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À minha família por estar sempre lá para mim. 

 

“Do not go gentle into that good night”, Dylan Thomas



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Rôle du protéome dans le développement de biofilms et l’adaptation de 
Listeria monocytogenes à des environnements contrôlés 

 
Résumé 

 
Listeria monocytogenes est une bactérie pathogène et ubiquitaire capable de 

s’adapter et de survivre dans plusieurs environnements. C'est l'une des principales 

causes de décès liés à la contamination des aliments dans l'Union européenne, qui 

coûte des millions d'euros par an en soins médicaux. Ce projet de doctorat tente 

d’établir un lien entre le rôle des protéines exprimées lors de la formation de biofilms 

et de leur adaptation à des environnements contrôlés (ex : faible humidité relative de 

l'air). Des approches protéomiques innovantes ont été utilisées telles que (i) l’imagerie 

par spectrométrie de masse MALDI (IMS) développée sur des biofilms soumis à un 

stress de déshumidification et (ii) la chromatographie liquide haute performance 

couplée à la spectrométrie de masse en tandem (LC-MS/MS) semi-quantitative et 

sans marquage (« shotgun proteomics ») sur des sous-protéomes extraits par 

différentes méthodes complémentaires (fractionnement cellulaire, biotinylation, 

« shaving » enzymatique) de cellules bactériennes planctoniques ou en biofilms 

cultivées à trois températures (10°C, 25°C et 37°C). 

Cette thèse peut être divisée en 3 chapitres principaux. Le premier chapitre comprend 

l'analyse de l'adaptation du biofilm de Listeria monocytogenes à la déshumidification 

par IMS. Le deuxième chapitre est consacré à l'extraction des sous-protéomes de 

cellules de Listeria monocytogenes en biofilm, après croissance à trois températures 

différentes jusqu'à un stade précoce ou mature, en biofilm ou planctonique, puis à 

l'analyse par « shotgun proteomics ». Le troisième et dernier chapitre est constitué de 

la même approche que le deuxième chapitre; toutefois, des extractions ont été 

réalisées dans des cultures planctoniques suivies d’une comparaison in silico avec les 

données obtenues dans le deuxième chapitre. 

 

 

 

 

 



Premier chapitre - Analyse de l'adaptation de biofilm de Listeria monocytogenes 
à la déshumidification par IMS 
 

Contexte 

Dans le mode de croissance en biofilm, L. monocytogenes peut résister à de 

nombreuses conditions environnementales difficiles, telles qu’une basse température 

et un faible taux d’humidité relative de l’air. Il est donc d'un intérêt majeur d'étudier les 

lipides, les peptides et les protéines présents dans la matrice du biofilm et/ou à la 

surface cellulaire qui jouent un rôle dans l'adaptation et la survie de Listeria à ces 

conditions. La spectrométrie de masse par imagerie MALDI constitue un bon outil pour 

analyser la présence, l'abondance et la distribution de ces molécules dans un biofilm. 

Cette approche est basée sur la technique de spectrométrie de masse MALDI-TOF  

(Matrix Assisted Laser Desorption Ionisation – Time of Flight) ; les principales 

différences se situant au niveau de la nature de l’échantillon et de l’analyse finale des 

données de masse recueillies. Une lame de verre électriquement conductrice, revêtue 

d'oxyde d'étain (ITO), est nécessaire pour disposer le tissu analysé, qui dans ces cas 

est un biofilm mature de L. monocytogenes. Ensuite, la lame est insérée dans un 

appareil (« sprayer ») qui pulvérise une molécule de matrice. La pulvérisation dure 2 

à 3 heures avec plusieurs cycles de pulvérisation/séchage/cristallisation afin d'obtenir 

finalement une couche uniforme de matrice sur l’ensemble du biofilm. Ensuite, la lame 

est placée dans un support en acier inoxydable et introduite dans le spectromètre de 

masse pour effectuer l'analyse. 

L’étape critique de cette technique est le dépôt de la matrice sur le biofilm bactérien. 

Celle-ci doit cristalliser avec les analytes en surface du biofilm sans les délocaliser. 

Chaque fois que le laser du spectromètre de masse frappe l'échantillon, des 

molécules (protéines) sont ionisées et désorbées pour ensuite, sous l’effet d’un champ 

électrique, parcourir un tube dans lequel règne un vide très poussé. Le temps de vol 

de chaque ion pour atteindre le détecteur situé à l’extrémité du tube est fonction de la 

valeur du rapport masse sur charge (m/z). Ainsi, le spectromètre de masse mesure la 

masse précise des molécules désorbées en surface de l’échantillon. Un logiciel de 

traitement et d'analyse des données d'imagerie est couplé à l'appareil. Celui-ci permet 

de visualiser chaque groupe d'espèces d'ions avec une couleur différente, reflétant 

ainsi l'abondance et la distribution des analytes le long du biofilm. C'est une technique 

développée depuis une vingtaine d’années, initialement dans des domaines tels que 



la recherche de marqueurs du cancer sur de biopsies de tissus tumoraux. Cependant, 

l’utilisation d’une telle technologie pour étudier des bactéries, et plus précisément des 

biofilms bactériens, est très récente et présente de nombreux écueils qu’il faut 

résoudre. Tout d’abord, une cellule bactérienne, telle que L. monocytogenes, a une 

taille moyenne de 1 à 2 µm et la résolution spatiale maximale d’un MALDI est d’environ 

20 µm. Dans cette étude, la résolution utilisée sera d’environ 100 µm. Ainsi, chaque 

tir de laser n'ionise pas seulement une cellule mais il atteint un ensemble de cellules 

constituant le biofilm, ce dernier étant dans ce cas assimilé à un tissu.  

Le contrôle de L. monocytogenes est difficile à réaliser dans les industries agro-

alimentaires (IAA) en raison de ses capacités de survie face à des conditions difficiles 

et de son aptitude à former des biofilms. Les bactéries sont notamment soumises à 

des variations quotidiennes de l'humidité relative de l'air suite aux procédures de 

nettoyage-désinfection. Malgré cela, une partie de la population est capable de 

survivre et de persister, mais les mécanismes moléculaires par lesquels les biofilms 

s'adaptent à la déshumidification ne sont pas bien connus. L'objectif était de 

développer une approche IMS pour explorer l'expression des protéines et leur 

distribution in situ au sein de biofilms de L. monocytogenes exposés à la 

déshumidification. 

 

Matériel et méthodes 

Les différentes étapes de la méthodologie mises au point et optimisées pour obtenir 

un biofilm bactérien et des spectres de masse de qualité sont décrites dans la Figure 

1. 



 
Figure 1 - Méthodologie utilisée pour étudier les biofilms de L. monocytogenes par imagerie MALDI. 

 

Des cellules pré-cultivées jusqu’en phase stationnaire sont utilisées pour inoculer des 

cultures afin d'obtenir une DO600 finale de 0,005. La souche a ensuite été cultivée 

pendant 6 h. Les cellules sont récoltées par centrifugation (7500 x g, 15 min) et 

remises en suspension dans du TSB dilué au 1/5 avec de l'eau stérile dans un volume 

égal à celui du surnageant recueilli atteignant une DO600 comprise entre 0,6 et 0,7. 

Dix-huit ml de la suspension bactérienne sont versés sur chaque lame de verre 

revêtue d'oxyde d'indium-étain (ITO) placée dans une boîte de Pétri stérile (diamètre 

de 55 mm) et incubée à 25°C. Les cellules bactériennes sont laissées adhérer pendant 

3 h avant de retirer le milieu, ce qui permet d'éliminer les cellules planctoniques. Du 

milieu de culture frais est ajouté et les cellules sont incubées pendant 48 h 

supplémentaires à 25°C. Les lames sont placées verticalement dans un flacon, avec 

un milieu liquide jusqu'à mi-hauteur, favorisant l'exposition aux conditions 

atmosphériques de la moitié supérieure de la lame. Le flacon a ensuite été placé dans 

un récipient fermé hermétiquement dans lequel l’humidité relative est contrôlée à 

75% ; le tout est incubé pendant 24 h dans une pièce à 10°C. Les lames de verre sont 

ensuite lavées pour éliminer les sels interférents et les lipides lors de lavages 

successifs de 30 secondes avec de l'éthanol de qualité HPLC à 70, 90 et 95%. Au 

final, cette méthode permet d’obtenir des biofilms de L. monocytogenes avec 3 

sections, l’une qui est restée immergée dans le milieu de culture, une autre soumise 



à une humidité relative de l’air de 75% (stress de déshumidification) et une interface 

entre elles (Figure 1). Celles-ci sont analysées sur un spectromètre de masse MALDI-

TOF/TOF Autoflex Speed avec un laser Smartbeam à l'aide des progiciels FlexControl 

3.4 et FlexImaging 3.0 (Bruker Daltonics). 

Au préalable, deux approches ont été mises en œuvre pour appliquer la matrice sur 

le biofilm. La première, qui correspond à une méthodologie d’imagerie classique, 

consiste à pulvériser la matrice sur toute la lame à l’aide de la station de préparation 

d’échantillons ImagePrep (Bruker Daltonics). Cette matrice est constituée de 7 mg/ml 

d'acide α-cyano-4-hydroxycinnamique (CHCA) dans un mélange eau / acétonitrile 

50:50 (v/v) avec 0,2% d'acide trifluoroacétique. Pour cette approche classique, la 

résolution latérale est fixée à 100 µm. La seconde approche utilise des paramètres de 

« profilage », avec une résolution latérale inférieure à 2000 µm et des dépôts manuels 

de gouttes de matrice de 2 µl, permettant d’augmenter la résolution spectrale et de 

réaliser l’acquisition spectrale dans une zone plus étendue. 

Pour l’imagerie protéique, 500 tirs laser sont accumulés par pixel à puissance laser 

constante et les ions sont détectés en mode linéaire positif dans une plage de masse 

allant de 2000 à 20000 m/z. La déflexion est fixée à 1500 m/z et la focalisation laser 

à « moyen ». Les analyses sont effectuées en utilisant un gain de détecteur de 

2,783 V, une tension de source ionique 1 à 19,5 kV, une tension de source ionique 2 

à 18,15 kV et une tension de lentille à 7 kV. Un étalon protéique a été utilisé pour 

l'étalonnage des spectres, effectué de manière externe sur la même cible avant 

chaque mesure.  

Pour identifier les m/z observées par IMS, les protéines ont été extraites directement 

des différentes sections du biofilm (Figure 2). L'échantillon est recouvert de 2 µL 

d'acétonitrile à 7,5% dans de l'acide trifluoroacétique à 0,2% et incubé pendant 1 min. 

Le liquide contenant l'extrait protéique est recueilli et cette extraction est répétée une 

fois. La même zone est ensuite recouverte de 1 µL d’acétonitrile à 60% dans 0,2% 

d’acide trifluoroacétique et le liquide contenant l’extrait protéique est immédiatement 

recueilli et combiné avec les extraits précédents (5 µL au total). 



Figure 2 - Extraction manuelle de protéines suivie d'une identification par LC-MS/MS. 

 

Les extraits protéiques sont réduits avec 20 µL de dithiotréitol 100 mM dans du 

bicarbonate d'ammonium 50 mM (pH 8) pendant 15 min à 55°C. Après 

refroidissement, l'alkylation est réalisée en ajoutant 20 µL d'iodoacétamide 100 mM 

dans du bicarbonate d'ammonium 50 mM, pendant 15 min à 20°C et à l'obscurité. 

Après neutralisation, la digestion des protéines est obtenue en ajoutant 25 µL de 

solution de trypsine (20 ng/µL) dans du bicarbonate d'ammonium à 50 mM et par une 

incubation pendant une nuit à 37°C. La digestion à la trypsine est arrêtée avec de 

l'acide trifluoroacétique à 2% et après 5 minutes de centrifugation à 3000 x g, le 

surnageant est recueilli. Le culot est lavé avec une solution d'acétonitrile 2% et d'acide 

trifluoroacétique 0,05% dans de l'eau, puis soumis à une sonication pendant 5 min, 

centrifugé 5 min à 3000 g pour récupérer le surnageant et le combiner avec le 

précédent, donnant des échantillons de 100 µL. Les mélanges de peptides sont 

ensuite analysés par nano-LC-ESI-MS/MS. Les données d'imagerie sont traitées et 

analysées avec le logiciel SCiLS et l'identification des protéines est réalisé par LC-

Progenesis. 

 

Résultats et discussion 

Des spectres de bonne qualité ont été obtenus à partir des deux approches, l’imagerie 

classique et le « profilage » (Figure 3). 



 
Figure 3 - Résultats obtenus par les deux approches de préparation d’échantillon et d’analyse : imagerie 

classique (à gauche) et « profilage » (à droite). 

 

Le profilage a montré un niveau de bruit de fond et une intensité de pics plus faibles 

que l'approche classique. Cela pourrait être dû à la présence d'un rapport 

échantillon/matrice plus élevé dans le profilage et à l'accumulation supérieure de 

signal obtenue par point d'analyse. Pour les deux approches, un test ANOVA a été 

réalisé et les intervalles significatifs m/z résultants ont été utilisés pour l'ACP, ce qui a 

permis de séparer les spectres des 3 régions. Cependant, il n’est pas possible 

d’affirmer que les 3 régions montrent de nettes différences puisque ce résultat pourrait 

être lié aux contraintes techniques. Le taux et la qualité de la cristallisation 

matrice/analyte sont affectés par l'humidité résiduelle dans la région qui était restée 

immergée. Cette section normale et l'interface sont en effet immergées dans le liquide 

tout au long de la méthodologie, contrairement à la section déshumidifiée, cette 

dernière ayant un niveau d'humidité plus bas (75%) et donnant des spectres avec des 

ions d'intensité plus élevée. La majorité des protéines détectées par les méthodes 

MALDI à cellules intactes sont de petites protéines ribosomales, idéales pour 

l'identification bactérienne robuste, mais pas idéales pour dépister les mécanismes 

d'adaptation au stress. En effet, certaines protéines <15 kDa sont abondantes 

(protéines ribosomales) et peuvent perturber l'ionisation d'autres protéines d’intérêt 

beaucoup moins abondantes. Néanmoins, on peut supposer la présence possible de 

protéines de choc froid dans ces spectres, comme celles dans la famille des CspL (± 

7 200 Da). 



La combinaison de MALDI MSI avec des méthodes telles que la chromatographie en 

phase liquide et la spectrométrie de masse en tandem (LC-MS/MS) peut fournir des 

informations supplémentaires sur la nature de protéines obtenues par imagerie, 

permettant ainsi leur identification. La stratégie utilisée pour l'identification des 

protéines a été découplée de l'analyse MSI ; elle met en œuvre une analyse 

protéomique « bottom up », à partir de laquelle un nombre reproductible de protéines 

a été identifié à partir de 3 réplicats biologiques (en moyenne, 423 protéines identifiées 

sur les 3 lames de biofilm). Un total de 513 protéines différentes a été détecté à partir 

des extraits protéiques des trois réplicats biologiques. Les diagrammes de Venn de la 

figure 4 montrent que dans tous les cas, la majorité des protéines uniques a été 

détectée dans la section déshumidifiée. Cela pourrait être lié à un pourcentage plus 

élevé de cellules mortes dans cette section et, par conséquent, à une extraction plus 

efficace des protéines, mais également à une humidité résiduelle plus élevée dans la 

section restée immergée (non stressée) qui aurait pu diluer les protéines extraites. En 

MSI, un m/z peut être le résultat de plusieurs séquences protéiques comprises dans 

l’intervalle de masse de l'analyse. En conséquence, cela représente un véritable défi 

d'identification des protéines. Cela explique pourquoi dans la majorité des publications 

de MALDI MSI, seules quelques-unes font état d’identifications protéiques et 

rapportent la nature de protéines présentes dans les spectres obtenus. 

 

 
Figure 4 - Diagrammes de Venn pour toutes les protéines identifiées provenant de chacune des 

répétitions biologiques (Répliquat 1 : 435 protéines; répliquat 2 : 462 protéines; répliquat 3 : 373 

protéines). 

 

La figure 5 est une représentation visuelle de la connexion entre les spectres de 

masse moyens des approches d'imagerie classique vs profilage et les protéines 



identifiées obtenues. Nous avons tout d’abord évalué les listes de protéines obtenues 

par LC-MS/MS, en reprenant l'analyse des protéines identifiées dans toutes les 

répliques biologiques de chacune des trois sections (section normale - Fig. 5a; 

interface air-liquide - Fig. 5b; section déshumidifiée - Fig. 5c). Dans un deuxième 

temps, nous avons pris en compte l’intervalle de masse entre 2000 et 15000 m/z que 

nous avons utilisé pour la MSI et avons établi les listes de protéines identifiées en 

deçà de cette valeur seuil de 15 kDa. En conséquence, sept protéines dans la section 

immergée, 8 dans l'interface air-liquide et 19 dans la section déshumidifiée 

correspondaient à ces critères. Ces protéines sont représentées dans la figure 5 par 

un réseau d'interaction protéine-protéine et sont également listées avec leur 

description détaillée. 

La « back correlation » entre le m/z significatif et l'identification in situ a été établie 

avec une tolérance de masse de 0,5%, ce qui a conduit à l'assignation de 5 protéines 

différentes pour la section déshumidifiée. Dans les sections « normale ou immergée » 

et « interface air-liquide », deux protéines ont été assignées aux spectres moyens de 

la MSI, la protéine de choc froid CspLA (CspL) et la protéine ribosomique L29 50S 

(RmpC). La famille des petites protéines de choc froid (Csps), avec un domaine de 

choc froid, est généralement associée à la résistance au stress, mais plus récemment, 

elles sont aussi apparues comme impliquées dans la virulence, l'agrégation cellulaire 

et la motilité extracellulaire flagellaire chez L. monocytogenes. 

 



 

Figure 5 - Schéma de la « back correlation » entre les espèces d'ions obtenues par MALDI (en bas) et 

l'identification des protéines par LC-MS/MS (en haut). a) Identification des protéines assignées à la 

section « normale ou immergée ». b) Identification des protéines assignées à la section « interface air-

liquide ». c) Identification des protéines assignées à la section « déshumidifiée ». De haut en bas : 

diagrammes de Venn pour toutes les protéines identifiées dans les trois sections (section normale: 56 

protéines; interface: 187 protéines; section déshumidifiée: 511 protéines); Interactions protéine-

protéine établies avec le logiciel STRING pour les protéines identifiées de masse inférieure à 15 kDa 

dans chacune des trois sections ; Description de la liste des protéines présentes dans les interactions 

protéine-protéine (focalisé sur celles corrélées par leur m / z en IMS et en « profilage », avec une 

tolérance de masse de 0,5%); Spectres de masse moyens pour chacune des 3 sections des deux 

approches et identification des protéines assignées avec succès. 

 



CspA a été caractérisée comme la plus pertinente dans l'adaptation au froid. Par 

conséquent, il n’est pas surprenant que cette protéine ait été identifiée dans la section 

« normale ». Cette section du biofilm, comme l’ensemble de la lame, a été exposée à 

une basse température de 10°C pendant 24 h, à l’origine d’une telle réponse. Les 

deux protéines citées plus haut ont également été assignées dans la section 

déshumidifiée avec en plus une seconde protéine de choc froid (CspLB), également 

impliquée dans l'adaptation à des conditions atypiques et également une protéine de 

type tautomérase et une D-alanine-poly (phosphoribitol) ligase. Cette dernière est 

impliquée dans la voie de biosynthèse de l'acide lipotéichoïque. La perte de D-

alanylation des acides lipotéichoïques modifie la charge de la surface cellulaire et 

entraîne une réduction de l'attachement à une surface biotique et de la production de 

biofilm. Cette protéine assignée dans la section déshumidifiée est un élément 

important dans le lien entre la formation de biofilm et la résistance à des conditions 

environnementales difficiles. Les acides lipotéichoïques sont essentiels à l’adhésion 

en surface des cellules de Listeria et dans notre cas, c’est dans les conditions de 

stress que cette protéine a été identifiée, ce qui suggère que des mécanismes 

similaires à ceux qui se produisent lors de la formation de biofilm sont induits pour 

résister à des conditions de diminution de l’humidité relative. 

 

Conclusions 

Le premier objectif de ce travail était de développer et d’optimiser une méthodologie 

permettant l’utilisation de l’imagerie MALDI sur des biofilms de bactéries à Gram 

positif, puis de l’appliquer pour étudier l’impact, au niveau moléculaire, de contraintes 

environnementales sur les cellules sessiles. Ces contraintes consistaient à imiter les 

conditions d'atelier alimentaire dans lesquelles, après chaque procédure de 

nettoyage-désinfection des surfaces et des équipements, l'air est déshumidifié pour 

éliminer rapidement l'eau résiduelle, assainir l'atmosphère ambiante et limiter la 

propagation des contaminations. 

Le protocole d'imagerie MALDI développé nous a permis de comparer les sections de 

biofilms immergés et déshumidifiés, révélant la localisation spatiale de 47 protéines 

différentes au sein d'une seule analyse. Une approche de micro-protéomique nous a 

ensuite conduit à identifier plusieurs protéines et à établir enfin une « back 

correlation » avec les données d’imagerie, permettant l’identification de 5 protéines 

parmi les spectres obtenus. Il serait particulièrement intéressant d’étudier les 



variations d’expression de ces protéines identifiées dans d’autres conditions 

environnementales et d’appliquer éventuellement cette méthodologie à d’autres 

bactéries productrices de biofilms. Ces approches d’IMS et d’identification de 

protéines innovantes ont contribué à disséquer le protéome spatial d’un biofilm 

bactérien intact, donnant un aperçu de l'expression des protéines liées à l'adaptation 

des biofilms à la déshumidification. D'un point de vue plus général, cette approche 

enrichit de manière prometteuse les différentes techniques et méthodologies déjà 

utilisées pour explorer et comprendre la physiologie des microorganismes dans les 

biofilms. Le travail rapporté dans ce chapitre a été accepté en septembre 2018 comme 

article de recherche original dans « Journal of Proteomics », volume 187, pages 152-

160. (https://www.sciencedirect.com/science/article/pii/S1874391918302902). 

 

 

Deuxième chapitre: Adaptation de biofilms de Listeria monocytogenes à 
différentes températures vue par une approche de « shotgun proteomics » 
 
Contexte 

Listeria monocytogenes est un agent pathogène d'origine alimentaire pouvant causer 

une maladie humaine invasive grave, la listériose, chez les patients sensibles. La 

plupart des cas de listériose humaine semblent être dus à la consommation d'aliments 

prêts-à-manger réfrigérés. Bien que les niveaux de contamination initiale dans les 

aliments soient généralement faibles, la capacité de ces bactéries à survivre et à se 

multiplier à basse température leur permet d'atteindre des niveaux suffisamment 

élevés pour provoquer une maladie. L. monocytogenes peut se développer dans un 

large intervalle de températures, entre 1 et 45°C, et peut modifier la composition de 

son enveloppe cellulaire et son métabolisme afin de maintenir l'homéostasie cellulaire, 

en fonction des conditions thermiques. Ce chapitre explore l'ensemble des protéines 

pouvant être associées à l'adaptation de L. monocytogenes à différentes températures 

et les différences qui peuvent potentiellement constituer un avantage à un mode de 

croissance en biofilm versus planctonique. 

 

Matériel et méthodes 

La souche EGD-e de L. monocytogenes, de sérogroupe 1/2a, a été utilisée pour cette 

étude. Une pré-culture est réalisée dans le milieu TSB à 25°C et sous agitation à 150 



tr/min. La croissance est contrôlée en mesurant l'absorbance à 600 nm (DO600). Des 

cellules précultivées jusqu’en phase stationnaire sont utilisées pour inoculer des 

cultures afin d'obtenir une DO600 finale de 0,005. Pour les cultures sessiles, la souche 

est cultivée pendant 6 h. Les cellules sont récoltées par centrifugation (7500 x g, 15 

min) et remises en suspension dans du TSB dilué au 1/5 avec de l'eau stérile dans un 

volume égal à celui du surnageant recueilli, atteignant une DO600 comprise entre 0,6 

et 0,7. Sept millilitres de la suspension bactérienne sont versés sur chaque disque en 

acier inoxydable (SS) (38,5 cm2) ; ces derniers sont ensuite placés dans une boîte de 

Pétri stérile (diamètre de 55 mm) et incubés à 25°C. Les bactéries sont laissées à 

adhérer pendant 3 h avant de retirer le milieu, ce qui permet d'éliminer les cellules 

planctoniques. Les disques sont ensuite incubés à l'une des 3 différentes 

températures (10, 20 et 37°C). Après incubation, le milieu est retiré et les cellules 

adhérentes sont détachées dans 10 ml de TS en grattant le disque SS avec une 

spatule stérile. Pour une biomasse suffisante, les cellules adhérentes de 10 disques 

sont combinées. L'extraction des protéines est réalisée par trois méthodes : le shaving 

enzymatique avec de la trypsine, le marquage à la biotine et le fractionnement 

cellulaire (sous-fractions membranaire, pariétale et intracellulaire). Chacune des trois 

méthodes est appliquée à trois cultures indépendantes en biofilm et trois cultures 

indépendantes planctoniques après deux temps d’incubation correspondant à la 

phase exponentielle de croissance et à la phase stationnaire pour chacun des modes 

de croissance. Au final, nous avons trois réplicats biologiques pour chaque condition, 

ce qui correspond à 180 échantillons protéiques. 

La méthode de shaving consiste à traiter des cellules intactes avec une protéase 

(trypsine le plus souvent) dans une solution isotonique afin de libérer les peptides des 

régions protéiques hydrophiles exposées à la surface. Pour la méthode de 

biotinylation, les cellules intactes sont traitées avec de la sulfo-NHS-SS-Biotine, à 

laquelle la membrane cellulaire est imperméable. Cette molécule marqueur réagit 

spécifiquement avec le groupe ε-amino des résidus de lysine de protéines exposées 

en surface. Par la suite, les protéines marquées peuvent être séparées par 

chromatographie d'affinité avec la neutravidine à partir de lysats de cellules entières. 

La troisième méthode consiste en des séparations assez bien établies des fractions 

intracellulaire, membranaire et pariétale par fractionnement, c’est-à-dire le cassage 

des cellules bactériennes suivi par des centrifugations différentielles. Cependant, les 

sous-fractions membranaires et pariétales issues du fractionnement sont 



généralement fortement contaminées par des protéines cytoplasmiques et fournissent 

souvent des informations insuffisantes sur les protéines de surface. 

Pour le procédé de shaving enzymatique, les cellules sont récoltées par centrifugation 

à basse vitesse (1 000 x g, 15 min, 4°C) pour éviter la lyse cellulaire. Le culot de 

cellules bactériennes est lavé doucement deux fois avec 1 ml d'une solution saline 

tamponnée au Tris (TBS : Tris-HCl 20 mM, pH 7,4, NaCl 150 mM). Le culot est remis 

en suspension dans 1 ml de tampon (TBS + CaCl2 6H2O 10 mM, L-arabinose 1 M) et 

les bactéries sont traitées avec 0,5 µg/ml de trypsine (Promega, Madison WI, USA) 

sous agitation douce à 37°C pendant 1 h. Les cellules bactériennes sont ensuite 

éliminées par centrifugation pendant 15 min à 1000 tr/min et à 4°C et le surnageant 

contenant les peptides coupés par la trypsine sont recueillis et filtrés (0,22 µm). 

Pour la biotinylation des protéines de surface des cellules bactériennes, nous avons 

utilisé une sulfo-NHS-SS-Biotine clivable, imperméable aux cellules, pour marquer les 

amines primaires des protéines exposées à la surface des cellules intactes. Les 

cellules en biofilm sont mises en suspension dans 10 ml de tampon A (PBS, 0,01 mM, 

pH 8 + 1 mM PMSF). La suspension est transférée dans des tubes et centrifugée à 

4 000 x g pendant 10 min à température ambiante (RT). Le culot bactérien est lavé 

deux fois et le poids des cellules humides est calculé. Cent mg de cellules sont 

remisés en suspension dans 300 µl de tampon A additionné de 1,5 mM de sulfo-NHS-

SS EZ-Link. La biotinylation est effectuée pendant 15 min à température ambiante 

sous agitation douce. La biotine libre éliminée par centrifugation à 4 000 x g pendant 

5 min à température ambiante et le culot est lavé trois fois avec du PBS (0,01 M, pH 

8 + 500 mM de glycine) pour bloquer la biotine n'ayant pas réagi. Les cellules sont 

remises en suspension dans 500 µl de tampon A additionné de triton X100 à 1% (v/v) 

et cassées à 4°C par agitation vigoureuse dans un Fastprep-24 pendant deux fois 

20 s. Les extraits cellulaires sont centrifugés à 20 000 x g pendant 30 min à 4°C pour 

sédimenter les parois cellulaires insolubles. Les protéines marquées sont récupérées 

par chromatographie d'affinité dans une résine monomère de neutravidine avec un 

écoulement gravitaire, en utilisant une solution saline tamponnée au phosphate (PBS, 

pH 8) + 1% de Triton X-100 en tant que tampon d'équilibrage et de lavage. Les 

protéines sont éluées avec un tampon d'élution (DTT 50 mM, DTT 2%, ß-

mercaptoéthanol 5%, glycérol 20% dans du Tris-HCl à 62,5 mM, pH 6,8). 

Dans le procédé de fractionnement cellulaire, les cellules sont lavées deux fois dans 

du Tris-EDTA (TE, Tris 20 mM, EDTA 5 mM, pH 7). Le culot est remis en suspension 



dans 1 ml de TE et les cellules bactériennes sont cassées à l'aide d'un disrupteur de 

cellules en appliquant une pression de 2,5 kBar. Les matériaux insolubles contenant 

les parois cellulaires ont été éliminés par centrifugation (13 000 x g, 15 min à 4°C) et 

le surnageant est ultracentrifugé (200 000 x g, 1 h à 4°C). Les membranes contenant 

le culot sont lavées et ultracentrifugées (200 000 x g, 1 h, 4°C) deux fois dans 1 ml de 

Tris 40 mM, pH 8,5. Les membranes sont mises en suspension dans un tampon de 

dénaturation (SDS 1%, DTT 0,1 M, Tris-HCl 20 mM, pH 7,5) avant le traitement 

thermique (5 min, 95°C). Les extraits protéiques de membrane et de paroi cellulaire 

sont mis en suspension dans 100 mM de bicarbonate d'ammonium à pH 7,5. 

L'analyse par LC-MS/MS et l'identification des protéines sont effectuées sur tous les 

extraits de la fraction intracellulaire. Afin de réaliser les analyses, tous les échantillons 

ont été chargés sur un gel de SDS-PAGE afin de se concentrer les protéines sur une 

seule bande dans le premier millimètre du gel de résolution. Les bandes excisées sont 

lavées dans du bicarbonate d'ammonium 25 mM avec 5% d'acétonitrile (ACN) 

pendant 30 min et deux fois dans du bicarbonate d'ammonium 25 mM avec 50% 

d'acétonitrile pendant 30 min. Les réactions de réduction et d'alkylation sont réalisées 

avec des solutions de DTT 10 mM et d'iodoacétamide 55 mM respectivement et toutes 

les bandes sont finalement déshydratées avec 100% d'acétonitrile. Les échantillons 

sont hydrolysés pendant une nuit avec 600 ng de trypsine et les peptides sont extraits 

des bandes de gel avec 100% d'acétonitrile. Tous les mélanges de peptides sont 

analysés par nano-LC-MS/MS en utilisant un système Ultimate 3000 (Dionex) couplé 

à un spectromètre de masse (MS) Impact II avec une source d'ions CaptiveSpray. 

L’analyse au MS est réalisée avec un piège à ions FTMS à une résolution de 60 000 

(tolérance 10 ppm) et les spectres sont acquis dans une fenêtre de m/z 400 - 1400. 

Pour l’obtention des spectres de fragmentation MS/MS, les paramètres suivants sont 

utilisés : largeur d'isolement des ions précurseurs fixée à 1 m/z avec le rejet des 

espèces monochargées, énergie de collision normalisée à 37% pour la fragmentation 

et un temps d’activation de 10 ms. Pour le traitement des données brutes, une 

recherche MS/MS a été effectuée avec Mascot v2.5 dans la base de données 

(http://www.matrixscience.com). Les paramètres suivants ont été pris en compte pour 

les recherches : tolérance de masse du précurseur de 10 ppm et tolérance de la 

masse des fragments de 0,5 Da, un maximum de deux sites de clivage de la trypsine 

manqués, carbamidométhylation (C) et oxydation (M) définies comme modifications 

variables. L'identification des protéines est validée lorsqu'au moins deux peptides 



provenant d'une protéine présentent une identité statistiquement significative > à 13 

pour les scores de Mascot avec un taux de faux positifs de 1% (seuil de signification 

ajusté p <0,05). Le score en ions est égal à -10 log (P), où P est la probabilité que la 

correspondance observée soit un événement aléatoire. Des scores d'ions individuels 

> 13 indiquent une identité ou une homologie étendue. Les interrogations sont 

effectuées sur une base de données personnalisée contenant des entrées distinctes 

correspondant à des séquences de protéines brutes et aux différentes protéines 

matures prédites de L. monocytogenes EGD-e, basées sur les sites de clivage putatifs 

du peptide signal. La localisation subcellulaire des protéines identifiées est déterminée 

avec la stratégie d’analyses génomiques et protéomiques basée sur la sécrétomique 

développée par Renier et al. (2012). Pour l'analyse de la quantification des protéines, 

LC-Progenesis a été utilisé avec Mascot v2.3 et les mêmes paramètres d'identification 

décrits ci-dessus. Les diagrammes de Venn ont été réalisés par l’outil en ligne Jvenn. 

La catégorie fonctionnelle des protéines est basée sur les clusters de groupes 

orthologues (COG) via eggNOG en ligne. Les réseaux d'association protéine-protéine 

sont réalisés avec la base de données String. Une « heat map » présentant les 

abondances des protéines normalisées est obtenue via Xlstat (2018.5). Les « volcano 

plots sont réalisés par le logiciel R avec l'intégration des logiciels graphiques ggplot2 

et ggrepel pour l'analyse des données. 

 

Résultats et discussion 

Le plus grand nombre de protéines uniques identifiées par MS, contenant au moins 

deux peptides uniques, a été obtenu par la méthode de fractionnement cellulaire (910, 

comprenant à la fois les sous-fractions de pariétale et membranaire), suivies des 

méthodes de biotinylation et de « shaving », 141 et 98 protéines identifiées, 

respectivement (Figure 6A). La même évaluation peut être faite à la figure 6B avec 

tous les résultats obtenus en intégrant les trois sous-fractions de la méthode de 

fractionnement. Il existe un recouvrement notable des protéines identifiées entre les 

trois méthodes et le nombre le plus élevé de protéines identifiées uniques est de 

nouveau obtenu avec le fractionnement cellulaire, en particulier dans la fraction 

intracellulaire.  



 
Figure 6-A : diagrammes de Venn représentant la distribution des 920 protéines uniques identifiées par 

les différents procédés d'extraction de protéines; B: Même représentation mais en intégrant les 

différentes sous-fractions de la méthode de fractionnement. 

 

Les protéines identifiées ont d'abord été annotées et séparées en fonction de leur 

localisation sub-cellulaire: intracellulaires, associée à la membrane, associée à la 

paroi cellulaire et extracellulaires. L'un des objectifs de cette étude était d'identifier le 

plus grand nombre possible de protéines associées à la surface cellulaire, d'où 

l'utilisation de trois méthodes d’extraction complémentaires. Malgré les précautions 

prises pour éviter la lyse cellulaire, en particulier dans les méthodes d'extraction par 

rasage enzymatique et par biotinylation, un nombre important de protéines 

cytoplasmiques était présent dans toutes les méthodes et dans toutes les fractions 

(Figure 7). Le pourcentage le plus élevé de protéines intracellulaires dans les sous-

fractions de protéosurfaceome a été trouvé dans le décapage à la trypsine (82%), 

suivi par la paroi, la fraction membranaire et la biotinylation, correspondant à 75%, 

53% et 41% du total des protéines identifiées dans chacune des fractions, 

respectivement. 



 
Figure 7 - Diagrammes illustrant le nombre de protéines identifiées et l'efficacité de chaque méthode 

d'extraction en tenant compte de la localisation subcellulaire prédite de ces protéines. 

 

Pour mieux comprendre les modifications du protéome de L. monocytogenes dans les 

différentes conditions, il est important d'examiner les protéines d'intérêt qui pourraient 

constituer des biomarqueurs potentiels pour l'adaptation à des conditions 

environnementales et d’industries agroalimentaires. Pour effectuer ces analyses, des 

« volcano plots » ont été utilisés avec des seuils de coupure d’une valeur de p = 0,05 

(log10 (p-value) = 1,30103) et un ratio (FC) = 2 (log2 (Fold Change) = 1). Les 

comparaisons quantitatives entre les différentes températures sont représentées par 

des « volcano plots » différents, 10°C vs 37°C (Figure 8A), 10°C vs 25°C (Figure 8B) 

et 25°C contre 37°C (Figure 8C). Au total, 139, 68 et 58 protéines sont comprises dans 

ces critères de seuils de coupure, respectivement. Les 50 protéines présentant les 

plus fortes variations d’expression sont marquées par une couleur correspondant à la 

température à laquelle elles présentaient une condition moyenne plus élevée. Dans 

la représentation 10°C vs 37°C, les protéines associées à 10°C qui présentaient le 

ratio le plus élevé sont associées au métabolisme et au transport des acides aminés. 

Les protéines mises en évidence comprennent des protéines associées à l’adaptation 

au stress, comme OpuCA (Q7AP65_LISMO) et CspLA (CSPA_LISMO), et à la motilité 

cellulaire (Q8Y954_LISMO, Lmo0680). Il y a également des protéines associées à la 

virulence telles que LmaA (Q7AP93_LISMO), LmaB (Q7AP94_LISMO), CspLB 

(CSPB_LISMO) et à l’adaptation à la chaleur (Lmo1580, Q8Y6V1_LISMO et CcpA, 



Q8Y6T3_LISMO). En ce qui concerne l'évaluation entre la basse température (10°C) 

et la condition de contrôle (25°C), le transport était la principale fonction moléculaire 

trouvée dans les protéines à 10°C avec des « fold change » importants, principalement 

le transport des acides aminés, avec en particulier les multiples « ATP-binding 

cassette (ABC) » transporteurs d’acides aminés (OpuCA, Q7AP65_LISMO; Lmo0538, 

Q8Y9J0_LISMO; SERC_LISMO, SerC) et en relation avec les mécanismes de 

défense (Lmo2371, Q8Y4R3_LISMO; Lmo2372, Q8Y4R2_LMO06, L8H05). À la 

température de contrôle, la majorité des protéines avaient un lien avec la machinerie 

de traduction et de production d'énergie, incluant cependant des protéines 

chaperonnes telles que GroEL (CH60_LISMO) et PrsA2 (PRSA2_LISMO). 

Concernant la comparaison de 25°C vs 37°C, la majorité d'entre elles avaient des 

fonctions dans la traduction ou l’utilisation de la source de carbone.  

 

 
Figure 8 - Volcano plots représentant la distribution des protéines identifiées en tenant compte de leur 

ratio d’expression et de leur p-value. Les seuils sont représentés par des lignes noires à un ratio de 2 

(Log2 (ratio) = 1) et une p-value de 0,05 (Log10 (p-value) = 1,30103). Les 50 protéines avec les plus 

forts ratios sont marquées de la couleur correspondant à la température à laquelle elles sont les plus 

abondantes. A: Volcano plot pour la comparaison entre 10°C et 37°C; B: Volcano plot pour la 

comparaison entre 10°C et 25°C; Volcano plot pour la comparaison entre 25°C et 37°C. 

 

Conclusions 

Listeria monocytogenes résiste à divers types de stress, notamment au stress froid 

associé aux basses températures dans les environnements de production et de 



stockage de produits alimentaires. Les mécanismes d’adaptation au stress froid sont 

donc une compétence essentielle de Listeria, lui permettant de survivre et de proliférer 

pour atteindre des niveaux infectieux minimaux sur les aliments réfrigérés. Dans ce 

fait, les conditions froides dans les usines de produits alimentaires peuvent 

sélectionner des sous-types de L. monocytogenes dotés des capacités 

physiologiques d’adaptation appropriées permettant leur survie efficace et leur 

propagation lors de la manipulation et du stockage des aliments. Des approches 

analogues à l’avenir aideront à mettre en évidence d’autres gènes cibles potentiels de 

la résistance au stress froid chez Listeria monocytogenes. Il sera particulièrement 

intéressant de faire une comparaison entre ces données protéomiques sur biofilm et 

des approches similaires sur des cellules planctoniques. Ce travail a été accepté en 

juin 2019 comme article de recherche original dans Frontiers in Nutrition, 6 : 89 (doi: 

10.3389/fnut.2019.00089). 

 

 

Troisième chapitre: Croissance planctonique vs sessiles de Listeria 
monocytogenes : apport de la protéomique pour détecter les avantages? 
 
Contexte 

Listeria monocytogenes est un agent pathogène d'origine alimentaire et l'agent 

responsable de la listériose, une infection dont le taux de mortalité atteint 20%. Il s’agit 

avant tout d’une bactérie psychrotrophe capable de former un biofilm, de s’adapter, 

de résister et de croître dans des conditions difficiles, notamment celles rencontrées 

dans les industries alimentaires, telles que les basses températures et la faible 

disponibilité en eau. La capacité de Listeria à survivre à des températures aussi 

basses que zéro degré est directement associée à la majorité des cas de listériose 

causés par des aliments contaminés par cette bactérie. De multiples études de 

génomiques, transcriptomiques et protéomiques tentent de comprendre cette 

adaptation aux changements physico-chimiques et biologiques. Dans tous les cas, 

l’adaptation à la température est liée d’une manière ou d’une autre à la surexpression 

des mécanismes de stabilité par la modulation des structures d’acides nucléiques 

(ADN et ARN), au maintien de l’intégrité structurale des membranes cellulaires, à 

l’absorption de solutés compatibles, à des mécanismes de réponse au stress non 

spécifiques et à la production de diverses protéines de stress froid. Ici, trois méthodes 



d’extraction de protéines, à savoir la biotinylation, le shaving et le fractionnement, ont 

été utilisées conjointement pour explorer le protéome de cellules de L. 

monocytogenes planctoniques en croissance à trois températures différentes (10°C, 

25°C et 37°C). De plus, une comparaison in silico a été faite avec les données 

protéomiques obtenues précédemment à partir de cultures en biofilms à ces trois 

mêmes températures. 

 

Matériel et méthodes 

La même méthodologie d'analyse du protéome que celle utilisée dans le deuxième 

chapitre a également été appliquée ici, mais pour des cultures planctoniques de 

Listeria monocytogenes. 

 

Résultats et discussion 

Sur l'ensemble des méthodes d'extraction et des trois températures, 931 protéines 

uniques ont été identifiées, représentant 32,6% du protéome de Listeria 

monocytogenes (Glaser et al., 2001). Le nombre de protéines identifiées dans cette 

étude était significativement plus élevé que celui rapporté dans la publication où ces 

trois méthodes d'extraction de protéines ont été mises au point et comparées pour 

étudier les sous-protéomes de L. monocytogenes (Esbelin et al., 2018). Le plus grand 

nombre de protéines identifiées par MS contenant au moins deux peptides uniques a 

été obtenu par la méthode de fractionnement cellulaire (668, incluant les sous-

fractions de la paroi cellulaire et de la membrane), suivies des méthodes de 

biotinylation et de « shaving », 169 et 94 protéines identifiées respectivement (Figure 

9A). Il existe un chevauchement notable des protéines identifiées entre les trois 

méthodes et le nombre le plus élevé de protéines identifiées est obtenu avec le 

fractionnement cellulaire, en particulier avec la fraction intracellulaire. Les protéines 

identifiées ont d'abord été annotées et séparées en fonction de leur localisation sub-

cellulaire : protéines intracellulaires, protéines associées à la membrane, protéines 

associées à la paroi cellulaire et protéines extracellulaires. La grande majorité des 

protéines identifiées ont été caractérisées en tant que cytoprotéines, suivies des 

protéines associées à la membrane, des protéines extracellulaires et des protéines 

associées à la paroi cellulaire. Le pourcentage le plus élevé de protéines identifiées 

était cytoplasmique (79%), quelle que soit la méthodologie utilisée pour l'extraction du 

protéome à la surface des cellules et les mesures prises pour éviter la lyse cellulaire. 



Ce résultat était attendu, si l’on prend en compte le fait que la majorité du protéome 

cellulaire est composé de protéines cytoplasmiques, en particulier de protéines 

ribosomales qui représentent plus de 20% des protéines cellulaires totales (Ryzhov et 

Fenselau, 2001).  

 

 

Figure 9-A: Diagrammes à secteurs illustrant le nombre de protéines identifiées et l'efficacité de chaque 

méthode d'extraction de protéines en tenant compte de la localisation subcellulaire prédite de ces 

protéines; B: Diagramme à secteurs illustrant la distribution des protéines uniques identifiées par leur 

fonction moléculaire prévue de COG. 

 

De plus, les conditions techniques ajoutent également à la grande quantité de 

cytoprotéines identifiées. Les méthodes d'extraction peuvent provoquer la lyse d'une 

partie des cellules, en particulier avec la méthode de « shaving », ce qui entraîne la 

présence d'un nombre important de protéines intracellulaires identifiées. La catégorie 

fonctionnelle de cet ensemble de protéines était basée sur les clusters de groupes 

orthologues (COG) (Figure 10B). Étant donné que la majorité des protéines identifiées 

proviennent ont une localisation cytoplasmique, il n’est pas surprenant que la 

catégorie fonctionnelle présentant le pourcentage le plus élevé de protéines 

identifiées est «Traduction, structure ribosomale et biogenèse» (13%), suivie de 

«Transcription». et 'Biogenèse paroi cellulaire / membrane / enveloppe', 6% chacun.  

 

Listeria monocytogenes est capable de se développer aux températures de 

réfrigération. L'adaptation est largement basée sur les modifications de la synthèse et 

du repliement des protéines et sur l'absorption d'osmolytes. L'analyse quantitative de 



l'abondance des protéines réalisée par LC-Progenesis permet de faire des 

comparaisons deux à deux aux trois températures utilisées, 10°C vs 37°C (Figure 10), 

10°C vs 25°C et 37°C. Dans tous les cas, des abondances normalisées des protéines 

identifiées statistiquement significatives (p <0,05) ont été utilisées pour chaque 

comparaison. La carte d'interaction protéine-protéine obtenue par le logiciel String 

(Figure 11) révèle que chacune des 434 protéines statistiquement significatives était 

plus abondante lorsque l'on compare la croissance à 10°C et à 37°C. Cette évaluation 

met en contraste une condition de température imitant celle trouvée dans l'industrie 

alimentaire (10°C) et la température de l'hôte humain (37°C), dans laquelle L. 

monocytogenes exprime un niveau de virulence plus élevé. Un nombre proche de 

protéines plus abondantes a été détecté aux deux températures, à savoir 237 à 10°C 

et 198 à 37°C. L'adaptation de L. monocytogenes à la croissance au froid s'effectue 

par le biais de fluctuations d'un grand nombre de composants cellulaires. De plus, les 

mécanismes de protection contre la basse température peuvent être partagés ou 

conférer une protection croisée à d’autres conditions difficiles. Le métabolisme 

général et les voies biochimiques sont ceux qui ont finalement montré un plus grand 

changement dans l'abondance des protéines, confirmant qu'il s'agissait des processus 

principalement affectés par une exposition au froid. 

 

 
Figure 10 - ANOVA LC-Progenesis comparant Listeria monocytogenes à 10°C et à 37°C. A: A: carte 

d’interactions protéine-protéine des protéines plus abondantes à 10°C; B: carte d’interactions protéine-

protéine des protéines plus abondantes à 37°C; Diagramme à barres vertical montrant le pourcentage 



de protéines ayant une abondance plus élevée dans chaque température en fonction de leur fonction 

moléculaire prédite de COG. 

 

La résistance physiologique de Listeria monocytogenes est accompagnée par sa 

capacité à se lier rapidement aux surfaces et à former un biofilm qui est le facteur 

principal de la persistance de ce microorganisme dans l'environnement alimentaire. 

Les données protéomiques obtenues ici à partir de cellules se développant en mode 

planctonique ont permis de visualiser les modifications du protéome à différentes 

températures de croissance. Notre équipe a déjà appliqué ces mêmes méthodes 

d’extraction des protéines et la même approche de protéomique aux cellules sessiles 

de L. monocytogenes adhérées sur une surface en acier inoxydable (données et 

article accepté dans Frontiers of Nutrition). Cela nous a permis d’effectuer une 

comparaison en profondeur de l'abondance en protéines entre les deux modes de 

croissance et les trois températures. L'abondance des protéines ne conduit pas 

automatiquement à différents phénotypes. Néanmoins, les cellules bactériennes 

planctoniques et les cellules de biofilm fonctionnent de manière distincte, ce qui 

permet une évaluation des données protéomiques sur la base de leur mode de 

croissance et de leur adaptation à différents contextes. Les protéines associées aux 

glucides étaient plus abondantes dans les cellules planctoniques aux trois 

températures. En ce qui concerne les protéines associées au métabolisme du 

transport des acides aminés et des ions inorganiques, un plus grand nombre d'entre 

elles était plus abondantes dans le biofilm pour les trois températures. Par contre, un 

plus grand nombre de protéines associées à la transcription et à la traduction étaient 

plus abondantes dans les cellules planctoniques vs les cellules sessiles, sauf à 37°C 

où l’inverse. Les protéines des petites sous-unités ribosomales, telles que RpsD, 

RpsE, RpsF, RpsM, RpsL, RpsP, RpsS et RpsT, ont toutes montré une abondance 

plus élevée dans les cellules planctoniques ; pour certaines, elles apparaissent dans 

les figures de « Volcano plots » avec un fort ratio (Figure 11). Ces résultats suggèrent 

que les cellules sessiles ont potentiellement une activité traductionnelle plus faible. 



 
Figure 11 - « Volcano plots » représentant la distribution des protéines identifiées en tenant compte de 

leur ratio et de leur p-value. Les seuils sont représentés par des lignes noires pour un ratio de 2 (Log2 

(changement de repli) = 1) et une p-value de 0,05 (Log10 (valeur p) = 1,30103). Les 100 principales 

protéines avec le plus fort ratio sont marquées d’une couleur représentant la température où elles 

étaient le plus abondante. A : « Volcano plots » pour la comparaison entre croissance planctonique et 

en biofilm à 10°C ; B : « Volcano plots » pour la comparaison entre croissance planctonique et en 

biofilm à 25°C ; C : « Volcano plots » pour la comparaison entre croissance planctonique et en biofilm 

à 37°C. 

 

L'abondance réduite de la protéine de structure des flagelles (FlaA) est révélatrice du 

développement d'un biofilm, car la synthèse de cette protéine est inhibée à ce stade. 

Cette caractéristique est l'une des plus importantes pour différencier les biofilms 

phénotypiquement. L'abondance réduite des protéines associées à la motilité 

cellulaire dans le mode de croissance en biofilm suggère que les cellules sessiles sont 

moins flagellées que les cellules planctoniques. Nous avons observé dans les cellules 

sessiles une plus faible abondance de FlaA ainsi que de la protéine crochet des 

flagelles (FlgE), ce qui suggère que les cellules sessiles sont globalement moins 

flagellées ou perdent leurs flagelles. Les données précédemment obtenues indiquent 

que le rôle principal des flagelles chez L. monocytogenes est de promouvoir le 

mouvement, ce qui signifie que pendant le développement sessile, la motilité et la 

production de matrice extracellulaire sont inversement régulées ; lorsque les cellules 

planctoniques entrent en contact avec une surface, elles se mettent principalement à 



produire de la matrice. Les protéines senseur du chimiotaxisme (CheA et CheY) 

présentent également des niveaux plus élevés dans les cellules planctoniques à 

basse température, ce qui indique que les cellules sessiles sont moins performantes 

à ce niveau-là. Un certain nombre de protéines liées à l'adhésion étaient plus 

abondantes dans le biofilm que dans les cellules planctoniques. On a observé que la 

protéine DltD était détectée à des niveaux plus élevés dans le biofilm à 25°C, celle-ci 

est impliquée dans l’estérification de la D-alanine de l’acide lipotéichoïque et de l’acide 

teichoïque de la paroi (TA) et favorise l’adhésion en augmentant la D-alanylation de 

TA. De plus, L. monocytogenes dépourvu de gène DltD présente une réduction 

significative de la capacité d'adhésion. L'ADN translocase FtsK, responsable de l'ADN 

extracellulaire (ADNe) apparaît plus abondant dans le biofilm à 10°C. L’ADNe de poids 

moléculaire élevé joue un rôle dans la phase d’adhésion précoce de Listeria. Comme 

indiqué dans le chapitre précédent, le stress oxydatif est l’un des effets de la 

croissance à basse température. Le régulon Fur qui contrôle l'apport en fer de la 

cellule était plus abondant dans les cellules sessiles. Cela indique que les cellules en 

biofilm présentent une réponse au stress oxydatif particulièrement élevée. De la 

même façon, la superoxyde dismutase (Sod) et la protéine de protection de l'ADN 

pendant la déplétion en nutriments (Dps) étaient présentes à des niveaux plus élevés 

dans le biofilm. La SOD est produite de manière constitutive en réponse à de multiples 

facteurs environnementaux et peut également jouer un rôle dans le mode de 

croissance. Ces protéines impliquées dans le transport des ions inorganiques et le 

métabolisme favorisent la protection contre les dommages oxydatifs et jouent un rôle 

important dans les biofilms de Listeria. Les gènes régulateurs qui une influence sur la 

formation de biofilm chez Listeria, comme le gène luxS du système Agr régulant le 

quorum sensing, ont également montré une surexpression en biofilm. La présence de 

LuxS s'avére essentielle chez d'autres bactéries formant des biofilms, telles que 

Enterococcus faecalis et Streptococcus pneumoniae. Le manganèse est un 

micronutriment essentiel lors de l'infection et pour la survie en situation de stress 

oxydatif. Les bactéries possèdent un système de transport à haute affinité pour la 

consommation de manganèse et son maintien au niveau intracellulaire. Comme 

montré avec un mutant délété du gène MntH, l'absence de système de transport 

MntABC pour le manganèse entraîne une réduction de la formation de biofilms chez 

Neisseria gonorrhoeae et Enterococcus faecalis. De plus, le manganèse est 

également essentiel au développement des biofilms de Bacillus subitilis. Nous avons 



observé des niveaux plus élevés du système de transport du manganèse MntABC et 

de la protéine MntH dans le mode de croissance en biofilm, et à 10°C ces protéines 

présentaient un facteur de surexpression supérieur à 2, ce qui suggère son 

importance non seulement pour le développement du biofilm, mais également pour 

son adaptation à basse température. La protéine PrfA, régulateur notamment de l’îlot 

de pathogénicité LIPI-1 était présente à un niveau plus élevé dans les cellules 

sessiles. La perte de PrfA réduit considérablement la capacité de développement 

sessile. Il est à noter que parmi les protéines plus abondantes en mode de croissance 

sessile, nous avons trouvé des enzymes impliquées dans la recombinaison et la 

réparation de l'ADN, telles que l'exonucléase UvrB et RecA. L'endopeptidase ClpC 

était également plus abondante en mode de croissance sessile, ce qui suggère que, 

dans le métabolisme des cellules en biofilm, le cycle du citrate est plus actif. Dans une 

étude antérieure comparant les exoprotéomes de L. monocytogenes issus de cellules 

en biofilms et cellules planctoniques, le rôle de la protéine Lmo2504 dans la formation 

de biofilms, putativement liée à la paroi cellulaire, a été confirmé par un mutant de 

délétion codant cette protéine. Cette protéine appartient à un groupe d'enzymes ayant 

de multiples fonctions dans la croissance et la division cellulaire, y compris des rôles 

dans le développement de biofilms. Nous avons observé Lmo2504 à des niveaux plus 

élevés dans le biofilm à 37°C et avec un fort taux de surexpression (x 5,42), confirmant 

ainsi la pertinence de cette protéine dans le développement sessile. Les protéines 

chaperon, telle que la protéine de choc thermique chaud DnaK, ont déjà été décrites 

comme étant essentielles au développement des biofilms de L. monocytogenes. Nous 

avons enregistré des niveaux plus élevés de cette protéine à l'état sessile, laissant 

supposer un rôle du système de réponse au stress dans la formation de biofilm. Outre 

les protéines associées à la réparation de l'ADN, à la réponse au stress et à la motilité, 

d'autres protéines précédemment décrites comme jouant un rôle dans le biofilm 

étaient également plus abondantes ici dans les données des cellules sessiles, telles 

que SrtA et RelA. Cependant, il faut tenir compte du fait que la modification de 

l'abondance de ces protéines pourrait être due à la croissance normale dans différents 

contextes, dans ce cas la température. Néanmoins, il est raisonnable de supposer 

que la variabilité du protéome observé ici entre les cellules libres et les cellules 

sessiles peut éventuellement être liée à la capacité de L. monocytogenes à s'adapter 

à de multiples environnements, que ce soit cliniques ou d’ateliers agro-alimentaires. 

 



Conclusions 

Listeria monocytogenes survit et prolifère dans de multiples environnements hostiles 

grâce à divers mécanismes lui permettant de survivre. En raison de sa capacité à 

persister dans les environnements alimentaires, un effort continu a été fait pour 

comprendre les mécanismes moléculaires impliqués afin de trouver les moyens de 

mieux contrôler et réduire la contamination des produits alimentaires. Nos résultats 

ont révélé dans les cellules planctoniques de L. monocytogenes cultivées à 10°C un 

taux d’expression plus important que dans les cellules sessiles au niveau de protéines 

impliquée dans le transport d’osmolytes, dans la glycolyse et le métabolisme des 

glucides, dans l’absorption des nutriments et dans la réponse à plusieurs conditions 

de stress, comme le stress oxydatif. Inversement, nous avons observé des protéines 

significativement surexprimées dans le protéome de L. monocytogenes en biofilm par 

rapport au mode de croissance planctonique. Ces protéines interviennent à divers 

niveaux de la physiologie des cellules. Cela indique que le phénotype sessile est à 

l'origine de structures complexes de régulation des gènes. Compte tenu de la 

pertinence de la formation de biofilms pour la persistance de Listeria sur les surfaces 

dans les ateliers alimentaires, il est essentiel de comprendre le rôle de ces protéines 

dans le développement sessile et les mécanismes de résistance de cette bactérie 

dans ces environnements normalement peu favorables à sa croissance.  

