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Abstract

The last 20 years have seen the emergence of powerful measurement technologies, enabling

omics analysis of diverse diseases. They often provide non-invasive means to study the

etiology of newly emerging complex diseases, such as the mosquito-borne infectious dengue

disease. My dissertation concentrates on adapting and applying network and machine learn-

ing approaches to genomic and transcriptomic data.

The first part goes beyond a previously published genome-wide analysis of 4,026 individuals

by applying network analysis to find groups of interacting genes in a gene functional inter-

action network that, taken together, are associated to severe dengue. In this part, I first re-

calculated association p-values of sequences polymorphisms, then worked on mapping poly-

morphisms to functionally related genes, and finally explored different pathway and gene

interaction databases to find groups of genes together associated to severe dengue.

The second part of my dissertation unveils a theoretical approach to study a size bias of

active network search algorithms. My theoretical analysis suggests that the best score of

subnetworks of a given size should be size-normalized, based on the hypothesis that it is a

sample of an extreme value distribution, and not a sample of the normal distribution, as

usually assumed in the literature. I then suggest a theoretical solution to this bias.

The third part introduces a new subnetwork search tool that I co-designed. Its underlying

model and the corresponding efficient algorithm avoids size bias found in existing methods,

and generates easily comprehensible results. I present an application to transcriptomic

dengue data.
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In the fourth and last part, I describe the identification of a biomarker that detects dengue

severity outcome upon arrival at the hospital using a novel machine learning approach.

This approach combines two-dimensional monotonic regression with feature selection. The

underlying model goes beyond the commonly used linear approaches, while allowing to con-

trol the number of transcripts in the biomarker. The small number of transcripts along

with its visual representation maximize the understanding and the interpretability of the

biomarker by biomedical professionals. I present an 18-gene biomarker that allows distin-

guishing severe dengue patients from non-severe ones upon arrival at the hospital with a

unique biomarker of high and robust predictive performance. The predictive performance of

the biomarker has been confirmed on two datasets that both used different transcriptomic

technologies and different blood cell subtypes.
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This chapter introduces notions that are required to understand how I link measurements

of molecular features to dengue disease. I start by describing the disease itself. Then, I

will very briefly describe the types of data that I am analysing. Finally, I will introduce

the basics of the computational methods I employed for data analysis: interaction network-

based and machine learning algorithms.

1.1 Dengue, a complex disease

1.1.1 Epidemiology

Dengue is the most widespread mosquito-borne viral infection worldwide. Currently, an

estimated 40% to 50% of the world population lives in areas where the mosquito transmitting

the virus has spread, and are therefore at risk for dengue virus transmission [WHO, 2017].

Figure 1.1 shows countries that are now considered to be at risk for a dengue epidemic.

The dengue virus is closely related to the Zika virus in terms of symptoms of infection,

transmission and even protein structure [Priyamvada et al., 2016]. The recent increase

in spread and virulence of Zika gives an example of potential dangers that dengue may

represent in the close future.

Dengue was first recognized in the 1950s during epidemics in the Philippines and Thailand.

Since then, its incidence has grown fast. Before 1970, only nine countries had experienced

severe dengue epidemics. The disease is now endemic in more than 60 countries in Africa,

the Americas, the Eastern Mediterranean, South-east Asia and the Western Pacific. The

American, South-east Asia and the Western Pacific regions are the most seriously affected.

Recently the number of reported cases has continued to increase. An estimated 500,000

people with severe dengue require hospitalisation each year, with a large proportion of

severe cases occurring in children and the elderly. About 2.5% of those affected die [WHO,

2017]. Not only is the number of cases increasing as the disease spreads to new areas,

but explosive outbreaks occur. The threat of a possible outbreak now exists in Europe,

and local transmission of dengue was reported for the first time in France and Croatia in
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Figure 1.1: Dengue: countries or areas at risk of a dengue epidemic based on the most recent consensus.

The countries in orange had dengue epidemics reported before year 2013, while the countries in between the

two isotherms have a climate adapted to the main mosquito vector that transmits dengue. Source: WHO,

2014.

2010. Imported cases are regularly detected during holiday periods in European countries,

including France.

1.1.2 Transmission

The Aedes aegypti mosquito is the primary vector of dengue. The virus is transmitted to

humans through the bites of infected female mosquitoes. After virus incubation for 4–10

days, an infected mosquito is capable of transmitting the virus for the rest of its life. Infected

humans are the main carriers and multipliers of the virus, serving as a source of the virus

for uninfected mosquitoes. Patients who are already infected with the dengue virus can

transmit the infection (for 4–5, maximally 12 days) via Aedes mosquitoes after their first

symptoms appear. The Aedes aegypti mosquito lives in urban habitats and breeds mostly in

man-made containers. It is thus very adapted to big concentrations of human population,

such as cities. Aedes albopictus, a secondary dengue vector in Asia, has spread to North

America and Europe, largely due to the international trade in used tyres (a breeding habitat)
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and other goods (i.e., lucky bamboo). Aedes albopictus is highly adaptable and can survive

in the cooler temperate regions of Europe. Its spread is due to its tolerance to temperatures

below freezing, hibernation, and its ability to find shelter in microhabitats.

1.1.3 Symptoms and severity classification

Reactions to infection by dengue virus can vary a lot from no symptoms, over flu-like

symptoms, to deadly complications. Dengue is suspected when a high fever (40°C/104°F)

is accompanied by two of the following symptoms: severe headache, pain behind the eyes,

muscle and joint pains, nausea, vomiting, swollen glands, or rash. Due to the lacking

specificity of some of these symptoms, dengue needs to be confirmed in the laboratory for

a precise diagnostic. Symptoms usually last for 2–7 days, after an incubation period of

4–10 days after the bite from an infected mosquito. Severe dengue is a potentially deadly

complication due to plasma, which leaks out of the vessels and into the organs, provoking

fluid accumulation in the body cavities, respiratory distress, severe bleeding (because of the

lack of platelets in which leak out with the plasma), potential organ impairment such as

problems with liver or the nervous system, and, eventually, shock (i.e., a state where the

heart ceases to correctly function, and stops). Warning signs occur 3–7 days after the first

symptoms in conjunction with a decrease in temperature (below 38°C) and include: severe

abdominal pain, persistent vomiting, rapid breathing, bleeding gums, fatigue, restlessness,

blood in vomit. The next 24–48 hours of the critical stage can be lethal; proper medical

care is needed to avoid complications and the risk of death.

1.1.4 Dengue severity classifications

Reactions to infection by dengue virus have a wide range of clinical manifestations and

severities, from no symptoms to deadly complications. The evolution of the disease over

time is often very difficult to predict for clinicians. Severe disease is difficult to define,

but this is an important concern since appropriate treatment may prevent patients from

developing more severe clinical conditions [WHO (World Health Organisation), 2009]. To
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help physicians distinguish between the different forms of dengue, a WHO committee de-

veloped guidelines for case classification in 1974. Based on studies of disease patterns in

children in Thailand in the 1960s, these guidelines were then modified and re-issued several

times [Hadinegoro, 2012], notably in 1997. Many reports state difficulties in the use of this

classification, such as lacking suitability to regions outside of Asia. They were summarized

in a systematic literature review [Bandyopadhyay et al., 2006]. The classification of dengue

cases was subsequently revised by distinguishing between dengue with and without warning

signs and severe dengue, as published in 2009 [WHO (World Health Organisation), 2009].

I worked with the 1997 and 2009 classifications, and present them in more detail.

The 1997 guidelines classified dengue into DF, DHF (Grades 1 and 2) and DSS (DHF

Grades 3 and 4; Figures 1.2 and 1.3). The case diagnosis emphasised the need for laboratory

confirmation. Studies have demonstrated an overlap between the case definitions of DF,

DHF and DSS, supporting the concept of dengue as a continuous spectrum of disease, rather

than distinct subforms [Deen et al., 2006, Phuong et al., 2004].

Figure 1.2: WHO 1997 classification. Source: [Grange, 2014]

The 2009 WHO criteria (Figure 1.4) classify dengue according to the following levels of

severity: dengue without warning signs, dengue with warning signs (abdominal pain, per-

sistent vomiting, fluid accumulation, mucosal bleeding, lethargy, liver enlargement, increas-
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Figure 1.3: WHO 1997 classification description

ing hematocrit with decreasing platelets), and severe dengue (dengue with severe plasma

leakage, severe bleeding, or organ failure) [WHO (World Health Organisation), 2009]. The

2009 classification according to levels of severity has been considered to be more sensitive in

capturing severe disease than the 1997 guidelines, with observed sensitivities of up to 92%

for the 2009 WHO classification, against 39% for the 1997 WHO classification [Hadinegoro,

2012, Basuki et al., 2010, Narvaez et al., 2011].

1.1.5 Treatment

There is no anti-viral drug treatment for dengue fever. For severe dengue, medical care by

physicians and nurses experienced with the effects and progression of the disease can save

lives, decreasing mortality rates from more than 20% to less than 1%. Maintenance of body

fluid volume via intravenous rehydration is critical to severe dengue care.

Many vaccine trials are currently being conducted [Dengue Vaccine Initiative, 2017]. One

vaccine has recently passed clinical trials [Hadinegoro et al., 2015], is approved by 11 coun-

tries, but its efficacy is limited. Moreover, the scientific community wonders whether there
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Figure 1.4: WHO 2009 classification

is a correlation between this vaccine and an increased probability of contracting severe Zika

[Priyamvada et al., 2016].

At present, the main approach to control the transmission of dengue virus is to combat

vector mosquitos, but sufficient mosquito control remains a challenge, and the disease is

spreading quickly. This motivates the search of possible treatments using all contemporary

tools.

1.1.6 Dengue virology and immunopathology

Insights into the pathogenesis of severe dengue are hampered by the lack of an animal model

that accurately recreates the transient capillary permeability syndrome, accompanied by a

decreasing viral burden that is seen in severe patients [Simmons et al., 2012]. Therefore

many discoveries remain to be validated and are frequently debated. This section gives a

broad introduction of the current understanding of immunological processes implicated in
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severe dengue.

The virus

Dengue is a single positive-stranded RNA of the family Flaviviridae, genus Flavivirus. Other

members of this genus include Zika, yellow fever and West Nile virus. Dengue has four

serotypes that have evolved in parallel in different places worldwide, and only recently co-

exist in endemic countries. A fifth serotype has been reported in 2013, but has not yet been

confirmed by independent studies [Normile, 2013]. Figure 1.5 presents the proteins of the

virus.

(a) Proteins of the dengue virus polyprotein

Source: [Guzman et al., 2010]

(b) Mature dengue virion.

Source: http://www.scientificanimations.com/

Figure 1.5: Proteins of the dengue virus polyprotein. The single positive-stranded RNA, codes for three

structural proteins (capsid protein C, membrane pre-M protein that will mature into an M protein when

travelling in the virion, envelope protein E) and seven nonstructural proteins (NS1, NS2a, NS2b, NS3, NS4a,

NS4b, NS5). NS1 has a specific role in the modulation of the immune reaction, as will be explained later

on. Dengue RNA also includes short non-coding regions on both the 5’ and 3’ ends. [Rothman, 2011].

Where and how is the RNA translated into this polyprotein? Dengue virions bind to cell sur-

face receptors of immune cells, such as monocytes, macrophages or dendritic cells, and are

internalised through endocytosis. Acidification of the endocytic vesicle leads to rearrange-

ment of the surface envelope (E) glycoprotein, fusion of the viral and vesicle membranes,

and release of viral RNA into the cytoplasm. Host translational machinery (ribosomes)

translates the RNA into a single polypeptide. Cellular and viral proteinases cleave the
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polypeptide into 10 proteins (E, M, C and 7 non-structural/enzymatic proteins). The vi-

ral proteins and newly synthesized viral RNA assemble into immature virions within the

ER lumen. As soon as functional RNA-dependent RNA polymerase is synthesised, RNA

replication can start. A negative strand of the RNA is generated from the positive one.

From this negative strand intermediate, a new positive strand is generated. This process

generates 10 times more copies of the positive strand than of the negative.

Cleavage of the viral precursor membrane (pre-M) protein by the host cell enzyme furin

leads to the formation of mature virions, which are secreted from the cell. In addition, some

of the synthesized non-structural protein 1 (NS1) is expressed on the plasma membrane of

the cell or secreted, and some virions are secreted in an immature form.

Immunopathology of dengue disease

When an infected mosquito feeds on a person, it injects the dengue virus into the blood-

stream. The virus infects nearby skin cells called keratinocytes, the most common cell

type in the skin. The dengue virus also infects and replicates inside a specialized immune

cell located in the skin, a type of dendritic cell called a Langerhans cell. The virus enters

the cells by binding to membrane proteins on the Langerhans cell, specifically DC-SIGN,

mannose receptor and CLEC5A [Rodenhuis-Zybert et al., 2010]. DC-SIGN, a non-specific

receptor for foreign material on dendritic cells, seems to be the main point of entry [Guzman

et al., 2010]. The Langerhans cells then maturate, travel to the lymph nodes and alert the

immune system to trigger the immune response because a pathogen is in the body. In the

meantime, the virus replicates in the Langerhans cells and is released into the bloodstream.

Once in the bloodstream, it can infect several other blood leukocytes such as monocytes

and macrophages.

When the virus infects immune cells, it uses its machinery to replicate and be released from

these cells, while the cells emit inflammatory signals such as cytokines (including interferons

type I and II) to trigger the immune defense reaction. This inflammation becomes systemic

when the virus spreads in the body and causes most of the severe dengue symptoms. Figure
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1.6 illustrates the time evolution of severe dengue as well as causes and consequences of sys-

temic inflammation in diseased secondary dengue patients. The inflammation triggers the

reaction of the immune system via T-cells, the complement system, and antibodies simul-

taneously. We will further explain each of these immune reactions and their consequences

on the pathology. We will then present a very specific property to secondary infection by

dengue, called antibody dependent enhancement (ADE).

T-cell response

As previously indicated, the infected macrophage or dendritic cell is an antigen presenting

cell (APC). It presents antigens on its surface via the MHC class I and II molecules. Cyto-

toxic T-cells, also known as CD8+, bind to MHC class I and lyse the infected cell. T helper

cells, also known as CD4+, bind to MHC class II, release additional inflammatory cytokines

and assist other immunologic processes, including maturation of B cells into plasma cells.

This maturation enables them to produce many neutralizing antibodies, trigger the anti-

body response, and activate cytotoxic T cells and macrophages to lyse the infected cells

(Figure 1.7).

This system becomes less efficient if the presented antigen resembles one that had already

been encountered, but has a slightly modified shape. This is the case for a secondary infec-

tion with a new dengue virus serotype, and is known as the “original antigenic sin” [Francis,

1960].

The complement

The complement is a complex system of more than 30 proteins that are part of the innate

immune response. The interacting proteins of the complement system, which are produced

mainly by the liver, circulate in the blood and extracellular fluid, primarily in an inactivated

state. Not until the system receives an appropriate signal are they activated. The signal

sets off a chemical chain reaction in which cleaved complement proteins trigger the cleavage

of the next complement protein in the sequence [Martina et al., 2009].

Complement activation occurs in dengue either by the classical pathway or the alterna-



12

Figure 1.6: Immunopathogenesis of severe dengue in secondary patients. The kinetics of viral burden (i.e.,

concentration of the virus in blood), the timing of common complications, and possible mechanistic causes

are shown. During the most severe, possibly life-threatening, critical phase, the viral burden decreases. The

strong immune reaction is responsible of the most severe symptoms. A large infected cell mass results in

elevated systemic concentrations of acute-phase response proteins, cytokines, and chemokines, and generation

of antibody-antigen aggregates, immune complexes. Collectively, the host immunologic response is thought

to create a physiological environment in tissues that promotes capillary permeability (via the interaction of

a viral protein NS1, with the capillary epithelial glycocalix, which results in release of heparan sulfate, that,

in turn, increases permeability). Loss of essential coagulation proteins such as platelets probably plays a

major role in the development of bleeding-related symptoms. Source: [Simmons et al., 2012].

tive pathway. A different type of signal activates each pathway. The classical pathway is

triggered by groups of antibodies bound to the surface of microorganisms. The alternative

pathway is spurred into action by molecules embedded in the surface membranes of invading

microorganisms, and does not require the presence of antibodies. Both pathways converge
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Figure 1.7: T-cell response to dengue infection. Source: [Rothman, 2011].

to activate the pivotal protein of the complement system, called C3. Once activated, the

complement system causes lysis of infected cells, phagocytosis of foreign particles, as well

as cell debris and the inflammation of surrounding tissue.

With regard to dengue, it was noticed that, around the time of defervescence in severe

patients, when plasma leakage may become apparent, high levels of the activation products

C3a and C5a are present in the plasma, followed by an accelerated consumption and a

marked reduction of the complement components [Churdboonchart et al., 1983, Shaio et al.,

1992]. Therefore, it was hypothesized that complement activation plays an important role

in the pathogenesis of severe dengue. Comparison of global gene expression profiles in

peripheral blood mononuclear cells of severe versus non-severe dengue patients also suggests

the involvement of the complement system in disease severity [Ubol et al., 2008]. However,

many aspects of complement activation and its role in dengue pathogenesis remain to be

investigated. It has been proposed that binding of antibodies to NS1 expressed on infected

cells may result in complement activation [Avirutnan et al., 2006, Lin et al., 2008] (Figure
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1.8).

Antibody response

In parallel to the T-cell mediated immune response, B-cell mediated immunity is triggered

during the course of dengue infection and results into the production of a large amount

of virus-neutralizing IgG antibodies. In the case where the virus has not been previously

encountered by the immune system, some naive B cells will be able to bind the virus through

their B cell receptor (BCR; a membrane form of the antibody), and with the help of specific

T cells, will differentiate into plasma cells inside the lymph node. During this differentiation,

the affinity of the germline-encoded BCR will increase through the hypersomatic mutation

process and B cells start to produce large amounts of IgG antibodies that will neutralise

the virus.

In the case of secondary infection, memory B cells and persistent plasma cells will quickly

produce large amount of IgG antibodies without the help of T cells.

When the matching IgG antibodies are released into blood, they specifically recognize and

neutralize the dengue viral particles (Figure 1.8) as well as improve the efficiency of phago-

cytosis via their Fc region.

Antibody-dependent enhancement (ADE)

Once infected by one dengue serotype, the organism acquires a lifelong protection against

any future infection by this serotype and a several weak immunity for all other serotypes.

But a very remarkable, and to my knowledge unique, fact is that once the immunity against

other serotypes is lost, the risk of developing severe dengue during secondary infection (i.e.

when infected for a second time by an other dengue serotype) increases [Halstead, 2003].

There has been a lot of research done in order to understand why the secondary reaction

is more severe. A detailed review was recently published [Screaton et al., 2015]. The

most well-studied mechanism causing this severe reaction is known as antibody-dependent

enhancement (ADE) [Sangkawibha et al., 1984].
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As previously said, during a secondary infection by dengue, patients possess antibodies that

are adapted to the previously encountered viral serotype.

Figure 1.8: Dengue virus life cycle and antibody response to the pathogen. Mature and immature viri-

ons induce antibody responses to the E protein, and these antibodies can function in neutralisation or

in antibody-dependent enhancement of infection. Immature virions also induce antibody responses to the

pre-M protein. Antibodies specific for NS1 can interact with membrane-bound NS1 and cause complement-

dependent lysis of virus-infected cells. Source: [Rothman, 2011].

Antibodies specific to the exact virus serotype completely block virion entry into the cell.

Antibodies that do not match the exact serotype bind only incompletely; the virion is able

to penetrate easily the phagocytic immune cell, thanks to the recognition of the Fc part

of the antibody by the Fc gamma receptor, and the antibodies do not prevent it from

replicating once in the immune cell. Therefore, if antibody binding is incomplete, the virus

actually penetrates easier inside the host cell, and thus replicates more easily (Figure 1.9).

This phenomenon is called antibody-dependent enhancement (ADE).
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Figure 1.9: Antibody-dependent enhancement in secondary patients. Source: [Rothman, 2011].

1.2 Omics data types

1.2.1 Genomic data

General concepts for family and friends

The human genome consists of long macromolecules (chromosomes), sequences of nucleotides.

Nucleotides can de distinguished by their bases. There are four types of nucleotide bases:

adenine (A), cytosine (C), guanine (G), and thymine (T). Most of the time, in the nu-

cleus of a cell, DNA is double-stranded. Strong covalent bonds bind bases together along

a single strand, and weaker hydrogen bonds pair A with T and C with G between the two

strands. Each single strand has two different ends called 5’ and 3’, oriented in opposite

directions.

In gene-coding regions, the parts of the sequence, known as exons, are transcribed into RNA

molecules that are, in turn, translated into proteins. The role of introns (the chromosomal

regions that are within gene-coding regions but are not transcribed into RNA) and non-
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gene coding (or intergenic) regions is only partially known and consists of a wide variety

of regulatory elements for diverse functions. Changes in DNA sequence, either in exons,

introns, or intergenic regions can lead to changes in the protein amino acids, or in their

concentration, and thus affect human health, and reactions to pathogens.

Among the different types of DNA variation, we will here study single-nucleotide polymor-

phisms (SNPs). A SNP is a variation in a single nucleotide at a given position in the DNA

(Figure 1.10) that occurs “quite often” in the population [Scitable by Nature Education,

2014]. There is no consensus on the precise frequency threshold, but it is usually on the

order of one percent.

Figure 1.10: Single Nucleotide Polymorphism (SNP) within a DNA molecule. The two DNA molecules

differ at a single base-pair location (a C/A polymorphism).

As the set of all, or most, SNPs, can be efficiently profiled using microchips, it is common

to analyse genetic predisposition to different forms of disease, such as severe dengue, in that

part of human genetic variation.

Genome-wide association study (GWAS)

The aim of genome-wide association studies (GWAS) is to find genetic predispositions to a

given phenotype. Given two groups of samples from individuals with distinct phenotypes

(e.g., forms of disease), a GWAS aims to identify SNPs for which the observed alleles are

statistically associated with the different phenotypes.

For each sequenced SNP, one counts the number of occurrences of each SNP in cases and
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in controls. Then, for each SNP, a statistical test assesses whether the allele counts in the

two groups are significantly different. If they are, the SNP is said to be associated with the

disease.

1.2.2 Gene expression data

Gene expression data represents the total amounts of distinct RNA transcripts in a cell. The

entirety of RNA in a cell is called the transcriptome. While different types of RNA can be

measured using transcriptomic technologies, we focus here on the measurement of messenger

RNA (mRNA) concentrations which are often used as a proxy for protein concentrations in

modeling, and therefore give a closer representation to activated/inactivated processes in

cells. Gene expression is regulated by some genomic loci, known as expression quantitative

trait loci (eQTLs). They can be situated within several hundreds of base pairs upstream

or downstream of the gene region coding for the mRNA (cis-eQTLs), or elsewhere (trans-

eQTLS). Gene expression is also regulated by the environmental factors such as disease

state, immune history, diet, lifestyle such as smoking, pollution, etc., and changes over

time, and between tissue types. Studying gene expression therefore enable to “integrate”

environmental and genetic effects, and to therefore better explain, and understand resulting

higher-level phenotypes.

1.3 Network analysis for biological data

By ”network” we here mean a graph where nodes are genes, or proteins, for which these

genes code. Edges are interactions between genes that were curated from sources inde-

pendent of our disease-specific data: protein-protein interaction experiments such as yeast-

to-hybrid, literature-curated interactions, experimental data from ChiP-chip experiments,

co-expression data, etc. Edges are typically weighted, based on the nature of the data and

the quantity of independent sources. Examples of such networks include STRING [Szklar-

czyk et al., 2014], I2D [Brown and Jurisica, 2007], HPRD [Peri et al., 2003], HumanNet [Lee
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et al., 2011], and vary according to types of data included, more or less automated curation

and size. Here, we mainly use STRING, since it is one of the broadest, most frequently

updated, and well-documented, databases.

These networks have been shown to contain information about protein functions. This is due

to the modular architecture underlying the molecular machinery of living systems [Barabási

and Oltvai, 2004], composed of proteins that form relatively static complexes, such as the

ribosome, as well as dynamically changing complexes such as immune complexes during

infection.

The “guilt by association” principle states that proteins sharing common properties are

likely to have similar functions and is commonly used in computational methods for protein

function prediction. Previously, such methods were mainly based on information derived

from proteins biochemical properties, their sequence [Friedberg, 2006] as well as their struc-

ture [Domingues and Lengauer, 2007]. By defining similarity measures on such properties,

annotated proteins similar to a protein of interest can be found, and machine learning meth-

ods can be used to decide whether their functional annotations can be transferred (as e.g.,

in [Weinhold et al., 2008]). The ”guilt by association” principle has, however, also been ex-

tended to predict protein function through proximity in protein interaction networks. Two

main principles can be distinguished here: direct methods that use functional annotations

enriched in the network neighborhood around a protein of interest, and module-assisted

methods, which first identify modules of related proteins, typically by applying clustering

approaches, and then annotating each module based on the known functions of its members

[Sharan et al., 2007]. Large-scale network data has been proven useful not only to the

functional annotation of proteins. A large number of computational approaches are guided

by network data of different kinds, and in various ways.



20

1.4 Machine learning methods for biological data

1.4.1 What is a machine learning algorithm?

Definition

One of the first definitions was given by Arthur Samuel in 1959. According to him, machine

learning gives “computers the ability to learn without being explicitly programmed.” A more

precise definition that was given in 1998 says that “machine learning explores the study and

construction of algorithms that can learn from and make predictions on data” [Kohavi and

Provost, 1998]. In other words, machine learning algorithms try to find patterns in existing

data that would generalise to new incoming data.

