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Ce terreau a ensuite pu être nourri par des figures inspirantes, pour la plupart des enseignants
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à nous inspirer sur la petite route qu’on se trace à deux, à coup de calmez-vous mâıtre bien sûr.
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Introduction

The evolution of the world can be compared to a display of fireworks that has just
ended: some few red wisps, ashes and smoke. Standing on a cooled cinder, we see the
slow fading of the suns, and we try to recall the vanishing brilliance of the origin of the
worlds.

(Georges Lemâıtre, 1931)

By the dawn of the 20th century the revolution in physics brought by quantum mechanics
and general relativity led to further insights on studying the Universe as a whole. As the works
from Albert Einstein, Willem de Sitter, and Alexandre Friedmann, laid the ground for the
cosmological solutions of general relativity equations, the origin and evolution of the Universe
became a subject of research, and contemporary Cosmology was born.

With the improvement of astrophysical observation techniques came the first evidences,
from Edwin Hubble, that many observed nebulae were actually extra-galactic objects, known
as galaxies (E. P. Hubble 1926). Their radial velocity measured by Vesto Slipher indicated
an apparent recession from us which manifests itself as a redshift of the observed spectrum.
The linear relation between the distance and the apparent velocity of the galaxies was first
deduced by Georges Lemâıtre in 1927 (G. Lemâıtre 1927), and later on by Edwin Hubble in
1929 (E. Hubble 1929). Lemâıtre provided the first interpretation that the cosmological redshift
is caused by the expansion of the Universe that is sourced by a cosmological constant, and
not by the motion of the galaxies (see Luminet 2013). He also introduced for the first time
a description of the primordial Universe as being much denser and hotter, emerging from the
so-called ‘primordial atom’ (Georges Lemâıtre 1950). This idea, first jokingly referred to as
the ‘Big-Bang’, later revealed to be revolutionary. The discovery of the Cosmic Microwave
Background (CMB) and the observational evidences confirming the Big-Bang Nucleosynthesis
theory developed by Gamow and its collaborators (Gamow 1948) paved the ground toward the
standard model of cosmology.

The concept of a radiative remnant echo of the Big-Bang emanating from the first instants
of a hot Universe was first studied by Alpher and Hermann (Ralph A. Alpher et al. 1948).
They predicted that the CMB should follow a black-body radiation law, characterised by a
temperature which dropped to a few Kelvin only since its emission. The CMB photons carry
both the information about their cosmic journey and the imprint of the physics of the primordial
Universe, which involves energy scales way beyond the reach of current particle accelerators.
Therefore, the study of the CMB provides a unique cosmological lever arm to understand the
history of the Universe, to test general relativity, to constrain particle physics, and to constrain
the nature of dark energy as well as dark matter.

4
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The first evidence of the CMB was provided in 1964 by Penzias and Wilson. Since then,
numerous ground-based telescopes, satellites, and balloon-born experiments have made it pos-
sible to drastically improve its measurements. The first validation of the black-body spectrum
nature of the CMB was achieved by the COBE satellite. Followed detailed mappings of the CMB
anisotropies on the sky by the satellites WMAP and Planck in the 21th, bringing constraints of
the cosmological standard model parameters up to the percent level, and marking the beginning
of the precision cosmology era.

However, several pieces of the cosmological puzzle are still missing. The nature of the
dark energy and dark matter is still unknown. The absence of anti-matter in the observable
Universe is unexplained. Why does our Universe appear geometrically flat? And how did it
become homogeneous on scales apriori not causally connected? What sourced the primordial
fluctuations which seeded the CMB anisotropies and the cosmological large-scale structures
observed today?

Corresponding to a short and early period during which the Universe would have grown
exponentially, the inflation is the leading and probably the most elegant paradigm which provides
a solution to three of the cosmological puzzles : the flatness and the horizon problems, as well
as the origin of the primordial fluctuations.

The rapid expansion of the Universe at the epoch of inflation should have enlarge quantum
fluctuations to macroscopic scales, producing a stochastic background of primordial gravitational
waves. Those should have left an imprint on the CMB photons polarisation, the so-called
B-modes patterns. The precise measurements of the B-modes, still undetected to this day,
represents the most promising probe to inflationary physics as well as the first insight into
the quantum nature of gravity. However, the expected amplitude of the signal is at least one
thousand times smaller than that of the CMB temperature, and can be seriously impeded by
foreground contaminations from Galactic emissions. Future B-mode detections thus require
expertise in instrumental, physical, and computational sciences.

This thesis focuses on the development of analysis tools to study the primordial B modes
of the Cosmic Microwave Background. Our goal is to extract the amplitude of the primordial
gravitational waves produced during the inflationary period.

Specifically, we are interested in the large angular scales, for which the primary B modes
signal is expected to be dominant. Since these scales are particularly contaminated by polarised
galactic emissions, we have studied and developed approaches to reduce those contaminations
and to characterise their residuals. Those methods are applicable to products from satellite
missions such as Planck or LiteBIRD.

In order to estimate the B modes amplitude, we developed and characterised a CMB anisotropies
power spectrum estimator. The algorithm is pixels-based and allows to cross-correlate maps
measured by different detectors. The method is optimal and minimises the so-called E-to-B
variance leakage.

We applied the cleaning and spectrum estimation approaches to the polarisation data and
simulation maps publicly provided by Planck. The constraints that we deduce are in agreement
with past analysis. Ultimately, we derive an upper limit on the primordial gravitational waves
amplitude as well as the reionization parameter.



Chapter 1

Introduction to modern Cosmology

1 The Big-Bang Cosmological Standard Model

As we will see, the Universe is highly dynamic. Its geometry and its constituents evolve with
time, this evolution can be calculated. We review some of the key physical paradigms to study
the Universe, as well as the important events filling its history.

1.1 Pillars of the Big-Bang model

Cosmology is based on the Big-Bang model for which its key stages are highlighted in Fig. 1.1.
The so-called three pillars of the Big-Bang model can be summarised as follow :

• The Universe is expanding, and its expansion is characterised by a growing time-dependent
scale factor a(t) equals to unity today, a0 = 1.

• The ‘baryonic’ matter, including electrons, was formed in the early Universe, when it was
much denser and hotter than today. The Universe was smoothly filled with a plasma
of elementary particles in thermal equilibrium, such as quarks, electrons, neutrino, and
photons. The first nuclei (protons and neutrons) formed during a phase known as the
Big-Bang Nucleosynthesis (BBN). Since temperature was still high, electrons and photons
were tightly coupled by Coulomb scattering, and no atom bound states were allowed to
form.

• As the Universe expanded, its temperature dropped low enough so that electrons started to
combine efficiently with the nuclei to form the first atoms, mainly Hydrogen and Helium.
As a consequence, photons decoupled from the primordial plasma, and were allowed to
free-stream through space. They formed a background of radiation, known as the Cosmic
Microwave Background, which still permeates the Universe today.

In addition, the Big-Bang model is based on two main properties of our Universe: it is both
highly homogeneous and isotropic on large scales. This means that the Universe should present
the same characteristics everywhere, and in all directions that we wish to observe.

The evolution across time of both the constituents and the geometry of the Universe is de-
scribed by the Einstein equations of General Relativity (GR). The Big-Bang model is embedded
in the Standard Model of cosmology, referred to as the ΛCDM model. It is characterised by
an acceleration of the Universe expansion, encoded by a Cosmological constant, Λ, in the Ein-
stein equations. The source of the expansion acceleration is assigned to an exotic, and yet not
understood, type of energy filling the Universe, and contributing up to 70% of its total energy
density, known as the Dark Energy (DE). Another constituent, the Cold Dark Matter (CDM),
is responsible for most of the non-relativistic matter budget of the Universe. It does seems to

6



1. The Big-Bang Cosmological Standard Model 7

interact only through gravity, and it contributes up to 25% of the total energy density of the
Universe. The remaining 5% come from Baryonic matter, that constitutes us among other.

CMB photons

Time

Inflation

Recombination | CMB

First nuclei | BBN

Galaxies formation

Dark Ages

Λ dominates
Today

First stars

Quark epoch
Lepton epoch

Photon epoch

First atoms

Matter dominates

Reheating

Reionization

Radiation dominates

380 ka

< 10 -32 s

Planck era

Grand Unification

< 10 -43 s
< 10 -36 s

10 -12 s
1 s 1 s 1 Ga

13.8 Ga

~ min

Neutrino decoupling | CνB

50 ka

10 -32 s

9.8 Ga

10 s
Primordial Gravitational waves

Figure 1.1: Chronology of the Universe. Vertical axis is space distances, horizontal axis is
for time coordinates. During its evolution, the Universe expansion rate is driven by different
constituents : first radiation, then matter, and up until quite recently, some dark-energy in the
form of a cosmological constant Λ. The first light nuclei formed during the first 3 minutes and
stayed ionized during 300000 years, until they captured electrons, forming neutral atoms. The
CMB was emitted around 13 billions years ago. Adapted from National Geographic Society,
April 2014.

1.2 General relativity and dynamic of the Universe

In GR, the apparent gravitational force is the result of the geometrical warping of space-time.
GR is based on the equivalence principle (EP), which states that gravitational and inertial
masses are equivalent (weak EP). In addition, gravity is seen as an apparent force which can be
cancelled by choosing an appropriate new system of coordinates (Einstein EP), i.e. a coordinate
system attached to the particle.

In the framework of GR, space-time and matter are related via the Einstein equation. As
famously resumed by John Wheeler,

Space tells matter how to move, matter tells space how to curve.

Therefore, providing an appropriate description of the Universe’s space-time properties, the
evolution of both its geometry and its constituents can be calculated.
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Metric

The local space-time geometry is described by the so-called metric, a two-indices tensor gµν .
The indices evolve in a four-dimensional coordinate system, µ, ν = {0, 1, 2, 3}, with 0 the time-
like coordinate, and 1, 2, 3 the space coordinates x, y and z. The metric accounts for the
relative change of (space and time) distances when changing of reference system. Physical
invariants can be determined from it, such as the well-known distance interval, or line element,
ds2 ≡ gµνdx

µdxν . In the absence of gravitation, the special relativity is described by the (flat)
Minkowski metric gµν = ηµν , with ηµν ≡ diag(−1, 1, 1, 1).

One key advantage of using the metric is that is easily accounts for the change in coordinates
when describing the motion of a particle. Indeed, a free falling particle follows the Geodesic
equation,

d2xµ

dλ2
= −Γµαβ

dxα

dλ

dxβ

dλ
. (1.1)

The motion of the particle is described by the left hand-side of the equation, while the change of
coordinates is accounted for in the right hand side. The latter involved the so-called Christoffel
symbols, which depend on the metric,

Γασµ ≡
1

2
gαν [gµν,σ + gσν,µ − gµσ,ν ] . (1.2)

From the equivalence principle, we can always find a metric such that the Christoffel symbols
vanish. In that case, we recover Newton first law conservation of motion.

A homogeneous and isotropic Universe is described by the space-independent
Friedmann–Lemaitre–Robertson–Walker (FLRW) metric gµν = diag(−c2, a2(t), a2(t), a2(t)). The
generic line element invariant is therefore

ds2 = −c2dt2 + a2(t)dl2, dl2 ≡ 1

1−Kr2
dr2 + r2(dθ2 + sin2 θdϕ). (1.3)

The spatial metric dl2 encodes the global spatial curvature parametrised by K. In a flat Eu-
clidean Universe, K would vanish and dl2 = dx2 +dy2 +dz2, while for a closed (open) Universe,
the curvature parameter is positive (negative).

Evolutions parameters and distances

In Eq. (1.3) we refer to x, y, and z as the comoving coordinates, as they do not evolve with time.
While the physical coordinates are noted a(t)x, a(t)y, and a(t)z, and stretch proportionally to
a(t) as the Universe undergoes expansion. Defining χ as the comoving distance between two
observers, the physical distance therefore reads D = a(t)χ, and evolves following the Hubble-
Lemâıtre law,

Ḋ = HD, (1.4)

with the upper dot indicates the time derivative, and H ≡ ȧ/a the Hubble parameter, expressed
in units of inverse-time, and whose current measurements readsH0 ' 67.74±0.46 km/s/Mpc (Planck
2015 Results. XIII.). This law reflects an important aspect : cosmological objects seem to go
away from an observer with a velocity proportional to their relative distance.

Writing dχ = dD/a = cdt/a, and taking c = 1, the comoving distance can therefore be
computed as

χ(a) =

∫ t0

t(a)

dt′

a(t′)
(1.5)

=

∫ a0

a

da′

a′2H(a′)
. (1.6)
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An important evolution parameter is the comoving horizon, or conformal time (in contrast to
cosmic time t).

η ≡ χ(a = 0) (1.7)

=

∫ t0

0

dt′

a(t′)
, (1.8)

measures the comoving distance travelled by a photons emitted at t′ = 0, up until now, at
t′ = t0.

As distant sources are moving away from us, the spectra of their image undergo a spectral
shift. We define the (photon) redshift, z(t), as the absolute difference between the wavelength
of observation at time t, and the wavelength of emission,

z(t) ≡ λobs(t)− λemit

λemit
. (1.9)

Since photons pursue light geodesics ds2 = 0, it follows from Eq. (1.3) that dl/dt = a(t)−1. As the
Universe expands, the wavelength of photons emitted by distant sources stretches proportionally
to the scale factor, λobs(t) ∝ a(t). As a consequence, their energy, E ∝ λ−1, decreases, and from
Eq. (1.9), we can write 1 + z = a(t)−1. It means that objects with higher redshifts belong
to younger epochs of the Universe. Thus, in addition to η, both the scale factor a(t) and the
redshift z(t) can be used as cosmological evolution parameters.

Einstein equations

The Einstein equation,

Gµν + Λgµν =
8πG

c4
Tµν , (1.10)

connects the space-time geometry (left side) with its energy content (right side), encoded in
the stress-energy tensor Tµν . The factor on the right-hand side term can also be expressed in
natural units, 8πG = M−2

pl , with c = 1, and Mpl ' 2.5 × 1018 GeV the reduced Planck mass.
The Einstein tensor,

Gµν ≡ Rµν −
1

2
gµνR, (1.11)

is composed of the Ricci scalar R ≡ Rµνg
µν , and the Ricci tensor Rµν ≡ Rαµαν . Both are

contractions of the Riemann tensor1 Rαβµν ≡ Γαβν;µ−Γαβµ;ν+ΓασµΓσβν−ΓασνΓσβµ which characterises
the space-time curvature, and can be computed from Eq. (1.2), thus from the metric as well as
its first and second derivatives. The relations between the matter and the Universe geometry can
therefore be found by solving the Einstein equations. The solutions for an expanding Universe
were independently developed by Alexander Friedmann and Georges Lemâıtre.

Friedmann-Lemâıtre equations

The Universe can be idealized as filled with perfect fluids with density ρ(t) and pressure p(t).
Therefore T00 = ρ(t) and Tij = p(t)δij , with i, j the spatial coordinates only.

Solving the Einstein equations respectively for the time component (µ = ν = 0) and spatial
components (µ, ν = i, j) leads to the Friedmann-Lemâıtre (FL) equations,

H2 =
8πG

3
ρ− K

a2
+

Λ

3
, (1.12)

ä

a
= −8πG

6
(ρ+ 3p) +

Λ

3
. (1.13)

1The semi-column ; is the covariant derivative defined on a curved manifold
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Those are cornerstone equations of modern cosmology. They relate the expansion evolution
of the Universe to the different fluids that populate it. From the Bianchi identities, one can show
that Gµν;µ = 0, and we recover the energy-momentum conservation, Tµν;µ = 0. Since spatial
homogeneity is assumed, only the time component of the latter formulae leads to one non-trivial
solution, the continuity equation,

ρ̇ = −3H(p+ ρ). (1.14)

This equation can also be found by combining both FL Eqs. (1.12) and (1.13).

Evolution of the Universe

Since we have only two independent equations for three unknowns (a, ρ, p), an equation of state
relating the pressure with density is conveniently added,

p = wρ. (1.15)

Hence, integrating Eq. (1.14), we find an expression for the evolution of the densities,

ρ = ρ0a
−3(1+w), (1.16)

with ρ0 the density today. The parameter w depends on the nature of the fluid:

• The non-relativistic matter is pressure-less and includes baryons (b) and cold dark matter
(c), hence we write wm = 0, and ρm ∝ a−3, with m = b, c.

• For radiation, which includes relativistic matter such as photons (γ) or early-time neutrinos
(ν), we write wr = 1/3 and ρr ∝ a−4, with r = γ, ν.

• The cosmological constant can be considered as a fluid, with constant density and negative
pressure, hence wΛ = −1 and ρΛ = cst.

The matter conservation Eq. (1.16) simply reflects that matter and radiations energy densities
dilute as the Universe expands. The rates however differ. Matter density decreases as the cube
of the inverse scale factor, a−3. Because the expansion stretches the photon wavelengths, the
radiation density rate has an extra factor, hence scaling as a−4. Considering only one fluid, with
a density parametrised as in Eq. (1.16), the first FL Eq. (1.12) becomes

H(a) = H0a
−3(1+w)/2, and a ∝ t

2
3(w+1) . (1.17)

In practice, the Universe is populated with multiple fluids. To quantify which terms dominate
in the FL equations, we conveniently express them in term of dimensionless energy densities,

ΩΛ ≡
Λ

3H2
=
ρΛ

ρcr
, ΩK ≡ −

K

a2H2
, Ωx ≡

8πGρx
3H2

=
ρx
ρcr

, x = {m, r}, (1.18)

with ρΛ ≡ Λ/8πG, and ρcr ≡ 3H2
0/8πG the critical energy density which corresponds to the

total density in a flat Λ-free Universe. Using this parametrisation, the first FL Eq. (1.12) and
the conservation Eq. (1.14) can be re-expressed as

1 = Ωr + Ωm + ΩΛ + ΩK , (1.19)

Ωx = Ωx0

(
a

a0

)−3(1−wx)

. (1.20)

Ultimately, from the FL equations, the evolution of the Hubble parameter is provided by

(
H

H0

)2

≡ Ωm0a
−3 + Ωr0a

−4 + ΩK0a
−2 + ΩΛ0. (1.21)
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As it expands, the Universe is therefore dominated by different natures of energy densities. Cur-
rent measurements (see Sec. 4.6) indicate that we live in a flat Universe, |ΩK0| = 0.0008+0.0040

−0.0039

(Planck 2015 Results. XIII.). The remaining densities are radiation, matter, and dark en-
ergy (Peter et al. 2009) :

• Today, the Universe is dominated by a cosmological constant, ΩΛ0 = 0.685± 0.013, and is
composed of significant amount of matter Ωm0 = 0.315± 0.013, while radiation density is
almost negligible Ωr0 ' 8.47× 10−5.

• In the past, the Universe has gone through two phases :

– a radiation era, dominated by Ωr,

– followed by a matter era, dominated by Ωm. The transition between both phases is
referred to as the matter-radiation equality, when Ωm = Ωr, therefore occurring at
redshift zeq ' 3200.

• In the future, ΩΛ will continue to grow, and the Universe expansion will be driven by a
cosmological constant only.

We define the Hubble time, or Hubble horizon, as the reciprocal of the Hubble parameter,
tH ≡ 1/H. For a monotone Universe expansion a(t) = Ct, C = cst, the Hubble time is nothing
but the age of the Universe, tH = t. In reality, the Universe does not expand linearly, so this
relation is not exact. To obtain the age of the Universe, one must remember that H = da/adt
and integrate Eq. (1.21) between a = 0 and a = 1 (or between z = 0 and z =∞). This roughly
provides t ' 14 billions years.

1.3 Thermal history of the Universe

If we go back far enough in the past, the Universe was much denser and hotter than today.
Though the earliest phases of the Big-Bang are uncertain, we generally assume that the early
Universe (. 1 s) was filled with a hot plasma consisting of relativistic elementary particles in
thermodynamic equilibrium. Those are mainly quarks, electrons, positrons, (anti-) neutrinos,
and photons. The origin of such a plasma will be discussed in Sec. 2, when introducing the
motivation and origin of the inflationary theory.

As the Universe expands, the pressure as well as the temperature decrease. The latter can
therefore be used as a cosmic evolution parameter. We generally refer to the photons temperature
either in kelvin or in electron-volt, since T [K] = E/kB [K], with kB = 8.6 × 10−5 eV/K the
Boltzmann constant.

As the Universe cools down, processes droved by thermodynamic can occur, producing or
annihilating particles, allowing bound states to form, or particles to decouple from the primordial
thermal bath. Such processes are described by thermodynamic laws applied to an Universe in
expansion. We will go through some of the key phases of the thermal history of the Universe.
Those are highlighted in Table. 1.1.

Interaction rate and decoupling

At some point, because temperature was high as well as the rate of interaction between particles,
the matter was forming a smooth homogeneous plasma, whose constituents maintained thermal
equilibrium by multiple scattering. The rate of interaction, defined as Γ = 〈nσ〉 v, depends on
the cross-sections σ, the relative velocity v between the reacting particles, hence the effective
temperature of the primordial plasma, and finally on the number density n of the particles. As
the Universe expands, the temperature grew cooler, and the interaction rate decreases. At some
point, when the interaction rate falls below the expansion (Hubble) rate H, the mean free path
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Time Temperature [kB K] Events

10−43 sec. 1019 GeV • Planck Era, eventual quantum theory of gravity.

10−38 sec. 1016 GeV • Eventual GUT transition.

? ? • Cosmic inflation, and reheating.

10−30 sec. 1012 GeV • Eventual Peccei-Quinn phase transition.

10−11 sec. 102 GeV • Electroweak phase-transition.

? ? • Baryogenesis, baryon asymmetry, neutron and
protons production.

? ? • Eventual dark matter freeze-out.

10−4 sec. 100 MeV • µ+µ− → γγ annihilation.

∼ sec. ∼ MeV • ν decoupling.

10 sec. 0.5 MeV • e+e− → γγ annihilation

∼ sec. - min. 0.1 MeV • Big-Bang Nucleosynthesis (BBN), formation of
D, T, 4He, 3He, and 7Li nuclei.

105 sec. ∼ keV • Photons fall out of chemical equilibrium.

10−(4 - 5) yr 3 eV • Matter-radiation equality. Start of matter
domination.

400 000 yr ∼ eV • Recombination e+ p→ H + γ.

400 000 yr ∼ eV • Decoupling of CMB photons from the primordial
plasma.

106 yr 10−(1 - 2) eV • End of baryon drag.

108 yr 10−3 eV • Dark ages, then reionization.

109 yr 10−3 eV • First stars and galaxies.

1010 yr 10−4 eV • Galaxy clustering. Dark Energy - matter equality.

1.4× 1010 yr < 10−4 eV • Today, Dark Energy domination.

Table 1.1: Thermal history of the Universe. Most quantities are approximative, and serve as a
rule of thumb.
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of the particles becomes too long for reactions and thermalisation to occur. The interactions
freeze, and the constituents decouple from the plasma. In the following we enumerate some key
decoupling events.

Photon temperature

For any species, the energy density can be expressed as (Dodelson 2003)

ρi = gi

∫
d3p

(2π)3
fi(~x, ~p)E(p). (1.22)

with ~x and ~p respectively the position and impulsion of the particles. The energy is E =√
p2 +m2, and gi accounts for the degeneracy of the species. The particles follow either Bose-

Einstein (for bosons) or Fermi-Dirac (for fermions) distributions,

fBE/FD =
1

e(E−µ)/T (t) ∓ 1
. (1.23)

At the temperatures of the early Universe, the chemical potential µ can generally be neglected
in Eq. (1.23). For photons, integrating Eq. (1.22) with gγ = 2 gives ργ = π2T 4/15. At the early
Universe, we are well into the radiation-dominated era. From Eq. (1.16), the energy density
therefore scales as ρr ∝ a−4. The number density for radiation scales as ρr ∝ T 4, thus the
photons temperature scales as the inverse scale factor, T ∝ a−1.

Baryogenesis

The Universe is observed to be populated by matter (as opposed to anti-matter). However, one
might expect the Big-Bang to produce particles and antiparticles in equal numbers. Our matter-
dominated Universe can be explained by introducing a slight difference between the number of
baryon and anti-baryon produced during the early Universe (< 10−4sec.). This yet unsolved
riddle is referred to as the Baryogenesis. Several models in particle physics attempt to explain
such baryon asymmetry, although none are decisively solving the issue. Two main theories exist,
one describing the Baryogenesis during the Grand Unified Theory (GUT) epoch, and the other
describing the Baryogenesis occurring during the electroweak epoch. Anyway, a set of three
necessary conditions under which baryon asymmetry can be explained is generally attributed
to Andrei Sakharov (1967) : the baryon number B should (obviously) be violated; C and CP
symmetries should be broken; finally, it should take place out of thermal equilibrium such that
the inverse process cannot occur (Cline 2006).

The baryon asymmetry is often quantified by the baryon/photons ratio (Planck 2015 Results.
XIII.),

ηb/γ ≡ (nB − nB̄)/nγ ' (6± 0.25)× 10−10, (1.24)

with nB and nB̄ the respective baryons and anti-baryon number densities.

Neutrino decoupling

At temperatures a little above 1 MeV, neutrinos (ν) are efficiently coupled to the electrons (e−)
and positrons (e+) of the plasma via weak interactions of the form e+e− � νν̄ and eνe � eνe.
The reactions involve the exchange of virtual Z bosons, as well asW± for the electronic neutrinos.

We can roughly calculate the interaction rate of such process (Bernstein et al. 1989). For
matter, the number density scales as the inverse cube of the scale factor, nm ∝ a−3 ∝ T 3. Since
particles are highly relativistic, the product between the relative velocity and the cross-section
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is approximated by 〈vσ〉 ∼ G2
FT

2, with GF ' 10−5 GeV−2 the Fermi constant. Hence, the
reaction rate goes as Γ ∼ G2

FT
5. Since the Universe is radiation dominated, from the first FL

Eq. (1.12) we have H =
√

8πGρr/3 ∼ T 2/Mpl.

Therefore, neutrinos decouple from the plasma when Γ ∼ H, that is to say, when T ∼
(MplG

2
F )−1/3 ∼ 1 MeV. They form the so-called Cosmic Neutrino Background (CνB).

Particle annihilation

When temperatures are much higher than the mass of the electrons, me ' 0.5 MeV, the photons
(γ), electrons, and positrons, are kept in relatively same abundance via the electromagnetic
interaction e+e− � γγ. However, as soon as the temperature drops under me ∼ 0.5 MeV, the
production of e+e− is no more effective, and they start to annihilate, transferring their entropy to
the photons, hence slowing the decrease of the plasma temperature. The annihilation is stopped
by a slight baryon asymmetry, as electrons have no more positrons to annihilate with. The same
process occurred earlier for the muons and anti-muons µ±, at a energy scale of mµ ' 100 MeV.

Nucleosynthesis

Solving the Boltzmann equations in an expanding Universe allows us to deduce the relative
quantities of bounds states formed by protons and neutrons. Those computations especially
follow from the ground-breaking work of Gamow, Alpher and Herman (R. A. Alpher et al.
1948; Gamow 1948). We enumerate four groups of process (Coc et al. 2017) :

• Neutron - protons equilibrium : at first, neutron and proton numbers are kept in equi-
librium thought the processes p + e− ↔ n + ν and n ↔ p + e− + ν̄. About 1 sec. after
the ‘Big-Bang’, when the temperature becomes less than the neutron-proton mass differ-
ence, the reactions favour protons production (as their mass is slightly lower than that of
neutrons), and the number ratio between both freezes out at about 1 neutron for every 6
protons.

• Neutrons decay : when the above weak interactions stop to be effective, neutron decay,
n→ p + e− + ν̄ begins, bringing down the nuclei ratio to 1 neutron for every 7 protons.

• Deuteron formation : between 1 to 3 minutes, at T ∼ 0.1 MeV, the temperature of photons
is low enough to allow the protons and neutrons to fuse into deuteron, p + n↔ d + γ.

• Helium nuclei formation : finally, further reactions proceed to make helium nuclei, which
net effect can be written d + d→ He + γ. Almost each neutron ultimately finds itself in a
Helium nucleus.

The number of resulting nuclei mainly depends on one parameter, the baryon/photons ratio
ηb/γ , defined in Eq. (1.24). The larger ηb/γ is, the more efficiently deuterium will be transformed
into Helium. No heavier nuclei are formed above Helium (except for a small amount of Lithium
and Beryllium). Indeed, temperatures become too small for the formation of stable nuclei with
higher atomic number to be effective. All other elements that we observe today are produced
much later, mainly during stellar nucleosynthesis (stars evolution and death).

From the predicted neutron-proton ratio 1 : 7, a quick calculation allows to roughly predict
a mass fraction of Helium at about 25% that of the total mass of produced nuclei, which
is in extremely good agreement with current observations. The evolution of all species with
temperatures can be computed numerically, as shown on the top panel of Fig. 1.2.

A powerful probe consists in measuring the relative abundances of light elements in interstel-
lar medium, other galaxies, or via Ly-α absorption in the spectra of quasars emissions. Those
can be confronted with ηb/γ , which is proportional to Ωb and measured independently on the
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CMB, as shown on the bottom panel of Fig. 1.3. Both measurements are in excellent agreement.
The Big Bang Nucleosynthesis (BBN) is considered as a triumphs for Big-Bang cosmology, as it
successfully describes the early Universe and production of the relative number of light elements
such as Hydrogen and Helium (Burles et al. 1999).75 3. Thermal History
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Figure 3.11: Numerical results for the evolution of light element abundances.

The shape of the curves in fig. 3.11 can easily be understood: The abundance of 4He increases

with increasing ⌘ as nucleosythesis starts earlier for larger baryon density. D and 3He are burnt

by fusion, thus their abundances decrease as ⌘ increases. Finally, 7Li is destroyed by protons at

low ⌘ with an e�ciency that increases with ⌘. On the other hand, its precursor 7Be is produced

more e�ciently as ⌘ increases. This explains the valley in the curve for 7Li.

Figure 1.2: Predicted species abundance evolution during the Big-Bang Nucleosynthesis. From
Daniel Baumann Lectures.

Recombination and photon decoupling

After BBN, the photons are still coupled to the thermal bath via Thomson scattering, e−γ ↔
e−γ. The Universe had to wait for the temperature to be low enough, around ∼ 1eV, for
electrons to form neutral bound state atoms with free nuclei produced during the BBN. As
the number of free electrons exponentially decreases, photons decouple from the plasma and
free-stream through the Universe, forming a Cosmic Microwave Background (CMB). The time
of recombination can be roughly estimate by solving the so-called Saha equation, which gives
∼ 380 000 years, and T ∼ 3700 K. The photons decoupling can be considered as almost instan-
taneous. The CMB can therefore be pictured as a surface, the photons last scattering surface
(LSS), whose redshift is around z∗ ' 1100.

1.4 The Cosmic Microwave Background

As they travel through the expanding Universe, the CMB photons undergo a redshift and lose
energy. Since most of them come from the primordial thermal bath, the CMB radiative spectrum
is expected to follow a Black-Body (BB) emission law,

Iν =
4π~ν3

c2

1

e2π~ν/kBTCMB − 1
, (1.25)

with ν the frequency of the electromagnetic radiation. The spectrum observed by the FI-
RAS instrument on board of the COBE satellite verified successfully this prediction, measuring
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Figure 3.10: Theoretical predictions (colored bands) and observational constraints (grey bands).

• ⌧n: a large neutron lifetime would reduce the amount of neutron decay after freeze-out

and therefore would increase the final helium abundance.

• Q: a larger mass di↵erence between neutrons and protons would decrease the n/p ratio

at freeze-out and therefore would decrease the final helium abundance.

• ⌘: the amount of helium increases with increasing ⌘ as nucleosythesis starts earlier for

larger baryon density.

• GN : increasing the strength of gravity would increase the freeze-out temperature, Tf /
G

1/6
N , and hence would increase the final helium abundance.

• GF : increasing the weak force would decrease the freeze-out temperature, Tf / G
�2/3
F ,

and hence would decrease the final helium abundance.

Changing the input, e.g. by new physics beyond the Standard Model (BSM) in the early universe,

would change the predictions of BBN. In this way BBN is a probe of fundamental physics.

Light Element Synthesis⇤

To determine the abundances of other light elements, the coupled Boltzmann equations have to

be solved numerically (see fig. 3.11 for the result of such a computation). Fig. 3.10 shows that

theoretical predictions for the light element abundances as a function of ⌘ (or ⌦b). The fact that

we find reasonably good quantitative agreement with observations is one of the great triumphs

of the Big Bang model.

Figure 1.3: Theoretical prediction of number of light elements relative to Helium abundance.
Horizontal boxes indicate current astrophysical observations, while the vertical grey band corre-
sponds to the baryon/photons ratio measured on the CMB by the WMAP satellite experiment.
Here, the photon-baryon ratio is defined as ηb/γ = η inferred from CMB measurements of the
by the WMAP satellite, not to be confused with the comoving distance. From Daniel Baumann
Lectures.

TCMB = 2.725 ± 0.001 K (Mather et al. 1994), as shown in Fig. 1.4. This value is surprisingly
close to the prediction first provided by Halpher and Herman, with TCMB ≈ T∗/z∗ ' 5 K (Ralph
A. Alpher et al. 1948).

When mapping the CMB temperature, a dipole δT is also found, which originates from the
combined movement of the solar system and the Milky Way relative to the CMB, hence inducing
a Doppler shift on the CMB temperature map,

δT (θ) = (3.346± 0.017)× 10−3 K cos θ, (1.26)

with θ the angle between the dipole and the observation direction. Residual CMB temperature
fluctuations are observed with relative small amplitudes, δT/T ' 10−5 (e.g. WMAP or Planck
satellite experiments). Those anisotropies are the order of a few tenth of µK, and reveal the
presence of matter density fluctuations at the epoch of photons decoupling. After decoupling,
the inhomogeneities of matter density will continue to grow under gravitational effect, and will
form the large scale structures such as galaxies and clusters of galaxies that we see today. CMB
photons reveal to be valuable Cosmological probes, for they keep the imprint of their cosmic
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Figure 1.4: CMB black body spectrum measured by FIRAS instrument of the COBE satellite.
Notice that error bars indicate 400σ. From Ned Wright’s Cosmology Tutorial - Part 1 2019

journey all the way back to the time at which they decoupled. Details on the CMB physics is
discussed in Sec. 4.

1.5 A puzzling model

The Big-Bang cosmological model as presented up until now suffers from several puzzling ques-
tions. Three of them prevail : the problem of horizon, the flatness problem, and the origin of
primordial fluctuations.

The horizon problem

Using Eqs. (1.6) and (1.17), assuming a Universe dominated by a fluid characterised by a given
w, we can compute the comoving distance between a distant object at redshift z and an observer,
O, positioned at a much smaller redshift zO � z,

χ =
2

(3w + 1)H0

[
(1 + zO)−(3w+1)/2 − (1 + z)−(3w+1)/2

]
. (1.27)

Notice that for matter or radiation (w ≥ 0) the comoving distance receives a contribution mostly
from the zO term.

From Eq. (1.27), assuming a matter-dominated Universe, w = 0, we can fairly estimate the
comoving distance between us (zO = 0) and the CMB photons LSS (z = z∗ ∼ 1100), hence
χCMB ' 2/H0.

At time of decoupling, the Universe is already well into the matter-dominated era. At this
time, the comoving horizon at time of decoupling was approximatively η∗ ' 2/H0

√
1100 (taking

zO = z∗ and z =∞).

Therefore, the regions for which particles were in causal contact at the time of decoupling
subtend an angle θ ' η∗/χCMB ' few degrees on the CMB surface that we observe today. It
means that the CMB can be divided into ∼ 40 000 patches that were not causally connected
at the time of decoupling, but sharing the same temperature, with a difference of δT/T '
10−5 (Trodden et al. 2004). Understanding how the early Universe got thermalised and so much
homogeneous over larger-than-causal distances is known as the horizon problem.
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The flatness problem

Looking back to the metric defined in Eq. (1.3), the geometry of the Universe is allowed to
adopt a global curvature, characterised by the parameter K. However, current measurement
from the CMB indicates that we live in a flat Universe, with |ΩK0| . 102. This reveals to be
quite problematic. Indeed, we can neglect the relatively recent contribution from dark energy,
such that the second FL Eq. (1.13) can be rearranged as

Ḣ

H2
+ 1 = −(1 + 3w)

2
Ω, (1.28)

or, combined with Ω ≡ Ωm + Ωr = 1− ΩK , into the form

dΩK

dN
= (3w + 1)(1− ΩK)ΩK , (1.29)

where N ≡ ln(a) the number of e-folds. Integrating this equation, supposing w constant,
provides

ΩK(z)

Ω(z)
=

ΩK0

Ω0
(1 + z)−(1+3w). (1.30)

This equation shows that a Universe with non-zero curvature is very unstable. As it expands,
any initial departure from ΩK = 0 will induce growth of the curvature density for a fluid
characterised by w > −1/3, which is the case during matter and radiation epochs. Hence, a
curvature density observed today at |ΩK0/Ω0| . 10−2 requires that |ΩK/Ω|zeq . 10−5 at the
epoch of matter-radiation equality, and |ΩK/Ω|zpl . 10−60 at Planck time (Trodden et al. 2004).
This puzzling observation where the early Universe seems extremely fine tuned is the so-called
flatness problem.

Origin of structures

The Universe that we observe today at small scales is characterised by highly inhomogeneous
structures such as clusters of galaxies or cosmic voids. When matter era began, small inho-
mogeneities could start to grow, forming the large scale structures of today. The origin of
those anisotropies of densities can be found on the CMB, reflected by the fact that photons
temperature distribution shows slight inhomogeneities on the sky. However, the origin of those
fluctuations is not explained by the standard FLRW model.

The cosmic inflation, a paradigm which emerged in the early 1980s, proposes to solve in an
elegant way the three Big-Bang problems simultaneously. In the next section, we propose to
review the main aspects of the inflationary theory.
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2 Inflation

In this section, we explore the general formalism of the inflationary theory. It was motivated by
the seemingly fine-tunings of the FLRW Universe introduced in Sec. 1.5.

2.1 Motivation

An accelerating expansion

One way to justify the high homogeneity between the different patches observed on the CMB
is to assumed that a past causal connection existed between those regions. In other words, it
amounts to demand that the comoving horizon η∗ at time of photon decoupling was much larger.
From Eq. (1.27), for a matter or radiation dominated Universe (w ≥ 0), we see that most of the
contribution to the comoving horizon η∗ comes from late times (small redshift). Therefore, for
η∗ to receive contributions from early times, at some point during the early Universe, we should
have had w < −1/3. Indeed, in that case, the factor (3w + 1) in Eq. (1.27) is negative, and
the z term (early time, high redshift) becomes dominant compared to the zO term (late time,
observer redshift).

The need for a state equation with w < −1/3 at early times also shows up when attempting
to solve the flatness problem. Indeed, from Eq. (1.30), the Universe content evolution becomes
unstable only for w > −1/3, again, when assuming only a radiation-dominated early epochs.

Instead, if one assumes that another component, aside matter or radiation, drove the expan-
sion rate before radiation-dominated epoch, the horizon problem can be solved. Such component
should be characterised by a negative pressure, with w < −1/3. This is the case for a cosmolog-
ical constant fluid, but Dark Energy only became dominant recently2. The second Friedmann
Eq. (1.13) dominated by a fluid with w < −1/3 requires that ä > 0, that is to say, the early Uni-
verse must have underwent an accelerating expansion. Such phase is known as the cosmological
inflation (Guth 1981; Linde 1982; Albrecht et al. 1982).

The sphere of causal contact at any time is defined as the comoving Hubble radius (aH)−1.
Therefore, From the Hubble-Lemâıtre law of Eq. (1.4), an object positioned at a distance equal
to one comoving Hubble radius is receding from us at the speed of light. Requiring ä > 0 is
equivalent to

d(aH)−1

dt
= −1

a

[
Ḣ

H2
+ 1

]
< 0. (1.31)

Inflation e-folds

We define ti and te the time at which inflation respectively started and ended. Most inflationary
models assume H nearly constant during inflation, therefore |ΩK(te)/ΩK(ti)| ' (ae/ai)

−2 =
e−2N , with

N ≡
∫ te

ti

H dt =

∫ ae

ai

d ln a (1.32)

= ln

(
ae
ai

)
, (1.33)

the number of e-folds during the inflation phase.

2Moreover, once a Universe becomes dominated by Λ, it stays dominated by a cosmological constant. There-
fore, DE is not a viable solution to the Big-Bang problems.
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From Sec. 1.5, the minimal length of the inflationary period that solves the flatness problem
must provide |ΩK(te)| . 10−60 at the time inflation ends, thus requiring N & 70 (Peter et al.
2009).

Similarly, for inflation to solve the horizon problem, we demand that at least the largest scales
observed today ≈ 1/H0 should be within the horizon before inflation started, 1/a0H0 < 1/aiHi.
Equivalently,

Hi

H0

ae
a0
.
ai
ae
. (1.34)

Since, after inflation, the temperature goes as T ∝ a−1, we have ae/a0 = T0/Te. Therefore,
replacing ai/ae = e−N , we obtain

N & ln

(
T0

H0

)
+ ln

(
Hi

Te

)
' 67 + ln

(
Hi

Te

)
. (1.35)

The last term depends on the temperature at the end of inflation, and the Hubble parameter
at the beginning of inflation. Those vary depending on the inflationary models considered.
Typically, N & 40. (Peter et al. 2009; Kamionkowski et al. 2016).

Horizons

Conventionally, conformal time during inflation is negative, and it is thus redefined as η → η−ηe.
Figure 1.5 provides the evolution of the Hubble radius during and after inflation era. It is
observed to shrink during inflation, then starts to grow again as the Universe is dominated by
radiation then by matter. Only recently, the Hubble radius began to reduce again, as Dark
Energy dominates. If considering only the upper half of the diagram (no inflation), the horizon
problem appears quite blatantly, as our past light cone seems to intersect opposite regions of the
CMB separated by distances much larger than the Hubble radius at those times. Those regions
appear never to have been in causal contact before reheating, since their respective light-cone
do not overlap. The introduction of the inflationary phase solves this problem, and two distant
patches observed on the CMB are allowed to have been in causal contact before the beginning
of the inflation era.

2.2 Inflaton field

Action

The most popular and simplest mechanism to explain the inflation phase consists in considering
a scalar field, the ‘inflaton’, whose vacuum energy produces negative pressure. The action of a
scalar field φ evolving in a potential V (φ) is given by

Sφ =

∫
d4xL√−g, L =

(
−1

2
∂µφ∂µφ− V (φ)

)
, (1.36)

with g the determinant of the metric. The stress-energy tensor is obtained when varying the
action with respect to the metric,

Tµν =
2√−g

δ(
√−gL)

δgµν
(1.37)

= ∂µφ∂νφ− gµν
(

1

2
∂αφ∂

αφ+ V (φ)

)
. (1.38)
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redshift z

18 1 Inflation: Theory and Observations

why the CMB is so uniform, we must also explain why its small fluctuations
are correlated on apparently acausal scales.
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Fig. 1.2. Inflationary solution to the horizon problem. The comoving Hubble
sphere shrinks during inflation and expands during the conventional Big Bang
evolution (at least until dark energy takes over). Conformal time during inflation
is negative. The spacelike singularity of the standard Big Bang is replaced by
the reheating surface: rather than marking the beginning of time, ⌧ = 0 now
corresponds to the transition from inflation to the standard Big Bang evolution.
All points in the CMB have overlapping past light cones and therefore originated
from a causally connected region of space.

1.1.2 Cosmic Inflation

To address the horizon problem, we may postulate that the comoving Hub-
ble radius was decreasing in the early universe, so that the integral in (1.3)
is dominated by the contributions from early times. This introduces an ad-
ditional span of conformal time between the singularity and recombination
(see fig. 1.2): in fact, conformal time now extends to negative values. If the
period of decreasing comoving Hubble radius is su�ciently prolonged, all
points in the CMB originate from a causally connected region of space. The
observed correlations can therefore result from ordinary causal processes at

Figure 1.5: Horizons evolution during and after inflation. Vertical axis accounts for the conformal
time η (left) or the scale factor a (right), while the horizontal axis is for space distances from us
(in redshift z today). Our light cone represents all the sources from which we are receiving light
now. The CMB surface (horizontal line) is seen at redshift z ≈ 1100. Note that, by definition,
the CMB surface should stop when intersecting our light cone. Opposite regions of the CMB
on the sky have respective light cones intersecting in the past, allowing a causal contact, at the
beginning of inflation. In the future, our light cone and the Hubble radius will converge to the
same size, as an effect of dark matter domination. From Baumann et al. 2014.

Assuming the field is mostly spatially homogeneous, φ = φ(t), the density and pressure of the
field are respectively given by the time and the spatial components of the stress-energy tensor,

ρφ =
φ̇2

2
+ V (φ), pφ =

φ̇2

2
− V (φ), (1.39)

with φ̇ ≡ ∂tφ. A negative pressure, i.e. the condition for inflation to occur, w = p/ρ < −1/3,
translates to φ̇2 < V (φ). The field must therefore have higher potential than kinetic energy.

For the inflaton, the matter conservation Eq. (1.16) translates into the Klein–Gordon equa-
tion3

φ̈+ 3Hφ̇+
dV (φ)

dφ
= 0. (1.40)

3Using V̇ = V,φφ̇.
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Slow-roll inflation

If φ̇2 � V (φ), the inflaton has a nearly constant energy density, and is said to be in the slow-
roll regime. In that case, the pressure is proportional to the field density and to the inflaton
potential, p ≈ −ρ ≈ −V (φ), therefore w = −1. From the first FL Eq. (1.12), the Hubble
parameter is therefore nearly constant. Since da/a = Hdt, the expansion is quasi-exponential,
with a(t) = aee

H(t−te). We also see that the conformal time from Eq. (1.8) is equal to the Hubble
radius, η ' −(aH)−1.

Today, slow-roll single-field inflation has becoming the most popular among minimal infla-
tionary models. Other models consider various potential shapes, or even multiple coupled scalar
fields (Martin et al. 2013). A simple example is shown in Fig. 1.6. At the end of inflation,
the energy of the inflaton gets transferred into Standard Model particles4, a period known as
reheating.

70 2 Inflation in E↵ective Field Theory

2.2.1 Slow-Roll: Dynamics and Perturbations

One of the earliest and most influential models of inflation uses a single
scalar field, the inflaton �, minimally coupled to gravity [19, 20],

S =

Z
d4x

p�g

"
M2

pl

2
R � 1

2
(@�)2 � V (�)

#
, (2.36)

where we have allowed for an arbitrary inflaton potential V (�) (see fig. 2.3).

Fig. 2.3. Example of a slow-roll potential. Inflation occurs in the shaded part of
the potential. In addition to the homogeneous evolution �(t), the inflaton experi-
ences spatially-varying quantum fluctuations ��(t, x).

