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Abstract 

In numerical applications of reinforced concrete structures, the steel-concrete interface 

behavior has a vital importance when the cracking properties are investigated. A finite element 

approach for the steel-concrete interface to be used in large-scale simulations was proposed by 

(Torre-Casanova 2013) and (Mang 2016). It enables to calculate the slip between the steel and 

concrete in the tangential direction of the interface element representation. The aim is here to 

improve the initial bond-slip model to be more efficient and more representative. 

The document is divided into three parts: 

 The existing bond-slip model is evaluated. The bond-slip model is then improved by 

considering transversal and irreversible bond behaviors under alternative loads. The 

new bond-slip model is validated with several numerical applications. 

 Confinement effect is implemented in the bond-slip model to capture the effect of 

external lateral pressure. According to the performed numerical applications, it is 

demonstrated how the active confinement can play a role, through the steel-concrete bond, 

during monotonic and cyclic loading cases  

 Dowel action is finally investigated with the new bond-slip model. Two different 

experimental campaigns (Push-off tests and four-point bending tests) are reproduced 

with different reinforcement (1D truss and beam) and interface (new bonds-slip and 

perfect bond) models. The results show that the proposed simulation strategy including 

the bond slip model enables to reproduce experimental results by predicting global 

(force-displacement relation) and local behaviors (crack properties) of the reinforced 

concrete structures under shear loading better than the perfect bond assumption which 

is commonly used in the industrial applications. 

Keywords: Steel-concrete interface, bond-slip model, irreversible bond behavior, active 

confinement effect on the bond, dowel action. 
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Résumé 

Le comportement de l’interface acier-béton a une grande importance lorsque la fissuration des 

structures en béton armé est étudiée. Une approche par éléments finis a été proposée par (Torre-

Casanova 2013) et (Mang 2016) pour représenter l'interface acier-béton dans les simulations 

de structures à grandes dimensions Le modèle proposé permet de calculer le glissement 

tangentiel entre l'acier et le béton. L’objectif de cette étude est d’améliorer ce modèle initial 

pour le rendre plus efficace et plus représentatif. 

Le document est découpé en trois parties : 

 Le modèle initial de liaison est évalué. Puis amélioré tant en chargement monotone 

qu’alterné. Le nouveau modèle est validé par plusieurs applications numériques. 

 L'effet de confinement est implémenté dans le modèle de liaison acier-béton. L'effet 

sur le comportement structural du confinement actif est étudié en utilisant le nouveau 

modèle. A partir des simulations proposées, il est montré, par l’utilisation du nouveau 

modèle, que l’effet de confinement actif peut jouer un rôle sur les comportements 

monotones que cyclique.  

 L'effet goujon est étudié avec le nouveau modèle liaison acier-béton. Deux 

campagnes expérimentales différentes sont simulées avec différents modelés de 

renforts (1D barre et poutre) et d’interface (liaison acier-béton et liaison parfaite). Les 

résultats montrent que le nouveau modèle de liaison acier-béton permet de mieux 

reproduire les résultats expérimentaux par rapport au modèle de liaison parfaite aux 

échelles globale et locale. 

Mots clé : Liaison acier-béton, comportement de liaison irréversible, confinement actif, effet 

goujon.  
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Introduction 

Reinforced concrete is a composite material made of concrete and steel. The applications of 

reinforced concrete structures are very variable, for example beams, bridges, walls, pillars, 

nuclear power plant containment buildings etc. Steel and concrete have very different 

properties, implying a particularly complex behavior for reinforced concrete. Concrete has a 

high compressive strength and a low tensile strength. Cracking generally occurs in a reinforced 

concrete structure when the tensile limit is exceeded in concrete. In many civil engineering 

applications, steel is used to compensate the low tensile strength of the concrete. The 

combination of these two materials creates a resistant structure which can be used in very 

varying construction branches. Yet they are complex materials and require detailed 

consideration. Under the certain amount of loading, the cracks may initiate in the form of micro 

cracks and then propagate. If the loading reaches a certain limit, macro cracks can appear and 

develop until the structure breaks. The stress transfer between these two materials is extremely 

important to analyze cracking behavior which may lead the structural failure. The stress 

transfer between steel and concrete occurs through the interface between them. For example, 

when a crack occurs, the stresses on the surrounding concrete becomes zero and the load is 

completely taken by the steel at the crack location. Then, the forces are gradually transferred 

from the steel to the concrete. This transfer zone has a significant impact on the characterization 

of cracking and is directly influenced by the characteristics of the steel-concrete interface. 

Taking into account the steel-concrete interface characteristics is therefore a key element for a 

correct prediction of cracking in reinforced concrete structures. 

In industrial numerical applications, the most commonly used approach is the perfect bond 

model which is based on the same displacement between the steel and concrete. However, this 

perfect bond hypothesis doesn’t consider the complex phenomena at the steel-concrete 

interface like significant disorders, repartition, propagation and the distribution of the cracks, 

which is directly related to the steel-concrete interface. In literature, several numerical methods 

( (Ngo and Scordelis 1967), (Reinhardt, Blaauwendraad and Vos 1984), (Clément 1987) etc.) 

are proposed in order to define concrete-steel bond behavior, but unfortunately these methods 

have many difficulties in computation of complex structures in 3D especially when large scale 

industrial applications are considered. 
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(Torre-Casanova 2013) and (Mang 2016) proposed an alternative approach for the simulation 

of the steel-concrete bond behavior which was adapted for large scale simulations. Taking into 

account mechanical interactions between concrete (generally in 3D) and steel reinforcement 

(represented by 1D elements), this model improves the cracking description during the active 

cracking phase (beginning of crack apparition) and influences the local behavior of the 

structure especially around the steel reinforcement. A new finite element was subsequently 

developed and implemented in the finite element code (Cast3M 2017) focusing on the 

tangential behavior of the bond. 

Motivation of the research 

The behavior of reinforced concrete structures can be extremely complex in the case of 

representing cracking process numerically. The composite characteristics of reinforced 

concrete structure should be finely presented especially at the steel-concrete interface. A 

consideration of a proper methodology for the steel-concrete interface is thus necessary for the 

industrial applications where the crack properties are highly significant. It is especially the case 

for structures in which the tightness is a key functionality, as the potential leakage rate is a 

direct function of the crack properties. 

Objectives 

The main objective of this research is to develop further the methodology that has been 

previously developed to be applied on industrial structures with an acceptable computational 

cost and representative of the bond-slip mechanisms. The general objectives of the study can 

be summarized as following: 

 Dowel action is one of the shear stress transfer mechanisms in reinforced concrete 

structures which occurs at the crack location. The investigation of this phenomena with 

the bond-slip may be useful since the proposed model represents the cracking behavior 

in a detailed way. In order to do so, initially, the normal directional behavior of the 

bond-slip model should be investigated. The proper validation of the model in normal 

and tangential directions are thus necessary. 

 Irreversible behavior of the bond is implemented in the bond-slip model and tested with 

limited number of applications by (Mang 2016). Yet, the application of irreversible 
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bond-slip model on different types of numerical tests is necessary for the complete 

validation of the model. 

 In literature, several authors like (Hadi 2008), (Karatas, Turk and Ulucan 2010), (Yang, 

et al. 2015) etc. have pointed out the importance of the active and passive confinement 

on the steel-concrete bond properties by some experimental and numerical studies. In 

addition, the active and passive confinement effect on the bond strength is investigated 

by (Torre-Casanova, Jason, et al. 2013) with an experimental campaign. The authors 

(Torre-Casanova, Jason, et al. 2013) have proposed empirical formulations to 

determine the splitting to pull-out failure (passive confinement effect on the bond 

strength). Investigation of external pressure effect (active confinement) on the bond is 

thus necessary to conclude this study. 

 In order to understand the significance of the bond-slip model to represent the dowel 

action numerically, a proper comparison is also necessary with other bond models (like 

perfect bond hypothesis) by reproducing different experimental campaigns. However, 

before performing these kinds of analysis, the proper models for steel and concrete 

should be investigated carefully to represent shear behavior of the reinforced concrete 

structures. 

Based on the objectives presented above, the general consents of this thesis are established. 

Methodology 

This study can be summarized under four major topics: 

First chapter is dedicated to the state of the art. The steel-concrete interaction in reinforced 

concrete structures is generally explained and the importance of an interfacial behavior for the 

crack properties is expressed. Then, numerical representation of the steel-concrete bond is 

presented by defining several existing numerical models. A background information is 

provided on the monotonic and cyclic bond behaviors. Then, the confinement influence on the 

steel-concrete bond is briefly clarified for different confinement types. Eventually, dowel 

action and its importance to the shear resistance is explained. 

Second chapter is dedicated to the introduction and evaluation of the existing bond-slip model. 

Firstly, detected anomalies are presented, then the adapted new methodologies are explained 
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to overcome the presented anomalies. Afterwards, several numerical tests are detailed to 

evaluate the adopted methodologies. 

The third chapter is dedicated to the implementation of the confinement effect inside the bond-

slip model. Initially, the proposed formulas are described to consider the confinement effect 

within the bond properties. Then, the implementation of the confinement effect to the bond-

slip model is explained in details. The implementation is validated by reproducing several 

experimental pull-out campaigns. Again, the effect of active confinement is investigated with 

the new bond-slip model on a tie-rod under different type of loads (monotonic and cyclic). 

The fourth chapter is dedicated to the investigation of the dowel action in reinforced concrete 

structures with the new bond-slip model. In order to represent the shear behavior, two different 

experimental campaigns (push-off tests and bending tests) are reproduced by different bond 

and reinforcement models.  
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1. Chapter-1:                                        

State of the Art 

1. Introduction 

This study aims to improve the integration of the steel-concrete bond for modeling reinforced 

concrete structures. In the context, existing bond-slip model (Casanova, Jason and Davenne 

2012) is firstly investigated and then improved by considering different phenomenon like 

transversal and irreversible bond behavior, dowel action, confinement effect, etc. This Chapter 

is created to give a background information about the whole study before going into the details 

of the implementation and the analysis related with the bond-slip model. 

This Chapter highlights a general information mainly in four areas: 

 Steel-concrete interaction: the importance and effect of steel-concrete interface in the 

numerical applications and its characterization are explained. 

 Numerical representation of the steel-concrete bond: several existing interface models 

in literature are explained specifically focusing on the bond-slip behavior. 

 Steel-concrete bond law: monotonic and irreversible (under cyclic loadings) bond 

behavior of the steel-concrete bond are exposed. Moreover, active and passive 

confinement effect and their influence on the steel-concrete bond behavior are 

explained in detail. 

 Dowel action: the shear transfer in reinforced concrete structures is explored mainly by 

focusing on the dowel action phenomenon. Characterization, analytical and numerical 

representation of the dowel action are explained in a detailed way. 

2. Steel-Concrete Interface 

Reinforced concrete structures formed of steel and concrete make a great combination to resist 

loading. The tension load acting on reinforced concrete structure is mainly taken up by 

reinforcement inside the concrete while the compression load is absorbed by the concrete itself, 

which provides the strength. Nowadays, these types of combinations are widely used in 
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construction industry. Since both materials have very different features from each other, 

understanding of their interaction is quite essential to analyze the behavior of the reinforced 

concrete structures, especially when the cracking properties are concerned for investigation. 

2.1. Role of Steel-Concrete Bond 

Bond behavior is important to take into account as cracking behavior in reinforced concrete 

structures (number, initiation, location, propagation etc.) is generally influenced by the stress 

distribution along the interface between steel and concrete. A structural element composed of 

an embedded reinforced bar in a concrete block is considered by (Torre-Casanova 2013) in 

order to illustrate the bond behavior. Figure 1.1 represents the reinforced structure on which 

displacement is imposed at the ends of the reinforcement. The only force applied on the 

concrete block is transferred by the steel bar. Therefore, only the interface between concrete 

and steel is responsible for the loading of concrete and therefor for the initiation and 

propagation of the cracks. 

 

Figure 1.1 Principles of the tie-beam test (Torre-Casanova 2013). 

When the load is applied at both ends of the steel bar, the stress is firstly transferred from steel 

through the interface to concrete and then distributed between them. This is mainly the reason 

for the stress free concrete ends since the load (or displacement) is applied on the steel bar. In 

the initial state where cracks are not yet observed (un-crack state), which is presented in Figure 

1.2a, the stress along the steel and the concrete is homogenously distributed between the points 

A and B until the stress increases up to the concrete tensile strength. When the stress reaches 

the concrete tensile strength, a first crack occurrence is observed in the concrete. At the exact 

crack location, the applied load passes only through the steel and gradually transfers to concrete 

at both sides of the crack (Figure 1.2b). If the load applied on the steel increases, a second crack 

occurs at in the concrete. While the applied load keeps on increasing, this process repeats itself 

at different locations in the concrete. This phase is called cracking stage. When the distances 

between the cracks are too small to allow the concrete to reach its tensile strength again, there 

can no longer be cracks. This final part is called stabilized cracking phase (Figure 1.2c). At this 
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stage the majority of the forces are compensating by the steel bar itself. The value  emin 

represents the minimum distance between the two successive cracks and can be given for 

example by the following Eq. 1.1 (Eurocode 2 2007): 

 emin = 
dsScft
4Ssτu

 (1.1) 

where, ds is the diameter of the steel bar, ft is the tensile strength of the concrete, τu is the 

ultimate bond strength, Ss and Sc are the cross sections of steel and concrete respectively. 

 

Figure 1.2 Stress distribution in the steel and concrete during (a) un-cracked phase, (b) cracking 

phase, (c) stable cracking phase (Torre-Casanova 2013). 

All the phases explained above are governed by the interactions between the steel and concrete 

along the interface. As a conclusion, the cracking properties (number, initiation, location, 

propagation etc.) in reinforced concrete materials not only depends on the geometric and 

material properties of the steel and concrete, but also depend on the bonding properties between 

them. 
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2.2. Characterization of Steel-Concrete Bond 

The most commonly adopted test to examine the bond strength of reinforced concrete structures 

in detail is the pull-out test. One of the first studies on the steel-concrete bond behavior is 

performed by (Abrams 1913) whom performed about 1500 pull-out tests in displacement 

control on different test specimens (Figure 1.3). Later on, many different pull-out tests are 

performed by several authors (e.g. (Slater, Richart and Scofield 1920), (Morita and Kaku 

1974), (Eligehausen, Popov and Bertero 1983)) in order to determine the bond stress-bond slip 

relation in reinforced concrete materials. 

 

Figure 1.3 Different types of pull-out specimens (Abrams 1913). 

The bond stress τ can be easily determined by dividing the force by the area of the steel bar 

embedded inside the concrete as in the Eq. 1.2 (Hadi 2008): 

 τ =  
As∆fs
πdsx

=
ds∆fs
4x

 (1.2) 

where τ is the bond stress along the length x, Δfs is the variation of normal stress in the steel 

bar for the length x, As is the cross section and ds is the diameter of reinforcement. 

This formulation can be simplified with uniform stress distribution assumption along the steel 

bar written as following (Torre-Casanova, Jason, et al. 2013), (Sulaiman, Ma, et al. 2017): 

 τ =  
F

πdsLd
 (1.3) 

where F is the force applied on the reinforcement and Ld is the embedment length of the steel 

bar. 
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Based on the pull-out test and obtained stress-slip curves, three main types of load transfer 

mechanisms are detected between the steel and concrete cover according to the authors like  

(Tepfers 1973), (Park and Paulay 1975), (Eligehausen, Popov and Bertero 1983) etc. (Figure 

1.4). These are 

 Adhesion, 

 Micro-interlocking, 

 Friction.  

 
Figure 1.4 Stress vs. slip behavior and idealized shear transfer mechanism in steel-concrete 

interface (De Nardin and El Debs 2007). 

Adhesive resistance (adhesion) is the bonding constrains between the steel and concrete due to 

the chemical nature of the materials and static friction which develops before the relative 

movement begins between the two materials. This chemical bond is presented in the first part 

of the bond-slip curve which is presented between 0 and τ1 in Figure 1.4. The peak load of this 

region (τ1) depends mainly on the steel bar’s surface quality (De Nardin and El Debs 2007). 

The chemical adhesion is active mainly at early stages of the loading and corresponds only a 

small part of the bond strength (Johansson 2003). 

Micro-interlocking mechanism between steel and concrete takes part after chemical adhesion 

due to increasing load and depends on mechanical characteristics of the interface. These 

mechanical characteristics of the steel and surrounding concrete due to the steel geometry, steel 

surface irregularities, concrete properties and concrete surface roughness may cause resistance 

against the applied load which increases the bond strength. (Tepfers 1973), (Morita and Kaku 

1974), (Park and Paulay 1975) etc. indicate that this mechanism has an important effect only if 

the ribbed reinforcement is considered. Micro-interlocking is considered mainly between the 

regions s1 and slim in Figure 1.4. However, the concrete cover prevents the total separation 
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between steel bar and concrete with the occurrence of normal stresses which may resist slip, it 

is rather difficult the separate the micro-cracking and pure friction mechanisms during the 

loading process (De Nardin and El Debs 2007).  

Friction mechanism occurs as soon as relative movement between two materials (steel and 

concrete) take place. The friction is due normal stresses that develop between steel and concrete 

and depends on the surface properties of steel and covering concrete. The pure friction between 

steel and concrete takes part after slim according to Figure 1.4. This phase is often referred as 

macro-cracking phase (De Nardin and El Debs 2007). 

3. Numerical Representation of the Steel-Concrete 

Bond 

In industrial numerical applications, the perfect bond assumption is commonly used since it is 

easily applicable to large scale simulations. In these simulations, the steel nodes and the 

surrounding concrete nodes have the same displacement. This can be implemented in two 

manners: merged concrete and steel coincident nodes, or kinematic relations which relate the 

steel displacements to the concrete displacements. In the latter case the meshing is easier since 

the steel nodes don’t need to coincide with concrete nodes, but the number of equations is 

increased and the computation time can be increased significantly. 

The perfect bond assumption though gives relevant results especially in strong bond conditions 

between steel and concrete such as pre-stressed ribbed bars. On the other hand, for poor 

bonding conditions between two materials (steel and concrete) or complicated loading 

scenarios such as cyclic loading, it is necessary to define an interface model in order to perform 

proper analysis (Grassl, Johansson and Leppanen 2018). Thus, cracking in reinforced concrete 

structures is generally influenced by the stress distribution along the interface between steel 

and concrete. Stress transfer between these two materials directly affects the crack width, crack 

spacing and stress distribution in reinforced concrete members. The bond between concrete 

and steel bar has a vital importance for the performance and durability of reinforced concrete 

structures (Lin, et al. 2017). For this reason, profound consideration of steel-concrete interface 

is essential to predict the cracking in reinforced concrete structures. In this section numerical 

models for steel-concrete interface are described briefly. 
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3.1. Spring elements 

Within the framework of the finite element method, researchers have developed several 

different approaches for defining the steel-concrete interface. One of the first approaches is the 

representation of 2D spring elements by (Ngo and Scordelis 1967) which connects steel and 

concrete nodes by spring elements that have constant stiffness (Figure 1.5a). Since constant 

stiffness values are defined for the spring elements, the model assumed total elasticity for the 

steel-concrete bond. 

After, some researcher introduced an irreversible slip behavior for spring elements (Gan 2000). 

For a similar application, the Fiber Reinforcement Polymer, (Fawzia, Zhao and Al-Mahaidi 

2010) and (Dehghani, et al. 2012) used also spring elements and suggested bilinear or trilinear 

models in order to represent both elastic and plastic parts of the bond-slip curve (Figure 1.5b). 

Afterwards, (He and Xian 2017) proposed the use of spring elements in 3D applications, and a 

simplified form of trilinear curve by using exponential functions (Figure 1.5c). 

 

Figure 1.5 Representation of spring element: (a) (Ngo and Scordelis 1967), (b) (Dehghani, et al. 

2012), (c) (He and Xian 2017). 

3.2. Finite elements for an interface zone 

Instead of spring elements, (Reinhardt, Blaauwendraad and Vos 1984) proposed to model an 

interface zone (a slip layer section) with 2D elements to calculate the slip between steel and 

the outer concrete (Figure 1.6a). They introduced Mohr-Columbus kind of laws. Afterwards, 

2D and 3D finite volume bond elements and multidimensional interface constitutive models 

have been proposed. Among those (Lundgren 2002) developed an interface element based on 

total plasticity which can fulfill 3D features (Figure 1.6b). Afterwards, (Jendele and Cervenka 

2006) proposed a simplified version of Lundgren’s model with rather low computational cost. 

Then, (Santos and Henriques 2015) suggested an alternative interface element model which 

represents elastoplastic behavior of the bond by considering steel bar diameter and concrete 

strength (Figure 1.6c). 
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Figure 1.6 Representation of interface element: (a) (Reinhardt, Blaauwendraad and Vos 1984), 

(b) (Lundgren 2002), (c) (Santos and Henriques 2015). 

3.3. Joint elements 

Another common representation of steel-concrete bond is the joint elements which are firstly 

proposed by (Clément 1987) by introduction of zero thickness interface element in 2D (Figure 

1.7a). Since the joint element has no physical dimensions, the two connected nodes originally 

occupy the exact location in the finite element representation of un-deformed structure. Based 

on that, different types of joint elements are suggested in literature like (Daoud 2003), (Brisotto, 

Bittencourt and Bessa 2012), (Sanz and Planas 2018), etc. and used to analyze reinforced 

concrete structures (Figure 1.7b and 1.7c). For example, (Lowes, Moehle and Govindjee 2004) 

introduced a time dependent bond model by considering loading history on joint elements. 

(Dominguez, et al. 2005) defined 2D joint element considering different physical phenomenon 

like concrete cracking and friction between the materials within the thermodynamic framework 

(Figure 1.7d). (Sanz, Planas and Sancho 2013) proposed expanding joint elements (Figure 1.7e) 

to represent the corrosion of the reinforcement. Another alternative is the introduction of 

cohesive elements between the steel and concrete like (Rezazadeh, Carvelli and Veljkovic 

2017) for example (Figure 1.7f). 
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Figure 1.7 Representation of joint element: (a) (Clément 1987), (b) and (c) (Sanz and Planas 

2018), (d) (Dominguez, et al. 2005), (e) (Sanz, Planas and Sancho 2013), (f) (Rezazadeh, Carvelli 

and Veljkovic 2017). 

3.4. Coaxial joint element 

The joint elements presented in section 3.3 are attractive since there is no need to define an 

interface zone like in section 3.2. However, they are difficult to apply to large structures (mesh 

difficulties, calculation time etc.) since the steel is represented by 2D or 3D elements, and since 

they need coincident meshing. For computational and meshing efficiency, steel reinforcement 

is often modeled with wired elements (truss or beam). Based on these considerations, a new 

element has been developed by (Mang 2016) after the work of (Torre-Casanova 2013). It is a 

coaxial zero thickness joint element which connects, through nonlinear behavior laws, a 1D 

wired steel finite element to the surrounding 3D concrete solid elements, with no need for 

coincident meshing. Indeed, the interface element has two nodes on steel element and two 

nodes on a segment strictly superimposed to the steel bar. The nodes of this superimposed 

segment are perfectly bounded to the concrete element by kinematic relations as in case of 

perfect bonding model. The slip between steel and concrete is calculated in the interface 

element and the stresses are computed through the bond behavior law. Methodology of the 

bond slip model and the numerical representation of the interface element can be seen in the 

Figure 1.8. 
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Figure 1.8 (a) Methodology of the model, (b) representation of interface element (Mang 2016). 

The details of the formulation of this finite element will be presented in Chapter 2. 

4. Steel-Concrete Bond Law 

In this section, different adhesion laws from literature are presented in two different classes 

which are monotonic and cyclic laws respectively. The main parameters which are influencing 

the bond law are explained. It should be noted that the proposed bond laws from various authors 

for numerical applications as an input parameter are specific to the precise configurations 

which means that the characteristic values and the shapes of the law varies one author to 

another. 

4.1. Monotonic Bond Law 

One of the first experimental campaign on the steel-concrete bond is performed by (Abrams 

1913), by performing pull-out tests. The influence of the several parameters on the bond 

behavior are tested like steel bar diameter, anchorage lengths, concrete aging. (Abrams 1913) 

claimed that the bond strength is decreasing with increasing steel bar diameter for plain bars 

(no ribs). Yet, the bond strength is independent from the embedment length of the steel bar. He 

observed that the slip is starting after a certain stress value which is equal to 1/6 of the concrete 

compressive strength. Some results showed that the rusted steel bars have higher bond strength 

than the polished ones. (Slater, Richart and Scofield 1920) made another pull-out test campaign 

in order to analyze the bond behavior. The proportion between bond strength and the concrete 

compressive strength suggested by (Abrams 1913) is approved by these series of experimental 

tests. Thus, lesser bond strength values are detected for painted steel bars compared to the 

unpainted ones which demonstrates the influence if the steel bar surface properties. 
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Furthermore, (Tepfers 1973) indicated the influence of the concrete tensile strength and the 

thickness of the concrete cover to the maximum bond stress. According to (Eligehausen, Popov 

and Bertero 1983), the bond resistance is provided with chemical adhesion in low slip values, 

micro interlocking mechanisms take place between the concrete cement and the irregularities 

on the steel bar surface when the load increases. The increase in the bond stress due to this 

interlocking mechanism then produces progressive cracking in the surrounding concrete cover. 

If the load continues to increase, the interlocking mechanisms gradually disappear due to the 

damage in the concrete cover as a result of cracking. Only the frictional forces take a part 

between the steel and concrete after that moment. This frictional resistance is estimated to be 

roughly 30% of the ultimate resistance force. A similar bond mechanism is also emphasized 

by a certain amount of authors like (Moretti and Tassios 2007), (Xu, Zhimin, et al. 2012), (Lim 

and Ozbakkaloglu 2014) etc. after different experimental campaigns on steel concrete bond 

behavior. In literature it is mentioned by (Verderame, et al. 2009) and (Xu, et al. 2016) that the 

frictional stress depends on the material properties, the geometry of the steel and concrete. The 

aggregate size, the steel surface area and geometry (ribs etc.) directly influence the friction 

between the two materials. 