Types of algorithms, based on input data

We can subdivide machine learning algorithms into three categories based on the input:

supervised, unsupervised, and semi-supervised learning. Supervised learning requires “la-

belled” data, i.e., data for which we have input variable and already know the outcome. Its

aim is to learn the relationships between the input variable and the outcome to be able to

predict the outcome for new, “unlabelled” data. A general schema of supervised learning

is presented in Figure 1.11.

Figure 1.11: Supervised learning workflow. Source: https://www.codeproject.com
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Supervised learning is often used to predict the phenotype of a patient, based on compre-

hensive molecular measurements, such as their genome, transcriptome, metabolome, etc.

Another example is the prediction of patient phenotype in reaction to a viral infection.

Unsupervised machine learning does not require the knowledge of any labels in advance.

Clustering is a commonly used form of unsupervised learning. Finally, semi-supervised al-

gorithms require a dataset with some known outcomes, and some (often many) unknown

ones.

Generally, outcomes can be of different types: they can be continuous values (for instance,

expression levels, protein levels, viral load...), or categories (type of disease, severity of

disease...). In this thesis, I focus on supervised machine learning methods that can be used

for classification.

Performance evaluation methods and terminology

The machine learning field uses some conventional names for different datasets used (cf. Fig-

ure 1.12). The initial data used to identify a model is called the “training data”. Often,

Figure 1.12: Supervised machine. Source: https://www.codeproject.com

additional data is required to infer additional parameters. This is the “validation data”.

The “test data” is used to evaluate the quality of the prediction on new data without using

the previously learned patterns and parameters; only predictions are made.
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When we have limited data, it is sometimes worth “mimicking” new samples using a tech-

nique called leave-k-out cross-validation (Figure 1.13). Leave-k-out cross-validation consists

of iteratively leaving out k elements from the training data to keep them for future evalua-

tion. The algorithm learns the model on the remaining elements, and then the performance

is evaluated on the previously left out k elements. This procedure is then repeated with

a new set of k elements. The number of iterations is typically chosen by the user. An

advantage of leave-k-out cross-validation is that its result is based on the entire data, and

not just one learning set. By the same token, test data is not overall independent from

learning data; therefore, the variance of the cross-validation estimator can be large [Efron

and Tibshirani, 1997]. For this reason, the comparison of models based on the results of

cross-validation has limited value. The design of our evaluation procedures in Chapter 5

take this into account.

Figure 1.13: Leave-k-out cross-validation.

Choosing the right method: The bias-variance trade-off

The bias-variance tradeoff is a central problem in supervised learning. Ideally, one wants

to choose a model to fit the data closely enough to capture its characteristic structure, but

not too closely to avoid capturing the structure of the noise that is specific to the training

sample (“overfitting”).

Bias is the error from erroneous assumptions in the learning algorithm. High bias can cause

an algorithm to miss the relevant relations between features and target outputs (“underfit-

ting”). This is the case of Model 1 in Figure 1.14.
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Variance is the error from sensitivity to small fluctuations in the training set. High variance

can cause overfitting: modeling the random noise in the training data, rather than the

intended outputs. This is the case of Model 3 in Figure 1.14.

Ideally, one chooses a model that is “complex enough” to capture the characteristics of the

data, i.e., the model is general enough to avoid erroneous assumptions (bias). On the other

hand, the model should not be “too complex”, i.e. the model assumptions should be specific

enough to avoid sensitivity to small fluctuations in the data (variance). This is the case of

Model 2 in Figure 1.14.

Figure 1.14: Bias-Variance trade-off. Source: https://cambridgecoding.wordpress.com

1.4.2 Mathematical framework and terminology

In this section, let p be the number of input features per sample (for instance, the number

of transcripts per individual). Let xi ∈ Rp be the i-th input. Let N be the total number of

samples (for instance, the total number of patients in our case).
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Let X = (xT
1 , ..., xT

i , ...xT
N ), X ∈ RN×p be the matrix of all inputs.

We denote by |S| the size (or cardinality) of any set S.

Let Y = {0, 1, ..., C}, with C = |Y | − 1, be the finite set of possible classes that can be

associated with any x ∈ X. Y can correspond to patient phenotypes. Let yi ∈ Y be the

class of patient i. Let ŷi ∈ Y be the predicted class of xi.

1.4.3 Machine learning algorithms for supervised classification

To present a broad overview of the field, we here describe algorithms representing main

approaches for the analysis of omics data. We focus on algorithms that are adapted to

datasets where the number of features is larger than the number of individuals, as it is

the case for our datasets. All presented methods are used for comparison with a newly

designed method in Chapter 5. Explanations in this introductory part are adapted from

[Hastie et al., 2009].

Instance-based learning: k-Nearest Neighbor (k-NN)

Instance-based learning is a family of learning algorithms that, instead of performing explicit

generalization, compare new problem instances with instances seen in training. The most

commonly used algorithm is this family is k-NN (short for ”k-Nearest-Neighbour”). This

algorithm is among the simplest of all machine learning algorithms.

k-NN finds the k closest training examples to an input sample using some predefined met-

ric (such as Euclidean distance). The class of any input is then predicted to be the most

common class among its k nearest neighbors (k is a positive integer, typically small, pa-

rameter chosen by the user). Figure 1.15 gives an illustration of a classification by such an

algorithm.

The method of k-nearest neighbors makes very mild structural assumptions: its predictions

are often accurate, but can be unstable, depending on the value of the parameter k.
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Figure 1.15: A classification example in two dimensions using k-NN classifier (k = 15). The classes are

coded as a binary variable (BLUE = 0, ORANGE = 1), and then fit by k-NN algorithm. The orange shaded

region denotes that part of input space classified as ORANGE, while the blue region is classified as BLUE.

Source: [Hastie et al., 2009]

Linear regression

Linear classification models are a classical, and still popular, choice. They make a very

strong assumption regarding the relationship between input variables and classes. Linear

models are simple and have relatively few parameters, thus being less prone to overfitting

when N ≪ p.

Given new matrix of inputs X, the output class vector Ŷ = (ŷ1, . . . , ŷi, . . . , ŷN ) is predicted

by the equation:

Ŷ = Xβ̂ + β̂0~1N (1.1)

where β̂ = (β̂1, ..., β̂p) is a vector of estimated coefficients and β̂0 corresponds to the constant

coefficient, or the intercept at the origin, and ~1N = (1, 1, . . . , 1) ∈ RN is a vector of all ones

of size N.

To avoid this additional constant in the above equation, we can integrate β̂0 into the

product by replacing β̂ = (β̂1, ..., β̂p) by β̂′ = (β̂0, β̂1, ..., β̂p) and the input matrix X =
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(xT
1 , x2, ..., x

T
N ) ∈ RN×p, were ∀i ∈ {1 . . . N}, xi = (x1i, . . . , xpi), by X ′ = (x′T

1 , x′T
2 , ..., x′T

N
) ∈

R
N×(p+1) , were ∀i ∈ {1 . . . N} : x′

i = (1, x1i, . . . , xpi). For the sake of simplicity, we will not

change the notations X to X ′ and β to β′ in the following, but the constant will be included

in the input variables.

With this change in notations, the Equation 1.1 can then be rewritten as:

Ŷ = Xβ̂ (1.2)

In the case of supervised classification, we have a set of patients for whom we know the

class (i.e., the training set). From this set we would like to estimate all the βi coefficients

by minimising an error between the real phenotypes of our training set patients and their

predicted phenotype, using the linear model. To quantify the error, different metrics can be

chosen. The most commonly used method, known as the method of least squares, consists

in minimising the residual sum of squares (RSS):

RSS(β) =
N

∑

i=0

(yi − xT
i β)2.

By taking the derivative and searching for the point at which the derivative is equal to 0,

we find the formula of the extremum (that is a minimum, given the fact that RSS(β) is a

sum of squares, thus has a quadratic form and stays positive):

β̂ = (XT X)−1XT Y,

where (XT X)−1 is the pseudo-inverse of XT X.

Therefore, this method provides an analytic expression of a the optimal coefficients. (For

matrices where N ≪ p, XT X is singular, multiple optima exist.)

The above estimation is unbiased, i.e., for an infinite number of inputs, we obtain that the

expected value of β̂ is β: E(β̂) = β. Once the coefficients are estimated, we determine the

separation between classes. The separation between two classes corresponds to points, where

the assignment to any of the two classes generates the same error. For linear regression,

this corresponds to points where Ŷ is constant and equal to some threshold th, between the
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two classes (typically for classes 0 and 1, th = 0.5):

th = Xβ̂.

This is an equation of a hyperplane, thus linear regression always separates classes by a

hyperplane. Figure 1.16 illustrates the result of a classification by linear regression.

Figure 1.16: A classification example in two dimensions using linear regression. The classes are coded as

a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression. The orange shaded region

denotes that part of input space classified as ORANGE, while the blue region is classified as BLUE. Source:

[Hastie et al., 2009]

Linear regression with least squares estimates of coefficients is the simplest model-based

regression approach. It is well suited for small datasets, because it has relatively few degrees

of freedom. Moreover, the linear model is quite intuitive to interpret.

The drawback of this method is that the result can be inaccurate whenever the underlying

true relationship between input and output is not linear.
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Feature selection using Lasso

Even when the relationship between input and output is linear, straightforward linear re-

gression may be problematic, for two reasons that are important for learning from omics

data:

The first reason is prediction accuracy. In particular for the case of many features, least

squares estimates often have low bias but large variance.

The second reason is interpretation. Instead of large models with a many features, one

often would prefer smaller, more easily interpretable, subset of variables that exhibits the

strongest effect on the output.

Lower variance and a lower number of features are typically achieves by incorporating a fea-

ture selection penalty into the optimisation objective. There are three common approaches:

Ridge regression, Lasso, and Elastic Net. Here, we will present the Lasso method, since it

is the one that generates the sparsest solutions.

In the Lasso approach, one optimizes the coefficients as in least squares, but imposes a

bound on the so-called Lasso penalty:

β̂lasso = arg min
β

N
∑

i=1



yi − β0 −
p

∑

j=1

xijβj





2

,

subject to
p

∑

j=1

|βj | ≤ t.

This minimisation problem subject to a constraint may be rewritten using the Lagrangian

function as:

β̂lasso = arg min
β







1

2

N
∑

i=1



yi − β0 −
p

∑

j=1

xijβj





2

+ λ

p
∑

j=1

|βj |







,

where λ is a parameter that depends on the choice of t. In practice, the parameter λ is

optimised to minimise misclassification error when performing leave-out cross-validation on

the learning dataset.
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Because of the nature of the constraint, making t sufficiently small (or, equivalently, λ

sufficiently large) will cause some of the coefficients to be exactly zero. Therefore, less

features will be used to predict the outcome. As a consequence, the prediction is slightly

biased, but the variance of the predicted values will decrease, and the set of features becomes

easier to interpret.

Logistic regression

Logistic regression is an adaptation of linear regression that is better suited to classify data

with a limited number of output classes (it is especially suited for binary classification, i.e.,

where we only have two classes 0 and 1).

Logistic regression applies a logistic function to a linear combination of the input variables

before learning parameters for classification. The logistic function σ(t) is:

σ(t) =
1

1 + e−t

With t = Xβ, we get the logistic regression function,

σ(X) =
1

1 + e−Xβ

Figure 1.17 illustrates a logistic function in two dimensions.

On the example plot, a point xi with input value lower than −4 and class yi = 0 will be

well fit by this regression (i.e., ŷi will be close to yi), even in the presence of a point xj

with an input value ≪ 0 and output yj = 0. This would not be the case with a linear

fit. Similarly, an input value xl greater than 4 and class yl = 1 will be well fit by such a

regression. With a better fit, the resulting classification can be expected to perform better.

The logistic function arises from the objective to model the posterior probabilities of our

classes via linear functions in X, while ensuring that they sum to one and remain in [0,1].

Details can be found in [Hastie et al., 2009].

Importantly, when using logistic regression for classification, the separation between classes

remains linear. Similarly to linear regression, the separation between two classes satisfies
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Figure 1.17: The logistic function σ(t) = 1
1+e−t

for some threshold th : th = 1
1+e−Xβ . Since the logistic function σ is monotonic, this is

equivalent to:

σ−1(th) = ln

(

th

th − 1

)

= Xβ,

where σ−1 is the inverse function of the logistic function. This corresponds again to an

equation of a hyperplane.

The logistic function thus adapts linear regression for binary classification. Just as for linear

regression, we can combine logistic regression with a feature selection penalty to improve

accuracy and interpretability and adding some bias. Nevertheless this approach still fits

a very specific function to the data. If the data does not follow this function, bias and

inaccurate predictions result.

Linear Support Vector Machines (linear SVMs)

Support vector machines are a family of methods that can be used for supervised classifi-

cation, and not based on regression. I will here present linear SVMs for binary classifica-

tion.

The basic idea of SVMs is to find a linear boundary (a hyperplane) that not only minimises
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the number of misclassified points, but also aims to be as far as possible from any point in

any class. For a dataset that can be perfectly separated by a hyperplane, the algorithm will

maximise the size of a margin between the separation and the closest point on each side of

the boundary. The right panel of Figure 1.18 illustrates this problem.

For the cases in which it is not possible to perfectly separate the two classes, a penalty is

included for the misclassified individuals. This penalty is proportional to the distance to

the margin. This case is illustrated on the left panel of Figure 1.18.

Figure 1.18: Support vector classifiers. The left panel shows the separable case. The decision boundary

is the solid line, while broken lines bound the shaded maximal margin of width 2M = 2
||β||

. The right panel

shows the nonseparable (overlap) case. The points labeled ξ∗j are on the wrong side of their margin by an

amount ξ∗j = Mξj ; points on the correct side have ξ∗j = 0. The margin is maximized subject to a total

budget
∑

ξj ≤ constant. Hence
∑

ξ∗j is the total distance of points on the wrong side of their margin.

Source: [Hastie et al., 2009]

For mathematical simplicity, we will assume in this section that our classes yi are -1 or 1:

∀i ∈ {1, ...., N}, (xi, yi) are the pairs of input variable and class of the individual i, where

yi ∈ {−1, 1} and xi ∈ Rp. In the case where we can find a perfect boundary, we want to

solve:

max
β,β0,||β||=1

M (1.3)

subject to ∀i ∈ {1, ...., N} : yi(x
T
i β + β0) ≥ M . This problem can be rewritten without
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explicitly mentioning the margin M . By relaxing the constraint ||β|| = 1 and setting

M = 1/||β||, we can show that an equivalent formulation is:

min
β,β0

||β||, subject to ∀i ∈ {1, ...., N} : yi(x
T
i β + β0) ≥ 1. (1.4)

This is the usual way of writing the support vector criterion for the case where all points

of the learning set can be correctly classified by the learned model.

For the case where we cannot find a boundary that perfectly classifies every element, the

SVM problem in Expression 1.3 is adapted using the following constraint:

∀i ∈ {1, ...., N} : yi(x
T
i β + β0) ≥ M(1 − ξi),

subject to ξi > 0,
∑

ξi ≤ constant.

The equivalent formulation to Expression 1.4 becomes:

min ||β||, subject to ∀i ∈ {1, ...., N} :







yi(x
T
i β + β0) ≥ 1 − ξi

ξi > 0,
∑

ξi ≤ constant.
.

This is the usual way the support vector classifier is defined for the non-separable case.

This makes SVM a good approach to find linear boundaries to classify data. Specific types

of nonlinear boundaries may also be constructed by applying a transformation (known as

kernel), satisfying specific properties, to the original features, and determining a linear

boundary within this transformed space. Kernels were not used within the scope of this

work.

Decision trees

In this section, let X = (F1, ...Fp)
T , Fi ∈ RN , Fi being a vector of values of feature i for

N samples. Tree-based methods provide a conceptually simple way to learn non-linear

boundaries. Tree-based learning methods work recursively: Given a learning set, they

search for a feature Fi that separates optimally (according to some criterion) samples from

different classes using a threshold ti. For each corresponding subset, they again search for



33

the feature Fj that separates best different classes within that set using a threshold tj ,

and so on, until some stop criterion is satisfied (involving, for instance tree depth, or best

cross-validation performance). The class assigned to a leaf is typically the class to which a

majority of the set of samples from this leaf belongs to.

Decision trees are typically represented as rooted binary trees. Each internal node represents

a single input variable and a split point on that variable. The leaf nodes of the tree contain

the output class. For a new sample, class prediction is performed by walking down a path

of the tree starting from its root, iteratively following branches according to the learned

split points, and outputting the class value at the leaf node (Figure 1.19).

(a) Decision tree (b) Corresponding space partition

Figure 1.19: Decision tree approach and resulting partition of the feature space. Here, the set of classes is

Y = {R1 . . . R5}, and the feature vectors are F1 and F2. Adapted from [Hastie et al., 2009].

Trees are fast to learn and very fast for making predictions. A weak point of decision

trees is that they have a relatively high variance, and generally overfit more than other

methods.

Random forests

Random forests are an ensemble approach to decision trees that aims to decrease vari-

ance/overfitting. To do so, during the learning process, it applies a technique called “bag-
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ging”(short for “bootstrap aggregating”). Bagging repeatedly (B times) selects, and fits a

decision tree to, a random sample of inputs xi:

For b = 1, ..., B:

• Sample, with replacement, B training samples from the inputs X and their classes Y ;

call these Xb, Yb.

• Train a decision tree fb on Xb, Yb.

The output consists of B decision trees. New predictions for unseen samples x′ can be made

by taking the class most frequently attributed to x′ by the B decision trees (breaking ties

where necessary).

The number of samples/trees, B, is a free parameter. Typically, a few hundred to several

thousand trees are used, depending on the size and nature of the training set. An optimal

number of trees B can be found using cross-validation.

Random forests differ in only one way from bagging: they use a modified tree learning

algorithm that selects, at each candidate split in the learning process, a random subset of

the features, from which the feature to define the split is selected. This process is sometimes

called “feature bagging”.

Typically, for a classification problem with p features,
√

p (rounded down) features are used

in each split.

Random forests provide an adaptable way to search for non-linear boundaries with a very

adaptable model. They often have better predictive accuracy than decision trees, but

the interpretation of the learnt feature is usually extremely difficult, due to its complex

structure.
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Chapter 2

Network analysis to aggregate

dengue genotyping data
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2.1 Introduction

Epidemiological studies have repeatedly shown that severe dengue is associated with eth-

nicity [Coffey et al., 2009, Bravo et al., 1987, Guzman and Kouri, 2002, Halstead et al.,

2001]. The research community has hypothesised that this is due, in part, to the genetical

background. To date, several genomic associations with severe dengue have been identified

using GWAS analysis [Khor et al., 2011, Whitehorn et al., 2013]. Nevertheless, the research

community has trouble linking these associations with disease etiology. One hypothesis to

explain this difficulty is that dengue is a complex disease, i.e., influenced by a combination

of multiple genes. If we search for associations between one of the genomic positions and

the phenotype in the whole genome and independently from one another, we will be testing

the same hypothesis many times, and will need to correct results for multiple testing. When

the genomic positions are hundreds of thousands of SNPs, as for most published dengue

analyses, the correction will be very strong. Therefore, only the very strong associations

would remain statistically significant, while many polymorphisms with small marginal ef-

fects will be undistinguishable from random noise [Eichler et al., 2010, Maher, 2008]. If

we are able to correctly group the marginal effects in one signal, these effects may add up

and become statistically distinguishable from random noise. For instance, we can aggregate

SNP p-values by some known biological units such as genes. We may even then further

group gene p-values by known common functions such as pathways. When there is a risk

that the useful pathways are not entirely present in the databases, we may simply use the

broader information about gene-gene interactions, and aggregate gene p-values by sets of

interacting genes from gene interaction networks. This chapter will discuss my work on

aggregating dengue GWAS data using available knowledge to identify genes or groups of

genes associated to severe dengue. I will first describe how I aggregate SNP-level informa-

tion into gene-level information, then apply existing pathway analysis, and finally apply

gene interaction network analysis algorithms (cf. Figure 2.1).
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Figure 2.1: Summary of the analyses performed in this chapter.

2.2 Dataset

In this section, I analyse a case-control cohort from Vietnam whose GWAS was previously

published [Khor et al., 2011]. It contains 2008 pediatric cases treated for dengue shock

syndrome (DSS) and 2018 controls.

Cases were eligible if they were under 15 years of age and had clinical signs, symptoms and

hematological findings that led to a clinical diagnosis of incipient or established DSS, as

defined by the WHO 2009 report [WHO (World Health Organisation), 2009]. Are considered

to be in shock those patients that show warning signs, and whose pulse pressure is lower than

20 mmHg, or showing signs of poor capillary perfusion (cold extremities, delayed capillary

refill, or rapid pulse rate). Blood samples for research and diagnostic tests were collected at

the time of enrolment and again before patient discharge from hospital. Patients enrolled

were recruited in the pediatric intensive care unit of the Hospital for Tropical Diseases (Ho
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Chi Minh City, Vietnam) between 2001 and 2009. Parents or guardians of each participant

gave written informed consent to participate. The Scientific and Ethical Committees of each

study site approved the study protocols, as did the Oxford University Tropical Research

Ethical Committee.

Figure 2.2: Characteristics of the patients of the GWAS cohort. a: missing information for five patients.

b: missing information for one patient. Reproduced from [Grange, 2014].

Controls consisted of sequenced cord blood samples, and were from newborns. They were

collected at Hung Vuong Hospital (Ho Chi Minh City, Vietnam) between 2004 and 2006.

All participants gave written informed consent to participate. The Scientific and Ethical

Committees of each study site approved the study protocols, as did the Oxford University

Tropical Research Ethical Committee. DNA was extracted from cord blood using Nucleon

BACC Genomic DNA Extraction Kits (GE Healthcare, USA).

Genotyping was performed with Illumina Human 660W Quad BeadChips following the

manufacturers instructions. Cases and controls were randomized on plates and genotyped.

Out of the initial 500,000 SNPs, 428,910 remained after quality control. The quality control

criteria excluded: SNPs that had genotypes with more than 5% missing, showed gross

departure from Hardy-Weinberg equilibrium (a departure with a p-value ≤ 10−7), or had
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a minor allele frequency below 5%. For sample quality control, samples with an overall

genotyping call rate of lower than 95% were excluded from analysis. SNPs that had a p-

value that was lower than the Bonferroni-corrected threshold p-value: αBonf = α/nSNPs =

0.05/428910 = 1.2∗10−7 were considered as significant. To check the coherence of the data,

I reran the GWAS analysis published in [Khor et al., 2011] using PLINK (v1.7) [Purcell

et al., 2007]. Figure 2.3 is the resulting Manhattan plot. Two distinct regions reach the

Bonferroni-corrected significance threshold, as described in the initial paper.

Figure 2.3: Manhattan plot of the replicated GWAS results. The horizontal axis represents the SNPs

ordered by chromosomes and chromosomal positions, the vertical axis represents − log of SNP p-values,

under the null hypothesis of no association. The red line represents αBonf , the significance threshold of

α = 0.05 corrected for multiple testing using the Bonferroni correction.

2.3 Aggregating genomic information to the gene level

Since dengue is a complex disease, we wonder whether more can be learnt from this genomic

data, than the associations of only two genes to severe dengue. In the previous analysis the

Bonferroni-corrected threshold for statistical significance is very stringent, because we test

the hypothesis of association to severe dengue 428,910 times (one for each SNP). If we were

able to correctly group the less strong associations in one signal, these effects together may
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become statistically significant. In this chapter, we will aggregate SNP p-values by genes,

and analyse the resulting p-values.

2.3.1 Methods

Mapping by genomic position

As long as we do not have a map of all interactions and regulatory relationships between

DNA nucleotides, aggregating SNPs into some functional units needs to been done heuris-

tically. The most direct way to map SNPs to genes is to identify SNP and gene loca-

tion on the DNA chromosomes and annotate which SNP is included in which gene. I

first downloaded genomic positions of genes from RefLink table of the UCSC database

(http://genome.ucsc.edu/) [Karolchik et al., 2004]. From my mapping of SNP positions

to genomic positions, it appears that 53 % of SNPs are located in intergenic regions (i.e.,

outside of known genes). If we analyse SNPs included in genes only, intergenic SNPs would

thus be deleted from the analysis! Can we improve the mapping of intergenic SNPs to genes

to avoid losing more than half of the SNP information in downstream analysis?

A commonly used heuristic to go beyond the “straightforward” form of mapping consists

of mapping to genes SNPs that are in the flanking regions [Liu et al., 2017]. Indeed, it

is assumed that these regions are enriched in binding sites of regulatory elements such as

promoters, transcription factors etc. DNA modifications at binding sites may impact the

binding affinity of the regulatory element of interest, therefore affecting the regulation of

the expression of the corresponding gene. Thus, it is usually deemed useful to map SNPs

within a few kilobases (kb) to the left and to the right of the gene to the gene of interest.

In this analysis, the size of the flanking region is 10kb.
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Tissue type Patients cis-eQTLs trans-eQTLs Multiple testing correction Reference

Whole blood 5,311 + 2,775 585,669 1,152 1% FDR [Westra et al., 2013]

Skin 847 2,796 609 1% (cis), 10% (trans) FDR [Grundberg et al., 2012]

Adipose tissue 855 3,529 639 1% (cis), 10% (trans) FDR [Grundberg et al., 2012]

Liver 427 1,350 491 10% FDR GTEx [Schadt et al., 2008]

LCL∗ 1,355 6,579∗∗ 11,977∗∗ 5% FDR [Liang et al., 2013]

Table 2.1: Description of eQTL data sources useful for dengue analysis.

∗: LCL stands for lymphoblastoid cell lines. These are immortalised cell lines of B cells.

∗∗: number of genes that have at least one SNP that regulates their expression.

Exploration of available functional information

To improve the coverage of the mapping, I investigated the possibility to use functional infor-

mation about gene regulation by SNPs, such as expression quantitative trait loci (eQTLs).