Classical dynamics.—The Friedmann equation and the Klein-Gordon equa-
tion for the homogeneous background field �(t) are

3M2
plH

2 =
1

2
�̇2 + V and �̈+ 3H�̇ = �V 0 , (2.37)

where V 0 ⌘ @�V . These equations can be combined into

" = � Ḣ

H2 =
1
2 �̇

2

M2
plH

2 . (2.38)

Inflation (" < 1) therefore occurs when the potential energy of the field

dominates over the kinetic energy, V � 1
2 �̇

2. The kinetic energy stays small

and slow-roll persists if the acceleration of the field is small, |�̈| ⌧ 3H|�̇|.
The conditions for prolonged slow-roll inflation can be expressed as con-

ditions on the shape of the potential [209]:

✏ ⌘ M2
pl

2

✓
V 0

V

◆2

⌧ 1 , |⌘| ⌘ M2
pl

|V 00|
V

⌧ 1 . (2.39)

Figure 1.6: Example of slow-roll inflaton potential. The shaded region indicates where the
condition for the field φ(t) to roll slowly is met. At the same time, the inflaton experiences
spatial fluctuations δφ(x, t). From Baumann et al. 2014.

Parameters

We generally define the slow-roll parameters,

εV ≡ −
Ḣ

H2
< 1, (1.41)

ηV ≡ −
1

H

φ̈

φ̇
< 1, (1.42)

which follows from the condition for inflation to occur, defined in Eq. (1.31).

In the slow-roll regime, εV � 1 and ηV � 1. In that case, from the Friedman and
Klein–Gordon Eqs. (1.12) and (1.40), we have

εV =
φ̇2

2M2
plH

2
(1.43)

=
M2

pl

2

(
V,φ(φ)

V (φ)

)2

, (1.44)

4... and possibility beyond the SM.
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with V,φ(φ) ≡ ∂φV (φ) ≡ V ′(φ). And

ηV = M2
pl

(
V,φφ(φ)

V (φ)

)
. (1.45)

with V,φφ(φ) ≡ ∂2
φV (φ) ≡ V ′′(φ). The slow-roll parameters therefore characterise the shape of

the scalar field potential. The smaller the parameters, the less the potential shows variations.
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3 Inhomogeneous Universe

Understanding the origin of the primordial matter density fluctuations can be quite technical.
We highlight the main ingredients to understand their nature. To achieve this, we consider that
the Universe is not strictly homogeneous and isotropic. Such deviation from homogeneity and
isotropy is understood by modelling a perturbed FLRW Universe.

3.1 Perturbed FLRW Universe

Perturbed quantities

To understand how inhomogeneities evolve in a perturbed FLRW Universe, we have to consider
perturbations of the metric, the inflaton field, the stress-energy tensor of the cosmological fluids,
and to the distribution functions of those fluids.

• A generic metric perturbation reads, gµν = ḡµν + δgµν , with δgµν characterising small first
order perturbations around the FLRW background metric ḡµν . During inflation, the scale
of the perturbations to the metric grow from quantum to macroscopic scales.

• Similarly, the perturbed energy-impulsion tensor reads Tµν = T̄µν + δTµν . Solving the
Einstein equations helps to describe how the perturbations to the fluids (inflaton, matter,
or radiation) couple to the metric perturbations.

• The quantum spatial perturbations of the inflaton field are assumed to be Gaussian, and
read φ(~x, t) = φ̄(t) + δφ(~x, t), with φ̄(t) the spatially homogeneous background inflaton
field described in Sec. 2.2. Since part of the inflaton and metric fluctuations are coupled,
the inflaton era allows us to characterise the initial conditions of primordial gravitational
fluctuations of the Universe.

• Finally, the perturbations of the fluid distributions fBE/FD defined in Eq. (1.23) are ac-
counted by expanding at first order the temperature field T = T̄ (t) + δT (t, ~x, n̂), with
~x accounting for spatial inhomogeneous distributions of the photons temperature, and
n̂ the photons direction of propagation accounting for their anisotropic distribution. A
systematic approach to describe the fluid evolution is to solve the Boltzmann equation,

df

dt
= C[f ], (1.46)

which quantifies how the phase space density of the fluids evolves with time, depending
on all particle collision terms encapsulated in the C[f ] function.

Characterising the perturbations to the fluid distributions allows us to understand how
inhomogeneities in the primordial plasma evolve and interact. It also connects the tem-
perature anisotropies observed on the CMB to the primordial plasma density fluctuations.
More generally, it helps to constrain the parameters of the standard cosmological model
of the Universe as it will be described in Sec. 4.6.

Perturbation decomposition

From Helmholtz’s theorem, a vector field can be decomposed into the sum of an irrotational part
(written as the divergence of a scalar field) and rotational part. Similar decomposition holds
for rank-two tensors. Therefore, the perturbations can be decomposed into three types : scalar,
vector, end tensor perturbations. This reveals to be very useful, as at first order, those types of
perturbation are decoupled from each other, allowing to study them separately. One must then
solve the Einstein-Boltzmann equation in order to characterise the perturbations in the matter
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field. It is generally simplest to proceed in Fourier space, where any function g(~x, η) transforms
as

g(~x, η) =

∫
d3k

(2π)3
ei
~k·~xg(~k, η), (1.47)

with η the conformal time defined in Eq. (1.8), and ~k the comoving wavenumber, which is the
conjugate of the spatial coordinates ~x, and which can be related to the physical wavenumber as
ki = akphys

i . In that case, the spatial derivative transforms as ∂/∂xi → ki. Because perturbations
are assumed to be small, each Fourier mode can be considered to evolve independently.

3.2 Perturbations generated during inflation

The evolution of the metric and inflaton field set up the primordial fluctuations which will source
the anisotropies of matter and radiation latter observed on the CMB. Those are statistically
described by the variance of the fluctuations at each scale k (Dodelson 2003). We will discuss
only scalar and tensor perturbations, since vector (vorticity) modes production is negligible, for
they decay with the Universe expansion.

Tensor perturbations

The tensor perturbations to the background FLRW metric can be characterised as,

δgij = a2



h+ h× 0
h× h+ 0
0 0 0


 , (1.48)

also known as gravitational waves. The perturbation functions h+ and h× are assumed to
be small, and represent the two polarization states of the wave. Indeed, solving the Einstein
equation for the tensor part of the perturbed metric translates into the wave equation for both
functions,

d2hα
dη2

+ 2
1

a

da

dη

dhα
dη

+ k2hα = 0, (1.49)

with α = +,×. The magnitude of the wave-vector is defined as k ≡
√
kiki. Defining the field

h̃α ≡ ahαMpl/
√

2 which has the dimension of mass, the Eq. (1.49) becomes

1

a

[
d2h̃α
dη2

+

(
k2 − 1

a

d2a

dη2

)
h̃α

]
= 0. (1.50)

The solution for this wave equation is simply that of a harmonic oscillator. The perturbation
functions can be quantum-quantised, and seen as fields,

ˆ̃
h(~k, η) = v(k, η)â~k + v∗(k, η)â†~k, (1.51)

with â the creation operator, and the annihilation operator â† its complex conjugate. The
operators coefficients therefore satisfy the equation

d2v

dη2
+

(
k2 − 1

a

d2a

dη2

)
v = 0, (1.52)
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whose solution reads5

v(~k, η) =
1√
2k
e−ikη

(
1− i

kη

)
. (1.53)

The variance of the perturbation fields of the metric hα reads6

〈ĥ†(~k, η)ĥ(~k′, η)〉 ≡ (2π)3

k3
Ph(k)δ3(~k − ~k′), (1.54)

where we defined the power spectrum

Ph(k) ≡ 2k3

a2M2
pl

|v(k, η)|2, (1.55)

as proportional to the variance of the field fluctuations for each wavenumber k. The so-called
tensor power spectrum corresponds to the sum of power spectrum from both polarisation states
of the wave,

P Tk ≡ Ph+(k) + Ph×(k), (1.56)

=
2k2H2η2

M2
pl

(
1 +

1

k2η2

)
. (1.57)

From Eqs. (1.53) and (1.57),

• for scales smaller than the horizon, k−1 � |η| ' (Ha)−1, the tensor power spectrum reads

P Tk =
2k2H2η2

M2
pl

. (1.58)

• for scales larger the horizon, k−1 � |η| ' (Ha)−1, the oscillations freeze and the tensor
power spectrum is said to be scale-invariant as it does not depend on k,

P Tk =
2H2

M2
pl

. (1.59)

Therefore, at the end of inflation, since the horizon scale |η| is small, most modes are outside
the horizon, and most tensor fluctuations follow distribution from this power-spectrum.

Scalar perturbations

Similarly, one can work out the perturbations for the inflaton scalar field φ (Dodelson 2003).

• When the wavelength of the perturbations are smaller than the horizon scale, one can
show that we can neglect scalar perturbations to the metric, and thus consider a (smooth)
FLRW metric. In that case, solving for the energy-momentum conservation Tµν;µ defined
in Eq. (1.38) provides the following wave equation,

δ̈φ+ 2aH ˙δφ+ k2δφ, (1.60)

which is of same form as Eq. (1.49) for the tensor perturbation discussed in Sec. 3.2. The
power spectrum of the scalar field perturbation is therefore similar (modulo the factor 2
for the two wave polarization states),

P δφk =
k2H2η2

2

(
1 +

1

k2η2

)
. (1.61)

5Since during inflation, H is supposed to be constant, we have η ≡
∫ a
ae
da/Ha2 ' −(aH)−1, hence, ä/a ' 2 η2

in Eq. (1.52)
6Using the operators properties [â~k, â

†
~k′

] = δ~k~k′ , and [â~k, â~k′ ] = 0.
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• On the other hand, when the modes are larger than the horizon scale, the perturbations
to the scalar field couple to the scalar perturbations of the metric. We define7 the latter
as δg00 = −2Ψ(~x, t) and δgij = 2Φ(~x, t), with Ψ and Φ the gravitational potentials.
For8 Φ = −Ψ, when modes are crossing the horizon, k−1 = η, one can show that the
gravitational potentials are related to the inflaton perturbations after inflation ends,

Ψ|k−1≥|η| =
2

3
aH

δφ
˙̄φ

∣∣∣∣∣
k−1=η

. (1.62)

The power spectrum of the gravitational potentials, the scalar power spectrum, becomes

PSk =
4

9

(
H
˙̄φ

)2

P δφk

∣∣∣∣∣∣
k−1=η

(1.63)

=
2

9

H2

εVM2
pl

, (1.64)

where the second equality holds from the relation of Eq. (1.44).

Power spectra and inflation energy

Since εV � 1 in the slow-roll regime, comparing Eqs. (1.59) and (1.64), the scalar modes are
expected to be larger than the tensor modes.

When inflation ends, the wavelength of the quantum fluctuations of the inflaton field have
been stretched to macroscopic scales. Because most of the modes are outside the horizon, we
expect the power-spectra to be almost frozen. The scale dependence of the spectrum can be
parametrised by the so-called scalar and tensor spectral indices ns and nt,

PSk = ASk
ns−1, and P Tk = ATk

nt , (1.65)

with AS and AT the amplitudes of the scalar and tensor power spectra. Their respective spectral
index equal 1 and 0 for scale-invariant spectrum. We also define the running of the spectral
indexes dn/d ln k.

We define the tensor-to-scalar ratio parameter as the ratio of the power spectrum amplitudes,

rk∗ ≡
P Tk∗
PSk∗
∼ εV . (1.66)

where k∗ is defined as the pivot scale (in [Mpc−1]). The value of the ratio depends on the slow-
roll parameter εV , therefore on the energy scale at which inflation occurred, V 1/4 ∼ (r/0.01)1/4×
1016GeV. Therefore, for a tensor-t-scalar ratio of the order of r ∼ 10−2, the study of inflation
physics allows us to probe energy scales way beyond levels of current particles accelerators.

We can write

d lnPSk
d ln k

= ns − 1,
d lnP Tk
d ln k

= nt. (1.67)

From Eqs. (1.59) and (1.64), at horizon crossing k−1 = η, we have nt = −2εV and ns − 1 =
4εV − 2ηV . Notice that one can always define additional inflation parameters based on higher

7We use the so-called conformal Newtonian Gauge
8Neglecting neutrinos contribution.
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order derivatives of the potential which contribute for example to the running of the spectral
indexes dn/d ln k.

Measuring the tensor-to-scalar ratio r would therefore allows us to constrain the potentials
shape of the inflaton field. More generally, it would permit to discriminate among the many
inflationary models currently on the market. One important prediction is that the scalar index
should be less than unity, which has been confirmed by the Planck satellite measurement,
yielding ns = 0.9667± 0.0040 (Planck 2015 Results. XIII.).

3.3 Matter and radiation inhomogeneities

The scalar and tensor power spectra computed in Sec. 3.2 allow us to describe the initial pertur-
bations at the end of inflation. Because the inflation field is slightly spatially inhomogeneous,
the time at which inflation ends will vary between each location. As a result, regions for which
the inflation period ends early will undergo a sightly longer expansions phase after inflation,
which then translates into lower density of matter. Those density anisotropies then eventually
grow into larger structures under the influence of gravity.

After the epoch of reheating, the hot Big-Bang starts. In the tight coupling limit, photons and
baryons act as a fluid, for the Coulomb and Compton interactions keep the photons, electrons,
and protons coupled. The photons provide pressure to the fluid, while baryons provide inertia.
The latter tend to fall into gravitational potentials, which are mainly driven by the Dark Matter
densities. This balance between the outward pressure and the gravitational collapse translates
into acoustic oscillations in the primordial plasma. As soon as modes re-enter into the causal
horizon, such baryon-photons oscillation can start.

One strong prediction from inflation is the production of Gaussian primordial fluctuations
which are adiabatic (as opposed to isocurvature). It means that energy densities were ini-
tially uniquely generated by inflation, and therefore spatially in phase. CMB measurements
showed that fluctuations are both adiabatic and Gaussian, thus favouring the inflationary sce-
nario (Planck 2015 Results. XIII.).

Knowing the initial conditions of the perturbations, we can compute their post-inflation
evolution with time. The evolution of the power-spectra is propagated using the so-called transfer
function, which depends on the evolution and energy content of the Universe. At the time of
decoupling, the oscillations stop as photons are depleted. The photons therefore carry the
imprint of those oscillations, as if their phase were frozen in time. Those are observed as
anisotropies of temperatures on the CMB. In the next section, we describe qualitatively the
main ingredients which characterise them.
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4 The Cosmic Microwave Background radiation

We first describe how the anisotropies on the CMB can be related to the primordial fluctuations
set-up during inflation, using the so-called CMB power spectrum. The different physical pro-
cesses that shape the CMB power spectrum are described qualitatively. We then focus on the
CMB photons polarization, and how their study could help us to constrain inflationary physics.

4.1 Temperature power spectrum

The statistical distribution of the CMB anisotropies in temperature and polarisation depend on
the physical processes that sourced them. In order to study those anisotropies in a statistical
manner, as a first step, the temperature inhomogeneity field is conveniently Fourier-decomposed
into spherical harmonics,

δT (t, ~x, n̂)

T̄ (t)
=
∞∑

`=1

m=∑̀

m=−`
a`m(t, ~x, n̂)Y`m(n̂), (1.68)

with Y`m(n̂) the set of spherical harmonics functions. The multipole ` is proportional to the
inverse of the angular scale ` ∝ θ−1. For each `, there is 2` + 1 indices m, accounting for
the multiple spatial orientations of the spherical modes. We can drop the spatial and time
dependency, setting ~x = ~x0 and t = t0, our coordinates today, such that temperature anisotropies
only depend on the direction of observation,9 n̂. We draw some of the first spherical harmonic
functions and their 2D mollview projections in Figure 1.7.

3

2

1

0

1 2 3 1 2 3

2D projection

Y`m

Y`m

Figure 1.7: Some spherical harmonic functions Y`m on the sphere (left), and their 2D mollview
projection (right) for ` = 1, 2, 3 and m = 0, 1, 2, 3.

The harmonic coefficients a`m are simply another way to measure the CMB temperature
anisotropies. Indeed, from the orthogonality property of the spherical harmonics,

∫
dΩY`m(n̂)Y ∗`′m′(n̂) = δ``′δmm′ , (1.69)

9This assumption is justified, for the time and distance required to travel in order to observe variations of the
CMB field are respectively of the order of the Hubble time and the Hubble distance, both much larger than our
scale.
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we have

a`m =

∫
dΩY ∗`m(n̂)

δT (n̂)

T̄
. (1.70)

Cosmology models do not predict the position but rather the statistical distribution of the
anisotropy. Hence, we define the variance of the harmonic coefficients as the temperature power
spectrum,

〈a`ma∗`′m′〉 ≡ C`δ``′δmm′ . (1.71)

The latter quantifies the amplitude of the anisotropies, and it can be related to the power
spectra set up during inflation in Sec. 3.2. We define the scalar and tensor contributions to the
temperature spectrum,

CS` =

∫
dk PSk |∆S` (k, η0)|2, (1.72a)

CT` =

∫
dk P Tk |∆T` (k, η0)|2. (1.72b)

The transfer functions, ∆`(k, η), encode the physical evolution of the temperature inhomo-
geneities, and they geometrically project the Fourier wavenumber k on the spherical modes `.
Fig. 1.8 is a representation of how a plane-wave perturbation with wavenumber k can source the
anisotropies seen on the CMB surface. As pointed out in Sec. 3.2, because tensor perturbations
do not couple to gravitational perturbations, we expect P Tk � PSk , and therefore CT` � CS` .

Public Boltzmann codes are available to compute the CMB power spectra, such as CMB-
FAST (Seljak et al. 1996), CAMB (Lewis et al. 2000), or CLASS (Blas et al. 2011).
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Figure 1.8: Visualization of a plane-wave density perturbation with wavenumber k propagating
horizontally, and the CMB surface as seen from a central observer. White regions represent cold
spots on the CMB, while deeper regions represent hot spots.
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4.2 Temperature anisotropies

Several effects driving the shape of the CMB temperature spectrum can be identified, depending
on the scale and time at which we consider the photons interactions.

Primary anisotropies

We identify four main contributions to the CMB temperature power spectrum occurring at the
time of decoupling or before. Those are shown in Fig. 1.9 (Challinor et al. 2009).

• Acoustic perturbations : when photons decouple, they carry with them the imprint of the
baryon acoustic oscillations. Those translate into harmonic series of peaks on the CMB
temperature power spectrum. The first peak corresponds to the mode that just entered
into the horizon, completed a quarter of a period, and reached maximal compression. The
associated multipole, ` ≈ 100, therefore corresponds to the horizon scale at the time of
decoupling, θ ≈ 1◦. The remaining odd (even) peak correspond to modes that reached
maximal (minimal) compression at the time of decoupling. Because baryon inertia tends
to decrease the oscillations rebound, the even peak amplitude are observed to be smaller
than odd ones.

• Silk damping : the photons decoupling do not occur instantaneously. As a result, the LSS
has a thickness. Because of the photons random walk, the multiple interactions tend to
erase the information that they carry, which results in a damping of the acoustic peak for
scales smaller than the LSS thickness.

• Doppler effect : due to the bulk velocity of the electrons in the primordial plasma, the
scattered CMB photons experience a Doppler shift which manifests itself as oscillations
that are out of phase with the acoustic oscillations. The Doppler shift is minimal when
the plasma compressions or depletions reach their extrema. For scales smaller than the
LSS width, this effect tends to cancel, because photons undergo the inverse Doppler shift
when they enter into densities than when the come out of the perturbation.

• Sachs-Wolfe (SW) effect : The perturbations with scales larger than the causal horizon
(` ≤ 100) are only sourced by gravitational potentials arising from the initial conditions
set-up during inflation. Photons coming from over-dense regions in the plasma are hotter,
but must climb up a gravitational well which makes them lose energy, hence ultimately
appearing colder to us. The converse is also true for under-dense regions. Because the
scalar power spectrum is nearly scale-invariant for those modes, the corresponding `(` +
1)C` is almost a plateau.

Secondary anisotropies

We describe the main physical effects occurring after photons decoupling.

• Integrated Sachs-Wolfe (ISW) effect : similar to the SW effect, the integrated SW describes
late-time red or blue shifting underwent by photons as they pass through gravitational
potentials undergoing temporal variations. Those potentials decay are caused by recent
structures formations. The ISW effect affects the temperature spectrum at large scales.

The recent dominance of the Dark Energy at low redshift produces this effect as it
makes the gravitational potentials to evolve (which is not the case for a matter-dominated
Universe). This contribution at linear order to the power-spectrum is referred to as late-
time integrated Sachs-Wolfe effect.
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FIGURE 3. Contribution of the various terms in Eq. (20) to the temperature-anisotropy power spectrum
from adiabatic initial conditions: δγ/4+ψ (denoted SW for Sachs-Wolfe [42]; magenta); Doppler effect
from vb (blue); and the integrated Sachs-Wolfe effect (ISW; green) coming from evolution of the potential
along the line of sight. The units of the spectrum are arbitrary.

the potential decays by 10% through the matter-radiation transition on large scales –
although this is not complete at recombination – and, by Eq. (28), δγ is enhanced by
20%. The potential shifts the midpoint of the oscillation to δγ ≈ −4(1+R)ψ which
corresponds to the over-density needed for photon pressure to balance gravitational
infall. Since baryons contribute to the inertia but not the pressure, they enhance δγ at
the midpoint. The source term for the temperature anisotropy, Θ0 +ψ = δγ/4+ψ ,
therefore oscillates about −Rψ with an amplitude of 3φ(0)/10 (ignoring non-zero R
in the amplitude). The dependence of the midpoint on the baryon density makes the
relative heights of the first few acoustic peaks sensitive to the baryon density. The
second observation is that for modes shorter than the sound horizon at matter-radiation
equality, the decay of the potential during the oscillations in the radiation renders the
driving term on the right of Eq. (29) negligible during the matter era. However, our
treatment of the radiation fluid above shows that the driving term acts resonantly around
the time of sound-horizon crossing in the radiation era and enhances the amplitude of the
acoustic oscillation of δγ/4 towards the asymptotic value 3φ(0)/2, five times the value
on large scales. Increasing the matter density limits the scales for which resonant driving
is effective to smaller scales. In practice, diffusion damping (see Sec. 2.7) exponentially
damps the amplitude of the oscillations on small scales and the asymptotic amplitude is
not attainable.
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Figure 1.9: Dominant physical effects that contribute to the CMB temperature power spectrum
: Sachs-Wolfe, and Doppler effects. From Challinor et al. 2009.

• Rees-Sciama (RS) effect: the Integrated Sachs-Wolfe effect at non-linear order is referred
to as the Rees-Sciama effect. It accounts for the collapse of structures such as clusters, and
the growth of voids, in an expanding Universe. It therefore mainly affects smaller scales
of the spectrum than the ISW.

• Lensing : weak-gravitational lensing arises from the cumulative effect of large-scale struc-
tures as photons travel from the LSS to us. It distorts the image of the CMB, smooths the
acoustic peaks of the CMB power spectrum, transfers large-scale power to small scales,
and introduces non-Gaussian signatures to the CMB anisotropies.

• Sunyaev-Zel’dovich (SZ) : the CMB photons can be up-scattered from inverse Compton
diffusion with electrons from hot and ionized gas present in galaxy clusters and filaments,
and it is referred to as the thermal Sunyaev-Zel’dovich (tSZ). When clusters are moving
with respect to the CMB frame, the photons can experience an additional Doppler shift,
identified as kinetic SZ (kSZ) (Sunyaev et al. 1969; Sunyaev et al. 1980a; Sunyaev et al.
1980b).

• Reionization : during their journey, photons can scatter with free electrons produced
during the reionization era. This results in a suppression of the power spectrum, by a
factor of e−τre , where τre is the optical depth through reionization. Other effects occurring
during or after the reionization can affect the CMB photons. For example, those can be a
Doppler shift coming from free electrons if the reionization does not occur homogeneously.

4.3 Polarization anisotropies

The photons from the primordial thermal bath are not expected to have any polarization. How-
ever, Compton scattering can produce a net polarization, which can be observed on the CMB
photons. We distinguish two primary anisotropies sources to the CMB polarization field : scalar
and tensor.
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FIGURE 11. Predicted secondary anisotropies from gravitational effects (left) and scattering effects
(right) from [21]. (a) The ISW (blue), Rees-Sciama (purple) and lensing (red; negative where dashed)
effects compared to the primary anisotropies from recombination (green) and the sum of primary and
gravitational secondaries (black). (b) The ≈ −τre fractional suppression of the primary anisotropies
(red; discussed in Sec. 2.7.2), linear Doppler effect (blue), thermal Sunyaev-Zel’dovich effect (purple;
calculated in the Rayleigh-Jeans limit), the density-modulated Doppler effect with linear densities (thin
cyan) and the total including non-linear modulation e.g. from clusters of galaxies (thick cyan), and
the Doppler effect modulated by the patchiness of reionization (“i-mod”; purple) compared with the
primary anisotropies (green). The predictions for the SZ effect, non-linear Doppler-modulation and patchy
reionization are based on simplified halo models; see [21] for details. The quantity ΔT ≡

√
l(l+ 1)Cl/2π.

way to probe late-time structure growth with linear CMB anisotropies alone, but this
is hampered by cosmic variance on large angular scales. A more promising route is
to cross-correlate the CMB with a tracer of large-scale structure [170]. A positive
correlation is expected from decaying potentials, and was first detected by correlating
the first-year WMAP data with the X-ray background and the distribution of radio
galaxies [171]. Since the initial detection, the correlation has been detected with a
number of large-scale structure tracers. The most complete analyses to date [172, 173]
find∼ 4.5σ detections. The power of the ISW effect in constraining dark energy models
is rather limited by chance correlations between the primary CMB and large-scale
structure; the total signal-to-noise can never exceed ∼ 7, even for a tracer perfectly
correlated with the ISW signal. Current detections provide independent evidence for
dark energy, but no evidence for departures from ΛCDM (i.e. dynamical dark energy).
The non-linear late-time effect is sometimes called the Rees-Sciama effect [14]. It

arises from the non-linear growth of structures and, more generally, from the bulkmotion
of clustered matter. The power spectrum of the Rees-Sciama effect is broad but is a sub-
dominant effect on all scales [174]; see Fig. 11.
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Figure 1.10: Secondary anisotropies from gravitational (left), and scattering effects (right).
The total contribution (black) is compared to the primary anisotropies (green). Dashed curves
show negative contributions. (b) Reionization suppression is in red. Doppler effect with linear
densities is in thin cyan. Doppler effect including non-linearities is in thick cyan. The Doppler
effect modulated by the patchiness of reionization (i-mod) is in purple. From Challinor et al.
2009.

Thomson induced polarization

The Thomson scattering cross-section depends on the polarization of the photons,

dσ

dΩ
∝ |ε′ · ε|2, (1.73)

with ε′ the polarization direction of the incoming photons, and ε that of the scattered photons.
If we consider an unpolarized beam of incoming photons perpendicular to the outgoing beam,
in that case, the scattered beam will have a net linear polarization. When an electron sees a
monopole or a dipole of temperature, the resulting polarization of the scattered photons coming
from all directions will average to zero. However, if the electron sees a quadrupole, as pictured
in Fig. 1.11, the outgoing average polarization will indeed be linear.

A quadrupole can be produced either from scalar or tensor perturbations in the baryon-
photon plasma.

Scalar induced polarization

Consider Fig. 1.12, where a cold spot observed on the CMB surface corresponds to an overdensity
of matter in the plasma. Electrons closer (farther) to the density will fall faster (slower) into
the gravitational potential well. Similarly, electrons on an iso-latitude annulus of the density
will tend to get closer and closer as they fall. If we now consider one electron, it will locally
witness a quadrupole anisotropy of temperature as a result of a Doppler effect as in Fig. 1.11
: electrons going away from it will appear colder, while those getting closer will appear hotter.
This results in a polarization of the CMB photons. The quadrupole pattern can be associated
to the ` = 2,m = 0 spherical harmonic (refer to Fig. 1.7).

We see that the mean polarization orientations (dark blue lines) from all scattered photons
around the overdensity will be parallel to the gradient of the gravitational potential. Conversely,
Compton scatterings occurring at the neighbourhood of a hot spot (underdensity) will produce
mean polarization orientations perpendicular to the gradient of the gravitational potential.
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Figure 1.11: Thomson scattering for an electron seeing a temperature quadrupole produced
by scalar perturbation propagating along ~k. The mean polarization of the scattered photons
is linear. The quadrupole pattern can be associated to the ` = 2,m = 0 spherical harmonic,
visualized by the lobe diagram at the centre.

Tensor induced polarization

An other source of CMB polarization can come from tensor perturbations, also described as
gravitational waves (GWs). Those induce a temperature quadrupole when passing in the neigh-
bourhood of an electron, as picture in Fig. 1.13 for one wave polarization h+. As it propagates,
the wave distorts space in the plane perpendicular to the propagation of the perturbation ~k,
stretching a circle of test particles at rest into an ellipse. This induces a Doppler effect, and a
temperature quadrupole is witnessed by an electron positioned at the centre. The quadrupole
pattern can be associated to the ` = 2,m = +2 spherical harmonic (refer to Fig. 1.7). The as-
sociated quadrupole with the h× polarization of the GW would be associated to ` = 2,m = −2,
and corresponds to a 45◦ rotation of the system about the direction ~k.

Polarization field decomposition

The pictures for scalar and tensor perturbations inducing CMB polarization as presented above
is quite simplified, for they do not account for all photons incident directions. Moreover, in order
to make statistical predictions of the polarization observed on the CMB, one must also include
all perturbations modes. In practice, we solve the Boltzmann equation for the polarisation field,
similarly to what was presented for the temperature field in Sec. 4.1.

In practice, the measurement of the CMB polarization consists in mapping the Q and U
Stokes parameters on the sky. For Ex and Ey the components of the wave electric field of a
monochromatic electromagnetic wave propagating in the ẑ direction, the Stokes parameters are
defined as (e.g. Zaldarriaga 1998; Kosowsky 1995; Kamionkowski et al. 1997; Ng et al. 1999)
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Figure 1.12: Behaviour of electrons near an under or over density of matter, seen respectively as
hot and cold spots on the CMB surface. For under-densities, the electrons sees a quadrupole of
temperature as a result of a Doppler effect : neighbouring electrons on the iso-latitude annulus
are getting closer, while electrons parallel to the gradient of the gravitational potential well are
going away from each other. The inverse phenomenon occurs for over-densities.

I = |E2
x|+ |E2

y |, (1.74a)

Q = |E2
x| − |E2

y |, (1.74b)

U = E∗xEy + ExE
∗
y = 2<(E∗xEy), (1.74c)

V = 2=(E∗xEy). (1.74d)

The intensity of the photons is proportional to their temperature, I ∝ T , and we generally
make no distinction between both. Because Thomson scattering does not produce any circular
polarisation V, we do not expect to observe any on the CMB. The polarisation state are shown
in Fig. 1.14 for fully Q and U polarised photons.

Using Q and U Stokes parameters reveals to be useful to characterise the polarisation of light,
for they depend on easily measurable intensities. However, in the context of CMB analysis, it is
more convenient to decompose the polarisation field into a pure gradient component, and pure
curl component. Those are shown in Fig. 1.15, and are respectively referred to as E-modes and
B-modes, in analogy with electromagnetism.
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Figure 1.13: Temperature quadrupole induced by a gravitational wave with polarization h+,
propagating along the wavevector ~k. An electron positioned at the centre sees a quadrupole
of temperature as a result of a Doppler effect : the GW alternatively stretches an annulus of
test particles in perpendicular directions. The quadrupole pattern can be associated to the
` = 2,m = +2 spherical harmonic, visualized by the lobe diagram at the centre.

A first and more practical reason to use this decomposition is that it does not depend on
the orientation of the coordinate system, as the Stokes parameters does. The second and more
physical motivation is that E and B modes production have distinct origins.

The scalar perturbations on the CMB can produce only two polarisation patterns on the CMB
surface. Going back to Fig. 1.12, we see that only two polarisation orientations, perpendicular
or parallel to the gradient of the potential, can be induced. Both are pure gradient fields, and
therefore belong to the E-modes part of the CMB polarisation field.

On the other hand, a stochastic background of GWs produces both E and B modes. Since
they can be sourced by GWs only, measuring B-modes on the CMB is therefore an efficient
way to reveal the existence of a background of GWs in the early Universe. We discussed in
Sec. 3.2 how the primordial GWs production is intimately related to the nature of inflation.
Thus, characterising the CMB B-modes would be a unique probe to inflationary physics.

4.4 Polarization power spectra

The theoretical polarisation spectra can be computed using the scalar and tensor power spectra
as initial conditions, and a transfer function which accounts for the evolutions of the pertur-
bations as well as their geometrical projection on the CMB surface. We therefore define the
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Figure 1.14: Stokes parameters for pure Q and U polarised light propagating in the ẑ direction.
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Figure 1.15: A vector field can be decomposed in a curl-free (E-modes) and a gradient-free
(B-modes) patterns.

generic power spectrum,

CA,XY` =

∫
dk PAk ∆A,X` ∆A,Y` , (1.75)

with PAk the usual matter power spectrum, and ∆A,X` the transfer function. The spectrum is
sourced by A-type perturbations, with A = S for scalar perturbations, and A = T for tensor
perturbations. The CMB power spectrum quantifies the correlation between modes X and Y ,
with X,Y = {T,E,B} respectively for temperature, E modes, and B modes.

The polarisation power spectra are computed using spin spherical harmonic functions, which
are detailed in Sec. 2 of chapter 3.

We therefore list a total of four CMB power-spectra produced by the early Universe, CTT` ,
CEE` , CBB` , and CTE` , shown in Fig. 1.16. The lensing B-modes contribution will be introduced
in Sec. 4.5. We expect the scalar EE spectrum to have an amplitude proportional but out of
phase with the scalar temperature spectrum TT . Indeed, the latter’s peaks correspond to each



38 Chapter 1. Introduction to modern Cosmology

oscillation rebound, while the former is sourced by a Doppler effect, which is maximal in-between
two rebounds. This correlation between the temperature inhomogeneities amplitude and that
of the E-modes is encoded in the CTE` spectrum. The remaining cross-correlation spectra, CEB`
and CTB` , are predicted to be null.

In chapter 3, we characterise and compares methods to estimate CMB power spectra, in the
context of polarization and especially B-modes measurements.
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Figure 1.16: Theoretical CMB power spectra computed with CAMB (Lewis et al. 2000). Dashed
TE is for the negative part of the spectrum. The tensor-to-scalar ratio is set to r = 10−3. For
polarisation spectra, the reionization bump is visible around ` . 10.

4.5 Polarization secondary anisotropies

The polarization spectrum sourced by scalar fluctuations is expected to fall rapidly at large
angular scales (` ≤ 100), due to the lack of causality, hence the lack of coherent quadrupole at
those scales. As for temperature, the CMB polarization is also sourced by secondary anisotropies.
There is no polarization analogue to the Sachs-Wolfe effect, however, the polarisation signal is
both sensitive to the reionization epoch, and to Silk damping effects. A fraction of the Sunyaev-
Zel’dovich emission can also be polarised.

Reionization

The reionization period plays an important roll in the shape of the polarization spectra (Zal-
darriaga 1997; Hu 2000; Doré et al. 2007). On one hand, because CMB photons re-scatter on
free electrons, the signal they carry tend to be suppressed by a factor e−τre at small scales.
One the other hand, a new polarisation signal is produced by the electrons locally seeing the
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CMB temperature anisotropies. Because the causal horizon is larger at the reionization epoch,
the signal receives additional contribution at those scales, resulting in the so-called reionization
bump at ` ≤ 10 one the polarization spectrum from Fig. 1.16.

Because of the higher sensitivity to the ionization era from the polarization compared to the
temperature spectrum, the precise measurement of the former can greatly enhance the constraint
on structures formations during this epoch, and helps distinguish between different reionization
histories.

Lensing

Between the CMB last scattering surface and us, the photons undergo a weak lensing effect
induced by their passage through the gravitational field of matter (Lewis et al. 2006). The
CMB image is distorted, leading to an apparent transfer of E to B modes, and vice versa. The
B-modes lensing signal amplitude is predicted to be quite high compared to the primordial B-
modes, as shown on Fig. 1.16. It can therefore be seen as a source of noise compared to their
primordial counter part. A precise measurement of the primordial part of the B-modes at high
`’s would therefore require the subtraction of the lensing contribution. This can be achieved by
measuring the lensing potential in order to remap the CMB photons to their original position.

The lensing B-modes has been detected by numerous experiments in the 100 . ` . 1000
range, as it will be discussed in Sec. 5.

4.6 Parameters measurements

The CMB reveals to be a powerful probe to constrain cosmological parameters. We enumerate
the most standard ones, and we depict their contributions to the CMB spectra shape. Of
course, this is only a qualitative description, as most of the parameters are correlated between
each other (Dodelson 2003; Peter et al. 2009):

Hubble parameter today H0 ≡ h 100 km/s/Mpc

Since the horizon scale (or Hubble time) is given by 1/H0, the size of the fluctuations observed
on the CMB directly depends on its value. Larger Hubble time would shift the CMB power
spectra peaks to the smaller scales (higher `’s).

Baryon density Ωb

Boosting the baryon density increases the inertia to the photon-baryon fluid and therefore damp
the acoustic rebound, resulting in the odd peaks being higher than the even peaks on the
temperature power spectrum. Since it slows down the sound speed of the photon-baryon fluid,
the oscillations frequency is reduced. It also shorten the mean free path of the photons, thus
increasing the Silk damping at small scales.

Matter density Ωm = Ωb + Ωc

Since the total matter density is dominated by DM, it mainly changes the gravitational poten-
tials, which affects among others the Sachs-Wolfe effect. Also, the redshift at which matter-
radiation equality occurs increases with Ωmh

2.
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Dark energy density ΩΛ

Because DE plays a roll at late times, mainly large scales are affected by a change in its density,
visible through the ISW effect.

Universe curvature ΩK

The photons geodesics change weather the Universe is closed or open. The fluctuations on the
CMB will respectively appear larger or smaller, and the peaks will shift toward large scales or
small scales.

Neutrino density Ων

In the early Universe, the neutrinos were relativistic. As the Universe expands, their momen-
tum decrease, and neutrinos become non-relativistic. The time at which this transition occurs
depends on the sum of the neutrinos masses. The effect of the neutrino mass on the CMB
spectrum is minute, for they are still relativistic at the time of photons decoupling. However,
at later times, they contribute to structure formation, which effect can be detected via weak
lensing measurement (Lesgourgues et al. 2006). An upper limit on the sum of their mass can be
obtained. Currently,

∑
mν ≤ 0.12 eV (Planck 2018 Results. VI.).

Reionization optical depth τre

As discussed in Sec. 4.2, the epoch of reionization can be characterised by an optical depth τre.
It changes the amplitude of the CMB temperature power spectra, and more generally the large
scale shape of the polarization spectra, mainly observable via E-modes measurements.

Scalar and tensor amplitudes AS and AT , and spectral indexes ns and nt

The amplitudes of the scalar and tensor spectra introduced in Eq. (1.65) simply scale with the
amplitude of CMB power spectra.

The value of the spectral indexes change the tilt of the primordial power spectra Pk, as
well as the slope of the CMB power spectra. Increasing the number of measured multipoles
therefore offers a good leverage to constrain those parameters. Current measurements of the
scalar spectral indexes, ns = 0.9652±0.0042, indicate that the spectrum is nearly scale invariant,
but not quite, which is greatly in favour of the inflationary model (Planck 2018 Results. VI.).

The number of primordial B-modes multipoles primordial B-modes for measurements de-
pends on the tensor signal amplitude. If r & 0.05, one could hope measuring enough multipole
to constrain the tilt of the B-modes primordial spectrum, nt. If r reveals to be smaller, nt would
be challenging to measure in future experiments, for both the signal damping and the lensing
B-modes erase any hope to make small scales primordial B-modes measurements (Abazajian
et al. 2016).

Tensor-to-scalar ratio r

As discussed in Sec. 4.3, the detection of primordial B-modes could be a direct evidence of
the existence of tensor perturbations in the metric. Since the amplitude of the primordial
gravitational waves are related to the inflation energy, it would allow us to determine the inflation
mechanism and its nature. If inflation is generated by a scalar field, precise measurements of



4. The Cosmic Microwave Background radiation 41

the B-modes spectrum would fix the shape of the inflaton potential.
Measuring the tensor-to-scalar ratio would have dramatic implications on high energy physics.

Indeed, inflation is the only known mechanism capable of producing primordial gravitational
waves in the early Universe. Detecting them would be the most direct evidence of the existence
of quantum fluctuations in the gravitational field during inflation, and would provide insights
into the quantum nature of gravity. The accessible energy scale would be at least 1011 higher
than those probed by the LHC.

Best current upper limit provided by Planck alone is r0.002 < 0.10 when combining tempera-
ture, low-` polarization, and lensing measurement. The limit is further tightened when combined
with BICEP2/Keck Array BK14 data, which gives r0.002 < 0.056 (Planck 2018 Results. X). In
chapter 4 we derive an upper limit on r using the Planck polarization maps made publicly
available. The resulting constraint on r0.002 and ns is displayed in Fig. 1.17. In addition, some
popular inflationary models are also indicated.

Planck Collaboration: Constraints on Inflation
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Figure 1.17: Marginalized joint 68 % and 95% confidence level regions for running index ns
and tensor-to-scalar ratio rk∗=0.002 from Planck in combination with other data sets, compared
to the theoretical predictions of some selected inflationary models. From Planck Collaboration
et al. 2018e.

4.7 ΛCDM parametrization

The simplest Λ Cold Dark Matter cosmological standard model, ΛCDM, is based on six param-
eters : two parameters for the primordial matter spectrum, As and ns, the Hubble expansion
rate measured today H0, the baryonic and dark matter densities, Ωb and Ωc, and finally the
reionization depth τre. The other parameters are assumed to be fixed, e.g. assuming a flat en-
ergy density, Ωtot = 1, a dark energy equation of state with wc = −1, no running of the spectral
index dns/d ln k = 0, and no tensor modes r = 0.
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5 Main CMB experiments

In this section, we enumerate some of the main past, current, and future CMB experiments. We
especially focus on those targeting polarization and B-modes measurements.

5.1 Space-based missions legacy

Cosmic Background Explorer (COBE)

COBE is the first generation satellite mission dedicated to the CMB study, launched by NASA
in 1989. It provided two key measurements in favour of the Big-Bang model. The CMB in-
tensity spectrum measured by the FIRAS instrument follows exactly that of the Black-Body
at 2.725 K (Smoot 1999) as shown in Fig. 1.4. The DMR instrument had a relatively limited
effective angular resolution (∼ 7◦), but sufficient enough to find faith anisotropies in the CMB
temperature field (e.g. Smoot 1999).

Wilkinson Microwave Anisotropy Probe (WMAP)

WMAP is the second generation of NASA CMB space mission. Launch in 2001, it mapped
both the temperature and polarization CMB anisotropies during nine years. Thanks to its
better angular resolution than COBE (∼ 0.25◦), it could measure the CMB spectrum up to
` ∼ 1000. It helped to tightly constrain the current Standard Model of Cosmology ΛCDM,
providing error-bars on the parameters up to a few percent. Among others, WMAP helped to
determine that we live in a geometrically flat Universe, with energy a density content dominated
at ∼ 71% by dark energy, with some ∼ 5% of baryonic matter, and ∼ 24% of cold dark matter.
It also provided evidences of the cosmic neutrino background, and with an effective number
of neutrino species of 3.84 ± 0.40, and evidence of inflation, measuring a scalar spectral index
ns = 0.9608± 0.0080 (Bennett et al. 2013).

It observed the sky over five frequency bands, at 23, 33, 41, 61, and 94 GHz, to improve the
subtraction of foreground contamination signals.

Planck

The latest mission to probe CMB anisotropies is the Planck satellite, sent by ESA. It had higher
sensitivity and an improved angular resolution compared to WMAP, about ∼ 5-10 arc-minutes,
allowing to measure the CMB spectrum up to ` ∼ 2500. Planck also covered a broader range
of frequency channels, divided among two instruments: the Low Frequency Instrument (LFI)
covering the 30, 44 and 70 GHz bands in both intensity and polarization; and the High Frequency
Instrument (HFI) covering 100, 143, 217, 353, 545, and 857 GHz frequency bands. Of the HFI
channels, only the lower four had the capability to measure the polarisation signal.

Thanks to its large frequency coverage, Planck also helped to better characterise the galactic
foregrounds emissions in the microwave band. It provided the most precise measurements of the
cosmological parameters, with sub-percent precision.
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5.2 Recent ground-based experiments

Atacama Cosmology Telescope (ACT/ACTpol)

ACT is a telescope positioned in the Atacama Desert, a dry and high altitude (∼ 5000 m) place
in the north of Chile. It is designed to observe the CMB on a small patch of the sky in both
temperature and polarization, simultaneously in three frequency bands centred on 148 GHz, 218
GHz, and 277 GHz. Thanks to ACT high-resolution, around 1 arc-minute, it can probe the CMB
spectrum about 400 . ` . 8000. For instance, it can precisely measure the Sunyaev-Zeldovich
effect or the lensing B-modes signal (Louis et al. 2017).

South Pole Telescope (SPT/SPTpol)

Similarly to ACT, the South Pole Telescope is a small angular resolution experiment. It makes
deep resolution CMB temperature and polarization maps, ∼ 500 square degrees, of the Southern
sky. SPT observes at three different frequencies, 95 GHz, 150 GHz, and 220 GHz, with an angular
resolution of 1 arc-minute, and roughly covers a 50 . ` . 8000 multipole range. (Henning et al.
2018)

POLARBEAR / Simons Array

Located in the Atacama Desert, POLARBEAR is designed to make small angular scales mea-
surements of the CMB polarization. It has two main goals : to detect the B-modes (lensing
and primordial), and to reconstruct the lensing potential of the CMB. With a resolution of
3.5 arc-minute, broader than ACT or SPT, POLARBEAR studies the CMB spectra over the
range of multipoles 200 . ` . 1400. In order to increase the measurements sensitivity, it fo-
cuses on a relatively small patch of the sky, ∼ 30 square degrees of the sky, compared to ACT
or SPT (POLARBEAR Collaboration et al. 2014b; POLARBEAR Collaboration et al. 2014c;
POLARBEAR Collaboration et al. 2014a).

BICEP/Keck array (BK)

The Bicep/Keck Array is a multi-frequency instrument comprised of four telescopes observing
the polarization of the CMB around the South Celestial Pole at 30/40, 95, 150 and 220/270
GHz. Using a relatively broad angular resolution around ∼ 0.50◦, the BK experiment aims
at detecting the B-modes signal at large angular scales, 40 . ` . 300 (Hui et al. 2018). As
already mentioned, the current best upper limit is provided by combining Planck temperature,
low-` polarization, and lensing measurement with BICEP2/Keck Array BK14 data, which gives
r0.002 < 0.056 (Planck 2018 Results. X).

