge state presents an oscillatory behaviour, which means that the wavevectors qα
have a non-zero real part. Because they have a long penetration length, they are prone
to backscattering between the edges.

The lateral edge states at quasi-energy ε = 0 and momentum kx = ±ω/v are associated
to the gap ∆2 of Fig. 3.5 which originates from the coupling between the n = 1 and n = −1
replicas. The weight of the edge state at y = 0 is located mainly over the n = −1 replica.
We observe that the edge states located close to kx = −ω/v has weight mainly on the n = 1
replica. These states are localized closer to the edge than the central edge state. They
are associated with the band inversion that occurs at the anti-crossing between the n = −1
and n = 1 replicas.

Finally, the edge state in the gap ∆1 at ε = h̵ω/2 and kx = ω/2v is represented on Fig.
3.10.(c). We can see that the edge state at y = 0 has weight on the n = 0 sideband. The
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other edge state at y =W (not represented here) has weight on the n = 1 sideband. These
edge states originate from the coupling between the n = 0 and n = 1 Floquet replicas
and are associated to the gap ∆1 in the spectrum. They present a similar shape as the
lateral edge states at ε = 0, because they also originate from the band inversion occuring
at ε = h̵ω/2 and k = ±ω/2v. The number of edge states correspond to the local Chern
number c1 = −2 calculated in Sec. 3.4.

4 Conclusion
In this chapter, we have considered irradiating graphene with a circularly polarized

electromagnetic wave. We used the formalism of the Floquet theory to investigate the
features of graphene under a periodic driving. Because the Hamiltonian is time-dependent,
the energy is not a good quantum number. However, due to the time-periodicity of
the Hamiltonian, one can define quasi-energies that are periodic in h̵ω. In the Floquet
formalism, the electrons are dressed coherently by the photons which leads to an infinite
number of sidebands separated by multiples of h̵ω. The driving couples these replicas,
which in turn opens some gaps and one obtain reshuffled Floquet bands in the first Floquet
zone [−h̵ω/2, h̵ω/2].

For driving frequencies much larger than the bandwidth, it is possible to define an
effective time-independent Hamiltonian dressed by the driving. For graphene, this Hamil-
tonian is similar to the Hamiltonian of the Haldane model, with a gap characterized by
opposite sign in the valleys. The effective bands possess a non-zero Chern number which
in turn leads to the appearance of topologically protected edge states bridging the gap.
Upon decreasing the frequency, resonances between the valence and the conduction band
are allowed and gaps open at ε = ±h̵ω/2, leading to a band inversion. Due to these band
inversions, there is an exchange of Chern number and additional edge states appear at the
Floquet zone edges. For a frequency on-resonance with the bandwidth of graphene, the
Floquet bands can be very complex with multiple edge states bridging the non-equivalent
gaps ε = 0 and ε = h̵ω.

For irradiated system, a new kind of invariant was developed to characterize the topo-
logical properties of these systems. This invariant is defined for a gap and counts the
number of edge states living inside this gap. The Chern number of the band is equal to
the difference of the number of chiral edge states in the gaps above and below this band.
Using this definition, we calculated the Chern number of irradiated graphene by plotting
the dispersion relation of an irradiated ribbon of graphene and counting the number of
edge states.

When the frequency is small compared to the bandwidth of graphene, it is possible
to model graphene using the Dirac equation. In this scheme, the original Dirac cone
dressed with different number of photons couples at ε = 0 and ε = h̵ω/2 and a set of nested
gaps appear as a function of the momentum. Each gap is associated to an exchange of n
photons and its size is proportional to βn for weak driving where β is the driving strength.
It is possible to define an effective Chern number for each gap, and we observe edge state
associated with each gap. The wavefunction has weight mainly on the replicas which
couple at the band crossing.
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Chapter 4

Electronic transport in irradiated
graphene

In this chapter, we suggest the use of DC transport measurements to investigate the
features of the Floquet quasi-energy spectrum in coherent driven electronic graphene.
We compute the conductance of graphene transistors driven by an electromagnetic wave,
typically in the terahertz (THz) or infrared (IR) range. Indeed photon energies in the
range 10 − 100 meV can be matched by chemical potential variations in typical graphene
samples. Recently, photon-assisted shot-noise has been studied experimentally in coherent
diffusive graphene samples irradiated in the THz range [97]. Graphene is also a very
promising platform for detection of light in a wide range of frequencies [98].

We consider a graphene based field effect transistor (gFET), whose conduction channel
is irradiated by a circularly polarized electromagnetic wave at normal incidence (Fig.
4.1). The carrier density (in absence of irradiation) can be tuned using a DC electrostatic
backgate. The source and drain leads are heavily doped and are not irradiated. The
two-terminal differential conductance is studied as a function of the irradiation strength,
chemical potential µ in the central region, and photon energy h̵ω for various lengths L
and widths W of the graphene ribbon.

To calculate the conductance of the sample in the presence of a scatterer, we use
Landauer formalism. This formalism allows to obtain the conductance of a sample using
the expression of the wavefunction of the electrons. In the scattering formalism, the
reservoirs are modelled by semi-infinite leads with a much larger number of modes than
the scattering region. By matching the wavefunctions of the states at the interfaces, it
is possible to obtain the transmission probability of an electron through the scattering
region. From these transmissions, it is possible to have the conductance.

In Sec. 1, we review the non-irradiated case following Ref. [99]. In Sec. 2, we explain
the extension of the formalism used in the first section to the case of an irradiated ribbon.
In Sec. 3, we present results for the minimal conductivity and the conductance as a
function of the chemical potential for various values of the parameters of the system.
Finally, in Sec. 4, we discuss the experimental range parameters required to observe these
characteristic features.

1 Non-irradiated ribbon

We describe here the model used by Tworzydlo et al. [99] to obtain the conductance of
a graphene sample as a function of the chemical potential. The scattering region consists

81
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of a sheet of graphene of length L along the x direction and width W along y, with a
chemical potential µ that can be tuned by a remote gate. The leads are modelled as
highly-doped graphene at chemical potential µ∞ such that µ∞ ≫ ∣µ∣. The interfaces are
located at x = 0 and x = L. The upper panel in Fig. 4.1 represents the 2D ribbon of
graphene with the source and drain leads separated by the scattering region, while the
lower panel represents the dispersion relation of the three region at the different chemical
potentials.

Source

μ∞

Drain

μ∞μ

-μ

x

y

x=0 x=L
E

E=0

-μ∞

Scattering region

r i t

Figure 4.1 – Scattering model. The upper panel represents the three different regions
of the ribbon with different chemical potential. The interfaces are located at x = 0 and
x = L. The source and drain leads have chemical potential µ∞ ≫ µ, while the chemical
potential µ of the central region can be tuned by a gate voltage.

We model graphene using the continuum description given by the Dirac equation. The
solution of the Dirac equation corresponds to the envelope wavefunction of the electron
relative to the Dirac point. We consider that the valleys are decoupled and spinless
electrons. The total conductance will be four times the single valley and spin conductance.

In Sec. 1.1, we define the scattering states in the three regions. In Sec. 1.2, we match
them to obtain the transmission and reflection probabilities. In Sec. 1.3, we obtain the
conductance of the sample as a function of the chemical potential. Finally, in Sec. 1.4,
we present the state of the art concerning transport in ballistic graphene.

1.1 Scattering states

The propagation of the electrons in the system is confined by the large but finite width
of the sample along y. Depending on the detail of the microscopic boundary of the sheet,
there exist different boundary conditions for the Dirac electrons that impose different
quantization on the transverse wavevector. The detail of the boundary conditions has
consequences when calculating the conductance of narrow ribbons [99]. However, we con-
sider here a ribbon with a large width compared to the lattice spacing, so the microscopic
details don’t matter. Thus, for simplicity, we apply periodic boundary conditions along
y, so the transversal wavevector ky is a good quantum number. It is quantized as :

ky = 2πny
W

(4.1)

where ny ∈ Z. The scattering process doesn’t mix the modes labelled by ky so they can be
considered as independent channels. In contrast to ky and µ, the longitudinal wave-vector
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kx is not a good quantum number because the system is not translationally invariant
along the x-axis. In the following, all the two-component wave functions are written
as Φ(x, y, t) = Φ(x, t)eikyy, and we will work with the Φ(x, t) wave functions (ky being
omitted) corresponding to the effective 1D transport problem at a given ky. In order
to calculate the two-terminal conductance, we need to match the wave functions at the
interfaces x = 0 and x = L.

The wavefunction can be expressed in each region separately considering that the
region is infinite. Thereby, although kx is not conserved globally, we can still define it
in each region separately. Moreover, kx can be imaginary which corresponds to the case
of an evanescent wave along x. According to Eq. (1.26), the eigenvectors of the Dirac
equations are :

Φs(x) = ( 1
seiϕ

) eikxx with : ϕ = arctan(ky
kx

) . (4.2)

and s = ± is the band index. In the absence of inelastic scattering events, the energy of
the electrons is conserved, all the physics happens thereby at the Fermi level. Here, the
chemical potential µ allows us to tune the Fermi level, so we consider scattering happening
at energy E = 0. From the eigenvalue equation (1.36), we obtain the relation :

µ = ±h̵vkF , (4.3)

where kF = ∣k∣ is the Fermi wavevector.
In the leads, at E = 0, we have the relation µ∞ = h̵v√k2

x + k2
y ≫ ∣µ∣. However in the

central region, we restrict ourselves to transverse momenta such that ky ∼ µ/h̵v, therefore,
the scattering states in the leads have a longitudinal momentum :

k∞x ≈ ±µ∞
h̵v

. (4.4)

Therefore, in the leads, the wavefunction for the right (+) and left (−) going solutions
have the expression :

Φ±
ky
(x) = 1√

2
( 1±1

) e±ik∞x x. (4.5)

We can see that the expression for the spinor is independent of ky.
We consider a right-going electron originating from the left lead. It has the probability

amplitude to be reflected equal to r, therefore the wavefunction of the electron in the left
lead is :

ΨL(x) = 1√
2
(1

1
) eik∞x x + r√

2
( 1−1

) e−ik∞x x, (4.6)

where k∞x = µ∞
h̵v . In the right lead, the wavefunction consists of a right going electron with

transmission amplitude t :

ΨR(x) = t√
2
(1

1
) eik∞x (x−L), (4.7)

where we added the phase factor e−ik∞x L.
In the scattering region S, for a fixed ky, the wavefunction is a superposition of a left

and right going solutions with amplitudes a and b :

ΨS
ky
(x) = a( 1

eiϕ
) eikxx + b( 1−e−iϕ) e−ikxx, (4.8)

with kSx = √( µ
h̵v

)2 − k2
y, and ϕ = arctan (kykx).
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1.2 Transmission and reflection probabilities

Our goal is to obtain the transmission and reflection coefficients t and r. Because the
Dirac equation is of first order in the space derivatives, only the wavefunction is needed
at the boundaries, and not its derivative. However, because the wavefunction is a spinor,
both its components need to be matched at the interfaces at x = 0 and x = L. At x = 0,
we have ΨL(x = 0) = ΨS(x = 0) which gives the equations :

1 + r = a + b, (4.9)
1 − r = aeiϕ − beiϕ. (4.10)

At x = L, we have ΨS(x = L) = ΨR(x = L) gives us :

aeikxL + be−ikxL = t, (4.11)
aeikxLeiϕ − be−ikSxLe−iϕ = t. (4.12)

Solving this non-homogeneous linear system of equation gives :

t = kx
kx cos(kxL) − i µh̵v sin(kxL) , (4.13)

r = −ky sin(kxL)
kx cos(kxL) − i µh̵v sin(kxL) , (4.14)

where we have used the fact that cos(ϕ) = h̵vkx/µ and sin(ϕ) = h̵vky/µ. The transmission
probability is the modulus square of the transmission amplitude. The transmission and
reflection probabilities for the propagative states are :

T
(p)
ky

(µ) = ∣t∣2 = k2
x

k2
x cos(kxL)2 + ( µ

h̵v
)2

sin(kxL)2
with : kx =

√
( µ
h̵v

)2 − k2
y, (4.15)

R
(p)
ky

(µ) = ∣r∣2 = k2
y sin(kxL)2

k2
x cos(kxL)2 + ( µ

h̵v
)2

sin(kxL)2
. (4.16)

Current conservation implies that for every ky we must have Rky + Tky = 1, which can be
easily checked. These probabilities corresponds to propagative states with real longitu-
dinal wavevector kSx which is valid for ∣µ∣ > h̵v∣ky ∣. The case h̵v∣ky ∣ > ∣µ∣ corresponds to

evanescent states in the scattering region such that kSx = iκ = i√k2
y − ( µ

h̵v
)2
. In that case,

the transmission and reflection probabilities are obtained as :

T
(e)
ky

(µ) = κ2

κ2 cosh(κL)2 + ( µ
h̵v

)2
sinh(κL)2

with : κ =
√
k2
y − ( µ

h̵v
)2

, (4.17)

R
(e)
ky

(µ) = k2
y sinh(κL)2

κ2 cosh(κL)2 + ( µ
h̵v

)2
sinh(κL)2

. (4.18)

In Fig. 4.2, we plot the transmission probability as a function of the transverse mo-
mentum ky for a short ribbon [Fig. 4.2.(a)] and for a long ribbon [Fig. 4.2.(b)]. The trans-
mission is total at normal incidence which is a characteristic property of Dirac fermions
for which backscattering is forbidden. When increasing ∣ky ∣, the conductance decreases
because of the imperfect matching between the scattering states in the leads and in the
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Figure 4.2 – Transmission probability of the graphene field effect transistor as a function of
the transverse momentum ky for : (a) a short ribbon of length L = 2h̵v/µ, and b) a longer
ribbon of length L = 20h̵v/µ. We can see that, in both cases, the transmission is total
at normal incidence (ky = 0). For h̵v∣ky ∣ > µ, the current is carried by evanescent states.
For a short ribbon, some current is carried by evanescent states while for a longer ribbon,
no evanescent states contribute to the conductance. The oscillations in (b) correspond to
Fabry-Pérot interferences between propagative states.

scattering region. In the regions h̵v∣ky ∣ > ∣µ∣, there is no propagative states and the current
is carried only by evanescent states with characteristic length is 1/κ. We can see that
for a short ribbon, the transmission is non-zero for h̵v∣ky ∣ > ∣µ∣, which means that some
current is carried by evanescent states. For a longer ribbon, the current is carried only
by propagative states. The interferences between the propagative states generate the os-
cillations in the transmission probability, where the graphene sheet act as a Fabry-Pérot
interferometer.
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1.3 Conductance of the ribbon

In the case of a ballistic conductor, the resistance originates from the interface between
the sample and the contacts. Because the reservoirs have a much more important number
of modes than the sample, there is a mismatch between the modes at the interfaces. The
maximum current that a single mode can carry is given by the quantum of conductance
equal to Gs = e2/h. According to Landauer formalism, the conductance of the ribbon is
the sum of the transmission probabilities of each mode and is expressed as :

G(µ) = ge2

h
∑
ky

Tky(µ), (4.19)

where g = 4 is the degeneracy factor, and the sum runs over all the channels ky indexed
by the number n from Eq. (4.1).

a) Conductance vs chemical potential

First, we present the conductance as a function of the chemical potential. Because of
the quantization of the transverse wavevector ky in units of 2π/W , we express the chemical
potential and wavevectors in units of h̵v/W . In this choice of units, the conductance of
the sample depends only on the ratio W /L. In Fig. 4.3, we plot the conductance of the
sample as a function of µ for different aspect ratio. Fig.4.3.(b) corresponds to results
originally found in [99] for the case of a short and wide ribbon. For a sample of width
W = 1µm, we have h̵v/W ≈ 1meV, which means that the chemical potential runs from−40meV to 40meV, an experimentally achievable range.
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Figure 4.3 – Conductivity of a graphene sheet of width W and length L as a function of
the chemical potential µ, with G0 = 4e2/h for : (a) a square graphene strip, and (b) a
short and wide ribbon.