Briefly, eQTLs are genetic regions that are statistically associated with modified levels of the

expression of a specific gene (cf. Part 1.2.2). SNPs are known to be enriched in regulatory

elements, such as eQTLs, relative to the rest of the genome [Cookson et al., 2009, Nicolae

et al., 2010]. Statistically speaking, eQTL analysis aims at finding regulatory relationships

between SNPs and gene expression modifications by searching for correlations between the

expression level of a gene and SNP alleles. Therefore, such an analysis requires genotyping

and gene expression information for the same patient. We did not have sufficient genomic

and transcriptomic data from patients that would have enabled us to establish eQTLs for

the South-Asian population. I thus searched for eQTLs that may be relevant for the reaction

to dengue virus.

I surveyed datasets in the databases GTEx [Lonsdale et al., 2013], SCAN [Gamazon et al.,

2010], eQTL uChicago [Veyrieras et al., 2008], SeeQTL [Xia et al., 2012] and the datasets of

[Westra et al., 2013], [Liang et al., 2013]. Since eQTLs are related to gene expression, they

are tissue-specific. Therefore, I focused on datasets of eQTLs related to tissues that are

suspected to play a role in dengue etiology. Table 2.1 gives details on the largest datasets

found in the above databases for each relevant tissue type.

Since our priority is to map the intergenic SNPs to genes, we are specifically interested in
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trans-eQTLs ( i.e., eQTLs that are not situated in the gene whose expression they regulate,

as opposed to cis-eQTLs that are situated within the gene that they regulate). From

Table 2.1, we can see that there is a limited number of trans-eQTLs that can be found in each

dataset. Indeed, to find trans-eQTLs, one needs to test for association between every SNP of

interest with every gene of interest. This results in many tests; therefore the corresponding

multiple test correction strongly reduces power, and requires large sample sizes to allow

many significant hits. Moreover, trans-eQTLs are rarely reproduced in other datasets [Liang

et al., 2013], and even more so when they are calculated on different subpopulations. None

of the eQTL databases I surveyed perform an analysis on populations of Asian origin, and

thus matching our data on dengue. Our analysis may be particularly sensitive to genetic

background, as the proportion of severe dengue cases is known to vary strongly in different

parts of the world. Additionally, from a statistical point of view, SNPs may be associated

with the expression of several genes. For instance, in the whole-blood dataset in Table

2.1, authors report 103 independent SNPs at the origin of all of the 1,152 trans-eQTLs

found in the analysis. It means that a SNP would on average be mapped to ten genes!

Thus, mapping them to these genes will add dependencies between gene p-values, and will

require further aggregation of gene p-values to take into account these dependencies. Using

eQTL results from different databases creates other challenges: experimental techniques

vary, samples are of different sizes, different statistical tests have been used to find eQTLs

and to correct for multiple testing, some results are adjusted for confounders but others are

not, some are adjusted for batch effect but others are not, multiple testing corrections vary,

etc.

Since, in my analysis, the achievable advantage from integrating these results, and the

achievable quality of the mapping outside of coding regions was not clear, I decided to

continue with a simple physical mapping, as described in the following section.
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Gene p-value computation

To combine SNP-level p-values obtained from GWAS into gene-level p-values, one needs to

take varying gene lengths and to the potential statistical dependencies in between neigh-

bouring SNP alleles, known as linkage disequilibrium (LD), into account. Loci are said to

be in linkage disequilibrium when the frequency of association of their different alleles is

higher or lower than what would be expected if the loci were independent and associated

randomly [Slatkin, 2008].

I used VEGAS [Liu et al., 2010], a tool that takes into account gene length and LD.

VEGAS prunes SNPs that are in LD using a HapMap LD map, then aggregates p-values

of gene SNPs of interest into a test statistic, and then an empirical p-value. VEGAS gives

flexibility as to which SNPs to agglomerate into a gene-based p-value. Indeed, for some

genes, an approach considering all SNPs might be the most powerful; for others, focusing

on a certain percentage of most significant SNPs may be more powerful, for others only one

most significant SNP carries all the information. The best methodology depends on the

generally unknown proportion of SNPs in a gene that influence the underlying biological

process of interest.

For my application, I tried different possible options: I aggregated all SNPs to genes, only

the top SNP of each gene, or only the top 10% SNPs of each gene (this last option was

rerun using the new version VEGAS2v02 [Mishra and Macgregor, 2017], where a statistical

mistake was corrected [Hecker et al., 2017]). To determine LD structure, I used the Hapmap

LD map of eastern Asian populations (i.e., HapMap Han Chinese in Beijing population and

Japanese in Tokyo populations), since that was the closest to the population origin of the

Vietnamese dataset. Figure 2.4 represents a histogram of the distribution of these p-values.

Since the top SNP-based gene p-values where most enriched in low values, I carried on the

analysis with these gene-level p-values.
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(a) Top SNP p-values (b) Top 10% SNP p-values (c) All SNP p-values

Figure 2.4: Histograms of gene-level p-values when aggregating different subgroups of SNPs contained in

each gene.

2.3.2 Results

SNPs were mapped to 17,629 genes, with five genes having Bonferroni-corrected p-values

below the 0.05 threshold (Table 2.2). Interestingly, three out of the five genes, HLA-B,

MICA, and HCP5, are all related to the major histocompatibility complex (MHC), also

known as human leukocyte antigen (HLA) complex. The function of MHC molecules is to

bind peptide fragments derived from pathogens, and to display them on the cell surface

for recognition by the appropriate T cells. Consequences of mutations in these genes are

almost always deleterious to the pathogen-infected cells who are killed; macrophages are

activated to kill bacteria living in their intracellular vesicles, and B cells are activated to

produce antibodies that eliminate or neutralise extracellular pathogens. Thus, there is

strong selective pressure on this gene region. Indeed, the MHC is known to contain a high

number of genetic variants of each gene within the population as a whole. The MHC genes

are, in fact, the most polymorphic genes known [Janeway CA et al., 2001]. The evolution

of these genes is thought to be driven by the differences in pathogens encountered by their

hosts in the course of human evolution. This may explain differences in severe dengue

susceptibility in different populations with different genetic background.

2.3.3 Discussion

The above results seem to suggest that differences in the MHC complex are related to

genetic susceptibility to severe dengue. This result confirms some findings about dengue
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Gene Corrected

p-value

NCBI Gene Description

NOC3L <0.01 NOC3-like DNA replication regulator

PLCE1 <0.01 Associated with severe dengue in the GWAS of this data [Khor et al.,

2011]. It encodes a phospholipase enzyme that catalyzes the hydrolysis

of phosphatidylinositol-4,5-bisphosphate to generate two second messen-

gers: inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). These

second messengers subsequently regulate various processes affecting cell

growth, differentiation, and gene expression. Mutations in this gene

cause early-onset nephrotic syndrome.

HLA-B 0.01 Major histocompatibility complex (MHC), class I, B. Class I molecules

play a central role in the immune system by presenting peptides derived

from the endoplasmic reticulum lumen. They are expressed in nearly all

cells.

MICA 0.02 MHC class I polypeptide-related sequence A. The associated protein is

highly polymorphic.

HCP5 0.02 MHC complex P5 (non-protein coding)

Table 2.2: Mapping SNPs to genes: Description of significant VEGAS genes

etiology [Stephens et al., 2002, Lan et al., 2008].

However, my analysis is limited by the required high number of ad-hoc choices made to

map SNPs to genes. Indeed, all SNPs have been mapped to genes physically without

including intergenic SNPs and mapping intronic SNPs to the gene they were in, ignoring

any functional link to other genes. We had considered integrating eQTL information. From

a biological point of view, this information is population- and tissue-specific. Since no eQTLs

are available for the Asian population, mapping eQTLs of populations with European and

African origin may generate many false positives. From a statistical point of view, it is

very difficult to integrate datasets, since, typically, they use different batch corrections,

statistical tests and multiple testing corrections. Moreover, since one SNP can control the

expression of several genes, mapping a SNP to several genes introduces strong dependencies

in between gene p-values that would need to be taken into account during network analysis,
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which hinders the downstream statistics. Based on the little information available and the

discussed disadvantages, we decided to not include this information for the SNP-to-gene

mapping. In the future, if we wanted to improve the mapping, we could also consider using

chromosome architecture information, since it is known that SNPs that are physically close

to genes in a folded chromosome may influence the expression of that gene by making DNA

more or less accessible for gene expression.

Once SNPs have been assigned to genes, there are also choices to be made as to how to

map SNP p-values to genes. We have used a data-driven approach to choose the method

generating the strongest statistical signal. In this case, mapping the top SNP to the gene

appeared to be the best among the three tested options. Nevertheless, such a mapping

relies on one SNP, and may thus be more prone to noise than the other mappings. I might

have tried to test different percentages of SNPs to map to a gene in the analysis, but this

might have led to overfitting. In reality, the proportion of SNPs that carry some association

signal may vary not only from disease to disease, but also from gene to gene. To figure out

the best mapping for each gene, a very large sample size would be needed.

2.4 Pathway analysis

One way to improve robustness and quantity of results is to include more functional regula-

tion information and is to use pathway-based and network-based analyses that do not limit

themselves to statistically significant genes, but aim to identify groups of genes that are

functionally related and are enriched in low p-values. I first performed the more classical

pathway analysis.

2.4.1 Methods

Several tools exist for pathway analysis. They differ by the input data type, enrichment

statistic and by the pathway database they use to group genes into pathways (Consensus-

PathDB [Kamburov et al., 2011], Ingenuity Pathway Analysis (Ingenuity Systems, GenGen
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[Wang et al., 2010], Reactome [Fabregat et al., 2016]...). Among them, GSEA [Subramanian

et al., 2005] is widely used. GSEA was originally created to assess gene set enrichment in

transcriptome data.

It uses the Molecular Signatures Database (MSigDB) to define gene sets. MSigDB is a

compilation of collections of annotated gene sets that includes main pathway databases,

along with other more specific collections of gene sets derived from the literature. Each

collection of gene sets can be used as a background dataset for enrichment analysis. The

background dataset defines gene sets and quantifies the proportion of genes belonging to

each gene set in the whole genome. When given a list of input genes sorted by any score,

GSEA tests the null hypothesis of whether the top (or the bottom) of the gene list is

enriched in genes from some of the defined gene sets, compared to the background dataset.

The output is a q-value of such an enrichment for each gene set. A q-value is the lowest

FDR threshold at which the result becomes significant. In other words, a genes set with

a q-value q will be considered as significant if and only if we accept to have a proportion

q of results being false positives. I have used GSEA to search for enriched pathways using

diverse background datasets:

1. A “hallmark” gene set that contains gene sets derived by aggregating many MSigDB

gene sets to represent well-defined general biological states or processes.

2. An immunology-specific gene set containing genes differentially expressed under dif-

ferent stimuli (reaction to different pathogens, or to molecules activating immunity).

3. KEGG dataset [Kanehisa and Goto, 2000]. KEGG is a database of manually curated

and represented pathway maps summarising the current knowledge on the molecular

interactions. It is broadly used and frequently updated.

4. Reactome dataset [Croft et al., 2011]. Reactome is another manually curated database

that represents pathways. But the unit of the Reactome data model is the reaction.

Interacting entities are diverse: nucleic acids, proteins, complexes, vaccines, anti-

cancer therapeutics, and small molecules. Reactions are grouped into a network, and
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then, pathways.

5. An aggregation of curated gene sets from online pathway databases, publications in

PubMed, and knowledge of domain experts available via GSEA.

I have then used a commercial pathway enrichment tool, Ingenuity Pathway Analysis (In-

genuity Systems, http://www.ingenuity.com), that has a hand-curated database of widely

recognised and high quality pathways.

To avoid bias from the step of grouping SNPs to genes, I also used VEGAS2 Pathway

[Mishra and MacGregor, 2017], which does not rely on a grouping of SNPs by genes, but

directly groups them by pathways.

2.4.2 Results

At an FDR threshold of 20%, none of my analyses have led to the detection of an enrichment .

2.4.3 Discussion

Our negative results may indicate that the statistical association at the level of pathways

is not strong enough to be significant. One reason for that may be that, in a disease whose

etiology is still largely unknown, many relevant pathways still need to be discovered, or

represented in pathway databases. Additionally, even in known pathways, only genes in a

small part of a large pathway may be associated with the disease (a pathway can contain

hundreds of genes!).

2.5 Network analysis

To extend the search of sets of genes beyond those pathways that are already known and

encoded as distinct entities in databases, we would like to use a broader set of knowledge:
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databases of interactions between genes, known as gene interaction networks. A broad

range of databases contains gene interaction networks for Homo Sapiens. They include

different types of data such as physical protein-protein interactions, other literature-curated

interactions, co-expression interactions, yeast-to-hybrid interactions, inferred interactions

from other species, etc. We would like to search for interacting genes that together contain

a strong statistical signal of association with severe dengue. Interacting genes will be called

subnetworks or modules in the following chapters.

2.5.1 Methods

Figure 2.5 gives an overview of the workflow used for the network analysis. We here use

gene p-values generated by VEGAS that we map onto an available functional interaction

network, use an algorithm to find subnetworks concentrating genes with low association

p-values, and finally biologically interpret these subnetworks by testing for enrichment of

certain Gene Ontology categories.

The network

Prior to network analysis, we need to choose a database of gene interactions. Some contain

manually curated information only [Keshava Prasad et al., 2009], others use computational

literature search and agglomeration of existing databases. There is, to my knowledge, no

clear evaluation as to the quality/suitability of the different networks for different types of

analyses. Since we wanted to include as many potential interactions as possible, we chose a

network containing a broad variety of functional interactions. Each interaction is weighted

according to a score designed to reflect the confidence in the existence of a given interaction,

and based on the quality and quantity of available data.

I employed two different networks for my analyses. The first one was HumanNet [Lee

et al., 2011], a functional interaction network spanning 476,398 scored functional interac-

tions between 16,243 (87%) of validated human protein-coding genes. HumanNet uses only
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Figure 2.5: Workflow: Network analysis of GWAS results.

annotations supported by experimental evidence. Annotations are either inferred from a di-

rect assay, inferred from mutant phenotype, inferred from a protein interaction, or inferred

from a genetic interaction. To this network, we added 150 dengue-specific epistatic inter-

actions that were available in our laboratory (unpublished work of Laura Grange). They

had been detected using PLINK software [Purcell et al., 2007]. PLINK fast-epistasis mode

uses a test based on a z-score for the difference in SNP-SNP association (odds ratio) be-

tween cases (dengue shock syndrome) and controls (non-disease samples). The top results

had been confirmed by permutation analysis using MBMDR (10000 permutations/MaxT

option) [Cattaert et al., 2011].

After HumanNet, I used STRING v9.1 [Franceschini et al., 2013], which appeared to be

more frequently updated. This network contains, for Homo Sapiens, 4,319,956 interactions.

This network aggregates data from several databases, literature text mining, predicted inter-
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action based on homology, co-expression data, data from large-scale experiments, homology

between similar species, and co-occurrence of protein domains.

Search tool

We are interested in bioinformatics tools that are able to take as input a network of inter-

acting genes and SNP-level scores or gene-level scores, map these onto nodes of the network

and search in the networks for subnetworks that aggregate high-scoring genes. A variety of

search tools exist. Many of them had been initially designed for gene expression data. A

review gives pointers to some of the methods [Jia and Zhao, 2013]. Table 2.3 shows those

subnetwork prioritisation methods that I found to be suitable for SNP-level or gene-level

p-value inputs.

Tool Algorithm description

jActiveModules [Ideker et al., 2002] Transforms node p-values into node z-scores, aggregates these scores using Stouffer’s z-score

method [Stouffer et al., 1949] and ensures that for each subnetwork size, scores follow a stan-

dard normal distribution. The user can choose between a greedy algorithm or simulated annealing

to search for top-scoring subnetworks.

dmGWAS [Jia et al., 2011] Same scoring function as jActiveModules, performs greedy search with two additional parameters.

Parameter d controls the size of the space explored: each nodes needs to be within a distance d to

any other node in the subnetwork. Parameter r controls whether a node should be added to the

best solution: the node will be added if it improves the score of the best subnetwork by more than

r times the current best score. It also computes p-values of results.

EW-dmGWAS [Wang et al., 2015b] An adaptation of dmGWAS that includes edge weights into the subnetwork score.

PINBPA [Wang et al., 2015a] A Cytoscape App [Shannon et al., 2003] that uses VEGAS output as input for jActiveModules, and

computes significance using permutations.

PANOGA [Bakir-Gungor and Sezer-

man, 2011]

A pipeline suitable for SNP data on the basis of jActiveModules.

GXNA [Nacu et al., 2007] Inspired by jActiveModules score. Attempts to correct for score dependencies in between connected

nodes by introducing a parameter-dependent heuristic.

Bionet [Beisser et al., 2010] Integer linear programming approach that is inspired by the Prize-Collecting Steiner Tree Problem.

It optimises a scoring function based on estimating noise-to-signal ratio from node p-values. Then

it develops an additive score, where positive values represent signal content and negative values

represent background noise.

NIMMI [Akula et al., 2011] First pre-computes a weight for each node based on Google PageRank algorithm, taking into account

the numbers of neighbours and their neighbours using a dampening factor that, unlike Google

PageRank, is scaled, and not constant. It then determines a combined subnetwork z-score as a sum

of neighbouring scores weighted by their previously calculated weights. The available pre-computed

weights of nodes have been calculated for the protein-protein interaction network BioGRID.

NetworkMiner [Garćıa-Alonso et al.,

2012]

Takes as input a ranked list of genes. Finds subnetworks concentrating best-ranked genes using a

gene partitioning approach.

SigMod [Liu et al., 2017] Uses integer linear programming to optimise an objective function that is a weighted sum of gene

scores and a weighted sum of edge scores, penalised by a fitted coefficient times the number of

nodes in the subnetwork.
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GWAStoNetwork [Hiersche et al.,

2013]

Combines GWAS p-values pA and pB of connected genes A and B into an edge score (by default,

log(pA) · log(pB)). The graph partitioning algorithm then decomposes the entire network into sub-

networks by concentrating high-weight edges within subnetworks and minimizing the total weights

of between-subnetwork edges during the clustering process.

Table 2.3: Subnetwork search algorithms suitable for GWAS data

Among these algorithms, I chose, for a first evaluation, the one that I found most widely used

and cited: jActiveModules [Ideker et al., 2002]. The obtained sets of genes being too large

to be analysed one by one, I used the gene ontology (GO) enrichment tool BINGO [Maere

et al., 2005] to perform a hypergeometric test. BINGO determines which Gene ontology

(GO) terms are significantly overrepresented in the set of genes of interest. Gene ontology

is a bioinformatics community resource to annotate genes using predefined terms, enabling

genes to be directly grouped by these terms.

2.5.2 Results

When run with the entire network, jActiveModules did not terminate within 48 hours. I

then reduced the input network to the interactions between those top 10% genes that had the

best p-values. Results using STRING and HumanNet networks, along with Gene ontology

(GO) enrichment of the resulting genes are displayed in Figures 2.6, 2.7, 2.8, and 2.9.

The best-scoring subnetworks tend to include some of the genes with the lowest p-values.

When using the GO enrichment tool BINGO [Maere et al., 2005], on HumanNet network,

the MHC complex genes again appear as an enriched category; “Antigen processing and

presentation of peptide antigen via MHC class I” has a multiple-testing corrected enrichment

p-value of 3.10−4. Genes from the network that fall within this category are: TAPBP, HLA-

B, HLA-C, and HLA-E.

The complement activation classical pathway is also enriched with a p-value of 0 .02. The

complement system is a part of the immune system that complements the ability of an-

tibodies and phagocytic cells to clear microbes and damaged cells from an organism, by

promoting inflammation via cytokines, and attacking the pathogen’s plasma membrane. It
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Figure 2.6: Top-scoring subnetworks using jActiveModules tool and HumanNet network.

is part of the innate immune system, but it can be recruited and brought into action by

the adaptive immune system (cf. Chapter 1). Genes in the subnetwork belonging to this

category are: C1RL, C1R, C1S.

When using the STRING interaction network, enriched categories are very different from

the ones that we had previously obtained with HumanNet; only groups related to kidney

development are significantly enriched with a corrected p-value of 0.002. Genes from our

subnetwork belonging to this category are: FOXC2, PLCE1, ASS1, POU3F3, PYGO1, and

AGTR1. AGTR1, or angiotensin II is a potent vasopressor hormone (i.e., it stimulates

contraction of the muscular tissue of the capillaries and arteries) and a primary regulator

of aldosterone secretion. It is an important effector controlling blood pressure and volume

in the cardiovascular system. Blood pressure and volume are key parameters in the most

severe form of dengue, dengue shock syndrome: most severe patients have heart failure that

can occur because of insufficient blood pressure.
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Figure 2.7: Gene ontology enrichment of the best subnetwork in immune processes.

2.5.3 Discussion

Network analysis using HumanNet confirms that immune activation may play a role in

severe dengue susceptibility. Additionally, the resulting subnetwork is enriched in genes

from the complement activation classical pathway.

STRING network analysis using the same gene p-values generates a very different result,

with much higher network scores, but enriched in a completely different category: kid-

ney development. This enriched category points in a similar direction as PLCE1 (cf. the

discussion in [Khor et al., 2011]). Mutations within PLCE1 are associated with nephrotic

syndrome [Hinkes et al., 2006], a kidney disorder that, when severe, leads to reduced vascu-
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Figure 2.8: Top-scoring subnetworks using jActiveModules tool and STRING network.

lar oncotic pressure and edema. Oncotic pressure is a form of osmotic pressure exerted by

proteins, notably albumin, in the plasma of a blood vessel that usually tends to pull water

into the circulatory system, suggestive of a link between low quantities of fluid in blood

and PLCE1. Moreover, another gene in the same gene ontology category, AGTR1, is a

potent vasopressor hormone, and an important effector controlling blood pressure and vol-

ume in the cardiovascular system. These elements together strengthen the hypothesis that

genetic predisposition to severe dengue is associated with genes regulating blood pressure

and maintaining normal vascular endothelial cell barrier function in this dataset.

How is this related to clinical manifestations? When a patient has an infection in a given

place in the body, the inflammation signal increases blood vessel permeability; plasma then

gets more easily to the origin of inflammation, carrying with it clotting factors to stop the

bleeding and spread of infection, antibodies to fight infection, nutrients to feed the tissue

cells, and proteins that attract phagocytes [Luft, 1965]. When this process happens locally,

it helps the body to heal faster, and the loss of fluid in blood is small. In dengue, the
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virus spreads to the entire organism, thus generates a systemic inflammation and capillary

permeability. If badly managed by the body, this may result in too much plasma leaking out

of blood vessels, and, together with an inability to compensate for the lost blood volume,

the possibility of heart failure (clinical shock). Plasma leakage and shock are characteristic

symptoms of severe dengue.

From a methodological point of view, the difference in the results from two different networks

is intriguing. In both cases, we only used the network of 10% genes with the lowest p-

values. Therefore, even though these networks tend to be highly connected, the connectivity

between genes plays a major role for the result. Moreover, the method we employed does

not provide a measure of statistical significance, which leaves open the possibility that our

results may not be statistically significant.

Additionally, the best subnetwork score obtained form STRING interaction network is 45%

higher than the one from HumanNet. However, the HumanNet best subnetwork is enriched

in more Gene Ontology categories that point towards the same immune-related process. The

hypothesis that this process is involved in severe dengue thus appears to be more robust.
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A possible explanation may be that there are fewer genes annotated in best subnetworks

obtained using STRING results. Other causes for the difference between results obtained

from different networks may lie in certain undocumented properties of the jActiveModules

tool. For instance, in its default configuration, jActiveModules runs with an activated option

correction for subnetwork size that is not documented in any publication or website, to my

knowledge. The name of this option suggests that it represents an attempt to correct for

an issue with jActiveModules, namely the empirical observation that jActiveModules has

a size bias, i.e., that it tends to return very large subnetworks as results. In the following

chapter, I present an explanation and an analysis of this phenomenon from a theoretical

point of view.

The results are also difficult to interpret beyond gene set enrichment: gene-by-gene explo-

ration of my resulting subnetworks of 67 genes or more is time-consuming, and it is still

unclear whether it would lead somewhere given the information losses/ad-hoc choices at

different stages of the analysis pipeline: SNP-to-gene mapping (as discussed above), reduc-

tion of the analysis to 10% top-scoring genes, thus removing connections in between genes,

etc.

2.6 Conclusions

Results from GWAS, gene-level p-value aggregation using VEGAS, and network analysis

using jActiveModules, all suggest that immune activation plays a key role in dengue sus-

ceptibility in this dataset, as well as kidney-related genes, implicated in regulating blood

pressure, and in maintaining normal vascular endothelial cell barrier function.

In VEGAS results, HLA-B, MICA, HCP5, NOC3L, and PLCE1 are significantly associated

with severe dengue. The first three genes are part of the MHC (major histocompatibility

complex), whose function is to recognise pathogens and display them on the cell surface,

so that the appropriate T cells can recognise them. This result adds information to the

initial GWAS result, in which only one gene from this complex was found to be associated
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to severe dengue. PLCE1, whose disfunctions had been reported to be related to a kidney

disease, had already been significantly associated with severe dengue by the GWAS. This

result remains when mapping SNPs to genes.

On the one hand, the subnetwork obtained using the HumanNet network expands on gene-

level VEGAS results by finding subnetworks enriched in antigen processing and presentation

of peptide antigen via MHC class I. On the other hand, this result is also enriched in

genes from the complement activation classical pathway. This pathway complements the

same ability of the human immune system to recognise pathogens, create inflammation

via cytokine release and pathogen removal. STRING network analysis expands on the

kidney-related GWAS result (the PLCE1 gene) by detecting enrichment in the in “kidney

development” category. Genes falling within this category include genes not only related to

blood volume, but also stimulation of contraction of the muscular tissue of capillaries and

arteries.