Based on the experimental campaigns mentioned above, influence parameters are detected. 

According to that, several adhesion laws are proposed in the literature. Among those, the 

simplest one is proposed by (Ngo and Scordelis 1967) as a linear law only focusing on the pre-

peak behavior of the bond (Figure 1.9a).  Whereupon, some bilinear (Figure 1.9b) or trilinear 

(Figure 1.9c) adhesion laws are proposed by various authors like (Khafallah and Ouchenane 

2007), (Xia and Teng 2005), (Wang and Wu 2018) respectively. One of the most widely used 

adhesion law is the one proposed by (Eligehausen, Popov and Bertero 1983) including all 

stages of the adhesion law (pre-peak part, peak plateau and softening branch). The law is 

represented by an exponential pre-peak part, and linear peak and softening segments (Figure 

1.9d). This law has been modified by several authors in order to adopt different cases and make 

more realistic bond presentations. For example, (Dehghani, et al. 2012) is assumed the pre-

peak section as linear for simplification and (Tudjono, Pamungkas and Han 2014) only 

modified the law parameters (keeping the shape proposed by (Eligehausen, Popov and Bertero 

1983)) according to their test setup. In literature, there are also several models for composite 

materials based on experimental results like (Lua, et al. 2005) who proposed two different 

(bilinear and polynomial) adhesion laws (Figure 1.9e). Finally, (Casanova, Jason and Davenne 
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2012) proposed an adhesion law which captures all pre-peak, softening and residual parts of 

the bond behavior (Figure 1.9f). 

 

Figure 1.9 Examples of Adhesion Laws: (a) (Ngo and Scordelis 1967), (b) (Xia and Teng 2005), 

(c) (Wang and Wu 2018), (d) (Eligehausen, Popov and Bertero 1983), (e) (Lua, et al. 2005), (f) 

(Torre-Casanova 2013). 

4.2. Cyclic Bond Law 

In the case of an alternative loading, the mechanical behavior of the reinforced concrete 

structures can be strongly dependent on the steel-concrete bond. The chemical adhesion fails 

with increasing number of cycles which affects the general response of the structure. Only the 

frictional forces between the two materials remains for the adhesion between steel and concrete 

cover after several loading cycles (Eligehausen, Popov and Bertero 1983). Understanding of 

these phenomena is quite important to predict the general response of the reinforced structures 

under cyclic loading, especially when the crack properties are considered (Mang 2016). As 

mentioned before (in section 2), the crack pattern in reinforced structures is directly related to 

the steel-concrete bond behavior. Since this behavior is changing according to the loading 

history, the crack properties also depend on the irreversible behavior of the bond as well. It is 

essential to understand the behavior of adhesion in order to predict the structural behavior under 

cyclic loading. 
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The cyclic pull-out tests are studied by several authors like (Flippou, Popov and Bertero 1983), 

(Gan 2000), (Moretti and Tassios 2007), (Lindorf, Lemnitzer and Curbach 2009), etc. and 

cyclic adhesion laws are proposed to represent the irreversible behavior of the interface. One 

of the earliest cyclic bond model is suggested by (Morita and Kaku 1974) which considers the 

degradation of the bond capacities in relation to the number of cycles (Figure 1.10a). In 

addition, (Viwathanatepa , Popov and Bertero 1979) proposed a quadri-linear model of the 

concrete where degradation depends on the slip values (Figure 1.10b). (Eligehausen, Popov 

and Bertero 1983) defined a general analytical model based on their extensive experimental 

campaign in which the degradation of the bond strength is dependent on damage parameters of 

the corresponding cycles and slips. The ascending curve of the bonding law is represented by 

a monomial curve while the softening behavior is represented by a tri-linear curve (Figure 

1.10c).  They indicated that the majority of the bond strength and stiffness degradation can be 

observed in the first five loading cycles. This model is subsequently modified by (Flippou, 

Popov and Bertero 1983) for general applications (Figure 1.10d). (Verderame, et al. 2009) 

noted that the characteristic of the bond reach constant values after the first 3 cycles. They 

proposed a cyclic bond model which considers hysteric loops through the maximum slip values 

and the pure frictional resistance (Figure 1.10e). They presumed that the hysteric behavior of 

the bond is symmetric for both loading and reloading phases, and defined two main parameters 

for their irreversible bond model: the ultimate bond strength τu and the frictional bond strength 

τf. These parameters are derived from the compressive strength of the concrete fc whith the 

following formulas: 

 τu = 0.31 × √fc (1.4) 

 τf = 0.13 × √fc (1.5) 

Finally, (Mang, Jason and Davenne 2015)included a rough estimation of irreversible bond 

behavior into the bond-slip model of (Casanova, Jason and Davenne 2012) (Figure 1.10f). This 

latter model will be presented more in details in Chapter 2. 
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Figure 1.10 Bond-slip models for cyclic loading (a) (Morita and Kaku 1974), (b) (Viwathanatepa 

, Popov and Bertero 1979), (c) (Eligehausen, Popov and Bertero 1983), (d), (Flippou, Popov and 

Bertero 1983), (e) (Verderame, et al. 2009), (f) (Mang 2016). 

4.3. Influence of the Confinement 

The bond properties between steel and concrete are influenced by the concrete strength, 

concrete confinement, geometry of anchorage, geometry of concrete, reinforcement diameter, 

reinforcement deformation and yielding of reinforcement (Park and Paulay 1975), 

(Eligehausen, Popov and Bertero 1983), (Darwin, et al. 1996), etc. Numerous parameters 

should be considered in computational applications for an adequate representation of the bond 

behavior in reinforced concrete structures. One of these parameters is the confinement of 

concrete which increases the bond strength and anchorage behavior especially after ultimate 

strength by providing resistance against sudden brittle types of failure (Sulaiman, Ma, et al. 

2017). Many authors like, (Karatas, Turk and Ulucan 2010), (Soylev and François 2005), 

(Yang, et al. 2015) etc. have pointed out the importance of the confinement on the steel-

concrete bond properties in literature by some experimental and numerical studies. For that 
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reason, it is plausible to consider the confinement effect on the bond behavior in the numerical 

applications in order to have more factual presentation of the global and local behavior of the 

reinforced concrete structures. General information related with the concrete confinement and 

its relevance to the steel-concrete bond is presented in this section. 

The aim of the confinement by means of lateral compression is to prevent a potential failure of 

the structure by shearing or splitting which are associated directly with the bond properties. It 

has been pointed out by (Park and Paulay 1975) that the increased concrete cover produces 

some extra resistance against splitting and consequently the transverse compression has a 

positive effect on adhesion and friction mechanisms between anchorage and the concrete. In 

the case of poor confinement, splitting occurs along the entire steel bar transmission layer 

which leads to a complete anchorage loss due to the spalling of concrete cover. On the contrary, 

when a well-confinement is considered, the circumferential tensile stress inducing splitting can 

be easily prevented increasing concrete cover thickness around the steel (Figure 1.11). 

 

Figure 1.11 Types of anchorage failure (Sulaiman, Ma, et al. 2017). 

The confinement effect can be considered in two ways: 

 By means of an external loading on the structures (active confinement), 

 By means of concrete cover or secondary reinforcements which prevent the 

concrete from cracking in certain directions (passive confinement). 

Active confinement plays a role similar to an external loading. It reduces cracking phenomena 

of the concrete by preventing the expansion of the concrete and thus preventing micro cracking 

and by increasing the strength of the specimen in the direction of the tensile stresses. Active 

confinement results from the external lateral stress that provides confinement pressure inside 

the concrete and affects the bond strength between the concrete cover and the reinforcement 

bars (Figure 1.12). When the containment is exposed to an external load, the concrete is, in a 

way, pre-stressed. Its resistance increases, which has the effect of reducing its ability to crack 

(Malvar 1991). 
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Figure 1.12 Principales of active confinement (Sulaiman, Ma, et al. 2017). 

Passive confinement is composed of the lateral reinforcements surrounding the concrete 

structure that provides concrete confinement due to the bond stresses between steel and 

concrete that holds fast against the external and internal stresses (Figure 1.12). (Galvez, et al. 

2009) studied the effect of concrete cover (especially underneath the steel bars) to the bond 

strength by performing an experimental campaign on a tie-rod (Figure 1.13). Splitting failures 

have been observed on the specimens with the thin concrete covers. The critical released load 

that showed the splitting failure diminished when the depth of the reinforcement indentations 

increased (Galvez, et al. 2009). 

 

Figure 1.13 (a) Sketch of experimental test setup. (b) Geometry and dimensions of the 

specimens. (c) Example of splitting failure (Galvez, et al. 2009). 

Transverse reinforcement inside concrete core is a passive type confinement and emerges only 

when concrete expands due to loading. When lateral expansion of concrete occurs, tensile hoop 

of transverse reinforcement arises to balance the concrete lateral expansion (Figure 1.14). 

(Yong, Nour and Nawy 1988) state that the strength and ductility of concrete can be enhanced 

by using rectangular, spiral or circular types of confinement. The internal cracking of concrete 

core due to natural volumetric expansion can effectively be prevented by providing sufficient 

lateral confinement to the concrete and this confined concrete exhibits higher strength than 

unconfined one. 
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Figure 1.14 Configuration of passively confined concrete: (a) poorly confined concrete, (b) well 

confined concrete (Sulaiman, Ma, et al. 2017). 

Active and passive confinement effect on the steel-concrete bond has been studied by many 

authors like (Bazant and Burrow 1980), (Magnusson 2000), (Venderame, et al. 2009), etc. As 

indicated earlier, bond-slip curve of reinforced concrete structures consists of 2 main parts: 

ascending and descending. Initially, the bond between steel and concrete is provided by 

chemical adhesion. Then the formation of micro cracks also known as bond cracks allows the 

steel bar slip along the force direction which resulted a non-linear bond slip curve. Finally, 

mechanical friction between two materials takes place. It has been shown by (Tepfers 1973), 

(Eligehausen, Popov and Bertero 1983), (Sulaiman, Ma, et al. 2017), (Baktheer and Chudoba 

2018) etc. that the confinement has a vital effect on both ultimate bond stress τu  and friction 

stress τuf. 

A general way to investigate steel-concrete bond is to perform pull-out tests. (Eligehausen, 

Popov and Bertero 1983) have shown that the maximum bond stress increases in proportion to 

the rise in lateral pressure (Figure 1.15a). Thus, (Eligehausen, Popov and Bertero 1983) 

indicate that the lateral pressure has equal effects on maximum bond stress τu and friction 

stress τuf (Figure 1.15b). (Verderame, et al. 2009), (Jin, Li and Du 2016), (Li and Wu 2016) 

etc. also claimed that the active confinement has a significant effect on the cyclic bond 

behavior. (Verderame, et al. 2009) has declared that lateral pressure has a slight impact on the 

adhesion law but it becomes extremely important when alternative loads are considered. The 

lateral pressure affects the friction stress between the steel and the concrete which has a direct 

influence on the irreversible bond behavior. This behavior is then tested for cyclic slip with 

increasing the amplitude of lateral pressure by (Baktheer and Chudoba 2018). Some 

experimental studies like (Xu, Zhimin, et al. 2012), (Lim and Ozbakkaloglu 2014), (Zhang, 
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Wu, et al. 2016) etc. have also shown that the friction bond strength τuf depends not only on 

lateral pressure but also on the geometric-material properties of the steel and the concrete, on 

the embedment length and on the friction coefficient. 

 

Figure 1.15 Influence of transverse pressure (a) on bond stress-slip relation, (b) on bond 

resistance (Eligehausen, Popov and Bertero 1983). 

The bond behavior of the reinforced concrete structures is highly dependent on the confinement 

and it has a great importance in the design and the analysis of the concrete structures. Several 

pull-out tests are performed in order to investigate the bond behavior under lateral pressure in 

literature like (Xu, Zhimin, et al. 2012), (Wu, et al. 2014), (Lim and Ozbakkaloglu 2014) etc. 

Some empirical formulas are also proposed to define the bond stress, as a result of all these 

pull-out tests. 

(Lowes, Moehle and Govindjee 2004) proposed a relationship between ultimate bond strength 

(τu) and confining pressure (PLat) based on the experimental investigations by (Eligehausen, 

Popov and Bertero 1983), (Malvar 1991), (Gambarova, Rosati and Zasso 1989) etc. (Figure 

1.16). The proposed relationship is presented in Eq. 1.6. 
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Figure 1.16 Bond strength as a function of confining pressure (Lowes, Moehle and Govindjee 

2004). 

 τu = 2.1 [1 − λ1 (1 − e
−40|

PLat
fc

|
) − λ2(1 − e

−|
PLat
fc

|
)]√fc (1.6) 

where, fc is the concrete compressive strength, λ1 and λ2 are model parameters which are 0.25 

and 0.5 under tensile confining pressure and -0.35 and -0.4 for compressive confining pressure. 

(Xu, Wu, et al. 2014) performed an experimental investigation on the bond behavior of plain 

round bars under lateral pressure (Figure 1.17a). It was concluded that the residual and ultimate 

bond strengths increase by increasing the average lateral pressure (Figure 1.17b). A constitutive 

model for bond with lateral pressure effect is presented (Eq. 1.7). 

 

Figure 1.17 (a) Schematic representation of the pull-out test specimen, (b) Bond stress slip 

curves for different lateral pressures (Xu, Wu, et al. 2014). 

 
τ

√fc
= k1 + k2

pm

fc
 (1.7) 
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where τ is the bond strength, fc is the concrete compressive strength, k1 denotes the bond 

strength ratio without confinement, k2 denotes the contribution of the lateral pressure and pm 

is the average value of lateral pressure (pm = 
p1+p2

2
). 

Basing on the experimental data it was denoted that the lateral pressure can enhance the bond 

capacity by increasing frictional force at the steel-concrete interface when they are applied 

perpendicular to the steel rebar. It remains constant if applied pressure is parallel to the 

reinforcement. It has been recorded that the bond strength is increased by 300% when lateral 

pressure is increased from 0 to 0.6fc. Thus, the failure occurs by pull-out only when the lateral 

pressure is applied, otherwise the specimen fails by splitting. 

Although the lateral compressive stress has a positive effect on the bond behavior, the lateral 

tensile stress has a negative effect on the bond behavior which causes a decrease in the bond 

strength (Lindorf, Lemnitzer and Curbach 2009), (Wu, et al. 2014) etc. (Figure 1.18a). An 

empirical formulation is suggested by (Zhang, Dong, et al. 2014) for the bond stress τ under 

lateral tensile stress as in the Eq. 1.8 based on a series of pull out tests. It has been discovered 

that both ultimate and residual bond strengths are significantly influenced by the applied lateral 

tension. The bond strength decreases exponentially with the increase of the average lateral 

tension (Figure 1.18b). 

 

Figure 1.18 (a) Schematic representation of the pull-out test specimen, (b) relation between 

lateral stress and ultimate bond strength (Zhang, Dong, et al. 2014). 

 
τu 

√fc
= 0.12 + 0.116e

(−
pm
ft

)
 (1.8) 

where τ is the bond strength, fc is the concrete compressive strength, k1 denotes the bond 

strength ratio without confinement, k2 denotes the contribution of the lateral pressure and pm 

is the average value of lateral pressure (pm = 
p1+p2

2
). 
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Alternatively, (Wu, et al. 2014) proposed an empirical formulation for the bond strength by 

considering lateral tension and compression effect (Eq. 1.9) based on pull-out tests (Figure 

1.19a). They observed the negative effect of lateral tension (Figure 1.19b) and the positive 

effect of lateral compression (Figure 1.19c) on the bond strength. 

 
τu 

√fc
=  a − b

pt

ft
+ c

pc

fc
− d

pt

ft

pc

fc
 (1.9) 

where, a, b, c are the coefficients based on material properties, pt is the lateral tension and pc 

is the lateral compression, fc is the concrete compressive strength and ft is the concrete tensile 

strength 

 

Figure 1.19 (a) Schematic representation of the pull-out test specimen, (b) relation between  

lateral tension and ultimate bond strength, (c) relation between lateral compression and 

ultimate bond strength (Wu, et al. 2014). 

(Zhang, Wu, et al. 2016) claimed that the friction plays the main role for the bond behavior 

when the lateral tension is applied especially when plain round bars are considered. They also 

have suggested another empirical formulation for the bond strength due to the frictional effect 

(τf) for plain round bars embedded inside concrete subjected to lateral tension. The empirical 

formulation proposed by (Zhang, Wu, et al. 2016) is presented in the Eq. 1.10. 

 τf = 
(Es

∗ε0 − 2αpm)Rs

2νsld
(0.113 + 0.04μ

ld
Rs

) (1.10) 

where, ε0 shrinkage concrete strain, Es elastic modulus of steel, Ec elastic modulus of concrete, 

νs Poisson ration of steel, νc Poisson ratio of concrete, Rs is the radius of steel, ld is the 

embedment length, μ is the friction coefficient, pm is the average lateral pressure and α is a 

coefficient as: 

 α =  
Es

∗

Ec
∗   where Ec

∗ = 
Ec

(1−υc
2)

  and Es
∗ = 

Es

(1−υs
2)
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(Robins and Standish 1982) is performed two different types of experimental campaign with 

pull-out test and semi-beam test (Figure 1.20) to examine the effect of active confinement to 

the steel-concrete bond by pointing out that the lateral pressure effect on the bond is mainly 

frictional for round bars. They also claimed the pull-out load may increase around 200% and 

bond strength may increase around 50% for round bars when applied external lateral pressure 

is close to concrete compressive strength. Thus, they suggested an empirical formulation for 

the frictional bond strength (τf) (Eq. 1.11). 

 τf = 
(ε0 + ε0

∗)Es

νs
[1 − exp (

−2Ecνsμld
Esds(1 + νc)

)] (1.11) 

Here the lateral pressure is included as increase in strain (ε0
∗ ) by following equation: 

 ε0
∗ = pm [

1

Ec
(
ds

2 + (ds + c)²

(ds + c)2 − ds
2
) +

1 − νs

Es
] (1.12) 

where, c is the thickness of concrete cover and ds is the diameter of the steel bar. 

 

Figure 1.20 Representation of (a) pull-out test geometry, (b) semi-beam geometry (Robins and 

Standish 1982). 

The general conclusion of (Robins and Standish 1982)’s study is that the effect of lateral stress 

is evident not only on the ultimate bond strength (τu) but throughout the whole loading 

processes which effects the entire adhesion law. 

The effect of confining concrete around the steel bar on the steel-concrete bond properties have 

also been investigated by several authors ( (Sulaiman, Redzuan, et al. 2017), (Rao, 

Pandurangan and Sultana 2007)). Among those, (Orangun, Jirsa and Breen 1977) proposed an 

empirical equation for the bond strength by including the effect of concrete cover (Eq. 1.13). 

 
τu 

√fc
= 1.22 + 3.23

cmin

ds
+ 53

ds

Ls
 (1.13) 
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where, Ls is reinforcement length, ds is steel bar diameter, cmin is minimum of [cx, cy, cs], cx 

is side cover thickness, cy is bottom cover thickness and cs is the bar spacing distance. 

Another alternative equation is proposed by (Darwin, et al. 1996) in order to determine the 

cover thickness for the design of reinforced concrete structures (Eq. 1.14). 

 
τu 

√fc
= [8.76Ls(cmin + 0.5ds)] (0.14

cmax

cmin
+ 0.86) (1.14) 

where cmax is the maximum of [cx, cy, cs]. 

(Esfahani and Rangan 2000) have successfully represented the passive confinement effect on 

the steel-concrete interface specifically by defining the dependence of the bond strength to the 

concrete cover. More detailed formulation of the bond strength is presented: 

 τu = τo

1 + 1/M

0.85 + 0.024√M
(0.88 + 0.12

cmed

cmin
) (1.15) 

with, 

τo = 4.9
(cmin/ds) + 0.5

(cmin/ds) + 3.6
fct (1.16), M = cosh(0.0022Ls√

3fct
ds

) (1.17) 

where, cmed is the median of [cx, cy, cs] and fct = 0.55√fc. 

Furthermore, (Hadi 2008) performed pull-out test with different steel bar diameters which have 

same concrete covers (Figure 1.21a) to identify a simplified formulation for the bond strength 

(Eq. 1.18) by combining the equations proposed by (Orangun, Jirsa and Breen 1977), (Darwin, 

et al. 1996) and (Esfahani and Rangan 2000). The comparison of the proposed empirical 

equations with measured bond strengths is given in Figure 1.21b. 

 
τu 

√fc
= 0.083045 [22.8 − 0.208

cmin

ds
− 38.212

ds

ld
] (1.18) 

where, ld is the embedded length of the reinforced bar. 
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Figure 1.21 (a) Details of the specimen, (b) Comparison of the bond strengths (Hadi 2008). 

Finally, (Torre-Casanova, Jason, et al. 2013) studied the passive confinement effect with 

numerical simulations of a bar with ribs embedded in a concrete cylinder, with different 

concrete covers. They identified a transition between the two different failure modes (splitting 

and pull-out) depending on the concrete cover to steel bar diameter ratio (c/ds) (Figure 1.22). 

The evolution of the bond strength with the concrete cover is governed by the given equations: 

For splitting failure where 
c

d
≤ 4.5:  

 
τu 

ft
≈ 1.53

c

ds
+ 0.36 (1.19) 

For pull-out failure where 
c

d
> 4.5: 

τu 

ft
≈ 7.2 (1.20), 

τu 

fc
≈ 0.6 (1.21) 

where, d is the steel bar diameter, c is the thickness of the concrete cover, τu is the ultimate 

bond strength, ft is the tensile strength of the concrete and fc is the compressive strength of the 

concrete. 

 

Figure 1.22 Bond strength evolution with concrete cover (Casanova, Jason and Davenne 2012). 
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The equations (Eq. 1.19, 1.20 and 1.21) proposed by (Torre-Casanova, Jason, et al. 2013) have 

completed the work from (Uijl and Vliet 1996) who developed certain constitutive equations 

for the splitting failure depending on the passive confinement. Thus, according to these results, 

transition from splitting failure to pull-out failure can be determined from Eq. 1.22. 

 (
c

ds
)
splitting to pull−out

= 0.39 (
fc
ft
) − 0.24 (1.22) 

The results have shown that the maximum bond strength (τu) first increases linearly when the 

steel to concrete cover ratio (
c

ds
) increases up to a certain level and finally becomes constant. 

All the equations from various authors which are presented above related with the confinement 

effect on the bond behavior can be summarized as in Table 1.1. 

Table 1.1 Proposed empirical equations for confinement effect on the bond. 

Author Confinement Type Reinforcement Equation 

(Orangun, Jirsa and Breen 

1977) 
Passive Deformed 1.13 

(Robins and Standish 1982) Active Plain round 1.11 

(Darwin, et al. 1996) Passive Deformed 1.14 

(Esfahani and Rangan 2000) Passive Deformed 1.15 

(Lowes, Moehle and 

Govindjee 2004) 
Active Deformed 1.6 

(Hadi 2008) Passive Deformed 1.18 

(Torre-Casanova, Jason, et al. 

2013) 
Passive Deformed 1.19-1.20-1.21 

(Wu, et al. 2014) Active Plain round 1.9 

(Xu, Wu, et al. 2014) Active Plain round 1.7 

(Zhang, Dong, et al. 2014) 

(Zhang, Wu, et al. 2016) 
Active Plain round 1.8-1.10 

Consequently, active and passive confinement should be considered carefully especially for 

the numerical analysis of the structural elements. 
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5. Dowel Action 

Dowel action is one of the shear transfer mechanisms that plays an important role for the shear 

resistance of the reinforced concrete structures. Therefore, it should also be considered in 

numerical applications where the shear forces are taken into account. In this section, the shear 

resistance of the reinforced concrete structures is going to be explained by focusing on the 

dowel action mechanism. 

Shear transfer mechanisms of cracked reinforced concrete structures consist of three main 

parameters (Figure 1.23) according to (Jelic, Pavlovic and Kotsovos 1999), (Nogueira, 

Venturini and Coda 2013) and (Xia, et al. 2015): 

 Shear resistance of un-cracked concrete  

 Aggregate interlock  

 Dowel action  

 

Figure 1.23 Cracked reinforced concrete member and shear force mechanisms (Nogueira, 

Venturini and Coda 2013). 

Current consideration on the shear transfer philosophy of the reinforced concrete members is 

based on the assumption that the internal stress is mainly concentrated on the cracked regions 

(Walraven and Reinhardt 1981). In Figure 1.23, Vc denotes the concrete resistance itself which 

can be expressed as the contribution of concrete itself to the shear resistance during the un-

cracked stage due to its material properties, Vsw denotes the shear reinforcement resistance, Va 

denotes the aggregate interlock resistance, and Vd denotes the dowel action resistance. (Xia, et 

al. 2015) represents the total shear force (V) in reinforced concrete structures as a combination 

of all these forces with the Eq. 1.23: 

 V = Vc + Va + Vd + Vsw (1.23) 
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According to (Kim and Park 1996) and (Xia, et al. 2015), the contributions of these components 

to the total shear resistance are estimated as follows: 

 20-40% un-cracked concrete resistance 

 25-50% aggregate interlock 

 15-25% dowel action 

On the other hand, (Jelic, Pavlovic and Kotsovos 1999) indicates that it is usually difficult to 

measure the contributions of each force transfer mechanism to the total shear resistance, since 

they always combine with each other especially when dowel action is considered. 

5.1. Definition of Dowel Action 

Concrete blocks at two sides of the crack slide against each other, the bar embedded inside the 

concrete is subjected to a relative transverse displacement. The contra flexural bending of the 

two ends of the reinforced bar is called “Dowel Action”. Dowel action can be defined as the 

force transfer capacity of the reinforcing bars in perpendicular direction to their axis. This kind 

of effect arises only if the crack surfaces is widened up to a certain amount. However, only a 

certain length of the bar is subjected to a significant deformation (Figure 1.24). 

