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M. Sergio Alvarez-Andrade UTC Compiègne Examinateur
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Chapter 1

Introduction

This document contains two independent Parts. The first one is composed by Chapters 2 and 3,
while the second one is Chapter 4.

1.1 Introduction to Chapters 2 and 3

In these chapters, we study the asymptotic distribution of independent not necessarily identically
distributed random variables or random vectors, which is closely linked to some Statistical Mechanics
issue.

1.1.1 Statistical Mechanics Framework

Following (Khinchin, 1949), we present hereafter the Statistical Mechanics framework within which
this question is natural.

The Phase Space

Let G be a mechanical system with s degrees of freedom. The state of G is described by values
of its 2s dynamical variables denoted by q1, ...qs; p1, ...ps. In other words, there is a one-to-one
correspondence which associates to each possible state of G, a point of an Euclidian space Γ, whose
coordinates are the values of (qi, pi)1≤i≤s. Γ is called the phase space of G. During any interval of
time ∆t, each point P ∈ Γ describes a curve corresponding to some successive changes of states of
G during ∆t. Thus, the whole space Γ is transformed into itself during ∆t. This motion of Γ is
called its natural motion. A subset M of Γ which is stable under the natural motion is called an
invariant part of Γ. From point of view of physics, the most important function on Γ is the total
energy of G, denoted by

E = E(qi; pi), 1 ≤ i ≤ s. (1.1.1)

Assume that G is an isolated system. Then, by the law of conservation of energy, the function E
has a constant value. Consequently, for any constant a, the set

Σa := {E = a} ⊂ Γ (1.1.2)

is an invariant part of Γ and is called a surface of constant energy. We can assume that E is positive
over Γ. Set

Vx := {E < x} ⊂ Γ and V (x) := Volume of Vx. (1.1.3)

V (·) is a monotone function which increases from 0 to∞ as x varies between the same limits. Then,
we have the following lemma.

Lemma 1. Let f(·) be a function defined on Γ, integrable over Vx. Then,

d

dx

∫
Vx

f(P )dV =

∫
Σx

f(P )
dΣ

‖Grad(E)‖
, (1.1.4)

1



2 CHAPTER 1. INTRODUCTION

where dV and dΣ are the volume elements of Γ and of Σx.

Let M be a measurable subset of Σx. Then in the natural motion of Γ, M is transformed into a set
M ′ ⊂ Σx. However, if we define the measure of M by µ(M) :=

∫
M dΣ, then in general, µ(M) 6=

µ(M ′). We are deprived of important mathematical tools without this invariance. Therefore, we
consider another measure of any set M contained in Σx as follows. At each point of M , draw the
outward normal to Σx to its intersection with the infinitely near surface Σx+dx. Denote by D the
bounded part of Γ which is filled by these normal vectors. Then set

M(M) :=

∫
D
dV =

∫
x<E<x+dx

1D(P)dV. (1.1.5)

This volume is clearly invariant with respect to the natural motion. Its ratio to ∆x and the limit
of this ratio as ∆x→ 0 are also invariant. Now, by Lemma 1, this limits is∫

Σx

1D(P)
dΣ

‖Grad(E)‖
=

∫
M

dΣ

‖Grad(E)‖
. (1.1.6)

Therefore, we obtain an invariant measure on subsets of Σx by considering the measure M defined
by

M(M) =

∫
M

dΣ

‖Grad(E)‖
(1.1.7)

Definition 1. The measure Ω(x) of the whole surface Σx is

Ω(x) =

∫
Σx

dΣ

‖Grad(E)‖
=M(Σx). (1.1.8)

Assume that for all P , f(P ) = 1 in Lemma 1. Then we obtain that

Ω(x) = V ′(x). (1.1.9)

The function Ω(·) determines the most important features of the mechanical structure of G and is
therefore called the structure function of G.

Definition 2. We denote by x1, ..., x2s the dynamical ccordinates of a point of Γ, where the order
of numeration is irrelevant. Assume that the energy E = E(x1, ..., x2s) can be written as

E(x1, ..., x2s) = E1(x1, ..., xr) + E2(xr+1, ..., x2s) (1.1.10)

We say that the set {x1, ..., x2s} is decomposed in two components, that is

{x1, ..., x2s} = {x1, ..., xr}
⊔
{xr+1, ..., x2s} , (1.1.11)

which we write

G = G1

⊔
G2. (1.1.12)

A component defined in this sense does not necessarily coincide with a separate physical subsystem
of G. The isolated character of such components is of a purely energy nature.

Each component, being a subset of dynamical coordinates, has its own phase space. With obvious
notations, if G = G1

⊔
G2 then

Γ = Γ1 × Γ2 and dV = dV1dV2. (1.1.13)
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Let Ω,Ω1 and Ω2 be the respective structure functions of G,G1 and G2. Then we prove that

Ω(x) =

∫ ∞
0

Ω1(y)Ω2(x− y)dy. (1.1.14)

We deduce readily that if G = G1
⊔
G2
⊔
...Gn, then

Ω(x) =

∫ {n−1∏
i=1

Ωi(ui)dui

}
Ωn

(
u−

n−1∑
i=1

ui

)
. (1.1.15)

In order to be able to split G = G1
⊔
G2 in two components in this sense, we need to neglect the

mixed terms of energy interactions which would involve variables from both G1 and G2.

Reduction to Probability Theory

We shall now consider the dynamical variables (x1, ..., x2s) as a random vector X = (X1, ..., X2s).
We still assume that G is an isolated system, so that the natural motion of Γ is limited within Σna

and the support of X is contained in Σna. We assume that the distribution law of X is given by

P (X ∈M) =
M(M)

M(Σna)
=

1

Ω(na)

∫
M

dΣ

‖Grad(E)‖
, for any set M ⊂ Σna. (1.1.16)

Assume that G is divided into two components G(1) and G(2). Therefore, we can write X =
(X(1);X(2)) with X(1) = (X1, ..., Xr) and X(2) = (Xr+1, ..., X2s). Then, we can prove that for any
subset M1 contained in Γ1,

P (X(1) ∈M1) =
1

Ω(na)

∫
M1

Ω(2)(na− E1)dV1. (1.1.17)

Consequently, the distribution law of X(1) is absolutely continuous w.r.t the Lebesgue measure with
density given by

pX(1)(x1) =
Ω(2)(na− E1(x1))

Ω(na)
, for any x1 ∈ Γ1. (1.1.18)

We can then deduce that the random variable E1 is absolutely continuous w.r.t the Lebesgue measure
with density given by

pE1(x) =
Ω(1)(x)Ω(2)(na− x)

Ω(na)
. (1.1.19)

Let Ψ(·) be the Laplace transform of the function Ω(·), called the partition function of G. We
assume that for any α > 0,

Ψ(α) :=

∫
exp(−αx)Ω(x)dx <∞ (1.1.20)

Then, we have the following facts.

Fact 1. For any constant c > 0, there exist a unique solution βan > 0 to the equation of unknown α

− d

dα
log Ψ(α) = c. (1.1.21)

Fact 2. The partition function of a system G is equal to the product of the partition functions of
its components.

We introduce now the family (Uα)α>0 of distribution laws conjugate with the system G, defined by

Uα(x) =
1

Ψ(α)
exp(−αx)Ω(x) if x ≥ 0, (1.1.22)
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and
Uα(x) = 0 if x < 0. (1.1.23)

For any α > 0, Uα(x) is the probability density of a random variable X̃α, since

Uα(x) ≥ 0 and

∫
Uα(x)dx = 1, (1.1.24)

Furthermore, we have the following

Fact 3. For any α > 0,

E[X̃α] =

∫
xUα(x)dx = − d

dα
log Ψ(α). (1.1.25)

Gibbs Measure

We intend to evaluate the energy E1 of a given component G(1) of G. However, we can not
approximate directly the structure functions which appear in (1.1.19). Instead, we will be able to
approximate the Uα’s, since they are densities. In that purpose, we assume that G is divided into
a large number n of components and that G(1) is a collection of some of them, that is

G =

n⊔
j=1

gj = G(1)
⊔
G(2), where G(1) =

k⊔
j=1

gj and k < n. (1.1.26)

We still assume that G is an isolated system, so that its energy has some constant value denoted by
na, where a is the average energy of g1, ..., gn.

Let (Uα1 )α>0 (resp. (Uα2 )α>0) be the family of distribution laws conjugate with G(1) (resp. G(2)).
Using that Ω(x) = Ψ(α) exp(αx)Uα(x), we readily get that for any α > 0,

pE1(x) = Uα1 (x)
Uα2 (na− x)

Uα(na)
. (1.1.27)

The objective is now to evaluate Uα2 (na− x) and Uα(na). We can prove the following fact.