The methodology applied here required several ad-hoc choices or parameters during the

mapping of SNPs to genes, gene p-value computation, choice of the input network, and

subnetwork search algorithm. The following chapter will focus on issues related to the

subnetwork search algorithm, and Chapter 4 will present an alternative search tool that

addresses some of the problems in jActiveModules and emphasizes interpretability.
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Chapter 3

Towards an unbiased score function

for identifying network modules
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This chapter has been submitted as an article in April 2017 and is now under review. It

discusses the bias of the scoring of some subnetwork search methods such as jActiveMod-

ules.

3.1 Chapter summary

Biological processes often manifest themselves as coordinated changes across several in-

teracting molecules in high-dimensional data. Such data is therefore often visualized and

analyzed in the context of interaction networks. In these networks, subnetworks that may

correspond to correlated change can then be identified through computational search. Ac-

cording to several reports, one of the first and frequently used subnetwork scores for this

problem, introduced in the jActiveModules software, has a strong tendency to lead to large

subnetworks. Follow-up versions of the method have dealt with this issue only by introduc-

ing ad hoc corrections whose efficacy remains limited.

Here, we show that the size bias is not only an empirical phenomenon for specific datasets,

but a statistical property of the underlying score function. Based on this, we present a

new score function that removes the size bias. A sampling approach to computing the

new score function is computationally hard, but we present evidence that the score can be

approximated using extreme value functions.

3.2 Introduction

The organisation of cells is thought to be inherently modular [Alon, 2003, Hartwell et al.,

1999]. When studying large-scale datasets, a common approach to identify those modules

relevant to a question of interest starts with experimental or other gene-level scores that

indicate some level of involvement of genes in a biological question, and to then identify

modules with aggregate scores that are higher than expected by chance.
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In such an approach, modules can either consist of predefined gene sets, such as path-

ways [Khatri et al., 2012], or connected subnetworks of a network of interacting genes [Mi-

tra et al., 2013]. Predefined gene sets have the advantage of being easier to analyse and

interpret, but are obviously limited by existing knowledge. Functional interaction networks

represent information on pairs of genes known to interact—directly or indirectly—in the

same biological context. The nodes of such networks typically represent macromolecules,

such as proteins. Edges can represent hypothetical or verified physical associations, such

as protein-protein, protein-DNA, metabolic pathways, DNA-DNA interactions, or func-

tional associations, such as epistasis, synthetic lethality, correlated expression, or correlated

biochemical activities [Szklarczyk et al., 2014, Keshava Prasad et al., 2009, Lee et al.,

2011].

Modules are typically identified as subnetworks with high aggregate gene-level scores. Ag-

gregation is typically performed using a normalised score function whose distribution is

identical for all subnetworks sizes in a null model.

Many algorithms are based on the score defined by jActiveModules [Ideker et al., 2002],

including PANOGA [Bakir-Gungor and Sezerman, 2011], dmGWAS [Jia et al., 2011], EW-

dmGWAS [Wang et al., 2015b], PINBPA [Wang et al., 2015a], GXNA [Nacu et al., 2007],

and PinnacleZ [Chuang et al., 2007]. These methods are widely applied in the current

literature [Sharma et al., 2013, Olex et al., 2014, Smith et al., 2014, Pérez-Palma et al.,

2016, Jin et al., 2008, Chuang et al., 2007, Dao et al., 2011, Liu et al., 2007, Qiu et al.,

2010, Hormozdiari et al., 2015], even though the above approaches have been reported

to consistently result in subnetworks that are large, and therefore difficult to interpret

biologically [Nacu et al., 2007, Rajagopalan and Agarwal, 2005, Batra et al., 2017]. Some

versions of the approach have dealt with this issue by introducing heuristic corrections

designed to remove the tendency towards large subnetworks [Nacu et al., 2007, Rajagopalan

and Agarwal, 2005, Liu et al., 2017]. A recent evaluation of several algorithms revealed that

the efficacy of these corrections remains limited [Batra et al., 2017]. Other methods avoid

dealing with the issue by allowing users to limit the size of the returned module [Jia et al.,

2011, Wang et al., 2015b, Wang et al., 2015a, Nacu et al., 2007, Chuang et al., 2007, Beisser
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et al., 2010], which is problematic, as users typically do not have prior information about

suitable settings of this parameter.

Here, we find that this tendency is not just a capricious property of selected datasets, but

that a fundamental size bias is built into the score function itself. This leads us to define

a new score function that is free of size bias. We show that, even though the practical

approximation of the background distribution by sampling is computationally hard, extreme

value distributions may provide good models. In the light of these results, we provide our

view of the currently best options for avoiding the size bias.

3.3 Materials and Methods

3.3.1 The subnetwork identification problem

Most of the above-mentioned module identification methods are motivated as a maximisa-

tion problem over a set of (connected) subnetworks of a graph. In its basic form, its three

inputs can therefore be described as follows.

1. A graph G, corresponding to the functional interaction network, in which the nodes

V = (v1, ..., vN ) correspond to molecules. By A(G) we denote the sets A ⊆ V that

induce connected subnetworks in G. By Ak(G) we denote only those sets of size

|A| = k, which we will also call k-subnetworks.

2. A set of P -values (p1, ..., pN ) that correspond to the statistical significance of obser-

vations associated with the N molecules.

3. A score function s(A) : A(G) −→ R that assigns a score to each connected subnetwork.

A solution to the subnetwork identification problem corresponds to a subnetwork A that

maximises the score s(A) over A(G).
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3.3.2 jActiveModules score function

The jActiveModules method [Ideker et al., 2002] was one of the first published subnetwork

identification methods. Given an input graph G and P -values (p1, ..., pN ), a first aggregate

score z(A) for a k-subnetwork A ∈ Ak(G) is defined using Stouffer’s Z-score method [Stouffer

et al., 1949]:

z(A) =
1√
k

∑

i∈A

zi,

where zi = φ−1(1 − pi), and φ−1 is the inverse normal cumulative distribution function

(CDF). The jActiveModules score s(A) is then obtained as

s(A) =
zA − μk

σk

,

where μk and σk are sampling estimates of mean and standard deviation of scores zA over all

k-node sets A ⊆ V . Ideker et al. [Ideker et al., 2002] evaluated the resulting score against

a distribution of empirically obtained scores under random permutations of (p1, ..., pN ),

corresponding to a null hypothesis of a random assignment of input gene-level scores to the

nodes of the network.

3.4 Definitions

To discuss the key subnetwork score properties that are at the origin of the size bias, we

introduce the following notations.

3.4.1 Subnetwork scores Sk, S
∗
k

By Sk we denote a random variable that describes the occurrence of k-subnetwork scores,

with CDF F (x) = P (s(A) ≤ x |A ∈ Ak(G)). Similarly, we denote by S∗
k the maximal k-



66

subnetwork scores with CDF F (x) = P (maxA∈Ak(G) s(A) ≤ x). Below, we will discuss the

distributions of Sk and S∗
k under the null hypothesis.

3.4.2 Score normalisation

Per construction of the jActiveModules score function, and under a sufficient amount

of sampling to determine μk and σk, Sk follows a standard normal distribution: Sk ∼
N (0, 1)[Ideker et al., 2002]. Whenever, as here, the distribution of Sk is independent of k,

we will call the underlying score s normalised. As we will show below, the size bias of the

jActiveModules approach is rooted in the fact that the underlying score is normalised.

3.5 Empirical studies of small subnetworks and their scores

We show that, under a normalised score, small subnetworks can be significantly high-scoring

in their size class, but still low-scoring when compared to scores that occur by chance

in larger networks, thus explaining the above-mentioned size bias, i.e., the tendency of

jActiveModules and related methods to return large subnetworks.

To empirically explore the properties of the jActiveModules score function, we generated a

sample network with 50 nodes from STRING interaction network [Szklarczyk et al., 2014],

which we denote by G50, by first initialising a graph Gcurrent with a randomly chosen node

from the STRING network. Then we iteratively extended Gcurrent with a randomly chosen

neighbour, until |Gcurrent| = 50.

3.5.1 For small values of k, the number |Ak(G)| of k-subnetworks increases

strongly with k

By definition, the null distribution of a normalised score over all k-subnetworks is identical

for all values of k. What normalisation does not take into account is the fact that the
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number |Ak(G)| of k-subnetworks depends on k.

We now explore this effect for different graphs G. In a fully connected graph G, each k-

subset A ⊆ V forms a k-subnetwork. Here, |Ak(G)| =
(

N
k

)

, which strongly increases with

increasing small k.

Figure 3.1 shows that, also for our sample network G = G50, |Ak(G)| strongly increases

with k for small k.

Figure 3.1: Numbers |Ak(G)| of small subnetworks in G50 (a network of 50 nodes) as a function of their

size k

Finally, the STRING [Szklarczyk et al., 2014] network G with 250000 highest-scoring edges

has |A3(G)| = 20676496 3-subnetworks, and |A4(G)| = 201895916 4-subnetworks. The

number of 5-subnetworks was higher yet; we were not able to calculate |A5(G)| in a reason-

able amount of time.

3.5.2 Maximum scores S∗
k increase strongly with k under the null hypoth-

esis

We now explore the behaviour of the maximum k-subnetwork score S∗
k under the null

hypothesis, with increasing k, for small values of k. As |Ak(G)| tends to increase strongly
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with small k (Section 3.5.1), and the distribution of jActiveModules scores Sk is independent

of k (cf. Section 3.4.2), one may expect S∗
k to strongly increase with k. Figure 3.2 illustrates

this effect in the case of i.i.d. samples.

Figure 3.2: Sample maxima from i.i.d. samples are likely to increase with sample size.

Subnetwork scores Sk are not independent, as subnetworks in Ak(G) are overlapping. To ex-

plore whether the same effect as in the independent case can still be observed, we computed

scores S∗
k in our sample network G = G50 for 100000 random instantiations of (p1, ..., p50).

Figure 3.3 shows the resulting empirical distributions of S∗
k , for some small values of k, with

a clear increase of S∗
k with increasing k.
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Figure 3.3: Empirical distributions of jActiveModules maximum subnetwork scores S∗
k in the graph G50

for small values of k under the null hypothesis

We note in passing that, for large values of k, the number |Ak(G)| of connected subnetworks

decreases with k (in particular, |AN (G)| = 1 for connected graphs G). Accordingly, one may

expect decreasing maximum scores S∗
k when k becomes close enough to N . Our empirical

evaluation, shown in the Appendix of this Chapter (Figure 3.6), is consistent with this idea:

On our sample graph G50, jActiveModules scores S∗
k decrease for k = 46, 47, 48.

3.5.3 Maximum scores S∗
k may follow an extreme value distribution under

the null hypothesis

Maxima of independent identically distributed (i.i.d) scores follow an extreme value dis-

tribution [Coles, 2001]. Subnetwork scores are indeed identically distributed: they follow

a standard normal distribution (Figure 3.7). However, due to the overlap between sub-

networks, subnetwork scores Sk are not independent. Nevertheless, most pairs of small

subnetworks of a larger network do not overlap, and their dependency structure is therefore
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local.

Extreme value distributions are used in other cases when dependency structure is local.

They have been been proved to accurately approximate certain sequences of random vari-

ables whose high scores (block maxima) have a local dependency structure [Coles, 2001].

In sequence alignment, high-scoring alignments tend to overlap locally, and Karlin and

Altschul [Karlin and Altschul, 1990] demonstrated that the null distribution of local sim-

ilarity scores can be approximated by an extreme value distribution. There, a weighting

parameter K explicitly accounts for the non-independence of the positions of high-scoring

matches. K is specific to the search database, and its estimation is computationally inten-

sive.

Figure 3.4 shows that generalised extreme value distributions also fit empirically observed

distributions S∗
k quite well in the sample network G50 with its fit parameters (Probability

plots in Section 3.8.3). The fit can be observed to be good for smaller values of k, and

to deteriorate with increasing k, concomitant with the loss of locality in the subnetwork

dependency structure.

3.6 Discussion

3.6.1 The jActiveModules score and other normalised scores are biased

towards larger subnetworks

Our empirical study of maximal subnetwork scores suggests that maximum scores S∗
k

strongly increase under the null hypothesis when k is small (Section 3.5.2, Figure 3.3).

This implies that certain non-significant subnetworks of larger size are systematically scored

higher than other, smaller, subnetworks that have a significantly high score relative to their

size. Figure 3.5 illustrates this effect: a score that is unlikely to be observed by chance

in a 3-subnetwork is much more likely to be observed by chance in a 5-subnetwork. Even

though we were not able to explicitly calculate S∗
k for k > 5, we deem it likely that, larger
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(a) (b)

Figure 3.4: (a) Fits of generalised extreme value distributions F (x; µk, σk, ξk) to empirical distributions of

S∗
k . Colored lines represent the smoothed versions of the histograms, whereas the grey lines are fits from

the family of extreme value distributions, and (b) the parameters of the fits.

k-subnetworks (with, say, k > 7) with even better scores are almost certain to exist in

random data. As many methods do not provide an assessment of the statistical significance

of the reported subnetworks, these methods not only prefer spurious larger subnetworks

over—potentially biologically relevant—smaller ones, but also fail to provide their users

with an indication that the reported networks are indistinguishable from chance observa-

tions.

3.6.2 An unbiased score function s̃

It is straightforward to remove the bias of a (normalised or unnormalised) score s(A) by

calibrating it relative to its size-specific null distribution. For a k-subnetwork A, one can

define

s̃k(A) = P (S∗
k ≤ sA).
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Figure 3.5: Scenario illustrating the bias of normalised scores towards larger subnetworks. Distributions

shown are jActiveModules null distributions S∗
3 and S∗

5 for the sample network G50. Under the null hypoth-

esis, a score of 3.539 that is unlikely to occur for a 3-subnetwork (P (S∗
3 ≥ 3.539) ≈ 0.05) is much more likely

to occur for a 5-subnetwork (P (S∗
5 ≥ 3.539) ≈ 0.36).

For each k, the resulting maximum scores S̃∗
k are then approximately uniformly distributed

on [0, 1], i.e., P (S̃∗
k ≤ x) ≈ x. Note that the uniform distribution is only approximate, as

S̃∗
k is a discrete distribution.

3.6.3 Computing the unbiased score s̃ by sampling is computationally

hard, but it may be possible to approximate s̃ by an extreme value

distribution

Computing the above score function s̃ is not straightforward. In principle, s̃(A) could be ap-

proximated by sampling from S∗
k , but each sample requires the computation of a maximum

of s(A) over all subnetworks A in a network whose gene-level scores have been instantiated

with P -values — a problem that has been shown to be NP-hard even in a simplified form

[Ideker et al., 2002]. Approaches to solve this problem nonetheless exist [Dittrich et al.,
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2008, Liu et al., 2017], but under the reported running times in the range of minutes to

hours for a single sample from S∗
k , sampling still remains very time-consuming.

The locality of the dependency structure among small subnetworks and our empirical results

from Section 3.5.3 suggest that S∗
k can possibly be approximated by an extreme value distri-

bution. However, it is not obvious how the parameters of this distribution can be estimated

practically without recourse to sampling, which, as discussed above, is difficult.

3.6.4 Current options to avoid size bias

In the absence of practical solutions to compute the unbiased subnetwork score s̃, what are

the current practical options for scoring and detecting subnetwork aggregates of statistical

signals?

One possibility is to use one of the approaches that find highest-scoring subnetworks of

a fixed, or limited, subnetwork size k [Backes et al., 2012, Jia et al., 2011, Wang et al.,

2015b, Wang et al., 2015a, Nacu et al., 2007, Chuang et al., 2007, Beisser et al., 2010],

and to compare them on the basis of their biological interpretation. Since only small

networks tend to be biologically interpretable, only small k would have to be tested. As

adding a few neighbours to a statistically significant subnetwork can be expected to preserve

significance, not all values of k would need to be tested. While this approach has obvious

shortcomings (solutions for different values of k need to be compared, multiple statistical

tests, sometimes unclear biological interpretation), each computation by itself would only

compare subnetworks of same size, and thus avoid size bias.

There are other, non-statistical (e.g., algorithmic/physical) principles for identifying ag-

gregates of signals in networks [West et al., 2013, Alcaraz et al., 2014]. The lack of clear

mathematical relationships between inputs and outputs, and the lack of options to assess

statistical significance may make it difficult to evaluate these approaches, and their appli-

cability to any given biological scenario. We have developed an approach that preserves

mathematical clarity and statistical tools, and obtains computational tractability through a
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restriction to a simplified subnetwork model. This approach, LEAN is developed in Chapter

4 and published in [Gwinner et al., 2016].

3.7 Conclusions

The identification of functional subnetworks of strongest aggregate statistical signals in

networks is an important approach to analyse biological genome-scale datasets. An array of

different computational methods and software is in practical use, but many are plagued in

practice by a recognised strong tendency towards large subnetworks that ad hoc adjustments

have not been able to remedy.

Here, we present a first direct analysis of the origins of this phenomenon that reveals a

strong statistical size bias in a frequently used score function. By normalisation against

size-specific null distributions, we derive a new, unbiased, score. This score function is

computationally hard, and we outline our view of currently best other practical options to

avoid size bias. Finally, we hope that our evidence, that the unbiased score function can be

approximated using extreme value functions, can motivate further theoretical developments

towards the unbiased identification of modules in networks.
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3.8 Appendices to this chapter.

3.8.1 For large values of k, maximal subnetwork scores decrease

Figure 3.6: Distributions of maximum subnetwork scores S∗
k for large values of k under the null hypothesis.
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3.8.2 Approximate normality of subnetworks scores Sk

Figure 3.7: Quantile-quantile plot between standard normal distribution and jActiveModules scores S5 for

the sample graph G50 under the null hypothesis. Other scores Sk have similar quantile-quantile plots (not

shown).

3.8.3 Quality of extreme value distribution fits for maximal subnetwork

scores S∗
k
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Figure 3.1: Probability plot for the extreme value model fit to maximal scores of subnetworks of size 1,

S∗
1 , in G50.
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Figure 3.2: Probability plot for the extreme value model fit to S∗
2 .
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Figure 3.3: Probability plot for the extreme value model fit to S∗
3 .
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Figure 3.4: Probability plot for the extreme value model fit to S∗
4 .
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Figure 3.5: Probability plot for the extreme value model fit to S∗
5 .
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Chapter 4

The LEAN algorithm and its

application to dengue data
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In the previous chapter, I discussed the tendency of popular algorithms for subnetwork

identification to return large subnetworks that are hard to interpret, while requiring the

user to set many parameters with little obvious guidance. In this chapter, I describe the

Local Enrichment Analysis (LEAN) method, which I co-designed, and that attempts to

avoid these issues. LEAN has been implemented in an R package, first been applied on

biological data by Frederik Gwinner. The first part of this chapter is an adaptation of the

methods part of our article [Gwinner et al., 2016] that explains the algorithm. In the second

part, I apply LEAN to dengue transcriptomic data.

4.1 The LEAN algorithm

4.1.1 Main idea: The local subnetwork model

We introduce here a novel network-based analysis approach integrating genome-wide mea-

sures of statistical significance (p-values) with large-scale interaction networks. It is based on

a local subnetwork model that assumes that higher-order biological activity can be detected

by aggregating signals from a single gene and its direct network neighbors (cf. Figure 4.1).

The local subnetwork model is much simpler than the common (unconstrained) subnetwork

model, in terms of computational complexity, and the assessment of statistical significance.

While the number of subnetworks is typically exponential in the number of genes, networks

contain only a single local subnetwork per gene. The identification of optimal subnetworks

is computationally NP-hard [Ideker et al., 2002], whereas optimal local subnetworks can be

identified in polynomial time by examining all genes and their neighborhoods in turn. The

relatively low number of local subnetworks also allows the straightforward calculation of em-

pirical p-values, while, for many subnetwork-based analysis methods, no efficient algorithms

are known to compute statistical significance.
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Figure 4.1: Subnetwork and local subnetwork pathway models. Local subnetworks are specific subnetworks

that consist of a center gene and its direct network neighbors.

4.1.2 Local enrichment analysis

LEAN is based on two ingredients: A list of measures of statistical significance (p-values)

for some or all genes and an interaction network. In many applications, p-values originate

from a statistical test for differential expression, such as a t-test. While the approach is

readily applicable to other types of datasets, we will describe it using the example of its

application to the results of a differential expression analysis (input p-values). Analysis

is performed using the given interaction network restricted to genes for which an input

p-value has been calculated based on transcriptomic data. A local subnetwork Ag consists

of a subset of genes formed from a center gene g and its directly interacting partners in the

given network. Candidate subnetworks are all local subnetworks Ag.

4.1.3 LEAN p-values

For each candidate subnetwork Ag of size m, LEAN aims to evaluate whether for any

k ∈ {1, . . . ,m}, the k genes of Ag with the best scores (e.g., lowest p-values) are statistically

enriched for extreme scores (low p-values). To this end, an unnormalized enrichment score

ESg is computed on the basis of the sorted sequence of gene scores p1 ≤ ... ≤ pk ≤ ... ≤ pm

of genes in Ag. To compute ESg, for each position k = 1, ...,m in the sorted subnetwork

p-value list, we first calculate the probability p̃
(k)
g that, under the null hypothesis of input
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p-values being independent and identically distributed (i.i.d), and being sampled from a

uniform distribution, at least k of the pi are lower or equal to pk using the cumulative

distribution function of the binomial distribution:

p̃(k)
g =

m
∑

i=k

pi
k(1 − pk)

m−i. (4.1)

We designate the position in the ordered subnetwork p-value list of Ag at which the minimum

p̃
(k)
g is achieved by k∗ = arg min p̃

(k)
g . The unnormalized enrichment score ESg is then

defined as:

ESg = log10(p̃
(k∗)
g ). (4.2)

To correct for biases due to subnetwork size, and to evaluate statistical significance, the

enrichment p-value p∗g is computed by comparing ESg to a background distribution of

ESBG values obtained on random gene sets of the same size as Ag:

p∗g = prob(ESBG ≥ ESg). (4.3)

To determine the background distribution of ESBG values, p∗g is empirically estimated using

10 000 (a user-configurable parameter) random samples of size m from the set of input p-

values. To correct for the number of local subnetworks being tested, a Benjamini-Hochberg

multiple testing correction is applied to the p-values of all candidate subnetworks. These

multiple testing corrected p-values are further called the LEAN p-values. For each candidate

subnetwork with a significant LEAN p-value, the LEAN implementation returns its central

g gene along with the above mentioned intermediate scores and additional information on

the candidate subnetwork. Figure 4.2 provides an example for the calculation of p∗g for a

candidate subnetwork of size m = 7.
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Figure 4.2: Summary of LEAN. Inputs are (A) an interaction network and (B) an input p-value for each

gene in the network. For any gene g, the genes in its direct neighborhood along with their individual input

p-values are then extracted from the network (C). The p-values within the neighborhood of g are sorted in

increasing order and the unnormalized enrichment score ESg is calculated according to Equation 4.2 (D).

To normalize by local subnetwork size, random samples of equal size to Ag are drawn from all input p-values

and a ESBG value is computed for each of them (E). The distribution of ESBG values is then used to

estimate the enrichment p-value p∗
g, according to Equation 4.3 (F). FC denotes Fold Change (log2) between

two conditions.

4.2 Application to dengue data

We used LEAN for network analysis of dengue genotyping and transcriptomic data to search

for associations with severe dengue.
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4.2.1 Application to genotyping data

As input, we used gene-level p-values generated in Chapter 2, along with the STRING

interaction network v9 (with the top-scoring 250,000 interactions, corresponding to an in-

teraction confidence score of 0.637 or better) [Franceschini et al., 2013].

No significant network was found by LEAN at a significance level of α = 0.05 on this geno-

typing dataset. This may have been because of the incomplete knowledge included in the

network, or because of the imperfect functional mapping, as discussed in Chapter 2. The

lack of a strong genetic signal in the cohort may likewise explain this result, potentially

because a larger cohort would be needed to unravel complex relationships. Moreover, our

input interaction network may lack important interactions, or include too many interac-

tions that are irrelevant for dengue severity. The initial assumption of LEAN may also be

inappropriate to dengue biology: subnetworks of the form of a gene and its direct neighbors

may not aggregate the genetic signal in the right way. Furthermore, as we have no strong

evidence that dengue severity is genetically determined, the variability explained by the

genetics alone may not be large enough to be detected. Environmental factors, such as

previously encountered pathogens, play a big role in dengue pathogenesis, as explained in

Chapter 1. We were able to further examine this possibility using data that integrates the

influence of these environmental factors, such as gene expression data.

4.2.2 Application to gene expression data

Data

I analysed expression in an in vitro experiment on monocytes from 11 patients from Thai-

land. For each of these patients, we have mRNA array-based gene expression measures of

70,524 transcripts performed using the HTA2 Affymetrix microarray. Expression is available

under two experimental conditions: before infection by dengue virus, and after.

As explained in Chapter 1, after infection, in most people, dengue virus would multiply fast
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in dendritic cells, causing high viral load. Ḃut some patients, are able to better resist to

the infection, and their viral load stays low. The 11 patients comprised:

• 5 patients with high viral load after dengue virus infection, and

• 6 patients with low viral load after dengue virus infection.

LEAN analysis was performed to explore the molecular basis of the difference in reactions

between these two subgroups.

Analysis

I have compared infected low-viral load versus infected, high-viral load samples, since, in

non-infected samples, I observed no difference in between the two groups.

I first performed a Wilcoxon test, a non-parametric equivalent of the t-test, based on ranks,

for all transcripts. This test does not require the assumption of normality, which, in turn,

was impossible to test, given the small sample size. Moreover, it is more robust, i.e., less

likely to indicate significance because of the presence of an outlier. No test turned out as

statistically significant: among the 46 914 transcripts tested, none had a p-value that was

lower than 0.5 after Benjamini-Hochberg multiple testing correction. (I also tested whether

the result would change with a t-test. The same absence of significant results was observed.)