 

Figure 1.24 Representation of Dowel Action (Ince, Yalcin ve Arslan 2003). 

Dowel action occurs only if the crack exists (Figure 1.24). It becomes significant around the 

peak loading stage. Dowel Strength across the shear plane is a combination of shear, kinking 

and bending of reinforcement which is represented in Figure 1.25 (Park and Paulay 1975). The 

influence of the dowel action is normally ignored during the design of reinforced concrete 

beams since shear reinforcement (vertical or web) offers a significant amount of shear 

resistance. However, for ultra-high-performance concrete (UHPC) structures without shear 

reinforcement, dowel action contribution to the shear resistance becomes an important 

parameter and should be considered in the design stage in order to assure non-brittle type of 

failure (Xia, et al. 2015). 



56 

 

 

Figure 1.25 Deformation mechanisms of a steel bar: (a) bending, (b) shear, (c) Kinking (Park 

and Paulay 1975). 

5.2. Experimental Characterization 

As mentioned before, it is challenging to distinguish dowel action among other shear transfer 

mechanisms since the transfer is combination of all. For that reason, limited test setups exist in 

literature for the purpose of investigating specifically the dowel action behavior in reinforced 

concrete structures. Among those, the most common one is the double L shape beam specimen 

(L-beam) separated from each other by a small gap which eliminates aggregate interlock and 

concrete resistance. In literature, several push-off tests are performed on L-beams like, 

(Sagaseta and Vollum 2011), (Xiao, Li and Li 2014), (Navarro-Gregori, et al. 2016) etc. in 

order to investigate the dowel action. The geometry of L beam can be seen in Figure 1.26a. 

Alternatively, (Husain, Oukaili and Muhammed 2009) performed some tests on rectangular 

concrete prisms so called semi-beams to measure dowel effect. The semi-beams were separated 

by a thin polythene layer in order to eliminate aggregate interlock and concrete resistance itself 

(Figure 1.26b). Again with L-beam push-off tests, (Ince, Yalcin and Arslan 2007) showed that 

the dowel strength decreases as the structure size increases by obtaining coherent results with 

the Bazant’s size effect law (Z. Bazant 1984). On the other hand, (Xiao, Li and Li 2014) 

investigated the dependence of the temperature effect on the shear transfer mechanism with L-

beam push-off tests in different temperatures and concluded that the shear resistance (and also 

the dowel strength) is decreasing by increasing concrete and steel temperatures. 
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Figure 1.26 Push-off specimen geometry: (a) L-beam (Júlio, et al. 2010), (b) semi-beams 

(Husain, Oukaili and Muhammed 2009). 

L-beams and semi beams are the geometries to investigate dowel action at the laboratory scale 

applications. At the structural scale, the bending tests on deep beams are a common way to 

investigate the shear behavior of the reinforced concrete structures including dowel action 

according to the literature (Al-Nahlawi and Wight 1992), ( (Hassan, Hossain and Lachemi 

2010), (Abed, El-Chabib and AlHamaydeh 2012) etc.). By means of bending tests on deep 

beams (Figure 1.27), the contribution of dowel action to the total shear behavior can be 

investigated. 

 

Figure 1.27 (a) Geometry of the deep beam specimens. (b) Sketch of experimental bending test 

setup (c) Example of shear failure on deep beams (Abed, El-Chabib and AlHamaydeh 2012). 
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As a sum up, according to the (Jelic, Pavlovic and Kotsovos 1999), (Ince, Yalcin and Arslan 

2007) and (Nogueira, Venturini and Coda 2013) dowel action depends on: 

 Reinforced layout (longitudinal and transversal reinforcement ratio), 

 Structural geometry of the concrete (concrete cover), 

 Material properties of concrete and reinforcement, 

 Arrangement of the applied loads (location, direction, distribution, value, etc.), 

 Crack pattern (angle, width, location, etc.). 

Since it depends on many parameters, it is not easy to investigate the dowel action separately 

among the other transfer components. Furthermore, the contributions of these parameters keep 

on changing when the applied loads increase due to the internal stress distribution (Jelic, 

Pavlovic and Kotsovos 1999). 

5.3. Analytical Representation 

There have been many studies like (Kazakoff 1974), (Sorousian 1987), (Kim and Park 1996), 

(Ashour 1997), etc. that were carried out to understand the mechanisms of shear transfer in 

reinforced concrete structures and to represent them by various numerical and/or analytical 

methods. Among those, (Dulacska 1972) and (Vintzeleou and Tassios 1987) defined similar 

formulations (Eq. 1.24) for estimating the ultimate dowel strength ( Vdu) at the peak stage based 

on experimental results. 

  Vdu = 1.27ds
2√fcfy (1.24) 

where ds is the steel bar diameter, fc is the compressive strength of the concrete and fy is the 

yield strength of the dowel bar. The constant value 1.27 is modified slightly by some authors 

afterwards (eg. (Kwan and Ng 2012)). 

Alternatively, several authors invoke different parameters to define ultimate dowel strength 

( Vdu) and suggested various empirical expressions 1.25 (Baumann and Rüsch 1970), 1.26 

(Houde and Mirza 1974) and 1.27 (Sorousian 1987). 

  Vdu = 1.64beffds√fc
3

 (1.25) 
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  Vdu = 37beff√fc
3

 (1.26) 

 Vdu = αftbeff

π

2β
≤ 1.27ds²√fcfy (1.27) 

where, ft is the tensile strengths of the concrete, beff and  
π

2β
  are the effective width and length  

of the beam respectively and α is a constant parameter.  

(Kim and Park 1996) stated that the dowel action contribution is extremely dependent on the 

thickness and the strength of the concrete cover. (Ince, Yalcin and Arslan 2007) concluded that 

the dowel action contribution increases with the increase of ρfy value, where ρ is the 

reinforcement ratio and fy is the reinforcement yield stress, and proposed Eq. 1.28: 

  Vdu =  ρ√fcfysin (θ) [1 + √
36

dagg
] [1 +

L

19.4dagg
]

−1/2

 

 

(1.28) 

where, dagg is the aggregate size and θ is the inclination angle of reinforcement normal to the 

shear plane. 

Furthermore, the dowel force depending on the steel bar deformation along the loading process 

can be analyzed by using the “beam on elastic foundation” theory in order to deal with the 

interaction between the steel bar and surrounding concrete. The foundation may be treated as 

a bed of Winkler springs so that the reaction force at any point may be assumed to be 

proportional to the deflection of the beam at that point (Figure 1.28a).  

 

Figure 1.28 Winker spring representation of shear force (He and Kwan 2001). 

According to the beam in elastic foundation theory, (Kwan and Ng 2012) expressed a linear 

elastic-perfectly plastic force-displacement behavior described as the following: 
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 Vd = kd∆d  for ∆d≤ ∆du (1.29) 

 Vd = Vdu  for ∆d> ∆du (1.30) 

where, Vd is the dowel force, Vdu is the ultimate dowel force proposed by (Sorousian 1987), 

∆d is the dowel displacement, ∆du is the displacement at the ultimate dowel force and  kd is 

the dowel stiffness. 

The dowel bar which can be considered as a semi-infinite beam on an elastic foundation as in 

Figure 1.28b. Based on the analytical solution of the beam on elastic foundation problem, the 

displacement at any point along the dowel bar ∆dx can be derived as: 

 ∆dx =
Vd

EsIsλ3
 e−λxcos(λx) (1.31) 

where x is the distance from the dowel force, Es is the elastic modulus of dowel bar, Is is the 

moment of inertia of the steel bar (equals to 
πds

4

64
 with ds the diameter of the steel bar) and λ 

represents the relative stiffness of the foundation, which can be determined from the formula 

below (Sorousian 1987): 

λ =  √
kcds

4EsIs

4

  (1.32), kc =
127c√fcc

ds
2/3

 (1.33) 

The dowel force is applied for x = 0. Hence, by substituting x by zero in the Eq. 1.31, the dowel 

force-displacement relation can be written as following: 

  Vd = EsIsλ
3∆d (1.34) 

From which the dowel stiffness in the Eq. 1.29 can be described as: 

 kd = EsIsλ
3 (1.35) 

Combining the studies of (Dulacska 1972) and (Sorousian 1987), (El-Ariss 2007) also proposed 

an alternative formulation (1.36) for the dowel force ( Vd) depending in the dowel bar 

displacements (∆d) based on beam on elastic foundation presented above. 
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  Vd =  Vdu [1 − exp (−
kd∆d

 Vdu
)] (1.36) 

where,  Vdu is the ultimate dowel force proposed by (Dulacska 1972) as in Eq. 1.24 and kd is 

the stiffness of elastic foundation which is proposed by (Sorousian 1987) as in the Eq. 1.35. 

5.4. Numerical Representation 

The dowel force-displacement relationship which was derived, based on the beam on elastic 

foundation theory, can also be expressed by the dowel stress and strain, in order to be 

compatible with the numerical applications together with cracked and damaged reinforced 

concrete models (Ashour 1997), (Jelic, Pavlovic and Kotsovos 1999), (He and Kwan 2001). 

Even though the flexural behavior of reinforced concrete structures can be predicted quite 

accurately by using simple bending theories, the prediction of shear behavior remains as a 

challenging task even with the sophisticated finite element methods. 

Finite element modeling of dowel action has three major difficulties according to (He and 

Kwan 2001): 

 It is difficult to measure the dowel action directly since the shear transfer occurs with 

the other transfer parameters. Therefore, experimental results are rather limited for the 

comparison with the numerical ones. 

 It is difficult to represent the dowel action in finite element methods in a simple manner. 

Proper finite element analysis of the dowel action requires individual modeling of steel 

bars, very fine meshing of the structure and taking very small loading steps. 

 Since dowel action is significant in the post peak loading stage, experimental testing 

and theoretical analysis should also include these stages. 

According to the mentioned difficulties above, numerical representation of the dowel action 

should be analyzed very carefully by considering all the possible parameters which might affect 

the numerical calculation. 

(Frantzeskakis and Theillout 1989) proposed a smeared element for numerical representation 

of reinforced concrete structures by including a linear model for dowel action phenomenon 

(Figure 1.29a). The dowel action of the steel bar inside the concrete cover is substituted by 
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equivalent normal and shear stresses action on the surface of the cracks (Frantzeskakis and 

Theillout 1989). Alternatively, a composite material model is used by (Oliver, et al. 2008) 

which takes dowel action into account with fiber bundles (Figure 1.29b). In this composite 

model the dowel action is considered separately in composite strains to calculate composite 

stresses. 

 

Figure 1.29 (a) Representation of the (a) smeared element for reinforcement (Frantzeskakis and 

Theillout 1989), (b) composite element with fiber bundles (Oliver, et al. 2008). 

(Martin-Pérez and Pantazopoulou 2001) proposed a numerical model combining all the shear 

forces including dowel action based on beam on elastic foundation theory (Figure 1.30). The 

authors represented the total shear resistance (υxy) by the given equation: 

 υxy = υc + υs + υp (1.37) 

where, υp is the compressive normal boundary stresses (axial loads) which are applied, υc and 

υs are the shear contributions of concrete and steel respectively. 

 

Figure 1.30 Relationship between dowel force and transverse displacement (Martin-Pérez and 

Pantazopoulou 2001). 

(Martin-Pérez and Pantazopoulou 2001) included the dowel action within the υc component by 

defining a constative law of dowel force ( Vd) given below: 
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  Vd = Vdu [1 − e
(
−Ki∆
Vdu

)
] (1.38) 

where  Vdu is the ultimate dowel force, ∆ is the displacement across the crack, Ki is the initial 

dowel stiffness. 

The ultimate dowel force and initial dowel stiffness are defined as following according to 

(Martin-Pérez and Pantazopoulou 2001): 

  Vdu = 1.3Ds²√fcfy(1 − A²) (1.39) 

 Ki = 0.166Kf
0.75ds

1.75Es
0.25 (1.40) 

where, fc is the concrete compressive strength, fy is the yield strength of steel, A is the ratio of 

applied axial force to yield axial force, ds is the bar diameter, Es is the elastic modulus of steel 

and Kf is the foundation stiffness calculated from following equation: 

 Kf = 127β√fc [
1

ds
]
2/3

 (1.41) 

with a constant β value ranging from 0.6 to 1. 

Another representation of dowel action is proposed by (He and Kwan 2001) for simulations 

where the steel and the concrete were discreetly represented in a way given in Figure 1.31a in 

2D. 

 

Figure 1.31 (a) Numerical representation of dowel action (Nogueira, Venturini and Coda 2013), 

(b) adjoining concrete elements (Kwan and Ng 2012). 
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Using the beam in elastic foundation theory presented previously, (He and Kwan 2001) 

expressed the dowel stress (τd) by using dowel displacement (∆d) and dowel force ( Vd) as 

following: 

 ∆d = ls  ×   γ12 (1.42) 

  Vd = Kd ×  ∆s (1.43) 

 τd =  
ρs

As
 × Vd (1.44) 

where, ls is the length of the steel bar element, γ12 is the shear strain perpendicular to the dowel 

bar, Kd is the dowel stiffness, ρs is the reinforcement ratio in the concrete direction and As is 

the sectional area of the steel bar. 

Then, the dowel stress (τd) can be transformed into tensile (σ1) and shear (τ12) stresses using 

the given equations below: 

 σ1 = 
ρs

As
 ×  Kd × ls  ×  ε1 (1.45) 

 τ12 = 
ρs

As
 ×  Kd  × ls × γ12 (1.46) 

where, ε1 is the tensile strain across the crack.  

Combining the equations given above, the contribution of dowel action to the tensile and shear 

stresses across the crack can be obtained in 2D (for x and y directions) as following: 

 [
σ1

τ12
] = [Td]

t

[
 
 
 
ρsx

Asx
Kdxlsx 0

0
ρsy

Asy
KdyIsy

]
 
 
 
[Td] [

ε1

γ12
] 

 

(1.47) 

 Td =  [cosθsinθ cos2θ
cosθsinθ −sin2θ

] (1.48) 

where,  Td is the transformation matrix, θ is the angle of crack direction normal to the plane of 

crack and ls is the length of the steel bar element for x and y directions of the steel bar. 
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(Kwan and Ng 2012) is modified the methodology of (He and Kwan 2001) for 3D numerical 

applications by including the dowel stiffness (Kd) in the two adjoining concrete elements 

around the steel element as in the Figure 1.31b. According to Figure 1.31b, the dowel 

displacement ∆d can be written as Eq. 1.49 for the concrete element i. 

 ∆d = lsγ12[Td][Bi][δi] (1.49) 

where, B and δ are respectively the strain and displacement matrixes of adjoining concrete 

element (whether i or j as in the Figure 1.31b) and Td is the transformation matrix in 3D. 

with, 

 Td =  [
cos2θ sin2θ cosθsinθ
sin2θ cos2θ −cosθsinθ

−2cosθsinθ 2cosθsinθ cos2θ − sin2θ

] (1.50) 

and 

 γ12 = [0 0 1] (1.51) 

where, θ is the angle of crack direction normal to the plane of crack and γ12 is the shear strain 

across the crack. 

From the energy principle, dowel stiffness matrix (Kd) is derived as: 

 [Kd] = αikdls
2[Bi]

T[Td]
T [

0 0 0
0 0 0
0 0 1

] [Td][B] (1.52) 

and α is the distribution coefficient of the concrete area (whether i or j as in the Figure 1.31b) 

can be represented as: 

αi =
Ai

Ai + AJ
 (1.53), αj =

Aj

Ai + AJ
 (1.54) 

where kd  is the dowel stiffness calculated from Eq. 1.35,  Ai and Aj are the areas of the two 

adjoining concrete elements. 
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6. Conclusion 

The bond-slip model by (Casanova, Jason and Davenne 2012) is an alternative approach to 

represent the effects of steel-concrete bond behavior in reinforced concrete structures 

associated to a finite element model. In this Chapter, some state of the art information is 

explained to highlight the objective of this study and the followed methodology. 

As a state of the art, the steel-concrete interaction in reinforced concrete structures are generally 

explained and the importance of interface behavior to the crack properties is expressed. Then, 

numerical representation of the steel-concrete bond is expressed by defining several existing 

numerical models especially focusing on bond-slip model by (Torre-Casanova 2013). A 

background information is provided on the monotonic and cyclic bond behaviors. 

Subsequently, the confinement influence on the steel-concrete bond are briefly clarified for 

different confinement types. Eventually, dowel action and its importance to the shear resistance 

is explained. 

According to the provided information within this Chapter, the following conclusions may be 

drawn: 

 A detailed evaluation of the bond-slip model is necessary to utilize the model in 

industrial applications. Especially, transversal and irreversible behavior of the bond 

should be considered carefully to represent the local and global behavior of the 

reinforced concrete structures (Chapter 2). 

 Moreover, external pressure (active confinement) is also an important parameter which 

affects the bond characteristics. The consideration of active confinement effect within 

the bond-slip model may improve the factual representation of local and global 

structural behavior (Chapter 3). 

2. Dowel actions is an important parameter for the shear transfer especially at the crack 

location. On the other hand, its numerical representation or experimental detection are quite 

troublesome since dowel action occurs with other transfer components. Elaborate 

numerical investigations should be performed on the dowel action in order to understand 

its importance. Thus, bond-slip model by (Torre-Casanova 2013) is an effective model to 

capture the local behavior (crack properties) and might be used to investigate dowel action 

in reinforced concrete structures (Chapter 4).  
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2. Chapter-2:                 

Development of the Bond-Slip 

Model 

1. Introduction 

This Chapter is dedicated to the developments in the bond-slip model initially proposed by 

(Casanova, Jason and Davenne 2012) and (Mang, Jason and Davenne 2015). First of all, a 

general principle of the bond-slip model is presented in this Chapter to elucidate the model’s 

methodology. Afterwards, the main focus was on analyzing the model and locating the 

deficiencies, refining it by a solution and then validating the new proposal. Generally, the 

simulations like pull-out tests and shear walls which were performed by mentioned authors are 

complex geometries. Since there are many parameters affecting the bond behavior, it is quite 

difficult to analyze only the bond-slip model’s contribution in numerical calculations. For this 

reason, rather simple geometries like one single interface element are chosen to understand the 

acceptability and the numerical efficiency of the bond-slip model. 

Mainly, two major anomalies are detected related with the transversal and irreversible bond 

behavior of the model separately. After the detection of those anomalies, different solutions 

are proposed, tested and then implemented in the source code. Namely, an alternative solution 

is proposed in order to obtain the transversal behavior of the bond and a completely new 

methodology is proposed to obtain the irreversible behavior of the steel-concrete bond under 

cyclic loading. Thereafter, the implementations are validated with several simulations on 

simple geometries. Since the bond-slip model is improved by several modifications, tangential 

bond behavior is also validated before performing any further analysis on complex geometries. 

2. Bond-Slip Model 

In this section, first the main principles of the bond-slip model are explained and then the 

detected anomalies are presented in detail. 
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2.1. Theoretical Presentation of the Model 

Bond-slip model is a constitutive approach which has been proposed by (Torre-Casanova 2013) 

and to represent the effects of steel-concrete bond behavior in reinforced concrete structures 

associated to a Finite Element Model (FEM). The main principle is to define a zero thickness 

interface element between the steel and concrete as presented in the Figure 2.1. This is done 

via a simple methodology by creating a superimposed element on the 1D steel element. The 

superimposed element is strictly bounded to the concrete element by certain kinematic relations 

where it acts like the concrete cover. 

 

Figure 2.1 Representation of interface element (Mang 2016). 

Then the bond characteristics (like adhesion law) are defined on the interface element by the 

user in order to calculate the bond stress. As it can be seen in Figure 2.2a the interface element 

consists of 4 nodes and each node has 3 degrees of freedom (DOF). Displacement {u} of the 

interface element nodes can be written as Eq. (2.1) below where t denotes the tangential 

direction along the steel bar, n1and n2 denote the normal directions of interface nodes. 

 {u}T = {u1t, u1n1
, u1n2

, u2t, u2n1
, u2n2

, u3t, u3n1
, u3n2

, u4t, u4n1
, u4n2

} (2.1) 

From the displacement difference between the interface element nodes, the slip (δnode) 

between steel and concrete can be easily calculated (Figure 2.2b) by using the Eq. (2.2) below. 

 {δnode} =  [
I3 03 −I3 03

03 I3 03 −I3
] {u} (2.2) 

where 

I3  =  [
1 0 0
0 1 0
0 0 1

] (2.3), 03 = [
0 0 0
0 0 0
0 0 0

] (2.4) 
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Figure 2.2 (a) degrees of freedom of an interface element, (b) definition of the slip within the 

interface element (Mang, Jason and Davenne 2015). 

From Eq. (2.2), the slip can be represented by Eq. (2.5): 

 {δnode} 
T = {δ1t, δ1n1, δ1n2, δ2t, δ2n1, δ2n2} (2.5) 

The generalized slip of the interface element is calculated as in Eq. (2.6): 

 {δ(p)} =   {

δt(p)
δn1(p)
δn2(p)

} =  [B1(p) B2(p)] {δnode} (2.6) 

where 

B1(p) = 0.5 (1 − p)I3 (2.7), B2(p) = 0.5 (1 + p)I3 (2.8) 

 −1 ≤ p ≤ 1 (2.9) 

Combining the equations 2.2 and 2.5, the slip can be written in terms of displacement as in Eq. 

(2.10): 

 { δ(p) } =  B(p)  {u} (2.10) 

The generalized stresses {σ(p)} are written as in Eq. (2.11) which contains again 3 different 

components: 1 for tangential and 2 for normal directions. 
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 {σ(p)} =  {

σt(p)
σn1

(p)

σn2
(p)

} (2.11) 

The stresses for the tangential direction can be calculated by a defined adhesion law (stress-

slip relation) which is presented in Eq. 2.12. In the normal directions, a linear relation is 

assumed by defining the normal stiffness values (kn) as constant as in Eq. 2.13. Usually the kn 

values are chosen high enough to obtain perfect bond relation in the normal directions 

(n1 and n2). 

σt(p) =  f(δt(p)) (2.12), {
σn1(p)
σn2(p)

} =  kn {
δn1(p)
δn2(p)

} (2.13) 

Besides, the nodal forces on the interface element for the 4 different nodes are represented as 

in Eq. (2.14). 

 {Finterface}
T = [F1

T F2
T F3

T F4
T] (2.14) 

These forces on each interface element nodes can be calculated by Eq. (2.15) and Eq. (2.16) 

below by integrating the stresses (Eq. 2.13 and Eq. 2.13) of each node. 

 F1 = {
F1t

F1n1

F1n2

} =
ℓint

2
∫ A {σ(p)}

1

−1

dp (2.15) 

 F2 = {
F2t

F2n1

F2n2

} =
ℓint

2
∫ A {σ(p)}

1

−1

dp (2.16) 

where ℓint is the length of the interface element and 

 A = [

πds 0 0
0 ds 0
0 0 ds

] (2.17) 

with ds the diameter of steel bar. 

The following equations (2.18) and (2.19) can be obtained from the force equilibrium. 
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F3 = {
F3t

F3n1

F3n2

} =  − F1 (2.18), F4 = {
F4t

F4n1

F4n2

} =  −  F2 (2.19) 

For the resolution matrix, linearity of the stresses along the interface element is assumed. This 

choice allows an analytic integration of the nodal forces of the interface element from the 

stresses at each Gauss point. The generalized stresses can be written according to the stresses 

at the Gauss points (σGP) of the interface element as in Figure 2.3 in the local coordinates 

(t, n1 and n2): 

 {σ(p)} =  [B1(p) B2(p)] Q {σGP} (2.20) 

with 

 {σGP}
T = {σGP1t σGP1n1 σGP1n2 σGP2t σGP2n1 σGP2n2  } (2.21) 

 Q =  [
B1(aGP1) B2(aGP1)
B1(aGP2) B2(aGP2)

]
−1

 (2.22) 

aGP1 = −
1

√3
 (2.23), aGP2 = 

1

√3
 (2.24) 

 

Figure 2.3 Positions of Gauss points in the interface element (Mang, Jason and Davenne 2015). 

Using the defined formulations above, the nodal forces in the global coordinates (Figure 2.4) 

can be expressed as in the Eq. 2.25. 

 {F} = {

F1

F2

F3

F4

} = TL→G  C  Q{σGP} (2.25) 

where: 
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 TL→G = 

[
 
 
 
T1 03 03 03

03 T1 03 03

03 03 T1 03

03 03 03 T1]
 
 
 
 (2.26) 

 T1 = [
x. t x. n1 x. n2

y. t y. n1 y. n2

z. t y. n1 z. n2

] (2.27) 

and 

 CT = [C1
T C2

T −C1
T −C2

T] (2.28) 

C1 = leA [
3I3
8

 
I3
8
] (2.29) C2 = leA [

I3
8

 
3I3
8

] (2.30) 

 

Figure 2.4 Nodal forces of the interface element in the global coordinate system (Mang, Jason 

and Davenne 2015). 

2.2. Anomalies of the Model 

The anomalies which are detected during the analysis of the bond-slip model basically can be 

grouped into two categories: transversal and irreversible bond behaviors. In this section, these 

anomalies are explained in detail. 

Transversal Behavior 

In the previous studies like (Torre-Casanova 2013) and (Mang 2016), the bond-slip model was 

mainly focused on the tangential behavior of the bond. First series of test simulations have been 

performed on a single interface element with the bond-slip model in order to investigate also 

the behavior in the normal direction. A 2 cm length (lint) single interface element without any 

thickness is considered with a steel bar diameter dS = 1 cm as in Figure 2.5. The bottom line 

of the element is blocked against any displacement as a boundary condition and 5 mm 
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displacement is applied on the top nodes in Y or Z direction (normal directions) separately. A 

linear bond stress-slip relation is assumed both in tangential (X) and normal directions (Y and 

Z) with the defined stiffness values (kt, kn1and kn2). Tangential stiffness (kt) is taken equal to 

1. 1012Pa/m and the normal stiffness values ( kn1and kn2) are defined to be the same in both 

normal directions as 1. 1015Pa/m. 

