
HAL Id: tel-02428348
https://theses.hal.science/tel-02428348v1

Submitted on 5 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Iterative methods for solving linear systems on
massively parallel architectures

Olivier Tissot

To cite this version:
Olivier Tissot. Iterative methods for solving linear systems on massively parallel architectures. Nu-
merical Analysis [math.NA]. Sorbonne Université, 2019. English. �NNT : �. �tel-02428348�

https://theses.hal.science/tel-02428348v1
https://hal.archives-ouvertes.fr

Sorbonne Université

Inria

Doctoral School Sciences Mathématiques de Paris Centre

University Department Laboratoire Jacques-Louis Lions

Thesis defended by Olivier Tissot

Defended on 21st January, 2019

In order to become Doctor from Sorbonne Université

Academic Field Applied Mathematics

Iterative methods for solving linear
systems on massively parallel

architectures

Thesis supervised by Laura Grigori

Committee members
Referees Hassane Sadok Professor at Université du Lit-

toral Côte d’Opale
Daniel Szyld Professor at Temple University

Examiners Yvon Maday Professor at Sorbonne Univer-
sité

Christian Rey Senior Researcher at Safran
Supervisor Laura Grigori Senior Researcher at Inria

https://www.sorbonne-universite.fr/
https://www.inria.fr/
https://www.sorbonne-universite.fr/
https://www.inria.fr/
http://www.ed386.upmc.fr/
http://ljll.math.upmc.fr/
mailto:olivier.tissot@inria.fr

Sorbonne Université

Inria

Doctoral School Sciences Mathématiques de Paris Centre

University Department Laboratoire Jacques-Louis Lions

Thesis defended by Olivier Tissot

Defended on 21st January, 2019

In order to become Doctor from Sorbonne Université

Academic Field Applied Mathematics

Iterative methods for solving linear
systems on massively parallel

architectures

Thesis supervised by Laura Grigori

Committee members
Referees Hassane Sadok Professor at Université du Lit-

toral Côte d’Opale
Daniel Szyld Professor at Temple University

Examiners Yvon Maday Professor at Sorbonne Univer-
sité

Christian Rey Senior Researcher at Safran
Supervisor Laura Grigori Senior Researcher at Inria

https://www.sorbonne-universite.fr/
https://www.inria.fr/
https://www.sorbonne-universite.fr/
https://www.inria.fr/
http://www.ed386.upmc.fr/
http://ljll.math.upmc.fr/
mailto:olivier.tissot@inria.fr

Sorbonne Université

Inria

École doctorale Sciences Mathématiques de Paris Centre

Unité de recherche Laboratoire Jacques-Louis Lions

Thèse présentée par Olivier Tissot

Soutenue le 21 janvier 2019

En vue de l’obtention du grade de docteur de Sorbonne Université

Discipline Mathématiques Appliquées

Méthodes itératives de résolution de
systèmes linéaires sur des architectures

parallèles

Thèse dirigée par Laura Grigori

Composition du jury
Rapporteurs Hassane Sadok professeur à l’Université du Lit-

toral Côte d’Opale
Daniel Szyld professeur à Temple University

Examinateurs Yvon Maday professeur à Sorbonne Univer-
sité

Christian Rey directeur de recherche à Safran
Directeur de thèse Laura Grigori directrice de recherche à Inria

https://www.sorbonne-universite.fr/
https://www.inria.fr/
https://www.sorbonne-universite.fr/
https://www.inria.fr/
http://www.ed386.upmc.fr/
http://ljll.math.upmc.fr/
mailto:olivier.tissot@inria.fr

Keywords: linear solvers, parallel computing, Krylov methods, recycling techniques

Mots clés : solveurs linéaires, calcul parallèle, méthodes de Krylov, techniques de
recyclage

This thesis has been prepared at the following research units.

Laboratoire Jacques-Louis Lions
4 place Jussieu
75005 Paris
France

T +33 1 44 27 42 98
Web Site http://ljll.math.upmc.fr/

Inria Paris
2 rue Simone Iff
75012 Paris
France

T +33 1 80 49 40 00
Web Site http://inria.fr/

http://ljll.math.upmc.fr/
http://ljll.math.upmc.fr/
http://ljll.math.upmc.fr/
http://inria.fr/
http://inria.fr/
http://inria.fr/

xi

Lorsque j’ai un système linéaire à
résoudre c’est très simple : j’utilise
backslash de Matlab™. Mais je sais
qu’il y en a dans la salle pour qui
c’est compliqué.

C. C.

xii

Acknowledgements/Remerciements

Ça y est, je m’attaque aux remerciements. Le reste est fait, je respire depuis un mo-
ment. Et, ça n’est pas simple finalement — dire que j’attendais presque cet instant.
Déjà, il ne faut oublier personne. Ensuite, il faut satisfaire la curiosité du lecteur, et
garder à l’esprit qu’il ne lira très certainement que cette partie. Idéalement, il faut
même l’impressionner en faisant de l’esprit, essayer de caler un jeu de mot — une con-
trepèterie, c’est un peu trop. Enfin, il faut faire relativement court quand même. Pour
l’originalité, c’est compliqué. Apparemment, il y a des règles à respecter123. Et visible-
ment plusieurs acteurs sont déjà présents sur le marché du doctorant–peu–inspiré–au-
moment–des–remerciements 45. Non, ça n’est pas simple finalement...

Je ne dérogerai pas à la règle, et je commencerai par exprimer ma profonde gratitude
à Laura. Après ces trois années, je réalise à quel point c’est difficile de mettre des
mots sur tout ce que je te dois. Ta confiance et ton soutien tout au long de cette thèse
ont été déterminants. Merci de m’avoir proposé ce sujet de thèse. Merci de m’avoir
toujours laissé une grande liberté pour aborder les problèmes. Merci pour toutes les
opportunités dont j’ai eu la chance de profiter pendant ces trois ans. Merci pour toute
l’aide dans la recherche d’un post-doc, et pour avoir eu le soucis de l’après–thèse.

Evidemment, je suis très reconnaissant à Hassane Sadok et Daniel Szyld d’avoir ac-
cepté d’être rapporteurs de mon manuscrit de thèse. Merci à Hassane Sadok d’avoir
très gentiment accepté d’adapter son emploi du temps afin d’assister à la soutenance.
Daniel Szyld, ya que los agradecimientos son en francés y la mayor parte del manuscrito
en inglés, he pensado que sería simpático de expresarle en español mis más sinceros
agradecimientos por las numerosas correcciones del manuscrito — a pesar de mi (lamentable)
nivel de español. Je remercie bien évidemment tout particulièrement Yvon Maday et
Christian Rey qui ont accepté de faire partie du jury.

I would like to deeply thank all the members of the NLAFET project, especially
Bo Kågström the project leader. I acknowledge HPC2N for providing me the access to
Kebnekaise and Abisko.

I deeply thank Jan Papež and Radek Stompor who contributed significantly to the
fourth chapter. Thank you Jan to have explained me, more than once, the astrophysics
application; thank you, above all, for your help and support. I acknowledge NERSC
for providing me the access to Cori and Edison.

Ma mémoire est parfois défaillante mais il y a des choses que je ne peux pas oublier.
Je n’oublie pas que Frédéric Bonnans a accepté que je finisse mon contrat un peu plus
tôt que prévu pour pouvoir commencer ma thèse dans les meilleures conditions. I
do not forget that Jim Demmel hosted me in his group during three months at the

1Nicolas Curien, “Arbres et cartes aléatoires”, HDR. LPMA, Université Pierre et Marie Curie, Paris,
2013. https://www.math.u-psud.fr/~curien/papers/HDR.pdf

2Daniel Pennac, “Merci”, 2004.
3Quentin Verreycken, “Anatomie des remerciements de thèse”, in ParenThèses, 2015, https://

parenthese.hypotheses.org/1127.
4https://www.scribbr.fr/these-doctorat/remerciements-these/
5https://www.corep.fr/guide-de-la-these/rediger-these/remerciements-these/

https://www.math.u-psud.fr/~curien/papers/HDR.pdf
https://parenthese.hypotheses.org/1127
https://parenthese.hypotheses.org/1127
https://www.scribbr.fr/these-doctorat/remerciements-these/
https://www.corep.fr/guide-de-la-these/rediger-these/remerciements-these/

xiii

begining of 2016. Je n’oublie pas que Nicole Spillane m’a invité à faire une présentation
à DD24. Je n’oublie pas que Iain Duff et Frédéric Nataf ont accepté d’écrire des lettres
de recommandation pour moi. Peut-être que pour vous ce n’était pas grand chose, mais
pour moi c’était beaucoup : merci à vous.

Pour beaucoup, une thèse c’est–des–hauts–et–des–bas, et je ne fais pas exception.
Dans mon cas, ça a aussi été le théâtre de rigolades inoubliables avec Hussam Al-Daas
et Sébastien Cayrols. Merci Husssam pour ton sens de l’humour à toute épreuve. Merci
Sébastien pour ta gentillesse sans limite. Je ne vous dois pas un merci. Je ne vous dois
pas deux mercis. Non, moi je vous dois mille mercis. Votre impact direct et indirect sur
mon travail est énorme. En résumé, grâce à vous deux, ma thèse c’est pas la même.

Il y a trois ans, l’équipe Alpines en était à ses balbutiements. Le centre Inria Paris
était encore dans les cartons, littéralement. Je remercie sincèrement tous les mem-
bres, présents et passés, de l’équipe Alpines qui font qu’elle est toujours une équipe
“particulièrement excellente”. Je remercie chaleureusement tous les autochtones du
3A, comprendre 3ème étage du bâtiment A de l’Inria Paris. C’était un vrai plaisir de
partager avec vous tous des repas, des cafés, des goûters, des verres, des footings, des
baskets, des (baby)foots, et surtout plein de discussions extrêmement enrichissantes;
merci pour tout.

Je tiens à remercier la famille Boittin pour son hospitalité. Merci à Martine et
Philippe pour les week–ends à Bayeux et tous les très bons restaurants à Paris. Merci
à Christine et Dominique, l’antenne Toulouso–Bordelaise, pour le week–end viticole
à Bordeaux et le choix toujours cornélien à l’apéro. Merci à Clément pour toutes les
anecdotes judiciaires.

Merci à ma famille qui me supporte depuis un certain temps déjà. Mes frères et
sœurs Pierre, Laurence, Nathalie et Isabelle qui ont tous essayé de comprendre ce que je
faisais. Mes parents m’ont toujours soutenu et, tout en me laissant suivre mon chemin,
m’ont donné le goût de la reflexion; merci à vous deux, je me suis souvent dit que j’avais
eu bien de la chance de vous avoir. Pendant ces 3 ans, j’ai vu grandir Éloïne, Tristan et
Valentin avec un grand bonheur; merci pour tous vos jolis sourires.

Et pour finir, merci à Léa bien sûr. À vrai dire, de simples mots ne peuvent retran-
scrire tout ce que je te dois. Je ne suis pas Saint–John Perse alors je me contenterai de te
dire merci pour les relectures, les corrections, les encouragements, et le reste surtout.

Et puis merci aussi au pied droit de Benjamin Pavard parce qu’on était mal embar-
qué quand même.

xiv

Abstract xv

Iterative methods for solving linear systems on massively parallel architectures

Abstract

Krylov methods are widely used for solving large sparse linear systems of equations. On dis-
tributed architectures, their performance is limited by the communication needed at each it-
eration of the algorithm. In this thesis, we first study the use of so-called Enlarged Krylov
subspaces for reducing the number of iterations, and therefore the overall communication, of
Krylov methods. We consider a reformulation of the Conjugate Gradient (CG) method us-
ing these enlarged Krylov subspaces: the Enlarged Conjugate Gradient (ECG) method. This
method is first studied from a theoretical point of view. In particular, we show that its conver-
gence speed is close to that of the so-called Deflated Conjugate Gradient method. In order to
mitigate the effect of the extra arithmetic operations induced by the method, we explain how
to dynamically reduce the number of search directions during the iterations. We then present
the parallel design of two variants of the ECG method as well as their corresponding dynamic
versions. Using a block Jacobi preconditioner, we show that our implementation scales up to
several thousands of cores, and it can be significantly faster than the PETSc implementation
of the CG method. We then focus on the Cosmic Microwave Background (CMB) analysis. We
investigate the usage of so–called recycling strategies in this context. As a result of the multi-
plicity of the smallest eigenvalue, these techniques may not improve the convergence in some
cases. Hence, we propose a cheap procedure to adapt the initial guess that permits to reduce
the overall number of iterations in such situations.

Keywords: linear solvers, parallel computing, Krylov methods, recycling techniques

Méthodes itératives de résolution de systèmes linéaires sur des architectures parallèles

Résumé

Les méthodes de Krylov sont largement utilisées pour résoudre des systèmes linéaires creux de
grande taille. Sur une architecture distribuée, leur performance est souvent limitée par les com-
munications requises à chaque itération de l’algorithme. Dans cette thèse, nous commençons
par étudier l’utilisation des sous–espaces dits de Krylov élargis pour réduire le nombre d’ité-
rations, et ainsi le nombre de communications, des méthodes de Krylov. Nous nous intéressons
à une reformulation de la méthode du Gradient Conjugué (CG) qui utilise ces sous–espaces
de Krylov élargis : la méthode du Gradient Conjugué Élargi (ECG). Cette méthode est d’abord
étudiée d’un point de vue théorique. En particulier, nous montrons que sa vitesse de conver-
gence est proche de celle de la méthode dite du Gradient Conjugué Déflaté. Afin d’atténuer
l’effet des opérations arithmétiques supplémentaires requises par la méthode, nous expliquons
comment réduire dynamiquement le nombre de directions de recherche pendant les itérations.
Nous présentons ensuite le design parallèle des deux variantes de la méthode ECG ainsi que les
versions dynamiques qui correspondent. En utilisant un préconditionneur de type bloc Jacobi,
nous montrons que notre implémentation est scalable jusqu’à plusieurs milliers de processeurs,
et qu’elle peut être significativement plus rapide que l’implémentation de la méthode CG pré-
sente dans la librairie PETSc. Nous nous concentrons ensuite sur l’analyse des observations
du fond diffus cosmologique. Nous évaluons l’usage des techniques dites de recyclage dans ce
contexte. En raison de la multiplicité de la plus petite valeur propre, ces techniques ne per-
mettent pas d’améliorer la convergence dans certains cas. Par conséquent, nous proposons une
procédure peu coûteuse pour adapter la solution initiale qui permet de réduire le nombre total
d’itérations dans ces situations.

Mots clés : solveurs linéaires, calcul parallèle, méthodes de Krylov, techniques de recyclage

Laboratoire Jacques-Louis Lions
4 place Jussieu – 75005 Paris – France

xvi Abstract

Contents

Acknowledgements/Remerciements . xii

Abstract xv

Contents xvii

List of Figures xxi

List of Tables xxiii

Introduction (version française) 1
Contexte . 1
Résumé et contributions . 3

Introduction (English version) 7
Context . 7
Summary and contributions . 9

1 Preamble 15
1.1 Background in Linear Algebra . 16
1.2 Krylov Subspace Methods . 18

1.2.1 Derivation of the Conjugate Gradient algorithm 19
1.2.2 Convergence study . 21

1.3 Preconditioners . 22
1.3.1 Incomplete factorization . 23
1.3.2 Domain Decomposition . 23
1.3.3 Multigrid . 25

1.4 Parallel design of Krylov Methods . 26
1.4.1 Mitigating the effect of communication 26
1.4.2 Searching in several directions at once 27

xvii

xviii Contents

2 Enlarged Conjugate Gradients 31
2.1 Introduction . 32

2.1.1 The Block Conjugate Gradient method 32
2.1.2 A-orthonormalization algorithms 35

2.2 The Enlarged Conjugate Gradient method 36
2.2.1 Enlarged Krylov Subspaces . 36
2.2.2 Derivation of the method . 37

2.3 Relationship between Orthodir and Orthomin 39
2.4 Convergence study . 44
2.5 Dynamic reduction of the search directions 47

2.5.1 Selection of the search directions 47
2.5.2 Choice of the tolerance . 53

2.6 Numerical experiments . 57
2.6.1 Test cases . 57
2.6.2 Influence of the parameters and algorithmic variants 59
2.6.3 Dynamic reduction of the search directions 61
2.6.4 Numerical comparison with a two–level preconditioner 66

3 Parallel Design 71
3.1 Data distribution . 72
3.2 Kernel operations . 72
3.3 Cost analysis . 74
3.4 Performance results . 77

3.4.1 Description of the parallel environment 77
3.4.2 Test cases . 79
3.4.3 Results . 79

3.5 Fusing global communications . 87
3.5.1 Derivation of the algorithm . 88
3.5.2 Cost analysis . 90
3.5.3 Numerical experiments . 91

3.6 Reproducibility of the numerical experiments 94
3.6.1 Implementation details . 94
3.6.2 Installation and usage . 97
3.6.3 Evaluation and expected result 99

4 Recycling strategies 103
4.1 Motivation — application to CMB data analysis 104

4.1.1 The map–making problem . 104
4.1.2 The parametric component separation (PCS) problem 105
4.1.3 The algebraic framework . 106

4.2 Ingredients of the methods . 107
4.2.1 Eigenvalues approximation using Krylov subspace methods . . . 107
4.2.2 Deflation and two–level preconditioners 110

4.3 Unified framework for the solution procedures 113

Contents xix

4.3.1 A priori adaptation of the previous deflation space 114
4.3.2 Solving the system . 115
4.3.3 A posteriori update of the deflation space 115
4.3.4 Existing methods . 115

4.4 Numerical experiments . 117
4.4.1 A simplified case . 117
4.4.2 Systems arising from the PCS problem 120
4.4.3 Adaptation of the initial guess for the PCS systems 126

Conclusion 129
Summary . 129
Perspectives . 130

A Appendices I
A.1 A convergence study of ECG using [89, Theorem 5] I
A.2 Numerical experiments on the BUNDLE test case IV

A.2.1 Impact of the enlarging factor . V
A.2.2 Strong scaling study . VI

A.3 Numerical experiments on an elasticity problem discretized using PETSc VI
A.3.1 Definition of the problem . VI
A.3.2 Numerical results . VII

Bibliography IX

xx Contents

List of Figures

1 Microprocessor trend . 8
2 Parallel dot product . 9

1.1 Additive Schwarz layout . 24

2.1 Splitting of r0 . 37
2.2 Block size reduction behavior of D-Odir 64
2.3 Sequential runtimes of ECG D-Odir . 66
2.4 Comparison with a 2–level preconditioner on NH2D 68
2.5 Comparison with a 2–level preconditioner on ANI3D 68
2.6 Comparison with a 2–level preconditioner on SKY2D 69
2.7 Comparison with a 2–level preconditioner on Ela50 69
2.8 Comparison of different types of deflation 70

3.1 Data distribution . 72
3.2 Heterogeneity pattern of E and ν for elasticity matrices 78
3.3 Convergence of D-Odir compared to Odir 82
3.4 Strong scaling with threads . 85
3.5 Profiling of D-Odir(24) . 87
3.6 Numerical comparison between dynamic Orhodir and the fused dynamic

Orthodir variant on Flan_1565 . 91
3.7 Numerical comparison between dynamic Orhodir and the fused dynamic

Orthodir variant on Flan_1565 . 92

4.1 Simplified case experiment with . 119
4.2 Simplified case experiment . 120
4.3 Convergence results for the first 4 systems of the full sequence with x0 = 0121
4.4 Convergence results of the full sequence with continuation 122
4.5 Convergence results for different types of two–level preconditioners . . . 123
4.6 Convergence results for different numbers of deflated vectors 123
4.7 Convergence results for Ritz and harmonic Ritz approximations of the

eigenvectors . 124

xxi

xxii List of Figures

4.8 Eigenvalues of the preconditioned operator for the first system 125
4.9 Convergence of the normalized residual of the third system for different

deflated vectors. 126
4.10 Convergence of the normalized residual of the second and third systems

when deflating first 5 accurate eigenvectors, and then 6 eigenvectors. . . 127
4.11 Reduced sequence with continuation and adaptation 128

A.1 Elasticity with “bubbles” pattern . VII

List of Tables

2.1 Matlab test matrices . 58
2.2 Numerical parameters . 59
2.3 Comparison A-CholQR, Pre-CholQR, and Breakdown-Free 60
2.4 Comparison of BRRHS-CG, ECG, and PCG 62
2.5 Number of iterations of D-Odir . 63
2.6 Number of iterations of D-Omin . 65

3.1 Complexity of the kernels . 74
3.2 Complexity of Orthodir, Orthomin, and CG 76
3.3 Test matrices . 79
3.4 Parameter study . 81
3.5 Strong scaling study for Flan_1565 . 83
3.6 Strong scaling study for Ela_30 . 83
3.7 Weak scaling study . 86
3.8 Complexity of Orthodir, Fused Orthodir, and CG 91
3.9 Runtime comparison of the fused dynamic Orthodir variant with D-Odir

and PETSc’s CG on Kebnekaise . 92
3.10 Runtime comparison of the fused dynamic Orthodir variant with D-Odir

and PETSc’s CG on Cori . 94

4.1 Possible choices of the parameters Vs,M1,M2,M3, Ve in Algorithm 18 . 113

A.1 The BUNDLE test case. V
A.2 Parameter study for the BUNDLE test case V
A.3 Strong scaling results for BUNDLE. VI
A.4 Iteration count and runtimes obtained for an elasticity problem with 81

million of unknown . VIII

xxiii

xxiv List of Tables

Introduction (version française)

Sommaire du présent chapitre

Contexte 1
Résumé et contributions 3

Contexte

De nos jours, quasiment tous les ordinateurs, de votre ordinateur portable personnel
jusqu’au plus moderne des supercalculateurs en passant par les smartphones, reposent
sur le même paradigme : ajouter de plus en plus de processeurs pour calculer de plus
en plus vite. Ce paradigme est relativement nouveau : aux alentours de 2005, la fré-
quence des processeurs a commencé à stagner autour de 3GHz afin de limiter leur
consommation d’énergie (Figure 1). En conséquence, le développement de logiciels sur
ces architectures parallèle requiert une attention particulière. En effet, sur ces machines
parallèles, il est plus coûteux de déplacer des données que de calculer une opération à
virgule flottante [42].

Un énorme effort est actuellement déployé afin de développer la première machine
exascale, c’est-à-dire capable de calculer 1018 opérations à virgule flottante par seconde.
Par exemple, en 2015 Barack Obama a signé un décret présidentiel pour créer une
“National Strategic Computing Initiative” qui doit découler sur une accélération du
développement d’un système exascale. La Chine est censée se doter d’un ordinateur
exascale pendant le 13ème Plan Quinquennal (2016–2020). De son côté, la Commission
européenne a adopté en 2012 sa stratégie pour le Calcul Haute Performance (HPC en
anglais), dont l’un des buts est le développement d’une machine exascale dans les 10
ans. Toutes ces instances ont reconnu qu’il y a un besoin urgent de nouveaux logiciels,
et algorithmes, qui seraient efficaces sur ces machines.

Au cœur de cet effort, NLAFET — Algèbre Linéaire Numérique Parallèle pour Sys-
tèmes Exascale, est un projet Horizon 2020 FET-HPC financé par l’Union européenne.
Son but est de minimiser le fossé entre les capacités maximales théoriques des ma-
chines et les performances réalisées en pratiques par les applications HPC qui reposent
sur des logiciels d’algèbre linéaire. En pratique, l’objectif est de produire et rendre ac-
cessible une libraire, qui serait utilisable comme une boîte noire, pour les parties qui

1

2 Introduction (version française)

prennent le plus de temps lors de l’exécution des applications HPC, comme la solution
d’un système linéaire. En fait, de la mécanique des fluides numérique [66] jusqu’aux
simulations en Astrophysique [113] en passant par l’analyse de données [78], ou l’ima-
gerie du cerveau [75], beaucoup d’applications requièrent de calculer la solution d’un
système linéaire (éventuellement creux).

Les méthodes pour résoudre les systèmes linéaires sont généralement séparées en
deux catégories : les méthodes directes [47] et les méthodes itératives [101]. Les mé-
thodes directes sont basées sur la factorisation de la matrice associée au système consi-
déré : en général sous la forme d’un produit de matrices triangulaires (LU), et ensuite
la solution est trouvée par substitutions. Ces méthodes calculent la solution de n’im-
porte quel système linéaire non singulier en un nombre fini d’opérations, en supposant
que l’on néglige les erreurs d’arrondi. En revanche, la quantité de mémoire requise est
prohibitive lorsque le système linéaire est très grand. De l’autre côté, les méthodes ité-
ratives n’ont besoin de stocker que quelques vecteurs de la taille du système linéaire —
même la matrice du système n’a pas besoin d’être stockée explicitement. Néanmoins, la
convergence de la méthode est plus sujette aux erreurs d’arrondi, et peut même échouer
à trouver une solution acceptable. Afin de prévenir un tel comportement, généralement
on ne résout pas le système original Ax = b, mais plutôt le système dit préconditionné
M−1Ax =M−1b, où la matrice M−1 est proche de la matrice A−1.

En pratique, une itération classique d’une méthode itérative requiert les opérations
suivantes :

• la somme de deux vecteurs,

• le produit d’une matrice (creuse) fois un vecteur,

• et le produit scalaire de deux vecteurs.

Lorsque le problème devient très grand, il n’est pas possible de stocker un vecteur en
entier au sein d’un processeur. Généralement, le vecteur est donc divisé parmi les pro-
cesseurs, et chacun d’eux n’en stocke qu’une partie. De la même manière, la matrice ne
peut pas être stockée sur un seul processeur. Si l’on suppose que la matrice est creuse,
alors un choix simple est de la distribuer par paquets de lignes. Avec ces hypothèses la
somme de deux vecteurs est une opération BLAS1 [43] sans communication entre les
processeurs. Le produit matrice–vecteur est une opération BLAS2 avec des communica-
tions entre les processeurs voisins. Le produit scalaire est une opération BLAS1 suivie
d’une communication globale entre tous les processeurs (Figure 2).

Du coup, le ratio des communications par rapport aux opérations en virgule flot-
tante est élévé, ce qui engendre une mauvaise efficacité sur des machines massivement
parallèles. Ceci est particulièrement bien illustré par le benchmark HPCG [44] : en
juin 2018, les meilleures machines atteignent environ 1.5% de leur pic de performance
lorsqu’elles résolvent un système linéaire creux avec une méthode itérative6 !

6http://icl.utk.edu/hpcg/custom/index.html?lid=155&slid=295

http://icl.utk.edu/hpcg/custom/index.html?lid=155&slid=295

Résumé et contributions 3

Résumé et contributions

Comme expliqué précédemment, cette thèse fait partie d’un effort global pour amélio-
rer la convergence des méthodes itératives afin de :

• diminuer le ratio communication–calcul,

• augmenter le nombre d’opérations en virgule flottante pour tirer parti des nou-
velles architectures des micro–processeurs,

• fournir un solveur qui peut être utilisé comme une boîte noire par l’utilisateur
final.

Pour atteindre ce but, nous étudions en détail la méthode dite du Gradient Conjugué
Élargi (ECG), initialement proposée dans [58]. Ensuite, nous nous intéressons à un pro-
blème lié à l’analyse des observations du fond diffus cosmologique (CMB) où plusieurs
systèmes linéaires proches les uns des autres doivent être résolus successivement. Dans
ce contexte, nous évaluons les bénéfices potentiels ainsi que les limitations des tech-
niques dites de recyclage. Il y a quatre chapitres dans le manuscrit.

Dans le Chapitre 1, nous rappelons la méthode du Gradient Conjugué ainsi que
d’autres méthodes directement dérivées de celle-ci et particulièrement adaptées au cal-
cul parallèle. Plus précisément, nous commençons par rappeler quelques bases d’al-
gèbre linéaire. Ensuite, nous rappelons la définition des méthodes dites de Krylov pour
résoudre des systèmes linéaires en se concentrant sur le cas où la matrice est symé-
trique définie positive. Cela nous mène naturellement à rappeler la définition de la
méthode du Gradient Conjugué, ainsi que sa vitesse de convergence. Finalement, nous
rappelons quelques méthodes directement dérivées du Gradient Conjugué et qui sont
plus adaptées aux architectures parallèles.

Dans le Chapitre 2, la méthode du Gradient Conjugué Élargi est étudiée d’un point
de vue théorique. Premièrement, nous présentons une dérivation simplifiée de la mé-
thode en remarquant qu’elle peut être vue comme un cas particulier des méthodes de
Krylov par blocs. Cette analogie nous permet de présenter deux variantes de la mé-
thode du Gradient Conjugué : Orthodir et Orthomin. Nous fournissons une explication
rigoureuse du manque de robustesse d’Orthomin comparé à Orthodir qui a été observée
numériquement. Nous donnons une preuve de la vitesse de convergence de la méthode
du Gradient Conjugué Élargi — basée sur une extension de la preuve de [24, Theo-
rem 3.2] — qui améliore le précédent résultat existant présenté dans [58]. Cela montre
que l’élargissement des sous–espaces de Krylov agit comme un deuxième niveau pour
le préconditionneur, qui atténue l’effet des petites valeurs propres sur la convergence
de la méthode. Afin d’accroître l’efficacité de la méthode, nous expliquons comment
réduire dynamiquement les directions de recherches. En effet, nous montrons qu’en
mesurant le rang d’une petite matrice, il est possible de réduire la taille du bloc pen-
dant les itérations. Une étude théorique nous donne un critère algébrique pour détecter
les directions de recherches qui ont un impact significatif sur la convergence. À partir
de cette étude, nous dérivons un choix pratique qui n’induit aucun surcoût et qui véri-
fie le critère théorique dans tous nos cas tests. Ce choix ne dépend pas de la méthode

4 Introduction (version française)

et peut donc être appliqué dans le contexte de la méthode du Gradient Conjugué par
blocs en général. Ceci nous permet de comparer différentes méthodes directement dé-
rivées de celle-ci, dont la méthode du Gradient Conjugué Élargi. Nous observons que la
méthode du Gradient Conjugué Élargi est particulièrement bien adaptée à la réduction
des directions de recherche. Elle donne les meilleurs résultats en termes d’efficacité —
la taille de l’espace de recherche final est significativement réduite — et robustesse —
les erreurs d’arrondi n’ont pas d’impact significatif sur la convergence — dans la grande
majorité des cas test numériques que nous avons réalisés.

Dans le Chapitre 3, nous présentons la version parallèle de la méthode du Gra-
dient Conjugué Élargi. Nous considèrons à la fois Orthodir et Orthomin, ainsi que les
versions dynamiques de ces deux variantes où les directions de recherche sont réduites
dynamiquement. La distribution des données et l’analyse du coût de ce design sont pré-
sentées en détail. Ensuite, nous présentons des expériences numériques pour évaluer
l’efficacité parallèle de ce design ainsi que de la méthode du Gradient Conjugué Élargi
sur des machines parallèles. En pratique, nous observons qu’élargir les sous-espaces
de Krylov peut entraîner une réduction remarquable du nombre d’itérations. En effet,
dans les expériences numériques la méthode est utilisée avec un préconditionneur de
type bloc Jacobi, et agit comme un second niveau qui, en quelque sorte, déflate les va-
leurs propres les plus petites ; ce qui est en accord avec la théorie présentée dans le
Chapitre 2. Cela conduit à un gain significatif en termes de temps de calcul comparé
à la méthode du Gradient Conjugué classique. À titre d’exemple, pour un problème
d’élasticité linéaire en 3D avec des coefficients hétérogènes de taille 4,5 millions (et
165 millions de coefficients non nuls), nous observons que la méthode ECG est jusqu’à
5,7 fois plus rapide que l’implémentation de la méthode du Gradient Conjugué pré-
sente dans PETSc [8], les deux utilisant un preconditionneur de type bloc Jacobi. Ce
cas test est connu pour être difficile parce que les preconditionneurs classiques à un
niveau ne sont généralement pas très efficaces [36]. Puisque la méthode ECG accroit le
nombre d’opérations en virgule flottante tout en réduisant les communications, nous
montrons que cette méthode est particulièrement bien adaptée aux architectures mo-
dernes et futures qui possèdent un parallélisme massif. Pour le problème d’élasticité
précédent, nous montrons que la méthode passe à l’échelle jusqu’à 16,384 processus,
chacun étant attaché à un cœur physique. Nous souhaitons insister sur le fait que notre
objectif n’est pas de concevoir un solveur spécifique pour les équations aux dérivées
partielles (EDP) elliptiques. Pour ces cas tests, il est très probable qu’il existe des sol-
veurs qui sont plus efficaces que la méthode ECG avec un préconditionneur de type bloc
Jacobi. Néanmoins, à la différence de ces méthodes, ECG est une méthode algébrique.
Elle ne nécessite aucune information sur l’EDP sous-jacente et ne repose sur aucune
hypothèse particulière, excepté le fait que la matrice soit symétrique définie positive.
Par conséquent elle peut être vue comme un solveur type boîte noire et intégrée très
facilement dans un code préexistant. Pour illustrer ceci, nous expliquons en détail com-
ment reproduire les expériences numériques. En particulier, nous montrons comment
utiliser notre implémentation et nous fournissons un exemple minimal d’utilisation.
Ensuite, nous détaillons la marche à suivre pour reproduire les expériences et com-

Résumé et contributions 5

ment : 1) générer les matrices, 2) télécharger et installer le code, 3) régler les paramètres
correctement et soumettre un calcul sur un cluster. Finalement, nous expliquons com-
ment améliorer le passage à l’echelle de la méthode en fusionnant les communications
globales qui ont lieu lors d’une itération. Nous effectuons des expériences numériques
qui montrent une réduction du temps d’exécution par un facteur allant jusqu’à deux
lorsqu’on utilise les versions des algorithmes où les communications sont fusionnées.

Dans le Chapitre 4, nous étudions les stratégies dites de recyclage afin d’augmen-
ter l’efficacité du solveur linéaire dans le contexte de l’analyse des données d’observa-
tion du fond diffus cosmologique (CMB). Afin d’effectuer cette analyse, il est nécessaire
de résoudre une suite, éventuellement très longue, de systèmes linéaires. A l’intérieur
de cette suite, nous supposons que les systèmes changent “peu” les uns par rapport
aux autres. Nous examinons les bénéfices possibles qu’il y aurait à utiliser des tech-
niques de recyclage. Elles consistent à améliorer dynamiquement le préconditionneur
en utilisant de l’information obtenues lors des précédentes résolutions. Plus précisé-
ment, l’information recherchée correspond aux vecteurs propres associés aux plus pe-
tites valeurs propres de la matrice. Cette information est ensuite incorporée au pré-
conditionneur grâce des techniques de type deflation. Nous commencons par rappeler
plusieurs méthodes pour calculer les valeurs propres et les vecteurs propres associés
d’une matrice à partir d’une base (de Krylov) déjà calculée. Ensuite, nous expliquons
comme déflater un sous–espace donné, i.e., supprimer son effet éventuellement néfaste
sur la convergence de la méthode de Krylov. Ces deux ingrédient sont la base d’un
cadre général pour les méthodes de recyclage que nous présentons ensuite. Des expé-
riences numériques sont menées sur des problèmes provenant de l’analyse des données
d’observation du fond diffus cosmologique, et l’efficacité de ces méthodes est évaluée
d’un point de vue qualitatif. Nous commencons par étudier une situation simplifiée
où la matrice sous–jacente est fixée et il y a plusieurs second–membres donnés les uns
après les autres. Dans ce cas, les techniques de recyclage nous permettent de réduire
le nombre d’itérations significativement. En particulier, lorsque toutes les directions
de recherches précédentes sont gardées afin d’approximer les vecteurs propres associés
aux plus petites valeurs propres, le nombre total d’itérations est réduit par un facteur
jusqu’à 4. Nous étudions ensuite une situtation plus réaliste où à la fois la matrice et
les second–membres changent tout au long de la suite. Dans ce cas, ces techniques ne
sont pas très efficaces. Les expériences numériques montrent que cela est dû à la mul-
tiplicité de la plus petite valeur propre, et que cela est donc inhérent à notre problème.
Afin de surmonter cette difficulté, nous proposons une procédure peu coûteuse pour
adapter la solution initial avant la résolution. Nous observe alors que le nombre total
d’itération est réduit sensiblement. Cette procédure repose sur la structure tensorisée
exposée par la matrice sous–jacente.

Pour finir, nous concluons et nous présentons quelques perspectives à ce travail.

!
Le reste du manuscrit est rédigé en anglais, à l’exception des résumés qui
précédent chaque chapitre et qui sont traduits en français.

6 Introduction (version française)

Introduction (English version)

Outline of the current chapter

Context 7

Summary and contributions 9

Context

Nowadays almost all the computers, from your personal laptop to the most modern
supercomputer including your smartphone, rely on the same paradigm: adding more
and more processors to compute faster and faster. This paradigm is relatively new:
around 2005 the frequencies of the chips (like a CPU) started to stagnate around 3GHz
in order to limit their energy consumption (Figure 1). As a consequence a special care
has to be taken when designing and implementing software for these parallel architec-
tures. Indeed, when addressing such parallel machines it is actually much more costly
to move the data than performing floating-point operations [42].

A great effort is currently being put in building the first exascale machine, i.e., a
machine that can compute 1018 floating-point operations per second. For instance, in
2015 Barack Obama signed an executive order creating a National Strategic Comput-
ing Initiative calling for the accelerated development of an exascale system. China
is supposed to develop an exascale computer during the 13th Five–Year–Plan period
(2016–2020). The European Commission adopted in 2012 its High Performance Com-
puting (HPC) strategy, one of the goals of which is the development of an exascale
machine within 10 years. These instances recognized that there is an urgent need for
new software and algorithms that would be effective on such machines.

Being at the heart of this effort, NLAFET — Parallel Numerical Linear Algebra for
Extreme Scale Systems, is a Horizon 2020 FET-HPC project funded by the European
Union. Its goal is to minimize the gap between the peak capabilities of the hardware
and the performance realized by HPC applications relying on linear algebra software.
In practice, it aims at delivering a library that would be used as a black–box for the
most time–consuming parts of the HPC applications software such as computing the

7https://github.com/karlrupp/microprocessor-trend-data/blob/master/LICENSE.txt

7

https://github.com/karlrupp/microprocessor-trend-data/blob/master/LICENSE.txt

8 Introduction (English version)

Figure 1 – Microprocessor trend over the last 40 years. Credits: original data col-
lected and provided under Creative Commons License7by M. Horowitz, F. Labonte,
O. Shacham, K. Olukotun, L. Hammond, C. Batten, and K. Rupp.

solution of a linear system. In fact, from computational fluid dynamics [66], to as-
trophysics simulations [113] including data analysis [78], or brain imaging [75], many
applications require computing the solution of a (possibly sparse) linear system.

The methods for solving linear systems are usually split into two categories: direct
methods [47] and iterative methods [101]. Direct methods rely on the factorization of
the original system matrix in a simpler form: usually a product of triangular matrices
(LU), and then the solution is found using backward and forward substitution. They
compute the solution of any non singular linear system in a finite number of operations,
assuming that round–off errors are neglected. However, their memory requirement is
prohibitive when the linear system is very large. On the other hand, iterative methods
usually require storing only few vectors of the size of the linear system — even the
system matrix does not have to be stored explicitly. However, the convergence of the
process is more prone to round–off errors, yielding to delay in the convergence, and
even failure to find an acceptable solution. To prevent such undesired behavior, one
usually does not solve the original system Ax = b but rather a preconditioned system
M−1Ax =M−1b where M−1 is close to A−1.

In practice, a typical iteration of an iterative method usually requires the following
operations:

• the sum of two vectors,

• the product of a (sparse) matrix times a vector,

• and the dot product of two vectors.

When the problem becomes very large it is not possible to store an entire vector in
one processor. Usually the vector is split among the processors, and each one of them

Summary and contributions 9

only stores a part of it. Similarly, the matrix cannot be stored in one processor. If we
assume that the matrix is sparse, then a simple choice is to distribute the matrix by
row panels among the processors. With these assumptions, the sum of two vectors
is a BLAS1 [43] operation without any communication. The matrix–vector product
is a BLAS2 operation involving communication between neighboring processors. The
dot product is a BLAS1 operation followed by a global communication among all the
processors (Figure 2).

P1

P2

P3

P4

Figure 2 – Schematic workflow of a parallel dot product when the vectors are dis-
tributed among 4 processors (P1, P2, P3 and P4). The straight lines are representing com-
munication through the network.

Thus the communication–to–computation ratio of iterative methods is high, result-
ing in poor efficiency on massively parallel machines. This is well illustrated by the
HPCG benchmark [44]: in June 2018, the best machines reach around 1.5% of their
peak performance when solving a sparse linear system with an iterative method8!

Summary and contributions

As explained previously, this thesis is part of a global effort for enhancing iterative
methods in order to:

• decrease the communication–to–computation ratio,

• increase the arithmetic intensity to take advantage of the new microprocessor
architectures,

• provide a solver that can be used as a black–box for the end–user.

8http://icl.utk.edu/hpcg/custom/index.html?lid=155&slid=295

http://icl.utk.edu/hpcg/custom/index.html?lid=155&slid=295

10 Introduction (English version)

To achieve this goal, we study in thorough details the so–called Enlarged Conjugate
Gradient method (ECG) originally proposed in [58]. Then, we study a problem related
to the data analysis of the cosmic microwave background (CMB) where several linear
systems, that are close to each other, have to be solved successively. In this context, we
evaluate the potential benefits and limitations of the so–called recycling techniques.
There are four chapters in the manuscript.

In Chapter 1, we recall the Conjugate Gradient method as well as other methods
directly derived from it, and specially designed for parallel computing. More precisely,
we start by recalling some basics about linear algebra. Then, we recall the definition
of the Krylov methods for solving linear systems focusing on the case where the ma-
trix is SPD. This naturally leads us to recall the derivation of the Conjugate Gradient
algorithm, and the study of its convergence speed. Finally, we recall several methods
directly derived from the Conjugate Gradient which are more adapted to parallel ar-
chitectures.