I then used the input p-values and the same network as for genome data and performed

LEAN analysis.

Results

Applying LEAN resulted in 352 local subnetworks being significant with a q-value of 0.05.

The list of these genes appears in Appendix A.1. I then performed enrichment analysis of

these genes using GSEA (described in Chapter 2). As background sets, I used the “hall-

mark” gene set from the MSigDB database, and C7, a set of immunological signatures of

differentially expressed genes under different immune-specific perturbations. The complete
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list of enriched sets can be found in Appendix B.1 for the background hallmark gene set,

and the top 100 enriched immunological gene signatures from the background set C7 can

be found in Appendix B.2. With both background sets we obtain results highly enriched in

immunological responses. For the hallmark dataset as background, Table 4.3 presents an

extract of most significantly enriched categories.

Figure 4.3: Top GSEA results using the hallmark dataset as background.

Interferon gamma response appears as most significantly enriched (False Discovery Rate

(FDR) q-value of 2.10−62). The second most enriched gene set is the interferon alpha re-

sponse (FDR q-value of 4.10−52). As explained in Chapter 1, interferons are involved in

inducing inflammation, in the first reaction to infection. Other immunologic categories in-

clude TNF-alpha signaling via NF-kB. Non-directly related groups include genes implicated

in genesis of adipose tissues. Also this result is consistent with prior knowledge: dengue

severity is known to be associated with the quantity of lipoproteins (LDL and HDL) in

blood [Biswas et al., 2015]. Other gene sets are related to apoptosis and more general cel-

lular functions: MYC- and E2F-related groups, apoptosis, DNA repair, G2M checkpoint

etc. These may be differentially expressed because of the lysis of infected cells. Table 4.4
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presents an extract of the genes that fall into the most over-expressed categories.

Figure 4.4: Extract of genes in top GSEA results using the Hallmark dataset as background.

Many of these genes have previously been associated with dengue severity in gene expression

analyses, such as interferon inducible genes, OAS family gene OASL, TNF-kB family genes...

[Coffey et al., 2009].

When using the more specific immunological signatures dataset as background, many gene

sets have very significant enrichment p-values, similarly to the hallmark dataset. Since
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there are over 100 enriched sets, I used the Enrichment Map Cytoscape App that allows

connecting sets that share many genes [Merico et al., 2010]. The largest connected groups

include genes that are upregulated in response to virus (Figure 4.5), and in response to

lipopolysaccharides (LPS), long molecules on the surface of gram-negative bacteria known

to induce a strong inflammatory reaction via interferons and NF-kB (Figure 4.6).

(a) Network of gene sets (b) Example

of top genes in

the gene set

GSE13487

Figure 4.5: Gene sets upregulated during reaction to virus. (a) Gene sets that are signatures of genes

upregulated during a specific viral infection. An interaction between two genes represents overlap between

gene sets. (b) Most strongly differentially expressed genes that are present within the gene set GSE13487

that is part of the network in (a).
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(a) Network of gene sets (b) Example

of top genes

in gene set

GSE9988

Figure 4.6: Gene sets related to genes upregulated during inflammation. (a) Gene sets that are signatures

of genes upregulated during a inflammation. Edges represents overlap between gene sets. (b) Most strongly

differentially expressed genes that are present among most the gene set GSE9988 that is part of the network

in (a).

4.3 Discussion

This chapter presents LEAN, an approach that I co-designed to aggregate omics data in

the context of interaction networks. Here, I discussed the method itself, and its application

to dengue genotyping and transcriptomic datasets. LEAN is able to compute best-scoring

subnetworks and their empirical p-value, without relying on any user-tunable parameter,

and without size bias, such as the one described in Chapter 3. It achieves this goal by

only considering very specific subnetwork structures: a genes and its direct neighbors. The

disadvantage of such a constraint may be that it is less powerful to identify statistical signals

across gene sets that are connected, but not strongly interconnected between themselves.

An extreme example of such a set is a linear pathway, where each node has only two

connections to other members in the pathway, except from the extreme nodes that have



91

only one connection. Nevertheless, these gene structures that have a central node make

a first step in aggregating signal and are much easier to interpret, since we can start by

analyzing central nodes that may play a central role in the network. Moreover, LEAN needs

to only explore one network per node, therefore decreasing greatly the space of networks to

explore, compared to an algorithm such as jActiveModules (cf. Chapter 2).

Our application of LEAN to dengue disease generated diverse results: we found no signif-

icant results for our genomic data. For the transcriptomic data, we started by performing

a test for differential expression for each individual transcript. The absence of low p-values

during this test may well be due to the very small sample size, compared to the strength of

the biological signal we can expect. By aggregating gene signals using LEAN, we were able

to find sets of genes that were highly enriched in immune-related functions. Most of them

are related to the current knowledge about the disease, reassuring us in that most results

represent a true biological signal, rather than noise. This suggests that LEAN may indeed

be capable of pinpointing specific genes in biologically relevant processes.

A next step of this analysis would be to generate new hypotheses for the differences in

viral load, based the LEAN results, and to validate them experimentally. To generate

these hypotheses, we need to focus on specific gene sets, groups of related gene sets, or

on specific genes from gene sets, and interpret their role in the experiment. Once specific

genes of interest are identified, it would be natural to consider their network neighborhood.

Generating these hypotheses would therefore require close interactions with researchers

specialising on dengue, or immunologists.

Another next question of interest is: Given the strength of the signal in this gene expression

dataset, is it possible to create a biomarker that is able to predict dengue severity early

on in the disease and direct hospital resources towards severe patients? The next chapter

represents an attempt at answering this question.
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Chapter 5

A machine learning approach to

analyse dengue transcriptomic

data
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Here, I aimed to explore another approach to tackle complexity beyond single genes in

biological data. I specifically aim to search for a multiple-gene biomarker that predicts

the severity of the future reaction to dengue infection in patients, based on their blood

transcriptomes at the earliest possible clinical stage, i.e., when they enter the hospital.

Such a biomarker may ultimately be used to help doctors reliably distinguish between

patients who can be sent home and those who are at risk to develop severe dengue, and

need to be monitored in hospital. A second objective is to study genes included in the

biomarker as starting points for deeper exploration and understanding of severe dengue.

We will here first define the concept of a biomarker, then I will present the method that we

developed for biomarker search, and finally, I will present the application of this method to

gene expression data. At the time of this writing, this last part has been submitted as a

journal article.

5.1 Biomarker: A definition

The term “biomarker” is a portmanteau of “biological marker”. In 1998, the National

Institutes of Health Biomarkers Definitions Working Group defined a biomarker as “a char-

acteristic that is objectively measured and evaluated as an indicator of normal biological

processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention”

[Biomarkers Definitions Working Group, 2001].

Disease-related biomarkers either indicate of whether the patient is ill (diagnostic biomarker),

the probable effect of treatment (predictive biomarkers), or how a disease may develop

(prognostic biomarker) [Tezak et al., 2010].

In the context of the following analysis, we will also employ the term “gene signature”,

which is an other commonly used expression to designate a disease-related set of genes.

Furthermore, we avoid the term “prognostic biomarker”, as this might be considered an

overstatement—some of the patients already had symptoms of severe dengue when entering

the hospital. We will use the wording “biomarker that detects severe dengue” instead.
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5.2 Classification through ensemble monotonic regression

Motivated, in part, by the work presented in the previous chapters, we aimed to develop a

method that:

• would generate biomarkers with a small and controllable number of features,

• whose features we will be able to interpret biologically,

• that is able to generate linear and non-linear boundaries between phenotype classes,

• would generate a biomarker containing a stable feature set,

• allows fast enough algorithms to deal with a set of tens of thousands of transcripts,

• is suitable for datasets of tens of patients.

One classically used model for binary phenotypes is Lasso logistic regression. Nevertheless,

Lasso can only generate linear boundaries between cases and controls. We were also inter-

ested in being able to find logical relationships such as: “if we have a high/low expression

of transcript 1 AND/OR a high/low expression of transcript 2”, the predicted phenotype

is severe. Such relationships have been shown to exist in the biology of cancer [Iorio et al.,

2016]. In modelling disease state as a function of two transcripts, an “AND” rule could

capture, for instance, the role of a pair of key transcripts in two alternative pathways for a

hypothetical physiological function lacking in severe patients. Severe patient status would

then be correlated with low expression in both transcripts. In an “OR” rule, a low level of

either transcript could correspond to a critical malfunctioning protein complex in severe dis-

ease. An interesting choice of a regression model that was able to find linear and non-linear

interactions, including the logic functions above, and be fast enough to deal with all the

features appeared to be monotonic regression. The only hypothesis made is monotonicity

of the outcome: for a given transcript it can either be “the lower the expression the more

severe the phenotype”, or “the higher the expression the more severe the phenotype”.

A mathematical definition of monotonicity is the following:
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Definition [Isotonic, monotonic function]

A function f : Rn −→ R, x = (x1, . . . , xn) 7→ f(x), is isotonic in xi if f is an increasing

function in xi, i.e.,

∀∆ ≥ 0,∀x ∈ Rn : f(x1, . . . , xi + ∆, . . . , xn) ≥ f(x1, . . . , xi, . . . , xn).

f is called monotonic in xi if f is either increasing or decreasing in xi, i.e., f or −f is isotonic

in xi. f is called monotonic if f is monotonic in all xi. Figure 5.1 presents an illustration

of a monotonic function in two variables (or two-dimensional monotonic regression).

Figure 5.1: Illustration of a monotonic function of two variables.

Two-Dimensional monotonic regression for classification

To model the relation of a combination of transcript levels to the phenotype, we first use

a monotonic function of two variables that best fits our training data, as measured by the

L1-norm. In our case, we have only two phenotypes: severe and non-severe dengue, which

we encoded as 0 and 1, respectively. Thus, the optimal fit according to the L1-norm is a

monotonic function that minimizes the number of misclassified patients on the given data.

As in the case of linear regression, from a fit by a regression function of the training dataset,

we define a boundary between separating cases and controls by minimising an error function

as explain in Chapter 1. This boundary enables us to classify previously uncharacterised

patients.

The two-dimensional (2D) monotonic regression algorithm that I used fits a monotonic

regression model of two transcripts to best predict the phenotypes of patients in the training
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dataset, and estimates the performance of such a 2D model by leave-one-out cross-validation

(LOOCV). (For the definition of leave-k-out cross-validation, see Chapter 1.) The algorithm

was implemented mainly by Benno Schwikowski in C, and Mathematica. I used the C code

for biomarker discovery on a cluster with 315 cores. The algorithm takes less than 30 minutes

to run, being for the first time, fast enough to evaluate all possible pairs of transcripts using

a recent algorithmic improvement [Stout, 2012]. The 2D version of the algorithm enables

to take into account two transcripts to predict the phenotype. For a complex disease, it is

an improvement compared to 1D monotonic regression, but is still limited. Therefore, from

these results, I created the final biomarker on a standard personal computer using Python

and Mathematica as follows.

Ensemble monotonic regression

To adapt to diseases that require many transcripts for prediction and to add robustness to

the biomarker, I combined transcript pairs that had the smallest LOOCV error estimate

(further referred to as top pairs) in a single ensemble biomarker: for a new patient p,

the final phenotype is the proportion of top pairs that have predicted p as severe dengue.

The exact number of pairs to include in the biomarker is determined statistically by an

other round of LOOCV (cf. Figure 5.2 for the full pipeline of the method). One can

also visualize pairs and is able to decide how many/what pairs to include in the ensemble

biomarker. We therefore allow the user to choose a number of pairs that is smaller, than

the one generating the optimal performance estimate by LOOCV, and therefore the user

may trade off the complexity of the model and the estimated performance of the model.

This option may be useful when trying to generate a biomarker with a small number of

transcripts. The following analysis presents the successful application of this algorithm to

detect severe dengue. The following part it a slightly adapted version of the article, that

has been submitted to review in July 2017.
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Figure 5.2: Whole pipeline of the estimation algorithm for N patients of the training cohort. It has three

nested loops of LOOCV: We first do leave one patient out for the final evaluation (Fig.A), then we leave

one patient out to estimate kopt, the optimal number of pairs to include in our classifier (Fig.B), then we

leave one patient out to estimate the predictive performance of each pair (Fig.C). Once these leave-outs are

done, we start by first evaluating pair performance (Fig.C), then estimating k (Fig.B), and finally getting

the final performance of our total classifier (Fig.A). Once the estimation of the performance finished, the

final classifier is obtained by rerunning Fig.C on all the N patients and including kopt best pairs on our

classifier.
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Important note : In the following section, we do not have separate validation data. We have

a “training cohort” that we use to estimate parameters via leave-one-out cross-validation

and three “test cohorts”. However, the article from this chapter is written for a biomedical

audience. We adopt their variation of the terminology, where “validation cohort”(instead

of “test cohort”) is used to denote independent data on which the classifier is evaluated

without modifying any parameters.

5.3 A blood biomarker detecting severe disease in young

dengue patients at hospital arrival

Authors: Iryna Nikolayeva, Pierre Bost, Isabelle Casademont, Veasna Duong, Fanny Koeth,

Matthieu Prot, Urszula Czerwinska, Sowath Ly, Kevin Bleakley, Tineke Cantaert, Philippe

Dussart, Philippe Buchy, Etienne Simon-Lorière, Anavaj Sakuntabhai, Benno Schwikowski

5.3.1 Summary

Background

Early detection of severe dengue can improve patient care and survival. To date, no reliable

single-gene biomarker exists. We hypothesized that robust multi-gene markers exist.

Methods

We performed a prospective study on 438 Cambodian dengue-suspected patients, aged 4

to 22. We analyzed transcriptomic profiles of peripheral blood mononuclear cells (PBMCs)

collected on the first day of hospital admission for 42 of these patients using microarrays. We

developed a novel biomarker discovery approach that controls the number of genes included,

and captures non-linear relationships between transcript concentration and disease severity.

For evaluation, we estimated the predictive performance of the biomarker on previously
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uncharacterized 22 PBMC samples from the same cohort using qRT-PCR and 32 whole-

blood microarray transcriptomes from an independent cohort.

Findings

We identified an 18-gene biomarker for detecting severe disease in dengue patients upon

hospital admission with a sensitivity of 0.93 (95% CI: 0.80-1.00) and a specificity of 0.67

(95% CI: 0.49-0.84) with a total area under ROC-curve (AUC) of 0.86 (95% CI: 0.75-0.97).

The signature was validated on previously unseen data from 22 patients from the same

cohort, with an AUC of 0.85 (95%CI: 0.69-1.00). In addition, it was validated on whole

blood transcriptomic data from an independent cohort of 32 patients with an AUC of 0.83

(95%CI: 0.68-0.98).

Interpretation

Based on its robust performance, this biomarker could detect severe disease in dengue

patients upon hospital admission, or even for prognosis if confirmed in further studies.

Furthermore, its genes offer new insights into severe dengue mechanisms.

5.3.2 Introduction

Dengue is the most widespread mosquito-borne viral infection worldwide. Currently, 40%

to 50% of the world population lives in areas at risk for dengue virus transmission.[WHO,

2017] If the majority of dengue cases are uncomplicated, it is estimated that each year

500,000 cases, mostly children, progress to severe dengue (SD) and require hospitalization.

According to the World Health Organization (WHO), about 2.5% of those affected by severe

dengue requiring hospitalization are still dying from complications.[WHO, 2017] The recent

explosive spread of the related Zika virus might further increase this burden. Indeed, the

complications associated with severe dengue are more common after secondary infection
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than after primary infection,[Halstead, 2014] and recent studies both in vitro and in vivo

have highlighted the potential of anti Zika immunity to trigger dengue enhancement.[Stettler

et al., 2016] As recently highlighted by the WHO, robust and early detection of severe

dengue, along with access to proper medical care, would not only decrease the fatality rate

down to 1%, but also reduce health care costs and economic burden of the disease.[WHO,

2017]

While diagnosis methods for dengue infection are well established, there are no prognostic

tests to help the clinician evaluate the risk of progressing to severe dengue. A number of

biomarkers that use clinical variables for detecting severe cases of dengue infection have

been proposed, both for adults and/or children.[Tuan et al., 2017, Lee et al., 2016, John

et al., 2015, Soundravally et al., 2015, Thanachartwet et al., 2015, Pang et al., 2016] Nev-

ertheless, none of the biomarkers we found in the literature have been replicated on in-

dependent datasets. In addition to these studies, others have aimed to identify molecular

biomarkers, based on either mRNA expression, or on protein or cytokine levels. A number

of genome-wide expression profiling studies have also been performed in Nicaragua, Cam-

bodia, Thailand and Vietnam.[Kwissa et al., 2014, Devignot et al., 2010a, Popper et al.,

2012, Hoang et al., 2010, Simmons et al., 2007a] Every study uncovered differentially ex-

pressed genes associated with severe dengue. Many of these genes have functions associated

with innate immunity, vascular permeability, coagulation, neutrophil-derived antimicrobial

resistance, inflammation, and lipid metabolism. However, their capacity to detect severe

cases among dengue patients was not evaluated, [John et al., 2015, Soundravally et al.,

2015, Thanachartwet et al., 2015, Kwissa et al., 2014, Devignot et al., 2010a, Popper et al.,

2012, Hoang et al., 2010] or they exclude children.[Pang et al., 2016] Dengue is known to

be a complex disease. To address this, a recent review suggested the study of combina-

tions of molecules for the detection of severe cases.[John et al., 2015] To this end, Nhi et

al. identified 19 plasma proteins exhibiting significantly different relative concentrations

(p− value ≤ 0.05) on 16 patients (6 severe dengue, 10 non-severe).[Nhi et al., 2016] Among

them, a combination of antithrombin III and angiotensin had strong power to detect the 6

severe dengue patients (area under the ROC curve (AUC) = 0.87). Pang et al. developed
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a biomarker combining transcript, protein and clinical markers, mostly linked to innate im-

munity and coagulation, that was able to detect patients with warning signs and needing to

be hospitalized with sensitivity of 96% and specificity of 54.6% on a validation cohort.[Pang

et al., 2016] However, these studies share a common drawback: none of the biomarkers have

been replicated on an independent cohort. We hypothesized that a simple combination of

a small number of gene expression markers may be robust enough to establish reproducible

detection of severe cases among newly admitted dengue patients. With this in mind, we

attempted to develop a biomarker discovery algorithm; one that allowed for not only linear

but also more general monotonic relationships between features, meaning more complex,

but still easily interpretable, relationships between genes.

Our underlying goal was to identify a biomarker able to detect severe cases from blood sam-

ples taken upon dengue patient admission to hospital. We conducted a prospective study

in Cambodia of patients admitted to hospital with suspected dengue infection. Severe

dengue cases were identified according to the WHO 2009 criteria using data at admission

and during hospital stay. Our data consisted of gene expression profiles of peripheral blood

mononuclear cells (PBMCs) on the date of admission. A PBMC is any peripheral blood

cell having a round nucleus. These include important immune players such as lymphocytes

(T cells, B cells, NK cells) and monocytes, but exclude red blood cell, platelets and gran-

ulocytes (neutrophils, basophils, and eosinophils). To control for the number of genes in

the biomarker, and identify monotonic relationships between transcript concentrations and

disease severity, we developed a new biomarker discovery approach. Using this, we identi-

fied an RNA biomarker of 18 genes in PMBCs that could detect severe dengue cases. We

were able to replicate these results on previously unseen PBMC samples and whole blood

samples taken using different technological platforms. From the known functions of these

genes, we obtained new insights into the pathophysiology of severe dengue.
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5.3.3 Research in context

Evidence before this study

We searched the PubMed database for “dengue”[Title] AND (severe OR severity OR shock)

AND (risk OR biomarker) AND (human OR patients) without any date restrictions. Even

though most severe dengue cases occur in children, none of the biomarkers in the resulting

literature that included samples from children had stated sensitivity and specificity on an

independent cohort.

Added value of this study

Young patients are particularly at risk for severe dengue infection in endemic regions.

Our study presents the first independently validated molecular biomarker detecting severe

dengue in this patient group with stated measures of specificity. Estimates of predictive per-

formance on two independent cohorts were stable across biological and technical variation,

and had an AUC (area under ROC curve) ranging from 0.83 to 0.85.

Implication of all the evidence

This study provides the first evidence that a well-performing molecular biomarker for de-

tecting the severe form of the disease in young dengue patients across different technical

conditions and blood cell subtypes is possible. The novel non-linear model underlying the

biomarker is flexible enough to discover complex gene-gene interactions, yet simple enough

to be represented visually. Our analysis of the included biomarker genes confirms several

previous findings, as well as suggests new biological processes that may help understand

severe dengue.
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5.3.4 Materials and methods

Population studied

We conducted a prospective study in the Kampong Cham referral hospital Cambodia dur-

ing a 3-year period (2011-2013). Patients suspected of dengue infection were invited to

participate in the study. Dengue infection was confirmed by positive RT-PCR and/or pos-

itive dengue NS1 antigen detection. Three blood samples were collected: (i) shortly after

hospital admission during the febrile acute phase, (ii) at the time of defervescence, and (iii)

during the convalescent phase at the time of hospital discharge. In this study, we used only

the transcriptome of blood samples collected shortly after hospital admission for both the

microarray training set patients, and qRT-PCR validation set patients. This corresponded

on average to the third day after onset of fever (Figure 5.3). We focused our analysis on

samples of secondary DENV-1-infected patients that were judged to be of sufficient quality

and quantity for this analysis, which resulted in 42 samples for microarray analysis and

22 samples for qRT-PCR analysis. Blood samples were processed as follows: plasma was

used for dengue confirmatory diagnostic including serology and molecular diagnostics, as

described elsewhere[Duong et al., 2015], while blood clot and PBMC were kept for later

analyses. For this PBMC cohort, diseased severity was classified according to the 2009

WHO criteria using clinical and biological data recorded at admission and throughout the

entire hospitalization period.[WHO (World Health Organisation), 2009] For the independent

whole blood microarray cohort, disease severity was classified according to the description

in the Section “Biomarker discovery” below.

Ethics statement

The study was approved by the Cambodian National Ethics Committee for Health Research

(approval no. 087NECHR /2011 and no. 063NECHR/2012). Before a participant’s enroll-

ment, written consent signed by the participant or by a legal representative for participants

under 16 years of age was obtained.
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Figure 5.3: Patient characteristics. We present all the cohorts used: our clinical cohort with training and

validation subcohorts, as well as the validation cohort from [Devignot et al., 2010a].

RNA preparation, microarray hybridization and qPCR validation

RNA was extracted from PBMC stored in RNA protect cell reagent (Qiagen, Hilden, Ger-

many) with a miRNeasy kit (Qiagen) and RNA quality checked on a BioAnalyzer 2100

(Agilent, Santa Clara, California). For microarray analysis of the training cohort, gene ex-

pression in PBMC was analyzed using Affymetrix Human Transcriptome Array 2 (HTA2)

GeneChips. HTA2 chips were prepared, hybridized, and scanned according to the manu-

facturer’s instructions. For qRT-PCR of the PBMC validation cohort, 200 ng RNA were

reverse-transcribed with SuperScript VILO cDNA synthesis kit (Invitrogen, Life Technolo-

gies, Carlsbad, CA, USA), using a combination of random hexamer and Oligo(dT)12-18

primers. TaqMan Gene Expression Assays (Life Technologies) were used for each candidate

gene according to the manufacturer’s instructions. Relative expression was calculated with

the 2−∆∆Ct method, using beta glucuronidase (GUSB) as endogenous control for normal-

ization and a calibrator sample as a comparator for every sample.
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Plan for biomarker discovery

Our 18-gene biomarker was identified through an automated machine learning algorithm

applied to microarray transcriptomes of the PBMC training cohort, leading to an initial

assessment of its performance via rigorous cross-validation. After applying necessary quan-

tile normalization (Section 5.3.9), we evaluated this biomarker on two previously unseen

datasets (Figure 5.4).

Figure 5.4: Flow diagram for the discovery and validation of the severe dengue (SD) diagnostic biomarker.

The first validation dataset consisted of 22 unseen patients (7 severe dengue, 15 non-severe)

from the PBMC validation cohort, whose gene expression was measured using qRT-PCR.

As the IGKC transcript found in the 18-gene biomarker was expressed at undetectable

levels in the PBMC validation cohort, its levels were substituted with the measured levels

of its partner PPBP in the PPBP-IGKC gene pair. The second validation dataset was an

independent, publicly available, Cambodian whole blood dataset, selected for its large size

and high quality.[Devignot et al., 2010a] It consisted of whole blood transcriptome data

from 48 dengue-infected patients. At the time of that study, phenotype was still established

according to the 1997 WHO classification: DSS (Dengue Shock Syndrome), DHF (Dengue

Hemorrhagic Fever), and DF (Dengue Fever).[WHO (World Health Organisation), 1997] To

make phenotype data comparable, we reclassified the disease severity as well as possible in

terms of the 2009 WHO classification. We considered all 18 DSS patients as severe dengue,

and all 14 DF patients as non-severe, considering that DF patients that are reclassified
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as severe dengue in the 2009 WHO classification are rare. DHF patients could not be

classified without additional clinical information that was unavailable to us, and were thus

excluded.

Machine learning methodology

Our biomarker was created using a machine learning approach based on monotonic re-

gression on a training cohort as explained in section 5.2. Briefly, new predictions made

by the biomarker are based on 0/1 (non-severe/severe) predictions (votes) derived from

pairs of transcripts in the biomarker. Measured concentrations for any given transcript pair

are turned into a binary vote using a two-dimensional monotonic function,[Stout, 2012] a

generalization of a linear function that monotonically increases or decreases with the con-

centration of each transcript. The final prediction is “severe” if the mean of all votes is above

the threshold t, and “non-severe” otherwise. The performance of individual transcript pairs

on future patients is estimated using cross-validation. The resulting biomarker consists of

a set of transcript pairs with unique transcripts having an optimal performance estimate.