Les résultats obtenus dans ce troisième chapitre feront l'objet d'un article de recherche 

original qui sera soumis prochainement pour publication dans Frontiers in 

Microbiology. 
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In the world of bacterial pathogens, there is a double-faced microbe named 

Listeria monocytogenes, that it is considered to be on the forefront when it comes to 

pathogenicity. L. monocytogenes is a biofilm-forming bacterium that has a set of skills 

that make it a considerable risk for human health. In its natural realm, the soil, Listeria 

evolved to use various sources of carbon and to adapt to multiple extreme conditions, 

such as low temperatures, pH, osmotic stress and desiccation. In this environment, it 

is relatively harmless, however the problem resides in its saprotrophic and ubiquitous 

nature. This meaning that there are multiple pathways of transmission for it to cross 

from soil to livestock, food products until reaching humans. In sufficient numbers, 

Listeria can lead to a hyper threatening infection named listeriosis, that is particularly 

lethal in immunocompromised patients, elderly and new-borns. In fact, Listeria is in 

Europe (EU) the leading cause of mortality and food recalls due to a foodborne 

pathogen, costing EU millions of euros per year in medical care and associated costs 

in the food sector. Just in 2015, the European Food Safety Authority reported more 

than twenty-two hundred food-borne related human invasive listeriosis cases that lead 

to 270 deaths.  

Taking into account this panorama, in 2015, a European project with ten PhD 

students, entitled List_MAPS, funded by the Research and Innovation programme of 

the European Union Horizon 2020 under the Marie-Skłodowska Curie actions (ITN-

ETN), was set in motion in order to tackle food safety through the combination of high 

throughput Epigenetics, Deep sequencing of transcripts, Proteomics, Bioinformatics, 

Mathematics and Microbiology to decipher the transcriptional regulatory circuitry that 

drives adaptation and virulence of L. monocytogenes from farm to fork. Integrated in 

this European network, my PhD project had as an overall goal to gather more 

information surrounding the proteome shifts in L. monocytogenes biofilms and 

adaptation to controlled environments.  

In the first section of this manuscript, I make a non-exhaustive review of the 

main topics that surround my PhD project. In the first chapter, I describe all the crucial 

up-to-date knowledge about the pathogen L. monocytogenes, including an 

epidemiologic overview of listeriosis, Listeria’s virulence mechanisms and its biofilm-

forming capabilities. With a greater bearing to the scope of this thesis, Listeria’s 

strategies to overcome environmental stresses are outlined in the following chapter. I 

also lay the background of some of the stress settings that this microbe is subjected 
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in nature and in the food industry realm, particularly the two stress conditions tested 

in this thesis work, dehumidification and adaptation to different temperatures. Finally, 

in the third chapter, I describe the state of art of proteomics and mass spectrometry, 

particularly the two main mass spectrometry workflows applied in this dissertation, 

MALDI-TOF Imaging Mass Spectrometry and label-free shotgun proteomics by LC-

MS/MS. Within this bibliographic review there are also parts of two manuscripts 

published within the extent of this PhD project, a review duelling on the topic of 

desiccation and a manuscript detailing three methods to explore the surfaceome of L. 

monocytogenes. 

The results’ section is divided in three manuscripts reflecting my PhD research 

from the last three years. The first paper describes the optimization and use of an 

Imaging Mass Spectrometry approach to explore the proteome of an intact L. 

monocytogenes biofilm. Moreover, the development of an in situ microproteomics 

extraction to try to bridge the gap between the imaging data and the identification of 

proteins though a bottom-up approach. This work has been published in Journal of 

Proteomics on September 2018. As for the second manuscript, it has been submitted 

in Frontiers in Nutrition on November 2018 and it is a shotgun proteomic analysis into 

Listeria’s biofilm adaptation to three different temperatures (10ºC, 25ºC and 37ºC). 

The third paper implemented the same physical stress to Listeria cells, but this time in 

liquid culture. Furthermore, it explores by an in silico comparison, the protein 

abundances seen in the biofilm and in the planktonic mode of growth. Finally, I present 

a general discussion and conclusions of my PhD project, expanding the research to 

future directions.  
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Chapter 1 - Listeria monocytogenes and biofilm 
 

1.1 Historical context 
Listeria monocytogenes is a Gram-positive bacterium first described in England by 

Murray et al. in 1926. In this first report, Listeria was named Bacterium monocytogenes 

after showing a marked increase in the number of monocytes in the bloodstream of 

infected rabbits (Murray et al., 1926). One year after, Pirie isolated the same organism 

from the liver of gerbils in South Africa. In this instance, it was proposed the genus 

name Listerella, honouring the surgeon J. Lister. Murray and Pirie eventually realized 

they were in the presence of the same bacterium and combined the two names to form 

Listerella monocytogenes, later one due to taxonomic reasons this name was rectified 

to Listeria monocytogenes (Pirie, 1940). In regards to Listeria’s natural environment, 

it was purposed in the 70’s that soil was the predominant realm (Welshimer and 

Donker-Voet, 1971). However, soil contamination with this bacterium may derive from 

other sources like animal manure, sewage and decomposing plant vegetation (Fenlon 

et al., 1996). 

L. monocytogenes can give rise to a threatening human infection named listeriosis. 

Prior to 1926, there were already mentions in disease reports that were probably due 

to listeriosis, as was the case of the “diphtheroid” isolated from a soldier in 1919 that 

was later identified as L. monocytogenes (Cotoni, 1942). For almost four decades, 

listeriosis was classified as a zoonotic infection, meaning a disease affecting mainly 

animals, that could be transmitted to humans (Stavru et al., 2011). However, during 

this period, multiple cases were reported of human infections caused by Listeria. For 

example, L. monocytogenes was isolated from blood culture of Danish patients with 

mononucleosis in 1929 (Nyfeldt, 1929) and in 1936, Burn made the connection 

between this bacterium and cases of sepsis in newborns (Gray and Killinger, 1966). 

In the 1960s, this bacterium started to gain some traction as an important human 

pathogen following Mackaness’s studies that described the role of cellular immunity in 

the control of intracellular infection using L. monocytogenes as an intracellular lifestyle 

model (Mackaness, 1962). 

L. monocytogenes was official characterized as a human foodborne pathogen after 

the first epidemics in the 80s (Stavru et al., 2011), and the rise in the total numbers of 
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human listeriosis linked with intake of contaminated coleslaw, milk and soft cheese 

(Schlech et al., 1983; Fleming et al., 1985; Linnan et al., 1988). Since then, it is well 

established that L. monocytogenes leads to a severe and life-threating disease 

connected with the ingestion with contaminated foods with resultant high economic 

burden to health services and the food industry. This prompted the intense study in 

the molecular basis of L. monocytogenes virulence that established this bacterium as 

a model system to explore the molecular mechanisms involved in host-pathogen 

interactions (Stavru et al., 2011). 

 

1.2 Genus Listeria 
The genus Listeria belongs to the phylum Firmicutes, the latter is comprised of Gram-

positive bacteria with low GC-content (36–42%) and also contains the genera Bacillus, 

Clostridium, Enterococcus, Streptococcus, and Staphylococcus (Collins et al., 1991). 

Listeria is composed of 17 non-sporeforming, rod-shaped bacterial species (Korsak 

and Szuplewska, 2016). This genus was well separated in four clades through 

phylogenetic analysis: (I) the clade comprising the six Listeria sensu stricto, L. 

monocytogenes, L. marthii, L. innocua, L. welshimeri, L. seeligeri and L. ivanovii; (II) 

L. fleischmannii, L. aquatica and L. floridensis, (III) L. borriae, L. cornellensis, L. 

grandensis, L. newyorkensis, L. riparia, L. rocourtiae, L. weihenstephanensis and (IV) 

L. grayi (den Bakker et al., 2014).  

Listeria spp. cell wall surface consists mainly of peptidoglycan, teichoic acids and 

lipoteichoic acids. This composition will be further discussed in this scope of the 

secretome (Section 1.6.1). The bacterial species of this genus are nutritionally 

undemanding to reach optimal growth and can be isolated from a wide range of 

sources, including soil (Falardeau et al., 2018), sewage (Watkins and Sleath, 1981), 

plant (Brandl, 2006), animal feed (Skovgaard and Morgen, 1988), farms (Castro et al., 

2018), households and hospitals (Jacks et al., 2015) and food processing industries 

(Korsak and Szuplewska, 2016). The former will be further reviewed in Chapter two. 

Listeriae, apart from L. grayi, are naturally susceptible to diverse antimicrobial agents, 

including glycopeptides, tetracyclines, trimethoprim, penicillins, carbapenems, 

rifampicin, macrolides, lincosamides, chloramphenicol and naturally resistant to most 

cephalosporins (Troxler et al., 2000). However, antibiotic resistant L. monocytogenes 

strains have been uncovered with various levels of multiresistance depending mostly 
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on the proximity to reservoirs of antimicrobial resistance (Lotfollahi et al., 2017). 

Listeria spp. are notorious for its capacity to thrive under harsh environmental 

conditions such as a wide range of temperature and pH, high salt concentrations and 

other stresses that are further tackled in Chapter 2 (Cole et al., 1990). 

Only the sensu stricto strains have been isolated in the gut of humans and animals 

and only two of those have been registered as leading to disease, L. monocytogenes 

and L. ivanovii. They are facultative intracellular pathogens and the etiological agents 

of listeriosis. This notorious capacity from clade I species to survive and even grow in 

the mammalian gastrointestinal tract is given in part to more than 150 gene products 

only present in sensu stricto strains (Schardt et al., 2017). The other fifteen species 

are commensal environmental saprophytes. However, there are reported cases of 

illness involving some of these species, but mainly in severely immunocompromised 

patients (Liu, 2013).  

In regards to the association between Listeria and human illness, L. monocytogenes 

is the predominant Listeria species. Table 1 describes the twelve different serotypes 

of L. monocytogenes that have been identified and can be divided in four serotype 

lineages (Rawool et al., 2016). Lineage I is comprised of strains with serotype 4b, 

1/2b, and 3b, while lineage II strains are of serotype 1/2a, 1/2c, 3a, and 3c. Lineage 

III contains strains of serotype 4a and 4c, as well as certain strains of serotype 4b. 

Lineage IV includes serotype 4a (Ward et al., 2008). Strains from lineage I and II are 

more often found than strains from lineage III or IV. This can be connected to the fact 

that 97% of human clinical cases are caused by serotypes 1/2a, 1/2b and 4b 

(Swaminathan and Gerner-Smidt, 2007). 

 

Table 1 - Genetic lineages of Listeria monocytogenes. From (Donaldson et al., 2015). 

Lineage Serotypes Distribution Genetic characteristics 

I 1/2b, 3b, 3c, 4b Mainly human isolates 
Low diversity among 

lineages 

II 1/2a, 1/2c, 3a 
Mainly food products and 

natural environments 
Most diverse 

III 4a, 4b, 4c Majority ruminant isolates Very diverse 

IV 4a, 4b, 4c Majority ruminant isolates Few isolates 
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1.3 Listeriosis 
The genus Listeria become renowned in public health and in the food industry due to 

its capacity to lead to a life-threating disease denominated listeriosis (Schlech et al., 

1983). In the case of other foodborne pathogens, such as Salmonella and E. coli 

O157:H7, a low amount of bacterial cells can lead to an infection, as low as a food 

product contaminated with 10 of this E. coli strain can cause disease in an individual 

(Swaminathan and Gerner-Smidt, 2007). As for L. monocytogenes, food products with 

a high level of contamination (e.g. 109 bacteria) can result in mild to severe 

gastroenteritis (Radoshevich and Cossart, 2018). In the United States (US), it is 

estimated that, per year, a healthy person ingests at least a meal contaminated with 

106 to 109 L. monocytogenes cells without any consequent harmful reaction (Chan and 

Wiedmann, 2009). Reason why, listeriosis incidence is more dependent on the health 

condition of the individual than any other factor. On the same note, the number of 

infections per year is relatively low when compared to other foodborne pathogens. In 

2010, the worldwide report on listeriosis estimated the number of events to be just shy 

above the twenty-three thousand that resulted in more than 5463 fatalities (de 

Noordhout et al., 2014). However, listeriosis potential severity makes it one of the most 

notorious foodborne pathogens in Europe and worldwide (Antonia Ricci et al., 2018). 

Particularly due to its unusually high mortality rates, between 20 to 30% of clinical 

cases end up in deceased. The groups most at risk are newborns, pregnant woman, 

elderly and individuals with weakened immunity system (Swaminathan and Gerner-

Smidt, 2007). 

The European Food Safety Authority (EFSA) upheld a quantitative model regarding 

invasive listeriosis that concluded that more than 90% of cases are due to the 

consumption of ready-to-eat foods (RTE) (Antonia Ricci et al., 2018). RTE foods are 

sold directly to the consumer without any prior heat-treatment and have been 

connected with multiple human listeriosis outbreaks in different points around the 

globe, among them are included the US (Angelo et al., 2017), Canada (Thomas et al., 

2015), Chile (Cordano and Rocourt, 2001), Japan (Shimojima et al., 2016), and 

throughout Europe (Lomonaco et al., 2015). As a ubiquitous pathogen, Listeria can be 

isolated in food processing pipelines and other multitude of environments (Gandhi and 

Chikindas, 2007), increasing the chances for it to result in infection in animals and 

humans. 
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1.3.1 Pathology in animals  
Listeriosis in animals are caused in the majority of instances by Listeria 

monocytogenes and it is believed that the main route of transmission is through 

contaminated feed. L. monocytogenes can survive in animal feed and in liquid manure 

for months (Nightingale et al., 2004). This contaminated faecal matter is a pathway of 

pathogen transmission if used as an agricultural fertilizer (Ferreira et al., 2014). 

However, in some animals, the main cause of septicemia is due to L. ivanovii (Wagner 

M. and McLauchlin J., 2008). In sheep as in goats, listeriosis causes encephalitis, 

septicaemia and abortion. 

The presence of this pathogen in livestock farms increases the possibility of 

transmission to humans, and subtypes connected with listeriosis in humans have been 

isolated in cattle. A report of such occurrence was a listeriosis outbreak with 42 human 

patients, which was traced to the ingestion of cabbage products that were fertilized 

with sheep manure from a farm that had previous reports of Listeria contamination 

(Swaminathan and Gerner-Smidt, 2007). In the farm environment cattle shows the 

highest capacity in the spread of Listeriae. There are reports of healthy cattle being a 

reservoir of L. monocytogenes, L. innocua, L. ivanovii and L. grayi (Hutchison et al., 

2004). 

Bovine farm environments have frequent high prevalence of L. monocytogenes, and 

also with human listeriosis subtypes being isolated (Nightingale et al., 2004). A study 

in bovine from a dairy farm isolated L. monocytogenes 1/2a in faecal samples of 

asymptomatic cows, hinting that farm animals can also be reservoirs of this pathogen 

(Borucki et al., 2005). Listeria spp. is frequently isolated from other animals sources, 

such as lambs (Wardrope and MacLeod, 1983), horses (Gudmundsdottir et al., 2004) 

and chickens (Kurazono et al., 2003).  

 

1.3.2 Pathogenicity and epidemiology 
Upon consumption of contaminated food products by an individual, Listeria 

monocytogenes faces the intestinal epithelium and has to cross the intestinal epithelial 

barrier to disseminate via the lymph nodes and blood to reach its preferred target 

organs, the liver and spleen (Radoshevich and Cossart, 2018). Figure 1 illustrates the 

pathways of L. monocytogenes spreading in the human host. This invasive 

intracellular bacterium responsible for listeriosis is described by several clinical 
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features, such as meningitis, meningo-encephalitis, fetus infections, abortions, 

perinatal infections and febrile gastroenteritis (Cossart, 2002). These clinical 

complications are attributed to Listeria’s remarkable abilities to cross the intestinal 

barrier, the feto-placental barriers and the blood brain barrier (Cossart and Toledo-

Arana, 2008).  

 
Figure 1 - Diagram of the L. monocytogenes infection of an individual and its path of infection. Infection 

occurs with ingestion of contaminated food products. If L. monocytogenes manages to cross the 

intestinal barrier then it can disseminate to its preferential organs (liver and spleen), but also to the brain 

and placenta. From (Radoshevich and Cossart, 2018). 

 

Listeria has the capacity to escape the humoral immune defences by invading a variety 

of mammalian cells, to survive and replicate inside them reaching sufficient numbers 

to spread to nearby cells (Stavru et al., 2011). 

The diagram in Figure 2 illustrates the multiple pathways of Listeria transmission 

between soil, livestock, food products and humans. Being widespread in the 

environment, Listeria can harbour for long periods of time in sewage, vegetation, soil, 

farm environments and food processing plants (Allerberger and Wagner, 2010).  
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Figure 2 - Potential transmission pathways for L. monocytogenes that allow it to reach humans. 

Adapted from (Walland J. et al., 2015). 

 

The risk groups more affected by listeriosis are well defined, such as pregnant women, 

newborns, elderly, immunocompromised patients and patients with transplants and 

diabetes (Hernandez-Milian and Payeras-Cifre, 2014). However, healthy individuals 

can also suffer from this invasive illness, in this case the major factor is the ingestion 

dose of contaminated food (Hernandez-Milian and Payeras-Cifre, 2014). In general, 

the number of listeriosis cases are higher in people over 65 years old and in newborns. 

The most common clinical form of invasive L. monocytogenes is bloodstream 

infection, followed by meningitis (Antonia Ricci et al., 2018).  The incubation time is 

very dependent on the strain and patient but it can range from 1 to 70 days 

(Swaminathan and Gerner-Smidt, 2007). The longer incubation periods were found to 

be in pregnancy-related cases and the shortest ones in bacteraemia and central 

nervous system cases.  

The annual incidence of listeriosis is estimated in between 0.1 and 1 case per 100 

thousand people but an increase amount of sporadic cases and outbreaks has been 

registered over the years (Hernandez-Milian and Payeras-Cifre, 2014). In Europe, 

period reports since 2003 have registered this same progressive increase in Listeria 

infections (Allerberger and Wagner, 2010; ECDC, 2015; Antonia Ricci et al., 2018). 

This invasive illness happens mostly due to contaminated foods related outbreaks or 

sporadic cases. The number of outbreaks per year is low, around five worldwide, 

however some of the sporadic listeriosis registered cases might be in fact connected 

to outbreaks to which casualty could not be confirmed (Ferreira et al., 2014). Figure 3 

shows the number of human invasive listeriosis cases reported annually in Europe 
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connected with food outbreaks, as well as the daunting number of deaths resulted 

from these cases.  

 
Figure 3 - Graphic representing the number cases and connected fatalities of confirmed human 

invasive listeriosis reported in Europe resulted from outbreaks of food contaminated with L. 

monocytogenes in the period from 2008 to 2015. Data from (Antonia Ricci et al., 2018).  

 

A decade long danish report overviewing this illness in Denmark reported a case-

fatality rate of 21% and the majority of patients presented a bloodstream infection 

(Gerner-Smidt et al., 2005). As in other regions of the world, in the US listeriosis is 

also considered rare. Though, it is the third cause of death by a foodborne pathogen. 

A two year clinical report identified 1651 cases of listeriosis with a 17.6% mortality rate 

(Hernandez-Milian and Payeras-Cifre, 2014). Invasive listeriosis leads to admission in 

intensive-care units, which makes Listeria the third most costly foodborne pathogen in 

the US, with a projected annual cost between 2 and 22 billion dollars (de Noordhout 

et al., 2014). 

 

1.3.3 Human listeriosis and food products 
Since the large majority of human listeriosis cases are linked to the consumption of 

foods contaminated with this pathogen (Schlech et al., 1983), throughout the years 

diverse food sources have been linked with listeriosis outbreaks. A particular type of 

foods that causes great concern are the ready-to-eat (RTE) foods, which do not go 

through any heat-treatment and are sold directly to the consumer, particularly 

delicatessen meats have one of the highest per serving risk of listeriosis. In 1992, a 

large listeriosis outbreak with 279 registered cases was reported in France due to 

cross-contamination of RTE food products (Ferreira et al., 2014). In the US, 

delicatessen turkey meat contaminated with L. monocytogenes resulted in an 

outbreak with 29 patients and 4 fatalities (Olsen et al., 2005). The relevance of this 

outbreak is the food facility source of contamination, which had been the harbour of a 
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different outbreak 12 years before. This Listeria persistence in food plants is a public 

health risk and has a heavy financial costs, in the previous mentioned outbreak it lead 

to the recall of more than seven thousand tons of processed turkey and chicken meat 

(Wenger et al., 1990). Case in point, it is estimated that a single recall of a food product 

contaminated with Listeria results in losses up to a quarter of a million euros (Ivanek 

et al., 2004). Table 2 lists some of the food related outbreaks of listeriosis reported 

around the globe. The clear public health burden and economic cost of listeriosis has 

prompt researchers to explore the virulence mechanisms and adaptation strategies to 

different conditions that makes L. monocytogenes an all-around pathogen. 

 

Table 2 - List of some listeriosis outbreaks with source in foods contaminated with L. monocytogenes. 

Country Year Food source 
N.° of 
cases 

Death toll 
(%) 

Reference 

Switzerland 1983 - 1987 Soft cheese 112 31 (27.7) (Nocera et al., 1990) 

Finland 1998 - 1999 Dairy butter 25 6 (24) (Mikkola et al., 2000) 

Switzerland 2005 Tomme cheese 10 3 (30) (Bille et al., 2006) 

Germany 2006 – 2007 Cheese 187 26 (13.9) (Koch et al., 2010) 

Canada 2008 Deli meat 57 24 (42.1) (Andrea et al., 2015) 

Denmark 2009 Beef meat 7 2 (28.6) (Smith et al., 2011) 

Austria - 

Germany 
2009 Cheese 14 4 (28,6) (Fretz et al., 2010) 

Portugal 2009 - 2012 Cheese 30 11 (36.7) (Magalhães et al., 2015) 

US 2010 Diced celery 10 5 (50) (Kingsley et al., 2012) 

Switzerland 2011 Cooked ham 9 - (Hächler et al., 2013) 

US 2011 Cantaloupe 147 33 (22.4) (McCollum et al., 2013) 

US 2012 Cheese 22 4 (18.2) (Heiman et al., 2015) 

Denmark 2013 - 2015 Smoked fish 20 7 (35) 
(Gillesberg Lassen et al., 

2016) 

Denmark 2014 
Delicatessen 

meat 
41 17 (41.5) (Mølbak et al., 2016) 

Denmark 2015 Smoked salmon 6 1 (16.7) (Schjørring et al., 2017) 

US 2015 Ice cream 4 - (Pouillot et al., 2016) 
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1.4 Listeria monocytogenes, a unique model in infection biology 
During the last three decades, the study around the facultative intracellular pathogen 

L. monocytogenes lead to paramount knowledge regarding infection, immunity and 

host cell biology (Schlech et al., 1983; Dramsi et al., 1993; Cossart, 2002; Johansson 

et al., 2002; Greene and Freitag, 2003; Desvaux and Hébraud, 2006; Cossart and 

Toledo-Arana, 2008; Carvalho et al., 2014). 

Current infectious process knowledge was obtained through research in humans and 

various animal models, mainly the mouse model (Cossart and Toledo-Arana, 2008). 

These reports showed that during infection L. monocytogenes main site of entry in the 

organism is the intestine and that the induction of the T-cell response does not have 

an impact in the recovery from the infection or defences against a second moment of 

infection (Dramsi et al., 1996). Mackaness showed that Listeria is capable of surviving 

and replicating in murine macrophages (Mackaness, 1962), but other relevant factors 

for this bacterial infection have been found since then. In particular, Listeria’s capacity 

to survive in the cytosol avoiding both innate and adaptive immune responses makes 

it a proficient invasive pathogen (Cossart, 2002). 

The infection into mammalian cell can be envisioned in three stages: internalization, 

where internalins (InlA and InlB) help the entry process; evading the vacuole and 

surviving the cytosol through the pore-forming toxin listeriolysin (LLO) and the 

lecithinase (PlcA); and cell to cell spreading through the actin-based motility and lysis 

of the second vacuole, ensured by a second lecithinase (PlcB) and also by LLO 

(Cossart and Toledo-Arana, 2008).  

  

1.4.1 PrfA, the virulence gene locus 
The transcription factor prfA is the major regulator of virulence factors (Figure 4), 

comprising some of the agents in the virulence mechanism agents such as InlA and 

InLB, LLO, phospholipases PlcA and PlcB, Mpl protease, sugar phosphate permease, 

ActA, and InlC (Cossart, 2002), which will be further discussed. This virulence 

pleiotropic regulator is encoded on a 10 kb pathogenicity island and it is a protein 

similar to protein CAP, the cAMP receptor protein of Escherichia coli (Ireton, 2007). 

The transcriptional factor prfA has a role in overall regulation of virulence genes for 

the transition from extracellular to intracellular pathogen and also in extracellular 

biofilm development (Lemon et al., 2010). 
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Figure 4 - The virulence gene locus. From (Cossart, 2002). 

 

1.4.2 Internalization 
L. monocytogenes is able to invade and proliferate within macrophages and epithelial 

nonphagocytic cells. When in contact with the host target tissues, internalization 

results from the tight apposition of the plasma membrane that surrounds the incoming 

microbe (Figure 5).  

 

 
Figure 5 - In vitro cell cycle of L. monocytogenes. It binds to epithelial host cells through InlA–E-

cadherin, InlB– Met and ActA–heparan sulfate interactions and it promotes its entry into the cell. It 

escapes the vacuole by LLO, together with PlcA and PlcB and possibly ActA. Production of ActA triggers 

the recruitment of Arp2/3, VASP and actin and allows autophagy escape and Listeria replication. ActA 

induces actin polymerization that will propel the bacteria within the cytosol and within membrane 

protrusions into neighbouring cells. The lysis of the second vacuole finish the cell-to-cell spread and it 

starts the new infection cycle. From (Travier and Lecuit, 2014). 
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This mechanism is referenced as the “zipper mechanism”, since it requires a 

progressive interaction between the bacterial surface ligands and their counterpart 

cellular receptors (Cossart and Toledo-Arana, 2008). This L. monocytogenes infection 

stage has been extensively characterized and it is mainly based on the activity of two 

internalins. InlA and InlB are two surface proteins members of a family of 25 internalins 

that bind to eukaryotic host cell ligands. InlA has an N-terminal leucine-rich repeat 

(LRR) that binds with the human host E-cadherin. As for InlB, it cooperates with InlA 

and allows the entry into non-polarized epithelial cells by binding to Met, the receptor 

of the hepatocyte growth factor (HGF). These surface proteins are the major mediators 

of several virulence related functions and are either anchored to the cell wall, 

associated with the cell wall or secreted (Cossart and Helenius, 2014; Bigot et al., 

2005; Bierne et al., 2007). 

 

1.4.3 Vacuolar stage and life in the cytosol 
L. monocytogenes interaction with the host cell receptors results in the engulfment 

and internalization of the bacteria in a membrane-bound vacuole (Figure 5). In around 

30 minutes the entrapped bacteria manages to escape the vacuole (Cossart and 

Toledo-Arana, 2008). This escape is mediated by the cholesterol-dependent pore-

forming toxin LLO, in conjunction with two phospholipases (PlcA and PlcB). LLO toxin 

induces haemolysis and it is encoded by the hly gene. PlcA and PlcB also have a role 

in the evasion of Listeria from primary vacuoles and from secondary vacuoles during 

bacteria cell-to-cell spread (Pizarro-Cerda and Cossart, 2018). 

Free bacterial cells in the cytosol replicate with a division time close to that in rich broth 

medium and it also starts inducing the recruitment and polymerisation of cellular actin. 

This mechanism produces enough energy to propel Listeria in the cytoplasm at a 

speed around 10 mm per minute. In this way, Listeria escapes intracellular autophagy 

and extracellular humoral immune responses (Cossart, 2002; Kortebi et al., 2017). 

 

1.4.4 Bacteria cell-to-cell spread 
When free in the plasma membrane, Listeria pushes the membrane inducing the 

formation of protrusions which allow the invasion to nearby cells. These protrusions 

lead to a two-membrane vacuole that the bacteria will eventually lyse to replicate in 

the cytosol of the second cell (Figure 5). As mention before, this vacuole rupture and 
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escape is mediated by LLO, PlcA and PlcB. All these crucial steps in L. 

monocytogenes pathogenesis allow it to disseminate in various infected tissues while 

escaping from host defences (Cossart, 2002; Cossart and Toledo-Arana, 2008; 

Radoshevich and Cossart, 2018). 

 

1.5 Biofilms 
Biofilms are the predominant growth mode and survival mechanism undertaken by 

microorganisms in most man-made and natural environments (Khemiri et al., 2016). 

The sessile mode of growth is defined as communities of microorganisms attached to 

a surface which is surrounded by an extracellular matrix that embeds these 

microorganisms. This is a natural and frequent phenomenon that happens whenever 

there is a close proximity between microorganisms and suitable surfaces (Kostaki et 

al., 2012). 

Even if biofilms can be formed by a single bacterial species, particularly in most 

laboratory conditions (Khemiri et al., 2016), monospecies biofilms are uncommon. 

Most of the times, biofilms are found in different environments as complex multi-

species communities (Steinberger and Holden, 2005; Bogino et al., 2013; Korsak and 

Szuplewska, 2016). In this complex fabric of different bacterial species and matrix, the 

metabolic products of one species can be shared with others and the attachment to 

surfaces is reinforced. However, on the negative side there is bacterial competition for 

space and nutrients, and over accumulation of toxic products (da Silva Fernandes et 

al., 2015). Nevertheless, multiple advantages arise for bacteria living within a biofilm. 

The main one is the increased protection against harsh conditions, such as 

antimicrobial treatments and fluctuations in physical conditions (e.g. temperature and 

pH). Within a biofilm, bacteria cells have a better chance to survive the host defence 

responses and acquire advantageous genetic traits by horizontal gene transfer, such 

as antibiotic resistance genes (Costerton et al., 1999). 

 

1.5.1 Biofilm stages 
Bacterial biofilm development can be divided in four main stages: (i) attachment to 

surface, (ii) sessile growth, (iii) colonization, and (iv) dispersal (Figure 6). The 

formation of a biofilm starts with the attachment of planktonic cells to a surface through 

low energy interactions (electrostatic and Van der Waals forces, steric and 
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hydrophobic interactions). In this initial step, non-specific bacterial-surface binding 

occurs just after seconds the first contact with the surface (Takhistov and George, 

2004).  This first cell adhesions are scarce, but overtime evolves to the formation of 

micro colonies.  

 
Figure 6 - Stages of biofilm formation. Initial surface attachment, followed by production of extracellular 

polymeric substance and adhesins leading to irreversible surface attachment. Then, formation of 

bacterial microcolonies and colonization of empty areas during biofilm maturation. Finally, bacterial 

dispersion from the biofilm. Adapted from (Sauer, 2003). 

 

This first stage is composed by both reversible and irreversible bound cells (Costerton 

et al., 1999). In this stage, bacteria can aggregate loosely or dissociate and go back 

to planktonic state. The presence of adhesins and bacterial appendages (pili, fimbriae, 

flagella) help bacteria to sustain the electrostatic interactions that happen with the 

surface (Park et al., 2011). The second stage, sessile growth is marked by the 

formation and growth of micro colonies from the irreversibly attached cells. These 

initial cells and aggregates start producing extracellular polymeric substances (EPS) 

that will form the matrix. In conjunction with the colonization stage it marks the 

development of the biofilm. In the following step, microcolonies start growing towards 

areas with higher nutrient availability and fewer cells. The resulting bacterial web is 

composed of a higher number and bigger size of cells with intercolony bridges (Hanna 

and Wang, 2006). However, with time and depletion of nutrients, the inner cells enter 

in static growth and the outer layers keep a stable growth. This results in the decrease 

of EPS that maintains the cohesiveness of the aggregates. In the beginning of the 

dispersal stage, it becomes easier for cells to detach and disseminate as a single or 
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clustered cells. Bacterial cells in the inner core of the biofilm lyse prior to the dispersal 

of the outer layer cells. This provides nutrients for the bacteria in dispersion. In this 

orchestered mechanism, the cells in dispersion also change their metabolism shutting 

down genes encoding for exopolysaccharides and fimbriae, and upregulating 

chemotactic proteins and flagella that will be required to enter in the planktonic mode 

(Kumar et al., 2017). 

 

1.5.2 Planktonic vs sessile mode of growth  
One of the aims of this work thesis is to make a protein abundance comparison 

between planktonic and sessile cells. Case in point, significant changes in the cellular 

physiology between planktonic and biofilm cells have been reported in different 

microorganisms (Figure 7). 

 

 
Figure 7 - Diagram of genetic components relevant for the transition between planktonic and biofilm 

mode of growth. From (Pratt and Kolter, 1999). 

 

The transition between the two growth modes results from a shift of cell genes and 

abundance of proteins, such as initiation factors and other cascade proteins (Qayyum 

et al., 2016). Genes linked with quorum sensing, iron acquisition and motility were 

upregulated in Acinetobacter baumannii sessile cells (Rumbo-Feal et al., 2013). 

Increased expression of genes connected with production of extracellular matrix were 

found in Pseudomonas aeruginosa biofilms (Dotsch et al., 2012). Compared to 

planktonic growth mode, cells in a biofilm have an increased production of 
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recombinant proteins and other variations in gene expression were also observed in 

relation to different stages of biofilm development (Lim et al., 2017). Through the 

multiple reports comparing planktonic versus biofilm state, there is still a research gap 

reflecting all the shifts that happen between these two growth modes, particularly big 

data sets of differentially expressed proteins (Rani and Babu, 2018). 

 

1.5.3 Biofilm matrix and flagella 
The biofilm extracellular matrix that surrounds bacteria is mainly composed of water 

and extracellular polymeric substances (EPS: exopolysaccharides, proteins and 

extracellular DNA). All these molecules play a structure-stabilizing and protective role 

to bacterial cells in a biofilm (Sutherland, 2001a). EPS effects biofilm shape and size, 

determines resistance to shear forces and resistance against stress conditions and 

antimicrobial treatments (Kumar et al., 2017). The overall abundance and composition 

of the matrix can vary significantly depending on the bacterial species. In the majority 

of biofilm-forming bacteria, exopolysaccharides are the most abundant and important 

components of the biofilm (Limoli et al., 2015). Extracellular DNA (eDNA), besides the 

shared structural role with the other EPS components, it serves as an energy and 

nutrition source (Colagiorgi et al., 2017). In regards to the biofilm-associated proteins 

(Bap), they are surface proteins of high molecular weight that support biofilm formation 

and as referenced before, they also have a role in infectious processes (Lasa and 

Penadés, 2006). L. monocytogenes EPS are mainly constituted by proteins while the 

major polysaccharides are teichoic acids (Brauge et al., 2015), the latter are essential 

in biofilm development and structural stability (Combrouse et al., 2013). 

Flagella are crucial for biofilm formation in multiple bacterial species. The flagellum in 

L. monocytogenes is comprised of thousands of flagellin monomers encoded by the 

flaA gene. This gene is regulated by temperature and Listeria has up to six peritrichous 

flagella per cell (Griffin and Robbins, 1944). The role of flagella in Listeria biofilm is 

controversial, particularly due to the different growth experiments (static or flow cell 

mode of growth) and use of different temperatures. Some reports observed that its 

presence is relevant in early stages of L. monocytogenes adherence, particularly 

surface attachment and subsequent biofilm formation (Lemon et al., 2007). Other 

reports found that motility does not reveal a positive correlation with biofilm formation 
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(Di Bonaventura et al., 2008), or that motility is not critical for biofilm development on 

flat surfaces but might be required on “hanging” surfaces (Piercey et al., 2016). 

 

1.5.4 Biofilms in the food processing environment 
Biofilms in the food industry are a major source of concern in regards to food safety. 

Bacteria that are able to attach to surfaces in food processing plants and form biofilms 

can lead to food spoilage and the spread of bacterial pathogens (Ferreira et al., 2014). 

A strain that efficiently colonizes a surface in a sessile mode of growth is up to one 

thousand times more tolerant to disinfection procedures then their free-living cells 

counterparts (Dubois-Brissonnet et al., 2016). Furthermore, some of these strains can 

be repeatedly isolated from the same processing plant over a period up to years, also 

known as persistent strains. L. monocytogenes biofilm formation is considered one of 

the main reasons for such persistence (Kathariou, 2002). Bacterial biofilms have a 

heavy cost in public health but also in the world economy that affects industries, the 

health sector, agriculture and water quality (Khemiri et al., 2016). 

 

1.5.5 Listeria monocytogenes biofilm 
L. monocytogenes biofilms are composed of two homogeneous layers of cells or 

microcolonies. Figure 8A shows the overall described shape of this honeycomb biofilm 

instead of a more frequent mushroom shape architecture as in other biofilm-forming 

bacteria (e.g. Pseudomonas aeruginosa). Listeria’s biofilm upper and lower layers 

contain more than 105 cells/cm2 with low amount of EPS (Hanna and Wang, 2006; da 

Silva Fernandes et al., 2015). Confocal laser scanning microscopy images showed 

that this honeycomb structure of scattered colonies is composed of hallow voids of 5 

to 50 µm (Guilbaud et al., 2015) (Figure 8B).  

 
Figure 8 - A: Scanning electron microscopy observations of L. monocytogenes biofilm formation after 

7 days. From (Renier et al., 2011). B: The “honeycomb” biofilm structure by L. monocytogenes. From 

(Hanna and Wang, 2006). 
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This biofilm architecture is shared with other species, such as Staphylococcus aureus 

(Bridier et al., 2010). 

In terms of biofilm forming proficiency and lineages, some studies found no putative 

correlation between the ability to form biofilms and lineage (Renier et al., 2011). Other 

reports found that strains of lineage I have a tendency to produce less biofilm than 

lineage II strains (Combrouse et al., 2013). The common ground in L. monocytogenes 

biofilm formation is that it protects Listeria from harsh conditions and increases its 

resistance to disinfectants and antimicrobials (Chavant et al., 2004). Temperature 

wise, Listeria can develop biofilms at low temperatures, but as expected at 37 ºC it 

produces a significantly denser biofilm (Chavant et al., 2002). At low temperatures, 

there are fewer cells and low EPS production (Di Bonaventura et al., 2008). L. 

monocytogenes capacity to produce biofilms in cold settings used during food 

processing environment increases the probability of food product contamination which 

will be further reviewed in the following Chapter 2.  

 

1.6 Listeria monocytogenes proteome 
The circular genome of L. monocytogenes EGDe strain (serogroup 1/2a) is 2,944,528 

base pairs long and predicted to have a total of 2853 open reading frames, including 

133 surface proteins (Glaser et al., 2001; Cabanes et al., 2002). This genome has a 

high level of synteny with Bacillus subtilis genome and it has a large portion connected 

to transcription regulation pathways, with 209 transcriptional regulators (Glaser et al., 

2001). Taking into account Listeria’s pathogenicity and adaptation capacity, there 

have been multiple studies exploring the proteome of this genus.  

Particularly, proteomic studies focusing on the comparison of different strains, aiming 

to determine the proteomic basis of the more virulent strains. Donaldson et al. 

compared the proteome of the EGDe strain (serogroup 1/2a) with the outbreak strain 

F2365 (serotype 4b) and observed that 413 proteins had significant difference in 

abundance, including proteins with roles in cell wall maintenance, flagellar 

biosynthesis, DNA repair, and stress responses (Donaldson et al., 2009). On the other 

hand, Dumas et al., while comparing 12 strains of L. monocytogenes (serotypes 1/2a, 

1/2b and 4b), shown that no correlation could be established between protein 

abundances patterns and the levels of virulence. However, a correlation was found 

between the protein expression patterns and the serotypes (Dumas et al., 2008), and 
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later on revealed a connection between the subproteomic data and the origin of 

serotype 4b (Dumas et al., 2009). Still on the matter of virulence, a different proteomic 

study identified 43 proteins only present in L. monocytogenes EGDe and not in the 

non-pathogenic L. innocua. Furthermore, 16 proteins in L. monocytogenes had no 

orthologues in L. innocua, including nine virulence factors (PlcA, LLO, Mpl, ActA, PlcB, 

InlA, InlB, InlC, and InlH) (Trost et al., 2005). This reveals that surface proteins have 

a major role in the particular virulence of L. monocytogenes, since most of the proteins 

mentioned before are cell surface or cell wall metabolism associated proteins with a 

crucial role in the different stages of mammalian cell invasion. 

 

1.6.1 Cell wall and membrane 
L. monocytogenes membrane is constituted by 55 to 60% of proteins, 30 to 35% of 

lipids, and 1.3 to 2.3% of carbohydrates (Ghosh and Carroll, 1968). Lipid composition 

is mainly of phospholipids. The membrane fatty acid is composed by branched-chain 

fatty acids which can vary depending on the temperature to maintain optimal 

membrane fluidity (Phadtare et al., 1999; Cacace et al., 2010) as it will be further 

discussed in Chapter 2. The teichoic acids (TAs) covalently bound to the 

peptidoglycan, and the lipoteichoic acids (LTAs) form the L. monocytogenes cell wall. 

These components have a crucial cellular importance since they are involved in the 

anchoring of surface proteins and transport of molecules (Bierne and Cossart, 2007).  

 

1.6.2 Secretome 
The secretome is a concept that contains the secretion machineries and their secreted 

proteins. The extracellular proteome (exoproteome) is a subset of proteins present in 

the extracellular milieu that are also part of the secretome (Bierne and Cossart, 2007).  

The first point of contact between the environment and the bacterial cell is through its 

surface. Such communication is predominantly achieved through proteins that are 

exposed to some extent in the outside of the microorganism. These include secreted 

proteins and surface-attached proteins (Olaya-Abril et al., 2014). However, it is 

relevant to take into account that first, the cell wall is not an impermeable barrier and 

so proteins in the cell envelope can cooperate with the outside environment without 

having a domain external to the cell wall. Secondly, the putative protein localization in 

the cell envelope as a cell surface exposed stricto sensu can sometimes be falsely 
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attributed due to other overlying components (Desvaux and Hebraud, 2008). A 

secreted protein can be in the outside of the cell as a soluble protein, a surface-

associated protein or a subunit part of a surface appendage. In the extracellular milieu, 

it is also possible to find proteins expelled from lysed cells which cannot be considered 

as secreted proteins. Therefore, the exoproteome comprises all the proteins found in 

its culture supernatant (Cabrita et al., 2014). 

 

1.6.2.1 Secretion systems 
Figure 9 illustrates the six secretion systems, annotated in L. monocytogenes, that 

prompt proteins to pass through the membrane (Desvaux and Hébraud, 2006). 

Secretion is primarily dependent on the sec pathway, which is predicted to secret 96% 

of the proteins (Bierne and Cossart, 2007). The putative proteins secreted by this 

system are associated with cell wall metabolism, adhesion and biofilm formation 

(Renier et al., 2013). The other secretion systems are: Tat (twin-arginine 

translocation), FEA (flagellar export apparatus), FPE (fimbrillin-protein exporter), 

Holins, and Wss (WXG100 secretion system) (Desvaux and Hébraud, 2006). For 

secreted proteins to be placed in the cell surface they need to translocate the 

membrane through one of these secretion systems and then connect with a cell 

surface component. Protein displacement on the cell surface is dependent on specific 

domains or motifs that meddle secretion and attachment to the cell envelope. Sec, Tat 

and FPE pathways of secretion require a specific N-terminal secretion signal peptide 

(Bierne and Cossart, 2007). Whereas, proteins lacking a signal peptide are 

translocated via FEA, Holins and WSS secretion systems. Cytoplasmic membrane 

translocators target signal peptides which are generally cleaved by signal peptidases 

during the course of translocation. In the major Sec pathway two groups of signal 

peptidases (Spases) have been described: three Spases of type I (SipX, SipY and 

SipZ) and two of type II (LspA and LspB), the latter favour the cleavage of lipoproteins 

(Desvaux and Hébraud, 2006). 
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Figure 9 - Schema of the protein secretion pathways in L. monocytogenes EGDe. Proteins exported 

via the Sec pathway either stay membrane associated or cell wall associated, or are released into the 

extracellular milieu, or would even be injected into a eukaryotic host cell. Proteins secreted via Tat 

would most certainly be cell surface or released into the extracellular milieu. FPE would be involved in 

the formation of trans cell wall structures. FEA is involved in flagella assembly. Proteins translocated 

by holins seem secreted into the extracellular milieu or involved in cell wall degradation. WSS proteins 

would be secreted into the extracellular milieu. From (Desvaux and Hebraud, 2008). 

 

1.6.2.2 Surfaceome and extracellular proteins 
The surfaceome comprises surface proteins involved in multiple biological processes, 

such as host invasion, responses to different harsh conditions and bacterial growth 

(Bierne and Cossart, 2007). Therefore, surface proteins have a wide range of 

molecular functions: some can have a role as transporters of nutrients or ions; be 

receptors for molecules; be binding factors to surfaces or other cells; be degradation 

mechanisms for molecules and have enzymatic activities (e.g. sortase mediated 

anchoring of proteins to the surface of the cell) (Olaya-Abril et al., 2014). In pathogenic 

bacteria, as described before, surface proteins also have a role in adhesion, invasion 

and general virulence. Since they are exposed to the exterior of the cell, surface 



 

 

33 

proteins are as well the first interacting molecules with the host immune response, 

thus being recognized as antigens. Meaning that surface proteins are good drug 

targets for vaccine development (Grandi, 2006). 

L. monocytogenes EGDe has a total of 133 surface proteins, including 41 LPXTG 

(Leu-Pro-any-Thr-Gly) proteins, nine GW proteins with a signal peptide, 11 

hydrophobic tail proteins, four P60-like proteins and 68 lipoproteins (Figure 10). 

 

 
Figure 10 - The major types of surface proteins found in L. monocytogenes: proteins that possess an 

LPXTG carboxy-terminal sorting signal; proteins anchored by a hydrophobic tail motif; proteins 

containing GW modules; and lipoproteins. From (Cabanes et al., 2002). 

 

LPXTG motif proteins are the most explored class of surface proteins and they have 

been identified in more than one hundred bacterial species (Davies et al., 2009). In 

particularly, Listeria has the highest number of this class of proteins in comparison to 

the other bacterial genomes. LPXTG motifs have a short C-terminal sorting signal that 

attaches to the peptidoglycan. The signal is comprised by conserved LPXTG 

sequence motif (where X equals any amino acid), which is succeeded by a 

hydrophobic domain of around 20 amino acids and a tail of positively charged amino 

acids (Cabanes et al., 2002). The polypeptide is retained by the sorting signal in the 

cell membrane. Via membrane sortases, sortase A and B are described in L. 

monocytogenes, the LPXTG motif is cleaved between the threonine and glycine 

residues and direct linkage of the carboxyl group of the threonine residue to the meso-

diaminopimelic acid of the cell wall peptide precursors (Pucciarelli et al., 2005). 
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Some examples of L. monocytogenes surface proteins are: the major invasive 

internalins, the LPXTG protein InlA and the GW protein InlB, that promote the entry 

into mammalian cells (Bierne et al., 2007); the virulence factor actA for intracellular 

movement (Travier and Lecuit, 2014); and multiple transporter systems such as OppA, 

which mediates the transport of oligopeptides with a role in growth at low temperature 

and intracellular survival in macrophages (Angelidis and Smith, 2003). The abundance 

and diversity of Listeria surface proteins are also connected to its proficient capacity 

to adapt to diverse harsh environmental conditions.  
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Chapter 2 – Listeria in the food industry and its 

adaptation to different environments 
 

2.1 Adaptation and virulence of L. monocytogenes from farm to fork 
L. monocytogenes as a ubiquitous bacterium it is widely spread in the environment. 

The primary realms are soil and water but farm and livestock are also considered 

significant reservoirs that contaminate raw material (Linke et al., 2014). But it is the 

persistence of this invasive foodborne pathogen in the food processing plants that is 

the main factor of a multitude of human listeriosis food-related outbreaks (Ferreira et 

al., 2014). Figure 11 illustrates all the food sources contaminated with L. 

monocytogenes that lead to listeriosis outbreaks registered in Europe from 2008 to 

2015 (Antonia Ricci et al., 2018). 

 

 
Figure 11 - Reported human invasive listeriosis food-related outbreaks in EU from 2008 to 2015. 

Data from (Antonia Ricci et al., 2018). 

 

RTE foods are a particular risk case taking into account its lack of processing and 

elevated levels of contamination during handling. In Europe, food industries have to 

show that L. monocytogenes levels do not go above 100 CFU/g during the course of 

the shelf life (Antonia Ricci et al., 2018). As for the US, it is required a total non-

existence of Listeria from the RTE foods. Listeria persistence in the food processing 

environments is particularly due to cross-contamination events. This is connected with 

badly designed food processing areas where residues can be accumulated and be a 

sustainable source for the development of a biofilm such as joints, parts of conveyor 

belts and cutting machines or slicers (Gandhi and Chikindas, 2007). To note that 

contamination can also occur in the household environment due to storage over at 
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long periods of time or at inappropriate refrigeration temperatures. The temperature 

range in the European food plant environment is from 2.7 to 5.6 ºC and storage 

temperature is considered to be the most important factor influencing the risk of 

Listeria presence in the main food products known to harbour it, such as deli meats, 

fish products, dairy product and leafy vegetables (Antonia Ricci et al., 2018). Listeria’s 

ability to resist and sustain growth at these temperatures (Bayles et al., 1996), and to 

adapt to various stress conditions make it a true nightmare for public health and food 

industry. 

A stress condition is an environmental variation which leads to a decrease in growth 

rate or that can impeach cell survival. The bacterium response to a stress implies a 

high energy cost in order to maintain homeostasis, to produce macromolecules and to 

repair or replace damaged�components. Listeria stress response mechanisms allow 

it to persist in the natural and the food processing realms, withstanding acidic 

environments, low water activity, desiccation and low temperature (NicAogain and 

O'Byrne, 2016).  

 

2.2 Methods for controlling L. monocytogenes in the food industry 
L. monocytogenes is resilient to the majority of physical treatments employed by the 

food processing practices. As food products are a nutrient-rich hold for bacteria, its 

survival going through the processing environment increases the risk of causing 

infection after human consumption of the contaminated product (Colagiorgi et al., 

2017). The survival of the microorganism is also dependent on the type of food and 

applied processing. As described before, RTE do not suffer a step of heat processing 

and are therefore the number one risk in potentially causing listeriosis. Reason why 

strict rules, different disinfection procedures and security guidelines were set in motion 

in order to reduce at maximum the presence of Listeria in the food industry pipeline. 

The success of the control and monitoring procedures is based in appropriate 

agricultural practices at the farm step and the hazard analysis and critical control 

points (HACCP) programme and good hygiene practices (GHP) at the processing and 

retail steps (Antonia Ricci et al., 2018). 

Food preservation approaches include mainly the control of physical conditions that 

inhibit somewhat microbial development, such as reduced water activity, acidic pH 

and low temperature environments (NicAogain and O'Byrne, 2016). However, there 
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are other disinfection approaches already established and other innovative ones that 

seem promising. The well proven use of sanitizers such as quaternary ammonium 

compounds (QACs), hydrogen peroxide, peracetic acid and sodium hypochlorite are 

effective in eliminating L. monocytogenes cells from food plants (Kastbjerg and Gram, 

2012). Likewise, the use of light and antibacterial peptides, such as nisin, have been 

proven effective in preventing the growth of L. monocytogenes (Ruiz et al., 2009; 

Endarko et al., 2012). Multiple innovative biocontrol methods to limit the growth of L. 

monocytogenes in food surfaces are also under development. It is worth mentioning 

the use of endolysins, hydrolytic enzymes produced by bacteriophages that can break 

the cell wall of Gram-positive bacteria leading to cell lysis. Other approaches such the 

use of bacteriocin proteins and natural essential oils are being developed for 

biopreservation and extending the food product shelf life (Gray et al., 2018). It is 

reasonable to contemplate in the future a target approach that would encumber the 

Listeria regulators for stress tolerance (σB) and virulence (PrfA) (NicAogain and 

O'Byrne, 2016). 

  

2.3 The stressosome, σB and GSR 
L. monocytogenes response to the ever-changing environmental factors and stress 

conditions is linked to the activation of the alternative sigma factor sigma B (σB) that 

controls the general stress response (GSR). A cascade of reactions that starts with 

the sensing of the stress until transcription of vital stress resistance genes leads to the 

maintenance of cellular homeostasis (NicAogain and O'Byrne, 2016). In L. 

monocytogenes EGDe, 7.6% of the genome is under the regulation of σB (Hain et al., 

2008). Functions of genes regulated by this transcriptional factor include a diversity of 

metabolic pathways, transport associated proteins, stress proteins and other 

transcriptional factors (Cossart, 2002). σB also seems to have a partial role in virulence 

by regulation of the virulence transcriptional factor PrfA, controlling the transcription of 

internalin genes and supporting the Listeria survival in the harsh conditions present in 

the gastrointestinal tract (NicAogain and O'Byrne, 2016). However, σB is not a 

virulence factor, in fact it is a transcriptional factor shared with other non-pathogenic 

species of the Listeria genus (Raengpradub et al., 2008).  

Figure 12 represents the L. monocytogenes stressosome, a large protein complex with 

40 RsbR proteins and 20 copies each of RsbS and RsbT (Marles-Wright and Lewis, 
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2010). The centre of this complex is formed by RsbS and RsbT, where the RsbR C-

terminal region is rooted and its N-terminal region protruded out into the extracellular 

milieu (Dorey et al., 2019). In a study to identify translation initiation sites by N-

terminomics, it was found that the mini protein Prli42 which is located in the 

membrane, anchors the stressosome by interacting with the N-terminal domain of 

RsbR (Impens et al., 2017). The activation of σB occurs through a complex chain 

reaction with several players in action. The connection of anti-sigma factor RsbW with 

σB preludes the transcriptional function of the latter. The main factor of this chain 

reaction that leads to the expression of σB is the phosphorylation state of the anti-anti-

sigma factor RsbV. Unphosphorylated RsbV binds to RsbW, releasing σB. Upon 

sensing a stress condition, the cell increases the activities of two phosphatases, RsbU 

and RsbP, dephosphorylate RsbW leads to the release and induction of the σB regulon 

activity (Dorey et al., 2019). 

 

 
Figure 12 - Model for the L. monocytogenes σB regulatory mechanism. From (Dorey et al., 2019). 
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2.4 Adaptation to different conditions: from natural environment to food 
industry 
 

2.4.1 Desiccation 
Water is essential for all living organisms, for animals as well as for plants and micro-

organisms. For the latter, the presence of water or a humid environment with a high 

air relative humidity (RH) is necessary for their survival and growth. Thus, variations 

in the availability of water or in the air relative humidity constitute widespread 

environmental stresses which challenge microorganisms, and especially bacteria. 

Indeed, in their environment, bacteria are often faced with conditions that remove cell-

bound water through air-drying of the atmosphere. Bacterial cells are subject to daily 

or seasonal environmental variations, sometimes going through periods of severe 

desiccation. This is also the case in the food industry, where air dehumidification 

treatments are applied after the daily cleaning-disinfection procedures. In the scope of 

this thesis, we published a review duelling with all the aspects of desiccation conditions 

in microbes, case in point this was the induced stress condition in the first paper of 

this dissertation (Esbelin et al., 2018a). 

 

2.4.1.1 Context 
In terrestrial habitats, bacteria habitually live as multicellular aggregates adhering to 

biotic or abiotic surfaces and/or to each other (sessile cells) rather than in free 

suspension in liquid medium (planktonic cells). In this lifestyle, a.k.a. biofilm, cells are 

often involved in highly complex communities that enable efficient resource use in 

hostile environments (Bogino et al., 2013; Vogeleer et al., 2014). Hence, about 99% 

of the world’s bacterial population is seen in the form of biofilms at various stages of 

growth (Costerton et al., 1987). Water availability is of particular importance in all 

environmental habitats since bacteria are submitted to daily (including nycthemeral 

rhythms) and seasonal variations of air relative humidity (RH) due to rain, drought 

periods or to drainage. Variations in air RH also occur in food processing plants due 

to cleaning and disinfection procedures followed by air dehumidification. 

Microorganisms are settled in a wide range of environments, their genetic and 

physiological adaptability enables them to withstand numerous harsh and sometimes 

combined environmental factors (Moissl-Eichinger et al., 2016). This ability to adapt 
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and persist in harsh environments lies in how cells are able to sense and respond to 

environmental changes. The switch between planktonic and sessile mode of growth, 

as well as the adaptation to physicochemical variations surrounding the cells, requires 

profound physiological changes which occur through the regulation of gene 

expression in response to various signals (Renier et al., 2011). Furthermore, it has 

been reported that bacterial cells growing in biofilm have significantly higher survival 

rate to stress conditions (Giaouris et al., 2014). The biofilms present in food industry 

plants may be of major concern when containing pathogen and/or spoilage bacteria, 

since they can produce significant public health and economic consequences 

(Carpentier and Cerf, 1993). Moreover, bacterial cells in biofilms are embedded in 

extracellular polymeric substances (EPS) that are able to give protection against 

stresses (Lequette et al., 2010). In spite of the relevance of biofilm, the physiological 

and molecular responses of bacteria to desiccation stress remains poorly known. 

Furthermore, most of the desiccation tolerance data comes from planktonic cell 

reports, as evidenced by the data summarized in Table 3. 

 

Table 3 - Examples of different bacteria and their responses to fight against desiccation. 

Bacteria Cell state Mechanism of resistance to desiccation Reference 

Cyanobacteria Planktonic Trehalose and sucrose accumulation 
(Hershkovitz et al., 

1991) 

Pseudomonas spp.  Planktonic 

Hygroscopic secreted polysaccharides and fatty 

acid trans-configuration to maintain membrane 

fluidity 

(Roberson and 

Firestone, 1992) 

Escherichia coli Planktonic Trehalose synthesis 
(Welsh and Herbert, 

1999) 

Salmonella enteritidis 

and S. Typhimurium 
Planktonic Filament formations (Mattick et al., 2000) 

Listeria 

monocytogenes 
Planktonic Osmolytes uptake 

(Bayles and Wilkinson, 

2000) 

Enterobacteriaceae  Planktonic 
Production of extracellular cellulose, EPS, 

fimbriae, changes to membrane permeability 
(Ramos et al., 2001) 

Chroococcidiopsis 

spp. 
Planktonic 

Development of thick multilayered envelopes 

rich in polysaccharides, lipids and proteins 
(Billi and Potts, 2002) 

Shewanella baltica Planktonic 
Express of a proteinaceous osmotic shock 

response 
(Leblanc et al., 2003) 
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Bacteria Cell state Mechanism of resistance to desiccation Reference 

Salmonella spp. Planktonic Fimbriae and cellulose protection (Gibson et al., 2006) 

Listeria 

monocytogenes 
Biofilm Increase in extrapolymeric substances (EPS) (Chae et al., 2006) 

Staphylococcus 

aureus 
Planktonic SigB activity via oxidative stress 

(Chaibenjawong and 

Foster, 2011) 

Pseudomonas spp. Planktonic 
Upregulation of alginate synthesis and flagellar 

genes 
(Gulez et al., 2012) 

Deinococcus 

radiodurans 
Planktonic Increased levels of Mn(II) 

(Anderson et al., 

2015) 

 

2.4.1.2 Water relevance for bacteria 
Before analysing the effects of desiccation stress on bacterial cells, it is important to 

shed light on the different phenomena related to water. Thus, it is first indispensable 

to outline some definitions.  