In Chapter 2, the Enlarged Conjugate Gradient method is studied from a theoret-
ical point of view. First, we present a simplified derivation of the method by noticing
that it can be seen as a special case of a block Krylov method. This analogy also al-
lows us to present two variants of the Enlarged Conjugate Gradient method: Orthodir
and Orthomin. We provide a rigorous justification of the lack of robustness of Or-
thomin compared to Orthodir that has been observed experimentally. We give a proof
of the speed of convergence of the Enlarged Conjugate Gradient method — based on
an extension of the proof of [24, Theorem 3.2] — which greatly improves the previous
existing result presented in [58]. This shows that enlarging the Krylov subspaces acts
as a second level preconditioner that mitigates the effect of the smallest eigenvalues
on the convergence of the iterative method. In order to increase the efficiency of the
method, we explain how to dynamically reduce the search directions. Indeed, we show
that by monitoring the rank of a small matrix, it is possible to reduce the size of the
block during the iterations. A theoretical study gives us an algebraic criterion to detect
the search directions that do have a significant impact on the convergence. From this
study, we derive a practical choice that induces no extra cost and verifies the theoretical
criterion in all our test cases. This choice does not depend on the method and therefore
can be applied in the context of the Block Conjugate Gradient method. This allows us
to compare several methods derived from it, including the Enlarged Conjugate Gradi-
ent method. We observe that the Enlarged Conjugate Gradient method is particularly
adapted to the reduction of the search directions, it leads to the best results in terms
of effectiveness — the size of the final search space is significantly decreased — and
robustness — the round–off errors do not have a significant impact on the convergence
— in most of the numerical tests performed.

In Chapter 3, we present the parallel design of the Enlarged Conjugate Gradient
method. We consider both Orthodir and Orthomin variants, as well as dynamic ver-
sions of these variants that reduce dynamically the number of search directions. The
data distribution and the cost analysis of this design are presented in details. Then,
we present numerical experiments to asses the efficiency of this design as well as the

Summary and contributions 11

Enlarged Conjugate Gradient on parallel machines. In practice, we observe that en-
larging the Krylov subspaces can drastically reduce the number of iterations. Indeed
in the numerical experiments it is used with a block Jacobi preconditioner and acts as a
second-level that, in a way, deflates the smallest eigenvalues; this is in accordance with
the theory presented in Chapter 2. This leads to a significant speed-up over the stan-
dard Conjugate Gradient method. For instance for a 3D linear elasticity problem with
heterogeneous coefficients with 4.5 millions of unknowns and 165 millions of nonzero
entries, we observe that ECG is up to 5.7 times faster than the PETSc [8] implementa-
tion of the Conjugate Gradient method, both using a block Jacobi preconditioner. This
test case is known to be difficult because the classical one-level preconditioners are not
expected to be very effective [36]. As it increases the arithmetic intensity and reduces
the communication, we show that it is well suited for modern and future architectures
that exhibit massive parallelism. For the previous elasticity problem, we show that the
method can scale up to 16,384 threads, each one being bound to one physical core. We
want to point out that our aim is not to design a specific solver for elliptic partial differ-
ential equations (PDE). It is very likely that for these test cases, there exists solvers that
are more effective than ECG with a block Jacobi preconditioner. Nevertheless, unlike
these methods ECG is an algebraic method. It does not require any information from
the underlying PDE and does not rely on any assumption, except that the matrix is sym-
metric positive definite. Hence it can be seen as a black-box solver and integrated very
easily in any existing code. As an illustration, we explain in details how to reproduce
the numerical experiments. In particular, we show how to use our implementation and
provide a minimal example as an illustration. Then, we detail the workflow for repro-
ducing the experiments and how to: 1) generate the matrices, 2) download and install
the code, 3) set the proper parameters when submitting the job to a cluster. Finally,
we explain how to increase further the scalability of the method by fusing the global
communications that occur during one iteration. We perform numerical experiments
that show a reduction of the runtime of a factor up to almost two at large scale when
using the fused versions of the algorithms.

In Chapter 4, we study so–called recycling strategies in order to increase the effi-
ciency of the linear solver in the context of the Cosmic Microwave Background (CMB)
analysis. The CMB analysis requires solving a possibly very large sequence of sym-
metric positive definite linear systems. Within this sequence, it is assumed that the
systems are changing “slowly” from one to the other. Thus we investigate the possible
benefits of using recycling techniques which consist in improving the preconditioner
dynamically using informations from the previous solve. More precisely, the informa-
tion sought is the eigenvectors associated to the smallest eigenvalues of the matrix, and
this information is then incorporated in the preconditioner of the next matrix by us-
ing deflation. We start by recalling several methods for computing eigenvalues and
the associated eigenvectors of a matrix from an already computed (Krylov) basis. Then
we explain how to deflate a given subspace, i.e., remove its possibly bad effect on the
convergence of the Krylov method. These two ingredients are the basis of the general
framework of the recycling methods presented then. Numerical experiments are per-

12 Introduction (English version)

formed on problems coming from the CMB analysis, and the efficiency of the methods
is assessed from a qualitative point of view. We first study a simplified situation where
the underlying matrix is fixed, and there are multiple right-hand sides given one by
one. In this case, the recycling techniques allow to reduce the number of iterations
significantly. In particular, when all the previous search directions are kept in order
to approximate the smoothest eigenvectors the overall number of iterations is reduced
by a factor up to 4. We then study a more realistic situation where both the matrix
and the right-hand sides are changing through the sequence. In this case, these tech-
niques are not very efficient. The numerical experiments show that this is a result of
the multiplicity of the smallest eigenvalue, and thus is inherent to our case of interest.
In order to overcome this difficulty, we propose a cheap procedure to adapt the initial
guess before the solve. It permits to reduce the overall number of iterations noticeably.
This procedure relies on the tensorized structure exhibited by the underlying matrix.

Finally, we conclude and present some perspectives of this work.

Summary and contributions 13

This thesis has lead to the following publications.

Journal papers in revision

L. Grigori and O. Tissot. Scalable Linear Solvers based on Enlarged Krylov subspaces
with Dynamic Reduction of Search Directions. Research Report RR-9190. Inria
Paris, Laboratoire Jacques-Louis Lions, UPMC, Paris, 2018. Submitted to SIAM
SISC.

L. Grigori and O. Tissot. Reducing the communication and computational costs of
Enlarged Krylov subspaces Conjugate Gradient. Research Report (old version) RR-
9023. Inria Paris, Laboratoire Jacques-Louis Lions, UPMC, Paris, 2017. Submitted
to NLAA.

Journal paper in preparation

L. Grigori, J. Papez, R. Stompor, and O. Tissot. Solving sequences of linear systems
by recycling deflation subspaces - application to CMB data analysis. In preparation.
2018.

Deliverables of the H2020 NLAFET project

S. Donfack, L. Grigori, and O. Tissot. Deliverable 4.5: Integration. NLAFET deliv-
erable. 2018.

M. Abalenkovs et al. Deliverable 5.2: Software integration. NLAFET deliverable.
2018.

S. Donfack, L. Grigori, and O. Tissot. Deliverable 4.4: Performance evaluation.
NLAFET deliverable. 2018.

S. Donfack, L. Grigori, and O. Tissot. Deliverable 4.3: Prototype software, phase 2.
NLAFET deliverable. 2017.

S. Donfack, L. Grigori, and O. Tissot. Deliverable 4.2: Analysis and algorithm de-
sign. NLAFET deliverable. 2017.

14 Introduction (English version)

1
Preamble

Outline of the current chapter

1.1 Background in Linear Algebra 16
1.2 Krylov Subspace Methods 18

1.2.1 Derivation of the Conjugate Gradient algorithm 19
1.2.2 Convergence study . 21

1.3 Preconditioners 22
1.3.1 Incomplete factorization . 23
1.3.2 Domain Decomposition . 23
1.3.3 Multigrid . 25

1.4 Parallel design of Krylov Methods 26
1.4.1 Mitigating the effect of communication 26
1.4.2 Searching in several directions at once 27

Abstract
In this chapter, we recall some background about iterative methods for solving linear systems,
focusing on Krylov methods and the Conjugate Gradient method in particular. We start by re-
calling basic facts about linear algebra. Then, we explain how to derive the Conjugate Gradient
algorithm, a special case of Krylov methods, as well as a well–knwon result about its speed
of convergence. In practice, preconditioning is crucial for the method to converge reasonably,
and we review some strategies to construct efficient preconditioners. Finally, we present a brief
state of the art of the parallel variants of the Conjugate Gradient method.

Résumé
Dans ce chapitre, on rappelle quelques résultats fondamentaux à propos des methodes itéra-
tives de résolution de systèmes linéaires, en se concentrant sur les méthodes de Krylov et la
méthode du Gradient Conjugué en particulier. On commence par rappeler quelques éléments
basiques d’algèbre linéaire. Ensuite, on explique comment dériver l’algorithme du Gradient
Conjugué, un cas particulier de méthode de Krylov, ainsi qu’un résultat connu à propos de sa
vitesse de convergence. En pratique, le préconditionnement est crucial pour que la méthode

15

16 CHAPTER 1. Preamble

converge raisonnablement et on passe en revue quelques stratégies pour construire des précon-
ditionneurs efficaces. Finalement, on présente un bref état de l’art des variantes parallèles de la
méthode du Gradient Conjugué.

1.1 Background in Linear Algebra

In this section, we recall some basic results of linear algebra and introduce notations
that will be used throughout this thesis. We do not cite explicit references for the results
stated in this section. They should be found in any good graduate-level course about
linear algebra. In particular, further details can be found in [55, 101] for instance1.

In this thesis, we will manipulate mainly two mathematical objects: vectors and
matrices. We call v a vector if it is an element of Kn where K = R or K = C, and n > 0
is an integer. For the sake of simplicity, we consider that v is real, i.e., v ∈ Rn. We call
A a matrix if it is an element of Km×n where K = R or K = C, and m,n > 0 are integers.
Similarly, we consider that A is real, i.e., A ∈ Rm×n.

In fact, one should see vectors as columns of real numbers, and matrices as arrays
of numbers with m rows and n columns. In spite of the apparent simplicity of these
objects, we will see that their study is not that simple. The coefficient at row i and
column j of the matrix A is denoted aij . We denote A> the matrix whose coefficient are
defined by cij = aji — the rows and columns are switched in the coefficients. Similarly,
v> is used to denote a row vector.

We start by the definitions of inner product and norm for vectors.

Definition 1.1.1: inner product

Let n ∈ N∗, an inner product on Rn is any mapping denoted 〈., .〉 from Rn ×Rn to
R such that,

1. linearity: ∀v,u1,u2 ∈ Rn,∀λ1,λ2 ∈ R,〈λ1u1 +λ2u2,v〉 = 〈λ1u1,v〉+ 〈λ2u2,v〉,

2. symmetry: ∀u,v ∈ Rn,〈u,v〉 = 〈v,u〉,

3. positive definiteness: ∀u ∈ Rn \ {0},〈u,u〉 > 0

Definition 1.1.2: norm

Let n ∈ N∗, a norm on Rn is any mapping denoted ||.|| from Rn to R+ such that,

1. triangle inequality: ∀u,v ∈ Rn, ||u + v||6 ||u||+ ||v||,

2. homogeneity: ∀u ∈ Rn,∀λ ∈ R||λu|| = |λ| ||u||,

3. positive definiteness: ∀v ∈ Rn, ||v||> 0, and ||v|| = 0 iff v = 0.

1These 2 very popular books cover much more material: [55] focuses on numerical linear algebra, and
[101] covers iterative methods for solving linear systems.

1.1. Background in Linear Algebra 17

Intuitively, the norm can be seen as a measure of a vector — although this does not
mean that different vectors should have different norms. An important property that
links inner product and norm is the Proposition 1.1.1: given an inner product it is
always possible to construct a norm — but the opposite is not true.

Proposition 1.1.1

Given an inner product 〈., .〉, the quantity
√
〈., .〉 defines a norm.

We now define the notion of orthogonality which is crucial in all the methods that
we will discuss in this thesis.

Definition 1.1.3: orthogonality

Let u,v ∈ Rn, then u,v are said to be orthogonal (denoted u ⊥ v) with respect to
〈., .〉 if and only if,

〈u,v〉 = 0. (1.1)

A fundamental theorem, the Riesz representation theorem2, makes the link be-
tween the notion of inner product and a special type of matrices. Indeed, one can
represent any scalar product using a matrix.

Theorem 1.1.1: Riesz representation

Given an inner product 〈., .〉 then there exists a unique matrix A ∈ Rn×n, such
that,

∀u,v ∈ Rn,〈u,v〉 = u>Av. (1.2)

Definition 1.1.4: symmetric positive definite matrix

A ∈ Rn×n is symmetric positive definite if and only if,

1. symmetry: A> = A,

2. positive definiteness: ∀v ∈ Rn \ {0},v>Av > 0.

In fact, it is easy to show that any symmetric positive definite (SPD) matrix induces
an inner product. Thus, there is an equivalence between SPD matrix and inner product.
So given a SPD matrix A, it is straightforward to define an A–norm, denoted ||.||A and
an A–orthogonality denoted ⊥A.

2Although its exact statement is much more general, we decided to restrict the presentation to our
simplified case where the Hilbert space is simply Rn.

18 CHAPTER 1. Preamble

1.2 Krylov Subspace Methods

In this section, we recall the definition of Krylov subspaces methods for solving linear
systems. Our presentation is brief and much more details can be found in [101, Chapter
5] and [82, Chapter 2]. We focus on the case where A ∈ Rn×n is SPD, and on the induced
method: the Conjugate Gradient (CG) method [68].

Let us recall that we are interested in solving the linear system,

Ax = b, (1.3)

where b ∈ Rn is a given right-hand side x ∈ Rn is the unknown solution. Krylov sub-
spaces methods are iterative methods that rely on 2 ingredients: first a projection pro-
cess, second the definition of Krylov subspaces.

First, we briefly explain what is a projection process. Given an initial guess x0
3, it

searches an approximate solution xk of the form,

xk ∈ x0 +Sk , (1.4)

where Sk is some k-dimensional subspace of Rn×n called the search space. The condition
(1.4) is also known as the subspace condition. Of course, this condition is not enough to
define uniquely xk and one need to add k constraints on this approximate solution. This
is done by enforcing the following condition,

b −Axk ⊥ Ck , (1.5)

where Ck is some k-dimensional subspace of Rn×n called the constraints space. The quan-
tity b −Axk is also denoted rk and it is called the residual. The condition (1.5) is also
known as the Petrov-Galerkin condition. It is possible to show that if the matrix A is
SPD, then Ck can be chosen equal to Sk ([101, Proposition 5.1] for instance).

It becomes clear that the choice of the subspace Sk is crucial as for the efficiency of
the resulting method. Here comes into play the second ingredient: the definition of the
Krylov subspaces denoted Kk(A,r0). These subspaces are defined such as,

Kk(A,r0) = span
{
r0,Ar0, . . . ,A

k−1r0
}
. (1.6)

One major property of these subspaces is given by Theorem 1.2.1 [82, Theorem 2.2.3].

Theorem 1.2.1

If r0 is of grade d with respect to A, i.e., the degree of the nonzero monic polyno-
mial p of lowest degree such that p(A)v = 0 is d, then r0 ∈ K1 ⊂ K2 ⊂ . . .Kd =Kd+j ,
for all j > 0. Moreover, rd = 0

We want to emphasize on 2 intuitive motivations for searching an approximate so-

3It is always possible to choose it equals to 0, if no “good” first guess is known.

1.2. Krylov Subspace Methods 19

lution in these subspaces:

1. the method finds the exact solution x in at most n iterations,

2. the construction of Kk(A,r0) involves a sequence of matrix-vector products which
is both simple to implement and relatively cheap.

Remark 1.2.1

In this section and in the rest of this thesis, we focus on the case where A is
SPD. In this case, the method of choice is the Conjugate Gradient algorithm.
However, when the matrix is not SPD, there exist a lot of Krylov methods such
as GMRES [99], BiCGSTAB [118], or QMR [49]. We do not cover these methods
in our presentation as we are interested in the case where A is SPD.

1.2.1 Derivation of the Conjugate Gradient algorithm

Following the previous discussion, the iterative process characterized by,

xk ∈ x0 +Kk(A,r0), (1.7)

rk ⊥Kk(A,r0), (1.8)

is well defined. In particular, we have seen that xn is the exact solution of the original
linear system.

From these 2 conditions and the Lanczos algorithm [101, Algorithm 6.15], it is pos-
sible to show Lemma 1.2.1.

Lemma 1.2.1

Let xk and rk (k ∈ {1, . . . ,n}) satisfying the iterative process (1.7)–(1.8), then,

xk = xk−1 + pkαk , (1.9)

rk = rk−1 −Apkαk , (1.10)

where,

αk ∈ R (1.11)

pk ∈ Kk(A,r0), (1.12)

p>i Apk = 0, i 6 k. (1.13)

Proof. See [101, Section 6.7.1], or [82, Section 2.5.1].

One can easily see that rk ∈ Kk+1(A,r0) and rk ⊥ Kk(A,r0). In particular, it is easy to
see that rk ⊥ Api if i 6 k − 1, which is equivalent to p>i Ark = 0. Following Lemma 1.2.1,

20 CHAPTER 1. Preamble

it seems natural to construct pk+1 such that,

pk+1 = rk − pkβk , (1.14)

where βk is a scalar. In order to determine βk , one has to enforce,

p>k Apk+1 = 0 ⇐⇒ p>k A(rk − pkβk) = 0 (1.15)

⇐⇒ βk =
p>k Ark
p>k Apk

(1.16)

Similarly, a simple computation allows us to determine αk ,

p>k rk = 0 ⇐⇒ p>k rk−1 = αk , (1.17)

⇐⇒ αk =
p>k rk−1

p>k Apk
. (1.18)

We can notice that p>k Apk = ||pk ||A so we can A–normalize the search directions in order
to further simplify the expression of αk and βk leading to Algorithm 1. This is known
as the Conjugate Gradient method [68].

Algorithm 1 Conjugate Gradient (CG)

1: r0 = b −Ax0
2: p1 = r0(r>0 Ar0)−1/2

3: k = 1
4: while ||rk−1||2 > εsolver||r0||2 and k < kmax do
5: αk = p>k rk−1
6: xk = xk−1 + pkαk
7: rk = rk−1 −Apkαk
8: βk = p>k Ark
9: zk+1 = rk − pkβk

10: pk+1 = zk+1(z>k+1Azk+1)−1/2

11: k = k + 1
12: end while

Remark 1.2.2

The Conjugate Gradient algorithm is sometimes written in a slightly different
form where pk is not A–normalized, and βk is expressed in terms of ||rk ||2 and
||rk−1||2 [101, Algorithm 6.18]. We decided to show this form because it is closer
to the algorithm of the Enlarged Conjugate Gradient method.

1.2. Krylov Subspace Methods 21

1.2.2 Convergence study

As the Conjugate Gradient method is an iterative method it is of primary interest to
characterize its speed of convergence. First of all, it is possible to prove that the Conju-
gate Gradient method finds the approximate solution xk that minimizes the A–norm of
the error over the Krylov subspace Kk(A,r0) (Proposition 1.2.2 [101, Proposition 5.2]).

Proposition 1.2.1

Let xk (k ∈ {1, . . . ,n}) satisfying the iterative process (1.7)–(1.8), then

||x − xk ||A = min
y∈x+Kk(A,r0)

||x − y||A (1.19)

Moreover, one can show [82, p. 265] that the approximate residual rk can expressed
as,

rk = qk(A)r0, (1.20)

where qk is a polynomial of degree k, such that qk(0) = 1. We denote Pk1 the set of such
polynomials. Moreover, we have rk = A(x − xk) thus,

x − xk = qk(A)(x − x0). (1.21)

Let A = Φ>ΛΦ be the spectral decomposition of A whose eigenvalues are denoted
λi (16 i 6 n), then we have,

||x − xk ||A = ||qk(Λ)Φ(x − x0)||A (1.22)

This expression and Proposition 1.2.2 imply that,

||x − xk ||A = min
qk∈Pk1

||qk(Λ)Φ(x − x0)||A (1.23)

6 ||(x − x0)||A min
qk∈∈Pk1

||qk(Λ)||A (1.24)

6 ||(x − x0)||A min
qk∈∈Pk1

max
16j6n

||qk(λj)||A (1.25)

Then, it is possible to use Chebyshev polynomials to estimate the min-max quantity
[101, Theorem 6.25],

min
p∈Pk1

max
16i6n

|p(λi)|6 2
(√
κ − 1
√
κ+ 1

)k
, (1.26)

where κ denotes the condition number of the matrix, κ = λmax
λmin

.
Finally, a very popular result concerning the convergence of the Conjugate Gradient

algorithm follows,

||x − xk ||A 6 2||x − x0||A
(√
κ − 1
√
κ+ 1

)k
(1.27)

22 CHAPTER 1. Preamble

Remark 1.2.3

Although very popular, this bounds has several limitations in practice both the-
oretical, and practical due to round–off errors (see [82] for a very interesting
discussion about these flaws).

1.3 Preconditioners

We have seen that the convergence of the Conjugate Gradient method is related to the
condition number κ of the matrix A. To accelerate the convergence of the method, one
usually solves a preconditioned system instead of the original one, i.e.,

M−1Ax =M−1b, (1.28)

where M−1A is assumed to have a better condition number than A.
The careful reader may have noticed that this formulation is somehow problematic

for the Conjugate Gradient method because M−1A is obviously non–symmetric even
if A and M are SPD. However, it is possible to derive a preconditioned version of the
Conjugate Gradient method by noticing that M−1A is self–adjoint with respect to the
M-inner product,

x>M(M−1Ay) = (M−1Ax)>My = x>Ay. (1.29)

Thus, by replacing A by M−1A and > by >M in Algorithm 1, it follows the Precondi-
tioned Conjugate Gradient algorithm (Algorithm 2).

Algorithm 2 Preconditioned Conjugate Gradient (PCG)

1: r0 =M−1(b −Ax0)
2: p1 = r0(r>0 Ar0)−1/2

3: k = 1
4: while ||rk−1||2 > εsolver||r0||2 and k < kmax do
5: αk = p>k rk−1
6: xk = xk−1 + pkαk
7: rk = rk−1 −Apkαk
8: zk+1 =M−1rk
9: βk = p>k Azk+1

10: zk+1 = zk+1 − pkβk
11: pk+1 = zk+1(z>k+1Azk+1)−1/2

12: k = k + 1
13: end while

Of course, the choice of the preconditionerM has a huge impact on the performance
of the Krylov method: 1) computing M−1v should be cheap and 2) M−1 has to be as

1.3. Preconditioners 23

close as possible of A−1 — these 2 requirements being conflicting. We now review some
popular families of preconditioners.

1.3.1 Incomplete factorization

In order to understand this type of preconditioners, one has to go back to direct meth-
ods [47]. These methods factorize A such that A = LU , L is a lower triangular square
matrix, and U is an upper triangular matrix. When A is sparse, there are more non–
zeros entries in L and U than in A, this phenomenon is known as fill–in.

Incomplete factorizations are decompositions of A such that,

R = A−LU, (1.30)

where L is sparse lower triangular, U is sparse upper triangular and R verifies some
properties in order to limit memory requirement for storing L and U .

For instance, ILU(0) defines L and U such that there is no fill–in, i.e., R has zero
entries at the location of non–zero entries of A. It is possible to extend this idea in
several ways. First, ILU(p), where p is an integer, aims at improving the quality of
ILU(0) by allowing fill–in up to the level p [101, Definition 10.5]. Second, ILU(τ) where
τ is a real number, also aims at improving the quality of ILU(0), but it allows fill–in in
the entry if the factor is larger than τ . It results from the observation that many values
in the L and U factors are usually very small.

In practice, as direct methods, such preconditioners can be used as a black–box but
they are lacking of parallelism. However, a Communication–Avoiding ILU(0) precon-
ditioner has been derived [57].

1.3.2 Domain Decomposition

Domain Decomposition methods are used to solve linear systems coming from the dis-
cretization of Partial Differential Equations. Originally, they were derived as numeri-
cal schemes based on a “divide and conquer” idea, but it was found that they can be
expressed as preconditioners for Krylov solvers [36, 117]. These preconditioners natu-
rally express a high degree of parallelism. Even if they ultimately rely on the discretiza-
tion of some differential operator, some algebraic formulations have been derived [36,
50, 51], and our presentation is intended to be as algebraic as possible, pointing out
when the non–algebraic hypothesis are needed.

First, we need to introduce some notations. As previously, A denotes a symmetric
positive definite matrix of size n× n. Let N be an integer such that N � n. We assume
that A is partitioned into N subdomains, with or without overlapping. More precisely,
we use the following definition and notations inspired by [36, 50, 51, 117]. Let N =
{1, . . . ,N } and let N =

⋃N
i=0Ni,0 a partition of N where the Ni,0 are nonempty and

pairwise disjoint. For each Ni,0 we consider a sequence of nested subsets Ni,δ such
that,

Ni,0 ⊆Ni,1 ⊆Ni,2 ⊆ · · · ⊆ N , (1.31)

24 CHAPTER 1. Preamble

Figure 1.1 – Schematic view of some additive Schwarz preconditioners without overlap
(Left) or with overlap (Right).

and N =
⋃N
i=0Ni,δ for all δ but when δ > 0 the sets are no longer necessary pairwise

disjoint, so δ represents the overlap. Let ni,δ be the cardinal of Ni,δ. The matrix Ri,δ ∈
Rni,δ×n whose rows are the rows j of identity for which j ∈ Ni,δ are called restriction
matrices. Indeed, if we denote Wi,δ = Range

(
R>i,δRi,δ

)
, and v ∈ Rn a vector then vi,δ =

Ri,δv is the restriction of v on Wi,δ. Similarly, Aiδ = RiδAR
>
iδ is the restriction of A on

Wi,δ.
Following [36], it is possible to define a general one-level additive Schwarz precon-

ditioner M−1
ASM,δ (Figure 1.1) as,

M−1
ASM,δ =

N∑
i=1

R>i,δ(Ri,δAR
>
i,δ)−1Ri,δ. (1.32)

The case where δ = 0 leads to the Block Jacobi preconditioner.
For the sake of simplicity, we drop the subscript δ and denote MASM,δ as MASM .

This definition is completely algebraic as it only requires Ri,δ and R>i,δ. Despite its
simplicity the following result holds ([36, Lemma 5.9 p.120] or with a slightly different
formulation [117, Lemma 2.6 p.42]).

Lemma 1.3.1

Let A be a symmetric positive definite sparse matrix and δ > 0 an overlap. The
largest eigenvalue of M−1

ASMA is bounded by a constant independent of N . In
other words, for each u ∈ Rn not zero,

0 < u>M−1
ASMAu 6 (k + 1)u>u, (1.33)

where k = max
i∈{1,...,N }

{#N (i)} andN (i) denotes the set of neighbors of subdomain i.

However, it has some limitations because it is not possible to control the condition
number of M−1

ASMA. Indeed, no information is provided about the smallest eigenvalues

1.3. Preconditioners 25

of M−1
ASMA. In practice, M−1

ASMA can have eigenvalues close to 0 leading to very slow
convergence of Krylov methods [36].

In order to overcome this limitation of MASM , it is usual to add a so-called coarse
space that contains information about the eigenspace associated with the smallest eigen-
values ofM−1

ASMA in order to deflate it [36, 48, 62, 115, 117]. For instance, GenEO [107]
provides a construction of a coarse space that can bound the condition number of the
resulting preconditioned matrix by a given threshold. This construction is based on the
solution of local generalized eigenvalue problems leading to a remarkable efficiency at
large scale [74]. However, the parallel implementation also requires an access to an
existing software for the discretization of the underlying partial differential equation.
In that sense, it cannot be used as a black–box solver. To our knowledge, there is no
coarse space which is both algebraic, in the sense that it only needs the global matrix
A, reliable, it bounds the condition number of the preconditioned matrix, and effective
in parallel, its construction is local and does not involve global communication.

1.3.3 Multigrid

As Domain Decomposition methods, Multigrid methods [120] were originally designed
for solving partial differential equations (PDE). They rely on a nested sequence of dis-
cretizations with different mesh sizes, approximating the solution using a relaxation
technique through this sequence. This is also known as Geometric Multigrid. How-
ever, the theory is in general known for special cases such as the Poisson equation and
strongly relies on the underlying partial differential equation to decompose effectively
the error in its so–called “oscillatory” and “smooth” part.

Indeed, this idea has been extended to non–PDE problems by considering the graph
of the matrix directly, this is known as Algebraic Multigrid (AMG). Although it is pos-
sible to derive algorithms by analogy with the Geometric case, it becomes much more
complicated to prove convergence results. As an exception, one can cite [84] where
the convergence rate is proven for symmetric M-matrices with non–negative row sum.
However, one important feature of multigrid methods is that they can decrease the
residual extremely rapidly during the first iterations [120]. Thus, it seems natural to
define an Algebraic Multigrid preconditioner such as it performs only one step of the
method for instance. Such approach has been very successful [10, 97, 112, 124]. We also
want to point out Jolivet’s thesis [73] which provides a detailed comparison between
the performance of Domain Decomposition and Multigrid methods. In particular, it is
shown that Multigrid methods do require to tune some parameters in order to obtain
good performances, especially when there is a high heterogeneity in the coefficients of
the differential operator, making their usage as black–box sometimes complicated for
the non–expert user.

26 CHAPTER 1. Preamble

1.4 Parallel design of Krylov Methods

Recently, a lot of effort has been put in enhancing the performance of Krylov meth-
ods by avoiding global communication [19, 25, 26, 69], overlapping communication
with computation [54], or decreasing the number of iterations by searching in multiple
directions at once [58, 108].

1.4.1 Mitigating the effect of communication

As explained previously, the major performance bottleneck of the Conjugate Gradient
algorithm comes from the global synchronizations for computing αk and βk (line 5 and
8 of Algorithm 1). In what follows, we review some algorithmic reformulations in order
mitigate the number of global synchronizations. One common feature of these methods
is that they are all theoretically equivalent to the Conjugate Gradient method.

Avoiding communication

The main idea behind s–step methods [25, 26, 27], also known as Communication–
Avoiding Krylov methods [19, 22, 69], is to perform s iterations at the same time instead
of one, thus reducing the number of global synchronizations by a factor s.

Schematically, these methods construct

Pk =
(
pk+1 pk+2 . . .pk+s

)
,

from
Yk =

(
rk Ark . . . As−1rk

)
.

Using so–called “matrix powers kernel” [35], it is possible to construct Yk at the same
asymptotical communication cost than a matrix–vector product. Once Yk is constructed,
the construction of Pk involves a global communication [20, Algorithm 2]. In prac-
tice, due to round–off errors the numerical behavior of s–step methods can be much
worse than that of the standard methods and the parameter s has to be chosen very
carefully [20]. Several improvements have been proposed including residual replace-
ment [17], using deflation [21], or the adaptation of the parameter s dynamically during
the iterations [20, 70].

However, the special data distribution induced by the matrix powers kernel lead to
a lack of preconditioners adapted to these methods — CA-ILU(0) [57] being an excep-
tion. In particular, Multigrid, and Domain Decomposition preconditioners cannot be
applied as this.

Pipelining communication with computation

In a similar vein, Pipelined methods [53, 54] aim at overlapping the communication
with computation. Starting from the s–step Conjugate Gradient method [26], Ghysels

1.4. Parallel design of Krylov Methods 27

and Vanroose [54] consider the case s = 1. They propose to introduce the following
variables,

sk ≡ Apk , (1.34)

wk ≡ Ark , (1.35)

zk ≡ Ask ≡ A2pk , (1.36)

for which they derive recurrence formulas that do not involve any additional commu-
nications. In doing so they are able to decouple the application of the matrix–vector
product and the dot products within an iteration, and thus to overlap them. It is also
possible to derive a Preconditioned Pipelined Conjugate Gradient by introducing 2
more variables and the corresponding recurrences formulas. Recently, a generaliza-
tion of this method called the Deep Pipelined Conjugate Gradient method has been
proposed where l (l ∈ N∗) iterations can be overlapped [31].

Because they are very similar in their spirits, Pipelined and s–step methods are also
suffering from the same flaws. In particular, the Pipelined methods exhibit a high sen-
sibility to round–off errors [18]. Several remedies have been proposed such as resid-
ual replacement [54], or introducing some shifts [30]. Also, it seems that the Deep
Pipelined Conjugate Gradient method with l = 1 leads to a better maximum attainable
accuracy than the original Pipelined Conjugate Gradient method [31]. As pointed out
in [18], it is not an easy task to analyze thoroughly the finite precision behavior of the
Krylov subspaces methods. Hence it is not surprising that there is still a lack of un-
derstanding of the numerical behavior of the Pipelined methods despite some recent
efforts in this direction [29].

1.4.2 Searching in several directions at once

Block Krylov methods are receiving an increasing attention in the HPC field [3, 15, 28,
75, 79, 108]. They appear to be well suited for modern computers’ architectures with
a high level of parallelism because they allow to reduce the number of global synchro-
nizations, while also featuring a higher arithmetic intensity at the cost of some extra
computations. Unlike Communication–Avoiding or Pipelined methods, they are no
longer equivalent to the Conjugate Gradient method because the solution is no longer
sought in standard Krylov subspaces.

Block Krylov methods

The seminal paper of O’Leary [89] introduced the first block Krylov method: the Block
Conjugate Gradient method (Block CG). In summary, the main idea is to replace the
vectors in the standard CG method (such as xk , rk and pk) by tall and skinny matrices
of size n × t where t � n (usually denoted with uppercase, i.e., Xk , Rk , Pk , etc.), and
the scalars (such as αk) become t × t matrices. This method was motivated by prob-
lems which require to solve a linear system with several right-hand sides and it was

28 CHAPTER 1. Preamble

shown theoretically that it can converge significantly faster than the standard Con-
jugate Gradient method [89]. This idea was then generalized and extended to other
standard Krylov methods as GMRES[80, 95], MINRES [104], or BiCGSTAB [64]. Later
Gutknecht [65] introduced a general framework for defining Block Krylov subspaces.

As the arithmetic cost increases with the number of right-hand sides, Block Krylov
methods usually become prohibitive when the number of right-hand sides becomes
large. In the early 90s, Nikishin and Yeremin [86] propose to reduce the size of the block
during the iterations of the Block CG by monitoring the rank of the residual matrix.
More recently Robbé and Sadkane in [95] improved the idea introduced by Nikishin and
Yeremin and applied it to the Block GMRES method. That way they aim at obtaining the
convergence behavior of the block method while maintaining an acceptable arithmetic
extra cost compared to the standard Conjugate Gradient method. In fact, as pointed
out by Gutknecht [65], so–called inexact breakdowns where the residual matrix is almost
rank deficient are inherent to Block Krylov methods, and they have to be taken into
account in order to increase their efficiency.

Linear systems with single right-hand side

Even if the Block CG method was initially used to solve linear systems with several
right-hand sides [89], it is possible to use a block method to solve a linear system with
single right-hand side. This is useful because Block CG can converge significantly faster
than CG [89, Theorem 5]. Let us recall that A is a SPD matrix of size n×n and X0, B are
matrices of size n× t. Hence the parameter t is the number of (initial) search directions,
or the block size. We denote 1t a row of size 1× t and full of ones.

In the early 90s, Nikishin and Yeremin [86] introduced a novel method based on
the Block Conjugate Gradient to solve a linear system with single right-hand side. We
refer to this method as BRRHS-CG. In this method, the initial residual matrix R0 is
chosen such that R(i)

0 is a random vector, ∀t > i > 1 and R(1)
0 = r0. If the first residual

is rank deficient a QR factorization is performed in order to get a new R0 which is full
rank [86]. The method is stopped as soon as the first column of the residual matrix
has a norm smaller than εsolver||r0|| and the solution is given by the first column of the
approximate solution matrix.

In the late 90s, Brezinski introduced Multi-parameter Descent Methods [12, 13]. In-
stead of using one search direction at each iteration he proposed to use several. This
variant is a hybrid between a block method and a method for solving systems with sin-
gle right-hand side: even if the descent directions and the steps are blocks, as in the
block methods, the remaining quantities are vectors, as in standard methods.

With a different point of view Bhaya et al. [9] introduced the Cooperative Conjugate
Gradient (Coop-CG) where several agents cooperate in order to solve a linear system.
This method can be seen as Block CG that uses several random initial guesses [58].
More precisely, X0 is an uniform random matrix and B = b1t. As soon as one column of
the residual matrix has a norm smaller than εsolver||r0||, the method is stopped. The ap-
proximate solution is given by the corresponding column of the approximate solution

1.4. Parallel design of Krylov Methods 29

matrix.
Finally, we also want to mention the AMPCG method recently proposed by Spillane [108].

It aims at improving the Multi–Preconditioned CG method [14] by selecting adaptively
some search directions during the iterations. Indeed, both methods take root in the
Domain Decomposition framework and they assume that a family of preconditioners
is given, M1, . . . ,MN . Then, at iteration k, they constructN search directions such as

Pk+1 =
(
M−1

1 rk . . . M−1
N rk

)
−

k∑
i=1

Pi(P
>
i APi)

−1P >i A
(
M−1

1 rk . . . M−1
N rk

)
. (1.37)

In particular, the short–recurrence property of the Conjugate Gradient method is lost,
and all the previous search directions must be kept. Also, in its original form, the
number of search directions constructed at each iteration is typically of the order of the
number of subdomains which is prohibitive in practice. In [108], the author proposes
to reduce adaptively the number of search directions using a criterion that is algebraic
but requires to know the smallest eigenvalue of the matrix A. It has been applied in
the context of the FETI method [23] which provides such information, but it is not
algebraic in the sense that it requires some knowledge about the underlying partial
differential equation. This method is very close to the MSDO–CG method introduced
in [58] where the residual rk is split at each iteration, and the short recurrence property
is lost. One difference is that the splitting used in MSDO–CG is completely algebraic,
but the number of search directions is not reduced during the iterations.

30 CHAPTER 1. Preamble

2
Enlarged Conjugate Gradients

Outline of the current chapter

2.1 Introduction 32
2.1.1 The Block Conjugate Gradient method 32
2.1.2 A-orthonormalization algorithms 35

2.2 The Enlarged Conjugate Gradient method 36
2.2.1 Enlarged Krylov Subspaces 36
2.2.2 Derivation of the method 37

2.3 Relationship between Orthodir and Orthomin 39

2.4 Convergence study 44

2.5 Dynamic reduction of the search directions 47
2.5.1 Selection of the search directions 47
2.5.2 Choice of the tolerance . 53

2.6 Numerical experiments 57
2.6.1 Test cases . 57
2.6.2 Influence of the parameters and algorithmic variants 59
2.6.3 Dynamic reduction of the search directions 61
2.6.4 Numerical comparison with a two–level preconditioner . . 66

Abstract
In this chapter, we present a novel derivation of the Enlarged Conjugate Gradient (ECG) method
making the analogy with the Block Conjugate Gradient method. More precisely, we derive 2
variants of the method: Orthomin and Orthodir. Then, we study the relationship between the
2 variants, and we prove a new speed of convergence result for ECG that greatly improves the
previous known result. Finally, we explain how to dynamically reduce the number of search
directions during the iterations in order to mitigate the effect of the additional arithmetic op-
erations induced by the method. These theoretical results are illustrated by numerical experi-

31

32 CHAPTER 2. Enlarged Conjugate Gradients

ments.

Résumé
Dans ce chapitre, nous présentons une nouvelle dérivation de la méthode du Gradient Conjugué
Élargi en faisant l’analogie avec la méthode du Gradient Conjugué par Blocs. Plus précisément,
nous dérivons 2 variantes de la méthode : Orthomin et Orthodir. Ensuite, nous étudions le lien
entre les 2 variantes, et nous prouvons un nouveau résultat de sur la vitesse de convergence de la
méthode. Ce résultat est une nette amélioration du précédent résultat connu. Finalement, nous
expliquons comment réduire dynamiquement le nombre de directions de recherche pendant
les itérations, ceci afin de diminuer le nombre d’opérations arithmétiques de la méthode. Ces
résultats théoriques sont illustrés par des résultats numériques.

2.1 Introduction

Our starting point is the work of Grigori, Moufawad and Nataf from [58] where Enlarged
Krylov subspaces are introduced. They enrich the Krylov subspaces by splitting the ini-
tial residual. In particular, we focus on the Short Recurrence Enlarged CG (ECG) method
introduced in [58] because it keeps the short recurrence property of the standard Con-
jugate Gradient. In fact, this method can be seen as a Multi-parameter Descent Method
[12, 13]. The main difference lies in the approach used to construct the descent direc-
tions (or search directions) Zk+1 at iteration k + 1. In [13] the authors constructed Zk+1
from the residual matrix Rk and the descent directions Zk from iteration k,

Zk+1 = Rk −Zk(Z>k AZk)
−1Z>k ARk . (2.1)

This is very close to the original formulation of Block Conjugate Gradient [89] and Con-
jugate Gradient [68]. In [58], the authors proceed a bit differently. First, they do not use
Zk as this for constructing the approximate solution, residual and search directions, but
consider A-orthonormalizing its columns first, e.g., they consider Pk = Zk(Z

>
k AZk)

−1/2.
Second, they construct Zk+1 using Pk and Pk−1,

Zk+1 = APk − PkP >k AAPk − Pk−1P
>
k−1AAPk . (2.2)

Then Pk+1 is constructed by A-orthonormalizing Zk+1. This is a slight modification of
the original Block Lanczos formula which reads,

Zk+1 = APk − PkP >k APk − Pk−1P
>
k−1APk , (2.3)

in order to obtain a block of search directions Zk+1 which is A-orthonormal to Pi (i 6 k)
instead of being orthonormal.

2.1.1 The Block Conjugate Gradient method

First, we recall the definition of the Block CG algorithm according to O’Leary [89], also
referred to as Orthomin [6]. Then we recall the so–called Orthodir [6] variant of the
method proposed in [58] which is more stable in practice (see results in Section 2.6).

2.1. Introduction 33

In what follows, we consider the following notations: B is a real matrix of size n× t,
B(i) is the i-th column of a matrix B, X0 is an initial guess for the linear system with mul-
tiple right-hand sides AX = B, i.e., it is a real matrix of size n× t. We denote the initial
residual matrix R0 = B−AX0. We call t the initial block size. ||.|| denotes the euclidean
norm for vectors, and ||.||F the Frobenius norm for matrices (||A||F =

√
trace(A>A)).

Following Gutknecht at al. [65], block Krylov subspaces are defined as,

K�k (A,R0) ≡ span�
{
R0,AR0, . . . ,A

k−1R0

}
(2.4)

≡

k−1∑
s=0

AsR0γs such that ∀s ∈ {0, . . . , k − 1}, γs ∈ Rt×t
 . (2.5)

When there is no ambiguity we denote K�k (A,R0) by K�k . Using this definition block
Krylov subspaces projection methods are defined as,

Xk ∈ X0 +K�k , (2.6)

Rk ≡ B−AXk ⊥ L�k , (2.7)

where L�k is a subspace which has the same size as K�k . The first equation (2.6) is called
the subspace condition and the second one (2.7) is called the Petrov-Galerkin condition.

