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Each component, being a subset of dynamical coordinates, has its own phase space. With obvious notations, if

(1.1.13)

Chapter 1

Introduction

This document contains two independent Parts. The first one is composed by Chapters 2 and 3, while the second one is Chapter 4.

Introduction to Chapters 2 and 3

In these chapters, we study the asymptotic distribution of independent not necessarily identically distributed random variables or random vectors, which is closely linked to some Statistical Mechanics issue.

Statistical Mechanics Framework

Following [START_REF] Khinchin | Mathematical foundations of statistical mechanics[END_REF], we present hereafter the Statistical Mechanics framework within which this question is natural.

The Phase Space

Let G be a mechanical system with s degrees of freedom. The state of G is described by values of its 2s dynamical variables denoted by q 1 , ...q s ; p 1 , ...p s . In other words, there is a one-to-one correspondence which associates to each possible state of G, a point of an Euclidian space Γ, whose coordinates are the values of (q i , p i ) 1≤i≤s . Γ is called the phase space of G. During any interval of time ∆t, each point P ∈ Γ describes a curve corresponding to some successive changes of states of G during ∆t. Thus, the whole space Γ is transformed into itself during ∆t. This motion of Γ is called its natural motion. A subset M of Γ which is stable under the natural motion is called an invariant part of Γ. From point of view of physics, the most important function on Γ is the total energy of G, denoted by E = E(q i ; p i ), 1 ≤ i ≤ s.

(1.1.1)

Assume that G is an isolated system. Then, by the law of conservation of energy, the function E has a constant value. Consequently, for any constant a, the set

Σ a := {E = a} ⊂ Γ (1.1.2)
is an invariant part of Γ and is called a surface of constant energy. We can assume that E is positive over Γ. Set V x := {E < x} ⊂ Γ and V (x) := Volume of V x .

(1.1.3)

V (•) is a monotone function which increases from 0 to ∞ as x varies between the same limits. Then, we have the following lemma.

Lemma 1. Let f (•) be a function defined on Γ, integrable over V x . Then,

d dx Vx f (P )dV = Σx f (P ) dΣ Grad(E) , (1.1.4)
where dV and dΣ are the volume elements of Γ and of Σ x .

Let M be a measurable subset of Σ x . Then in the natural motion of Γ, M is transformed into a set M ⊂ Σ x . However, if we define the measure of M by µ(M ) := M dΣ, then in general, µ(M ) = µ(M ). We are deprived of important mathematical tools without this invariance. Therefore, we consider another measure of any set M contained in Σ x as follows. At each point of M , draw the outward normal to Σ x to its intersection with the infinitely near surface This volume is clearly invariant with respect to the natural motion. Its ratio to ∆x and the limit of this ratio as ∆x → 0 are also invariant. Now, by Lemma 1, this limits is

Σx 1 D (P) dΣ Grad(E) = M dΣ Grad(E)
.

(1.1.6) Therefore, we obtain an invariant measure on subsets of Σ x by considering the measure M defined by

M(M ) = M dΣ Grad(E) (1.1.7)
Definition 1. The measure Ω(x) of the whole surface Σ x is

Ω(x) = Σx dΣ Grad(E) = M(Σ x ).
(1.1.8)

Assume that for all P , f (P ) = 1 in Lemma 1. Then we obtain that Ω(x) = V (x).

(1.1.9)

The function Ω(•) determines the most important features of the mechanical structure of G and is therefore called the structure function of G.

Definition 2. We denote by x 1 , ..., x 2s the dynamical ccordinates of a point of Γ, where the order of numeration is irrelevant. Assume that the energy E = E(x 1 , ..., x 2s ) can be written as E(x 1 , ..., x 2s ) = E 1 (x 1 , ..., x r ) + E 2 (x r+1 , ..., x 2s ) (1.1.10)

We say that the set {x 1 , ..., x 2s } is decomposed in two components, that is {x 1 , ..., x 2s } = {x 1 , ..., x r } {x r+1 , ..., x 2s } , (1. 1.11) which we write G = G 1 G 2 .

(1.1.12)

A component defined in this sense does not necessarily coincide with a separate physical subsystem of G. The isolated character of such components is of a purely energy nature.

Let Ω, Ω 1 and Ω 2 be the respective structure functions of G, G 1 and G 2 . Then we prove that Ω(x) = ∞ 0 Ω 1 (y)Ω 2 (x -y)dy.

(1.1.14)

We deduce readily that if G = G 1 G 2 ...G n , then

Ω(x) = n-1 i=1 Ω i (u i )du i Ω n u - n-1 i=1 u i .
(1.1.15)

In order to be able to split G = G 1 G 2 in two components in this sense, we need to neglect the mixed terms of energy interactions which would involve variables from both G 1 and G 2 .

Reduction to Probability Theory

We shall now consider the dynamical variables (x 1 , ..., x 2s ) as a random vector X = (X 1 , ..., X 2s ).

We still assume that G is an isolated system, so that the natural motion of Γ is limited within Σ na and the support of X is contained in Σ na . We assume that the distribution law of X is given by

P (X ∈ M ) = M(M ) M(Σ na ) = 1 Ω(na) M dΣ Grad(E)
, for any set M ⊂ Σ na .

(1.1.16)

Assume that G is divided into two components G (1) and G (2) . Therefore, we can write X = (X (1) ; X (2) ) with X (1) = (X 1 , ..., X r ) and X (2) = (X r+1 , ..., X 2s ). Then, we can prove that for any subset M 1 contained in Γ 1 ,

P (X (1) ∈ M 1 ) = 1 Ω(na) M 1 Ω (2) (na -E 1 )dV 1 .
(1.1.17)

Consequently, the distribution law of X (1) is absolutely continuous w.r.t the Lebesgue measure with density given by p X (1) (x 1 ) = Ω (2) (na -E 1 (x 1 )) Ω(na) , for any x 1 ∈ Γ 1 .

(1.1.18)

We can then deduce that the random variable E 1 is absolutely continuous w.r.t the Lebesgue measure with density given by p E 1 (x) = Ω (1) (x)Ω (2) (na -x) Ω(na) .

(1.1.19)

Let Ψ(•) be the Laplace transform of the function Ω(•), called the partition function of G. We assume that for any α > 0, Ψ(α) := exp(-αx)Ω(x)dx < ∞ (1.1.20)

Then, we have the following facts. Fact 2. The partition function of a system G is equal to the product of the partition functions of its components.

We introduce now the family (U α ) α>0 of distribution laws conjugate with the system G, defined by

U α (x) = 1 Ψ(α)
exp(-αx)Ω(x) if x ≥ 0, (1.1.22) and U α (x) = 0 if x < 0.

(1.1.23)

For any α > 0, U α (x) is the probability density of a random variable X α , since U α (x) ≥ 0 and U α (x)dx = 1, (1.1.24) Furthermore, we have the following Fact 3. For any α > 0,

E[ X α ] = xU α (x)dx = - d dα log Ψ(α).
(1.1.25)

Gibbs Measure

We intend to evaluate the energy E 1 of a given component G (1) of G. However, we can not approximate directly the structure functions which appear in (1.1.19). Instead, we will be able to approximate the U α 's, since they are densities. In that purpose, we assume that G is divided into a large number n of components and that G (1) is a collection of some of them, that is 2) , where G (1) = k j=1 g j and k < n.

G = n j=1 g j = G (1) G (
(1.1.26)

We still assume that G is an isolated system, so that its energy has some constant value denoted by na, where a is the average energy of g 1 , ..., g n .

Let (U α 1 ) α>0 (resp. (U α 2 ) α>0 ) be the family of distribution laws conjugate with G (1) (resp. G (2) ). Using that Ω(x) = Ψ(α) exp(αx)U α (x), we readily get that for any α > 0,

p E 1 (x) = U α 1 (x)
U α 2 (na -x) U α (na) .

(1.1.27)

The objective is now to evaluate U α 2 (na -x) and U α (na). We can prove the following fact.

Fact 4. Assume that G = n j=1 g j . Then, for any α > 0, (1.1.28) where for all 1 ≤ j ≤ n, the (u α j ) α>0 are the distribution laws conjugate with g j .

U α (x) =    n-1 j=1 u α j (y j )dy j    u α n   x - n-1 j=1 y j   ,
In other words, for any α > 0, one can interpret U α (•) as the density of a sum of independent random variables X α j , which are not necessarily identically distributed.

The Theory of Probability provides then an asymptotic approximation of U α (•). More precisely, we may apply the following Central Limit Theorem.

Theorem 1. Consider a sequence of independent random variables (X j ) j≥1 with probability densities (u j ) j≥1 and characteristic functions (g j ) j≥1 , that is g j (t) = exp(itx)u j (x)dx.

Let (a j ) j≥1 be the sequence of expectations of the X j 's and for 2 ≤ ≤ 5, let (a j ) j≥1 be the sequence of their centered absolute moments of order . Assume that

(1) For any j ≥ 1, u j is differentiable and there exists L > 0 such that sup j≥1 |u j (x)|dx < L.

(2) There exist 0 < α < β a n such that inf j≥1 a 2 j > α and sup j≥1 max 2≤ ≤5

a j ≤ β a n .

(3) There exist positive constants λ and τ such that in the region |t| ≤ τ , sup j≥1 |g j (t)| > λ.

(4) For any 0 < c 1 < c 2 , there exists ρ = ρ(c 1 , c 2 ) < 1 such that for any t ∈ (c 1 , c 2 ), sup j≥1 |g j (t)| < ρ.

Set A n = n j=1 a j and B n = n j=1 a 2 j . Let U n (x) be the density of n j=1 X j . Then, (1.1.29) where

U n (x) = 1 (2πB n ) 1/2 exp - (x -A n ) 2 2B n + v n ,
v n = o 1 + |x -A n | n 3/2 for |x -A n | < 2 log 2 n (1.1.30)
and

v n = o 1 n for all x.
(1.1.31)

Recall that (U α ) α>0 is the family of distribution laws conjugate with G, which is composed of n components. We will write U α , the number n being omitted. We assume that for any α > 0, for very large n, the densities (U α i ) 1≤i≤n satisfy the assumptions (1), ( 2), ( 3), ( 4). This essentially means that the components (g i ) are of a small number of different kinds, which is a reasonable assumption.

Applying Theorem 1, we obtain that for any α > 0, (1.1.29) holds for U α , with A n = E[ X α ] and B n = V ar( X α ). We get from Fact 3 that A n = -d dα log Φ(α). Then, (1.1.21) implies that there exists a unique β a n > 0 such that

A n = - d dα log Ψ(α) α=β a n = na.
(1.1.32)

We deduce that U β a n (na) = 1 (2πB n ) 1/2 + o(n -3/2 ).

(1.1.33)

We assume that the number k of components of G (1) satisfies that k = o(n). Therefore, n -k ∼ n and we may appply Theorem 1 to U β a n 2 to obtain that .1.34) where

U β a n 2 (na -x) = exp - (x-A 1,k ) 2 2B k+1,n (2πB k+1,n ) 1/2 + o 1 n , ( 1 
A 1,k = k j=1 E[ X β a n j ] and B k+1,n = n j=k+1
V ar( X

β a n j
). The assumptions of Theorem 1 imply that B n and B k+1,n are respectively of order n and n -k, and are therefore of the same order since k = o(n). Consequently, for any x > 0,

U β a n 2 (na -x) U β a n (na) = exp - (x -A 1,k ) 2 2B k+1,n {1 + o(1)} (1.1.35)
However, if we only consider those x such that x -A 1,k = o(n 1/2 ), we obtain that exp -

(x -A 1,k ) 2 2B k+1,n = {1 + o(1)} .
(1.1.36) Therefore, writing (1.1.27) for α = β a n , we get that for x satisfying x -A 1,k = o(n 1/2 ),

p E 1 (x) = U β a n 1 (x) {1 + o(1)} .
(1.1.37) Thus, when x belongs to an interval of wide radius (equal to n 1/2 ), the density of E 1 is approximated by U β a n 1 (x), which is the density of a Gibbs measure. One can interpret (1.1.37) as follows. G is an isolated system divided in two components : a small one, G (1) , immersed in a large heat bath G (2) . G (1) and G (2) interact only by exchanges of energy and their temperatures are equal to the same value T when thermal equilibrium is reached. Then, the distribution of energy in G (1) and in any small component of G is given by (1.1.37), and the parameter β a n , usually called an inverse temperature, is equal to 1 k B T , where k B is Boltzmann's constant.

We will explain in chapter 2 why these Statistical Mechanics considerations are linked to the issues of Chapters 2 and 3.

Presentation of Chapters 2 and 3

In both Chapters 2 and 3, the essential technique is the commonly called Saddlepoint Approximation (see [START_REF] Jensen | Saddlepoint Approximations[END_REF]), which is an asymptotic local approximation of the density of a sum of independent random variables. It is composed of two steps. Firstly, one performs an exponential change of measure, as in Large Deviations Theory, in order to localize around a given value of the sum. Here, we call it the tilting operation. Secondly, one performs an Edgeworth expansion of the density of the resulting sum. This expansion is a central Limit Theorem, as the Theorem stated hereabove in [START_REF] Khinchin | Mathematical foundations of statistical mechanics[END_REF]), but at higher orders.

In Chapters 2 and 3, we consider a sequence (X j ) j≥1 of independent random vectors, valued in R d , d ≥ 1. Let (k n ) n≥1 be a sequence of integers with 1 ≤ k n < n, for all n ≥ 1. We write k instead of k n . We assume that the (X j ) have a common support S X and that their moment generating functions have a common domain of finiteness, denoted by Θ. For a ∈ S X and n ≥ 1, let Q nak be a regular version of the conditional distribution of X k 1 := (X 1 , ..., X k ) given {S 1,n = na}, where S 1,n := n j=1 X j . We study the asymptotic behaviour (as n → ∞) of Q nak , under various assumptions on k.

Our results are given in total variation distance. We denote by P -Q T V the total variation distance between probability measures P and Q.

The tilting operation is described hereunder.

Definition 3. Let X be a r.v. valued in R d , d ≥ 1. Denote by Φ X its mgf. Let Θ X := θ ∈ R d : Φ X (θ) < ∞ .
For any θ ∈ Θ X , denote by X θ a random vector having the tilted density, defined by

p X θ (x) := exp θ, x p X (x) Φ X (θ) (1.1.38)

Summary of Chapter 2

We present here our strategy to obtain the asymptotic behaviour of

Q nak when k = o(n).
Since the conditioning event is {S 1,n = na}, we prove that for any n ≥ 1, there exists a unique

θ a n ∈ Θ such that E S 1,n θ a n = na. (1.2.1)
The main result of Chapter 2 is the following. In the sequel, all the tilted densities pertain to θ = θ a n .

Theorem 2. Under suitable assumptions, if k = o(n), then,

Q nak -P k 1 T V = O k n , (1.2.2)
where P k 1 is the joint distribution of independent r.v.'s ( X j ) 1≤j≤k .

Proof. We give a sketch of the proof. Let R nak be the distribution of S 1,k := k j=1 X j given S 1,n = na.

Let R 1,k be the distribution of S 1,k := k j=1 X j . Then, we obtain from Sufficiency Theory that

Q nak -P k 1 T V = R nak -R 1,k T V . (1.2.3)
Now, by Scheffe's theorem, we deduce that

Q nak -P 1,k T V = p( S 1,k = t| S 1,n = na) -p S 1,k (t) dt, (1.2.4) where p( S 1,k = •| S 1,n = na) is the density of S 1,k given S 1,n = na and p S 1,k is the density of S 1,k .
Then, we can check readily the following invariance of the conditional density : for any t ∈ R d ,

p( S 1,k = t| S 1,n = na) = p( S 1,k = t S 1,n = na) = p S 1,k (t) p S k+1,n (na -t) p S 1,n (na) . (1.2.5)
For any integers , m with 1 ≤ ≤ m, we denote by f ,m the density of S ,m := m j= X j . Therefore, we deduce readily from (2.5.6), (2.5.7) and (2.5.8) that

Q nak -P 1,k T V = f k+1,n (na -t) f 1,n (na) -1 f 1,k (t)dt. (1.2.6)
Finally, we perform Edgeworth expansions for f k+1,n and f 1,n and we get the desired result.

Summary of Chapter 3

This Chapter contains a generalisation of the preceding one. Indeed, we obtain the asymptotic behaviour of Q nak when k is not necessarily a o(n), and even when k n converges to 1.

We need to consider some quantities inspired from an Importance Sampling setting, which allow to use a criterion for convergence in total variation distance. We perform an Adaptative Scheme to estimate the density of Q nak , and still perform a Saddlepoint Approximation to conclude the proof.

Introduction to Chapter 4

Let (X i ) i≥1 be an i.i.d. sequence of random variables. Let F X be their common distribution function. For n ≥ 1, set S 0 = 0 and S n = n i=1 X i .

Assume first that (X i ) i≥1 is a sequence of Bernoulli of parameter p. For n ≥ 1, let L n be the longest chain of consecutive 1 among (X i ) 1≤i≤n .

Theorem 3. For any p ∈ (0, 1), we have that almost surely,

L n log n -→ - 1 log p as n → ∞. (1.4.1)
The study of L n is of interest in insurance, finance and even molecular biology. For any n ≥ 1, and any integer k such that 1 ≤ k ≤ n, set

M n (k) := max 0≤i≤n-k {S i+k -S i } = max 0≤i≤n-k {X i+1 + ... + X i+k } .
Then, in a Bernoulli model,

L n = max {k ∈ {1, ..., n} : M n (k) = k} . (1.4.2)
From now, we consider any sequence (X i ) i≥1 and we focus on

I n (k) := M n (k) k , for n ≥ 1 and 1 ≤ k ≤ n. (1.4.3)
Then, I n (k) is called an Erdős-Rényi increment. For example, if (X i ) represent daily values of a financial asset, then I n (k) is the maximal average gain over a period of k days. Notice that

I n (1) = max 1≤i≤n X i while I n (n) = S n n .
(1.4.4) Therefore, I n (k) can be viewed as an intermediate object between Extreme Value Theory and the classical Theory of mean of variables. Notice also that, if E[X 1 ] = 0 then by the law of large numbers,

I n (n) → 0 as n → ∞. On the other hand, if F X (t) < 1 for any real t, then I n (1) → ∞ as n → ∞.
The following result asserts that somewhere between these two extremes, the limit is positive and finite. It is the classical Erdős and Rényi theorem for the partial sum process.

Theorem 4. Assume that the distribution of X 1 is nondegenerate, E[X 1 ] = 0 and inf {s : ψ(s) < ∞} < 0 < sup {s : ψ(s) < ∞} , where ψ(s) := E[exp(sX 1 )].

(1.4.5)

Fix c > 0. Let k n be the integer part of c log n. Then,

M n (k n ) → α c , (1.4.6)
where

α c := inf {α ≥ u : Ψ(α) ≥ 1/c} and Ψ(α) = sup t:ψ(t)<∞ {tα -log ψ(t)} . (1.4.7)
Proof. The proof makes use of classical large deviations results for S(n) n and on the Borel-Cantelli lemma. See [START_REF] Deheuvels | Topics on empicial processes[END_REF] for details. This result has given rise to many developments and extensions to processes related to the partial sum one, among which a functional version, established in [START_REF] Deheuvels | Functional Erdös-Rényi laws[END_REF]. In Chapter 3, we extend it to Lévy processes.

Summary of Chapter 4

This chapter is devoted to functional Erdős-Rényi theorems for Lévy processes. Let Z be a Lévy process. For x ≥ 0, and > 0, define the standardized increment functions of Z(•) by setting

η x, (s) := Z(x + s) -Z(x) for s ∈ [0, 1]. (1.5.1)
For any c > 0, consider the following random sets G T of increment functions.

G T := {η x,a T : 0 ≤ x ≤ T -a T }
, where a T = c log T.

(1.5.2) and M n,an := {η m,an : m ∈ {0, ..., n -a n }} , where a n is the integer part of c log n.

(1.5.3)

We have established that, under suitable assumptions, the random sets G T and M n,an converge (in the sense of the Hausdorff distance defined below) almost surely (a.s.) to deterministic sets of functions.

Now, we define the Hausdorff distance. Let E be a set of functions on [0, 1] such that for all T > 0, G T ⊆ E . We endow E with a metric topology T , defined by a distance d T . For any subset A ⊆ E, and > 0, consider an enlargement of A defined by

A = A ;T := g ∈ E : d T (f, g) < for some f ∈ A . (1.5.4)
The Hausdorff distance between the subsets A, B ⊆ E is defined by

∆ T (A, B) := inf > 0 : A ⊆ B and B ⊆ A .
(1.5.5)

Let K(c) be a fixed set. Then, lim

T →∞ ∆ T (G T , K(c)) = 0 a.s.
if and only if, for any > 0, there exists a.s. T ( ) < ∞ such that for all T ≥ T ( ),

G T ⊂ (K(c)) and K(c) ⊂ (G T ) . (1.5.6)
Let ψ be the moment generating function of Z(1). Introduce the following assumptions.

(C) : ψ(t) < ∞ for all t ∈ R.

(A) : inf {t : ψ(t) < ∞} < 0 < sup {t : ψ(t) < ∞} and Z(1) has no Gaussian component.

(E) : There exists a constant µ such that for all t ≥ 0, E[Z(t)] = µt.

We have obtained the following theorems, called functional Erdős-Rényi laws.

Theorem 5. Assume that (C) and (E) hold. Then, for any c > 0, there exists a fixed set K(c) such that lim

T →∞ ∆ U (G T , K(c)) = 0 a.s. (1.5.7)
where ∆ U is associated to the distance d U defined on the set of bounded functions on [0, 1] by

d U (f, g) = sup x∈[0,1] |f (x) -g(x)| .
(1.5.8) Theorem 6. Assume that (A) and (E) hold. Let BV 0 (0, 1) be the set of functions on [0, 1] which are right-continuous, with bounded variations and vanish at the origin. Then, for all c large enough, there exists a fixed set L(c) such that

lim n→∞ ∆ W (M n,an , L(c)) = 0 a.s. (1.5.9)
where ∆ W is associated to the distance d W defined on BV 0 (0, 1) by

d W (f, g) = 1 0 |f (u) -g(u)|du + |f (1) -g(1)|.
(1.5.10)

The proofs of these results rely heavily on functional large deviations theorems for processes with stationary and independent increments.

Chapter 2

Asymptotic distribution of independent random vectors given their sum Let (X j ) j≥1 be a sequence of independent, not necessarily identically distributed (i.d.), random vectors (r.v.) valued in R d , d ≥ 1. Let (k n ) n≥1 be a sequence of integers with 1 ≤ k n < n, for all n ≥ 1. We write k instead of k n . We assume that the (X j ) have a common support S X . For a ∈ S X and n ≥ 1, let Q nak be a regular version of the conditional distribution of [START_REF] Stroock | Probability Theory : An Analytic View[END_REF]). In this paper, we study the asymptotic behaviour (as

X k 1 := (X 1 , ..., X k ) given {S 1,n = na}, where S 1,n := n j=1 X j . Such a version exists since R d is a Polish space (see
n → ∞) of Q nak .
This question is closely related to the well-known Gibbs Conditioning Principle (GCP) (see [START_REF] Stroock | Microcanonical distributions, Gibbs states, and the equivalence of ensembles[END_REF]), which states that when the r.v.'s are independent and identically distributed (i.i.d.) and valued in any Polish space, the distribution of

X k 1 given 1 n n j=1 f (X j ) = a
, where f is a measurable real function, converges weakly to some limit distribution. Let P X be the common law of the (X j ). Denote by B R d the Borel σ-algebra of R d . Then, under suitable conditions, the GCP asserts that for fixed k, we have for any

B ∈ B R d k and a = E P X [f ], lim δ→0 lim n→∞ P   X k 1 ∈ B A(a, δ) :=    1 n n j=1 f (X j ) ∈ [a -δ, a + δ]      = (γ a ) k (B), (2.1.1)
where the measure γ a , called a Gibbs measure, minimizes the relative entropy H( 

d log(Φ f ) dθ (θ) = a, where Φ f (θ) := R d exp(θf (x))dP X (x). (2.1.2)
Then γ a is absolutely continuous (a.c.) with respect to (w.r.t.) P X , with

dγ a dP X (x) = exp(θ a f (x)) Φ f (θ a ) . (2.1.3)
The GCP extends to the case where k -→ ∞ as n -→ ∞, provided that k = o(n). (See [START_REF] Dembo | Refinements of the Gibbs conditioning principle[END_REF]). It has an interpretation in Statistical Mechanics, since it describes the distribution of a typical small subset in a system composed of a very large number n of particles, under a constraint of averaged energy. The classical approach to obtain statements of the form (2.1.1) is to interpret the event A(a, δ) in terms of the empirical distribution and to use Sanov's large deviations theorem (see Section 7.3. in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]). However, this method uses the exchangeability of the (X j ) under the conditioning event, which does not hold anymore when the r.v.'s are not i.d..