In both Figs. 4.3, the conductance increases approximatively linearly with the modulus
of µ, and presents oscillations. For a square ribbon (W /L = 1), we can see a plateau
centered on µ = 0 at conductance G = G0. When µ is very small, there is only one
propagative state with transverse momentum ky = 0 while the state at higher ∣ky ∣ are
evanescent. Because it is at normal incidence, this state has perfect transmission and
therefore its conductance is equal to G0. Upon increasing ∣µ∣, two more channels are
opened. However, their transmission is not perfect and varies with µ due to interferences
which is why the conductance oscillates. The conductance remains bounded below 3G0
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because there are only three propagative states in this energy range. The same scenario
occurs upon increasing the chemical potential, as more propagative states are open.

For the short and wide ribbon with W /L = 5 shown on Fig. 4.3.(b), the curve is
smoother, and the Fabry-Pérot oscillations appear for higher values of the chemical po-
tential. For a sample with a fixed width W , the length of the sample is shorter. The
oscillations appear when the length of the sample is of the order of the Fermi wavevector,
i.e. L ≈ 2π/kF = 2πh̵v/µ. For a ribbon with aspect ratio W /L = 5, this condition is
satisfied for a value of the chemical potential such that µW /h̵v ≈ 5 × 2π ≈ 30. We can see
on Fig. 4.3.(b) that this value corresponds approximately to the value at which the curve
starts to oscillate. Below this value, the Fermi wavelength is longer than the length of
the ribbon and thus doesn’t generate interferences.

When the ribbon is long enough, so that we can neglect the contribution from the
evanescent states, and wide enough so that the sum in Eq. (4.19) can be transformed to
an integral, we obtain the formula for the conductance :

G(µ) = G0W

2π ∫ ∣µ∣/h̵v
−∣µ∣/h̵v dkyT

(p)
ky

(µ), (4.20)

= G0W

π

∣µ∣
h̵v ∫

1

0
dx

1 − x2

1 − x2 cos2(√1 − x2kFL) , (4.21)

≈ G0

4

∣µ∣W
h̵v

, for kFL = µL
h̵v

≫ 1 (4.22)

where we have used the change of variables x = h̵vky
µ in the second line, and we find that

the integral in the second line is equal to π/4 in the limit µL
h̵v ≫ 1 (see Appendix C).

We can see that the conductance is proportionnal to the width of the sample, because
the number of channels increases with W , and is independent of L which is characteristic
of a ballistic sample. This expression corresponds to the trend of the curve on Figs. 4.3,
and doesn’t take into account for the interference effects. We can see that this expression
is consistent with the figures for which G/G0 ≈ 10 for ∣µ∣W /h̵v ≈ 40. The conductivity is
equal thus to :

σ ≈ e2

h

√
πnL, (4.23)

where we have used Eq. (1.34) for the chemical potential. The conductivity increases
with the length of the sample, which is characteristic of a ballistic sample. When the
length of the sample is greater than the mean free path le of a diffusive graphene sample,
the conductivity reaches the value :

σ ≈ 2e2

h

√
πnle. (4.24)

b) Minimal conductivity

The minimal conductivity of graphene corresponds to the conductivity when the Fermi
level is at the Dirac point (µ = 0). At the Dirac point, the density of states vanishes and no
propagating state exists. However, experimentally, the conductivity reaches a minimum
which is non-zero. The value of the minimal conductivity of graphene has been the
subject of an intensive theoretical effort which led to different values depending on the
formalism used [100]. The value usually depends on the disorder landscape, where density
fluctuations lead to propagative states at the Dirac point. We present here the calculation
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of the minimal conductivity for clean and non-interacting graphene using the transport
formalism presented in the previous sections, such as in Refs. [99].

For a wide enough sample W ≫ L, the sum over the channels can be transformed to
an integral :

G(µ) = G0W

2π ∫ k∞

−k∞ dkyTky , (4.25)

= G0W

π
[∫ ∣µ∣

h̵v

0
dkyT

(p)
ky

+ ∫ k∞

∣µ∣
h̵v

dkyT
(e)
ky

] , (4.26)

where G0 = 4e2/h and k∞ = µ∞
h̵v is the (very large) Fermi wavevector in the leads. There is

a competition between two contributions : for small µ, the transport will be dominated
by evanescent modes, whereas the propagating ones dominate for large µ. At the Dirac
point (µ = 0), the conductance originates only from evanescent modes with transmission
probability :

T
(e)
ky

= 1

cosh2(kyL) , (4.27)

which leads to the minimal conductance :

G(µ = 0) = G0W

π ∫ k∞

0
dky

1

cosh2(kyL) = G0

π

W

L
for W ≫ L (4.28)

The conductivity of the 2D sheet is related to the conductance according to the formula :

σ = G L

W
= G0

π
. (4.29)

We can see that in the limit W ≫ L, the conductivity of the sample reaches a universal
value.

1.4 Ballistic graphene in experiments

The first transport experiments in graphene were realized by the group of Novoselov
et al. in Manchester [1, 17]. They realized a field effect transistor made of a graphene
layer on a silicon substrate in a multiterminal setup. They measured carrier mobilities µe
up to ≈ 10000cm2/V/s, which corresponds to a mean free path :

le = (h/2e)µe√n/π, (4.30)

of the order of 100nm for characteristic carrier concentration n ≈ 1012cm−2. For sample
sizes of the order of the micrometer, this regime is still diffusive. A first step towards
ballistic conduction was achievedby the realization of suspended graphene devices. The
suspension allowed to reduce scattering from substrate impurities. The mobilities gained
an order of magnitude reaching 200000cm2/V/s [101, 102, 103], with a mean free path
approaching the sample size, but without observing characteristic features of ballistic
transport. However, devices made of suspended graphene are not easy to engineer and
manipulate. Later on, hexagonal Boron Nitride (h-BN) was found to be a very clean
substrate for high-quality graphene [104] with mobilities of the same order as suspended
graphene but which allowed for a greater tunability compared to suspended samples. Bal-
listic conduction was finally achieved at room temperature in graphene samples encapsu-
lated between two layers of h-BN [105, 106], which led to mobilities up to 500000cm2/V/s,
and a mean free path longer than the size of the sample. Finally, encapsulated samples
with mobilities of three millions of cm2/V/s and a mean-free path reaching up to 28µm
were realized [107].
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2 Irradiated ribbon
In this section, we present the formalism developed to compute the 2-terminal conduc-

tance of a graphene-based transistor whose central 2D conducting channel is irradiated by
circularly polarized light at normal incidence. The transmission and reflection coefficients
are evaluated within the Landauer-Büttiker formalism extended to driven Floquet sys-
tems [108]. Note that the electromagnetic field is uniform in the central gated graphene
region, while the leads are not irradiated.

We consider the same geometry as in Fig. 4.1, namely a rectangular ribbon of width
W and length L connected by two non-irradiated leads. The Hamiltonian being time-
dependent, the single electron energy is not conserved. However, due to the invariance
under discrete translations of time T , the quasi-energy ε is still a good quantum num-
ber. In the scattering problem, we consider electrons incoming at energy ε = 0, which
corresponds to the Fermi level of the leads. The electrons propagating inside the irra-
diated region can emit or absorb one or several photon(s) of energy h̵ω. These inelastic
scattering events are described by a set of transmission (reflection) coefficients tn0 (rn0)
corresponding to the amplitude of being transmitted (reflected) with a final energy ε+nh̵ω.

In order to determine those Floquet scattering coefficients, we use periodic boundary
conditions along the y direction. The transverse wave-vector ky is quantized as in Eq. 4.1.
Note that with such periodic boundary conditions, only bulk 2D states are investigated.

2.1 Spectrum

In the irradiated region (0 < x < L), we need to find the Floquet eigenstates Φm and
the longitudinal wave-vector kx corresponding to a given set (µ, ky) (still having in mind
the scattering problem for ε = 0 corresponding to an electron incident from the lead Fermi
level). Multiplying Eq. (3.57) by ξσx and rearranging it allows to get both kx(ε) and Φm

by solving the following equations:

∑
n

(Kξ
0F,mn +Kξ

V F,mn)Φn = h̵vkxΦm, (4.31)

where one has defined an infinite matrix K0F with matrix elements:

Kξ
0F,mn = ξ((µ −mh̵ω)σx − iσzh̵vky)δmn, (4.32)

and the infinite matrix KV F by the matrix elements:

Kξ
V F,mn = −ξσxV ξ

1 δm,n−1 − ξσxV ξ−1δm,n+1, (4.33)

describing the effect of the electromagnetic field.
Note that switching the valley index reverses the sign of kx, and because the ribbon is

space-inversion symmetric along the x direction, the eigenvalues kx always come in pairs,
therefore both valleys have the same contribution to the conductance. In practice, one can
solve the scattering problem and compute the transport in a given valley, and multiply
the single-valley result by 2 to get the total conductance.

Besides, KF = K0F +KV F being not Hermitian, the longitudinal momentum kx can
have an imaginary part, which corresponds to an evanescent state (Fig. 4.4). As we have
seen before, we need to make a truncation in the number of Floquet side bands such that
m ∈ [−N,N]. After numerical diagonalization, we obtain 2(2N +1) eigenvalues kαx (ε) and
eigenvectors Φα

m with α ∈ {1,2(2N + 1)} labelling the different eigenmodes. The resulting
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(a) (b)

Figure 4.4 – Inverse dispersion relation kαx (ε) for β = 0.3 in the reduced Floquet zone
for N = 2 with the real and imaginary parts of the wave vector kx for (a) ky = 0 and
(b)ky = 0.4ω/v. Inside the gaps, the wavevector is imaginary which corresponds to an
evanescent state.

2-component wave function is written as a superposition of the 2(2N + 1) eigenmodes
labelled by index α. The wave function of a given α-eigenmode is expressed as:

Φα(x, t) = eikαxx N∑
m=−N Φα

me
−imωt, (4.34)

which is still a two-component spinor (attached to one valley, here ξ = 1).
When the Fermi level lies in the gap, kαx (ε) has a non-zero imaginary part which signals

an evanescent state. For a ribbon with a finite length, these states will allow the current
to tunnel through the gapped central region. The penetration lengths ξ are defined as the
inverse of the imaginary part of the longitudinal wave-vector kx(ε) inside the gap (Fig.
4.4) :

ξα = 1∣I{kαx}∣ . (4.35)

For weak driving, β ≪ 1, it is possible to associate each eigenmode (α) with a given anti-
crossing between uncoupled Floquet replicas. Moreover, there is a direct relation between
the length ξ and the size of the gaps :

ξm = h̵v

∆m

. (4.36)

As the size of the gap increases, the imaginary part of kx(ε) (where ε is in the gap)
increases, thereby the characteristic length decreases. According to Eqs. (3.61) and (3.62),
and for β ≪ 1 the decay lengths are expressed as:

ξ0 = lω√
1 + 4β2 − 1

≈ lω
2β2

, (4.37)

ξm ≈ (m − 1)!
βm

lω , (4.38)

in terms of the length :
lω = v/ω , (4.39)
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corresponding to the distance travelled by an electron during one cycle of driving (divided
by 2π). We compared the RWA method and the numerics and we see a good agreement
between numerical diagonalisation and RWA even for β ≈ 1.

2.2 Scattering states and transmission coefficients

To simplify the expression of the scattering states in the leads, we consider heavily
n-doped leads, as we have done for the non-irradiated case in Sec. 1.1. The chemical
potential in the leads is µ∞ > 0 for x < 0 and x > L such that µ∞ ≫ ∣µ∣.

In order to account for electrons leaving the scattering region with energy ε+nh̵ω, we
use the Floquet theorem in the leads. However, because there is no driving, the Floquet
replicas are decoupled. In the leads, for an infinite system, Eq. (3.57) with ε = 0 becomes
:

h̵v (σxkx + σyky)Φm(x) = (µ∞ −mh̵ω)Φm(x). (4.40)

For a given 2D wave-vector (kx, ky), there is an infinite amount of plane wave solutions
labelled by their Floquet index m and their band index s = ±1 :

Φm,s(x) = 1√
2
( s
eiϕ

) eikxx, (4.41)

with µ∞ =mh̵ω + sh̵v√k2
x + k2

y and cosϕ = kx/(µ∞ −mh̵ω), ϕ being the angle of incidence
of the electron. Since µ∞ → ∞, we have ϕ → 0, π and s = ±1 in both source and drain
leads. Finally, the spinor in the leads is independent of m and we obtain one left (+) and
one right (−) going solution :

Φ±
m(x) = Φ±eik±xx , (4.42)

with k±x = ±µ∞/h̵v, and
Φ± = 1√

2
( 1±1

) . (4.43)

Using the expression of the eigenstates in the different regions, it is possible to con-
struct the scattering states. We consider an incoming wave from the left lead at the
quasi-energy ε = 0 and Floquet index n = 0. In the left lead, there will be 2N + 1 waves
reflected at energies ε = nh̵ω with amplitude rn0. The wave function in the left lead is
then :

ΨL(x, t) = (Φ+eik∞x x + N∑
n=−N rn0Φ−e−ik∞x xeinωt) e−iεt, (4.44)

where k∞x x = µ∞ −mh̵ω. In the irradiated region, the wave function is a superposition of
the eigenstates Φα with amplitudes aα :

ΨI(x, t) =∑
α

aαΦα(x, t)e−iεt
= (∑

α

aαe
ikαxx

N∑
n=−N Φα

ne
−inωt) e−iεt. (4.45)

In the right lead, only the right going states with amplitude tn0 on the n’s replica are
chosen :

ΨR(x, t) = ( N∑
n=−N tn0Φ+

ne
ik+x(x−L)einωt) e−iεt. (4.46)
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To calculate the reflected and transmitted amplitudes, we need to match the wave
functions at the interfaces. The boundary condition at x = 0 is ΨL(x = 0−, t) = ΨI(x =
0+, t):

Φ+ + N∑
n=−N rn0Φ−

ne
−inωt =∑

α

N∑
n=−N aαΦα

ne
−inωt, (4.47)

and at x = L, the condition is ΨI(x = L−, y, t) = ΨR(x = L+, t) so :

∑
α

N∑
n=−N aαΦα

ne
ikαxLe−inωt = N∑

n=−N tn0Φ+
ne

−inωt . (4.48)

These boundary conditions, at x = 0 and x = L, must be valid at any time t, so we can
project them on the different Fourier harmonics to obtain the linear system of equations
:

Φ+δn0 + rn0Φ− =∑
α

aαΦα
n, (4.49)

∑
α

aαΦα
ne

ikαxL = tn0Φ+. (4.50)

On one hand, the number of unknown scattering parameters is 4(2N + 1) since we have(2N + 1) reflection coefficients rn0, (2N + 1) transmission coefficients tn0, and 2(2N + 1)
coefficients aα to determine. On the other hand, each matching condition represents
2N + 1 spinor relations, hence there is a total of 4(2N + 1) linear relations between those
coefficients.

