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Introduction

The last decade has seen a fast evolution of the Semantic Web and impressive growth
of Linked Data. The Semantic Web can be presented as an extension of the Web in
which data have meaning not only for humans but also for machines. Semantic Web
technologies enable people to create data stores on the Web, build vocabularies, and
write rules for handling data. All these technologies provide an environment where
queries and inferences on data are possible, allowing the existence of a Web of Data
with systems capable of supporting interactions over the network. The basis element
of this environment is Linked Data which connect related data across the Web by
reusing HTTP Internationalized Resource Identi�ers (IRIs) and with the use of the
Resource Description Framework (RDF) to publicly share semi-structured data on
the Web. Generally speaking, Web of Data (a.k.a. Linked Open Data - LOD) is the
whole Linked Data published on the Web which, in common usage, link together
according to the principles set out by Tim Berners-Lee in 2006 [27].

According to Linked Open Data Cloud (LOD Cloud) 1 depicted in Figure 1, there
are more than 1200 published datasets so far. There exist among them very large
Knowledge Bases (KBs), which either are manually crafted as for instance Cyc 2 (a
comprehensive ontology and knowledge base about how the world works, which con-
tains about 1.5 million terms) or WordNet 3 (a lexical ontology containing 155327
words for a total of 207016 word-sense pairs), or are automatically constructed [93]
as DBpedia 4 (a dataset containing about 3.4 million concepts described by 1 billion
triples, including abstracts in 11 di�erent languages, which are extracted data from
Wikipedia), Yago 5 (a huge semantic knowledge base containing more than 10 mil-
lion entities and 120 million facts about these entities harvested from the web [93])
or BabelNet 6 (a multilingual lexicalized semantic network and ontology, containing
about 833 million word senses covering 284 languages). They are either domain-
general, as the previously mentioned ones, or domain-speci�c as GeoNames 7 (a
dataset providing RDF descriptions of more than 7.5 million geographical features
worldwide), MusicBrainz 8 (an open data music database contains about roughly
1.4 million artists, 2 million releases, and 19 million recordings). The largest ones
contain millions of entities and billions of facts about them (attribute values and
relationships with other entities). Most of those KBs are in the Web of Linked
Open Data [27].

1https://lod-cloud.net/
2http://www.cyc.com/
3https://wordnet.princeton.edu/
4http://dbpedia.org/
5https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/yago/
6http://babelnet.org/
7http://www.geonames.org/ontology
8https://wiki.musicbrainz.org/LinkedBrainz
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Figure 1 � The diagram of the Linked Open Data Cloud

More and more applications are devised to help humans explore [62] this huge
knowledge network, and performing data analysis tasks, and data mining to extract
again new knowledge, which may complete or correct the KBs. Very interesting
proposals have been recently published concerning this topic [30, 36], which are
currently experimented on only one source but can be expected to become even
more powerful when they will deal with several linked open data sets. An essential
requirement for these tasks is safe and sound data retrieved from the Web of Linked
Open Data, which is usually done by data collection and preprocessing steps.

For performing data collection and preprocessing, a web application designer
may be willing to rely on solutions for accessing several semantic web data source(s)
and in that case he will encounter two main approaches: Query systems and Data
Integration systems.

Depending on the purpose and the nature of the data to be retrieved, various
LOD query systems have been proposed in literature [71, 47, 6, 84, 77, 87, 87, 59,
10, 37, 92, 70, 85]. They can be classi�ed into 3 categories: one single source, a
�nite set of query-federated sources and the full web. Single SPARQL Endpoint is
a centralized database of LOD which allows querying stored data via a web service
supporting SPARQL protocol. Basically, it can play as a data warehouse which
can extract, transform and load (a.k.a. ETL process) data from (homogeneous
or heterogeneous) sources ahead of query time. Then only data in the warehouse
are obtained when the system is queried, but not in sources. A full-web query
system[47] retrieves data based on link-traversal. By this follow-your-nose way, it
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can explore (probably the entire) Web of Data with priorly unknown sources. A
Federated Query System, surveyed in [15, 78, 83, 73], proposes a single interface to
perform a query on a �xed set of SPARQL Endpoints. The basic di�erence between
this system and a Single SPARQL Endpoint is that it does not have a centralized
repository to perform ETL operators. Instead, data remain in data sources and are
obtained at query time. The main feature of a Federated Query System is to allow
users to query the given SPARQL Endpoints with no a priori knowledge about data
sources.

In general, Single SPARQL Endpoint is preferred for scenarios which have to ex-
ecute very complex queries, whereas the other two systems are suitable for applica-
tions requiring the capability of accessing fresh information. Nevertheless, systems
such as Federated Query Systems (or Single SPARQL Endpoint harvesting data
from multi sources) rarely o�er an integrated view of several resources. In other
words, the web application designer has to handle the semantic heterogeneity issue
between data sources, because datasets use generally di�erent schemas even in the
same application domain. According to Linked Open Vocabularies (LOV) 9, there
exist 650 description of RDFS vocabularies or OWL ontologies de�ned for and used
by datasets in the Linked Data Cloud. To deal manually with this problem, user has
to spend time discovering the queried targets by designing lot of queries, until he
can actually consider mastering the resulting outputs. Fortunately, the traditional
purpose of data integration systems represented in the web by Ontology-based Data
Integration (ODBI) [91] systems is to automatically manage such issues.

A data integration system essentially operates on semantic mappings between
the global-schema/ontology of queries and local-schemas/ontologies of data sources.
The semantic-mappings are used to reformulate queries expressed in terms of global-
schema/ontologies into sub-queries expressed in terms of local-schemas/ontologies.
There exist two basic perspectives to create such mappings and each kind accom-
panies corresponding algorithms to reformulate the query:

• Global-as-view (GAV): the global schema is de�ned in terms of the source. It
uses query unfolding algorithm [5] to reformulate queries.

• Local-as-view (LAV): source is de�ned in terms of the global schema. Its
well-known query rewriting algorithms are MiniCon, Bucket, Inverse-rule [5].

It should be noted that a data source can be a complete KB with data and
complex ontological rules (not limited to traditional integrity constraints). However,
both the query systems and the integration systems mentioned above do not handle
additional knowledge, which is the knowledge inferred from the facts and rules in the
KB. Therefore, it is necessary to have an Ontological query answering system (a.k.a.
Ontology-Based Data Access - ODBA [74]), which computes the set of answers to
the query on the facts, while taking implicit knowledge represented in the ontology
into account. This process is generally done at local data sources, where local-rules

9https://lov.linkeddata.es/dataset/lov
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and local-data (i.e. KB) are de�ned. However it does not exclude that this can be
performed globally if global-ontological-rules are provided.

In a nutshell, to have sound data in LOD perspective, we need a query system
to execute queries and to manage data sources, an integration system to resolve
the semantic heterogeneity issue between data sources, an ODBA system to deal
with ontological query answering issue, or a combination-system which can play all
these roles (for example, an OBDI system can be embedded into the data sources
selection module in a Federated system).

It is important to note that sound data retrieved through such a combination-
system can be not safe, i.e. not valid with respect to constraints. In the context of
a classic, centralized database, it is quite obvious that integrity constraints must be
checked at the time of modi�cation requests, insert, update, delete, only once, and
not at each select query. It is better to check the constraints as little as possible.
Clearly, such an approach is not applicable in those scenarios where the data come
from di�erent data sources, as in data integration. Moreover, in LOD context,
the user is often di�erent from the data creator-owner, so in general he cannot
control the data to forbid malicious operators. Even worse in real OBDI scenarios,
users can usually only read datasets which are virtually de�ned through views over
autonomous databases.

In addition, the required quality of data, which is de�ned, for instance, via
quality constraints by users, cannot always be identical to those of the data holders.
In many cases, user's quality constraints are more general (i.e. more expressive)
than local ones, which are often integrity constraints. Hence, the data satisfy local
constraints at each source, but not necessarily the global constraints of the user
who integrates them into a system designed for his needs.

This motivates us to investigate a system on the query side to ful�ll user quality
requirements. This is a system for validating query answers with respect to a
given quality pro�le, which the user wants to be ful�lled by the results obtained
from semantic web data providers, before he can use them in next tasks. In other
words, our idea is to extend a query environment over semantic graph databases
with a mechanism for �ltering consistent answers. The meaning of consistency is in
connexion to a user pro�le that can admit things which are prohibited by others.
In our system, a quality pro�le is a customized context that may be constituted
by quality constraints, con�dence degrees of data sources or other personalization
tools. In this work we only deal with quality constraints and con�dence degrees.

User pro�le is de�ned via a set of constraints and a set of con�dent degrees
assigned to data sources. Each user's query may have a required con�dence degree
that is used as a threshold at query time to limit the queried data space to data
sources having a su�cient con�dent degree. For the constraints, we consider a
fragment that includes:

• Positive constraints which can state that the presences of some tuples require
the presences of some other tuples. This type corresponds to tuple-generating
dependencies that can express the relationships between concepts, roles, at-
tributes and value-domains. For instance, a positive constraint can be used
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to state the following statement: "If a teacher gives a course then there exists
a department responsible for this course.� Moreover, to guarantee the termi-
nation of the rewriting query algorithm we propose, constraints are subsumed
by the famous weak acyclicity condition de�ned in [35].

• Negative constraints which allow user speci�es that one (or some) instance(s)
cannot occur (simultaneously) in data. In other words, they express disjoint-
ness between concepts or properties (so-called denial constraints). �Nobody
can teach and register in Java course in same time� is an example of this type
of constraint.

• Key constraints which permit one states that if some tuples are present then
certain components of these tuples must be equal. Such constraints cover
the semantics of functional and identi�cation dependencies in (traditional)
databases. For instance, one of key constraints considered in our experiments
is "A person who is the head of a department cannot work for a di�erent
department".

Unlike many studies in literature [22, 42, 81, 80, 13], our goal is neither to modify
the queried database nor to try to compute its di�erent possible consistent states
with respect to constraints. Instead, our constraints are considered as restrictions
imposed on query results. Indeed, the constraints are triggered on the basis of
atoms in the query's body, and plays as �lters in query answers. It is necessary to
emphasize that they do not verify data integrity inside the queried sources. Hence,
there may be some inconsistencies within data sources, but the answers given to
the user are thoroughly �ltered to ensure their consistency with respect to user's
constraints.

To compute context-driven answers, we propose two di�erent methods:

• The Naive approach performs the validation process by generating and eval-
uating sub-queries for each candidate answer with respect to each constraint.

• The Rewriting approach uses constraints as rewriting rules to reformulate
query into a set of auxiliary queries such that the answers of rewritten-queries
are not only the answers of the query but also valid answers with respect to
all integrated constraints.

Indeed, the validation process in the second approach consists of two stages: (i)
�rst, reformulate the given query into a set of auxiliary queries by using positive
and negative constraints, then evaluate these rewritten queries to obtain candidate
answers which at that time are valid w.r.t. positive and negative constraints; (ii)
those candidate answers continue to be veri�ed with key constraints by using the
Naive approach. In this approach, we also propose a preprocessing step that trans-
forms negative constraints into positive ones such that those negative constraints
can be treated in the same way as positive ones. Notice that this preprocessing step
is performed once for each user pro�le on a database instance.
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Another unique point of our rewriting algorithm is that it can well tackle some
situations relating to constants and duplicated variables in constraints. For in-
stance, a case where a positive constraint having a constant which does not appear
in the query is still taken into account in our system, but it is ignored in other
works.

We provide a complete implementation of the two solutions for the context-
driven querying and further present a thorough experimental evaluation thereof,
which allows us to evaluate and analyse their practical performance.

Organization

The rest of the dissertation is organized as follows. In the �rst part of this
manuscript, we discuss some related works, trying to positioning our proposal.
Contributions are presented in the second part.

Chapter 1 focuses on the Semantic Web Data including data models, ontology,
query language and constraint issue for it. This chapter also outlines di�erent kinds
of systems for querying Semantic Web Data, as well as a well-known solution for
ODBA based on a speci�c common ontology family: DL-lite.
Chapter 2 extends the issue of querying with ontology in a larger perspective with
a more general ontology language: Rule-Based ontology language. Issues related to
our contributions are also discussed in this chapter such as query rewriting tech-
niques, ODBA systems, inconsistency in LOD.
In chapter 3, we come to the core part of this thesis, which presents in detail our
contributions. It includes syntax and semantics of user quality constraints, the
de�nitions of valid answers in the context of query answering over data sources
with con�dence.We develop gradually the algorithms that carry out each of the two
mentioned approaches for validating query results: the naive based on validating
auxiliary sub-queries and the query rewriting based on reformulating query by using
constraints.
Chapter 4 presents the results of the experiments we carried out on the algorithms
in the previous chapter as well as analysis of them.
Finally, conclusions and further research directions are presented in Chapter 5.
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Chapter 1

Semantic Web Data Querying

The Semantic Web can be presented as an extension of the Web in which data have
meaning not only for humans but also for machines. Semantic Web technologies
enable people to create data stores on the Web, build vocabularies, and write rules
for handling data. All these technologies provide an environment where queries
and inferences on data are possible, allowing the existence of a Web of Data with
systems capable of supporting interactions over the network. However, to make the
Web of Data a reality, relationships among data should be made available. The
collection of interrelated datasets on the Web is called Linked Data.

This section o�ers an overview of structural constraints on the Semantic Web
before considering its querying process. An outline of di�erent Linked Open Data
(LOD) querying approaches is also presented. The main principles of Description
Logic are recalled as well, and we show the ontology querying as an illustration of
query-rewriting.

1.1 Semantic Web Data (W3C standard)

The Web, from its inception until the early 2000s, is viewed as a network of inter
linked documents. Most of Web pages are usually built by using web languages
such as HTML and CSS, and thereby be connected via hyperlinks. In this way,
by using Web browsers, users have the possibility of navigating linked documents.
Besides Web browsers, search engines are essential tools enabling users to search
and traverse such almost in�nite information space on the Web.

Although HTML5, CSS3 (newer versions of HTML and CSS) and technolo-
gies such as DHTML, AJAX make web pages more responsive to human inte-
gration, they are only speci�cally designed for conveying information in a human
understandable way. Well-known techniques implemented in search engines such as
page indexing, hit-counts, natural language processing, network analysis can neither
adopt the rapid evolution of the Web data nor the users' higher and higher demands.
For instance, it is di�cult for search engines to recognize similar concepts when they
are expressed using di�erent terminologies. Another obstacle is the language de-
pendence, i.e. a search query expressed in one language cannot disclose relevant
results in another. The main reason for these limitations is that search technologies
are based on keywords matching, but are not designed for answering structured
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1.1. SEMANTIC WEB DATA (W3C STANDARD)

queries. Contemporary search technologies cannot easily provide integrated infor-
mation from multiple sources. Users must manually inspect and process the queried
results when their information needs are distributed across multiple documents or
sources.

Figure 1.1 � Semantic Web stack

In general, it is not easy for machines to expose what a document is about by
scanning its structure. As a consequence, from the beginning of the 2000s, Semantic
Web, proposed as an extension of the current web, not only resolves mentioned
limitations but also opens a large new research �eld. The purpose of Semantic
Web is to extend the existing web with structure and to provide a mechanism to
specify formal semantics of the data on the Web so that information is not just
easily accessible for humans, but readily readable and shareable for machines. In
this way, the web information can be interpreted, sought, integrated and processed
automatically by machines without human intervention. They do so via the use
of a data model called Resource Description Framework (RDF) and the use of
ontologies, the notion that we will further de�ne in Section 1.3.

In fact, Semantic Web is composed of a stack of technologies that have been
designed and recommended by the World Wide Web Consortium (W3C) since 1999.
This stack, presented in Figure 1.1, is designed using the philosophy that each layer
is built on another layer without modifying it, i.e. the elements described at a
layer are compliant with the standards de�ned at the lower layers. The �rst two
layers of this stack, borrowed directly from existing Web technologies, introduce
standards for character encoding and identi�cation, and formal syntax for describing
the structure of data. Two middle layers are made up of Semantic Web standards
such as RDF for data model, Resource Description Framework Schema (RDFS)
and Web Ontology Language (OWL) for expressing the semantics, SPARQL for
querying RDF data, etc. Those standards, along with their updates and extensions,
have been developed and published by W3C since the last decade. Other higher
layers of the stack, in dashed boxes, remain unrealized.
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1.1. SEMANTIC WEB DATA (W3C STANDARD)

In this section, we concentrate on the two middle layers o�ering brief introduc-
tions to RDF and the two ontology languages RDFS/OWL, before considering how
to query the Semantic Web.

1.1.1 RDF

The Resource Description Framework (RDF) is a formal language used as data
model for the Web of Data and the Semantic Web. It is a lightweight and �exible
way to make statements about things on the web and more generally every abstract
or concrete thing. The basic unit of information of RDF is in the form of a triple
〈s, p, o〉 where each element refers to a subject, a predicate and an object respec-
tively. Such a triple means that predicate p is a relation between s and o. While
the subject s refers to the resource that we want to make a statement about, the
object o refers either to a resource or to a literal value. A resource or a property in
RDF is de�ned by a Uniform Resource Identi�er (URI), a common means providing
global identi�ers across the Web. The syntax and format of URIs are similar to
URLs but a URI does not need to be associated with a Web resource. Naturally,
URIs help to solve the problem of identifying common resources among distributed
data over multiple sources, a main characteristic of the Semantic Web. Another
important advantage of URIs is that they can be dereferenced. That is, one can
request a representation of a resource identi�ed by the URI as well as extract the
location where potential extra information can be found. The dereferencing ability
of URIs plays an important role in the context of Semantic Web because it is not
only a simple and e�ective way to provide global identi�cation but also enables data
integration over multiple data sources on the Web.

De�nition 1.1 (Triple RDF) [94] Let U ,L and B be three pair-wise disjoint sets
of URIs, literals, and blank nodes, respectively. A triple RDF is a tuple 〈s, p, o〉
from (U ∪B)× U × (U ∪ L ∪B). 2

Interestingly, an RDF triple can be expressed as a directed graph with labeled
nodes and arcs. The arcs are directed from the subject to the object. In other words,
the arcs represent the predicate relating to the subject (the source node of the edge)
and the object (the target node of the edge). The Figure 1.2 illustrates a graph vi-
sualizing the triple (http://example.org/bob, rdf:type, http://example.org/Student).

Figure 1.2 � An RDF graph with two nodes

Thus, a set of RDF triple encodes a graph structure whose set of nodes is the
set of subjects and objects of triples in the graph.

De�nition 1.2 (RDF graph) [94] An RDF graph is a set of RDF triples. 2

11



1.1. SEMANTIC WEB DATA (W3C STANDARD)

Note that nodes in a RDF graph can be IRIs, literals or blank nodes. Figure 1.3
shows a simple example of a graph of four nodes and three edges.

Figure 1.3 � An RDF graph

It is worth noting that a triple RDF 〈s, p, o〉 can be expressed in the form of
an atomic formula in �rst-order logic (FOL), P (s, o), where P is the name of a
predicate, and s and o denote two values in a binary relation. In fact, a blank node
in an RDF graph is a subject or an object that is identi�ed by neither a URI nor
a literal. Thus, in FOL, a blank node can be interpreted as existential variables
in the atom. Therefore, in case that s and o are not a blank node in B the set
of RDF triples is interpreted as a conjunction of grounded atoms. Otherwise, it is
considered as a conjunction of atoms which contains existential variables.

Example 1.1 The following four triples express that Bob is a professor and Bob
teaches a course in the informatics department.
Bob :a :Professor
Bob :teaches :_p
:_p :a :Course
:_p :o�eredBy "Informatics department"

These triples can be expressed in the following FOL conjunctive atoms:

∃ p [Professor(Bob)∧ teaches(Bob, p) ∧ Course(p)
∧ offeredBy(p, Informatics department)]

As discussed above, a binary relation in relational databases can be expressed by
using an RDF triple. However, in the Semantic Web, in order to de�ne these binary
relations together with the concepts they relate to each other, one uses RDFS or
OWL languages that are introduced in more detail in the next subsection.

1.1.2 RDFS/OWL

As shown in the previous section, RDF is a simple data model. Although it can be
used to describe quite complex data, its ability to express semantics is very limited.
For instance, there is no standard way in RDF to describe a class is a sub class of
another one (e.g. ex:Student is a sub class of ex:Person) or specify which is the
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1.1. SEMANTIC WEB DATA (W3C STANDARD)

domain or the range of property. Moreover RDF is domain-independent, i.e. users
have to de�ne their own terminology by using vocabularies of particular interest
domains. Within the Semantic Web, such shortcomings are overcome by using on-
tologies. Ontology is a speci�cation of a conceptualization [43]. It aims at describing
the concepts in a speci�c domain and all the relations existing between these con-
cepts. RDFS and OWL are languages proposed by the W3C to de�ne semantic web
ontologies. According to the o�cial OWL ontology language description [50], an
ontology consists of classes denoting a set of instances, properties denoting binary
relationships between classes, and axioms associating speci�cations of the charac-
teristics with classes and properties. For instance, Student, Course and Professor
in the example depicted in Figure 1.3 are concepts in the university domain, and
takesCourse, advisedBy are two properties (a.k.a. predicates) describing relations
between them. There are di�erent ontology languages used by the Semantic Web
community that mainly di�er in their expressiveness. In general, the more expres-
sive an ontology language is, the more complex its computation for reasoning is.
Therefore, depending on the purpose and the needs, one has to choose an appropri-
ate ontology formalism that balances expressiveness and computational complexity.
In this section, we focus on RDFS and OWL family, two well-known formalism for
ontologies that are proposed by the W3C and present in the Semantic Web stack.

RDF Schema, a semantic extension of the RDF, is the least expressive language
of the Semantic Web languages for expressing ontologies. It provides a mechanism
allowing us to de�ne the vocabulary for RDF statement, de�ne classes or concepts
and describe the relationships between them (e.g. subClass, subProperty), specify
which properties associate to which kinds of classes, what values they can take and
which restriction apply to them. As an extension of RDF, RDFS speci�cations are
expressed in the form of RDF syntax, but uses the namespace http://www.w3.org/
2000/01/rdf-schema#, commonly associated with the pre�x rdfs. For example,
the statement ex:FullProfessor rdfs:subClassOf ex:Professor states that the class
FullProfessor is a subclass of the class Professor, which means that all full professors
are professor. By providing universal predicates and properties such as rdfs:Class,
rdfs:Resource, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:range, rdfs:domain, RDFS
allows us to e�ortlessly model a particular domain. The following example is the
de�nition of the three concepts and their relations in Figure 1.3 in terms of RDFS
predicates.

<rdfs:Class rdf:ID="Student"/>

<rdfs:Class rdf:ID="Cours"/>

<rdfs:Class rdf:ID= "Professor"/>

<rdfs:Property rdf:ID="takesCours"/>

<rdfs:domain rdf:resource = "#Student"/>

<rdfs:range rdf:resource = "#Cours"/>

</rdfs:Property>

<rdfs:Property rdf:ID="advisedBy"/>

<rdfs:domain rdf:resource = "#Student"/>

<rdfs:range rdf:resource = "#Professor"/>
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1.1. SEMANTIC WEB DATA (W3C STANDARD)

</rdfs:Property>

Although RDFS can provide expressive means, it could not represent more com-
plex knowledge, as well as being far to handle the real world modelling needs. For
example, it is impossible to model class disjointness, intersection relationship, prop-
erty restrictions such as cardinality, value constraints, etc. A common solution to
deal with these issues is the use of expressive representation languages based on for-
mal logic, which allows to do logical reasoning on the knowledge and, as a result of
that, enables us to reach implicit knowledge. Among such languages, OWL family
are widely used and has become an o�cial W3C Recommendation.

The acronym OWL stands for Web Ontology Language. Since 2004 it has been
a W3C recommended standard for the modeling of ontologies in 2004, it has been
further researched and used popularly in many application domains. OWL is based
on Description Logics, and its many di�erent versions correspond to di�erent DLs.
However, OWL's syntax is developed on the basis of RDF/RDFS and proposes many
new language constructs for describing more complex knowledge, which includes
enumerated classes, characteristics of classes/properties, richer typing of properties,
cardinality, disjointness of classes, etc. The following example illustrates some new
constructs of OWL in RDF/XML syntax.

<owl:Class rdf:ID="Person" />

<owl:Class rdf:ID="Student" />

<owl:Class rdf:ID="FullProfessor">

<rdfs:subClassOf rdf:resource="#Professor"/>

</owl:Class>

<owl:Class rdf:ID="AssociateProfessor">

<rdfs:subClassOf rdf:resource="#Professor"/>

<owl:disjointWith rdf:resource="#FullProfessor"/>

</owl:Class>

<owl:Class rdf:ID="Professor">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#advisedBy"/>

<owl:maxCardinality

rdf:datatype="&xsd;NonNegativeInteger">1</owl:maxCardinality>

</owl:Restriction>

<rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="advisedBy">

<rdfs:domain rdf:resource="#Student"/>

<rdfs:range rdf:resource="#Professor"/>

</owl:ObjectProperty>

In this example, the class AssociateProfessor is de�ned as a sub class of Professor
and as being disjoint from another class FullProfessor. Besides being speci�ed with
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a domain and a range, the property advisedBy is also complemented by a cardinality
restriction stating that each student is advised by up to one professor.

In 2009, OWL2 was published as a W3C Recommendation, which is essentially
a small extension of the original version. It makes OWL more expressive by adding
many new languages features such as rule chains, rule composition, type separation,
asymmetric rules, re�exive and irre�exive rules, etc. as well as extending some
existing constructors such as disjoint classes, quali�ed cardinality restrictions, data
types, so on. Note that in Semantic Web vocabularies, "property" is used instead
of "rule", a Description Logic vocabulary.

In OWL2, there are three pro�les, each emphasizing di�erent language features:
OWL2 EL, OWL2 QL and OWL2 RL. The �rst one, OWL2 EL, is a fragment that
allows polynomial time algorithms for all standard inference types, such as satis�a-
bility checking, classi�cation, and instances checking. It was designed as a language
that is particularly suitable for de�ning ontologies including very large class and
rule hierarchies while using only a limited number of OWL features. Di�ering from
the �rst one, OWL2 QL is designed to enable easier access and query to data stored
in databases. It is aimed at applications using very large volumes of instance data,
and where query answering is the most important reasoning task. Finally, OWL
2 RL allows standard inference types to be implemented with polynomial time al-
gorithms using rule-based reasoning engines in a relatively straightforward way. It
has been designed to allow the easy adoption of OWL by vendors of rule-based
inference tools, and it provides some amount of interoperability with knowledge
representation languages based on rules.

1.1.3 Querying RDF data

In preceding subsections, we saw that RDF allows us to structure and relate pieces of
information, and RDFS and OWL introduce further expressive means for describing
complex logical relations. In this subsection, the focus is on querying RDF data. In
general, a data model proposal comes together with a language allowing us to query
data represented in terms of that model. In case of RDF, that is SPARQL, which
is a group of speci�cations including a query language and protocols that enable us
to query and manipulate RDF data.

Di�erent from the approach used in the well-known Structured Query Language
(SQL) in relational database that is based on joins between tables, SPARQL uses
the matching Basic Graph Pattern based approach to data retrieval. A Basic Graph
Pattern (BGP)is an RDF triple in which each of the subject, predicate and object
may be a variable. When the variables can be substituted by RDF terms in a
subgraph of the RDF data and the result is RDF graph equivalent to the subgraph,
we say that the Basic Graph Pattern matches the subgraph of the RDF data.