In this paper, we consider the conditioning point approach of [START_REF] Diaconis | Conditional limit theorems for exponential families and finite versions of de Finetti's theorem[END_REF]. Instead of enlarging the conditioning event as in (2.1.1), this approach uses that, when all the X j 's are a.c. w.r.t the Lebesgue measure on R d , Q nak may be defined by a conditional density (see Fact 16 below). We prove that this method can be applied to r.v.'s which are not i.d. More precsisely, we generalize Theorem 1.6 in [START_REF] Diaconis | Conditional limit theorems for exponential families and finite versions of de Finetti's theorem[END_REF], which holds, when k = o(n), for a sequence of i.i.d. r.v.'s valued in R (d = 1). We extend it to a sequence of independent non i.d. r.v.'s. valued in R d with d ≥ 1. We obtain that Q nak is asymptotically approximated in total variation distance, by the product of k probability measures (γ a j,n ) 1≤j≤k described as follows. For any j ≥ 1, let Φ j (•) := R d exp •, x dP X j (x) be the moment generating function (mgf) of X j . Then, for any n ≥ 1 and 1 ≤ j ≤ k, γ a j,n is a.c. w.r.t. P j := P X j , with (2.1.4) where for any n ≥ 1, θ a n ∈ R d is a solution of the equation

dγ a j,n dP j (x) = exp θ a n , x Φ j (θ a n ) , for x ∈ R d ,
1 n n j=1 ∇ log Φ j (θ) = a.
(2.1.5)

Although our conditioning event is less general than in the GCP, our result still has a Statistical Mechanics interpretation, as explained in Section 2. After some preliminary results in Section 3, we precise our assumptions in Section 4. Then, we state and prove our main theorem in Section 5, while some technical lemmas are deferred to the Appendix.

Notations and elementary Facts

All the r.v.'s considered are a.c. w.r.t. the Lebesgue measure on R d . For any r.v. X, let P X be its distribution and p X its density. For any j ≥ 1, set P j := P X j and p j := p X j .
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Conditional density

Let U and V be r.v.'s having a joint density denoted by p (U,V ) . Then, there exists a conditional density of U given V , denoted as follows.

p ( U = u| V = v) = p (U,V ) (u, v) p V (v) .
Fact 5. Let (X j ) j≥1 be a sequence of independent r.v.'s valued in R d , d ≥ 1. For any n ≥ 1, let J n be a subset of {1, ..., n} s.t. α n := |J n | < n. Let L n be the complement of J n in {1, ..., n}. Set S Ln := j∈Ln X j . Then, there exists a conditional density of (X j ) j∈Jn given S 1,n , defined by

p (( X j ) j∈Jn = (x j )| S 1,n = s) = j∈Jn p j (x j ) p S Ln s - j∈Jn x j p S 1,n (s) , (2.1.6)
Proof. For any measurable function φ : R

d αn × R d -→ R d , we calculate E [φ ((X j ) j∈Jn ; S 1,n )] = φ((x j ); s 1,n )    n j=1 p j (x j )    dx 1 ...dx 1 , where s 1,n = n j=1
x j .

(2.1.7)

Then, we apply the change of variables formula with the diffeomorphism of class C 1 defined by

(x 1 , ..., x n-1 , x n ) → (x 1 , ..., x n-1 , s 1,n ). (2.1.8)
We obtain thus that the joint density of (X j ) j∈Jn and S 1,n is the numerator of (3.2.2).

The Tilted Density Definition 4. Let X be a r.v. valued in

R d , d ≥ 1. Denote by Φ X its mgf. Let Θ X := θ ∈ R d : Φ X (θ) < ∞ .
For any θ ∈ Θ X , denote by X θ a random vector having the tilted density, defined by

p X θ (x) := exp θ, x p X (x) Φ X (θ)
(2.1.9) Fact 6. For any θ ∈ Θ X , the mean of the r.v. X θ is equal to the gradient of κ at θ. Thus,

E[ X θ ] = ∇κ(θ).
(2.1.10)

The covariance matrix of X θ is equal to the Hessian matrix of κ at θ. Thus, for for any

1 ≤ i, j ≤ d, Cov( X θ ) i,j = ∂ 2 κ ∂θ i ∂θ j (θ) i,j
.

(2.1.11)

For any j ≥ 1, set Φ j := Φ X j . We suppose throughout the text that the functions (Φ j ) j≥1 have the same domain of finiteness denoted by Θ, which is assumed to be of non void interior. We write, for any j ≥ 1,

Θ := θ ∈ R d : Φ j (θ) < ∞ .
14CHAPTER 2. ASYMPTOTIC DISTRIBUTION OF INDEPENDENT RANDOM VECTORS GIVEN THEIR SU Fact 7. For any j ≥ 1, there exists a probability space (Ω θ , A θ , P θ ) such that for all finite subset J ⊂ N and for all (B j ) j∈J ∈ B(R d ) |J| , (2.1.12) where P θ j := P X θ j and p θ j := p X θ j . In other words, X θ j j≥1

P θ X θ j j∈J ∈ (B j ) j∈J = j∈J P θ j (B j ) = j∈J B j p θ j (x)dx,
is a sequence of independent r.v.'s defined on (Ω θ , A θ , P θ ).

Fact 8. For any θ ∈ Θ, j ≥ 1 and j ≥ 1,

E X j + X j θ = E X θ j + X θ j .
(2.1.13)

Corollary 1. For any n ≥ 1, for any θ ∈ Θ,

E S 1,n θ = n j=1 m j (θ).
(2.1.14)

We will prove in Section 2.1 that, for a suitable choice of a, the equation (3.2.24) has a unique solution denoted by θ a n . Throughout the text, when we write X j without any subscript θ, this means that we refer implicitly to X θ a n j .

Analogies with Statistical Mechanics

We have the following analogies between the mathematical point of view and the statistical mechanics one developed in the Chapter of Introduction.

S 1,k ←→ Energy of g 1 ... g k Density of S 1,k ←→ Structure function of g 1 ... g k Moment generating function of S 1,k ←→ Partition function of g 1 ... g k θ a n ←→ β a n
Notice that, although the energies (e i ) of the components (g i ) are the analogues of the (X i ), the (e i ) are not stochastically independent. However, splitting G in components (g i ) in this sense, gives raise to some (U α i ) such that (U α ) is the density of a sum of independent random variables ( X α i ). The assumptions on the ( X α i ) of Theorem 1 are actually analytical conditions of uniformity on their densities (U α i ). They mean that the components (g i ) have rather similar characteristics, although they are not identical. Now, we have from (1.1.37) that

p(S 1,k = x|S 1,n = na) ←→ Ω (1) (x)Ω (2) (na-x) Ω(na) = U α 1 (x) U α 2 (na-x) U α (na) ≈ Ω (1) (x) exp(-β a n x) Ψ (1) (β a n )
.

Therefore, we expect that p(S 1,k = x|S 1,n = na) should be approximated by

p(S 1,k =x) exp(θ a n x) Φ 1,k (θ a n )
, where Φ 1,k is the mgf of S 1,k . This approximation is a consequence of our general result, which is therefore natural.

Preliminary Results

Existence of the tilted density

For any set E ⊂ R d , we denote respectively by int(E), c (E) and conv(E) the interior, the closure and the convex hull of E. Let S X be the common support of the (X j ) j≥1 . Set

C X := c (conv(S X )). Definition 5. Let f be a convex function on R d . Set dom(f ) := x ∈ R d : f (x) < ∞ . Assume that int(dom(f )) = ∅ and f is differentiable throughout int(dom(f )). Then, for any boundary point x of dom(f ), we say that f is steep at x if ∇f (x i ) -→ ∞ (2.3.1) whenever (x i ) is a sequence of points in int(dom(f )) converging to x. Furthermore, f is called steep if it is steep at all boundary point of dom(f ).
We have the following characterization of steepness, which is Theorem 5.27 in (Barndorff-Nielsen Ole, 2014).

Theorem 7. Let f be a convex function on R d . Assume that int(dom(f )) = ∅ and that f is differentiable throughout int(dom(f )). Then f is steep if and only if for any z ∈ int(dom(f )) and any boundary point x ∈ dom(f ),

df dλ (x + λ(z -x)) ↓ -∞, as λ ↓ 0. (2.3.2)
Fact 9. Assume that for all j ≥ 1, κ j is steep. For all n ≥ 1, set

κ n := 1 n n j=1 κ j . (2.3.3)
Then, for all n ≥ 1, κ n is steep.

Proof. For all n ≥ 1, κ n clearly satisfies the assumptions of Theorem 7. Now, for all j ≥ 1, κ j being steep, κ j satisfies (2.3.2). We deduce readily that κ n satisfies (2.3.2), which implies that κ n is steep. Theorem 9. Assume that for all j ≥ 1, κ j := log Φ j is strictly convex and steep. Then, for all n ≥ 1 and any a ∈ int(C X ), there exists a unique θ a n ∈ int(Θ) such that ∇κ n (θ a n ) = a.

(2.3.5)

Namely, for any n ≥ 1 and a ∈ int(C X ),

θ a n = ∇(κ n ) * (a).
(2.3.6)

Proof. For all n ≥ 1, dom(κ n ) = Θ is an open convex set and κ n is strictly convex and differentiable on int(Θ), since by assumption, the κ j 's are. Now, we get from Fact 9 that κ n is steep. Therefore, the pair (Θ, κ n ) is of Legendre type. Furthermore, κ n is lower semi-continuous. Therefore, we obtain from Theorem 8 that the gradient mapping ∇κ n : Θ -→ int(dom((κ n ) * )) is a homeomorphism. We conclude the proof by Lemma 2 below.

Lemma 2. For any n ≥ 1, we have that int(dom

((κ n ) * )) = int(C X ).
Proof. The proof is given in Appendix.

Sufficiency Theory

Definition 8. Let (E, A) be a measurable space. Let Σ be a sub σ-algebra of A. Let P and Q be probability measures on (E, A). We say that Σ is sufficient w.r.t. P and Q if for all A ∈ A,

P (A|Σ) = Q(A|Σ)
almost everywhere (a.e.) P and a.e. Q.

(2.3.7)

Lemma 3. For any sub σ-algebra G of A, set

P -Q G := 2 sup A∈G |P (A) -Q(A)|.
Assume that Σ ⊂ A is sufficient w.r.t. P and Q. Then

P -Q Σ = P -Q A . (2.3.8)
Proof. The proof is elementary. See Lemma (2.4) in [START_REF] Diaconis | A dozen of de Finetti-style results in search of a theory[END_REF] for details.

Lemma 4. Let P be a probability measure on (R d ) k , B((R d ) k ) with density p w.r.t the Lebesgue measure. Let T be the map defined on

(R d ) k by T (x) = k i=1 x i , for x = (x i ) 1≤i≤k ∈ (R d ) k . For any t ∈ R d , let L t := x ∈ (R d ) k : T (x) = t .
and let σ t be the natural measure on L t . (The definition is recalled in Appendix). Then, the map

ν P defined on R d × B((R d ) k ) by ν P (t, A) = Lt∩A p(x)dσ t (x) Lt p(x)dσ t (x) if L t ∩ A = ∅, and ν P (t, A) = 0 if L t ∩ A = ∅ (2.3.9)
is a regular conditional P-distribution for I d given T , where I d is the identity map on (R d ) k .

PRELIMINARY RESULTS

Proof. The proof, which uses some elementary differential geometry, is given in Appendix.

Lemma 5. Let T be the map defined on

(R d ) k by T (x) = k i=1 x i , for x = (x i ) 1≤i≤k ∈ (R d ) k . Let Σ the sub σ-algebra of B((R d ) k
) generated by T . Then, for any θ ∈ Θ,

Q nak -P θ 1,k Σ = Q nak -P θ 1,k A , where P θ 1,k := k j=1 P θ j .
(2.3.10)

Proof. Let θ ∈ Θ. Recall that Q nak and P θ 1,k are a.c. w.r.t. the Lebesgue measure with respective densities q nak and p θ 1,k given by

q nak (x k 1 ) = p k 1 (x k 1 )p S k+1,n (na -T (x k 1 )) p S 1,n (na)
, where (2.3.11) and

p k 1 (x k 1 ) := k j=1 p j (x j ),
p θ 1,k (x k 1 ) = p k 1 (x k 1 ) exp θ, T (x k 1 ) Φ k 1 (θ)
, where Φ k

1 := k j=1 Φ j .
(2.3.12)

Since on L t , we have that T (x k 1 ) = t, we deduce readily that for any t ∈ R d and

A ∈ B((R d ) k ), ν Q nak (t, A) = ν P θ 1,k (t, A) = Lt∩A p k 1 (x k 1 )dσ t (x) Lt p k 1 (x k 1 )dσ t (x) if L t ∩ A = ∅, (2.3.13) and ν Q nak (t, A) = ν P θ 1,k (t, A) = 0 if L t ∩ A = ∅. (2.3.14)
Consequently, Σ is sufficient w.r.t Q nak and P θ 1,k , which concludes the proof.

Edgeworth expansion

We obtain from the following theorem (theorem 19.3 in [START_REF] Bhattacharya | Normal approximation and asymptotic expansions[END_REF])) an Edgeworth expansion for a sequence of independent random vectors.

Theorem 10. Let {X n : n ≥ 1} be a sequence of independent random vectors with values in R d , having zero means and average positive-definite covariance matrices V n for any n large enough. Set

B n := (V n ) -1/2 , where V n := 1 n n j=1
Cov(X j ).

(2.3.15)

Assume that

lim n→∞ 1 n n j=1 E B n X j 4 < ∞. (2.3.16) 18CHAPTER 2.
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Assume also the existence of an integer p > 0 such that for n ≥ p + 1 and 0 ≤ m ≤ n -p, the functions

g m,n (t) := j=m+p j=m+1 |E [exp {i t, B n X j }]| (2.3.17) satisfy γ := sup n≥p+1 sup 0≤m≤n-p g m,n (t)dt < ∞ (2.3.18)
and, for all b > 0,

δ(b) := sup n≥p+1 sup 0≤m≤n-p sup t >b g m,n (t) < 1. (2.3.19)
Let φ be the density of the standard normal distribution on R d . Then, the distribution Q n of n -1/2 B n S n has a density q n for all n large enough, and

sup x∈R d (1 + x 4 ) q n (x) -φ(x) + n -1/2 P 1 -φ : χ ν,n (x) = O 1 n , (2.3.20)
where P 1 -φ : χ ν,n (x) = φ(x)P # 1 (x) and

P # 1 (x) = |ν|=3 χ ν,n H (ν) 3 (x), (2.3.21)
where

H (ν) 3
is a polynomial function of degree 3 which vanish at 0 and χ ν,n is the average of the νth cumulants of B n X j with 1 ≤ j ≤ n, for |ν| = 3. See (7.20) in [START_REF] Bhattacharya | Normal approximation and asymptotic expansions[END_REF] for the precise expressions.

Proof. We write hereafter a sketch of the proof. For a given nonnegative integral vector α with |α| ≤ 4, set

h n (x) = x α q n (x) -φ(x) + n -1/2 P 1 -φ : χ 3,n (x) (2.3.22)
Let ĥn be the Fourier transform of h n . Then, the Fourier inversion theorem implies that sup

x∈R d |h n (x)| ≤ (2π) -d ĥn (t) dt (2.3.23)
The aim is then to bound ĥn (t) dt, by splitting it into a sum of three integrals which are bounded by some O 1 n . The key point is that these controls are made at fixed n.

We recall that all the notations considered in the sequel pertain to θ = θ a n .

Corollary 2. For n ≥ 1, let J n be a subset of {1, ..., n} and L n be its complement in {1, ..., n}. Set

α n := |J n | and assume that lim n→∞ |L n | = lim n→∞ n -α n = ∞. (2.3.24) Set V Ln := 1 n -α n j∈Ln Cov( X j ). (2.3.25) Assume that lim n∞ λ min ( V Ln ) > 0, (2.3.26)
which implies in particular that for all n large enough, V Ln is positive-definite, so that we may set

B Ln := V Ln -1/2 . (2.3.27) Suppose that lim n→∞ 1 n -α n j∈Ln E B Ln X j -m j (θ a n ) 4 < ∞.
(2.3.28)

Suppose also that there exists an integer p > 0 such that for all n larger than some N p , to insure that α n ≥ p + 1, the functions (2.3.31)

g m,n (t) := m+p j=m+1 E exp i t, B Ln X j (0 ≤ m ≤ α n -p) (2.3.29) satisfy γ := sup n≥Np sup 0≤m≤αn-p g m,n (t)dt < ∞, (2.3 
Then the density q Ln of S Ln = α

-1/2 n B Ln S Ln - j ∈Ln m j (θ a n ) satisfies sup x∈R d (1 + x 4 ) q Ln (x) -φ(x) + α -1/2 n P 1 -φ : χ ν,Ln (x) = O 1 α n , (2.3.32)
where χ ν,Ln is the average of the νth cumulants of

B Ln X j -m j (θ a n ) with j ∈ L n , for |ν| = 3.
Proof. We need to perform an Edgeworth expansion when, instead of a sequence {X n : n ≥ 1} of independent random vectors, we consider a triangular array whose row of index n is composed of the α n independent random vectors

X θ a n j -E X θ a n j j∈Ln
, where we recall that E X

θ a n j = m j (θ a n ). (2.3.33)
Therefore, in the framework of triangular arrays, we can write analogously these controls, for a fixed row of the array. So, we consider the row of index n of the triangular array defined by (2.3.33). A careful study of the preceding proof implies that (2.3.32) holds if the assumptions of this corollary hold.
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Assumptions and Examples

Assumptions

The following assumptions are essentially those of our main Theorem, since they imply those of the Preliminary Results.

(Supp) : The (X j ), j ≥ 1 have a common support S X , and they have positive densisties p j .

(Mgf ) : The mgf's (Φ j ) j≥1 have the same domain of finiteness Θ, and int(Θ) = ∅.

(Stp) : For all j ≥ 1, κ j := log Φ j is a strictly convex and steep function.

(Bdθ) : For any a ∈ int(C X ), there exists a compact set K a of R d such that

{θ a n : n ≥ 1} ⊂ K a ⊂ int(Θ).
(2.4.1) (Cv) : For all j ≥ 1 and θ ∈ Θ, C θ j := Cov X θ j is a positive definite matrix and for any compact

K ⊂ int(Θ), 0 < inf j≥1 inf θ∈K λ min (C θ j ) ≤ sup j≥1 sup θ∈K λ max (C θ j ) < ∞, (2.4.2)
where

λ min (C θ j ) (resp. λ max (C θ j )) is the smallest (resp. largest) eigenvalue of C θ j . (AM4) : For any compact K ⊂ int(Θ), sup j≥1 sup θ∈K E X θ j -m j (θ) 4 < ∞.
(2.4.3)

For any j ≥ 1, let ξ j be the characteristic function of X j and for any θ ∈ Θ, denote respectively by p θ j and ξ θ j the density and the characteristic function of X θ j .

(Cf 1) : For any compact K ⊂ int(Θ), there exist positive constants δ

K , C K , R K such that ∀j ≥ 1, ∀ t ≥ R K , sup θ∈K | ξ θ j (t)| ≤ C K t δ k . (2.4.4) (Cf 2) : For any j ≥ 1, p j is a function of class C 1 and for any compact K ⊂ int(Θ), max ∈{1,...,d} sup j≥1 sup θ∈K ∂ p θ j ∂x L 1 < ∞. (2.4.5) (Cf 3) : For any compact K ⊂ int(Θ), for all β > 0, sup j≥1 sup t >β sup θ∈K ξ θ j (t) =: K,β < 1. (2.4.6)
Remark 1. (Bdθ) is reasonable, since ∇ κ n is a mean of functions. We will see that, when d = 1, it can be replaced by a natural uniformity assumption, denoted by (Uf ).

Denote by [Ad] the set of assumptions (Bdθ), (Cv), (AM4) and (Cf 1), (Cf 2), (Cf 3).

Remark 2.

[Ad] is natural since it concerns each individual r.v. X j , j ≥ 1. Thereby, the order of the r.v.'s is irrelevant (as in Statistical Mechanics), which makes sense since we intend to study the distribution of any small subset of r.v.'s among those defining the global constraint {S 1,n = na}.

Remark 3. Most of the assumptions in [Ad] are of the form sup

j≥1 sup θ∈K F j (θ)
, where for any j ≥ 1,

F j is a continuous function. Therefore, for fixed j ≥ 1, sup θ∈K F j (θ) < ∞, since K is compact. So
[Ad] is a convenient to check set of uniformity assumptions.

We prove hereunder that [Ad] implies the assumptions of Corollary 2. We also prove that (Bdθ) and (Cf 2) imply (Cf 1).

Covariance

Fact 10. Assume that (Bdθ) holds and that for any compact K ⊂ int(Θ),

λ K min := inf j≥1 inf θ∈K λ min (C θ j ) > 0. (2.4.7) Then, lim n∞ λ min ( V Ln ) > 0.
(2.4.8)

Proof. Recall from the Courant-Fischer min-max theorem that for any Hermitian matrix M ,

λ min (M ) = inf {x∈R d :x =0} x t M x x t x .
(2.4.9)

Let K a be a compact subset of int(Θ) such that (θ a n ) n≥1 ⊂ K a . Then, for any θ ∈ K a , any x ∈ R d (x = 0), and any j ∈ L n ,

x t C θ j x x t x ≥ λ min (C θ j ) ≥ λ Ka min . (2.4.10) Therefore, for all n ≥ 1, inf θ∈Ka λ min ( V θ Ln ) = inf θ∈Ka inf {x∈R d :x =0} x t V θ Ln x x t x ≥ λ Ka min > 0. (2.4.11)
Absolute Moments of order 4 Fact 11. (AM4), (Bdθ) and (Cv) imply that (2.3.28) holds.

Proof. For any j ∈ L n , .

E B Ln X j -m j (θ a n ) 4 ≤ λ min V Ln -2 E X j -m j (θ a n ) 4 . ( 2 
Proof. The proof is given in Appendix.

Corollary 3. Assume that (Bdθ) and (Cf 2) hold. Then, (Cf 1) holds for all t ∈ R d , t = 0, with δ K = 1.

Proof. The proof is given in Appendix.

Lemma 7. Assume that (Bdθ) and (Cf 3) hold. Then, (2.3.31) holds for any p > 0.

Proof. Let p > 0, n ≥ N p and 0 ≤ m ≤ α n -p. For any b > 0 and t ∈ R d such that t > b, we have that

g m,n (t) := m+p j=m+1 ξ j B Ln t ≤ ( Ka,λ min b ) p < 1.
(2.4.13)

The one-dimensional case

Assume here that d = 1. For any r.v. X or for a sequence (X j ) j≥1 of i.i.d. r.v.'s, set

κ := log(Φ X ) ; m := dκ dθ and s 2 := d 2 κ dθ 2 .
If (X j ) j≥1 is not an identically distributed sequence of r.v.'s, then for any j ≥ 1, set κ j := log(Φ X j ) ; m j := dκ j dθ and s 2 j :=

d 2 κ j dθ 2 . Fact 12. For any θ ∈ Θ X , E[ X θ ] = m(θ) and V ar( X θ ) = s 2 (θ).
(2.4.14)

In the sequel, Θ and S X pertain to r.v.'s X j , j ≥ 1, with common support and common domain of finitness of their mgf's. Since Θ and conv(S X ) are convex, int(Θ) and int(C X ) are open convex subsets of R, which are open intervals. Therefore, we can write int(Θ) = (α, β) and int(C X ) = (A, B), where α, β, A, B may be finite or not.

Definition 9. Let f : (α, β) -→ (A, B) be a differentiable function. Consider the following property.

(H) : For all θ ∈ int(Θ), df dθ (θ) > 0 and lim θ→α f (θ) = A ; lim θ→β f (θ) = B. Fact 13. If f satisfies (H), then f is a homeomorphism from int(Θ) = (α, β) to int(C X ) = (A, B).
If d > 1, then Theorem 8 requires that κ n is steep, in the sense of Definition 5, while when d = 1, this notion of steepness is not necessary to get the conclusion of Theorem 8. Indeed, for all n ≥ 1, dκn dθ is a homeomorphism from int(Θ) to int(C X ), provided that dκn dθ satisfies (H). Consider the following assumptions.

