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Synthése

Cette thése porte principalement sur I’étude des probabilités d’émission gamma et de
fission du noyau composé ?4° Pu* obtenues en utilisant la méthode de substitution. Cette
méthode expérimentale vise, par le choix approprié de réactions nucléaires, & former un
noyau composé identique en masse et en énergie d’excitation a celui formé dans une réac-
tion de capture neutronique. Le but est de combler le manque de données nucléaires,
entre autres des sections efficaces de capture neutronique intéressantes pour la physique
des réacteurs et l'astrophysique. En effet, dés lors que les expériences de réactions en
neutron induit sur ces noyaux ne sont pas réalisables, par exemple si le noyau cible est
trop eloigné de la vallée de stabilité, les capacités prédictives des modéles de réactions
sont faibles, elles sont difficilement ajustables avec trop peu de données. Du point de vue
théorique, I'amélioration de la prédictibilité des réactions porte sur une description plus
microscopique des processus en jeu amenant a étre moins empirique. Les probabilités
d’émission gamma ou de fission du noyau composé formé dans ces réactions de substi-
tution peuvent servir & améliorer significativement les prédictions. Pour cela, 1’élément
crucial est de comprendre les différences entre les processus de formation et de désexci-
tation des noyaux formés dans ces réactions et dans celles induites par neutron. Depuis
plusieurs années, une collaboration entre les laboratoires de physique nucléaire CENBG
et CEA/DAM/DIF fournit des éléments pour la compréhension de ces processus. No-
tamment en s’intéressant a la distribution en spin et parité du noyau composé dans les
réactions de substitution, elle a pu montrer qu’elle était trés différente de celle induite par
neutron et jouait un role important dans la compétition entre I’émission gamma et neu-
tron. Cependant, son role dans la fission était plus ambigu, pour laquelle les données de
substitution reproduissent bien les données neutroniques. De tout ce travail en commun
ont resulté divers articles [1], [2], [3], [4], [5], [6], et diverses théses [7], [8], [9], [10].

Les réactions de substitution sont des réactions de "pick-up", transfert ou de diffusion
inélastique qui aménent a un noyau composé de mémes masse et énergie d’excitation que
dans la réaction induite par neutron. Différentes réactions de substitution sont étudiées
depuis leur introduction par Cramer et Britt dans les années 70. La figure 1 montre
schématiquement le concept de la méthode de substitution.

La méthode s’appuie sur 'hypothése du noyau composé de Bohr [11], qui dit que
la voie de sortie est indépendante de la voie d’entrée. Dans cette hypothése, on peut
écrire, en fonction de I'énergie d’excitation E* du noyau A + 1, la section efficace induite
par neutron o (E*), de chaque voie de désexcitation x, comme un produit de la section
efficace de formation du noyau composé aéj(,l(E*) et la probabilité de désexcitation par
une certaine voie de ce noyau P***, eq. (1).

oU(E") = of (BY) - Pres(BY) (1)
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Figure 1: Représentation schématique d’une réaction de capture neutronique, n+A — Y™,
et d’une des réactions de substitution possibles, X (a,b)Y™*. Lorsque le noyau composé Y*
est formé il va se désexciter avec une certaine probabilité d’émettre des gammas (P,), ou
bien des neutrons (P,), ou de fissionner (P). La figure montre que la cible associée a la
réaction de substitution est moins radioactive que celle asscociée a la réaction neutronique.

[’équation 1 est valable pour une réaction de substitution sous certaines conditions:
d’abord que les probabilités de désexcitation mesurées par réaction de substitution et
induites par neutron soient égales a P"**(E*) = P}(E*), ce qui a lieu dans la limite
de Weisskopf-Ewing [12] (W.E.) ou si les noyaux composés sont formés dans des états
d’excitation et de spin et parité identiques. En effet, les probabilités P, (E*), équations (2),
dépendent aussi de la distribution de spin et parité S(E*, J™) dans le cas des réactions de
capture neutronique, F'(E*, J™) dans le cas des réactions de substitution, et des rapports
d’embranchement G, (E*, J™), qui sont simplement la probabilité de désexcitation par la
voie y du noyau formé excité dans un état d’énergie £, de spin J et de parité .

PIE*) =Y S(E*,J")Gy(E*,J7)

)
Pres(B7) = 3 F (B J)Gy(E", %)

Dans la limite W.E., I'approximation donne que les rapports d’embranchement G,
deviennent indépendants de J™. L’équation (2) montre alors directement 1'égalité entre
les probabilités mesurées en réaction de capture et de substitution, car la somme sur la
distribution en spin vaut 1. Cependant, ceci reste une approximation valable uniquement
pour des énergies d’excitation trés élevées.

Dans le cadre de cette thése, nous avons proposé de mesurer les probabilités d’émission
gamma et de fission dans la réaction de diffusion inélastique (cv, ') sur une cible de *°Pu.
Les deux probabilités seront pour la premiére fois mesurées simultanéement dans le méme
domaine en énergie d’excitation, entre 4 et 8 MeV, en sachant que le S,, = 6.5 MeV. Ceci
va permettre d’extraire les distributions en spin et parité F(E*,J™) a partir des deux
voies, émission de gamma et fission, pour la réaction de substitution (o, '), comme cela
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a été réalisé avec la méme méthode que les études précédentes sur la capture neutronique
radiative et la réaction (3He, p) [8] [9] et indépendamment sur la fission et les réactions de
transfert [10], [5]. Ces distributions de spin seront comparées & un calcul microscopique.
Celui-ci, combiné aux rapports d’embranchement G, (E*, J™) caractéristiques du noyau
composé 2OPu*, permettra de calculer les probabilités et les comparer a celles mesurées
dans la réaction 24°Pu(a, o).

De nombreux travaux ont mesuré des probabilités de fission des actinides et en ont
déduit des sections efficaces en utilisant I’hypothése de W.E. Ils ont trouvé généralement
un bon accord entre les sections efficaces déduites avec des réactions de substitution et
celles induites par neutron. Les articles de Cramer et Britt [13|, Back et al. [14], Petit
et al. [15] ou Kessedjian et al. [16] le montrent bien. Il y a eu aussi des études de la
fission effectuées avec la méthode SRM (“surrogate ratio method"), qui utilisent le rapport
entre la section efficace & mesurer et une autre bien connue, comme celles de Ressler et
al. en 2011 [17] et de Hughes et al. [18] en 2014. Ils donnent les sections efficaces
de fission 236237:28Py(n, f) en bon accord avec les données neutroniques existantes. En
revanche, peu de mesures existent pour la capture radiative car I’hypothése de W.E. ne
peut s’appliquer. La premiére mesure de I’émission gamma date de 2006, ou Boyer et
al. [19] ont déduit la section efficace **Pa(n,y) en utilisant la réaction de substitution
232Th(3He,p)?**Pa. Ce travail a été suivi de plusieurs travaux comme ceux de Bernstein et
al. [20], Scielzo et al. [21] ou de Boutoux et al. [4]. A différence de la fission, les sections
efficaces obtenues pour la capture radiative en appliquant la méthode de substitution sont
en désaccord avec les sections efficaces neutroniques de capture. Ceci a été attribué a une
plus grande sensibilité de la probabilité P, a la distribution de spin et parité du noyau
composé pour F, < 3 MeV ou I'hypothése de W.E. ne peut pas étre appliquée. Pour
cette raison, des travaux plus récents se sont focalisés sur les prédictions des distributions
de spin des noyaux formés lors d’une réaction de substitution, notamment les notres,
et aussi ceux décrits dans les articles trés récents de Escher et al. [|22] en 2018 et de
Ratkiewicz et al. [23] en 2019. Dans ce dernier article, ils étudent la réaction % Mo(d, p)
avec une approche similaire a ce que nous décrivons dans cette thése. Limité a la capture
radiative, ils obtiennent un résultat prometteur qui est en accord avec les sections efficaces
de capture neutronique.

Néanmoins, la question qui demeure, et que nous traitons ici, est qu’en-t-il de la fission
quand elle apparait dans un domaine en énergie ou I’hypothése de W.E. ne s’applique pas.
En effet, est-il possible de retrouver une cohérence dans le role de la distribution de spin
pour les deux processus, émission gamma et fission? Nous regardons le cas du noyau
composé 2°Pu* qui est particuliérement intéressant, car il s’agit d’un noyau pair-pair, ce
qui est censé a priori rendre le noyau décroissant plus sensible a la voie d’entrée, car un
noyau pair-pair a une densité de niveaux plus petite qu’un noyau pair-impair ou impair-
impair. Les réactions de diffusion inélastique ?*°Pu(a, o’y ou f)?*°Pu* vont permettre
d’exciter le noyau 2°Pu* a des énergies élévées et équivalentes a 23°Pu(n,y/f).

La probabilité d’émission gamma ou de fission sera extraite expérimentalement (voir
formule (3)) en mesurant le nombre d’éjectiles détectés Ny(E*) correspondant (particule b
fig. 1), & une énergie d’excitation donnée E* et aprés correction de lefficacité de détection
€y, au nombre de noyaux composés formés dans la réaction, et le nombre de coincidences
(éjectiled-gamma ou éjectile+fission) N, (E*) correspondant au nombre de noyaux ayant
décru par la voie de désexcitation regardée, x = v ou f.
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Ny (E")

L’expérience proposée a eu lieu en 2017 au tandem de 'IPN d’Orsay [24]. Un faisceau
d’ions *He a été envoyé avec une énergie cinétique de 30 MeV sur une cible de 24 PuQ,
électrodéposé sur une feuille trés fine, 100 pg/cm?, de carbone. Le dispositif expérimental
utilisé, décrit en détail dans une publication récente [24], comprenait :

e des détecteurs de particules chargées, des semiconducteurs Si segmentés de 100 pym
d’épaisseur et SiLi (de 2 et 5 mm d’épaiseur) montés en télescope AE-E, pour iden-
tifier, mesurer les énergies et sélectionner les éjectiles N (E*), signaux de la réaction
choisie. L’énergie d’excitation du noyau composé sera déduite de ces mesures en
tenant compte en plus de ’angle de détection;

e des détecteurs de gamma, 4 scintillateurs CgDg et 6 HPGe, pour compter le nombre
de coincidences entre les détecteurs gamma et les télescopes V. ;

e des détecteurs de fission, des cellules photovoltaiques, pour compter les coincidences
entre les détecteurs de fission et les télescopes Ny;

e un porte cible positionnable ("Target airlock") avec des cibles de 2*° PuQ,, de car-
bone, de ?°® Pb et un trou pour laisser passer le faisceau.

La figure 2 montre le dispositif expérimental dans son ensemble avec la chambre &
réaction (fig. 2a) et en particulier les détecteurs de particules et de fission (fig. 2b et 2c).
Le positionnement des télescopes offre une ouverture angulaire de 119° a 157°, a I'arriére
fig. 2b.

Ge detectors

C6D6 Si telescopes

detectors

Reaction
chamber

Solar cells Support

Sofar cells support
support Chamber flange

Target airlock

(a) Vue de I’ensemble du dispositif. (b) Détecteurs a I'intérieur dela (c) Détecteurs a lintérieur de
chambre & réaction (angles ar- la chambre a réaction (angles
riére). avant).

Figure 2: Modéles 3D de 'extérieur et de I'intérieur du dispositf expérimental.

L’étalonnage des télescopes a été réalisé en utilisant une réaction de diffusion inélas-
tique, 2°Pb(a, a’)?*®®Pb*, afin d’obtenir des particules chargées d’énergies trés proches
de celles rencontrées dans la réaction regardée. Connaissant les états excités du 2°*Pb,
la cinématique de la réaction est bien reproduite pour chaque état excité. Les énergies
des éjectiles sont bien connues ainsi que les pertes d’énergies attendues dans les téle-
scopes AE-E obtenues avec le code Kaliveda [25]|. Elles permettent par comparaison avec
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celles mesurées d’étalonner finement les détecteurs dans le domaine d’énergie de mesures
a étudier (plus de détails dans le chapitre 3).

[’étalonnage des détecteurs gamma est standard et important jusqu’a des énergies de
lordre de 2 MeV, énergie des cascades gamma a détecter. Le nombre NN, sera obtenu
avec les scintillateurs CgDg et les détecteurs HPGe aprés correction de l'efficacité. Cette
efficacité de détection gamma ¢, est déterminée avec une méthode validée dans des travaux
précédents [1],[2], appelée la méthode EXEM ("EXtrapolated Efficiency Method"). Elle
repose sur I’hypothése que la variation de 'efficacité de détection avec E* est la méme
en-dessous et au-dessus du S, ou du seuil de fission dans le cas du ?*°Pu. En dessous
du seuil de fission et du 5, puisque la probabilité d’émission gamma doit étre égale a
P, = 1, lefficacité dans cette région d’énergie s’écrit ¢, = N, /N,. Ensuite, la variation
de Defficacité obtenue est extrapolée a des énergies d’excitation plus élevées ~ S, + 1.5
MeV.

Le dernier point important a propos du dispositif est I'efficacité de détection des frag-
ments de fission. Les détecteurs sont composés de 8 plans de cellules photovoltaiques,
5 aux angles a 'avant et 3 aux angles a I'arriére. Chaque plan étant composé de deux
cellules de taille differente pour pouvoir mesurer différents angles des fragments de fission,
les cellules a I'avant sont positionnées a differents angles entre 20° et 60°, et a l'arriére
entre 115° et 155°. L’anisotropie angulaire des fragments de fission a été aussi étudiée
afin de bien déterminer 'efficacité de détection de fission. Un code Monte Carlo simulant
I’émision des fragments a été écrit pour compléter les mesures réalisées avec une source
de #2Cf. Le nombre d’événements de fission N; va dépendre fortement de cette efficacité
de détection des fragments cellule par cellule.

Parmi toutes les corrections appliquées (bruit de fond, soustraction des contami-
nants,...) aux données mesurées pour extraire les probabilités d’émission gamma et de
fission, nous noterons ici une particuliérement intéressante : celle que nous attribuons a
la contribution non négligeable de la fission ternaire. En effet, les histogrammes de coin-
cidence éjectile-fission ont montré des événements entre 0 et 4.5 MeV, soit en dessous du
seuil théorique de fission du 2*°Pu, méme aprés avoir soustrait les coincidences aléatoires.
Une explication plausible est qu’il s’agit d’événements de fusion-fission ternaire avec une
particule “He émise avec une énergie de l'ordre de la dizaine de MeV dans la réaction
‘He +2Pu—Cm* — FF1+ FF2 + a. Ces événements font donc partie de ceux sélec-
tionnés dans nos données et constituent un bruit de fond relativement important pour
I’extraction des probabilités de fission a base énergie d’excitation. Une soustraction de
ces événements a donc été réalisée.

Finalement, les résultats obtenus, avec toute la statistique possible et corrigés, sont
représentés par les deux courbes de probabilités d’émission gamma et de fission sur la
figure 3. Malheureusement la présence inattendue de contaminants dans la cible nous a
obligé a restreindre nos données a des énergies d’excitation inférieures a 8 MeV.

Si on regarde en détail la figure 3, on voit qu’entre 2 et 4.5 MeV la probabilité de
fission Py est nulle. Dans ce domaine en énergie, la probabilité d’émission gamma P,
est égale & 1, car c’est la seule voie ouverte pour la désexcitation du noyau composé. A
partir de 4.5 MeV d’énergie, la voie fission est ouverte et est en compétition avec la voie
gamma. Lorsque Py augmente, P, diminue, et jusqu'au S,, on vérifie que Py + P, = 1.
Quand E* > S, le noyau a assez d’énergie pour émettre des neutrons, qui ne sont pas
mesurés avec notre dispositif. Le noyau a alors le choix entre les trois voies Py, P, et
P, pour émettre son énergie d’excitation, et donc I'ouverture de la voie neutron a des
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Figure 3: Probabilités de désexcitation du 2°Pu* en fonction E*, moyennées sur angle
de I'éjectile, en prenant en compte la soustraction du fond de fission ternaire supposé. La
ligne verticale noire répresente 1’énergie de séparation du neutron S, = 6.534 MeV. Le
seuil de fission est autour de 4.5 MeV.

répercussions sur les autres voies.

Pour interpréter ces résultats, il faut s’intéresser aux différents termes des équations
(1) et (2). Dans I’équation (2), les éléments non mesurés sont la distribution en spin
et parité F(E*, J7) et les rapports d’embranchement G, (E*, J7). Plusieurs chemins
d’interprétation sont possibles. A partir des probabilités mesurées P;’}?j:sion(E*), en déter-
minant I'un des deux termes, 'autre peut étre déduit. Si les rapports d’embranchement
Gy (E*,J7) sont calculés, alors la distribution en spin F'(E*, J™) pourra étre extraite en
s’ajustant sur les résultats expérimentaux, c’est le premier chemin emprunté. Si la dis-
tribution en spin est calculée ainsi que les rapports d’embranchement, les probabilités
de désexcitation pourront étre extraites et comparées aux résultats expérimentaux, c’est
le deuxiéme chemin suivi. Un troisiéme chemin pourrait étre ’ajustement des rapports
d’embranchement sur les probabilités mesurées.

Si l'on se reporte a 1’équation (1) dans le cas bien connu de la capture neutronique
sur le 239Pu, les valeurs des différents sections efficaces de fission, de diffusion élastique et
inélastique, de capture radiative et de transmission existent expérimentalement ainsi que
la section efficace de réaction grace au modéle optique. La distribution en spin dans le
cas de réactions induites par neutron peuvent étre calculées avec confiance. Il reste donc
les rapports d’embranchement G, (E*, J™) a déterminer grace aux modéles de réaction.
Néanmoins, les valeurs de G, (E*, J™) dépendent fortement des paramétres des modéles
pour la désexcitation du noyau composé 2*°Pu*. Ces paramétres intégrent par exemple
les schémas de niveaux discrets, les densités de niveaux dans le continuum et les fonctions
de force gamma. Ces paramétres régissant la compétiton entre les différentes voies de
désexcitation du noyau vont devoir étre ajustés sur les données nucléaires existantes. Ce
processus de calcul pour déterminer un bon jeu de parameétres, avec un code de calcul
de réactions comme TALY'S 1.9 [26], s’appelle une évaluation. Ici, il ne s’agira pas d’une
évaluation de référence mais d’une évaluation adaptée a notre probléme, suffisamment
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précise pour expliquer nos résultats dans le domaine en énergie F,, = 0.03 — 6 MeV. Les
sections efficaces 2Pu*(n, f) et 2*Pu*(n, ) seront prises en compte ainsi que les sections
efficaces de diffusion élastique et de transmission et le valeur de la largeur radiative.

La premiére étape de I’évaluation est le calcul avec le modéle optique de la section
efficace de réaction. Le calcul effectué utilise le potentiel optique de I’évaluation japonaise
JENDL 4.0 [27]. Tl est réalisé en voies couplées pour un noyau déformé, avec la formulation
de Soukhovitskii et al. [28]. Cette section efficace représentant la probabilité maximum
que la réaction de capture neutronique >**Pu(n, z) se produise, va se décomposer en toutes
les autres voies déterminant les rapports d’embranchement. L’étape suivante consiste
essentiellement a reproduire en ajustant les paramétres des modéles (densité de niveaux,
fonction de force gamma, barriéres de fission, états de transition et de classe IT) les sections
efficaces de capture radiative et de fission. Sur la figure 4 sont comparées les sections
efficaces expérimentales utilisées dans JENDL 4.0 et celles issues des calculs réalisés.

Gy (b)
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f
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T T 1T 11]
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(a) Section efficace de capture 239 Pu(n, ). (b) Section efficace de fission 23 Pu(n, f).

Figure 4: Sections efficaces induites par neutron calculées (lignes bleues), comparées aux
données expérimentalles (points) utilisées par 1’évaluation JENDL 4.0 [27].

On voit que pour la capture, figure 4a, 'accord avec les données est plutot bon comme
dans le cas de la fission, figure 4b. Le processus est fastidieux car un ajustement plus précis
pour la fission en ajustant seulement les paramétres du modéles pour la fission entraine
des modifications des autres voies. Par exemple, de légers changements de la hauteur
des barriéres de fission induisent une grande variation sur la section efficace de capture
radiative. Plusieurs régles ont été surveillées, par exemple la largeur moyenne radiative
dans le cas de la réaction *°Pu(n,z) est gardée au plus prés de la valeur expérimentale
< Iy >= 43 £ 5 meV. Cette valeur dépend a la fois de la densité de niveaux et de la
fonction force gamma du noyau se désexcitant. Avec une technique d’essai-erreur, un jeu
de paramétres a été fixé permettant de calculer les sections efficaces de la figure 4. Avec
ces paramétres, les rapports d’embranchement G, (E*, J™) du noyau composé ***Pu pour
chaque spin et parité a différentes énergies d’excitation ont été déterminés. Dans ce cas,
un calcul des probabilités d’émission gamma et de fission est effectué pour les réactions
en neutron induit. La comparaison avec les résultats expérimentaux pour les réactions
de substitution montre que ni I’émission gamma, ni la fission ne donnent des probabilités
identiques aux réactions de capture neutronique, montrés sur la figure 5. Ceci nous indique
que les distributions en spin sont trés différentes, nous les déterminerons dans la suite.
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Une autre conclusion est que I'hypothése de W.E. n’est pas applicable a la fission comme
pour I’émission gamma.
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(a) Probabilité de capture 239 Pu(n, 7). (b) Probabilité de fission 239 Pu(n, f).

Figure 5: Probabilités de désexcitation induites par neutron calculées (traits pleins),
comparées a nos données expérimentalles (points).

La distribution en spin F'(E*, J™) est alors déduite a partir des probabilités mesurées
et des rapports d’embranchement calculées en utilisant une procédure d’ajustement
adéquate. La distribution de spin est modélisée par une fonction dérivée d’'une fonction
Gaussienne (4) dont les paramétres sont obtenus par la procédure d’ajustement.

2J + 1% {_(JJF 1/2)2}

202 202

F(E*, J1) = P(E*, J,1I)

(4)

ou P(E*, J,II) est un facteur pour garantir que la parité soit naturelle (07, 17, 27...).
En effet, seulement ces états de parité naturelle sont peuplés lors de la réaction
20Pu(a, o )*°Pu* en respectant les lois de conservation du moment angulaire et de la
parité. La distribution de I’équation (4) provient du modéle d’excitons. Le paramétre o
est supposé suivre une forme linéaire 0 = a- (E* —4.1) +b. Les paramétres ajustés ont été
trouvés égaux aux valeurs : a = 0.73 MeV ! et b = 2.88 en tenant compte des rapports
d’embranchement précédemment calculés, et donnent des distributions comme celles de
la figure 6.

L’ajustement des probabilités d’émission gamma et de fission du ?*°Pu expérimentales
donne des distributions en spin identiques. Ceci prouve que la distribution en spin et parité
pour I’émission gamma et la fission est bien la méme et que celle-ci évolue en fonction
de T’énergie d’excitation di au plus grand spin transféré lors que I’énergie transférée
augmente.

Une autre fagon d’obtenir la distribution de spin et parité F'(E*, J™) est de réaliser un
calcul théorique. Pour cela, M. Dupuis du CEA/DAM/DIF a utilisé un modéle de réaction
[29] [30], pour obtenir les distributions de pré-équilibre du noyau de recul lors de la réaction
200Py(a, o). Le potentiel optique pour la réaction (v, a’) est celui de Jeukenne-Lejeune-
Mahaux dit JLM. Ceci est combiné avec des informations de structure nucléaire issues d’un
calcul QRPA ("Quasi-particle Random Phase Approximation"). Cette approximation
donne les états de téte de bande K7™ sur lesquels sont construites des bandes de rotation.
Une fois tous les états de la QRPA générés, un code de calcul de réaction directe en voies
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Figure 6: Distributions extraites a partir des donées expérimentales de spin pour trois
valeurs de E*. La parité des distributions est naturelle.

couplées fournit la section efficace de formation de chaque état. La somme de ces sections
efficaces pour une énergie et un J™ donnés divisée par la section efficace totale donne
la distribution en spin F'(E*, J™) recherchée. Dans la figure 7, les distributions de spin
du noyau composé 24°Pu pour la réaction de substitution obtenues par ajustement sur les
résultats expérimentaux ou par ce calcul sont représentés pour une énergie d’excitation du
noyau composé de 7.5 MeV. Elles sont comparées aussi a celle de la réaction n+23Pu —240
Pua FE,=1MeV ~ E* =~ 7.5 MeV. La distribution en spin pour la réaction en neutron
induit (courbe bleue) est centrée autour d’un spin moyen .J, ~ 1.0A, tandis que les
distributions obtenues pour la réaction 2*°Pu(a, o/)**°Pu* expérimentales J.,, ~ 6.3h et
calculées le sont a des spins Jy, ~ 5.7h. Ce résultat montre que le calcul de la distribution
en spin du noyau composé formé dans la réaction (o, ') est valide. Ceci marque une
avancée importante pour les réactions de substitution et cette réaction (a,a’), car cela
permet de bien comprendre les mécanismes sous-jacents aux mesures des probabilités
d’émission gamma et de fission. La preuve en est qu’un calcul complet des probabilités
d’émission gamma et de fission est possible en utilisant cette distribution en spin et parité
calculée et les rapports d’embranchement calculés précédemment, avec un ajustement sur
les données neutroniques.

La comparaison de ces calculs de probabilités avec les résultats expérimentaux est
présentée sur la figure 8. L’accord est trés bon entre la théorie et I'expérience. Autour
de 5.3 MeV et de 6.2 MeV, le calcul théorique est en léger désaccord avec 'expérience,
montrant certainement I'implication différente d’états de classe II dans la fission induite
par neutron et par réaction de substitution.

Le résultat de la figure 8 est remarquable car il montre que 'introduction d’une dis-
tribution en spin calculée, & 'aide d’un modéle JLM+QRPA, permet de reproduire les
probabilités expérimentales. Ceci démontre la bonne compréhension du mécansime de
réaction mis en jeu, et rend possible 'utilisation des probabilités mesurées dans une éval-
uation. Un calcul des rapports d’embranchement plus fin aurait permis d’aboutir a des
conclusions plus précises sur les différences entre les réactions induites par neutron et
par substitution a partir de ces probabilités d’émission gamma et de fission mesurées.
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Figure 7: Distribution de spin & E* = 7.5 MeV, induite par neutron (bleu), ajustée
aux données de substitution (rouge), et avec un calcul microscopique pour la réaction
inelatique (jaune). La parité de la réaction (o, a’) est naturelle.
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Figure 8: Probabilités de désexcitation expérimentales (symbols) comparées a celles cal-
culées (lignes), probabilité gamma en rouge et fission en bleu.

L’évaluation effectuée a aussi montré combien ce processus est complexe et demande un
grand nombre de données expérimentales lorsque la fission est ouverte. Si la fission est
bien connue, un ajustement des densités de niveaux et des fonctions de force gamma
doit permettre de reproduire la seule probabilité d’émission gamma a la maniére des trés
récents résultats de Ratkiewicz et al. [23], et d’améliorer significativement les prédic-
tions pour la section efficace de capture radiative induite par neutron, qui est souvent
extrémement difficile & mesurer. Lorsque la fission n’est pas bien connue, les réactions de



substitution permettent d’apporter des informations précieuses sur les hauteurs de bar-
riéres, les profondeurs de puits ou les états de classe II. Ces informations sont essentielles
pour réaliser une évaluation de la section efficace neutronique de fission.

La sensibilité de chaque ingrédient des modéles de réaction fixés dans I’évaluation en
neutron induit pour reproduire ces probabilités d’émission gamma et de fission a été testée.
Ces tests montrent comme attendu qu’une évaluation standard (paramétres par défaut
de TALYS) avec la distribution de spin et parité calculée ne permet pas de reproduire
ces probabilités. Dans le cadre de cette thése, une étude de sensibilité systématique
n’a pas pu étre effectuée. Cela reste une perspective de déterminer 'incertitude des
paramétres ajustables par la méthode de substitution. En faisant varier aléatoirement ces
paramétres dans les limites d’incertitude, un calcul de sections efficaces et I'incertitude
associée pourra étre réalisé. Ce travail de thése ouvre donc sur des perspectives trés
intéressantes d’utilisation des réactions de substitution pour I’évaluation des processus de
capture radiative et de fission induits par des neutrons.

En conclusion ce travail a apporté des éléments trés précis a la fois expérimentaux
et théoriques pour expliquer les probabilités d’émission gamma et de fission du ?°Pu
obtenues par la réaction de substitution (o, a’). Les distributions en spin du noyau com-
posé formé lors de la réaction (o, o) a été déduite expérimentalement et décrite théorique-
ment. Ceci ouvre clairement la possibilité d’utiliser cette voie de réaction dans le futur
pour étudier la sensibilité de la méthode pour reproduire des sections efficaces en neutron
induit et aussi pour d’autres noyaux moins accessibles (décalant la masse du noyau cible
de 1).

Dans un futur proche, la collaboration envisage de réaliser une expérience avec le
méme dispositif expérimental présenté ici pour étudier la réaction 2*2Pu(c, o/)?*2Pu* qui
est équivalente a la réaction n +24 Pu —2%2 Pu*. Cette réaction sera un cas intéressant
parce que le 2°Pu et le 2*2Pu ont des structures nucléaires similaires ce qui permettra
d’appliquer les enseignements appris lors de cette thése. Le noyau 24?Pu a une durée de vie
trés longue, ce qui rend plus facile la manipulation de la cible. Etant donné que le ?4'Pu a
une durée de vie assez courte ne facilitant pas les mesures en neutron induit, cette réaction
de substitution apportera des informations pertinentes pour la réaction ?*'Pu(n,x).

Un autre sujet d’étude est d’effectuer en cinématique inverse, ou le noyau lourd est le
faisceau et le noyau léger la cible, des expériences en utilisant des anneaux de stockage. Ce
type de mesure semble étre ’avenir de la méthode de substitution pour plusieurs raisons,
dont les principales sont I’absence de contaminants, la résolution en énergie d’excitation
~ 200 keV, et I’acces a un bon nombre de noyaux a courte durée de vie. La cible est formée
par un jet de gaz d’hydrogéne ou de deutérium pur isotopiquement, de 1013 —10* at. /em?.
La haute fréquence de révolution des ions dans les anneaux de stockage (~ 1 MHz)
ameéne a des taux de réaction similaires a ceux qu’on obtient en cinématique directe. Le
refroidisement par électrons ("e™ cooler") garantit et maintient 'excellente qualité du
faisceau apres chaque passage a travers de la cible ultrafine. Enfin, comme on détecte et
on identifie le noyau lourd aprés son interaction avec la cible, I'efficacité de détection des
différentes voies de désexcitation est quasiment de 100%.

Cette synthése est un résumé du travail de thése, le manuscrit en anglais comporte plus
de détails et est organisé en deux parties et 7 chapitres. La premiére partie traite de tous
les aspects expérimentaux dans les chapitres 1, 2, 3 et 4. La deuxiéme partie est consacrée
a l'interprétation des résultats et comprend les chapitres 5, 6 et 7. Le chapitre 1 présente
le contexte théorique des réactions de subsitution. Sera aussi donnée dans ce chapitre,
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les motivations pour étudier les réactions °Pu(a, o/)?Pu* et 2°Pu(3He,a)*Pu*. Le
chapitre 2 détaille I’état de I'art de la discipline, en faisant mention des derniéres ex-
périences réalisées en utilisant la méthode "absolue" de substitution, la méthode SRM
du "ratio", ou aussi un peu differemment avec la méthode d’Oslo. Le chapitre 3 décrit
I’expérience réalisée a Orsay pendant le mois d’avril 2017. Le chapitre 4 fait le point sur
I’analyse des données obtenues pendant ’expérience. Toutes les étapes, du traitement a
I’extraction des observables recherchées y sont décrites : sélection des événements, étalon-
nage des détecteurs, soustraction des coincidences fortuites, etc... La partie II est dédiée
a linterprétation théorique de nos résultats. Le chapitre 5 présente le contexte théorique.
L’évaluation de la réaction n + 2%Pu y est détaillée. Le chapitre 6 décrit I'interprétation
des résultats expérimentaux obtenus par la méthode de substitution. Enfin, le manuscrit
se termine dans le chapitre 7 avec les conclusions sur ces travaux et les perspectives qu’ils
leur sont données au sein de la collaboration.
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Chapter 1

Introduction

There is a need for neutron induced cross sections of short-lived nuclei in nuclear tech-
nology applications and nuclear astrophysics. Unfortunately there are cases in which
the neutron-induced cross sections cannot be measured directly because the target nu-
cleus is too radioactive to produce and handle the target. In addition, neutron induced
cross sections are very difficult to calculate when no data are available, specially the part
concerning the de-excitation of the nucleus.

Surrogate reactions are an alternative way to obtain neutron induced cross sections
when measuring them is not possible. A surrogate reaction is a transfer or inelastic
scattering reaction leading to the formation of the same excited nucleus as in the case of
a neutron induced (desired) reaction. Surrogate reactions can also improve the general
understanding of the de-excitation process of heavy nuclei at excitation energy ranges
from about 5 to 10 MeV, which is key for the development of the reaction models used
in different domains. In this excitation-energy range, an excited heavy nucleus decays
via different competing channels, basically v-emission, particle emission and fission. The
decay process is ruled by fundamental properties of nuclei such as level densities, y-ray
strength functions, particle transmission coefficients or fission barriers. In this context
surrogate reactions prove to be a valuable source of information, which will be exploited
in this work to improve our current knowledge of nuclear reactions.

Fission probabilities induced by transfer and inelastic-scattering reactions have been
used since the 70s, Cramer and Britt [41], to explore the fission threshold and infer fission-
barrier parameters. In particular, transfer-induced and inelastic-scattering-induced fission
probabilities are the only means to obtain information on the fission barriers of fissile
nuclei, i.e. nuclei whose fission barrier is lower than the neutron separation .S,,. Moreover,
the measured fission probabilities can be used to obtain neutron-induced fission cross
sections of short-lived nuclei that cannot be measured directly [42], [18], [43].

The study of v-decay probabilities via the surrogate reaction method has dragged an
important interest in recent years. This led to the formation of a collaboration between
two French laboratories, CENBG and CEA /DAM /DIF, that has resulted in several pub-
lications [1], |2], [3], [4], [5], [6], and Ph.D. thesis [7], [8], [9], [10]. However the results
obtained for y-decay are in general worse agreement with neutron induced data than in
the case of fission. Trying to understand this difference is one of the motivations of this
work and we will return to this point later on.

Figure 1.1 schematically represents the surrogate reaction method. The left hand side
of the figure shows a neutron-induced reaction, i.e. a neutron n is captured by a target
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Figure 1.1: Schematic representation of a neutron induced reaction n + A — Y* and a
surrogate of this reaction. The surrogate reaction is X (a,b)Y* where the most probable
decay paths of the compound nucleus are fission (Pf), gamma decay (P,) and neutron
emission (F,).

nucleus A which leads to the formation of a compound nucleus Y* of A + 1 nucleons at
an excitation energy E*. The right hand side of the picture depicts a surrogate reaction
in which a charged particle a impinges on a target nucleus X leaving, after the reaction
process, the same compound nucleus Y* and a scattered particle b. The detection and
identification of this scattered particle b, or ejectile, enables to select the mass and the
charge of the decaying nucleus Y* in addition to knowing its excitation energy. The formed
nucleus Y* will then tend to release this energy E*, typically by emitting a neutron (P,),
~-rays (P) or fissioning (P), in the case of actinides. In equation (1.1), P)***" stands for
the probability of the nucleus Y* to decay through one of these paths y. Experimentally
these probabilities are obtained as a function of excitation energy P}**"(E*),

N (EY)
NB) -2y (") (L)

Y, surr. *\
Px (E ) -

where

o N (E*) is the so-called "singles spectrum", in other words the total number of
detected particles b as a function of the excitation energy E* of Y*.

e N, (E*) is the "coincidence spectrum" corresponding to the number of detected
particles b in coincidence with the observable that identifies the decay mode, in this
case a fission fragment or a ~-ray cascade.

e ¢, (E*) is the detection efficiency to detect the x decay path.