5.3 Future measurements

Simons Observatory (SO)

The Simons Observatory plans to deploy an array of telescopes in the Atacama Desert by the
2020s. It will measure the CMB in both temperature and polarization, over six frequency bands,
27, 39, 93, 145, 225 and 280 GHz. The array will be composed of three small-aperture telescopes
(SATs) with ∼ 0.5◦ angular resolution, and one large-aperture telescope (LAT) with arcminute
angular resolution. The targeted sky coverage is about ∼ 40% for the LAT, and ∼ 10% with
the SATs. (Galitzki 2018; The Simons Observatory Collaboration et al. 2019).
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Stage-4 (S4)

Stage-4 (S4) regroups the next generation of ground-based experiments dedicated to the study
of the CMB, by combining and expanding existing facilities in Chile, South Pole, and possibly
in the northern hemisphere (Abazajian et al. 2016; Abitbol et al. 2017). By the 2020s, the total
number of detectors involved will improve the sensibility of CMB measurement of one or two
orders compared to previous experiments such as Planck, as shown in Fig. 1.18. As an element
of comparison, the number of detectors will goes from around 10 000 (currently Stage-3), to
100 000 for S4.
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Figure 2. Plot illustrating the evolution of the raw sensitivity of CMB experiments, which scales as
the total number of bolometers. Ground-based CMB experiments are classified into Stages with Stage II
experiments having O(1000) detectors, Stage III experiments having O(10,000) detectors, and a Stage IV
experiment (such as CMB-S4) having O(100,000) detectors. Figure from Snowmass CF5 Neutrino planning
document.

1.2.1 Raw sensitivity considerations and detector count

The sensitivity of CMB measurements has increased enormously since Penzias and Wilson’s discovery in
1965, following a Moore’s Law like scaling, doubling every roughly 2.3 years. Fig. 2 shows the sensitivity of
recent experiments, expectations for upcoming Stage-3 experiments, characterized by order 10,000 detectors
on the sky, and the projection for a Stage 4 experiment with order 100,000 detectors. To obtain many of the
CMB-S4 science goals requires of order 1 µK arcminute sensitivity over roughly half of the sky, which for a
four-year survey requires of order 500,000 CMB-sensitive detectors.

To maintain the Moore’s Law-like scaling requires a major leap forward, a phase change in the mode of
operation of the ground based CMB program. Two constraints drive the change: 1) CMB detectors are
background-limited, so more pixels are needed on the sky to increase sensitivity; and 2) the pixel count for
existing CMB telescopes are nearing saturation. Even using multichroic pixels and wide field of view optics,
these CMB telescopes are expected to field only tens of thousands of polarization detectors, far fewer than
needed to meet the CMB-S4 science goals.

CMB-S4 thus requires multiple telescopes, each with a maximally outfitted focal plane of pixels utilizing
superconducting, background limited, CMB detectors. To achieve the large sky coverage and to take
advantage of the best atmospheric conditions, the South Pole and the Chilean Atacama sites are baselined,
with the possibility of adding a new northern site to increase sky coverage to the entire sky not contaminated
by prohibitively strong Galactic emission.

CMB-S4 Science Book

Figure 1.18: Improvement of the experimental sensitivity with CMB generations. From Abaza-
jian et al. 2016.

S4 has numerous scientific goals. It aims at testing inflation, determining the masses and
number of the neutrino species, to constrain the nature of dark energy, possibly to put light
on new light relic particles, as well as testing general relativity on large scales. Among others,
S4 could improve the lensing and Sunyaev–Zel’dovich effects measurements, or aid in delensing
the primordial B-modes spectrum, allowing to probe the primordial part of the spectrum and
therefore low value for the tensor-to-scalar ratio. This will be made possible by combining large
sky coverage with degree angular scale measurements, and high resolution measurements made
from sub-degree angular scales, hence covering most of the CMB spectrum from ` ≈ 20 to
` ≈ 5000-10000.

Figure 1.19 shows all current CMB spectra measurements from Planck, ACT, SPT, BI-
CEP/keck, and polarbear. The forecast on S4 measurement and sensibility on the spectra is
also indicated.
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Figure 1. Current measurements of the angular power spectrum of the CMB temperature and polarization
anisotropy. The horizontal axis is scaled logarithmically in multipole ` left of the vertical dashed line (` < 30)
and as `0.6 at higher multipole. Best-fit models of residual foregrounds plus primary CMB anisotropy power
for TT datasets are also plotted. To illustrate the expected improvements with CMB-S4, the projections for
a strawman instrumental configuration are shown in grey (binned with �` = 5 for TT and EE spectra and
�` = 30 for BB) for a ⇤CDM with r = 0 cosmological model.

shift space distortions, weak lensing, galaxy and galaxy cluster surveys, Lyman-alpha forest measurements,
local determinations of the Hubble constant, observations of type Ia SNe, and others. The CMB primary
anisotropy measurements provide highly complementary data for the combined analysis; by providing a
precision measurement of the Universe at z = 1100, the CMB data leads to tight predictions for measurements
of the late time Universe for any adopted cosmological model—measurements of the Hubble constant, the
BAO scale, and the normalization of the present day matter fluctuation spectrum being excellent examples.
Secondary CMB measurements provide late-time probes directly from the CMB measurement, e.g., CMB
lensing, the SZ e↵ects and SZ cluster catalogs, which will provide critical constraints on the standard
cosmological models and extensions to it. The cosmological reach of future cosmological surveys at all
wavelengths will be greatly extended by their joint analyses with secondary CMB anisotropy measurements.

1.2 CMB-S4 Design Considerations

The CMB-S4 science goals, as outlined in the executive summary, and detailed in the following chapters, lead
to several general aspects of the instrument design. We briefly summarize the general design considerations
below.

CMB-S4 Science Book

Figure 1.19: 2016 constraints on CMB power spectra from Planck, ACT, SPT, BICEP/keck, and
polarbear. The forecast on S4 measurements and sensibilities on the spectra are also indicated
in grey boxes. The horizontal axis scaled logarithmically in multipole ` left of the vertical dashed
line (` < 30) and as `0.6 at higher multipole. From Abazajian et al. 2016.

LiteBIRD

LiteBIRD is a satellite mission that would be deployed by the Japan Aerospace Exploration
Agency (JAXA) in the middle of the 2020s. It will observe the CMB during a 3-year full sky
survey. In order to measure and subtract galactic foregrounds, the satellite will use 15 frequency
bands covering 32 GHz to 448 GHz, and with typical angular resolution of ∼ 0.5◦. The mission
is essentially designed to probe the primordial B-modes on large angular scales (2 ≤ ` ≤ 200)
and to achieve a total error δr < 0.001 on the tensor to scalar ratio (Hazumi et al. 2019).
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6 Summary

In this introductory chapter, we described how the current standard cosmological model makes
powerful predictions about the early Universe and its evolution, and how a probe like the CMB
allows us to constrain it with high precision and understanding. A fundamental part of the
model, the inflation era, elegantly solve at once several fundamental problems of the Big-Bang
model : the horizon problem, the flatness problem, and the origin of primordial inhomogeneities.
However, today, inflation is not well constrained, and the most promising probe to inflationary
physics lies in the detection and observation of primordial B-modes polarization patterns in the
CMB.

In the following chapters, we focus on the development of analysis tools of the primordial B
modes. This task turns out to be complex, for the expected signal is small compared to other
CMB polarization signals. Moreover, in practice, precise CMB polarization measurements are
impeded with the presence of foreground contaminations and instrumental noise.

Foreground contaminations come in various form : terrestrial, galactic, or extra galactic.
We further discuss their origin in chapter 2, where we also explore and adapt methods in the
context of CMB polarization galactic foregrounds cleaning.

The instrumental noise can produce bias when estimating the CMB power spectra. The
noise contribution can either be evaluated and removed, or averted by cross-correlating datasets
that have uncorrelated noise. The latter technique will especially be described in chapter 3 in
the context of power spectra estimators targeting precise polarisation measurements.

In chapter 4, we apply the cleaning and spectrum estimation approaches to the polarisation
data and simulation maps publicly provided by Planck.





Chapter 2

Astrophysical foreground removal

The CMB is not the only microwave emission that we observe in the sky. Multiple astrophysi-
cal objects are emitting in the microwave band, and thus contaminate any CMB measurement.
Those foreground contaminations can have many origins, from human activities or atmosphere
emissions, to galactic and extra galactic sources. Each foreground has variable intensity depend-
ing on the angular scale, the wavelength measurement, and the direction of the observation.

Balloon and space based experiments allow us to be free of contaminations from the atmo-
sphere, ground emissions, and radio frequency interferences. The remaining components origi-
nate from astrophysical sources, such as solar system objects, galaxies and clusters of galaxies
on small angular scales, as well as the Zodiacal light, the Milky Way, and the Cosmic Infrared
Background (CIB) on larger scales.

Outlook

In this chapter, we first investigate in Sec. 1 the different galactic foreground emissions. In
Sec. 2, we describe the tools that we use to simulate the foreground signal on the sky. In Sec. 3
we review some existing foreground cleaning algorithms. Inspired by those methods, we adapt
and propose new algorithms, developed in the context of large scale polarisation CMB analysis.
We especially work in the framework of Planck data. The motivation behind the choice of the
class of methods is detailed in Sec. 4. The forecast on the impact of foreground contamination
on the CMB signal detection is investigated in Sec. 5. A section is dedicated to each of our
methods, from Sec. 6 to Sec. 8. We also investigate a possible detection of the foreground
signal polarisation rotation in Sec. 9. The methods that we propose can be adapted to clean
localised patches of pixels of the sky, as discussed in Sec. 10. We briefly discuss how to lower
the uncertainty of the methods during the cleaning process in Sec. 11. Finally, the performance
of the methods are compared and summarised in Sec. 12.

48
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1 Astrophysical foregrounds

Multiple astrophysical foregrounds emissions have been identified. Depending on their physical
origin, those can be classified in two types, galactic and extra-galactic. The spatial distribution of
their emission on the sky can be highly inhomogeneous. Some astrophysical processes also induce
a non-zero polarisation signal. The brightness of the temperature and polarisation foregrounds
signals vary depending on the wavelength of emission.

1.1 Galactic sources

Figure 2.1 shows the spectral energy distributions (SED) in temperature and polarisation inten-
sity for the Galactic foreground components currently identified.
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Figure 2.1: Spectral energy distribution (SED) of the galactic foregrounds in temperature (left)
and polarization (right), respectively evaluated over 93% and 73% of the sky. From Planck 2015
Results. X.

Thermal Dust

The dominant source of foregrounds for frequencies & 70 GHz are thermal emission from galactic
silicate and carbonaceous dust grains. The ultra violet (UV) emission from the surrounding stars
population heats up dust grains of the interstellar medium, which in turn re-emit in infrared
frequency when cooling down. Although dust population and temperature vary across the sky,
the thermal dust SED model for frequency up to ∼ 850 GHz is empirically well fitted by a
modified black-body (MBB) (or grey-body) spectrum,

Idν ∝ νβd(n̂)Bν(T (n̂)), with Bν(T ) =
2hν3/c2

exp
(

hν
kBT

)
− 1

, (2.1)

which parameters can vary depending on the direction on the sky n̂. Bν(Td) is the Planck
law for a blackbody radiation at temperature Td, and βd(n̂) is the dust spectral index. The
measurement across the sky found the average values T Id ∼ 19.6 K and βId ∼ 1.55± 0.05 (Planck
2018 Results. IV.).

An alternative parametrisation of the thermal dust proposes instead multiple component
grey-body model, for which two (or more) populations of thermal dust are considered along the
line of sight. See for example Meisner et al. 2014 or Finkbeiner et al. 1999.
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For aspherical dust grains, the major axis tend to statistically align with the galactic magnetic
field. As a result, there is a dust emission polarization perpendicular to the galactic magnetic
field. Modelling dust polarization is more complex, and it depends on the shape, the optical
properties, and the size distribution of the aligned grain population. For the polarised dust
SED, P dν , the average temperature and spectral indexes are measured to be TPd ∼ 19.6 K and
βPd = 1.53 ± 0.03, consistent with the value of the temperature spectral indexes (Planck 2018
Results. XI; Planck 2018 Results. IV.). The dust polarization fraction Id/P d mean value has
been found to be around 10% at high latitude, with a maximum of 20% in some regions. The
dust emission is the major contamination for CMB polarisation measurement at frequencies
above 70 GHz.

The dust polarisation intensity,
√
Q2 + U2, is displayed in Fig. 2.2 for which we smoothed

the 353 GHz Planck channel with a 2.6◦ Gaussian beam.

Synchrotron

At low frequencies, less than 80 GHz, the foreground contamination is dominated by synchrotron
radiation from cosmic ray electrons. Under the influence of the local galactic magnetic field, elec-
trons undergo an acceleration perpendicular to their velocity, which result in a spiral trajectory
around the field lines, accompanied with the emission of radiations. The intensity and spectrum
can show significant variations on the sky, since they depend on the cosmic ray number, their
energy, and the magnetic field strength. For frequencies above 20 GHz, the synchrotron SED is
well-approximated by a power-law,

Isν ∝ νβ
I
s (n̂), (2.2)

with a mean spectral index measured at βIs = −3.1± 0.1 (Planck 2018 Results. IV.).
The emission is also highly polarised, with a polarization fraction that can theoretically reach

75% in a regular and uniform magnetic field. In practice, because magnetic fields are generally
non-uniform, and because of rotation depolarisation effect for frequencies under a few GHz, the
fraction of polarization only reaches 10%-40%. Because of the limited polarization sensitivity of
Planck, the polarised synchrotron spectral index is not significantly constrained. The best fit has
a very broad distribution, with a weak preference between βPs = −3.5 to βPs = −3, consistent
with the temperature value βIs = −3.1±0.1 (Planck 2018 Results. XI). The synchrotron emission
is the most intense source of foreground contamination for CMB polarisation measurements at
frequencies under 70 GHz.

The synchrotron amplitude is displayed in Fig. 2.2 for which we smoothed the 30 GHz Planck
channel with a 5◦ Gaussian beam.

Spinning dust

Discovered relatively recently, another foreground component detected around 10–60 GHz, first
identified as anomalous microwave emission (AME) (Kogut et al. 1996; Leitch et al. 1997), is
now thought to arise from spinning dust grains whose rotation leads to a microwave emission.
However, the origin of this signal is still debated, and a significant amount of the emission could
also arise from magnetic dust radiation, described here after. Current constraints indicate that
the spinning dust polarization is below a few percent at 30 GHz (Hoang et al. 2013).

Magnetic dust

An other candidate to the AME origin are radiation from thermal fluctuations of magnetic
grain materials, such as ferromagnetic particles and inclusions into silicate dust grains. In such
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Thermal dust polarisation amplitude
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Synchrotron polarisation amplitude
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Figure 2.2: Planck polarisation amplitude maps, P =
√
Q2 + U2, at 353 (top) and 30 GHz

(bottom), tracing respectively the dust and synchrotron signals. Color range is in log scale.
Here and throughout, all maps are shown in Galactic coordinates using Mollweide projection

materials, a net magnetization arises from the spontaneously spins ordering of unpaired electrons.
Thermal fluctuations caused by the astrophysical surrounding excite the magnetization of the
materials, whose de-excitation to its initial magnetization state is accompanied by radiation
emissions in the microwave band. Current predictions indicate that magnetic dust radiation
polarization emission could be of the order of a few percent (Dickinson et al. 2018; Génova-
Santos et al. 2017).

Molecular clouds

The interstellar medium is filled with molecular clouds, also known to be the nursery places for
young forming stars, mainly confined close to the Galactic disk. The molecules can undergo
internal quantum transitions accompanied with an emission of photons. For example, the rota-
tional state transition J = 1 → 0 of the carbon monoxide CO at 115.271 GHz (Penzias et al.
1972; Wilson et al. 1970), (Planck 2013 Results. XIII). Since those energies levels are quan-
tified, the molecular cloud emission appears as a line in the frequency spectrum. Additional
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transitions (J = 2 → 1, J = 3 → 2, ...) are also observed, as well as other lines emitted from
other molecular origins (CN, HCO+, ...). The emission from molecular clouds, such as CO, is
predicted to be polarized at a level up to a few percent (Goldreich et al. 1982; Li et al. 2011).

Free-free

Because of the interactions with ionised gazes of the interstellar medium, free electrons are de-
celerated, whose deceleration is accompanied with bremsstrahlung emissions (or free-free emis-
sions). Since the Coulombic interactions direction is by nature random, with no significant
alignment with the galactic magnetic field, the free-free foreground is expected to be unpo-
larised. Its polarization fraction has been measured to be less than a percent over the whole sky
(Macellari et al. 2011).

1.2 Extra galactic sources

Point sources

On the frequency range used to observe the CMB, two point sources populations are expected, ra-
dio galaxies and dusty star-forming galaxies. The polarization amplitude of the later is expected
to be low, as recently observed on the M82 source (Matthews et al. 2009). Radio galaxies are
expected to have a higher polarization emission fraction (Battye et al. 2011; Tucci et al. 2012),
which should therefore be taken into account for future small scale CMB polarization analysis.

The Cosmic Infrared Background

The CIB is a diffuse radiation associated to the emission from dust within galaxies from the
young Universe (e.g. Béthermin et al. 2013). Studying the CIB provides unique informations
about star formation processes at high redshifts. As for the CMB, the CIB is a diffuse emission,
characterised by anisotropies in intensity, which correspond to variations in the clustering of
galaxies. Thanks to its wide range of frequencies, Planck provided important improvements on
the CIB measurements (see for example Planck 2013 Results. XXX).

Sunyaev-Zel’dovich effect

Already introduced in Sec. 4.2 of chapter 1, the SZ effect is the result of photons being inverse
Compton scattered by high-energy electrons in galaxy clusters (Sunyaev et al. 1969; Sunyaev
et al. 1980b). Dense clusters of galaxies can thus be observed using high resolution CMB obser-
vations. Because the effect is redshift-independent, it has attracted most interest to provides a
powerful probe of the structures on large scales and to constrain the cosmological parameters.
A fraction of the SZ emission can also be polarised (Sunyaev et al. 1980a).
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2 Sky modelling and simulations

In this section, we first describe how the signal on the sky is modelled, then we introduce the
datasets simulations against which the foreground cleaning methods will be tested. We will use
the Planck polarized frequency channels. Those come as three bands from the Low Frequency
Instrument (LFI), 30, 44 and 70 GHz; and four from the High Frequency Instrument (HFI),
covering 100, 143, 217, and 353 GHz.

In addition to the experimental noise, the signal measured by the detectors results in the sum
of the various sources that emit in the microwave band. A polarisation sky map, (or dataset)
dobs ≡ (dQ, dU ) measured at frequency ν contains npix pixels measuring Q and npix pixels
measuring U components of the polarization. It can be modelled as a collection of observations
in each direction n̂, corresponding to the linear combination of the CMB signal sCMB

ν , nfg

foreground contamination f fg
i , and the experimental noise nnoise,

dobs
ν (n̂) = sCMB

ν (n̂) +

nfg∑

i

f fg
i,ν(n̂) + nnoise

ν (n̂). (2.3)

2.1 CMB signal

We will assume that the signal of each dataset is rescaled such that the CMB signal has a
constant spectrum across all frequencies, sν = sµ = s, ∀µ, ν. The maps are therefore expressed
in KCMB units.

The CMB input power spectra are generated using CAMB with Planck 2018 best fit param-
eters (Planck 2018 Results. VI.), and the reionization parameter τ = 0.06. If not specified the
tensor-to-scalar ratio is set to r = 0. The CMB signal on the sky is finally generated from the
power spectra using the Healpix package.

2.2 Foregrounds modelling

As seen in Fig. 2.1 (extracted from Planck 2015 Results. X), the polarization foregrounds can
show very high amplitudes compared to the CMB signal. Their contribution is quite important
when estimating the CMB power spectra, and it can highly bias the CMB measurement.

Quantifying the contribution of the foregrounds signal to the power spectra is a hard task,
because the foregrounds properties and distribution over the sky are not fully understood and
modelled. In order to improve the understanding of the foregrounds signal, the sky has to be
mapped with high sensitivity over a broad frequency range. Latest measurements provided
by Planck allowed to improve the foreground sky models. Based on sky measurements, and
assuming a SED for each component, public codes allow to simulate the foreground signals in
each frequency band.

The foregrounds signal fν(n̂) in a given direction n̂ and frequency ν is generally modelled
as the product between the foreground SED encoding the spectral variation, gf (ν, n̂), and the
signal amplitude, Ff (n̂),

fν(n̂) = gf (ν, n̂)Ff (n̂). (2.4)

If we have constraints on the average SED of each components, current measurements provide
relatively poor constraints on spatial variation of the polarisation SED parameters (Td(n̂), βd(n̂),
βs(n̂) presented in Sec. 1), (Planck Intermediate Results. XXII.; Planck 2018 Results. IV.). We
must therefore rely on models, in particular for polarisation signals.
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2.3 The Python Sky Model

The PySM package offers several foreground modellings in both temperature and polarisa-
tion (Thorne et al. 2017).

Dust signal

We choose the single modified black-body component for the thermal dust modelling (referred
to as the d1 PySM option), for which the polarization emission is generated using the 353 GHz
Planck dust template map as a tracer for the signal amplitude (Planck 2015 Results. X).
Therefore, FD(n̂) = d353 GHz Planck(n̂) in Eq. (2.4). To build their model, the 353 GHz map is
degraded to nside = 512, then smoothed with a 2.6◦ FWHM Gaussian beam, which removes
the CMB and noise contaminations. The dust signal at other frequencies is then scaled using
a MBB spectrum, a varying temperature Td, and a spectral index βd obtained from the Planck
data (Planck 2015 Results. X).

Synchrotron

We select the synchrotron emission modelled by a simple power law (s1 PySM option). The
amplitude of the signal based on the 23 GHz WMAP polarization maps (Bennett et al. 2013) and
smoothed with a 5◦ FWHM Gaussian beam. Therefore, FS(n̂) = d23 GHz WMAP(n̂) in Eq. (2.4).
The synchrotron emission at other frequencies is then scaled using a power law, with a varying
spectral index βs. The index map is built from the ‘Model 4’ of Miville-Deschenes et al. 2008,
using a combination of the 23 GHz WMAP and the 408 MHz map observed by Haslam et al.
1982 and reprocessed in Remazeilles et al. 2014.

For both foreground models, small scales are added to the maps by drawing random Gaussian
realisations using an extrapolation of the foreground power spectrum. This has no particular
impact on our study as we focus on large-scale foreground contaminations. The map of the
spectral parameters used in the PySM are shown in Fig. 2.3

2.4 The Planck sky model

The Full Focal Plane (FFP10) foreground simulations publicly available with Planck legacy
archive (Planck Legacy Archive 2019), makes use of the Planck Sky Model (PSM) (Delabrouille
et al. 2013) to simulate the foreground frequency dependency.

Dust

The dust polarisation signal is simulated by merging the Planck data with a realization of
the statistical model of dust emission. In the galactic plane, and on the full sky large scales
(` . 10), the dust amplitude is modelled using the 353 GHz Planck polarisation map, while
the small scales at higher latitudes are simulated from a realization of the Vansyngel et al. 2017
model. The PSM assures that the transition between large and small scales, as well as between
the galactic plane and higher latitudes is continuous. The dust signal at other frequencies is
then scaled following a modified blackbody emission law that vary between each pixel.
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Figure 2.3: PySM spectral parameters maps, for the synchrotron (βs) and the dust (βs and Td).
Extracted from Thorne et al. 2017

Synchrotron

The amplitude of the polarised synchrotron signal is based on the 23 GHz WMAP polarisation
data. The signal is extrapolated at other frequencies using a spectral index map from synchrotron
intensity. The index map is built similarly than with the PySM. The PSM follows the ‘Model
4’ of Miville-Deschenes et al. 2008 with a combination of the 23 GHz WMAP and the 408 MHz
map observed by Haslam et al. 1982 and reprocessed in Remazeilles et al. 2014.

The homogeneous model

We also consider a simplified model, assuming a spatially homogeneous SED dependency of the
foregrounds, i.e. g(ν, n̂) = g(ν) in Eq. (2.4).

The dust and synchrotron foregrounds tracers FD(n̂) and FS(n̂) in Eq. (2.4) are generated
using respectively the 353 GHz and 30 GHz PySM maps.

We first introduce the foreground coefficient α(n̂), using Eq. (2.4),

ανf (n̂) ≡ fν(n̂)

fµ(n̂)
(2.5)

=
gf (ν, n̂)

gf (µ, n̂)
, (2.6)

with fν ∈ {D,S} either the dust or the synchrotron signal at frequency ν. We choose a reference
frequency µ = 353 GHz for the dust, and µ = 30 GHz for the synchrotron. The foregrounds
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signal can thus be scaled to any frequency ν. For that purpose, we use the mean value of the
coefficients ανD and ανS computed from the PSM model.

2.5 Foreground models comparison

We now confront the models with each other by comparing the foreground coefficient α(n̂)
defined in Eq. (2.5), which reflects the spectral variation of the emissions. We select the same
reference frequency as for the homogeneous model, that is to say, µ = 353 GHz for αD, and
µ = 30 GHz for αS . The resulting maps and distributions of ανD and ανS are shown in Fig. 2.4
for the channel ν = 100 GHz.

We observe that the maps of αS are similar between the synchrotron the PSM and the PySM.
This is expected as their modelling follow the same procedure. However, the mean value of the
distributions are slightly different. We therefore shift the PySM distribution on top of that of
the PSM to facilitate the comparison.

The maps and distribution of the dust coefficient, αD, show much more differences between
both models. Especially at high latitudes, for which the PSM model has wider variations. This
is also visible on the distributions, for which the PySM is sharper.

An other difference between both models, which is not visible either on the distributions or
the maps, is that the coefficients α for each pixel are not homogeneous between the Q and U
components for the PSM, which is not the case for PySM.

We also noticed an important feature of the PSM, for which the distribution of the α’s of
both signals have many outliers, localised on some isolated pixels, and distributed over the whole
sky, as shown on the zoomed view in Fig. 2.4. For example, the dust coefficients can typically
have values from αmin

D ∼ −16 to αmax
D ∼ 5, which is not physically acceptable, since by definition

0 ≤ ανD ≤ 1 for ν < 353. The synchrotron coefficient map αS(n̂) is also impeded with some
outlier, although we require αS for ν > 30. For this reason, in the following analysis, we select
the PySM and homogeneous models only.

2.6 Noise

We consider one noise regime, generated from the Planck public noise covariance data. For each
pixel, those come in 3× 3× npix noise temperature and polarization covariance matrices, from
which we only select the 2× 2× npix polarization block,

N =

(
NQQ NQU

NQU NUU

)
. (2.7)

This matrix allows to produce white but inhomogeneous noise in the pixel domain, while still
including some correlations of the Q-U measurement in each pixel. In order to generate a
Gaussian noise map n ∼ N (0,N), we Cholesky-decompose the noise covariance matrix HHT ≡
N, and generate a 2×npix random vector Z ∼ N (0, 1). Finally, a Q-U noise map is obtained as

n ≡
(
nQ

nU

)
= HZ. (2.8)

In general, we define the noise level σn, expressed in [µK.arcmin], which has the advantage
to be independent of the map resolution. It is therefore to the noise per pixel as,

σ2
pix =

σ2
n · 10−12

602 ·Apix
[K2], (2.9)



2. Sky modelling and simulations 57

PySM dust coefficients

0.015 0.023

PySM synchrotron coefficients

0.025 0.04

0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045

FFP10
Dust

PySM Dust
FFP10 Synchr

PySM Synchr

Homo
Dust

Homo
Sync

Figure 2.4: Dust and synchrotron foreground coefficients distribution on the sky, α100 GHz(n̂),
for the different foregrounds models.
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where Apix is the pixel area expressed in degree squared. The corresponding noise power spec-
trum is given by

N` =
4πσ2

pix

npix
B−2
` [K2], (2.10)

where B` encodes the deconvolution of the instrumental beam.
The noise level expressed in µK.arcmin for each Planck polarisation map are indicated on

Table 2.1. The corresponding power spectrum are shown in Fig. 2.5.

Table 2.1: Planck polarisation noise levels (in [µK.arcmin]) per frequency channel.

Freq [GHz] 30 44 70 100 143 217 353

σ [µK.arcmin] 240 287 246 102 63 95 392
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Figure 2.5: Planck polarisation noise spectrum, N`, for each frequency full mission dataset.

2.7 Dataset signals

Maps

For illustration purpose, we show in Fig. 2.7 the different simulated components from the PySM
model at 100 GHz : the signal from the CMB, the dust and synchrotron, as well as the Planck
noise. Following Eq. (2.3), all signals are linearly combined into a final map. One can already ap-
preciate how the CMB polarisation measurement can be a hard task, as the galactic foregrounds
contaminate most of the sky.

Spectra signals

As a forecast, the expected polarisation power spectra of foreground contaminations in all Planck
frequencies are displayed in Fig. 2.6. The CMB E and B modes signal are generated using CAMB
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with Planck best fit power spectra. We also display the primordial part of the B-modes for a
tensor-to-scalar ratio with values r = [10−3, 10−2, 10−1].

We consider a sky fraction going from 40% to 90%, for which the sky-cut is applied mainly in
the galactic plane, where the polarisation foregrounds amplitude is expected to be the highest.
The E and B modes of the foregrounds are estimated on the PySM foregrounds simulations.
The spectra are estimated using the pseudo-spectrum estimator xPol (Tristram et al. 2005),
and the logarithmic value of the estimation is then fitted using a quadratic function. We note
that the 353 and 217 GHz synchrotron signal almost perfectly overlap.

The amplitude of the E and B foregrounds signals are found to differ. In Planck 2018 Results.
IV., the ratio EE/BB evaluated on 78% of the sky is of the order of E/B ∼ 0.57 for the dust
signal, and E/B ∼ 0.34 for the synchrotron. With the PySM we find that this ratio for the
dust is of the order of E/B ∼ 0.61, and does not depends on the sky coverage. While for the
synchrotron we find E/B ∼ 0.18 on 40% of the sky, and E/B ∼ 0.22 on 90%.

We see that for frequencies above 70 GHz, the dust signal dominates that of the CMB E and
B modes over the largest angular scales, ` < 10. On those scales, the synchrotron dominates
the E-modes signal for frequencies under 70 GHz. The primordial part of the B-modes is
overwhelmed by both foregrounds for r < 10−1, which is already under current limits (Planck
2018 Results. X). Foreground cleaning method are therefore mandatory in the context of CMB
polarisation analysis.
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Figure 2.6: Foregrounds polarisation power spectra of the PySM foreground signals. The CMB
spectra for the total E-modes and B-modes are in solid, while primordial B-modes are in dashed
for three tensor-to-scalar ratio values, r = [10−3, 10−2, 10−1]. The foreground signals are in-
dicated by the coloured bands which span the signal between a sky fraction fsky = 0.4 and
fsky = 0.9 (indicated by the black arrow).
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Figure 2.7: Sky simulations at 100 GHz of the CMB polarization signal (first row), the dust and
synchrotron signals from PySM (second and third row), the Planck -like white noise simulation
(fourth row), and finally the sum of all those components. All maps are smoothed with a 0.5◦

Gaussian beam.
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3 Foregrounds removal methods

Disentangling foregrounds from the CMB signal is a domain of analysis on its own. Multiple
methods have been proposed which generally depend on the datasets resolutions, the signal-
to-noise level, and the number of observed frequency channels. They can work in the pixel
and/or in the harmonic domain. Some methods focus on recovering the CMB signal only, while
others, known as component separation methods, allow to retrieve all the signals (CMB and
foregrounds). They are generally grouped in two categories, blind and non-blind (parametric)
methods, depending on the assumption made on the foregrounds modelling and the CMB signal.
In this section, we review the main classes of those methods.

In this context, the general data model is linear and reads

d(n̂) = A c(n̂) + n(n̂), (2.11)

where the vector d contains the measured signal in each of the nν(n̂) frequency bands observed,
the vector c(n̂) contains the unknown CMB signal s(n̂) and the foreground signals, while n(n̂) is
the vector quantifying the noise in each frequency channel. The nν×nc mixing matrix A contains
the information about the emission law of the nc signals (CMB and foregrounds). Generally, for
each dataset, the value for the pixels is rescaled such that the CMB signal intensity is common
between all frequencies, sν = sµ = s, ∀µ, ν, and the maps are therefore expressed in KCMB

units. In that case, the entries of the column corresponding to the CMB signal in A are equal
to 1.

3.1 CMB cleaning methods

Template removal

One simple and powerful solution to get an estimate of the CMB signal is to subtract from the
measured dataset d(n̂) a foreground templates t(n̂) weighted by some coefficient αi.

ŝ(n̂) = d(n̂)−
n∑

i

αi(n̂) · ti(n̂). (2.12)

For example, for one template t, the coefficients αi(n̂) are fitted by minimizing the residuals,

min
α

(||s2||) = min
α

(sTC−1s) ⇒ α̂ =
dtC−1t

tTC−1t
. (2.13)

Where C ≡ Cov [s] is the residual covariance matrix.

The templates can be external, or built internally from the datasets of an experiment (e.g.
Katayama et al. 2011). Within this later approach, referred to as the Internal Template Fit-
ting (ITF), the templates are preferably constructed using frequency channels for which the
foreground signal is known to be the highest. Those generally contain a certain amount of ex-
perimental noise, as well as other signals, such as the CMB. This can biased the fitting of α, as
we will see in Sec. 6.

Template removal was adopted by the WMAP and Planck teams for both temperature and
polarization component separation (Eriksen et al. 2004),(Planck 2015 Results. X).

Internal Linear Combination

The Internal Linear Combination (ILC) is a non-parametric foreground subtraction method that
aims at recovering clean CMB signal by combining nν frequency datasets d(n̂) into one final
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map

s(n̂) =

nν∑

i

wi · di(n̂). (2.14)

The minimal assumption here is that the CMB follows a black-body emission with a tem-
perature TCMB = 2.725K. In this context, the mixing matrix A of Eq. (2.11) is simply a vector
corresponding to the CMB spectral column.

The ILC constitutes a powerful tool while requiring only a few assumptions. The CMB
signal is assumed to be uncorrelated with the foregrounds, and to be present in each map, which
must have a common angular resolution. The weights w are computed in order to minimise the
total (foregrounds plus noise) variance of the resulting datasets combination,

Var [s] = wTCw. (2.15)

where C ≡ Cov [d] is a nν × nν dataset covariance matrix. Minimizing the variance defined in
Eq. (2.15) under the condition that the CMB signal amplitude remains unchanged in the map,
i.e.

∑n
i wi = 1, gives the general solution

wi =

∑nν
j C−1

ij∑nν
i,j C−1

ij

. (2.16)

The ILC was first used during the WMAP analysis in pixel domain (Bennett et al. 2013),
and harmonic domain (Tegmark et al. 2003). A hybrid approach developed in Delabrouille et al.
2009 allows to apply the ILC for temperature maps on localised regions on the sphere in the
harmonic space, also identified as wavelets (or needlets). A generalization to spin-2 polarization
signal P = Q+ iU is explored and compared to other ILC methods in Rogers et al. 2016 in the
needlet domain, and in Fernández-Cobos et al. 2016 in the pixel domain.

3.2 Component separation methods

Independent Component Analysis

The Independent Component Analysis (ICA) allows to recover the astrophysical components by
blindly reconstructing the A matrix. The model assumes arbitrary components power spectra,
frequency spectra, and correlations between the components. In order to recover the multi-
ple components on the sky (CMB signal and foregrounds), the mismatch of the model to the
power spectra of the frequency channel maps is minimized. The Spectal Matching Independent
Component Analysis (SMICA) (Delabrouille et al. 2003; Cardoso et al. 2008), is an implemen-
tation of this method in the spherical harmonic domain, which has been used by the Planck
collaboration (Planck 2015 Results. X).

Parametric likelihood minimisation

Among the parametric methods, the most popular are Bayesian components separation algo-
rithms (Eriksen et al. 2006a; Brandt et al. 1994). Those make use of sampler to fit for the CMB
signal and for the foreground components. Within this context, the mixing matrix of Eq. (2.11)
depends on the amplitude and spectral parameters θ of the SED signals, A = A(θ). The pa-
rameters are estimated by minimizing the so-called spectral likelihood function L(d|θ), which
provides the probability density of the data given a model parametrised by θ. Additional cosmo-
logical parameters can be included in θ, which offers the advantage to fit for both the foregrounds
and the cosmological parameters at the same time. Uncertainties can be rigorously propagated
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through to CMB power spectrum and cosmological parameter estimation. This method remains
however computationally expensive, and it is sensitive to bias when the foreground model is
badly parametrised. The implementation of the Bayesian parametric method, known as Com-
mander (Eriksen et al. 2006b; Eriksen et al. 2008), was used for the Planck analysis (Planck
2015 Results. X).

4 Single frequency channel cleaning

Generally, the component separation methods introduced in the previous section, such as the
Bayesian parametric or the ICA, try to recover all the component maps as well as parameters of
the mixing matrix A by inverting the full system of Eq. (2.11) including all available channels.
Therefore, they must also account for the correlations between the datasets and the different
resolutions at which they are produced.

On the other hand, foregrounds cleaning using templates is generally simpler to perform.
Those classes of methods require less assumptions in the model, and make use of less parameters.
They allow to produce multiple cleaned datasets, but each with higher level of noise compare to
usual component separation methods.

In order to extract the B-modes from the CMB, we choose to explore the second class
of methodologies, the template cleaning methods, as they allow for more tractability of error
propagation in the CMB estimate. The production of multiple ‘clean’ datasets can be particu-
larly suited for B-modes analysis. Indeed, the use of cross-correlations between CMB maps has
demonstrated its efficiency in removing noise bias and mitigating the systematic errors when
estimating power spectra, as detailed in chapter 3. This can only be achieved using multiple
CMB estimates, with uncorrelated errors, and the lowest amount of foregrounds residuals. Each
CMB estimate must therefore be built independently, using different channels and templates. In
the following sections, we explore and adapt foregrounds removing methods introduced before
in order to produce multiple clean CMB maps that have uncorrelated noise. The application of
the cleaning methods and spectrum estimation is performed on all polarisation channels of the
public Planck data in chapter 4.

4.1 Datasets

For most, the methods that we will consider are based on template fitting in the pixel domain.
Generally, we make use of one CMB dominated channel, and at least as many secondary channels
as foregrounds that we seek to remove. Current observations indicate that only two types of
polarised foreground dominate over the sky : synchrotron and dust emission. We therefore
consider three observed channels. The maps measured at low and high frequency will serve as
internal templates, labelled tS(n̂) and tD(n̂), and respectively serve as tracers for the synchrotron
and dusts signals. For that purpose, we select the channels from Planck, measured at 30 GHz
and 353 GHz. Note that they also contain the CMB signal, as well as non negligible amount
of instrumental noise. The dust signal in the 30 GHz band, or the synchrotron signal in the
353 GHz band are both negligible. The map measured at the intermediate band is labelled d(n̂),
and Planck provides five of those, centred on 44, 70, 100, 143, and 217 GHz. We will present our
results tested on the 100 GHz band.

Our model datasets can therefore be written as follow,

d = s+ αDfD + αSfS + nd, (2.17)

tD = s+ fD + ntD, (2.18)

tS = s+ fS + ntS . (2.19)
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The foreground coefficients αD and αS where already introduced in Sec. 2. Those are grouped
into a vector, ααα = (αD, αS). Their value depend on the frequency at which the map d is
measured. With all generality, the coefficients are allowed to vary spatially ααα = ααα(n̂), and can
account for polarization rotation, which mix the Q and U components, as described hereafter.

4.2 Polarization rotation

With all generality, the spectral variations encoded in the function g(ν, n̂) of Eq. (2.4) allows
for a change in amplitude of the signal as well as polarisation rotation. In that case, we write

fν(n̂) = gf (ν, n̂)Ff (n̂), (2.20)

⇔
(
fνQ(n̂)

fνU (n̂)

)
= ρν(n̂)

(
cos[θν(n̂)] − sin[θν(n̂)]
sin[θν(n̂)] cos[θν(n̂)]

)(
FQf (n̂)

FUf (n̂)

)
. (2.21)

For the foreground coefficient α(n̂) to account for the polarisation rotation between a fre-
quency ν and µ, we write

g(ν, n̂)Ff (n̂) = α(n̂)g(µ, n̂)Ff (n̂) (2.22)

⇒ α(n̂) = g(ν, n̂) · [g(µ, n̂)]−1 (2.23)

⇔ α(n̂) =
ρν(n̂)

ρµ(n̂)

(
cos[θν(n̂)− θµ(n̂)] − sin[θν(n̂)− θµ(n̂)]
sin[θν(n̂)− θµ(n̂)] cos[θν(n̂)− θµ(n̂)]

)
. (2.24)

We can therefore parametrise the foreground coefficient as

α(n̂) ≡
(
αR(n̂) −αI(n̂)
αI(n̂) αR(n̂)

)
, (2.25)

with

ρν(n̂)

ρµ(n̂)
=

√
αR(n̂)2 + αI(n̂)2, (2.26)

and

θν(n̂)− θµ(n̂) = arctan

(
αI(n̂)

αR(n̂)

)
. (2.27)

4.3 Clean CMB estimate

To obtain a clean estimation of the CMB signal s, the datasets are combined as

ŝ =
d−ααα†t
1−ααα†1 (2.28)

=
d−∑D,S

i αiti

1−∑D,S
i αi

, (2.29)

where t ≡ (tD, tS)†. Here, the † operator transposes the vectors ααα and t (i.e. in ‘foreground
space’).

The pixel-pixel covariance C of the CMB estimate ŝ, or residual covariance matrix, is a
combination of the CMB signal covariance S and the datasets noise covariances N ,

Cmn ≡ Cov [ŝ] (2.30)

= Smn +
Nd
mn +

∑
i α

2
iN

ti
mn

(1−∑i αi)
2

. (2.31)
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From Eq. (2.31), we note that the CMB estimate of Eq. (2.29) is mainly affected by the
noise of the dataset to be cleaned, d(n̂), with a factor proportional to 1/(1 − 1†ααα), which is
expected to be close to unity, since the α’s are expected to be small when the channel at which
the dataset d(n̂) is measured far from the template frequencies (here, 30 and 353 GHz). The
CMB estimate is only affected at second order by the template noises, as their contribution is
proportional to the square of the foreground coefficient in Eq. (2.31).

In the following, we will assume that the CMB signal covariance matrix S is mainly driven by
the variance of the pixel, and therefore we will only consider its diagonal value. The noise in our
simulations is only Q-U correlated for each pixel, and there is no correlation between different
pixels. Thus, the residual covariance matrix C only consists of four square block matrices, each
being diagonal. This highly simplifies the calculation as detailed in Sec. 11, and allows us to
apply the methods on high resolution maps. Including the full CMB pixel-pixel correlation in
S and C is investigated in Sec. 11.

4.4 Outline

In sections 6, 7, and 8 we will explore methods based respectively on the linear regressions,
the maximum likelihood estimators, and the ILC formalism in order to estimate the foreground
coefficients ααα. In Sec. 9 we consider which limit can be made on the detection of polarisation
rotation.

Current measurements do not indicate much variation of the polarised foreground SED on the
sky (Planck Intermediate Results. XXII.), meaning that the value of α(n̂) is almost independent
of the position on the sky n̂. We will therefore focus on the estimation of one global coefficient
for each foreground. In Sec. 5 we quantify the impact on such approach, while in Sec. 10 we
discuss the possibility and results of applying the cleaning methods on spatial local patches on
the sky.
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5 Foreground residuals

Firstly, we investigate the efficiency in removing the foregrounds signal using internal templates
as we proposed in the Sec. 4. For that purpose, we first estimate a global foreground coefficient
(introduced in Sec. 2) on sky, α̂, associate to each foreground component.

5.1 Contamination of the CMB map estimate

We suppose having access to two sets of measured frequency channels A and B with uncorrelated
noise, i.e. 〈ntA , ntB 〉 = 〈ndA , ndB 〉 = 0. From each, a clean CMB map estimate as in Eq. (2.29)
has been computed. The resulting estimation can be expanded in three main components : the
CMB signal, the foreground residuals, and a noise term,

ŝA(n̂) = s(n̂) +

D,S∑

i

αi(n̂)− α̂Ai
1− 1T α̂ααA

fi(n̂) +

D,S∑

i

α̂ntAi
(n̂) + ndA(n̂)

1− 1T α̂ααA
, (2.32a)

ŝB(n̂) = s(n̂) +

D,S∑

i

αi(n̂)− α̂Bi
1− 1T α̂ααB

fi(n̂) +

D,S∑

i

α̂ntBi
(n̂) + ndB (n̂)

1− 1T α̂ααB
. (2.32b)

We can express the terms α(n̂)− α̂ = δ(n̂) + ε, where

• δ(n̂) ≡ α(n̂) − ᾱ is the difference between the input coefficient distribution on the sky,
α(n̂), and value averaged on the sky, ᾱ. To sum up, α(n̂)f(n̂) is the foreground signal
contamination, and δ(n̂)f(n̂) is the residuals after cleaning.

• ε ≡ ᾱ− α̂ is the uncertainty of the coefficient estimation α̂ on the mean value of the input
distribution, ᾱ. If the estimator is not biased, 〈α̂〉 = ᾱ, thus 〈ε〉 = 0.

As an example, the mean dust and synchrotron residuals amplitude,√
[δ(n̂)fQ(n̂)]2 + [δ(n̂)fU (n̂)]2, are shown in Fig. 2.8 for the simulated 100 GHz channel using

the PySM model and one global coefficient α.

Dust residuals, global 

0 1e-07

Synchrotron residuals, global 

0 1e-07

Figure 2.8: Mean foreground residuals power,

√
[δ(n̂)fQ(n̂)]2 + [δ(n̂)fU (n̂)]2, using one global

coefficient α to cleaned the 100 GHz channel of the PySM.

5.2 Forecast on foreground residuals

We decompose the CMB estimates of Eqs. (2.32) into harmonics coefficients, ŝA`m and ŝB`m,
from which we can compute the cross-spectrum. Because the noise between both estimates are
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supposed to be uncorrelated, the resulting mean power spectrum estimate is a combination of
the CMB signal and foreground residuals. Considering only one foreground signal, f , we write

ĈAB` ≡ 〈ŝA`mŝB`m〉 (2.33)

= CCMB
` +

C` [δf, δf ] + (εA + εB)C` [δf, f ] + εAεBC` [f, f ]

(1− α̂A)(1− α̂B)
, (2.34)

where we defined C`[x, y] as the cross-power spectrum between the maps x and y. The model
also assumes no correlation between the CMB and the foregrounds signals, C`[s, f ] = 0.

The second term of Eq. (2.34) quantifies the spectrum bias induced by the foreground resid-
uals. The coefficient estimate error ε depends of course of the method used to estimate α̂.

Considering the case where ε = 0, (i.e. α̂ = ᾱ). We show in Fig. 2.9 the foreground residuals
level, estimated on 40% and 90% of the sky, and for all Planck intermediate channels (44 to 217
GHz). The residuals maps are computed as δD(n̂)fD(n̂) and δS(n̂)fS(n̂), and their contribution
to the spectra are estimated as in Eq. (2.34). The logarithmic value of the spectra are then
quadratically fitted before being plotted. We also indicate the initial level of contamination,
αD(n̂)fD(n̂) and αS(n̂)fS(n̂), which was already displayed in Fig. 2.6.