2.3 Conductance formula

To calculate the conductance of the sample, we use the scattering theory extended
to Floquet systems [108]. The scattering matrix element tn0,ky ,µ(ε) is the probability
amplitude for an electron entering from the left lead at energy ε and wave-vector ky to
exit in the right lead with energy ε + nh̵ω. The expression of the current through the
sample is [108, 109] :

I = e

h ∫
∞

−∞ dε
N∑

n=−N (Tn(ε)fL(ε) − T ′
n(ε)fR(ε)) , (4.51)

where fL(ε) and fR(ε) are the Fermi-Dirac distributions in the left and right leads at
chemical potential µL and µR respectively. The transmission Tn(ε) is the sum over all
ky channels of the transmission probabilities of electrons from energy ε in the left lead
towards energy ε + nh̵ω in the right lead :

Tn =∑
ky

∣tn0,ky ∣2 . (4.52)

The current per channel flowing in the scatterer is conserved so the scattering matrix
is unitary. This implies the relation :

n=N∑
n=−N (∣tn0,ky ∣2 + ∣rn0,ky ∣2) = 1 , (4.53)

where ∣rn0,ky ∣2 is the reflection probability of the transverse modes ky :

Rn =∑
ky

∣rn0,ky ∣2 . (4.54)
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We checked that the unitary relation Eq.(4.53) is fulfilled in the numerical implementation.
We can also notice that Tn(ε) = T ′

n(ε), T ′
n(ε) being the transmission probability defined

similarly as Tn(ε), but for the reversed scattering process (incident electron going from
the right lead and transmitted to the left lead). The equality Tn(ε) = T ′

n(ε) ensures
that there is no pumped current for zero bias. Therefore, at zero temperature, for small
bias V = (µL − µR)/e so that the transmission coefficient varies weakly, we obtain the
conductance formula :

G(µ) = ∂I

∂V
= G0

N∑
n=−N Tn(µ), (4.55)

where G0 = 4e2

h , where the factor 4 accounts for valley and spin degeneracy.

3 Conductance of the ribbon

In the previous section, we have presented the formalism which allows us to compute
the two-terminal conductance of graphene-based transistors as a function of the chemical
potential µ, radiation strength β, frequency ω, and geometrical parameters L and W
(Fig. 4.1). We have considered the ballistic regime relevant for currently achievable
high-mobility samples. In this section, we present our results for the conductance of this
graphene transistor in different regimes. First, we analyse the conductance as the chemical
potential is varied. In a second part, we detail the undoped case, namely when the Fermi
energy is at the Dirac point.

3.1 Conductance-chemical potential curves

In this section, the dependence of the conductance upon the chemical potential is dis-
cussed for various irradiation strengths β. The main features consist in strong suppressions
of the conductance in wide ranges of chemical potential, especially around µ = ±h̵ω/2. The
suppression of the conductance originates from photo-induced gaps in the quasi-energy
spectrum which lead to evanescent states. A simple phenomenological model is introduced
which accounts for the residual conductance around µ = ±h̵ω/2. A crossover between 2D
transport through bulk evanescent states and 1D edge transport is predicted, and shown
to depend on the geometrical parameters L and W of the graphene ribbon.

a) Weak driving β = 0.1

In presence of electromagnetic radiation, the conductance (blue curves in Fig. 4.5)
exhibits broad dips around chemical potentials µ = ±h̵ω/2. These dips mainly correspond
to gaps centered at quasi-energy ε = ±h̵ω/2, and located near k = ±ω/2v in the quasi-energy
dispersion relation (see Fig. 3.5.(a)). These gaps originate from one-photon resonances
between the valence and the conduction band. The electromagnetic coupling leads to
an avoided crossing and the opening of a gap ∆1, associated to a typical decay length
ξ1 = h̵v/∆1. Besides this main gap, the quasi-energy spectrum of Fig. 3.5.(a) also contains
a set of very tiny gaps located at higher wave-vectors, around k = ±3ω/2v,±5ω/2v..., and
also all nested around ±h̵ω/2. However, for weak driving, the weight of the wave function
on these states is negligible, and therefore their contribution to the conductance turns
out to be far smaller (than the ∆1 contribution) although their decay lengths are much
larger (nearly propagating states).
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Figure 4.5 – Conductance of a rectangular graphene ribbon as a function of chemical
potential for the non-irradiated case (β = 0 in orange) and for β = 0.1 in blue (N = 2) for
a width W = 250 lω and various lengths : (a) L = 10 lω = ξ1, (b) L = 25 lω = 2.5 ξ1 and (c)
L = 100 lω = 10 ξ1. For the irradiated case, some dips develop around filling µ = ±h̵ω/2
which corresponds to the gaps of order m = 1 at k = ±ω/2v in Fig. 3.5.

The conductance at µ = ±h̵ω/2 is therefore controlled by the ratio between the sample



3. Conductance of the ribbon 95

Gaps at ε = 0 Gaps at ε = h̵ω/2
m = 0 m = 2 m = 1 m = 3

∆m/h̵ω 0.02 0.01 0.1 0.0005
ξm/lω 50 100 10 2000

Table 4.1 – Table of the gap sizes and the characteristic length of the corresponding
evanescent states for a driving strength of β = 0.1.

length L and the decay length ξ1 of the evanescent state associated to the gap ∆1, typically
∆1 ≃ 0.1 h̵ω and ξ1 = 10 lω for β = 0.1 according to Eq. (3.62) (see also table 4.1). Indeed
the conductance dips become more pronounced and deeper as the length L increases. For
L = 10 lω = ξ1, the conductance is significantly suppressed (about 25 per cent less than the
non irradiated sample conductance) around µ = ±h̵ω/2 [Fig. 4.5.(a)]. For L = 25 lω = 2.5 ξ1,
the conductance is strongly reduced, roughly by a factor 4, with respect to the non-
irradiated value [Fig. 4.5.(b)]. Finally when the length exceeds the penetration length by
an order of magnitude, namely for L = 100 lω = 10 ξ1, the conductance dips are sharp and
well defined [Fig. 4.5.(c)]. Besides, the width of the dips (which is well-defined only in
Fig. 4.5.(c)) corresponds to the value of the gap ∆1 : ∆1 = 0.1 h̵ω (see table 4.1). The
remaining conductance originates from the states in the gap ∆3 that have a very long
characteristic length.

Away from these dips, the conductance of the irradiated ribbon follows approximately
the non-irradiated one. Here, for β = 0.1, one can notice that the gaps around ε = 0 are
very small so the characteristic length of the evanescent states in the gap are much larger
than at ±h̵ω/2 (Table 4.1), which means that even for L = 100 lω, the deviation from the
non-irradiated curve keeps rather small. The conductance near the Dirac point, µ = 0, is
discussed in more detail in Section 3.2. We conclude that for weak driving, the effect of
the driving on the conductance is mainly observable around µ = ±h̵ω/2.

Evanescent states in the gap at h̵ω/2 : Fig. 4.6 shows the conductance of the ribbon
as a function of the length of the ribbon when the chemical potential is in the gap µ =
h̵ω/2. Inside this gap, the bulk current is carried only by evanescent modes, thus, the
conductance of the sample is expected to decrease exponentially with the length. At
short length, the conductance is dominated by the evanescent modes coming from the
gaps ∆1, but for larger length, the modes originating from the gap ∆3 will be dominant.
Therefore, it is possible to express the conductivity in the gap with a simple model taking
into account this interplay between states at gaps ∆1and ∆3. First, we have checked that
the conductance is proportional to W , and thus our ansatz reads :

Gbulk = G0W (ae−L/ξ1 + be−L/ξ3) , (4.56)

where ξ1 and ξ3 are given by Table 4.1, a and b being the only fitting parameters of our
model that depend on β. The latter parameters (expressed in units of l−1

ω ) quantify the
relative importance of the evanescent states in transport. For β = 0.1, using the rescaling
by G0W /L, we obtain that the conductance inside the dips at µ = ±h̵ω/2 can be fitted by
:

G

G0

L

W
= L (ae−L/ξ1 + be−L/ξ3) . (4.57)

We can see that the ansatz fits well the conductance where the parameters a and b
(expressed in units of l−1

ω ) quantify the relative importance of the evanescent states in
transport. The peak with maximum around L = 10 lω corresponds to the current carried
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Figure 4.6 – Conductance of a ribbon as a function of the length L of the ribbon for
driving strength β = 0.1 and chemical potential µ = h̵ω/2 (N = 3) normalized by the ratio
W /L (independent of the ribbon width W ). The orange smooth curve corresponds to the
fit in Eq. (4.57), and the resulting fitting parameters are a and b. For length L ≲ 70lω,
the conductance is carried mainly by the modes with characteristic length ξ1 and for
larger length, the modes with length ξ3 dominate. Also plotted are the estimate of the
conductance of the chiral edge state in dashed line for various widths of the sample.

by the evanescent modes carried mainly by the evanescent states originating from the
first order side-band (ξ1 = 10lω). The curve reaches a minimum around L = 70 lω and
then increases again as the states coming from the third order side-band become the
dominant source of current. The parameter b is two orders of magnitude smaller than a,
which indicates that for β = 0.1, the weight of the wave function on the evanescent states
corresponding to the gap ∆3 is very weak. This fact corroborates the approximation we
made by considering only the evanescent states originating from the gaps ∆1 and ∆3.

Edge states : So far only transport through 2D bulk states (propagating or evanescent)
has been evaluated and discussed. One can estimate the edge state contribution and
compare it with the bulk contribution. The dotted lines on Fig. 4.6 corresponds to
the edge state contribution. There is one edge state per valley that contributes to the
dc conductance [110, 111, 95], taking into account for valley and spin degeneracy, the
maximal conductance is equal to :

Gedge(µ = h̵ω/2) = 4e2

h
. (4.58)

We said "maximal" conductance because the irradiation may reduce the conductance of
the edge states. This effect has been studied by Aaron et al. [112] using the Bernevig-
Hugues-Zhang model [8]. They found that the conductance is reduced by a Bessel factor
with argument β, in the same fashion as in the photon-assisted transport problem. Here,
as we consider weak driving, we will not take into account this reduced edge state conduc-
tance. Inter-edge scattering is neglected as only large sample widths W are considered.
We have plotted the ratio GedgeL/G0W for the edge states for different widths of the
sample in Fig. 4.6. This demonstrates that the conductance is dominated by edge states
only for long enough samples, namely when L exceeds the typical decay length of the bulk
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Figure 4.7 – Critical length Lc where bulk and edge have the same contribution to the
current at µ = h̵ω/2 for a driving strength β = 0.1. For lengths longer than Lc, the current
is carried mainly by edge states whereas for shorter lengths, the current is dominated by
the evanescent bulk states.

evanescent states. This crossover between 2D transport by evanescent states and 1D edge
transport occurs at a typical length Lc which increases with the ribbon width W . Using
the fit function (4.56) with the parameters a and b, it is possible to plot Lc as a function
of W using the relation :

Gbulk(W,Lc) = Gedge . (4.59)

The resulting Lc(W ) curve is plotted in Fig. 4.7. This "phase diagram" allows us to
see the competition between bulk and edge current which depends on the shape of the
sample and the frequency of irradiation (through lω). This curve shows that bulk transport
dominates for short and wide graphene ribbons which can be understood qualitatively.
Quantitatively, it gives a criterium needed to separate bulk and edge conductance in a
particular experiment. There is a clear break in the curve around W = 500lω, where
the edge conductivity becomes smaller than the conductivity carried by bulk evanescent
states originating from the ∆3 gap that have a very long penetration length.

b) Electromagnetic driving β = 0.3

For β = 0.3, the scenario is similar to the case with β = 0.1, except that some dips
develop at µ = 0 and ±h̵ω in addition to the dips at ±h̵ω/2. Those dips correspond to the
second order processes in β which are not negligible anymore. Table 4.2 shows the gaps
sizes and the length of the corresponding evanescent states. As the length increases, the
dips develop and are better defined.

Each gap is larger at β = 0.3 than its value at β = 0.1 case. Hence the corresponding
evanescent state decay lengths have all decreased, thereby making the residual conduc-
tance smaller, provided L is kept constant. However, the weight of the wave-function on
the higher order side-bands has increased, thus increasing the conductance in the gap ∆1.
In the gaps at µ = ±h̵ω/2, we can see in Fig. 4.8.(c) that the conductance is not zero
anymore because the third order side-bands now carry some current. We can also see the
presence of the gap ∆3 at µ = ±h̵ω/2 inside the gap ∆1 because there is a small dip in
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Figure 4.8 – Conductance of an irradiated graphene ribbon as a function of chemical
potential for the non-irradiated case (β = 0, orange curve) and for β = 0.3 (N = 2, blue
curve) for a width W = 250lω and a length : (a) L = 10lω, (b) L = 25lω and (c) L = 100lω.
We can see the gap ∆1 at h̵ω/2 which is larger than for β = 0.1. The residual conductance
is more important because of the propagating states of the n = 3 replica. Additional dips
develop around filling µ = 0 and ±h̵ω which corresponds to the gap ∆2 in fig. 3.5.



3. Conductance of the ribbon 99

Gaps at ε = 0 Gaps at ε = h̵ω/2
m = 0 m = 2 m = 4 m = 1 m = 3

∆m/h̵ω 0.16 0.08 0.0013 0.3 0.0135
ξm/lω 6.25 12.5 761 3.33 74.1

Table 4.2 – Table of the gaps size and the characteristic length of the corresponding
evanescent states for a driving strength of β = 0.3.

the middle inside the larger dip. Nevertheless, the gap at µ = 0 is perfectly defined for
L = 100lω because the current carried by the fourth order side-bands is zero. In the gaps
at µ = ±h̵ω, the current is not zero because the density of states is much higher than in
the gap at µ = 0.

3.2 Undoped graphene

In this section, we analyse more thoroughly the contribution of bulk states to the
conductance when the chemical potential is equal to zero. We discuss the evolution of
the conductance at the Dirac point as function of the irradiation strength β, and as a
function of length L, comparing it with the edge contribution. We compare our results
with those of Gu et al. [113].

a) Transmission probabilities

At zero doping µ = 0, for β = 0, the current is carried by evanescent states that belongs
to the elastic channel n = 0. Due to the semi-metallic nature of graphene, their decay
length is infinite for ky = 0 and decreases as ∣ky ∣ increases (Eq. 4.27). For β ≠ 0, the
Floquet bands are coupled, so the inelastic channels with m ≠ 0 are opened and the whole
set of evanescent states located at wave-vector kmx = ±mω/v contribute to the current.
The evanescent states in the gap at k = 0 that originate from the elastic channel n = 0 are
now gapped, and their decay length decreases as β increases.

The total conductance corresponds to the sum of the transmission probability over
all the transverse momenta ky and over all the photon channels. As the driving strength
increases, the coupling between the Floquet sidebands in the irradiated region increases,
and the weight of the wavefunction spreads over the sidebands with higher number of
photons. It is therefore interesting to plot the transmission probability Tm over the
channel m which represents the probability of an electron entering the irradiated region
at energy ε from the left lead to exit in the right lead at energy ε +mh̵ω. At ε = 0, the
momentum kmx = ±mω/v corresponds to the anti-crossing between band dressed with m
and −m photons, and thus corresponds to the gap ∆2m of order 2m. Hence, for example,
in the gap at ε = 0 and momentum ω/v, the transmission is carried by the channels m = ±1
with characteristic length ξ2 = lω/2β2. Identically for higher order gaps, the transmission
originating from the channels T±m is carried by evanescent states with characteristcs length
ξ2m.