Measuring the number of coincidences between the ejectiles and the decay products,
see figure 1.1, one may determine the experimental decay probability Pg AUt induced by
the surrogate reaction, for the corresponding decay channel x. Assuming that the decay

4



probabilities are independent from the spin, the neutron-induced cross section for the
nucleus A is given by the equation:

oL (Bn) = 044 (Ba) - PV (E7) (12)

where 024! (E,) is the compound nucleus (CN) formation cross section of the desired,

neutron-induced, n + A reaction at a neutron incident energy FE,. In chapter 5 it will be
explained how to calculate this cross section. Applying momentum and energy conserva-
tion, the input energies are related via formula (1.3):

A

Er=S5S,+FE, ——
Ry

(1.3)
where S, is the neutron separation energy. Equation (1.2) is the most simple expression
of the surrogate reaction method, in the following we will discuss its validity.

1.1 Validity of the Surrogate Reaction Method

The method relies on Bohr’s compound nucleus hypothesis [11] and that P;*™ = P, in
this section we will discuss in which situations are these conditions true.

1.1.1 Compound Nucleus Hypothesis

Bohr’s hypothesis states that nuclear reactions go through an intermediate step in which
the formed nucleus loses the "memory" on how it was formed, or in other words that
the exit channel is independent from the entrance channel. This is based on the idea
that the energy introduced in the system by the projectile is distributed among all the
nucleons. This process of thermalisation is of the same order of magnitude as the time it
takes a light projectile to traverse the target nucleus 10~*® — 107225, which is much shorter
than the half-life of the compound nucleus 10~'%s. Therefore the information about the
formation of the compound nucleus would be lost during this process.

The first experimental verification of Bohr’s compound nucleus hypothesis was per-
formed in 1950 by S. N. Ghoshal [44]. To prove this Ghoshal studied two different systems,
ON; +4 He — %4 Zn* and %Cu + p — %Zn* to form the same compound nucleus % Zn*,
or using a general nomenclature A +a — C* — B 4 b. Under the hypothesis that the
decay of C'* is independent from its formation the cross section reads:

o(a,b) = o,(E.) By (E") (1.4)

where o,(F,) is the cross section for the absorption of the particle a, with energy E,, by
the target nucleus A to form C* at an excitation energy £* and P, is the probability that
the compound nucleus decays into the final state B + b. If the C* is now formed by a
different process A’ + o’ the disintegration cross section into the same final state:

O-(alv b) = Ua’(Ea’)Pb(E*) (15)

where E, is the kinetic energy of a/. Because of the different binding energies, the kinetic
energies must be different E, # E, to form C* at the same E*, while P,(E*) is the same
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in both cases by hypothesis. If C* decays into a different state D + d the corresponding
cross sections to a + A and o' + A’ will respectively be:

0'((1, d) = O-a(Ea)Pd(E*) (16)
O(GI, d) = Oa/(Ea/)Pd(E*) (17)

Hence taking the ratio of (1.4) over (1.6), and the ratio of (1.5) over (1.7), one may
write:

o(ab) _ B(E") _ old\b)

oa,d) ~ Pa(E) ~ o(dd)

(1.8)

The experimental proof of equation (1.8) is a direct test of Bohr’s compound nucleus
hypothesis. Since Ghoshal’s article, which validates the hypothesis for fusion reactions,
there have been several works that ratify this hypothesis and others that question it.

1.1.2 Equivalence of the Decay Probabilities

Neutron induced reactions and surrogate reactions produce a compound nucleus with
the same (Z,A) at an excitation energy E*. In contrast, as proven in previous works
of the collaboration [8] [10], the angular momentum and the parity distributions (J™)
populated by the surrogate reactions are in general different from those populated by
neutron induced reactions. Decay probabilities strongly depend on J™, and it is at E*
just above the neutron separation energy S, that the differences between the spin-parity
distribution of the neutron-induced and surrogate reactions are most important. The
reason of these differences is that in neutron induced reactions when the neutron energy
is low, the orbital momentum transfered is low, and conversely this orbital momentum
transfer is higher for surrogate reactions because the impinging particle has a much higher
energy than a neutron, as equation (1.3) reflects. It also depends on the spin of the target
nucleus which can significantly vary from one isotope to the other, for example the ground
state of ?'°Pu is a 0T state, while in the case of ?"! P it is 5/2%. If the nucleus A* is in
a compound state, then by definition the entrance channel and the exit channel are not
correlated. Thus the n-induced cross section can be factorized into the product of the CN
cross sections and the decay probability, which leads to eq. (1.2). The decay probabilities
are given by:

PY(E") =Y S(E*,J") - Gy(E",J7) (1.9)
P(EY) =Y F(E,J7) - Gy(E*, J) (1.10)

where the super-indexes n and surr. stand for neutron-induced and surrogate reactions,
respectively. The functions S(E*, J™) and F(E*, J™) represent the probability that the
compound nucleus is formed in the state J™ by the neutron-induced or the surrogate
reaction, respectively. The function G, (E*, J7) is the branching ratio for a given decay
channel x. In two limiting situations equations (1.9) and (1.10) are equal:

1) If the J™ distributions in both kinds of reactions are the same:
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S(E*,J7) = F(E*,J7) (1.11)

Unfortunately equation (1.11) is seldom verified, [22] [18].
2) If the branching ratios are independent of J™:

G (E*, J™) = G\ (E") (1.12)

If (1.12) is met, then the branching ratios can be taken out from the summations in
equations (1.9) and (1.10). And since:

S(E*,J7) =1, Y F(E*,J") =1 (1.13)

then,
PY(E") = P (E") = Gy (E7) (1.14)

and if (1.14), then the cross section of the desired reaction takes the form of equation
(1.2). This second hypothesis, illustrated by equation (1.12), is known as the Weisskopf-
Ewing approximation [12| and is justified for high excitation energies (E* > S,, + 3 MeV)
where level densities are extremely high.

1.2 Limitations of the Method

There are some assumptions that limit the applicability of the method. Firstly, the
assumption that the interaction of the beam particles with the target nucleus always
forms a compound nucleus is not true, in spite of Ghoshal’s experiment, because a pre-
equilibrium or a direct reaction can take place too, which would make equation (1.2) not
valid. Some efforts have been done to account for them, the first, six years after Ghoshal’s
article, was an insightful discussion on the topic by V. Weisskopf [45], in which he already
pointed out the limitations of Bohr’s hypothesis. However as we will show in chapter 5,
the pre-equilibrium and direct components amount for 10% — 20% of the reaction cross
section for excitation energies up to ~ 10MeV and can be neglected for relatively low
excitation energy, which is the scope of this work.

Secondly, deducing the J™ distribution of the compound nucleus formed with the
surrogate reaction is a challenging task. It is necessary to account for the difference
between it and the one of the desired reaction. In chapter 2, some state of the art
calculations of this distribution done in previous works will be shown. As a matter of fact,
the most recent works on the surrogate reaction field are focusing on correctly calculating
the J7 distribution [22], [23].

Finally, one should take into account the existing correlations between the entrance
channel and the exit channel, which is something that is neglected in Bohr’s hypothesis.
These are accounted for by introducing the so-called width fluctuation corrections (WFC)
factors, which tend to enhance the elastic channel, hence they have impact on all of the
decay probabilities. The WFC factors have an important role when the compound nucleus
is formed at an excitation energy lower than S,,+1 MeV, but they tend to one as excitation
energy increases [46].



1.3 Application of the Surrogate Reaction Method to
240Pu

In previous works of the collaboration even-odd or odd-odd decaying systems were studied
[5], [7], [10]. When applying equation (1.2) to fission, the obtained cross sections with the
surrogate method were in good agreement with neutron induced data. This was not the
case for y-decay as shown in [8], [10], [5]. One explanation is that due to the different spin
distributions in each reaction, the neutron emission is inhibited and that most of this flux
is absorbed by the y-decay path rather than fission. However, this is not well understood
and for this reason in this work we study an even-even decaying nucleus Y*, i.e. 24Py,
as opposed to even-odd or odd-odd. It is known that even-even nuclei have lower level
densities than odd nuclei. Hopefully this will permit to test whether this has an impact
on the behavior of these two kinds of decaying systems.

Another motivation for this thesis is to better understand surrogate reactions. To this
end studying 2°Pu via this method will be helpful for several reasons. First of all, its
neutron separation energy is above the fission threshold, therefore the excitation energies
under this threshold energy cannot be studied when 24°Pu* is formed through the reaction
n +23% Pu, but when this compound nucleus is formed via a surrogate reaction one has
access to parameters relevant for fission. In addition, neutron induced reactions on 2**Pu
are relatively well known and there are plenty of data with which to adjust the structure
parameters of the compound nucleus ?*°Pu. This will make the comparison between the
desired reaction and the surrogate one more meaningful, and optimistically we will be
able to account for the differences between them.

In chapter 2 a review of past experiments using the surrogate reaction method and
the Oslo method is done. When revisiting previous articles, it becomes evident that there
is still an important effort to be done, which justifies this thesis. In it three reactions
are explored 2°Pu(*He,*He'), 2 Pu(*He,*He) and ?** Pu(*He,*He¢'), although only the
results of the last one will be interpreted in detail. The experimental methodology followed
will be exposed in chapter 3 and the analysis of the data collected described in chapter 4.

To compare the experimental results obtained with the theoretical prediction, it is
necessary to deduce the structure model parameters of 2°Pu*. We detail in chapter 5
how they were obtained from the evaluation of the reaction n+23Pu using the existing
neutron data, specially radiative capture and fission cross sections. In parallel, the J”
distribution of 2*°Pu* was calculated theoretically, as experimentally there is no available
data. This task was performed by M. Dupuis (CEA/DAM/DIF) for the 2 Pu(*He,*H¢')
reaction. He used the quasi-particle random phase approximation (QRPA) to generate
the final states of the nucleus, and a direct reaction model to calculate the cross sections to
populate them [30]. With these two ingredients, the model parameters and the calculated
J™, the decay probabilities (gamma-emission and fission) as a function of excitation energy
were calculated as detailed in chapter 6. In this same chapter we show that the differences
between the calculations and the experimental results are within error bars. This is a
really important result as it means that surrogate data can help to constrain evaluation
parameters. Finally, in chapter 7 we will conclude by commenting the results obtained in
this work and discussing the perspectives of the method for the future.



Chapter 2

State of the Art

The surrogate reaction method has been used since the 70’s, when it was first applied to
infer fission cross sections. Since then several improvements have been done to it, from
both experimental and theoretical points of view. The goal is in general to measure the
v-decay probability P,, the fission probability P, or both as in this work. In the last
years the method is regaining interest because it is the most promising alternative to infer
neutron induced cross sections of short-lived nuclei. In this chapter we will go through
some of the most relevant works in the field of the past years.

2.1 Absolute Surrogate Method (ASM)

This is the same method as the one described in chapter 1, the adjective "absolute"
is added to distinguish it from the "ratio" approach described in the following section.
As discussed in the first chapter, this method has several limitations, and eq. (1.2) is
only valid under certain circumstances. However, the renewed interest in the method has
provoked big improvements. In the last two decades a wealth of experimental data and
theoretical interpretations of them have been published.

2.1.1 The ASM Applied to Fission

The method was first successfully applied to deduce neutron induced fission cross sections
by Cramer and Britt [41] [13] and a bit later by Back et al. [47]. In Cramer and Britt’s
papers they investigated the (¢, pf) reactions, beam energy 18 MeV, on different actinide
targets, from 2?Th to 2*2Pu. Although the data was contaminated by background re-
actions in the target support, they were able to provide fission probabilities, and deduce
from them fission cross sections multiplying them by the compound nucleus formation
cross section. They reported an uncertainty of 10% for fission probabilities and 20% for
n-induced compound nucleus formation cross section. Some years later Back and his col-
laborators used (d, p) and (p, p') surrogate reactions to again study the fission of actinides.
Later, Britt and Wilhelmy [48] used (*He,d) and (*He,t) reactions to infer (n, f) cross
sections of different isotopes from protactinium to einsteinium from £, = 0.5 to 6 MeV,
for which they used a constant compound nucleus formation cross section of 3.1b in this
energy region. When neutron induced data were available there was a good agreement of
these and the surrogate data, except for neutron induced energies below 1 MeV. In this



region the Weisskopf-Ewing limit is not valid due to the spin-parity mismatch and the so
called width-fluctuation correction factors, as it was discussed in chapter 1. These first
works set the bases of the surrogate method.

More recently, in 2003, W. Younes and H. Britt [49] [42] investigated whether nuclear
structure models can be used to correct the J™ distribution mismatch between neutron
induced and transfer reactions. They did a theoretical work based on the data of Cramer
and Britt [13|, and Back et al. [50], improving the calculation of the compound nucleus
formation cross section, which lead to slight variations of the previous data.

In 2004, the CENBG collaboration [15] used the ASM to measure fission cross sections
of reactions relevant for the thorium cycle, like 23233Pa. The experiment was performed
in the tandem accelerator at the IPN of Orsay, where a 24 MeV 3He beam impinged
on a target of 100ug ***Th deposited on a 50ug/cm? C™* backing. The ejectiles were
detected with two silicon telescopes at 90° and 130° with respect to the beam axis. The
fission-fragment detector was made out of 15 solar cells placed at different angles to
measure fission fragment angular distributions. Their results using a Weisskopf-Ewing
approximation are given in figure 2.1. Their results for 23! Pa(n, f) are in better agreement
with previous data and evaluation than the ones for 233 Pa(n, f), but in any case at high
energies there are important differences between the different sets of data.
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Figure 2.1: Fission cross section as a function of the neutron energy of two protactinium
isotopes. The black dots are the measured data by CENBG (surrogate), as compared to
other data (neutron-induced) and evaluations [15].

In 2007, B. Lyles et al. [51] used the 28U (3 He, a)?*"U reaction to deduce the 23U (n, f)
cross section. They used a 42 MeV 3He beam produced by the cyclotron at Lawrence
Berkeley National Laboratory. The scattered particles were detected with an array of
silicon telescopes. In their article they could remark big differences between their data
and the neutron-induced evaluated data for energies below 1.5 MeV. They found that their
data was sensitive to the ejectile angle, which implies a dependence on the transfered spin,
and they interpreted this as a failure of the Weisskopf-Ewing limit in this energy range.

More or less simultaneously, the CENBG collaboration continued investigating the

10



fission of actinides, americiums and curiums, via the surrogate-reaction method. This
work lead to a Ph.D. thesis by G. Kessedjian [7] and an article [16]. A 3He beam impinged
on a target of 243 Am enabling to study the compound nuclei 2#2Am*, 23Cm* and ***Cm*
In this work they compared the surrogate data to neutron-induced data, and found that
both are in very good agreement as figure 2.2 proves.

3
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Figure 2.2: Cross section of the reaction 2! Am(n, f) as a function of the neutron energy.
The black dots are the measured data by CENBG ("This work"), as compared to neutron
induced data (pink points) and two evaluations for the neutron induced fission cross
section (lines) [16].

The results published in [16], in combination with the ones obtained for y-decay dis-
cussed later, encouraged the CENBG collaboration to continue investigating fission with
the surrogate reaction method, which lead in 2015 to the Ph.D. thesis of Q. Ducasse
[10] and in 2016 to an article [3]. In this work they aimed to measure simultaneously
the fission probability and the ~-decay probability of several uranium and neptunium
isotopes. To that end, they performed an experiment with the SiRi-CACTUS set-up at
the Cyclotron of the University of Oslo. The measurement was done with a 22U target
and two beams: 2H at 15 MeV and *He at 24MeV. The experimental set-up included an
array of telescopes with a ring shape, which covered azimuthal angles 6 between 126° and
140°. In coincidence with the scattered particles the fission fragments were detected with
Parallel Plate Avalanche Counters (PPACs), and the y-rays with 27 Nal, thallium-doped
scintillators.

Figure 2.3 represents the fission probability of 237U* as a function of excitation energy,
compared to the one deduced from the evaluation of the #*U(n, f) reaction published
in JENDL 4.0. The surrogate data is in good agreement with the evaluation up to high
excitation energies. This is another proof that, in general, applying the ASM to fission
gives good results when compared to neutron induced data.
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Figure 2.3: Fission probability of 237U* as a function of excitation energy, obtained with
the surrogate reaction **U(*He,*He)*"U compared to JENDL 4.0 [10]. The dashed
black line represents the neutron separation energy.
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2.1.2 The ASM Applied to y-Decay

Using the surrogate reaction method to determine radiative capture cross sections is more
difficult than in the case of fission. Firstly, in all previous experiments the y-decay prob-
ability has always been more sensitive to changes in spin-parity distributions than fission.
Secondly, in the energy region in which the method can be applied, the radiative cap-
ture probability represents a small percentage of the decay, hence small variations due to
the J™ mismatch can induce big differences in this probability. Additionally, the radia-
tive capture probability is much more complicated to measure than the fission one. As
explained in chapters 3 and 4, it involves knowing the ~-cascade detection efficiency cor-
rectly, distinguishing ~-rays from neutrons, for higher excitation energies than the neutron
separation energy, and several background subtractions including fission-fragment-vy-rays
coincidences, when studying nuclei that undergo fission. Although the vy-decay probabil-
ities can also be studied by selecting specific gamma transitions, which requires an array
of Ge detectors, in general the detection efficiency is much lower than when detecting any
gamma of the cascade.

The first measurement of a radiative capture with a surrogate reaction was performed
by the CENBG collaboration and published in 2006 [19]. They measured the gamma
decay probability of ?3*Pa formed through the reaction ?**Th(*He, p)***Pa and a beam
energy of 24 MeV. The experimental set-up consisted of four silicon telescopes set at
backward angles, and four CgDy liquid scintillators to detect the ~-rays in coincidence
with the scattered particles. There are no cross section data of the ?3*Pa(n, ) reaction

to compare with, however the surrogate data transformed to neutron energy are included
in the EXFOR data bank as derived data.
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In the same year, 2006, Bernstein et al. [20] used the surrogate reaction ?**U(a, o),
with 55 MeV a-particles from the 88-Inch Cyclotron at the Lawrence Livermore National
Laboratory, to deduce the 237U(n,~) cross section. They placed the scattered particle
detectors at forward angles and a y-detector array consisting of five high-purity germanium
detectors. In this case the analysis was done by selecting ~v-ray transitions corresponding
to low-lying levels. The cross sections deduced in this article are systematically higher
than evaluations.

Scielzo et al. [21] used in 2010 the surrogate *156:158Gd(p p') reactions to infer
183,155157Gd(n, y) cross sections. The gadolinium targets were bombarded with 22 MeV
protons produced in the same cyclotron and with the same set-up as in Bernstein’s et al.
[20]. In this article the authors compare their experimental results to neutron-induced
ones. The measured cross sections were overestimated by a factor of three with respect
to the neutron-induced ones. They also performed Hauser-Feshbach calculations with
different Gaussian spin distributions. The calculations done with a higher mean spin,
Javg = O — 8N, are in better agreement with the surrogate data, whilst the one done for
Javg = 2R is in better agreement with neutron induced data. For a same excitation energy,
in a surrogate reaction the angular momentum transfered is higher than in the case of
neutron induced reactions, which explains their calculations.

In 2011 a detailed study of the surrogate reactions of figure 2.4 was done by the
CENBG collaboration, in the frame of Boutoux’s Ph.D. thesis |8] and an article [4|. From
the five reactions listed in figure 2.4, the inelastic scattering ™Y b(3He,? He') could not
be used because the scattered 3He particle had not enough energy to be detected with
the telescopes. The results of the other four studied reactions show the same discrepancy
between neutron induced probabilities and surrogate probabilities. In figure 2.5 the ex-
perimental y-decay probability of the compound nucleus 3Yb* is plotted as a function
of excitation energy measured via the surrogate reaction Y b(3He,* Hey) and is com-
pared to the probability obtained with the neutron-induced ™Y b(n,v) and 7-induced
1Y b(v, v) reactions. In this study theoretically calculated branching ratios were used to
fit the gamma decay probabilities with a Gaussian spin distribution by varying its param-
eters. The authors found that the distribution that best fitted the results was centered
at a higher average spin than the neutron induced ones, which is in agreement with the
previous results.
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Figure 2.4: Surrogate reaction channels and their corresponding neutron induced reactions
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Figure 2.5: Experimental «-decay probability of the compound nucleus ®Y'b* as a func-
tion of excitation energy measured via the surrogate reaction ™Y b(*He,* Hey) com-
pared with the probability obtained with the neutron-induced 1"2Y'b(n,~) and ~-induced

1Y b(v, ) reactions [8].
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The next year, 2012, Wilson et al. |31] studied (d, p), (*He, t) and (*He, ) surrogate
reactions on 232Th to deduce neutron capture cross sections. The measurement was per-
formed at the Oslo Cyclotron Laboratory using the CACTUS ~v-detector array, formed
by 28 Nal detectors, and Silicon Ring, which was a particle telescope. Here we will just
comment the results of the (d,p) reaction, which are plotted in figure 2.6 and compared
to previous neutron induced data and ENDF /B-VIIL.0.

L e This work
L — ENDFB7.0
v o Corrected data —
.= 4 Aertsetal. (nTOF) ]

S,y (barns)

: | L | . | . | . . .
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Energy (MeV)

Figure 2.6: Radiative capture cross section of ***Th measured by Wilson et al. [31] with
the (d,p) transfer reaction "This work". It is compared to neutron induced data and to
the evaluation ENDF /B-VIL.0.

This was the first time that the (n,~y) cross section of an actinide was measured using
the surrogate method and could be compared to high quality neutron induced data. As
seen in figure 2.6, the surrogate data is systematically higher than the neutron induced
one up to an equivalent neutron energy of 0.4 MeV, but for higher energies both sets of
data are in better agreement, with a difference of ~ 15%. The authors conclude that
the Weisskopf-Ewing limit is reached at this point, and thus that in this situation it is
possible to extract neutron induced cross sections from the surrogate data.

However, during the analysis of the experimental data they had several difficulties to
overcome that may have partially flawed the conclusions. Firstly, the neutrons emitted
during the 232Th(d, pn) reaction may interact with the Nal detectors, which would produce
a signal that can be mistaken with a ~-ray. The authors of the article applied a 22 ns time
window to retain just y-rays, but in fact this time window is just effective to eliminate
neutrons with energies under 700 keV from the analysis. Thus neutrons probably had a
small impact on the capture cross section at F, > 700 keV. In addition, the deuteron
beam can undergo break-up, which has the effect of increasing the number of unreacted
scattered protons, thus reducing the probabilities obtained with the surrogate method.
The deuteron break-up was neglected in the article, but as proven in later works it should
not be [3|. Finally the experiment took place in a cyclotron facility, in which the beam
energy is usually not correctly determined, affecting the energy calibration. The effect of
this is particularly evident in figure 8 of [31], where the gamma decay probability starts
falling 200 keV under S,. In theory the only open decay path of the 2*3Th nucleus is
v-emission and therefore P, should be 1 up to the neutron separation energy.
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In the article of 2016 of Ducasse et al. |3] they investigated the ?*U(d, p) reaction
by simultaneously measuring the fission and the y-decay probabilities of 23°U*. With the
same set-up as the one described above, they extracted these probabilities, see figure 2.7.
The dependence on the angle is probably related to the differences in angular momentum
transfer [. They corrected the probabilities from deuteron break-up which changed the
final results, figure 2.8.
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Figure 2.7: [3] Measured 7-decay (a) and fission (b) probabilities of the compound nucleus
23907* as a function of excitation energy measured via the surrogate reaction 238U (d, p), at
polar angles 126° and 140°. The decay probabilities are compared to the evaluations for
the neutron induced cross sections, for fission (b) they are also compared to the surrogate
data of Britt and Cramer [41].
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Figure 2.8: 3] Measured and corrected from deuteron break-up probabilities for v-decay
(a) and fission (b) of the compound nucleus 3°U* as a function of excitation energy
measured via the surrogate reaction 3*U(d, p), at § = 140°. The decay probabilities are
compared to the evaluations, for fission (b) they are also compared to the data of Britt
and Cramer [41] and these data corrected from deuteron break-up.
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After correcting for the deuteron break-up, the measured decay probabilities increase,
figure 2.8. The transfered [ is much higher in surrogate reactions at low equivalent neutron
energy F, than in the case of neutron-induced reactions, which explains why the ~-
decay probability does not agree with neutron induced data. In the case of fission this
disagreement was attributed to the presence of oxygen in the target.

In figure 2.9 both «y-decay probability and fission probability are shown with a zoom
in the 5 to 6.3 MeV energy region. In this low energy region fission is in good agreement
with neutron data, but P;*" > P, which proves that P, is more sensitive to the J"
mismatch. No spin distribution could be found to match both decay probabilities, most
likely because an equipartition of negative and positive parities was assumed, which in
general is not true as it will be shown later.
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Figure 2.9: 3] Measured and corrected from deuteron break-up probabilities for v-decay
and fission of the compound nucleus 2°U* as a function of excitation energy measured
via the surrogate reaction 2**U(d,p), at § = 140°. The decay probabilities are compared
to different evaluations.

More recently, two articles in which the spin-parity distributions of the surrogate
reactions were theoretically calculated were published. In the first article, of 2018, by
Escher et al. [22], they used the %Y (p, d)®Y reaction as a surrogate of n +37Y. To
validate the calculations they performed a benchmark experiment to obtain the known
0 Zr(n,v) cross section with the surrogate 2Zr(p, d)* Zr. The data were produced at the
K250 Cyclotron at Texas A&M University, and natural 8°Y and enriched 90:91,92:94.96 7.
targets were bombarded with 28.5 MeV protons. The scattered particles were tagged with
silicon telescopes, and the y-rays were detected in coincidence with five HPGe. The spin
distributions F'(E*, J™) of figure 2.10 were calculated using the two-step Distorted-Wave
Born Approximation (DWBA) process of the code FRESCO [52].

The spin distributions of figure 2.10 change smoothly with energy. The branching
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Figure 2.10: Calculated spin distributions at neutron separation energy, populated in the
Y (p,d) and *>Zr(p,d) reactions [22].

ratios G,(E*, J™) were obtained with standard level density functionals and strength
functions, with parameters that were adjusted to reproduce the measured probabilities
for specific y-ray transitions, in an £* region between 6 and 10 MeV. In figure 2.11 the
results obtained with the surrogate data are compared to other evaluations, and although
the results are not in disagreement with them, it is worth mentioning that there are no
experimental data for the 87Y (n, ) reaction.
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Figure 2.11: Deduced cross section ¥7Y (n,v) from the surrogate reaction %Y (p,d)*Y

("This work" corresponds to [22]). The results are compared with cross sections given in
TENDL 2015 and Rosfond 2010.

The year after, in 2019, Ratkiewicz et al. [23] used (d, p) reactions with a formalism
beyond the Weisskopf-Ewing approximation, given by eq. (1.2), to produce Mo(n,~)
cross sections, figure 2.13. Their calculations account for the break-up of the deuteron
beam. They calculated the spin distributions represented in figure 2.12, which illustrates
a big difference in the proportion of negative and positive parities. This is something that
dismisses the usual hypothesis of supposing 50% of each parity of the distributions, [53],
which in this case would flaw the results.

Figure 2.13 includes the results obtained by combining the calculated spin-parity dis-
tributions of figure 2.12 and a Hauser-Feshbach calculation with structure parameters of
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Figure 2.12: Calculated spin distribution of the %Mo(d,p) reaction in a an excitation
energy region between 8.55 MeV and 10.65 MeV [23]. Negative parities are represented
in blue and positive ones in red.

RIPL [53]. These results are in very good agreement with the neutron-induced data (red
and black points), and the ENDF/B-VIIL.0 evaluation. Figure 2.13 also includes cross
section that would have been deduced from the surrogate data if the Weisskopf-Ewing
approximation,eq. (1.2), had been assumed (gold diamonds). The difference between the
results obtained with this approximation and the full calculation can be explained as part
of a J™ mismatch.
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Figure 2.13:  Deduced cross section %Mo(n,7y) from the surrogate reaction

BMo(d,p)*Mo* (" Mo(d,p) Surrogate Data (this work)" corresponds to [23]). The
solid line represents the cross section obtained using the spin distribution of figure 2.12
and the gold diamonds using the WE approximation [23]. The results are compared to
previous neutron induced data and the ENDF evaluation.

It is a general result that the y-decay probability deduced from the surrogate data
is higher than with neutron-induced data due to the differences in J™. This is due to
the competition with neutron emission which is suppressed when the difference between
the spin of the parent compound nucleus and the daughter nucleus is big. As it will be
explained in the part IT of this work, we aim to reproduce our experimental data in a
similar way to [23] which was first proposed in [54]. This implies correctly calculating the
spin distribution with a direct reaction model [29] [30]. We believe that this is the way
to proceed and obtain meaningful results from the surrogate reaction experiments.

19



2.2 Surrogate Ratio Method (SRM)

In this section we will focus on the most relevant and recent results obtained with the
SRM, which was introduced in 2005 by Plettner et al. [55]. In this approach, R(E) is the
ratio of the cross sections of two different reactions [54]:

Oaix1 (E)

RE) = Tarxa (E)

(2.1)

where «a corresponds to the entrance channel a + A and x to the exit channel, thus
Tarxi (E) corresponds to a; + Ay — ¢ + C1 and 04,y, (E) to az + Ay — ¢ + Cy. These
ratio is determined in two surrogate experiments, thus an independent determination of
one of the cross sections can be used to obtain the other. The meaning of £ depends on
each case, as typically a compound nucleus formation cross section is characterized by the
kinetic energy of the projectile E,, while the branching ratios are normally expressed as
a function of the excitation energy of the nucleus E*. These two energies are related by
eq. (1.3). In the Weisskopf-Ewing limit the ratio R(E) can be expressed as,

0N ()G, (B)
BE) = N E)6u (B)

(2.2)

where 0V is the compound nucleus formation cross section, which is calculated in the

optical model formalism, and G, is the branching ratio for decay channel x. The ratio
Gy, (E)/Gy,(E) is determined with two experiments to form the corresponding compound
nuclei. It is equivalent to the ratio of the probabilities determined with the absolute
surrogate reaction method:

GN(E) _ PRE) _ NEX(B)/INE (F)ey, (B)]  NEN(E) NE¥(B) e (),
GON(E) ~ PEN(B) — NEN(B)/INGY(B)ey, (B)] ~ NEN(B)NGY(B) ey, (B)

where 0 corresponds to the entrance channel d+ D and ¢, is the efficiency of detecting
exit channel x. The ratio of the detection efficiencies ¢,, /¢,, can be determined indepen-
dently and in the case of fission it is approximately unity. During the measurement, the
conditions can be adjusted in such a way that the relative number of events NgN/N(gN
can be determined with the relative beam intensities, target thickness and live times of
both experiments. Setting these ratios to 1 to simplify the notation, the ratio of the decay
probabilities simplifies to eq. (2.4).

O.CN E NCN E
Re(B) = ONEEiNNEEi (2.4

d2x2

The main advantage of the ratio method over the absolute one is that it eliminates the
necessity to accurately measure the total number of surrogate reaction events N which
correspond to the number of detected ejectiles. This way one can avoid the problem of
target impurities that induce a background, but it can make it worse if the contaminants
are excited when measuring gamma-decay probabilities because this cannot be disentan-
gled from the true events. In addition, it requires performing two measurements, and a
very good knowledge of the reference cross section.
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2.2.1 SRM Applied to Fission

In 2014, Hughes et al. [18| applied the SRM to infer the neutron induced fission cross
sections 236237238 Py (. ) using (p,t), (p,d) and (p,p’) reactions on targets of 3 Pu and
25U, The proton beam had an energy of 28.5 MeV and was produced at the K-150
cyclotron at Texas A&M University. Figure 2.14 illustrates the experimental set-up used,
named STARLiTeR. With this array they performed a measurement with the U target
and another one with Pu and determined the ratio of the fission coincidences for each
reaction channel. Then they converted the ratios to 239237238 Py(n_ f) cross section using
the 23U (n, f) cross sections as reference and compared to ENDF, figure 2.15.

oe” shield‘
7

\ ‘ 239Pu/235U
L 28.5 MeV

protons

Clovers/BGOs

Figure 2.14: Sketch of the STARLiTeR array at Texas A&M. It consists of a position
sensitive silicon telescope at forward angles, between 36° and 67°, for ejectiles, a fission
fragment detector at backward angles, between 108° and 135° and six Compton-suppressed
v-ray detectors surrounding the chamber [18].

In figure 2.15 they compare their data to one published in 2011 by Ressler et al.
[17]. Both sets of data are in agreement up to 5 MeV in equivalent neutron energy. The
procedure followed by Ressler et al. was slightly different to that of Hughes et al. And
the experiment was carried out in the 88-Inch Cyclotron at Berkeley and the surrogate
reactions were performed with 55-MeV « particles.

Between 2013 and 2015 a collaboration based in India produced three different articles
[56], [32] and [33] using the SRM to obtain fission cross sections of short lived actinides. In
the first article they utilized surrogate reactions on a ?**U target with Li and "Li beam
to determine the 29Np(n, f) and **°Np(n, f) cross sections. The problem is that they
considered the directly measured 2" Pu(n, f) as reference, which has not been accurately
measured, thus the results are not very reliable. However, in the last two articles they
used the 233U (n, f) cross section as reference, which is a very well measured cross section.
In [32] they determined *3*Pa(n, f) with the ratio of the reactions **Th("Li,a f)*3® Pa
and 22Th("Li, tf)*5U, multiplied by the 23U (n, f) cross section, figure 2.16.

In the article of 2015, Pal et al. [33] determined the 23 Pu(n, f) and ?* Np(n, f) cross
sections applying the surrogate ratio method to U (6Li, df) and 232Th(°Li, df). As one
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Figure 2.15: 2¥Pu(n, f) cross section deduced from the surrogate ratio and the

o (31U (n, f)) ENDF/B-VII evaluation (red circles), from the SRM applied by Ressler

et al. [17] (green squares), and from the ENDF/JENDL evaluations (solid blue line) [18].
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Figure 2.16: 234 Pa(n, f) cross section deduced with the surrogate ratio method (red circles
"Present experiment" corresponding to [32]), compared to calculations with the EMPIRE-
3.1 code, for the fission barrier formula described in the article (BF) and RIPL-3 [32].

may see in figure 2.17, the inferred 23 Pu(n, f) cross section is in agreement with that of

Ressler et al. [17].

2.2.2 Application of the SRM to Radiative Capture

In 2010 Goldblum et al. [34] used the SRM to infer the %' Dy(n,~) cross section in
an equivalent neutron energy range of 130-560keV. The experiment took place in the
Oslo Cyclotron Laboratory using the CACTUS array which includes light-charged-particle
telescopes and scintillators. They measured the y-decay probability of 2Dy* relative to
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Figure 2.17: 23 Pu(n, f) cross section deduced with the surrogate ratio method (red circles
"Present data" corresponding to |32|), compared to Ressler et al. |17] (green circles), a
calculation with EMPIRE-3.1, and ENDF/B-VIIL.1 |33].

161 Dy* and %4 Dy* residual nuclei. Figure 2.18 resumes their results.

In both figures 2.18a and 2.18b which represent the %' Dy(n,~) cross section, a better
agreement is achieved with a higher y-energy threshold. On the top part of the figures
the cross sections are obtained with a threshold in v-ray energy of 500keV and the lower
part with a threshold of 2MeV. The authors link this improvement to the fact that the
Weisskopf-Ewing approximation, used to infer the cross sections, works better at high
energies.

In an article published in 2012 by Scielzo et al. [57|, they contradict the hypothesis
that by rising the ~-energy threshold, the angular momentum distributions do not need
to be taken into account. They find no evidence for this and state that the differences in
the spin-parity distribution between neutron induced and surrogate reactions have to be
accounted for.