(Hκ) : For all j ≥ 1, m j := dκ j dθ satisfies (H).

(Uf ) : There exist functions f + and f -which satisfy (H) and such that

∀j ≥ 1, ∀θ ∈ Θ, f -(θ) ≤ m j (θ) ≤ f + (θ).
(2.4.15)

Fact 14. (Hκ) implies that dκn dθ is a homeomorphism from int(Θ) to int(C X ) and in particular that for any a ∈ int(C X ), for any n ≥ 1, there exists a unique θ a n such that

dκ n dθ (θ a n ) = 1 n n j=1 m j (θ a n ) = a.
(2.4.16)

Fact 15. The uniformity assumption (Uf ) implies that (Bdθ) holds.

Proof. For any j ≥ 1 and n ≥ 1, we have that

f -(θ a n ) ≤ m j (θ a n ) ≤ f + (θ a n ). (2.4.17) Therefore, for all n ≥ 1, f -(θ a n ) ≤ m n (θ a n ) = a ≤ f + (θ a n ), (2.4.18) which implies that (f + ) -1 (a) ≤ θ a n ≤ (f -) -1 (a). (2.4.19)
We deduce from these considerations that, when d = 1, we can replace (Stp) and (Bdθ) by respectively (Hκ) and (Uf ).

Examples

Normal distribution

For any j ≥ 1, X j is a r.v. with normal distribution. Set

µ j := E[X j ] and Γ j := Cov(X j ). Assume that sup j≥1 µ j < ∞ and 0 < inf j≥1 λ min (Γ j ) ≤ sup j≥1 λ max (Γ j ) < ∞. (2.4.20)
We recall that, for any j ≥ 1, for all

θ ∈ Θ = R d , κ j (θ) = µ j θ + 1 2 θ Γ j θ and ∇κ j (θ) = (µ j ) + d =1 θ (Γ j ) , 1≤ ≤d . (2.4.21)
So, for all θ ∈ R d , the Hessian matrix of κ j at θ is equal to Γ j . Since for all θ ∈ R d , this matrix is equal to C θ j , we get that (Cv) holds. Since for any j ≥ 1, Γ j is positive definite, we deduce also that κ j is strictly convex. Clearly, ∇κ j satisfies (2.3.1), so that κ j is steep and (Stp) holds. Γ j . We get after some elementary calculations that for any a ∈ int(C X ) and n ≥ 1, the equation ∇κ n (θ) = a is equivalent to

Γ n θ = a -µ n .
(2.4.22)

Then, (2.4.20) implies readily that (2.4.22) defines a unique θ a n and that the sequence (θ a n ) n≥1 is bounded, so that (Bdθ) holds. Finally, it is straightforward to get from the expression of p j and the boundedness conditions, that (AM4) and (Cf 2) hold.

Gamma distribution

Fix t > 0. For any j ≥ 1, X j is a random variable (d = 1) with distribution Γ(k j , t), such that

2 < k -:= inf j≥1 k j ≤ k + := sup j≥1 k j < ∞.
(2.4.23)

For any j ≥ 1 and x ≥ 0,

p j (x) = x k j -1 exp(-x t ) Γ(k j )t k j (2.4.24)
Recall that for any j ≥ 1,

S X = C X = (o; ∞) ; Φ j (θ) = (1 -tθ) -k j ; Θ = (-∞, 1 t ).
(2.4.25)

We check readily that (Mgf ), (Stp) and (Cv) hold, since, for any j ≥ 1 and θ ∈ Θ,

κ j (θ) = -k j log(1-θt) ; m j (θ) = k j t(1-θt) -1 ; s 2 j (θ) = k j (1-θt) -1 1 + θt(1 -θt) -1 . (2.4.26)
Furthermore, (Uf ) holds, since for any j ≥ 1 and θ ∈ Θ,

f -(θ) := (k -)t 1 -θt ≤ m j (θ) ≤ f + (θ) := (k + )t 1 -θt .
(2.4.27)

Now, we have that, for any j ≥ 1 and θ ∈ Θ,

p θ j (x) = x k j -1 exp x θ -1 t Φ j (θ)Γ(k j )t k j .
(2.4.28)

For θ ∈ Θ, we have that θ -1 t < 0. Thereby, we deduce readily that (AM4) holds. We also get (Cf 2), since

d p θ j dx (x) is of the form P (x) exp x θ -1
t , where P is a polynomial function.

Main Result

In the sequel, for any probability measures P and Q on R k , we denote the total variation distance between P and Q by

P -Q T V := sup B∈B(R k ) |P (B) -Q(B)| .
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Theorem of Diaconis and Freedman

Theorem 11. Let (X j ) j≥1 be a sequence of i.i.d. random variables (d = 1). Assume that Θ = (α, β) and S X = (A, B), where α, β, A, B may be finite or not. This implies that int(Θ) = (α, β) and int(C X ) = (A, B). Assume that the function

m := d (log(Φ X )) dθ satisfies (H)
and that for any θ ∈ Θ,

E   X θ -m(θ) s(θ) 4   < ∞.
(2.5.1)

Suppose that there exists ν ≥ 1 such that for any θ ∈ Θ,

E exp it X θ s(θ) ν dt < ∞, (2.5.2)
and that for any θ ∈ Θ, for all b > 0,

sup |t|>b E exp it X θ s(θ) < 1. (2.5.3) Assume that k n → 0 and k → ∞, as n → ∞. Set γ := 1 2 E |1 -Z 2 |
, where Z is of standard normal distribution. Then, for any a ∈ S X ,

Q nak -P k 1 T V = γ k n + o k n , (2.5.4)
where P k 1 is the joint distribution of independent r.v.'s ( X j ) 1≤j≤k , having the tilted density defined by θ a such that m(θ a ) = a.

Main Theorem and Proof

Theorem 12. When d > 1, assume that (Mgf ), (Stp), (Bdθ), (Cv), (AM4), (Cf 2), (Cf 3) hold. (See Section 4 for weaker assumptions). When d = 1, we can replace (Stp) and (Bdθ) by respectively (Hκ) and (Uf ).

If k = o(n), then for any a ∈ int(C X ), Q nak -P k 1 T V = O k n , (2.5.5)
where

P k 1 is the joint distribution of independent r.v.'s ( X j ) 1≤j≤k . Proof. Let n ≥ 1. Let R nak be the distribution of S 1,k := k j=1 X j given S 1,n = na. Let R 1,k be the distribution of S 1,k := k j=1
X j . Then, we obtain from Sufficiency Theory (Section 3.2) that

Q nak -P k 1 T V = R nak -R 1,k T V . (2.5.6) 26CHAPTER 2.
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Now, by Scheffe's theorem, we deduce that

Q nak -P 1,k T V = p( S 1,k = t| S 1,n = na) -p S 1,k (t) dt.
(2.5.7)

Then, we can check readily the following invariance of the conditional density : for any t ∈ R d ,

p( S 1,k = t| S 1,n = na) = p( S 1,k = t S 1,n = na) = p S 1,k (t) p S k+1,n (na -t) p S 1,n (na) .
(2.5.8)

For any integers , m with 1 ≤ ≤ m, we denote by f ,m the density of S ,m := m j= X j . Therefore, we deduce readily from (2.5.6), (2.5.7) and (2.5.8) that

Q nak -P 1,k T V = f k+1,n (na -t) f 1,n (na) -1 f 1,k (t)dt.
(2.5.9)

First, we need to normalize in order to perform Edgeworth expansions. Recall that if X is a random vector with density p X , then the normalized random vector X has a density given by

p X (x) = det Cov(X) -1/2 p X Cov(X) -1/2 (x -E[X]) . (2.5.10) Set t := Cov( S 1,k ) -1/2 (t -E[ S 1,k ]) = k -1/2 B 1,k   t - k j=1 m j (θ a n )   (2.5.11)
and

t # := Cov( S k+1,n ) -1/2 (na -t -E[ S k+1,n ]) = (n -k) -1/2 B k+1,n   k j=1 m j (θ a n ) -t  
(2.5.12) Therefore, t and t # are linked by

t # = - k n -k 1/2 B k+1,n ( B 1,k ) -1 t.
(2.5.13)

Lemma 8. Let 0 < θ 1 < 1. Then, f k+1,n (na -t) f 1,n (na) = 1 + O k n exp - t # 2 2 + O √ k n t + O 1 n .
(2.5.14)

(2.5.14) holds uniformly in n, k, a, t with k < θ 1 n.

Proof. For any integers , m with 1 ≤ ≤ m, we denote by g ,m the density of the normalized r.v. associated to S ,m . So, we have that

f k+1,n (na -t) f 1,n (na) = det Cov( S 1,n ) 1/2 det Cov( S k+1,n ) 1/2 g k+1,n (t # ) g 1,n (0) (2.5.15)
The assumptions allow us to perform Edgeworth expansions to obtain that

g 1,n (0) = φ(0) + O 1 n , since P 1 (0) = 0.
(2.5.16) and

g k+1,n (t # ) = φ(t # ) + 1 (n -k) 1/2 P 1 -φ : χ ν,Ln (t # ) + O 1 n -k (2.5.17)
where

L n = {k + 1, ..., n} and P 1 -φ : χ ν,Ln (t # ) = φ(t # ) P 1 # (t # ), with P 1 # (t # ) = |ν|=3 χ ν,Ln H (ν) 3 (t # ).
(2.5.18)

Now, for |ν| = 3, the ν-cumulant of a centered random vector is equal to its ν-moment. See (6.21) in [START_REF] Bhattacharya | Normal approximation and asymptotic expansions[END_REF] for details. Furthermore, the cumulants are invariant by any translation. Therefore,

χ ν,Ln = 1 n -k k+1≤j≤n E[( B Ln X j ) ν ].
(2.5.19)

Then, we have that

χ ν,Ln ≤ 1 n -k k+1≤j≤n E ( B Ln X j ) ν ≤ 1 n -k k+1≤j≤n E B Ln X j |ν| ∞ .
(2.5.20)

Now, we have that

B Ln X j |ν| ∞ = B Ln X j 3 ∞ ≤ A B Ln 3 . X j 3 , (2.5.21)
where A is an absolute constant which appears by equivalence of the norms. Now, the assumptions on the covariance matrices and on the absolute moments of order 4 imply that

E B Ln X j |ν| ∞ = O(1), so that χ ν,Ln = O(1) and g k+1,n (t # ) = φ(t # )   1 + O 1 (n -k) 1/2 |ν|=3 H (ν) 3 (t # )   + O 1 n -k (2.5.22) Now, since H (ν) 3 (0) = 0, we can factorize by t # in |ν|=3 H (ν) 3 (t # ) and get that φ(t # ).O 1 (n -k) 1/2 . |ν|=3 H (ν) 3 (t # ) = O 1 (n -k) 1/2 .O t # = O √ k n -k . t (2.5.23) 28CHAPTER 2.
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We deduce readily, after some elementary calculations, that

g k+1,n (t # ) g 1,n (0) = exp - t 2 2 + O √ k n t + O 1 n (2.5.24) Now, det Cov( S 1,n ) det Cov( S k+1,n ) = det I d + Cov( S k+1,n ) -1 Cov( S 1,k ) (2.5.25)
Furthermore, we have that

Cov( S k+1,n ) -1 ≤ 1 n -k B k+1,n 2 ≤ 1 (n -k) λ Ka min 2 and Cov( S 1,k ) ≤ k λ Ka max 2
(2.5.26) Therefore,

Cov( S k+1,n ) -1 Cov( S 1,k ) = O k n -k . (2.5.27)
Consequently, performing a Taylor expansion of det at I d , we obtain that det

I d + Cov( S k+1,n ) -1 Cov( S 1,k ) = 1 + T r Cov( S k+1,n ) -1 Cov( S 1,k ) + o k n -k .
(2.5.28)

Now, we have that T r Cov( S k+1,n ) -1 Cov( S 1,k ) = O k n-k , since T r(•) = T race(•) is a linear and continuous mapping. Therefore, det Cov( S 1,n ) 1/2 det Cov( S k+1,n ) 1/2 = 1 + O k n -k 1/2 = 1 + O k n (2.5.29) Lemma 9. If k = o(n)
, and t # < θ 2 < ∞, then uniformly in a and t, we have that

f k+1,n (na -t) f 1,n (na) = 1 + O k n + O k n t 2 + O √ k n t + O k 2 n 2 t 4 + O 1 n (2.5.30)
Proof. Since t # is bounded, we get from the Taylor-Lagrange inequality that exp -

t # 2 2 = 1 - t # 2 2 + O t # 4 = 1 + O k n -k t 2 + O k 2 (n -k) 2 t 4 (2.5.31) Therefore, 1 + O k n exp - t # 2 2 = 1 + O k n + O k n t 2 + O k 2 n 2 t 4
(2.5.32)
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Lemma 10. For ν = 1, 2, 3, 4 we have that

t ν f k (t)dt = O(1) (2.5.33)
Proof. We only need to prove the case ν = 4. Setting I 4 := t 4 f k (t)dt, we readily obtain that

I 4 = k -1/2 B 1,k   k j=1 X j -m j (θ a n )   4 dP ≤ k -2 B 1,k 4   k j=1 X j -m j (θ a n )   4 dP.
(2.5.34)

Since the X j -m j (θ a n ) are centered and mutually independent, we obtain that

I 4 ≤ k -2 B 1,k 4   k j=1 X j -m j (θ a n ) 4 dP + j 1 =j 2 X j 1 -m j 1 (θ a n ) 2 X j 2 -m j 2 (θ a n ) 2 dP   (2.5.35)
The assumption on the absolute moments of order 4 and the inequality of Cauchy-Schwartz imply

that k j=1 X j -m j (θ a n ) 4 dP = O(k) and j 1 =j 2 X j 1 -m j 1 (θ a n ) 2 X j 2 -m j 2 (θ a n ) 2 dP = O(k 2 ).
Then, since B 1,k 4

= O(1), we conclude from (2.5.35) that I 4 = O(1).

We are now able to prove (2.5.5). Setting κ(t) :=

f k+1,n (na-t) f 1,n (na)
-1 f 1,k (t), we have that

Q nak -P 1,k T V = t # ≤θ 2 κ(t)dt + t # >θ 2 κ(t)dt.
(2.5.36) Now, Lemma 9 and Lemma 10 imply that

t # ≤θ 2 κ(t)dt = O k n (2.5.37)
On the other hand, we get from Lemma 8 and Lemma 10 that

t # >θ 2 κ(t)dt = t # >θ 2 1 + O k n exp - t # 2 2 -1 f k (t)dt + O k n (2.5.38) Recall that t # = O k n
t . Therefore, t # > θ 2 implies that there exists an absolute constant A, with 0 < A < ∞, such that A k n t > θ 2 . This is equivalent to t

4 > A -4 θ 4 2 n k 2 . 30CHAPTER 2. ASYMPTOTIC DISTRIBUTION OF INDEPENDENT RANDOM VECTORS GIVEN THEIR SU Then, since 1 + O k n exp - t # 2 2
-1 is uniformly bounded, we get from Markov's inequality and Lemma 10 that

t # >θ 2 1 + O k n exp - t # 2 2 -1 f k (t)dt = O k 2 n 2 .
(2.5.39)

2.6 Appendix 2.6.1 Proof of Lemma 2

Proof. We adapt the proof of Theorem 9.1. (ii

) * in (Barndorff-Nielsen Ole, 2014). So, it is enough to prove that int(C X ) ⊂ dom((κ n ) * ) ⊂ C X . (2.6.1) Let t / ∈ C X .
Let H be a hyperplane separating C X and t strongly, and let e be the unit vector in R d which is normal to H and such that C X lies in the negative halfspace determined by H and e. For any r > 0, we have that

n (re; t) := re, t -κ n (re) = 1 n   n j=1 (rd -κ j (re))   , where d := e, t .
(2.6.2) Since t / ∈ C X , we obtain from (5) of Section 7.1 in (Barndorff-Nielsen Ole, 2014) that for all 1 ≤ j ≤ n, rd -

κ j (re) -→ ∞ as r → ∞. Therefore, n (re; t) -→ ∞ as r → ∞. So (κ n ) * (t) = sup θ∈Θ { θ, t -κ n (θ)} = ∞, which means that t / ∈ dom((κ n ) * ). Consequently, dom((κ n ) * ) ⊂ C X .
Conversely, let t ∈ int(C X ). Applying Jensen's inequality, we have that for any θ ∈ R d ,

κ n (θ) ≥ log E [exp θ, S 1,n /n ] .
(2.6.3) Now, we apply Lemma 9.1. in (Barndorff-Nielsen Ole, 2014) (which follows readily from Markov's inequality) to the random vector S n /n to get that for any θ

, τ ∈ R d , θ, τ -log E [exp θ, S 1,n /n ] ≤ -log ρ n (τ ) (2.6.4)
where ρ n (τ ) = inf e P ( e, S 1,n /n ≥ e, τ ) , (2.6.5) the infimum being taken over all unit vectors in R d . Then, Lemma 9.2. in (Barndorff-Nielsen Ole, 2014) implies that, since t ∈ int(C X ), we have that ρ n (t) > 0. Consequently, we have that

t ∈ dom((κ n ) * ), since for any θ ∈ R d , θ, t -κ n (θ) ≤ θ, t -log E [exp θ, S 1,n /n ] ≤ -log ρ n (t) < ∞, (2.6.6)
and ρ n (t) is independent of θ.

2.6. APPENDIX

Proof of Lemma 4

A Preliminary result

Let Ω be an open subset of R m+q = R m × R q . Let T be a function of class C 1 from Ω to R q such that for any a ∈ Ω, the differential at a of T in the second direction (of R q ) is invertible. Define the map h : R m+q -→ R m+q by h : (x 1 , ..., x m ; x m+1 , ..., x m+q ) → (x 1 , ..., x m ; T (x 1 , ..., x m+q )) (2.6.7)

The local inversion theorem implies that for any a ∈ Ω, there exist an open neighborhood ω a of a and open sets U a ⊂ R m and T a ⊂ R q such that h induces a diffeomorphism of class C 1 from ω a to U a × T a . Denote by ξ a the inverse of the restriction of h to ω a .

Lemma 11. Assume that for any a ∈ Ω, and any

(u, t) ∈ U a × T a , |J ξa (u, t)| = 1, (2.6.8)
where J ξa (u, t) is the determinant of the jacobian matrix of ξ a at (u, t). For any fixed t ∈ T a , let ξ t a be the map from U a to ω a defined by ξ t a (u) = ξ a (u, t). Then, ξ t a is a diffeomorphism of class C 1 and clearly, we have that

ξ t a (U a ) = {T = t} ∩ ω a .
(2.6.9)

For any u ∈ U a , let g ξ t a (u) be the Gram determinant of the partial derivatives of ξ t a at u. Assume that g ξ t a (u) is independent of u, t and a, that is g ξ t a (u) = g, (2.6.10)

for some constant g > 0. For any t ∈ R q , set L t := {T = t}. Then, for any measurable non negative function f on Ω, we have that

Ω f (x)dx = 1 √ g {t:Lt∩Ω =∅} Lt∩Ω f (x)dσ t (x) dt, (2.6.11)
where σ t is the natural measure on the submanifold L t ∩ Ω.

Proof. We recall that σ t is a Borel measure on L t , defined as follows for any submanifold V of dimension p. Let ω be a neighborhood of a point of V such that there exists a local parametrization (U, ξ) of V , where U is an open subset of R p with ξ(U ) = V ∩ ω. Then, we define a measure σ ω on V ∩ ω by

σ ω = ξ( √ g ξ λ U ), (2.6.12)
where λ U is the Lebesgue measure on U and g ξ is the Gram determinant of the partial derivatives of ξ. Then, σ is a Borel measure on V , satisfying that for any such ω, the restriction of σ to V ∩ ω is σ ω . Now, we have Ω = a∈Ω ω a , from which we can extract a countable subcover, that is Ω = n≥1 ω an .

Without loss of generality, we can assume that the (ω an ) n≥1 are non-overlapping and that

Ω =   n≥1 ω an   ∪ N , 32CHAPTER 2 
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for some negligible set N . Therefore, f = n≥1 f 1 ωa n a.e., so (2.6.13) where σ t an is the natural measure on the submanifold L t ∩ ω an . Now, (2.6.9) implies that the couple U an , ξ t an is a local parametrization of the submanifold L t . Furthermore, we clearly have that {t : L t ∩ ω an = ∅} = T an . Therefore,

{t:Lt∩Ω =∅} Lt∩Ω f (x)dσ t (x) dt = n≥1 {t:Lt∩ωa n =∅}    Lt∩ωa n f (x)dσ t an (x)    dt,
{t:Lt∩Ω =∅} Lt∩Ω f (x)dσ t (x) dt = n≥1 Ta n    Ua n f (ξ t an (u)) g ξ t an (u)du    dt.
(2.6.14)

Now, we obtain from (2.6.10) and the definition of ξ t an that

{t:Lt∩Ω =∅} Lt∩Ω f (x)dσ t (x) dt = √ g n≥1 Ta n    Ua n f (ξ an (u, t))du    dt.
(2.6.15)

We deduce from Fubini's theorem and the change of variables formula that, under (2.6.8),

{t:Lt∩Ω =∅} Lt∩Ω f (x)dσ t (x) dt = √ g n≥1 ωa n f (x)dx = √ g Ω f (x)dx.
(2.6.16)

Proof of Lemma 4

Proof. For any open set A ⊂ (R d ) k and any meaurable set B ⊂ R d ,

P(A ∩ {T ∈ B}) = A 1 B (T(x))p(x)dx.
(2.6.17)

The map h

: (R d ) k -→ (R d ) k is defined by h : x = (x 1 , ..., x k-1 ; x k ) → (x 1 , ..., x k-1 ; T (x)) (2.6.18)
We readily get from the local inversion theorem that h is a local diffeomorphism of class C 1 . Furthermore, for any a ∈ (R d ) k , the maps ξ a and ξ t a are defined by

ξ a : (u, t) = (u 1 , ..., u k-1 ; t) → (u 1 , ..., u k-1 ; t -s 1,k-1 ), (2.6.19)
where

s 1,k-1 = k-1 i=1 u i , and 
ξ t a : u → (u; t -s 1,k-1 ) (2.6.20)
We readily check that (2.6.8) and (2.6.10) hold here. Therefore, we get from the preceding Lemma that

P(A ∩ {T ∈ B}) = 1 √ g {t:Lt∩A =∅} 1 B (t)   L t ∩A p(x)dσ t (x)   dt.
(2.6.21)

In particular, applying (2.6.21) with A = (R d ) k , we get that for any B ∈ B(R d ),

(PT -1 )(B) = 1 √ g R d 1 B (t)   L t p(x)dσ t (x)   dt.
(2.6.22)

Therefore, the probability measure PT -1 is a.c. w.r.t. the Lebesgue measure, with

d(PT -1 ) dx = 1 √ g Lt p(x)dσ t (x) (2.6.23)
So, we deduce from (2.6.21) that for any open set A,

P(A ∩ {T ∈ B}) = B ν P (t, A)(PT -1 )(dt) (2.6.24)
First, we clearly have that for any fixed t ∈ R d , the map A → ν P (t, A) is a probability measure. We deduce from this fact and the monotone class theorem that (2.6.24) holds for any Borel set A.

Finally, we need to prove that for any fixed Borel set A, the map t → ν P (t, A) is measurable. Notice that L t ∩ A = ∅ if and only if t ∈ T (A). Therefore, it is enough to prove that T (A) is a Borel set and that the map t → Lt∩A p(x)dσ t (x) is measurable.

For the first point, write A = F ∪ (A ∩ F c ), for some F ∈ F σ included in A (which means that F is a countable union of closed sets). The key point is then that A ∩ F c is negligible w.r.t. the Lebesgue measure, and so is T (A ∩ F c ), which is obtained using that T is Lipschitz. We conclude by the completeness of the Lebesgue measure.

For the second point, it is enough to prove it when A = ω a , for some a ∈ A. Then, we have that

Lt∩ωa p(x)dσ t (x) = √ g Ua p(u; t -s 1,k-1 )du, (2.6.25)
which is clearly measurable w.r.t t.

Proof of Lemma 6

Proof. Let a ∈ int(C X ). Consequently, we may apply (2.4.4) to K a . We set δ := δ Ka , C := C Ka and R := R Ka . Now, for any p > 0, any n large enough to insure that α n ≥ p + 1, and any (2.6.28)

0 ≤ m ≤ α n -p, g m,n ( 
So, if p > 1 δ , then B Ln t ≥R g m,n (t)dt ≤ D Ka < ∞,
for some constant D Ka depending only on a.

