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The last 20 years have seen the emergence of powerful measurement technologies, enabling omics analysis of diverse diseases. They often provide non-invasive means to study the etiology of newly emerging complex diseases, such as the mosquito-borne infectious dengue disease. My dissertation concentrates on adapting and applying network and machine learning approaches to genomic and transcriptomic data.

The first part goes beyond a previously published genome-wide analysis of 4,026 individuals by applying network analysis to find groups of interacting genes in a gene functional interaction network that, taken together, are associated to severe dengue. In this part, I first recalculated association p-values of sequences polymorphisms, then worked on mapping polymorphisms to functionally related genes, and finally explored different pathway and gene interaction databases to find groups of genes together associated to severe dengue.

The second part of my dissertation unveils a theoretical approach to study a size bias of active network search algorithms. My theoretical analysis suggests that the best score of subnetworks of a given size should be size-normalized, based on the hypothesis that it is a sample of an extreme value distribution, and not a sample of the normal distribution, as usually assumed in the literature. I then suggest a theoretical solution to this bias.

The third part introduces a new subnetwork search tool that I co-designed. Its underlying model and the corresponding efficient algorithm avoids size bias found in existing methods, and generates easily comprehensible results. I present an application to transcriptomic dengue data. "50% of the success of your PhD is your work on your subject, and the other 50% is your relationship with your supervisor and people in your environment". This was the best advice that I had received before starting my PhD, and that appeared to be so true. I would like to thank my supervisors Dr. Benno Schwikowski and Dr. Anavaj Sakuntabhai for their effort to create and navigate through an interdisciplinary collaboration. Thank you Anavaj for providing diverse questions, data, for being open to suggestions, and for your patience when the results take time to appear. Thank you for your trust in the biomarker results and your willingness to validate them. Thank you Benno for your everyday support during different technical issues and philosophical doubts, thank you for your openness, your adaptivity, and your kind comments that helped me build trust in my capabilities. Thank you for your time during pre-
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In the fourth and last part, I describe the identification of a biomarker that detects dengue severity outcome upon arrival at the hospital using a novel machine learning approach. This approach combines two-dimensional monotonic regression with feature selection. The underlying model goes beyond the commonly used linear approaches, while allowing to control the number of transcripts in the biomarker. The small number of transcripts along with its visual representation maximize the understanding and the interpretability of the biomarker by biomedical professionals. I present an 18-gene biomarker that allows distinguishing severe dengue patients from non-severe ones upon arrival at the hospital with a unique biomarker of high and robust predictive performance. The predictive performance of the biomarker has been confirmed on two datasets that both used different transcriptomic technologies and different blood cell subtypes.

A mes parents,

A mes grands-parents, ... And to all those who dare to (re)search. 

Introduction

This chapter introduces notions that are required to understand how I link measurements of molecular features to dengue disease. I start by describing the disease itself. Then, I will very briefly describe the types of data that I am analysing. Finally, I will introduce the basics of the computational methods I employed for data analysis: interaction networkbased and machine learning algorithms.

1.1 Dengue, a complex disease 1.1.1 Epidemiology Dengue is the most widespread mosquito-borne viral infection worldwide. Currently, an estimated 40% to 50% of the world population lives in areas where the mosquito transmitting the virus has spread, and are therefore at risk for dengue virus transmission [START_REF] Who | Dengue And Severe Dengue[END_REF].

Figure 1.1 shows countries that are now considered to be at risk for a dengue epidemic.

The dengue virus is closely related to the Zika virus in terms of symptoms of infection, transmission and even protein structure [START_REF] Priyamvada | Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus[END_REF]. The recent increase in spread and virulence of Zika gives an example of potential dangers that dengue may represent in the close future.

Dengue was first recognized in the 1950s during epidemics in the Philippines and Thailand.

Since then, its incidence has grown fast. Before 1970, only nine countries had experienced severe dengue epidemics. The disease is now endemic in more than 60 countries in Africa, the Americas, the Eastern Mediterranean, South-east Asia and the Western Pacific. The American, South-east Asia and the Western Pacific regions are the most seriously affected.

Recently the number of reported cases has continued to increase. An estimated 500,000 people with severe dengue require hospitalisation each year, with a large proportion of severe cases occurring in children and the elderly. About 2.5% of those affected die [START_REF] Who | Dengue And Severe Dengue[END_REF]. Not only is the number of cases increasing as the disease spreads to new areas, but explosive outbreaks occur. The threat of a possible outbreak now exists in Europe, and local transmission of dengue was reported for the first time in France and Croatia in The countries in orange had dengue epidemics reported before year 2013, while the countries in between the two isotherms have a climate adapted to the main mosquito vector that transmits dengue. Source: WHO, 2014. 2010. Imported cases are regularly detected during holiday periods in European countries, including France.

Transmission

The Aedes aegypti mosquito is the primary vector of dengue. The virus is transmitted to humans through the bites of infected female mosquitoes. After virus incubation for 4-10 days, an infected mosquito is capable of transmitting the virus for the rest of its life. Infected humans are the main carriers and multipliers of the virus, serving as a source of the virus for uninfected mosquitoes. Patients who are already infected with the dengue virus can transmit the infection (for 4-5, maximally 12 days) via Aedes mosquitoes after their first symptoms appear. The Aedes aegypti mosquito lives in urban habitats and breeds mostly in man-made containers. It is thus very adapted to big concentrations of human population, such as cities. Aedes albopictus, a secondary dengue vector in Asia, has spread to North America and Europe, largely due to the international trade in used tyres (a breeding habitat) and other goods (i.e., lucky bamboo). Aedes albopictus is highly adaptable and can survive in the cooler temperate regions of Europe. Its spread is due to its tolerance to temperatures below freezing, hibernation, and its ability to find shelter in microhabitats.

Symptoms and severity classification

Reactions to infection by dengue virus can vary a lot from no symptoms, over flu-like symptoms, to deadly complications. Dengue is suspected when a high fever (40°C/104°F) is accompanied by two of the following symptoms: severe headache, pain behind the eyes, muscle and joint pains, nausea, vomiting, swollen glands, or rash. Due to the lacking specificity of some of these symptoms, dengue needs to be confirmed in the laboratory for a precise diagnostic. Symptoms usually last for 2-7 days, after an incubation period of 4-10 days after the bite from an infected mosquito. Severe dengue is a potentially deadly complication due to plasma, which leaks out of the vessels and into the organs, provoking fluid accumulation in the body cavities, respiratory distress, severe bleeding (because of the lack of platelets in which leak out with the plasma), potential organ impairment such as problems with liver or the nervous system, and, eventually, shock (i.e., a state where the heart ceases to correctly function, and stops). Warning signs occur 3-7 days after the first symptoms in conjunction with a decrease in temperature (below 38°C) and include: severe abdominal pain, persistent vomiting, rapid breathing, bleeding gums, fatigue, restlessness, blood in vomit. The next 24-48 hours of the critical stage can be lethal; proper medical care is needed to avoid complications and the risk of death.

Dengue severity classifications

Reactions to infection by dengue virus have a wide range of clinical manifestations and severities, from no symptoms to deadly complications. The evolution of the disease over time is often very difficult to predict for clinicians. Severe disease is difficult to define, but this is an important concern since appropriate treatment may prevent patients from developing more severe clinical conditions [WHO (World Health Organisation), 2009]. To help physicians distinguish between the different forms of dengue, a WHO committee developed guidelines for case classification in 1974. Based on studies of disease patterns in children in Thailand in the 1960s, these guidelines were then modified and re-issued several times [Hadinegoro, 2012], notably in 1997. Many reports state difficulties in the use of this classification, such as lacking suitability to regions outside of Asia. They were summarized in a systematic literature review [START_REF] Bandyopadhyay | Classifying dengue : a review of the difficulties in using the WHO case classification for dengue haemorrhagic fever[END_REF]. The classification of dengue cases was subsequently revised by distinguishing between dengue with and without warning DHF and DSS, supporting the concept of dengue as a continuous spectrum of disease, rather than distinct subforms [START_REF] Deen | The WHO dengue classification and case definitions : time for a reassessment[END_REF], Phuong et al., 2004]. [Grange, 2014] The 2009 WHO criteria (Figure 1.4) classify dengue according to the following levels of severity: dengue without warning signs, dengue with warning signs (abdominal pain, persistent vomiting, fluid accumulation, mucosal bleeding, lethargy, liver enlargement, increas- for the 2009 WHO classification, against 39% for the 1997 WHO classification [Hadinegoro, 2012, Basuki et al., 2010, Narvaez et al., 2011].

Treatment

There is no anti-viral drug treatment for dengue fever. For severe dengue, medical care by physicians and nurses experienced with the effects and progression of the disease can save lives, decreasing mortality rates from more than 20% to less than 1%. Maintenance of body fluid volume via intravenous rehydration is critical to severe dengue care.

Many vaccine trials are currently being conducted [Dengue Vaccine Initiative, 2017]. One vaccine has recently passed clinical trials [START_REF] Hadinegoro | Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease[END_REF], is approved by 11 countries, but its efficacy is limited. Moreover, the scientific community wonders whether there is a correlation between this vaccine and an increased probability of contracting severe Zika [START_REF] Priyamvada | Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus[END_REF].

At present, the main approach to control the transmission of dengue virus is to combat vector mosquitos, but sufficient mosquito control remains a challenge, and the disease is spreading quickly. This motivates the search of possible treatments using all contemporary tools.

Dengue virology and immunopathology

Insights into the pathogenesis of severe dengue are hampered by the lack of an animal model that accurately recreates the transient capillary permeability syndrome, accompanied by a decreasing viral burden that is seen in severe patients [START_REF] Simmons | Dengue current concepts[END_REF]. Therefore many discoveries remain to be validated and are frequently debated. This section gives a broad introduction of the current understanding of immunological processes implicated in severe dengue.

The virus

Dengue is a single positive-stranded RNA of the family Flaviviridae, genus Flavivirus. Other members of this genus include Zika, yellow fever and West Nile virus. Dengue has four serotypes that have evolved in parallel in different places worldwide, and only recently coexist in endemic countries. A fifth serotype has been reported in 2013, but has not yet been confirmed by independent studies [Normile, 2013]. Figure 1.5 presents the proteins of the virus.

(a) Proteins of the dengue virus polyprotein Source: [START_REF] Guzman | Dengue: a continuing global threat[END_REF] (b) Mature dengue virion.

Source: http://www.scientificanimations.com/ Figure 1.5: Proteins of the dengue virus polyprotein. The single positive-stranded RNA, codes for three structural proteins (capsid protein C, membrane pre-M protein that will mature into an M protein when travelling in the virion, envelope protein E) and seven nonstructural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5). NS1 has a specific role in the modulation of the immune reaction, as will be explained later on. Dengue RNA also includes short non-coding regions on both the 5' and 3' ends. [ Rothman, 2011].

Where and how is the RNA translated into this polyprotein? Dengue virions bind to cell surface receptors of immune cells, such as monocytes, macrophages or dendritic cells, and are internalised through endocytosis. Acidification of the endocytic vesicle leads to rearrangement of the surface envelope (E) glycoprotein, fusion of the viral and vesicle membranes, and release of viral RNA into the cytoplasm. Host translational machinery (ribosomes) translates the RNA into a single polypeptide. Cellular and viral proteinases cleave the polypeptide into 10 proteins (E, M, C and 7 non-structural/enzymatic proteins). The viral proteins and newly synthesized viral RNA assemble into immature virions within the ER lumen. As soon as functional RNA-dependent RNA polymerase is synthesised, RNA replication can start. A negative strand of the RNA is generated from the positive one.

From this negative strand intermediate, a new positive strand is generated. This process generates 10 times more copies of the positive strand than of the negative.

Cleavage of the viral precursor membrane (pre-M) protein by the host cell enzyme furin leads to the formation of mature virions, which are secreted from the cell. In addition, some of the synthesized non-structural protein 1 (NS1) is expressed on the plasma membrane of the cell or secreted, and some virions are secreted in an immature form.

Immunopathology of dengue disease

When an infected mosquito feeds on a person, it injects the dengue virus into the bloodstream. The virus infects nearby skin cells called keratinocytes, the most common cell type in the skin. The dengue virus also infects and replicates inside a specialized immune cell located in the skin, a type of dendritic cell called a Langerhans cell. The virus enters the cells by binding to membrane proteins on the Langerhans cell, specifically DC-SIGN, mannose receptor and CLEC5A [START_REF] Rodenhuis-Zybert | Dengue virus life cycle : viral and host factors modulating infectivity[END_REF]. DC-SIGN, a non-specific receptor for foreign material on dendritic cells, seems to be the main point of entry [ Guzman et al., 2010]. The Langerhans cells then maturate, travel to the lymph nodes and alert the immune system to trigger the immune response because a pathogen is in the body. In the meantime, the virus replicates in the Langerhans cells and is released into the bloodstream.

Once in the bloodstream, it can infect several other blood leukocytes such as monocytes and macrophages.

When the virus infects immune cells, it uses its machinery to replicate and be released from these cells, while the cells emit inflammatory signals such as cytokines (including interferons type I and II) to trigger the immune defense reaction. This inflammation becomes systemic when the virus spreads in the body and causes most of the severe dengue symptoms. Figure 1.6 illustrates the time evolution of severe dengue as well as causes and consequences of systemic inflammation in diseased secondary dengue patients. The inflammation triggers the reaction of the immune system via T-cells, the complement system, and antibodies simultaneously. We will further explain each of these immune reactions and their consequences on the pathology. We will then present a very specific property to secondary infection by dengue, called antibody dependent enhancement (ADE).

T-cell response

As previously indicated, the infected macrophage or dendritic cell is an antigen presenting cell (APC). It presents antigens on its surface via the MHC class I and II molecules. Cytotoxic T-cells, also known as CD8 + , bind to MHC class I and lyse the infected cell. T helper cells, also known as CD4 + , bind to MHC class II, release additional inflammatory cytokines and assist other immunologic processes, including maturation of B cells into plasma cells. This maturation enables them to produce many neutralizing antibodies, trigger the antibody response, and activate cytotoxic T cells and macrophages to lyse the infected cells (Figure 1.7).

This system becomes less efficient if the presented antigen resembles one that had already been encountered, but has a slightly modified shape. This is the case for a secondary infection with a new dengue virus serotype, and is known as the "original antigenic sin" [Francis, 1960].

The complement

The complement is a complex system of more than 30 proteins that are part of the innate immune response. The interacting proteins of the complement system, which are produced mainly by the liver, circulate in the blood and extracellular fluid, primarily in an inactivated state. Not until the system receives an appropriate signal are they activated. The signal sets off a chemical chain reaction in which cleaved complement proteins trigger the cleavage of the next complement protein in the sequence [START_REF] Martina | Dengue virus pathogenesis: An integrated view[END_REF].

Complement activation occurs in dengue either by the classical pathway or the alterna-Figure 1.6: Immunopathogenesis of severe dengue in secondary patients. The kinetics of viral burden (i.e., concentration of the virus in blood), the timing of common complications, and possible mechanistic causes are shown. During the most severe, possibly life-threatening, critical phase, the viral burden decreases. The strong immune reaction is responsible of the most severe symptoms. A large infected cell mass results in elevated systemic concentrations of acute-phase response proteins, cytokines, and chemokines, and generation of antibody-antigen aggregates, immune complexes. Collectively, the host immunologic response is thought to create a physiological environment in tissues that promotes capillary permeability (via the interaction of a viral protein NS1, with the capillary epithelial glycocalix, which results in release of heparan sulfate, that, in turn, increases permeability). Loss of essential coagulation proteins such as platelets probably plays a major role in the development of bleeding-related symptoms. Source: [START_REF] Simmons | Dengue current concepts[END_REF]. tive pathway. A different type of signal activates each pathway. The classical pathway is triggered by groups of antibodies bound to the surface of microorganisms. The alternative pathway is spurred into action by molecules embedded in the surface membranes of invading microorganisms, and does not require the presence of antibodies. Both pathways converge [Rothman, 2011].

to activate the pivotal protein of the complement system, called C3. Once activated, the complement system causes lysis of infected cells, phagocytosis of foreign particles, as well as cell debris and the inflammation of surrounding tissue.

With regard to dengue, it was noticed that, around the time of defervescence in severe patients, when plasma leakage may become apparent, high levels of the activation products C3a and C5a are present in the plasma, followed by an accelerated consumption and a marked reduction of the complement components [START_REF] Churdboonchart | Crossed immunoelectrophoresis for the detection split products of the third complement in fever I[END_REF], Shaio et al., 1992]. Therefore, it was hypothesized that complement activation plays an important role in the pathogenesis of severe dengue. Comparison of global gene expression profiles in peripheral blood mononuclear cells of severe versus non-severe dengue patients also suggests the involvement of the complement system in disease severity [START_REF] Ubol | Differences in global gene expression in peripheral blood mononuclear cells indicate a significant role of the innate responses in progression of dengue fever but not dengue hemorrhagic fever[END_REF]. However, many aspects of complement activation and its role in dengue pathogenesis remain to be investigated. It has been proposed that binding of antibodies to NS1 expressed on infected cells may result in complement activation [START_REF] Avirutnan | Vascular Leakage in Severe Dengue Virus Infections : A Potential Role for the Nonstructural Viral Protein NS1 and Complement[END_REF], Lin et al., 2008] (Figure 1.8).

Antibody response

In parallel to the T-cell mediated immune response, B-cell mediated immunity is triggered during the course of dengue infection and results into the production of a large amount of virus-neutralizing IgG antibodies. In the case where the virus has not been previously encountered by the immune system, some naive B cells will be able to bind the virus through their B cell receptor (BCR; a membrane form of the antibody), and with the help of specific T cells, will differentiate into plasma cells inside the lymph node. During this differentiation, the affinity of the germline-encoded BCR will increase through the hypersomatic mutation process and B cells start to produce large amounts of IgG antibodies that will neutralise the virus.

In the case of secondary infection, memory B cells and persistent plasma cells will quickly produce large amount of IgG antibodies without the help of T cells.

When the matching IgG antibodies are released into blood, they specifically recognize and neutralize the dengue viral particles (Figure 1.8) as well as improve the efficiency of phagocytosis via their Fc region.

Antibody-dependent enhancement (ADE)

Once infected by one dengue serotype, the organism acquires a lifelong protection against any future infection by this serotype and a several weak immunity for all other serotypes. But a very remarkable, and to my knowledge unique, fact is that once the immunity against other serotypes is lost, the risk of developing severe dengue during secondary infection (i.e. when infected for a second time by an other dengue serotype) increases [Halstead, 2003].

There has been a lot of research done in order to understand why the secondary reaction is more severe. A detailed review was recently published [START_REF] Screaton | New insights into the immunopathology and control of dengue virus infection[END_REF]. The most well-studied mechanism causing this severe reaction is known as antibody-dependent enhancement (ADE) [START_REF] Sangkawibha | Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak[END_REF].

As previously said, during a secondary infection by dengue, patients possess antibodies that are adapted to the previously encountered viral serotype. Antibodies specific to the exact virus serotype completely block virion entry into the cell.

Antibodies that do not match the exact serotype bind only incompletely; the virion is able to penetrate easily the phagocytic immune cell, thanks to the recognition of the Fc part of the antibody by the Fc gamma receptor, and the antibodies do not prevent it from replicating once in the immune cell. Therefore, if antibody binding is incomplete, the virus actually penetrates easier inside the host cell, and thus replicates more easily (Figure 1.9). This phenomenon is called antibody-dependent enhancement (ADE).

Figure 1.9: Antibody-dependent enhancement in secondary patients. Source: [Rothman, 2011].