In 2016 Yan et al. [35] used the 2Zr(180,10)% Zr and *°Zr (180, 1%0)?2 Zr reactions
to test the SRM. They infer the %3 Zr(n, )% Zr cross section with the experimental ratio of
the coincidence events multiplied by the measured 21 Zr(n,~)%2Zr cross section, in energy
region equivalent to E, = 0 — 8 MeV. The deduced cross section is in good agreement
with their calculations for F,, > 3 MeV, as figure 2.19 shows.
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(b) Quoting from [34]: "cross section extracted
using the SRM with dissimilar compound nuclei
pairs relative to the evaluated *°*Dy(n,~) cross
section obtained from ENDF/B-VILO as a func-
tion of equivalent neutron energy obtained via
the (*He,>He') inelastic scattering reaction (open
circles) and the (*He,a) pickup reaction (solid
squares) with a ~-ray energy threshold of (a)
500keV and (b) 2MeV. [...] For comparison, the
directly measured %1 Dy(n,v) cross section from
ENDF/B-VII is denoted by the solid line."

Figure 2.18: ' Dy(n,~) cross section extracted using the SRM [34].
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Figure 2.19: %Zr(n, )% Zr cross section deduced with the surrogate ratio method (black
triangles), compared to the neutron induced reaction from ENDF/B-VII.1 [35].

2.3 The Oslo Method

Although this method was not conceived to produce neutron induced cross sections as
the surrogate method does, in some articles the authors deduce neutron radiative capture
cross sections with this method, for instance Laplace et al. [37]. The aim of the Oslo
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method is to use charged particle reactions to deduce level densities and gamma strength
functions (ySF) from the recoil nuclei. It is based on the measurement of y-ray-ejectile
coincidences and was developed in several steps with different contributions to it:

e First generation: extract primary 7-rays from the total gamma spectra [58| (1987).
e Unfolding: correct the gamma spectra with detector response [59] (1996).

e Simultaneous extraction of the level density and gamma strength from the matrix
of primary ~-rays [60] (2000). In the article of Schiller et al. [60] the full procedure
to extract the information from the experimental data is detailed.

e Revision of the method and the uncertainties associated with the hypothesis done
[61] (2011).

There are some limitations to the model: the normalization of the level density at .S,
is needed, and the only observed decay channel is y-decay. The method has been used
since its development mainly in several articles to obtain level densities (LD) and SFs,
however in this work we will cite some of the most relevant ones for the present work.

In 2013 the method was applied by Guttormsen et al. [36] to extract the level densities
from different Th and U isotopes. They performed two experiments at the Oslo Cyclotron
Laboratory on 2?Th and 238U targets, with the SiRi particle telescope and the CACTUS
~v-detector device. The Th target was bombarded with 12 MeV deuterons and 24 MeV
3He nuclei, and the U one with 15 MeV deuterons. With this beam-target combinations,
they had access to the level densities of 21:232.233Th and 237:238.2397]  gee figure 2.20.
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Figure 2.20: Level densities of 231232233 and 237:238.2397] [36].

The data of Guttormsen et al. goes up to ~ 4 MeV and it is renormalized with the level
density at S,,. This level density is obtained with neutron induced reaction data, which at
low neutron energies provides the mean resonance spacing Dy, with which one can deduce
the level density of the compound nucleus assuming a certain spin distribution. Between
the data deduced with the Oslo method and the neutron induced data they extrapolate
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using a Constant Temperature Model (CTM) [62] as shown in figure 2.20. They conclude
that it is the best mode to fit the data and they give thermodynamic properties of the
nuclei, such as entropy and heat capacity.

In 2016 Laplace et al. [37] applied the Oslo method to the ?*? Pu(d, p) reaction. They
did a remarkable work to extract the nuclear level density (NLD) and the ySF of 243 Pu.
However, here we will concentrate on the 2*2Pu(n, ) cross section they deduced from
the data. They bombarded a target of 0.4mg/cm? ?*2Pu on a Be-backing, with 12 MeV
deuterons produced at the Oslo Cyclotron Laboratory, with the same set-up as [36]. Figure
2.21 shows the radiative capture cross sections they obtained, with a scissors-resonance
(SR) in the vSF and with out it. Their curves are compared to neutron induced data and
different evaluations, the agreement is very good up to 200 keV where the data stop. They
extrapolate their calculations up to 4 MeV, and at around 1 MeV there are differences
between their calculation and the evaluations.

*  *2pu(n,y), Hockenbury 1975
o 22py(n,y), Wisshak 1979
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Figure 2.21: Quoting from Laplace et al. [37]: " Calculated **> Pu(n,~) cross section using
level density and vSF parameters obtained in the present work, including the M1 scissors
mode (continuous red curve with blue error-band) and without it (dashed red curve with
red dots error-band). A zoom in the energy region 0.5 to 2 MeV, where the impact of
the SR is the most important, is shown in the inset. The predictions are compared at
low energy with measured data from Hockenbury et al. [63] (black triangles), Wisshak
and Kdppeler [64] (empty squares), and evaluations from ENDF/B-VII.1 (black curve),
JENDL-4.0 (dashed grey curve), TENDL2014 (blue dotted-dashed curve)". The references
to "present work" is the work of Laplace et al. [37].
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In 2019 Zeiser et al. [38| applied the Oslo method to obtain the NLD and the vSF
of 210 Py with the reaction 23 Pu(d, p). As in the experiment above, they bombarded the
239 Py target with 12 MeV deuterons produced at the Oslo Cyclotron Laboratory, with the
same set-up as [36]. Although the article has to go still through the peer review process
their results seem really interesting. Figure 2.22 represents the NLD of 24° Py that they
obtained, the level density at S, from the neutron induced data and CTM [62] that fits
the data.
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Figure 2.22: The NLD of 2Py obtained with the Oslo method compared to known
discrete levels, the level density at S,, from the neutron induced data, calculated with Dy,
and a curve of the CTM with Tor = 0.415 [38]. The reference to "present work" is the
work of Zeiser et al. [38].

As we will see in chapter 5, the level density of the CTM given in figure 2.22 is similar
to what we use in our calculations, i.e. a constant CTM with the parametrization of RIPL
[53]. Apart from the NLD in their article they also propose a gamma strength function
for 24 Pu, see figure 2.23.

The «SF deduced in figure 2.23 presents a small structure between 2 and 4 MeV,
which is consistent with other results [40]. As a matter of fact this "pygmy" resonance
is usually related to the so-called scissors mode [65], which are collective excitations in
which two particle systems rotate in opposite sense while conserving their shape. This
kind of resonance is being included in neutron data evaluations to avoid having to do a
renormalization between the resonance energy range and the continuum one.
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Figure 2.23: The 4SF of ?*° Py obtained with the Oslo compared to the available data.
The references to "this work" correspond to the work of Zeiser et al. [38].
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Chapter 3

Experimental Set-Up

The CENBG/CEA-DAM collaboration has developed an experimental set-up for the si-
multaneous measurement of fission and y-emission probabilities. Measuring the ~-decay
probabilities of fissionable actinides is complicated because, when fission sets in, it is
necessary to disentangle the y-rays emitted by the fission fragments and those from the
decaying nucleus. This is particularly difficult in the case of fissile nuclei, where the contri-
bution of y-rays emitted by the fission fragments is dominant when the fission probability
is of the same magnitude as the y-decay probability.

As explained in chapter 1 in this work we investigated the interaction of *He and
“He beams impinging on a 24Py target. It was successfully performed at the Tandem
accelerator at the Institute for Nuclear Physics of Orsay (I.P.N.O), during the last three
weeks of April 2017. The beam energy was chosen to be 30MeV and the target was
manufactured by the radiochemistry group of the I.LP.N.O. The aim of this experiment
was to study the decay probabilities of 23 Pu* and ?*°Pu* by means of the following
surrogate reactions,

240PU(4H€, 4H61)240Pu* n -+ 239PU N 240Pu*
240P'LL(3H€, 3H€l)240pu* n 4+ 239Pu SN 240PU*

240PU(3H€,4H6)239PU/* n—|—238Pu SN 239Pu*

where we have indicated the n-induced reaction associated to each surrogate reaction.

The experimental set-up we used revolves around equation (1.1) and the measurement
of its different terms, to obtain the decay probabilities [43] [24]. In the absence of scat-
tered particles originated from contaminant reactions, the number of single events Ny (E™)
corresponds to the total number of Y* nuclei and the number of coincidences corrected for
detection efficiency N, (E*)/e, to the number of Y* nuclei that have decayed via channel
X at a certain excitation energy.

3.1 DBeam Energy

Selecting the optimal beam energy is crucial to obtain the best possible results. The beam
energy has an influence on the different reaction cross sections. The higher the energy
above the Coulomb barrier, the lower the elastic cross section in relation to the inelastic
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scattering cross section. To get an estimation of the Coulomb barrier (V) of each pair of
target and projectile, the classical formula was used:

Z1Z2€2
47T€0d

Vo(Zy, Zs) = (3.1)
where € is the electrical permeability of the vacuum, e the electron charge, and d =
ro(Ai/g + Aé/s). Applying equation (3.1) to the reactions above mentioned with a value
of ro = 1.25fm, gives Vo ~ 28 MeV. Other formulas, see [66], give values as low as 24
MeV. However, equation (3.1) gives an upper value that has to be surpassed to reduce
the elastic scattering cross section.

For that reason a beam energy of 30 MeV was chosen, for both the *He and *He
beams, because the barrier values are very similar. It is a sufficiently high energy to be
well above the Coulomb barrier, and to avoid to have a huge proportion of fusion-fission
events, which can damage the fission detectors. The latter increases rapidly with the
incident beam energy.

3.2 Overview of the Experimental Set-up

The best way of getting a first grasp of the set-up is to look at figure 3.1a, which shows
a drawing with an external view of the experimental set-up. A vacuum reaction chamber
is surrounded by two types of gamma-ray detectors: six high-purity germanium detec-
tors and four CDg liquid scintillators. One also distinguishes a target airlock, which is
needed to isolate the radioactive targets or sources from the environment during the trans-
portation from a glove box, where they are mounted, to the experimental set-up. Figure
3.1b shows a photograph of the set-up taken during the measurement at the Tandem
accelerator of the IPN of Orsay in France.

Ge detectors

Cé6D6
detectors

rReaction
chamber

Target airlock

(a) Digital 3D-model of the set up. (b) Photograph of the set-up during the measure-
ment at the I.LP.N. Orsay in France.

Figure 3.1: Overview of the experimental set-up.

The vacuum chamber houses the target, two position-sensitive particle telescopes
(AE — E) and a fission detector made out of 16 solar cells. The telescopes are used to
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identify the scattered particles b of the investigated two-body nuclear reactions X (a, b)Y ™,
and to measure their kinetic energy and their polar angle. The energies of the detected
particles b are converted to nuclear excitation energy of the decaying nucleus Y* applying
energy and linear momentum conservation, see equation (3.9), and accounting for energy
losses in dead layers. Fission fragments and/or 7 rays are detected in coincidence with
the scattered particles. As explained above, with this information, the fission detection
efficiency and the ~-cascade detection efficiency, it is possible to determine fission and
v-decay probabilities, see equation (1.1).

Si telescopes Solar cells

Solar cells Support

Solar cells support
support Chamber flange

(a) The detectors located upstream the target. (b) The detectors located downstream the target.

Figure 3.2: Detectors placed inside the vacuum reaction chamber, including their sup-
ports, which are fixed to the chamber flanges.

The reaction chamber has three openings, two on the sides and one on the center. The
central opening is located on the bottom of the chamber and serves to fix the airlock and
insert the target ladder. The airlock includes a high-precision positioning system to place
the center of the targets on the beam axis. The detectors are placed on either side of
the target, they are fixed to the lateral chamber flanges. Figure 3.2 shows the detectors
together with their supports and the chamber flanges. The two telescopes are located
upstream from the target. The fission detector is divided into two parts, one upstream
and the other downstream the target, each part is composed of several solar cells. More
details will be given in the following subsections.

3.2.1 Targets

The target ladder contains four positions, see figure 3.3. One of the positions was occupied
by the PuO, target, which had an areal density of about 100g/cm? and ¢ = 9 mm, which
corresponds to an « activity of 534 kBq, and a target backing made of natural carbon
of the same surface density. The Pu target was manufactured at the [.P.N.Orsay by the
radiochemistry group. Two other positions were occupied by a 2% Pb target of 200ug/cm?
over the same carbon backing of 100ug/cm? and by the C backing alone. In the remaining
position there was a hole to let the beam pass through and ensure that it was correctly
aligned.
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Figure 3.3: Target support and targets (photograph taken after the experiment), from
left to right: hole, carbon backing, plutonium target and lead target. The Pu target was
slightly detached from the support. Note the marks left by the beam on the targets.

Measurements with the C backing alone are necessary to evaluate the background
spectrum induced by the reactions taking place on it, which may contaminate the singles
spectrum obtained with the Pu. In the present experiment, the beam energy and the
angle of the telescopes were chosen in such a way that the peaks in the singles spectrum
associated to the elastic scattering of the beam on C or '°0O where out of the range of
the E* of ?*°Pu of interest. However, during the experiment we noticed that there were
unexpected contaminants in the Pu target. The origin of these contaminants is not fully
clear, but one hypothesis is that they were acquired during the fabrication process. From
the position of the peaks at different telescope angles we deduce that the contaminants
are mainly Ca and CI, but also K and S. Figure 3.4 represents the difference between
the energy of the elastically scattered « particles by a #*° Pu nucleus and the mentioned
contaminants, as a function of the polar angle ]°]. The figure illustrates the fact that the
bigger the angle, the higher the contaminant will appear in excitation energy.
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Figure 3.4: Difference in MeV between kinetic energy of an elastically scattered a particle
by a 24 Pu nucleus and the different contaminants, as a function of the polar angle 6[°].
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The 2% Pb target is used for telescope calibration purposes, as the first excited states
of the lead isotopes, produced by scattering or transfer reactions on it, are well separated
from each other and the ejectiles have energies comparable to the ones they have after
the reactions with plutonium. The measurement of the kinetic energy of the scattered
particles is crucial for the determination of the E* of Y* and we made significant efforts
to determine it as accurately as possible, more details are given in chapter 4.

3.2.2 Particle Telescopes

Each telescope is composed of a thin position-sensitive Si strip detector (AE) and a thick
Si-Li detector (E). The thickness and the polarization voltages were different for each
detector, see table 3.1. The AE detectors were 16x16 channels double-sided-silicon-strip
detectors (DSSSD) with a surface of 25 cm?, manufactured by Micron semiconductors [67].
The telescopes were centered at 138.5 degrees (polar angle) with respect to the beam axis
at a distance of 5.5 cm from the target, see figure 3.5. The covered polar angles range from
119.4 to 157.2 degrees in steps of about 2 degrees. As seen in figure 3.5, the E detector has
a smaller surface (22.1 ¢cm?) than the AE detector and defines the geometrical efficiency.
The sum of the geometrical efficiency of both telescopes amounts to 8.25%. Also a 30
pm-thick aluminum foil was placed in front of each AE detector to stop fission fragments
and the alpha particles emitted by the plutonium target. In addition, these Al foils are
biased to -300V to repel the 0 electrons stemming from the target.

Detector | Thk. AE (um) | Pol. AE (V) | Thk. E (mm) | Pol. E (V)
Telescope 1 97 +9 2 +300
Telescope 2 100 +10 5t +600

Table 3.1: Thicknesses (Thk.) and polarization voltages (Pol.) of the detectors that form
the particle telescopes.

The telescopes were placed at backward angles with respect to the beam direction
to minimize the impact of the background coming from reactions on the target backing
(natural carbon) and light target contaminants (e.g. oxygen) on the singles spectrum. Be-
cause of the kinematics of two-body reactions, at backward angles the scattered particles
of these parasitic reactions have kinetic energies that correspond to excitation energies of
the excited isotope Y*, which are not of interest, thus leaving a large range of E* in the
singles spectrum free from contaminant peaks of natural carbon and oxygen. Unfortu-
nately, as previously mentioned, there were some unexpected contaminants, S, K, Ca and
Cl isotopes, which are common in tap water, probably acquired by the C backing during
the fabrication of the target. The procedure followed to cope with them is detailed in
chapter 4, section 4.4.1.

The kinetic energies relevant in this experiment range from few to several tens of MeV.
Thus, the kinetic energies of the scattered particles can be much higher than the kinetic
energies of the alpha particles originating from a standard 3-a (Am-Cm-Pu) calibration
source, ~ 5MeV. This is the reason why the first excited states of 2°7Pb* and 2°8 Pb*
produced in 2®Pb(*He,*He) and 2 Pb(*He,*He') or 2®Pb(*He,*He') where used to
calibrate the telescopes (AE and E) instead of the mentioned source. We have access
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*~.._  AE Detector
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Figure 3.5: Position of the telescope detectors in relation to the beam direction and the
target. View of a cut of the horizontal plane.

to the theoretical kinetic energy of the ejectile with formula (3.7), that can be used to
calibrate the detectors.

In the following we derive eq (3.7). Schematically the two body reactions taking place
can be described like they are in figure 3.6, where,

o M;, i={a,X,b Y} are the masses of the nuclei.
o I, {i=a,b, Y} are their corresponding kinetic energies.

e And v;, {i =a,b,Y} are their velocities.

o | Particles | Parameters |
5 A X (target) My
A a (projectile) M,, E.,, v,

b (ejectile) My, Ey, 0

= > '
Y Y,.
. . \ Y (recoiling nucleus) | My, E.y, vy

Figure 3.6: Left: schematic two body reaction in which a particle "a" impinges on a target
nucleus at rest "X", resulting in an ejectile "b" and recoil nucleus "Y". Right: associated
variables, masses, energies and velocities, to each body intervening in the reaction [8|.
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The principle of conservation of the total energy reads in this case:
Eo.=E4s+E +Ey+Ey—Q (3.2)

where Ey and Ey are the excitation energies of the ejectile and the recoiling nucleus
respectively, and () is the Q-value of the reaction. In our case the excitation energy of
the ejectile is neglected because ® He has no bound excited states and the first excited of
“He is at 20MeV which is well over the energies that we will study.

The principle of momentum conservation over the z-axis and the y-axis gives:

Myv, = Myvy - cos(0) + Myvy - cos(p) (3.3)
0 = Myv, - sin(0) + Myvy - sin(y) (3.4)

As we are in the non-relativistic limit M -v = /2M E,, and substituting this expression
in (3.3) and (3.4) gives:

V2M,Eey = \/2MyEy, - cos(0) + \/2My E.y - cos(y) (3.5)
0=+2MyE - sin(0) + \/2My E.y - sin(p) (3.6)
Using equations (3.2), (3.5) and (3.6), one obtains the energy of the ejectile Ey:

£, {cosochaMchca + /Mo My Boqc0520 + (Mo, + My)[Eo(My — M) + M,(Q — E7)]
¢ Moy + My
(3.7)
Using equation (3.7) we can calibrate the telescope detectors by correctly simulating
their geometry and the energy losses in the aluminum foils and the AFE detectors. We
neglect the losses in the target as in this experiment it was really thin, thus the energy of

the ejectile is equal to:
Eg = Exi—jou + AE + Egir, (3.8)

where E4;_ oy is the energy loss in the Al foil, AE and Eg;z,; are the energies deposited
in the strip detector and in the Si-Li detector, respectively. These energy losses where
calculated using three different programs: Kaliveda, Geant4 and Lise++. Each of them
gave different values for the energy losses, but the variations, of some tens of keV, were less
than the energy resolution we had, ~ 100 keV. Finally we chose Kaliveda, a simulation
library developed in C++ by IN2P3 [25], to do the energy loss simulation. A C+-+ Monte-
Carlo simulation was made to determine the mean angle of each strip (see appendix A).

Once the telescopes are calibrated, the deposited energy in the telescopes can be
converted to excitation energy of the recoil nucleus with the formula (3.9).

. MyQ — Eca(Ma — My) — Ecb(My + Mb) + 2cos0 MaMbEcaEcb
= T

The AFE detector has 16x16 strips but we only used the 16 vertical strips because
for the heavy recoil nuclei Y considered here, the variation of the kinetic energy of the
ejectile with its emission angle is very slow. Thus the position information obtained with
the vertical strips was sufficient. In addition strips number 1 and 16 were not included in
the analysis because the Si-Li detector was slightly smaller than the strip detector making
these two strips useless. In principle it is possible to investigate the decay probabilities
for each vertical strip and even each telescope independently, but it was impossible here
due to the lack of statistics, for all the reaction channels. To improve it, seven groups of
four strips, two from each telescope, were defined as summarized in table 3.2:

E* (3.9)
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Strips | Angle # | 6(°) | A9(°)

2-3 1 156.0 | 3.4
4-5 2 150.6 | 3.0
6-7 3 144.7 | 2.6
8-9 4 138.6 | 2.2
10-11 5 1324 | 1.9
12-13 6 126.3 | 1.7
14-15 7 1207 | 1.4

Table 3.2: Average angles for each group of four strips, two from each telescope.
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3.2.3 Gamma Detectors

As mentioned before there were four scintillators and six Ge detectors placed surrounding
the chamber. The disposition of the detectors is detailed in figure 3.7. The upper part
shows that the central axes of the CgDg detectors are included in the plane containing
the target. The central axes of the germanium detectors are tilted by 45 degrees with
respect to this plane. The lower panel shows the angles between adjacent detectors. The
distance of the CsDg and Ge detectors to the target is 93 and 130 mm, respectively.

2!2?232’

" Reaction

chamber
Beam

. aog
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(/NS

‘{%

i Target
@< airlock

Figure 3.7: Geometrical arrangement of the ~-ray detectors. (Top) Top view of the
detector arrays. The angle between the plane containing the central axes of the CgDg
detectors and the Ge detectors is given. (Bottom) Front view of the detector arrays. The
angle between adjacent CsDg and adjacent Ge detectors is given [24].

Liquid Scintillators

The detection principle of these detectors is based on the Compton scattering of photons
in the liquid CgDg. When a photon interacts with an electron it may transfer just a
fraction of its total energy and momentum. Applying the conservation rules of these two
quantities, the energy transfered to the recoil electron E.- can be expressed as a function
of the incident energy of the photon Ej and the scattering angle 6, like in equation (3.10):
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FEy
1 + EO (1—6056)

mec?

Ee- = Ey —

(3.10)

When 6 = 180° the energy transfer is maximal and a broad peak is formed in the
spectrum with an energy £ as defined in equation (3.11), the Compton edge.

max 2Eg
ET = . 1 ok, (3.11)

Although photons may deposit all their energy in the detector, which makes appear
in theory a well defined peak, this peak is not exploitable due to its small cross section as
compared to a Compton scattering.

In figure 3.8 the energy spectrum we measured with a '37C's source is represented. This
nucleus decays by emitting a y-ray of 661.7keV. Introducing this value in formula (3.11)
gives a value of the Compton edge of 476.7keV. In figure 3.8 the electronic threshold is
visible at around 210 channels, in contrast the photo-peak, which should be at around
370 channels, is not distinguishable from the background in this image.
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Figure 3.8: Gamma energy spectrum, in channels, of 1¥"C's obtained with scintillator 4.

One of the main reasons to choose these detectors is that they can be used to distin-
guish between the signal of a neutron and that of a y-ray. This is possible thanks to the
pulse shape discrimination technique. In addition, the fact that the benzene of scintillat-
ing liquid has deuterium in its composition, instead of just being regular Cs Hg, drastically
reduces the neutron captures by hydrogen, which would create an intense background of
gamma rays within the detector. This makes CgDg detectors perfect as y-ray counters,
even though their energy resolution is modest.
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Germanium detectors

High purity germanium detectors (HPGe) can be used to accurately measure low-lying
~-ray transition intensities, and thus determine the probabilities of observing specific -
ray transitions as a function of the excitation energy of the decaying nucleus [22]. They
can also be used in the same way as CgDg detectors, to count ~y-rays from a few 100keV
to several MeV. As a matter of fact, the HPGe had two output signals, one was amplified
with a high gain (HG) to have a detailed structure of the low-lying y-rays, the other had
a low gain (LG) to be able to detect high energy ~-rays, see section 3.3.

It is possible to accurately measure low-lying y-rays because the detection principle
in the case of germanium detectors is completely different to the one of the scintillators.
Within the Ge crystal, which is a semiconductor, there is a high proportion of photoelectric
effect, i.e. an electron of the valence band absorbs an incoming photon, if its energy is
high enough it will reach the conduction band and be detected. This process is what
makes the germanium detectors have an excellent energy resolution.

Unfortunately, in our case, it was not possible to obtain the expected resolution be-
cause the energy response of the HPGe fluctuated during time, probably due to tempera-
ture changes within the detectors or the electronic chain. This problem can be encountered
when using this kind of detector and can be solved by periodically re-adjusting their re-
sponse to a reference value. However, during this experiment it could not be corrected.
The limited energy resolution of these specific germanium detectors, which had been pre-
viously used in a neutron environment, the rapid energy shift, combined with the low
statistics per time-unit during the plutonium target runs, made it impossible to account
for this effect. In addition, detector number 1 did not work correctly, thus it was not used
during the whole experiment, therefore the analysis was done just with five Ge detectors.

To illustrate the mentioned resolution problem, the ~-ray spectrum of 2°7 Pb* obtained
in this experiment will be compared with the spectra obtained in two previous ones. The
focus will be one particular peak characteristic from 2% Pb* formed after neutron emission.
It is the result of the decay from the first exited state to the ground state through the
transition 2* — 0" emitting a y-ray of 803keV. In figures 3.9b and 3.9¢ we may see two
different y-ray energy spectra obtained in previous experiments performed by the group.
These spectra contrast with the one shown in figure 3.9a obtained in this experiment.
In this last case, the resolution makes it almost impossible to identify the same peaks
as those identified in 3.9b and 3.9c. All the spectra represented in figure 3.9 were filled
in for the same reaction and range of excitation energy. The 2 Pb(*He,* He) gamma
spectra of figure 3.9 show that the germanium detectors had a resolution that made
impossible the analysis of selected gamma transitions. To confirm this the spectrum of
the 210 Py(*He,* He') reaction is plotted in figure 3.10, where just the peak corresponding
to 511keV is barely distinguishable.

Despite the low resolution of the germanium detectors, they could be used as counters
of y-decay events. We used the low-gain output signal to detect the y-rays with energies
up to ~ 8MeV. In principle the Ge detectors can only be used up to excitation energies
under S,,, because these detectors cannot distinguish between the signal of neutrons and
gamma rays. Therefore the neutrons detected by these detectors would increase the
gamma decay probability and make untrue the results. Nonetheless, as shown in chapter
4, the results are compatible within error bars with those obtained just with the CgDg.
Thus, they have been very useful to increase the statistics of the gamma decay probability.
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(b) Spectrum from a previous experiment (2010).  (c) Spectrum from a previous experiment (2015).

Figure 3.9: Gamma energy spectra obtained with the germanium detectors during three
different experiments for the reaction 2 Pb(*He,* He)?"" Pb* and similar experimental
set-ups. The highlighted peak corresponds to the first excited state of 2°Pb at 803 keV,
which is a very prominent one, with its corresponding RMS.
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Figure 3.10: Gamma energy spectrum obtained with Ge five for reaction 2% Pu(*He,* He').
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3.2.4 Solar Cells

The same devices that are routinely used to convert the energy of sunlight into electricity,
solar cells, have been used to detect fission fragments in this experiment. They were first
proposed as fission detectors by Siegert [68] and have been used as fission detectors within
large y-detector arrays as Euroball [69]. The CENBG/CEA-DAM collaboration has many
years of experience using them for the measurement of fission probabilities [70] [43].

The thickness of solar cells varies between 300um and 500um, but their depletion
depth is less than 1um, therefore very small as compared to the total thickness. It cannot
be increased by applying a bias voltage because this increases the electronic noise, due to
their very low resistivity of a few Ohm/cm. The small depletion depth leads to a very
large capacitance of the order of 40nf/cm?. To obtain good timing performances with
such a high capacitance we use specially designed, current-mode preamplifiers [69]. The
typical time resolution that can be obtained is of few ns, which makes these detectors well
suited for coincidence measurements.

Because of the very thin depletion depth, most of the energy deposition occurs in the
neutral substrate. The charge collection in the cell is possible thanks to the "funneling"
mechanism [71] [72], where the high density of ionization produced along the fragment
track locally changes the depletion region into a funnel-like shape extending to the sub-
strate and enclosing the track. This enables the collection of a significant part of the
charge produced by the fission fragments via ionization. The funneling efficiency depends
strongly on the ionization density profile and it is very small for light particles. This brings
the response of the cells to light nuclei into the detector noise and gives a very impressive
pile-up suppression in the fission region. Therefore, solar cells are much better suited
than Si detectors to investigate fission events in the presence of a high background of
light charged particles. This is exactly the situation of our measurements, where the cells
are located near the target and are subject to a strong flux of elastic scattered projectile
nuclei. In figure 3.11 you may see a fission spectrum of 2°2C' f, where the double-humped
structure due to the different kinetic energies of the light and heavy fission fragments can
be clearly distinguished, reflecting the fairly good energy resolution of solar cells.

Another advantage is that solar cells are much more resistant to radiation damage than
Si detectors. In addition they are very cost effective and mechanically robust [73|. They
can be cut into a wide variety of shapes (e.g. strips) without exhibiting any deterioration
and are thus very well suited to build position-sensitive fission detectors within a very
compact geometry. The conducting grid on the surface, which is generally made of very
thin silver wires, reduces the sensitive area of the cells because the fission fragments are
stopped in these wires. For the cells we use the intrinsic efficiency is (95 & 2)%.

As one may see in figure 3.12, our fission detector is divided into two parts placed
upstream and downstream the target. Each detector plane, 40 mm long and 20 mm
wide, is composed of two cells. The length of the cells varies from one detector plane
to the other in order to cover different mean polar angles 6;. The downstream part has
the shape of a regular pentagonal prism, see the lower part of figure 3.12. It is placed
at 6.0 £ 0.4 mm from the target and the distance from each plane to the beam axis is
12.6 £ 0.3 mm. The latter distance was chosen to avoid very forward angles where the
amount of elastically scattered beam particles impinging on the cells is huge. Each side
of the prism is equipped with two cells whose length varies from side to side, i.e. two
sides have two cells of 19.5 4+ 0.5 mm each, two other sides two cells of 9.5 + 0.5 and
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Figure 3.11: Number of counts as a function of energy, in channels, of the 2*2Cf source
obtained with cell number 2.

29.5 + 0.5 mm, and the remaining side two cells of 29.5 £ 0.5 and 9.5 & 0.5 mm. With
this segmentation we cover polar angles 0; from 15 to 65 degrees. The upstream part
is made out of six solar cells distributed on three planes, see upper panel in figure 3.12.
The distance to the target is 19.5+ 0.2 mm. The distances to the beam axis of the upper
and lower detector planes are 28 4+ 0.2 and 19.5 + 0.2 mm, respectively. These distances
were chosen in order not to overshadow the Si telescopes. This geometry leads to an
angular coverage 0y € (110,155) degrees. Therefore, with the described segmentation it
is possible to measure the fission-fragment angular distribution at forward and backward
polar angles. The angular resolution (A6, standard deviation) depends on the size of the
cells and varies from 8 degrees for the smallest cells to 30 degrees for the largest ones.

In this experiment the solar cells were just used to count the number of fission events,
thus an energy calibration was not needed. It was however possible to distinguish the
signal of the true fission events and the signal coming from the pile-up of scattered beam
particles, so they could be removed from the analysis. This way we ensure that just the
fission fragments coming from the fission of 24 Py are counted.
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Figure 3.12: Detail of the fission detector, where the beam is represented by the black
arrow and the solar cells are indicated in blue. (Top) Part of the fission detector placed
upstream the target. This part is made out of three detector planes including six solar
cells of various sizes, the Si telescopes are also shown for completeness. (Bottom) Part
of the fission detector located downstream the target, which is composed of five detector
planes including ten solar cells. The different cell sizes can be observed in blue, as well as
their supports in light brown.
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3.3 Acquisition and Electronics

Each type of detector had an electronic chain associated to it, preamplifiers, amplifiers,
etc. The processed signal is digitalized and an integer is associated to its amplitude or
its shape, which is done in the analog-digital converter (ADC). Also the time difference
between the signals of two detectors are converted to an integer by the time-to-digital-
converter (TDC). If the acquisition system receives a trigger, the information sent to the
ADCs/TDCs is associated to an event and during a time gate of 15us all the data received
is stored.

3.3.1 Telescopes and Trigger

The telescopes permit to identify the compound nucleus formed and its excitation energy,
but also they act as the trigger for the acquisition. The detectors were polarized with
the voltages of table 3.1. As shown in fig. 3.13, the pulse generated in a Si-Li detector
when a particle impinges on it goes to the preamplifier, which has a gain of 20mV/MeV
and two outputs. One of them goes to the amplifier that transforms the shape of the
signal, ideally, into a Gaussian and increases its peak value, the ADC then stores this
value which is associated to the deposited energy in the detector. The other output signal
goes to a fast filter amplifier to reshape the signal and from there to a constant fraction
discriminator (CFD). The output of this module is a logic signal which is duplicated and
that goes to two different gate generators. One that delays the signal 300 ns and is sent
to a TDC, and the other increases the width of the signal used as trigger.

SNk Preamplifier Amplifier (*) A.D.C. 16Ch. /
Sh. Time 0.5us 0x660000

Fast filter Dual gate

amplifier, et Cranne: generator (Le
: CFD (CF 8000

(ORTEC) ( ) Croy 222)

T-stop
(+) Amp. SiLi 1: Model 7614 (delayed)
Amp. SiLi 2: ORTEC Octal Gate TD.C. 16Ch. /
Gen 4Ch ba@®

(enlarged)

To trigger
logic

Figure 3.13: Electronic chain of the SiLi detectors.

The signals from the 16 vertical strips going out from the AE detector are collected by
16-channel cables and taken into Mesytec preamplifiers specific to these detectors. From
these preamplifiers, the energy signals go through a Mesytec amplifier (MSCF-16) that
delivers two outputs. One is the amplified energy signals that go directly into the ADC
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to be stored. The other is the OR signal that passes through a fan-in-fan-out (FIFO)
module that duplicates it. One for the trigger logic and the other for the "scaler", which
is used to control the counting rates, see figure 3.14.

MSCF-16
Sh. Time 1-
8us

Signal (x16)

Preamplifier AD.C.16Ch./

ddoo

To
Trigger
logic

Scaler

Figure 3.14: Electronic chain of the AE detectors.

Finally, the idea of the trigger logic is that when a particle traverses a strip and is
stopped in the Si-Li detector this is the signal for the acquisition to record the information
coming from all other detectors during 15us. A diagram of the logic implemented is
represented in figure 3.15.

SiLi1
AND

ORAE1 Trigger (gate ADCs 15us)

— and Common Start TDCs

SiLi 2

ORAE 2 AND

Figure 3.15: Logic implemented for the trigger.
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3.3.2 Liquid Scintillators

In the case of liquid scintillators, the output signal of the built-in preamplifiers was atten-
uated 3 dB by putting a 50 € resistance to the mass before the Mesytec MPD-4 module.
From this module the energy and the pulse shape discrimination (PSD) signals went to
the ADC to be stored. The PSD amplitude is proportional to the rise time of the detector
signal and enables to distinguish signals from neutrons and ~-rays. The OR of the logic
signals was triplicated in two FIFO modules, two of the signals were used as triggers, and
one was digitalized and delayed in a gate generator. The time difference of this signal
with the telescope trigger is then recorded in the TDC.