Fig. 4.9 shows the transmission probability Tm carried by each replica when the
chemical potential is at the Dirac point in the irradiated region for a weak driving strength.
For β = 0.2, only the channels m = 0 and ∣m∣ = 1 contribute to the current, so only one
Floquet replica is needed (N = 1). In both figures, we observe a narrow peak centered
on ky = 0 which corresponds to the current carried by the evanescent states of the central
replica m = 0. This peak is narrow because there are very few state on the m = 0 replica
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(a) (b)

Figure 4.9 – Transmission probability Tm at zero doping µ = 0 of a ribbon of length (a)
L = 20lω and (b) L = 50lω, for driving strength β = 0.2 as a function of the transverse
momentum ky. The current carried by the replica m = 0 is centered on ky = 0 and is
symmetric around ky = 0, while the current carried by the replicas m = ±1 is carried
mainly by the lateral sidebands.

at the Dirac point. However, the channels ±1 contribute to the current in the region−ω/v < ky < ω/v because there exists a whole set of states over the Floquet sidebands±1 in this range of momentum. The current carried by the states on the ∣m∣ = 1 replicas
is smaller than the current carried by the m = 0 channels because the weight of the
wavefunction is smaller on the sidebands for weak driving strength.

For β = 0.2, the characteristic length of these states is ξ0 = 12.5lω and ξ2 = 25lω. For
the ribbon with length L = 50lω, the transmission is smaller for all ky than for L = 20lω
which is coherent with the fact that the current is carried by evanescent states. However,
the relative weight of the transmission over the channels ∣m∣ = 1 compared to the channel
m = 0 is more important for the longer ribbon. This originates from the fact that the
decay length of the evanescent states is longer on the ∣m∣ = 1 channel.

(a) (b)

Figure 4.10 – Transmission probability Tm at zero doping µ = 0 of a ribbon of length (a)
L = 20lω and (b) L = 50lω, for driving strength β = 0.4 as a function of the transverse
momentum ky. In (a), the current is carried mainly by states on the ∣m∣ = 1 channels,
while in (b), the current is carried mostly by the channels ∣m∣ = 2.

Fig. 4.10 shows the transmission probabilities for driving strength β = 0.4. In that case,
we considered N = 2 replicas because the weight of the wavefunction over the channels
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m = ±2 is not negligible. We mention that the ky range goes now from −2ω/v to 2ω/v,
and that only the channels m = ±2 carry some current in the regions ∣ky ∣ > ω/v because
no states are accessible for ∣m∣ < 2 in this region. For β = 0.4, the characteristic length of
the evanescent states are ξ2 = 2ξ0 ≈ 6lω and ξ4 ≈ 234lω. For L = 20lω, the current is carried
mainly by the ∣m∣ = 1 channel, while for L = 50lω, only the channel ∣m∣ = 2 carries some
current because the length of the characteristic length of the channels m = 0 and ∣m∣ = 1 is
negligible compared to the length of the sample, thereby they carry a negligible current.

We have seen that when varying the parameters β and L, there is a competition
between the evanescent states carried by each channel. We will see in next section how
the conductance carried by each channel evolves when varying the parameters.

b) Minimal conductivity vs driving strength

The minimal conductivity at the Dirac point reaches a universal value for short and
wide ribbons, which is of the order of the quantum of conductance. When the driving is
turned on, the whole set of evanescent states which belong to the set of Floquet replicas
contributes to the current. We have seen that the driving strength and the length of
the sample influences the transmission probabilities and therefore the conductance. The
characteristic length of the evanescent states in the gap of order m is given by Eqs. (4.37)
and (4.38). When β increases, their decay length decreases and therefore the current
carried by the evanescent state with number of photon n should decrease. However, with
increasing β, the amplitude of the wave function over states with higher number of photons
n inside the irradiated region increases. There is a competition between these two effects
that creates oscillations of the conductance at the Dirac point when varying β.

To understand this competition, it is useful to plot the conductivity Gm carried by
each channel m, where m corresponds to the number of photons absorbed or emitted,
defined as :

Gm = 4e2

h
(Tm + T−m) (4.60)

evaluated at µ = 0. The total transmission of a channel m is the sum over all the channels
ky. If the step between two ky channels is shorter than the characteristic scale of variation
of the transmission curve (see Figs. 4.9 and 4.10), the sum can be transformed to an
integral : ∑ky →W /2π ∫ dky, and the conductance is proportional toW . This is consistent
with the fact that the density of states is proportional to 1/W . However this curve depends
on L because L has to be compared to the characteristic length ξ of the evanescent states
(which are functions of β).

Fig. 4.11 shows the minimal conductance of the graphene sheet normalized by W /L
which corresponds to the minimal conductivity. For β = 0, we recover the non-irradiated
minimal conductance :

G(µ = 0, β = 0) = G0

π

W

L
. (4.61)

On Fig. 4.11.(a), for weak β, the conductance carried by the channel m = 0 decreases as β
increases because : i) the gap ∆0 increases, so the characteristic length of the evanescent
state decreases, and ii) the weight of the wave function on this channel decreases. We
now turn to the current carried by the channel n = 1 : for β = 0 it is zero because there is
no irradiation, thus it necessarily increases with β because this channel is opened. We can
see in Fig. 4.11 that the conductance G1 increases faster than G0 decreases, therefore the
total conductance increases. The conductance G1 reaches a maximum around β = 0.25.
At this value, the characteristic length of the states on the channels m = ±1 equals
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Figure 4.11 – Conductance Gm at the Dirac point carried by electrons having emitted
or absorbed m photons in function of the driving strength for a length (a) L = 20lω and
(b) L = 50lω and N = 5 Floquet replicas. Gm is defined by Eq. (4.60) in the text. The
curves are independent on W as explained in the text. The competition between the
decreasing characteristic length of the evanescent states and the increasing weight of the
wave function over replicas with higher number of photons creates these oscillations.

ξ2 = lω/β2 ≈ 16lω. Thus, the conductance G1 starts decreasing when the characteristic
length of the evanescent state is smaller than the length of the sample. At the same time,
when β increases the weight of the wavefunction on the channel ∣m∣ = 2 increases and
G2 starts to contribute to the current. The conductance G2 reaches a maximum around
β = 0.7, which corresponds to a length ξ4 = 6lω/β4 = 25lω, which is of the order of the
length of the sample.

Therefore, we see that the conductance Gm from the channel ∣m∣ increases with β until
it reaches a maximum when the characteristic length ξ2∣m∣ of the evanescent states of this
channel is of the same order as the length of the sample : ξ2∣m∣ ≈ L. Above this value,
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the conductance Gm decreases because it is ξ2∣m∣ is too small compared to L, and the
current is exponentially suppressed. The same scenario happens on Fig. 4.11.(b), except
that the length of ribbon is longer, which means that the maxima of the conductance
corresponding to each channel happens for smaller β.

c) Bulk vs edge state conductance
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Figure 4.12 – Conductance of a ribbon as a function of the length L of the ribbon for
driving strength β = 0.3 and chemical potential µ = 0 (N = 3) normalized by the ratio
W /L, which corresponds thus to the conductivity. The smooth orange curve corresponds
to the fit in Eq. (4.62), and the resulting fitting parameters are a, b and c. The dashed
lines corresponds to the edge state conductance given by Eq. (4.63), which are linear with
respect to L because of they are protected topologically against backscattering.

We now turn on to the evolution of the conductance for a fixed β as a function of the
length of the sample, and compare the contribution from the evanescent bulk states and
an estimation of the current carried by the edge states. Fig. 4.12 shows the conductivity
of the sample as a function of its length.

Bulk states : Similarly to the evanescent states conductivity in the gap at µ = h̵ω/2,
we find that the conductivity in the gap µ = 0 can be fitted by a simple model including
only 3 evanescent states (associated to 3 nested gaps around ε = 0 in Fig. 3.5.(a)) :

G

G0

L

W
= L (ae−L/ξ0 + be−L/ξ2 + ce−L/ξ4) , (4.62)

where the fitting parameters a, b and c are shown on Fig. 4.12. For β = 0.3, the con-
ductance originating from evanescent states that belong to the ∆4 gap is very weak. We
checked that adding the conductance states originating from the gap ∆6 in the fitting
function (4.62) doesn’t change the results (for lengths smaller than 800lω, according to
Table 4.2). We see that the fitting is accurate. Hence, the fitting function tells us that for
ribbon of lengths shorter than ξ0 and ξ2, the current is dominated by evanescent states
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originating from the gaps ∆0 and ∆2 with approximately equal weight. However, for
ribbon with length longer than 50lω, the current originating from these states is exponen-
tially suppressed and only the states of the gap ∆4 contribute to the current. Extending
this reasoning to ribbons with longer lengths, according to the length ξ4 = 761lω given in
Table4.2, we expect to find that for lengths longer than 800lω the conductance originating
from the gap ∆6 will not be negligible.

Thus, in continuity with the analysis of the conductance as a function of the driving
strength of the previous section, we deduce that for a certain driving strength, the con-
ductance is mainly carried by states originating from one gap. As the length increases,
the current originating from higher order gaps has a more important contribution, while
the contribution from lower order gaps is exponentially suppressed. Therefore the scal-
ing of the bulk conductance is quite different than the one obtained by Gu et al. [113].
Our model suggests that the bulk conductance is described by Eq. (4.62) where only the
evanescent states with small m (m is the order of the anti-crossing) are required, whereas
in Gu et al., the whole set of evanescent states originating from the gaps ∆m including
those with high m has to be taken into account, resulting in an approximate power law
behavior [113].

Edge state conductance : So far, only the bulk conductance has been evaluated and
it is necessary to explicit the conditions upon which edge state contributions dominates.
The dotted lines in Fig. 4.12 corresponds to the estimated edge state conductance for
various width of the sample. There is one edge state linking the valleys that contributes
to dc conductance [113, 95, 80, 111], therefore the maximal edge conductance is equal to
:

Gedge(µ = 0) = 2e2

h
= G0/2. (4.63)

This situation is completely identical to the case studied in Sec. 3.1.a) except for the
factor 1/2 in the edge conductance and the different expression for the bulk conductance
(4.62). We don’t take into account the non-quantization of the edge states due to the
driving [112] but we know that the edge states are chiral and robust to disorder, so that
their conductance is independent of the size of the sample. We apply the same procedure
as in Sec. 3.1.a) to see the competition between edge and bulk states, and obtain the
curve Lc(W ) for which the edge and the bulk states conductance is equal (Fig. 4.13).

4 Experimental parameters
In this section, we discuss the assumptions we made, and the restrictions they put

on experimental realizations of such an irradiated graphene gFET. First, we investigate
what the restrictions on the system parameters are necessary in order to have a ballistic
conductor, meaning that dissipation occurs in the leads. In a second part, we consider
the laser characteristics (frequency and power) that are needed to observe the particular
effects predicted in this paper.

4.1 Dissipation

The Landauer-Büttiker formalism implicitly assumes that all the dissipation occurs
in the leads. In the irradiated region, the electrons are coherently dressed by one or
several quanta of the electromagnetic radiation, and the corresponding excess energy is
dissipated in the drain electrode of the transistor. Clearly, this is only valid when the
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Figure 4.13 – Critical length Lc where bulk and edge have the same contribution to the
current at µ = 0 for a driving strength β = 0.3. For lengths longer than Lc, the current
is carried mainly by edge states whereas for shorter lengths, the current is dominated by
the evanescent bulk states.

irradiated region length L is short enough. If we consider coupling to a phonon bath,
we have to compare the characteristic time for excited electrons to emit phonons to the
passage time of the electron through the scattering region. We require

L < vτph (4.64)

where τph is the average time for an electron to decay into phonons. This gives an upper
bound on the sample length, depending on which process dominates at the energy of
the photons. The dominant process for relaxation of excited electrons is the emission of
optical phonons of energy 194 or 330 meV [114]. The characteristic time for this process is
τopt ≈ 1ps, which limits the sample length to L < 1µm. For electrons with smaller energy,
the only dissipating channel is the acoustic phonon [115, 116], which is a much slower
process that takes place on a timescale of the order of a nanosecond [116]. This channel
limits the length to L < 1 mm.

Finally, the assumption of a ballistic conductor requires the length of the sample to
be smaller than the mean free path le of scattering of electrons by impurities, which in
high-quality graphene is le ≈ 1-10µm.

In order to safely neglect the effect of dissipation by scattering of electrons by optical
phonons, we then need electron energies h̵ω smaller than 200 meV. In this regime, the
two remaining dissipation processes that limit the sample size are scattering by impurities
and acoustic phonons. Since the acoustic phonon scattering time is very long, the only
remaining process restricting the size of the sample for electron energies h̵ω < 200 meV
is impurity scattering. At these typical energies, the photon energy is much smaller than
the bandwidth of graphene, so the Dirac equation approximation is valid.

4.2 Observability

Accounting for the restriction on the photon energies in the last section, we consider
photon energies ranging from 10 to 100 meV. Experimentally, the typical electron densities
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that can be reached in graphene are around 5 ⋅ 1012cm.s−1 which corresponds to Fermi
energies up to 250 meV. With the electron energies considered, it is experimentally feasible
to reach the energy dips at ±h̵ω/2.

Photons with energy from 10 to 100 meV corresponds to Terahertz frequencies ranging
from 2.5 to 25 THz. This frequency window corresponds to characteristic lengths lω = 6
nm to 0.6 nm. The typical electric field can be expressed as:

E0 = β h̵ω
elω

, (4.65)

which means that the electric field intensity E0 required to reach β = 0.1 range from 105

to 107V/m.

5 Conclusions
The two-terminal conductance of a rectangular graphene ribbon irradiated by an elec-

tromagnetic wave (frequency ω) has been studied using the Floquet theory for exper-
imentally realizable setups. In the ballistic regime our numerical calculations confirm
that the coherent dressing of the original Dirac cone leads to the opening of a set of two
non-equivalent photo-induced gaps in the Floquet zone, around quasi-energies ε = 0 and
ε = h̵ω/2. The size of the gaps are found to be in good agreement with RWA estimations
[117] at low irradiation β. When the chemical potential is tuned inside one of these photo-
induced gaps, the conductance of the sample decreases drastically because the current is
now carried by evanescent states (rather than propagating states when β = 0). The con-
ductance curve as a function of the chemical follows closely the non-irradiated one except
at integer multiples of h̵ω/2 where broad dips appear. For weak driving, the main effect
on the conductance is seen at doping µ = h̵ω/2, while for stronger driving additional dips
also develop around µ = h̵ω. The effect of the irradiation is also effective at the Dirac
point where it modulates the value of bulk minimal conductance. The widths of these
dips (on the axis of chemical potential) correspond to the sizes of the gaps in the Floquet
spectrum, while the depth of these dips (on the conductance axis) depends on the length
of the sample. The residual conductance in dips originate from the set of evanescent
states corresponding to the set of nested gaps. Depending on the driving strength, this
conductance can been fitted by assuming that the current is carried by a few evanescent
states characterized by distinct decay lengths.

Besides the transport by 2D bulk states, electrons may also propagate through photo-
induced 1D edge states. We have shown that the edge state contribution to the total
conductance can be neglected for short enough samples, and quantitative criteria to be
in the bulk transport regime have been given.