 
Figure 2.5 Representation of the interface element geometry for the 2 different test cases. 

The calculation results revealed a particular problem that had not been noticed before in the 

calculation of the forces in normal directions of the interface element. When displacement is 

imposed in Y direction as in Figure 2.5a, the ultimate nodal force is calculated as 1. 1010 N for 

both of the normal directions (Y and Z) even though no displacement was applied on Z 

direction. When displacement is imposed in Z direction (Figure 2.5b), the ultimate forces in 

both of the normal directions are calculated as zero. Based on these results, the source files of 

the bond-slip model are subsequently analyzed to determine the abnormalities in the bond-slip 

model (Table 2.1). 

Table 2.1 Ultimate force values on interface element for initial and modified model. 

Type of the 

model 

Imposed 

Displacement 

Ultimate Force (𝐅𝐮) 

𝐅𝐮,𝐱(𝐍) 𝐅𝐮,𝐲(𝐍) 𝐅𝐮,𝐳 (𝐍) 

Initial Bond-slip 

Model 

5 mm Y-direction 0 1. 1010 1. 1010 

5 mm Z-direction 0 0 0 

As a sum up, a deficiency is thus detected in the calculation of the forces in the normal 

directions of the joint element. 

Irreversible Behavior 

Second series of simulation are focused on the irreversible behavior of the bond-slip model. 

The cyclic adhesion law of the bond-slip model defined and implemented by (Mang 2016) has 

been tested with several simulations. Indeed, only the frictional force between steel and 

concrete remains in the tangential direction after several loading cycles. Understanding of this 
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phenomenon is quite important to predict the general response of a reinforced structure under 

cyclic loading, especially when the crack properties are considered. 

The irreversible bond behavior of the bond-slip model is investigated for different alternative 

loadings to test its validity. In order to concentrate only on the bond behavior, once again, the 

single interface element geometry is chosen for the numerical analysis. Figure 2.6 represents a 

2 cm length zero thickness interface element geometry with 1 cm diameter (dS). The bottom 

nodes are blocked against displacement and the alternative load is applied on one of the top 

nodes as an imposed displacement (ux). All of the simulations for the irreversible bond 

behavior analysis are performed on this single interface element. 

 
Figure 2.6 Representation of the interface element geometry. 

Incremental Alternative Loading Test 

For the first analysis, the same test case which was defined by (Mang 2016) is performed using 

the same parameters. An incremental cyclic displacement along the tangential direction (ux) 

is imposed on one node of the single interface element (Figure 2.6) with a loading history as 

shown in Figure 2.7a and the adhesion law that is defined as shown in Figure 2.7b. The 

properties of the adhesion curve are given in Table 2.2. 

Table 2.2 Bond Properties 

Elastic Limit Stress 

𝛕𝟎 (MPa) 

Maximum Strength 

𝛕𝐮 (MPa) 

Frictional Stress 

𝛕𝟎 (MPa) 

2 20.8 2 
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Figure 2.7 (a) History of imposed displacement. (b) Adhesion law of the interface between the 

steel and concrete. 

The response stress-slip curve is presented in Figure 2.8. The irreversible behavior is presented 

in the pre-peak stage of the adhesion law. Normally, the stress values should follow the A – B 

path until the last maximum stress value B and then it should follow the defined adhesion law 

along the B-C path instead of. A-A'-C path in Figure 2.8. There are a few steps between the 

points A and A´ which do not represent the intents of the model. To sum up, there should not 

be any distance between the points A-A´ and B-C in the reloading stage. This problem should 

be straightened out for the realistic calculations. 

 
Figure 2.8 Stress-slip curve of the interface element under cyclic loading. 

Analysis of the Frictional Stress 

As stated earlier, friction between the steel and concrete is taking a part in the reloading stage 

when a cyclic loading is considered. In the bond-slip model of (Mang 2016), this frictional 

stress is considered as equal as the elastic limit stress (τ0). However, in reality, the frictional 

stress varies depending on many parameters like geometry and material properties of the 

structures (Park and Paulay 1975). That is why it may be necessary to define bonding laws with 

different friction stresses (τf) according to the selected numerical applications.  
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For the second test case, friction stress effect on the bond behavior is tested again on a single 

interface element (Figure 2.6) with identical geometry, loading and boundary condition as in 

the previous test case. Only 1 MPa frictional stress value (τf) at the end of the loading is defined 

in the input adhesion law instead of 2 MPa. The loading history and defined adhesion low are 

given in Figure 2.9a and b. The properties of adhesion curve are presented in Table 2.3. 

Table 2.3 Bond Properties 

Elastic Limit Stress 

𝛕𝟎 (MPa) 

Maximum Strength 

𝛕𝐮 (MPa) 

Frictional Stress 

𝛕𝐟 (MPa) 

2 20.8 1 

 
Figure 2.9 (a) History of imposed displacement. (b) Adhesion law of the interface between the 

steel and concrete. 

The response bond stress-slip curve is presented in Figure 2.10. Two different anomalies are 

detected according to the results. 

The first one is related with the correct follow up of the defined adhesion law during the loading 

phase which can be seen in the right top corner of Figure 2.10. In reality, the stress-slip curve 

should follow the A-B-C path instead of A-A´-C path. This problem originates from the 

identical anomaly which is explained in the previous section, but we remark that τf has an 

influence on the shape of this anomaly. 

The second anomaly is related with the defined frictional stress (τf) between the steel and 

concrete. It can be observed that the bond-slip law is not correctly implemented, a stress jump 

can be seen between the points D´ and E in Figure 2.10. In reality, the curve should follow the 

D-E line for the loading instead of D-D´-E path (Figure 2.10). The program makes a confusion 

between the first loading until the elastic limit (τ0) and the reloading following a horizontal 

line at the value of the frictional stresses (τf). This incoherent results cannot be observed if 

τ0=τf. Therefore, this problem should be corrected as well. 
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Figure 2.10 Stress-slip curve of the interface element under cyclic loading for 1MPa frictional 

stress between the steel and concrete. 

Analysis of the Adhesion Law 

So far, a classical adhesion law is used in numerical analysis which is proposed by (Torre-

Casanova 2013). This law is a non-linear law defined by four straight lines: elastic, pre-peak, 

post-peak and residual friction phases (Figure 2.7b). In the engineering applications, the bond 

characteristics can be can be mutative depending on the material and geometric properties of 

the reinforced structures. Therefore, it is necessary to be able to use various adhesion laws in 

bond-slip model for the numerical analysis. 

In the third test, the bond-slip model dependence on the adhesion law is examined again on the 

single interface element (Figure 2.6) by applying cyclic loads. The availably of using different 

adhesion laws is tested. A particular adhesion law (with multiple straight lines) is defined 

(Figure 2.11b) which has a weaker bond strength (τu = 15 MPa) and higher frictional stress 

(τf = 7 MPa). The imposed displacement is chosen as in Figure 2.11a so that the behavior of 

the steel-concrete bond can be observed in the different phases (elastic, before and after the 

peak). The characteristics of the defined adhesion curve are given in Table 2.4. 

Table 2.4 Bond Properties 

Elastic Limit Stress 

𝛕𝟎 (MPa) 

Maximum Strength 

𝛕𝐮 (MPa) 

Frictional Stress 

𝛕𝐟 (MPa) 

1 15 7 
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Figure 2.11 (a) History of imposed displacement. (b) Adhesion law of the interface between the 

steel and concrete. 

The bond stress slip values after the test simulation is illustrated in Figure 2.12. Again, there is 

a confusion between the elastic limit stress and the friction stress which are different here. This 

leads to an error between first loading and reloading in the reverse direction (change of sign of 

loading). The stress drop between F and F’ could bring numerical difficulties. Even if it not the 

true physical reality, a straight direct path from F to G on Figure 2.12 would be better. 

The modification of implementation of (Mang 2016)’s bond-slip model is necessary for the 

utilization of different adhesion laws. 

 
Figure 2.12 Stress-slip curve of the interface element under cyclic loading for different adhesion 

law. 

All the anomalies inside the irreversible law of bond-slip model can be summarized as follows: 

 When the loading exceeds the maximum load in history, the stress does not correctly 

follow the adhesion law which is defined by the user. 

 If the user defines a friction stress different from the elastic limit stress, some anomalies 

appears in the response: at the first loading if τ0 > τf, and at the reverse loading if τ0 < τf 
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After examining the source code of the cyclic adhesion law, and considering the results of the 

three test cases carried out above, it came out that the problem was originated in the definition 

of every load-reload possibility of the system depending on the values of τ0 and τf. Therefore, 

a completely new methodology is suggested to represent the irreversible behavior of the bond 

which can be adapted to any case. This new irreversible bond model will be explained in detail 

in the following section. 

3. Implementation of the New Model 

In this section, the implementation and the validation of the new bond-slip model is explained 

in detail. 

3.1. Transversal behavior of the bond 

The detected anomaly related with the transversal bond behavior is already elaborated in 

section 2.2. It has been recorded that when the displacement is imposed to Y normal direction, 

the nodal forces are calculated in both directions (Y and Z) and when the displacement is 

imposed to Z normal direction, the nodal forces are calculated zero in both directions (Y and 

Z). 

After thoroughly examining the source codes, it has been conceived that there was a kind of 

problem originating from integration of the forces. Inside the source codes the global forces on 

the interface element nodes (for 3D case) are assumed to be the same both in Y and Z directions. 

In actual applications, it can be different according to the applied load characteristics. This 

anomaly is retrieved by a new numerical integration methodology that is implemented inside 

the model to be able to consider the force calculation in Y and Z directions separately. The 

nodal and local forces are shown together in Figure 2.13. 

 
Figure 2.13 Representation of the forces on the Gauss points and the nodal forces on the 

interface element. 
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The numerical formulations that are implemented inside the model for the calculation of the 

nodal forces are defined as follows: 

 F1x = FGP1x × αxx + FGP1y × αxy  + FGP1z × αxz (2.31) 

 F1y = FGP1y × αyx + FGP1y × αyy  + FGP1z × αyz (2.32) 

 F1z = FGP1z × αyx + FGP1y × αzy  + FGP1z × αzz (2.33) 

 F2x = FGP2x × αxx + FGP2y × αxy  + FGP2z × αxz (2.34) 

 F2y = FGP2y × αyx + FGP2y × αyy  + FGP2z × αyz (2.35) 

 F2z = FGP2z × αyx + FGP2y × αzy  + FGP2z × αzz (2.36) 

where,  F1, F2, F3, F4 are the nodal forces and FGP1, FGP2 are the local forces in the Gauss points 

along the X, Y and Z directions. The alpha (α) values represents the transition between the 

local to global coordinate system (see eq 2.26 and 2.27). By the use of the forces equilibrium 

criteria, the nodal forces of the 3rd and 4th nodes can be written as follows: 

F3x = −F1x (2.37), F3y = −F1y (2.38), F3z = −F1z (2.39) 

F4x = −F2x (2.40), F4y = −F2y (2.41), F4z = −F2z (2.42) 

Interface Element Test 

The same numerical analyses as depicted in Figure 2.5 are performed once again with the 

modifications after the implementation of the new formulas. The results before and after 

modifications are compared with each other. Ultimate forces on the interface element are 

presented in Table 2.5 to point out the new improvements. 

Table 2.5 Ultimate force values on interface element for initial and modified models. 

 
Imposed 

Displacement 

Ultimate Force (𝐅𝐮) 

𝐅𝐮,𝐱(𝐍) 𝐅𝐮,𝐲(𝐍) 𝐅𝐮,𝐳 (𝐍) 

Before 

modification 

5 mm-Y direction 0 1. 1010 1. 1010 

5 mm-Z direction 0 0 0 

After 

modification 

5 mm-Y direction 0 1. 1010 0 

5 mm-Z direction 0 0 1. 1010 
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As can be seen in Table 2.5, the forces are calculated as zero in the initial model when 5 mm 

displacement is imposed in the normal direction Z. Since the integration of the forces in global 

coordinate system were not formulized properly, the forces are calculated as zero at the end of 

each step. After the implementation of adequate methodology in the calculation of forces, it 

can be seen that the forces are calculated accurately on the interface element which can also be 

verified with the simple analytical solution below. The general relation between stress (σn) 

and displacement (δn) along the normal directions can be written as in Eq. (2.43): 

 σn = kn × δn (2.43) 

where, kn denotes the normal stiffness with a constant value (kn = 1. 1015 Pa/m), the ultimate 

forces (Fu) can be calculated directly from Eq. (2.44) for both of the normal directions. 

 Fu,n = ∫(σn) dSint = σn × lint × dS (2.44) 

where, Sint is the surface area of the interface element, lint is the interface element length and 

dS is the diameter of the steel bar. 

When proper values are placed into the equations, the ultimate stresses are found equal to 

 1. 1010 Pa/m in both normal directions, which verify the numerical analysis results. The 

reason of obtaining the same ultimate force values in both simulations is due to assumption of 

same stiffness values (kn1 = kn2 = 1.1015 Pa/m) and same imposed displacements in Y and 

Z directions. 

The next step is to test the modified bond-slip model’s performance on a reinforced concrete 

geometry in order to analyze the global behavior of the structure. 

Interface Element with Concrete Cover 

After the implementation of the new methodology for the calculation of the nodal forces in 

normal directions, the second series of numerical analyses have been performed in order to 

validate the model. Simulations are implemented on a more generic case like a concrete cover 

on a steel bar, and by the bond slip-model representing an interface between them. The concrete 

cover is represented as a cubic element with a total volume of 1 m3 around the steel. A 1 m 

long steel bar is placed in the center of the cube with the diameter (ds) of 1 cm. A zero-

thickness joint element is defined between the concrete (superimposed beam element) and the 
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steel bar. A linear bond stress-slip relation is assumed for tangential and transversal directions 

of the interface. Tangential stiffness value is taken as kt = 1.1012 Pa/m and normal directional 

stiffness value is taken as kn = 1.1015 Pa/m. Total elasticity is assumed for the steel and 

concrete. The material properties of steel and concrete are presented in Table 2.6. Boundary 

conditions and mesh geometry for the aforementioned numerical analysis are summarized in 

Figure 2.14 and Figure 2.15. 5 mm displacement (UZ) is imposed at the end of the steel bar 

(point PA2) throughout the positive Z direction. The bottom surface of the cube element (S1) 

is blocked against any displacement as a boundary condition. The new bond-slip model’s 

validity is examined for the numerical applications of reinforced concrete structures with this 

simulation. 

Table 2.6 Material properties of steel and concrete. 

 Poisson Ratio Young Modulus (GPa) 

Steel 0.3 200 

Concrete 0.2 25 

 
Figure 2.14 Representation of the reinforced concrete box geometry with interface element for 2 

test cases. 

 

Figure 2.15 Mesh geometry of the reinforced concrete box for 2 test cases. 
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Numerical simulations are performed with initial and modified bond-slip models. As expected, 

the forces are calculated as zero on the superimposed element and concrete element nodes for 

the initial model simulation due to the miss-integration of the normal directional forces. With 

the implemented modifications, the forces in the interface element acting on the concrete 

element are calculated in a proper way. The stress transfer between steel and concrete are 

considered correctly with the modified bond-slip model. The ultimate force values of all 

simulations can be found in Table 2.7.  

Table 2.7 Ultimate stress values of steel with concrete cover for modified and initial model. 

Type of the model 
Imposed 

Displacement 

Ultimate Force (𝐅𝐮) 

𝐅𝐮,𝐱(𝐍) 𝐅𝐮,𝐲(𝐍) 𝐅𝐮,𝐳 (𝐍) 

Before modifications 
5 mm Z-

direction 
0 0 0 

After modification 
5 mm Z-

direction 
0 0 2.84 × 107 

3.2. Irreversible Behavior of the Bond 

It was mentioned in section 2.2 that the proposed irreversible bond model had some anomalies 

related with the reloading stage, frictional forces and different adhesion laws defined by the 

user. Firstly, the source code is profoundly analyzed in order to understand the irreversible 

bond behavior within the model. After the evaluation of the source codes, it has been found out 

that the initially proposed model has been defined for all the loading-reloading scenarios for a 

single adhesion law. This model contains many loading-reloading cases and cannot be 

applicable for different adhesion laws. It cannot be used, especially for the conditions where 

the modification of the adhesion law is necessary like active confinement effect on the bond 

behavior. Because of the mentioned reasons above, a completely new irreversible bond model 

is suggested instead of modifying the previous version. The new irreversible model is more 

generalized compared to the initial one with less loading-reloading cases and can be applicable 

for different adhesion laws which can be defined by the user. The frictional stress between the 

steel and concrete is included as an additional parameter in the new cyclic model. Yet, the 

proposed cyclic model is validated on a single interface element by comparing the initial model 

on the same test cases. 
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New cyclic bond model 

The methodology of the new irreversible bond model is detailed in this section. 

The logic of the new irreversible bond-slip model can be easily explained by considering a 

single interface element application (Figure 2.16). In order to simplify the model methodology, 

the slip along the tangential direction of the steel bar (t+) is assumed as the positive direction 

as presented in the Figure 2.16a. On the other hand, the opposite tangential direction of the 

steel element (t−) is assumed as negative direction as in Figure 2.16b. 

 

Figure 2.16 Representation of (a) loading in the positive tangential direction (𝐭+) and (b) re-

loading in the negative tangential direction (𝐭−) of the interface element. 

For each loading step, the loading directions are determined within the model. Determining the 

loading direction (t+ or t−) eliminates half of the possibilities automatically in the beginning 

of each calculation step. The program stores only the current slip value (s) and the maximum 

slip values in both directions (smaxp and smaxn) as represented in Figure 2.17. 

According to the program logic, if the current slip value (s) is not in between the maximum 

slips in the loading history (s > smaxp or s < smaxn), it follows the monotonic law which is 

defined by the user. On contrary, if the slip value (s) is in between the values smaxn and smaxp, 

then the bond behavior is in the cyclic region. Within the cyclic region, 3 different cases are 

considered: 

 The first case is the elastic region which is presented in Figure 2.17 between the slip 

values sn and sp where elastic bond behavior is observed. 
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 Second case is the stress jump when the loading direction is changed 

(between t+ and t−) which is presented in Figure 2.17 between the slip values smaxp −

smaxp1 or smaxn − smaxn1. 

 Third case is the reloading case where only the frictional stress (τf) is active which is 

presented in the Figure 2.17 between the slip values sp − smaxp or sn − smaxn. 

 

Figure 2.17 Example of the cyclic bond behavior in both directions (𝐭− and 𝐭+). 

The new irreversible bond model is a more generalized model compared to the previous one 

(with less cases for the cyclic behavior). Since the program considers less cases by eliminating 

method for each loading step of the numerical calculation, the computation time is decreased 

compared to the initial model for the presented tests in the section 2.2. Then for the initial 

model, the friction stresses are assumed equal as the elasticity limit of the bond. In the new 

irreversible model, the frictional stress is independently defined from the elastic limit of the 

bond, which makes it possible for users to define different values for both limits. The new 

irreversible bond-slip model is also applicable for different adhesion laws which may be 

defined by the user. This provides a possibility to modify the adhesion law in the beginning or 

during the numerical calculation if demanded. In order to enlighten the methodology explicitly, 

schematic representation of the program is also given in Figure 2.18. 
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Figure 2.18 Schematic representation of the program logic. 

The new irreversible bond model is tested on several simulations on the single interface 

element (Figure 2.6) for distinct loading types, frictional stresses and adhesion laws. The same 

test cases on the initial model which were presented in section 2.2 are reproduced with the new 

bond-slip model to disclose the amendments. 

Incremental Alternative Loading Test 

Antecedently, the same test simulation proposed by (Mang 2016) which is presented in section 

2.2 is performed with the new irreversible bond model. Interface element geometry (Figure 

2.6), imposed displacement (Figure 2.7a) and the adhesion law (Figure 2.7b) are chosen 

identical with the previous test case. Stress-slip curve of the simulation is illustrated in Figure 

2.19. 

 

Figure 2.19 Stress-slip curve of the interface element under cyclic loading. 
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Figure 2.19 shows that the bond behavior follows the defined adhesion law for both loading 

and reloading phases. Moreover, for this case, the calculation time is reduced by 16% with the 

new irreversible bond-slip model against the initial model for exactly the same simulation. 

Analysis of the Frictional Stress 

For the second test case, exactly the same simulation represented in section 2.2 is performed 

on the single interface element (Figure 2.6) for the exact imposed displacement (Figure 2.9a) 

and adhesion law (Figure 2.9b) with the new irreversible bond model in order to examine the 

bond friction. Stress-slip curve of the simulation is illustrated in Figure 2.20. 

 

Figure 2.20 Stress-slip curve of the interface element under cyclic loading for 1MPa frictional 

stress between the steel and concrete. 

The new irreversible model considers the elasticity limit (2MPa) and the frictional stress 

(1MPa) separately and performs the calculations according to this phenomenon. Since the 

frictional stress is considered separately inside the program, there is no interruption between 

the points D and elasticity limit E as it can be seen from Figure 2.20 in the initial loading phase 

contrary to the behavior of initial program which was presented in Figure 2.10. The calculation 

time is again reduced by 17% in the new model against the initial one for exactly the same 

simulation. 

Analysis of the Adhesion Law 

For the third test case, exactly the same simulation represented in section 2.2 is performed on 

the single interface element (Figure 2.6) for the exact imposed displacement (Figure 2.11a) and 
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adhesion law (Figure 2.11b) with the new irreversible bond model in order to examine the 

influence of the adhesion law. Stress-slip curve of the simulation is illustrated in Figure 2.21. 

 

Figure 2.21 Stress-slip curve of the interface element under cyclic loading. 

It can be seen from Figure 2.21 that the different adhesion laws are applicable for the new 

irreversible bond model. The interconnection between the points F and G can be seen in Figure 

2.21 which is contrary to the situation in Figure 2.12 for the same test case with the initial 

model for the unloading phase. The new irreversible model calculates the intersection point G 

according to the defined adhesion law and friction stress values and considers this for both 

loading/unloading phases. Moreover, the calculation time is reduced by about 15% in the new 

irreversible model against the initial one for the identical test case. 

4. Analytical Validation of the New Bond-Slip Model 

on a Tie-Rod 

This section is dedicated to the validation of the new bond-slip model’s outcomes in tangential 

direction by the comparison of numerical calculations with the analytical ones. Since there 

were several anomalies detected related with the bond-slip model and the model improved by 

implementing tangential and cyclic bond behavior, it has been decided to do an analytical 

validation of the model to be certain about the model’s response before performing any further 

analysis. To accomplish this, a simple test on a tie rod which was previously studied by (Torre-

Casanova 2013) and (Mang 2016) is considered. The analytical solution for the pull-out test 

geometry which is proposed by (Torre-Casanova, Jason, et al. 2013) is compared with the 

numerical simulations in order to validate the tangential behavior of the bond. The slip and 

stress distribution on the materials are analytically calculated for the defined case and compared 

with the numerical results of the developed bond-slip model simulations. Different tangential 
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stiffness values are also evaluated in bond-slip model and compared with the perfect bond 

hypothesis. Consequently, the bond-slip model is validated for the tangential direction. 

For the pull-out test geometry, a tie rod embedded inside a concrete beam is chosen which is 

presented in Figure 2.22. Steel rod is tied at one end and 27.3 kN force (Fx) is applied on the 

other end in the tangential direction. The steel bar is embedded inside a 1.15m length (L) 

concrete beam which has 0.01 m2 cross-sectional area (Ac). The steel diameter (ds) is equal 

to 1 cm and it has a 7.85 × 10−5 m² cross-sectional area (As). A linear relation is used between 

stress and slip along the tangential axis in order to facilitate the analytical solution. The steel 

and concrete properties are provided in Table 2.8. Numerical and analytical surveys are 

performed according to these properties. 

 

Figure 2.22 Presentation of the tie rod, boundary conditions and loading (Mang 2016). 

Table 2.8 Material properties of steel and concrete (Mang 2016). 

Steel Properties Concrete Properties 

Young Modulus  

𝐄𝐬 (𝐆𝐏𝐚) 

Poisson Ratio 

𝛎𝐬 

Young Modulus  

𝐄𝐜 (𝐆𝐏𝐚) 

Poisson Ratio 

𝛎𝐜 

210 0.3 30.2 0.2 

Analytical solution 

In the analytical solution, for stress in steel σs, for stress in concrete σc and for slip δt 

equivalents are taken from the study of (Torre-Casanova 2013) and (Mang 2016) for the given 

geometry. The formulation of these is given below: 

 σs(x) = (
F

Ss
+

β

α2
)

cosh(αx)

cosh (
αL
2 )

−
β

α2
 (2.45) 
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 σc(x) =
bEC

α2
(

cosh(αx)

cosh (
αL
2 )

− 1) (2.46) 

 δt(x) =  us(x) − uc(x) =  
F × sinh(αx)

αESSScosh (
αL
2 )

 (2.47) 

where, 

α =  √a (2.48), β =  bEs (2.49) 

and 

a = πdskt (
1

EsSs
+

1

EcSc
) (2.50), b =  −

πdsktF

EsSsEcSc
 (2.51) 

F denotes the external force, L denotes the length of the steel bar, Ss denotes the cross-sectional 

area of the steel, Ec denotes Young modulus of concrete, ES denotes Young modulus of steel, 

us is used for the steel displacement and uc is used for the concrete displacement in the above 

given formulas. 

Numerical Model 

Concrete beam and steel bar are divided into 50 elements for the numerical analysis. Concrete 

is represented by 8 node cubic elements and steel is represented by 1D truss element in the 

numerical simulations. Total elasticity is assumed for both materials numerical analysis. 