Signal (x4) E(x4)
(anode) A.D.C. 16Ch. /
aa00

Logic Fan- Logic Fan-
In-Fan-Out [n-Fan-Out

T.D.C. / ba@®

Scaler

Figure 3.16: Electronic chain of the CgDg detectors.
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3.3.3 Germanium Detectors

As mentioned before the germanium detectors had two outputs that were previously pre-
amplified within the detector, as shown in figure 3.17. Both signals went into the same
Mesytec (MSCF-16) module, and each of them was set to a different gain, low gain (LG)
and high gain (HG). This was possible because this module can take up to 16 input signals
and allows to change the gain by groups of four channels. The OR of the logic signals
of each HG/LG went into a Logic FIFO to duplicate it, this way one OR could be used
as trigger for the calibration runs and the other one was sent to the scaler. The output
energy signals (Epg/FrLg) went to an ADC module to be recorded. Conversely, the time
difference of the fired germanium detector with the telescope that trigger the acquisition
(Tye/Tre) was recorded by a TDC module.

| AD.C.16Ch. /
aal0

MSCF-16
Sh. Time 1-

T.D.C. / ccO@

Stop
THG/TLG

Logic Fan-

In-Fan-Out Scaler

Figure 3.17: Electronic chain of the Ge detectors.
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3.3.4 Solar Cells

Each solar cell has a current preamplifier, which is inside the reaction chamber and really
near to the cells. The output signals of these preamplifiers go to a Mesytec module (MSCF-
16) that processes the signals and gives as outputs the energy, stored in the ADC, and the
time, whose time difference with the telescope coincidence that triggered the acquisition
is recorded in the TDC. The logic signal OR is duplicated in a FIFO module so that it
can be used as a trigger for a scaler module, see figure 3.18.

E (x16)

A.D.C. 16Ch. /

MSCF-16 2200

Sh. Time
0.25-2us T.D.C. / cc@®

OR Cells

Logic Fan-
In-Fan-Out

l OR Cells

Figure 3.18: Electronic chain of the solar cells.
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Chapter 4

Data Analysis

In the previous chapter a thorough description of the experiment, set-up and procedure,
performed at the Tandem accelerator of the IPN of Orsay was done. The analysis of
the obtained data was performed with series of C++ scripts including: data reduction,
calibration, event selection, geometry simulation... These scripts made use of some of the
program libraries of ROOT, a tool developed by CERN in C-++ for data analysis. As
mentioned in chapter 3, the experiment was designed to study the following reactions:
20py(tHe He'), Pu(®*He,® He') and °Pu(®*He,* He).
To explain the steps followed to obtain the final results we recall equation (1.1):

Ny(E7)
N (E*) - ex(E7)

PX(E*> =

The aim is therefore to know all the quantities on the right-hand side of the above
equation to deduce the probability:

[ Ny(E*) is the so-called "singles spectrum", i.e. the number of detected ejectiles
with the telescopes, as a function of excitation energy of the recoil nucleus. It is
determined by selecting the reaction channel with the uncalibrated data. Then the
telescopes are calibrated and one can convert the deposited energy into excitation
energy of the recoil nucleus. Finally, the contribution of the target contaminants to
this number of events is removed to keep only the desired events from the studied
Pu compound nucleus.

I N, (E*) is the "coincidence spectrum", which corresponds to the number of ejec-
tiles detected in coincidence with the observable that identifies the decay mode Y,
fission or 7. In the case of y-decay, N,(E*) has to be corrected for the number
of v-rays coming from the fission fragments. This requires to subtract the triple
coincidence (ejectile-y-fission-fragment) events N;(E*), corrected by the fission effi-
ciency. In addition, a y-energy threshold is imposed, to eliminate the y-rays emitted
by the daughter nucleus after neutron emission. The coincidence spectra are ob-
tained by setting an appropriate time window. The random coincidence spectra are
determined, normalized and subtracted from each type of coincidence NV, spectra.

IIT The detection efficiencies e, (E£*), fission and gamma, are determined. The v-ray
cascade detection efficiency is deduced from the data with the EXEM method [1],
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and the fission event detection efficiency is simulated with a detailed knowledge of
the geometry and includes anisotropy corrections.

IV Finally, an estimation of all the sources of uncertainty of this probability was done
with the error propagation formula.

4.1 Data Reduction

Before starting all the steps above mentioned the data have to be preprocessed. In fact
the data recorded by the acquisition are first converted into "trees", a data structure that
greatly simplifies the analysis with ROOT’s built-in functions and classes. During this
process of data conversion, a lower limit of 200 channels and an upper one of 4000, were
imposed to every variable to eliminate most of the undesirable events.

There was an unexpected drift of the energy amplitude measured by the Si— Li detec-
tors over time, see figure 4.1a. Although this is a common phenomenon, the magnitude of
the drift was important and a possible explanation is the influence of the room tempera-
ture, that changed a lot between day and night, on the gain of the used preamplifiers or
amplifiers. All the events of the measurements with the 2°® Pb target were re-adjusted to
a reference, and all the 2*° Py, ones to those that were closer in time to the reactions with
Pb. This was done to minimize the time lapse, and therefore the energy drift, between
the runs of lead which were used to calibrate, and plutonium. All the bi-dimensional
spectra that appear in this document, obtained with the telescopes, are plotted with this
correction taken into account.

A further reduction of the data was done by eliminating all the events in which more
than one of the telescopes was fired, i.e. they were above a threshold of energy 420
channels for the AFE detector and 500 channels for the E detector. The purpose of this
second reduction is to ensure that the decaying compound nucleus is uniquely identified
and to remove part of the events coming from the electronic noise. The thresholds were
chosen in such a way that the proportion of true events removed was minimized.

The spectra represented in figure 4.2 were cleansed using this routine to remove events
in which more than one strip was fired. However, in the figure there are still events, out
of the contours. The events in the region of the lower left-hand corner of figure 4.2a,
come from the reaction channels in which a hydrogen isotope p, d, t is emitted, forming
a compound nucleus of Am, which were not studied because the AFE detector of the
telescope was too thin to detect them properly. The signal from these events might pile-
up giving events with a different energy as it can be better seen in figure 4.2b. These
pile-up events cannot be removed with the cleaning routine described above. Still they
are well separated from the events of interest, which are within the contours of figure 4.2.
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(b) Spectrum with a correction applied to each group of entries to adjust
the gain of the detector to the group of events closer in time to the lead
runs.

Figure 4.1: Energy response of the SiLi detector number 2 in channels as a function of

the event number of the 2°Pu(*He,* He') reaction.

4.2 Reaction Channels Selection

To select the relevant events corresponding to each reaction to be studied, graphical cuts
as the ones in figure 4.2 were done for each possible combination of target and beam. The
reason why the events are selected with contours in the bi-dimensional spectra AE — F,
or identification plot, is that when a charged particle trespasses these detectors, there is
a correlation between the energy deposited in each one of them. This correlation depends
on the mass, the charge and the kinetic energy of the particle, and it leaves a trace with

a characteristic hyperbolic shape similar to that of a "banana".
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Figure 4.2: Energy loss in the AE versus the energy deposited in the E detector obtained
with the telescope number 1 and strip number 4, 0.; = 124.8°, plots of the reactions with
the plutonium target. The solid lines are the contours to select the events of interest.

Notice that in figure 4.2a a small proportion of the events of the 2/ Pu(*He,* He') are
shifted towards higher AFE energies. This effect appeared also in the reactions with the
lead target. To identify the origin of these events we selected them with a contour to

study them, see figure 4.3.
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Figure 4.3: Bi-dimensional spectrum obtained with telescope number 1 for * He +2% Pb at
Oscar = 154.8°. The trace within the lower contour (black) was left by the alpha particles
scattered after the 28 Pb(*He,* He')?%® Pb* reaction. The events within the upper contour
(red) are part of a noise of undetermined origin.
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The events contained in the contours of figure 4.3 are represented in figure 4.4, in red
the events within the upper contour and in blue the ones within the lower one. They are
represented as a function of the energy deposited in the detectors, after the calibration
was done, to see if some additional information could be obtained with the calibrated
data.
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(a) Number of counts as a function of the energy deposited in the E-detector for
the reaction 28 Pb(*He,* He').
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(b) Number of counts as a function of the energy deposited in the E-detector plus
the energy deposited in the AE-detector for the reaction 208 Pb(*He,* He').

Figure 4.4: Number of counts as a function of the energy deposited in telescope 1. The
blue spectra represent the events within the black contours of figure 4.3, the red spectra
the events within the red contours of figure 4.3

As it can be deduced by comparing 4.4a and 4.4b, the energy deposited in the SiLi
detector is the same for the events contained in either contour. In contrast, when rep-
resenting the number of events as a function of £ + AF, the red spectrum is shifted
approximately 2MeV to higher energies. This excludes the possibility of a dead layer in

23



the detector since in that case both E and AFE should change. The explanation to this
phenomenon is uncertain, and the only hypothesis is that every now and then the energy
was wrongly coded by the AE-detector. In any case they just represent around 4% of the
statistics and they were easily removed from the analysis with the graphical cuts.

4.3 Energy Calibration

Doing a proper energy calibration of all the detectors is of utmost importance for this
kind of experiment. From it depend all the results that will be obtained and therefore
the conclusions that may be deduced from them.

4.3.1 Telescopes: AE - Eg;;; Detectors

The reactions on a target of 2° Pb are frequently used to calibrate the telescopes. This
lead isotope is a good reference because its first excited states, and those of 2°7 Pb, have
well defined energies and are separated by wide energy gaps. There are two other reasons
to use lead, one is that a wide range of energies may be covered, in both the AE and
the Eg;r; detectors, but also that these energies are very similar to those of the true
measurement if the beam energy is appropriately chosen. The reactions used and the
corresponding states are listed in table 4.1.

Reaction State (kel)
Reaction State (kel) 1 60?;;) 4
0.0 208 pPp(3He,*He)* Pb* '
96145 2339.9
28 pp(*He,*He' )28 Pb* ) 3476.4
3197.7
3708.5 0.0
' 28 Ph(3He, 3 He')?® Pb* 2614.5
(a) Excitation energies of the first states of 3197.7
208 Pp used as a reference to calibrate the tele-
scopes with the *He beam. (b) Excitation energies of the first states of

207 Pb and 2%8 Pp used as a reference to calibrate
the telescopes with the 3He beam.

Table 4.1: Reactions and states used for the calibration of the telescopes.

The calibration of the telescopes was done separately for each of the two beams, 3He
and *He. This was so because the gain of the amplifiers associated to these detectors were
changed from one type of beam to the other. In table 4.1 we may see the energy of the
states that were used for each beam, sub-table 4.1a for *He and sub-table 4.1b for > He.
The third excited state of 2 Pb*, E = 3708.5keV, formed with the 2 Pb(3 He, 3 He')?%® Pb*
reaction, was not used because the energy resolution prevented from correctly separating
it from other states. For the same reason we did not use the first two excited states of
207 Py*, which have energies of 569.7keV and 897.7keV, respectively.

Once the correction of the energy drift of the SiLi detectors above mentioned is taken
into account, the first step to do the calibration is to obtain the identification plots of the
lead target in channels, as coded by the acquisition system, see figure 4.5.
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Figure 4.5: Example of identification plot obtained with the telescopes for 2*Pb + 3He
at O ~ 154.8°. The upper trace was left by alpha particles scattered after the
28Py(3He,*He)?" Pb* reaction, while the lower one corresponds to the scattered ®He'
from the 2 Pb(®He,3He')*® Pb* reaction. The seven contours in black were used to se-
lect the events of the seven states (sub-table 4.1b) used for the calibration of the reactions
with the 3He beam.

The peaks used for the calibration were selected with contours as shown in figure
4.5. Apart from selecting these events, a calculation of their corresponding energy was
done, taking into account the kinematics of the scattered particle and the energy losses
in the detectors and the aluminum foils that protected them, see equations (3.7) and
(3.8). These calculations were done using Kaliveda |25, within our simulation scripts.
The coefficients obtained with the calibration lines for all the strips, see figure 4.6, are
given in appendix B.

These same coefficients are then used to obtain the ejectiles’ energy in the reactions
with the 2%°Py. To transform the energy deposited by the scattered particles on these
detectors into excitation energy of the recoil nucleus, we recall formula (3.9):

. MyQ — Eca(Ma — My) — Ecb(MY + Mb) + 2cos0 MaMbEcaEcb
= ]V{Y

E*

It is then possible to represent the number of detected ejectiles as a function of excita-
tion energy, see figures 4.7 and 4.8, which will often be referred to as the singles spectrum,
single events or simply singles. The peaks used for the calibration, and the corresponding
J™ of each state, are marked in these figures. It is worth mentioning that three of the
peaks in the 207 Pb spectrum, figure 4.8b, were not included in the calibration. The two
at low excitation energies, 570 and 898 keV, and the peak created by the pile-up of the
elastic scattering of the 3He beam. The excitation energy resolution obtained with our
set-up corresponds to a root-mean-squared deviation (RMS) of the peaks associated to
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Figure 4.6: Calibration lines of the >He beam with their parameters for strip no. 13,
telescope no. 2.

the first states of the Pb isotopes and varies from 100keV for the *He beam, to 120keV
for the >He beam.
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Figure 4.7: Number of detected alpha particles as a function of the excitation energy of
the recoil nucleus 2% Pb* formed with the reaction 2P Pb(*He,*He') (singles spectrum)
obtained with all the strips of telescope number 1.
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Figure 4.8: The same as figure 4.7 but for a beam of > He impinging on the 2% Pb target.
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4.3.2 Liquid Scintillators

The calibration of the liquid scintillators is crucial up to gamma energies of ~ 2MeV
because the gamma-emission decay of the 239 Pu* and 249 Pu* will be studied up to an
excitation energy of E* = S,, +1.5MeV ~ 8MeV. Above the neutron binding energy the
recoil nucleus has enough energy to emit a neutron and form a nucleus of N — 1 neutrons
which would be formed at a certain excitation level, and thus emit ~-rays to decay into
its ground state. Therefore, one needs to be sure that y-rays coming from the nucleus
formed after neutron emission are removed from the analysis. This is done by setting
thresholds in y-energy to not include these events at £* > S, thus the importance to
correctly calibrate these detectors. To clearly define the position of the Compton edge
(chapter 3), the use of mono-energetic gamma-sources, or with two peaks with clearly
separated energies, is necessary (table 4.2).

Source | y-Energy (keV') | Compton edge energy (kel’)
*Na 011 340.7
B7Cs 661 476.7
*Na 1274 1061.2
2327, 2608 2375.3

Table 4.2: Gamma sources used for the calibration of the scintillators, the energies of
their characteristic y-rays, and the energy of the Compton edge associated to these.

The criterion to choose the position of the Compton edge was to pick the position
of the bin at 80% of the maximum. The reasons to proceed this way are thoroughly
described in the thesis of G. Boutoux [8]. The main idea is that this percentage takes into
account the resolution of the scintillators and thus gives better calibration parameters
(appendix B).
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Figure 4.9: Spectrum of the 22 Na source obtained with the CgDg detector number one.
The arrows indicate the position and energy of the two Compton edges that can be
resolved with this source.
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Figure 4.9 represents the response function from one of the scintillators to a *Na
source. The arrows indicate the position and energy of the two Compton edges obtained
with this source that were used for the calibration of the liquid scintillators.

4.3.3 Germanium Detectors

An 2 Fu source was used to calibrate these detectors as it gives several well defined peaks
covering an energy from about 100 keV to 1.4 MeV, thus within the energy range in which
the y-energy thresholds are placed. As explained in chapter 3 each germanium had two
outputs, one of the signals was multiplied by a big amplification constant (high-gain),
figure 4.10a, while the other one was amplified by a smaller constant (low-gain), figure
4.10b. When comparing these two figures it is evident that the energy scales are not the
same, but the energy thresholds where set in both cases to 200 channels during the data
reduction step. This is the reason why the two low energy peaks in figure 4.10a are cut
in 4.10b. Therefore, different peaks were used for the calibration of each output. The
calibration coefficients are given in appendix B.
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(a) Spectrum of the 52Fu source obtained with (b) Spectrum of the 52Fu source obtained with

the germanium (High-Gain) detector no. 2. the germanium (Low-Gain) detector no. 2.

Figure 4.10: Europium spectra obtained with Ge number 2

The energy resolution of the Ge detectors obtained with the spectra depicted in figure
4.10, are around 5 keV for the high-gain and 10 keV for the low gain. These were the
approximate resolutions during the Europium runs, which lasted a few minutes. During
longer runs, like the plutonium ones, the resolution was even worse due to the energy drift,
around 30 keV. This forbade from using the Ge detectors to study selected transitions, as
mentioned in chapter 3.

4.4 Singles Spectra

In the case of the PuO, target, the scattered particles after the reaction with a nucleus
of 240 Py, true events, have to be distinguished from the ones scattered after the reaction
with the target contaminants. These true events Ng(E*) will be from now on referred to
as singles. The spectrum drawn in figure 4.11 represents the number of alpha particles
detected with the telescopes as a function of the E* of 2% Pu*, equation (3.9). The events
were selected with identification plots done for each strip, as described in section 4.2.
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Figure 4.11: Number of alpha particles as a function of the excitation energy of 240 Pu*,
from the reaction ?*°Pu(*He,*He') and scattering angle 0., ~ 154.8°.

In figure 4.11 three peaks can be clearly distinguished. The one centered at
E* = OMeV mainly corresponds to the elastic scattering of the o particles from the
200py(*He,*He) reaction, but also to the first excited states of 24°Py*. The one in the
middle E* ~ 8 MeV corresponds to the ground states of the contaminants present in the
target, which are supposed to mainly be ™S, mtC[ nat[{ and "**Cq. The third peak
E* =~ 11MeV corresponds to the first excited states of these contaminants and some
other lighter elements. Had it not been for these contaminants, the number of detected
1He' would have directly represented Ng(E*).

4.4.1 Contaminants Fitting
20py(*He,*He')

To remove the contaminant peaks, different functions between the non-contaminated zones
of the spectra were tried. These contaminant-free regions could be determined by compar-
ing the spectra of the target and the spectra of the carbon backing. Figure 4.12 illustrates
several aspects of the contaminants present in the C backing:

i The peaks are approximately placed at the same energies when the alpha particles
scattered by the target backing are represented as a function of the "E* of 240Pu*".

ii The position of the peaks in relation to the rest of the spectrum depends on the
scattering angle. The reason is the smaller mass of the contaminant nuclei as com-
pared to that of 20 Pu*, this makes them more sensitive to the angle of the scattered
particles for kinematic considerations.
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iii There is an energy region, between the peak of the ground state of Ca/K and the
excited states / lighter contaminants peak, in which the number of counts due to
sulfur and chlorine amount to ~ 5% of the elastic peak’s maximum.
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Figure 4.12: Blue spectra: number of alpha particles as a function of the excitation energy
of 20 Py*, from the reaction *°Pu(*He,*He'). Red spectra: alpha particles of events as
a function of the excitation energy of 24° Pu* from the reactions with the carbon backing.

Having done the comparison of the spectra obtained with the plutonium target and
the carbon backing, the next step is to remove the contaminants from the plutonium
spectra. The first attempt was to subtract the renormalized carbon backing spectra to
the plutonium ones. Although for some of the angles this subtraction was satisfactory,
for others it did not work. This was expected because, even if the process to obtain
the carbon backing foils was the same in both cases, with or without PuOy deposition,
nothing guarantees that the proportion of contaminants is the same in both carbon layers.
On top of that, the layer of PuO; modifies the shape of the contaminant peaks.

For these reasons, the contaminants were removed using linear functions, done strip
by strip, based on two assumptions. First, that the shape of the singles spectrum in the
energy region of the contaminants is linear, similarly to the region of lower excitation
energies, which is free from contaminants. Second, that the region between the calcium
peak and the peak of the excited states is almost free from contaminants, except for some
counts coming from Cl and S. Therefore, the probabilities given will go up to E*(*¥°Pu) <
8 MeV, because for the smallest angles, where the contaminant peaks start at lower
energies, the valley between the big contaminant peaks is at 8 MeV. The procedure to
do a linear interpolation between the low energy region before the contaminants and the
valley, fig. 4.12a, was the following:

i The proportion between the number of counts within the Ca/K peak and the valley,
S/Cl, was calculated to be between 5-10%, figure 4.12.

ii Two points were chosen to define the interpolation, "fit start" and "fit stop" in
figure 4.13
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iii. The number of events in the valley after the subtraction of the background, gives the
point through which the linear interpolation should pass, black spectrum in figure
4.13.
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Figure 4.13: Number of events as a function of the excitation energy of 2° Pu*, around the
first contaminant peak, from the reaction ?** Pu(*He,*He') and scattering angle 0,.,; ~
154.8°. The blue spectrum represents the detected events, the red spectrum is a linear fit
between the two signaled points, the black spectrum is a linear fit between the starting
point and the stopping point passing through the 50% of the counts in that energy bin.

Figure 4.13 illustrates the difference between the measured spectrum (blue), a linear
(red) fit supposing that there are no contaminants between the two contaminant peaks in
figure 4.12, and a linear function (black) taking into account the proportion of events in
the valley including the resolution. For this angle, the fit passed through the 50% of the
number of counts in the bin at E*(**°Pu) = 9.4MeV.

This proportion of peak to valley events was calculated for each strip. It was slightly
re-adjusted to take into account the worsening of the resolution due to the PuQO, layer.
For this reason, an effective coefficient was used to obtain the interpolations, which varied
between 0.6 to 0.9 depending on the strip. The upper energy limit of the measured
singles spectra (~ 13 MeV) is defined by the detection limit of the telescopes, as a higher
excitation energy means a lower ejectile’s energy, and at some point scattered particles
cannot trespass the AFE detector and the event is not recorded.

240Pu(3He, 3H6/)

In the case of the ?*° Pu(®He, 3 He') reaction, the contaminants could not be removed. The
reason is that the scattered particles are nuclei of 3He instead of *He, which are lighter.
Thus, the 3He particles lose in proportion less kinetic energy after colliding with a light
nucleus than with a heavy one, than in the case of * He. Therefore the contaminant peaks
are shifted to lower excitation energies and are more spread out after interacting with the
different isotopes of "®Ca, " K, "*Cl and "*S.
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The differences between the spectra obtained with the *He and the *He beams are
clear when comparing figures 4.14a and 4.14b. In these figures the spectra are represented
using all the strips because in the case of the >He beam, the statistics was not enough to
represent individual strips. The reasons of this poor statistics are firstly, that the intensity
of the 3He beam was lower than the one oh the * He beam, and secondly that the Tandem
accelerator broke down two days before the end of the beam-time. All in all, the reactions
for the case of the (*He,3He') reaction lead to a widespread background which could not
be removed. For this reason the data of the 24° Pu(3He, 3 He') reaction were not exploited.
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(a) Spectra obtained with the *He beam. (b) Spectra obtained with the *He beam.

Figure 4.14: In blue, number of scattered beam particles after the interaction with the
240 Py target. In red, number of scattered beam particles after the interaction with carbon
backing, both as a function of the excitation energy of 2*°Pu. The represented spectra
were obtained adding the statistics from all the strips of telescope no. 2.

20pPu(®*He,*He)

In this last case, the contaminants are not an issue up to an excitation energy of 14MeV,
as seen in figure 4.15.

However, when looking into figure 4.15, there is a peak around 13MeV excita-
tion energy, that is not in the contaminant spectrum. Indeed it is not produced by
the contaminants, but rather by some of the events of the elastic scattering peak of
the 2°Pu(3He,3He) reaction that pile-up. These events fall into the *He contour
as seen in figure 4.2b and therefore the data for this reaction will be given up to
E*(39Pu) = 10.5MeV, where this peak starts. We did not do an interpolation of the
singles spectra as in the case of the *He beam because the error associated to it would
be too high and make the results meaningless.
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Figure 4.15: In blue, number of scattered beam particles after the interaction with the
240 Py target. The peak in the spectrum is caused by the pile-up of the inelastic scat-
tering of the 3He, some of these events fall within the contour of the *He trace in the
identification plots, see figure 4.2b. In red, number of scattered beam particles after the
interaction with the carbon backing, both as a function of excitation energy, with all the
statistics of telescope number 2.

4.5 Coincidence Spectra

In this section we will distinguish between three different types of coincidence spectra,
gamma coincidences, fission coincidences and triple coincidences, and explain how they
were obtained.

4.5.1 Fission Coincidences

To study the fission probability of 23 Pu* and 24 Pu* it is necessary to obtain histograms of
the number of events detected with the telescopes, in coincidence with an event detected
with the solar cells. These events are only considered once, when one of the cells is
touched, and not twice, as at least two fragments are emitted during a fission event.

The first step to do this is to represent the time difference between the cells and the
telescopes (figure 4.16). With it, we can determine the time limits between which the
fission coincidences fall in, vertical black lines in fig. 4.16. In addition to these time
windows, an energy threshold was imposed on certain cells at forward angles to remove
from the analysis the signals produced by the scattered beam. The blue vertical lines
represent the limits to fill the random coincidence histograms that will then be subtracted
from the coincidence spectra. These histograms are first re-normalized multiplying their
integral by the ratio (T — Teom) /(TEhed- — TH%), where:

o Tyt is the lower limit of the coincidence time window.

o T is the upper limit of the coincidence time window.
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° ﬂﬂ“)ﬁ’d' is the lower limit of the random coincidence time interval.

o T7Fd- is the upper limit of the random coincidence time interval.
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Figure 4.16: Number of counts as a function of the time difference between telescope 1
and cell 15. The black vertical lines delimit the coincidence window and the blue ones
the random coincidence ones.

In the case of fission the coincidence windows range between 30 — 65ns depending on
each cell, and the time window of the random coincidences spans 600ns. Once the renor-
malization of the background histograms is done, the renormalized random-coincidences
histograms are subtracted from the coincidence ones. The resulting histograms have the
true number of coincidence events.

In figure 4.17 we may see the scattered particle spectrum, the raw fission coincidence
spectrum, the random coincidence spectrum of the cells and the coincidence spectrum af-
ter the random coincidences subtraction. It is worth noting that the background spectrum
has the same shape as the singles spectrum, this is logical as the random events are de-
correlated in time with the true events, thus they are merely proportional to the singles.
When subtracting the fission random coincidence spectra to the fission coincidences spec-
tra, the peak at E* = 0 MeV, corresponding to the random coincidence elastic scattering
of alpha particles, is almost completely suppressed. This indicates that the subtraction
was correctly done. From figure 4.17 it is also important to realize that even after sub-
tracting the random coincidences, the fission coincidence spectrum (black solid line) has
counts under 4.5M eV, which is the theoretical fission energy threshold. This is something
which was just observed for the ?*°Pu(*He,*He') reaction. Under E*(**°Pu) < 4.5MeV
the probability for the compound nucleus to decay by fissioning should be much smaller
than what was measured.
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Figure 4.17: Number of events as a function of the excitation energy of 24°Pu*, for the
reaction 2° Pu(*He, *He') and a scattering angle 6,..; &~ 126.3°. The dotted line represents
the singles spectrum without the subtraction of the contaminant peaks, the blue line the
fission coincidences, the red line the normalized random coincidences and the black solid
line the fission coincidences after the subtraction of the random coincidences spectrum.

Fission Coincidence Events below the Fission Threshold

The only hypothesis we had to explain this phenomenon, is that these events are part of
a background induced by the ternary fission of 2**C'm. This nucleus can be formed by
the fusion of an alpha particle of the beam with a nucleus of 24° Pu of the target, which
has a cross section ~ 850 mb. If this happens, the 2**C'm* is very likely to undergo fission
because it is formed with an excitation energy of 24MeV. In approximately 1 in 300
fission events, the curium nucleus will undergo a ternary fission in which an alpha particle
is formed |74]. This alpha particle may then be detected by our telescopes and thus cause
the sub-threshold events in our fission coincidence spectra.

As measured by Wagemans et al. [74], at excitation energies S, (***C'm*) ~ 6.8 MeV,
approximately every one in 316 fissions emits an alpha particle with a kinetic energy that
follows a Gaussian distribution centered at 16.14 + 0.06MeV and o = 4.39 £ 0.05M eV .
However at E*(*'C'm) = 0 MeV these parameters of the Gaussian distribution become
15.994+0.08MeV and 0 = 4.244+0.11MeV, respectively. Thus, the average energy of the
alpha particles gently increases with excitation energy. Doing a linear extrapolation to
E* = 24MeV results in an average kinetic energy of 16.52 + 0.10M eV, which converted
into excitation energy of 2**Pu*, is equivalent to E* € (11.3,11.8)MeV depending on
the polar angle. Similarly the standard deviation can be extrapolated to E* = 24MeV
resulting in 0 = 4.77 = 0.21MeV. This value was further increased to o = 5.1MeV to
account for the energy resolution of the telescopes and the losses in the target.
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Figure 4.18 illustrates the effect of the subtraction of the presumed ternary fission
spectrum on the fission coincidence spectra. When comparing the spectra in figures
4.18a and 4.18b, one may see that the counts between 0 and 4MeV excitation energy
were eliminated after the subtraction of the supposed Gaussian ternary background. It
is worth noting that in figure 4.18a at E* ~ 12 MeV the supposed ternary background
becomes higher than the actual fission coincidences. The reason is that at some point
alpha particles have not got enough energy to trespass the detectors, but this was not taken
into account when doing the subtraction because, as said before, we will only consider
the results with E* < 8 MeV. The background Gaussian distribution was obtained with
slightly modified parameters, as described above, to those of [74], and then renormalized
to fit the observed spectrum at low excitation energy.
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telescope no. 1 (red) and a Gaussian distribu- telescope no. 1 after the subtraction of the as-
tion that represents the ternary fission background sumed ternary fission background.
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Figure 4.18: Fission coincidence spectrum before (left) and after (right) ternary fission
background subtraction.

In addition to subtracting this background to the fission coincidences, it should also
be subtracted from the singles spectra as these are not true events. To subtract them, the
ternary background events were rescaled dividing them by the fission detection efficiency,
for each excitation energy bin. In principle the detection efficiency of the ternary fissions
could be different from the one of the normal fission events, because in the first case
the ternary alpha particle is emitted in a direction forming approximately 92° with the
fission fragments. This value can slightly fluctuate depending on the masses of the fission
fragments and the energies of these and the alpha particle. This angular correlation implies
that only some specific combinations of strip-solar-cell can be fired simultaneously, thus
affecting the detection efficiency of these events. However, when simulated, the fission
detection efficiency of a normal fission event and a ternary fission are similar.

As this hypothesis to explain the fission coincidence events under the fission threshold
cannot be confirmed with certainty, the final results for the fission probabilities will be
presented with the ternary fission background subtraction and without it in section 4.9.
In the case of the 22 Pu(*He,*He) this hypothetical background is not a problem because
the Qreqae. = 14 MeV.
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4.5.2 Gamma Coincidences

As mentioned before, the y-decay probability P, measures the probability that the nucleus
Y™ decays exclusively through a v-ray cascade. Above the neutron separation energy,
this probability rapidly decreases with excitation energy E* because of the competition
with the neutron emission channel. Therefore the P, is typically measured up to £* ~
S, + 1MeV. The used gamma detector array has a small solid angle and generally only
one of the y-rays of the cascade is detected. In a small proportion of the cases more
than one ~-ray of the same cascade is detected, a random v-ray is selected among all the
events to fill the coincidence and ~-ray spectra. This way the number of coincidences
corresponds to the number of detected ~-ray cascades.

The procedure to obtain the y-decay coincidences has similitudes and differences to the
one used for fission. In this case, not only gamma-coincidence and random coincidences
histograms have to be obtained, but also, in the case of CsDg detectors, an additional
condition has to be set to ensure that the signal was generated by a v-ray and not a
neutron. A gamma decay event is therefore associated to a detected y-ray coming from
the compound nucleus formed in studied the reaction and will only be counted once.
Finally, to subtract the y-rays emitted after neutron emission, a threshold is imposed on
the detected v energy E,.

Liquid Scintillators

The first step to obtain the ~-coincidences is to remove the signals coming from the
interaction of neutrons with the liquid scintillators. This can be done by virtue of the pulse
shape discrimination (P.S.D.) technique, using a module that can differentiate between the
shapes of the signals generated by gamma rays and neutrons, each signal has a different
rise time. This module assigns a discrete value to the detected signal in the detector that
depends on the fall time of the signal. By representing this value (PSD on the following) as
a function of E., a separation between the detected neutron events and the gamma events
can be done. In figure 4.19, two distinct regions may be observed. The events within the
black contour are the gamma events, and the ones above them are the neutrons.

Once the v-rays have been selected as shown in figure 4.19, the next step is to fill the
excitation energy spectrum with the events that are within the coincidence window in the
spectra of the time difference between a telescope and a C6D6 detector.

Represented in figure 4.20 there is the number of detected v-rays in scintillator number
1 as a function of the time difference with telescope 1. The black vertical lines represent
the time limits that were chosen for this Cs Dg to consider a coincidence, =~ 20ns. The blue
vertical lines represent the limits to fill the random coincidence histograms. An analogous
procedure to that of subsection 4.5.1 was followed to remove the random coincidences
from the raw gamma-telescope coincidence spectra.

Gamma-ray Energy Thresholds

For an excitation energy E* of nucleus (Z, N), the y-rays emitted after neutron emission,
i.e. the ones emitted by the nucleus (Z, N — 1), have a maximum energy E* — S,.
Therefore, to remove these y-rays, we fill the v-coincidence spectrum imposing that E, is
above an energy threshold Ey, such that E, > Fy, = E* — 5, MeV.
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Figure 4.19: Value given by the PSD module vs E, from CsDg no. 1, and the contour to
select gamma events.
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Figure 4.20: Number of counts as a function of the time difference between telescope
number 1 and scintillator number 1 in channels. The black vertical lines delimit the
coincidence window and the blue ones the random coincidence ones.

As seen in table 4.3, the values change from one compound nucleus to the other. This
is because the limits were chosen to have access to excitation energies £* = S, + E};, that
were multiples of 200keV, as that is bin energy width for the gamma-decay probability.
In addition, by changing the threshold for each energy bin more statistics is included as
less gamma rays are discarded.

For each threshold we will evaluate the 7-cascade detection efficiency (see section
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Reaction Threshold Energies kel
20py(tHe,* He') | 266 | 466 | 666 | 866 | 1066 | 1266 | 1466
0py(3He,* He) | 254 | 554 | 854 | 1354 | 1854 | 2354 | 2854

Table 4.3: Thresholds in gamma energy for the studied plutonium reactions.

4.6.2). The 7 decay probability will be evaluated for each E* energy bin by determining
the ratio of the coincidences obtained with the corresponding threshold over the singles
events and correcting for the associated efficiency.

Ge Detectors

As said before, even though the gain changed over time and the resolution of 20 keV of
the best Ge detector in figure 3.10 made impossible to do a spectroscopic analysis of the
Plutonium, this resolution was enough to use the germaniums as ~-ray counters. The
thresholds in table 4.3 can also be applied to the analysis including germanium detectors
to eliminate gammas after neutron emission.

In principle, the germanium detectors can only be used to obtain the gamma decay
probabilities up to the neutron separation energy of the studied nuclei because the neu-
trons emitted can be captured by the Ge material leading to the emission of y-rays that
generate a signal. Unfortunately the PSD technique cannot be used with Ge detectors.
In addition, the time resolution of these detectors and their distance to the target is too
short to separate neutrons from gamma rays using a time of flight technique. Note that
during a fission event of a 24° Py nucleus, the average neutron multiplicity, for the energies
relevant in this work, is 7 & 2.8 per fission [75]. However, the neutrons emitted during the
fission process are removed from the analysis when subtracting the triple coincidences, as
explained in subsection 4.5.3.

When comparing the results of the y-decay probability obtained with the liquid scin-
tillators and the Ge detectors, there is no significant difference between both probabilities
(section 4.9). This implies that neutron captures within the detectors’ crystals are neg-
ligible within error bars. Therefore, we used the Germanium detectors in combination
with the CgDg to calculate the decay probabilities.