Chapter 5

Irradiated quantum spin Hall edge state

In this chapter, we consider electronic transport through the helical edge state of a
quantum spin Hall (QSH) insulator irradiated by an electromagnetic wave. In the adi-
abatic limit, irradiating such a system leads to a charge pumping mechanism which has
a topological origin [118, 12]. The photocurrent has been investigated in the presence of
dissipation through coupling with an environment [119]. In previous studies, the pumped
current has been investigated for an infinite system. In our work, we consider a geom-
etry where the irradiated edge state is coupled to leads which is always the case in any
experiment.

In Sec. 1, we review the properties the QSH state. In Sec. 2, we present the Hamil-
tonian of the helical edge state. In Sec. 3, we develop the formalism of the electronic
transport in this system and compute the pumped charge of the irradiated edge state
coupled to leads. In Sec. 4, we analyse the topological properties of the system in the
adiabatic regime.

1 Quantum Spin Hall insulator

In the previous chapters, we have discussed the Chern insulators in which time-reversal
symmetry is broken. In time-reversal invariant systems, the Hall conductivity (and the
Chern number) vanishes. However, in the presence of time-reversal symmetry, another
kind of topological insulator exists, namely the quantum spin Hall (QSH) insulator which
belongs to the class AIII. A model for such a time-reversal invariant topological insulator
was first introduced by Kane and Mele [7] for graphene in the presence of spin-orbit
coupling. The spin-orbit interaction respects time-reversal symmetry, and in the low-
energy description of graphene, it generates a spin-dependent Haldane mass term with
opposite sign for each spin. Therefore, a QSH insulator can be pictured as two copies
of the Haldane model with opposite Chern number for the two spin projections. The
total Chern number is zero, and no charge current is generated along the edges. However,
because each spin has opposite Chern number, there is a non-zero spin Hall conductivity,
carried by two edge states that counter-propagate along the edge with opposite spin.
Because of this spin-momentum locking, these edge states are called helical. There exists
therefore a helical one-dimensional metal along the edges.

In graphene, the spin-orbit coupling is weak and the gap induced by spin-orbit is too
small for the quantum spin Hall effect to be observed experimentally. Following the theo-
retical model of the QSH effect in graphene by Kane and Mele, other model systems with
stronger spin-orbit coupling strength were suggested to exhibit the QSH effect, such as
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paramagnetic semiconductors [37] or semiconductors under a strain gradient [9]. However,
the crucial step was made by Bernevig, Hugues and Zhang [8] who predicted in 2006 the
existence of the QSH effect in HgTe/CdTe quantum wells that possess strong spin-orbit
coupling. The QSH effect in such structures was shortly after observed experimentally
by Laurens Molenkamp’s group [41]. In a simple model, HgTe possesses a valence band
corresponding to the s orbitals and a conduction band made of p orbitals. In contrast,
CdTe has s above p. A layer of HgTe is sandwiched between two layer of CdTe, and when
the thickness of the HgTe layer is higher than a critical thickness dc, the p orbitals rise
above the s orbitals, which leads to an inverted band structure. In that case, the HgTe
quantum well is topologically non-trivial and presents counter-propagating edge states.
The thickness of the layer allows to engineer a topological phase transition. The same
mechanism was predicted to exist in InAs/GaSb quantum wells [120], in which robust he-
lical edge states were observed later on [121]. More recently, the QSH effect was observed
in a transition metal dichalcogenide, WTe2 [42, 122], where the bulk band gap was found
to be of the order of 50-100meV.

As we have seen in Chap. 1, time-reversal invariance implies :

H(k)∣uk⟩ = E(k)∣uk⟩ ⇒ H(−k)T ∣uk⟩ = E(k)T ∣uk⟩, (5.1)

which means that a state ∣uk⟩ and its time-reversed T ∣uk⟩ are degenerate. In the case of
spinful particles, we have seen that the time-reversal operation has the property T 2 = −1.
This property has an important consequence in the case of time-reversal invariant systems,
which is the Kramer’s degeneracy. Kramer’s theorem states that for half-integer spin
particles, a state and its time-reversed state are orthogonal. In the case of Bloch electrons,
the time-reversed state of a state momentum k is a state at momentum −k, and therefore,
backscattering between these two states is forbidden.

The QSH insulator is characterized by a Z2 invariant which takes only two values
0, or 1. This invariant counts the parity of the number of Kramer’s partners of edge
states that cross the Fermi energy [4]. If this is an even number, backscattering is allowed
between states that are not Kramer’s partners, while if there is an odd number, there is
always a protected pair which is left. There exists several expressions used to compute
this topological invariant [7, 123, 62, 124].

2 Helical edge state

The QSH edge states can be pictured as a helical liquid [125] with a linear dispersion
close to the crossing that respects time-reversal invariance. In a 1D lattice model that
respects time-reversal symmetry, the fermion doubling theorem states that the lattice
model must have an even number of Dirac fermions at low-energy [126]. However, in the
topological phase, there is only one fermion branch, and thus, this fermion branch exists
only as a holographic metal at the edge of a QSH insulator. This edge state is robust to
weak interactions and disorder [127].

We introduce here the properties of the helical edge state of the QSH insulator. The
Hamiltonian is composed of a pair of Kramer’s partners such that states with opposite
momenta have opposite spins. Because the two edge states are Kramer’s partners at
momentum k and −k, backscattering is forbidden as long as time-reversal symmetry is
preserved. Transport through these edge states is therefore ballistic even in the presence
of disorder that respects time-reversal invariance.
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The helical edge states is described by the Hamiltonian [125] :

H0 = h̵v∫ dx(ψ†
R,↑i∂xψR,↑ − ψ†

L,↓i∂xψL,↓), (5.2)

where the right (left) movers ψR,↑(ψL,↓) annihilation operators carry spin up (down) and
v is the Fermi velocity of the edge state. For a system invariant by translation, we can
make a Fourier transform of the field operators :

ψα(x) = ∫ dk√
2π
cα(k)e−ikx, (5.3)

where k is the quasi-momentum of the edge state along x, α = {↑, ↓}, and we have dropped
the right/left index because it is pinned to the spin. Inserting Eq. (5.3) into (5.2), we
obtain the Hamiltonian :

H0 = h̵v∫ dkk(c†↑(k)c↑(k) − c†↓(k)c↓(k)), (5.4)

which can be recast as : H0 = ∫ dkΨ†(k)H0(k)Ψ(k), (5.5)

where Ψ†(k) = (c†↑(k), c†↓(k)) and H0(k) is the first quantized Bloch Hamiltonian which
has the form :

H0(k) = h̵vkσz, (5.6)

where σz is the Pauli matrix acting on spin space. Here, the Pauli matrices act on the
real spin.

3 Transport through the irradiated edge state
In this section, we consider the same transport formalism as in Chap. 4 applied to

the irradiated helical edge state. Because the edge state is one-dimensional, there is only
one channel. First, we calculate the spectrum and wavefunction of a topological insulator
edge state irradiated by a circularly polarized electromagnetic wave. The total Bloch
Hamiltonian is :

H(k, t) =H0(k) + V (t) , (5.7)

where H0 is the bare Hamiltonian and V (t) corresponds to the coupling with the elec-
tromagnetic wave. We focus on the light-matter coupling through the Zeeman effect
between the spin magnetic moment and the magnetic field of the EM wave B(t) =
B0(cos(ωt)ex + sin(ωt)ey). Because the magnetic field couples to the spin of the elec-
trons, it allows transitions between the two spin projections. To neglect the coupling of
the electrons with the electric field, we consider the semi-classical argument described
in [12]. The orbital coupling strength is evA0, with A0 = E0/ω, where E0 the electric
field strength. The electric field can be neglected when the coupling strength is negligible
compared to the quantum of energy h̵ω that can be absorbed, namely evE0/ω ≪ h̵ω.
Moreover, h̵ω must be smaller than the bulk band gap of the QSH insulator. For a band
gap of 100meV [122], this restricts the frequencies to lower than 20THz.

The Hamiltonian of the interaction is :

V (t) = −µB(t) = µBgeffB0 (σx cos(ωt) + σy sin(ωt)) , (5.8)= g(σ+e−iωt + σ−eiωt) , (5.9)
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where µ is the magnetic moment of the electron spin, µB is the Bohr magneton, geff is
the effective g-factor, g = µBgeffB0 is the total coupling constant, and σ± = σx ± iσy.

In Sec. 3.1, we derive the expression for the spectrum and the eigenstates of this
system using Floquet formalism. In Sec. 3.2, we calculate the scattering coefficients by
matching the wavefunctions at the interfaces. Finally, in Sec. 3.3, we present the results
for the pumped current in the absence of potential difference.

3.1 Spectrum and eigenstates

Due to the peculiar form of the interaction presented above, it is possible to have an
analytical expression for the eigenstates of this system. In Sambe space, the quasi-energy
eigenvalue equation given by Eq. (3.10) can be written as :

(vkσz + nω)Φα,n + gσ−Φα,n−1 + gσ+Φα,n+1 = εαΦα,n, (5.10)

where Φα,n is the nth Fourier component of the eigenstate α such that Ψα(t) = e−iεαt∑n Φα,neinωt,
and h̵ = 1. Setting Φn = (un, vn)T , where un and vn are the weight of the wavefunction of
the up and down spins respectively, we obtain the system of equations :

(vk + nω)un + gvn+1 = εun, (5.11)
gun−1 + (−vk + nω) vn = εvn. (5.12)

We can see that un is only coupled to vn+1, which means that if we set n, we can obtain
the quasi-energies and the corresponding eigenvectors. Solving this system (of equations)
gives us the quasi-energies :

εα,n = nω + ω
2
+ αλ, for Φα,n = ( uα,n

vα,n+1
) (5.13)

where α = ± and λ = √(vk − ω/2)2 + g2. Fig. 5.1 shows the dispersion relation of the
n = 0 and n = −1 Floquet replicas. A gap of size 2g opens in the dispersion relation at
momentum k = ω/2 and quasi-energy ε = nω + ω/2. For weak driving (g < ω/2), this gap
is located at ε = ω/2 on the n = 0 replica, while it is located at ε = −ω/2, on the n = −1
replica. This gap is thus located at the edges of the first Floquet zone. As the driving
increases (frequency decreases), the band (α,n) = (+,−1) rises above the band (−,0) and
a gap opens at the Floquet zone center ε = 0. This gap opening happens at g = ω/2. Of
course, there is an infinite set of replicas that are not represented on Fig. 5.1, but we plot
only the replicas n = 0 and n = −1 which are the only replicas relevant for transport as we
will see later.

Using Eqs. (5.11), (5.12) and (5.13), we find that the wavefunction of the electron is :

Ψα,n(x, t) = e−iεα,nt 1√
2λ

( √
λ + α(vk − ω/2)einωt

α
√
λ − α(vk − ω/2)ei(n+1)ωt) eikx. (5.14)

3.2 Scattering formalism and transmission probabilities

In this section, we calculate the transmission and reflections probabilities using Landauer-
Büttiker formalism in the same manner as for the case of graphene in the previous chapter.
We consider irradiating the edge state over a length L from x = 0 to x = L. In the transport
formalism, we consider electrons incoming at energy ε ≡ εα,n. Due to the coupling with
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Figure 5.1 – Dispersion relation of the irradiated edge state given by Eq. (1.13) for (a)
g/h̵ω = 0.25 and (b) g/ω = 0.6 of the (α,n) band such that α = +,− labels the band index
(valence or conduction) and n the number of photons. We plot only the n = 0 and n = −1
Floquet replicas. For g < ω/2, we observe two gaps at ε = h̵ω/2 and −h̵ω/2, while for
g > ω/2, gap opens at ε = 0.

light, electrons can absorb or emit photons and exit with energy ε + nω. The transport
can happen through propagative states, or evanescent states when the energy is inside
the gap. We invert the dispersion relation (5.13) as :

kα,n(ε) = ω
2
+ α√γ2

n − g2, (5.15)

= ω
2
+ αKn, (5.16)

where γn = (ε − nω − ω/2), Kn = √
γ2
n − g2 is a wavevector that can be imaginary. Note

that we have set h̵ = v = 1. In the scattering region, the wavefunction is a sum of the
eigenstates at energy ε and wavevector kα,n(ε) :

ΨI(x, t) = e−iεt (∑
n

anΦ+,n(t)eik+,nx + bnΦ−,n(t)eik−,nx) , (5.17)

where Φα,n(t) is given by Eq. (5.14). In order to account for the possibility of an electron
to absorb or emit photons, we apply the Floquet theorem in the leads, but without
coupling to the irradiation. If we consider an electron coming from the left lead, the
wavefunction is :

ΨL(x, t) = e−iεt (φ+eiknx +∑
n

rnφ
−e−iknxeinωt) , (5.18)

where vkn = ε − nω, σzφ± = ±φ± are the left/right (+/−) movers and rn are the reflection
coefficients for electrons exiting with energy ε+nω. The wavefunction in the right lead is
expressed as :

ΨR(x, t) = e−iεt∑
n

tnφ
+eikn(x−L)einωt, (5.19)

where tn are the transmission coefficients. We match the spinors at the interfaces so that
ΨL(x = 0, t) = ΨI(x = 0, t) and ΨI(x = L, t) = ΨR(x = L, t). This gives us a system of
linear equations. We find that the only non-vanishing coefficients are t0 and r1, which
means that an electron entering the irradiated region can only be transmitted at the same
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energy or reflected while absorbing one photon. For a circular left-handed polarization, a
photon has an angular momentum Jz = −h̵ along the positive z axis. A spin-up electron
has an angular momentum Jz = h̵/2 and energy ε = h̵vk, which means that after absorbing
a photon, it becomes a spin-down electron with angular momentum Jz = −h̵/2 and energy
ε = −h̵vk + h̵ω. Energy conservation implies that this process happens at quasi-energy
ε = h̵ω/2.

Solving this linear system gives us :

t0 = iK0e
i ω
2v
L

(ε − ω/2) sin(K0L) + iK0 cos(K0L) , (5.20)

r1 = g sin(K0L)(ε − ω/2) sin(K0L) + iK0 cos(K0L) , (5.21)

where K2
0 = (ε − ω/2)2 − g2. Thus, the transmission and reflection probabilities for the

propagative states are :

Tp(ε) = ∣t0∣2 = K2
0

K2
0 + g2 sin2(K0L) , (5.22)

Rp(ε) = ∣r1∣2 = g2 sin2(K0L)
K2

0 + g2 sin2(K0L) . (5.23)

When the energy is in the gap, (ε−ω/2)2 < g2,K0 is imaginary : K0 = iκ0 = i√g2 − (ε − ω/2)2.
Using the relations sin(ix) = i sinh(x) and cos(ix) = cosh(x), we obtain finally the trans-
mission and reflection probabilities for the evanescent states :

Te(ε) = ∣t0∣2 = κ2
0

κ2
0 + g2 sinh2(κ0L) , (5.24)

Re(ε) = ∣r1∣2 = g2 sinh2(κ0L)
κ2

0 + g2 sinh2(κ0L) . (5.25)

Fig. 5.2 shows the transmission probability as a function of the incoming electron
energy. We observe a dip in the transmission probability at ε = h̵ω/2 which corresponds
to the one photon resonance between the conduction band and the valence band. For a
short ribbon, the transmission probability in the gap is reduced but doesn’t vanish, which
means that the current is carried by evanescent states. As the length of the ribbon is
increased, the dip gets sharper and no evanescent states contribute to the current. The
oscillations correspond to Fabry-Pérot interferences.