Although their approaches to retrieve data are di�erent, their syntax is very
similar. SPARQL's standard SELECT pattern has the form as

SELECT 〈result template〉 FROM 〈data set definition〉
WHERE 〈query pattern〉.
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The FROM part is an optional part that indicates the RDF datasets on which the
query is performed. While the SELECT part aims at specifying the result we want
to exhibit, the WHERE part allows us to restrict the searching graph to the given
conditions. The 〈query pattern〉 in the WHERE part is a set of triple patterns
(a.k.a. Basic Graph Pattern - BGP). Variables in the triple pattens will, on the
one hand, store any information resulting from the graph matching problem and,
on the other hand, could be combined afterwards in other triples.

Similarly to SQL, SPARQL provides some other keywords with the similar mean-
ing such as ORDER BY, DISTINCT, LIMIT, OFFSET. Besides, it also o�ers some
additional key words such as OPTIONAL, FILTER, and UNION. The OPTIONAL
keyword allows us to retrieve data even in the absence of something matching for
some triples patterns, i.e. an optional triple is evaluated if it is present and be
matched, but the matching does not fail in the case it is not present. Intuitively,
OPTIONAL corresponds to OUTER JOIN in SQL. The FILTER allows us to fur-
ther verify if a variable meets a certain condition. The UNION aims at combining
intermediate results provided by sub-queries to produce a result containing any data
satisfying at least one of the patterns. Formally, SPARQL is de�ned as follows:

Let U , B and L be three pair-wise disjoint sets of URIs, literals, and blank
nodes, respectively as De�nition 1.1, and V be the set of variables.

De�nition 1.3 [45] A SPARQL �lter condition is de�ned recursively as fol-
lows:

• If ?x, ?y ∈ V and c ∈ (U ∪ L) then ?x = c, ?x =?y, and bound(?x) are �lter
conditions;

• If R1 and R2 are �lter conditions then (¬R1), (R1 ∧R2), and (R1 ∨R2) are
�lter conditions.

2

De�nition 1.4 [45] A SPARQL expression is expressed recursively as follows:

• A triple pattern (U ∪ B ∪ V ) × (U ∪ V ) × (U ∪ B ∪ L ∪ V ) is a SPARQL
expression.

• (Optionally) If P is a SPARQL expression, then P FILTER R is also a
SPARQL expression where R is a SPARQL �lter condition.

• (Optionally) If P1 and P2 are SPARQL expressions, then
P1 AND|OPT |OR P2 are also SPARQL expressions.

2

The above de�nition is for a general SPARQL query whose syntax may have
optional clauses. In case it contains a set of triples without UNION, OPTIONAL
and FILTER, it is called a BGP SPARQL query. Note that a SPARQL query can
also be represented as a query graph [73], thus, the semantic of SPARQL query
evaluation can be de�ned as subgraph matching using graph homomorphism.
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De�nition 1.5 [45] Let P be a SPARQL expression and let G be a set of RDF
triples. The evaluation of P over G, denoted by [[P ]]G, is de�ned recursively as
follows:

• If P is a triple pattern tp, then
[[P ]]G = {µ|µ is a valuation with dom(µ) = vars(tp) and µ[tp] ∈ G}

• If P is (P1 AND P2), then [[P ]]G = [[P1]]G 1 [[P2]]G.

• If P is (P1 UNION P2), then [[P ]]G = [[P1]]G ∪ [[P2]]G.

• If P is (P1 OPT P2), then [[P ]]G = [[P1]]G ./ [[P2]]G.

• If P is (P ′ FILTER R), then [[P ]]G = σR([[P ′]]G).

Each valuation µ ∈ [[P ]]G is called a solution for P in G. 2

Besides SELECT pattern, SPARQL also o�ers three other kinds: CON-
STRUCT, DESCRIBE, ASK. Unlike a SELECT query that returns a list of vari-
ables bound in a query pattern, a CONSTRUCT query returns an RDF graph con-
structed by substituting variables in the query pattern, while a DESCRIBE query
returns an RDF graph describing information about resources that were found. ASK
query is a special case for which the returned result is a boolean value indicating
whether the query pattern matches.

In 2013, SPARQL 1.1 [88] was introduced as an extension of the original version
with a wide range of new features such as property paths, aggregation, subqueries,
entailment, federation, etc. In SPARQL 1.0, RDFS/OWL are not taken into account
when running queries, by which additional answers can be found through formal
entailment mechanisms. This issue is solved in SPARQL 1.1 by the Entailment
Regimes mechanism, which o�ers optional support for such semantics when running
SPARQL queries. Another noteworthy feature is federation that allows to execute
a single query over a selection of SPARQL endpoints by using the SERVICE clause.
This feature will be more discussed in Section 1.2.3.

1.1.4 Constraint for Semantic Web Data

In relational databases, the schema consists of rules �xing the vocabulary and the
structure (i.e., the relations), plus rules called constraints. The term constraints is
also for RDF data, which denotes vocabulary and structure rules. In the following,
we �rst recall the (relational) database meaning of constraints, noticing that their
natural counterparts in Semantic Web are ontological constraints, then we shortly
present the principles of proposals of constraints for RDF data.
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Constraint is a fundamental part in the database �eld. Although it has been
thoroughly researched on relational databases, it continues to attract the attention
of the research community in a new context: constraint in Semantic Web Data.

In the database domain, integrity constraints are restrictions on the contents of
the database, and are constructed as a part of the de�nition of the database itself.
They are, in general, a set of descriptions or a set of rules intended to bind some
properties of data and to maintain the data integrity during operations on data.
Let us recall from [4] that a constraint de�ning valid set of values for data is called
Domain Integrity Constraint. With Domain Integrity Constraints, we can de�ne
properties on data such as the data type, default value, a speci�c range value for
data, a speci�c value and so on. These de�nitions ensure that data will have a
right and proper value in the database. Indeed, Domain Integrity Constraint aims
only to describe simple properties of an attribute in a relation. For describing more
complex properties or relationships between many attributes in the same or di�erent
relations, one use data dependencies, commonly called dependencies. A formal form
of general dependency can be speci�ed as a �rst-order logic sentence as follows:

∀x1, . . . , xnφ(x1, . . . , xn)→ ∃z1, . . . , zkψ(y1, . . . , ym)
where {z1, . . . , zk} = {y1, . . . , yz}−{x1, . . . , xn}, φ is a (possible empty) conjunction
of relation atoms, ψ is a nonempty conjunction of atom or an equality atom of the
form w = w′, where w and w′ are variables appearing in the sentence.

Indeed, there are many types of dependencies in database theory. They can be
classi�ed into three fundamental classes as follows[4]:

(i) Full versus embedded: A full dependency is a dependency that has no exis-
tential quanti�ers.

(ii) Tuple generating versus equality generating: While a tuple-generating depen-
dency (tgd) is a dependency in which no equality atoms occur, an equality-
generating dependency (egd) is a dependency for which the right-hand formula
is a single equality atom.

(iii) Typed versus untyped: A dependency is typed if there is an assignment of
variables to column positions such that (1) variables in relation atoms occur
only in their assigned position, and (2) each equality atom involves a pair of
variables assigned to the same position.

In Semantic Web Linked Data, axioms in TBox of an ontology play the role
of representing data semantics, as data dependencies do in relational databases.
As OWL is the W3C standard language for modeling ontologies in the Semantic
Web, and the logical underpinning of OWL is provided by Description logics, in
this section, for simpli�cation, we refer to DLs and OWL to deal with knowledge
bases.

Nevertheless, it is important to remark that although the appearance of axioms
is quite similar to the constraints of relational databases, they exhibit quite di�erent
behavior. In a (relational) database, a constraint belongs to a checking process to
determine whether data respect the constraint restriction. In a knowledge base,
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an axiom is part of an inference process which engenders data from what has been
stated.

Let's consider an example on the database of a university in which each professor
is required to teach a course. In the ordinary case of relational databases, the
following rule is interpreted as an inclusion dependency:

∀XProfessor(X)→ ∃Y TeacherOf(X, Y ) (1.1)

This inclusion dependency states that for each professor, there must be a course
taught by him. For instance, if we insert the fact Professor(Bob) into the database
without specifying his courses, the check is performed to determine whether there
exists a course associating to Bob in the database. If not, it rises an error and the
insertion operator is rejected.
Meanwhile, in the case of Semantic Web, let us consider an axiom (for instance, in
the form of DLs) as follows:

Professor v ∃TeacherOf (1.2)

Instead of performing a check, an insertion of the instance Professor(Bob) (without
his courses) into the knowledge base leads to an inference: Bob teaches some courses,
even if we cannot specify exactly what courses they are.

It is worth recalling that relational constraints work under the Closed-World-
Assumption (CWA). Thus, relational constraints are veri�ed over the instances
available in the database. Any missing of information is considered as false. For
example, consider a database which has one instance Professor(Bob). The inclu-
sion dependency 1.1 is not satis�ed , because there is no instance of TeacherOf in
the database.

Knowledge bases usually work under the Open-World-Assumption (OWA). An
incomplete database is described by a set of incomplete extensions of the schema
relations and a set of dependencies specifying how the incomplete extensions relate
to the actual database instance [69]. The axioms in a knowledge base describe the
allowed model, but they do not restrict the allowed model. Thus, the satisfaction of
axioms is veri�ed when there exists a model satisfying both TBox and ABox. This is
clearly illustrated in the above example where the axiom Professor v ∃TeacherOf
implies the existence of some (unknown) course taught by Bob. Hence, such axioms,
in general, cannot be interpreted as relational constraints. In other words, they
cannot play the same role as the constraints validation point of view.

Indeed, the Semantic Web Linked Data Validation (i.e. RDF Validation) has
attracted many attentions in last few years. Proposals can be classi�ed in three
main categories: SPARQL-based, language-based and inference-based approach.

In SPARQL-based approaches, one attempts to use the SPARQL query language
to express the validation constraints. For instance, Knublauch et al. in [52] propose
SPARQL Inferencing Notation (SPIN) that uses SPARQL ASK or CONSTRUCT
queries to specify constraints. SPIN checks constraints on closed world semantic
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and automatically rises inconsistent �ags whenever currently available information
does not �t the speci�ed constraints. Indeed, SPIN's constraints are embedded in
class de�nitions whereby all instances of the classes are valid with respect to the
constraints associated. SPIN allows expressing constraints as SPIN Templates or
SPIN Functions that can be reusable and called at runtime. A constraint de�ned by
an SPARQL ASK query checks whether the constraint is satis�ed (if the evaluation
of the query is false) or violated (if ASK's answer is true), while a CONSTRUCT
query returns information about the violation occurred.
The following example illustrates a constraint using ASK which states that credits
of each subject must be greater than 1.

Example 1.2
ex:Subject

a rdfs:Class;

rdfs:label "Subject"^^xsd:string ;

spin:constraint

[ a sp:Ask;

rdfs:comment "must be at least 1"^^xsd:string ;

sp:where(

[ sp:subject spin:_this

sp:predicate ex:credit ;

sp:object sp:_credit ;

] [ a sp:Filter ;

sp:expression [

a sp:lt ;

sp:arg1 sp:_credit ;

sp:arg2 1

]

])

].

RDF validation based on SPARQL has many bene�ts such as o�ering a very ex-
pressive language that can handle most RDF validation needs and that is supported
by most of RDF products. These approaches can perform constraint checking quite
e�ectively. However it is not easy to inspect and understand SPARQL queries for
constraint veri�cation, either by human or by machines. This is due to the fact
that SPARQL queries may be complex and verbose when representing (even sim-
ple) constraints, and one constraint may have more than one way to be expressed.
Therefore, SPARQL does not constitute a complete solution to tackle the RDF
validation problem [3].

Language-based approaches de�ne a domain speci�c language to declare the
validation rules. OSLC Resource Shape [82], Shape Expression [76], Shapes Con-
straint Language (SHACL) [54] are typical examples for this type. The common
point of these proposals is to de�ne shapes that can act as a template specifying the
conditions for valid data, so they are also called shapes-based schema languages.
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Resource Shape is a high-level RDF vocabulary for describing commonly oc-
curring constraints (but not all constraint) on RDF graphs. These constraints are
provided as shapes and other constructs expressed in the form of an RDF graph.
Indeed, a shape of RDF graph includes both a description of its expected contents
(properties, types) within some operational context (e.g. GET, POST) and the
integrity constraints that must be satis�ed by the contents in that context [54].
Shape Expression was �rst proposed in 2014 to provide a human-readable syntax
for Resource Shapes.

1.2 LOD querying systems

We know that LOD or RDF is the cornerstone of the Web of Data movement, and
SPARQL is W3C recommended query language for RDF. In general, LOD can be
stored and processed centralized as most of other data. However, in the majority
of cases they are stored across di�erent data sources, and certain queries cannot be
answered by retrieving data from only one source. On the other hand, these data
sources are owned by di�erent providers, and these owners are not always willing to
provide all data schemata or restrict access to raw data. Therefore, depending on
the purpose and the nature of the data to be retrieved (e.g. storage, data access,
etc.), various approaches have been proposed to query LOD. In this section, we
classify LOD querying approaches according to the scope of the queried data into
3 categories: one single source, a �nite set of query-federated sources and the full
web.

1.2.1 Single SPARQL endpoint

LOD querying approaches over one single source are essentially based on a central
repository infrastructure that is automatically constructed by harvesting public
knowledge-sharing platforms [93]. Such central repository infrastructures are sup-
ported by Triple Store Management Systems 1, and provide, in general, an ontology
as the schema to design queries. The data managed by triple stores is queried in
SPARQL via a SPARQL endpoint, a web service that implements the SPARQL
protocol de�ning the communication processes as well as the accepted and output
formats (e.g. RDF/XML, JSON, CSV, etc.). In other words, SPARQL endpoint
speci�ed by a URI is a web service that enables users to query linked data via the
SPARQL language. According to statistics of LOD cloud [2], 68.14% of the linked
data sources o�er SPARQL endpoints, while from SPARQL Endpoint Status [1]
there are 549 public SPARQL endpoints on the CKAN/DataHub catalog. Exam-
ples of such approaches are DBpedia 2, LOD cloud cache 3, Linked Life Data 4 and
FactForge [14].

1https://www.w3.org/wiki/LargeTripleStores
2http://dbpedia.org/sparql
3http://lod.openlinksw.com/
4http://linkedlifedata.com
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The major advantage of central repository infrastructure is the direct availability
of locally stored data. This o�ers bene�ts such as an excellent query response
time and no network communication. However, as the process of collecting and
integrating is time-consuming, the data is not always up to date, which may be a
serious drawback in the dynamic context of the web. In addition, keeping all data
in one place requires not only a lot of storage space but also intensive resources to
process large scale data.

1.2.2 Full web querying

Full-Web query systems refer to approaches where the scope of queries is the com-
plete set of Linked Data on the Web [45]. Instead of extracting, transforming, and
loading all data from a �xed set of sources before querying it, here all relevant
data for a query is discovered during runtime execution. The query evaluation is
initialized from a single triple pattern as a starting point and, in an iterative pro-
cess, relevant data is downloaded by dereferencing URIs which are used to identify
Linked Data documents on the web. Parts of the query are iteratively evaluated
based on downloaded data, and additional URIs are added, which are dereferenced
in the next iteration step. Indeed, an RDF resource may be referred by multi-
ple URIs from multiple independent sources, which may use di�erent ontologies to
model their RDF knowledge bases. For instance, URIs can be co-referenced via the
owl:sameAs property, which is commonly used in Linked Data to state that individ-
uals have the same reference identity. In this way, di�erent sources are connected,
and applications can potentially traverse the whole Web of Data by starting from
one point. The evaluating process terminates when there are no more URI with
potential results to follow. Fully relying on the Linked Data principles and operat-
ing through follow-your-nose fashion, the only requirement is that the needed data
should correctly comply with those principles. This method potentially reaches all
data on the web, and the freshest data without requiring any a priori information
about relevant data sources as well as the accessing via an SPARQL endpoint pro-
vided by sources. But, as the Web of Data is an unbounded and dynamic space, the
querying evaluation may not terminate (after a �nite number of computation steps
or in an acceptable time) if one intends to query the Web of Data on the whole
. Thus, in order to implement this approach in practice, it is necessary to restrict
the range of queries to a well-de�ned part of the Web of Data. An example of such
a system can be found in [46]. It is worth noting that determining the starting
point plays an important role because an inappropriate starting point can increase
intermediate results and can signi�cantly in�uence the completeness of the result.
Another drawback of this approach is that URI dereferencing is a time-consuming
task, and it cannot handle query patterns having unbound predicates.
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1.2.3 Federated query system

In general, a federated system is a collection of cooperating component systems that
are autonomous and distributed. A federated-query system refers to a unique in-
terface for querying data from multiple independent given data sources, based on a
federation query engine that decomposes the incoming user query into sub-queries,
distributes them to data sources, and constructs the �nal result by combining an-
swers from each source. It is worth noting that the federated-query system being
discussed is di�erent from the W3C recommendation of a Federated Query ex-
tension for SPARQL 1.1 [88], which supports in executing queries distributed over
di�erent SPARQL endpoints by specifying the distant endpoint using the SERVICE
keyword. It is quite clear to see that to be able to query by using the SERVICE
keyword the query author has to manage all this low-level knowledge. This is the
fundamental di�erence from the approach mentioned above, in which the query
system, independently from query's author, will determine automatically how and
where a given query is evaluated by analyzing the query itself and the a priori
knowledge about data sources. The query processing in a federation framework
comprises four phases performed in the following order: query parsing, data source
selection, query optimization and query execution. The aim of the �rst phase of
the querying processing, query parsing, is mainly to check the syntax of the input
SPARQL queries and to parse them to a set of triple patterns, which are like RDF
triples, except that each of the subjects, predicates and objects may be a variable.
The results of this phase will be used in selecting sources, as well as optimizing
queries in subsequent phases. The main goal of data sources selection phase is to
determine the relevant sources containing relevant results against individual sub-
queries, which in this context are triple patterns or sets of triple patterns, in order
to avoid sending them to all data sources. The query optimization phase aims to
eliminate unnecessary data transfers between the federated-query system and the
sources by (i) using caching, (ii) choosing the appropriate join method, (iii) ordering
and grouping the triple patterns. The last phase in query processing is query exe-
cution that executes the query following the execution plan speci�ed in the query
optimization, and executes the subqueries on relevant sources identi�ed by source
selection step.

In some federated system for Linked Open Data, some speci�c phases can be
added to take advantage of some characteristics of Linked Data. For example, in
ELITE system [71] a reasoning phase is added between the query parsing and data
source selection. The entailment regimes by query rewriting in the reasoner aims
to complete query results in terms of a central ontology regardless of the SPARQL
endpoint features.

Among the above mentioned phases of the querying processing, data source
selection is the most studied phase, as it highly determines the overall performances
of Federated Query systems. A single complex query can reach many relations across
several domains. On the other hand, there is the fact that a single source can answer
for some part of the query, whereas several sources are able to return results for a
part of the query. Hence the determination of suitable data sources for each part of
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the query is essential in order to increase the e�ciency of the querying processing
and reduce the overhead of network tra�c. SPARQL 1.1 [88], that has become
an o�cial W3C Recommendation since 2013, provides the SERVICE keyword to
explicitly specify the sources for di�erent parts of the query. However, this approach
is rather inappropriate for a �exible environment as Linked Open Data, because it
requires query designers to know exactly where the data is. An ideal approach
must be transparent in selecting relevant sources (i.e. users can query without a
priori knowledge about sources), and be able to adapt to the environment. Many
techniques are proposed to deal with these challenges , they are categorized as
index-free, index-assisted and hybrid [6, 84, 77, 87].

FedX [87] is an index-free federated engine. In the source selection phase, it
sends SPARQL ASK queries to data sources at runtime to specify potential sources.
Because of the simplicity of ASK queries, which return boolean values indicating
whether a query pattern matches, relevant data sources (which can answer sub-
queries corresponding to triple patterns) will be quickly identi�ed. Despite the
simplicity, the ASK queries may be too expensive with the growing of the number of
triple patterns and the number of data sources. In order to overcome this challenge,
cache mechanism can be employed to save the relevance of each triple with each
data sources.

In contrast to the index-free fashion, index-assisted approaches build and main-
tain a source catalog. Such a source catalog provides sources index information
which may lead to more e�cient and fast source selection, but requires an addi-
tional preprocessing stage. In general, a source catalog consists of data mappings
which associate RDF terms or complex graph structure with data sources. RDF
terms in mappings can be vocabularies in individual datasets, or predicates which
allow linking a data entity from one source to other sources (a.k.a. linksets) such
as owl:sameAs, rdfs:seeAlso, foaf:knows, etc. On the other hand, it should be noted
that common predicates such as rdf:type, rdfs:label, etc. are used in all data sets.
Hence, besides the data mappings, data catalog may also include statistics data
which helps to rank data sources. Ranking information, in turn, is useful to reduce
the number of relevant sources. Such statistics data can be o�ered by data sources
in terms of their metadata which is usually described by the Vocabulary of Inter-
linked Datasets (VoID). In case it is not o�ered by sources, some techniques can be
used to calculate the statistics data such as data dump analysis, use crafted queries
and aggregate queries or extracting data statistics from query answers. Systems us-
ing the catalog technique can be found in DARQ [77], ADERIS [59], Avalanche [10].
The advantage of this strategy is that it can achieve good performance for bound
predicates, but they select all available sources for unbound predicates. Further-
more, as using only indexed summaries and possibly out-of-date indexes does not
guarantee the completeness of the result set, those systems must deal with index
maintenance.

Hybrid systems can be found in [37, 6, 92, 70, 85, 86]. They use both data
catalog and ASK queries to optimize the source selection phase. For instance,
SPLENDID [37] uses ASK queries to prune inutile pre-selected sources which can-
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not return any results for triple patterns having bound subject or object. This
signi�cantly reduces the network communication and query processing costs in case
a general predicate (e.g. rdfs:label) is used in triple patterns. Another example,
ANAPSID [6, 68], uses a heuristic-based source selection in which ASK queries
are used to check whether a pre-selected source is relevant for a triple pattern.
Furthermore, ANAPSID can update on the �y its data catalog, and o�er physical
operators who are able to detect the blocked status of sources or bursty network.
CostFed [86] is a recently proposed hybrid system that outperforms all the existing
ones. It makes use of statistical information collected from endpoints to perform
e�cient source selection and cost-based query planning.

In the Federated Query approach, queries are answered based on the up-to-date
data from original sources. In the web context, this is a major advantage compared
to centralized materialized approaches. This is also the case for Ontology-Based
Data Integration (OBDI) systems [29, 74]. It is very interesting to notice that,
the more Federated Query systems store information in cache or index, about their
sources on the one hand, and the user queries on the other hand, the more they
resemble traditional integration systems [63]. In particular, indexes storing the
relationships between query predicates and source predicates play the same role
as GAV or LAV mappings, which will be explained in more detail in Section 2.2
presenting the principles of querying in data integration systems. Compared to
the expressive power of OBDI systems, Federated Query systems lack the ability to
compile more knowledge into the user query in order to get more complete and more
correct results with respect to the user's needs [63]. Nevertheless, the capabilities
they developed for automatically harvesting knowledge, about sources and about
queries, may be reused to facilitate and enhance OBDI systems.

Note that in these approaches we have studied so far, we are only interested in
the topology, organization of the systems and corresponding technologies relating to
the usage of query language (i.e. SPARQL) as well as the transformation of queries
(e.g. LAV, GAV), but we have not yet mentioned the querying semantic or how
to actually query the RDF data in the presence of ontologies. This issue is going
to be considered in detail in the next section.

1.3 Querying with ontologies

Ontologies are the backbone of the Semantic Web [5]. It provides a conceptual
view of data and services made available worldwide through the Web [5]. Together
with the data model RDF and query language SPARQL, they form the principles
of Semantic Web. In this section, we will have a closer look at the ontologies, as
well as how to query data with ontologies. To do this, we �rst recall a family of
languages, called Description Logics, which is the formal foundations of the OWL
ontology web language recommended by W3C. Then we show that how to deal
with new challenges when querying data on the semantic context, that is quite
di�erent from that in classical databases. This section is based on the books Web
data management and distribution [5] and The Description Logic Handbook [7]
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1.3.1 Description Logic

Description Logics (DLs) is a family of logics that is decidable fragments of �rst-
order predicate logic (FOL). DLs allow expressing and reasoning on complex logical
axioms over unary and binary predicates, which is essential to handle ontologies.
Indeed, OWL and OWL2 are both based on DLs. Most of the OWL constructs
come from DL. The DLs family is composed of many class-based logic languages
whose computational complexity depends on the set of constructors allowed in the
language. Notice that the class and the property in Semantic Web ontologies are
called concept and rule (or role) in DLs, respectively.

A DL knowledge base consists of an intentional part (a.k.a. the Tbox ) and an as-
sertional part (a.k.a. the Abox ). The Tbox T de�nes the vocabulary (terminology)
which state inclusions or equivalences between concepts and roles, while the Abox A
is a set of facts (assertions) stating memberships of individuals in concepts and role
memberships for pairs of individuals. Formally, a TBox consists of statements of
the form B ≡ C or B v C or R ≡ P or R v P , where B, C are class expressions or
atomic concepts (unary predicates), and R,P are atomic roles (binary predicates).
An ABox consists of statements of the form B(a) and R(a, b), where B is a class
expression, R is a role, and a, b are individuals. Notice that a statement in Tbox
may be complex. The following example illustrates that one can build a complex
concept by combining atomic concepts and roles with constructors.

MasterStudent ≡ Student u ∃RegisteredTo.MasterProgram

In this example, the concepts MasterStudent is de�ned as a complex concept
that is built from two other atomic concepts Student, MasterProgram, an atomic
role RegisteredTo and a conjunction construct. It states that a master stu-
dent is a student who registered at least one master program. The construct
∃RegisteredTo.MasterProgram is a value restriction, which requires that all the
individuals in the relationship RegisteredTo, with the concept being described, be-
long to the concept MasterProgram. In general, the equivalence axioms are used
to de�ne new concepts from existing concepts, while the inclusion axioms express
relations between concepts. The simplest form of inclusion axioms are relations
between atomic concepts or roles, which correspond to the subClassOf or subProp-
ertyOf relations in RDFS.

Although reasoning in all languages in DLs family are decidable, many expressive
DLs have high computational complexity in practice. Therefore, we only focus on
DLs that is polynomial in reasoning. Among such languages, DL-lite, which is
discussed in the following section, provides a good trade-o� between expressivity
and e�ciency.

1.3.2 Querying data through DL-Lite family

As mentioned in the previous section, the DL-Lite family are expressive DLs hav-
ing a polynomial complexity in reasoning. They have been specially designed for
guaranteeing query answering to be polynomial in data complexity. More precisely,
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the standard reasoning task in DL-Lite is polynomial in the size of the Tbox, and
in LOGSPACE in the size of the Abox [5]. In DL-Lite, we have the negation con-
structor and unquali�ed existential restriction on roles and on inverse of roles. In
the Tbox of DL-Lite, allowed axioms are concept inclusion statements of the form
B v C or B v ¬C, or existential restriction ∃R or ∃R−, where B, C are atomic
concepts, R is an atomic role. It is worth noticing that negation is only allowed
in the right hand sides of inclusion statements. Inclusion axioms with negation in
the right-hand side are called negative inclusions (NI for short), while the inclusion
axioms without negation are called positive inclusions (PI for short). Besides, DL-
Lite also provides functionality axioms (a.k.a Key constraint), which are in the form
(functP ) or (functP−) where P is a property and P− denotes the inverse property
of P. The table 1.1 shows some axioms and their corresponding FOL semantics,
where B,C are classes, P,Q are properties, and X,Y,Z are variables.