Figure 4.21 illustrates the measured gamma coincidence spectrum (blue) obtained
with the statistics of all the strips of both telescopes and all the gamma detectors (CgDg
and Ge) with Efyh = 266 keV. In the same figure one may see the random coincidence
gamma spectrum (red), and the black spectrum is the blue one after the subtraction of
the random coincidences, which follows the shape of the singles spectrum. A careful look
to the black spectrum reveals that the number of coincidences at £* = 0 MeV is close to
zero, although some counts remain due to the resolution of the telescopes. This indicates
that the subtraction of the random coincidences is correctly done. As the energy increases
the number of coincidences does so due to the higher multiplicity of the y-decay cascades.
At E* ~ 6 MeV, before S,,, the number of counts starts decreasing due to the competition
with fission, in spite of the fission-fragment ~-rays. The number of coincidences continues
to decrease, speeding up for £* > S, until £* &~ 9 MeV. Indeed at this point the first
excited states of the contaminants appear, see figure 4.12.
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Figure 4.21: Events of the ?*°Pu(*He,*He') reaction detected with telescope no. 1,
including the statistics of all the strips, in coincidence with a cell and one of the gamma
detectors, a scintillator or a germanium (blue spectrum). In red, the random coincidence
spectrum. In black the gamma-coincidence spectrum after subtracting from it the random
coincidences.

4.5.3 Triple Coincidences

A coincidence between a telescope, a gamma detector, and a fission detector will be called
a triple coincidence. These events are representative of the gamma-rays emitted by fission
fragments. To obtain the y-rays emitted by the studied compound nucleus, it is necessary
to subtract these events, re-normalized by the fission detection efficiency, eq. (4.1)

c c NT;

*\ __ ,tot * v,
N7 (E") = N,Y (E*) — ? (4.1)
where:

° N$ is the final number of coincidences needed to evaluate the v-emission probability
according to equation (1.1).

° N,YC’tOt is the total number of measured ~-scattered particle coincidences after the
application of the energy threshold Ey,.

. NS s 1s the number of the triple fission-fragment-v-scattered particle coincidences.
e ¢ is the fission detection efficiency.

° Nf /€ is the number of detected -rays emitted by the fission fragments.

More details on this correction can be found in [3], [10], [24]. Determining the triple
coincidence spectrum Ngf implies having sufficiently high detection efficiencies for all
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detectors, which is challenging and requires a very compact geometry. At the same time
it is necessary to determine the fission detection efficiency with a good precision, in turn
rather complicated due to the compactness of the detector.

The triple coincidence spectra are obtained by filling the histograms with the detected
scattered particles in coincidence with the solar cells and the gamma detectors, see figures
4.16 and 4.20, respectively. The triple coincidence spectra have the same shape as the
fission coincidence ones, figure 4.22.
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Figure 4.22: Events of the 2Pu(*He,*He') reaction detected with telescope no. 1, in-
cluding the statistics of all the strips, in coincidence with a cell and one of the gamma
detectors, a scintillator or a germanium. The triple random coincidences have been sub-
tracted from the plotted spectrum as described below.

As with the other two types of coincidence spectra, random coincidences have to be
subtracted from the triple coincidences. To better understand how to do the subtraction
of the random coincidences, we will look into details of a spectrum representing the time
difference between a telescope and a cell versus the time difference between the same
telescope and a CgDg detector (figure 4.23).

Very valuable information is obtained from figure 4.23. The red spot represents the
true triple coincidences. Nevertheless, this peak includes also a background of random
coincidences that we must evaluate. The rest of the events of fig. 4.23 correspond to four
different kinds of random coincidences:

i A true gamma event in coincidence with a telescope and a random coincidence in
the cells (vertical line in figure 4.23 marked with a black rectangle), or o — 7.

ii A true fission event in coincidence with a telescope and a random coincidence in the
gamma detectors (horizontal line in figure 4.23 marked with a green rectangle), or

a—f.
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Figure 4.23: Time difference between telescope one and a cell versus the time difference
between the same telescope and a CgDg detector. The rectangles delimit the different
kinds of random triple coincidences.

iii A fission and gamma event correlated in time, but uncorrelated with the particle that
triggered the telescope (diagonal line in figure 4.23 marked with a red rectangle), or
~v — f. Indeed, defining Ty = Tiej — Teey (1) and Ty = Ty + Tieine (2). From (2) we
have: Tiey = Ty + Tseiny and inserting this into (1) one gets: Ty = To + Tiscine — Teeur-
When the gamma detector and the cell are correlated, but uncorrelated with the
telescope, Tyeint — Teey = constant but T7 and Ty can take any value.

A random coincidence in both, the fission and gamma detectors (scattered dots in
figure 4.23), or a—~— f. The contribution of these events to the random coincidences
was neglected as they are very rare.

v

Figure 4.24 represents the number of alpha particles as a function of the E* of 249 Py
for the events within the rectangles that appear in figure 4.20. The red spectrum has the
shape of the y-coincidence spectrum because it is obtained with events in the coincidence
window of a gamma detector and in the random-coincidence time window of a solar cell
(a — 7). Conversely, the black spectrum resembles to the fission coincidence spectrum
(a — f). Finally, the blue spectrum has the same shape as the singles spectrum, as
it corresponds to an event within the coincidence time windows of the cells and ~-ray
detectors but uncorrelated with the trigger (v — f).

From the comparison of figures 4.22 and 4.24, the number of counts of the ran-
dom coincidence spectra is really small taking into account that it comprises all the
statistics, but they were however subtracted from the triple coincidences spectra. To
take into account every possible combination of detectors-thresholds-random-coincidence:
2telescopes-14strips-16cells-(4Cs Dg+5Ge)-TEy, = 28224 random-coincidence histograms
were subtracted from the triple coincidence spectra.
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the 2°°Pu(*He,*He') for three types of random coincidences: red a —+, black o — f, blue
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4.6 Detection Efficiency

Correctly calculating the fission detection efficiency and the ~y-cascade detection efficiency
is key to obtain good results as it has a strong influence on the obtained probabilities.

4.6.1 Fission-Event Detection Efficiency

The fission efficiency depends on the geometrical efficiency of the fission detector, the
intrinsic efficiency of the solar cells, and the angular anisotropy of the fission fragments,
which is due to two effects. First, the angular anisotropy of the fission fragments in the
center of mass reference frame, which is determined by the angular momentum distribution
of the fissioning nucleus. Second, the kinematic focusing of the fission fragments in the
direction of the fissioning nucleus, which depends on the velocity of the latter.

A combination of experiment and simulation was used to determine the fission effi-
ciency. The simulation was done with a Monte Carlo code in C++ developed in-house,
the fission fragment yields and their energies were based on the output of the GEF code
|76]. Five steps were followed to obtain the efficiency:

1 To measure the efficiency with a 2°2C'f source of known activity placed at the same
position, by hypothesis, as the target ?*° Pu would be. This was done before and
after the experiment. Both measurements were in agreement within error bars,
meaning that the efficiency had not changed significantly over the experiment time.
The weighted average of these two measurements gave an efficiency e,(***C'f) =

74



62.1940.96%. This efficiency includes the geometrical efficiency of the cells € geop, and
their intrinsic efficiency €;,, = 0.95 £+ 0.02, see chapter 3, such that e; = gint - €geom-

To reproduce with the simulation the experimental efficiency obtained with cal-
ifornium by adjusting the geometry and the size of the cells, and their relative
position to the target. To this end, the simulation included as well the size of the
target and the geometry of the support. This was necessary because the source
was non punctual and the support of the 2°2C'f (first hole starting from the left in
figure 3.3) casted a shade over the closest cells and thus reduced the efficiency. In
figure 4.25, there is a comparison of the efficiency of each cell obtained with the
experiment and simulation. Getting such a good agreement is not evident because
there are many dimensions to constrain (in addition to the effect of the shade and
the shape of the source) and the geometry is very compact, small changes in the
dimensions imply big changes in the efficiency. Figure 4.25 shows that the efficiency
of each cell varies from less than 1% to over 9%.

Once the experimental efficiency €;(**2C'f) is correctly reproduced for each cell, the
efficiency of the cells is determined taking into account the kinematic focusing of
the reactions ?°Pu(*He,"He') and ?"°Pu(*He,"He). Indeed, the efficiency of the
cells placed downstream the target is increased and vice-versa, which results in a
net increase of ~ 5%. The efficiency and the angular anisotropy depend on the
velocities of the fission fragments and thus on the angle of the scattered particle and
the excitation energy of the recoil nucleus. Therefore the efficiency is calculated for
the seven angles analyzed (table 3.2) and the excitation energy of the recoil nucleus.

To determine the angular distribution of the fission fragments in the center of mass.
To do this, first the number of counts in each cell for a certain excitation energy has
to be obtained, then these counts are re-normalized dividing them by the efficiency
of the corresponding cell, obtained in the previous step. These normalized counts are
plotted as a function of the polar angle of the fragments with respect to the recoiling
fissioning nucleus 6%, figure 4.26. The function of the polar angle constant(1+a-
COSQ(H?M)) is fitted to the points to obtain the anisotropy parameter « [43]. This
parameter depends on the ejectile angle  and the excitation energy of the recoil too.
In 1965 Britt and Plasil [77] studied the inelastic scattering of alpha particles on
28 and 240 Pu, the same reaction as in this work. They did not apply the surrogate
reaction method to their data, but they extracted the fission fragments’ angular
distributions. Their results are in agreement with previous (d, p) measurements and
with our anisotropy parameters, extracted from fits such as the ones of figure 4.26,
agree with the ones they deduce.

Finally, having obtained «, the efficiency is simulated again including the effect of
the anisotropy on the final efficiency. The effect was a slight increase, ~ 2 — 3%,
of the detection efficiency. During this step the impact of considering multiplicity
m, i.e. the number of fission fragments detected after a fission event, was studied:
m = 2 events in which two cells are fired; m = any events in which one or two strips
are fired, but only one event of the two is counted; m = 1 events in which only one
strip is fired, explicitly discarding events with m = 2. The simulation was done for
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m = any because it gives the fission-event detection efficiency and is the only way
of not introducing a bias due to particular geometrical configurations.

Simulated efficiencies (%)

0 T T T T T T
0 i 2 3 4 5 6 7 8 9 10

Measured efficiencies (%)

Figure 4.25: Comparison of the measured fission detection efficiency with a 2*2C'f source
and the one obtained with simulation. Each square represents a different cell and the
black line is a straight line of slope equal to 1. We may see that they are almost perfectly
correlated, which means that the simulation reproduces correctly the experiment.
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Figure 4.26: Normalized counts in the cells versus the polar angle of the fission fragments
in the center of mass. The curve represents the result of the fitting points with the
function constant - (14 a - cos*(0$™)). Parameter zero (p0) is the scaling constant and
parameter one (pl) in the figure corresponds to the anisotropy parameter.
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To verify that the geometry of the simulation was correct, we studied the events of
multiplicity equal to two (m = 2), in which two cells were fired, by comparing the cells
fired during these events in the simulation and in the data. This served not only as a debug
of the programs, but also to improve our understanding of the experimental conditions.
Figures 4.27a and 4.27b were obtained using the data and the simulation, respectively,
and they represent the correlation between the cells two by two, or the number of events
in which two cells where fired simultaneously as a function of the number of both cells
(see section 3). When comparing these two figures there is a general good agreement
between them, despite some small differences, which means that the geometry of the cells
was correctly defined.
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Figure 4.27: Bi-dimensional histogram of the fired cells in events with multiplicity strictly
equal to two.

Still, there were differences between the experiment and the simulation when com-
paring the number of events with multiplicity m two and events with any multiplicity
(m = any = 1 or 2). To do this comparison the following ratio of ratios was calculated
for each cell, except for the cells that are not geometrically in opposition to another one,
see equation (4.2). This ratio of ratios, experimental /theoretical, as defined in equation
(4.2), is plotted with the corresponding error bars for each cell in figure 4.28.

N =2)/N =
Multiplicity Ratio: MR = [Ny (m )Ny (m = ang)leay

[Np(m = 2)/Np(m = any)]sim (4.2)

If the simulation would have perfectly reproduced the experimental fission detection
efficiency, the ratio in equation (4.2) would be equal to one. But in this case a simple
constant fit gives a value of 0.71. The origin of this mismatch in the runs with the
plutonium target is still uncertain, there are several hypothesis but the most plausible
one is the target quality. Energy thresholds were set on the cells during the preparation
of the experiment using a californium source, which was a surface depot. In contrast,
during the measurement with the beam on-line, fission fragments had to trespass the
PuOy matter, if they were emitted backwards, and the carbon backing on top of that if
they were emitted forward. This decreases the total kinetic energy of the fission fragments,
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especially the energy of the heavy ones which can lose up to 20% of their energy in this
process (as simulated with LISE-++). In addition, the energy response of the cells could
have drifted during the experiment, due to the changes in room temperature and to the
impact of the intense scattered beam. This caused a slight worsening of the resolution of
the cells downstream the target. All these considerations were not taken into account in
the simulation, and the direct consequence of this is a reduction of the intrinsic efficiency
of the cells.
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Figure 4.28: Ratio of ratios as defined in equation (4.2). Some cells were removed because
the statistics of the experiment was too weak or because it was not possible geometrically
for them to be in coincidence with another cell.

The effect of the energy loss in the target is a shift to lower energies of the cells spectra
that can therefore appear to be cut thus losing some events. In figure 4.29 we compare
the spectra obtained with cell number one, which is one of the cells most abruptly cut, for
the plutonium runs and the californium ones. Other cells have a smoother cut at lower
energies, but all of the fission-fragment spectra of Pu are shifted to lower energies.

To account for this effect the fission detection efficiency was reduced by multiplying
it by a coefficient. The value was calculated following two different criteria: to make
the ratio of figure 4.28 closer to one, which implies multiplying the intrinsic efficiency by
~ (.71, or to make the total decay probability, v-decay plus fission, between the fission
threshold and the neutron separation energy equal to one, which gives a value of ~ 0.8,
see figure 4.30. As we will see in section 4.7, reducing €; means increasing the calculated
fission probability but also reducing the «-decay probability, resulting in a diminution of
the total probability.

The reason why these coefficients are not the same, 0.71 and 0.8, is that a global
correction coefficient has a stronger impact on the reduction of multiplicity 2 events than
one for the cells downstream and the other for the upstream ones. In fact the correction
should be individual for each cell for two reasons. First, because the carbon backing of
the target which was placed facing downstream, as a consequence the cells place in the
forward direction of the beam will be more affected by the energy loss. Second, that the
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Figure 4.29: Energy spectra obtained with cell number 1 with the californium source
(blue) and the 2*° Pu(*He,* He') reaction obtained during the measurement (red).
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Figure 4.30: Comparison of the total decay probability (black circles) = gamma-decay
(red triangles) + fission (not in the images) and constant fit between 5.2 and 6.4 MeV.
The vertical blue line represents the neutron separation energy.

elastically scattered particles of the beam are emitted at small polar angles with a much
bigger cross section, which can induce a dead time on the cells placed downstream. This
individualized correction per cell could not be done and a global coefficient was applied.

When trying to use the correction coefficient of 0.71, the gamma decay probability
took negative values because of the subtraction of the normalized triple coincidences. As
a consequence, the criterion adjusting the prob to 1 below S, was adopted as shown in
figure 4.30. Therefore the fission detection efficiency obtained with the simulation was
multiplied by 0.8, a value that ensured physical probabilities, i.e. Pr+ P, ~ 1. In figure
4.31 we represent the global fission detection efficiency ¢;(E*) as a function of E*(**Pu).
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The error bars of this efficiency include the uncertainty in the geometry of the cells, the
uncertainty in the angular anisotropy correction, and the uncertainty due to the correction
coefficient.
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Figure 4.31: Final fission detection efficiency as a function of the excitation energy of
240 py* formed through the (*He,* He') reaction.

As a general comment, the collaboration usually proceeds following the five steps de-
scribed at the beginning of the section. The problem encountered with the determination
of the intrinsic efficiency, having to do a global correction to explain the multiplicity,
was unattended. In fact the fission-fragment spectra of actinides are double humped, as
seen with the Cf source, but not when studying the fission of Pu as it should be. This
illustrates the poor quality of the target, which has increased the uncertainty of the final
decay probability results.

4.6.2 Gamma Cascade Detection Efficiency

The procedure to obtain the gamma cascade detection efficiency is completely different to
the one used for fission, as it is based on the EXtrapolated Efficiency Method (EXEM) [1]
[2], a method developed by the collaboration and based on two main ideas. Firstly, that
in the energy region under S,,, or the fission threshold for fissile nuclei, the probability for
the nucleus to decay emitting -rays is the unity, because it is the only open decay path
(neglecting proton and alpha emission). Therefore: P, = 1 = Negin./(Nsing. - €4). Under
these conditions the detection efficiency can be deduced from the data using equation
(4.3):

Ey = Ncoin./Nsing. (43)

Secondly, that the obtained efficiency may be extrapolated to higher excitation ener-
gies, which is based on the assumption that the level density and the gamma strength-
function of the compound nucleus will continue to vary with excitation energy in the same
manner as below the fission threshold or S,,. This assumption was validated in [1] [2].
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Therefore to obtain the gamma-cascade detection efficiency, first the ratio coincidences
over singles is done, then this ratio is fitted in energy region free from fission and neutron
emission events and then the fit is extrapolated to higher energies.
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Figure 4.32: Ratio of the number detected gamma rays, with an energy over 266keV, in
coincidence with four strips 0.; ~ 145, over the total number of scattered particles as a
function of the excitation energy. The red solid line was obtained with the germanium
detectors, the blue one with the liquid scintillators and the black one with the sum of
both. The red dashed lines represent fits of each spectra in an energy region between
2.2MeV and 4.2MeV, and the blue dashed lines are an extrapolation of them. The black
vertical dotted line marks the neutron separation energy of the 24 Py and the green one
the fission threshold.

Figure 4.32 represents the mentioned ratio obtained with germanium detectors, scin-
tillators and both. The red dashed lines represent the fits in energy regions well in the
continuum but under the fission threshold (see figure 4.33 for details). The blue dashed
lines in figure 4.32 are extrapolations to higher excitation energies that will be used as
the gamma detection efficiency as a function of excitation energy.

Similar fits to the ones presented in figures 4.33 and 4.32, were done to obtain the
gamma cascade detection efficiency. They were done for each angle defined in table 3.2,
to study the dependency of the probabilities with the angles, and for each threshold
defined in table 4.3. The uncertainties associated to the detection efficiency are given by
the uncertainty on the fit parameters. The efficiencies and the associated uncertainties
depend on E,tyh. For example, at 151° and E* = 4 MeV when using the Ge plus the
scintillators with E!" = 266keV/, the efficiency e, = 0.1012 & 0.0199 (19.7% relative
uncertainty), whilst with E!* = 866keV" the efficiency e, = 0.05224:0.0135 (25.7% relative
uncertainty).

81



Fit 150.6 deg and EYthr 266.0 keV

£ 007
=z

-
w

0.065
0.06
0.055
0.05
0.045

0.04

0.035

’2.5IIII3IIII3.5IIII4IIII4.5
E* (MeV)

Figure 4.33: Fit of the efficiency (eq. (4.3)) for the *°Pu(*He,*He¢'), at a scattering

polar angle of 150.6° and with a threshold in gamma energy of 266keV/. The points

represent the ratio Neoin /Nsing. and the error bars include the statistical error and the

energy resolution. The red line is the fit result.

4.7 Determination of the Decay Probabilities

To sum up, several steps were taken before it was possible to determine the decay prob-
abilities:

1. Select the reaction channel in the bi-dimensional spectra obtained with the tele-
scopes.

2. Calibrate the energy of the telescopes and the gamma detectors.
3. Fill the singles, fission, gamma and random coincidence histograms.

4. Account for random coincidences, subtract the random coincidence histograms con-
veniently renormalized.

5. Obtain the detection efficiencies.

After completing these milestones, one can obtain the specific formulae of the decay
probabilities with the general equation (1.1), which is re-written in the case of fission
probability as:

Nf - Nter

Pr=—— 4.4

] Nz (4.4)

where Py is the fission probability, Ny is the number of fission events in coincidence with
an ejectile, Ny, is the number of presumed ternary fission events deduced from the low
energy part of the fission spectra of the ?4° Pu(*He, * He') reaction, see subsection 4.5.1, N,
is the number of ejectiles coming from the studied reaction after fitting the background,
see subsection 4.8.1, and removing the presumed contribution of ternary fission events,
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and ey is the fission detection efficiency. All of these variables have a dependency on
excitation energy which was not written explicitly for the sake of simplicity.

Similarly, equation (1.1), in the case of the gamma decay probability, transforms into
equation 4.5:

P,Y:Nc—Nt/F;f (45)
Nge,
where P, is the gamma decay probability, V. is the number of gamma cascades detected
in coincidence with a scattered particle, IV; is the number of fission events detected in
coincidence with a gamma ray and an ejectile, /Ny and ¢ are the same quantities as in
equation (4.4), and ¢, is the gamma cascade detection efficiency. Again, all the variables
depend on the excitation energy. The results are presented in section 4.9 and interpreted
theoretically in chapter 6.

4.8 Uncertainty Analysis

Correctly estimating the uncertainty of a measurement is of paramount importance as
it defines the quality of the data. There are usually several sources of uncertainty that
contribute to the total one and that are added up using the following error propagation
formula. Equation (4.6) relies on the assumption that errors are small enough that a
function f(z1,...,2,) can be approximated by order one Taylor expansions f =~ f(zg) +

f(xo) - (x — xp):

f
(A o) =33 89{; a—faxlax]p” (4.6)

i=1 j=1

The task will be then to replace f by the probabilities of equations (4.4) and (4.5), and
evaluate each term of equation (4.6), particularly difficult to obtain are the correlation
coefficients p;; = Cov(x;, z;)/\/Var(x;) - Var(z;), with p; = 1.

4.8.1 Uncertainties Due to Background Subtraction

The uncertainties induced by the interpolation of the contaminants, subsection 4.4.1, and
the presumed ternary fission events, subsection 4.5.1, are calculated independently to
simplify the treatment of the uncertainties. The number of singles N, used in equations
(4.4) and (4.5) sections is in fact:

Ns:Ndet_Ncont_Nter/gf (47)

Where Ny is the number of ejectiles detected with the telescopes, N, is the es-
timated number of events induced by the contaminants in the carbon backing and Ny,
is the number of ternary fission events deduced from the low energy part of the fission
spectra.

The procedure followed to include the error due to the backgrounds was the same as
detailed in section III of Kessedjian et al. [43]. It is valid in the case in which the shape
of the background and the position are correctly known, and the background spectrum
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has been measured independently. In this work we use the same formulas described in the
reference, even though the background was interpolated and not subtracted. In addition,
to account for this and for the fact that there were two contaminant peaks, and thus the
shape of the peaks was not perfectly known, in the energy region of interest, the error
given by the formulas at [43] were multiplied by 2, which is a conservative way to include
these errors. The errors are then added to formulas (4.8) and (4.9).

An alternative analysis to estimate these errors was done, based exclusively on equation
(4.6), is described in appendix C. It gives very similar results to the ones presented in
this section.

4.8.2 Uncertainty in the Fission Probability

We recall equation (4.4) used to calculate the fission probability:
Nf - Nter
NSEf

As one may see, this probability depends on four variables. Table 4.4 illustrates the
covariances to take into account between these variables.

Py =

Variable Ny Nieyr N, Ef
Ny Var(Ny) 0 Cov(Ny, Ny) ~ 0
Nier Var(Nier) 0 0
N; Var(Ns) 0
£y Var(ey)

Table 4.4: Covariance table for the fission probability.

From all the possible covariance terms only the covariance between the number of
fission coincidences and scattered particles has been retained. The covariance terms con-
cerning the efficiency could be neglected because although the data was used to determine
the fission fragment anisotropy (see section 4.6.1), the correlation is minimum because
the impact of the anisotropy on the fission detection efficiency is lower than 10%. The
terms of covariance with the ternary fission were also neglected because the proportion
of these events is small. They have an impact on the background subtraction errors that
will later be detailed. Taking all of this into account, equation (4.6) in the case of the
fission probability takes the following explicit form:

1 Ni — Nyey)? 2
AP]% :NTg?c Nf+Nter+%+(Nf—Nter)2 (_>

(N B Ner)
_2% /N;- N, - pre
where we have used AN; = /N;. In (4.8) the first four terms to the right side correspond
to the variance terms of each variable, and the fifth one to the covariance between Ny and

Ng, see table 4.4. The value of the correlation coefficient pys was determined experimen-
tally as explained in [10] [3]. The experimental data was divided into smaller groups of
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data to see how for each group of data the fluctuations in N, affected Ny. A 2D-histogram
(figure 4.34) was constructed to obtain the correlation of these two variables.
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Figure 4.34: Bi-dimensional spectrum from the ?%°Pu(«,a’) reaction. The horizontal
axis represents the number of fission events in coincidence with a scattered alpha particle
detected with telescope number 1, N, and the vertical axis the total number of these
events, N,. The histogram is filled with events within the excitation energy range of 4 to
8 MeV. The correlation coefficient obtained is ps, = 0.3216.

The histogram of figure 4.34 was constructed using a "event limit" that was randomly
sampled during the analysis, using a normal distribution centered at 250 events and with
standard deviation 4/250. While analyzing the data, a N, counter is incremented when
an event corresponds to a 23 Pu* or ?** Pu* nucleus at an excitation energy between 4
and 8 MeV, until the "event limit" is reached. Similarly, the corresponding fission events
are counted for this excitation energy range. Once the limit of random events is reached,
the value of both numbers of counts is stored in a bi-dimensional histogram and the
process is repeated until all the events are analyzed. In theory a histogram like this one
should be filled for each energy in which the probability is obtained, but in practice this
is not possible due to the lack of statistics. Therefore, an average value of the correlation
coefficients was used.

4.8.3 Uncertainty in the Gamma Decay Probability

The case of the gamma decay is similar to the fission one, although more complicated
because there are more variables that intervene and more covariance terms have to be
included, recall equation (4.5):

Nc — Nt/gf
Nge,

The covariance terms taken into account are shown in table 4.5. The terms of covari-
ance with the fission efficiency are zero as this efficiency was not determined with these

P, =
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variables. So was the covariance with the gamma detection efficiency because it is suffi-
ciently small as shown in [10]. Although the setup is not exactly the same as in reference
[10], the gamma detection efficiency is lower in our case, and therefore we may suppose
this correlation is negligible.

Variable N, Ny N, Exy Ef
N, Var(N,) Cov(N.,N;) Cov(N,, Ny) ~ 0 0
N, Var(N;)  Cov(Ny, Ng) 0 0
N, Var(Ns) ~ 0 0
Ex Var(e,) 0
£f Var(ey)

Table 4.5: Covariance table for the gamma decay probability.

Developing equation 4.6 for the gamma-decay probability and taking into account the
covariances of table 4.5, we obtain the following formula for the uncertainty:

1 Ny (N.— NyJej)? Ae,\?  NEAS
AP? = N, b Ve ZWED) (N, N2 (222
" N2 + g2 N, + (N ) £y + g‘]%
N, - N, N, — N, N, - N, N, — N, N, - N,
_Q—t * Pet — 2< t/€f> * Pes + 2( t/gf) d * Pts
Er NS NSEf
(4.9)

where in equation (4.9) the first five terms inside the brackets are the ones associated to
the variance of each variable in equation (4.5), from left to right: total number of ~-rays
detected coincidence with an ejectile N,, triple coincidences ~-ray-fission-fragment-ejectile
N;, number of scattered particles detected or singles N, gamma detection efficiency e,
and fission detection efficiency €;. The other three terms are covariance terms associated
to: Cov(N,, Ny), Cov(N,, N,) and Cov(Ny, Ny), respectively. As in the case of fission, we
followed the same strategy to estimate the correlation coefficients, a 2D-histogram was
built for each set of two variables.
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Figure 4.35: Histograms obtained with telescope number 1 with different variables selected
to determine the correlation terms of the P, uncertainty.
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The histograms of figure 4.35 were constructed in a similar way to the one of figure
4.34, i.e. by sampling a random number of events in which a 24°Pu* is formed with an
excitation energy between 4 and 8 MeV, following a normal distribution centered at 250
events and with standard deviation equal to the square root of this number of events.
Due to the lack of statistics, averaged correlation factors, over the mentioned E* range,
were used instead.

The excitation energy averaged correlation coefficients used to obtain the errors in the
probabilities are resumed in table 4.6. The values are the average of the results obtained
with each telescope and for several runs.

Pfs ‘ Pet ‘ Pes ‘ Pts
0.31£0.02 | 0.45+0.03 | 0.26 £0.03 | 0.12 4 0.02

Table 4.6: Average values of the correlation coefficients between the different experimental
variables.

4.9 Results

After all the previous considerations the results are presented for the 24 Pu(*He,* He')
reaction. In theory the results should be obtained for each strip, but as explained before
this was not possible and they were studied forming groups of four strips to form 7 different
angles, see table 3.2. Thus, in this section we give the weighted average of the probabilities
calculated for each angle. The results by angle, along with results for the ?4° Pu(3 He,* He)
reaction are given in appendix D, as they will not be interpreted theoretically.

In figure 4.36a we compare the gamma decay probabilities obtained at three repre-
sentative angles .; ~ 156°/139°/121° in an energy interval without contaminants, figure
4.36b is equivalent but for fission. Doing a weighted average is justified because when
comparing the decay probabilities for different angles, fig. 4.36, they agree within error
bars. This was done to reduced the uncertainties, which makes more meaningful the
interpretation of the results done in the second part of the thesis.

In figure 4.37, we compare the gamma decay probability obtained with the CgDg
detectors and the one obtained using these detectors plus the Ge detectors. The results
are compatible within error bars, which means that the neutrons captured/scattered in
the Ge crystals do not have a distinguishable effect on the gamma decay probability.

Therefore in the following we give the results using all the gamma detectors but we
distinguish between two cases, one without subtracting the hypothetical ternary fission
background as explained in subsection 4.5.1, figure 4.38, and the other one with it sub-
tracted, figure 4.39. In these figures, the fission and the gamma decay probabilities are
represented as a function of excitation energy, as well as the sum of both. The vertical
solid black line represents the neutron separation energy and the horizontal striped line is
set to one. Until the fission sets in at about 4.5 MeV, the 249 Pu* can only release its energy
excess by emitting y-rays. From that point onwards the competition between y-decay and
fission starts up to the neutron separation energy S,, at about 6.5 MeV, but the sum of
both is still one. At excitation energies E* > S,,, it is possible for the compound nucleus
to emit neutrons to release energy, thus the sum of fission and v-decay is no longer 1.
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Figure 4.36: Comparison of the decay probabilities obtained at 3 different ejectile angles
in an energy region free from contaminants.
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Figure 4.37: Gamma decay probability of 24° Pu* obtained with scintillators compared to
the one obtained with CgDg and Ge detectors.

When looking in detail at these two figures, 4.38 and 4.39, and comparing them, one
may see the difference in the fission probability under 4.5 MeV. Indeed the subtraction of
the supposed background induced by the alphas generated in the ternary fission events of
244C'm has a big impact in this energy region. There is also a slight effect at excitation
energies of above 7 MeV, because the alpha particle distribution is peaked at excitation
E* ~ 12 MeV, see figure 4.18
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Figure 4.38: Weighted average of the decay probabilities of 24 Pu* obtained per angle,
without ternary fission subtraction. The vertical solid line represents the neutron separa-
tion energy.
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Figure 4.39: Weighted average of the decay probabilities of 24 Pu* obtained per angle,
after the ternary fission background was subtracted. The vertical solid line represents the
neutron separation energy.
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In figure 4.40 we compare our results obtained for the fission probability as a function
of E* of 229 Py (blue squares) to previous results found in literature. Our data is in good
agreement with all previous ones for 5.6 < E* < 6.4 MeV, which is a region which is
free of contaminants for all the data sets. The results of Cramer and Britt [41] for the
240 Py(t, p) and 2*°Pu(p,p’) have to be taken with caution out of the mentioned energy
region because there were peaks induced by the carbon baking on their singles spectra
which they had to subtract. The data of Back et al. [14] were affected by the deuteron
break-up at excitation energies above S,,. At around 5 MeV all the data show a structure,
which indicates that there is a resonance, a group of class-II states, that favors fission.
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Figure 4.40: 240 Py* fission probability after the presumed ternary fission background was
subtracted (blue squares), compared to previous data from Cramer and Britt [41] and
Back et al. [14].

There is no y-decay data to compare with our data. However, the comparison to
previous fission data gives us confidence in our results. Even though there are differences
at certain energy regions, this could be explained by the effect of the interpolation of
the background in both our data and the previous ones. Another explanation is that
as different reactions were used to form 24°Pu*, the spin distributions are likely to be
different in each case, which as we will show in chapter 6 has a strong impact on the
decay probabilities.

Finally, in figure 4.41, we compare our data to a calculation of the neutron induced
probabilities, courtesy of P. Romain (CEA/DAM/DIF). The n-induced probabilities are
the quotients o) /oSN (E,) and 0! /c¢N(E,). Further details on the calculation of these
cross sections will be given in chapter 5.

The calculations and the surrogate data of figure 4.41 do not compare well. This was
expected for the gamma decay probability, as it is found to be a general result of previous
works in the field, see chapter 2. There is an important disagreement in the case of fission
too, specially at low neutron energies F,,, i.e just above the S,,. It is the first time that
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Figure 4.41: 240 Py* decay probabilities after the presumed ternary fission background was
subtracted (symbols), compared to a neutron induced probability calculation, courtesy of
P. Romain (CEA/DAM/DIF).

the collaboration finds such a difference for fission, and it was one of the motivations of
this thesis, to test the agreement between surrogate data and neutron induced data in an
even-even fissioning system like 249 Pu. The most plausible explanation is the spin-parity
mismatch, which is meant to have a stronger impact on fission in the case of even-even
decaying nuclei than in the one of odd systems. This fact proves the importance of knowing
the J™ of the decaying nucleus. Thus, in the second part of this thesis we describe our
approach to account for the differences between surrogate and n-induced data seen in
figure 4.41.
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Part 11

Interpretation
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Chapter 5

Evaluation of the Reaction n + 239Pu

The ultimate goal of the surrogate reaction method is to deliver neutron induced cross
sections deduced from the surrogate data. This was at first done with a Weisskopf-Ewing
approximation, eq. (1.1), and more recently with approaches that go beyond it. In any
case one should be able to correctly interpret the results presented in chapter 4, which
implies having a thorough knowledge of the method. This requires to estimate the reaction
model parameters of the 2*° Pu* CN decay. These parameters are needed to calculate the
branching ratios G, (E*, J™) that appear in the decay probability equation (5.1), which
we will use in combination with two different spin distributions F(E*, J™) in the next
chapter to reproduce our data.

PeT(ET) =Y F(ES,J7) - Gy(E*, J") (5.1)
-

In this chapter we will describe the evaluation procedure, i.e. to adjust the model
parameters with the n + 23°Puy reaction data. This process includes an optical model
calculation of the reaction to the total cross section or, which is the sum of the shape-
elastic cross section og . and the reaction cross section or. Having this cross section, the
rest of them are deduced from it, including the fission o,, ; and capture o, ., cross sections
which we will use to deduce the structure parameters of the compound nucleus 24° Pu*.

The process to interpret our data is summarized in figure 5.1. In this chapter we will
focus on the first two blocks, optical model and parameters, and we will describe the
theoretical ingredients needed. The rest of the interpretation will be part of chapter 6.

a.
Optical model Kg& Data fitting Spin dist.
calculation & (parameters) calculation
ny

F(E",]™)

240py decay [JEMIN 2*°Pu decay

calculation probabilities

Figure 5.1: Scheme of the interpretation process
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5.1 Reaction Mechanisms
Nuclear reactions can be classified depending on the reaction time, or emitted particle
energy, as depicted in figure 5.2, where the labels C, P and D stand for compound, pre-

equilibrium and direct, respectively.

Compound Pre-equilibrium Direct

E out

<—reaction time

Figure 5.2: Nuclear reaction cross section as a function of the energy of the particle of
the exit channel, and reaction mechanisms defined as a function of the reaction time [26].