Different tangential stiffness values (kt) are tested. The stiffness values (kt) are taken 

as 1. 1011 Pa/m, 1. 1012 Pa/m and 1. 1014 Pa/m. Mesh geometry is represented as in Figure 

2.23 and the simulation properties can be found in Table 2.9. 

 

Figure 2.23 Concrete and steel mesh geometry of the tie rod. 
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Table 2.9  Simulation Properties. 

 Mesh Geometry Model Properties 
Number of 

Elements 

Concrete 3D Solid Elment Elastic Behavior 50 

Steel 
1D Truss  

Element 
Elastic Behavior 50 

Interface 
Joint Element 

(zero thickness) 

Bond-slip Model 
1) kt = 1. 1011 Pa/m 

      kn1 = kn2 = 1. 1015 Pa/m 

2) kt = 1. 1012 Pa/m 

     kn1 = kn2 = 1. 1015 Pa/m 

3) kt = 1. 1011 Pa/m 

     kn1 = kn2 = 1. 1015 Pa/m 

50 

Applied Load 
 

Time Steps 

27.3kN 
 

2 

The analytical and numerical solutions for stress along the steel rod and slip between the steel 

and concrete materials for different stiffness values are presented in Figures 2.24a and 2.24b 

respectively. 

 

Figure 2.24 (a) Stress distribution along the steel bar, (b) Slip between the steel and concrete. 

It can be clearly seen from Figures 2.24a and 2.24b that all the numerical results are identical 

as the analytical ones for different rigidity values (kt). The stress on the steel bar is concentrated 

at the end-points in all the simulations as expected since the stress in the middle is transferred 

through the concrete cover. Thus, the maximum slip is observed at these end-points since the 

stress difference between steel and concrete is the highest at these points. These results confirm 

the validity of the new bond-slip model in the tangential direction. 

Comparison between Bond-Slip Model and Perfect Bond Model on a Tie-Rod 

It was expected that in the bond-slip model if the rigidity (kt) in the tangential direction is taken 

high enough, the general behavior of the structure should be the same when the perfect bond 
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model is assumed between steel and concrete. In this part, 3 different rigidity values (kt) are 

tested with bond-slip model to determine the proper tangential stiffness value (kt) which 

provides the same results as the perfect bond model. The numerical analysis is performed on 

the same pull-out test geometry which was presented in Figure 2.22. Elastoplastic truss element 

is used for the steel rod representation and Mazars’s damage model (Mazars 1986) is used for 

the concrete in order to be more realistic. Mazars concrete damage model is described below 

before representing the comparison of the two bond models. The details of simulation 

properties can be found in Table 2.8. 

Mazars Damage Model 

(Mazars 1986) has developed an isotropic damage model which takes only the positive 

principal strains into account to calculate the damage. This criterion is widely used for its 

simplicity and relative accuracy specially to represent failures of concrete structures under 

monotonic loading. In this model, the reduction in rigidity of the material under the effect of 

crack growth is calculated from a single scalar damage varying between 0 (no damage) and 1 

(completely damaged structure). The stress in concrete is then governed by the law below: 

 σ = (1 − D) Λ ∶ ε (2.52) 

where σ is the stress tensor, ε is the strain tensor, D is the damage variable and Λ is the fourth 

order tensor of elasticity. 

An equivalent strain εeq is defined from the positive principle strain tensors: 

 εeq = √∑(〈εi〉)2

i

 (2.53) 

with, εi the principal strain tensor. The damage threshold can be defined from: 

 f(D) =  ε − K(D) = 0 (2.54) 

with    K(D) =  εD0 = initial damage threshold. 

Mazars model (Mazars 1986) makes it possible to describe the reduction of the stiffness of the 

material under the effect of micro-cracks in concrete. It depends on only one scalar local 

variable D that describes the isotropic damage and distinguishes the damage in tension or in 
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compression. The calculations of the damage variable and constraints are carried out from the 

strain tensor. The concrete damage is the combination of compression and tension which can 

be described in the formula below: 

 (ε) =  αT(ε)DT(ε) + αC(ε)DC(ε) (2.55) 

where DT is damage in tension, DC is damage in compression and ε is strain tensor. 

Numerical Analysis 

For the comparison of two models, 5 mm displacement is applied on the rod and the results are 

compared for different kt values of the bond-slip model and also with the perfect bond 

hypothesis. All the other properties are taken the same as that was presented in Table 2.8. Three 

different rigidity values of kt =  1. 1011 Pa/m, kt =  1. 1012 Pa/m and kt =  1. 1015 Pa/m 

are tested in the bond-slip model to affirm the same results as in the perfect bond relation. 

Stress slip curves of the pullout test with different tangential stiffness values are presented in 

Figure 2.25. 

 

Figure 2.25 Force displacement curves of bond-slip model and perfect bond model. 

It can be seen from Figure 2.25 that the general behavior of the bond-slip model with rigidity 

kt =  1. 1015 Pa/m is the same as the perfect bond hypothesis. This means that if kt =

1. 1015 Pa/m value is used in a bond-slip model, it behaves like the steel is perfectly bonded 

to the concrete cover and both materials have the same displacement when the load is applied 

to the structure. When the bond-slip model with the kt =  1. 1012 Pa/m results are compared 

with the perfect bond model simulation results, it can be seen in Figure 2.25 that the bond 

model behaves almost the same as the perfect bond model in the elastic region (between the 
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points 0-A). Nevertheless, in kt =  1. 1012 Pa/m simulation, the general behavior is quite 

different from the perfect bond results in the plastic region (A-B). This is also quite realistic 

since the steel and concrete has a different response in the plastic region at the first crack 

occurrence. It is also quite logical that the stress on the steel bar is quite higher in all the bond 

model simulations compared to the perfect bond results since stress transfer between the steel 

and concrete considered differently in the cracked locations through the interface. Results with 

the kt =  1. 1011 Pa/m simulation is quite different from the perfect bond results both in elastic 

and plastic regions. This means that if the tangential stiffness (kt) is taken high enough in the 

new model, the perfect bond solutions can be obtained. 

Since it is expected to have a perfect behavior in the elastic region and different behavior in 

the plastic regions, it seems plausible to use kt =  1. 1012 Pa/m rigidity value in the bond-slip 

simulations. However, for some applications, a higher rigidity might be necessary to obtain the 

perfect behavior in the plastic region. It is essential to explore the rigidity values (kt) for 

different configurations and with different applications in order to make a proper calibration 

on the bond model. 

5. Conclusion 

The developments in the bond-slip model is presented in this Chapter. Antecedently, the 

transversal behavior of the bond-slip model is analyzed. The results have revealed that the 

forces on the interface element nodes are not accurately calculated. Subsequently the source 

codes are reviewed to detect this anomaly. It has been discovered that there is a drawback 

related with the integration of the forces between the local and global coordinate systems. The 

normal directional forces on the interface element nodes were assumed to be equal to each 

other in the initial bond-slip model. This assumption does not correspond to the reality and 

provokes incorrect results in the numerical applications. The appropriate formulations for the 

numerical integration are implemented inside the source codes right after the detection of this 

deficiency. The same simulations are performed once more on the interface element and a 

concrete box with reinforcement to see the improvements in the modified model. The results 

with the modified bond-slip model have shown that the forces on the interface element nodes 

are calculated correctly. The accuracy of force values at the end of the numerical calculations 

are checked with a very simple analytical solution. 
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Subsequently, the irreversible behavior of the bond-slip model is analyzed. Several numerical 

tests are performed on the single interface element under cyclic loading. Different adhesion 

laws and different alternative loadings are examined within these simulations. The cyclic 

adhesion law proposed by (Mang 2016) is found to be suitable for the adhesion law for the 

steel-concrete bond that is proposed by (Torre-Casanova 2013) and it is not applicable to 

another adhesion law which may be defined by the user. A completely new methodology is 

defined in order to represent the irreversibility of the interface which does not include the 

headachy of the previous model. This new methodology is implemented successfully in the 

(Cast3M 2017) finite element code. The new irreversible model is a general approach which is 

capable of adopting the user defined adhesion law applications. The friction forces of the bond 

can also be exclusively defined by the user and will be taken into account during the whole 

numerical process. The irreversible behavior of the interface is defined accurately in the new 

model and validated by various tests on the interface element. Since the new model checks and 

eliminates the inappropriate alternatives in order to find the authentic irreversible behavior; in 

comparison to the previous model that checks all the probabilities one by one, the calculation 

time of the new model is reduced by around 16% with respect to the initial version for the 

interface element trials. 

Finally, the tangential behavior of the new bond-slip model is tested on a Tie-rod by comparing 

with analytical results. Three different stiffness (kt) values are used for this test. The numerical 

and analytical results are found to be identical.  Through all these numerical tests presented in 

this Chapter, tangential, transversal and irreversible behavior of the new bond-slip model is 

validated.  



96 

 

  



97 

 

3. Chapter-3:                                        

Implementation of the 

Confinement Effect on the Bond 

Behavior 

1. Introduction 

As mentioned earlier, active confinement has an influence on the steel-concrete bond behavior 

( (Eligehausen, Popov and Bertero 1983), (Malvar 1991) etc.). In this section, the 

implementation and validation of the active confinement effect on the bond-slip model are 

explained in detail.   Moreover, the effect of active confinement on the structural behavior is 

investigated on a tie-rod by using the new bond-slip model. 

2. Implementation of the Confinement Effect to the 

Bond-Slip Model 

By means of active confinement, external pressure on the reinforced structure is affecting the 

adhesion properties of the bond. In order to represent this kind of behavior numerically, an 

empirical formulation is suggested to modify the adhesion law which is an input parameter of 

the bond-slip model, according to the external stress values. In literature, several authors like 

(Robins and Standish 1982), (Lowes, Moehle and Govindjee 2004), (Zhang, Wu, et al. 2016) 

etc. has mentioned that the active confinement effect on the slip properties is negligible while 

it significantly affects the ultimate bond strength (τu). Only the confinement effect on the bond 

stress is thus taken into account while the effect of lateral pressure on the slip is neglected. 

External tension and compression have different effects on the bond behavior. It has been 

mentioned earlier that bond strength increases with increasing lateral compression ( (Robins 

and Standish 1982), (Xu, Wu, et al. 2014)), on contrary it decreases with increasing lateral 

tension ( (Wu, et al. 2014)). After a detailed literature research, it has been found that the bond 
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stress (τ) is directly related with the lateral pressure (Plat) and compressive strength of the 

concrete (fc). Several experimental campaigns like (Orangun, Jirsa and Breen 1977), 

(Eligehausen, Popov and Bertero 1983), (Zhang, Dong, et al. 2014), etc., tend to show that the 

bond properties increase with the ratio of lateral pressure over the compressive strength (Eq. 

3.1): 

 τ ∝ √
Plat

fc
 (3.1) 

As mentioned in Chapter 1, several authors propose relations based on (Eq.3.1) to model the 

confinement effect on the steel-concrete bond ( (Xu, Wu, et al. 2014), (Wu, et al. 2014) (Zhang, 

Wu, et al. 2016) etc.). When the lateral pressure is tension, some authors propose a reduction 

of the bond properties related to the tensile strength of the concrete ( (Zhang, Dong, et al. 2014), 

(Wu, et al. 2014)). 

Moreover, an effect of the concrete cover and the steel diameter on the active confinement is 

observed in different experimental tests according to the literature ( (Shang, et al. 2017), (Xu, 

Wu, et al. 2014) etc.). The lower the concrete cover to steel diameter ratio (c/ds), the greater 

the effect of lateral pressure. This ratio has already an influence when there is no active 

confinement. Indeed, for small (c/ds) ratios, the passive confinement induced by the ribs of 

the reinforcement when the steel slips in the concrete can lead to a splitting failure of the cover 

concrete. (Torre-Casanova, Jason, et al. 2013) suggested a formulation in order to determine 

the splitting or the pull-out failures in reinforced concrete structures. This is detailed in Chapter 

1, section 4.3.2. 

Based on the consideration above, we propose a modeling of the influence of the lateral 

pressure around the steel through the relations given in Eq. 3.2 and Eq. 3.3: 

For lateral compression (where Plat < 0): 

 τ∗ = τ(1 + α√|
Plat

fc
|) (3.2) 

For lateral tension (where Plat > 0): 
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 τ∗ = τ(1 − α√|
Plat

ft
|) (3.3) 

where τ is the bond stress without confinement, τ∗ is the modified bond stress under lateral 

pressure, Plat is the applied lateral pressure on the interface, fc and ft are the concrete 

compressive and tensile strengths. α depends on the concrete cover to steel bar diameter ratio 

(c/ds). 

After the analysis of experimental results on several test campaign of the literature, our 

definition of the parameter α is based on the following considerations: 

- There is a transition value for the ratio c/ds below which the influence of lateral 

pressure is quite strong and above which the influence is weak. We proposed to use the 

same value as (Torre-Casanova, Jason, et al. 2013) for the transition value: (c/ds)t =

4.5 

- α is near 1 for very small c/ds ratios and tends toward 0 for large values of c/ds, with 

a quite strong drop around the transition value 

A continuous expression is chosen based on exponentials (Fig 3.1): 

α = 1 − e
β[

c
𝑑𝑠

−a]
 

if 
c

ds
≤ 4.5 (3.4) 

α = e
−γ[

c
𝑑𝑠

−b]
 

if 
c

ds
> 4.5 (3.5) 

β and γ are parameters to control the shape of the exponentials, while a and b are adjusted to 

assure the continuity of α and its derivative at the transition point (c/ds)t = 4.5. 

For the following we choose the shapes β = 1 and γ = 0.8, this led to a = 5.31 and b = 3.77. 
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Figure 3.1 Evolution of α as a function of 𝐜/𝐝𝐬. 

The bond stress (τ) of the input adhesion law is modified according to applied lateral pressure 

on the interface while the slip (s) keeps constant with the given equations above. An example 

of initial (defined by user) and modified (under 10MPa external compression) bond stress-slip 

laws within the new bond-slip model can be found in Figure 3.2 where τu
∗  is the modified 

ultimate bond stress and  τu is the initial ultimate bond stress, τf
∗ is the modified frictional bond 

stress and τf is the initial frictional bond stress. 

 

Figure 3.2 Modification of adhesion law in new bond-slip model by considering applied external 

pressure (active confinement). 

According to new bond-slip model, the concrete properties (fc and ft), adhesion law (τ(s)) and 

concrete to steel ratio (c/ds) are defined as the input parameters. The external pressure applied 

to the interface (Plat) is calculated for each interface element and for each calculation step. 

After obtaining the lateral stresses (Plat) on the steel-concrete interface, the stress-slip relation 

(adhesion law) is modified by the proposed formulas (Eq. 3.2 and 3.3). Then the bond stress 
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and slip are calculated according to this modified adhesion law. The calculation of lateral 

pressure (Plat) within the new bond-slip model can be explained with Figure 3.3. 

 

Figure 3.3 Stresses on the concrete and the interface element nodes. 

The lateral pressure (Plat) per interface element is calculated with the following order: 

1. Detection of the concrete element nodes around each interface element (Vc). 

2. Projection of the stress values for each concrete element (σc) on the corresponding 

interface element (σint). 

3. For each Gauss point of the interface element, compute the stress matrix in the local 

coordinate system (t, n1, n2) 

4. Calculation of stress values in the normal directions of the reinforcing bar ( n1 and n2) 

with the given formula: 

 Plat =
σint

n1n1 + σint
n2n2

2
 (3.6) 

Since Plat is calculated for each interface element, the lateral pressure applied to the interface 

is not uniform along the steel bar. This means the effect of confinement on the bond properties 

may vary along the steel length. 

The algorithm above is implemented with the “PROCEDURE_PERSO1” of (Cast3M 2017), 

which has to be written in GIBIANE language (data high-level language of Cast3M). This user 

procedure is called after each time step, and it has access to all the precedent time steps results. 

The computed lateral pressure is stored in the “internal variables” field, in such a way that it 

will be accessible, in the next time step, at the Gauss point level of the interface elements, when 

the behavior law is called. This first implementation is valid in our examples where the steel 
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elements are along the global x-axis. In this case, the third step of the algorithm (coordinate 

system changing) is not needed since: 

σint
n1n1 = σint  

yy
 (3.7),  σint

n2n2 = σint
zz  (3.8) 

In this logic, the concrete stresses which are considered in the new bond-slip model are taken 

from the previous calculation step. This means that calculated lateral pressure on the interface 

(Plat) will be used in the next calculation step to modify the adhesion law. The consideration 

of Plat values per calculation step can be easily seen in Figure 3.4. This kind of consideration 

may delay the response of the active confinement on the bond but can be easily compensated 

by using sufficiently small calculation steps. 

 

Figure 3.4 Consideration of the confinement effect with the new bond-slip model. 

3. Validation of the new model 

After implementing the effect of confinement on the bond-slip model, it was validated with 

several test geometries. In this section, the validation tests and their results are presented. 

3.1. Interface Element Test 

The first series of simulations are performed on a single interface element to be focused only 

on the bond behavior under various lateral pressures. In order to test only the implementation 

accuracy, a very simple geometry is chosen. Figure 3.5 represents a 2 cm length single interface 

element with zero thickness. The bottom nodes are blocked against displacement and the 

loading is applied to both of the top nodes as an imposed displacement along the x-

direction (ux). Different lateral compression and tension are applied on the top of the interface 

element to test the confinement effect. 
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Figure 3.5 Representation of the interface element geometry: (a) under lateral compression, (b) 

under lateral tension. 

Monotonic Loading 

The first test series are performed on the single interface element for monotonic loading case. 

Figure 3.6a shows stress-slip relation as an input parameter for this test which is proposed by 

(Torre-Casanova 2013) and Figure 3.6b defines the imposed displacement in the x-direction. 

Three different constant lateral pressure values (both tension and compression) are also applied 

from the beginning of the computation until the end. The applied lateral compression and 

tension values are presented in Table 3.1. 

Table 3.1 Applied Lateral pressure values. 

Lateral Compression Lateral Tension 

No confinement (0 MPa) No confinement (0 MPa) 

5 MPa 1 MPa 

10 MPa 2 MPa 

 

Figure 3.6 (a) Adhesion law, (b) Loading history for the monotonic interface element test. 

Figure 3.7 represents the bond stress-slip relation of the interface element under various lateral 

tension and compression. It can be seen that the bond strength is increased under increasing 

lateral compression (Figure 3.7a). On contrary, bond strength is decreased under increasing 

lateral tension (Figure 3.7b). 
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Figure 3.7 Bond stress-slip relation under (a) lateral compression, (b) lateral tension. 

In order to validate the implementation, the ultimate bond stress (τu) is analytically calculated 

for different lateral pressures by using Eq. 3.2 and Eq. 3.3. The analytical results are compared 

with the numerical ones in Table 3.2. Coherent τu values are obtained between numerical and 

analytical solutions. 

 

Table 3.2 Comparison of analytical and numerical ultimate bond stress values for interface 

element test. 

 Ultimate Bond Stress: 𝛕𝐮 (MPa) 

Lateral Compression Analytical Numerical 

No confinement 20.80 20.80 

5 MPa 27.38 27.38 

10 MPa 30.10 30.10 

Lateral Tension Analytical Numerical 

No confinement 20.80 20.80 

1 MPa 11.49 11.49 

2 MPa 7.64 7.64 

Cyclic Loading 

For the second series of simulation, the confinement effect on the irreversible bond behavior is 

tested. In order to do so, an alternative loading is applied on the single interface element as 

presented in Figure 3.8a. Moreover, an increasing lateral pressure is applied to the element to 

observe the effect of confinement throughout the calculation procedure. Applied lateral 

pressure is presented in Figure 3.8b. Identical initial conditions and bond properties (adhesion 

law) are defined for the interface as in the monotonic case. 
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Figure 3.8 (a) Loading history, (b) applied lateral pressure for the cyclic interface element test. 

Figure 3.9 represents the irreversible stress-slip relation of the interface element under 

increasing lateral pressure. It can be seen that the bond strength is increased by increasing 

lateral pressure as expected. The remaining friction stress in the irreversible behavior 

(unloading and reverse reloading) is also increased. The connections of the different parts of 

the response are correct, even in case of variation of lateral pressure during the loading. The 

implementation methodology is validated for monotonic and cyclic cases for constant and 

variable applied lateral pressures. 

  

Figure 3.9 Irreversible bond stress-slip relation under increasing lateral pressure. 

3.2. Pull-out Tests 

After validating the implementation methodology with interface element tests, several 

experimental campaigns are reproduced by new bond-slip to validate the proposed formulas 

for the active confinement effect. As mentioned earlier, the pull-out tests are commonly 

performed to analyze the bond behavior of reinforced concrete structures ( (Abrams 1913), 

(Eligehausen, Popov and Bertero 1983), (Malvar 1991) etc.). After a detailed literature 

research, three different experimental pull-out campaigns by (Torre-Casanova, Jason, et al. 
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2013), by (Shang, et al. 2017) and by (Xu, Zhimin, et al. 2012) are chosen for the model 

validation. In all the experimental tests, the embedment lengths (le) are taken equal to the five 

times of the steel bar diameter (ds). Various concrete to steel ratios (c/ds), applied lateral 

pressures (Plat) and bond properties (strong and weak) are tested. New bond-slip model is used 

for all the simulations and the numerical results are compared with the experimental ones. The 

performed pull-out tests and their results are explained one by one in the following sections. 

3.2.1. Pull-Out Test-1: (Torre-Casanova, Jason, et al. 

2013) 

For the first pull-out test, the confinement effect on rather strong bond properties (τu ≅

22.5 MPa) is analyzed. The pull-out experimental campaign by (Torre-Casanova, Jason, et al. 

2013) is simulated numerically by using new the bond-slip model under three different lateral 

compression (No confinement, 5 MPa and 10 MPa). A steel bar with a 12 mm diameter (ds) is 

embedded inside a cubic concrete (Vc) with a length of 180 mm in each dimension. The 

embedment length (le) of the steel bar is 60 mm (5 × ds) and cover to diameter ratio (c/ds) is 

equal to 7. Schematic of the experimental testing system and pull-out specimens are shown in 

Figure 3.10. The geometric properties of the specimen are presented in Table 3.3 Properties of 

steel and concrete are given in Table 3.4 and Table 3.5 respectively. 

 

Figure 3.10 Pull-out test setup and specimen geometry (Torre-Casanova, Jason, et al. 2013). 
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Table 3.3 Geometric properties of (Torre-Casanova, Jason, et al. 2013)’s pull-out specimen. 

Steel Bar 

Diameter 

𝐝𝐬 (𝐦𝐦) 

Dimension of the 

Specimen 

𝐕𝐜 (𝐦𝐦𝟑) 

Embedment 

Length 𝐥𝐞 (𝐦𝐦) 

Concrete to Steel 

Ratio  𝐜/𝐝𝐬 

12 180 × 180 × 180 5 × ds 7 

Table 3.4 Concrete properties of (Torre-Casanova, Jason, et al. 2013)’s pull-out tests. 

Young Modulus 

𝐄𝐜 (𝐆𝐏𝐚) 

Poisson Ratio 

𝛎𝐜 

Compressive Strength 

𝐟𝐜 (MPa) 

Tensile Strength 

𝐟𝐭 (MPa) 

28 0.2 36.6 3.12 

Table 3.5 Steel properties of (Torre-Casanova, Jason, et al. 2013)’s pull-out tests. 

Young Modulus 

𝐄𝐬 (𝐆𝐏𝐚) 

Poisson Ratio 

𝛎𝐬 

Yielding Strength 

𝐟𝐲 (MPa) 

Diameter 

𝐝𝐬 (𝐦𝐦) 

200 0.3 560 12 

For the numerical analysis of the pull-out specimen, the steel is represented by truss elements 

and the concrete is represented by 3D solid elements. The behavior of the concrete is modeled 

by damage tension-compression (Damage TC) model implemented in Cast3M (Costa, et al. 

2004). This is a coupled damage plasticity model, with two damage variables, one in tension 

and one in compression. This model is regularized in energy in tension with a Hillerborg 

implementation (Hillerborg 1983). 

The mesh of the simulation is arranged to have 5 concrete elements and 10 steel elements along 

the embedment length (le). The mesh geometry of the pull-out specimen and the assumed 

aleatory tensile concrete strength distribution are presented in Figure 3.11a and 3.11b. 
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Figure 3.11 (a) Mesh geometry and (b) aleatory strength distribution in the pull-out specimen. 

The bottom and left side surfaces are blocked in z and y directions respectively, the front face 

is blocked in the x-direction (Ux
c) against displacement and lateral pressure is applied on the 

top and right side surfaces (Pz and Py) (Figure 3.12a). A displacement (Ux
s) is imposed on one 

end of the steel bar along x-direction while the other end of the steel bar remains free. The input 

adhesion law is fitted by inverse analysis to obtain the experimental unconfined response of 

the pull-out test. It is shown in Figure 3.12b. 

 

Figure 3.12 (a) Boundary conditions of the simulation, (b) adhesion law of the pull-out 

specimen. 

Numerical Results 

The bond stress-slip curves of the pull-out simulations under the three different confining 

compressions are presented in Figure 3.13. Moreover, the computed distribution of lateral 

pressure in the interface elements along the embedded steel bar, at the time of the peak on the 

bond stress-slip curves, is presented in Figure 3.14. One can see that even for the unconfined 
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case, there is a high lateral pressure (around 7.6 MPa in average), which explains why for the 

unconfined test, the pull-out response (τu = 26.6 MPa in Figure 3.13) is higher than the input 

model (τu = 22.5 MPa in Figure 3.11b). Furthermore, the effect of external confinement (5 or 

10 MPa) on the pull-out response is almost null (in experiments and in simulations). Indeed, 

for this specimen with a high concrete cover to steel diameter ratio (
c

ds
= 7), even if the lateral 

pressure increases in the interface elements, in average from 7.6 MPa (unconfined) to 10.6 MPa 

(5 MPa confining pressure) or to 14.3 MPa (10 MPa confining pressure), the α parameter in 

Equation (3.2) is small, thus the influence of Plat is small. 