Notice that, without loss of generality, we can assume that R > 2C 1 δ . Therefore, (2.4.4) implies that for all t satisfying B Ln t ≥ R, for all j ≥ 1,

| ξ j ( B Ln t)| ≤ C R δ < 1.
(2.6.29) Therefore, we obtain from Theorem 1, Chapter 1 in [START_REF] Petrov | Sums of independent random variables[END_REF] that for all t satisfying B Ln t < R, for all j ≥ 1,

| ξ j ( B Ln t)| ≤ 1 - 1 -( C R δ ) 2 8R 2 B Ln t 2 .
(2.6.30)

Setting Γ := 1-( C R δ ) 2
8R 2 , we deduce that for all t satisfying B Ln t < R, for all j ≥ 1, The preceding equality is obtained by applying a multidimensional version of integration by parts, which holds when one of the involved functions has compact support. Then, notice that p can be approximated in L 1 -norm by a sequence of functions of compact support. We deduce that Let (X j ) j≥1 be a sequence of independent, not necessarily identically distributed (i.d.), random variables (r.v.) valued in R, such that (s.t.) the (X j ) have a common support S X . In this chapter, we restrict ourselves to the one-dimensional case, for technical reasons. Indeed, the proof of the Edgeworth expansion theorem which we use here (see [START_REF] Petrov | Sums of independent random variables[END_REF]) is specific to the case d = 1 and can be extended to our framework (see Section 3.3.1 below). We keep the notations of the preceding chapter. For a ∈ S X and n ≥ 1, we denote by Q nak a regular version of the conditional distribution of X k 1 := (X 1 , ..., X k ) given {S 1,n = na}.

ξ j ( B Ln t)| ≤ exp -Γ B Ln t 2 ≤ exp -Γλ
t p(t) ∞ = ∂p ∂x ∞ ≤ ∂p ∂x L 1 < ∞. ( 2 
We have obtained in the preceding chapter an approximation of Q nak when k = o(n). A natural question arises : What can be said about the distribution of the n -k other r.v.'s, that is of (X j ) k+1≤j≤n , given {S 1,n = na}. In terms of Statistical Mechanics, the question would be : What can be said about the distribution of energy for the large component ? Set

k := n -k, so that k n → 1 as n → ∞. (3.1.1)
Therefore, we study the distribution of Q nak when k n is allowed to converge to 1 as n → ∞. In [START_REF] Dembo | Refinements of the Gibbs conditioning principle[END_REF], it is explained that the condition k = o(n) is necessary to get a Gibbs Conditioning Principle. In this paper, as expected we do not obtain a Gibbs type measure as an approximation of Q nak , if k n does not converge to 0. Now, we describe an Importance Sampling (IS) framework within which it is natural to consider Q nak for large k. Consider a sequence (X j ) j≥1 of r.v.'s. For large n but fixed, we intend to estimate

Π n := P (X n 1 ∈ E n ), for some event E n . (3.1.2) A classical IS estimator of Π n is the following. Π n (N ) := 1 N N i=1 p n 1 (Y n 1 (i)) q n 1 (Y n 1 (i)) 1 En (Y n 1 (i)), (3.1.3) 38CHAPTER 3. A CONDITIONAL LIMIT THEOREM FOR INDEPENDENT RANDOM VARIABLES
where p n 1 is the density of X n 1 and the (Y n 1 (i)) are i.i.d copies of a random vector Y n 1 with density q n 1 . Then, the law of large numbers insures that Π n (N ) converges almost surely to Π n , as N → ∞. The interest of this resampling procedure is to reduce the variance of the resulting estimator, compared to the usual Monte Carlo method. It is well known that the optimal density from the point of view of the variance is the conditional density p(X n 1 |E n ). Therefore, it is natural to search an approximation of p(X n 1 |E n ). This approach has been developed in ?, for an i.i.d. sequence (X j ) j≥1 of centered r.v.'s, with

E n = (x i ) 1≤i≤n ∈ R n : n i=1 x i ≥ na n , (3.1.4)
for some sequence (a n ) converging slowly to 0. Therefore, Π n (N ) estimates the moderate deviation probability of S 1,n /n. In ?, they get an approximation of p(X k 1 |E n ), which should be close to p(X n 1 |E n ) if k is large. For a r.v. X, denote by L(X) its probability distribution. They obtain that, for some density

g k on R k , p X k 1 = Y k 1 S 1,n ≥ na n ≈ g k (Y k 1 ), where Y k 1 ∼ L X k 1 S 1,n ≥ na n . (3.1.5)
The precise sense of ≈ is given in Section 3.2.3 below. They deduce from an elementary lemma that

g k (Z k 1 ) ≈ p X k 1 = Z k 1 S 1,n ≥ na n , where Z k 1 has density g k . (3.1.6)
Then, the approximation density g k has a computable expression, which allows to simulate

Z k 1 . A density g n on R n is constructed from g k . In (3.1.3), q n
1 and (Y n 1 (i)) are replaced respectively by g n and copies of a r.v. with density g n . The IS estimator obtained has better performances than the existing ones which estimate Π n . Now, it is reasonable to expect that (3.1.5) implies that the distribution of X k 1 given {S 1,n ≥ na n } is close to the distribution associated to g k . We can use this idea to get an approximation of Q nak for some k such that k n → 1 (see Theorem 18), but also for a class of k which are some o(n) (see Theorem 17). However, in both cases, the condition n -k → ∞ is required for the Edgeworth expansions.

We consider a sequence (X j ) j≥1 of independent r.v.'s. For any a ∈ S X , let p X k 1 = • S 1,n = na be the density of X k 1 given {S 1,n = na}. In this paper, we obtain that, for some density

g k on R k , p X k 1 = Y k 1 S 1,n = na ≈ g k (Y k 1 ), where Y k 1 ∼ L X k 1 S 1,n = na . (3.1.7)
We deduce (see Section 2.4) that

Q nak -G k T V -→ 0 as n → ∞, (3.1.8)
where G k is the distribution associated to g k . More precisely, when k is small (k = o(n ρ ) with 0 < ρ < 1/2), G k is the same Gibbs type measure as in the preceding chapter, while for large k (see the assumptions of Theorem 18), G k is a slight modification of this measure.

Kolmogorov's extension theorem does not apply to the sequence (Q nan ) n≥1 of probability measures. Therefore, we need to consider a sequence ((Ω n , A n , P n )) n≥1 of probability spaces s.t. for any n ≥ 1,

Y n 1 is a random vector defined on (Ω n , A n , P n ) and the distribution of

Y n 1 is Q nan . Then, for k ≤ n, Q nak is the distribution of Y k 1 .
The properties of (Y n 1 ) n≥1 are studied in Section 3, after some elementary results and statement of the Assumptions in Section 2, while Section 4 is devoted to our main Results and their proofs.

Assumptions and elementary results

All the r.v.'s considered are a.c. w.r.t. the Lebesgue measure on R. For any r.v. X, let P X be its distribution, p X its density and Φ X its moment generating function (mgf). For any j ≥ 1, set P j := P X j ; p j := p X j ; Φ j := Φ X j .

(3.2.1)

Conditional density

Let U and V be r.v.'s having respective densities p U and p V and a joint density denoted by p (U,V ) .

Then, there exists a conditional density of U given V , denoted as follows.

p ( U = u| V = v) = p (U,V ) (u, v) p V (v) .
Fact 16. Let (X j ) j≥1 be a sequence of independent r.v.'s. For any n ≥ 1 and 1 ≤ i ≤ n, let J n be a subset of {i, ..., n} s.t.

α n := |J n | < n -i + 1. Let L n be the complement of J n in {i, ..., n}. Set S Ln := j∈Ln X j .
Then, there exists a conditional density of (X j ) j∈Jn given S i,n , defined by

p (( X j ) j∈Jn = (x j )| S i,n = s) = j∈Jn p j (x j ) p S Ln s - j∈Jn x j p S i,n (s) , (3.2.2)

The tilted density

Definition 10. For a r.v. X, let Φ X be its mgf and let Θ X := {θ ∈ R : Φ X (θ) < ∞}. For any θ ∈ Θ X , denote by X θ a random vector having the tilted density, defined by

p X θ (x) := (exp θx)p X (x) Φ X (θ) . (3.2.3)
For any j ≥ 1, set Φ j := Φ X j . We suppose throughout the text that the functions (Φ j ) j≥1 have the same domain of finiteness denoted by Θ, which is assumed to be of non void interior. We write, for any j ≥ 1,

Θ := θ ∈ R d : Φ j (θ) < ∞ .
Fact 17. For any j ≥ 1, there exists a probability space (Ω θ , A θ , P θ ) such that for all finite subset J ⊂ N and for all (B j ) j∈J ∈ B(R) |J| ,

P θ X θ j j∈J ∈ (B j ) j∈J = j∈J P θ j (B j ) = j∈J B j p θ j (x)dx, ( 3 

.2.4) 40CHAPTER 3. A CONDITIONAL LIMIT THEOREM FOR INDEPENDENT RANDOM VARIABLES

where P θ j := P X θ j and p θ j := p X θ j . In other words, X θ j j≥1

is a sequence of independent r.v.'s defined on (Ω θ , A θ , P θ ).

Fact 18. For any j ≥ 1, and θ ∈ Θ, we have that E X θ j = m j (θ) where m j (θ) := dκ j dθ (θ) and κ j (θ) := log Φ j (θ).

(3.2.5)

Fact 19. For any θ ∈ Θ, j ≥ 1 and j ≥ 1, Fact 20.

E X j + X j θ = E X θ j + X θ j . ( 3 
For any j ≥ 1 and θ ∈ Θ, set

X θ j := X θ j -E[ X θ j ] = X θ j -m j (θ) and for any ≥ 3, s 2 j (θ) := V ar X θ j ; σ j (θ) := s 2 j (θ) ; µ j (θ) := E X θ j ; |µ| j (θ) := E X θ j .
Then,

s 2 j (θ) = d 2 κ j dθ 2 (θ) and µ j (θ) = d κ j dθ (θ).
(3.2.8)

Landau Notations

Definition 11. Let (X n ) n≥1 be a sequence of r.v.'s such that for any n ≥ 1, X n is defined on a probability space (Ω n , A n , P n ). Let (u n ) be a sequence of real numbers. We say that

(X n ) n≥1 is a O Pn (u n ) if for all > 0, there exists A ≥ 0 and N ∈ N, s.t. for all n N , P n X n u n A 1 -. (3.2.9) (X n ) n≥1 is a o Pn (u n )
if for all > 0 and δ > 0, there exists N ,δ ∈ N s.t. for all n N ,

P n X n u n δ 1 -. (3.2.10) (X n ) n≥1 converges to ∈ R in P n -probability and we note X n -→ Pn if X n = + o Pn (1). (3.2.11)
Remark 4. These notations differ from the classical Landau notations in probability by the fact that here, the rv's (X n ) are not defined on the same probability space. However, they satisfy similar properties, which we will use implicitly in the proofs.

A criterion for convergence in Total Variation Distance

Definition 12. Set 

A →1 :=    (B n ) n≥1 ∈ n≥1 A n : P n (B n ) -→ n∞ 1    . Lemma 13. For all integer n ≥ 1, let Y n 1 : (Ω n , A n , P n ) -→ (R n , B(R n )) be a random vector. For any 1 ≤ k ≤ n, the distribution of Y k 1 is
p k (Y k 1 ) = g k (Y k 1 ) [1 + T n ] where T n = o Pn (1), (3.2.12) then, P k -G k T V -→ n∞ 0. (3.2.13)
Proof. For any δ > 0, set

E(n, δ) := (y k 1 ) ∈ R k : p k (y k 1 ) g k (y k 1 ) -1 δ . (3.2.14)
Then,

P n ({|T n | δ} ∩ B n ) P n p k (Y k 1 ) g k (Y k 1 ) -1 δ = P k (E(n, δ)) = E(n,δ) p k (y k 1 ) g k (y k 1 ) g k (y k 1 )dy k 1 (1 + δ)G k (E(n, δ)).
By (3.2.12), for all n large enough,

P n ({|T n | δ} ∩ B n ) ≥ 1 -P n ({|T n | > δ}) -P n (B c n ) ≥ 1 -2δ.
Combining the preceding inequalities, we obtain that for all n large enough,

1 -2δ ≤ P k (E(n, δ)) ≤ (1 + δ)G k (E(n, δ)).
(3.2.15) Therefore, sup

C∈B(R k ) |P k (C) -P k (C ∩ E(n, δ))| P k (E(n, δ) c ) ≤ 2δ (3.2.16) 42CHAPTER 3. A CONDITIONAL LIMIT THEOREM FOR INDEPENDENT RANDOM VARIABLES and sup C∈B(R k ) |G k (C) -G k (C ∩ E(n, δ))| ≤ 1 -G k (E(n, δ)) ≤ 1 - 1 -2δ 1 + δ = 3δ 1 + δ . Now, we have that sup C∈B(R k ) |P k (C ∩ E(n, δ)) -G k (C ∩ E(n, δ))| sup C∈B(R k ) C∩E(n,δ) |p k (y k 1 ) -g k (y k 1 )|dy k 1 (3.2.17)
From the definition of E(n, δ), we deduce that sup

C∈B(R k ) |P k (C ∩ E(n, δ)) -G k (C ∩ E(n, δ))| δ sup C∈B(R k ) C∩E(n,δ) g k (y k 1 )dy k 1 δ.
Finally, applying the triangle inequality, we have that for all n large enough, sup

C∈B(R k ) |P k (C) -G k (C)| ≤ 2δ + δ + 3δ 1 + δ = 3δ 2 + δ 1 + δ ,
which converges to 0 as δ → 0.

Remark 5. A rate of convergence is not obtainable by this method.

A first calculus

Set p k Y k 1 := p X k 1 = Y k 1 S 1,n = na . (3.2.18)
First, we have that

p X k 1 = Y k 1 S 1,n = na = p X k = Y k | X k-1 1 = Y k-1 1 ; S 1,n = na p X k-1 1 = Y k-1 1 S 1,n = na (3.2.19) Set p k Y k 1 := p X k 1 = Y k 1 S 1,n = ns , then we deduce by induction on k that p k Y k 1 = k-1 i=1 p X i+1 = Y i+1 | X i 1 = Y i 1 ; S 1,n = na p ( X 1 = Y 1 | S 1,n = na) . (3.2.20) For 1 ≤ i 1 ≤ i 2 ≤ n, set Σ i 1 ,i 2 := i 2 j=i 1 Y j . We deduce from (3.2.20) that p k Y k 1 = k-1 i=1 p ( X i+1 = Y i+1 | S i+1,n = na -Σ 1,i ) p (X 1 = Y 1 |S 1,n = na) . (3.2.21)
Let Σ 1,0 = 0. Then,

p k Y k 1 = k-1 i=0 π i , where π i := p (X i+1 = Y i+1 |S i+1,n = na -Σ 1,i ) . (3.2.22)
The conditioning event being {S i+1,n = na -Σ 1,i }, we search θ s.t.

E S i+1,n θ = n j=i+1 m j (θ) = na -Σ 1,i .
(3.2.23)

Since P n -a.s., Σ 1,i + Σ i+1,n = na, this is equivalent to solve the following equation, where θ is unknown.

m i+1,n (θ) := n j=i+1 m j (θ) n -i = Σ i+1,n n -i . (3.2.24)
We will see below (see Definition 15) that, under suitable assumptions, equation (3.2.24) has a unique solution t i,n . In the following lines, the tilted densities pertain to θ = t i,n .

For e = 1, 2, let q i+e,n be the density of S i+e,n , where

S i+e,n := S i+e,n -E S i+e,n V ar S i+e,n = S i+e,n - n j=i+e m j (t i,n ) n j=i+e s 2 j (t i,n ) . (3.2.25)
Using the invariance of the conditional density under the tilting operation, Fact 16 and then renormalizing, we obtain that

π i = p X i+1 = Y i+1 | S i+1,n = na -Σ 1,i = p i+1 (Y i+1 ) σ i+1,n σ i+2,n q i+2,n (Z i+1 ) q i+1,n (0) , (3.2.26)
where

Z i+1 := m i+1 -Y i+1 σ i+2,n .

Assumptions

Definition 13. Let f : (α, β) -→ (A, B) be a function, where α, β, A and B may be finite or not. Consider the following condition (H).

(H) : f is strictly increasing and lim

θ→α f (θ) = A ; lim θ→β f (θ) = B.
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Statements

We suppose throughout the text that the following assumptions hold. So in the statements of the results, we will not always precise which among them are required.

(Supp) : The (X j ), j ≥ 1 have a common support S X = (A, B), where A and B may be finite or not.

(Mgf ) : The mgf's (Φ j ) j≥1 have the same domain of finiteness Θ = (α, β), where α and β may be finite or not.

(Hκ) : For all j ≥ 1, m j := dκ j dθ satisfies (H).

(Uf ) : There exist functions f + and f -which satisfy (H) and such that Fact 22. If a function f is defined as the mean of functions satisfying (H), then f satisfies (H).

∀j ≥ 1, ∀θ ∈ Θ, f -(θ) ≤ m j (θ) ≤ f + (θ). (3.2.27) (Cv) : For any compact K ⊂ Θ, 0 < inf j≥1 inf θ∈K s 2 j (θ) ≤ sup j≥1 sup θ∈K s 2 j (θ) < ∞, (3. 
In particular, f is a homeomorphism from (α, β) to (A, B).

Corollary 5. Let , n be integers with 1 ≤ ≤ n. Set

m ,n := 1 n -+ 1 n j= m j .
Then, we deduce from (Hκ) and Fact 22 that m ,n is a homeomorphism from (α, β) to (A, B). Consequently, for any s ∈ S X , the equation

m ,n (θ) = s (3.2.31)
has a unique solution in Θ = (α, β).

Definition 14. We deduce from Corollary 5 that for any a ∈ S X , for any n ≥ 1, there exists a unique θ a n ∈ Θ s.t. m 1,n (θ a n ) = a.

Fact 23. We deduce from (Hκ) that for any a ∈ S X , there exists a compact set K a of R s.t.

{θ a n : n ≥ 1} ⊂ K a ⊂ Θ. (3.2.32)
Corollary 6. We deduce from the preceding Fact and the Assumptions that, for any a ∈ S X ,

sup n≥1 sup j≥1 |m j (θ a n )| < ∞, (3.2.33) 0 < inf n≥1 inf j≥1 Φ j (θ a n ) ≤ sup n≥1 sup j≥1 Φ j (θ a n ) < ∞, (3.2.34) 0 < inf n≥1 inf j≥1 s 2 j (θ a n ) ≤ sup n≥1 sup j≥1 s 2 j (θ a n ) < ∞, (3.2.35)
and for any 3 ≤ ≤ 6, sup

n≥1 sup j≥1 |µ j (θ a n )| ≤ sup n≥1 sup j≥1 |µ| j (θ a n ) < ∞. (3.2.36)
Definition 15. We deduce from Corollary 5 that for any n ≥ 1 and 0 ≤ i ≤ k -1, there exists a unique t i,n ∈ Θ s.t.

m i+1,n (t i,n ) = n j=i+1 Y j n -i . ( 3 

.2.37)

Since m i+1,n is a homeomorphism from S X to Θ, t i,n is a r.v. defined on (Ω n , A n ).

Fact 24. Assume that max 0≤i≤k-1

|t i,n | = O Pn (1) (3.2.38)
Then, under the Assumptions, we have that 

max 0≤i≤k-1 sup j≥1 |m j (t i,n )| = O Pn (1), (3.2.39) max 0≤i≤k-1 sup j≥1 max 1 Φ j (t i,n ) ; Φ j (t i,n ) = O Pn (1), (3.2.40) max 0≤i≤k-1 sup j≥1 max 1 s 2 j (t i,n ) ; s 2 j (t i,n ) = O Pn (1), ( 3 
s 2 j (θ) < ∞. (3.2.44)
Therefore,

P n max 0≤i≤k-1 sup j≥1 s 2 j (t i,n ) ≤ s 2 A ≥ 1 -. (3.2.45)
Remark 6. We will prove in Section 3.4. that, under the Assumptions, (3.2.38) holds.

3.3 Properties of (Y n 1 ) n≥1

Edgeworth expansion

Let (X j ) j≥1 be a sequence of independent r.v.'s with zero means and finite variances. For any j ≥ 1 and ≥ 3, set

s 2 j := E[X 2 j ] = V ar(X j ) ; σ j := s 2 j ; µ j := E[X j ] ; |µ| j := E |X j | .
For any p, q with 1 ≤ p ≤ q and > 2, set s 2 p,q := q j=p s 2 j ; σ p,q := s 2 p,q ; µ p,q := q j=p µ j .

For any j ≥ 1, if p j is of class C 1 , set

d j := dp j dx L 1 .
For ν ≥ 3, let H ν be the Hermite polynomial of degree ν. For example,

H 3 (x) = x 3 -3x ; H 4 (x) = x 4 -6x 2 + 3 ; H 5 (x) = x 5 -10x 3 + 15x.
Theorem 13. Let m be an integer with m ≥ 3. Assume that

sup j≥1 1 s 2 j < ∞, (3.3.1) sup j≥1 |µ| m+1 j < ∞, (3.3.2) sup j≥1 d j < ∞. (3.3.3) 3.3. PROPERTIES OF (Y N 1 ) N ≥1 47 
Let n be the density of the standard normal distribution. For any n ≥ 1, let q n be the density of (s 2 1,n ) -1/2 S 1,n . Then, for all n large enough, we have that (3.3.4) where, for example,

sup x∈R q n (x) -n(x) 1 + m ν=3 P ν,n (x) = o(1) n (m-2)/2 ,
P 3,n (x) = µ 3 1,n 6(s 2 1,n ) 3/2 H 3 (x) P 4,n (x) = (µ 3 1,n ) 2 72(s 2 1,n ) 3 H 6 (x) + µ 4 1,n -3 n j=1 (s 2 j ) 2 24(s 2 1,n ) 2 H 4 (x) P 5,n (x) = (µ 3 1,n ) 3 1296(s 2 1,n ) 9/2 H 9 (x) + µ 3 1,n µ 4 1,n -3 n j=1 (s 2 j ) 2 144(s 2 1,n ) 7/2 H 7 (x) + µ 5 1,n -10 n j=1 µ 3 j s 2 j 120(s 2 1,n ) 5/2 H 5 (x)
Remark 7. We obtain from (3.3.1) and (3.3.2) that

P 3,n (x) = O 1 n 1/2 H 3 (x) (3.3.5) P 4,n (x) = O 1 n H 6 (x) + O 1 n H 4 (x) (3.3.6) P 5,n (x) = O 1 n 3/2 H 9 (x) + O 1 n 3/2 H 7 (x) + O 1 n 3/2 H 5 (x) (3.3.7)

Extensions of the Edgeworth expansion

For any integers p, q with 1 ≤ p ≤ q and θ ∈ Θ, set s 2 p,q (θ) := q j=p s 2 j (θ) ; σ p,q (θ) := s 2 p,q (θ) ; µ p,q (θ) := p j=p µ j (θ).

For any j ≥ 1 and θ ∈ Θ, set

d j (θ) := d p θ j dx L 1 . 48CHAPTER 3. A CONDITIONAL LIMIT THEOREM FOR INDEPENDENT RANDOM VARIABLES

First Extension

For any n ≥ 1, let J n be a subset of {1, ..., n} s.t.

α n := |J n | < n. Let L n be the complement of J n in {1, ..., n}. Set S Ln := j∈Ln X θ a n j -E X θ a n j = X θ a n j -m j (θ a n ).
For any θ ∈ Θ and ≥ 3, set

s 2 Ln (θ) := j∈Ln s 2 j (θ) ; σ Ln (θ) := s 2 Ln (θ) ; µ Ln (θ) := j∈Ln µ j (θ).
Theorem 14. Let m be an integer with m ≥ 3. Assume that

sup j≥1 1 s 2 j (θ a n ) = O(1), (3.3.8) sup j≥1 |µ| m+1 j (θ a n ) = O(1), (3.3.9) sup j≥1 d j (θ a n ) = O(1). (3.3.10)
For any n ≥ 1, let q Ln be the density of (s 2 Ln ) -1/2 S Ln . Then, for all n large enough, we have that (3.3.11) where the P ν,Ln are defined as the P ν,n , except that the s 2 1,n and the µ 1,n are replaced respectively by s 2

sup x∈R q Ln (x) -n(x) 1 + m ν=3 P ν,Ln (x) = o (1) (n -α n ) (m-2)/2 ,
Ln (θ a n ) and µ Ln (θ a n ).