Fact 4. Assume that G =
n⊔
j=1

gj. Then, for any α > 0,

Uα(x) =

∫ 
n−1∏
j=1

uαj (yj)dyj

uαn

x− n−1∑
j=1

yj

 , (1.1.28)

where for all 1 ≤ j ≤ n, the (uαj )α>0 are the distribution laws conjugate with gj.

In other words, for any α > 0, one can interpret Uα(·) as the density of a sum of independent
random variables X̃α

j , which are not necessarily identically distributed.

The Theory of Probability provides then an asymptotic approximation of Uα(·). More precisely, we
may apply the following Central Limit Theorem.

Theorem 1. Consider a sequence of independent random variables (Xj)j≥1 with probability densi-
ties (uj)j≥1 and characteristic functions (gj)j≥1, that is gj(t) =

∫
exp(itx)uj(x)dx.

Let (aj)j≥1 be the sequence of expectations of the Xj’s and for 2 ≤ ` ≤ 5, let (a`j)j≥1 be the sequence
of their centered absolute moments of order `. Assume that

(1) For any j ≥ 1, uj is differentiable and there exists L > 0 such that sup
j≥1

∫
|u′j(x)|dx < L.



1.1. INTRODUCTION TO CHAPTERS 2 AND 3 5

(2) There exist 0 < α < βan such that inf
j≥1

a2
j > α and sup

j≥1
max

2≤`≤5
a`j ≤ βan.

(3) There exist positive constants λ and τ such that in the region |t| ≤ τ , sup
j≥1

|gj(t)| > λ.

(4) For any 0 < c1 < c2, there exists ρ = ρ(c1, c2) < 1 such that for any t ∈ (c1, c2), sup
j≥1

|gj(t)| < ρ.

Set An =
n∑
j=1

aj and Bn =
n∑
j=1

a2
j . Let Un(x) be the density of

n∑
j=1

Xj. Then,

Un(x) =
1

(2πBn)1/2
exp

[
−(x−An)2

2Bn

]
+ vn, (1.1.29)

where

vn = o

(
1 + |x−An|

n3/2

)
for |x−An| < 2 log2 n (1.1.30)

and

vn = o

(
1

n

)
for all x. (1.1.31)

Recall that (Uα)α>0 is the family of distribution laws conjugate with G, which is composed of n
components. We will write Uα, the number n being omitted. We assume that for any α > 0, for
very large n, the densities (Uαi )1≤i≤n satisfy the assumptions (1), (2), (3), (4). This essentially means
that the components (gi) are of a small number of different kinds, which is a reasonable assumption.

Applying Theorem 1, we obtain that for any α > 0, (1.1.29) holds for Uα, with An = E[X̃α] and
Bn = V ar(X̃α). We get from Fact 3 that An = − d

dα log Φ(α). Then, (1.1.21) implies that there
exists a unique βan > 0 such that

An =

(
− d

dα
log Ψ(α)

)
α=βan

= na. (1.1.32)

We deduce that

Uβ
a
n(na) =

1

(2πBn)1/2
+ o(n−3/2). (1.1.33)

We assume that the number k of components of G(1) satisfies that k = o(n). Therefore, n− k ∼ n

and we may appply Theorem 1 to U
βan
2 to obtain that

U
βan
2 (na− x) =

exp
[
− (x−A1,k)2

2Bk+1,n

]
(2πBk+1,n)1/2

+ o

(
1

n

)
, (1.1.34)

where A1,k =
k∑
j=1

E[X̃
βan
j ] and Bk+1,n =

n∑
j=k+1

V ar(X̃
βan
j ). The assumptions of Theorem 1 imply that

Bn and Bk+1,n are respectively of order n and n − k, and are therefore of the same order since
k = o(n). Consequently, for any x > 0,

U
βan
2 (na− x)

Uβan(na)
=

{
exp

[
−

(x−A1,k)
2

2Bk+1,n

]}
{1 + o(1)} (1.1.35)

However, if we only consider those x such that x−A1,k = o(n1/2), we obtain that

exp

[
−

(x−A1,k)
2

2Bk+1,n

]
= {1 + o(1)} . (1.1.36)
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Therefore, writing (1.1.27) for α = βan, we get that for x satisfying x−A1,k = o(n1/2),

pE1(x) = U
βan
1 (x) {1 + o(1)} . (1.1.37)

Thus, when x belongs to an interval of wide radius (equal to n1/2), the density of E1 is approximated

by U
βan
1 (x), which is the density of a Gibbs measure. One can interpret (1.1.37) as follows. G is

an isolated system divided in two components : a small one, G(1), immersed in a large heat bath
G(2). G(1) and G(2) interact only by exchanges of energy and their temperatures are equal to the
same value T when thermal equilibrium is reached. Then, the distribution of energy in G(1) and
in any small component of G is given by (1.1.37), and the parameter βan, usually called an inverse
temperature, is equal to 1

kBT
, where kB is Boltzmann’s constant.

We will explain in chapter 2 why these Statistical Mechanics considerations are linked to the issues
of Chapters 2 and 3.

1.1.2 Presentation of Chapters 2 and 3

In both Chapters 2 and 3, the essential technique is the commonly called Saddlepoint Approxima-
tion (see (Jensen, 1995)), which is an asymptotic local approximation of the density of a sum of
independent random variables. It is composed of two steps. Firstly, one performs an exponential
change of measure, as in Large Deviations Theory, in order to localize around a given value of the
sum. Here, we call it the tilting operation. Secondly, one performs an Edgeworth expansion of the
density of the resulting sum. This expansion is a central Limit Theorem, as the Theorem stated
hereabove in (Khinchin, 1949), but at higher orders.

In Chapters 2 and 3, we consider a sequence (Xj)j≥1 of independent random vectors, valued in Rd,
d ≥ 1. Let (kn)n≥1 be a sequence of integers with 1 ≤ kn < n, for all n ≥ 1. We write k instead
of kn. We assume that the (Xj) have a common support SX and that their moment generating
functions have a common domain of finiteness, denoted by Θ. For a ∈ SX and n ≥ 1, let Qnak
be a regular version of the conditional distribution of Xk

1 := (X1, ..., Xk) given {S1,n = na}, where

S1,n :=
n∑
j=1

Xj . We study the asymptotic behaviour (as n→∞) of Qnak, under various assumptions

on k.

Our results are given in total variation distance. We denote by ‖P −Q‖TV the total variation
distance between probability measures P and Q.

The tilting operation is described hereunder.

Definition 3. Let X be a r.v. valued in Rd, d ≥ 1. Denote by ΦX its mgf. Let ΘX :=
{
θ ∈ Rd : ΦX(θ) <∞

}
.

For any θ ∈ ΘX , denote by X̃θ a random vector having the tilted density, defined by

p
X̃θ(x) :=

exp〈θ, x〉pX(x)

ΦX(θ)
(1.1.38)

1.2 Summary of Chapter 2

We present here our strategy to obtain the asymptotic behaviour of Qnak when k = o(n).

Since the conditioning event is {S1,n = na}, we prove that for any n ≥ 1, there exists a unique
θan ∈ Θ such that

E
[
S̃1,n

θan
]

= na. (1.2.1)

The main result of Chapter 2 is the following. In the sequel, all the tilted densities pertain to θ = θan.
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Theorem 2. Under suitable assumptions, if k = o(n), then,∥∥∥Qnak − P̃ k1 ∥∥∥
TV

= O
(
k

n

)
, (1.2.2)

where P̃ k1 is the joint distribution of independent r.v.’s (X̃j)1≤j≤k.

Proof. We give a sketch of the proof. Let Rnak be the distribution of S1,k :=
k∑
j=1

Xj given S1,n = na.

Let R̃1,k be the distribution of S̃1,k :=
k∑
j=1

X̃j . Then, we obtain from Sufficiency Theory that

∥∥∥Qnak − P̃ k1 ∥∥∥
TV

=
∥∥∥Rnak − R̃1,k

∥∥∥
TV

. (1.2.3)

Now, by Scheffe’s theorem, we deduce that∥∥∥Qnak − P̃1,k

∥∥∥
TV

=

∫ ∣∣∣p(S1,k = t|S1,n = na)− p
S̃1,k

(t)
∣∣∣ dt, (1.2.4)

where p(S1,k = ·|S1,n = na) is the density of S1,k given S1,n = na and p
S̃1,k

is the density of S̃1,k.