When using one global coefficient to remove the foregrounds, we see that the contamination
is roughly decreased by two orders of magnitude. The foreground residuals amplitudes for all
channels are under the CMB E-modes signal. For a sky fraction of fsky = 0.4, the B-modes
residual foreground level is of the same order as the CMB tensor contribution for r = 10−2.
Those results are quite encouraging, and show how a simple template subtraction technique can
remove much of the contamination. We highlight that this forecast does not account for all the
complexity of a complete dataset analysis, and it is highly model-depended. Different level of
spatial variations of the foreground SED will change significantly the impact of the residuals δf
on the spectra. An end-to-end analysis from foreground cleaning to spectra estimate on Planck
simulations and data is performed in chapter 4.

In order to further reduce the contamination residuals, one would seek to reduce the spread
of the term δ for each foreground. This can be achieved by performing more localised cleaning,
as discussed hereafter.

5.3 From global to patches

With upcoming CMB polarisation measurements, we expect to see more spatial variations of
the foregrounds SED. Those experiments will allow to map the sky with high sensitivity over
a wide range of frequency. We investigate how the estimation of the foreground coefficient α
localised on patches of the sky can efficiently reduce the level of residual contaminations.

Methodology

For this purpose, the Healpix package (K. M. Gorski et al. 2005) offers a rather simple way
to define patches over the sky. Within it, two pixel orderings are available. First, the ‘ring’
ordering, which simply counts the pixels from north to the south pole, along each isolatitude
ring. Secondly, the ‘nested’ ordering, which is of special interest here, and for which the pixels
are arranged in twelve regions on the sky. As shown in Fig. 2.10, each region is organised in a
tree structure. As the map resolution is increased, each pixel is subdivided into four subpixels.
The number of pixel per map for both orderings is defined as npix = 12n2

side with nside = 2n and
n ∈ N, as shown in Tab. 2.2. In the following, we will refer to the resolution value of the patches
maps as pside. We also define an additional resolution, pside = 0, for when a global coefficient is
estimated on the sky, which can thus be seen as a unique pixel.

Once the coefficients in each patch are estimated, it is straightforward to build a Healpix
map of the α̂(n̂)’s. We then upgrade the resulting map resolution in order to match that of
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Figure 2.9: Forecast on the foreground residuals on 50% the sky for all intermediate Planck
channels (44 to 217 GHz), based on the PySM foreground simulations. The arrows go from
the lowest to the highest frequencies, and their signal is indicated by the coloured bands. The
no-cleaning case (initial level of contamination), αf , corresponds to the green upper bands in
each panel, while the lower orange bands correspond to the foregrounds residuals, δf .

the datasets, and generally smooth the map α̂(n̂) with a Gaussian kernel. Finally, replacing
α by the coefficients map in Eq. (2.29), we can compute a clean CMB map estimation. The
smoothing of the coefficient map assures a continuous transition of the CMB estimate between
the patches.

Figure 2.10: Healpix pixel nested resolution organization. Sub-pixels can always be grouped into
pixels corresponding to one resolution below, down to 12 main regions (or ‘big’ pixels) displayed
on the far right.
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Table 2.2: Healpix correspondence between map resolution nside and the number of pixels npix.

nside 0 1 2 4 8 16 32 64 128 256 512

npix 1 12 48 192 768 3072 12288 49152 196608 786432 3145728

Forecast on patch-cleaning

We can perform a similar forecast on the foreground residuals as in Sec. 5.2, now considering
patch cleaning. We select two resolutions, pside = 8 and pside = 32. To build the patch map of
ᾱ(n̂), we take the initial map of α(n̂) at nside = 256, then we average the sub-pixels for each
patch. Following the methodology proposed in Sec. 5.3, we smooth the patch map ᾱ(n̂) using
a 4◦ and 3◦ Gaussian beam respectively for pside = 8 and pside = 32. We then compute the
foreground residuals as δf(n̂) = (α(n̂) − ᾱ(n̂))f for the dust and the synchrotron signals. The
residuals amplitude are shown in Fig. 2.11. Compared to Fig. 2.8, we see that the residual
amplitude is drastically decreased.

The power spectra of the foreground residuals as computed in Eq. (2.34) are shown in
Fig. 2.12 for frequencies between 44 and 217 GHz, and for two sky coverages, 40% and 90%.
Compared to Fig. 2.9, we see that using a patch cleaning globally decreases the residuals level,
especially at large angular scales (` . 10). For a patch resolution pside = 8, the amplitude
is reduced by two orders of magnitude at large angular scales, and one order of magnitude at
intermediate scales (` > 10), which is below the primordial CMB B-modes signal for r = 10−3.
For a patch resolution pside = 32, the residuals are even further reduced, by four and three orders
of magnitude for large and intermediate scales respectively .

Those results on patch cleaning only serve as indications, and they highly depend on the
foreground modelling used to simulate the signal foreground SED. Moreover, we supposed that
the patch map of the coefficient α is precisely estimated, which can be difficult to achieve in
practice. Moreover, we only average the value of the input α(n̂) of each sub-pixel in the patches.
In practice, the cleaning methods will generally give more weight to the pixels for which the
foreground signal is the highest, thus favouring estimates α̂(n̂) that reduce even more the overall
residuals amplitude. The performance of patch-cleaning methods using Monte-Carlo simulations
will be further discussed in Sec. 10.
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Dust residuals, pside = 8

0 1e-07

Synchrotron residuals, pside = 8

0 1e-07
Dust residuals, pside = 32

0 1e-07

Synchrotron residuals, pside = 32

0 1e-07

Figure 2.11: Foreground residuals as presented in Fig. 2.8, but using patch coefficient cleaning.
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Figure 2.12: Forecast the foreground residuals using patch-cleaning for 40% and 90% of the
sky on all intermediate Planck channels (44 to 217 GHz), and based on the PySM foreground
simulations. We use two patch resolutions, pside = 8 and pside = 32. The spectra estimation is
similar to what was presented in Fig. 2.9
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6 Linear regression estimators

In this section we present a method to estimate the foreground coefficient α using linear regres-
sion methods. We consider one global coefficient on the sky, and no foreground polarisation.

6.1 Ordinary linear Regression

As a first approach for fitting α(n̂), we will consider the ordinary linear regression (referred to
oLR hereafter), as adopted by the WMAP and Planck teams (Page et al. 2007; Bennett et al.
2013; Gold et al. 2011),(Planck 2015 Results. XI). We will see in this section that this method
can produce biased estimates due to the presence of noise and CMB in the templates used in
the fit. We therefore propose some solutions in order to obtain unbiased estimates.

Formalism

The oLR can be applied when assuming that the residuals covariance matrix C defined in
Eq. (2.31) is fixed, using a fiducial value for the α’s, C = C(αfid). In that case, we can maximise
analytically the likelihood, or equivalently minimise the following chi-square function,

−2 lnL = χ2

= (d−ααα† · t)TC−1(d−ααα† · t). (2.35)

Here, the T operator transposes the data vectors (i.e. in ‘pixel space’). Note that for the
oLR estimator, the corresponding residual covariance matrix C defined in Eq. (2.31) must be
rescaled by a factor of 1−∑α.

Minimizing for ααα, we obtain the following estimate

∂χ2

∂ααα
= 0

⇔ − 2tTC−1[d−ααα† · t] = 0

⇔ tTC−1d = tTC−1t†ααα

⇒ α̂αα =
(
tTC−1t†

)−1 (
tTC−1d

)
. (2.36)

One foreground toy-model

Let us consider a toy-model with only one foreground component t, no Q-U correlation, and
a homogeneous white noise for each pixel. The residual covariance matrix is thus diagonal,
C−1
ij ≡ δijσ−2. The oLR solution of Eq. (2.36) reads

α̂ =

∑npix

i tidi∑npix

i t2i
, (2.37)

where the summation over the pixels is applied on both Q and U components, i.e.
∑npix

i tidi =∑npix

i (tQi d
Q
i + tUi d

U
i ), and

∑npix

i t2i =
∑npix

i (tQi t
Q
i + tUi t

U
i ).

If we develop the mean of both terms of the ratio,
npix∑

i

tidi = α 〈f2〉+ 〈s2〉 , (2.38)

npix∑

i

t2i = 〈f2〉+ 〈s2〉+ 〈n2
t 〉 , (2.39)
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we observe that the estimator is biased by the CMB signal variance 〈s2〉 and template noise
variance 〈n2

t 〉,

〈α̂〉 → α 〈f2〉+ 〈s2〉
〈f2〉+ 〈s2〉+ 〈n2

t 〉
. (2.40)

For a CMB (respectively noise) dominated template, the foreground coefficient α will be
biased toward 1 (respectively 0).

This particular case, where both the data and the templates are noisy, is part of what is
referred to as error-in-variables models1. We propose some solutions to remove the bias in
Sec. 6.3.

Two foregrounds toy-model

Let us develop the oLR considering two foreground components, the dust fD and synchrotron fS ,
for which we respectively use the two templates maps tD and tS . The oLR solution of Eq. (2.36)
reads

(
α̂D
α̂S

)
=

(
tTDC

−1tD tTDC
−1tS

tTSC
−1tD tTSC

−1tS

)−1(
tTDC

−1d
tTSC

−1d

)
. (2.41)

If we develop the resulting estimations, we get

α̂D =
tTS tS · tTDd− tTDtS · tTSd
tTDtD · tTS tS − 2tTDtS

, (2.42)

α̂S =
−tTS tD · tTDd+ tTDtD · tTSd
tTDtD · tTS tS − 2tTDtS

. (2.43)

For the seek of clearness, for the equation above only, every dataset products of the form
xT y, with {x, y} ∈ {d, tD, tS}, is weighted by the inverse covariance matrix C−1 (not written),
meaning that xT y = xTC−1y. On average, the estimations will tend to

〈α̂D〉 →
(〈f2

S〉+ 〈n2
S〉+ 〈s2〉) · (αD 〈f2

D〉+ 〈s2〉)− 〈s2〉 · (〈s2〉+ αS 〈f2
S〉)

(〈f2
D〉+ 〈s2〉+ 〈n2

D〉) · (〈f2
S〉+ 〈s2〉+ 〈n2

S〉)− 2 〈s2〉 , (2.44)

〈α̂S〉 →
−〈s2〉 · (〈s2〉+ αD 〈f2

D〉) + (〈f2
D〉+ 〈n2

D〉+ 〈s2〉) · (αS 〈f2
S〉+ 〈s2〉)

(〈f2
D〉+ 〈s2〉+ 〈n2

D〉) · (〈f2
S〉+ 〈s2〉+ 〈n2

S〉)− 2 〈s2〉 . (2.45)

Both are biased by the CMB variance 〈s2〉 and the templates noise 〈n2
t 〉.

6.2 Normalised-model linear regression

We found that ’normalising’ the linear regression by 1−∑D,S
i αi removes the CMB bias found

in the oLR. In the following, we refer to this normalised linear regression as the nLR method.

One foreground example

Going back to our one-foreground toy-model, we now minimise the normalised chi-square,

χ2 =
(d− tα)T

1− α C−1 (d− tα)

1− α , (2.46)

1Here, the CMB signal is considered as a source of noise in the context of foreground linear regression.



74 Chapter 2. Astrophysical foreground removal

which gives the solution

α̂ =
(d− t)TC−1d

(d− t)TC−1t
(2.47)

=
dTC−1d− tTC−1d

dTC−1t− tTC−1t
. (2.48)

This estimator is still biased, but only because of the dataset and template noise terms.
Indeed, considering a simplified case where C is proportional to the identity matrix, it is easy
to show that

〈α̂〉 → αf2 + 〈n2
d〉

f2 + 〈n2
t 〉
. (2.49)

Two foregrounds

The nLR method is easily generalisable to two foregrounds components. The solution reads

α̂D =

1TC−1




0
1
0




1TC−1




1
0
0



, α̂S =

1TC−1




0
0
1




1TC−1




1
0
0



, (2.50)

with the dataset covariance matrix defined as

C ≡ 〈mC−1mT 〉 , with m ≡



d
t1
t2


 . (2.51)

The expansion of the coefficients estimation of Eq. (2.50) reads

α̂D =
(dT fS)2 − dTd · (fTS fS − fTDfS)− dT fS · fTDfS − dT fD · (dT fS − fTS fS)

fTDfS · (dT fD − fTDfS + dT fS)− dT fTD · fTS fS − fTDfD · (dT fS − fTS fS)
, (2.52)

α̂S =
(dT fD)2 − dTd · (fTDfD − fTDfS)− dT fD · fTDfS − dT fS · (dT fD − fTDfD)

fTDfS · (dT fD − fTDfS + dT fS)− dT fTD · fTS fS − fTDfD · (dT fS − fTS fS)
, (2.53)

where each dataset summation xT y, with {x, y} ∈ {d, t1, t2}, is weighted by the inverse covari-
ance matrix C−1 defined in Eq. (2.31) (not to be confused with C−1 defined in Eq. (2.51)).
Therefore, for the equation above only, xT y ≡ xTC−1y.

As before, we can identify the terms that will cause a bias in the estimate. One can check
that, on average, the CMB variance will not induce any bias for noiseless maps. We identify the
usual datasets noise variance bias induced by the terms dTd and fTi fi.

6.3 Bias removal

Interestingly, the bias for the nLR comes from the noise present both in the intermediate channel
and in the templates, nd and nD, nS . While for the oLR method, only the template noise
variances play a role in the estimate bias, in addition to the CMB variance present in the maps.
We propose three solutions to remove or mitigate the bias observed in both linear regression
methods.
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Variance subtraction

The bias terms can be evaluated and subtracted. Therefore, it requires an estimate of the noise
and signal variances, 〈n2

t 〉 and 〈s2〉. This is possible when the datasets noise variance is known
with sufficiently high precision. The CMB signal variances is mainly driven by the E-modes
amplitude. Since the E-modes signal is measured with sufficiently high precision, the CMB
variance can fairly be evaluated and removed2. This bias subtraction is a known solution for
generic error-in-variable models (see for example Patriota et al. 2009 for heteroscedastic noise).

Practically, for any map mi ∈ {d, ti} with i ∈ {D,S}, the product between two maps can be
expanded as

mT
i C
−1mj = mT

iQ[C−1]QQmjQ +mT
iU [C−1]UUmjU +mT

iQ[C−1]QUmjU +mT
iU [C−1]UQmjQ

=

npix∑

p,p′

(fpiQf
p′

jQ + δijN
pp′

i,QQ + Spp
′

QQ)[C−1]pp
′

QQ

+

npix∑

p,p′

(fpiUf
p′

jU + δijN
pp′

i,UU + Spp
′

UU )[C−1]pp
′

UU , (2.54)

+

npix∑

p,p′

2(fpiQf
p′

jU + δijN
pp′

i,QU + Spp
′

QU )[C−1]pp
′

QU ,

where we have split the inverse residual covariance matrix into four square blocks,

C−1 =

(
[C−1]QQ [C−1]QU
[C−1]UQ [C−1]UU

)
. (2.55)

Thereby, to each occurrence of mT
i C
−1mj in the linear regression estimator, one have to

subtract the bias value

bij =

npix∑

p,p′

(
δijN

pp′

i,QQ + Spp
′

QQ

)
[C−1]pp

′

QQ

+
(
δijN

pp′

i,UU + Spp
′

UU

)
[C−1]pp

′

UU (2.56)

+2
(
δijN

pp′

i,QU + Spp
′

QU

)
[C−1]pp

′

QU .

Map smoothing

An other solution consists in applying a spatial smoothing of the maps. This process mainly
reduces small angular scale amplitudes, where the noise and CMB signal become dominant
compared to the foreground signal. In Fourier space it is equivalent to convolve the spectrum
with a squared beam function, b2` . We draw some of them in Fig. 2.13, using a Gaussian beam
with different value of the full width at half maximum (FWHM).

Smoothing the dataset maps can thus mitigate the variance bias induced at those small
angular scales. One drawback is that it spatially correlates the foreground signals, which is not
desired if the foreground cleaning must be performed locally.

Applying this technique to a map is warranted when the foreground signal amplitude is
much higher than the noise and the CMB signal at large angular scales, for which the smoothing
process has a more limited effect. This is the case for the template maps t(n̂), which are especially
selected for this feature. For the intermediate channel d(n̂), things become more complicated.

2For datasets that have been smoothed, the noise bias must be re-evaluated using Monte-Carlo simulations



76 Chapter 2. Astrophysical foreground removal

101 102 103
0.0

0.2

0.4

0.6

0.8

1.0

b2

0.10.20.51310

Figure 2.13: Squared Gaussian beam functions, b2` , from 0.1 to 10 deg.

Depending on which frequency channel is used, the foreground signal is not always above the
CMB or the noise variance at large angular scales (` ' 50), as seen in Fig. 2.6.

The smoothing technique is actually only effective for the oLR estimator. Indeed, for this
method, the bias are only produced by terms involving the map products of the form3 〈tT t〉 →
fT f + 〈s2〉+ 〈n2

t 〉 and 〈tTd〉 → αfT f + 〈s2〉, see Eqs. (2.37), (2.42) and(2.43). After the datasets
being smoothed, only the large angular scale will remain. Since fT f � 〈s2〉 and fT f � 〈n2

t 〉,
as well as αfT f � 〈s2〉 and αfT f � 〈n2

t 〉, for those scales, the bias become negligible.

This is not the case for the nLR estimator, which is built from additional terms involving
auto product of the intermediate channel d(n̂), of the form dTd → α2fT f + 〈s2〉 + 〈n2

t 〉, see
Eqs. (2.48), (2.52) and (2.53). Here, because in general α2 � 1, the term α2fT f can have
an amplitude comparable to 〈s2〉 or 〈n2

t 〉, and the bias is not removed at large angular scales.
Therefore, the higher the α, the lower this estimator is biased.

Cross correlation

A third solution, which only removes the noise variance bias, makes use of cross-correlations
between datasets. At each frequency, we consider two sets of maps. Those, labelled dA, dB
for the intermediate channel, and tA, tB for the templates, are assumed to have uncorrelated
noise, i.e. 〈ndAndB 〉 = 0 and 〈ntAntB 〉 = 0. Such construction is easily possible by splitting
the detector measurements in half, or select data measured during different period of times. By
replacing every occurrences of both dTd (respectively tT t) by dTAdB (respectively tTAtB) in the
linear regression estimators, we get rid of the noise bias when the number of pixels is sufficiently
large. Indeed, in that case,

〈dAdB〉
〈ndAndB 〉=0
−→ 〈s2〉+ α2

Df
2
D + α2

Sf
2
S , (2.57)

〈tAtB〉
〈ntAntB 〉=0−→ 〈s2〉+ f2. (2.58)

For other cross-terms of the estimators which are of the form dT t, we can simply average all
four combinations dTXtY , with {X,Y } ∈ {A,B}.

This technique is especially suited for the nLR, since only the datasets noise variances are
involved in the bias.

3For simplicity, we dropped the C−1 matrix, but the discussion is still general.
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Nomenclature

To identify which bias subtraction process is combined with the methods, we use the following
labels :

• the variance subtraction is identified by vc, vn, or vcn, when subtracting respectively the
CMB variance, the noise variance, or both.

• the smoothing solution is identified by sθ, with θ the FWHM smoothing angle (in degree).

• the cross-correlation solution is identified by x.

For example, the normalised linear regression estimator using the cross-correlation solution will
be referred to as xnLR, while the ordinary linear regression using a 3◦ Gaussian beam smoothing
will be referred to as s3oLR .

6.4 Methods results and comparison

We test the linear regression methods presented above (oLR and xLR) on the two sky models
introduced in Sec. 2, i.e. the PySM and the homogeneous model. We consider two map resolu-
tions, nside = 32 and nside = 128, and a Planck -like noise level equivalent to the 100 GHz channel.
The distributions of the coefficients α̂ estimated from 1000 M-C simulations on fsky = 0.9 (90%
percent of the sky) are displayed in Fig. 2.14. We compare six estimations :

• oLR, the ordinary linear regression, for which no de-biasing process is applied.

• vnoLR, for which the template noise variance bias is subtracted.

• vcoLR, where the CMB variance bias is subtracted.

• vcnoLR, for which both the CMB and noise variances bias are subtracted.

• s3oLR, where we performed a 3◦ Gaussian smoothing of the maps.

• xnLR, the normalised linear regression using cross-datasets.

The first three cases are selected to highlight the possible bias discussed during the intro-
duction of both linear regressions methods. The three remaining cases are expected to produce
unbiased estimates of α, as each makes use of one of the three bias removing solutions proposed
in Sec. 6.3.

For comparison, we also draw the distributions of the input coefficient values α(n̂) of the sky
model for which they are allowed to vary spatially, i.e. the PySM skies. For this comparison
the matrix C−1 used for each method only accounts for the sky masking, and the noise as well
as the CMB variance on the sky. We discuss more complex weightings that take into account
the CMB correlations in Sec. 11.

On Fig. 2.14, we first remark that, as expected, the oLR, vnoLR, and vcoLR estimators are
biased. This is clearly visible on the simple homogeneous sky model. The dust coefficient is
not much impacted by the CMB variance bias, since the distribution of both the vcoLR and the
oLR estimators are similar. We can appreciate how the CMB variance brings the synchrotron
coefficient toward 1 (vnoLR case), while the noise variance biases the estimation toward 0 (vcoLR
case). The bias mainly impact the synchrotron coefficient αS , and when the map resolution is
high (nside = 128). The latter effect is understandable, since the foreground signals dominate
at large angular scales, while the CMB and noise contributions, and their induced bias, are
expected to show up at smaller angular scale, i.e. for higher map resolutions.

For this model, the three other methods, namely vcnoLR, s3oLR, and xnLR, successfully
produce unbiased estimates α̂, with similar precision. For each, the dust coefficient is estimated
with a precision much smaller than its true spread on the sky for the PySM model. This is
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Figure 2.14: Foreground coefficient distributions for the linear regressions methods at the res-
olution nside = 32 (left), and nside = 128 (right). Results are shown for the homogeneous
foregrounds model (top), and the PySM model (bottom).

not the case for the synchrotron, for which the error on α̂S is of the same order as its input
dispersion on the sky.
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6.5 Summary and conclusion

In this section dedicated to the linear regression methods, we showed that the ordinary estimator,
oLR, can be biased by both the CMB and the noise variances. We proposed some solutions by
either evaluating and subtracting the bias (vcnoLR), or by applying a 3◦ Gaussian smoothing on
the maps (s3oLR). An other approach was to normalise the model by a factor 1−∑i αi, whose
solution is free from the CMB variance bias. The remaining noise variance bias can be removed
by using cross-datasets, considering they have uncorrelated noise (xnLR).

Those unbiased methods all perform similar results on the PySM sky in term of precision and
error on the estimation of the foreground coefficients α. All unbiasing processes have different
characteristics :

• The maps smoothing can be quite powerful and simple to perform, and only mitigates the
bias on the nLR method. However, the smoothing can spatially correlates the foregrounds
signal, thus reducing the possibility to perform localised cleaning. Moreover, the degree
of smoothing is arbitrary, and can also reduce the foreground signal amplitude, therefore
increasing the uncertainty of the estimation of α.

• Subtracting the bias terms requires a high degree of confidence about the template noise
and the CMB signal variance. For example, any systematic errors not included during the
noise variance bias subtraction can lead to potential bias. Moreover, any pre-smoothing
of the datasets will change the bias levels. The noise and CMB variance bias must thus
be re-evaluated for each pixel.

• Finally, using the cross-correlation requires split-datasets to be provided, and their noise
to be uncorrelated. It is especially effective on the nLR method, as it is affected by the
maps noise variance only.
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7 Maximum likelihood estimator

As we demonstrated in Sec. 6, the ordinary and normalised linear regressions are biased by
the noise, the CMB variance, or both. One would therefore prefer to rely on writing the full
likelihood in order to avoid any unbiasing processing such as map smoothing, cross-datasets,
or bias subtractions. In this section, we develop a likelihood algorithm that allows to compute
the foreground coefficients α for an error-in-variable model, that is, in our case, three datasets
containing correlated noise (here, the CMB signal) and some noise. We consider one global
coefficient α on the sky and no polarisation rotation.

7.1 One foreground model

Model

Let us first consider one foreground contamination. To express the likelihood we group all maps
into a single nνnpix-size vector m, with nν = 2 the number of maps,

m ≡
(
d
t

)
=

(
s+ αf + nd
s+ f + nt

)
. (2.59)

We consider npix + 1 unknowns : the foreground signal f with size npix, and α with size 1.
The noise variables are np, nt and the CMB s. The nνnpix × nνnpix residual covariance matrix
reads

C ≡ Cov [m] =

(
S +Nd S
S S +Nt

)
. (2.60)

Maximizing the Likelihood function L(m|α, f) is equivalent to minimize the following chi-
square function,

−2 lnL(m|α, f) = χ2(m|α, f) (2.61)

=

(
m−

nν∑

ν

Bνfααα
T eν

)T
C−1

(
m−

nν∑

ν

Bνfααα
T eν

)
, (2.62)

with ααα ≡ (α, 1)T .
In Eq. (2.62), we defined the i-th canonical basis vector ei for the nν-dimensional space as

ei = (0, ..., 0, 1, 0, ..., 0)T , (2.63)

for which only the i’th entry is non-zero, while

Bi ≡ (0npix×npix , ...0npix×npix , 1npix×npix , 0npix×npix , ..., 0npix×npix)T , (2.64)

are npixnν × nν matrices, for which only the i’th block-entry is non-zero.
The matrices Bi and vectors ei are used to vectorize the product f ·αααT = (αf, f), by staking

their columns into a single vector. For nν = 2, we thus have e0 = (1, 0)T , e1 = (0, 1)T , and
B0 = (1npix×npix , 0npix×npix)T , B1 = (0npix×npix1npix×npix)T .

For the seek of compactness, we define the npixnν × npix matrix A(α) ≡ ∑nν
ν Bναααν , which

depends on the coefficient α.
We can thus write the signal terms in the χ2 function of Eq. (2.62) as

nν∑

ν

Bνfααα
T eν =

(
αf
f

)

= Af. (2.65)
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Likelihood maximisation

By minimizing the χ2 function with respect to f , one gets an estimate of the foreground signal,

−2ATC−1(m−Af) = 0 (2.66)

⇔ f̂ = (ATC−1A)−1ATC−1m. (2.67)

We can do the same for the coefficient α, and obtain

−2(B0f)TC−1(m−B0fα−B1f) = 0 (2.68)

⇔ α̂ =
[
(B0f)TC−1(B0f)

]−1
(B0f)TC−1(m−B1f). (2.69)

Since we focus on the foreground parameter coefficient only, α, we marginalise the likelihood
over the foreground signal f . Since the A matrix depends on α, it is clear that injecting the
solution for f of Eq. (2.67) into Eq. (2.69) provides a non-linear equation for α. We thus rely
on numerical methods to solve this system of equations.

7.2 Linearisation and Newton-Raphson algorithm

The minimum of the log-likelihood can be computed by linearizing the model around a fixed
value of α0 assumed to be sufficiently close to its true value, taking α = α0 + δα, with δα the
new unknown. The second-order Tailor-expansion of the chi-square,

χ2(α0 + δα) = χ2(α0) + ∂αχ
2(α0)δα+

1

2
∂2
αχ

2(α0)δα2 +O(δα3), (2.70)

can now be minimized for δα,

∂
[
χ2(α0 + δα)

]

∂(δα)
' ∂αχ2(α0) + ∂2

αχ
2(α0) δα = 0 (2.71)

⇒ δα ' −J−1∂αχ
2(α0) , (2.72)

where J ≡ ∂2
αχ

2(α0) is the Jacobian of the function ∂αχ
2(α0). The Eq. (2.72) allows us to

easily generalize the problem for multiple foregrounds fj and variables αfj . The roots of the
derivative of χ2 can finally be approximated by iterating αi+1 = αi + δα, which is known as a
Newton-Raphson (N-R) iterative algorithm.

Applying this linearisation to our one-foreground toy-model, we write the chi-square function
of Eq. (2.62) as follow,

χ2 = [m−B0f(α+ δα)−B1f ]T C−1 [m−B0f(α+ δα)−B1f ] , (2.73)

which we now minimize for δα,

δα =
[
(B0f)TC−1(B0f)

]−1
(B0f)TC−1(m−Af), (2.74)

and iterate while updating at each step the foreground signal estimate, f̂ , using Eq. (2.67).

7.3 Two foregrounds model

The model

It is straightforward to add a second foreground component to our model,

m ≡



d
tD
tS


 =



s+ αDfD + αSfS + nd

s+ fD + nD
s+ fS + nS


 , (2.75)
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where we assumed that each template map tD or tS is dominated by one foreground component,
such that the signal of the other can be neglected.

The residual covariance matrix now reads

C ≡ Cov [m] =



S +Nd S S
S S +ND S
S S S +NS


 . (2.76)

We define the foreground coefficients vectors αααD ≡ (αD, 1, 0)T and αααS ≡ (αS , 0, 1)T , such
that the log-likelihood reads

χ2 =

(
m−

nν∑

ν

BνfDααα
T
Deν −

nν∑

ν

BνfSααα
T
Seν

)T
C−1

(
m−

nν∑

ν

BνfDααα
T
Deν −

nν∑

ν

BνfSααα
T
Seν

)

= (m−ADfD −ASfS)T C−1 (m−ADfD −ASfS) , (2.77)

where we have introduced the matrices Ai ≡
∑nν

ν Bναααi,ν for i ∈ {D,S}

Likelihood maximization

We minimize the log-likelihood for fD and fS , which gives the following estimates of the fore-
ground signals,

(
fD
fS

)
=

(
ATDC

−1AD ATDC
−1AS

ATSC
−1AD ATSC

−1AS

)−1(
ATDC

−1m
ATSC

−1m

)
. (2.78)

As for the one-foreground case, we linearise the model, taking αD = α
(0)
D + δαD and αS =

α
(0)
S + δαS

4. The likelihood minimization for δαD and δαS gives

(
δαD
δαS

)
=

(
(B0fD)TC−1(B0fD) (B0fD)TC−1(B0fS)
(B0fS)TC−1(B0fD) (B0fS)TC−1(B0fS)

)−1(
(B0fD)TC−1(m−ADfD −ASfS)
(B0fS)TC−1(m−ADfD −ASfS)

)
.

(2.79)

Finally, we iterate until the δαν ’s are sufficiently small, and injecting at each step the fore-
ground signal estimate of Eq. (2.78) into Eq. (2.79). We remark that the square matrix on the
right hand side of the equation is non-other that inverse Jacobian matrix J−1 of the chi-square
derivative functions ∂αDχ

2 and ∂αSχ
2, thereby we recover Eq. (2.72).

7.4 Noise and algorithm convergence

We first noticed that the matrix C is not invertible in the case of noiseless data. Even if, in
practice, this is never the case, the noise level can be sufficiently low such that the matrix is
badly conditioned. A solution is to regularise C by adding a small constant noise level to its
diagonal. We observed that the number of iteration required by the N-R algorithm increases as
the noise level becomes small. About 2 to 5 iterations are needed for a Planck -like noise level
and a precision δα/α of 1%, while, for the same precision, around 30 iterations are needed with
1µK.arcmin noise level.

4The subscript refers to the foreground component 1 or 2, while the superscript (i) indicates the iteration
step.
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7.5 Results

We test the likelihood maximization estimator (referred to as MLE hereafter) on the two sky
models introduced in Sec. 2, and one dataset resolutions, nside = 128. The results from 1000
M-C simulations on fsky = 0.9 are displayed in Fig. 2.15, and show that the method is not
biased for the basic sky model, i.e. a linear homogeneous SED of the foregrounds. For the
PySM model, the MC distributions of the estimations properly lie under the input distributions
of the coefficients. The method thus successfully recovers the mean value of ααα, even on more
complex sky models.

0

50

100

150

Oc
cu

rre
nc

es

0.0160 0.0165 0.0170
Dust

0.024

0.032

Sy
nc

hr

0 50 100 150
Occurrences

MLE
Coeff input

Homogeneous foreground model

0

20

40

60

Oc
cu

rre
nc

es

0.0198 0.0204
Dust

0.024

0.032

0.040

Sy
nc

hr

0 20 40 60
Occurrences

Coeffs distrib
MLE

PySM d1 foreground model

Figure 2.15: Foreground coefficient distributions for the MLE estimator at the resolution nside =
128. Results are shown for the homogeneous foregrounds model (left), and the PySM model
(right).

7.6 Conclusion and summary

There is some pros and cons using the MLE compared to the linear regressions methods previously
proposed in the Sec. 6. By construction, the MLE provides the lowest error-bars on the estimation
α̂, although the linear regression solutions seem to perform nearly just as good. The main
advantage of the MLE is that it does not require any bias cancelling. The coefficients can be
evaluated on each frequency maps independently, without using any cross-datasets as for the
xnLR. However, the algorithm requires the inversion (or at least solving) for a larger covariance
matrix, C, of size 3npix × 3npix, compared to the size npix × npix for the linear regression. The
algorithm must be ran iteratively, which can be time consuming even for a few iterations (∼ 3, 4).
Further comparison of all methods are made in sec. 12.
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8 Internal Linear Combination

In this section, we introduce the ILC method, and adapt its implementations for our polarization
datasets cleaning in the pixel domain. We discuss how the ILC can be parametrised to account
for polarisation rotation at the end of the section.

8.1 Formalism

The ILC method estimates the CMB signal s = (sQ, sU )T by linearly combining nν frequency
maps mν of size npix with some weight coefficients wν ,

ŝ =

nν∑

ν

wνmν (2.80)

= w†m, (2.81)

with w an array of weight coefficients wν , and m an array of the maps mν . The † operator
transposes in the map-space only (as opposed to pixel space).

The coefficients wν can be scalars (minimal parametrisation), or matrices, for example in
order to weight independently the Q and U components of the maps, or to account for polari-
sation rotation of the signals with respect to a change of frequency at which the maps mν are
measured. The choice of the weights parametrisation is discussed in Sec. 8.3. For now-on, we
will keep the discussion as general as possible.

8.2 Optimal coefficients

In the case of pure temperature ILC, the weights w are chosen such that they minimize the
pixel variance of the CMB estimation. If we now write the variance of the polarization CMB

estimation P̂ ≡ ŝQ + iŝU , which leads to Var
[
P̂
]

= 〈P̂ P̂ †〉 − 〈P̂ 〉 〈P̂ †〉, we see that this variance

involves terms such as 〈Q〉 and 〈U〉, which are the pixel average of the Stokes components.
However, those are only defined in the local frame, not as global quantities. Therefore, their
mean value on the sky cannot be properly estimated. For this reason, the quantity that must
be minimized is the covariant variance 〈|P̂ |2〉 = 〈(sQ + isU )(sQ − isU )〉, which is independent
of the local coordinate frame. We thus write

〈|P̂ |2〉 = 〈(sQ + isU )(sQ − isU )〉 (2.82)

= wTCw, (2.83)

with the maps covariance matrix defined as

C ≡ Cov [m] . (2.84)

The shape of C depends on the parametrisation of the weights wµ, and will be discussed in
Sec. 8.3. In order for the estimator of Eq. (2.80) to fully recover the CMB signal, we introduce
an additional condition,

wT U = vT . (2.85)

The choice of the U matrix and v vector depends on the weights parametrisation, and is discussed
hereafter. They simply account for the fact that the CMB signal is present in each dataset, and
that the weights wµ have to be normalised accordingly.
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Introducing the Lagrange multipliers λλλ (which size also depends on the weight parametrisa-
tion), we now wish to minimise

L = 〈|P |2〉 −
[
wTU− vT

]
λλλ, (2.86)

which leads to the following system of equations,

∂L
∂w

= (C + CT )w −Uλλλ. (2.87)

The solution for the weight coefficients is given by

w = (C + CT )−1Uλλλ. (2.88)

Finally, by reinjecting in Eq. (2.85), we get

λλλ =
[
UT (C + CT )−1U

]−1
v. (2.89)

Ultimately, the coefficients solution is

w = (C + CT )−1U
[
UT (C + CT )−1U

]−1
v . (2.90)

This solution that we developed here is completely general, and accounts for most of the
weight parametrisations present in the literature, providing that the normalisation condition of
Eq. (2.85) is expressed accordingly.

8.3 Weights parametrisations

The most general parametrisation of the weights reads

wν =

(
wRQ −wIU
wIQ wRU

)

ν

. (2.91)

In general, some or all of the coefficients are degenerated. We distinguish three main parametri-
sations.

Minimal

The minimal parametrisation considers no signal rotation, and no change in amplitude between
the Q and U components. Therefore, wIQ = wIU = 0, and wRQ = wRU (Kim et al. 2009). In that
case, the maps covariance matrix is of size nν × nν ,

Cµν = 〈mQ
µm

Q
ν +mU

µm
U
ν 〉 . (2.92)

We also have λλλ ≡ λ (a scalar quantity), as well as U = 1nν×1 and v = 1, such that
the condition of Eq. (2.85) translates into

∑
ν wν = 1, and the CMB signal amplitude in the

estimator of Eq. (2.80) is conserved. This parametrisation choice is referred to as PRILC in
Fernández-Cobos et al. 2016.
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Q/U Stokes

Other implementations propose to use different coefficients wRQ and wRU for each Stokes param-

eters. In that case, w = (wQ,wU ), λλλ ≡ (λQ, λU )T . In addition,

U ≡
(

1nν×1 0nν×1

0nν×1 1nν×1

)
, and v =

(
1
1

)
, (2.93)

such that
∑

µwQ,µ =
∑

µwU,µ = 1.

However, one can show that this choice, referred to as QUILC in Fernández-Cobos et al. 2016,
is not orientation-preserving the foreground residuals, as discussed in the same reference.

Polarisation rotation

The polarisation rotation of the foreground signal can be accounted for by taking wIQ = wIU ,

and wRQ = wRU . In that case, w = (wR,wI). The covariance matrix of Eq. (2.83) is a 2nν × 2nν
symmetric matrix,

C ≡
(

C+ −C−

C− C+

)
, (2.94)

for which we define the nν × nν blocks

C+
νµ ≡ 〈mQ

ν m
Q
µ +mU

ν m
U
µ 〉 , C−νµ ≡ 〈mQ

ν m
U
µ −mU

ν m
Q
µ 〉 , (2.95)

with C+T = C+ and C−T = −C−.

We also have λλλ ≡ (λR, λI)
T , as well as

U ≡
(

1nν×1 0nν×1

0nν×1 1nν×1

)
, and v =

(
1
0

)
, (2.96)

such that
∑

µw
R
µ 1 and

∑
µw

I
µ = 0.

As investigated in Sec. 9, considering polarisation rotation (non-zero wI ’s) does not impact
the precision on the estimation of the change in amplitude. This parametrisation is referred to
as PILC in Fernández-Cobos et al. 2016.

8.4 Foregrounds cleaning ILC

Originally, the ILC method aims at combining multiple frequency maps while reducing the
variance induced by the noise and the foregrounds of the resulting combination. Indeed, if we
develop the covariance matrix for the minimal parametrisation of Eq. (2.92) (PRILC),

Cνµ = 〈sQν sQµ + sUν s
U
µ 〉+ 〈fQν fQµ + fUν f

U
µ 〉+ 〈nQν nQµ + nUν n

U
µ 〉 , (2.97)

we observe that for the elements on the diagonal of C, (i.e. ν = µ), the last term of Eq. (2.97),
which quantifies the noise contribution to the variance, is non-zero. In the case where the
foreground signal is low compared to the noise variance, the latter will dominate C. As a result,
the ILC will favour the reduction of the noise from the combination of the map ν in the resulting
CMB estimate against the reduction of the foregrounds signal. As underlined in Efstathiou et al.
2009, in the noise dominated limit, the ILC solution simply corresponds to inverse noise-variance
weighting, and the foregrounds contamination are not properly removed.
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In order to primarily minimize the foreground residuals, Efstathiou et al. 2009 propose to
subtract the noise variance terms from the covariance matrix, such that C → C − Iσσσ2, where
σσσ2 ≡ (σ0, ..., σnν )T is a vector of the dataset variances. An other solution that we propose to
avoid this foreground subtraction bias is to compute the variance using cross-correlation between
maps. This solution is similar to the one proposed in Sec. 6 for the linear regression estimator
noise bias mitigation : we select two sets of maps, mνA and mνB, each measured by pair at
the same channel ν, but that have uncorrelated noise, i.e. 〈nQνAnQνB 〉 = 0, and 〈nUνAnUνB 〉 = 0.
Therefore, on average, the last term of Eq. (2.97) vanishes. We then define the block entries of
this new ‘cross’ covariance matrix between the datasets A and B as

CνA,µB ≡ 〈mQ
νA
mQ
µB

+mU
νA
mU
µB
〉 . (2.98)

We note that CAB = CT
BA. Finally, the weights are given by Eq. (2.88) using CAB as the C

matrix. They can be used to clean both the split datasets A and B. The resulting combination of
maps will not have minimal total variance anymore, but only minimal foreground variance. We
refer to this variant of the ILC as the ‘cross’ ILC, or xPRILC for our example of parametrisation.

8.5 Relation to the linear regression

Let us consider the same three datasets, d, tD, tS , as for the linear regression of Sec. 6. The
pixel-based PRILC weights w = (wd, wD, wS) are intimately connected to the coefficients αD
and αS estimated by the linear regression methods. Indeed, by identifying the ILC CMB signal
estimation of Eq. (2.80) with that of Eq. (2.29) for the linear regression, we can write the relation

αD ↔
wD
wd

, αS ↔
wS
wd

. (2.99)

The solution for both methods are actually almost mathematically equivalent. Indeed, let
us consider a one-foreground toy-model. The normalised linear regression (nLR) solution of
Eq. (2.48) is

α̂ =
dTC−1d− tTC−1d

dTC−1t− tTC−1t
, (2.100)

while the PRILC parametrisation becomes w = (wd, wf ), which estimation provided by Eq. (2.90)
reads

ŵd =
dTd− tTd

dTd+ 2dT t+ tT t
, ŵf =

dT t− tT t
dTd+ 2dT t+ tT t

. (2.101)

When using cross-datasets, and neglecting the CMB pixel-pixel correlations, the residual
covariance C becomes diagonal, and can therefore be removed from the nLR solution. In that
case, the relation of Eq. 2.99 between the nLR and the PRILC coefficients becomes an equality,
α = wf/wd, and both methods (ILC and nLR) are strictly equivalent. This observation holds
for the two foregrounds case.

Therefore, the only difference resides in the inclusion of the C covariance matrix in the
linear regression. For our particular case (three datasets), the linear regression can thus be
seen as a weighted ILC solution. For this reason, we do not show any result of the pixel based
ILC method tested on our set of datasets simulations, since those, as well as the associated
discussion, is similar to that of the nLR estimator provided in Sec. 6.
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9 Polarization rotation

In this section, we investigate possible account for signal polarisation rotation. The formalism
was presented in Sec. 4, in which we parametrise the foreground coefficients as

αf ≡
(
αR −αI
αI αR

)

µ

(
fQi
fUi

)

µ

. (2.102)

The foreground coefficients are related to the change in polarisation amplitude by

ρ ≡
√
αRµ

2 + αIµ
2, (2.103)

and to the rotation angle by

θ ≡ arctan

(
αIµ
αRµ

)
. (2.104)

We use the xnLR estimator developed in Sec. 6 and consider two parametrisations of this
estimator :

• no polarisation rotation degree of freedom, in that case αR 6= 0 and αI = 0. Thereby,
θ = 0 and ρ = αR. We refer to this parametrisation as the standard xnLR.

• allowed polarisation rotation, in that case, αR 6= 0 and αI 6= 0. We refer to this parametri-
sation as xnLRr.

Using MC simulations on the PySM model (introduced in Sec. 2), we show the distribution
of the dust and synchrotron coefficients amplitudes ρD and ρS , in Fig. 2.16. In addition, we
display the distribution of the rotation angle, θi, computed using the xnLRr estimator.

Both parametrisations provide similar precision on the estimation of the amplitude ρ. We
see that the error on the estimation of the dust polarization rotation is about σθ ' 0.43◦ for
Planck -like noisy datasets, and σθ ' 0.25◦ for noiseless datasets. The estimation of polarization
rotation on the synchrotron shows much more uncertainty, with a typical error of σθ ' 3.4◦ for
Planck -like noisy datasets, σθ ' 1.8◦ for noiseless datasets. We see that a significant part of the
uncertainties is driven by the CMB variance. Better precision in future, less noisy, experiments
could be achieved by subtracting datasets by pair, in order to remove the CMB signal. In that
case, the method must be slightly modified in order to account for the removed signal.

The amplitude uncertainty is the same whether including the rotation or not in the estimator.
However, the resulting CMB estimate map can still be impacted by the uncertainty on the
rotation angle, which are quite important, when the polarization rotation is small compared to
the noise and the CMB signal. It is thus generally safer to estimate the amplitude only.
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Figure 2.16: Top : amplitude distributions using the xnLR and xnLRr estimators. Bottom :
foreground rotation angle θ estimated from the xnLRr method. Simulations are generated using
the PySM model, either using the 100GHz Planck -like noise level (N 6= 0), or no noise (N = 0).
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10 Patches cleaning

Ideally, one would aim at estimating the full distribution of α(n̂) on the sky. In practice, because
of the signal-to-noise limitation, we can only approximate α(n̂) by defining localised patches on
the sky, and perform the estimation of one mean value of α for each patch. A forecast analysis
on the foreground residuals using patch-cleaning was already investigated in Sec. 5. The results
on MC simulations using the estimators proposed in the previous sections is presented here.

Using small patches allows us to track variations of α̂(n̂) on the sky with a high resolution,
however, as a result, the average signal-to-noise ratio per patch is lowered. Therefore, a com-
promise has to be found between the patch resolution, and the precision of the estimation of
α̂(n̂).

We apply the xnLR on patches to account for foreground spatial variations of the PySM
foregrounds signals. We use noiseless simulations, with a patch resolution pside = 8, which
corresponds to 768 patches. Therefore, for our study case, the CMB is the only source of noise
for the estimation of the foreground coefficients. The dataset resolution is nside = 256, meaning
that there is 12× 2562/768 = 1024 sub-pixels per patch.

10.1 Dust-synchrotron correlation

On Fig. 2.17, we compare the mean value of the estimation with the input coefficient on each
patch. On average, the measured dust coefficient map is seen to accurately recover variations
of the input coefficients αD(n̂) on the sky. On the other hand, the synchrotron coefficient
map seems noisier, with some mean values clearly away from the input coefficients αS for some
patches. We observed at least one effect that can drive the mean patch value away from the
true input α distribution.

The effect is a dust-synchrotron correlation, observed for example on the patch number 343,
which localisation on the sky is shown on the top right panel of Fig. 2.18. The top left and middle
panels of the same figure shows the MC distribution of the foreground coefficient estimation, α̂.
On the bottom left and middle panels, for each sub-pixel associated to a direction n̂, we draw

the input dust signal amplitude,

√
fQD (n̂)

2
+ fUD (n̂)

2
, against the input coefficient, α(n̂).