 

Figure 3.13 Bond stress vs. slip curves of pull-out specimens under lateral compressive stress. 

 

Figure 3.14 Distribution of lateral pressure along the steel bar, at the peak values of the bond 

stress-slip curves. 

The comparison of bond strengths (τu) between experimental and numerical results for 

different lateral pressures (Plat) are given in Table 3.6. 
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Table 3.6 Influence of the lateral compression on the bond stress. 

 Bond Strength 𝛕𝐮 (MPa) 

Lateral Pressure 

𝐏𝐥𝐚𝐭 (𝐌𝐏𝐚) 
Experimental  Numerical 

0 24.28 ± 2.70  26.60 

5 25.50 ± 1.42  27.04 

10 28.50 ± 0.18 27.55 

The final damage patterns (in the middle cross-section in the z-direction) are presented in 

Figure 3.15. It can be seen that the damage is localized around the steel, this is typical of a pull-

out failure which occurs in case of high c/ds ratios. Due to the relatively high lateral pressure, 

the bond strength is also high and the behavior of the interface tends toward a perfect bond. 

 

Figure 3.15 Cross-sections of final damage patterns under: (a) 0 MPa (no active confinement), 

(b) 5 MPa and (c) 10 MPa compression. 

Numerical results are close to the experimental ones (Table 3.6). Even though the obtained 

numerical bond strength values (τu) are slightly different than the experimental ones, the 

general trend of the increase rate over lateral pressure (Plat) is in accordance with the 

experimental results. It should be considered that there is a huge variance in the experimental 

results (Torre-Casanova, Jason, et al. 2013). 

3.2.2. Pull-Out Test-2: (Shang, et al. 2017) 

For the second pull-out test, the experimental campaign of (Shang, et al. 2017) is simulated 

under four different lateral compressions (No confinement, 8.99 MPa, 14.22 MPa and 20 MPa). 

Two steel bars diameters (14 mm and 22mm) are considered. They are embedded inside a 

cubic concrete (Vc) with a length of 150 mm in each dimension. This way, two different cover 
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concrete to steel ratio (c/ds) are tested with the new bond-slip model. The schematic of the 

experimental testing system and pull-out specimens are shown in Figure 3.16a and 3.16b. The 

geometric properties of the specimen are presented in Table 3.7. Properties of steel and 

concrete are given in Table 3.8 and Table 3.9 respectively. 

 

Figure 3.16 (a) Schematic of testing system for pull-out specimen under lateral compressive 

load. (b) Photo of pull-out specimens (Shang, et al. 2017). 

Table 3.7 Geometric properties of (Shang, et al. 2017)’s pull-out specimen. 

Steel Bar 

Diameter 

𝐝𝐬 (𝐦𝐦) 

Dimension of the 

Specimen 

𝐕𝐜 (𝐦𝐦𝟑) 

Embedment 

Length 

𝐥𝐞 (𝐦𝐦) 

Concrete to 

Steel Ratio 

 𝐜/𝐝𝐬 

14 150 × 150 × 150 5 × ds 4.86 

22 150 × 150 × 150 5 × ds 2.91 

Table 3.8 Concrete properties of (Shang, et al. 2017)’s pull-out tests. 

Young Modulus 

𝐄𝐜 (𝐆𝐏𝐚) 

Poisson Ratio 

𝛎𝐜 

Compressive Strength 

𝐟𝐜 (MPa) 

Tensile Strength 

𝐟𝐭 (MPa) 

27.6 0.2 42.5 3.4 

Table 3.9 Steel properties of (Shang, et al. 2017)’s pull-out tests. 

Diameter 

𝐝𝐬 (𝐦𝐦) 

Young Modulus 

𝐄𝐬 (𝐆𝐏𝐚) 

Poisson Ratio 

𝛎𝐬 

Yielding Strength 

𝐟𝐲 (MPa) 

14 200 0.3 400 

22 200 0.3 400 

For the numerical analyses of the pull-out specimen, the steel is represented by 1D truss 

elements and the concrete is represented by 3D solid elements with Damage TC model. In 

order to obtain the same number of steel (10) and concrete (5) elements along the embedment 

length (le), different mesh densities are used for the different steel bar diameters. The mesh 
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geometries and the assumed aleatory tensile concrete strength distributions are presented in 

Figure 3.17a and 3.17b. 

 

Figure 3.17 Mesh geometry and aleatory strength distribution of the pull-out specimens for: 

(a) 𝐝𝐬 = 𝟏𝟒 𝐦𝐦 and (b) 𝐝𝐬 = 𝟐𝟐 𝐦𝐦. 

The bottom face is blocked in the z-direction (Uz), the front face is blocked in the x-direction 

(Ux
c) against displacement and the lateral pressure is applied only on the top surface (Plat) of 

the pull-out specimen (Figure 3.18a). A displacement (Ux
s) is imposed on one end of the steel 

bar along the x-direction while the other end of the steel bar remains free. Figure 3.18b shows 

the input adhesion laws which are fitted on the experimental results of (Shang, et al. 2017) for 

the unconfined cases. 

 

Figure 3.18 (a) Boundary conditions and (b) adhesion laws of the pull-out specimen. 

Numerical Results 

The bond stress-slip response curves are presented in Figures 3.19 for the four different 

confining compressions. The comparison of ultimate bond strengths (τu) between experimental 

and numerical results are given in Table 3.10. The computed lateral pressures along the steel 

at the time of the peak bond stress are presented on Figure 3.20a and 3.20b. 
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Figure 3.19 Bond stress vs. slip curves of pull-out specimens under lateral compressive stress for 

(a)
𝐜

𝐝𝐬
= 𝟒.𝟖𝟔 and (b) 

𝐜

𝐝𝐬
= 𝟐.𝟗𝟏. 

 

Figure 3.20 Distributions of lateral pressure along the embedded steel at the peak bond stress 

(a)
𝐜

𝐝𝐬
= 𝟒.𝟖𝟔 and (b) 

𝐜

𝐝𝐬
= 𝟐.𝟗𝟏. 

For the steel diameter of 22 mm, the concrete cover to steel diameter ratio is small 
c

ds
= 2.91. 

Since the lateral pressure in the unconfined case is null (Figure 3.20b), the response of the pull-

out simulation gives the same bond strength than the input model (τu = 10 MPa). When a 

confining pressure is applied, it influences a lot the lateral pressure computed in the interface 

elements along the steel, which is in average almost half of the confining pressure (4.8 MPa, 8 

MPa and 11.6 MPa for confining pressures of 8.89 MPa, 14.22 MPa and 22 MPa respectively). 

Combined to a high value for α (near 1) in case of small c/ds ratio (Figure 3.1), the pull-out 

response is highly influenced by lateral confinement. This is in accordance with the 

experimental results (Table 3.10). 

For the steel diameter of 14 mm, the c/ds ratio (4.86) is intermediate between the (Torre-

Casanova, Jason, et al. 2013) case one (
c

ds
= 7) and the 22 mm (Shang, et al. 2017) case one 

(
c

ds
= 2.91). Here the lateral pressure in the unconfined case is equal to 2.3 MPa in average 

(Figure 3.20a), and the pullout simulation gives a value of τu equal to 13 MPa, in accordance 



114 

 

with the experimental value. Due to a lower value of the α coefficient, the influence of 

confinement is lower than in the 22 mm steel diameter case. 

Table 3.10 Influence of the lateral compression on the bond stress. 

  Bond Strength 𝛕𝐮(MPa) 

Lateral Pressure 

𝐏𝐥𝐚𝐭 (𝐌𝐏𝐚) 

Steel Bar Diameter 

𝐃𝐬 (mm) 
Experimental Numerical 

0 
14 13.32 13.12 

22 10 10.43 

8.89 
14 13.53 14.12 

22 13.81 13.34 

14.22 
14 14.51 14.49 

22 14.21 14.20 

20 
14 14.40 14.72 

22 14.83 14.85 

The final damage patterns in the middle cross-section in the z-direction are presented in Figure 

3.21. 

 

Figure 3.21 Cross-sections of final damage patterns under 0 MPa (no active confinement), 8.99 

MPa, 14.22 MPa and 20 MPa lateral compression for: (a) 𝐝𝐬 = 𝟏𝟒 𝐦𝐦, (b) 𝐝𝐬 = 𝟐𝟐 𝐦𝐦. 
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It can clearly be seen that for ds = 14 mm (
c

ds
= 4.85) the failure type is pull-out since the 

damage is localized around the steel. And on the contrary, for ds = 22 mm (
c

ds
= 2.91) the 

damage is more spread and tends to show a splitting failure. 

As seen in Table 3.10, numerical results are in accordance with experimental test results. The 

influence of both c/ds ratio and lateral pressure seems to be well represented in our model. 

3.2.3. Pull-Out Test-3: (Xu, Zhimin, et al. 2012) 

For the third pull-out test, the experimental campaign of (Xu, Zhimin, et al. 2012) is 

numerically simulated by using the new bond-slip model under six different lateral 

compressions proportional to the concrete compressive strength (fc) which are: no 

confinement, 0.1fc, 0.2fc, 0.3fc, 0.4fc and 0.5fc. The schematic of the experimental testing 

system and pull-out specimens are shown in Figure 3.22a and 3.22b. The geometric properties 

of the specimen are presented in Table 3.11. Properties of steel and concrete are given in Table 

3.12 and Table 3.13 respectively. 

 

Figure 3.22 (a) Schematic of testing system for pull-out specimen under lateral compressive 

load. (b) Photo of pull-out specimens (Xu, Zhimin, et al. 2012). 

 

Table 3.11 Geometric properties of (Xu, Zhimin, et al. 2012)’ pull-out specimen. 

Steel Bar 

Diameter                

𝐝𝐬 (𝐦𝐦) 

Dimension of the 

Specimen 

𝐕𝐜 (𝐦𝐦𝟑) 

Embedment 

Length 

𝐥𝐞 (𝐦𝐦) 

Concrete to 

Steel Ratio 

 𝐜/𝐝𝐬 

16 150 × 150 × 150 5 × ds 4.18 
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Table 3.12 Concrete properties of (Xu, Zhimin, et al. 2012)’s pull-out tests. 

Young Modulus 

𝐄𝐜 (𝐆𝐏𝐚) 

Poisson Ratio 

𝛎𝐜 

Compressive Strength 

𝐟𝐜 (MPa) 

Tensile Strength     

𝐟𝐭 (MPa) 

30.64 0.2 42.5 3.15 

Table 3.13 Steel properties of (Xu, Zhimin, et al. 2012)’s pull-out tests. 

Diameter 

𝐝𝐬 (𝐦𝐦) 

Young Modulus 

𝐄𝐬 (𝐆𝐏𝐚) 

Poisson Ratio 

𝛎𝐬 

Yielding Strength 

𝐟𝐲 (MPa) 

Ultimate Strength 

𝐟𝐮 (MPa) 

16 200 0.3 335 515 

Again, for the numerical simulations, the steel is represented by truss elements and the concrete 

is represented by 3D solid elements with Damage TC model. The mesh of the simulation is 

arranged to have 5 concrete elements and 10 steel elements along the embedment length (le). 

The mesh geometry of the pull-out simulation and the assumed aleatory tensile concrete 

strength distribution are presented in Figure 3.23a and 3.23b. 

 

Figure 3.23 (a) Mesh geometry and (b) aleatory strength distribution of the pull-out specimen. 

The bottom part is blocked in the z-direction (Uz), the front face is the specimen is blocked in 

the x-direction (Ux
c) against displacement and lateral pressure is applied on both side surfaces 

(Plat) of the pull-out specimen as presented in Figure 3.24a. A 12 mm displacement (Ux
s) is 

imposed on one end of the steel bar along x-direction while the other end of the steel bar 

remains free. Figure 3.24b shows the input adhesion law which is fitted on the experimental 

results of (Xu, Zhimin, et al. 2012) for the unconfined case. 
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Figure 3.24 (a) Boundary conditions and (b) adhesion law of the pull-out specimen. 

Numerical Results 

The bond stress-slip response curves of the pull-out simulations under 6 different lateral 

compressions are presented in Figure 3.25. The comparison of ultimate bond strengths (τu) 

between experimental and numerical results for different lateral pressures (Plat) are given in 

Table 3.14. The computed lateral pressures along the steel at the time of the peak bond stress 

are presented on Figure 3.26. 

 

Figure 3.25 Bond stress vs. slip curves of pull-out specimens under lateral compressive stress. 
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Figure 3.26 Distributions of lateral pressure along the embedded steel at the peak bond stress. 

For this (c/ds), the lateral pressure in the unconfined case is zero in average and the pull-out 

response in the unconfined case gives the same strength as the input law (τu = 11.5 MPa). The 

confinement pressure, which is well transferred near the steel in lateral pressure, has a 

significant effect since α has a relatively high value (0.7). The numerical results are in 

accordance with the experimental ones (Table 4.14). 

Table 3.14 Influence of the lateral compression on the bond stress. 

 Bond Strength 𝛕𝐮(MPa) 

Lateral Pressure 𝐏𝐥𝐚𝐭 (𝐌𝐏𝐚) Experimental  Numerical 

0 

(0 × fc) 

10.84 

10.10 

11.18 

12.28 

11.47 

4.25 

(0.1 × fc) 

12.80 

12.06 
12.64 

8.5 

(0.2 × fc) 

12.62 

12.84 

11.45  

13.27 

12.75 

(0.3 × fc) 

12.10 

13.28 

14.76 

13.77 

17 

(0.4 × fc) 

12.17 

12.49 

12.46 

14.19 

21.25 

(0.5 × fc) 

14.67 

17.74 

16.88 

14.57 
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The final damage patterns in the middle cross-section in the z-direction are shown in Figure 

3.27. 

 

Figure 3.27 Cross-sections of final damage patterns under: 𝟎𝐟𝐜, 𝟎.𝟏𝐟𝐜, 𝟎.𝟐𝐟𝐜, 𝟎.𝟑𝐟𝐜,
𝟎.𝟒𝐟𝐜 , 𝟎.𝟓𝐟𝐜 lateral compression. 

The final damage of the concrete cover is increased by increasing lateral compression. The 

higher the bond strength, the closer the bond behaves as a perfect bond assumption with more 

homogeneous damage around the steel bar. The damage is concentrated near the free end of 

the embedded steel, due to the stress concentration. 

If all the simulations are considered, the new bond-slip model are provided coherent results 

with the various experimental pull-out tests ( (Xu, Zhimin, et al. 2012), (Torre-Casanova, 

Jason, et al. 2013) and (Shang, et al. 2017)). The consideration of lateral pressure (Plat), bond 

properties (adhesion law), concrete properties (fc and ft) and concrete to steel ratio (c/ds) 

within the new bond-slip model are satisfactory to capture the effect of active confinement on 

the steel-concrete interface. As a sum up, the proposed formulas (Eq. 3.2 and 3.3) are validated 

with the experiments. 

4.  Investigation of the active confinement effect with 

the new bond-slip model 

After validating the new model with various numerical tests, the effect of lateral pressure on 

local and global structural behaviors are analyzed using the new bond-slip model. The effect 
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of active confinement on the global and local behavior of the structure is investigated on a tie-

rod. For this analysis, a series of numerical tie-rod tests are performed with various external 

pressure. Thus, the confinement effect on the cracking properties is investigated not only for 

monotonic loading but also for cyclic loading cases. The new model is then compared with a 

common industrial assumption so-called perfect bond for the same test cases on the tie-rod. 

The tie-rod geometry is presented in Figure 3.28. Yet, the active confinement effect on the tie-

rod behavior is tested for 4 different lateral pressure values with no active confinement (0 MPa), 

2 MPa, 6 MPa and 10MPa. As presented in Figure 3.28a, the rod is tied on one end (P0) and 

the displacement ux is imposed along the x-direction on the other end (P3). The lateral pressure 

is applied on both sides of the concrete beam (Py and Pz)  while the opposite sides of the beam 

(Sy and Sz) are blocked against the normal displacement (Figure 3.28b). Material properties of 

the steel and concrete are represented in Table 3.15 and Table 3.16 respectively. 

 

Figure 3.28 Geometry and boundary conditions of the Tie-Rod: (a) Lateral Cross-Section, (b) 

Vertical Cross-Section. 

Table 3.15 Concrete properties of Tie-rod tests. 

Young Modulus 

𝐄𝐜 (𝐆𝐏𝐚) 

Poisson Ratio 

𝛎𝐜 

Compressive Strength 

𝐟𝐜 (MPa) 

Tensile Strength 

𝐟𝐭 (MPa) 

30.2 0.2 56.9 2.6 

Table 3.16 Steel properties of Tie-rod tests. 

Young Modulus 

𝐄𝐬 (𝐆𝐏𝐚) 

Poisson Ratio 

𝛎𝐬 

Yielding Strength 

𝐟𝐲 (MPa) 

Diameter 

𝐝𝐬 (𝐦𝐦) 

210 0.3 500 10 

Calculation of Initial Steel Displacement 

In the numerical analysis, the steel rod is represented by 1D truss elements and the concrete is 

presented by 3D solid elements. When the lateral pressure (Plat) is applied on the structure, due 
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to the Poisson’s ratio of the concrete νc, there is a longitudinal strain induced along the x-axis 

(Figure 3.29): 

 εxx = −νc(εyy + εzz) (3.9) 

where 

 εyy = εzz =
Plat

Ec
 (3.10) 

with Ec is the concrete Young Modulus. 

 

Figure 3.29 Deformation of the tie-rod caused by applied lateral pressure. 

On the contrary, the 1D steel elements do not have axial strain under lateral pressure. If nothing 

is done, the incompatible strains between steel and concrete will cause artificial stresses 

(tension in the steel, compression and shear in the concrete) which can lead to damage in the 

concrete, especially when the structure is long, like the tie rod. 

To avoid this problem, an initial displacement is imposed to the steel at node (P3) to impose a 

strain in the steel equal to the one of the concrete under lateral pressure (Figure 3.29): 

 ∆Ls = εxxLs = −νc

2Plat

Ec
 (3.11) 

For compression, Plat < 0, and ∆Ls > 0. 

This kind of application is not considered in the pull-out test simulations since the embedded 

length of steel in the concrete was small compared to the tie rod, even if we can observe some 

perturbations in the lateral pressure at the ends of the embedded steel. 

With the application of ∆Ls, there is no stress at the interface between concrete and steel if only the 

lateral pressure is applied. In the reality, the steel rod has a volume and behave in a 3D way, and 
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since the Poisson’s ratios of steel and concrete are not the same, there are shear stresses at the 

interface, and the real displacement of the steel may be different of ∆Ls. To test this, a full 3D 

simulation has been performed. One-quarter of the tie-rod is modeled. Tension-compression 

damage model (Damage TC) is used for the concrete. Mesh geometry and the aleatory tensile 

strength distribution for 3D steel rod simulations are presented in Figure 3.30. For the steel-

concrete interaction, the perfect bond assumption is used. 

 

Figure 3.30 Mesh geometry and aleatory strain distribution of 3D steel representation 

simulation of the tie rod. 

The initial displacement values which are calculated from Eq. 3.11 are compared with the 

numerical results of the 3D steel simulations are presented in Table 3.17. 

Table 3.17 Initial displacements for 1D and 3D steel representations. 

 Initial Steel Displacement (𝛍𝐦) 

Lateral Pressure 

𝐏𝐥𝐚𝐭 (𝐌𝐏𝐚) 
1D Steel 3D Steel 

0 0 0 

2 32.89 28.74 

6 98.68 86.23 

10 164.47 143.73 

The differences between 1D steel and 3D steel are rather small. In the flowing ∆Ls is imposed 

at the beginning while applying the lateral pressure. Then an additional displacement is imposed to load 

the tie rod. To take into account the initial stress in the steel in the behavior law of the steel and avoid 
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premature yielding, the plastic threshold is shifted according to ∆Ls value. All the force-displacement 

curves in the following are presented with the true imposed displacement (without∆Ls). 

4.1. Monotonic loading 

The first batch of simulations on the tie-rod is performed under monotonic loading. 2 mm 

displacement (ux) is imposed on one end of the steel rod (P3 point) along the x-direction which 

is presented in Figure 3.28. The active confinement effect on the structural behavior is tested 

for four different conditions with: 0 MPa (no confinement), 2 MPa, 6 MPa and 10 MPa lateral 

compression. The steel-concrete interaction is represented in two manners: bond-slip model 

and perfect bond hypothesis. The material properties of the steel and concrete are taken as in 

Table 3.15 and Table 3.16 respectively. 

For the numerical analysis of the pull-out specimen, the steel is represented by 1D truss 

elements and the concrete is represented by 3D solid elements with Damage TC model. The 

mesh geometries of the tie-rod simulations and the assumed aleatory tensile concrete strength 

distribution are presented in Figure 3.31. 

 

Figure 3.31 Mesh geometry and aleatory strain distribution of the 1D steel representation 

simulation on the tie rod. 

Force-displacement curve and final damage properties of the structure for the perfect bond 

model simulations are presented in Figure 3.32 and Figure 3.33 respectively. 
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Figure 3.32 Force-displacement curve of the monotonic perfect bond model simulations on the 

tie-rod. 

 

Figure 3.33 Final damage patterns of monotonic perfect bond simulations on the tie-rod under: 

(a) no confinement, (b) 2 MPa lateral compression, (c) 6 MPa lateral compression and (d) 10 

MPa lateral compression. 

As it can be seen from Figure 3.32, the force is slightly increased by increasing lateral 

compression on the structure. This slight increase is originated from the consideration of the 

confinement effect within the concrete behavior (Damage TC model). 

Figure 3.33 represents the final damage patterns of the structure and its cross-section along the 

y-axis. For all cases, the center of the concrete beam is totally damaged since the same 

displacement is assumed for both steel and concrete (perfect bond hypothesis). Thus, surface 
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damage is observed on the surfaces where the lateral pressure has been applied for the cases 2 

MPa, 6 MPa and 10 MPa lateral compression. 

For the bond-slip model simulations on tie-rod, force-displacement curve, final damage 

properties and slip between the steel and concrete are presented in Figures 3.34, 3.35 and 3.36 

respectively. 

 

Figure 3.34 Force-displacement curve of the monotonic bond-slip model simulations on tie-rod. 

 

 

Figure 3.35 Final damage patterns of monotonic bond-slip model simulations on the tie-rods 

with under: (a) no confinement, (b) 2 MPa lateral compression, (c) 6 MPa lateral compression 

and (d) 10 MPa lateral compression. 
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Figure 3.36 Final slip between steel and concrete for monotonic bond-slip model simulations on 

tie-rod. 

As it can be seen from Figure 3.34, the force is increased by increasing lateral compression on 

the structure as in the perfect bond hypothesis. Moreover, using the bond-slip model also 

enables to observe force-drops at the cracking instances. In no-confinement case, these drops 

are more significant compared to other simulations where the lateral pressure exist. The force-

displacement curve becomes smoother with increasing lateral pressure. This means that the 

bond-slip model behavior approaches the perfect bond behavior when the lateral compression 

increases. For 10 MPa lateral pressure, the general behavior of two simulations with bond-slip 

model and perfect bond assumption are almost the same. 

When the final damage patterns are compared for the bond-slip model simulations which are 

represented in Figure 3.35, the crack locations are only significant for the no confinement case. 

With increasing lateral pressure, it is quite difficult to determine the crack locations only by 

using the damage geometries of concrete cover. This may be caused by the increase in bond 

strength. The higher the bond strength, the closer the bond behaves as a perfect bond 

assumption with more homogeneous damage is observed around the steel bar. 

The final slip values between steel and concrete are represented in Figure 3.36. The slip sign 

changes at the crack locations. Only 5 cracks are observed for the no-confinement case, while 

6 cracks are observed for 2 MPa and 6 MPa lateral pressure simulations. As mentioned in the 

previous section, the ultimate bond strength (τu) is increasing with increasing lateral 

compressive stress (Plat). Up to a certain level (Plat < 6 MPa), the cracks can be determined 

easily by the slip sign change along the steel rod. After that (Plat > 6 MPa), the mechanical 

degradation is distributed along the interface and localized cracking cannot be observed 
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anymore (like in the Plat = 10 MPa case). This means the local behavior (cracking properties) 

is also affected by active confinement which is considered in the new bond-slip model. 

4.2. Cyclic loading 

For the second series of simulation, an alternative loading is applied in terms of imposed 

displacement on the tie rod to observe the irreversible behavior of the structure under active 

confinement. Same geometry, boundary conditions and material properties are chosen as in the 

previous test series which is presented in Figure 3.28. The material properties of the steel and 

concrete are taken as in Table 3.15 and Table 3.16 respectively. The mesh geometries of the 

tie-rod simulations and the assumed aleatory tensile concrete strength distribution are taken as 

in Figure 3.31. For the numerical analysis of the pull-out specimen, the steel is represented by 

truss elements and the concrete is represented by 3D solid elements with Damage TC model. 

The steel-concrete interaction is represented in two manners: bond-slip model and perfect bond 

hypothesis. Again, the simulations are performed with bond-slip and perfect bond models for 

various lateral pressure values (no confinement, 2 MPa, 6 MPa and 10 MPa).  The results of 

the two interface models are compared with each other. 

Force-displacement curves and final damage patterns of the structure for the perfect bond 

model simulations are presented in Figures 3.37 and 3.38 respectively. 

 

Figure 3.37 Force-displacement curve of the cyclic perfect bond model simulations on tie-rod. 
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Figure 3.38 Final damage patterns of cyclic perfect bond model simulations on the tie-rods with 

under: (a) no confinement, (b) 2 MPa lateral compression, (c) 6 MPa lateral compression and 

(d) 10 MPa lateral compression. 