We consider now the reverse process, namely electrons incoming from the right lead.
Applying the same formalism, we find the transmission and reflection probabilities :

T ′(ε) = ∣t′0∣2 = K2−1

K2−1 + g2 sin2(K−1L) , (5.26)

R′(ε) = ∣r′−1∣2 = g2 sin2(K−1L)
K2−1 + g2 sin2(K−1L) , (5.27)

where K2−1 = (ε + ω/2)2 − g2. The probabilities are identical to the one for electrons
incoming from the left lead except for the shift h̵ω in energy, which translates to :

T (ε + ω/2) = T ′(ε − ω/2), (5.28)
R(ε + ω/2) = R′(ε − ω/2), (5.29)
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Figure 5.2 – Transmission probability from the left lead to the right lead as a function
of ε for a driving strength g = 0.3h̵ω and for a ribbon of length (a) L = 3h̵v/ω, and (b)
L = 10h̵v/ω.. We observe a dip of size 2g in the transmission around ε = h̵ω/2, which
corresponds to the reflection of an electron having absorbed an electron.

3.3 Pumped current

Because time-reversal symmetry is broken (due to the circularly polarized light), the
transmission probabilities from electrons incoming from the left and right leads are not
identical. Such an asymmetry allows for the generation of a pumped current in the absence
of a potential difference between the leads. According to the Landauer-Buttiker formalism
extended to Floquet systems, the DC current through the irradiated edge state is equal
to [108] :

I(µ) = e

h ∫
Λ

−Λ
dε∑

n

(Tn(ε)fL(ε) − T ′
n(ε)fR(ε)) , (5.30)

where Tn(ε) is the probability of an electron incoming from the left lead to be transmitted
in the right lead having absorbed n photons, and T ′

n(ε) is the reversed process. fL(ε)
and fR(ε) are the Fermi distributions at chemical potential µ in the left and right leads
respectively. Λ is a cut-off in the integral that represents the bandwidth of the edge
state, namely the size of the bulk gap of the material. Because the electrons can only be
transmitted in the channel n = 0, we have Tn(ε) = T (ε) and T ′

n(ε) = T ′(ε). At zero bias
and zero temperature, we obtain the photo-current :

I(µ) = e

h ∫
µ

−Λ
dε (T (ε) − T ′(ε)) . (5.31)

The pumped current is therefore the difference between transmission from the left to the
right lead and the reverse process. The function T (ε) and T ′(ε) are identical except for
the shift ±h̵ω/2 in energy. In order to simplify the expression for the current, we make a
change of variable ±h̵ω/2 in each integral, and define the function :

f(ε) ≡ T (ε + h̵ω/2) = T ′(ε − h̵ω/2) = ε2 − g2

ε2 − g2 + g2 sin2(√ε2 − g2L) , (5.32)
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The current has the expression :

I(µ) = e

h ∫
µ

−Λ
dεT (ε) − e

h ∫
µ

−Λ
dεT ′(ε) (5.33a)

= e

h ∫
µ−h̵ω/2

−Λ−h̵ω/2 dεT (ε + h̵ω/2) − e
h ∫

µ+h̵ω/2
−Λ+h̵ω/2 dεT

′(ε − ω/2) (5.33b)

= e

h ∫
−Λ+h̵ω/2

−Λ−h̵ω/2 dεf(ε) − e
h ∫

µ+h̵ω/2
µ−h̵ω/2 dεf(ε). (5.33c)

We can see that in the limit Λ→∞, we have f(ε→ −∞) = 1, thus :

I(µ) = eω
2π

− e
h ∫

µ+h̵ω/2
µ−h̵ω/2 dεf(ε). (5.34)

The function f(ε) is plotted in Fig. 5.3 for various ribbon length. The curves have a dip
centered on ε = 0 of width 2g. For a long ribbon, the dip is well defined and corresponds
to the gap of size g in the dispersion relation. The pumped current is the sum of two
terms. The first term corresponds to a quantized charge pumping per unit cycle such that∫ T0 Idt = e. We can see from Eqs. (5.33) that this term originates from states located
deep in the band of the edge state. This term has a topological origin [68] which is related
to Thouless’s charge pumping mechanism [13]. For a long length and a small frequency,
the second term in Eq. (5.34) vanishes, this means that the quantized charge pumping
happens in the adiabatic limit. For a left circular polarization, this current is directed
along the positive x axis. As the frequency is increased such that h̵ω/2 > g, the second
term generates a pumped current in the opposite direction. This current is carried by
propagative states close the Fermi level such that incoming states can absorb or emit a
quantum h̵ω.
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Figure 5.3 – Function f(ε) to integrate from −h̵ω/2 to h̵ω/2, for different length L of the
irradiated region : (a) L = 2h̵v/g and (b) L = 4h̵v/g
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a) Pumped current at zero doping

We consider the current when the Fermi energy is located at the band crossing, namely
µ = 0. The pumped current becomes :

Iµ=0 = eω
2π

− e
h ∫

h̵ω/2
−h̵ω/2 dεf(ε), (5.35)

= eω
2π

− 2
e

h ∫
h̵ω/2

0
dεf(ε), (5.36)

where we have used the fact that f(ε) is even in ε. Fig. 5.4 shows the current as a func-
tion of the irradiation frequency for short ribbons. We observe the linear dependence for
frequencies below 2g until it increases sublinearly above 2g. We observe oscillations char-
acteristic of Fabri-Pérot interference. At high-frequencies, the curve reaches a maximum
which is independent of the frequency.

We consider now the pumped current when the irradiated region is long compared to
the characteristic length of the evanescent states in the gap.
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Figure 5.4 – Pumped current as a function of the driving frequency for different length
L. Some small oscillations due to Fabry-Pérot interferences appear for ω/g ≳ 2.

Long irradiated region : In the interval 0 < ε < g, we have sin(√ε2 − g2L) = sinh(√g2 − ε2L) =
sinh(κL), where κ is the wavevector of the evanescent state in the gap. For κL ≫ 1, we
have f(ε) = 0, therefore, the pumped current at the Dirac point is :

Iµ=0 = eω
2π

for h̵ω < 2g, (5.37)

= eω
2π

− 2
e

h ∫
h̵ω/2

g
dεf(ε) for h̵ω > 2g. (5.38)
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For h̵ω > 2g, we can rewrite the current as :

Iµ=0 = eω
2π

− 2
e

h ∫
h̵ω/2

g
dε + 2

e

h ∫
h̵ω/2

g
dε(1 − f(ε)), (5.39)

= eω
2π

− 2
e

h
( h̵ω

2
− g) + 2

e

h ∫
h̵ω/2g

g
dε(1 − f(ε)), (5.40)

= 2
eg

h
+ 2

e

h ∫
h̵ω/2

g
dε(1 − f(ε)), (5.41)

From Fig. 5.3, we can see that the function 1 − f(ε) tends to 0 as ω tends to infinity.
Hence, the second term in Eq. 5.41 converges. Finally, we can rewrite the pumped current
as :

Iµ=0 = IAdiabatic for h̵ω < 2g, (5.42)= ILR + IInterf for h̵ω > 2g. (5.43)

where IAdiabatic is the pumped current in the low-frequency regime, where one charge is
pumped per cycle :

IAdiabatic = eω
2π
, (5.44)

such that ∫ T0 IAdiabaticdt = e. ILR is the pumped current in the weak driving case that can
be regarded as the linear response to the current in g [12], and is equal to :

ILR = 2
eg

h
. (5.45)

Finally, IInterf is an interference term that originates from the presence of the coupling
with leads. Fig. 5.5 shows the pumped current as a function of the frequency of the driving
for a long irradiated region. We compare our results with Dora et al. [12] where the current
is calculated for the infinite system. We obtain the same result at low frequencies for the
adiabatic charge pumping. They considered the filling of the bands according to the
average energy Ēα = ⟨⟨uα∣H(t)∣uα⟩⟩, which is different from our setup where only states
below the Fermi energy contribute to the current. At high-frequency, we find the same
limiting behaviour except for the presence of an interference term originating from the
leads. Our result is also very similar to Vajna et al. [119], where dissipation is taken into
account by coupling the edge state to a bosonic bath. In our model, dissipation happens
in the leads, namely in the external fermionic baths.

High frequency limit : We can see from Fig. 5.5 that the current seems to reach a
plateau with increasing ω when the length is long enough. We can also see from Fig. 5.3
that this value is bounded. We now wish to perform the integral in Eq. (5.41) in the case
h̵ω/g →∞ and Lg/h̵v ≫ 1. We make the change of variable x2 = (ε/g)2 − 1 and L̃ = Lg/v
to get :

lim
h̵ω→∞ IInterf = 2

eg

h ∫
∞

0
dx

x√
x2 + 1

sin2(xL̃)
x2 + sin2(xL̃) (5.46)

This integral can be performed analytically in the limit L̃≫ 1, we find (see Appendix C)
:

lim
h̵ω/g,L→∞ Iµ=0 = πegh (5.47)

Thus, we observe two different regimes. When the frequency is smaller than the
Zeeman gap, we observe a current corresponding to one electron per period of the driving.
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Figure 5.5 – Pumped current for a long irradiated region as a function of the driving
frequency(blue curve), compared with Dora et al. [12] (red curve). For frequencies h̵ω <
2g, the current is proportional to ω, which corresponds to the adiabatic quantized charge
pumping. For h̵ω > 2g, the current increases and reaches π egh as ω →∞.

This current is carried by states deep in the valence band and has a topological origin as
we will see in Sec. 4. When the frequency is greater than the Zeeman gap, propagative
states in the range [−h̵ω/2, g] and [g, h̵ω/2] generate a current in the opposite direction.
In the limit h̵ω ≫ g, this current reaches a limit which is independent of the frequency.
In this limit, the pumped charge per unit cycle is equal to :

c = ∫ T

0
dtI = πe g

h̵ω
(5.48)

and is therefore inversely proportional to the frequency.
In the next section, we explain the topological origin of the quantized charge pumping

mechanism.

4 Quantized adiabatic charge pumping
Berry’s phase finds a broad range of applications in physical systems. We have seen

that it plays an important role in the case of the quantized Hall conductivity of Chern
insulators. Just before the introduction of such a phase for adiabatic and cyclic processes,
Thouless [13] introduced the concept of quantized adiabatic charge pumping. In a time-
periodic one dimensional model with translational invariance, Thouless said that the
pumped charge per cycle has an expression similar of the expression for the TKNN integer
for the quantum Hall conductivity, which is the integral of the Berry curvature over the
Brillouin zone. The eigenstates of a Hamiltonian with translational symmetry can be
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labelled by their quasi-momentum k such that they have the Bloch form eikx∣unk⟩, where
n is the band index. When the Hamiltonian is subjected to a time-periodic excitation
such that H(t) = H(t + T ), the eigenstates are now time-dependent. In the adiabatic
approximation, the velocity of the electrons can be expressed as [71] :

vn(k) = ∂εn(k)
h̵∂k

−Fnqt, (5.49)

where the second term is an anomalous velocity which can be expressed as the Berry
curvature in paramater space (k, t) :

Fnkt(k, t) = i ⟨∂unk(t)∂k
∣∂unk(t)

∂t
⟩ − i ⟨∂unk(t)

∂t
∣∂unk(t)
∂k

⟩ (5.50)

The pumped current carried by the filled band n is given by :

jn = e∫ dk

2π
Fnkt(k, t), (5.51)

where the first term in (5.49) vanishes because the full valence band doesn’t generate any
current. The pumped charge per cycle is given by :

Cn = 1

2π ∫
T

0
dt∫ dkFnkt(k, t) (5.52)

which is nothing else than the Chern number carried by the band n in parameter space(k, t). The pumped charge per unit cycle is thus quantized.
The application of a magnetic field on the helical edge state breaks time-reversal

symmetry, which in turn couples the two spin species, leading to the opening of a gap
in the dispersion relation of the edge state. When the edge state is irradiated with an
electromagnetic wave, the magnetic field creates a closed loop in parameter space. If we
consider the coupling between the EM wave and the helical edge state through the Zeeman
interaction, the model realizes Thouless’s topological charge pumping mechanism and
presents also bound fractional charges at magnetic domain walls [118]. We will consider
here the topological properties of this charge pumping mechanism.

We consider a setup identical to the one in Ref. [12], where the edge state lies along the
x axis. It is irradiated by an elliptically polarized electromagnetic wave with frequency ω
and wavevector k0 such that its vector potential isA(t) = A0(cos(ωt−k0z), χ sin(ωt−k0z)),
where χ = ± is the polarization of electromagnetic wave. The Hamiltonian of the system
is :

H(k, t) = vσz(k − eAx(t)) − µBB(t)σ, (5.53)

where B(t) = ∇ ×A(t) = B0(cos(ωt − k0z), χ sin(ωt − k0z),0) is the magnetic field of the
electromagnetic wave such that B0 = −ω/cA0, and we have set gs/2 = 1, where gs ≈ 2
is the gyromagnetic ratio of the electron. If we parametrize the path by the angle ϕ
corresponding to the angle of the vector B relative to the x axis such that ϕ = ωt, we
express the Hamiltonian as H(k,ϕ) = d(k,ϕ)σ, where the vector d(k,ϕ) is :

d(k,ϕ) = ⎛⎜⎝
g cos(ϕ)
χg sin(ϕ)

v(k − eA0x cos(ϕ))
⎞⎟⎠ , (5.54)

where we have set g = −µBB0. The vector d(k,ϕ) represents a mapping from the param-
eter space (k, t) to the Bloch sphere. We can see that this vector has a similar form as for
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the case of the band crossing in graphene from Eq. (3.71). This vector points towards the
north pole for k → +∞ and towards the south pole for k → −∞, and it rotates around the
Bloch sphere as the magnetic field rotates in the xy plane around the origin. We can see
that there is a non trivial winding of the vector d(k,ϕ) around the Bloch sphere, which
signals a non-trivial topology.