Water activity (aw) is the ratio between water vapour pressure in a material (p) and the 

vapour pressure of pure water (po) at the same temperature. Aw is suitable to predict 

the growth of microorganisms because they can only use "available" water. The aw 

value for each bacterium is generally the minimum aw which can lead to growth. 

Growth is minimal at the minimum aw, increasing as aw increases. At aw values below 

the minimum required for growth, bacteria do not necessarily die. Some bacteria, such 

as Deinococcus radiodurans (Blasius et al., 2008) and Mycobacterium (Harland et al., 

2008), are extremely resistant to prolonged desiccation times while others, such as 

Neisseria gonorrhoeae (Tzeng et al., 2014), can survive only short periods of 

desiccation. 

The relative humidity (RH) of air is the ratio between vapour pressure of air and its 

vapour pressure saturation. When vapour and temperature levels are stable, the aw of 

the sample matches the RH of the air surrounding the sample in a sealed 

measurement chamber. The percentage of the relative humidity equilibrium (ERH) can 

be obtained by multiplying aw by 100. 

aw = p/po = ERH (%) / 100  

As described by the above equation, aw is the ratio between vapour pressures and 

therefore it has no units. It ranges from 0.0aw (bone dry) to 1.0aw (pure water). 

Microorganisms that are able to grow in low aw conditions are qualified as xerophilous 

(Madigan et al., 2006). A xerophile is an organism that can grow and multiply in an 
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environment with an extremely low water availability. They can often survive in 

situations with aw below 0.8, as is the case with arid desert soil environments. Among 

this class of organisms is Chloroflexus aurantiacus, a well-known isolated from hot 

springs.  

Desiccation leads to the exit of water from a body and this phenomenon can be natural 

or forced. Several mechanisms can be used to dry an atmosphere or a specific 

biological entity, such as a bacterial cell.  Removing air from water by the use of 

physical means is a way to reach desiccation; drying, usually by exposure to dry air, 

is a special case of desiccation. 

Desiccation tolerance is the ability to undergo nearly absolute dehydration through air 

drying without being killed (Billi and Potts, 2002). A desiccated cell is characterized by 

its singular lack of water, with contents as low as 0.02 g of H2O (dry weight)-1. Low 

water potential is considered the biggest life threatening abiotic stress and it negatively 

affects all biological functions (Krisko et al., 2010). Drying is often associated with 

osmotic stress but in fact, they are two different stresses. In drying air, dried cells are 

surrounded by an atmosphere, while under osmotic stress they are immersed in an 

aqueous solution. This review focuses in the main aspects of desiccation and its 

impact in bacterial communities. 

Water is essential for life and it is the most abundant molecule in cells, where it 

normally comprises ≥80% of the total cell mass (Bratbak and Dundas, 1984). The early 

steps in the evolution of living organisms on Earth occurred in water and its presence 

is being actively explored on other planets, in order to find extra-terrestrial forms of 

life. Water is a source of protons, hydrogen and oxygen in photosynthesis and the 

solvent of biomolecules. It is essential in biochemical reactions, for the structure of 

macromolecules and molecular mobility (Ball, 2008). Water confers structural order to 

cells, stabilizes proteins, lipids and nucleic acids and maintains a cellular 

microenvironment in which vital metabolic systems and chemical reactions occur 

(Potts, 1994). Microorganisms need water for their growth, but depending on the 

species, the amount of water to reach multiplication differs. With the decrease of aw, 

the microbial metabolism is progressively inhibited until conditions become unsuitable 

for growth. All the microbial multiplication is stopped when aw is below 0.60 (Beuchat 

et al., 2013). Nonetheless, a few organisms can resist nearly absolute dehydration, in 

a phenomenon known as anhydrobiosis. This ability to withstand extreme dehydration 
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is found in a number of bacteria, terrestrial microalgae, lichens and yeasts. 

Anhydrobiosis is not a very common phenomenon and it remains rare in nature, (e.g., 

no vertebrate exhibits desiccation tolerance) (Dupont et al., 2014).  

Water is also an important factor that has a role in the microbial deterioration of foods 

and in the persistence of microorganisms in food plants. Nutrients and suitable aw, pH, 

redox potential, and temperature are required for a growing bacterial community. 

During the production of dried foods, the control of moisture, and consequently aw, is 

key to control microbial growth. Low-aw foods and food ingredients are either naturally 

low in moisture or they are produced from high-aw foods that are purposely dried.  

Whether in their natural environment or in industrial processes, water environmental 

disturbances constantly impose significant physical and physiological constraints for 

microorganisms. 

 

2.4.1.3 Foodborne bacteria in desiccated environments 
Each microorganism has a minimum, an optimum, and a maximum aw level suitable 

for growth. Yeasts and moulds can grow at a lower aw than most bacteria, but 0.85 

and 0.90 is considered the lowest level for eukaryotic and prokaryotic human pathogen 

growth, respectively (Houtsma et al., 1993). A aw of 0.85 is based on the minimum aw 

required for S. aureus toxin production (Ding et al., 2016). However, the aw values of 

fresh foods are generally between 0.95 and 0.99 allowing the growth of all 

microorganisms, whether it is technological, spoilage or pathogen bacteria (Grant, 

2004). Consequently, some foods require careful control of aw and the two primary 

ways for that consist on adding salt or sugar to bind the water molecules or 

dehydrating by freeze-drying or evaporation (Grant, 2004). The addition of a solute, 

either salt or sugar, is common in soy sauce, jams, fruit syrups, cured ham and salted 

fish. Additionally, drying is one of the oldest methods of food preservation allowing 

producers to significantly increase the shelf life of food products such as cereals, 

chocolate, dried fruits and vegetables, fermented dry sausages, seeds, herbs, spices 

or powder from different origins (egg, milk, vegetable or meat) (Beuchat et al., 2013). 

Nevertheless, although these low aw-foods can prevent the growth of foodborne 

microorganisms, some bacterial cells including foodborne pathogens are able to 

survive for long periods in foods and food ingredients with aw <0.85, as well as in dry 

processing environments (Takahashi et al., 2011). So, it is important to consider that 
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few persistent cells of foodborne pathogens can be enough to cause disease (Beuchat 

et al., 2013). Sometimes, these low aw-foods may be a vehicle of pathogenic bacteria 

and cause outbreaks of foodborne illnesses (Koyama et al., 2016). As example, the 

occurrence of E. coli O157:H7 infections was connected with the consumption of 

reduced- aw meat products (Hwang et al., 2009), and numerous outbreaks of 

salmonellosis after consumption of contaminated chocolate (Tamminga et al., 1976). 

There were reported at least 7,315 cases of bacterial infection and 63 deaths due to 

consumption of contaminated low aw-foods worldwide between 2007 and 2012 

(Santillana Farakos and Frank, 2014). 

However, many foods that cause infections (e.g. listeriosis) are related with to RTE 

food products, and the primary suspected source of contamination is the food-

processing environments. If surfaces are not properly cleaned, they remain soiled by 

food components, which can contribute to bacterial adhesion, survival and growth 

(Kuda et al., 2015). The Canadian L. monocytogenes outbreak in 2008 was traced to 

slicing equipment contamination from a processing plant. This contamination led to 22 

deaths out of 57 reported cases of listeriosis. Even exposed to a multitude of severe 

environmental conditions, like sanitizers, preservatives, heat, cold or freezing 

temperatures, drying, and osmotic pressure changes, an enhanced tolerance to any 

of these stress factors could contribute to persistence of microbes in food processing 

facilities (Vogel et al., 2010). In combination with other strategies, hyperosmolarity and 

desiccation are frequently used in food processing industry as a means to prevent 

bacterial proliferation, and particularly product contamination with foodborne 

pathogens (Burgess et al., 2016). In fact, air-drying which has been applied in the 

pharmaceutical industry for a long time is now increasingly applied in food processing 

plants following the cleaning and disinfection procedures. This operation is part of an 

overall hygienic setup which aims to dry surfaces, eliminate cold spots and avoid water 

condensation which are source of microbial growth. The control of drying kinetics and 

final relative air humidity value reached after the dehumidification process are crucial 

for improving the hygiene of the surfaces (Zoz et al., 2016; Lang et al., 2017). The 

most commonly used drying process in these industry consists of air RH control by 

mechanical cold techniques or water sorption through a desiccant wheel. In food 

processing workshops, where air dehumidification operations systematically follow 
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after cleaning disinfection procedures, microorganisms are daily subjected to drastic 

RH variations. 

These RH variations in household environments are also a major concern for food 

safety. It has been found that Shiga toxin-producing Escherichia coli and Salmonella 

may die after 1 to 2 months upon storage at room temperature or higher, however may 

survive for up to 2 years in a refrigerated setting, pointing to a bigger food safety 

hazard when dry foods contaminated with bacteria are stored in a refrigerator 

(Hiramatsu et al., 2005). 

The rising number of food-borne bacterial outbreaks over the past decade is also 

linked to fresh fruits and vegetables, raises concerns over the role of plants in 

pathogen transmission. Fresh fruits and vegetables are an essential part of a healthy 

diet. Nevertheless, they have also been documented as a potential vehicle of 

foodborne pathogens (Poimenidou et al., 2016). In agricultural environment, 

microorganisms are subjected to harsh conditions that vary widely and rapidly over 

short periods of time (Hirano and Upper, 2000). The accumulation and production of 

xeroprotectants (e.g. trehalose) by some microbes and plants enables them to endure 

in extreme abiotic stresses. Furthermore, Vilchez et al. (2016) confirmed for the first 

time a link between the desiccation resistance of a microorganism and the protection 

they can confer to plants against drought. 

In all the diverse environments subjected to harsh physico-chemical stresses or 

conditions, it is established that the sessile mode of growth is an efficient strategy for 

microorganisms to increase their survival (Giaouris et al., 2014; Azeredo et al., 2016). 

Over the past few decades, microbial biofilms have been reported in several industrial, 

domestic and environmental realms in which they constitute the most widespread 

lifestyle. They form communities, with complex intra- and inter-species interactions, 

offering better protection against various stresses than planktonic growing cells 

(Giaouris et al., 2015). Indeed, they are frequently exposed to strong insolation, 

extreme temperatures, concurrent hyper salinity and periodic desiccation in natural 

environments, to low temperature, daily cleaning-disinfection procedures and relative 

humidity variations in food plants. Among these hard environmental conditions, it turns 

out that desiccation is a widespread and common stress. The effects of water level 

limitation on bacterial biofilms have been studied in samples from the rhizosphere 

(Bogino et al., 2013), groundwater aquifers (Weaver et al., 2015) and soil (LeBlanc et 
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al., 2008). In all these examples, biofilms were able to withstand periods of desiccation 

and adapt to their surroundings. Thus, harsh environmental conditions contribute to 

the selection of resistant and biofilm-forming strains within bacterial communities 

(Selasi et al., 2016). However, despite the predominance of biofilm lifestyle and its 

particular relevance in food industry regarding the health risks posed by foodborne 

pathogens, most studies aiming to understand the mechanisms implemented by 

bacteria to survive and withstand unfavourable and/or stresses conditions concern 

planktonic cells and/or natural environments as underlined above. The importance and 

frequency of desiccation stress deserves particular attention in order to understand 

how bacteria can tolerate and survive it. The following section provides an overview 

of the molecular mechanisms described in the literature that bacteria are capable of 

implementing to adapt to desiccation. 

 

2.4.1.4 Cellular mechanisms towards desiccation tolerance 
Microbial response of the non-spore forming bacteria involves a regulated molecular 

response to various conditions (for example osmotic, heat, or cold) that includes a 

cascade of sigma transcription factors, heat and cold shock proteins, and RNA 

chaperones (Stone et al., 2016). Bacteria can develop distinct strategies to tolerate 

desiccation stress; nevertheless, several of them share cellular pathways to survive. 

Increasing desiccation tolerance of bacteria is also linked to the protective effect of the 

biofilm matrix, in the case of aggregate or biofilm formation, modifications in cell 

envelope composition and fluidity and/or shift in metabolism. Nevertheless, the main 

mechanisms of resistance to desiccation to date concern bacteria in planktonic rather 

than sessile mode of growth. 

 

I) Import and synthesis of osmolytes 

Desiccation stress leads to the exit of water from microorganisms, which ultimately 

culminates in loss of turgor pressure and an increase of molecular crowding (Minton, 

2001). The water replacement hypothesis is a well-known theory for the underlying 

mechanism to battle cell lysis by importing and synthesizing osmolytes. In this 

hypothesis, the nonreducing disaccharides sucrose and trehalose are considered to 

preserve protein structures and thus the membrane function by replacing bacterial 

membranous water in desiccated conditions (Hiramatsu et al., 2005). Trehalose and 
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sucrose hydrogen bond to membrane phospholipids replacing the water shell around 

macromolecules, thus preventing the transition of membranes to gel phase (Potts, 

1994; Billi and Potts, 2002). 

Aquaporin- and/or aquaglyceroporin like channels such as AqpZ and GlpF, 

respectively, are part of the first response against desiccation stress, together with the 

efflux of osmoprotectants to prevent cell lysis (Potts, 2001). The entrance of 

biomolecules balances the lack of water and the sugar molecules protect the cells 

through the formation of a vitreous cytoplasmatic matrix (Wolkers et al., 2002). Upon 

exposure to osmotic stress, bacteria imports potassium ions through Kup, Trk, and 

Kdp transport systems (Csonka, 1989). Despite its toxicity, potassium is essential for 

cell turgor pressure recovery (Epstein, 2003). The uptake or synthesis of sugars, free 

amino acids, polyols, quaternary amines, sulphate esters, inositol phosphates or 

manosylglyceramides are a common bacterial response to tolerate desiccation 

(Anderson et al., 2015).  

 

II) Role of proteins  

Bacterial membrane proteins are responsible for detecting environmental signals, 

promoting downstream regulatory events, and numerous metabolic functions. Protein 

damage induced by osmotic stress can be linked to desiccation resistance and 

intracellular Mn/Fe concentration ratios (Fredrickson et al., 2008). Protein aggregation, 

enzymatic inactivation, and changes in tertiary architecture are some of the protein 

damage induced by desiccation (Allison et al., 1999; Tarek and Tobias, 2002). The 

desiccation stress response is also associated with a rapid synthesis of stress 

proteins. Heat shock proteins (HSP) are able to counterbalance the loss of water 

through the formation of hydrogen bonds to other molecules (Franca et al., 2007; 

Boumahdi et al., 2001). 

The desiccation stress response by bacteria is commonly connected to DNA damage 

repair. For any DNA damage, the efficiency of DNA repair and replication systems 

determines whether a bacterial cell lives or dies (Minton, 1996). Protection of proteins 

against reactive oxygen species (ROS) damage is a point at least as important and 

critical for preserving bacteria in a viable state as DNA repair. This theory means that 

bacteria with robust systems for protecting proteins against ROS induced damage will 

exhibit better long-term cell survival, as is the case for D. radiodurans (Fredrickson et 



 

 

48 

al., 2008). It has also been proposed that in desiccation microbial cell uses DNA to 

stabilize proteins, resembling the trehalose role. Therefore, DNA could also be a 

molecular shield against drying stress (García-Fontana et al., 2016). 

 

III) Biofilms and matrix protection 

Generally speaking, all bacterial species have increased resistance to desiccation 

after attached cells have grown to form a biofilm. This may be due to the protective 

effect of extracellular polymeric substances, which form a water-rich gel around 

bacterial cells (Schnider-Keel et al., 2001; Sutherland, 2001b). In a biofilm mode of 

growth, bacterial cells are embedded in a matrix of extracellular polymeric substances 

that contain polysaccharides, proteins, lipids and nucleic acids. Moreover, some cells 

and particularly those of the upper layers, form a physical barrier between cells in the 

lower layers and the surrounding milieu. These features, combined with a low 

metabolic activity, confer bacterial cells in biofilms a higher resistance to 

environmental stresses than planktonic cells (Steinberger and Holden, 2005; Johnson, 

2008; Hansen and Vogel, 2011; Limoli et al., 2015). EPS are a relevant part of this 

matrix and are produced by a large range of bacterial species (Bazaka et al., 2011). 

Due to their high concentration of water (about 95%), EPS are highly hydrated. Thus, 

this ability of water retention creates hydrated microenvironments providing bacterial 

cells in biofilms the means to survive desiccation (Roberson and Firestone, 1992). 

Moreover, this property confers nutritional advantages over their planktonic 

counterparts, by acting as a force that binds and concentrates organic molecules and 

ions close to the cells (Kawaguchi and Decho, 2000). Hansen and Vogel (2011) 

showed that L. monocytogenes in a biofilm survived up to 49 days against a 

desiccated environment (43% RH and 15°C). One can reasonably assume that, due 

to their high hydrophilic properties, the exopolymeric substances produced during 

biofilm formation, including exopolysaccharides but also eDNA and peptidoglycans 

(Harmsen et al., 2010), were the main contributor to the L. monocytogenes desiccation 

survival (Hingston et al., 2013). In the case of Pseudomonas spp., the biofilm matrix 

plays an essential protection role during osmotic stress. The upregulation of alginate 

synthesis genes as well as flagella genes are associated with this tolerance in P. 

putida (Gulez et al., 2012). Desiccation tolerance in this bacteria was also associated 
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with nutrient or solute acquisition, energy generation and cell envelope structure (van 

de Mortel and Halverson, 2004). 

 

2.4.1.5 Reported mechanisms from different bacteria 
Gram-positive bacteria, due to their thicker peptidoglycans, are more resistant to 

dryness (Bale et al., 1993). It has been reported that S. aureus survived on dry hospital 

mops for several weeks (Oie and Kamiya, 1996). As is shown in the following results, 

there is not a single response to desiccation stress among the studied bacteria; the 

more cited responses comprise the regulation and accumulation of osmoprotectants, 

cross protection in response to other stresses and the contribution of EPS (Burgess 

et al., 2016).  

Some enterobacteriaceae members have high tolerance to dry environments 

(Hiramatsu et al., 2005). Desiccation tolerance strategies for this family include the 

production of extracellular cellulose, EPS and fimbriae, changes in membrane 

permeability and synthesis and/or uptake of compatible solutes such as trehalose 

(Garmiri et al., 2008). In the case of E. coli, the induction of trehalose by osmotic shock 

supports its desiccation resistance, while intracellular glycine and betaine have no 

influence against this stress (Billi and Potts, 2002). As for L. monocytogenes, initially 

the accumulation of osmolytes was considered restricted to betaine, carnitine, and 

proline, but the list of compatible solutes promoting osmotic tolerance in Listeria has 

been extended to include also acetylcarnitine, gamma-butyrobetaine, and 3-

dimethylsulfoniopropionate (Bayles and Wilkinson, 2000; Sleator et al., 2003). 

Salmonella has the capacity to survive under osmotic stress for extended periods of 

time and it is considered one of the main biological hazards by dry-food manufacturers 

(Podolak et al., 2010). The filamentation properties of S. enterica contribute to its 

desiccation stress survival; nonetheless, the efficiency of this response may vary 

depending on temperature and the presence of other stresses (Stackhouse et al., 

2012). The outer membrane antigen of lipopolysaccharide and cell surface 

components, like fimbriae and cellulose, are crucial for Salmonella desiccation 

tolerance (Vanderlinde et al., 2010). Cross-protection to low aw and acid stress was 

also demonstrated through the increased expression of rpoS and otsB, involved in 

response to multiple stresses and in the production of trehalose, respectively (Aviles 

et al., 2013). 
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Cyanobacteria species are known for having significant resistance to several stresses 

due to the presence of multiple genome copies, which ultimately leads to better 

interchromosomal recombination and repair of DNA-induced damage (Billi and Potts, 

2002). The same is reported to happen in D. radiodurans that also acquired, by 

horizontal gene transfer, several putative plant desiccation resistance-associated 

genes, which may contribute to its extreme resistance phenotype (Makarova et al., 

2001). Increased intracellular levels of Mn(II) and upregulation of genes have been 

detected in D. radiodurans upon radiation and desiccation tolerance (Anderson et al., 

2015). 

These examples provide evidence that desiccation stress affects and promotes 

reactions in different cellular processes. Therefore, no single gene or protein could 

offer a complete protection from this stress and bacterial cells must employ a vast 

number of synergistic mechanisms to survive desiccation. In addition, desiccation 

leads to other stresses such as oxidative stress, resulting in several overlapping 

response pathways, making it very difficult to deconstruct them and to understand 

which ones are potentially unique and/or specific to desiccation and which ones are 

common to several stresses. Nevertheless, these overlaps are common features 

which allows bacteria to adapt to harsh environmental conditions, since one stress 

response pathway can protect against another stress (Begley et al., 2002). 

 

2.4.2 Low temperature adaptation 
L. monocytogenes adaptation to low temperatures is one of its crucial attributes that 

supports Listeria persistence and dissemination in refrigerated products. This 

adaptation to cold temperatures renders the use of such physical settings insufficient 

for the control of L. monocytogenes presence in long-term storage under refrigeration 

products (Tasara and Stephan, 2006). It is therefore relevant to explore Listeria’s 

adaptation mechanisms in low temperatures. Case in point, the second and third paper 

of this thesis have as one of the aims to explore the protein abundance shifts of L. 

monocytogenes under adaptation to a cold setting. 

L. monocytogenes is able to growth at temperatures as low as -0.4 ºC but also survive 

in freezing temperature such as -18 ºC (Walker et al., 1990; Nowak et al., 2015). 

Moreover, this pathogen adheres and develops a biofilm regardless of the exposed 

temperature (Di Bonaventura et al., 2008). In short, upon exposure to low 
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temperatures, bacterial membranes become more rigid and the metabolic rate 

decreases. To overcome the hurdles imposed by a cold stress, bacteria have to 

increase the expression of genes involved in cell membrane function, production of 

cold shock proteins and multiple other molecular strategies to maintain homeostasis 

(NicAogain and O'Byrne, 2016). 

 

2.4.2.1 Effects of low temperature  
At low temperatures L. monocytogenes doubling time increases to up to 50 hours 

(Angelidis and Smith, 2003). This is caused by a general slowdown of the majority of 

the metabolic processes. In a cold condition, the bacterial membrane structural 

stability is compromised due to an increased rigidity in the lipid bilayer. It is observed 

a reduced protein and enzyme activity, a speed decrease in transport and nutrient 

uptake processes, increased superhelical coiling of DNA, stalled gene expression 

processes, secondary structures in RNA affecting translation, and increased 

destabilization of ribosomes and protein damage (Soni et al., 2011). Oxidative and 

amino acid starvation stresses have also been observed in Listeria cell exposed to 

cold (Liu et al., 2002). 

 

2.4.2.2 Molecular mechanisms to adapt to cold 
Bacterial adaptation to low temperatures can be subdivide in 3 stages, initial cold 

shock, acclimation and cold adapted status (Hebraud and Potier, 1999; 2000). Upon 

sensing initial cold shock, bacterial synthesis of proteins non-related to cold adaptation 

is reduced to residual values and synthesis of cold shock associated proteins 

increases significantly in the acclimation period. If bacterial cells reach the cold 

adapted status, synthesis of normal metabolic associated proteins increases to regain 

molecular stability and growth rate, while cold shock protein production decreases 

(Chan and Wiedmann, 2009). Figure 13 illustrates some of the major response 

systems implemented by Listeria to adapt to a cold condition. One of the major 

adaptative strategies is the induction of osmolyte and peptide transporters which will 

increase the amount of this molecules in the cytosol and maintain turgor pressure 

(Miladi et al., 2017). A combination with other mechanisms of cellular homeostasis 

maintenance, such as: control of membrane fluidity, gene expression events, protein 

folding and degradation, assimilation of carbon sources, oxidative stress response and 
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production of specific amino acids and lipids culminate in Listeria’s successful 

persistence in the cold temperatures of the food processing environment (Soni et al., 

2011). 

 

 
Figure 13 - Diagram outlining some of the response mechanisms present in L. monocytogenes to adapt 

to low temperatures. Adapted from (Tasara and Stephan, 2006). 

 

I) Uptake of osmoprotectant molecules 

The critical uptake of osmoprotectant molecules for Listeria’s adaptation to low 

temperature is made through auto transporters for compatible osmolytes and short 

oligopeptides (Wemekamp-Kamphuis et al., 2004). Osmolytes like glycine betaine, 

carnitine, γ-butyrobetaine, proline betaine, and 3-dimethylsulphoniopropionate help 

survival at low temperatures through stabilization of enzymatic functions and the cell-

membrane lipid bilayer. These low-molecular osmolytes can be reserved in the cytosol 

at high concentrations, however Listeria does not synthesize these cryoprotective 

molecules. Therefore it is through transporters that it manages to obtain them, 

particularly from food products (Angelidis and Smith, 2003; Wemekamp-Kamphuis et 

al., 2004; Miladi et al., 2017). The main carnitine transporter, OpuC, encoded by the 

opuCABCD operon, was observed in high abundance in Listeria cells exposed to low 

temperatures. As for betaine cryotolerance role, its uptake is mainly controlled by Gbu, 
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but also via BetL and OpuC. To note that, carnitine has a described higher role in the 

tolerance to cold stress than betaine (Cetin et al., 2004; Miladi et al., 2017).  

In L. monocytogenes, the intake of short oligopeptides is partially explained by the 

surface lipoprotein OppA. This ABC autotransporter showed high levels in stationary-

phase cells grown at 4 ºC and it is considered essential for Listeria’s cryotolerance 

(Borezee et al., 2000). The short peptides are used as a nutrient source, to recycle 

cell wall peptides, and also to sense extracellular changes in physicochemical 

conditions (Cabrita et al., 2014). 

 

II) Cold shock and chaperone proteins 

In cold environments, bacteria also duel with protein damage, particularly protein 

misfolding and aggregation. To counteract this damage, cells have at their disposal a 

network of molecular chaperones that assist in maintaining proteins in their native 

states. A key role of chaperones is preventing protein aggregation. Furthermore, 

chaperone proteins have other functions in quality control, for example pursuing 

terminally misfolded proteins for proteolytic degradation (Kim et al., 2013).  

Cold shock proteins (Csps) are molecular chaperones that help stabilize replication, 

transcription and translation in a condition of stress, including exposure to low 

temperatures (Phadtare et al., 1999). In its sequence, they have a conserved domain 

that has high level of homology with the ‘‘cold shock domain’’ of eukaryotic Y-box 

proteins. This family of small proteins (around 70 amino acids long) bind to single-

stranded nucleic acids stabilizing its conformation and preventing degradation (Bucur 

et al., 2018). The bulk of the cold-adaptation research has been made in bacterial cells 

exposed to sudden decrease of temperature, and few had a look into the acclimation 

and adaptation stages of the cold stress. Temperature settings in these studies 

normally range between 4 to 10 ºC with the detection of at least 10 Csps (Bayles et 

al., 1996). The main Csp is an 18-kDa polypeptide ferritin-like protein (Flp) which is 

highly expressed in response to cold shock (Hebraud and Guzzo, 2000). L. 

monocytogenes harbours three proteins from the CspA family (CspLA, CspLB and 

CspD) and genome-wide expression studies showed a significant increase in 

expression of CspL at low temperatures in stationary phase (Chan and Wiedmann, 

2009). In E. coli, CspA is the main cold shock protein which has been observed in high 

abundance during cold shock as well in B. subtilis where cold shock protein also 
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showed relevance in adaptation to other harsh conditions (Goldstein et al., 1990; 

Graumann et al., 1997). Under cold adaptation L. monocytogenes induces the 

production of other molecular chaperones, such as GroEL, DnaK and heat-shock 

protein GrpE (Cacace et al., 2010). 

 

III) Alterations in the cell membrane 

Under cold stress, bacteria promote alterations in the membrane fatty acid synthesis 

by changing the fatty acid chain lengths, altering the degree of fatty acid unsaturation 

and changing the type of branching at the methyl end of the fatty acids (Tasara and 

Stephan, 2006). These modifications in the membrane composition will keep its fluidity 

during low temperature exposure and prevent the creation of a gel-like state that could 

lead to leakage of cytosolic content (Zhang and Rock, 2008). One other change in the 

bacterial cell surface during the cold stress is the induction of flagellation. The 

hypothesis is that under stress, bacteria promote motility with the goal of biofilm 

development and consequent better protection against the cold, or simply to support 

the bacteria translocation to available locations with higher nutritional or osmolyte 

sources (Mattila et al., 2011). 

 

IV) Role of ribosomes and σB 

Ribosomes are the basis of protein synthesis and are also key components of the 

bacterial adaptation to low temperatures. In the immediate aftermath of a cold shock, 

there is a decrease in protein synthesis caused by loss of ribosome function. In E. coli 

ribosomes are used as early sensors of cold shock and the lack of some ribosomal 

structures unable the activation of the GSR (VanBogelen and Neidhardt, 1990; Zhang 

et al., 2001). At low temperatures, it has been observed an increase in the level of 

translation initiation factor (IF2), responsible for the formation of 30S complex, pointing 

to the relevance of this structure during this stress. The role of 50S ribosomal protein 

L25 (general stress protein Ctc) has been observed in Listeria’s adaptation to osmotic 

stress (Duche et al., 2002). Even if Ctc role in adaptation to cold setting has not yet 

been observed, it is reasonable to assume a connection taking into account that as in 

osmotic stress, low temperature adaptation much relies on uptake of osmoprotectant 

molecules. Furthermore, Ctc is regulated by σB and efficient intake of solutes betaine 

and carnitine in a cold setting is dependent on this transcriptional regulator (Bayles et 
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al., 1996). Particularly the osmolyte carnitine, which as mentioned before is 

transported via OpuC. The expression of this autotransporter is also regulated by σB. 

Other genes associated with cold stress resistance, ltrC (Chan et al., 2007a) and fri 

(Hebraud and Guzzo, 2000), are also controlled by σB regulon. In conclusion, even if 

a direct link between cryotolerance and σB has not yet been obtained, there are clear 

signs that this transcriptional factor has a role in Listeria’s adaptation to low 

temperature (NicAogain and O'Byrne, 2016). 

 

2.4.3 Other stress conditions 
Besides desiccation and low temperature, L. monocytogenes is able to resist other 

harsh conditions found in the environment and in the food processing pipeline. Some 

of them also have cross-protective molecular changes with the two previously 

described stresses. 

 

2.4.3.1 Heat stress 
The exposure to high temperatures leads to the stalling of bacterial cell growth and 

progressive loss of viability. L. monocytogenes has to endure heat conditions in the 

preservation treatments employed by the food industry but also upon host infection 

(Abee and Wouters, 1999; Hanawa et al., 2002). At the molecular level, the response 

to this stress triggers mainly an overexpression of class I (grpE, dnaK, dnaJ, groEL, 

and groES) and class III heat-shock genes (clpC, clpP, and clpE), and genes of the 

σB dependent class II stress response (Gahan et al., 2001). Heat-shock proteins 

(Hsps) act as intracellular chaperones and are also identified at low levels in normal 

conditions, but they are overexpressed upon exposure to elevated temperatures. In 

the host, they also act by helping to resist host defences or regulating virulence genes 

(Bucur et al., 2018).  

 

2.4.3.2 Acidic condition 
Similar with heat stress challenges, L. monocytogenes has to face acid conditions in 

the food processing environment (food preservatives and decontaminates) and in the 

gastrointestinal tract of the host (inorganic acids) (Soni et al., 2011). Keeping the 

cytoplasmic pH at a value close to neutrality despite fluctuations in external pH is 

crucial to its survival and required for infection. Bacterial survival in low pH conditions 



 

 

56 

is based in three main mechanisms, namely the adaptive acid tolerance response 

(ATR), the Glutamate Decarboxylase (GAD) system and the Arginine Deaminase 

(ADI) system (Davis et al., 1996).  

 

2.4.3.3 Osmotic shock 
Salt is a fundamental preservative in food products, therefore for L. monocytogenes 

to survive in such condition it has to implement strategies to tolerate osmotic stress. 

Listeria can resist in salt concentrations up to 3 M NaCl (Csonka, 1989). The primary 

osmotic stress response is based in the influx of potassium and glutamate into the 

cytosol, while the secondary response involves the uptake of small osmoprotectants, 

as reviewed in the cold shock section (Pittman et al., 2014). These strategies allow 

the bacteria to maintain turgor pressure, cell volume and protein stabilization upon an 

osmotic shock (Durack et al., 2013). 

 

2.4.3.4 Oxidative stress 
L. monocytogenes in the food industry can develop oxidative stress due to 

atmospheric modification and chemical reagents applied present in disinfectants. 

Oxidative stress can lead to a partial shutdown of molecular functions, as well as 

protein, membrane, and nucleic acid damage (Soni et al., 2011). To cope with the 

stress, Listeria activates ROS detoxification systems like superoxide dismutase (Sod), 

catalase (Kat) and alkyl hydroperoxide (AhpCF) enzyme systems (Franca et al., 

2007). The ferritin protein has also been shown to have a role in the tolerance to 

oxidative stress (Dussurget et al., 2005). 

 

2.4.3.4 Light 
In the clinical environment and in the food industry, light has been employed in order 

to decontaminate surfaces (NicAogain and O'Byrne, 2016). In particular, blue light is 

a stress condition for L. monocytogenes that leads to the activation of the GSR. 

However, together with σB activation also internalin virulence genes are 

overexpressed upon exposure to light (Ondrusch and Kreft, 2011). 
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2.4.3.5 Quaternary ammonium compounds 
Quaternary ammonium compounds (QAC) are antibacterial agents frequently used in 

the health, agriculture and food sector. The most regularly used QAC is the 

benzalkonium chloride (Tezel and Pavlostathis, 2015). However, strains of L. 

monocytogenes have been found to be resistant to this agent by the three small 

multidrug resistance protein transporters (QacH, BcrB, and BcrC) (Møretrø et al., 

2017). 

 

2.4.3.6 Nisin 
The use of antimicrobial compounds is one of the food industry strategies to contain 

the presence of L. monocytogenes. Nisin, produced by Lactococcus lactis, is the most 

common and effective bacteriocin used against Listeria (Delves-Broughton et al., 

1996). This molecule disrupts the cell membrane by the formation of pores that 

interfere with the cell wall biosynthesis. However, upon exposure to nisin, Listeria 

actives a two-component regulatory system and the GSR that promotes changes in 

the cell wall composition hampering the access of the bacteriocin to the cell (Kaur et 

al., 2013).  
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Chapter 3 - Proteomics and Mass Spectrometry  
 

The ever-changing dynamics and complexity of bacterial proteomes means that not a 

single analytical method will give the full picture of the proteome. In this section, I 

revise briefly the state of art in proteomics and describe the mass spectrometry tools 

and approaches taken in order to explore the proteome of L. monocytogenes. 

 

3.1 Putting Proteomics into context 
After uncovering the double helical structure of DNA, James Watson and Francis Crick 

stated the following: “It has not escaped our notice that the specific pairing we have 

postulated immediately suggests a possible copying mechanism for the genetic 

material.” (Watson and Crick, 1953). This marked the start of molecular biology and 

less than 50 years later, the success of the Human Genome project lead to the start 

of the genomics era (Lander et al., 2001; Venter et al., 2015). The evolution of 

sequencers in delivering high-throughput results at progressively lower prices resulted 

in genome sequencing becoming ordinary (Yates et al., 2009). As for transcriptomics, 

it studies the complete set of transcripts in a cell, and their quantity, for a particular 

developmental stage or physiological condition. Recently, the advances in RNA 

sequencing (RNA-Seq) lead to the collection of vast data sets of eukaryotic and 

prokaryotic transcriptomes (Wang et al., 2009). Nonetheless, proteins are the basis of 

the cells main function. They are the cellular building blocks that control gene function 

via enzymatic catalysis, molecular signalling and physical interactions. Contrary to the 

genome, the proteome is an always changing entity due to intracellular or extracellular 

environmental factors. Moreover, events such as splicing, post-translational 

modifications and protein degradation intensify even more the magnitude of variance 

in proteomes (Gilmore and Washburn, 2010). Proteomics is considered the third 

downstream omics, that explores the identification, modification, quantification and 

localization of proteins (Yates et al., 2009). Proteomics was first devised by Mark 

Wilkins in 1996 to define the study of the total set of proteins encoded by a genome 

(Wilkins et al., 1996). Though it sounds a fare mission, it is in fact a daunting task in 

of itself that requires the use of many different advanced instrumental tools and 

complex methods (Santos et al., 2010). In the beginning of the 20th century, the 

physicist JJ Thomson envisioned the now considered the first mass spectrometer 
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(MS) (Marchetti-Deschmann and Allmaier, 2011). The second half of the century was 

marked by constant and crucial developments in mass spectrometers accuracy, 

resolution and overall capacity in analysing proteins, making its way into chemistry, 

biochemistry and also structural biology (Marchetti-Deschmann and Allmaier, 2011). 

The high point of this evolution in apparatus occurred at the end of the 20th century 

when Fenn and Tanaka postulated two mass spectrometry techniques that are still 

nowadays the benchmark in high throughput proteomics, namely the matrix-assisted 

laser desorption ionization (MALDI) and the electrospray ionization (ESI) (Tanaka et 

al., 1988; Fenn et al., 1989). These two mass spectrometry tools not only gave these 

two researchers the Nobel Prize in Chemistry but were also the driving forces behind 

the development of the world of “Omics” (Marchetti-Deschmann and Allmaier, 2011). 

In separation sciences, there is a pursuit for high resolution separations to conquer 

the analyses of complex samples (Rabilloud and Lelong, 2011). Proteomics first aim 

is the profiling of proteins and peptides, this is high a demanding analytical problem, 

due to high chemical variability, solubility differences between analytes and strong 

tendency for precipitation (Resing and Ahn, 2005). Two main strategies are 

recognized as the branches of proteomic approaches, the top-down and the bottom-

up approach. 

 

3.2 Top-down proteomics approach 
The top-down approach studies intact proteins, as for the bottom-up approach it 

analyses peptide mixtures from enzymatic digestion of proteins. The first well 

established technical approach in top-down proteomics was the two-dimensional gel 

electrophoresis (2-DE), which allows to see changes in protein abundance and 

covalent modifications from protein staining intensity and electrophoretic mobility 

(Rabilloud, 2009). The streamlined workflow includes the excision of gel pieces, in-gel 

digestion and analysis by a mass spectrometry (Resing and Ahn, 2005). Though, the 

term “the déjà-vu in proteomics” was used in order to reflect one of the main issues 

with 2-DE (Petrak et al., 2008). This method only shows a limited pool of highly 

abundant and soluble proteins. These proteins comprehend mainly central 

metabolism, protein production, protein conformational control and degradation, and 

oxidative stress response (Rabilloud and Lelong, 2011). That is why nowadays most 

of the top-down proteomics are done by injection of intact protein ions into the gas 
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phase by electrospray ionization (ESI) followed by fragmentation by a mass 

spectrometer. This approach enables to explore the primary structure of the protein 

and its modification without prior enzymatic digestion and possible loss of information 

regarding their post translational modifications (Chait, 2006). The top-down approach 

can provide a full description of the protein primary structure but its use is not always 

feasible due to the difficulty to produce extensive gas-phase fragmentation of intact 

protein ions, particularly from large proteins (Jiang et al., 2000). Proteins undergo 

PTMs that modulate their structure and modify their function. It is estimated that a 

single protein on average carries at least three PTMs, but it is clear that there is still a 

gap between what is known and what is left to be detected (Ahrne et al., 2010). For 

sake of synthesis and since this thesis workflows duels in bottom-up approaches I will 

not go further in detail about the top-down proteomics. However, even if the bottom-

up approach has been the main tool of choice by scientists in the proteomics field, the 

study of the intact protein through top-down is showing an increased demand, due to 

its capacity to explore in full detail all possible physicochemical variations of a protein 

(Penque et al., 2011). Further information about top-down proteomics can be available 

to the reader by multiple extensive reviews on the subject (Chait, 2006; Wynne et al., 

2009; Huber and Huber, 2010; Calligaris et al., 2011).  

 

3.3 Bottom-up proteomics approach 
The most frequent proteomic approach, and also the one used throughout this work, 

is the bottom-up proteomics, also named “shotgun” proteomics. It was paramount in 

the progress and spread of proteomic analysis in multiple sciences (Huber and Huber, 

2010). However, as the term indicates, the shot of pieces of proteins gives a level of 

uncertainty about the actual analysis. Opposite to the top-down method, here proteins 

are digested with an enzyme, frequently the enzyme of choice is trypsin, and the 

obtained peptide mixture is then analysed by mass spectrometry. The main advantage 

of this approach is its high level of protein identification output, since tryptic peptides 

are easily solubilized and separated in comparison to intact proteins. However, on the 

negative side only a fraction of these peptides is detected, meaning that this approach 

is normally insufficient for the analysis of post translational modifications (Chait, 2006; 

Calligaris et al., 2011). Since it explores a mixture of peptides, information associated 
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with the intact protein, such as its function, location, interaction and general relevance 

in biological processes, is lost in the way (Huber and Huber, 2010).  

 

3.3.1 Workflow and protein extraction 
The key steps of a shotgun proteomics workflow are: (a) sample preparation (e.g. 

enzymatic digestion of protein with trypsin), (b) peptide separation (e.g. high-

performance liquid chromatography, HPLC); (c) mass detection; and (d) data analysis. 

All steps are essential to achieve a reproducible experiment, but the robustness of the 

preparation method is a vital step to attain a high throughput result (Bereman et al., 

2011). Different laboratories tend to optimize in their way the sample preparation 

procedure, however typically they all follow common general stages including: (a) 

solubilisation and denaturation of proteins, (b) reduction of disulphide bonds, (c) 

alkylation of reduced cysteines, (d) digestion, and (e) sample clean-up (Resing and 

Ahn, 2005). 

Even though these are the key steps to obtain a robust and reproducible bottom-up 

proteomic analysis, the protein extraction methods that precedes these tasks is no 

less important. In relation to that and integrated in the work of this thesis a paper was 

published standardizing three subproteomic extraction methods from L. 

monocytogenes bacterial cells, with particular focus on surface protein identification 

(Esbelin et al., 2018b). As reviewed in section one, bacterial cell surface proteome 

constitutes the so-called proteosurfaceome of a bacterium, which can be involved in 

diversified processes, and contributes to the interface between the bacterium and its 

environment (Cullen et al., 2005; Desvaux et al., 2006; Desvaux et al., 2018). The 

bacterial proteosurfaceome is relatively hydrophobic and can only be extracted from 

the cell membrane using detergents. Because of its variability and instability, its 

analysis presents many hurdles including extraction, solubilisation, purification, and 

analysis with in-gel (one- or two-dimensional gel electrophoresis) (Sun et al., 2011; 

Hebraud, 2014) or off-gel (shotgun proteomics) approaches (Cordwell, 2006). Several 

methods have been previously assessed and compared, but on monoderm bacteria 

growing in planktonic mode (Schaumburg et al., 2004; Dreisbach et al., 2010; Hempel 

et al., 2010; Dreisbach et al., 2011), and few have been performed on biofilms (Tiong 

et al., 2016). This growth mode in biofilms is the most widespread in the environment 

as noted earlier. The exploration of the proteosurfaceome of sessile bacteria is an 
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additional challenge because of cell aggregation and the presence of extracellular 

compounds that form a matrix around the cells. The three methods compared in this 

study were enzymatic shaving of the cell surface, biotin labelling of cell envelope 

proteins and cell fractionation. The shaving method consists of treating intact cells with 

proteases in an isotonic solution to release exposed peptides. For the biotinylation 

method, bacterial cells are treated with Sulfo-NHS-SS-Biotin, a marker molecule that 

is supposed to be membrane impermeable. In fact, this technique, initially 

implemented on eukaryotic cells has been applied on diderm bacteria by using 

different biotinylation reagents whose Sulfo-NHS-SS-Biotin seemed the most suitable, 

even if some periplasmic, cytoplasmic, and inner membrane proteins were identified 

(Hempel et al., 2011; Monteiro et al., 2018). The third method is the fairly well-

established separation of membrane and cell wall components by cell fractionation. 

Among the various strategies for exploring the proteosurfaceome, the enzymatic 

shaving method has been applied in recent years, mainly on monoderm bacteria 

(Cordwell, 2006), with contrasting results depending on the bacterial species. Shaving 

method has been previously used to explore the cell surface proteome of a wide 

variety of microorganisms (Olaya-Abril et al., 2014), among them Gram-positive 

pathogens such as L. monocytogenes (Tiong et al., 2015), Streptococcus spp. 

(Rodriguez-Ortega et al., 2006; Severin et al., 2007; Pribyl et al., 2014), 

Staphylococcus aureus (Dreisbach et al., 2010; Solis et al., 2010; Ventura et al., 2010; 

Dreisbach et al., 2011; Pribyl et al., 2014; Monteiro et al., 2015; Tiong et al., 2015), 

and other monoderm bacteria such as B. subtilis (Tjalsma et al., 2000) or the dairy 

starter Lactococcus lactis (Meyrand et al., 2013). In short, the results gathered in this 

study demonstrated that a multi-approach strategy, taking advantage of the 

complementary of several methods, is needed to fully explore the cell surface 

proteome of L. monocytogenes in biofilm. Other additional approaches have been 

shown to be effective on planktonic bacteria and could be used to further expand the 

analysis of the biofilm proteosurfaceome. Among them, the ghost urea method has 

been already used on adhered cells (Tiong et al., 2016). Moreover, the method of 

using cell wall extracts boiled with SDS before their trypsin digestion (Pucciarelli et al., 

2005) could allow to target more specifically the LPXTG proteins.  
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3.3.2 Data analysis and quality assessments in shotgun proteomics  
In proteomics, sample deepness has a huge role in achieving the coverage of a 

proteome. Shotgun proteomics approach works with proteolytic digests and to achieve 

a high percentage coverage of a proteome there is a need to collect as many MS/MS 

spectra of the peptides in mixture as possible, to ultimately achieve the relative 

abundance of a set of proteins. Though, the high number of sample replicates and 

accumulated runs is contra balanced with the cost, time and acquisition rate of the 

mass spectrometer (Hackett, 2008). 

Shotgun proteomics is a powerful tool to identify peptides and proteins from the most 

diverse biological sources (Resing and Ahn, 2005). After enzymatic digestion of the 

protein extraction and separation by liquid chromatography, the peptide mixture is 

screened by MS/MS. 

The match of MS/MS spectra is achievable because peptide molecular ions break 

preferentially at certain points along the sequence (Fernandez-de-Cossio et al., 1998). 

Through a search engine, the obtained fragmentation spectra are then compared and 

matched to theoretical spectra from a database of peptides of the studied organism. 

Search engines like SEQUEST, X! Tandem, OMSSA, Crux and MASCOT, the latter 

the one used in this thesis, give peptide-spectrum matches (PSMs) that are the result 

from the comparison between observed and theoretical spectra (Granholm and Kall, 

2011). To note that, the search engines assign correct peptides to 10–50% of the 

spectra since only fraction of this PSMs have eventually an acceptable score for the 

identification (Ahrne et al., 2010). 

The amount of spectral information that can be gathered in a single shotgun analysis 

is enormous. Taking into consideration the theoretically possible protein sequences 

the task becomes even more challenging. Plus, the different amino acids have very 

similar masses (mass difference of lysine and glutamine is as low as 0.04 Da), a very 

high amount of amino acid combination is feasible (Wohlbrand et al., 2013). That is 

why it is crucial to sort the obtain PSMs, not only by a method of threshold score, to 

define a cut-off for significant PSMs, but also through other statistical scores as p-

value and false discovery rate (FDR) (Granholm and Kall, 2011). The p-value is the 

probability that an incorrect top-scoring PSM would have a score equal to or higher 

than a given threshold just by chance (Granholm and Kall, 2011). As for the FDR, it 

describes the expected fraction of incorrect PSMs above the current score threshold, 
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in this way it shows the quality of the PSMs that were considered significant and so 

takes into account the effects of multiple testing (Storey and Tibshirani, 2003). 

 

3.3.3 Quantitative proteomics: Isotopic vs label-free workflows 
To bridge the gap between genotype and phenotype, it is crucial to gather information 

regarding the shifts in abundances of proteins. Large-scale proteomics allows to 

quantify these abundances, resulting in a snapshot of protein concentrations 

connected to different states, e.g. adaption to stress conditions (Yates et al., 2009). 

There are two branches of quantitative approaches in mass spectrometry, either 

absolute quantitative proteomics or relative quantitative proteomics. Focusing on the 

latter, proteins can be analysed regarding its abundance through stable isotope-

labelling or label-free methods. 

In quantitative proteomics, the gold standard is the use of heavy-labelled peptides that 

are assimilated by the sample in precise concentrations in order to quantify a protein 

or a set of proteins of interest (Malmstrom et al., 2011). Target proteins of interest are 

marked with peptides synthesized with a heavier form of the C-terminal arginine or 

lysine residue. The biological sample, composed of isotopically lighter proteins, and 

the synthesized peptide are mixed. The relative intensity between the heavy and light 

version of the peptide can be used to find the absolute amount of the lighter peptides 

present in the mix, the biological sample. Taking into account the known amount of 

the heavy labelled reference peptide it is possible to calculate the amount of the 

endogenous peptide through the ratios of the specific ion currents (Gerber et al., 

2003). Currently protein quantification by mass spectrometry can be achieved with 

several different strategies: 18O-based labelling, stable isotope labelling with amino 

acids in culture (SILAC) (Ong and Mann, 2005); isobaric tags for relative and absolute 

quantitation (iTRAQ) (Ross et al., 2004); internal standard-based approaches such as 

QconCAT or the use of AQUA peptides (Capelo et al., 2010). 

Besides isotopic labelling quantification workflows, label-free quantification 

approaches have become frequently used in proteomics. Even if it has lower accuracy 

when compared with isotope labelling, the label-free approach is however reliable, 

particularly in the comparison of similar samples (Otto et al., 2014). Case in point, in 

the workflow throughout the two last thesis papers, the label-free comparison was 

continuously made between L. monocytogenes cells. Two main models are in the 
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basis of the label-free quantitation. Quantitation made through spectral counting and 

quantitation based on the determination of the area under the curve (AUC) on the 

levels of the first mass spectrum level (Neilson et al., 2011). Spectral counting is found 

on the notion that the more abundant peptides will be selected for fragmentation and 

will result in higher abundance of MS/MS spectra, and so proportional to protein 

amount (Liu et al., 2004). AUC approaches have a similarity with protein abundance 

determination to a 2-DE gel. Tough, instead of densitometry of stained spots, the ion 

chromatograms AUC are used to compare LC-MS runs (Wohlbrand et al., 2013). 

Spectral counting is the most frequently used method in label-free approaches, 

particularly because AUC requires a higher complexity in data acquisition and 

processing software (Neilson et al., 2011).  

The shortcoming of either labelled or label-free quantitative approaches is the MS/MS 

protein identification method and the presence of shared peptides. Shared peptides 

meaning peptide sequences that are eventually matched to more than one protein 

(Neilson et al., 2011). From a single gene, hundreds of different proteins can be 

produced, due to splicing events, PTMs and protein isoforms, potentially causing 

erroneous protein matches (Black, 2000). This ambiguity of different proteins being 

identified due to a shared peptide is a limitation of quantification in proteomics which 

has been dealt with either ignoring the shared peptides, focusing only on unique 

peptides or spread the peptides across the homologous proteins. It is important to take 

into account that whatever option taken there is always a limitation and inference that 

will affect quantitation (Podwojski et al., 2010). Still, even with its caveats, label-free 

quantitation has a higher level of accuracy in determining protein abundance than the 

gel-based approach. Plus, it is more suitable to explore the protein abundance over a 

larger dynamic range than isotopic labelling (Neilson et al., 2011). 

  

3.3.4 Proteomics in microbiology 
Proteomics in microbiology has been considered more simplistic when compared to 

organisms with higher level of complexity, taking into account the smaller genomes, 

reduced proteins species, and fewer occurring PTM’s in microbes compared to higher 

organisms (Otto et al., 2014).  Plus, it is now possible to achieve microbial proteome 

coverages of up to 80%. Results hardly achievable in eukaryotic studies (Becher et 

al., 2009; Nagaraj et al., 2012). The natural next step in microbial proteomics was the 
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quantification of the identified proteins. However, this is no easy task, mass 

spectrometry is not inherently quantitative (Otto et al., 2014). Significant differences in 

the mass spectrometer detection can be retrieved due to differences in 

physicochemical properties for peptide species and variation in signal intensities. This 

is the reason why most quantitative studies use isotopic labelling, this enables the 

separation between peptide species, and, consequently, a better determination of 

quantitative shifts in protein abundances in the sample (Van Oudenhove and 

Devreese, 2013). 

The majority of microbial proteomic studies have had the goal to identify and quantify 

active pathways and cellular adaptation to various intracellular and outside stimuli. 

The analysis of expressed proteins under different growth condition allows the 

identification of proteins and pathways crucial to a specific process, as is the 

adaptation to environmental conditions (Chao and Hansmeier, 2012).  

One constant target in cellular proteomics is the study of the surfaceome, particularly 

the membrane proteins. Surface proteins are a key element in the interaction with the 

outside environment, including the transport of essential nutrients, first stress signals 

for cascade responses and even virulence mechanisms (Olaya-Abril et al., 2014). 

The characterization of bacterial surface proteins of pathogenic bacteria such as 

Mycobacterium tuberculosis lead to the identification of novel proteins that are 

connected in host cell adhesion and invasion (Malen et al., 2007). 

A trendy and promising approach in global proteomics is the single shot proteomics 

(Penque et al., 2011). With this approach, around 4000 proteins were identified per 

run in a yeast lysate, equivalent to its entire expressed proteome. The relevance here 

is that this result was obtained in a single run of HPLC, decreasing the levels of 

variability and also potentially enabling a higher quality in the quantification through 

isotope labelling (Nagaraj et al., 2012).  

 

3.4 Mass spectrometry approaches used in this work 
As mentioned before, proteins are a very challenging molecule to be analysed. Taking 

into consideration an average size protein of 450 amino acids, there can be more than 

ten thousand different primary sequences (Wohlbrand et al., 2013). Furthermore, 

proteome complexity is increased due to the microbes’ capacity to adapt to a changing 

environment causing changes up to 100-fold in some adaptation associated proteins 
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(Malmstrom et al., 2011). The ever-changing dynamics and complexity of bacterial 

proteomes mean that not a single analytical method will give the full picture. In this 

section, I describe the mass spectrometry tools and approaches taken in order to 

explore the proteome of L. monocytogenes.  

The recent developments in protein extraction methods, apparatus and data analysis 

approaches have resulted in an exponential use of mass spectrometry in different 

sciences. The polar, non-volatile, and thermally unstable nature of proteins and 

peptides are the barriers that hinder its ionization. Reason why, one of the most 

relevant advances in mass analysers was the use of soft ionization methods such as 

MALDI and ESI (Yates et al., 2009).  

 

3.4.1 Matrix assisted laser desorption/ionization time-of-flight mass 
spectrometry (MALDI-TOF-MS) 
The soft ionization technology MALDI is based on the co-crystallization event between 

sample and matrix, and its capacity to absorb the laser energy and transfer it to the 

acidified analyte. Ionization is achieved by short, intense pulses of a UV laser beam 

that will result in desorption of matrix and analyte ions into the gas phase (Ryzhov and 

Fenselau, 2001). The gas-phase ions formed by MALDI are given a fixed value of 

kinetic energy by acceleration in an electric field that is created by high voltage. These 

predominantly single charged ions then enter a vacuum tube where its time of flight 

until reaching the detector is measured (Figure 14) (Liao and Allison, 1995). The ions 

will travel at a velocity inversely proportional to their mass to charge ratio (m/z). 

Therefore, ions with smaller mass are faster than the ones with bigger mass and will 

reach the detector earlier. The m/z is equal to the ion velocity of the ion, which is 

retracted from the time required that the ion took to travel the field-free region (Dingle 

and Butler-Wu, 2013). The final result is given in the form of mass spectrum presenting 

the m/z to intensity of the ions. The MALDI-TOF MS is the most commonly used 

technical basis for Imaging Mass Spectrometry approach (IMS). 
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Figure 14 - Scheme of the MALDI-TOF MS pipeline. Analyte co-crystallized with matrix is bombarded 

by a UV laser which results in the desorption ionization of the sample. These ions are then separated 

in a vacuum tube by their mass-to-charge ratio. From (Clark et al., 2013). 

 

3.4.1.1 MALDI-TOF Imaging Mass spectrometry (MALDI-TOF IMS) 
The full characterization of molecular pathways requires not only the capacity to 

identify its constituents and dynamics but also the abundance and spatial localization 

of these molecules in different states (Sandrin and Demirev, 2017). The development 

of the imaging method enhanced MS detection with the spatial information of the 

detected ions. In a single experiment, it is possible to have the distribution and relative 

abundance of hundreds of different molecules (metabolites, peptides and proteins) 

within a biological sample (Baker et al., 2017). IMS was first introduced in Caprioli’s 

lab just twenty years ago (Caprioli et al., 1997), but since then it has established itself 

as a go-to technique to obtain the spatial analysis of multiple molecules from 

numerous biological samples (Maier et al., 2013). Since 1997, more than seven 

thousand PubMed article entries addressed the use of IMS.  

This tool is able to access complex molecular mixtures with high chemical specificity. 

The images obtained from IMS result from direct molecular analysis and are not based 

on target-specific reagents such as antibodies (Schwartz and Caprioli, 2010). Figure 

15 makes a schematic representation of the technical steps to analyse a biological 

sample, from applying the matrix until data visualization. 
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Figure 15 - Description of the MALDI-TOF IMS pipeline. In this case, a bacterial biofilm grown on top 

of Indium tin oxide coated (ITO) glass slide was covered with UV-absorbing matrix and analyzed by 

MALDI IMS. Each ion species can then be picked from the mass spectrum and its intensity and 

abundance across the biofilm can be checked via a heat map. From (Floyd et al., 2015). 
 

Applications of these technologies were initially focused in clinical research, 

particularly cancer research (Yanagisawa et al., 2003; Schwartz et al., 2005; Cornett 

et al., 2006; Lemaire et al., 2007). With the progressive evolution of the technique and 

protocols, IMS was implemented with success not only in molecular histology of tissue 

(Chaurand et al., 2002; Groseclose et al., 2007; Djidja et al., 2010; Stauber et al., 

2010; Martin-Lorenzo et al., 2016; Theron et al., 2016; Centeno et al., 2017), but also 

plant research (Anderson et al., 2009; Kaspar et al., 2011; Baker et al., 2017) and 

microbiology (Esquenazi et al., 2008; Blaze et al., 2012; Gonzalez et al., 2012; Debois 

et al., 2014; Floyd et al., 2015; Boya et al., 2017; Santos et al., 2018). 