We observe that the distribution of the estimation of αD is driven by the dust pixels for
which the signal is the highest (around αD ∼ 0.022). This is expected from the xnLR method,
since it naturally targets the pixels for which the foreground signal is the highest. However,
as a result, the synchrotron MC distribution (top centre panel) is biased compared to the
input value (centre bottom). This is because the dust residuals tend to drive the synchrotron
coefficient away from its true value. This dust-synchrotron correlation between coefficients α̂D
and α̂S is highlighted on the right panel, for which we plot the 2D-distribution of coefficients.
To validate our observations, we simulated a sky with no dust, and verified that, in that case,
the synchrotron is not biased (centre panel, red vertical line).

10.2 Cosmic variance

On Fig. 2.17, we also show the patch estimations for one simulation. The results are not
encouraging, as the recovered coefficient map is highly noisy. The estimation successfully recovers
the distribution in the galactic plane only, and for the dust coefficient only. It means that, for
this patch resolution (pside = 8), and at this frequency (100 GHz), a precise estimation is
overwhelmed by the CMB present in the intermediate channel, which acts as a source of noise
for the xnLR, and reduces the detection of foregrounds spatial variations.

A solution to recover precise estimations would be to remove the CMB from the datasets,
for example by subtracting the datasets by pair to create templates. This, of course, is only
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Figure 2.17: Coefficient estimate on patches for the PySM foreground model, for no experimental
noise, using the cross LR method. The patch resolution is pside = 8. Left column corresponds
to the dust, and right to the synchrotron. First row shows the results for one simulation. The
mean estimation over MC realisations are shown on the second row. For comparison, the third
row corresponds to the input coefficient distribution in the PySM model.

advisable for low noise datasets. Since the noise of each dataset is summed when combined, one
would seek to avoid inducing even larger uncertainties on the estimation of α in the patches.

10.3 Beyond cosmic variance

Given the results presented in this section, we conclude that the patch-cleaning method that
we propose cannot be easily applied. We selected the worse-case frequency channel (100 GHz),
for which the foreground amplitude is the lowest. In that case, even for noiseless datasets,
the foreground coefficient estimations is still overwhelmed by the CMB variance present in the
intermediate channel. This method is clearly not advisable for Planck data, for which the noise
level of the datasets is even higher than the CMB polarisation signal amplitude (see Fig. 2.5).



92 Chapter 2. Astrophysical foreground removal

0

25

50

M
C 

di
st

rib
ut

io
n

No CMB

0.019 0.020 0.021 0.022
D

0

1

fg
 si

gn
al

 a
m

pl
itu

de 1e 3

Dust

0

25

50

M
C 

di
st

rib
ut

io
n

No CMB
No Dust

0.00 0.02 0.04
S

2.5

5.0

fg
 si

gn
al

 a
m

pl
itu

de 1e 5

Synchrotron

0.0215 0.0220 0.0225
D

0.00

0.01

0.02

0.03

S

Figure 2.18: Distributions of foreground coefficients for the patch number 343 (showed on the
top right mollview), for no experimental noise. The left and central panels respectively show
the results of the dust and synchrotron. The MC distribution of the coefficients estimates α̂ are
shown on the upper part of the panels. The bottom panels show the input foreground signal
amplitude against the input coefficient α(n̂), for each sub-pixel of this patch. In addition, the
estimate result for which no CMB are present in the datasets is indicated by a vertical black
line. For synchrotron, the estimate for dust-free simulations is indicated by a solid red line. The
right panel shows the 2D distribution of the dust and synchrotron MC coefficients estimates.

Patch cleaning on frequency channels that are closer to the templates will of course show
more promising results. For example, the polarised dust SED spectral index estimation was
performed on patches in Planck 2018 Results. XI combining all HFI polarisation channels (from
100 GHz to 353 GHz).

A solution for future, low noise measurements, is to subtract datasets by pair, in order to
remove the CMB signal. In that case, the method must be slightly modified in order to account
for the removed CMB component.
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11 Residual covariance matrix

We investigate further the construction of the residuals covariance matrix, labelled C, defined
in Eq. (2.31) for the linear regression, and in Eq. (2.76) for the maximum likelihood estimator.

Foreground mismatch

Let us consider a one-foreground toy model. The terms of the linear regressions estimators, such
as dTC−1t with d = s+ αf and t = s+ f , can be developed as follow

〈dC−1t〉 = 〈sC−1s〉+ α 〈fC−1f〉+ (1 + α) 〈sC−1f〉 . (2.105)

On average, the last term of Eq. (2.105) vanishes. However, it can be non-negligible for one
sky realisation, and can greatly contribute to the uncertainty on the foreground coefficient
estimation. It is identified as foregrounds mismatch, as already pointed out in the case of the
pixel-based ILC methods (e.g. Efstathiou et al. 2009). A solution to mitigate the mismatch
impact is to include the full CMB signal pixel-pixel correlation matrix S in the covariance
matrix C. The estimator methods thus becomes semi-blind, as it requires a prior knowledge of
the CMB signal. Anyway, S is dominated by the E-mode signal, which current measurement
is achieved with enough precision. This, however limits the resolution at which the cleaning
method can be performed, as it generally requires the inversion5 of the matrix C, which size of
the order of ∼ npix.

Diagonal approximation

The inversion of the matrix C limits the size at which the estimation of the α’s can be performed.
A solution is to consider the variance of the pixels for the Q and U components, as well as the
Q-U pixel correlation only. In that case, the 4 square blocks matrix C are diagonal for LR

estimator (respectively 36 square blocks for the MLE). The matrix inversion can therefore be
decomposed into multiple (npix) inversions of 2 × 2 matrices (respectively 6 × 6), which highly
reduces the computational cost. As a result, the signals of smaller scales can be included, but
the estimators are no more optimal, as they do not account for the full pixel-pixel correlation of
the noise or the CMB signal.

Comparison between full and diagonal

We choose to compare two dataset resolutions. The lowest is at nside = 16, for which we include
the CMB correlation signal. The highest is at nside = 128, for which we follow the diagonal
approximation. We display in Fig. 2.19 the MC distribution of the xnLR and MLE estimations
using both resolutions.

We notice that including the CMB signal in the covariance matrix reduces by half the
uncertainty on α̂. When neglecting the off-diagonal terms of the C, increasing the resolution
to nside = 128 do not produce any better precision on the estimation compared to nside = 16,
but the uncertainty is still roughly twice larger than when including the CMB correlations and
performing the cleaning at nside = 16. We therefore advise using small resolution to estimate the
foreground coefficients, in order to be able to include the full CMB correlation in the estimator
and reduce the foreground mismatch.

5The matrix inversion is not mandatory, as the system Cx = m can be solved numerically, with m a map and
x the unknown.
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Figure 2.19: Foreground coefficient distributions for the xLR and MLE estimators at resolution
nside = 16 (left), and nside = 128 (right). For the former resolution, the method is also performed
when including the full CMB pixel-pixel correlations in the covariance matrix C. Results are
shown for the homogeneous foregrounds model (top), and the PySM model (bottom).
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12 Summary and method comparison

We summarise what we have learned about the methods developed to removed the foreground
contamination of the datasets. We also compare their results in term of uncertainty on α.

12.1 Summary

In this chapter, we investigated the cleaning of the foreground contaminations using three
datasets, including two templates, while considering two source of foregrounds contaminations,
the dust and the synchrotron signals.

We showed in Sec. 6 that the linear regression estimator can be biased either by the noise,
the CMB variance signal, or both. We provided some solution in order to mitigate the bias.
In Sec. 7, we developed a maximum likelihood estimator, which is by construction unbiased,
and optimal, but which must be ran iteratively and is more time consuming. In Sec. 8, we
generalised the solution provided by the pixel-based ILC. In the context of three datasets and
two foregrounds signals, we showed that the pixel based ILC PRILC and the normalised linear
regression nLR are almost identical estimators.

As discussed in Sec. 9, the CMB signal can impact significantly the uncertainty on the
polarisation rotation. In Sec. 11, we showed that including the full CMB signal correlation in
the residual covariance matrix improves the uncertainty on the foreground coefficients α by a
factor of two. For future work, we could investigate how including the full residual covariance
matrix improves the measurement on the foreground polarisation rotation.

In addition, we considered applying the methods on patches of the sky, in order to account for
the spectral variation of the foreground signal. For our case study, we showed that CMB signal
can severely impede any precise patch-estimation of α(n̂). For future, low-noise, and multi-
frequency experiments such as the LiteBIRD satellite, the CMB signal could be removed from
the datasets before applying the patch cleaning. This could be done for example by subtracting
datasets by pair. This solution deserves further investigations, which is left for future work.

12.2 Method comparison

The uncertainties on the estimation of the foreground coefficients α obtained thought all the
methods presented in this chapter (except the ILC) are compared in Fig. 2.20, using he PySM
model. We consider mainly four categories :

• the cross normalised linear regression, xnLR,

• the smoothed ordinary linear regression, s3oLR ,

• the variance subtracted ordinary linear regression, vcnoLR,

• the maximum likelihood estimator, obtained via the Newton-Raphson iterative algorithm,
MLE.

As showed previously, the cross pixel-based xPRILC method is equivalent to the xnLR solution.
Therefore, we do not include it in our comparison. We also do not consider any polarisation
rotation.

For all methods, we consider a resolution of nnside = 128, and we work using the diagonal
approximation for which the residual covariance matrix only accounts for the noise and CMB
variances (we refer to Sec. 11). We also consider including the full CMB correlation in the residual
covariance matrix, but working at smaller map resolution, only for the xnLR (nnside = 32) and
MLE (nnside = 16) estimators. For each foreground, the input distribution coefficients, α(n̂), is
also displayed.
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Of all methods, the xnLR and MLE estimators using the full C provide the lowest uncertainties.
The xnLR is the easiest to implement, and computationally faster than the other methods which
require either a pre-smoothing of the datasets as for the s3oLR, or an iterative implementation
such as the MLE. However, it only provides one common coefficient for both split datasets, while
the other methods allow to compute different α for each split-datasets. The vcnoLR, we believe, is
the less safe method, as it must rely on precise estimate of the dataset noise and CMB variances
to subtract the bias from the estimator.
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Figure 2.20: Comparison of the uncertainties for the dust (top), and synchrotron (bottom)
coefficient estimations α̂ on the PySM foreground, at 100 GHz. In addition, the true distribution
on the sky is displayed for each foreground signal.





Chapter 3

Spectrum estimators

In order to constrain the cosmological model, the CMB anisotropies are conveniently projected
in harmonic space, with their statistics encoded in the angular power spectra CXY` , where ` is
the multipole, and X,Y ∈ {T,E,B}. Since the anisotropies in the CMB are expected to be
Gaussian distributed, all the cosmological information is contained in C`. The power spectra
estimated from the CMB measurements, Ĉ`, can be compared to the cosmological model C`(θ)
using a likelihood function, in order to estimate the cosmological model parameters θ. Using
power spectra allows to compute the likelihood up to small angular scales on the sky in a
reasonable amount of computational power, whereas a pixel-based likelihood is restricted to low
resolutions CMB data due to its computational cost. In this chapter, we will focus on estimating
the E and B polarization power spectra on large scales from Q and U polarization maps.

1 Context

1.1 Power spectrum estimator methods

Pseudo-spectrum

We generally define two categories of spectrum estimators. The first one, known as the pseudo-
spectrum estimator (pCl), includes methods that work directly in the harmonics space (e.g. Tris-
tram et al. 2005). The input map is firstly decomposed into a set of spherical harmonics co-
efficients ã`m, from which pseudo-spectra C̃` = 〈ã`mã`m〉 are computed, then corrected for sky

coverage. For a dataset of Nd pixels, the pCl only demands O(N
3/2
d ) operations (Efstathiou

2004). The extension of the pCl method to cross-spectra formalism offers the advantage of
being able to cross-correlate CMB maps, allowing us to remove the noise and mitigate the im-
pact of systematic effects, providing that they are uncorrelated. However, the method has been
showed to be sub-optimal for large and intermediate angular scales (` . 100) (Molinari et al.
2014; Efstathiou 2004; Efstathiou 2006).

Pixel-based

The second category includes power spectra estimators that use a pixel based approach. Those
are known to be particularly suited for large angular scale analysis, but they have the draw-
back of being computationally more expensive. The spectrum Maximum Likelihood Estimator
(MLE)1 implemented in pixel space have the advantage of minimizing spectra uncertainties,

1Not to be confused with the foreground MLE method defined in chapter 2, and used to estimate the foreground
coefficient α.

98
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but it requires to be ran iteratively, which quickly becomes infeasible for high resolution maps.
See for example Borrill 1999; Bond et al. 1998 for a Newton-Raphson implementation of the
spectrum MLE. The algorithm computational cost scales as O(N3

d) operations since it requires
the inversion of Nd-Nd matrices. An other approach, developed in Tegmark 1997 and extended
to polarization in Tegmark et al. 2001, is the so call Quadratic Maximum Likelihood (QML).
The estimator requires less or none iteration, and it offers the same error bars as the spectrum
MLE. At first sight, it also requires O(N3

d), although it can be brought down O(N2
d) as described

in Tegmark 1997.

1.2 Polarization leakage

Because of experimental limitations and/or foreground contaminations, the effective CMB sur-
veys sky coverage can be partial. In the context of polarization analysis, this introduces an
ambiguity in the relationship between the Stokes parameters Q and U , and the E and B modes.
Indeed, the E/B spectrum decomposition is inherently non-local, and is non unique in the
presence of boundaries. In this context, the E and B modes are inevitably mixed and misla-
beled (Lewis et al. 2001; Bunn 2003; Bunn et al. 2003). A new set of modes, called ‘ambiguous’,
which receive contributions from both E and B modes, is introduced. This effect, known as
polarization leakage, can be corrected on average (Chon et al. 2004; Kogut et al. 2003). How-
ever, the E/B mixing signals contribute to each other’s spectrum variance. The E modes thus
act as a source of noise for the B modes estimation. Since the B-mode signal is expected to
be much lower than that the E-mode signal, the impact of this ’variance leakage’ is extremely
problematic for the detection of B-modes and their precise measurement. Several methods have
been developed in order to reduce the variance leakage impact.

The pure pseudo-spectrum (PpCl) method presented in Smith 2006; Bunn 2003; Lewis 2003 is
an extension of the standard pCl and currently represents the most popular solution that reduces
the amount of polarization variance leakage. It has been widely investigated in e.g. Grain et al.
2009; Grain et al. 2012; Ferté et al. 2015, and has been demonstrated to produce near-optimal
variance power spectrum estimates for intermediate and small angular scales. However, the
PpCl method requires particular sky mask apodizations, which depend on the scanning strategy
and on the depth of the observed CMB field.

In this chapter, with a view to lower the polarization variance leakage, and more generally
to lower the B modes spectrum variance, we will introduce the formalisms of two spectrum
estimators, each belonging to one of the two categories introduced here above. Firstly, we
will present the pure pseudo-spectrum (PpCl) method. Secondly, we will develop a method
based on the QML approach that allows us to cross-correlate CMB maps that have common
sky coverage, in analogy with the pseudo cross-spectra formalism. The formalism was first
introduced in Planck Intermediate Results: XLVI for the 2016 Planck results. In this chapter,
we propose to fully characterise the properties of such an estimator, extending the discussion
published in Vanneste et al. 2018. Finally, the two estimators are compared on experimental
survey simulations.
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2 Power spectrum definitions and notations

First of all, we introduce the basic ideas behind the Fourier transform on the sky, and how the
power spectrum is constructed from the temperature and polarization fields. We then develop
how the spectrum uncertainty is impeded by the cosmic variance and the experimental noise.

2.1 Spherical Fourier transform

The CMB field measurement is generally parametrised by the Stokes parameters I, Q and U ,
which can be combined into a spin-1 temperature field T , and two spin-±2 polarization fields
P±2,

I = T, P±2 ≡ Q± iU. (3.1)

Those fields can thus be expressed in term of complex spin-s spherical harmonic functions sY`m
weighted by the spin-s complex harmonic coefficients sa`m

T (n̂) =
∑

`m

a`mY`m(n̂), a`m =

∫
Y †`m(n̂)T (n̂) dn̂, (3.2)

P±2(n̂) =
∑

`m

±2a`m ±2Y`m(n̂), ±2a`m =

∫
±2Y

†
`m P±2(n̂)(n̂) dn̂, (3.3)

and ∫
sY
†
`m(n̂) · sY`′m′(n̂) dn̂ = δ``′δmm′ , (3.4)

with n̂ is the unit vector on the sky, and the integrals are taken over the entire celestial sphere.
Generally, the following notation is adopted for spin-0 fields a`m ≡ 0a`m and Y`m ≡ 0Y`m. The
spinned spherical harmonics can be written in term of spin-0 spherical harmonics (Zaldarriaga
et al. 1997),

sY`m ≡ β`,sðsY`m, −sY`m ≡ β`,s(−1)sð̄sY`m, (3.5)

where β`,s =
√

(`− s)!/(`+ s)!. The spin-raising and lowering differential operators acting on
the spin-s quantity are defined on the sphere as

ðs ≡ −(sin(θ))s
(
∂θ + i

∂ϕ
sin θ

)
(sin θ)−s, (3.6a)

ð̄s ≡ −(sin(θ))−s
(
∂θ − i

∂ϕ
sin θ

)
(sin θ)s., (3.6b)

with (ðs f)∗ = ð̄s f∗.

2.2 Power spectrum

It is usually convenient to express the polarization field in term of a (scalar) E and a (pseudo-
scalar) B fields. This E/B decomposition is more natural, since from a physical point of view,
the E/B decomposition is directly linked to the primordial cosmological perturbations and to
the presently observed CMB anisotropies. The corresponding coefficients are expressed as

Ea`m =
1

2
(+2a`m + −2a`m) =

∫
EY†`m(n̂)P(n̂) dn̂, (3.7a)

Ba`m = − i
2

(+2a`m − −2a`m) =

∫
BY†`m(n̂)P(n̂) dn̂, (3.7b)
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with P = (Q,U)T . From Eqs. (3.5), the associated E/B spherical harmonics

EY`m =
1

2

(
+2Y`m + −2Y`m

−i (+2Y`m − −2Y`m)

)

=
β`,2
2

(
ð2 + ð̄2

−i(ð2 − ð̄2)

)
Y`m (3.8)

≡ DE
2 Y`m,

and

BY`m =
1

2

(
i (+2Y`m − −2Y`m)

+2Y`m + −2Y`m

)

=
β`,2
2

(
i(ð2 − ð̄2)
ð2 + ð̄2

)
Y`m (3.9)

≡ DB
2 Y`m,

thus define two orthogonal subspaces, E and B, such that

DE
2 ·DB

2 = 0, and

∫
EY†`m(n̂) · BY`m(n̂) dn̂ = 0. (3.10)

The operators D
E(B)
2 can be seen as projectors, which filtering out all B (E) modes from the

polarization dataset P in Eqs. (3.7). For each `, there are only 2`+ 1 Fourier coefficients a`m on
the sky. The power spectrum is obtained by computing the variance of the Fourier coefficients
over the modes m,

1

2(`+ 1)

∑̀

m=−`
Xa`m Y a`′m = CXY` δ``′ , X, Y ∈ {T,E,B} (3.11)

where, for each `, the operator 〈 〉 is the average over the 2`+ 1 modes m.

2.3 Spectrum variance

When the power spectrum Ĉ` is estimated from a set of measured coefficients ã`m, the estimation
has a variance induced by both the datasets noise and the finite number of modes available on
the sky. One can compute the covariance between two cross-power spectra, each respectively
estimated from the cross-correlation of the datasets A & B, and C & D,

Cov
[
ĈAB` , ĈCD`

]
= 〈ĈAB` ĈCD` 〉 − 〈ĈAB` 〉 〈ĈCD` 〉

=
1

(2`+ 1)2

∑

mm′

(
〈âA`mâB`mâC`m′ âD`m′〉 − 〈âA`mâB`m〉 〈âC`m′ âD`m′〉

)

=
1

(2`+ 1)fsky
(CAB` CCD` + CAC` CBD` + CAD` CBC` − CAB` CCD` )

=
1

(2`+ 1)fsky
(CAC` CBD` + CAD` CBC` ), (3.12)

where 〈 〉 is the average over the multipoles `, and C` is the true spectrum. The factor fsky ∈ [0, 1]
accounts for the loss of power due to the partial sky coverage of the measurements. In the case
for which the datasets have some instrumental noise, such that â`m = a`m + n`m, we simply
have to replace CXY` → CXY` +NXY

` in the above expression, with NXY
` ≡ 〈nX`mnY`m〉 the noise

spectrum.
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Even for full sky coverage, fsky = 1, and no noise, N` = 0, we see that the power spectrum
estimate is still impeded by an intrinsic variance proportional to C2

` /(2` + 1). This so-called
cosmic variance is a natural consequence of the finite number of modes available on the sky, and
particularly impacts the large scales (low `’s).

3 Simulations

In the following sections, in order to test and compare the spectrum estimators, we consider two
simulated surveys. Firstly, a full sky experiment aiming at the measurement of the reionization
signal (` . 10). The foreground contaminations are assumed to be removed, and their residuals,
which are assumed to be strong in the galactic plane, are masked. The second survey covers
a smaller sky fraction, aiming at the measurement of the recombination bump (` ' 100), and
for which the foregrounds contamination is assumed to be removed. Both surveys sky fractions
are shown in Fig. 3.2. We generate nMC = 105 CMB simulations from the Planck 2015 best
fit spectrum model (Planck 2015 Results. XIII.) shown in Fig. 3.1, with a tensor-to-scalar ratio
r = 10−3, and a reionization optical depth τ = 0.06. The two surveys are treated completely
independently. For each of them, in order to estimate the power spectrum, we cross-correlate
two simulation maps with common CMB signal, but different noise realisation from the same
level. The noise levels are chosen between 0.1 ≤ σn ≤ 50µK.arcmin indicated in Fig. 3.1.
This choice roughly covers the characteristics of future ground experiments from CMB Stage
4 (S4) (Abazajian et al. 2016) (∼ 1µK.arcmin), or satellites such as LiteBIRD (Hazumi et al.
2019), CORE, and PICO (between 1 and 5µK.arcmin) (Matsumura et al. 2014; Delabrouille et
al. 2018; De Zotti 2018), up to Planck noise level (around 50µK.arcmin) (Planck 2015 Results:
VI).
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Figure 3.1: Tensor (dashed) and total (solid) components of the E-modes (green), and B-modes
(blue) spectra `(` + 1)/(2π)C` as a function of the multipole `, based on Planck 2015 best fit
model with an optical depth τ = 0.06. The primordial (tensor) polarization spectra are indicated
for a tensor-to-scalar ratio r = 10−3. Various experimental noise levels σn [µK.arcmin] are also
indicated.
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Figure 3.2: Mollweide projection of the sky coverages for the reionization (yellow + blue areas),
and the recombination (yellow area) surveys. The latter corresponds to the ∼ 1% sky fraction
from BICEP2 public mask. The grey area corresponds to the 30% where Planck dust polarization
amplitude is the highest, mostly located in the galactic plane.

3.1 Reionization survey

For the large angular scales analysis, referred as the ’reionization survey’, we consider an observed
sky fraction fsky ' 70%. A binary mask is built from the 353 GHz Planck polarization maps, for

which pixels with the highest polarization amplitude,
√
Q2 + U2, accurately traces the galactic

polarized dust. The map is pre-smoothed using a Gaussian window function in order to remove
the experimental noise bias. A cut is then applied on the pixels with the highest amplitude, and
the resulting binary mask is smoothed with a Gaussian beam window to avoid sharp edge. We
choose to follow the instrumental specifications of the satellite mission LiteBIRD (Matsumura
et al. 2014), considering a beam-width of 0.5 deg, and a white homogeneous noise. The analysis
is considered over the multipoles range ` ∈ [2, 47].

3.2 Recombination survey

The ’recombination survey’ sky patch is based on the public BICEP2 (Keck Array/BICEP2
October 2015 Data Products 2018) apodized mask M ∈ [0, 1]. We build a binary mask using all
pixels i for which Mi ≥ 0.1. Rather than considering a homogeneous noise as for the reionization
survey, we apply an inverse noise weighting distribution based on the mask M . The effective
sky fraction is therefore fsky = (

∑
iM

2
i )2/

∑
iM

4
i ' 1%, as defined in (Hivon et al. 2002).

Our analysis considers a beam-width of 0.5 deg. Because of the limited sky fraction, individual
multipoles are strongly correlated. We thus reconstruct the spectrum on multipoles bins. We
show the results starting from ` = 48 to account for the low sensitivity to large angular scales due
to the small coverage, and we define 24 bins up to ` = 383 with a constant bin-width ∆b = 14.
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4 Pure pseudo spectra

In this section we develop the formalism of the pure pseudo spectrum estimator. We discuss its
possible implementations and optimisations of the power spectra ‘purifications’. The methods
are tested on the simulations set presented in the previous section.

4.1 Formalism

Pseudo spectrum

In the context of partial sky integration or noise weighting, with W (n̂) ∈ [0, 1] a window function
accounting for both, the observed temperature and polarization fields can be replaced by T →
TW and P → PW in the expressions introduced in Sec. 2. As a consequence, the measured
Fourier coefficients ã`m do not correspond to the true coefficients a`m anymore. Their variance
over m, the so called pseudo-spectrum C̃XY` , is biased compared to the true power spectrum
C`. Indeed, for temperature and polarization spectra, the terms of C̃XY` involves a mixture
between the different true multipoles `. In addition, the polarization spectra C̃XY` receive
additional contributions from both polarization types. By introducing the so-called mixing

kernel MXX′,Y Y ′

``′ , the pseudo-spectrum relation to the true power spectrum C` is recovered as

C̃XY` = 〈X ã`m Y ã`′m′〉 (3.13)

=
∑

`′,
X′=E,B
Y ′=E,B

MXY,X′Y ′

``′ CX
′Y ′

`′ +NXY
` . (3.14)

This aliasing only occurs between polarization modes, i.e. {X,Y } ∈ {E,B}. The term NXY
`

accounts for the experimental noise contribution to the estimate, which can be either evaluated
and subtracted when the experimental measurement is sufficiently characterised, or removed by
cross-correlating two datasets as discussed further. By removing the noise term and inverting
Eq. (3.14), one can recover an unbiased estimator ĈXY` , the so called pseudo-spectrum estimator.

The mixing kernel MXY,X′Y ′

``′ thus accounts for the cut-sky effect, the noise weighting, as well
as instrumental beams effects. The relevant expressions to build it can be found for example in
(Kogut et al. 2003; Alonso et al. 2019).

Cross spectrum

CMB survey datasets are generally a combination of CMB, foregrounds signal, and experimental
noise. The measured spherical Fourier coefficients (for temperature or polarization) can thus be
written as

â`m = aCMB
`m + aFg

`m + aN
`m. (3.15)

Although the foregrounds signal can be subtracted and/or masked, the noise contribution must
be removed in order to obtain unbiased CMB power spectra. This can be achieved by estimating
and subtracting the noise power spectrum N` from the estimate Ĉ`. An other solution, first used
for the WMAP data analysis (Bennett et al. 2013), consists in cross-correlating two datasets
A and B that have uncorrelated noise, such that 〈aNA

`m a
NB
`m 〉 = 0, and ĈAB` ≡ 〈aA`maB`m〉 has

vanishing noise bias on average. This second approach, unlike the first one, does not require
any prior knowledge of the datasets noise. It also helps mitigating systematic error potentially
present in the datasets, providing that they are uncorrelated.
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Polarisation purification

As already pointed out, the kernel MXY,X′Y ′

``′ in Eq. (3.14) will, in general, mix different modes
as well as E and B polarization types,

C̃EE` = MEE,EE
``′ CEE`′ +MEE,BB

``′ CBB`′ , (3.16)

C̃BB` = MBB,EE
``′ CEE`′ +MBB,BB

``′ CBB`′ (3.17)

Though such a mixing is removed on average by inverting Eq. (3.14), the leaked ‘ambiguous’
modes will still contribute to the variance of the estimated power spectra. We say that the power

spectrum C
E/B
` are non-pure, as they receive contributions from both E and B modes. For noise

dominated datasets, this variance leakage has a small impact since both polarizations have the
same noise, and their mutual contributions are equivalent. Conversely, when the noise is much
lower than the signal level, the uncertainty is limited by the intrinsic ’cosmic variance’, arising
from the finite number of modes that can be sampled on the sky. In that case, the spectrum
variance is proportional to the signal. The E-modes signal, thus its cosmic variance, is much
higher than that of B-modes. As a consequence, even for small polarization mixing, the E-to-B
leakage drastically exaggerates the B modes power spectrum estimation uncertainty.

Several methods have been developed in order to reduce the contribution of ambiguous modes
to the power spectrum estimate. In general, the strategy is to remove the polarization mixing

terms of the kernel, such that MXY,X′Y ′

``′ = MXY,X′Y ′

``′ δX′Y ′ , i.e. to make the kernel diagonal
in the polarization subspace. This can be achieved by recovering the orthogonality relation of
Eq. (3.10), i.e, by reconstructing pure E/B projections E/BY†`m, such that E/Ba`m do not receive

any contribution from ambiguous Fourier modes. One can notice that E/BY†`m = WD
E/B
2 (Y`m)

are not pure E/B mode projections, while D
E/B
2 (WY`m) are. Using Eqs. (3.8) and (3.9), the

Eqs. (3.7) can be integrated by parts, in order to move the mask weighting field W to the right

of the D
E/B
2 differential operators (Smith et al. 2007; Bunn 2003),

Ea`m =

∫
P(n̂)

[
DE

2 (W (n̂)Y`m(n̂))
]†
dn̂, (3.18)

Ba`m =

∫
P(n̂)

[
DB

2 (W (n̂)Y`m(n̂))
]†
dn̂. (3.19)

The D
E/B
2 (WY`m) terms are now orthogonal subspace to each other, and the resulting Fourier

coefficients E/Ba`m are purified from polarization leakage. This transformation is only valid if
the line integral terms resulting from the integration by parts vanishes. Since it involves terms
proportional to W and ðW , the weighting mask must satisfies simultaneously the Neumann
and Dirichlet boundary conditions. In other words, the pixel mask must have vanishing bound-
aries and first derivative near the cut sky region. Practically, this is achieved by applying an
apodization to the initial mask, a process described in the next section.

A variant method consists in integrating by part to rather move the polarization field P

to the right of the D
E/B
2 differential operators (Smith 2006; Grain et al. 2009; Ferte et al.

2013). However, it involves explicit calculation of derivatives of noisy sky maps, while the first
method requires the differentiation of a presumably smooth window function. Moreover, it has
been shown in (Ferte et al. 2013) that this approach currently does not allow for a pixel mask
apodization optimisation, which greatly improves the final B modes spectrum estimate variance
as we will see.
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Spin weighted windows

We can expand Eq. (3.19) for the B mode Fourier coefficients, and get

Ba`m = B2,`m + 2
β`,2
β`,1
B1,`m + β`,2B0,`m, (3.20)

with

Bs,`m ≡
i

2

∫
+sY

†
`mP+2Ws−2 − (−1)s−sY

†
`mP−2W2−s dn̂, (3.21)

where

Ws = ðsW, (3.22)

⇔ ws,`m = β−1
`,sw`m, (3.23)

are the spin-weighed window functions respectively in the pixel and harmonic domain. Any
pure pseudo spectrum implementation thus requires the computation of the spin-1 and spin-2
windows of the spin-0 field W . Those can be computed numerically from W , going back and
forth in the pixel and harmonics domain using the Eq. (3.23).

4.2 Window function apodization

As mentioned in the previous section, the B mode purification in Eq. (3.19) is only valid when the
window function is sufficiently apodized (smooth), with vanishing boundaries and first deriva-
tive near the cut sky region. This condition ensures that the polarization leakage is cancelled,
although, in practice, some residual leakage would still be present due to the sky discretization.
In the context of B modes analysis, minimizing the polarization leakage does not necessarily im-
plies that the total B mode spectrum variance is minimal. Indeed, for realistic (meaning noisy)
datasets, the polarization leakage is not the only source of uncertainty in the resulting spectrum
estimate. In some regions, it is possible that the variance induced leakage is subdominant com-
pared to the experimental noise. In that case, the window apodization process is superfluous
since it reduces the available effective sky fraction, thus increasing the resulting spectrum esti-
mate variance. An equilibrium has to be found between the variance leakage reduction, and the
available sky fraction.

Isotropic

An easy-to-implement solution to apodize the window function is to apply an analytical smooth-
ing function. Following Smith 2006 and Grain et al. 2009, we consider two ‘pure’ analytic
apodizations functions that are applied on each pixel of an input binary mask,

fC1 =





1

2

[
1− cos

(
π r
r∗

)]
r < r∗

1 r > r∗
(3.24)

fC2 =





r

r∗
−

sin
(

2π r
r∗

)

2π
r < r∗

1 r > r∗

(3.25)

where r ≡
√

(1− cos θ) is the distance between the pixel and the closest masked pixel, and r∗
is an apodization length parameter. This parameter must be adapted depending on experimen-
tal noise, as well as the measured angular scale of the power spectrum. Typically, since the
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signal-to-noise ratio decreases as smaller angular scales are probed, the polarization leakage also
becomes subdominant compared to the experimental noise induced variance. Smaller apodiza-
tion lengths r∗ are generally required. Ideally, the apodization process must be optimised for
each bin of the power spectrum, which can be done for example via Monte-Carlo simulations.
A comparison of both apodization functions performed in (Grain et al. 2009) showed that the
C2 function produces better performances on the resulting power spectrum uncertainty. In the
noise-dominated limit, the inverse-noise weighting window functions can be built by multiplying
the inverse square-noise variance with the apodized mask.

We note that the application of those isotropic apodizations does not guarantee the dif-
ferentiability of the resulting window function. Especially for complex mask shapes having
sharp corners. The resulting power spectrum estimate is thus subject to bias because to this
non-differentiability.

Optimisation

An optimised apodization process, proposed in (Smith et al. 2007), consists in finding for each bin
of multipoles the adequate window function that lower the total (noise and leakage) B pseudo-
spectrum variance. As already mentioned, when estimated on a cut sky, the pseudo-spectrum
estimator at one given multipole of a polarization mode consists of a mixture of the signal and
noise of all true multipoles from both polarisations. The amount of mixing depends directly
on the window function shapes. The method proposed in (Smith et al. 2007) aims at reducing
the signal+noise contribution from the multipoles different from ` (or aliasing). Equivalently, it
aims at minimizing the pseudo spectrum expectation value for each multipole `,

〈C̃`〉 = 〈
Nd∑

i,j

diWiP
`
ijWjdj〉 (3.26)

=

Nd∑

i,j

WiCijP
`
ijWj , (3.27)

= W T (C ∗P`)W, (3.28)

where C ≡ 〈d2〉 is the pixel covariance matrix of the dataset d, and P`
ij =

∂Cij

∂C`
(see appendix A

for further definition of the P` matrices). We also used the operator ∗ defined as the element-
wise matrix multiplication C∗P` = CijP

`
ij (with no summation over the i, j indices). Requiring∑

Wi = β, with β 6= 0, and introducing the Lagrange multiplier λ, we differentiate

L = W T (C ∗P`)W + λ(W T1− β) (3.29)

with respect to the window function W . The solution reads

W = λ(C ∗P`)−11, (3.30)

and we can select the value of β such that λ = 1. The above equation requires the inversion
of a Nd × Nd matrix2, which quickly become computationally costly for large datasets. The
equation can still be solved using an iterative Preconditioned Conjugate Gradient (PCG) solver
as implemented in Smith et al. 2007; Grain et al. 2009. In this framework, the relation of
Eq. (3.22) between the spin-0 window function and its higher spins is relaxed. Eq. (3.30) is then
solved simultaneously for all window functions of higher spin. The optimisation procedure can
be implemented in both pixel and harmonics domain. The pixel-based approach is preferred

2Typically, Nd is of the order of the number of pixels (∼ 106 - ∼ 108)
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since it accounts for complex mask shapes, holes, and complicated map noise properties (Grain
et al. 2009), and is thus our optimisation choice for the simulations tests.

This apodization optimisation method requires a prior knowledge of the experimental noise,
and especially of the CMB signal, to build the C matrix. It has been shown in Grain et al.
2009 that the window apodization optimisation from the perspective of E-to-B leakage reduction
mainly depends on the E modes signal, which current characterisation is known with sufficiently
high precision on intermediate and small angular scales. As for the B mode, the dominant
component of the signal at small angular scales comes from the lensing of E modes, which is
well modelled. The impact on the signal prior is investigated in Grain et al. 2009, for which
they conclude that the assumption on the B modes signal has almost no impact on the resulting
spectrum variance.

4.3 Results

Mask apodizations

We consider both mask apodization processes introduced above. Firstly, an isotropic apodization
using the C2 function defined in Eq. (3.25), as this function showed better performance on the
power spectra (Grain et al. 2009). For this purpose, we use the NaMaster package Alonso et al.
2019, which provides a pure cross-pseudo spectra estimator. Secondly we use the pixel-based
mask optimisation obtained through the Preconditioned Conjugate Gradient (PCG) solver used
in Grain et al. 2009, implemented in the package Xpure 2019. The solver convergence highly
depends on the signal and noise levels, and it is typically observed to decrease as the input noise
level is low. We found however that the convergence is reached with a reasonable amount of
time when the windows are optimised over bins of multipoles rather than on each multipole. For
this analysis, we choose to optimise six window functions, with a bin-width of ten multipoles
for the reionization survey, and around a hundred for the recombination survey. The mixing
kernel is then computed ‘row-by-row (i.e.bin-per-bin) using each window function, from which
the unbiased estimator is finally built. For the large scale analysis only, the PCG does not
converge in a reasonable amount of time for a fiducial noise level under 3µK.arcmin. We thus
use optimised window functions at 3µK.arcmin to estimate the power spectrum for simulations
with noise level under 3µK.arcmin.

The real part (Q component) of the window functions used for the analysis at 1µK.arcmin
are displayed in Fig. 3.3 and 3.4 respectively for the reionization and recombination surveys.
We observe that the first and second derivative (spin-1 and spin-2) window map computed for
both surveys present scratchy features when using the C2 apodization function. Those reflect
the non-differentiability of the window function, which is due to the complex shapes of the large
scale binary mask. The impact in terms of potential bias on the reconstructed power spectrum is
discussed hereafter. On the other hand, the optimised apodization produces significant smoother
spinned maps. We will see that the spectrum estimate present no bias, and a lower variance,
which emphasises the interest of this technique against a simple isotropic apodization function
applied on the sky.

Mixing kernel

Following (Grain et al. 2012), we adopt a hybrid approach, where the E-modes are obtained
using the standard pseudo-spectrum, and the B-modes using the pure method. Indeed, the
B-to-E leakage has almost negligible impact on the E estimate variance given the B mode signal
level. It is thus advised to keep the ambiguous modes to estimate the E spectrum.

The mixing kernel for both surveys are shown in Fig. 3.5. We only display the polarization
block entries for the optimised apodization at 1µK.arcmin noise level. Each mixing kernel
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Figure 3.3: Spin-weighted window functions used for the large-scale (reionization) pure pseudo
spectrum simulations. The windows using the C2 apodization function with an apodization
angle θ∗ = 30◦ are displayed on the left column. The pixel-optimised windows for 3µK.arcmin
are displayed on the right column.

made of four blocks reflecting each of the four pseudo-multipole mixing combination EE-EE,

EE-BB, BB-EE, and BB-BB. As already mentioned, the mixing matrix MXY,X′Y ′

`,` translates the
amount of modes `′ from the X ′Y ′ polarization power spectrum leaking into the XY polarization
spectrum estimated at the multipole `. Thus, with this definition, we understand that the
amount of E modes leaking into B modes is quantified by the bottom left block of the mixing
matrix. Conversely, the amount of B mode leaking into E modes is quantifies by the top right
block.

We observe that the E-to-B leakage is successfully reduced, as the BB-EE block of both
surveys contains smaller mixing values. Only a small mixing is observed on the first bin ` ∼ 2.
On the other hand, the B-to-E leakage is not reduced, which is in agreement with our choice
to adopt a hybrid pure pseudo-spectrum estimation. We note that the overall amount of mode-
mixing is smaller for the recombination survey.

We also notice that the first multipoles of the BB-BB block can be highly correlated with
small scales `′ of the same block.
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Figure 3.4: Spin-weighted window functions used for the small-scale (recombination) pure pseudo
spectrum simulations. The windows using the C2 apodization function with an apodization angle
θ∗ = 30◦ are displayed on the left column. The pixel-optimised windows for 1µK.arcmin are
displayed on the right column

Spectrum

In this subsection we compare the spectrum estimations from the standard pseudo-spectrum
(pCl) using the xPol estimator (Tristram et al. 2005), and the (pure) pseudo-spectrum ap-
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Figure 3.5: Pure pseudo spectrum polarization mixing kernel (log-scale) for the reionization
(left) and recombination (right) surveys, with a noise level σn = 1µK.arcmin.

proaches. For that purpose, we make use of 104 MC simulations based on the surveys introduced
in Sec. 3.

For each apodization angle θ∗, the power spectrum uncertainty using the C2 apodization is
shown in Fig. 3.6. We observe that broader apodization lengths reduce the amount of leakage
at large angular scales (` . 15 for the reionization survey, and ` . 90 for the recombination
survey), but also reduces the effective observed sky fraction, thus rising the sampling variance
at the remaining higher multipoles. For each multipole, we select the apodization length θ
which produces the lowest variance. We then combine the estimated multipole to reconstruct
an unbiased spectrum estimation

Ĉcombi
` = Ĉθ` such that σ(Ĉθ` ) = min

{
σ(Ĉθ0` ), ..., σ(Ĉθn` )

}
. (3.31)

The resulting spectrum uncertainty is therefore equal to the joined spectra minimum variances,
that is to say,

σ(Ĉcombi
` ) = min

{
σ(Ĉθ0` ), ..., σ(Ĉθn` )

}
. (3.32)

In order to fully visualize the apodization effect, we also show PpCl errors for each apodization
length value. Longer apodization lengths do not improve further the large scale spectra uncer-
tainties (θ∗ ≥ 30◦ for the reionization, and θ∗ ≥ 10◦ for the recombination survey). The C2
apodization is also observed to cause bias on the spectrum estimate. The bias is induced by the
non-differentiability of the spin-window function discussed previously. It is mainly present on
the first tenth multipoles of the reionization survey when using a small apodization angle θ∗,
and it tends to disappear as a larger apodization angle is used. We note that using the other
apodization function C1 does not produces significant changes in this results.

As expected, the standard pCl leads to much higher uncertainties, for which the E-modes
variance leakage contribution is visible on the recombination survey B-modes variance.

Similarly, we show the spectrum estimate results for the optimised apodization procedure
in Fig. 3.7, and we compare with the C2 case. For both surveys, the pixel domain optimisation
provides the lowest spectra uncertainty over the whole multipole range, particularly at large
angular scales. This is in accordance with previous studies (Ferte et al. 2013; Smith et al. 2007;
Grain et al. 2009).
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Figure 3.6: BB spectrum C` (error-bars) and uncertainty σ(C`) (plain) using the standard
pseudo-Cl (pCl) and the pure pseudo-Cl (PpCl) with a ’C2’ apodization. Left : reionization
survey. Right : recombination survey. The PpCl results are shown for each apodization angle,
θ∗. The combined PpCl uncertainty is indicated in plain dashed magenta. The simulation are
generated with a noise level σn = 1µK.arcmin. Vertical error-bars are divided by the square root
of the number of simulations (104), while horizontal error-bars account for the binning width.
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4.4 Summary

In this section, we have presented the pseudo-spectrum estimator, and more specifically the pure
formalism. Compared to the standard approach, the latter allows to separate ambiguous modes
from pure polarization modes when estimated on a cut sky. This technique is particularly suited
for B-mode power spectrum estimation, since it reduces the amount of E-to-B leakage. Though
the leakage can be corrected on average by computing a mixing kernel matrix, the uncertainty on
the ambiguous modes still contributes to the total variance of the BB spectrum. The polarization
mixing terms in the kernel matrix can be reduced by redefining an appropriate window function
on the sky. In particular, the pure method requires that the window function, as well as it
first derivative should continuously vanish near the boarder of the mask. In order to do so, we
presented two apodization processes. The first one consists in applying a constant apodization
function C2 on the sky, but that can lead to spectrum bias due to the non-differentiability of the
window function. The second technique consists in optimising the window function in the pixel
domain in order to reduce the amount of modes mixing. It has the advantage in accounting for
the pixel-noise weighting or complex mask shapes. However, the PCG solver that optimises the
window functions was observed to lose convergence as lower noise levels were considered. The
current solution that we propose is to estimate the window functions with higher noise fiducial
level. Anyway, the optimisation successfully provides lower spectrum variance, especially at
large scales.

A very high variance is also present at low multipoles (` . 10), on the reionization survey.
We observed that it appears as soon as the tensor-to-scalar ratio becomes small (r . 10−3),
while it is not visible on the previous papers cited in this section since they used a fiducial value
r & 10−2, which is one order of magnitude higher than ours.
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5 Cross Quadratic maximum likelihood estimator

As described in the introduction of this chapter, the Quadratic Maximum Likelihood (QML)
is a pixel-based estimator that allows to obtain spectra with minimum variance. However,
it does not allows to cross-correlate datasets, as the pCl formalism does. In this section, we
describe a pixel-based spectrum estimator, based on the QML approach, that allows us to
cross-correlate CMB maps that have common sky coverage. This cross QML (xQML) formalism
was first mentioned in Planck Intermediate Results: XLVI for the 2016 Planck results, and we
deepened its characterisation in Vanneste et al. 2018. More specifically, we estimated the degree
of optimality of the xQML compared to the QML, and tested the algorithm on large and small
scales simulated surveys. We also estimated its efficiency at mitigating polarization variance
leakage impact on the B-modes power spectrum, and compared the results with the pure pCl
spectrum estimator. The following discussion resumes and complete our study published in
Vanneste et al. 2018. A public implementation of the xQML estimator has been made available
on GitLab: https://gitlab.in2p3.fr/xQML.

5.1 Formalism

Firstly, we review the most important steps that lead to the definition of the QML estimator,
following what has been done in (Tegmark 1997; Tegmark et al. 2001). We then derive a cross-
spectrum QML estimator (xQML) and compare its properties with the QML. Finally, we discuss
in depth the implementation of the algorithm.

In the following sections, lower case characters correspond to vectors and upper case cor-
respond to matrices. Bold font, Latin indices, the trace and transpose operators are used for
elements in the pixel domain, while normal font and ` indices are used in the multipole domain.