The dispersion relation is :

ε±(k,ϕ) = ±∣d∣ = √
g2 + v2(k − eA0 cos(ϕ))2, (5.55)

We can see that the effect of the orbital coupling is only to shift the dispersion relation
along the k axis. Using the parametrization of the eigenstates as Eq. (2.35), the Berry
connection of the valence band in the north gauge has the expression :

AN−ϕ (k,φ) = i⟨uN−kϕ ∣∂ϕ∣uN−kϕ ⟩ = 1

2

⎛⎝1 − v(k − eA0 cos(ϕ))√
g2 + v2(k − eA0 cos(ϕ))2

⎞⎠ (5.56)

AN−k (k,φ) = 0 (5.57)

The pumped charge of the filled valence band can be expressed in parameter space (k,ϕ)
as :

C− = 1

2π ∫ dϕdkF−
kϕ(k,ϕ), (5.58)

where the Berry curvature is :

F−
kϕ(k,ϕ) = ∂kAN−ϕ (k,φ) = g2 [g2 + v2(k − eA0 cos(ϕ))2]−3/2

. (5.59)

The Berry curvature is peaked around momentum eA0 cosϕ and decreases away from it.
Finally, the pumped charge per unit cycle equals :

C− = 1

2π ∫ dϕdk∂kAN−ϕ (k,ϕ) (5.60)

= 1

2π ∫ dϕ [AN−ϕ (∞, ϕ) −AN−ϕ (−∞, ϕ)] (5.61)

= −χ, (5.62)

where χ is the polarization of the EM wave, which is left-handed for χ = 1 and right-
handed for χ = −1. Therefore, the pumped charge per unit cycle is quantized as long
as the path in parameter space encloses the origin. We see from the expression for the
Chern number that the calculation is independent of the orbital coupling because the
integration over k goes from −∞ to +∞ and the orbital coupling only acts as a shift in
momentum. Therefore the orbital coupling doesn’t contribute to the charge pumping.
Hence, the average current can be expressed as :

j = e

T
C− = −χeω

2π
(5.63)

We see that this expression is identical to the one obtained in the previous section for
h̵ω < 2g in the transport formalism. As we have seen in Sec. 3.1, the gap at ε = 0 closes
when h̵ω = 2g, the valence and conduction bands are not well defined which signals that
the Chern number is ill-defined for h̵ω > 2g. Thus, we obtain that the pumped current
in the adiabatic regime originates from a topological property of the valence band in the
presence of a magnetic field rotating in parameter space.
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5 Experimental parameters
We wish to find the regime of the laser parameters for which these two charge pumping

regimes can be observed experimentally. The first constraint is that the laser frequency
must be smaller than the bulk band gap of the material. Typical gaps are of the order
of 50-100meV [42, 122], which puts an upper bound on the laser frequency of the order
of 10Thz. For a laser power of 1W focused on an area of 1mm2, the typical electric field
strength is E0 = 103V/m. The Zeeman coupling constant is thus of the order g = geffµBB0 =
geffµBE0/c ≈ 10−9eV, where the effective g-factor which can be enhanced (geff ≈ 20 − 50)
in materials with strong spin-orbit coupling like HgTe/CdTe [12]. For a laser frequency
of 1Thz, we are in the weak coupling g ≪ h̵ω (high-frequency) regime, and the pumped
current is thus of the order of I = πeg/h = 1pA.

6 Conclusion and perspectives
In this chapter, we have considered transport through a QSH helical edge state ir-

radiated by a circularly polarized electromagnetic wave. We have neglected the orbital
coupling which is negligible compared to the Zeeman coupling in the regime evE0 ≪ h̵ω.
In this regime, only transitions between spin up and spin down are allowed meaning that
an incoming electron can only absorb or emit one photon. The dissipation is expected to
happen in the leads. The particular form of the Hamiltonian allows to obtain the trans-
mission and reflection probabilities analytically using Floquet formalism. In the absence
of a potential difference between the leads, a pumped current is generated.

In the adiabatic regime, the valence band and conduction bands are separated by a
gap. In this regime, there is a unit charge pumped during one period of the driving, which
corresponds to Thouless’s charge pumping mechanism. This quantized pumped charge is
directly related to the Chern number of the valence band in the parameter space (k, t) of
time periodic one-dimensional systems. The pumped charge is therefore carried by states
deep in the valence band. In this regime, the orbital coupling has no effect on the pumped
current.

For higher frequencies, the valence band and the conduction band are not well defined
and the pumped charge is not quantized. In this regime of high-frequency and small
coupling, the pumped charge is the sum of two contribution, a current analogous to the
linear response of the system and an interference term due to the presence of leads. We
compared our results with Dora et al. [12] and found that the presence of leads con-
tributes to an additional pumped current compared to the system without leads. We also
found similar results with Vajna et al. [119] where they considered dissipation happening
through coupling with a bosonic bath.

This preliminary work opens the possibility to expand the analysis of this system
to different regimes of parameters. It would be interesting to study the effect of the
application of a potential difference between the leads and see how it competes with
the pumped current. This work could also be extended to take into account the orbital
coupling with light and the effect of the chemical potential of the edge state. Another
interesting path would be to study the noise in this system.



Conclusion

This thesis is based on two basic ingredients, namely graphene and topological in-
sulators. The link between these elements was to induce non-trivial topological phases
in graphene through periodic driving by an electromagnetic wave. Chapters 1, 2 and 3
were dedicated to introducing these systems. Our main work was to study transport in
irradiated graphene (Chap. 4), and the irradiated helical edge state of a quantum spin
Hall insulator (Chap. 5).

Graphene is a good playground for studying topological phases of matter. It is a Dirac
material with a linear dispersion relation at low-energy around the Dirac points. These
points are protected by the presence of time-reversal and space-inversion symmetries,
and breaking one of these symmetries opens a mass gap in the low-energy spectrum. In
particular, we have seen that breaking time-reversal symmetry can generate a topological
phase with a non-zero Chern number. The non-trivial topological properties derive from
the fact that it is impossible to define a continuous gauge for the eigenstates over the
whole Brillouin zone. We have considered two models based on the graphene lattice that
present a non-zero Chern number :

• the Haldane model where time-reversal symmetry is broken through the presence
of complex second neighbour hoppings with a magnetic flux pattern threading the
unit cell. Modulating the parameters of the model allows to visualize a topological
phase transition. We have discussed the characteristic chiral edge states that cross
the gap and their chirality as a function of the Chern number of the filled valence
band.

• graphene irradiated by a circularly polarized electromagnetic wave. In that case,
the periodic driving breaks time-reversal symmetry. We have paid a particular
attention to the Chern number of the bands and the chiral edge states bridging the
non-equivalent gaps in the quasi-energy spectrum in three different regimes :

– in the high-frequency regime, irradiated graphene is identical to the Haldane
model. We have shown that the chirality of the edge states depends on the
helicity of the electromagnetic wave.

– when the frequency is of the order of the bandwidth and on resonance, we have
calculated the Chern number of the Floquet bands by couting the number of
edge states crossing the non-equivalent gaps in the quasi-energy spectrum.

– in the low frequency regime where graphene is modelled by Dirac equation. In
that case, we can assign an effective Hamiltonian at a band crossing and an
associated Chern number. We have derived an effective Hamiltonian at a band-
crossing with its associated Chern number. We have developed a procedure
to obtain the dispersion relation of the edge states, their chirality and their
wavefunctions.
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122 Conclusion

In chapter 4, we have considered ballistic transport through an irradiated graphene
sheet in a two-terminal setting. The graphene sheet is connected to two leads and we have
obtained the conductance of the ribbon using the Landauer-Buttiker formalism extended
to Floquet theory. The electrons are dressed by the photons and can be transmitted or
reflected by absorbing or emitting one or more photons. The Floquet spectrum possesses a
nested gap structure at the two non-equivalent gaps at quasi-energy ε = 0 and ε = h̵ω. The
chemical potential can be tuned by an electrostatic gate. The conductance as a function of
the chemical potential follows closely the non irradiated curve similar to Ref. [99] except
at multiples of h̵ω/2 where we observe dips in the conductance. The residual conductance
in the gap originates from the set of evanescent states with different characteristic lengths,
which compete as the driving strength and the length of the ribbon are varied. This work
has been published in Phys. Rev. B [128].

Another material that presents a different kind of non-trivial topological order is the
quantum spin Hall effect. In these materials, time-reversal symmetry is conserved and
the topological properties are encoded into a Z2 topological invariant. Such a model can
be defined on the graphene lattice by introducing spin-orbit coupling and it possesses
two counter-propagating edge states with the spin locked to the momentum. Chapter 5
presents a preliminary work concerning the transport properties of the helical edge state
of the quantum spin Hall effect under irradiation. We have obtained the expression of the
charge pumped due to the irradiation when the Fermi energy is at the Dirac point. We
have found that there exists two regimes : at low frequency (compared to the coupling
strength), the pumped charge per unit cycle is quantized, while at high frequency the
charge is not quantized and is the sum of two contributions, one corresponding to a term
analogous to a linear response mechanism, and a second one originating from the presence
of leads. This work will be extended to a larger set of parameters and will be the subject
of a second publication.



Appendix A

Symmetry constraints on the Berry
phase properties

We wish to find the constraints imposed by time-reversal and space inversion on the
Berry connection and Berry curvature. We denote respectively AU(k) and FUxy(k) the
resulting berry connection and curvature under the transformation U . If the system is
symmetric under the transformation, then we must have :

A
U(k) =A(k) +∇ζ(k) (A.1)FUxy(k) = Fxy(k) (A.2)

where we have allowed for a gauge freedom upon the action of the symmetry transforma-
tion for the Berry connection which is defined up to a gauge transformation.

1 Time-reversal symmetry
Under time-reversal, the Berry connection for spinless particles transforms as :

A
T (k) = i⟨uTk ∣∇k∣uTk ⟩, (A.3)= i⟨u∗−k∣∇k∣u∗−k⟩, (A.4)

= i∫ d2xu−k(x)∂ku∗−k(x) (A.5)

We integrate by parts to obtain :

A
T (k) = −i∫ d2x∂ku−k(x)u∗−k(x) (A.6)

= −i∫ d2xu∗−k(x)∂ku−k(x) (A.7)

= i∫ d2xu∗−k(x)∂−ku−k(x) (A.8)

= i⟨u−k∣∇−k∣u−k⟩, (A.9)=A(−k) (A.10)

The Berry curvature transforms as :

FTxy(k) = ∂kxATy (k) − ∂kyATx (k), (A.11)= −(∂−kxAy(−k) − ∂−kyAx(−k)), (A.12)= −Fxy(−k) (A.13)
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Thereby, if the system is time-reversal invariant, we have :

A(k) =A(−k) +∇ζ(k) (A.14)Fxy(k) = −Fxy(−k) (A.15)

2 Space-inversion symmetry
Under space inversion, the Berry connection transforms as :

AP (k) = i⟨uPk ∣∇k∣uPk ⟩, (A.16)= i⟨u−k∣σx∇kσx∣u−k⟩, (A.17)= −i⟨u−k∣σx∇−kσx∣u−k⟩, (A.18)= −A(−k) (A.19)

The Berry curvature transforms as :

FTxy(k) = ∂kxATy (k) − ∂kyATx (k), (A.20)= (∂−kxAy(−k) − ∂−kyAx(−k)), (A.21)= Fxy(−k) (A.22)

Thus, if the system is space-inversion invariant, we have :

A(k) = −A(−k) +∇ζ(k) (A.23)Fxy(k) = Fxy(−k) (A.24)



Appendix B

Kubo formula for the Hall conductivity

1 General derivation
We follow here the derivation given in the lectures by David Tong (Cambridge) on

the Quantum Hall Effect, however we take into account the distribution function for the
electrons in the eigenstates of the system.

We consider a general time-independent Hamiltonian H0 whose spectrum is know and
given by the eigenvalue equation : H0∣n⟩ = En∣n⟩. This system is coupled to an external
monochromatic electric field E(t) = Ee−iωt with pulsation ω in the gauge E = −∂tA. The
system couples to the fields via its current operator J :

V (t) = −JA(t) , (B.1)

with A(t) = E
iωe

−iωt. We wish to calculate the average current when the field is present.
We consider switching on the field at t = t0. The average current along the direction i in
the presence of driving is given by :

⟨Ji⟩(t) = Tr [ρ(t)Ji] (B.2)

where ρ(t) is the density matrix at time t that obeys to the equation :

i∂tρ(t) + [ρ(t),H0 + V (t)] . (B.3)

We switch to the interaction representation such that ρI(t) = eiH0tρ(t)e−iH0t and VI(t) =
eiH0tV (t)e−iH0t. Eq. (B.3) becomes :

i∂tρI(t) + [ρI(t), VI(t)] . (B.4)

At t = −∞, the system is at equilibrium : ρI(−∞) = ρF = ∑n pn∣n⟩⟨n∣, where pn is the
occupation probability ot the state ∣n⟩ in the absence of driving. Integrating this equation
formally gives us :

ρI(t) = ρF + i∫ t

−∞ dt
′ [ρI(t′), VI(t′)] (B.5)

= ρF + i∫ t

−∞ dt
′ [ρF , VI(t′)] , (B.6)

where in the second line we have considered that the interaction is weak so that we neglect
the second order terms in V . In the interaction representation, the average value of the
current operator can be expressed as :

⟨Ji⟩(t) = Tr [ρI(t)Ji,I(t)] , (B.7)
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where Ji,I(t) is the operator Ji in the interaction picture. Inserting the expression for the
density matrix in Eq. (B.7), we obtain :

⟨Ji⟩(t) = ⟨Ji⟩0 − i∫ t

−∞ dt
′Tr{[ρF , VI(t′)]Ji,I(t)}, (B.8)

where ⟨Ji⟩0 = Tr{ρFJi,I(t)} is the average current in the absence of driving. The current
originating from the driving can be expressed as :

⟨Ji⟩(t) = i∫ t

−∞ dt
′Tr{[ρF , Jj,I(t′)]Ji,I(t)}Aj(t′) (B.9)

= i∫ t

−∞ dt
′Tr{ρF [Jj,I(t′), Ji,I(t)]}Aj(t′) (B.10)

= 1

ω ∫
t

−∞ dt
′⟨[Jj,I(t′), Ji,I(t)]⟩0Eje

−iωt′ , (B.11)

where we have used the invariance under cyclic permutation of the trace operation in the
second line, and we have replaced A(t) by it expression as a function of the electric field.
The average value ⟨. . .⟩0 is taken at equilibrium. Because the system is invariant under
time translations, the correlation function depends only on t′′ = t− t′. We can rewrite the
formula above as :

⟨Ji⟩(t) = 1

ω
(∫ ∞

0
dt′′eiωt′′⟨[Jj,I(0), Ji,I(t′′)]⟩0)Eje−iωt. (B.12)

From the relation J(t) = σE(t), where σ is the optical conductivity tensor, we find the
coefficients of the conductivity tensor :

σij(ω) = 1

ω ∫
∞

0
dteiωt⟨[Jj,I(0), Ji,I(t)]⟩0. (B.13)

The current-current correlation fuction can be expressed in the bare Hamiltonian eigen-
states basis ∣n⟩ :

⟨[Jj,I(0), Ji,I(t)]⟩0 =∑
n

pn⟨n∣JjeiH0tJie
−iH0t∣n⟩ − ⟨n∣eiH0tJie

−iH0tJj ∣n⟩ (B.14)

= ∑
n,m

pn⟨n∣Jj ∣m⟩⟨m∣Ji∣n⟩ei(Em−En)t − pn⟨n∣Ji∣m⟩⟨m∣Jj ∣n⟩ei(En−Em)t
(B.15)

= ∑
n,m

(pn − pm)⟨n∣Jj ∣m⟩⟨m∣Ji∣n⟩ei(Em−En)t, (B.16)

where we have inserted the closing relation ∑m ∣m⟩⟨m∣ = 1 in the second line. Inserting
the expression above in Eq. (B.13), we obtain :

σij(ω) = 1

ω
∑
n,m

(pn − pm)⟨n∣Jj ∣m⟩⟨m∣Ji∣n⟩∫ ∞
0

dtei(ω+Em−En)t (B.17)

By integration in the complex plane, replacing ω by ω+ iδ, where δ → 0+, we find the Hall
conductivity :

σxy(ω) = − i
ω
∑
n,m

(pn − pm)⟨n∣Jy ∣m⟩⟨m∣Jx∣n⟩
ω +Em −En (B.18)
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In order to obtain the DC component of the Hall conductivity, we take the limit ω → 0.
We reinsert the factor h̵, and expand the denominator as :

1

h̵ω +Em −En ≈ 1

Em −En − h̵ω(Em −En)2
+ o(ω2) (B.19)

The first term seems divergent, however, in the case of the Hall conductivity, this term
vanishes. This can be shown from gauge invariance or equivalently from the conservation
of current (not proved here). In the DC limit, the Hall conductivity has the expression :