Then, we can check readily the following invariance of the conditional density : for any t ∈ Rd,

p(S1,k = t|S1,n = na) = p( S̃1,k = t
∣∣∣ S̃1,n = na) = p

S̃1,k
(t)

(
p
S̃k+1,n

(na− t)
p
S̃1,n

(na)

)
. (1.2.5)

For any integers `,m with 1 ≤ ` ≤ m, we denote by f`,m the density of S̃`,m :=
m∑
j=`

X̃j . Therefore,

we deduce readily from (2.5.6), (2.5.7) and (2.5.8) that∥∥∥Qnak − P̃1,k

∥∥∥
TV

=

∫ ∣∣∣∣fk+1,n(na− t)
f1,n(na)

− 1

∣∣∣∣ f1,k(t)dt. (1.2.6)

Finally, we perform Edgeworth expansions for fk+1,n and f1,n and we get the desired result.

1.3 Summary of Chapter 3

This Chapter contains a generalisation of the preceding one. Indeed, we obtain the asymptotic
behaviour of Qnak when k is not necessarily a o(n), and even when k

n converges to 1.

We need to consider some quantities inspired from an Importance Sampling setting, which allow to
use a criterion for convergence in total variation distance. We perform an Adaptative Scheme to
estimate the density of Qnak, and still perform a Saddlepoint Approximation to conclude the proof.

1.4 Introduction to Chapter 4

Let (Xi)i≥1 be an i.i.d. sequence of random variables. Let FX be their common distribution

function. For n ≥ 1, set S0 = 0 and Sn =
n∑
i=1

Xi.

Assume first that (Xi)i≥1 is a sequence of Bernoulli of parameter p. For n ≥ 1, let Ln be the longest
chain of consecutive 1 among (Xi)1≤i≤n.

Theorem 3. For any p ∈ (0, 1), we have that almost surely,

Ln
log n

−→ − 1

log p
as n→∞. (1.4.1)
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The study of Ln is of interest in insurance, finance and even molecular biology. For any n ≥ 1, and
any integer k such that 1 ≤ k ≤ n, set

Mn(k) := max
0≤i≤n−k

{Si+k − Si}

= max
0≤i≤n−k

{Xi+1 + ...+Xi+k} .

Then, in a Bernoulli model,

Ln = max {k ∈ {1, ..., n} : Mn(k) = k} . (1.4.2)

From now, we consider any sequence (Xi)i≥1 and we focus on

In(k) :=
Mn(k)

k
, for n ≥ 1 and 1 ≤ k ≤ n. (1.4.3)

Then, In(k) is called an Erdős-Rényi increment. For example, if (Xi) represent daily values of a
financial asset, then In(k) is the maximal average gain over a period of k days. Notice that

In(1) = max
1≤i≤n

Xi while In(n) =
Sn
n
. (1.4.4)

Therefore, In(k) can be viewed as an intermediate object between Extreme Value Theory and the
classical Theory of mean of variables. Notice also that, if E[X1] = 0 then by the law of large
numbers, In(n) → 0 as n → ∞. On the other hand, if FX(t) < 1 for any real t, then In(1) → ∞
as n → ∞. The following result asserts that somewhere between these two extremes, the limit is
positive and finite. It is the classical Erdős and Rényi theorem for the partial sum process.

Theorem 4. Assume that the distribution of X1 is nondegenerate, E[X1] = 0 and

inf {s : ψ(s) <∞} < 0 < sup {s : ψ(s) <∞} , where ψ(s) := E[exp(sX1)]. (1.4.5)

Fix c > 0. Let kn be the integer part of c log n. Then,

Mn(kn)→ αc, (1.4.6)

where

αc := inf {α ≥ u : Ψ(α) ≥ 1/c} and Ψ(α) = sup
t:ψ(t)<∞

{tα− logψ(t)} . (1.4.7)

Proof. The proof makes use of classical large deviations results for S(n)
n and on the Borel-Cantelli

lemma. See (Deheuvels, 2007) for details.

This result has given rise to many developments and extensions to processes related to the partial
sum one, among which a functional version, established in Deheuvels (1991). In Chapter 3, we
extend it to Lévy processes.

1.5 Summary of Chapter 4

This chapter is devoted to functional Erdős-Rényi theorems for Lévy processes. Let Z be a Lévy
process. For x ≥ 0, and ` > 0, define the standardized increment functions of Z(·) by setting

ηx,`(s) :=
Z(x+ `s)− Z(x)

`
for s ∈ [0, 1]. (1.5.1)
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For any c > 0, consider the following random sets GT of increment functions.

GT := {ηx,aT : 0 ≤ x ≤ T − aT }, where aT = c log T. (1.5.2)

and

Mn,an := {ηm,an : m ∈ {0, ..., n− an}} , where an is the integer part of c log n. (1.5.3)

We have established that, under suitable assumptions, the random sets GT and Mn,an converge
(in the sense of the Hausdorff distance defined below) almost surely (a.s.) to deterministic sets of
functions.

Now, we define the Hausdorff distance. Let E be a set of functions on [0, 1] such that for all T > 0,
GT ⊆ E . We endow E with a metric topology T , defined by a distance dT . For any subset A ⊆ E ,
and ε > 0, consider an enlargement of A defined by

Aε = Aε;T :=
{
g ∈ E : dT (f, g) < ε for some f ∈ A

}
. (1.5.4)

The Hausdorff distance between the subsets A,B ⊆ E is defined by

∆T (A,B) := inf
{
ε > 0 : A ⊆ Bε and B ⊆ Aε

}
. (1.5.5)

Let K(c) be a fixed set. Then, lim
T→∞

∆T (GT ,K(c)) = 0 a.s. if and only if, for any ε > 0, there exists

a.s. T (ε) <∞ such that for all T ≥ T (ε),

GT ⊂ (K(c))ε and K(c) ⊂ (GT )ε. (1.5.6)

Let ψ be the moment generating function of Z(1). Introduce the following assumptions.

(C) : ψ(t) <∞ for all t ∈ R.

(A) : inf {t : ψ(t) <∞} < 0 < sup {t : ψ(t) <∞} and Z(1) has no Gaussian component.

(E) : There exists a constant µ such that for all t ≥ 0, E[Z(t)] = µt.

We have obtained the following theorems, called functional Erdős-Rényi laws.

Theorem 5. Assume that (C) and (E) hold. Then, for any c > 0, there exists a fixed set K(c) such
that

lim
T→∞

∆U (GT ,K(c)) = 0 a.s. (1.5.7)

where ∆U is associated to the distance dU defined on the set of bounded functions on [0, 1] by

dU (f, g) = sup
x∈[0,1]

|f(x)− g(x)| . (1.5.8)

Theorem 6. Assume that (A) and (E) hold. Let BV0(0, 1) be the set of functions on [0, 1] which
are right-continuous, with bounded variations and vanish at the origin. Then, for all c large enough,
there exists a fixed set L(c) such that

lim
n→∞

∆W (Mn,an , L(c)) = 0 a.s. (1.5.9)

where ∆W is associated to the distance dW defined on BV0(0, 1) by

dW(f, g) =

∫ 1

0
|f(u)− g(u)|du+ |f(1)− g(1)|. (1.5.10)

The proofs of these results rely heavily on functional large deviations theorems for processes with
stationary and independent increments.
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2.1 Introduction

2.1.1 Context and scope

Let (Xj)j≥1 be a sequence of independent, not necessarily identically distributed (i.d.), random
vectors (r.v.) valued in Rd, d ≥ 1. Let (kn)n≥1 be a sequence of integers with 1 ≤ kn < n, for all
n ≥ 1. We write k instead of kn. We assume that the (Xj) have a common support SX . For a ∈ SX
and n ≥ 1, let Qnak be a regular version of the conditional distribution of Xk

1 := (X1, ..., Xk) given

{S1,n = na}, where S1,n :=
n∑
j=1

Xj . Such a version exists since Rd is a Polish space (see (Stroock,

1994)). In this paper, we study the asymptotic behaviour (as n→∞) of Qnak.

This question is closely related to the well-known Gibbs Conditioning Principle (GCP) (see (Stroock
and Zeitouni, 1991)), which states that when the r.v.’s are independent and identically distributed

(i.i.d.) and valued in any Polish space, the distribution of Xk
1 given

{
1
n

n∑
j=1

f(Xj) = a

}
, where f

is a measurable real function, converges weakly to some limit distribution. Let PX be the common
law of the (Xj). Denote by B

(
Rd
)

the Borel σ-algebra of Rd. Then, under suitable conditions, the

GCP asserts that for fixed k, we have for any B ∈
(
B
(
Rd
))k

and a 6= EPX [f ],

lim
δ→0

lim
n→∞

P

Xk
1 ∈ B

∣∣∣A(a, δ) :=

 1

n

n∑
j=1

f (Xj) ∈ [a− δ, a+ δ]


 = (γa)k(B), (2.1.1)

where the measure γa, called a Gibbs measure, minimizes the relative entropy H(·|PX) under an

11
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energy constraint. Let θa ∈ R be a solution of the equation

d log(Φf )

dθ
(θ) = a, where Φf (θ) :=

∫
Rd

exp(θf(x))dPX(x). (2.1.2)

Then γa is absolutely continuous (a.c.) with respect to (w.r.t.) PX , with

dγa

dPX
(x) =

exp(θaf(x))

Φf (θa)
. (2.1.3)

The GCP extends to the case where k −→∞ as n −→∞, provided that k = o(n). (See (Dembo and
Zeitouni, 1996)). It has an interpretation in Statistical Mechanics, since it describes the distribution
of a typical small subset in a system composed of a very large number n of particles, under a
constraint of averaged energy. The classical approach to obtain statements of the form (2.1.1)
is to interpret the event A(a, δ) in terms of the empirical distribution and to use Sanov’s large
deviations theorem (see Section 7.3. in (Dembo and Zeitouni, 1993)). However, this method uses
the exchangeability of the (Xj) under the conditioning event, which does not hold anymore when the
r.v.’s are not i.d..