The Block Conjugate Gradient method is defined as the block Krylov subspaces
projection method, where A is symmetric positive definite and L�k =K�k . As a result of
this projection process,

φ(Xk) = min
Y∈X0+K�

k

trace(φ(Y)) , (2.8)

where

φ(Y) =
1
2
Y>AY −B>Y , (2.9)

∇φ(Y) = AY −B. (2.10)

As in gradient methods, the new solution at iteration k is defined as Xk = Xk−1 +
Pkαk . Pk is called the descent directions (or search directions) and αk is a t × t matrix
generalization of the so–called optimal step which is usually a scalar. One important
property of the Block Conjugate Gradient is the A-orthogonality (or conjugacy) of the
descent directions, that is P >i APj = 0 when i , j. And as in Krylov methods, the search
directions form a basis for the Krylov subspace, K�k = span� {P1, . . . , Pk}.

The standard version of Block CG defined by O’Leary [89] is given in Algorithm
3. This method is very similar to the one originally proposed by Hestenes and Stiefel
[68] because it constructs Zk+1 (the unnormalized search directions) using Rk and Pk
(equation (2.1)). Then Zk+1 itself is A-orthonormalized in order to construct Pk+1, e.g.,
Pk+1 = Zk+1(Z>k+1AZk+1)−1/2.

Nevertheless in practice we notice that this variant is less effective when Rk becomes
rank deficient. We will discuss this in more details in Section 2.6 where we will present

34 CHAPTER 2. Enlarged Conjugate Gradients

numerical results illustrating this behavior in Table 2.3. Following Dubrulle [46] it is
possible to improve this algorithm by performing a QR decomposition of the residual
matrix Rk before constructing Zk+1 — this turns out to be very similar to Pre-CholQR
(Algorithm 6) described in the following section.

Following [58], it is also possible to derive a block version of the Orthodir method
defined in [6] (Algorithm 4). Unlike the previous variant, in Algorithm 4 Zk+1 is con-
structed using Pk and Pk−1, as in equation (2.2). This corresponds to the Block Lanczos
algorithm (equation (2.3)), but with the inner product induced by A.

Algorithm 3 Block CG: orthomin

1: R0 = B−AX0
2: Compute P1 such that P >1 AP1 = I (using, e.g., algorithms 5, 6 or 7)
3: k = 1
4: while ||Rk−1||F > εsolver||R0||F and k < kmax do
5: αk = P >k Rk−1
6: Xk = Xk−1 + Pkαk
7: Rk = Rk−1 −APkαk
8: Zk+1 = Rk − PkP >k ARk
9: Compute Pk+1 such that P >k+1APk+1 = I (using, e.g., algorithms 5, 6 or 7)

10: k = k + 1
11: end while

Algorithm 4 Block CG: orthodir

1: R0 = B−AX0
2: P0 = 0
3: Compute P1 such that P >1 AP1 = I (using, e.g., algorithms 5, 6 or 7)
4: k = 1
5: while ||Rk−1||F > εsolver||R0||F and k < kmax do
6: αk = P >k Rk−1
7: Xk = Xk−1 + Pkαk
8: Rk = Rk−1 −APkαk
9: Zk+1 = APk − PkP >k AAPk − Pk−1P

>
k−1AAPk

10: Compute Pk+1 such that P >k+1APk+1 = I (using, e.g., algorithms 5, 6 or 7)
11: k = k + 1
12: end while

As long as Z>k+1AZk+1 is nonsingular, Pk+1 is well defined and both Orthomin and
Orthodir produce Pk+1 that are A-orthonormal and belong to the same space. Hence,
they are mathematically equivalent in exact arithmetic. Lemma 2.1.1 summarizes the
main properties of the Block CG iterates.

2.1. Introduction 35

Lemma 2.1.1

Let k, i ∈ {1, . . . ,n} such that k > i, the Block CG iterates (Algorithms 3 and 4)
verifies,

Rk ∈ K�k+1(A,R0), (2.11)

Rk ⊥K�k (A,R0), (2.12)

Pk ∈ K�k (A,R0), (2.13)

APk ∈ K�k+1(A,R0), (2.14)

Pk ∈ span� {Zk} , (2.15)

P >k APi = 0, (2.16)

P >k APk = I, (2.17)

K�k (A,R0) = span� {P1, . . . , Pk} , (2.18)

P >k AAPi = 0 if i 6 k − 2, (2.19)

Proof. The conditions (2.11)–(2.14) directly follow from (2.6)–(2.7) and the expression
of Xk and Rk . The conditions (2.15)–(2.18) directly follows from the construction of the
search directions. It follows from (2.16) and (2.18) that ∀ V ∈ K�k−1(A,R0), P >k AV = 0,
and in particular P >k AAPi = 0 if i 6 k − 2.

The situation where Z>k+1AZk+1 is singular is called a breakdown. Constructing Zk+1
using Orthodir is twice as expensive as doing so using Orthomin, but Orthodir has the
nice property to produce Pk+1 which is more likely to be well defined (see Section 2.6).

2.1.2 A-orthonormalization algorithms

We now briefly describe different algorithms in order to A-orthonormalize a tall and
skinny matrix P .

A-CholQR [81] is a generalization of CholQR to the case of an oblique inner product
induced byA. Its implementation is very easy but it can break down if P >AP is singular.

Algorithm 5 A-CholQR

Input: Z full rank, AZ
Output: P >AP = I , Z = P R

1: C = Z>AZ
2: Compute a Cholesky factorization of C, i.e., C = R>R where R is upper triangular.
3: P = ZR−1

Pre-CholQR [81] is a more robust version of A-CholQR that adds an additional
QR factorization at the beginning. The difference with A-CholQR is that Range(Z) ⊂
Range(P).

36 CHAPTER 2. Enlarged Conjugate Gradients

Algorithm 6 Pre-CholQR

Input: Z, AZ
Output: P >AP = I , Z = P R

1: Compute a QR factorization of Z, store the Q-factor as P .
2: C = P >AP
3: Compute a Cholesky factorization of C, i.e., C = R>R where R is upper triangular.
4: P = P R−1

In order to preserve the property Range(Z) = Range(P) while avoiding break downs,
it is possible to replace theQR factorization of Pre-CholQR by a rank-revealingQR fac-
torization [71]. In that case, there might be less vectors in P than in Z but Range(Z) =
Range(P). We call this algorithm Breakdown-free.

Algorithm 7 Breakdown-free

Input: Z, AZ
Output: P >AP = I , Z = P R

1: Compute a rank-revealing QR factorization of Z, store the first t columns of the
Q-factor as P , where t is the rank of Z.

2: C =Q>AQ
3: Compute a Cholesky factorization of C, i.e., C = R>R where R is upper triangular.
4: P = P R−1

2.2 The Enlarged Conjugate Gradient method

In this section, we derive two variants of the so–called Enlarged Conjugate Gradient
method. Their difference lies in the way to construct the search directions.

2.2.1 Enlarged Krylov Subspaces

In [58], the authors define so–called enlarged Krylov subspaces. First, the matrix A is
reordered by partitioning its graph intoN subdomains (using METIS [76] for example).
Then, the initial residual r0 is split into t vectors denoted Re0

(i), 16 i 6 t. In the original
paper the authors use t =N . It is important to note that the case t <N can be dealt with
many ways as long as r0 =

∑t
i=1R

e
0

(i) (Fig. 2.1). This is of particular interest in practice
because typically N will correspond to the number of MPI processes. The parameter t
is called the enlarging factor. In practice for a given t the splitting of r0 does not have
a high impact on the convergence of the method. In the numerical experiments we
construct the initial enlarged residual Re0 = [Re0

(1), . . . ,Re0
(t)] as the leftmost example in

Fig. 2.1.
Then, the enlarged Krylov subspace of order k denoted Kk,t(A,r0) is defined as the

block Krylov subspace of order k associated to A and the enlarged residual Re0. More

2.2. The Enlarged Conjugate Gradient method 37

Figure 2.1 – Illustration of the ordering of A into 8 subdomains obtained with METIS
[76] and several admissible splittings of r0 into 3 vectors.

precisely, and, once again, following the notation introduced in [65],

Kk,t(A,r0) : =K�k (A,Re0) (2.20)

= span�
{
Re0,AR

e
0, . . . ,A

k−1Re0
}
. (2.21)

2.2.2 Derivation of the method

Using these Enlarged Krylov subspaces, it is possible to derive two variants (Orthomin
and Orthodir) of the enlarged Conjugate Gradient (ECG) algorithm (Algorithm 8).
More precisely, the enlarged approximate solution is a matrix of size n× t denoted Xk ,
and the sum of its columns gives the approximate solution of the original system. We
denote Rk the enlarged approximate residual, and similarly we obtain the approximate
residual of the original system by summing its columns. Pk is a matrix of size n × t
called search directions, it corresponds to the A-orthonormalization of Zk . We denote
αk the optimal step, unlike in CG algorithm it is not a scalar but a matrix of size t × t.
Depending on the method for constructing Zk+1, it is possible to derive two variants of
ECG: Orthomin and Orthodir.

Orthomin (Omin) corresponds to Block CG [89]:

βk = (APk)
>Rk , (2.22)

Zk+1 = Rk − Pkβk . (2.23)

This method is very similar to the one originally proposed by Hestenes and Stiefel [68]

38 CHAPTER 2. Enlarged Conjugate Gradients

because it constructs the new descent directions Zk+1 using Rk and Pk .

Orthodir (Odir) corresponds to the Block Lanczos algorithm but with the inner
product induced by A:

γk = (APk)
>(APk), (2.24)

ρk = (APk−1)>(APk), (2.25)

Zk+1 = APk − Pkγk − Pk−1ρk . (2.26)

It is the block equivalent of the homonym method defined in [6]. Unlike the previous
variant, Zk+1 is constructed using Pk and Pk−1.

Both Orthodir and Orthomin produce Zk+1 that is A-orthogonal to Pi for i 6 k. Then
the search directions Pk+1 are defined as

Pk+1 = Zk+1(Z>k+1AZk+1)−1/2. (2.27)

Unlike CG algorithm a breakdown would occur if Z>k+1AZk+1 is singular, i.e., Zk+1 is
not full rank. Although rare this situation can happen in practice and several variants
have been developed in order to handle this case [46, 71, 89]. Overall, both Orthomin
and Orthodir generate Pk+1 such that

P >k+1APi = 0,∀i 6 k (2.28)

P >k+1APk+1 = I. (2.29)

Consequently, the ECG method can be summarized in Algorithm 8. Another differ-
ence with the original block CG algorithm is that the search directions areA-orthonormalized
at each iteration: Pk is used as search directions instead of Zk . It has be shown numeri-
cally that using this variant can increase the numerical stability of the method [46].

Given a preconditionerM−1, the idea for applying left preconditioning to the (block)
Conjugate Gradient method is to remark that M−1A is self-adjoint with respect to the
M-inner product [101]. Then by replacing A by M−1A, and the transpose by >M in
the algorithm (Algorithm 8), it follows the preconditioned enlarged Conjugate Gradi-
ent method. In fact, some simplifications occur and the algorithm remains exactly the
same except the definition of Zk that is slightly different. More precisely, it follows that
the preconditioned Orthomin method corresponds to,

Zk+1 = (I − PkP >k A)M−1Rk , (2.30)

and the preconditioned Orthodir method corresponds to,

Zk+1 = (I − PkP >k A− Pk−1P
>
k−1A)M−1APk . (2.31)

In both cases, the initialization also slightly differs because Z1 = M−1Re0. Overall, the
preconditioner is applied once per iteration, as in the standard CG method.

2.3. Relationship between Orthodir and Orthomin 39

Algorithm 8 ECG algorithm.
1: P0 = 0
2: Z1 = Re0
3: k = 1
4: for k = 1, . . . , kmax do
5: Pk = Zk(Z

>
k AZk)

−1/2

6: αk = P >k Rk−1
7: Xk = Xk−1 + Pkαk
8: Rk = Rk−1 −APkαk
9: if ||

∑t
i=1R

(i)
k ||2 < ε then

10: stop
11: end if
12: construct Zk+1 using (2.22)-(2.23) (Orthomin) or (2.24)-(2.26) (Orthodir)
13: end for
14: xk =

∑t
i=1X

(i)
k

2.3 Relationship between Orthodir and Orthomin

In what follows, we assume exact arithmetic and we study the connection between
these two methods with the aim to derive formulas that links the approximate quan-
tities of both variants. Indeed, by construction the approximate solutions computed
by Orthodir and Orthomin are equal. Hence, the approximate residuals are also equal.
But this does not imply that the search directions generated are equal even if they be-
long to the same space. We denote with a tilde the variables related to Orthomin and
with a hat the variables related to Orthodir (Algorithm 9 and Algorithm 10). In order
to simplify the presentation we consider that no breakdowns have occurred, i.e., Ẑk , P̂k
and Z̃k , P̃k are all well-defined.

By construction, we know that the approximate solutions computed by Orthodir
(Algorithm 10) and Orthomin (Algorithm 9) result from the same projection process.
Hence, the approximate solutions are equal X̂k = X̃k and so are the approximate resid-
uals R̂k = R̃k . However this does not imply that Ẑk+1 = Z̃k+1 (and in fact we show that it
is not the case).

Due to the equivalence of Orthodir and Orthomin the following lemma holds.

Lemma 2.3.1

There exists δk ∈ Rt×t orthogonal and such that P̃k = P̂kδk .

Proof. Orthodir and Orthomin correspond to the same projection process so span�
{
P̂k

}
=

span�
{
P̃k

}
. Hence there exists δk ∈ Rt×t such that P̃k = P̂kδk . Furthermore, X̂k = X̃k and

R̂k = R̃k so we have
P̃kα̃k = P̂kα̂k . (2.32)

40 CHAPTER 2. Enlarged Conjugate Gradients

Algorithm 9 Preconditioned ECG-Omin

1: P̃0 = 0
2: Z̃1 = Re0
3: k = 1
4: for k = 1, . . . , kmax do
5: P̃k = Z̃k(Z̃

>
k AZ̃k)

−1/2

6: α̃k = P̃ >k R̃k−1

7: X̃k = X̃k−1 + P̃kαk
8: R̃k = R̃k−1 −AP̃kαk
9: if ||

∑t
i=1 R̃

(i)
k ||2 < ε then

10: stop
11: end if
12: Z̃k+1 =M−1R̃k
13: β̃k = (AP̃k)>Z̃k+1
14: Z̃k+1 = Z̃k+1 − P̃kβ̃k
15: end for
16: x̃k =

∑t
i=1 X̃

(i)
k

Algorithm 10 Preconditioned ECG-Odir

1: P̂0 = 0
2: Ẑ1 = Re0
3: k = 1
4: for k = 1, . . . , kmax do
5: P̂k = Ẑk(Ẑ

>
k AẐk)

−1/2

6: α̂k = P̂ >k R̂k−1

7: X̂k = X̂k−1 + P̂kα̂k
8: R̂k = R̂k−1 −AP̂kα̂k
9: if ||

∑t
i=1 R̂

(i)
k ||2 < ε then

10: stop
11: end if
12: Ẑk+1 =M−1AP̂k
13: γ̂k = (AP̂k)>Ẑk+1
14: ρ̂k = (AP̂k−1)>Ẑk+1
15: Ẑk+1 = Ẑk+1 − P̂kγ̂k − P̂k−1ρ̂k
16: end for
17: x̂k =

∑t
i=1 X̂

(i)
k

2.3. Relationship between Orthodir and Orthomin 41

And thus,

P̃k P̃
>
k = P̂k P̂

>
k (2.33)

= P̃kδkδ
>
k P̃
>
k . (2.34)

This implies δkδ
>
k = I . Similarly P̃ >k P̃k = P̂k P̂

>
k and the conclusion follows.

Using this lemma we can prove the following proposition.

Proposition 2.3.1

There exists δk ∈ Rt×t orthogonal and such that

Z̃k+1 = −Ẑk+1δkα̃k . (2.35)

Proof. A simple computation using the previous relationships gives,

−Ẑk+1δkα̃k = AP̃kα̃k − P̂k P̂ >k AAP̃kα̃k − P̂k−1P̂
>
k−1AAP̃kα̃k , (2.36)

= AP̃kα̃k − P̃k P̃ >k AAP̃kα̃k − P̃k−1P̃
>
k−1AAP̃kα̃k . (2.37)

(2.38)

On the other hand, by definition of ECG we have

Rk −Rk−1 = −AP̃kα̃k , (2.39)

and,
P̃ >k−1ARk = 0. (2.40)

Hence, it follows

−Ẑk+1δkα̃k = Rk − P̃k P̃ >k ARk −Rk−1 + P̃k−1P̃
>
k−1ARk−1 + P̃k P̃

>
k ARk−1, (2.41)

= Rk − P̃kβ̃k − Z̃k + P̃k P̃
>
k ARk−1. (2.42)

and furthermore,

P̃k P̃
>
k ARk−1 = Z̃k(Z̃

>
k AZ̃k)

−1Z̃>k ARk−1, (2.43)

= Z̃k(Z̃
>
k AZ̃k)

−1Z̃>k AZ̃k , (2.44)

= Z̃k . (2.45)

Thus,
Z̃k+1 = −Ẑk+1δkα̃k . (2.46)

This result is a generalization of a previous result presented by Ashby, Manteuf-

42 CHAPTER 2. Enlarged Conjugate Gradients

fel and Saylor [6, p. 1550] for the standard CG. In fact, the authors show that z̃k =
Πk
i=0(−α̃k)̂zk but they never consider explicitly the A-orthonormalized search direc-

tions. In particular, they define zk+1 using zk (for Omin) and zk−1 (for Odir). This
explains the slight difference between our generalization and their result.

When k becomes large, α̃k = P̃ >k Rk−1 and ||α̃k ||2 is more likely to be low because
Rk−1 is supposed to converge to 0 and P̃k is A-orthonormalized – the same reasoning
applies for α̂k . This result is very interesting because it shows that, since δk is an or-
thogonal matrix, when k becomes large ||Z̃k+1||2 can be significantly lower than ||Ẑk+1||2.
Hence, the conditioning of Z̃>k+1AZ̃k+1 could be much worse than that of Ẑ>k+1AẐk+1,
possibly leading to a breakdown when computing its Cholesky factorization (line 5 in
Algorithms 9 and 10).

Proposition 2.3 characterizes this difference in terms of the image and rank of Z̃k+1
and Ẑk+1.

Proposition 2.3.2

Let k > 1, and let us assume that Pk−1 and Pk are well defined (Z>k−1AZk−1 and
Z>k AZk are non-singular), using either Algorithm 3 or Algorithm 4. Let Ẑk+1
defined as,

Ẑk+1 = APk − PkP >k AAPk − Pk−1P
>
k−1AAPk , (2.47)

and Z̃k+1 defined as,
Z̃k+1 = Rk − PkP >k ARk , (2.48)

then we have,

rank
(
Ẑk+1

)
= t −dim

(
Range(APk)∩Range

(
Pk−1 Pk

))
, (2.49)

rank
(
Z̃k+1

)
= rank(Rk) . (2.50)

Proof. Using Lemma 2.1.1, it is possible to rewrite Ẑk+1 as,

Ẑk+1 = (I −W (W>AW)−1W>A)APk , (2.51)

where W ≡
(
Pk Pk−1

)
. Furthermore, P = I −W (W>AW)−1W>A is the matrix of the A-

orthogonal projection onto Range(W)⊥A (see [100, p. 1915]). In particular, P satisfies
P>A = AP = P>AP . Thus, we have,

Ker
(
Ẑk+1

)
= (Range(APk)∩Ker(P))∪Ker(APk) = Range(APk)∩Ker(P) . (2.52)

Furthermore, it is easy to show that Ker(P) = Range(W). Using the rank theorem it
follows,

rank
(
Ẑk+1

)
= t −dim(Range(W)∩Range(APk)) . (2.53)

2.3. Relationship between Orthodir and Orthomin 43

Similarly, Z̃k+1 can be rewritten as

Z̃k+1 =QRk , (2.54)

whereQ = I−Pk(P >k APk)
−1P >k A is the matrix of theA-orthogonal projection onto Range(Pk)

⊥A .
Thus, we have,

Ker
(
Z̃k+1

)
= (Range(Rk)∩Ker(Q))∪Ker(Rk) . (2.55)

Furthermore, we have Ker(Q) = Range(Pk) and it follows,

dim
(
Ker

(
Z̃k+1

))
= dim(Ker(Rk)) , (2.56)

because Rk is orthogonal to Pk . The conclusion follows using the rank theorem once
again.

Proposition 2.3 ensures that Ẑk+1 is full rank if dim
(
Range(APk)∩Range

(
Pk Pk−1

))
=

0. This assumption is needed because if it is not fulfilled it means that a part of the
exact solution is already known. Indeed, if there exists a non-zero vector v such that
APkv ∈ Range

(
Pk Pk−1

)
, this implies thatRkv ∈ Range

(
Pk Pk−1

)
but by constructionRk

is orthogonal to Pi (16 i 6 k) so Rkv = 0. However, there is not an explicit link between
dim

(
Range(APk)∩Range

(
Pk Pk−1

))
and the current residual matrix Rk . Thus, once

again, Orthodir seems less prone to the inexact breakdowns problem, i.e., Rk becomes
numerically rank deficient [95], although this situation could happen in theory. On the
other hand, it has already been proven [71, 86] that the rank of Z̃k+1 is equal to the
rank of Rk . Thus, it is more likely that Z̃k+1 becomes numerically rank deficient when
the method starts to converge. That is why in practice, when the A-orthonormalization
of Zk+1 is done using A-CholQR [81] (Algorithm 5), Orthomin can break down while
Orthodir does not (Table 2.3).

In order to overcome this difficulty, it is possible to use variants of A-CholQR that
handle the case where Zk+1 is not full rank as, for example, Pre-CholQR [81] (Algo-
rithm 6) or Breakdown-free [71] (Algorithm 7). Following Dubrulle [46] it is possible to
improve Orthomin by performing a QR decomposition of the residual matrix Rk before
constructing Zk+1 but we do not consider this method in this paper as it is very similar
to using Pre-CholQR.

It is remarkable to notice that even for standard CG method, this has already been
noticed by Ashby, Manteuffel and Saylor in [6, p. 1551-1552]: “If BCA is indefinite,
Omin may still be used, but the previous direction vector [...] should be stored. Then,
if α̂i = 0, control can switch to the 3-term recursion of Odir to get pi+1”. In practice,
this phenomenon is indeed observed: there are cases where Orthomin breaks down
while Orthodir does not (Table 2.3). In conclusion, Orthodir is expected to be more
reliable than Orthomin. However, Orthodir is also more costly than Orthomin: the
construction of Zk+1 requires twice as many flops and memory as for Orthomin.

44 CHAPTER 2. Enlarged Conjugate Gradients

2.4 Convergence study

As previously mentioned, O’Leary proved[89] that BCG can converge significantly faster
than the standard CG. In [58] it is proved that ECG converges at least as fast as CG but
there is no further informations on the speed of convergence of ECG.

This section is dedicated to the proof of the following theorem.

Theorem 2.4.1

Let xk the approximate solution given by the Enlarged Conjugate Gradient with
an enlarging factor t at step k then we have:

||xk − x∗||2A 6 C
(√
κt − 1
√
κt + 1

)2k

(2.57)

where κt =
λn
λt

and C is a constant independent of k whose exact expression will

be given in the course of the proof.

It is a big improvement of the theorem stated in [58] because it explains that ECG’s
convergence is closer to that of Deflated-CG[45] rather than that of standard CG.

The key idea of the proof is to remark the close link between ECG and block CG.
Following the proof of Theorem 3.2 by Jie Chen in [24] for block CG we adapt it to our
case of interest: ECG. The technique of the proof is similar to that of O’Leary but the
final result is a bit different. For completeness we also added another proof of a similar
theorem but obtained from O’Leary’s technique in Annex A.1.

Proof. First, we write the error at iteration k as a polynomial ofA evaluated in the initial
error. Indeed,

xk = x0 +
t∑
j=1

qkj(A)Ad(j)
0 , (2.58)

where qkj is a polynomial of degree not exceeding k − 1.
Hence,

ek = xk − x∗ (2.59)

= x0 +
t∑
j=1

qkj(A)Ad(j)
0 − x

∗ (2.60)

=
t∑
j=1

(1 + qkj(A)A)d(j)
0 (2.61)

=
t∑
j=1

pkj(A)d(j)
0 , (2.62)

2.4. Convergence study 45

where pkj(X) = 1 + qkj(X)X is a polynomial of degree not exceeding k and such that
pkj(0) = 1, ∀k, j.

Let A = ΦΛΦ> be the spectral decomposition of A. Let us rewrite ek according to
this decomposition,

ek =
t∑
j=1

pkj(A)d(j)
0 =

t∑
j=1

Φpkj(Λ)Φ>d(j)
0 (2.63)

Thus,

||ek ||2A = e>k Aek (2.64)

=

 t∑
j=1

Φpkj(Λ)Φ>d(j)
0

>

A

 t∑
j=1

Φpkj(Λ)Φ>d(j)
0

 (2.65)

=

 t∑
j=1

d
(j)
0

>
Φpkj(Λ)

Λ
 t∑
j=1

pkj(Λ)Φ>d(j)
0

 (2.66)

This final expression is a generalization of the expression that occurs in the proof of
convergence of the CG algorithm in [101].

Let ĵ ∈ {1, . . . , t}. We denote p ≡ pkĵ in order to simplify the notations. Following
Chen [24], let us define

−p(Λ)−1(2I − p(Λ))Φ>d(j)
0 =

(
vj
wj

)
, ∀j , ĵ , (2.67)

Φ>d
(ĵ)
0 =

(
f1
f2

)
, (2.68)

where the vectors vj , wj , f1, and f2 have sizes (t−1)×1, (n−t+1)×1, (t−1)×1, (n−t+1)×1,
respectively. As in [24], we denote F1, and respectively F2, the matrix whose columns
are the vj , and respectively the wj . Since vĵ and wĵ are not defined, F1 and F2 have
t − 1 columns. Thus F1 is a square matrix of size (t − 1) × (t − 1), and F2 is of size
(n − t + 1) × (t − 1). The t − 1 other polynomials pkj are chosen such that pkj = τj(2 − p)
where the τj are defined as the components of the solution of F1τ = f1.

From these definitions, it follows that for j , ĵ

pkj(Λ)Φ>d(j)
0 = (2I − p(Λ))Φ>d(j)

0 τj (2.69)

= −p(Λ)(−p(Λ)−1(2I − p(Λ))Φ>d(j)
0)τj (2.70)

= −p(Λ)
(
F1
F2

)
τj (2.71)

46 CHAPTER 2. Enlarged Conjugate Gradients

Hence, using (2.67) and summing up these terms lead to∑
j,ĵ

pkj(Λ)Φ>d(j)
0 = −p(Λ)

(
f1

F2F
−1
1 f1

)
. (2.72)

Let us denote Λ =
(
Λ1

Λ2

)
where Λ1 is a diagonal matrix whose coefficients are

the t − 1 smallest eigenvalues of A. We now have

t∑
j=1

pkj(Λ)Φ>d(j)
0 = p(Λ)

(
f1
f2

)
− p(Λ)

(
f1

F2F
−1
1 f1

)
(2.73)

=
(

0 0
−p(Λ2)F2F

−1
1 p(Λ2)

)
Φ>d

(ĵ)
0 (2.74)

≡
(
0 0
E P

)
Φ>d

(ĵ)
0 . (2.75)

Finally,

||ek ||2A = d(ĵ)
0

>
Φ

(
0 E>

0 P

)
Λ

(
0 0
E P

)
Φ>d

(ĵ)
0 (2.76)

= d(ĵ)
0

>
ΦΛ

(
0 E>

0 P

)
Λ1/2Λ1/2

(
0 0
E P

)
Φ>d

(ĵ)
0 (2.77)

= d(ĵ)
0

>
Φ

(
Λ1/2

(
0 0
E P

))> (
Λ1/2

(
0 0
E P

))
Φ>d

(ĵ)
0 (2.78)

6 ||d(ĵ)
0 ||

2
A

∣∣∣∣∣∣
∣∣∣∣∣∣
(
E>E E>P
P E P 2

)∣∣∣∣∣∣
∣∣∣∣∣∣ . (2.79)

Let C ≡
(
E>E E>P
P E P 2

)
,

||C|| =
∣∣∣∣∣∣
∣∣∣∣∣∣
(
E>E E>P
P E P 2

)∣∣∣∣∣∣
∣∣∣∣∣∣ (2.80)

=

∣∣∣∣∣∣
∣∣∣∣∣∣
(
0 0
0 P

)(
0 F2F

−>
1

0 I

)(
0 0

F2F
−1
1 I

)(
0 0
0 P

)∣∣∣∣∣∣
∣∣∣∣∣∣ (2.81)

6 ||P ||2
∣∣∣∣∣∣
∣∣∣∣∣∣
(

0 0
F2F

−1
1 I

)∣∣∣∣∣∣
∣∣∣∣∣∣2 (2.82)

6 ||P ||2
(
a2 + 1

)
(2.83)

where a is the largest singular value of F2F
−1
1 .

2.5. Dynamic reduction of the search directions 47

And eventually, we have

||ek ||2A 6 ||d
(ĵ)
0 ||

2
A

(
a2 + 1

)
||P ||2. (2.84)

If we replace p (and therefore P) by the optimal choice we can rewrite the bound as
the following min-max problem,

||ek ||A 6 ||d
(ĵ)
0 ||A

√
(a2 + 1) min

p∈Pk1
max
t6i6n

|p(λi)|. (2.85)

Finally, it is possible to use Chebyshev polynomials to estimate the min-max quan-
tity [89, 101],

min
p∈Pk1

max
t6i6n

|p(λi)|6 2
(√
κt − 1
√
κt + 1

)k
. (2.86)

2.5 Dynamic reduction of the search directions

In this section, we introduce an approach for reducing the block size during the it-
erations of Orthodir and Orthomin. This is a technique also known as deflation in
block Krylov methods [65, 86, 95] — however the term deflation is also used with other
meanings.

2.5.1 Selection of the search directions

As explained in the survey [65] the key idea to reduce the block size is to monitor the
rank of Rk−1. Once Rk−1 becomes rank deficient, it means that there exists a non-zero
vector v of dimensions t × 1 such that

Rk−1v = 0, (2.87)

and,

Rkv = Rk−1v −APkαkv (2.88)

= 0 +APkP
>
k Rk−1v (2.89)

= 0. (2.90)

It follows that Riv = 0 for i > k − 1. In other words, Xk−1v has already converged at
iteration k − 1 because Xk−1v = A−1Bv. For i > k − 1, there exists a linear combination
(independent of i) of columns of Xi denoted Xiv such that Xiv remains constant. As
a consequence, it is possible to follow [86] and reduce effectively the sizes of Xk , Rk
and Pk . But as Langou showed in [80], it can lead to instabilities. It is easy to see, using
exactly the same reasoning, that if rank(Rk−2)−rank(Rk−1) = l then a part of the solution

48 CHAPTER 2. Enlarged Conjugate Gradients

of dimension l has converged. As Rk−1 is an n × t matrix with n large, it is preferable
to avoid computing the rank of Rk−1 directly. Our approach is based on computing the
rank of αk = P >k Rk−1. This is similar to the idea developed by Robbé and Sadkane in [95]:
it is preferable to work with the residual projected onto the Krylov subspace because it
is smaller (t × t instead of n× t) and rank(αk) = rank(Rk−1).

Proposition 2.5.1

For k ∈ {1, . . . ,n}, if Pk is constructed either using Algorithm 3 or Algorithm 4 and
is well defined (Z>k AZk is non-singular), then rank(αk) = rank(Rk−1).

Proof. Let v ∈ Ker(αk), then v ∈ Ker(αk)∩Ker(Rk−1) or v ∈ Ker(αk)∩Range(Rk−1). How-
ever, Rk = Rk−1+APkαk , thus v ∈ Ker(αk)∩Range(Rk−1) implies that v ∈ Range(Rk). This
is not possible, unless v = 0, because by construction R>k Rk−1 = 0. Thus, v ∈ Ker(αk)∩
Ker(Rk−1) ⊂ Ker(Rk−1) and rank(αk) 6 rank(Rk−1). Reciprocally, if v ∈ Ker(Rk−1) then
v ∈ Ker(αk). Thus, rank(αk)> rank(Rk−1), and the conclusion follows.

Thus rank(αk) = rank(Rk−1) and Riv = 0 for i > k − 1. It follows that αiv = 0 for
i > k − 1 which means that some search directions are not taken into account anymore.
However, in practice this case, where αk becomes exactly rank deficient (also denoted
exact breakdown or lucky breakdown), is very rare and it is preferable to detect when αk
becomes nearly rank deficient (also denoted inexact breakdown) [65, 86, 95].

More precisely, we compute the singular value decomposition (SVD) of αk ,

αk =UkΣkV
>
k , (2.91)

whereUk and Vk are orthonormal t×t matrices and Σ = diag(σt , . . . ,σ1) (σ1 6 · · ·6 σt are
the singular values of αk). If αk is nearly rank deficient then this decomposition can be
rewritten as

UkΣkV
>
k =

(
Uk,1 Uk,2

)(Σk,1 0
0 Σk,2

)(
Vk,1

>

Vk,2
>

)
, (2.92)

where ||Uk,2Σk,2Vk,2>||2 < εdef, and εdef is a given tolerance. In this case αk ≈Uk,1Σk,1Vk,1>
and the idea is to replace αk by Uk,1Σk,1Vk,1>. Hence Pkαk ≈ (PkUk,1)(Σk,1Vk,1>).

Theorem 2.5.1

For k ∈ {1, . . . ,n}, let us assume that Xk , and Rk are constructed either using
Algorithm 3 or Algorithm 4. We further assume that αk has a SVD such that

αk =
(
Uk,1 Uk,2

)(Σk,1 0
0 Σk,2

)(
Vk,1

>

Vk,2
>

)
and ||Uk,2Σk,2Vk,2>||2 < εdef. Then we have,

||Ek v −Ek−1 v||A 6 εdef, (2.93)

||Rk v −Rk−1 v||A−1 6 εdef, (2.94)

2.5. Dynamic reduction of the search directions 49

where v is a column of Vk,2, and Ek = X∗ −Xk denotes the enlarged error, i.e., X∗
is such that AX∗ = T (b).

Proof. Let us assume that v is the jth column of Vk,2. We denote σj the corresponding
singular value, it corresponds to the jth diagonal value in Σk,2. We have,

||Ek v −Ek−1 v||A = ||Xk−1 v + Pkαk v −Xk−1 v||A (2.95)

= ||Pkαk v||A (2.96)

=
√
v>α>k Pk

>APkαkv (2.97)

=
√
v>α>k αkv (2.98)

=
√
v>VkΣ

2
kV
>
k v (2.99)

= σj (2.100)

6 εdef. (2.101)

Similarly,

||Rk v −Rk−1 v||A−1 = ||Rk−1 v +APkαk v −Rk−1 v||A−1 (2.102)

= ||APkαkv||A−1 (2.103)

= ||Pkαkv||A (2.104)

6 εdef. (2.105)

Now let us define,

Pk,1 = PkUk,1, (2.106)

Pk,2 = PkUk,2, (2.107)

(2.108)

Since the part of the solution corresponding to XkVk,2 has almost converged (in the
A-norm), the search directions Pk,2 are not needed anymore. Hence we define the new
search directions denoted Zk+1,1 as,

Zk+1,1 ≡ Zk+1Uk,1 = APk,1 −
(
Pk,1 Pk,2

)(Pk,1>
Pk,2
>

)
AAPk,1 (2.109)

−Pk−1P
>
k−1AAPk,1

= APk,1 − Pk,1Pk,1>AAPk,1 (2.110)

−Pk,2Pk,2>AAPk,1 − Pk−1P
>
k−1AAPk,1

50 CHAPTER 2. Enlarged Conjugate Gradients

and Zk+1,1 have a smaller size than Zk+1. Furthermore, by construction Zk+1,1 belongs
to span�

{
P1, . . . , Pk−1, Pk ,APk,1

}
and is A-orthogonal to P1, . . . , Pk−1, Pk,1, Pk,2. Indeed, Zk+1

is constructed by A-orthogonalizing APk which belongs to span� {Pk−1, Pk ,APk} against
P1, . . . , Pk−1, Pk,1, Pk,2. As Uk,1 is an orthogonal matrix, it follows that Zk+1Uk,1 belongs to
span�

{
Pk−1, Pk,1, Pk,2,APk,1

}
and is also A-orthogonal to P1, . . . , Pk−1, Pk,1, Pk,2. Finally, we

define Pk+1 by A-orthonormalizing Zk+1,1.
This allows us to define the new search directions Pk+1 the first time we reduce the

size of the block but we need to generalize this idea when the size is reduced several
times (possibly until it is equal to one).

We denote Pi the search directions at the beginning of the iteration i (now Pi can
possibly have less than t columns), and Pi,1 = PiUi,1 denotes the search directions that
are used at iteration i if αi is nearly rank deficient (and Pi,2 = PiUi,2). We denote H the
matrix whose columns are the removed search directions Pi,2 = PiUi,2 (1 6 i 6 k). It is
important to note that if αk is full rank, then Pk,2 is empty. Thus the number of columns
of H is at most t − 1 where t is the initial block size. Indeed, the final block size is at
least 1 which means that the columns of H are the t − 1 search directions removed.

We want to construct Zk+1,1 such that:

Z>k+1,1APi,d = 0, i 6 k, d ∈ {1,2}, (2.111)

and Zk+1,1 ∈ span�
{
P1,1, . . . , Pk−1,1, Pk,1,H,APk,1

}
where H is the matrix whose columns

are the removed search directions Pi ,2 (1 6 i 6 k). One way to construct Zk+1,1 such
that (2.111) is fulfilled is to use Algorithm 11. Indeed, Proposition 2.5.1 ensures that
this algorithm verifies (2.111).

Proposition 2.5.2

Let Pk−1,1, Pk,1, H and Zk+1,1 defined as in Algorithm 11, i.e.,

Zk+1,1 = APk,1 − Pk,1P >k,1AAPk,1 (2.112)

−Pk−1,1P
>
k−1,1AAPk,1 −HH

>AAPk,1.

Then Zk+1,1 is such that,

Z>k+1,1APi,d = 0, i 6 k, d ∈ {1,2}. (2.113)

Proof. The proof is based on induction on k. In order to ease the computations we
consider (Z>k+1,1APi,d)> = P >i,dAZk+1,1, i.e., we show that P >i,dAZk+1,1 = 0, i 6 k and d ∈
{1,2}.

• If k ∈ {0,1} the descent directions Zk,1 are the same as in the usual Block Conjugate
Gradient and (2.113) is true.

• If k ∈ {2, . . . ,n}we assume that (2.113) is true for k. In particular, it means that one
can replace Zk,1 by Pk in (2.113) because Pk is constructed by A-orthonormalizing

2.5. Dynamic reduction of the search directions 51

Zk,1. Also, given l ∈ {1, . . . , k} we have defined Pl,1 = PlUl,1 and Pl,2 = PlUl,2, thus
if P >l AV = 0 with V a matrix with appropriate dimensions, then P >l,1AV = 0, and
P >l,2AV = 0. We want to point out that the case where the block size is reduced
for the first time at iteration k, i.e., Pk−1 = Pk−1,1 and H = Pk,2 has been discussed
previously in details (see (2.110) and the discussion thereafter). We want to prove
that (2.113) remains true for Zk+1,1 whose definition is more general. For all i 6
k, d ∈ {1,2} we have:

P >i,dAZk+1,1 = P >i,dAAPk,1 (2.114)

− P >i,dAPk,1P
>
k,1AAPk,1 (2.115)

− P >i,dAPk−1,1P
>
k−1,1AAPk,1 (2.116)

− P >i,dAHH
>AAPk,1 (2.117)

– If d = 1 then (2.117) is vanishing because given l ∈ {1, . . . , k} P >i,1APl,2 = 0:
whether because i , l and it directly follows from the induction hypothesis,
or they are equal and P >i,1APi,2 =U>k,1Uk,2 = 0. If i = k then (2.116) is equal to
zero and (2.115) can be rewritten as:

P >k,1APk,1P
>
k,1AAPk,1 = P >k,1AAPk,1. (2.118)

So (2.114) = (2.115) and it follows that (2.113) is true. The same reasoning
holds if i = k − 1. If i 6 k − 2 then (2.115) and (2.116) are both equal to zero.
It remains to show that (2.114) is equal to zero. Using the hypothesis, we
have that Pk is A-orthogonal to span� {P1, . . . , Pk−1} so P >i AAPk,1 = 0, leading
to P >i,dAAPk,1 = 0. Hence (2.113) is true.

– If d = 2, (2.25) is vanishing because given l ∈ {1, . . . , k} P >i,2APk,1 = 0: whether
because i , k and it directly follows from the induction hypothesis, or they
are equal and P >k,2APk,1 = U>k,2Uk,1 = 0. The same reasoning holds in order to
show that (2.116) vanishes. Finally, (2.117) simplifies:

P >i,2AHH
>AAPk,1 = P >i,2APi,2P

>
i,2AAPk,1, (2.119)

= P >i,2AAPk,1. (2.120)

Indeed, for any l ∈ {1, . . . , k}, P >i,2APl,2 = 0 if i , l because P >i APl = 0 using the
hypothesis, and similarly P >i,2APi,2 = I . So (2.114) = (2.117) and it follows
that (2.113) is true.

Using Proposition 2.5.1 leads to a variant of Orthodir where the number of search
directions can be reduced dynamically during the iterations (Algorithm 11).