Using a permutation test, we then eliminated those genes that did not confer a statistical

performance advantage over the performance of their partner alone. The resulting model

represents a unique combination of lower- and higher-complexity features tailored towards

the discovery of complex disease biomarkers. The monotonic model generalizes linear mod-

els. Nevertheless, the resulting features can still be visually and intuitively understood.

Controlling the number of transcripts in the biomarker allows different trade-offs between

performance, robustness, and assay cost (Section 5.3.9) To rescale the biomarker to the

different measurement units of our validation sets, we mapped transcripts to genes and

quantile-normalized the expression values (Section 5.3.9).

Performance evaluation

We summarized biomarker performance using the ROC curve, which consists of the differ-

ent combinations of true and false positive rates that are obtained by varying the above
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threshold t between 0 and 1. For the comparison with state-of-the art machine learning

methods, we used the implementations from the Python sklearn [Pedregosa et al., 2012]

package.

5.3.5 Results

We have identified an 18-gene biomarker that allows the detection of severe dengue from a

blood sample taken from dengue patients upon hospital arrival. We evaluated the perfor-

mance of the biomarker using two validation datasets. The first validation set was generated

from PBMC transcripts of additional patients from the above cohort, which were quantified

by qRT-PCR. The second validation set consisted of data from a whole blood transcrip-

tome array from an independent, previously published study. [Devignot et al., 2010a]. The

performance of our biomarker was estimated by cross-validation. We obtained AUC values

of 0.86, 0.83 and 0.85 for the training set and the two validation sets, respectively. Twelve

of the eighteen genes in the biomarker are immune-related (Table 5.1). Certain genes have

already been associated with severe dengue.

To determine whether the inclusion of a larger number of genes or the restriction to a

linear state-of-the-art variable selection model would have increased classification accuracy,

we estimated the performance of several well-known classification methods (Figure 5.5.a).

Methods are presented in (Chapter 1, Machine learning). Though differences in performance

did not reach statistical significance, our method gave the highest AUC. Moreover, logistic

regression with a lasso penalty (logistic lasso), a state-of-the-art linear variable selection

method, generated a classifier whose performance was not better than random on the PBMC

qRT-PCR dataset (Section 5.3.9).
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Gene Gene Name Description Over/

Under

(+/−)

expressed

in SD

Known link with

SD in literature

E2F7 E2F transcription fac-

tor 7

Participates in various processes such as angiogenesis, polyploidization of specialized cells

and DNA damage response. Acts as a negative regulator of keratinocyte differentiation.

+

ENKUR Enduring, TRPC

channel interacting

protein

Ca-mediated signaling -

ARG1 Arginase 1 Controls arginine metabolism in neutrophils, hence controlling NO production (iNOS path-

way) moderator of T cell function.

+ [Hoang et al., 2010]

JUNB JunB proto-oncogene,

AP-1 TF subunit

Transcription factor involved in regulating gene activity following the primary growth

factor response. Expressed in neutrophils. Part of the iNOS pathway.

-

E2F7 E2F transcription fac-

tor 7

Participates in various processes, such as angiogenesis, polyploidization of specialized cells,

and DNA damage response. Acts as a negative regulator of keratinocyte differentiation.

+

MPO Myeloperoxydase Produced mainly by neutrophils. This enzyme produces hypohalous acids central to the

microbicidal activity of neutrophils.

+ [Devignot et al.,

2010b, Hoang et al.,

2010]

LRP1 Prolow-density

lipoprotein receptor-

related protein 1

Endocytic receptor involved in endocytosis and in phagocytosis of apoptotic cells. In-

volved in the plasma clearance of chylomicron remnants and activated LRPAP1 (alpha

2-macroglobulin).

-

PGD Phosphogluconate de-

hydrogenase

Enzyme involved in the pentose phosphate pathway, hence producing more NADPH.

NADPH is a cofactor used in anabolic reactions, such as lipid and nucleic acid synthesis,

which require NADPH as a reducing agent.

+

EGR3 Early growth response

3

This gene encodes a transcriptional regulator that belongs to the EGR family of C2H2-type

zinc-finger proteins. It is an immediate-early growth response gene which is induced by

mitogenic stimulation. The protein encoded by this gene participates in the transcriptional

regulation of genes in controlling biological rhythm. It may also play a role in a wide variety

of processes including endothelial cell growth.

-

MGAM Maltase-glucoamylase This gene encodes maltase-glucoamylase that plays a role in the final steps of digestion of

starch.

+

HP Haptoglobin Binds free plasma haemoglobin, antimicrobial activity. + [Simmons et al.,

2007b, Devignot

et al., 2010b, Hoang

et al., 2010]

MYB Myeloblastosis proto-

oncogene, transcrip-

tion factor

Transcriptional activator, implicated in B cell lymphoma +

IGKC Immunoglobulin

kappa constant

+

PPBP Pro-platelet basic pro-

tein

Platelet-derived growth factor of the CXC family. It is a potent chemoattractant and

activator of neutrophils and has anti-microbial properties.

-

CD40L CD40 ligand This gene is expressed on the surface of T cells. It regulates B cell function by engaging

CD40 on the B cell surface. A defect in this gene results in an inability to undergo

immunoglobulin class switch and is associated with hyper-IgM syndrome.

-

OX40L OX40 ligand Mediates adhesion of activated T cells to endothelial cells, expressed on antigen-presenting

cells such as dendritic cells, endothelium, mast cells and NK cells.

-

SDPR Serum deprivation re-

sponse

Participates to the formation of caveolae. - [Long et al., 2009]

TCF7 transcription factor 7

(T-cell specific, HMG-

box)

This gene is expressed predominantly in T-cells and plays a critical role in natural killer

cell and innate lymphoid cell development. The encoded protein forms a complex with

beta-catenin and activates transcription through a Wnt/beta-catenin signaling pathway.

-

ASAP2 ArfGAP with SH3 do-

main, ankyrin repeat

and PH domain 2

The protein localizes in the Golgi apparatus and at the plasma membrane. The protein

forms a stable complex with PYK2 in vivo.

-

Table 5.1: Constitutive gene pairs of our biomarker. Genes are grouped into pairs (or singletons if the

partner did not add any statistical advantage).
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(a) Performance of different methods on the training dataset

(b) Performance of our biomarker on the validation datasets

Figure 5.5: Performance evaluation

a. Training: Performance of our biomarker compared to other methods. Performance estimates of state-of-

the-art classification methods established by leave-one-out cross-validation on the PBMC microarray training

set. Area under ROC curve (AUC) for each method is indicated with its 95% confidence interval.

b. Validation: ROC curves on independent datasets. To assess the performance of our biomarker, we blindly

predicted the phenotype of new patients from the same cohort as our training set, and from an independently

published cohort of whole blood samples.

Figure 5.6 provides a visualization of the models associated with the transcript pairs of the

biomarker. Different monotonic functions capture different types of gene-gene interactions.

For example, for the second pair of transcripts (JUNB and ARG1), patients have a severe

phenotype when JUNB expression is high or ARG1 expression is low. For OX40L and
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CD40LG, OX40L and CD40LG both are under-expressed in the severe patients. For EGR3

and MGAM, the lower the EGR3 expression, and the higher the MGAM expression, the

more likely the patient is to be predicted severe.

Figure 5.6: Visual representation of the biomarker. The biomarker is applied to a new set of transcript

measurements by first making one prediction from each of the ten panels for each patient. Each such

prediction is generated by reading off the panel’s background color at the coordinates defined by the new

transcript measurements. The final biomarker prediction is then made by comparing the resulting frequency

of severe predictions against a threshold. For illustration, the panels show the points corresponding to

transcripts from the PBMC training cohort. The biomarker can be applied to data on different measurement

scales after quantile normalization.

5.3.6 Discussion

We have identified and independently validated a biomarker for the detection of severe cases

among dengue patients from blood samples taken upon arrival at the hospital. Severity was

defined according to the 2009 WHO dengue classification.[WHO (World Health Organisa-

tion), 2009] This 18-gene expression biomarker was built using PBMC samples of newly

hospitalized Cambodian dengue patients using transcriptome microarrays. Our novel ap-
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proach to biomarker discovery models linear and non-linear monotonic interactions between

transcript levels with controlled complexity, and preserves interpretability and applicability

to datasets of limited size. We performed a first validation of our biomarker by quantifying,

using qRT-PCR, transcripts of previously uncharacterized PBMC samples from the same

dengue season/cohort. The performance results remained stable compared to our original

performance assessment. For further validation, we used a whole blood cohort from an inde-

pendent public dataset.[Devignot et al., 2010a] To our knowledge, our results represent the

first molecular biomarker for detecting severe cases in dengue patients with demonstrated

high performance on independent datasets. The genes OX40L and CD40L that comprise

our first gene pair are both under-expressed in severe cases (Figure 5.6). OX40L and CD40L

are membrane proteins expressed by dendritic cells and by activated T cells, respectively,

that are essential to mount an efficient adaptive immune response. OX40L binds to its

co-receptor OX40 and allows T cells to survive after clonal expansion. Stimulation of B

cells by T cells through CD40L is necessary for class switching and somatic hypermuta-

tion, and hence both genes are required to produce potent neutralizing antibodies (Figure

5.7).[Elgueta et al., 2009] In the context of dengue infection, OX40L has been shown to

be down-regulated in human monocyte-derived dendritic cells after in vitro infection, sup-

porting a role of the co-stimulatory molecule in dengue infection.[Gandini et al., 2011] In

addition, we have observed a differential regulation of the expression of the OX40 signaling

pathway in asymptomatic dengue cases compared to clinical cases (Duong, Simon-Loriere

et al, in press). The role of CD40L in dengue infection is less clear; on one hand CD40L

has been described as an enhancer of viral particle production by infected dendritic cells by

providing survival signals,[Sun et al., 2016] but on the other hand CD40L is up-regulated

in dengue specific CD4+ T cells and important for protection against the virus through an

antibody-independent pathway.[Yauch et al., 2010] The second gene pair of our biomarker,

ARG1 and JUNB, controls inflammation. Both genes are expressed in neutrophils and are

known to regulate the production of reactive nitrogen species. ARG1 degrades the substrate

of inducible nitric oxide synthase (iNOS).[Munder et al., 2005] JUNB transcriptionally reg-

ulates the expression of iNOS.[Ratajczak-Wrona et al., 2012] Hence, these genes together

control the inflammatory status of the main blood component. Moreover, it has been found



113

that JUNB is a key transcriptional modulator of macrophage expression. It activates the

expression of ARG1 in the presence of IL-4.[Fontana et al., 2015] The role of ARG1 in

flavivirus infection has been extensively described; in the case of dengue, the production of

RNS is required to inhibit viral replication during the early phases of infection. However an

overproduction of RNS in the late phases of the disease leads to the inhibition of coagula-

tion, leading to dengue-typical bleeding. ARG1 is therefore required to reduce the amount

of RNS and bleeding during dengue infection.[Burrack and Morrison, 2014] This biomarker

could be easily implemented in a clinical setting, and used sequentially or in combination

to a dengue diagnostic test. Such a tool would allow more efficient patient triage, and

close monitoring of individuals with high risk for severe disease, and would be especially

useful in non-endemic regions where physicians might not possess extensive experience in

dengue diagnosis and management. Indeed, this biomarker requires only a blood sample

from the patient, and any technology that could measure the expression level of these 18

specific genes. Moreover, a recent large-scale study suggests that the concentrations of most

proteins are linearly related to RNA concentration (with gene-specific levels).[Edfors et al.,

2016] Thus, a protein-level implementation of our biomarker may potentially further ease

its use, or allow its deployment in point of care settings.

In conclusion, we have presented a highly performing 18-gene biomarker that detects se-

vere cases among dengue patients fast and objectively upon arrival at the hospital. Its

performance was extremely stable on PBMC and whole blood samples, and across different

technological platforms. A deeper understanding of the underlying biology, and how impor-

tant parameters such as blood cell type, serotype, day of fever, and measurement platform

impact the expected performance, will require dedicated follow-up studies. The potential

of the marker as a prognostic marker for the early detection of risk of evolution towards

severe dengue remains to be determined in further studies.
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Figure 5.7: Activation of antigen presenting cells via OX40L and CD40L.
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5.3.9 Appendices to this chapter

Probe filtering

It has been found that appropriate independent filtering increases detection power for high-

throughput experiments [Bourgon et al., 2010]. Thus, when possible, we used such filtering.

Only transcripts with variance greater than 0.5 have been kept for the analysis. Moreover,

since interpretability of our results was key, we have kept transcripts that had an Entrez
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gene ID. This resulted in 2,653 transcripts being analyzed.

As to patient filtering, criteria are detailed on Figure 5.8

Figure 5.8: Description of transcriptome patient filtering.

Rescaling of new datasets

To be able to use the biomarker on new datasets, we need to make the transcript measures

comparable in-between datasets. We quantile-normalised [Amaratunga and Cabrera, 2001]

each validation dataset with our PBMC training dataset. For the PBMC validation dataset,

since the measures came from relative qRT-PCR quantification, gene expressions where

incomparable for different genes. Thus, the quantile-normalisation was done for each gene

separately. More precisely: we first ensured ourselves that we have the same proportion of

cases and controls in our training set that in the validation set. If the proportion of cases

was lower(resp. higher), we duplicated a random cases( resp. controls) to equalise these

proportions. Then, for:

• PBMC validation data: for each gene A, we ordered gene expressions of patients in



116

PBMC training dataset and in the PBMC validation dataset. This generated two

ordered lists Ltrain and Lother.

• Whole blood validation data: Genes had already comparable measures in between

themselves, due to the properties of transcriptomic arrays. We thus quantile-normalized

the whole array taken together: We assumed that in reality the distributions of the

gene expressions should be similar globally. Thus we pooled patients and genes to-

gether and ordered expression values in training dataset and application dataset. This

generated 2 ordered lists Ltrain and Lother.

Then, to the i-th value of the validation dataset we attribute the value in the training

set with the index inew = Round(i ∗ Length(Ltrain)/Length(Lother))

• PBMC validation dataset: the values in between genes were not comparable, thus we

did the above normalisation for each gene separately instead of doing it once for the

whole dataset.

Varying the number of pairs included in the biomarker

Figure 5.9: Estimating optimal k, the number of feature to include into the ensemble classifier, by calcu-

lating the proportions of mispredictions for each k.

We wanted to assess the impact of a simplification of the biomarker. Even though our

optimal performance was obtained when using 74 different pairs of transcripts, the AUC
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decreases by only 2.5%. Given the 95% confidence intervals of the AUC scores, this decrease

is not significant.

Figure 5.10: Impact of the simplification of the biomarker on the performance.

Performance of the logistic Lasso biomarker on the validation datasets

The optimal biomarker (for parameter lambda=1 s.e.), consisted of two genes, ARG1 and

MPO. The AUC suggests that the resulting biomarker is not robust enough to reproduce its

good performance on our validation PBMC dataset, even though it had a good performance

on the independent whole blood dataset.
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Figure 5.11: Performance of the logistic Lasso biomarker on the qRT-PCR dataset.

Figure 5.12: Performance of the logistic Lasso biomarker on the public dataset.
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Additional information on genes in the biomarker

Figure 5.13: Correlation between genes included in the biomarker in the PBMC training dataset.
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Gene Transcript Probe ID

E2F7 TC12001756.hg.1

ENKUR TC10001111.hg.1

ARG1 TC06000983.hg.1

JUNB TC19001995.hg.1

E2F7 TC12002970.hg.1

MPO TC17001727.hg.1

LRP1 TC12002396.hg.1

PGD TC01000129.hg.1

EGR3 TC08002253.hg.1

MGAM TC07000899.hg.1

HP TC16002057.hg.1

MYB TC06003069.hg.1

IGKC TC02003395.hg.1

PPBP TC04001282.hg.1

CD40L TC0X000666.hg.1

OX40L TC01003525.hg.1

SDPR TC02002627.hg.1

TCF7 TC05002628.hg.1

ASAP2 TC02000046.hg.1

Table 5.2: Identifiers of transcripts in the biomarker from Affymetrix HTA2 array and associated gene

names.
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Chapter 6

Conclusion
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6.1 Summary

Throughout this thesis, I have studied susceptibility to severe dengue through genotyping

and transcriptomic data. Since dengue is a complex disease, I used approaches that al-

low to aggregate signal across many genes, based on pathways, interaction networks and

machine-learning algorithms. I started by exploring genomic data from a recently published

GWAS, which allowed to uncover associations between the two gene MICB and PLCE1, and

severe dengue. By mapping SNP p-values to genes, we find additional significant p-values

for several MHC genes (HLA-B, MICA and HCP5). The MHC contributes to processing

and presenting antigens on the surface of infected cells in order to trigger the immune re-

sponse. Network analysis of these genes thus leads to new results: The resulting network

from the HumanNet interaction network is enriched in genes related to antigen process-

ing and presentation via MHC class I. Additionally, it has a group of genes associated to

the complement activation classical pathway, an alternative immune reaction pathway that

our body uses to fight viruses. Moreover, the resulting network from STRING gene func-

tional network is enriched in kidney development related functions (FOXC2, PLCE1, ASS1,

POU3F3, PYGO1, and AGTR1 genes) among which are blood volume control and stim-

ulation, and contraction of muscular tissue of capillaries and arteries via AGTR1. These

functions are critical to avoid developing strong plasma leakage out of blood vessels and

to avoid clinical shock. Plasma leakage and shock are included in the characterisation se-

vere dengue. Therefore this data suggests, that there is a genetic predisposition to develop

severe dengue depending on the alleles of genes related to blood volume control and stimu-

lation, and contraction of muscular tissue of capillaries and arteries. These results need to

be analysed with caution, since the result of jActiveModules does not give any measure of

statistical significance. Nevertheless enrichment analysis and biological interpretation are

coherent with what we know about dengue mechanisms and suggest that we observe is a

true signal.

The variability of results and scores obtained by using input networks of different sizes

brought us to study the jActiveModules scoring. In Chapter 3, we show that the score of
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jActiveModules, as described in [Ideker et al., 2002], under the null hypothesis of uniformly

distributed p-values, is biased when comparing scores of networks of different sizes for a fixed

input network. By normalisation against size-specific null distributions of the generalised

extreme value family, we derive a theoretical new, unbiased, score. This score function is

computationally hard, and we outline our view of existing best practical options to avoid

size bias.

In Chapter 4, we describe the design and use of a tool that does not suffer from the bias

described in Chapter 3, LEAN. We use LEAN network to analyse GWAS data of Chapter 2,

without finding any significant result. Motivated by the fact that environmental factors have

a great impact on dengue outcome, we then analyse gene expression data and compare gene

expression during an in vitro experiment that consists of injecting dengue virus into blood,

determining the viral load of cells, and comparing samples that develop a high viral load

with those that develop a low viral load. This analysis produces results highly enriched

in different processes mostly related to inflammatory signalling, with a highest score for

interferon alpha and gamma signalling.

In Chapter 5, we hypothesize that a combination of expressed mRNAs can help detect

disease severity upon arrival at the hospital. We developed a machine learning method

that is able to go beyond linear interactions, without using overly complex models to not

overfit our learning dataset of 42 individuals. We evaluate the predictive performance of

all monotonic relationships between all the pairs of transcripts and the phenotype, then

we assemble best-scoring pairs to create an 18-gene biomarker. This biomarker predicts

severe dengue with a sensitivity of 0.93 (95% CI: 0.80-1.00) and a specificity of 0.67 (95%

CI: 0.49-0.84) with a total area under ROC-curve (AUC) of 0.86 (95% CI: 0.75-0.97). The

signature was validated on previously unseen data from 22 patients from the same cohort

using an other mRNA quantification technique, qRT-PCR, with an AUC of 0.85 (95%CI:

0.69-1.00). In addition, it was validated on whole blood transcriptomic array data from an

independent cohort of 32 patients with an AUC of 0.83 (95%CI: 0.68-0.98). Our signature

has the advantage of being easy to visualize, facilitating its interpretation. Interestingly,

E2F and MYB are genes in common with the previous experiment in Chapter 4. As in
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Chapter 2, we find that the antigen presenting process is important through the OX40L

and CD40L pair. Both genes are membrane proteins expressed by dendritic cells and by

activated T cells that are essential to mount an efficient adaptive immune response. Many

other genes are linked to immuno-modulation via T/B-cell activation (MYB, IGKC, CD40L,

OX40L, TCF7, ARG1), and neutrophils (ARG1, JUNB, MPO, PPBP).

6.2 Discussion

6.2.1 Biological results

Interestingly, genes identified by our genomic and transcriptomic analyses point to the same

processes in severe dengue: immune processes implicating adaptive and innate immunity,

especially related to the antigen presentation on the immune cell surfaces, appear to play

a role in the pathogenesis of severe dengue. Our first network analysis of GWAS also

shows an association with genetic predispositions to regulate vessel permeability and blood

volume; nevertheless, the statistical significance of this association was not confirmed when

using LEAN method. Chapter 5 moves one step beyond this by introducing a biomarker

to improve early detection of severe dengue, especially by non-experienced doctors. Such

a biomarker may appear of practical interest, given the recent global spread of the Aedes

mosquito vector.

In this biomarker, one may question the relevance of the presence of neutrophil-related genes,

since the study was made on PBMC cells, in which only those traces of neutrophils remain

that are not removed during centrifugation. The performance validation of our biomarker

on whole blood samples confirms that neutrophil-related genes are not an artifact of bad

purification of PBMC cells, but a real biological signal. Therefore, in future experiments,

it may be of interest to keep neutrophils in samples if we want to precisely study their

impact.



126

6.2.2 Methodological results

Interaction networks

From a methodological point of view, in Chapters 2 to 4, we explored network methods

designed to find genes with relatively high scores of association to severe dengue and that

interact. From Chapter 2, it appears that results obtained with different input networks may

differ a lot. Therefore, improved curation of networks, trying several networks, and different

sizes of input networks, in terms of nodes and connectivity, may be of great practical interest

in future work.

Network search algorithms

The algorithm used for analysis also impacts strongly the results, as we see when comparing

results from STRING interaction network in Chapters 2 and 4. Most remarkably, the

biggest bottleneck is rather the interpretation of results, and their experimental validation.

Statistical significance helps to gain statistical confidence in results, but most importantly

generating small networks is key for a better interpretation and outcome.

Predictive models

An other approach to increase confidence in computational results may be to design predic-

tive models, where we measure directly how well our results generalise, rather than aiming

for statistical association in one specific dataset. This gives a better measure of how gener-

alisable the results are. Nevertheless, one should pay attention again to the interpretability

of the results, by, for instance limiting the number of features used in the resulting feature.

The ensemble monotonic regression approach has the advantage of generating results where

we control the number of features used, that are easy to interpret, and that we can visualize

on a plot. In terms of performance, on dengue transcriptomic data it appears to generate

more reproducible results than classical methods – even those that perform feature selec-
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tion, such as logistic Lasso. This will probably not be the case for all datasets, since this

regression depends on a monotonic model, which may not be the most appropriate choice

for other datasets. Compared to a feature selection model such as Lasso, a key difference is

that the ensemble aggregation method used here keeps all correlated pairs in the biomarker.

This may be redundant in a non-noisy setting, but given the variability of expression mea-

sures in between individuals at a given time point, it may be interesting to keep redundant

pairs in a gene expression signature. Moreover, the LARS algorithm used for Lasso picks

genes iteratively, meaning that once the first gene picked, the choice of the second genes

depends on this first gene [Efron et al., 2004]. This may make the actual set of chosen

features highly variable based on small differences in the learning set.

However, ensemble monotonic regression is only one approach among others. We may

consider, for instance, using support vector machine ensemble classifiers, as used in [Zak

et al., 2016] to find a tuberculosis gene signature. For performance improvement, the

conclusion of many challenges designed for method comparison (such as DREAM challenges)

is that usually the best performance is obtained by “the wisdom of the crowd”: These

methods aggregate results of many different algorithms, by for instance, letting each method

(or only several best methods) vote for the phenotype, and taking as outcome the majority

vote [Marbach et al., 2012, Eduati et al., 2015]. Nevertheless, the disadvantage of such a

method is that the features are then difficult to interpret, and usually many features are

used.

In the case of an ensemble classifier, we may aggregate features otherwise than by simply

using the most predictive pairs of features. To further make the model more robust and

simpler, we may use, for instance, an approach that would remove a subset from the learning

set, calculate a gene signature on the remaining set, iterate several times this procedure by

leaving out different subsets and keeping for the final biomarker those genes that were

appearing in all the computed gene signatures.

Another alternative to strengthen interpretability would be to first group genes in sets

by common properties and try to apply machine learning methods to those groups taken
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together. For instance, grouped Lasso is an adaptation of Lasso for such an approach [Yuan

and Lin, 2006].

6.3 What if I had another three years for this project?

The next step of this project consists, in my opinion, in choosing the most interesting

biological findings that can be validated in laboratories, and create experiments to validate

them. This step will require a good knowledge of possible experiments on dengue; many of

them may be hampered by the unavailability of an animal model that reproduces human

severe symptoms after dengue infection. To be able to choose the most promising hypotheses

to validate, we would likewise need to precisely understand the methods that have generated

the statistically significant results.

That is why I would ask for financing for a common project between an experimental

biologist and a computational biologist. Such a collaboration would also enable us to use

the validation results to improve computational findings, upon which new experiments may

then be executed using these results.

Moreover, I would invest time in better understanding the details of dengue immunology

to be able, myself, to better choose among statistically significant results those that most

echo with current knowledge of the disease.

In terms of methodology, ensemble monotonic regression needs to be thoroughly compared

to other methods on a benchmark of diverse datasets for a precise assessment of the use

of such a method. Creating a user-friendly implementation for instance in the Python

machine-learning package sklearn may ease such an analysis.
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Appendix A

LEAN result: List of centers of

significant stars

List of centers of significant stars: For each star center, are presented its gene symbol,

Ensembl protein ID, the number of genes included in the significant star k, the total num-

ber of its neighbors m, and the statistical significance of the star score measured by a

q-value.