Omics data types 1.2.1 Genomic data

General concepts for family and friends

The human genome consists of long macromolecules (chromosomes), sequences of nucleotides. In gene-coding regions, the parts of the sequence, known as exons, are transcribed into RNA molecules that are, in turn, translated into proteins. The role of introns (the chromosomal regions that are within gene-coding regions but are not transcribed into RNA) and non-gene coding (or intergenic) regions is only partially known and consists of a wide variety of regulatory elements for diverse functions. Changes in DNA sequence, either in exons, introns, or intergenic regions can lead to changes in the protein amino acids, or in their concentration, and thus affect human health, and reactions to pathogens.

Among the different types of DNA variation, we will here study single-nucleotide polymorphisms (SNPs). A SNP is a variation in a single nucleotide at a given position in the DNA (Figure 1.10) that occurs "quite often" in the population [Scitable by Nature Education, 2014]. There is no consensus on the precise frequency threshold, but it is usually on the order of one percent. As the set of all, or most, SNPs, can be efficiently profiled using microchips, it is common to analyse genetic predisposition to different forms of disease, such as severe dengue, in that part of human genetic variation.

Genome-wide association study (GWAS)

The aim of genome-wide association studies (GWAS) is to find genetic predispositions to a given phenotype. Given two groups of samples from individuals with distinct phenotypes (e.g., forms of disease), a GWAS aims to identify SNPs for which the observed alleles are statistically associated with the different phenotypes.

For each sequenced SNP, one counts the number of occurrences of each SNP in cases and in controls. Then, for each SNP, a statistical test assesses whether the allele counts in the two groups are significantly different. If they are, the SNP is said to be associated with the disease.

Gene expression data

Gene expression data represents the total amounts of distinct RNA transcripts in a cell. The entirety of RNA in a cell is called the transcriptome. While different types of RNA can be measured using transcriptomic technologies, we focus here on the measurement of messenger RNA (mRNA) concentrations which are often used as a proxy for protein concentrations in modeling, and therefore give a closer representation to activated/inactivated processes in cells. Gene expression is regulated by some genomic loci, known as expression quantitative trait loci (eQTLs). They can be situated within several hundreds of base pairs upstream or downstream of the gene region coding for the mRNA (cis-eQTLs), or elsewhere (trans-eQTLS). Gene expression is also regulated by the environmental factors such as disease state, immune history, diet, lifestyle such as smoking, pollution, etc., and changes over time, and between tissue types. Studying gene expression therefore enable to "integrate" environmental and genetic effects, and to therefore better explain, and understand resulting higher-level phenotypes.

Network analysis for biological data

By "network" we here mean a graph where nodes are genes, or proteins, for which these genes code. Edges are interactions between genes that were curated from sources independent of our disease-specific data: protein-protein interaction experiments such as yeastto-hybrid, literature-curated interactions, experimental data from ChiP-chip experiments, co-expression data, etc. Edges are typically weighted, based on the nature of the data and the quantity of independent sources. Examples of such networks include STRING [START_REF] Szklarczyk | STRING v10: protein-protein interaction networks, integrated over the tree of life[END_REF], I2D [START_REF] Brown | Unequal evolutionary conservation of human protein interactions in interologous networks[END_REF], HPRD [START_REF] Peri | Development of Human Protein Reference Database as an Initial Platform for Approaching Systems Biology in Humans[END_REF], HumanNet [START_REF] Lee | Prioritizing candidate disease genes by network-based boosting of genome-wide association data[END_REF], and vary according to types of data included, more or less automated curation and size. Here, we mainly use STRING, since it is one of the broadest, most frequently updated, and well-documented, databases.

These networks have been shown to contain information about protein functions. This is due to the modular architecture underlying the molecular machinery of living systems [START_REF] Barabási | Network biology: understanding the cell's functionnal organisation[END_REF], composed of proteins that form relatively static complexes, such as the ribosome, as well as dynamically changing complexes such as immune complexes during infection.

The "guilt by association" principle states that proteins sharing common properties are likely to have similar functions and is commonly used in computational methods for protein function prediction. Previously, such methods were mainly based on information derived from proteins biochemical properties, their sequence [Friedberg, 2006] as well as their structure [Domingues and Lengauer, 2007]. By defining similarity measures on such properties, annotated proteins similar to a protein of interest can be found, and machine learning methods can be used to decide whether their functional annotations can be transferred (as e.g., in [Weinhold et al., 2008]). The "guilt by association" principle has, however, also been extended to predict protein function through proximity in protein interaction networks. Two main principles can be distinguished here: direct methods that use functional annotations enriched in the network neighborhood around a protein of interest, and module-assisted methods, which first identify modules of related proteins, typically by applying clustering approaches, and then annotating each module based on the known functions of its members [Sharan et al., 2007]. Large-scale network data has been proven useful not only to the functional annotation of proteins. A large number of computational approaches are guided by network data of different kinds, and in various ways.

1.4 Machine learning methods for biological data 1.4.1 What is a machine learning algorithm?

Definition

One of the first definitions was given by Arthur Samuel in 1959. According to him, machine learning gives "computers the ability to learn without being explicitly programmed." A more precise definition that was given in 1998 says that "machine learning explores the study and construction of algorithms that can learn from and make predictions on data" [START_REF] Kohavi | Glossary of terms[END_REF]]. In other words, machine learning algorithms try to find patterns in existing data that would generalise to new incoming data.

Types of algorithms, based on input data

We can subdivide machine learning algorithms into three categories based on the input: supervised, unsupervised, and semi-supervised learning. Supervised learning requires "labelled" data, i.e., data for which we have input variable and already know the outcome. Its aim is to learn the relationships between the input variable and the outcome to be able to predict the outcome for new, "unlabelled" data. A general schema of supervised learning is presented in Figure 1.11. Supervised learning is often used to predict the phenotype of a patient, based on comprehensive molecular measurements, such as their genome, transcriptome, metabolome, etc.

Another example is the prediction of patient phenotype in reaction to a viral infection.

Unsupervised machine learning does not require the knowledge of any labels in advance.

Clustering is a commonly used form of unsupervised learning. Finally, semi-supervised algorithms require a dataset with some known outcomes, and some (often many) unknown ones.

Generally, outcomes can be of different types: they can be continuous values (for instance, expression levels, protein levels, viral load...), or categories (type of disease, severity of disease...). In this thesis, I focus on supervised machine learning methods that can be used for classification.

Performance evaluation methods and terminology

The machine learning field uses some conventional names for different datasets used (cf. Figure 1.12). The initial data used to identify a model is called the "training data". Often, Figure 1.12: Supervised machine. Source: https://www.codeproject.com additional data is required to infer additional parameters. This is the "validation data".

The "test data" is used to evaluate the quality of the prediction on new data without using the previously learned patterns and parameters; only predictions are made.

When we have limited data, it is sometimes worth "mimicking" new samples using a technique called leave-k-out cross-validation (Figure 1.13). Leave-k-out cross-validation consists of iteratively leaving out k elements from the training data to keep them for future evaluation. The algorithm learns the model on the remaining elements, and then the performance is evaluated on the previously left out k elements. This procedure is then repeated with a new set of k elements. The number of iterations is typically chosen by the user. An advantage of leave-k-out cross-validation is that its result is based on the entire data, and not just one learning set. By the same token, test data is not overall independent from learning data; therefore, the variance of the cross-validation estimator can be large [START_REF] Efron | Improvements on Cross-Validation: The .632 Bootstrap Method[END_REF]. For this reason, the comparison of models based on the results of cross-validation has limited value. The design of our evaluation procedures in Chapter 5 take this into account. Choosing the right method: The bias-variance trade-off

The bias-variance tradeoff is a central problem in supervised learning. Ideally, one wants to choose a model to fit the data closely enough to capture its characteristic structure, but not too closely to avoid capturing the structure of the noise that is specific to the training sample ("overfitting").

Bias is the error from erroneous assumptions in the learning algorithm. High bias can cause an algorithm to miss the relevant relations between features and target outputs ("underfitting"). This is the case of Model 1 in Figure 1.14.

Variance is the error from sensitivity to small fluctuations in the training set. High variance can cause overfitting: modeling the random noise in the training data, rather than the intended outputs. This is the case of Model 3 in Figure 1.14.

Ideally, one chooses a model that is "complex enough" to capture the characteristics of the data, i.e., the model is general enough to avoid erroneous assumptions (bias). On the other hand, the model should not be "too complex", i.e. the model assumptions should be specific enough to avoid sensitivity to small fluctuations in the data (variance). This is the case of Model 2 in Figure 1.14. 

Mathematical framework and terminology

In this section, let p be the number of input features per sample (for instance, the number of transcripts per individual). Let x i ∈ R p be the i-th input. Let N be the total number of samples (for instance, the total number of patients in our case). Let X = (x T 1 , ..., x T i , ...x T N ), X ∈ R N ×p be the matrix of all inputs.

We denote by |S| the size (or cardinality) of any set S.

Let Y = {0, 1, ..., C}, with C = |Y | -1, be the finite set of possible classes that can be associated with any x ∈ X. Y can correspond to patient phenotypes. Let y i ∈ Y be the class of patient i. Let ŷi ∈ Y be the predicted class of x i .

Machine learning algorithms for supervised classification

To present a broad overview of the field, we here describe algorithms representing main approaches for the analysis of omics data. We focus on algorithms that are adapted to datasets where the number of features is larger than the number of individuals, as it is the case for our datasets. All presented methods are used for comparison with a newly designed method in Chapter 5. Explanations in this introductory part are adapted from [START_REF] Hastie | The Elements of Statistical Learning: : Data Mining, Inference, and Prediction[END_REF].

Instance-based learning: k-Nearest Neighbor (k-NN)

Instance-based learning is a family of learning algorithms that, instead of performing explicit generalization, compare new problem instances with instances seen in training. The most commonly used algorithm is this family is k-NN (short for "k-Nearest-Neighbour"). This algorithm is among the simplest of all machine learning algorithms.

k-NN finds the k closest training examples to an input sample using some predefined metric (such as Euclidean distance). The class of any input is then predicted to be the most common class among its k nearest neighbors (k is a positive integer, typically small, parameter chosen by the user). Figure 1.15 gives an illustration of a classification by such an algorithm.

The method of k-nearest neighbors makes very mild structural assumptions: its predictions are often accurate, but can be unstable, depending on the value of the parameter k. Source: [START_REF] Hastie | The Elements of Statistical Learning: : Data Mining, Inference, and Prediction[END_REF] 

Linear regression

Linear classification models are a classical, and still popular, choice. They make a very

strong assumption regarding the relationship between input variables and classes. Linear models are simple and have relatively few parameters, thus being less prone to overfitting when N ≪ p.

Given new matrix of inputs X, the output class vector Ŷ = (ŷ 1 , . . . , ŷi , . . . , ŷN ) is predicted by the equation:

Ŷ = X β + β0 1 N (1.1)
where β = ( β1 , ..., βp ) is a vector of estimated coefficients and β0 corresponds to the constant coefficient, or the intercept at the origin, and 1 N = (1, 1, . . . , 1) ∈ R N is a vector of all ones of size N.

To avoid this additional constant in the above equation, we can integrate β0 into the product by replacing β = ( β1 , ..., βp ) by β′ = ( β0 , β1 , ..., βp ) and the input matrix X = (x T 1 , x 2 , ..., x T N ) ∈ R N ×p , were ∀i ∈ {1 . . . N }, x i = (x 1i , . . . , x pi ), by p+1) , were ∀i ∈ {1 . . . N } : x ′ i = (1, x 1i , . . . , x pi ). For the sake of simplicity, we will not change the notations X to X ′ and β to β ′ in the following, but the constant will be included in the input variables.

X ′ = (x ′ T 1 , x ′ T 2 , ..., x ′ T N ) ∈ R N ×(
With this change in notations, the Equation 1.1 can then be rewritten as:

Ŷ = X β (1.2)
In the case of supervised classification, we have a set of patients for whom we know the class (i.e., the training set). From this set we would like to estimate all the β i coefficients by minimising an error between the real phenotypes of our training set patients and their predicted phenotype, using the linear model. To quantify the error, different metrics can be chosen. The most commonly used method, known as the method of least squares, consists in minimising the residual sum of squares (RSS):

RSS(β) = N i=0 (y i -x T i β) 2 .
By taking the derivative and searching for the point at which the derivative is equal to 0, we find the formula of the extremum (that is a minimum, given the fact that RSS(β) is a sum of squares, thus has a quadratic form and stays positive):

β = (X T X) -1 X T Y,
where (X T X) -1 is the pseudo-inverse of X T X.

Therefore, this method provides an analytic expression of a the optimal coefficients. (For matrices where N ≪ p, X T X is singular, multiple optima exist.)

The above estimation is unbiased, i.e., for an infinite number of inputs, we obtain that the expected value of β is β: E( β) = β. Once the coefficients are estimated, we determine the separation between classes. The separation between two classes corresponds to points, where the assignment to any of the two classes generates the same error. For linear regression, this corresponds to points where Ŷ is constant and equal to some threshold th, between the two classes (typically for classes 0 and 1, th = 0.5):

th = X β.
This is an equation of a hyperplane, thus linear regression always separates classes by a hyperplane. Figure 1.16 illustrates the result of a classification by linear regression. denotes that part of input space classified as ORANGE, while the blue region is classified as BLUE. Source: [START_REF] Hastie | The Elements of Statistical Learning: : Data Mining, Inference, and Prediction[END_REF] Linear regression with least squares estimates of coefficients is the simplest model-based regression approach. It is well suited for small datasets, because it has relatively few degrees of freedom. Moreover, the linear model is quite intuitive to interpret.

The drawback of this method is that the result can be inaccurate whenever the underlying true relationship between input and output is not linear.

Feature selection using Lasso

Even when the relationship between input and output is linear, straightforward linear regression may be problematic, for two reasons that are important for learning from omics data:

The first reason is prediction accuracy. In particular for the case of many features, least squares estimates often have low bias but large variance.

The second reason is interpretation. Instead of large models with a many features, one often would prefer smaller, more easily interpretable, subset of variables that exhibits the strongest effect on the output.

Lower variance and a lower number of features are typically achieves by incorporating a feature selection penalty into the optimisation objective. There are three common approaches:

Ridge regression, Lasso, and Elastic Net. Here, we will present the Lasso method, since it is the one that generates the sparsest solutions.

In the Lasso approach, one optimizes the coefficients as in least squares, but imposes a bound on the so-called Lasso penalty:

βlasso = arg min β N i=1   y i -β 0 - p j=1 x ij β j   2 , subject to p j=1 |β j | ≤ t.
This minimisation problem subject to a constraint may be rewritten using the Lagrangian function as:

βlasso = arg min β    1 2 N i=1   y i -β 0 - p j=1 x ij β j   2 + λ p j=1 |β j |    ,
where λ is a parameter that depends on the choice of t. In practice, the parameter λ is optimised to minimise misclassification error when performing leave-out cross-validation on the learning dataset.

Because of the nature of the constraint, making t sufficiently small (or, equivalently, λ sufficiently large) will cause some of the coefficients to be exactly zero. Therefore, less features will be used to predict the outcome. As a consequence, the prediction is slightly biased, but the variance of the predicted values will decrease, and the set of features becomes easier to interpret.

Logistic regression

Logistic regression is an adaptation of linear regression that is better suited to classify data with a limited number of output classes (it is especially suited for binary classification, i.e.,

where we only have two classes 0 and 1).

Logistic regression applies a logistic function to a linear combination of the input variables before learning parameters for classification. The logistic function σ(t) is:

σ(t) = 1 1 + e -t
With t = Xβ, we get the logistic regression function,

σ(X) = 1 1 + e -Xβ
Figure 1.17 illustrates a logistic function in two dimensions.

On the example plot, a point x i with input value lower than -4 and class y i = 0 will be well fit by this regression (i.e., ŷi will be close to y i ), even in the presence of a point x j with an input value ≪ 0 and output y j = 0. This would not be the case with a linear fit. Similarly, an input value x l greater than 4 and class y l = 1 will be well fit by such a regression. With a better fit, the resulting classification can be expected to perform better.

The logistic function arises from the objective to model the posterior probabilities of our classes via linear functions in X, while ensuring that they sum to one and remain in [0,1]. Details can be found in [START_REF] Hastie | The Elements of Statistical Learning: : Data Mining, Inference, and Prediction[END_REF].

Importantly, when using logistic regression for classification, the separation between classes remains linear. Similarly to linear regression, the separation between two classes satisfies for some threshold th : th = 1 1+e -Xβ . Since the logistic function σ is monotonic, this is equivalent to:

σ -1 (th) = ln th th -1 = Xβ,
where σ -1 is the inverse function of the logistic function. This corresponds again to an equation of a hyperplane.

The logistic function thus adapts linear regression for binary classification. Just as for linear regression, we can combine logistic regression with a feature selection penalty to improve accuracy and interpretability and adding some bias. Nevertheless this approach still fits a very specific function to the data. If the data does not follow this function, bias and inaccurate predictions result.

Linear Support Vector Machines (linear SVMs)

Support vector machines are a family of methods that can be used for supervised classification, and not based on regression. I will here present linear SVMs for binary classification.

The basic idea of SVMs is to find a linear boundary (a hyperplane) that not only minimises the number of misclassified points, but also aims to be as far as possible from any point in any class. For a dataset that can be perfectly separated by a hyperplane, the algorithm will maximise the size of a margin between the separation and the closest point on each side of the boundary. The right panel of Figure 1.18 illustrates this problem.

For the cases in which it is not possible to perfectly separate the two classes, a penalty is included for the misclassified individuals. This penalty is proportional to the distance to the margin. This case is illustrated on the left panel of Figure 1.18. ||β|| . The right panel shows the nonseparable (overlap) case. The points labeled ξ * j are on the wrong side of their margin by an amount ξ * j = M ξ j ; points on the correct side have ξ * j = 0. The margin is maximized subject to a total budget ξ j ≤ constant. Hence ξ * j is the total distance of points on the wrong side of their margin. Source: [START_REF] Hastie | The Elements of Statistical Learning: : Data Mining, Inference, and Prediction[END_REF] For mathematical simplicity, we will assume in this section that our classes y i are -1 or 1: ∀i ∈ {1, ...., N }, (x i , y i ) are the pairs of input variable and class of the individual i, where y i ∈ {-1, 1} and x i ∈ R p . In the case where we can find a perfect boundary, we want to solve: max β,β 0 ,||β||=1

M

(1.3) subject to ∀i ∈ {1, ...., N } : y i (x T i β + β 0 ) ≥ M . This problem can be rewritten without explicitly mentioning the margin M . By relaxing the constraint ||β|| = 1 and setting M = 1/||β||, we can show that an equivalent formulation is:

min β,β 0 ||β||, subject to ∀i ∈ {1, ...., N } : y i (x T i β + β 0 ) ≥ 1. (1.4)
This is the usual way of writing the support vector criterion for the case where all points of the learning set can be correctly classified by the learned model.

For the case where we cannot find a boundary that perfectly classifies every element, the SVM problem in Expression 1.3 is adapted using the following constraint:

∀i ∈ {1, ...., N } :

y i (x T i β + β 0 ) ≥ M (1 -ξ i ), subject to ξ i > 0, ξ i ≤ constant.
The equivalent formulation to Expression 1.4 becomes: min ||β||, subject to ∀i ∈ {1, ...., N } :

   y i (x T i β + β 0 ) ≥ 1 -ξ i ξ i > 0, ξ i ≤ constant.
. This is the usual way the support vector classifier is defined for the non-separable case.

This makes SVM a good approach to find linear boundaries to classify data. Specific types of nonlinear boundaries may also be constructed by applying a transformation (known as kernel), satisfying specific properties, to the original features, and determining a linear boundary within this transformed space. Kernels were not used within the scope of this work.