Following Ji and Li [71], it is possible to derive a similar algorithm when the search
directions are constructed using Orthomin (Algorithm 12). If αk = P >k Rk−1 is nearly

52 CHAPTER 2. Enlarged Conjugate Gradients

Algorithm 11 Orthodir with block size reduction

Input: A, B, X0, kmax, εsolver, εdef
Output: ||Rk−1||F < εsolver||R0||F or k = kmax

1: R0 = B−AX0
2: P0 = 0
3: Compute P1, S1 such that P >1 AP1 = I and R0 = P1S1 (using, e.g., algorithms 5, 6 or 7)

4: s0 = number of columns of P1
5: k = 1
6: H = [] (empty matrix)
7: while ||Rk−1||F < εsolver||R0||F and k < kmax do
8: αk = P >k Rk−1
9: [Uk ,Σk ,Vk] = svd(αk)

10: sk = number of singular values of αk larger than εdef
11: if sk < sk−1 then
12: Uk,1 =Uk(:,1 : sk)
13: Uk,2 =Uk(:, sk + 1 : end)
14: Σk,1 = Σk(1 : sk ,1 : sk)
15: Vk,1 = Vk(:,1 : sk)
16: Pk,2 = PkUk,2
17: H = [H,Pk,2]
18: αk = Σk,1Vk,1

>

19: Pk,1 = PkUk,1
20: end if
21: Xk = Xk−1 + Pk,1αk
22: Rk = Rk−1 −APk,1αk
23: Zk+1,1 = APk,1 − Pk,1P >k,1AAPk,1 − Pk−1,1P

>
k−1,1AAPk,1 −HH

>AAPk,1
24: Compute Pk+1, Sk+1 such that P >k+1APk+1 = I and Zk+1,1 = Pk+1Sk+1 (using, e.g.,

algorithms 5, 6 or 7)
25: k = k + 1
26: end while

2.5. Dynamic reduction of the search directions 53

rank deficient then we replace it by its low rank approximation, i.e., αk = Uk,1Σk,1V
>
k,1.

Similarly we define Pk,1 = PkUk,1 and Pk,2 = PkUk,2. If the size is not reduced then Pk,2 is
empty. Finally, Zk+1,1 is constructed as,

Zk+1,1 = Rk − P >k,1Pk,1ARk , (2.121)

and then Zk+1,1 is A-orthonormalized in order to construct Pk+1. This ensures that
the so–called search spaces (the search space Pi is defined as Range(()Pi,1)) are conju-
gate [71, Theorem 3.2]. This is a bit weaker than (2.111) because it means that Zk+1,1
verifies,

Z>k+1,1APi,1 = 0,16 i 6 k, (2.122)

and Zk+1,1 ∈ span�
{
P1,1, . . . , Pk,1,Rk,1

}
.

In particular, this does not ensure that Z>k+1,1APi,2 = 0 for i 6 k. Nevertheless, we
perform numerical experiments using Algorithm 12 in order to compare it with Al-
gorithm 11. These tests suggest that ensuring the conjugacy of the search spaces, as
in [71], is less robust in practice than ensuring (2.111) (see Section 2.6). However,
ensuring (2.111) would mean to keep the removed search directions in H , and then A-
orthogonalize Zk+1,1 against H at each iteration. Thus the overall cost would be higher
than Orthomin without reduction of the search directions which makes such approach
not practical. Indeed, the main drawback is that Zk+1,1 always has t columns because it
is constructed from Rk , and reducing the size of Rk can lead to more numerical insta-
bilities [71, 80].

2.5.2 Choice of the tolerance

In this section we study the choice of the deflation tolerance in Algorithms 11 and 12.
Following [101], we denote ρ(A) the spectral radius of a square matrix A, i.e., the max-
imum modulus of its eigenvalues. In what follows, we need the following definition.

Definition 2.5.1

Let V be any real matrix of size n×t andA be any real symmetric positive definite
matrix of size n×n, we denote

||V ||F =
√

trace(V >V), (2.123)

||V ||2 =
√
ρ(V >V), (2.124)

||V ||A =
√
ρ(V >AV). (2.125)

Both ||.||F and ||.||2 are well-known matrix norms [101]. It is easy to check that ||V ||A
is nothing but the subordinate norm ||.||A,2,

||V ||A = sup
x,0

||V x||A
||x||2

. (2.126)

54 CHAPTER 2. Enlarged Conjugate Gradients

Algorithm 12 Orthomin with block size reduction

Input: A, B, X0, kmax, εsolver, εdef
Output: ||Rk−1||F < εsolver||R0||F or k = kmax

1: R0 = B−AX0
2: Compute P1, S1 such that P >1 AP1 = I and R0 = P1S1 (using, e.g., algorithms 5, 6 or 7)

3: s0 = number of columns of P1
4: H = [] (empty matrix)
5: k = 1
6: while ||Rk−1||F < εsolver||R0||F and k < kmax do
7: αk = P >k Rk−1
8: [Uk ,Σk ,Vk] = svd(αk)
9: sk = number of singular values of αk larger than εdef

10: if sk < sk−1 then
11: Uk,1 =Uk(:,1 : sk)
12: Σk,1 = Σk(1 : sk ,1 : sk)
13: Vk,1 = Vk(:,1 : sk)
14: αk = Σk,1Vk,1

>

15: Pk,1 = PkUk,1
16: end if
17: Xk = Xk−1 + Pk,1αk
18: Rk = Rk−1 −APk,1αk
19: Zk+1,1 = Rk − P >k,1Pk,1ARk
20: Compute Pk+1, Sk+1 such that P >k+1APk+1 = I and Zk+1,1 = Pk+1Sk+1 (using, e.g.,

algorithms 5, 6 or 7)
21: k = k + 1
22: end while

2.5. Dynamic reduction of the search directions 55

Let us recall that in [96] the authors show that if P is A-orthonormal then ||P ||2 6
||A−1||1/22 . It is interesting to note that

||αk+1||2 = ||P >k+1Rk ||2 (2.127)

6 ||Pk+1||2||Rk ||2 (2.128)

6 ||A−1||1/22 ||Rk ||2 (2.129)

6 ||A−1||1/22 ||Rk ||F . (2.130)

Hence, the following proposition holds.

Proposition 2.5.3

Let us denote sk the number of columns of Pk,1. If we choose εdef such that

εdef 6 ||A−1||1/22 εsolver||R0||F , (2.131)

Then, let k be in {1, . . . ,n}, if sk+1 = 0 then the current approximate solution sat-
isfies,

||Ek −Ek−1||2 6 εsolver||R0||F , (2.132)

or in the A-norm,

||Ek −Ek−1||A 6 ||A−1||1/22 εsolver||R0||F , (2.133)

where Ek denotes the error at iteration k. In other words, if sk = 0 the (full) error
has almost converged, and the method could be stopped.

Proof. Let k ∈ {1, . . . ,n},

||Ek −Ek−1||A = ||Pkαk ||A, (2.134)

= ||αk ||2. (2.135)

If sk = 0 it means that

||Ek −Ek−1||A = ||αk ||2, (2.136)

6 ||A−1||1/22 εsolver||R0||F . (2.137)

On the other hand,
||Ek −Ek−1||A > ||A−1||1/22 ||Ek −Ek−1||2. (2.138)

Hence,
||Ek −Ek−1||2 6 εsolver||R0||F (2.139)

56 CHAPTER 2. Enlarged Conjugate Gradients

Proposition 2.5.4

In Algorithms 11 and 12, if (2.131) is verified, the number of search directions
used at iteration k, denoted sk , is decreasing, i.e., 06 sk+1 6 sk 6 t ∀k ∈ {1, . . . ,n}.

Proof. Using Theorem 2.5.1, Xk v has already converged when removing the search di-
rections related to v for all the following iterations. The size sk corresponds to t minus
the dimension of the space generated by such vectors v. This space will necessarily
grow during the iterations. When sk = 0, it is possible to stop the algorithm according
to Proposition 2.5.2.

Remark 2.5.1

The space K4k = span�
{
P1,1, . . . , Pk,1,H,APk,1

}
which corresponds to the search

space for the solution when reducing the number of search directions, is not ex-
actly the same asK�k , corresponding to the original enlarged Krylov subspace. In
fact, it is smaller because some of the search directions have been removed. Due
to round-off errors during orthonormalization, one can expect that the dynamic
methods will need (hopefully not many) more iterations in order to converge.

Remark 2.5.2

When using the Enlarged Conjugate Gradient to solve a linear system with a
single right-hand side, we are interested in,

||ek − ek−1||A = ||(Ek −Ek−1)1>t ||A (2.140)

= ||αk1>t ||2 (2.141)

6
√
t||αk ||2. (2.142)

Hence if,

||αk ||6
1
√
t
||A−1||1/22 εsolver||r0||, (2.143)

it is possible to use Proposition 2.5.2 and conclude that if sk = 0,

||ek − ek−1||2 6 εsolver||r0||. (2.144)

Remark 2.5.3

In practice, it is too costly to compute the optimal criterion in Proposition 2.5.2.
But we make the assumption that

||A−1||1/22 > 1, (2.145)

2.6. Numerical experiments 57

in order to neglect this term.

In all the numerical experiments, the criterion for removing the number of search
directions is εdef = 1√

t
εsolver||r0||2 (and if sk = 0 the method is stopped).

2.6 Numerical experiments

All the results are obtained with Matlab R2015b. Matlab Preconditioned Conjugate
Gradient, denoted PCG, is used as a reference method. We always use a split block
Jacobi preconditioner and we refer to nj as the number of diagonal blocks. The right-
hand side is chosen uniformly random and normalized, and the initial guess is set to
0.

2.6.1 Test cases

We compare the performance of the different methods on a set of matrices that are also
used in [2, 58, 87] where they are described in more details. These matrices are dis-
played in Table 2.1 where we present their size, the number of non-zeros, their smallest
and largest eigenvalues. The matrices NH2D, SKY2D, SKY3D and ANI3D arise from
boundary value problem of the diffusion equations:

−div(κ(x)∇u) = f on Ω (2.146)

u = 0 on ∂ΩD (2.147)

∂u
∂n

= 0 on ∂ΩN (2.148)

where Ω is the unit square (2D) or cube (3D). The Dirichlet boundary is denoted ∂ΩD ,
and ∂ΩN is the Neumann boundary. The right-hand side f represents some body force,
and u is the unknown displacement field. The tensor κ is a given coefficient of the
partial differential operator. In the 2D case, ∂ΩD = [0,1] × {0,1} and in the 3D case,
∂ΩD = [0,1]× {0,1} × [0,1]. In both cases, ∂ΩN is chosen as ∂ΩN = ∂Ω \∂ΩD .

The matrix NH2D is obtained by considering a non-homogeneous problem with
large jumps in the coefficients of κ. The tensor κ is isotropic and discontinuous, it
jumps from the constant value 103 in the ring 1

2
√

2
6 |x − c| 6 1

2 with c = (1
2 ,

1
2)>, to 0

outside.
The matrices SKY2D and SKY3D are obtained by considering skyscraper problems

where the domain Ω contains many zones of high permeability which are isolated from
each other. More precisely κ is taken as:

κ(x) = 103 × ([10× x2] + 1) if [10xi] is odd, i = {1,2} (2.149)

κ(x) = 1 otherwise, (2.150)

where [x] is the integer value of x.

58 CHAPTER 2. Enlarged Conjugate Gradients

Table 2.1 – The test matrices, their order, the number of non-zeros, their smallest (λmin)
and largest (λmin) eigenvalues; if they are coming from 2D or 3D discretization and the
type of problem they are coming from.

Order Nonzeros λmin λmax 2D/3D Problem

NH2D 10 000 49 600 1.9e-3 8.0 2D Boundary Value
SKY2D 10 000 49 600 3.5e-3 7.0e4 2D Skyscraper
SKY3D 8 000 53 600 5.3e-3 3.0e3 3D Skyscraper
ANI3D 8 000 53 600 6.7e-7 1.4 3D Anisotropic Layers
Ela25 9 438 312 372 2.7e-5 3.4 3D Linear Elasticity P1 FE
Ela50 18 153 618 747 1.9e-6 3.4 3D Linear Elasticity P1 FE
Ela100 36 663 1 231 497 2.6e-7 2.4 3D Linear Elasticity P1 FE
Ela2D200 80 802 964 800 2.8e-8 3.7 2D Linear Elasticity P1 FE

The matrix ANI3D is obtained by considering anisotropic layers: the domain Ω is
made of 10 anisotropic layers with jumps of up to four orders of magnitude and an
anisotropy ratio of 103 in each layer. These layers are parallel to z = 0, of size 0.1, and
inside them the coefficients are constant: κy = 10κx, κz = 100κx.

All these problems are discretized on cartesian grids, of size 100 × 100 for the 2D
problems and of size 20× 20× 20 for the 3D problems.

The Ela matrices arise from the linear elasticity problem with Dirichlet and Neu-
mann boundary conditions defined as follows

−div(σ (u)) = f on Ω (2.151)

u = 0 on ∂ΩD (2.152)

σ (u) ·n = 0 on ∂ΩN (2.153)

where Ω is a unit square (2D) or cube (3D). The matrices ElaN correspond to this
equation discretized using a triangular mesh with N × 10 × 10 points on the corre-
sponding vertices. The matrices Ela2DN correspond to this equation discretized us-
ing a triangular mesh with N ×N points on the corresponding vertices. Once again,
the Dirichlet boundary is denoted ∂ΩD , and ∂ΩN is the Neumann boundary; the
right-hand side f represents some body force, and u is the unknown displacement
field. The Cauchy stress tensor is denoted σ (.), it is given by Hooke’s law: it can
be expressed in terms of Young’s Modulus E and Poisson’s ratio ν. For a more de-
tailed description of the problem see [62, 74]. We consider discontinuous E and ν
in 3D: (E1,ν1) = (2 × 1011,0.25) and (E2,ν2) = (107,0.45); and discontinuous E in 2D:
(E1,ν1) = (1012,0.45) and (E2,ν2) = (2×106,0.45). All these matrices are scaled in order
to reduce the effect of possibly very high values on the diagonal.

2.6. Numerical experiments 59

Table 2.2 – Numerical parameters we consider in our tests, the size of the initial block
(which is also the number of right-hand sides), the number of diagonal blocks nj in the
block diagonal preconditioner, the variant we use between Orthomin and Orthodir, the
definition of the error and the number of iterations..

t block size
nj number of block Jacobi

Odir Orthodir
Omin Orthomin

er ||x∗−xk ||2
||x∗||2

with x∗ the exact solution (computed with Matlab LU)
iter number of iterations until convergence

2.6.2 Influence of the parameters and algorithmic variants

We now study the influence of the parameters and algorithmic variants, such as the
construction of Zk+1, the A-orthogonalization scheme for constructing Zk+1, the choice
of the enlarging factor t, the construction of the initial block residual R0; on the overall
convergence of the method.

In Table 2.3, we summarize the results obtained when running Orthomin (Algo-
rithm 3) and Orthodir (Algorithm 4) on the same matrix for BRRHS-CG [86], Coop-CG
[9], ECG [58] and the standard PCG method. The initial block size is set to 16, and
we use a block Jacobi preconditioner with 64 blocks. As these methods have differ-
ent stopping criteria, we decided to use the norm of the normalized error, computed
with respect to the solution computed by the LU factorization. Although this stopping
criterion is usually not available in real-life problems, it allows us to compare fairly
the iteration counts of the different methods. We compare different algorithms for A-
orthonormalizing Zk+1. ACHQR stands for A-CholQR (Algorithm 5), PreCHQR stands
for Pre-CholQR (Algorithm 6) and BF stands for Breakdown-free (Algorithm 7). We
observe that Orthomin and Orthodir are equivalent on the simplest test cases (NH2D,
ANI3D), i.e., where PCG is converging in a relatively low number of iterations. How-
ever, we observe that breakdowns occur with Omin(ACHQR) when the matrix becomes
more ill-conditioned (SKY2D, Ela50 and Ela100). This does not happen when consid-
ering Odir(ACHQR). The matrix SKY3D is an intermediate case where no breakdown
occurs with Omin(ACHQR) but the number of iterations can significantly increase de-
pending on the method. Using Pre-CholQR cures the breakdowns with Orthomin for
all the matrices we considered, and the resulting number of iterations is the same, or
around the same, as with Odir(ACHQR). On the other hand Breakdown-free is less sta-
ble, and we observe that the number of iterations can significantly increase (SKY2D
and Ela100 with Coop-CG). We conclude that Orthodir is more stable than Orthomin.
In particular, it never breaks down for the test cases we considered. On the other hand,

60 CHAPTER 2. Enlarged Conjugate Gradients

Table 2.3 – Number of iterations to get the solution (εsolver = 10−8), the stopping crite-
rion is the error, i.e., ||x

∗−xk ||2
||x∗||2

where x∗ is the exact solution computed with LU (- means
that a breakdown occurred). The number of blocks in the Block Jacobi preconditioner
(nj) is set to 64, and the block size t is set to 16.

NH2D SKY2D SKY3D ANI3D Ela50 Ela100

PCG 97 385 313 77 485 486

BRRHS-CG Odir ACHQR 38 49 51 64 87 66
Omin ACHQR 38 - 52 64 - -

PreCHQR 38 39 49 64 87 66
BF 38 39 49 64 87 66

Coop-CG Odir ACHQR 41 55 55 64 101 81
Omin ACHQR 41 - 130 64 - -

PreCHQR 41 80 55 64 101 132
BF 41 137 55 64 101 176

ECG Odir ACHQR 34 40 50 61 90 65
Omin ACHQR 34 - 50 61 - -

PreCHQR 34 40 50 61 90 65
BF 34 40 50 61 90 65

when using Orthomin it is crucial to consider the case where a breakdown occurs when
A-orthonormalizing Zk+1. This is why in the following experiments we always use
Odir(ACHQR) and Omin(PreCHQR).

The results presented in Table 2.4 compare the standard PCG, BRRHS-CG, and ECG
on several matrices from our test set. Indeed, as observed in the previous experiment,
the number of iterations with Coop-CG is always higher than with BRRHS-CG and
ECG. As in the previous experiment, we use the norm of the error as stopping crite-
rion for all the methods and we report the number of iterations needed to achieve an
accuracy of 10−8. In the three leftmost columns we present the results obtained when
we increase both the number of block Jacobi nj and the block size t while keeping their
ratio constant. As the number of block Jacobi increases, the preconditioner becomes
less effective. Our goal is to compensate this by an increase of the block size so that the
number of iterations does not increase or even decreases. The corresponding results are
summarized in the first columns of Table 2.4. In all the cases considered, BRRHS-CG
and ECG behave very similarly: the number of iterations is almost the same for both
methods. When the block size increases, and even if the preconditioner is less effective,
the number of iterations is significantly reduced with ECG and BRRHS-CG (up to a fac-
tor 5.5 for SKY2D), except for ANI3D where it remains almost constant, even slightly
increasing. Furthermore, the block methods are very effective in comparison with PCG.
This is especially true when the block size is large (up to more than 10 for SKY matri-
ces for instance). Even for small block sizes we can observe a gain with respect to PCG,

2.6. Numerical experiments 61

around 35% of decrease for SKY3D for example.
The three rightmost columns in Table 2.4 present results obtained when the block

size is increased while the number of blocks nj, of block Jacobi preconditioner, is kept
constant. In this case we expect that the number of iterations will decrease because
the preconditioner is the same but the block size increases, so the search space grows
faster with larger block size. And this is what we obtain. For almost all matrices (ex-
cept ANI3D) we observe a gain of a factor between 3 and 10 in terms of iteration count.
However, for several matrices up to a certain block size the gain is not significant any-
more (NH2D and SKY2D for example). As in the previous experiment, BRRHS-CG and
ECG behave similarly in terms of iteration count.

2.6.3 Dynamic reduction of the search directions

First we study Orthodir variant, the results in Table 2.5 show a comparison between
BRRHS-CG, Coop-CG and ECG with Algorithm 11 and without reduction of the block
size (Algorithm 4). In these experiments, we set the number of blocks in the block
Jacobi to 1024, and the block size to 32. Thus the efficiency of the preconditioner is
decreased but it is highly parallel, typically each block would be associated with one
processor, and the block size is chosen relatively high in order to compensate this. We
observe that our method to reduce the block size is stable in practice: the number
of iterations with or without the block size reduction is of the same order, and still far
lower than with the usual PCG method. More precisely the gain is between around 20%
less iterations for ANI3D test case, and up to a factor of 17 for the quasi-incompressible
elasticity test case. For most of the test cases, the block methods perform 5 to 15 less
iterations than the usual PCG even when the block size is reduced. Reducing the block
size does not delay significantly the convergence. In most of the cases there is only 1
or 2 more iterations when reducing the block size. The dimension of the final search
space (denoted K4k) is more or less decreased depending on the method and the matrix.
For instance, the matrix Ela100 allows to reduce significantly the search space: 15% for
BRRHS-CG, 30% for Coop-CG, and 25% for ECG. We observe that Coop-CG and ECG
allows better reduction than BRRHS-CG. In particular, ANI3D is a good illustration:
there is nearly no reduction of the final search space with BRRHS-CG whereas ECG
allows a 10% decrease, and Coop-CG a 5% decrease. On the other hand, the dimension
of the final search space of Coop-CG is larger than that of ECG (for ANI3D it is around
10% larger), and Coop-CG requires more iterations to converge (around 20% more for
ANI3D). We conclude that for these test cases, ECG is the best method, both in terms
of iteration count, and decrease of the final search space.

In Fig. 2.2, we plot the error (left), as well as the size of the block (right), as a
function of the number of iterations for SKY2D and Ela100. We consider that the initial
block size is 32 and the number of blocks nj in the block Jacobi preconditioner is 1024.
For both matrices, we observe that the convergence of the error is far better for the
block methods compared to PCG even with the block size reduction (a factor of 7 for
SKY2D and 10 for Ela100). Still there is a small plateau before convergence for all
the methods which is a well-known phenomenon with Krylov methods [65, 108]. The

62 CHAPTER 2. Enlarged Conjugate Gradients

Table 2.4 – Number of iterations to get the solution (εsolver = 10−8) with Orthodir (Algo-
rithm 4), and PCG which is the usual Preconditioned Conjugate Gradient, the stopping
criterion is the error, i.e., er = ||x

∗−xk ||2
||x∗||2

where x∗ is the exact solution computed with LU.

t nj PCG BRRHS-CG ECG nj PCG BRRHS-CG ECG

NH2D 2 8 66 51 51 256 127 102 103
4 16 76 47 48 256 127 78 78
8 32 85 43 43 256 127 63 59

16 64 97 38 34 256 127 48 45
32 128 112 33 30 256 127 38 34
64 256 127 28 26 256 127 28 26

SKY2D 2 8 163 153 104 256 487 259 260
4 16 205 109 70 256 487 132 129
8 32 326 79 49 256 487 98 74

16 64 385 49 40 256 487 48 46
32 128 423 32 31 256 487 37 35
64 256 487 28 27 256 487 28 27

SKY3D 2 8 166 106 102 256 416 352 338
4 16 218 80 81 256 416 275 251
8 32 321 91 90 256 416 157 156

16 64 313 51 50 256 416 85 83
32 128 385 40 41 256 416 48 48
64 256 416 30 31 256 416 30 31

ANI3D 2 8 54 53 52 256 99 93 94
4 16 65 59 58 256 99 92 88
8 32 72 62 60 256 99 88 85

16 64 77 64 61 256 99 83 78
32 128 89 63 62 256 99 72 69
64 256 99 58 56 256 99 58 56

Ela25 2 8 190 122 118 256 445 263 295
4 16 220 96 93 256 445 192 185
8 32 263 86 85 256 445 139 140

16 64 313 75 77 256 445 101 104
32 128 360 63 65 256 445 77 78
64 256 445 58 59 256 445 58 59

Ela50 2 8 296 169 180 256 647 369 392
4 16 364 136 131 256 647 235 251
8 32 411 103 102 256 647 158 159

16 64 485 87 90 256 647 116 115
32 128 573 75 77 256 647 83 87
64 256 647 64 66 256 647 64 66

2.6. Numerical experiments 63

Table 2.5 – Number of iterations to get the solution with Orthodir with dynamic re-
duction of the search directions (Algorithm 11, εsolver = 10−6 and εdef = εsolver||r0||2√

t
), the

stopping criterion is the normalized residual. The initial the block size is 32 and the
number of block Jacobi is 1024. The symbol X means that we reduced the size of the
block and × means that we used the usual algorithm, and er = ||x∗−xk ||2

||x∗||2
where x∗ is the

exact solution computed with LU.

PCG BRRHS-CG Coop-CG ECG

red. size iter er iter er dim(K4k) iter er dim(K4k) iter er dim(K4k)

NH2D × 175 7.2e-08 51 3.2e-09 1632 57 2.4e-09 1824 46 4.0e-09 1472
X 175 7.2e-08 51 3.4e-09 1571 57 3.5e-09 1599 47 3.4e-09 1346

SKY2D × 653 9.0e-08 60 7.6e-12 1920 74 3.2e-10 2368 56 7.3e-12 1792
X 653 9.0e-08 60 8.6e-12 1719 76 8.5e-10 1706 57 9.5e-12 1536

SKY3D × 393 1.2e-06 70 6.5e-09 2240 75 3.0e-09 2400 68 3.5e-09 2176
X 393 1.2e-06 71 5.3e-09 2187 78 1.0e-08 2159 69 5.4e-09 2054

ANI3D × 108 2.4e-07 84 1.3e-07 2688 85 1.7e-07 2720 83 1.4e-07 2656
X 108 2.4e-07 84 1.3e-07 2680 85 1.8e-07 2607 84 1.6e-07 2327

Ela100 × 954 2.1e-10 102 8.1e-12 3264 120 2.8e-11 3840 101 8.0e-12 3232
X 954 2.1e-10 103 8.7e-12 2772 128 2.1e-10 2644 105 8.9e-12 2393

Ela2D200 × 4526 2.4e-09 254 2.2e-09 8128 294 6.6e-10 9408 252 1.8e-09 8064
X 4526 2.4e-09 257 2.9e-09 7466 320 2.3e-09 6949 262 3.0e-09 6730

block size reduction and the error behave similarly for both matrices, the block size is
reduced when the system is starting to converge (around iteration 40 for SKY2D and
iteration 60 for Ela100). For the two test cases, ECG performs better than Coop-CG
and BRRHS-CG, it reduces its search directions faster than Coop-CG and better than
BRRHS-CG. For these tests, BRRHS-CG has always the biggest block size during the
iterations, and Coop-CG has the slowest convergence. On the other hand, ECG keeps a
convergence speed similar as that of BRRHS-CG while having the lowest block size.

In short, the results in Table 2.5 and Fig. 2.2 show that ECG finds the solution
of the linear system in a smaller subspace than the other block methods considered
(BRRHS-CG and Coop-CG) when reducing the search directions during Orthodir iter-
ations (Algorithm 11).

Next we study Orthomin variant, the results in Table 2.6 show a comparison be-
tween BRRHS-CG, Coop-CG and ECG with (Algorithm 12) and without reduction of
the block size (Algorithm 3). We use the same preconditioner and initial block as
the experiments with Orthodir. In that case we observe that our method to reduce
the block size is not always stable in practice. Although the number of iterations
for NH2D, SKY3D, and ANI3D is almost the same when reducing or not the num-
ber of search directions, it is not the case for SKY2D and elasticity matrices where
the reduction can lead to very slow convergence. For the matrices NH2D, SKY3D and
ANI3D we observe the similar behavior as with Algorithm 11. As when comparing
the A-orthonormalization method, it is exactly the same results for NH2D and ANI3D,
but they are slightly different for SKY3D. Thus for all these matrices (NH2D, SKY2D,
SKY3D and ANI3D) ECG achieves both a fast convergence in terms of iterations and

64 CHAPTER 2. Enlarged Conjugate Gradients

Figure 2.2 – Block size reduction and error decreasing as a function of the number of
iterations when using Orthodir with dynamic reduction of the search directions (Algo-
rithm 11). The left figures represent the plot of the error as a function of the number
of iterations. We use a log10 scale for the error. The right figures represent the plot of
the block size as a function of the number of iterations. We only plot the block size for
the block methods and not for PCG.

2.6. Numerical experiments 65

Table 2.6 – Number of iterations to get the solution with Orthomin with dynamic re-
duction of the search directions (Algorithm 12, εsolver = 10−6 and εdef = εsolver||r0||2√

t
), the

stopping criterion is the nomalized residual. The initial the block size is 32 and the
number of block Jacobi is 1024. The symbol X means that we reduced the size of the
block and × means that we used the usual algorithm, and er = ||x∗−xk ||2

||x∗||2
where x∗ is the

exact solution computed with LU.

PCG BRRHS-CG Coop-CG ECG

red. size iter er iter er dim(K4k) iter er dim(K4k) iter er dim(K4k)

NH2D × 175 7.2e-08 51 3.2e-09 1632 57 2.4e-09 1824 46 4.0e-09 1472
X 175 7.2e-08 51 3.5e-09 1571 57 4.8e-09 1599 47 3.5e-09 1346

SKY2D × 653 9.0e-08 60 2.9e-10 1920 105 3.3e-09 3360 56 7.8e-12 1792
X 653 9.0e-08 63 5.6e-10 1760 +1000 - - 62 1.0e-10 1583

SKY3D × 393 1.2e-06 70 2.1e-09 2240 77 2.3e-09 2464 68 1.9e-09 2176
X 393 1.2e-06 70 3.8e-09 2164 81 1.8e-06 2195 69 4.0e-08 2051

ANI3D × 108 2.4e-07 84 1.3e-07 2688 85 1.7e-07 2720 83 1.4e-07 2656
X 108 2.4e-07 84 1.3e-07 2680 85 1.9e-07 2607 84 1.7e-07 2327

Ela100 × 954 2.1e-10 102 1.6e-09 3264 183 1.2e-09 5856 101 8.5e-10 3232
X 954 2.1e-10 108 1.4e-09 2796 +1000 - - 773 1.4e-07 3571

Ela2D200 × 4526 2.4e-09 254 2.9e-09 8128 +1000 - - 252 2.5e-10 8064
X 4526 2.4e-09 263 2.9e-09 7539 +1000 - - +1000 - -

a good reduction of the final search space. For SKY2D, Ela100, and Ela2D200, when
reducing dynamically the block size the convergence can be very delayed. In particular,
Coop-CG and ECG (for Ela100 and Ela2D200 only) have a huge convergence delay. On
the contrary, BRRHS-CG’s convergence is not significantly impacted by the reduction
of the block size. However, for the elasticity matrices we notice that the number of iter-
ations of BRRHS-CG with Orthomin and dynamic reduction of the search directions is
larger than the number of iterations of BRRHS-CG with Orthodir and dynamic reduc-
tion of the search directions (263 versus 257 for Ela2D200). Moreover, it is also larger
the number of iterations of ECG with Orthodir (262 for Ela2D200) and dynamic reduc-
tion of the search directions which has a smaller final search space than BRRHS-CG. Ex-
tra numerical experiments suggest that this behavior is due to the loss of orthogonality
between the search directions. Indeed, we tried to A-orthonormalize Zk+1,1 against H
and this decreases the number of iterations. However, it is not possible to do it in prac-
tice because the additional costs in terms of flops and communications would prevent
any improvement in terms of performance compared to Orthomin without dynamic
reduction of the search directions. Orthomin with the dynamic reduction of the search
directions can suffer from a huge convergence delay. Even with BRRHS-CG, which does
not have significant convergence delay, it appears that Orthodir is more effective in re-
ducing the search space — especially ECG with Orthodir. Hence we conclude that it is
preferable to use Orthodir with dynamic reduction of the search directions.

Finally, we report the runtimes obtained with the approach that gives the best ex-
perimental results, ECG with Orthodir, in Fig. 2.3. More precisely, we compare the
runtimes when the block size is reduced and when it is constant. We want to point out

66 CHAPTER 2. Enlarged Conjugate Gradients

Figure 2.3 – Runtimes for ECG with Orthodir with a constant block size (ECG Odir),
and when the block size is dynamically reduced (ECG D-Odir). The initial block size
is set to 32. The preconditioner is either block Jacobi with 1024 blocks (left), or an
Incomplete Cholesky decomposition with no fill-in (right).

NH2D SKY2D SKY3D ANI3D Ela100 Ela2D200
Matrix

 0

 1

 5

25

100

Ti
m

e
(s

)

-1.3% -7.2% -3.5%
-13.2%

-23.9%

-15.4%

Block Jacobi with 1024 blocks
ECG Odir(32)
ECG D-Odir(32)

NH2D SKY2D SKY3D ANI3D Ela100 Ela2D200
Matrix

 0

 1

 5

25

100

Ti
m

e
(s

)

-1.9%
-13.4%

-0.8%
-4.1%

-17.5%

-18.7%

Incomplete Cholesky
ECG Odir(32)
ECG D-Odir(32)

that our implementation is done is Matlab, so it is not as optimal in terms of runtime
as a compiled code written in C or C++, and it is sequential. We also do not compare
with the built-in PCG method because it is very likely that it is more optimized than
our implementation. First, we use a block Jacobi preconditioner with 1024 blocks, and
we set the initial block size to 32. We observe that the dynamic variant is always faster.
Although the gain is small for NH2D and SKY3D (less than 5%), it is quite significant
with the elasticity matrices, and ANI3D (around 15% and up to more than 20% for
Ela_100). Then, we assess the impact of the preconditioner on the method by using an
Incomplete Cholesky decomposition with no fill-in instead of the block Jacobi precon-
ditioner. As in the previous case, we observe that the dynamic variant is always faster.
The change in the preconditioner does not have a strong impact on the runtime gain
when reducing the block size. In particular, the gain remains less than 5% for NH2D
and SKY3D, and up to nearly 20% for the elasticity matrices. We note that the run-
time improvement is strongly related to the reduction of the final search space that we
previously observed.

2.6.4 Numerical comparison with a two–level preconditioner

We have shown that ECG can converge significantly faster than the usual CG method.
More precisely, we have proven Theorem 2.4.1. It can be a huge improvement over
the usual CG method because it does not involve the condition number of A, but the
deflated one λmax

λt
where t is the enlarging factor. However, the constant in front of the

right-hand side in (2.57) is also a bit more complicated, difficult to estimate a priori, and
possibly depending on the value of t. This is why we perform a numerical comparison
between ECG and the deflated Conjugate Gradient [45, 48, 85, 115] where the effect of
the smallest eigenvalues on the convergence is annihilated.

As explained in the review paper [115], there exists a lot of algorithmic variants

2.6. Numerical experiments 67

in order to perform the deflation of the smallest eigenvalues. In what follows, we use
the so–called A-DEF1 variant. More precisely, given a preconditioner M (a block Ja-
cobi preconditioner for instance), and Z a matrix representing a space to deflate (the
eigenvectors associated to the smallest eigenvalues for instance), we use the following
preconditioner,

PA-DEF1 =M−1P +Q, (2.154)

where Q = Z(Z>AZ)−1Z> and P = I − AQ [115]. In the following experiments, M is
a block Jacobi preconditioner with 128 blocks and Z contains the eigenvectors associ-
ated to the smallest eigenvalues of A computed using the built–in function of Matlab.
We use Orthodir without reduction of the search directions in order to simplify the
comparison.

First, we compare ECG and CG using PA-DEF1 preconditioner (Deflated CG). We set
the number of deflated vectors in Z equals to t the enlarging factor in ECG, and we
vary this parameter. The results are summarized in Figures 2.4, 2.6, 2.5, and 2.7.

For NH2D and ANI3D (Figures 2.4 and 2.5), we observe that both methods behave
similarly. The convergence speed of the deflated CG method is almost constant for
these matrices, whereas it is slightly super linear with ECG with a small plateau at the
beginning. Thus the deflated CG method has a sharper convergence during the first
iterations, but ECG reaches first a higher accuracy. The influence of the parameter t is
not significant in the comparison of the two methods for NH2D: even if the number of
iterations is decreased the behavior of the methods is not really affected by the value of
t. However, for ANI3D we observe that for small values of t (4 and 8) the deflated CG
performs slightly better than ECG: the plateau is not compensated by a higher asymp-
totic speed of convergence; whereas increasing t (to 16 and 32 for instance) allows ECG
to converge a bit faster than the deflated CG method.

For SKY2D and Ela50 (Figures 2.6 and 2.7), we observe that the ECG method can
perform significantly better than the deflated CG method. In particular, when t is rel-
atively small (4 or 8) ECG performs around two times less iterations than the deflated
CG method. Indeed, the convergence of the deflated CG method is erratic when the
number of deflated vectors is small (see Figure 2.6). When t increases, the convergence
of the deflated CG method becomes smoother: the oscillations of the residual norm
during the iterations tends to disappear. On the other hand, ECG still has a plateau at
the beginning of the iterations, thus the deflated CG method becomes more and more
competitive as t increases (see Figure 2.6). As for the previous test cases, we observe
that the asymptotic convergence speed of ECG is higher than that of the deflated CG
method.

As pointed out in [115], several approaches exist for performing deflation. In par-
ticular the authors have shown that PA-DEF1 is not always the most robust approach and
they advice for the so–called A-DEF2 approach,

PA-DEF2 = P >M−1 +Q. (2.155)

Although PA-DEF2 gives better results from a numerical point of view, it is also more

68 CHAPTER 2. Enlarged Conjugate Gradients

Figure 2.4 – Comparison of Orthodir ECG with a 2–level preconditioner on NH2D. The
tolerance for the computation of the eigenvectors is set to 10−9.

0 20 40 60 80

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 4
Deflated CG
ECG

0 20 40 60

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 8

0 20 40

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 16

0 10 20 30 40

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 32

Figure 2.5 – Comparison of Orthodir ECG with a 2–level preconditioner on ANI3D.
The tolerance for the computation of the eigenvectors is set to 10−9.

0 20 40 60 80

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 4
Deflated CG
ECG

0 20 40 60 80

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 8

0 20 40 60

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 16

0 20 40 60

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 32

2.6. Numerical experiments 69

Figure 2.6 – Comparison of Orthodir ECG with a 2–level preconditioner on SKY2D.
The tolerance for the computation of the eigenvectors is set to 10−9.

0 100 200 300 400

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 4
Deflated CG
ECG

0 100 200

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 8

0 20 40 60

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 16

0 10 20 30 40

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 32

Figure 2.7 – Comparison of Orthodir ECG with a 2–level preconditioner on Ela50. The
tolerance for the computation of the eigenvectors is set to 10−9.

0 100 200 300 400 500

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 4
Deflated CG
ECG

0 100 200 300

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 8

0 50 100 150

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 16

0 20 40 60 80 100

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 32

70 CHAPTER 2. Enlarged Conjugate Gradients

Figure 2.8 – Comparison of Orthodir ECG with several 2–level preconditioners on
SKY3D. The tolerance for the computation of the eigenvectors is set to 10−9.

0 100 200 300 400

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 4
CG A-DEF1
CG A-DEF2
ECG

0 100 200 300 400

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 8

0 100 200 300 400

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 16

0 100 200 300 400

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t = 32

costly to apply because it requires two coarse problem solves Z(Z>AZ)−1Z>u which is
a communication intensive operation [74]. We compare PA-DEF1, PA-DEF2, and Orthodir
ECG on the SKY3D test case. We summarize the results we obtained in Figure 2.8. We
observe that for this problem ECG always performs much better than the two–level
approaches. In particular, PA-DEF1 is not suitable because the number of iterations is
not decreased when more vectors are deflated (t increases): the number of iterations
is almost the same when t = 8 and t = 32. On the other hand, PA-DEF2 improves the
convergence of the deflated method, especially when t is large. However, in all cases
ECG has the best convergence behavior as it performs much less iterations than the
two–level approaches: for instance around 4 times less iterations than PA-DEF2 for t =
16.

3
Parallel Design

Outline of the current chapter

3.1 Data distribution 72
3.2 Kernel operations 72
3.3 Cost analysis 74
3.4 Performance results 77

3.4.1 Description of the parallel environment 77
3.4.2 Test cases . 79
3.4.3 Results . 79

3.5 Fusing global communications 87
3.5.1 Derivation of the algorithm 88
3.5.2 Cost analysis . 90
3.5.3 Numerical experiments . 91

3.6 Reproducibility of the numerical experiments 94
3.6.1 Implementation details . 94
3.6.2 Installation and usage . 97
3.6.3 Evaluation and expected result 99

Abstract
In this chapter, we present the parallel design of the Enlarged Conjugate Gradient method in-
troduced in the previous chapter. It includes both Orthomin and Orthodir variant, as well as the
dynamic reduction of the search directions with Orthodir, and the prevention of breakdowns
with Orthomin using Breakdown-free scheme. The performance of this design is then assessed
up to several thousands of processors.

Résumé
Dans ce chapitre, nous présentons le design parallèle de la méthode du Gradient Conjugué
Élargi introduite au chapitre précédent. Cela inclut à la fois Orthomin et Orthodir, ainsi que la

71

72 CHAPTER 3. Parallel Design

[Pk; Pk−1]

[APk; APk−1]

Zk

Rk

Xk

αk

[γk; ρk]/βk

Figure 3.1 – Local distribution of the data: Orthodir on the left and Orthomin on the
right.

réduction dynamique des directions de recherche, et la gestion des breakdowns éventuels avec
Orthomin en utilisant la variante Breakdown-free. Les performances de cette implémentation
sont ensuite évaluées jusqu’à plusieurs milliers de processeurs.

3.1 Data distribution

As it is usually the case in parallel implementations of Krylov methods, we assume
that the unknowns are distributed among the processors. We also assume that each
processor owns different unknowns. Thus all the variables whose size scales as the
size of the linear system (Xk , Rk , Pk , APk , Zk) are distributed row-wise among the pro-
cessors according to the distribution of the unknowns. All variables whose size scales
as the enlarging factor t (αk , βk , γk , ρk) are replicated on all the processors. Locally
they are stored contiguously and column by column. There is no allocation or deallo-
cation of memory during the iterations. In particular, when using Dynamic Orthodir
or Breakdown-Free Orthomin the memory is not freed when the block size is reduced.
The local memory consumption of preconditioned Orthodir and Orthomin on Nproc
processors is summarized in Table 3.2. For completeness, we also add the local mem-
ory consumption of the classical CG algorithm, described in [101] for instance, where
only 5 vectors and 2 scalars are needed.

3.2 Kernel operations

For one iteration of ECG, our implementation requires external routines to apply the
sparse matrix product and the preconditioner to a set of vectors. Indeed the implemen-
tation of these routines highly depends on the linear system to be solved. This is why
we do not take into account these operations in our cost analysis.

3.2. Kernel operations 73

Given n,t such that t� n, we denote V ,W tall and skinny matrices of size n×t whose
rows are distributed among the processors, and α is a matrix of size t × t replicated on
the Nproc processors. Following [79], it is possible to decompose the iterations of ECG
(and more generally block CG) into the following kernels:

• V ← V +Wα (tsmm in [79]),

• α← V >W (tsmtsm in [79]),

• Cholesky factorization of α (potrf),

• triangular solve of α with several right-hand sides (trsm).