Corollary 7. Assume that (Cv), (AM(m + 1)), (Cf ) and (Uf ) hold. Then, (3.3.11) holds.

Remark 8. By Remark 7, for ν = 3, 4, 5, some O 1 n (ν-2)/2 appear in P ν,n . They are replaced by some

O(1) (n-αn) (ν-2)/2 in P ν,Ln .

Second Extension

Theorem 15. Let m be an integer with m ≥ 3. Assume that

max 0≤i≤k-1 sup j≥1 1 s 2 j (t i,n ) = O Pn (1), (3.3.12) max 0≤i≤k-1 sup j≥1 |µ| m+1 j (t i,n ) = O Pn (1), (3.3.13) max 0≤i≤k-1 sup j≥1 d j (t i,n ) = O Pn (1). (3.3.14) 3.3. PROPERTIES OF (Y N 1 ) N ≥1 49 
Let e ∈ {1, 2}. We recall that q i+e,n is the density of S i+e,n , defined by (3.2.25). Then, (3.3.15) where the P (i,e) ν,n are defined as the P ν,n , except that the s 2 1,n and the µ 1,n are replaced respectively by s 2 i+e,n (t i,n ) and µ i+e,n (t i,n ).

sup x∈R q i+e,n (x) -n(x) 1 + m ν=3 P (i,e) ν,n (x) = o Pn (1) (n -i -e + 1) (m-2)/2 ,
Proof. We follow the lines of the proof of Theorem 13, given in [START_REF] Petrov | Sums of independent random variables[END_REF]. For j ≥ 1, let ξ j be the characteristic function of X j t i,n . Then, for any τ ∈ R,

ξ j (τ ) = exp(iτ x) exp(t i,n x)p j (x) Φ j (t i,n ) dx (3.3.16) is a r.v. defined on (Ω n , A n ).
Performing a Taylor expansion of exp(iτ x), we obtain that

ξ j (τ ) = 1 + s 2 j (t i,n ) 2 (iτ ) 2 + m ν=3 µ ν j (t i,n ) ν! (iτ ) ν + r j (τ ). (3.3.17)
Then, we deduce from Fact 24 that

n j=i+e r j τ σ i+e,n ≤ δ i,n (n -i -e + 1) (m-2)/2 |τ | m , where max 0≤i≤k-1 |δ i,n | = o Pn (1).
(3.3.18)

For any n ≥ 1, and ω ∈ Ω n , we consider a triangular array whose row of index n is composed of the n -i -e + 1 independent r.v.'s

X t i,n (ω) j i+e≤j≤n
Let ξ i+e,n be the characteristic function of S t i,n i+e,n , given by ξ i+e,n (τ ) = exp(iτ x)q i+e,n (x)dx. By independence of the X t i,n (ω) j i+e≤j≤n and (3.3.17) combined with (3.3.18), we obtain that for suitable some constant ρ > 0, for |τ | ≤ n ρ ,

ξ i+e,n (τ ) -u m,n (τ ) ≤ δ i,n (n -i -e + 1) (m-2)/2 |τ | m + |τ | 3(m-1) exp - τ 2 2 , (3.3.19)
where u m,n is the Fourier transform of n(x) 1 +

m ν=3 P (i,e) ν,n (x) and max 0≤i≤k-1 |δ i,n | = o Pn (1).
Now, we have that 

I := ∞ -∞ ξ i+e,n (τ ) -u m,n (τ ) dτ (3.3.20) ≤ |τ |≤n ρ ξ i+e,n (τ ) -u m,n ( 
ξ i+e,n (τ ) -u m,n (τ ) dτ = o Pn (1) (n -i -e + 1) (m-2)/2 .
Then, using general results on characteristic functions (see Lemma 12 in [START_REF] Petrov | Sums of independent random variables[END_REF])), we prove that 

|τ |>n ρ |u m,n (τ )| dτ = o Pn (1) (n -i -e + 1) (m-2)/2 . ( 3 
I = o Pn (1) (n -i -e + 1) (m-2)/2 .
Then, Fourier inversion yields that

q i+e,n (x) -n(x) 1 + m ν=3 P (i,e) ν,n (x) = 1 2π ∞ -∞ exp(-iτ x)(ξ i+e,n (τ ) -u m,n (τ ))dτ. (3.3.25) Therefore, sup x∈R q i+e,n (x) -n(x) 1 + m ν=3 P (i,e) ν,n (x) ≤ I 2π = o Pn (1) (n -i -e + 1) (m-2)/2 .
(3.3.26)

Corollary 8. Assume that (Cv), (AM(m + 1)), (Cf ) hold, and that

max 0≤i≤k-1 |t i,n | = O Pn (1) (3.3.27)
Then, (3.3.15) holds.

Remark 9. By Remark 7, for ν = 3, 4, 5, some O 1 n (ν-2)/2 appear in P ν,n . They are replaced by some

O Pn (1) (n-i-1) (ν-2)/2 in P (i,e) ν,n .
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Moments of Y j

Throughout this Section 3.3, all the tilted densities considered pertain to θ = θ a n , defined by

m 1,n (θ a n ) = a. (3.3.28)
The moments of the Y j 's are obtained by integration of the conditional density. As expected, their first order approximations are the moments of X j .

Lemma 14.

max 1≤j≤n |E Pn [Y j ] -m j (θ a n )| = O 1 √ n . (3.3.29)
Proof. For any n ≥ 1 and 1 ≤ j ≤ n, we have that

E Pn [Y j ] = xp(X j = x|S 1,n = na)dx = xp( X j = x| S 1,n = na)dx. (3.3.30)
Let L n = {1, ..., n} \ {j}. Normalizing, we obtain that

p( X j = x| S 1,n = na) = p j (x) σ 1,n (θ a n ) σ Ln (θ a n ) p S Ln (γ j n (x)) p S 1,n (0)
, where γ j n (x) :=

m j (θ a n ) -x σ Ln (θ a n ) . (3.3.31)
Since ( AM6) implies (AM4), we get from Corollary 7 with m = 3 that

p S Ln (γ j n (x)) = n(γ j n (x)) 1 + µ 3 Ln (θ a n ) 6(s 2 Ln (θ a n )) 3/2 H 3 (γ j n (x)) + o(1) √ n -1 (3.3.32) and p S 1,n (0) = n(0) + o(1) √ n . (3.3.33)
Now, (Cv), (AM6) and the boundedness of the sequence (θ a n ) n≥1 imply readily that

σ 1,n (θ a n ) σ Ln (θ a n ) = 1 + O 1 n and µ 3 Ln (θ a n ) 6(s 2 Ln (θ a n )) 3/2 = O 1 √ n -1 . (3.3.34)
Since the functions θ → n(θ) and θ → n(θ)H 3 (θ) are bounded, we deduce that

p S Ln (γ j n (x)) p S 1,n (0) = n(γ j n (x)) 1 + O 1 √ n H 3 (γ j n (x)) + o(1) √ n -1 1 n(0) + o(1) √ n (3.3.35) = n(γ j n (x)) n(0) + O 1 √ n = exp - γ j n (x) 2 2 + O 1 √ n . (3.3.36) Consequently, p( X j = x| S 1,n = na) = p j (x) 1 + O 1 n exp - γ j n (x) 2 2 + O 1 √ n .
(3.3.37) 52CHAPTER
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Recalling that x p j (x)dx = m j (θ a n ), we deduce from (3.3.30) and (3.3.37) that

E Pn [Y j ] = x p j (x) exp - γ j n (x) 2 2 dx + m j (θ a n )O 1 √ n 1 + O 1 n . (3.3.38)
Therefore, it is enough to prove that

x p j (x) exp - γ j n (x) 2 2 dx = m j (θ a n ) + O 1 √ n (3.3.39) Now, for any u ∈ R, 1 -u 2 /2 ≤ exp -u 2 /2 ≤ 1, (3.3.40)
from which we deduce that

∞ 0 x p j (x)dx - 1 2 ∞ 0 x p j (x)γ j n (x) 2 dx ≤ ∞ 0 x p j (x) exp - γ j n (x) 2 2 dx ≤ ∞ 0 x p j (x)dx (3.3.41) and 0 -∞ x p j (x)dx ≤ 0 -∞ x p j (x) exp - γ j n (x) 2 2 dx ≤ 0 -∞ x p j (x)dx - 1 2 0 -∞ x p j (x)γ j n (x) 2 dx. (3.3.42)
Adding (3.3.41) and (3.3.42), we obtain that

m j (θ a n ) - 1 2 ∞ 0 x p j (x)γ j n (x) 2 dx ≤ x p j (x) exp - γ j n (x) 2 2 dx ≤ m j (θ a n ) - 1 2 0 -∞ x p j (x)γ j n (x) 2 dx.
(3.3.43) For any B ∈ B(R), we have that

B x p j (x)γ j n (x) 2 dx = 1 s 2 Ln (θ a n ) B x p j (x) (m j (θ a n ) -x) 2 dx (3.3.44) = 1 s 2 Ln (θ a n ) 2 i=0 2 i m j (θ a n ) 2-i (-1) i B x 1+i p j (x)dx. (3.3.45) Let i ∈ {0, 1, 2}.
Recalling that L n = {1, ..., n} \ {j}, we get from (Cv) and (Uf ) that

max 1≤j≤n 1 s 2 Ln (θ a n ) = O 1 n and max 1≤j≤n |m j (θ a n )| 2-i = O(1). (3.3.46)
Then, (AM6) implies that for all n ≥ 1, 

max 1≤j≤n B x 1+i p j (x)dx ≤ max 1≤j≤n R |x| 1+i p j (x)dx ≤ sup j≥1 1 + sup θ∈Ka E X θ
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Lemma 15. We have that

max 1≤j<j ≤n E Pn [Y j Y j ] -m j (θ a n )m j (θ a n ) = O 1 √ n (3.3.49) and max 1≤j≤n E Pn [Y 2 j ] -s 2 j (θ a n ) + m j (θ a n ) 2 = O 1 √ n .
(3.3.50)

Proof. For any 1 ≤ j < j ≤ n, we have that

E Pn [Y j Y j ] = xx p X j = x; X j = x S 1,n = na dxdx .
Let L n = {1, ..., n} \ {j, j }. Normalizing, we obtain that

p X j = x; X j = x S 1,n = na = p j (x) p j (x ) σ 1,n (θ a n ) σ Ln (θ a n ) p S Ln Γ j,j n (x) p S 1,n (0)
, where

Γ j n (x) := m j (θ a n ) + m j (θ a n ) -x -x σ Ln (θ a n )
.

Since (AM4) holds, we get from Corollary 7 with m = 3 that

p X j = x; X j = x S 1,n = na = p j (x) p j (x ) 1 + O 1 n exp - Γ j n (x) 2 2 + O 1 √ n .
(3.3.51)

As in the preceding proof, we get from (3.3.40) (applied to exp -Γ j n (x) 2 2

) that, uniformly in j,

E Pn [Y j Y j ] = xx p j (x) p j (x )dxdx + O 1 √ n = m j (θ a n )m j (θ a n ) + O 1 √ n .
The proof of (3.3.50) is quite similar.

Corollary 9. We have that

max 1≤j<j ≤n Cov Pn (Y j , Y j ) = O 1 √ n (3.3.52) and max 1≤j≤n V ar Pn (Y j ) -s 2 j (θ a n ) = O 1 √ n . (3.3.53) 54CHAPTER 3. A CONDITIONAL LIMIT THEOREM FOR INDEPENDENT RANDOM VARIABLES
Proof. We deduce from the preceding Lemmas that for any 1

≤ j < j ≤ n, Cov Pn (Y j , Y j ) = E Pn [Y j Y j ] -E Pn [Y j ]E Pn [Y j ] = m j (θ a n )m j (θ a n ) + O 1 √ n -m j (θ a n )m j (θ a n ) + O 1 √ n = O 1 √ n .

Proof of max

0≤i≤k-1

|t i,n | = O Pn (1)
For any n ≥ 1 and i = 0, ..., k -1, set

V i+1,n := 1 n -i n j=i+1 Z j where Z j := Y j -E[Y j ].
(3.3.54)

Lemma 16. We have that

E Pn [V 2 1,n ] = o(1). (3.3.55)
Proof. We have that

E Pn [V 2 1,n ] = 1 n 2    n j=1 V ar Pn (Y j ) + 2 1≤j<j ≤n Cov Pn (Y j , Y j )    . (3.3.56)
Then, we get from Corollary 9 that

E Pn [V 2 1,n ] = 1 n 2    n j=1 s 2 j (θ a n ) + O 1 √ n + n(n -1)O 1 √ n    . (3.3.57)
We conclude the proof by Corollary 6 which implies that

1 n 2 n j=1 s 2 j (θ a n ) + O 1 √ n = o(1). (3.3.58)
Lemma 17. We have that max

0≤i≤k-1 |V i+1,n | = o Pn (1). (3.3.59)
Proof. We follow the lines of Kolmogorov's maximal inequality proof. Let n ≥ 1 and i ∈ {0, ..., k -1}.

For any δ > 0, set

A i,n := {|V i+1,n | ≥ δ}   i-1 j=0 {|V j+1,n | < δ}   , (3.3.60) 3.3. PROPERTIES OF (Y N 1 ) N ≥1 55
and

A n := max 0≤i≤k-1 |V i+1,n | ≥ δ = k-1 i=0 A i,n . (3.3.61)
Since the (A i,n ) 0≤i≤k-1 are non-overlapping, we have that

E Pn [V 2 1,n ] ≥ k-1 i=0 A i,n V 2 1,n dP n (3.3.62) = k-1 i=0 A i,n {(V 1,n -V i+1,n ) + V i+1,n } 2 dP n (3.3.63) ≥ 2 k-1 i=0 A i,n (V 1,n -V i+1,n )V i+1,n dP n + k-1 i=0 A i,n V 2 i+1,n dP n (3.3.64) ≥ 2 k-1 i=0 A i,n (V 1,n -V i+1,n )V i+1,n dP n + δ 2 P n (A n ). (3.3.65) By Lemma 16, it is enough to prove that k-1 i=0 A i,n (V 1,n -V i+1,n )V i+1,n dP n = o(1). (3.3.66)
In the proof of Kolmogorov, the corresponding term is equal to 0, by independence of the involved random variables. Similarly (3.3.66) will follow from Corollary 15, which states that the (Z j ) are asymptotically uncorrelated. Indeed, we have that

k-1 i=0 A i,n (V 1,n -V i+1,n )V i+1,n dP n = k-1 i=0 E Pn 1 A i,n V 1,n V i+1,n - k-1 i=0 E Pn 1 A i,n V 2 1,n . (3.3.67)
Then, it is enough to prove that each sum in the right-hand side of (3.3.67) is a o(1). We get readily that

E Pn 1 A i,n V 1,n V i+1,n = 1 n(n -i)              n j=i+1 E Pn 1 A i,n Z 2 j + 1≤j≤n i+1≤j ≤n j =j E Pn [1 A i,n Z j Z j ]              (3.3.68) and E Pn 1 A i,n V 2 i+1,n = 1 (n -i) 2        n j=i+1 E Pn 1 A i,n Z 2 j + i+1≤j,j ≤n j =j E Pn [1 A i,n Z j Z j ]        . (3.3.69) 56CHAPTER 3. A CONDITIONAL LIMIT THEOREM FOR INDEPENDENT RANDOM VARIABLES
Now, the Cauchy-Schwarz inequality applied twice, first in L 2 and then in R k , implies that

k-1 i=0 1 n(n -i) n j=i+1 E Pn 1 A i,n Z 2 j ≤ 1 n k-1 i=0 P n (A i,n ) 1/2      n j=i+1 E Pn Z 4 j 1/2 n -i      (3.3.70) ≤ 1 n k-1 i=0 P n (A i,n ) 1/2          k-1 i=0      n j=i+1 E Pn Z 4 j 1/2 n -i      2          1/2 . (3.3.71) Then, k-1 i=0 P n (A i,n ) 1/2 = P n (A n ) 1/2
≤ 1 and we obtain from Corollary 15 and Fact 6 that, for all

i ∈ {0, ..., k -1},      n j=i+1 E Pn Z 4 j 1/2 n -i      2 =      n j=i+1 µ 4 j (θ a n ) + O 1 n 1/2 n -i      2 = O(1). (3.3.72)
Finally, we deduce from (3.3.71) and (3.3.72) that

k-1 i=0 1 n(n -i) n j=i+1 E Pn 1 A i,n Z 2 j = 1 n {kO(1)} 1/2 = o(1). (3.3.73)
We obtain similarly that

k-1 i=0 1 (n -i) 2 n j=i+1 E Pn 1 A i,n Z 2 j ≤ P n (A n ) 1/2          k-1 i=0 1 (n -i) 2      n j=i+1 E Pn Z 4 j 1/2 n -i      2          1/2 (3.3.74) = O(1) k-1 i=0 1 (n -i) 2 1/2 = o(1). (3.3.75)
To conclude, we consider the sums involving E Pn [1 A i,n Z j Z j ], for j = j , in (3.3.68) and (3.3.69).

The Cauchy-Scwarz inequality brings terms of the form

E Pn [Z 2 j Z 2 j ].
Clearly, Z 2 j and Z 2 j are similarly asymptotically uncorrelated and thereby, we obtain analogously that min

             k-1 i=0 1 n(n -i) 1≤j≤n i+1≤j ≤n j =j E Pn [1 A i,n Z j Z j ] ; k-1 i=0 1 (n -i) 2 i+1≤j,j ≤n j =j E Pn [1 A i,n Z j Z j ]              = o(1),
which ends the proof.
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Theorem 16. We have that max

0≤i≤k-1 |t i,n | = O Pn (1). (3.3.76)
Proof. The triangle inequality implies that for any n ≥ 1,

max 0≤i≤k-1 |m i+1,n (t i,n )| ≤ max 0≤i≤k-1 |V i+1,n |+ max 0≤i≤k-1   1 n -i n j=i+1 E[Y j ]   -m i+1,n (θ a n ) + max 0≤i≤k-1 |m i+1,n (θ a n )| .
(3.3.77) We get from Lemma 17 and assumption (E) that max 0≤i≤k-1

|V i+1,n | = o Pn (1). (3.3.78)
Then, Lemma 14 implies that max Now, (Hκ) implies that for all i = 0, ..., k -1, m i+1,n is a homeomorphism from Θ to S X . Then, we get from (Uf ) that for all s ∈ S X ,

0≤i≤k-1   1 n -i n j=i+1 E[Y j ]   -m i+1,n (θ a n ) ≤ max 0≤i≤k-1    1 n -i n j=i+1 |E[Y j ] -m j (θ a n )|    = O 1 n . (3.3.79) Now, Fact 6 implies that max 0≤i≤k-1 |m i+1,n (θ a n )| = O(1). ( 3 
(f + ) -1 (s) ≤ (m i+1,n ) -1 (s) ≤ (f -) -1 (s). (3.3.82)
We deduce that P n -a.s.,

(f + ) -1 (m i+1,n (t i,n )) ≤ t i,n ≤ (f -) -1 (m i+1,n (t i,n )), (3.3.83) 
which combined to (3.3.81) concludes the proof.

The max of the trajectories

Throughout this Section 3.5, all the tilted densities considered pertain to θ = θ a n , defined by

m 1,n (θ a n ) = a. (3.3.84)
Lemma 18. We have that max

1≤j≤n |Y j | = O Pn (log n). (3.3.85) 58CHAPTER 3. A CONDITIONAL LIMIT THEOREM FOR INDEPENDENT RANDOM VARIABLES Proof. For any n ≥ 1, set M n := max 1≤j≤n |Y j |.
For all s > 0, we have that

P n (M n ≥ s) ≤ n j=1 P n (Y j ≤ -s) + P n (Y j ≥ s) (3.3.86) = n j=1 -s -∞ P ( X j = x| S 1,n = na)dx + ∞ s P ( X j = x| S 1,n = na)dx. (3.3.87)
Now, we recall from (3.3.37) that 1).

p( X j = x| S 1,n = na) = p j (x) 1 + O 1 n exp - γ j n (x) 2 2 + O 1 √ n = p j (x)O(
(3.3.88) Consequently, there exists an absolute constant C > 0 s.t. for all n ≥ 1,

P n (M n ≥ s) ≤ C    n j=1 P X j ≤ -s + P X j ≥ s    .
(3.3.89)

We get from Markov's inequality that for any λ > 0,

P X j ≤ -s = P exp(-λ X j ) ≥ exp(λs) ≤ E exp(-λ X j ) exp(-λs) (3.3.90)
and P X j ≥ s ≤ E exp(λ X j ) exp(-λs).

(3.3.91)

Then, for any λ = 0,

E exp(λ X j ) = exp(λx) exp(θ a n x)p j (x) Φ j (θ a n ) dx = Φ j (θ a n + λ) Φ j (θ a n ) . (3.3.92)
Therefore,

P n (M n ≥ s) ≤ C    n j=1 Φ j (θ a n -λ) Φ j (θ a n ) + Φ j (θ a n + λ) Φ j (θ a n )    exp(-λs). (3.3.93)
Since the sequence (θ a n ) n≥1 is bounded, we can find λ > 0 s.t. each of the sequences (θ a n -λ) n≥1 and (θ a n + λ) n≥1 is included in a compact subset of Θ. Therefore, we deduce that there exists an absolute constant D s.t.

sup n≥1 sup j≥1 max Φ j (θ a n -λ) Φ j (θ a n ) ; Φ j (θ a n + λ) Φ j (θ a n ) ≤ D. (3.3.94) Therefore, P n (M n ≥ s) ≤ CDn exp(-λs) = CD exp (log n -λs) . (3.3.95)
Consequently, for all sequence (s n ) n≥1 s.t. sn log n → ∞ as n → ∞, we have that

P n (M n ≥ s n ) → 0 as n → ∞. (3.3.96) 3.3. PROPERTIES OF (Y N 1 ) N ≥1 59 
Set Z n := Mn log n . For any sequence (a n ) n≥1 s.t. a n → ∞ as n → ∞, we have that

P n (Z n ≥ a n ) = P n (M n ≥ s n ) where s n := a n log n, so that s n log n → ∞ as n → ∞. (3.3.97)
Finally, we conclude the proof by applying the following Fact, since we get from (3.3.96) that

P n (Z n ≥ a n ) → 0 as n → ∞. (3.3.98) Fact 25. For all n ≥ 1, let Z n : (Ω n , A n , P n ) -→ R be a r.v. Assume that for any sequence (a n ) n≥1 s.t. a n → ∞ as n → ∞, we have that P n (|Z n | ≥ a n ) → 0 as n → ∞. Then, Z n = O Pn (1). (3.3.99)
Proof. Suppose that the sequence (Z n ) is not a O Pn (1). This means that there exists > 0 s.t. for all k ∈ N, there exists n(k) ∈ N s.t.

P n(k) (|Z n(k) | ≥ k) > . (3.3.100)
If the sequence (n(k)) k is bounded, then there exists a fixed n 0 ∈ N and a subsequence (n(k j )) j≥1 such that for all j ≥ 1, n(k j ) = n 0 . We can clearly assume that k j → ∞ as j → ∞, which implies that lim

j→∞ P n(k j ) (|Z n(k j ) | ≥ k j ) = lim j→∞ P n 0 (|Z n 0 | ≥ k j ) = 0, (3.3.101) 
which contradicts (3.3.100).

If the sequence (n(k)) k is not bounded, then there exists a strictly increasing subsequence (n(k j )) j s.t. n(k j ) → ∞ as j → ∞. Now, we can define a sequence (a n ) s.t. for all j ≥ 1, a n(k j ) = k j . We still can assume that k j → ∞ as j → ∞. Therefore, we can assume that a n → ∞ as n → ∞, which implies that lim

j→∞ P n(k j ) (|Z n(k j ) | ≥ k j ) = lim j→∞ P n(k j ) (|Z n(k j ) | ≥ a n(k j ) ) = 0, (3.3.102)
which contradicts (3.3.100).

