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Résumé

L’ amélioration des performances des avions de transport est incontournable pour réduire les
émissions polluantes a la source. L’'un des moyens vise a réduire la trainée totale en agissant
sur les aspects aérodynamiques. Dans ce contexte, I’étude des couches limites turbulentes est
importante car la trainée de frottement peut représenter jusqu’a plus de 50% de la trainée to-
tale en vol de croisiere. La simulation numérique directe (DNS) de couches limites turbulentes
nécessite une résolution spatiale élevée, en particulier pres des parois pour capturer [’en-
semble des échelles de longueur inhérentes a la turbulence. Il a été démontré que le nombre
de points de grille (N) devrait varier N ~ Re'3/7 dans le cas d’une simulation des grandes
échelles (LES) bien résolue et en N ~ Re3"/' dans le cas d’une DNS. I est donc particulié-
rement difficile, voire impossible d’effectuer des simulations bien résolues a des nombres de
Reynolds tres élevés. Pour réduire le coiit de calcul lié a la haute résolution spatiale néces-
saire dans la région de proche paroi, des techniques qui éliminent la région de paroi ont été
étudiées. Les solutions classiques sont généralement basées sur l’introduction d’un modele de
paroi. L’idée poursuivie ici est différente et il s’agit un modele implicite a partir des POD.
Dans cette approche, ’écoulement est calculé dans un domaine numérique réduit, ce qui ex-
clut la région coiiteuse de la paroi. Une condition limite instationnaire est définie a chaque
pas de temps sur les variables conservatrices, et appliquée aux frontiéres du domaine. Cette
procédure a été mise en oeuvre dans le cadre incompressible, ou le champ de vitesse doit étre
imposé a toute la frontiere. Podvin et Fraigneau ont proposé une condition de paroi basée sur
la décomposition orthogonale aux valeurs propres (POD) pour générer le champ synthétique.
L’objectif de ce travail est d’étendre au cadre compressible I’approche développée en POD
incompressible. Un aspect clé de la formulation compressible est que, contrairement au cas
incompressible (elliptique), les ondes peuvent se propager a travers les frontiéres, en particu-
lier pour la densité et la pression, de sorte que les conditions limites doivent étre adaptées,
en utilisant la méthode des caractéristiques. Certaines variables sur la frontiere peuvent étre
calculées directement a partir de 'intérieur du domaine, tandis que d’autres devront étre im-
posées. L’idée est d’utiliser la POD pour construire les champs imposés sur la frontiere. La
POD consiste a représenter le champ comme la superposition de modes spatiaux dont I’ampli-
tude est fonction du temps. La forme des modes spatiaux est supposée connue a priori. Le défi

consiste alors a déterminer I’amplitude temporelle correcte des modes. Des DNS de 1’écoule-



ment turbulent du canal sont d’abord effectuées sur deux configurations d’écoulements pour
générer des bases de données et calculer les modes spatiaux POD : un écoulement subso-
nique du canal a un nombre de Mach de Ma = 0.5 et un nombre de Reynolds Re, = 180,
et un écoulement supersonique a Ma = 1.5 et Re, = 220. Pour évaluer les conditions aux
limites synthétiques aux bords du domaine réduit, on construit les coefficients temporels POD
en projetant les variables de I’écoulement sur les modes spatiaux. Les bases POD peuvent étre
calculées relativement aux variables primitives ou conservatives. Nous avons constaté que le
meilleur résultat est obtenu a partir des variables conservatives parce que ce choix impose
la conservation du flux massique a travers le plan ou sont appliquées les conditions synthé-
tiques. Une procédure de redimensionnement a cependant été introduite pour s’assurer que
les rms des variables compressibles reconstruites correspondent aux valeurs rms de référence
du plan reconstruit. Des calculs de 1’écoulement de canal réduit ont ensuite été effectués a
I’aide des conditions limites synthétiques basées sur la POD et mises en oeuvre a une hauteur
spécifique au-dessus des parois. Les conditions aux limites synthétiques ont été testées pour
deux hauteurs différentes. Les résultats obtenus dans la configuration de canal réduit ont été
comparés a ceux des DNS de canal complet pris comme référence. Une bonne concordance
est observée pour le profil de vitesse moyenne de Van-Driest, la température et la contrainte de
cisaillement turbulente dans le cas subsonique. La procédure s’est avérée robuste compte tenu
de la hauteur a laquelle est appliquée la condition synthétique. Dans I’écoulement de canal
supersonique, les intensités turbulentes, la contrainte de cisaillement turbulente et les profils
moyens de température, de densité et de vitesse longitudinale sont reproduits avec une bonne
qualité. Une réduction du coiit de calcul est obtenue dans le canal réduit pour les simulations
d’écoulements subsoniques et supersoniques ; le temps CPU est réduit de 60% pour h™ = 18

et 70% pour h* = 54.



Abstract

The improvement in performances of transport aircraft is necessary to reduce the polluting
emissions at the source. One way aims at reducing the total drag by acting on the aerodyna-
mic aspects. In this context, the study of turbulent boundary layers is of importance since the
friction drag can represent up to more than 50% of the total drag under cruise flight condi-
tions. Direct Numerical Simulation (DNS) of turbulent boundary layers requires a high spatial
resolution specially near the wall to capture the different length scales inherent of turbulence.
It was shown that the number of grid points (N) should vary as N ~ Re'3/7 in the case of
a well-resolved Large-Eddy Simulation (LES) and N ~ Re3"/' in the case of a DNS. This
makes it difficult to carry out resolved simulations at very high Reynolds numbers. To reduce
the computing cost related to the high spatial resolution needed in the near wall region, tech-
niques that bypass the wall region have been studied. Classical solutions are generally based
on the introduction of a wall model. The idea pursued here is to use POD as an implicit mo-
dal for the inner wall region. In this approach the flow is computed in a reduced numerical
domain, which excludes the costly wall region, and a non-stationary boundary condition on a
plane whith the wall layer is defined at each time step. This procedure has been implemented
in the incompressible framework, where the velocity field needs to be imposed on the entire do-
main boundary. Podvin and Fraigneau proposed a Proper-Orthogonal-Decomposition(POD)-
based wall boundary condition to generate the synthetic field on the boundary. The goal of
the present work is to extend the POD-based approach developed for incompressible flows
to the compressible framework. A key aspect of the compressible formulation is that, unlike
the incompressible (elliptic) case, waves can propagate through the boundaries, in particular
for the density and the pressure, so that the boundary conditions have to be adapted, using
the method of characteristics. Some variables on the boundary can be directly recovered from
the inside of the domain, while others will need to be prescribed. The idea is to use POD to
construct the prescribed field on the boundary. POD consists in representing the field as the
superposition of spatial modes whose amplitude is time-dependent. The shape of the modes is
assumed to be known a priori. The challenge is then to determine the correct amplitude of the
modes. DNS of the turbulent channel flow are first run on two flow configurations to generate
data bases and to compute the POD spatial modes : a subsonic channel flow at a Mach number

of Ma = 0.5 and a friction Reynolds number of Re, = 180, and a supersonic channel flow at



Ma = 1.5 et Re, = 220. To evaluate the boundary conditions in the reduced domain, the POD
time coefficients are built by projecting the flow variables onto the spatial modes. POD bases
relative to both primitive or conservative variables have been reviewed. We found that the best
result is obtained from the conservative variables because this choice enforces conservation
of the mass flux. A rescaling procedure has however been introduced to ensure that the rms of
the reconstructed compressible variables match the rms reference values on the reconstructed
plane. Reduced channel flow computations have then been conducted with POD-based synthe-
tic boundary conditions implemented at a specific height above the solid walls. The synthetic
boundary conditions were applied at two different heights. Results obtained in the reduced
channel configuration were compared with those of the DNS of the full channel taken as the
reference. A good agreement is observed for the mean Van Driest velocity profile, the tem-
perature and the turbulent shear stress in the subsonic case. The procedure was found to be
robust with the boundary height. In the supersonic channel flow, the turbulent intensities, the
turbulent shear stress, and the mean profiles of temperature, density, and streamwise velocity
are well recovered with a good quality. A drastic reduction of the computation cost is achieved
in the reduced channel for both simulations of subsonic and supersonic flows ; the CPU time

is reduced by 60% for h* = 18 and 70% for h™ = 54.
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Chapter 1

Introduction

1.1 Wall turbulence

Many geophysical and industrial flows are characterized by turbulence, which is associ-
ated with high friction drag. Friction drag can represent up to 50 % of the full drag for
a commercial airplane with consequences for fuel consumption, larger operational range,
higher achievable speeds and greater endurance. This makes skin friction manipulation

a crucial objective for drag reduction.
A considerable effort has been devoted to wall turbulence control ([39; 50; 57; 81; 84]).

However, despite the success achieved with a variety of approaches, our understanding
of wall turbulence remains incomplete. Numerical simulations of wall-bounded flows
represent an invaluable tool to obtain information about the flow statistics and provide

insight into its physics.

Turbulent flows are characterized by a high Reynolds number Re = U H /v which mea-
sures the ratio between the advective time scale of the flow H/U, where H and U are
respectively outer length and velocity scales, and the viscous time scale of the flow H? /v,
where v = % is the kinematic viscosity. Viscous effects are predominant in a very thin
layer close to the wall, which constitutes the main source of vorticity for the turbulence.
Further away from the wall, the flow is dominated by the outer scales. This gives rise to
a very wide range of scales, which makes simulation of real-life applications particularly

difficult, despite the increase in computing power. As an example, the range of scales
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on a commercial plane flying at a cruise speed of 900km/hr goes from O(10)m to a few
microns. This means that the ratio between the largest and the smallest scales should

be on the order of 10%, yielding 10'® in three dimensions.

Mean-flow kinetic energy transferred to the wall layer by the Reynolds stresses is con-
verted into turbulence kinetic energy (through turbulence production) and into heat
(through viscous dissipation). A relevant measure of the turbulence of the flow is given
by the dissipation e. The smallest scale that can be expected to be found in the flow

depends on the dissipation € and the dynamical viscosity v:

n= (/)" (1.1)

It is called the Kolmogorov scale.

To determine the intensity of the turbulent fluctuations a relevant scale can be derived

from the wall shear

dU
,0'U/72- = ME‘wall (12)

Defining the wall units based on the friction velocity w, and viscosity v, one can make

the wall-normal distance nondimensional as follows

2t =zv/u,,

and the wall layer can be divided into three regions [68]

e the viscous sublayer: 0 < 2zt <5:U = z*

e the buffer layer: 5 < 2™ < 30: overlap region

e inertial sublayer 30 < 2t < 0.2Re, : U = +log(z") + G where & is the Von Karman

Tk

constant (k ~ 0.4 and G ~ 5).

These region can be identified in Figure 1.1.
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1 L
1 10 100

F

Figure 1.1: Main velocity profile from Orlandi et al [58].

The production of turbulent energy is maximal at z™ = 15. One can see that strong
interactions take place in the wall layer. Due to the small scales present in the flow, a
very high resolution is necessary. The number of grid points necessary to resolve the
flow down from the largest scale to the smallest scale, which is the Kolmogorov scale,

3/4 For a three-dimensional direct numerical simulation

can be shown to increase like Re
of a turbulent flow, this means that the total number of grid points should increase like

Re®*. This number has been recently reevaluated by Choi and Moin [18] to Re37/!.

An important feature of turbulent flows is the presence of coherent structures, as reviewed

by Dennis [24]. Several types of coherent structures include:

an alternation of high and low speed longitudinal streaks (shown in Figure 1.2),

cross-stream vortices whose axis is roughly aligned with the mean shear,

hairpin or horseshoe vortices (shown in Figure 1.2),

ejections of low-speed fluid away from the wall,

e sweeping motions of high-speed fluid away from the wall.
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Figure 1.2: Horseshoe vortex in top (Figure from Theodorsen [80]), and streaks in bottom

(Figure from Wang et al [85]).
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These structures are connected and exist over a wide range of scales.

One important question which has not been settled so far is the relationship between the
coherent structures and the different sublayers. On the one hand, Jimenez and Pinelli
[33] showed that the dynamics of the wall region were essentially independent of the
outer layer. On the other hand, Mathis et al. [51] established that the influence of the

outer region can be felt very close to the wall. These apparent contradictions highlight

the complexity of the wall region.
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1.2 Simulating turbulence: DNS, LES and RANS

DNS
Multilevel
CPU ONS Resolved
Cost LES Physics

Hybrid LES/RANS

RANS

multiscale statistical

Figure 1.3: Classification of different methods for fluid simulation [70].

We have seen that direct numerical simulation or DNS requires a very high resolution in
space in the near-wall region, which in turns constrains the time step. The computing

cost of even a moderate Reynolds number flow is very high.

A reduction of complexity can be reached with Large Eddy Simulation or LES (see [78]
for a review). The basic idea is to solve accurately for the motions of all turbulence
scales above a certain cut-off, so as to capture the large-scale interaction that occur in
many unsteady, non-equilibrium processes. It is cheaper than DNS as it is not necessary
resolve the flow down to the Kolmogorov or dissipative scales. For wall-bounded flows,
the question is whether the wall region is resolved or modelled for LES, i.e. whether
the near-wall eddies are resolved or modelled on the computational grid. Chapman
[15] estimated that the total number of grid points for wall-resolved LES (WRLES) is
proportional to Re”®, whereas that for wall-modelled LES (WMLES) increases like
Re*®. These estimates have been recently revised by Choi and Moin [18] to Re'®/7 for
the case of wall-resolved LES and Re in the case of wall-modelled LES.

A still simpler representation of the flow is constituted by the Reynolds Average Navier-
Stokes or RANS equations, which are the governing equations based on the Reynolds
decomposition. These equations govern the evolution of time-averaged quantities and
require the introduction of a closure scheme or turbulence model to account for the

nonlinear effect of the fluctuations [68].
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The RANS turbulence models can be divided into several categories: the zero-equation
models [16; 68; 83] (algebraic model), the one-equation models [41; 74], and the two-
equation models [47; 52; 53; 82]. Their main disadvantage is that they can only provide
time-averaged information on turbulence, which may not be sufficient enough for pre-
diction and engineering design [7]. They are essentially based on the definition of a
turbulent viscosity, which may limit their relevance for transitional flows, swirling flows

and turbomachinery [68].

1.3 Wall models

We can see that the flow structure in the near-wall region is very complex (see the

turbulent boundary layer in Figure 1.4).

30

%

Figure 1.4: Iso-surfaces of the second invariant of the velocity gradient tensor in the near
wall region. The iso-surfaces are coloured with the local streamwise velocity [55].

Several strategies were proposed to avoid the huge cost for the simulation in near wall
region. A recent review can be found in Bose and Park [13]. Piomelli and Balaras [65]
and Piomelli [64] proposed that wall modelling approaches could be divided into three

types (which are all loosely connected):

e Equilibrium-stress models

The goal of these models is to predict the wall friction. They are based on the

assumption that a constant-stress layer exists near the wall, which implies that
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the velocity at the first point in the outer layer obeys a logarithmic profile. Early
examples include Deardoff [23] and Schumann [73]. It is successful for attached
flows but is not appropriate to describe flows in which the boundary layer is not at
equilibrium. More recently, a generalization of the method based on the integral
method of Von Karman and Polhausen was proposed by [88] . It is called iWM-
LES and allows the inclusion of more physics while preserving the economy of the
equilibrium models. The cost of a simulation based on iWMLES is estimated by

Piomelli[64] to increase like Re’®.

e Zonal approaches

In this approach, the thin boundary layer equations are solved in a region very
close to the wall and weakly coupled to a large-eddy simulation in the rest of the
domain. This is a two-layer approach where the outer layer imposes its scales on
the inner layer. It was used successfully by Balaras et al. [6] for a rotating channel
flow. The cost of a zonal approach is supposed to be about 20% higher than a

standard equilibrium-stress model.

e Hybrid RANS/LES methods

In contrast with the previous approach, the inner layer has its own time and length
scales determined by a URANS simulation. The first instance of such a method is
Detached Eddy Simulation (DES) [75; 79]. The cost of this approach is roughly
estimated to increase like Re®%log(Re) [64]. An issue is the correct treatment of the
interface region, as the lack of resolved eddies in the interface region will typically
result in an upward displacement of the logarithmic layer in the LES region, which
is known as the logarithmic law mismatch (LLM) [5]. Such methods are most
successful for flows with a source of destabilization (such as strongly separated
flows) which accelerates the generation and growth of these eddies. Most of the
error is present in the first cell, where the stress-carrying eddies the size of which
scales with the wall distance are underresolved. Different attempts have been made
to correct the LLM. Park and Moin [60] implemented a dynamic eddy viscosity
model that corrects the effect of the resolved Reynolds stress on the wall friction

(see Figure 1.5).
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Figure 1.5: Mean velocity profile U™ in viscous wall units [60] at Rey = 1250, 1840, 2530,
2990, and 3310 (from bottom to top). Profiles are shifted by U™ = 3 along the ordinate
for increasing Rey. Solid lines, present WMLES; dashed line, log-law (k = 0.41, G =
5.2); +, matching locations; B, DNS of Sayadi et al. [71] at Rey = 1250; o, DNS of Wu
and Moin [86] at Rey = 1840;A experiment of Osterlund [59] at Rey = 2530.

1.4 Compressibility effects

Several efforts have been made to extend these approaches to compressible flows. Com-
pressibility effects introduce additional physics such as viscous heating near the wall and
shock/boundary layers interactions. This requires the formulation of thermal boundary
conditions and modelling for the heat flux. An important question then is whether the
strong Reynolds analogy holds, i.e. the local skin friction and heat transfer are pro-
portional. It is well known that this analogy fails for separated flows, such as those
submitted to strong adverse pressure gradients, as the skin friction goes to zero while

the heat transfer does not.

e Equilibrium-stress models Catchirayer et al. [14] extended the iWMLES [88]
method developed for incompressible flows to compressible flows. Parametrization
of the density and temperature variations was carried out, and the integral com-
pressible boundary layer energy equation was included into the formulation. The
method was tested for plane channel flow over a range of Mach numbers. In both
subsonic and supersonic cases the mean profiles were in good agreement with di-

rect numerical simulation. Bermejo-Moreno et al. [11] used an equilibrium wall
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model to describe an oblique shock/boundary layer interaction inside a rectangular

cross-sectioned duct.

e Zonal Approaches Extension of the TBLE (Thin Boundary Layer Equation)
approach to compressible flows was considered by Kawai and Larsson [35]. It
requires resolution of the full compressible Navier-Stokes equations in the near-wall
region as the conservation of mass and energy is no longer enforced automatically.
Bocquet et al. [12] developed an extension of the TBL (Thin Boundary Layer)
model for compressible LES of plane channel flow. The mean wall fluxes, primitive
variable profiles and turbulent fluctuations were found to be in good agreement

with direct numerical simulation (see Figure 1.6) .

00
a) 0

00 0z 04 06
b) z b
«©) Wall normal

Figure 1.6: Plane channel flow [12]. Left: mean velocity profiles in wall coordinates:
a)Re, = 200 : -, DNS [38]; case 1: +, two-layer model, A shifted model; and b) Re, =
2000:—, resolved LES [63]; case 2: +, two-layer model, A, shifted model; case 3: ..., two-
layer model. Right: turbulence intensities in outer coordinates for Re, = 200:-,DNS [38];
case 1: 4, two-layer model; and A\, shift model.

e Hybrid methods Schluter et al. [72] proposed a method for coupling an incom-
pressible LES with compressible RANS (see Figure 1.7). The two key features of
the methods are a standard convective outflow condition for LES and the coupling
of RANS flow through a volume force field. A simple controller and volume force in
the momentum equations were used to drive the mean velocity field of LES in the
overlap region toward the RANS target value. The temporal and spatial averaged
mean velocities and the resolved kinetic energy of the fluctuations from a specified

plane inside the LES domain were used as an inlet condition for an overlapping
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RANS domain.
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Figure 1.7: Results of interface validation [72]. Above: Axial velocity profiles. Be-
low: Axial velocity fluctuations. Circles: experiments. Solid lines: LES with inflow
from experimental data. Dashed lines: Integrated RANS-LES, RANS with inflow from
experimental data, LES inflow derived from simultaneously running RANS solver.