In this paper, we consider the conditioning point approach of (Diaconis and Freedman, 1988).
Instead of enlarging the conditioning event as in (2.1.1), this approach uses that, when all the Xj ’s
are a.c. w.r.t the Lebesgue measure on Rd, Qnak may be defined by a conditional density (see Fact
16 below). We prove that this method can be applied to r.v.’s which are not i.d. More precsisely,
we generalize Theorem 1.6 in (Diaconis and Freedman, 1988), which holds, when k = o(n), for
a sequence of i.i.d. r.v.’s valued in R (d = 1). We extend it to a sequence of independent non
i.d. r.v.’s. valued in Rd with d ≥ 1. We obtain that Qnak is asymptotically approximated in total
variation distance, by the product of k probability measures (γaj,n)1≤j≤k described as follows. For
any j ≥ 1, let Φj(·) :=

∫
Rd exp〈·, x〉dPXj (x) be the moment generating function (mgf) of Xj . Then,

for any n ≥ 1 and 1 ≤ j ≤ k, γaj,n is a.c. w.r.t. Pj := PXj , with

dγaj,n
dPj

(x) =
exp〈θan, x〉

Φj(θan)
, for x ∈ Rd, (2.1.4)

where for any n ≥ 1, θan ∈ Rd is a solution of the equation

1

n

n∑
j=1

∇ log Φj(θ) = a. (2.1.5)

Although our conditioning event is less general than in the GCP, our result still has a Statistical
Mechanics interpretation, as explained in Section 2. After some preliminary results in Section 3,
we precise our assumptions in Section 4. Then, we state and prove our main theorem in Section 5,
while some technical lemmas are deferred to the Appendix.

2.1.2 Notations and elementary Facts

All the r.v.’s considered are a.c. w.r.t. the Lebesgue measure on Rd. For any r.v. X, let PX be its
distribution and pX its density. For any j ≥ 1, set

Pj := PXj and pj := pXj .
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Conditional density

Let U and V be r.v.’s having a joint density denoted by p(U,V ). Then, there exists a conditional
density of U given V , denoted as follows.

p (U = u|V = v) =
p(U,V ) (u, v)

pV (v)
.

Fact 5. Let (Xj)j≥1 be a sequence of independent r.v.’s valued in Rd, d ≥ 1. For any n ≥ 1, let
Jn be a subset of {1, ..., n} s.t. αn := |Jn| < n. Let Ln be the complement of Jn in {1, ..., n}. Set
SLn :=

∑
j∈Ln

Xj. Then, there exists a conditional density of (Xj)j∈Jn given S1,n, defined by

p ((Xj)j∈Jn = (xj)|S1,n = s) =

{ ∏
j∈Jn

pj(xj)

}
pSLn

(
s−

∑
j∈Jn

xj

)
pS1,n (s)

, (2.1.6)

Proof. For any measurable function φ :
(
Rd
)αn × Rd −→ Rd, we calculate

E [φ ((Xj)j∈Jn ;S1,n)] =

∫
φ((xj); s1,n)


n∏
j=1

pj(xj)

 dx1...dx1, where s1,n =

n∑
j=1

xj . (2.1.7)

Then, we apply the change of variables formula with the diffeomorphism of class C1 defined by

(x1, ..., xn−1, xn) 7→ (x1, ..., xn−1, s1,n). (2.1.8)

We obtain thus that the joint density of (Xj)j∈Jn and S1,n is the numerator of (3.2.2).

The Tilted Density

Definition 4. Let X be a r.v. valued in Rd, d ≥ 1. Denote by ΦX its mgf. Let ΘX :=
{
θ ∈ Rd : ΦX(θ) <∞

}
.

For any θ ∈ ΘX , denote by X̃θ a random vector having the tilted density, defined by

p
X̃θ(x) :=

exp〈θ, x〉pX(x)

ΦX(θ)
(2.1.9)

Fact 6. For any θ ∈ ΘX , the mean of the r.v. X̃θ is equal to the gradient of κ at θ. Thus,

E[X̃θ] = ∇κ(θ). (2.1.10)

The covariance matrix of X̃θ is equal to the Hessian matrix of κ at θ. Thus, for for any 1 ≤ i, j ≤ d,[
Cov(X̃θ)

]
i,j

=

[
∂2κ

∂θi∂θj
(θ)

]
i,j

. (2.1.11)

For any j ≥ 1, set Φj := ΦXj . We suppose throughout the text that the functions (Φj)j≥1 have the
same domain of finiteness denoted by Θ, which is assumed to be of non void interior. We write, for
any j ≥ 1,

Θ :=
{
θ ∈ Rd : Φj(θ) <∞

}
.
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Fact 7. For any j ≥ 1, there exists a probability space (Ωθ,Aθ,Pθ) such that for all finite subset
J ⊂ N and for all (Bj)j∈J ∈ B(Rd)|J |,

Pθ
((

X̃θ
j

)
j∈J
∈ (Bj)j∈J

)
=
∏
j∈J

P̃ θj (Bj) =
∏
j∈J

∫
Bj

p̃θj(x)dx, (2.1.12)

where P̃ θj := P
X̃θ
j

and p̃θj := p
X̃θ
j
. In other words,

(
X̃θ
j

)
j≥1

is a sequence of independent r.v.’s

defined on (Ωθ,Aθ,Pθ).

Fact 8. For any θ ∈ Θ, j ≥ 1 and j′ ≥ 1,

E
[

˜Xj +Xj′
θ
]

= E
[
X̃θ
j + X̃θ

j′

]
. (2.1.13)

Corollary 1. For any n ≥ 1, for any θ ∈ Θ,

E
[
S̃1,n

θ
]

=

n∑
j=1

mj(θ). (2.1.14)

We will prove in Section 2.1 that, for a suitable choice of a, the equation (3.2.24) has a unique
solution denoted by θan. Throughout the text, when we write X̃j without any subscript θ, this means

that we refer implicitly to X̃
θan
j .

2.2 Analogies with Statistical Mechanics

We have the following analogies between the mathematical point of view and the statistical me-
chanics one developed in the Chapter of Introduction.

S1,k ←→ Energy of g1
⊔
...
⊔
gk

Density of S1,k ←→ Structure function of g1
⊔
...
⊔
gk

Moment generating function of S1,k ←→ Partition function of g1
⊔
...
⊔
gk

θan ←→ βan

Notice that, although the energies (ei) of the components (gi) are the analogues of the (Xi), the
(ei) are not stochastically independent. However, splitting G in components (gi) in this sense, gives
raise to some (Uαi ) such that (Uα) is the density of a sum of independent random variables (X̃α

i ).

The assumptions on the (X̃α
i ) of Theorem 1 are actually analytical conditions of uniformity on their

densities (Uαi ). They mean that the components (gi) have rather similar characteristics, although
they are not identical. Now, we have from (1.1.37) that

p(S1,k = x|S1,n = na) ←→ Ω(1)(x)Ω(2)(na−x)
Ω(na) = Uα1 (x)

Uα2 (na−x)
Uα(na) ≈

Ω(1)(x) exp(−βanx)

Ψ(1)(βan)
.

Therefore, we expect that p(S1,k = x|S1,n = na) should be approximated by
p(S1,k=x) exp(θanx)

Φ1,k(θan) , where

Φ1,k is the mgf of S1,k. This approximation is a consequence of our general result, which is therefore
natural.
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2.3 Preliminary Results

2.3.1 Existence of the tilted density

For any set E ⊂ Rd, we denote respectively by int(E), c`(E) and conv(E) the interior, the closure
and the convex hull of E. Let SX be the common support of the (Xj)j≥1. Set

CX := c`(conv(SX)).