Taylor expansion

Lemma 19. Let I be an interval of R containing 0, of non void interior, and f :

I -→ R a function of class C 2 . Let (U n ) be a sequence of random variables U n : (Ω n , A n ) -→ (R, B(R)) s.t. U n = o Pn (1). (3.3.103)
Then, there exists

(B n ) n≥1 ∈ A →1 s.t. for any n ≥ 1, f (U n ) = f (0) + U n f (0) + U 2 n O Pn (1) on B n . (3.3.104) Furthermore, if U n = o Pn (u n ), with u n -→ n∞ 0, then f (U n ) = f (0) + o Pn (u n ) on B n . (3.3.105) 60CHAPTER 3. A CONDITIONAL LIMIT THEOREM FOR INDEPENDENT RANDOM VARIABLES Proof. Let > 0. Let δ > 0 s.t. (-δ, δ) ⊂ I. Set B n := {|U n | < δ}.
Since U n = o Pn (1), we have that (B n ) n≥1 ∈ A →1 . For any n ≥ 1, f (U n ) is well defined on B n , and the Taylor-Lagrange formula provides a

C n with |C n | ≤ |U n |, s.t. f (U n ) = f (0) + U n f (0) + U 2 n 2 f (C n ). (3.3.106)
Now, C n can be obtained from a dichotomy process, initialized with U n . This implies that for all n, C n is a measurable mapping from (Ω n , A n ) to (R, B(R)), for C n is the limit of such mappings. Then, as |C n | ≤ |U n | and f is continuous, we have that

C n -→ Pn 0 =⇒ f (C n ) -→ Pn f (0) =⇒ f (C n ) = O Pn (1). (3.3.107) Furthermore, if U n = o Pn (u n ) with u n -→ n∞ 0, then U 2 n 2 f (C n ) is also a o Pn (u n ).

Main Results

Theorem with small k

Theorem 17. Suppose that the Assumptions stated in Section 2.6 hold. Assume that

k -→ ∞ as n -→ ∞ and that k = o(n ρ ), with 0 < ρ < 1/2. (3.4.1) Then, Q nak -P k 1 T V -→ n∞ 0, (3.4.2)
where P k 1 is the joint distribution of independent r.v.'s X j θ a n 1≤j≤k .

Proof. We have that

π k (Y k 1 ) := p X k 1 = Y k 1 |S 1,n = na = p X k 1 Y k 1 p S k+1,n (na -Σ 1,k ) p S 1,n (na) . (3.4.3)
Then we normalize, so that

π k (Y k 1 ) = p X k 1 Y k 1 σ 1,n (θ a n ) σ k+1,n (θ a n ) p S k+1,n (Z k ) p S 1,n (0) 
where

Z k := k j=1 m j (θ a n ) -Y j σ k+1,n (θ a n ) . (3.4.4)
Since (AM4) holds, we get from Corollary 7 with m = 3 that

π k (Y k 1 ) = p X k 1 Y k 1 σ 1,n (θ a n ) σ k+1,n (θ a n ) n(Z k ) 1 + µ 3 k+1,n (θ a n ) 6(s 2 k+1,n (θ a n )) 3/2 H 3 (Z k ) + o(1) (n-k) 3/2 n(0) + o(1) n 3/2
(3.4.5)
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First, we get from Corollary 6 that

σ 1,n (θ a n ) σ k+1,n (θ a n ) = 1 + s 2 1,k (θ a n ) s 2 k+1,n (θ a n ) 1/2 = 1 + k n -k O(1) 1/2 and µ 3 k+1,n (θ a n ) 6(s 2 k+1,n (θ a n )) 3/2 = O(1) (n -k) 1/2 .
Then, (3.4.1) implies that

σ 1,n (θ a n ) σ k+1,n (θ a n ) = 1 + o(1) and µ 3 k+1,n (θ a n ) 6(s 2 k+1,n (θ a n )) 3/2 = o(1).
(3.4.6)

Now, we get from Corollary 6 and Lemma 18 that

Z k = k log n √ n -k O Pn (1). (3.4.7)
Then, (3.4.1) implies that

Z k = o Pn (1), so that n(Z k ) -→ Pn n(0) and H 3 (Z k ) -→ Pn H 3 (0) = 0. (3.4.8)
We obtain from the preceding lines that

π k (Y k 1 ) = p X k 1 Y k 1 (1 + o Pn (1)).
(3.4.9)

Finally, we apply Lemma 13 to conclude the proof.

Theorem with large k

Statement of the Theorem Let y n 1 ∈ (S X ) n . Then, for any 0 ≤ i ≤ k -1, there exists a unique τ i (y n 1 ) s.t.

m i+1,n (τ i (y n 1 )) = n j=i+1 y j n -i . (3.4.10) For 0 ≤ i ≤ k -1, define a density g(y i+1 |y i 1 ) by g(y i+1 |y i 1 ) := C -1 i p i+1 (y i+1 ) exp - (y i+1 -m i+1 (τ i (y n 1 ))) 2 2s 2 i+2,n (τ i (y n 1 )) exp 3α (3) i+2,n (τ i (y n 1 )) σ i+2,n (τ i (y n 1 )) y i+1 ,
where C i is a normalizing constant which insures that g(y i+1 |y i 1 )dy i+1 = 1 and

α (3) i+e,n (τ i (y n 1 )) := µ 3 i+e,n (τ i (y n 1 )) 6(s 2 i+e,n (τ i (y n 1 ))) 3/2 .
Then, we define the limiting density on R k by
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Theorem 18. Suppose that the Assumptions stated in Section 2.6 hold. Assume that k is of order n -(log n) τ with τ > 6. (3.4.12) where G k is the distribution associated to the density g k .

Q nak -G k T V -→ n∞ 0,
Proof. We get from the criterion for convergence in total variation distance stated in Section 2.4. that it is enough to prove the following Theorem.

Theorem 19. Suppose that the Assumptions stated in Section 2.6 hold. Assume that k is of order n -(log n) τ with τ > 6. Then, there exists

(B n ) n≥1 ∈ A →1 s.t. for any n ≥ 1, p k (Y k 1 ) := p(X k 1 = Y k 1 |S 1,n = na) = g k (Y k 1 )[1 + o Pn (1)] on B n . (3.4.13)
The proof is given hereafter, in three steps. Throughout the proof, all the tilted densities considered pertain to θ = t i,n . We write s 2 j , µ j instead of s 2 j (t i,n ), µ j (t i,n ). We recall from the first calculus of Section 3.2.5 that

Identifying g(Y i+1 |Y i 1 ) When y n 1 = Y n 1 ,
π i = p i+1 (Y i+1 ) σ i+1,n σ i+2,n q i+2,n (Z i+1 ) q i+1,n (0) 
, where (3.4.16) Since (AM6) holds, we get from Corollary 8 with m = 5 that

Z i+1 := m i+1 -Y i+1 σ i+2,n . 
π i = p i+1 (Y i+1 ) σ i+1,n σ i+2,n          n(Z i+1 ) 1 + 5 ν=3 P i+2,n ν (Z i+1 ) + o Pn (1) (n-i-1) 3/2 n(0) 1 + 5 ν=3 P i+1,n ν (0) + o Pn (1) (n-i) 3/2          .
(3.4.17)

For e ∈ {1, 2}, set

α (3) i+e,n := µ 3 i+e,n 6(s 2 i+e,n ) 3/2 = O Pn (1) (n -i -e + 1) 1/2 , β (6) i+e,n := (µ 3 i+e,n ) 2 72(s 2 i+e,n ) 3 = O Pn (1) n -i -e + 1 ; β (4) i+e,n := µ 4 i+e,n -3 n j=i+e (s 2 j ) 2 24(s 2 i+e,n ) 2 = O Pn (1) n -i -e + 1 , γ (9) 
i+e,n :=

(µ 3 i+e,n ) 3 1296(s 2 i+e,n ) 9/2 ; γ (7) i+e,n := µ 3 i+e,n µ 4 i+e,n -3 n j=i+e (s 2 j ) 2
144(s 2 i+e,n ) 7/2

; γ

(5) i+e,n := µ 5 i+e,n -10

n j=i+e µ 3 j s 2 j 120(s 2 i+e,n ) 5/2
, where, for ∈ {5, 7, 9},

γ ( ) i+e,n = O Pn (1) (n -i -e + 1) 3/2 .
(3.4.18)

For m ∈ {3, ..., 9}, replacing H m (Z i+1 ) by its expression, we have that

P i+e,n 3 
(Z i+1 ) = α (3) i+e,n Z 3 i+1 -3Z i+1 , (3.4.19) P i+e,n 4 
(Z i+1 ) = β (6) i+e,n Z 6 i+1 -15Z 4 i+1 + 45Z 2 i+1 -15 + β (4) i+e,n Z 4 i+1 -6Z 2 i+1 + 3 , (3.4.20) P i+e,n 5 
(Z i+1 ) = γ (9) i+e,n Z 9 i+1 + ... + 945Z i+1 +γ (7) i+e,n Z 7 i+1 + ... -105Z i+1 +γ (5) 
i+e,n Z 5 i+1 + ... + 15Z i+1 .

(3.4.21)

Therefore,

5 ν=3 P i+2,n ν (Z i+1 ) = -3α (3) i+2,n Z i+1 -15β (6) i+2,n + 3β (4) i+2,n + O Pn (1) (log n) 3 (n -i -1) 2 .
(3.4.22) and

5 ν=3 P i+1 ν,n (0) = -15β (6) i+1,n + 3β (4) i+1,n .
Since n(Z i+1 ) = O Pn (1), we can factorize n(Z i+1 ) in the numerator of the bracket of (3.4.17), so that

π i = p i+1 (Y i+1 ) σ i+1,n σ i+2,n n(Z i+1 ) 1 -3α (3) i+2,n Z i+1 -15β (6) i+2,n + 3β (4) i+2,n + O Pn (1) (log n) 3 (n-i-1) 2 + o Pn (1) (n-i-1) 3/2 n(0) 1 -15β (6) i+1,n + 3β (4) i+1,n + o Pn (1) (n-i) 3/2 .
Since n -k is of order (log n) τ with τ > 6, we have for all n > 1, and i = 0, ..., k -1,

0 ≤ (log n) 3 (n -i -1) 2 (n -i -1) 3/2 ≤ (log n) 3 (n -k) 1/2 -→ 0 as n → ∞. 64CHAPTER 3. A CONDITIONAL LIMIT THEOREM FOR INDEPENDENT RANDOM VARIABLES Therefore, (log n) 3 (n -i -1) 2 = o(1) (n -i -1) 3/2 , so that O Pn (1) (log n) 3 (n -i -1) 2 = o Pn (1) (n -i -1) 3/2
Consequently,

π i = p i+1 (Y i+1 ) σ i+1,n σ i+2,n exp - Z 2 i+1 2      1 + 3α (3) i+2,n σ i+2,n Y i+1 - 3α (3) i+2,n σ i+2,n m i+1 -15β (6) i+2,n + 3β (4) i+2,n + o Pn (1) (n-i-1) 3/2 1 -15β (6) i+1,n + 3β (4) i+1,n + o Pn (1) (n-i) 3/2     
Now, we need to extract Y i+1 from the numerator of the bracket hereabove. In that purpose, set

U i,n := 3α (3) i+2,n σ i+2,n Y i+1 + U i,n where U i,n := - 3α (3) i+2,n σ i+2,n m i+1 -15β (6) i+2,n + 3β (4) i+2,n + o Pn (1) (n -i -1) 3/2 , and V i,n := -15β (6) i+1,n + 3β (4) i+1,n + o Pn (1) (n -i) 3/2 . Fact 26. For any n ≥ 1, let (W i,n ) 0≤i≤k-1 be r.v.'s defined on (Ω n , A n ) s.t. max 0≤i≤k-1 |W i,n | = o Pn (1).
Then, there exists (B n ) n≥1 ∈ A →1 s.t. for all n ≥ 1, we have on B n that for all i = 0, ..., k -1,

1 + W i,n = exp(W i,n + W 2 i,n A i,n ) where max 0≤i≤k-1 |A i,n | = O Pn (1). (3.4.23)
Proof. Let > 0. For any n ≥ 1, set

B n := max 0≤i≤k-1 |W i,n | < 1/2 . Since max 0≤i≤k-1 |W i,n | = o Pn (1), we have that (B n ) n≥1 ∈ A →1 . Now, set f (x) := log(1 + x).
Then f satisfies the conditions of Lemma 19. Therefore, for all i = 0, ..., k -1, there exists C i,n with max 0≤i≤k-1

|C i,n | ≤ max 0≤i≤k-1 |W i,n | s.t. f (W i,n ) = f (0) + W i,n f (0) + W 2 i,n 2 f (C i,n ) (3.4.24)
For n ≥ 1 and 0

≤ i ≤ k -1, set A i,n := 1 2 f (C i,n ). Now, f (x) = -1 (1+x) 2 . Clearly, for all x ∈ (0, 1 2 ), |f (x)| ≤ 1
(1-x) 2 . Therefore, for any n ≥ 1, we have on B n that max 0≤i≤k-1 (3.4.25) which implies that max (3.4.26) we have that 1 (3.4.27) where max 0≤i≤k-1

|A i,n | ≤ 1 1 -max 0≤i≤k-1 |C i,n | 2 ≤ 1 1 -max 0≤i≤k-1 |W i,n | 2 ,
+ U i,n 1 + V i,n = exp U i,n + U 2 i,n A i,n -V i,n -V 2 i,n B i,n ,
|A i,n | = O Pn (1) and max 0≤i≤k-1 |B i,n | = O Pn (1).
Consequently, the preceding Fact implies that there exists (B n ) n≥1 ∈ A →1 s.t. for any n ≥ 1 and

0 ≤ i ≤ k -1, π i = Γ i on B n ,
where

Γ i = p i+1 (Y i+1 ) exp - (Y i+1 -m i+1 ) 2 2s 2 i+2,n exp 3α (3) i+2,n σ i+2,n Y i+1 σ i+1,n σ i+2,n exp U i,n + U 2 i,n A i,n -V i,n -V 2 i,n B i,n .
In order to identify g(Y i+1 |Y i 1 ), we have grouped the factors containing Y i+1 . Thereby, we obtain a function of Y i+1 , which we normalize to get a density. Thus, set

g(Y i+1 |Y i 1 ) := C -1 i p i+1 (Y i+1 ) exp - (Y i+1 -m i+1 ) 2 2s 2 i+2,n exp 3α (3) i+2,n σ i+2,n Y i+1 ,
where C i satisfies that

C i = exp - (y -m i+1 ) 2 2s 2 i+2,n
exp 3α

(3) i+2,n σ i+2,n y p i+1 (y)dy.

Therefore, (3.4.28) Our objective is now to prove that

Γ i = g(Y i+1 |Y i 1 ) C i σ i+1,n σ i+2,n exp U i,n -V i,n + U 2 i,n A i,n -V 2 i,n B i,n .
k-1 i=0 C i σ i+1,n σ i+2,n exp U i,n -V i,n + U 2 i,n A i,n -V 2 i,n B i,n = 1 + o Pn (1). (3.4.29)
In that purpose, we consider firstly the following result.

Lemma 20. For n ≥ 1, let (Z i,n ) 0≤i≤k-1 be r.v.'s defined on (Ω n , A n ) and (u i,n ) 0≤i≤k-1 be a sequence of reals. Assume that max 0≤i≤k-1

|Z i,n | = O Pn (1) and k-1 i=0 u i,n -→ 0 as n → ∞. Then, k-1 i=0 exp (u i,n Z i,n ) = 1 + o Pn (1) . 66CHAPTER 3. A CONDITIONAL LIMIT THEOREM FOR INDEPENDENT RANDOM VARIABLES
Consequently, for any α ≥ 0 and β > 1,

k-1 i=0 exp (log n) α (n -i -1) β Z i,n = 1 + o Pn (1) . Proof. It is enough to prove that k-1 i=0 u i,n Z i,n = o Pn (1) .
(3.4.30)

Let > 0 and δ > 0. There exists A > 0 and N > 0 s.t. for all n ≥ N ,

P n max 0≤i≤k-1 |Z i,n | ≤ A ≥ 1 -. Now, there exists N ,δ > 0 s.t. for all n ≥ N ,δ , k-1 i=0 |u i,n | < δ A .
Then, for all n ≥ max {N ; N ,δ },

P n k-1 i=0 u i,n Z i,n < δ ≥ P n k-1 i=0 |u i,n | |Z i,n | < δ max 0≤i≤k-1 |Z i,n | ≤ A ≥ P n k-1 i=0 |u i,n | < δ A max 0≤i≤k-1 |Z i,n | ≤ A = P n max 0≤i≤k-1 |Z i,n | ≤ A ≥ 1 -.
The factors estimated by applying Lemma 20

Corollary 10. We have that

k-1 i=0 exp U 2 i,n A i,n -V 2 i,n B i,n = 1 + o Pn (1). (3.4.31)
Proof. We may apply Lemma 20, since max 0≤i≤k-1

|U i,n | = log n n -i -1 O Pn (1) and max 0≤i≤k-1 |V i,n | = O Pn (1) n -i -1 . (3.4.32)
Unfortunately, (3.4.32) implies that we can not apply Lemma 20 to U i,n and V i,n . However, we have that

U i,n -V i,n = - 3α (3) i+2,n σ i+2,n m i+1 + 3 β (4) i+2,n -β (4) i+1,n -15 β (6) i+2,n -β (6) i+1,n + o Pn (1) (n -i -1) 3/2 . (3.4.33) Now, β (4) i+2,n -β (4) i+1,n = λ i+2,n (s 2 i+1,n ) 2 -λ i+1,n (s 2 i+2,n ) 2 24(s 2 i+1,n ) 2 (s 2 i+2,n ) 2
, where λ i+e,n = n j=i+e λ j and (3.4.36) since in the numerator of (3.4.35), the terms of order (n -i -1) 3 , that is the terms λ i+2,n (s 2 i+2,n ) 2 , vanish.

λ j = µ 4 j -3(s 2 j ) 2 (3.4.34) = λ i+2,n (s 2 i+2,n ) 2 + 2s 2 i+2,n s i+1 + (s 2 i+1 ) 2 -(λ i+2,n + λ i+1 )(s 2 i+2,n ) 2 24(s 2 i+1,n ) 2 (s 2 i+2,n ) 2 (3.4.35) = O Pn (1) (n -i -1) 2 ,
Similarly, we obtain that

β (6) i+2,n -β (6) i+1,n = O Pn (1) (n -i -1) 2 .
(3.4.37)

Combining (3.4.33), (3.4.36), (3.4.37), we obtain that (3.4.39) where the last equality follows from Lemma 20. Notice that

k-1 i=0 exp U i,n -V i,n = k-1 i=0 exp - 3α (3) i+2,n σ i+2,n m i+1 k-1 i=0 exp O Pn (1) (n -i -1) 2 + o Pn (1) (n -i -1) 3/2 (3.4.38) = k-1 i=0 exp - 3α (3) i+2,n σ i+2,n m i+1 {1 + o Pn (1)} ,
3α (3) i+2,n σ i+2,n = O Pn (1)
n-i-1 , so that the corresponding factor is not in the range of Lemma 20. Finally,(3.4.31) and (3.4.39) 

imply that k-1 i=0 C i σ i+1,n σ i+2,n exp U i,n -V i,n + U 2 i,n A i,n -V 2 i,n B i,n = k-1 i=0 C i σ i+1,n σ i+2,n exp - 3α (3) i+2,n σ i+2,n m i+1 {1 + o Pn (1)} . 68CHAPTER 3. A CONDITIONAL LIMIT THEOREM FOR INDEPENDENT RANDOM VARIABLES
The other factors Therefore, in order to conclude, it is enough to prove that

k-1 i=0 L i,n = 1 + o Pn (1) , where L i,n := C i σ i+1,n σ i+2,n exp - 3α (3) i+2,n σ i+2,n m i+1 .
(3.4.40)

Fact 27. We have that (3.4.41) and exp -3α

σ i+1,n σ i+2,n = 1 + s 2 i+1 2s 2 i+2,n + O Pn (1) (n -i -1) 2 ,
(3) i+2,n σ i+2,n m i+1 = 1 - 3α (3) i+2,n σ i+2,n m i+1 + O Pn (1) (n -i -1) 2 (3.4.42)
Proof. We have that

σ i+1,n σ i+2,n = 1 + s 2 i+1 s 2 i+2,n 1/2 and s 2 i+1 s 2 i+2,n = O Pn (1) (n -i -1) 2 .
(3.4.43)

Therefore, (3.4.41) follows readily from Lemma 19, applied with the function f : x → (1 + x) 1/2 . Similarly, we get (3.4.42) by applying Lemma 19 with the function f : x → exp(x).

Lemma 21. We have that

C i = 1 + 3α (3) i+2,n σ i+2,n m i+1 - s 2 i+1 2s 2 i+2,n + O Pn (1) (n -i -1) 2 .
(3.4.44)

Proof. Recall that

C i = exp (v i (y)) p i+1 (y)dy where v i (y) := - (y -m i+1 ) 2 2s 2 i+2,n

+ 3α

(3) i+2,n σ i+2,n y.

A Taylor expansion implies the existence of w i (y) with

|w i (y)| ≤ |v i (y)| s.t. exp(v i (y)) = 1 + v i (y) + v i (y) 2 2 exp(w i (y)). (3.4.45) Now, (1 + v i (y)) p i+1 (y)dy = 1 - (y -m i+1 ) 2 2s 2 i+2,n + 3α (3) i+2,n σ i+2,n y p i+1 (y)dy = p i+1 (y)dy - 1 2s 2 i+2,n (y -m i+1 ) 2 p i+1 (y)dy + 3α (3) i+2,n σ i+2,n y p i+1 (y)dy = 1 - s 2 i+1 2s 2 i+2,n + 3α (3) i+2,n σ i+2,n m i+1 .
Consequently, it is enough to prove the following Fact.

Fact 28. We have that

J i := v i (y) 2 2 exp(w i (y)) p i+1 (y)dy = O Pn (1) (n -i -1) 2 .
(3.4.46)

Proof. We have that |w i (y)| ≤ |v i (y)|. Moreover, w i (y) and v i (y) are actually of the same sign, so that exp(w i (y)) ≤ 1 + exp(v i (y)). Therefore,

J i ≤ J (1) 
i + J

(2) i where J

(1) i := v i (y) 2 2 p i+1 (y)dy and J

(2) i := v i (y) 2 2 exp(v i (y)) p i+1 (y)dy.

(3.4.47) Now, expanding v i (y), we get readily that

J (1) i = O Pn (1) (n -i -1) 2 .
(3.4.48)

Fix > 0.
Then there exist α , β , γ positive and a compact K s.t., for all n large enough,

P n B n := k-1 i=0 t i ∈ K ; |m i+1 | ≤ α ; 1 2s 2 i+2,n ≤ β n -i -1 ; 3α (3) i+2,n σ i+2,n ≤ γ n -i -1 ≥ 1 -.
The following lines hold on B n .

For all real y, we have that

|v i (y)| ≤ β (|y| + α ) 2 n -i -1 + γ |y| n -i -1 (3.4.49) For |y| ≥ α , we have that |y -m i+1 | ≥ |y -α |, so that v i (y) ≤ - β (y -α ) 2 n -i -1 + γ |y| n -i -1 . (3.4.50) Therefore, J (2) i ≤ 1 2(n -i -1) 2 |y|≤α β (|y| + α ) 2 + γ |y| 2 exp(v i (y)) p i+1 (y)dy (3.4.51) + 1 2(n -i -1) 2 |y|≥α β (|y| + α ) 2 + γ |y| 2 exp - β (y -α ) 2 n -i -1 + γ |y| n -i -1 p i+1 (y)dy.
(3.4.52)

Clearly, on B n , the first integral hereabove is bounded by a constant I . For the second integral, an integration by parts and Assumption (Cf ) imply that, on B n , it is also bounded by a constant L . So, 

J (2) i = O Pn (1) (n -i -1) 2 , ( 3 
L i,n := C i σ i+1,n σ i+2,n exp (-κ i,n m i+1 ) where κ i,n := 3α (3) i+2,n σ i+2,n = 1 + κ i,n m i+1 - s 2 i+1 2s 2 i+2,n + O Pn (1) (n -i -1) 2 1 + s 2 i+1 2s 2 i+2,n + O Pn (1) (n -i -1) 2 1 -κ i,n m i+1 + O Pn (1) (n -i -1) 2 = 1 + κ i,n m i+1 - s 2 i+1 2s 2 i+2,n + O Pn (1) (n -i -1) 2 1 -κ i,n m i+1 + s 2 i+1 2s 2 i+2,n + O Pn (1) (n -i -1) 2 = 1 + O Pn (1) (n -i -1) 2 .
Therefore, we may write 

L i,n = 1 + W i,n (n-i-1) 2 , where max 0≤i≤k-1 |W i,n | = O Pn (1). Then, we get from Lemma 19 applied with f : x → log(1 + x) that log(L i,n ) = log 1 + W i,n (n -i -1) 2 = W i,n (n -i -1) 2 + W i,n (n -i -1) 2 2 O Pn (1) Therefore, log k-1 i=0 L i,n = k-1 i=0 log(L i ) = O Pn (1) k-1 i=0 1 (n -i -1) 2 = o Pn (1). ( 3 
p k (Y k 1 ) = k-1 i=0 Γ i on B n and k-1 i=0 Γ i = g k (Y k 1 ) [1 + o Pn (1)] .
Chapter 4

Functional Limit Laws for the increments of L'evy processes

Introduction

Let {Z(t) : t ≥ 0} be a right-continuous with left-hand limits Lévy process (see, e.g., [START_REF] Bertoin | Lévy Processes[END_REF]). We assume that Z(0) = 0 , so that the distribution of {Z(t) : t ≥ 0} is fully characterized by the law of Z := Z(1). Denote the increment functions on Z(•) by γ Z x,a (s) := Z(x + as) -Z(x), for x ≥ 0, a > 0 and s ∈ [0, 1]. The purpose of the present paper is to establish functional limit laws for sets of rescaled increments of Z(•), of the form

H T = H Z T := b -1 T γ Z x,a T (•) : 0 ≤ x ≤ T -a T for T > 0. (4.1.1)
Limit laws for increment functions such that we have in mind have been established by Révész (1979), [START_REF] Borovkov | A functional form of the Erdös-Rényi law of large numbers[END_REF], [START_REF] Deheuvels | Functional Erdös-Rényi laws[END_REF], [START_REF] Deheuvels | Random fractals generated by oscillations of processes with stationary and independent increments[END_REF], Sanchis (1994a) and Sanchis (1994b), among others, for variants of Z(•), and under various assumptions on a T and b T .