1.5 Approximate boundary conditions

1.5.1  Slip boundary condition

Instead of solving the TBL equations, Chung and Pullin [19] integrated them up to some
distance from the wall and an equation for the wall stress was derived using wall-parallel
filters and assuming a local inner scaling (i.e. based on wall units). From the wall
stress, a slip velocity at some lifted virtual wall height can be determined by assuming a
logarithmic velocity profile for the streamwise velocity and a constant-stress layer. The
local, Karman-like constant is determined using a subgrid scale model based on near-wall
vortices stretched in the streamwise direction. This amounts to setting a Dirichlet-like
condition at the interface. In the original derivation of the model [19], the velocity at the
lifted wall was only defined in the streamwise direction, but cross-stream components

were added in later editions of the model [17].

1.5.2 Control-based strategies

Control theory has been used to prescribe the wall-parallel shear stresses in order to

produce a pre-defined target velocity profile [77]. They used an adjoint formulation for
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solving the optimal controlled problems. Although these approaches are cumbersome,
they shed insight into the influence of the wall stress on the LES field and can allow
precise characterization of the LLM issue associated with hybrid methods. The adjoint
formulation also makes it possible to evaluate the sensitivity of the wall model with

respect to a priori coefficients or the location of the interface.

1.5.3 Synthetic wall boundary conditions

In this part we present an alternative approach where a synthetic wall boundary condition
at the edge of the wall layer is derived and plugged into the simulation. The idea is to
bypass entirely the computationally expensive wall region and to solve the equations in a
reduced domain where the boundary is no longer the wall, but a virtual plane located at a
given height within the wall layer. The approach was developed by Podvin and Fraigneau
[66] for incompressible flows. It relies on the construction of a boundary condition
based on Proper Orthogonal Decomposition (POD), which allows the representation
of the condition as a superposition of structures which are extracted from the spatial

autocorrelation tensor.

The difference with the approximate boundary conditions described in the previous sec-
tions is that the near-wall region is treated in a completely implicit manner through
the POD eigenfunctions. It therefore avoids extra modelling assumptions about the
near-wall region, as the condition is exclusively based on the second-order flow statistics,

which are assumed to be known a priori for instance from a precursor simulation.

The challenge is to provide adequate temporal amplitudes for each POD spatial structure
so that the reconstructed field mimics the behavior of the turbulent flow within the layer.
Different variants of the method were implemented for an incompressible turbulent plane
channel flow over a range of Reynolds numbers [66; 67]. It was found in particular that
identifying the phase of the structures, i.e the locations of the boundary planes in the
wall region were essential for the success of the procedure. Results shown in Figure 1.8
indicate that the turbulent statistics in the reduced domain are in good agreement with

those of the reference channel.

We note that a simpler rescaling procedure was used by Mizuno and Jimenez [54] and
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applied to the velocity field in Fourier space. The field on the boundary was extracted
from a field on a higher plane and each of its components in Fourier space was rescaled
with a factor that depends on the horizontal wavenumbers. As a result, the wall shear
stress was incorrectly estimated and the virtual origin of the flow field was displaced,

unlike the POD-based reconstruction procedure.
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i - — — — (1/0.41) log(y+) + 5.5 @
- E
- =
15 z
N . E
> o g
- 2 -
= c
10 ST 5
” @ 3
- i d 'E
i ' 2

5 e °
g™ o
L ,O/
o=t L A | . o1
10° 10 10° 100 200

Figure 1.8: Comparison between a full incompressible channel flow simulation and a re-
duced domain with a POD-based synthetic boundary conditions using phase estimation.
[67]. Left) Mean velocity profile; Right) Turbulent intensities.

1.6 Outline of the thesis

The goal of this thesis is to extend the approach presented above, which was developed
for incompressible turbulence, to compressible boundary layers. In the incompressible
formulation, the equations are elliptic and the boundary condition is prescribed on the
entire boundary. In the compressible formulation, the equations are hyperbolic and the
flow on the boundaries is determined from the Riemann invariants. Depending on the
characteristic velocities, the boundary conditions are either propagated from within the

domain or prescribed so as to mimic conveyance of information from outside the domain.

The thesis is organized as follows: in chapter 2, we present the numerical method. The
reconstruction tools and the reconstruction method are described in chapter 3. The next
chapters present results for turbulent channel flow. In chapter 4, the flow is subsonic and
the synthetic boundary condition is applied on one wall only. In chapter 5, the flow is

subsonic and both walls are replaced by synthetic boundary conditions. Results for the
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supersonic case are reported in chapter 6. We then present a conclusion and perspectives

in chapter 7.
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Chapter 2

DNS of the compressible channel

flow

2.1 The governing equations for compressible flows.

This study deals with high speed turbulent flows in the continuous regime. The conven-
tional governing equations are the compressible version of the Navier-Stokes equations
which formalize the conservation of mass, of the momentum and the total energy. In the
following, p is density, u is velocity vector, P is the pressure, E is total energy per unit
of mass. All variables are dimensionless by the reference quantities (reference density py,

reference velocity Uy, reference length H, and reference temperature 7p)

The dimensionless equations of, respectively, the mass conservation, the conservation of

the momentum and the total energy conservation read:

ap 0 o
E + a—xj(puj) = 0,
(9 6 87'1-]-
gy ) g, (puig) + 50 = T 1)
OpE 9 0 0
L —(pF Pu;, = —Tu — —a..
875 + 8Ij (p + )uj anTlJUl (‘31;]-%

In these equations, the Einstein summation rule is considered regarding the repeated

indices.

15
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All along the manuscript, the fluid is considered as an ideal gas. The pressure is then
related to the internal energy by the following relationship that is here written by using

the conservative variables [p, pu, pE]:

1pu-pu
P=(r-1) g - 32 22)
p
The dimensionless viscous stress tensor (7) is expressed as:
u(T) Ou;  Ouj 2. Ouy
i — - —(57;'— ; 2
7ij Re (8xj * oxr; 3 J@xk> (2:3)
and the dimensionless heat flux (q) is:
T orT

b T (1) RePrM, 2 o)

Following the equation of state written for dimensionless quantities, the temperature is

related to the pressure and the density with:
P
T = yMy*~—. (2.5)
p

The molecular dynamic viscosity (u) is calculated once the temperature is known ac-

cording to Sutherland’s law following:

1+s
T+ s

p(T) =T~ (2.6)

110.4
Ty

Following this version of governing equations, the flow configurations regarded are defined

with s =

once four constant values are prescribed:

Cp
Cy
tively at constant volume and constant pressure.

e The specific heat ratio (y): v = =, where C, and C, are heat capacities, respec-

poUoH

1(To)
values of the density (pg), the reference velocity (Uy), the reference length scale H,

e The Reynolds number expressed as Re = , which is based on the reference
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and the viscosity (1(7p)), based on the reference temperature (7). The Reynolds

number compares the inertia forces with the viscous forces.

U
e The Mach number: My = EO, where C'is the speed of sound related to the reference
P
values by C? = 7—0.
Po
e The Prandtl number: Pr = % that depends on the fluid and has a specific value

Pr = 0.72 for air.

2.2 The numerical approach for solving the govern-

ing equations

Simulations conducted in this study were performed by using the in-house parallel (MPI)
DNS solver, named CHORUS (Compressible High-Order Unsteady Simulation), that has
been developed at LIMSI for unsteady compressible flow simulations. The ability of the
CHORUS software to compute high Reynolds compressible flows has been demonstrated

on various test-cases in previous studies (see for instance [22]).

The resolution of the governing equations (2.1) is based on a finite volume approach. An
operator splitting procedure is employed that splits the resolution into the Euler part

and the viscous problem:

Q.

at + vV - FEuler S v Fm’sc‘ (27)

Where (). is conservative variable, the left side of (2.7) is the same as the left side in
(2.1). The right side is divergence of viscous flux, which is the same as the right side in
(2.1).

Here, the Euler part:

Qc(n+*) _ an — 5t V- FEUZET(QCH>, (28)

is discretized by means of a one-step high-order coupled time and space scheme, named

OS7 scheme [22] based on a Lax-Wendroff approach, which ensures a 7th-order accuracy
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in both time and space.

Besides, the space discretization of the viscous problem is obtained by means of a classical
2nd-order centered scheme for the viscous flux approximation, coupled to a 2nd-order

Runge-Kutta time integration giving at last a second order accurate scheme in both time

and space:
Qc(nJr**) _ Qc(n+*) + YAV sz'sc(cgc(rLJr*)’VC2C(7L+>1<))7 (29)
1 ot -
QY = S Q) Q) 4 TV FEEQL V). (2.00)

The viscous terms are discretized with centered second order formulae that are expressed

in Appendix A.

The multidimensional resolution is ensured by a directional splitting following the Strang

procedure. All information relative to the numerical procedure can be found in [22].

2.3 Numerical configuration : the compressible tur-

bulent channel flow

We consider a compressible turbulent channel flow configuration where the air flows
in between two horizontal solid walls maintained at the same constant temperature
that limit the channel at the lower and upper bounds. The configuration is shown
in Figure 2.1. The streamwise, spanwise, and wall-normal directions of the flow are
respectively denoted by x, y, and z. The dimensions of the channel are (L, x L, X L,) =
(2m x %7‘(‘ x 2)H, where H is the half of the space between the two horizontal solid
walls and is taken as the reference length scale (H = 1). The corresponding velocity
components in the space directions are respectively denoted w, v, and w. The mesh in
the streamwise and spanwise direction has a constant grid spacing. On the opposite, in
the wall-normal direction, the grid is tightened near the solid wall by using a hyperbolic
tangent function to ensure that the first point above the wall satisfies the constraint

2zt < 1 (expressed in the wall units).
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Figure 2.1: Sketch of the computational domain of the channel flow configuration.

2.3.1 Boundary and initial conditions:

In the streamwise (x) and the spanwise (y) directions, we suppose periodic develop-
ments and periodic boundary conditions are prescribed. In wall normal direction z, a
no slip boundary condition is prescribed on the solid walls and the temperature is pre-
scribed. The density is then calculated by solving the continuity equation to ensure the

conservation of mass.

At the initial state, the streamwise velocity profile in the normal to the wall direction is

defined as:
z2(2H — z2)

Ut=0 = 3 UOT,

(2.11)

and the other components v, and w at set to zero. The initial temperature is related to

the velocity profile following:

3PrUR(1— =)' = 1)
T = Tw(zll - 4 ’

(2.12)

where T, is the dimensionless temperature at the solid wall, considered as the reference
temperature. The initial pressure is set constant and the density is calculated using the
equation of state (2.5):

p= yMgE. (2.13)

The reference time is defined as H /Uy, and in the following, results will be presented in
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time units.

2.3.2 Treatment of the periodic boundary condition in the stream-

wise direction.

In our model (Figure 2.1), to simplify the simulation, the streamwise direction is assumed
to be periodic. In fact, one must notice that the pressure does not evolve periodically,
however the pressure gradient which appears in the Navier-Stokes equations (2.1) can
be considered as periodic. To enforce a periodic flow motion and compensate looses
of the mass, the momentum and the total energy due to viscous effect in the boundary
layers, a macroscopic pressure gradient is added to the channel flow that could be viewed
as an external force applied to the flow. The magnitude of this macroscopic pressure
gradient must be calculated at each time step. To do so, we average the equations of the
momentum components over an horizontal plane, in the z and y directions. For this, we

define an operator, noted < - >,, applied to a variable ®:

1 Ly Ly
d>,,=— d dx dy. 2.14

We then integrate the resulting momentum equation in the wall normal direction (z).
Assuming an upper-lower symmetry on the mean flow, we finally obtain the equation
that drives the mean flow rate (Q,,):

00, 2L, L, 0 <u >y

L,——=—-L, L, L,f — ,
ot v L=l Re a 0z wall

(2.15)

where L., L, and L, are, respectively, the length, the width and the height of the
channel. The extension to compressible flows of the algorithm proposed by Deschamps

[25] is here employed to update the driving force at each time step:

ot

n+l _ rn

[(Q™™ — Qo) + B(Q™ — Q)] (2.16)

with Q) is the target mass flow rate, Q™ is the mass flow rate at time step n 6t, and Q"*!

the one at time step (n + 1) dt. The forecasted mass flow rate (Q"!) is then evaluated
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following;:
20t Ly 0 <u™>
" =Q" — 6t L, L.f Y| all- 2.17
Q@ Q y L f1 + e M as |watt (2.17)
From numerical experiments [46], the define values of the constants in incompressible
2 .
channel flows are o = 5P and [ = 50 Same values of a and [ have also been used in

the compressible channel flow. Detailed calculations to obtain the macroscopic force are
reported in Appendix B for 3D flow. The external force calculation has been introduced

to the CHORUS Software and has already been validated on channel flow test-cases.

2.4 Results of the Direct Numerical Simulation

2.4.1 Statistical treatments of simulation data

We would like to describe here the statistical treatment we applied to extract information

from the simulation data.

In the following, < - > represents the mean value in time and over the plane z = constant,

expressed as:

1 tend
<c1>>:—/ < ® >, dt,
tend - tstart tstart

where 44+ and t.,q are the dimensionless times corresponding to the beginning and the

end of the mean procedure, and < - >, is the average operator given by (2.14).

As the near wall region is dominated by the viscous shear stress, an adequate dimen-

sioning of the quantities in this region is achieved by using the friction velocity u,:

Tw
Ur = >

Pw

where p,, is the density at the wall. 7,, is the shear stress tensor evaluated at the wall:

d<u>

Tw = — : (2.18)

wall

with pu, the viscosity at the wall. Quantities are mostly presented by using the wall
Hw
Puw Ur

units based on u, as the reference velocity, and the viscous length scale ¢, = as

the reference length scale.
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Puw Ur Z

w

For instance, lengths are expressed in wall units as: 27 = Rey

, where Rey =

Uy H <u>
Po 0 2 Velocity is expressed as ut = h
(o) Ur

the numerical simulations of bounded flows is the Reynolds number based on the friction

. One of the control parameter used in

velocity:

w Uy H H
Pullr 7 _ Repy=—. (2.19)

v

RQT = RGH

[=9)

o

The development of the turbulent boundary layer on a horizontal wall are often judged
on the quality of the normal to the wall profile of the mean streamwise velocity that

must reach a classic profile. This profile usually presents several regions:

e The viscous sublayer that is situated very close to the wall. The wall damps the
normal to the wall fluctuations and the flow is mainly dominated by the wall
shear stress. As so, the wall shear stress (2.18) can be considered as constant in
this layer, and consequently the velocity recovers a linear variation towards the

direction normal to the wall:

e The outer layer is mainly scaled by the macroscopic quantities, let say the external
velocity U, and the boundary layer thickness dor. Consequently, the streamwise
<u>-=U

z
velocity profile follows a velocity-defect law where ———— is a function of —.
Ur CL

e In between, an overlap layer exists, named the inertia region where an equilibrium is
reached between the production of the turbulent kinetic energy and its dissipation.

This layer is characterized by a logarithmic velocity profile:

ut = %log (%) + G, (2.20)

where « is the Von-Karman constant, x = 0.41. G is a constant determined through
experiments; the generally admitted value is G = 5. In compressible flows, a more
complex law is preferred to the classic log-law, that takes into account the variation

of the Mach number and the temperature:

U
24— — B
1 U, 1 B L [1 .
Z arcsin m + Z arcsin m = Ue |:E 10g(2 ) + G:| ) (221)
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Ty

1.

with the A% = — 1. T, is the temperature at the

1o
T

center of channel.

e A buffer layer also exists in between the viscous sublayer and the inertia region
where the mean streamwise velocity profile switches from the linear profile to the

logarithmic profile.
The generally admitted limits of these various regions are:

e the viscous sublayer: z* < 5;
e the buffer layer: 5 < 2™ < 30;

e the logarithmic region: 2z > 30

Logarithmic and outer layer regions exist at sufficiently high Reynolds number. Their

extent largely depends on the Reynolds number, as seen in Figure 2.2.

High Re

> - - == === | jnear
- =eessecee. Logarithmic

11.067 In(y*)

Figure 2.2: Mean streamwise velocity profile in the wall normal direction: influence of
the Reynolds number on various regions (from [69]).

Finally, if we assume that the velocity fluctuations (u’) can be evaluated as:

u=u—<u>,
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the components of the Reynolds shear stress( < u’ ® u’ >) are calculated as:

<y >=< uiuy > — < ug >< uj > (2.22)

2.4.2 DNS results of the subsonic channel flow

We consider a periodic plane channel flow bounded by two isothermal solid walls sepa-
rated by a gap of L, = 2 H. The Mach number is Ma = 0.5. The Reynolds number
based on the bulk velocity and the channel half-height is Rey = 3000, corresponding to a
friction Reynolds number equal to Re, = 180. Present simulations have been conducted
by using the unlimited OS7 scheme, described previously. This test-case have largely
been studied through both DNS and LES. Although incompressible, the DNS reference
results from J. Kim et al. [38] are generally taken as a reference solution. The present

results will be compared with these reference results.

The mesh of this test-case is 97 x 97 x 129 in the x x y X z directions, respectively. As the
initial state corresponds to the solution for a laminar flow, a transition towards turbulence
occurs during the simulation after a long time integration. After this transition, statistics

are calculated over a very long time.

The mean streamwise velocity profile (< u >), non-dimensionalized by the friction veloc-
ity, is plotted versus the wall normal direction expressed in wall units (z*) in Figure 2.3.
The convergence of the statistics of mean values in the present DNS can be judged on the
perfect fit obtained between the profiles from the upper and the lower half of the channel.
A logarithmic law is clearly obtained in the present results which fits the classical log-law

distribution (Figure 2.3).
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Figure 2.3: Profiles of the mean streamwise component of the velocity (ut) versus the
normal to the wall direction (2%) in the upper and the lower half part of the subsonic

channel flow.

3

—#—RMSof U 1 ; . . .

—=—RMSof V
—8— <uw>

L

|
2t +
\
L4
Lare Nﬁ&
| n
t s
41 1gﬁﬁa.ﬂqﬁﬁﬂg$ Mﬁ
1 s PV H.ﬁ,%
+ R PRROODOOD0660 o o o
3

0.2 0.4 0.6 0.8 1
z z

Figure 2.4: Profiles of the Reynolds stress components in the subsonic channel flow,
normalized by the friction velocity u,: rms values of the velocity components (< wju}; >),
on the left, and the turbulent shear stress (< v'w’ >), on the right.

Profiles of the rms values of the velocity components (< uju >) as well as the turbulent

shear stress (— < «w/'w’ >), normalized by the friction velocity, are plotted versus z* in

Figure 2.4.