IMS studies can be achieved with different MS ionization techniques, such as 

secondary ion mass spectrometry (SIMS), laser desorption/ionization (LDI), 

desorption electrospray ionization (DESI) and MALDI (Caprioli et al., 1997). The latter 

being the most frequently used approach due to its versatility and accuracy in the 

analysis of peptides and small proteins. MALDI workflows rely on a suitable application 

of matrix, but prior to that sample preparation is imperative. Due to suppression 

effects, it is necessary to remove salts that impair a correct co-crystallization between 

matrix and sample. Furthermore, it is also advised to remove lipids and phospholipids, 
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in case that proteins are the target molecule of study, in order to reduce the complexity 

of the sample and the overabundance of ions species (Enthaler et al., 2013). The 

washing procedure usually involves the immersion of the glass slide in a washing 

solution. It is relevant to take into account, that this step might also lead to movement 

of cells in the sample and even reduce the amount of proteins available for ionization.  

As described in the previous section, the MALDI IMS workflow starts by the application 

of an uniform coating of energy absorbing matrix on top of the biological sample 

(Cornett et al., 2007). There are multiple matrices available in the market dependent 

on the ionization target molecule, such as alpha-cyano-4-hydroxycinnamic acid matrix 

(CHCA) suited for ionizing peptides and small proteins or 2,5-dihydroxybenzoic acid 

matrix (DHB) for the ionization of proteins (Dingle and Butler-Wu, 2013). Whatever the 

chosen matrix, there are two main approaches for its application on the biological 

sample surface, manual deposition of very small droplets or automated overspraying 

of matrix. The deposition of matrix is a crucial determinant of spatial resolution and it 

will influence the number of ions species detected (Cornett et al., 2007). The first paper 

of this thesis also compares these two strategies for matrix deposition and its obtained 

results.  

IMS adds to the MALDI-TOF workflow through the gathering of individual mass spectra 

using continuous scanning motion over the sample area. From these spectra are 

generated intensity coloured pixels, which all combined form an image that allows the 

visualization of the abundance and spatial distribution of each ion species (Watrous et 

al., 2011). 

Continuous developments and new IMS approaches are in motion, such a case is the 

three-dimension (3-D) IMS. Normal IMS analysis provides information about intensity 

and localization of ion species across the sample surface. Multiple sections can be 

computationally superimposed to provide three-dimensional analysis of the sample 

(Seeley and Caprioli, 2012). 

 

3.4.1.2 MALDI-TOF IMS coupled with LC-MS/MS 
As overviewed above, MALDI-IMS can provide a variety of insights into different 

biological samples without prior extraction of molecules. This innovative mass 

spectrometry approach provides a measurement of molecular weight of a specific ion, 

its distribution and also abundance across space, but not the identification of the 
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protein present (Groseclose et al., 2007). Coupling IMS with bottom-up approaches 

such as liquid chromatography (LC) and tandem MS fragmentation can add crucial 

information about the ion species detected in IMS, including its identification (Stasulli 

and Shank, 2016). The most common workflow for protein identification of the ion 

species detected in IMS is based on extraction, enzymatic digestion followed by mass 

spectrometry analysis (Theron et al., 2016). Even if this approach is effective, it is also 

tedious and it breaks the link between the imaging and the identification of the ions 

species, resulting in a loss of spatial information. However, this procedure remains an 

efficient way of identification of an unknown peak in an imaging spectrum (Groseclose 

et al., 2007). It was the identification approach implemented in the first paper of this 

thesis and other publications have used the same work pipeline to explore the 

metabolites of different microbes (Phelan et al., 2014; Floyd et al., 2015; Phelan et al., 

2015; Frydenlund Michelsen et al., 2016; Santos et al., 2018).  

 

3.4.1.3 IMS in Microbiology 
Over three decades ago, a mass spectrometer was for the first time used in order to 

differentiate bacterial species (Anhalt and Fenselau, 1975). Since then, MALDI-TOF 

mass spectrometry has led to the identification of over 1000 different species. This is 

made by the comparison of sample mass spectrum against spectral libraries with 

reference bacterial mass spectra (Randall et al., 2014). This approach has reached a 

sufficient level of accuracy that it is used in diagnosis laboratories in order to faster 

identify the bacterial agents’ causative of disease from a particular patient (Risch et 

al., 2010). The reason for the success of this approach is due to a heavy abundance 

of small ribosomal proteins in the detected ions by MALDI intact cell analysis (mass 

range until 15 kDa). Which due to their uniqueness within each genus and species are 

well suited for the reliable identification of microbes (Santos et al., 2015). This 

molecular stability in this range could be seen as an obstacle for the discovery of less 

abundant biomarkers in imaging approaches, however IMS has been able to detect 

chemical signals in a spatially resolved manner in order to unveil bacterial inter- and 

intraspecies interactions (Watrous et al., 2010).  

The most usual method in IMS approach to study microbes is the growth of microbial 

colonies on top of thin slices of agar that are after covered with matrix. It has been 

successful in exploring the spatial distribution of secondary metabolites produced by 
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marine cyanobacteria filaments (Gonzalez et al., 2012) and to identify m/z intervals 

that have a putative relation with biofilm development in Bacillus cereus (Stasulli and 

Shank, 2016). A similar approach managed to determine metabolic differences in 

Lysobacter strains culture with Rhizoctonia solani fungus (de Bruijn et al., 2015). A 

different study that also implemented a co-culture method explored the interaction 

between Pseudomonas aeruginosa and Aspergillus fumigatus (Moree et al., 2012). 

However, this agar based approach is encumbered by the presence of high 

concentrations of salts that can lead to ion suppression or uneven matrix crystallization 

(Hoffmann and Dorrestein, 2015).  

The study of bacterial pathogens with implication in human health has also been a 

target of IMS studies. Antibiotic moxifloxacin action was monitored through imaging in 

rabbit lungs infected with Mycobacterium tuberculosis (Prideaux et al., 2011). In a 

similar approach to the one undertaken in this thesis, Floyd et al. detected protein 

species within UroPathogenic Escherichia coli (UPEC) biofilm surface. In this 

approach, the biofilm was grown on top of the glass slide and the study resulted in the 

determination of the spatial localization of two adhesive fibers critical for UPEC biofilm 

formation and virulence (Floyd et al., 2015). With a similar method but this time in 

Enterococcus faecalis biofilms it was possible to explore and localize multiple peptides 

and proteins within this intact biofilm (Blaze et al., 2012). 

 

3.4.1.4 Data analysis in IMS 
A single Imaging Mass Spectrometry study can originate a vast data set of spectra (up 

to 50 thousand spectra), with each raw spectrum detailing the intensities detected for 

hundreds of different ions species (m/z values) representing multiple molecules 

(Alexandrov, 2012). This level of complexity requires automated high throughput 

software in order to extract useful information, one example is the Scils lab software 

for imaging data set analysis. For each given m/z value, a heat-map can be obtained 

of its intensity across the sample region analysed. Meaning that the signal intensity at 

this m/z through all gathered spectra can be pictured as a coloured image where each 

pixel is rendered according to its intensity (Alexandrov et al., 2010). The ultimate goal 

of IMS studies is to find ions of interest from the collected m/z values. These ions and 

their differential abundance or spatial localization can add relevant information for the 

discrimination of tumour regions when compared with a control section (Djidja et al., 



 

 

74 

2010) or bacterial biofilm adaptation to a stress condition when compared to an 

ambient one (Santos et al., 2018). However, one of the limitations of the MALDI intact 

cell analysis is that the more abundant proteins will result in a higher accumulation of 

ions species of these proteins, shadowing less abundant but potentially interesting 

biomarkers (Stauber et al., 2010). A second major challenge is spot-to-spot variability 

within the same IMS analysis due to shifts in desorption/ionization efficiency (Blaze et 

al., 2012). These differences in ionization are due to ion suppression, non-uniform 

concentration of matrix throughout the sample and detector noise (Watrous and 

Dorrestein, 2011; Vertes et al., 2012). Approaches to overcome these obstacles have 

been put in motion, as for example the use of isotope labelled internal standards and 

comparison with LC-MS data (Koeniger et al., 2011; Li et al., 2017). Other advanced 

data processing tools are in development to battle this variability in IMS works 

(Watrous et al., 2011).  

 

3.4.2 Bottom up shotgun proteomics by label-free quantitative LC-MS/MS 
The proteome high level of complexity requires efficient separation technologies to 

simplify its analysis. As discussed before, the “soft-ionization” method that enable the 

transfer of peptides and proteins as whole molecules into the gas phase was crucial 

to reduce this complexity (Fenn et al., 1989). A mass spectrometer determines a m/z 

from gas-phase ions and eventually deduces their molecular mass. 

First, the peptides are ionized in the ion source, then dependent on the mass these 

ions will be differentially separated and finally detected. The end result is a mass 

spectrum plotting the ion abundance versus m/z (Wohlbrand et al., 2013). Ion 

velocities and oscillation frequencies in electromagnetic fields are intensely dependent 

on the ions m/z. This dependency is the basis of a correct mass determination by MS 

(Marchetti-Deschmann and Allmaier, 2011). The reliable protein identification relies on 

high mass accuracy and sensitivity, and these factors are related to the ability of the 

MS pipeline to resolve peptide ions with similar m/z (Chait, 2006). 

 

3.4.2.1 Reversed phase HPLC separation 
Proteins are identified through the detected mass-to-charge ration of their peptides 

and fragments, thus sufficient separation is needed for un ambiguous identification 

(Yates et al., 2009). Reason why an optimal HPLC separation is crucial prior to mass 
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analyses. Reversed phase (RP) HPLC separation is based on the molecule 

hydrophobicity within an acidic aqueous mobile phase with a gradient of increased 

hydrophobicity. The mixture of peptides runs in a non-polar stationary phase C18 

chains bound to base silica composition (Wohlbrand et al., 2013). In the mobile phase 

peptides are separated in low organic solvent.  (Nirenberg, 1994). The hydrophobic 

nature of the peptides is based on its amino acid composition which in turn will 

influence the retained peptides elution in order of increasing strength of hydrophobic 

interaction with the stationary phase (Qiu et al., 2011). RP-HPLC presents as an 

optimal separation method to be coupled with ESI (Wohlbrand et al., 2013).  

 

3.4.2.2 Electrospray ionization (ESI) 
Electrospray ionization (ESI) through high voltage (2-6kV) produces ions from a 

solution. This voltage is applied between the capillary end after LC separation and the 

inlet of the mass spectrometer. Figure 16 is a macro photograph of the electrospray 

mechanism establishing a continuous electrically charged spray, followed by formation 

and desolvation of analyte-solvent droplets (Taylor Geoffrey, 1964). In this thesis 

workflow, a technique named nano-ESI was used in order to lower the flow rates to a 

nanoliter-per-minute. This improves sensitivity, plus it is compatible with RP-HPLC 

columns (Griffin et al., 1991).  

 

 
Figure 16 - Photograph of a stable cloud, also known as Taylor cone, created by electrospray ionisation. 

From (Smith et al., 1988). 
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3.4.2.3 Orbitrap MS/MS 
Throughout this thesis, a particularly powerful and versatile mass analyser was used. 

The Orbitrap, that features high resolution (up to 240,000), high mass accuracy (2–5 

ppm), a mass-to-charge range of 6000, and a dynamic range greater than 103. The 

high mass accuracy of the Orbitrap enables a vaster data acquisition and analysis 

approaches compared with a low-resolution mass spectrometer (Yates et al., 2009).  

The Orbitrap system illustred in Figure 17 has a central electrode with a constant 

electrostatic potential, analyte ions will be electrostatic attracted to the inner electrode 

creating orbital trajectories. Ions with different velocity will have different rotational 

frequencies. Ions will then spread into rings that oscillate along the inner electrode. 

Through a Fourier transformer it is possible to obtain the oscillation frequencies, 

resulting in an accurate mass spectrum (Makarov, 2000; Hu et al., 2005). In tandem 

MS (MS/MS), there are two consecutive steps of mass determination. In the first step, 

a precursor ion of interest is isolated through its m/z. Followed by a second step, where 

this precursor ion is fragmented and the masses of the fragments are examined 

(Wohlbrand et al., 2013). Orbitrap shotgun proteomic based approaches are time and 

cost efficient, enabling comparisons of a large numbers of proteins out of samples 

from multiple physiological conditions (Armengaud, 2013). Such facet is perfect for the 

challenge of exploring the proteome shifts induced by different temperatures in this 

thesis second and third papers. 

 
Figure 17 - Scheme of the ion trap-orbitrap hybrid instrument and cross section of the Orbitrap analyser. 

Ions point of entry is by marked by the red arrow. From (Hardman and Makarov, 2003; Hu et al., 2005; 

Yates et al., 2009).  
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1. Summary and objectives 
 

Almost a century has passed since L. monocytogenes was recognised as human 

pathogen. This ubiquitous Gram-positive facultative intracellular bacterial pathogen is 

the etiological agent causative of listeriosis. Although this infection is rare in 

occurrence, in comparison with infections caused by other common foodborne 

pathogens, listeriosis is associated with a high mortality rate of roughly 20–30%. L. 

monocytogenes has also the capacity to adapt and survive to a multitude of harsh 

conditions, such as desiccation, low temperature and pH, which makes it a long-time 

concern for food industries that rely on the control of these physical conditions and 

other decontamination procedures to which Listeria seems resilient. Case in point, the 

epidemiological research of the last decades confirmed with no reservation that 

listeriosis outbreaks are largely caused by consumption of contaminated food 

products. Furthermore, the number of listeriosis cases has been increasing over the 

years, partly due to changes in consumer lifestyles, with a decrease in time available 

for food preparation and increased consumption of RTE and takeaway foods. This 

pathogen ability to form biofilm and the difficulty of eliminating sessile cells is a concern 

for the food industry with recurrent contamination by persistent strains. Though 

biofilms are the prominent growth mode of bacteria in the environmental realm, the 

model of choice in microbiology research is still the planktonic mode of growth.  

Proteomics is considered as a pertinent science that brings new relevant information 

from the active and continuous changes inside of a bacterial cell. Plus, due to the 

evolution of mass spectrometry apparatus and robustness in proteomic techniques, it 

is possible to explore through the complexity of a sessile agglomerate of cells. The 

putative proteins of L. monocytogenes biofilms that are differentially expressed in 

regards to different environmental conditions might further help us understand its 

unique resistance capacity. Although multiple genomic and transcriptomic research 

approaches have been developed around Listeria’s temperature and dehumidification 

adaptation, the same cannot be mentioned for proteomic approaches, particularly in 

the biofilm mode of growth.  

On these bases, the general goal of my thesis work was to explore the proteome of L. 

monocytogenes, particularly in biofilm mode of growth, under different environmental 

and food plant conditions, specifically dehumidification and adaptation to three 
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temperatures. The first work task has three particular aims. First, to develop an 

Imaging Mass Spectrometry (IMS) approach that would allow to explore the proteome 

of intact cells in biofilms. Secondly, to subject this biofilm to a dehumidification 

condition and implement the imaging approach to sort any differences in the biofilm 

proteome. Lastly, to identify the proteins from the normal and stressed sections of the 

biofilm, exploring L. monocytogenes adaptation to a dehumidification condition, while 

developing an in situ extraction of proteins and bottom-up identification to bridge the 

gap with the imaging data. The second work task aims to explore, by a label-free 

shotgun proteomics approach, the proteome of L. monocytogenes grown in different 

temperatures. Preceded by a paramount comparison, made with LC-Progenesis, of 

the protein abundance shifts registered in planktonic and biofilm mode of growth. 

To note that the work of this thesis was seconded by the List_MAPS project, which 

received funding from the European Union's Horizon 2020 research and innovation 

programme under the Marie- Skłodowska Curie grant agreement nº 641984.  
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2. MALDI IMS to explore Listeria monocytogenes 

biofilms subjected to dehumidification 
 

Until recently, the study of bacterial biofilms implied the use of traditional techniques 

to visualize protein distribution. Methods like fluorescent microscopy or use of specific 

antibodies to a protein of interest, which are limited to previously identified protein 

targets. MALDI TOF Imaging Mass spectrometry is a surface-sampling technology 

that can determine spatial information and relative abundance of molecules directly 

from a biological sample, without any prior protein extraction. In order to explore and 

compare the proteome of a normal L. monocytogenes biofilm to one subjected to a 

dehumidification condition, we developed an IMS approach to study intact biofilms. 

Further analysis by shotgun proteomics allowed the cross connection between 

imaging ion species and the identified proteins in 5 instances. 
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A B S T R A C T

MALDI-TOF Mass spectrometry Imaging (MSI) is a surface-sampling technology that can determine spatial in-
formation and relative abundance of analytes directly from biological samples. Human listeriosis cases are due to
the ingestion of contaminated foods with the pathogenic bacteria Listeria monocytogenes. The reduction of water
availability in food workshops by decreasing the air relative humidity (RH) is one strategy to improve the control
of bacterial contamination. This study aims to develop and implement an MSI approach on L. monocytogenes
biofilms and proof of concept using a dehumidified stress condition. MSI allowed examining the distribution of
low molecular weight proteins within the biofilms subjected to a dehumidification environment, mimicking the
one present in a food workshop (10 °C, 75% RH). Furthermore, a LC-MS/MS approach was made to link the dots
between MSI and protein identification. Five identified proteins were assigned to registered MSI m/z, including
two cold-shock proteins and a ligase involved in cell wall biogenesis. These data demonstrate how imaging can
be used to dissect the proteome of an intact bacterial biofilm giving new insights into protein expression relating
to a dehumidification stress adaptation. Data are available via ProteomeXchange with identifier PXD010444.
Biological significance: The ready-to-eat food processing industry has the daily challenge of controlling the
contamination of surfaces and machines with spoilage and pathogenic microorganisms. In some cases, it is a lost
cause due to these microorganisms' capacity to withstand the cleaning treatments, like desiccation procedures.
Such a case is the ubiquitous Gram-positive Bacterium Listeria monocytogenes. Its surface proteins have particular
importance for the interaction with its environment, being important factors contributing to adaptation to stress
conditions. There are few reproducibly techniques to obtain the surface proteins of Gram-positive cells. Here, we
developed a workflow that enables the use of MALDI imaging on Gram-positive bacterium biofilms to study the
impact of dehumidification on sessile cells. It will be of the most interest to test this workflow with different
environmental conditions and potentially apply it to other biofilm-forming bacteria.

1. Introduction

After the first MALDI imaging application by Caprioli and collea-
gues [1], imaging mass spectrometry has become a widespread method
for the analysis of small molecules and biomarkers. Mass spectrometry
imaging (MSI) enables the in situ analysis of molecular species in intact
biological samples, overcoming the limitation of other techniques that
require cell disaggregation for analyte extraction or the use of exo-
genous labels [2–4]. It allows visualizing the spatial distribution of
metabolites and proteins from mammalian tissues [5–8], plants [9, 10]
and several reports involving microbiology approaches [3, 4, 9, 11–16].
MALDI-TOF MS is by now, a frequently used tool for the bacterial

species identification. The resulting average mass spectra can be used as
a bacterial biomarker, corresponding mostly to ribosomal proteins [17].
This composition represents a significant challenge for the detection of
a fine and residual bacterial adaptation to an environmental condition
[18]. Still, MSI goes beyond MALDI profiling with a reduced intra-
sample variability, potentially shading a light into discretely con-
centrated ion species [4, 19].

The variety and number of proteomic approaches in microbiology
studies are vast. Today, most proteomic studies are carried out using
shotgun approaches, 2D-PAGE being considered useful only for a re-
stricted number of applications [20]. This approach has been gradually
replaced by the use of tandem mass spectrometry analysis of tryptic
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peptides derived directly from protein mixtures [21–23]. In both cases,
there are numerous study examples of bacterial adaptation to different
environments and stress conditions [24–30]. One particular interest
focus on bacterial proteomics is the study of surface proteins. Surface
proteins are “identity cards” of bacterial cells and have particular re-
levance in the bacterial interaction with its environment [31]. They are
involved in signalling events, transport, adherent growth and therefore
are the predominant factors contributing to adaptation to stress con-
ditions [32]. However, there are few reproducible techniques to obtain
the surfaceome of Gram-positive cells [33]. Moreover, no single method
provides the all range of surface proteins, leading to a multitude of
complementary and non-exhaustive methods to achieve this sub-
proteome [34]. In this study, we intend to use first generation pro-
teomics, Matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS), and a second-generation proteomic-
based approach, liquid chromatography-tandem mass spectrometry
(LC-MS/MS), to evaluate its potential as a faster tool to evaluate the
surfaceome.

Listeria monocytogenes is a ubiquitous Gram-positive bacterium that
can grow at refrigeration temperatures (> 1 °C) [35], a wide pH range
(pH 4–9) [36] and form biofilms [37, 38]. L. monocytogenes is wide-
spread, and it is of great concern in the food industry since this pa-
thogen is the causative agent of listeriosis, by the ingestion of con-
taminated foodstuff [39]. It is listed to be one of the five major food-
related microorganisms causing foodborne disease and being able to
survive for several months on stainless steel surfaces [40], and in a
biofilm mode of growth, it was reported the survival of L. monocytogenes
up to 49 days against a desiccated environment [41]. Bacterial studies
tend to be made with controlled laboratory condition isolates in
planktonic cultures. However, in the natural and food environments,
microbes are often found as populating complex, these surface-attached
communities are exposed and respond to different environmental con-
ditions [13]. One ubiquitous changing condition is water availability,
and bacterial communities are subjected to daily and seasonal varia-
tions of air relative humidity (RH). These variations are also frequent in

food industries due to cleaning and disinfection procedures [42]. Bac-
terial cells growing in a biofilm have higher resilience against stress
conditions, including increased resistance to desiccation after cell at-
tachment [42, 43]. Here, a dehumidification condition was used as a
proof of concept of the MALDI IMS approach.

Bacterial mediums are required for the formation of a bacterial mat;
the latter can take a three-dimensional biofilm shape. This structure
resembles a biological tissue, and thus it can be explored by MSI.
However, the challenge associated with this biological material is the
presence of salts in the culture medium which, even after the latter has
been eliminated, impairs a correct co-crystallization between a matrix
layer and the sample [3]. The highly lipid-rich extracellular composi-
tion is an added complication [3]. Thus, commonly used cleaning
procedures in imaging tissue research may be applied [44]. Possibly
due to this technical constraint, little work has been done with in situ
imaging proteomics in intact bacterial biofilms, except an approach to
the adhesion capacity of Escherichia coli biofilms and the interaction
between E. coli and Enterococcus faecalis biofilms co-cultured on an agar
surface [45, 46].

In this study, pre-grown L. monocytogenes biofilms were submitted
to dehumidification, mimicking the food industry daily cleaning-dis-
infection events. Then, a combination of MSI, MALDI profiling and LC-
MS/MS was used to explore the effect of dehumidification stress on L.
monocytogenes biofilms. To our knowledge, this is the first report that
applies an MSI approach to study an environmental stress effect on a
Gram-positive bacterial biofilm.

2. Material and methods

2.1. Sample preparation

The L. monocytogenes EGD-e strain was grown in tryptic soy broth
(TSB) medium at 25 °C. A pre-culture in stationary phase was used to
inoculate a culture at a final OD600nm of 0.005 and cells were allowed to
grow during 3 h. Cells were then harvested by centrifugation (7500×g,

Fig. 1. Schematic workflow for the MALDI mass spectrometry imaging analysis of Listeria monocytogenes biofilms using two approaches: a classical imaging approach
(matrix sprayed on top of the slide) and a profiling one (manual deposition of the matrix).
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15min) and resuspended in MCDB medium with sterile water in a
volume equal to that of the supernatant collected reach an OD600nm

between 0.6 and 0.7. Eighteen mL of the bacterial suspension was
poured on each indium tin oxide coated glass slide (ITO) placed in a
sterile petri dish (55-mm diameter) and incubated at 25 °C. Bacterial
cells were allowed to adhere during three hours before removing the
medium, eliminating the planktonic cells. Fresh culture medium was
added, and the cells were incubated for 48 h more at 25 °C. The slides
were placed in a 50-mL tube, with liquid medium until half, promoting
the exposure to the air conditions of half of the slide. The open tube was
then arranged inside a container enclosing a saturated sodium chloride
solution allowing to obtain and control the air RH at 75% (Fig. 1). This
device was placed in a cold room at constant 10 °C. After 24 h of de-
humidification exposure, the glass slides were washed to remove salts
and deplete lipids in sequential 30-s washes of 70, 90, and 95% HPLC-
grade ethanol [44, 45]. As a result, the workflow yield L. monocytogenes
biofilms with 2 sections of analysis and an interface between them.

2.2. MALDI mass spectrometry imaging

For matrix application and mass spectra acquisition, two ap-
proaches have been put in motion (Fig. 1). One, using a standard
imaging methodology (classical approach), the matrix was applied
using the ImagePrep station (Bruker Daltonics), and a section of the
biofilm was screened. The lateral resolution was set to 100 μm, and a
total of 500 laser shots were accumulated per pixel at constant laser
power. The second approach implemented profiling parameters with a
lower lateral resolution of 2000 μm, a manual deposit of a 2 μL droplet
of the matrix, and a high accumulation of shots per spot (4000 hits). In
both approaches, the matrix used was 7mg/mL α-cyano-4-hydro-
xycinnamic acid (CHCA) in water/acetonitrile 50:50 (v/v) with 0.2%
trifluoroacetic acid. The α-cyano-4-hydroxy-cinnamic acid (CHCA,
99%), trifluoroacetic acid (TFA, 99%), acetonitrile (≥ 99.9%), and
methanol (≥ 99.9%) HPLC grade were purchased from Sigma-Aldrich
(Steinheim, Germany), conductive indium tin oxide (ITO)-coated glass
slides and peptide calibration standard II from Bruker Daltonics
(Bremen, Germany). The mass spectrometer used was an Autoflex
Speed MALDI-TOF/TOF with a Smartbeam laser using FlexControl 3.4
and FlexImaging 3.0 software packages (Bruker Daltonics). Ions were
detected in positive linear mode at a mass range of m/z 2000–15,000
with a sampling rate of 0.31 GS/s. Deflection was set at m/z of 2000,
and laser focus on medium. The analysis was performed using a de-
tector gain of 2.500 V, ion source voltage 1 at 19.56 kV, ion source
voltage 2 at 18.11 kV and lens voltage at 7 kV. A protein standard
(Protein Calibration Standard I, Bruker Daltonics) was employed for
external calibration of spectra, which was done externally on the same
target before each measurement. Spectral data were loaded into SCiLS
Lab 2016 software (HTTP:// scils.de/; Bremen, Germany). The fol-
lowing workflow was used for data treatment: baseline subtraction
(TopHat algorithm), normalization (total ion current algorithm),
manual peak picking, peak alignment and spatial denoising [47].

2.3. Microproteomics in situ protein extraction and peptide analysis by LC-
MS/MS

Proteins extracts for shotgun proteomic were extracted from dif-
ferent biofilm slides grown in the same conditions as the ones used for
MALDI Imaging and MALDI profiling approach, to identify m/z ion
species observed in MSI (Fig. 2). Three spots per section were manually
extracted and three biological replicates performed. The sample was
covered with 2 μL of 7.5% acetonitrile in 0.2% trifluoroacetic acid and
incubated for 1min. The liquid containing the protein extract was
collected, and this extraction was repeated once. The same area was
then covered with 1 μL of 60% acetonitrile in 0.2% trifluoroacetic acid
and the liquid containing the protein extract was immediately collected
and combined with previous extracts (5 μL total). Samples were purified

using C18 spin columns (Pierce, Thermo Scientific) and the supplier
protocol. Proteins were reduced with 20 μL of 100mM dithiothreitol in
50mM ammonium bicarbonate (pH=8), during 15min at 55 °C. After
cooling, protein alkylation was performed by adding 20 μL of 100mM
iodoacetamide in 50mM ammonium bicarbonate, during 15min at
20 °C in darkness. After neutralization, protein digestion was achieved
by adding 25 μL of trypsin solution (20 ng/μL) in 50mM ammonium
bicarbonate, and overnight incubation at 37 °C. Trypsin digestion was
stopped with 2% trifluoroacetic acid, and after 5min centrifugation at
3000×g, the supernatant was collected. The pellet was washed using
2% acetonitrile, 0.05% trifluoroacetic acid in water, sonicated for
5min, centrifuged for 5min at 3000×g, and the supernatant was col-
lected and combined with the previous one, resulting in 100 μL sam-
ples. The mixtures of peptides were then analyzed by nano-LC-ESI-MS/
MS. For these analyses, 2 μL of peptide mixture was run in duplicate by
online nanoflow liquid chromatography using the Ultimate 3000 RSLC
(Dionex, Voisins le Bretonneux, France) with a nanocolumn of 15 cm
length x 75 μm I.D., 3 μm, 100 Å (Acclaim PepMap100C18, Dionex,
Thermo Fisher Scientific,Waltham, MA, USA). After concentration
6min on a loading column (0.5 cm, 300 μm, Thermo Fisher), the pep-
tides were separated on nanocolumn, with a linear acetonitrile gradient
from 4% to 50% acetonitrile in 0.5% formic acid at a flow rate of
400 nL/min for 50min. The eluate was electrosprayed in positive-ion
mode at 2.7 kV in a LTQ-VELOS mass spectrometer (Thermo Fisher
Scientific, Courtaboeuf, France) through a nanoelectrospray ion source
which was operated in a CID top 10 mode (i.e., one full scan MS and the
10 major peaks in the full scan were selected for MS/MS). Full-en-
hanced-scan MS spectra were acquired with one microscan (m/z
400–1400). Dynamic exclusion was used with one repeat counts and
120 s exclusion duration. For MS/MS, isolation width for ion precursor
was fixed at 2m/z, single and four and above-charged species were
rejected; fragmentation used 37% normalized collision energy and a
default activation of 0.250. After transformation of raw in .mgf data,
Mascot Daemon (version 2.5.1) was used for database search For pro-
tein identification, the listeria_m_EGDe (2844 sequences, 2017/08)
protein database was used. The following parameters were considered
for the searches: peptide mass tolerance was set to 500 ppm, fragment
mass tolerance was set to 0.6 Da, and a maximum of one missed clea-
vages was allowed. Variable modifications were methionine oxidation
(M) and carbamidomethylation (C) of cysteine. Protein identification
was considered valid if at least two peptide with a statistically sig-
nificant Mascot score assigned it (False Discovery Rate (FDR) at 1%).
Protein-protein interaction networks were determined using the
STRING v.10 software (with the default setting). The mass spectrometry
proteomics data have been deposited to the ProteomeXchange Con-
sortium via the PRIDE [48] partner repository with the dataset identi-
fier PXD010444 and https://doi.org/10.6019/PXD010444.

3. Results and discussion

3.1. Listeria monocytogenes biofilms and dehumidification stress induction

Here, we present an MSI approach and used it to explore the protein
expression and their in situ distribution within intact Listeria mono-
cytogenes biofilms exposed or not to a dehumidification condition. To
achieve that, ITO coated slides were submerged in bacterial culture and
grown during 48 h to form a bacterial mat on top of the slide (Fig. 1).
However, the bacterial mat obtained was not entirely homogeneous,
and it was composed of prominent cell aggregates and small gaps with
low cell abundance [49]. This lack of homogeneity may result in low
reproducibility or accumulation of a noisy signal [13]. After the slides
were placed vertically into media, such that only half of the slide was
submerged within the media, the other half was exposed to the con-
trolled air dehumidification condition present in an airtight container.
The workflow development yield L. monocytogenes biofilms with two
sections, one immersed in the culture medium and one exposed to 75%
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air RH, plus an interface between them. Two mass spectrometry ap-
proaches were implemented to compare their ability in dissecting the
spatial proteome of L. monocytogenes biofilms.

3.2. MALDI MSI and MALDI profiling of intact biofilms

MALDI profiling or MALDI intact cell analysis is nowadays a reg-
ularly used tool in clinical microbiology, due its reproducibility and
accuracy in the identification of bacterial species [50]. When compared
with a classical imaging approach, the main differences are in the de-
position of the matrix and the mass spectrometer parameters [19]. For
MALDI profiling, deposition of the matrix was made manually with 2 μL
matrix spot and mass spectra was acquired with a low spatial resolution
(2000 μm), but a higher spectral resolution (Fig. 3a), meaning a mass
spectrum with a lower level of background noise and well-defined ion
peaks. As for MSI, matrix deposition was performed by a spraying

device (Bruker ImagePrep), resulting in an even layer of the matrix on
top of the biofilm. In this approach schemed in Fig. 3b, a section of the
biofilm was screened with a higher spatial resolution of 100 μm and
lower accumulation of shots per spot (500 hits). The MALDI approaches
and matrix selected were optimized for lower molecular weight protein
species. Thus, all analyses were carried out over an ion range of mass-
to-charge ratio (m/z) 2000–15,000. Spectral and image datasets were
analyzed using the software SCiLS Lab, and high-quality mass spectra
were obtained in both approaches (Fig. 3c, d). The profiling presented a
lower level of background noise and higher intensity of peaks than the
classical approach. This result can be attributed to the higher ratio
matrix-sample present in the profiling and the superior signal accu-
mulation obtained in the one spot analysis. Still, after SCiLS processing,
MSI data gave a higher amount of statistically significant (ANOVA p-
value< .05) m/z than the profiling (47 vs 31 ion species detected,
Supplementary Table 1). In these m/z lists, only 10m/z (± 5Da) where

Fig. 2. Schematic workflow for the in situ protein extraction and LC-MS/MS peptide analysis from 3 spots per section of L. monocytogenes biofilms subjected or not to
air dehumidification.

Fig. 3. Mass spectral data obtained from the two approaches. a) Spot to spot analysis of a biofilm implemented with an intact cell analysis parameter (Resolution:
2000 μm; 4000 shots per spot); b) Screening across a large section of biofilm by classical imaging approach (Resolution: 100 μm; 500 shots per spot). c) Profiling
result displayed in the average mass spectrum per section of analysis and principal component analysis. d) Profiling result displayed in the average mass spectrum per
section of analysis and principal component analysis.
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commonly found in both approaches. The resulting table of mass-to-
charge ratios (m/z) is provided in Supplementary Table 1. Via the
manual matrix deposition, the dried droplet matrix suffers a nonuni-
form co-crystallization of matrix and sample, which causes sample and
matrix segregation into separate regions within the dried droplet [51],
together with a lower lateral resolution these could be the factors be-
hind the fewer peaks present in the profiling approach. Within this mass
range, we observed fewer m/z when compared with the analysis of E.
coli biofilms [45]. However, in this study, we are dissecting a Gram-
positive bacteria, the thick cell wall could be the obstacle avoiding the
ionization of a higher number of ions species [50].

Several well-known limiting conditions can lead to weak mass
signal and hamper a quality mass spectrometry result, i.e., spot-to-spot
variability due to differences in desorption/ionization efficiency; a
likely uneven sample concentration in biofilm due to heterogeneous
matrix application; detector noise and limits of detection [4, 46].
However, here, the workflow showed a good average mass spectrum
from each section of analysis through both methods (MSI and profiling).
The resulting principal component analysis (Fig. 3c, 3d) managed to
group the replicate's average mass spectra from each section and se-
parate the different sections. The spatial and depth resolution should
also be taking into account in microbiology studies, even more, when
dealing with biofilms. The spatial resolution in most MALDI MSI studies
is between 100 and 150 μm [46], meaning that each MALDI shot will
induce the ionization of molecules from large biofilm aggregates. L.
monocytogenes biofilms form honeycomb-like structures consisting of
layers of cohesive cells intercalated with hollow voids with diameters
ranging from 5 to 50 μm [52]. Thus, the MSI screening across the bio-
film accumulates mass spectra from areas without sufficient biomass,
and when ionization occurs, it will also lead to cell lysis and a
strengthening of the primary limiting factor of the imaging technique,
the observed ion species are typically those most abundant within the
sample [45]. Despite these constraints, the results shown in this section
demonstrate that even relatively low spatial resolution can provide
useful information on bacterial biofilms, in particularly, to obtain a set
of average spectra that enable the separation between a normal and
stressed biofilm section.

3.3. In situ microproteomics of intact L. monocytogenes biofilm

Combining MALDI MSI with methods such as liquid chromato-
graphy and tandem mass spectrometry (LC-MS/MS) can provide addi-
tional information about unknown protein species obtained from ima-
ging, enabling its identification [16]. The workflow for protein
identification implemented here was decoupled from the MSI analysis
and resorted to a detailed bottom-up proteomic analysis, from which, a
reproducible number of proteins were identified from 3 biological re-
plicates (on average 423 identified proteins from the 3 biofilm slides).
513 different proteins were detected from the protein extracts of the
three biological replicates. Venn diagrams in Fig. 4 show that in all
cases, the majority of unique proteins was detected in the dehumidified
section. This could be linked to a higher percentage of dead cells in this
section, and therefore, more efficient extraction of proteins, but also the
higher humidity in the normal section could have diluted the cell ex-
traction from this section. An m/z from MSI can be a result of any
protein sequence within the mass range of the analysis, so it represents
a challenge for protein identification. This fact might figure the reason
why from the majority of MALDI MSI publications, only a few have
managed to reveal which were the proteins present in the obtained
MALDI spectra [53].

Looking at all the identified proteins by section in the m/z range of
this study, there was a noticeable high amount of ribosomal proteins
identified: 35% in the normal section, 36% in the air-liquid interface
and 38% in the dehumidified section (Suppl. Table 2). This result is
consistent with the high abundance of these proteins in the bacterial
cell, where they account for> 20% of total cell protein [54].

Nonetheless, some stress adaptation associated proteins were identified
from the air-liquid interface and dehumidified section (beyond the
15 kDa mass limit, Supplementary Table 2). In the latter, CshA and
CshB DEAD-box RNA helicases possibly involved in RNA degradation
were identified. These proteins are essential for cold adaptation, and
interact with cold shock proteins in Bacillus subtilis [55]. A similar an-
notation has been hypothesized in Listeria [56]. Moreover, four proteins
from the stress-induced multi-chaperone system, involved in response
to hyperosmotic stress, were identified in the dehumidified section. The
ClpB, DnaK, DnaJ and GrpE act in the processing of protein aggregates
and repair of stress-induced protein damage [57–59].

SpoVG protein-like family in Listeria has been associated with ly-
sozyme resistance and hypervirulence [60]. It is relevant to point out
the identification of two of these proteins in the dehumidified section,
SpoVG1 and SpoVG2 suggests that they might be connected with stress
resistance. The protein data from the dehumidified section also showed
a new possible association to the hypothesized existence of a stress-
sensing complex in L. monocytogenes [61]. Stress tolerance in L. mono-
cytogenes can be explained partially by the presence of the general stress
response (GSR), a transcriptional response under the control of the RNA
polymerase alternative sigma B factor (σB). The stressosome which is
composed of Rsb proteins has been well described in B. subtilis. Sensory
signals lead to the signalling cascade downstream of the stressosome
which ultimately leads to the activation of σB in response to the stress
[62]. The ability of L. monocytogenes to resist many adverse environ-
mental conditions has been attributed in part to activation of σB [63],
which was not identified in this study. However, four proteins (RsbR,
RsbT, RsbV and RsbW) part of the stressosome cascade that activates
the general stress response system have been identified in the dehu-
midified section (RsbW and RsbV were also found in the air-liquid in-
terface). The σB -dependent response to cold [64] and osmotic stress
[65] was already reported, but here is the first potential association
with a dehumidification condition.

As previously mentioned, MALDI MSI shows an interesting insight
into the spatial proteome, but the identification of the ion species
present in the imaging data is not always an easy task, mainly due to the
MALDI's low mass resolution [16]. The use of microproteomics for ex-
traction of proteins followed by shotgun proteomics was well suited for
the confident identification of numerous proteins, and several asso-
ciated with mechanisms of stress adaptation/resistance.

3.4. Connecting the dots between MSI and LC-MS/MS data

Over the years, it has progressively increased the number of MSI
workflows that try to make the identification of the detected m/z
through a back-correlation with the proteins identified by a shotgun
proteomics approach [44]. It is in fact, a challenging task to connect the
MSI peaks to a protein identification. The extraction and identification
method for proteins applied in this study is one that has been already
used in different studies [53]. Many researchers have decoupled the
imaging experiment from the protein identification experiment and
resorted to bottom-up proteomic analysis of a separate similar sample
on which the MALDI imaging was made [66].

Fig. 5 is a visual representation of the dot connection between the
average mass spectra from the classical imaging/profiling approach and
the identified proteins obtained in Section 3.3. First, we assessed the
obtained LC-MS/MS proteins lists, restring the analysis to the identified
proteins present in all biological replicates from each of the three sec-
tions (normal section – Fig. 5a; air–liquid interface – Fig. 5b; dehumi-
dified section – Fig. 5c). Furthermore, since MSI was set at a mass range
of m/z 2000–15,000, 15 kDa was established as the cutoff mass value
used in the lists of identified proteins. As a result, seven proteins in the
normal section, 8 in the air–liquid interface and 19 in the dehumidified
section followed these criteria (Supplementary Table 1). These proteins
are represented in Fig. 5, by a protein-protein interaction network and
also listed with their detailed description.
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The back correlation between the significant m/z and the in situ
identification was made with a mass tolerance of 0.5% [44], which lead
to 5 different proteins being assigned to the mass spectra (dehumidified
section). The assigned proteins are highlighted in Fig. 5 lists. From the
normal section and air-liquid interface, two proteins were assigned to
the average spectra of the MALDI imaging approach, the cold-shock
protein CspLA (CspL) and the 50S ribosomal protein L29 (RmpC). The
family of small cold shock proteins (Csps), with a cold-shock domain, is
commonly associated with stress resistance, but more recently has been
reported its involvement in virulence, cell aggregation and flagella-
based extracellular motility in L. monocytogenes [67]. CspA was char-
acterized as being the most relevant in cold adaptation [68]. Therefore,
it is not surprising that this protein was identified in the normal section.
Since, this section was also exposed to cold shock stress, thus triggering
such a response [67]. These two proteins were also assigned in the
dehumidified section together with a second cold shock protein
(CspLB), also involved in the adaptation to atypical conditions [69];
plus a tautomerase-like protein and a D-alanine-poly(phosphoribitol)
ligase. The latter is involved in the pathway lipoteichoic acid bio-
synthesis. Loss of D-alanylation of lipoteichoic acids alters the cell
surface charge and results in reduced biotic attachment and biofilm
production [70]. This protein assigned in the dehumidified section is a
new dot in the connection between biofilm formation and resistance to
harsh environmental conditions [43]. Lipoteichoic acids are essential
for the surface adhesion of Listeria cells, and here, it was in the stress
condition that this protein was allocated, which suggests that me-
chanisms similar to those occurring during biofilm formation are in-
duced to withstand conditions of decreasing RH.

Lastly, a classical imaging result, using SCiLS software, shows the
spatial distribution of the two cold shock proteins across the biofilm
(Fig. 6a, b). In our view, there are some technical challenges with this
tool for MSI data analysis: like pixel-to-pixel variability, data quality
assurance, noise-tolerant statistical learning algorithms [19]. However,
and in agreement with the previous results, the heat-map from the
imaging approach data shows that CspLA is present in the three sections
but with more intensity in the dehumidified section. As for CspLB, it
was identified in the dehumidified section and the air–liquid interface.
However, the connection to the MSI m/z was only made in the dehu-
midified section.

The MALDI profiling mass spectra was also analyzed through
bloxspot, to check sample variability (Fig. 6c). The level ion species
assigned being the lipoteichoic acid associated protein (dltC) confirmed
a higher detection of this protein in the dehumidified section compared

to the other two regions. This fact corroborates the data obtained from
the protein identification and back-correlation with the ions species
observed in MSI.

Even though, the shotgun approach breaks the link between the
identified proteins and the m/z peaks detected in MALDI MSI, the list of
identified proteins serves as a base for cross connection. This is for
know the best technical option. The direct mass spectrometric se-
quencing of the detected m/z in a MALDI mass spectrum is usually not
possible due to the generally inadequate sensitivity, resolution, mass
accuracy and mass range of these instruments in tandem MS mode [53].
In comparison with direct MALDI MS/MS, the shotgun approach has
the gain of superior sensitivity and a higher amount of proteins iden-
tified. Moreover, here most of the proteins identified by shotgun pro-
teomics were labelled as being ribosomal proteins (< 20 kDa), and the
spectral data obtained are similar to the average spectrum obtained in
MALDI intact cell analysis of L. monocytogenes cells [71, 72]. The
MALDI intact cell approach, for biotyping bacterial species, is based on
the close similarity of the ribosomal profile in this range, giving weight
to some of the peak connections here achieved. This work presents a
strategy to connect the dots between MSI data and LC-MS/MS in 5
cases, a similar level of back-correlation to that obtained by Floyd et al.
[45], confirming that the approach implemented here was successful. In
the foreseeable future, back-correlation levels can reach even higher
numbers. For that, it will be crucial to overcome technical constraints
involving the limitation to relatively high abundance proteins [46, 73]
and the MALDI limitations into ionizing, in linear mode, high molecular
weight proteins potentially essential to biofilm adaptation [45]. Ad-
ditionally, the approach showed the identification of proteins with vital
importance in the biofilm adaptation to dehumidification.

4. Conclusions

The first aim of this work was the development and optimization of
a workflow that would enable the use of MALDI imaging on Gram-
positive bacterium biofilms and then, applying it to study the impact, at
the molecular level, of environmental stresses on sessile cells. These
stresses consisted of mimicking food workshop conditions in which,
after each cleaning-disinfection procedure of surfaces and equipment,
the air is dehumidified to eliminate residual water quickly, sanitize the
ambient atmosphere and limit contamination spreading.

The MALDI imaging protocol developed allowed us to compare
immerged and dehumidified biofilm sections, revealing the spatial lo-
calization of up to 47 different protein species within a single analysis.

Fig. 4. Venn diagrams for all identified proteins from each of the biological replicates (slide 1: 435 proteins; slide 2: 462 proteins; slide 3: 373 proteins).
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A microproteomics approach then led us to identify several proteins and
to lastly make a back correlation with imaging data the confident
identification of 5 proteins in these spectra. It will be of the most in-
terest to detect the variance of these identified proteins in other

environmental conditions and potentially apply this workflow to other
biofilm-forming bacteria.

Resorted MALDI IMS and innovative protein identification ap-
proaches contributed to dissect the spatial proteome of an intact

Fig. 5. The schema for the back-correlation between ions species obtained by MALDI (bottom) and protein identification by LC-MS/MS (top) (all mass lists present in
Supplementary Table 1). a) Normal section assigns protein identification. b) Air-liquid interface assigns protein identification. c) Dehumidified section assigns protein
identification. From top to bottom: Venn diagrams for all identified proteins in the three sections (normal section: 56 proteins; interface: 187 proteins; dehumidified
section: 511 proteins); STRING protein-protein interaction with the shared proteins identified (with mass below 15 kDa) from each of the three sections; List
description of the proteins present in protein-protein interaction (highlighted proteins correspond to the ones correlated with m/z from IMS and profiling, mass
tolerance: 0.5%); Average mass spectra for each of the 3 sections from the two approaches and identification of the proteins succefully assigned.
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bacterial biofilm giving new insight into protein expression relating to
biofilm adaptation to dehumidification. From a general point of view,
this approach enriches promisingly the different techniques and
methodologies already used to explore and understand the physiology
of microorganisms in biofilms [74].
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3. Listeria monocytogenes Adaptation to Different 

Temperatures Seen Through Shotgun Proteomics  
 

L. monocytogenes has the capacity of prevailing and even growing at temperatures 

close to zero degrees. This temperature adaptation strength combined with its 

capacity to attach and form a complex biofilm mark this bacterium as a problematic in 

the food industry. Since proteome changes occur in a very promptly fashion, 

particularly in a response to a stress condition, the two manuscripts in this section aim 

to explore and compare variations in protein abundance of L. monocytogenes grown 

in two modes of growth (planktonic vs biofilm) and three different temperatures (10ºC, 

25ºC and 37ºC). 
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Listeria monocytogenes is a foodborne pathogen that can cause invasive severe human

illness (listeriosis) in susceptible patients. Most human listeriosis cases appear to be

caused by consumption of refrigerated ready-to-eat foods. Although initial contamination

levels in foods are usually low, the ability of these bacteria to survive and multiply at low

temperatures allows it to reach levels high enough to cause disease. This study explores

the set of proteins that might have an association with L. monocytogenes adaptation

to different temperatures. Cultures were grown in biofilm, the most widespread mode

of growth in natural and industrial realms. Protein extractions were performed from three

different growth temperatures (10, 25, and 37◦C) and two growth phases (early stage and

mature biofilm). L. monocytogenes subproteomes were targeted using three extraction

methods: trypsin-enzymatic shaving, biotin-labeling and cell fractionation. The different

subproteomes obtained were separated and analyzed by shotgun proteomics using

high-performance liquid chromatography combined with tandem mass spectrometry

(LC-OrbiTrap LTQVelos, ThermoFisher Scientific). A total of 141 (biotinylation), 98

(shaving) and 910 (fractionation) proteins were identified. Throughout the 920 unique

proteins identified, many are connected to basic cell functions, but some are linked with

thermoregulation. We observed some noteworthy protein abundance shifts associated

with the major adaptation to cold mechanisms present in L. monocytogenes, namely:

the role of ribosomes and the stressosome with a higher abundance of the general

stress protein Ctc (Rl25) and the general stress transcription factor sigma B (σB),

changes in cell fluidity and motility seen by higher levels of foldase protein PrsA2 and

flagellin (FlaA), the uptake of osmolytes with a higher abundance of glycine betaine

(GbuB) and carnitine transporters (OpucA), and the relevance of the overexpression of

chaperone proteins such as cold shock proteins (CspLA and Dps). As for 37◦C, we

observed a significantly higher percentage of proteins associated with transcriptional

or translational activity present in higher abundance upon comparison with the colder

settings. These contrasts of protein expression throughout several conditions will

enrich databases and help to model the regulatory circuitry that drives adaptation of

L. monocytogenes to environments.

Keywords: Listeria monocytogenes, temperature adaptation, biofilm, subproteomes, shotgun proteomics
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INTRODUCTION

The ready-to-eat (RTE) food sector is in constant expansion,
offering a wide variety and number of products to consumers.
Unfortunately, with that comes an increased chance of microbial
contamination, as is the case of Listeria monocytogenes (1), a
Gram-positive foodborne pathogen bacterium and the causative
agent of the illness listeriosis (2). The European Food Safety
Authority (EFSA) reported, in Europe, from 2008 to 2015, 37
food-borne outbreaks caused by L. monocytogenes that lead to 37
deaths (3). Just from June of 2018, 47 cases have been reported,
and nine patients have died due to or with the infection (4).
Even if the annual number of listeriosis cases comes behind
other major foodborne pathogens (∼23,150 listeriosis cases were
estimated worldwide in 2010), the mortality among infected
individuals is very high, reaching levels up to 30% (5). This
ubiquitous biofilm-forming bacterium is found throughout the
environment, including soil, vegetation, and animals (6). The
agroecosystems play a major role in the spread of such pathogens
in the food chain through the production of contaminated raw
products (7).

Bacterial cells are often found in complex communities,
termed biofilms, that provide resources and protection to harsh
environments (8). The trifactor, that includes pathogenic power,
ability to form biofilm and ubiquity qualify L. monocytogenes
as huge risk for human health. Remarkably, most stress-related
reports were performed in planktonic cultures (9), even if
there is a clear need to study the bacterial responses associated
with stress tolerance and the features and benefits conferred
by the sessile mode of growth to bacterial cells. One other L.
monocytogenes attribute is its proteosurfaceome. Surface proteins
are the link between bacteria and its environment, playing
a significant role in communication, chemical sensing, stress
resistance and balance of nutrients and toxins in the cell (10).
L. monocytogenes genome sequence revealed 133 genes coding
for surface proteins. Notably, the phylogenetically close but
non-pathogenic L. innocua genome presented despair results
regarding this protein family, unveiling for the first time its
potential role in virulence (11). Even with the clear importance of
proteomes and proteosurfaceome, protein studies have a higher
level of complexity in comparison to DNA or RNA, mainly
due to its variations in abundance, physicochemical features and
subcellular localization (10). As for surface proteins, these are
especially hard to work, since they require a carefully balanced
hydrophilic and lipophilic environment (12). In regards to the
role of surface proteins in virulence, the L. monocytogenes
proteosurfaceome has been well explored (13), but the same
cannot be said for its part in the adaptation and resistance to
different environmental settings. Even scarcer are the studies
in the sessile mode of growth, the predominant growth state
in food workshops (14). To overcome the challenges associated
with properly identifying surface-associated proteins, three
different but complementary extraction methods were used
in this study. First, the biotinylation method which is based
on the treatment of intact cells with sulfo-NHS-SS-Biotin, to
which the cell membrane is impermeable. This marker molecule
reacts specifically with the ε-amino-group of lysine residues of

surface-exposed proteins. Subsequently, labeled proteins can be
separated from non-labeled proteins by affinity chromatography
with neutravidin and then analyzed by liquid chromatography-
tandem mass spectrometry (LC-MS/MS) (15). Secondly, the
shaving method which consists on treating intact bacterial cells
with proteases in an isotonic solution to promote the release
exposed peptides (16). The third and final extraction method, the
fractionation which allows to explore the proteome in separated
subcellular fractions.

L. monocytogenes is an opportunistic bacterial pathogen
that has the capacity to survive under extreme environmental
conditions encountered in nature and in the food chain, such as
high salt concentrations (17), large range of pH (18), desiccation
(19, 20), and low temperatures (21). Maintaining the cold
chain is an essential parameter throughout the processing and
distribution of food, protecting it from the growth of mesophilic
microorganisms and thus extending its shelflife. However, the
temperatures used for refrigerated storage do not prevent the
growth of psychrotrophic germs such as L. monocytogenes (22).
Even if cold environments lead to a decrease in the rate
of bacterial growth, they do not inhibit it completely (21).
Temperature variation also has its role in virulence. As for
many other bacterial pathogens, L. monocytogenes activates the
expression of virulence genes at host body temperature (23).
Throughout the years, multiple studies have been published
exploring Listeria’s temperature adaptation, either through
physicochemical tests (21, 24–29), genomic and transcriptomic
methods (30–38), and also through metabolic and proteomic
approaches (39–44). However, there is still a knowledge gap in the
comparison of subproteomic changes to different temperatures,
particularly in the biofilm mode of growth.

L. monocytogenes adaptation to low temperatures is one
of its crucial attributes that supports Listeria persistence and
dissemination in refrigerated products. This adaptation to cold
temperatures renders the use of such physical setting insufficient
for the control of L. monocytogenes presence in long-term storage
under refrigeration products (45). L. monocytogenes is able to
growth at temperatures as low as −0.4◦C but also survive in
freezing temperature such as −18◦C (21, 46). In short, upon
exposure to low temperatures, bacterial membranes become
more rigid and the metabolic rate decreases. To overcome the
hurdles imposed by a cold stress, bacteria have to increase
the expression of genes involved in cell membrane function,
production of cold shock proteins and multiple other molecular
strategies to maintain homeostasis (47).

One of the major adaptative strategies is the induction
of osmolyte and peptide transporters which will increase the
amount of this molecules in the cytosol and maintain turgor
pressure (48). The critical uptake of osmoprotectant molecules
for Listeria’s adaptation to low temperature is made through auto
transporters for compatible osmolytes and short oligopeptides
(49). The main carnitine transporter, OpuC, encoded by the
opuCABCD operon, was observed in high abundance in Listeria
cells exposed to low temperatures (48, 50).

In cold environments, bacteria also duel with protein damage,
particularly protein misfolding and aggregation. To counteract
this damage, cells have at their disposal a network of molecular
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chaperones that assist in maintaining proteins in their native
states. A key role of chaperones is preventing protein aggregation
(51). L. monocytogenes harbors three proteins from the CspA
family (CspLA, CspLB, and CspD) and genome-wide expression
studies showed a significant increase in expression of CspL at low
temperatures (52).

L. monocytogenes response to the ever-changing
environmental factors and stress conditions is linked to the
activation of the alternative sigma factor sigma B (σB) that
controls the general stress response (GSR). Functions of genes
regulated by this transcriptional factor include a diversity
of metabolic pathways, transport associated proteins, stress
proteins, and other transcriptional factors (53). Particularly the
osmolyte carnitine, which as mentioned before is transported via
OpuC. The expression of this autotransporter is also regulated
by σ

B. Other genes associated with cold stress resistance, ltrC
(54) and fri (55), are also controlled by σ

B regulon. In short, even
if a direct link between cryotolerance and σ

B has not yet been
obtained, there are clear signs that this transcriptional factor has
a role in Listeria’s adaptation to low temperature (47).

A combination with othermechanisms of cellular homeostasis
maintenance, such as: control of membrane fluidity, gene
expression events, protein folding and degradation, assimilation
of carbon sources, oxidative stress response, and production of
specific amino acids and lipids culminate in Listeria’s successful
persistence in the cold temperatures of the food processing
environment (56).

An understanding of how L. monocytogenes proteome changes
in the biofilm mode of growth at different temperatures
can help to unveil how it establishes and survives in the
processing environment. To this point, this study aimed to
explore the Listeria monocytogenes biofilm subproteomes and
surface proteins under the influence of three temperatures:
10◦C mimicking a common setting found in the food industry
environment, 25◦C as a baseline temperature, and 37◦C as the
human host setting.

MATERIALS AND METHODS

Strain and Biofilm Settings for Protein
Extraction
The sequenced L. monocytogenes EGD-e strain, serogroup 1/2a,
was used throughout this study (57). Routine pre-culturing and
culturing were carried out in Tryptic Soy Broth (TSB, Difco,
Fisher Scientific) at 25◦C and 150 rpm. Bacterial growth was
monitored by measuring the absorbance at 600 nm (OD600).
Precultured cells in stationary phase were used to inoculate
cultures to obtain a final OD600 of 0.005. After 6 h of growth,
cells were harvested by centrifugation (7,500 × g, 15min) and
resuspended in TSB diluted by 1:5 with sterile water in a
volume equal to that of the supernatant collected, reaching an
OD600 between 0.6 and 0.7. Seven milliliters of the bacterial
suspension was poured on each stainless steel (SS) disk (38.5
cm2), corresponding to an inoculation of 108 to 109 CFU/cm2

(colony-forming unit/ square centimeter). The SS disks were then
placed in a sterile Petri dish (55-mm diameter) and incubated at

25◦C. Bacterial cells were allowed to adhere onto the disk for
3 h in static mode, before removing the medium to eliminate
planktonic cells and add fresh medium. The disks incubation
settings were dependent on the desired temperature (10, 25,
or 37◦C) and growth stage (early stage or mature biofilm)
(Supplementary Table 1). To harvest the biofilm, the medium
was removed and adherent cells were detached in 10ml of
Tryptone-salt (tryptone 0.1%, NaCl 0.85%, pH 7.0) by scraping
the SS disk with a sterile spatula. Three biological replicates
with 10 disks per each were used for every analyzed setting.
Cell adhesion and population in biofilm were evaluated by cell
enumeration. Serial dilutions were plated on Tryptic Soy Agar
(TSA, Difco, Fisher Scientific) and incubated for 24 h at 37◦C.