DL notation FOL semantics

NI
B v ∃ P B(X)⇒ ∃Y P (X, Y )
B v ∃ P− B(X)⇒ ∃Y P (Y,X)
∃ Q v ∃ P Q(X, Y )⇒ ∃ZP (X,Z)
∃ Q v ∃ P− Q(X, Y )⇒ ∃ZP (Z,X)
P v Q− or P− v Q P (X, Y )⇒ Q(Y,X)

PI
B v ¬C B(X)⇒ ¬C(X)
Q v ¬P Q(X, Y )⇒ ¬P (X, Y )

Key
(func P ) P (X, Y ) ∧ P (X,Z)⇒ Y = Z
(func P−) P (Y,X) ∧ P (Z,X)⇒ Y = Z

Table 1.1 � DL-Lite axioms

It should be clear that compared with query answering in traditional databases,
query answering through ontologies is more complicated because there is the in-
volvement of inferences in query answering which is called Entailment Regimes
mechanism in SPARQL 1.1 and one has to verify the consistency. In general, to
evaluate a query against a dataset D, we need to �nd valuations of variables in the
query such that applying those valuations on all atoms of the body of the query
obtains facts "holding". A fact "holds" on dataset D if is a known fact, i.e. ex-
plicitly exist in the dataset, or if it is a consequence of the facts in the dataset by
taking into account rules in the TBox, i.e. a consequence of logic entailment of the
knowledge base. In other words, the �rst case is a veri�cation concerning data in
ABox only, while the second one is an inference using both TBox and Abox.

Thus, depending on the expressiveness of the used ontology the complexity of
these inferences are di�erent. For example, in RDFS, all rules are safe [5], i.e. the
variables in the head of rule all occur in the body, thus, rules always infer new
ground facts. Therefore, answering query through RDFS can be done by applying
in a forward-chaining manner (a.k.a. bottom-up approach) to the initial set of facts
until saturation, i.e. until no more facts can be inferred. A simple forward-chaining
is depicted in Algorithm 1 [5].
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Algorithm 1: Saturation
Input : An ABox A and an RDFS TBox T
Output: A new ABox complemented with inferred facts

1 Function Saturation(A, T):
2 F = A;
3 ∆0 = A;
4 repeat
5 ∆1 = ∅;
6 foreach rule σ : condition→ conclusion in T do
7 if there exists an homomorphism h such that h(condition) ∈ ∆0

and h(conclusion) /∈ F then
8 add h(conlusion) to ∆1 ;

9 F = F ∪∆1;
10 ∆0 = ∆1

11 until ∆1 = ∅;
12 return F ;

In the algorithm, ∆0 stores facts that need to be considered in each iteration
step, while new inferred facts generated at each step are kept in ∆1. In the �rst
iteration, ∆0 is all facts in ABox A, but in next steps it is ∆1 of the previous step, i.e.
we only consider newly generated facts in the previous iteration. The condition by
which a new fact is added into F is that there exists an homomorphism h mapping
the condition of rules to the fact, and the application of h on the conclusion of
rule does not exist in ABox (including added inferred facts). Algorithm 1 returns
a new database, called ontological database, consisting of asserted facts in initial
ABox and inferred facts. Then queries are directly evaluated against the ontological
database.

However, it is di�erent in case of DL-Lite in which the existential quanti�ers
are allowed. Indeed, an axiom having existential quanti�er in its right-hand-side
does not produce new facts from initial facts, but only an incomplete information
in the form of atoms that may be partially instantiated. We know that there exists
some facts for such atom that is true but we cannot specify exactly the value of
existentially quanti�ed variables in the atom. That is the reason why the backward-
chaining (a.k.a. top-down) approach is more appropriate than the forward-chaining
one in this case.

On the other hand, NIs and Key constraints in DL-Lite can lead to the inconsis-
tency of the knowledge base. That is because NIs express disjointness constraints
between classes or properties, and therefore introduce negation in the language,
while a Key constraint leads to the inconsistency when we try to equate two distinct
constants. The cause of this inconsistency is because DL-Lite adopts the Unique
Name Assumption (UNA), i.e., di�erent individuals denote di�erent objects. Thus,
answering queries through DL-Lite ontology needs to address two basic issues: the
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inconsistency in the knowledge base and the incompleteness of data.

To deal with the inconsistency problem of the knowledge base, a well-known
solution can be found in [5, 55]. In this approach, a NI-Closure (Negative Inclusion
Closure) is computed from rules in TBox, then those rules in NI-Closure are
transformed into boolean queries (denoted qunsat). After that, we can evaluate
those boolean queries against ABox to detect whether there exists one returning
true, i.e. there exists a NI or a key constraint violating with facts in ABox. In this
case, the knowledge base is unsatis�able.

To overcome the incompleteness of data issues, the backward-chaining approach
can be used instead of the forward-chaining one. Indeed, di�erent from the forward-
chaining where axioms in the ontology are used as inference rules for deriving new
facts from initial fact, in the backward-chaining they are used as rewriting rules for
reformulating a given query into a set of conjunctive queries (CQs) Q, then these
CQs will be evaluated against the data in the Abox.

One of the well-know algorithm for reformulating query is the PerfectRef [24]
(see Algorithm 2). It takes a conjunctive query q and a TBox T as input, and
returns a union of conjunctive queries PR. PR consists of the reformulations of q
produced by exploiting the positive inclusions (PIs) in T , which ensures that the
answers of query q take into account all the knowledge expressed in T . To do this,
for each query q in PR, a new query is generated whenever there is a PI in T
applicable to an atom g of q (step (a) of Algorithm 2). PI, in the form α ⇒ β,
is applicable to an atom g in a given query q if one of the following conditions is
satis�ed [24]:

• g = A(x) and A occurs in β.

• g = P (x1, x2) and one of the following conditions is satis�ed:

� α⇒ β is a role inclusion and P or P− occur in β.

� x2 = _ and β is ∃P

� x1 = _ and β is ∃P−

where _ denotes an unbounded existential variable of a query.

The function gr(g, I) (line 9 of Algorithm 2) aims to calculate the goal reduction
of the atom g using the PI I. Detailed results of the function gr(g, I) is shown in
Table 1.2.
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Atom g Positive Inclusion α gr(g, α)
A(x) A1 v A A1(x)
A(x) ∃P v A P (x,_)
A(x) ∃P− v A P (_, x)
P (x,_) A v ∃P A(x)
P (x,_) ∃P1 v ∃P P1(x,_)
P (x,_) ∃P−1 v ∃P P1(_, x)
P (_, x) A v ∃P− A(x)
P (_, x) ∃P1 v ∃P− P1(x,_)
P (_, x) ∃P−1 v ∃P− P1(_, x)
P1(x1, x2) ∃P1 v ∃P or ∃P−1 v ∃P− P1(x1, x2)
P1(x1, x2) ∃P1 v ∃P− or ∃P−1 v ∃P P1(x2, x1)

Table 1.2 � The goal reduction of atoms and positive inclusions

Algorithm 2: PerfectRef
Input : A conjunctive query q and TBox T
Output: Union of conjunctive queries PR

1 Function PerfectRef(q, T):
2 PR = {q};
3 repeat
4 PR' = PR;
5 foreach q ∈ PR do
6 (a) foreach g ∈ q do
7 foreach PI I ∈ q do
8 if I applicable to g then
9 PR = PR ∪ {q[g/gr(g, I)]};

10 (b) foreach g1, g2 ∈ q do
11 if g1 and g2 unify then
12 PR = PR ∪ {τ(reduce(q, g1, g2))};

13 until PR' = PR;
14 return PR;

The rewritten queries obtained are then simpli�ed by unifying the pairs of atoms
g1, g2 appearing in each rewritten query q (step (b) of Algorithm 2). More precisely,
the function reduce replaces the conjunction of two atoms g1 and g2 with their most
general uni�er if they can be uni�ed, while the operator τ replaces in the body of
a query all existential variables that appear only once (unbound variables) by an
anonymous variable. Interestingly, after the simpli�cation step, the bound variables
in q can become unbound. Thus, in the next execution of step (a), the PIs that
were not applicable to the atoms of the query q in the previous step may become
applicable to the atoms in the new query.
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It is clear to see that the algorithm PerfectRef does reasoning on conjunctive
queries and TBox but without ABox. By separating the reasoning process on the
ontology from the data processing, we can gain many practical advantages. One of
these is that the reasoning process on ontology depends only on the size of Tbox
that is in fact much smaller than Abox. This is important when working on the
Semantic Web where the data in Abox is really huge. Another bene�t is that we
can use an SQL engine for the second step, thereby inheriting well-established query
optimization techniques.

Moreover, it is worth noting that reasoning in the presence of PIs, NIs and
Key constraints is very complicated, which may lead to an in�nite number of non
redundant reformulations for some queries [5]. Therefore, we have to control it by
some restrictions in the combination of axioms in Tbox. For instance, authors in [23]
propose DL-Lite in which key constraints are forbidden on properties involved in the
right hand side of an inclusion axiom. This restriction helps to avoid reformulating
a given query into an in�nite number of conjunctive queries, each one likely to bring
additional answers.

Note that the presented PerfectRef is one of typical examples of the backward-
chaining approach over the DL-family ontology. In the last few years, both Semantic
Web and Database communities have proposed many other algorithms that aim at
compiling a conjunctive query and an ontology into a union of conjunctive queries.
They are not only limited in DL-Lite family but extended over other ontology
languages [5, 33, 55, 22]. We will present them in more details in the next chapter,
dedicated to rule-based query rewriting in general, thus, in particular, to ontology-
based data access.

1.4 Conclusion

Considering the three kinds of LOD querying system previously presented the fol-
lowing remarks can be dressed:

• A Full-Web query system targets its search space in the Web of Data and is
appropriate for applications that operate through a follow-your-nose fashion.
Context-driven querying in this scenario seems unrealistic at the moment due
to the unbounded and dynamic nature of Web of Data.

• Single SPARQL Endpoint and Federated systems o�er a centralized inter-
face to access (possibly) distributed data and o�er a good opportunity for
personalizing data access.

The main goal of this thesis is to provide a context-driven querying system on
distributed data, particularly on LOD. Single SPARQL Endpoint and Federated
systems are therefore our target systems.

Our goal is to provide answers to a user, by integrating data coming from dif-
ferent sources (possibly associated with di�erent con�dence degrees) and �ltering
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them according to user's personal requirements. Both Single SPARQL Endpoint
and Federated systems can be enriched by such a tool.

It should also be clear that we are particularly concerned by data validation.
However, di�erently from [5, 55] who deal with the inconsistency problem in the
knowledge bases, we are interested in placing the validation step on query answers.
More precisely, our proposal is to deal with data sources which can be inconsistent
with respect to the constraints �xed by a user context. We do not impose our
consistency check on data sources directly, but we propose to �lter answers. In this
way, we are able to render to the user only data respecting his validity requirements.
In this way we ensure the quality of our querying system.

This viewpoint di�ers from the work in [5], where before executing queries
against data on ABox, one veri�es the inconsistency of the ABox with respect
to TBox. Their approach is composed by di�erent steps including computing
NI-Closures, transforming them into boolean queries and evaluating these queries
against ABox (in oder to determine whether facts in ABox violate NI or key con-
straints in TBox). As it will be presented in Chapter 3, our solution includes a
preprocessing step which may recall the transformation of NI-Closures in [5]. How-
ever, the goal of our preprocessing step is to create auxiliary datasets which are
going to be used as support for query rewriting.

Finally, our constraints are seen in a database perspective [25] (and not in an
ontological perspective where they are considered as inference rules). Due to this
aspect, the way handling constraints in our solution is di�erent from the one in
approaches like [5, 55]. This is presented in detail in the next chapter.
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Chapter 2

Rule-Based Query Rewriting

There exist many proposals focusing on rule-based query-rewriting in the database
literature, that have been developed to address a very wide range of issues, from
query optimization to data integration, through inconsistent databases repairing
or ontology-based data access. To deal with those issues, highly famous algo-
rithms have been devised, and regularly improved: Saturation [5], PerfectRef [24],
Chase [35, 31, 64, 18], Chase&Backchase [33], Unfolding [5], MiniCon [75], Repair
computation algorithms [55, 22], XRewrite [40], etc. Even though we did not �nd
authors who clearly analyze the relationships between all of them, we noticed that
they all rely on the fundamental idea of applying rules φ → ψ, either from left to
right (forward chaining) or from right to left (backward chaining). The considered
rules are either ontological constraints, view de�nitions, GAV or LAV mappings, or
data exchange rules, etc. We summarize this observation in Table 2.1, where the
notation asterisk indicates that there are restrictions in the syntax of constraints to
ensure the termination of the algorithm.

At the end of Chapter 1, we presented the Semantic Web ontology querying in
the case where the ontology languages are based on di�erent Description Logics, a
family of logics that has been designed for knowledge representation and reasoning.
We also studied a concrete case of query-rewriting technique, PerfectRef. In this
chapter, the Semantic Web ontology querying is considered in a wider perspective
with rule-based ontology languages. Particularly, we will consider in detail the chase
procedure and its terminating conditions. We also recall the principles of OBDI,
that can play a role for controlling query results, and we think it could be enriched
with Federated Query Systems techniques, as noticed in Section 1.2.3. This chapter
ends with an overview of the inconsistent database problem, one of the issues with
which our contribution deals.

2.1 Rule-based ontology languages

We know ontologies are modeled by using formal languages called ontology lan-
guages. Those languages, in general, use First-Order Logic (FOL) (a.k.a. predicate
logic) as the formal foundation. We also know that Description Logics is a well-
known family of knowledge representation languages in modeling ontologies. DLs
are widely used in semantic web community because they are decidable fragments of
FOL and allow expressing and reasoning on complex axioms over unary and binary
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Algorithm
Applying

rule
Type of rules Purpose

Saturation [5] forward
ontological constraints

(TGDs, EGDs)
generate new facts

Chase [35] forward
ontological constraints

(TGDs, EGDs)
generate new facts

Tableau [4] forward
database constraints

(TGDs, EGDs)
generate new queries &
enrich answer set

PerfectRef [24] backward
ontological constraints

(TGDs)
generate new queries &
enrich answer set

XRewrite [40] backward
ontological constraints

(TGDs*)
generate new queries &
enrich answer set

C&BC [33] backward data exchange rules data exchange

Ours[25] backward
database constraints

(TGDs*, NC)
Filter answer set

Table 2.1 � Rule-Based query operating algorithms

predicates.
Another ontology language family which attracts a lot of attention from the
Knowledge Representation and database communities in the last few years is
rule-based ontology languages [19, 8]. In such languages, tuple-generating de-
pendencies (TGDs) are used for ontological modeling and reasoning, so they
are also known as TGD-based ontology languages. Indeed, a TGD is a datalog
rule extended by allowing existential quanti�ed variables in its head as the form
∀X,Y φ(X,Y)→ ∃ Z ψ(X,Z)where φ and ψ are conjunctions of atoms over a rela-
tions schema. Intuitively, di�erent from DL-based ontology languages which sup-
port only unary and binary relations, rule-based ontology languages allow expressing
and reasoning over arbitrary arity relations.

Example 2.1 The following rules are TGDs describing constraints on a university
database

σ1 : professor(Xid)→ ∃Xcourse teacherOf(Xid, Xcourse)
σ2 : teacherOf(Xid, Xcourse)→ ∃Xdep, Xorg worksFor(Xid, Xdep, Xorg)

The universal quanti�ers in TGDs are usually omitted. 2

Recall that to deal with the query answering over DL-Lite in a forward-chaining
manner, we build an ontological database by using rules in TBox to saturate the
given database (Algorithm 1), then queries are evaluated directly against the new
database. This is similar in the case of TGD-based ontologies where one computes
models, called canonical model (a.k.a. universal model), then we can evaluate
queries over these models. Such model can be constructed by using chase proce-
dure, a well-known technique developed by the database community for reasoning
with constraints [60, 61, 90, 79, 4].
Roughly speaking, the chase procedure adds new atoms to the extensional database
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to satisfy TGDs by applying a sequence of steps, where each step enforces a con-
straint that is not satis�ed by the current instance. Note that added tuples (instan-
tiated atoms) involve possibly null values which act as a witness for the existentially
quanti�ed variables in the atoms.

TGD Chase Step [72]Let D be a database for a relational schema R and σ be
the TGD on R of the form ∀X,Y φ(X,Y)→ ∃ Z ψ(X,Z). If there exists a homo-
morphism h that maps the atoms of φ(X,Y) to atoms of D (i.e. h(φ(X,Y)) ⊆ D),
we say that (σ, h) is a trigger for D. If there is no extension h′ of h such that
h′(ψ(X,Z)) ⊆ D then (σ, h) is said to be an active trigger for D. h′ is extended
from h by assigning new fresh nulls to the existential variables in ψ. We say that
the TGD σ is applicable to D if (σ, h) is a trigger (active or not) for D, i.e. the
homomorphism h exists. 2

In the case (σ, h) is an active trigger, the chase step is standard-chase. The
following algorithm describes the standard chase procedure for a database D and a
set of TGDs Σ, which consists of an exhaustive application of the standard TGD
chase steps.

Algorithm 3: Standard TGD chase
Input : A database D and a set of TGDs Σ
Output: A universal model of D and Σ

1 Function StandardTGDChase(D, Σ):
2 D′ = D;
3 while exists an active trigger (σ, h) for D′ do
4 Let h′ be the extension of h;
5 D′ = D′ ∪ h′(head(σ))

6 return D′;

The �nal result of Algorithm 3 is a new database, denoted chase(D,Σ), whose
instances satisfy all constraints (TGD) in Σ.

Example 2.2 Consider an university database
D = {professor(Bob), professor(Tom), teacherOf(Alice, Java)}
and the set of TGDs Σ of Example 2.1. First, we apply σ1 to
professor(Bob) (resp. professor(Tom)), which adds teacherOf(Bob,N1) (resp.
teacherOf(Tom,N2)) into D′, and σ2 to teacherOf(Alice, Java), which adds more
worksFor(Alice,N3, N4) into D′. Then, in the next iteration, σ2 is applied on
teacherOf(Bob,N1) (resp. teacherOf(Tom,N2)) to add worksFor(Bob,N5, N6)
(resp. worksFor(Tom,N7, N8)) into D′. Thus, we yield a �nite chase chase(D,Σ)
as follows:
chase(D,Σ) = D ∪ {teacherOf(Bob,N1), teacherOf(Tom,N2),
worksFor(Alice,N3, N4), worksFor(Bob,N5, N6), worksFor(Tom,N7, N8)} 2

It is easy to see that the standard chase algorithm is very similar to Saturation
(algorithm 1) in DL-Lite case. The condition for a rule or a TGD constraint to
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generate a new fact is that exists a homomorphism h and its extension h′ such that
h(body(rule)) is a fact in the current instance while h′(head(rule)) is not.The chase
procedure in the standard TGD chase is restricted, because only active triggers are
considered at each chase step. However, checking whether a trigger is active can
be di�cult in practice. So if all triggers (not only the active ones) are considered
at each iteration, the chase procedure is known as oblivious. It is the simplest
variation of the standard chase (a.k.a. the naive chase), but it can add atoms to
the database even if it is not necessary, because there is no checking whether the
TGD considered is already satis�ed. Furthermore, TGDs are chosen by a nondeter-
ministic way at each step, and the result of chase step depends on the presence of
other atoms constructed by previous steps, so standard chase and oblivious one are
nondeterministic and di�cult to analyze from a theoretical point of view. Thus, to
deal with the two above issues, several chase variants can be found in literature such
as semi-oblivious chase [64], unrestricted Skolem chase [64, 89, 65], core chase [31],
frugal chase [53], etc.

Algorithm 3 stops when there are no other active trigger to be applied. Nev-
ertheless, in many cases the chase procedure does not terminate. The following
example shows one of these cases.

Example 2.3 Given an instance D = {R(a, b)} and a set of TGDs Σ = {σ1 :
R(x, y) → ∃zR(x, z)}. Clearly as z is an existential variable so there is no
active trigger in Σ for any instance. When applying oblivious chase, we ob-
tain an in�nite chase sequence which adds in�nitely atoms into the instance
D = {R(a, b), R(a,N1), R(a,N2), R(a,N3), . . .}, where Ni are new fresh null val-
ues.

For a given instance and a given set of dependencies Σ, checking if Σ has ter-
minating chase is undecidable [31]. This motivated the research community to �nd
classes of TGDs that ensure the termination of chase procedure. Terminating chase
conditions can be found in the literature [35, 49, 66, 31, 39, 64, 19, 16]. Among
these approaches, weak acyclicity [35, 34] is a well-known su�cient condition on
a set of dependencies for the termination of the chase. Roughly speaking, weak
acyclicity checks if the set of TGDs does not have a cyclic condition such that a
new null value forces the adding of another new null value [72].

De�nition 2.1 (Weakly acyclic) [35, 34]
A position is a pair (R, i) (which we write Ri) where R is a relation symbol of arity
r and i satis�es 1 ≤ i ≤ r.
The dependency graph of a set Σ of TGDs is a directed edge-labeled graph GΣ =
(V,E) where the set of vertexes V represents the positions of the relation symbols
in Σ; and, for every TGD σ of the form ∀X,Y φ(X,Y)→ ∃ Z ψ(X,Z) there is an
edge (Ri, Sj) ∈ E if one of the following holds:

• some x ∈ X occurs in Ri in φ and in Sj in ψ (in this case the edge is labeled
as universal)
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• some x ∈ X appears in Ri in φ and some z ∈ Z occurs in Sj in ψ (in this case
the edge is labeled as existential).

Σ is weakly acyclic if its dependency graph has no cycles with an existential edge.
2

Example 2.4 [72] Consider database schema R = {S,R}, with arity(S) = 1 and
arity(R) = 2. The set of positions in R is {(S, 1), (R, 1), (R, 2)}.
Let Σ1 be a set of TGDs containing the following dependency over R:

σ11 : S(x)→ ∃yR(x, y)

let Σ2 contain the following dependencies:

σ21 : S(x)→ ∃yR(x, y)

σ22 : R(x, y)→ ∃zR(x, z)

and, �nally, let Σ3 be a slight modi�cation of Σ2:

σ31 : S(x)→ ∃yR(x, y)

σ32 : R(x, y)→ ∃zR(y, z).

Figure 2.1 illustrates the dependency graphs associated with Σ1, Σ2 and Σ3 in
which the existential edges are represented as dotted lines. It is easy to see that
Σ1 is weakly acyclic as the dependency graph does not contain any cycles; Σ2 is
weakly acyclic as its dependency graph has a cycle going only through universal
edges; while Σ3 is not weakly acyclic as it has a cycle going through an existential
edge. 2

Figure 2.1 � Dependency graphs associated with dependencies from Example 2.4

We say that a set Σ of TGDs and EGDs is weakly acyclic if the set Σ′ ⊆ Σ
consisting of the TGDs in Σ is weakly acyclic. Note that given a set Σ of TGDs,
testing if Σ is weakly acyclic is polynomial in size of Σ [72].
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Theorem 2.1 [35, 34] For every weakly-acyclic set Σ of TGDs and EGDs, there
are integers b and c upper bounded by the size of Σ such that for every instance A,

1. every chase sequence of A with Σ terminates, and

2. AΣ can be computed in O(|A|b) steps and in time O(|A|c).

2

It is well-known that the chase of D with respect to Σ is a universal model of
D with respect to Σ, i.e. there exists a homomorphism from chase(D,Σ) onto all
models of D with respect to Σ, denoted as mods(D,Σ) [35]. This result implies that
the answer to a conjunctive query q with respect to a database D and a set of TGDs
Σ can be evaluated on the chase for D and Σ, i.e. ans(q,D,Σ) = q(chase(D,Σ)).
In other words, the chase can be considered as a formal algorithmic tool for query
answering under TGDs. Terminating chase conditions, for instance weakly acyclic,
guarantees the decidability of query answering under TGDs, which in general is
undecidable under arbitrary TGDs [11] even when the schema and the set of TGDs
are �xed [18], or even when the set of TGDs is a singleton[8].

Nevertheless, decidability of query answering is not enough when dealing with
very large databases. In such case, query rewriting (backward-chaining) is the fa-
vorite approach, and �rst-order rewritability [24] is a desirable property. More
precisely, given a conjunctive query q, a database D and a set of TGDs Σ, a perfect
rewriting qΣ is built from q by taking into account the semantic consequences of
the TGDs. Then, the answer to q with respect to D and Σ is obtained by evalu-
ating the qΣ directly over D, i.e. ans(q,D,Σ) = qΣ(D). Note that a conjunctive
query guaranteeing the �rst-order rewritability can be equivalently rewritten in
(non-recursive) SQL, which allows to exploit all the optimization capabilities of the
underlying RDBMS.

In DLs world, the members of the DL-Lite family guarantee the �rst-order
rewritability of conjunctive query answering. Meanwhile in TGD-based ontology,
several classes of TGDs ensuring �rst-order rewritability have been investigated in
the last few years such as Linear TGDs [20], sticky TGDs [21, 38].

A TGD is linear i� it contains only a singleton body atom. Despite its simplicity,
linear TGDs are powerful enough to express "conditional inclusion dependencies".
In fact, inclusion dependencies can be equivalently written as TGDs with just one
body-atom and one head-atom without repeated variables and with constant values
in the body. Moreover, linear TGDs are strictly more expressive than DL-Lite
R, which forms the OWL 2 QL pro�le of W3Cs standard ontology language for
modeling Semantic Web ontologies [39].
A set of TGDs is sticky if it allows joins to appear in body rule which are not
expressible via linear TGDs. The key idea underlying stickiness is to ensure that,
during the chase, terms which are associated with body-variables that appear more
than once (i.e., join variables) are always propagated (or �stick�) to the inferred
atoms [39].
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Gottlob et al in [39] proposed a backward-chaining rewriting algorithm which
constructs a union of conjunctive queries from a conjunctive query and a set of linear
and sticky TGDs. Particularly, a conjunctive query is rewritten by exhaustively
applying a backward resolution-based step, which uses the rules in Σ as rewriting
rules in the direction from right to left (i.e. from the rule head to the rule body).
This rewriting step simulates an application of a TGD during the construction of
the chase. In other words, after each rewriting step, we obtain a new query that
is one level closer to the database-level, and when there is no applicable TGD, the
obtained query reaches the database-level.

In the data exchange domain, there exists also a well-known algorithm called
Chase and Back-chase (C&B) [33]. In a data exchange setting, we have a source
schema S and a target schema T , where we assume that S and T are disjoint.
Intuitively, the data transformation is done by using the relationship between the
source and target schemas. Such relationship is called source-to-target dependencies
that specify how and what source data should appear in the target. The C&B
algorithm applies to the case when the source-to-target dependencies plays as the
set of dependencies Σ in the query answering under TGDs problems. Indeed, C&B
proceeds in two phases: chase phase and backchase one. In the chase phase, it
uses Σ to chase the given conjunctive query until (and if) no more chase steps
are possible. Rules in Σ are used as rewriting rules in the direction from left to
right (i.e. from the rule body to the rule head). The result of this phase is a new
conjunctive query, called universal plan. In the backchase phase, it searches in the
�nite space of the universal plan to eliminate its redundancies in all possible ways,
thus obtaining minimal reformulations, i.e. reformulations containing no joins that
are redundant under the constraints. The inspected subqueries are checked for
equivalence (under the constraints) to the original query. This check is performed
using the chase procedure, which in essence adds to a query redundant joins that
are implied by the constraints.