The general shape of the profiles is in good agreement with the reference that has been
shown in Figure 2.5. The maximum values in the rms profiles and their locations seem

to be rather well predicted. As far as the channel flow is fully developed and reaches

‘ 1 O<u>
the equilibrium state, the total shear stress (i.e. — < v'w’ > +_8—) recovers a
z

Re H
straight line. Dimensionless by the wall units and the friction velocity, the slope of this

line is —1, [38]. The present computation recovers the right linear distribution of the
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rms rms of w | rms of v | rms of w
Max value in [3§] 2.7 1.1 0.83
Position of max value in [38] 0.1 0.18 | 0.26
Value on center in [38] 0.8 0.65 | 0.65
Max value in the present DNS 2.6 1.1 ] 0.88
Position of max value in the present DNS 0.08 0.18 | 0.25
Value on center in the present DNS 0.83 0.65 | 0.65

Table 2.1: Maximum values and their locations in the profiles of the rms values of the
velocity components from our DNS results on the subsonic channel flow compared with
the reference values from [38].

turbulent shear stress in the center of the channel (Figure 2.4) since the viscous diffusion

is negligible in this region.
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Figure 2.5: Profiles of the Reynolds stress components in the incompressible channel
flow coming from [38]: rms values of the velocity components (< uiu} >), on the left,
and the turbulent shear stress (< v'w’ >), on the right.

Although the general shape of the profiles is in good agreement with the reference, there
however exists some discrepancies compared with the reference values. The maximum
values in the rms velocity profiles and their locations are reported in Table 2.1 and
compared with the reference values from [38]. We can see that the maximum values are
rather well predicted although some discrepancies are evidenced mainly attributed to
the convergence of the statistics that is certainly not fully reached for the rms values.

The locations of the maximum seem to be rather well predicted.

In the following, theses results are considered as statistically converged enough to apply

the Proper Orthogonal Decomposition.
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2.4.3 DNS results for the supersonic channel flow.

We here consider the same geometrical configuration with however a higher Mach number
(Ma = 1.5). The Reynolds number based on the bulk velocity and the channel half-
height is Rey = 3000, corresponding to a slightly higher friction Reynolds number equal
to Re, = 220. This test-case has largely been studied through both DNS and LES, and
the reference solution generally considered is from G. N. Coleman et al. [20]. The present

results will be compared with these reference results.

The mesh of the supersonic test-case is 257 x 161 x 161 in the x x y X z directions,
respectively. The mesh dimenion is supersonic flow is larger than that in subsonic flow
to well capture the sturucture of turbulence. In the supersonic case, the transition
towards turbulence occurs after a very long integration time, much longer than in the
supersonic test case. Once the turbulent flow is fully developed, statistics are calculated

over an integration time equal to t.,q — tsere = 75 time units.

Mean profiles of the density, the static temperature and the streamwise velocity compo-
nent are plotted versus the normal to the wall direction in Figure 2.6. The streamwise
velocity component is dimensionless by the friction velocity and z is expressed in wall
units, and the profiles of v in both bottom half channel and top half channel are the

same.

A logarithmic law is clearly obtained in the present results which fits the classical log-law
distribution (Figure 2.6, bottom); its extent is however weaker than in subsonic case.
Wall normal profiles of the temperature and the density (Figure 2.6) recover classical
distributions. The mean density at the wall reaches 1.355 while its value at the channel
center is 0.98. These values are in complete agreements with the reference values given
in Table 2.2. The mean temperature is unity at the wall since it is the value taken as
reference for the dimensionless variables, and reaches 1.37 at the channel center, which

is weakly underestimated compared with the reference value (Table 2.2).
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Case M, M. Re, Re. By, lp) (oc) (T )

Reit 0 0 3250 180 O i ; 1 |
| A LS02  DO%2 2760 222 (.049 1.335 FEE{H] 137 1.21532
B 2975 0.116 2872 451 0137 2388 0952 2490 1.8Y4

1

AX 1742 0095 3486 192 0000 1006 LOOL 1001

Table 2.2: Time averaged results from [20]. { corresponds to the incompressible DNS
results from [38].
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Figure 2.6: Mean profiles in the supersonic channel flow: mean density (top left), tem-
perature (top right) and mean streamwise velocity component (bottom).

Profiles of the rms values of the velocity components (< ufu; >) as well as the turbulent
shear stress (— < v/w’ >), normalized by the friction velocity, are plotted versus the wall
normal direction (z) in Figure 2.7. These profiles can be compared with the DNS results
obtained by R. Lechner et al. [44] for the same flow configuration, plotted in the right of
Figure 2.7. In this figure, incompressible results [38] are also reported to compare with.

Present DNS profiles compare rather well with the DNS results of [44].
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rms rms of w | rms of v | rms of w
Max value from [44] 2.8 0.95 | 0.7
Location of max value from [44] 0.12 0.2 ]0.34
Value on the center from [44] 0.9 0.72 | 0.72
Max value in present DNS 2.7 0.98 | 0.75
Location of max value in present DNS 0.1 0.22 | 0.35
Value on the center in present DNS 0.9 0.73 1 0.72

Table 2.3: Maximal values and their locations in the profiles of the rms values of the ve-
locity components from the present DNS results on the supersonic channel flow compared
with values obtained from [44].
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Figure 2.7: Profiles of the Reynolds stress components in the supersonic channel flow
(< wu, > and — < w'w’ >), normalized by the friction velocity u,: present DNS results,
on the left, and, on the right, reference profiles from incompressible DNS [38] (red line),
and from supersonic DNS (Ma = 1.5) [44] (green line).

To better compare with, we reported, in Table 2.3, the maximal values of the rms velocity
profiles and their locations in the normal to the wall direction z. The values at the center
of the channel are also reported in this table. Although some slight discrepancies are
noticeable that might be attributed to a weak statistical convergence of the rms values,
we can think that the present DNS give results that are validated and can favorably be

used for model decomposition.
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2.4.4 Comparison between results of subsonic flow and super-

sonic flow

To compare results of the subsonic channel flow with those of the supersonic channel
flow, mean profiles of the density, the viscosity and the streamwise velocity are presented
in Figure 2.8. The present results can be compared with results of [27] in Figure 2.9.
who explored the compressibility effects on turbulence in channel flow by studying four
configurations: Ma = 0.3 with Re, = 181; Ma = 1.5 with Re, = 221; Ma = 3.0 with
Re, = 556; and Ma = 3.0 with Re, = 1030. The two first configurations approximately
correspond to the present simulations. The present DNS results favorably compare
with results coming from the literature and the effects of compressibility are very well

reproduced.
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Figure 2.8: Profiles of the mean quantities for the two Mach numbers: Ma = 0.5 in black,
and Ma = 1.5 in red. Top left: mean density profile versus z. Top right, mean dynamic
viscosity profile versus z. Bottom, mean streamwise velocity component normalized by
the friction velocity (u™) versus z7.
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Chapter 3

Reconstruction of synthetic

boundary conditions

3.1 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition is a statistical technique introduced by Lumley [48]
in Turbulence to identify the spatial patterns which are most likely to be found in the
flow. This technique exists in a variety of scientific fields and under different names such
as Empirical Orthogonal Functions in Climate Science, Principal Component Analysis
in Statistics. Although it was introduced in the 60’s, it has taken some time for the
community to recognize its appeal. It has been especially popular in recent years as the
advances of metrology and the ever-increasing computational power has led to the gener-
ation of very large databases of instantaneous fields. Proper Orthogonal Decomposition
is particularly suited to extract the salient features of extensive databases and therefore

constitutes a useful reduction and analysis tool.

To present the method, let us consider a fluctuating spatio-temporal field Q(z, t)
< Q(z,t) >=0,

where < - > is a temporal average. The quantity () can be a scalar or a vector, and

can aggregate different physical quantities. Proper Orthogonal Decomposition of the

33
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field @) consists in writing the field as a denumerable superposition of spatial modes, the

amplitude of which varies in time
Q1) =) an(t)pn(x). (3.1)
n=1

The modes ¢ are obtained as the eigenfunctions related to the following maximization

problem
< (Q(z,1), ¢(x)) >
(¢(x),p(x))

where (.,.) defines an inner product over the domain. In all that follows we will use the

U = Mazx

(3.2)

standard inner product method.

3.1.1 Direct Method

The solution of the maximization problem leads to the following eigenvalue problem

(Fredholm integral of the first kind [40]):

(< Q(z,1), Q' t >, (') = Ap(x). (3.3)

We can see that < Q(z,t)Q(a’,t) > is the autocorrelation tensor of ) at zero time lag.
The operator is symmetric positive definite, so that the eigenvalues are all positive and
the eigenfunctions are orthogonal. Moreover, due to compactness of the operator, the

eigenvalues are denumerable and can be ordered

M>A2> >\

The eigenvalues ), represent the time-averaged contribution of the mode n to the flow

energy - as defined by the inner product (., .).

By convention the eigenfunctions are normalized and the amplitudes a,(t) which can be

expressed as

an(t) = (Q(x,1), on()), (3.4)
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satisfy
< a,(t) >=0, (3.5)

and

< an()am(t) >= Gmnin. (3.6)

In the case of homogeneous flow in one direction x, the spatial autocorrelation tensor

depends only on the separation

< Q(z,1), Q. 1) >= f(z — ), (3.7)

and in that case it is straightforward to show that the spatial POD modes are in that

case Fourier mode:

bn(x) = ™, (3.8)

Where k is wavenumber. This means that the problem is decoupled in the homogeneous

direction and that the autocorrelation tensor can be considered directly in Fourier space.

If we consider a vector () of p dimensions which depends on ¢ spatial dimensions, the
dimension of the eigenproblem is pq. The autocorrelation tensor € is typically computed

from N samples:

C =< Q(z,t)Q(2',t) >~ %Z Qx,t,)Q (2, t,). (3.9)

n=1

If we have a fully inhomogeneous problem, for a Cartesian grid with resolution (N,, N,, N,),
the number of spatial dimensions is ¢ = N, /N, N,. If the problem is homogeneous in the
x direction, one can decouple the problem in Fourier space and it is only necessary to
solve N, /2 problems of size pq’ where ¢’ = N,N,. In the case of the turbulent channel
flow, the flow is homogeneous in two directions, and one needs to solve N, N, /2 problems

of pN, dimensions.

We note if we use the standard inner product, the eigenproblem will be discretized as

< Ql(l’i,t),Qm(ZL’j,t > qu(xj)wj = /\QZSZ(JZZ), (310)
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where w; > 0 is the weight associated with the spatial discretization. In the case of an
irregular mesh, this makes the problem non-symmetric. However, multiplying on each
side by wz-1 /? makes the problem symmetric again since we have

w’ < Qi )Quilws,t > b)) w0} = Ay ()], (3.11)

7 %

If we let W = diag([wiﬂ, . ,w}/Q]), we can then solve for the eigenfunctions ¢, = W¢

of the operator WCW.

3.1.2 Method of snapshots

In the case where the flow is not homogeneous, application of the direct method is
very costly as the dimension of the problem in space is very high. Since the spatial
autocorrelation tensor is computed from N snapshots, one can see that the limiting
factor of the problem is the minimum of N and pg. In many cases N << pq, so that
the direct method is unnecessarily cumbersome. The idea is therefore to look for the N

modes ¢ as a combination of the N snapshots Q(x,t,) [42]:

Pn(2) = AnpQ(z,tp). (3.12)

Injecting this in (3.3), replacing the expression for the autocorrelation tensor with its
sampled mean, and using the assumption that the NV snapshots are linearly independent,

leads to the new eigenproblem

1
N(Q(x7tn)aQ($7tp))qu = Ay (3.13)

One can show that

Anp = an(t,). (3.14)

This is equivalent to solving the problem in the space of snapshots instead of physical
space. In this thesis, since we consider a plane turbulent channel flow, both approaches

can be and have been implemented. We use the following definitions:
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e For the method of snapshots, the standard inner product is defined as
Q. 2,1), 6w,y 2 / / / Q. y. 2, 0)6(x,y, 2)dedydz.  (3.15)

e For the direct method, we will use the Fourier transform of the field in the hori-
zontal directions (the channel is periodic with length L, and L, in respectively the

streamwise and the spanwise direction) so that
Q(z,y,2,t) ZZQW%‘ z,t)e 20m % 2m7. (3.16)
ke  ky
The inner product is therefore defined for each wavenumber:

(Qrot, (2:1), rogi, (2 /kaky 2, t) P, (2)d2 (3.17)

where * refers to the complex conjugate.

To alleviate notations and avoid confusion with the horizontal wavenumbers, we will

indicate the index of the POD mode as a superscript in Fourier space and write

Q,k, (2, 1) Zazzky ¢kzky( z). (3.18)
n=1

3.1.3 Symmetry

The comparison of the two methods can be done in the context of symmetry. The

turbulent channel flow satisfies on average the following symmetries (see Figure 3.1):

translation symmetry in the streamwise direction x

translation symmetry in the spanwise direction y

reflection symmetry with respect to a vertical plane y = cst

reflection symmetry with respect to the horizontal mid-plane z = 1
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Figure 3.1: Model of channel for symmetry.

No symmetry is enforced through application of the method of snapshots to an arbitrary
set of realizations. In contrast, applying the direct method in Fourier space means
enforcing the first two symmetries. To enforce the following two symmetries, one can
add snapshots which are the image of the original snapshots through the symmetry, thus
enlarging the database.

In practice, we enforced the fourth symmetry in both approaches by adding to each
snapshot of the database its image through the mid-plane. The domain of definition of
POD was chosen to be the full boundary layer that is one half of the channel.

3.1.4 Convergence

A key issue is the convergence of POD, i.e its ability to approximate a field with a finite
number of modes. Mathematically, the set of eigenfunctions associated with the con-
tinuous spatial autocorrelation tensor is infinite. Numerically, the set of eigenfunctions
is finite and is typically determined by a finite set of fields. Its size corresponds to the
numerical spatial discretization for the direct method and the number of samples for the

method of snapshots.
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field Q onto
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Figure 3.2: Schematic illustrating the POD convergence issue: a field that is not part of
the original set of snapshots may differ from its projection onto the POD basis.

However it is important to realize that there is no guarantee that a field that is not part
of the samples used to compute POD may lie entirely in the finite-dimensional space
spanned by the POD basis as shown in Figure 3.2. The difference may not be small and
will depend on the convergence of POD, i.e its ability to capture a significant fraction
of energy with a limited number of modes. Since POD is energy optimal, we expect
the energy of a field to be contained in a limited number of structures. However the
convergence properties of POD will vary depending on the flow. As an example, 99.9 %
of the controlled wake flow behind a cylinder at a Reynolds number of 200 [9] can be
represented with 14 POD modes. The convergence of POD is much slower in turbulent

channel flow [37].

One final issue is the inclusion or exclusion of the mean flow. What happens if we include
the mean flow in the decomposition? In most cases the mean flow is orthogonal to the
fluctuations in the sense of the defined inner product, and therefore constitutes an extra
mode, which is typically the most energetic. However the temporal average of the first

coefficient is no longer zero.

3.1.5 Results

POD can be applied to any combination of variables. We chose to apply it independently
to the density p, the momentum pu, pv, pw, and the energy pe. We present spatial
POD modes for both methods. We used 100 samples, separated by At = 6.25H/Uj.
We indicate between [ | the variables over which POD is performed jointly. We show
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results for [p], [pu, pv, pw|, [pe]. Here [p], [pu, pv, pw], [pe] means that POD is applied
independently to 3 variables, p, pqg = pu, pv, pw, and pe. The spectrum is shown in
Figure 3.3 for the method of snapshots. The eigenfunction ;‘u:Q is shown also in Figure

3.3.
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Figure 3.3: Left: POD spectrum for density, momentum, and internal energy. Right:
eigenfunction ¢2,.

Figure 3.3 shows the dominant fluctuation (n = 2) in the right (the mean corresponds

ton=1).

Figure 3.4 shows the dominant mode in Fourier space for the wavenumbers (I = 0, k = 4).
We can see that the dominant eigenfunction (¢, )(¢pw) < 0, which corresponds to the

fact that the Reynolds stress < pu'w’ > < 0.

3.2 Linear Stochastic Estimation

3.2.1 General definition

A complementary technique to POD is constituted by Linear Stochastic Estimation.
Linear Stochastic Estimation of coherent structures was introduced by Adrian and Moin

[3] and reviewed in [2].

It consists in estimating the flow structure given a data event E. The best mean square
estimate of @) given the data E is the conditional average of @ given E, (Q|F). In
Adrian’s approach, @) is constituted by the velocity field u. If the elements of ) and E
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Figure 3.4: POD dominant mode (n = 1) in Fourier space for the wavenumber pair
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mode gb,lczky (pv) . Bottom left: Dominant mode of ¢}Cz,€y(pw). Bottom right: POD
spectrum for velocity pu, pv, pw.

are joint normally distributed, it is well known that (u|E) is a linear function of E [2]. If
this is not the case (Q|F) can only be approximated as a linear function of the event data
E (the approximation can be extended to include quadratic terms). To determine this

function, we use observations of () given the data E. Let us call ()’ the linear estimate

of (Q|E). We have
M

Q; = Z L;;E; (3.19)

j=1
where M is the number of data events for which observations exist. The estimation

coefficients L;; are chosen to minimize

M
Min|(Q|E) =Y LyE;|?
j=1
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This leads to the following system of M x M linear equations:
> < EjE;, > Ly =< EBQ; > for all jk=1,... M, (3.20)
j=1

where < . > represents an ensemble average. The key is to identify the structure or eddy

based on the event E.

3.2.2 Application

We now explain how this method can be applied to our purpose, which is to estimate
the boundary condition )y on a plane hg given the field ) in the upper layer hg < z < 1
shown in Figure 3.5. We will consider the method of snapshots (physical space). The

Figure 3.5: Model for region hy < z < 1.

derivation in Fourier space is strictly similar. The idea is to solve the problem in the POD
space, that is to determine the projection of Qg on a set of POD modes ¢,,, (n =1,..., N)
corresponding to the full reference domain 0 < z < 1. We therefore look for )y such

that

Mz

Qo(z,y, 20, an(t)on(x, Y, 20). (3.21)

n=1
There will therefore be many variables )y as there are independent compositions. For
instance, if POD is applied to all variables, there will be one field (). If it is applied

separately to the density, momentum, and internal energy, there will be three fields @Q:
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QF, Q" and Q*°. In the domain, the field @) is characterized by

Q(z,y,2,t) Zan Yon(z,y, 2), (3.22)

where

:/ / Q x, Y, 2, 0)bn(x, y, 2)drdydz. (3.23)

The question we wish to solve is the following: at an instant t, can we determine a,(t)
from the knowledge of the flow field in the domain hy < z < 1?7 The procedure is similar

to what has been in described in [67].
If we let

=/ / Q.. 2,t) - u(, y, 2)dadyds, (3.24)
=0 Jy= z=ho

the best estimate for a,, (n =1,...,N) given b,, (n = 1,..., N) is given by the system
Ly N

-/ / / S ()62, 2) - bule,y, D)dadydz,  (3.25)
=0 Jy= z=hgo p=1

which can be rewritten as:
bu(t) = Rypay(t), (3.26)
where

sz/ / bo(, 4, 2) - Su(,y, 2)dadyds. (3.27)
T Yy z=ho

Similarly, in Fourier space, one will solve [67]

O, (1) = Ry, iy, (1), (3.28)

where

R = / Dhok, (2) - Oy, (2)d2. (3.29)

If hg =0, R = I (full domain). The matrix R represents the interaction of the structures
on the restricted domain hy < z < 1. It is a linear problem of size N. However it is
ill-conditioned due to the projection issues mentioned earlier. Solving the full matrix

problem will typically result in large amplitudes, especially for high-order modes. One
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way to avoid this problem is to use regularization such as Tikhonov-based regularization
[21]. We chose instead to directly filter the matrix based on the physical meaning of the
matrix coefficients. If the value of kg is small, R should remain sufficiently close to the
identity. This is true for the direct POD method in Fourier space where R is defined for

each horizontal wavenumber pair.