Standard QML

We consider a dataset d, of dimension Nd = 3npix which encodes temperature T and Stokes
parameters Q and U measurements,

d ≡




T
Q
U


 . (3.33)

The pixel covariance matrix C of the dataset is given by

C ≡ 〈d,dT 〉 = S + N, (3.34)

with N the pixel noise covariance matrix, and S the signal covariance matrix defined as

S ≡
∑

`

P`C`, with Pij
` =

∂Cij

∂C`
. (3.35)

The vector C` can encode all six power spectra TT,EE,BB, TE, TB, and EB. For temperature,
the P ij` matrices correspond to the Legendre polynomial functions,

Pij,T
` =

4π

2`+ 1

∑

m

Y`m(n̂i)Y
∗
`m(n̂j). (3.36)

The expression and computation of P` is detailed for polarization in appendix A.
Following (Tegmark 1997; Tegmark et al. 2001), we write the power spectrum estimator as

a quadratic function of the pixels
ŷ` ≡ dTE`d− b`. (3.37)

https://gitlab.in2p3.fr/xQML
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The E` (` = 2, ...) are Hermitian Nd ×Nd matrices, and b` are arbitrary constants. From Eqs.
(3.34) and (3.35), the estimator ensemble average reads

〈ŷ`〉 = Tr
[
E` 〈d,dT 〉

]
− b`, (3.38)

=
∑

`′

W``′C`′ + Tr [E`N]− b`, (3.39)

with

W``′ ≡ Tr [E`P`′ ] (3.40)

as the ’mode-mixing’ matrix. Choosing b` = Tr [E`N], the unbiased estimator of the true power
spectrum C` thus reads

Ĉ` ≡
∑

`′

[W−1]``′ ŷ`′ , (3.41)

and has the following covariance

〈∆Ĉ`,∆Ĉ`′〉 = [W−1]``1 〈∆ŷ`1 ,∆ŷ`2〉 [W−1]`2`′ , (3.42)

where ∆Ĉ` = Ĉ` − 〈Ĉ`〉. The summation over repeated indices is implied. The resulting power
spectrum estimate is unbiased, regardless of the choice of the E` matrices. The E` are usually
constructed in order to minimize the estimator variance

〈∆ŷ`,∆ŷ`〉 = 2Tr [CE`CE`] , (3.43)

which gives the trivial solution E` = 0. We thus impose the mode-mixing matrix diagonal to be
non-zero, that is for each `, we have W`` = β, with β an arbitrary constant. The problem can
be solved using the method of Lagrange multipliers. We require the derivative of the Lagrange
function

L = 〈∆ŷ`,∆ŷ`〉 − 2λ(Tr [E`P`]− β), (3.44)

with respect to E` vanishes, where λ is the Lagrange multiplier. The solution reads3

E` =
λ

2
C−1P`C

−1. (3.45)

Finally, imposing W`` = Tr [E`P`] = β gives

λ

2
Tr
[
C−1P`C

−1P`

]
= β. (3.46)

We choose β such that λ = 1 and E` is well defined. With this choice, the mode-mixing matrix
is equal to the Fisher information matrix

W``′ = F``′ (3.47)

≡ 1

2
Tr
[
C−1P`C

−1P`′
]
, (3.48)

with 〈∆ŷ`,∆ŷ`′〉 = F``′ and 〈∆Ĉ`,∆Ĉ`′〉 = [F−1]``′ .
The E` matrices are thus constructed such that the spectrum estimator has minimal variance,

i.e. the Fisher variance. However, the QML estimator requires a precise knowledge of the pixel
noise matrix N to compute the bias term b` in Eq. (3.37). In practice, estimating the noise model
of an experiment is difficult and requires an exquisite knowledge of instrument properties. In
the next section, we develop a method that allows us to compute a cross-spectrum estimator
that is unbiased independently of the choice of N.

3Using matrix identities ∂ETr [CECE] = 2CTETCT .
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Cross QML

Following the same formalism as for the ’auto’-spectrum QML estimator detailed in the Sec. 5.1,
we now consider two datasets dA and dB from which the pixel covariance matrix reads

CAB ≡ 〈dA,dBT 〉 = S + NAB. (3.49)

We assume uncorrelated noise between the two datasets, such that the cross pixel noise covari-
ance matrix vanishes NAB = 0.

The cross estimator now reads

ŷAB` ≡ dA
T
E`d

B − bAB` , (3.50)

with bAB` = Tr
[
E`N

AB
]

= 0. As in Eqs. (3.41) and (3.42) for the QML method, the unbiased
estimator reads

Ĉ` ≡
∑

`′

[W−1]``′ ŷ
AB
`′ , (3.51)

and its covariance

〈∆Ĉ`,∆Ĉ`′〉 = [W−1]``1 〈∆ŷAB`1 ,∆ŷAB`2 〉 [W−1]`2`′ . (3.52)

The central term of Eq. (3.52) is computed using Wick’s theorem,

〈∆ŷAB` ,∆ŷAB`′ 〉 =
[
〈dAi , dAk 〉 〈dBj , dBn 〉 + 〈dAi , dBn 〉 〈dAj , dBk 〉

]
Eij
` Ekn

`′

= Tr
[
CAAE`C

BBET
`′ + CABE`C

ABE`′
]
, (3.53)

where summation on the pixels indices i, j, k, n is implied. Matrices CAA = S + NAA and
CBB = S + NBB are respectively the pixel covariance matrix of the datasets A and B.

As in Eq. (3.44) for the QML, we seek for the E` matrices that minimize the estimator
variance of Eq. (3.53). We get the equation4

CAAE`C
BB + CABET

` CAB = λP`, (3.54)

which is a generalized form of the Sylvester equation (De Terán et al. 2016). Although the exact
solution exists, as discussed in Sec. 5.3, it requires us to solve a system of N2

d equations, which
is computationally prohibitive for large datasets. For this reason, we derive an approximate
solution by considering two extreme signal-to-noise ratio (SNR) cases :

• Hs : High SNR, such that S� N, and CAA ∼ CBB ∼ S.

• Ls : Low SNR , such that S� N, and CAA ∼ NAA, CBB ∼ NBB.

For both limits, Eq (3.54) admits a solution of the form5

E` '
λ

α
(CAA)−1P`(C

BB)−1, (3.55)

where α is a normalization coefficient that depends on the SNR, with α = 2 for the Hs regime,
and α = 1 for the Ls regime. The impact of the approximation made in Eq. (3.55) on the
spectrum variance is discussed in Sec 5.3. Finally, imposing W`` = Tr [E`P`] = β gives

λ

α
Tr
[
(CAA)−1P`(C

BB)−1P`

]
= β. (3.56)

4Using matrix identities ∂ETr [AEBE] = ATETBT + BTETAT and ∂ETr
[
AEBET

]
= ATEBT + AEB.

5We remark that when CAA ∼ CBB , and more specifically for a high signal-to-noise ratio, E` ' ET` .
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We choose β such that λ/α = 1/2, and we recover the QML solution for A = B. Inserting E`

of Eq. (3.55) in the mode-mixing matrix defined in Eq. (3.40), one obtains

W``′ =
1

2
Tr
[
(CAA)−1P`(C

BB)−1P`′
]
. (3.57)

Using Eqs. (3.53), (3.52), (3.55) and (3.57), the cross-spectrum estimator covariance reads

〈∆Ĉ`,∆Ĉ`′〉 =
1

2
[W−1]``1 (W`1`2 +G`1`2) [W−1]`2`′

=
1

2

(
[W−1]``′ + [W−1]``1G`1`2 [W−1]`2`′

)

≡ V``′ , (3.58)

where we define the additional mode-mode matrix

G``′ ≡
1

2
Tr
[
(CAA)−1P`(C

BB)−1CAB(CAA)−1P`′(C
BB)−1CAB

]
. (3.59)

In the Hs regime G``′ ∼ W``′ , such that V``′ = [W−1]``′ . In the Ls regime, the second term
[W−1]``1G`1`2 [W−1]`2`′ in Eq. (3.58) contributes at second order of the cross-spectrum variance.
As a representative example, the diagonal elements of those two terms are compared in Fig. 3.8
for the EE and BB spectra, with a 10µK.arcmin noise level. With this choice, the E-mode is
signal dominates, and corresponds to the Hs regime, while the B-mode SNR is low for most of
the multipoles (` & 10), and corresponds to the Ls case.
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Figure 3.8: Diagonals of the covariance matrix terms W−1
``1
G`1`2W

−1
`2`

(dashed) and W−1
`` (plain)

of Eq. (3.58). EE and BB components are plotted in green and blue respectively. The noise
level is 10µK.arcmin.

We thus successfully defined a quadratic estimator based on datasets cross-correlation which
does not require the subtraction of noise bias. Moreover, we derived an approximation of the
E` matrices that minimizes its variance. We also note that we recover the QML estimator when
A = B, with a nonvanishing noise bias term b`.
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5.2 Relation with the maximum likelihood estimator

The spectrum MLE, in its initial form, consists in finding the maximum of the Likelihood for
the parameter C̃`,

L(C̃`|d) = −1

2
(dC̃−1d + Tr

[
ln C̃

]
), (3.60)

with C̃ = N + S̃ the pixel covariance matrix, and S̃ is constructed from the fiducial spectra C̃`.
First we Taylor expand Eq. (3.60) up to second order,

L(C̃` + δC̃`) = L(C̃`) +
∂L
∂C̃`

δC̃` +
1

2

∂2L
∂C̃`∂C̃`′

δC̃`δC̃`′ , (3.61)

where summation over repeated ` is assumed. The first derivative of the Likelihood is written
as

∂L
∂C̃`

=
1

2

(
dT C̃−1 ∂S̃

∂C̃`
C̃−1d− Tr

[
C̃−1 ∂S̃

∂C̃`

])

=
1

2

(
dT C̃−1P`C̃

−1d− Tr
[
C̃−1P`

])
, (3.62)

and the second derivative, also known as the curvature matrix, as

∂2L
∂C̃`∂C̃`′

≡ F``′ = −dT C̃−1 ∂S̃

∂C̃`
C̃−1 ∂S̃

∂C̃`′
C̃−1d +

1

2
Tr

[
C̃−1 ∂S

∂C`
C̃−1 ∂S

∂C`′

]

= −dT C̃−1P`C̃
−1P`′C̃

−1d +
1

2
Tr
[
C̃−1P`C̃

−1P`′

]
. (3.63)

By maximizing Eq. (3.61) with respect to δC̃`, the solution for δC̃` reads

δC̃` = −
[

∂2L
∂C̃`∂C̃`′

]−1
∂L
∂C̃`′

. (3.64)

The MLE can be implemented as a Newton-Raphson algorithm that iterates over δC̃`, see for
example Borrill 1999. The curvature matrix, F``′ , can be replaced by the Fisher matrix F``′ , as
in Bond et al. 1998, which does not impact the convergence of the algorithm to a solution.

With E` ≡ C−1P`C
−1, we can rewrite Eq. (3.64) as

δC̃` = −1

2
F−1
``′
(
dTC−1P`′C

−1d− Tr
[
CC−1P`′C

−1
])

(3.65)

= −1

2
F−1
``′
(
dTE`′d− Tr [(S + N)E`′ ]

)
(3.66)

= −1

2
F−1
``′
(
dTE`′d− Tr [NE`′ ]− Tr [P`′′C`′′E`′ ]

)
. (3.67)

At the maximum of the likelihood, i.e. C̃` = C`, it is straightforward to show that the ensem-
ble average of the first derivative of likelihood Eq. (3.62) vanishes, and the curvature matrix
Eq. (3.63) is equal to minus the Fisher matrix, 〈F``′〉 = −F``′ . Hence,

〈δC̃`〉 = 0 (3.68)

⇔ 〈F``′〉−1 〈dTE`′d− Tr [NE`′ ]〉 = 〈F``′〉−1 F`′`′′C`′′ (3.69)

⇔ F−1
``′ 〈dTE`′d− Tr [NE`′ ]〉 = δ``′′C`′′ . (3.70)

We thus recover the quadratic estimator Ĉ` = F−1
``′ (dTE`′d − Tr [NE`′ ]), which corresponds to

the solution that maximizes the likelihood.
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This correspondence between the MLE and the standard QML cannot be extended to xQML,
since the likelihood cannot be written in term of two different datasets dA and dB. Moreover,
the matrices E` are generally not Hermitian (as it is the case for the QML), so that it is not a
quadratic estimator either. Anyway, we keep the appellation cross-‘QML’ because of the close
formalism to the standard auto-spectrum approach.

5.3 Implementation

We provide a public code of the xQML method, available on GitLab :
https://gitlab.in2p3.fr/xQML. In this section we detail some important steps of the xQML im-
plementation. We first discuss the pixel covariance matrix construction. We then derive an
exact solution for the Sylvester Eq. (3.54). Finally, we describe a method for binning the xQML

spectrum estimator.

Instrumental beam and pixel window function

The construction of the P` matrices in Eq. (3.35) are described in appendix A. For realistic
data analysis, we must account for the datasets pixel window and beam transfer functions.
They impact the measured cross-spectrum by smoothing the small scales, which is equivalent
to convolve the true power spectrum with the product of the datasets effective beam functions
BA
` B

B
` . We therefore have

〈Ĉ`〉 = C` (BA
` B

B
` ). (3.71)

A simple solution to correct for the beam is to multiply the matrices P` by each of the effective
beam transfer functions in the multipole domain,

P` → P`B
A
` B

B
` . (3.72)

Indeed, applying Eq. (3.72) implies the following transformations,

W``′ →W``′ B
A
` B

B
` B

A
`′B

B
`′ , (3.73)

y` → y`B
A
` B

B
` , (3.74)

or, from the definition of the estimator in Eq. (3.51),

Ĉ` →
∑

`′

[W−1]``′(B
A
` B

B
` B

A
`′B

B
`′ )
−1ŷ`′(B

A
`′B

B
`′ ) (3.75)

= Ĉ` (BA
` B

B
` )−1. (3.76)

Therefore, from Eq. (3.71), we get 〈Ĉ`〉 → C`, and the estimator is succesfully corrected from
the instrumental beam.

Pixel covariance matrix

The covariance matrix C introduced in Eq. (3.34) includes correlations between pixels for each
of the Stokes parameters,

C =



CTT CTQ CTU

CQT CQQ CQU

CUT CUQ CUU


 . (3.77)

https://gitlab.in2p3.fr/xQML
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We can separate the temperature and polarization measurements by using an approximated
pixel covariance matrix

C̃ =



CTT 0 0

0 CQQ CQU

0 CUQ CUU


 . (3.78)

This matrix does not mix temperature with polarization estimates. As a result, the Ĉ`
estimator is not optimal anymore, while it is still an unbiased estimator of the true C`. As
shown in (Tegmark et al. 2001), the price to pay is a slight error bar increase of the order
of one percent. Using this choice, the polarization spectra are protected from temperature
systematics error that could propagate through the TQ and TU terms of Eq. (3.77). For the
rest of the discussion, we focus our analysis on polarization measurement only. The method can
be implemented for the temperature spectrum estimation following the same approach.

In Eq. (3.35), the summation over ` is theoretically infinite. It can however be truncated
at a given `max as long as the remaining contributions from C`>`max are negligible. This can
be accomplished manually by smoothing the dataset d (e.g. by convolving the spectrum with a
decreasing function). In the framework of our analysis, we simply generated CMB simulations
while filtering all C`>`max .

In the Sec. 5.1, the xQML variance has been shown to be minimal if the fiducial C̃ matrix
is built from the true C. In practice, it is not always possible to estimate precisely the latter.
Indeed, since C = S + N, it requires an estimation of the CMB signal covariance S =

∑
` P`C`,

and thus the CMB signal, as well as the experimental noise N. It is not difficult to express the
estimator variance as defined in Eq. (3.52) for any fiducial C̃,

〈∆Ĉ`,∆Ĉ`′〉 = [W̃−1]``1Tr
[
CAAẼ`1C

BBẼT
`2

]
[W̃−1]`2`′

+ [W̃−1]``1Tr
[
CABẼ`1C

ABẼ`2

]
[W̃−1]`2`′ ,

(3.79)

where Ẽ` and W̃``′ are computed using the fiducial matrix C̃ instead of C in Eqs. (3.55) and
(3.57).

Impact of pixel covariance matrix estimate

To estimate the impact on the spectra estimations variance of small deviations of the fiducial
C̃ from the true C, we consider a simplified toy model with CAA = CBB = C. We also restrict
our calculation to the first term of Eq. (3.79), since we previously showed that, depending on
the noise level, the second term is either negligible, or either equal to the first one. Any small
perturbation to the fiducial C̃ around the true C can be written as

C̃ = C + E, with E � C, (3.80)

and thus
C̃−1 = C−1 −D, with D ≡ C−1EC−1 � C−1. (3.81)

At the first order in D,

CẼ`CẼ` = C−1P`C
−1P` − 4C−1P`DP` +O(D2), (3.82)

and
Ẽ`P` = C−1P`C

−1P` − 2C−1P`DP` +O(D2). (3.83)

Since in Eq. (3.79) we take the inverse square of W̃`` = Tr
[
Ẽ`P`

]
, we get from Eq. (3.83)

W̃ 2
`` =

(
Tr
[
C−1P`C

−1P`

]
− 2Tr

[
C−1P`DP`

]
+O(D2)

)2
(3.84)

= Tr
[
C−1P`C

−1P`

] (
Tr
[
C−1P`C

−1P`

]
− 4Tr

[
C−1P`DP`

])
+O(D2). (3.85)
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Finally, inserting Eqs. (3.82) and (3.85) in Eq. (3.79),

〈∆Ĉ`,∆Ĉ`〉 '
Tr
[
C−1P`C

−1P`

]
− 4Tr

[
C−1P`DP`

]

Tr [C−1P`C−1P`] (Tr [C−1P`C−1P`]− 4Tr [C−1P`DP`])
(3.86)

' Tr
[
C−1P`C

−1P`

]−1
(3.87)

= V``. (3.88)

We see that a fiducial C̃ sufficiently close to the true C induces only second order deviations
of the spectrum estimation variance from the optimal variance V``′ . For a low SNR, the choice of
the fiducial C̃` has little impact on C̃. For signal dominated datasets, deviations of C̃` can still
have an impact on the spectrum error if chosen far from the true. A solution is to run the xQML

method iteratively as recommended in Tegmark et al. 2001, with previous spectrum estimation
as the new fiducial model.

However, even if the variance of the spectrum estimation is only slightly impacted when
the fiducial C̃ differs from the true dataset covariance matrix, the analytical estimate of the
variance,

Ṽ``′ =
1

2

(
[W̃−1]``′ + [W̃−1]``1G̃`1`2 [W̃−1]`2`′

)
, (3.89)

is biased. Taking, for example, C̃ = γC, for any constant γ, it is straightforward to calculate
that the variance of the estimator 〈∆Ĉ`,∆Ĉ`′〉 = V``′ is still minimal, but the estimated variance
Ṽ``′ = γ2V``′ diverges from the true variance by a factor γ2. One must thus be cautious when
estimating the spectrum variance analytically.

Fiducial tensor-to-scalar ratio

We now wish to measure the impact on the estimator variance depending on the choice of the
fiducial tensor-to-scalar ratio parameter rfidu used to build the fiducial power spectrum. The
latter being then used to construct the signal covariance matrix S. The amplitude of rfidu

impacts the shape of the B-modes spectrum at large angular scales. Since the signal at higher
multipoles is driven by the lensing B-modes, we do not expect any significant impact on this
range of multipoles.

We remind that, by construction, the xQML estimator is not biased regardless the change of
the fiducial spectrum used to build S. Only the variance of the estimation is impacted. The
results of the spectra estimation applied on simulations is discussed in Sec. 5.4.

Considering the reionization survey only, with fsky = 0.7, a resolution of nside = 8, and
a noise level of 1µK.arcmin, we compare the optimal variance with the estimator variance by
computing the uncertainty ratio,

∆σ` ≡
σ[C`(Ẽ`)]− σ[C`(E`)]

σ[C`(E`)]
, (3.90)

where the Ẽ` matrices are built using the fiducial model rfidu, and E` are from the true parameter
rinput. The estimator built from the E` matrices is therefore optimal in term of error-bars, and
serves as a point of comparison. For different choices of rinput, we display the ratio in Fig. 3.9.

Focusing on the auto-spectra results first, we observe that the uncertainties on the largest
scales are the most impacted. This is expected since the primordial B modes signal is the
highest for those multipoles. Therefore, any change in the fiducial primordial CBB` via rfidu will
mainly impact the variance optimality at low `’s. At ` ≤ 5, the uncertainty deviation from
optimality can reach as much as 50% when rinput = 0 and rfidu ' 10−3. We observed that this
fraction only drops to 40% for a 5µK.arcmin noise level. This observation about the fiducial
model construction is crucial to keep in mind for future large angular scale experiments that
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Figure 3.9: Deviation of the BB power spectrum uncertainty from optimality depending on the
fiducial tensor-to-scalar ratio rfidu used to construct S for different input rinput.

will produce low noise datasets and probe small values of r. As already mentioned, one solution
would be to run the estimator iteratively, narrowing the choice for the fiducial tensor-to-scalar
ratio at each step.

The cross spectra results are very similar to those of the auto-spectra. With the difference
that the ratio can becomes negative at the higher multipoles (green curves for rinput = 0.001
and rinput = 0.01). This unexpected behaviour is actually caused by the approximation that
we used to compute E` in Eq. (3.54) introduced in Sec. 5.1. The slight non-optimality of the
approximation is counter-acted by the deviation of the fiducial rfidu. As a result, the variance of
the estimator is less than what we defined as the optimal case, i.e. when rfidu = rinput. However,
this effect is completely negligible as it impacts less than 1% of the spectrum uncertainty. We
verified this hypothesis at low nside using an exact solution of the E` matrix (whose solution is
proposed here-after). The resulting ratios of the cross-spectra uncertainties are positive for the
whole range of multipole (not shown).

Sylvester equation solution

We discuss the approximate solution of Eq. (3.54) introduced in Sec. 5.1, also known as a
generalized form of the Sylvester equation, and we compare it with the exact solution described
in (De Terán et al. 2016). To find the exact solution, we use the Kronecker product property
vec(AXB) = (BT ⊗A)vec(X), under the condition that the product AXB is well defined. The
operator vec() vectorizes a matrix (by stacking its columns), and ⊗ is the Kronecker matrix
product. We also introduce the permutation matrix Π such that vec(XT ) = Π vec(X). One can
show that vec(AXTB) = Π (AT ⊗B)vec(X) (Horn et al. 1991). The Sylvester Eq. (3.54) can
thus be written as a set of linear equations

[
CBB ⊗CAA + Π(CAB ⊗CAB)

]
vec(E`) = vec(P`). (3.91)



124 Chapter 3. Spectrum estimators

We can then solve it exactly for vec(E`) using the least-squares method. However, the equation
system is of dimension N2

d , which is computationally costly for large datasets.

Approximation impact on spectrum uncertainty

We can use the Eq. (3.79) to compute the variance of the estimator with the approximate
solution of Eq. (3.55) as the Ẽ` matrices. Following Eq. (3.90), we compute the deviation of the
spectrum variance using the approximation solution Ẽ`, with the optimal one, E`. The latter is
computed using the exact solution of Eq. (3.91).

The power spectra displayed in Fig.3.1 as input, and proceed to the same computation,
shown in Fig. 3.10. For the reionization survey, on half of the sky, we observe a maximum
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Figure 3.10: Deviation of the power spectrum uncertainty from optimality relative to the noise
level, for E (up panel) and B modes (bottom). The reionization survey is computed on a
resolution of nside = 2 (`max = 5), and the recombination survey of nside = 16 (`max = 47). The
input polarization power spectra are from Planck best fit 2015. The width of the curves shows
the values associated with the multiples for which the deviation is minimum and maximum.

deviation from the optimality of about 1.3% for the B modes uncertainty, and 0.6% for the E
modes uncertainty. Those values respectively drop to 0.6% and 0.2% at fsky = 0.7, and around
0.03% on full sky. Those peaks appear when the signal and the noise levels are of the same order
at those multipoles range, i.e. ` ∼ 3. The maximum deviation is at around ∼ 200µK.arcmin for
the E modes, and ∼ 10µK.arcmin for the B modes signal, as displayed in Fig. 3.1.

The deviation for the recombination survey is observed to be the highest between∼ 10µK.arcmin
and ∼ 40µK.arcmin, which also corresponds to the signal level of the E modes at those multi-
poles range, `max ∼= 30. In that case, the deviation is at 1.5% for fsky = 0.009, and around 1%
for fsky = 0.014.

Given the low level of deviation from optimality, at most 2% in the worse case, we can
thus safely use the approximated solution of Eq. (3.55) for the implementation of the xQML

method, and we will consider it as optimal. Further analysis on higher resolution should also
be explored. A wealth of literature exists that propose algorithms to solve particular cases
of Sylvester equation using reasonable computation resources, without using the Kronecker
product. See for example Ding et al. 2005; Lin et al. 2010; Ramadan et al. 2015; Simoncini 2016
and especially De Terán et al. 2017 for our case.
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Binning

CMB observations are only available on a limited sky fraction, and as a result, individual
multipoles can be strongly correlated when reconstructing the CMB spectra. It is thus convenient
to bin the power spectra in multipoles band powers, labelled b hereafter. We define the binning
operators,

Rb` =

{
∆−1
b

0
, Q`b =

{
1 if ` ∈ b
0 otherwise

, (3.92)

with ∆b the width of the bth bin, which can be varied from one bin to another. The binned
estimator is written

ŷb ≡
∑

`

Rb`ŷ`, (3.93)

for which the covariance reads

〈∆ŷb,∆yb′〉 =Tr
[
CAAEbC

BBET
b′ + CABEbC

ABEb′
]

=
1

2∆b′
(Wbb′ +Gbb′) , (3.94)

with Wbb′ = Rb`W``′Q`′b′ , and Gbb′ = Rb`G``′Q`′b′ . The true binned spectrum is thus

Cb ≡
∑

`,`′,b′

[W−1]bb′Rb′`W``′C`′ , (3.95)

and its unbiased binned estimation becomes

Ĉb ≡
∑

`′

[W−1]bb′ ŷb′ , (3.96)

with covariance

Vbb′ =
1

2∆b′

(
[W−1]bb′ + [W−1]bb1Gb1b2 [W−1]b2b′

)
. (3.97)

We remark that the binning can also be achieved by computing Pb ≡
∑

`∈b P` directly
(without the normalization term ∆b), or equivalently Pb ≡

∑
` P`Q`b. With this definition

of Pb, the xQML components can be computed as usually defined in Eqs. (3.50), (3.51), (3.55)
and (3.57) for the spectrum estimate Ĉ`, and Eqs. (3.58), (3.59) and (3.57) for its analytical
covariance (replacing all subscripts ` by b). This method is computationally more efficient
compared to the method presented above.

5.4 Power spectra reconstruction

We verify with simulations that the reconstructed power spectra are unbiased with respect to
the input model C`. From the central limit theorem, as nMC is large, we expect the mean spectra
residues,

R`[Ĉ`] ≡
C` − 〈Ĉ`〉√
σ2(ĈMC

` )/nMC

, (3.98)

to be normally distributed around zero, for all ` if the spectra are unbiased, with σ2(ĈMC
` )/nMC

the MC variance of the mean spectra. We carefully checked that this is the case for all noise
levels 0.1 ≤ σn ≤ 50µK.arcmin.
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Figure 3.11: EE (green) and BB (blue) mean power spectra xQML estimates `(`+ 1)/2π · 〈Ĉ`〉,
and residues R`[Ĉ`] from Eq. (3.98), computed from nMC = 105 MC simulations. Spectra models
are plotted in black solid lines. Left panel corresponds to the reionization survey simulations
(nside = 16, fsky ' 0.7%), right panel corresponds to the recombination survey simulations
(nside = 128, fsky ' 1%). Noise level is σn = 1µK.arcmin for both surveys.

EE and BB signals

Power spectra and their residues are shown in Fig. 3.11 for 1µK.arcmin. Given the residues
distribution for nMC = 105 simulations, we conclude that the spectra bias level is less than one
percent of the spectra errors.

EB signal

Although first order primordial E-B and T -B correlations are predicted to be null in the frame
of the ΛCDM model, nonstandard cosmological mechanisms, such as cosmic birefringence, could
induce non-zero correlation spectra (Lue et al. 1999; Carroll 1998; Loeb et al. 1996; Kahniashvili
et al. 2005; Campanelli et al. 2004; Caprini et al. 2004; Pogosian et al. 2002). In addition to
providing an important probe to nonstandard physics, measuring EB, TB spectra could also
help to diagnose instrumental systematic effects (Yadav et al. 2010; Hu et al. 2003).

We focus on the EB signal, which can be computed by including a new set of P` matrices
in the estimator. Their computation can be found in appendix A. As a consequence, the W``′ ,
and generally all mode-mode matrices related to the estimator are also extended. The estimated
spectrum from the xQML are shown in Fig. 3.12, with a null EB spectrum as input. The results
are consistent with the input, and no bias are observed.

Spectrum variances

The MC spectra variance, and that derived analytically σ2(Ĉana
` ) = V`` in Eq. (3.58) are shown

to be in excellent agreement, as displayed in Fig. 3.13 for E and B modes. The correlation
matrix,

V̄``′ =
V``′√
V``V`′`′

, (3.99)

showed in Fig. 3.14, is band diagonal over the whole multipoles range, meaning that correlations
only occur between neighbouring bins. Typically, V̄``′ is of the order of ten percent for adjacent
bins. This value drops to a few percent for |` − `′| = 2, 3, and becomes almost negligible for
|`− `′| > 3.
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Figure 3.13: Monte-Carlo (dots) and analytical (plain) errors of polarization spectra EE (up)
and BB (bottom), for the reionization (left) and recombination (right) surveys, with noise levels
0.1 ≤ σn ≤ 50µK.arcmin.

5.5 Modes mixing and leakage

Mixing matrix

The mode-mixing matrix W``′ introduced in Eq. (3.40) quantifies the contribution of all `′-modes
to the spectrum estimator at angular scale `. The rescaled matrix

W̄``′ =
W``′√
W``W`′`′

, (3.100)

is displayed in Fig. 3.15 in log-scale for σn = 1µK.arcmin. The off-diagonal blocks quantify the
E/B modes mixing, also known as polarization leakage. This mixing appears as soon as maps
are partially masked, making some modes ambiguously belong to both E and B polarizations
patterns.

The modes mixing matrix appears to be mainly band diagonal, which means that the mul-
tipoles mixing occurs only between neighbouring bins. This highlights an important property
of the QML method. It can be used to estimate spectra over ranges of multipoles only, without
being affected too much by the lack of multipoles outside the estimation range. In other words,
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Figure 3.15: The normalized mode-mixing matrix W̄``′ defined in Eq. (3.100) in log scale, for
the reionization (left) and recombination (right) surveys, for σn = 1µK.arcmin.

only the multipoles estimated near the edge of the estimation range would be affected by a bias.
To test this property, we estimate the EE and BB polarization power spectra only on half of the
modes that we generated for the simulation (up to `max). The estimation is computed on the
first half, then on the second half of the multipoles. However, in order to build the estimator, we
still use the full covariance signal matrix S, for which the fiducial signal include all multipoles
up to `max. The resulting join spectra are shown in Fig. 3.16. At first glance, the overall spectra
are well reconstructed. We observe a bias in the residuals, near the multipole cut, as we would
have expected. At a distance of 5 bins from the cut, the spectrum bias drops at a few percent
already.

Returning to Fig. 3.15, we remark that the E/B mixing (bottom left block) is on average
very low. Most of the E-to-B leakage is localized at ` . 10 for the reionization survey. The
recombination survey also suffers from a polarization mixing increase at ` & 250. We suspect
that this effect is caused by the pixel resolution of the maps. It appears when the multipole
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angular scale is close to the typical pixel scale, and disappears as soon as we change the datasets
pixel resolution. Moreover, we checked that it is not caused by the mask by going full sky. When
reducing the resolution from nside = 128 to nside = 64, we observe in Fig. 3.17 that the aliasing
appears at multipoles where the mixing was previously non-existent for the nside = 128 case,
hence confirming our hypothesis. The effect remains however very small. For the multipoles
ranges of interest, it induces a negligible increase of variance as shown hereafter.
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Figure 3.17: The normalized mode-mixing matrix W̄``′ defined in Eq. (3.100) in log scale, for the
recombination surveys at nside = 128 (left) and nside = 64 (right), and σn = 1µK.arcmin. The
bins for the nside = 128 matrix is selected such that they match that of the nside = 64 matrix.
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Variance induced leakage

Because of polarization leakage, E and B modes respective uncertainty contributes to each other
variance. For noise dominated datasets, this variance leakage has a small impact since both
polarizations have the same noise, and their mutual contributions are equivalent. Conversely,
when the noise is much lower than the signal level, the uncertainty is limited by the intrinsic
’cosmic variance’, arising from the finite number of modes that can be sampled on the sky.
The E-modes signal, thus its cosmic variance, is much higher than that of B-modes. As a
consequence, even for small polarization mixing, the impact of the E-to-B variance leakage can
become non-negligible.

Since, by construction the error of the xQML estimator is minimal, it also minimizes the
amount of variance leakage. The BB uncertainty is represented in Fig. 3.18, for which we
compare the cases with and without leakage. The latter is obtained by simulating CMB po-
larization maps using null EE and TE spectra. We also show the absolute level of variance
leakage [σ(Ĉ leak

` )−σ(Ĉno leak
` )]/σ(Ĉno leak

` ). We observe that the recovered spectra uncertainties
for σn = 0.1 and σn = 1µK.arcmin are both mostly cosmic variance limited by the lensing
B-modes signal. We also recover that the impact of the variance leakage gets less important as
the SNR decreases.
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Figure 3.18: Top panels show the BB-spectrum uncertainty with variance leakage (solid) and
without (dashed), for the reionization (left) and recombination (right) surveys, at noise levels
0.1 ≤ σn ≤ 50µK.arcmin. Bottom panels quantify the absolute variance leakage, computed
from [σ(Ĉ leak

` )− σ(Ĉno leak
` )]/σ(Ĉno leak

` ).

For the reionization survey, the variance leakage is observed to be maximal at large angular
scales, up to a 80% increased uncertainty around ` . 10, which quickly drops to 30% for higher
`’s. This is not surprising since, for this multipole’s range, the EE cosmic variance as well as
the E-to-B mixing in W̄``′ are maximal.

For the recombination survey, the impact is maximal for the first bins. This is again related
to the higher polarization mixing in W̄``′ at those multipoles. It then drops to 20% for ` & 90,
followed by a slight increase at ` & 250. This is consistent with the previous E/B mixing
observations made on W̄``′ for this multipoles range. The impact at low `’s remains however
smaller since the E-modes cosmic variance level is much lower for those angular scales.

We conclude that, even if the mixing between polarization modes is minimized when using
the xQML estimator, the induced variance increase can however be non-negligible, especially at
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large angular scales.

5.6 Summary

In this section, we derived a pixel-based spectrum estimator that allows us to cross-correlate
CMB datasets. The method is very similar to the QML, but does not require a precise knowl-
edge of the datasets noise covariance matrices to subtract the noise bias. We also provided an
approximation to the Sylvester equation that has little impact on the optimality of the estima-
tor, which, by construction, provides near-minimal error bars. The estimator variance is shown
to be sensitive to only second order perturbations of the fiducial pixels covariance matrix. More-
over, using no TQ and TU correlations for the construction of this matrix, temperature and
polarization analysis can be done completely separately. We provide a public implementation
of the xQML method, available on GitLab: https://gitlab.in2p3.fr/xQML.

We showed that the xQML estimator is unbiased, and that the error bars on the recovered spec-
trum, obtained from Monte-Carlo simulations, correspond to the analytically derived variance.
We presented two CMB surveys aiming at the reionization and recombination polarized signals
measurement, with a fiducial tensor-to-scalar ratio r = 10−3. The source of polarization leakage
can be identified in the mode-mixing matrix W``′ . We showed in Sec. 5.5 that it is consistent with
the increase of variance in B-modes when compared to the no-leakage case. The reionization
survey BB uncertainty at low noise levels is particularly impacted by the polarization mixing,
with a maximum of an 80% increase for large angular scales at 0.1 - 1µK.arcmin. Since the xQML
method minimizes bins correlations as well as polarization mixing, the resulting error bars thus
correspond to the minimal uncertainty achievable when aiming to polarization variance leakage
reduction. A comparison with the pure pseudo-spectrum formalism is performed in the next
section.

https://gitlab.in2p3.fr/xQML
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6 Methods comparison

6.1 B-modes

In this section we compare the xQML with other methods such as the standard (pCl) and pure
pseudo-spectrum (PpCl) approaches introduced in the Sec. 4. The discussion of B-mode vari-
ance performed in Sec. 4.3 is extended to include the xQML results. The uncertainty on the
reconstructed B-mode power spectrum for all methods are illustrated in Fig. 3.19 based on 104

MC simulations.

0 10 20 30 40 50
10 5

10 4

(
+

1)
/2

(C
BB

)[
K]

2

Reionization survey, 1 K arcmin

PpCl, C2
PpCl, opti

pCl
xQML

50 100 150 200 250 300 350

10 3

10 2

(
+

1)
/2

(C
BB

)[
K]

2

Recombination survey, 1 K arcmin
PpCl, C2
PpCl, opti

pCl
xQML

Figure 3.19: BB spectrum errors from xQML, standard pCl estimators, PpCl (pure pCl) using the
C2 and optimised apodization, for the reionization (top) and recombination (bottom) surveys,
with a noise level σn = 1µK.arcmin, and r = 10−3. The pure pseudo-spectrum results where
already sown in Fig. 3.7.
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The pure methods PpCl allow to recover much lower error bars that the pCl. The two
apodizations gives similar results at high multipoles but an optimised apodization is required
to obtain better results at large angular scales. As expected, the pixel domain cross-correlation
xQML provides the lowest spectra uncertainty over the whole multipole range. This is particularly
visible at large angular scales. As discussed in Sec. 4.4, the uncertainty from the PpCl methods
is observed to be high for low `’s, then decreases as smaller scales are probed. This feature
is much less present when using the xQML method. We observe that this difference on the B-
mode uncertainty between the two formalisms is less visible when considering higher value of r
(& 10−2), and it increases as smaller value are considered.

6.2 E-B correlation spectrum

We focus on the E-B correlation, for which we compute the EB + BE spectrum variance.
The rescaled mode-mixing matrix introduced in Eq. (3.100) is extended to EB multipoles as
displayed in Fig. 3.15 for 1µK.arcmin. We observe almost no mixing between EB and EE,BB,
apart from a very small effect at large scale for the reionization survey, and a resolution effect
for high `′’s. However, we found that this property is lost when we consider particular fiducial
models with non-zero C̃EB` .

As in the previous section for the BB uncertainty, we compare our results with the pCl
and PpCl methods. The latter is computed using the hybrid approach proposed in (Grain et
al. 2012), where the E-modes are obtained using the standard pseudo-spectrum, and the B-
modes using the pure method. Variances are shown in Fig. 3.20 for 1µK.arcmin. The PpCl
uncertainty is about 20%-60% higher than that of the xQML for the reionization survey. Longer
mask apodization lengths improve the PpCl error for ` . 10. On the recombination survey, the
xQML gives significant lower EB uncertainty only for ` . 100. The conclusion is similar as for
the BB-spectrum analysis. The xQML method provides an efficient estimator for large angular
scales analysis.

6.3 Tensor-to-scalar ratio

As a forecast analysis, we show in Fig. 3.21 the uncertainty of r, obtained from 104 simulations
for each method introduced previously, as a function of the noise level. We also proceed to a
comparison with the mode-counting formula, which can be derived from Eq. (3.12),

σ2
m.c. =

1

(2`+ 1)∆`fsky

[
2C̃2

` + C̃`(N
A
` +NB

` ) +NA
` N

B
`

]
, (3.101)

where C̃` is the power spectrum fiducial model, N` = n`/B
A
` B

B
` is the noise spectrum of the

dataset convolved by the corresponding beam functions B`. This formulae gives a naive estimate
of the lowest achievable variance, neglecting correlations and leakage induced by the sky coverage.
We use the Low-` Likelihood on Polarized Power-spectra, Lollipop, presented in Mangilli et al.
2015, which is a cross-spectra extended version of the Hamimeche&Lewis likelihood for large
angular scales (Hamimeche et al. 2008). The methodology is further detailed in Sec. 6.1 of
chapter 4.

The pure method spectrum covariance matrix is computed using MC as described in the
introduction to the pure formalism. We consider only two datasets, no foreground contamination
and/or residuals, nor de-lensing, and a perfect instrument. For low SNR, the impact of the
polarization mixing is small, and all (standard and pure) pseudo-spectrum methods give the
same error on r. For high SNR, the uncertainty of r is cosmic variance limited, which corresponds
to the plateau from σn = 0.1 to σn = 1µK.arcmin. In this range of noise level, the pure pseudo-
spectrum method with optimised apodization and the xQML gives the same uncertainty on r for
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Figure 3.20: EB spectrum errors from xQML, standard pCl estimators, and PpCl (pure pCl)
using the C2 and optimised apodization, for the reionization (top) and recombination (bottom)
surveys, with a noise level σn = 1µK.arcmin.

the recombination survey, while the xQML uncertainty is ∼ 20% lower than the optimised PpCl
method for the reionization survey.

6.4 Summary & conclusion

We saw in Sec. 4.3 that mask apodization is a non-trivial task for complex mask shapes. The
naive isotropic apodization can produce window functions that are non-differentiable. This, in
turn, induces a bias on the resulting spectra estimate, mainly visible at large angular scales.
The other apodization process, which uses an optimisation PCG solver, provides much smoother
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Figure 3.21: Error on the tensor-to-scalar ratio with a input r = 10−3, for the reionization (left)
and recombination (right) surveys as a function of the noise levels 0.1 ≤ σn ≤ 20µK.arcmin. We
compare the uncertainty obtained from the standard pseudo-spectrum (blue), the pure pseudo-
spectrum using C2 (magenta) and optimised apodization (orange), the cross quadratic pixel
based (green), and the mode-counting formula (red), based on 104 simulations.

window functions and no visible bias. However, one disadvantage is that, in order for the solver
to converge, the windows must optimised over bins of multipoles rather than on each multipole.
The binning is arbitrary, and its optimal choice must be defined based on MC simulations.
Moreover, the optimisation must be performed as soon as new sky coverages or noise levels are
considered. We also observed that the solver loses convergence when considering large scales
and low noise levels. Finally, in general, the pseudo methods show much higher variance at low
`’s (. 10) than the xQML. This effect is all the more visible as low tensor-to-scalar ratio r are
considered.

Compared to the pseudo-spectrum formalism, the xQML shows significant improvements on
the error bars and correlations for both BB and EB. The particular advantage relative to pure
methods is that it does not require any special mask processing. Due to the higher computational

cost of the latter (O(N3
d) operations) relative to pseudo-spectra (O(N

3/2
d ) operations), the xQML

cannot be run on as many multipoles as for the pseudo-spectra. For all those reasons, we
conclude that the xQML estimator is particularly suited for large and intermediate angular scales
analysis.



Chapter 4

Planck data analysis

The Planck mission provides legacy products including polarisation measurements of the sky in
the millimetre wavelength. This chapter focuses on the extraction of two cosmological parame-
ters: the tensor-to-scalar ratio r via B-modes measurements, and the reionization parameter τ
via E-modes measurements. In addition to Planck data, we also apply our analysis pipeline to
the end-to-end (E2E) noise simulations that include realistic systematic errors. The validation
on realistic simulations including systematics is a crucial step to assess the robustness of our
analysis pipeline and to propagate the uncertainty through all the steps up to the cosmological
parameters estimation. It also allows us to estimate the cross-spectra covariance matrix which
will be used to constrain and estimate the posteriors on the cosmological parameters through
likelihood analysis.

In Sec. 1, we present the Planck legacy data. We make use of the algorithms developed in
chapter 2 to estimate the level of foreground contaminations in Sec. 2, and to remove it from
the simulations and datasets in Sec. 4. In Sec. 3, using our methods, we also constrain the
foreground spectral indices from Planck data. In Sec. 5, the polarisation power spectra are
estimated on the cleaned maps using the xQML algorithm developed in chapter 3. Finally, in
Sec. 6, the reionization and tensor-to-scalar ratio are estimated using a large-scale likelihood
analysis.

136
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1 Planck legacy

In this section, we describe the public data products made available by the European Space
Agency’s Planck mission. Those are part of the third Planck release (PR3), available on
the Planck Legacy Archive 2019 (PLA).

1.1 Datasets

The bottom of the Planck satellite was always facing the Sun, while spinning on its vertical axis
at the speed of one rotation per minute to scan the sky. The so-called rings (or HEALPix rings)
consist of binned time ordered information (TOI) data measured during a stable pointing period
of the spacecraft, which are about 60 minutes each. Using a map-making algorithm, the rings
are then combined to get the final map products. Additional maps including several data splits
are also delivered. Those are built using different period of the mission, different detectors, or
different rings.

Planck carried two scientific instruments: the High Frequency Instrument (HFI), and the
Low Frequency Instrument (LFI).

High Frequency Instrument

The HFI mission provided polarisation measurements in five channels, 100, 143, 217, 353 GHz,
at maximum resolution of nside = 2048. For each channel, the mission provides :

• a map for the full mission by combining all the rings.

• two half-mission maps (hm1 and hm2) which correspond to the first and second half of
the ring sets from the full mission.

• two maps that are built from odd and even numbering of the rings (oe1 and oe2) from the
full mission.

Low Frequency Instrument

The LFI mission measured polarisation in three channels, 30, 44, 70 GHz, at a maximum
resolution of nside = 1024. For each channel, the mission provides:

• a map for the full mission by combining all the rings.

• two half-ring maps (hr1 and hr2), generated from the first and second half of each stable
pointing.

• four maps based on year-combination, year 1+2, year 1+3, year 2+4, and year 3+4.

1.2 FFP10 noise simulations

The Planck team identified systematic errors due to uncertainty in the calibration of the LFI
and HFI instruments. Although negligible for the CMB temperature measurement, they can
seriously impact the polarisation measurement of the instrument due in particular to intensity-to-
polarisation leakage. In order to quantify their impact, the PLA provides 300 E2E simulations
that include systematic uncertainties based on the modelling of all known instrumental and
astrophysical effects.
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HFI simulations

The E2E HFI simulation pipepline, detailed in Planck 2018 Results. III, simulates the time-
ordered information (TOI) by proceeding to the main following steps which include the system-
atics effects :

1. White noise is generated to simulate the photon, phonon, and electronic noise.

2. The first white noise is convolved with the detector time response, and an additional white
noise is added to mimic the electronics noise.

3. The timeline is deglitched similarly to what was applied due to the presence of cosmic
rays.

4. The resulting data timeline is then combined with a fiducial sky signal including the CMB
and foreground realisations from the PSM.

5. The signal in analog-to-digital units (ADU) is evaluated then fed through a simulator of
a non-linear analogue-to-digital converter, where complexity is added into the signal by
inducing time variation of the response and gain differences of the detector.

6. A 1/f noise component is added to the signal.

7. The TOI are then projected into HEALPix rings.

8. The resulting signals are fed to the map-making algorithm to produce the final maps.

Ultimately, from each final maps simulated, the input sky (CMB and foregrounds) is sub-
tracted to build the noise and residual systematics frequency maps.