Protein Extraction Methods
The three extraction methods used in this study were biotin
labeling, trypsin-enzymatic shaving and cell fractionation. All
methods used were based on the protocol optimized for the
extraction of surface exposed proteins developed by (58). In
the biotinylation method, bacterial cells are treated with Sulfo-
NHS-SS-Biotin, a marker molecule that is supposed to be
membrane impermeable and interacts with surface exposed
proteins. The shaving method consists of treating intact cells
with proteases in an isotonic solution to release exposed peptides.
The third method is the fairly well-established separation of
membrane and cell wall components by cell fractionation. The
technical details and result output of these extraction methods
can be found in the Supporting information document and
Supplementary Figures 1, 2.

Nano-LC-MS/MS and Bioinformatic
Analysis
In order to obtain triplicate protein extracts, three independent
biofilm cultures were used for each of the three methods
described above. All samples, except those from the shaving
method, were loaded onto SDS-PAGE gels to concentrate in one
single band in the first few millimeters of the resolution gel.
Excised bands were washed in 25mM ammonium bicarbonate
with 5% acetonitrile (ACN) for 30min and twice in 25mM
ammonium bicarbonate with 50% ACN for 30min. Reduction
and alkylation reactions were performed with 10mM DTT and
55mM iodoacetamide solutions, respectively, and all bands were
finally dehydrated with 100%ACN. The samples were hydrolyzed
overnight at 37◦C using 48 µl of a 25mM NH4HCO3/12.5
ng.µl−1 trypsin solution (Promega) per band. Peptides were
extracted from the gel bands in an ultrasonic field during 10min
with 38.4 µl of 100% acetonitrile representing 80% of digestion
volume. Supernatants were transferred in eppendorf vials and
dried using Speed Vac for 45min and 40 µl of equilibration
solution (H2O/Trifluoroacetic Acid−99.95/0.05) was added.

All peptide mixtures were analyzed by nano-LC-MS/MS
(Thermo Fisher Scientific) using an Ultimate 3000 system
coupled to a LTQ Orbitrap Velos mass spectrometer (MS) with
a nanoelectrospray ion source. For each sample, one microliter
of peptide mixture was first preconcentrated on a C18 pre-
column 5 cm length X 100µm I.D. (Acclaim PepMap 100 C18,
5µm, 100A nanoViper), equilibrated with Trifluoroacetic Acid
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0.05% in water at 30 µL/min. After 6min of desalting and
preconcentration, the pre-column was switched online with the
analytical C18 column (75µm inner diameter × 15 cm length;
2µm, Acclaim PepMap 100 C18 Pepmap RSLC) equilibrated
with 96 % solvent A (99.5 % H2O, 0.5 % formic acid) and 4 %
solvent B (80%ACN, 19.5% H2O, 0.5% formic acid). Peptides
were eluted according to their hydrophobicity at 300 nL/min
flow rate using, respectively, a 4 to 52% gradient of solvent
B for 31min for biotin labeled and trypsin-enzymatic shaved
fractions and a 4 to 40% gradient of solvent B for 56min for cell
fractions. Eluates were electrosprayed in positive-ion mode at 1.6
kV through a nanoelectrospray ion source heated to 250◦C. The
LTQ Orbitrap Velos MS was used in CID top 15 mode (i.e., 1 full
scan MS and the 15 major peaks in the full scan were selected
for MS/MS). The full scan MS was realized in the FTMS ion trap
at a resolution of 60,000 (tolerance 10 ppm) and spectra were
acquired with 1 microscan (m/z 400–1,400). For MS/MS, the
following parameters were used: dynamic exclusion with 1 repeat
counts, 20 s repeat duration and 80 s exclusion duration, isolation
width for ion precursor was fixed at 1 m/z, single charged species
were rejected, fragmentation used 37% normalized collision
energy as the default activation of 0.25 and 10ms activation
time. For raw data processing, MS/MS ion search was performed
with Mascot v2.5 for database search (http://www.matrixscience.
com). The following parameters were considered for the searches:
precursor mass tolerance of 10 ppm and fragment mass tolerance
of 0.5 Da, a maximum of two missed cleavage sites of trypsin,
carbamidomethylation (C) and oxidation (M) set as variable
modifications. Protein identification was validated when at least
two peptides originating from one protein showed statistically
significant identity above Mascot scores 13 with a False Dicovery
Rate of 1% (adjusted significance threshold p < 0.05). Ions score
is−10 log(P), where P is the probability that the observed match
is a random event. Individual ions score >13 indicate identity
or extensive homology. Interrogations were performed against
a custom database containing distinct entries corresponding
to raw protein sequences and the different predicted mature
proteins of L. monocytogenes EGD-e (i.e., DB-Mature-LmoEGDe
v2.0, 5838 sequences) based on putative cleavage sites of the
SP (59). The subcellular location of identified proteins was
determined with the rational secretomics based strategy for
genomic and proteomic analyses developed by Renier et al. (60).
For protein quantitation analysis, LC-Progenesis was used with
Mascot v2.3 and the same identification parameters described
above. Normalization was based on the LC-Progenesis process
with Log10 ratio calculation and scalar estimation in log space.
The statistical method used was the comparison in groups of
two temperature settings in a “Between-subject design.” For each
temperature setting three biological replicas with three technical
replicas were used. Venn diagrams were performed by the jvenn
online tool (61). Functional category of proteins was based on
the clusters of orthologous groups (COGs) via the eggNOG
online framework (62). For proteins of interest, the average
abundance from the 3 biological replicates in each condition
was represented in a bar chart with standard deviation and
statistical significance was tested by one-way ANOVA. Protein-
protein association networks were made by the String database

(63). Heat map displaying the normalized protein abundances
were obtained via Xlstat (2018.5). Volcano plots were performed
by the R software with the integration of the ggplot2 and ggrepel
graphical packages for data analysis (64).

RESULTS

Overall Protein Identification Results
From all extraction methods and temperature settings, 920
unique proteins were identified (Figure 1A), representing a
significant proportion of the Listeria monocytogenes proteome
(32.2%) (57). The vast majority, 79% of the identified proteins,
were characterized as cytoproteins, followed by membrane-
associated proteins, extracellular and cell wall-associated proteins
represent 17, 3, and 1%, respectively. Functional category of
this set of proteins was based on the clusters of orthologous
groups (COGs) (Figure 1B). Taking into consideration that
the majority of identified proteins are from the cytoplasmic
subcellular localization, it is not surprising that the functional
category with the highest percentage of identified proteins
is “Translation, ribosomal structure, and biogenesis” (13%),
followed by “Transcription” and ‘Cell wall/membrane/envelope
biogenesis,” 6% each. In addition, there are a multitude of
normal molecular functions with a similar number of identified
proteins. Although the genome sequence of L. monocytogenes
was performed 18 years ago, a significant part of its proteome
is still unannotated and lacks relevant information. This is
reinforced by the large number of proteins whose function is
not known here (192, 21%). In regards to the subproteomic
extraction approach here implemented, we identified a high
percentage of the L. monocytogenes intracellular proteome and
also a significant amount of its surfaceome. In order to look
for potential protein biomarkers of temperature adaptation, the
protein identification data was structured by temperature and
growth condition. The column chart in Figure 4A illustrates
the stable and steady amount of identified proteins that were
found in the different settings. The six branched Venn diagram
shows that the vast majority of proteins were shared between all
settings (531 proteins). Nevertheless, 122 proteins were identified
only in one of the six settings in the study. Some of them with
potential interest with temperature adaptation. In the case of
early stage biofilm (Biof Es) grown at 10◦C (Figure 2A), 40
uniquely identified proteins were registered, including the RNA
polymerase sigma factor SigB, documented as regulating the
expression of genes necessary for survival under environmental
stress conditions (65). We have also identified three proteins
of the flagellar motility system (Lmo0713, Lmo0714, and
Lmo0697) and a DNA replication, recombination and repair
associated protein (ssb2). Interestingly, OpuCA which is part of
a documented carnitine solute auto transporter was identified
only at the 10◦C settings. Likewise, a unique heat shock protein
involved in cell division and virulence (clpE) was identified in the
37◦C condition at mature biofilm growth (66). The distribution
of molecular functions in each setting follows the same trend as
in the analysis of the whole protein identification data set seen
previously (Figure 2B). A higher amount of proteins related to
translational machinery was present and a similar amount of
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FIGURE 1 | (A) Pie chart showing the distribution of the 920 unique proteins identified by their predicted subcellular localization. (B) Pie chart illustrating the

distribution of the 920 unique proteins identified by their predicted COG molecular function.

FIGURE 2 | (A) Venn diagram exposing the distribution of the 920 unique proteins identified by the three sets of temperature (10, 25, and 37◦C) and two growth

stages (ES—Early Stage biofilm and Mt—Mature biofilm) here analyzed. (B) Vertical bar chart showing the distribution of the 920 unique proteins identified by their

predicted COG molecular function and separated by the conditions in study.
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proteins identified for each molecular function across the six
different settings. Though, a comparison of protein flows and
changes that might have a relation to temperature adaptation can
only be achieved by quantitation analysis.

Cross-Comparison of Temperature
Adaptation Through Protein Quantitation
The quantitative analysis of protein abundance made by
LC-Progenesis enabled the comparison of protein abundance
through pairs of temperature settings, 10 vs. 37◦C (Figure 3;
Supplementary Figure 4 and Supplementary Table 2),
10 vs. 25◦C (Figure 4; Supplementary Figure 5 and
Supplementary Table 3), and 25 vs. 37◦C (Figure 5;
Supplementary Figure 6 and Supplementary Table 4). In all
cases, LC-Progenesis normalized abundances of the statistically
significant identified proteins (p < 0.05) were used in order to
compare the flows of proteins in each setting.

The Xlstat heat map in Figure 3A shows the relative
abundance of each of the 380 statistically significant proteins
retrieved when comparing the two growth phases at 10 and
37◦C. This was the most contrasting comparison of growth
temperatures, between a temperature mimicking the settings
found in the food industry (10◦C) and the temperature of
the human host (37◦C) to which L. monocytogenes expresses
a higher level of virulence. A similar sum of proteins with
higher abundance was detected in both temperatures, i.e.,
196 at 10◦C and 184 at 37◦C. In some instances, there is
a variance in one or more biological replicates regarding its
abundance. The comparison of proteome changes can also
be viewed by the shifts of protein abundance in regards to
molecular function (Figure 3B). Regarding to transcriptional
or translational activity, at 37◦C, there are more proteins with
higher abundance annotated with this molecular function. On
the other hand, a higher percentage of proteins associated with
a repair system mechanism were more abundant in the cold
condition than at 37◦C. The repair system molecular function is
one of the categories COG (EggNOG orthologs). A temperature
stress as 10◦C induces DNA, RNA and protein damage in the
cell (45). Some of the proteins that were more abundant at 10◦C
in this category have annotated involvement in solving protein
aggregation and DNA damage (as for example DNAA chaperone
protein, Supplementary Table 2). Similar result was seen for
inorganic ion and amino acid transport associated proteins.
A String map of protein interaction (Supplementary Figure 4)
provides a graphical representation of the statistically significant
proteins from this quantitation. Highlighted in blue are some
of the proteins associated with the adaptation to harsh
environmental conditions that were more abundant in the 10◦C
condition (Supplementary Figure 4A), as is the case of: the GTP-
sensing transcriptional pleiotropic repressor CodY; the carnitine
transporter OpuCA; the redox regulated molecular chaperone
HslO, that protects both thermally unfolding and oxidatively
damaged proteins from irreversible aggregation (67); the foldase
protein PrsA2, which protects the cell by controlling the folding
and stability of secreted proteins in stress conditions (68); the
DNA protection during starvation Dps, that protects DNA from

oxidative damage by sequestering intracellular Fe2+ ion and
storing it in the form of Fe3+ oxyhydroxide mineral (56); the
ATP-dependent zinc metalloprotease FtsH, which plays a role
in the quality control of integral membrane proteins (69); the
DNA ligase LigA, essential for DNA replication and repair of
damaged DNA under stress conditions (70); the superoxide
dismutase SodA, responsible for destroying superoxide anion
radicals which are produced within the cells (71); and the ATP-
dependent RNA helicases CshA and CshB, which are involved
in RNA degradation during cold tolerance, motility and alcohol
tolerance (72).

The large sum of ribosomal proteins at 37◦C validates
the higher percentage of proteins previously associated with
translational function (Supplementary Figure 4B). Likewise,
highlighted in red are some of the chaperone proteins associated
with heat adaptation and the general stress response system, that
were more abundant at 37◦C. They participate actively in the
response to hyperosmotic and heat shock by the recognition and
processing of DNA lesions, and preventing the aggregation of
stress-denatured proteins and by disaggregating proteins (73),
such proteins as: DnaK, DnaJ, GroES, GroEL, GrpE, UvrA, and
ClpB. The virulence capacity of L. monocytogenes is also here
underlined by the higher abundance of the endopeptidase p60
(Iap) which is a major extracellular protein involved in the
invasion of phagocytic cells (11).

The quantitation appraisal of the cold condition to the
control temperature setting in this study (25◦C) resulted in
336 statistically significant proteins (Figure 4A). We observed
26% more proteins with a higher abundance at 10◦C than at
25◦C. In agreement with the previous comparison, sessile cells
at 10◦C showed a lower percentage of abundance of proteins
associated with translational machinery and, once again, a
higher percentage of proteins with higher abundance involved
in amino acid transport. The mapping of this set of proteins
reveals the same trend as previous results with stress response
associated proteins being more abundant in the cold condition
(e.g., ClspL and SigB) (Supplementary Figure 5). The higher
number of ribosomal proteins at 25◦C confirms the tendency
toward fewer translation mechanisms at the cold condition.
Furthermore, chaperone proteins (DnaK, GroEL) and some
virulence associated proteins, like the internalin A (InlA) which
mediates the entry of L. monocytogenes into host intestinal
epithelial cells (74) and chemotaxis CheA involved in the
transmission of sensory signals from the chemoreceptors to the
flagellar motors in intracellular movement (75), were also present
in lower levels at the colder setting.

The last quantitative comparison of protein abundance was
between 25 and 37◦C, which gave the lowest amount of
statistically significant proteins among the three comparisons
(233 proteins, Figure 5A). A similar number of proteins
with higher abundance was found under both conditions,
probably related to the proximity of this two temperature
settings. However, changes in proteome abundance can be
retrieved upon analysis of molecular functional categories
(Figure 5B). As in the previous two analyses, the highest
temperature showed a greater number of proteins associated
with translation. At 37◦C, there is a higher amount of proteins
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FIGURE 3 | LC-Progenesis ANOVA comparing the biofilm at 10 and at 37◦C (Supplementary Table 2) The two biofilm stages are represented either by dark SS

(stainless still) disks for early stage or cell filled gray SS disks for mature biofilm. (A) Heat map illustrating the abundance of each of the 380 statistical significantly

different proteins obtained in this comparison. (B) Horizontal bar chart showing the percentage of proteins with higher abundance in each temperature setting by their

predicted COG molecular function.

FIGURE 4 | LC-Progenesis ANOVA comparing the biofilm at 10 and at 25◦C (Supplementary Table 3). The two biofilm stages are represented either by dark SS

(stainless still) disks for early stage or cell filled gray SS disks for mature biofilm. (A) Heat map illustrating the abundance of each of the 336 statistical significantly

different proteins obtained in this comparison. (B) Horizontal bar chart showing the percentage of proteins with higher abundance in each temperature setting by their

predicted COG molecular function.

with higher abundance related to carbohydrate metabolism and
also coenzyme transport. The flagella motor system was more
abundant at 25◦C (Supplementary Figure 6A). As in the first
quantitative appraisal (10 vs. 37◦C), the ribosomal, chaperone
and virulence associated proteins were more abundant at 37◦C
(Supplementary Figure 4B).

Proteins of Interest for Temperature
Adaptation
For an additional understanding of the L. monocytogenes
proteome changes under different conditions, it was important

to have a look at sets of proteins of interest and also outliers
that could be potential biomarkers for the adaptation to this
environmental and food industry setting. Figures 6, 7 represent
the average abundances of some of these proteins of interest
between the two extreme poles of temperatures and across the
two stages of biofilm growth (early stage, represented by dark
SS disks, and mature biofilm, represented by cell filled SS disks).
For each protein, average abundances were obtained from the
three biological replicates in each condition. In the case of the
DNA protection to starvation protein (Dps), a higher abundance
was obtained at 10◦C, particularly in the mature biofilm stage.
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FIGURE 5 | LC-Progenesis ANOVA comparing the biofilm at 25 and at 37◦C (Supplementary Table 4). The two biofilm stages are represented either by dark SS

(stainless still) disks for early stage or cell filled gray SS disks for mature biofilm. (A) Heat map illustrating the abundance of each of the 233 statistical significantly

different proteins obtained in this comparison. (B) Horizontal bar chart showing the percentage of proteins with higher abundance in each temperature setting by their

predicted COG molecular function.

Dps is important for full resistance to heat and cold shocks
and is essential for full virulence of this bacterium (56). The
abundance of other three cold adaptation associated proteins was
also greater at 10◦C than at 37◦C (Figure 6), namely: the cold
shock protein (CspLA); ABC transporter OpuCA; and Kat, a
catalase suggested to be one of the contributors to the ability
of L. monocytogenes to grow at low temperatures (76). The cell
motility associated proteins were more abundant at temperatures
under 37◦C, as it is the case of flagellin (FlaA) and flagellar hook
(FlgE) with a higher abundance at 10◦C, particularly in the early
stage biofilm (Figure 7). A different tendency was seen for the
cellular trafficking proteins, the abundance of these proteins were
registered with higher levels at 37◦C. Heat adaptation associated
protein chaperones were detected, in most instances, with higher
abundance at 37◦C, particularly in the mature biofilm. To further
retrieve protein drifts and outliers, volcano plots were generated
from the three groups of temperature comparison, with cut-offs
at p-value = 0.05 (log10(p-value) = 1.30103) and fold change
(FC) = 2 (log2(fold change) = 1). Each of the quantitative
comparisons was represented in a different volcano plot, 10 vs.
37◦C (Figure 8A), 10 vs. 25◦C (Figure 8B), and 25 vs. 37◦C
(Figure 8C). A total of 139, 68, and 58 proteins respected these
cut-offs criteria, respectively. In all three plots, the top 50 proteins
with higher fold change were marked with the color to which
they presented higher mean condition (blue for 10◦C, green
for 25◦C, and red for 37◦C). In the 10 vs. 37◦C plot, the
proteins with the highest fold change at 10◦C are associated with
metabolism and amino acid transport. In the 10◦C highlighted
set of proteins are also included stress adaptation proteins, such
as OpuCA (Q7AP65_LISMO) and CspLA (CSPA_LISMO), and
cell motility associated proteins (Q8Y954_LISMO, Lmo0680). In
the pool of proteins with high fold change at 37◦C, there are
proteins associated with virulence as LmaA (Q7AP93_LISMO),
LmaB (Q7AP94_LISMO), CspLB (CSPB_LISMO) and proteins

involved in heat adaptation (Lmo1580, Q8Y6V1_LISMO, and
CcpA, Q8Y6T3_LISMO). In regards to the evaluation between 10
and 25◦C, transport associated proteins were observed with the
highest fold change in the cold condition. This was particularly
the case for amino acid transporter such as multiple ATP-
binding cassette transporter (ABC) OpuCA, (Q7AP65_LISMO),
Lmo0538 (Q8Y9J0_LISMO), and SerC (SERC_LISMO). At 25◦C,
most of proteins had a connection with energy production and
translationmachinery. At the level of the 25 vs. 37◦C comparison,
the majority of proteins were associated with translation or
carbohydrate functions. To note the presence of two virulence
associated proteins with FC>2 at 37◦C, Iap (P60_LISMO) and
UvrC (UVRC_LISMO).

DISCUSSION

Listeria monocytogenes is the causative agent of listeriosis, a
highly fatal disease to fetuses, newborns, infants, pregnant
women, elderly and immunocompromised individuals (77).
Invasive listeriosis is considered the leading cause of death from
foodborne infections in industrialized countries. Despite the
application of the food safety criteria (FSC) for L. monocytogenes
in RTE foods from 2006 onwards, a statistically significant
increase in listeriosis cases has been reported in the European
Union between 2009 and 2013 (3, 78).

The cleaning and disinfection of surfaces andmaterials in food
industries is difficult to achieve due to L. monocytogenes capacity
to survive under harsh condition, such as a wide pH range
(79), desiccated environments (9, 20), and low temperatures (80).
Since L. monocytogenes is a psychrotrophic microorganism able
to multiply in food stored under refrigerated temperatures, a low
contamination number present in RTE products can grow to a
level which threatens consumer health (81). At low temperatures,
Listeria faces multiple molecular constraints such as increased
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FIGURE 6 | Vertical bar charts showing the average abundance of some cold adaptation associated proteins by the different condition in analysis. Statistical

significance was tested by one-way ANOVA (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.00; ****P ≤ 0.0001). The two biofilm stages are represented either by dark SS (stainless

still) disks for early stage or cell filled gray SS disks for mature biofilm.

membrane rigidity, amino acid starvation, oxidative stress,
aberrant protein synthesis, cell surface remodeling, reduced
protein and enzyme activity, slow transport, and nutrient uptake
processes (56, 82). L. monocytogenes response mechanisms to
these hurdles has been extensively studied by transcriptomic
approaches. Contrasting are the few studies to the changes at
the proteome level that allow Listeria to survive at refrigeration
temperatures (41, 43, 83), and none performed in a biofilm
mode of growth. The present study sought to investigate the
influence of three temperatures in the proteome changes of L.
monocytogenes grown in the biofilm mode of growth. In the next
subsections, we overview some noteworthy protein abundance
shifts associated with the major adaptation to cold mechanisms
present in L. monocytogenes, namely: the role of ribosomes
and the stressosome, changes in cell fluidity and motility, the
uptake of osmolytes, and the relevance of the overexpression of
chaperone proteins such as cold shock proteins. Based on the
proteomic data obtained in this study it is highly unlikely that
a set of surface proteins play a unique role in the adaptation to
the different temperatures. Hence, adaptation to low temperature
growth is a complex response involving many aspects of
the cell molecular biology and biochemistry (45). The typical
molecular mechanisms of cold stress adaptation referenced in

bacteria include: overexpression of stability mechanisms by the
modulation of nucleic acid structures, maintenance of structural
integrity in cell membranes, uptake of compatible solutes,
production of various cold stress proteins, including cold shock
proteins (Csps), and nonspecific stress response mechanisms.

Cold Stress Adaptation and the Role of
Ribosomes
One of the first side effects of exposure to low temperatures
is the compromise of ribosomal structural stability and this
deterioration causes a general reduction in the bacteria’s protein
synthesis capacity (45). In this study, the majority of ribosomal
proteins were less abundant in the cold condition, and in some
instances, ribosomal proteins had a high fold change in the
warmer setting (Figure 8). The 50S ribosomal proteins (Rl) are
referenced as the first cold stress sensors in microbes, as is
the case of Rl11. The former is essential for the activation of
sigma B (σB) transcription factor in Bacillus subitilis (84), the
general stress response transcriptional factor that controls the
expression of dozens of stress adaptation related genes. We
observed an increased level of Rl11 protein at 10◦C, as well as the
initiation factor IF2 which is implicated in the formation of 30S
preinitiation complex, suggesting a role in ribosome assembling
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FIGURE 7 | Vertical bar charts showing the average abundance of flagellar, cellular trafficking and heat adaptation associated proteins by the different condition in

analysis. Statistical significance was tested by one-way ANOVA (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.00). The two biofilm stages are represented either by dark SS

(stainless still) disks for early stage or cell filled gray SS disks for mature biofilm.

(41). The general stress protein Ctc (Rl25), was here more
abundant at 10◦C and the same was seen in L. monocytogenes
upon exposure to a salt condition (85). Concerning σ

B, this
general stress transcription factor was more abundant at 10◦C
than at the room temperature (Supplementary Table 3). The σ

B

enables Listeria pathogenicity in two different ways. First, by
controlling the expression of genes that enhance the survival
during food industry pipeline settings. Second, σ

B plays a
role upon infection by indirectly regulating PrfA, the main
virulence regulator (86, 87). This transcriptional factor has also
been associated with the efficient accumulation of betaine and
carnitine as cryoprotectants (88), which will be further discussed
in the next sections. On the contrary, it has been suggested that
σ
B does not, in fact, play a pivotal role during cold adaptation in

L. monocytogenes. So, it seems to contribute to the adaptation in a
growth phase-dependent manner, particularly in the early stages
of growth (89). This result was not seen here, since σ

B was more
abundant in the mature biofilm than in the early stage one. The
reasoning behind this can be linked with the different modes of
growth applied in the two studies and the fact that σ

B also has a
determinant role in biofilm formation (90).

Cell Membrane Fluidity, Chemotaxis, and
Their Involvement in Cold Adaptation
Changes in the cell membrane fluidity and surface proteins
are part of the bacterial adaptation to cold stress (30). For
example, Lmo0624 has a role in lipid metabolism and higher

transcripts of this gene were reported at 4◦C (91). In agreement
with this result we also observed Lmo0624 (Q8Y9A8) more
abundant in the cold condition with one of the highest fold
changes (FC = 9.27) (Figure 8A). The foldase protein PrsA2,
here found more abundant in the colder setting (FC = 2.41,
Supplementary Table 2) is a member of a family of membrane-
associated lipoproteins that play a role in the folding and stability
of secreted proteins as they pass the bacterial membrane. PrsA2
contributes to the integrity of the L. monocytogenes cell wall as
well as swimming motility and bacterial resistance to different
stresses (92). Cell stability and bacterial attachment to surfaces
are influenced not only by cell surface properties but also by
the presence of surface appendages, such as flagella (93). All
the cell motility associated proteins identified in this study,
namely flagellin (FlaA), flagellar hooks FlgK and FlgE, Lmo0689
(Q8Y948), Flha (Lmo0680, Q8Y954), MotA (Lmo0685, Q7AP82)
were more abundant at 10 and 25◦C when compared with the
in vivo setting (37◦C). FlaA is the bacterial flagella main protein
(94) and L. monocytogenes strains are motile and flagellated
below 30◦C (95), and typically not motile at 37◦C (96). However,
the role of the flagellum in biofilm formation is controversial.
There are observations that give it an important role in biofilm
formation (97), and in other reports strains with this gene deleted
had improved sessile development (98). In regards to the putative
role of the flagella, it was described to be required for the initial
cell attachment phase by overcoming the van der Waals forces
(93). We have observed several motility associated proteins with
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FIGURE 8 | Volcano plots representing the distribution of the identified proteins taking into account their fold change and p-value, Cut-off are represented by black

lines at fold change two [Log2(fold change) = 1] and p-value 0,05 [Log10(p-value) = 1.30103]. The top 50 proteins with highest fold change are marked with their

respective color that represent in which setting they were more abundant (blue for 10◦C, green for 25◦C, and red for 37◦C). (A) Volcano plot for the comparison

between 10 and 37◦C. (B) Volcano plot for the comparison between 10 and 25◦C. (C) Volcano plot for the comparison between 25 and 37◦C.

significant abundance shifts that support the hypothesis that
motile flagellum is needed for an optimal cold stress response
in L. monocytogenes. Moreover, we have detected that all these
cell motility proteins were more abundant in the early stage of
biofilm. A flagellum-associated operon (consisting of Lmo0675
to Lmo0689) has been previously retrieved in high transcript
levels from L. monocytogenes exposed to 4◦C in log phase (91).
Lmo0689 was also observed in this study to be more abundant
at 10◦C and in the early stage biofilm. Similarly, FlhA and MotA
play a role in the cold tolerance of L. monocytogenes (99). This
is consistent with our observation that MotA was one of the
proteins with the highest fold change (FC = 4.78) in the 10 vs.
37◦C comparison. Likewise, the ability to modulate membrane
fatty acid composition and improve membrane fluidity is a
crucial step for temperature adaptation (100). FabH, which was
here more abundant at 10◦C, is connected with the increased
formation of anteiso branched-chain fatty acids during cold
temperature adaptation, which ultimately is responsible for the
increase in membrane fluidity (101).

The Crucial Role of Cryoprotective Solutes
The uptake of compatible solutes/osmolytes is one of the
key steps for the survival of bacteria in stress conditions.
Osmolytes are low-molecular weight organic compounds that are
stored in high intracellular concentrations with minimal effects
on the normal functioning of the cell. At low temperatures,
cryoprotective solutes act through stabilization of enzymatic
functions and the cell membrane lipid bilayer (102). Organic

compounds such as glycine betaine and carnitine help to relieve
turgor pressure, in this manner they have an essential role in the
survival of Listeria under elevated osmolarity and cold settings
(25, 50). In the food industry, L. monocytogenes has access to
these solutes from carnitine rich meat and dairy products, and
glycine betaine from plants and shellfish (54). There are three
solute import systems known to operate in L. monocytogenes:
glycine betaine porter I (BetL), glycine betaine porter II (Gbu),
and the carnitine transporter OpuC (25). Here, we have
identified GbuB (Q7AP75) and OpuCA (Q7AP65). The non-
identification of a BetL can be reasoned with the described more
pronounced role of Gbu andOpuC as preferential cryoprotection
systems in L. monocytogenes (49). Regarding the cryoprotective
impact between Gbu and OpuC, a report comparing their role
concluded that carnitine uptake at low temperatures is higher
than betaine after cold temperature (48). Supporting this result,
GbuB (Q7AP75) and OpuCA (Q7AP65) were in this study more
abundant at 10◦C. Interestingly, OpuCA had one of the highest
fold changes (FC = 4.91, Figure 8A; FC = 5.56, Figure 8B), one
more hint that cryoprotectants are essential for Listeria rapid
response to the conditions typically found in food preservation.

Cold Shock Proteins and Other Proteins
Potential Involved in Temperature
Adaptation
A second key point into the adaptation of a microbe to a
cold stress is the production of various stress-related proteins,
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including cold shock proteins (Csps) (31). Our results showed
a higher abundance of the cold shock protein CspLA (CSPA)
at 10◦C and with high fold change (FC = 2.33, Figure 8A).
CspA deletion mutants have showed to abolish L. monocytogenes
growth at refrigeration temperatures (31). However, there are
also Csps downregulated at low temperature, pointing to their
potential role under conditions other than cold growth (91).
Similar result was here obtained with the cold shock protein
CspLB (CSPB) more abundant in the warmer condition (FC =

3, Figure 8A). This infers that CspLB also have a function during
normal growth (40).

Various other cold response associated proteins were
identified in this study. The GTP-sensing transcriptional
pleiotropic repressor CodY was more abundant at 10◦C. CodY
has a role in the regulation of relevant genes implicated in
Listeria growth at low temperature (91). L. monocytogenes
CodY also has a recognized role in virulence (65), in this
matter, from the 16 proteins identified here encoded by CodY
regulated genes there are cases of stress adaptation associated
proteins (Dps and SerC—more abundant at 10◦C) and
virulence-associated proteins (LmaA, LmaB, GroES, GroEL, and
ClpB—more abundant at 37◦C) (Supplementary Table 2). DNA
protection during starvation protein (Dps or Fri) is a 18 kDa L.
monocytogenesmajor cold shock protein that is required for iron
storage and protection against reactive oxygen species (55, 103).
This major protein for low-temperature adaptation was here
detected in high levels at 10◦C. Similar result was obtained for
enolase (Eno) (Supplementary Table 2), which has been found
to be upregulated at low temperatures by others (43). Eno does
not possess an N-terminal signal peptide, but it was found before
to be exposed on the bacterial cell surface or extracellularly,
thus meaning there should be an uncharacterized secretion
pathway (94). Further proteins connected to cold adaptation
mechanisms in L. monocytogenes were more abundant at 10◦C,
such as folding catalysts Lmo1583 and Lmo2376, that have been
detected before in increased levels at 4◦C (41). Proteins with
a role in protection from reactive oxygen species (superoxide
dismutase-Sod, catalase-Cat, Lmo0640, and Lmo1967) and in
iron metabolism (Lmo2415-SufD and Lmo2411-SufB) were
also more abundant in the cold condition. SufD and SufB are
part of the Suf system, which in Escherichia coli is activated to
enable the increase of de novo Fe–S assembly, maintaining Fe–S
cluster biosynthesis under oxidative stress conditions (104).
Two-component-system histidine kinases (TCSs) are among the
major systems that aid bacteria in overcoming many of arduous
stress factors encountered in nature and during food processing
environment (28). LisK which is part of the TCSs was here more
abundant at 10◦C. As for RNA chaperones, like DEAD-box
RNA helicases, they act by resolving secondary structures in
mRNA that can be developed in a cell subjected to cold (105).
The three putative DEAD-box RNA helicase genes (Lmo0866,
Lmo1450, and Lmo1722) are required for cold tolerance and
motility in L. monocytogenes (37, 106). We have observed the
three helicases with higher abundances at 10◦C. The overall
protein abundance data obtained also showed some nonspecific
stress response mechanisms or shared responses to other stress
conditions. Such a case is the amino acid, lipid and carbohydrate

transport which have at least a double role in the protection
against cold temperatures and salt exposure (83). In respect
to the proteins associated with the amino acid transport and
metabolism, the majority of them was more abundant in the
cold condition (66.7% in 10 vs. 37◦C, Figure 3B; 61.8% 10 vs.
25◦C, Figure 4B). This suggests that the cells endure starvation
in certain amino acids during a cold condition, counterbalancing
this lack with the increase expression of such transportation
systems. Moreover, some amino acid biosynthetic enzymes
were also more abundant at 10◦C, for example Cysteine tRNA
ligase (CysS) and Shikimate dehydrogenase (AroE, Q8Y733),
indicating that the stressed cell responds by increasing the
production of enzymes needed to upturn the production of
scarce amino acids (45, 82). Additionally, six proteins with
amino acid transport presented a high fold change, including
AroE with FC= 2.23.

Abundance Flows of Virulence-Associated
Proteins
The comparison made between a food processing low
temperature setting and the in vivo temperature enabled an
outlook over the changes in heat shock proteins (HSP) and
proteins typically associated with virulence. HSPs main function
is to repair damage to proteins via chaperone activity, for
example DnaK, GroEL, GroES, GrpE, ClpB, and HtpG (27).
One might assume their importance in resolving protein
damage from cold stress, however this class of stress response
genes are usually less transcribed at lower temperatures (91).
In this study, the majority of these chaperone proteins were
more abundant in the warmer condition, particularly at 37◦C.
This is also connected to the fact that L. monocytogenes is
a psychrotroph microorganism and growth in temperatures
above 35◦C may result in the induction of a stress response
(107). Moreover, chaperone proteins are also required for L.
monocytogenes maximum virulence potential (82). To approach
the topic of virulence-associated proteins, it is pertinent to look
into Lmo0443, a potential factor for low virulence. Lmo0443
is overexpressed in less virulent L. monocytogenes strains
and underexpressed in more virulent ones (108). In this L.
monocytogenes EGD-e strain, Lmo0443 had higher abundance
at 37◦C, consistent with its lower pathogenicity when compared
with EGD or 10403S Listeria strains (109). In the same trend
of results, internalins are essential for Listeria pathogenicity
(110). Only one internalin was detected in this study. InlA
which was observed with higher abundance at 25◦C (10 vs.
25◦C comparison, Supplementary Table 3). Internalins have a
diversity of functions amongst the Listeriae, InlA in particular
is documented as being crucial for Listeria capacity to invade
human epithelial cell lines (111). The crucial topological
factor (DivIVA) required for completion of cell division in L.
monocytogenes and associated with host cell invasion was more
abundant in the 37◦C condition with high fold change (FC =

2.84) (13). Lastly, the agr locus of L. monocytogenes is recognized
to be important in bacterial virulence. The open reading frame
lmo0047 that proceeds the agrB encodes a protein of unknown
function (112), that was here more abundant at 37◦C and with
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high fold change (FC = 4.41), suggesting a potential role in a
virulence mechanism.

Consistent with previous studies (30, 32, 35, 37, 38, 41,
43, 44, 56, 82, 83, 85, 91), we have observed a significant
remodeling of protein abundance as a function of temperature,
highlighting once again the predominant influence of
this environmental parameter on protein expression and
the need for the bacteria to adapt to it and maintain
its homeostasis.

CONCLUSION

Listeria monocytogenes overcomes various kinds of stress,
including the low temperatures present in food processing and
storage. Cold stress adaptation mechanisms are therefore an
essential skill of Listeria, enabling it to survive and proliferate
to reach minimal infectious levels on refrigerated foods. In
this aspect, the cold conditions in food plants may, in fact, be
selecting for L. monocytogenes subtypes with the appropriate
adaptive physiological attributes that lead to efficient survival
and spread during food handling (45). Analogous approaches
in the future will aid in highlighting additional potential target
genes of cold stress resistance in Listeria monocytogenes. It will
be of particular interest to make a direct comparison between

this biofilm proteomic data and similar planktonic approaches.
Thus, enabling the study of possible molecular cold response and
biofilm targets that currently await additional assessment.
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Abstract 
Listeria monocytogenes is a foodborne pathogen and the causative agent of listeriosis, 

an infection with a mortality rate up to 20%. It is most of all a psychrotrophic biofilm 

forming bacterium capable of adapting, resisting and growing in harsh conditions, 

including those found in food industries as low temperatures and water availability. 

Listeria ability to survive refrigeration temperatures is directly associated with the 

majority of listeriosis cases being caused by food contaminated with this bacterium. 

Multiple genomic, transcriptomic and proteomic reports have duelled in understanding 

this adaptation at the physicochemical and biological changes. In all instances, 

temperature adaptation is in some way related to the overexpression or neosynthesis 

of a set of gene products aimed in particular at maintaining the fluidity and structural 

integrity of the cell membranes, some metabolic activities and the functioning of 

translational machinery. Here, three protein extractions methods, namely biotin-

labelling, enzymatic shaving and cell fractionation where used in conjunction to 

explore the proteome of planktonic L. monocytogenes cells grown at three different 

temperatures (10°C, 25°C and 37°C). Plus, an in silico study was carried out using 

proteomic data previously obtained from biofilm cultures, in order to compare the two 

modes of growth at three different temperature settings. The combination of these data 

resulted in a L. monocytogenes proteome coverage of 32.6% for which we observed 

a significant remodelling of protein abundance as a function of temperature and mode 

of growth. 

 

Keywords: Listeria monocytogenes, Temperature adaptation, Biofilm, Planktonic, 

Shotgun proteomics 
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Introduction 
Listeria monocytogenes is a gram-positive bacterium that can be isolated from soil, 

vegetation, faecal matter, sewage, water, and animal feed (Moltz and Martin, 2005). 

Listeriosis, the disease caused by this human foodborne pathogen, is characterised 

by high mortality rates (reaching up to 30%) and affecting particularly 

immunocompromised patients, pregnant women, the elderly and newborns (Mead et 

al., 1999; Soni et al., 2011). Listeria is capable of surviving in harsh environments and 

stresses (high salt concentration, wide range of pH, low water availability), and it also 

thrives at temperatures ranging from − 0.4 to 45 °C (Cacace et al., 2010). Because of 

its ubiquitous and psychrotolerant nature, L. monocytogenes is very difficult to control 

along the entire food chain and it is frequently detected in refrigerated food products, 

mainly in meat and seafood (Tasara and Stephan, 2006; Bucur et al., 2018). In the 

food industry, L. monocytogenes also survives by the formation of biofilms on 

equipment such as drains, pipes and conveyor belts of preparation surfaces that 

ultimately contaminate food products (van der Veen and Abee, 2010). The 

contamination of the ready-to-eat (RTE) food industry and household environments 

by the foodborne pathogen L. monocytogenes is a considerable burden into public 

health and the economy. RTE shelf life is mostly dependent on refrigeration with low 

temperatures, to which some bacteria can easily endure, as is the case of L. 

monocytogenes (Cacace et al., 2010; Luque-Sastre et al., 2018). The first Listeria 

responses to cold settings are a decrease in metabolic rates, changes in membrane 

composition, production of cold shock proteins (Hebraud and Potier, 1999; 2000), and 

an increase uptake of cryoprotective osmolytes (Phadtare et al., 1999; Somers and 

Lee Wong, 2004; Neunlist et al., 2005). Furthermore, RTE were the source of half of 

the listeriosis outbreaks registered in Europe since 1985 (Luque-Sastre et al., 2018). 

In nature and frequently in food environments the majority of bacteria live attached to 

surfaces, as complex biofilm communities. Despite the use of disinfectants on food-

contact surfaces, these treatments are less effective when applied on biofilms 

(Dubois-Brissonnet et al., 2016). Compared to the planktonic mode of growth, the 

compact microbial community within the biofilm is more tolerant to extreme settings 

and/ or biocides (Chavant et al., 2004; Folio et al., 2004; Dubois-Brissonnet et al., 

2016). In sessile mode, Listeria can survive at 4 or 10°C for at least 5 days (Somers 

and Lee Wong, 2004) and most certainly much longer time. Within the biofilm there is 



 

 

112 

an increase opportunity for metabolic cooperation between bacteria and distinct 

environmental signalling that ultimately improves their capacity to resist to stress 

conditions (Davey and O'Toole G, 2000). Since the metabolic characteristics of 

bacteria within a biofilm are distinct from those of their free-living bacteria counterparts, 

also their proteomic responses to a cold stress differ. Listeria low-temperature growth 

capability is based on maintaining membrane fluidity and its structural integrity, 

controlling nutrient uptake, maintaining a functional translational machinery, dealing 

with inefficient or slow protein folding, reducing enzyme activities, decreasing ability in 

DNA replication and in RNA translation (Cacace et al., 2010). Proteomes are in 

constant change dependent on cellular stages (Folio et al., 2004) and particularly in 

adaptation to a stress condition. Protein expression is one of the bacteria main tools 

to interact with the environment (Caballero Gomez et al., 2013), therefore its study is 

of unique importance. Proteomic approaches have been used to study how L. 

monocytogenes adapts to cold environments (Bayles et al., 1996; Hebraud and 

Guzzo, 2000; Wemekamp-Kamphuis et al., 2002; Cacace et al., 2010; Singh et al., 

2011; Cabrita et al., 2013; He et al., 2015). Additionally, proteomics has shown that 

adaptation to low temperatures improves protection to other stress conditions (Pittman 

et al., 2014). 

Wide-ranging proteomics experiments and in silico proteome data analysis were here 

used to study the protein abundance changes in L. monocytogenes planktonic cultures 

grown under different temperatures and compare them to proteomic data previously 

obtained in biofilm mode of growth. In sum, the divergent protein abundances 

observed across the different settings showed temperature and growth mode-

dependent differences, highlighting the relevance of growth condition in relation to 

environmental persistence. 
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Material and methods 
 

Strain and culture settings for protein extraction 

L. monocytogenes EGD-e strain, serogroup 1/2a, was used in the entirety of this study 

(Glaser et al., 2001). Routine pre-culturing and culturing were carried out in Tryptic 

Soy Broth (TSB, Difco, Fisher Scientific) at 25°C and 150 rpm. Bacterial growth was 

monitored by measuring the absorbance at 600 nm (OD600). Pre-cultured cells in 

stationary phase were used to inoculate cultures to obtain a final OD600 of 0.005. The 

culture incubation settings were dependent on the desired temperature (10°C, 25°C 

or 37°C) and growth stage (mid-log or stationary phase) (Supplementary Table 1). 

Three biological replicates were used for each analysed setting. 

 

Protein extraction methods 

The protein extraction methods used in this study were biotin-labelling, trypsin-

enzymatic shaving and cell fractionation. All three methods were based on the protocol 

optimization for the extraction of surface exposed proteins developed by Esbelin and 

colleagues (Esbelin et al., 2018b). The biotinylation method uses a cell-impermeable, 

cleavable Sulfo-NHS-SS-Biotin to label exposed primary amines of proteins on the 

surface of intact cells. Planktonic cultures were suspended in 10 ml buffer A (PBS, 

0.01 mM, pH 8 + 1 mM PMSF). The suspension was transferred into weighted tubes 

and centrifuged at 4,000 x g for 10 min at room temperature (RT). The bacterial pellet 

was washed twice, and the weight of wet cells was calculated. Each 100 mg of cells 

was resuspended in 300 µl buffer A supplemented with 1.5 mM EZ-Link Sulfo-NHS-

SS (Thermo Scientific). Biotinylation was performed for 15 min at RT under gentle 

agitation. Free biotin was removed by centrifugation at 4,000 x g for 5 min at RT and 

pellet was washed three times with PBS (0.01 M, pH 8 + 500 mM glycine) to block 

non-reacted biotin. Cells were resuspended in 500 µl buffer A supplemented with 1% 

(v/v) Triton X100 and broken at 4°C by vigorous shaking in a Fastprep-24 cell breaker 

twice for 20 s. The cell extracts were centrifuged at 20,000 × g for 30 min at 4°C to 

pellet the insoluble material. Labelled proteins were recovered by affinity 

chromatography in a Monomeric Neutravidin Resin (Thermo Scientific), with gravity 

flow, using phosphate-buffered saline (PBS, pH 8) + 1% Triton X-100 as equilibration 

and wash buffer. Proteins were eluted with an elution buffer (50 mM DTT, 2% SDS 
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5% β-mercaptoethanol, 20% glycerol in 62.5 mM Tris–HCl, pH 6.8). A control without 

biotin labelling was carried out in parallel with the same protocol. For the second 

method, enzymatic shaving of surface proteins, planktonic cells were harvested by 

low-speed centrifugation (1,000 × g, 15 min, 4°C) to prevent cell lysis. The bacterial 

cell pellet was gently washed twice with 1 ml of ice-cold Tris Buffer Saline (TBS, 20 

mM Tris-HCl pH 7.4, 150 mM NaCl). Pellet was resuspended in 1 ml of shaving buffer 

(20 mM Tris-HCl pH 7.4, 150 mM NaCl, 10 mM CaCl2 6H2O, 1 M L-arabinose) and 

bacteria were treated with 0.5 µg/ml sequencing grade trypsin (Promega, 

Charbonnières-les-bains, France) under gentle shaking at 37°C for 1 h. Bacterial cells 

were removed by centrifugation (1,000 × g, 15 min, 4°C) and the supernatant, 

containing trypsin-shaved peptides, was collected and filtered (0.22 μm). Digestion of 

peptides was completed overnight with 0.6 µg of trypsin at 37°C. Peptides purification 

and concentration were carried out using Sep-Pak C18 Plus Short cartridges (Waters), 

pre-equilibrated in two steps with 65% ACN/0.1% trifluoroacetic acid (TFA) and 2% 

ACN/0.1% TFA. Peptides were loaded onto the cartridges, washed with 2% ACN/0.1% 

TFA and eluted with 65% ACN/0.1% TFA. Purified peptides were dried with a speed-

vacuum and resuspended in 20 µL of 2% ACN/0.1% TFA. 

In the third and last method, cell fractionation, planktonic cultures were washed twice 

in Tris-EDTA (TE, 20 mM Tris, 5 mM EDTA, pH 7). Pellet was resuspended in 1 ml 

TE, and bacterial cells were broken using a cell disrupter (One shot cell disrupter, 1-8 

ml, 2.7 KBar max, constant Systems Ltd, Daventry, UK) by applying 2.5 kBar pressure. 

Insoluble materials containing cell walls were removed by centrifugation (13,000 x g, 

15 min, 4°C) and the supernatant was ultracentrifuged (200,000 x g, 1 h, 4°C). The 

pellet containing membranes was washed twice in 1 ml Tris 40 mM, pH 8.5. 

Membranes were suspended in denaturing buffer (1% SDS, 0.1 M DTT, 20 mM Tris-

HCl, pH 7.5). Membrane and cell wall protein extracts were suspended in 100 mM 

ammonium bicarbonate pH 7.5.  

 

Nano-LC-MS/MS and bioinformatic analysis 

All samples, except those from the shaving method, were loaded onto SDS-PAGE 

gels to concentrate in one single band in the first few millimeters of the resolution gel. 

Excised bands were washed in 25 mM ammonium bicarbonate with 5% acetonitrile 

(ACN) for 30 min and twice in 25 mM ammonium bicarbonate with 50% acetonitrile for 
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30 min. Reduction and alkylation reactions were performed with 10 mM dithiothreitol 

and 55 mM iodoacetamide solutions respectively, and all bands were finally 

dehydrated with 100% ACN. The samples were hydrolysed overnight at 37°C using 

48 µl of a 25mM NH4HCO3 - 12.5 ng.µl-1 trypsin solution (Promega) per band. 

Extracted peptides were purified and concentrated with Sep-Pak C18 Plus Short 

cartridges. Peptides were extracted from the gel bands in an ultrasonic field during 10 

mn with 38.4 µl of 100% acetonitrile representing 80% of digestion volume. 

Supernatants were transferred in Eppendorf vials and dried using Speed Vac for 45 

minutes and 40 µl of equilibration solution (H2O/ Trifluoroacetic Acid – 99.95/0.05) 

was added.  

All peptide mixtures were analysed by nano-LC-MS/MS (Thermo Fisher Scientific) 

using an Ultimate 3000 system coupled to a LTQ Orbitrap Velos mass spectrometer 

(MS) with a nanoelectrospray ion source. For each sample, one microliter of peptide 

mixture was first pre-concentrated on a C18 pre-column (100 µm inner diameter X 5 

cm length, Acclaim C18 PepMap nanoViper) equilibrated with Trifluoroacetic Acid 

0.05% in water at 30 μL/min. After 6 min of desalting and preconcentration, the pre-

column was switched online with the analytical C18 column (75 µm inner diameter X 

15 cm length; 2 µm, Acclaim C18 PepMap RSLC) equilibrated with 96% solvent A 

(99.5% H2O, 0.5% formic acid) and 4% solvent B (80% ACN, 19.5% H2O, 0.5% formic 

acid). Peptides were eluted according to their hydrophobicity at 300 nL/min flow rate 

using respectively a 4 to 52% gradient of solvent B for 31 min for biotin labelled and 

trypsin-enzymatic shaved fractions and a 4 to 40% gradient of solvent B for 56 min for 

cell fractions. Eluates were electrosprayed in positive-ion mode at 1.6 kV through a 

nanoelectrospray ion source heated to 250°C. The LTQ Orbitrap Velos MS was used 

in CID top 15 mode (i.e. 1 full scan MS and the 15 major peaks in the full scan were 

selected for MS/MS). The full scan MS was realized in the FTMS ion trap at a 

resolution of 60,000 (tolerance 10 ppm) and spectra were acquired with 1 microscan 

(m/z 400 – 1,400). For raw data processing, MS/MS ion search was performed with 

Mascot v2.5 for database search (http://www.matrixscience.com). The following 

parameters were considered for the searches: precursor mass tolerance of 10 ppm 

and fragment mass tolerance of 0.5 Da, a maximum of two missed cleavage sites of 

trypsin, carbamidomethylation (C) and oxidation (M) set as variable modifications. 

Protein identification was validated when at least two peptides originating from one 
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protein showed statistically significant identity above Mascot scores > 13 with a False 

Dicovery Rate of 1% (adjusted significance threshold p < 0.05). Ions score is -10 

log(P), where P is the probability that the observed match is a random event. Individual 

ions score 13 indicate identity or extensive homology. Interrogations were performed 

against a custom database containing distinct entries corresponding to raw protein 

sequences and the different predicted mature proteins of L. monocytogenes EGD-e 

(i.e. DB-Mature-LmoEGDe v2.0, 5838 sequences) based on putative cleavage sites 

of the SP (Renier et al., 2015). The subcellular location of identified proteins was 

determined with the rational secretomics based strategy for genomic and proteomic 

analyses developed by Renier et al. (2012) (Renier et al., 2012).  For protein 

quantitation analysis, LC-Progenesis was used with Mascot v2.3 and the same 

identification parameters described above. Venn diagrams were performed by the 

jvenn online tool (Bardou et al., 2014). Functional category of proteins was based on 

the clusters of orthologous groups (COGs) via the eggNOG online framework (Huerta-

Cepas et al., 2016). Protein-protein association networks were made by the String 

database (Szklarczyk et al., 2017). Volcano plots were performed by the R software 

with the integration of the ggplot2 and ggrepel graphical packages for data analysis 

(Wickham, 2009). 
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Results and discussion 
Overall protein identification results 

From all extraction methods and temperature settings, 931 unique proteins were 

identified, representing 32.6% of the L. monocytogenes proteome (Glaser et al., 

2001). The highest number of identified proteins by MS containing at least two unique 

peptides was obtained by the cell fractionation method (668, including all fractions), 

followed by biotinylation and shaving methods, 169 and 94 identified proteins, 

respectively. Figure 1A shows the number and percentage of all proteins identified 

according to their predicted subcellular location from each subproteome studied and 

method used. There is a noticeable overlap of identified proteins between the three 

methods, and the highest number of unique identified proteins was once again 

obtained with the cell fractionation, particularly the intracellular fraction. It is noticeable 

a complementarity of the extraction methods and their relative efficiency to extract 

surface associated proteins targeted by the different methods, even if for some of 

these methods the identification number is low. The identified proteins were first 

annotated and separated accordingly to their subcellular localization: intracellular 

proteins, membrane-associated proteins, cell wall-associated proteins and 

extracellular proteins. The vast majority of the identified proteins were characterized 

as cytoproteins (79%), followed by membrane-associated proteins (16.5%), 

extracellular (3.7%) and cell wall-associated proteins (0.75%). The higher percentage 

of the identified proteins were cytoplasmic, regardless of the methodology used for 

cell surface proteome extraction and the measures used to avoid cell lysis. An 

expected result taking into account that the majority of the cell proteome is composed 

by cytoplasmic proteins, particularly ribosomal proteins which surpasses 20% of total 

cell protein (Ryzhov and Fenselau, 2001). However, there are drawbacks at the 

technical side that add to the large amount of identified cytoproteins. The extraction 

methods can cause lysis of part of the cells, particularly the shaving method, resulting 

in a significant number of intracellular proteins being identified (Quan et al., 2013). 

Functional category of this set of proteins was based on the clusters of orthologous 

groups (COGs) (Figure 1B). Taking into consideration that the majority of identified 

proteins are from the cytoplasmic subcellular localization, it is not surprising that the 

functional category with the highest percentage of identified proteins is ‘Translation, 

ribosomal structure and biogenesis’ (13%), followed by ‘Transcription’ and ‘Cell wall/ 
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membrane/ envelope biogenesis’, 6% each. Plus, there is a range of normal molecular 

functions with even number of identified proteins. 

Figure 1 – A: Pie charts illustrating the number of identified proteins and the corresponding percentage 

for each protein extraction method taking into account the predicted subcellular localization of these 

proteins; B: Pie chart illustrating the distribution of the 931 unique proteins identified by their predicted 

COG molecular function (number and percentage by category). 

 

Temperature adaptation of L. monocytogenes planktonic cells as seen through protein 

quantification  

Listeria monocytogenes thrives even at refrigeration temperatures. The adaptation is 

largely based on changes in protein synthesis and folding, and osmolyte uptake 

(Cacace et al., 2010). The quantitative analysis of protein abundance made by LC-

Progenesis enable the comparison of protein abundance through pairs of temperature 

settings, 10°C vs 37°C (Figure 2 and Supplementary Table 2), 10°C vs 25°C (Figure 

3 and Supplementary Table 3) and 25°C vs 37°C (Figure 4 and Supplementary Table 

4). In all cases, normalized abundances of the statistically significant identified 

proteins (p<0.05) were used in order to compare the flows of proteins in each 

comparison. The String protein-protein interaction map in Figure 2 reveals the setting 

to each one of the 434 statistically significant proteins were more abundant when 

comparing the growth at 10°C and 37°C. This assessment puts into contrast a 

temperature condition mimicking the one found in the food industry (10°C), and the 

temperature of the human host (37°C), in which L. monocytogenes expresses its 
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virulence. A close number of proteins with higher abundance was detected at both 

temperatures, i.e. 237 at 10°C and 198 at 37°C (Supplementary Table 2). The 

comparison between the protein abundance retrieved from planktonic cells at 10°C 

and 25°C (an ambient temperature) resulted in the identification of 282 statistically 

significant proteins (Figure 3 and Supplementary Table 3). In this case a large portion 

of the identified proteins had higher levels at 10°C (215 proteins). The third and last 

evaluation, 25°C versus 37°C, was between the two best growth conditions for L. 

monocytogenes present in this study and resulted in 401 statistically significant 

proteins. In this case more proteins with higher levels were found at the 37°C (222 

proteins; Figure 4 and Supplementary Table 4). Obviously, growth at 37°C leads to 

more adjustments in protein synthesis when compared to low or environmental 

temperature (more than 400 proteins differentially expressed) than the latter two 

conditions between them. 

The adaptation of L. monocytogenes to cold growth is accomplished through 

fluctuations in a large number of cellular components (Cacace et al., 2010). Moreover, 

the cold protection mechanisms can be shared or confer cross-protection to other 

different harsh conditions (Soni et al., 2011). General metabolism and biochemical 

pathways are the ones that ultimately showed a larger shift in protein abundance 

(Figure 2 and 3), confirming that they are the processes mainly affected upon a cold 

exposure (Cabrita et al., 2013). Energy production associated proteins, such as 

glycolysis (Enolase - Eno, 10°C vs 37°C, Figure 2A) and Pta-AckA pathway (Acetate 

kinase - AckA, 10°C vs 37°C) were detected at higher levels in the cold setting. We 

detected other enzymes involved glycolysis and carbohydrate metabolism that were 

also more abundant at the low temperature. As is the case of the aldolase (FbaA) from 

the inositol phosphate metabolism, observed here more abundant at 10°C. All of these 

points contribute to the bacteria demand of energy to withstand low temperature 

growth (Cabrita et al., 2013). 
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Figure 2 – LC-Progenesis ANOVA comparing planktonic growth of L. monocytogenes at 10°C and 37°C (Supplementary Table 2). A: Protein-protein map 

interaction of the 237 proteins that were more abundant at 10°C; B: Protein-protein map interaction of the 198 proteins that were more abundant at 37°C; 

Vertical bar chart showing the percentage of proteins with higher abundance in each temperature setting by their predicted COG molecular function. 
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Figure 3 – LC-Progenesis ANOVA comparing planktonic growth of L. monocytogenes at 10°C and 25°C (Supplementary Table 3). A: Protein-protein map 

interaction of the 215 proteins that were more abundant at 10°C; B: Protein-protein map interaction of the 67 proteins that were more abundant at 25°C. Vertical 

bar chart showing the percentage of proteins with higher abundance in each temperature setting by their predicted COG molecular function. 
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Figure 4 – LC-Progenesis ANOVA comparing planktonic growth of L. monocytogenes at 25°C and 37°C (Supplementary Table 4). A: Protein-protein map 

interaction of the 179 proteins that were more abundant at 25°C; B: Protein-protein map interaction of the 222 proteins that were more abundant at 37°C. 