Since R, = fIL:’”O fyL:yO lezho Op(, 7, 2) - O, y, 2)drdydz, we expect R = R + €.

R 0 .. 0 0 0 €12 .. €in1 Ein
Ry1  Roo ... 0 0 0 0 e E2p-1 €2
R, = +
R,v1 0 ... Ry1n1 O 0 en—12 - 0 En—1n
I Ry 0o .. 0 R, | I 0 en2 - Enmna 0 |

R can be approximated with its diagonal part. However in the case of the method of
snapshots, the first mode corresponding to the mean flow has so much energy that its
interaction with all other modes cannot be neglected. We therefore keep the first column
and the diagonal of the matrix R, and we express these terms R. For the remaining term

€, we assume it is very small, so R ~ R.

We noticed that for some higher-order modes, the diagonal term is no longer large with
respect to the other terms in Figure 3.6. Since this is likely to bias the estimation
strongly, we excluded the amplitudes of modes n from the reconstruction for which R,
was smaller than a threshold ts = 0.3 [67]. The threshold level was chosen empirically.

Variations in the level did not affect the reconstruction significantly.
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Figure 3.6: Distribution of R,, (ho = 0.1).

3.2.3 Results

With the estimation method, we could obtain estimated temporal coefficients a¢*(t), the

different fields can be reconstructed from the estimated amplitudes

N
QF (0,9, 2,8) = 3 a (Dula,y, 2). (3.30)
n=1

The reconstruction error can be measured by the integral

= JLTIQ w y, hot) = Q(w,y, ho, ) Pdady
o= \/ I J1Q(, y. ho, t)[2dzdy ' (3.31)

Figure 3.7 shows the reconstruction error between a field at the plane hy and its recon-

struction. The error is round-off error, as expected.
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Figure 3.7: Reconstruction error between the real field and its projection for a field in the
POD snapshot set - Primitive variables in POD reconstruction and boundary conditions.
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Figure 3.8: Reconstruction error of different physical quantities for the same field as in
Figure 3.7- Primitive variables in POD reconstruction and boundary conditions.

Figure 3.8 shows the reconstruction between the real field at hg = 0.1 and the field
estimated from the data z > 0.1, there, all 200 modes are used in reconstruction of p
and F, 128 modes are used in reconstruction of [u, v, w].

We continued the simulation and chose a field that does not belong to the set of snapshots
used to compute POD (the time separation with last snapshot was 6 time units). The

errors between the field and its projection are represented in Table 3.1.

eQ p u v w E
values | 4.84E-3 | 0.19 | 0.89 0.9 1.63E-2

Table 3.1: Errors eq for field and its projection measured on the plane hy = 0.1.

Comparing Figure 3.7 and Figure 3.8 allows us to evaluate the performance of the esti-
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mation method.

From Table 3.1, we can see that the discrepancies of density and energy on boundary
plane are very small. The discrepancies of streamwise velocity v on boundary plane are
limited, but could not be neglected and the discrepancies of spanwise velocity v and the
wall-normal velocity w are not small. This means that the cross-stream components are

not very well recovered by their projection. This may make the use of rescaling necessary.

3.3 Reconstruction method

In this section we present the reconstruction procedure used to derive the synthetic wall
boundary condition. We first give an overview of synthetic boundary conditions, focusing

first on inlet boundary conditions. We then detail the reconstruction algorithm.

3.3.1 Inlet Synthetic boundary conditions: rescaling approaches

Determining appropriate boundary conditions is a key issue for the simulation of flows,
as on the one hand it must describe the physics and on the other hand it must be defined
in a suitable way for numerical resolution. In this section, we ask the question: how is

it possible to define a boundary condition that mimics the physics of the flow?

The simplest answer would be to superpose random fluctuations on a desired mean pro-
file, where Q =< @ > +Q¥. This method has been implemented with some success. Lee
et al [45] used this method for direct numerical simulation of compressible turbulence.
Le and Moin [43] generated anisotropic turbulence for the generation of inlet boundary

conditions for a backward facing step.

The amplitudes of the fluctuations can be set to satisfy some statistics such as the
Reynolds stresses but typically these statistics are second-order and computed at one
point only. It is very difficult to impose phase relationships between the fluctuations and

higher-order correlations cannot be satisfied and the flow lacks turbulent structure.

As a result, the success of these methods has been limited. In particular such character-
istics of the turbulent boundary layer as the momentum thickness or wall friction are not

always recovered. This led Aksevoll and Moin [4] to introduce a auxiliary or precursor
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simulation, from which they could select a location where these characteristics were close
to the desired values. A simple auxiliary simulation is that of a periodic channel flow in
both horizontal directions. Such a simulation was used by Kaltenbach [34] to generate
inlet flow conditions for LES of a plane diffuser. This idea can be extended to a turbulent
boundary layer. However the boundary condition at the top of the domain has to be
modified to reproduce that of a free-stream flow, which is done with a symmetry condi-
tion at the top of the channel (which ensures that the vertical velocity is zero). However,
unlike the boundary layer, a velocity field in a channel is characterized by a non-zero
mean advection. To address this issue, Spalart and Leonard [76] added source terms
to the Navier-Stokes equations which led to an equilibrium spatially evolving boundary
layer with a correct momentum thickness and wall friction. A considerable simplification
of the method was provided by Lund et al [49] who only modified the boundary condi-
tions of the equations. The idea is to use as an inlet boundary condition the velocity
field extracted at the outlet and properly rescaled using Spalart and Leonard’s ideas.
The mean flow is rescaled according to the law of the wall in the inner region and the
defect law in the outer region. The velocity fluctuations are rescaled with the local tur-
bulent intensity. In order to avoid over-determination of the problem, the momentum
thickness is directly imposed at the inlet from the computation of the wall friction using
a correlation similar to the Ludwig-Tillmann correlation [49]. This recycling method has

been popular over the years [43] and several variants have been proposed [87].

3.3.2 Inlet synthetic boundary conditions: Structure-based de-

compositions

A way to limit the lack of correlation between the fluctuations is to use structure-based
decompositions, where the velocity field is represented as a superposition of coherent

structures.

3.3.2.1 The synthetic eddy method (SEM)

In a series of papers [8; 31; 87], a method called the synthetic eddy method was developed.

The method is able to reproduce first and second order one point statistics as well as
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characteristic length and time scales. The shape of coherent structures is also correctly

recovered.

We now briefly describe the principle of the method. Let us consider a shape function
f» defined over a one-dimensional support [—0/2,d/2] which satisfy the normalization
condition
1 6/2
| fix)dz=1. (3.32)
0 J-5/2
This shape function is supposed to represent an eddy or a turbulent spot defined by its

position z; and its length scale o;.

Examples used include a tent function f;(r) = 1 — r/L where r = \/y2? + 22 + (Upt)?
(see Figure 3.9).

1.5

Figure 3.9: Tent like function defined by f;(r) =1—1r/L , where y =0, 2 =0, L = 2,
Ut = 0.

The contribution of the turbulent spot i to the velocity field is given by

u(z) = € fo(zv — ), (3.33)

where ¢; is a random value which is either +1 or -1 and z; is a random position on the
interval. This can be extended to three dimensions.

The method has been applied to turbulent isotropic turbulence [30]. Benhamadouche
et al [8] applied the method to derive an inlet boundary condition for DNS and LES of
turbulent channel flow. They used a 2D vortex method for the cross-stream components

of the velocity and a Langevin equation for the streamwise velocity component to mimic
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a Reynolds stress transport model. A good agreement between the reduced model and
DNS was observed. The method can be useful to generate synthetic turbulence on the
interface of a hybrid RANS/LES flow solver. A comparison between the SEM method
and recycling approaches has been carried out by [36]. Recently, the SEM method has

been recently extended in order to include thermal fluctuations [56].

3.3.2.2 POD-based reconstructions

We have seen that POD provides an energy-optimal basis to decompose a field. POD
modes therefore constitute natural candidates for structure-based reconstructions. The
requirement is that these modes are determined a priori, which requires an early com-

putation. If the field () can be represented as
Qz,t) =Y an(t)pn(x), (3.34)

with a known basis ¢, the question is to determine the amplitudes of the modes a,,(t).

The Poitiers group [26; 61; 62] has been instrumental in developing methods to provide

amplitudes, ranging from random perturbations to coherent structures.

Original Synthetized

Figure 3.10: Two point correlation Ry (y,y*) of the original velocity fields (left) and
synthetic velocity fields (right): positive increment between contours of 0.5, —: negative
increment between contours of -0.1 (from [61]).

Perret et al [61] used a spectral transfer function to determine the spectral energy content
of the temporal amplitudes to generate turbulent inflow conditions for the large-eddy

simulation of a mixing layer as shown in Figure 3.10. This method was further refined
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in [62], where the flow was separated into coherent and incoherent parts. The most
energetic structures were represented with a low-dimensional model derived from the
experimental database, while Gaussian amplitudes were used to represent the small-scale
incoherent motion. A variant of the method was proposed by Druault et al. [26] who
used linear stochastic estimation to identify the large scales of the flow from experimental
measurements. More recently, Abéguilé et al [1] have tested neural networks to generate

inlet conditions for LES of wall-bounded flows.

3.3.3 Wall Synthetic boundary conditions
3.3.3.1 Current approaches

Bergmann and Iollo proposed a domain decomposition method which couples a high
and a low-fidelity model to reduce the computational cost of flow simulation [10]. The
idea is to identify parts of the domain which are not strongly sensitive to the choice of
the design parameters. In these areas a low-fidelity simulation is sufficient and can be
achieved from a POD-based projection - the spatial POD modes are pre-determined from
an earlier computation with a high fidelity simulation on the full domain. They divide
the field into a small portion where it is solved by high-fidelity model, and the field in
other regions is described by a Galerkin-free Proper Orthogonal Decomposition. They
proposed a prediction error indicator for splitting the computational domain between the
high-fidelity and low-fidelity regions and coupling the two solutions. POD reconstruction
is then used in the low-fidelity regions while the high-fidelity solver is applied only in the

region where the flow field depends strongly on the choice of the design parameters.

In channel flow turbulence it is quite challenging to define a synthetic boundary condition
near the wall since the wall region is crucial for the generation of turbulence. A large
part of the turbulence production occurs in the layer z* < 50 [32]. Special care must
therefore be given to the synthetic boundary condition so that the relevant pattern
dynamics can be reproduced. In incompressible flow, a reconstruction procedure was
developed to reconstruct the field on the boundary of a reduced domain which excludes
a portion of the wall layer. Due the incompressible formulation, only the velocity field

was considered and the velocity field was prescribed on the entire domain. In the next
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section, we extend this procedure by adapting it to the compressible formulation, that

is: i) multiple physical quantities, and ii) in the context of wave propagation.

3.3.3.2 The reconstruction procedure

A pre-requisite for the procedure (step 0) is the POD basis for the reference flow. Which
means the POD basis is computed from reference simulation with snapshot methods.

Then at each time step, the reconstruction procedure can be divided into several stages:

1. Estimation of the amplitudes using linear estimation
2. Reconstruction of the velocity field

3. Rescaling of the field

4. Determination of the characteristics and construction of the boundary condition

We will focus on the following aspects:

e the choice of the POD variables (step 0):
- primitive or conservative

- selection of variables to aggregate

e the definition of the rescaling (step 3)

e the association of the variables with characteristics (step 4)

We now describe the last two steps.

3.3.3.3 Step 3: Rescaling

In the previous chapter we mentioned the convergence issue of the truncated POD basis.
Especially in the case of the method of snapshots, owing to the complexity of the flow,
it is almost certain that a field that does not belong to the original set of snapshots will
not coincide with its projection on the POD basis. The projected flow will therefore lack

energetic content.
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Another reason for an incorrect energetic content has to do with the approximation we
use for R ~ R, which results in an estimation error. It is not possible to control the
magnitude of these errors. There is therefore no guarantee on the estimated amplitudes

of the POD modes.

Since a correct energetic content in the fluctuations is essential for turbulence to be
sustained, a rescaling factor was therefore introduced in order to ensure that the energetic
content of the fluctuations is sufficient. The idea is to impose that the rms level of the

reconstructed fluctuating field matches the reference level on the boundary plane z = hy.

For a given quantity (), we define a factor fgo which compares the rms level of the quantity

@ on the plane in the reference simulation (full channel) to that of its estimation

rms

fQ _ reference ‘ (335)

rms
estimated

Rescaling can be done individually for each component of the vector ). The estimated

field could be rescaled as follows:

QESti (l’, Y, 20, t(m+1)) = (QPZ (i[', Y, 20, t(erl)) - 1inean) X fQ + anean? (336)

where i is the indice of quantity, QF " is estimated field with POD reconstruction, Q om

is spatial mean field of estimated field QF

In this thesis, the rescaling method is the compensation, they are the same things.

3.3.3.4 Step 4: Implementation of the reconstruction

We now detail how we determine the boundary condition from our estimation and the

flow characteristics.

There, to solve the Navier-Stokes equations, we can treat the viscous term as external

term S and the equation to solve is :

Q.
ot

+V-F(Q.) = 8. (3.37)

The left side of (3.37) is the Euler equation and the right side is divergence of the viscous
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term which could be expressed as V - Fi,;5(Q., VQ.). This equation can be written as:

0Q. | OF (Qc)

V@ =V " Flisc(Qc, VQ,). 3.38
o+ oo VO Q.. VQ) (339)
where Q). represents the conservative variables [p pu pv pw pE |7 %&C) is the Jacobian
matrice:
Or(Qc) 1
= RAR
Q. ’

,u-n— || n | C), and n is the direction normal to the cell face considered. Right

eigenvectors are expressed as follows [74]:

u—C 0 0 u u+C
u—C 0 0 u u+C
Ry = w 0 1 w w , (3.39)
H—-uC v w W H +uC
I 1 0 0 1 L]

and the left eigenvectors are the rows of

e 0 20 0 0 |
| 2w/ 0 0 2/C 0
Ly=R;'= % 2(1 — ay) 2a1u 2010 2aw  —2ay |, (3.40)
ag—¢&  —(au— %) -V —qw 4y
az+ & a1u + é —0v —aw a4 |

where a; = 0;21 and as = %(uQ + 0?2 + w?)ay.

When (3.38) are projected onto the left eigenvectors R;!, we obtain:
—1 . D .
%EQ) +ARSV Q. = R Dci = R;'V + Fise(Qe, VQo.). (3.41)
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The right term could be considered as the source term R;'S = R;'V - Fli5.(Q., VQ.),

and it is known, so the main work is to reslove Fuler equations:

-1
%t@) +AR;'V - Q.= 0. (3.42)

There, we could use Euler equation to describle the wave propagation. The Riemann
invariant is defined as dw = R;'dQ.. If we replace the variables in Euler equations with

Riemann invariants, then we have:

ow dw . ;
E+A-Vw:0:>E:Oalongllnes)\i:%.

Where w are constant along characteristic lines and propagate at velocity \; as shown

in Figure 3.11.

\j

Figure 3.11: Wave propagation.

In Naiver Stokes equation, the Riemann invariants could be expressed as:
dw = R;'dQ. — 6tR;'S.

Then we applied this method in our channel for wall parallel plane.
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Figure 3.12: Boundary condition on the wall parallel plane.

There, in Figure 3.12, we could see that if characteristics wave is outwards, the eigenvalue
A is negative (A < 0), then it corresponds to the numrical condition, which means to
calculate the field at time ¢" at position zg, it could be calculated from field at time ¢"*
in resolved region. And if characteristics wave is inwards, the eigenvalue \ is positive
(A > 0), it corresponds to the physical condition, which means to calculate the field at
time t" at position 2o, we need to estimated the field in implicit region at time "', in
this case, POD method is applied for estimation.

In more details, if characteristics wave is outwards, the eigenvalue A is negative (A < 0),
and we need to solve the Navier-Stokes equation with Riemann invariants in order to
avoid the instability. The approximation of flux in (3.38) is second order accurate, which

means (3.41) is solved as:

an+1 - an - a(Fn(Qc) - anisc(@ca VQC))

ot oz

- (@) 4]72?;% Tl (3.43)
3anisc(i—1)(@c: VQC) - 4anisc(i)(@c; VQC) + anisc(i+1)(QC7 VQC)

20x )

n+1

This equation provides solutions ). when A < 0 .

If the characteristics wave is entering the domain, which means A > 0, we have to



3.3 Reconstruction method 57

prescribe the corresponding Riemann invariant whith predicted field in implicit region:

aP 90,
90, ot

Pt = P = 6t = P* — P". (3.44)

Where P* is predicted field in implicit region. When we consider the variables [p v v w

oP

)%, 70 can be calculated using :
or +1
— QI —Q") =P — P". 3.45
S (@ - (345
1 0 0 0 0
1
_Z - 0 0 0
o 5 P 1
P
_ —— 0 - 0 0
90, 5} P 1 . (3.46)
5 0 0 p 0
w4+ +w? - F v W 1
Cyp Cup Cup Cop Cup |

When using the variables [p pu pv pw T]T on boundary condition:

1 0 0 0 0
0 1 0 0 0
oP

_ 0 0 1 0 0 |. 3.47
0. (3.47)

0 0 0 1 0

w4+l +uw? - F u v w 1

Cup Cop Cop Cyp Cyp |

The variables we consider are [Q1,Qq, @3, @4, @s] = [p, (p)u, (p)v, (p)w,T] Which are
calculated from POD reconstruction. The boundary conditions for these fields must
fulfill the compatibility relationships based on the Riemann invariants. Considering a
boundary normal to the z direction, the Navier-Stokes equations are projected onto the
eigenvectors of the Jacobian of the Euler flux in the z -direction. Depending on the sign
of the eigenvalues for this Euler flux Jacobian, either the quantity is prescribed when the
eigenvalue is positive, or equations of the Riemann invariant are solved by up-winding

the Euler flux discretization in the normal to the boundary plane z-direction when the
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eigenvalue is negative. More precisely, for each point (x,y) of the boundary plane z = zj:

e For the three first eigenvalues u - n (n is inward wall normal direction):
p)u(xay7207t(m+1)) = 2ESt(xay7207t(m+1));

P)U(%?Ja ZO7t(m+1)) = gSt(mayaz07t(m+l));

T(x7y7 ZOJt(m+1)> = SESt('ray7Z07t(m+1));

(
(

— when u(z, y, 29, t™)-n > 0.:

— otherwise, the equation of the three first Riemann invariants are solved with

resolved region.

e For the fourth eigenvalue u - n+ || n || C' (C is the local speed of sound):

— when (u(z,y, 20,t™)n+ || n || C) > 0.: (p)w(z,y, 20, t™D) = QF(z,y, 29, tMHD);

— otherwise, the equation of the fourth Riemann invariant is solved with re-

solved region.

e For the fifth eigenvalue u-n— || n || C:

— when (g(l', Y, ZOvtm)’ﬂ_ ” n H C) > 0. p(l’, Y, ZU7t(m+1)) = Qf8t<x7y7 20, t(m+1)>;

— otherwise, the equation of the fifth Riemann invariant is solved with resolved

region.

3.3.3.5 First test: Reduced simulation using reference flow fields as bound-

ary conditions

As a first test, we collect fields from the reference simulation on a boundary plane
within the wall layer and use these fields as synthetic boundary conditions in the reduced

domain. This is done for a single wall.