As it can be seen from Figure 3.37, the force is slightly increased by increasing lateral 

compression on the structure as in the monotonic case due to the concrete behavior in 

compression. There is no irreversible behavior of the structure (remaining strain for zero stress) 

when the perfect bond assumption is used. 

Figure 3.38 represents the final damage patterns of the structure and its cross-section along the 

y-axis. For all the cases, the center of the concrete beam is totally damaged like in the 

monotonic case since the same displacement is assumed for both steel and concrete. 

For the bond-slip model simulations on tie-rod under cyclic loading, force-displacement curve, 

final damage properties, slip between the steel and concrete are presented in Figures 3.39, 3.40 

and 3.41 respectively. 
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Figure 3.39 Force-displacement curve of the monotonic bond-slip model simulations on tie-rod. 

 

 

Figure 3.40 Final damage patterns of monotonic bond-slip model simulations on the tie-rods 

with under: (a) no confinement, (b) 2 MPa lateral compression, (c) 6 MPa lateral compression 

and (d) 10 MPa lateral compression. 
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Figure 3.41 Final slip between steel and concrete for cyclic bond-slip model simulations on tie-

rod. 

As seen in Figure 3.39 there is an irreversible behavior of the structure under active 

confinement when the bond-slip model is used. The irreversibility of the structural behavior is 

decreased by increasing lateral compression due to the increase in the bond strength. Again, 

force drops become smoother by increasing active confinement, as in the monotonic case, since 

the bond-slip model is nearer the perfect bond. 

On the final damage patterns (Figure 3.40) the crack locations are only significant for the no 

confinement case. With increasing lateral pressure, it is quite difficult to determine the crack 

locations only from the damage patterns of concrete cover as in the monotonic case. Again, 

this can be originated from the increase in bond strength. The higher the bond strength, the 

closer the bond behaves as a perfect bond assumption, with a more homogeneous damage 

observed around the steel bar. 

The final slip between the steel and concrete are rather different from the monotonic case 

(Figure 3.41). Only 5 cracks are observed in total for no confinement and 2 MPa lateral pressure 

cases, while 6 cracks are observed for 6 MPa lateral pressure case. This may be originated from 

the crack closing during the reloading stage of the cyclic load (see below). 

To understand the effect of active confinement on the local structural behavior (cracking 

properties), single loading (point A) and reloading (point B) are applied on the identical tie-rod 

for no confinement (0 MPa) and lateral pressure under 2 MPa. The force-displacement curve 

and the slip along the steel at the loading (point A) and reloading (point B) are presented in 

Figure 3.42 and 3.43. 
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Figure 3.42 Force-displacement curve of the cyclic bond-slip model simulations on tie-rod under 

0 MPa and 2 MPa lateral pressure. 

 

Figure 3.43 Demonstration of crack closure at (a) loading and (b) unloading steps. 

As mentioned earlier the change in the slip sign demonstrates the crack locations. At the loading 

point (A), 5 crack occurrences are observed for no confinement and 2 MPa simulations (Figure 

3.43a). At the unloading point (B), the 5 cracks remain (less open) for the 2 MPa case, but only 
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3 cracks remain for no confinement case (Figure 3.43b). The two closed cracks for the no 

confinement case can be seen in Figure 3.43b. The increase in the bond strength for 2 MPa 

simulations is prevented the crack closure unlike in no confinement simulation. 

5. Conclusion 

In this chapter, the implementation and the validation of the active confinement effect on the 

new bond-slip model are explained in details. 

Firstly, the implementation of the active confinement effect to the bond-slip model is presented 

with suggested formulations (Eq. 3.2 and 3.3). Afterward, implementation methodology is 

tested on a single interface element for monotonic and cyclic loading cases under various lateral 

pressures. The results have shown that the active confinement effect on the steel-concrete 

interface is implemented correctly into the bond-slip model. 

Secondly, four different pull-out specimens from three different experimental campaigns ( (Xu, 

Zhimin, et al. 2012), (Torre-Casanova, Jason, et al. 2013) and (Shang, et al. 2017)) with 

different embedment lengths, concrete covers, steel diameters, lateral pressures, adhesion laws, 

material properties (steel and concrete) and bond strength (strong and weak) are tested. 

Coherent results are obtained between the simulations and the experiments for both test cases. 

The implemented active confinement formulas (Eq. 3.2 and 3.3) are validated. 

Finally, the new bond-slip model is used to examine the active confinement effect on the 

structural behavior by performing a series of numerical analysis on a tie-rod. Moreover, the 

results are compared with the perfect bond assumption for 1D steel representations in order to 

see the significance of the model. The local and global behavior of the tie-rod under various 

lateral pressures are compared for monotonic and cyclic loading cases. 

For the global behavior of the tie-rod, the force drop cannot be observed with the perfect bond 

model. It is only possible for the bond-slip model. When the lateral compression is increased, 

the drops become smoother and bond slip model approaches the perfect bond behavior. This is 

originated from the increased bond strength due to the lateral pressure. No irreversibility is 

observed with the perfect bond assumption. It is again only possible with the new bond-slip 

model. 
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For the local behavior of the tie-rod, discrete cracks are observed in the bond-slip model 

simulations compared to the perfect bond model simulations. Besides, the position of cracks 

can be more clearly identify from slip between steel and concrete when it changes its sign. Less 

slip is observed at high lateral pressure due to the increased bond strength for both monotonic 

and cyclic cases. Moreover, the new bond-slip model enables to observe the active confinement 

effect on the crack closure under alternative loads. It has been observed that the increase in 

lateral compression prevents the crack closure. 

As a sum up, the active confinement effect on the global and local structural behavior can be 

correctly represented for monotonic and cyclic loading cases when the new bond-slip model is 

used.  
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4. Chapter-4:                                        

Investigation on Dowel Action with 

New Bond-Slip Model for 

Reinforced Concrete Structures 

1. Introduction 

In this chapter, the shear behavior of reinforced concrete structures is investigated specifically 

focusing on the dowel action. As mentioned in the first chapter, the dowel action is not easily 

presented numerically due to certain difficulties and its effect on the structural behavior is not 

estimated clearly in the literature. A detailed numerical analysis is needed to represent the 

dowel action. 

The main objective of the section is to evaluate the existing approaches of modeling to capture 

experimental dowel action. For this reason, different reinforcement models (truss and beam 

elements) and steel-concrete interface models (bond-slip model and perfect bond model) are 

compared by reproducing different experimental campaigns. 

Firstly, some considerations are exposed to the modeling of steel reinforcement related to 

dowel action phenomena. A calibration process has been performed on the nonlinear behavior 

of beam elements. Secondly, the pure dowel action is investigated with a push-off test which 

can be found in the literature ( (Sagaseta and Vollum 2011), (Xiao, Li and Li 2014), (Navarro-

Gregori, et al. 2016) etc.). Based on the experimental campaign, the new bond-slip model is 

compared with the perfect bond hypothesis and experimental results to determine the model 

efficiency to represent the local and global behavior of the reinforced structures. Moreover, 1D 

truss and beam element steel representations are compared. Finally, the shear behavior of 

relatively large structures like deep beams is investigated by using the new bond-slip model. 

Again, a comparison has been made on different bond and reinforcement models to capture the 

experimental local and global structural behavior numerically. 
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2. Steel Model 

Before going into any detailed investigation on shear behavior of reinforced concrete 

structures, a proper calibration process is necessary on the models which will be used. In this 

section, after some considerations about truss and beam 1D elements, the calibration of the 

steel beam model is explained in detail. 

Since our final goal is to numerically simulate the behavior of industrial large structures, the 

detailed 3D modeling of reinforcement is not considered, it would lead to too heavy meshing 

work and computation time. The alternative is to use 1D elements since the reinforcement bars 

are very slender (high length compared to cross-section). Among classical 1D elements, we 

can choose truss or beam elements. 

Truss elements behave only along their axis, in tension or compression (equivalent to spring), 

they cannot support transverse shear or bending. They have only translation degrees of freedom 

and can easily be connected to solid 3D elements which also have no rotational DOFs. In most 

applications of reinforced concrete structures, truss elements are sufficient to represent the 

global behavior of steel reinforcement. Indeed, it works mainly in tension-compression. 

Moreover, the nonlinear behavior of these elements is easy to model. Non-linear forces are 

directly calculated from the 1D stress-strain law by multiplying by the cross-sectional area. 

When considering local particular behavior, like dowel action, truss elements may not be 

sufficient. The beam elements should be better to recover the transverse shear force and to 

model the bending of reinforcement through the concrete cracks. There are two issues to pay 

attention to when using such elements. 

First, when beam elements are embedded in a 3D solid elements mesh, one has to be aware 

that the rotational degrees of freedom of the beam are not connected to the solid elements which 

have only translation DOFs. Thus, the steel reinforcement is modeled like a multi-supported 

beam where the supports are the nodes of the steel elements. The contact between steel and 

concrete along the beam element is not modeled. The transverse displacement due to rotations 

at the nodes (Figure 4.1) is only related to the beam element flexural rigidity. Moreover, if the 

reinforcement bar is straight, the rotation around its axis is free and must be prevented with 

boundary conditions to avoid singularity in the solving matrix. 
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Figure 4.1 Transverse displacement of a beam element (Logan 2012). 

The second issue is the nonlinear behavior of the steel beam element. Indeed, the beam can 

yield in bending. To avoid the use of multifiber elements which have multiple integration points 

in the cross-section, but increase the computation time, there is a simplified elastic perfectly 

plastic approach in (Cast3M 2017). It is based on the computation of the axial stress at a point 

in the cross-section, and by applying the Von Mises criterion at this point. The plastic moment 

(plateau on the moment-curvature curve) is reached when the stress at this point reaches the 

yield limit σeq. The position of the yielding point is given in the input file (it is chosen by the 

user). The coordinates of this point in the cross-section must be selected carefully to obtain the 

more realistic nonlinear bending behavior of the beam, depending on the beam cross-section 

shape. 

 

Figure 4.2 Stress diagram of a beam in bending (Codcogs 2016). 

For example, in 2D, let’s denote ypl the distance between the axis of the beam and the plastic 

point. In elasticity, when the stress at this point reaches the yield limit, we have (Figure 4.2a): 

 σeq = −
Meq ypl

Iz
 (4.1) 
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where Meq is the plastic bending moment (transition from elasticity to plasticity), and Iz the 

quadratic moment around z-axis. For a bar with a circular cross-section: 

 Iz =  π 
ds

4

64
 (4.2) 

For totally yielded cross section (Figure 4.2b): 

 Meq = ∫σ(y) y dS  (4.3) 

with, for a positive bending moment: 

 {
if x ≥ 0     σ(x) =  −σeq

if x < 0     σ(x) =  +σeq
 (4.4) 

Since the static moment for a half disc is equal to 
ds

3

12
 , Eq. 4.5 can be rearranged as: 

 Meq = −2 σeq

ds
3

12
 (4.5) 

Combining Eq. 4.1 and Eq. 4.5, it comes: 

 Meq = −σeq

ds
3

6
 = − 

σeq Iz 

ypl
 (4.6) 

and: 

 ypl =
6 Iz 

ds
3 = 

6 

ds
3 × 

πds
4

64
=  

3

32
 πds  (4.7) 

As a conclusion, if xpl is chosen following Eq. 4.7, the plastic moment (limit of elasticity) 

corresponds to a total plasticization of the section. 

Bending Beam Test 

A simple bending test is simulated to validate the choice for the “xpl” parameter. Two 

simulations (one with beam elements and one with multi-fiber element approaches ( (Mazars, 

Ragueneau , et al. 2004) (Kontronis and Mazars 2005)) are performed. The multi-fiber cross-

section of the bar is presented in Figure 4.3. 
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Figure 4.3 Fiber element model of the steel beam. 

A 1 m length steel bar with 10 elements is chosen for the reference geometry. The material 

properties of the steel bar can be found in Table 4.1. One end of the bar is clamped and a 40 cm 

displacement is applied along the vertical direction on the free end of the bar. Applied boundary 

conditions are presented in Figure 4.4. 

Table 4.1 Steel Properties. 

Diameter 

𝐝𝐬 (𝐦𝐦) 

Length of 

the Steel Bar 

L (m) 

Young 

Modulus 

𝐄𝐬 (𝐆𝐏𝐚) 

Poisson 

Ratio 

𝛎𝐬 

Yielding 

Strength 

𝐟𝐲(MPa) 

Ultimate 

Strength 

𝐟𝐮(MPa) 

12 1 200 0.3 440 490 

 

Figure 4.4: Initial and final deformed shapes of the steel beam with boundary conditions. 

Force vs. displacement curves of both simulations are given in Figure 4.5. 

 

Figure 4.5: Force vs displacement curve of bending steel bar. 
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The two simulations are giving similar results when the appropriate ypl values are chosen. As 

a sum up, the beam nonlinear behavior is validated by comparing to the multi-fiber approach. 

3. Push-Off Test on an L-Beam 

In this section, the pure dowel action is investigated by analyzing an experimental campaign 

numerically. Different bond and reinforcement models are yet compared with the experimental 

results to find out the realistic representation of dowel action. 

Experimental Test Setup 

Pure dowel action can be observed only if the shear cracks are widened to a certain amount. 

Therefore, a pre-cracked geometry is chosen which eliminates aggregate interlock. As 

mentioned in the first chapter, L-beam geometry is a good choice for this purpose. It is 

commonly used in literature ( (Walraven and Reinhardt 1981), (Soroushian, et al. 1986), (Lee 

and Hong 2015) etc.). Experimental push-off test campaign of (Ince, Yalcin and Arslan 2007) 

on L-beams is used as a reference geometry for this study. The dowel action is investigated for 

different steel bar angles. The geometrical properties of these test specimens are presented 

below. 

 

Figure 4.6 Geometric properties of L-beam specimen (Ince, Yalcin and Arslan 2007). 

L-beam specimens have 2 mm distance between the two concrete blocks to represent the pre-

cracked area. The shear force that is applied along the vertical direction (V) on the top surface, 

transfers only through dowel action in the cracked section of the structure. This kind of specific 

geometry makes it possible to observe pure dowel action. Experimental results of the push-off 
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tests are represented in Table 4.2. Material properties of the concrete and steel are presented in 

Table 4.3 and 4.4 respectively. 

Table 4.2 Geometrical properties of L-beam and experimental results of the Push off test (Ince, 

Yalcin and Arslan 2007). 

𝛉(°) 𝐬(𝐦𝐦) 𝐝(𝐦𝐦) 𝐕𝐮 (𝐤𝐍) 

45 100 160 

1) 45.7 

2) 40.6 

3) 43.1 

90 100 160 

1) 35.8 

2) 47.6 

3) 43.8 

where s is the spacing of the transverse reinforcement, d is the specimen size, θ is the elongation 

angle and Vu is the ultimate force. 

Table 4.3 Material Properties of Concrete (Ince, Yalcin and Arslan 2007). 

Young Modulus 

𝐄𝐜 (𝐆𝐏𝐚) 

Poisson Ratio 

𝛎𝐜 

Compressive Strength 

𝐅𝐜 (MPa) 

Tensile Strength 

𝐅𝐭 (MPa) 

23.64 0.2 25.3 2.53 

Table 4.4 Material Properties of Steel (Ince, Yalcin and Arslan 2007). 

Diameter 

𝐃𝐬 (𝐦𝐦) 

Young Modulus 

𝐄𝐬 (𝐆𝐏𝐚) 

Poisson Ratio 

𝛎𝐬 

Yielding Strength 

𝐟𝐲(MPa) 

12 200 0.3 476 

3.1. Mesh Size Effect 

As it is mentioned before, a very restricted area of the reinforced concrete structure is subjected 

to dowel action (Walraven and Reinhardt 1981). Therefore, the mesh properties for the 

numerical illustrations should be determined very carefully to represent dowel action correctly 

in this restricted area. Before going into a deeper investigation, mesh size effect is investigated 

in order to see the mesh dependency of the numerical calculation. That way, a proper mesh can 

be determined for the realistic presentation of the chosen geometry (L-beams). Besides, 1D 

beam element representation for the steel is compared with 3D representation for different 

mesh sizes to evaluate the reinforcement model. 

The defined boundary conditions and the reinforcement layout of L-beams are shown in Figure 

4.7a and 4.7b. A 5 mm displacement (Uz) is imposed on the upper surface of the L-beam, at 
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the same time as the displacement on other directions (Uy and Uy) is blocked to avoid the 

separation of the concrete blocks. The bottom surface is blocked against any displacement 

(Ux, Uy, Uz). Moreover, the rotation of the dowel bars on the x-axis (Rx) are blocked for the 

beam element steel representation. The dowel bars (DW1 and DW2) are represented by 1D 

beam or 3D elements, reinforcement (VR) is represented by 1D truss elements, concrete (Vc) is 

represented by 3D solid elements (Figure 4.7b). The Perfect bond hypothesis is used for the 

interface. Both steel and concrete are assumed as totally elastic materials in order to avoid any 

other complex parameters which could affect the numerical results, whereas we want to focus 

only on the influence of mesh density. 

 

Figure 4.7 (a) Boundary conditions of the simulation. (b) Location of steel bars. 

From the experimental push-off campaign of (Ince, Yalcin and Arslan 2007), only 90° dowel 

bar angle with the vertical direction is chosen for the size effect simulations. In order to 

compare 1D (beam) and 3D steel representations, three different mesh densities are chosen for 

steel and concrete. These three mesh densities are categorized as coarse, medium and fine 

meshes. The mesh properties of the 1D steel simulations can be found in Table 4.5 and mesh 

geometries are presented in Figure 4.8. 
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Table 4.5 Mesh properties of 1D steel simulations. 

Mesh Name: 𝑪𝒐𝒂𝒓𝒔𝒆  𝑴𝒆𝒅𝒊𝒖𝒎 𝑭𝒊𝒏𝒆 

Mesh Density: 0.06 0.04 0.02 

Number of concrete elements: 84 240 1520 

Number of reinforcement elements: 52 80 164 

Number of dowel bar elements: 10 14 22 

 

 

Figure 4.8 Mesh sizes: (a) coarse mesh, (b) medium mesh, (c) fine mesh for 1D steel 

representation (Case 1 and 2). 

For the 1D steel simulations, two different cases are investigated. In case 1, the same mesh 

densities are defined for both steel and concrete representation. In case 2, a steel node is added 

between two concrete blocks in order to investigate the behavior of the cracked area. The 

representation of case 2 can be seen in Figure 4.9. Both cases (case 1 and 2) are simulated with 

coarse, medium and fine meshes. 
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Figure 4.9 Representation of the external node between the concrete blocks (Case 2). 

Case 3 represents the 3D steel simulations with different mesh sizes (coarse, medium and fine). 

The mesh properties of the 3D steel simulations can be found in Table 4.6 and mesh geometries 

are presented in Figure 4.10. 

Table 4.6 Mesh properties of 3D steel simulations. 

Mesh Name: 𝑪𝒐𝒂𝒓𝒔𝒆  𝑴𝒆𝒅𝒊𝒖𝒎 𝑭𝒊𝒏𝒆 

Mesh Density: 0.06 0.04 0.02 

Number of concrete elements: 1608 2484 4320 

Number of reinforcement elements: 52 80 164 

Number of dowel bar elements: 1080 1512 2376 

 

Figure 4.10 Meshes for 3D steel representation (case 3): (a) coarse, (b) medium, (c) fine. 
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Force values after loading for different mesh densities are given in Table 4.7. 

Table 4.7 Force values of all mesh sizes of L beams. 

 Displacement 

(mm) 

𝑭𝒐𝒓𝒄𝒆𝒄𝒐𝒂𝒓𝒔𝒆 

(kN) 

𝑭𝒐𝒓𝒄𝒆𝒎𝒆𝒅𝒊𝒖𝒎 

(kN) 

𝑭𝒐𝒓𝒄𝒆𝒇𝒊𝒏𝒆 

(kN) 

Case 1 : 5 145.5 588.2 806.6 

Case 2 : 5 937.7 718.5 806.6 

Case 3 : 5 1016 916.7 897.3 

According to the numerical analysis with different mesh densities, the results of the 3D steel 

model which are quite stable for different mesh densities are chosen as the reference case.  On 

the other hand, a huge variability is observed for the beam element simulations in both cases 1 

and 2. It has been found that the numerical presentation of dowel action is excessively sensitive 

to the mesh definition of the geometry. Since the dowel action occurs in a very restricted space, 

the mesh properties of steel and concrete cover around the crack affect the numerical 

calculations. As the crack supposed to be small, the mesh density should be chosen also as fine, 

in order to avoid a huge error margin in the analyze of dowel action in numerical applications. 

More importantly, defining an exclusive node between the crack surfaces (case 2) provides an 

accurate analysis of the behavior in the pre-cracked section and decreases the mesh 

dependency. 

Even in elasticity, the results are very sensitive to the mesh size and it seems the convergence 

is not reached. Nevertheless, for the fine mesh, the three cases give results closer to each other. 

Moreover, adding a beam node in the cracked zone, outside the concrete (case 2) seems to 

better capture the double bending of the steel bar. This node is added for all the L-beam 

simulations in the following simulations. 

3.2. Numerical analysis of Dowel Action on L-Beams 

The experimental test of (Ince, Yalcin and Arslan 2007) which was explained in detail 

previously, is modeled for different reinforcement bar inclination angles (45° and 90°, counted 

from the vertical) in order to observe the pure dowel action in numerical applications. Based 

on the previous test study, fine mesh density (Figure 4.8c) is used with an external steel node 

between concrete blocks. The same boundary conditions are applied as in Figure 4.7 for all 

simulations. The material properties of steel and concrete are taken as in Table 4.3 and 4.4. The 
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concrete is taken as 3D solid elements with Mazars damage criteria (Mazars 1986) for all the 

simulations. Elastoplastic behavior is assumed for the reinforcement and dowel bars. 1D truss 

and beam element steel representations are compared to understand the significance of the 

reinforcement model to observe dowel action numerically. Moreover, for the steel-concrete 

interface, perfect bond hypothesis and new bond-slip model are used separately to evaluate the 

model’s efficiency under shear loading. The numerical results are compared with the 

experimental ones in order to understand suitable models for the steel and bond. Simulation 

properties are given in Table 4.8 and the mesh geometries of 45° and 90° dowel bar angels are 

presented in Figure 4.11. 

 

Table 4.8 Simulation properties for push-off tests. 

Simulation 

Name 

Bar 

inclination 

Angle 𝜽(°) 

𝑪𝒐𝒏𝒄𝒓𝒆𝒕𝒆 𝑴𝒐𝒅𝒆𝒍 Steel Model Interface Model 

45-Truss-Perfect 45 3D Solid Elements 
1D Truss 

Elements 

Perfect Bond 

Assumption 

45-Truss-Bond 45 3D Solid Elements 
1D Truss 

Elements 
Bond-slip Model 

45-Beam-Perfect 45 3D Solid Elements 
1D Beam 

Elements 

Perfect Bond 

Assumption 

45-Beam-Bond 45 3D Solid Elements 
1D Beam 

Elements 
Bond-slip Model 

90-Truss-Perfect 90 3D Solid Elements 
1D Truss 

Elements 

Perfect Bond 

Assumption 

90-Truss-Bond 90 3D Solid Elements 
1D Truss 

Elements 
Bond-slip Model 

90-Beam-Perfect 90 3D Solid Elements 
1D Beam 

Elements 

Perfect Bond 

Assumption 

90-Beam-Bond 90 3D Solid Elements 
1D Beam 

Elements 
Bond-slip Model 
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Figure 4.11 Mesh geometries and reinforcement layout of (a) 45° and (b) 90° dowel bars. 

Effect of Reinforcement Model 

The first analysis is performed on the reinforcement model. There is no convergence for the 

truss element reinforcement simulation with 90° bar inclination angle because of the one-

directional behavior of steel. The applied load is perpendicular to the reinforcement, and it is 

impossible to withstand the transverse force with truss elements. 

With truss elements for steel reinforcement, the dowel action is observed only for 45° 

inclination angle simulations, where a part of the axial force in the reinforcement acts in the 

direction of the applied load (Z direction in Figure 4.11a). However, a part of the applied load 

is transversal to the reinforcement and is not being countered by truss elements. This is why 

the ultimate forces obtained in 45-Truss-Perfect and 45-Truss-Bond simulations are very small 

compared to experimental results (Table 4.9 and Figure 4.12). 

Table 4.9 Comparison of the results for 45° dowel bars. 

Simulation 

Name 
𝑰𝒏𝒄𝒍𝒊𝒏𝒂𝒕𝒊𝒐𝒏 𝑨𝒏𝒈𝒍𝒆  𝜽(°) 𝑼𝒍𝒕𝒊𝒎𝒂𝒕𝒆 𝑭𝒐𝒓𝒄𝒆 𝑽𝑼 (𝒌𝑵) 

45-Truss-Perfect 45 9.52 

45-Beam-Perfect 45 40.86 

45-Truss-Bond 45 9.54 

45-Beam-Bond 45 47.62 

Experimental 45° 45 

1) 45.70 

2) 40.60 

3) 43.10 
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Figure 4.12 Force vs displacement curves of 45° beam and truss element representations with 

(a) perfect bond model, (b) bond-slip model. 

On the contrary, using beam elements for the dowel steel lead to ultimate forces near the 

experimental ones (Table 4.9 and Figure 4.12). In the particular configuration of the L-Beam 

push-off test, the bending of the steel bar in the gap between the concrete blocks plays a 

primordial role. The reason is that this gap is relatively wide (2 mm) compared to a classical 

crack opening (less than 0.5 mm). 

Effect of Inclination Angle 

From the results of the previous section, only the beam element steel model results are 

presented here for different dowel bar angles. Comparison of the numerical results with the 

experimental ones for 45° and 90° dowel bar angles can be found in Table 4.10 and the force-

displacement curves are presented in Figure 4.13. 

Table 4.10 Comparison of results of 45° and 90° dowel bar angles for push-off tests. 