Star center Star center ENSP k m q-value

CD4 ENSP00000011653 112 226 0.009627943

TNFRSF1A ENSP00000162749 53 95 0.009627943

NFKB2 ENSP00000189444 20 31 0.009627943

CDC6 ENSP00000209728 121 261 0.009627943

AAAS ENSP00000209873 36 59 0.009627943

NDUFB7 ENSP00000215565 46 64 0.009627943

USP18 ENSP00000215794 27 34 0.009627943

SNRPD3 ENSP00000215829 91 142 0.009627943

RBX1 ENSP00000216225 79 160 0.009627943

NFKBIA ENSP00000216797 74 119 0.009627943
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RELB ENSP00000221452 14 24 0.009627943

POLR2I ENSP00000221859 99 169 0.009627943

OGDH ENSP00000222673 32 41 0.009627943

PSMA2 ENSP00000223321 89 146 0.009627943

NUP107 ENSP00000229179 80 127 0.009627943

GMNN ENSP00000230056 92 171 0.009627943

NUP155 ENSP00000231498 50 84 0.009627943

EIF2AK2 ENSP00000233057 23 51 0.009627943

NDUFS7 ENSP00000233627 36 50 0.009627943

EGR1 ENSP00000239938 52 106 0.009627943

CDKN1A ENSP00000244741 93 247 0.009627943

IRF1 ENSP00000245414 53 82 0.009627943

NUP37 ENSP00000251074 87 164 0.009627943

DHX58 ENSP00000251642 17 25 0.009627943

DPF2 ENSP00000252268 11 11 0.009627943

NUP210 ENSP00000254508 35 57 0.009627943

OASL ENSP00000257570 41 50 0.009627943

MPHOSPH6 ENSP00000258169 20 26 0.009627943

SP110 ENSP00000258381 15 17 0.009627943

RTP4 ENSP00000259030 30 35 0.009627943

NDUFB5 ENSP00000259037 49 70 0.009627943

RIPK1 ENSP00000259808 42 71 0.009627943

NUP133 ENSP00000261396 73 117 0.009627943

NUP153 ENSP00000262077 49 86 0.009627943

PARP12 ENSP00000263549 15 17 0.009627943

IFIH1 ENSP00000263642 36 44 0.009627943

NDUFS3 ENSP00000263774 48 81 0.009627943

HERC6 ENSP00000264346 20 23 0.009627943

HERC5 ENSP00000264350 27 41 0.009627943
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NUP54 ENSP00000264883 37 61 0.009627943

EXOSC7 ENSP00000265564 19 25 0.009627943

GTF2H1 ENSP00000265963 43 76 0.009627943

SNRPF ENSP00000266735 88 146 0.009627943

IRF8 ENSP00000268638 30 55 0.009627943

SNRPG ENSP00000272348 95 153 0.009627943

IL18 ENSP00000280357 34 68 0.009627943

ERCC3 ENSP00000285398 42 74 0.009627943

UBE2L6 ENSP00000287156 21 41 0.009627943

U2AF1 ENSP00000291552 64 121 0.009627943

NUP35 ENSP00000295119 41 59 0.009627943

DTX3L ENSP00000296161 10 13 0.009627943

POLR2H ENSP00000296223 122 206 0.009627943

IFI27 ENSP00000298902 22 33 0.009627943

NDUFB8 ENSP00000299166 48 68 0.009627943

NOD2 ENSP00000300589 17 26 0.009627943

UBE2E1 ENSP00000303709 37 86 0.009627943

CDC40 ENSP00000304370 58 134 0.009627943

UBB ENSP00000304697 127 256 0.009627943

NKRF ENSP00000304803 17 19 0.009627943

ISG20 ENSP00000306565 20 28 0.009627943

LSM1 ENSP00000310596 31 46 0.009627943

DMAP1 ENSP00000312697 15 26 0.009627943

POLR2A ENSP00000314949 127 220 0.009627943

NDUFS8 ENSP00000315774 41 59 0.009627943

CIITA ENSP00000316328 29 55 0.009627943

EPSTI1 ENSP00000318982 23 24 0.009627943

NDUFV1 ENSP00000322450 42 57 0.009627943

EXOSC3 ENSP00000323046 19 25 0.009627943
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POLR2L ENSP00000324124 118 200 0.009627943

SAMD9L ENSP00000326247 20 21 0.009627943

NCBP2 ENSP00000326806 110 229 0.009627943

IRF7 ENSP00000329411 48 84 0.009627943

MT1H ENSP00000330587 6 7 0.009627943

IP6K2 ENSP00000331103 20 32 0.009627943

MX2 ENSP00000333657 26 34 0.009627943

SF3B1 ENSP00000335321 51 115 0.009627943

GBP5 ENSP00000340396 15 31 0.009627943

NUP43 ENSP00000342262 74 117 0.009627943

SNRPD2 ENSP00000342374 95 151 0.009627943

IFI6 ENSP00000342513 28 36 0.009627943

UBC ENSP00000344818 506 1203 0.009627943

NUP50 ENSP00000345895 37 59 0.009627943

IRF5 ENSP00000349770 44 53 0.009627943

PARP9 ENSP00000353512 28 30 0.009627943

STAT1 ENSP00000354394 84 201 0.009627943

XAF1 ENSP00000354822 41 53 0.009627943

H3F3A ENSP00000355778 57 128 0.009627943

IRF6 ENSP00000355988 26 38 0.009627943

UCHL5 ENSP00000356425 50 86 0.009627943

RNASEL ENSP00000356530 27 30 0.009627943

ADAR ENSP00000357459 15 32 0.009627943

BUB3 ENSP00000357858 57 152 0.009627943

MAP3K7 ENSP00000358335 59 90 0.009627943

BTRC ENSP00000359206 83 136 0.009627943

CHUK ENSP00000359424 61 92 0.009627943

GBP4 ENSP00000359490 10 11 0.009627943

GBP2 ENSP00000359497 28 39 0.009627943
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GBP1 ENSP00000359504 38 47 0.009627943

IFI44 ENSP00000359783 30 34 0.009627943

IFI44L ENSP00000359787 32 36 0.009627943

ZBP1 ENSP00000360215 11 11 0.009627943

IFIT5 ENSP00000360860 18 20 0.009627943

IFIT1 ENSP00000360869 40 54 0.009627943

IFIT3 ENSP00000360876 46 53 0.009627943

IFIT2 ENSP00000360891 36 51 0.009627943

EXOSC2 ENSP00000361433 20 32 0.009627943

SRSF3 ENSP00000362820 64 120 0.009627943

NCBP1 ENSP00000364289 108 219 0.009627943

DIS3 ENSP00000366997 16 25 0.009627943

NUP160 ENSP00000367721 75 119 0.009627943

ISG15 ENSP00000368699 51 77 0.009627943

DDX58 ENSP00000369213 71 75 0.009627943

SAMD9 ENSP00000369292 11 12 0.009627943

TRIM22 ENSP00000369299 17 18 0.009627943

RPP40 ENSP00000369391 10 11 0.009627943

IRF4 ENSP00000370343 23 57 0.009627943

GTF3A ENSP00000370532 21 25 0.009627943

RSAD2 ENSP00000371471 32 41 0.009627943

EXOSC8 ENSP00000374354 24 40 0.009627943

ERCC2 ENSP00000375809 53 81 0.009627943

DDX60 ENSP00000377344 27 29 0.009627943

MT1X ENSP00000377995 6 6 0.009627943

IRF9 ENSP00000380073 53 71 0.009627943

MX1 ENSP00000381599 45 57 0.009627943

IFITM1 ENSP00000386187 18 33 0.009627943

EXOSC6 ENSP00000398597 29 41 0.009627943
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MAVS ENSP00000401980 32 40 0.009627943

POLR2F ENSP00000403852 116 196 0.009627943

ATP5D ENSP00000215375 47 69 0.013925161

RIPK3 ENSP00000216274 9 12 0.013925161

AURKA ENSP00000216911 111 242 0.013925161

POLR2C ENSP00000219252 102 179 0.013925161

MEFV ENSP00000219596 9 17 0.013925161

NOD1 ENSP00000222823 20 25 0.013925161

CHMP5 ENSP00000223500 11 24 0.013925161

NUP88 ENSP00000225696 35 59 0.013925161

GTF2H3 ENSP00000228955 40 67 0.013925161

NDUFS1 ENSP00000233190 34 54 0.013925161

TNFAIP3 ENSP00000237289 26 49 0.013925161

SRSF6 ENSP00000244020 60 112 0.013925161

BST2 ENSP00000252593 9 11 0.013925161

SNRPA1 ENSP00000254193 66 123 0.013925161

NUPL2 ENSP00000258742 35 59 0.013925161

IDH1 ENSP00000260985 11 24 0.013925161

TCEB2 ENSP00000262306 66 104 0.013925161

MCM6 ENSP00000264156 86 177 0.013925161

NDUFS6 ENSP00000274137 39 55 0.013925161

NFKBIE ENSP00000275015 11 17 0.013925161

UPF3B ENSP00000276201 91 188 0.013925161

NUP205 ENSP00000285968 39 62 0.013925161

PLK1 ENSP00000300093 143 318 0.013925161

POLR2G ENSP00000301788 102 174 0.013925161

PRPF8 ENSP00000304350 65 124 0.013925161

NUP62 ENSP00000305503 43 77 0.013925161

NUP93 ENSP00000310668 39 66 0.013925161
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CFLAR ENSP00000312455 24 45 0.013925161

POLR2B ENSP00000312735 109 190 0.013925161

MDH2 ENSP00000327070 47 67 0.013925161

TBK1 ENSP00000329967 33 46 0.013925161

UBA7 ENSP00000333266 8 8 0.013925161

GTF2F2 ENSP00000340823 63 125 0.013925161

TRADD ENSP00000341268 32 64 0.013925161

C1D ENSP00000348107 14 20 0.013925161

SRSF2 ENSP00000350877 68 135 0.013925161

SUPV3L1 ENSP00000352678 12 16 0.013925161

TPR ENSP00000356448 39 67 0.013925161

EXOSC1 ENSP00000359939 18 29 0.013925161

NUP188 ENSP00000361658 35 59 0.013925161

SDHB ENSP00000364649 36 49 0.013925161

LSM2 ENSP00000364813 14 15 0.013925161

NDUFB6 ENSP00000369176 31 49 0.013925161

SRSF5 ENSP00000377892 61 118 0.013925161

PSMD14 ENSP00000386541 60 144 0.013925161

UBA52 ENSP00000388107 171 390 0.013925161

RPP30 ENSP00000389182 9 11 0.013925161

MT1G ENSP00000391397 5 6 0.013925161

SLBP ENSP00000417686 38 67 0.013925161

NDUFAB1 ENSP00000007516 43 65 0.018393683

TBCB ENSP00000221855 4 4 0.018393683

NAA38 ENSP00000249299 44 49 0.018393683

RFC1 ENSP00000261424 34 41 0.018393683

HAT1 ENSP00000264108 31 51 0.018393683

MT1E ENSP00000307706 4 5 0.018393683

HNRNPA0 ENSP00000316042 39 89 0.018393683
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SNRNP200 ENSP00000317123 61 121 0.018393683

CYC1 ENSP00000317159 49 75 0.018393683

SRSF7 ENSP00000325905 57 110 0.018393683

AMER1 ENSP00000329117 22 51 0.018393683

PSMG1 ENSP00000329915 9 18 0.018393683

NDUFB1 ENSP00000330787 28 46 0.018393683

MT1B ENSP00000334998 4 4 0.018393683

PARK2 ENSP00000355865 43 78 0.018393683

IL6R ENSP00000357470 16 33 0.018393683

PSMD4 ENSP00000357879 23 74 0.018393683

PRPF4 ENSP00000363313 61 120 0.018393683

CUL2 ENSP00000363880 27 42 0.018393683

UQCRQ ENSP00000367934 50 79 0.018393683

IFNA2 ENSP00000369554 20 45 0.018393683

PIGA ENSP00000369820 14 18 0.018393683

DCP2 ENSP00000373715 22 37 0.018393683

GTF2F1 ENSP00000377969 67 135 0.018393683

CD74 ENSP00000009530 32 46 0.021247875

PSMA3 ENSP00000216455 52 126 0.021247875

SRSF1 ENSP00000258962 69 138 0.021247875

NDUFAF1 ENSP00000260361 26 40 0.021247875

POF1B ENSP00000262753 5 6 0.021247875

SETD1B ENSP00000267197 12 17 0.021247875

NDUFB9 ENSP00000276689 43 66 0.021247875

TCEB1 ENSP00000284811 62 122 0.021247875

REL ENSP00000295025 19 40 0.021247875

RPP14 ENSP00000295959 9 10 0.021247875

NDUFS4 ENSP00000296684 40 58 0.021247875

FADD ENSP00000301838 31 64 0.021247875
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POP7 ENSP00000304353 6 7 0.021247875

SF3B2 ENSP00000318861 58 112 0.021247875

NFKBIZ ENSP00000325663 6 6 0.021247875

PNRC1 ENSP00000336931 2 2 0.021247875

CPSF1 ENSP00000339353 62 125 0.021247875

TLR9 ENSP00000353874 31 43 0.021247875

NSL1 ENSP00000355944 56 66 0.021247875

RNF2 ENSP00000356480 29 60 0.021247875

SDHC ENSP00000356953 26 34 0.021247875

ATP5F1 ENSP00000358737 28 57 0.021247875

SRSF11 ENSP00000359988 66 130 0.021247875

RAE1 ENSP00000360286 64 104 0.021247875

CTPS1 ENSP00000361699 37 53 0.021247875

SRSF4 ENSP00000362900 60 117 0.021247875

DNAJC3 ENSP00000365991 10 17 0.021247875

EXOSC10 ENSP00000366135 30 49 0.021247875

NFX1 ENSP00000368856 56 108 0.021247875

MAP3K1 ENSP00000382423 43 66 0.021247875

RELA ENSP00000384273 89 236 0.021247875

BIRC2 ENSP00000227758 41 52 0.024946898

NDUFA2 ENSP00000252102 37 54 0.024946898

TAF4 ENSP00000252996 41 75 0.024946898

COQ9 ENSP00000262507 10 10 0.024946898

PSMB6 ENSP00000270586 63 102 0.024946898

RFC4 ENSP00000296273 110 239 0.024946898

CEBPB ENSP00000305422 70 117 0.024946898

IL8 ENSP00000306512 81 137 0.024946898

PAAF1 ENSP00000311665 12 21 0.024946898

RNF135 ENSP00000328340 10 13 0.024946898



161

LIG4 ENSP00000349393 22 25 0.024946898

EXOSC9 ENSP00000368984 21 31 0.024946898

IFNB1 ENSP00000369581 34 49 0.024946898

TNF ENSP00000398698 133 239 0.024946898

SMG1 ENSP00000402515 13 19 0.024946898

NDUFB4 ENSP00000184266 36 53 0.027797972

UQCRC1 ENSP00000203407 37 67 0.027797972

KMT2B ENSP00000222270 13 20 0.027797972

SRSF9 ENSP00000229390 70 114 0.027797972

HSPB1 ENSP00000248553 25 66 0.027797972

MNAT1 ENSP00000261245 46 87 0.027797972

AKT3 ENSP00000263826 49 57 0.027797972

NDUFB10 ENSP00000268668 36 53 0.027797972

TP53 ENSP00000269305 239 583 0.027797972

NXF1 ENSP00000294172 40 73 0.027797972

UQCRFS1 ENSP00000306397 36 65 0.027797972

BID ENSP00000318822 17 29 0.027797972

ALYREF ENSP00000331817 64 128 0.027797972

PARK7 ENSP00000340278 27 44 0.027797972

SF3A3 ENSP00000362110 53 102 0.027797972

APEX2 ENSP00000364126 11 13 0.027797972

PCNA ENSP00000368438 136 311 0.027797972

IFNA8 ENSP00000369553 13 20 0.027797972

POMP ENSP00000370222 14 35 0.027797972

CCNH ENSP00000256897 50 96 0.030809419

PSMA6 ENSP00000261479 62 101 0.030809419

MCM2 ENSP00000265056 84 180 0.030809419

NDUFA9 ENSP00000266544 40 60 0.030809419

RB1 ENSP00000267163 86 181 0.030809419
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POLR2D ENSP00000272645 98 169 0.030809419

RPP25 ENSP00000317691 7 8 0.030809419

PHF6 ENSP00000329097 17 25 0.030809419

NDUFA12 ENSP00000330737 31 54 0.030809419

MYLIP ENSP00000349298 7 8 0.030809419

GTF3C5 ENSP00000361180 20 25 0.030809419

IDH3B ENSP00000370223 12 29 0.030809419

SETD2 ENSP00000386759 16 34 0.030809419

NEK1 ENSP00000408020 7 7 0.030809419

GTPBP1 ENSP00000216044 11 15 0.03330748

RNF125 ENSP00000217740 5 7 0.03330748

NDUFA10 ENSP00000252711 30 52 0.03330748

AMMECR1 ENSP00000262844 25 29 0.03330748

GEMIN6 ENSP00000281950 31 44 0.03330748

CASP2 ENSP00000312664 22 34 0.03330748

TAF7 ENSP00000312709 34 58 0.03330748

PKM ENSP00000320171 78 135 0.03330748

DIS3L ENSP00000321711 11 16 0.03330748

CUL1 ENSP00000326804 55 140 0.03330748

ATL1 ENSP00000351155 5 7 0.03330748

NDUFS2 ENSP00000356972 30 52 0.03330748

MAP1LC3A ENSP00000363970 11 15 0.03330748

TPP2 ENSP00000365233 18 41 0.03330748

POLA1 ENSP00000368349 90 158 0.03330748

CASP4 ENSP00000388566 13 14 0.03330748

EIF2AK1 ENSP00000199389 21 24 0.03660525

TNFSF10 ENSP00000241261 24 32 0.03660525

PSMB1 ENSP00000262193 42 99 0.03660525

RNPS1 ENSP00000315859 66 170 0.03660525
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EBAG9 ENSP00000337675 3 9 0.03660525

ATF3 ENSP00000344352 24 49 0.03660525

NDUFA8 ENSP00000362873 38 69 0.03660525

PTPN18 ENSP00000175756 7 8 0.039373059

CMPK2 ENSP00000256722 17 39 0.039373059

TOPBP1 ENSP00000260810 53 72 0.039373059

AP5Z1 ENSP00000297562 11 20 0.039373059

UQCRH ENSP00000309565 45 71 0.039373059

RNASEH1 ENSP00000313350 8 10 0.039373059

SRRM1 ENSP00000326261 58 114 0.039373059

USP16 ENSP00000334808 14 22 0.039373059

CDC16 ENSP00000348554 63 128 0.039373059

POP5 ENSP00000350098 8 10 0.039373059

TOMM22 ENSP00000216034 10 23 0.041839952

SKP1 ENSP00000231487 83 146 0.041839952

AP5S1 ENSP00000246041 11 16 0.041839952

LSM7 ENSP00000252622 30 42 0.041839952

AP5M1 ENSP00000261558 11 16 0.041839952

DHX38 ENSP00000268482 62 126 0.041839952

TAP1 ENSP00000346206 13 21 0.041839952

ING1 ENSP00000364929 12 24 0.041839952

XRN2 ENSP00000366396 12 24 0.041839952

TOMM5 ENSP00000384411 10 23 0.041839952

LSM5 ENSP00000410758 17 32 0.041839952

IDH3G ENSP00000217901 14 30 0.044013456

TBP ENSP00000230354 111 142 0.044013456

CPSF3 ENSP00000238112 73 124 0.044013456

MAD2L1 ENSP00000296509 105 235 0.044013456

NDUFA7 ENSP00000301457 34 50 0.044013456
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EIF4G1 ENSP00000316879 66 172 0.044013456

KAT5 ENSP00000340330 36 105 0.044013456

USP1 ENSP00000343526 37 55 0.044013456

BRCA1 ENSP00000350283 126 285 0.044013456

RPA2 ENSP00000363021 36 66 0.044013456

E2F4 ENSP00000368686 37 55 0.044013456

TIRAP ENSP00000376445 16 35 0.044013456

PYCARD ENSP00000247470 9 19 0.046572378

SAP130 ENSP00000259235 19 29 0.046572378

ANAPC5 ENSP00000261819 45 87 0.046572378

KAT2B ENSP00000263754 80 173 0.046572378

PCBP1 ENSP00000305556 50 98 0.046572378

HNRNPD ENSP00000313199 46 112 0.046572378

SMC1A ENSP00000323421 68 142 0.046572378

DCLRE1C ENSP00000367527 15 18 0.046572378

ZW10 ENSP00000200135 77 96 0.048876132

MSH6 ENSP00000234420 49 66 0.048876132

PSMA5 ENSP00000271308 60 100 0.048876132

CENPC ENSP00000273853 58 70 0.048876132

POP1 ENSP00000339529 5 5 0.048876132

DHX9 ENSP00000356520 56 113 0.048876132

GTF3C4 ENSP00000361219 19 24 0.048876132

DNAJC9 ENSP00000362041 6 8 0.048876132

TXN ENSP00000363641 37 56 0.048876132
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Appendix B

LEAN result: Enrichment

analysis

Table B.1: GSEA Enrichment results for LEAN star centers with “Hallmark” dataset as background. K

is the number of genes in gene set, and k is the number of genes in overlap. The significance is measured by

the FDR q-value.

Gene Set Name Description k K FDR q-value

HALLMARK

INTERFERON GAMMA

RESPONSE

Genes up-regulated in response to IFNG

[GeneID=3458].

51 200 2.09E-61

HALLMARK

INTERFERON ALPHA

RESPONSE

Genes up-regulated in response to alpha interferon

proteins.

37 97 4.29E-52

HALLMARK

OXIDATIVE

PHOSPHORYLATION

Genes encoding proteins involved in oxidative

phosphorylation.

36 200 1.65E-37

HALLMARK MYC

TARGETS V1

A subgroup of genes regulated by MYC - version 1

(v1).

31 200 2.89E-30

HALLMARK DNA

REPAIR

Genes involved in DNA repair. 27 150 2.7E-28

HALLMARK E2F

TARGETS

Genes encoding cell cycle related targets of E2F

transcription factors.

24 200 6.96E-21

HALLMARK TNFA

SIGNALING VIA NFKB

Genes regulated by NF-kB in response to TNF

[GeneID=7124].

21 200 3.64E-17

HALLMARK

APOPTOSIS

Genes mediating programmed cell death (apoptosis)

by activation of caspases.

18 161 2.55E-15

HALLMARK G2M

CHECKPOINT

Genes involved in the G2/M checkpoint as in

progression through the cell division cycle.

16 200 1.86E-11

HALLMARK

ADIPOGENESIS

Genes up-regulated during adipocyte differentiation

(adipogenesis).

14 200 2.04E-9

HALLMARK

INFLAMMATORY

RESPONSE

Genes defining inflammatory response. 14 200 2.04E-9
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HALLMARK UNFOLDED

PROTEIN RESPONSE

Genes up-regulated during unfolded protein response

a cellular stress response related to the endoplasmic

reticulum.

11 113 4.33E-9

HALLMARK

ALLOGRAFT

REJECTION

Genes up-regulated during transplant rejection. 12 200 1.59E-7

HALLMARK MTORC1

SIGNALING

Genes up-regulated through activation of mTORC1

complex.

12 200 1.59E-7

HALLMARK UV

RESPONSE UP

Genes up-regulated in response to ultraviolet (UV)

radiation.

8 158 9.21E-5

HALLMARK PI3K AKT

MTOR SIGNALING

Genes up-regulated by activation of the

PI3K/AKT/mTOR pathway.

6 105 4.55E-4

HALLMARK REACTIVE

OXIGEN SPECIES

PATHWAY

Genes up-regulated by reactive oxigen species (ROS). 4 49 1.42E-3

HALLMARK IL6 JAK

STAT3 SIGNALING

Genes up-regulated by IL6 [GeneID=3569] via

STAT3 [GeneID=6774] e.g. during acute phase

response.

5 87 1.42E-3

HALLMARK HYPOXIA Genes up-regulated in response to low oxygen levels

(hypoxia).

7 200 1.97E-3

HALLMARK IL2 STAT5

SIGNALING

Genes up-regulated by STAT5 in response to IL2

stimulation.

7 200 1.97E-3

HALLMARK P53

PATHWAY

Genes involved in p53 pathways and networks. 7 200 1.97E-3

HALLMARK FATTY

ACID METABOLISM

Genes encoding proteins involved in metabolism of

fatty acids.

6 158 2.9E-3

HALLMARK NOTCH

SIGNALING

Genes up-regulated by activation of Notch signaling. 3 32 3.82E-3

HALLMARK

COMPLEMENT

Genes encoding components of the complement

system which is part of the innate immune system.

6 200 7.94E-3

HALLMARK

GLYCOLYSIS

Genes encoding proteins involved in glycolysis and

gluconeogenesis.

6 200 7.94E-3

HALLMARK KRAS

SIGNALING DN

Genes down-regulated by KRAS activation. 6 200 7.94E-3

Table B.2: GSEA Enrichment results for LEAN star centers with the immunological signatures dataset as

background. K is the number of genes in gene set, and k is the number of genes in overlap. The significance

is measured by the FDR q-value.

Gene Set Name Description k K FDR q-value

GSE13484 UNSTIM VS

YF17D VACCINE STIM

PBMC DN

Genes down-regulated in comparison of unstimulated

peripheral blood mononuclear cells (PBMC) versus

PBMC stimulated with YF17D vaccine.

48 200 2.71E-54

GSE42724 NAIVE BCELL

VS PLASMABLAST UP

Genes up-regulated in B lymphocytes: naive versus

plasmablasts.