Decision trees

In this section, let X = (F 1 , ...F p ) T , F i ∈ R N , F i being a vector of values of feature i for N samples. Tree-based methods provide a conceptually simple way to learn non-linear boundaries. Tree-based learning methods work recursively: Given a learning set, they search for a feature F i that separates optimally (according to some criterion) samples from different classes using a threshold t i . For each corresponding subset, they again search for the feature F j that separates best different classes within that set using a threshold t j , and so on, until some stop criterion is satisfied (involving, for instance tree depth, or best cross-validation performance). The class assigned to a leaf is typically the class to which a majority of the set of samples from this leaf belongs to.

Decision trees are typically represented as rooted binary trees. Each internal node represents a single input variable and a split point on that variable. The leaf nodes of the tree contain the output class. For a new sample, class prediction is performed by walking down a path of the tree starting from its root, iteratively following branches according to the learned split points, and outputting the class value at the leaf node (Figure 1.19). Adapted from [START_REF] Hastie | The Elements of Statistical Learning: : Data Mining, Inference, and Prediction[END_REF].

Trees are fast to learn and very fast for making predictions. A weak point of decision trees is that they have a relatively high variance, and generally overfit more than other methods.

Random forests

Random forests are an ensemble approach to decision trees that aims to decrease variance/overfitting. To do so, during the learning process, it applies a technique called "bag-ging"(short for "bootstrap aggregating"). Bagging repeatedly (B times) selects, and fits a decision tree to, a random sample of inputs x i :

For b = 1, ..., B:

• Sample, with replacement, B training samples from the inputs X and their classes Y ; call these X b , Y b .

• Train a decision tree f b on X b , Y b .

The output consists of B decision trees. New predictions for unseen samples x ′ can be made by taking the class most frequently attributed to x ′ by the B decision trees (breaking ties where necessary).

The number of samples/trees, B, is a free parameter. Typically, a few hundred to several thousand trees are used, depending on the size and nature of the training set. An optimal number of trees B can be found using cross-validation.

Random forests differ in only one way from bagging: they use a modified tree learning algorithm that selects, at each candidate split in the learning process, a random subset of the features, from which the feature to define the split is selected. This process is sometimes called "feature bagging".

Typically, for a classification problem with p features, √ p (rounded down) features are used in each split.

Random forests provide an adaptable way to search for non-linear boundaries with a very adaptable model. They often have better predictive accuracy than decision trees, but the interpretation of the learnt feature is usually extremely difficult, due to its complex structure.

Chapter 2

Network analysis to aggregate dengue genotyping data

Introduction

Epidemiological studies have repeatedly shown that severe dengue is associated with ethnicity [START_REF] Coffey | Human genetic determinants of dengue virus susceptibility[END_REF], Bravo et al., 1987, Guzman and Kouri, 2002, Halstead et al., 2001]. The research community has hypothesised that this is due, in part, to the genetical background. To date, several genomic associations with severe dengue have been identified

using GWAS analysis [START_REF] Khor | Genome-wide association study identifies susceptibility loci for dengue shock syndrome at MICB and PLCE1[END_REF], Whitehorn et al., 2013]. Nevertheless, the research community has trouble linking these associations with disease etiology. One hypothesis to explain this difficulty is that dengue is a complex disease, i.e., influenced by a combination of multiple genes. If we search for associations between one of the genomic positions and the phenotype in the whole genome and independently from one another, we will be testing the same hypothesis many times, and will need to correct results for multiple testing. When the genomic positions are hundreds of thousands of SNPs, as for most published dengue analyses, the correction will be very strong. Therefore, only the very strong associations would remain statistically significant, while many polymorphisms with small marginal effects will be undistinguishable from random noise [START_REF] Eichler | Missing heritability and strategies for finding the underlying causes of complex disease[END_REF], Maher, 2008]. If we are able to correctly group the marginal effects in one signal, these effects may add up and become statistically distinguishable from random noise. For instance, we can aggregate SNP p-values by some known biological units such as genes. We may even then further group gene p-values by known common functions such as pathways. When there is a risk that the useful pathways are not entirely present in the databases, we may simply use the broader information about gene-gene interactions, and aggregate gene p-values by sets of interacting genes from gene interaction networks. This chapter will discuss my work on aggregating dengue GWAS data using available knowledge to identify genes or groups of genes associated to severe dengue. I will first describe how I aggregate SNP-level information into gene-level information, then apply existing pathway analysis, and finally apply gene interaction network analysis algorithms (cf. Figure 2.1). 

Dataset

In this section, I analyse a case-control cohort from Vietnam whose GWAS was previously published [START_REF] Khor | Genome-wide association study identifies susceptibility loci for dengue shock syndrome at MICB and PLCE1[END_REF] b: missing information for one patient. Reproduced from [Grange, 2014].

Controls consisted of sequenced cord blood samples, and were from newborns. They were collected at Hung Vuong Hospital (Ho Chi Minh City, Vietnam) between 2004 and 2006.

All participants gave written informed consent to participate. The Scientific and Ethical

Committees of each study site approved the study protocols, as did the Oxford University Tropical Research Ethical Committee. DNA was extracted from cord blood using Nucleon BACC Genomic DNA Extraction Kits (GE Healthcare, USA).

Genotyping was performed with Illumina Human 660W Quad BeadChips following the manufacturers instructions. Cases and controls were randomized on plates and genotyped.

Out of the initial 500,000 SNPs, 428,910 remained after quality control. The quality control criteria excluded: SNPs that had genotypes with more than 5% missing, showed gross departure from Hardy-Weinberg equilibrium (a departure with a p-value ≤ 10 -7 ), or had a minor allele frequency below 5%. For sample quality control, samples with an overall genotyping call rate of lower than 95% were excluded from analysis. SNPs that had a pvalue that was lower than the Bonferroni-corrected threshold p-value: α Bonf = α/n SN P s = 0.05/428910 = 1.2 * 10 -7 were considered as significant. To check the coherence of the data, I reran the GWAS analysis published in [START_REF] Khor | Genome-wide association study identifies susceptibility loci for dengue shock syndrome at MICB and PLCE1[END_REF] using PLINK (v1.7) [START_REF] Purcell | PLINK: a tool set for whole-genome association and population-based linkage analyses[END_REF]. Figure 2.3 is the resulting Manhattan plot. Two distinct regions reach the Bonferroni-corrected significance threshold, as described in the initial paper. 

Aggregating genomic information to the gene level

Since dengue is a complex disease, we wonder whether more can be learnt from this genomic data, than the associations of only two genes to severe dengue. In the previous analysis the Bonferroni-corrected threshold for statistical significance is very stringent, because we test the hypothesis of association to severe dengue 428,910 times (one for each SNP). If we were able to correctly group the less strong associations in one signal, these effects together may become statistically significant. In this chapter, we will aggregate SNP p-values by genes, and analyse the resulting p-values.

Methods

Mapping by genomic position

As long as we do not have a map of all interactions and regulatory relationships between DNA nucleotides, aggregating SNPs into some functional units needs to been done heuristically. The most direct way to map SNPs to genes is to identify SNP and gene location on the DNA chromosomes and annotate which SNP is included in which gene. I first downloaded genomic positions of genes from RefLink table of the UCSC database (http://genome.ucsc.edu/) [START_REF] Karolchik | The UCSC Table Browser data retrieval tool[END_REF]. From my mapping of SNP positions to genomic positions, it appears that 53 % of SNPs are located in intergenic regions (i.e., outside of known genes). If we analyse SNPs included in genes only, intergenic SNPs would thus be deleted from the analysis! Can we improve the mapping of intergenic SNPs to genes to avoid losing more than half of the SNP information in downstream analysis?

A commonly used heuristic to go beyond the "straightforward" form of mapping consists of mapping to genes SNPs that are in the flanking regions [START_REF] Liu | SigMod: an exact and efficient method to identify a strongly interconnected disease-associated module in a gene network[END_REF]. Indeed, it is assumed that these regions are enriched in binding sites of regulatory elements such as promoters, transcription factors etc. DNA modifications at binding sites may impact the binding affinity of the regulatory element of interest, therefore affecting the regulation of the expression of the corresponding gene. Thus, it is usually deemed useful to map SNPs within a few kilobases (kb) to the left and to the right of the gene to the gene of interest.

In this analysis, the size of the flanking region is 10kb. [START_REF] Liang | A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines[END_REF] Table 2.1: Description of eQTL data sources useful for dengue analysis. * : LCL stands for lymphoblastoid cell lines. These are immortalised cell lines of B cells. * * : number of genes that have at least one SNP that regulates their expression.

Exploration of available functional information

To improve the coverage of the mapping, I investigated the possibility to use functional information about gene regulation by SNPs, such as expression quantitative trait loci (eQTLs).

Briefly, eQTLs are genetic regions that are statistically associated with modified levels of the expression of a specific gene (cf. Part 1.2.2). SNPs are known to be enriched in regulatory elements, such as eQTLs, relative to the rest of the genome [START_REF] Cookson | Mapping complex disease traits with global gene expression[END_REF], Nicolae et al., 2010]. Statistically speaking, eQTL analysis aims at finding regulatory relationships between SNPs and gene expression modifications by searching for correlations between the expression level of a gene and SNP alleles. Therefore, such an analysis requires genotyping and gene expression information for the same patient. We did not have sufficient genomic and transcriptomic data from patients that would have enabled us to establish eQTLs for the South-Asian population. I thus searched for eQTLs that may be relevant for the reaction to dengue virus.

I surveyed datasets in the databases GTEx [START_REF] Lonsdale | The Genotype-Tissue Expression (GTEx) project[END_REF], SCAN [START_REF] Gamazon | SCAN: SNP and copy number annotation[END_REF], eQTL uChicago [START_REF] Veyrieras | High-resolution mapping of expression-QTLs yields insight into human gene regulation[END_REF], SeeQTL [START_REF] Xia | SeeQTL: A searchable database for human eQTLs[END_REF] and the datasets of [START_REF] Westra | Systematic identification of trans eQTLs as putative drivers of known disease associations[END_REF], [START_REF] Liang | A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines[END_REF]. Since eQTLs are related to gene expression, they are tissue-specific. Therefore, I focused on datasets of eQTLs related to tissues that are suspected to play a role in dengue etiology. Table 2.1 gives details on the largest datasets found in the above databases for each relevant tissue type.

Since our priority is to map the intergenic SNPs to genes, we are specifically interested in trans-eQTLs ( i.e., eQTLs that are not situated in the gene whose expression they regulate, as opposed to cis-eQTLs that are situated within the gene that they regulate). From Table 2.1, we can see that there is a limited number of trans-eQTLs that can be found in each dataset. Indeed, to find trans-eQTLs, one needs to test for association between every SNP of interest with every gene of interest. This results in many tests; therefore the corresponding multiple test correction strongly reduces power, and requires large sample sizes to allow many significant hits. Moreover, trans-eQTLs are rarely reproduced in other datasets [START_REF] Liang | A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines[END_REF], and even more so when they are calculated on different subpopulations. None of the eQTL databases I surveyed perform an analysis on populations of Asian origin, and thus matching our data on dengue. Our analysis may be particularly sensitive to genetic background, as the proportion of severe dengue cases is known to vary strongly in different parts of the world. Additionally, from a statistical point of view, SNPs may be associated with the expression of several genes. For instance, in the whole-blood dataset in Table 2.1, authors report 103 independent SNPs at the origin of all of the 1,152 trans-eQTLs found in the analysis. It means that a SNP would on average be mapped to ten genes! Thus, mapping them to these genes will add dependencies between gene p-values, and will require further aggregation of gene p-values to take into account these dependencies. Using eQTL results from different databases creates other challenges: experimental techniques vary, samples are of different sizes, different statistical tests have been used to find eQTLs and to correct for multiple testing, some results are adjusted for confounders but others are not, some are adjusted for batch effect but others are not, multiple testing corrections vary, etc.

Since, in my analysis, the achievable advantage from integrating these results, and the achievable quality of the mapping outside of coding regions was not clear, I decided to continue with a simple physical mapping, as described in the following section.

Gene p-value computation

To combine SNP-level p-values obtained from GWAS into gene-level p-values, one needs to take varying gene lengths and to the potential statistical dependencies in between neighbouring SNP alleles, known as linkage disequilibrium (LD), into account. Loci are said to be in linkage disequilibrium when the frequency of association of their different alleles is higher or lower than what would be expected if the loci were independent and associated randomly [Slatkin, 2008].

I used VEGAS [START_REF] Liu | A versatile gene-based test for genome-wide association studies[END_REF], a tool that takes into account gene length and LD.

VEGAS prunes SNPs that are in LD using a HapMap LD map, then aggregates p-values of gene SNPs of interest into a test statistic, and then an empirical p-value. VEGAS gives flexibility as to which SNPs to agglomerate into a gene-based p-value. Indeed, for some genes, an approach considering all SNPs might be the most powerful; for others, focusing on a certain percentage of most significant SNPs may be more powerful, for others only one most significant SNP carries all the information. The best methodology depends on the generally unknown proportion of SNPs in a gene that influence the underlying biological process of interest.

For my application, I tried different possible options: I aggregated all SNPs to genes, only the top SNP of each gene, or only the top 10% SNPs of each gene (this last option was rerun using the new version VEGAS2v02 [Mishra and Macgregor, 2017], where a statistical mistake was corrected [START_REF] Hecker | Reporting Correct p Values in VEGAS Analyses[END_REF]). To determine LD structure, I used the Hapmap LD map of eastern Asian populations (i.e., HapMap Han Chinese in Beijing population and Japanese in Tokyo populations), since that was the closest to the population origin of the Vietnamese dataset. 

Results

SNPs were mapped to 17,629 genes, with five genes having Bonferroni-corrected p-values below the 0.05 threshold (Table 2.2). Interestingly, three out of the five genes, HLA-B, MICA, and HCP5, are all related to the major histocompatibility complex (MHC), also known as human leukocyte antigen (HLA) complex. The function of MHC molecules is to bind peptide fragments derived from pathogens, and to display them on the cell surface for recognition by the appropriate T cells. Consequences of mutations in these genes are almost always deleterious to the pathogen-infected cells who are killed; macrophages are activated to kill bacteria living in their intracellular vesicles, and B cells are activated to produce antibodies that eliminate or neutralise extracellular pathogens. Thus, there is strong selective pressure on this gene region. Indeed, the MHC is known to contain a high number of genetic variants of each gene within the population as a whole. The MHC genes are, in fact, the most polymorphic genes known [START_REF] Janeway | The major histocompatibility complex and its functions[END_REF]. The evolution of these genes is thought to be driven by the differences in pathogens encountered by their hosts in the course of human evolution. This may explain differences in severe dengue susceptibility in different populations with different genetic background.

Discussion

The above results seem to suggest that differences in the MHC complex are related to genetic susceptibility to severe dengue. This result confirms some findings about dengue etiology [START_REF] Stephens | HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais[END_REF], Lan et al., 2008].

However, my analysis is limited by the required high number of ad-hoc choices made to map SNPs to genes. Indeed, all SNPs have been mapped to genes physically without including intergenic SNPs and mapping intronic SNPs to the gene they were in, ignoring any functional link to other genes. We had considered integrating eQTL information. From a biological point of view, this information is population-and tissue-specific. Since no eQTLs are available for the Asian population, mapping eQTLs of populations with European and African origin may generate many false positives. From a statistical point of view, it is very difficult to integrate datasets, since, typically, they use different batch corrections, statistical tests and multiple testing corrections. Moreover, since one SNP can control the expression of several genes, mapping a SNP to several genes introduces strong dependencies in between gene p-values that would need to be taken into account during network analysis, which hinders the downstream statistics. Based on the little information available and the discussed disadvantages, we decided to not include this information for the SNP-to-gene mapping. In the future, if we wanted to improve the mapping, we could also consider using chromosome architecture information, since it is known that SNPs that are physically close to genes in a folded chromosome may influence the expression of that gene by making DNA more or less accessible for gene expression.

Once SNPs have been assigned to genes, there are also choices to be made as to how to map SNP p-values to genes. We have used a data-driven approach to choose the method generating the strongest statistical signal. In this case, mapping the top SNP to the gene appeared to be the best among the three tested options. Nevertheless, such a mapping relies on one SNP, and may thus be more prone to noise than the other mappings. I might have tried to test different percentages of SNPs to map to a gene in the analysis, but this might have led to overfitting. In reality, the proportion of SNPs that carry some association signal may vary not only from disease to disease, but also from gene to gene. To figure out the best mapping for each gene, a very large sample size would be needed.

Pathway analysis

One way to improve robustness and quantity of results is to include more functional regulation information and is to use pathway-based and network-based analyses that do not limit themselves to statistically significant genes, but aim to identify groups of genes that are functionally related and are enriched in low p-values. I first performed the more classical pathway analysis.

Methods

Several tools exist for pathway analysis. They differ by the input data type, enrichment statistic and by the pathway database they use to group genes into pathways (Consensus-PathDB [START_REF] Kamburov | ConsensusPathDB: toward a more complete picture of cell biology[END_REF], Ingenuity Pathway Analysis (Ingenuity Systems, GenGen [START_REF] Wang | Analysing biological pathways in genome-wide association studies[END_REF], Reactome [START_REF] Fabregat | The Reactome pathway Knowledgebase[END_REF]...). Among them, GSEA [START_REF] Subramanian | Gene set enrichment analysis : A knowledge-based approach for interpreting genome-wide[END_REF] is widely used. GSEA was originally created to assess gene set enrichment in transcriptome data.

It uses the Molecular Signatures Database (MSigDB) to define gene sets. MSigDB is a compilation of collections of annotated gene sets that includes main pathway databases, along with other more specific collections of gene sets derived from the literature. Each collection of gene sets can be used as a background dataset for enrichment analysis. The background dataset defines gene sets and quantifies the proportion of genes belonging to each gene set in the whole genome. When given a list of input genes sorted by any score, GSEA tests the null hypothesis of whether the top (or the bottom) of the gene list is enriched in genes from some of the defined gene sets, compared to the background dataset.

The output is a q-value of such an enrichment for each gene set. A q-value is the lowest FDR threshold at which the result becomes significant. In other words, a genes set with a q-value q will be considered as significant if and only if we accept to have a proportion q of results being false positives. I have used GSEA to search for enriched pathways using diverse background datasets:

1. A "hallmark" gene set that contains gene sets derived by aggregating many MSigDB gene sets to represent well-defined general biological states or processes.

2. An immunology-specific gene set containing genes differentially expressed under different stimuli (reaction to different pathogens, or to molecules activating immunity).

3. KEGG dataset [START_REF] Kanehisa | KEGG : Kyoto Encyclopedia of Genes and Genomes[END_REF]. KEGG is a database of manually curated and represented pathway maps summarising the current knowledge on the molecular interactions. It is broadly used and frequently updated.

4. Reactome dataset [START_REF] Croft | Reactome : a database of reactions , pathways and biological processes[END_REF]. Reactome is another manually curated database that represents pathways. But the unit of the Reactome data model is the reaction.

Interacting entities are diverse: nucleic acids, proteins, complexes, vaccines, anticancer therapeutics, and small molecules. Reactions are grouped into a network, and then, pathways.

5. An aggregation of curated gene sets from online pathway databases, publications in PubMed, and knowledge of domain experts available via GSEA.

I have then used a commercial pathway enrichment tool, Ingenuity Pathway Analysis (Ingenuity Systems, http://www.ingenuity.com), that has a hand-curated database of widely recognised and high quality pathways.

To avoid bias from the step of grouping SNPs to genes, I also used VEGAS2 Pathway [Mishra and MacGregor, 2017], which does not rely on a grouping of SNPs by genes, but directly groups them by pathways.