Vertical bar chart showing the percentage of proteins with higher abundance in each temperature setting by their predicted COG molecular function. 



 

 

123 

One of the main response systems implemented by bacteria to face a cold condition 

is the intake and accumulation of cryoprotective osmolytes, such as glycine betaine 

and carnitine. This molecule entry is controlled by GbuABC and OpuC transport 

systems, respectively (Angelidis and Smith, 2003; Wemekamp-Kamphuis et al., 

2004). We identified all three proteins from the Gbu system and in all cases, they were 

present with higher levels at the colder setting. Similar result was obtained for the 

carnitine intake system with the identification of OpuCA and its presence with a fold 

change superior to the threshold (FC>2) in the 10°C setting. This is in accord with 

previous reports that Gbu-mediated glycine betaine uptake improves growth under 

cold stress and uptake of betaine via BetL and OpuC transport systems improves 

cryotolerance (Angelidis and Smith, 2003). Additionally, OpuC, the main carnitine 

transporter, showed higher relevance to cold resistance than the betaine transport 

system (Soni et al., 2011). In the same study, OpuC was shown to be the main 

carnitine transporter, which provided markedly higher resistance to cold stress than 

betaine uptake. Oligopeptide intake is also relevant for bacteria to endure a cold 

setting. The Lmo0135 is referenced as being part of an oligopeptide transport system 

highly expressed under low temperatures (Cabrita et al., 2013). This transmembrane 

protein was more abundant in the cold setting and with high fold change (FC=4.86, 

10°C vs 37°C; FC=4.76, 10°C vs 25°C Figure 3A). 

Ribosome function is seriously compromised upon growth at low temperatures 

(Tasara and Stephan, 2006). It is one of the main factors explaining the limit 

temperature of growth for a bacterial species, particularly when the 50S complex 

becomes unable to complete the initiation complex 30S, so the initiation of translation 

stops and there is no longer protein synthesis. For Listeria, this limit temperature of 

growth is below 4°C and at 10°C, growth is slowed down compared to an ambient 

temperature but it is still active. 

Translation initiation factor IF2 is connected with the formation of 30S preinitiation 

complex, which was here more abundant at 10°C indicating its relevance in ribosome 

assembling during cold shock. RplY, 50S ribosomal protein L25, mentioned as the 

general stress protein Ctc (Duche et al., 2002), was observed with higher abundance 

at 10°C. 

For the maintenance of membrane structural integrity under cold growth L. 

monocytogenes promotes changes in its lipid membrane and fatty acid chain 
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conformation (Cacace et al., 2010). Generally, fatty acids are shorter and unsaturated 

at low temperatures to maintain membrane fluidity, facilitate the transport and intake 

of nutrients and ions. Even if a direct link between proteomic data and lipid changes 

is hard to access, we observed higher levels of hypothetical protein Lmo2201 at 10°C, 

which catalyses the subsequent elongation steps of the fatty acid chain, indicating the 

trigger of the lipid biosynthetic pathway.  

During growth at low temperatures bacteria also face oxidative stress due to the 

accumulation of reactive oxygen species (ROS) (Bowman et al., 2010). Oxidative 

stress can encumber multiple molecular pathways and cellular components. We 

observed three proteins associated with an adaptive response to oxidative stress with 

higher levels at 10°C, namely superoxide dismutase (SOD), catalase (Kat) and ferritin 

(DPS). L. monocytogenes SOD and Kat deletion mutants showed lower rates of 

growth and increased oxidative stress sensitivity (Archambaud et al., 2006; Azizoglu 

and Kathariou, 2010b). The DPS null L. monocytogenes cells displayed higher 

sensitivity to oxidative stress (Dussurget et al., 2005). Ferritin protein was also 

detected with high levels in response to a cold shock, indicating to its importance in 

response to a low temperature environment (Hebraud and Guzzo, 2000). Other 

proteins involved in iron metabolism, such as Lmo2414 and SufD were more abundant 

at 10°C. These electron transfer elements also have a role in gene regulation due to 

their sensitivity to cellular redox events (Lee et al., 2008) 

A further relevant bacteria response to cold stress is the increase in levels of cold 

shock proteins and RNA helicases, which are crucial in RNA secondary structure 

resolution, contributing for the regain of regular transcription and translation process 

(Phadtare et al., 1999; Hunger et al., 2006). We observed a higher level of CspLA at 

10°C with a fold change of 7.2 (10°C vs 37°C). It has been previously shown that the 

lack of this gene weakened L. monocytogenes growth ability under low temperatures 

(Schmid et al., 2009). Chan and colleagues described the existence of three putative 

DEAD box RNA helicases (Lmo0866, Lmo1722, and Lmo1450) that showed a role in 

the cold stress response (Chan et al., 2007b). All three helicases were here identified 

and with higher abundance at the cold setting. Moreover, L. monocytogenes lacking 

the Lmo0866 gene showed a decreased growth capacity under cold growth (Azizoglu 

and Kathariou, 2010a).  
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Motility in L. monocytogenes is described below 30°C, as it happens as well for the 

presence of flagella (Cabrita et al., 2013). In this study, all the cell motility associated 

proteins had higher levels at 10°C than at 37°C (Supplementary Table 2), particularly 

Flagellin (FlaA) was more abundant at the cold setting with a high fold change 

(FC=14). 

As for the protein folding associated chaperones, such as DnaJ, Dnak, GrpE, HrcA, 

GroL and GroS, typically heat shock proteins that allow the refolding of heat 

denaturized proteins were present with higher levels at 37°C (10°C vs 37°C; 25°C vs 

37°C, Figure 2B and 4B, Supplementary Table 2 and 4). Parallel findings were 

reported in a transcript level study on L. monocytogenes cultured at low temperatures 

(Chan et al., 2007b). The presence of these proteins at high temperatures indirectly 

protects cells by aiding in protein folding and assembling. Other heat stress adaptation 

mechanisms were also more abundant at the warmer condition in study. Signal 

transduction associated proteins, like HrcA, CtsR and MogR, presented higher levels 

at 37°C (Hu et al., 2007).  

L. monocytogenes cells sense stress-associated molecular harms when exposed to a 

stress condition. This sense promotes the activation of stress protection processes 

that ultimately will end up in change of protein abundance and function. In the next 

section, we compare and discuss the protein changes detected in planktonic and 

biofilm mode of growth through the three tested temperatures.  

 

In silico protein comparison between planktonic vs biofilm temperature adaptation  

Listeria monocytogenes physiological sturdiness is accompanied by its capacity to 

rapidly attach to surfaces and form a biofilm which is the major factor to the persistence 

of this microorganism in the food environment (Schwab et al., 2005). 

Proteomic data obtained here from L. monocytogenes grew in planktonic mode 

enabled a view over the proteome changes across different growth temperatures. The 

same extraction methods and overall workflow was previously applied by our group to 

attached sessile L. monocytogenes cells (data and article under review in Frontiers of 

Nutrition). This now allows a deep through protein abundance comparison between 

the two growth modes and the three temperatures. Protein abundance do not 

automatically result in different phenotypes (Mata et al., 2015). Nonetheless, free-

living bacterial cells and biofilm cells perform in distinct ways that allow for a proteome 
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data assessment on the bases of their growth mode and the adaptation to different 

settings. Carbohydrate associated proteins were more abundant in planktonic cells in 

all the three temperatures (Figure 5). As for proteins associated with amino acid and 

inorganic ion transport metabolism, a higher amount of them were more abundant in 

biofilm across all settings. While a higher amount of proteins associated with 

Transcription and Translation were more abundant in planktonic cells, except at 37°C 

where we obtained a higher amount of these proteins in sessile cells. Small subunit 

ribosomal proteins, such as RpsD, RpsE, RpsF, RpsM, RpsL, RpsP, RpsS and RpsT, 

all showed higher abundance in planktonic cells, in some instances they can be 

observed in the volcano plots with a high fold change (Figure 6). These results suggest 

that sessile cells potentially have lower rates of protein translation (Mata et al., 2015). 
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Figure 5 – Planktonic vs biofilm temperature adaptation mechanisms represented in vertical bar charts showing the percentage of proteins with higher 

abundance in each mode of growth and temperature setting by their predicted COG molecular function (Supplementary Table 5, 6 and 7). 
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The reduced abundance of flagella (FlaA) is indicative of a biofilm development since 

the synthesis of this protein is inhibited at this stage (Prigent-Combaret et al., 1999). 

This trait is one of the most important to differentiate phenotypically biofilms from 

planktonic cells (Tremoulet et al., 2002).  

The overall reduced abundance of cell motility associated proteins in the biofilm mode 

of growth suggests that sessile cells are less peritriciously flagellated than planktonic 

cells. We observed in sessile cells a lower abundance of FlaA as well as the flagella 

hook protein (FlgE), suggesting that sessile cells have overall reduced flagellation 

(Mata et al., 2015). Data previously obtained indicates that the primary role of flagella 

in L. monocytogenes is to promote motion, meaning that during sessile development 

motility and extracellular matrix are inversely regulated, when planktonic cells come 

into contact with a surface their main focus shifts to matrix production (Kolter and 

Greenberg, 2006; Lemon et al., 2007). Chemotaxis sensor proteins (CheA and CheY) 

also presented higher levels in planktonic cells at the lower temperature pointing to 

that sessile cells have a reduced tactic performance.  

A number of proteins linked with adherence were more abundant in biofilm compared 

to the planktonic mode of growth. DltD protein for D-alanine esterification of 

lipoteichoic acid and wall teichoic acid (TA) has been observed to promote adherence 

by increasing D-alanylation of TA and it was here detected in higher levels in biofilm 

at 25°C (Gross et al., 2001). Plus, L. monocytogenes deprived of DltD gene presented 

a significant reduction in adhesion capacity (Chang et al., 2012). The DNA translocase 

FtsK, involved in cytokinesis and chromosome segregation, is responsible for the 

presence of extracellular DNA (eDNA) outside of the cell (Rose and Bermudez, 2016). 

Lmo1386 encoding a putative highly homologous protein to the DNA translocase 

FtsK/SpoIIE is more abundant in biofilm at 10°C. Furthermore, it has been shown that 

this protein plays a role in biofilm formation because the mutant is altered in this ability 

on abiotic surfaces. As DNA translocase functions as a DNA exporter, the authors 

hypothesized that Lmo1386 could act as a pump to transport intercellular DNA out of 

cells, producing eDNA which functions in the biofilm formation (Chang et al., 2013). 

As discussed in the previous section, oxidative stress is one of the effects of growth 

at low temperatures. The Fur regulon which controls iron intake by the cell was more 

abundant in sessile cells. This indicates that biofilm cells display a particular higher 

oxidative stress response (Ledala et al., 2010). In the same trend, superoxide 
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dismutase (Sod) and DNA protection during starvation protein (Dps) were present in 

higher levels in biofilm. SOD is constitutively produced in response to multiple 

environmental factors and may also play a role in the mode of growth (Tremoulet et 

al., 2002). These proteins involved in inorganic ion transport and metabolism promote 

protection against oxidative damage and have a significant role in Listeria biofilms 

(Mata et al., 2015). Regulatory genes with influence on biofilm formation, such as luxS 

gene of the quorum sensing regulatory Agr system, were also more abundant in biofilm 

(Chang et al., 2012). The presence of LuxS was shown to be essential in other biofilm 

forming bacteria such as Enterococcus faecalis and Streptococcus pneumoniae (Shao 

et al., 2012; Vidal et al., 2013). Manganese is a crucial micronutrient during infection 

and for survival under oxidative stress. Bacteria have a high-affinity transport system 

for manganese intake and its intracellular level maintenance is crucial (Colomer-

Winter et al., 2018). The lack of MntABC transport system for manganese leads to 

reduced biofilm formation in Neisseria gonorrhoeae and an Enterococcus faecalis with 

a MntH gene deletion mutant presented less biofilm growth (Lim et al., 2008; Colomer-

Winter et al., 2018). Furthermore, manganese is also essential for the development of 

Bacillus subtilis biofilms (Mhatre et al., 2016). We observed higher levels of the 

manganese transport system MntABC and MntH protein in the biofilm mode of growth, 

and at 10°C these proteins presented a FC>2 (Figure 6), suggesting its importance 

not only in biofilm development but also adaptation to temperature. 

Listeriolysin regulatory protein PrfA has documented relevance in biofilm formation at 

room temperature and 37°C and it was here present in higher level in sessile cells 

(Taylor et al., 2002; Lemon et al., 2010). The loss of PrfA drastically leads to a reduced 

ability of sessile development (Greene and Freitag, 2003). 

Of note, among the proteins more abundant at sessile mode of growth we found 

enzymes involved in DNA recombination and repair, such as excinuclease uvrB and 

recombination protein RecA (Greene and Freitag, 2003). Endopeptidase ClpC was 

also more abundant at biofilm mode of growth, suggesting that in sessile cells 

metabolism there is a higher activity in the citrate cycle (Resch et al., 2006). 

In a previous study comparing L. monocytogenes exoproteomes from biofilm and 

planktonic state, the role of the putative cell wall binding protein Lmo2504 in biofilm 

formation was confirmed by a deletion mutant coding for this protein (Tremoulet et al., 

2002). This protein belongs to a group of enzymes with multiple functions in cell growth 
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and division, including roles in biofilm development (Popowska, 2004). We observed 

Lmo2504 at higher levels in the biofilm at 37°C and with a high fold change (FC= 5.42, 

Figure 6C), supporting the relevance of this protein in sessile development.  

Chaperone proteins such as DnaK, classed as a heat-shock protein, was previously 

described as essential in the development of L. monocytogenes biofilms (Korsak et 

al., 2010). We registered higher levels of this protein in the sessile state, proposing a 

role of the stress response system in biofilm formation (Cabrita et al., 2013). Besides 

DNA repair, stress response and motility associated proteins, other proteins previously 

described as having a role in biofilm were also more abundant here in the sessile data, 

such as SrtA and RelA (Karatan and Watnick, 2009). However, it should be taken into 

account that the altered abundance of these proteins might be due to the normal 

growth in different settings, in this case temperature (Lim et al., 2017). Nonetheless, it 

is reasonable to assume that the proteome variability seen here between planktonic 

and sessile cells can possibly connected to the L. monocytogenes capacity to adapt 

to multiple food processing and clinical environments.  
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Figure 6 – Volcano plots of the comparison between planktonic and biofilm at 10°C (A), 25°C (B) and 37°C (C) (See also supplementary Table 5, 6 and 7, 

respectively). The plots represent the distribution of the identified proteins taking into account their fold change and p-value, cut-offs are represented by black 

lines at fold change two (Log2(fold change) = 1) and p-value 0,05 (Log10(p-value) = 1.30103). The top 100 proteins with highest fold change are marked with 

their respective colour that represent in which setting they were more abundant. 
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Conclusion 
Listeria monocytogenes survives and proliferates in multiple harsh environments with 

the use of diverse molecular mechanisms. Due to its recurring recovery from food 

environments a continue effort has been made to understand these mechanisms and 

strategies to best control and reduce the contamination of food products with L. 

monocytogenes (Soni et al., 2011). Results here revealed in planktonic L.  

monocytogenes cells grown at 10°C an increased level of transporters for osmolytes, 

glycolysis and carbohydrate metabolism, nutrient uptake and proteins known to be 

involved in bacterial response to several stress conditions, as is the case of oxidative 

stress resistance associated proteins. We also observed a shift in the proteome of L. 

monocytogenes greatly influenced by the biofilm compared to planktonic mode of 

growth. The proteins that presented a significant change in abundance are in various 

levels of cellular physiology. This ultimately indicates that the sessile phenotype leads 

to complex patterns of gene regulation (Cabrita et al., 2013). Taking into account the 

relevance of biofilm formation for the persistence of Listeria on food surfaces, it is 

crucial to understand the role of specific proteins in the sessile development and the 

mechanisms behind the resistance of this bacteria in different environments. 
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Supplementary Data 
Due to the sheer size of the Supplementary Tables 2, 3, 4, 5, 6 and 7, they could not 

be inserted in this manuscript. The raw data will soon be available in the PRIDE 

database upon acceptance of the paper, as it was made in the case of the first paper. 

 
STable 1 - Times when the planktonic culture was harvested taking into account the temperature and 

stage of growth.  

Planktonic 

Mid-log  Stationary 

Time of 

incubation 

Temperature of 

incubation  

Time of 

incubation 

Temperature of 

incubation 

24H of growth 10 °C  48H of growth 10 °C 

10H of growth 25 °C  20H of growth 25 °C 

6H of growth 37 °C  16H of growth 37 °C 
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Foodborne pathogens cause significant life-threating illnesses, fatalities and 

economic losses worldwide. A study on the global burden of foodborne diseases by 

the World Health Organization (WHO) estimated that there are annually 2 billion 

infections resulting in over 1 million deaths caused by 22 foodborne pathogens (Kirk 

et al., 2015). In regards to food related outbreaks, EFSA reported more than 5 

thousand occurrences in 2013 (ECDC, 2015). Per year, in the US, foodborne 

pathogens are the cause of 48 million cases which resulted in 3 thousand deaths. This 

colossal number of foodborne related infection results in hundreds of thousands of 

hospitalizations that together with food recalls lead to billions of euros in losses 

worldwide, ultimately having a huge impact in public health services and the food 

processing industry (Scharff, 2012). 

As for listeriosis, the life-threatening infection caused by Listeria 

monocytogenes, the WHO study previously mentioned projected more than 14 

thousand cases in 2010. This number of infections caused by Listeria comes behind 

other foodborne pathogens, such as Salmonella enterica with over 26 million cases 

estimated cases annually. The hazard and relevance of L. monocytogenes is the 

associated high case-fatality rate of listeriosis, which in this report was estimated to 

be of 22.4%. A much higher percentage than other foodborne pathogens such as S. 

enterica (0.9%) (Kirk et al., 2015). In Europe, the annual listeriosis incidence sums up 

to 2,300 cases and in the US to 1,600 (Lomonaco et al., 2015; Antonia Ricci et al., 

2018). Those most susceptible to this infection are immunocompromised patients, 

elderly, infants, and pregnant women. Worldwide, listeriosis causes close to 300 

stillbirths and, in 2010, a total of 5463 fatalities (de Noordhout et al., 2014).  

There are three main factors that explain the number of listeriosis cases and 

their associated severity. Firstly, L. monocytogenes is a proficient invasive pathogen 

with the capacity to elicit both innate and adaptive immune responses and to cross the 

intestinal, brain and the feto-maternal barriers, resulting in meningitis, septicemia, 

abortion, and perinatal infections (Cossart, 2002; Allerberger and Wagner, 2010; 

Hernandez-Milian and Payeras-Cifre, 2014). Secondly, Listeria is an ubiquitous 

biofilm-forming bacterium that has been isolated from the most diverse environments, 

such as soil, water, sewage, hospitals, households and food industries (Schlech et al., 

1983). Furthermore, the majority of the human listeriosis cases are linked to the 

consumption of contaminated RTE foods, some even predict that the underlying 
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source of all listeriosis is foodborne related (Kirk et al., 2015). Lastly, the third factor 

for Listeria’s relevance in public health is connected to its persistence in the food 

industry causing numerous outbreaks. L. monocytogenes is able to endure and 

sustain in a multitude of harsh conditions and even resist to disinfectant procedures, 

prolonging its presence in food surfaces and increasing the chances of food 

contamination (NicAogain and O'Byrne, 2016). 

Taking into account this dark outlook, multiple research groups and financial 

institutions have been intensively investing time and resources to unveil all the 

mechanisms that allow this foodborne pathogen to resist in the food industry. Case in 

point, in 2015 the European Union Horizon 2020 under the Marie-Skłodowska Curie 

actions (ITN-ETN) financed a 4-year project entitled List_MAPS with the goal to train 

ten PhD students and research in L. monocytogenes adaptation through proteomic 

and transcriptome deep sequencing analysis. Some of the specific aims were to: (i) 

understand how environmental conditions in soil, plants, biofilms and food matrices 

influence the capacity of L. monocytogenes to cause infection; (ii) Develop an 

integrated model of the regulatory circuitry of this pathogenic bacterium; (iii) Assess 

intraspecific diversity of virulence potential and biofilm in relation to environmental 

cues.  

At this moment, the project already produced a substantial amount of data and 

several outcome papers. Lee and colleagues used crystal violet staining and the 

BioFilm Ring Test to explore the adhesion and biofilm formation of 22 listerial strains 

from different serogroups and origins under cold-stressed and cold-adapted 

conditions. The results showed that adhesion to stainless-steel and polystyrene was 

increased by cold stress, while cold-adapted cells remained mostly in planktonic form 

(Lee et al., 2017). Crespo Tapia and colleagues looked into glycerol metabolism and 

its relevance in Listeria monocytogenes biofilm formation, results indicated that the 

formation of biofilms at the air-liquid interface is dependent on glycerol-induced 

aerotaxis (Crespo Tapia et al., 2018). Dos Santos and colleagues explored a family of 

small regulatory RNAs (sRNAs) and their role in Listeria’s response to heme toxicity. 

The outcome results made a connection between one of this sRNAs and the response 

to excess heme and cell envelope stress in L. monocytogenes (Dos Santos et al., 

2018). 
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My PhD project is also part of this vast network and had as main aim to explore 

L. monocytogenes proteome shifts resulting from the adaptation to controlled 

environmental settings through different proteomic and mass spectrometry 

approaches. Deconstructing the title of this dissertation, which is "Role of proteome in 

biofilm development and adaptation of Listeria monocytogenes to controlled 

environments", gives us three main topics for discussion: (i) the proteomic approaches 

embarked in this work; (ii) Listeria’s mechanisms of adaptation to controlled 

environments and (iii) the advantageous role of biofilm in Listeria’s survival. 

For the first topic I would like to overview the technical approaches undertaken 

during the course of this PhD work tasks, namely innovative (MALDI Imaging) and 

traditional (Shotgun proteomics) mass spectrometry workflows were ventured to study 

sessile and planktonic L. monocytogenes cells.  

MALDI Imaging Mass spectrometry (IMS) is a well-established tool that enables 

to simultaneously identify metabolites and protein spatial distributions within 

cells/tissues without the need for chemical labels or antibodies (Penque et al., 2011). 

This powerful tool has been widely used in medical sciences, such as disease 

pathology and pharmaceutical research, particularly to analyse organs and tissues 

(Groseclose et al., 2007; Lemaire et al., 2007; Stauber et al., 2010; Maier et al., 2013; 

Theron et al., 2016; Centeno et al., 2017) and in the search of cancer biomarkers upon 

the comparison of a tumorous tissue to a healthy one (Djidja et al., 2010). Furthermore, 

IMS has also been employed in plant tissues (Anderson et al., 2009; Kaspar et al., 

2011) and microbiology (Watrous and Dorrestein, 2011). In the latter, most 

approaches were developed in bacteria grown in thin slices of agar which are further 

screened in IMS (Hoffmann and Dorrestein, 2015). Further than that, some research 

groups have optioned instead to promote bacterial growth directly on top of the ITO 

coated slides (Blaze et al., 2012; Floyd et al., 2015). 

An analogous approach was undertaken in the workflow of the first step of this 

thesis. Moreover, we implemented a comparison between the analysis using MALDI 

profiling parameters with a manually deposition of matrix and mass spectra acquired 

with a low spatial resolution of 2000 µm, and the traditional MALDI imaging settings 

with matrix deposition using a spraying device and a higher spatial resolution of 100 

µm. The imaging of L. monocytogenes biofilms by MALDI was however not without its 

challenges.  
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First and foremost, L. monocytogenes biofilms are formed by a honeycomb 

structure with layers of cohesive cells that have scattered hallow voids with diameters 

of up to 50 µm (Guilbaud et al., 2015). When considering the MALDI imaging spatial 

resolution of 100 µm, it means that at some given points ionization will occur in areas 

with fewer or even deprived of sessile cells. This adds noise spectra to the final 

average mass spectrum, decreasing its quality and increasing background noise. 

Secondly, to achieve a suitable density and spread of sessile cells, biofilms had to be 

grown in suitable growth medium. In the latter, there are salts that can encumber a 

correct crystallization between matrix and sample, further impairing the ionization 

(Enthaler et al., 2013). Lastly, one of the big appealing points of MALDI imaging is the 

search of biomarkers for a specific condition and obtain its abundance and distribution 

in a tissue (Sandrin and Demirev, 2017). However, the MALDI IMS workflow for 

studying peptides and proteins has as basis the MALDI workflow for bacterial 

fingerprinting. MALDI-TOF MS fingerprinting approach enables the quick identification 

of genus, species and in some instances bacterial serotypes (Risch et al., 2010). This 

is possible due to the close similarity of ion profiles in this range (2 – 20 kDa) within 

the same species and the high number of abundant ribosomal proteins. These aspects 

are unflawed for the identification of a microorganism but negative for the discovery of 

less abundant potentially biomarker ion species. Nevertheless, we obtained 47 

different ions species and its imaging profile across L. monocytogenes biofilm. This is 

a lower number of m/z than the one obtain by Floyd and colleagues upon studying E. 

coli biofilms (Floyd et al., 2015). Still, it should be noted that the thick cell walls of 

Gram-positive bacteria and its debris are a further obstacle in the ionization event 

(Santos et al., 2015). 

To enhance the ion species spatial information obtained by MALDI IMS we 

opted for a shotgun approach and the analyses of peptide mixtures by LC-MS/MS. In 

truth, this breaks the link between the IMS data obtain by MALDI and the identification 

of proteins, however at this moment MALDI lacks in sensitivity and resolution to 

perform MS tandem identification from intact biofilms (Maier et al., 2013). A 

combination of IMS and bottom-up proteomics has been used before and in our study 

it resulted in a 5 cases being back correlated, a similar result reported by others (Floyd 

et al., 2015). 
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As for the second and third paper, a label-free semi-quantitative shotgun 

approach was used to study planktonic and sessile L. monocytogenes. As reviewed 

in Chapter 3, the bottom-up approach and the prior enzymatic digestion of proteins 

has its limitations, such as the loss of the intact protein’s PTM information, essential 

for its function, location and general relevance in biological processes (Huber and 

Huber, 2010). Though, shotgun proteomics allows the efficient identification of large 

number of proteins from peptide mixtures (Chait, 2006), and it is particularly suited for 

the comparison of closed related sample extractions as was the case here. One 

particular target was the identification of as many cellular envelope (surfaceome) and 

intracellular proteins as possible. The surfaceome  is particularly crucial in major 

biological processes, such as bacterial growth, biofilm formation, responses to 

environmental stress, host invasion, and interference with the immune system 

(Cabanes et al., 2002). For that reason, we implemented three complementary protein 

extraction methods: fractionation, enzymatic shaving and biotin labelling of surface 

exposed proteins (Esbelin et al., 2018b).  

The results on the overall protein identification were 920 identified proteins from 

sessile cell extraction and 931 unique proteins were identified from planktonic culture 

extraction, representing a significant proportion of the L. monocytogenes proteome 

(Glaser et al., 2001), 32.2% and 32.6%, respectively. The fractionation method was 

by far the one the lead to a higher number of protein identifications (79% from both 

growth modes), particularly from the intracellular fraction with cytoplasmic proteins. 

However, the combination of the three methods resulted in significant percentage of 

identified membrane, cell wall and extracellular associated proteins. In all extraction 

methods and fractions there was a significant percentage of cytosol proteins, even if 

a protocol is focused for the extraction of surface associated proteins, there are high 

chances of cell lysis, particularly in the shaving method (Quan et al., 2013). 

A second major topic in this dissertation was focused on the L. monocytogenes 

ability to adapt to harsh conditions, particularly desiccation and low temperatures.  

Desiccation leads to the exit of water from cells resulting in critical changes in 

cell turgor pressure and overall normal cellular functions. Water availability is an ever-

changing condition in nature and also a controlled setting in the food processing 

environment. Drying allows to significantly increase the shelf life of food products and 

to reduce at minimum the moisture present in food surfaces after disinfection 
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procedures avoiding cross-contaminations (Potts, 1994). For microorganisms, 

desiccation tolerance is the ability to undergo nearly absolute dehydration through air 

drying without being lysed (Potts, 2001). Listeria’s capacity to adapt in environments 

with low aw has similarities with cellular mechanisms to survive other harsh conditions, 

such as the import and synthesis of protective osmolites to control turgor pressure and 

maintain membrane stability, the activation of aquaglyceroporin like channels and the 

overexpression of multiple chaperone proteins that help to counterbalance the loss of 

water through the formation of hydrogen bonds to other molecules (Burgess et al., 

2016).  

The Listeria’s dehumidification adaptation was the focus on the first paper of 

this dissertation. Mature biofilms were subjected to 75% relative humidity in an isolated 

container placed in a room at 10°C, a model setting that can be found in the food 

industry. By the use of IMS and identification of proteins through LC-MS/MS the goal 

was to explore potential ion species that could be biomarkers for the adaptation to this 

condition and see its abundance and distribution across the normal section and the 

dehumidified section of the biofilm (slide divided at half). As previously mentioned, the 

mass comparison between the imaging m/z with the identified proteins by mass 

spectrometry resulted in five positive associations, including the cold-shock proteins 

CspLA and CspLB, the 50S ribosomal protein L29 (RmpC), a tautomerase-like protein 

(Lmo2564) and a D-alanine-poly(phosphoribitol) ligase (dltC). As chaperonins, small 

cold shock proteins are associated with protection against multiple stress conditions 

(Bayles et al., 1996; Hebraud and Guzzo, 2000; Wemekamp-Kamphuis et al., 2002) 

and have also a confirmed role in virulence, cell aggregation and flagella-based 

extracellular motility in Listeria (Lee et al., 2017).  

The mass spectrometry approach employed in this paper was focused on the 

identification of proteins from the different biofilm sections and quantitation was not 

performed. Even if a definitive determination of abundance of the identified proteins 

cannot be performed, it is possible through the IMS data and representative heat maps 

to check the abundance and distribution of these identified ions species by shotgun. 

Both cold shock proteins were found more abundant in the dehumidified section of the 

biofilm, pointing to its involvement in protection against low aw environments as they 

have also been associated with osmotic shock adaptation (Schmid et al., 2009). 
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Besides the proteins that were matched to the imaging ion species, there were 

also other relevant stress related proteins from the pool of 513 different proteins 

identified by LC-MS/MS. This included DEAD-box RNA helicases with a role in RNA 

degradation and previously annotated as taking part in Listeria and Bacillus adaptation 

to cold settings (Hunger et al., 2006; Markkula et al., 2012). Moreover, four stress-

induced multi-chaperone systems (ClpB, DnaK, DnaJ and GrpE) were also identified 

in the dehumidified section of the biofilm. These chaperone proteins repair protein 

damage and have an observed role in the adaptation to hyperosmotic stress (Liberek 

et al., 1991; Hanawa et al., 2002; Haslberger et al., 2010). 

The second environmental condition tested was temperature, particularly 

Listeria’s adaptation to a low temperature setting. To this point, we explored the 

subproteomes of L. monocytogenes biofilms and planktonic cells under the influence 

of three temperatures, that is 10°C, mimicking a common setting found in the food 

industry environment, 25°C as a baseline temperature and 37°C as the human host 

setting.  

L. monocytogenes is able to growth at temperatures as low as -0.4°C (Walker 

et al., 1990). However, at low temperatures the doubling time of the bacterium can be 

up to 50 h or more (Angelidis and Smith, 2003). Furthermore, cold leads to a 

decreased membrane fluidity, an increased superhelical coiling of DNA, a formation 

of secondary structures in RNA, a reduced enzyme activity, and inappropriate protein 

folding (Walker et al., 1990; Bayles et al., 1996; Gandhi and Chikindas, 2007; Cabrita 

et al., 2013; Durack et al., 2013). Variations in temperature are a constant changing 

factor in nature to which ubiquitous bacteria such as Listeria have evolved to adapt. In 

the food industry environment, low temperatures are used throughout the processing 

pipeline in order to limit the growth of microorganisms and extend the product shelf 

life. Listeria’s ability to endure in such conditions is a huge threat for food safety 

(Kathariou, 2002; Colagiorgi et al., 2017).  

L. monocytogenes adaptation to cold is mainly based on the following 

strategies: maintenance of membrane structural integrity, uptake of nutrients and 

osmoprotectant molecules, resumption of gene expression events, production of 

chaperone proteins, oxidative stress protection, energy production, and specific amino 

acid and lipid biosynthesis pathways (Phadtare et al., 1999; Cacace et al., 2010). 



 

 

143 

Moreover, the cold protection mechanisms are shared or provide cross-protection to 

other stress conditions (Soni et al., 2011).  

Cell stability and cell adhesion at low temperatures is connected with surface 

appendages, such as flagella (Di Bonaventura et al., 2008). Surprisingly, all the cell 

motility associated proteins identified from sessile and planktonic cells were present 

in higher levels at 10°C.  

As for ribosome function, it is seriously compromised upon growth at low 

temperatures (Tasara and Stephan, 2006). The 50S ribosomal proteins (Rl) are 

referenced as the first cold stress sensors in microbes, RplY (RIL25) is the general 

stress protein Ctc (Duche et al., 2002) and we observed it more abundant at the cold 

setting in both growth modes.  

A key point into the cold adaptation of a bacteria is the production of various 

stress-related proteins, including cold shock proteins (Csps) (Schmid et al., 2009). We 

observed a higher level of CspLA at 10°C with a high fold change from both modes of 

growth. DNA protection during starvation protein (Dps or Fri) is a major cold shock 

protein that is required for iron storage and protection against reactive oxygen species 

(Hebraud and Guzzo, 2000). This major protein for low-temperature adaptation was 

also detected in higher levels at 10°C.  

Bacteria have a higher demand of energy to withstand low temperature growth 

(Cabrita et al., 2013). Energy production associated proteins, such as glycolysis 

(Enolase – Eno) and Pta-AckA pathway (Acetate kinase – AckA) were detected at 

higher levels in the low temperature condition.  

One of the main response systems implemented by bacteria to face cold stress 

is the intake and accumulation of cryoprotective osmolytes. At low temperatures, 

cryoprotective solutes promote stabilization of enzymatic functions and the cell 

membrane lipid bilayer (Wemekamp-Kamphuis et al., 2004; Miladi et al., 2017). We 

identified all three proteins from the Gbu system and in all cases they were present 

with higher levels in the colder setting from both growth modes. 

During growth at low temperatures bacteria also have to face oxidative stress 

due to the accumulation of reactive oxygen species (ROS) (Bowman et al., 2010). We 

observed three proteins associated with an adaptive response to oxidative with higher 

levels at 10°C, namely superoxide dismutase (SOD), catalase (Kat) and ferritin (DPS). 

DEAD-box RNA helicases act as RNA chaperones solving secondary structures in 
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mRNA that can be found inside the cell subjected to a cold condition (Markkula et al., 

2012). The three putative DEAD-box RNA helicase genes are necessary for cold 

tolerance and motility in L. monocytogenes (Bareclev et al., 2014). The three helicases 

were identified here and presented higher abundance at 10°C. 

We have also registered a considerable shift in protein abundance as function 

of a cold stress, underscoring the relevance of this environmental parameter on protein 

expression and the need for Listeria to adapt to it and maintain its homeostasis (Liu et 

al., 2002; Chan et al., 2007b; Arguedas-Villa et al., 2010; Durack et al., 2013; Pittman 

et al., 2014; He et al., 2015; Cordero et al., 2016). 

The third and last topic of discussion is the value of biofilm mode of growth in 

the adaptation of L. monocytogenes to cold stress. To this point, in the third paper it 

was made an in silico comparison between the protein abundances from sessile and 

planktonic cells. Cells in a biofilm have a higher protection against harsh conditions 

and the sessile formation is the main cause for the persistence of some strains in food 

processing environments (Ortiz et al., 2010). Furthermore, regardless of temperature, 

Listeria is able to adhere to surfaces and develop a biofilm, pointing to a regulatory 

system empowering the organism to rapidly adapt to changing environmental 

conditions (Di Bonaventura et al., 2008). The transition from planktonic to sessile cells 

requires flagellar mediated motility, production of outer-membrane protein adhesins 

and exopolysaccharides, and cell-to-cell signalling (Pratt and Kolter, 1999).  

Here, we observed protein abundance shifts that might have a relation to the 

two distinct growth modes. Small ribosomal proteins were more abundant in planktonic 

than in sessile cells, suggesting that within a biofilm cells possibly have lower rates of 

protein translation (Mata et al., 2015). We noticed an overall reduced abundance of 

cell motility associated proteins in sessile cells, confirming that cells in a biofilm are 

less peritriciously flagellated than planktonic cells (Prigent-Combaret et al., 1999). 

Several proteins connected with adhesion were more abundant in sessile cells than in 

planktonic cells. Some of these, like DltD, have been previously associated with the 

first stages of biofilm development (Gross et al., 2001). Oxidative stress is one of the 

side effects of growth at low temperatures. In biofilm, proteins associated with 

tolerance to this stress like the Fur regulon, SOD and Dps were more abundant than 

in planktonic cultures. This points to a higher capacity to tolerate oxidative stress 

displayed by biofilm cells (Tremoulet et al., 2002; Ledala et al., 2010). 
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Regulatory genes with influence on sessile development, such as the quorum 

sensing regulatory Agr system and the virulence locus prfA were also present at higher 

levels in sessile cells. Both systems have been proven to be associated with biofilm 

development (Greene and Freitag, 2003; Chang et al., 2012). Chaperone proteins, 

such as DnaK had higher levels in the sessile state, indicating a role of the stress 

response system in the biofilm formation (Cabrita et al., 2013).  

The proteome shifts here obtained are one more clue to the capacity shown by 

Listeria monocytogenes to adapt to multiple food processing and clinical 

environments, particularly in biofilm mode of growth. 

  



 

 

146 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

147 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 
 

  



 

 

148 

The foodborne pathogen Listeria monocytogenes is a highly adaptable 

microorganism that can persist in a wide range of environmental and food-related 

realms. The main source of human listeriosis cases and outbreaks is the proliferation 

of L. monocytogenes on RTE foods (Chan and Wiedmann, 2009). 

MALDI MSI showed a noteworthy insight into the spatial proteome of L. 

monocytogenes biofilm, the use of microproteomics for extraction of proteins followed 

by shotgun proteomics was well suited for the confident identification of numerous 

proteins, including several related with mechanisms of stress tolerance. 

Different harsh conditions such as high salt concentration, wide range of pH, 

low water availability and, particularly, low temperatures provoke pleiotropic effects on 

cell physiology. Research showed that the activation of common gene patterns occurs 

in different stress conditions that contribute to cross-protection occurrences, for 

example increase intake of osmolytes, folding chaperones and oxidative stress 

proteins (superoxide dismutase and catalase) which are highly expressed under low 

temperatures, desiccation and osmotic stress conditions (Cacace et al., 2010). 

At 10°C, L.  monocytogenes cells showed an increased level of osmolyte 

transporters, glycolysis and carbohydrate metabolism, nutrient uptake and proteins 

known to be involved in bacterial response to several stress conditions, as is the case 

of oxidative stress resistance associated proteins. Figure 1 summarizes the planktonic 

and biofilm protein dataset gathered here showed sets of proteins with higher 

abundance that have a registered connection with different temperature adaptation 

mechanisms. In the first moments upon exposure to a low temperature, Listeria 

monocytogenes senses this condition through multiple ribosomal proteins, as well as 

through the sigma factor sigma B (σB). The release of the alternative transcriptional 

factor eventually activates a series of cold adaptive regulatory protein systems, like: 

alterations in membrane fatty acid synthesis, induction of cold shock proteins, cell 

surface changes and induction of osmolyte and peptide transporters. Sets of proteins 

associated with these regulatory systems were here found more abundant in the cold 

setting. 
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Figure 1 – A data outcome schema representing the different temperature adaptation 

mechanisms in L. monocytogenes. 

 

On the basis of the proteomic data obtained in this dissertation it is unlikely that 

a set of surface proteins play a unique role in the adaptation to a single stress 

tolerance. Therefore, adaptation to low temperature growth is a complex response 

involving many aspects of the cell molecular biology and biochemistry (Tasara and 

Stephan, 2006). Analogous approaches in the future will aid in highlighting additional 

potential target genes of cold stress resistance in L. monocytogenes. 

 Bacterial stress adaptation research in the past has privileged the planktonic 

growth mode. These investigations are the basis of protein functional annotations. 

This means that potential sessile-specific proteins still have unknown or hypothetical 

functions (Khemiri et al., 2016). The comparison between planktonic and sessile cells 

displayed proteome shifts that might have a connection with the biofilm mode of 

growth. Ultimately meaning that the biofilm growth results in a complex pattern of gene 

regulation (Cabrita et al., 2013). Figure 2 summarizes the obtained data with 

connection with relevant changes in protein abundance between the biofilm and 

planktonic mode of growth. In brief, in one hand, sessile cells have lower rates of 

protein translation and flagellation. On the other hand, in biofilm mode of growth cells 

seem to have better adhesion capacity and protein repair systems. Moreover, proteins 

associated with amino acid and micronutrient intake, oxidative resistance and 

molecular regulation had higher abundance in this complex growth mode. 
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Figure 2 – A data outcome schema illustrating the changes between the planktonic and biofilm growth 

of mode. 

 

Taking into account the relevance of biofilm formation for the persistence of Listeria in 

food surfaces it is crucial to understand the role of specific proteins in the sessile 

development and the mechanisms behind the resistance of this bacteria in different 

environments. 

The upcoming trend for healthier, minimally processed food products also puts 

into evidence the foodborne pathogen hazard (Bucur et al., 2018). Innovative 

treatment procedures like inactivation with visible light or using inhibitors aimed to 

target the regulatory machinery of this pathogen, such as novel ways to block the 

expression of transporter proteins that oversee cold/osmotic stress adaptation are 

promising strategies in the future of food biopreservation (Soni et al., 2011; NicAogain 

and O'Byrne, 2016). The proteomic approaches developed and used in this 

dissertation are relevant tools to study the effects on and resistance of L. 

monocytogenes to such combinations of disinfection approaches.  

Through the development of an IMS approach it was possible to explore small 

proteins ionized from an intact L. monocytogenes biofilm subjected to a condition of 

dehumidification. On the basis of the results here obtained and as future application 

of this technique, it would be relevant to use the same approach to compare the effects 

of other stress conditions on sessile cells. Furthermore, optimization of an in situ 

trypsin protein digestion will allow to focus the study on peptides to further enrich the 

analysis. In the same trend, the protein extraction workflow and peptide analysis by 

label-free semi-quantitative shotgun proteomics here applied can be used to explore 

L. monocytogenes proteome changes resultant from other environmental conditions. 

Moreover, the huge proteomic dataset will be cross-linked with transcriptomic data 
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obtained by other partners in the List_MAPS project, to further decipher the 

transcriptional regulatory circuitry that drives the adaptation of this bacteria. At the 

personal level, this PhD project enriched substantially my knowledge in microbiology 

and proteomics, providing the needed tools to embrace a postdoctoral project in these 

fields or even embark in an industry or a regulatory food safety agency related job. 

  

 

 

  



 

 

152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

153 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 
  



 

 

154 

Abee, T., and Wouters, J.A. (1999). Microbial stress response in minimal processing. 
International Journal of Food Microbiology 50, 65-91. 

Ahrne, E., Muller, M., and Lisacek, F. (2010). Unrestricted identification of modified 
proteins using MS/MS. Proteomics 10, 671-686. 

Alexandrov, T. (2012). MALDI imaging mass spectrometry: statistical data analysis 
and current computational challenges. BMC Bioinformatics 13 Suppl 16, S11. 

Alexandrov, T., Becker, M., Deininger, S.O., Ernst, G., Wehder, L., Grasmair, M., Von 
Eggeling, F., Thiele, H., and Maass, P. (2010). Spatial segmentation of imaging 
mass spectrometry data with edge-preserving image denoising and clustering. 
J Proteome Res 9, 6535-6546. 

Allerberger, F., and Wagner, M. (2010). Listeriosis: a resurgent foodborne infection. 
Clin Microbiol Infect 16, 16-23. 

Allison, S.D., Chang, B., Randolph, T.W., and Carpenter, J.F. (1999). Hydrogen 
bonding between sugar and protein is responsible for inhibition of dehydration-
induced protein unfolding. Arch Biochem Biophys 365, 289-298. 

Anderson, D., Ferreras, E., Trindade, M., and Cowan, D. (2015). A novel bacterial 
Water Hypersensitivity-like protein shows in vivo protection against cold and 
freeze damage. FEMS Microbiol Lett 362. 

Anderson, D.M., Carolan, V.A., Crosland, S., Sharples, K.R., and Clench, M.R. (2009). 
Examination of the distribution of nicosulfuron in sunflower plants by matrix-
assisted laser desorption/ionisation mass spectrometry imaging. Rapid 
Commun Mass Spectrom 23, 1321-1327. 

Andrea, C., M., F.J., Céline, N., Davendra, S., Yvonne, W., Colette, G., Eleni, G., 
Sadjia, B., James, F., Lorelee, T., Franco, P., Brenda, L., Fred, J., Tina, B., 
Diane, M., Team, T.N.O.I., Andrea, E., Jennifer, M.-H., Rachel, M., Carmen, S., 
Dean, M., Vanessa, A., Francois-William, T., Laura, M., Linda, H., Sion, S., 
Doug, E., Linda, C., Marie, L., Helen, B., N., L.P., Krista, W., John, W., Janet, 
R., Brian, M., Dave, E., Donna, D., George, H., Joe, D.L., Judy, S., Josée, R., 
Kenneth, M., Leah, I., and Urszula, S. (2015). Multi-Province Listeriosis 
Outbreak Linked to Contaminated Deli Meat Consumed Primarily in Institutional 
Settings, Canada, 2008. Foodborne Pathogens and Disease 12, 645-652. 

Angelidis, A.S., and Smith, G.M. (2003). Role of the glycine betaine and carnitine 
transporters in adaptation of Listeria monocytogenes to chill stress in defined 
medium. Appl Environ Microbiol 69, 7492-7498. 

Angelo, K.M., Conrad, A.R., Saupe, A., Dragoo, H., West, N., Sorenson, A., Barnes, 
A., Doyle, M., Beal, J., Jackson, K.A., Stroika, S., Tarr, C., Kucerova, Z., Lance, 
S., Gould, L.H., Wise, M., and Jackson, B.R. (2017). Multistate outbreak of 
Listeria monocytogenes infections linked to whole apples used in commercially 
produced, prepackaged caramel apples: United States, 2014–2015. 
Epidemiology and Infection 145, 848-856. 

Anhalt, J.P., and Fenselau, C. (1975). Identification of bacteria using mass 
spectrometry. Analytical Chemistry 47, 219-225. 



 

 

155 

Antonia Ricci, Ana Allende, Declan Bolton, Marianne Chemaly, Robert Davies, Pablo 
Salvador Fernandez, Rosina Girones, Lieve Herman, Konstantinos 
Koutsoumanis, Birgit Nørrung, Lucy Robertson, Giuseppe Ru, Moez Sanaa, 
Marion Simmons, Panagiotis Skandamis, Emma Snary, Niko Speybroeck, 
Benno Ter Kuile, John Threlfall, Helene Wahlstrom, Johanna Takkinen, Martin 
Wagner, Davide Arcella, Maria Teresa Da Silva Felicio, Marios Georgiadis, 
Messens, W., and Lindqvist, R. (2018). "Listeria monocytogenes contamination 
of ready-to-eat foods and the risk for human health in the EU". European Food 
Safety Authority). 

Archambaud, C., Nahori, M.A., Pizarro-Cerda, J., Cossart, P., and Dussurget, O. 
(2006). Control of Listeria superoxide dismutase by phosphorylation. J Biol 
Chem 281, 31812-31822. 

Arguedas-Villa, C., Stephan, R., and Tasara, T. (2010). Evaluation of cold growth and 
related gene transcription responses associated with Listeria monocytogenes 
strains of different origins. Food Microbiol 27, 653-660. 

Armengaud, J. (2013). Microbiology and proteomics, getting the best of both worlds! 
Environmental Microbiology 15, 12-23. 

Azeredo, J., Azevedo, N.F., Briandet, R., Cerca, N., Coenye, T., Costa, A.R., Desvaux, 
M., Di Bonaventura, G., Hebraud, M., Jaglic, Z., Kacaniova, M., Knochel, S., 
Lourenco, A., Mergulhao, F., Meyer, R.L., Nychas, G., Simoes, M., Tresse, O., 
and Sternberg, C. (2016). Critical review on biofilm methods. Crit Rev Microbiol, 
1-39. 

Azizoglu, R.O., and Kathariou, S. (2010a). Inactivation of a cold-induced putative rna 
helicase gene of Listeria monocytogenes is accompanied by failure to grow at 
low temperatures but does not affect freeze-thaw tolerance. J Food Prot 73, 
1474-1479. 

Azizoglu, R.O., and Kathariou, S. (2010b). Temperature-dependent requirement for 
catalase in aerobic growth of Listeria monocytogenes F2365. Appl Environ 
Microbiol 76, 6998-7003. 

Baker, T.C., Han, J., and Borchers, C.H. (2017). Recent advancements in matrix-
assisted laser desorption/ionization mass spectrometry imaging. Curr Opin 
Biotechnol 43, 62-69. 

Bale, M.J., Bennett, P.M., Beringer, J.E., and Hinton, M. (1993). The survival of 
bacteria exposed to desiccation on surfaces associated with farm buildings. J 
Appl Bacteriol 75, 519-528. 

Ball, P. (2008). Water as an active constituent in cell biology. Chem Rev 108, 74-108. 

Bardou, P., Mariette, J., Escudie, F., Djemiel, C., and Klopp, C. (2014). jvenn: an 
interactive Venn diagram viewer. BMC Bioinformatics 15, 293. 

Bareclev, C., Vaitkevicius, K., Netterling, S., and Johansson, J. (2014). DExD-box 
RNA-helicases in Listeria monocytogenes are important for growth, ribosomal 
maturation, rRNA processing and virulence factor expression. RNA Biol 11, 
1457-1466. 



 

 

156 

Bayles, D.O., Annous, B.A., and Wilkinson, B.J. (1996). Cold stress proteins induced 
in Listeria monocytogenes in response to temperature downshock and growth 
at low temperatures. Appl Environ Microbiol 62, 1116-1119. 

Bayles, D.O., and Wilkinson, B.J. (2000). Osmoprotectants and cryoprotectants for 
Listeria monocytogenes. Lett Appl Microbiol 30, 23-27. 

Bazaka, K., Crawford, R.J., Nazarenko, E.L., and Ivanova, E.P. (2011). Bacterial 
extracellular polysaccharides. Adv Exp Med Biol 715, 213-226. 

Becher, D., Hempel, K., Sievers, S., Zuhlke, D., Pane-Farre, J., Otto, A., Fuchs, S., 
Albrecht, D., Bernhardt, J., Engelmann, S., Volker, U., Van Dijl, J.M., and 
Hecker, M. (2009). A proteomic view of an important human pathogen-towards 
the quantification of the entire Staphylococcus aureus proteome. PLoS One 4, 
e8176. 

Begley, M., Gahan, C.G., and Hill, C. (2002). Bile stress response in Listeria 
monocytogenes LO28: adaptation, cross-protection, and identification of 
genetic loci involved in bile resistance. Appl Environ Microbiol 68, 6005-6012. 

Bereman, M.S., Egertson, J.D., and Maccoss, M.J. (2011). Comparison between 
procedures using SDS for shotgun proteomic analyses of complex samples. 
PROTEOMICS 11, 2931-2935. 

Beuchat, L.R., Komitopoulou, E., Beckers, H., Betts, R.P., Bourdichon, F., Fanning, 
S., Joosten, H.M., and Ter Kuile, B.H. (2013). Low Water Activity Foods: 
Increased Concern as Vehicles of Foodborne Pathogens. Journal of Food 
Protection 76, 150-172. 

Bierne, H., and Cossart, P. (2007). Listeria monocytogenes surface proteins: from 
genome predictions to function. Microbiology and molecular biology reviews : 
MMBR 71, 377-397. 

Bierne, H., Sabet, C., Personnic, N., and Cossart, P. (2007). Internalins: a complex 
family of leucine-rich repeat-containing proteins in Listeria monocytogenes. 
Microbes and Infection 9, 1156-1166. 

Bigot, A., Pagniez, H., Botton, E., Fréhel, C., Dubail, I., Jacquet, C., Charbit, A., and 
Raynaud, C. (2005). Role of FliF and FliI of Listeria monocytogenes in flagellar 
assembly and pathogenicity. Infection and immunity 73, 5530-5539. 

Bille, J., Blanc, D.S., Schmid, H., Boubaker, K., Baumgartner, A., Siegrist, H.H., 
Tritten, M.L., Lienhard, R., Berner, D., Anderau, R., Treboux, M., Ducommun, 
J.M., Malinverni, R., Genné, D., Erard, P., and Waespi, U. (2006). Outbreak of 
human listeriosis associated with tomme cheese in northwest Switzerland, 
2005. Eurosurveillance 11, 11-12%P 633. 

Billi, D., and Potts, M. (2002). Life and death of dried prokaryotes. Res Microbiol 153, 
7-12. 

Black, D.L. (2000). Protein diversity from alternative splicing: a challenge for 
bioinformatics and post-genome biology. Cell 103, 367-370. 

Blasius, M., Sommer, S., and Hubscher, U. (2008). Deinococcus radiodurans: what 
belongs to the survival kit? Crit Rev Biochem Mol Biol 43, 221-238. 



 

 

157 

Blaze, M., Aydin, B., Carlson, R.P., and Hanley, L. (2012). Identification and imaging 
of peptides and proteins on Enterococcus faecalis biofilms by matrix assisted 
laser desorption ionization mass spectrometry. Analyst 137, 5018-5025. 

Bogino, P., Abod, A., Nievas, F., and Giordano, W. (2013). Water-limiting conditions 
alter the structure and biofilm-forming ability of bacterial multispecies 
communities in the alfalfa rhizosphere. PLoS One 8, e79614. 

Borezee, E., Pellegrini, E., and Berche, P. (2000). OppA of Listeria monocytogenes, 
an oligopeptide-binding protein required for bacterial growth at low temperature 
and involved in intracellular survival. Infect Immun 68, 7069-7077. 

Borucki, M.K., Gay, C.C., Reynolds, J., Mcelwain, K.L., Kim, S.H., Call, D.R., and 
Knowles, D.P. (2005). Genetic diversity of Listeria monocytogenes strains from 
a high-prevalence dairy farm. Appl Environ Microbiol 71, 5893-5899. 

Boumahdi, M., Mary, P., and Hornez, J.P. (2001). Changes in fatty acid composition 
and degree of unsaturation of (brady)rhizobia as a response to phases of 
growth, reduced water activities and mild desiccation. Antonie Van 
Leeuwenhoek 79, 73-79. 

Bowman, J.P., Lee Chang, K.J., Pinfold, T., and Ross, T. (2010). Transcriptomic and 
phenotypic responses of Listeria monocytogenes strains possessing different 
growth efficiencies under acidic conditions. Appl Environ Microbiol 76, 4836-
4850. 

Boya, P.C., Fernandez-Marin, H., Mejia, L.C., Spadafora, C., Dorrestein, P.C., and 
Gutierrez, M. (2017). Imaging mass spectrometry and MS/MS molecular 
networking reveals chemical interactions among cuticular bacteria and 
pathogenic fungi associated with fungus-growing ants. Sci Rep 7, 5604. 

Brandl, M.T. (2006). Fitness of Human Enteric Pathogens on Plants and Implications 
for Food Safety. Annual Review of Phytopathology 44, 367-392. 

Bratbak, G., and Dundas, I. (1984). Bacterial dry matter content and biomass 
estimations. Appl Environ Microbiol 48, 755-757. 

Brauge, T., Midelet-Bourdin, G., Sadovskaya, I., Faille, C., Benezech, T., Maes, E., 
and Guerardel, Y. (2015). Teichoic acid is the major polysaccharide present in 
the Listeria monocytogenes biofilm matrix. FEMS Microbiology Letters 363. 

Bridier, A., Dubois-Brissonnet, F., Boubetra, A., Thomas, V., and Briandet, R. (2010). 
The biofilm architecture of sixty opportunistic pathogens deciphered using a 
high throughput CLSM method. Journal of Microbiological Methods 82, 64-70. 

Bucur, F.I., Grigore-Gurgu, L., Crauwels, P., Riedel, C.U., and Nicolau, A.I. (2018). 
Resistance of Listeria monocytogenes to Stress Conditions Encountered in 
Food and Food Processing Environments. Front Microbiol 9, 2700. 

Burgess, C.M., Gianotti, A., Gruzdev, N., Holah, J., Knochel, S., Lehner, A., Margas, 
E., Esser, S.S., Sela Saldinger, S., and Tresse, O. (2016). The response of 
foodborne pathogens to osmotic and desiccation stresses in the food chain. Int 
J Food Microbiol 221, 37-53. 



 

 

158 

Caballero Gomez, N., Abriouel, H., Ennahar, S., and Galvez, A. (2013). Comparative 
proteomic analysis of Listeria monocytogenes exposed to enterocin AS-48 in 
planktonic and sessile states. Int J Food Microbiol 167, 202-207. 

Cabanes, D., Dehoux, P., Dussurget, O., Frangeul, L., and Cossart, P. (2002). Surface 
proteins and the pathogenic potential of Listeria monocytogenes. Trends in 
Microbiology 10, 238-245. 

Cabrita, P., Batista, S., Machado, H., Moes, S., Jeno, P., Manadas, B., Trigo, M.J., 
Monteiro, S., Ferreira, R.B., and Brito, L. (2013). Comparative analysis of the 
exoproteomes of Listeria monocytogenes strains grown at low temperatures. 
Foodborne Pathog Dis 10, 428-434. 

Cabrita, P., Trigo, M.J., Ferreira, R.B., and Brito, L. (2014). Is the Exoproteome 
Important for Bacterial Pathogenesis? Lessons Learned from Interstrain 
Exoprotein Diversity in Listeria monocytogenes Grown at Different 
Temperatures. OMICS: A Journal of Integrative Biology 18, 553-569. 

Cacace, G., Mazzeo, M.F., Sorrentino, A., Spada, V., Malorni, A., and Siciliano, R.A. 
(2010). Proteomics for the elucidation of cold adaptation mechanisms in Listeria 
monocytogenes. J Proteomics 73, 2021-2030. 

Calligaris, D., Villard, C., and Lafitte, D. (2011). Advances in top-down proteomics for 
disease biomarker discovery. J Proteomics 74, 920-934. 

Capelo, J.L., Carreira, R.J., Fernandes, L., Lodeiro, C., Santos, H.M., and Simal-
Gandara, J. (2010). Latest developments in sample treatment for 18O-isotopic 
labeling for proteomics mass spectrometry-based approaches: a critical review. 
Talanta 80, 1476-1486. 