It is worth noting that although our approach is inspired from the reformulating
query step of PerfectRef and other approaches based on PerfectRef, we adopt a
fundamentally di�erent point of view. Instead of using rules from right to left, i.e.
verifying the applicable condition between atoms in query body and the head of
the rule (right hand side) then rewriting the query with the body of the rule (left
hand side), our proposal uses rules in the opposite way, from left to right. More
precisely, the body of rules is taken into account to verify the applicable condition
with atoms in the body query, then the reformulation is done by using the head of
rules. Indeed, from the point of view of "Knowledge Base", a rule φ → ψ has a
semantic that if φ holds in the KB then it can be inferred that ψ holds too. In this
context, a query is evaluated against not only the asserted facts as φ in ABox but
also the inferred facts as ψ. Thank to the chase procedure, ABox is supplemented
with such inferred facts. Thus, the idea beyond the reformulation in PerfectRef is
to add into the query the knowledge of rules (by which new facts are inferred).
Thereby without saturating the ABox, the rewritten queries can obtain not only
ground facts in Abox but also induced facts inferred by rules in TBox. Nevertheless,
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from the Database point of view, a rule φ→ ψ states that if φ holds in the dataset
then ψ must hold in the dataset. It means that, in our context, we must verify
the presence of ψ in the dataset. If ψ does not hold, we must disregard φ in the
answering query process. Thus, the idea beyond the chase in this context is to
add into the query the condition to be veri�ed stated by the rules. Thereby, the
answers of rewritten queries satisfy the rules.

In other words, in our context where the constraint rules are used as database
constraints on the query answers, query rewriting is used in order to restrict the
results, generally resulting in fewer answers. Whereas the PerfectRef is used in
order to expand the results, with the TBox rules used as inference rules, generally
resulting in more answers.

2.2 Principles of Semantic Data Integration

2.2.1 Data integration principles

Data integration is the problem of combining the data residing in di�erent sources,
and providing the user with a uni�ed view of this data. Through the provision of
such a uni�ed view so-called global schema, data integration may alleviate users
from the knowledge on where data are, how data are structured at the sources, and
how they can be accessed. Such global schema represents the intentional level of
the integrated and reconciled data, and provides the elements for expressing the
queries over the data integration system. In a nutshell, a data integration system
is de�ned as follows [56]:
A data integration system J is a triple J = 〈G,M,S〉, where:

� G is the expected global schema, which provides both a conceptual represen-
tation of the application domain, and a reconciled, integrated, and virtual
view of the underlying sources.

� S is the source schemas, i.e. schemas of the sources where data are stored.

� M is the mappings between G and S, i.e. a set of assertions establishing the
connection between the elements of the global schema and those of the source
schema.

Two data integration architectures exist, namely the data warehouse and the
mediation approaches. In the �rst one, the global schema is used for driving the (i)
extraction of distributed data from their local sources, (ii) their transformation into
a common structure and (iii) their loading in a centralized data warehouse. In the
data warehouse approach, the data is extracted from the data sources, transformed,
and loaded in the warehouse ahead of query time. Thus, the data is queried at the
warehouse during the query time, but not at the data sources. When it can rely
on an e�cient database management system, the main advantage of this solution
is the e�ciency of query evaluation, as all sources data are physically stored in
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a single repository. Therefore, it is typically preferred for very complex queries,
e.g., for data mining. Its main drawbacks are its cost in terms of storage, and in
terms of refreshment when updates performed on the original data sources must be
propagated to the warehouse.

In the mediation approach, data are kept in sources and information is retrieved
dynamically from original databases, at query time. The integration is virtual, in
the sense that data stay in sources, but the user who interacts with the mediator, via
the global schema, feels like interacting with a single database. The main drawbacks
of this solution are related to its query-answering process, which is more complex
compared to warehouse approach, where queries are posed to one single centralized
repository. Clearly, in the mediation approach, when a query qg is posed in terms
of the global schema G, the system must reformulate it in terms of a suitable set of
queries qs posed to the sources, send each computed sub-query qsi to the involved
source Si, and compose the received results into a �nal global answer for the user.
In this process, the semantic mapping that speci�es the relationships between the
schemas of the data sources and the global schema plays an essential role in the
reformulation step. In the literature, there exist two well-known approaches for
building the semantic mapping: Global-As-View (or simply GAV) and Local-As-
View (or simply LAV). Mediation solutions naturally �t the open and distributed
web context.

Both of the data warehouse and mediation approaches require the design of a
shared global schema: semantic web ontologies can play this role. The notion of
ontology used here, which represents the model and the structural framework for
formalizing and organizing knowledge in the semantic web level, was de�ned by
Thomas Gruber [44] as a "formal, explicit speci�cation of a shared conceptualiza-
tion". When semantic web and data integration are combined for overcoming se-
mantic heterogeneity in order to share and e�ciently reuse data among autonomous
interconnected stakeholders, the integration paradigm is calledOntology-Based Data
Integration [28].

2.2.2 Ontology-Based Data Integration

The architecture of an OBDI system consists of two levels: (i) the mediator receiving
the user's queries, and (ii) the distributed sources that respond to these queries.
The mediator, on the one hand, is composed of a global schema that provides an
integrated view of all the sources and a vocabulary that can be used by users to
create queries and, on the other hand, has information about the data on the sources
by which the semantic mapping M is built. The sources contain the actual data.
Each can be represented by an individual schema and is equipped with a wrapper
that acts as an intermediary between the source and the mediator. The roles of
these adapters are to adapt the sub-queries sent by the mediator, in terms of its
query language, in the query language accepted by the source, and to translate the
result returned by sources into the mediator's data model.

As mentioned above, in a OBDI system, the connection between the mediator
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and the sources is established through the semantic mapping M de�ned between
the global schema and the local schemas. This mapping is crucial to the operation
of the system. Depending on how one wants to build the system, there are two
well-known approaches that can be adopted to implement the semantic mapping
M: GAV and LAV. Thus, if the GAV approach is applied, the mediator has a
set of correspondences established between the elements of the sources and those
of the global scheme. On the other hand, if the LAV approach is implemented,
the mediator in this case has an abstract description, in the form of views, of the
content of each source. Besides GAV and LAV, some hybrid solutions, so-called
GLAV (Global-Local-As-View), have also been de�ned and used [56, 17].

In LAV approach, content on local sources are described by a set of views on
the global schema. Formally, if J = 〈G,M,S〉 is an ODBI system, the semantic
mapping M established between G and S, according to the LAV approach, are a
set of assertions, each of which is of the form:

s→ qG

Where s is a source of S and qG is a query on the global scheme G. More concretely,
in the LAV approach the content of each source s ∈ S must be characterized in
terms of qG views formulated on the global scheme [56]. The main advantage of
this approach is that it favors the extensibility of the system, i.e., adding and
removing sources imply neither any changes on the global schema nor any changes
on mappings that do not concern the sources involved. In other words, when a new
source is added, the mappings are enriched with new assertions, while in the case
when a source is removed, only assertions involving that source are deleted from the
mappings. However, the disadvantage of the LAV approach is that the processing of
requests is complex to implement. Nevertheless, well-established algorithms exist
to do it, in particular the famous MiniCon algorithm [75]. It is interesting to
notice that in [67], the authors adapt traditional LAV query systems, such as the
MiniCon, to �t the semantic web features. They develop a technique called SemLAV
to process SPARQL queries over a LAV mediator, which execute the query on a
partial instance of the global schema dynamically loaded from the relevant local
views during the query evaluation. In this way they avoid the rewriting phase.
Their experiments show that this technique outperforms traditional solutions.

Di�erent from LAV, the GAV approach de�nes the global schema in terms of
source schemas. Formally, if J = 〈G,M,S〉 is an ODBI system, the semantic
mapping M established between G and S, according to the GAV approach, are a
set of assertions, each of which is of the form:

g → qS

Where g is an entity of the global schema G and qS is a query on the sources S.
More concretely, in the GAV approach, the content of each element g of the global
schema must be characterized in terms of views qS expressed on the sources [56].
In other words, GAV mappings are used to indicate the system how it can access
the data when evaluating the di�erent elements of the global schema. The main
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advantage of this approach is that it facilitates the processing of requests. The
mappings are indeed quite explicit to facilitate a translation of a user's queries.
It is only necessary to replace the global predicates of the query with their local
de�nitions. However, one of the limitations of the GAV approach is that the sources
must be stable and known in advance. In addition, adding and removing sources
are di�cult to manage. Indeed, since the mapping de�nition of an entity in the
global schema is composed of a combination of local entities from di�erent sources,
thus any change in the source schema requires a whole check these de�nitions to
detect all necessary modi�cations.

In general, there exist three main ontology-based data integration architectures
traditionally used [91, 28], namely:

• The single-ontology approach, where all the data sources are related to a global
ontology, which de�nes the basic terms of the domain. This is the simplest
approach, when all the sources have the same view of the domain. However, in
the presence of sources with a di�erent view of the domain, �nding a consensus
in a minimal ontology commitment may be a di�cult task.

• The multiple-ontologies approach, where each data source is described with
its own (local) ontology, as a peer-to-peer system. Though this approach is
more �exible than the single ontology approach, it requires the construction
of mappings between the local ontologies. The lack of a common vocabulary
between sources can make this task di�cult.

• The hybrid approach, which combines the two previous ones. This approach
involves the use of local ontologies that subscribe to a common top-level vo-
cabulary, alleviating thereby the de�nition of inter-ontology mappings. This
approach can be costly, however, for the construction of a global shared vo-
cabulary in addition to local ontologies [29].

2.3 Dealing with Inconsistent Databases

Constraints are semantic conditions that a database should satisfy. They capture
an important part of the semantic of a given application. Typically, database man-
agement system checks the satisfaction of constraints to maintain the consistency of
data and avoid the violation of constraints. When dealing with a huge amount of
data, constraint satisfactory cannot always be guaranteed. In such a scenario data
is usually spread in many di�erent databases, organized by di�erent management
systems, each one having thus own characteristics. For instance, a system may not
support thoroughly procedures of checking constraints (for example: a legacy sys-
tem), or some constraints may be not supported for overpriced reason. In database
systems having long running activities or work�ows, the constraints may stop hold
temporarily, to be restored in a further process. Inconsistency of databases often
happens in integration data systems, where even if the data at each autonomous
source satisfy local constraints, global constraint violation exists.
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Query answering over inconsistent databases may lead to unexpected or mean-
ingless answering. To overcome this obstacle, two di�erent strategies have been
proposed in the research community. The �rst one bases on the idea that only
when the data no longer con�ict with the constraints, queries can be answered.
From this point of view, it is obvious that the data needs to be repaired, i.e. ex-
plicitly modifying the data in order to eliminate violation of constraints. This is
the most direct strategy, but the explicit repair of data is not always convenient,
or possible. Possible causes are connected to the policy of sources not allowing or
restricting the direct modi�cation on data; or simply because it is impossible to
repair a huge amount of data, which is one of �ve V's challenges in Big Data. An-
other common application scenario that is di�cult to apply this strategy is the data
integration application, which provide a uni�ed, virtual view of a set of autonomous
information sources.

The second perspective bases on the idea that inconsistency is considered as
a natural phenomenon in realistic settings, i.e. accepting the inconsistent data,
leaving the data unchanged and trying to obtain only meaningful answers when
evaluating queries. From this point of view, there are two common sub-strategies.
The �rst one is to query the data regardless the constraints, then to apply the con-
straints on the answer set of the query to �lter the answers satisfying the constraints.
The contribution of the thesis follows this direction. An alternative strategy is the
one called consistent query answering, which is based on the principle schema is
stronger than data [42], i.e. the set of constraints (i.e. the schema) is considered as
actually reliable information, while data are considered as information to be revised.

In consistent query answering approaches, in order to obtain the meaningful
answers to a query, one try to determine the part of the database that is consistent
with respect to all the constraints, called repair [55]. Indeed, a repair of a database
contradicting a set of integrity constraints is a database obtained by applying a
minimal set of changes to restore the consistency, i.e. it is consistent and minimally
di�ers from the original database. There are many possible repairs for the same
database, therefore computing the consistent answers to a query in an inconsistent
database amounts to computing the tuples that are answers to the query in all
possible repairs. Approaches in the literature on consistent query answering deal
with di�erent kinds of constraints in computing the consistent answer. Andrea
Cali et al. in [22] propose a method for consistent query answering under key
dependencies and exclusion dependencies based on the rewriting of the query in
DatalogNeg, a well-known extension of Datalog that allows for using negation in
the body of program rules. Their idea is to convert key dependencies and exclusion
dependencies into appropriate rules of a DatalogNeg program such that each stable
model logic of the program is a maximal subset of tuples that are consistent with
all the dependencies. This step bases on an algorithm, called ID-rewrite, which is
based on the PrefectRef algorithm, to compute a perfect rewriting of a union of
conjunctive queries Q. Rosati et al. in [55] extend the notion repair in Description
Logic knowledge bases, called ABox Repair (AR). Then instead of computing all
the possible repairs of the knowledge bases relevant for consistent query answering,
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they propose the notion called Intersection ABox Repair (IAR) that calculates the
intersection of such repairs as the ABox to use in query answering. The solution
in [55] deals with DL−LiteA,id,den that corresponds to inclusion dependencies, key
dependencies and denial dependencies. Proposal of Lukasiewicz et al. in [58, 57] is
similar to [55]. It also proposes the notion like IAR, but applies to a fragment of
Datalog+- that comprises linear tuple-generating dependencies, negative constraints
and non-con�icting equality-generating dependencies. These dependencies are not
exactly the same as the ones in [55]. For instance, the key dependencies (a.k.a.
identi�cation constraints) in [55] do not cover the restricted form of equality-
generating dependencies considered in [58].

2.4 Conclusion

Although inconsistency of knowledge bases is also the kernel of works in [22, 42,
55, 58, 57, 81, 80], our proposal di�ers from them not only on the meaning given
to constraints but also on the treatment imposed to detected inconsistencies.

In other words, the focus of these works contrasts with ours in the following
way:

• Works such as [22, 42, 58, 57, 81, 80] focus on consistency of the data stored in
the source databases. Indeed, in those works, given an inconsistent database,
the general idea is to restore database consistency through the computation
of a new consistent database or to refuse the database when consistency is not
achievable without updates. In other words, without modifying the original
base, their proposals try to use rules in the TBox to compute the new con-
sistent database. This computation may imply materialization of facts which
were originally implicitly de�ned or the consideration of di�erent possible
consistent states of the database.

• Our work focuses on the consistency of the query answers returned to a user.
Instead of trying to establish the consistency of a database in order to query
over it, we want to, �rstly, just evaluate a query on a given (possibly) in-
consistent database, and, then, use rules (which de�ne a context) as �lters to
obtain the valid answers. In this way, we also obtain consistent data. Our goal
is neither to modify the database nor to try to compute its di�erent possible
consistent states. We do not want to refuse an inconsistent database: since
the meaning of consistency is in connexion to a user pro�le; one can admit
things that are prohibited by others. Checking consistency of the answers is
usually a smaller task than verifying the whole database validity.

Besides the focus, the meaning of the constraints is another aspect that distin-
guishes our approach from the above cited works.

• The cited works deal with ontological constraints, i.e., inference rules capable
of generating new facts from stored ones. Their role is therefore to de�ne
data, implicitly.

45



2.4. CONCLUSION

• Rules de�ning a context are, in our proposal, quality constraints. They im-
pose a �lter on retrieved data. Indeed, in our work constraints are seen in a
database perspective (in contrast to the ontological perspective, where con-
straints are just inference rules). Notice, however, that our system can mix
the above perspectives and deal not only with constraints (as explained above)
but also with inference rules. This is possible when they are handled relatively
independent and at di�erent levels. More precisely, we can consider quality
constraints at the top level of our system while ontological constraints can be
used to infer knowledge on a lower level, from data sources.

From a technical point of view, as it will be clear in the next chapter, [33]
presents a solution that is close to our work. However, it does not comprehensively
consider the presence of constants in constraints and queries (note that constants
are commonly used in real life scenarios). Therefore, the condition by which a
constraint can be used as rewriting rules di�ers from ours.

On the other hand, [33] does not handle negative constraints, and the way it
deals with equality-generating dependencies (EGD) di�ers from ours. Precisely,
in [33] an equality is added to the rewritten query only when the whole body of
an EGD matches a subset of atoms in the query's body. This is an EGD chase
step [72]. Whereas, in our solution, an EGD has to be considered even if there is
only one atom in EGD's body matching an atom in the query's body. For example,
consider an EGD and a conjunctive query as follows:

σ : headOf(Xid,Xorg1), worksFor(Xid,Xorg2)→ Xorg1 = Xorg2

q(X, Y )← Professor(X), worksFor(X, Y ).

In this case, the EGD σ is taken into account in our solution, but it is ignored in
the reformulation process proposed in [33]. Details of our veri�cation of EGDs will
be presented in the next chapter.

46



Part II

Contributions

47





Chapter 3

A Constraint-Based Query System

As described in the opening chapter, we want to develop a query system in which
users can personalize the query context with di�erent tools such as a set of
constraints, a set of con�dence degrees for data sources, etc. This context is
then used as a �lter to obtain context-driven answers from the answers of queries
returned from semantic web data providers. In this chapter, we present in detail
the system and how it works. In particular, we precise syntax and semantics of user
quality constraints, the query answering over data sources with provenance, as well
as the de�nitions of valid answers in this context. We then propose two methods
of computing those context-valid answers: the naive approach based on validating
auxiliary sub-queries and the query rewriting approach based on reformulating
query by using constraints.

3.1 Querying environment

Our query processing system is depicted in Figure 3.1. It comprises two distinct
parts which communicate: Data validation, responsible for checking constraints sat-
isfaction, and Data providers for computing answers to the queries issued from the
data validation part. The latter may actually integrate several end-data-providers,
or it may connect only one provider. For ensuring that the �nal answers to the user's
queries satisfy all user constraints, a dialogue between the two parts is established,
for getting intermediate results and sending subsidiary queries.

The user de�nes his query context which is de�ned by a set of global predicates
(given as the global schema over which queries can be built) and a set of global
constraints on them (de�ning the quality requirement imposed by the user). These
"global" constraints impose restrictions on answers coming from data providers.
They �lter information not respecting a constraint. The user's query involves global
predicates, so quality constraints can be used to reformulate each query q, resulting
in a set of conjunctive queries. Their answers not only are contained in q's answers
but also are valid with respect to the user quality constraints.

Afterwards, these rewritten queries are sent to the Data providers part, which
evaluates them against data stored on sources. The query evaluation process is
transparent to the validation step. A query, resulting from the validation step,
should be evaluated on the basis of providers' constraints and data. Indeed, each
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Figure 3.1 � Query system overview

provider may not only o�er a set of data but also may impose its own ontological con-
straints allowing data inference (which relies on Open World Assumption). Ontolog-
ical constraints are used as rewriting-rules to reformulate a query into a set of new
conjunctive queries, for taking into account integration information (OBDA/OBDI
Systems [74, 5]), or for dealing with incomplete information issues [5, 39, 55, 40].
But such rewritings are performed by the Data providers part, independently from
the Data validation part.

The rewritten queries are evaluated actually at end-data-providers, called lo-
cal data sources. The system can integrate a set of distributed local sources, or
it may connect only one source. Note that these local sources can be equipped
with various capabilities as well as support di�erent query languages. Thus, the
translator module is responsible to translate rewriting queries in the form of dat-
alog into other query languages in case of necessity. For instance, FedX [87] is a
federated system that allows evaluating queries of our system against data stored
on a set of local sources. FedX only supports SPARQL. As a result the translator
must convert queries from datalog into SPARQL. In case of dealing with huge data
in parallel manner, our system can interact with MapReduce system where some
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query languages such as HIVE-SQL or Pig Latin are supported.
In reality, information retrieved from data sources has di�erent accurate levels

that depend on many factors such as the origin of information, policies for updating
and maintenance , and so on. For example, the information about the career or
address of a person can be very di�erent on data sources such as LinkedIn, Facebook,
databases of his companies, home page, etc. Thus, user may determine the accuracy
of information on each data source, and then associate them with corresponding
con�dence degrees. The set of con�dence degrees of local sources together with the
set of global constraints constitute the user's context in our system.

Motivating example In order to illustrate our system, we introduce a running
example.
We consider a university database that contains a set of the following global predi-
cates: professor(Xid) and employeeGov(Xid) indicates whether a person is a pro-
fessor or only an employee working for the government; teacherOf(Xid, Xcourse)
associates a teacher and the course he teaches, while takesCourse(Xid, Xcourse)
refers to a student enrolling in a course; offeredCourseAt(Xcourse, Xdep) indi-
cates in which department a course is taught; researchesIn(Xid, Xdomain) and
worksFor(Xid, Xdep, Xorg) refer to the research domain and the work place (a de-
partment of an organization) of a person; headOf(Xid, Ydep) indicates the head of
a department.

Basing on the set of global predicates, called global schema, user de�nes global
constraints. In this example, suppose we have a set of constraints of the Table 3.1

CP positive constraints

cP1 : professor(Xid)→ teacherOf(Xid, Xcourse).
cP2 : teacherOf(Xid, Xcourse)→ offeredCourseAt(Xcourse, Xdep).
cP3 : professor(Xid)→ employeeGov(Xid).
cP4 : teacherOf(Xid, DB)→ researchesIn(Xid, DB).

CN negative constraints

cN1 : teacherOf(Xid, Xcourse), takesCourse(Xid, Xcourse)→ ⊥

CK key constraints

cK1 : worksFor(Xid, Xdep, Xorg), headOf(Xid, Ydep)→ Xdep = Ydep

Table 3.1 � Set of constraints on G

whose meaning is indicated below:

• cP1 : every professor has to o�er a course.

• cP2 : every course given by a teacher must be associated with a department.

• cP3 : professors are government employees.

• cP4 : if a teacher o�ers a database course, then he must be a researcher in the
database domain.
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• cN1 : nobody can teach and register in a same course.

• cK1 : the head of a department in an organization cannot be a person working
in a di�erent department.

The global schema is also used to build user's queries, and their results are
computed from data coming from a distributed database, composed by our so-called
local data sets. Table 3.2 illustrates local sources which are not trusted equally
by the global system. A con�dence degree (τ) indicates the accuracy associated
with each one. With these source con�dence degrees the entire querying context is
settled. Source 1 is considered to be accurate (95% reliable) while the reliance on
Source 3 is smaller (accuracy: 70%).

Source 1, τS1 = 0.95 Source 2, τS2 = 0.80 Source 3, τS3 = 0.70
professor(Bob) o�eredCourseAt(DB,LIFO) professor(Peter)
professor(Tom) o�eredCourseAt(Java,LIFAT) professor(Ann)
professor(Alice) worksFor(Bob,LIFO,UO) headOf(Bob,LIFO)
bornIn(Bob,USA) worksFor(Ann,LIFAT,UT) headOf(Ann,CNRS)
bornIn(Tom,UK) takesCourse(Tom, Java) bornIn(Peter,UK)
bornIn(Alice,Denmark) takesCourse(Bob, Net) bornIn(Ann,USA)
foreignCountry(USA) teacherOf(Bob, DB) teacherOf(Peter,Java)
foreignCountry(UK) teacherOf(Bob, Java) teacherOf(Ann,DB)
foreignCountry(Denmark) teacherOf(Tom, Java) researchesIn(Bob,DB)

teacherOf(Alice, Net) employeeGov(Bob)
employeeGov(Tom)
employeeGov(Alice)
employeeGov(Peter)

Table 3.2 � Example of local sources

Suppose one user wants to work in a context that contains only constraints cP1

and cP2. In this scenario let us consider query
q(X)← professor(X), bornIn(X, Y ), foreignCountry(Y )

to �nd the foreign professors. The required con�dence degree is τin = 0.75, indicat-
ing that sources having a smaller con�dence degree should not be taken into account.
More precisely, in this case only data from the source 1 and source 2 are considered.
The source 3 is ignored as τS3 < τin. The answer is the set {(Bob) : 0.8, (Tom) :
0.8} as both Bob and Tom are professor (professor(Bob), professor(Tom));
they were born in foreign countries (bornIn(Bob, USA), bornIn(Tom,UK),
foreignCountry(USA), foreignCountry(UK)), and they teach at least
one course (teacherOf(Bob,DB), teacherOf(Tom, Java)) at a department
(offeredCourseAt(DB,LIFO), offeredCourseAt(Java, LIFAT )). Tuple
(Alice) is not an answer because although she o�ers a course "Net"
(teacherOf(Alice,Net)) (i.e. cP1 is satis�ed), her course is not associated with
any department, thus it violates constraint cP2.

Another user is stricter: he wants a context where all the constraints in Table 3.1
are used. He uses the same query of the �rst scenario but with required con�dence
degree τin = 0.7, i.e. data from all three sources are considered to answer the query.
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It is easy to see that the course Net of Alice is not associated with any department
(violating cP2), Tom teaches Java but he also registers in a course Java (violates
cN1), while Ann is not a government employee (violating cP3). In fact, cP4 and cK1

are also violated as Ann teaches database but she does not do research in database
domain. Moreover, she is the head of CNRS while not working there. Only Bob and
Peter satisfy all constraints. Thus, the answer is the set {(Bob) : 0.7, (Peter) : 0.7}.
2

3.2 Background

This section presents de�nitions and notations used in the rest of the chapter.

Alphabet and notations. Let A be an alphabet consisting of constants, vari-
ables, predicates, the equality symbol (=), quanti�ers (∀ and ∃) and the symbols
> (true) and ⊥ (false). We consider four mutually disjoint sets, namely:

• AC , a countably in�nite universe set of data constants, called the underlying
database domain;

• AN , a countably in�nite set of fresh labeled nulls which are placeholders for
unknown values, and can be seen as variables;

• var, an in�nite set of variables that will be used to range over elements of
AC ∪AN

• pred, a �nite set of predicates or relation names; each predicate is associated
with a positive integer called its arity.

Since we consider a function-free language, the only possible terms are constants,
nulls or variables.

Free Tuple. A free tuple u is a sequence of either variables or constants, or both.
We denote by var(u) the set of variables in the free tuple u.

Atomic formulas. An atomic formula (or atom) is constructed from predicate
and terms, which has one of the forms:

• P (t1, ..., tn), where P is an n-ary predicate, and t1, ..., tn are terms;

• expressions > (true) and ⊥ (false)

• t1 = t2, where t1 and t2 are terms.

A conjunction of atoms is often identi�ed with the set of all its atoms.
Given a predicate P ∈pred of arity n, a fact over P is an atom P (u) where

u ∈ (AC)n.
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Substitution and homomorphism.
A substitution from the set of symbols E1 to the set of symbols E2 is a function
h : E1 → E2.
A homomorphism from a set of atoms A1 to a set of atoms A2 is a mapping h from
the terms of A1 to the terms of A2 such that:

• if t ∈ AC , then h(t) = t;

• if t ∈ AN , then h(t) ∈ (AC ∪ AN);

• if t is ⊥, then h(⊥) = ⊥;

• if t is >, then h(>) = >;

• if r(t1, ..., tn) is in A1, then h(r(t1, ..., tn)) = r(h(t1), ..., h(tn)) is in A2;

• and h naturally extends to sets of atoms and conjunctions of atoms.

Isomorphism and Uni�cation.
An isomorphism is a bijective homomorphism, i.e., the set of atoms A1 is isomor-
phic to the set of atoms A2 i� there exists a homomorphism h1 from A1 to A2

which admits a homomorphism from A2 to A1.
An endomorphism h on A1 is a homomorphism such that h(A1) ⊆ A1.
Two atoms A and A′ are uni�able i� there exists an endomorphism σ (denoted by
uni�er) on {A,A′}, such that σ(A) = σ(A′). If A and A′ are uni�able, then they
have a uni�er θ such that every uni�er σ of A and A′ can be written as σ = hθ for
some endomorphism h on {A,A′}. Such a uni�er is called the most general uni�er
of A and A′ (denote by mgu).

In this thesis, we consider a global database schema G i.e. a set of predicate
symbols, over which user's context and query are built.

De�nition 3.1 (Rule) A (datalog) rule r has the form
R0(u0)← R1(u1) . . . Rn(un), comp1(v1), . . . , compm(vm)

where n,m ≥ 0, Ri (0 ≤ i ≤ n) are predicate names, ui are free tuple of appropriate
arity and compj(vj) (0 ≤ j ≤ m) are comparison formulas having the form (X = a)
or (X = Y ) where X and Y are variables appearing in ui (0 ≤ i ≤ n) and a is a
constant.