46 199 2.02E-51

GSE13485 CTRL VS

DAY7 YF17D VACCINE

PBMC DN

Genes down-regulated in comparison of unstimulated

peripheral blood mononuclear cells (PBMC) versus

PBMC 7 days after stimulation with YF17D vaccine.

46 200 2.02E-51

GSE13485 DAY1 VS

DAY7 YF17D VACCINE

PBMC DN

Genes down-regulated in comparison of unstimulated

peripheral blood mononuclear cells (PBMC) 1 day

after stimulation with YF17D vaccine versus PBMC

7 days after the stimulation.

45 200 5.47E-50

GSE13485 PRE VS POST

YF17D VACCINATION

PBMC DN

Genes down-regulated in comparison of peripheral

blood mononuclear cells (PBMC) before vs after

YF17D vaccination.

45 200 5.47E-50
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GSE13485 DAY3 VS

DAY7 YF17D VACCINE

PBMC DN

Genes down-regulated in comparison of unstimulated

peripheral blood mononuclear cells (PBMC) 3 days

after stimulation with YF17D vaccine versus PBMC

7 days after the stimulation.

44 199 1.5E-48

GSE21927 SPLEEN

C57BL6 VS 4T1 TUMOR

BALBC MONOCYTES

DN

Genes down-regulated in CD11b+ cells from spleen

of healthy C57BL6 mice versus CD11b+ cells from

tumor infiltrating monocytes of BALB/c mice

bearing 4T1 mammary carcinoma.

44 200 1.5E-48

GSE37533 PPARG1

FOXP3 VS FOXP3

TRANSDUCED CD4

TCELL DN

Genes down-regulated in CD4 [GeneID=920]

over-expressing: FOXP3 [GeneID=50943] and

PPARg1 form of PPARG [GeneID=5468] versus

FOXP3 [GeneID=50943].

44 200 1.5E-48

GSE18791 CTRL VS

NEWCASTLE VIRUS DC

8H DN

Genes down-regulated in comparison of control

conventional dendritic cells (cDC) at 0 h versus cDCs

infected with Newcastle disease virus (NDV) at 8 h.

43 200 4.61E-47

GSE18791 UNSTIM VS

NEWCATSLE VIRUS DC

10H DN

Genes down-regulated in comparison of control

conventional dendritic cells (cDC) at 10 h versus

cDCs infected with Newcastle disease virus (NDV) at

10 h.

43 200 4.61E-47

GSE18791 UNSTIM VS

NEWCATSLE VIRUS DC

6H DN

Genes down-regulated in comparison of control

conventional dendritic cells (cDC) at 6 h versus cDCs

infected with Newcastle disease virus (NDV) at 6 h.

43 200 4.61E-47

GSE10325 CD4 TCELL

VS LUPUS CD4 TCELL

DN

Genes down-regulated in comparison of healthy CD4

[GeneID=920] T cells versus systemic lupus

erythematosus CD4 [GeneID=920] T cells.

42 200 1.3E-45

GSE19888 ADENOSINE

A3R INH PRETREAT

AND ACT BY A3R VS

TCELL MEMBRANES

ACT MAST CELL UP

Genes up-regulated in HMC-1 (mast leukemia) cells:

incubated with the peptide ALL1 and then treated

with Cl-IB-MECA [PubChem=3035850] versus

stimulation by T cell membranes.

42 200 1.3E-45

GSE21360 NAIVE VS

QUATERNARY

MEMORY CD8 TCELL

DN

Genes down-regulated inCD8 T cells: naive versus 4’

memory.

42 200 1.3E-45

GSE22886 CTRL VS LPS

24H DC DN

Genes down-regulated in comparison of unstimulated

dendritic cells (DC) versus 1 day DC stimulated with

LPS (TLR4 agonist).

42 200 1.3E-45

GSE42021 TREG VS

TCONV PLN UP

Genes up-regulated in cells from peripheral lymph

nodes: T reg versus T conv.

42 200 1.3E-45

GSE21546 WT VS SAP1A

KO DP THYMOCYTES

UP

Genes up-regulated in untreated double positive

thymocytes: wildtype versus ELK4 [GeneID=2005]

knockout.

41 199 3.88E-44

GSE14000 UNSTIM VS

4H LPS DC DN

Genes down-regulated in comparison of dendritic

cells (DC) before and 4 h after LPS (TLR4 agonist)

stimulation.

41 200 4.58E-44
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GSE18791 CTRL VS

NEWCASTLE VIRUS DC

6H DN

Genes down-regulated in comparison of control

conventional dendritic cells (cDC) at 0 h versus cDCs

infected with Newcastle disease virus (NDV) at 6 h.

40 200 1.51E-42

GSE42021 CD24HI VS

CD24INT TREG

THYMUS DN

Genes down-regulated in thymic T reg: CD24 high

[GeneID=100133941] versus CD24 int

[GeneID=100133941].

40 200 1.51E-42

GSE42021 TREG PLN VS

TREG PRECURSORS

THYMUS DN

Genes down-regulated in T reg from: peripheral

lymph nodes versus thymic precursors.

40 200 1.51E-42

GSE13485 CTRL VS

DAY3 YF17D VACCINE

PBMC DN

Genes down-regulated in comparison of unstimulated

peripheral blood mononuclear cells (PBMC) versus

PBMC 3 days after stimulation with YF17D vaccine.

39 200 4.88E-41

GSE21360 NAIVE VS

QUATERNARY

MEMORY CD8 TCELL

UP

Genes up-regulated inCD8 T cells: naive versus 4’

memory.

39 200 4.88E-41

GSE37533 PPARG2

FOXP3 VS FOXP3

TRANSDUCED CD4

TCELL DN

Genes down-regulated in CD4 [GeneID=920]

over-expressing: FOXP3 [GeneID=50943] and

PPARg2 form of PPARG [GeneID=5468] versus

FOXP3 [GeneID=50943].

39 200 4.88E-41

GSE14000 UNSTIM VS

4H LPS DC

TRANSLATED RNA DN

Genes down-regulated in comparison of polysome

bound (translated) mRNA before and 4 h after LPS

(TLR4 agonist) stimulation.

38 200 1.61E-39

GSE19888 ADENOSINE

A3R INH VS ACT WITH

INHIBITOR

PRETREATMENT IN

MAST CELL UP

Genes up-regulated in HMC-1 (mast leukemia) cells

incubated the peptide ALL1 versus those followed by

treatment with Cl-IB-MECA [PubChem=3035850].

38 200 1.61E-39

GSE10325 MYELOID VS

LUPUS MYELOID DN

Genes down-regulated in comparison of healthy

myeloid cells versus systemic lupus erythematosus

myeloid cells.

37 200 1.61E-39

GSE37533 PPARG1

FOXP3 VS FOXP3

TRANSDUCED CD4

TCELL PIOGLITAZONE

TREATED UP

Genes up-regulated in CD4 [GeneID=920] T cells

treated with pioglitazone [PubChem=4829] and

over-expressing: FOXP3 [GeneID=50943] and

PPARg1 isoform of PPARG [GeneID=5468] versus

FOXP3 [GeneID=50943].

37 200 1.51E-38

GSE42021 CD24INT VS

CD24LOW TREG

THYMUS DN

Genes down-regulated in thymic T reg: CD24 int

[GeneID=100133941] versus CD24 low

[GeneID=100133941].

37 200 7.36E-38

GSE18791 CTRL VS

NEWCASTLE VIRUS DC

4H DN

Genes down-regulated in comparison of control

conventional dendritic cells (cDC) at 0 h versus cDCs

infected with Newcastle disease virus (NDV) at 4 h.

36 200 2.44E-36

GSE6269 FLU VS STREP

PNEUMO INF PBMC UP

Genes up-regulated in comparison of peripheral

blood mononuclear cells (PBMC) from patients with

acute influenza infection versus PBMC from patients

with acute S. pneumoniae infection.

34 169 3.44E-36
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GSE21546 UNSTIM VS

ANTI CD3 STIM ELK1

KO DP THYMOCYTES

UP

Genes up-regulated in double positive thymocytes

with ELK1 [GeneID=2002] knockout: untreated

versus stimulated by anti-CD3.

35 196 2.29E-35

GSE24634 IL4 VS CTRL

TREATED NAIVE CD4

TCELL DAY5 DN

Genes down-regulated in comparison of CD25- T

cells treated with IL4 [GeneID=3565] at day 5 versus

untreated CD25- T cells at day 5.

35 200 4.19E-35

GSE33424 CD161 INT VS

NEG CD8 TCELL UP

Genes up-regulated in CD8 T cells: KLRB1 int

[GeneID=3820] versus KLRB1- [GeneID=3820].

35 200 4.19E-35

GSE37533 PPARG1

FOXP3 VS PPARG2

FOXP3 TRANSDUCED

CD4 TCELL

PIOGLITAZONE

TREATED DN

Genes down-regulated in CD4 [GeneID=920] T cells

treated with pioglitazone [PubChem=4829] and

over-expressing: FOXP3 [GeneID=50943] and

PPARg1 isoform of PPARG [GeneID=5468] versus

FOXP3 [GeneID=50943] and PPARg2 form of

PPARG [GeneID=5468].

35 200 4.19E-35

GSE37534 UNTREATED

VS PIOGLITAZONE

TREATED CD4 TCELL

PPARG1 AND FOXP3

TRASDUCED DN

Genes down-regulated in CD4 [GeneID=920] T cells

over-expressing FOXP3 [GeneID=50943] and

PPARg1 form of PPARG [GeneID=5468]: untreated

versus pioglitazone [PubChem=4829].

35 200 4.19E-35

GSE42021 CD24HI VS

CD24LOW TREG

THYMUS DN

Genes down-regulated in thymic T reg: CD24 high

[GeneID=100133941] versus CD24 low

[GeneID=100133941].

35 200 4.19E-35

GSE19888 ADENOSINE

A3R INH VS TCELL

MEMBRANES ACT

MAST CELL UP

Genes up-regulated in HMC-1 (mast leukemia) cells:

incubated with the peptide ALL1 versus stimulated

with T cell membranes.

34 199 1.06E-33

GSE18791 CTRL VS

NEWCASTLE VIRUS DC

10H DN

Genes down-regulated in comparison of control

conventional dendritic cells (cDC) at 0 h versus cDCs

infected with Newcastle disease virus (NDV) at 10 h.

34 200 1.14E-33

GSE34205 HEALTHY VS

FLU INF INFANT PBMC

DN

Genes down-regulated in comparison of peripheral

blood mononuclear cells (PBMC) from healthy

donors versus PBMCs from infanct with acute

influenza infection.

34 200 1.14E-33

GSE36527 CD69 NEG VS

POS TREG CD62L LOS

KLRG1 NEG UP

Genes up-regulated in KLRG1- SELL low

[GeneID=10219 and 6402] T reg: CD69-

[GeneID=969] versus CD69+ [GeneID=969].

34 200 1.14E-33

GSE42021 TREG PLN VS

CD24INT TREG

THYMUS DN

Genes down-regulated in T reg: peripheral lymph

nodes versus thymic CD24 int [GeneID=100133941].

34 200 1.14E-33

GSE2770 TGFB AND IL4

ACT VS ACT CD4

TCELL 2H DN

Genes down-regulated in CD4 [GeneID=920] T cells

activated by anti-CD3 and anti-CD28: TGFB1 and

IL4 [GeneID=7040 and 3565] (2h) versus untreated

(2h).

33 199 2.8E-32

GSE13485 DAY7 VS

DAY21 YF17D VACCINE

PBMC UP

Genes up-regulated in comparison of unstimulated

peripheral blood mononuclear cells (PBMC) 7 days

after stimulation with YF17D vaccine versus PBMC

21 days after the stimulation.

33 200 3.04E-32
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GSE18281 CORTICAL VS

MEDULLARY

THYMOCYTE UP

Genes up-regulated in thymocytes: cortical versus

medullary sources.

33 200 3.04E-32

GSE26030 TH1 VS TH17

DAY5 POST

POLARIZATION UP

Genes up-regulated in T helper cells 5 days post

polarization: Th1 versus Th17.

33 200 3.04E-32

GSE34006 A2AR KO VS

A2AR AGONIST

TREATED TREG UP

Genes up-regulated in T reg: untreated ADORA2A

[GeneID=135] knockout versus wildtype treated by

ZM 241385 [PubChem=176407].

33 200 3.04E-32

GSE34156 UNTREATED

VS 6H NOD2 AND TLR1

TLR2 LIGAND

TREATED MONOCYTE

DN

Genes down-regulated in monocytes (6h): untreated

versus muramyl dipeptide [PubChem=11620162]

andM. tuberculosis 19 kDa lipopeptide.

30 154 1.59E-31

GSE40685 TREG VS

FOXP3 KO TREG

PRECURSOR UP

Genes up-regulated in CD4: FOXP3+

[GeneID=50943] T reg versus FOXP3

[GeneID=50943] knockout T reg precursor.

32 195 3.58E-31

GSE10325 BCELL VS

LUPUS BCELL DN

Genes down-regulated in comparison of healthy B

cells versus systemic lupus erythematosus B cells.

32 200 7.59E-31

GSE1432 CTRL VS IFNG

24H MICROGLIA DN

Genes down-regulated in comparison of control

microglia cells versus those 24 h after stimulation

with IFNG [GeneID=3458].

32 200 7.59E-31

GSE22140 GERMFREE

VS SPF MOUSE CD4

TCELL UP

Genes up-regulated in healthy CD4 [GeneID=920] T

cells: germ free versus specific pathogen free.

32 200 7.59E-31

GSE26890 CXCR1 NEG

VS POS EFFECTOR CD8

TCELL UP

Genes up-regulated in effector CD8 T cells: CXCR1+

[GeneID=3577] versus CXCR1- [GeneID=3577].

32 200 7.59E-31

GSE42021 TREG PLN VS

CD24LO TREG THYMUS

DN

Genes down-regulated in T reg: peripheral lymph

nodes versus thymic CD24 low [GeneID=100133941].

32 200 7.59E-31

GSE18791 UNSTIM VS

NEWCATSLE VIRUS DC

18H DN

Genes down-regulated in comparison of control

conventional dendritic cells (cDC) at 18 h versus

cDCs infected with Newcastle disease virus (NDV) at

18 h.

31 200 1.98E-29

GSE38681 WT VS LYL1

KO LYMPHOID PRIMED

MULTIPOTENT

PROGENITOR DN

Genes down-regulated in lymphoid primed

multipotent progenitors: wildtype versus LYL1

[GeneID=4066] knockout.

31 200 1.98E-29

GSE42021 CD24INT VS

CD24LOW TCONV

THYMUS DN

Genes down-regulated in thymic T conv: CD24 int

[GeneID=100133941] versus CD24 low

[GeneID=100133941].

31 200 1.98E-29

GSE21546 ELK1 KO VS

SAP1A KO AND ELK1

KO DP THYMOCYTES

UP

Genes up-regulated in untreated double positive

thymocytes: ELK1 [GeneID=2002] knockout versus

ELK1 and ELK4 [GeneID=2002

2005]

knock-

out.

30 199

4.4E-28
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GSE34006 WT VS A2AR

KO TREG DN

Genes down-regulated in T reg: wildtype versus

ADORA2A [GeneID=135].

30 200 4.89E-28

GSE41978 ID2 KO VS

BIM KO KLRG1 LOW

EFFECTOR CD8 TCELL

UP

Genes up-regulated in KLRG1 low [GeneID=10219]

CD8 T effector cells during infection: ID2

[GeneID=10219] knockout versus BCL2L11

[GeneID=10018] knockout.

30 200 4.89E-28

GSE7548 NAIVE VS

DAY7 PCC

IMMUNIZATION CD4

TCELL DN

Genes down-regulated in CD4 [GeneID=920] T cells

from lymph nodes: naive versus day 7 after

immunization.

30 200 4.89E-28

GSE1432 CTRL VS IFNG

6H MICROGLIA DN

Genes down-regulated in comparison of control

microglia cells versus those 6 h after stimulation with

IFNG [GeneID=3458].

29 200 1.22E-26

GSE18791 CTRL VS

NEWCASTLE VIRUS DC

16H DN

Genes down-regulated in comparison of control

conventional dendritic cells (cDC) at 0 h versus cDCs

infected with Newcastle disease virus (NDV) at 16 h.

28 200 2.82E-25

GSE2706 UNSTIM VS 2H

LPS AND R848 DC DN

Genes down-regulated in comparison of unstimulated

dendritic cells (DC) at 0 h versus DCs stimulated

with LPS (TLR4 agonist) and R848 for 2 h.

28 200 2.82E-25

GSE2706 UNSTIM VS 8H

R848 DC DN

Genes down-regulated in comparison of unstimulated

dendritic cells (DC) at 0 h versus DCs stimulated

with R848 for 8 h.

28 200 2.82E-25

GSE18791 CTRL VS

NEWCASTLE VIRUS DC

12H DN

Genes down-regulated in comparison of control

conventional dendritic cells (cDC) at 0 h versus cDCs

infected with Newcastle disease virus (NDV) at 12 h.

27 200 6.47E-24

GSE6269 FLU VS E COLI

INF PBMC UP

Genes up-regulated in comparison of peripheral

blood mononuclear cells (PBMC) from patients with

acute influenza infection versus PBMC from patients

with acute E. coli infection.

25 162 1.35E-23

GSE6269 HEALTHY VS

STAPH AUREUS INF

PBMC UP

Genes up-regulated in comparison of peripheral

blood mononuclear cells (PBMC) from patients with

acute influenza infection versus PBMC from patients

with acute S. aureus infection.

25 171 5.41E-23

GSE14000 UNSTIM VS

16H LPS DC

TRANSLATED RNA DN

Genes down-regulated in comparison of polysome

bound (translated) mRNA before and 16 h after LPS

(TLR4 agonist) stimulation.

26 200 1.28E-22

GSE1432 1H VS 6H IFNG

MICROGLIA DN

Genes down-regulated in comparison of microglia

cells 1 h after stimulation with IFNG [GeneID=3458]

versus microglia cells 6 h after the stimulation.

26 200 1.28E-22

GSE18281

SUBCAPSULAR VS

CENTRAL CORTICAL

REGION OF THYMUS

DN

Genes down-regulated in thymus cortical regions:

subcapsular versus central cortical.

26 200 1.28E-22
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GSE2706 R848 VS R848

AND LPS 2H STIM DC

DN

Genes down-regulated in comparison of dendritic

cells (DC) stimulated with R848 at 2 h versus DCs

stimulated with LPS (TLR4 agonist) and R848 for 2

h.

26 200 1.28E-22

GSE37301

MULTIPOTENT

PROGENITOR VS

GRAN MONO

PROGENITOR DN

Genes down-regulated in multipotent progenitors

versus granulocyte-monocyte progenitors.

26 200 1.28E-22

GSE7509 DC VS

MONOCYTE WITH

FCGRIIB STIM DN

Genes down-regulated in response to anti-FcgRIIB:

dendritic cells versus monocytes.

26 200 1.28E-22

GSE7218 IGM VS IGG

SIGNAL THGOUGH

ANTIGEN BCELL DN

Genes down-regulated in B lymphocytes treated by

anti-HEL and expressing BCR [GeneID=613] fusions

with: IgM versus IgMG.

24 170 1.03E-21

GSE21546 UNSTIM VS

ANTI CD3 STIM SAP1A

KO AND ELK1 KO DP

THYMOCYTES UP

Genes up-regulated in double positive thymocytes

with ELK1 and ELK4 [GeneID=2002 and 2005]

knockout: untreated versus stimulated by anti-CD3.

25 196 1.59E-21

GSE17974 IL4 AND ANTI

IL12 VS UNTREATED

24H ACT CD4 TCELL

DN

Genes down-regulated in comparison of CD4

[GeneID=920] T cells treated with IL4

[GeneID=3565] and anti-IL12 at 24 h versus the

untreated cells at 24 h.

25 200 2.58E-21

GSE42021 CD24HI VS

CD24LOW TCONV

THYMUS DN

Genes down-regulated in thymic T conv: CD24 high

[GeneID=100133941] versus CD24 low

[GeneID=100133941].

25 200 2.58E-21

GSE13485 DAY1 VS

DAY3 YF17D VACCINE

PBMC DN

Genes down-regulated in comparison of unstimulated

peripheral blood mononuclear cells (PBMC) 1 day

after stimulation with YF17D vaccine versus PBMC

3 days after the stimulation.

24 200 4.78E-20

GSE15930 STIM VS STIM

AND TRICHOSTATINA

48H CD8 T CELL DN

Genes down-regulated in comparison of unstimulated

CD8 T cells at 48 h versus CD8 T cells at 48 h after

treatment with trichostatin A (TSA)

[PubChem=5562].

24 200 4.78E-20

GSE22140 GERMFREE

VS SPF ARTHRITIC

MOUSE CD4 TCELL UP

Genes up-regulated in arthritic (KRN model) CD4

[GeneID=920] T cells: germ free versus specific

pathogen free conditions.

24 200 4.78E-20

GSE36826 WT VS IL1R

KO SKIN STAPH

AUREUS INF DN

Genes down-regulated in lesional skin biopsies after

S. aureus infection: wildtype versus IL1R1

[GeneID=3554].

24 200 4.78E-20

GSE3982 CTRL VS LPS

48H DC DN

Genes down-regulated in comparison of untreated

dendritic cells (DC) versus DCs treated with LPS

(TLR4 agonist) at 48 h.

24 200 4.78E-20

GSE3982 CTRL VS LPS

4H MAC DN

Genes down-regulated in comparison of untreated

macrophages versus macrophages treated with LPS

(TLR4 agonist) at 4 h.

24 200 4.78E-20
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GSE43863 TFH VS LY6C

LOW CXCR5NEG

EFFECTOR CD4 TCELL

UP

Genes up-regulated in CD4 [GeneID=920] SMARTA

effector T cells during acute infection of LCMV:

follicular helper (Tfh) versus Ly6c low CXCR5-

[GeneID=643].

24 200 4.78E-20

GSE9960 HEALTHY VS

GRAM POS SEPSIS

PBMC DN

Genes down-regulated in peripheral blood monocytes

(PMBC):healthy versus Gram positive sepsis.

23 198 7.22E-19

GSE15930 STIM VS

STIM AND IFNAB 48H

CD8 T CELL DN

Genes down-regulated in comparison of unstimulated

CD8 T cells at 48 h versus CD8 T cells at 48 h after

stimulation with antigen-B7-1.

23 200 8.32E-19

GSE16755 CTRL VS

IFNA TREATED MAC

DN

Genes down-regulated in comparison of control

macrophages versus macrophages treated with

interferon alpha.

23 200 8.32E-19

GSE19888 ADENOSINE

A3R ACT VS A3R ACT

WITH A3R INH

PRETREATMENT IN

MAST CELL DN

Genes down-regulated in HMC-1 (mast leukemia)

cells: Cl-IB-MECA [PubChem=3035850] versus

incubated with the ALL1 peptide followed by

treatment with Cl-IB-MECA [PubChem=3035850].

23 200 8.32E-19

GSE25085 FETAL BM VS

ADULT BM SP4

THYMIC IMPLANT UP

Genes up-regulated in thymic implants from fetal

versus those from adult bone marrow.

23 200 8.32E-19

GSE2706 UNSTIM VS 2H

LPS DC DN

Genes down-regulated in comparison of unstimulated

dendritic cells (DC) at 0 h versus DCs stimulated

with LPS (TLR4 agonist) for 2 h.

23 200 8.32E-19

GSE34156 NOD2

LIGAND VS TLR1 TLR2

LIGAND 6H TREATED

MONOCYTE UP

Genes up-regulated in monocytes (6h): muramyl

dipeptide [PubChem=11620162] versus M.

tuberculosis 19 kDa lipopeptide.

23 200 8.32E-19

GSE37534 UNTREATED

VS ROSIGLITAZONE

TREATED CD4 TCELL

PPARG1 AND FOXP3

TRASDUCED DN

Genes down-regulated in CD4 [GeneID=920] T ceels

over-expressing FOXP3 [GeneID=920] and PPARg1

isoform of PPARG [GeneID=5468]: untreated versus

rosiglitazone [PubChem=77999].

23 200 8.32E-19

GSE39382 IL3 VS IL3

IL33 TREATED MAST

CELL DN

Genes down-regulated in bone marrow-derived mast

cells treated with IL3 [GeneID=3562]: control versus

IL33 [GeneID=90865].

23 200 8.32E-19

GSE1432 1H VS 24H

IFNG MICROGLIA DN

Genes down-regulated in comparison of microglia

cells 1 h after stimulation with IFNG [GeneID=3458]

versus microglia cells 24 h after the stimulation.

22 200 1.39E-17

GSE18791 CTRL VS

NEWCASTLE VIRUS DC

14H DN

Genes down-regulated in comparison of control

conventional dendritic cells (cDC) at 0 h versus cDCs

infected with Newcastle disease virus (NDV) at 14 h.

22 200 1.39E-17

GSE19888 CTRL VS

TCELL MEMBRANES

ACT MAST CELL

PRETREAT A3R INH DN

Genes down-regulated in HMC-1 (mast leukemia)

cells: untreated versus incubated with the peptide

ALL1 followed by stimulation with T cell membranes.

22 200 1.39E-17



174

GSE21360 PRIMARY VS

TERTIARY MEMORY

CD8 TCELL DN

Genes down-regulated in memory CD8 T cells: 1’

versus 3’.

22 200 1.39E-17

GSE22886 NAIVE CD4

TCELL VS 48H ACT TH1

DN

Genes down-regulated in comparison of naive CD4

[GeneID=920] T cells versus stimulated CD4

[GeneID=920] Th1 cells at 48 h.

22 200 1.39E-17

GSE2706 2H VS 8H R848

STIM DC DN

Genes down-regulated in comparison of dendritic

cells (DC) stimulated with R848 at 2 h versus DCs

stimulatd with R848 for 8 h.

22 200 1.39E-17
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