Here, 0 < a T ≤ T and b T > 0 are functions of T > 0 which will be specified later on. Our aim is to show that, under appropriate conditions, we have almost surely (a.s.) lim

T →∞ ∆ H Z T , K = 0, (4.1.2)
where K is a deterministic limit set of functions, and ∆(•, •), a Hausdorff-type set-distance (see, e.g., (4.1.4) below). Our main results will be stated in Theorems 25 and 26, in the sequel.

We will make use of the following notation. We denote by E be a set of right-continuous functions on [0, 1] fulfilling H Z T ⊆ E for all T > 0. We endow E with a metric topology T , defined by a suitable distance d T . Mostly, we shall limit ourselves to the cases where d T is either the uniform distance (denoted by d U ), or the Högnäs distance (denoted by d W ), whose definition is postponed until (4.1.14) below. For each f ∈ E and > 0, we denote by B T (f, ) := {g ∈ E : d T (f, g) < }, the open ball of center f and radius , pertaining to (E, T ). For each non-empty subset A ⊆ E, and each > 0, we set

A = A ;T := g ∈ E : d T (f, g) < for some f ∈ A = f ∈A B T (f, ). (4.1.3)
Under the assumptions of the proposition, the following strong invariance principle holds (see, e.g., [START_REF] Deheuvels | Random fractals generated by oscillations of processes with stationary and independent increments[END_REF]). There exists a probability space on which we can define a standard Wiener process {W (t) : t ≥ 0} jointly with {Z(t) : t ≥ 0}, in such a way that, as T → ∞,

sup 0≤t≤T |Z(t) -W (t)| = O(log T ) a.s. (4.1.9)
By combining (4.1.8) with (4.1.9), we conclude readily (4.1.7).2

In the remainder of our paper, we investigate the case of "intermediate increments" a T , namely, when (A2) holds for some 0 < d < ∞ (we leave aside "small increments", for which d = 0. Intermediate increments correspond to the increment sizes investigated by Erdős and Rényi (see, e.g., [START_REF] Erdős | On a new law of large numbers[END_REF]) for increments of partial sums. In this case, invariance principles of the form given in (4.1.9) cannot be used to obtain variants of Propostion 1. This follows from the fact that the rate in (4.1.9) cannot be reduced to o(log T ) (see, e.g., [START_REF] Deheuvels | Random fractals generated by oscillations of processes with stationary and independent increments[END_REF]). For such "intermediate increments", functional limit laws for rescaled increments of the form (4.1.2), when Z(•) is formally replaced in the definition (4.1.1) by a partial sum process S(•), are well known. For their statement, we need the following notation. Letting {X i : i ≥ 1}, with X := X 1 , denote a sequence of independent and identically distributed [iid] rv's, the corresponding partial sum process is defined by

S(t) := t i=1 X i for t ≥ 0, (4.1.10)
where t ≤ t < t + 1 denotes the integer part of t. In this setup, functional limit laws may be obtained through the formal replacement of Z(•) by S(•). The appropriate choice of the scaling factor is here b T = a T , in relation with Cramér type large deviations principles (see, e.g., (Cramér, 1937)). We refer to [START_REF] Borovkov | A functional form of the Erdös-Rényi law of large numbers[END_REF], [START_REF] Deheuvels | Functional Erdös-Rényi laws[END_REF], Sanchis (1994a) and Sanchis (1994b), for the corresponding results. The following Theorem 20 is a consequence of their results, for sets of increment functions of S(•) of the form

M n,k := {s i,k : 0 ≤ i ≤ n -k} ,
where

s i,k (t) := S(i + kt ) -S(i) + (kt -kt )X i+ kt +1 k for 0 ≤ t ≤ 1.
For each pair of integers n and k such that 1 ≤ k ≤ n, M n,k ⊆ C 0 (0, 1) := {f ∈ C(0, 1) : f (0) = 0}. Define a functional I X on C 0 (0, 1) by setting, for each f ∈ C 0 (0, 1),

I X (f ) = 1 0 Ψ X ( ḟ (s))ds if f ∈ AC(0, 1), ∞ otherwise.
Now, for any α > 0, introduce the set We see here that F T ⊆ BV 0 (0, 1), where BV 0 (0, 1) denotes the set of all right-continuous functions f on [0, 1] with bounded variation, and such that f (0) = 0. In words, BV 0 (0, 1) is the space of all distribution functions of totally bounded signed Radon measures on [0, 1]. In the sequel, we will identify f ∈ BV 0 (0, 1) with the signed measure µ such that df = µ f . We define below on BV 0 (0, 1) a distance d W (see, e.g., (Högnäs, 1977)), which metricizes the weak convergence of signed measures. We denote by ∆ W the corresponding Hausdorff distance. Set, for f, g ∈ BV 0 (0, 1),

K α := {f ∈ C 0 (0, 1) : I X (f ) ≤ α} . ( 4 
d W (f, g) = 1 0 |f (u) -g(u)|du + |f (1) -g(1)|. (4.1.14)
For f ∈ BV 0 (0, 1), write f = f + -f -, where df = df + -df -is the Hahn-Jordan decomposition of df . For any g ∈ BV 0 (0, 1), denote by g = g A + g S , where dg = dg A + dg S stands for the Lebesgue decomposition of dg into an absolutely continuous and a singular component. For c > 0, we define functionals J X and J X,c on BV 0 (0, 1) by setting, for each f ∈ BV 0 (0, 1) Theorem 21. Let X be centered, with finite variance, and nondegenerate, meaning that P (X = x) < 1 for all x. Assume further that (A2) holds with 0 < d < ∞. Then, under (A X 1 ), we have

J X (f ) = 1 0 Ψ X d ds f A (s) ds + t 0 f S + (1) -t 1 f S - (1) 
lim T →∞ ∆ W (F T,c , D c ) = 0 a.s. (4.1.18)
In addition, under (C X 1 ), we have

lim T →∞ ∆ U (F T,c , D c ) = 0 a.s. (4.1.19)
The limiting behaviour of rescaled increments of Lévy processes mimicks closely the limiting behavior of rescaled increments of partial sums processes given in Theorems 20 and 21. As expected, we obtain results analogous to Theorem 21 when we replace partial sum processes by Lévy processes. The following additional notation will be useful. For x ≥ 0, and > 0, define standardized increment functions of Z(•) by setting

η x, (s) := Z(x + s) -Z(x) for s ∈ [0, 1]. (4.1.20)
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In this paper, we consider intermediate Erdős-Rényi-type increments of the form a T = c log T, for some c > 0. (4.1.21)

Our aim is to characterize the limiting behavior of the random set of increment functions

G T := {η x,a T : 0 ≤ x ≤ T -a T }. (4.1.22)
The forthcoming Fact 32 in Section 3.1 will show that the Theorem 22, stated below, due to [START_REF] Frolov | Unified limit theorems for increments of processes with independent increments[END_REF], is a consequence of a functional limit theorem for G T .

Theorem 22. Set Ψ := Ψ Z(1) . Define c 0 by 1/c 0 = sup {Ψ(z) : Ψ(z) < ∞}. For any c > c 0 , set a T = c log(T ). For any u > 0, set γ(u) := sup{z ≥ 0 : Ψ(z) ≤ u}. Then, under A Z(1) , we have (4.1.23) This remainder of the present paper is organized as follows. In Section 2, we present general results on Lévy processes which will be needed in our proofs. Our main results are stated in Section 3, with proofs detailed in Section 4. Some technical results are deferred to the Appendix.

lim T →∞ sup f ∈G T f (1) = lim T →∞ sup 0≤x≤T -a T Z(x + a T ) -Z(x) a T = γ(1/c) a.s.

General results

Lévy Processes

Let {Z(t) : t ≥ 0} be a Lévy process. The similarities between the structure of {Z(t) : t ≥ 0} and that of {S(t) : t ≥ 0} are essentially due to the infinitely divisibility of the distribution of Z(1). This implies that, for each λ > 0, the discretized version {Z(nλ) : n ≥ 0} of Z(•) is a sequence of partial sums of iid random variables. The law of the random variable Z(1) (and hence, the distribution of {Z(t) : t ≥ 0}, see, e.g., [START_REF] Bertoin | Lévy Processes[END_REF]) is characterized by a unique triple of constants, (a, σ 2 , π), whith a ∈ R, σ 2 ≥ 0, and where π denotes a measure on R -{0} such R-{0} min x 2 , 1 π(dx) < ∞. This relies on the Lévy-Itô decomposition, implying that the process {Z(t) : t ≥ 0} may be decomposed into

Z(t) = Z (1) (t) + Z (2) (t) + Z (3) (t), (4.2.1)
where Z (1) , Z (2) and Z (3) are three independent stochastic processes described hereafter. 

Functional spaces

Our results rely heavily on the large deviations principles (LDP) for the distributions (P λ ) λ>0 of the processes {Z λ (t) : 0 ≤ t ≤ 1}, defined by

Z λ (t) := 1 λ Z(λt). (4.2.2)
Below we present some useful results concerning the spaces of functions which contain the sample paths of {Z λ (t) : 0 ≤ t ≤ 1}.

The Skorohod space

By definition of a Lévy process, for any λ > 0, the sample paths of {Z λ (t) : 0 ≤ t ≤ 1} belong to the space D(0, 1) of right-continuous with left-hand limits functions on [0, 1]. We endow D(0, 1) either with the uniform topology U, or with the Skorohod topology S. We recall from [START_REF] Billingsley | Convergence of probability measures[END_REF] that the Skohorod topology S on D(0, 1) is induced by the distance d S defined by Set ζ := min δ; 2 . We infer from (4.2.3) that, for all g ∈ K and h ∈ B S (g, ζ), there exists a Now, K being U-compact, we apply the Arzela-Ascoli theorem to conclude.

ν h ∈ Λ satisfying ν h -I < ζ ≤ δ and h -g • ν h < ζ ≤ 2 . (4.2.7) Therefore, g • ν h -g ≤ w g ( ν h -I ) < 2 and h -g ≤ h -g.ν h + g • ν h -g < .
Fact 36. For any g, h ∈ D(0, 1) and λ ∈ [λ 0 , 1], we have that λ -1 g(λI) -g ≤ (1 + λ -1 0 ) h -g + λ -1 h(λI) -h . (4.5.12)

Proof. For any λ ∈ [λ 0 , 1], we have that λ -1 g(λI) -g ≤ λ -1 g(λI) -λ -1 h(λI) ≤ + λ -1 h(λI) -h + h -g . (4.5.13) Since λ 0 ≤ λ ≤ 1, we get readily that λ -1 g(λI) -λ -1 h(λI) ≤ λ -1 0 h -g . (4.5.14)

Fact 37. For all δ > 0, there exists γ = γ(δ) > 0 such that |λ -1| < γ implies that sup g∈K λ -1 g(λI) -g < δ.

(4.5.15)

Proof. Fix δ > 0. Then K being U-compact, for any α > 0, there exists a finite number of functions (g q ) q=1,...,d in K such that K ⊂ d q=1 B U (g q , α). Now, we obtain from Fact 35 that for all κ > 0, there exists γ > 0 depending only on κ, such that |λ -1| < γ implies that for all q ∈ {1, ..., d}, λ -1 g q (λI) -g q < κ. For any g ∈ K, there exists q ∈ {1, ..., d} such that g ∈ B S (g q , α) and we deduce from (4.5.12) applied to h = g q that λ -1 g(λI) -g ≤ α(1 + λ -1 0 ) + κ. (4.5.16)

Finally, for any δ > 0, we can choose γ and α small enough to get that α(1 + λ -1 0 ) + κ < δ.

Fact 38. For all δ > 0, there exist θ = θ(δ), with 0 < θ < δ, and γ = γ(δ) > 0 such that |λ -1| < γ =⇒ sup

f ∈K θ λ -1 f (λI) -f < δ.
(4.5.17)

Proof. Fix δ >. For any θ > 0 and f ∈ K θ , let g ∈ K such that g -f < θ. Then (4.5.12) implies that λ -1 f (λI) -f ≤ θ 1 + λ -1 0 + sup g∈K λ -1 g(λI) -g . (4.5.18)

Observing that 1 + λ -1 0 > 1, we conclude by applying Fact 37.

Lemma 31. For any > 0, there exists a.s. a real T ( ) such that for all real T ≥ T ( ), we have that G T ⊂ K . Since T ( ) ≥ N (θ( /2)) we have that, for all x ∈ [0, n T -A n T ], η x,An T ∈ K θ( /2) . Since T ≥ T 0 ( ),

we have that a T An T -1 < γ( /2). By (4.5.22), we have consequently that, for all x ∈ [0, T -a T ],

A n T a T η x,An T a T A n T I -η x,An T < /2. (4.5.25)

Now, since θ( /2) < /2, we have that K θ( /2) ⊂ K /2 . Therefore, for all x ∈ [0, T -a T ], η x,An T ∈ K /2 . Then we obtain from (4.5.25) and the triangle inequality that Now, let γ( /2) and θ( /2) be as in (4.5.22). Let T 2 ( ) > 0 such that for all T ≥ T 2 ( ),

Am T a T -1 < γ( /2).
From Lemma 31, there exists a.s. T (θ( /2)) > 0 such that ∀T ≥ T (θ( /2)), G T ⊂ K θ( /2) . In this section, we compare the methods of Chapter 1 and Chapter 2 and we present some perspectives.

An obvious similarity between them is the use of the commonly called saddlepoint approximation (see [START_REF] Jensen | Saddlepoint Approximations[END_REF]). This technique is the combination of tilting operation and of Edgeworth expansion of the density of the resulting partial sum. This approximation provides usually an accurate approximation of the tail of partial sums, which justifies its use in the Importance Sampling scheme described in the Introduction of Chapter 2. In the framework of conditional limit theorems, the tilting operation allows to obtain an exponential family for which the statistic of sum is sufficient. The idea of sufficiency is also essential in Chapter 1, since the sub σ-algebra σ(T ) generated by the sum is sufficient in the sense given in Chapter 1. Heuristically, in both cases, the notion of sufficiency expresses that the knowledge of the value of the sum contains enough information to deduce the distribution of the sampling given this value.

From Chapter 2 to Chapter 3, we have used several ideas to get a result even when k is not a o(n) anymore. Firstly, we have performed an adaptative scheme to estimate p k (Y k 1 ). Secondly, we have performed a higher order Edgeworth expansion. However, a rate of convergence is not obtainable by the method of Chapter 2. For k = o(n), Chapter 2 provides a rate for the convergence of Q nak -G k T V to 0, which is equal to k n . So a possible perspective is to get a rate for this convergence when k is not a o(n).

In statistical mechanics, in an isolated system, we obtain the distribution of a small component given the total energy when thermal equilibrium is reached, that is when the entropy is maximal. Thereby, a further development of our work is to establish a conditional limit theorem of this kind by optimisation of some entropy, and without performing Edgeworth expansions.

Conclusion of chapter 4

Under A, we have obtained that for any c > 0, (5.2.2)

In future work, we would like to obtain, under (A), the limiting behavior of a random set containing all the η x,an , for all real x with 0 ≤ x ≤ n -a n . Since the tail of the distribution of Z( 1) is heavier under (A) than under (C), the increment functions have a wider amplitude under (A). Therefore, it is more difficult to study their asymptotic inclusion in some fixed set. However, even under (A), the distribution of Z(1) still has a light tail, so that it is reasonable to expect a positive result.

Another further development is to establish a functional Erdős-Rényi theorem (FERT) for renewal or compound renewal processes. We recall that a compound renewal process is of the form (5.2.3) where N (•) is any renewal process, independent of (X i ). We have obtained a (FERT) in the particular case of the compound Poisson process, which is a Lévy process. In ?, the author obtains an Erdős-Rényi theorem for compound renewal process, which could be a manifestation of a functional version. In [START_REF] Deheuvels | Erdös-Rényi-Type Functional Limit Laws for Renewal Processes[END_REF], a FERT is established for renewal processes, by reducing to the FERT for the partial sum process which defines the renewal process. Therefore, we can expect a FERT for any compound renewal process, but it should require additional functional large deviations results.
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  .1.11) Theorem 20. Under (C X ), for any c > 0 and k = c log n , we have that lim T →∞ ∆ U M n,k , K 1/c = 0 a.s. (4.1.12) 74CHAPTER 4. FUNCTIONAL LIMIT LAWS FOR THE INCREMENTS OF L'EVY PROCESSES Theorem 21 below is a variant of Theorem 20, obtained under more general assumptions. For c > 0 and a T = c log + T , let F T be the set of Erdős-Rényi-type increment functions of {S(t) : t ≥ 0}, defined by F T := {c β x,T : 0 ≤ x ≤ T -a T } where β x,T (s) := S(x + sa T ) -S(x) a T for 0 ≤ s ≤ 1. (4.1.13)

  further, D c := {f ∈ BV 0 (0, 1) : J X,c (f ) ≤ 1} .(4.1.17)

  d S (f, g) = inf ν∈Λ max ( ν -I ; f -g • ν ) , (4.2.3)where Λ is the class of strictly increasing, continuous mappings of [0, 1] onto itself.Let C(0, 1) denote the set of continuous functions on [0, 1]. For any f ∈ C(0, 1), let ω f denote the modulus of continuity of f , defined byω f (δ) = sup |s-t|≤δ |f (s) -f (t)| . (4.2.4)Fact 29. Let K be a compact subset of (C(0, 1), U). Then, for any > 0, there exists a ζ > 0 such that for all g ∈ K, B U (g, ) ⊇ B S (g, ζ). (4.2.5)Proof. Let > 0. By the Arzelà-Ascoli theorem, there exists a δ > 0

Fact 30 .

 30 Let x ≥ 0. Then, for any B ∈ B S , we have P (Z(x + •) -Z(x)) ∈ B = P (Z(•) ∈ B) .(4.2.8)We define the set of Erdős-Rényi-type increment functions associated to Z (µ) (•) byG (µ) T := η (µ) x,a T (•) := Z (µ) (x + a T •) -Z (µ) (x) a T = η x,a T (•) + µI d : 0 ≤ x ≤ T -a T . (4.5.1)Let I (µ) be the functional defined on D[0, 1] byI (µ) (f ) = 1 0 Ψ (µ) ( ḟ (u))du if f is absolutely continuous and f (0) = 0, while I (µ) (f ) = ∞ otherwise. For any α > 0, set K (µ) α := f ∈ D(0, 1) : I (µ) (f ) ≤ α .Fact 34. Assume that for some {a T , T > 0} and α > 0, we have that limT →∞ ∆ (G T , K α ) = 0 a.s. (4.5.2)Then, for all real µ, we have that lim Let Ψ (µ) be the Legendre transform of the mgf of Z (µ) (1). Then, for any real a, Ψ (µ) (a) = Ψ(a -µ), which implies easily that K (µ) α = K α + µI d . Now, the assumption and a translation argument imply that for all > 0, a.s., for all T large enough,G (µ) T = G T + µI d ⊂ (K α + µI d ) = K (µ) α = K α + µI d ⊂ (G T + µI d ) = G ofproof of Theorem 25For any c > 0, set K := K 1/c . Denote by I the identity function on [0, 1]. Fix λ 0 with 0 < λ 0 < 1.Fact 35. For any f ∈ K, we define the function ρ f byρ f (λ) = λ -1 f (λI) -f . (4.5.6)Then there exists a function δ(•), independent of f and satisfying δ(x) → 0 as x → 0, such that for all λ, µ ∈[λ 0 , 1], |ρ f (λ) -ρ f (µ)| ≤ δ(|λ -µ ).(4.5.7)Proof. For any λ, µ ∈ [λ 0 , 1], we have that|ρ f (λ) -ρ f (µ)| = λ -1 f (λI) -f -µ -1 f (µI) -f ≤ λ -1 f (λI) -µ -1 f (µI) (4.5.8) and λ -1 f (λI) -µ -1 f (µI) ≤ λ -1 f (λI) -λ -1 f (µI) + λ -1 f (µI) -µ -1 f (µI) . (4.5.9) 90CHAPTER 4. FUNCTIONAL LIMIT LAWS FOR THE INCREMENTS OF L'EVY PROCESSES Then, we have that λ -1 f (λI) -λ -1 f (µI) ≤ λ -1 0 sup f ∈K w f (|λ -µ|) (4.5.10) and λ -1 f (µI) -µ -1 f (µI) ≤ λ -1 -µ -1 sup

  (4.5.19) 

  For any T > 0, set n T := inf {n : A n ≥ a T } .Notice that necessarily, n T ≥ T . Now, the Mean value theorem implies that A n T -a T ≤ c T (n T -T ), so there exists τ > 0 such that for all T ≥ τ , T -a T ≤ n T -A n T . Furthermore, the definition of n T implies that A n+1 < a T and we prove readily that lim Lemmas 25, 27 and 28 that for any θ > 0, there exists a.s. an integer N (θ) such that∀n ≥ N (θ), L n ⊂ K θ .(4.5.21)Now, Fact 38 implies that there exist θ( /2) > 0 and γ( /2) > 0 such that|λ -1| < γ( /2) =⇒ sup f ∈K θ( /2) λ -1 f (λI) -f < /2. (4.5.22)From (4.5.20), there exists T 0 ( ) > 0 such that for allT ≥ T 0 ( ), a T An T -1 < γ( /2).Then, we can define a.s. T ( ) by T ( ) := max {τ ; T 0 ( ); N (θ( /2))} . (4.5.23) Let T ≥ T ( ). Since T ≥ τ , we have that [0, T -a T ] ⊂ [0, n T -A n T ]. Then for all x ∈ [0, T -a T ] and all s ∈ [0, 1], we have that η x,a T (s

  ∀x ∈ [0, T -a T ], η x,a T =A n For any > 0, there exists a.s. a real T ( ) such that for all T ≥ T ( ), we have thatK ⊂ G T . (4.5.27) 92CHAPTER 4. FUNCTIONAL LIMIT LAWS FOR THE INCREMENTS OF L'EVY PROCESSES Proof. For all T ≥ c, we have that 1 ≤ T -a T . Set m T := max {n : n ≤ T and n -A n ≤ T -a T } .Then, if T ≥ c then m T exists. The definition of m T implies that m T + 1 -A m T +1 > T -a T . that a.s., for all n large enough,K ⊂ L /2 n . Since m T -→ ∞ as T → ∞, we can find a.s. T 1 ( ) > 0 such that ∀T ≥ T 1 ( ), K ⊂ L /2 m T . (4.5.29) Then for all x ∈ [0, m T -A m T ] ⊂ [0, T -a T ],and all s ∈ [0, 1], we have that η x,Am T (s) = a T A m T η x,a T s A m T a T . (4.5.30)

  can define a.s. T ( ) by T ( ) := max {c, T 1 ( ); T 2 ( ); T (θ( /2))} .(4.5.32)Let T ≥ T ( ). Since T ≥ T (θ( /2)), we have that∀x ∈ [0, T -a T ], η x,a T ∈ K θ( /2) . (4.5.33)Since, moreover T ≥ T 2 ( ), and noticing thatAm T a T ≤ 1, we obtain that for all x ∈ [0, T -a T ] a T A m T η x,a T A m T a T I -η x,a T < /2. (4.5.34) Consequently, for all x ∈ [0, m T -A m T ] ⊂ [0, T -a T ], we have that η x,Am T -η x,a T < /2. Then, since T ≥ T 1 ( ), for all f ∈ K, there exists x f ∈ [0, m T -A m T ] such that η x f ,Am T -f < /2 and,by the triangle inequality, η x f ,a T -f < .

  lim n→∞ ∆ W (M n,an , L 1/c ) = 0 a.s., (5where a n := c log n and M n,an := {η m,an : m ∈ {0, ..., n -a n }} .