The head of r (denoted by head(r)) is the expression on the left hand-side of the
rule while the right hand-side is denoted by body(r). The arity of the rule is the arity
of head(r), i.e. the arity of R0 . Rules are: (a) range restricted, i.e. only variables
appearing in the rule body can appear in the head and variables of comparison
formulas are variables in atoms Ri(ui) and (b) satis�able, i.e. the transitive closure
of the comparison formulas in the query does not lead to contradictions such as
requiring two di�erent constants to be equal. We recall from [4] that each satis�able
rule with equality is equivalent to a rule without equality.
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De�nition 3.2 (Query) A conjunctive query (CQ) q of arity n over a given
schema is a rule of arity n. A boolean conjunctive query (BCQ) is a conjunctive
query of arity zero, denoted as q().

Answers to queries Let I be an instance (i.e. a set of facts) for a given schema.
The answer to a conjunctive query q of arity n over I, denoted as q(I), is the
set of all n-tuples t ∈ An

C for which there exists a homomorphism ht such that
ht(body(q)) ⊆ I and ht(u0) = t. We denote by ht a homomorphism used to obtain
an answer tuple t. Technically, the answer false (i.e., a negative answer) for a BCQ
corresponds to the empty result set and the answer true (i.e., a positive answer)
corresponds to the result set containing the empty tuple. A positive answer over I
is denoted by I |= q.

A union of conjunctive query (UCQ) Q of arity n is a set of conjunctive queries,
where each q ∈ Q has the same arity n and uses the same predicate symbol in the
head. The answer to Q over an instance I, denoted as Q(I), is de�ned as the set of
tuples {t | there exists q ∈ Q such that t ∈ q(I)}.

Example 3.1 Considering the query in the above running example:
q(X)← professor(X), placeOfBirth(X, Y ), foreignCountry(Y )

It is a conjunctive query with arity = 1. If we consider only data from the Source
1, then the corresponding homomorphisms used to obtain answer tuples are

(h1(X) = Bob, h1(Y ) = USA)
(h2(X) = Tom, h2(Y ) = UK)

(h3(X) = Alice, h3(Y ) = Denmark)

3.3 Graph database, constraints and provenance

As mentioned in the Section 3.1, our query environment is composed of two inde-
pendent parts that are the Data validation part and the Data providers part. In
this context, the following aspects of our approach are worth underlings:

1. Let q be a query over the global schema G. Answers for q are �ltered according
to quality restrictions settled for an application. A user may establish the
context in which a certain number of queries is evaluated and choose another
context for other queries. The customization of this quality context is provided
by a set of constraints C on the global schema G. Only data respecting them
is allowed as query answers. The query q is rewritten to take into account
constraints C imposed by the settled context. The result is a set of queries
Q that is sent to the query evaluation. Inconsistencies on sources are allowed
and our approach does not aim at correcting them, but at discarding them
during query evaluation.
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2. We may see data providers as local data sources (S1, τ1), . . . , (Sn, τn) stor-
ing a distributed graph instance. For 1 ≤ i ≤ n, each S i is a data source
instance respecting a local schema Si and each τi is the source con�dence
degree, represented by a number in the interval [0, 1].

3. We assume the existence of a mapping between global and local systems (e.g.
via a LAV approach). In general, when a global query q has a non-empty
set of answers then there exists at least one re-writing of q in terms of sub-
queries q′1 . . . q

′
m where each q′j (1 ≤ j ≤ m) is a sub-query expressed over local

relations.

4. Our proposal can be implemented over di�erent evaluation mechanisms.
When con�dence degrees are disregarded we write S |= q, a shorthand of
S1 t · · · t Sn |= q, to denote that the answer of a BCQ q is positive with
respect to local databases. In this way, we see local databases as a whole, i.e.,
a system (or distributed database) capable of answering our global query. We
denote by ans(q,S) the set of tuples obtained as answers for a conjunctive
global query q over the distributed database S.

5. When data provenance is considered, we associate a con�dence degree to each
source and a minimal con�dence degree (τin) to the query. These measures are
settled by the user, according to his knowledge of source accuracy or proposed
by a recommendation system. Our system o�ers some �exibility in how to
use veracity information.

• A query is associated with a minimal con�dence degree (τin).

• The system o�ers the possibility to access only sources respecting a given
condition with respect to τin (e.g. , sources having a con�dence degree
superior to τin) or to take all sources into account.

• The con�dence degree (τSi
) of each source Si accessed in order to compute

q's answer is used in the computation of an output con�dence degree
(τout) according to a calculation f which can be proposed by the user
(e.g. , the average of the concerned con�dence degrees).

As a natural extension of item 4 above, we write (S, τ) |= q : τin and we denote
by ans(q : τin, (S, τ)) the set of tuples obtained as answers for a conjunctive
global query q : τin over a distributed database (S, τ).

6. Once answers for Q are computed on the basis of data providers, they are
sent to the validator that still veri�es validation with respect to constraints
not used during the rewriting-step in 1. Subsidiary queries may be generated
in this second validation phase establishing a validation-evaluation dialogue.
Once this dialogue terminates, all constraint veri�cation is done. Valid an-
swers are sent to the user.

The following de�nition introduces the constraints used in our environment.
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De�nition 3.3 (Constraints) We de�ne a user context as a set C of constraints,
composed of three subsets, as follows:

• Positive constraints (CP ): Each positive constraint has the form
c : L1(u1)→ L2(u2)

where c is the name of constraint, L1 and L2 are predicate (or relation) names in
G; u1 and u2 are free tuples (i.e., may use either variables or constants) having
appropriate arities.
Assuming that var(u1) ∩ var(u2) = {x1, . . . , xk} and that var(u1) =
{x1, . . . , xk, xk+1, . . . , xn}, var(u2) = {x1, . . . , xk, y1, . . . , ym} where (n ≥ k ≥ 0,
m ≥ 0) then a positive constraint can be represented in the following form:

c : ∀x1, . . . , xn L1(u1)→ ∃y1, . . . , ym L2(u2)

•Negative constraints (CN): Each negative constraint is a rule where all variables
u1, . . . , uk in the free tuple u are universally quanti�ed and which has the form:

c : φ(u)→ ⊥
Formula φ(u) is an atom L1(u) or a conjunction of two atoms L1(u1), L2(u2), for
which if var(u1) and var(u2) are both non-empty sets, then var(u1)∩ var(u2) 6= ∅,
i.e. if there exist variables in u1 or u2, then L1 and L2 must have at least one
common variable. We also use the negative constraint counterpart with equalities
in comp:

c : φ′(u), comp→ ⊥
equivalent to the previous one, but explicitly expressing equalities between variables
and/or constants. We refer to CN1 and CN2 as sets of negative constraints having
only one atom and two atoms, respectively.

• Equality-generating dependency constraints without nulls (CK) (also called
key constraints): Each EGD is a rule having the general form

c : L1(u1), L2(u2)→ u′1 = u′2
where all variables in the free tuple u1 and u2 are universally quanti�ed; L1, L2 are
predicate names in G; u1, u2 are free tuples such that var(u1) ∩ var(u2) 6= ∅; u′1
and u′2 are sub-tuples (i.e. an ordered-subset of variables) of var(u1) and var(u2)
respectively.
Notice that EGD include functional dependency (and thus, key constraints) having
the form: L1(u1), L1(u2)→ u′1 = u′2 2

For simplicity, we usually omit quanti�ers, using the shorthand format of con-
straints.
In this paper, we consider that the set of positive constraints is weakly acyclic [35],
which ensures that positive constraints "do not have a cyclic condition such that
another null value forces the adding of a new null value" [72].

Example 3.2 The positive constraint "If a teacher gives a course then there exists
a department responsible for this course.� can be represented by the following
formula:
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c1 : teacherOf(Xid, Xcourse)→ offeredCourseAt(Xcourse, Xdep)

The constraint �The head of a department must not teach � is a negative
constraint and its formula is:

c2 : teacherOf(Xid, Xcourse), headOf(Xid, Xdep)→ ⊥
The constraint �Nobody can teach and register in Database course in same time� is
a negative constraint and its formula is:

c3 : teacherOf(Xid, DB), takesCourse(Xid, DB)→ ⊥
it is equivalent to:

c′3 : teacherOf(Xid, Xcourse), takesCourse(Xid, Xcourse), (Xcourse = DB)→ ⊥

The constraint "A person who is the head of a department cannot work for a
di�erent department" has form:

c4 : worksFor(Xid, Xdep, Xorg), headOf(Xid, Ydep)→ Xdep = Ydep
2

Given an atom A, in general a positive constraint c is triggered by an atom
A when there is a homomorphism h from body(c) to A. Positive constraints are a
special case of linear tuple generating dependency (TGD [4]) which contain only
one atom in the head. When the set of existential variables of c is not empty, the
homomorphism h is extended to h′ such that, for each existential variable z, h′(z) is
a new fresh variable. Clearly, the result of a positive constraint can trigger another
positive constraint and so on.

It is worth noting that to compute the set of atoms generated by positive con-
straints we use the chase procedure (Section 2.1). In data exchange domain, the
chase modi�es an instance by a sequence of chase steps until all dependencies are
satis�ed - recalling that a chase step corresponds to the result of triggering one
constraint.

In our approach, constraints are triggered on the basis of atoms in the query's
body. Indeed the result returned by our chase procedure can be computed in two
di�erent ways which de�ne two di�erent methods of computing context-valid an-
swers.

• In the naive approach, atoms in the query's body, instantiated by a homomor-
phism ht used to produce an answer t to query q, are responsible for triggering
constraints. In this case, the approach consists in obtaining an answer t and
then checking by successive sub-queries whether t respects constraints in CP .
Details of this approach are explained in Section 3.5.

• In the query rewriting approach, a chase procedure produces new atoms from
those in the query's body to obtain a new query (or a set of queries having the
same head) which incorporates the restrictions imposed in CP . Our method
is similar to the universal plan proposed in [33] but introduces speci�cities
concerning constraints involving constants. Section 3.6 presents this approach.

Now, before detailing the above methods, in the next section, we formalize the
semantics of valid answers in our approach.
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3.4 Valid query answer: formal de�nitions

As stated before, our querying system takes into account a personalized context
together with the con�dence degrees of data sources. When data sources are asso-
ciated with con�dence degrees, a query q can have a required con�dence degree τin
and one can expect that only data coming from sources whose con�dence degrees
respect a given condition with respect to τin are taken into account to build answers
for q.

De�nition 3.4 (Local querying with con�dence) Let (S, τ) be a local source
database where S is a database instance and τ is the truth or con�dence degree of the
database. Let q be a query over (S, τ) with the minimum required truth degree τin.
The answer of q : τin over (S, τ) is the set ans(q :τin, (S, τ)) = {(t : τout) | τout = τ
and t ∈ q(S) and cond(τin, τ)}, where cond(τin, τ) is a condition we may establish
to avoid considering some sources. 2

The system can be parametrized with other conditions, and even no condition
can be settled at this step (i.e. all sources are considered in the computation of
τout).

To compose the response to a query q :τin, we put together answers produced by
di�erently trusted databases. Firstly, we need a set of possible candidate answers:
tuples t that are trustable with respect to τin.

De�nition 3.5 (Candidate answer over (S, τ) ) Let (S, τ) be a graph
database instance composed of n local databases having di�erent truth degrees.
A couple (t : τout) is a candidate answer for a global query (q : τin, (S, τ)) if the
following conditions hold: (1) tuple t is an answer obtained from local sources,
i.e. t ∈ ans(q,S); (2) τin ≤ τout and the computation of τout is de�ned by
τout = f(τin, {τ 1

outSi
, . . . , τmoutSl

}) where:
(i) each τ koutSj

denotes the degree of the tuples in ans(qk : τ kin, (Sj, τj)) for the

sub-query qk (1 ≤ k ≤ m) generated to be evaluated on the local source (Sj, τj)
during the evaluation process of q (where i, j, l ∈ [1, n]) and
(ii) function f computes a con�dence degree taking as input the query con�dence
degree and the con�dence degrees of data sources concerned by q. 2

A user can parametrize the use of con�dence degrees by choosing di�erent func-
tions f and by combining this choice with cond in De�nition 3.4. For example,
consider that in De�nition 3.4 cond(τin, τ) = true. In this case, the selection of
t is based only on the con�dence degree computed by f . If f is the average, the
resulting τout computes the average of all data sources involved in the query an-
swering. If, however, a condition such as τout ≥ 0.5 is used in De�nition 3.4, only
sources respecting it are used in the average computation. Our examples consider
that f(τin, {τ 1

outSi
, . . . , τmoutSl

}) corresponds tomin({τ 1
outSi

, . . . , τmoutSl
}), and as stated

above, we disregard sources whose con�dence is inferior to τin.
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Global query answers are restrained by constraints in C. To �nd an answer t
to a query q means to �nd an instantiation ht for the body of q that generates t.
Verifying whether ht(body(q)) is valid with respect to C ensures the validity of our
answer. In the following de�nition we put together constraint and con�dence degree
veri�cation to answer global queries.

Let q :τin be a conjunctive global query and C = CP ∪ CN ∪ CK be a set of
constraints over G. Valid candidate answers are those that respect constraints and
are obtained by trusted databases.

Notice that, in the following, given a set CP of positive constraints, we denote
by chase(CP , I) the procedure capable of computing all consequences of CP in
an instance I. We only allow positive constraints respecting the weak acyclicity
condition [35] - the �rst su�cient polynomial-time condition for checking if C has
a terminating chase. We refer to [72, 12, 31] for details on the di�erent chase
algorithms.

De�nition 3.6 (Valid candidate answers) The set of valid candidate answers
of a query q : τin, restrained by C, over a database (S, τ), denoted by valCandAns
(q :τin, C, (S, τ)) is de�ned by the set {(t : τout)} respecting the following conditions:

• t is a candidate answer as in De�nition 3.5 and ht is a corresponding homo-
morphism

• there exists ht such that for all L ∈ ht(chase(CP , J)), where J = {l|l ∈
ht(body(q))}, the following conditions hold:

� there is a positive answer for q()← L : τin on (S, τ);

� for each c ∈ CN of the form L1, L2 → ⊥, if there is a homomorphism ν
such that ν(Li) = L, then there is no homomorphism ν ′ that extends ν
and for which there is a positive answer for q′() ← ν ′(Li) : τin (In our
notation, if i = 1 then i = 2 and vice-versa);

� for each c ∈ CN of the form L1 → ⊥, there is no homomorphism ν such
that ν(L1) = L;

� for each c ∈ CK of the form L1(u1), L2(u2) → X1 = X2 where X1 and
X2 are variable in u1 and u2 respectively, if there is a homomorphism ν
such that ν(Li(ui)) = L, then the answer of q(Xi)← ν(Li(ui)) : τin is a
singleton containing the tuple value ν(Xi).

As already mentioned, valid answers can be computed in di�erent ways. The
naive approach is a direct implementation of De�nition 3.6 while the rewriting
approach focuses on building new queries that incorporate the constraints. The
following sections present each of these two methods.
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3.5 How to obtain valid answers: the naive ap-

proach

The main idea of the naive approach is to validate each answer of q by generating
sub-queries corresponding to each constraint c ∈ C. Then based on the evaluation
of all those sub-queries, we decide to accept or to reject the answer.

The process consists of three steps: (i) evaluate the initial query q to obtain a
set of candidate answers R′, (ii) generate suitable sub-queries from each answer in
R′ for each constraint c ∈ C, and (iii) evaluate those sub-queries and decide the
validity of the answer in the �nal result R.

Given a query q and t is an answer to it, let ht be the homomorphism used to
produce tuple t. We want to check whether t is valid with respect to constraints.
Tuple t is considered valid only when all constraints triggered during the validation
process are satis�ed. The naive validating method of a query q with respect to a
set of user's quality constraints C is performed by Algorithm 4.

Let L(X) be an atom of body(q). The instantiated atom ht(L(X)) may trigger
a constraint c. According to the type of c, a suitable sub-query q′ is created:

• For c ∈ CP , q′ is a boolean query: q′()← ht(L0(X0)) where L0(X0) = head(c).
The resulting tuple t is valid with respect to c if the answer of q′ is posi-
tive. Notice, however, that each fact f resulting from the instantiation of
ht(L0(X0)) on the database may trigger another constraint. The validation
process continues until no constraint is triggered as stated by the use of h1

in De�nition 3.6, which corresponds to a chase procedure. This process es-
tablishes a dialogue between the validator and the providers. This is done in
Algorithm 4 by the recursive call in line 10.

• For c ∈ CN and assuming that c has the form L(X), L0(X0)→ ⊥ the boolean
sub-query is q′()← ht(L0(X0)). Tuple t is valid with respect to c if the answer
of q′ is negative (line 16). Clearly, if c has the form L(X)→ ⊥, the veri�cation
is straightforward (line 12).

• For c ∈ CK , assuming that c has form L(Y, X1,Z1), L0(Y, X2,Z2)→ X1 = X2

and X = Y ∪X1 ∪Z1, the sub-query is q′(X2)← ht(L0(Y, X2, Z2)). Tuple t
is valid with respect to c if the answer set is a singleton containing the tuple
value ht(X1) (line 20).

3.6 How to obtain valid answers: the query rewrit-

ing approach

In this section, we describe the query rewriting approach to tackle the problem of
validating query answers with respect to constraints, whereby rewritten queries em-
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Algorithm 4: Naive validation
Input : • A conjunctive query q : τin and a set of constraints

C = CP ∪ CN ∪ CK .
• An access to the database instance (S, τ)

Output: Answers of q : τin respecting C.
1 Function NaiveValidation(q : τin, C):
2 R = ∅;
3 foreach (t, ht) ∈ ans(q : τin, (S, τ)) do
4 valid = True;
5 J = ht(body(q : τin));
6 foreach L ∈ J do
7 foreach c ∈ C do
8 if c ∈ CP and ∃h1 such that h1(body(c)) = L then
9 Let q′ : τin be q′()← h1(head(c));
10 if NaiveV alidation(q′ : τin, C) is empty then
11 valid = False;

12 if c ∈ CN1 and ∃h1 such that h1(body(c)) = L then
13 valid = False;

14 if c ∈ CN2 in form L1(X1), L2(X2)→ ⊥ and ∃h1 such that
h1(Li(Xi)) = L then

15 Let q′ be q′()← h1(Li(Xi));
16 if ans(q′) is positive then
17 valid = False;

18 if c ∈ CK is in form L1(Y, X1,Z1), L2(Y, X2,Z2)→ X1 = X2

and ∃h1 such that h1(Li(Y, Xi,Zi)) = L then
19 Let q′ be q′(Xi)← h1(Li(Y, Xi, Zi));
20 if ans(q′) is not a singleton or ans(q′) 6= {h1(Xi)} then
21 valid = False ;

22 if valid then
23 R = R∪ t;

24 return R;
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bedded constraints allow the veri�cation to be performed during query evaluation.

3.6.1 An Informal Description

Given a CQ q and a set of constraints C, the rewriting step is done by using positive
and negative constraints in C as rewriting rules. More precisely, if the body of a
constraint c matches atoms in the body of the query q, then c is used as rewriting-
rule to reformulate q into a new query that replaces q. By integrating constraint c to
the query, the validation and the query evaluation are performed together, thereby
avoiding validating extremely large number of intermediate results. Let us consider
examples to illustrate the situations our query rewriting algorithm tackles with.

Example 3.3 Query q1 below looks for professors who were born in a foreign coun-
try. Consider a user's context that is composed of cP1 , cP2 and cP3 in the table 3.1.

q1(X1)← professor(X1), placeOfBirth(X1, Z1), foreignCountry(Z1).
cP1 : professor(X)→ teacherOf(X, Y ).

cP2 : teacherOf(X, Y )→ offeredCourseAt(Y, Z).
cP3 : professor(X)→ employeeGov(X).

In this context, we see body(q1) as a set of atoms capable of triggering constraints
and producing new atoms that should be added to the query's body. This op-
eration corresponds to a chase computation as mentioned in Section 3.3 , which
starts with the atoms in body(q1). More precisely, atom professor(X1) in body(q1)
and body(cP1) unify, and their MGU is {σ(X) = X1}. This indicates that atom
professor in the body(q1) triggers the constraint cP1 . Moreover, in this case, the
MGU σ is an homomorphism from body(cP1) to body(q1), thus the rewriting step
is done by adding the σ(head(cP1)) into body(q1). Intuitively, answers of this new
query not only are the answers of q1 but also satisfy the constraint cP1 . The result
of this step is:

q′1(X1)←professor(X1), teacherOf(X1, N1), placeOfBirth(X1, Z1),
foreignCountry(Z1).

Note that the existential variable Y in head(cP1) is replaced by a new fresh variable
N1 in body(q′1). Next, the new atom teacherOf(X1, N1) in q′1 continues triggering
the constraint cP2 , then q

′
1 is rewritten into a new one by integrating σ2(head(cP2))

to its body, and so on. The chase process terminates at the �x-point where there
is no more new atom added into the body of the query. In this context, the new
rewritten query, that the system should send to data providers, is:

q′1(X1)←professor(X1), teacherOf(X1, N1), offeredCourseAt(N1, N2),
employeeGov(X1), placeOfBirth(X1, Z1), foreignCountry(Z1).

Answers of new query q′1 satisfy both q1 and all the three above constraints, thus
we can gain an equivalent results when evaluating q′1 against databases instead of
evaluating q1 and then validating the constraints. 2

Next, let's consider a more complex example with two kinds of constraints.
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Example 3.4 Consider the query q1 as in the above example but under a new
context that is composed of cp1 and cN2.

q1(X1)← professor(X1), placeOfBirth(X1, Z1), foreignCountry(Z1).
cP1 : professor(X)→ teacherOf(X, Y ).

cN2 : teacherOf(X, Y ), headOf(X,Z)→ ⊥.
Similarly to Example 3.3, the positive constraint cP1 is triggered by the atom
professor(X1) in the query q1, that results in the following rewritten query:

q′1(X1)←professor(X1), teacherOf(X1, N1), placeOfBirth(X1, Z1),
foreignCountry(Z1).

Intuitively, the new atom teacherOf(X1, N1) in q′1 and the atom teacherOf(X, Y )
in cN2 unify, so cN2 is triggered. By using cN2 in this context, we want to obtain
teachers who are not in the head of a department. In the case of datasets in
Table 3.2, they are Peter, Tom and Alice. The solution for not dealing with
negative atoms in the rewritten query is to store auxiliary complementary instances.
The computation of these complementary queries is explained in Section 3.6.3. For
our example, suppose Peter, Tom and Alice are stored in an auxiliary relation,
called aux_teacherOf. Once we have this new relation, we replace the negative
constraint cN2 with a positive constraint as follows:

caux1 : teacherOf(X, Y )→ aux_teacherOf(X, Y ).
In this way, we treat the negative constraint cN2 in the same way as the positive
one cP1 . More particularly, q′1 is rewritten as follows:

q′1(X1)←professor(X1), teacherOf(X1, N1), aux_teacherOf(X1, N1),
placeOfBirth(X1, Z1), foreignCountry(Z1).

This rewritten query is evaluated on the auxiliary database Saux relation and the
datasets (S, τ) as illustrated in Table 3.2. 2

In some situations, the above rewriting technique should be revised, as illus-
trated by the following example.

Example 3.5 Consider query q2, and constraint cp2 imposing restrictions on teach-
ers who teach database - they should do research in the database domain:

q2(X)← teacherOf(X, Y ).
cp2 : teacherOf(Z,DB)→ researchesIn(Z,DB).

Notice that no restriction is imposed on teachers in other domains. Here unlike
Example 3.3, the uni�er between predicates teacherOf of body(q2) and body(cP2)
is not a homomorphism from body(cP2) to body(q2) (but the inverse). Moreover a
query q′2(X)← teacherOf(X,DB), researchesIn(Z,DB) would ignore the teach-
ers of all other domains, so we cannot apply the chase as in Example 3.3. In this
case, our proposal is to replace q2 by the union of the two following queries:

q2.1(X)← teacherOf(X, Y ), Y 6= DB.
q2.2(X)← teacherOf(X,DB), researchesIn(X,DB).

The �rst query is created by adding a di�erence comparison formula of the constant
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to deal with results that are not concerned by the constraint. While we add the
corresponding equality and integrate the head(cp2) into the given query to cover
results related to the constraint, i.e. both the body(cp2) and the head(cp2) appear
in the second query. 2

This solution is explained with more details in Section 3.6.4.
The following section outlines the general process for rewriting queries. The

method includes a preprocessing step where negative constraints are translated to
constraints involving an auxiliary database.

3.6.2 General schema of the query rewriting process

Session 3.1 showed an overview of our query system, in which the module Validator
is responsible for rewriting queries and validating answers with respect to the user's
context. In this session, we explain in more details how it works. Figure 3.2 o�ers
a closer look at this module.

Figure 3.2 � Module Validator

The module Validator receives the user's query q and a set of quality constraints
C, which is constituted from three disjoint sets: positive constraints set CP , negative
constraints set CN and key constraints set CK . However, Validator treats each type
in di�erent ways. First, negative constraints CN are transformed into a new set
CNrw in a preprocessing step. This translation needs access to the data in sources
(S, τ)and may introduce new auxiliary relations. Auxiliary relations can be stored in
an auxiliary central database, denoted by Saux. However they can also be de�ned as
views and evaluated over the database instance when needed. Then, these rewritten
negative constraints together with positive constraints are used as rewriting rules to
reformulate the initial query q. Basically, the reformulation process is an iterative
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series of chase steps as the informal description in the above session. Thanks to
preprocessing step, rewritten negative constraints can be treated in the same way
as positive ones. The reformulation process results in a set of rewritten queries
Q, which then are evaluated against data on the auxiliary central database Saux

and sources (S, τ). Now, let us denote by R the set of answers obtained from the
evaluation of Q. All these answers are valid with respect to CP and CN (see proofs in
Section 3.6.5). The validation with respect to key constraints is done by the naive
approach, i.e. each resulting tuple in R is veri�ed by generating and evaluating
subsidiary queries. Thus, at this (last) step non valid resulting tuples with respect
to constraints in CK are eliminated. As all tuples in R already satisfy constraints
in CP and CN , the �nal result contains only valid answers.

3.6.3 Preprocessing Negative Constraints

The translation of negative constraints implies the de�nition of auxiliary instances
to be stored in Saux. Algorithm 5 summarizes this preprocessing while the following
de�nition introduces the queries used to compute auxiliary instances.

De�nition 3.7 (Auxiliary Relations from Negative Constraints) Given a
negative constraint L1(X, Y ), L2(X,Z), comp → ⊥, where X, Y and Z are se-
quences of variable. We de�ne auxiliary relations Lc

1,L2
and Lc

2,L1
as complementary

relations of L1 w.r.t. L2 and, respectively, of L2 w.r.t. L1 the instances obtained by
the evaluation of the following datalog programs on a given database source (S, τ).

Computation of Lc
1,L2

: Computation of Lc
2,L1

:
q1(X)← L1(X, Y ) q1(X)← L2(X, Y )
q2(X)← L2(X, Y ), comp|L2 q2(X)← L1(X, Y ), comp|L1

q3(X)← q1(X),¬q2(X) q3(X)← q1(X),¬q2(X)
Lc

1,L2
(X, Y )← L1(X, Y ), q3(X) Lc

2,L1
(X, Y )← L2(X, Y ), q3(X)

or, equivalently, the evaluation of the following relational algebra queries:
Lc

1,L2
:= L1 1 (ΠX(L1) \ ΠX(σcomp|L2(L2)) and

Lc
2,L1

:= L2 1 (ΠX(L2) \ ΠX(σcomp|L1(L1)) 2

Let cN be a negative constraint. As a result of the translation process over cN
we can have one of the following situations.