Results

At an FDR threshold of 20%, none of my analyses have led to the detection of an enrichment.

Discussion

Our negative results may indicate that the statistical association at the level of pathways is not strong enough to be significant. One reason for that may be that, in a disease whose etiology is still largely unknown, many relevant pathways still need to be discovered, or represented in pathway databases. Additionally, even in known pathways, only genes in a small part of a large pathway may be associated with the disease (a pathway can contain hundreds of genes!).

Network analysis

To extend the search of sets of genes beyond those pathways that are already known and encoded as distinct entities in databases, we would like to use a broader set of knowledge:

databases of interactions between genes, known as gene interaction networks. A broad range of databases contains gene interaction networks for Homo Sapiens. They include different types of data such as physical protein-protein interactions, other literature-curated interactions, co-expression interactions, yeast-to-hybrid interactions, inferred interactions from other species, etc. We would like to search for interacting genes that together contain a strong statistical signal of association with severe dengue. Interacting genes will be called subnetworks or modules in the following chapters. 

Methods

The network

Prior to network analysis, we need to choose a database of gene interactions. Some contain manually curated information only [Keshava Prasad et al., 2009], others use computational literature search and agglomeration of existing databases. There is, to my knowledge, no clear evaluation as to the quality/suitability of the different networks for different types of analyses. Since we wanted to include as many potential interactions as possible, we chose a network containing a broad variety of functional interactions. Each interaction is weighted according to a score designed to reflect the confidence in the existence of a given interaction, and based on the quality and quantity of available data.

I employed two different networks for my analyses. The first one was HumanNet [START_REF] Lee | Prioritizing candidate disease genes by network-based boosting of genome-wide association data[END_REF], a functional interaction network spanning 476,398 scored functional interactions between 16,243 (87%) of validated human protein-coding genes. HumanNet uses only annotations supported by experimental evidence. Annotations are either inferred from a direct assay, inferred from mutant phenotype, inferred from a protein interaction, or inferred from a genetic interaction. To this network, we added 150 dengue-specific epistatic interactions that were available in our laboratory (unpublished work of Laura Grange). They had been detected using PLINK software [START_REF] Purcell | PLINK: a tool set for whole-genome association and population-based linkage analyses[END_REF]. PLINK fast-epistasis mode uses a test based on a z-score for the difference in SNP-SNP association (odds ratio) between cases (dengue shock syndrome) and controls (non-disease samples). The top results had been confirmed by permutation analysis using MBMDR (10000 permutations/MaxT option) [START_REF] Cattaert | Model-based multifactor dimensionality reduction for detecting epistasis in case-control data in the presence of noise[END_REF].

After HumanNet, I used STRING v9.1 [START_REF] Franceschini | STRING v9.1: protein-protein interaction networks, with increased coverage and integration[END_REF], which appeared to be more frequently updated. This network contains, for Homo Sapiens, 4,319,956 interactions.

This network aggregates data from several databases, literature text mining, predicted inter-action based on homology, co-expression data, data from large-scale experiments, homology between similar species, and co-occurrence of protein domains.

Search tool

We are interested in bioinformatics tools that are able to take as input a network of interacting genes and SNP-level scores or gene-level scores, map these onto nodes of the network and search in the networks for subnetworks that aggregate high-scoring genes. A variety of search tools exist. Many of them had been initially designed for gene expression data. A review gives pointers to some of the methods [START_REF] Jia | Network-assisted analysis to prioritize GWAS results: principles, methods and perspectives[END_REF]. Table 2.3 shows those subnetwork prioritisation methods that I found to be suitable for SNP-level or gene-level p-value inputs.

Tool Algorithm description

jActiveModules [START_REF] Ideker | Discovering regulatory and signalling circuits in molecular interaction networks[END_REF] Transforms node p-values into node z-scores, aggregates these scores using Stouffer's z-score method [START_REF] Stouffer | The American soldier: Adjustment during Army life[END_REF] and ensures that for each subnetwork size, scores follow a standard normal distribution. The user can choose between a greedy algorithm or simulated annealing to search for top-scoring subnetworks.

dmGWAS [Jia et al., 2011] Same scoring function as jActiveModules, performs greedy search with two additional parameters.

Parameter d controls the size of the space explored: each nodes needs to be within a distance d to any other node in the subnetwork. Parameter r controls whether a node should be added to the best solution: the node will be added if it improves the score of the best subnetwork by more than r times the current best score. It also computes p-values of results.

EW-dmGWAS [START_REF] Wang | EW dmGWAS: edgeweighted dense module search for genome-wide association studies and gene expression profiles[END_REF] An adaptation of dmGWAS that includes edge weights into the subnetwork score.

PINBPA [Wang et al., 2015a] A Cytoscape App [START_REF] Shannon | Cytoscape : A Software Environment for Integrated Models of Biomolecular Interaction Networks[END_REF]] that uses VEGAS output as input for jActiveModules, and computes significance using permutations.

PANOGA [Bakir-Gungor and Sezerman, 2011]

A pipeline suitable for SNP data on the basis of jActiveMo dules.

GXNA [START_REF] Nacu | Gene expression network analysis and applications to immunology[END_REF] Inspired by jActiveModules score. Attempts to correct for score dependencies in between connected nodes by introducing a parameter-dependent heuristic.

Bionet [START_REF] Beisser | BioNet: an R-Package for the functional analysis of biological networks[END_REF] Integer linear programming approach that is inspired by the Prize-Collecting Steiner Tree Problem. NIMMI [START_REF] Akula | A network-based approach to prioritize results from genome-wide association studies[END_REF] First pre-computes a weight for each node based on Google PageRank algorithm, taking into account the numbers of neighbours and their neighbours using a dampening factor that, unlike Google PageRank, is scaled, and not constant. It then determines a combined subnetwork z-score as a sum of neighbouring scores weighted by their previously calculated weights. The available pre-computed weights of nodes have been calculated for the protein-protein interaction network BioGRID.

NetworkMiner [START_REF] García-Alonso | Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments[END_REF] Takes as input a ranked list of genes. Finds subnetworks concentrating best-ranked genes using a gene partitioning approach.

SigMod [START_REF] Liu | SigMod: an exact and efficient method to identify a strongly interconnected disease-associated module in a gene network[END_REF] Uses integer linear programming to optimise an objective function that is a weighted sum of gene scores and a weighted sum of edge scores, penalised by a fitted coefficient times the number of nodes in the subnetwork.

GWAStoNetwork [START_REF] Hiersche | Postgwas: advanced GWAS interpretation in R[END_REF] Combines GWAS p-values p A and p B of connected genes A and B into an edge score (by default, log(p A ) • log(p B )). The graph partitioning algorithm then decomposes the entire network into subnetworks by concentrating high-weight edges within subnetworks and minimizing the total weights of between-subnetwork edges during the clustering pro cess.

Table 2.3: Subnetwork search algorithms suitable for GWAS data Among these algorithms, I chose, for a first evaluation, the one that I found most widely used and cited: jActiveModules [START_REF] Ideker | Discovering regulatory and signalling circuits in molecular interaction networks[END_REF]. The obtained sets of genes being too large to be analysed one by one, I used the gene ontology (GO) enrichment tool BINGO [START_REF] Maere | BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks[END_REF] to perform a hypergeometric test. BINGO determines which Gene ontology (GO) terms are significantly overrepresented in the set of genes of interest. Gene ontology is a bioinformatics community resource to annotate genes using predefined terms, enabling genes to be directly grouped by these terms.

Results

When run with the entire network, jActiveModules did not terminate within 48 hours. I then reduced the input network to the interactions between those top 10% genes that had the best p-values. Results using STRING and HumanNet networks, along with Gene ontology (GO) enrichment of the resulting genes are displayed in Figures 2.6, 2.7, 2.8, and 2.9.

The best-scoring subnetworks tend to include some of the genes with the lowest p-values.

When using the GO enrichment tool BINGO [START_REF] Maere | BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks[END_REF], on HumanNet network, the MHC complex genes again appear as an enriched category; "Antigen processing and presentation of peptide antigen via MHC class I" has a multiple-testing corrected enrichment p-value of 3.10 -4 . Genes from the network that fall within this category are: TAPBP, HLA-B, HLA-C, and HLA-E.

The complement activation classical pathway is also enriched with a p-value of 0.02. The complement system is a part of the immune system that complements the ability of antibodies and phagocytic cells to clear microbes and damaged cells from an organism, by promoting inflammation via cytokines, and attacking the pathogen's plasma membrane. It is part of the innate immune system, but it can be recruited and brought into action by the adaptive immune system (cf. Chapter 1). Genes in the subnetwork belonging to this category are: C1RL, C1R, C1S.

When using the STRING interaction network, enriched categories are very different from the ones that we had previously obtained with HumanNet; only groups related to kidney development are significantly enriched with a corrected p-value of 0.002. Genes from our subnetwork belonging to this category are: FOXC2, PLCE1, ASS1, POU3F3, PYGO1, and AGTR1. AGTR1, or angiotensin II is a potent vasopressor hormone (i.e., it stimulates contraction of the muscular tissue of the capillaries and arteries) and a primary regulator of aldosterone secretion. It is an important effector controlling blood pressure and volume in the cardiovascular system. Blood pressure and volume are key parameters in the most severe form of dengue, dengue shock syndrome: most severe patients have heart failure that can occur because of insufficient blood pressure. 

Discussion

Network analysis using HumanNet confirms that immune activation may play a role in severe dengue susceptibility. Additionally, the resulting subnetwork is enriched in genes from the complement activation classical pathway. STRING network analysis using the same gene p-values generates a very different result, with much higher network scores, but enriched in a completely different category: kidney development. This enriched category points in a similar direction as PLCE1 (cf. the discussion in [START_REF] Khor | Genome-wide association study identifies susceptibility loci for dengue shock syndrome at MICB and PLCE1[END_REF]). Mutations within PLCE1 are associated with nephrotic syndrome [START_REF] Hinkes | Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible[END_REF], a kidney disorder that, when severe, leads to reduced vascu- lar oncotic pressure and edema. Oncotic pressure is a form of osmotic pressure exerted by proteins, notably albumin, in the plasma of a blood vessel that usually tends to pull water into the circulatory system, suggestive of a link between low quantities of fluid in blood and PLCE1. Moreover, another gene in the same gene ontology category, AGTR1, is a potent vasopressor hormone, and an important effector controlling blood pressure and volume in the cardiovascular system. These elements together strengthen the hypothesis that genetic predisposition to severe dengue is associated with genes regulating blood pressure and maintaining normal vascular endothelial cell barrier function in this dataset.

How is this related to clinical manifestations? When a patient has an infection in a given place in the body, the inflammation signal increases blood vessel permeability; plasma then gets more easily to the origin of inflammation, carrying with it clotting factors to stop the bleeding and spread of infection, antibodies to fight infection, nutrients to feed the tissue cells, and proteins that attract phagocytes [Luft, 1965]. When this process happens locally, it helps the body to heal faster, and the loss of fluid in blood is small. In dengue, the From a methodological point of view, the difference in the results from two different networks is intriguing. In both cases, we only used the network of 10% genes with the lowest pvalues. Therefore, even though these networks tend to be highly connected, the connectivity between genes plays a major role for the result. Moreover, the method we employed does not provide a measure of statistical significance, which leaves open the possibility that our results may not be statistically significant.

Additionally, the best subnetwork score obtained form STRING interaction network is 45% higher than the one from HumanNet. However, the HumanNet best subnetwork is enriched in more Gene Ontology categories that point towards the same immune-related process. The hypothesis that this process is involved in severe dengue thus appears to be more robust.

A possible explanation may be that there are fewer genes annotated in best subnetworks obtained using STRING results. Other causes for the difference between results obtained from different networks may lie in certain undocumented properties of the jActiveModules tool. For instance, in its default configuration, jActiveModules runs with an activated option correction for subnetwork size that is not documented in any publication or website, to my knowledge. The name of this option suggests that it represents an attempt to correct for an issue with jActiveModules, namely the empirical observation that jActiveModules has a size bias, i.e., that it tends to return very large subnetworks as results. In the following chapter, I present an explanation and an analysis of this phenomenon from a theoretical point of view.

The results are also difficult to interpret beyond gene set enrichment: gene-by-gene exploration of my resulting subnetworks of 67 genes or more is time-consuming, and it is still unclear whether it would lead somewhere given the information losses/ad-hoc choices at different stages of the analysis pipeline: SNP-to-gene mapping (as discussed above), reduction of the analysis to 10% top-scoring genes, thus removing connections in between genes, etc.

Conclusions

Results from GWAS, gene-level p-value aggregation using VEGAS, and network analysis using jActiveModules, all suggest that immune activation plays a key role in dengue susceptibility in this dataset, as well as kidney-related genes, implicated in regulating blood pressure, and in maintaining normal vascular endothelial cell barrier function.

In VEGAS results, HLA-B, MICA, HCP5, NOC3L, and PLCE1 are significantly associated with severe dengue. The first three genes are part of the MHC (major histocompatibility complex), whose function is to recognise pathogens and display them on the cell surface, so that the appropriate T cells can recognise them. This result adds information to the initial GWAS result, in which only one gene from this complex was found to be associated to severe dengue. PLCE1, whose disfunctions had been reported to be related to a kidney disease, had already been significantly associated with severe dengue by the GWAS. This result remains when mapping SNPs to genes.

On the one hand, the subnetwork obtained using the HumanNet network expands on genelevel VEGAS results by finding subnetworks enriched in antigen processing and presentation of peptide antigen via MHC class I. On the other hand, this result is also enriched in genes from the complement activation classical pathway. This pathway complements the same ability of the human immune system to recognise pathogens, create inflammation via cytokine release and pathogen removal. STRING network analysis expands on the kidney-related GWAS result (the PLCE1 gene) by detecting enrichment in the in "kidney development" category. Genes falling within this category include genes not only related to blood volume, but also stimulation of contraction of the muscular tissue of capillaries and arteries.

The methodology applied here required several ad-hoc choices or parameters during the mapping of SNPs to genes, gene p-value computation, choice of the input network, and subnetwork search algorithm. The following chapter will focus on issues related to the subnetwork search algorithm, and Chapter 4 will present an alternative search tool that addresses some of the problems in jActiveModules and emphasizes interpretability.

Chapter 3

Towards an unbiased score function for identifying network modules 

Chapter summary

Biological processes often manifest themselves as coordinated changes across several interacting molecules in high-dimensional data. Such data is therefore often visualized and analyzed in the context of interaction networks. In these networks, subnetworks that may correspond to correlated change can then be identified through computational search. According to several reports, one of the first and frequently used subnetwork scores for this problem, introduced in the jActiveModules software, has a strong tendency to lead to large subnetworks. Follow-up versions of the method have dealt with this issue only by introducing ad hoc corrections whose efficacy remains limited.

Here, we show that the size bias is not only an empirical phenomenon for specific datasets, but a statistical property of the underlying score function. Based on this, we present a new score function that removes the size bias. A sampling approach to computing the new score function is computationally hard, but we present evidence that the score can be approximated using extreme value functions.

Introduction

The organisation of cells is thought to be inherently modular [Alon, 2003, Hartwell et al., 1999]. When studying large-scale datasets, a common approach to identify those modules relevant to a question of interest starts with experimental or other gene-level scores that indicate some level of involvement of genes in a biological question, and to then identify modules with aggregate scores that are higher than expected by chance.

In such an approach, modules can either consist of predefined gene sets, such as pathways [START_REF] Khatri | Ten years of pathway analysis: Current approaches and outstanding challenges[END_REF], or connected subnetworks of a network of interacting genes [START_REF] Mitra | Integrative approaches for finding modular structure in biological networks[END_REF]. Predefined gene sets have the advantage of being easier to analyse and interpret, but are obviously limited by existing knowledge. Functional interaction networks represent information on pairs of genes known to interact-directly or indirectly-in the same biological context. The nodes of such networks typically represent macromolecules, such as proteins. Edges can represent hypothetical or verified physical associations, such as protein-protein, protein-DNA, metabolic pathways, DNA-DNA interactions, or functional associations, such as epistasis, synthetic lethality, correlated expression, or correlated biochemical activities [START_REF] Szklarczyk | STRING v10: protein-protein interaction networks, integrated over the tree of life[END_REF], Keshava Prasad et al., 2009, Lee et al., 2011].

Modules are typically identified as subnetworks with high aggregate gene-level scores. Aggregation is typically performed using a normalised score function whose distribution is identical for all subnetworks sizes in a null model.

Many algorithms are based on the score defined by jActiveModules [START_REF] Ideker | Discovering regulatory and signalling circuits in molecular interaction networks[END_REF],

including PANOGA [Bakir-Gungor and Sezerman, 2011], dmGWAS [Jia et al., 2011], EW-dmGWAS [START_REF] Wang | EW dmGWAS: edgeweighted dense module search for genome-wide association studies and gene expression profiles[END_REF], PINBPA [Wang et al., 2015a], GXNA [START_REF] Nacu | Gene expression network analysis and applications to immunology[END_REF],

and PinnacleZ [START_REF] Chuang | Network-based classification of breast cancer metastasis[END_REF]. These methods are widely applied in the current literature [START_REF] Sharma | Networkbased analysis of genome wide association data provides novel candidate genes for lipid and lipoprotein traits[END_REF], Olex et al., 2014, Smith et al., 2014, Pérez-Palma et al., 2016, Jin et al., 2008, Chuang et al., 2007, Dao et al., 2011, Liu et al., 2007, Qiu et al., 2010, Hormozdiari et al., 2015], even though the above approaches have been reported

to consistently result in subnetworks that are large, and therefore difficult to interpret biologically [START_REF] Nacu | Gene expression network analysis and applications to immunology[END_REF], Rajagopalan and Agarwal, 2005, Batra et al., 2017]. Some versions of the approach have dealt with this issue by introducing heuristic corrections designed to remove the tendency towards large subnetworks [START_REF] Nacu | Gene expression network analysis and applications to immunology[END_REF], Rajagopalan and Agarwal, 2005, Liu et al., 2017]. A recent evaluation of several algorithms revealed that the efficacy of these corrections remains limited [START_REF] Batra | On the performance of de novo pathway enrichment[END_REF]. Other methods avoid dealing with the issue by allowing users to limit the size of the returned module [ Jia et al., 2011[START_REF] Wang | EW dmGWAS: edgeweighted dense module search for genome-wide association studies and gene expression profiles[END_REF], Wang et al., 2015a, Nacu et al., 2007, Chuang et al., 2007, Beisser et al., 2010], which is problematic, as users typically do not have prior information about suitable settings of this parameter.

Here, we find that this tendency is not just a capricious property of selected datasets, but that a fundamental size bias is built into the score function itself. This leads us to define a new score function that is free of size bias. We show that, even though the practical approximation of the background distribution by sampling is computationally hard, extreme value distributions may provide good models. In the light of these results, we provide our view of the currently best options for avoiding the size bias.

Materials and Methods

The subnetwork identification problem

Most of the above-mentioned module identification methods are motivated as a maximisation problem over a set of (connected) subnetworks of a graph. In its basic form, its three inputs can therefore be described as follows.