σxy = ih̵∑
n,m

(pn − pm)⟨n∣Jy ∣m⟩⟨m∣Jx∣n⟩(Em −En)2
(B.20)

2 Application to a two band system

We will here study the simple example of a two-level system in the Bloch bands of a
crystal. For simplicity, we will focus here on a gapped system where the two bands are
separated in order to avoid the problem of degeneracies. The single particle Hamiltonian
of a two band system can be written as :

H(k) = d(k)σ, (B.21)

where k is the quasi-momentum of the electron, and σ is the vector composed of the three
Pauli matrices. The eigenvectors of this Hamiltonian are the spinors :

∣n⟩ = ∣usk⟩, (B.22)

where s = ± is the band index, with eigenvalues :

Es(k) = sd(k), (B.23)

where d(k) = ∣d(k)∣. The condition for the system to be gapped ∣d(k)∣ ≠ 0 has to be
satisfied for every k. The current operator has the expression :

Ji(k) = e

h̵

∂h(k)
∂ki

(B.24)

2.1 Hall conductance as a Chern number

The operator Ji is diagonal in k so we can rewrite the Hall conductance as :

σxy = ih̵∑
k

∑
s,t=±(fs(k) − ft(k))

⟨usk∣Jy(k)∣utk⟩⟨utk∣Jx(k)∣usk⟩(Es(k) −Et(k))2
(B.25)

= ih̵∑
k

(f+(k) − f−(k)) [⟨u+k∣Jy(k)∣u−k⟩⟨u−k∣Jx(k)∣u+k⟩(E+(k) −E−(k))2
− ⟨u−k∣Jy(k)∣u+k⟩⟨u+k∣Jx(k)∣u−k⟩(E−(k) −E+(k))2

]
(B.26)

= ie2

h̵
∑
k

(f+(k) − f−(k)) [⟨u−k∣∂kxh(k)∣u+k⟩⟨u+k∣∂kyh(k)∣u−k⟩(E+(k) −E−(k))2
− ⟨u−k∣∂kyh(k)∣u+k⟩⟨u+k∣∂kxh(k)∣u−k⟩(E+(k) −E−(k))2

]
(B.27)
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Now we can use the formula :

⟨uαk ∣∂kih(k)∣uβk⟩ = ⟨uαk ∣∂ki(h(k)∣uβk⟩) − ⟨uαk ∣h(k)∣∂kiuβk⟩ (B.28)

= (Eβ(k) −Eα(k))⟨uαk ∣∂kiuβk⟩ (B.29)

= (Eα(k) −Eβ(k))⟨∂kiuαk ∣uβk⟩, (B.30)

where {α,β} = {+,−} to obtain :

σxy = ie2

h̵
∑
k

(f+(k) − f−(k)) [⟨∂kxu−k∣u+k⟩⟨u+k∣∂kyu−k⟩ − ⟨∂kyu−k∣u+k⟩⟨u+k∣∂kxu−k⟩] . (B.31)

Using the closing relation ∣u+k⟩⟨u+k∣ = 1 − ∣u−k⟩⟨u−k∣, we obtain :

σxy = ie2

h̵
∑
k

(f+(k) − f−(k)) [⟨∂kxu−k∣∂kyu−k⟩ − ⟨∂kxu−k∣u−k⟩⟨u−k∣∂kyu−k⟩
−⟨∂kyu−k∣∂kxu−k⟩ + ⟨∂kyu−k∣u−k⟩⟨u−k∣∂kxu−k⟩] . (B.32)

Using the fact that ⟨u−k∣∂kαu−k⟩ = −⟨∂kαu−k∣u−k⟩, the second and the third term in the
sum cancel each other so we get :

σxy = ie2

h̵
∑
k

(f+(k) − f−(k)) [⟨∂kxu−k∣∂kyu−k⟩ − ⟨∂kyu−k∣∂kxu−k⟩] . (B.33)

If we consider a gapped system where the valence band is filled (f+(k) = 0) and the
conduction band is empty(f−(k) = 1), we get the expression :

σxy = ie2

h̵ ∫ dk(2π)2
(⟨∂kyu−k∣∂kxu−k⟩ − ⟨∂kxu−k∣∂kyu−k⟩) . (B.34)

The precedent equation can be written as :

σxy = e2

h
C−, (B.35)

where C− is called the Chern number of the valence (−) band and is defined as :

C− = 1

2π ∫BZ d2kF−
xy. (B.36)

We have here introduced the mathematical object F−
xy called the Berry curvature that is

equal to : F−
xy = i⟨∂kyu−k∣∂kxu−k⟩ − i⟨∂kxu−k∣∂kyu−k⟩. (B.37)

The Berry curvature can be expressed as the curl of the Berry vector potential Anα :

Fnxy = ∂kxAny − ∂kyAnx, (B.38)

where n is the band index and :

Asα(k) = i⟨unk∣ ∂∂kα ∣unk⟩, (B.39)

with α ∈ {x, y}.
The Chern number we introduced here is a number that corresponds to the Berry flux

threading the whole Brillouin zone. This Chern number was originally introduced as the
TKNN invariant[6] (due to the authors Thouless, Kohmoto, Nightingale and den Nijs).
Due to the periodicity of the quasi-momentum of electrons in a crystal by translation of
a reciprocal lattice unit vector, the Brillouin zone is topologically equivalent to a torus.
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2.2 Hall conductance as a winding number

The current operator is expressed as :

Ji(k) = e

h̵

∂dα(k)
∂ki

σα, (B.40)

where the summation over the indices α = {x, y, z} is implicit. We can rewrite Eq. (B.26)
as :

σxy = ih̵∑
k

f+(k) − f−(k)
4d(k)2

(Tr [Jy(k)P−(k)Jx(k)P+(k)] − c.c.) (B.41)

= −2h̵∑
k

f+(k) − f−(k)
4d(k)2

Im{Tr [Jx(k)P+(k)Jy(k)P−(k)]}, (B.42)

where we have used the invariance of the trace operation under cyclic permutations, and
introduced the projection operator P−(k) (P+(k)) over the valence (conduction) band,
that is defined as :

Ps(k) = 1

2
[1 + sd(k)σ∣d(k)∣ ] = 1

2
[1 + sd̂α(k)σα] , (B.43)

where d̂(k) = d(k)/d(k) is the unit vector spanning the Bloch sphere. Plugging Eqs.
(B.40) and (B.43) into (B.42), we obtain :

σxy = − e2

8h̵
∑
k

(f+(k) − f−(k))Im{Tr [∂d̂α(k)
∂kx

σα(1 + d̂β(k)σβ)∂d̂γ(k)
∂ky

σγ(1 − d̂δ(k)σδ)]}.
(B.44)

The properties of the trace operation over a product of Pauli matrices tells us that the
only imaginary trace is the one containing three Pauli matrices :

Tr [σaσbσc] = 2iεabc, (B.45)

where εabc is the totally antisymmetric tensor. We can thus express Eq. (B.44) as :

σxy = − e2

2h̵
∑
k

(f+(k) − f−(k))εαβγ ∂d̂α
∂kx

∂d̂β
∂ky

d̂γ. (B.46)

Once again we consider an insulator in which the valence band is filled and the conducation
band empty, and we replace the sum over the Brillouin zone by a integral, we get :

σxy = e2

2h̵ ∫BZ d2k(2π)2
εαβγ

∂d̂α
∂kx

∂d̂β
∂ky

d̂γ. (B.47)

= e2

h
nw, (B.48)

where nw is the winding number of the mapping k→ d̂(k), and is defined as :

nw = 1

4π ∫BZ d2k (∂d̂(k)
∂kx

× ∂d̂(k)
∂ky

) .d̂(k) (B.49)
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Appendix C

Oscillating integrals

We wish to obtain an approximate value for oscillating integrals arising in conductance
calculations for long scattering lengths compared to the Fermi wavelength λF = 2π/kF .
The idea is to separate the fast oscillating component from the slow component compared
to the oscillation period.

1 Integral (4.21)

The integral from Eq. (4.21) has the expression :

I = ∫ 1

0
dx

1 − x2

1 − x2 cos2(√1 − x2kFL) , (C.1)

where we take the limit kFL≫ 1. In first place, we make the change of variable y2 = 1−x2

to get the expression :

I = ∫ 1

0
dy

y√
1 − y2

y2

1 − (1 − y)2 cos2(kFLy) . (C.2)

The integrand oscillates with a period 2π/kFL, so we separate the variable y in two
parts : y = yn + δy with yn = 2πn

kFL
and δy ∈ [0, 2π

kFL
] so that we have :

I = Int( kF L
2π
)∑

n=0
y3
n√

1 − y2
n

∫ 2π
kF L

0
dδy

1

1 − (1 − yn)2 cos2(kFLδy) , (C.3)

where we have neglected the variable δy in the variables outside the cosine function. The
integral runs now over one period of oscillation. We find :

I = Int( kF L
2π
)∑

n=0
y3
n√

1 − y2
n

2π

kFLyn
= 2π

kFL

Int( kF L
2π
)∑

n=0
y2
n√

1 − y2
n

, (C.4)

If we now transform the expression back to an integral form, we get :

I = ∫ 1

0

y2√
1 − y2

= π
4

(C.5)
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0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4 kFL= 300

Figure C.1 – Integrand of Eq. (C.2). We can see that for kFL ≫ 1, the function varies
slowly over one period of the oscillation.

2 Integral (5.46)

In order to calculate the integral (5.46) for L̃ ≫ 1, we separate the slowly varying
function and the rapidly oscillating part. The function 1− f(ε) to integrate fro g to ∞ is
shown in Fig. C.2.

1 2 3 4 5 6 7 8
/g

0.0

0.2

0.4

0.6

0.8

1.0

1
f(

)

Lg/v = 50

Figure C.2 – Integrand of Eq. (5.46). We can see that for Lg/v ≫ 1, the function varies
slowly over one period of the oscillation.

We make the change of variable x = xn + x̄, where xn = 2Πn
L is the discrete points that

stays constant during one period of oscillation, and x̄ is the variable that we integrate



2. Integral (5.46) 133

during one period. In the limit, L→∞, the separation of the scales is exact, therefore :

lim
h̵ω/g,L→∞ IInterf = 2

eg

h

∞∑
n=0

xn√
x2
n + 1

∫ 2π/L
0

dx̄
sin2((xn + x̄)L̃)

x2
n + sin2((xn + x̄L̃) with xn = 2πn

L
(C.6)

= 2
eg

h

∞∑
n=0

xn√
x2
n + 1

∫ 2π

0

dy

L

sin2(y)
x2
n + sin2(y) , where y = x̄L̃ (C.7)

= 2
eg

h

∞∑
n=0

xn√
x2
n + 1

⎡⎢⎢⎢⎢⎣
2π

L

⎛⎝1 − xn√
x2
n + 1

⎞⎠
⎤⎥⎥⎥⎥⎦ (C.8)

= 2
eg

h ∫
∞

0
dx

x√
x2 + 1

(1 − x√
x2 + 1

) (C.9)

= 2
eg

h
(π

2
− 1) (C.10)
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Appendix D

generalized rotatating wave
approximation for graphene

The low-energy dispersion of graphene is described by the Dirac equation. For each
value of the momentum k, there is a two-level system, so we can use the rotating wave
approximation (RWA) to obtain the shift of the quasi-energy levels depending on the
detuning of the laser close to the resonances. Graphene subjected to a circularly polarized
electromagnetic wave A = A0(cosωt, sinωt) is described by the Hamiltonian :

H(q, t) =H0(q) + V (t), where : (D.1a)
H0(q) = h̵vσ.q (D.1b)

V (t) = evA0 ( 0 e−iωt
eiωt 0

) (D.1c)

To be able to apply the RWA, we need to rotate the bare Hamiltonian H0 to its
diagonal basis. For that, we change of basis using the matrix :

U = ( 1 1
eiθ −eiθ) (D.2)

where tan θ = qy/qx. In the rotated basis, we get :

H̃(q, t) = U−1H(q, t)U= h̵vqσz + evA0(cos(θ − ωt)σ0 + sin(θ − ωt)σy) (D.3)

where q = ∣q∣, and σ0 is the 2x2 identity matrix. The Hamiltonian H0 is now diagonal
and there is a time-dependent diagonal part, and a non-diagonal one. We introduce
ω0(q) = 2vq, the resonant frequency at momentum q, and we express the wavefunction as
: Ψ(t) = (a(t), b(t))T . The Schrödinger equation can be written as :

ih̵(ȧ(t)
ḃ(t)) = ( [h̵ω0/2 + evA0 cos(θ − ωt)]a(t)[−h̵ω0/2 + evA0 cos(θ − ωt)]b(t))

+ (−ievA0 sin(θ − ωt)b(t)
ievA0 sin(θ − ωt)a(t) ) , (D.4)

and we introduce the variables ã(t) and b̃(t) defined by :

ã(t) = a(t)eiω0t/2+i(evA0/h̵ω) sin(θ−ωt) (D.5)

b̃(t) = b(t)e−iω0t/2−i(evA0/h̵ω) sin(θ−ωt) (D.6)
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. Therefore :

ih̵ ˙̃a(t) = −ievA0 sin(θ − ωt)eiω0t+i2(evA0/h̵ω) sin(θ−ωt)b̃(t)
ih̵ ˙̃b(t) = ievA0 sin(θ − ωt)e−iω0t−i2(evA0/h̵ω) sin(θ−ωt)ã(t) (D.7)

Using the Jacobi-Anger formula and setting β = evA0/h̵ω, we find :

˙̃a(t) = −βh̵ω
2i
∑
n

Jn(2β)(ei(ω0−(n+1)ω)t+i(n+1)θ

−ei(ω0−(n−1)ω)t+i(n−1)θ)b̃(t) (D.8)

˙̃b(t) = βh̵ω
2i
∑
n

Jn(2β)(e−i(ω0−(n−1)ω)t−i(n−1)θ

−e−i(ω0−(n+1)ω)t−i(n+1)θ)ã(t) (D.9)

We can now apply the generalized rotating wave approximation, which means that we keep
only the slowly varying terms such that ω0 ≈mω corresponding to m photons processes :

˙̃a(t) = iβh̵ω
2

(Jm−1(2β) − Jm+1(2β))ei(ω0−mω)t+imθb̃(t) (D.10)

˙̃b(t) = −iβh̵ω
2

(Jm+1(2β) − Jm−1(2β))e−i(ω0−mω)t−imθã(t) (D.11)

Deriving eq. (D.10) and substituting (D.11) into it gives :

¨̃a(t)−i(ω0 −mω) ˙̃a(t)
+ (βh̵ω

2
)2 (Jm+1(2β) − Jm−1(2β))2ã(t) = 0

Solving this equation for ã(t) and using eq. (D.5), we find two solutions :

a±(t) = e−iωm± t∑
n

Jn(β)einωt−inθ (D.12)

where ωm± is the quasi-energy equal to :

ωm± = mω
2

± 1

2

√
δ2
m +Ω2

m (D.13)

where δm = ω0−mω is the laser detuning such that δm ≪ ω0, and Ωm is the Rabi frequency
given by :

Ωm = βh̵ω∣Jm+1(2β) − Jm−1(2β)∣ (D.14)

This quasi-energy ωm± represents a two band model with an anti-crossing at momentum
q = mω/2v and energy ε = mh̵ω/2. When the driving is at resonance (δm = 0), there is a
gap of size Ωm between the two quasi-energy bands.
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