LFI simulations

The E2E LFI simulation pipeline is detailed in Planck 2018 Results. II. It includes systematic
effects partially at the time-line level and partially at the ring-set level.

1. Firstly, separate ring-sets are produced for each signals : the CMB, Galactic foregrounds,
extra-galactic diffuse signals, point sources, as well as the solar and orbital dipoles. The
signals are then convolved with the suitable instrumental beam, and added to white and 1/f
noises ring-sets. The resulting signals are combined and the signal calibration is computed.

2. Those calibration are therefore impeded by systematic errors. They are then applied to
timelines data that include the same sky simulations as the one used for the ring-sets. The
resulting timelines are then fed to the same map-making algorithm as the one use for the
real data product, but including calibration errors.

The full pipeline of systematic simulations is also applied on the noise-only time-stream.
The resulting 300 pure-noise simulations thus include the same systematic errors as the full
(signal+noise) LFI simulations.

1.3 White noise simulations

In order to check the impact of systematics in the final results, we also generate white noise
simulations following the same procedure as the one described in Sec. 2 of chapter 2. Our
simulations are based on the pixel variance of the maps provided with PR3.
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2 Foregrounds cleaning

This section is dedicated to the foregrounds cleaning methods applied on the Planck data and
our simulations. The approaches that we follow have been described in details in chapter 2.

2.1 Pre-smoothing and resolution degradation

The datasets are loaded at their full resolution, then pre-smoothed using a cosine window func-
tion, as suggested in Benabed et al. 2009; Keskitalo et al. 2010,

b` =





1 ` ≤ `1
1
2

[
1 + cos

(
π `−`1
`2−`1

)]
`1 < ` ≤ `2

0 `2 < `

. (4.1)

We choose `1 = 2nside − 1 and `2 = 3nside − 1, with nside = 16. With that parametrisation,
we assure that all signals above ` = 3 × 16 are erased by the smoothing process, as shown in
Fig. 4.1. The datasets can therefore be safely downgraded to nside = 16 while avoiding any
aliasing coming from the signal at high multipoles. The resulting maps are then fed to the
cleaning methods listed here-after.
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Figure 4.1: Cosine beam window from Eq. (4.1), with `1 = 2nside − 1, `2 = 3nside − 1, and
nside = 16.

2.2 Cleaning methods

We follow the prescription proposed in Sec. 4 of chapter 2. In order to clean the intermediate
channels (44 GHz, 70 GHz, 100 GHz, 143 GHz, and 217 GHz), we use one low and one high
frequency channel (30 GHz and 353 GHz) as tracers to remove respectively the synchrotron and
the dust contaminations. We refer to the intermediate channels as the d(n̂) maps, while the
dust and synchrotron template are respectively labelled tD(n̂) and tS(n̂).

We consider three methods to estimate one global foreground coefficient α on the sky (the
coefficient α was introduced in Sec. 2 of chapter 2):

Ordinary linear regression

The oLR is described in Sec. 6 of chapter 2. In order to mitigate the bias induced by the noise and
the CMB variance, we proposed to smooth the datasets before applying the linear regression.
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Such smoothing is already provided by the pre-smoothing using the beam window in Eq. (4.1).
We therefore do not apply any additional smoothing to the datasets.

Cross normalised linear regression

The xnLR is described in Sec. 6 of chapter 2. For this method, we use the full covariance matrix,
C defined in Eq. (2.31), that includes the dataset noise and CMB correlation signal, as this
choice was shown to provide the lowest error-bars for this method. We note that it can only
be applied on the data-split, since it relies on the cross-correlation between maps that have
uncorrelated noise. For that purpose, we either use the half-missions or the odd/even rings
of the HFI channels. We always use the half-rings for the LFI channels. We thus get two
estimations of α: one for the half-missions, and one for the odd/even rings.

Maximum Likelihood Estimator

The MLE method is described in Sec. 7 of chapter 2. Again, we use the full covariance matrix
defined in Eq. (2.76), including the dataset noise and CMB correlation signal. The method can
either be applied on the full datasets, or each data-split.

For this method, we consider five possible combinations of dataset in order to estimate α.
We always use the full mission map for the intermediate channels. For the templates, we either
use the full missions or one of the four data-splits : hm1, hm2, oe1, oe2 for the 353 GHz dust
template map, and hr1 or hr2 for the 30 GHz synchrotron template map. For both templates,
we always use either the first split pair (hm1/oe1, hr1), or the second (hm2/oe2, hr2). Other
combinations such as (hm2/oe2, hr1) or (hm1/oe1, hr2) provide very similar results.

2.3 Masks

We consider three masks, with a coverage going from fsky = 0.5 to fsky = 0.9, as shown in
Fig. 4.2 for a resolution nside = 256. To build the masks, we use the 353 GHz polarisation map
that we smooth with a 5◦ Gaussian beam window. We then apply a cut based on the pixels
with the highest amplitude,

√
Q2 + U2. The resulting binary map is then smoothed with a 3◦

Gaussian beam window, then downgraded to the required resolution, nside = 16.

2.4 Monte-Carlo simulations

Method comparison

We test the three estimators on two sets of 300 simulations. Both sets include the PySM
foreground model, combined either with white noise, or the FFP10 noise simulations which
include systematic effects. The maps are loaded at1 nside = 128, then pre-smoothed and degraded
to nside = 16 before estimating α. We use the half-missions maps for the xnLR method, and the
full missions maps for the MLE and oLR methods.

The results for all intermediate frequency channels are shown in Fig. 4.4. The grey bands
indicate the input foreground coefficient distribution, each referring to 1, 2, or 3 standard devi-
ation level of the input coefficient distribution based on the PySM realisations, as pictured in
Fig. 4.3.

The triangles markers in Fig. 4.4 are the results for the white noise simulations, while the dots
are for the FFP10 noise. As expected, we observe that the error-bars using the FFP10 noise are

1We observed that MC results are not impacted by the choice of the initial resolution of the maps. We
therefore select nside = 128 and not the maximum resolution of Planck data.
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Figure 4.2: Masks used at nside = 16, for three sky coverages : 90%, 70%, and 50%.

systematically larger than for the white noise case. For both sets of simulations, compared to the
two other methods, the oLR is slightly more shifted from the input dust coefficient distributions
at 44 GHz. This is due to the high noise level for this channel (we refer to Fig. 2.1), combined
with a low amplitude of the dust signal. The dataset pre-smoothing is therefore not sufficient
to remove the noise variance bias for this estimator.

For the two other methods, xnLR and MLE, we observe no bias using the white noise sim-
ulations, except for a slight shift at 217 GHz on the synchrotron coefficient αS at fsky = 0.5,
induced by the reduced sky coverage combined with a loss of the synchrotron signal amplitude.

Globally, the results on the FFP10 noise simulations show higher variations of the coefficient
estimations than for the white noise case. The most impacted channel is at 143 GHz, for which
αS is completely out of the input distribution. The coefficients on the remaining channels are
relatively well recovered.

MLE only

In addition, we show in Fig. 4.5 the full distribution for the MLE estimations tested on the PySM
sky + FFP10 noise simulations.

The results on the LFI datasets are relatively stable when changing the sky coverage. This is
not the case for the HFI channels, for which relatively important variations of the distributions
are observed depending on the sky fraction used to estimate α. Those variations are particularly
visible on the 143GHz channel. Nevertheless, the overall estimations of the coefficients are in
relatively good agreement with the input sky signal.
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Figure 4.3: Input distributions of the coefficients αD (left, blue) and αS (right, orange) for the
PySM at 100 GHz. The grey bands indicate 1, 2, and 3 standard deviations of the distribution.

2.5 Results on Planck data

Method comparison

For the Planck data, the results depending on the sky fraction considered are shown in Fig. 4.7
for all intermediate frequency channels. Again, we compare the three methods previously tested
on Monte-Carlo simulations. For each data-point, we always show two error-bars: those obtained
using white noise simulations (smaller and wider), and those using the FFP10 noise (thinner
and longer).

The oLR presents very different estimates than the other methods, adding to the fact that
this method performs poorer results on the Monte-Carlo simulations, we focus our discussion
on the two other approaches.

We observe that both the xnLR and the MLE provides very similar results, whereas their
implementations are fundamentally different. This adds to our confidence in the results. For
those two methods, the estimations of αD on HFI data are nearly constant for most of the
sky coverages considered, while αS is observed to decrease as smaller fraction of the sky are
used. The inverse behaviour is observed on the LFI maps, for which αD increases with the sky
coverage, and αS is relatively constant.

We also test for any variation of the coefficient estimated depending on which part of the
mission (half, odd/even rings, or full) is used for the templates of the MLE. The results are shown
only for the 100 GHz in Fig. 4.6, and they are very similar for all other channels. We observe
that the estimations are stables for all the template mission used.

Fiducial noise variance

We investigated the impact of using different noise models to construct the residual covariance
matrix C of the MLE method. We either use the public Planck noise covariance data introduced
in Sec. 2 of chapter 2, or we build our own estimate of the pixel variance using the 300 FFP10
noise simulations. We found no major difference between both cases.

We also considered using mean pixel noise, instead of inverse-weighing the pixels. In the
former approach, the datasets noise covariance matrices used to build the residuals covariance
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Figure 4.4: Foreground coefficients α estimated on 300 simulations, using the PySM foreground
sky combined either with white noise simulations (triangles) or FFP10 noise simulations (dots).
The MLE and oLR make use of the full missions, while the xnLR only uses the half-missions. We
consider three different sky coverages, fsky = 0.5, 0.7, 0.9.
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Figure 4.5: Foreground coefficients α estimated on 300 PySM + FFP10 noise simulations,
using the MLE estimator on the full missions. We consider three different sky coverages, fsky =
0.5, 0.7, 0.9.
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Figure 4.6: Foreground coefficients estimation on Planck 100 GHz full channel using the MLE

method. Five missions are considered for both templates maps: full mission (full); half-mission 1
(hm11) or 2 (hm22); odd/even rings 1 (oe11) or 2 (oe22).

matrix of Eq. (2.76) are diagonals with constant value,

Nx →



Npix∑

p

1

Np
x



−1

, x ∈ {d,D, S}. (4.2)

Using either a pixel noise weighting or a constant noise for all pixels does not significantly
change the precision of the estimator on α, nor does it impacts the results presented on Planck
data.

Conclusion

In this section, we showed the consistency and robustness of our template cleaning method.
As expected, the FFP10 simulations produce larger uncertainty on the foreground coefficient
estimations than for the white noise. The results obtained on Planck data are coherent with
those derived from the simulations. The choice of the template mission has little impact on the
results.

Since the MLE provides the most stable results, we select this method for the rest of the
Planck data analysis. We use the coefficients estimated on the full missions and considering
70% of the sky.
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Figure 4.7: Same as Fig. 4.4 for Planck data. Two error-bars are shown for each data point:
those obtained using white noise simulations (smaller and wider), and those using the FFP10
noise (thinner and longer).
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3 Constraints on foreground spectral indices

3.1 From foreground coefficients to spectral indices

The dust and synchrotron SED are well approximated respectively by a modified black-body
and a power law, as in Eq. (2.1) and Eq. (2.2). The foreground coefficients α that we measure
can therefore be related to the spectral indices used to parametrise the foreground SEDs.

For the dust, we have

ανD(n̂, βd, Td) =
νβd(n̂)−2

(353)βd(n̂)−2

Bν(Td(n̂))

B353(Td(n̂))

Uνc
U353
c

Cνc
C353
c

, (4.3)

and for the synchrotron,

ανS(n̂, βs) =
νβs(n̂)

(30)βs(n̂)

Uνc
U30
c

Cνc
C30
c

. (4.4)

The unit conversion factor Uνc [KCMB/KRJ] transposes the signal observed at frequency ν
from Rayleight-Jeans temperature to CMB temperature units. The colour-correction coeffi-
cients, Cνc , account for spectral variations of the foreground signals within a photometric chan-
nel.

3.2 Methodology

In order to estimate the spectral indices, we minimise the log-likelihood of the foregrounds
coefficients,

−2 logL(α̂αα|ααα(βs, βd, Td)) = [α̂αα−ααα(βs, βd, Td)]
T Ξ−1 [α̂αα−ααα(βs, βd, Td)] , (4.5)

where

ααα(βs, βd, Td) =
(
αν1d (βd, Td), ..., α

νnν
d (βd, Td), α

ν1
s (βs), ..., α

νnν
s (βs)

)T
, (4.6)

is the model, α̂αα the coefficients estimated on the data (PLA or simulations), and Ξ ≡ Cov [ααα]
the 2nν × 2nν covariance matrix of the foregrounds coefficients estimated from MC simulations.

3.3 Results

Simulations maps

We first discuss the results on simulations. We use either white or FFP10 noise simulations,
and the PySM foreground sky. Since we do not simulate bandpass when generating the PySM
foreground sky, we do not apply any colour correction to the datasets. For delta-bandpass, the
unit conversion coefficient are computed as

Uνc =
2kBν

2

c2b′ν
, with b′ν ≡

∂Bν(T )

∂T

∣∣∣∣
TCMB

, (4.7)

and TCMB = 2.725 K. The resulting coefficients are listed in Table. 4.1.

We draw the distribution of the posterior maximum for the spectral parameters in Fig. 4.8,
for which we display the 1σ and 2σ 2D contours of the distribution. For each set of simulations,
we select two sampling procedures when minimising the likelihood function of Eq. (4.5). We
either let the dust MBB temperature Td free, or we fix it to the white-noise simulations best-fit
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value. The latter choice is warranted, because the dust temperature Td and spectral index βd
are highly correlated, as shown on the right panel Fig. 2.3.

The variation across the sky of the PySM input spectral indices are shown in Fig. 2.3 (Sec. 2 of
chapter 2). For the PySM, the input synchrotron spectral index lies between −3.1 < βs < −2.9,
while the dust spectral index and its MMB temperature lies respectively between 1.5 < βd < 1.6
and between 17 K < Td < 25K. The mean value accompanied with the 1σ error are listed in
Table. 4.3. In addition, we also include the correlation between the dust and synchrotron spectral
indices, ρ(βd, βs). The synchrotron results are compatible with the PySM input, with βs ≈ −3,
independently of the sky coverages or simulation datasets. The dust spectral index is badly
fitted on the FFP10 simulation datasets for fsky = 0.5 and Td free. For the remaining cases, the
results are compatibles with the PySM input. We see how the value of the dust spectral index
grows from β̂d ≈ 1.5 to β̂d ≈ 1.57 when considering larger sky fraction, thus including more
signal from the galactic plane. This feature is expected, since the input value of βd is larger near
the galactic plane (we refer to Fig. 2.3). Finally, we observe that the dust-synchrotron spectral
correlation can be quite high, reaching ρ(βd, βs) ≈ 20% for fsky = 0.9 and considering white
noise simulations. We also notice that the error-bars of the FFP10 simulations are roughly twice
larger than that of the white noise simulations.
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Figure 4.8: Distribution of the posterior maximums for the spectral parameters based on 300
white or FFP10 noise simulations, and evaluated on 70% of the sky. Left : 1σ and 2σ 2D disper-
sion of the dust and synchrotron spectral coefficients, βd and βs. The dust MMB temperature
parameter is either free, or fixed to 19.7 K. Right: 1σ and 2σ 2D dispersion of the dust MBB
temperature Td and the dust spectral index βd.

Planck data

For Planck data, the values of the colour coefficients are computed assuming spectral law of the
foreground signals which is then integrated over the detector frequency bandpass. We select the
unit conversions Uνc and colour correction factors Cνc found in Table 2 of Planck 2018 Results.
XI. Their value are listed in Table. 4.2. The colour correction coefficients for the HFI are
computed for a modified black-body SED with fiducial spectral index βd ≈ 1.5 and temperature
Td ≈ 19 K. The colour correction coefficients for the LFI are computed for a power-law SED
using a fiducial spectral index βs ≈ −3. For both simulation sets, we observe an anti-correlation
between αD and αS (off-diagonal blocks), reaching 30% at low frequency (44 and 70 GHz).

To compute the likelihood of Eq. (4.5), we use the α-covariance matrix Ξ, computed from the
simulations, which include either white noise or the FFP10 noise set of maps. The correlation
matrices derived from Ξ are shown in Fig. 4.9. For the white-noise simulations, we observe a
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high level of correlation between the high frequency channel coefficients for both αD and αS .
Such feature is less present for the FFP10 simulations.
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Figure 4.9: Foreground coefficients correlation matrices, Corr [Ξ]. We use 300 white or FFP10
noise simulations to estimate α on 70% of the sky.

Because the dust temperature and spectral index are highly correlated, we choose a fixed
value Td = 19.6 K for the best fit derived from (Planck Collaboration et al. 2015), and following
the same procedure as in Planck 2018 Results. XI. All results for the sky coverages fsky = 0.5,
0.7 and 0.9 are summarised in Table. 4.4. We also include the Planck results from Planck 2018
Results. XI which, in addition to Planck polarisation channels, also includes the 23 GHz and
33 GHz WMAP datasets. Although they also use the FFP10 simulations, their approach is
completely different than ours, as they work in the harmonic domain using half-mission maps
to compute the cross-spectra over the multipole range 4 ≤ ` ≤ 148, while our method is pixel-
based and makes use of the full missions datasets. The mask used is not the same, although
their effective sky fraction is close to one of ours (∼ 70%). In addition to the spectral index, the
results from Planck also fit for the foreground amplitudes and a correlation coefficient between
the dust and the synchrotron. We note that our error-bars on the estimated spectral parameters
include the uncertainty induced by the noise and CMB variance only. We do not include for
variation of the foreground SED across the sky. All these differences explain why our error-bars
from the FFP10 simulations are almost three times smaller than for the Planck results.

We display our results for fsky = 0.7 in Fig. 4.10. When using the covariance matrix Ξ

derived from white-noise simulations, all values of the dust coefficient β
fsky
d are found to be close

to Planck results, βPl
d = 1.53±0.02 from Planck 2018 Results. XI. We obtain β0.9

d = 1.551±0.002
and β0.7

d = 1.551±0.004. This value slightly decreases when less signal from the Galactic plane is
included, with β0.5

d = 1.546± 0.007. Our synchrotron spectral index gives β0.7
s = −3.229± 0.027

and β0.5
s = −3.315± 0.04. Those are also consistent with Planck results βPl

s = −3.13± 0.13, as
well as other measurements (Choi et al. 2015; Fuskeland et al. 2014; Krachmalnicoff et al. 2018).
When considering 90% of the sky, our estimation gives a lower value, with β0.9

s = −3.430±0.018.

When using the covariance matrix Ξ derived from FFP10-noise simulations instead of the
one derived from white-noise, we observe an overall boost of all the spectral index estimations
compared to the white-noise case. We find β0.5

d = 1.586 ± 0.013, β0.7
d = 1.599 ± 0.007, and

β0.9
d = 1.613±0.005 for the dust spectral index, and β0.5

s = −3.458±0.027, β0.7
s = −3.373±0.040,

and β0.9
s = −3.458± 0.027 for the synchrotron spectral index.
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Figure 4.10: 1σ and 2σ 2D contours of the spectral parameter βd and βs measured on Planck
data, evaluated on 70% of the sky. The dust MMB temperature parameter is fixed to 19.6 K.

3.4 Conclusion

In this section, we provided a simple approach allowing us to connect the spectral parameters of
the foreground signal with the coefficient that we estimate for the template fitting. Our results
are in good agreement with those provided by Planck and other studies. The observed variation
of the spectral indices with the sky coverage is directly related to the variation of the foreground
coefficient estimates α, and it translates the inhomogeneity of the foreground signals across the
sky.

Further work would allow us to highlight the foreground signal variations across the sky by
choosing different masks, or focusing on patches of the sky. We could also include other datasets
such as those provided by WMAP to improve the constraints on the spectral parameters.
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Table 4.1: PySM unit conversion and colour correction coefficients Uνc and Ccν for the datasets
simulation (using delta-bandpass).

Reference frequency ν [GHz] 30.0 44.0 70.0 100.0 143.0 217.0 353.0

Uνc [KCMB/KRJ] 0.9770 0.9514 0.8824 0.7771 0.6046 0.3341 0.0774

Cνc 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 4.2: Planck data unit conversion and colour correction coefficients Uνc and Cνc .
From Planck Collaboration et al. 2015.

Reference frequency ν [GHz] 28.4 44.1 70.4 100.0 143.0 217.0 353.0

Uνc [KCMB/KRJ] 0.949 0.932 0.848 0.794 0.592 0.334 0.075

Cνc 1.000 1.000 0.981 1.088 1.017 1.120 1.098

Table 4.3: Spectral estimation on simulations using white and FFP10 noise datasets. For each
case, the dust temperature parameter Td is either free, or fixed to the white-noise best-fit value.

fsky noise β̂s β̂d T̂d [K] ρ(βd, βs)

0.9

White −3.015± 0.018 1.569± 0.002 18.5 19.8%

White −3.015± 0.018 1.569± 0.010 18.498± 0.455 14.4%

FFP10 −3.044± 0.027 1.571± 0.005 18.5 −1.7%

FFP10 −3.045± 0.027 1.567± 0.023 18.772± 1.150 −2.3%

0.7

White −3.000± 0.027 1.543± 0.004 19.7 9.9%

White −3.000± 0.027 1.543± 0.022 19.724± 1.099 2.0%

FFP10 −3.047± 0.040 1.537± 0.007 19.7 −1.8%

FFP10 −3.047± 0.040 1.528± 0.040 20.409± 2.354 −7.5%

0.5

White −3.000± 0.040 1.535± 0.007 20.3 −3.6%

White −3.000± 0.040 1.535± 0.038 20.552± 2.018 7.2%

FFP10 −3.050± 0.061 1.533± 0.013 20.3 −2.7%

FFP10 −3.047± 0.062 1.450± 0.067 29.220± 10.407 −6.5%

Table 4.4: Spectral estimation on Planck data using the α covariance matrix Ξ computer from
simulations sets with either white or FFP10 noise. The dust temperature is fixed to Td = 19.6 K
for the fit. The Planck results are extracted from Planck 2018 Results. XI.

fsky Ξ β̂s β̂d

∼ 0.7 Planck results −3.13± 0.13 1.53± 0.02

0.9
White −3.430± 0.018 1.551± 0.002

FFP10 −3.458± 0.027 1.613± 0.005

0.7
White −3.229± 0.027 1.551± 0.004

FFP10 −3.373± 0.040 1.599± 0.007

0.5
White −3.315± 0.040 1.546± 0.007

FFP10 −3.339± 0.061 1.586± 0.013
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4 Cleaned polarisation maps

In this section, we present the results when using the foreground internal templates to clean the
polarisation maps. The results are shown both for the simulations and the Planck data. For
each channel, we use Eq. (2.29) to estimate the CMB signal, with the MLE method performed
on 70% of the sky.

4.1 Cleaned datasets

Considering two intermediate channels A and B, the cleaned maps are built following

ŝA11 =
dA − αADt1353 − αAS t130

1− αAD − αAS
, (4.8)

ŝB22 =
dB − αBDt2353 − αBS t230

1− αBD − αBS
, (4.9)

with t1 and t2 the templates computed respectively from the half-mission 1 and 2.
In this section, we present the results of the full mission set, ŝA11, which are built using the

first half-split of the templates. The other combinations show very similar results.

4.2 Simulations

We compare the white and FFP10 noises residual in pixel space at resolution nside = 256 using
the coefficients estimated at nside = 16 in Sec. 2. The average and standard deviation of each
pixel for the Q and U components is first computed then smoothed by a 5◦ Gaussian beam.
Because we average over many different realisations, most of the CMB signal as well as the noise
residuals are reduced. The remaining signal mainly comes from the foreground residuals as well
as systematics.

We also compute the map amplitude of the residuals, P ≡
√
〈Q〉2 + 〈U〉2, and similarly the

map amplitude of the residuals standard deviation, Pσ ≡
√
σ2
Q + σ2

U . The Q and U residuals

are shown for a range ±1µK. The amplitudes, P , are shown for a range [0, 1]µK. The scale of
the standard deviation maps are based on each dataset white noise level. For each channel, we
use the same colour range between the white noise and FFP10 maps.

Residuals

The foreground residuals are displayed in Fig. 4.11 and 4.12 respectively for the white noise and
FFP10 simulations. Some contaminations are observed in the galactic plane and the variations
on the sky are very similar between both types of noise simulations. We observe almost no
residuals for the white-noise at higher latitudes. This is not the case for the FFP10, where
systematic residuals are visible on the whole sky for the HFI channels. We do not observe such
residuals for the LFI channels.

Standard deviations

The standard deviations are similarly displayed on the Fig. 4.13 and 4.14. Those are in excellent
agreement between white noise and FFP10 simulations. We note a slight boost of the variance
is observed in the Galactic plane for the HFI FFP10 simulations. However, we observe that
the 100 GHz channel shows less variance for the FFP10 than for the white noise simulations.
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This result is surprising since the variance of the FFP10 simulations (which include white noise)
should be at least of the same level as the pure white noise simulations. Masking 30% of the
galactic plane, we find that the 100 GHz white noise standard deviation is about 20% higher
than that of the FFP10 noise.

4.3 Planck data

We show the non-cleaned polarisation Q and U maps in Fig. 4.15, at resolution nnside = 256,
and smoothed with a 5◦ Gaussian window function. The resulting cleaned map with our method
are shown in Fig. 4.16. In addition, we also display the initial Planck data. We see that much of
the initial contaminations are removed. Some residuals foreground signal is still visible, mainly
in the galactic plane. We also see how the 44 and 70 and 217 GHz are much noisier than the
100 or 143 GHz channels (we also refer to Fig. 2.1 for the noise levels).
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Figure 4.11: White noise simulations mean residuals Q and U Stokes components as well as
total intensity power.
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Figure 4.12: FFP10 noise simulations mean residuals Q and U Stokes components as well as
total intensity power.
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Figure 4.13: White noise simulations standard deviation of the residuals Q and U Stokes com-
ponents as well as total power.
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Figure 4.14: FFP10 noise simulations standard deviation of the residuals Q and U Stokes com-
ponents as well as total power.
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Figure 4.15: Public Planck polarisation maps smoothed with a 5◦ Gaussian beam.
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Figure 4.16: Public Planck polarisation maps cleaned from foreground contaminations using
one global coefficient estimated with the MLE estimator on 70% of the sky.
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5 Polarisation power spectra

In this section, we compute the power spectra from the cleaned public Planck polarised maps
derived in the previous section. The resulting CMB estimates are then fed to the xQML estimator
described in Sec. 5 of chapter 3.

Using the full missions intermediate channels allows us to compute
ncross = nfreq(nfreq−1)/2 = 10 cross-spectra, with nfreq = 5 the number of intermediate channels.
Using the half-missions datasets would provide ncross = (2nfreq)(2nfreq − 1)/2 = 45 distinct
estimates. In the rest of the analysis, we focus on the full-missions results only.

5.1 Pixel covariance matrices

The xQML spectrum estimator takes the following datasets pixel covariance matrices as input :

• S(C̃`), the CMB pixel covariance matrix.

• CAA = S+NA, the pixel covariance matrix of the dataset A, with NA its noise covariance
matrix.

• CBB = S + NB, similarly for the dataset B.

To estimate S(C̃`) , we use a fiducial spectrum C̃` generated with CAMB with Planck best-fit
parameters, a reionization depth τ = 0.06, and no tensor-to-scalar ratio, r = 0.

We use the FFP10 noise simulations to build the matrices NA and NB when estimating
Planck power spectra. Because the number of simulations (300) is relatively low compared to the
size of the matrix (Npix ∼ 4000), we cannot estimate the full pixel-pixel correlation. Therefore,
we only estimate the diagonal entries of N, computed from the variance of the FFP10 noise
simulations. This is a valid approximation since we showed in chapter 3 that the estimator is
not biased regardless of the construction of the pixel covariance matrix. Moreover, any deviation
of the fiducial noise from its true value used to build the matrices N is shown to impact the
variance of the spectrum estimation only at second order. We verified that using the white-noise
levels to build NA and NB does not significantly change the results.

5.2 Full mission simulations

We first test our full pipeline on simulations. We start from 300 white or FFP10 noise simulations
combined with the PySM foreground sky, to which we apply the cleaning method using the MLE

method, and finally the xQML spectrum estimator.

We compute the resulting mean spectrum estimates and residuals. For each noise type we
also estimate the spectra on simulations for which we do not include the foreground signal while
still performing the cleaning process. Those foreground-less simulations allows us to identify if
the source of any bias is due to the foreground residuals or the noise systematics.

The residual spectrum is defined as

R`[Ĉ`] ≡
C` − 〈Ĉ`〉√
σ2(ĈMC

` )/nMC

, (4.10)

with C` the spectrum model, and nMC the number of Monte-Carlo simulations. If no bias are
present in the estimated spectrum Ĉ`, the residuals are expected to be Gaussian distributed,
with unit width and mean zero. In the following plots, this 3σ limit is indicated by a grey band.
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White noise

The results for the full white noise missions are shown in Fig. 4.17. For a sky fraction fsky =
0.5, the residual spectra R` indicate some bias for the 143x217. Those are produced by the
foregrounds residuals as they disappear as soon as we remove the foreground signal from the
simulations, as shown in Fig. 4.18 for the foreground-less simulations. Additional residuals
show up for the 100x217, and 100x143 cross-spectra when considering larger sky fractions.
The residuals on the EE spectrum are mainly present where the CMB signal is the lowest
(5 . ` . 25). The BB residuals are seen almost on the whole range of multipoles for the
143x217 spectra, and they are particularly high on the largest scales (` . 5). As expected, the
level of the residuals increases as a larger sky coverage is considered. We remark that all those
residuals produce upward bias on the spectrum estimation.

FFP10 noise

The results for the full FFP10 noise missions are shown in Fig. 4.19. On Fig. 4.20 we show
the results for the foreground-less case only. When no foreground signal is include, we still
observe some residuals for the 143x217, 100x217, and 100x143 cross-spectra. The large scales
are the most contaminated, at ` . 15 for the EE spectrum, and ` . 5 for the BB spectrum.
Those source of bias are therefore a consequence of the systematic errors present in the FFP10
simulations. When including the foreground signal, additional residuals caused by the foreground
contaminations are observed. Those are similar to the white-noise case, and they add to the
systematic errors observed on foreground-less simulations.

For the foreground-less simulations, we remark that some systematic residuals do not evolves
with the change of the sky fraction considered. For example, this is visible on the BB residual
spectrum which are systematically present on the ` = 2 multipole for the 143x217 and 100x143.
A similar observation is made on the ` = 4 BB multipole for the 143x217, 100x143 and 100x217
spectra. We note that the systematic residuals can produce both upward and downward bias
on the spectrum estimations.

Spectrum variance

In addition, we display the uncertainty for each cross-spectra in Fig. 4.21. As expected, the
spectra estimation involving the 44 GHz channel are the noisiest. The 100x143 is the estimation
with the less uncertainty, followed by 143x217 and 100x217, then by 70x143 and 70x100.

5.3 Planck data

The spectra estimations on Planck data for the full missions are displayed in Fig. 4.22 for
ffsky = 0.5 and ffsky = 0.8. We removed the 44 GHz to improve the clarity of the plot, as
the related power spectra have much more variance than the others. The spectra residuals are
shown in Fig. 4.23. We also display the cosmic variance in shaded using a fiducial cosmology
with τ = 0.06 and r = 0. The residuals are computed using the same fiducial spectrum as for
our simulations. We observe no significant departure of the residuals.
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Figure 4.17: Spectrum estimation and residual from white noise full mission simulations.
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5. Polarisation power spectra 165

0.05

0.00

0.05

(
+

1)
/2

C
[

K]
2 EE

0.050

0.025

0.000

0.025

0.050 BB 44x70
44x100
44x143
44x217
70x100
70x143
70x217
100x143
100x217
143x217
input C

10 20 30 40
5
0
5

R

10 20 30 40
10

0
10

Simulation FFP10 noise, full mission fsky=0.5 nofg

0 10 20 30 40
10

0

10

R

0 10 20 30 40
10

0
10

fsky = 0.6

0 10 20 30 40
10

0

10

R

0 10 20 30 40

0
10

fsky = 0.7

0 10 20 30 40
10

0

10

R

0 10 20 30 40

0

10

fsky = 0.8

Figure 4.20: Spectra estimation from FFP10 full mission simulations with no foreground signal.
We also show the residuals for each sky fraction.
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Figure 4.23: Spectrum estimation on Planck full mission datasets. The ‘input’ model correspond
to the best fit, and the model used for the MC simulations validation tests.
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6 Cosmological parameters likelihood

6.1 Large angular scale Likelihood

The Low-` Likelihood on Polarized Power-spectra, Lollipop, is a cross power spectrum analysis
approach for large angular scales (Mangilli et al. 2015). The methodology is based on a modi-
fication of the Hamimeche&Lewis (H&L) Likelihood developed in the context of large-angular
scale measurement with auto power spectra (Hamimeche et al. 2008).

Generally, the estimation of the cosmological parameters on large scales data can either
follow a pixels based or a harmonic approach. Since the CMB anisotropies are expected to be
Gaussian, the likelihood function can be computed exactly in the pixel domain (K M Gorski
et al. 1994; Page et al. 2007; Slosar et al. 2004; Bennett et al. 2013). As they work in pixel-
space, those methods show two inconveniences: they can be computationally costly, and they
do no allow for cross-correlations between datasets. The latter limitation therefore requires
a precise estimate of the dataset noise in order to avoid any spurious bias when estimating
the cosmological parameters. The harmonic approach do not suffers from any of those two
limitations. However, the distribution of the power spectrum coefficients C` is non-Gaussian at
low `’s, and they are correlated between multipoles when accounting for reduced sky fractions.
Studies such as Percival et al. 2006; Hamimeche et al. 2008 allow to model the non-Gaussianity
of the C` at large angular scale for auto-spectra only, and they therefore share the same problem
as the pixel-base approach for the noise bias. The Lollipop approach precisely fills this gap by
extending the harmonic H&L likelihood to cross-spectra analysis.

Lollipop formalism

Following the notation in Mangilli et al. 2015, the log-likelihood function reads

−2L(C`|Ĉ`) = XT
` [K−1]``′X`′ , (4.11)

where C` = Cmodel
` is the power spectrum model, and Ĉ` its estimation from the data. The

matrix K``′ encodes the covariance of the spectrum Ĉ`. The vector

X` ≡ Vecp
[
[C̃1/2]`U` g(D`) UT

` [C̃1/2]`

]
, (4.12)

is a transformation of the spectrum estimation Ĉ` such that X` follows a Gaussian distribution.
The matrix

C̃` =



C̃TT` C̃TE` C̃TB`
C̃TE` C̃EE` C̃EB`
C̃TB` C̃EB` C̃BB`


 , (4.13)

is built from a fiducial spectrum C̃`. Similarly, the matrix C` is built from the spectrum

model C`. The matrix Q` ≡ C
−1/2
` Ĉ`C

−1/2
` include the data spectra Ĉ`, and is decomposed as

Q` = U`D`U
T
` , for an orthogonal matrix U` and a diagonal matrix D` whose entries are the

eigenvalues of Q`. In Eq. (4.12), the transformation

g(D`) = sign(D` − 1)
√

2(D` − ln(D`)− 1), (4.14)

is applied to the eigenvalues of the matrix Q`(Ĉ`). Finally, the operator Vecp [Y] vectorizes the
distinct elements of any symmetric matrix Y.

For example, Vecp
[
C̃`

]
= (C̃TT` , C̃EE` , C̃BB` , C̃TE` , C̃TB` , C̃EB` ).
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Offset

In the context of auto-spectra, the estimated spectrum has two contributions: the CMB signal
and the noise, 〈Ĉ`〉 = C` + N`. For cross-spectra the second term vanishes on average, and
〈ĈAB` 〉 = C` for two datasets A and B. In that case, the estimated spectrum can show negative
values. The matrix Q` is therefore not guarantee to be positive definite. Mangilli et al. 2015
propose to modify the matrices C`, C̃`, and Ĉ`, by adding an offset diagonal matrix o` ≡
diag(oTT` , oEE` , oBB` ). The function defined in Eq. (4.14) must also be modified to regularise the
likelihood function around zero, with g(D`)→ sign(D`) g(abs(D`)).

The offset can be chosen in order to mimic the noise bias present in auto-spectrum statistics.
Writing the spectrum variance as

V AB
`` (C`, N

A
` , N

B
` ) =

1

2`+ 1

[
2C2

` + C`(N
A
` +NB

` ) +NA
` N

B
`

]
, (4.15)

the effective noise offset is derived as

o` =
√

(2`+ 1)V AB
`` (C` = 0) (4.16)

=
√
NA
` N

B
` . (4.17)

The offset can be computed using analytical estimate of the spectrum uncertainty, or Monte-
Carlo simulations.

Polarisation leakage

We have found that in the case of likelihood analysis on polarisation spectra, the variance
leakage also plays an important role in the offset construction. Indeed, the variance leakage is
an additional source of uncertainty for the spectrum estimation. This observation especially
concerns the B-modes analysis, for which the E-to-B leakage can significantly impact the large-
scale variance, even if it is minimized by the use of the xQML estimator.

In the context of B-modes spectrum estimations using the xQML method, the offset can be
derived analytically computing Eq. (4.16) from Eq. (3.58) and using a fiducial CMB spectrum
C` with non-zero E-modes and vanishing B-modes. With that choice, we assure that the spec-
trum variance calculated includes the contribution from both the noise and the E-to-B variance
leakage.

An other approach is to use Monte-Carlo simulations where the CMB signal is generated
with a fiducial CMB spectrum with null B-modes signal. This solution allows us to propagate
the additional uncertainties, coming for example from the foreground cleaning, and impacting
the variance of the spectrum estimation.

We follow this latter approach for Planck data analysis. In this context, the variance leakage
is completely overwhelmed by the instrumental noise and the foreground cleaning uncertainty.
In order to fully propagate those errors and compute the offset, we therefore compute the spectra
variance on our set of simulations from which we removed the totality of the CMB signal.
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6.2 Results on individual cross-spectrum

We first discuss the results when applying the Lollipop approach on each cross-spectrum. This
step of the analysis allows us to characterise the behaviour of the posteriors depending on which
type of noise is included in the simulations. Firstly, we sample the likelihood by varying the
reionization parameter τ and using the EE spectra data. In a second time, we sample for
the tensor-to-scalar ratio r, using the B-modes signal. All results are provided with a 68%
confidence level (C.L.). All other ΛCDM parameters are fixed to Planck best fit value (Planck
Collaboration et al. 2018d).

Reionization parameter from E-modes

We first present the results of the analysis using the E-modes signal from the full missions
to constrain the reionization parameter τ . We sample the likelihood function by varying the
parameter τ used to build the theoretical power spectrum CEE` , and fixing the tensor-to-scalar
ratio to r = 0. We consider the signal over the multipole range 2 ≤ ` < 20.

The distribution of the posterior maximum for the white noise simulations are shown in
Fig. 4.24 for each cross-spectra. There is a clear bias for the 100x143, 100x217 and 143x217
when increasing the observed sky fraction (fsky ≥ 0.7). Those are in accordance with the residual
foreground contaminations observed for those three cross-spectra and discussed in the previous
section. Those where observed to drive the EE spectra upward, as a consequence favouring high
values of τ in the likelihood. The most important bias occurs for the 143x217 distribution, with
a mean estimation of τ = 0.065± 0.005.

Similarly, the distribution of the posterior maximum for the FFP10 noise simulations are
shown in Fig. 4.25. As expected, the dispersion are larger than for the white-noise case, as those
simulations account for additional systematic instrumental effects. Compared to the white noise
case, we observe a deformation of the maximums distributions that drives the estimation of τ
toward zero for some simulations. Those are particularly visible on the 44x70, 44x100, 44x143,
44x217, and 70x217. Those ‘low-τ bumps’ tend to decrease when sensitivity increase, when
accounting for larger sky fraction for example.

Finally, we evaluate the posteriors on the Planck data. Those are shown in Fig. 4.26. We
notice that the 70x100 and 143x217 posteriors are driving the τ parameter toward zero when
small sky fractions are considered, fsky ≤ 0.5 for the 70x100, and fsky ≤ 0.7 for the 143x217.
The position of the 44x143 posterior favours relatively low values of τ compared to the others,
but remains stable with the change of sky coverage. This is not the case for the 44x100, for
which the posterior at fsky = 0.4 is shifted toward higher value of τ than for the remaining
sky fractions. For the other cross-spectra, we observe a general behaviour where the posteriors
systematically shift toward higher value of τ as larger sky fractions are considered. For example,
we observe that the posterior for the 100x217 cross-spectra moves toward high values of τ as
we decrease the surface of the masked regions. This behaviour can typically be induced by the
presence of additional foreground residuals as we change the pixel masking.
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Figure 4.24: White noise distribution of the posterior maximums for τ .
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Figure 4.25: FFP10 noise distribution of the posterior maximums for τ .
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Figure 4.26: Planck data posteriors for the reionization parameter τ .
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Tensor-to-scalar ratio from B-modes

We estimate the parameter r from the B-modes cross-spectra. We fix the reionization parameter
to τ = 0.06 in our spectrum model, and consider the signal over the multipoles range 2 ≤ ` < 20.

The distribution of the posterior maximums for the white noise simulations are shown in
Fig. 4.27. They are relatively stable with the change of the sky coverage. We observe a small
but systematic shift of the distributions as a larger sky fraction is included, which is induced by
the foreground residuals.

Compared to the white noise case, we sample the likelihood over a wider range of r for the
FFP10 simulations. The results, shown in Fig. 4.28, are similar to the white noise case, apart
for the uncertainties which are globally larger. The error-bars of the 100x143 at fsky = 0.5 are
of the order of σr ≈ 0.032 for the white-noise simulations, while they reach σr ≈ 0.45 when
including the FFP10 simulations.

The posteriors for the Planck data are shown in Fig. 4.29. As the sky coverage is increased,
the posterior are systematically shifted toward high values of r for almost all crosses, which
could be an indication that some foreground residuals are present when the masked regions is
too small. The most stable results against the change of sky coverage under fsky ≤ 0.6 are
provided by the 44x70, 100x143, and the 70x143.
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Figure 4.27: White noise distribution of the posterior maximums for r.
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Figure 4.28: FFP10 noise distribution of the posterior maximums for r.
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Figure 4.29: Planck data posteriors for r using B-modes cross-spectra.
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6.3 Combined cross-spectra

Cross-spectra correlation

In order to further constrain the cosmological parameters, we combine the different cross-spectra
into the likelihood. The spectrum vector Ĉ` used in the likelihood function defined in Eq. (4.11)
is therefore a join combination of all the cross-spectra that we have estimated. In that case,
the cross-spectra covariance matrix K``′ is of size ncrossnbin × ncrossnbin, with nbin the number
of multipoles considered. For the rest of our analysis, we consider two combination of datasets:
either we include all available channels from 44 to 217 GHz (ncross = 10), or we select the 70,
100, and 143GHz channels only (ncross = 3). The former configuration is labelled all, while the
latter configuration, labelled no44+217, is motivated by the high level of noise and possibly high
level of contamination residuals from the foreground signals for those two extreme channels. For
our baseline analysis, we consider the multipole range ` ∈ [2, 20].

The correlation matrices Corr [K``′ ] estimated from the FFP10 simulations are displayed in
Fig. 4.30 for the E and B modes. We observe a correlation between the multipoles across the
different EE spectra, and relatively low correlations between neighbouring `’s. In contrast, the
correlation between neighbouring multipoles is more pronounced for the BB spectra, particularly
at low `′s and for the spectra involving high frequency channels. We refer for example to the
100x217.
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Figure 4.30: EE and BB cross-spectra correlation matrices Corr [K``′ ] based on FFP10 MC
simulations for fsky = 0.7 and ` ∈ [2, 20].

Results for reionization parameter

We first present the combined likelihood results for the estimation of τ using the E-mode spectra.
Those obtained on simulations and on Planck data are displayed in Fig. 4.31. For the simulations,
we show the mean and error-bars derived from the distribution of the posterior maximums. For
Planck data, the data-point correspond to the maximum of the likelihood posteriors, and the
error-bars to the 68% C.L. We select a range of sky coverages 0.5 ≤ fsky ≤ 0.9. We do not
include the case for fsky = 0.4, since the posterior from the 70x100 cross-spectra produce ill
results for this mask.

We observe a systematic bias for the white noise simulations, which is however reduced
when removing the spectra including the 44 and 217 GHz channels (no44+217). In that case,
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for fsky = 0.6, we obtain τ = 0.061+0.004
−0.004. The estimated value of τ increases as larger sky

fractions are considered, which reveals the presence of foregrounds residuals.
A similar behaviour is observed on the FFP10 simulations. We notice that the dispersion of

the posterior maximums is wider for the all configuration than for the no44+217. The related
error-bars are about twice larger for the FFP10 than for the white-noise sets.

The results from Planck data are relatively stable for fsky ≤ 0.7 and considering the no44+217
combination. For fsky = 0.6, we obtain τ = 0.0595+0.0075

−0.0083 (68% C.L.). For larger sky coverage,
fsky ≥ 0.8, the presence of foreground residuals clearly impacts the estimation of τ . Combining
only the 70x100, 70x143 and 100x143 cross-spectra in the likelihood provides the most stable
results, which is consistent with the observations made on the simulations.

In addition, we show in Fig. 4.33 the results for the no44+217 combination of Planck data
when increasing the multipole range, from ` ∈ [2, 20] to ` ∈ [2, 35]. We see that the estimations on
τ remain stable, and that the error-bars are improved. For ` ∈ [2, 35], we obtain τ = 0.0599+0.0064

−0.0071

for fsky = 0.6, and τ = 0.0604+0.0058
−0.0062 for fsky = 0.7.

Results for tensor-to-scalar ratio

Following the same approach as for the reionization parameter, we discuss the results displayed
in Fig. 4.32 when estimating r from the B-modes signal.

For both simulation sets, the choice of the cross-spectra combination (all and no44+217)
has almost no effect on the bias. We notice that the error-bars derived from posterior maximums
distributions are about one order of magnitude higher for the FFP10 compared to the white
noise set.

The results on Planck data show globally more variation depending on the sky coverage
considered. The no44+217 provides relatively more stables results. In addition, because this
choice of cross-spectra combination provides more robust constraints on τ , we choose to quote
the value of r evaluated from this combinations only (70x100, 70x143 and 100x143). In that
case, when considering the multipole range ` ∈ [2, 20], we measure r = −0.0333+0.3307

−0.3041 (95%

C.L.) for fsky = 0.4, and r = 0.2040+0.3316
−0.3057 for fsky = 0.5. Using the Feldman&Cousins method,

we deduce an upper-limit on the tensor-to-scalar ratio, r ≤ 0.6150 (95% C.L.) for fsky = 0.4,
and r ≤ 0.8540 for fsky = 0.5.