Caprioli, R.M., Farmer, T.B., and Gile, J. (1997). Molecular imaging of biological 
samples: localization of peptides and proteins using MALDI-TOF MS. Anal 
Chem 69, 4751-4760. 

Carpentier, B., and Cerf, O. (1993). Biofilms and their consequences, with particular 
reference to hygiene in the food industry. J Appl Bacteriol 75, 499-511. 

Carvalho, F., Sousa, S., and Cabanes, D. (2014). How Listeria monocytogenes 
organizes its surface for virulence. Frontiers in Cellular and Infection 
Microbiology 4, 48. 

Castro, H., Jaakkonen, A., Hakkinen, M., Korkeala, H., and Lindström, M. (2018). 
Occurrence, Persistence, and Contamination Routes of Listeria 
monocytogenes Genotypes on Three Finnish Dairy Cattle Farms: a 
Longitudinal Study. Applied and environmental microbiology 84, e02000-
02017. 

Centeno, D., Venien, A., Pujos-Guillot, E., Astruc, T., Chambon, C., and Theron, L. 
(2017). Myofiber metabolic type determination by mass spectrometry imaging. 
J Mass Spectrom 52, 493-496. 

Cetin, M.S., Zhang, C., Hutkins, R.W., and Benson, A.K. (2004). Regulation of 
transcription of compatible solute transporters by the general stress sigma 
factor, sigmaB, in Listeria monocytogenes. J Bacteriol 186, 794-802. 



 

 

159 

Chae, M.S., Schraft, H., Truelstrup Hansen, L., and Mackereth, R. (2006). Effects of 
physicochemical surface characteristics of Listeria monocytogenes strains on 
attachment to glass. Food Microbiol 23, 250-259. 

Chaibenjawong, P., and Foster, S.J. (2011). Desiccation tolerance in Staphylococcus 
aureus. Arch Microbiol 193, 125-135. 

Chait, B.T. (2006). Mass Spectrometry: Bottom-Up or Top-Down? Science 314, 65. 

Chan, Y.C., Boor, K.J., and Wiedmann, M. (2007a). SigmaB-dependent and sigmaB-
independent mechanisms contribute to transcription of Listeria monocytogenes 
cold stress genes during cold shock and cold growth. Appl Environ Microbiol 
73, 6019-6029. 

Chan, Y.C., Raengpradub, S., Boor, K.J., and Wiedmann, M. (2007b). Microarray-
based characterization of the Listeria monocytogenes cold regulon in log- and 
stationary-phase cells. Appl Environ Microbiol 73, 6484-6498. 

Chan, Y.C., and Wiedmann, M. (2009). Physiology and genetics of Listeria 
monocytogenes survival and growth at cold temperatures. Crit Rev Food Sci 
Nutr 49, 237-253. 

Chang, Y., Gu, W., Fischer, N., and Mclandsborough, L. (2012). Identification of genes 
involved in Listeria monocytogenes biofilm formation by mariner-based 
transposon mutagenesis. Appl Microbiol Biotechnol 93, 2051-2062. 

Chang, Y., Gu, W., Zhang, F., and Mclandsborough, L. (2013). Disruption of lmo1386, 
a putative DNA translocase gene, affects biofilm formation of Listeria 
monocytogenes on abiotic surfaces. Int J Food Microbiol 161, 158-163. 

Chao, T.C., and Hansmeier, N. (2012). The current state of microbial proteomics: 
where we are and where we want to go. Proteomics 12, 638-650. 

Chaurand, P., Schwartz, S.A., and Caprioli, R.M. (2002). Imaging mass spectrometry: 
a new tool to investigate the spatial organization of peptides and proteins in 
mammalian tissue sections. Curr Opin Chem Biol 6, 676-681. 

Chavant, P., Gaillard-Martinie, B., and Hebraud, M. (2004). Antimicrobial effects of 
sanitizers against planktonic and sessile Listeria monocytogenes cells 
according to the growth phase. FEMS Microbiol Lett 236, 241-248. 

Chavant, P., Martinie, B., Meylheuc, T., Bellon-Fontaine, M.N., and Hebraud, M. 
(2002). Listeria monocytogenes LO28: surface physicochemical properties and 
ability to form biofilms at different temperatures and growth phases. Appl 
Environ Microbiol 68, 728-737. 

Clark, A.E., Kaleta, E.J., Arora, A., and Wolk, D.M. (2013). Matrix-assisted laser 
desorption ionization-time of flight mass spectrometry: a fundamental shift in 
the routine practice of clinical microbiology. Clinical microbiology reviews 26, 
547-603. 

Colagiorgi, A., Bruini, I., Di Ciccio, P.A., Zanardi, E., Ghidini, S., and Ianieri, A. (2017). 
Listeria monocytogenes Biofilms in the Wonderland of Food Industry. 
Pathogens 6. 



 

 

160 

Cole, M.B., Jones, M.V., and Holyoak, C. (1990). The effect of pH, salt concentration 
and temperature on the survival and growth of Listeria monocytogenes. J Appl 
Bacteriol 69, 63-72. 

Collins, M.D., Wallbanks, S., Lane, D.J., Shah, J., Nietupski, R., Smida, J., Dorsch, 
M., and Stackebrandt, E. (1991). Phylogenetic analysis of the genus Listeria 
based on reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 
41, 240-246. 

Colomer-Winter, C., Flores-Mireles, A.L., Baker, S.P., Frank, K.L., Lynch, A.J.L., 
Hultgren, S.J., Kitten, T., and Lemos, J.A. (2018). Manganese acquisition is 
essential for virulence of Enterococcus faecalis. PLoS pathogens 14, 
e1007102-e1007102. 

Combrouse, T., Sadovskaya, I., Faille, C., Kol, O., Guérardel, Y., and Midelet-Bourdin, 
G. (2013). Quantification of the extracellular matrix of the Listeria 
monocytogenes biofilms of different phylogenic lineages with optimization of 
culture conditions. Journal of Applied Microbiology 114, 1120-1131. 

Cordano, A.M.A., and Rocourt, J. (2001). Occurrence of Listeria monocytogenes in 
food in Chile. International Journal of Food Microbiology 70, 175-178. 

Cordero, N., Maza, F., Navea-Perez, H., Aravena, A., Marquez-Fontt, B., Navarrete, 
P., Figueroa, G., Gonzalez, M., Latorre, M., and Reyes-Jara, A. (2016). 
Different Transcriptional Responses from Slow and Fast Growth Rate Strains 
of Listeria monocytogenes Adapted to Low Temperature. Front Microbiol 7, 
229. 

Cordwell, S.J. (2006). Technologies for bacterial surface proteomics. Curr Opin 
Microbiol 9, 320-329. 

Cornett, D.S., Mobley, J.A., Dias, E.C., Andersson, M., Arteaga, C.L., Sanders, M.E., 
and Caprioli, R.M. (2006). A Novel Histology-directed Strategy for MALDI-MS 
Tissue Profiling That Improves Throughput and Cellular Specificity in Human 
Breast Cancer. Molecular & Cellular Proteomics 5, 1975. 

Cornett, D.S., Reyzer, M.L., Chaurand, P., and Caprioli, R.M. (2007). MALDI imaging 
mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 
4, 828-833. 

Cossart, P. (2002). Molecular and cellular basis of the infection by Listeria 
monocytogenes: an overview. Int J Med Microbiol 291, 401-409. 

Cossart, P., and Helenius. (2014). A. Endocytosis of viruses and bacteria. Cold Spring 
Harbor perspectives in biology 6, a016972. 

Cossart, P., and Toledo-Arana, A. (2008). Listeria monocytogenes, a unique model in 
infection biology: an overview. Microbes Infect 10, 1041-1050. 

Costerton, J.W., Cheng, K.J., Geesey, G.G., Ladd, T.I., Nickel, J.C., Dasgupta, M., 
and Marrie, T.J. (1987). Bacterial biofilms in nature and disease. Annu Rev 
Microbiol 41, 435-464. 

Costerton, J.W., Stewart, P.S., and Greenberg, E.P. (1999). Bacterial Biofilms: A 
Common Cause of Persistent Infections. Science 284, 1318. 



 

 

161 

Cotoni, L. (1942). A propos des bactéries dénommées Listerella rappel d’une 
observation ancienne de méningite chez l’homme. Ann. Inst. Pasteur 68, 92. 

Crespo Tapia, N., Den Besten, H.M.W., and Abee, T. (2018). Glycerol metabolism 
induces Listeria monocytogenes biofilm formation at the air-liquid interface. Int 
J Food Microbiol 273, 20-27. 

Csonka, L.N. (1989). Physiological and genetic responses of bacteria to osmotic 
stress. Microbiol Rev 53, 121-147. 

Cullen, P.A., Xu, X., Matsunaga, J., Sanchez, Y., Ko, A.I., Haake, D.A., and Adler, B. 
(2005). Surfaceome of Leptospira spp. Infect Immun 73, 4853-4863. 

Da Silva Fernandes, M., Kabuki, D.Y., and Kuaye, A.Y. (2015). Behavior of Listeria 
monocytogenes in a multi-species biofilm with Enterococcus faecalis and 
Enterococcus faecium and control through sanitation procedures. International 
Journal of Food Microbiology 200, 5-12. 

Davey, M.E., and O'toole G, A. (2000). Microbial biofilms: from ecology to molecular 
genetics. Microbiol Mol Biol Rev 64, 847-867. 

Davies, J.R., Svensäter, G., and Herzberg, M.C. (2009). Identification of novel 
LPXTG-linked surface proteins from Streptococcus gordonii. Microbiology 
(Reading, England) 155, 1977-1988. 

Davis, M.J., Coote, P.J., and O'byrne, C.P. (1996). Acid tolerance in Listeria 
monocytogenes: the adaptive acid tolerance response (ATR) and growth-
phase-dependent acid resistance. Microbiology 142 ( Pt 10), 2975-2982. 

De Bruijn, I., Cheng, X., De Jager, V., Expósito, R.G., Watrous, J., Patel, N., Postma, 
J., Dorrestein, P.C., Kobayashi, D., and Raaijmakers, J.M. (2015). Comparative 
genomics and metabolic profiling of the genus Lysobacter. BMC Genomics 16, 
991. 

De Noordhout, C.M., Devleesschauwer, B., Angulo, F.J., Verbeke, G., Haagsma, J., 
Kirk, M., Havelaar, A., and Speybroeck, N. (2014). The global burden of 
listeriosis: a systematic review and meta-analysis. Lancet Infect Dis 14, 1073-
1082. 

Debois, D., Jourdan, E., Smargiasso, N., Thonart, P., De Pauw, E., and Ongena, M. 
(2014). Spatiotemporal monitoring of the antibiome secreted by Bacillus 
biofilms on plant roots using MALDI mass spectrometry imaging. Anal Chem 
86, 4431-4438. 

Delves-Broughton, J., Blackburn, P., Evans, R.J., and Hugenholtz, J. (1996). 
Applications of the bacteriocin, nisin. Antonie van Leeuwenhoek 69, 193-202. 

Den Bakker, H.C., Warchocki, S., Wright, E.M., Allred, A.F., Ahlstrom, C., Manuel, 
C.S., Stasiewicz, M.J., Burrell, A., Roof, S., Strawn, L.K., Fortes, E., 
Nightingale, K.K., Kephart, D., and Wiedmann, M. (2014). Listeria floridensis 
sp. nov., Listeria aquatica sp. nov., Listeria cornellensis sp. nov., Listeria riparia 
sp. nov. and Listeria grandensis sp. nov., from agricultural and natural 
environments. International Journal of Systematic and Evolutionary 
Microbiology 64, 1882-1889. 



 

 

162 

Desvaux, M., Candela, T., and Serror, P. (2018). Surfaceome and Proteosurfaceome 
in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front 
Microbiol 9, 100. 

Desvaux, M., Dumas, E., Chafsey, I., and Hebraud, M. (2006). Protein cell surface 
display in Gram-positive bacteria: from single protein to macromolecular protein 
structure. FEMS Microbiol Lett 256, 1-15. 

Desvaux, M., and Hebraud, M. (2008). "Analysis of cell envelope proteins," in 
Handbook of Listeria.  (Florida, USA: Taylor and Francis Group), p. 359-393. 

Desvaux, M., and Hébraud, M. (2006). The protein secretion systems in Listeria: inside 
out bacterial virulence. FEMS Microbiology Reviews 30, 774-805. 

Di Bonaventura, G., Piccolomini, R., Paludi, D., D'orio, V., Vergara, A., Conter, M., and 
Ianieri, A. (2008). Influence of temperature on biofilm formation by Listeria 
monocytogenes on various food-contact surfaces: relationship with motility and 
cell surface hydrophobicity. J Appl Microbiol 104, 1552-1561. 

Ding, T., Yu, Y.Y., Hwang, C.A., Dong, Q.L., Chen, S.G., Ye, X.Q., and Liu, D.H. 
(2016). Modeling the Effect of Water Activity, pH, and Temperature on the 
Probability of Enterotoxin A Production by Staphylococcus aureus. J Food Prot 
79, 148-152. 

Dingle, T.C., and Butler-Wu, S.M. (2013). MALDI-TOF mass spectrometry for 
microorganism identification. Clin Lab Med 33, 589-609. 

Djidja, M.C., Claude, E., Snel, M.F., Francese, S., Scriven, P., Carolan, V., and 
Clench, M.R. (2010). Novel molecular tumour classification using MALDI-mass 
spectrometry imaging of tissue micro-array. Anal Bioanal Chem 397, 587-601. 

Donaldson, J.R., Hercik, K., Rai, A.N., Reddy, S., Lawrence, M.L., Nanduri, B., and 
Edelmann, M. (2015). "Chapter 8 - Listeria and - Omics Approaches for 
Understanding its Biology," in Food Safety, eds. S.C. Ricke, J.R. Donaldson & 
C.A. Phillips.  (San Diego: Academic Press), 135-158. 

Donaldson, J.R., Nanduri, B., Burgess, S.C., and Lawrence, M.L. (2009). Comparative 
proteomic analysis of Listeria monocytogenes strains F2365 and EGD. Appl 
Environ Microbiol 75, 366-373. 

Dorey, A., Marinho, C., Piveteau, P., and O'byrne, C. (2019). Role and regulation of 
the stress activated sigma factor sigma B in the saprophytic and host-
associated life stages of Listeria monocytogenes. Adv Appl Microbiol 106, 1-
48. 

Dos Santos, P.T., Menendez-Gil, P., Sabharwal, D., Christensen, J.H., Brunhede, 
M.Z., Lillebaek, E.M.S., and Kallipolitis, B.H. (2018). The Small Regulatory 
RNAs LhrC1-5 Contribute to the Response of Listeria monocytogenes to Heme 
Toxicity. Front Microbiol 9, 599. 

Dotsch, A., Eckweiler, D., Schniederjans, M., Zimmermann, A., Jensen, V., Scharfe, 
M., Geffers, R., and Haussler, S. (2012). The Pseudomonas aeruginosa 
transcriptome in planktonic cultures and static biofilms using RNA sequencing. 
PLoS One 7, e31092. 



 

 

163 

Dramsi, S., Kocks, C., Forestier, C., and Cossart, P. (1993). Internalin-mediated 
invasion of epithelial cells by Listeria monocytogenes is regulated by the 
bacterial growth state, temperature and the pleiotropic activator prfA. Mol 
Microbiol 9, 931-941. 

Dramsi, S., Lebrun, M., and Cossart, P. (1996). Molecular and genetic determinants 
involved in invasion of mammalian cells by Listeria monocytogenes. Curr Top 
Microbiol Immunol 209, 61-77. 

Dreisbach, A., Hempel, K., Buist, G., Hecker, M., Becher, D., and Van Dijl, J.M. (2010). 
Profiling the surfacome of Staphylococcus aureus. Proteomics 10, 3082-3096. 

Dreisbach, A., Van Dijl, J.M., and Buist, G. (2011). The cell surface proteome of 
Staphylococcus aureus. Proteomics 11, 3154-3168. 

Dubois-Brissonnet, F., Trotier, E., and Briandet, R. (2016). The Biofilm Lifestyle 
Involves an Increase in Bacterial Membrane Saturated Fatty Acids. Front 
Microbiol 7, 1673. 

Duche, O., Tremoulet, F., Namane, A., Labadie, J., and European Listeria Genome, 
C. (2002). A proteomic analysis of the salt stress response of Listeria 
monocytogenes. FEMS Microbiol Lett 215, 183-188. 

Dumas, E., Meunier, B., Berdague, J.L., Chambon, C., Desvaux, M., and Hebraud, M. 
(2008). Comparative analysis of extracellular and intracellular proteomes of 
Listeria monocytogenes strains reveals a correlation between protein 
expression and serovar. Appl Environ Microbiol 74, 7399-7409. 

Dumas, E., Meunier, B., Berdague, J.L., Chambon, C., Desvaux, M., and Hebraud, M. 
(2009). The origin of Listeria monocytogenes 4b isolates is signified by 
subproteomic profiling. Biochim Biophys Acta 1794, 1530-1536. 

Dupont, S., Rapoport, A., Gervais, P., and Beney, L. (2014). Survival kit of 
Saccharomyces cerevisiae for anhydrobiosis. Appl Microbiol Biotechnol 98, 
8821-8834. 

Durack, J., Ross, T., and Bowman, J.P. (2013). Characterisation of the transcriptomes 
of genetically diverse Listeria monocytogenes exposed to hyperosmotic and 
low temperature conditions reveal global stress-adaptation mechanisms. PLoS 
One 8, e73603. 

Dussurget, O., Dumas, E., Archambaud, C., Chafsey, I., Chambon, C., Hebraud, M., 
and Cossart, P. (2005). Listeria monocytogenes ferritin protects against 
multiple stresses and is required for virulence. FEMS Microbiol Lett 250, 253-
261. 

ECDC (2015). "The European Union Summary Report on Trends and Sources of 
Zoonoses, Zoonotic Agents and Foodborne Outbreaks in 2013". 

EFSA (2018). "Multi-country outbreak of Listeria monocytogenes serogroup IVb, multi-
locus sequence type 6, infections linked to frozen corn and possibly to other 
frozen vegetables – first update ". European Food Safety Authority). 



 

 

164 

Endarko, E., Maclean, M., Timoshkin, I.V., Macgregor, S.J., and Anderson, J.G. 
(2012). High-Intensity 405 nm Light Inactivation of Listeria monocytogenes. 
Photochemistry and Photobiology 88, 1280-1286. 

Enthaler, B., Bussmann, T., Pruns, J.K., Rapp, C., Fischer, M., and Vietzke, J.-P. 
(2013). Influence of various on-tissue washing procedures on the entire protein 
quantity and the quality of matrix-assisted laser desorption/ionization spectra. 
Rapid Communications in Mass Spectrometry 27, 878-884. 

Epstein, W. (2003). The roles and regulation of potassium in bacteria. Prog Nucleic 
Acid Res Mol Biol 75, 293-320. 

Esbelin, J., Santos, T., and Hebraud, M. (2018a). Desiccation: An environmental and 
food industry stress that bacteria commonly face. Food Microbiol 69, 82-88. 

Esbelin, J., Santos, T., Ribière, C., Desvaux, M., Viala, D., Chambon, C., and 
Hébraud, M. (2018b). Comparison of three methods for cell surface proteome 
extraction of Listeria monocytogenes biofilms. OMICS: A Journal of Integrative 
Biology. 

Esquenazi, E., Coates, C., Simmons, L., Gonzalez, D., Gerwick, W.H., and Dorrestein, 
P.C. (2008). Visualizing the spatial distribution of secondary metabolites 
produced by marine cyanobacteria and sponges via MALDI-TOF imaging. Mol 
Biosyst 4, 562-570. 

Falardeau, J., Walji, K., Haure, M., Fong, K., Taylor, G., Ma, Y., Smukler, S., and 
Wang, S. (2018). Native bacterial communities and Listeria monocytogenes 
survival in soils collected from the Lower Mainland of British Columbia, Canada. 
Canadian Journal of Microbiology 64, 695-705. 

Fenlon, D.R., Wilson, J., and Donachie, W. (1996). The incidence and level of Listeria 
monocytogenes contamination of food sources at primary production and initial 
processing. Journal of Applied Bacteriology 81, 641-650. 

Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., and Whitehouse, C.M. (1989). 
Electrospray ionization for mass spectrometry of large biomolecules. Science 
246, 64-71. 

Fernandez-De-Cossio, J., Gonzalez, J., Betancourt, L., Besada, V., Padron, G., 
Shimonishi, Y., and Takao, T. (1998). Automated interpretation of high-energy 
collision-induced dissociation spectra of singly protonated peptides by 'SeqMS', 
a software aid for de novo sequencing by tandem mass spectrometry. Rapid 
Commun Mass Spectrom 12, 1867-1878. 

Ferreira, V., Wiedmann, M., Teixeira, P., and Stasiewicz, M.J. (2014). Listeria 
monocytogenes persistence in food-associated environments: epidemiology, 
strain characteristics, and implications for public health. J Food Prot 77, 150-
170. 

Fleming, D.W., Cochi, S.L., Macdonald, K.L., Brondum, J., Hayes, P.S., Plikaytis, B.D., 
Holmes, M.B., Audurier, A., Broome, C.V., and Reingold, A.L. (1985). 
Pasteurized Milk as a Vehicle of Infection in an Outbreak of Listeriosis. New 
England Journal of Medicine 312, 404-407. 



 

 

165 

Floyd, K.A., Moore, J.L., Eberly, A.R., Good, J.A., Shaffer, C.L., Zaver, H., Almqvist, 
F., Skaar, E.P., Caprioli, R.M., and Hadjifrangiskou, M. (2015). Adhesive fiber 
stratification in uropathogenic Escherichia coli biofilms unveils oxygen-
mediated control of type 1 pili. PLoS Pathog 11, e1004697. 

Folio, P., Chavant, P., Chafsey, I., Belkorchia, A., Chambon, C., and Hebraud, M. 
(2004). Two-dimensional electrophoresis database of Listeria monocytogenes 
EGDe proteome and proteomic analysis of mid-log and stationary growth phase 
cells. Proteomics 4, 3187-3201. 

Franca, M.B., Panek, A.D., and Eleutherio, E.C. (2007). Oxidative stress and its effects 
during dehydration. Comp Biochem Physiol A Mol Integr Physiol 146, 621-631. 

Fredrickson, J.K., Li, S.M., Gaidamakova, E.K., Matrosova, V.Y., Zhai, M., Sulloway, 
H.M., Scholten, J.C., Brown, M.G., Balkwill, D.L., and Daly, M.J. (2008). Protein 
oxidation: key to bacterial desiccation resistance? ISME J 2, 393-403. 

Fretz, R., Sagel, U., Ruppitsch, W., Pietzka, A.T., Stöger, A., Huhulescu, S., 
Heuberger, S., Pichler, J., Much, P., Pfaff , G., Stark, K., Prager, R., Flieger, A., 
Feenstra, O., and Allerberger, F. (2010). Listeriosis outbreak caused by acid 
curd cheese ‘Quargel’, Austria and Germany 2009. Eurosurveillance 15, 19477. 

Frydenlund Michelsen, C., Hossein Khademi, S.M., Krogh Johansen, H., Ingmer, H., 
Dorrestein, P.C., and Jelsbak, L. (2016). Evolution of metabolic divergence in 
Pseudomonas aeruginosa during long-term infection facilitates a proto-
cooperative interspecies interaction. ISME J 10, 1323-1336. 

Gahan, C.G., O'mahony, J., and Hill, C. (2001). Characterization of the groESL operon 
in Listeria monocytogenes: utilization of two reporter systems (gfp and hly) for 
evaluating in vivo expression. Infection and immunity 69, 3924-3932. 

Gandhi, M., and Chikindas, M.L. (2007). Listeria: A foodborne pathogen that knows 
how to survive. Int J Food Microbiol 113, 1-15. 

García-Fontana, C., Narváez-Reinaldo, J.J., Castillo, F., González-López, J., Luque, 
I., and Manzanera, M. (2016). A New Physiological Role for the DNA Molecule 
as a Protector against Drying Stress in Desiccation-Tolerant Microorganisms. 
Frontiers in Microbiology 7, 2066. 

Garmiri, P., Coles, K.E., Humphrey, T.J., and Cogan, T.A. (2008). Role of outer 
membrane lipopolysaccharides in the protection of Salmonella enterica serovar 
Typhimurium from desiccation damage. FEMS Microbiol Lett 281, 155-159. 

Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W., and Gygi, S.P. (2003). 
Absolute quantification of proteins and phosphoproteins from cell lysates by 
tandem MS. Proc Natl Acad Sci U S A 100, 6940-6945. 

Gerner-Smidt, P., Ethelberg, S., Schiellerup, P., Christensen, J.J., Engberg, J., 
Fussing, V., Jensen, A., Jensen, C., Petersen, A.M., and Bruun, B.G. (2005). 
Invasive listeriosis in Denmark 1994-2003: a review of 299 cases with special 
emphasis on risk factors for mortality. Clin Microbiol Infect 11, 618-624. 

Ghosh, B.K., and Carroll, K.K. (1968). Isolation, composition, and structure of 
membrane of Listeria monocytogenes. Journal of bacteriology 95, 688-699. 



 

 

166 

Giaouris, E., Heir, E., Desvaux, M., Hébraud, M., Møretrø, T., Langsrud, S., 
Doulgeraki, A., Nychas, G.-J., Kačániová, M., Czaczyk, K., Ölmez, H., and 
Simões, M. (2015). Intra- and inter-species interactions within biofilms of 
important foodborne bacterial pathogens. Frontiers in Microbiology 6. 

Giaouris, E., Heir, E., Hebraud, M., Chorianopoulos, N., Langsrud, S., Moretro, T., 
Habimana, O., Desvaux, M., Renier, S., and Nychas, G.J. (2014). Attachment 
and biofilm formation by foodborne bacteria in meat processing environments: 
causes, implications, role of bacterial interactions and control by alternative 
novel methods. Meat Sci 97, 298-309. 

Gibson, D.L., White, A.P., Snyder, S.D., Martin, S., Heiss, C., Azadi, P., Surette, M., 
and Kay, W.W. (2006). Salmonella produces an O-antigen capsule regulated 
by AgfD and important for environmental persistence. J Bacteriol 188, 7722-
7730. 

Gillesberg Lassen, S., Ethelberg, S., Björkman, J.T., Jensen, T., Sørensen, G., 
Kvistholm Jensen, A., Müller, L., Nielsen, E.M., and Mølbak, K. (2016). Two 
listeria outbreaks caused by smoked fish consumption-using whole-genome 
sequencing for outbreak investigations. Clinical Microbiology and Infection 22, 
620-624. 

Gilmore, J.M., and Washburn, M.P. (2010). Advances in shotgun proteomics and the 
analysis of membrane proteomes. J Proteomics 73, 2078-2091. 

Giovannacci, I., Ermel, G., Salvat, G., Vendeuvre, J.L., and Bellon-Fontaine, M.N. 
(2000). Physicochemical surface properties of five Listeria monocytogenes 
strains from a pork-processing environment in relation to serotypes, genotypes 
and growth temperature. Journal of Applied Microbiology 88, 992-1000. 

Glaser, P., Frangeul, L., Buchrieser, C., Rusniok, C., Amend, A., Baquero, F., Berche, 
P., Bloecker, H., Brandt, P., Chakraborty, T., Charbit, A., Chetouani, F., Couve, 
E., De Daruvar, A., Dehoux, P., Domann, E., Dominguez-Bernal, G., Duchaud, 
E., Durant, L., Dussurget, O., Entian, K.D., Fsihi, H., Garcia-Del Portillo, F., 
Garrido, P., Gautier, L., Goebel, W., Gomez-Lopez, N., Hain, T., Hauf, J., 
Jackson, D., Jones, L.M., Kaerst, U., Kreft, J., Kuhn, M., Kunst, F., Kurapkat, 
G., Madueno, E., Maitournam, A., Vicente, J.M., Ng, E., Nedjari, H., Nordsiek, 
G., Novella, S., De Pablos, B., Perez-Diaz, J.C., Purcell, R., Remmel, B., Rose, 
M., Schlueter, T., Simoes, N., Tierrez, A., Vazquez-Boland, J.A., Voss, H., 
Wehland, J., and Cossart, P. (2001). Comparative genomics of Listeria species. 
Science 294, 849-852. 

Goldstein, J., Pollitt, N.S., and Inouye, M. (1990). Major cold shock protein of 
Escherichia coli. Proceedings of the National Academy of Sciences of the 
United States of America 87, 283-287. 

Gonzalez, D.J., Xu, Y., Yang, Y.-L., Esquenazi, E., Liu, W.-T., Edlund, A., Duong, T., 
Du, L., Molnár, I., Gerwick, W.H., Jensen, P.R., Fischbach, M., Liaw, C.-C., 
Straight, P., Nizet, V., and Dorrestein, P.C. (2012). Observing the invisible 
through imaging mass spectrometry, a window into the metabolic exchange 
patterns of microbes. Journal of Proteomics 75, 5069-5076. 

Grandi, G. (2006). Genomics and proteomics in reverse vaccines. Methods Biochem 
Anal 49, 379-393. 



 

 

167 

Granholm, V., and Kall, L. (2011). Quality assessments of peptide-spectrum matches 
in shotgun proteomics. Proteomics 11, 1086-1093. 

Grant, W.D. (2004). Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359, 
1249-1266; discussion 1266-1247. 

Graumann, P., Wendrich, T.M., Weber, M.H.W., Schröder, K., and Marahiel, M.A. 
(1997). A family of cold shock proteins in Bacillus subtilis is essential for cellular 
growth and for efficient protein synthesis at optimal and low temperatures. 
Molecular Microbiology 25, 741-756. 

Gray, J.A., Chandry, P.S., Kaur, M., Kocharunchitt, C., Bowman, J.P., and Fox, E.M. 
(2018). Novel Biocontrol Methods for Listeria monocytogenes Biofilms in Food 
Production Facilities. Front Microbiol 9, 605. 

Gray, M.L., and Killinger, A.H. (1966). Listeria monocytogenes and listeric infections. 
Bacteriological reviews 30, 309-382. 

Greene, S.L., and Freitag, N.E. (2003). Negative regulation of PrfA, the key activator 
of Listeria monocytogenes virulence gene expression, is dispensable for 
bacterial pathogenesis. Microbiology 149, 111-120. 

Griffin, A.M., and Robbins, M.L. (1944). The Flagellation of Listeria Monocytogenes. 
Journal of bacteriology 48, 114-115. 

Griffin, P.R., Coffman, J.A., Hood, L.E., and Yates, J.R. (1991). Structural analysis of 
proteins by capillary HPLC electrospray tandem mass spectrometry. 
International Journal of Mass Spectrometry and Ion Processes 111, 131-149. 

Groseclose, M.R., Andersson, M., Hardesty, W.M., and Caprioli, R.M. (2007). 
Identification of proteins directly from tissue: in situ tryptic digestions coupled 
with imaging mass spectrometry. J Mass Spectrom 42, 254-262. 

Gross, M., Cramton, S.E., Gotz, F., and Peschel, A. (2001). Key role of teichoic acid 
net charge in Staphylococcus aureus colonization of artificial surfaces. Infect 
Immun 69, 3423-3426. 

Gudmundsdottir, K.B., Svansson, V., Gunnarsson, E., Sigurdarson, S., and Aalbæk, 
B. (2004). Listeria monocytogenes in horses in Iceland. Veterinary Record 155, 
456. 

Guilbaud, M., Piveteau, P., Desvaux, M., Brisse, S., and Briandet, R. (2015). Exploring 
the diversity of Listeria monocytogenes biofilm architecture by high-throughput 
confocal laser scanning microscopy and the predominance of the honeycomb-
like morphotype. Appl Environ Microbiol 81, 1813-1819. 

Gulez, G., Dechesne, A., Workman, C.T., and Smets, B.F. (2012). Transcriptome 
dynamics of Pseudomonas putida KT2440 under water stress. Appl Environ 
Microbiol 78, 676-683. 

Hächler, H., Marti, G., Giannini, P., Lehner, A., Jost, M., Beck, J., Weiss, F., Bally, B., 
Jermini, M., Stephan, R., and Baumgartner, A. (2013). Outbreak of listerosis 
due to imported cooked ham, Switzerland 2011. Eurosurveillance 18, 20469. 

Hackett, M. (2008). Science, marketing and wishful thinking in quantitative proteomics. 
Proteomics 8, 4618-4623. 



 

 

168 

Hain, T., Hossain, H., Chatterjee, S.S., Machata, S., Volk, U., Wagner, S., Brors, B., 
Haas, S., Kuenne, C.T., Billion, A., Otten, S., Pane-Farre, J., Engelmann, S., 
and Chakraborty, T. (2008). Temporal transcriptomic analysis of the Listeria 
monocytogenes EGD-e sigmaB regulon. BMC microbiology 8, 20-20. 

Hanawa, T., Yamanishi, S., Murayama, S., Yamamoto, T., and Kamiya, S. (2002). 
Participation of DnaK in expression of genes involved in virulence of Listeria 
monocytogenes. FEMS Microbiology Letters 214, 69-75. 

Hanna, S.E., and Wang, H.H. (2006). Biofilm Development by Listeria 
monocytogenes. Biofilms in the Food Environment. 

Hansen, L.T., and Vogel, B.F. (2011). Desiccation of adhering and biofilm Listeria 
monocytogenes on stainless steel: Survival and transfer to salmon products. 
Int J Food Microbiol 146, 88-93. 

Hardman, M., and Makarov, A.A. (2003). Interfacing the Orbitrap Mass Analyzer to an 
Electrospray Ion Source. Analytical Chemistry 75, 1699-1705. 

Harland, C.W., Rabuka, D., Bertozzi, C.R., and Parthasarathy, R. (2008). The 
Mycobacterium tuberculosis virulence factor trehalose dimycolate imparts 
desiccation resistance to model mycobacterial membranes. Biophys J 94, 
4718-4724. 

Harmsen, M., Lappann, M., Knochel, S., and Molin, S. (2010). Role of extracellular 
DNA during biofilm formation by Listeria monocytogenes. Appl Environ 
Microbiol 76, 2271-2279. 

Haslberger, T., Bukau, B., and Mogk, A. (2010). Towards a unifying mechanism for 
ClpB/Hsp104-mediated protein disaggregation and prion propagation. Biochem 
Cell Biol 88, 63-75. 

Hayman, M.M., Anantheswaran, R.C., and Knabel, S.J. (2008). Heat shock induces 
barotolerance in Listeria monocytogenes. J Food Prot 71, 426-430. 

He, L., Deng, Q.L., Chen, M.T., Wu, Q.P., and Lu, Y.J. (2015). Proteomics analysis of 
Listeria monocytogenes ATCC 19115 in response to simultaneous triple 
stresses. Arch Microbiol 197, 833-841. 

Hebraud, M. (2014). Analysis of Listeria monocytogenes subproteomes. Methods Mol 
Biol 1157, 109-128. 

Hebraud, M., and Guzzo, J. (2000). The main cold shock protein of Listeria 
monocytogenes belongs to the family of ferritin-like proteins. FEMS Microbiol 
Lett 190, 29-34. 

Hebraud, M., and Potier, P. (1999). Cold shock response and low temperature 
adaptation in psychrotrophic bacteria. J Mol Microbiol Biotechnol 1, 211-219. 

Hebraud, M., and Potier, P. (2000). "Cold acclimation and cold-shock response in 
psychrotrophic bacteria," in Cold shock response and adaptation., ed. M.I.a.K. 
Yamanaka.  (Norfolk, England: Horizon Scientific Press). 

Heiman, K.E., Garalde, V.B., Gronostaj, M., Jackson, K.A., Beam, S., Joseph, L., 
Saupe, A., Ricotta, E., Waechter, H., Wellman, A., Adams-Cameron, M., Ray, 
G., Fields, A., Chen, Y., Datta, A., Burall, L., Sabol, A., Kucerova, Z., Trees, E., 



 

 

169 

Metz, M., Leblanc, P., Lance, S., Griffin, P.M., Tauxe, R.V., and Silk, B.J. 
(2015). Multistate outbreak of listeriosis caused by imported cheese and 
evidence of cross-contamination of other cheeses, USA, 2012. Epidemiology 
and Infection 144, 2698-2708. 

Hempel, K., Herbst, F.A., Moche, M., Hecker, M., and Becher, D. (2011). Quantitative 
proteomic view on secreted, cell surface-associated, and cytoplasmic proteins 
of the methicillin-resistant human pathogen Staphylococcus aureus under iron-
limited conditions. J Proteome Res 10, 1657-1666. 

Hempel, K., Pane-Farre, J., Otto, A., Sievers, S., Hecker, M., and Becher, D. (2010). 
Quantitative cell surface proteome profiling for SigB-dependent protein 
expression in the human pathogen Staphylococcus aureus via biotinylation 
approach. J Proteome Res 9, 1579-1590. 

Hernandez-Milian, A., and Payeras-Cifre, A. (2014). What Is New in Listeriosis? 
BioMed Research International 2014, 7. 

Hershkovitz, N., Oren, A., and Cohen, Y. (1991). Accumulation of trehalose and 
sucrose in cyanobacteria exposed to matric water stress. Appl Environ 
Microbiol 57, 645-648. 

Hingston, P.A., Stea, E.C., Knochel, S., and Hansen, T. (2013). Role of initial 
contamination levels, biofilm maturity and presence of salt and fat on 
desiccation survival of Listeria monocytogenes on stainless steel surfaces. 
Food Microbiol 36, 46-56. 

Hiramatsu, R., Matsumoto, M., Sakae, K., and Miyazaki, Y. (2005). Ability of Shiga 
toxin-producing Escherichia coli and Salmonella spp. to survive in a desiccation 
model system and in dry foods. Appl Environ Microbiol 71, 6657-6663. 

Hirano, S.S., and Upper, C.D. (2000). Bacteria in the leaf ecosystem with emphasis 
on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiol 
Mol Biol Rev 64, 624-653. 

Hoffmann, T., and Dorrestein, P.C. (2015). Homogeneous matrix deposition on dried 
agar for MALDI imaging mass spectrometry of microbial cultures. J Am Soc 
Mass Spectrom 26, 1959-1962. 

Houtsma, P.C., De Wit, J.C., and Rombouts, F.M. (1993). Minimum inhibitory 
concentration (MIC) of sodium lactate for pathogens and spoilage organisms 
occurring in meat products. Int J Food Microbiol 20, 247-257. 

Hu, Q., Noll, R.J., Li, H., Makarov, A., Hardman, M., and Graham Cooks, R. (2005). 
The Orbitrap: a new mass spectrometer. Journal of Mass Spectrometry 40, 
430-443. 

Hu, Y., Oliver, H.F., Raengpradub, S., Palmer, M.E., Orsi, R.H., Wiedmann, M., and 
Boor, K.J. (2007). Transcriptomic and phenotypic analyses suggest a network 
between the transcriptional regulators HrcA and sigmaB in Listeria 
monocytogenes. Appl Environ Microbiol 73, 7981-7991. 

Huber, C., and Huber, L. (2010). Special focus on top-down proteomics. Proteomics 
10, 3564-3565. 



 

 

170 

Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M.C., 
Rattei, T., Mende, D.R., Sunagawa, S., Kuhn, M., Jensen, L.J., Von mering, C., 
and Bork, P. (2016). eggNOG 4.5: a hierarchical orthology framework with 
improved functional annotations for eukaryotic, prokaryotic and viral 
sequences. Nucleic Acids Research 44, D286-D293. 

Hunger, K., Beckering, C.L., Wiegeshoff, F., Graumann, P.L., and Marahiel, M.A. 
(2006). Cold-induced putative DEAD box RNA helicases CshA and CshB are 
essential for cold adaptation and interact with cold shock protein B in Bacillus 
subtilis. J Bacteriol 188, 240-248. 

Hutchison, M.L., Walters, L.D., Avery, S.M., Synge, B.A., and Moore, A. (2004). Levels 
of zoonotic agents in British livestock manures. Lett Appl Microbiol 39, 207-214. 

Hwang, C.A., Porto-Fett, A.C., Juneja, V.K., Ingham, S.C., Ingham, B.H., and 
Luchansky, J.B. (2009). Modeling the survival of Escherichia coli O157:H7, 
Listeria monocytogenes, and Salmonella Typhimurium during fermentation, 
drying, and storage of soudjouk-style fermented sausage. Int J Food Microbiol 
129, 244-252. 

Impens, F., Rolhion, N., Radoshevich, L., Becavin, C., Duval, M., Mellin, J., Garcia Del 
Portillo, F., Pucciarelli, M.G., Williams, A.H., and Cossart, P. (2017). N-
terminomics identifies Prli42 as a membrane miniprotein conserved in 
Firmicutes and critical for stressosome activation in Listeria monocytogenes. 
Nat Microbiol 2, 17005. 

Ireton, K. (2007). Entry of the bacterial pathogen Listeria monocytogenes into 
mammalian cells. Cellular Microbiology 9, 1365-1375. 

Ivanek, R., Grohn, Y.T., Tauer, L.W., and Wiedmann, M. (2004). The cost and benefit 
of Listeria monocytogenes food safety measures. Crit Rev Food Sci Nutr 44, 
513-523. 

Jacks, A., Pihlajasaari, A., Vahe, M., Myntti, A., Kaukoranta, S.S., Elomaa, N., 
Salmenlinna, S., Rantala, L., Lahti, K., Huusko, S., Kuusi, M., Siitonen, A., and 
Rimhanen-Finne, R. (2015). Outbreak of hospital-acquired gastroenteritis and 
invasive infection caused by Listeria monocytogenes, Finland, 2012. 
Epidemiology and Infection 144, 2732-2742. 

Jiang, H., Zou, H., Wang, H., Zhang, Q., Ni, J., Zhang, Q., Guo, Z., and Chen, X. 
(2000). Combination of MALDI-TOF mass spectrometry with immobilized 
enzyme microreactor for peptide mapping. Science in China Series B: 
Chemistry 43, 625-633. 

Johansson, J., Mandin, P., Renzoni, A., Chiaruttini, C., Springer, M., and Cossart, P. 
(2002). An RNA thermosensor controls expression of virulence genes in 
Listeria monocytogenes. Cell 110, 551-561. 

Johnson, L.R. (2008). Microcolony and biofilm formation as a survival strategy for 
bacteria. J Theor Biol 251, 24-34. 

Karatan, E., and Watnick, P. (2009). Signals, regulatory networks, and materials that 
build and break bacterial biofilms. Microbiol Mol Biol Rev 73, 310-347. 



 

 

171 

Kaspar, S., Peukert, M., Svatos, A., Matros, A., and Mock, H.P. (2011). MALDI-
imaging mass spectrometry - An emerging technique in plant biology. 
Proteomics 11, 1840-1850. 

Kastbjerg, V.G., and Gram, L. (2012). Industrial disinfectants do not select for 
resistance in Listeria monocytogenes following long term exposure. 
International Journal of Food Microbiology 160, 11-15. 

Kathariou, S. (2002). Listeria monocytogenes virulence and pathogenicity, a food 
safety perspective. J Food Prot 65, 1811-1829. 

Kaur, G., Singh, T.P., and Malik, R.K. (2013). Antibacterial efficacy of Nisin, Pediocin 
34 and Enterocin FH99 against Listeria monocytogenes and cross resistance 
of its bacteriocin resistant variants to common food preservatives. Brazilian 
journal of microbiology : [publication of the Brazilian Society for Microbiology] 
44, 63-71. 

Kawaguchi, T., and Decho, A.W. (2000). Biochemical characterization of 
cyanobacterial extracellular polymers (EPS) from modern marine stromatolites 
(Bahamas). Prep Biochem Biotechnol 30, 321-330. 

Kazmierczak, M.J., Mithoe, S.C., Boor, K.J., and Wiedmann, M. (2003). Listeria 
monocytogenes sigma B regulates stress response and virulence functions. J 
Bacteriol 185, 5722-5734. 

Khemiri, A., Jouenne, T., and Cosette, P. (2016). Proteomics dedicated to 
biofilmology: What have we learned from a decade of research? Med Microbiol 
Immunol 205, 1-19. 

Kim, Y.E., Hipp, M.S., Bracher, A., Hayer-Hartl, M., and Hartl, F.U. (2013). Molecular 
chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82, 
323-355. 

Kingsley, M.A., Gaul, L.K., Farag, N.H., Shim, T., Silk, B.J., and Hyytia-Trees, E. 
(2012). Hospital-Acquired Listeriosis Outbreak Caused by Contaminated Diced 
Celery—Texas, 2010. Clinical Infectious Diseases 56, 20-26. 

Kirk, M.D., Pires, S.M., Black, R.E., Caipo, M., Crump, J.A., Devleesschauwer, B., 
Dopfer, D., Fazil, A., Fischer-Walker, C.L., Hald, T., Hall, A.J., Keddy, K.H., 
Lake, R.J., Lanata, C.F., Torgerson, P.R., Havelaar, A.H., and Angulo, F.J. 
(2015). World Health Organization Estimates of the Global and Regional 
Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 
2010: A Data Synthesis. PLoS Med 12, e1001921. 

Koch, J., Dworak, R., Prager, R., Becker, B., Brockmann, S., Wicke, A., Wichmann-
Schauer, H., Hof, H., Werber, D., and Stark, K. (2010). Large Listeriosis 
Outbreak Linked to Cheese Made from Pasteurized Milk, Germany, 2006–
2007. Foodborne Pathogens and Disease 7, 1581-1584. 

Koeniger, S.L., Talaty, N., Luo, Y., Ready, D., Voorbach, M., Seifert, T., Cepa, S., 
Fagerland, J.A., Bouska, J., Buck, W., Johnson, R.W., and Spanton, S. (2011). 
A quantitation method for mass spectrometry imaging. Rapid Communications 
in Mass Spectrometry 25, 503-510. 



 

 

172 

Kolter, R., and Greenberg, E.P. (2006). Microbial sciences: the superficial life of 
microbes. Nature 441, 300-302. 

Korsak, D., Markiewicz, Z., Gutkind, G.O., and Ayala, J.A. (2010). Identification of the 
full set of Listeria monocytogenes penicillin-binding proteins and 
characterization of PBPD2 (Lmo2812). BMC Microbiol 10, 239. 

Korsak, D., and Szuplewska, M. (2016). Characterization of nonpathogenic Listeria 
species isolated from food and food processing environment. Int J Food 
Microbiol 238, 274-280. 

Kortebi, M., Milohanic, E., Mitchell, G., Pechoux, C., Prevost, M.C., Cossart, P., and 
Bierne, H. (2017). Listeria monocytogenes switches from dissemination to 
persistence by adopting a vacuolar lifestyle in epithelial cells. PLoS Pathog 13, 
e1006734. 

Kostaki, M., Chorianopoulos, N., Braxou, E., Nychas, G.J., and Giaouris, E. (2012). 
Differential biofilm formation and chemical disinfection resistance of sessile 
cells of Listeria monocytogenes strains under monospecies and dual-species 
(with Salmonella enterica) conditions. Appl Environ Microbiol 78, 2586-2595. 

Koyama, K., Hokunan, H., Hasegawa, M., Kawamura, S., and Koseki, S. (2016). 
Modeling stochastic variability in number of surviving cells of Salmonella 
enterica, enterohemorrhagic Escherichia coli, and Listeria monocytogenes at 
the single-cell level in a desiccation environment. Appl Environ Microbiol. 

Krisko, A., Smole, Z., Debret, G., Nikolic, N., and Radman, M. (2010). Unstructured 
hydrophilic sequences in prokaryotic proteomes correlate with dehydration 
tolerance and host association. J Mol Biol 402, 775-782. 

Kuda, T., Shibata, G., Takahashi, H., and Kimura, B. (2015). Effect of quantity of food 
residues on resistance to desiccation of food-related pathogens adhered to a 
stainless steel surface. Food Microbiol 46, 234-238. 

Kumar, A., Alam, A., Rani, M., Ehtesham, N.Z., and Hasnain, S.E. (2017). Biofilms: 
Survival and defense strategy for pathogens. International Journal of Medical 
Microbiology 307, 481-489. 

Kurazono, M., Nakamura, K., Yamada, M., Yonemaru, T., and Sakoda, T. (2003). 
Pathology of Listerial Encephalitis in Chickens in Japan. Avian Diseases 47, 
1496-1502. 

Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, 
K., Dewar, K., Doyle, M., Fitzhugh, W., Funke, R., Gage, D., Harris, K., Heaford, 
A., Howland, J., Kann, L., Lehoczky, J., Levine, R., Mcewan, P., Mckernan, K., 
Meldrim, J., Mesirov, J.P., Miranda, C., Morris, W., Naylor, J., Raymond, C., 
Rosetti, M., Santos, R., Sheridan, A., Sougnez, C., Stange-Thomann, Y., 
Stojanovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J., 
Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C., Carter, N., Coulson, 
A., Deadman, R., Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French, 
L., Grafham, D., Gregory, S., Hubbard, T., Humphray, S., Hunt, A., Jones, M., 
Lloyd, C., Mcmurray, A., Matthews, L., Mercer, S., Milne, S., Mullikin, J.C., 
Mungall, A., Plumb, R., Ross, M., Shownkeen, R., Sims, S., Waterston, R.H., 
Wilson, R.K., Hillier, L.W., Mcpherson, J.D., Marra, M.A., Mardis, E.R., Fulton, 



 

 

173 

L.A., Chinwalla, A.T., Pepin, K.H., Gish, W.R., Chissoe, S.L., Wendl, M.C., 
Delehaunty, K.D., Miner, T.L., Delehaunty, A., Kramer, J.B., Cook, L.L., Fulton, 
R.S., Johnson, D.L., Minx, P.J., Clifton, S.W., Hawkins, T., Branscomb, E., 
Predki, P., Richardson, P., Wenning, S., Slezak, T., Doggett, N., Cheng, J.F., 
Olsen, A., Lucas, S., Elkin, C., Uberbacher, E., Frazier, M., et al. (2001). Initial 
sequencing and analysis of the human genome. Nature 409, 860-921. 

Lasa, I., and Penadés, J.R. (2006). Bap: A family of surface proteins involved in biofilm 
formation. Research in Microbiology 157, 99-107. 

Leblanc, J.C., Goncalves, E.R., and Mohn, W.W. (2008). Global response to 
desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl 
Environ Microbiol 74, 2627-2636. 

Leblanc, L., Leboeuf, C., Leroi, F., Hartke, A., and Auffray, Y. (2003). Comparison 
between NaCl tolerance response and acclimation to cold temperature in 
Shewanella putrefaciens. Curr Microbiol 46, 157-162. 

Ledala, N., Sengupta, M., Muthaiyan, A., Wilkinson, B.J., and Jayaswal, R.K. (2010). 
Transcriptomic response of Listeria monocytogenes to iron limitation and Fur 
mutation. Appl Environ Microbiol 76, 406-416. 

Lee, B.-H., Hébraud, M., and Bernardi, T. (2017). Increased Adhesion of Listeria 
monocytogenes Strains to Abiotic Surfaces under Cold Stress. Frontiers in 
Microbiology 8. 

Lee, J.J., Lee, G., and Shin, J.H. (2014). sigma(B) affects biofilm formation under the 
dual stress conditions imposed by adding salt and low temperature in Listeria 
monocytogenes. J Microbiol 52, 849-855. 

Lee, K.C., Yeo, W.S., and Roe, J.H. (2008). Oxidant-responsive induction of the suf 
operon, encoding a Fe-S assembly system, through Fur and IscR in 
Escherichia coli. J Bacteriol 190, 8244-8247. 

Lemaire, R., Desmons, A., Tabet, J.C., Day, R., Salzet, M., and Fournier, I. (2007). 
Direct Analysis and MALDI Imaging of Formalin-Fixed, Paraffin-Embedded 
Tissue Sections. Journal of Proteome Research 6, 1295-1305. 

Lemon, K.P., Freitag, N.E., and Kolter, R. (2010). The virulence regulator PrfA 
promotes biofilm formation by Listeria monocytogenes. J Bacteriol 192, 3969-
3976. 

Lemon, K.P., Higgins, D.E., and Kolter, R. (2007). Flagellar motility is critical for 
Listeria monocytogenes biofilm formation. Journal of bacteriology 189, 4418-
4424. 

Lequette, Y., Boels, G., Clarisse, M., and Faille, C. (2010). Using enzymes to remove 
biofilms of bacterial isolates sampled in the food-industry. Biofouling 26, 421-
431. 

Li, H., Han, J., Pan, J., Liu, T., Parker, C.E., and Borchers, C.H. (2017). Current trends 
in quantitative proteomics – an update. Journal of Mass Spectrometry 52, 319-
341. 



 

 

174 

Liao, P.-C., and Allison, J. (1995). Dissecting matrix-assisted laser 
desorption/ionization mass spectra. Journal of Mass Spectrometry 30, 763-766. 

Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C., and Zylicz, M. (1991). 
Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase 
activity of DnaK. Proc Natl Acad Sci U S A 88, 2874-2878. 

Lim, K.H., Jones, C.E., Vanden Hoven, R.N., Edwards, J.L., Falsetta, M.L., Apicella, 
M.A., Jennings, M.P., and Mcewan, A.G. (2008). Metal binding specificity of the 
MntABC permease of Neisseria gonorrhoeae and its influence on bacterial 
growth and interaction with cervical epithelial cells. Infect Immun 76, 3569-
3576. 

Lim, S.Y., Teh, C.S.J., and Thong, K.L. (2017). Biofilm-Related Diseases and Omics: 
Global Transcriptional Profiling of Enterococcus faecium Reveals Different 
Gene Expression Patterns in the Biofilm and Planktonic Cells. OMICS 21, 592-
602. 

Limoli, D.H., Jones, C.J., and Wozniak, D.J. (2015). Bacterial Extracellular 
Polysaccharides in Biofilm Formation and Function. Microbiol Spectr 3. 

Linke, K., Ruckerl, I., Brugger, K., Karpiskova, R., Walland, J., Muri-Klinger, S., Tichy, 
A., Wagner, M., and Stessl, B. (2014). Reservoirs of listeria species in three 
environmental ecosystems. Appl Environ Microbiol 80, 5583-5592. 

Linnan, M.J., Mascola, L., Lou, X.D., Goulet, V., May, S., Salminen, C., Hird, D.W., 
Yonekura, M.L., Hayes, P., Weaver, R., Audurier, A., Plikaytis, B.D., Fannin, 
S.L., Kleks, A., and Broome, C.V. (1988). Epidemic Listeriosis Associated with 
Mexican-Style Cheese. New England Journal of Medicine 319, 823-828. 

Liu, D. (2013). Molecular approaches to the identification of pathogenic and 
nonpathogenic listeriae. Microbiol Insights 6, 59-69. 

Liu, H., Sadygov, R.G., and Yates, J.R., 3rd (2004). A model for random sampling and 
estimation of relative protein abundance in shotgun proteomics. Anal Chem 76, 
4193-4201. 

Liu, S., Graham, J.E., Bigelow, L., Morse, P.D., 2nd, and Wilkinson, B.J. (2002). 
Identification of Listeria monocytogenes genes expressed in response to 
growth at low temperature. Appl Environ Microbiol 68, 1697-1705. 

Lomonaco, S., Nucera, D., and Filipello, V. (2015). The evolution and epidemiology of 
Listeria monocytogenes in Europe and the United States. Infection, Genetics 
and Evolution 35, 172-183. 

Lotfollahi, L., Chaharbalesh, A., Ahangarzadeh Rezaee, M., and Hasani, A. (2017). 
Prevalence, antimicrobial susceptibility and multiplex PCR-serotyping of 
Listeria monocytogenes isolated from humans, foods and livestock in Iran. 
Microbial Pathogenesis 107, 425-429. 

Luque-Sastre, L., Fox, E.M., Jordan, K., and Fanning, S. (2018). A Comparative Study 
of the Susceptibility of Listeria Species to Sanitizer Treatments When Grown 
under Planktonic and Biofilm Conditions. J Food Prot 81, 1481-1490. 



 

 

175 

Mackaness, G.B. (1962). Cellular resistance to infection. The Journal of experimental 
medicine 116, 381-406. 

Magalhães, R., Almeida, G., Ferreira, V., Santos, I., Silva, J., Mendes, M.M., Pita, J., 
Mariano, G., Mâncio, I., Sousa, M.M., Farber, J., Pagotto, F., and Teixeira, P. 
(2015). Cheese-related listeriosis outbreak, Portugal, March 2009 to February 
2012. Eurosurveillance 20, 21104. 

Maier, S.K., Hahne, H., Gholami, A.M., Balluff, B., Meding, S., Schoene, C., Walch, 
A.K., and Kuster, B. (2013). Comprehensive identification of proteins from 
MALDI imaging. Mol Cell Proteomics 12, 2901-2910. 

Makarov, A. (2000). Electrostatic axially harmonic orbital trapping: a high-performance 
technique of mass analysis. Anal Chem 72, 1156-1162. 

Makarova, K.S., Aravind, L., Wolf, Y.I., Tatusov, R.L., Minton, K.W., Koonin, E.V., and 
Daly, M.J. (2001). Genome of the extremely radiation-resistant bacterium 
Deinococcus radiodurans viewed from the perspective of comparative 
genomics. Microbiol Mol Biol Rev 65, 44-79. 

Malen, H., Berven, F.S., Fladmark, K.E., and Wiker, H.G. (2007). Comprehensive 
analysis of exported proteins from Mycobacterium tuberculosis H37Rv. 
Proteomics 7, 1702-1718. 

Malmstrom, L., Malmstrom, J., and Aebersold, R. (2011). Quantitative proteomics of 
microbes: Principles and applications to virulence. Proteomics 11, 2947-2956. 

Marchetti-Deschmann, M., and Allmaier, G. (2011). Mass spectrometry - One of the 
pillars of proteomics. J Proteomics 74, 915-919. 

Markkula, A., Mattila, M., Lindstrom, M., and Korkeala, H. (2012). Genes encoding 
putative DEAD-box RNA helicases in Listeria monocytogenes EGD-e are 
needed for growth and motility at 3 degrees C. Environ Microbiol 14, 2223-
2232. 

Marles-Wright, J., and Lewis, Richard j. (2010). The stressosome: molecular 
architecture of a signalling hub. Biochemical Society Transactions 38, 928. 

Martin-Lorenzo, M., Alvarez-Llamas, G., Mcdonnell, L.A., and Vivanco, F. (2016). 
Molecular histology of arteries: mass spectrometry imaging as a novel ex vivo 
tool to investigate atherosclerosis. Expert Rev Proteomics 13, 69-81. 

Mata, M.M., Da Silva, W.P., Wilson, R., Lowe, E., and Bowman, J.P. (2015). Attached 
and planktonic Listeria monocytogenes global proteomic responses and 
associated influence of strain genetics and temperature. J Proteome Res 14, 
1161-1173. 