Definition 5. Let f be a convex function on Rd. Set dom(f) :=
{
x ∈ Rd : f(x) <∞

}
. Assume

that int(dom(f)) 6= ∅ and f is differentiable throughout int(dom(f)). Then, for any boundary point
x of dom(f), we say that f is steep at x if

‖∇f(xi)‖ −→ ∞ (2.3.1)

whenever (xi) is a sequence of points in int(dom(f)) converging to x. Furthermore, f is called steep
if it is steep at all boundary point of dom(f).

We have the following characterization of steepness, which is Theorem 5.27 in (Barndorff-Nielsen
Ole, 2014).

Theorem 7. Let f be a convex function on Rd. Assume that int(dom(f)) 6= ∅ and that f is
differentiable throughout int(dom(f)). Then f is steep if and only if for any z ∈ int(dom(f)) and
any boundary point x ∈ dom(f),

df

dλ
(x+ λ(z − x)) ↓ −∞, as λ ↓ 0. (2.3.2)

Fact 9. Assume that for all j ≥ 1, κj is steep. For all n ≥ 1, set

κn :=
1

n

n∑
j=1

κj . (2.3.3)

Then, for all n ≥ 1, κn is steep.

Proof. For all n ≥ 1, κn clearly satisfies the assumptions of Theorem 7. Now, for all j ≥ 1, κj
being steep, κj satisfies (2.3.2). We deduce readily that κn satisfies (2.3.2), which implies that κn
is steep.

Definition 6. Let C be an open convex subset of Rd. Let f be a strictly convex and differentiable
function on C. Assume that f is steep. Then the pair (C, f) is said to be of Legendre type.

Definition 7. Let f be a convex function on Rd. Its conjugate function is defined on Rd by

f∗(a) = sup
x∈Rd

{〈x, a〉 − f(x)} (2.3.4)

We have the following result, which is Theorem 5.33. in (Barndorff-Nielsen Ole, 2014).

Theorem 8. Let f be a convex and lower semi-continuous function. Let C = int(dom(f)) and
C∗ = int(dom(f∗)). If the pair (C, f) is of Legendre type, then the gradient mapping ∇f is a
homeomorphism from the open convex set C onto the open convex set C∗, and ∇(f∗) = (∇f)−1.
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Then, we can state and prove the main result of this Section.

Theorem 9. Assume that for all j ≥ 1, κj := log Φj is strictly convex and steep. Then, for all
n ≥ 1 and any a ∈ int(CX), there exists a unique θan ∈ int(Θ) such that

∇κn(θan) = a. (2.3.5)

Namely, for any n ≥ 1 and a ∈ int(CX),

θan = ∇(κn)∗(a). (2.3.6)

Proof. For all n ≥ 1, dom(κn) = Θ is an open convex set and κn is strictly convex and differentiable
on int(Θ), since by assumption, the κj ’s are. Now, we get from Fact 9 that κn is steep. Therefore,
the pair (Θ, κn) is of Legendre type. Furthermore, κn is lower semi-continuous. Therefore, we obtain
from Theorem 8 that the gradient mapping ∇κn : Θ −→ int(dom((κn)∗)) is a homeomorphism. We
conclude the proof by Lemma 2 below.

Lemma 2. For any n ≥ 1, we have that int(dom((κn)∗)) = int(CX).

Proof. The proof is given in Appendix.

2.3.2 Sufficiency Theory

Definition 8. Let (E ,A) be a measurable space. Let Σ be a sub σ-algebra of A. Let P and Q be
probability measures on (E ,A). We say that Σ is sufficient w.r.t. P and Q if for all A ∈ A,

P (A|Σ) = Q(A|Σ) almost everywhere (a.e.) P and a.e. Q. (2.3.7)

Lemma 3. For any sub σ-algebra G of A, set

‖P −Q‖G := 2 sup
A∈G
|P (A)−Q(A)|.

Assume that Σ ⊂ A is sufficient w.r.t. P and Q. Then

‖P −Q‖Σ = ‖P −Q‖A. (2.3.8)

Proof. The proof is elementary. See Lemma (2.4) in (Diaconis and Freedman, 1987) for details.

Lemma 4. Let P be a probability measure on
(
(Rd)k,B((Rd)k)

)
with density p w.r.t the Lebesgue

measure. Let T be the map defined on (Rd)k by T (x) =
k∑
i=1

xi, for x = (xi)1≤i≤k ∈ (Rd)k. For any

t ∈ Rd, let

Lt :=
{
x ∈ (Rd)k : T (x) = t

}
.

and let σt be the natural measure on Lt. (The definition is recalled in Appendix). Then, the map
νP defined on Rd × B((Rd)k) by

νP(t, A) =

∫
Lt∩A

p(x)dσt(x)

∫
Lt

p(x)dσt(x)

if Lt ∩A 6= ∅, and νP(t, A) = 0 if Lt ∩A = ∅ (2.3.9)

is a regular conditional P-distribution for Id given T , where Id is the identity map on (Rd)k.
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Proof. The proof, which uses some elementary differential geometry, is given in Appendix.

Lemma 5. Let T be the map defined on (Rd)k by T (x) =
k∑
i=1

xi, for x = (xi)1≤i≤k ∈ (Rd)k. Let Σ

the sub σ-algebra of B((Rd)k) generated by T . Then, for any θ ∈ Θ,

‖Qnak − P̃ θ1,k‖Σ = ‖Qnak − P̃ θ1,k‖A, where P̃ θ1,k :=

k∏
j=1

P̃ θj . (2.3.10)

Proof. Let θ ∈ Θ. Recall that Qnak and P̃ θ1,k are a.c. w.r.t. the Lebesgue measure with respective

densities qnak and p̃θ1,k given by

qnak(x
k
1) =

pk1(xk1)pSk+1,n
(na− T (xk1))

pS1,n(na)
, where pk1(xk1) :=

k∏
j=1

pj(xj), (2.3.11)

and

p̃θ1,k(x
k
1) =

pk1(xk1) exp〈θ, T (xk1)〉
Φk

1(θ)
, where Φk

1 :=

k∏
j=1

Φj . (2.3.12)

Since on Lt, we have that T (xk1) = t, we deduce readily that for any t ∈ Rd and A ∈ B((Rd)k),

νQnak(t, A) = ν
P̃ θ1,k

(t, A) =

∫
Lt∩A

pk1(xk1)dσt(x)

∫
Lt

pk1(xk1)dσt(x)

if Lt ∩A 6= ∅, (2.3.13)

and

νQnak(t, A) = ν
P̃ θ1,k

(t, A) = 0 if Lt ∩A = ∅. (2.3.14)

Consequently, Σ is sufficient w.r.t Qnak and P̃ θ1,k, which concludes the proof.

2.3.3 Edgeworth expansion

We obtain from the following theorem (theorem 19.3 in (Bhattacharya and Rao, 1976)) an Edge-
worth expansion for a sequence of independent random vectors.

Theorem 10. Let {Xn : n ≥ 1} be a sequence of independent random vectors with values in Rd,
having zero means and average positive-definite covariance matrices Vn for any n large enough. Set

Bn := (Vn)−1/2, where Vn :=
1

n

n∑
j=1

Cov(Xj). (2.3.15)

Assume that

lim
n→∞

1

n

n∑
j=1

E
[
‖BnXj‖4

]
<∞. (2.3.16)
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Assume also the existence of an integer p > 0 such that for n ≥ p + 1 and 0 ≤ m ≤ n − p, the
functions

gm,n(t) :=

j=m+p∏
j=m+1

|E [exp {i〈t, BnXj〉}]| (2.3.17)

satisfy

γ := sup
n≥p+1

sup
0≤m≤n−p

∫
gm,n(t)dt <∞ (2.3.18)

and, for all b > 0,

δ(b) := sup
n≥p+1

sup
0≤m≤n−p

sup
‖t‖>b

gm,n(t) < 1. (2.3.19)

Let φ be the density of the standard normal distribution on Rd. Then, the distribution Qn of
n−1/2BnSn has a density qn for all n large enough, and

sup
x∈Rd

(1 + ‖x‖4)
∣∣∣qn(x)−

[
φ(x) + n−1/2P1

(
−φ :

{
χν,n

})
(x)
]∣∣∣ = O

(
1

n

)
, (2.3.20)

where P1

(
−φ :

{
χν,n

})
(x) = φ(x)P#

1 (x) and

P#
1 (x) =

∑
|ν|=3

χν,nH
(ν)
3 (x), (2.3.21)

where H
(ν)
3 is a polynomial function of degree 3 which vanish at 0 and χν,n is the average of the νth

cumulants of BnXj with 1 ≤ j ≤ n, for |ν| = 3. See (7.20) in (Bhattacharya and Rao, 1976) for
the precise expressions.