Indeed it is possible to rewrite the iterations of Orthodir and Orthomin with explicit
calls to these kernels (Algorithms 13 and 14). In particular, the line 5 of the algorithm
(Algorithm 8) can be decomposed as,

AZk← A ∗Zk

C← tsmtsm(Zk ,AZk)
C← potrf(C)
Pk← trsm(Zk ,C)
APk← trsm(AZk ,C)

sparse matrix set of vectors

form Z>k AZk
Cholesky factorization

update Pk and APk

Doing so allows us to avoid calling the sparse matrix set of vectors product for comput-
ing APk at the price of an extra trsm.

Algorithm 13 ECG-Omin iteration

1: Q← AZ
2: µ← tsmtsm(Z,Q)
3: µ← potrf(µ)
4: P ← trsm(µ,P)
5: Q← trsm(µ,Q)
6: α← tsmtsm(P ,R)
7: X← tsmm(X,P ,α)
8: R← tsmm(R,Q,α)
9: µ← tsmtsm(R,R)

10: if
∑t
i=1µ(i, i) < ε then

11: stop
12: end if
13: Z←M−1R
14: β← tsmtsm(Q,Z)
15: Z← tsmm(Z,P ,β)
16: P ← Z

74 CHAPTER 3. Parallel Design

Kernel # flops # messages # words

tsmm 2nt
2

P 0 0
tsmtsm

nt(2t+1)
P ln(P) t2

potrf
1
3 t

3 0 0
trsm

nt2
P 0 0

Table 3.1 – Complexity of the kernels where t is the enlarging factor.

Algorithm 14 ECG-Odir iteration

1: Q(:,1 : t)← AZ
2: µ← tsmtsm(Z,Q(:,1 : t))
3: µ← potrf(µ)
4: P (:,1 : t)← trsm(µ,P (:,1 : t))
5: Q(:,1 : t)← trsm(µ,Q(:,1 : t))
6: α← tsmtsm(P (:,1 : t),R)
7: X← tsmm(X,P (:,1 : t),α)
8: R← tsmm(R,Q(:,1 : t),α)
9: µ← tsmtsm(R,R)

10: if
∑t
i=1µ(i, i) < ε then

11: stop
12: end if
13: Z←M−1Q(:,1 : t)
14: β← tsmtsm(Q,Z)
15: Z← tsmm(Z,P ,β)
16: P (:, t + 1 : 2t)← P (:,1 : t)
17: P (:,1 : t)← Z
18: Q(:, t + 1 : 2t)←Q(:,1 : t)

3.3 Cost analysis

In order to detail the complexities in terms of flops and communications of one itera-
tion of the different variants of ECG, we start by making the analysis for the kernel op-
erations described in the previous section. Then the overall complexities are obtained
by summing the contributions of the kernels.

We focus on the dense kernels because the SpMM and the application of the pre-
conditioner should be done by the user. Assuming that the tall and skinny matrices of
size n× t are equally distributed among P processors, the complexities of the kernels in
terms of FLOPs, words and messages are summarized in Table 3.1

Following ECG algorithm (Algorithm 8), each iteration of Orthodir and Orthomin
consists of 3 tsmm (lines 7, 8, and 12), 4 tsmtsm (lines 5, 6, 9, and 12), 1 potrf (line 5)

3.3. Cost analysis 75

and 2 trsm (line 5). Hence the difference between the two algorithms is the construction
of Zk+1 (line 12). The tsmtsm and tsmm for constructing Zk+1 in Orthodir (equations
(2.24)-(2.26)) are twice as costly as for Orthomin (equations (2.22)-(2.23)).

More precisely, for Orthomin we have,

#f lops(Omin) = 3× 2
nt2

P
+ 4× nt(2t + 1)

P
+

1
3
t3 + 2× nt

2

P
, (3.1)

= 16
nt2

P
+ 4

nt
P

+
1
3
t3. (3.2)

And for Orthodir,

#f lops(Odir) = 4× 2
nt2

P
+ 5× nt(2t + 1)

P
+

1
3
t3 + 2× nt

2

P
, (3.3)

= 20
nt2

P
+ 5

nt
P

+
1
3
t3. (3.4)

As matrices of size t × t are replicated among the processors, we notice that tsmm,
Cholesky factorization of α and triangular solve of α are local operations without
any communication. Hence we use the corresponding LAPACK routines: gemm, potrf
(dense Cholesky factorization) and trsm (dense triangular solve with several right-hand
sides). However V and W are distributed and tsmtsm is not a local operation. The LA-
PACK routine gemm is called to compute the local product V >i Wi followed by a call to
MPI_Allreduce.

Thus, the only kernel operation that requires a communication is tsmtsm and 4
calls to MPI_Allreduce are done per iteration. It is usually assumed that during a
call to MPI_Allreduce the number of messages sent and received on the network is
equal to log2(Nproc) – although the exact number depends on the MPI implementation
[116]. Moreover it is a blocking operation: when completed all the processors are syn-
chronized. This is why in practice, as in the classical CG, the communication cost is
dominated by 2 calls to MPI_Allreduce: the one after the sparse matrix set of vectors
product (line 5) and the one after the preconditioner (line 12), because they occur after
operations with a potential load imbalance between processors.

In summary, the detailed costs of one iteration of Orthodir and Orthomin in terms
of flops, words, and messages are indicated in Table 3.2. For the sake of comparison,
we recall the complexity of the CG algorithm described in [101]. We also report the
number of MPI_Allreduce in parenthesis, in addition to the order of magnitude of the
number of messages. In summary, one iteration of ECG is approximately t2 times more
costly in terms of flops than one iteration of CG. While the number of messages is of
the same order, the number of words is also t2 times larger. Indeed there is a trade-
off between these extra costs and the reduction of the number of iterations due to the
enlargement of the search spaces.

The implementation of the dynamic reduction of the search directions within Or-
thodir follows Algorithm 15 — it is nothing but a slight rewriting of Algorithm 11.

76 CHAPTER 3. Parallel Design

flops # messages # words memory

Omin 16 nt2
Nproc

+ 4 nt
Nproc

+ 1
3 t

3 4log2(Nproc) (4) 4t2 5 nt
Nproc

+ 2t2

Odir 20 nt2
Nproc

+ 5 nt
Nproc

+ 1
3 t

3 4log2(Nproc) (4) 5t2 7 nt
Nproc

+ 3t2

CG 10 nP 2log2(Nproc) (2) 2 5 n
Nproc

Table 3.2 – Complexity of Orthodir, Orthomin and CG where t is the enlarging factor.

Algorithm 15 ECG D-Odir algorithm.
1: P0 = 0
2: Z1 = Re0
3: H = ∅
4: k = 1
5: for k = 1, . . . , kmax do
6: Pk = Zk(Z

>
k AZk)

−1/2

7: αk = P >k Rk−1
8: αk =UkΣkV

>
k

9: let sk be the number of singular values of αk bigger than εdef
10: if sk < sk−1 then
11: αk =U>k αk
12: Pk = PkUk
13: αk = αk(1 : sk , :)
14: H = [H,P (:, sk : sk−1)]
15: Pk = Pk(:,1 : sk)
16: end if
17: Xk = Xk−1 + Pkαk
18: Rk = Rk−1 −APkαk
19: if ||

∑t
i=1R

(i)
k ||2 < ε then

20: stop
21: end if
22: γk = (APk)>(APk)
23: ρk = (APk−1)>(APk)
24: δk = (AH)>(APk)
25: Zk+1 = APk − Pkγk − Pk−1ρk −Hδk
26: k = k + 1
27: end for
28: xk =

∑t
i=1X

(i)
k

3.4. Performance results 77

In practice, we use LAPACK routine gesvd and only compute the right singular
vectors of αk denoted Uk . We check the singular values obtained. If there are some
lower than ε√

t
, which is the criterion proposed in Section 2.5.2, we call geqrf on U in

order to perform the updates PUk , APUk and U>k αk in-place with ormqr. Since Pk and
APk are stored in a column major fashion the selection of the columns is done at no
cost. Similarly H is not explicitly defined. However the selection of the first rows of αk
implies an in-place memory rearrangement.

The implementation of Breakdown-Free Orthomin is similar to Orthomin except
the computation of a rank-revealing QR decomposition of Zk+1. As Zk+1 is distributed,
it is not reasonable to use a LAPACK kernel to compute it. Instead we use a modi-
fication of Chol-QR algorithm [123] which is a cheaper but less stable alternative to
TS-RRQR [33, 34]. Its implementation is very easy using the LAPACK routine pstrf

(Cholesky with pivoting) for computing (R,π) at line 2. Following [71] we use the de-
fault tolerance of pstrf for detecting exact rank deficiency of Zk+1.

Algorithm 16 Chol-RRQR
Input: P , ε
Output: Q1 orthogonal such that

P π =
(
Q1 Q2

)(R11 R12
0 R22

)
where π is a permutation and all the diagonal elements of R11 are larger than ε

1: µ← P >P

2: Compute (R,π) such that π>µπ = R>R with R =
(
R11 R12
0 R22

)
and all the diagonal

elements of R11 are larger than ε2

3: P1← P π(:,1 : size(R11))
4: Q1← P1R

−1
11

3.4 Performance results

In this section, we evaluate the performance of our parallel design of ECG on a set of
matrices coming from Tim Davis’ collection [32], as well as discretization of the linear
elasticity problem with heterogeneous coefficients, up to several thousands of cores us-
ing a block Jacobi preconditioner. We also compare ECG with PETSc’s implementation
of the standard CG method.

3.4.1 Description of the parallel environment

In the experiments we use a block Jacobi preconditioner, associating at each block a
MPI process. Before calling ECG, each MPI process factorizes the diagonal block of A

78 CHAPTER 3. Parallel Design

Figure 3.2 – Heterogeneity pattern of the Young’s modulus and Poisson’s ratio for elas-
ticity matrices.

corresponding to the local row panel that it owns. At each iteration of ECG, each MPI
process performs a backward and forward solve locally in order to apply the precondi-
tioner. Hence the application of the preconditioner does not need any communication.
It is likely that there exists better preconditioners than block Jacobi for our test cases,
however we are interested in the iterative method rather than in the preconditioner. In
particular, we do not want to target specific applications and aim at being as generic
as possible. Although in theory it is possible to apply any preconditioner within this
implementation, in practice it is essential that applying this preconditioner to several
vectors at the same time is not too costly, e.g, a sublinear complexity with respect to the
number of vectors.

The following experiments are performed on a machine located at Umeå University
as part of High Performance Computing Center North (HPC2N), called Kebnekaise. It
is a heterogeneous machine formed by a mix of Intel Xeon E5-2690v4 (Broadwell) with
2x14 cores (and E7-8860v4 for large memory computations), Nvidia K80 GPU and In-
tel Xeon Phi 7250 (Knight’s Landing) with 68 cores. In our experiments, we use the
so-called compute nodes, which are formed by Intel Xeon E5-2690v4 (Broadwell) with
2x14 cores. For a detailed description of the machine, we refer to the online documen-
tation1.

We compile the code (and its dependencies) using Intel toolchain installed on the
machine: mpiicc’ (based on icc version 18.0.1 20171018) and MKL [119] version 2018.1.163.
We use PETSc [8] in order to compare ECG implementation to PETSc’s CG implementa-
tion. In particular, PETSc is configured to use MKL-PARDISO as exact solver for sparse
matrices in the block Jacobi preconditioner. For partitioning the matrix we are using
the METIS library downloaded and installed by PETSc.

1https://www.hpc2n.umu.se/resources/hardware/kebnekaise

https://www.hpc2n.umu.se/resources/hardware/kebnekaise

3.4. Performance results 79

Name Size Nonzeros Problem

Hook_1498 1,498,023 59,374,451 Structural problem
Flan_1565 1,564,794 117,406,044 Structural problem
Bump_2911 2,911,419 130,378,257 Reservoir simulation

Ela_20 2,118,123 74,735,397 Linear elasticity
Ela_30 4,615,683 165,388,197 Linear elasticity

Table 3.3 – Test matrices.

3.4.2 Test cases

The Ela matrices arise from the linear elasticity problem with Dirichlet and Neumann
boundary conditions defined as follows

div(σ (u)) + f = 0 on Ω, (3.5)

u = 0 on ∂ΩD , (3.6)

σ (u) ·n = 0 on ∂ΩN , (3.7)

where Ω is a unit cube. The matrices Ela_N correspond to this equation discretized
with FreeFem++ [67] using a triangular mesh with 1600 ×N ×N points on the corre-
sponding vertices and P1 finite elements scheme. ∂ΩD is the Dirichlet boundary, ∂ΩN

is the Neumann boundary, f is some body force, u is the unknown displacement field.
σ (.) is the Cauchy stress tensor given by Hooke’s law: it can be expressed in terms of
Young’s Modulus E and Poisson’s ratio ν. For a more detailed description of the prob-
lem see [62, 74, 108]. We consider a heterogeneous beam made of several layers of
a hard material (E1,ν1) = (2 × 1011,0.25) and a soft material (E2,ν2) = (107,0.45), i.e.,
discontinuous E and ν. This test case is known to be difficult because the matrix is ill
conditioned. In particular, the classical one-level preconditioners are not expected to
be very effective [36].

As previously pointed out, ECG is an algebraic method that does not rely on any
particular assumption on the matrix, except that it is symmetric positive definite. As an
illustration, we also test the implementation on several SPD matrices coming from the
Sparse Matrix Collection of Tim Davis [32]: Hook_1498, Flan_1564 and Bump_2911.
Numerical properties of the test matrices are summarized in Table 3.3.

3.4.3 Results

In all the experiments the tolerance is set as the default tolerance of PETSc, i.e., 10−5

and the maximum number of iterations is set to 5000. The right-hand side is chosen
uniformly random and normalized and the initial guess is set to 0. We do not use any
kind of threading and use 28 MPI processes per node. Unless otherwise stated, we
use one OpenMP thread per MPI process — we also perform numerical experiments to

80 CHAPTER 3. Parallel Design

observe the effect of threading.

Impact of the enlarging factor

First we study the impact of the enlarging factor t on the methods. We fix the num-
ber of processors and we vary the value of t for the 4 methods: Orthodir (Odir), Or-
thodir with dynamic reduction of the search directions (D-Odir), Orthomin (Omin)
and Breakdown-Free Orthomin (BF-Omin). The results obtained are summarized in
Table 3.4

For Hook_1498 we set the number of MPI processes to 56. The runtime is effec-
tively reduced when t is larger than 1 — which corresponds to the usual CG method.
The minimal runtime is attained when t = 4, then it progressively increases especially
when t becomes larger than 16. Indeed, at some point the extra arithmetic operations
become prohibitive and for instance with t = 24 and t = 28, the runtimes are higher
than when t = 1. We observe that the dynamic reduction of the search directions be-
comes interesting when t is relatively large (12 to 28), otherwise the gain is marginal.
For this matrix, the 4 variants behave quite similarly and Omin, and D-Odir are the
most efficient. There is a slight advantage in favor of Omin when t is small (4 or 8), and
D-Odir when t is large (12 to 28).

For Flan_1565 the number of MPI processes is fixed to 56. We remark that the
runtime is decreasing until t = 12 and then it increases slightly. When t is relatively
small the 4 methods are comparable. However as t increases the effect of dynamic
reduction becomes more visible. With t = 28, D-Odir is almost 10% faster than Odir.
On the other hand, as we are detecting exact rank deficiency of Zk+1, BF-Omin did not
reduce the size of the block and as no breakdown occurs it is slightly more costly than
Omin. We also tested ε√

t
as the tolerance for detecting breakdowns but this does not

allow the method to converge. Overall, for this matrix, the best method is D-Odir with
t = 12.

For Bump_2911 we fix the number of MPI processes to 112. For this matrix the re-
duction of the number of iterations is not balancing the increase in flops. For instance,
the number of iterations for D-Odir(8) is 695, and for D-Odir(12) it is 665, which rep-
resents a decrease of only 4% in the number of iterations. According to Theorem 2.4.1,
it is very likely that in this case the preconditioned matrix does not have a cluster of
small eigenvalues, hence the convergence of the method is not significantly improved
when enlarging the Krylov subspace. However, we also notice that using the dynamic
Orthodir variant (D-Odir) allows to reduce significantly the runtime when t is large:
D-Odir is around 20% faster than Odir.

We also perform this study for Ela_20 with 112 MPI processes. First we remark that
a breakdown occurs with Orthomin for all the values of t that we tested. This behavior
of elasticity matrices had also been seen previously in Section 2.6. Using BF-Omin
effectively cures the breakdowns but does not allow the method to converge within the
prescribed maximum number of iterations. Similarly, D-Odir does not converge when
t = 4, but performs very well when t is larger. On the contrary, Odir is very stable and

3.4. Performance results 81

t Odir D-Odir Omin BF-Omin

Hook_1498 1 20.6 20.8 20.3 20.2
4 12.9 12.8 12.7 12.8
8 13.8 13.1 13.2 13.4

12 15.6 14.5 15.0 15.2
16 18.2 16.4 17.6 17.9
20 20.9 18.0 20.3 20.5
24 21.5 18.8 20.7 21.2
28 23.9 20.4 22.6 23.2

Flan_1565 1 56.9 62.8 56.7 56.7
4 36.3 36.4 35.5 35.9
8 30.0 29.6 29.0 29.1

12 30.2 29.1 29.8 29.4
16 31.3 29.3 30.2 30.7
20 33.1 30.7 32.0 32.7
24 37.9 33.7 36.2 36.9
28 39.2 34.9 37.6 38.5

Bump_2911 1 54.4 53.3 53.4 53.0
2 64.9 62.7 64.5 65.5
4 76.9 72.4 75.4 77.0
8 93.6 85.4 91.5 91.5

12 123.1 104.1 122.1 122.5
16 151.2 123.6 147.1 148.6
20 179.7 143.3 174.0 178.4
24 198.3 158.3 195.5 199.3
28 223.6 171.8 219.0 223.5

Ela_20 1 ++ ++ ++ ++
4 97.6 ++ - ++
8 72.8 55.0 - ++

12 56.8 51.5 - ++
16 53.6 47.5 - ++
20 56.3 47.2 - ++
24 57.8 46.6 - ++
28 59.9 47.5 - ++

Table 3.4 – Runtime results (in seconds) for Hook_1498 (Nproc = 56), Flan_1565
(Nproc = 56), Ela_20 (Nproc = 112), and Bump_2911 (Nproc = 112). The ++ means that
the maximum number of iterations (5000) was reached and the - means that a break-
down occurred.

82 CHAPTER 3. Parallel Design

0 50 100 150 200
Iteration

10
1

10
0

10
2

10
4

10
5 (+2)

Flan_1565, # procs = 56, t = 12

odir-0
odir-1

4

8

12

(a)

0 100 200 300
Iteration

10
1

10
0

10
2

10
4

10
5

(-4)

Ela_20, # procs = 112, t = 24

odir-0
odir-1

4

8

12

16

20

24

(b)

Figure 3.3 – Convergence of D-Odir (odir-1) compared to Odir (odir-0). The dash line
represents the number of search directions for D-Odir. In parenthesis the difference of
iteration count to reach convergence between D-Odir and Odir (+ means that D-Odir
took more iterations to converge).

converges for all the values of t tested. As for Bump_2911 we observe that D-Odir is
around 20% faster than Odir when t = 24. Overall, for this matrix, the best method is
D-Odir with t = 24.

In order to better understand how the dynamic reduction of the search directions
affects the convergence we plot the normalized residual and the block size (dash line)
as a function of the iteration count for Flan_1565 (Fig. 3.3a) and Ela_20 (Fig. 3.3b).
We notice that the convergence is not really affected by the reduction of the search
directions because the number of iterations remains almost the same. However the
block size is effectively reduced as soon as the method starts to converge. We note that
the Ela_20 test case is very favorable: the block size is reduced even a bit before the
convergence and the number of iterations is lower than when the search reductions are
not reduced.

In conclusion, D-Odir is the best method over the different variants of ECG that
we tested: it is a good compromise between the stability of Odir and the efficiency
of the classical CG. Nevertheless, there exists matrices such as Bump_2911 for which
the reduction of the number of iterations does not compensate the extra cost of ECG
compared to the classical CG, even when using the dynamic reduction of the search
directions. These results support the theoretical convergence study that was done in
the previous section. ECG(t) is acting as if the t smallest eigenvalues of the matrix
were deflated. Finally, we notice that values of t between 8 to 24 are good default
parameters. Indeed, such values allow to effectively reduce the number of iterations
while maintaining an affordable cost per iteration.

3.4. Performance results 83

D-Odir(12) PETSc’s CG

MPI # iter time (s) # iter time (s) speed-up

252 332 12.0 1,709 14.8 1.2
504 405 6.1 2,430 8.4 1.4

1,008 519 4.1 3,179 4.9 1.2
2,016 637 3.6 2,687 2.6 0.7

Table 3.5 – Strong scaling study for Flan_1565. The speed-up is the ratio between
PETSc runtime and ECG runtime.

D-Odir(24) PETSc’s CG

MPI # iter time (s) # iter time (s) speed-up

252 513 77.9 13,626 406.8 5.2
504 531 45.5 15,819 258.9 5.7

1,008 606 23.7 17,023 94.7 4.0
2,016 696 14.5 19,047 34.5 2.5

Table 3.6 – Strong scaling study for Ela_30. The speed-up is the ratio between PETSc
runtime and ECG runtime.

Strong scaling study

Following the parameter study, we perform a strong scaling study on Flan_1565 and
Ela_30. As Bump_2911 does not seem particularly well suited for the method we do
not perform the strong scaling study on this matrix.

For Flan_1565 we compare PETSc’s CG and D-Odir with t = 12, the best choice over
the parameters we tested. The resulting runtimes are presented in Table 3.5. When the
number of MPI processes is relatively low ECG scales as well as PETSc, i.e., almost
linearly. As the number of iterations is significantly reduced with D-Odir(24), there is
about 20% speed-up compared to PETSc at such scales. Nevertheless, we notice that
for 2,016 MPI processes PETSc is significantly faster than ECG. This is likely because
the number of iterations with PETSc is reduced with respect to 1,008 MPI processes.
This behavior is not expected because it is known that block Jacobi preconditioners
are not scalable (see [36] for instance). Indeed, we observe that the number of itera-
tions is effectively increasing both for ECG and CG when the number of MPI processes
increases.

Then we make the same comparison on Ela_30 test case for which we use D-Odir
and t = 24, as discussed previously. The resulting runtimes are summarized in Ta-
ble 3.6. We observe that both PETSc and ECG are scaling very well. Enlarging the
Krylov subspaces allows us to reduce drastically the number of iterations: D-Odir(24)

84 CHAPTER 3. Parallel Design

performs around 25 times fewer iterations than CG. As a consequence, D-Odir(24) is
more than 5 times faster than PETSc’s CG at small scale and around 2.5 times faster
at large scale. We believe that this relatively poor scaling of D-Odir(24) compared to
PETSc’s CG at large scale is due to the implementation that is not as optimized as PETSc
which has been developed over many years. For instance, the routine we use for com-
puting the sparse matrix–set of vectors multiplication is certainly not as optimized as
that of PETSc for computing the sparse matrix–vector multiplication. Also, we men-
tioned that we are currently performing 4 calls to MPI_Allreduce per iteration, but
that could be reduced to 2 by fusing them. Furthermore, we could use Pipelining [54]
or Communication-Avoiding based on s-step methods [22, 69] on top of ECG — that
would require taking into account a possible loss of numerical stability of the method.

Dependence on the mesh size

Given the importance of the parameter t regarding the efficiency of the method, we
perform a study of the convergence of the method with respect to the mesh size for the
elasticity test case. More precisely, we consider the mesh used for generating the Ela_30
matrix, then we coarsen it by dividing the number of points in each dimension by 21/3.
Thus, we generate 3 additional elasticity matrices on which we perform a weak scaling
experiment. Our major focus is not the weak scaling of ECG, but rather the comparison
between PETSc’s CG and D-Odir in terms of runtime.

The results are summarized in Table 3.7. First, we fix t = 24 and we perform a weak
scaling study. We observe that D-Odir(24) is always between 2.5 to 2.9 times faster
than PETSc CG, but the gap tends to slightly decrease when the number of MPI pro-
cesses increases. As ECG(t) is acting as if the t smallest eigenvalues of the matrix were
deflated, it seems natural to use smaller values of t for the smaller matrices. Indeed,
we perform another set of experiments where we vary t as well as the size of the prob-
lem. We observe that this slightly improves the results for the smaller matrices, we
obtain for example an overall speed-up of 3.1 compared to 2.9 for the smallest matrix.
As expected, this does not have a significant effect on the larger matrices. Another in-
teresting observation is that even if the number of iterations is almost constant when
increasing both t and the number of MPI processes, it does not improve the scaling
because the cost of one iteration also increases. Overall, D-Odir is still at least 2.5 times
faster than PETSc’s CG.

Impact of threads on performance

One motivation for enlarging the Krylov subspaces is to increase the arithmetic inten-
sity of the resulting methods. This is particularly interesting to take advantage of the
so-called manycore architecture as Nvidia GPUs, Intel Xeon Phi, or Sunway SW26010
used in the Sunway TaihuLight supercomputer. As the implementation relies on the
MKL library which is multi-threaded [119], it is straightforward to assess its efficiency
on the Xeon Phi processors.

3.4. Performance results 85

64 128 256 512 1024 2048
MPI

 0

 1

10
15
25
50

100

250

Ti
m

e
(s

)

1 OpenMP
2 OpenMP

4 OpenMP
8 OpenMP

0
5
10

25

50

S
pe

ed
-u

p
(w

.r.
t.

64
 M

P
I/1

 O
pe

nM
P

)

(a) The bars represent the runtime (left) and the lines represent the corresponding speed-up with respect
to 64 MPI with 1 thread each (right).

Omin(1) Odir(24)

omp time (s) speed-up time (s) speed-up

1 89 - 44 -
2 74 1.2 29 1.5
4 80 1.1 21 2.1
8 79 1.1 16 2.8

(b) Comparison between Omin(1) and Odir(24) with 2048 MPI pro-
cesses. We indicate the speed-up when increasing the number of threads
for each method.

Figure 3.4 – Strong scaling study for Ela_30 matrix on Cori (# omp stands for the num-
ber of threads assigned to each MPI processes).

86 CHAPTER 3. Parallel Design

D-Odir PETSc’s CG

MPI n t # iter time (s) # iter time (s) sp.-up

252 6.15e5 24 323 4.5 8,842 13.2 2.9
504 1.21e6 24 418 6.9 11,652 18.3 2.7

1008 2.38e6 24 538 9.8 14,487 24.6 2.5
2016 4.61e6 24 696 14.5 19,047 34.5 2.5

252 6.15e5 12 506 4.2 8,842 13.2 3.1
504 1.21e6 16 536 6.4 11,652 18.3 2.9

1008 2.38e6 20 538 9.7 14,847 24.6 2.5

Table 3.7 – Weak scaling study. The dimension of the matrix is denoted n, and t denotes
the enlarging factor. The speed-up (sp.-up) is the ratio between PETSc runtime and
ECG runtime.

In order to do so, we perform the following experiments on NERSC’s supercom-
puter Cori. It consists in two partitions, one with Intel Haswell processors and another
one with the last generation of Intel Xeon Phi processors: Knights Landing (KNL).
More precisely, the second partition consists in 9,688 single-socket Intel Xeon Phi 7250
(KNL) processors with 68 cores each. For a detailed description of the machine, we
refer to the online documentation2. We compile the code (and its dependencies) us-
ing the default compilers and libraries installed on the machine: icc version 18.0.1,
cray-mpich version 7.6.2, MKL version 2018.1.163 and METIS version 5.1.0. We con-
sider Ela_30 test case and we study the impact of threads on the strong scaling of
Odir(24). We do not use the dynamic reduction of the search directions in order to
keep the cost of one iteration constant during the solve to better understand the effect
of threading. We both increase the number of MPI processes from 64 to 2048 and the
number of threads from 1 to 8 – this means at most 2,048 × 8 = 16,384 threads, each
one being bound to one physical core.

The results obtained are summarized in Fig. 3.4a. First of all, we notice that there
is a trade-off between using threads or MPI processes because the number of MPI pro-
cesses dictates the preconditioner. Indeed, there are as many blocks in the block Jacobi
preconditioner as the number of MPI processes, thus increasing the number of MPI
processes deteriorates the quality of the preconditioner. For instance, using 512 MPI
processes takes 123s, and using 64 MPI processes with 8 threads each takes 179s: it
is an increase of 50% compared to 512 MPI processes. Nevertheless, we observe that
using more than 2 threads, and up to 8, has always a significant effect on the speed-up,
even when the number of MPI processes is high. For instance, as shown in Table 3.4b,
increasing the number of threads from 1 to 8 with a fixed number of 2,048 MPI pro-
cesses leads to an decrease in runtime of nearly 3. Of course, we are not close to full
efficiency when using multiple threads, but we are still taking advantage of the BLAS 3

2http://www.nersc.gov/users/computational-systems/cori/configuration/

http://www.nersc.gov/users/computational-systems/cori/configuration/

3.5. Fusing global communications 87

30.3%

24.3%

35.9%

7.4%

2.1%
operator
precond
comm
iteration
conv. test

Figure 3.5 – Comparison of the time spent in various steps of one iteration of D-
Odir(24) for the Ela_30 matrix with 2016 MPI processes on Kebnekaise.

routines. This is illustrated by the Table 3.4b where we compare the speed-up obtained
by using threads for Omin(1), which corresponds to the classical CG, and Odir(24). We
observe that using more than 2 threads is not effective at all with Omin(1) whereas it
always significantly increases the speed-up with Odir(24).

Finally, we are able to obtain an overall speed-up of 50 when using 16,384 cores
with respect to 64 cores. Compared to an ideal speed-up of 256, it may seem that this
result is not very good (around 20% of efficiency), however it is well-known that Krylov
methods may face efficiency issues at very large scale3 — in practice, such difficulties
are overcome by using preconditioning strategies well adapted to the underlying prob-
lem. Furthermore, it is important to notice that the matrices tested are relatively small,
but they allow us to simulate extreme scale situation: with 16,384 cores the average
number of unknowns per core is around 280. We have shown that in such cases, using
enlarged Krylov subspaces allows to increase arithmetic intensity while decreasing the
communication by drastically decreasing the overall iterations. Thus it takes advantage
of the current trend in hardware architecture for reaching exascale.

3.5 Fusing global communications

If we break down the timings obtained during the previous strong scaling study, we ob-
serve that the major bottleneck of ECG at large scale is the communication involved by
the calls to MPI_Allreduce (Figure 3.5). In this section, we focus on Orthodir method
and we explain how to reformulate the algorithm in order to fuse these calls within an
iteration.

3This is well illustrated by HCG benchmark: http://www.hpcg-benchmark.org/custom/index.html?
lid=155&slid=293

http://www.hpcg-benchmark.org/custom/index.html?lid=155&slid=293
http://www.hpcg-benchmark.org/custom/index.html?lid=155&slid=293

88 CHAPTER 3. Parallel Design

3.5.1 Derivation of the algorithm

If we decompose one iteration of Orthodir there are 4 synchronizations,

µk = Z>k AZk , (3.8)

αk = P >k Rk−1, (3.9)

βk =
(
APk APk−1

)>
M−1APk , (3.10)

ξk = R>k Rk . (3.11)

Furthermore, we have Pk = Zkµ
−1/2
k . Thus we can reformulate αk , and βk ,

αk = µ−>/2Z>k Rk−1, (3.12)

βk =
(
AZkµ

−1/2 APk−1

)>
M−1AZkµ

−1/2. (3.13)

(3.14)

If we postpone the convergence test, i.e., we compute ξk−1 instead of ξk , we can compute
the following quantities at the same time,

µk = Z>k AZk , (3.15)

Z>k Rk−1, (3.16)(
AZk APk−1

)>
M−1AZk , (3.17)

R>k−1Rk−1, (3.18)

and then it is possible to update αk , βk , Pk , and APk using the Cholesky factorization of
µk .

The resulting Algorithm 17 is a Fused version of the preconditioned Orthodir method.
The volume of communication remains constant but the different synchronizations per-
formed at each iterations are fused in order to have only one synchronization (MPIAllreduce
call) per iteration. Unlike Pipelined methods it does not overlap this global communi-
cation with computations.

It is straightforward to derive a Fused version of D-Odir algorithm where the num-
ber of search directions is reduced dynamically during the iterations. Indeed, we have,

Zk+1 = APk,1 −
(
Pk,1 Pk−1,1 H

)
βk,1, (3.19)

where

βk,1 ≡

P >k,1AM

−1APk,1
P >k−1,1AM

¯1APk,1
H>AM−1APk,1

 . (3.20)

3.5. Fusing global communications 89

Algorithm 17 Iteration of preconditioned Fused Orthodir

1: Q(:,1 : t)← A ∗ P (:,1 : t)
2: Z←M−1Q(:,1 : t)
3: // Beginning of synchronization

4: µ← P (:,1 : t)>Q(:,1 : t)
5: α← P (:,1 : t)>R
6: β←Q>Z
7: ξ← R>R
8: // End of synchronization

9: µ← chol(µ)
10: P (:,1 : t)← P (:,1 : t)µ−1

11: Q(:,1 : t)←Q(:,1 : t)µ−1

12: // Beginning of additional triangular solves

13: α← µ−>α
14: β← βµ−1

15: β(1 : t, :)← µ−>β(1 : t, :)
16: Z← Zµ−1

17: // End of additional triangular solves

18: X← X + P (:,1 : t)α
19: R← R−Q(:,1 : t)α
20: if

∑t
i=1ξ(i, i) < ε then

21: stop
22: end if
23: Z← Z − P β
24: P (:, t + 1 : 2t)← P (:,1 : t)
25: P (:,1 : t)← Z
26: Q(:, t + 1 : 2t)←Q(:,1 : t)

90 CHAPTER 3. Parallel Design

Thus, βk,1 is obtained by updating locally βk ,

βk,1 =

U>k,1

I
I

βkUk,1, (3.21)

where Uk,1 denotes the left singular vectors of αk that are kept in its low-rank approxi-
mation (see Section 2.5).

Remark 3.5.1: I

practice, our implementation uses the following relationship Zk+1 = Zk+1Uk,1.
We construct Zk+1 using βk and then reduce its size by multiplying it with Uk,1.
It is not as optimal as the previous discussion, but it is simpler to implement and
the extra flops are expected to be few with respect to the overall iteration cost.

3.5.2 Cost analysis

Following Algorithm 17, each iteration of the Fused Orthodir variant consists of 3 tsmm

(lines 18, 19, and 23), 1 tsmtsm (lines 4–7), 1 potrf (line 9) and 6 trsm (lines 10, 11,
and 13–16). More precisely, the LAPACK routine gemm is called to compute the local
dot products lines 4–7, and the resulting (of dimension of the order t × t) matrices
are put contiguously in the memory so that the reduction is done using one call to
MPI_Allreduce. The lines 13–16 consist of the additional updates which do not involve
any communication. In summary and using the previous discussion in Section 3.3, we
have,

#f lops(Fused Odir) = 4× 2
nt2

P
+ 5× nt(2t + 1)

P
+

1
3
t3 + 6× nt

2

P
, (3.22)

= 24
nt2

P
+ 5

nt
P

+
1
3
t3. (3.23)

As before, matrices of size t × t are replicated among the processors, thus tsmm,
Cholesky factorization of α and triangular solve of α are local operations without any
communication. Thanks to the reformulation of the algorithm, the only communication
phase occurs at lines 4–7.

In summary, the detailed costs of one iteration of Orthodir and Fused Orthodir in
terms of flops, words, and messages are indicated in Table 3.8. For the sake of compar-
ison, we recall the complexity of the CG algorithm described in [101]. We also report
the number of MPI_Allreduce in parenthesis, in addition to the order of magnitude of
the number of messages. In summary, one iteration of Fused Orthodir involves 20%
more flops — neglecting the applications of the matrix, and the preconditioner — but
it reduces the number of messages by factor of 4, with respect to Orthodir. Fused Or-
thodir also reduces the number of messages by a factor of 2 with respect to the usual
CG method.

3.5. Fusing global communications 91

flops # messages # words memory

Orthodir 20 nt2
Nproc

+ 5 nt
Nproc

+ 1
3 t

3 4log2(Nproc) (4) 5t2 7 nt
Nproc

+ 3t2

Fused Orthodir 24nt
2

P + 5ntP + 1
3 t

3 ln(P) (1) 5t2 7 nt
Nproc

+ 5t2

CG 10 nP 2log2(Nproc) (2) 2 5 n
Nproc

Table 3.8 – Complexity of Orthodir, Fused Orthodir, and CG where t is the enlarging
factor.

Figure 3.6 – Numerical comparison between dynamic Orhodir and the fused dynamic
Orthodir variant on Flan_1565. The number of MPI processes is 1008 and the enlarging
factor t is set to 12. We observe that the two plots coincide exactly.

0 100 200 300 400 500

10
1

10
0

10
1

10
2

10
3

10
4

10
5

Normalized residual
Odir
F-Odir

0 100 200 300 400 500
0
1

4

8

12
Block size

In Table 3.8, we also report the memory consumption of the Fused Orthodir method.
It requires an additional 2t2 memory space. Indeed, it requires storing at the same time
the results of the 4 reductions (3.15)–(3.18). However, this memory overhead is not sig-
nificant with respect to the overall memory consumption of both methods (O(nt

Nproc
)).

3.5.3 Numerical experiments

In order to evaluate the gain of this reformulation, we perform several experiments
both on Kebnekaise and Cori.

Kebnekaise

The following experiments are performed on Kebnekaise. We use the same parameters
and test cases as in Section 3.4. In particular, the tolerance is set to 10−5, and we use a
block Jacobi preconditioner where each MPI process inverts its corresponding diagonal
block of the matrixA. We do not remake the whole parameter study but rather compare
the performance of the fused algorithms against the non-fused ones, and with PETSc’s
CG, when the number of MPI processes is relatively high.

92 CHAPTER 3. Parallel Design

Fused D-Odir D-Odir PETSc’s CG

Case # MPI comm total comm total total

Hook_1498 1,008 1.1 1.6 1.4 2.1 0.9
2,016 0.9 1.2 1.2 1.5 0.9
3,024 0.7 0.9 2.0 2.3 1.0

Flan_1565 1,008 1.9 3.8 2.6 4.1 4.9
2,016 1.3 2.2 2.6 3.6 2.6
3,024 1.4 1.9 2.2 2.9 1.6

Ela_30 1,008 11.1 21.7 12.2 23.7 94.7
2,016 6.9 13.0 8.2 14.5 34.5
3,024 8.0 11.9 7.7 11.6 19.5

Table 3.9 – Timings in seconds of the fused dynamic Orthodir variant with D-Odir
and PETSc’s CG. The enlarging factor t is set to 8 for Hook, 12 for Flan, and 24 for
Ela_30, and “comm” stands for the time spend in the global communication during the
iterations of ECG.

Figure 3.7 – Numerical comparison between dynamic Orhodir and the fused dynamic
Orthodir variant on Ela30. The number of MPI processes is 1008 and the enlarging
factor t is set to 24.

0 200 400 600

10
1

10
0

10
1

10
2

10
3

10
4

10
5

Normalized residual
Odir
F-Odir

0 200 400 600
01
4

8

12

16

20

24
Block size

3.5. Fusing global communications 93

In Table 3.9, we summarize the results obtained when we compare the Fused D-
Odir method with D-Odir, and PETSc’s CG. More precisely, we compare these 3 meth-
ods on Hook_1498, Flan_1565, and Ela_30 respectively using the same parameters as
in the strong scaling study, and t = 8 for Hook, 12 for Flan, and 24 for Ela_30. Thus in
any case the Fused version is faster than the non–Fused one. Indeed, it does not suffer
from numerical instabilities and the number of iterations remains exactly the same (see
Figures 3.6 and 3.7) but the time spent in the communication is reduced. For example,
with the largest number of MPI processes, the Fused variant is more than twice faster
than the non–Fused variant for the Hook test case, and around 1.5 times faster than the
non–Fused variant for the Flan test case. Depending on the test case, fusing the global
communications even allows us to be slightly faster than PETSc’s CG at large scale; this
is the case for Hook, but not for Flan.

In summary, fusing the global communications almost always leads to a decrease
in the runtime with respect to the non–Fused variant. This decrease is significant at
large scale because the communication phase usually dominates the overall runtime.
Furthermore, the Fused variant can also be slightly better than PETSc’s CG when the
MPI processes count is the highest (3024).

Cori

We now make the exact same experiments on Cori using KNL processors: both the
matrices and the parameters are the same as just before. In all the experiments we
use 2 threads per MPI processes, each one being bound to one physical core. It means
that the total number of processors used is # MPI ×2. Once again, we are interested
in comparing the performance of the fused algorithms against the non-fused ones, and
with PETSc’s CG, when the number of MPI processes is relatively high: starting to
2,048, and up to 16,385 — meaning up to 32,768 cores at the largest scale.

We summarize the results we obtained in Table 3.10. As before, we compare the
Fused D-Odir method with D-Odir and PETSc’s CG on Hook_1498, Flan_1565, and
Ela_30. For Cori, a much larger machine than Kebnekaise, we use a larger number
of MPI processes in these experiments. For the Hook test case, we observe that the
Fused variant is always faster than PETSc, unlike the non–Fused. Indeed, the com-
munication time is drastically reduced: up to a factor almost 2 for the largest count
of MPI processes we considered. For the Flan matrix, the same behavior is observed.
The Fused variant allows to obtain a speed–up for the largest count of MPI processes
considered with respect to PETSc’s CG. Thus it scales slightly better than PETSc’s CG.
Finally for the Ela_30 test case, we observe a significant improvement of the scala-
bility on the largest count of MPI processes. Fused D-Odir is indeed 33% faster us-
ing 16,384 MPI processes than when using 8,192. On the other hand, PETSc’s CG is
around 8% times faster using 16,384 MPI processes than when using 8,192. As a con-
sequence, the Fused D-Odir method is almost 4 times faster than PETSc’s CG when
using 16,384× 2 = 32,768 physical processors. In summary, we observe that the Fused
variant is always faster that the non–Fused one. However, on this machine the Fused
variant is at least as fast (for the Flan test case) as PETSc’s CG when the number of MPI

94 CHAPTER 3. Parallel Design

Fused D-Odir D-Odir PETSc’s CG

Case # MPI comm total comm total total

Hook_1498 2,048 1.6 3.0 2.3 3.8 3.4
4,096 1.8 2.8 2.7 3.8 3.4
8,192 0.8 1.4 1.4 2.2 1.6

Flan_1565 2,048 2.0 5.5 3.0 6.4 5.5
4,096 1.6 3.7 2.6 4.9 3.7
8,192 1.4 2.9 2.4 4.1 3.2

Ela_30 2,048 18.2 32.4 24.6 39.0 151.7
4,096 6.5 14.3 8.3 16.2 53.7
8,190 5.1 11.2 7.0 13.5 34.6

16,384 4.0 8.0 6.3 10.1 31.7

Table 3.10 – Timings in seconds of the fused dynamic Orthodir variant with D-Odir
and PETSc’s CG. The enlarging factor t is set to 8 for Hook, 12 for Flan, and 24 for
Ela_30, and “comm” stands for the time spend in the global communication during the
iterations of ECG.

processes is relatively low (2,048 and 4,096), but slightly faster than PETSc when using
more than 8,192 MPI processes. Thus, the Fused variant scales better than PETSc’s CG
on this machine, and this scalability has been assessed up to a large number of MPI
processes (16,384 at the largest scale).