1. A graph G, corresponding to the functional interaction network, in which the nodes V = (v 1 , ..., v N ) correspond to molecules. By A(G) we denote the sets A ⊆ V that induce connected subnetworks in G. By A k (G) we denote only those sets of size |A| = k, which we will also call k-subnetworks. A solution to the subnetwork identification problem corresponds to a subnetwork A that maximises the score s(A) over A(G).

jActiveModules score function

The jActiveModules method [START_REF] Ideker | Discovering regulatory and signalling circuits in molecular interaction networks[END_REF] was one of the first published subnetwork identification methods. Given an input graph G and P -values (p 1 , ..., p N ), a first aggregate score z(A) for a k-subnetwork A ∈ A k (G) is defined using Stouffer's Z-score method [START_REF] Stouffer | The American soldier: Adjustment during Army life[END_REF]:

z(A) = 1 √ k i∈A z i ,
where z i = φ -1 (1p i ), and φ -1 is the inverse normal cumulative distribution function (CDF). The jActiveModules score s(A) is then obtained as

s(A) = z A -μ k σ k ,
where μ k and σ k are sampling estimates of mean and standard deviation of scores z A over all k-node sets A ⊆ V . Ideker et al. [START_REF] Ideker | Discovering regulatory and signalling circuits in molecular interaction networks[END_REF] evaluated the resulting score against a distribution of empirically obtained scores under random permutations of (p 1 , ..., p N ), corresponding to a null hypothesis of a random assignment of input gene-level scores to the nodes of the network.

Definitions

To discuss the key subnetwork score properties that are at the origin of the size bias, we introduce the following notations. 

Score normalisation

Per construction of the jActiveModules score function, and under a sufficient amount of sampling to determine μ k and σ k , S k follows a standard normal distribution: S k ∼ N (0, 1) [START_REF] Ideker | Discovering regulatory and signalling circuits in molecular interaction networks[END_REF]. Whenever, as here, the distribution of S k is independent of k, we will call the underlying score s normalised. As we will show below, the size bias of the jActiveModules approach is rooted in the fact that the underlying score is normalised.

Empirical studies of small subnetworks and their scores

We show that, under a normalised score, small subnetworks can be significantly high-scoring in their size class, but still low-scoring when compared to scores that occur by chance in larger networks, thus explaining the above-mentioned size bias, i.e., the tendency of jActiveModules and related methods to return large subnetworks.

To empirically explore the properties of the jActiveModules score function, we generated a sample network with 50 nodes from STRING interaction network [START_REF] Szklarczyk | STRING v10: protein-protein interaction networks, integrated over the tree of life[END_REF],

which we denote by G 50 , by first initialising a graph G current with a randomly chosen node from the STRING network. Then we iteratively extended G current with a randomly chosen neighbour, until |G current | = 50. Subnetwork scores S k are not independent, as subnetworks in A k (G) are overlapping. To explore whether the same effect as in the independent case can still be observed, we computed scores S * k in our sample network G = G 50 for 100000 random instantiations of (p 1 , ..., p 50 ). Figure 3.3 shows the resulting empirical distributions of S * k , for some small values of k, with a clear increase of S * k with increasing k. 

Maximum scores S * k may follow an extreme value distribution under the null hypothesis

Maxima of independent identically distributed (i.i.d) scores follow an extreme value distribution [Coles, 2001]. Subnetwork scores are indeed identically distributed: they follow a standard normal distribution (Figure 3.7). However, due to the overlap between subnetworks, subnetwork scores S k are not independent. Nevertheless, most pairs of small subnetworks of a larger network do not overlap, and their dependency structure is therefore local.

Extreme value distributions are used in other cases when dependency structure is local.

They have been been proved to accurately approximate certain sequences of random variables whose high scores (block maxima) have a local dependency structure [Coles, 2001].

In sequence alignment, high-scoring alignments tend to overlap locally, and Karlin and Altschul [START_REF] Karlin | Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes[END_REF]] demonstrated that the null distribution of local similarity scores can be approximated by an extreme value distribution. There, a weighting parameter K explicitly accounts for the non-independence of the positions of high-scoring matches. K is specific to the search database, and its estimation is computationally intensive.

Figure 3.4 shows that generalised extreme value distributions also fit empirically observed distributions S * k quite well in the sample network G 50 with its fit parameters (Probability plots in Section 3.8.3). The fit can be observed to be good for smaller values of k, and to deteriorate with increasing k, concomitant with the loss of locality in the subnetwork dependency structure. This implies that certain non-significant subnetworks of larger size are systematically scored higher than other, smaller, subnetworks that have a significantly high score relative to their size. Figure 3.5 illustrates this effect: a score that is unlikely to be observed by chance in a 3-subnetwork is much more likely to be observed by chance in a 5-subnetwork. Even though we were not able to explicitly calculate S * k for k > 5, we deem it likely that, larger k-subnetworks (with, say, k > 7) with even better scores are almost certain to exist in random data. As many methods do not provide an assessment of the statistical significance of the reported subnetworks, these methods not only prefer spurious larger subnetworks over-potentially biologically relevant-smaller ones, but also fail to provide their users with an indication that the reported networks are indistinguishable from chance observations.

Discussion

An unbiased score function s

It is straightforward to remove the bias of a (normalised or unnormalised) score s(A) by calibrating it relative to its size-specific null distribution. For a k-subnetwork A, one can define sk (A) = P (S * k ≤ s A ). For each k, the resulting maximum scores S * k are then approximately uniformly distributed on [0, 1], i.e., P ( S * k ≤ x) ≈ x. Note that the uniform distribution is only approximate, as S * k is a discrete distribution.

3.6.3

Computing the unbiased score s by sampling is computationally hard, but it may be possible to approximate s by an extreme value distribution

Computing the above score function s is not straightforward. In principle, s(A) could be approximated by sampling from S * k , but each sample requires the computation of a maximum of s(A) over all subnetworks A in a network whose gene-level scores have been instantiated

with P -values -a problem that has been shown to be NP-hard even in a simplified form [START_REF] Ideker | Discovering regulatory and signalling circuits in molecular interaction networks[END_REF]. Approaches to solve this problem nonetheless exist [START_REF] Dittrich | Identifying functional modules in protein-protein interaction networks: an integrated exact approach[END_REF], Liu et al., 2017], but under the reported running times in the range of minutes to hours for a single sample from S * k , sampling still remains very time-consuming.

The locality of the dependency structure among small subnetworks and our empirical results from Section 3.5.3 suggest that S * k can possibly be approximated by an extreme value distribution. However, it is not obvious how the parameters of this distribution can be estimated practically without recourse to sampling, which, as discussed above, is difficult.

Current options to avoid size bias

In the absence of practical solutions to compute the unbiased subnetwork score s, what are the current practical options for scoring and detecting subnetwork aggregates of statistical signals?

One possibility is to use one of the approaches that find highest-scoring subnetworks of a fixed, or limited, subnetwork size k [START_REF] Backes | An integer linear programming approach for finding deregulated subgraphs in regulatory networks[END_REF], Jia et al., 2011[START_REF] Wang | EW dmGWAS: edgeweighted dense module search for genome-wide association studies and gene expression profiles[END_REF], Wang et al., 2015a, Nacu et al., 2007, Chuang et al., 2007, Beisser et al., 2010], and to compare them on the basis of their biological interpretation. Since only small networks tend to be biologically interpretable, only small k would have to be tested. As adding a few neighbours to a statistically significant subnetwork can be expected to preserve significance, not all values of k would need to be tested. While this approach has obvious shortcomings (solutions for different values of k need to be compared, multiple statistical tests, sometimes unclear biological interpretation), each computation by itself would only compare subnetworks of same size, and thus avoid size bias.

There are other, non-statistical (e.g., algorithmic/physical) principles for identifying aggregates of signals in networks [START_REF] West | An integrative network algorithm identifies age-associated differential methylation interactome hotspots targeting stem-cell differentiation pathways[END_REF], Alcaraz et al., 2014]. The lack of clear mathematical relationships between inputs and outputs, and the lack of options to assess statistical significance may make it difficult to evaluate these approaches, and their applicability to any given biological scenario. We have developed an approach that preserves mathematical clarity and statistical tools, and obtains computational tractability through a restriction to a simplified subnetwork model. This approach, LEAN is developed in Chapter 4 and published in [START_REF] Gwinner | Network-based analysis of omics data: The LEAN method[END_REF].

Conclusions

The identification of functional subnetworks of strongest aggregate statistical signals in networks is an important approach to analyse biological genome-scale datasets. An array of different computational methods and software is in practical use, but many are plagued in practice by a recognised strong tendency towards large subnetworks that ad hoc adjustments have not been able to remedy.

Here, we present a first direct analysis of the origins of this phenomenon that reveals a strong statistical size bias in a frequently used score function. By normalisation against size-specific null distributions, we derive a new, unbiased, score. This score function is computationally hard, and we outline our view of currently best other practical options to avoid size bias. Finally, we hope that our evidence, that the unbiased score function can be approximated using extreme value functions, can motivate further theoretical developments towards the unbiased identification of modules in networks. In the previous chapter, I discussed the tendency of popular algorithms for subnetwork identification to return large subnetworks that are hard to interpret, while requiring the user to set many parameters with little obvious guidance. In this chapter, I describe the Local Enrichment Analysis (LEAN) method, which I co-designed, and that attempts to avoid these issues. LEAN has been implemented in an R package, first been applied on biological data by Frederik Gwinner. The first part of this chapter is an adaptation of the methods part of our article [START_REF] Gwinner | Network-based analysis of omics data: The LEAN method[END_REF] that explains the algorithm. In the second part, I apply LEAN to dengue transcriptomic data.

Approximate normality of subnetworks scores S k

The LEAN algorithm 4.1.1 Main idea: The local subnetwork model

We introduce here a novel network-based analysis approach integrating genome-wide measures of statistical significance (p-values) with large-scale interaction networks. It is based on a local subnetwork model that assumes that higher-order biological activity can be detected by aggregating signals from a single gene and its direct network neighbors (cf. Figure 4.1).

The local subnetwork model is much simpler than the common (unconstrained) subnetwork model, in terms of computational complexity, and the assessment of statistical significance.

While the number of subnetworks is typically exponential in the number of genes, networks contain only a single local subnetwork per gene. The identification of optimal subnetworks is computationally NP-hard [START_REF] Ideker | Discovering regulatory and signalling circuits in molecular interaction networks[END_REF], whereas optimal local subnetworks can be identified in polynomial time by examining all genes and their neighborhoods in turn. The relatively low number of local subnetworks also allows the straightforward calculation of empirical p-values, while, for many subnetwork-based analysis methods, no efficient algorithms are known to compute statistical significance. 

Local enrichment analysis

LEAN is based on two ingredients: A list of measures of statistical significance (p-values)

for some or all genes and an interaction network. In many applications, p-values originate from a statistical test for differential expression, such as a t-test. While the approach is readily applicable to other types of datasets, we will describe it using the example of its application to the results of a differential expression analysis (input p-values). Analysis is performed using the given interaction network restricted to genes for which an input p-value has been calculated based on transcriptomic data. A local subnetwork A g consists of a subset of genes formed from a center gene g and its directly interacting partners in the given network. Candidate subnetworks are all local subnetworks A g . 

LEAN p-values

p i k (1 -p k ) m-i . (4.1)
We designate the position in the ordered subnetwork p-value list of A g at which the minimum p(k)

g is achieved by k * = arg min p(k) g . The unnormalized enrichment score ES g is then defined as:

ES g = log 10 (p (k * ) g ). (4.2)
To correct for biases due to subnetwork size, and to evaluate statistical significance, the enrichment p-value p * g is computed by comparing ES g to a background distribution of ES BG values obtained on random gene sets of the same size as A g :

p * g = prob(ES BG ≥ ES g ). (4.3)
To determine the background distribution of ES BG values, p * g is empirically estimated using 10 000 (a user-configurable parameter) random samples of size m from the set of input pvalues. To correct for the number of local subnetworks being tested, a Benjamini-Hochberg multiple testing correction is applied to the p-values of all candidate subnetworks. These multiple testing corrected p-values are further called the LEAN p-values. For each candidate subnetwork with a significant LEAN p-value, the LEAN implementation returns its central g gene along with the above mentioned intermediate scores and additional information on the candidate subnetwork. To normalize by local subnetwork size, random samples of equal size to A g are drawn from all input p-values and a ESBG value is computed for each of them (E). The distribution of ESBG values is then used to estimate the enrichment p-value p * g , according to Equation 4.3 (F). FC denotes Fold Change (log 2 ) between two conditions.

Application to dengue data

We used LEAN for network analysis of dengue genotyping and transcriptomic data to search for associations with severe dengue.

Application to genotyping data

As input, we used gene-level p-values generated in Chapter 2, along with the STRING interaction network v9 (with the top-scoring 250,000 interactions, corresponding to an interaction confidence score of 0.637 or better) [START_REF] Franceschini | STRING v9.1: protein-protein interaction networks, with increased coverage and integration[END_REF].

No significant network was found by LEAN at a significance level of α = 0.05 on this genotyping dataset. This may have been because of the incomplete knowledge included in the network, or because of the imperfect functional mapping, as discussed in Chapter 2. The lack of a strong genetic signal in the cohort may likewise explain this result, potentially because a larger cohort would be needed to unravel complex relationships. Moreover, our input interaction network may lack important interactions, or include too many interactions that are irrelevant for dengue severity. The initial assumption of LEAN may also be inappropriate to dengue biology: subnetworks of the form of a gene and its direct neighbors may not aggregate the genetic signal in the right way. Furthermore, as we have no strong evidence that dengue severity is genetically determined, the variability explained by the genetics alone may not be large enough to be detected. Environmental factors, such as previously encountered pathogens, play a big role in dengue pathogenesis, as explained in Chapter 1. We were able to further examine this possibility using data that integrates the influence of these environmental factors, such as gene expression data.

Application to gene expression data

Data I analysed expression in an in vitro experiment on monocytes from 11 patients from Thailand. For each of these patients, we have mRNA array-based gene expression measures of 70,524 transcripts performed using the HTA2 Affymetrix microarray. Expression is available under two experimental conditions: before infection by dengue virus, and after.

As explained in Chapter 1, after infection, in most people, dengue virus would multiply fast in dendritic cells, causing high viral load. Ḃut some patients, are able to better resist to the infection, and their viral load stays low. The 11 patients comprised:

• 5 patients with high viral load after dengue virus infection, and

• 6 patients with low viral load after dengue virus infection.

LEAN analysis was performed to explore the molecular basis of the difference in reactions between these two subgroups.

Analysis

I have compared infected low-viral load versus infected, high-viral load samples, since, in non-infected samples, I observed no difference in between the two groups.

I first performed a Wilcoxon test, a non-parametric equivalent of the t-test, based on ranks, for all transcripts. This test does not require the assumption of normality, which, in turn, was impossible to test, given the small sample size. Moreover, it is more robust, i.e., less likely to indicate significance because of the presence of an outlier. No test turned out as statistically significant: among the 46 914 transcripts tested, none had a p-value that was lower than 0.5 after Benjamini-Hochberg multiple testing correction. (I also tested whether the result would change with a t-test. The same absence of significant results was observed.) I then used the input p-values and the same network as for genome data and performed LEAN analysis.

Results

Applying LEAN resulted in 352 local subnetworks being significant with a q-value of 0.05.

The list of these genes appears in Appendix A.1. I then performed enrichment analysis of these genes using GSEA (described in Chapter 2). As background sets, I used the "hallmark" gene set from the MSigDB database, and C7, a set of immunological signatures of differentially expressed genes under different immune-specific perturbations. The complete list of enriched sets can be found in Appendix B.1 for the background hallmark gene set, and the top 100 enriched immunological gene signatures from the background set C7 can be found in Appendix B.2. With both background sets we obtain results highly enriched in immunological responses. For the hallmark dataset as background, Table 4.3 presents an extract of most significantly enriched categories. Interferon gamma response appears as most significantly enriched (False Discovery Rate (FDR) q-value of 2.10 -62 ). The second most enriched gene set is the interferon alpha response (FDR q-value of 4.10 -52 ). As explained in Chapter 1, interferons are involved in inducing inflammation, in the first reaction to infection. Other immunologic categories include TNF-alpha signaling via NF-kB. Non-directly related groups include genes implicated in genesis of adipose tissues. Also this result is consistent with prior knowledge: dengue severity is known to be associated with the quantity of lipoproteins (LDL and HDL) in blood [START_REF] Biswas | Lower Low-Density Lipoprotein Cholesterol Levels Are Associated with Severe Dengue Outcome[END_REF]. Other gene sets are related to apoptosis and more general cellular functions: MYC-and E2F-related groups, apoptosis, DNA repair, G2M checkpoint etc. These may be differentially expressed because of the lysis of infected cells. Table 4.4 presents an extract of the genes that fall into the most over-expressed categories. Many of these genes have previously been associated with dengue severity in gene expression analyses, such as interferon inducible genes, OAS family gene OASL, TNF-kB family genes... [START_REF] Coffey | Human genetic determinants of dengue virus susceptibility[END_REF].

When using the more specific immunological signatures dataset as background, many gene sets have very significant enrichment p-values, similarly to the hallmark dataset. Since there are over 100 enriched sets, I used the Enrichment Map Cytoscape App that allows connecting sets that share many genes [START_REF] Merico | Enrichment Map : A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation[END_REF]. The largest connected groups include genes that are upregulated in response to virus ( 

Discussion

This chapter presents LEAN, an approach that I co-designed to aggregate omics data in the context of interaction networks. Here, I discussed the method itself, and its application to dengue genotyping and transcriptomic datasets. LEAN is able to compute best-scoring subnetworks and their empirical p-value, without relying on any user-tunable parameter, and without size bias, such as the one described in Chapter 3. It achieves this goal by only considering very specific subnetwork structures: a genes and its direct neighbors. The disadvantage of such a constraint may be that it is less powerful to identify statistical signals across gene sets that are connected, but not strongly interconnected between themselves.

An extreme example of such a set is a linear pathway, where each node has only two connections to other members in the pathway, except from the extreme nodes that have only one connection. Nevertheless, these gene structures that have a central node make a first step in aggregating signal and are much easier to interpret, since we can start by analyzing central nodes that may play a central role in the network. Moreover, LEAN needs to only explore one network per node, therefore decreasing greatly the space of networks to explore, compared to an algorithm such as jActiveModules (cf. Chapter 2).

Our application of LEAN to dengue disease generated diverse results: we found no significant results for our genomic data. For the transcriptomic data, we started by performing a test for differential expression for each individual transcript. The absence of low p-values during this test may well be due to the very small sample size, compared to the strength of the biological signal we can expect. By aggregating gene signals using LEAN, we were able to find sets of genes that were highly enriched in immune-related functions. Most of them are related to the current knowledge about the disease, reassuring us in that most results represent a true biological signal, rather than noise. This suggests that LEAN may indeed be capable of pinpointing specific genes in biologically relevant processes.

A next step of this analysis would be to generate new hypotheses for the differences in viral load, based the LEAN results, and to validate them experimentally. To generate these hypotheses, we need to focus on specific gene sets, groups of related gene sets, or on specific genes from gene sets, and interpret their role in the experiment. Once specific genes of interest are identified, it would be natural to consider their network neighborhood.

Generating these hypotheses would therefore require close interactions with researchers specialising on dengue, or immunologists.

Another next question of interest is: Given the strength of the signal in this gene expression dataset, is it possible to create a biomarker that is able to predict dengue severity early on in the disease and direct hospital resources towards severe patients? The next chapter represents an attempt at answering this question.

Here, I aimed to explore another approach to tackle complexity beyond single genes in biological data. I specifically aim to search for a multiple-gene biomarker that predicts the severity of the future reaction to dengue infection in patients, based on their blood transcriptomes at the earliest possible clinical stage, i.e., when they enter the hospital.

Such a biomarker may ultimately be used to help doctors reliably distinguish between patients who can be sent home and those who are at risk to develop severe dengue, and need to be monitored in hospital. A second objective is to study genes included in the biomarker as starting points for deeper exploration and understanding of severe dengue.

We will here first define the concept of a biomarker, then I will present the method that we developed for biomarker search, and finally, I will present the application of this method to gene expression data. At the time of this writing, this last part has been submitted as a journal article.