• When the body of cN contains facts, but these facts do not exist in the
database instance (S, τ), the constraint cN is not added into the set CNrw.
Indeed, in this special case, the constraint forbids the existence of a speci�c
fact. If this fact is not true in (S, τ), the query can be evaluated "as it
is" and no auxiliary relation is needed. In fact, cN can be ignored for this
database instance. For example, suppose the context has the two following
constraints.

professor(X), (X = Tom)→ ⊥.
teacherOf(X, Y ), takesCourse(X, Y ), (X = Bob), (Y = DB)→ ⊥.
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Assuming that tuples professor(Tom), teacherOf(Bob,DB) and
takesCourse(Bob,DB) do not exist in the database, Algorithm 5 tests
on lines 8 and 15 fail and no new constraint is inserted in CNrw.

• When the body of cN contains facts and these facts are true in the database
instance (S, τ), the constraint cN is translated into new constraints. For each
fact f in body(cN) there is a new constraint of the format f → ⊥, as shown
on lines 9,16,17 of Algorithm 5.

Following our previous example, in case the tuples professor(Tom),
teacherOf(Bob,DB) and takesCourse(Bob,DB) are true in the database
instance we will have the following constraints in CNrw:

professor(Tom)→ ⊥.
teacherOf(Bob,DB)→ ⊥.
takesCourse(Bob,DB)→ ⊥.

• When the body of cN is not composed by facts, a new constraint is added
to CNrw. In the case cN has only one atom in its body; cN itself is added
to CNrw (line 11). Otherwise, when cN has two atoms in its body (i.e.,
L1(u1), L2(u2)→ ⊥); cN is translated into two new constraints (lines 21, 24).
Each new constraint involves an auxiliary complementary relation. Relation
Lc

1,L2
(u1) (Lc

2,L1
(u1)) contains the complement of L1 w.r.t. L2 (respectively, L2

w.r.t. L1 ) and the join and selection conditions appearing in cN . De�nition 3.7
establishes the queries that should be evaluated in order to compute instances
of Lc

1,L2
(u1) and Lc

2,L1
(u1), to be stored in Saux. Notice that all instances in

Saux are computed on the basis of the current instance (S, τ).

In Algorithm 5, u′1 (and u′2) are extension of u1 (res. u2) where constants in
u1 are replaced with the variables in corresponding equalities (in comp). Func-
tion ComputeAuxiliaryRelation evaluates the queries established by De�nition 3.7.
The evaluation of such queries is only possible by a system dealing with negation.
By introducing a preprocessing step where negative rules are rewritten, our ap-
proach allows the use of an auxiliary database management system. In this way,
di�erent strategies became possible: (i) when (S, τ) does not allow negation, it is
possible to fetch needed information in (S, τ) and perform negation operations in
the auxiliary database; (ii) when (S, τ) allows negation, queries can be evaluated
on (S, τ) and results stored in SAux. In both cases, view de�nitions can be stored
in SAux and evaluated when needed instead of materializing SAux.

It is worth noting that when a query triggers a constraint whose head is ⊥,
the rewriting process on this query terminates, and it is removed from the set of
rewritten queries Q (Figure 3.2).

Example 3.6 Consider the dataset (S, τ) as Table 3.3 and the negative constraint:
cN3 : worksFor(X, Y, Z), bornIn(X,W ), (Z = CNRS), (W = France)→ ⊥

according to De�nition 3.7, two auxiliary relations aux_worksForcN3 and
aux_bornIncN3 are computed:
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Algorithm 5: Preprocessing Negative Constraints
Input : • A set of negative constraints CN on G;

• An access to the database instance (S, τ) over which the
preprocessing should be performed.
Output: • A new set CNrw of positive constraints obtained from rewriting

those in CN over (S, τ).
• The auxiliary database instance SAux.

1 Function RewritingNegConstraints(CN):
2 CNrw = ∅; Saux = ∅
3 foreach constraint c ∈ CN do
4 switch c according to its format do
5 case L(u)→ ⊥ do
6 if u has only constants then
7 Evaluate the boolean query qaux()← L(u)
8 if the result of qaux() is true then
9 Add L(u)→ ⊥ to CNrw

10 else
11 Add L(u)→ ⊥ to CNrw

12 case L1(u1), L2(u2)→ ⊥ do
13 if u1 and u2 have only constants then
14 Evaluate boolean queries qaux1()← L1(u1) and

qaux2()← L2(u2) over instance (S, τ)
15 if both results are true then
16 Add L1(u1)→ ⊥ to CNrw

17 Add L2(u2)→ ⊥ to CNrw

18 else
/* In this case, according to De�nition 3.3,

var(u1) ∩ var(u2) 6= ∅. */
19 Lc

1,L2
(u′1) := ComputeAuxiliaryRelation(L1, L2, c)

20 Add Lc
1,L2

(u1) to SAux

21 Add L1(u1)→ Lc
1,L2

(u1) to CNrw

22 Lc
2,L1

(u′2) := ComputeAuxiliaryRelation(L2, L1, c)

23 Add Lc
2,L1

(u2) to SAux

24 Add L2(u2)→ Lc
2,L1

(u2) to CNrw

25 return CNrw and Saux;
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bornIn(Ann, France) worksFor(Ann, LIFO, UnivOrleans) employeeGov(Ann)
bornIn(Tom, USA) worksFor(Tom, LIFO, UnivOrleans) employeeGov(Bob)
bornIn(Bob, France) worksFor(Bob, Paris, CNRS) employeeGov(Alice)
bornIn(Alice, UK) worksFor(Alice, Nice, CNRS)

worksFor(Peter, LIFAT, UnivTours)

Table 3.3 � Datasets

aux_bornIncN3(Ann, France) aux_worksForcN3(Tom, LIFO, UnivOrleans)
aux_bornIncN3(Tom, USA) aux_worksForcN3(Alice, Nice, CNRS)

aux_worksForcN3(Peter, LIFAT, UnivTours)

Table 3.4 � Auxiliary Datasets

q11(X)← worksFor(X, Y, Z)
q12(X)← bornIn(X,France)
q13(X)← q11(X),¬q12(X)
aux_worksForcN3(X, Y, Z)← worksFor(X, Y, Z), q13(X)
q21(X)← bornIn(X,W )
q22(X)← worksFor(X, Y,CNRS)
q23(X)← q21(X),¬q22(X)
aux_bornIncN3(X,W )← bornIn(X,W ), q23(X)
and they are then added into the auxiliary database Saux as in Table 3.4: In this
case, the negative constraint cN3 is transformed into two constraints as following:

worksFor(X, Y,CNRS)→ aux_worksForcN3(X, Y, Z)
bornIn(X,France)→ aux_bornIncN3(X,W )

By using these alternative constraints, tuples satisfying worksFor(X, Y,CNRS)
(bornIn(X,France) respectively) must be tuples in the auxiliary relation
aux_worksFor (respect. aux_bornIn), whereby those tuples satisfy con-
straint cN3.

Now, suppose that we have a query:

q(X)← worksFor(X, Y,CNRS), employeeGov(X)

Intuitively, the atom worksFor(X, Y,CNRS) in body(q) triggers the constraint cN3.
Thus, the result of the rewriting step is:

q(X)← worksFor(X, Y,CNRS), aux_worksForcN3(X, Y, Z), employeeGov(X)

With the database instance of Table 3.3, the answer for q is Alice. 2
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3.6.4 Algorithm RewriteQuery

In this section, we present in detail the query rewriting algorithm in our approach.
Given a query q, and a set of constraints Crw, which consists of constraints in CP

and those resulted from Algorithm 5, the rewriting process consists of performing
the chase algorithm, starting with the atoms in body(q). The idea is similar to the
one used in [32, 33] (see discussion in Section 2.4). Our rewriting algorithm denoted
by RewriteQuery (Algorithm 7) proposes an iteration over constraints and queries.
At each iteration, a step of the chase is performed by Algorithm 6 to incorporate
constraints in Crw to the body of q.

Let us consider in detail Algorithm 6. A given constraint c is integrated into
the query q if it is triggered by an atom in q. An atom L(u) ∈ body(q) triggers a
constraint c if there exists a mgu between L(u) and body(c). As after translating
CN into CNrw constraints have only one atom in their bodies, testing whether the
constraint c is triggered by an atom L in body(q) is to check the existence of a
mgu θ between L(u) and body(c) ( Algorithm 6, line 3). Moreover, θ should ensure
satis�ability, as illustrated in the example below.

Example 3.7 Consider the query and the constraint as follows:
q(X)← A(X, Y, Z), Y = a, Z = b
c : A(X1, X1, X1)→ B(X1, Y1)

Clearly θ such that θ(X) = X1, θ(Y ) = X1, θ(Z) = X1 is a mgu of body(c) and the
atom A in body(q). However, θ(q) leads to a = b, two di�erent constants, and thus
it is not satis�able. In this case c is not triggered by q. 2

Now, once the condition on line 4 is satis�ed, the constraint c should be matched
to atom L(u). To this end, variables in c are renamed by variables in q by using
the one-way mgu de�ned below.

De�nition 3.8 (One-way MGU) Let l1 and l2 two literals which are uni�able.
A one-way uni�er denoted by θl1→l2 is a mgu for l1 and l2 such that all variables of
θl1→l2(l1) are variables of l2. 2

For example, let l1 = A(X1, a, b, Y1, Y1) and l2 = A(a,X2, Y2, Z2, U2) which are
uni�able. A possibility for the one-way mgu from l1 to l2 is {θl1→l2(X1) =
a, θl1→l2(Y1) = Z2, θl1→l2(X2) = a, θl1→l2(Y2) = b, θl1→l2(U2) = Z2} and
{θl2→l1(X1) = a, θl2→l1(X2) = a, θl2→l1(Y2) = b, θl2→l1(Z2) = Y1, θl2→l1(U2) = Y1} for
the one-way mgu from l2 to l1. Clearly θl1→l2(l1) = θl1→l2(l2).

The need of the one-way mgu is illustrated by the example below.

Example 3.8 Let c : A(X1, a, b, Y1, Y1) → B(X1, Y1) be a constraint and let
q(X2, Y2, Z2, U2)← A(a,X2, Y2, Z2, U2), C(U2) be a query.

Clearly, l1 = A(X1, a, b, Y1, Y1) and l2 = A(a,X2, Y2, Z2, U2) are uni�able but
there is neither a homomorphism from the l1 (i.e., c's body) to l2 nor a homomor-
phism from l2 to l1. However, intuitively, and since mgu θ exists, it is clear that it
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is possible to �nd an instantiation of A(a,X2, Y2, Z2, U2) that triggers c. In other
terms, an answer for q can trigger c imposing the constraint veri�cation.

An one-way uni�er, such as {θl1→l2(X1) = a, θl1→l2(Y1) = Z2, θl1→l2(X2) =
a, θl1→l2(Y2) = b, θl1→l2(U2) = Z2} applied to c gives A(a, a, b, Z2, Z2) → B(a, Z2).
Now it is possible to �nd a homomorphism from l2 to l1.

Notice that an one-way uni�er allows Algorithm 6 to produce new queries q1

and q2, according to lines 12-19.
Indeed, continuing our example, let us consider the homomorphism h from l2 to
θl1→l2(l1) such that: h(X2) = a, h(Y2) = b, h(Z2) = Z2, h(U2) = Z2

Then, according to Algorithm 6 (lines 12-19) we obtain the following queries :

q2 : q(X2, Y2, Z2, U2)← A(a,X2, Y2, Z2, U2), C(U2), B(a, Z2), X2 = a, Y2 = b, U2 = Z2

q11 : q(X2, Y2, Z2, U2)← A(a,X2, Y2, Z2, U2), C(U2), X2 6= a,

q12 : q(X2, Y2, Z2, U2)← A(a,X2, Y2, Z2, U2), C(U2), Y2 6= b

q13 : q(X2, Y2, Z2, U2)← A(a,X2, Y2, Z2, U2), C(U2), U2 6= Z2

The one-way uni�er allows rewriting a query on the basis of the uni�cation
of only two atoms - one in the query's body and the one in the constraint's body.
Without it, it would be necessary to apply a mgu to the whole query's body at each
step. Let us illustrate the problem by supposing that we do not use an one-way
uni�er but just a mgu, as for example {θ(X1) = a, θ(X2) = a, θ(Y2) = b, θ(Z2) =
Y1, θ(U2) = Y1}.

Clearly, in this case, θ(c) gives A(a, a, b, Y1, Y1)→ B(a, Y1).
In this situation it is still possible to have a homomorphism h from l2 =

A(a,X2, Y2, Z2, U2) to l1 = A(a, a, b, Y1, Y1): {h(X2) = a, h(Y2) = b, h(Z2) =
Y1, h(U2) = Y1}. Now, according to Algorithm 6 (lines 12-19), we obtain the fol-
lowing queries :

q′2 : q(X2, Y2, Z2, U2) ← A(a,X2, Y2, Z2, U2), C(U2), B(a, Y1), X2 = a, Y2 = b, Z2 =
Y1, U2 = Y1

q′11 : q(X2, Y2, Z2, U2)← A(a,X2, Y2, Z2, U2), C(U2), X2 6= a

q′12 : q(X2, Y2, Z2, U2)← A(a,X2, Y2, Z2, U2), C(U2), Y2 6= b

q′13 : q(X2, Y2, Z2, U2)← A(a,X2, Y2, Z2, U2), C(U2), Z2 6= Y1

q′14 : q(X2, Y2, Z2, U2)← A(a,X2, Y2, Z2, U2), C(U2), U2 6= Y1

Compared with the previous result, we observe that queries q2 and q′2 are iden-
tical. However, there are di�erences between queries q1 and q′1. Instead of query q13

we have queries q′13 and q
′
14

which are not well formed. Comparison atoms in their
bodies contain variables which are not bounded by a relation. 2

71



3.6. HOW TO OBTAIN VALID ANSWERS: THE QUERY REWRITING
APPROACH

Algorithm 6: A step of chase processing
Input : A conjunctive query q : τin and a constraint c ∈ Crw where

Crw = CP ∪ CNrw

Output: A set Q of rewritten queries qr : τin, such that for each qr : τin we
have head(qr) = head(q).

1 Function StepChase(q : τin, c):
2 foreach atom L(u) ∈ body(q) such that:
3 there is a mgu θ : θ(L(u)) = θ(body(c)) for which
4 θ(body(q)) is satis�able do
5 Denote query q : τin by q(u0)← β(u1), L(u);
6 Let σc be θbody(c)→L(u) (De�nition 3.8) ;
7 if ∃ homomorphism ν from body(σc(c)) to L(u) then
8 if ¬Isomorphic(ν(σc((head(c))), q) then
9 q(u0)← β(u1), L(u), (ν(σc((head(c))) ;
10 Q := Q ∪ {q : τin};

11 else
12 Let h be a homomorphism such that h(L(u)) = σc(body(c)) ;
13 Let Q := ∅;
14 Let q2 : τin be q(u0)← β(u1), L(u), h(σc(head(c)));
15 foreach variable x in u for which h(x) = a and h(x) 6= x, where a

is a term do
16 Let q1 : τin be q(u0)← β(u1), L(u), (x 6= a);
17 Q := Q ∪ {q1 : τin};
18 body(q2) := body(q2) ∧ (x = a);

19 Q := Q ∪ {q2 : τin} ;

20 return(Q);
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The notion of one-way uni�er is essential when constraints have constants or
repeated variables in their bodies. Algorithm 6, line 12, �nds the homomorphism
h once the one-way uni�er is applied to the body of c.

Now, let us come back to the general idea of Algorithm 6. Once θ and
θbody(c)→L(u) are determined on line 6, we test whether there is a homomorphism
ν from body(σc(c)) to L(u). This is the criteria to decide how c is integrated into q
(line 7). Indeed, we have two main situations:

1. When the homomorphism ν exists, the query's body is completed with the
atom computed from the head of σc(c) (line 9). Notice that the new atom is
added into body(q) if it is not isomorphic to any atom already existing in q.
It is done by function Isomorphism at line 8 that veri�es the isomorphism
between every atom of body(q) and the new atom being considered adding to
q. In this way we avoid triggering one constraint many times by an atom in q,
and adding redundant atoms into the body of the query. Due to this condition,
the result of the rewriting step may be empty, i.e. at a given iteration c is not
integrated into q (since its consequence is already integrated in q).

We recall that our constraints respect some syntactic restrictions, namely:

• The set CP is a set of weakly acyclic TGD ([35]). Roughly, a set of TGD
is acyclic if it does not allow for cascading of labelled null creation during
the chase.

• Constraints resulting from the translation of negative constraints (Algo-
rithm 5) cannot trigger other constraints. Indeed their heads are on new
auxiliary predicates that do not appear in the initial global schema.

2. When the homomorphism ν does not exist, the reason is summarized by one of
the following situations: (i) we cannot map a constant in body(c) to a variable
or a di�erent constant in L(u) or (ii) we cannot map a variable in body(c)
(appearing more than once) to di�erent variables in L(u)

Indeed, in Example 3.5, no homomorphism from body(σc(cp2)) to L =
teacherOf(X, Y ) is possible. However, as there is a mgu between L and
body(c), there is a homomorphism h from L to body(σc(cp2)) (line 12). In this
case, we generate two queries, namely:

• a query (q2 in the Algorithm 6) that deals with results (i.e., possible
query instantiations) involving constraint c, and

• a set of queries (q1 in the foreach loop at line 15-18) dealing with results
that are not concerned by c.

Indeed, in the above cases, c can be written by using comparison atoms (comp)
containing equalities. During the rewriting process, Algorithm 6 generates
queries q1 by adding into body(q) the negation of these comparison atoms
(i.e., ¬comp).
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For instance, in our Example 3.5, q2.1 selects people who do not teach
DB. With the database instance of Table 3.2, the answer for q2.1 is
Tom,Alice, Peter. Query q2.2 deals with results concerned by the constraint.
It selects two kinds of people: (i) those who are database researchers and only
teach DB and (ii) those who teach and do research in the database domain
but also teach other subjects. In this example, the answers for q2 on the in-
stance of Table 3.2 are Bob, Tom, Alice and Peter. Notice that Bob is not
an answer for q2.1, but it is the answer to q2.2. The result of q2 is the union of
the answers for q2.1 and q2.2.

Note that rewritten queries dealing with results not concerned by c (i.e. q1 in
Algorithm 6) introduce negative comp atoms. In the relational algebra they can be
translated as a negative condition for the selection operation.

Let's now consider in detail Algorithm 7. The general idea here is to apply
exhaustively the chase step with constraints in Crw on q. More precisely, applying
the chase step on q and a constraint c ∈ Crw results in a set of rewritten queries Q′

(line 8) which may replace q in the next step. Recall that the purpose of integrating
constraint c into q by applying the chase step on q and c is to �lter answers of q
that are valid with respect to c.

Algorithm 7: Query Rewriting
Input : A conjunctive query q : τin and a set of constraints Crw = CP ∪CNrw

1 Function RewriteQuery(q : τin, C):
2 Q = {q : τin};
3 repeat
4 Changed := false;
5 foreach c ∈ C do
6 foreach q : τin ∈ Q do
7 replace := false;
8 Q′ := StepChase(q : τin, c);

/* Algorithm 6 */

9 foreach q′ : τin ∈ Q′ do
10 if (q′ : τin is more restricted than q : τin) and (q′ : τin is

not contradictory) then
11 Q := Q ∪ {q′ : τin};
12 Changed := true;
13 replace := true;

14 if replace then
15 Q := Q \ {q : τin} ;

16 until not Changed ;
17 return Q;
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Repeat
(line 3)

foreach
c in Crw

(line 5)

Q (beginning
of one repeat
iteration)

foreach
q in Q

Q′ =
stepChase

(q, c)

q′ not
contradictory
and more
restricted
than q

Q (end of
one repeat
iteration)

changed

1 c1 {q}
q {q1} {q1} {q1} T

c2 {q1}
q1 {q21,q22} {q21,q22} {q21,q22} T

2 c1 {q21,q22}
q21 { } { } {q21,q22} F
q22 {q31} {q31} {q21,q31} T

c2 {q21,q31}
q21 {q41,q42} { } {q21,q31} F
q31 { } { } {q21,q31} F

Table 3.5 � Intermediate results of Algorithm 7

Query q is replaced by Q′ only if Q′ is more restricted than q, i.e. ans(Q′) is
included in ans(q) (line 10). On the other hand, in Algorithm 6, for a given query
q, each rewritten query q′ is created by instantiating atoms or adding more atoms
into body(q). Thus, an answer to each q′ is either equal to or included in the answer
to q. When q′ is equivalent to q, we can remove it from Q′. In other words, only
rewritten queries (strictly) more restricted than q are considered replacing q in Q
(lines 9-15).

The new set Q, in turn, will be chased with every constraint c ∈ CNrw includ-
ing constraints already considered in previous steps until no more new query is
generated (i.e. there is no change in Q).

Example 3.9 Let's consider query q and two constraints c1, c2 as follows:
q(X)← L1(X, Y )

c1 : L1(X, Y )→ L2(X, Y )
c2 : L2(X, a)→ L1(X, b)

Table 3.5 illustrates the execution of Algorithm 6, step by step. Columns in this
table indicate the moment of algorithm's execution being considered. The sixth col-
umn shows q′ in Q′ = stepChase(q, c) such that q′ is satis�able and more restricted
than q. The list of intermediate rewritten queries is in Table 3.6.

We can see that q′21, q
′
22 and q′31 are removed from Q′ by the isomorphic

condition in Algorithm 6 (line 8), i.e. there exists an atom in body(q) that is
isomorphic to the added atom in the rewriting step. Queries q41 and q42 are
removed by the condition at line 10 in Algorithm 7.
Thus, the rewriting result of q with respect to c1 and c2 is the set of two following
rewritten queries:

q21(X)← L1(X, Y ), L2(X, Y ), Y 6= a
q31(X)← L1(X, a), L1(X, b), L2(X, a), L2(X, b)
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Algo. 6 q′ Remark
q(X)← L1(X, Y )

(q, c1) q1(X)← L1(X, Y ), L2(X, Y )
(q1, c2) q21(X)← L1(X, Y ), L2(X, Y ), Y 6= a

q22(X)← L1(X, a), L2(X, a), L1(X, b)
(q21, c1) q′21(X)← L1(X, Y ), L2(X, Y ), L2(X, Y ) isomophism
(q22, c1) q′22(X)← L1(X, a), L2(X, a), L2(X, a), L1(X, b) isomophism
(q22, c1) q31(X)← L1(X, a), L2(X, a), L1(X, b), L2(X, b)

(q21, c2) q41(X)← L1(X, Y ), L2(X, Y ), Y 6= a, Y 6= a
not more
restricted than q21

q42(X)← L1(X, Y ), L2(X, Y ), Y = a, L1(X, b), Y 6= a contradictory
(q31, c2) q′31(X)← L1(X, a), L2(X, a), L1(X, b), L1(X, b), L2(X, b) isomophism

Table 3.6 � Intermediate rewritten queries

3.6.5 Correctness of Validation through rewriting queries

We now establish the correctness of Algorithm 7. We �rst consider some lemmas.
The �rst lemma deals with the situation where C has only a positive constraint
whose body cannot be mapped to an atom the query's body (although a uni�er
exits) (as on line 12 Algorithm 6). The corresponding rewritten query qr computes
all and only the q's answers which are valid with respect to C.

Lemma 3.1 Let
q(u0)← β(u1), L(u2)

be a conjunctive query where u0, u1, u2 are free tuples, u0 contains only variables
appearing in body(q), L(u2) is an atom and β(u1) is the conjunction of the other
atoms in the query's body.

Let c be a positive constraint for which the following conditions hold:

1. there exists a mgu capable of unifying body(c) with L(u2). We note σc the
substitution θbody(c)→L(u2) from De�nition 3.8,

2. there is no homomorphism ν such that ν(body(c)) = L(u2).

Let h be a homomorphism such that h(L(u2)) = σc(body(c)). Let qr be a
rewritten version of q, on the basis of c, denoted by the queries:

1. (Q1) qr(u0)← β(u1), L(u2), (x 6= a)
for each variable x in u2 for which h(x) = a and h(x) 6= x, where a is a term.

2. (Q2) qr(u0)← β(u1), L(u2), (x1 = a1), . . . , (xn = an), h(σc(head(c)))
where, for i ∈ [1, n], xi is a variable in u2 and each ai is a term such that
h(xi) = ai and ai 6= xi.

For any database instance (S, τ), we have

q((S, τ), c) = qr((S, τ))
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where q((S, τ), c) is the set of valid answers of q (with respect to c) on (S, τ) and
qr((S, τ)) is the set of answers of qr on (S, τ). 2

proof:

Part 1: We �rst prove that for any tuple t, if t is a valid answer for q with respect
to constraint c then it will be an answer for qr.

We start by considering two di�erent situations
A) In query q, there exist variables in the free tuple u0 which are also in u2. More
precisely, let us suppose that u0 is composed of two other tuples. We write u0 =
u, u0.1. Similarly we have u2 = u, u2.1. Therefore we can write q as q(u, u0.1) ←
β(u1), L(u, u2.1). Moreover, supposing that t = t1, t2 the instantiation format of
q, obtained by ht(q) is q(t1, t2) ← β(α1), L(t1, α2), where t2, α1 and α2 are also
tuples of constants. Without loss of generality, we assume that t1 is a unary tuple
(therefore u is just a variable x).

We know that there is h such that h(L(u2)) = σc(body(c)). The following
situations should be considered

1. h(x) is a constant.

(a) When ht(x) = h(x), the instantiated atom ht(L(u2)) triggers c i.e.,
ht(L(u2)) = ht(σc(body(c))). In such a case, as t is a valid answer we
know that constraint c is triggered and the query qaux()← ht(σc(head(c))
has a non-empty answer.

Clearly, in this case, the query (Q2) above can be instantiated by ht,
giving:

qr(t1, t2)← β(α1), L(t1, α2), ht(σc(head(c)))

Indeed, if a is the constant such that t1 = (a), then we have ht(x) = a,
and the equalities appearing in the body of the query (Q2) are satis�ed.

In the instantiation of this rewritten query, the �rst two atoms are the
same as those in the instantiation of q and the last one corresponds to
the body of query qaux. Thus, as the answer set of qaux is not empty,
this last atom of qr will be instantiated with the same answer set, giving
tuple t as an answer.

remark: When t1 is a n-ary tuple, the only di�erence is that there will
be n conditions in the body of query (Q2), imposing for each variable
x in u to be instantiated by the constant h(x), which, in this case,
equals ht(x). Thus, all these conditions are evaluated to true. The same
argument follows.

Clearly, the query (Q1) produces no answer. As ht(x) = a, condition
(x 6= a) in the body of query (Q1) cannot be satis�ed.

remark: When t1 is a n-ary tuple, the only di�erence is that there will
be n queries similar to query (Q1). Each query will impose a condition
of the form (x 6= h(x)) which is not satis�ed since in this case, h(x)
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equals ht(x) Thus, no query following the model of query (Q1) will
produce a result.

(b) When ht(x) 6= h(x), the instantiated atom ht(L(u2)) does not trigger
c. Let the instantiation of q be q(t1, t2) ← β(α1), L(t1, α2) to produce
t = (t1, t2) as a valid answer - since no constraint is triggered. In this
case if t1 = (b), we have ht(x) = b. Let h(x) = a.
The instantiation of query (Q2) by ht results in a condition such as
b = a which is evaluated to false. Thus the evaluation of query (Q2)
gives an empty set. However, the instantiation of query (Q1) by ht gives
q(b, t2) ← β(α1), L(b, α2), (b 6= a) which correspond to ht(q) for t1 = (b)
as supposed above.