We chose to associate the variables|T' v v w p| with the characteristic eigenvalues [u - n,
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u-n— || n| C is always negative in subsonic flow (C is speed of sound, which is
much larger than u - n), so the density p is always determined by Riemann invariant;

u-n+ || n | C is always positive, so the wall normal velocity w is determined by POD

reconstruction;

the others three terms depend on u - n, if u-n > 0, they are determined by POD recon-

struction, otherwise, they are determined from propagation of the quantities within the

domain along the characteristics.

Resolved
region

h=T-7-lilC

Boundary

hy=0-Asllfllce

20

plane

u
15,20 Q"P=|y

Implicit
Wall region
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Figure 3.13: Boundary condition on the boundary planes.

In general, to calculate the field of point on boundary plane at position 2y at time t¢,, in
Figure 3.13. If the eigenvalue is negative, then the field is calculated in resolved region,
and if the eigenvalue is positive, then the field is predicted with POD reconstruction.

Figure 3.14 presents the flow configuration and the computational domain. The stream-

z=2H

O I A R TR N, S
Hle

ZZ,
X

wise, spanwise, and wall normal directions of the flow will be respectively denoted by

Figure 3.14: Model of simulation.
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x, y, and z; the corresponding components of the velocity are u, v and w. Periodic
boundary conditions are applied in both the streamwise and the spanwise directions.
The solid wall at the upper part of the domain is maintained at a prescribed tempera-
ture (T, ), and the lower boundary plane is determined by synthetic boundary condition.
The dimensions of the reduced channel are (L,, L,, L,) = (2, 4?7?, 1.9)H. The friction
Reynolds numbers is Re, = 180. The Mach number is Ma = 0.5.

We choose a longitudinal section x = 7 to compare the DNS and reduced channel. In the
simulation, the boundary region of 0 < z < 0.1 was taken off, and we used the original
field from full channel as a boundary condition. The simulation was run for 500 time

steps corresponding to 0.3Uy/H in both full channel and reduced channel.

z

RHD
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Figure 3.15: Field of Density on middle plane z=7 at 0.3 time units. Left image is for
DNS. Right image is for reduced channel.

Figure 3.16: Field of u on middle plane x=m at 0.3 time units. Left image is for DNS.
Right image is for reduced channel.
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Figure 3.17: Field of v on middle plane x=m at 0.3 time units. Left image is for DNS.
Right image is for reduced channel.

Figure 3.18: Field of w on middle plane x=m at 0.3 time units. Left image is for DNS.
Right image is for reduced channel.

Figure 3.19: Field of total energy F on middle plane z=7 at 0.3 time units. Left image
is for DNS. Right image is for reduced channel.

Figures 3.15 to Figure 3.19 show the instantaneous field in the full channel (left side)
and in the reduced channel (right side). No difference was observed for all quantities
that validate the boundary conditions and the procedure. It now remains to test the
reconstructed boundary condition in the reduced channel. This is the object of the next

chapter.
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3.3.3.6 Computational basis

62

Here, we give details for the simulation in full channel for both subsonic flow and super-

sonic flow in Table 3.2. Which is applied as parameters in the later chapters.

Subsonic Ma | Re Duration | Statistic | Number | Number | Duration
for tran- | duration | of sam- | of POD | for Sam-
sition ples modes ples

0.5 | 3000 700 time | 120 time | 100 200 600 time
units units units

Supersonic | Ma | Re Duration | Statistic | Number | Number | Duration
for tran- | duration | of sam- | of POD | for Sam-
sition ples modes ples

1.5 | 3000 1500 75 time | 30 60 75 time
time units units
units

Table 3.2: Data basis for calculation in channel flow.

The profiles of full channel will be compared with results in reduced channel in later.




Chapter 4

Synthetic boundary condition on

one wall

We firstly test the synthetic boundary condition on one wall of the channel, represented in
Figure 4.1. The new boundary of the domain is a plane cutting across the wall layer. As
seen in Chapter 2, the numerical method requires that physical quantities are defined not
only on the boundary but also on planes of ghost cells outside the boundary in order to
compute the gradients with accuracy. Four extra planes are required, which means that
five planes have to be stored for the boundary condition. The simulation in the reduced
domain was carried out for a time of At = 6H /U, and the turbulent statistics compared
with those of the full channel. As seen in Chapter 3, the reconstruction method is based
on POD modes. For the results presented here, the method of snapshots was applied
to 70 fields, separated by a time At = 6H/Uy. In order to evaluate the robustness of
the method, snapshots of primitive variables and conservative variables were considered,
and two different heights were considered: hf = 18 and hd = 54. The results of full

channel and reduced channel are for the same statistic duration in this chapter.

63
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Figure 4.1: Model of reduced channel.

4.1 Results at height b = 18 (hy = 0.1) with primitive

variables

We can choose to apply the POD to primitive variables [p,u, v, w, E] or conservative

variables [p, pu, pv, pw, pE].

The vertical extent of the reduced channel is defined by z € [0.1,2], where h = 0.1
corresponds to hy = 18. The region where the turbulent production is maximal z* ~ 15
is therefore excluded from the simulation. The mesh dimension is reduced by 17%

compared to the one in full channel.

POD was applied independently to three variables: the density (p), the velocity field (u)
and the total energy (E). As discussed in the previous chapter, POD-based reconstruc-
tion with a limited number of modes tends to underestimate the magnitude of the field
in particular the small scales, and therefore to underestimate the wall-normal velocity
field. In order to compensate for this effect, a rescaling technique is implemented. It
consists in imposing a global rms value for the reconstructed fluctuations based on the
reference level measured in the full channel. As we recall from Chapter 3 (see Equation

3.36) , for any physical quantity @),

QESt(xa Y, 2o, t(m+1)) = (Qp(xa Y, 2o, t(m+1)) - Qmean) X fQ + Qmean- (41)
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where fq is the rescaling factor determined in Chapter 3 (see Equation 3.35), and Qyean
is the mean value which can be computed either as a time and spatial average (global

mean value) or simply as a spatial average (local mean value):

DNS (z) _ Ex,y,tQDNS(% Y, z, t) _

4.2
mean Nt . Nx . Ny ( )

: (Z t) = ExvaP(xvyaZat)
’ N,-N,

mean

(4.3)

In all that follows we compare the reference channel to

e the reduced channel with one synthetic boundary condition without rescaling,

e the reduced channel with one synthetic rescaled boundary condition where both

definitions of the mean were tested.

Results are shown in Figures 4.2-4.4 for the bottom half-channel. The red lines corre-
spond to DNS, the purple lines correspond to the reduced channel simulation with a
synthetic boundary condition, while the black lines correspond to the rescaled boundary
condition.

Mean profiles of velocities and density are shown in Figure 4.2. We can see that the
mean profile of density matches very well the reference profile. Again the introduction
of rescaling step through rescaling improves considerably the results in particular for the

mean streamwise profile, for which the logarithmic law appears to be well recovered.
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Figure 4.2: Mean profiles averaged over time and expressed with horizontal directions
in the bottom half channel over 6 time units for POD in primitive variables. Top left:
mean profile of density; top right: mean profile of u; bottom left: mean profile of v ;
bottom right: mean profile of w.
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Figure 4.3: Turbulent intensities in the bottom half channel. Left: rms value of u. Right:
rms value of v -Legends as in Figure 4.2.
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Figure 4.4: Turbulent intensities in the bottom half channel. Left: rms value of w.
Right: shear stress < v'w’ > -Legends as in Figure 4.2.

We can see in Figure 4.3-4.4 that the statistics in the reduced channel are closer to
those in the reference channel for the rescaled boundary condition, in particular for the

wall-normal velocity which has a significant small-scale content.

We note that with the choices made for the boundary condition, the wall-normal compo-
nent corresponds to the eigenvalue u-n+ || n || C = w+ C > 0, which is always positive,
so that the wall-normal component is always determined from the POD reconstruction
at all points on the boundary. In contrast the streamwise and spanwise components are
associated with the eigenvalue A = u-n = w, which means that the reconstruction is only
used on cells with a positive (inwards) wall-normal velocity w > 0. For the cells with a
velocity directed towards the wall, the boundary condition is evaluated from the fluxes
calculated from the inner domain. This discrepancy between the different components

of the velocity field may lead to errors that are difficult to control.

When defining the rescaling factor fg, the mean value can be evaluated either locally -
i.e from a horizontal spatial average at each instant - or globally; using both a time and
a horizontal spatial average. Comparison between these two methods of rescaling step

is presented in Figures 4.5-4.6. No significant difference was observed.
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Figure 4.5: Influence of the definition of the mean in the factor fg on the mean velocity
profile. Top left: density. Top right: streamwise velocity. Bottom left: Spanwise velocity.
Bottom right: wall-normal velocity - conditions as in Figure 4.2 (reconstruction with
POD based on primitive variables, and average taken over 6 time units).
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Figure 4.6: Influence of the definition of the mean in the factor fgo. Top Left: rms of
u. Top right: rms of v. Bottom left: rms of w. Bottom right: shear stress < u'w’ >
-Legends as in Figure 4.2.

To evaluate the performance of the method, we computed the relative error between
statistical quantities in the internal region (2 € [54,180], where z € [0.3,1]) between

different conditions in reduced channel and DNS. The relative error is calculated as

1 zo=1 Reduced _ n)DNS
_ / |Qstat Qstat dZ, (44)

€Q =
22 — 21 Jz=03 |Q£é\£s

where Qfeduced and QDNS correspond to time and horizontal averages in the reduced
channel and in the reference channel respectively. We consider the internal region from
z = 0.3 to z = 1 to leave some distances for adjustment of boundary conditions. Relative
errors for rms of u, v, w, and the mean of density and streamwise velocity u are reported
in Table 4.1. For the method with rescaling step, we compare the two definitions of the
mean for the rescaling procedure. The difference between the two rescaled methods is
slight, with a small advantage for the definition based on the local value, particularly for
the density.

Consequently, for the simulation with primitive variables, rescaling step with local mean

value is the best choice.
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Quantity error | Without rescaling step | Rescaling step with | Rescaling step with
global mean value | local mean value

Tms U 0.1287 0.0712 0.0702

rms v 0.0956 0.0610 0.0597

Tms w 0.1607 0.1127 0.1126

<p> 1.26E-4 8.1E-4 8.23E-5

<u> 0.0141 0.0067 0.0065

Table 4.1: Relative errors for simulations with primitive variables in reduced region
03<z<1.

4.2 Results at altitude har = 18 with conservative

variables

The comparison was also carried out for a POD based on conservative variables [p], [pu,
pv, pw|, [pE]. As in the primitive variable case, POD was applied independently to the
density [p], the momentum [pu, pv, pw], and the total energy [pE]. We tested:

e the reconstruction without rescaling step,

e the reconstruction with rescaling step using the mean value which is calculated

from the reference simulation (4.2),

e the reconstruction with rescaling step using the local mean value from the reduced

simulation (4.3).

Firstly, we compare the results without rescaling step and with rescaling step with global

mean value.



4.2 Results at altitude hy = 18 with conservative variables

Profile of density

Profile of U

71

1.045 12
T —+—DNS —#—DNS
i —=—Without rescaling step —s+—Without rescaling step
1.035 —&— Rescaling step (Global mean) 1 1|—#—Rescaling step (Global mean)
1.03 4 ol
L 10051 E
= e |
% 1.02 55 0.6
g 1.015 g
0.4
1.01
1.005 -
1
LR o
0.995 0
0 20 40 60 B0 100 120 140 160 180 10° 10t 10%
z* zt
g 210° Profile of V 5 x10% Profile of W
2
1 g
] [}
w v e W
= = —=— Without rescaling step 4
- - —4&—Rescaling step (Global mean) #
E £ : *
<< <
-1
B —+—DNS 5
10 —=— Without rescaling step
—&— Rescaling step (Global mean)
12 ; : ; ; ; ; ; 3 i } } } }
0 20 40 60 B0 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
z* z*

Figure 4.7: Mean profiles in the bottom half channel for 6 time units for POD based on
conservative variables. Top left: density. Top right: streamwise velocity u. Bottom left:

spanwise velocity v. Bottom right: wall-normal velocity w.
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Figure 4.8: Turbulent intensities in the bottom half channel. Left: rms value of u. Right:
rms value of v -Legends as in Figure 4.7.
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Figure 4.9: Turbulent intensities in the bottom half channel. Left: rms value of w.
Right: shear stress < v'w’ > -Legends as in Figure 4.7.

The mean profiles in Figure 4.7 show that the logarithmic law for the streamwise velocity
u is well recovered when rescaling (based on the reference mean value) is applied. The
mean density is well recovered with rescaling step and there exists the discrepancies for

profiles of v and w.

Figures in 4.8-4.9 show that the turbulence intensities match well those of the reference
simulation especially in the channel center. The effect of rescaling step is beneficial,
as the rms value of the wall-normal velocity w matches better that of the reference

simulation near boundary planes.

Figures 4.10, 4.11, 4.12 show that there is no significant difference between the two
rescaling methods. Results show that the results are relatively insensitive to the choice

of mean value in the rescaling factor.
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Figure 4.10: Mean profile computed over 6 time units with POD based on conservative
variables. Left: density p. Right: streamwise velocity .
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Figure 4.11: Mean profile computed over 6 time units with POD based on conservative
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Figure 4.12: Turbulent intensities computed over 6 time units with POD based on con-
servative variables. Top left: rms value of u. Top right: rms value of v. Bottom left:
rms value of w. Bottom right: Reynolds stress < u/w’ >.

The errors defined as in (4.4) are reported in Table 4.2. We can see that using the

local mean value in the rescaling procedure leads to smaller errors than when using the

reference value.

Quantity error | Without rescaling step | Rescaling step with | Rescaling step with
global mean value | local mean value

rms u 0.1284 0.0078 0.071

rms v 0.096 0.0874 0.0599

rms w 0.1608 0.1133 0.1131

<p> 6E-4 2.7E-4 1.9E-4

<u> 0.0144 0.009 0.0065

Table 4.2: Relative errors for reduced-domain simulations with POD based on conserva-

tive variables in region 0.3 < z < 1.
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4.3 Comparison between primitive and conservative

variables in reduced channel

As seen in Figures 4.13-4.15, there is no significant difference between the method with
primitive variables and conservative variables, at least in the conditions of our numer-
ical experiment. Small discrepancies are however recorded in the wall normal velocity
component (w). This can be explained by the fact that, as pw is prescribed in the
conservative approach, the mass flux across the boundary plane is better controlled in

compressible approach than when using the primitive variables.
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Figure 4.13: Mean profiles of the bottom channel for 6 time units with DNS, conservative
variables (rescaling step with local mean value), and primitive variables (rescaling step
with local mean value). Top left: mean profile of density. Top right: mean profile of u.
Bottom left: mean profile of v. Bottom right: mean profile of w.
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Figure 4.14: Comparison between the reconstructions. Turbulent intensities. Left: rms
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0.06

0.05

o
o
B

Amplitude

=1
o
]

0.01

RMS of W

—#—DNS
—s=— Rescaling step (conservative variables)
—&—Rescaling step (primitive variables)

100 140 160

+

20 40 60 80 120

z

180

Amplitude

%1073 uw

0.5

0%

—+—DNS
—=— Rescaling step (conservative variables) ’/a"
—#— Rescaling step (primitive variables)

0 20 40 60 80

100 160 180

+

120 140

z

Figure 4.15: Comparison between the reconstructions. Turbulent intensities. Left: rms
value of w. Right: shear stress< u'w’ > -Legends as in Figure 4.13.

4.3.1 Instantaneous flow fields

We compare instantaneous flow fields on a cross-stream plane at the location x = =«

at the end of the short simulation time that is 6 time units. These fields are obtained

from simulation of conservative variables and primitive variables with rescaling step of

local mean values. To enhance the comparison, we only present the region 0.1 < 2z < 2

in the full channel. The comparison is presented in Figures 4.16 to 4.20. The left side

corresponds to the full channel, the middle side corresponds to the reduced channel

with conservative variables, and the right side corresponds to the reduced channel with

primitive variables.
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Figure 4.16: Snapshot of density on middle vertical plane at 6 time units. Left: in full
channel. Middle: in reduced channel with conservative variables. Right: in reduced
channel with primitive variables.
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Figure 4.17: Snapshot of u on middle vertical plane at 6 time units. Left: in full channel.
Middle: in reduced channel with conservative variables. Right: in reduced channel with
primitive variables.

Figure 4.18: Snapshot of v on middle vertical plane at 6 time units. Left: in full channel.
Middle: in reduced channel with conservative variables. Right: in reduced channel with
primitive variables.

Figure 4.19: Snapshot of w on middle vertical plane at 6 time units Left: in full channel.
Right: in reduced channel.
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Figure 4.20: Snapshot of £ on middle vertical plane at 6 time units. Left: in full channel.
Middle: in reduced channel with conservative variables. Right: in reduced channel with
primitive variables.

There is not evident difference between fields with conservative variables and primitive

variables except the field of density.

The density field is different for the reference simulation and the reduced channel with
conservative variables or primitive variables. This discrepancy can be explained by the
fact that it is calculated by solving the equation on the first Riemann invariant with a
second-order upwind approximated flux from the the reduced channel versus a seventh-
order discretization in the full simulation. However the magnitude of the discrepancy is

small.

The large scales of the streamwise velocity field are well recovered in the reduced channel.
Small discrepancies can be noticed in the cross-stream components such as the spanwise
velocity and the wall-normal velocity, but the overall agreement is good. Ejections
and sweeps corresponding to relatively large values of w are correctly captured in both
two reduced channels. These results indicate a good agreement between the reference

simulation and the reduced channel after a limited amount of time.

4.4 Results at height h = 54 (hg = 0.3)

The same procedure was implemented with a boundary plane located at a height of
hy = 54 corresponding to h = 0.3. The mesh size in the reduced channel therefore

decreases by more than 29% compared to the full channel.
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4.4.1 Results at height hJ = 54 with primitive variables
POD was applied independently to three primitive variables:
e the density [p]

e the velocity field [u, v, w]

e the total energy [F]
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Figure 4.21: Mean profiles with POD based on primitive variables over a time of 6 time

units. Top left: density. Top right: streamwise velocity u. Bottom left: spanwise velocity
v. Bottom right: wall-normal velocity w.
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Figure 4.22: Turbulent intensities computed over a time of 6 time units; Top left: rms
value of u. Top right: rms value of v. Bottom left: rms value of w. Bottom right: shear
stress < w'w’ >.

Figures 4.21 -4.22 show that the turbulent intensities, shear stress and mean profiles in
the center region are well recovered in the reduced channel simulation. A good agreement
is observed for density. The logarithmic region for u appears to be recovered (we note

that its extent is small at this relatively moderate Reynolds number).

As already observed for the smaller height hf = 18, rescaling step through rescaling

improves the agreement significantly for turbulent intensities and shear stress.

The relative errors defined as (4.4) are reported in Table 4.3. We calculated the relative
errors over a region z € [0.3,1.0], which contains all the reduced region above hj = 54
(h = 0.3) in bottom half channel. We can see that the error of rms values between
reference and reduced channel is small. We also tested the two definitions of the mean

value for the rescaling factor fq (see Figures 4.23-4.25).
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Figure 4.23: Influence of the rescaling factor definition on mean profiles. Top left: mean
profile of density. Top right: mean profile of u. Bottom left: mean profile of v. Bottom
right: mean profile of w.
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Figure 4.24: Influence of the rescaling factor definition on turbulent intensities. Left:
rms of streamwise velocity u. Right: rms of spanwise velocity v.
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Figure 4.25: Influence of the rescaling factor definition on turbulent intensities. Left:
rms of wall-normal velocity w. Right: shear stress < u/w’ >.