3.6 Reproducibility of the numerical experiments

In this section, we provide the informations needed to reproduce the results presented
in the previous section. We start by exposing some technical details of the implementa-
tion. Then, we explain how to install and run the executables we used. We also explain
how to generate the elasticity matrices using Freefem++. Eventually, we provide fur-
ther practical details that allow to reproduce our results on KNL processors.

3.6.1 Implementation details

Our implementation of ECG is based on Reverse Communication Interface [41] and
written in C and MPI. Following this scheme we provide 4 routines:

• preAlps_ECGInitialize(preAlps_ECG_t* ecg, double* rhs, int* rci_request),

• preAlps_ECGIterate(preAlps_ECG_t* ecg, int* rci_request),

• preAlps_ECGStoppingCriterion(preAlps_ECG_t* ecg, int* stop),

• preAlps_ECGFinalize(preAlps_ECG_t* ecg, double* solution).

3.6. Reproducibility of the numerical experiments 95

In order to ease its usage, we encapsulate all the required information by ECG in
the structure preAlps_ECG_t. More precisely, this structure is defined as,

1 typedef struct {

2 /* Input variable */

3 double* b; /* Right hand side */

4

5 /* Internal symbolic variables */

6 CPLM_Mat_Dense_t* X; /* Approximated solution */

7 CPLM_Mat_Dense_t* R; /* Residual */

8 CPLM_Mat_Dense_t* V; /* Descent directions ([P,P_prev] or P) */

9 CPLM_Mat_Dense_t* AV; /* A*V */

10 CPLM_Mat_Dense_t* Z; /* Preconditioned R (Omin) or AP (Odir) */

11 CPLM_Mat_Dense_t* alpha; /* Descent step */

12 CPLM_Mat_Dense_t* beta; /* Step to construt search directions */

13

14 /** User interface variables */

15 CPLM_Mat_Dense_t* P; /* Search directions */

16 CPLM_Mat_Dense_t* AP; /* A*P */

17 double* R_p; /* Residual */

18 double* P_p; /* Search directions */

19 double* AP_p; /* A*P_p */

20 double* Z_p; /* Preconditioned R (Omin) or AP (Odir) */

21

22 /** Working arrays */

23 double* work;

24 int* iwork;

25

26 /* Single value variables */

27 double normb; /* norm_2(b) */

28 double res; /* norm_2 of the residual */

29 int iter; /* Iteration */

30 int bs; /* Block size */

31 int kbs; /* Krylov basis size */

32

33 /* Options and parameters */

34 int globPbSize; /* Size of the global problem */

35 int locPbSize; /* Size of the local problem */

36 int maxIter; /* Maximum number of iterations */

37 int enlFac; /* Enlarging factor */

38 double tol; /* Tolerance */

39 preAlps_ECG_Ortho_Alg_t ortho_alg; /* A-ortho algorithm */

40 preAlps_ECG_Block_Size_Red_t bs_red; /* Block size reduction */

41 MPI_Comm comm; /* MPI communicator */

42 } preAlps_ECG_t;

For the sake of simplicity, we did not add their explicit definition here, but Ortho_Alg_t
and Block_Size_Red_t are enum. The structure CPLM_Mat_Dense_t represents local

96 CHAPTER 3. Parallel Design

dense matrices, it contains the pointer to the data (val), the number of rows (info.m),
the number of columns (info.n) and an enum to specify the matrix storage type (ROW_MAJOR
or COL_MAJOR).

First, the user has to declare a variable of type preAlps_ECG_t and set values for
the parameters: comm, globPbSize, locPbSize, maxIter, enlFac, tol, ortho_alg, and
bs_red (ADAPT_BS for dynamic reduction of the search directions, and NO_BS_RED oth-
erwise). The variable globPbSize corresponds to the number of unknowns of the global
solution x (the dimension of A) and locPbSize corresponds to the number of unknown
owned locally (the number of rows of A that are stored locally).

Then, in order to allocate memory and initialize the structure, the user has to call,
preAlps_ECGInitiliaze(&ecg, rhs, &rci_request), where rhs is a double *

array representing the right hand side and rci_request is an integer. After this call,
he has to apply the preconditioner to ecg.R and put the result into ecg.P. And then,
he has to apply the operator A to ecg.P and put the result into ecg.AP. These two
operations has to be executed in parallel assuming that ecg.R, ecg.P, ecg.AP contains
local rows of R, P and AP which are distributed as row panel over the processors.

Afterwards, the user has to call preAlps_ECGIterate(&ecg,&rci_request) until
convergence of the method. Following RCI scheme, after this call the user has to check
the value of rci_request. If rci_request = 0, then the user is requested to apply A
on ecg.P and put the resul into ecg.AP. If rci_request = 1, then the user can check
for convergence of the method. If the method did not converge, then depending on
the choice of the orthogonalization algorithm (ORTHODIR or ORTHOMIN) he has to apply
the preconditioner to ecg.R (ORTHOMIN) or ecg.AP (ORTHODIR) and put the result into
ecg.Z.

When convergence is reached, it is possible to recover the solution and free the
structure ecg by calling preAlps_ECGFinalize(&ecg,sol) where sol is a double* ar-
ray already allocated.

To sum up, for solving a linear system with a block Jacobi preconditioner, the gen-
eral calling sequence will be

1 // Set parameters

2 ecg.comm = MPI_COMM_WORLD; /* MPI Communicator */

3 ecg.globPbSize = M; /* Size of the global problem */

4 ecg.locPbSize = m; /* Size of the local problem */

5 ecg.maxIter = maxIter; /* Maximum number of iterations */

6 ecg.enlFac = 2; /* Enlarging factor */

7 ecg.tol = tol; /* Tolerance of the method */

8 ecg.ortho_alg = ORTHODIR; /* Orthogonalization algorithm */

9 ecg.bs_res = ADAPT_BS; /* Reduce number of search directions */

10 // Allocate memory and initialize variables

11 preAlps_ECGInitialize(&ecg,rhs,&rci_request);

12 // Finish initialization

13 preAlps_BlockJacobiApply(ecg.R,ecg.P);

14 preAlps_BlockOperator(ecg.P,ecg.AP);

3.6. Reproducibility of the numerical experiments 97

15 // Main loop

16 while (stop != 1) {

17 ierr = preAlps_ECGIterate(&ecg,&rci_request);

18 if (rci_request == 0) {

19 // AP = A*P

20 preAlps_BlockOperator(ecg.P,ecg.AP);

21 }

22 else if (rci_request == 1) {

23 ierr = preAlps_ECGStoppingCriterion(&ecg,&stop);

24 if (stop == 1) break;

25 if (ecg.ortho_alg == ORTHOMIN)

26 // Z = M^-1*R

27 preAlps_BlockJacobiApply(ecg.R,ecg.Z);

28 else if (ecg.ortho_alg == ORTHODIR)

29 // Z = M^-1*AP

30 preAlps_BlockJacobiApply(ecg.AP,ecg.Z);

31 }

32 }

33 // Retrieve solution and free memory

34 preAlps_ECGFinalize(&ecg,sol);

3.6.2 Installation and usage

The software can be downloaded here: https://who.rocq.inria.fr/Olivier.Tissot/
ecg_code.zip or upon request by email. There is no particular hardware dependency,
however, there are some software dependencies:

• C99, with or without OpenMP.

• MPI: we used both IntelMPI (Kebnekaise) and Cray MPICH (Cori).

• Intel MKL: we use BLAS and LAPACK routines, as well as PARDISO for applying
the block Jacobi preconditioner.

• METIS: it is needed to partition the matrix before starting the computation in
order to increase the load-balancing.

• PETSc: it is only used for the purpose of benchmarking, and the implementation
does not rely on it.

The SuiteSparse matrices are available online. For generating the elasticity ma-
trices, one needs to install FreeFem++, modify the file ff++/elasticity-3d.edp and
then run the following command:

cd ff++ && FreeFem++ elasticity-3d.edp -nw

The output is not exactly MatrixMarket compliant and it is necessary to call the follow-
ing patch to convert the output:

https://who.rocq.inria.fr/Olivier.Tissot/ecg_code.zip
https://who.rocq.inria.fr/Olivier.Tissot/ecg_code.zip

98 CHAPTER 3. Parallel Design

./ff++_to_mtx.sh ${matrix_filename}

Light installation without PETSc:

1. unzip the archive

2. modify the make.inc in order to link MPI, the MKL, METIS and deactivate the
other dependencies

3. install and configure CPaLAMeM (distributed with the code):

make install_cpalamem

and follow the instructions

4. call make in the root directory.

Full installation with PETSc:

1. install PETSc 3.7.6 using the following configuration:

./configure -with-cc=mpiicc --with-cxx=0 --with-fc=0 COPTFLAGS="-O3

-march=native -mtune=native" --with-debugging=0

-with-blas-lapack-dir=${MKLROOT}

--with-mkl_pardiso-dir=${MKLROOT} --download-metis

↪→

↪→

↪→

2. unzip the archive

3. modify the make.inc in order to link MPI, the MKL, PETSc, METIS and deactivate
the other dependencies

4. install and configure CPaLAMeM (distributed with the code):

cd utils/

tar -xvzf CPALAMEM_2017-10-06-10_59_19.tar.gz

cd cpalamem

./configure --cc mpiicc --with-metis --with-mkl --with-petsc -O

and follow the instructions

5. call make in the root directory.

Examples of make.inc files used on Kebnekaise and Cori are available in the direc-
tory install_examples.

Once the compilation is finished, the executables ecg_prealps_op and ecg_bench_petsc_pcg

should be in the bin directory. Please note that if the code has not been linked with
PETSc ecg_bench_petsc_pcg will not do anything.

Both takes the same parameters as arguments (after a space) during the call:

3.6. Reproducibility of the numerical experiments 99

• -e the enlarging factor (cannot exceed the number of MPI processes)

• -i: the maximum number of iterations

• -m: the file containing the matrix (MatrixMarket format)

• -o: if 0 Orthodir is used, if 1 Orthomin is used

• -r: if 0 NO dynamic reduction of the search directions, if 1 dynamic reduction of
the search directions

• -t: the tolerance of the method.

For instance, in order to reproduce the result at row 3 and column 2 (D-Odir(8)) in
Table 3.4 the call is:

mpirun -np 56 ./bin/ecg_prealps_op -m Flan_1565.mtx -e 8 -o 0 -r 1 -t

1e-5 -i 5000↪→

3.6.3 Evaluation and expected result

In order to check that the light installation (without PETSc) is working, it is possible to
try to reproduce the results of Table 3.4 as shown in the previous subsection.

Similarly, it is possible to try to reproduce the results in Table 3.5 to check that the
full installation is working. For instance, the call to reproduce the results in row 1 of
Table 3.5 is:

mpirun -np 252 ./bin/ecg_bench_petsc_pcg -m

elasticite3d_1600x30x30_var.mtx -e 24 -o 0 -r 1 -t 1e-5 -i 25000↪→

Examples of submission scripts used on Kebnekaise and Cori are available in the
directory scripts.

Please note that the case where t is larger than the number of MPI processes is not
handled; an error message is output. Nevertheless, it is possible to set t equals to 1 and
in that case the method corresponds to the usual CG. Thus, a simple debug test is the
following call:

mpirun -np 4 ./bin/ecg_bench_petsc_pcg -m matrix/1DLaplacian16.mtx -e 1

-o 0 -r 0 -t 1e-2 -i 16↪→

The expected output should contain the following lines:

=== Matrix informations ===

size: 16

nnz : 46

=== Petsc ===

100 CHAPTER 3. Parallel Design

iterations: 6

norm(res): 5.310086e-03

=== ECG ===

iterations: 6

norm(res) : 5.310086e-03

block size: 1

It solves a simple 1D Laplacian linear system of size 16 with PETSc’s CG and with
Omin(1). Both PETSc and ECG converge within the same number of iterations and
both get the same approximate residual norm. Please note that in practice, the norm of
the approximate residuals are not necessarily the same for every matrix because of the
round-off errors.

On Cori, we used the following submission parameters:

#SBATCH -C knl,quad,cache

core specialization

#SBATCH -S 4

export OMP_PLACES=threads

export OMP_PROC_BIND=true

We also did not use hyperthreading. For example, the submission script to repro-
duce the result in Table 3.4b is:

#!/bin/bash -l

#SBATCH -N 256

#SBATCH -C knl,quad,cache

core specialization

#SBATCH -S 4

#SBATCH -q regular

#SBATCH -J ecg

#SBATCH -t 02:30:00

#SBATCH -L SCRATCH

export OMP_NUM_THREADS=8

export MKL_NUM_THREADS=8

export OMP_PLACES=threads

export OMP_PROC_BIND=true

srun -n 2048 -c 32 --cpu_bind=cores ./bin/ecg_prealps_op -m

elasticite3d_1600x30x30_var.mtx -e 24 -o 0 -r 1 -i 35000 >

res/ecg.log 2>&1

↪→

↪→

During the setup phase, the matrix is read by one MPI process (rank 0). It parti-
tions the matrix using METIS and then distributes it row-wise among the other MPI
processes. Of course, this setup phase can be quite time consuming if the matrix be-

3.6. Reproducibility of the numerical experiments 101

comes large, especially on KNLs.
When the number of processes becomes large (> 100) and the number of iterations is

high (> 1000), it is very likely that the number of iterations will not be exactly the same
from one run to another. This is due to the numerical sensibility of the CG method to
round-off errors and the fact that MPI collectives are not reproducible. In practice, for
our test cases, the difference is not relevant and does not have any significant impact.

102 CHAPTER 3. Parallel Design

4
Recycling strategies

Outline of the current chapter

4.1 Motivation — application to CMB data analysis 104
4.1.1 The map–making problem 104
4.1.2 The parametric component separation (PCS) problem . . . 105
4.1.3 The algebraic framework . 106

4.2 Ingredients of the methods 107
4.2.1 Eigenvalues approximation using Krylov subspace methods 107
4.2.2 Deflation and two–level preconditioners 110

4.3 Unified framework for the solution procedures 113
4.3.1 A priori adaptation of the previous deflation space 114
4.3.2 Solving the system . 115
4.3.3 A posteriori update of the deflation space 115
4.3.4 Existing methods . 115

4.4 Numerical experiments 117
4.4.1 A simplified case . 117
4.4.2 Systems arising from the PCS problem 120
4.4.3 Adaptation of the initial guess for the PCS systems 126

Abstract
In this chapter, we study so–called recycling strategies in order to increase the efficiency of the
linear solver in the context of the Cosmic Microwave Background (CMB) analysis. We recall
several methods for computing eigenvalues and the associated eigenvectors of a matrix from
an already computed Krylov basis and how to deflate them, i.e., remove their possibly bad
effect on the convergence of the Krylov method. These two ingredients are the basis of the
general framework of the recycling methods presented. Numerical experiments are performed
on problems coming from the CMB analysis, and the efficiency of the methods is assessed from
a qualitative point of view. The multiplicity of the smallest eigenvalue of the underlying matrix

103

104 CHAPTER 4. Recycling strategies

may have a bad effect on the efficiency of these methods. In order to overcome this difficulty, we
proposed a cheap procedure to adapt the initial guess before the solve, which permits to reduce
the overall number of iterations.

Résumé
Dans ce chapitre, nous étudions les stratégies dites de recyclage afin d’améliorer l’efficacité de la
résolution du système linéaire dans le contexte de l’analyse des observations du fond diffus cos-
mologique (CMB). Nous rappelons plusieurs méthodes pour calculer les valeurs propres et les
vecteurs propres associés d’un matrice à partir d’une base de Krylov déjà calculée et comment
les déflater, i.e., masquer leur effet éventuellement négatif sur la convergence de la méthode de
Krylov. Ces deux ingrédients sont la base du cadre général des méthodes de recyclage que nous
présentons ensuite. Des expériences numériques sont menées sur des problèmes provenant de
l’analyse du CMB and l’efficacité des méthodes est évaluée d’un point de vue qualitatif. La mul-
tiplicité de la plus petite valeur propre de la matrice sous–jacente peut avoir un effet négatif
sur ces méthodes. Afin de surmonter cette difficulté, nous proposons finalement une procé-
dure peu coûteuse pour adapter la solution initiale avant la résolution, qui permet de réduire
le nombre total d’itérations.

4.1 Motivation — application to CMB data analysis

The Cosmic Microwave Background (CMB) has been extensively studied over the last
decades leading to remarkable progress in our understanding of the beginning of the
Universe. The amount of data collected by the observatories has been increasing tremen-
dously, and its analysis currently requires the optimized usage of the most modern
supercomputers. Our focus will be on the parametric component separation in CMB
experiments which relies on the solution of very large linear systems.

4.1.1 The map–making problem

We start by explaining the so–called map–making problem [94] as it is an important
building–block of the parametric component separation. At a given time the detectors
of a CMB experiment are performing Ndata measurements; the resulting vector is de-
noted d. These measurements are modeled as the sum of an unknown astrophysical
map s1 and an instrumental noise n. This map s is a vector of N pixels, each of these
being itself Stokes parameters that describe the polarization state of electromagnetic
radiation. We want to point out that the number of data collected is in general much
larger than the number of pixels in the unknown map (N �Ndata). The physical strat-
egy that makes the link between the data collected and the unknown map is encoded
into the pointing matrix P . This matrix is tall and skinny, and it is usually very sparse
because there are few parameters to estimate for each pixel, e.g., 3 parameters would
mean 3 non-zeros per row [94]. We are eventually able to write the unknown map as a
function of the data and the noise,

d = P s+n. (4.1)

1It is denoted s because it corresponds to a signal.

4.1. Motivation — application to CMB data analysis 105

It is not possible to solve this problem in this form, of course, because the noise n is not
known. In order to overcome this difficulty, it is usually assumed that the noise can be
modeled by a random variable with a vanishing mean and a noise covariance matrix
denoted N. Thus (4.1) becomes a linear statistical problem whose solution is given by
solving a generalized least square equation,

P >N−1P s = P >N−1d. (4.2)

If the noise is moreover assumed to be Gaussian, one can show that the solution is an
unbiased estimator with minimum variance for the unknown quantity s [94].

In real experiments the number of data collected can reach O(1012−15) whereas the
number of pixels in the map is O(106). Since the matrix N is then a square matrix
of the dimension of the data, one may wonder how to compute N−1. This difficulty is
usually overcome by assuming that N has a special structure, e.g., it is a (block) circulant
matrix, such that its inverse can be applied at an almost linear cost through Fast Fourier
Transform. However, given the size of the unknown map, it is infeasible to assemble the
matrix of the system (4.2) because the product N−1P would be too costly to compute.
That is why the traditional method to tackle this problem is to use a standard CG
method with the following Jacobi–like preconditioner,

M−1 = (P >diag(N−1)P)−1. (4.3)

This very simple preconditioner has shown limitations in some cases, especially when
the noise has high off–diagonal contributions, and a two–level approach has been found
successful in such cases [60, 94, 114].

4.1.2 The parametric component separation (PCS) problem

We now review the method proposed in [110] which relies on a Maximum likelihood
algorithm. The main idea is to find a way to mix the component to be estimated from
the data. More precisely, the previous framework is slightly generalized by considering
the following problem,

d = Pβs+n, (4.4)

where the matrix P , that encodes the link between the Stokes parameters and the data,
is now depending on a set of unknown parameters {βi}. Moreover, d now contains
the data collected for different frequencies, and the solution s contains some Stokes
parameters according to these frequencies.

In [110], the authors propose to fit both s and β according to the data. More pre-
cisely, they maximize the corresponding log-likelihood which reads,

−2ln(L(s,β)) = C +
(
d − Pβs

)>
N−1

(
d − Pβs

)
, (4.5)

with the same notations as before, and C denotes an constant. For each step of the

106 CHAPTER 4. Recycling strategies

maximization process one has to solve the following linear system of equations,

P >β N−1Pβs = P >β N−1d. (4.6)

which means that Pβ ≡ PMβ , where P is a pointing matrix as in the map–making prob-
lem, i.e., a very sparse tall and skinny matrix, andMβ is called the mixing matrix. Thus
(4.6) eventually reads

M>β P
>N−1PMβs =M>β P

>N−1d, (4.7)

In our case, the mixing matrix Mβ transforms the full signal s that consists of 3× 2
components for each pixel into a mixed signal that consists of 2 components for each
pixel. More precisely, given (ui ,qi) with 16 i 6 3 that represents the 3× 2 components
for the full sky, i.e., ui , qi ∈ RN , we have the following

Mβ

u1 q1
u2 q2
u3 q3

 =
(
α1u1 +α2u2 +α3u3 γ1q1 +γ2q2 +γ3q3

)
, (4.8)

where αi and γi (1 6 i 6 3) are some weights that depends on β. Thus, Mβ has the
following tensorized structure

Mβ =
(
α1I α2I α3I
γ1I γ2I γ3I

)
(4.9)

=
(
α1 α2 α3
γ1 γ2 γ3

)
⊗ I (4.10)

≡ Kβ ⊗ I, (4.11)

where ⊗ denotes the Kronecker product and I denotes the identity matrix of orderN .

4.1.3 The algebraic framework

In fact, the problem (4.6), i.e., solving a sequence of linear algebraic systems, is of in-
terest in many applications. When the system matrices are in some suitable sense close
to each other (“changing slowly”), exploiting this property can bring significant com-
putational effort and energy savings. One can aim at building an efficient (yet more
computationally costly) preconditioner for all the system matrices. However, this may
not be always possible and recomputation of the preconditioner may increase the over-
all cost significantly. Another idea, present in the literature and put forward in this
chapter, is to recycle the information from solution of each system to the next system.
Such recycling is straightforward to apply in the context of projection-type methods,
represented in what follows by Krylov methods with a two–level preconditioner.

There exists a plethora of methods and ideas that can be used in the solution of
a sequence of linear algebraic systems. It seems natural that an effective procedure
must be properly tuned for a particular application. We recall the methods for solv-
ing sequences of systems proposed in the literature, present a unified framework, and

4.2. Ingredients of the methods 107

comment on possible choices of particular ingredients of the solution procedure.
Whenever possible, our presentation will concern systems with general (nonsingu-

lar) matrices and a general (Krylov) solver. However, since the system matrix in (4.6) is
symmetric positive definite (SPD), we will later focus on sequences with SPD matrices
and (preconditioned) conjugate gradient solver. To clearly distinguish when the dis-
cussion assumes that the system matrix A and the preconditionerM are SPD, we use in
such case sans serif font, giving A and M, respectively. We will also discuss in particular
the preconditioning from left, which is mostly used in the context of solving (4.6).

Remark 4.1.1

Each system taken independently fits in the framework of the ECG method, how-
ever we are interested in taking into account the fact that these systems are some-
how related to each others. As explained before, the approach relies on the con-
struction on-the-fly of a two–level preconditioner. We have shown in Chapter 2
that ECG is acting as a two–level preconditioner, but its application is also more
costly. Thus, it is very likely that, except for the first system for which there is no
two–level preconditioner available yet, the usual CG method used in conjunction
with a two–level preconditioner is more effective than the ECG method.

4.2 Ingredients of the methods

To facilitate the forthcoming description of the methods, we present in this section
two ingredients of the methods. Namely, the ways how the eigenpairs are estimated
using the computed basis of Krylov subspace and the ways how the deflation of the
approximate eigenvectors can be combined with another preconditioner.

4.2.1 Eigenvalues approximation using Krylov subspace methods

Arnoldi and Lanczos algorithms for approximating the eigenvalues of a general nonsin-
gular or, respectively, a Hermitian matrix, are based on Rayleigh-Ritz approximation
that will be presented first. Then, we recall the Arnoldi and Lanczos algorithms and,
finally, we briefly comment on their restarted variants.

The methods discussed below do not represent an exhaustive overview of meth-
ods for approximating several eigenvalues and the associated eigenvectors. Among the
omitted methods, there is, e.g.., the Jacobi–Davidson method [103], which proved to be
particularly efficient for approximating the inner part of the spectrum. For a survey on
the methods and a list of references see, e.g.., [106].

Ritz values and harmonic Ritz values approximations

For a subspace S ⊂ Cn, we call y ∈ S a Ritz vector of A with Ritz value θ if

Ay −θy ⊥ S .

108 CHAPTER 4. Recycling strategies

Using a (computed) basis Vj of S and setting y = Vjw, the above relation is equivalent
to solving

V >j AVjw = θV >j Vjw. (4.12)

Ritz values are known to approximate well the extremal eigenvalues of A. If an
approximation to the interior eigenvalues is required, computing the harmonic2 Ritz
values can be preferable. Following [93], we define harmonic Ritz values as the Ritz
values of A−1 with respect to the space AS ,

ỹ ∈ AS , A−1ỹ − µ̃ỹ ⊥ AS .

We call θ̃ ≡ 1/µ̃ a harmonic Ritz value and ỹ a harmonic Ritz vector. If Vj is a basis of S
and ỹ = Vjw̃, the above relation can be represented as

V >j A
>Vjw̃ = µ̃V >j A

>AVjw̃ ⇐⇒ V >j A
>AVjw̃ = θ̃V >j A

>Vjw̃. (4.13)

For the properties of the harmonic Ritz values approximations and the relationship
with the iteration polynomial in MINRES method, see [91].

There are various ways how the harmonic (Rayleigh–)Ritz procedure is presented
and defined in the literature; often it is introduced to approximate eigenvalues close to
a target τ ∈ C. For example, [121] prescribes the procedure by

ỹ ∈ S , Aỹ − θ̃ỹ ⊥ (A− τI)S , (4.14)

where I is the identity matrix. With ỹ = Vjw̃ this corresponds to the generalized eigen-
value problem

V >j (A− τI)>(A− τI)Vjw̃ =
(
θ̃ − τ

)(
V >j (A− τI)>Vj

)
w̃,

which becomes for τ = 0 exactly the right equality in (4.13).
We note that harmonic Ritz approximation is often used in the Krylov subspace

recycling methods also for approximating the smallest (in magnitude) eigenvalues and
the associated eigenvectors; see the description of the methods in the corresponding
section below.

Finally, we comment on the (harmonic) Ritz approximation in the case we want
to compute the eigenvalues of the matrix A preconditioned from the left by M. In a
general case, assuming only that A, M are nonsingular, the Ritz and harmonic Ritz
approximations are applied as above just replacing in the formulas A by M−1A. When
the matrixA is Hermitian and the preconditioner M is SPD, there is also another option.
First, we note that the matrix M−1A is not Hermitian but it is self-adjoint with respect
to the inner product induced by M, that is

(v,M−1Aw)M = (M−1Av,w)M, ∀v,w,
2The term harmonic Ritz values was introduced in [91], where the references to previous works using

this approximation can be found.

4.2. Ingredients of the methods 109

where (v,w)M ≡ v>Mw. This allows, in the definition of Ritz and harmonic Ritz approx-
imation, to replace A by M−1A and the standard inner product by the inner product
induced by the matrix M, giving

y ∈ S , M−1Ay −θy ⊥M S , respectively ỹ ∈M−1AS , (M−1A)−1ỹ − µ̃ỹ ⊥M M−1AS .

The corresponding algebraic problems with y = Vjw, ỹ = Vjw̃, are

V >j AVjw = θV >j MVjw, respectively V >j A
>M−1AVjw̃ = (1/µ̃)V >j A

>Vjw̃.

Note that the problems above involve Hermitian matrices only.

Arnoldi and Lanczos methods

Arnoldi and Lanczos algorithms for approximating the eigenvalues of a general non-
singular or, respectively, a Hermitian matrix, are based on Ritz approximation with
setting S = Kj(A,v1) = span(v1,Av1, . . . ,A

j−1v1), the jth Krylov subspace. The methods
compute an orthogonal basis Vj of S such that

AVj = VjTj + βvj+1e
>
j ,

where ej is the last column vector of the identity matrix (of size j) and V >j Vj = I ,
V >j vj+1 = 0. Consequently, the eigenvalue problem (4.12) corresponding to the Ritz
approximation reads

Tjw = θw.

The matrix Tj is available during the iterations. The standard use of Arnoldi and Lanc-
zos method for eigenvalue approximation consists of solving the above problem and
setting the pairs (θ,Vjw) as the computed approximations.

One can naturally replace the Ritz approximation by the harmonic Ritz approxima-
tion. Then, the matrices in the problem (4.13) become

V >j A
>AVj = T >j Tj + β2eje

>
j , V >j A

>Vj = T >j .

The Lanczos algorithm is a variant of the Arnoldi algorithm for a Hermitian A. The
matrix Tj = V >j AVj , which is in Arnoldi method upper Hessenberg, is then also Hermi-
tian. Consequently, it is tridiagonal, which means that in each step of Lanczos method
we orthogonalize the new vector only against the two previous vector. This ensures
that the computational cost of each iteration is fixed and, if one is interested in approx-
imating the eigenvalues only, storing three vectors vj−1, vj and vj+1 is sufficient instead
of handling the full matrix Vj . The assumption on exact arithmetic is, however, crucial
here. In finite precision computations, the global orthogonality is typically quickly lost,
which can cause several stability issues [90].

As noted above, an orthonormal basis Vj of S is advantageous for the Ritz ap-
proximation. For the harmonic Ritz approximation applied to an SPD matrix A, one

110 CHAPTER 4. Recycling strategies

can instead aim at constructing an A-orthonormal basis, which assures that the ma-
trix V >j A>Vj = V >j AVj on the right-hand side of (4.13) is equal to the identity. An
A-orthonormal basis of a Krylov subspace can be constructed within the iterations of
conjugate gradient method by using the search direction vectors.

The Arnoldi method can be naturally applied also to the preconditioned matrix
M−1A to compute an orthonormal basis Vj of the associated Krylov subspaceKj(M−1A,M−1v1),
giving

M−1AVj = VjTj + βvj+1e
>
j , V >j Vj = I, V >j vj+1 = 0.

For a Hermitian A and an SPD preconditioner M, we can apply the Lanczos method
following the comment made above – using the matrix M−1A and the inner product
induced by M instead of the standard euclidean one, giving

M−1AVj = VjTj + βvj+1e
>
j , V >j MVj = I, V >j Mvj+1 = 0.

The computed basis Vj is therefore M-orthonormal.

Restarted variants

The number of iterations necessary to converge is not a priori known in Arnoldi and
Lanczos algorithms and, in general, it can be very high. High iteration counts require
a large memory to store the basis vectors and, whenever a full-reorthogonalization is
used, a high computational effort because of the growing cost of the reorthogonaliza-
tion in each step. The idea behind implicitly restarted variants is to limit the dimension
of the search space S . This means that the iterations are stopped after a (fixed) number
of steps, the dimension of the search space is reduced while maintaining its (Krylov)
structure, and the Arnoldi/Lanczos iterations are resumed.

There are several restarted variants described in the literature (a detailed descrip-
tion is, however, beyond the scope of this chapter): the implicitly restarted Arnoldi
(IRA, [105]), the implicitly restarted Lanczos (IRL, [16]), or the Krylov–Schur method
([109, 122]).

The estimation of the spectrum of A is possible within the GMRES, MINRES and
CG iterations (applied to solve a system with A) because they are based on Arnoldi,
respectively Lanczos algorithms. In contrast, a combination of restarted variants with
solving a linear algebraic system is, to the best of our knowledge, not described in the
literature. We therefore do not consider the restarted variants in the sequel.

4.2.2 Deflation and two–level preconditioners

In this section we first discuss a deflation preconditioner for Krylov subspace methods
that can be regarded as eliminating the effect of several (given) vectors from the op-
erator or, equivalently, augmenting by these vectors the space where we search for an
approximation. Then we describe a combination of the deflation preconditioner with
another preconditioner that is commonly used in practice.

4.2. Ingredients of the methods 111

The Krylov subspace methods (in particular CG [68] and GMRES [99]) are well-
known for their minimization (optimal) properties over the consecutively build Krylov
subspace

Kj(A,v) = span{v,Av,A2v, . . . ,Aj−1v}.

A question arises; given some other subspace U , can we modify the methods such that
they have the same optimal properties over the union of Kj(A,v) and U , which is often
called an augmented Krylov subspace? The answer is positive and the implementation
differs on the method — it is straightforward for GMRES and it requires more attention
for CG. Hereafter, we denote by I the identity matrix and by Z the basis of U .

The deflation in GMRES method is often (see, e.g.., GMRES-DR [83]) considered as a
remedy to overcome the difficulties caused by restarts: for computational and memory
restrictions, only a fixed number of GMRES iterations is typically performed giving an
approximation that is then used as the initial vector for a new GMRES run. The GMRES
method with deflation has been used for solving a sequence of linear algebraic systems,
e.g.., in [93].

The augmentation of the Krylov subspace in CG is more delicate, since the origi-
nal CG method can only be applied to an SPD matrix. The first such algorithm was
proposed in [45] and [85]. We note that it includes the construction of the conjugate
projector

Pc.proj. = Z(Z>AZ)−1Z>A

and, in each iteration, the computation of the preconditioned search direction qi =
(I − Pc.proj.)pi and of the vector Aqi . The latter can be avoided at the price of storing Z
and AZ and performing additional multiplication with AZ. In both variants, the cost
of a single iteration is significantly higher than the cost of one standard CG iteration.

The combination of a preconditioner with a deflation is widely studied in the lit-
erature and therefore we present this only briefly; more details and extensive list of
references can be found, e.g.., in the review paper [115]. The preconditioner stemming
from the combination of a (typically relatively simple) traditional preconditioner with
the deflation is called a two–level preconditioner3. While the traditional preconditioner
aims at removing the effect of the largest (in magnitude) eigenvalues, the deflation
(projection-type preconditioner) is intended to get rid of the effect of the smallest eigen-
values. Common choices for the traditional preconditioner are block Jacobi, (restricted)
additive Schwarz method, and incomplete LU or Cholesky factorizations. Among many
applications, two–level preconditioners proved to be efficient in the CMB data analysis;
see, e.g.., [60, 113].

We now present the combination of the traditional and projection-type (deflation)
preconditioners following the discussion and notation of [115]. Hereafter, we assume
that the system matrix A and the traditional preconditioner M are SPD. We note that
some of the below mentioned preconditioners P� are not symmetric. However, their
properties allow us to use them (with possible modification of the initial vector) as left

3As shown in [115], one can see here an analogy with multilevel (multigrid) and domain decomposition
methods.

112 CHAPTER 4. Recycling strategies

preconditioners in PCG; see [115] for details.

Let the deflation space span the columns of the matrix Z. We denote

P ≡ I −AQ, Q ≡ Z
(
Z>AZ

)−1
Z>. (4.15)

Two-level preconditioners based on deflation are given as

PDEF1 ≡M−1P , PDEF2 ≡ P >M−1.

Other preconditioners can be determined using the additive combination of two (SPD)
preconditioners C1, C2 as

Padd ≡ C1 +C2,

or, using the multiplicative combination of the preconditioners, as

Pmult ≡ C1 +C2 −C2AC1.

Three variants of two–level preconditioners are derived by choosing additive or mul-
tiplicative combination and setting C1 = M−1, C2 = Q, or C1 = Q, C2 = M−1. Other
preconditioners can be derived using the multiplicative combination of three SPD ma-
trices; see [115, Section 2.3.4].

The variants of two–level preconditioner mentioned above differ in the implemen-
tation cost and also in the numerical stability; see [115]. The variant PDEF1, which is of-
ten used in the procedures for solving the sequences of linear systems (see, e.g.., [100]),
was found cheap but less robust, especially with respect to the accuracy of solving
the coarse problem with the matrix Z>AZ and with respect to the requested accuracy.
The conclusion drawn in [115] is that “A-DEF2 seems to be the best and most robust
method, considering the theory, numerical experiments and the computational cost”.
Therefore the preconditioner PA-DEF2,

PA-DEF2 ≡M−1 +Q −QAM−1 = P >M−1 +Q, (4.16)

is of interest, in particular in the cases where the dimension of the deflation space
(equal to the number of columns in Z) is high and/or the matrix M−1A is ill-conditioned,

As noted in [100], the gradual loss of orthogonality of computed residuals with
respect to the columns of Z can cause stagnation, divergence or erratic behavior of
errors within the iterations; see also the comment in [115, Section 4.7]. The remedy
seems to be the reorthogonalization of computed residuals as

rj ≡Wrj , W ≡ I −Z(Z>Z)−1Z>. (4.17)

For completeness, we recall the general implementation of these two–level PCG
methods presented in [48] (Algorithm 18), as well as the corresponding choices of the
parameters for several methods (Table 4.1).

4.3. Unified framework for the solution procedures 113

Algorithm 18 General two– PCG [115]

Input: Vs,M1,M2,M3, Ve
1: x0 = Vs
2: r0 =M3(b −Ax0)
3: z0 =M1r0
4: p1 =M2z0
5: for k = 1, . . . ,convergence do
6: wk =M3Apk
7: αk = p>k zk−1/(p

>
k wk)

8: xk = xk−1 + pkαk
9: rk = rk−1 −wkαk

10: zk =M1rk
11: βk = r>k zk/r

>
k−1zk−1

12: pk+1 =M2zk − pkβk
13: end for
14: xk = Ve

Method Vs M1 M2 M3 Ve
DEF1 x0 M−1 I P Qb+ P >xk
DEF2 Qb+ P >x0 M−1 P > I xk
A-DEF1 x0 M−1P +Q I I xk
A-DEF2 Qb+ P >x0 P >M−1 +Q I I xk

Table 4.1 – Possible choices of the parameters Vs,M1,M2,M3, Ve in Algorithm 18 and
the corresponding two–level method.

4.3 Unified framework for the solution procedures

There already exist several variants for solving a sequence of linear systems such as [75,
77, 88, 93, 100]. In this section, we propose a unified framework that generalizes these
methods.

Let us recall that we are interested in solving the following sequence of linear sys-
tems,

A(s)x(s) = b(s), s = 1,2, . . . ,ν,

where each A(s) is supposed to be symmetric positive definite. Furthermore, we de-
note Z(s) a matrix whose columns define a deflation space for A(s) (see Section 4.2.2).
The core problem of recycling methods is the construction of Z(s). More precisely, the
methods rely on three steps:

1. Given A(s), adapt a priori Z(s−1) for constructing the new deflation vectors Z(s).

114 CHAPTER 4. Recycling strategies

2. Solve A(s)x(s) = b(s) with a two–level preconditioner involving Z(s).

3. Update a posteriori Z(s) using the (spectral) information about A(s) obtained dur-
ing the step 2.

In particular, the steps 1 and 3 are critical because this is where the deflation space is
defined: a trade-off has to be made between its computational cost and its efficiency
during the solve (step 2).

4.3.1 A priori adaptation of the previous deflation space

Given A(s) and Z(s−1), we construct in this step the new deflation vectors Z(s) that are
then used in the solution of A(s)x(s) = b(s). The aims of the construction could be to

1. improve the deflation space,

2. improve the numerical stability of the two–level preconditioner,

3. reduce the dimension of the deflation space if some of the vectors can be omitted.

Ideally, we would like to construct Z(s) such that,

A(s)Z(s) = Z(s)Λ,

where Λ is a diagonal matrix containing the smallest eigenvalues ofA(s), i.e., the columns
of Z(s) are the eigenvectors of A(s). However, solving this problem is challenging and
possibly very costly; see, e.g.., [98].

The simplest idea is to set Z(s) = Z(s−1). This is considered in [100], where it is as-
sumed that A(s) = A, ∀s, and therefore A(s)Z(s) = A(s−1)Z(s−1). As explained in Section
4.2.2, the two–level preconditioner requires factorizing/inverting Z(s)>A(s)Z(s). As a
consequence, even in the minimal case it is mandatory, for A(s) , A(s−1), to compute
A(s)Z(s), then a reduction operation that involves a global communications between the
processors in the distributed computing framework, and eventually the Cholesky fac-
torization of a small dense matrix Z(s)>A(s)Z(s).

In [93], the authors propose to define Z(s) as Z(s) ≡ Z(s−1)R−1, where A(s)Z(s−1) =
Z

(s)
qr R represents a (thin) QR factorization of A(s)Z(s−1). We note that this procedure

is not significantly more costly than setting simply Z(s) ≡ Z(s−1). First, one computes
A(s)Z(s−1), and then the QR factorization of a tall and skinny matrix that can be com-
puted using CholQR algorithm, for instance. The new deflation vectors satisfyA(s)Z(s) =
Z

(s)
qr . This is preferable in the context used in [93], where the original operator A(s) is

replaced by
(
I −Z(s)

qr Z
(s)
qr
>)
A(s). We note that P = I −Z(s)

qr Z
(s)
qr
>

is nothing but the orthogo-

nal projector along the range of Z(s)
qr . This is particularly interesting when dealing with

minimum residual Krylov methods, such as GMRES or MINRES, where the Krylov ba-
sis Vj is build to be orthogonal and the augmented Krylov basis is then PVj . In case of
the Conjugate Gradient, this is not the case anymore because the Krylov basis is built to

4.3. Unified framework for the solution procedures 115

be A(s)-orthogonal. For instance, there is no particular simplification in the expression

of the deflation preconditioner (4.16): Z(s)
qr
>
A(s)Z

(s)
qr has still to be formed and factorized.