On Fig. 4.34, we show the results for the no44+217 combination of Planck data when in-
creasing the multipole range, from ` ∈ [2, 20] to ` ∈ [2, 35]. We see that the uncertainties on the
estimation are almost improved by a factor of two, and that the results are more stable over
the sky fractions considered. However, we still observe a systematic shift of r for fsky = 0.7.
We measure r = 0.0198+0.1794

−0.1743 for fsky = 0.4, and r = 0.0996+0.1633
−0.1585 for fsky = 0.5. From those

measurements, we deduce the upper-limit on the tensor-to-scalar value, r ≤ 0.3714 (95% C.L.)
for fsky = 0.4, and r ≤ 0.4196 for fsky = 0.5.

6.4 Conclusion

In this section, we constrained the two cosmological parameters τ and r from the Planck CMB
polarisation data. The combination of the 70x100, 70x143 and 100x143 cross-spectra into the
Lollipop method provides the most stable results on simulations and on the Planck data. This
choice of combination is motivated by the high level of noise and possibly foreground residuals
in the 44 and 217 GHz channels. We measure τ = 0.0604+0.0058

−0.0062 (68% C.L.) for the reionization
depth when considering 70% of the sky.

Similarly, we derived an upper limit for the tensor-to-scalar ratio of r ≤ 0.37 (95% C.L.)
when considering 40% of the sky, and r ≤ 0.42 when considering 50% of the sky
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Figure 4.31: Simulations and Planck data results for the reionization parameter τ from E-modes
using combined cross-spectra, on the multipole range ` ∈ [2, 20].
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Figure 4.32: Simulations and Planck data results for the tensor-to-scalar ratio parameter r from
B-modes using combined cross-spectra on the multipole range ` ∈ [2, 20].
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Figure 4.33: Planck data results for the reionization parameter τ from E-modes using combined
cross-spectra 70x100, 70x143, 100x143, and varying the multipole range.
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Figure 4.34: Planck data results for the tensor-to-scalar ratio r from B-modes using combined
cross-spectra 70x100, 70x143, 100x143, and varying the multipole range.
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7 Summary

In this chapter we provided a complete procedure to analyse the Planck polarisation data,
from the map cleaning up to the estimation of the cross-spectra and the constraints on the
cosmological parameters.

The foreground cleaning allowed us to test the robustness of the different template cleaning
approaches that we proposed in chapter 2 against more complex noise realisations that include
systematics. From our results on Planck data, we derived constraints on the foreground spectral
parameters, for which the estimated values are in accordance with similar studies. Further work
would allow us to highlight the foreground signal variations across the sky, or to include other
datasets such as those provided by WMAP.

The application of our implementation of the pixel-based cross power spectrum estimator,
xQML, allowed us to highlight the bias caused either by the foregrounds, or by the Planck sys-
tematics residuals present in the simulations. Further study could be made in order to quantify
the improvement of using the xQML on Planck data compared using the pure pseudo-spectrum
approach.

The estimation of the cross-spectra covariance matrix from MC simulations is a crucial step
in order to ultimately derive the cosmological parameters using likelihood analysis. We presented
the Lollipop approach which allows us to compute the parameter posteriors in the harmonic
domain and using cross-spectra. We observed a significant enlargement of the uncertainty when
considering the FFP10 simulations instead of pure white noise. We also highlighted the presence
of bias when increasing the sky coverage, which is an indication of foreground residuals impeding
the CMB signal.

Finally, we combined the different cross-spectra in order to derive a final constraint on τ and
r. Considering 70% of the sky, for reionization depth we measure

τ = 0.0604+0.0058
−0.0062 (68% C.L.) (4.18)

This result is 1.5σ away from the Planck result, τPl = 0.0506±0.0086 (68% C.L.) (Planck 2018
Results. VI.). For their baseline, they only use the 100x143 cross-spectra, over the multipole
range ` ∈ [2, 29], and keep 50% of the sky. If we consider a similar set-up than Planck, we find
0.0641+0.0133

−0.0160 (68% C.L.). Further investigations are needed in order to understand the 150%
difference between our error-bars and those of Planck.

Following the same approach, we derived an upped limit on the tensor-to-scalar ratio. Con-
sidering 40% of the sky, we measure

r ≤ 0.3714 (95% C.L.) (4.19)

This result is compatible with the current Planck constraint based on tensor analysis, rPl ≤
0.41 (Planck 2018 Results. X). Considering the same set-up of for Planck, using the 100x143
only, ` ∈ [2, 29], and 50% of the sky, we find r ≤ 0.3848.

Further work is needed in order to better constrain those two parameters. The impact of
the range of low-` multipoles considered in the likelihood should be investigated, and other
combinations of cross-spectra could be examined in order to better characterise the impact of
each frequency channel on the posteriors. The correlation between r and τ also needs to be
estimated by combining the E and B modes in the likelihood analysis.

More generally, other strategies for the mask constructions could also be explored, for ex-
ample based on the mean foreground and systematic residuals instead of the dust amplitude
only. Other approaches would be to adapt the masks for each frequency channel, based on the
level of synchrotron and dust signals, or the level of residuals. The impact of the choice of the
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foreground coefficient used to clean the data should also be quantified. We note that we only
provided the analysis for the full mission dataset. The same pipeline could be applied on the
half-mission maps. Thus providing 45 cross-spectra instead of 10 (but with roughly twice as
much noise), and allowing more different combinations among the frequency channels to build
the cosmological likelihood.

In a more distant future, the analysis that we proposed in this chapter could be applied to
other large-scale missions, such as LiteBIRD.





Conclusion

In this thesis, we characterised and developed analysis tools allowing to study the large-scale
CMB polarisation signal. We especially focused on the B-modes detection to constrain the
tensor-to-scalar ratio, and on the E-modes to measure the reionization parameter τ .

We first assessed the problem of removing the foreground contaminations from experimental
datasets full sky measurements. We developed several methods based on the template fitting
that require minimum assumptions about the spectral behaviour of the contamination signals.
We investigated different noise level ranging from Planck to the next CMB satellite mission
LiteBIRD. We showed how the experimental noise and the CMB can induce a bias on the cleaning
process, for which we proposed several solutions. In order to further reduce the level of the
foreground residuals, the application of our cleaning methods on patches were also investigated.
It revealed to be seriously impeded by the CMB variance when the level of contamination is
low. This feature will have to be taken into account for future low-noise CMB measurements.

In the second part of this thesis, we fully characterised and developed a pixel-based CMB
power spectrum estimator algorithm, the xQML, which implementation is made publicly avail-
able. Compared to other pixel-based estimators, the xQML offers the unique advantage to cross-
correlate two different datasets, thus removing the noise bias from the spectrum estimate, and
allowing to mitigate systematic effects. We showed that the estimator uncertainty is near-
optimal, and that it is impacted only to second order by the error in the choice of the fiducial
model. We showed that the method significantly improves the reduction of the E-to-B leak-
age on large-scales compared to the pure pseudo-spectrum approaches which require laborious
weighting optimisations. The xQML method will be particularly suited for both E and B modes
measurements in future large-scale CMB polarisation experiments.

Finally, we applied our algorithms to the public Planck polarisation maps. We showed
that our foreground cleaning method allowed us to estimate the dust and synchrotron spectral
parameters, and provides consistent results with published analysis. Using the xQML and the
cross-spectra based likelihood for large angular scales, the Lollipop approaches, we successfully
constrained the reionization and tensor-to-scalar ratio parameters. We found τ = 0.0604+0.0058

−0.0062

(68% C.L.), and r ≤ 0.37 (95% C.L.). Those results are in agreements with current limits. The
analysis pipeline that we propose is robust, and could be applied to future large-scale missions
such as the LiteBIRD satellite.
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Appendix A

Pixel signal covariance matrix

Stokes parameters

For Ex and Ey the components of the wave electric field of a monochromatic electromagnetic
wave propagating in the z direction, the stokes parameters are defined as (Zaldarriaga 1998;
Kosowsky 1995; Kamionkowski et al. 1997; Ng et al. 1999)

I = |E2
x|+ |E2

y | (A.1a)

Q = |E2
x| − |E2

y | (A.1b)

U = E∗xEy + ExE
∗
y = 2<(E∗xEy) (A.1c)

V = 2=(E∗xEy). (A.1d)

Under the x-y plane rotation of an angle α,

(
x′

y′

)
=

(
cos(α) sin(α)
− sin(α) cos(α)

)(
x
y

)
, (A.2)

one can show from Eq. (A.1) that the Stokes parameters Q and U transform as

(
Q′

U ′

)
=

(
cos(2α) sin(2α)
− sin(2α) cos(2α)

)(
Q
U

)
. (A.3)

A function sf(θ, ϕ) defined on the sphere is said to have spin-s if under a right-handed rotation
of (ex, ey) by an angle α it transforms as sf

′(θ, ϕ) = e−isφ sf(θ, ϕ). It is thus straightforward to
show that the quantity P = Q± iU is a spin±2 quantity.
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Fields covariance

Expressing the temperature and polarization fields in terms of weighted spherical harmonics,

T =
∑

`m

a`mY`m, (A.4)

Q± iU =
∑

`m

±2a`m ±2Y`m, (A.5)

(A.6)

the polarized Stokes parameters can be written

Q =
1

2

∑
+2a`m +2Y`m + −2a`m −2Y`m

= −1

2

∑
(aE`m + iaB`m) +2Y`m + (aE`m − iaB`m)−2Y`m. (A.7)

U =
1

2

∑
+2a`m +2Y`m − −2a`m −2Y`m

=
i

2

∑
(aE`m + iaB`m) +2Y`m − (aE`m − iaB`m)−2Y`m. (A.8)

with the gradient E and curl B Fourier coefficients,

aE`m ≡ −
1

2
(+2a`m + −2a`m), +2a`m = −aE`m − iaB`m, (A.9)

aB`m ≡
i

2
(+2a`m − −2a`m), +2a`m = −aE`m + iaB`m. (A.10)

The correlation functions between fields of spin s and s′ can be expressed in term of the following
function, which generalizes the Legendre polynomial,

P ss
′

` (x · x′) ≡
∑

m

sY
∗
`m(x) s′Y`m(x′). (A.11)

The Wigner D-functions d`ss′ are related to the P ss
′

` by

P ss
′

` (cos θ) = (−1)sd`ss′(θ). (A.12)

From the Wigner D-functions properties, it follows

ds′s = (−1)s−s
′
dss′ ⇔ P ss

′
` = P s

′s
` (A.13)

ds′s = (−1)s−s
′
d−s−s′ ⇔ P ss

′
` = P−s

′−s
` . (A.14)

Defining

Qss
′

` =
P ss

′
` + (−1)s

′
P s−s

′

`

2
, Rss

′
` =

P ss
′

` − (−1)s
′
P s−s

′

`

2
, (A.15)



190 Appendix A. Pixel signal covariance matrix

the correlation functions between the Gaussian spin-0 and spin-2 fields can thus be computed
as follow

〈T ∗T 〉 =
∑

`,m

|a`m|2Y ∗`mY`m

=
∑

`

2`+ 1

4π
P 00
` CTT` , (A.16a)

〈Q∗Q〉 =
1

2

∑

`

2`+ 1

4π

{
P 22
`

(
CEE` + CBB`

)
+ P 2−2

`

(
CEE` − CBB`

)}

=
∑

`

2`+ 1

4π

(
CEE` Q22

` + CBB` R22
`

)
, (A.16b)

〈U∗U〉 =
∑

`

2`+ 1

4π

(
CEE` R22

` + CBB` Q22
`

)
, (A.16c)

〈T ∗Q〉 = 〈Q∗T 〉 = −1

2

∑

`

2`+ 1

4π
P 02
` (CTE` + CET` ), (A.16d)

〈T ∗U〉 = 〈U∗T 〉 = −1

2

∑

`

2`+ 1

4π
(CTB` + CBT` )P 02

` , (A.16e)

〈Q∗U〉 = 〈U∗Q〉 =
1

2

∑

`

2`+ 1

4π
(CEB` + CBE` )P 2−2

`

=
1

2

∑

`

2`+ 1

4π
(CEB` + CBE` )(Q22

` −R22
` ). (A.16f)

Legendre polynomial generalisation

Defining ρss
′

` =
√

(`2 + s2)(`2 − s′2), the following recursion may be used to evaluate the Wigner
D-functions,

ρss
′

`+1d
ss′
`+1(z) = (2`+ 1)

[
z − ss′

`(`+ 1)

]
dss
′

` (z)− ρss′` dss
′

`−1(z), (A.17)

with the initial conditions

dss
′

s (z) =
(−1)s−s

′

2s

√
(2s)!

(s+ s′)!(s− s′)! (z + 1)(s+s′)/2(1− z)(s−s′)/2, (A.18)

ρss
′

s+1d
ss′
s+1(z) = (2s+ 1)

(
z − s′

s+ 1

)
dss
′

s (z). (A.19)

Other relations exist to compute the P ss
′

` (Tegmark et al. 2001), but are generally computa-
tionally more costly than ours. Moreover, we found some instabilities when computing P 02

` (z)
for z close to 0, leading to bias in TE and TB spectra estimation, that does not show when
using our algorithm.
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Coordinate rotation

To compute the quantities of the pixel-pixel covariance matrix, we must correct for the difference
of coordinate in which the Stokes parameters are measured. Following (Tegmark 1997), for two
pixels i and j, see for example Fig. A.1, we define a new reference frame which local z direction
is still pointing out of the celestial sphere, and the local x axis of both pixels is aligned with
the great circle passing thought pixels i and j. We define the angle αij between the meridian
passing through i and the great i-j circle, and similarly with αji for the pixel j.

Denoting di the measured dataset, with three measured parameters at pixel i,

di =



Ti
Qi
Ui


 , (A.20)

the covariance matrix between the Stokes parameters measured for both pixels is the written

〈d∗idTj 〉 = R(αij)M(n̂i · n̂j)R(αji)
T , (A.21)

with

M(n̂i · n̂j) =



〈T ∗i Tj〉 〈T ∗i Qj〉 〈T ∗i Uj〉
〈Q∗iTj〉 〈Q∗iQj〉 〈Q∗iUj〉
〈U∗i Tj〉 〈U∗i Qj〉 〈U∗i Uj〉


 , (A.22)

and the Stokes rotation matrix defined as

R(α) =




1 0 0
0 cos 2α sin 2α
0 − sin 2α cos 2α


 . (A.23)

Each meridian passing by the pixels has unit normal vector

r̂∗i =
ẑ × n̂i
|ẑ × n̂i|

, r̂∗j =
ẑ × n̂j
|ẑ × n̂j |

, (A.24)

where ẑ is the unit vector at the centrer of the sphere pointing to the zenith. The normal vector
to the great circle is noted

r̂ij =
n̂i × n̂j
|n̂i × n̂j |

. (A.25)

Thus, the cosine and sine entries of the rotation matrix are computed from

cosαij = r̂ij · r̂∗i , cosαji = r̂ij · r̂∗j , (A.26)

sinαij = (r̂ij × r̂∗i ) · r̂i, sinαji = (r̂ij × r̂∗j ) · r̂j , (A.27)

and

cos 2αij = 2 cos2 αij − 1, cos 2αji = 2 cos2 αji − 1, (A.28)

sin 2αij = 2 cos2 αij sinαij , sin 2αji = 2 cos2 αji sinαji. (A.29)

The above relation breaks down for the two special cases. Firstly, both pixels can be identical or
at diametrically opposed sides on the sphere, in which case we can define a great circle, parallel
to their respective meridian, along which their local coordinate are already aligned. There is
no need for rotation correction, and αij = αji = 0. The second case occurs when one of the
pixel is at the north pole. In that case, the (Q,U)-convention is undefined, and we choose again
αij = αji = 0.



192 Appendix A. Pixel signal covariance matrix

Assuming vanishing CEB` and CTB` spectra, one gets

〈d∗idTj 〉 =



〈T ∗i Tj〉 cji 〈T ∗i Qj〉 −sji 〈T ∗i Qj〉

cij 〈Q∗iTj〉 cijcji 〈Q∗iQj〉+ sijsji 〈U∗i Uj〉 −cijsji 〈Q∗iQj〉+ sijcji 〈U∗i Uj〉
−sij 〈Q∗iTj〉 −sijcji 〈Q∗iQj〉+ cijsji 〈U∗i Uj〉 sijsji 〈Q∗iQj〉+ cijcji 〈U∗i Uj〉


 ,

(A.30)

with cij = cos 2αij and sij = sin 2αij . The matrix assuming only CEB` and CTB` to be non-null,
leads to

〈d∗idTj 〉 =




0 sji 〈T ∗i Uj〉 cji 〈T ∗i Uj〉
sij 〈U∗i Tj〉 sijcji 〈U∗i Qj〉+ cijsji 〈Q∗iUj〉 −sijsji 〈U∗i Qj〉+ cijcji 〈Q∗iUj〉
cij 〈U∗i Tj〉 cijcji 〈U∗i Qj〉 − sijsji 〈Q∗iUj〉 −cijsji 〈U∗i Qj〉 − sijcji 〈Q∗iUj〉


 .

(A.31)

The full 3npix × 3npix signal correlation matrix

S =



STT STQ STU

SQT SQQ SQU

SUT SUQ SUU


 , (A.32)

is then obtained by gathering the elements of the 3 × 3 matrix 〈d∗idTj 〉 for each pixel pair i-j.
We also define the P` matrix as

P` =
∂S

∂C`
, (A.33)

where the index ` goes along the multipoles and the spectra. In other words, the vector C`
encodes all six power spectra TT,EE,BB, TE, TB, and EB, see (Tegmark et al. 2001). For
the computation of P` at each multipole `, this matrix can be computed by putting all C`′ 6=` in
Eqs.(A.16) at zero, except C`′=` at one.

For E and B polarizations, the Stokes blocks of the matrices have the following properties :

PB,QQ
` = PB,UU

` (A.34)

PB,QU
` = −PB,UQ

` (A.35)

PB,UQ
` = −PB,QU

` (A.36)

PB,UU
` = PB,QQ

` (A.37)
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Figure A.1: Polarization local coordinate x-y for two pixels i and j. The angles αij and αji are
respectively the rotations needed to align the local coordinates at pixel i and j.



Résumé

1 Introduction

L’évolution du monde peut être comparée à un feu d’artifice qui vient de se terminer.
Quelques mèches rouges, cendres et fumées. Debout sur une escarbille mieux refroidie,
nous voyons s’éteindre doucement les soleils et cherchons à reconstituer l’éclat disparu
de la formation des mondes.

(Georges Lemâıtre, 1931)

À l’aube du 20éme siècle, la révolution en physique apportée par la mécanique quantique et
la relativité générale a permis d’approfondir l’étude de l’Univers dans son ensemble. Alors que
les travaux d’Albert Einstein, Willem de Sitter et Alexandre Friedmann jetaient les bases des
solutions cosmologiques des équations générales de relativité, l’origine et l’évolution de l’Univers
sont devenues des sujets de recherche, et la cosmologie contemporaine était née.

Avec l’amélioration des techniques d’observation astrophysique sont venu les premières preuves,
d’Edwin Hubble, que de nombreuses nébuleuses observées étaient en fait des objets extra-
galactiques, connus sous le nom de galaxies (E. P. Hubble 1926). Leur vitesse radiale mesurée
par Vesto Slipher indiquait une récession apparente de notre galaxie, et qui se manifeste comme
un redshift du spectre observé. La relation linéaire entre la distance et la vitesse apparente
des galaxies a d’abord été déduite par Georges Lemâıtre en 1927 (G. Lemâıtre 1927), puis par
Edwin Hubble en 1929 (E. Hubble 1929). Lemâıtre a fourni la première interprétation du red-
shift cosmologique causé par l’expansion de l’Univers provenant d’une constante cosmologique,
et non par le mouvement des galaxies (voir Luminet 2013). Il a également présenté pour la
première fois une description de l’Univers primordial comme étant beaucoup plus dense et
plus chaud, émergeant de ‘l’atome primordial’ (Georges Lemâıtre 1950). Cette idée, d’abord
railleusement dénommée ‘Big-Bang’, s’est ensuite révélée révolutionnaire. La découverte du
fond diffus cosmologique (CMB pour Cosmic Microwave Background) et les preuves observa-
tionnelles confirmant la théorie de la nucléosynthèse du Big-Bang développée par Gamow et ses
collaborateurs (Gamow 1948), ont ouvert la voie vers le modèle standard cosmologique.

Le concept d’un écho radiatif résiduel du Big-Bang émanant des premiers instants d’un
Univers chaud a d’abord été étudié par Alpher et Hermann (Ralph A. Alpher et al. 1948). Ils
ont prédit que le CMB devrait suivre une loi de rayonnement de corps noir, caractérisé par
une température qui a aujourd’hui chuté à seulement quelques Kelvin depuis son émission. Les
photons du CMB portent à la fois l’information sur leur voyage cosmique et l’empreinte de la
physique de l’Univers primordial, qui implique des échelles d’énergie bien au delà de la portée
actuelle des accélérateurs de particules. Par conséquent, l’étude du CMB fournit un bras de
levier cosmologique unique pour comprendre l’histoire de l’Univers, pour tester la relativité
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générale, pour contraindre la physique des particules, et pour contraindre la nature de l’énergie
noire ainsi que de la matière noire.

La première évidence de l’existence du CMB a été fournie en 1964 par Penzias et Wilson.
Depuis lors, de nombreux télescopes au sol, satellites, et ballons, ont permis d’améliorer con-
sidérablement les mesures. La première validation de la nature du spectre du corps noir du
CMB a été réalisée par le satellite COBE. Suivi des cartographies détaillées des anisotropies
CMB sur le ciel par les satellites WMAP et Planck au 21éme siècle, réalisant des contraintes sur
les paramètres du modèle cosmologique standard au niveau du pour-cent, et marquant le début
de l’ère de la cosmologie de précision.

Cependant, plusieurs pièces du puzzle cosmologique sont encore manquantes. La nature
de l’énergie sombre et de la matière noire est encore inconnue. L’absence d’anti-matière dans
l’Univers observable est inexpliquée. Pourquoi notre Univers apparâıt-il géométriquement plat?
Et comment est-il devenu homogène sur des échelles à priori causalement déconnectées? Quelles
sont les sources des fluctuations primordiales qui ont donné naissance aux anisotropies du CMB
et aux structures cosmologiques à grande échelle observées aujourd’hui?

Correspondant à une période courte et précoce pendant laquelle l’Univers aurait connu une
croissance exponentielle, l’inflation est le principal et probablement le plus élégant paradigme qui
fournit une solution à trois des énigmes cosmologiques : la platitude et le problème de l’horizon,
ainsi que l’origine des fluctuations primordiales.

L’expansion rapide de l’Univers à l’époque de l’inflation aurait dû élargir les fluctuations
quantiques à des échelles macroscopiques, produisant un fond stochastique d’ondes gravitation-
nelles primordiales. Celles-ci auraient ensuite laissé une empreinte sur la polarisation des photons
du CMB, les motifs dits modes B. La mesure précise des modes B, encore non détectés à ce jour,
représente la sonde la plus prometteuse pour la physique inflationnaire, et permettrait un pre-
mier aperçu de la nature quantique de la gravité. Cependant, l’amplitude attendue du signal est
au moins mille fois plus petite que celle de la température du CMB, et peut être sérieusement
entravée par les contaminations d’avant-plan des émissions galactiques. Les futures détections
des modes B nécessitent donc à la foi une expertise en sciences instrumentales, physiques et
informatiques.

Cette thèse se concentre sur le développement d’outils d’analyse pour étudier les modes
B primordiaux du fond diffus cosmologique. Notre but est d’extraire l’amplitude des ondes
gravitationnelles primordiales produites pendant la période inflationnaire.

Plus précisément, nous nous intéressons aux grandes échelles angulaires, pour lesquelles
le signal des mode B primordiaux devrait être dominant. Comme ces échelles sont partic-
ulièrement contaminées par des émissions galactiques polarisées, nous avons étudié et développé
des approches pour réduire ces contaminations et caractériser leurs résidus. Ces méthodes sont
applicables aux données issues de missions satellites telles que Planck ou LiteBIRD.

Afin d’estimer l’amplitude des modes B, nous avons développé et caractérisé un estimateur
du spectre de puissance des anisotropies du CMB. L’algorithme travaille dans l’espace des pixels
et permet de cross-corréler les cartes mesurées par différents détecteurs. La méthode est optimale
et minimise les fuites de variance des modes E vers les modes B.

Nous avons appliqué les approches de nettoyage et d’estimation du spectre aux données de
polarisation et aux cartes de simulation fournies publiquement par Planck. Les contraintes que
nous en déduisons concordent avec les résultats actuelles. En fin de compte, nous calculons
une limite supérieure sur l’amplitude des ondes gravitationnelles primordiales ainsi que sur le
paramètre de réionisation.
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2 Introduction à la Cosmologie moderne

2.1 Modèle du Big-bang

La cosmologie moderne est basée sur le modèle Big-Bang dont les étapes clés sont mises en
évidence sur la Fig. A.2. Les trois piliers du modèle du Big-Bang peuvent être résumés comme
suit :

• L’Univers est en expansion, et son expansion est caractérisée par un facteur d’échelle, a(t),
qui croit avec le temps, et égal à l’unité aujourd’hui, a0 = 1.

• La matière baryonique, y compris les électrons, s’est formée au début de l’Univers, alors
qu’il était beaucoup plus dense et plus chaude qu’aujourd’hui. L’Univers était rempli d’un
plasma de particules élémentaires en équilibre thermique, comme des quarks, des électrons,
des neutrino et des photons. Les premiers noyaux (protons et neutrons) se sont formés au
cours d’une phase connue sous le nom de Nucléosynthèse primordiale (BBN pour Big-Bang
Nucleosynthesis). Comme la température était encore élevée, les électrons et les photons
étaient étroitement couplés par la diffusion de Coulomb, et aucun état lié aux atomes
n’était autorisé à se former.

• Au fur et à mesure de l’expansion de l’Univers, sa température a chuté suffisamment bas
pour que les électrons commencent à se combiner efficacement avec les noyaux pour former
les premiers atomes, principalement l’hydrogène et l’hélium. Par conséquent, les photons
se sont dissociés du plasma primordial et ont été autorisés à se propager librement dans
l’espace. Ils forment alors un fond de rayonnement, connu sous le nom de ‘fond diffus
cosmologique’ (CMB pour Cosmic Microwave Background), qui imprègne encore l’Univers
aujourd’hui.

2.2 Inflation et Univers inhomogène

Les perturbations primordiales permettant d’expliquer notre Univers inhomogène sont com-
modément décomposées en trois types : scalaire, vectorielles, et tenseurs. Les modes vectoriels
décroissent rapidement, et sont donc négligeables comparés aux deux autres.

À la fin de la période inflationnaire, les longueurs d’onde des perturbations quantiques du
champs de l’inflation sont étirées jusqu’à des longueurs macroscopiques. Étant donné que la
plupart des modes sont au delà de l’horizon cosmique, les spectre en puissance des perturbations
sont quasiment invariant d’échelle, notés

PSk = ASk
ns−1, et P Tk = ATk

nt , (A.38)

respectivement pour les perturbations scalaires et tensorielles. Les paramètres AS et AT sont
leur respectives amplitudes, alors que ns et nt sont leur indices spectraux.

Nous définissons enfin le ratio tenseur-sur-scalaire

rk∗ ≡
P Tk∗
PSk∗
∼ εV (A.39)

avec k∗ l’échelle pivot (in [Mpc−1]). La valeur de r dépend du paramètre d’inflation de roulement
lent, εV , et est lié à l’échelle d’énergie à laquelle l’inflation a eux lieux, V 1/4 ∼ (r/0.01)1/4 ×
1016GeV.
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Figure A.2: Chronologie de l’Univers. Les axes vertical et horizontal représentent respectivement
la dimension spatial et temporelle. Au cours de son évolution, le taux d’expansion de l’Univers
est entrâıné par différents constituants : d’abord le rayonnement, puis la matière, et jusqu’à
tout récemment, une forme énergie ‘sombre’ sous la forme d’une constante cosmologique Λ. Les
premiers noyaux légers se sont formés pendant les 3 premières minutes et sont restés ionisés
pendant 300 000 ans, jusqu’à ce qu’ils capturent des électrons, formant des atomes neutres. Le
CMB a été émise il y a environ 13 milliards d’années. Adapté de National Geographic Society,
avril 2014.

2.3 CMB et modes B

Le modèle cosmologique standard actuel fait de puissantes prédictions sur l’Univers primitif et
son évolution. Une sonde comme le CMB nous permet de contraindre les paramètres du modèle
standard avec une grande précision et compréhension. Une partie fondamentale du modèle,
l’ère de l’inflation, résout élégamment à la fois plusieurs problèmes fondamentaux du modèle
Big-Bang : le problème de l’horizon, le problème de platitude, et elle offre un mécanisme à
l’origine des inhomogénéités primordiales. Cependant, aujourd’hui, la physique inflationnaire
est faiblement contrainte. Une sonde la prometteuse réside dans la détection et l’observation de
modes B primordiaux dans le CMB.

2.4 Plan

Dans la suite, nous nous concentrons sur le développement d’outils d’analyse des modes B
primordiaux. Cette tâche s’avère complexe, car le signal attendu est faible par rapport aux autres
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signaux de polarisation du CMB. De plus, en pratique, les mesures précises de la polarisation du
CMB sont entravées par la présence de contaminations d’avant-plan et de bruit instrumental.

Les contaminations de premier plan se présentent sous diverses formes : terrestre, galactique
ou extra-galactique. Nous avons exploré et adapté des méthodes permettant de nettoyer le signal
polarisé du CMB des contamination d’avant-plans galactiques .

Le bruit instrumental peut produire un biais lors de l’estimation des spectres de puissance du
CMB. La contribution du bruit peut soit être évaluée et supprimée, soit évitée en cross-corrélant
des données ayant des bruits non-corrélés. Cette dernière technique sera décrite dans le contexte
des estimateurs de spectres de puissance ciblant des mesures de polarisation précises.

Enfin, nous appliquons les approches de nettoyage et d’estimation du spectre aux données
de polarisation et aux cartes de simulation fournies publiquement par Planck.

3 Nettoyage des contaminations d’avants-plan

Le CMB n’est pas la seule source d’émission micro-onde que nous observons dans le ciel.
Plusieurs objets astrophysiques émettent dans la bande de micro-ondes, et contaminent ainsi
toute mesure du CMB. Ces contaminations d’avant-plan peuvent avoir de nombreuses origines
: des activités humaines ou des émissions atmosphériques, aux sources galactiques et extra-
galactiques. Chaque source de contamination possède une intensité variable en fonction de
l’échelle angulaire, de la longueur d’onde d’observation, ainsi que de la direction d’observation.

Les expériences en ballons et dans l’espace nous permettent d’être exempts de contamina-
tions provenant de l’atmosphère, des émissions au sol, et des interférences radio-fréquence. Les
composants restants proviennent de sources astrophysiques, comme les objets du système solaire,
les galaxies et les amas de galaxies, ainsi que la lumière zodiacale, la Voie lactée et le fond diffus
infrarouge (CIB). Dans le cas de la polarisation, deux sources sont dominantes : la poussière
galactique, et le rayonnement synchrotron d’électrons spiralant autour du champ magnétique de
la voie lactée.

3.1 Modélisation du signal

Le signal des avant-plans fν(n̂) pour une certaine direction n̂ et fréquence ν est généralement
modélisé comme le produit entre la distribution spectral d’énergie (SED), gf (ν, n̂), et l’amplitude
du signal Ff (n̂),

fν(n̂) = gf (ν, n̂)Ff (n̂). (A.40)

Dans le cas d’une analyse des donnée de Planck, les traceurs d’avants plan FD(n̂) and FS(n̂)
dans l’Eq. (A.40) sont respectivement basés sur les cartes à 353 GHz et 30 GHz.

Nous introduisons le coefficients d’avant-plan α(n̂), utilisant l’Eq. (A.40),

ανf (n̂) ≡ fν(n̂)

fµ(n̂)
(A.41)

=
gf (ν, n̂)

gf (µ, n̂)
, (A.42)

avec fν ∈ {D,S} le signal de la poussière où du synchrotron à la fréquence ν. Nous choissons
une fréquence de référence à µ = 353 GHz pour la poussière, et µ = 30 GHz pour le synchrotron.
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Méthode template-fitting

Une solution simple et puissante pour obtenir une estimation du CMB nettoyée des contam-
inations d’avant-plan est de soustraire d’un set de donné d(n̂) un modèle de contamination
d’avant-plan t(n̂) pondéré par αi.

ŝ(n̂) = d(n̂)−
n∑

i

αi(n̂) · ti(n̂). (A.43)

Résultat

Nous avons étudié le nettoyage des contaminants de premier plan à l’aide d’ensembles de sim-
ulations du signal polarisé. Celles-ci contiennent le signal du CMB, du bruit instrumental, et
le signal des contaminants de premier plan contenant seulement la poussière et le rayonnement
synchrotron.

Les incertitudes sur l’estimation des coefficients des avant-plans, α, sont comparées sur la
Fig. A.3, à l’aide des simulations du module Python Sky Model (PySM) (Thorne et al. 2017).
Nous considérons quatre catégories de méthodes que nous avons développé :

• les régression linéaire normalisée, xnLR,

• la régression linéaire ordinaire appliquée sur des carte lissées à laide d’une fonction Gaussi-
enne de 3◦, s3oLR ,

• la régression ordinaire dont les variances sont soustraites, vcnoLR,

• un algorithme de Newton-Raphson permettant de maximiser la fonction de vraisemblance,
MLE.

Les estimateurs xnLR et MLE fournissent les incertitudes les plus faibles. La xnLR est la plus
facile et rapide à implémenter. La méthode vcnoLR est la méthode la moins sûre, car elle repose
sur une estimation précise du bruit de l’ensemble de données et des variances du CMB pour
soustraire le biais de l’estimateur.
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Figure A.3: Comparaison des incertitudes sur l’estimation de α̂ pour la poussière (gauche) et le
synchrotron (droite) à 100 GHz. La distribution du signal sur le ciel est indiquée par les ligne
pointillées.
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4 Estimateur de spectres

Afin de contraindre le modèle cosmologique, les anisotropies du CMB sont projetés dans l’espace
harmonique, avec leurs statistiques encodées dans les spectres de puissance angulaire CXY` , où
` est le multipole, et X,Y ∈ {T,E,B}. Comme les anisotropies du CMB ont une statistique
Gaussienne, toutes l’information cosmologiques est contenue dans la fonction C`. Les spectres
de puissance estimés à partir des mesures du CMB, Ĉ`, peuvent être comparés au modèle
cosmologique C`(θ) en utilisant une fonction de vraisemblance, afin d’estimer les paramètres du
modèle cosmologique θ. L’utilisation de la technique des pseudo-spectres de puissance permet
de calculer la fonction de vraisemblance jusqu’à de petites échelles angulaires sur le ciel dans une
quantité raisonnable de puissance de calcul, tandis qu’une fonction de vraisemblance travaillant
dans l’espace des pixels est limitée aux données CMB à faible résolution en raison de son coût
de calcul. Dans cette partie, nous nous concentrerons sur l’estimation des spectres de puissance
de polarisation E et B à grande échelle à partir des cartes de polarisation Q et U .

4.1 Estimateur maximum de vraisemblance quadratique

Pour cette partie, nous avons dérivé un estimateur de spectre travaillant dans l’espace des pixels
et qui nous permet de cross-corréler différents set de données du CMB. La méthode est très
similaire à l’estimateur maximum de vraisemblance quadratique (QML). Elle n’exige donc pas
une connaissance précise des matrices de covariance de bruit des données pour soustraire le biais
due au bruit instrumental. L’estimateur, par construction, fournit des barres d’erreur quasi
minimales. La variance de l’estimateur n’est sensible qu’aux perturbations de second ordre de
la matrice de covariance des pixels. De plus, en n’utilisant aucune corrélation TQ et TU pour
la construction de cette matrice, l’analyse de la température et de la polarisation peut être faite
complètement séparément. Nous fournissons une mise en œuvre publique de la méthode xQML,
disponible sur Gitlab : https://gitlab.in2p3.fr/xQML.

4.2 Comparaison avec d’autres méthodes

Nous avons montré que l’estimateur xQML est non-biaisé, et que les barres d’erreur sur le spectre
estimé, obtenues à partir des simulations de Monte-Carlo, correspondent à la variance analytique
dérivée. La source des fuites de polarisation E-vers-B peut être identifiée dans la matrice de
mélange de mode W``′ . L’incertitude des modes B sur les grandes échelles et pour de faibles
niveaux de bruit est particulièrement affectée par le mélange de polarisation, avec un maximum
de 80% d’augmentation pour les grandes échelles angulaires à 0.1 - 1, µK.arcmin. Puisque la
méthode xQML minimise les corrélations entre les bins ainsi que le mélange de polarisation,
les barres d’erreur résultantes correspondent donc à l’incertitude minimale réalisable lors de
la réduction des fuites de variance de polarisation. Une comparaison avec le formalisme des
pseudo-spectres pures est effectuée ci-après.

Pour les méthodes pure pCl, l’apodisation du masque est une tâche non négligeable pour
les formes de masque complexes. L’apodisation isotrope näıve peut produire des fonctions de
fenêtre qui ne sont pas dérivables. Ceci induit un biais sur l’estimation des spectres qui en
résulte, principalement visible aux grandes échelles angulaires. L’autre processus d’apodisation,
basé sur un solveur PCG, fournit des fonctions de fenêtre beaucoup plus lisses. Cependant,
un inconvénient est que, pour que le solveur converge, les fenêtres doivent être optimisées sur
des bins de multipoles plutôt que sur chaque multipole. Le binning est arbitraire, et son choix
optimal doit être défini sur la base de simulations Montre-Carlo. De plus, l’optimisation doit
être réalisée dès que de nouvelles couvertures de ciel ou de nouveaux niveaux de bruit sont
envisagés. Nous avons également observé que le solveur perd la convergence lorsqu’on considère

https://gitlab.in2p3.fr/xQML
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Figure A.4: Erreur sur l’estimation du spectre BB utilisant les méthodes xQML, standard pseudo-
spectre (pCl), et pure pseudo-spectre PpCl (pure pCl). Le niveau de bruit est σn = 1µK.arcmin,
avec r = 10−3.

les grandes échelles et de faibles niveaux de bruit. Enfin, en général, les méthodes de pseudo-
spectres montrent une variance beaucoup plus élevée à bas ` (. 10) que la famille xQML. Cet
effet est d’autant plus visible que le ratio tenseur-scalaire bas r est pris en compte.

Par rapport au formalisme du pseudo-spectre, la xQML montre des améliorations significatives
sur les barres d’erreur et les corrélations pour BB et EB. L’avantage particulier par rapport
aux méthodes pures est qu’il ne nécessite aucun traitement de masque spécial. En raison du
coût de calcul plus élevé de ce dernier (O(Nd3) opérations) par rapport aux pseudo-spectres
(O(Nd3/2) opérations), la méthode xQML ne peut pas être exécutée sur autant de multipoles
que pour les pseudo-spectres. Pour toutes ces raisons, nous concluons que l’estimateur xQML

convient particulièrement à l’analyse des grandes échelles angulaires.

5 Analyse des données de Planck

5.1 Les données Planck

La mission Planck fournit publiquement des mesures de polarisation du ciel en longueur d’onde
millimétrique. Ce chapitre se concentre sur l’extraction de deux paramètres cosmologiques
: le rapport tenseur-scalaire r par les mesures en modes B, et le paramètre de réionisation
τ par les mesures en modes E. En plus des données de Planck, nous appliquons également
notre pipeline d’analyse aux simulations de bruit end-to-end (E2E) qui comprennent des erreurs
systématiques réalistes. La validation sur des simulations réalistes incluant des systématiques
est une étape cruciale pour évaluer la robustesse de notre analyse et propager l’incertitude à
travers toutes les étapes jusqu’à l’estimation des paramètres cosmologiques. Elle nous permet
également d’estimer la matrice de covariance spectrale croisée qui sera utilisée pour contraindre
et estimer les postérieurs sur les paramètres cosmologiques via une analyse de maximum de
vraisemblance.

5.2 Résultats

Nous avons fourni une procédure complète pour analyser les données de polarisation fournies par
Planck, depuis le nettoyage des cartes jusqu’à l’estimation des spectres croisés et des contraintes



202 Appendix A. Pixel signal covariance matrix

sur les paramètres cosmologiques.

Le nettoyage des avants-plans nous a permis de tester la robustesse des différentes approches
de nettoyage que nous avons proposées précédemment en considérant ici des réalisations de
bruit plus complexes qui incluent des erreurs systématiques. A partir de nos résultats sur les
données Planck, nous avons dérivé des contraintes sur les paramètres spectraux des avant-plans,
pour lesquels les valeurs estimées sont conformes à des études similaires. D’autres travaux nous
permettraient de mettre en évidence les variations des signaux d’avant-plans dans le ciel ou
d’inclure d’autres ensembles de données comme celles fournies par WMAP.

L’application de notre implémentation de l’estimateur de spectre de puissance croisée tra-
vaillant dans l’espace des pixels, la méthode xQML, nous a permis de mettre en évidence le
biais causé soit par les avant-plans, soit par les résidus systématiques de Planck présents dans
les simulations. D’autres études pourraient être effectuées afin de quantifier l’amélioration de
l’utilisation de la méthode xQML sur les données Planck comparées à l’aide de l’approche des
pseudo-spectres pures.

L’estimation de la matrice de covariance des spectres croisées à partir de simulations MC
est une étape cruciale afin de déterminer les paramètres cosmologiques à l’aide d’une analyse
de maximum de vraisemblance. Nous avons utilisé l’approche Lollipop qui nous permet de
calculer les postérieurs des paramètres dans le domaine harmonique et en utilisant des spectres
croisés. Nous avons observé un élargissement significatif de l’incertitude lors de l’examen des
simulations FFP10 au lieu de simulations avec purement du bruit blanc. Nous avons également
remarqué la présence de biais lors de l’augmentation de la couverture du ciel, ce qui indique la
présence de résidus en avant-plan.

Enfin, nous avons combiné les différents spectres croisés afin de dériver une contrainte finale
sur τ et r. Considérant 70% du ciel, pour la profondeur de réionisation nous mesurons

τ = 0.0604−0.0062+0.0058 (68 % C.L.) (A.44)

Ce résultat est à 1.5σ du résultat fourni par Planck, τPl = 0.0506±0.0086 (68 % C.L.) (Planck
2018 Results. VI.). Pour baseline, ils n’utilisent que le spectre croisé 100x143, sur la plage
multipoles ` ∈ [2, 29], et conservent 50% du ciel. Si nous considérons une configuration similaire
à Planck, nous trouvons 0.0641−0.0160+0.0133 (68 % C.L.). D’autres recherches sont nécessaires
pour comprendre la différence de 150% entre nos barres d’erreur et celles de Planck.

Suivant la même approche, nous avons dérivé une limite supérieure sur le rapport tenseur-
scalaire. Considérant 40% du ciel, nous mesurons

r ≤ 0.3714 (95 % C.L.) (A.45)

Ce résultat est compatible avec la contrainte Planck actuelle basée sur l’analyse du tenseur,
rPl ≤ 0.41 (Planck 2018 Results. X). Considérant la même configuration de pour Planck,
utilisant seulement le spectre 100x143, ` ∈ [2, 29], et 50% du ciel, nous trouvons r ≤ 0.38.

D’autres travaux sont nécessaires afin de mieux comprendre ces différences. Il convient
d’étudier l’impact des choix des multipoles à faible concentration considérée dans la vraisem-
blance et d’examiner d’autres combinaisons de spectres croisés afin de mieux caractériser l’impact
de chaque canal de fréquence sur les postérieurs. La corrélation entre r et tau doit également
être estimée en combinant les modes E et B dans l’analyse de vraisemblance.

D’une manière plus générale, d’autres stratégies pour la construction des masques pour-
raient également être explorées, par exemple sur la base des résidus moyens au premier plan
et systématiques au lieu de l’amplitude des poussières uniquement. D’autres approches consis-
teraient à adapter les masques de chaque canal de fréquence en fonction du niveau des signaux
de synchrotron et de poussière ou du niveau des résidus. L’impact du choix du coefficient de
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premier plan utilisé pour nettoyer les données devrait également être quantifié. Nous notons
que nous n’avons fourni l’analyse que pour l’ensemble complet de données de mission. Le même
pipeline pourrait être appliqué sur les cartes de demi-mission. Fournissant ainsi 45 spectres
croisés au lieu de 10 (mais avec environ deux fois plus de bruit), et permettant des combinaisons
plus différentes entre les canaux de fréquence pour construire la vraisemblance cosmologique.

Dans un avenir plus lointain, l’analyse que nous proposons dans ce chapitre pourrait être
appliquée à d’autres missions de grande envergure, comme Litebird.
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Résumé:
Cette thèse s’articule autour du développement
d’outils d’analyse des modes B du fond diffus cos-
mologique (CMB) dans le but d’estimer l’amplitude
des ondes gravitationnelles primordiales produites
durant la période inflationnaire.
Nous nous intéressons plus précisément aux grandes
échelles angulaires, pour lesquelles le signal at-
tendu des modes B primordiaux est dominant. Ces
échelles étant particulièrement contaminées par des
émissions polarisées galactiques, nous avons étudié
et développé des méthodes permettant de réduire ces
contaminations et de caractériser les résidus. Ces
outils peuvent être utilisés pour analyser les données
des satellites tels que Planck ou LiteBIRD.
Afin de quantifier l’amplitude des modes B, nous

avons développé et caractérisé un estimateur de
spectre en puissance des anisotropies du CMB.
Celui-ci s’exécute dans l’espace des pixels et per-
met de croiser des cartes mesurées par différent
détecteurs. La méthode est optimale, et minimise les
fuites de variance des modes E vers les modes B.
Nous avons appliqué les méthodes de nettoyage et
d’estimation de spectre aux cartes de données et de
simulations en polarisation fournies publiquement par
Planck. Nos contraintes sur la comportement spectral
de la poussière et du rayonnement synchrotron galac-
tique sont en accord avec les analyses précédentes.
Enfin, nous avons pu déduire une limite supérieure
sur l’amplitude des ondes gravitationnelles primor-
diales.

Title: Constraints on primordial gravitational waves from large scales CMB data
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Abstract:
This thesis focuses on the development of analysis
tools of the primordial B modes of the Cosmic Mi-
crowave Background (CMB). Our goal is to extract the
amplitude of the primordial gravitational waves pro-
duced during the inflationary period.
Specifically, we are interested in the large angular
scales, for which the primary B modes signal is ex-
pected to be dominant. Since these scales are partic-
ularly contaminated by polarised galactic emissions,
we have studied and developed approaches to reduce
those contaminations and to characterise their resid-
uals. Those methods are applicable to satellite mis-

sions such as Planck or LiteBIRD.
In order to estimate the B modes amplitude, we de-
veloped and characterised a CMB anisotropies power
spectrum estimator. The algorithm is pixels-based
and allows to cross-correlate maps measured by dif-
ferent detectors. The method is optimal and min-
imises the E-to-B variance leakage.
We applied the cleaning and spectrum estimation ap-
proaches to the polarisation data and simulation maps
publicly provided by Planck. The constraints that we
deduce are in agreement with past analysis. Ulti-
mately, we derive an upper limit on the primordial
gravitational waves amplitude.
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