Figures 4.23-4.25 indicate that the definition of the mean in the rescaling factor does not

affect the results.

Examination of errors in Table 4.3 shows that the relative errors of density are very
small in the three methods. The error on the mean velocity is also very small. The
largest error is observed for the wall normal velocity component w. Using rescaling step
decreases the error on all variables except the density (which remains very small). The
error is divided by 40% for < u >, by a factor of 2 for rms of w, by a factor of 3 for rms
of v and almost by 5 for rms of u. In the simulation, we need some distance to adjust
the turbulent intensities, and the reduced channel statistics are virtually identical with

the reference channel at a height of z* = 60 for u, 2™ = 100 for v, and z* = 140 for w.

Quantity error | Without rescaling step | Rescaling step with | Rescaling step with
global mean value | local mean value

Tms u 0.09947 0.023 0.023

rms v 0.1234 0.0421 0.0422

Tms w 0.2061 0.1048 0.1047

<p> 2.2E-4 2.4E-4 5.9E-4

<u> 0.0072 0.0046 0.0048

Table 4.3: Relative errors for simulations with primitive variables in reduced channel
03<z<1.
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4.4.2 Results at height hj = 54 for POD based on conservative

variables

In this section, the POD reconstruction was applied to conservative variables [p] [pu, pv,

pwl, [pE]. All other conditions are the same.
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Figure 4.26: Mean profiles with POD based on conservative variables. Left: density.
Right: streamwise velocity w.
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Figure 4.27: Mean profiles with POD based on conservative variables. Left: spanwise
velocity v. Right: wall-normal velocity w.

Figures 4.27 and 4.28 show that rescaling step improves the statistics of the reduced
channel except the profile of w, because it contains more small scales which is more

difficult to predict.
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Figure 4.28: Turbulent intensities computed over a time of 6 time units with POD in
conservative variables. Top left: rms value of u. Top right: rms value of v. Bottom left:
rms value of w. Bottom right: shear stress < uw/'w’ >.
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Figure 4.29: Influence of the definition of the mean in the factor fg on the mean velocity
profile. Left: density p. Right: streamwise velocity u.



4.4 Results at height hg = 54 (hg = 0.3) 85

Profile of V Profile of W

g 210° , x10*

—+—DNS
1.5 f|—=—Rescaling step (Local mean)
—s—Rescaling step (Global mean)

&

Amplitude
Amplitude

0%l —+—DNs ;
_1 L|—=—Rescaling step (Local mean) ¥ -1.5
—&— Rescaling step (Global mean) ]
-2 -2
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
z*t zt

Figure 4.30: Influence of the definition of the mean in the factor fg on the mean velocity

profile. Left: spanwise velocity v. Right: wall-normal velocity w.
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Figure 4.31: Influence of the definition of the mean in the factor fo. Top left: rms of
u. Top right: rms of v. Bottom left: rms of w. Bottom right: shear stress < u/w’ > -
conditions as in Figure 4.26 (reconstruction with POD based on conservative variables,
and average taken over 6 time units).

Again, using rescaling improves the results significantly. The influence of the definition

of the mean value for the rescaling factor is quite limited in Figures 4.29-4.31. Once
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again, using the local mean value seems to yield slightly better results (here for the

mean density). This is confirmed by the quantitative measure given in Table 4.4.

Quantity error | Without rescaling step | Rescaling step with | Rescaling step with
global mean value | local mean value

Tms u 0.0948 0.0249 0.0248

Tms v 0.1240 0.0446 0.0443

rms w 0.2066 0.1062 0.1063

<p> 1.73E-4 3.63E-4 1.19E-4

<u> 0.0072 0.0047 0.0046

Table 4.4: Relative errors for simulations with conservative variables in reduced channel
03<z<1.

4.4.3 Comparison between reduced-channel simulations based
on POD with primitive variables and with conservative
variables

We also compare the results between POD reconstruction with primitive variables and

conservative variables using a rescaling factor based on the local mean value.
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Figure 4.32: Mean profile in the bottom half channel for 6 time units with primitive
variables (DNS, rescaling step with local mean value, rescaling step with global mean
value). Left: Profile of v. Right: Profile of w.

There is no real difference between the two approaches, primitive or conservative vari-
ables, except the profile of the mean velocity in the spanwise and normal the wall direc-

tions.
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Comparison of Tables 4.3 and 4.4 shows that the errors are very close. However the
mean profile of w is closer to the reference for the conservative variables. Because with

conservative variables, we can better control the mass flux in reduced channel.

4.5 Summary

In this chapter we consider a reduced channel where one wall is replaced by a virtual
plane in the wall layer and compare its statistics with those of a reference channel.
The streamwise and spanwise velocity components are rather well recovered. However
some discrepancies can be observed for the wall-normal component. We examined the
influence of the basis used to compute POD and found that it did not affect the results.
We found that rescaling the boundary condition so as to adjust its energy content led to
a significant improvement of the statistics, in particular for the wall-normal component.
Two types of rescaling were considered, depending on the definition of the mean. We
found that using a local mean value led to a slightly closer agreement with the statistics.
Using conservative or primitive variables did not change the results significantly. This

shows the robustness of the approach.
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Chapter 5

Synthetic boundary conditions on

both walls

In this chapter we replace both walls of the channel with synthetic boundary conditions.
An important consequence is that since there are no more walls, there is no direct way to
evaluate the friction and therefore the pressure gradient. The external force and the flow

rate were therefore set at a constant value determined from the reference simulation.

The goal of this chapter is to determine the influence of various parameters of the re-

construction procedure:

e Fourier-based POD decomposition is tested (section 5.1),

Different choices for the variables of decomposition are examined (section 5.2),

The representativity of the snapshot set is examined (section 5.3),

The influence of the Riemann invariants is tested (section 5.4),

e Different heights are tested (section 5.6).

5.1 Fourier-based reconstruction

In this section we construct synthetic boundary conditions using Fourier-based POD.

89
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The spatial autocorrelation tensor is reconstructed for each Fourier mode from 200 sam-
ples extracted from 100 snapshots (as explained in the previous chapters, one snapshot
corresponds to two samples, as the span of each sample is the half-channel). Each
sample was therefore transformed in Fourier space and the POD problem in horizontal
Fourier space was solved only in the inhomogeneous direction z. In tensor notation, the

eigenproblem can be expressed as
[ B 00, (0 = N 612 (2) 5.0

where n refers to the POD mode index and the spatial autocorrelation tensor is defined

by

R}iky(z,z’) =< Q}ngy(Zat) Ziky(z',t) >, (5.2)

with < . > a spatial average over wall-normal direction, and Q% , represents the hori-
xRy

zontal Fourier transform of the i-th component of the () field

. (ke by
Q. (2,1) = Qx,y,z,t eVt (EerLy)dxdy, 5.3
ke,
zJy

which is evaluated numerically as

Nz /2 Ny /2

2¢/—1
leky( Z Z xmaypa Z7t) ﬂ( )5 5 (54)
m=—Ng/2p=—Ny/2
0, = Nfi . and 0, = Njy_l are spatial intervals in streamwise and spanwise directions

respectively. The dominant eigenvalue for each Fourier wavenumbers pair is represented
in Figure 5.1 left, where the POD reconstruction is applied on [p], [pu, pv, pw] and [pe]

respectively.

5.1.1 Synthetic boundary conditions at hj = 18 (hy = 0.1)

As indicated in Chapter 3, we solve only for modes n for which the diagonal part R,,

is larger than a threshold ¢s - in practice we use ts = 0.3. This means that only modes
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Figure 5.1: Left: Dominant eigenvalue )\,1% by for [pu, pv, pw] as a function of the wavenu-

ber. Right: Eigenvalues A}, of [pu, pv, pw].

smaller than (k,, k,) < 45 are solved for, because the values of R,,, are less than t¢s for

others Fourier modes.

5.1.2 Unrescaled boundary conditions

Firstly, the initial field is reduced region which is taken from full channel, we apply

synthetic boundary conditions for the field and compute turbulent statistics over a total

period of 6 time units. In reduced channel, we did not apply rescaling step on variables,

which means no compensation. There, the profile of full channel is calculated for the

same duration as in reduced channel.

Profil of Temperature

1.045 1.05

i

1.04 1.043%

{7
o
[

1.035

=
o
]

1.03

b
o
=

1.025

—#— Temperature in DNS for 65
—=— Temperature without compensation (FOURIER MODE)

1.021

Profil of density
o
o
o =

1.015

2
It}
@

1.01

@
o
o
-

1.005

+
o
o
-

[
[
L
3

—#— density in DNS for 65
—=— density without compensation (FOURIER MODE)

[
o
o
wn

a 0.5 1 1.5 2 0 0.5 hE 1.5 2
Z Z
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Figure 5.6: Instantaneous density at z = 0.2 (z* = 36) after 6 time units. Left: full
channel. Right: reduced channel.
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Figure 5.7: Instantaneous streamwise velocity field u at z = 0.2 (2 = 36) after 6 time
units. Left: full channel. Right: reduced channel.

Figure 5.2 shows discrepancies for both the density and the temperature, which is rela-
tively surprising. Figures 5.4-5.5 present turbulent intensity values and the shear stress.
We can see that the streamwise intensity of u is well recovered in Figure 5.3, as well as

the cross-stream components v and w. The Reynolds stress is also well recovered.

Although the mean velocity profile in the reduced channel appears to be relatively close to
the reference one, it turns out that the computation becomes unstable after 8 convective
time units. We have not elucidated the reason for this. In all that follows we will present

results for the method of snapshots.
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5.2 Reduced simulation at hj = 18: Definition of

POD variables

5.2.1 Proper Orthogonal Decomposition

Synthetic boundary conditions were defined for each channel plane. The channel is
therefore divided into two independent boundary layers - each corresponding to one
half of the channel. POD is then performed over each half-channel. To compute the
temporal autocorrelation tensor, 100 instantaneous flow fields corresponding to the full
channel are considered. Each field was split into two parts, each of which corresponds
to a half-channel, therefore yielding two snapshots. POD therefore yield 200 modes
out of which only 128 are used in the reconstruction due to the memory limitation for
the spatial modes of momentum. This number of modes capture about 80% of the
fluctuating turbulent kinetic energy, which means that by construction, the synthetic
boundary condition will lack energy. However it will be compensated by the rescaling

procedure.
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Figure 5.8: POD spectrum for the fol-
lowing variables: density, momentum,
and pe.

We consider the following definitions for POD variables:
1. Simulation with POD reconstruction of primitive variables [p], [u, v, w], [E].
2. Simulation with POD reconstruction of conservative variables [p], [pu, pv, pw], [pE].

3. Simulation with POD reconstruction of variables [p], [pu, pv, pw], [pe], where
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2 2 2 ., .
e=F— % is the internal energy.

4. Simulation with POD reconstruction of conservative variables: [p, pu, pv, pw, pE].

In the reduced channel, the rescaled synthetic boundary condition based on POD recon-
struction of primitive variables [p], [u, v, w], [E] is associated with the Riemann invariants
A1 = Ay = A3 = u - n for the temperature, v and v, \y = u-n+ || n || C > 0 for w, and
As =u-n— || n| C <0 for density p (n is direction normal to the wall, see chapter 3).
For the other POD reconstructions in reduced channel, the Riemann invariants \; =
Ao = A3 = u - n are for the temperature, pu and pv, \y =u-n+ || n || C > 0 is for pw,

and A\s =u-n+ || n || C <0 is for density p .

For each decomposition, the boundary condition was reconstructed and implemented on
each wall for the reduced domain at a height At = 18 i.e. a distance of 0.1 from the walls
in nondimensional length (see Figure 5.9). In all that follows unless specified otherwise
results correspond to statistics obtained over a period of 36 convective time units, which
is equal to 36U£0. And the statistic duration in full channel is 120 time units for the

following results in this chapter.

Figure 5.9: Reduced simulation domain.

5.2.2 Results without rescaling

We first compare the four POD methods defined above in Figures 5.10 - 5.12.
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Figure 5.11: Turbulent intensity values for the different POD methods. Left: rms stream-
wise velocity u. Right: rms spanwise velocity v. -Legends as in Figure 5.10.
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Figure 5.12: Turbulent intensity value and shear stress for the different POD methods.
Left: rms wall-normal velocity w. Right: shear stress < v/w’ >. -Legends as in Figure
5.10.

The mean velocity profiles and the mean density profile are shown in Figure 5.10. It is
clear that for all decompositions the logarithmic law is not satisfied. The mean density

is only well recovered for the decomposition of [p], [pu, pv, pw], [pe].

For the turbulent intensities in Figures 5.11-5.12, we can see that in the near wall region,
the condition based on the decomposition of [p, pu, pv, pw, pE] matches better with
the reference solution, but in the center region, the condition based on the decomposition
of [p], [pu, pv, pw], [pe] is more adequate. We conclude that results are not satisfactory

when the reconstruction is performed without rescaling.

5.2.3 Results with rescaling

We now consider rescaled boundary conditions. Based on results from the previous
section, we did not consider the decompositions based on primitive variables. For the
decomposition of [p], [pu, pv, pw], [pe], which yields the best results, two types of rescaling
were considered. In one case, rescaling was applied to each variable, while in the other
case rescaling was only applied to the momentum - note that the rescaling factor was
defined independently for each velocity component. Comparison of the simulation in
the reduced domain with the reference case is shown in Figures 5.13-5.15. Statistics
were integrated over 36 time units except for the method based on primitive variables,

which diverged after 19 time units, because we can not control mass flux well in reduced
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channel with primitive variables.
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Figure 5.15: Turbulent intensity values and shear stresses for the different POD methods.
Left: rms wall-normal velocity w. Right: shear stress < u/w’ >-Legends as in Figure
5.13.

Figure 5.13 presents the mean velocity profiles. There are relatively few differences
between the decompositions. A major result is that for all cases the logarithmic law
is recovered but tends to be slightly underpredicted (2%) in the center of the channel.
Figure 5.13 shows the mean density. Large differences can be observed between the
different decompositions. The best profiles correspond to the rescaled decomposition
based on [p], [pu, pv, pw], [pe] - independently of the type of rescaling used. The worst
case corresponds to a unique decomposition for all variables. It is possible to interpret

this result as a lack of degrees of freedom in the reconstruction.

Figures 5.14-5.15 present the turbulent intensities and Reynolds shear stress. Large dif-
ferences are observed between the different decompositions. The wall normal intensities
are always over-predicted while the Reynolds stress is under-predicted, which shows a
lack of correlation between the streamwise and wall-normal components of the fluctua-
tions. For all second-order quantities, best results are observed for the decomposition

[p], [pu, pv, pw], [pe] when rescaling is only applied to the momentum.
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5.2.4 Influence of the type of decomposition: summary

For the unrescaled condition, the decomposition [p, pu pv pw, pE] provides a better
agreement for turbulent intensities in the region near boundary planes, but less so in the
center region. However the mean velocity profiles do not display the correct logarithmic

profile.

Introducing rescaling restores a correct logarithmic velocity profile. Furthermore it was
found that best results were obtained for selective application of the rescaling procedure

to the momentum for the decomposition [p] [pu pv pw] [pe].

A summary of the performance of the synthetic boundary conditions computed with
different POD is given in Table 5.1. As in the previous chapter, the error on a statistical

profile Qsiqt(2) where stat refers to a mean value or a rms, is computed as

L[ latiteom

Zg — 21 |QLNS

eQ = dz, (5.5)

Z1

where z; = 0.3 and 2z, = 2 — 0.3, which corresponds to a distance to the wall of about

55 wall units. Results are given for rescaled and unrescaled conditions.

Even if h§ = 18 (hy = 0.1), we use a distance of z; = 0.3 in order to leave some height

over which the flow can adjust to the boundary conditions.

unrescaled POD Time units | <u > | <p>

[p] [pu pv pw] [pE] 36 0.0402 | 0.0048

[p pu pv pw pE] 36 0.0386 | 0.0039

(0] [pu pv pw] [pe] 36 0.0452 | 7.5238E-4

(o] [uvw] [E] 36 0.0528 | 0.007

unrescaled POD Time units | rms v | rms v rms w
[p] [pu pv pw] [pE] 36 0.1239 | 0.1348 0.3150
[p pu pv pw pE] 36 0.1076 | 0.1324 0.3933
(o] [pu pv pw] [pe] 36 0.1844 | 0.152 0.158
o] [u v w] [E] 36 0.1826 | 0.1508 0.2093

Table 5.1: Statistical errors for unrescaled boundary conditions.
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Rescaled POD Time units | <u > | <p >

(0] [pu pv pw] [pE] 36 0.0207 | 0.0034

[p pu pv pw pE] 36 0.0204 | 0.0066

[p] [pu pv pw] [pe] (momentum) 36 0.029 | 5.6222E-4

[p] [pu pv pw] [pe] (global) 36 0.0284 | 6.6532E-4

Rescaled POD Time units | rms u | rms v rms w
(o] [pu pv pw] [pE] 36 0.3055 | 0.1682 0.8532
[p pu pv pw pE] 36 0.2426 | 0.1508 0.6536
(0] [pu pv pw] [pe] (momentum ) 36 0.1429 | 0.0773 0.2818
([p] [pu pv pw] [pe] (global) 36 0.2782 | 0.159 0.7893

Table 5.2: Statistical errors for rescaled boundary conditions. The words between paren-
theses indicate the type of scaling that was performed, depending on whether all com-
ponents (global) or only the momentum were rescaled.

e For the mean quantities, the rescaled conditions give better results than the un-
rescaled ones. The error for the mean velocity is on the order of 5% for unrescaled

conditions, and around 2% for scaled ones.

e For turbulent intensities, rescaled conditions are worse than unrescaled ones, except
for the triple decomposition based on [p], [pu, pv, pw], [pe] (momentum rescaling),
which means others decompositions compensate more energy for fluctuation. The
overprediction is worst for the wall-normal turbulent intensity (over 60% for all

other methods and only about 30% for the triplet decomposition [p], [pu, pv, pw],

[pel).

e For the triple decomposition based on [p], [pu, pv, pw], [pe], it was best to perform
rescaling only on the momentum components. Global rescaling led to a significant
increase in the prediction of the turbulent intensities, in particular for the wall-
normal component. The unrescaled condition yielded the best prediction for the
wall-normal component, because it contains more small scales which are more

difficult to control and predict.
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5.3 Influence of the snapshot basis

5.3.1 Evolution of the amplitude of the dominant mode

Carrying out POD for the full velocity field yields a dominant mode whose time average
corresponds approximately to the mean profile. Examination of the temporal amplitude
of the first mode therefore reveals how truly stationary the flow is. Figure 5.16 shows
the first temporal coefficient of the dominant mode for each POD variable (density,

momentum and pe), where the x axis is time scale, and y axis is amplitude.
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Figure 5.16: Temporal coefficient of first mode A;, = a;(t,) (¢, is indice of time). Top
left: for density[p]. Top right: for momentum [pu, pv,pw|, bottom: for [pe].

While the amplitude of density and momentum oscillate near constant values, a slow
decrease is observed for the energy, which tends to stabilize for the last 240000 iterations
(last 25 fields in Figure 5.16, 144 time units). This suggests that the simulation has just

reached statistical convergence. Our original snapshot basis for POD (corresponding to
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100 fields sampled every 10000 time steps indicated as "old samples” in Figure 5.17)

was obtained over a period of non-stationary convergence. To examine if this affects the

synthetic boundary condition, we constructed another POD basis from 100 snapshots

corresponding to the period labeled "new samples” in Figure 5.17). The new basis has

an overlap of 25% with the original basis.
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Figure 5.17: Definition of the two snapshot bases for POD.