4.3.2 Solving the system

There exists a plethora of methods and deflation variants (see the discussion in Sec-
tion 4.2.2) for solving a single system in (4.6). Here, one should take into account
a possible inaccuracy of the approximations to eigenvectors that define the deflation
space. As a consequence, numerical stability issues can occur during the iterations.
This includes the loss of orthogonality and the corresponding delay of convergence
(especially if a solver based on short recurrences such as CG or MINRES is used) or
reaching a maximal attainable accuracy; for an illustration in CMB application see [94,
Section 7]. A remedy might be the full-reorthogonalization of the computed residual
against the residuals from the previous steps and against the basis Z(s) of the defla-
tion space (as in (4.17)). However, such reorthogonalization significantly increases the
computational and memory requirements and may not be possible in many situations.

4.3.3 A posteriori update of the deflation space

As presented in Section 4.2.1, there is a close connection between Ritz values and har-
monic Ritz values approximations, and Krylov iterative solvers because both rely on
Arnoldi or Lanczos algorithms. In [100] Saad et al. propose a so-called deflated version
of the Conjugate Gradient in which approximate harmonic Ritz values and eigenvec-
tors of the matrix are computed at the end of the solve. As for Krylov methods, the loss
of orthogonality of the computed basis may have a huge impact on the quality of the
approximate eigenvectors.

4.3.4 Existing methods

We now review two existing methods: the Deflated CG method [100], and the GCRO-
DR method [93]. In particular, we show how they fit into our framework.

Deflated CG[100]

In [100] Saad et al. propose a deflated version of the Conjugate Gradient for solving one
linear system with several right-hand sides each given at a time.

We first instantiate the method into our framework:

1. A priori adaptation: none, the matrices are assumed to be the same,

2. Solve: CG with augmentation of the search space with the previous deflation
space,

3. A posteriori adaptation: harmonic eigenvalue problem including the previous Z.

116 CHAPTER 4. Recycling strategies

We now detail how the eigenvectors are approximated. Let Z = [W,Pl] where W
denotes the previous eigenvector estimates and Pl denotes the first l search directions
of CG. The authors propose to solve the following generalized eigenvalue problem

Gu = λFu, (4.18)

where F = Z>AZ and G = Z>AAZ. Then the corresponding eigenvector v of A is given
by,

v = Zu. (4.19)

The eigenvectors associated to eigenvalues below a given threshold are then deflated.
We want to point out that the authors use the so–called augmentation approach but it is
equivalent to using a projection approach [52]. The first l directions are kept in order
to limit the memory overhead. This parameter is important because it somehow dictate
the accuracy of the approximated eigenvectors. In [100, Part 5.1], it also is explained in
details how to compute F and G with the coefficients computed within CG iterations,
i.e., avoiding an explicit computation of AZ. We do not recall here the complete algebra
as it is not very complicated, but rather long and technical.

Remark 4.3.1

When considering left preconditioning, instead of solving (4.18) we need to
solve,

Z>AM−1AZu = λZ>AZu. (4.20)

The derivation is done by replacing A by M−1A and the euclidean dot product
by the M-inner product in the algorithm as suggested in [101]. This approach
is a bit different to what is done in [100] where a split preconditioner is used in
order to derive the preconditioned algorithms, but both approaches lead to the
same formula.

GCRO-DR [93]

In [93] de Stuler et al. propose a hybrid method in between GMRES-DR of Morgan [83]
and GCROT of de Sturler [111]:

• as GMRES-DR it relies on computing an approximate invariant subspace associ-
ated to the smallest eigenvalues before restarting,

• as GCROT it uses a deflated restarting that does not rely on any assumption on
the subspace to be deflated,

Although the method has been designed for non-symmetric linear systems and it re-
lies on GMRES iterations, in [77] de Stuler et al. adapt GCRO-DR to the SPD case by
replacing GMRES by MINRES.

As for the previous method, this one also fits into our framework:

4.4. Numerical experiments 117

1. A priori adaptation: it is done through the following process:

C = AZ (4.21)

[Q,R] = qr(C,0) (4.22)

Z = ZR−1 (4.23)

2. Solve: a fixed number of steps of GMRES, or MINRES if the matrix is SPD [77,
88], on the deflated operator (I −ZZ>)A,

3. A posteriori adaptation: harmonic eigenvalue problem including the previous Z.

GCRO-DR is “algebraically equivalent” to GMRES-DR [83]: for a given x0 and A
(and no coarse space) they both produce the same iterates. The a priori adaptation
of Z (step 1) is inspired by GCROT method [111] that was designed to minimize the
orthogonality error when restarting GMRES — it was called an “optimal truncation”.

In [88], the authors precompute 10 eigenvectors of a “representative” matrix and
then adapt this space during the solves. However the authors consider a very specific
application. They need to construct a basis of the space spanned by the solutions of the
systems so they know that some solves are not useful. The coarse space is then enriched
with the approximate solutions and not eigenvectors.

4.4 Numerical experiments

In order to assess the possible benefits of using recycling ideas in the context of CMB
analysis we perform several numerical experiments. The framework we have presented
in Section 4.3 being very general, the aim of this section is to evaluate the influence of
the parameters on the numerical results. However, we restrict ourselves to the Pro-
jected Preconditioned CG (PPCG) method (Algorithm 18) as solver (step 2) because the
matrices are all SPD, and it is very likely that a MINRES–like algorithm would behave
essentially the same as the PPCG method. This problem is solved for 5 different fre-
quencies at the same time. We used the same data as that used in [92], i.e., its size is
roughly 108 (Ndata ≈ 108), and the number of pixels is N = 256 × 256 = 65,536. The
experiments were performed using a sequential code written in python which relies on
numpy and scipy packages. The tolerance for the stopping criterion is set to 10−8.

4.4.1 A simplified case

We consider a first simplified situation where the matrix associated to the system and
the right-hand side are kept constant but several initial guesses are used to generate
an artificial sequence of linear systems’ solves. Although this simplification makes the
solve quite artificial, from a numerical point of view it is very similar to the experiments
performed in [100] because in both cases the initial residuals are random perturbations
of each other. The initial guesses are chosen to be uniformly random, and constructed
using numpy.random.

118 CHAPTER 4. Recycling strategies

In Figure 4.1, we summarize the results we obtained using two configurations for
3 initial guesses. In both cases, we used the harmonic Ritz approximations in order to
compute approximations of the eigenvectors, and these are then deflated using DEF1
variant (whereas DEF2 is used in [100]). The first configuration, denoted “partial”,
mimics that used in [100]: the first 20 search directions are kept and 10 approximated
eigenvectors associated to the smallest eigenvalues are computed using these search
directions. In the second configuration, denoted “full”, the whole basis is kept and
20 eigenvectors associated to the smallest eigenvalues are then computed using these
search directions. For the “partial” configuration, we observe that the number of it-
erations is slightly decreasing from one initial guess to another. This is in accordance
with [100] where the authors observe that the quality of the coarse space is dynami-
cally improved through the sequence. For the “full” configuration, we observe that the
number of iterations is significantly decreasing from the first initial guess to the sec-
ond one, by a factor of 122

34 ≈ 4. Then, the third initial guess is converging as the second
one. This means that a good coarse space is already computed after the first solve if the
whole basis is kept. In our case, the memory and computational overhead of the “full”
configuration is affordable because the dimension of the unknown s is much smaller
than that of the data d. Thus in practice the most time consuming task is usually the
computation of N−1v that occurs at each iterations of the CG method and one can rea-
sonably expect that the computational overhead will be more than compensated by
the significant decrease of the number of iterations. Similarly, the memory overhead
is negligible compared to the storage of the data. Hence, the “full” configuration is
particularly interesting in our case.

We then consider a second simplified situation where the matrix associated to the
system is kept constant but the right-hand sides are changing. In this case, it is the
same experiments as those performed in [100]. Compared to the previous case, we
are expecting that the random perturbations between two following initial residuals is
larger. Thus, we expect to observe more or less the same numerical behavior as in the
previous case, but the deflation should be less effective than before. The right-hand
sides are chosen to be uniformly random, and constructed using numpy.random.

In Figure 4.2, we summarize the results we obtained using two configurations for 3
right-hand sides. In both cases, we used the harmonic Ritz approximations in order to
compute approximations of the eigenvectors, and these are then deflated using A-DEF1
variant. The “partial” configuration corresponds to that used earlier: the first 20 search
directions are kept and 10 approximated eigenvectors associated to the smallest eigen-
values are computed using these search directions and the previous deflated vectors.
And the “full” configuration also corresponds to that used in the previous experiment:
the whole basis is kept and 20 eigenvectors associated to the smallest eigenvalues are
then computed using these search directions and the previous deflated vectors. For
the “partial” configuration, we observe that the number of iterations is not decreas-
ing anymore from one right-hand side to another. In this case, the approximation of
the eigenvectors is not good enough to observe a proper deflation of these. For the
“full” configuration, we observe that the number of iterations is decreasing from the

4.4. Numerical experiments 119

0 100 200 300

10
0

10
2

10
4

10
6

10
8

full
partial

Figure 4.1 – The normalized residual as a function of the number of iterations dur-
ing the sequence for the first simplified case experiment (the initial guess is changing
through the sequence) with 2 configurations. “Full” means that all the search direc-
tions are kept and 20 vectors are deflated (blue), and “partial” means that 20 search
directions are kept and 10 vectors are deflated (orange).

first right-hand side to the second one, by a factor of 108
75 ≈ 1.5. We note that this de-

crease is less important than in the previous case, but it is still significant. This is in
accordance with our observation for the “partial” configuration, and it illustrates the
fact that in this case the random perturbation between the initial residuals is larger
than in the previous case. Then, the third right-hand side is converging in almost the
number of iteration as the second one (82). This means that keeping the whole search
directions greatly improves the quality of the coarse space. Once again, this illustrates
the potential benefits of the “full” configuration in this case.

For the second experiment, we notice that the convergence for the “full” and “par-
tial” configurations are not exactly the same for the first right-hand side, whereas it
was exactly the same for the first initial guess in the experiment. The reason is that the
computations were ran on a supercomputer and thus the random numbers generated
are not the same for the “full” and “partial” configurations for a given experiment. Al-
though this is not visible for the first experiment, it becomes to be for the second exper-
iment. We do not think this bias is important for the conclusion because the difference
is still very small in the second experiment and both configurations are converging in
the same number of iterations for the first right-hand side. However, this is another
illustration of the fact that in the second experiment the initial residuals are less close
to each other than in the first experiment.

120 CHAPTER 4. Recycling strategies

0 100 200 300 400

10
0

10
2

10
4

10
6

10
8

full
partial

Figure 4.2 – The normalized residual as a function of the number of iterations during
the sequence for the second simplified case experiment (the right-hand side is chang-
ing through the sequence) with 2 configurations. “Full” means that all the search di-
rections are kept and 20 vectors are deflated (blue), and “partial” means that 20 search
directions are kept and 10 vectors are deflated (orange).

4.4.2 Systems arising from the PCS problem

In what follows we consider a sequence coming from a parametric component sepa-
ration (PCS) problem. The full sequence contains 26 linear systems with their corre-
sponding right-hand sides to be solved.

First of all, we notice that when using a zero initial guess (x0 = 0), all the sys-
tems converge in exactly the same number of iterations (Figure 4.3). This is rather
unusual, but it might suggest that all the matrices have the same spectrum — although
the convergence of the CG method in floating–point arithmetic is a very complex phe-
nomenon [82].

One of the most natural method is the so-called continuation technique which con-
sists in using the previous solution as an initial guess for the next system; it is both
very simple and inexpensive. In Figure 4.4 we have plot the normalized residual norm
through the sequence when using the continuation technique. The picks correspond to
an increase of the residual because a new system has to be solved. However, there are
consecutive systems whose solutions are very close. For instance, the first system needs
125 iterations to be solved, but the second one converges in only 2 iterations! Similarly,
the fourth system converges in 1 iteration whereas the third one needs 122 to converge.
We observe that the number of iterations tends to decrease through the sequence. This
is a consequence of the underlying optimization process that is converging, thus the
difference between two consecutive solutions is decreasing. From these observations,
we decide to focus on the first four systems because they are representative of the over-
all behavior of the sequence. More precisely, we aim at improving the convergence of

4.4. Numerical experiments 121

0 100 200 300 400 500
iterations

10
0

10
2

10
4

10
6

10
8

no
rm

liz
ed

 re
si

du
al

Figure 4.3 – Convergence results for the first 4 systems of the full sequence with x0 = 0.
The tolerance is set to 10−8. We do not plot the 22 other systems but their convergence
is exactly similar.

the third system where the continuation technique does not really improve the conver-
gence.

The framework we have presented is quite general, leaving several parameters to be
set according to the particular problem one is interested in. Namely, the two–level pre-
conditioner can be built in different ways [115], the number of deflated vectors is free,
and the method to approximate the eigenvectors associated to the smallest eigenvalues
(Ritz or harmonic Ritz approximation) has to be decided. In what follows, we evaluate
the influence of each parameter in our case of interest: the PCS problem.

Comparison between different types of two–level preconditioners

As pointed out in [115], the way of deflating the coarse space, i.e., the construction of
the two–level preconditioner, may have an impact on the convergence of the iterative
method even if in theory these are all equivalent. In the first experiment, we compare
DEF1, DEF2, and A-DEF1 types of two–level preconditioners in order to assess their
respective stability. We fix the number of deflated vectors to 20. These vectors corre-
spond to harmonic Ritz approximations of the eigenvectors associated to the smallest
eigenvalues of the previous matrix4 using all the search directions, i.e., the “full” con-
figuration. In Figure 4.5, we plot the residual convergence for the first four systems
of the sequence for the DEF1, DEF2, and A-DEF1 types of two–level preconditioners;
the residual convergence using the continuation technique is plot as a reference. We
first observe that the 3 types of two–level preconditioners have the same convergence
behavior. This is not really surprising because all these preconditioners are in some
sense equivalent, and they usually behave similarly numerically [115]. However, we

4The first system is solved without deflation.

122 CHAPTER 4. Recycling strategies

0 200 400 600 800
iterations

10
0

10
2

10
4

10
6

10
8no

rm
liz

ed
 re

si
du

al

3rd system

Figure 4.4 – Convergence results of the full sequence of 26 systems solved using con-
tinuation. The tolerance is set to 10−8.

also observe that the convergence of the continuation technique is slightly better than
that of the deflated versions. This is rather surprising because we would expect that
the number of iterations decreases when using deflation. Nevertheless, we can con-
clude that this behavior is not coming from the two–level preconditioner because the 3
variants we have tested are converging similarly. Hence, we now study in more details
the deflated subspace.

Influence of the number of deflated vectors

First, we study the influence of the number of deflated vectors. More precisely, we vary
the number of approximated eigenvectors in the harmonic Ritz projection problem us-
ing all the search directions and the previous deflated vectors. These are then deflated
using the DEF1 method. The results are plot in Figure 4.6. We observe that deflating 10
or 20 eigenvectors has the same effect on the convergence; it is very slightly worse that
the continuation. On the other hand, the convergence of the method when 5 vectors
are deflated is exactly the same as for the continuation. These results further suggest
that the deflated subspace is not really appropriate to our test case. Thus increasing its
size does not help, and it even increases the numerical round–off errors — although the
overall effect of adding more deflated vectors is not significant.

Comparison between Ritz and harmonic Ritz approximations of the eigenvectors

Second, we compare the Ritz and harmonic Ritz approximations of the eigenvectors.
In more details, we compute 20 vectors that approximate the eigenvectors associated
the smallest eigenvalues of the underlying matrix using either Ritz or harmonic Ritz
approximation. In both cases, these problems are solved using all the search directions

4.4. Numerical experiments 123

0 50 100 150 200 250
iterations

10
0

10
2

10
4

10
6

10
8no

rm
liz

ed
 re

si
du

al
continuation
DEF1
DEF2
A-DEF1

Figure 4.5 – Convergence results for different types of two–level preconditioners. The
first four systems are solved using the following parameters: the tolerance is set to 10−8

and 20 eigenvectors are approximated using harmonic Ritz projection technique.

0 50 100 150 200 250
iterations

10
0

10
2

10
4

10
6

10
8no

rm
liz

ed
 re

si
du

al

continuation
20 vectors
10 vectors
5 vectors

Figure 4.6 – Convergence results for different numbers of deflated vectors. The first
four systems are solved using the following parameters: the tolerance is set to 10−8, the
eigenvectors are approximated using harmonic Ritz projection technique, and they are
deflated using the DEF1 preconditioner.

124 CHAPTER 4. Recycling strategies

0 50 100 150 200 250
iterations

10
0

10
2

10
4

10
6

10
8no

rm
liz

ed
 re

si
du

al

continuation
Ritz
harm. Ritz

Figure 4.7 – Convergence results for Ritz and harmonic Ritz approximations of the
eigenvectors. The first four systems are solved using the following parameters: the
tolerance is set to 10−8, 20 eigenvectors are approximated, and they are deflated using
the DEF1 preconditioner.

and the previous deflated vectors. These approximations are then deflated using DEF1
algorithm. In Figure 4.7, we summarize the results obtained. We observe that both
methods converge very similarly, thus using the Ritz projection method does not help
to find a better subspace to deflate. In fact, this is not really surprising because it is
usually claimed that the harmonic Ritz “approach yield[ed]s the best results in finding
eigenvalues nearest zero” [100, p. 1918]. Once again, the conclusion reached is that the
deflated subspace is not adapted to our case of interest.

Accurate computation of the eigenvectors associated to the smallest eigenvalues

Given the previous experiments, we suspect that the eigenvectors associated to the
smallest eigenvalues of some matrices in the sequence, e.g., the first one, are different
than that of other matrices, e.g., the third one, although all the matrices have the exact
same convergence behavior (see Figure 4.3). In order to have a better understanding of
the spectral properties of the underlying matrices, we use the built–in function of the
numpy.sparse.linalg package5 to compute the 20 smallest eigenvalues and their asso-
ciated eigenvectors of the preconditioned operator, i.e., the matrix (M>β GMβ)−1M>β F Mβ

with the following notations:

F ≡ P >N−1P , G ≡ P >diag(N−1)P . (4.24)

We plot the 20 smallest eigenvalues obtained in Figure 4.8. We observe that the
smallest eigenvalue of the preconditioned operator is around µ1 ≈ 8 × 10−7, and it has

5It is in fact a binding to the ARPACK package (https://www.caam.rice.edu/software/ARPACK/).

https://www.caam.rice.edu/software/ARPACK/

4.4. Numerical experiments 125

0 5 10 15 20
10

6

10
5

10
4

10
3

10
2 Eigenvalue distribution

Figure 4.8 – Eigenvalues’ distribution of the preconditioned operator for the first sys-
tem computed with scipy.sparse.linalg.eigsh. The tolerance is set to 10−10, and
the maximum number of iterations is set to 100.

a multiplicity of 6. However, it is well–known that the Lanczos method, from which
the Ritz and harmonic Ritz projections are deduced, does not allow to approximate
multiple eigenvalues [98]. This is because the associated tridiagonal matrix from which
the approximations are computed is unreduced, thus its eigenvalues are all different.
That is why in practice even if we have approximated one eigenvector associated to µ1
and then deflated it, there are still 5 eigenvectors associated to this eigenvalue and the
corresponding eigenspace that may in fact not be discarded. This is, in general, not a
problem when considering full orthogonalization methods such as GCRO-DR because
at each restart one usually deflates the converged eigenvectors. In this case, it would
mean that after 6 restarts one may expect to have completely deflated the eigenspace
associated to the smallest eigenvalues. This is of course not the case for us, and this
may explain why the convergence of the third system is not improved with our deflated
vectors.

In order to confirm our hypothesis, we now solve the third system of the sequence
while deflating the 20 approximate eigenvectors computed using the scipy built–in
function. As the second system is converging in 2 iterations, it mimics a situation
where we would have a good approximation of the eigenspace associated to the small-
est eigenvalue at the end of the first solve. We compare the convergence with that
obtained earlier with Ritz and harmonic Ritz approximations. In both cases we use
the DEF1 algorithm. The corresponding results are plot in Figure 4.9. We observe
that the deflated vectors computed with the eigsh of scipy are of higher quality be-
cause the overall number of iterations is around 40% lower when they are used in the
two–level preconditioner. More precisely, we observe that the convergence is “smooth”
and the residual is monotonically decreasing with the accurate approximation of the
eigenspace associated to the smallest eigenvalues, whereas there is a “pick” with the

126 CHAPTER 4. Recycling strategies

0 25 50 75 100 125
iterations

10
2

10
4

10
6

10
8

no
rm

liz
ed

 re
si

du
al

eigsh
Ritz
harm. Ritz

Figure 4.9 – Convergence of the normalized residual of the third system for different
deflated vectors. In all cases, the number of deflated vectors is 20, and these are deflated
using DEF1 preconditioner. The label eigsh means that the eigenvectors are computed
using the scipy built–in function: the tolerance is set to 10−10, and the maximum num-
ber of iterations is set to 100. The labels Ritz, respectively harmonic Ritz, mean that
the eigenvectors are computed using Ritz, respectively harmonic Ritz, approximations
where all the previous search directions are kept.

Ritz and harmonic Ritz approximations which delays the convergence.
Previously, we have claimed that “after 6 restarts one may expect to have completely

deflated the eigenspace associated to the smallest eigenvalues”. In order to support this
statement, we now simulate this situation numerically. More precisely, we deflate 5
eigenvectors associated to the smallest eigenvalues, which were computed with eigsh,
to solve the second system. Then we compute 6 eigenvectors associated to the smallest
eigenvalues of the second matrix using harmonic Ritz projection with all the search
directions, and the previous deflated vectors. We eventually deflated these 6 vectors
to solve the third system. We plot the convergence for both systems in Figure 4.10.
We observe that the second system is converging in 125 iterations whereas the third is
converging in 78 iterations. This supports our claim: we were able to approximate the
6th vector associated to the smallest eigenvalue at the end of the solve of the second
system, and that is why the convergence of the third system is much faster. Thus,
in practice if the sequence of linear systems to solve is long enough, it is eventually
possible to approximate the whole eigenspace associated to the smallest eigenvalue.

4.4.3 Adaptation of the initial guess for the PCS systems

The previous experiments have shown that the spectral information contained in the
Krylov basis of the previous matrices does not accelerate the convergence of the current
matrix. This difficulty may be overcome by adding an implicit or explicit deflation

4.4. Numerical experiments 127

0 25 50 75 100 125
iterations

10
2

10
4

10
6

10
8

no
rm

liz
ed

 re
si

du
al

2nd system
3rd system

Figure 4.10 – Convergence of the normalized residual of the second and third systems
when deflating first 5 accurate eigenvectors, and then 6 eigenvectors. The tolerance is
set to 10−8, and the DEF1 technique is used for the deflation.

procedure for the approximation of the eigenvalues. We want to point out that using
such procedure would need a careful selection of some additional parameters, e.g., a
restart size, a locking tolerance. It would also induce an extra cost, that might be not
profitable in all cases. On the other hand, the continuation technique, which is very
simple and inexpensive, has shown very good results for some of the linear systems
because some solutions are very close to each other. Thus, another idea, that we now
put forward, is to take advantage of our knowledge about the underlying problem in
order to find an improved initial guess.

More precisely, we now focus on the special structure of the underlying operator in
order to find an improved initial guess. We denote F ≡ P >N−1P and b̃ ≡ P >N−1d. With
these notations (4.7) reads,

M>β F Mβsβ =M>β b̃. (4.25)

We notice that Mβsβ is independent of β. Indeed, we have

M>β (F Mβsβ − b̃) = 0 ⇐⇒ F Mβsβ = b̃, (4.26)

because Mβ is full rank. In fact, Mβsβ can be seen as the solution of an usual map–
making problem. It directly follows that given any β and β′, we have Mβsβ = Mβ′sβ′ .
Let us assume that we already have an (approximated) expression of sβ , then ifMβ′ was
invertible, one would apply its inverse in order to find the (approximated) expression
of sβ′ . However as it is not the case, we simply propose to apply its pseudo-inverse
instead, denoted M†β′ , in the hope that M†β′Mβsβ ≈ sβ′ . We want to emphasize that this
procedure is much cheaper than the application of the operator M>β′F Mβ′ because: 1)

it is independent of F , 2) applying M†β′ = (M>β′Mβ′)−1M>β′ is very cheap because Mβ′ has

128 CHAPTER 4. Recycling strategies

0 50 100 150 200 250

10
0

10
2

10
4

10
6

10
8

no adaptation
adaptation

Figure 4.11 – The reduced sequence of 4 systems solved using continuation and adap-
tation of the initial guess. The tolerance is set to 10−8.

a tensorized structure. Indeed, we have,

M>β′Mβ′ = K>β′Kβ′ ⊗ I, (4.27)

and,
(M>β′Mβ′)

−1 = (K>β′Kβ′)
−1 ⊗ I, (4.28)

where K>β′Kβ′ is a 3× 3 matrix.
In Figure 4.11, we show the results we obtained when adapting the initial guess

using this formula. As explained before, we focus on the first four systems of the se-
quence, and we use the continuation’s convergence as a reference. We observe that the
adaptation of the initial guess allows to reduce by a factor of around 2 the number of
iterations for the third system. Thus, the overall number of iterations for solving the
4 linear systems is reduced by a factor of around 1.5. We want to emphasize that the
adaptation of the initial guess is very cheap because of the tensorized structure of Mβ ,
and it is also very simple to implement. Thus it should lead to a significant speed–up
in realistic computations.

Conclusion

Outline of the current chapter

Summary 129
Perspectives 130

Summary

In order to effectively use the most powerful supercomputers — and prepare for the
forthcoming generation of exascale machines — it is crucial to redesign from the ground
up the linear algebra routines that constitute the cornerstone of many scientific soft-
ware. Throughout this thesis, we thoroughly studied a reformulation of the Conju-
gate Gradient method that relies on so–called Enlarged Krylov subspaces: the Enlarged
Conjugate Gradient method; both from a theoretical and practical points of view.

We propose a new derivation of the Enlarged Conjugate Gradient that allows us
to get two variants of the method (Orthodir and Orthomin). We have described the
link between these two variants, and thus explained their difference in terms of robust-
ness. We also have studied its convergence rate and we have showed that the Enlarged
Conjugate Gradient method is acting as if the smallest eigenvalues of the matrix were
somehow deflated. Numerical experiments show that enlarging the Krylov subspaces
allow to reduce significantly the number of iterations with respect to the classical PCG
method. In fact, we show that the method is indeed acting numerically as a two–level
preconditioner. Moreover, we have presented dynamic versions of Orthodir and Or-
thomin where the number of search directions is adaptively reduced during the itera-
tions. These dynamic versions allow to reduce the cost of the extra arithmetic opera-
tions induced by the method without altering its efficiency.

Then, we have described the parallel design of the method, including the two vari-
ants as well as their dynamic versions. In order to further increase the scalability of this
design we have proposed a reformulation of the algorithm in order to fuse the different
synchronizations within an iteration. Also, as our implementation is based on BLAS3
kernels only, it offers a good scaling when increasing the number of threads per MPI
process. Using the Fused variant of Orthodir we are able to scale up to 32,768 threads,
each one bound to a physical core, while being almost 4 times faster than PETSc PCG
for an elasticity matrix. Throughout this work, the only assumption we make is that

129

130 Conclusion

the matrix is symmetric positive definite. Hence the resulting methods are very generic
and completely algebraic. For instance, it is straightforward to use D-Odir for solv-
ing linear systems with several right-hand sides. Similarly, ECG can be used with any
preconditioner that could be used with CG. Thus, it can be used as a black-box solver
that can be integrated very easily in any existing code. As it increases the arithmetic
intensity and reduces the communication, it is well suited for modern and future ar-
chitectures that exhibit massive parallelism. According to the theoretical study and
the numerical experiments, it is particularly well adapted for matrices with few small
eigenvalues.

Finally, we have applied recycling strategies to the parametric component separa-
tion problem (PCS) in CMB data analysis. The solution of a sequence of linear systems
that are, in some sense, close to each other is of interest for many other applications.
We have introduced a general framework that embeds several existing recycling meth-
ods based on two main ingredients: the construction of a two–level preconditioner,
and the approximation of eigenvalues and the associated eigenvectors from an already
computed Krylov basis. When the underlying matrix is fixed, and there are multiple
right-hand sides, the recycling techniques allow to reduce the number of iterations sig-
nificantly. However, as a result of the multiplicity of the smallest eigenvalue, these
techniques are not very efficient when both the matrix and the right-hand sides are
changing. Hence, we have proposed a cheap procedure to adapt the initial guess that
has permitted to reduce the overall number of iterations by a factor of 1.5. This adap-
tation relies on the tensorized structure of the mixing matrix. Taking into account this
special structure allows us to simplify considerably some computations that seemed
a priori impossible to perform from a practical point of view. Thus in the case of a
sequence of linear systems we recommend to use what little information is available
about the underlying problem. It is indeed quite complicated for a given case of inter-
est to formalize what “close to each other” exactly means in terms of the eigenvectors
of the underlying matrices.

Perspectives

This thesis strived to investigate the benefits of using the Enlarged Conjugate Gradient
method for solving linear systems on massively parallel machines. Of course, this work
has also raised questions that would require further investigation.

• The way the Krylov subspaces are enlarged is very simple so a natural question
is: is it possible to find a better way to enlarge the Krylov subspaces? It seems to
be a difficult question because the Theorem 2.4.1 suggests that one should enrich
the Krylov subspaces with a “good” approximation of the eigenvectors associated
to the smallest eigenvalues of the matrix in order to bound the constant. And it is
indeed well-known that these eigenvectors are difficult to compute [98]. Finding a
cheap, yet acceptable in terms of accuracy, approximation would certainly require
taking advantage of special properties of the underlying problem.

Perspectives 131

• It is well–known that round–off errors play an important role in the convergence
of the Krylov methods in practice, and on particular on the maximum attainable
accuracy [56, 82]. To our knowledge, there exists no theoretical study of the be-
havior of the block CG-like methods in floating–point arithmetic. In particular, it
would be very interesting to study Orthodir and Orthomin in terms of maximum
attainable accuracy. A first step might be to start from [72] where the authors
make this study in the context of the GMRES method, and to extent their work
to the (block) CG method. This theoretical work would be the first step in order
to derive a pipeline ECG, or an inexact ECG [102] where the sparse matrix–vector
product is computed inexactly.

• Of course, a natural extension of this work is to consider the case where A is not
symmetric positive definite. In fact, an Enlarged GMRES (EGMRES) method has
been derived by Al Daas and Grigori [5]. In order to make mitigate the memory
overhead several techniques are employed: deflation of the smallest eigenvalues
at restart, dynamic reduction of the search directions. However another direc-
tion of research is to derive an Enlarged BiCGSTAB method, generalizing [118].
A starting point is the block BiCGSTAB method [64], from which it should be
straightforward to derive an Enlarged version. Nevertheless, a special attention
should be taken in order to mitigate the effect of possible breakdowns. Also, the
theory is much more complicated in the non–symmetric, and especially in the
case of BiCG-like methods, thus extensive numerical experiments should be car-
ried out. Finally, we want to point out that a parallel implementation should be
quite straightforward because it would rely on the same kernels as those we used
in the implementation of ECG.

• From a more practical point of view, it would be very interesting to test the
method on GPUs as it seems that block Krylov methods are particularly effec-
tive on these [28]. Similarly, ECG should be well adapted for this special type of
architecture.

• A direct follow up perspective would be to implement the method using task–
based programming [7, 11] where the program is now split into tasks, and their
dependencies. The scheduling of the tasks is then done by the runtime system in a
very efficient way. This approach has been very successful in dense linear algebra
packages such as PLASMA [4]. Of course the challenge would be to effectively
schedule the tasks among the ten of thousands of physical processors while taking
into account the hardware hierarchy of a supercomputer.

• As for the parameter component separation problem of CMB analysis, many re-
search directions remain opened. The most natural one would be to study the
potential benefits of the ECG method for solving the first system of the sequence.
On the one hand, one could expect to converge in less iterations, and thus to
reduce the runtime. And on the other hand, it should also be possible to approx-
imate at the same time several eigenvectors associated to the same eigenvalue,

132 Conclusion

thus to increase tremendously the quality of the deflated subspace. This work
has been started by Thibault Cimic during his Master’s degree internship and the
first results show that the ECG method indeed allows to decrease the number of
iterations for Map–making problems. However, it remains to see if it also allows
to compute a good approximation of the eigenspace associated to the smallest
eigenvalues, and to eventually test the method in a massively parallel environ-
ment on realistic test cases. This should be one of the goal of Thibault Cimic’s
Ph.D. that has just started in October.

A
Appendices

Outline of the current chapter

A.1 A convergence study of ECG using [89, Theorem 5] I

A.2 Numerical experiments on the BUNDLE test case IV
A.2.1 Impact of the enlarging factor V
A.2.2 Strong scaling study . VI

A.3 Numerical experiments on an elasticity problem discretized us-
ing PETSc VI
A.3.1 Definition of the problem VI
A.3.2 Numerical results . VII

A.1 A convergence study of ECG using [89, Theorem 5]

In this section, we use Theorem 5 from O’Leary in [89] to derive a “naive" bound for
the rate of convergence of ECG. In what follows we use the notations defined here-
inafter. We denote u(i) the ith component of a vector, and U (i) the vector representing
the ith column of a matrix. uk is the vector u at the kth iteration of the iterative pro-
cess. A is a square symmetric definite positive (s.p.d.) matrix of size n whose eigen-
values are denoted 0 < λ1 6 · · · 6 λi 6 · · · 6 λn. κ = λn

λ1
is the condition number of

A. Λ = diag(λ1, . . . ,λn) is a diagonal matrix containing the eigenvalues of A. φ1, . . . ,φn
are the eigenvectors associated to λ1, . . . ,λn such that they form an orthonormal basis.
Φ =

(
φ1 . . . φn

)
is a matrix containing the eigenvectors of A. ||u||A = u>Au is the

norm induced by A. x∗ is the exact solution of the system Ax = b, i.e. x∗ = A−1b. t is the
block size, it corresponds to the enlarging factor in ECG and the number of right-hand
sides in BCG.

We state the main result of this section.

I

II APPENDIX A. Appendices

Theorem A.1.1

Let xk the approximation given by the ECG process at step k then we have:

||xk − x∗||2A 6 C
(√
κt − 1
√
κt + 1

)2k

(A.1)

where κt =
λn
λt

and C is a constant independent of k. More precisely we have,

C 6 4|||x0 − x∗||2A + 16||x0 − x∗||22λn
(
λn +λt −λ1

λn −λt

)2

max
i∈{1,...,t}

tan2(θ(i))

+ 16||x0 − x∗||22λn
(
λn +λt −λ1

λn −λt

)
max
i∈{1,...,t}

tan(θ(i)) (A.2)

Proof. In [89] O’Leary demonstrated the following result on the convergence of Block
Conjugate Gradient,

||X(i)
k −X

(i)
∗ ||2A 6

(
C

(i)
1 +C(i)

2 +C(i)
3

)(√κt − 1
√
κt + 1

)2k

(A.3)

with C(i)
1 , C(i)

2 and C(i)
3 some constants independent of k but that may depend on i ; and

X
(i)
∗ the exact solution of the ith system. This results can be applied to each columns

of Xk the solution of ECG because by definition ECG is a special case of BCG. So using
(A.3) we have,

||xk − x∗||2A 6

 t∑
i=1

C
(i)
1 +C(i)

2 +C(i)
3

(√κt − 1
√
κt + 1

)2k

. (A.4)

First, we recall some notations introduced in [89] in order to take a closer look into the
constants C(i)

1 , C(i)
2 and C(i)

3 :

Φξ(i) = X(i)
0 −X

(i)
∗ , ξ(i) =

Ξ

(i)
1
...

Ξ
(i)
n

 ∈ Rn (A.5)

ξ
(i)
1 =

Ξ

(i)
1
...

Ξ
(i)
t−1

 ∈ Rt−1, ξ
(i)
2 =

Ξ

(i)
t
...

Ξ
(i)
n

 ∈ Rn−t+1 (A.6)

Λ1 = diag(λ1, . . . ,λt−1), Λ2 = diag(λt , . . . ,λn) (A.7)

A.1. A convergence study of ECG using [89, Theorem 5] III

In addition, we need to define F(i) ∈ Rn×(t−1) such that ΦF(i) is an orthonormal basis of

span�
{
R

(1)
0 , . . . ,R

(i−1)
0 ,R

(i+1)
0 , . . . ,R

(n)
0

}
(A.8)

and

F(i) =

f

(i)
1
...

f
(i)
n

with f (i)
i a row vector of size t − 1 (A.9)

F
(i)
1 =

f

(i)
1
...

f
(i)
t−1

 F
(i)
2 =

f

(i)
t
...

f
(i)
n

 (A.10)

||F(i)
2 F

(i)
1

−1
||22 = tan2(θ(i)) (A.11)

θ(i) = arccos
(
λmin

(
F

(i)
1

))
(A.12)

C
(i)
1 , C(i)

2 and C(i)
3 are defined in [89] as,

C1 = 4ξ(i)
2

t
Λ2ξ

(i)
2 , (A.13)

C
(i)
2 = 16

(
λn +λt −λ1

λn −λt

)2

tan2(θ(i))||Λ2||2||ξ
(i)
1 ||

2
2, (A.14)

C
(3)
3 = 16

(
λn +λt −λ1

λn −λt

)
tan(θ(i))||Λ2ξ

(i)
2 ||2||ξ

(i)
1 ||2. (A.15)

So we need to bound,
t∑
i=1

C
(i)
1 +C(i)

2 +C(3)
3 . (A.16)

We split the sum in three according to the different constants involved.

• The first constant is easy to bound because,

C
(i)
1 = ||x(i)

0 − x
(i)
∗ ||2A, (A.17)

hence,
t∑
i=1

C
(i)
1 = ||x0 − x∗||2A. (A.18)

IV APPENDIX A. Appendices

•
t∑
i=1

C
(i)
2 can be rewritten as,

t∑
i=1

C
(i)
2 =

t∑
i=1

16
(
λn +λt −λ1

λn −λt

)2

tan2(θ(i))||Λ2||2||ξ
(i)
1 ||

2
2 (A.19)

= 16
(
λn +λt −λ1

λn −λt

)2 t∑
i=1

tan2(θ(i))||Λ2||2||ξ
(i)
1 ||

2
2 (A.20)

6 16
(
λn +λt −λ1

λn −λt

)2

max
i∈{1,...,t}

tan2(θ(i))
t∑
i=1

||Λ2||2||ξ
(i)
1 ||

2
2 (A.21)

6 16
(
λn +λt −λ1

λn −λt

)2

max
i∈{1,...,t}

tan2(θ(i))||Λ2||2
t∑
i=1

||ξ(i)
1 ||

2
2 (A.22)

6 16
(
λn +λt −λ1

λn −λt

)2

max
i∈{1,...,t}

tan2(θ(i))λn||x0 − x∗||22. (A.23)

•
t∑
i=1

C
(i)
3 can be rewritten as,

t∑
i=1

C
(i)
3 =

t∑
i=1

16
(
λn +λt −λ1

λn −λt

)
tan(θ(i))||Λ2ξ

(i)
2 ||2||ξ

(i)
1 ||2 (A.24)

= 16
(
λn +λt −λ1

λn −λt

) t∑
i=1

tan(θ(i))||Λ2ξ
(i)
2 ||2||ξ

(i)
1 ||2 (A.25)

6 16
(
λn +λt −λ1

λn −λt

)
max
i∈{1,...,t}

tan(θ(i))
t∑
i=1

||Λ2ξ
(i)
2 ||2||ξ

(i)
1 ||2 (A.26)

6 16
(
λn +λt −λ1

λn −λt

)
max
i∈{1,...,t}

tan(θ(i))λn||x0 − x∗||2. (A.27)

Using (A.18), (A.23) and (A.27) the conclusion follows.

A.2 Numerical experiments on the BUNDLE test case

We now test our implementation on a matrix generated using the CFD solver Code_Saturne
that solves the Navier-Stokes equations for incompressible flows. This code is devel-
oped in-house by EDF and is distributed under the GPL open source license (avail-
able at http://www.code-saturne.org). Code_Saturne has been included in the Uni-
fied European Applications Benchmark Suite of the PRACE project (see http://www.

praceri.eu/ueabs). It is used for a wide range of applications, many of which are re-

http://www.code-saturne.org
http://www.praceri.eu/ueabs
http://www.praceri.eu/ueabs

A.2. Numerical experiments on the BUNDLE test case V

Name Size Nonzeros Problem

BUNDLE 13,044,996 347,890,620 CFD

Table A.1 – The BUNDLE test case.

lated to nuclear engineering, but increasingly with applications related to renewables.
We focus on simulations such as the computation of fluid flow in tube bundles, either
cross-flow as in steam generators, or tangential as in Pressurized Water Reactor fuel as-
semblies, as these applications are numerically quite representative of a broader range
of applications, and large-scale meshes for benchmarking are available. We have col-
laborated with Yvan Fournier from EDF to test ECG on a matrix corresponding to the
BUNDLE test case.

In all the experiments the tolerance is set as the default tolerance of PETSc, i.e., 10−5

and the maximum number of iterations is set to 5000. The right-hand side is chosen
uniformly random, and then normalized. The initial guess is set to 0. The following
experiments are performed on a Kebnekaise. We do not use any kind of threading and
use 28 MPI processes per node, each one being bound to one OpenMP thread.

A.2.1 Impact of the enlarging factor

First we study the impact of the enlarging factor t on the methods. We fix the number
of processors to 112 and we vary the value of t for the 4 methods: Orthodir (Odir),
Orthodir with dynamic reduction of the search directions (D-Odir), Orthomin (Omin)
and Breakdown-Free Orthomin (BF-Omin). The results obtained are summarized in
Table 3.4

t Odir D-Odir Omin BF-Omin

BUNDLE 1 20.3 20.4 20.0 20.2
2 23.1 23.0 23.9 23.1
4 28.7 28.8 28.8 28.8
8 36.8 36.4 36.7 36.4

Table A.2 – Runtime results for the BUNDLE test case (Nproc = 112)..

For the BUNDLE matrix, the reduction of the number of iteration is not balancing
the increase in flops and the runtime is slightly increasing when t increases. In fact,
the number of iterations when t = 1 is already very low in this case (85) and increasing
t does not allow to reduce it significantly. For instance, when t = 8 the number of
iterations is 69, a decrease of only 20%. Using the dynamic reduction of the search
directions is not very effective for this matrix because it generally occurs when the

VI APPENDIX A. Appendices

method is about to converge.