Direct reactions are those which take place in a time interval comparable to the time
it takes a particle to cover the size of a nucleus (typically 10722 — 107'®s). This reaction
mechanism accounts for processes in which the ejectile causes individual particle excita-
tions, like a particle-hole (p-h) pair. In contrast, compound reactions are those in which
the energy of this excitation is distributed among all the other nucleons achieving statis-
tical equilibrium, i.e. the energy is equally distributed among all nucleons, resulting in
multiple p-h pairs, and forming a compound nucleus [11], this process lasts for around
10718s. Between these two processes there is the pre-equilibrium phase, an intermediate
step between them in which the initial p-h excitation passes from one nucleon to the
others, see figure 5.3.

The process depicted in figure 5.3 can be understood from a thermodynamic’s perspec-
tive. The nucleus formed with 1p —0h after the reaction is not in equilibrium because it is
in a state of minimum entropy. Boltzmann introduced a fundamental principle of statis-
tical mechanics which states that isolated systems evolve to maximize entropy. Entropy
(S) is directly connected to the number of possible ways in which energy is distributed
among the particles of a system (W), through Boltzmann’s formula |78|:

S = kg - In(W) (5.2)

where kp ~ 1.38 - 1072*J/K is Boltzmann’s constant. On the one hand, from equation
(5.2) it follows that the bigger W, the higher the entropy. On the other hand it is logical
that the most probable configuration is the one in which there are more possibilities, or
equivalently W is higher. Therefore a system will tend to distribute energy among its
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Figure 5.3: Schematic representation of the process of redistribution of excitation energy
that can eventually form a CN [79] [8].

components in a way that entropy is maximized, following a similar process to the one
depicted in figure 5.3.

With all this in mind, one can classify nuclear reactions depending on the result of the
interaction between the projectile and the target nucleus. In general there will be several
possible outcomes and intermediate stages as illustrated in figure 5.4.

. . 1 .
Nuclear Reaction Mechanisms 1 Particle Spectra

I

+ Elastically Scattered

L. ! Particles
Shape Fission :
Elastic \ Multiple :
———

Compound CEom.po_und 1
Fission Elastic e :

. low-E hump (C)
1
I
Compound T
I
Projectile 1
1
Multiple 1
Pre-Eq. +
Emission :

1 high-E tail (P)
I
Pre-Eq. :
I
I
I
I
1
Direct : discrete peaks (D)

I
1

Figure 5.4: Scheme of the different reaction mechanisms that can take place when a
projectile interacts with a target nucleus [26].

Figure 5.4 synthesizes all the possibilities of an arbitrary nuclear reaction, when a
particle (neutron, proton, a...) impinges on a nucleus. The projectile can be either
elastically scattered or it may be emitted after a compound nucleus is formed, during the
pre-equilibrium state or following a direct reaction. The projectile is re-emitted with the
same incident energy when it undergoes a shape-elastic scattering, which can be imagined
as a classical collision between two rigid objects, or after a compound nucleus is formed,
leaving the target nucleus in its ground state, compound elastic. The compound nucleus
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can also be left in an excited state, and can undergo fission before or after a multiple
compound emission. The pre-equilibrium and direct reactions always leave the nucleus in
an excited state. In this work we will focus on the compound nucleus reactions, specially
on fission and radiative capture ones. The direct and pre-equilibrium components will
be neglected because in the energy region of our data E, ~ 1 MeV, more than 80% of
the reaction cross section is given by the compound nucleus one. In addition the direct
and pre-equilibrium entrance channels will predominantly contribute to the (n,n’) channel
which has a small impact on the evaluation.

5.2 Cross Sections

Cross sections are one of the most important observables when studying nuclear reactions.
Usually denoted by o, and with dimensions of area, cross sections between two particles
can be defined as the area transverse to their relative motion within which they must meet
in order to scatter from each other. When a cross section is specified as a function of
some final state variable, such as the particle’s angle, it is called differential cross section.

do

0= 1f(P,p)? (5.3)

where |f(p’,p)|? is the so called scattering amplitude. The derivation of equation (5.3)
as well as an explicit form of |f(p’, p)|*> will be given in appendix E.

The total cross section or is the result of integrating the differential cross section
over 47 and represents the probability of any kind of interaction taking place when a
projectile with energy E approaches a nucleus. It can be unfolded into two cross sections,
the shape-elastic cross section og. g and the reaction cross section or. The former can
be understood as the collision of two particles without inner structure, while the latter
measures the probability of the projectile acting on the inner structure of the target
nucleus:

or =0s.E. +OR (5.4)
The reaction cross section itself is the sum of two cross sections:
OR =ON.E. + 0CE. (5.5)

In equation (5.5), on.g. is the non-elastic cross section, or the cross section that the
recoil nucleus is not left in its ground state, and o¢ g, is the compound-elastic cross
section, which accounts for the possibility that the recoil is left in its ground state after
a projectile-like particle is re-emitted. Using oc p. the elastic cross section op, which is
related to the probability that both particles interacting are left in their corresponding
ground states after interacting, can be written as:

Op = 0sE +O0CE. (5.6)

And with this definition of elastic cross section, the total cross section can be re-written
in the form:

or =0p +ONE. (5.7)
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Fortunately the quantities or and op of equation (5.7) can be measured experimen-
tally. However to extract some meaningful information from a measurement, the exper-
imental data has to be compared to a theoretical calculation to constraint parameters
and discard models. This calculation is split into two parts, firstly an optical model with
coupled channels calculation that yields or, o and og g, secondly a compound nucleus
decay calculation. In this work both were performed with Talys 1.9, although this pro-
gram incorporates the code ECIS06 [80] to do the part of the calculation dependent on
the optical model.

5.3 Optical Model

Making use of the optical model (OM) is the simplest way to calculate the cross sections
or, or and og ., which will then be the base to calculate the cross sections of the other
mechanisms presented in figure 5.4. Doing a correct calculation is a crucial point as it
influences on all the other cross sections. To calculate og, ideally one should solve the
Schrodinger equation of the system formed by the nucleus plus the projectile, see eq.
(5.8), to calculate these cross sections.

—h? U
(%VQ + U> U= z’haa—t (5.8)

However solving the above equation is very complicated. To attempt to simplify the
problem the optical model was introduced in the 50’s, by Le Levier and Saxon [81] and by
Feshbach, Porter and Weisskopf [82]. The main idea developed by these authors is that
the scattering of particles when interacting with nuclei can be treated in a similar way
to light passing from one material to another with a complex refractive index, thus the
name optical. Under this hypothesis the nucleon-nucleus potential U(r) is assumed to be
complex and takes the form:

U(r) = V(r) +iW(r) (5.9)

where V(r) and W(r) are the real and the imaginary parts of the potential, respectively. In
analogy with optics, the imaginary part of this potential (W in equation (5.9)) removes
part of the flux from the shape-elastic channel to the reaction channels which are not
calculated directly. For instance, in a two body reaction a + X, as the one in figure 5.5,
U(r) is the nuclear potential that acts on a.

[¥) = l9)®]0)

Figure 5.5: Schematic representation of a particle "a", with wave function |¢), impinging
on a nucleus "X" in state |0). The state of the system is defined by |¢) = |¢) ® |0).
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In this formalism the incoming beam is supposed mono-energetic and is represented by
a plane wave (see appendix E for details). Since the first theories of the optical potential
were formulated in the 50s, a wealth of different formulations and improvements to the
model have appeared.

5.3.1 Central Potentials

If the scattering potential U has a dependency on the radial coordinate such that U(r) — 0
quicker than 1/r® when r — oo, then it is possible to represent the stationary wave
function as:

22%4 (0,9) (5.10)

=0 M=

where Y™ (0, ¢) are the spherical harmonics ans Rjy(r) is a radial function that depends
as well on the quantum numbers [, M. In general when r — oo this function can be
approximated taking into account the asymptotic behavior of Bessel’s functions to:

R1M<T') ~ C’lTMSZTL (k?" - %l + (51) (511)

where Cjy; and §; are independent from r, but depend on the indexed quantum numbers
and on the energy E = h?k?/2m. The quantities §; are real numbers that represent, phys-
ically the impact of the scattering potential on the radial part of the wave functions, they
are called phase shifts and are of paramount importance to determine cross sections. It
can be proven that the relation between these phase shifts §; and the scattering amplitude

f(p',p) is
_ %2 21+ 1), - Pi(cos(6)) (5.12)

where Pj(cosf)) are Legendre’s polynomials, # is the scattering angle between p’ and p,
and f:

62i5l -1

fi= = sin(0;) (5.13)

The quantity f; depends in fact on the energy and it is named the partial waves
amplitude. When substituting it in equation (5.3), the differential cross section becomes:

)

Z Z 20+ 12U+ 1) - fifii - P(cos(0))Py(cos(9)) (5.14)

=0 lI'=

The total cross section can be written in terms of the phase shift §;:

o= 411; Z(Ql + 1)sin®(&)) (5.15)

=0

By virtue of equation (5.15), the problem of calculating cross sections is reduced to
calculating the phase shifts §;, which contain all the information about the interaction in
the long distance limit (r — o0o). It just remains to obtain an optical potential U(r) that
is able to reproduce the experimental data.
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5.3.2 Deformed Nuclei: Coupled Channels Calculation

The formalism described before is only valid for spherical nuclei. In reality just the nuclei
with closed shells are spherical and thus have central potentials, i.e. that depend only on
the radial coordinate. The rest of the nuclei are deformed and display low energy collective
states. In the case of actinides this low energy excitations are rotational states that are
easily populated by hadron scattering, and which are strongly coupled between them.
This has to be taken into account quantifying the amount of flux that is transfered from
the most relevant channels to the ground state. The potential has to have a dependence
on the nuclear radius, which can be expanded in a series of spherical harmonics Y{(0, ¢)
and with shape parameters a,,:

R(0,¢) = R, (1 + f: > an YL, ¢)) (5.16)

A=1 p=—-X

The series (5.16) is a common parametrization of the nuclear radius, where R, is the
deformation dependent radius and can be related to the spherical one Ry = rgAY3 by
imposing a condition of volume conservation:

3 3
Ry = R, (1 + - Dl + 0(043)) (5.17)

where the orthogonality of the spherical harmonics ([ YY)V dQ = p0pmm) has been
used to obtain eq. (5.17).

In deformed nuclei there is a strong coupling between the ground state and the first
states of the rotational (or even vibrational) bands that can be built on top of it. This
means that these states can feed the elastic channel after being populated, we will then
say that these states are coupled. In theory one should take into account the coupling
of all the levels energetically accessible, but in practice only a small number of levels are
actually relevant, those strongly coupled to the ground state, and are included in the
calculation. When coupling different levels parity and angular momentum conservation
laws apply.

Figure 5.6 represents the coupling scheme of a 23 Py target, as a reminder the reaction
n 4 23 Py will be used to determine the structure model parameters of 24° Pu*. The left
hand side of the image shows the ground state and the first three excited states of the
rotational band built on top of it. The right hand side of the figure depicts the first four
levels on another rotational band built over the vibrational state 3/2%. The blue arrows
represent the possible couplings between the different states of these two bands. Taking
these first eight levels is customary for the n + 239 Pu reaction, i.e. in JENDL 4.0, because
they are the most strongly coupled and they are sufficient to describe the total reaction
cross section. JEFF 3.3 includes another vibrational level but the impact on this cross
section is minimal.

5.3.3 Parametrization of the Optical Model Potential (OMP)

In the frame of the optical model the nucleon-nucleus interaction is represented by a
complex potential U(r, E'), where r is the space coordinate and E the energy of the
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Figure 5.6: Schematic representation of the coupling scheme of 2 Pu. Here the first
four states of the rotational band over the ground state are coupled to the four states
of another rotational band built on a vibrational state. All the channels except for the
ground state are coupled with themselves.

incident particle. This potential can be calculated in a microscopic way or be determined
in a phenomenological way by adjusting the parameters to reproduce nuclear data. In
this work we will explain the phenomenological approach to optical potentials, for which
different kinds of parametrization can be found in the literature. For local potentials, in
which the interaction is considered punctual, as the one by Koning and Delaroche [83],
and for dispersive potentials, which connect the imaginary and real parts of the potential,
like the ones of Soukhovitskii et al. [84] [28], or Romain et al. [85]. However the total
or and shape elastic og g cross sections are calculated using the parameters of JENDL
4.0. which were obtained using the parametrization Soukhovitskii et al., as detailed in
appendix F.

5.3.4 Calculation of the Total, Shape-Elastic and Reaction Cross
Sections

A calculation with ECIS06 was done for the neutron induced reaction n + 23 Pu with the
optical model, and its parametrization, described above. The code ECIS06 is ran by Talys
and it calculates the total op, shape elastic g . and reaction o cross sections, recalling
equation (5.4):

or = 0s.g. +0R

Because of the relative simplicity to measure the total cross section, it is enough to
measure the flux of particles before and after the target, there are abundant high-quality
measurements of it. The parameters of the optical model given in appendix F were
adjusted by the JENDL 4.0 collaboration in the low neutron-energy range up to 10 keV,
with the data of Harvey et al. [86], and for energies between 48 keV to 20.9 MeV with
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the data of Poenitz et al. [87], [88]. In this work we use a neutron energy between 25
keV and 6 MeV to do the evaluation for two reasons. First, our data, obtained with
a surrogate reaction of n + 23°Pu, have an energy resolution of 100 keV, therefore it is
useless to adjust the parameters in the resonance energy range. Second, our data is just
exploitable up to an excitation energy of the 2*° Pu* of 8 MeV, which is equivalent to 1.5
MeV in incident neutron energy. The evaluation range was extended up to 6 MeV to make
it more congruent and because the second chance fission of the CN starts at 5.65 MeV.
In figure 5.7 we compare the experimental data of Poenitz et al. to our calculation with
Talys and the parameters of JENDL 4.0 and the evaluation JEFF 3.3.

— JEFF3.3

T T T T LI T T T T T 1T Thil“rk

{ Experimental data

Gn Lot (b)

10" 1 E, (MeV)

Figure 5.7: Total cross section as a function of incident neutron energy for the reaction
n + 239 Pu. The blue solid line is the calculation with Talys and the parameters of JENDL
4.0, the red solid line is from JEFF 3.3 and the experimental data is from [87] and [88].

From the total cross section one has to remove the contribution of the shape elastic
cross section, to obtain the reaction one. In figure 5.8 the contribution of these cross
sections to the total one is illustrated. The problem is that neither the reaction cross
section, nor the shape-elastic one are measurable, thus og g cannot be compared directly
to experimental data to constrain further the OMP parameters.

103



_ T T T 1T T T T T 1T T _GT

2
©o —GOsE
-G

10 = B
9r- _
8 |
7+ |
6 _
5~ _

e~ .

107 1 E, (MeV)

Figure 5.8: Calculation of the total o7, shape elastic og g and reaction o cross section
as a function of incident-neutron energy for the reaction n + 2% Pu.

5.4 Compound Nucleus Reactions

To determine the branching ratios G, , that will be used in chapter 6 it is necessary to
understand which are the ingredients involved in the decay of a compound nucleus. This
way the parameters of the model can be adjusted and optimized to reproduce the cross
sections.

5.4.1 Hauser-Feshbach Theory

In the energy domain of this work, the 2*°Pu* compound nucleus is in the statistical
energy regime and thus its decay is studied within the Hauser-Feshbach formalism [82].
The formation of a compound nucleus after a reaction X (a,a’)X’, as described in section
5.1 obeys the following energy, spin and parity conservation rules:

E,+S,+E,=E,;+S,+ E;, = Ftot (518)

where F, is the projectile’s energy, S, is its separation energy, E, is the excitation energy
of the target nucleus, E, is the ejectile’s energy, S, its separation energy, while E’ is the
excitation energy of the recoil nucleus and E'™ is the total energy of the system.

s+I+l=5+1I'+1'=J (5.19)

where s is the projectile spin and [ its orbital angular momentum, [ is the spin of the
target nucleus, s’ is the spin of the scattered particle and [’ its orbital angular momentum
while I’ is the spin of th recoil nucleus and J is the total angular momentum of the system.

mollo(—1)! = 7,1, (=1)" =11 (5.20)
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where  is the parity of the projectile, Ily is the parity of the target, 7, is the parity of
the ejectile, IT¢ is the parity of the recoil nucleus and II is the parity of the compound
system.

Knowing that equations (5.18), (5.19) and (5.20) must hold true, the compound nu-
cleus formula for the binary cross section, can be expressed in the form of eq. (4.174) of
Talys’s Manual [26]:

lmaz+I+s J+I J+s J+Il J +5

com 2J+1
i DCN% 2 Z (2I+1)(2s+1) Z IDEDIEDY

J=mod(I+s,1) I=— =[J=I|l=|j=s| j'=|J=I'| U'=|j'—5] (5.21)

s -(Ea)<TBJ/l,»,(Ea/))
X 0x(3)0(8) e Wiy
S O (3 )T g (Bar) 7

where in (5.21): DY is the depletion factor that accounts for direct and pre-equilibrium
effects, k is the wave number, [,,,, is the maximum [-value for projectile, o designates
the system of the projectile and target nucleus 8 = {a, s, E,, E,, I,1ly}, where a is the
projectile, 6,(8) = 1 if moIlp(—1)" = IT and 0 otherwise. The system of the ejectile and
the recoil is designated by ' = {d/, s, E,, E., I’ 11}, where a’ is the ejectile, 6, (5') =1
if 7¢11;(—1)" = II and 0 otherwise. The summation of the denominator with doubly
primed variables, accounts for all the possible exit channels. The coefficients T" are the
transmission coefficients of the entrance channel, while the transmission coefficients of
the outgoing channels are denoted by (7). This notation indicates that this transmis-
sion coefficients are calculated differently depending on whether the channels 5" and 3"
correspond to a discrete state or a state of the continuum. Finally, the W’s are the
width fluctuation correction (WFC) factors, which account for the correlations that exist
between the incident and outgoing waves.

A very clear and detailed review of the Hauser-Feshbach theory was done by Hodgson
[91]. In section 2 of the article he details step by step the deduction of a very similar
equation to (5.21), including the WFC factors. For further detail on how to compute the
different terms that intervene in the general formula (5.21) we refer to [26].

Compound Nucleus Formation Cross Section

The compound nucleus formation cross section can be deduced from equation (5.21) as
described in [26| and it depends on the entrance channel 5. In the case of interest,
n + 29 Py — 20 Py*, the entrance channel is 8 = {n,1/2, E,,0,1/2,+}. Thus the cross
section to form a 2*°Pu* CN in a state of spin J and parity II and total energy £ is

J+1 J+s

tot comp m 2J + 1

=|J 1] l=[j—s]|

The cross section in eq. (5.22) must be summed over all the possible combinations
J and II to obtain the compound nucleus cross section ooy (FE,), recalling that E* =
E, + S, + E,, is plotted in figure 5.9.

The optical model calculation produces the total cross section as well as the reac-
tion cross section, which can be defined as the sum of the direct, pre-equilibrium and
compound-nucleus reaction cross sections. None of these is an observable so it has to be
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Figure 5.9: Calculation of the compound nucleus (C.N.) cross section as a function of
incident neutron energy on a %Y Pu target.

deduced theoretically. Figure 5.10 illustrates the importance of determining correctly the
compound nucleus cross section. At E,, = 1.5MeV, which is the energy to which we have
access experimentally in which the ratio is the lowest, og = 3.64 b and o¢c n. = 3.06 b,
thus the compound nucleus cross section amounts for 84% of the reaction one.

= .
25— — g (b) -
oF = o, (b) E
E —GD (b) E
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1= =
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0: ! ! R ! L | M;
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Figure 5.10: Calculation of the reaction (R), compound nucleus (C.N.), direct (D) and
pre-equilibrium (P) cross sections as a function of incident neutron energy on a 2 Pu
target. The reaction cross section (blue solid line) is the sum of the other three.
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In figure 5.11 we compare the elastic cross section sigmag to the experimental data.
This cross section is the sum of the shape elastic cross section og g and the compound
elastic one o¢ .. There are no experimental data of og g, however in the energy range of
this study ogs.g. ~ 0.90, as it can be seen in figure 5.11, thus comparing the calculation
to elastic scattering data is useful to check that there are no big issues with the OM
parameters.

— Elastic (Calculation)
_ T T T T 11 T T T T 171 { Elastic (E)(p)

fe)
‘6’ 10 = —— Shape-Elastic
E —— Compound Elastic
- : 7
1 —]
107" = =
7I 1 1 | 111 ‘ 1 1 1 1 1 Ii

1
10 1 E, (MeV)
Figure 5.11: Calculation of the elastic cross section o as a function of incident-neutron
energy on a 29 Py target, compared to the experimental data from Cranberg (report from
LANL 1959), Yue et al. [89] and Knitter and Coppola [90]. The red solid line represents
the calculated shape elastic cross section og g and the black line the compound elastic
one oc.g..

Compound Nucleus Decay Cross Sections

The quantity oc . is calculated theoretically to produce cross sections from surrogate
reaction experiments as we recall from equation (1.2):

oA (Bn) = 045 (B) - PR ()

which is related to the equation:

J;?,X(En) = Uéj\_fl (£n) Z S(E", J7) Gy (E7, J7)
Jr

where S(E*, J7) is the usual nomenclature of the spin-parity distribution of the compound

nucleus A+1 in the case of neutron induced reactions, which is equivalent to F'(E*, J™) for

surrogate reactions. The radiative capture o, , and fission o, ; cross sections are directly

related to Gy, , through the above equation.
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All the open decay channels should be deduced from oz but under the hypothesis that
the reactions a+2*Pu — o/ + 2 Pu* and n+23 Pu — 249 Py lead to the same CN 240 Py *
as explained in chapter 1, these decay channels are deduced from equation (5.22). The
gamma-decay, the neutron emission and the fission cross sections are calculated imposing
that they are the only three possible decay paths, thus proton and other particles emission
cross sections are neglected.

Therefore to obtain the cross sections of interest, it will be necessary to determine the
transmission coefficients that appear in eq. (5.21), which is equivalent to knowing the
model’s structure parameters of the compound nucleus, as described in the next section.

5.4.2 Properties of the Compound Nucleus
Level density

It is of paramount importance to correctly determine the level structure and level density
of the compound-nucleus because they have an influence in almost all of the observables.
For example, small differences in the shape of these densities can have a big impact on the
neutron capture cross section by favoring or inhibiting gamma-decay as compared to fis-
sion or neutron emission. Similarly neutron emission, when E* > S, depends on the level
scheme of the residual nucleus. Discrete levels are well known at low excitation energies
E* and near to the neutron separation energy .S, thanks to the resonances measurement
in neutron induced reactions, but even in these cases the properties of these levels, like
spin and parity, cannot be resolved.

In the energy range of this study, 4 < E* < 8 MeV, the compound nuclei will be formed
in the energy continuum, or statistical regime. In this regime discrete levels cannot be
distinguished from one another, either because the experimental resolution prevents from
it or because the average level spacing (D) becomes smaller than the level width I". The
object of this study is 2*° Pu which is a deformed heavy nucleus and thus it early attains
this statistical regime. At an excitation energy E* ~ 1.2MeV the experimental level
density starts to diverge from the theoretical ones because all the existing discrete levels
cannot be measured. In cases like this it is convenient to define the total level density as
a function of excitation energy p(E*):

dN(E*) 1

WE) = 5 = 15y (5.23)

where dN (E*) is the number of levels within an energy interval dE* around the excitation
energy E*, and (D) is the average level spacing in this energy region. It follows from
equation (5.23) that to obtain the total number of levels N(E*), one should integrate
p(E*) from 0 to E*. This total level density p(E) is in fact the sum over spin J and
parity II of the level density p(E*, J,II) [92]:

p(E) =" p(E",J.10) (5.24)

The level density p(E*, J,II) in the summation 5.24 can be factorized if it is given by
analytical expressions such as:

p(E*, J 1) = P(E*, JTN)R(E*, J)p(E") (5.25)
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where P(E*, J,1I) is the parity distribution and R(E™*,J) is the spin distribution. In this
work the parity equipartition is assumed for the used phenomenological model, eq. (5.26),
which is a good assumption for excitation energies higher than a few MeV.
1
P(E*, J1I) = 3 (5.26)
The nuclear levels are degenerate in the magnetic quantum number M, i.e. there are
(2J + 1) states per level, therefore to obtain the total state density w(E*):

W(E) =YY (2] + 1)p(E, J 1) (5.27)
J 11

One of the best known analytical expressions of the level density is the Fermi gas
model (FGM). It was first derived by Bethe [93] and it is based on two assumptions, that
the single particle states which construct the nucleus are equally spaced, which is true
if nucleons do not interact between them, and that there are no collective levels. For a
system of protons and neutrons the total Fermi gas state density is:

7 XD [2\/@U]
wp(F*) = ———— (5.28)

12 a1/4U5/4

where ¢ = ™ + g,) 1s the level density parameter, with , the spacing of the
6 \Up TG Yy P ) 9p/ 9 p g

proton /neutron single particle states near the Fermi energy. In contemporary models
a depends on excitation energy, see for further detail [92] [94]. In equation (5.28) also
appears the effective excitation energy U:

U=E"—A (5.29)

where A is an empirical parameter related to the pairing energy and which is included to
account for the odd-even effects in nuclei. The underlying idea is that A accounts for the
fact that pairs of nucleons must be separated before each component can undergo a single
particle excitation. In practice this energy shift is an adjustable parameter to reproduce
observables.

Under the assumption that the projections of the total angular momentum are ran-
domly coupled, it can be derived [93] |95] that the Fermi gas level density is:

. 1 27+1 (J +1/2) \/%GXP[QVGU]
pr(E* JI) = = 2L exp |- 2 VL] (5.30)
2 2¢/2mo3 202 12 al/AUs/4
where the first factor 1/2 is given by eq (5.26) and o2 is the spin cut-off parameter, which
represents the width of the angular momentum distribution. It depends on excitation
energy as it will be shown when fitting our data. Equation (5.30) is a particular case of
the factorization of equation (5.25), where the spin distribution F(E*, J) takes the form:

. 2J+1 (J+1/2)
F(E*,J) = 5o O {—T

(5.31)

Summing pr(E*, J,II) over parity and spin gives the total level density for the Fermi
gas model,
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pr(E*) = (5.32)

This level density however does not explicitly account for collective levels, although
it is well known that these exist as a result of coherent excitations of the fermions that
constitute the nucleus. These can be included in an effective way with the level density
parameter a, and even though its energy dependence is conceived to handle shell effects, in
most cases this parametrization is sufficient. However, in calculations involving strongly
deformed nuclei it is convenient to introduce enhancement factors, rotational K,, and
vibrational K,;, (for further details see [26] [92]), therefore the deformed Fermi gas level
density ppaer(E£*, J, 1I) reads:

pF7d8f(E*a Ja H) = Krot(E*)Kvib(E*)pF,int(E*7 J, H) (533)

where ppin(E*, J,II) is the intrinsic Fermi gas level density that should just describe
single-particle excitations, with a different, smaller, level density parameter a than before.
For the calculations performed in this work the collective enhancement was explicitly
included in the level density used.

In this work we used the constant temperature model (CTM), proposed by Gilbert and
Cameron in the 60’s [62]. It is a hybrid between the FGM at high excitation energies, and
an exponential function at low ones. The function is deduced from the experimental data,
that suggest that at low E* the cumulated number of levels N(E*) follows the so-called
constant temperature law:

V() = exp (T )

- (5.34)

where the nuclear temperature 7" and the energy E, are adjustable parameters that serve
to reproduce data. Applying to this expression the definition of level density (5.23):

. dN(E") 1 E*—E
)= B Ly (F )

(5.35)

This expression is matched with FGM at a certain matching FE); such that both
densities are equal at this energy,

pr(En) = pr(En) (5.36)

and that their derivatives are also equal:

dpr

dpr
T (En) = 2 (E) (5.37)

~ dE*

From these conditions two expressions can be found for the temperature 7" and the
energy Fy. However in this work they are considered as adjustable parameters. As a
matter of fact, the level density may have a discontinuous derivative in contrast with
equation (5.37), as seen in previous works [96] [46].

To predict the shape of the level density p(E) there are different statistical models,
but we chose the CTM because it works well for heavy deformed nuclei, like Pu, and
there is experimental evidence that supports this choice as detailed in [36], [97] and [38].
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It is worth mentioning that currently a big effort is being done to improve microscopic
models, specially the work done by S. Hilaire et al. [98] to produce a level density using
the Gogny force in a Hartree-Fock-Bogoliubov (HFB) temperature-dependent formalism.

Experimental data is used to constrain the models, i.e. to adjust their parameters or
to rescale the predictions of the microscopic approach. At low excitation energies, where
all levels have been measured, the level density should reproduce the discrete levels of the
nucleus. For an excitation energy around the neutron separation S,, the mean energy
resonance spacing of low energy s-wave (I = 0) neutrons, (Dy), is used to constrain the
density of states that can be populated from [ 4 s coupling of the impinging neutron and
the ground state of the target nucleus:

1 J=I+1/2

- ns 7H .

o > p(Sn, J,T0) (5.38)
J=1-1/2

where [ is the spin of the target nucleus. Recalling that the parity is conserved, equation
(5.20), then in the case of neutrons impinging on 2% Pu:

n(l=0,5=1/2)+?Pu(I™ =1/2%) = 2Pu(J" = 0%, 1) (5.39)

Taking into account the possible coupling shown in expression (5.39), from equation
(5.38) the mean resonance spacing can be deduced (Dy) = 1/[p(Sn,0") + p(Sy,, 11)]. For
this reaction, neutron experimental data gives a value (D) = 2.20 & 0.05¢V [99]. In
figure 5.12 we compare the level density p(FE,07) + p(E,17) of ' Py obtained with the
Gilbert-Cameron model and with the microscopic model of Hilaire et al.:

Figure 5.12 perfectly illustrates the discrepancies between the existing models. As
a matter of fact, it is extremely difficult to predict the shape of the level density for
intermediate and high excitation energies. During the evaluation process of the reaction
n + 2% Pu — 20Py, we explored the possibility of using the microscopic level density
calculated by Hilaire et al. with the HFB formalism, but the results obtained for the
radiative capture cross section were not satisfactory. The reason is that the microscopic
calculation is consistently higher than the CTM between 1.5MeV and 6MeV, which
implies that, when the compound nucleus is formed, its decay via gamma emission is
favored as compared to fission for example, reason why in this work the Gilbert-Cameron
model was chosen. This choice seems to be supported by the results obtained in a recently
published work on the level density and gamma strength function of 24Py [38].

In figure 5.13 we compare the cumulative number of levels N(E*) of 24° Py over its
ground state, which matches the experimental number of levels up to 1.35MeV, to the
level density of the 1% barrier (blue solid) and the 2"¢ barrier (blue dotted). Looking
at figure 5.13 it is immediate to remark the difference between the number of levels over
the barriers and over the ground state. This stems from the different deformation and
temperature of the 2*° Pu nucleus over the barriers [100].

Gamma Strength Function

To describe the y-decay process, apart from the level density, the gamma strength function
(7SF) is introduced. It is a fundamental ingredient that, in combination with level density
and fission parameters in fissile nuclei, rules the competition between the different open
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Figure 5.12: Level density p(E,07)+p(E, 17) of 2 Py obtained with the Gilbert-Cameron
model (blue) and with Hilaire et al. model (red). The black vertical line represents
the neutron separation energy, at which both cross because they are adjusted to fit the
experimental data p(S,,07/17) = 1/(Dy) = 1/2.2 [eV '] & 455000 [MeV ~1].

decay channels. Thus this function is intimately related to the y-emission probability of
the decaying nucleus. For a multi-pole transition of the type " X", with X = F, M and
[ the momentum of the transition, the ySF fx; is defined as the average reduced width
partial radiation EV_(QHI)(FX[(E,Y)), per energy interval as:

fxi(E,) = E;*(Cx(E,)) /D (5.40)

where F, is the gamma energy, and D is the average spacing of the resonances. The
transmission coefficient Tx,(E,) can be expressed as:

TXZ(E'y) = 27TE,;(2Z+1)le<E7) (541)

Equation (5.41) shows the relation between transmission coefficients and the ySF and
eq. (5.40) of this function with D, which is related to the level density by p = 1/D.
This is the reason why the level density p, together with the ySF, plays a crucial role
to calculate the ~v-cascade decay. The multipolarity of the transitions is defined by the
selection rules, but in practice only the E1, M1 and E2 transitions are relevant, being 1
the strongest one and usually referred to as the giant electric dipole resonance (GDR).

In the 50s a great interest on the strength function developed, and a big step forward
was done with Brink’s hypothesis [101]. D. M. Brink proposed in his PhD thesis (1955)
that the photoabsorption cross section of the GDR is independent of the detailed structure
of the initial state. This hypothesis was extended in 1962 by P. Axel [102] to include
absorption and emission of y-rays between resonant states. The combination of both is
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Figure 5.13: Cumulative number of 2*° Py levels obtained with the Gilbert-Cameron model
over the ground state (E; = 0MeV') compared to the experimental value (E; = 0MeV),
and the 1% (E; = 5.97MeV), and 2™¢ (E; = 5.1MeV) barrier.

known as the generalized Brink-Axel hypothesis, and it implies that the dipole v-decay
strength has no explicit dependence on excitation energy, spin or parity, apart from the
usual selection rules.

The Brink-Axel hypothesis is widely used as it simplifies a lot the problem of deter-
mining the shape of the vSF, and it leads to a function related to a standard Lorentzian:

2
O'XlEfyFXl

5.42
(E = EL) + BT, (542)

fxi(E,) = Kx

where ox; is the peak cross section, Ey; is the energy and I'y; the width of the giant
resonance. There have been several works to improve and extend eq. (5.42) to make it
more consistent with the available data, specially relevant is the work of Kopecky and
Uhl [103]| which is included in Talys calculations by default.

In this work we tried three different parameterizations of the ySF’s in combination
with two different level densities:

1. Model 1: Level density from the Hilaire et al. [98] HFB calculations, combined with
a Kopecky and Uhl’s parametrization of the vSF. We added a pygmy M1 resonance
associated with the rotation of protons and neutrons in opposite directions, i.e.
scissors mode [65].

2. Model 2: Level density from the same HEFB model, combined with Goriely’s hybrid
model of the vSF [26].

3. Model 3: Level density from the Gilbert-Cameron model, combined with the ySF
oh Hilaire et al. [26]. We added an up-bend, which is a straight line that plays
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an important on the E1 strength function as it permits to adjust its shape at low
energies.

It is always necessary to ensure that the mean radiative capture width (I'y) obtained
with the calculations, is in agreement with the experimental value. The value of (I',)
depends on the level density and on the ySF. Table 5.1 resumes the different values given
by the considered models.

‘ Experiment ‘ Model 1 ‘ Model 2 ‘ Model 3
(T,)meV | 43+5 | 435 | 436 | 388

Table 5.1: Experimental total radiative width for [ = 0 compared to the one given by the
different theoretical calculations performed, all of them fall within the experimental error
bars.

After several tests we decided to retain model 3, because it was the one with which
we could reproduce capture and fission simultaneously, also it is purely a microscopic
calculation except for the up-bend correction [104]. Indeed a big progress has been done
lately in this type of microscopic calculations, and there are now different approaches. In
figure 5.14 we represent the gamma strength function used for E1 and M1 transitions.
The M1 strength functions has a similar shape to the one extracted using the Oslo method
given in [38].
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Figure 5.14: Gamma strength functions from microscopic calculations: E1 (red curve),

M1 (black curve) and sum of both (blue curve).
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Fission Barriers, Transition States and Class-II States

Up to now we have shown how the parameters that have a direct influence on the branching
ratios Gy, (E*, J™) and G, (E*, J7). To be able to do a complete calculation of the
competition between the different decay paths the G,, ;(E*, J™) branching ratios are need
as well, which means determining several fission parameters.

This is not easy because fission is a really complex process that depends on many
variables which can have very different outcomes for a same fissioning nucleus. For in-
stance a fissioning nucleus may split into two identical fragments, or into a heavy one, a
light one and an alpha particle, a ternary fission. Figure 5.15 illustrates these differences
in the fission fragment mass distribution for different fissioning nuclei. In addition, the
excitation and kinetic energies of the fragments can vary a lot from one fission event to
another, and these fragments can emit neutrons or y-rays during their decay.