Figure 5.18 represents the temporal coefficient of the first mode of pe for the new 100

samples. We observe that the amplitude of temporal coefficient for pFE oscillates near

a constant. It therefore appears to be a good idea to evaluate the boundary condition

constructed from the new basis.
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Figure 5.18: Amplitude of the first mode Ay, of [pe].
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5.3.2 Results with new POD basis for altitude har =18
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Figure 5.19: Mean profiles for decomposition based on [p], [pu, pv, pw], [pe]) decomposi-
tion. Top left: streamwise velocity u for bottom half channel. Top right: streamwise
velocity u for top half channel. Bottom left: density. Bottom right: temperature.

Amplitude

RMS of U

0.|——DNS

—+— Reduced channel with rescaling step in 36 time units
i }

0
0

0.5 1 1.5 2

Z

0.08

Amplitude
© © ©° ©°
(=13 o (=] (=1
= un (=] ~

2
o
oW

RMS of V

|

—+—DNS
—s— Reduced channel with rescaling step in 36 time units

0.01

0

*

0

0.5 15

Figure 5.20: Turbulent intensity values for [p], [pu, pv, pw], [pe] decomposition. Left: rms
streamwise velocity u. Right: rms spanwise velocity v.
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Figure 5.21: Turbulent intensity value and shear stresses for [p], [pu, pv, pw], [pe] decom-
position. Left: rms wall-normal velocity w. Right: shear stress < u/w’ >.

Figures 5.19-5.21 show turbulent statistics computed over an integration time of 36
convective units. Here, all modes are used for density p and internal energy pe, 120
modes are used for momentum.

The mean streamwise velocity profile is very well recovered, especially in the inertial
region characterized by the log-law (Figure 5.19) in both parts of the channel. The
density and temperature profile also match very well the DNS results. The streamwise
turbulent intensity (< u? >'/2), the spanwise turbulent intensity (< v'? >/2) are well
recovered, but the wall normal turbulent intensity (< w2 >'/2) is overpredicted. Because
the boundary conditions for field of u and w are different, the field of w is always
determined with POD reconstruction, the field of u could be either determined by POD
reconstruction or calculated with resolved region, this results in a lack of correlation
between the longitudinal and the wall-normal fluctuations, since the shear stress < v/'w’ >

in Figure 5.21 is well recovered in a large part of the core region.
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5.4 Influence of the boundary condition characteris-

tics

5.4.1 Results for different choices of Riemann invariants

In all that follows we consider a boundary condition where we reconstruct the density,
the momentum and the internal energy with respectively 200, 128 and 200 POD modes.
This choice is due to memory limitations for the storage of the POD basis of momentum.
Some choices are possible in Riemann invariants. Moreover, when prescribing the velocity
field (for instance when u -n > 0) it is possible to set one of its components equal to

Zero.

Various combinations were tested, A summary is provided in Table 5.3. In addition,

plots are shown for two types of boundary conditions tested over 36 time units:

e Condition A: p, pu, pv, pw, T respectively correspond to the characteristics in

to the wall)

e Condition B: p, pu, pv, pw, T respectively correspond to the characteristics u-n— ||

which means the field is the same as previous time step.

Figures 5.22 and 5.23 represent the results for the rescaled conditions A and B.
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Figure 5.23: Turbulent intensity values and shear stresses for the different POD methods.
Top left: rms streamwise velocity u. Top right: rms spanwise velocity v. Bottom left:
rms wall-normal velocity w. Bottom right: shear stress < u/w’ >-Legends as in Figure
5.22

Figures 5.22 and 5.23 show that the boundary condition A does not reproduce the mean
velocity profile very well and tends to underestimate the Reynolds stress (compare for
instance with figures 5.21 and 5.19). Condition B yields significantly better results, but
the mean velocity profiles are still different from the reference. We present the results of

tests with different boundary conditions in Table 5.3.

Table 5.3 shows that it is important to define the variables on the boundary with the
Riemann invariants otherwise the computation in the reduced domain simulation does
not appear to be stable. Prescribing a velocity component to be zero in order to avoid
the introduction of the small scales, in particular for w, did not seem to yield good
results. The best choice appeared to associate p, pw, pv, pu, T with the eigenvalues

w—C,w+C, w, w, w.
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Eigenvalue | w w | w w+ C w—C Stabilization in 36
time units

1 pU pw | T pu p No

1 pU pv | pw p T No

3 T p | pv pw puU No

4 pu pw | p T pv No

) pU pw | pv T p No

6 p pw | pv pu T No

7 U pw | dpv) =0 | T P No

8 T pw | d(pv) =0 | pu P No

9 p pw | d(pv) =0 | pu T No

10 pu pu | p T pw No

11 pu pv | d(pv)=0 | T pw No

12 pu | d(pv) =01 p T pw No

13 p pu | pv pw T Yes (Discrepancies
for mean density and
temperature)

14 T pu | d(pv) =0 | pw p Yes (Discrepancies for
spanwise velocity)

15 T pu | pv pw p Yes (Best result)

Table 5.3: Comparison between different choices of Riemann invariants for the boundary
conditions (eigenvalue expressed in bottom boundary plane).

5.4.2 Correction step in the estimation procedure of the POD

amplitudes

In this paragraph, we explore a way to address the issue mentioned earlier, namely that
the variables associated with the characteristic w are either propagated from within the
simulation or prescribed by the POD reconstruction, which may result in discrepancies
on the boundary plane and the generation of energetic small scales. To reduce these
discrepancies, the idea is to use the boundary condition once it is determined on the
limit plane to improve the determination of the POD amplitudes. This means solving
an additional linear problem similar to that of the standard reconstruction method, but

only limited to the plane of reconstruction.

Once the field Q(x,y, zo,t) is determined with the standard reconstruction procedure
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described in Chapter 3, we look for the best estimate A,(t) such that

N
Qx,y,20,t) = Y An(t)n(,y, 20). (5.6)
n=1
This leads to the normal equations
An(t) = U A, (5.7)

where

fym://qu(x?yaZO)Q<I7y7’ZOat>dxdy7
e (5.8)
q;nm:/x/y¢m(x7yu ZO)¢n(xay720)d$dy'

From figure 5.24, we can see that the diagonal terms in ¥,,,,, are much larger than others
terms, we except the pattern to the well-conditioned, and it could be better for resolving

the linear system.

20 40 60 80 1
m

Figure 5.24: From left to right: Matrix ¥ for [p],[pu, pv, pw], [pe].

We then applied the adjustment condition to calculate new estimated temporal coefficient

(condition C).
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Figure 5.25: Mean profiles - Top left: streamwise velocity u in bottom half channel.
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Figure 5.26: Turbulent intensity values and shear stresses for the different POD methods.
Left: rms streamwise velocity u. Right: rms spanwise velocity v.-Legends as in Figure
5.25.
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Figure 5.27: Turbulent intensity values and shear stresses for the different POD methods.
Left: rms wall-normal velocity w. Right: shear stress < u/w’ >.-Legends as in Figure
5.25.

Results are shown in Figures 5.25-5.27. We can see that the extra correction step fails.
The reason for these relatively disappointing results might be the absence of a correction

on the ghost cell planes, which will affect the computation of the fluxes.

5.5 Spectra in the reduced channel at hj = 18

Based on the statistic of first order and second order in section 5.2. The best result
for subsonic flow is from POD reconstruction of [p|, [pu, pv, pw], [pe]. The associated
Riemann invariants are Ay = Ay = A3 = w - n for the temperature, pu and pv, \y =
u-n+ || nl C for pw, and A\s = u-n— || n | C for the density p in reduced channel.
Rescaling of the momentum components is applied to the synthetic boundary condition.
We continued the simulation to 72 time units and present the results in Figures 5.28-
5.31. We can see that the turbulent intensities tend to be overpredicted compared to the
results obtained for 36 time units. We point out that no global rescaling of the full flow

fluctuations was performed at any time during the computation.



5.5 Spectra in the reduced channel at hy = 18 113

Profile of U in bottom half channel R Profile of U in top half channel
A 1
1 1
0.8 0.8
] ]
o T
3 3
= =
= .6 = .6
£ |—+—DNS £ |—*—DNS
<L |—=—Reduced channel with rescaling step in 72 time units < |—=—Reduced channel with rescaling step in 72 time units
0.4 0.4
0.2 0.2
0 0
107! 10° 10t 102 10t 10° 10t 102
zF z*

Figure 5.28: Mean profiles - Left: streamwise velocity u in bottom half channel. Right:
streamwise velocity u in top half channel.

The mean streamwise velocity profile (< u >) is very well reproduced and displays an
inertial region where the logarithmic law is clearly recovered (Figure 5.28) in both parts

of the channel, with a slight overprediction of 1.9 % throughout the channel.
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Figure 5.29: Mean profiles - Left: density p. Right: temperature 7.

With a slight overprediction of 0.1 % throughout the channel, the density profile also
matches very well the DNS results (Figure 5.29). The profile of temperature is little

overestimated with a slight overprediction of 2 % throughout the channel.

We observe that the streamwise turbulent intensity (< u? >!/2) is overpredicted by
26.75 %, the spanwise turbulent intensity (< v? >'/2) is overpredicted by 31.52 %,
and the wall normal turbulent intensity (< w? >'/2) is largely overpredicted by 70 %.

However the shear stress (Figure 5.31) is slightly underestimated, which means that the
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underprediction of the shear stress corresponds to a local lack of correlation between the
streamwise and the wall-normal component. The fact that the shear stress is relatively
close to the reference profile is consistent with a fair agreement for the mean velocity

profiles shown in Figure 5.28.
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Figure 5.30: Turbulent intensities. Left: turbulent streamwise intensity < u? >!/2.
Right: turbulent spanwise intensity < v2 >/2.

RMS of W <1073 uw
0.1 .
0.09 2
0.08 15
0.07 1
@ [J]
T 0.06 T 05
= e
= £
= 0.05 = 04
g 0.oar F o TG e g -0.5
L E——= -1
0 —s— Reduced channel with rescaling step in 72 time units 15
0.01 —+— DNS
—+— Reduced channel with rescaling step in 72 time units
0 2,51 !
0 0.5 1 1.5 2 0 0.5 1 1:5 2
Z z

Figure 5.31: Left: turbulent spanwise intensity < w? >/2. Right: shear stress < w/w’ >.

To better understand and characterize the discrepancies between the reference and the
reduced channel simulation, horizontal spectra have been computed at an altitude z = 0.2

that is 2T = 36.

Horizontal spatial spectra of the velocity components at an altitude z = 0.2 (27 = 36)
are presented as a function of the streamwise and spanwise wavenumber in Figures 5.32,

5.33, and 5.34 for both the reference channel flow and the reduced domain simulation.
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The integration time was 72 time units. The general distribution of the kinetic energy
is rather well captured by the reduced channel simulation. We can however notice a
shift of the kinetic energy towards greater wave numbers in the reduced channel, in both
streamwise and spanwise directions. This suggests that POD reconstructed synthetic
boundary conditions contain more kinetic energy in smaller length scales than DNS.
The shift is clearly noticeable in the spectra of the streamwise (Figure 5.32) as well as
the wall-normal component (Figure 5.34) of the velocity. It explains the higher than
expected turbulent intensities. We speculate that it could be created by the mismatch

between the synthetic boundary condition and the flow in the inner domain.
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Figure 5.32: Power spectra of density for the streamwise velocity u on a plane at an
altitude z = 0.2 versus the wave numbers in x and y directions. Left: in full channel.

Right: reduced channel.
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Figure 5.33: Power spectra of density for the spanwise velocity v on a plane at an altitude
z = 0.2 versus the wave numbers in x and y directions. Left: full channel. Right: reduced

channel.
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Figure 5.34: Power spectra of density for the wall-normal velocity w on a plane at an
altitude z = 0.2 versus the wave numbers in z and y directions. Left in full channel.
Right in the reduced channel.

Figures 5.35-5.37 compare the one-dimensional streamwise spectra of the velocity com-
ponents u, v, w at different heights z = 0.2,0.6,1.0 corresponding in wall units: 27 =
36,108, 180. The spectrum decay in the reduced domain appears quite similar to that
in the reference domain. The main difference seems to be a smaller energetic content for

the wall-normal component w which is noticeable in particular for the large scales.

We note that the size of the inertial region is small, due to the relatively low value of

the Reynolds number.
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— — —ymen 53

10 = 5 103 = 5
Figure 5.35: Power spectra of density for the streamwise velocity u on a plane at three
different altitudes versus the wave numbers in x direction. Left : full or reference channel.
Right: reduced channel. (Red line is for spectra at altitude z = 0.2. Violet line is for
spectra at altitude z = 0.6. Black real line is for spectra at altitude z = 1.0. Black
imaginary line is for inertial region).
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Figure 5.36: Power spectra of density for the spanwise velocity v on a plane at three
different altitudes versus the wave numbers in x direction. Left: full or reference channel.
Right: reduced channel.-Conditions as in Figure 5.35.
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Figure 5.37: Power spectra of density for the wall normal velocity w on a plane at three
different altitudes versus the wave numbers in x direction. Left: full or reference channel.
Right: reduced channel.-Conditions as in Figure 5.35.

5.6 Results at h =54 (hy = 0.3)

The synthetic condition considered above was applied at a larger height hd = 54. The
test was run over a total time of 36 convective time units for the statistically converged
POD basis (obtained with the set of snapshots corresponding to the "new samples”).
For POD reconstruction, all modes are used for density p and internal energy pe, 120
modes are used for momentum. And the rescaling step is applied just on momentum.

Figures 5.38-5.40 show respectively the mean profiles of the conservative variables and

the different components of the shear stresses. The mean velocity profiles are well re-
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covered (Figure 5.38). A good agreement is observed for the mean density. The mean

temperature appears to be slightly overpredicted.
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Figure 5.38: Mean profiles - Top left: streamwise velocity u in bottom half channel. Top
right: streamwise velocity v in top half channel. Bottom left: density. Bottom right:
temperature.
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Figure 5.39: Turbulent intensity values for the synthetic boundary condition at hy = 54.
Left: rms streamwise velocity u. Right: rms spanwise velocity v.
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Figure 5.40: Turbulent intensity value and shear stresses for the synthetic boundary
condition at hg = 54. Left: rms wall-normal velocity w. Right: shear stress < u/'w’ >.

The turbulence intensities represented in Figures 5.39-5.40 appear to be overpredicted.
The overestimation is about 20% for the streamwise component, while it reaches respec-
tively 40% and 100% in the center of the channel for the wall-normal and the spanwise
component. However the shear stress (see Figure 5.40) is well predicted. The very low
values of the Reynolds stress on the boundary plane can be interpreted as a lack of
correlation between the streamwise and the wall-normal component. This might be due
to the fact that part of the boundary condition is prescribed, while the rest is computed

from the simulation.

5.7 Conclusion

In this chapter we have applied synthetic wall boundary conditions to both walls of
a channel. The influence of various parameters was examined. We first examined a
Fourier-based reconstruction, but we were not able to obtain a stable formulation. The

reason for this is unclear as the approach was successful in the incompressible case.

We then tested different decompositions for the variables. We found that the best choice
was a decomposition on [p], [pu, pv, pw], [pe]. The mean velocity profile was well
recovered and the logarithmic region was correctly reproduced. However it seems that
without further rescaling the turbulent intensities diverge slightly over very long time

scales.
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We also examined the influence of the snapshot basis, the Riemann invariants, and we
tried to improve the estimation of the POD amplitudes. We found that examination of
the spectra provides useful insight to evaluate the synthetic boundary condition. Two
different heights were tested hf = 18 and hy = 54. Results were found to be largely
insensitive to the height of the boundary plane. However we found that the procedure
was sensitive to the choice of the variables for the decomposition. The reason for this is
not entirely clear and will require further investigation. By selecting the variables in an
appropriate manner, we were able to recover the mean velocity profile within 2%. The
Reynolds shear stress was also correctly predicted. However, the turbulent intensities
tended to be overpredicted. Spectral analysis showed that this overprediction was linked

to the excess energy at higher streamwise wavenumbers than in the DNS.

The potential advantage of using synthetic wall boundary conditions is to significantly

reduce the computational cost of a simulation, through

e a reduction in the mesh size, due to the exclusion of the thin but highly resolved

wall region

e a reduction in the computational time step, due to the increase in the size of the

smallest cell

However this computational gain is limited by the extra cost required to compute the
synthetic boundary condition. Table 5.4 summarizes the characteristics of the reference
and of the reduced simulations for the two boundary heights. We note that no effort
was made to optimize the implementation of the boundary condition, which may explain
why the total reduction of the computational cost is relatively small compared to the

mesh and time step reduction.

Boundary plane height Mesh dimension ot | CPU time (36
convective units)

Full channel h =0 1213761 6E-4 | 48 hours

Reduced channel hf = 18 799765 1.8E-3 | 20 hours

Ratio Reduced/Full 66% 300% | 42%

Reduced channel h = 54 498677 3.6E-3 | 14 hours

Ratio Reduced/Full 41% 600% | 29%

Table 5.4: Computational requirements of the reference and reduced-channel simulations.



Chapter 6

Simulations in supersonic flow

6.1 Mesh interpolation for POD

Now we consider the supersonic case Ma = 1.5. The supersonic simulation was carried
out with mesh dimension Nz x Ny x Nz = 257 x 161 x 161, as mentioned in Chapter 2.
In order to reduce the memory requirements, we carried out an interpolation procedure
in order to compute POD modes on a reduced channel. The condition was then recon-
structed on the full mesh. Therefore, an interpolation procedure on a smaller grid has
been employed to reduce the dimension of the problem [29]. The mesh size was reduced
by 2 in each horizontal direction. All the points in the normal to the wall direction have
however been retained leading to a new mesh with Nx,c, X NYnew X N2 = 129 x 81 x 161

grid points.

The spatial modes are then calculated on the new grid. As far as the reconstructed
synthetic conditions on the boundary planes require the knowledge of the POD spatial
modes at each points of this plane, an interpolation procedure is needed to estimate
the conservative variables at each points of the original mesh on boundary planes. For
simplicity, a bi-linear interpolation is employed in each plane (z x y). If x and y are the
coordinates of the point in the original mesh, and xg, yo, 1, and y; are the coordinates

in the new mesh (see Figure 6.1), a function (f) known at each point of the new mesh

121
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is interpolated in the original mesh following;:

f(z,y) = co(1 = ya) + c1ya,

with
co = f(xo,90) x (1 —xq) + f(x1,90) X 4,
c1 = f(xo,y1) X (1 —2q) + f(21,91) X 24,
and
Tr — 2o
Tqg — s
1 — X
Y=Y
Ya = .
Y1 — Y
(Xolyl) (Xl‘yl)
o
(X,y)
(Xo:¥o) (X,.¥o)

Figure 6.1: Sketch of the interpolation procedure on the refined mesh.

The POD is performed on the field of density [p], momentums [pu, pv, pw] and internal
energy [pel, using 35 samples separated by a time gap of AtUy/H = 81.6. As mentioned
in Chapter 3, reflection symmetry with respect to the horizontal mid plane (z = 1) has

been used, which results in 70 POD modes.
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6.2 Comparison between instantaneous fields in re-

duced channel and reference

We implement boundary conditions based on POD reconstruction of [p], [pu, pv, pw],

[pe] using 70 POD modes at an altitude hy = 0.1 (hj = 22).

Firstly, we present the flow field in reduced channel at the altitude z = 0.2 for compar-
ison at around 4.3 time units (10000 time steps). The results are obtained from POD
reconstruction with [p], [pu, pv, pw], [pe], and the rescaling step with local mean value
was applied only on momentum. The flow fields in full channel at the same altitude are

presented at around 4.3 time units (17900 time steps).