Simulation Name 𝑰𝒏𝒄𝒍𝒊𝒏𝒂𝒕𝒊𝒐𝒏 𝑨𝒏𝒈𝒍𝒆  𝜽(°) 𝑼𝒍𝒕𝒊𝒎𝒂𝒕𝒆 𝑭𝒐𝒓𝒄𝒆 𝑽𝒖 (𝒌𝑵) 

45-Beam-Perfect 45 40.86 

45-Beam-Bond 45 37.62 

Experimental 45° 45 

1) 45.70 

2) 40.60 

3) 43.10 

90-Beam-Perfect 90 44.69 

90-Beam-Bond 90 43.97 

Experimental 90° 90 

1) 35.80 

2) 47.60 

3) 43.80 
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Figure 4.13 Force vs displacement curves of L-beams for different angles with bond-slip and 

perfect bond models. 

The numerical results of L-beams with different inclination angles (90°and 45°) with beam 

element steel models show that the beam element representation of reinforcement is convenient 

to present the pure dowel action. The general force values of both bond models are in coherence 

with the experimental campaign (Table 4.10). However, there is some dispersion on the 

experimental results. 

The bond slip effect is small, probably because of the damage of the concrete around the steel 

bars (Figure 4.14). Nevertheless, this little effect seems to be greater for the 45-Beam-Bond 

simulation (
40.86−37.62

40.86
→ 7.9%) compared to the 90-Beam-Bond simulation (

44.69−43.97

44.69
→

1.6%). Indeed, the slip along the 45° inclined bars is greater than along the 90° bars (Figure 

4.15). This is due to the fact that the applied force has a part acting tangentially to the 

reinforcement bars in the case of 45° angle, and it activates more the interface element. 

Nevertheless, there is also a slip in the 90° angle case (Figure 4.15), which shows that even 

perpendicular to the applied load, the reinforcement bar acts not only in bending but also in 

tension. 

The simulations with different dowel angles show that the ultimate force is decreasing with a 

decreasing inclination angle. The more the dowel perpendicular to the crack, the more efficient 

dowel action. 
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Figure 4.14 Cross-sections of final damage patterns: (a) perfect bond model with  45° elongation 

angle, (b) perfect bond model with 90° elongation angle, (c) bond-slip model with  45° elongation 

angle, (d) bond-slip with 90° elongation angle simulations. 

As presented in Figure 4.14, the concrete damage is observed around the dowel bars close to 

the pre-cracked location. Depending on the dowel bar angle, the distribution of damage in the 

concrete blocks is different. Thus, more damage is observed for the 45° simulations. The reason 

is that in the 45° case, the steel bars act not only in dowel near the crack but also as classical 

reinforcement in reinforced concrete since a part of the applied force is transferred along the 

axis of the bars. Furthermore, more damage is observed for the bond-slip model simulations 

than the perfect bond simulations in the case of 45° inclination angles. The reason is the same 

as before, there is a redistribution of forces along the steel which takes a part of the applied 

force. 

 

Figure 4.15 Final slip along the dowel bars for: (a) dowel bars with 45° angle, (b) dowel bars 

with 90° angle. 

According to Figure 4.15, it can be seen that slip is more distributed along dowel bars (DW1 

and DW2) in 45° simulations than the 90° simulations. This is coherent with the previous 

explanations above. Moreover, for both cases (45° and 90°), the slip of the bottom (DW1) and 
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top (DW2) dowel bars are not identical. It is quite logical to obtain more slip closer to the 

loading and supporting points. 

As a sum up, according to the obtained results on the L-beam push-off simulations, the 

following conclusion may be drawn: 

 Extreme mesh dependency is observed in the simulations. To capture the dowel action, 

steel mesh should be chosen properly near the crack location. 

 The reinforcement model is extremely important to represent the dowel action when 

the crack is widely open. The chosen model has to consider the bending behavior of 

the steel bar at the crack locations. In this regard, 1D truss element steel fails to 

represent pure dowel action. 

 In order to represent dowel action, steel representation is more important than the 

interface and concrete models. To obtain the realistic results, the considered 

reinforcement model should be chosen very carefully to capture the bending of the 

steel bar. 

 Even though the bond-slip model represents the cracking properties better than the 

perfect bond assumption, it gives similar global results for the push-off tests. 

 Dowel action does exist and can be represented numerically if the proper models are 

used and proper meshing is made. 

4. Bending Test on a Continuous Deep Beam 

In order to have a deeper understanding of the validity of the new bond-slip model, dowel 

action applications at the structural scale are investigated in this section.  

As mentioned in Chapter 1, continuous deep beams are generally used to investigate the shear 

behavior of reinforced concrete structures in the literature ( (Ashour 1997), (Yao and Teng 

2007), (Adhikary, Li and Fujikake 2013) etc.). Experimental four-point bending test on 

continuous deep beams (Zhang and Tan 2007) is chosen for this specific study after a sufficient 

literature research to see the role of dowel action in the shear transfer and compare the effect 

of dowel action with the other transfer components. 

In numerical analysis, it is quite common to use truss element representation of steel for the 

industrial application. Therefore, truss and beam element approaches are compared once again 
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to understand the difference between them on a relatively larger structure. Moreover, the 

perfect bond hypothesis is again compared with the bond-slip model and the experimental 

results to find out a proper representation of shear behavior numerically. Continuous deep 

beams with horizontal reinforcement (without web reinforcement) are studied in order to focus 

mainly on dowel action. The chosen beam geometries for the numerical analysis are presented 

in detail in the next section. 

Experimental Test Setup 

Four-point bending tests on a continuous deep beam from the experimental study of (Zhang 

and Tan 2007) are chosen for the reference geometry. A deep beam with horizontal 

reinforcement is analyzed to observe the dowel action. Experimental test setup (Figure 4.16), 

reinforcement layout (Figure 4.17), specimen details (Table 4.11), material properties (Table 

4.12 and 4.13), experimental results (Table 4.14) and crack distribution after loading (Figure 

4.18) are respectively presented as following. 

 

Figure 4.16 Experimental test setup of continuous deep beam (Zhang and Tan 2007). 
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Figure 4.17: (a) Reinforcement layout of the specimen. (b) Cross section of the beam (Zhang and 

Tan 2007). 

Table 4.11 Details of the specimen (Zhang and Tan 2007). 

Beam Width 

B (mm) 

Overall Height 

H (mm) 

Effective Depth 

D (mm) 

Reinforcement Ratio  

𝝆𝒔(%) 

80 700 650 1.28 

Width of Loading & Support Plate 

W (mm) 

Bottom Reinforcement 

𝑨𝒔 (mm) 

105 668 

Table 4.12 Concrete Properties (Zhang and Tan 2007). 

Young Modulus 

𝑬𝒄 (𝑮𝑷𝒂) 

Poisson Ratio 

𝝂𝒄 

Compressive Strength 

𝑭𝒄 (MPa) 

Tensile Strength 

𝑭𝒕 (MPa) 

23.4 0.2 24.8 2.55 

Table 4.13 Steel Properties (Zhang and Tan 2007). 

Types of 

Reinforcement 

Diameter 

𝐝𝐬 (𝐦𝐦) 

Young 

Modulus 

𝐄𝐬 (𝐆𝐏𝐚) 

Poisson 

Ratio 

𝛎𝐬 

Yielding 

Strength 

𝐟𝐲(MPa) 

Ultimate 

Strength 

𝐟𝐮(MPa) 

T8 8 210 0.3 500 500 

T13 13 190 0.3 520 611 

T16 16 194 0.3 499 648 

Table 4.14 Experimental Results (Zhang and Tan 2007). 

Failure 

Load 

𝐕𝐧 (𝐤𝐍) 

Initial 

Cracking Load 

𝐕𝐜𝐫 (𝐤𝐍) 

Initial Diagonal 

Cracking Load 

𝐕𝐝 (𝐤𝐍) 

Serviceability 

Load 

𝐕𝐬𝐞𝐫 (𝐤𝐍) 

Failure Mode 

311 70 160 160 Shear Compression 
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Figure 4.18: Crack Pattern of the specimen at the end of the loading (Zhang and Tan 2007). 

Simulation Properties 

Different models are used for the numerical analysis in order to analyze the proper 

representation of the structural behavior under shear loading. Due to the symmetry in the four-

point bending test, the simulation is made for the ¼ geometry of the whole specimen. The series 

of simulations are focused on the reinforcement model and also the steel-concrete interface 

representation. The horizontal steel bars are modeled with elastoplastic 1D beam or truss 

element models. The new bond-slip model or perfect bond assumption of the steel-concrete 

interface are used in the simulations. 3D solid elements are used for concrete. The behavior of 

the concrete is represented by non-local Mazars damage model (Giry, Dufour and Mazars 

2011). Steel and concrete properties are represented in Tables 4.12 and 4.13. Thus, the mesh 

geometry and boundary conditions are presented in Figure 4.19. The simulation properties are 

presented in Table 4.15. 

 

Figure 4.19 (a) Mesh geometry, (b) boundary conditions of the continuous deep beam. 

Table 4.15 Simulation Properties 

Simulation Name: Truss-Perfect Truss-Bond Beam-Perfect Beam-Bond 

Concrete: 
3D Solid 

Elements 

3D Solid 

Elements 

3D Solid 

Elements 

3D Solid 

Elements 

Reinforcement: 
1D Truss 

Elements 

1D Truss 

Elements 

1D Beam 

Elements 

1D Beam 

Elements 

Steel-Concrete 

Interface: 

Perfect Bond 

Assumption 

Perfect Bond 

Assumption 

Bond-Slip 

Model 

Bond-Slip 

Model 
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Numerical Results 

Figure 4.20 shows the force-displacement curves comparison between experimental and 

numerical results for the four different simulations. In order to show the effect of shear cracks 

in the numerical simulations, Figures 4.21 and 4.22 give the damage shapes at the maximum 

applied forces along with the experimental cracked pattern. Figure 4.23 shows the tangential 

slip between steel and concrete along the interface elements of the reinforcement for “Truss-

Bond” and “Beam-Bond” simulations.  It should be remarked that there is no slip between steel 

and concrete in case of the perfect bond (“Truss-Perfect” and “Beam-Perfect” simulations) 

since the same displacement is assumed in reinforcement and concrete. Finally, the magnified 

deformed shapes at the end of the four simulations are presented in Figure 4.25 to analyze the 

mechanisms that lead to the ruin and/or the end of convergence in the simulations. 

 

Figure 4.20 Force-displacement curves of numerical and experimental results. 

Concerning the global behavior, it can be seen in Figure 4.20 that the simulation curves are 

close to the experimental one. But for three simulations (“Truss-Perfect”, “Truss-Bond” and 

“Beam-Perfect”) there is a force drop along with an apparition of a shear crack between the 

support and the loading point (Figures 4.20). The drop is about at the same level for “Truss-

Perfect” and “Truss-Bond” simulations. For the “Beam-Perfect” simulation, the simulation 

goes a little further because of the bending stiffness of beam elements which delays the damage 

evolution in the concrete under shear. But there is still a premature shear crack in the simulation 

with the perfect bond assumption. On the contrary, the combination of the bond-slip model for 

the steel-concrete interface and beam element approach for the reinforcement model (“Beam-

bond” simulation) can go further in the force-displacement graph compared to the other 

simulations and gives yet coherent results with the experimental ones. The use of the new bond-

slip model with 1D beam elements is suitable for these kinds of numerical applications. 
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Table 4.16 Comparison of the results 

Test Name 
Initial Cracking Load 

𝐕𝐜𝐫 (𝐤𝐍) 

Failure Load 

𝐕𝐧 (𝐤𝐍) 

Failure 

Mode 

Truss-Perfect 75.88 270.63 Shear  

Truss-Bond 75.84 269.61 Shear  

Beam-Perfect 75.89 275.15 Shear  

Beam-Bond 75.90 302.17 Shear  

Experimental 70 311 Shear  

 

Figure 4.21 Damage patterns under 160 kN load of (a) truss-perfect, (b) truss-bond, (c) beam-

perfect, (d) beam-bond simulations compared to experimental crack pattern. 

According to Figure 4.21, the crack patterns of all 4 simulations give similar results to the 

experimental ones. The crack is initialized from the mid-span of the continuous deep beam and 

propagates through the upper support. Under the load 160 kN, no significant difference is 

observed between the different steel and bond models. 
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Figure 4.22 Damage patterns under 275 kN load of (a) Truss-Perfect, (b) Truss-Bond, (c) Beam-

Perfect, (d) Beam-Bond simulations compared to experimental crack pattern. 

The quick growth of damage can be seen between Figures 4.21 and 4.22. When Figure 4.22 is 

considered, a shear crack can be observed for all three simulations of “Truss-Perfect” (Figure 

4.22a), “Truss-Bond” (Figure 4.22b) and “Beam-Perfect” (Figure 4.22c) under 275 kN loading. 

On the other hand, the shear crack is not observed for the “Beam-Bond” simulation (Figure 

4.22d) where the slip is considered. This later one causes a relaxation of stresses on the concrete 

structure and delays the shear crack occurrence between the supports. A shear crack occurs in 

“Beam-Bond” simulation afterward (under 305 kN of loading) which is yet agreeable with the 

experimental failure load (Vn) of 311 kN (Table 4.16). The combination of beam element steel 

representation and bond-slip model steel-concrete interface representation gives coherent 

results not only globally (force-displacement curve) but also locally (crack pattern). 
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Figure 4.23  Final slip between steel and concrete along the bottom horizontal steel bars. 

It can be seen from Figure 4.23 that the maximum slip is always observed near the bottom 

support. This slip is due to the stress concentration and the starting of shear crack. According 

to the input adhesion law, sliding and nonlinear behavior is observed for the interface at the 

support location. Due to the slip, less bond stress is observed in the bond-slip model simulations 

than the perfect bond hypothesis. This means less stress is transferred from the interface to the 

concrete cover around the support compared to the perfect bond. This may cause the early shear 

crack occurrence in the perfect bond simulations. 

 

Figure 4.24 Deformed shapes at the end of simulation of (a) beam-bond, (b) beam-perfect, (c) 

truss-bond and (d) truss-perfect simulations. 
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There is a close interaction between damage in concrete and bond slip behavior. Indeed, it is 

observed that the simulation “Beam-Bond” go further before shear crack appearing. The sliding 

introduces some relaxations and the stress distributions are different, especially near the 

support where the shear crack starts. All these observations reveal the extreme dependence of 

the behavior on boundary conditions in such simulations. Mesh density, concrete damage 

model, symmetry properties, the location of the applied force, blockage methodology of the 

bottom support, material properties and the exact location of the cage reinforcement around the 

supports may cause the stress concentration on the supports and lead to a sudden failure of the 

support in such finite element analyses. 

As a sum up, a four-point bending deep beam is modeled with truss element or beam element 

approaches using bond-slip or perfect bond interface models. Results revealed that the truss 

element representation of the reinforcement is not totally sufficient to reflect the global 

behavior after the shear crack occurrence due to its lack of ability to consider transverse 

behavior response of the steel when a shear load is applied. The stress drop is quite smaller in 

beam element representation of the steel bars with the perfect bond model compared to the 

truss element approach. However, the general behavior does not totally represent the reality in 

“Truss-Perfect”, “Truss-Bond” and “Beam-Perfect” simulations when they are compared with 

the experimental results. Since the bond-slip model is considering different displacements on 

both steel and concrete materials, it better represents the shear transfer mechanism after the 

shear crack occurrence. 

5. Conclusion 

In this chapter, the shear behavior of the reinforced concrete structures is investigated by 

focusing on dowel action. The finite element analyses are performed with the proposed bond-

slip model for the steel-concrete interface and compared with the experimental values. 1D 

reinforcement models (truss and beam) are also examined within the scope of this study. The 

numerical analyses are performed on L-beams and continuous deep beams to investigate dowel 

action and the total shear behavior of the reinforced concrete structures. The following 

conclusions may be drawn. 

Firstly, calibration of the reinforcement model is made before investigating the dowel action 

on relatively larger structures. The processes showed that the beam element modeling of steel 
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bars gives coherent results compared to a multi-fiber approach if the proper distances are 

defined for the plasticity computation according to the diameter of the bar. 

Mesh density is affecting the accuracy of the numerical results for the dowel action analysis. 

Since dowel action occurs in a very limited space compared, a smaller mesh density better 

represents this mechanical behavior.  Defining explicit nodes for steel between the two sides 

of the crack may represent the mechanical behavior of the cracked area in a more appropriate 

way. The mesh density has thus a vital importance. 

The numerical analysis which are performed on L-beams reveal that the dowel action does 

exist and could be observed in numerical simulations in case of significant crack openings by 

only using a correct existing methodology. On one hand, the truss element approach on 

reinforcement is not adequate to represent mechanical behavior of reinforced concrete 

structures under shear loading after the occurrence of dowel action. On the other hand, the 

beam element approach on the reinforcement gives convenient results compared to the 

experimental ones. 

The numerical analysis which is performed on continuous deep beams (structural scale) reveals 

that truss and beam element methods are working well until the dowel action is taken part. All 

the deep beam simulations have coherent results with the experiment in the first few 

millimeters of displacement. It is possible to go further in the iteration of the numerical analysis 

by using the beam element approach. The reason may be the dowel action. Truss element 

cannot represent the mechanical behavior of reinforced concrete under shear loading correctly 

after the crack opened a certain amount (where dowel action occurs). 

Finally, the bond-slip model represents the global (force-displacement relation) and the local 

behavior (crack pattern) of the reinforced concrete structures under shear loading better than 

the perfect bond assumption model. 
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General Conclusion and Perspectives 

A bond-slip model was initially proposed by (Casanova, Jason and Davenne 2012) to represent 

the effects of steel-concrete bond behavior in reinforced concrete structures associated to a 

Finite Element Model (Cast3M 2017). Subsequently, this method was particularly adapted to 

the simulation of ‘small’ structures like a single wall by (Mang, Jason and Davenne 2015). The 

aim of this study was to improve the initial bond-slip model to be more efficient and more 

representative. The adapted methodology can be summarized as in the Figure I. 

 

Figure I Adapted methodology during the study. 

The first step was to evaluate the initial bond-slip model (Figure I.A). After the evaluation, two 

major anomalies are found within the model:  

 Miscalculation of the transverse forces on the interface element, 

 Insufficient representation of the irreversible bond behavior. 

Firstly, transversal behavior of the bond-slip model is studied by performing several 

simulations. Simple geometries like a single interface element are chosen for the simulations 

in order to focus only on the bond behavior. The simulation results revealed that the forces are 

calculated incorrectly in normal directions of the interface element. This abnormality is 
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regulated by implementing the proper calculation methodology to the source code. This 

methodology enables the use of the bond-slip model in numerical applications (Figure I.B). 

Secondly, the irreversible behavior of the steel-concrete bond is studied. After a series of 

simulations on a single interface element, it has been denoted that the existing cyclic model 

does not satisfy the real behavior of the bond under alternating loads when different adhesion 

laws are defined by the user for steel-concrete interface. Admittedly, the friction between steel 

and concrete elements is not considered in calculations of the existing model. Afterwards, a 

completely new irreversible bond model is introduced in order to represent the bond behavior 

properly. This new irreversible model considers the friction between the steel and concrete. It 

is also adaptable to different adhesion laws which can be defined by the user. The new model 

is tested on an interface element for different friction stresses, alternative loads and adhesion 

laws (Figure I.C). 

After the modifications in the bond-slip model related with transversal and cyclic bond 

behaviors, an analytical validation has been performed on the tangential behavior. For the 

validation, the analytical solution proposed by (Casanova, Jason and Davenne 2012) and 

(Mang 2016) are compared with the numerical solution for a tie-rod test. The numerical results 

are found to be coherent to analytical ones. Thus, several rigidity values are tested for the 

interface on the same tie-rod test case in order to find out the optimal values for the bond-slip 

model simulations. The bond-slip model simulation results with different stiffness values are 

also compared with the perfect bond model. It has been seen that if the rigidity on the interface 

is taken sufficiently high for the bond-slip model simulations, the same results are obtained as 

in the perfect bond model simulations. The modified model is validated in the tangential 

direction (Figure I.D). 

Subsequently, the confinement effect on the bond properties are investigated. After a detailed 

analysis of the literature, a formulation is proposed to modify the adhesion law under lateral 

pressure. The formulations are implemented into the bond-slip model in a proper way. 

Afterwards, the new bond-slip model is tested on a single interface element for monotonic and 

alternative loading cases under various lateral pressures. Moreover, constant and increasing 

lateral compression and tension values are tested on the single interface element. The results 

have shown that the modification of the bond law provided correctly within the model. Thus, 

irreversible bond behavior under external pressure is correctly represented with the new bond-

slip model.  
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Onwards, several experimental pull-out test are numerically performed in order to validate the 

new bond-slip model. Different embedment lengths, concrete covers, steel diameters, lateral 

pressures, adhesion laws, material properties (steel and concrete) and bond strength (strong and 

weak) are tested numerically in order to validate the new bond-slip model. Coherent results are 

obtained between the simulations and the experiments for both test cases. The implemented 

active confinement formulas are validated. 

Later on, the new bond-slip model is used to examine the active confinement effect on the 

structural behavior by performing a series of numerical analysis on a tie-rod for monotonic and 

alternative loading. Moreover, the results are compared with the perfect bond assumption for 

1D and 3D steel representations in order to see the significance of the model. According to the 

results, force drops are observed in the force-displacement curve with the bond-slip model 

simulations at instants of crack occurrence where this cannot be seen with the other simulations. 

In bond-slip model simulations, the damage is relatively more concentrated on the crack 

locations. Thus, the position of cracks can be more clearly identify from slip between steel and 

concrete when it changes its sign. Less slip is observed for increasing lateral pressure due to 

the increasing bond strength for both monotonic and cyclic cases. Moreover, the new bond-slip 

model enables to observe the active confinement effect on the crack closure under alternative 

loads. The active confinement effect on the reinforced concrete structures through the steel-

concrete interface can be observed for monotonic and cyclic loading cases when the new bond-

slip model is used (Figure I.E). 

In the last step, the shear behavior of the reinforced concrete structures is investigated with the 

new bond-slip model specifically focusing on the dowel action phenomenon. The experimental 

campaigns of a push-off test and a four-point bending test are reproduced with the bond-slip 

model and the perfect bond model. Two types of reinforcement representations are used (truss 

and beam element) within the numerical analysis.  

According to the numerical analysis performed on L shape beams (push off tests), the following 

conclusions may be drawn: 

 The initial bond-slip model was used only with truss element steel in the previous 

numerical analysis of (Torre-Casanova 2013) and (Mang 2016). With this study, the 

new bond-slip model is used successfully with the beam element steel representation.  
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 Dowel action does exist and can be represented numerically when the proper 

reinforcement model is used (beam element). 

 Concrete mesh density affects the accuracy of the numerical results for the dowel action 

analysis. Since dowel action occurs in very limited space compared to the whole 

geometry after crack opening, a smaller mesh density represents the mechanical 

behavior of the area better.  Defining explicit nodes for steel between the two sides of 

a crack may represents the mechanical behavior of the cracked area in a more proper 

way.  

 Truss element steel representation fails to reproduce the mechanical behavior of 

reinforced concrete under shear loading correctly after crack opened a certain amount 

(where dowel action occurs). Namely, it has been concluded that the truss element 

approach is not adequate to represent the pure dowel action behavior since it does not 

consider the bending of the steel bar.  

 The beam element approach on the reinforcement gives convenient results compared to 

the truss element ones. It is necessary to use beam element approach in numerical 

applications to represent the pure dowel action.  

According to the numerical analysis performed on continuous deep beams (four-point bending 

tests), the following conclusions may be drawn: 

 A premature shear crack is observed for the perfect bond simulations compared to the 

experimental results. 

 After the shear crack occurrence only the bond-slip model simulation can reproduce the 

experimental observations on global and local scales. This may be originated from the 

relaxation of the stresses due the slip between the steel and the concrete. The new bond-

slip model is successful to capture the pre-peak behavior under shear load. 

 The use of beam element still is necessary for the correct representation of shear 

behavior. Even with the bond-slip model simulations, less slip is observed for the truss 

element representation compared to beam element representation.  

In both numerical analysis, an extreme dependence is observed on the initial conditions of: 

 Mesh density, 

 Concrete damage model,  

 Symmetry properties, 
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 Location of the applied force, 

 Blockage methodology of the supports,  

 Material properties of steel and concrete, 

 The layout of reinforcement and the supports. 

In short, it can be concluded that the new bond-slip model represents global (force-

displacement relation) and local behavior (crack pattern) of the reinforced concrete structures 

under shear loading better than the perfect bond assumption model (Figure I.F). 

Even if the developed model seems to produce appropriate results, several points may need to 

be investigated deeper to improve the current model: 

 Further investigation of the normal directional interface behavior might be useful to 

capture the post-peak behavior of the reinforced concrete structures in order to represent 

pure dowel action within the model. 

 The implemented new irreversible bond-slip model is tested for laboratory scale 

simulations (Tie-rod). The application of the model is thus needed for the industrial 

scale simulations to evaluate the model’s efficiency and its effect on local and global 

structural behavior for cyclic loads.  

 In this phase, the effect of confinement on the bond properties can be observed 

realistically. On the other hand, the effect on the global structural behavior is not 

extremely significant according to the performed numerical tests. A further analysis 

may need to be performed with comparing different types of experimental campaigns 

to clarify the confinement effect on the global structural behavior. 

 The concrete cover is considered for the active confinement effect on the bond behavior 

within the new bond-slip model. On the other hand the consideration of the passive 

confinement itself for the ribbed bars within the model might be useful to capture the 

whole confinement behavior (active and passive). 

 The new bond-slip model is producing convenient results in accordance with the truss 

and beam element steel models. It may be useful to modify the model to be able to use 

on the 3D steel representation.  

 Further large scale simulations are still necessary to completely generalize the model 

for real scale industrial applications.  
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