Proof. We write hereafter a sketch of the proof. For a given nonnegative integral vector α with
|α| ≤ 4, set

hn(x) = xα
(
qn(x)−

[
φ(x) + n−1/2P1

(
−φ :

{
χ3,n

})
(x)
])

(2.3.22)

Let ĥn be the Fourier transform of hn. Then, the Fourier inversion theorem implies that

sup
x∈Rd

|hn(x)| ≤ (2π)−d
∫ ∣∣∣ĥn(t)

∣∣∣ dt (2.3.23)

The aim is then to bound

∫ ∣∣∣ĥn(t)
∣∣∣ dt, by splitting it into a sum of three integrals which are bounded

by some O
(

1
n

)
. The key point is that these controls are made at fixed n.

We recall that all the notations˜considered in the sequel pertain to θ = θan.

Corollary 2. For n ≥ 1, let Jn be a subset of {1, ..., n} and Ln be its complement in {1, ..., n}. Set
αn := |Jn| and assume that

lim
n→∞

|Ln| = lim
n→∞

n− αn =∞. (2.3.24)
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Set

ṼLn :=
1

n− αn

∑
j∈Ln

Cov(X̃j). (2.3.25)

Assume that

lim
n∞

λmin(ṼLn) > 0, (2.3.26)

which implies in particular that for all n large enough, ṼLn is positive-definite, so that we may set

B̃Ln :=
(
ṼLn

)−1/2
. (2.3.27)

Suppose that

lim
n→∞

1

n− αn

∑
j∈Ln

E
[∥∥∥B̃Ln (X̃j −mj(θ

a
n)
)∥∥∥4

]
<∞. (2.3.28)

Suppose also that there exists an integer p > 0 such that for all n larger than some Np, to insure
that αn ≥ p+ 1, the functions

g̃m,n(t) :=

m+p∏
j=m+1

∣∣∣E [exp
{
i
〈
t, B̃LnX̃j`

〉}]∣∣∣ (0 ≤ m ≤ αn − p) (2.3.29)

satisfy

γ̃ := sup
n≥Np

sup
0≤m≤αn−p

∫
g̃m,n(t)dt <∞, (2.3.30)

and, for all b > 0,

δ̃(b) := sup
n≥Np

sup
0≤m≤αn−p

sup
‖t‖>b

g̃m,n(t) < 1. (2.3.31)

Then the density qLn of SLn = α
−1/2
n B̃Ln

(
S̃Ln −

∑
j`∈Ln

mj`(θ
a
n)

)
satisfies

sup
x∈Rd

(1 + ‖x‖4)
∣∣∣qLn(x)−

[
φ(x) + α−1/2

n P̃1

(
−φ :

{
χν,Ln

})
(x)
]∣∣∣ = O

(
1

αn

)
, (2.3.32)

where χν,Ln is the average of the νth cumulants of B̃Ln

(
X̃j −mj(θ

a
n)
)

with j ∈ Ln, for |ν| = 3.

Proof. We need to perform an Edgeworth expansion when, instead of a sequence {Xn : n ≥ 1} of
independent random vectors, we consider a triangular array whose row of index n is composed of
the αn independent random vectors(

X̃
θan
j − E

[
X̃
θan
j

])
j∈Ln

, where we recall that E
[
X̃
θan
j

]
= mj(θ

a
n). (2.3.33)

Therefore, in the framework of triangular arrays, we can write analogously these controls, for a fixed
row of the array. So, we consider the row of index n of the triangular array defined by (2.3.33). A
careful study of the preceding proof implies that (2.3.32) holds if the assumptions of this corollary
hold.
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2.4 Assumptions and Examples

2.4.1 Assumptions

The following assumptions are essentially those of our main Theorem, since they imply those of the
Preliminary Results.

(Supp) : The (Xj), j ≥ 1 have a common support SX , and they have positive densisties pj .

(Mgf) : The mgf’s (Φj)j≥1 have the same domain of finiteness Θ, and int(Θ) 6= ∅.

(Stp) : For all j ≥ 1, κj := log Φj is a strictly convex and steep function.

(Bdθ) : For any a ∈ int(CX), there exists a compact set Ka of Rd such that

{θan : n ≥ 1} ⊂ Ka ⊂ int(Θ). (2.4.1)

(Cv) : For all j ≥ 1 and θ ∈ Θ, Cθj := Cov
(
X̃θ
j

)
is a positive definite matrix and for any compact

K ⊂ int(Θ),
0 < inf

j≥1
inf
θ∈K

λmin(Cθj ) ≤ sup
j≥1

sup
θ∈K

λmax(Cθj ) <∞, (2.4.2)

where λmin(Cθj ) (resp. λmax(Cθj )) is the smallest (resp. largest) eigenvalue of Cθj .

(AM4) : For any compact K ⊂ int(Θ),

sup
j≥1

sup
θ∈K

E
[∥∥∥X̃θ

j −mj(θ)
∥∥∥4
]
<∞. (2.4.3)

For any j ≥ 1, let ξj be the characteristic function of Xj and for any θ ∈ Θ, denote respectively by

p̃θj and ξ̃θj the density and the characteristic function of X̃θ
j .

(Cf1) : For any compact K ⊂ int(Θ), there exist positive constants δK , CK , RK such that

∀j ≥ 1, ∀‖t‖ ≥ RK , sup
θ∈K
|ξ̃θj (t)| ≤ CK

‖t‖δk
. (2.4.4)

(Cf2) : For any j ≥ 1, pj is a function of class C1 and for any compact K ⊂ int(Θ),

max
`∈{1,...,d}

sup
j≥1

sup
θ∈K

∥∥∥∥∥∂p̃θj∂x`

∥∥∥∥∥
L1

<∞. (2.4.5)

(Cf3) : For any compact K ⊂ int(Θ), for all β > 0,

sup
j≥1

sup
‖t‖>β

sup
θ∈K

∣∣∣ξ̃θj (t)
∣∣∣ =: εK,β < 1. (2.4.6)
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Remark 1. (Bdθ) is reasonable, since ∇ κn is a mean of functions. We will see that, when d = 1,
it can be replaced by a natural uniformity assumption, denoted by (Uf).

Denote by [Ad] the set of assumptions (Bdθ), (Cv), (AM4) and (Cf1), (Cf2), (Cf3).

Remark 2. [Ad] is natural since it concerns each individual r.v. Xj, j ≥ 1. Thereby, the order of
the r.v.’s is irrelevant (as in Statistical Mechanics), which makes sense since we intend to study the
distribution of any small subset of r.v.’s among those defining the global constraint {S1,n = na}.
Remark 3. Most of the assumptions in [Ad] are of the form sup

j≥1
sup
θ∈K

Fj(θ), where for any j ≥ 1,

Fj is a continuous function. Therefore, for fixed j ≥ 1, sup
θ∈K

Fj(θ) < ∞, since K is compact. So

[Ad] is a convenient to check set of uniformity assumptions.

We prove hereunder that [Ad] implies the assumptions of Corollary 2. We also prove that (Bdθ)
and (Cf2) imply (Cf1).

Covariance

Fact 10. Assume that (Bdθ) holds and that for any compact K ⊂ int(Θ),

λKmin := inf
j≥1

inf
θ∈K

λmin(Cθj ) > 0. (2.4.7)

Then,
lim
n∞

λmin(ṼLn) > 0. (2.4.8)

Proof. Recall from the Courant-Fischer min-max theorem that for any Hermitian matrix M ,

λmin(M) = inf
{x∈Rd:x 6=0}

xtMx

xtx
. (2.4.9)

Let Ka be a compact subset of int(Θ) such that (θan)n≥1 ⊂ Ka. Then, for any θ ∈ Ka, any x ∈ Rd
(x 6= 0), and any j ∈ Ln,

xtCθj x

xtx
≥ λmin(Cθj ) ≥ λKamin. (2.4.10)

Therefore, for all n ≥ 1,

inf
θ∈Ka

λmin(Ṽ θ
Ln) = inf

θ∈Ka
inf

{x∈Rd:x 6=0}
xtṼ θ

Ln
x

xtx
≥ λKamin > 0. (2.4.11)

Absolute Moments of order 4

Fact 11. (AM4), (Bdθ) and (Cv) imply that (2.3.28) holds.

Proof. For any j ∈ Ln,

E
[∥∥∥B̃Ln (X̃j −mj(θ

a
n)
)∥∥∥4

]
≤ λmin

(
ṼLn

)−2
E
[∥∥∥X̃j −mj(θ

a
n)
∥∥∥4
]
. (2.4.12)

Therefore, (2.3.28) holds if lim
n→∞

λmin

(
ṼLn

)
> 0 and (Bdθ) together with (AM4) hold.
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Characteristic function

Lemma 6. Assume that (Bdθ) and (Cf1) hold. Then, (2.3.30) holds for any p > 1
δKA

.

Proof. The proof is given in Appendix.

Corollary 3. Assume that (Bdθ) and (Cf2) hold. Then, (Cf1) holds for all t ∈ Rd, t 6= 0, with
δK = 1.