U: 01020.3040506070809 1 1.112 U: 0.102030405060.70.809 1 111.2

Figure 6.2: Instantaneous field of streamwise velocity u at altitude z = 0.2. Left: full
channel at 4.3 time units. Right: reduced channel at 4.3 time units.
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Figure 6.3: Instantaneous field of spanwise velocity v at altitude z = 0.2. Left: full
channel at 4.3 time units. Right: reduced channel at 4.3 time units.
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Figure 6.4: Instantaneous field of wall normal direction velocity w at altitude z = 0.2.
Left: full channel in 4.3 time units. Right: reduced channel at 4.3 time units.
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Figure 6.5: Instantaneous field of total energy at altitude z = 0.2. Left: full channel at
4.3 time units;. Right: reduced channel at 4.3 time units.



6.3 Statistics in reduced channel 125
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Figure 6.6: Instantaneous field of density at altitude z = 0.2. Left: full channel at 4.3
time units. Right: reduced channel at 4.3 time units.

Figures 6.2-6.6 show the density, velocity and total energy. The velocity fields are in
good agreement with each other. This constitutes a first validation of the procedure
in the supersonic case. We note that in contrast, there are differences for density in
Figure 6.6, which is always computed from information within the channel. The density

therefore appears to be sensitive to the reconstruction procedure.

6.3 Statistics in reduced channel

6.3.1 Simulation with POD reconstruction of first 35 samples

In Figures 6.7-6.9, we present the results in reduced channel averaged over 26 time units,
the DNS results are obtained from 75 time units, and the rescaling step is applied just
on momentum. We compare the results for the simulation without rescaling step and

with rescaling step and with the full channel data.
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Figure 6.7: Mean profile of quantities for simulation in 26 time units. Top left: mean
profile of u for bottom half channel. Top right: mean profile of u for top half channel.
Bottom left: mean profile of density. Bottom right: mean profile of temperature. (Red
line is for DNS. Violet line is for simulation without rescaling step. Black line is for

simulation with rescaling step).
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Figure 6.9: Left: rms value of w. Right: shear stress < «/w’ >.-Conditions as in Figure
6.7.

From the results, we could see that the results with rescaling step are much better than
without rescaling step. We calculated the relative error (Table 6.1) of quantities in the

center region (21 < z < 2z9) with z; = 0.3 and z, = 1.7:

L ["leite s gn,, 6.1

€Q =
Zo — 21 Jy QLN

Values of errors are much smaller with rescaling step than without, except for density
for which errors are small. For the results with rescaling step, the rms values of u and
v are well recovered, the rms of w is close to that in the full channel, < v/w’ > is well
recovered in center region of channel, and the mean profiles of velocity, density < p >,

and temperature are well recovered.

Quantity error rmsu | rmsv | rmsw | <p> | <u>
Without rescaling step | 0.2210 | 0.1784 | 0.1968 | 0.00047| 0.0217
With rescaling step 0.0941 | 0.0267 | 0.0478 | 0.002 | 0.0056

Table 6.1: Relative error for simulations in reduced channel 0.3 < z < 1.7.

Following these encouraging first results, we resumed the simulation of the reduced
channel up to 40 time units. Profiles of mean density and temperature are plotted
in Figure 6.11, Van-Driest velocity profiles can be viewed in Figure 6.10, and profiles of

the rms velocity as well as the shear stress are plotted in Figures 6.12-6.13.
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Figure 6.10: Mean profile of quantities for simulation in 40 time units. Left: mean profile
of u for bottom half channel. Right: mean profile of u for top half channel.
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Figure 6.11: Mean profile of quantities for simulation in 40 time units. Left: mean profile
of density. Right: mean profile of temperature.
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Figure 6.12: rms values for simulation in 40 time units. Left: rms value of u. Right:
rms value of v.
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Figure 6.13: rms value and shear stress for simulation in 40 time units. Left: rms value
of w. Right: shear stress< uw/w’ >.

Profiles of the mean streamwise velocity in the lower half channel and the upper half
channel are well predicted since the logarithmic law is rather well recovered. Profiles
of the mean density and the mean temperature are well predicted across the channel.
We could see that the rms values are rather well recovered in the center region of the
channel. The rms value of w is however slightly overestimated. Besides the rms values,

the shear stress < u/w’ > is very well recovered in the center region.

Relative errors are then calculated (6.1) for the solution over 40 time units; they are
reported in Table 6.2. While relative errors on the rms velocity profiles have increased
from the simulation at 26 time units, they stayed rather weak and lower than 0.1. We
can notice that these relative errors are much smaller than in the subsonic flow (see
the previous Chapter), indicating that the synthetic boundary conditions seem to work

better in supersonic flows.
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Quantity error | time units | rms u | rms v | rms w <p> | <u>

Subsonic 36 0.1429 | 0.0773 | 0.2818 5.62E- | 0.029
4

Supersonic 40 0.1006 | 0.029 | 0.0560 0.0025 | 0.0034

Table 6.2: Relative error for simulations in reduced channel 0.3 < z < 1.7 obtained from
70 modes (Comparison with subsonic flow in Chapter 5).
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Boundary plane AN “4-Boundary plane
- &
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Figure 6.14: Wave propagetion in streamwise direction. Left: subsonic flow. Right:
supersonic flow.

The sonic line Ma = 1 was found to be at z = 0.08, which is below the boundary plane.
This means that the local Mach number for the synthetic boundary condition is higher
than 1, so that information is enduringly propagated downstream. However in subsonic
flow, the propagated direction could be either downstream or upstream as Figure 6.14
shows. It is possible this phenomenon could be helpful for the stability of calculation for

supersonic flow in reduced channel. .

6.3.2 Simulation with POD reconstruction using new 30 sam-

ples

In the previous section, results were obtained with POD calculated on only 35 time
samples. To obtain more samples as in the subsonic flows, we resumed the DNS for
990,000 supplementary time steps (100 samples). We performed 3 POD’s for [p], [pu, pv,
pwl, [pe] on 100 samples , separated by At = 2.3%. On Figure 6.15, we plot amplitudes

of the first POD mode of density, momentum and internal energy.
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We easily notice that time variations of the first mode amplitudes of the density and
the momentum are in opposition phase between the upper and lower half part of the
channel. We also notice that these time evolutions do not show any drift over time
(Figure 6.15). This is not the case for the internal energy where the amplitude of the
first POD mode clearly shows a drift over the first 70 samples that distinctly decreases
over the remaining 30 last samples. We then employed the last 30 samples, corresponding
to set B of Figure 6.16, to perform a new POD on [p], [pu, pv, pw], [pe] by assuming a
reflection symmetry with respect to the horizontal plane z = 1, leading to 60 snapshots

and therefore 60 POD modes.
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Figure 6.15: Amplitudes of the first mode for 100 samples (corresponding to the mean
field). Top left:[p]. Top right:[pu, pv, pw]; bottom: [pe].
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Figure 6.16: Procedure of simulation for DNS.

A simulation in the reduced channel flow with a boundary plane located at hy = 0.1
(hg = 22), has been performed with the POD reconstruction using these 60 modes. The
rescaling step has only been applied on the momentum in this new simulation, other
scalar quantities (p and pe) are still without rescaling step. Statistical results of this

simulation integrated over 40 time units are presented on Figures 6.17-6.20.
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Figure 6.17: Mean profile of quantities for simulation in 40 time units. Left: mean profile
of u for bottom half channel. Right: mean profile of u for top half channel.
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Figure 6.18: Mean profile of quantities for simulation in 40 time units. Left: mean profile
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Relative errors defined as in (6.1) have been calculated for the statistics of the new

simulation. They are reported in Table 6.3.

Quantity error | Time units | rms u | rms v Tms w <p> <u >
Subsonic 36 0.1429 | 0.0773 0.2818 5.62E-4 | 0.029
Supersonic 40 0.0604 | 0.0378 0.0935 0.0016 0.0136

Table 6.3: Relative error for simulations in reduced channel 0.3 < z < 1.7 obtained for
60 POD modes of Part B in Figure 6.16 (Comparison with subsonic flow in Chapter 5).

Table 6.3 also shows that the results in supersonic flow (Part B in Figure 6.16) are better

than those in subsonic flow (see Chapter 5), except slight difference in density.

Comparison of Tables 6.2 and 6.3 shows that results are similar. The mean velocity is still
well predicted, as well as the turbulent intensities, including the wall-normal component
w. The rms of u and v are rather well recovered, mainly in the center region, with an
overestimation across the channel height of 6% and 3.78%, respectively. Again, the error
on the rms of w is greater (about 9%) with an overestimation in the center region. The
shear stress < v/w’ > in Figure 6.20 is well recovered in center region, and discrepancies
are again noticeable close to the boundary planes due to the lack of correlation between
u and w. The mean Van-Driest profile of u is well recovered with a weak overprediction
of 1.3%. The logarithmic law is almost recovered in both the lower and upper half
channel. The profile of density fits very well the reference with a weak relative error
of 0.16%. Slight discrepancies are visible on the temperature profile since temperature
is overpredicted across the channel with a relative error of about 1%. Compared with
results with POD reconstruction using the original 35 samples (see Table 6.2), the rms
of u and the mean density predictions are improved while the rms of v and w, the mean
streamwise velocity < u > and the mean temperature are not so well predicted. The
discrepancies between simulations in the reduced channel with POD reconstructions on
the original 35 samples and the new 30 samples are rather small, 30 samples are not
enough to correctly allow a faithful representation of the flow dynamics. More samples

are clearly needed for a better POD reconstruction in future.
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Ma=1.5 (hy ~ 20) | Mesh dimension | Time step | Total simulated time (40
H/Uo)

Reduced channel 3.35E6 43E-4 | 121 h

Full channel 6.7E6 2.5E-4 | 288 h

Ratio Reduced/Full 50% 170% | 42% # (50%/1.7)

Table 6.4: Computational time saving for supersonic flow.

As for the computational time saving in Table 6.4, the mesh dimension in reduced channel

is 50% of that in full channel, and the time step is 1.7 time of that in full channel, which

means than the efficiency what we could obtain should be around 29%, however, because

POD reconstruction also takes the time, so finally the real efficiency is around 42 %, and

the gain is around 2.5.

6.4 Spectra in the supersonic flow

Energy spectra in reduced channel were calculated in simulation with POD reconstruc-

tion using the last 30 samples (Part B in Figure 6.16). They are plotted on a plane

at an altitude of z = 0.2 in Figures 6.21-6.23. They are compared with energy spectra

obtained in the full channel DNS.
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We can see that the spectrm of energy of w is rather well recovered in reduced chan-

nel. A shift towards larger wave numbers in streamwise direction (k,) could however be

observed. The energy spectrm of v in the reduced channel coincides rather well with

the reference. Regarding the energy spectra of w, a shift is also observed towards small

wavenumbers in the spanwise direction (k).

In conclusion, the spectra of velocities are rather well recovered in reduced channel, and

they are better than those in subsonic flows, the reason could be that in supersonic simu-

lation, when the boundary plane is higher than sonic line, that information is enduringly

propagated downstream. Which could be helpful for stability of simulation.



Chapter 7

Conclusions and perspectives

7.1 Conclusion

The objective of this thesis is to explore how synthetic wall boundary conditions could
be developed for the compressible simulation of wall turbulence. The idea is to bypass
entirely the simulation of the wall region which requires a very fine spatial resolution
near the wall, consequently reduce the computational time step, and to replace it with a
boundary condition located on a plane within the wall layer which mimics the features
of full wall turbulence at that height. The computational domain is thus reduced, as we

only simulate the flow at some distance from the wall.

The originality of the thesis is to extend the approach traditionally used for inlet bound-
ary conditions to wall conditions, and to rely on Proper Orthogonal Decomposition
modes to construct the boundary condition. The challenge of the compressible formu-
lation is that the nature of the boundary condition depends on the wave propagation
characteristics. This entails that the success of the procedure depends on the adequacy of
the boundary condition prescribed with Proper Orthogonal decomposition (POD) with

the solution propagated along the Riemann invariants.

Using POD, the fields on the boundary which need to be prescribed are written as a
superposition of spatial modes, which are assumed to be known before-hand. The am-
plitudes of the modes need to be determined at each time step. This is done using linear
stochastic estimation based on the information available in the reduced computational

domain at the previous time step.

In the course of this thesis different aspects of the procedure were examined and tested.

137
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The goal is (i) to examine whether the procedure is robust to the different choices that can
be made, (ii) to determine the parameters that lead to the best results (iii) to provide
physical or numerical arguments for these choices. We emphasize that our approach

remains exploratory at this stage.

The procedure was tested in a turbulent channel flow with periodic boundary conditions
in horizontal directions. The Reynolds number based on the bulk velocity and channel
half-height was Re = 3000. The temperature remains constant at the walls. One subsonic
case (Chapters 4 and 5) and one supersonic case (Chapter 6) are considered. They
respectively correspond to the cases Ma = 0.5 and Ma = 1.5. The synthetic boundary
conditions were first implemented on one wall (Chapter 4) then on both walls (Chapters 5
and 6). The statistics were computed over a total period of several decades of convective
time units. Two heights within the wall layer were considered hj ~ 20, and hj ~ 50.

Results were found relatively robust with respect to the boundary height.

In satisfactory cases, above some recovery height, a very good agreement was observed
between the statistics of the reference channel and those of the reduced computational

domain with the synthetic boundary condition, namely:

e The reference mean velocity was computed within 1-2% in the computational do-

main and the logarithmic law was recovered.

e The Reynolds stress was correctly estimated.

The turbulent intensities were overall well predicted, but the cross-stream turbulent
intensities were overestimated. Spectral examination showed that this corresponded to

a higher than expected energetic content in the small scales.

An important question is to define how POD should be applied to the different variables.
It was found that the conservative formulation was generally preferable to the primitive
formulation. It was also found that it was best to use three independent decomposi-
tions for the density, the momentum and either the energy or the temperature. This
may be because these quantities are dominated by different scales, so that splitting the

decomposition improves the convergence of the representation.
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Among all the choices possible for the variable associated with energy, tests were con-
ducted for the total energy, internal energy and the temperature. Best results were

observed for the internal energy.

We checked that the results were largely insensitive to the choice of the set of snapshots
used to perform POD, once statistical convergence has been established. Agreement
with the reference statistics was observed for a few tens of POD modes. The maximal

number of POD modes included in the reconstruction was 200.

In the reconstruction procedure, it is possible to include a rescaling step in order to ensure
that the global energetic content of the fluctuations reaches a certain level. We checked
that a local definition of the variance was sufficient to define appropriate rescaling factors.
The rescaling step was found to improve results considerably. This can be understood
by the fact that our reconstruction is based on projection, so that even if the amplitudes
were perfectly estimated, the reconstructed field will lack some energy. Moreover, it was

found most important to rescale the momentum.

The implementation of the boundary condition depends on the definition of the Riemann
invariants for the different variables. The adequacy of the boundary condition was found
to depend strongly on the choice of the Riemann invariants. The reasons for this were

not made entirely clear.

Although good results over the simulation time considered were obtained for both sub-
sonic and supersonic case, the agreement between the reference channel and the reduced
computational domain was better in the supersonic case. We speculate that this could
be due to the fact that in the supersonic the flow velocity on the boundary plane is
already supersonic, so that all information is propagated downstream.

The computational time saving is achieved with a gain around 2.5 in reduced channel.

There, we can see POD is costly, but a significant cost reduction is achieved.

7.2 Perspectives

The work presented here remains largely exploratory. We believe that two main direc-

tions of investigation are necessary at this stage:
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1. The validity of the approach should be established over longer simulation
times that is several hundreds of time units. It was not possible to carry out this
study in the present thesis as our focus was to determine all the different parameter

choices that could be made.

2. A significant effort should be made to understand the results associated
with some parameter choices. Again, we did not have the time to analyze the
results in detail. This should help establish the robustness of the procedure and

define its best operating conditions.

These two directions are complementary, as establishing the validity of the conditions
over long periods may require adaptation of the procedure, such as the introduction of
additional filtering techniques. This requires a thorough understanding of the effect of

these techniques on the flow computation.

Once these two issues are addressed, optimizing the reconstruction procedure is
essential in order to capitalize on the reduction of the spatial mesh and the increase in

the computational time step.

It will then be interesting to consider higher Reynolds numbers, in which an inertial re-
gion can be more clearly defined. Results for incompressible flow suggests that increasing
the Reynolds number tends to improve the procedure, as the separation between the wall
region and the outer layer (or core region, in the case of a channel) increases. Increasing
the Reynolds number will also allow us to test higher boundary planes, and therefore to

obtain further reduction.
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Viscous flux

For the viscous stress, we have the following expression based on discretization:

0
Vis
FVst = | (VU + VTU) - 2

uNVT
Ur + (y—1)PrReMy?

V.U

M
Re

_ K gy 2ty
r= (VU VIU) = 55V U

We defined that II is identity matrix. For the discretization in = direction:
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For the discretization in z direction:
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For better understanding of discretization, we define Part,,Part,,Parts as following

(Party,Party, Parts are discretizations of 7 is z, y, z directions respectively):
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And we have the following results as:
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As for the term UrT:
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Appendix B

Macroscopic Pressure gradient

For the 3D case in our model, the wall is in z direction, and x and y direction are

periodic. For the equation of momentum in streamwise direction x, we have following

equation:
dpu 0 9 0 0 0 ., 0u 2 0u
0y = P) 4+ — il N Ll ) St
ot + 8$(pu P+ 8y(mw) + 8y(puw) (9:6[]%6( ox 3(&75 +

0 ov  Ou 0. Odw Ju

a_y[ﬁ(a_x + (3_3/)] - &[ﬁ(a—x + %)] = 0.

Then, we integrate between 0 and L,:

Lz u2
Jo* %ide = [pu?]l5 =0,

1 7,
7o o By (ngR)de =0,

e
ff foz$ aw d:L‘—O

1 .. '
Jo "5 [2ﬂa—§ﬂ(ax+gy+ 57 )ldr = 0.

\ Re

ov Ow

8_y+8z)]

(B.1)

(B.2)

For the pressure, we suppose that the pressure gradient 2 —x could be expressed as the

combination of macroscopic pressure gradient f; and periodic pressure gradient 2., so
€T

we have = fi+
8pd$ =0,
o Oz
L
= JP
dr =
. Oz = fiLls
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And then, we could obtain:

dpu 0 0 0 ou 0 ou
(S + 5 (puv) + =~ (puw) + fi = = §

L,=0. B.
ot oy 0 (B.3)

(’3y(Re ay) 5(55)) *
We integrate in plane yz, then we have:

Jor¥ fy 22 dydz = 0,

fLy fo ® ap"wdydz =0, (B.4)
z 1 ou Ly
fo By Nay dydz = RGL (:U'a_y 0 )ZO
So we have:
(’3fL“ * pudydz Ly L= p ou
dydz — = 0. B.5
i /0 /0 frdydz = Ly (3.5, b (B:5)
L, pL-
:/ / (pu)dydz.
o Jo
0Q 2L, O0<u>
— - _ L, L.f — — B.
ot v Lafi Re M o2 0 (B.6)

The extension to compressible flows of the algorithm proposed by Deschamps is here

employed to update the driving force at each time step:

At

7 Q! — Qo) + 8@ — Q) (B7)

n+1 fl

Normally with experimental experience, &« = 2/At and f = —0.2/At. With this defini-

tion, we can use macroscopic pressure graident to maintain the flow dynamics.
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