2. h(x) is a variable. In this case, condition in the body of queries (Q1) and (Q2)
are of the form x = y or x 6= y for a variable y appearing in u2. Therefore, that
is at least two variables in u2 (denoted here by x and y) whose instantiations
should be compared in terms of equality. Indeed, in such a situation there
exist as least two variables that are the same in body(c) (this situation can
be characterized since we know that there is no homomorphism ν mapping
body(c) to L(u2) and h(x) is a variable).

(a) When ht(x) = ht(y), the instantiated atom ht(L(u2)) triggers c : as t
is a valid answer we know that constraint c is triggered and the query
qaux()← ht(σc(head(c)) has a non-empty answer.
In this case, the query (Q2) can be instantiated by ht, giving:

qr(t1, t2)← β(α1), L(t1, α2), ht(σc(head(c)))

Indeed, if a is the constant such that t1 = (a), then we have ht(x) = a,
h(x) = y and ht(y) = a. The equalities appearing in the body of the
query (Q2) are satis�ed.
In the instantiation of this rewritten query, the �rst two atoms are the
same as those in the instantiation of q and the last one corresponds to
the body of query qaux. Thus, as the answer set of qaux is not empty,
this last atom of qr will be instantiated with the same answer set, giving
tuple t as an answer.
Similarly to case 1a query (Q1) produces no answer. As ht(x) = ht(y) =
a, condition (x 6= y) in the body of query (Q1) cannot be satis�ed.

(b) When ht(x) 6= ht(y), the instantiated atom ht(L(u2)) does not trigger c
and the argument follows those developed in steps 1b and 2a.

B) In query q, no variable appearing in the free tuple u0 appears in u2. As in
part A), validity is veri�ed by considering two situations: (i) when the instantiation
ht(L(u2)) triggers c, the result of query qaux() ← ht(σc(head(c)) should be non-
empty, otherwise (ii) constraint c is not triggered and answer ht(u0) is valid.
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To prove that the evaluation of qr gives all valid tuples resulting from the eval-
uation of q, we proceed as in part A). The proof is strictly the same - just the
instantiation format of queries changes.

Part 2: We now prove that for any tuple t, if t is an answer for qr , then t is a valid
answer for q with respect to constraint c.

Let ht be a homomorphism which instantiated qr on (S, τ) giving t as an answer.
For a given ht we know that, either (Q1) or (Q2) can be instantiated, but not both,
since conditions in the body of these two rules are disjoint.

• Suppose there is an instantiation ht for query (Q1) for which we have t as an
answer.

Clearly the conjunction ht(β(u1), L(u2)) is also a possible evaluation for q
which does not trigger c (since in this situation ht(x) 6= h(x) for each variable
in u2 respecting the properties established by this lemma). Thus, t is a valid
answer with respect to c for q on (S, τ).

• Suppose there is an instantiation ht for (Q2) for which we have t as an answer.

The conjunction ht(β(u1), L(u2)) is also a possible evaluation for q which
triggers c (here ht(x) = h(x) for each variable in u2 respecting the properties
established by this lemma). In this case, the fact ht(L(u2)) triggers c - only
if there is a non-empty answer for query qaux() ← ht(σc(head(c)), tuple t is
valid. As ht on (Q2) gives an instantiation of σc(head(c)) on instance (S, τ),
we know that a non-empty answer exist. Thus t is valid with respect to c. 2

The second lemma shows that when C has only one negative constraint of the
form c : A(v1), B(v2)→ ⊥ whose body is triggered by an atom in the query's body,
the corresponding rewritten query qr computes all and only the q's answers which
are valid with respect to C. Moreover, in this situation, query qr involves auxiliary
instances computed according to De�nition 3.7 and stored in Saux.

Lemma 3.2 Let
q(u0)← β(u1), L(u2)

be a conjunctive query where u0, u1, u2 are free tuples, u0 contains only variables
appearing in body(q), L(u2) is an atom and β(u1) is the conjunction of the other
atoms in the query's body.

Let c : A(v1), B(v2) → ⊥ be a negative constraint where there is at least one
common variable between v1 and v2, and for which there exists a mgu θ capable
of unifying L(u2) with an atom in body(c). Let A(v1) be this atom (that is A and
L are the same predicate symbol). We denote by σc the substitution θbody(c)→L(u2)

from De�nition 3.8. Let c1 be the translation of c according to Algorithm 5 on
database instance (S, τ), i.e. c1 : A(v1)→ Ac

B
(v1) where Ac

B
(u2) is in Saux.

Consider two di�erent situations:
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1. There is a homomorphism ν allowing a mapping of atom σc(A(v1)) to L(u2).
Let qr be the rewritten version of q, on the basis of c1, denoted by: (Q0)
qr(u0)← β(u1), L(u2), ν(Ac

B
(v1)) .

2. There is no homomorphism ν such that σc(A(v1)) = L(u2). Let h be a homo-
morphism such that h(L(u2)) = σc(A(v1)). Let qr be a rewritten version of q,
on the basis of c1, denoted by the queries:

(a) (Q1) qr(u0)← β(u1), L(u2), (x 6= a)
for each variable x in u2 for which h(x) = a and h(x) 6= x, where a is a
term.

(b) (Q2) qr(u0)← β(u1), L(u2), (x1 = a1), . . . , (xn = an), h(σc(A
c
B

(v1)))
where, for i ∈ [1, n], xi is a variable in u2 and each ai is a term such that
h(xi) = ai and ai 6= xi.

For any database instance (S, τ), we have

q((S, τ), c) = qr((S, τ) ∪ Saux)

where q((S, τ), c) is the set of valid answers of q (with respect to c) on (S, τ) and
qr((S, τ)) is the set of answers of qr on (S, τ) ∪ Saux. 2

proof:

For situation 1, query q is rewritten into just one query (Q0). Let t ∈ q((S, τ), c).
Thus, as t is a valid answer with respect to c, we know that there exists a ho-
momorphism ht such that ht(body(q)) ⊆ (S, τ) and qaux() ← ht(ν(B(v2))) is
false (has no solution) in (S, τ). From De�nition 3.7, of Ac

B
we deduce that

q′aux() ← ht(ν(Ac
B

(v1))) has true as solution in Saux. Then t is also a solution

of qr on (S, τ) ∪ Saux.
Conversely, let t be a solution for qr((S, τ)∪Saux). In this situation, there exists

a homomorphism ht such that ht(body(qr)) ⊆ (S, τ)∪Saux. More precisely, we know
that ht(β(u1), L(u2)) ⊆ (S, τ) ∪ Saux and ht(ν(Ac

B
(v1)) ⊆ Saux. So the solution for

query q′aux()← ht(ν(Ac
B

(v1))) is true. Now, following De�nition 3.7, we know that

the computation of facts in Ac
B
is performed over instance (S, τ), on the basis of

facts in A and not in B. In this way we deduce that q′aux()← ht(ν(B(v2))) is false
(has no solution) in (S, τ). In conclusion, t is a solution of q in (S, τ) and t is valid
with respect to c. Clearly, t is in q((S, τ), c).

For situation 2, the proof follows the lines of the proof of Lemma 3.1 by using
the same arguments shown above, i.e., by using a negative constraint c and its
translation c1, according to Algorithm 5, and by considering the auxiliary database
Saux, whose instances are computed by following De�nition 3.7. 2

We are now ready to establish the termination together with the soundness and
completeness of our algorithm.
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Proposition 1 Given a conjunctive query q and a set of constraints Crw, Algo-
rithm 7 �nishes in a �nite number of steps. 2

proof :

To prove the termination of our rewriting algorithm we just need to observe that
it is composed of two parts. The �rst part deals with situations where the homo-
morphism ν exists. Therefore, when our rewriting algorithm is restricted to these
situations (i.e., when only lines 7 to 9 are executed in function StepChase (Algo-
rithm 6)), it corresponds to the chase with non weakly acyclic constraints C1 (tgd)
of a conjunctive query q (and therefore to the chase phase of algorithms introduced
in [33]). Thus, as in [33], which is based on proofs in [35], it terminates. The
second part considers the situation where the homomorphism ν does not exist. In
this situation, a query q generates at least two other queries. Clearly, the num-
ber of new queries that can be created during the execution of lines 12 to 19 is
�nite and bounded by the number of variables for which conditions on line 15 hold.
From these observations and since the number of constraints and queries is �nite,
Algorithm 7 terminates. Moreover, after each execution of Algorithm 6 the new
generated queries are compared to those already existing, allowing to keep only the
most restricted ones (along the lines of [4]).

Proposition 2 Let C be the set of constraints de�ning a context. Let C1 be the
set of constraints obtained from C by transforming negative constraints as proposed
in Algorithm 5. Let (S, τ) and Saux be, respectively, the database instance and the
auxiliary database containing the auxiliary relations obtained by Algorithm 5 (on
the basis of De�nition 3.7).

For any database instance (S, τ), we have

q((S, τ), C) = qr((S, τ) ∪ Saux)

where q((S, τ), C) is the set of valid answers of q (with respect to C) on (S, τ) and
qr((S, τ) ∪ Saux) is the set of answers of qr on (S, τ) ∪ Saux with respect to the
translated set of constraints C1. 2

proof:

Part 1: Let qr(t) be a result of evaluating qr on (S, τ) ∪ Saux with respect to C1.
We suppose that qr(t) is not correct, i.e., there is no answer t for query q on (S, τ)
which is valid with respect to C.

In such a situation we know that there is a uni�er θ between at least one atom
in q′s body and a constraint c ∈ C, otherwise qr = q giving both t as an answer
� which is a contradiction to our hypothesis. Thus, in this context, as θ exists,
assume �rstly that c ∈ C is a positive constraint not respected by t. The following
situations are possible:

1. Let L(u) be the atom in body(q) for which there are homomorphism ν and σc
(Algorithm 6, line 7) such that ν(body(σc(c))) = L(u). As t is not valid with
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respect to constraint c, there exists a homomorphism ht for which the answer
of the boolean query q() ← ht(L(u)) is true on instance (S, τ). Moreover,
ht(L(u)) triggers c (i.e. there is h1 such that h1(body(c)) = ht(L(u)) and h1 ⊆
h′1) but h

′
1(head(c)) is not true in (S, τ). However, in this case, as h′1(head(c))1

is also in the body of qr, the answer t is not produced. A contradiction to our
initial hypothesis.

2. Let L(u) be the atom in body(q) for which: (i) there is no homomorphism ν
(Algorithm 6, line 7) such that ν(body(σc(c))) = L(u) and (ii) conditions of
Lemma 3.1 hold. But in this case, as proved in the cited lemma, all answers
produced by the rewritten query are valid. Thus, t is valid and we have a
contradiction.

Assume now that c ∈ C is a negative constraint of the form L1(u1)→ ⊥. In this
case, c is triggered because for L(u) in body(q) we have ht(L(u)) = ht(σc(L1(u1)))
(since t is not a valid answer for q). But in this situation ⊥ would be an atom
in body(qr), and t would not be an answer for qr, which is a contradiction to our
hypothesis. The proof is similar for constraints having the form L1(u1), L2(u2)→ ⊥
but having only constants as terms in u1 and u2. Lemma 3.2 completes the proof for
constraints whose format is L1(u1), L2(u2)→ ⊥ having at least a common variable
in u1 and u2.

Part 2: We suppose that there is an answer t for query q on (S, τ) which is valid
with respect to C and that t is not an answer for qr.

Suppose that t is a valid answer for q with respect to C because no constraint
is triggered (uni�er θ in Algorithm 6 does not exist). In this case, we have a
contradiction because qr = q and, thus, answer t is produced by both queries.

Next, as another possible situation, we assume that uni�er θ (Algorithm 6) exist.
Two cases have to be taken into account.

1. A positive constraint c is triggered. Let ht is the homomorphism responsible
for the production of t as an answer for query q on (S, τ). As t is valid, we
know that c is triggered by an instantiation ht of an atom L(u) in body(q) (i.e.,
there is h1 such that h1(body(c)) = ht(Lu)), and that there is a non-empty
answer for query qaux()← h′1(head(c)) on (S, τ) (where h′1 ⊆ h1).

(a) Suppose body(c) has no constants. In this case there is a homomorphism
ν from body(σc(c)) to L(u). From Algorithm 6, ν(head(σc(c)) (or an
isomorphic atom) is in the body of the rewritten version of q. As qaux has
an non-empty answer, we know that an instantiation for ν(head(σc(c))
exists in (S, τ) allowing to obtain t as an answer for the rewritten query,
a contradiction to our hypothesis.

(b) Suppose body(c) has constants. In this case, Lemma 3.1 applies.

1which equals ht(ν(body(σc(c)))).

82



3.6. HOW TO OBTAIN VALID ANSWERS: THE QUERY REWRITING
APPROACH

2. A negative constraint is triggered. If the triggered constraint has the form
L1(u1) → ⊥, we know that the evaluation of the auxiliary boolean query �
whose body is L1(u1) � is false. Thus, no new atoms are added to the body of
qr and the production of t is ensured. A similar argument can be used when c
has the form L1(u1), L2(u2)→ ⊥ with only constants in u1 and u2. Lemma 3.2
completes the proof for constraints whose format is L1(u1), L2(u2)→ ⊥ having
at least a common variable in u1 and u2. 2

3.6.6 The whole validation process

Recall that the user's context may consist of three kinds of constraints: CP , CN

and CK . While the query rewriting process (Algorithm 6 and Algorithm 7) only
deals with CP and CN (as well as the con�dence degree τin of the query). Thus,
the results obtained from evaluations of rewritten queries need to be veri�ed with
respect to constraints in CK . These veri�cation is done by using the Naive approach
(cf. Algorithm 4). This overall process is depicted in Algorithm 8.

Algorithm 8: Valid candidate answers
Input : • A conjunctive query q : τin and a set of constraints

C = CP ∪ CN ∪ CK .
• An access to the database instance (S, τ)

Output: Answers of q : τin respecting C.
1 Function valCandAns(q : τin, C):
2 AnsSet = ∅;
3 Crw = CP ∪RewritingNegConstraints(CN);
4 Q = RewriteQuery(q : τin, Crw);

5 Solutions = Eval(Q, (S, τ));
6 Cache = CreateCache();
7 foreach sol ∈ Solutions where sol = (t, ht) do
8 if Valid(sol, CK ,Cache, τin) then
9 AnsSet := AnsSet ∪ {t};

10 return AnsSet;

On line 3 of the Algorithm 8, Crw is the union of CP and the result of
transforming CN (done by the Algorithm 5). Function RewriteQuery on line 4
uses constraints in Crw as rewriting rules to reformulate q : τin into a set Q of
rewritten queries. Function Eval (line 5) then computes the union of the candidate
answers sets for each rewritten query q′ : τin ∈ Q. These candidate answers are
stored in the set Solutions. Note that each candidate answer is computed on (S, τ)
with respect to CP , CN , τin, and they are stored in Solutions in the form of a pair
(t, ht), where ht is the homomorphism used to produce tuple t as an answer to a
query q ∈ Q. We need ht for creating the auxiliary query that is used to validate t
in the next step. Function V alid veri�es whether a candidate answer sol is valid
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with respect to CK and τin on (S, τ) by generating corresponding auxiliary queries.
Indeed, V alid implements the veri�cation detailed in Algorithm 4 concerning CK
(line 18-21). A cache can be used to store results of auxiliary queries to avoid
overcharging data sources (line 6,8).
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Chapter 4

Experiments

In this chapter, we present the results of the experiments we carried out on the
context-driven querying system presented in the previous chapter.

To the best of my knowledge, there is no similar system that supports semantic
web data querying and that veri�es results to obtain context-driven answers as ours.
As mentioned in Chapter 2, there exist some systems that have been developed with
similar technique , but either they serve for other purposes ([51, 33, 35]), or they lack
the use of quality constraints to �lter answers ([20, 22, 21, 55]), which is the main
contribution in our work. Having di�erent purposes, it is not suitable to compare
our system with those proposals, both in terms of performance and in terms of the
nature of rewritten queries. Instead, we decided to develop the two versions of our
proposal, Naive and Rewriting, corresponding to the two approaches mentioned in
Chapter 3, to evaluate and analyze the performance of our solutions.

4.1 General Architecture

As described in Figure 3.1 at Section 3.1, our query processing system consists of two
main parts: Data validation and Data providers. All main tasks of Data validation
such as performing preprocessing steps, managing queries and constraints, rewriting
queries, verifying returned results are done by Validator. The role of Data provider
is to connect to data sources and to compute answers to the queries issued from the
Validator. In fact, in our system, Data provider is composed of two smaller parts:

• The �rst is an Integration system whose core is an ODBA system responsible
for ontological query answering (knowledge-base querying).

• The second part is data sources and corresponding adapters. It consists of
(i) an internal source which is managed and used by the system to store
internal data and necessary intermediate results, and (ii) extended sources
where queried data is stored.

The architecture of our query processing system is depicted in Figure 4.1.
Among the components of the system, Validator is the main component that con-
tains most of the implementation of algorithms of our contribution. Therefore,
experiments focus on it.
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Figure 4.1 � Architecture of system

4.2 The implementation of a prototype on Graal

The system has been developed to provide an e�cient solution for query processing
on Semantic Web Data and to ensure the quality of the results with respect to
given criteria. A prototype has been implemented in Java and developed on the
basis of Graal's framework 1.

Graal is a Java toolkit dedicated to knowledge-base querying within the frame-
work of existential rules (e.g. Datalog+-). The principle feature of Graal is to
compute the answers to a conjunctive query over a knowledge base, a.k.a. ontology-
based query answering . To this end, the team of Graal developed modules and
libraries that allow organizing dataset with a set of rules and implementing query-
ing algorithms on them following both well-known fashions: forward-chaining and
backward-chaining (a.k.a. query rewriting). In addition, Graal has modules en-
abling parsing (e.g. parsing query, parsing rule, etc.), I/O, analyzing rule set,
managing and accessing storage system, etc. Figure 4.2 2 illustrates the main com-
ponents in Graal system.

A knowledge-base in Graal is composed of a set of facts and an ontology ex-
pressed by rules. Graal supports the existential rule framework, which is known as
Datalog+/-, an extension to Datalog. To be more speci�c, a Graal rule can be ex-
pressed by an existential rule, a rule with equality atoms in the head, or a negative
rule. Interestingly, those are also the constraints de�ned in our system.

Graal framework de�nes and provides basic objects such as fact, term, variable,
constant, atom, constraint, query, ontology, knowledge, etc. Those are also the
main objects manipulated in our system. Moreover, fundamental algorithms such

1http://graphik-team.github.io/graal/
2http://graphik-team.github.io/graal/doc/index

86



4.2. THE IMPLEMENTATION OF A PROTOTYPE ON GRAAL

Figure 4.2 � Graal system

as substitution and homomorphism have also been studied and implemented in
Graal, which helps us save a lot of e�ort in development.

As the core of Graal, whose principal feature is to compute the answers to
a conjunctive query over a knowledge base, plays the role of the OBDA of our
system, we use it as the core module in the Data provider part, and we add some
extended modules for data source management and query translation. Data source
management module manages information on sources as well as their con�dence
degrees that are set in the user-de�ned context. The query translation module
is responsible for translating queries to appropriate syntax corresponding to the
used data sources (e.g. SQL, SPARQL, etc.). In addition, we add the necessary
functionality for features that are not supported by Graal, but are necessary for our
validation process. All these components form the infrastructure of our system. On
the top of this framework, we develop the Validator by implementing algorithms:
Naive and Rewriting.

To this end, remember that in the procedure of querying and validating answers,
there is a preprocessing step by which negative constraints are reformulated. This
requires creating an auxiliary dataset, which is stored and managed as an internal
data source of our system. We use the term internal for such auxiliary set in
order to distinguish it from data sources in which queried data is located. For data
sources, the system o�ers a �exible capability allowing integrate many kinds of
data management systems such as the internal storage of Graal, relational database
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systems, triple stores, or specialized systems such as FedX, MapReduce, etc. Each
system has a corresponding adapter to serve communication between it and our
system.

4.3 Di�erent Scenarios of Experiments

To evaluate and analyze our system, we propose two scenarios of experiment corre-
sponding to purposes as following:

• evaluate the performance of two algorithms and some factors a�ecting their
e�ectiveness.

• evaluate the practicality of the solution when dealing with large unequal-trust
datasets on a distributed environment.

In what follows we detail mainly the �rst scenario by presenting the results of
experiments performed with a prototype proposing an in-memory implementation
of our approach over datasets managed by Graal. We also recall the results obtained
on a previous version of our validation algorithm (presented in [9]). In that version,
the rewriting step takes into account only positive constraints without constants,
whereas the negative constraints are treated as key constraints by sub-queries.

4.3.1 Comparing the naive and the rewriting approaches

In this experiment, we want to investigate the performance of our proposed algo-
rithms, namely Naive and Rewriting, and to compare their e�ciency. An impor-
tant goal of these experiments is to analyze features that a�ect the computation
e�ciency, such as the size of datasets, the size of queries, the number and type of
constraints, etc.

4.3.1.1 Experimental setting

For the purposes of the experiment, we use the LUBM benchmark 3, which describes
the organizational structure of universities with 43 classes and 32 properties, and
provides a generator of synthetic data with varying size.

Inspired by the 14 test queries of LUBM, we devised 7 queries and 13 (5 positive,
5 negative, and 3 key) constraints over the LUBM ontology as in Table 4.1. They are
written in Dlgp syntax (details in [41]), an extended Datalog syntax for existential
rules and Datalog+- in Graal. Queries and constraints are proposed so that they
can meet the requirements and purposes of experiments. For instance, the queries
spread from simple queries with few atoms (Q1, Q2) to more complex ones (Q6, Q7).
There are queries whose evaluations on LUBM result in a large result sets (Q2, Q4,
Q6), while others result in small ones (Q5, Q7). Moreover, the activation of some

3Lehigh University: http://swat.cse.lehigh.edu/projects/lubm/
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Q1 q(X, Y )← teacherOf(X, Y ).
Q2 q(X)← Student(X).
Q3 q(X)← GraduateStudent(X), takesCourse(X, Y ).
Q4 q(X)← Publication(X), publicationAuthor(X, Y ).
Q5 q(X,Z)← Student(X), takesCourse(X,Z),

teacherOf(http : //www.Department0.University0.edu/AssociateProfessor0, Z).
Q6 q(X, Y )← Student(X), takesCourse(X,Z), teacherOf(Y, Z), AssociateProfessor(Y ).
Q7 q(X, Y )← GraduateStudent(X), advisor(X, Y ), takesCourse(X,Z), teacherOf(Y, Z).

CP1 teacherOf(Xprof,Xcourse)→ AssociateProfessor(Xprof).
CP2 AssociateProfessor(Xprof)→ advisor(Xstud,Xprof).
CP3 teacherOf(Xprof, http : //www.Department0.University0.edu/GraduateCourse0)

→ FullProfessor(Xprof).
CP4 teacherOf(Xprof, http : //www.Department1.University0.edu/GraduateCourse0)

→ AssistantProfessor(Xprof).
CP5 takesCourse(Xstud, http : //www.Department0.University0.edu/GraduateCourse0)

→ takesCourse(Xstud, http : //www.Department0.University0.edu/GraduateCourse1).

CN1 AssociateProfessor(Xprof), AssistantProfessor(Xprof)→ ⊥.
CN2 AssociateProfessor(Xprof), FullProfessor(Xprof)→ ⊥.
CN3 AssistantProfessor(Xprof), FullProfessor(Xprof)→ ⊥.
CN4 takesCourse(Xperson,Xcourse), teacherOf(Xperson,Xcourse)→ ⊥.
CN5 Student(Xperson), P rofessor(Xperson)→ ⊥.

CK1 headOf(Xprof,Xorg1), worksFor(Xprof,Xorg2)→ Xorg1 = Xorg2.
CK2 advisor(Xstud,Xprof1), advisor(Xstud,Xprof2)→ Xprof1 = Xprof2.
CK3 doctoralDegreeFrom(Xper,Xuniv1),mastersDegreeFrom(Xper,Xuniv2)

→ Xuniv1 = Xuniv2.

Table 4.1 � List of queries and constraints
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constraints can trigger other constraints (CP1 with CP2, CN1, CN2; CP2 with
CK2; etc.). Some queries or constraints also involve constants (Q5, CP3, CP4,
CP5). Recall that, compared to other proposals using query rewriting technique
in literature, our solution has handled better constants, especially in cases where
constraints contain constants which do not emerge in queries. This has practical
signi�cance, because constants are commonly used in real life scenarios.

For experimental data, by means of the UBA Data Generator provided by the
LUBM, we produced two ABoxes of di�erent sizes:

• Dataset 1 contains data of 1 university with 86,165 triples.

• Dataset 5 has data regarding 5 universities with 515,064 triples.

Note that as produced by LUBM's generator, those datasets are consistent with the
TBox of LUBM, but may be inconsistent with 13 constraints of this experiment.

As the main goal of this test is to measure the performance of the algorithms
and to compare the e�ciency of query rewriting with respect to separate veri�cation
queries, datasets are loaded and managed directly in the internal database system
of Graal.

The experiments are carried out on an HP ZBook with a quad-core Intel i7-
4800MQ processors at 2.7GHz with 32KBx4 L1 Cache, 256KBx4 L2 Cache, 6MB
L3 Cache, 16GB 799MHz RAM, and a 120 GB hard drive. A 64-bit Windows 10
operating system and the 64-bit Java VM 1.8.031 constitute the software environ-
ment.

4.3.1.2 The naive validation

Dataset 1
N◦

atoms in
original
query

N◦

involved
constr.

N◦

ans. of
original
query

N◦

valid
ans.

N◦

eval.
queries

Eval.
time

Verif.
time

Total
time

Q1 1 8 1544 523 6449 0.368 4.306 4.674
Q2 1 1 7861 7861 7862 0.109 47.769 47.878
Q3 2 2 1822 1821 3600 0.039 1.911 1.95
Q4 2 0 5939 5939 1 0.033 0.364 0.397
Q5 3 10 50 50 601 0.278 0.609 0.887
Q6 4 10 6564 6564 137977 8.218 127.19 135.408
Q7 4 9 94 21 502 14.512 0.296 14.808

(time in seconds)

Table 4.2 � Evaluation and Veri�cation in the Naive Approach

Recall that the validation process in the Naive approach consists of two basic
steps: (i) evaluate the query to obtain a candidate results set, and (ii) verify each
candidate result with respect to each constraint by generating and evaluating
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Dataset 5
N◦

atoms in
original
query

N◦

involved
constr.

N◦

ans.s of
original
query

N◦

valid
ans.

N◦

eval.
queries

Eval.
time

Verif.
time

Total
time

Q1 1 8 10095 3319 42583 2.971 77.479 80.45
Q2 1 1 36682 36682 36683 0.454 659.937 660.391
Q3 2 2 11900 11900 23750 5.96 12.177 18.137
Q4 2 0 37854 37854 1 0.55 2.008 5.021
Q5 3 10 59 59 886 1.975 2.73 4.705
Q6 4 10 36008 N/A N/A 12.617 oom.err N/A
Q7 4 9 644 219 4328 326.689 5.244 331.933

(time in seconds)

Table 4.3 � Evaluation and Veri�cation in the Naive Approach

sub-queries. The results of naive approach on two datasets are reported in
Table 4.2 and Table 4.3. The �rst two columns contain the number of atoms in
each tested query that indicates their complexity, and the number of constraints
triggered by each one. The remaining columns in each table correspond to the
experimental results of Naive algorithm in Section 3.5 on each data set. This
includes information about the execution time of the tested query (column 6), the
number of returned results of this evaluation (column 3), as well as the number of
�nal valid answers of the query with respect to the constraints (column 4). This
also shows the number of sub-queries needed to perform the constraint veri�cation
of returned results (column 5) and the total time required for this process (column
7).