Mattick, K.L., Jorgensen, F., Legan, J.D., Cole, M.B., Porter, J., Lappin-Scott, H.M., 
and Humphrey, T.J. (2000). Survival and filamentation of Salmonella enterica 
serovar enteritidis PT4 and Salmonella enterica serovar typhimurium DT104 at 
low water activity. Appl Environ Microbiol 66, 1274-1279. 

Mattila, M., Lindstrom, M., Somervuo, P., Markkula, A., and Korkeala, H. (2011). Role 
of flhA and motA in growth of Listeria monocytogenes at low temperatures. Int 
J Food Microbiol 148, 177-183. 



 

 

176 

Mattila, M., Somervuo, P., Rattei, T., Korkeala, H., Stephan, R., and Tasara, T. (2012). 
Phenotypic and transcriptomic analyses of Sigma L-dependent characteristics 
in Listeria monocytogenes EGD-e. Food Microbiol 32, 152-164. 

Mccollum, J.T., Cronquist, A.B., Silk, B.J., Jackson, K.A., O'connor, K.A., Cosgrove, 
S., Gossack, J.P., Parachini, S.S., Jain, N.S., Ettestad, P., Ibraheem, M., 
Cantu, V., Joshi, M., Duvernoy, T., Fogg, N.W., Gorny, J.R., Mogen, K.M., 
Spires, C., Teitell, P., Joseph, L.A., Tarr, C.L., Imanishi, M., Neil, K.P., Tauxe, 
R.V., and Mahon, B.E. (2013). Multistate Outbreak of Listeriosis Associated 
with Cantaloupe. New England Journal of Medicine 369, 944-953. 

Mead, P.S., Slutsker, L., Dietz, V., Mccaig, L.F., Bresee, J.S., Shapiro, C., Griffin, 
P.M., and Tauxe, R.V. (1999). Food-related illness and death in the United 
States. Emerg Infect Dis 5, 607-625. 

Meyrand, M., Guillot, A., Goin, M., Furlan, S., Armalyte, J., Kulakauskas, S., Cortes-
Perez, N.G., Thomas, G., Chat, S., Pechoux, C., Dupres, V., Hols, P., Dufrene, 
Y.F., Trugnan, G., and Chapot-Chartier, M.P. (2013). Surface proteome 
analysis of a natural isolate of Lactococcus lactis reveals the presence of pili 
able to bind human intestinal epithelial cells. Mol Cell Proteomics 12, 3935-
3947. 

Mhatre, E., Troszok, A., Gallegos-Monterrosa, R., Lindstadt, S., Holscher, T., Kuipers, 
O.P., and Kovacs, A.T. (2016). The impact of manganese on biofilm 
development of Bacillus subtilis. Microbiology 162, 1468-1478. 

Mikkola, J., Ruutu, P., Lyytikäinen, O., Siitonen, A., Korkeala, H., Miettinen, M., Autio, 
T., Maijala, R., Rantala, L., Honkanen-Buzalski, T., Johansson, T., Aalto, T., 
Hatakka, M., and Anttila, V.-J. (2000). An Outbreak of Listeria Monocytogenes 
Serotype 3a Infections from Butter in Finland. The Journal of Infectious 
Diseases 181, 1838-1841. 

Miladi, H., Elabed, H., Ben Slama, R., Rhim, A., and Bakhrouf, A. (2017). Molecular 
analysis of the role of osmolyte transporters opuCA and betL in Listeria 
monocytogenes after cold and freezing stress. Arch Microbiol 199, 259-265. 

Minton, A.P. (2001). The influence of macromolecular crowding and macromolecular 
confinement on biochemical reactions in physiological media. J Biol Chem 276, 
10577-10580. 

Minton, K.W. (1996). Repair of ionizing-radiation damage in the radiation resistant 
bacterium Deinococcus radiodurans. Mutat Res 363, 1-7. 

Moissl-Eichinger, C., Cockell, C., and Rettberg, P. (2016). Venturing into new realms? 
Microorganisms in space. FEMS Microbiol Rev 40, 722-737. 

Mølbak, K., Müller, L., Krause, T.G., Ethelberg, S., Kvistholm Jensen, A., Nielsen, 
E.M., Björkman, J.T., Kiil, K., Persson, S., Perge, A., Bjerager, G., Jensen, T., 
Sørensen, G., and Andersen, J.K. (2016). Whole-genome Sequencing Used to 
Investigate a Nationwide Outbreak of Listeriosis Caused by Ready-to-eat 
Delicatessen Meat, Denmark, 2014. Clinical Infectious Diseases 63, 64-70. 

Moltz, A.G., and Martin, S.E. (2005). Formation of biofilms by Listeria monocytogenes 
under various growth conditions. J Food Prot 68, 92-97. 



 

 

177 

Monteiro, R., Chafsey, I., Leroy, S., Chambon, C., Hébraud, M., Livrelli, V., Pizza, M., 
Pezzicoli, A., and Desvaux, M. (2018). Differential biotin labelling of the cell 
envelope proteins in lipopolysaccharidic diderm bacteria: Exploring the 
proteosurfaceome of Escherichia coli using sulfo-NHS-SS-biotin and sulfo-
NHS-PEG4-bismannose-SS-biotin. Journal of Proteomics 181, 16-23. 

Monteiro, R., Hebraud, M., Chafsey, I., Chambon, C., Viala, D., Torres, C., Poeta, P., 
and Igrejas, G. (2015). Surfaceome and exoproteome of a clinical sequence 
type 398 methicillin resistant Staphylococcus aureus strain. Biochem Biophys 
Rep 3, 7-13. 

Moree, W.J., Phelan, V.V., Wu, C.H., Bandeira, N., Cornett, D.S., Duggan, B.M., and 
Dorrestein, P.C. (2012). Interkingdom metabolic transformations captured by 
microbial imaging mass spectrometry. Proc Natl Acad Sci U S A 109, 13811-
13816. 

Møretrø, T., Schirmer, B.C.T., Heir, E., Fagerlund, A., Hjemli, P., and Langsrud, S. 
(2017). Tolerance to quaternary ammonium compound disinfectants may 
enhance growth of Listeria monocytogenes in the food industry. International 
Journal of Food Microbiology 241, 215-224. 

Murray, E.G.D., Webb, R.A., and Swann, M.B.R. (1926). A disease of rabbits 
characterised by a large mononuclear leucocytosis, caused by a hitherto 
undescribed bacillus Bacterium monocytogenes (n.sp.). The Journal of 
Pathology and Bacteriology 29, 407-439. 

Nagaraj, N., Kulak, N.A., Cox, J., Neuhauser, N., Mayr, K., Hoerning, O., Vorm, O., 
and Mann, M. (2012). System-wide perturbation analysis with nearly complete 
coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top 
Orbitrap. Molecular & cellular proteomics : MCP 11, M111.013722-
M013111.013722. 

Neilson, K.A., Ali, N.A., Muralidharan, S., Mirzaei, M., Mariani, M., Assadourian, G., 
Lee, A., Van Sluyter, S.C., and Haynes, P.A. (2011). Less label, more free: 
approaches in label-free quantitative mass spectrometry. Proteomics 11, 535-
553. 

Neunlist, M.R., Federighi, M., Laroche, M., Sohier, D., Delattre, G., Jacquet, C., and 
Chihib, N.E. (2005). Cellular lipid fatty acid pattern heterogeneity between 
reference and recent food isolates of Listeria monocytogenes as a response to 
cold stress. Antonie Van Leeuwenhoek 88, 199-206. 

Nicaogain, K., and O'byrne, C.P. (2016). The Role of Stress and Stress Adaptations 
in Determining the Fate of the Bacterial Pathogen Listeria monocytogenes in 
the Food Chain. Front Microbiol 7, 1865. 

Nightingale, K.K., Schukken, Y.H., Nightingale, C.R., Fortes, E.D., Ho, A.J., Her, Z., 
Grohn, Y.T., Mcdonough, P.L., and Wiedmann, M. (2004). Ecology and 
transmission of Listeria monocytogenes infecting ruminants and in the farm 
environment. Appl Environ Microbiol 70, 4458-4467. 

Nirenberg, U. (1994). Reversed-phase HPLC. Analytical procedure. Methods Mol Biol 
36, 23-35. 



 

 

178 

Nocera, D., Bannerman, E., Rocourt, J., Jaton-Ogay, K., and Bille, J. (1990). 
Characterization by DNA restriction endonuclease analysis of Listeria 
monocytogenes strains related to the Swiss epidemic of listeriosis. Journal of 
clinical microbiology 28, 2259-2263. 

Nowak, J., Cruz, C.D., Palmer, J., Fletcher, G.C., and Flint, S. (2015). Biofilm 
formation of the L. monocytogenes strain 15G01 is influenced by changes in 
environmental conditions. Journal of Microbiological Methods 119, 189-195. 

Nyfeldt, A. (1929). Etiologie de la mononucleose infecteuse. Compt. Rend. Soc. Biol. 
101, 509. 

Oie, S., and Kamiya, A. (1996). Survival of methicillin-resistant Staphylococcus aureus 
(MRSA) on naturally contaminated dry mops. J Hosp Infect 34, 145-149. 

Olaya-Abril, A., Jiménez-Munguía, I., Gómez-Gascón, L., and Rodríguez-Ortega, M.J. 
(2014). Surfomics: Shaving live organisms for a fast proteomic identification of 
surface proteins. Journal of Proteomics 97, 164-176. 

Olsen, S.J., Patrick, M., Hunter, S.B., Reddy, V., Kornstein, L., Mackenzie, W.R., 
Lane, K., Bidol, S., Stoltman, G.A., Frye, D.M., Lee, I., Hurd, S., Jones, T.F., 
Laporte, T.N., Dewitt, W., Graves, L., Wiedmann, M., Schoonmaker-Bopp, D.J., 
Huang, A.J., Vincent, C., Bugenhagen, A., Corby, J., Carloni, E.R., Holcomb, 
M.E., Woron, R.F., Zansky, S.M., Dowdle, G., Smith, F., Ahrabi-Fard, S., Ong, 
A.R., Tucker, N., Hynes, N.A., and Mead, P. (2005). Multistate outbreak of 
Listeria monocytogenes infection linked to delicatessen turkey meat. Clin Infect 
Dis 40, 962-967. 

Ondrusch, N., and Kreft, J. (2011). Blue and red light modulates SigB-dependent gene 
transcription, swimming motility and invasiveness in Listeria monocytogenes. 
PloS one 6, e16151-e16151. 

Ong, S.E., and Mann, M. (2005). Mass spectrometry-based proteomics turns 
quantitative. Nat Chem Biol 1, 252-262. 

Ortiz, S., López, V., Villatoro, D., López, P., Dávila, J.C., and Martínez-Suárez, J.V. 
(2010). A 3-Year Surveillance of the Genetic Diversity and Persistence of 
Listeria monocytogenes in an Iberian Pig Slaughterhouse and Processing 
Plant. Foodborne Pathogens and Disease 7, 1177-1184. 

Otto, A., Becher, D., and Schmidt, F. (2014). Quantitative proteomics in the field of 
microbiology. Proteomics 14, 547-565. 

Park, S.C., Park, Y., and Hahm, K.S. (2011). The role of antimicrobial peptides in 
preventing multidrug-resistant bacterial infections and biofilm formation. Int J 
Mol Sci 12, 5971-5992. 

Penque, D., Simoes, T., and Amado, F. (2011). Proteomics advances in the last 
decade: What is next? J Proteomics 75, 1-3. 

Petrak, J., Ivanek, R., Toman, O., Cmejla, R., Cmejlova, J., Vyoral, D., Zivny, J., and 
Vulpe, C.D. (2008). Deja vu in proteomics. A hit parade of repeatedly identified 
differentially expressed proteins. Proteomics 8, 1744-1749. 



 

 

179 

Phadtare, S., Alsina, J., and Inouye, M. (1999). Cold-shock response and cold-shock 
proteins. Curr Opin Microbiol 2, 175-180. 

Phelan, V.V., Fang, J., and Dorrestein, P.C. (2015). Mass Spectrometry Analysis of 
Pseudomonas aeruginosa Treated with Azithromycin. J Am Soc Mass 
Spectrom 26, 873-877. 

Phelan, V.V., Moree, W.J., Aguilar, J., Cornett, D.S., Koumoutsi, A., Noble, S.M., 
Pogliano, K., Guerrero, C.A., and Dorrestein, P.C. (2014). Impact of a 
transposon insertion in phzF2 on the specialized metabolite production and 
interkingdom interactions of Pseudomonas aeruginosa. J Bacteriol 196, 1683-
1693. 

Piercey, M.J., Hingston, P.A., and Truelstrup Hansen, L. (2016). Genes involved in 
Listeria monocytogenes biofilm formation at a simulated food processing plant 
temperature of 15 degrees C. Int J Food Microbiol 223, 63-74. 

Pirie, J.H.H. (1940). Listeria: Change of Name for a Genus Bacteria. Nature 145, 264. 

Pittman, J.R., Buntyn, J.O., Posadas, G., Nanduri, B., Pendarvis, K., and Donaldson, 
J.R. (2014). Proteomic analysis of cross protection provided between cold and 
osmotic stress in Listeria monocytogenes. Journal of proteome research 13, 
1896-1904. 

Pizarro-Cerda, J., and Cossart, P. (2018). Listeria monocytogenes: cell biology of 
invasion and intracellular growth. Microbiol Spectr 6. 

Podolak, R., Enache, E., Stone, W., Black, D.G., and Elliott, P.H. (2010). Sources and 
risk factors for contamination, survival, persistence, and heat resistance of 
Salmonella in low-moisture foods. J Food Prot 73, 1919-1936. 

Podwojski, K., Eisenacher, M., Kohl, M., Turewicz, M., Meyer, H.E., Rahnenführer, J., 
and Stephan, C. (2010). Peek a peak: a glance at statistics for quantitative 
label-free proteomics. Expert Review of Proteomics 7, 249-261. 

Poimenidou, S.V., Chatzithoma, D.N., Nychas, G.J., and Skandamis, P.N. (2016). 
Adaptive Response of Listeria monocytogenes to Heat, Salinity and Low pH, 
after Habituation on Cherry Tomatoes and Lettuce Leaves. PLoS One 11, 
e0165746. 

Popowska, M. (2004). Analysis of the peptidoglycan hydrolases of Listeria 
monocytogenes: multiple enzymes with multiple functions. Pol J Microbiol 53 
Suppl, 29-34. 

Potts, M. (1994). Desiccation tolerance of prokaryotes. Microbiol Rev 58, 755-805. 

Potts, M. (2001). Desiccation tolerance: a simple process? Trends Microbiol 9, 553-
559. 

Pouillot, R., Klontz, K.C., Chen, Y., Burall, L.S., Macarisin, D., Doyle, M., Bally, K.M., 
Strain, E., Datta, A.R., Hammack, T.S., and Van Doren, J.M. (2016). Infectious 
Dose of Listeria monocytogenes in Outbreak Linked to Ice Cream, United 
States, 2015. Emerging infectious diseases 22, 2113-2119. 

Pratt, L.A., and Kolter, R. (1999). Genetic analyses of bacterial biofilm formation. 
Current Opinion in Microbiology 2, 598-603. 



 

 

180 

Pribyl, T., Moche, M., Dreisbach, A., Bijlsma, J.J., Saleh, M., Abdullah, M.R., Hecker, 
M., Van Dijl, J.M., Becher, D., and Hammerschmidt, S. (2014). Influence of 
impaired lipoprotein biogenesis on surface and exoproteome of Streptococcus 
pneumoniae. J Proteome Res 13, 650-667. 

Prideaux, B., Dartois, V., Staab, D., Weiner, D.M., Goh, A., Via, L.E., Barry, C.E., and 
Stoeckli, M. (2011). High-Sensitivity MALDI-MRM-MS Imaging of Moxifloxacin 
Distribution in Tuberculosis-Infected Rabbit Lungs and Granulomatous 
Lesions. Analytical Chemistry 83, 2112-2118. 

Prigent-Combaret, C., Vidal, O., Dorel, C., and Lejeune, P. (1999). Abiotic surface 
sensing and biofilm-dependent regulation of gene expression in Escherichia 
coli. J Bacteriol 181, 5993-6002. 

Pucciarelli, M.G., Calvo, E., Sabet, C., Bierne, H., Cossart, P., and Garcia-Del Portillo, 
F. (2005). Identification of substrates of the Listeria monocytogenes sortases A 
and B by a non-gel proteomic analysis. Proteomics 5, 4808-4817. 

Qayyum, S., Sharma, D., Bisht, D., and Khan, A.U. (2016). Protein translation 
machinery holds a key for transition of planktonic cells to biofilm state in 
Enterococcus faecalis: A proteomic approach. Biochem Biophys Res Commun 
474, 652-659. 

Qiu, H., Liang, X., Sun, M., and Jiang, S. (2011). Development of silica-based 
stationary phases for high-performance liquid chromatography. Anal Bioanal 
Chem 399, 3307-3322. 

Quan, S., Hiniker, A., Collet, J.F., and Bardwell, J.C. (2013). Isolation of bacteria 
envelope proteins. Methods Mol Biol 966, 359-366. 

Rabilloud, T. (2009). Solubilization of proteins in 2DE: an outline. Methods Mol Biol 
519, 19-30. 

Rabilloud, T., and Lelong, C. (2011). Two-dimensional gel electrophoresis in 
proteomics: a tutorial. J Proteomics 74, 1829-1841. 

Radoshevich, L., and Cossart, P. (2018). Listeria monocytogenes: towards a complete 
picture of its physiology and pathogenesis. Nat Rev Microbiol 16, 32-46. 

Raengpradub, S., Wiedmann, M., and Boor, K.J. (2008). Comparative analysis of the 
sigma B-dependent stress responses in Listeria monocytogenes and Listeria 
innocua strains exposed to selected stress conditions. Applied and 
environmental microbiology 74, 158-171. 

Ramos, J.L., Gallegos, M.T., Marques, S., Ramos-Gonzalez, M.I., Espinosa-Urgel, M., 
and Segura, A. (2001). Responses of Gram-negative bacteria to certain 
environmental stressors. Curr Opin Microbiol 4, 166-171. 

Randall, E.C., Bunch, J., and Cooper, H.J. (2014). Direct analysis of intact proteins 
from Escherichia coli colonies by liquid extraction surface analysis mass 
spectrometry. Anal Chem 86, 10504-10510. 

Rani, A., and Babu, S. (2018). Environmental proteomic studies: closer step to 
understand bacterial biofilms. World J Microbiol Biotechnol 34, 120. 



 

 

181 

Rawool, D.B., Doijad, S.P., Poharkar, K.V., Negi, M., Kale, S.B., Malik, S.V., Kurkure, 
N.V., Chakraborty, T., and Barbuddhe, S.B. (2016). A multiplex PCR for 
detection of Listeria monocytogenes and its lineages. J Microbiol Methods 130, 
144-147. 

Renier, S., Chafsey, I., Chambon, C., Caccia, N., Charbit, A., Hebraud, M., and 
Desvaux, M. (2015). Contribution of the multiple Type I signal peptidases to the 
secretome of Listeria monocytogenes: deciphering their specificity for secreted 
exoproteins by exoproteomic analysis. J Proteomics 117, 95-105. 

Renier, S., Chambon, C., Viala, D., Chagnot, C., Hebraud, M., and Desvaux, M. 
(2013). Exoproteomic analysis of the SecA2-dependent secretion in Listeria 
monocytogenes EGD-e. J Proteomics 80, 183-195. 

Renier, S., Hebraud, M., and Desvaux, M. (2011). Molecular biology of surface 
colonization by Listeria monocytogenes: an additional facet of an opportunistic 
Gram-positive foodborne pathogen. Environ Microbiol 13, 835-850. 

Renier, S., Micheau, P., Talon, R., Hebraud, M., and Desvaux, M. (2012). Subcellular 
localization of extracytoplasmic proteins in monoderm bacteria: rational 
secretomics-based strategy for genomic and proteomic analyses. PLoS One 7, 
e42982. 

Resch, A., Leicht, S., Saric, M., Pasztor, L., Jakob, A., Gotz, F., and Nordheim, A. 
(2006). Comparative proteome analysis of Staphylococcus aureus biofilm and 
planktonic cells and correlation with transcriptome profiling. Proteomics 6, 
1867-1877. 

Resing, K.A., and Ahn, N.G. (2005). Proteomics strategies for protein identification. 
FEBS Lett 579, 885-889. 

Risch, M., Radjenovic, D., Han, J.N., Wydler, M., Nydegger, U., and Risch, L. (2010). 
Comparison of MALDI TOF with conventional identification of clinically relevant 
bacteria. Swiss medical weekly 140, w13095. 

Roberson, E.B., and Firestone, M.K. (1992). Relationship between Desiccation and 
Exopolysaccharide Production in a Soil Pseudomonas sp. Appl Environ 
Microbiol 58, 1284-1291. 

Rodriguez-Ortega, M.J., Norais, N., Bensi, G., Liberatori, S., Capo, S., Mora, M., 
Scarselli, M., Doro, F., Ferrari, G., Garaguso, I., Maggi, T., Neumann, A., Covre, 
A., Telford, J.L., and Grandi, G. (2006). Characterization and identification of 
vaccine candidate proteins through analysis of the group A Streptococcus 
surface proteome. Nat Biotechnol 24, 191-197. 

Rose, S.J., and Bermudez, L.E. (2016). Identification of Bicarbonate as a Trigger and 
Genes Involved with Extracellular DNA Export in Mycobacterial Biofilms. mBio 
7, e01597-01516. 

Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., 
Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., 
Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D.J. (2004). 
Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-
reactive Isobaric Tagging Reagents. Molecular & Cellular Proteomics 3, 1154. 



 

 

182 

Ruiz, A., Williams, S.K., Djeri, N., Hinton, A., Jr., and Rodrick, G.E. (2009). Nisin, 
rosemary, and ethylenediaminetetraacetic acid affect the growth of Listeria 
monocytogenes on ready-to-eat turkey ham stored at four degrees Celsius for 
sixty-three days. Poult Sci 88, 1765-1772. 

Rumbo-Feal, S., Gomez, M.J., Gayoso, C., Alvarez-Fraga, L., Cabral, M.P., Aransay, 
A.M., Rodriguez-Ezpeleta, N., Fullaondo, A., Valle, J., Tomas, M., Bou, G., and 
Poza, M. (2013). Whole transcriptome analysis of Acinetobacter baumannii 
assessed by RNA-sequencing reveals different mRNA expression profiles in 
biofilm compared to planktonic cells. PLoS One 8, e72968. 

Ryzhov, V., and Fenselau, C. (2001). Characterization of the protein subset desorbed 
by MALDI from whole bacterial cells. Anal Chem 73, 746-750. 

Sandrin, T.R., and Demirev, P.A. (2017). Characterization of microbial mixtures by 
mass spectrometry. Mass Spectrom Rev. 

Santillana Farakos, S.M., and Frank, J.F. (2014). "Challenges in the Control of 
Foodborne Pathogens in Low-Water Activity Foods and Spices," in The 
Microbiological Safety of Low Water Activity Foods and Spices, eds. J.B. 
Gurtler, M.P. Doyle & J.L. Kornacki.  (New York, NY: Springer New York), 15-
34. 

Santos, H.M., Lodeiro, C., and Capelo, J.L. (2010). Analytical proteomics: an 
emerging field? J Proteomics 73, 1411-1414. 

Santos, T., Capelo, J.L., Santos, H.M., Oliveira, I., Marinho, C., Goncalves, A., Araujo, 
J.E., Poeta, P., and Igrejas, G. (2015). Use of MALDI-TOF mass spectrometry 
fingerprinting to characterize Enterococcus spp. and Escherichia coli isolates. 
J Proteomics. 

Santos, T., Theron, L., Chambon, C., Viala, D., Centeno, D., Esbelin, J., and Hebraud, 
M. (2018). MALDI mass spectrometry imaging and in situ microproteomics of 
Listeria monocytogenes biofilms. J Proteomics 187, 152-160. 

Sauer, K. (2003). The genomics and proteomics of biofilm formation. Genome Biol 4, 
219. 

Schardt, J., Jones, G., Müller-Herbst, S., Schauer, K., D’orazio, S.E.F., and Fuchs, 
T.M. (2017). Comparison between Listeria sensu stricto and Listeria sensu lato 
strains identifies novel determinants involved in infection. Scientific Reports 7, 
17821. 

Scharff, R.L. (2012). Economic Burden from Health Losses Due to Foodborne Illness 
in the United States. Journal of Food Protection 75, 123-131. 

Schaumburg, J., Diekmann, O., Hagendorff, P., Bergmann, S., Rohde, M., 
Hammerschmidt, S., Jansch, L., Wehland, J., and Karst, U. (2004). The cell 
wall subproteome of Listeria monocytogenes. Proteomics 4, 2991-3006. 

Schjørring, S., Gillesberg Lassen, S., Jensen, T., Moura, A., Kjeldgaard, J.S., Müller, 
L., Thielke, S., Leclercq, A., Maury, M.M., Tourdjman, M., Donguy, M.-P., 
Lecuit, M., Ethelberg, S., and Nielsen, E.M. (2017). Cross-border outbreak of 
listeriosis caused by cold-smoked salmon, revealed by integrated surveillance 
and whole genome sequencing (WGS), Denmark and France, 2015 to 2017. 



 

 

183 

Euro surveillance : bulletin Europeen sur les maladies transmissibles, 
European communicable disease bulletin 22, 17-00762. 

Schlech, W.F., 3rd, Lavigne, P.M., Bortolussi, R.A., Allen, A.C., Haldane, E.V., Wort, 
A.J., Hightower, A.W., Johnson, S.E., King, S.H., Nicholls, E.S., and Broome, 
C.V. (1983). Epidemic listeriosis--evidence for transmission by food. N Engl J 
Med 308, 203-206. 

Schmid, B., Klumpp, J., Raimann, E., Loessner, M.J., Stephan, R., and Tasara, T. 
(2009). Role of cold shock proteins in growth of Listeria monocytogenes under 
cold and osmotic stress conditions. Appl Environ Microbiol 75, 1621-1627. 

Schnider-Keel, U., Lejbolle, K.B., Baehler, E., Haas, D., and Keel, C. (2001). The 
sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance 
towards desiccation and osmotic stress in the biocontrol agent Pseudomonas 
fluorescens CHA0. Appl Environ Microbiol 67, 5683-5693. 

Schwab, U., Hu, Y., Wiedmann, M., and Boor, K.J. (2005). Alternative sigma factor 
sigmaB is not essential for Listeria monocytogenes surface attachment. J Food 
Prot 68, 311-317. 

Schwartz, S.A., and Caprioli, R.M. (2010). Imaging mass spectrometry: viewing the 
future. Methods Mol Biol 656, 3-19. 

Schwartz, S.A., Weil, R.J., Thompson, R.C., Shyr, Y., Moore, J.H., Toms, S.A., 
Johnson, M.D., and Caprioli, R.M. (2005). Proteomic-Based Prognosis of Brain 
Tumor Patients Using Direct-Tissue Matrix-Assisted Laser Desorption 
Ionization Mass Spectrometry. Cancer Research 65, 7674. 

Seeley, E.H., and Caprioli, R.M. (2012). 3D imaging by mass spectrometry: a new 
frontier. Analytical chemistry 84, 2105-2110. 

Selasi, G.N., Nicholas, A., Jeon, H., Na, S.H., Kwon, H.I., Kim, Y.J., Heo, S.T., Oh, 
M.H., and Lee, J.C. (2016). Differences in Biofilm Mass, Expression of Biofilm-
Associated Genes, and Resistance to Desiccation between Epidemic and 
Sporadic Clones of Carbapenem-Resistant Acinetobacter baumannii 
Sequence Type 191. PLoS One 11, e0162576. 

Severin, A., Nickbarg, E., Wooters, J., Quazi, S.A., Matsuka, Y.V., Murphy, E., 
Moutsatsos, I.K., Zagursky, R.J., and Olmsted, S.B. (2007). Proteomic analysis 
and identification of Streptococcus pyogenes surface-associated proteins. J 
Bacteriol 189, 1514-1522. 

Shao, C., Shang, W., Yang, Z., Sun, Z., Li, Y., Guo, J., Wang, X., Zou, D., Wang, S., 
Lei, H., Cui, Q., Yin, Z., Li, X., Wei, X., Liu, W., He, X., Jiang, Z., Du, S., Liao, 
X., Huang, L., Wang, Y., and Yuan, J. (2012). LuxS-dependent AI-2 regulates 
versatile functions in Enterococcus faecalis V583. J Proteome Res 11, 4465-
4475. 

Shimojima, Y., Ida, M., Nakama, A., Nishino, Y., Fukui, R., Kuroda, S., Hirai, A., Kai, 
A., and Sadamasu, K. (2016). Prevalence and contamination levels of Listeria 
monocytogenes in ready-to-eat foods in Tokyo, Japan. The Journal of 
veterinary medical science 78, 1183-1187. 



 

 

184 

Singh, A.K., Ulanov, A.V., Li, Z., Jayaswal, R.K., and Wilkinson, B.J. (2011). 
Metabolomes of the psychrotolerant bacterium Listeria monocytogenes 
10403S grown at 37 degrees C and 8 degrees C. Int J Food Microbiol 148, 107-
114. 

Skovgaard, N., and Morgen, C.-A. (1988). Detection of Listeria spp. in faeces from 
animals, in feeds, and in raw foods of animal origin. International Journal of 
Food Microbiology 6, 229-242. 

Sleator, R.D., Gahan, C.G., and Hill, C. (2003). A postgenomic appraisal of 
osmotolerance in Listeria monocytogenes. Appl Environ Microbiol 69, 1-9. 

Smith, B., Larsson, J.T., Lisby, M., Müller, L., Madsen, S.B., Engberg, J., Bangsborg, 
J., Ethelberg, S., and Kemp, M. (2011). Outbreak of listeriosis caused by 
infected beef meat from a meals-on-wheels delivery in Denmark 2009. Clinical 
Microbiology and Infection 17, 50-52. 

Smith, R.D., Barinaga, C.J., and Udseth, H.R. (1988). Improved electrospray 
ionization interface for capillary zone electrophoresis-mass spectrometry. 
Analytical Chemistry 60, 1948-1952. 

Solis, N., Larsen, M.R., and Cordwell, S.J. (2010). Improved accuracy of cell surface 
shaving proteomics in Staphylococcus aureus using a false-positive control. 
Proteomics 10, 2037-2049. 

Somers, E.B., and Lee Wong, A.C. (2004). Efficacy of Two Cleaning and Sanitizing 
Combinations on Listeria monocytogenes Biofilms Formed at Low Temperature 
on a Variety of Materials in the Presence of Ready-to-Eat Meat Residue. 
Journal of Food Protection 67, 2218-2229. 

Soni, K.A., Nannapaneni, R., and Tasara, T. (2011). The contribution of transcriptomic 
and proteomic analysis in elucidating stress adaptation responses of Listeria 
monocytogenes. Foodborne Pathog Dis 8, 843-852. 

Stackhouse, R.R., Faith, N.G., Kaspar, C.W., Czuprynski, C.J., and Wong, A.C. 
(2012). Survival and virulence of Salmonella enterica serovar enteritidis 
filaments induced by reduced water activity. Appl Environ Microbiol 78, 2213-
2220. 

Stasulli, N.M., and Shank, E.A. (2016). Profiling the metabolic signals involved in 
chemical communication between microbes using imaging mass spectrometry. 
FEMS Microbiol Rev 40, 807-813. 

Stauber, J., Macaleese, L., Franck, J., Claude, E., Snel, M., Kaletas, B.K., Wiel, I.M., 
Wisztorski, M., Fournier, I., and Heeren, R.M. (2010). On-tissue protein 
identification and imaging by MALDI-ion mobility mass spectrometry. J Am Soc 
Mass Spectrom 21, 338-347. 

Stavru, F., Archambaud, C., and Cossart, P. (2011). Cell biology and immunology of 
Listeria monocytogenes infections: novel insights. Immunological Reviews 240, 
160-184. 

Steinberger, R.E., and Holden, P.A. (2005). Extracellular DNA in single- and multiple-
species unsaturated biofilms. Appl Environ Microbiol 71, 5404-5410. 



 

 

185 

Stone, W., Kroukamp, O., Korber, D.R., Mckelvie, J., and Wolfaardt, G.M. (2016). 
Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative 
Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience. Front 
Microbiol 7, 1563. 

Storey, J.D., and Tibshirani, R. (2003). Statistical significance for genomewide studies. 
Proc Natl Acad Sci U S A 100, 9440-9445. 

Sun, X., Jia, H.L., Xiao, C.L., Yin, X.F., Yang, X.Y., Lu, J., He, X., Li, N., Li, H., and 
He, Q.Y. (2011). Bacterial proteome of Streptococcus pneumoniae through 
multidimensional separations coupled with LC-MS/MS. OMICS 15, 477-482. 

Sutherland, I. (2001a). Biofilm exopolysaccharides: a strong and sticky framework. 
Microbiology 147, 3-9. 

Sutherland, I.W. (2001b). The biofilm matrix--an immobilized but dynamic microbial 
environment. Trends Microbiol 9, 222-227. 

Swaminathan, B., and Gerner-Smidt, P. (2007). The epidemiology of human 
listeriosis. Microbes and Infection 9, 1236-1243. 

Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, 
A., Doncheva, N.T., Roth, A., Bork, P., Jensen, L.J., and Von Mering, C. (2017). 
The STRING database in 2017: quality-controlled protein-protein association 
networks, made broadly accessible. Nucleic Acids Res 45, D362-D368. 

Takahashi, H., Kuramoto, S., Miya, S., and Kimura, B. (2011). Desiccation survival of 
Listeria monocytogenes and other potential foodborne pathogens on stainless 
steel surfaces is affected by different food soils. Food Control 22, 633-637. 

Takhistov, P., and George, B. (2004). Linearized kinetic model of Listeria 
monocytogenes biofilm growth. Bioprocess Biosyst Eng 26, 259-270. 

Tamminga, S.K., Beumer, R.R., Kampelmacher, E.H., and Van Leusden, F.M. (1976). 
Survival of Salmonella east bourne and Salmonella typhimurium in chocolate. 
J Hyg (Lond) 76, 41-47. 

Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T., and Matsuo, T. 
(1988). Protein and polymer analyses up to m/z 100 000 by laser ionization 
time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 
2, 151-153. 

Tarek, M., and Tobias, D.J. (2002). Role of protein-water hydrogen bond dynamics in 
the protein dynamical transition. Phys Rev Lett 88, 138101. 

Tasara, T., and Stephan, R. (2006). Cold stress tolerance of Listeria monocytogenes: 
A review of molecular adaptive mechanisms and food safety implications. J 
Food Prot 69, 1473-1484. 

Taylor, C.M., Beresford, M., Epton, H.A., Sigee, D.C., Shama, G., Andrew, P.W., and 
Roberts, I.S. (2002). Listeria monocytogenes relA and hpt mutants are impaired 
in surface-attached growth and virulence. J Bacteriol 184, 621-628. 

Taylor Geoffrey, I. (1964). Disintegration of water drops in an electric field. 
Proceedings of the Royal Society of London. Series A. Mathematical and 
Physical Sciences 280, 383-397. 



 

 

186 

Tezel, U., and Pavlostathis, S.G. (2015). Quaternary ammonium disinfectants: 
microbial adaptation, degradation and ecology. Current Opinion in 
Biotechnology 33, 296-304. 

Theron, L., Centeno, D., Coudy-Gandilhon, C., Pujos-Guillot, E., Astruc, T., Remond, 
D., Barthelemy, J.C., Roche, F., Feasson, L., Hebraud, M., Bechet, D., and 
Chambon, C. (2016). A Proof of Concept to Bridge the Gap between Mass 
Spectrometry Imaging, Protein Identification and Relative Quantitation: 
MSI~LC-MS/MS-LF. Proteomes 4. 

Thomas, M.K., Vriezen, R., Farber, J.M., Currie, A., Schlech, W., and Fazil, A. (2015). 
Economic Cost of a Listeria monocytogenes Outbreak in Canada, 2008. 
Foodborne pathogens and disease 12, 966-971. 

Tiong, H.K., Hartson, S., and Muriana, P.M. (2015). Comparison of five methods for 
direct extraction of surface proteins from Listeria monocytogenes for proteomic 
analysis by orbitrap mass spectrometry. J Microbiol Methods 110, 54-60. 

Tiong, H.K., Hartson, S.D., and Muriana, P.M. (2016). Comparison of Surface 
Proteomes of Adherence Variants of Listeria monocytogenes Using LC-MS/MS 
for Identification of Potential Surface Adhesins. Pathogens 5. 

Tjalsma, H., Bolhuis, A., Jongbloed, J.D., Bron, S., and Van Dijl, J.M. (2000). Signal 
peptide-dependent protein transport in Bacillus subtilis: a genome-based 
survey of the secretome. Microbiol Mol Biol Rev 64, 515-547. 

Travier, L., and Lecuit, M. (2014). Listeria monocytogenes ActA: a new function for a 
‘classic’ virulence factor. Current Opinion in Microbiology 17, 53-60. 

Tremoulet, F., Duche, O., Namane, A., Martinie, B., Labadie, J.C., and European 
Listeria Genome, C. (2002). Comparison of protein patterns of Listeria 
monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. 
FEMS Microbiol Lett 210, 25-31. 

Trost, M., Wehmhöner, D., Kärst, U., Dieterich, G., Wehland, J., and Jänsch, L. (2005). 
Comparative proteome analysis of secretory proteins from pathogenic and 
nonpathogenic Listeria species. PROTEOMICS 5, 1544-1557. 

Troxler, R., Von Graevenitz, A., Funke, G., Wiedemann, B., and Stock, I. (2000). 
Natural antibiotic susceptibility of Listeria species: L. grayi, L. innocua, L. 
ivanovii, L. monocytogenes, L. seeligeri and L. welshimeri strains. Clin 
Microbiol Infect 6, 525-535. 

Tzeng, Y.L., Martin, L.E., and Stephens, D.S. (2014). Environmental survival of 
Neisseria meningitidis. Epidemiol Infect 142, 187-190. 

Van De Mortel, M., and Halverson, L.J. (2004). Cell envelope components contributing 
to biofilm growth and survival of Pseudomonas putida in low-water-content 
habitats. Mol Microbiol 52, 735-750. 

Van Der Veen, S., and Abee, T. (2010). Importance of SigB for Listeria 
monocytogenes static and continuous-flow biofilm formation and disinfectant 
resistance. Appl Environ Microbiol 76, 7854-7860. 



 

 

187 

Van Oudenhove, L., and Devreese, B. (2013). A review on recent developments in 
mass spectrometry instrumentation and quantitative tools advancing bacterial 
proteomics. Appl Microbiol Biotechnol 97, 4749-4762. 

Vanbogelen, R.A., and Neidhardt, F.C. (1990). Ribosomes as sensors of heat and 
cold shock in Escherichia coli. Proceedings of the National Academy of 
Sciences of the United States of America 87, 5589-5593. 

Vanderlinde, E.M., Harrison, J.J., Muszynski, A., Carlson, R.W., Turner, R.J., and 
Yost, C.K. (2010). Identification of a novel ABC transporter required for 
desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv. 
viciae 3841. FEMS Microbiol Ecol 71, 327-340. 

Venter, J.C., Smith, H.O., and Adams, M.D. (2015). The Sequence of the Human 
Genome. Clin Chem 61, 1207-1208. 

Ventura, C.L., Malachowa, N., Hammer, C.H., Nardone, G.A., Robinson, M.A., 
Kobayashi, S.D., and Deleo, F.R. (2010). Identification of a Novel 
Staphylococcus aureus Two-Component Leukotoxin Using Cell Surface 
Proteomics. PLoS ONE 5, e11634. 

Vertes, A., Hitchins, V., and Phillips, K.S. (2012). Analytical Challenges of Microbial 
Biofilms on Medical Devices. Analytical Chemistry 84, 3858-3866. 

Vidal, J.E., Howery, K.E., Ludewick, H.P., Nava, P., and Klugman, K.P. (2013). 
Quorum-sensing systems LuxS/autoinducer 2 and Com regulate 
Streptococcus pneumoniae biofilms in a bioreactor with living cultures of human 
respiratory cells. Infect Immun 81, 1341-1353. 

Vogel, B.F., Hansen, L.T., Mordhorst, H., and Gram, L. (2010). The survival of Listeria 
monocytogenes during long term desiccation is facilitated by sodium chloride 
and organic material. Int J Food Microbiol 140, 192-200. 

Vogeleer, P., Tremblay, Y.D., Mafu, A.A., Jacques, M., and Harel, J. (2014). Life on 
the outside: role of biofilms in environmental persistence of Shiga-toxin 
producing Escherichia coli. Front Microbiol 5, 317. 

Wagner M., and McLauchlin  J. (2008). "Biology," in Handbook of Listeria 
monocytogenes. CRC Publisher). 

Walker, S.J., Archer, P., and Banks, J.G. (1990). Growth of Listeria monocytogenes 
at refrigeration temperatures. Journal of Applied Bacteriology 68, 157-162. 

Walland J., Lauper J., Frey J., Imhof R., Stephan R., Seuberlich T., and A., O. (2015). 
Listeria monocytogenes infection in ruminants: Is there a link to the 
environment, food and human health? A review. SAT ASMV, 319 - 328. 

Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for 
transcriptomics. Nature Reviews Genetics 10, 57. 

Ward, T.J., Ducey, T.F., Usgaard, T., Dunn, K.A., and Bielawski, J.P. (2008). 
Multilocus genotyping assays for single nucleotide polymorphism-based 
subtyping of Listeria monocytogenes isolates. Applied and environmental 
microbiology 74, 7629-7642. 



 

 

188 

Wardrope, D.D., and Macleod, N.S. (1983). Outbreak of Listeria meningoencephalitis 
in young lambs. Veterinary Record 113, 213. 

Watkins, J., and Sleath, K.P. (1981). Isolation and Enumeration of Listeria 
monocytogenes from Sewage, Sewage Sludge and River Water. Journal of 
Applied Bacteriology 50, 1-9. 

Watrous, J., Hendricks, N., Meehan, M., and Dorrestein, P.C. (2010). Capturing 
bacterial metabolic exchange using thin film desorption electrospray ionization-
imaging mass spectrometry. Analytical chemistry 82, 1598-1600. 

Watrous, J.D., Alexandrov, T., and Dorrestein, P.C. (2011). The evolving field of 
imaging mass spectrometry and its impact on future biological research. 
Journal of mass spectrometry : JMS 46, 209-222. 

Watrous, J.D., and Dorrestein, P.C. (2011). Imaging mass spectrometry in 
microbiology. Nature reviews. Microbiology 9, 683-694. 

Watson, J.D., and Crick, F.H. (1953). Molecular structure of nucleic acids; a structure 
for deoxyribose nucleic acid. Nature 171, 737-738. 

Weaver, L., Webber, J.B., Hickson, A.C., Abraham, P.M., and Close, M.E. (2015). 
Biofilm resilience to desiccation in groundwater aquifers: a laboratory and field 
study. Sci Total Environ 514, 281-289. 

Welsh, D.T., and Herbert, R.A. (1999). Osmotically induced intracellular trehalose, but 
not glycine betaine accumulation promotes desiccation tolerance in Escherichia 
coli. FEMS Microbiol Lett 174, 57-63. 

Welshimer, H.J., and Donker-Voet, J. (1971). Listeria monocytogenes in nature. 
Applied microbiology 21, 516-519. 

Wemekamp-Kamphuis, H.H., Karatzas, A.K., Wouters, J.A., and Abee, T. (2002). 
Enhanced levels of cold shock proteins in Listeria monocytogenes LO28 upon 
exposure to low temperature and high hydrostatic pressure. Appl Environ 
Microbiol 68, 456-463. 

Wemekamp-Kamphuis, H.H., Sleator, R.D., Wouters, J.A., Hill, C., and Abee, T. 
(2004). Molecular and physiological analysis of the role of osmolyte 
transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low 
temperatures. Appl Environ Microbiol 70, 2912-2918. 

Wenger, J.D., Swaminathan, B., Hayes, P.S., Green, S.S., Pratt, M., Pinner, R.W., 
Schuchat, A., and Broome, C.V. (1990). Listeria monocytogenes 
Contamination of Turkey Franks: Evaluation of a Production Facility. Journal of 
Food Protection 53, 1015-1019. 

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag 
New York. 

Wilkins, M.R., Sanchez, J.C., Gooley, A.A., Appel, R.D., Humphery-Smith, I., 
Hochstrasser, D.F., and Williams, K.L. (1996). Progress with proteome 
projects: why all proteins expressed by a genome should be identified and how 
to do it. Biotechnol Genet Eng Rev 13, 19-50. 



 

 

189 

Wohlbrand, L., Trautwein, K., and Rabus, R. (2013). Proteomic tools for environmental 
microbiology--a roadmap from sample preparation to protein identification and 
quantification. Proteomics 13, 2700-2730. 

Wolkers, W.F., Tablin, F., and Crowe, J.H. (2002). From anhydrobiosis to freeze-
drying of eukaryotic cells. Comp Biochem Physiol A Mol Integr Physiol 131, 
535-543. 

Wynne, C., Fenselau, C., Demirev, P.A., and Edwards, N. (2009). Top-down 
identification of protein biomarkers in bacteria with unsequenced genomes. 
Anal Chem 81, 9633-9642. 

Yanagisawa, K., Shyr, Y., Xu, B.J., Massion, P.P., Larsen, P.H., White, B.C., Roberts, 
J.R., Edgerton, M., Gonzalez, A., Nadaf, S., Moore, J.H., Caprioli, R.M., and 
Carbone, D.P. (2003). Proteomic patterns of tumour subsets in non-small-cell 
lung cancer. Lancet 362, 433-439. 

Yates, J.R., Ruse, C.I., and Nakorchevsky, A. (2009). Proteomics by mass 
spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 
11, 49-79. 

Zhang, S., Scott, J.M., and Haldenwang, W.G. (2001). Loss of ribosomal protein L11 
blocks stress activation of the Bacillus subtilis transcription factor sigma(B). J 
Bacteriol 183, 2316-2321. 

Zhang, Y.M., and Rock, C.O. (2008). Membrane lipid homeostasis in bacteria. Nat 
Rev Microbiol 6, 222-233. 

Zoz, F., Iaconelli, C., Lang, E., Iddir, H., Guyot, S., Grandvalet, C., Gervais, P., and 
Beney, L. (2016). Control of Relative Air Humidity as a Potential Means to 
Improve Hygiene on Surfaces: A Preliminary Approach with Listeria 
monocytogenes. PLOS ONE 11, e0148418. 

 

 

 

 

 

 

 

 

 

 



 

 

190 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

191 

Scientific Production 
I. Publications 

1. Santos T. and Hebraud M. 2019. Extraction and preparation of Listeria 

monocytogenes subproteomes for mass spectrometry analysis. In: Methods in 

Molecular Biology, Ed: Edward Fox, Hélène Bierne and Beatrix Stessl. Humana 

Press, Springer Protocols, New York, NY, USA. (In preparation). 

2. Santos T., Viala D., Chambon C., Esbelin J., and Hebraud M. 2019. Listeria 

monocytogenes planktonic vs biofilm realm: are there any advantages detected by 

bottom-up proteomics? (Submitted to Frontiers in Microbiology). 

3. Santos T., Viala D., Chambon C., Esbelin J., and Hebraud M. 2019. Listeria 

monocytogenes biofilms adaptation to different temperatures seen through 

shotgun proteomics. Frontiers in Nutrition, https://doi.org/10.3389/fnut.2019.00089 

4. Esbelin J., Santos T., Ribiere C., Desvaux M., Viala D., Chambon C., and 

Hebraud, M. 2018. Comparison of three methods for cell surface proteome 

extraction of Listeria monocytogenes biofilms. OMICS: A Journal of Integrative 

Biology, 22:779-787. 

5.  

6. Santos T., Theron L., Chambon C., Viala D., Centeno D., Esbelin J., and Hebraud 

M. 2018. MALDI mass spectrometry imaging and in situ microproteomics of Listeria 

monocytogenes biofilms exposed to air dehumidification. Journal of Proteomics, 

187:152-160. 

7. Esbelin* J., Santos* T. and Hebraud M. 2018. Desiccation: a common 

environmental and food industry stress to which bacteria have to face. Food 

Microbiology, 69:82-88. Review.       * shared first authorship 

II. Communications in congresses, conferences, symposiums 

II.1 Oral communications 

8. Santos T., Theron L., Chambon C., Viala D., Centeno D., and Hebraud M. 2018. 

MALDI mass spectrometry imaging and in situ microproteomics of Listeria 



 

 

192 

monocytogenes biofilms. 35ème SFEAP Congress, joint with the SEProt, Albi, 

France, October 09-12. 

9. Santos T., Chambon C., Viala D., Esbelin J., and Hebraud M. 2018. Listeria 

monocytogenes planktonic and sessile cells adaptation to different temperatures 

seen through shotgun proteomics. XII EuPA. Santiago de Compostela, Spain, 

June 16-20. 

10. Santos T., Theron L., Chambon C., Viala D., Centeno D., and Hebraud M. 2018. 

Développement d’une approche d’imagerie par spectrométrie de masse pour 

explorer des biofilms de Listeria monocytogenes exposés à un stress de 

déshumidification. Journées de l’Ecole Doctorale SVSAE de l’Université Clermont 

Auvergne. Clermont-Ferrand, France, June 14-15. 

11. Santos T., Chambon C., Viala D., Esbelin J. and Hebraud M. 2018. Listeria 

monocytogenes planktonic and sessile cells adaptation to temperatures seen 

through shotgun proteomics. Foodborne pathogens; from farm to pharmacy! List-

MAPS symposium, Kinsale, Ireland, April 26. 

II.2 Posters 

12. Santos T., Viala D., Chambon, C., Esbelin J. and Hebraud M. 2019. Human 

Invasive Pathogen Listeria monocytogenes Proficient Temperature Adaptation 

Seen Through Shotgun Proteomics. ASM Microbe, San Francisco, USA, June 20-

24. 

13. Santos T., Theron L., Chambon C., Viala D., Centeno D. and Hebraud M. 2019. 

MALDI Mass Spectrometry Imaging and in situ Microproteomics of Listeria 

monocytogenes Biofilms. ASM Microbe, San Francisco, USA, June 20-24. 

14. Santos T., Chambon, C., Viala D., Esbelin J. and Hebraud M. 2018. Listeria 

monocytogenes planktonic and sessile cells adaptation to different temperatures 

seen through shotgun proteomics. 35ème SFEAP Congress, joint with the SEProt, 

Albi, France, October 09-12. 

15. Santos T., Theron L., Centeno D., Viala D., Chambon C., and Hebraud M. 2018. 

A new insight into Listeria monocytogenes biofilm adaptation to air relative 

dehumidification through MALDI mass spectrometry imaging. Microbial stress: 



 

 

193 

from systems to molecules and back, European Federation of Biotechnology, 

Kinsale, Ireland, April 23-25. 

16. Santos T., Centeno D., Viala D., Chambon C., and Hebraud M. 2017. 

Development of a MALDI imaging mass spectrometry (IMS) approach to bacterial 

proteomics: first application to Listeria monocytogenes biofilms exposed to a 

desiccation. FEMS 2017, 7th Congress of European Microbiologists, Valencia, 

Spain, July 9-13. 

17. Santos T., Theron L., Chambon C., Viala D., Centeno D., and Hebraud M. 2017. 

Développement d’une approche d’imagerie par spectrométrie de masse pour 

explorer des biofilms de Listeria monocytogenes exposés à un stress de 

déshumidification. 8ème Colloque du Réseau National Biofilms. Clermont-Ferrand, 

France, December 5-6. 

18. Santos T., Chambon C., Viala D., Esbelin J., and Hebraud M. 2017. Approche 

protéomique pour explorer les mécanismes d’adaptation de Listeria 

monocytogenes à son environnement. 8ème Colloque du Réseau National Biofilms. 

Clermont-Ferrand, France, December 5-6. 

19. Santos, T., Theron, L., Chambon, C., Viala, D., Centeno, D., and Hebraud, M. 

2017. MALDI imaging and profiling mass spectrometry approach for the analysis 

of Listeria monocytogenes biofilms exposed to a desiccation. SMMAP 2017, 

Spectrométrie de Masse, Métabolomique et Analyse Protéomique, Marne-la-

Vallée-Chessy, France, October 3-5. 

20. Santos T., Chambon C., Viala D., Esbelin J., and Hebraud M. 2017. Adaptation of 

Listeria monocytogenes to temperature: exploration of intracellular subproteome 

through shotgun proteomics. SMMAP 2017, Spectrométrie de Masse, 

Métabolomique et Analyse Protéomique, Marne-la-Vallée-Chessy, France, 

October 3. 

III. Public dissemination  

21. Santos T., Theron L., Chambon C., Viala D., Centeno D., Esbelin J., and Hebraud 

M. 2018. L’imagerie par spectrométrie de masse pour l’exploration moléculaire de 

biofilms. Faits marquants Dpt MICA. 



 

 

194 

 

 

IV. Workshops, Summer schools and Secondments 

1. Workshop “Outreach”, 13- 14 October 2015, Dijon, France. 

2. French course Level A1 (44h), 8 February – 6 June 2016, Clermont-

Ferrand, France. 

3. Summer school “Next generation sequencing”, 4 – 6 July 2016, Frankfurt, 

Germany. 

4. Workshop “Introduction to statistical analysis of expression data with R”, 10 

– 14 October 2016, Jouy-en-Josas, France.  

5. Online joint syllabus on a business plan (52h), January to June 2017. 

6. Summer school “Quantitative proteomics”, 3 – July 2017, Clermont-Ferrand, 

France. 

7. Workshop “Use of model to optimize experimental design and extract 

biological knowledge”, 9 – 11 October 2017, Copenhagen, Denmark. 

8. Secondment “Invasion capability assays with Listeria monocytogenes 

mutants in Caco-2 cells”, 21 November – 20 December 2017, Copenhagen, 

Denmark. 

9. Workshop “Career and job opportunities”, 2 – 3 July 2018, Dijon, France. 

10. Secondment “Listeria monocytogenes infection capability assays in larvae 

of Galleria mellonella”, 4 – 22 July 2018, Dijon, France. 

 



 

 

ABSTRACT 
Listeria monocytogenes is a Gram-positive bacterium implicated in serious food-borne infections. Most 
cases of human listeriosis are caused by the consumption of refrigerated ready-to-eat foods. The ability 
of these bacteria to survive and multiply in a wide range of harsh conditions make this pathogen a major 
concern in agro-food industries. These properties of L. monocytogenes are enhanced by its ability to 
form biofilms. The aim of this project was to explore the adaptation of this pathogen to dehumidification 
and low temperatures by two proteomic approaches. The first approach, based on the MALDI-TOF 
mass spectrometry imaging (IMS), allows the mapping of molecules from biological samples. This work 
aimed to develop this approach, considering a bacterial biofilm as a tissue, in order to access 
information on the distribution of proteins in L. monocytogenes biofilms subjected to a dehumidification 
stress. In addition, an LC-MS/MS approach was used to link spectral data of interest obtained by IMS 
and protein identification. The IMS allowed to examine the distribution of 47 low molecular weight 
proteins within the biofilms. Five identified proteins were assigned by LC-MS/MS using IMS m/z data, 
including two cold-shock proteins. The results demonstrate that imaging can be used to dissect the 
spatial proteome of a bacterial biofilm. The second proteomic approach consisted on a relative semi-
quantitative label-free (shotgun proteomic) comparison of proteins expressed under different culture 
conditions. With the method, we explored protein expression according to the mode of growth (biofilm 
vs planktonic) and temperature (10°C, 25°C and 37°C). Throughout the 920 and 931 unique proteins 
identified, from sessile and planktonic cells, respectively, many are connected to basic cell functions, 
but some are linked with thermoregulation. A shift was observed in the proteome of L. monocytogenes 
biofilms compared to planktonic cells indicating different patterns of regulation according to the mode 
of growth. These comparisons of protein expression throughout several conditions (mode of growth and 
temperatures) will enrich databases and help to model regulatory circuitry that drives adaptation of L. 
monocytogenes to environments. 
Keywords: Listeria monocytogenes, biofilms, adaptation, Proteomics, Imaging Mass Spectrometry 
 

Rôle du protéome dans le développement de biofilms et adaptation de Listeria 
monocytogenes à des environnements contrôlés 

 

RESUME 
Listeria monocytogenes est une bactérie à Gram positif impliquée dans des infections graves d’origine 
alimentaire. La plupart des cas de listériose humaine sont causés par la consommation d'aliments 
réfrigérés prêts à consommer. La capacité de ces bactéries à survivre et à se multiplier dans une large 
gamme de conditions difficiles fait de ce pathogène une des préoccupations majeures dans les 
industries agro-alimentaires. Ces propriétés de L. monocytogenes sont renforcées par son aptitude à 
former des biofilms. Le but de ce projet était d'explorer l'adaptation de ce pathogène à la 
déshumidification et aux basses températures par deux approches de protéomique. La première 
approche, basée sur la technique d’imagerie par spectrométrie de masse (IMS) MALDI-TOF, permet 
de réaliser la cartographie de molécules à partir d'échantillons biologiques. Ce travail a consisté à 
développer cette approche, en considérant un biofilm bactérien comme un tissu, afin d’accéder à des 
informations sur la distribution de protéines dans des biofilms de L. monocytogenes soumis à un stress 
de déshumidification. En outre, une approche LC-MS/MS a été utilisée pour relier les données 
spectrales d’intérêt obtenues par l'IMS et l'identification des protéines. L’IMS a permis d'examiner la 
distribution de 47 protéines de bas poids moléculaire dans les biofilms. Cinq protéines ont été identifiées 
par LC-MS/MS grâce aux données m/z de l’IMS, y compris deux protéines de choc thermique. Les 
résultats démontrent que l'IMS peut être utilisée pour disséquer le protéome spatial d'un biofilm 
bactérien. La deuxième approche protéomique a consisté en une comparaison semi-quantitative 
relative et sans marquage (shotgun proteomic) des protéines exprimées dans différentes conditions de 
culture. Par cette méthode, nous avons exploré l’expression protéique en fonction du mode de 
croissance (biofilm vs planctonique) et de la température (10°C, 25°C et 37°C). Parmi les 920 et 931 
protéines uniques identifiées, provenant respectivement de cellules sessiles et planctoniques, 
beaucoup sont liées à des fonctions cellulaires de base, mais certaines sont liées à la thermorégulation. 
Des changements ont été observés dans le protéome de L. monocytogenes en biofilm par rapport aux 
cellules planctoniques, ce qui indique des modes de régulation différents selon le mode de croissance. 
Ces comparaisons de l'expression des protéines dans plusieurs conditions (modes de croissance, 
températures) enrichiront les bases de données et aideront à modéliser les circuits de régulation qui 
conduisent à l'adaptation de L. monocytogenes aux environnements. 
Mots clés: Listeria monocytogenes, Biofilm, Adaptation, Protéomiques, Imagerie par spectrométrie 
de masse 
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