Biomarker: A definition

The term "biomarker" is a portmanteau of "biological marker". In 1998, the National Institutes of Health Biomarkers Definitions Working Group defined a biomarker as "a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention" [Biomarkers Definitions Working Group, 2001].

Disease-related biomarkers either indicate of whether the patient is ill (diagnostic biomarker), the probable effect of treatment (predictive biomarkers), or how a disease may develop (prognostic biomarker) [START_REF] Tezak | US FDA and personalized medicine: in vitro diagnostic regulatory perspective[END_REF].

In the context of the following analysis, we will also employ the term "gene signature", which is an other commonly used expression to designate a disease-related set of genes.

Furthermore, we avoid the term "prognostic biomarker", as this might be considered an overstatement-some of the patients already had symptoms of severe dengue when entering the hospital. We will use the wording "biomarker that detects severe dengue" instead.

Classification through ensemble monotonic regression

Motivated, in part, by the work presented in the previous chapters, we aimed to develop a method that:

• would generate biomarkers with a small and controllable number of features,

• whose features we will be able to interpret biologically,

• that is able to generate linear and non-linear boundaries between phenotype classes,

• would generate a biomarker containing a stable feature set,

• allows fast enough algorithms to deal with a set of tens of thousands of transcripts,

• is suitable for datasets of tens of patients.

One classically used model for binary phenotypes is Lasso logistic regression. Nevertheless, Lasso can only generate linear boundaries between cases and controls. We were also interested in being able to find logical relationships such as: "if we have a high/low expression of transcript 1 AND/OR a high/low expression of transcript 2", the predicted phenotype is severe. Such relationships have been shown to exist in the biology of cancer [START_REF] Iorio | Resource A Landscape of Pharmacogenomic Interactions in Resource A Landscape of Pharmacogenomic Interactions in Cancer[END_REF]. In modelling disease state as a function of two transcripts, an "AND" rule could capture, for instance, the role of a pair of key transcripts in two alternative pathways for a hypothetical physiological function lacking in severe patients. Severe patient status would then be correlated with low expression in both transcripts. In an "OR" rule, a low level of either transcript could correspond to a critical malfunctioning protein complex in severe dis-

ease. An interesting choice of a regression model that was able to find linear and non-linear interactions, including the logic functions above, and be fast enough to deal with all the features appeared to be monotonic regression. The only hypothesis made is monotonicity of the outcome: for a given transcript it can either be "the lower the expression the more severe the phenotype", or "the higher the expression the more severe the phenotype".

A mathematical definition of monotonicity is the following:

Definition [Isotonic, monotonic function] A function f : R n -→ R, x = (x 1 , . . . , x n ) → f (x), is isotonic in x i if f is an increasing function in x i , i.e., ∀∆ ≥ 0, ∀x ∈ R n : f (x 1 , . . . , x i + ∆, . . . , x n ) ≥ f (x 1 , . . . , x i , . . . , x n ).
f is called monotonic in x i if f is either increasing or decreasing in x i , i.e., f or -f is isotonic in x i . f is called monotonic if f is monotonic in all x i . Figure 5.1 presents an illustration of a monotonic function in two variables (or two-dimensional monotonic regression). 

Two-Dimensional monotonic regression for classification

To model the relation of a combination of transcript levels to the phenotype, we first use a monotonic function of two variables that best fits our training data, as measured by the L 1 -norm. In our case, we have only two phenotypes: severe and non-severe dengue, which we encoded as 0 and 1, respectively. Thus, the optimal fit according to the L 1 -norm is a monotonic function that minimizes the number of misclassified patients on the given data. for biomarker discovery on a cluster with 315 cores. The algorithm takes less than 30 minutes to run, being for the first time, fast enough to evaluate all possible pairs of transcripts using a recent algorithmic improvement [Stout, 2012]. The 2D version of the algorithm enables to take into account two transcripts to predict the phenotype. For a complex disease, it is an improvement compared to 1D monotonic regression, but is still limited. Therefore, from these results, I created the final biomarker on a standard personal computer using Python and Mathematica as follows.

Ensemble monotonic regression

To adapt to diseases that require many transcripts for prediction and to add robustness to the biomarker, I combined transcript pairs that had the smallest LOOCV error estimate (further referred to as top pairs) in a single ensemble biomarker: for a new patient p, the final phenotype is the proportion of top pairs that have predicted p as severe dengue.

The exact number of pairs to include in the biomarker is determined statistically by an other round of LOOCV (cf. Figure 5.2 for the full pipeline of the method). One can also visualize pairs and is able to decide how many/what pairs to include in the ensemble biomarker. We therefore allow the user to choose a number of pairs that is smaller, than the one generating the optimal performance estimate by LOOCV, and therefore the user may trade off the complexity of the model and the estimated performance of the model. This option may be useful when trying to generate a biomarker with a small number of transcripts. The following analysis presents the successful application of this algorithm to detect severe dengue. The following part it a slightly adapted version of the article, that has been submitted to review in July 2017. Important note : In the following section, we do not have separate validation data. We have a "training cohort" that we use to estimate parameters via leave-one-out cross-validation and three "test cohorts". However, the article from this chapter is written for a biomedical audience. We adopt their variation of the terminology, where "validation cohort"(instead of "test cohort") is used to denote independent data on which the classifier is evaluated without modifying any parameters. 

Summary

Background

Early detection of severe dengue can improve patient care and survival. To date, no reliable single-gene biomarker exists. We hypothesized that robust multi-gene markers exist.

Methods

We performed a prospective study on 438 Cambodian dengue-suspected patients, aged 4 to 22. We analyzed transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) collected on the first day of hospital admission for 42 of these patients using microarrays. We developed a novel biomarker discovery approach that controls the number of genes included, and captures non-linear relationships between transcript concentration and disease severity.

For evaluation, we estimated the predictive performance of the biomarker on previously uncharacterized 22 PBMC samples from the same cohort using qRT-PCR and 32 wholeblood microarray transcriptomes from an independent cohort.

Findings

We identified an 18-gene biomarker for detecting severe disease in dengue patients upon hospital admission with a sensitivity of 0.93 (95% CI: 0.80-1.00) and a specificity of 0.67 (95% CI: 0.49-0.84) with a total area under ROC-curve (AUC) of 0.86 (95% CI: 0.75-0.97).

The signature was validated on previously unseen data from 22 patients from the same cohort, with an AUC of 0.85 (95%CI: 0.69-1.00). In addition, it was validated on whole blood transcriptomic data from an independent cohort of 32 patients with an AUC of 0.83 (95%CI: 0.68-0.98).

Interpretation

Based on its robust performance, this biomarker could detect severe disease in dengue patients upon hospital admission, or even for prognosis if confirmed in further studies.

Furthermore, its genes offer new insights into severe dengue mechanisms.

Introduction

Dengue is the most widespread mosquito-borne viral infection worldwide. Currently, 40%

to 50% of the world population lives in areas at risk for dengue virus transmission. [START_REF] Who | Dengue And Severe Dengue[END_REF] If the majority of dengue cases are uncomplicated, it is estimated that each year 500,000 cases, mostly children, progress to severe dengue (SD) and require hospitalization.

According to the World Health Organization (WHO), about 2.5% of those affected by severe dengue requiring hospitalization are still dying from complications. [START_REF] Who | Dengue And Severe Dengue[END_REF] The recent explosive spread of the related Zika virus might further increase this burden. Indeed, the complications associated with severe dengue are more common after secondary infection than after primary infection, [Halstead, 2014] and recent studies both in vitro and in vivo have highlighted the potential of anti Zika immunity to trigger dengue enhancement. [START_REF] Stettler | Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection[END_REF] As recently highlighted by the WHO, robust and early detection of severe dengue, along with access to proper medical care, would not only decrease the fatality rate down to 1%, but also reduce health care costs and economic burden of the disease. [START_REF] Who | Dengue And Severe Dengue[END_REF] While diagnosis methods for dengue infection are well established, there are no prognostic tests to help the clinician evaluate the risk of progressing to severe dengue. A number of biomarkers that use clinical variables for detecting severe cases of dengue infection have been proposed, both for adults and/or children. [START_REF] Tuan | An evidence-based algorithm for early prognosis of severe dengue in the outpatient setting[END_REF], Lee et al., 2016, John et al., 2015, Soundravally et al., 2015, Thanachartwet et al., 2015, Pang et al., 2016] Nevertheless, none of the biomarkers we found in the literature have been replicated on independent datasets. In addition to these studies, others have aimed to identify molecular biomarkers, based on either mRNA expression, or on protein or cytokine levels. A number of genome-wide expression profiling studies have also been performed in Nicaragua, Cambodia, Thailand and Vietnam. [START_REF] Kwissa | Resource Dengue Virus Infection Induces Expansion that Stimulates Plasmablast Differentiation[END_REF], Devignot et al., 2010a, Popper et al., 2012, Hoang et al., 2010, Simmons et al., 2007a] Every study uncovered differentially expressed genes associated with severe dengue. Many of these genes have functions associated with innate immunity, vascular permeability, coagulation, neutrophil-derived antimicrobial resistance, inflammation, and lipid metabolism. However, their capacity to detect severe cases among dengue patients was not evaluated, [START_REF] John | Biomarkers of severe dengue disease -a review[END_REF], Soundravally et al., 2015, Thanachartwet et al., 2015, Kwissa et al., 2014, Devignot et al., 2010a, Popper et al., 2012, Hoang et al., 2010] or they exclude children. [START_REF] Pang | Discovery and validation of prognostic biomarker models to guide triage among adult dengue patients at early infection[END_REF] Dengue is known to be a complex disease. To address this, a recent review suggested the study of combinations of molecules for the detection of severe cases. [START_REF] John | Biomarkers of severe dengue disease -a review[END_REF] To this end, Nhi et al. identified 19 plasma proteins exhibiting significantly different relative concentrations (pvalue ≤ 0.05) on 16 patients (6 severe dengue, 10 non-severe). [START_REF] Nhi | A Proteomic Approach Identifies Candidate Early Biomarkers to Predict Severe Dengue in[END_REF] Among them, a combination of antithrombin III and angiotensin had strong power to detect the 6 severe dengue patients (area under the ROC curve (AUC) = 0.87). Pang et al. developed a biomarker combining transcript, protein and clinical markers, mostly linked to innate immunity and coagulation, that was able to detect patients with warning signs and needing to be hospitalized with sensitivity of 96% and specificity of 54.6% on a validation cohort. [START_REF] Pang | Discovery and validation of prognostic biomarker models to guide triage among adult dengue patients at early infection[END_REF] However, these studies share a common drawback: none of the biomarkers have been replicated on an independent cohort. We hypothesized that a simple combination of a small number of gene expression markers may be robust enough to establish reproducible detection of severe cases among newly admitted dengue patients. With this in mind, we attempted to develop a biomarker discovery algorithm; one that allowed for not only linear but also more general monotonic relationships between features, meaning more complex, but still easily interpretable, relationships between genes.

Our underlying goal was to identify a biomarker able to detect severe cases from blood samples taken upon dengue patient admission to hospital. We conducted a prospective study in Cambodia of patients admitted to hospital with suspected dengue infection. Severe dengue cases were identified according to the WHO 2009 criteria using data at admission and during hospital stay. Our data consisted of gene expression profiles of peripheral blood mononuclear cells (PBMCs) on the date of admission. A PBMC is any peripheral blood cell having a round nucleus. These include important immune players such as lymphocytes (T cells, B cells, NK cells) and monocytes, but exclude red blood cell, platelets and granulocytes (neutrophils, basophils, and eosinophils). To control for the number of genes in the biomarker, and identify monotonic relationships between transcript concentrations and disease severity, we developed a new biomarker discovery approach. Using this, we identified an RNA biomarker of 18 genes in PMBCs that could detect severe dengue cases. We were able to replicate these results on previously unseen PBMC samples and whole blood samples taken using different technological platforms. From the known functions of these genes, we obtained new insights into the pathophysiology of severe dengue.

Research in context

Evidence before this study

We searched the PubMed database for "dengue"[Title] AND (severe OR severity OR shock) AND (risk OR biomarker) AND (human OR patients) without any date restrictions. Even though most severe dengue cases occur in children, none of the biomarkers in the resulting literature that included samples from children had stated sensitivity and specificity on an independent cohort.

Added value of this study

Young patients are particularly at risk for severe dengue infection in endemic regions.

Our study presents the first independently validated molecular biomarker detecting severe dengue in this patient group with stated measures of specificity. Estimates of predictive performance on two independent cohorts were stable across biological and technical variation, and had an AUC (area under ROC curve) ranging from 0.83 to 0.85.

Implication of all the evidence

This study provides the first evidence that a well-performing molecular biomarker for detecting the severe form of the disease in young dengue patients across different technical conditions and blood cell subtypes is possible. The novel non-linear model underlying the biomarker is flexible enough to discover complex gene-gene interactions, yet simple enough to be represented visually. Our analysis of the included biomarker genes confirms several previous findings, as well as suggests new biological processes that may help understand severe dengue. 

RNA preparation, microarray hybridization and qPCR validation

RNA was extracted from PBMC stored in RNA protect cell reagent (Qiagen, Hilden, Germany) with a miRNeasy kit (Qiagen) and RNA quality checked on a BioAnalyzer 2100 (Agilent, Santa Clara, California). For microarray analysis of the training cohort, gene expression in PBMC was analyzed using Affymetrix Human Transcriptome Array 2 (HTA2)

GeneChips. HTA2 chips were prepared, hybridized, and scanned according to the manufacturer's instructions. For qRT-PCR of the PBMC validation cohort, 200 ng RNA were reverse-transcribed with SuperScript VILO cDNA synthesis kit (Invitrogen, Life Technologies, Carlsbad, CA, USA), using a combination of random hexamer and Oligo(dT)12-18 primers. TaqMan Gene Expression Assays (Life Technologies) were used for each candidate gene according to the manufacturer's instructions. Relative expression was calculated with the 2 -∆∆Ct method, using beta glucuronidase (GUSB) as endogenous control for normalization and a calibrator sample as a comparator for every sample.

Plan for biomarker discovery

Our 18-gene biomarker was identified through an automated machine learning algorithm applied to microarray transcriptomes of the PBMC training cohort, leading to an initial assessment of its performance via rigorous cross-validation. After applying necessary quantile normalization (Section 5.3.9), we evaluated this biomarker on two previously unseen datasets (Figure 5.4). The first validation dataset consisted of 22 unseen patients (7 severe dengue, 15 non-severe) from the PBMC validation cohort, whose gene expression was measured using qRT-PCR.

As the IGKC transcript found in the 18-gene biomarker was expressed at undetectable levels in the PBMC validation cohort, its levels were substituted with the measured levels of its partner PPBP in the PPBP-IGKC gene pair. The second validation dataset was an independent, publicly available, Cambodian whole blood dataset, selected for its large size and high quality. [Devignot et al., 2010a] It consisted of whole blood transcriptome data from 48 dengue-infected patients. At the time of that study, phenotype was still established according to the 1997 WHO classification: DSS (Dengue Shock Syndrome), DHF (Dengue Hemorrhagic Fever), and DF (Dengue Fever).[WHO (World Health Organisation), 1997] To make phenotype data comparable, we reclassified the disease severity as well as possible in terms of the 2009 WHO classification. We considered all 18 DSS patients as severe dengue, and all 14 DF patients as non-severe, considering that DF patients that are reclassified as severe dengue in the 2009 WHO classification are rare. DHF patients could not be classified without additional clinical information that was unavailable to us, and were thus excluded.

Machine learning methodology

Our biomarker was created using a machine learning approach based on monotonic regression on a training cohort as explained in section 5.2. Briefly, new predictions made by the biomarker are based on 0/1 (non-severe/severe) predictions (votes) derived from pairs of transcripts in the biomarker. Measured concentrations for any given transcript pair are turned into a binary vote using a two-dimensional monotonic function, [Stout, 2012] a generalization of a linear function that monotonically increases or decreases with the concentration of each transcript. The final prediction is "severe" if the mean of all votes is above the threshold t, and "non-severe" otherwise. The performance of individual transcript pairs on future patients is estimated using cross-validation. The resulting biomarker consists of a set of transcript pairs with unique transcripts having an optimal performance estimate.

Using a permutation test, we then eliminated those genes that did not confer a statistical performance advantage over the performance of their partner alone. The resulting model represents a unique combination of lower-and higher-complexity features tailored towards the discovery of complex disease biomarkers. The monotonic model generalizes linear models. Nevertheless, the resulting features can still be visually and intuitively understood.

Controlling the number of transcripts in the biomarker allows different trade-offs between performance, robustness, and assay cost (Section 5.3.9) To rescale the biomarker to the different measurement units of our validation sets, we mapped transcripts to genes and quantile-normalized the expression values (Section 5.3.9).

Performance evaluation

We summarized biomarker performance using the ROC curve, which consists of the different combinations of true and false positive rates that are obtained by varying the above threshold t between 0 and 1. For the comparison with state-of-the art machine learning methods, we used the implementations from the Python sklearn [START_REF] Pedregosa | Scikitlearn: Machine Learning in Python[END_REF] package.

Results

We have identified an 18-gene biomarker that allows the detection of severe dengue from a blood sample taken from dengue patients upon hospital arrival. We evaluated the performance of the biomarker using two validation datasets. The first validation set was generated from PBMC transcripts of additional patients from the above cohort, which were quantified by qRT-PCR. The second validation set consisted of data from a whole blood transcriptome array from an independent, previously published study. [Devignot et al., 2010a]. The performance of our biomarker was estimated by cross-validation. We obtained AUC values of 0.86, 0.83 and 0.85 for the training set and the two validation sets, respectively. Twelve of the eighteen genes in the biomarker are immune-related (Table 5.1). Certain genes have already been associated with severe dengue.

To determine whether the inclusion of a larger number of genes or the restriction to a linear state-of-the-art variable selection model would have increased classification accuracy, we estimated the performance of several well-known classification methods (Figure 5.5.a).

Methods are presented in (Chapter 1, Machine learning). Though differences in performance did not reach statistical significance, our method gave the highest AUC. Moreover, logistic regression with a lasso penalty (logistic lasso), a state-of-the-art linear variable selection method, generated a classifier whose performance was not better than random on the PBMC qRT-PCR dataset (Section 5.3.9). The protein localizes in the Golgi apparatus and at the plasma membrane. The protein forms a stable complex with PYK2 in vivo.

Gene

- For example, for the second pair of transcripts (JUNB and ARG1), patients have a severe phenotype when JUNB expression is high or ARG1 expression is low. For OX40L and CD40LG, OX40L and CD40LG both are under-expressed in the severe patients. For EGR3 and MGAM, the lower the EGR3 expression, and the higher the MGAM expression, the more likely the patient is to be predicted severe. 