Overall, Naive algorithm can handle well small data sets and results in all test
cases. However, when performing with large datasets, some cases cannot produce
results due to memory over�ow. Speci�cally, this is the case of Q6. The great num-
ber of auxiliary query answers veri�cation is the reason of this over�ow. We recall
that in Naive algorithm the veri�cation of each answer with respect to a constraint
can provoke not only one but a series of sub-queries due to recursive veri�cations of
"required conditional facts" (similar to the chase process). Consequently, the num-
ber of sub-queries may be very large. Indeed, Q6 is the query having the longest
processing time in both cases. It has 4 atoms in the body that trigger 10 constraints,
and even when working with the smallest dataset it takes more than 127 seconds
to execute up to 137,977 sub-queries for the validation process. Of course, as the
current version stores every intermediate computed results in memory, an auxiliary
database can be a better alternative solution. In spite of that, the limitation on
processing large datasets is one of the main drawbacks of the naive approach.

Moreover, the experimental results show that in most of the cases the time for
the veri�cation step is the major part of the total time. This is the time used to
generate and execute sub-queries. Intuitively, it depends on the size of the original
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query answer set and on the number of involved constraints of the query. The
more returned results and involved constraints there are, the more time it takes.
Although most of sub-queries are simple queries or boolean queries that need very
little executing time, they will take a lot of time and resources when large result
sets are involved. Note however that, for Q7, the evaluating time for complex
original query is signi�cantly greater than the validating time of the small number
of results (94 and 644 answers in Dataset 1 and Dataset 5 respectively).

4.3.1.3 The rewriting validation

N◦

atoms in
original query

N◦

involved
constraints

N◦

rewritten
queries

Max n◦

atoms in
rewritten queries

Rewriting
time

Q1 1 8 1 8 0.017
Q2 1 1 1 2 0.001
Q3 2 2 2 5 0.001
Q4 2 0 1 2 0
Q5 3 11 1 12 0.01
Q6 4 14 1 12 0.005
Q7 4 11 1 12 0.008

(time in seconds)

Table 4.4 � Queries and Rewritten queries (Rewriting approach)

Dataset 1
N◦

valid
answers

Rewriting
time

Evaluating
time

Validating
time

(for CKs)

Total
time

Q1 523 0.017 0.473 2.094 2.584
Q2 7861 0.001 0.14 0.07 0.211
Q3 1821 0.001 0.109 0.078 0.188
Q4 5939 0 0.031 0.061 0.092
Q5 50 0.01 6.83 0.153 6.993
Q6 6564 0.005 25.296 19.351 44.652
Q7 21 0.008 1.427 0.313 0.992

(time in seconds)

Table 4.5 � Rewriting, Evaluation and Veri�cation of Rewriting approach (Dataset
1)

We now turn our attention to the results of Rewriting approach. Recall that
the processing of this approach consists of four steps:

• The preprocessing step that transforms negative constraints into positive con-
straints and computes corresponding auxiliary relations. Note that this step
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Dataset 5
N◦

valid
answers

Rewriting
time

Evaluating
time

Validating
time

(for CKs)

Total
time

Q1 3319 0.017 1.791 10.111 11.919
Q2 36682 0.001 1.221 0.407 1.629
Q3 11900 0.001 1.221 0.297 1.519
Q4 37854 0 0.544 0.447 1.427
Q5 59 0.01 9.37 0.249 9.629
Q6 35922 0.005 85.293 113.451 198.749
Q7 219 0.008 14.561 1.417 15.986

(time in seconds)

Table 4.6 � Rewriting, Evaluation and Veri�cation of Rewriting approach (Dataset
5)

is performed once for each user-setting-context on a database instance. More
precisely, one needs do it only when changes on negative constraints or on
data sources are performed. Auxiliary relations either are materialized and
managed in local system or stored as views computed at evaluating-time. To
simplify, the former was realized in the current implementation. Naturally,
the preprocessing time is directly proportional to the size of the dataset. The
number of constraints, in general, increases after this step. This can be noticed
by comparing the numbers of involved constraints in Table 4.4 with those in
Table 4.3

• The rewriting step uses constraints (positive constraints and transformed neg-
ative constraints) as rewriting rules to reformulate the initial query into a set
of rewritten queries. Notice that this step is completely independent of data
in sources. The results of this step are reported in Table 4.4, which contains
the following information: (i) the time need for rewriting, (ii) the number of
involved constraints of the query (note that they may be di�erent from those
of the naive case), (iii) the number of the rewritten queries in the result set
of this step, and (iv) the largest number of atoms in a rewritten query, which
demonstrates that the more constraints are used in the rewriting procedure,
the more complex are the rewritten queries (number of atoms or joins). The-
oretically, the number of reformulations of a query can explode exponentially
in the worst case, because each constant in a constraint can lead to two new
reformulations. However, thanks to the test conditions for containment and
contradiction in Query Rewriting Algorithm (line 10 Algorithm 7), only useful
reformulations are accepted. Indeed, our experimental results proved that the
number of rewritten queries can be very small even if the number of involved
constraints is not small (Q1, Q5, Q6, Q7 in Table 4.4).

• Two last steps are the evaluation of rewritten queries and the veri�cation of
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the answers in the result set of the evaluation step. Indeed, the answers only
have to be veri�ed with respect to key constraints. The results of these steps
on our two datasets are shown in Table 4.5 and Table 4.6.
The �rst noteworthy result is that the rewriting approach has produced an-
swers in all tested cases. Moreover, as expected as in the naive approach, the
total processing time is directly proportional to the size of the dataset.

It is worth remarking that rewritings are very fast, while the evaluation
time and veri�cation time are the major part in the total time, in all cases.
Clearly the rewritten-query complexity a�ects the evaluation time, for in-
stance, rewritten queries of Q6 and Q7 have 12 atoms in their body and their
evaluation times on 5 universities are the biggest ones.

Evaluating
time

Dataset 1 Dataset 5
Naïve rewrite Naïve rewrite

Q1 0.368 0.473 2.971 1.791
Q2 0.109 0.14 0.454 1.221
Q3 0.039 0.109 5.96 1.221
Q4 0.033 0.031 0.55 0.544
Q5 0.278 6.83 1.975 9.37
Q6 8.218 25.296 12.617 85.293
Q7 14.512 1.427 326.689 14.561

(time in seconds)

Table 4.7 � Comparison of evaluating time of Naive approach and Rewrite approach

Total
time

Dataset 1 Dataset 5
Naïve rewrite Naïve rewrite

Q1 4.674 2.584 80.45 11.919
Q2 47.878 0.211 660.391 1.629
Q3 1.95 0.188 18.137 1.519
Q4 0.397 0.092 5.021 1.427
Q5 0.887 6.993 4.705 9.629
Q6 135.408 44.652 N/A 198.749
Q7 14.808 0.992 331.933 15.986

(time in seconds)

Table 4.8 � Comparison of total time of Naive approach and Rewrite approach

Di�erent from Naive approach, the validation step in Rewriting approach
takes into account only key constraints. Clearly, the time for this step depends
on the involved key constraints and the size of the result set obtained by the
evaluation of rewritten queries. Consequently, such amount of time can be a
signi�cant part in the total time, as for instance, Q1 and Q6 in Table 4.5 and
Table 4.6.
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Figure 4.3 � Comparison of total time of Naive approach and Rewrite approach

4.3.1.4 Comparison

After having detailed analysis of the results of each approach, we now need to make
a correlation between them. The summary of executing time of the initial queries in
the naive approach and of the rewritten queries in the rewriting approach is shown
in Table 4.7. In this table, it is easy to see that the executing time of rewritten
queries are not always much greater than those of corresponding queries in the
naive approach, even if rewritten queries are more complex after integrating the
constraints. One reason is that rewritten queries can contain constants introduced
by added atoms, which highly reduce the querying space. In Table 4.7, Q7 is the
typical example for this case. Particularly, the rewritten query of Q7 has 12 atoms
compared to 4 atoms in the original one, but its executing time is far less in both
datasets.

Table 4.8 is a summary of total processing time of both approaches. It indicates
one of the most meaningful observations of our experiments: the rewriting approach
is clearly far more e�cient than the naive approach in most of the cases.

Indeed, except for Q5, whether working on small or large dataset, whether
treating simple (e.g. Q1, Q2) or complex (e.g. Q6, Q7) initial query, whether
having few (e.g. Q2, Q4) or many (e.g. Q6, Q7) involved constraints, the rewriting
approach always requires less processing time. Q5 is a special case and is unique
among tested queries.In fact, the answer set of Q5 is small (only 50 answers on
the dataset 1, or 59 on the dataset 5). As a result, although there are up to
10 involved constraints, the veri�cation time is small (0.609 sec and 1.975 sec on
dataset 1 and 5 respectively). Meanwhile, the integration of constraints has greatly
increased the complexity of the rewritten query (from 3 to 12 atoms). This leads to a
dramatic increase in execution time of the rewritten query compared to the original
query. This amount is almost the entire total processing time, and is much greater
than the veri�cation time of this case in the naive approach. Consequently, we can
conclude that: the rewriting approach is less e�cient than the naive method in some
cases when dealing with a considerable number of constraints, and the evaluation of
the original query gives a very small answers set in a short time. This situation
particularly deserves more investigation to establish a threshold.
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4.3.2 Evaluating the use of a context-driven querying system
for very large data sets

The use of our context-driven querying system over very large data sets has been
the subject of our work in [9]. That work points out not only the usability of our
validation on query answers but also the impact of data distribution guided by the
con�dence degree. Even if I, myself, have mainly worked on the validation aspects,
this manuscript recalls the main results described on that research report4.

4.3.2.1 Experimental setting

MapReduce is a simple yet powerful framework for implementing applications in
large scale distributed systems without having extensive prior knowledge of issues
related to data redistribution, or task allocation and fault tolerance ([48]).Most
MapReduce frameworks includes Distributed File Systems (DFS) designed to store
very large �les with streaming data access patterns and data replication for fault
tolerance while guaranteeing high disk I/O throughput.

We have used the open source version of MapReducem, Hadoop, developed by
The Apache Software Foundation. Hadoop framework includes a distributed �le sys-
tem called HDFS5 designed to store very large �les. In MapReduce frameworks the
access to data requires a full scan of input data from DFS, which may increase
disk/IO and communication costs in applications involving very large datasets.
Many data management frameworks have been introduced to allow e�cient access
to large datasets stored in a DFS. In these frameworks, only relevant columns/data
can be accessed and queried using "e�cient" SQL-like query languages. Apache
Hive, Hbase and Pig are examples of such data management frameworks.

For data analysis, we have used Hive framework which provides data indexing
and partitioning for e�cient data analysis. Queries in HiveQL (a SQL-like language)
are converted to a sequence of MapReduce jobs. The main motivation to use Hive
is its ability to manage huge amount of compressed datasets. Each table can be
divided into partitions (each partition corresponds to one or more HDFS buck-
ets/splits), providing a more e�cient execution of queries involving large datasets
with di�erent con�dence degrees. Communication costs, HDFS disk I/O and data
analysis processing time decrease because only table splits corresponding to, at
least, a given con�dence factor is selected for data analysis.

Figure 4.4 places Hive and MapReduce in our general architecture.
Experiments were carried out on 24 Virtual Machines (VMs) randomly se-

lected from our university cluster using OpenNubula software for VMs administra-
tion. Each VM has the following characteristics : 1 Intel(R) Xeon@2.53GHz CPU,
2 Cores, 8GB of Memory and 100GB of Disk. Setting up a Hadoop cluster con-
sists of deploying each centralised entity (namenode and jobtracker) on a dedicated

4Thanks to M. Bamha, specialist on MapReduce, who accepted this collaboration, results
concerning data distribution were also possible.

5HDFS: Hadoop Distributed File System.
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Figure 4.4 � Architecture with MapReduce

VM and co-deploying datanodes and tasktrackers on the rest of VMs. The data
replication parameter was �xed to 3 in the HDFS con�guration �le.

4.3.2.2 The impact of data distribution using con�dence factors

To evaluate the performance of our table's partitioning using con�dence factors,
we have compared the execution of di�erent HiveQL queries using both partitioned
and non-partitioned LUBM data sources (w.r.t. con�dence factors). In partitioned
LUBM data sources, records of each table is stored into blocks and each block con-
tains only records corresponding to a unique con�dence factor. For non-partitioned
data, each block of data, of each table, may have di�erent con�dence factors.

To study the e�ect of the con�dence factor in partitioning our LUBM benchmark
(about 100GB of source data corresponding to approximately 8GB of compressed
tables), we have considered con�dence factors ranging from 25% to 95% (i.e. 0.25,
0.95).

Query Total CPU Time HDFS Read Original table size
Q1 51.52 seconds 2709273139 Bytes (∼2.7 Gbytes) ∼19 Gbytes
Q2 478,13 seconds 19857918459 Bytes (∼19 Gbytes) ∼19 Gbytes

Table 4.9 � E�ect of partitioned data (w.r.t. condidence factor) on Q's execution
time.

Table 4.9 shows the execution of query Q: SELECT Count(*) FROM publicatio-
nAuthor WHERE cf_factor>=85; in two di�erent situations. We denote by Q1 its
execution using partitioned data (w.r.t. con�dence degree), and by Q2 its execution
using non partitioned data. In all tests, including those presented in Table 4.9, we
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notice that Q1 outperforms Q2. Execution time for Q1 is approximately 10 times
smaller than for Q2. The ratio between these two execution time can be explained
by the fact that in Q1 only relevant data (e.g. data corresponding a con�dence
factor higher than 85%) is read from HDFS whereas in Q2 all input data need to be
read. In this scenario, HDFS disk I/O and the amount of data transmitted over the
network diminish considerably, implying a reduction of the query processing time
as well. However, queries with low τin are not really impacted by data partitioning
according to con�dence degrees because, in this case, almost all input data should
be read from HDFS, anyway.

4.3.2.3 Querying under constraints on a MapReduce environment

Table 4.10 shows some experimental results obtained with a previous version of our
rewriting algorithm � the one we had at the moment of that collaboration work.

T11 T12 T2 T3 T4

Number of CP - CN - CK 1-2-2 1-1-1 2-0-0 3-0-0 3-0-1
Query's con�dence degree 85 85 60 60 60
Time to rewrite (TRew) 0.003 0.004 0.003 0.003 0.003
Time for �rst evaluation (Time1) 3875 3875 3577 4533 5834
Number of answers 46 46 177371 184188 0
Number of subsidiary queries 181 120
Time to generate subsidiary queries
(TSubQuery)

0.397 0.334

Number of sub queries evaluated 35 24
Time for total sub-queries evaluation
(Time2)

3910 2827

Number of validated answers 4 4

Table 4.10 � Di�erent steps of query validation and evaluation (time in seconds).

Results are on partitioned and compressed data (as described in Section 4.3.2.2)
over 6 machines. Our performance is illustrated with a conjunctive query q having
5 joins (6 − 8 after rewriting). Time1 expresses the maximal CPU time spent by
one of our cluster machines. Lines TRew and TSubQuery indicate the time needed,
respectively, to rewrite the given query q and to generate subsidiary queries. Both
are negligible (at least when we consider the number of queries to be evaluated and
the time needed for that)

The algorithm presented in [9] considers two validation steps: the rewriting step
and the sub-query evaluation step. In this previous version of our approach, negative
constraints were not translated into positive ones yet. For that reason, they were,
together with key constraints, veri�ed by using sub-queries. In this context, test T1

illustrates the application of these two validation steps. The di�erence between T11

and T12 relies on the number of negative or key constraints. In T11 , 181 subsidiary
queries are necessary for constraint validation, but only 35 are sent to the query
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evaluator (the others are validated by results in the cache). All other tests apply
only the rewriting step (no subsidiary query is needed). As HiveQL does not allow
queries with more than one embedded sub-query, tests T2, T3, T4 use at most one
negative or key constraint. Tests T2 and T3 cannot be done by using subsidiary
queries - indeed, q1 has more than 150000 answers!

4.3.2.4 Discussion

With the work presented in [9], we have noticed that query evaluation on MapRe-
duce evaluator faces the following troubles:

• When the number of answers for the �rst (rewritten) query is large, the vali-
dation via subsidiary queries is not possible. The reason is that the time re-
quired for each query evaluation on MapReduce machinery renders the whole
evaluation is in general unfeasible.

• Due to HiveQL limited expression power, the rewriting option could not be
adopted for the whole set of constraints. Indeed, as HiveQL does not allow
queries with more than one embedded sub-query, negative constraints could
not be incorporated in the query's body. This result was a motivation for us
to invest in a solution for dealing with negative constraints via positive ones.

Except for this drawback, the feasibility of our approach with a MapReduce
evaluator was proved.

99



4.3. DIFFERENT SCENARIOS OF EXPERIMENTS

100



Chapter 5

Conclusions and Perspectives

The number of currently available data (in LOD) is probably higher than ever
before. Naturally, the need to use and exploit them also increase accordingly with
advanced and complex tasks such as data mining, deep learning, etc. Consequently,
a quality dataset is an essential precondition. As quality purposes and requirements
are very diverse, and as data itself, in reality, are inconsistent and incomplete, our
work plays an important role with the following main contributions:

The proposal of a context-driven querying system We propose a context-
driven querying system which allows the satisfaction of data obtained from semantic
web data providers with respect to a given querying quality pro�le. Users can
establish themselves a querying quality pro�le by de�ning a set of constraints and
a set of con�dence degrees of data sources. The constraints comprising positive
constraints, negative constraints and key constraints are imposed on query results.
Our goal is to �lter valid answers at query time instead of doing the validation on
each data source, the latter being usually too heavy or unfeasible in the Web of
Data context.

Two context-validation algorithms In the Naive approach, we �rst evaluate
the initial query. Then, for each answer, we verify whether it respects the user's
constraint. The veri�cation is done by generating sub-queries. Experiments of
this �rst approach show that it can perform pretty well with small datasets, but
it encounters many di�culties when dealing with large datasets. Di�culties are
remarked due to the explosion of the number of sub-queries which only happens
when the initial query has a lot of answers and involves a large number of constraints.

The second solution, the Rewriting approach, attempts to minimize the number
of sub-queries by integrating as much as possible involved constraints into the initial
query. In that way, the result set of the new rewritten queries will correspond only
to the valid answers of the original query. In such manner, we can do veri�cation
while doing evaluation. Compared to other works in the query rewriting context, our
query rewriting algorithm takes into account both positive and negative constraints,
thanks to a preprocessing step transforming the latter into positive forms, which
allows us to treat them in the same way. The rewriting is based on the chase
procedure. It uses constraints from left to right as rewriting rules in other to add
into the query the condition to be veri�ed. In the rewriting approach, only key
constraints are veri�ed as in the naive approach.
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A sound and complete context-driven-rewriting method We have proved
the sound and completeness of the rewriting algorithm, with positive constraints
respecting the weak-acyclic condition. Our experiments have shown its practicabil-
ity.

One important novelty of our rewriting algorithm is that it allows to inte-
grate, into query's body, constraints which are usually ignored in other solu-
tions [33, 42, 40]. The two typical examples are cases where constraints have atoms
containing constants or duplicated variables, while in the query's body the corre-
sponding positions contain distinct variables. In other words, these are the cases
where there is no homomorphism from constraints' body to query's body.

Another very important aspect of our approach is the possibility of dealing
with negative and key constraints. We recall that our key constraints allow unicity
veri�cation within a unique relation (as primary keys) or between di�erent rela-
tions as in logical formulas: ∀X∀Y A(X, Y ) ∧ ¬(∃Z B(X,Z) ∧ (Y 6= Z)) and
∀X∀Z B(X,Z)∧¬(∃Y A(X, Y )∧ (Y 6= Z)). Constraints in works such as [33, 40]
are less expressive.

Experiment comparison In 86% of the situations of our experimental results,
the rewriting approach outperforms the naive one. Nevertheless, as mentioned
in Chapter 4, there are some factors in�uencing the e�ectiveness of the rewriting
approach such as the number of involved constraints, the size of the answer set
and the evaluating time of the original query, etc. All these aspects explain why in
14% of our experiments, the overall performance time of the rewriting solution is
greater than the one of the naive solution. By comparing this two approaches, we
could stress the importance of the rewriting method.

Several points deserve further study, and thus, we brie�y present here some
perspectives that can be envisaged extending our work.

In terms of possible optimizations : some simple practical optimizations have
been implemented in the current prototype (such as detecting the presence of
explicit contradictions in intermediate rewritten queries, ignoring reformulations
which are not more restricted than their antecedent). Such optimizations have
eliminated many meaningless rewriting-branches, thereby signi�cantly reducing the
number of reformulations in the �nal rewritten query set (as indicated in the ex-
perimental chapter). However, there are still many areas for improvement.

• As the most expensive step in the validation is the data querying (i.e. the
evaluation time), for the naive approach, the implementation of a cache for
valid results of previous queries is a promising solution.More precisely, during
the evaluation process, intermediate valid results of boolean queries are kept at
the cache. Notice that the cache mechanism can be used not only for boolean
queries. It can also be extended for the rewriting approach. Obviously, a cache
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update policy has to be investigated to have a trade-o� between e�ciency and
accuracy/"fresh" of data. In a context where the evolving characteristic of
data is not important (for example, infrequent changes in source data), it
could be interesting to incrementally build a local warehouse for valid results
of frequent queries.

• Concerning the query rewriting algorithm, the current version attempts to
integrate as much as possible involved constraints into the original query.
As a result, the �nal rewritten query set may contain excessively complex
ones which usually need long execution time. Worse than that, due to the
limited capability of data providers, they cannot always be translated into
the query language of data provider. Deriving from the caching mechanism
above, an idea arises, in which we do not entirely rewrite a query with all
relevant constraints if the intermediate rewriting results of this query is "close
enough" to a query that has already been rewritten previously. In this case,
the evaluation and validation of current query can leverage existing results.
Obviously, this needs more studies to clarify the notion "close enough" above.

In terms of experiments : we have successfully tested our solutions on a local
centralized setting (with Graal) and on a large distributed data environment (via
Hadoop-Hive system). From the obtained results, the following experimental works
can be continued in order to extend and complement our initial purposes:

• The proposed approaches need to be tested and analyzed in a real LOD envi-
ronment. Actually, we conducted experiments with a Federated-query system,
namely FedX. Queries are well evaluated with a single source, which is a big
instance generated with the LUBM benchmark and accessed via the Virtu-
oso SPARQL Endpoint. In that case our result validation proposal naturally
runs (similar to those in case of Graal). Nevertheless, we could not verify
it with FedX accessing more than one Virtuoso SPARQL endpoint (on two
di�erent servers), due to an error that occurs at FedX level that is not �xed
yet. Fortunately, Saleem et al. in [86] introduced recently a new federated
engine for SPARQL endpoint federation, namely CostFed, which has been
experimentally demonstrated to be better than all the existing ones. Hence,
we plan to implement our system with CostFed, thereby we can evaluate and
analyze our solutions on a "closer real" LOD environment (than the setting
via Hadoop-Hive).

• We have to determine in which cases the naive approach is more e�cient than
the rewriting one. As mentioned above, this depends on several factors, thus a
thorough empirical investigation will help establish threshold-based conditions
for this issue.

• Enriching the feature of the system is one of our important perspectives.
In [26], aggregate functions has been theoretically considered. However, it is
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necessary to completely implement and test them.

Towards more expressive constraints : in the current setting, our constraints
bounds to some syntactical restrictions to guarantee the termination of chase pro-
cedure and the �rst-order rewritability of query answering. Particularly, constraints
adopt weak-acyclicity condition, which is only a common one in many studies in
literature. Clearly, considering our goal and our setting, we are interested in data-
independent chase terminations 1, which takes only the constraints into account
and not the instance in databases. In [72] we can �nd other proposals of this type
such as Rich acyclicity [49], Safe dependencies [66], Super Weak acyclicity [64],
Strati�cation [31], Inductively restricted dependencies [66], etc. The termination
conditions in those proposals are based on di�erent classes of TGDs, because the
non-terminating chase sequence lies in the existentially quanti�ed variables in the
head of TGDs. As a result, choosing one of them will change our positive con-
straints, which leads to the need for studying and testing thoroughly for each case.

1In literature, there exists another class of data-dependent chase terminations, where the chase
termination depends on a �xed database.
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Thanh Binh NGUYEN

L’interrogation du web de données garantissant des réponses valides par
rapport à des critères donnés

Résumé : Le terme Linked Open Data (LOD) (ou données ouvertes liées) a été introduit pour la première
fois par Tim Berners-Lee en 2006. Depuis, les LOD ont connu une importante évolution. Aujourd’hui,
nous pouvons constater les milliers de jeux de données présents sur le Web de données. De ce fait, la
communauté de recherche s’est confrontée à un certain nombre de défis concernant la récupération et le
traitement de données liées.
Dans cette thèse, nous nous intéressons au problème de la qualité des données extraites de diverses
sources du LOD et nous proposons un système d’interrogation contextuelle qui garantit la qualité des
réponses par rapport à un contexte spécifié par l’utilisateur. Nous définissons un cadre d’expression
de contraintes et proposons deux approches : l’une naïve et l’autre de réécriture, permettant de filtrer
dynamiquement les réponses valides obtenues à partir des sources éventuellement non-valides, ceci au
moment de la requête et non pas en cerchant à les valider dans les sources des données. L’approche naïve
exécute le processus de validation en générant et en évaluant des sous-requêtes pour chaque réponse
candidate en fonction de chaque contrainte. Alors que l’approche de réécriture utilise les contraintes
comme des règles de réécriture pour reformuler la requête en un ensemble de requêtes auxiliaires, de
sorte que les réponses à ces requêtes réécrites ne sont pas seulement les réponses de la requête initiale
mais aussi des réponses valides par rapport à toutes les contraintes intégrées. La preuve de la correction
et de la complétude de notre système de réécriture est présentée après un travail de formalisation de la
notion de réponse valide par rapport à un contexte. Ces deux approches ont été évaluées et ont montré
la praticabilité de notre système.
Ceci est notre principale contribution: nous étendons l’ensemble de systèmes de réécriture déjà connus
(Chase, C&BC, PerfectRef, Xrewrite, etc.) avec une nouvelle solution efficace pour ce nouveau défi qu’est
le filtrage des résultats en fonction d’un contexte utilisateur. Nous généralisons également les conditions
de déclenchement de contraintes par rapport aux solutions existantes, en utilisant la notion de one-way
MGU.
Mots clés : Web sémantique, réécriture de requêtes, contrainte de qualité utilisateur, provenance des
données

Querying the Web of Data guaranteeing valid answers with respect to
given criteria

Abstract: The term Linked Open Data (LOD) is proposed the first time by Tim Berners-Lee since 2006.
Since then, LOD has evolved impressively with thousands datasets on the Web of Data, which has raised
a number of challenges for the research community to retrieve and to process LOD.
In this thesis, we focus on the problem of quality of retrieved data from various sources of the LOD and
we propose a context-driven querying system that guarantees the quality of answers with respect to the
quality context defined by users. We define a fragment of constraints and propose two approaches: the
naive and the rewriting, which allows us to filter dynamically valid answers at the query time instead of
validating them at the data source level. The naive approach performs the validation process by gener-
ating and evaluating sub-queries for each candidate answer w.r.t. each constraint. While the rewriting
approach uses constraints as rewriting rules to reformulate query into a set of auxiliary queries such that
the answers of rewritten-queries are not only the answers of the query but also valid answers w.r.t. all
integrated constraints. The proof of the correction and completeness of our rewriting system is presented
after formalizing the notion of a valid answers w.r.t. a context. These two approaches have been evaluated
and have shown the feasibility of our system.
This is our main contribution: we extend the set of well-known query-rewriting systems (Chase, Chase
& backchase, PerfectRef, Xrewrite, etc.) with a new effective solution for the new purpose of filtering
query results based on constraints in user context. Moreover, we also enlarge the trigger condition of the
constraint compared with other works by using the notion of one-way MGU.
Keywords: Semantic Web Data, Query rewriting, User Quality constraint, Data provenance
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