Ad

[ 0 mass distributions

| | ‘ + Z distributions

[ - X _ listributions

N=126 - A S

Figure 5.15: Fission fragments’ mass distribution for different fissioning systems of the
nuclear chart [39]. The nuclei for which the mass distributions of the fragments have been
measured are marked with blue circles, those for which the charge distributions have been
measured are marked with blue + signs, and the green X marks denote those measured
in inverse kinematics.

To account for all these possibilities there are different ways to tackle the fission
process. Modern approaches usually involve calculating a potential energy surface as a
function of the different multipolar deformations. Typically this will be a two dimensional
topological map of quadrupole Qo9 and octupole Q39 deformation, see figure 5.16. Al-
though other degrees of freedom are being added they need too much computation power
to provide precise calculations.

These microscopic calculations could provide in theory the fission probability of the
compound nucleus. However this has a very high computational cost even though several
approximations and truncations have to be done. In practice for evaluations the potential
energy is represented as a function of 1D-deformation, as described by Bohr and Wheeler
who in 1939 developed the first theory of nuclear fission based on the liquid drop model
[100]. Figure 5.17 (fig. 3 in their article) perfectly illustrates this approach to fission.
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100

Figure 5.16: Potential energy surface of 2*°Pu in MeV, as a function of quadrupole Qq
and octupole Q39 deformation obtained with a HFB calculation (courtesy of Anna Zdeb
(CEA/DAM/DIF)). The white line represents the minimum energy decay path, the most
probable, and the white dots represent other possible scission points
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Figure 5.17: (Fig. 3 in|[100]) The left part of the figure represents a topological map of
potential energy. The striped line represents the path that the nucleus would follow until
scission. The right part of the figure represents how the potential energy varies along this
line. The saddle point defines the height of the fission barrier. Just above it transition
states appear and for higher energies they can be described by level densities, figure 5.13.

In their paper Bohr and Wheeler already developed the liquid drop model (LDM)
from which it follows that the potential energy surface can be plotted as an arbitrary
deformation, and that the saddle point corresponds to an unstable equilibrium. They
give an intuitive classical representation of the neutron induced fission process by a ball
lying around the well, that if put out of equilibrium, will move over the surface. If the
energy is high enough, it will trespass the saddle point, passing through the excited states
on top of it, and fissioning. During this process the nucleus could lose some energy by
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re-emitting the neutron or by emitting gamma-rays.

Their LDM of fission also predicted that the nucleus would be cooler over the saddle
point, and therefore the level density lower and discrete states appear over the barrier,
transition states, as illustrated in the right part of figure 5.17. The LDM was extended
in the 70s to include shell corrections [105] [106]. After these corrections are applied,
structures appear around the LDM barrier, which becomes a double humped or even
triple humped barrier. Each barrier has its own characteristic height Eg, width hAw,
transition states and level density. If there is more than one fission barrier, between them
there are wells in which the so-called Class-II states are formed. Figure 5.18 from [46]
perfectly illustrates the current 1D approach used for the evaluation of the fission cross
section.
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Figure 5.18: Schematic representation of the potential energy as a function of deformation
¢ obtained with the liquid drop model (LDM) plus the shell model corrections (SCM) [46].
The dotted curve represents the 1D potential with the LDM, to be compared with the
right hand side of figure 5.17. The excited states built over the ground state lie within
the first well, ie Class-I states. The ones built over the second well, between the inner
barrier A of height V4 and the outer barrier B of height Vg, are the Class-II states.

The probability of the nucleus at en excitation energy FE, to tunnel through a fission
barrier is given by the Hill-Wheeler formula (5.43).

1

Ty(E:) = 55 (5.43)

1+ exp [—QWTf]
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where By is the height of the barrier and Awy is its width. For a transition state with
excitation energy e; above the top of this barrier:

Ty(Eaye) = ! (5.44)

_ (E:c_Bf_Ei)
1+exp 27T—hwf

To obtain the total fission transmission coefficient, one must sum all the individual
transmission coefficients for each barrier through which the nucleus may tunnel. For a
nucleus with excitation energy E,, spin J and parity II, the total transmission coefficient
reads:

T(E,) = ZTf(Ex,gi)f(i,J, ) +/ zp(e,J, Ty (E,,¢)de (5.45)

Ein

where p(e, J,II) is the level density of fission channels with spin J and parity II for an
excitation energy above the barrier e, and f(i, JII) = 1 if the spin and parity of the
transition state is equal to that of the compound nucleus and 0 if not. The summation
runs over all the discrete transition states on top of the barrier and Ej,.

In the case of a double humped barrier, as ?*°Pu, one has to calculate an effective
transmission coefficient 7¢;:

TaTg

—A°B 5.46
Th+1Tp ( )

Tefr =

where Ty and Tp are the transmission coefficients, calculated with equation (5.45) for
barriers A and B respectively.

Class II states have an influence in the fission transmission coefficients, specially when
the excitation energy of the compound nucleus is lower than that of the barriers. They
are responsible for the appearance of resonant structures in the fission probability. To
include this effect in the case of the double humped barriers, the effective transmission
coefficient T, ;s has to be multiplied by a factor Fap(E*):

TaTp

2 Fun(E* 5.47
A Fan(E) (5.47)

Terr =

This correction factor takes the following empirical form [26]:

4 E—E;\? 4
Fup(E*) = X [(1— —— 5.48
a5 (E) Ty +Tg + ( 0.50';; ) ( T, +TB) (5.48)

if By —0.50 < E < E;i+0.5I; and Fag = 1 otherwise, where I';; is the width of the
class-11 state with excitation energy Fj;.

All in all, to obtain the fission cross section °Pu(n, f), several parameters have to be
optimized. Firstly, the height of the barriers and their width, secondly, the level density
and the transition states over the barriers, and finally, the class II states. In subsection
5.4.4 we compare experimental data with our calculation.
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Parametrization Summary

Table 5.2 summarizes the different cross sections that were used to adjust the parameters
of the Hauser-Feshbach calculation. In this table only the parameters which have a prior:
the strongest influence on each of the cross sections are listed. However, any change of a
given parameter may influence all the cross sections, as the sum of all must be equal to
the reaction cross section or which is given by the optical model calculation.

Optical Model ‘ Fitted XS ‘ Most relevant parameters
O LD, ~SF
OR Oy LD, ~SF
On,f Barriers, transition/class-II states, LD

Table 5.2: Reaction channels used to fix the reaction model parameters.

To sum up, we will validate these parameters with the neutron induced data of the
three reactions oy, ,/, 05,4 and o, . In chapter 6 we will use these parameters to calculate
the branching ratios G, (E*, J™) and with them reproduce our data. The input for Talys
with the details of the chosen parameters is given in appendix G.

5.4.3 Radiative Capture Cross Section

As mentioned above, the gamma-strength functions and the level density are adjusted
by comparing the calculated radiative capture cross section o, to existing data, but
respecting the experimental (I'y) and (D). This cross section will however depend on
other cross sections, in fact it competes with all the other open decay channels, and
specially with inelastic scattering and fission, which are an order of magnitude bigger
than the radiative capture in the studied energy region. Thus small changes in the fission
or inelastic scattering cross sections can induce big changes in the (n,~) reaction cross
section. In figure 5.19 we compare the calculated cross section with the experimental data
for this reaction of Hopkins [107| and Kononov [108|.

As one may see in figure 5.19, o,,, varies by more than two orders of magnitude in
the studied energy range. There is also a change in the slope at around 500 keV, where
fission starts to rise as we will see in figure 5.21, which makes the capture cross section
decrease quickly and become really small. In addition, when performing a measurement
of this cross section, one has to subtract the y-rays emitted by fission fragments, for this
reasons, data for energies higher than 1 MeV do not exist. This means that here the
parameters cannot be fixed with the data, thus big discrepancies between the different
evaluations can occur as represented in figure 5.20. Our evaluation is systematically
higher than the state of the art evaluations, for two main reasons. Firstly, the other cross
sections, specially fission, fit better the data, professional evaluators manage to do this
with a really fine tunning of the transition states and fission parameters. Secondly, they
adjust the parameters to fit o, ,/v/E, in the low energy region. This fine adjustment
goes beyond the scope of this work, but despite these differences we consider that our
calculation delivers a sufficiently good G, (E*, Jm) to interpret our data.

119



Oy (b)
T T 1711
I 1

T
1

107"

T II[]II|
| IIIJIll

102

T II\IH[

| ll\ltl{

|

Coo ol 1 I R SR A | 1 1

107" 1
E, (MeV)

Figure 5.19: The calculated radiative capture cross section 2*° Pu(n,~) (blue solid line),
compared to experimental data [107] [108].
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Figure 5.20: Our calculated radiative capture cross section 23 Pu(n, ) (blue dotted line),
compared to different evaluations, ENDF-VIII (solid blue), JENDL 4.0 (black) and JEFF
3.3 (red).

5.4.4 Fission Cross Section

As mentioned before there are a lot of parameters to adjust, barrier heights, barrier
widths, transitions states and level density over each barrier and class-1I states, see figure
5.18. To adjust all these parameters we used the fission cross section data [107] [108] in
the region of interest, between 30kel and 6MeV, and compared it to the calculation.
Figure 5.21 represents the fission cross section, for which there is a wealth of experi-
mental data available, particularly up to 200 keV. This makes it preferable to give more
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importance to the parameters that will influence this cross section, rather than those that
have stronger impact on capture for instance. Even though the low energy limit of 30 keV
was chosen to avoid the resonance regime, the experimental data of figure 5.21, suggest
that there are some structures up to a 100keV. These are in fact groups of resonances
that are caused by groups of class II states. In this work we use the headband states and
the class IT ones given by Bouland et al. [40]. However to reproduce the surrogate data
we removed several of the class II states and just kept some of them, as explained in the
next chapter. The mentioned structures where not reproduced with our calculation but
we consider it good enough to obtain the fission branching ratios G;(E*, J7).
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Figure 5.21: The calculated fission cross section 23 Pu(n, f) (blue solid line), compared
to same absolute cross section from the experimental data used in JENDL 4.0 [27].

5.4.5 Inelastic Scattering Cross Section

Finally we calculated as well the inelastic scattering cross section o,,,,. In figure 5.22
the calculated cross section is compared with the experimental data of Batchelor [109]
and Andreev [110]. Even though the error bars are large, it is a good way to check that
the evaluation is congruent with other data and that there are no big flaws. However we
will not use GG,,,» branching ratios to compare with our data because it was not measured
directly, it can only be inferred from the sum of fission and ~-decay.

Figure 5.23 is the same as figure 5.22 but adding three evaluations JEFF 3.3, ENDF-
VIII and JENDL 4.0. The first experimental point around 1 MeV is not well reproduced
by our calculation, neither it is by the other evaluations except for JEFF 3.3. However our
calculation is in good agreement with ENDF and JENDL which validates the evaluation
procedure followed in this work.
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Figure 5.22: The calculated inelastic scattering cross section 23 Pu(n, n’) (blue solid line),
compared to experimental data [109] [110].
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Figure 5.23: The calculated inelastic scattering cross section ?*° Pu(n, n’) (blue solid line),
compared to experimental data [109] [110], and evaluations (dotted lines).
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Chapter 6

Interpretation of our Data

This chapter is devoted to the theoretical interpretation of the 240 Pu(*He,*He') reaction
experimental results and the calculations performed to reproduce these data departing
from the model parameters obtained in the previous chapter. These parameters in com-
bination with a spin-parity distribution can be used to calculate the gamma decay and
the fission probabilities of 2*° Pu* as a function of excitation energy. The comparison of
these calculations and the experiment, and a sensitivity test of the parameters, will be
done and will be followed up by a discussion.

To describe the experimental results presented in chapter 4, the first approach was to
calculate the v-decay and fission probabilities as the quotient of their cross section over
the compound nucleus formation cross section, although the calculation and the data
did not compare well. The reason is that the spin distribution of the states populated
with n-induced reactions is different to that of surrogate reactions, thus the spin-parity
distribution has to be calculated in each case.

6.1 Branching Ratios

Having all the structure model parameters of the decaying compound nucleus (see ap-
pendix G), the calculation of the decay probabilities applying the Hauser-Feshbach for-
malism is quite straightforward. As explained before, it is a competition between all the
possible decay paths, which is driven by the branching ratios of the decay G, (E*, J™).
These are calculated as the ratio of the decay cross section (radiative capture or fission)
over the compound nucleus formation cross section for each energy bin and each J™:

o (B T (6.1)

Gy(E*,J") =

The calculated branching ratios will then serve to deduce the spin F(E*, J™) distribu-
tion from the experimental probabilities P;*"™(E*), we recall equation (1.10):

P;UTT(E*) _ Z F(E*, JTI') . GX(E*7 JT(')
J7r
The spin distribution deduced from the data is then compared to a theoretically cal-
culated one, which was performed by M. Dupuis (CEA/DAM/DIF). This approach will

be explained in detail in subsection 6.2.
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The Hauser-Feshbach calculation of the compound nucleus decay was performed with
Talys 1.9. This code gives the option to calculate the decay of a nucleus at a certain
excitation energy FE*, spin J and parity m. However, when performing a compound
nucleus decay calculation, i.e. with no incoming particle, the code does not account for
the width fluctuation correction factors (WFC) of the decay channels. This can imply an
error of up to 20-30% according to the calculations of O. Bouland et al. [46] (e.g. FIG. 3
of their article). It also implies that the decay probability through a given state can be
too high. For example, if there is a 41 class II state at a certain excitation energy, and
one performs a compound nucleus decay calculation with the nucleus in a 41 state, all the
possible flux will pass through this state, while in theory it should be distributed among
other possible outgoing channels with a weight given by the corresponding WFC factor.

The calculations of the gamma-decay and fission probabilities were done for the exci-
tation energy interval where our data can be fitted, i.e 4 < E* < 8 MeV in steps of 200
keV, 0 < J < 20, and for each parity. Figure 6.1 represents the decay probabilities as a
function of excitation energy for a 2*° Pu* nucleus in different initial states J™.
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Figure 6.1: Calculated fission (blue) and gamma-decay (red) probabilities as a function
of excitation energy of a compound nucleus ?*° Pu* formed at different J™ states.

The comparison of the curves in figure 6.1 illustrates the influence that spin and parity
have on decay probabilities. For instance, when the CN is formed in a 0" state, fission
grows quickly between E* = 4.5MeV and E* = 6MeV because there is a 01 transition
state at a low energy over both barriers, as suggested in literature [40] [53].

Having obtained the branching ratios, the first attempt to reproduce our experimental
data with a calculation was to use the spin-parity distribution populated by the neutron
induced reaction. In figure 6.2 we compare our surrogate data, with the n-induced prob-
abilities calculated as the quotients o) /oSN (E,) and ¢! /cN(E,). The calculations and
the surrogate data do not compare well, which was expected for the gamma decay prob-
ability as it is a general result of previous works in the field (see chapter 2). Surprisingly,
there is a major disagreement in the case of fission too, specially up to S,, +1 MeV. This is
most likely due to the spin-parity mismatch, thus the importance of correctly calculating
the J™ distributions, as described in the next section.
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Figure 6.2: Decay probabilities of the C.N. 2°°Pu. The experimental data (points) are
compared to neutron induced calculation (solid curves). The vertical line marks S,,.

6.2 Spin Distributions

In this section we compare the spin-parity distributions of the residual nucleus deduced
from the data, and the one calculated with a reaction model. The compound nucleus
formation must respect the spin and parity conservation rules as expressed in equations
(5.19) and (5.20), respectively. This implies that in the case of the **Pu(*He,*He')
reaction, only states with a natural parity, i.e J* = 07,17,2%..., can be formed with direct
excitations, i.e. with no intermediate coupling. When considering indirect excitations,
in which intermediate strongly coupled channels intervene, a small proportion of states
with unnatural parity can be formed, but it can be considered negligible as theoretical
calculations show.

6.2.1 Experimental Distributions

To extract the spin distribution an iterative procedure is followed to minimize the y? and
fit the experimental results. Several different functional forms of the spin distributions
were tried, but finally just two, a Gaussian and the derivative of a Gaussian with different
proportions of parity, were retained. The reason is that this distribution arises from the
Fermi Gas Model, which is still widely used in literature [79] [111]. However to reduce the
number of parameters in the fit, we finally used the derivative of the Gaussian as it only
depends on the spin cut-off parameter o%. In addition we included factor P(E*, J,1I) to
ensure natural parities, leaving the following fitting function,

F(E*, J.TI) = P(E*, J, H)%exp {—%} (6.2)
with
P(E*, J,+) = (14 (-1)7)/2 (6.3)

The aim is therefore to deduce the spin cut-off parameter o2 from the experimen-
tal data with this constraints and the theoretical calculations of the branching ratios
G(E*, J,1I). Assuming a linear energy dependence for o in the energy region of interest:
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o=a-(E*—41)+b (6.4)

Only the branching ratios G(E*, J,II) of states with a natural parity were considered
to fit the experimental results presented in chapter 4. In figure 6.3 we show the results
obtained when fitting the v-decay and the fission probabilities independently. To achieve
this however some of the class II states used in the evaluation, obtained from [40], were
removed retaining the ones given in appendix G.
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Figure 6.3: Experimental y-decay (left) and fission (right) probabilities of a compound
nucleus of 2% Pu* as a function of excitation energy, compared to the fits (solid red lines).

The parameters obtained with the fits in figures 6.3a and 6.3b are compatible within
error bars, thus a weighted average of them gives: a = 0.73£0.45MeV 1, b = 2.8840.57.
The obtained distribution is plotted for different energies in figure 6.4
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Figure 6.4: Spin distributions (eq. (6.2)) obtained with experimental parameters (a =
0.73 £0.45MeV L, b = 2.88 4 0.57) for different excitation energies.

The distributions represented in figure 6.4 follow the parity constraints mentioned
above. This means that for even values of J a 100% of the distribution corresponds to
positive parity and for odd ones a 100% corresponds to negative parity. The experimental
distribution is compared to the theoretical one in figure 6.6.
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6.2.2 Theoretical Distributions

The theoretical calculation of the spin distribution was performed by M. Dupuis
(CEA/DAM/DIF). These calculations aim to predict the spin and parity distributions
of the compound nucleus populated with the inelastic scattering reaction («, /) using
different theoretical ingredients detailed in [29] and [30].

To this end, the JLM (Jeukenne-Lejeune-Mahaux) folding model is used in combina-
tion with nuclear structure information calculated within the quasi-particle random phase
approximation (QRPA), implemented with the Gogny D1S interaction. The simple fold-
ing approach for direct inelastic scattering is used to model the « particle as a punctual
one. All the ingredients in the calculation are microscopic except for some parameters of
the interaction that are fixed with experimental values.

This approach gives the population of excited states in the energy continuum, where
the knowledge about individual states is scarce, and thus is an alternative to the usual
pre-equilibrium exciton model. The first step is to produce all the possible final states of
the nucleus in this case 2*°Pu, up to a certain energy. The QRPA calculation produces
the headband states K™ which are one phonon excitations, above them rotational bands
are built, with approximate energies:

J(J+1)—K?
27

EaKJﬂ— = Dogr + (65)
where F, k- are the QRPA eigenvalues, and 7 is approximated by the moment of inertia
of the 2°Pu target in its ground state.

Having the states produced with the QRPA calculation, the F'(E* J™) distributions
are calculated with the folding-JLM model. This model produces the cross section 05’2}‘]
to populate each one of the states given by the QRPA, and the total formation cross

section of the system o, takes the form,

Jma;c

Oa,af = Z Z Z Ugi;J (66)

K™ neK™ J=Jmin

where n distinguishes the headband states with the same quantum numbers K7, J,,;, = 0
if K" =0", Jypin =1if K" =0 and J,,;, = K if K > 0, and J,,,, is the maximum spin
up to which the calculation is performed. The probability to form the compound nucleus
with a certain spin and parity F(E*, J7) is calculated as follows:

KT.J
O
F(E*,J") = L Zg;gjeq ’ (6.7)

This defines the spin distribution, which satisfies ) . F(E*, J™) = 1, for any given
E*. Tt varies with excitation energy as it may be seen in figure 6.5, which shows the
preliminary results of a work that is still under improvement, the higher the energy the
higher the average spin. The calculation goes up to a spin of 12A as part of a compromise
between calculation time and accuracy. At 4.5, 6 and 7.5 MeV excitation energies the
average spin J is 4.5, 5.1 and 5.6 h respectively.

In figure 6.6 we compare de spin distributions at E* = 7.5 MeV in the case of a
neutron induced reaction, by fitting the experimental data, and with the microscopic
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Figure 6.5: Spin distributions calculated by M. Dupuis for different energies, in which the
distributions for each parity were summed. The contribution of the states with unnatural
parity m = (—)7"! can be neglected. As the energy increases, so does the average spin.

calculation. The figure shows that the average spin J in the case of neutron induced
reactions is much lower than in the case of the inelastic scattering of alpha particles. As
previously mentioned, this was expected as the angular momentum transfered during the
inelastic scattering is much higher than for the latter. A rather good agreement between
the experimental distributions, eq. 5.31, and the theoretical calculation described above
is observed in figure 6.6.

The big difference between the neutron induced and the two spin-parity distributions
corresponding to the inelastic scattering of alpha particles means that the surrogate re-
action method cannot be applied directly using equation (1.2). In the next section we
will give the final calculation accounting for this spin-parity mismatch. On the contrary,
the J™ distribution deduced from the experimental data is in rather good agreement with
the theoretical one, which means that eventually the branching ratios G(E*, J™) could be
obtained by adjusting the reaction model parameters with the surrogate data.
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Figure 6.6: Spin distributions at £* = 7.5 MeV in the case of a neutron induced reac-
tion (blue), by fitting the experimental surrogate data (red), and with the microscopic
calculation (yellow).

6.3 Decay Probabilities Calculation

The theoretical spin-parity distributions F'(E*, J™) and the branching ratios G, (E*, J7)
are introduced in equation (1.10) to obtain the decay probabilities of the compound
nucleus as a function of excitation energy. In figure 6.7 we compare these calculated
probabilities to the experimental results.
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Figure 6.7: In red 7 decay probability of the compound nucleus ?*° Pu*, the solid line
represents the calculation and the points the measurement. Fission probabilities are
similarly depicted in blue.
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Figure 6.7 shows a very important result, which is the good agreement between the
measurement and the experiment. The discrepancies between the calculation and the
experiment around 5.4 and 6 MeV may be explained with the big sensitivity of the fission
probability to the barrier parameters in this energy region, as it will be shown in the next
section. On the one hand a very fine tuning of the fission barrier parameters may be
necessary to solve the observed discrepancies. On the other hand, further refinement of
the pre-equilibrium model could account for these differences.

Calculating a spin distribution of a nuclear reaction which gives satisfying results, as
those of figure 6.7, is a formidable task and a step forward in the improvement of the
surrogate reaction method. Up to present, as mentioned in chapter 2, few have succeeded
as Escher et al. [22] and Raktiewicz et al. [23]. In the mentioned works they studied
nuclei for which just y-decay or neutron emission was possible, thus few parameters had
to be adjusted to calculate the branching ratios G, (E*, J7). On the contrary, doing this
same process when the fission channel is open is very difficult due to the increased number
of parameters. For this reason in this thesis only the sensitivity of the calculations to the
input probabilities could be analyzed. In the future using a Bayesian approach all the
parameters could be defined to produce neutron induced and fission cross sections.

6.3.1 Sensitivity Analysis

The sensitivity of the calculated probabilities to the input parameters to obtain the
branching ratios is illustrated in figure 6.8. Here we compare the experimental proba-
bilities to a calculation done with the theoretical spin-parity distributions of the (a, o)
reaction, calculated for this work, and the branching ratios obtained with the default
input parameters of Talys 1.9.
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Figure 6.8: In red 7 decay probability of the compound nucleus 2*° Pu*, the solid line
represents the calculation and the points the measurement. Fission probabilities are
similarly depicted in blue. The calculations included the theoretical spin distributions,
see fig 6.5, and branching ratios obtained with recommended input parameters.
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The large differences between the calculations seen when comparing figures 6.7 and
6.8 suggest that the decay probabilities are very sensitive to the input model parameters.
This implies that surrogate reactions can be used to fix reaction model parameters, i.e.
performing an evaluation, when knowing how to calculate the spin population of the recoil
nucleus.

To test the sensibility of the calculated decay probabilities to the structure model
parameters, we repeated the calculations by slightly varying different parameters. The
parameters were varied one by one to quantify the effect of their variations on the decay
probabilities. For instance changing the fission barriers’ height, the level densities, etc.
All the decay probability figures contain the same data sets: calculated y-decay probabil-
ity (red solid line), calculated fission probability (blue solid line), experimental y-decay
probability (red triangles) and experimental fission probability (blue squares).

The calculated probabilities were obtained with the spin-parity distribution of M.
Dupuis and with slight variations of the structure model parameters of 24 Pu deduced
with the evaluation n + 23° Pu. This gives an idea on how fiddling with parameters can
affect the calculated probabilities for a given spin distribution. With these same changes
in the parameters we calculate as well the radiative capture cross sections and the fission
cross sections and compare them to the neutron induced data used for the evaluation and
by JENDL 4.0.
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Increase in 1st Barrier Temperature

We slightly increased, from 0.325 to 0.345 MeV the temperature of the level density over
the first fission barrier (B,4), which in fact reduces the level density, see eq. (5.35). The
result is a reduction of the fission probability above the neutron separation energy, see
fig. 6.9. This was expected because the LD over the first barrier impacts the fission
transmission coefficients at £* > B,4. Equivalently the fission cross section (fig. 6.10b) is
reduced and the capture cross section (fig. 6.10a) slightly increased.
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Figure 6.9: Temperature of the level density over the first barrier increased from 0.325 to
0.345 MeV.
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(a) Radiative capture cross section. (b) Fission cross section.

Figure 6.10: Temperature of the level density over the first barrier increased from 0.325
to 0.345 MeV.
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Higher and Wider 1st Barrier

The height of the first barrier was increased from 5.97 to 6.07 MeV and the width from
0.85 to 0.95 Aw. This results in a slight increase of the fission probability between 4.9
and 5.4 MeV and a reduction of the fission probability above 6.3 MeV, see fig. 6.11. The
slight increase of the fission probability at low excitation energies is related to the fact
that B, is wider. When looking to the cross sections, the fission cross section (fig. 6.12b)
is reduced for neutron energies up to 3 MeV but for higher energies the effect is lower.
This makes the agreement with experimental data of the calculated capture cross section
worse.
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Figure 6.11: First barrier’s height increased from 5.97 to 6.07 MeV and width from 0.85
to 0.95 Aw.
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Figure 6.12: First barrier’s height increased from 5.97 to 6.07 MeV and width from 0.85
to 0.95 Aw.
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Higher 2nd Barrier

Increasing the height of the second barrier

(Bp) from 5.10 to 5.25 MeV makes the fission

probability increase slightly around 5 MeV E*. This is due to the fact that the trans-
mission through the class-II state at 4.95 MeV is favored. The effect at higher energies
is limited, figure 6.13. In contrast, the effect on the fission cross section is a reduction
for E,, > 1.5 MeV, probably due to the effect of the lower level density over Bp. Indeed
increasing the height of a barrier means shifting the LD profile in energy too, which can

have an effect a high excitation energies.
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Figure 6.13: Second barrier’s height increased from 5.10 to 5.25 MeV.
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Figure 6.14: Second barrier’s height increased from 5.10 to 5.25 MeV.
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Higher and Thinner 2nd Barrier

The 2nd fission barrier was increased from 5.1 to 5.2 MeV and its width reduced from
0.65 to 0.6 hw. The effect is the appearance of a peak in the fission probability, and thus
a descent in the y-decay probability around 5 MeV, see fig. 6.15. This is the region where
a class-II 1~ state at 4.95 MeV lies, see appendix G. This sharp increase is linked to the
strong influence of the barrier thickness and class-II states on the effective transmission
coefficient, equations (5.47) and (5.48). The impact on cross sections is small, besides a
reduction of the fission cross section for E,, > 2 MeV, see figure 6.16.
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Figure 6.15: Second barrier’s height increased from 5.10 to 5.20 MeV and width reduced
from 0.65 to 0.6 Aw.
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Figure 6.16: Second barrier’s height increased from 5.10 to 5.20 MeV and width reduced
from 0.65 to 0.6 A.
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Default Headband States

Using the headband states over the barriers recommended by RIPL [53|, which are the
same as Talys 1.9 uses by default, has a big impact on the calculated probabilities, figure
6.17. There are several natural parity low-lying headband states which can favor the
transmission through the barriers for both, neutron induced and surrogate reaction. The
fission probability is greatly increased around 5 MeV, as in the case of thinner 2nd barrier,
and it is consistently higher than the experimental probability up to E* ~ 7 MeV. This
results in a lower y-decay probability and thus a lower radiative capture up to E, ~ 1
MeV, fig. 6.18a. The effect on the fission cross section is a 50% increase up to E, ~ 1.5
MeV, but for higher neutron energies there is almost no impact. This is due to the fact
that for higher energies the transmission coefficients through the barriers are mainly ruled
by the level densities over the barriers.
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Figure 6.17: Default transition states over the fission barriers.

Ony (0)
Gn,fis. (b)

107

T— % T T TTH
I
Lol

T T T
Lol

beoer o b b b e b e 10

107 1 !
E, (MeV) 10 ! E, (MeV)

(a) Radiative capture cross section. (b) Fission cross section.

Figure 6.18: Temperature of the level density over the first barrier increased from 0.325
to 0.345.
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Class II States of Lynn et al.

In this case we changed our class-II states to include the ones used by Lynn et al. [40] to
evaluate the plutonium isotopic family. The impact on the fission and gamma emission
probabilities is clear, making several peaks appear on the calculated probabilities at the
energies in which the states are placed, fig. 6.19. This is a very clear example of why
surrogate data help to determine the properties of the decaying nuclei under the neutron
separation energy. On the contrary, the effect on the cross sections is almost nonexistent,
fig. 6.20. There are two reasons for this, one is that with neutron induced reactions
one does not have access to the energy region in which these states lie, and the other is
that the spin distribution is different. Thus the role of these states on neutron induced
reactions and surrogate ones is not the same.
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Figure 6.20: Class-II states from [40]
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Different Level Densities and +SF

Finally we changed both, the level densities and the ySF, using "model 2" as described
in chapter 5, table 5.1. The result is an even better agreement of the decay probabilities
up to £* =~ 5.7 MeV, and then for £* > 6.6 MeV there is an overestimation of the
fission probability and an underestimation of the gamma decay. This however results in
radiative capture in better agreement with neutron induced data, fig. 6.22a. In the case
of the fission cross section the results are in good agreement up to E, ~ 200keV, but
at higher energies the cross section is consistently higher. The reason seems to be the
different shape of the level densities obtained with the HFB calculation when compare to
the CTM, see figure 5.12. The microscopic level densities, even over the barriers, have a
steep slope at low excitation energies which decreases as E* increases.
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Figure 6.21: The level densities come from a QRPA /HFB calculation and Goriely’s hybrid
model was used for the ySF, see Talys manual [26].
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Figure 6.22: The level densities come from a HFB+Gogny calculation ("ldmodel 6") and
Goriely’s hybrid model was used for the vSF ("strength 5"), see Talys manual [26].
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Summary of the Sensitivity Analysis

The sensitivity analysis performed proves that small variations on the parameters can
have a strong impact on the calculations. The fluctuations of each parameter make the
calculation vary in a different way and in a different energy region. Furthermore, some
changes have a strong impact on the decay probabilities under the neutron separation
energy, but this does not reflect on the calculated cross sections.

This different influence on the calculations of each parameter depending on the exci-
tation energy means that one could potentially tune simultaneously several parameters.
This is envisaged as the continuation of this work. By systematically varying the param-
eters, one could determine first the range between which each parameter should lie, and
then varying all of them within this intervals we would be able to propagate an uncertainty
to the calculated cross sections.
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Chapter 7

Conclusion and Perspectives

7.1 Conclusion

To summarize, in this work we have simultaneously measured and studied, for the first
time, the v-decay and the fission probabilities of 24° Pu via the surrogate reaction method.
It has involved preparing the experiment, collecting the data, analyzing and interpreting
them.

From an experimental point of view, we were able to measure the P, (using Ge detec-
tors and scintillators) of a fissile nucleus, which is a complicated task, and we performed a
thorough uncertainty analysis. Even if there were some problems during the experiment,
such as the change in gain of different detectors, the unexpected target contaminants, etc.,
we managed to solve them and obtain fruitful results for the ?*° Pu(*He, *He') reaction.
In contrast, we could not account for the contaminants in the case of the 3He beam. This
made the results of the 2 Pu(3He,?He') reaction not exploitable. In addition, the ones
of the 2°Py(3He,*He) reaction obtained with telescope number 1 were of poor quality,
in chapter 4 we give the results for telescope number 2.

The theoretical interpretation of the experimental results obtained with the * He beam
was a success. The fission and y-decay probabilities, obtained for the 24 Pu(*He,*He')
reaction, were well reproduced with the parameters deduced from the n + 29 Pu evaluation
and the spin distributions calculated with the reaction model of Marc Dupuis, see fig.
6.7. This means that the underlying reaction mechanisms have been well understood and
that the structure parameters of the decaying nucleus are approximately correct. Having
grasped the essence of the inelastic scattering reactions of alpha particles, means that
they can be used as a complementary information for the evaluation of neutron induced
data, for example deducing the class II states or the barrier widths. This was the aim of
this work, to improve our understanding of the surrogate reaction method and to be able
to use (*He,*He') reactions confidently in the future.

Furthermore, the parameter sensitivity analysis, performed in section 6.3.1, reveals
that the decay probabilities and the cross sections are sensitive even to small variations
in the parameters, and that these variations have an impact on different energy regions.
This opens the possibility to deliver neutron induced cross sections using just the surrogate
data, as recently done in [23|. In our case, where fission is in competition with radiative
capture, doing this is very ambitious, due to the large number of parameters involved
in fission. Nevertheless, we are confident that we will succeed in doing this in the near
future.
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7.2 Perspectives

During this thesis we could not prove whether it is possible or not to calculate (n, f) and
(n,7) cross sections using solely the surrogate data, it will be done as a continuation of
this work. The first step will be to depart from a set of standard parameters and try to
find a set of them that reproduces the surrogate data. If this is possible, then we would
perform thorough sensitivity analysis of the parameters, to determine the margins with
which each parameter can be varied. Next, we would randomly vary all the parameters
within those limits and calculate the cross sections for each set of parameters. Finally,
the fission and radiative capture cross sections could then be obtained by averaging all of
the calculations, and their dispersion would give a confidence interval.

With all the feedback gained from this work, the CENBG collaboration aims to ap-
ply the same method and set-up as in this work, to the inelastic scattering reaction
22py(*He,*He')*2 Pu which is the surrogate of n + 2*'Pu. This nucleus, 2! Pu, is of
great interest for reactor physics but it is really difficult to perform direct measurements
due to its short half-life ~ 14y, which makes it a really interesting candidate to apply the
surrogate reaction method. It would be possible to calculate the spin-parity distribution
of the 22Pu(*He,*He')**2 Pu, reaction with the same kind of microscopic calculation as
in this thesis. In contrast, the reaction model parameters should be fixed departing from
some standard parameters, for instance RIPL [53|, not with neutron data. Then, using
the procedure described in the paragraph above, one could deduce the (n, f) and (n,~)
cross sections. Achieving this would be a great leap forward in the field, and would con-
firm that the surrogate method can provide neutron induced cross sections of short lived
actinides.