A.2.2 Strong scaling study

Following the parameter study, we perform a strong scaling study on BUNDLE. We
compare PETSc PCG and Omin with t = 4. We do not use the dynamic reduction of the
search directions as it is not very effective for this matrix, and we use Omin because
it is a bit cheaper that Odir and does not breakdown for this matrix. The results are
summarized in Table A.3. We observe that both PETSc PCG and ECG are scaling very
well. Nevertheless, in this case enlarging the Krylov subspaces does not allow to reduce
significantly the number of iterations and ECG remains almost 2 times slower than
PETSc PCG.

Omin(4) CG

MPI # iter res time (s) # iter res time (s)

252 78 1.3E-4 12.1 89 1.3E-4 7.4
504 88 1.8E-4 5.9 98 1.9E-4 3.4

1,008 95 2.6E-4 2.9 105 2.7E-4 1.5

Table A.3 – Strong scaling results for BUNDLE.

A.3 Numerical experiments on an elasticity problem discretized
using PETSc

In order to demonstrate the versatility of our parallel design, we present results where
we consider an elasticity problem which is discretized using PETSc.

A.3.1 Definition of the problem

The following experiments are performed on Cori. We use PETSc to discretize a linear
elasticity problem of the form,

div(σ (u)) + f = 0 on Ω, (A.28)

where Ω is a unit cube, f is some body force, u is the unknown displacement field, and
σ (.) is the Cauchy stress tensor given by Hooke’s law: it can be expressed in terms of
Young’s Modulus E and Poisson’s ratio ν. For a more detailed description of the prob-
lem see [62, 74, 108]. We consider a cube (E,ν) = (1,0.25) made of several spheres of
a hard material (E+,ν) = (10i ,0.25) and a soft material (E−,ν) = (10−i ,0.25) where i is
an integer, i.e., discontinuous E (see Figure A.1). We modify the example number 56 of
PETSc1 in order to discretize this equation using Q1 finite elements. This means that

1http://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/examples/tutorials/ex56.c.
html

http://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/examples/tutorials/ex56.c.html
http://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/examples/tutorials/ex56.c.html

A.3. Numerical experiments on an elasticity problem discretized using PETSc VII

there are 81 non-zero entries per row in the global matrix. Furthermore, we also use
PETSc to apply the sparse matrix–set of vectors product, and the block Jacobi precon-
ditioner. We use the default parameter of PETSc for the block Jacobi preconditioner
which means that an imcomplete Cholesky factorization with no fill–in (ICC0) is per-
formed on the diagonal blocks. This preconditioner is of course less effective in terms
of iterations than a block Jacobi with the complete factorization, but it is also cheaper
and it increases the load balancing between the processors. As before, the tolerance of
the stopping criterion is set to 10−5.

Figure A.1 – Pattern of the heterogeneity of E, there are spheres of a hard and a soft
material.

A.3.2 Numerical results

In the following experiments, we are interested in assessing the robustness of the method
with respect to the physical problem. More precisely, we vary the heterogeneity jump
of the Young’s Modulus, i.e., we consider different values of i in the expressions of E+
and E−.

We use the following command line in order to define the linear system to be solved:

srun -n 8000 ./bin/test_ecg_petsc_ela -pc_type bjacobi -sub_pc_type icc -ne

299 -e 28 -r 0↪→

In fact, this generates a linear system of 81 million of unknowns, and around 4.5 billion
of non-zeros. This system is then solved in parallel with 8,000 MPI processes using
PETSc CG, Odir(28), and Fused Odir(28) for different values of i in the expression of
E+ and E−. We do not use any kind of threading and use 64 MPI processes per KNL node
— from the 68 possible cores, 4 cores are dedicated to the so–called core specialization.
The results are summarized in Table A.4. We observe that the number of iterations

VIII APPENDIX A. Appendices

with Odir, and D-Odir is rather constant with respect to the increase of the jump of
the heterogeneity of E. It is not the case for the usual CG method, and the number
of iteration is almost doubling as the jump is increasing. This of course is somehow
translated in the resulting runtimes. We observe that ECG’s runtimes (Odir and Fused
Odir) are almost constant (around 140 seconds) with respect to the jump. On the other
hand, CG’s runtime is increased by a factor 109

58 ≈ 1.9. Despite this increase, we notice
that PETSc’s CG is still faster than Odir and Fused Odir. This is mainly due to the fact
that we apply the preconditioner, and the sparse matrix–dense matrix product within
PETSc but PETSc has not been designed to handle block operations. Thus, it is very
likely that these operations could be optimized in order to mitigate the extra arithmetic
costs. We want to point out that it is indeed the arithmetic costs which are dominating
in this case, and the very slight difference in runtime between Odir and Fused Odir
is an illustration of this. Also the difference in terms of iterations between Odir and
Fused Odir is very likely due to the non–reproducible behavior of MPI, and not to the
reformulation of the algorithm. At this scale it is visible although not really significant
in the runtimes.

Fused Odir Odir PETSc’s CG

(E+,E−) # iter time (s) # iter time (s) # iter time (s)

(104,10−4) 587 139.4 589 142.2 6,202 58.8
(105,10−5) 593 129.6 585 128.0 6,446 61.9
(106,10−6) 639 140.9 630 138.8 9,482 85.4
(107,10−7) 675 147.1 672 147.5 11,924 109.6

Table A.4 – Iteration count and runtimes obtained for an elasticity problem with 81
million of unknowns and around 6.5 billion of non-zeros. The enlarging factor is set to
28, and there is no dynamic reduction of the search directions.

Bibliography

[1] M. Abalenkovs et al. Deliverable 5.2: Software integration. NLAFET deliverable.
2018.

[2] Y. Achdou and F. Nataf. “Low frequency tangential filtering decomposition”. In:
Numerical Linear Algebra with Applications 14.2 (2007), pp. 129–147.

[3] E. Agullo, L. Giraud, and Y.-F. Jing. “Block GMRES Method with Inexact Break-
downs and Deflated Restarting”. In: SIAM Journal on Matrix Analysis and Ap-
plications 35.4 (2014), pp. 1625–1651. eprint: https://doi.org/10.1137/
140961912.

[4] E. Agullo et al. “Numerical linear algebra on emerging architectures: The PLASMA
and MAGMA projects”. In: Journal of Physics: Conference Series 180.1 (2009),
p. 012037.

[5] H. Al Daas, L. Grigori, P. Hénon, and P. Ricoux. “Enlarged GMRES for solv-
ing linear systems with one or multiple right-hand sides”. In: IMA Journal of
Numerical Analysis (2018), dry054. eprint: /oup/backfile/content_public/
journal/imajna/pap/10.1093_imanum_dry054/5/dry054.pdf.

[6] S. F. Ashby, T. A. Manteuffel, and P. E. Saylor. “A Taxonomy for Conjugate Gra-
dient Methods”. In: SIAM Journal on Numerical Analysis 27.6 (1990), pp. 1542–
1568.

[7] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. “StarPU: A Unified
Platform for Task Scheduling on Heterogeneous Multicore Architectures”. In:
Concurrency and Computation: Practice and Experience, Special Issue: Euro-Par
2009 23 (2 Feb. 2011), pp. 187–198.

[8] S. Balay et al. PETSc Users Manual. Tech. rep. ANL-95/11 - Revision 3.8. Ar-
gonne National Laboratory, 2017.

[9] A. Bhaya, P.-A. Bliman, G. Niedu, and F. Pazos. “A cooperative conjugate gra-
dient method for linear systems permitting multithread implementation of low
complexity”. In: ArXiv e-prints (2012). arXiv: 1204.0069 [math.NA].

IX

https://doi.org/10.1137/140961912
https://doi.org/10.1137/140961912
/oup/backfile/content_public/journal/imajna/pap/10.1093_imanum_dry054/5/dry054.pdf
/oup/backfile/content_public/journal/imajna/pap/10.1093_imanum_dry054/5/dry054.pdf
https://arxiv.org/abs/1204.0069

X Bibliography

[10] A. Bienz, R. Falgout, W. Gropp, L. Olson, and J. Schroder. “Reducing Parallel
Communication in Algebraic Multigrid through Sparsification”. In: SIAM Jour-
nal on Scientific Computing 38.5 (2016), S332–S357. eprint: https://doi.org/
10.1137/15M1026341.

[11] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J. Dongarra.
“PaRSEC: Exploiting Heterogeneity to Enhance Scalability”. In: Computing in
Science Engineering 15.6 (2013), pp. 36–45.

[12] C. Brezinski. “Multiparameter descent methods”. In: Linear Algebra and its Ap-
plications 296.1 (1999), pp. 113 –141.

[13] C. Brezinski and F. Bantegnies. “The multiparameter conjugate gradient algo-
rithm”. In: Matapli 75 (2004), pp. 67–85.

[14] R. Bridson and C. Greif. “A Multipreconditioned Conjugate Gradient Algo-
rithm”. In: SIAM J. Matrix Analysis Applications 27 (2006), pp. 1056–1068.

[15] H. Calandra, S. Gratton, R. Lago, X. Vasseur, and L. Carvalho. “A Modified
Block Flexible GMRES Method with Deflation at Each Iteration for the Solu-
tion of Non-Hermitian Linear Systems with Multiple Right-Hand Sides”. In:
SIAM Journal on Scientific Computing 35.5 (2013), S345–S367. eprint: https:
//doi.org/10.1137/120883037.

[16] D. Calvetti, L. Reichel, and D. C. Sorensen. “An implicitly restarted Lanczos
method for large symmetric eigenvalue problems”. In: Electronic Transactions
on Numerical Analysis (ETNA) 2.March (1994), pp. 1–21.

[17] E. Carson and J. Demmel. “A Residual Replacement Strategy for Improving
the Maximum Attainable Accuracy of s-Step Krylov Subspace Methods”. In:
SIAM Journal on Matrix Analysis and Applications 35.1 (2014), pp. 22–43. eprint:
https://doi.org/10.1137/120893057.

[18] E. Carson, M. Rozloznik, Z. Strakos, P. Tichy, and M. Tuma. On the numerical sta-
bility analysis of pipelined Krylov subspace methods. Research Report NCMM/2016/08.
Necas Center for Mathematical Modeling, 2016.

[19] E. Carson. “Communication-Avoiding Krylov Subspace Methods in Theory and
Practice”. PhD thesis. University of California, Berkeley, 2015.

[20] E. Carson. “The Adaptive s-step Conjugate Gradient Method”. In: CoRR abs/1701.03989
(2017). arXiv: 1701.03989.

[21] E. Carson, N. Knight, and J. Demmel. “An efficient deflation technique for the
communication-avoiding conjugate gradient method”. In: Electronic Transac-
tions on Numerical Analysis 43.125-141 (2014), p. 09.

[22] E. Carson, N. Knight, and J. Demmel. “Avoiding Communication in Nonsym-
metric Lanczos-Based Krylov Subspace Methods”. In: SIAM Journal on Scien-
tific Computing 35.5 (2013), S42–S61. eprint: https://doi.org/10.1137/
120881191.

https://doi.org/10.1137/15M1026341
https://doi.org/10.1137/15M1026341
https://doi.org/10.1137/120883037
https://doi.org/10.1137/120883037
https://doi.org/10.1137/120893057
https://arxiv.org/abs/1701.03989
https://doi.org/10.1137/120881191
https://doi.org/10.1137/120881191

Bibliography XI

[23] F. Charbel and F.-X. Roux. “A method of finite element tearing and intercon-
necting and its parallel solution algorithm”. In: International Journal for Numeri-
cal Methods in Engineering 32.6 (), pp. 1205–1227. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/nme.1620320604.

[24] J. Chen. A deflated version of the block conjugate gradient algorithm with an appli-
cation to Gaussian process maximum likelihood estimation. Preprint P1927-0811.
2011.

[25] A. T. Chronopoulos. “s-step Iterative Methods for (Non)Symmetric (In)Definite
Linear Systems”. In: SIAM Journal on Numerical Analysis 28.6 (1991), pp. 1776–
1789. eprint: https://doi.org/10.1137/0728088.

[26] A. T. Chronopoulos and C. W. Gear. “s-step iterative methods for symmetric lin-
ear systems”. In: Journal of Computational and Applied Mathematics 25.2 (1989),
pp. 153 –168.

[27] A. T. Chronopoulos and C. D. Swanson. “Parallel iterative s-step methods for
unsymmetric linear systems”. In: Parallel Computing 22.5 (1996), pp. 623–641.

[28] M. Clark, A. Strelchenko, A. Vaquero, M. Wagner, and E. Weinberg. “Push-
ing memory bandwidth limitations through efficient implementations of Block-
Krylov space solvers on GPUs”. In: Computer Physics Communications (2018).

[29] S. Cools. “Numerical stability analysis of the class of communication hiding
pipelined Conjugate Gradient methods”. In: ArXiv e-prints (Apr. 2018). arXiv:
1804.02962 [cs.NA].

[30] S. Cools and W. Vanroose. “Numerically Stable Variants of the Communication-
hiding Pipelined Conjugate Gradients Algorithm for the Parallel Solution of
Large Scale Symmetric Linear Systems”. In: ArXiv e-prints (June 2017). arXiv:
1706.05988 [cs.NA].

[31] J. Cornelis, S. Cools, and W. Vanroose. “The Communication-Hiding Conjugate
Gradient Method with Deep Pipelines”. In: ArXiv e-prints (Jan. 2018). arXiv:
1801.04728 [cs.DC].

[32] T. A. Davis and Y. Hu. “The University of Florida Sparse Matrix Collection”. In:
ACM Trans. Math. Softw. 38.1 (Dec. 2011), 1:1–1:25.

[33] J. W. Demmel, L. Grigori, M. Gu, and H. Xiang. “Communication Avoiding
Rank Revealing QR Factorization with Column Pivoting”. In: SIAM Journal on
Matrix Analysis and Applications 36.1 (2015), pp. 55–89. eprint: https://doi.
org/10.1137/13092157X.

[34] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. “Communication-optimal
Parallel and Sequential QR and LU Factorizations”. In: SIAM Journal on Scien-
tific Computing 34.1 (2012), A206–A239. eprint: https://doi.org/10.1137/
080731992.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620320604
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620320604
https://doi.org/10.1137/0728088
https://arxiv.org/abs/1804.02962
https://arxiv.org/abs/1706.05988
https://arxiv.org/abs/1801.04728
https://doi.org/10.1137/13092157X
https://doi.org/10.1137/13092157X
https://doi.org/10.1137/080731992
https://doi.org/10.1137/080731992

XII Bibliography

[35] J. Demmel, M. F. Hoemmen, M. Mohiyuddin, and K. A. Yelick. Avoiding Commu-
nication in Computing Krylov Subspaces. Tech. rep. UCB/EECS-2007-123. EECS
Department, University of California, Berkeley, 2007.

[36] V. Dolean, P. Jolivet, and F. Nataf. An introduction to domain decomposition meth-
ods. Algorithms, theory, and parallel implementation. Philadelphia: SIAM, 2015.

[37] S. Donfack, L. Grigori, and O. Tissot. Deliverable 4.2: Analysis and algorithm de-
sign. NLAFET deliverable. 2017.

[38] S. Donfack, L. Grigori, and O. Tissot. Deliverable 4.3: Prototype software, phase 2.
NLAFET deliverable. 2017.

[39] S. Donfack, L. Grigori, and O. Tissot. Deliverable 4.4: Performance evaluation.
NLAFET deliverable. 2018.

[40] S. Donfack, L. Grigori, and O. Tissot. Deliverable 4.5: Integration. NLAFET de-
liverable. 2018.

[41] J. Dongarra, V. Eijkhout, and A. Kalhan. Reverse Communication Interface for
Linear Algebra Templates for Iterative Methods. Tech. rep. Knoxville, TN, USA,
1995.

[42] J. Dongarra et al. “With Extreme Computing, the Rules Have Changed”. In:
Computing in Science Engineering 19.3 (2017), pp. 52–62.

[43] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. “A Set of Level 3 Basic
Linear Algebra Subprograms”. In: ACM Trans. Math. Softw. 16.1 (Mar. 1990),
pp. 1–17.

[44] J. Dongarra, M. A. Heroux, and P. Luszczek. “High-performance conjugate-gradient
benchmark: A new metric for ranking high-performance computing systems”.
In: The International Journal of High Performance Computing Applications 30.1
(2016), pp. 3–10. eprint: https://doi.org/10.1177/1094342015593158.

[45] Z. Dostál. “Conjugate gradient method with preconditioning by projector”. In:
International Journal of Computer Mathematics 23.3-4 (1988), pp. 315–323.

[46] A. Dubrulle. “Retooling the method of block conjugate gradients.” eng. In: ETNA.
Electronic Transactions on Numerical Analysis [electronic only] 12 (2001), pp. 216–
233.

[47] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. New
York: Clarendon Press, 1989.

[48] J. Frank and C. Vuik. “On the Construction of Deflation-Based Precondition-
ers”. In: SIAM Journal on Scientific Computing 23.2 (2001), pp. 442–462. eprint:
https://doi.org/10.1137/S1064827500373231.

[49] R. W. Freund and N. M. Nachtigal. “QMR: a quasi-minimal residual method for
non-Hermitian linear systems”. In: Numerische Mathematik 60.1 (1991), pp. 315–
339.

https://doi.org/10.1177/1094342015593158
https://doi.org/10.1137/S1064827500373231

Bibliography XIII

[50] A. Frommer and H. Schwandt. “A Unified Representation and Theory of Alge-
braic Additive Schwarz and Multisplitting Methods”. In: SIAM Journal on Ma-
trix Analysis and Applications 18.4 (1997), pp. 893–912. eprint: https://doi.
org/10.1137/S0895479896301212.

[51] A. Frommer and D. B. Szyld. “An Algebraic Convergence Theory for Restricted
Additive Schwarz Methods Using Weighted Max Norms”. In: SIAM Journal on
Numerical Analysis 39.2 (2001), pp. 463–479. eprint: https://doi.org/10.
1137/S0036142900370824.

[52] A. Gaul, M. H. Gutknecht, J. Liesen, and R. Nabben. “A Framework for Deflated
and Augmented Krylov Subspace Methods”. In: SIAM Journal on Matrix Analysis
and Applications 34.2 (2013), pp. 495–518.

[53] P. Ghysels, T. Ashby, K. Meerbergen, and W. Vanroose. “Hiding Global Commu-
nication Latency in the GMRES Algorithm on Massively Parallel Machines”. In:
SIAM Journal on Scientific Computing 35.1 (2013), pp. C48–C71. eprint: https:
//doi.org/10.1137/12086563X.

[54] P. Ghysels and W. Vanroose. “Hiding global synchronization latency in the pre-
conditioned Conjugate Gradient algorithm”. In: Parallel Computing 40.7 (2014).
7th Workshop on Parallel Matrix Algorithms and Applications, pp. 224 –238.

[55] G. H. Golub and C. F. Van Loan. Matrix Computations (3rd Ed.) Baltimore, MD,
USA: Johns Hopkins University Press, 1996.

[56] A. Greenbaum. “Estimating the Attainable Accuracy of Recursively Computed
Residual Methods”. In: SIAM Journal on Matrix Analysis and Applications 18.3
(1997), pp. 535–551. eprint: https://doi.org/10.1137/S0895479895284944.

[57] L. Grigori and S. Moufawad. “Communication Avoiding ILU0 Preconditioner”.
In: SIAM Journal on Scientific Computing 37.2 (2015), pp. C217–C246. eprint:
https://doi.org/10.1137/130930376.

[58] L. Grigori, S. Moufawad, and F. Nataf. “Enlarged Krylov Subspace Conjugate
Gradient Methods for Reducing Communication”. In: SIAM Journal on Matrix
Analysis and Applications 37.2 (2016), pp. 744–773. eprint: https://doi.org/
10.1137/140989492.

[59] L. Grigori, J. Papez, R. Stompor, and O. Tissot. Solving sequences of linear systems
by recycling deflation subspaces - application to CMB data analysis. In preparation.
2018.

[60] L. Grigori, R. Stompor, and M. Szydlarski. “A parallel two-level preconditioner
for Cosmic Microwave Background map-making”. In: High Performance Com-
puting, Networking, Storage and Analysis (SC), 2012 International Conference for.
2012, pp. 1–10.

[61] L. Grigori and O. Tissot. Reducing the communication and computational costs
of Enlarged Krylov subspaces Conjugate Gradient. Research Report (old version)
RR-9023. Inria Paris, Laboratoire Jacques-Louis Lions, UPMC, Paris, 2017.

https://doi.org/10.1137/S0895479896301212
https://doi.org/10.1137/S0895479896301212
https://doi.org/10.1137/S0036142900370824
https://doi.org/10.1137/S0036142900370824
https://doi.org/10.1137/12086563X
https://doi.org/10.1137/12086563X
https://doi.org/10.1137/S0895479895284944
https://doi.org/10.1137/130930376
https://doi.org/10.1137/140989492
https://doi.org/10.1137/140989492

XIV Bibliography

[62] L. Grigori, F. Nataf, and S. Yousef. Robust algebraic Schur complement precondi-
tioners based on low rank corrections. Research Report RR-8557. 2014, p. 18.

[63] L. Grigori and O. Tissot. Scalable Linear Solvers based on Enlarged Krylov sub-
spaces with Dynamic Reduction of Search Directions. Research Report RR-9190.
Inria Paris, Laboratoire Jacques-Louis Lions, UPMC, Paris, 2018.

[64] A. el Guennouni, K. Jbilou, and H. Sadok. “A block version of BiCGSTAB for
linear systems with multiple right-hand sides.” eng. In: ETNA. Electronic Trans-
actions on Numerical Analysis [electronic only] 16 (2003), pp. 129–142.

[65] M. H. Gutknecht. “Block Krylov space methods for linear systems with multiple
right-hand sides: an introduction.” In: in: Modern Mathematical Models, Methods
and Algorithms for Real World Systems (A.H. Siddiqi, I.S. Duff, and O. Christensen,
eds.) (2007), pp. 420–447.

[66] R. Haferssas, P. Jolivet, and S. Rubino. “Efficient and scalable discretization of
the Navier-Stokes equations with LPS modeling”. In: Computer Methods in Ap-
plied Mechanics and Engineering 333 (2018), pp. 371 –394.

[67] F. Hecht. “New development in FreeFem++”. In: J. Numer. Math. 20.3-4 (2012),
pp. 251–265.

[68] M. R. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving linear
systems.” In: Journal of research of the National Bureau of Standards. 49 (1952),
pp. 409–436.

[69] M. Hoemmen. “Communication-avoiding Krylov subspace methods”. PhD the-
sis. EECS Department, University of California, Berkeley, 2010.

[70] D. Imberti and J. Erhel. “Varying the s in Your s-step GMRES”. In: Electronic
Transactions on Numerical Analysis (ETNA) 47 (2017), pp. 206–230.

[71] H. Ji and Y. Li. “A breakdown-free block conjugate gradient method”. In: BIT
Numerical Mathematics 57.2 (2017), pp. 379–403.

[72] P. Jiránek, M. Rozložník, and M. Gutknecht. “How to Make Simpler GMRES
and GCR More Stable”. In: SIAM Journal on Matrix Analysis and Applications
30.4 (2009), pp. 1483–1499. eprint: https://doi.org/10.1137/070707373.

[73] P. Jolivet. “Domain decomposition methods. Application to high-performance
computing”. Theses. Université de Grenoble, Oct. 2014.

[74] P. Jolivet, F. Hecht, F. Nataf, and C. Prud’homme. “Scalable Domain Decompo-
sition Preconditioners For Heterogeneous Elliptic Problems”. In: Proceedings of
the 2013 International Conference on High Performance Computing, Networking,
Storage and Analysis. SC13. ACM, 2013, 80:1–80:11.

[75] P. Jolivet and P.-H. Tournier. “Block Iterative Methods and Recycling for Im-
proved Scalability of Linear Solvers”. In: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. SC ’16.
Salt Lake City, Utah: IEEE Press, 2016, 17:1–17:14.

https://doi.org/10.1137/070707373

Bibliography XV

[76] G. Karypis and V. Kumar. “METIS – Unstructured Graph Partitioning and Sparse
Matrix Ordering System, Version 2.0”. In: (1995).

[77] M. E. Kilmer and E. de Sturler. “Recycling Subspace Information for Diffuse
Optical Tomography”. In: SIAM Journal on Scientific Computing 27.6 (2006),
pp. 2140–2166. eprint: https://doi.org/10.1137/040610271.

[78] T. Konolige and J. Brown. “A Parallel Solver for Graph Laplacians”. In: ArXiv
e-prints (May 2017). arXiv: 1705.06266 [cs.DC].

[79] M. Kreutzer et al. “GHOST: Building Blocks for High Performance Sparse Lin-
ear Algebra on Heterogeneous Systems”. In: International Journal of Parallel Pro-
gramming 45.5 (2017), pp. 1046–1072.

[80] J. Langou. “Iterative methods for solving linear systems with multiple right-
hand sides”. PhD thesis. CERFACS, 2003.

[81] B. R. Lowery and J. Langou. Stability Analysis of QR factorization in an Oblique
Inner Product. Tech. rep. 2014. arXiv: 1401.5171.

[82] J. Malek and Z. Strakos. Preconditioning and the Conjugate Gradient Method in
the Context of Solving PDEs. SIAM Spotlights. Philadelphia: SIAM, 2014.

[83] R. B. Morgan. “A Restarted GMRES Method Augmented with Eigenvectors”. In:
SIAM Journal on Matrix Analysis and Applications 16.4 (1995), pp. 1154–1171.
eprint: https://doi.org/10.1137/S0895479893253975.

[84] A. Napov and Y. Notay. “An Algebraic Multigrid Method with Guaranteed Con-
vergence Rate”. In: SIAM Journal on Scientific Computing 34.2 (2012), A1079–
A1109. eprint: https://doi.org/10.1137/100818509.

[85] R. Nicolaides. “Deflation of Conjugate Gradients with Applications to Bound-
ary Value Problems”. In: SIAM Journal on Numerical Analysis 24.2 (1987), pp. 355–
365. eprint: https://doi.org/10.1137/0724027.

[86] A. A. Nikishin and A. Yeremin. “Variable Block CG Algorithms for solving large
sparse symmetric positive definite linear systems on parallel computers, I: Gen-
eral Iterative Scheme”. In: SIAM Journal on Matrix Analysis and Applications 16
(1995), pp. 1135–1153.

[87] Q. Niu, L. Grigori, P. Kumar, and F. Nataf. “Modified tangential frequency fil-
tering decomposition and its fourier analysis”. In: Numerische Mathematik 116
(2010), pp. 123–148.

[88] M. O’Connell, M. E. Kilmer, E. de Sturler, and S. Gugercin. “Computing Re-
duced Order Models via Inner-Outer Krylov Recycling in Diffuse Optical To-
mography”. In: SIAM Journal on Scientific Computing 39.2 (2017), B272–B297.
eprint: https://doi.org/10.1137/16M1062880.

[89] D. P. O’Leary. “The block conjugate gradient algorithm and related methods.”
In: Linear Algebra and Its Applications 29 (1980), pp. 293–322.

https://doi.org/10.1137/040610271
https://arxiv.org/abs/1705.06266
https://arxiv.org/abs/1401.5171
https://doi.org/10.1137/S0895479893253975
https://doi.org/10.1137/100818509
https://doi.org/10.1137/0724027
https://doi.org/10.1137/16M1062880

XVI Bibliography

[90] C. Paige. “Accuracy and effectiveness of the Lanczos algorithm for the symmet-
ric eigenproblem”. In: Linear Algebra and its Applications 34 (1980), pp. 235 –
258.

[91] C. C. Paige, B. N. Parlett, and H. A. van der Vorst. “Approximate solutions and
eigenvalue bounds from Krylov subspaces”. In: Numerical Linear Algebra with
Applications 2 (1995), pp. 115–133.

[92] J. Papez, L. Grigori, and R. Stompor. “Solving linear equations with messenger-
field and conjugate gradients techniques - an application to CMB data analysis”.
In: ArXiv e-prints (Mar. 2018). arXiv: 1803.03462.

[93] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti. “Recycling
Krylov subspaces for sequences of linear systems”. In: SIAM J. Sci. Comput. 28.5
(2006), pp. 1651–1674.

[94] G. Puglisi, D. Poletti, G. Fabbian, C. Baccigalupi, L. Heltai, and R. Stompor.
“Iterative map-making with two-level preconditioning for polarized Cosmic
Microwave Background data sets”. In: ArXiv e-prints (Jan. 2018). arXiv: 1801.
08937.

[95] M. Robbé and M. Sadkane. “Exact and Inexact Breakdowns in the block GMRES
Method”. In: Linear Algebra Appl. 419 (2006), pp. 265–285.

[96] M. Rozložník, M. Tůma, A. Smoktunowicz, and J. Kopal. “Numerical stability
of orthogonalization methods with a non-standard inner product”. In: BIT Nu-
merical Mathematics 52.4 (2012), pp. 1035–1058.

[97] J. Rudi et al. “An Extreme-scale Implicit Solver for Complex PDEs: Highly Het-
erogeneous Flow in Earth’s Mantle”. In: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. SC ’15.
Austin, Texas: ACM, 2015, 5:1–5:12.

[98] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Philadelphia: SIAM,
2011. eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9781611970739.

[99] Y. Saad and H. S. M. “GMRES: a generalized minimal residual algorithm for
solving non-symmetric linear systems.” In: SIAM J. Sci. Statist. Comput. 7 (1986),
pp. 856–869.

[100] Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’h. “A Deflated Version of the
Conjugate Gradient Algorithm”. In: SIAM Journal on Scientific Computing 21.5
(2000), pp. 1909–1926. eprint: https://doi.org/10.1137/S1064829598339761.

[101] Y. Saad. Iterative methods for sparse linear systems. Philadelphia: SIAM, 2003.

[102] V. Simoncini and D. Szyld. “Theory of Inexact Krylov Subspace Methods and
Applications to Scientific Computing”. In: SIAM Journal on Scientific Computing
25.2 (2003), pp. 454–477. eprint: https://doi.org/10.1137/S1064827502406415.

[103] G. L. G. Sleijpen and H. A. Van der Vorst. “A Jacobi-Davidson iteration method
for linear eigenvalue problems”. In: SIAM Review 42.2 (2000), pp. 267–293.

https://arxiv.org/abs/1803.03462
https://arxiv.org/abs/1801.08937
https://arxiv.org/abs/1801.08937
https://epubs.siam.org/doi/pdf/10.1137/1.9781611970739
https://doi.org/10.1137/S1064829598339761
https://doi.org/10.1137/S1064827502406415

Bibliography XVII

[104] K. Soodhalter. “A block MINRES algorithm based on the band Lanczos method”.
In: Numerical Algorithms 69 (Jan. 2013).

[105] D. C. Sorensen. “Implicit application of polynomial filters in a k-step Arnoldi
method”. In: SIAM Journal on Matrix Analysis and Applications 13.1 (1992), pp. 357–
385.

[106] D. C. Sorensen. “Numerical methods for large eigenvalue problems”. In: Acta
Numerica 11 (2002), 519–584.

[107] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl. “Ab-
stract robust coarse spaces for systems of PDEs via generalized eigenproblems
in the overlaps”. In: Numerische Mathematik 126.4 (2014), pp. 741–770.

[108] N. Spillane. “An Adaptive MultiPreconditioned Conjugate Gradient Algorithm”.
In: SIAM Journal on Scientific Computing 38 (Jan. 2016), A1896–A1918.

[109] G. W. Stewart. “A Krylov-Schur algorithm for large eigenproblems”. In: SIAM
Journal on Matrix Analysis and Applications 23.3 (2001/02), pp. 601–614.

[110] R. Stompor, S. Leach, F. Stivoli, and C. Baccigalupi. “Maximum likelihood algo-
rithm for parametric component separation in cosmic microwave background
experiments”. In: Monthly Notices of the Royal Astronomical Society 392.1 (2009),
pp. 216–232. eprint: /oup/backfile/content_public/journal/mnras/392/
1/10.1111/j.1365-2966.2008.14023.x/2/mnras0392-0216.pdf.

[111] E. de Sturler. “Truncation Strategies for Optimal Krylov Subspace Methods”.
In: SIAM Journal on Numerical Analysis 36.3 (1999), pp. 864–889. eprint: https:
//doi.org/10.1137/S0036142997315950.

[112] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler. “Parallel
geometric-algebraic multigrid on unstructured forests of octrees”. In: High Per-
formance Computing, Networking, Storage and Analysis (SC), 2012 International
Conference for. 2012, pp. 1–11.

[113] M. Szydlarski, L. Grigori, and R. Stompor. “Accelerating the cosmic microwave
background map-making procedure through preconditioning”. In: Astronomy
& Astrophysics 572, A39 (Dec. 2014), A39. arXiv: 1408.3048.

[114] M. Szydlarski, L. Grigori, and R. Stompor. “Accelerating the cosmic microwave
background map-making procedure through preconditioning”. In: A&A 572
(2014), A39.

[115] J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga. “Comparison of Two-Level
Preconditioners Derived from Deflation, Domain Decomposition and Multigrid
Methods”. In: Journal of Scientific Computing 39.3 (2009), pp. 340–370.

[116] R. Thakur, R. Rabenseifner, and W. Gropp. “Optimization of Collective Com-
munication Operations in MPICH”. In: The International Journal of High Perfor-
mance Computing Applications 19.1 (2005), pp. 49–66. eprint: https://doi.
org/10.1177/1094342005051521.

/oup/backfile/content_public/journal/mnras/392/1/10.1111/j.1365-2966.2008.14023.x/2/mnras0392-0216.pdf
/oup/backfile/content_public/journal/mnras/392/1/10.1111/j.1365-2966.2008.14023.x/2/mnras0392-0216.pdf
https://doi.org/10.1137/S0036142997315950
https://doi.org/10.1137/S0036142997315950
https://arxiv.org/abs/1408.3048
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1177/1094342005051521

XVIII Bibliography

[117] A. Toselli and O. Widlund. Domain Decomposition Methods - Algorithms and The-
ory. Vol. 34. Springer Series in Computational Mathematics. New York: Springer
Berlin Heidelberg, 2004.

[118] H. van der Vorst. “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-
CG for the Solution of Nonsymmetric Linear Systems”. In: SIAM Journal on Sci-
entific and Statistical Computing 13.2 (1992), pp. 631–644. eprint: https://doi.
org/10.1137/0913035.

[119] E. Wang et al. “Intel math kernel library”. In: High-Performance Computing on
the Intel® Xeon Phi. Springer, 2014, pp. 167–188.

[120] S. F. M. William L. Briggs Van Emden Henson. A multigrid tutorial. Philadelphia:
SIAM, 2000.

[121] G. Wu. “The convergence of harmonic Ritz vectors and harmonic Ritz values,
revisited”. In: SIAM Journal on Matrix Analysis and Applications 38.1 (2017),
pp. 118–133.

[122] K. Wu and H. Simon. “Thick-restart Lanczos method for large symmetric eigen-
value problems”. In: SIAM J. Matrix Anal. Appl. 22.2 (2000), pp. 602–616.

[123] I. Yamazaki, S. Tomov, and J. Dongarra. “Mixed-Precision Cholesky QR Factor-
ization and Its Case Studies on Multicore CPU with Multiple GPUs”. In: SIAM
Journal on Scientific Computing 37.3 (2015), pp. C307–C330. eprint: https://
doi.org/10.1137/14M0973773.

[124] C. Yang et al. “10M-Core Scalable Fully-Implicit Solver for Nonhydrostatic At-
mospheric Dynamics”. In: SC16: International Conference for High Performance
Computing, Networking, Storage and Analysis. 2016, pp. 57–68.

https://doi.org/10.1137/0913035
https://doi.org/10.1137/0913035
https://doi.org/10.1137/14M0973773
https://doi.org/10.1137/14M0973773

Iterative methods for solving linear systems on massively parallel architectures

Abstract

Krylov methods are widely used for solving large sparse linear systems of equations. On dis-
tributed architectures, their performance is limited by the communication needed at each it-
eration of the algorithm. In this thesis, we first study the use of so-called Enlarged Krylov
subspaces for reducing the number of iterations, and therefore the overall communication, of
Krylov methods. We consider a reformulation of the Conjugate Gradient (CG) method us-
ing these enlarged Krylov subspaces: the Enlarged Conjugate Gradient (ECG) method. This
method is first studied from a theoretical point of view. In particular, we show that its conver-
gence speed is close to that of the so-called Deflated Conjugate Gradient method. In order to
mitigate the effect of the extra arithmetic operations induced by the method, we explain how
to dynamically reduce the number of search directions during the iterations. We then present
the parallel design of two variants of the ECG method as well as their corresponding dynamic
versions. Using a block Jacobi preconditioner, we show that our implementation scales up to
several thousands of cores, and it can be significantly faster than the PETSc implementation
of the CG method. We then focus on the Cosmic Microwave Background (CMB) analysis. We
investigate the usage of so–called recycling strategies in this context. As a result of the multi-
plicity of the smallest eigenvalue, these techniques may not improve the convergence in some
cases. Hence, we propose a cheap procedure to adapt the initial guess that permits to reduce
the overall number of iterations in such situations.

Keywords: linear solvers, parallel computing, Krylov methods, recycling techniques

Méthodes itératives de résolution de systèmes linéaires sur des architectures parallèles

Résumé

Les méthodes de Krylov sont largement utilisées pour résoudre des systèmes linéaires creux de
grande taille. Sur une architecture distribuée, leur performance est souvent limitée par les com-
munications requises à chaque itération de l’algorithme. Dans cette thèse, nous commençons
par étudier l’utilisation des sous–espaces dits de Krylov élargis pour réduire le nombre d’ité-
rations, et ainsi le nombre de communications, des méthodes de Krylov. Nous nous intéressons
à une reformulation de la méthode du Gradient Conjugué (CG) qui utilise ces sous–espaces
de Krylov élargis : la méthode du Gradient Conjugué Élargi (ECG). Cette méthode est d’abord
étudiée d’un point de vue théorique. En particulier, nous montrons que sa vitesse de conver-
gence est proche de celle de la méthode dite du Gradient Conjugué Déflaté. Afin d’atténuer
l’effet des opérations arithmétiques supplémentaires requises par la méthode, nous expliquons
comment réduire dynamiquement le nombre de directions de recherche pendant les itérations.
Nous présentons ensuite le design parallèle des deux variantes de la méthode ECG ainsi que les
versions dynamiques qui correspondent. En utilisant un préconditionneur de type bloc Jacobi,
nous montrons que notre implémentation est scalable jusqu’à plusieurs milliers de processeurs,
et qu’elle peut être significativement plus rapide que l’implémentation de la méthode CG pré-
sente dans la librairie PETSc. Nous nous concentrons ensuite sur l’analyse des observations
du fond diffus cosmologique. Nous évaluons l’usage des techniques dites de recyclage dans ce
contexte. En raison de la multiplicité de la plus petite valeur propre, ces techniques ne per-
mettent pas d’améliorer la convergence dans certains cas. Par conséquent, nous proposons une
procédure peu coûteuse pour adapter la solution initiale qui permet de réduire le nombre total
d’itérations dans ces situations.

Mots clés : solveurs linéaires, calcul parallèle, méthodes de Krylov, techniques de recyclage

Laboratoire Jacques-Louis Lions
4 place Jussieu – 75005 Paris – France

	Acknowledgements/Remerciements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction (version française)
	Contexte
	Résumé et contributions

	Introduction (English version)
	Context
	Summary and contributions

	1 Preamble
	1.1 Background in Linear Algebra
	1.2 Krylov Subspace Methods
	1.2.1 Derivation of the Conjugate Gradient algorithm
	1.2.2 Convergence study

	1.3 Preconditioners
	1.3.1 Incomplete factorization
	1.3.2 Domain Decomposition
	1.3.3 Multigrid

	1.4 Parallel design of Krylov Methods
	1.4.1 Mitigating the effect of communication
	1.4.2 Searching in several directions at once

	2 Enlarged Conjugate Gradients
	2.1 Introduction
	2.1.1 The Block Conjugate Gradient method
	2.1.2 A-orthonormalization algorithms

	2.2 The Enlarged Conjugate Gradient method
	2.2.1 Enlarged Krylov Subspaces
	2.2.2 Derivation of the method

	2.3 Relationship between Orthodir and Orthomin
	2.4 Convergence study
	2.5 Dynamic reduction of the search directions
	2.5.1 Selection of the search directions
	2.5.2 Choice of the tolerance

	2.6 Numerical experiments
	2.6.1 Test cases
	2.6.2 Influence of the parameters and algorithmic variants
	2.6.3 Dynamic reduction of the search directions
	2.6.4 Numerical comparison with a two–level preconditioner

	3 Parallel Design
	3.1 Data distribution
	3.2 Kernel operations
	3.3 Cost analysis
	3.4 Performance results
	3.4.1 Description of the parallel environment
	3.4.2 Test cases
	3.4.3 Results

	3.5 Fusing global communications
	3.5.1 Derivation of the algorithm
	3.5.2 Cost analysis
	3.5.3 Numerical experiments

	3.6 Reproducibility of the numerical experiments
	3.6.1 Implementation details
	3.6.2 Installation and usage
	3.6.3 Evaluation and expected result

	4 Recycling strategies
	4.1 Motivation — application to CMB data analysis
	4.1.1 The map–making problem
	4.1.2 The parametric component separation (PCS) problem
	4.1.3 The algebraic framework

	4.2 Ingredients of the methods
	4.2.1 Eigenvalues approximation using Krylov subspace methods
	4.2.2 Deflation and two–level preconditioners

	4.3 Unified framework for the solution procedures
	4.3.1 A priori adaptation of the previous deflation space
	4.3.2 Solving the system
	4.3.3 A posteriori update of the deflation space
	4.3.4 Existing methods

	4.4 Numerical experiments
	4.4.1 A simplified case
	4.4.2 Systems arising from the PCS problem
	4.4.3 Adaptation of the initial guess for the PCS systems

	Conclusion
	Summary
	Perspectives

	A Appendices
	A.1 A convergence study of ECG using[Theorem 5]oleary80:bcg
	A.2 Numerical experiments on the BUNDLE test case
	A.2.1 Impact of the enlarging factor
	A.2.2 Strong scaling study

	A.3 Numerical experiments on an elasticity problem discretized using PETSc
	A.3.1 Definition of the problem
	A.3.2 Numerical results

	Bibliography