Proof. The proof is given in Appendix.

Lemma 7. Assume that (Bdθ) and (Cf3) hold. Then, (2.3.31) holds for any p > 0.

Proof. Let p > 0, n ≥ Np and 0 ≤ m ≤ αn − p. For any b > 0 and t ∈ Rd such that ‖t‖ > b, we
have that

g̃m,n(t) :=

m+p∏
j=m+1

∣∣∣ξ̃j (B̃Lnt)∣∣∣ ≤ (εKa,λminb)
p < 1. (2.4.13)

2.4.2 The one-dimensional case

Assume here that d = 1. For any r.v. X or for a sequence (Xj)j≥1 of i.i.d. r.v.’s, set

κ := log(ΦX) ; m :=
dκ

dθ
and s2 :=

d2κ

dθ2
.

If (Xj)j≥1 is not an identically distributed sequence of r.v.’s, then for any j ≥ 1, set

κj := log(ΦXj ) ; mj :=
dκj
dθ

and s2
j :=

d2κj
dθ2

.

Fact 12. For any θ ∈ ΘX ,

E[X̃θ] = m(θ) and V ar(X̃θ) = s2(θ). (2.4.14)

In the sequel, Θ and SX pertain to r.v.’s Xj , j ≥ 1, with common support and common domain
of finitness of their mgf’s. Since Θ and conv(SX) are convex, int(Θ) and int(CX) are open convex
subsets of R, which are open intervals. Therefore, we can write int(Θ) = (α, β) and int(CX) =
(A,B), where α, β,A,B may be finite or not.

Definition 9. Let f : (α, β) −→ (A,B) be a differentiable function. Consider the following property.

(H) : For all θ ∈ int(Θ), df
dθ (θ) > 0 and lim

θ→α
f(θ) = A ; lim

θ→β
f(θ) = B.

Fact 13. If f satisfies (H), then f is a homeomorphism from int(Θ) = (α, β) to int(CX) = (A,B).

If d > 1, then Theorem 8 requires that κn is steep, in the sense of Definition 5, while when d = 1,
this notion of steepness is not necessary to get the conclusion of Theorem 8. Indeed, for all n ≥ 1,
dκn
dθ is a homeomorphism from int(Θ) to int(CX), provided that dκn

dθ satisfies (H). Consider the
following assumptions.
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(Hκ) : For all j ≥ 1, mj :=
dκj
dθ satisfies (H).

(Uf) : There exist functions f+ and f− which satisfy (H) and such that

∀j ≥ 1, ∀θ ∈ Θ, f−(θ) ≤ mj(θ) ≤ f+(θ). (2.4.15)

Fact 14. (Hκ) implies that dκn
dθ is a homeomorphism from int(Θ) to int(CX) and in particular that

for any a ∈ int(CX), for any n ≥ 1, there exists a unique θan such that

dκn
dθ

(θan) =
1

n

n∑
j=1

mj(θ
a
n) = a. (2.4.16)

Fact 15. The uniformity assumption (Uf) implies that (Bdθ) holds.

Proof. For any j ≥ 1 and n ≥ 1, we have that

f−(θan) ≤ mj(θ
a
n) ≤ f+(θan). (2.4.17)

Therefore, for all n ≥ 1,

f−(θan) ≤ mn(θan) = a ≤ f+(θan), (2.4.18)

which implies that

(f+)−1(a) ≤ θan ≤ (f−)−1(a). (2.4.19)

We deduce from these considerations that, when d = 1, we can replace (Stp) and (Bdθ) by respec-
tively (Hκ) and (Uf).

2.4.3 Examples

Normal distribution

For any j ≥ 1, Xj is a r.v. with normal distribution. Set µj := E[Xj ] and Γj := Cov(Xj). Assume
that

sup
j≥1
‖µj‖ <∞ and 0 < inf

j≥1
λmin(Γj) ≤ sup

j≥1
λmax(Γj) <∞. (2.4.20)

We recall that, for any j ≥ 1, for all θ ∈ Θ = Rd,

κj(θ) = µ′jθ +
1

2
θ′Γjθ and ∇κj(θ) =

(
(µj)` +

d∑
`′=1

θ`′(Γj)`,`′

)
1≤`≤d

. (2.4.21)

So, for all θ ∈ Rd, the Hessian matrix of κj at θ is equal to Γj . Since for all θ ∈ Rd, this matrix is
equal to Cθj , we get that (Cv) holds. Since for any j ≥ 1, Γj is positive definite, we deduce also that
κj is strictly convex. Clearly, ∇κj satisfies (2.3.1), so that κj is steep and (Stp) holds.
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Set µn := 1
n

n∑
j=1

µj and Γn := 1
n

n∑
j=1

Γj . We get after some elementary calculations that for any

a ∈ int(CX) and n ≥ 1, the equation ∇κn(θ) = a is equivalent to(
Γn
)
θ = a− µn. (2.4.22)

Then, (2.4.20) implies readily that (2.4.22) defines a unique θan and that the sequence (θan)n≥1 is
bounded, so that (Bdθ) holds. Finally, it is straightforward to get from the expression of pj and the
boundedness conditions, that (AM4) and (Cf2) hold.

Gamma distribution

Fix t > 0. For any j ≥ 1, Xj is a random variable (d = 1) with distribution Γ(kj , t), such that

2 < k− := inf
j≥1

kj ≤ k+ := sup
j≥1

kj <∞. (2.4.23)

For any j ≥ 1 and x ≥ 0,

pj(x) =
xkj−1 exp(−x

t )

Γ(kj)tkj
(2.4.24)

Recall that for any j ≥ 1,

SX = CX = (o;∞) ; Φj(θ) = (1− tθ)−kj ; Θ = (−∞, 1

t
). (2.4.25)

We check readily that (Mgf), (Stp) and (Cv) hold, since, for any j ≥ 1 and θ ∈ Θ,

κj(θ) = −kj log(1−θt) ; mj(θ) = kjt(1−θt)−1 ; s2
j (θ) = kj(1−θt)−1

[
1 + θt(1− θt)−1

]
. (2.4.26)

Furthermore, (Uf) holds, since for any j ≥ 1 and θ ∈ Θ,

f−(θ) :=
(k−)t

1− θt
≤ mj(θ) ≤ f+(θ) :=

(k+)t

1− θt
. (2.4.27)

Now, we have that, for any j ≥ 1 and θ ∈ Θ,

p̃θj(x) =
xkj−1 exp

[
x
(
θ − 1

t

)]
Φj(θ)Γ(kj)tkj

. (2.4.28)

For θ ∈ Θ, we have that θ − 1
t < 0. Thereby, we deduce readily that (AM4) holds. We also get

(Cf2), since
dp̃θj
dx (x) is of the form P (x) exp

[
x
(
θ − 1

t

)]
, where P is a polynomial function.

2.5 Main Result

In the sequel, for any probability measures P and Q on Rk, we denote the total variation distance
between P and Q by

‖P −Q‖TV := sup
B∈B(Rk)

|P (B)−Q(B)| .
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2.5.1 Theorem of Diaconis and Freedman

Theorem 11. Let (Xj)j≥1 be a sequence of i.i.d. random variables (d = 1). Assume that Θ = (α, β)
and SX = (A,B), where α, β,A,B may be finite or not. This implies that int(Θ) = (α, β) and
int(CX) = (A,B). Assume that the function

m :=
d (log(ΦX))

dθ
satisfies (H)

and that for any θ ∈ Θ,

E

(X̃θ −m(θ)

s(θ)

)4
 <∞. (2.5.1)

Suppose that there exists ν ≥ 1 such that for any θ ∈ Θ,∫ ∣∣∣∣∣E
[

exp

(
it
X̃θ

s(θ)

)]∣∣∣∣∣
ν

dt <∞, (2.5.2)

and that for any θ ∈ Θ, for all b > 0,

sup
|t|>b

∣∣∣∣∣E
[

exp

(
it
X̃θ

s(θ)

)]∣∣∣∣∣ < 1. (2.5.3)

Assume that k
n → 0 and k →∞, as n→∞. Set γ := 1

2E
[
|1− Z2|

]
, where Z is of standard normal

distribution. Then, for any a ∈ SX ,∥∥∥Qnak − P̃ k1 ∥∥∥
TV

= γ
k

n
+ o

(
k

n

)
, (2.5.4)

where P̃ k1 is the joint distribution of independent r.v.’s (X̃j)1≤j≤k, having the tilted density defined
by θa such that m(θa) = a.