  Definition 6. Let C be an open convex subset of R d . Let f be a strictly convex and differentiable function on C. Assume that f is steep. Then the pair (C, f ) is said to be of Legendre type. If the pair (C, f ) is of Legendre type, then the gradient mapping ∇f is a homeomorphism from the open convex set C onto the open convex set C

	Definition 7. Let f be a convex function on R d . Its conjugate function is defined on R d by f * (a) = sup x∈R d { x, a -f (x)} We have the following result, which is Theorem 5.33. in (Barndorff-Nielsen Ole, 2014). Theorem 8. Let f be a convex and lower semi-continuous function. Let C = int(dom(f )) and (2.3.4) C 16CHAPTER 2. ASYMPTOTIC DISTRIBUTION OF INDEPENDENT RANDOM VECTORS GIVEN THEIR SU Then, we can state and prove the main result of this Section.

* = int(dom(f * )). * , and ∇(f * ) = (∇f ) -1 .

  Ka min , we have that B Ln t ≥ λ min t . Therefore,

	34CHAPTER 2. ASYMPTOTIC DISTRIBUTION OF INDEPENDENT RANDOM VECTORS GIVEN THEIR SU
	Then, for B Ln t ≥ R, we get from (2.4.4) that		
			| ξ j ( B Ln )| ≤	C B Ln t δ	.	(2.6.27)
	Furthermore, setting λ B Ln t ≥R g m,n (t)dt =	B Ln t ≥R	m+p j=m+1	| ξ j ( B Ln t)|dt ≤ C p	B Ln t ≥R	1 (λ min t ) δp dt.
							g m,n (t)dt.	(2.6.26)

t)dt = {t: B Ln t ≥R}

g m,n (t)dt + {t: B Ln t <R} min := λ

  Lemma 12. Let p ∈ L 1 (R d ), d ≥ 1. Let p be the characteristic function of p, defined for all t ∈ R d by p(t) := exp it, x p(x)dx. Assume that p ∈ C 1 (R d ) and that for all ∈ {1, ..., d}, ∂p ∂x ∈ L 1 (R d ). Then, there exists an absolute constant C such that for all t ∈ R d , Let t = (t ) 1≤ ≤d ∈ R d . For any ∈ {1, ..., d}, we have that

	2.6. APPENDIX				35
	Proof. t p(t) = i	∂p ∂x	(2.6.35)
				2 min t 2	(2.6.31)
	Consequently,			
				exp -pΓλ 2 min t 2 dt.	(2.6.32)
			B Ln t ≥R
	Therefore,			
	obtain that			
	sup	sup	g m,n (t)dt ≤ D Ka + E Ka < ∞	(2.6.33)
	n≥Np	0≤m≤αn-p		
			| p(t)| ≤	C t	(2.6.34)

B Ln t <R g m,n (t)dt ≤ B Ln t <R g m,n (t)dt ≤ E Ka < ∞,

for some constant E Ka depending only on a. So, we

  denoted by P k . Let G k be a probability measure on R k . Assume that P k and G k have positive densities p k and g k , and that k → ∞ as n → ∞. If there exists (B n ) n≥1 ∈ A →1 s.t. for any n ≥ 1, we have on B n that

  We prove only (3.2.41), the other proofs being similar. Let > 0. Then, (3.2.38) implies that there exists A > 0 s.t. for all n large enough,

	46CHAPTER 3. A CONDITIONAL LIMIT THEOREM FOR INDEPENDENT RANDOM VARIABLES
	Proof. P n	max 0≤i≤k-1	|t i,n | ≤ A ≥ 1 -.	(3.2.43)
	Now, (Cv) implies that			
		s 2 A := sup j≥1	sup θ∈[-A ;A ]
					.2.41)
	and for any 3 ≤ ≤ 6,			
	max 0≤i≤k-1	sup			(3.2.42)

j≥1 |µ j (t i,n )| ≤ max 0≤i≤k-1 sup j≥1 |µ| j (t i,n ) = O Pn (1).

  τ ) dτ +
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	Then, we obtain from (3.3.19) that		
	|τ |≤n ρ		
		|u m,n (τ )| dτ +	ξ i+e,n (τ ) dτ.	(3.3.21)
	|τ |>n ρ	|τ |>n ρ	

  Z (1) (•) is a Wiener process with linear drift, namely such that Z (1) (t) = σW (t) -at, where {W (t) : t ≥ 0} is a standard Wiener process; Z (2) (•) is a compound Poisson process and Z (3) (•) is a square integrable martingale, both defined in terms of π. Consequently, the distribution of {Z(t) : t ≥ 0} is fully determined by that of Z(1), which is itself characterized by its mgf, denoted by ψ(t) = E(exp(tZ(1)). Denote by Ψ the Legendre transform of ψ. Introduce the following assumptions.

(C) : ψ(t) < ∞ for all t ∈ R.

(A) : t 1 := inf {t : ψ(t) < ∞} < 0 < t 0 := sup {t : ψ(t) < ∞} and Z(1) has no Gaussian component.
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We extend the definition (4.1.3) to A = ∅, by setting ∅ = ∅ for all > 0. The Hausdorff distance between the subsets A, B ⊆ E of E is defined, in turn, by ∆ T (A, B) := inf > 0 : A ⊆ B and B ⊆ A .

(4.1.4)

Let X denote a random variable [rv], with moment-generating function [mgf] defined by ψ X (t) = E(exp(tX)) ∈ (0, ∞] for t ∈ R. The Legendre transform Ψ X of ψ X is denoted by Ψ X (α) := sup {t:ψ X (t)<∞} {αt -log ψ X (t)} for α ∈ R.

(4.1.5)

Set t 1 := inf {t : ψ X (t) < ∞} and t 0 := sup {t : ψ X (t) < ∞}. We refer to [START_REF] Deheuvels | Functional Erdös-Rényi laws[END_REF] for a discussion of the properties of the mgf ψ X (•), and its Legendre transform Ψ X (•). The observation that ψ X (0) = 1 entails that -∞ ≤ t 0 ≤ 0 ≤ t 1 ≤ ∞. We shall make use, at times, of the following assumptions on ψ X .

(

Also, at times, we shall impose the following conditions upon {a T : T > 0}.

(A1) a T and T a -1 T are ultimately non-decreasing functions of T > 0;

(A2) a T log T → d ∈ (0, ∞] and

The Proposition 1 below, which is an is an easy consequence of the results of [START_REF] Deheuvels | Random fractals generated by oscillations of processes with stationary and independent increments[END_REF], gives some motivation to our work. Denote by B(0, 1) (resp. C(0, 1), resp. AC(0,1)) the set of bounded left-continuous (resp., continuous, resp., absolutely continuous) functions on [0, 1]. We endow, at first, B(0, 1) ⊇ C[0, 1] ⊇ AC(0, 1) with the uniform distance defined by d U (f, g) := f -g , where f := sup 0≤s≤1 |f (s)|. Introduce a functional I W , defined on B(0, 1) by

1 0 ḟ (s) 2 ds if f ∈ AC(0, 1) and f (0) = 0, ∞ otherwise.

Set log + t = log(t ∨ e) and log 2 (t) = log + log + t for t ∈ R. Consider the Strassen-type set (refer to [START_REF] Strassen | An invariance principle for the law of the iterated logarithm[END_REF]) Proof. Let {W (t) : t ≥ 0} be a standard Wiener process. In view of the notation (4.1.1) and under the assumptions above, we infer from the results of Révész (1979) that lim

. Since Z has independent and stationary increments, for all Borel subset H of R k , we have that

Finally, we conclude our proof by an application of Theorem 12.5 of [START_REF] Billingsley | Convergence of probability measures[END_REF], which asserts that if the laws of two processes valued in D(0, 1) agree on all sets of the form π -1 (t i ) (H), then they agree on the whole family of sets B S .

Fact 31. For all x ≥ 0 and u > 0, we have

(4.2.10)

(4.2.11) We recall from Section 12 of [START_REF] Billingsley | Convergence of probability measures[END_REF]) that for any s ∈

so we conclude by an application of Fact 30.

The space BV 0,M (0, 1) Whenever (A) is in force, it follows from general properties of infinitely divisible distributions (see, e.g., the discussion, Section 5 in [START_REF] Lynch | Large deviations for processes with independent increments[END_REF]), that for each λ > 0, the sample paths of {Z λ (t) : 0 ≤ t ≤ 1} belong to BV 0 (0, 1). We endow this set with the topology W of weak convergence of the underlying signed measures. Next, for each A ⊂ BV 0 (0, 1) and > 0, we set

where B W (f, ) := {g ∈ BV 0 (0, 1) : d W (f, g) < }. We observe that the A is not necessarily open with respect to W, since d W does not define the weak topology on the whole set BV 0 (0, 1). Thus, we are not allowed to apply a LDP to some A or to its complement. Therefore, we need to restrict the weak topology as follows. For

(4.2.12)

Then, for M > 0, the restriction of the weak topology to BV 0,M (0, 1) is metricized by the distance d W . In the sequel, we endow BV 0,M (0, 1) with the weak topology.

Lemma 22. For any M > 0, BV 0,M (0, 1) is a compact metric space.

Proof. see, e.g., Proposition 1.4. in [START_REF] Deheuvels | Topics on empicial processes[END_REF]. 

Functional large deviations

We recall some definitions and results on large deviations theory.

Definition 16. Let E be a topological space, endowed with a topology T and its Borel σ-algebra, denoted by B T . A function 

Proof. Suppose that I((K α ) c ) = α. Then there's a sequence (x n ) with x n / ∈ (K α ) for all n, such that I(x n ) α. For some N and all n ≥ N , we have I(x n ) ≤ α+1, so that x n ∈ {x ∈ E : I(x) ≤ α + 1}, which is a compact set. Hence, (x n ) n≥N has a convergent subsequence x n k → x, as k → ∞. Since I is lower semicontinuous, we have that I(x) ≤ lim k→∞ I(x n k ) = α. Therefore, x ∈ K α . Now, for all n, x n / ∈ (K α ) , so that d(x n , x) ≥ , which leads to a contradiction. Now, we state the functional LDP, under (C) and then under (A) on which our proofs rely. In the sequel, Ψ Z(1) is denoted by Ψ.

Let I be the functional defined on D[0, 1], by

Lemma 24. Under (C), I is a good rate function.

Proof. Since I(f ) = ∞ whenever f / ∈ AC(0, 1), we obtain that for any α > 0, K I (α) := {f ∈ D(0, 1) : [START_REF] Deheuvels | Topics on empicial processes[END_REF] implies that the set {f ∈ AC(0, 1) : I(f ) ≤ α} is a compact subset of (C(0, 1), U). We conclude by recalling that the restriction of S to C(0, 1) coincides there with U, which implies that a compact subset of (C(0, 1), U) is also a compact subset of (D(0, 1), S).
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Theorem 23. Under (C), the distributions (P λ ) λ>0 satisfy a LDP in (D(0, 1), S), with rate function I.

Proof. See, e.g., [START_REF] Varadhan | Asymptotic probabilities and differential equations[END_REF].

Let J be the functional defined on BV 0 (0, 1) by

Theorem 24. Under (A), the distributions (P λ ) λ>0 satisfy a LDP in (BV 0 (0, 1), W), with good rate function J.

Proof. See, e.g., [START_REF] Lynch | Large deviations for processes with independent increments[END_REF].

Functional Erdős-Rényi theorems 4.3.1 Main results

We consider the following assummption.

(E) : There exists a constant µ such that for all t ≥ 0, E[Z(t)] = µt.

The next two theorems, called Erdős-Rényi functional laws (ERFL), are the main results of this paper.

Theorem 25. Assume that (C) and (E) hold. For c > 0, set

where I is the rate function defined in Section 2. Then, for any c > 0 and a T = c log(T ), we have

Theorem 26. Assume that (A) and (E) hold. For any integers n > 0 and q < n, set

For any c > 0, set A n := c log n . Assume that for all c large enough, there exists a constant M > 0 such that almost surely for all n large enough, we have that

where J is the rate function defined in Section 2. Then, for all c large enough, we have that
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The following Fact usually provides applications when functional limit theorems are established.

Fact 32. Let (E, d) be a metric space of functions defined on [0, 1]. Let Θ : (E, d) -→ R be a continuous map. Assume that for some compact subset K of E, lim

Corollary 1 below follows from Theorems 25 and 26 (and their proofs) combined to Fact 32 applied to the functional f → f (1), which is continuous with respect to the uniform topology and the weak topology.

Corollary 11. Under the assumptions of Theorem 25, we have that for any c > 0, lim

and lim

Under the assumptions of Theorem 26, we have that for all c large enough, (4.3.9) holds.

Examples

Continuous paths

Let {Z(t) : t ≥ 0} be a Lévy process with continuous paths. We recall that in this case, {Z(t) : t ≥ 0} is a brownian motion with drift. Therefore, Theorem 25 yields an ERFL for {Z(t) : t ≥ 0}, since it satisfies (E) and (C).

Subordinators

Let {Z(t) : t ≥ 0} be a subordinator, that is a Lévy process with almost surely increasing paths. Then, for any n > 0 and m ∈ {0, ..., n -A n }, we have that

Then, we deduce easily from Theorem 22 that for any c > 0 large enough, there exists a constant

So if we assume in addition that (E) and (A) hold, then {Z(t) : t ≥ 0} satisfies the assumptions of Theorem 26.

PROOFS

Compound Poisson process

Recall that given a sequence {Y i : i ≥ 1} of i.i.d. r.v.'s. and a homogeneous, right continuous Poisson process {N (t) : t ≥ 0} which we assume to be independent of {Y i : i ≥ 1}, the compound Poisson process {S N (t) : t ≥ 0} is defined by

Denote by λ the parameter of {N (t) : t ≥ 0}. Recall that for any t ≥ 0, we have that

Consequently, (E) holds. If we assume that (C Y 1 ) holds, then {S N (t) : t ≥ 0} satisfies (C), and therefore the assumptions of Theorem 25. Now, assume that (A Y 1 ) holds. Notice that for any x ≥ 0 and > 0, we have that

where 

Proofs

The statement that lim T →∞ ∆ T (H T , K) = 0 a.s. is equivalent to the statement that, for any > 0, there exists a.s. T ( ) < ∞ such that for all T ≥ T ( ),

We give several preliminary lemmas which lead to the proofs of Theorems 25 and 26 in Section 4.3. We call the first statement in (4.4.1) the upper bound, while the second is called the lower bound.

The reason is that for the first we use an upper bound in a functional LDP while we use a lower bound for the second one. For any c > 0, set

For any integer j large enough, set n j := max {n : A n = j}, so that exp( j c ) ≤ n j < exp( j+1 c ). 

The upper bound

Lemma 25. Assume that (C) holds. Then, for any > 0, the series

Proof. Fix > 0. Since for all c > 0, K 1/c is a compact subset of (C(0, 1), U), Fact 29 implies that there exists ζ > 0 such that

Let F be the complement in D(0, 1) of (K 1/c ) ζ;S . Therefore, for all n > 0, we have that

The last inequality is justified by Fact 30. Since (C) holds, we can apply Theorem 23 : F being a closed subset of (D(0, 1), S), for any θ > 0, we have for all n large enough,

Then, by Lemma 23, I is a good rate function. Therefore, applying Lemma 22 with (E, d) = (D(0, 1), d S ), we can write I(F ) = 1 c + δ with δ > 0. So applying (4.4.5) with θ = δ 4 , we have for all n large enough,

Applying this inequality with n = n j , so that A n = j, we obtain that

Lemma 26. Suppose that the assumptions of Theorem 26 hold. Then, for any > 0, the series

Proof. Set L 1/c := (L 1/c ) ;W BV 0,M (0, 1). Then, it is enough to prove that the series

is convergent. Denote by F the complement of L 1/c in BV 0,M (0, 1). Then F is a closed subset of (BV 0,M (0, 1), W), and therefore a closed subset of (BV 0 (0, 1), W). Since (A) holds, we can apply Theorem 24. As in (3.5) in [START_REF] Deheuvels | Functional Erdös-Rényi laws[END_REF], for any θ > 0, we have for all n large enough,

(4.4.7)
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Denote by J M the restriction of J to BV 0,M (0, 1). Since F ⊂ BV 0,M (0, 1), we have that J(F) = J M (F). Now, a level set of J M is a closed subset of the compact set BV 0,M (0, 1), W). Therefore, J M is a good rate function on the metric space (BV 0,M (0, 1), d W ). So applying Lemma 23, we get that J(F) > 1/c. We conclude as in the proof of Lemma 25.

Lemma 27. Assume that, for all > 0, we have that j P M n j ,j ⊂ K < ∞ (4.4.8)

(4.4.9)

Then almost surely, for all n large enough, we have that

Proof. For any > 0, we have for all j large enough,

. For any real x, let k x be the integer which is nearest to x (we choose

∈ N, such that for all g ∈ K, d U (η x 0 ,j , g) ≥ . Now, there exists g kx 0 ∈ K such that d U (η kx 0 ,j , g kx 0 ) < 2 . Then, the triangle inequality implies that necessarily, d U (η x 0 ,j , η kx 0 ,j ) ≥ 2 . Therefore,

and so

Now, for all s ∈ [0, 1], we have that

Consequently,

Applying Fact 33 below we obtain that there exists a constant β > 0 such that for all j large enough,
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Therefore, (4.4.9) and (4.4.8) imply that the series j P j and j P L n j ⊂ K are convergent. So, the Borel-Cantelli Lemma implies that P L n j ⊂ K i.o. (in j) = 0. Finally, we observe that, for all n satisfying n j-1 < n ≤ n j , we have that L n ⊂ L n j . Consequently, the event

, which concludes the proof.

Fact 33. Let 0 < h < 1. Then there exists a constant β > 0 such that for all u > 0 and n ≥ 1,

(4.4.17)

Proof. Fix n ≥ 1 and let R n := [ n h ] + 1. Then, δ n := n Rn < h. For any x ∈ [0, n], let i x be the unique integer such that i x δ n ≤ x < (i x + 1)δ n . Then, for a ∈ [0, h], two cases occur. Now, for all u > 0, we get from Fact 31 that

Lemma 28. Assume that (C) holds and that {Z(t) : t ≥ 0} is centered. Then, for all > 0, we have that

Proof. Assumption (C) implies that for any s > 0, A s := ψ(s) + ψ(-s) is finite. Now, for any fixed s > 0, we have that for all u > 0,

exp(-sZ(τ )) > exp(su) .

(4.4.24)
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Then, {Z(t) : t ≥ 0} being a centered Lévy process, it is a martingale. Now, the function x → exp(±sx) is nonnegative, continuous and convex. Therefore, the process (exp[±sZ(t)]) t≥0 is a nonnegative submartingale. Then, by Doob's inequality, we obtain that

Therefore, recalling that n j ≤ exp j+1 c , we have that

Now, by choosing s large enough so that s > 1 c , we conclude the proof.

The lower bound

For any integer n > 0, set

Lemma 29. Assume that (C) holds and that {Z(t) : t ≥ 0} is centered. Let c > 0. For any > 0, we have a.s. that for all n large enough,

. Therefore,

Then, the mutual independence of the η rAn,An for 1 ≤ r ≤ R n and Fact 30 imply that

Therefore, under (C), Theorem 23 implies that for all θ > 0, we have for all n large enough,

)). Now, since the Skorohod topology relativized to C(0, 1) coincides with the uniform topology, we have that G := G ∩ C(0, 1) is an open subset of (C(0, 1), U) containing g. Now, we claim that I(G ) < 1/c. Indeed, if I(g) < 1/c, then it is clear. Otherwise, assume that I(g) = 1/c and for all f ∈ G , I(f ) ≥ 1/c. Therefore, I(g) would be a local minimum of the restriction of I to C(0, 1), which is a convex function. Since (C(0, 1), U) is a convex topological vector space, I(g) would be a global minimum of this function. Now, since E[Z(1)] = 0, we have 86CHAPTER 4. FUNCTIONAL LIMIT LAWS FOR THE INCREMENTS OF L'EVY PROCESSES that Ψ(0) = 0. So, for any constant function g 0 , I(g 0 ) = 0 is a global minimum of I on C(0, 1). Consequently, we would have that I(g) = 0, which leads to a contradiction. So, we can write I(G ) = 1 c -δ with δ > 0. Taking θ = δ 4 in (4.4.30), we obtain for all n large enough,

Consequently, for all n large enough,

Therefore, the Borel-Cantelli lemma implies that

Finally, since K 1/c is a compact subset of (C(0, 1), U), we can find d ∈ N and functions (g q ) q=1,...,d in K 1/c such that K 1/c ⊂ d q=1 B U (g q , /2). Then, the triangle inequality and (4.4.34) applied to each g q imply that there exists almost surely an integer N ( ) such that for all n ≥ N ( ),

(4.4.35)

Lemma 30. Assume that (A) holds and that {Z(t) : t ≥ 0} is centered. Furthermore, assume that we can choose M < ∞ large enough, so that a.s., for all n large enough,

Q n ⊂ BV 0,M (0, 1). (4.4.36)

Then, for any > 0, there exists almost surely N ( ) < ∞ such that for all n ≥ N ( ), (4.4.37) Proof. Let > 0. 

Since the process Z(•) has independent and stationary increments, we get that

Then, under (A), we obtain from results of [START_REF] Lynch | Large deviations for processes with independent increments[END_REF]) that for all 1 ≤ i ≤ m, the sequence Z((t i -t i-1 )n)

n n satisfies a LDP with rate function

Setting B(y i ; δ) := {z : |z -y i | < δ}, we deduce that for any θ > 0, we have for all n large enough,

(4.4.43) Let J P be the function defined on R m by

Then we obtain that for all n large enough,

Now, we claim that J P (G δ ) < 1. The proof is analogous to that of the fact that I(G ) < 1/c previously, since J P is a convex function on R m . We also obtain analogously that for any δ > 0, ∞ n=1 P n,δ < ∞. By the Borel-Cantelli lemma, there exists almost surely N = N (δ, P) such that for all n ≥ N , there exists 1 ≤ r ≤ R n satisfying max 1≤i≤m |(η rAn,An (t i ) -η rAn,An (t i-1 )) -(s(t i ) -s(t i-1 ))| = max 1≤i≤m Z(rA n + t i A n ) -Z(rA n + t i-1 A n )

A n -y i < δ. Now, by (2.62) in [START_REF] Deheuvels | Functional Erdös-Rényi laws[END_REF], we have that for any f, g ∈ BV 0 (0, 1), Finally, since J is a good rate function, L 1/c is a compact subset of (BV 0,M (0, 1), W). Therefore, analogously to the end of the previous proof, we obtain that almost surely, for all n large enough, L 1/c ⊂ Q 2 n .

Proof of main theorems

Remark 10. For any real µ, let Z (µ) (t) : t ≥ 0 be the Lévy process defined by Z (µ) (t) := Z(t) + µt, for t ≥ 0. (4.4.48)

We prove in Appendix that, if an ERFL holds for {Z(t) : t ≥ 0}, then an ERFL holds for Z (µ) (t) : t ≥ 0 . Therefore, in order to prove Theorems 25 and 26 under assumption (E), it is enough to obtain them for centered Lévy processes.

Proof of Theorem 25

Proof. First, assume that {Z(t) : t ≥ 0} is centered. Then, we combine Lemmas 25, 27, 28 and Lemma 31 in the Appendix to get the the upper bound, that is first part of (4.4.1). Then, we combine Lemma 29 and Lemma 32 in the Appendix to get the lower bound, that is the second part of (4.4.1). We conclude by applying Remark 1.

Proof of Theorem 26

Proof. First, assume that {Z(t) : t ≥ 0} is centered. Notice that the following statement from which we deduce readily the first statement of (4.4.50). Then the second statement of (4.4.50) follows from Lemma 30, under the assumptions of Theorem 26. We conclude by applying Remark 1.