From an experimental point of view, the future of surrogate reactions however is to
perform the experiments in inverse kinematics. This will allow to overcome several of
the problems associated to the experiments in direct kinematics, i.e. target contaminants
or low ~v-detection efficiencies. When this technique is fully developed it will provide a
wealth of data to the community. This technique will allow to have access to very short-
lived nuclei for which there are no targets. In addition the heavy residue can be detected
after n or « emission which increases the detection efficiency impressively and allows one
to measure the neutron emission probability, which is extremely complicated to measure
in direct kinematics. Performing the experiments in storage rings enables one to have a
very precise determination of the angle and to neglect straggling and energy losses in the
target, thus a precise measurement of £*, all with similar counting rates to those of direct
kinematics.

A storage ring is an ensemble of beam pipes and electro-magnetic devices arranged in
such a way to permit heavy ions to revolve with frequencies of around 1 MHz at 10 MeV /u.
To correctly maintain the ions revolving in the ring, the amount of atomic reactions that
take place within the ring have to be minimized, thus the ring is operated in ultra-high
vacuum conditions ~ 10~2mbar. This puts severe conditions to performing reactions in
this kind of rings, which have just started to be possible at the Experimental Storage
Ring of the GSI in Germany.

Probably the most important quality of storage rings is beam cooling. It allows to
reduce the energy and the position spread of the stored radioactive ions. Beam cooling
takes place within a few seconds, which sets the lower limit on the half-live of the ra-
dioactive ions that can be stored. The combination of the electron cooler and the dipole
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magnets ensures the good quality of the stored beam in terms of emittance and purity.
The electron cooler can compensate the angular and energy straggling, and energy loss
of the beam in the gas target. In addition, the frequent (~ 1 MHz) passing of the reac-
tion zone allows ultra-thin gas targets (103atoms/cm?) to be used with no windows. All
these factors provide a good energy resolution and thus allow to accurately measure the
excitation energy of the decaying nucleus.

To make use of all the impressive properties of the storage rings, the CENBG is devel-
oping a new experimental set-up to simultaneously measure y-decay, neutron emission and
fission probabilities. Figure 7.1 represents schematically the set-up under development.
Particle-like telescopes will be installed near to the target to identify the reaction channel
and determine the excitation energy of the heavy nuclei produced in the surrogate reac-
tion. Downstream the target, a fission detector made out of solar cells will detect fission
fragments in coincidence with a scattered target-like particle. Unreacted beam-like ions
and the ones that did not fission continue their path and go through two dipoles where
they are separated. The heavy ions that undergo a reaction are detected in beam-like
detectors, which are position sensitive and permit to distinguish between 7y-decay and
neutron emission. Thanks to the focusing of the nuclei in the beam direction, in inverse
kinematics the detection efficiencies are nearly 100%, which is much larger than in direct
kinematics experiments.
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fragment Target-like
detectors detectors

Dipole

¢ Beam: 107-10% ions stored

| 20° l 23892+
i Gas-jet
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P Target D, 103/em?
Unreacted
beam
Beam
10-14 A MeV Detection systems:

Detectors for -Target like detectors - Telescopes
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* -Heavy Residue detector - DSSDs
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Figure 7.1: Schematic representation of the measurement of the surrogate reaction 28U +d
at a storage ring [112].

Figure 7.1 represents in addition to the set-up the concrete example of 23U%2% imping-
ing on a deuterium target. This reaction has already been studied in direct kinematics
[10], which will allow to compare the results obtained with both methods. If these re-
sults are in good agreement it would mean that the surrogate reaction method in inverse
kinematics is an excellent alternative to deduce neutron induced cross sections of highly
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radioactive isotopes. It would permit to measure with a good energy resolution, and no
contaminants, the decay probabilities of this kind of isotopes.

All in all, an impressive progress is currently being made in the surrogate reaction
field. As mentioned in chapter 2, in a study recently published [23|, they succeeded to
produce neutron capture cross sections from surrogate data. In the case of nuclei that
can undergo fission, this remains to be proven, hopefully in the near future. Anyhow,
we believe that this PhD thesis will help to make the state of the art advance in this
direction.
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Appendix A

Angles of the Scattered Particle
Detectors

A Monte-Carlo simulation in C++ of the geometry of the telescope detectors gave the
following angles in degrees:

Strip ‘ 0 ‘ A ‘ Omaz ‘ Omin Strip ‘ 0 ‘ A ‘ Omaz ‘ Omin
15 119.4 |1 0.9 | 247.0 | 293.0 15 119.4 1 0.9 | 67.0 | 113.0
14 | 121.9 | 1.1 | 246.0 | 294.1 14 | 121.9] 1.1 | 66.0 | 114.1
13 124.8 | 1.1 | 244.9 | 295.1 13 | 1248 | 1.1 | 64.8 | 115.1
12 127.8 | 1.2 | 243.5 | 296.4 12 1278 1 1.2 | 63.6 | 116.4
11 130.8 | 1.3 | 242.2 | 297.8 11 130.8 | 1.3 | 62.3 | 117.7
10 133.9 | 1.4 | 240.8 | 299.2 10 | 133.9] 1.4 | 60.6 | 119.3
9 137.0 | 1.5 | 239.3 | 302.7 9 137.0 | 1.5 | 59.2 | 120.9
8 140.1 | 1.6 | 237.4 | 302.7 8 140.1 | 1.6 | 57.4 | 122.6
7 143.2 | 1.8 | 235.4 | 304.7 7 143.2 | 1.8 | 55.4 | 124.5
6 146.2 | 1.9 | 233.2 | 306.9 6 146.2 | 1.9 | 53.3 | 126.8
) 149.2 | 2.0 | 230.7 | 309.3 ) 149.1 | 2.0 | 50.7 | 129.3
4 152.0 | 2.2 | 227.9 | 312.1 4 152.0 | 2.2 | 48.0 | 132.1
3 154.8 | 2.4 | 224.9 | 315.1 3 154.8 | 2.4 | 44.8 | 135.1
2 157.1 | 2.5 | 222.1 | 317.7 2 157.1 | 2.5 | 42.4 | 137.6

(a) Angles for each strip of telescope number (b) Angles for each strip of telescope number
one. two.
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Appendix B

Detectors Calibration Coefficients

B.1 Calibration Coefficients of Telescopes

The calibration coefficients are the ones of straight line defined as E;, = a;Eq,; + b;
where the subindex ¢ stands for the Si-Li or AE, F is the energy in MeV, FE,, is the
energy in channels, and a and b are the calibration coefficients, in MeV /channel and MeV
respectively. The numerical values are given in tables B.1 and B.2.

Strip | asizia | bsicin | aapy | bapy | asii2 | bsiniz | aaps | bama
2 0.005915 | 0.1671 | 0.002542 | -0.0227 | 0.006098 | -0.5875 | 0.002710 | -0.1350
3 0.005875 | 0.3059 | 0.002480 | -0.0305 | 0.006071 | -0.4951 | 0.002668 | -0.2451
4 0.005890 | 0.2077 | 0.002563 | -0.0572 | 0.006026 | -0.3529 | 0.002644 | -0.0948
) 0.005893 | 0.2282 | 0.002507 | -0.0361 | 0.006058 | -0.4677 | 0.002702 | -0.1440
6 0.005934 | 0.0883 | 0.002531 | -0.0460 | 0.006034 | -0.3766 | 0.002643 | -0.1307
7 0.005894 | 0.2403 | 0.002519 | -0.0723 | 0.006043 | -0.3893 | 0.002645 | -0.0788
8 0.005853 | 0.4186 | 0.002429 | 0.0952 | 0.006025 | -0.2883 | 0.002645 | -0.1809
9 0.005851 | 0.4176 | 0.002450 | 0.0002 | 0.006010 | -0.2381 | 0.002628 | -0.1321
10 | 0.005856 | 0.4030 | 0.002441 | 0.1237 | 0.005979 | -0.1092 | 0.002572 | 0.0583
11 | 0.005873 | 0.3650 | 0.002419 | 0.1187 | 0.006008 | -0.1764 | 0.002542 | -0.0281
12 | 0.005879 | 0.3633 | 0.002497 | 0.0326 | 0.006005 | -0.1347 | 0.002525 | -0.0686
13 | 0.005859 | 0.4713 | 0.002405 | 0.0512 | 0.006019 | -0.1512 | 0.002614 | -0.0635
14 | 0.005852 | 0.5366 | 0.002409 | 0.0381 | 0.006038 | -0.1937 | 0.002582 | -0.2102
15 | 0.005867 | 0.5274 | 0.002427 | -0.0204 | 0.006039 | -0.2112 | 0.002607 | -0.1614

Table B.1: Calibration coefficients of the telescopes for the * He beam.
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Strip | asizig | bsicin | aapy | bapi | asitip | bsiciz | aap2 | bapge
2 0.01010 | -0.3614 | 0.002468 | 0.0272 | 0.01047 | -1.149 | 0.002623 | -0.0407
3 0.01008 | -0.3499 | 0.002429 | -0.0210 | 0.01043 | -1.086 | 0.002627 | -0.2200
4 0.01013 | -0.4932 | 0.002503 | -0.0153 | 0.01040 | -1.044 | 0.002590 | -0.0706
) 0.01012 | -0.4669 | 0.002499 | -0.0835 | 0.01043 | -1.118 | 0.002669 | -0.1312
6 0.01011 | -0.4625 | 0.002571 | -0.1473 | 0.01043 | -1.130 | 0.002778 | -0.3933
7 0.01010 | -0.4153 | 0.002515 | -0.1306 | 0.01042 | -1.081 | 0.002598 | -0.0531
8 0.01010 | -0.3718 | 0.002462 | -0.0283 | 0.01042 | -1.051 | 0.002623 | -0.1883
9 0.01009 | -0.3646 | 0.002477 | -0.1054 | 0.01040 | -0.987 | 0.002649 | -0.2102
10 | 0.01009 | -0.3895 | 0.002495 | -0.0223 | 0.01041 | -1.096 | 0.002661 | -0.1506
11 | 0.01008 | -0.3671 | 0.002445 | -0.0212 | 0.01040 | -0.982 | 0.002569 | -0.1372
12 ] 0.01010 | -0.3633 | 0.002485 | -0.0211 | 0.01042 | -0.988 | 0.002578 | -0.2211
13 ] 0.01010 | -0.3383 | 0.002434 | -0.0753 | 0.01040 | -0.920 | 0.002603 | -0.0886
14 ] 0.01011 | -0.3356 | 0.002462 | -0.1152 | 0.01040 | -0.906 | 0.002542 | -0.1715
15 | 0.01010 | -0.2388 | 0.002368 | 0.0054 | 0.01040 | -0.930 | 0.002737 | -0.3767

Table B.2: Calibration coefficients of the telescopes for the > He beam.
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B.2 Calibration Coefficients of Liquid Scintillators

In table B.3 a and b are the calibration coefficients of the C¢4Dg detectors, in keV /channel
and keV respectively.

CgDg number ‘ a ‘ b
1 3.05603 | -427.914
2 3.49443 | -493.874
3 3.39847 | -588.304
4 3.29234 | -481.256

Table B.3: Calibration coefficients of liquid scintillators.

B.3 Calibration Coefficients of the Germanium Detec-
tors

In table B.4 @ and b are the calibration coefficients of the Ge detectors, in keV /channel
and keV respectively.

Ge number ‘ aHG ‘ bra ‘ arg ‘ bra
2 0.638122 | -39.2803 | 2.025712 | -87.19
3 0.783745 | -58.5558 | 2.365093 | -193.17
4 0.625526 | -45.6103 | 1.937492 | -102.18
5 0.614443 | -41.9416 | 2.379073 | -189.84
6 0.649010 | -45.9236 | 2.451082 | -184.22

Table B.4: Calibration coefficients of the Ge.
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Appendix C

Alternative Error Estimation

An alternative method to evaluate error is developed here and compared with the approach
explained in chapter 4. The formulas derived are just the result of applying equation (4.6):

(Af(ajl, Z Z gxf ﬁ%«ﬁx]%

=1 j=1

C.1 Fission Probability Uncertainty

In the case of the fission probability if the dependence on all the variables is written
explicitly:

Nf - Nter
Ef- (Ndet - Ncont - Nter/gf)

Pf(Nf7NteraNdetaNcontagf) = (Cl)

where Ny is the number of detected fission events in coincidence with the telescopes,
Nier is the number of ternary fission events deduced from the low energy part of the
fission coincidence spectra, Ng; is the number of scattered particles detected with the
telescopes, N.on: is the estimated number of events induced by the contaminants in the
carbon backing and ¢ is the fission detection efficiency.

To obtain the error associated to the fission probability expressed in C.1, one needs to
calculate the partial derivatives and the typical deviations associated to each variable, but
also identify any possible correlations between variables. The partial derivatives explicitly
take the form described in equations C.2 to C.6:

oP 1
L _ (C.2)
a]\/vf ngdet_ngcont_Nter
aPf _ Nf_gf(Ndet_Ncont) (C 3)
8]\'fter (Edeet - 6chont - Nter)2 .
P —e¢(Ns — N,
0 f — E‘:f( f ter) (04)

a]\[det (5deet - ngcont - Nte’r>2
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a‘Pf _ Z_:f(]\/vf - Nter)
a-]Vcont (ngdet - 5chont - Nter)2

(C.5)

8Pf — _(Nf — Nter)(Ndet - Ncont) (C 6)
8]V'f <€deet - 8J"]Vcom‘, - Nter)2 .

As the variables, N¢, Nget, Nier and Neope, follow a Poisson distribution, their standard
deviation is oy, = \/N;, where i = f, det, ter, cont. In contrast, the error associated to
the fission efficiency is given by the simulation. Thus, the only thing left is to determine
the correlation coefficients between different variables. This is really complicated or even
impossible, so most of the variables were considered independent from the others except
for Ny and Nge, whose correlation coefficient py, = 0.2866 was estimated from the data
as explained in section 4.8. Introducing all these terms in equation (4.6) gives the fission
probability uncertainty.

C.2 Gamma Decay Probability Uncertainty

As with fission, writing the gamma decay probability explicitly:

N, — Ni/ey
6'y(]\]’det — Ncont — Nter/gf)

where N, is the number of detected ~-rays in coincidence with the telescopes, N is
the number of triple coincidences gamma-fission fragment-ejectile, N, is the number
of ternary fission events deduced from the low energy part of the fission coincidence
spectra, Ny is the number of scattered particles detected with the telescopes, N, is
the estimated number of events induced by the contaminants in the carbon backing, € is
the fission detection efficiency and ¢, is the y-ray detection efficiency.

The partial derivatives of equation (C.7) with respect to each variable are written in
equations (C.8) to (C.14):

P’Y(N'YJNt7Nt€T7Nd6t7Ncont78f7€’y) = (C?)

8P7 . Er (C 8)
aN«f N 57(5deet - 5chont - Nte'r) -
or, -1 (C.9)
aNt a 57(5deet_€chont_NteT) -
aP’y o Ntﬁf — N/yg?c (C 10)
a]Vdet B 87<5deet - 5chont - Nter)2 -
a]Vcomf 57(5deet - 5chcmt - Nter>2 .
oP, N; — 4N, ©12)
aNter B 57(5deet - ngcont - ]Vte'r)2 .
aPy - NtNdet - N'yNteT - NcontNt (013)

agf N 57(5deet - 8chont - Nter)2
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or, _ Ni — Nyey
ag"/ 5%(5deet - 5chont - Nter)

(C.14)

Like in the case of fission, the variables N, Ny, Nget, Nier and Neopy follow a Poisson
distribution, their standard deviation is oy, = +/N;, where i = ~, t, det, ter, cont.
Similarly the error associated to the fission efficiency is given by the simulation. The one
corresponding to the gamma detection efficiency is obtained from the fitting procedure
explained in subsection 4.6.2, the error in the fit parameters is then extrapolated to higher
energies. The correlation coefficients retained are the same as those in table 4.6.
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Appendix D

Figures of the Decay Probabilities

D.1 Results per Angle of the *°Pu(*He, *He') Reaction

In this section we present the results obtained per angle for the inelastic scattering of
alpha particles by ?*° Pu. We recall that the seven studied angles are related to the strips
as follows:

Strips | Angle # | 6(°) | A9(°)

2-3 1 156.0 | 3.4
4-5 2 150.6 | 3.0
6-7 3 144.7 | 2.6
8-9 4 138.6 | 2.2
10-11 5 1324 | 1.9
12-13 6 126.3 | 1.7
14-15 7 1207 | 1.4

Table D.1: Average angles for each group of four strips, two from each telescope.

The decay probabilities of 24° Pu* as a function of excitation energy are represented
in figure D.1. The v-decay probabilities were obtained with liquid scintillators in com-
bination with the germanium detectors. The same probabilities with a subtraction of
the background induced by ?**C'm in fission probabilities, subsection 4.5.1, are plotted in
figure D.2.
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Figure D.1: Decay probabilities: fission (blue squares), gamma-decay (red triangles) and
sum of both (black circles), as a function of excitation energy for each one of the studied
ejectile angles. No ternary fission background subtraction was applied.
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Figure D.2: Decay probabilities: fission (blue squares), gamma-decay (red triangles) and
sum of both (black circles), as a function of excitation energy for each one of the studied
ejectile angles. Ternary fission background was subtracted.
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D.2 Results of the *°Pu(*He,*He) Reaction

In this section we present the results for the 22°Pu(*He,*He) reaction. As explained in
chapter 4, the telescope number 1 had a lot of noise in the case of the 2He beam. Also,
the lack of statistics makes the gamma decay probability useless. Therefore we give the
results of the fission probability as a function of excitation energy of 2 Pu* obtained with
telescope two in figure D.3. The results are compared to the ones given by Back et al. [14]
with a 238 Pu(d, p) reaction and the neutron induced probability with which they compare
in [47].

J
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Probability
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0.5
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0.3

Fiasion Probability Tel 2

0.2

238Pu (d,pf) Back 1974 (Break-up corrected)

0.1

238Pu (n,f) Back 1974

II\I|\III|II\I|\III|\I\I|\III|\II\|\III|\L

3 4 5 6 7 8 9 10
E* (MeV)

Figure D.3: Fission probability as a function of excitation energy of 23 Pu* obtained with
telescope number 2 (blue squares). The data are compare to the (d,p) and the neutron
induced data given by Back et al. [14]

Our fission probability is systematically higher than the one obtained with the (d, p)
reaction. This could be due to a problem with the calibration, of one or both sets of
experimental data, a shift of 200 keV would bake the data agree better up to 6.5 MeV.
The difference could also be due to the background peaks in the proton spectra of the
(d,p) reaction, which adds to the deuteron background for E* > S,. Even though the
authors of [14] corrected for the break-up, this can be very difficult and still have an effect
on the surrogate probabilities. However, between 6.4 and 7.2 MeV our data are in good
agreement with the neutron fission probability.
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Appendix E

Deduction of the Differential Cross
Sections

The total wave function of a nuclear reaction can be built as the superposition of an
incoming wave packet W;,(r,t) and a scattered one V., (r,t). However, for the sake of
simplicity, we will in a first approach assume that these wave functions take the form of
plane waves, which is a reasonable approximation when considering a fluz of particles.
Under this hypothesis the incoming wave takes the explicit form:

Wip(r, 1) = ' ®T=EO/N (E.1)

where p = —ihV, is the linear momentum operator and E = p?/2m is the total kinetic
energy. Even though |¥;,(r,t)|? is not integrable, this approximation is useful when study-
ing the probability current J;, as defined in equation (E.2). The reason is that it reduces
the problem to calculating the transmission coefficients of the wave when interacting with
the nucleus.

h
(0 V¥, — U, VTy,) (E:2)

Moreover, when |r| — oo then Wy, (r,t) takes the form of a spherical wave. The
reason is that the region in which U(r) is significant, where W, (r,t) is generated, can
be assumed to be small in comparison to the distance. Thus, in the limit |r| — oo along
a fixed direction u, = r/|r|, the total wave function ¥ = W, + W, can be approximated
by:

expli/I(|p||r| — Et)]

v

U(r,t) = Uy (r,t) + f(p',p) (E.3)

where p’ = wﬂ;’;—fur, E =p”/2m and f(p/,p) is the scattering amplitude. This function

f represents the magnitude of V., in each direction if |r| — oo.
When substituting eq. (E.1) in eq. (E.2) one obtains the following relation between
the probability current and linear momentum:

Jip = — (E.4)

If we now imagine a flat surface S perpendicular to p at a distance |r| — oo and time
t — o0, then the flux J;, through that surface in the direction n = p/|p| is:
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S

m

The probability flux due to J;, by unit of time and area is |p|/m. Therefore the
next step is to evaluate the probability current J,.., associated to outgoing wave W,..;
when |r| — oo (second term of the summation in equation (E.3)). To that end, ¥, is
replaced by W, in equation (E.2), and after several steps, here omitted, one arrives to
the following expression:

u,

p| / 2
Jsca ~— )
t m ‘f(p p)| ‘I‘|2

(E.6)

Using equation (E.6) and taking into account that ds = |r|?d(Q, and d2 = sen(6)d0d¢,
then scattered flux Jg.,; through differential ds of a sphere of radius |r| — oo per unit of
time is:

p
dSJscatur ~ %‘f(p/7 p)’2dQ (E7)

We will now define the differential cross section do/dS) over the direction u,, or equiv-
alently p’, as the probability current associated to J.,; through ds per unit of time and

solid angle, divided by the incident flux |p|/m, which simplifies to eq. (5.3):

do 1

- W—_M%V(P’,pﬂzdﬁ =1f,p)f (E.8)

Equation (E.3) can be justified in the context of the Lippmann-Schwinger formalism,
where, making use of Green’s functions, a relation between f(p’, p) and the potential that
causes the scattering U(r) can be established. The formal procedure will be here omitted
but a detailed proof can be found in several quantum mechanics textbooks, for instance
|78]. The exact expression of the scattering amplitude obtained is an infinite summation,
truncating it to the first order is known as Born’s approximation:

/ ! _ m P~ p, / N 3.7
f(P',P) = fBorn(P',P) = —5—5 [ exp |i r'| U(r')d’r (E.9)
2mh h

It can be proven that the approximation done in equation (E.9) gets more accurate
the higher the difference between the energy of the particle and the magnitude of the
potential, and is useful to have a first estimate of a cross section.

Instead of reducing the problem to the scattering of a plane wave by a potential, it is
more correct to represent incoming particles as wave packets of the form:

W (r,t) = / A(Qy)ePT=E0/Rg0 (E.10)
where A(£),) is a weight function of the different plane waves forming the packet and
the direction of linear momentum p’ is characterized in spherical coordinates by df2,, =

sin(0y )d0ydep,y. A derivation of the formulas obtained in this formalism can be found in
[78].
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Appendix F

Optical Model Parametrization

F.1 Model of Soukhovitskii et al.

Actinides, such as plutonium, are deformed nuclei therefore the optical potential is de-
formed and thus in spherical coordinates U(r, E) = U(r, 0, ¢, E'). Axial symmetry around
¢ is assumed and only the dependence on 6 is kept so that the potential may be written
as follows:

Uv<I‘7 E) = — [Vv(E) + ZWV(E)]f(T, ay, Rv(e))

+ 4CLD [VD(E) + ZWD(E)]if(’I“, ap, RD(Q))

h\2 [Vso(E) +in7~ (B),. .. d (F.1)
+ (mc) TR PR (6 L) o f(r.aso. Rso(6)
+ Ve(r,ac, Re(0))
where the form factors f are of the Woods-Saxon type:
£(r,as, Ri(9)) = ! (F.2)

1+ exp (i@)

a;

and as in this case axial symmetry was assumed, the dependence on the azimuth disap-
pears and the radii in equation 5.17 can be expressed as:

Ri(0) = A5 |1+ Y BYR(0)

A=24,...

(F.3)

However, in the parametrization of JENDL 4.0, the development of the radius in
equation F.3 is truncated to the third term:

Ri(0) = ;A5 [L+ ByY3(0) + BiYL(0) + BeYP(0)] (F.4)

with i = V., D, SO and C standing for volume, surface, spin-orbit and Coulomb respec-
tively, and A the mass of the target nucleus.

The first term of the right hand side of equation F.1 represents the volume-central
term of the interaction between the projectile and the target nucleus. It is split into a real
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part Vi, and an imaginary one Wy, that tends to remove flux from the elastic channel. The
second term represents the imaginary surface-central term, and it is specially important
at low incident energies as the projectile cannot penetrate deep into the target. The third
term accounts for the contribution of the spin-orbit coupling to the potential, and the
higher the energy is, the stronger the impact it has on the cross sections. The last term
is the Coulomb potential and it only plays a role when the projectile is also a charged
particle, for neutrons this term is zero and it will be neglected in the following because
the evaluation will be done using neutron-induced reaction data.

The potential presented in equation (F.1) is dispersive, which means that it is con-
sistent with the causality principle, which ensures that the scattered wave is not emitted
before the incident one arrives. This is guaranteed adding a correction term AV/(r, E)
to the real central potential. Under certain circumstances the real part AV (r, E') can be
calculated through the dispersion relation.

P [ W(r E)

AV (r,E) = 5B

dE' (F.5)

™

—00

where P indicates that Cauchy’s principal value of the improper integral should be taken.
For energy-dependent geometry one should use (F.5) to calculate the correction to the real
potential, but to simplify the problem, the parameters are assumed to be independent of
energy. The dependence on the geometry is included in the Woods-Saxon functions f(r),
and therefore they can be extracted from the integral (F.5), leaving AV (E) and W (E).
In this kind of dispersion relation treatment the real volume term Vj, is the sum of two
terms:

W (E) = Vyr(E) + AVy(E) (F.6)

where Vg is the Hartree-Fock (HF) term, calculated with an expression derived by
Lipperheide |113]:

where Ay is a constant to be determined, Agx is an additional parameter and Er is the
Fermi energy. The dependence on the energy E of equation (F.7) arises when substituting
the non-local potential (i.e. with finite range interactions) by a local one (with punctual
interactions). The term AV (F) is calculated by substituting Wy (F) in (F.5).

P [ Wy (E)

avE) = | F

———LdF’ (F.8)
In the case of the surface real term Vp, the only contribution to it is the dispersive
term, so that:

P[> Wp(E)

Vp(E) = AVp(E) = _E-F

———~dFE' (F.9)

Once the dispersion relations between the imaginary terms and the real ones have
been determined, (F.5) to (F.9), the difficulty is to find a suitable functional form for Wy
and Wp. For the volume term in [28| an energy dependence in the following the form of
Brown and Rho [114] is given:
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(E - Er)”
(E — Er)?+ B

Wy (E) = Ay (F.10)

where Ay and By are undetermined parameters. The FE-function of the imaginary surface
term Ws proposed by Delaroche et al. [115]:

(E — Ep)?
(E — Er)?+ B3

Ws(E) = Ag exp(—Cs|E — EF|) (F.11)

where as in (F.7) and (F.10), Ag is constant to be calculated, and Bg and C are additional
parameters of the model.

The dependence on the isospin (the Lane term [116] and [117]) of the potential is taken
into account in the real Vyp(F) and the imaginary surface Wg(E) as following:

/ OvisoN -7

AHF:% |:1+(_1>Z+1TOT} (Fl?)
/ OwisoN -7

Ag =W, [1 + (=1)? +1W0 Yl } (F.13)

where Vj, Cyiso, Wo and Cl;s, are parameters of the model. And for energies F below the
Fermi energy, the symmetry condition is used:

W(2Ep — E) = W(E) (F.14)

The assumption that the imaginary potential Wy, (F) is symmetric about E' = Ep,
is not valid when |E’ — Ep| is large. In some cases, for projectile energies above 50M eV
there is already an important difference, although this value is arbitrary and it is another
parameter of the model E,. When FF < Er — E, or £ > Er + E, an alternative form
Wy (E), proposed by Mahaux and Sartor [118], is used instead of Wy (E).

The energy dependence of the spin-orbit potential follows the form suggested by Kon-
ing and Delaroche [83] plus a dispersive term first added by Morillon and Romain [119]:

P [ WeolE) .,
Vso(E) = Vsoexp|—Aso(E — Ep)] + — WsolE) 15 (F.15)
T Joo E—F
(E - Ef)°

Wso(E) = Wso

F.16
(E — Er)?+ B2, ( )

To sum up, there are twenty-three parameters to be adjusted, plus three for the
Coulomb interaction.

F.2 Numerical Values from JENDL

The numerical values of the parameters from JENDL 4.0 of the optical model potential
[28] for the reaction #* Pu(n, tot):
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e Eight for the volume terms:

e Six

e Six

Vo = 50.054 MeV
Agr = 0.01004 1/MeV
Cliso = 15.9 MeV
Ay = 12.04 MeV
By = 81.36 MeV

E, =385 MeV

ry = 1.2568 fm

ay = 0.633 fm

parameters for the surface potential:

Wy = 17.1463 MeV
Bs =11.19 MeV

Cs =0.01361 1/MeV
Clpiso = 11.19 MeV

rs = 1.1803 fm
as = 0.601 fm
for the spin-orbit interaction:

Vso = 5.75 MeV
Aso = 0.005 1/MeV
Wso = —3.1 MeV
Bso = 160 MeV
rso = 1.1214 fm
aso = 0.59 fm

e Three for the electromagnetic interaction:

Co=1.3
re = 1.2452 fm
ac = 0.545 fm

e Three deformation parameters:

B2 = 0.227635
B4 = 0.06501
B = —0.01837
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Appendix G

Talys 1.9 Input Parameters

In this appendix we describe the parameters deduced from the evaluation with Talys 1.9
[26], where the input file used was:

Basic Input Parameters :

projectile n
element pu
mass 239
energy energies
ejectiles n g
ffevaporation y
maxrot 8
maxlevelstar 30
preequilibrium y
preeqspin y
widthfluc y
dispersion y
soswitch 8

Level Densities :

ldmodel 1
colldamp n

Fission :

fission y

fismodel 1

hbtransfile 94 240 hbstates240Pu
class2file 94 240 myclass2states

240Pu Barrier Parameters :

deltaW 94 240 3.2500 1
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T 94 240 0.3250 1

EO0 94 240 -0.4725 1
Exmatch 94 240 3.0800 1
s2adjust 94 240 1.0 1

deltaW 94 240 1.1140 2
T 94 240 0.3650 2

EO0 94 240 -0.4750 2
Exmatch 94 240 2.9574 2
s2adjust 94 240 1.0 2

fisbar 94 240 5.970 1
fishw 94 240 0.850 1
fisbar 94 240 5.100 2
fishw 94 240 0.650 2

239Pu Barrier Parameters :

deltaW 94 239 1.5000 1
T 94 239 0.3300 1

E0 94 239 -0.5394 1
Exmatch 94 239 3.2056 1
s2adjust 94 239 1.0 1

deltaW 94 239 0.1800 2
T 94 239 0.3600 2

EO0 94 239 -0.3914 2
Exmatch 94 239 3.0056 2

fisbar 94 239 6.650 1
fishw 94 239 0.900 1
fisbar 94 239 5.750 2
fishw 94 239 0.600 2

Gamma Strength Function :

gnorm 1

strength 8

strengthM1 8

upbendc 94 240 1.8e-8 E1
upbende 94 240 1.0e-1 E1

OMP JENDL :

optmod 94 239 JENDL239Pu n
deformfile 94 JENDLPu.def
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G.1 Modified Files

Most of the options used in the input are default in Talys, and depend on the keywords
used. However some files were modified in the given input. The file "JENDL239Pu"
contains the parameters of the optical model, for several neutron energies, used for the
coupled channels calculation and its derived from JENDL 4.0, appendix F. The file
"JENDLPu.def" contains the deformation parameters of this evaluation also needed for
the optical model calculation. The file "hbstates240Pu" contains the head-band states
over the fission barriers given by Bouland et al. [40] here we detail them. Finally, "my-
class2states”" contains the class-II states retained after the evaluation and comparison
with the surrogate data.

JENDLPu.def:

94 239 8 R B 239Pu
0 R 0 0.22764 0.06501 -0.0184
1RO

2RO

3RO

4RO

5RO

7RO

9RO

94 240 5 R D 240Pu
0 R 0 1.72265 0.54811
1RO

2R 0

3RO

4RO

hbstates240Pu:
19 0.990

1 0.000000 0.0 1

2 0.700000 0.0 -1
3 0.800000 1.0 -1
4 0.150000 2.0 1

5 1.150000 1.0 1

6 0.850000 2.0 -1
7 0.450000 0.0 1

8 0.370000 4.0 1

9 1.740000 0.0 -1
29 0.650

1 0.000000 0.0 1

2 0.100000 0.0 -1
3 0.550000 1.0 -1
4 0.800000 2.0 1

5 1.000000 1.0 1

6 0.900000 2.0 -1
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7 1.500000 0.0 1
8 1.700000 4.0 1
9 1.740000 0.0 -1

myclass2states:
12.900 0.0 1
2 3.500 0.0 -1
3 3.550 1.0 -1
43.700 2.0 1
54.950 1.0 -1
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Resumé

Cette theése porte sur ’étude des probabilités d’émission gamma (P,) et de fission (Py)
du noyau composé (NC) 22 Py* obtenues en utilisant la méthode de substitution. Cette
méthode expérimentale vise, par le choix approprié de réactions nucléaires, & former un
NC identique a celui formé dans une réaction de capture neutronique. Le but est de
combler le manque de données nucléaires pour les noyaux de courte durée de vie pour la
physique des réacteurs, la gestion des déchets radioactifs et 'astrophysique. Cependant,
on a constaté avec les mesures précédentes qu’il y a une difference entre la population de
spin J™ des réactions neutroniques et celles de substitution. La conséquence est que la
P, de substitution est systématiquement plus haute que celle induite par des neutrons,
alors que pour la Py on trouve un bon accord. Pour mieux comprendre ce fait, on a
mesuré simultanément la P, et P; du **°Pu* formé lors de la réaction **°Pu(*He,*He'),
ce qui est trés compliqué. Nous expliquons dans ce travail de thése les détails du dispositif
expérimental, I’analyse de données et ses incertitudes. Les résultats expérimentaux sont
interprétés a I'aide du code Talys 1.9 avec des paramétres fixés par les données neutron-
iques. D’autre part, le J™ du noyau composé est calculé avec un model de réaction directe
par M. Dupuis (CEA/DAM/DIF). Cette distribution combinée avec les paramétres de
réaction donne les probabilités théoriques, lesquelles réproduissent trés bien nos don-
nées experimentales. Ce bon accord indique une bonne compréhension du mécanisme de
réaction mis en jeu dans la réaction ?*°Pu(*He,"He'). Ceci ouvre la voie pour utiliser
les probabilités de désexcitation de substitution pour fixer les paramétres clefs du modéle
statistique et ainsi obtenir des prédictions de sections efficaces des noyaux de courte durée
de vie.

Abstract

This thesis is a study of the gamma decay (P,) and fission (Pf) probabilities of the
compound nucleus (CN) 2% Py* obtained with the surrogate reaction method. This ex-
perimental method aims, by the appropriate choice of nuclear reactions, to form a CN
identical to that formed in a n-capture reaction. The goal is to fill the deficit of nuclear
data for short-lived nuclei relevant for reactor physics, nuclear waste management and
astrophysics. However, it has been found in previous measurements that there is a differ-
ence between the population of spin and parity (J7) in n-induced reactions and that of
surrogate ones. This causes the surrogate P, to be consistently higher than the n-induced
one, but in the case of fission the agreement is good in general. To better understand
this, an experiment was made to simultaneously measure the P, and P; as a function
of the excitation energy of 2! Pu*, formed through the reaction ?**Pu(*He,*He'). We
explain in this thesis work the details of the experimental device, the analysis of the data
and their uncertainties. The experimental results are interpreted using the Talys 1.9 code
with parameters set with the n-data. On the other hand, the J™ of the compound nucleus
is calculated with a direct reaction model, by a collaborator. This distribution in combi-
nation with the reaction parameters gives the theoretical probabilities, which reproduce
very well our experimental data. This excellent agreement indicates a good understanding
of the studied surrogate reaction and opens the door to use surrogate data to deduce the
n-induced fission and capture cross sections of short-lived nuclei.