Discussion

We have identified and independently validated a biomarker for the detection of severe cases among dengue patients from blood samples taken upon arrival at the hospital. Severity was defined according to the 2009 WHO dengue classification.[WHO (World Health Organisation), 2009] This 18-gene expression biomarker was built using PBMC samples of newly hospitalized Cambodian dengue patients using transcriptome microarrays. Our novel ap-proach to biomarker discovery models linear and non-linear monotonic interactions between transcript levels with controlled complexity, and preserves interpretability and applicability to datasets of limited size. We performed a first validation of our biomarker by quantifying, using qRT-PCR, transcripts of previously uncharacterized PBMC samples from the same dengue season/cohort. The performance results remained stable compared to our original performance assessment. For further validation, we used a whole blood cohort from an independent public dataset. [Devignot et al., 2010a] To our knowledge, our results represent the first molecular biomarker for detecting severe cases in dengue patients with demonstrated high performance on independent datasets. The genes OX40L and CD40L that comprise our first gene pair are both under-expressed in severe cases (Figure 5.6). OX40L and CD40L are membrane proteins expressed by dendritic cells and by activated T cells, respectively, that are essential to mount an efficient adaptive immune response. OX40L binds to its co-receptor OX40 and allows T cells to survive after clonal expansion. Stimulation of B cells by T cells through CD40L is necessary for class switching and somatic hypermutation, and hence both genes are required to produce potent neutralizing antibodies (Figure 5.7). [START_REF] Elgueta | Molecular mechanism and function of CD40/CD40L engagement in the immune system[END_REF] In the context of dengue infection, OX40L has been shown to be down-regulated in human monocyte-derived dendritic cells after in vitro infection, supporting a role of the co-stimulatory molecule in dengue infection. [START_REF] Gandini | Dengue-2 and yellow fever 17DD viruses infect human dendritic cells, resulting in an induction of activation markers, cytokines and chemokines and secretion of different TNF-alpha and IFN-alpha profiles[END_REF] In addition, we have observed a differential regulation of the expression of the OX40 signaling pathway in asymptomatic dengue cases compared to clinical cases (Duong, Simon-Loriere et al, in press). The role of CD40L in dengue infection is less clear; on one hand CD40L has been described as an enhancer of viral particle production by infected dendritic cells by providing survival signals, [START_REF] Sun | CD40 Ligand Enhances Dengue Viral Infection of Dendritic Cells : A Possible Mechanism for T Cell-Mediated[END_REF] but on the other hand CD40L is up-regulated in dengue specific CD4+ T cells and important for protection against the virus through an antibody-independent pathway. [START_REF] Yauch | CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination[END_REF] The second gene pair of our biomarker, ARG1 and JUNB, controls inflammation. Both genes are expressed in neutrophils and are known to regulate the production of reactive nitrogen species. ARG1 degrades the substrate of inducible nitric oxide synthase (iNOS). [START_REF] Munder | Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity[END_REF] JUNB transcriptionally regulates the expression of iNOS. [START_REF] Ratajczak-Wrona | Role of AP-1 family proteins in regulation of inducible nitric oxide synthase (iNOS) in human neutrophils[END_REF] Hence, these genes together control the inflammatory status of the main blood component. Moreover, it has been found that JUNB is a key transcriptional modulator of macrophage expression. It activates the expression of ARG1 in the presence of IL-4. [START_REF] Fontana | JUNB Is a Key Transcriptional Modulator of Macrophage Activation[END_REF] The role of ARG1 in flavivirus infection has been extensively described; in the case of dengue, the production of RNS is required to inhibit viral replication during the early phases of infection. However an overproduction of RNS in the late phases of the disease leads to the inhibition of coagulation, leading to dengue-typical bleeding. ARG1 is therefore required to reduce the amount of RNS and bleeding during dengue infection. [START_REF] Burrack | The role of myeloid cell activation and arginine metabolism in the pathogenesis of virus-induced diseases[END_REF] This biomarker could be easily implemented in a clinical setting, and used sequentially or in combination to a dengue diagnostic test. Such a tool would allow more efficient patient triage, and close monitoring of individuals with high risk for severe disease, and would be especially useful in non-endemic regions where physicians might not possess extensive experience in dengue diagnosis and management. Indeed, this biomarker requires only a blood sample from the patient, and any technology that could measure the expression level of these 18 specific genes. Moreover, a recent large-scale study suggests that the concentrations of most proteins are linearly related to RNA concentration (with gene-specific levels). [START_REF] Edfors | Gene-specific correlation of RNA and protein levels in human cells and tissues[END_REF] Thus, a protein-level implementation of our biomarker may potentially further ease its use, or allow its deployment in point of care settings.

In conclusion, we have presented a highly performing 18-gene biomarker that detects severe cases among dengue patients fast and objectively upon arrival at the hospital. Its performance was extremely stable on PBMC and whole blood samples, and across different technological platforms. A deeper understanding of the underlying biology, and how important parameters such as blood cell type, serotype, day of fever, and measurement platform impact the expected performance, will require dedicated follow-up studies. The potential of the marker as a prognostic marker for the early detection of risk of evolution towards severe dengue remains to be determined in further studies. 
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BioMérieux project and DENFREE consortium funding was used for data generation. IN was supported by Labex IBEID , the doctoral school Frontières Du Vivant and OpenHealth Institute.

Appendices to this chapter

Probe filtering

It has been found that appropriate independent filtering increases detection power for highthroughput experiments [START_REF] Bourgon | Independent filtering increases detection power for high-throughput experiments[END_REF]. Thus, when possible, we used such filtering.

Only transcripts with variance greater than 0.5 have been kept for the analysis. Moreover, since interpretability of our results was key, we have kept transcripts that had an Entrez gene ID. This resulted in 2,653 transcripts being analyzed.

As to patient filtering, criteria are detailed on Figure 5.8 

Rescaling of new datasets

To be able to use the biomarker on new datasets, we need to make the transcript measures comparable in-between datasets. We quantile-normalised [START_REF] Amaratunga | Analysis of Data From Viral DNA Microchips[END_REF] each validation dataset with our PBMC training dataset. For the PBMC validation dataset, since the measures came from relative qRT-PCR quantification, gene expressions where incomparable for different genes. Thus, the quantile-normalisation was done for each gene separately. More precisely: we first ensured ourselves that we have the same proportion of cases and controls in our training set that in the validation set. If the proportion of cases was lower(resp. higher), we duplicated a random cases( resp. controls) to equalise these proportions. Then, for:

• PBMC validation data: for each gene A, we ordered gene expressions of patients in PBMC training dataset and in the PBMC validation dataset. This generated two ordered lists L train and L other .

• Whole blood validation data: Genes had already comparable measures in between themselves, due to the properties of transcriptomic arrays. We thus quantile-normalized the whole array taken together: We assumed that in reality the distributions of the gene expressions should be similar globally. Thus we pooled patients and genes together and ordered expression values in training dataset and application dataset. This generated 2 ordered lists L train and L other .

Then, to the i-th value of the validation dataset we attribute the value in the training set with the index i new = Round(i * Length(L train )/Length(L other ))

• PBMC validation dataset: the values in between genes were not comparable, thus we did the above normalisation for each gene separately instead of doing it once for the whole dataset.

Varying the number of pairs included in the biomarker We wanted to assess the impact of a simplification of the biomarker. Even though our optimal performance was obtained when using 74 different pairs of transcripts, the AUC The variability of results and scores obtained by using input networks of different sizes brought us to study the jActiveModules scoring. In Chapter 3, we show that the score of jActiveModules, as described in [START_REF] Ideker | Discovering regulatory and signalling circuits in molecular interaction networks[END_REF], under the null hypothesis of uniformly distributed p-values, is biased when comparing scores of networks of different sizes for a fixed input network. By normalisation against size-specific null distributions of the generalised extreme value family, we derive a theoretical new, unbiased, score. This score function is computationally hard, and we outline our view of existing best practical options to avoid size bias.

In Chapter 4, we describe the design and use of a tool that does not suffer from the bias described in Chapter 3, LEAN. We use LEAN network to analyse GWAS data of Chapter 2, without finding any significant result. Motivated by the fact that environmental factors have a great impact on dengue outcome, we then analyse gene expression data and compare gene expression during an in vitro experiment that consists of injecting dengue virus into blood, determining the viral load of cells, and comparing samples that develop a high viral load with those that develop a low viral load. This analysis produces results highly enriched in different processes mostly related to inflammatory signalling, with a highest score for interferon alpha and gamma signalling.

In Chapter 5, we hypothesize that a combination of expressed mRNAs can help detect disease severity upon arrival at the hospital. We developed a machine learning method that is able to go beyond linear interactions, without using overly complex models to not overfit our learning dataset of 42 individuals. We evaluate the predictive performance of all monotonic relationships between all the pairs of transcripts and the phenotype, then we assemble best-scoring pairs to create an 18-gene biomarker. This biomarker predicts severe dengue with a sensitivity of 0.93 (95% CI: 0.80-1.00) and a specificity of 0.67 (95% CI: 0.49-0.84) with a total area under ROC-curve (AUC) of 0.86 (95% CI: 0.75-0.97). The signature was validated on previously unseen data from 22 patients from the same cohort using an other mRNA quantification technique, qRT-PCR, with an AUC of 0.85 (95%CI: 0.69-1.00). In addition, it was validated on whole blood transcriptomic array data from an independent cohort of 32 patients with an AUC of 0.83 (95%CI: 0.68-0.98). Our signature has the advantage of being easy to visualize, facilitating its interpretation. Interestingly, E2F and MYB are genes in common with the previous experiment in Chapter 4. As in Chapter 2, we find that the antigen presenting process is important through the OX40L and CD40L pair. Both genes are membrane proteins expressed by dendritic cells and by activated T cells that are essential to mount an efficient adaptive immune response. Many other genes are linked to immuno-modulation via T/B-cell activation (MYB, IGKC, CD40L, OX40L, TCF7, ARG1), and neutrophils (ARG1, JUNB, MPO, PPBP).

Discussion

Biological results

Interestingly, genes identified by our genomic and transcriptomic analyses point to the same processes in severe dengue: immune processes implicating adaptive and innate immunity, especially related to the antigen presentation on the immune cell surfaces, appear to play a role in the pathogenesis of severe dengue. Our first network analysis of GWAS also shows an association with genetic predispositions to regulate vessel permeability and blood volume; nevertheless, the statistical significance of this association was not confirmed when using LEAN method. Chapter 5 moves one step beyond this by introducing a biomarker to improve early detection of severe dengue, especially by non-experienced doctors. Such a biomarker may appear of practical interest, given the recent global spread of the Aedes mosquito vector.

In this biomarker, one may question the relevance of the presence of neutrophil-related genes, since the study was made on PBMC cells, in which only those traces of neutrophils remain that are not removed during centrifugation. The performance validation of our biomarker on whole blood samples confirms that neutrophil-related genes are not an artifact of bad purification of PBMC cells, but a real biological signal. Therefore, in future experiments, it may be of interest to keep neutrophils in samples if we want to precisely study their impact.

Methodological results

Interaction networks

From a methodological point of view, in Chapters 2 to 4, we explored network methods designed to find genes with relatively high scores of association to severe dengue and that interact. From Chapter 2, it appears that results obtained with different input networks may differ a lot. Therefore, improved curation of networks, trying several networks, and different sizes of input networks, in terms of nodes and connectivity, may be of great practical interest in future work.

Network search algorithms

The algorithm used for analysis also impacts strongly the results, as we see when comparing results from STRING interaction network in Chapters 2 and 4. Most remarkably, the biggest bottleneck is rather the interpretation of results, and their experimental validation.

Statistical significance helps to gain statistical confidence in results, but most importantly generating small networks is key for a better interpretation and outcome.

Predictive models

An other approach to increase confidence in computational results may be to design predictive models, where we measure directly how well our results generalise, rather than aiming for statistical association in one specific dataset. This gives a better measure of how generalisable the results are. Nevertheless, one should pay attention again to the interpretability of the results, by, for instance limiting the number of features used in the resulting feature.

The ensemble monotonic regression approach has the advantage of generating results where we control the number of features used, that are easy to interpret, and that we can visualize on a plot. In terms of performance, on dengue transcriptomic data it appears to generate more reproducible results than classical methods -even those that perform feature selec-tion, such as logistic Lasso. This will probably not be the case for all datasets, since this regression depends on a monotonic model, which may not be the most appropriate choice for other datasets. Compared to a feature selection model such as Lasso, a key difference is that the ensemble aggregation method used here keeps all correlated pairs in the biomarker.

This may be redundant in a non-noisy setting, but given the variability of expression measures in between individuals at a given time point, it may be interesting to keep redundant pairs in a gene expression signature. Moreover, the LARS algorithm used for Lasso picks genes iteratively, meaning that once the first gene picked, the choice of the second genes depends on this first gene [START_REF] Efron | LEAST ANGLE REGRESSION 1 . Introduction . Automatic model-building algorithms are familiar , and sometimes notorious , in the linear model literature : Forward Selection , Backward Elimination , All Subsets regression and various combinations are used to[END_REF]. This may make the actual set of chosen features highly variable based on small differences in the learning set.

However, ensemble monotonic regression is only one approach among others. We may consider, for instance, using support vector machine ensemble classifiers, as used in [ Zak et al., 2016] to find a tuberculosis gene signature. For performance improvement, the conclusion of many challenges designed for method comparison (such as DREAM challenges)

is that usually the best performance is obtained by "the wisdom of the crowd": These methods aggregate results of many different algorithms, by for instance, letting each method (or only several best methods) vote for the phenotype, and taking as outcome the majority vote [START_REF] Marbach | Wisdom of crowds for robust gene network inference[END_REF], Eduati et al., 2015]. Nevertheless, the disadvantage of such a method is that the features are then difficult to interpret, and usually many features are used.

In the case of an ensemble classifier, we may aggregate features otherwise than by simply using the most predictive pairs of features. To further make the model more robust and simpler, we may use, for instance, an approach that would remove a subset from the learning set, calculate a gene signature on the remaining set, iterate several times this procedure by leaving out different subsets and keeping for the final biomarker those genes that were appearing in all the computed gene signatures.

Another alternative to strengthen interpretability would be to first group genes in sets by common properties and try to apply machine learning methods to those groups taken together. For instance, grouped Lasso is an adaptation of Lasso for such an approach [START_REF] Yuan | Model Selection and Estimation in Regression with Grouped Variables[END_REF].

6.3 What if I had another three years for this project?

The next step of this project consists, in my opinion, in choosing the most interesting biological findings that can be validated in laboratories, and create experiments to validate them. This step will require a good knowledge of possible experiments on dengue; many of them may be hampered by the unavailability of an animal model that reproduces human severe symptoms after dengue infection. To be able to choose the most promising hypotheses to validate, we would likewise need to precisely understand the methods that have generated the statistically significant results.

That is why I would ask for financing for a common project between an experimental biologist and a computational biologist. Such a collaboration would also enable us to use the validation results to improve computational findings, upon which new experiments may then be executed using these results.

Moreover, I would invest time in better understanding the details of dengue immunology to be able, myself, to better choose among statistically significant results those that most echo with current knowledge of the disease.

In terms of methodology, ensemble monotonic regression needs to be thoroughly compared to other methods on a benchmark of diverse datasets for a precise assessment of the use of such a method. Creating a user-friendly implementation for instance in the Python machine-learning package sklearn may ease such an analysis. 
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Figure 1

 1 Figure 1.1: Dengue: countries or areas at risk of a dengue epidemic based on the most recent consensus.

  signs and severe dengue, as published in 2009 [WHO (World Health Organisation), 2009]. I worked with the 1997 and 2009 classifications, and present them in more detail. The 1997 guidelines classified dengue into DF, DHF (Grades 1 and 2) and DSS (DHF Grades 3 and 4; Figures 1.2 and 1.3). The case diagnosis emphasised the need for laboratory confirmation. Studies have demonstrated an overlap between the case definitions of DF,
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 12 Figure 1.2: WHO 1997 classification. Source:[Grange, 2014] 

Figure 1 . 3 :

 13 Figure 1.3: WHO 1997 classification description

Figure 1 . 4 :

 14 Figure 1.4: WHO 2009 classification

Figure 1

 1 Figure 1.7: T-cell response to dengue infection. Source: [Rothman, 2011].

Figure 1 . 8 :

 18 Figure 1.8: Dengue virus life cycle and antibody response to the pathogen. Mature and immature virions induce antibody responses to the E protein, and these antibodies can function in neutralisation or in antibody-dependent enhancement of infection. Immature virions also induce antibody responses to the pre-M protein. Antibodies specific for NS1 can interact with membrane-bound NS1 and cause complementdependent lysis of virus-infected cells. Source: [Rothman, 2011].

  Nucleotides can de distinguished by their bases. There are four types of nucleotide bases: adenine (A), cytosine (C), guanine (G), and thymine (T). Most of the time, in the nucleus of a cell, DNA is double-stranded. Strong covalent bonds bind bases together along a single strand, and weaker hydrogen bonds pair A with T and C with G between the two strands. Each single strand has two different ends called 5' and 3', oriented in opposite directions.

Figure 1 .

 1 Figure 1.10: Single Nucleotide Polymorphism (SNP) within a DNA molecule. The two DNA molecules differ at a single base-pair location (a C/A polymorphism).

Figure 1 .

 1 Figure 1.11: Supervised learning workflow. Source: https://www.codeproject.com

Figure 1 .

 1 Figure 1.13: Leave-k-out cross-validation.

Figure 1 .

 1 Figure 1.14: Bias-Variance trade-off. Source: https://cambridgecoding.wordpress.com

Figure 1 .

 1 Figure 1.15: A classification example in two dimensions using k-NN classifier (k = 15). The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and then fit by k-NN algorithm. The orange shaded region denotes that part of input space classified as ORANGE, while the blue region is classified as BLUE.

Figure 1 .

 1 Figure 1.16: A classification example in two dimensions using linear regression. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression. The orange shaded region

Figure 1 .

 1 Figure 1.17: The logistic function σ(t) = 1 1+e -t

Figure 1 . 18 :

 118 Figure 1.18: Support vector classifiers. The left panel shows the separable case. The decision boundary is the solid line, while broken lines bound the shaded maximal margin of width 2 M = 2||β|| . The right panel shows the nonseparable (overlap) case. The points labeled ξ * j are on the wrong side of their margin by an amount ξ * j = M ξ j ; points on the correct side have ξ * j = 0. The margin is maximized subject to a total budget ξ j ≤ constant. Hence ξ * j is the total distance of points on the wrong side of their margin. Source:[START_REF] Hastie | The Elements of Statistical Learning: : Data Mining, Inference, and Prediction[END_REF] 

  Figure1.19: Decision tree approach and resulting partition of the feature space. Here, the set of classes is Y = {R1 . . . R5}, and the feature vectors are F1 and F2. Adapted from[START_REF] Hastie | The Elements of Statistical Learning: : Data Mining, Inference, and Prediction[END_REF].
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 21 Figure 2.1: Summary of the analyses performed in this chapter.
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 22 Figure 2.2: Characteristics of the patients of the GWAS cohort. a: missing information for five patients.

Figure 2 . 3 :

 23 Figure 2.3: Manhattan plot of the replicated GWAS results. The horizontal axis represents the SNPs ordered by chromosomes and chromosomal positions, the vertical axis represents -log of SNP p-values, under the null hypothesis of no association. The red line represents α Bonf , the significance threshold of α = 0.05 corrected for multiple testing using the Bonferroni correction.
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 2 4 represents a histogram of the distribution of these p-values. Since the top SNP-based gene p-values where most enriched in low values, I carried on the analysis with these gene-level p-values.

( a )Figure 2 . 4 :

 a24 Figure 2.4: Histograms of gene-level p-values when aggregating different subgroups of SNPs contained in each gene.

Figure 2 .

 2 Figure 2.5 gives an overview of the workflow used for the network analysis. We here use gene p-values generated by VEGAS that we map onto an available functional interaction network, use an algorithm to find subnetworks concentrating genes with low association p-values, and finally biologically interpret these subnetworks by testing for enrichment of certain Gene Ontology categories.
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 25 Figure 2.5: Workflow: Network analysis of GWAS results.

  It optimises a scoring function based on estimating noise-to-signal ratio from node p-values. Then it develops an additive score, where positive values represent signal content and negative values represent background noise.

  Module 2 (score 4.2; 91 nodes) (c) Gene p-value color scale
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 2 Figure 2.6: Top-scoring subnetworks using jActiveModules tool and HumanNet network.
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 27 Figure 2.7: Gene ontology enrichment of the best subnetwork in immune processes.

  Module 1 STRING (score 8.4; 72 nodes) Module 2 STRING (score 8.2; 170 nodes) (c) Gene color scale
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 28 Figure 2.8: Top-scoring subnetworks using jActiveModules tool and STRING network.

Figure 2 . 9 :

 29 Figure 2.9: GO enrichment of subnetwork 1, STRING network.
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 2 A set of P -values (p 1 , ..., p N ) that correspond to the statistical significance of observations associated with the N molecules.3. A score function s(A): A(G) -→ R that assigns a score to each connected subnetwork.
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 41 Subnetwork scores S k , S * k By S k we denote a random variable that describes the occurrence of k-subnetwork scores, with CDF F (x) = P (s(A) ≤ x | A ∈ A k (G)). Similarly, we denote by S * k the maximal k-subnetwork scores with CDF F (x) = P (max A∈A k (G) s(A) ≤ x). Below, we will discuss the distributions of S k and S * k under the null hypothesis.
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 51 For small values of k, the number |A k (G)| of k-subnetworks increases strongly with k By definition, the null distribution of a normalised score over all k-subnetworks is identical for all values of k. What normalisation does not take into account is the fact that the number |A k (G)| of k-subnetworks depends on k.We now explore this effect for different graphs G. In a fully connected graph G, each k-subset A ⊆ V forms a k-subnetwork. Here, |A k (G)| = Nk , which strongly increases with increasing small k.

Figure 3 .

 3 Figure 3.1 shows that, also for our sample network G = G 50 , |A k (G)| strongly increases with k for small k.

Figure 3 . 1 :

 31 Figure 3.1: Numbers |A k (G)| of small subnetworks in G50 (a network of 50 nodes) as a function of their size k
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 52 Maximum scores S * k increase strongly with k under the null hypothesisWe now explore the behaviour of the maximum k-subnetwork score S * k under the null hypothesis, with increasing k, for small values of k. As |A k (G)| tends to increase strongly with small k (Section 3.5.1), and the distribution of jActiveModules scores S k is independent of k (cf. Section 3.4.2), one may expect S * k to strongly increase with k. Figure3.2 illustrates this effect in the case of i.i.d. samples.
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 32 Figure 3.2: Sample maxima from i.i.d. samples are likely to increase with sample size.

Figure 3 . 3 :

 33 Figure 3.3: Empirical distributions of jActiveModules maximum subnetwork scores S * k in the graph G50 for small values of k under the null hypothesis

  3.6.1 The jActiveModules score and other normalised scores are biased towards larger subnetworks Our empirical study of maximal subnetwork scores suggests that maximum scores S * k strongly increase under the null hypothesis when k is small (Section 3.5.2, Figure3.3).
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 34 Figure 3.4: (a) Fits of generalised extreme value distributions F (x; µ k , σ k , ξ k ) to empirical distributions of S * k . Colored lines represent the smoothed versions of the histograms, whereas the grey lines are fits from the family of extreme value distributions, and (b) the parameters of the fits.
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 35 Figure 3.5: Scenario illustrating the bias of normalised scores towards larger subnetworks. Distributions shown are jActiveModules null distributions S * 3 and S * 5 for the sample network G50. Under the null hypothesis, a score of 3.539 that is unlikely to occur for a 3-subnetwork (P (S * 3 ≥ 3.539) ≈ 0.05) is much more likely to occur for a 5-subnetwork (P (S * 5 ≥ 3.539) ≈ 0.36).
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 37 Figure 3.7: Quantile-quantile plot between standard normal distribution and jActiveModules scores S5 for the sample graph G50 under the null hypothesis. Other scores S k have similar quantile-quantile plots (not shown).
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 3132333435 Figure 3.1: Probability plot for the extreme value model fit to maximal scores of subnetworks of size 1, S * 1 , in G50.
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 41 Figure 4.1: Subnetwork and local subnetwork pathway models. Local subnetworks are specific subnetworks that consist of a center gene and its direct network neighbors.

Figure 4 .

 4 2 provides an example for the calculation of p * g for a candidate subnetwork of size m = 7.
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 42 Figure 4.2: Summary of LEAN. Inputs are (A) an interaction network and (B) an input p-value for each gene in the network. For any gene g, the genes in its direct neighborhood along with their individual input p-values are then extracted from the network (C). The p-values within the neighborhood of g are sorted in increasing order and the unnormalized enrichment score ES g is calculated according to Equation 4.2 (D).

Figure 4 . 3 :

 43 Figure 4.3: Top GSEA results using the hallmark dataset as background.

Figure 4 . 4 :

 44 Figure 4.4: Extract of genes in top GSEA results using the Hallmark dataset as background.

  Figure 4.5), and in response to lipopolysaccharides (LPS), long molecules on the surface of gram-negative bacteria known to induce a strong inflammatory reaction via interferons and NF-kB (Figure 4.6).
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 45 Figure 4.5: Gene sets upregulated during reaction to virus. (a) Gene sets that are signatures of genes upregulated during a specific viral infection. An interaction between two genes represents overlap between gene sets. (b) Most strongly differentially expressed genes that are present within the gene set GSE13487 that is part of the network in (a).
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 46 Figure 4.6: Gene sets related to genes upregulated during inflammation. (a) Gene sets that are signatures of genes upregulated during a inflammation. Edges represents overlap between gene sets. (b) Most strongly differentially expressed genes that are present among most the gene set GSE9988 that is part of the network in (a).
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 51 Figure 5.1: Illustration of a monotonic function of two variables.

  As in the case of linear regression, from a fit by a regression function of the training dataset, we define a boundary between separating cases and controls by minimising an error function as explain in Chapter 1. This boundary enables us to classify previously uncharacterised patients. The two-dimensional (2D) monotonic regression algorithm that I used fits a monotonic regression model of two transcripts to best predict the phenotypes of patients in the training dataset, and estimates the performance of such a 2D model by leave-one-out cross-validation (LOOCV). (For the definition of leave-k-out cross-validation, see Chapter 1.) The algorithm was implemented mainly by Benno Schwikowski in C, and Mathematica. I used the C code
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 52 Figure 5.2: Whole pipeline of the estimation algorithm for N patients of the training cohort. It has three nested loops of LOOCV: We first do leave one patient out for the final evaluation (Fig.A), then we leave one patient out to estimate kopt, the optimal number of pairs to include in our classifier (Fig.B), then we leave one patient out to estimate the predictive performance of each pair (Fig.C). Once these leave-outs are done, we start by first evaluating pair performance (Fig.C), then estimating k (Fig.B), and finally getting the final performance of our total classifier (Fig.A). Once the estimation of the performance finished, the final classifier is obtained by rerunning Fig.C on all the N patients and including kopt best pairs on our classifier.
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 53 Figure 5.3: Patient characteristics. We present all the cohorts used: our clinical cohort with training and validation subcohorts, as well as the validation cohort from [Devignot et al., 2010a].
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 54 Figure 5.4: Flow diagram for the discovery and validation of the severe dengue (SD) diagnostic biomarker.

  processes such as angiogenesis, polyploidization of specialized cells and DNA damage response. Acts as a negative regulator of keratinocyte differentiation. in regulating gene activity following the primary growth factor response. Expressed in neutrophils. Part of the iNOS pathway. processes, such as angiogenesis, polyploidization of specialized cells, and DNA damage response. Acts as a negative regulator of keratinocyte differentiation. + MPO Myeloperoxydase Produced mainly by neutrophils. This enzyme produces hypohalous acids central to the microbicidal activity of neutrophils. in endocytosis and in phagocytosis of apoptotic cells. Involved in the plasma clearance of chylomicron remnants and activated LRPAP1 the pentose phosphate pathway, hence producing more NADPH. NADPH is a cofactor used in anabolic reactions, such as lipid and nucleic acid synthesis, which require NADPH as a reducing agent. a transcriptional regulator that belongs to the EGR family of C2H2-type zinc-finger proteins. It is an immediate-early growth response gene which is induced by mitogenic stimulation. The protein encoded by this gene participates in the transcriptional regulation of genes in controlling biological rhythm. It may also play a role in a wide variety of processes including endothelial cell growth. -MGAM Maltase-glucoamylase This gene encodes maltase-glucoamylase that plays a role in the final steps of digestion growth factor of the CXC family. It is a potent chemoattractant and activator of neutrophils and has anti-microbial properties. -CD40L CD40 ligand This gene is expressed on the surface of T cells. It regulates B cell function by engaging CD40 on the B cell surface. A defect in this gene results in an inability to undergo immunoglobulin class switch and is associated with hyper-IgM syndrome. -OX40L OX40 ligand Mediates adhesion of activated T cells to endothelial cells, expressed on antigen-presenting cells such as dendritic cells, endothelium, mast cells and NK cells. expressed predominantly in T-cells and plays a critical role in natural killer cell and innate lymphoid cell development. The encoded protein forms a complex with beta-catenin and activates transcription through a Wnt/beta-catenin signaling pathway. -ASAP2 ArfGAP with SH3 domain, ankyrin repeat and PH domain 2
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 55 Figure 5.5: Performance evaluation a. Training: Performance of our biomarker compared to other methods. Performance estimates of state-ofthe-art classification methods established by leave-one-out cross-validation on the PBMC microarray training set. Area under ROC curve (AUC) for each method is indicated with its 95% confidence interval.b. Validation: ROC curves on independent datasets. To assess the performance of our biomarker, we blindly predicted the phenotype of new patients from the same cohort as our training set, and from an independently published cohort of whole blood samples.

Figure 5 .

 5 Figure 5.6 provides a visualization of the models associated with the transcript pairs of the biomarker. Different monotonic functions capture different types of gene-gene interactions.
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 56 Figure 5.6: Visual representation of the biomarker. The biomarker is applied to a new set of transcript measurements by first making one prediction from each of the ten panels for each patient. Each such prediction is generated by reading off the panel's background color at the coordinates defined by the new transcript measurements. The final biomarker prediction is then made by comparing the resulting frequency of severe predictions against a threshold. For illustration, the panels show the points corresponding to transcripts from the PBMC training cohort. The biomarker can be applied to data on different measurement scales after quantile normalization.
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 57 Figure 5.7: Activation of antigen presenting cells via OX40L and CD40L.
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 58 Figure 5.8: Description of transcriptome patient filtering.
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 59 Figure 5.9: Estimating optimal k, the number of feature to include into the ensemble classifier, by calculating the proportions of mispredictions for each k.
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 5 Figure 5.11: Performance of the logistic Lasso biomarker on the qRT-PCR dataset.

Figure 5 .

 5 Figure 5.12: Performance of the logistic Lasso biomarker on the public dataset.

  down-regulated in comparison of control conventional dendritic cells (cDC) at 0 h versus cDCs infected with Newcastle disease virus (NDV) at 8 h.

  down-regulated in comparison of control conventional dendritic cells (cDC) at 10 h versus cDCs infected with Newcastle disease virus (NDV) at 10 h.

  regulated in comparison of control conventional dendritic cells (cDC) at 6 h versus cDCs infected with Newcastle disease virus (NDV) at 6 h.

  regulated in comparison of dendritic cells (DC) before and 4 h after LPS (TLR4 agonist) stimulation.

  regulated in comparison of peripheral blood mononuclear cells (PBMC) from patients with acute influenza infection versus PBMC from patients with acute S. pneumoniae infection.

  down-regulated in CD4 [GeneID=920] T cells over-expressing FOXP3 [GeneID=50943] and PPARg1 form of PPARG [GeneID=5468]: untreated versus pioglitazone [PubChem=4829].

  regulated in comparison of unstimulated peripheral blood mononuclear cells (PBMC) 7 days after stimulation with YF17D vaccine versus PBMC 21 days after the stimulation.

  down-regulated in comparison of control conventional dendritic cells (cDC) at 0 h versus cDCs infected with Newcastle disease virus (NDV) at 16 hGenes down-regulated in comparison of unstimulated dendritic cells (DC) at 0 h versus DCs stimulated with LPS (TLR4 agonist) and R848 for 2 h.

  up-regulated in double positive thymocytes with ELK1 and ELK4 [GeneID=2002 and 2005] knockout: untreated versus stimulated by anti-

  regulated in comparison of untreated macrophages versus macrophages treated with LPS (TLR4 agonist) at 4 h.

  Genes down-regulated in HMC-1 (mast leukemia) cells: Cl-IB-MECA [PubChem=3035850] versus incubated with the ALL1 peptide followed by treatment with Cl-IB-MECA [PubChem=3035850]regulated in HMC-1 (mast leukemia) cells: untreated versus incubated with the peptide ALL1 followed by stimulation with T cell membranes.

  

  

  

  

  Vietnam) between 2001 and 2009. Parents or guardians of each participant gave written informed consent to participate. The Scientific and Ethical Committees of each study site approved the study protocols, as did the Oxford University Tropical Research

	Chi Minh City, Ethical Committee.
	. It contains 2008 pediatric cases treated for dengue shock
	syndrome (DSS) and 2018 controls.
	Cases were eligible if they were under 15 years of age and had clinical signs, symptoms and
	hematological findings that led to a clinical diagnosis of incipient or established DSS, as
	defined by the WHO 2009 report [WHO (World Health Organisation), 2009]. Are considered
	to be in shock those patients that show warning signs, and whose pulse pressure is lower than
	20 mmHg, or showing signs of poor capillary perfusion (cold extremities, delayed capillary
	refill, or rapid pulse rate). Blood samples for research and diagnostic tests were collected at
	the time of enrolment and again before patient discharge from hospital. Patients enrolled
	were recruited in the pediatric intensive care unit of the Hospital for Tropical Diseases (Ho

Table 2 .

 2 

2: Mapping SNPs to genes: Description of significant VEGAS genes

  For each candidate subnetwork A g of size m, LEAN aims to evaluate whether for any k ∈ {1, . . . , m}, the k genes of A g with the best scores (e.g., lowest p-values) are statistically enriched for extreme scores (low p-values). To this end, an unnormalized enrichment score ES g is computed on the basis of the sorted sequence of gene scores p 1 ≤ ... ≤ p k ≤ ... ≤ p being independent and identically distributed (i.i.d), and being sampled from a uniform distribution, at least k of the p i are lower or equal to p k using the cumulative

	distribution function of the binomial distribution:
	m
	p(k) g =
	i=k

m of genes in A g . To compute ES g , for each position k = 1, ..., m in the sorted subnetwork p-value list, we first calculate the probability p(k) g that, under the null hypothesis of input p-values

Table 5

 5 

.1: Constitutive gene pairs of our biomarker. Genes are grouped into pairs (or singletons if the partner did not add any statistical advantage).
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	Contents 6.1 Summary 6.1 123 Throughout this thesis, I have studied susceptibility to severe dengue through genotyping
	and transcriptomic data. Since dengue is a complex disease, I used approaches that al-
	Gene E2F7 low to aggregate signal across many genes, based on pathways, interaction networks and Transcript Probe ID TC12001756.hg.1 Chapter 6 machine-learning algorithms. I started by exploring genomic data from a recently published
	ENKUR GWAS, which allowed to uncover associations between the two gene MICB and PLCE1, and TC10001111.hg.1
	ARG1 severe dengue. By mapping SNP p-values to genes, we find additional significant p-values TC06000983.hg.1
	JUNB E2F7 for several MHC genes (HLA-B, MICA and HCP5). The MHC contributes to processing TC19001995.hg.1 TC12002970.hg.1 Conclusion and presenting antigens on the surface of infected cells in order to trigger the immune re-
	MPO sponse. Network analysis of these genes thus leads to new results: The resulting network TC17001727.hg.1
	LRP1 from the HumanNet interaction network is enriched in genes related to antigen process-TC12002396.hg.1
	PGD ing and presentation via MHC class I. Additionally, it has a group of genes associated to TC01000129.hg.1
	EGR3 the complement activation classical pathway, an alternative immune reaction pathway that TC08002253.hg.1
	MGAM our body uses to fight viruses. Moreover, the resulting network from STRING gene func-TC07000899.hg.1
	HP tional network is enriched in kidney development related functions (FOXC2, PLCE1, ASS1, TC16002057.hg.1
	MYB POU3F3, PYGO1, and AGTR1 genes) among which are blood volume control and stim-TC06003069.hg.1
	IGKC ulation, and contraction of muscular tissue of capillaries and arteries via AGTR1. These TC02003395.hg.1
	PPBP functions are critical to avoid developing strong plasma leakage out of blood vessels and TC04001282.hg.1
	CD40L to avoid clinical shock. Plasma leakage and shock are included in the characterisation se-TC0X000666.hg.1
	OX40L vere dengue. Therefore this data suggests, that there is a genetic predisposition to develop TC01003525.hg.1
	SDPR severe dengue depending on the alleles of genes related to blood volume control and stimu-TC02002627.hg.1
	TCF7 lation, and contraction of muscular tissue of capillaries and arteries. These results need to TC05002628.hg.1
	ASAP2 be analysed with caution, since the result of jActiveModules does not give any measure of TC02000046.hg.1
	Table 5.2: Identifiers of transcripts in the biomarker from Affymetrix HTA2 array and associated gene statistical significance. Nevertheless enrichment analysis and biological interpretation are
	names. coherent with what we know about dengue mechanisms and suggest that we observe is a
	true signal.
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3.8 Appendices to this chapter. Chapter 4

The LEAN algorithm and its application to dengue data Chapter 5 A machine learning approach to analyse dengue transcriptomic data

Materials and methods

Population studied

We conducted a prospective study in the Kampong Cham referral hospital Cambodia during a 3-year period (2011)(2012)(2013). Patients suspected of dengue infection were invited to participate in the study. Dengue infection was confirmed by positive RT-PCR and/or positive dengue NS1 antigen detection. Three blood samples were collected: (i) shortly after hospital admission during the febrile acute phase, (ii) at the time of defervescence, and (iii)

during the convalescent phase at the time of hospital discharge. In this study, we used only the transcriptome of blood samples collected shortly after hospital admission for both the microarray training set patients, and qRT-PCR validation set patients. This corresponded on average to the third day after onset of fever (Figure 5.3). We focused our analysis on samples of secondary DENV-1-infected patients that were judged to be of sufficient quality and quantity for this analysis, which resulted in 42 samples for microarray analysis and 22 samples for qRT-PCR analysis. Blood samples were processed as follows: plasma was used for dengue confirmatory diagnostic including serology and molecular diagnostics, as described elsewhere [START_REF] Duong | Asymptomatic humans transmit dengue virus to mosquitoes[END_REF], while blood clot and PBMC were kept for later analyses. For this PBMC cohort, diseased severity was classified according to the 2009 WHO criteria using clinical and biological data recorded at admission and throughout the entire hospitalization period.[WHO (World Health Organisation), 2009] For the independent whole blood microarray cohort, disease severity was classified according to the description in the Section "Biomarker discovery" below.

Ethics statement

The study was approved by the Cambodian National Ethics Committee for Health Research (approval no. 087NECHR /2011 and no. 063NECHR/2012). Before a participant's enrollment, written consent signed by the participant or by a legal representative for participants under 16 years of age was obtained.

decreases by only 2.5%. Given the 95% confidence intervals of the AUC scores, this decrease is not significant. 

Performance of the logistic Lasso biomarker on the validation datasets

The optimal biomarker (for parameter lambda=1 s.e.), consisted of two genes, ARG1 and MPO. The AUC suggests that the resulting biomarker is not robust enough to reproduce its good performance on our validation PBMC dataset, even though it had a good performance on the independent whole blood dataset. List of centers of significant stars: For each star center, are presented its gene symbol, Ensembl protein ID, the number of genes included in the significant star k, the total number of its neighbors m, and the statistical significance of the star score measured by a q-value. 

Additional information on genes in the biomarker

Star center