2.5.2 Main Theorem and Proof

Theorem 12. When d > 1, assume that (Mgf), (Stp), (Bdθ), (Cv), (AM4), (Cf2), (Cf3) hold.
(See Section 4 for weaker assumptions). When d = 1, we can replace (Stp) and (Bdθ) by respectively
(Hκ) and (Uf). If k = o(n), then for any a ∈ int(CX),∥∥∥Qnak − P̃ k1 ∥∥∥

TV
= O

(
k

n

)
, (2.5.5)

where P̃ k1 is the joint distribution of independent r.v.’s (X̃j)1≤j≤k.

Proof. Let n ≥ 1. Let Rnak be the distribution of S1,k :=
k∑
j=1

Xj given S1,n = na. Let R̃1,k be the

distribution of S̃1,k :=
k∑
j=1

X̃j . Then, we obtain from Sufficiency Theory (Section 3.2) that

∥∥∥Qnak − P̃ k1 ∥∥∥
TV

=
∥∥∥Rnak − R̃1,k

∥∥∥
TV

. (2.5.6)
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Now, by Scheffe’s theorem, we deduce that∥∥∥Qnak − P̃1,k

∥∥∥
TV

=

∫ ∣∣∣p(S1,k = t|S1,n = na)− p
S̃1,k

(t)
∣∣∣ dt. (2.5.7)

Then, we can check readily the following invariance of the conditional density : for any t ∈ Rd,

p(S1,k = t|S1,n = na) = p( S̃1,k = t
∣∣∣ S̃1,n = na) = p

S̃1,k
(t)

(
p
S̃k+1,n

(na− t)
p
S̃1,n

(na)

)
. (2.5.8)

For any integers `,m with 1 ≤ ` ≤ m, we denote by f`,m the density of S̃`,m :=
m∑
j=`

X̃j . Therefore,

we deduce readily from (2.5.6), (2.5.7) and (2.5.8) that∥∥∥Qnak − P̃1,k

∥∥∥
TV

=

∫ ∣∣∣∣fk+1,n(na− t)
f1,n(na)

− 1

∣∣∣∣ f1,k(t)dt. (2.5.9)

First, we need to normalize in order to perform Edgeworth expansions. Recall that if X is a random
vector with density pX , then the normalized random vector X has a density given by

pX(x) = det
[
Cov(X)−1/2

]
pX

(
Cov(X)−1/2(x− E[X])

)
. (2.5.10)

Set

t̃ := Cov(S̃1,k)
−1/2(t− E[S̃1,k]) = k−1/2B̃1,k

t− k∑
j=1

mj(θ
a
n)

 (2.5.11)

and

t# := Cov(S̃k+1,n)−1/2(na− t− E[S̃k+1,n]) = (n− k)−1/2B̃k+1,n

 k∑
j=1

mj(θ
a
n)− t

 (2.5.12)

Therefore, t̃ and t# are linked by

t# = −
[

k

n− k

]1/2

B̃k+1,n(B̃1,k)
−1t̃. (2.5.13)

Lemma 8. Let 0 < θ1 < 1. Then,

fk+1,n(na− t)
f1,n(na)

=

[
1 +O

(
k

n

)]
exp

(
−
∥∥t#∥∥2

2

)
+O

(√
k

n

)∥∥t̃∥∥+O
(

1

n

)
. (2.5.14)

(2.5.14) holds uniformly in n, k, a, t with k < θ1n.
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Proof. For any integers `,m with 1 ≤ ` ≤ m, we denote by g`,m the density of the normalized r.v.

associated to S̃`,m. So, we have that

fk+1,n(na− t)
f1,n(na)

=
det
(
Cov(S̃1,n)

)1/2

det
(
Cov(S̃k+1,n)

)1/2

gk+1,n(t#)

g1,n(0)
(2.5.15)

The assumptions allow us to perform Edgeworth expansions to obtain that

g1,n(0) = φ(0) +O
(

1

n

)
, since P̃1(0) = 0. (2.5.16)

and

gk+1,n(t#) = φ(t#) +
1

(n− k)1/2
P̃1

(
−φ :

{
χν,Ln

})
(t#) +O

(
1

n− k

)
(2.5.17)

where Ln = {k + 1, ..., n} and P̃1

(
−φ :

{
χν,Ln

})
(t#) = φ(t#)P̃1

#
(t#), with

P̃1
#

(t#) =
∑
|ν|=3

χν,LnH
(ν)
3 (t#). (2.5.18)

Now, for |ν| = 3, the ν-cumulant of a centered random vector is equal to its ν-moment. See (6.21)
in (Bhattacharya and Rao, 1976) for details. Furthermore, the cumulants are invariant by any
translation. Therefore,

χν,Ln =
1

n− k
∑

k+1≤j≤n
E[(B̃LnX̃j)

ν ]. (2.5.19)

Then, we have that∣∣χν,Ln∣∣ ≤ 1

n− k
∑

k+1≤j≤n
E
[∣∣∣(B̃LnX̃j)

ν
∣∣∣] ≤ 1

n− k
∑

k+1≤j≤n
E
[∥∥∥B̃LnX̃j

∥∥∥|ν|
∞

]
. (2.5.20)

Now, we have that ∥∥∥B̃LnX̃j

∥∥∥|ν|
∞

=
∥∥∥B̃LnX̃j

∥∥∥3

∞
≤ A

∥∥∥B̃Ln∥∥∥3
.
∥∥∥X̃j

∥∥∥3
, (2.5.21)

where A is an absolute constant which appears by equivalence of the norms. Now, the assumptions

on the covariance matrices and on the absolute moments of order 4 imply that E
[∥∥∥B̃LnX̃j

∥∥∥|ν|
∞

]
=

O(1), so that χν,Ln = O(1) and

gk+1,n(t#) = φ(t#)

1 +O
(

1

(n− k)1/2

) ∑
|ν|=3

H
(ν)
3 (t#)

+O
(

1

n− k

)
(2.5.22)

Now, since H
(ν)
3 (0) = 0, we can factorize by t# in

∑
|ν|=3

H
(ν)
3 (t#) and get that

φ(t#).O
(

1

(n− k)1/2

)
.

∣∣∣∣∣∣
∑
|ν|=3

H
(ν)
3 (t#)

∣∣∣∣∣∣ = O
(

1

(n− k)1/2

)
.O
(∥∥∥t#∥∥∥) = O

( √
k

n− k

)
.
∥∥t̃∥∥ (2.5.23)
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We deduce readily, after some elementary calculations, that

gk+1,n(t#)

g1,n(0)
= exp

(
−‖t‖

2

2

)
+O

(√
k

n

)∥∥t̃∥∥+O
(

1

n

)
(2.5.24)

Now,

det
(
Cov(S̃1,n)

)
det
(
Cov(S̃k+1,n)

) = det

[
Id +

(
Cov(S̃k+1,n)

)−1
Cov(S̃1,k)

]
(2.5.25)

Furthermore, we have that∥∥∥∥(Cov(S̃k+1,n)
)−1

∥∥∥∥ ≤ 1

n− k

∥∥∥∥(B̃k+1,n

)2
∥∥∥∥ ≤ 1

(n− k)
(
λKamin

)2 and
∥∥∥Cov(S̃1,k)

∥∥∥ ≤ k (λKamax)2
(2.5.26)

Therefore, ∥∥∥∥(Cov(S̃k+1,n)
)−1

Cov(S̃1,k)

∥∥∥∥ = O
(

k

n− k

)
. (2.5.27)

Consequently, performing a Taylor expansion of det at Id, we obtain that

det

[
Id +

(
Cov(S̃k+1,n)

)−1
Cov(S̃1,k)

]
= 1 + Tr

[(
Cov(S̃k+1,n)

)−1
Cov(S̃1,k)

]
+ o

(
k

n− k

)
.

(2.5.28)

Now, we have that Tr

[(
Cov(S̃k+1,n)

)−1
Cov(S̃1,k)

]
= O

(
k

n−k

)
, since Tr(·) = Trace(·) is a linear

and continuous mapping. Therefore,

det
(
Cov(S̃1,n)

)1/2

det
(
Cov(S̃k+1,n)

)1/2
=

[
1 +O

(
k

n− k

)]1/2

= 1 +O
(
k

n

)
(2.5.29)

Lemma 9. If k = o(n), and
∥∥t#∥∥ < θ2 <∞, then uniformly in a and t, we have that

fk+1,n(na− t)
f1,n(na)

= 1 +O
(
k

n

)
+O

(
k

n

)∥∥t̃∥∥2
+O

(√
k

n

)∥∥t̃∥∥+O
(
k2

n2

)∥∥t̃∥∥4
+O

(
1

n

)
(2.5.30)

Proof. Since
∥∥t#∥∥ is bounded, we get from the Taylor-Lagrange inequality that

exp

(
−
∥∥t#∥∥2

2

)
= 1−

∥∥t#∥∥2

2
+O

(∥∥∥t#∥∥∥4
)

= 1 +O
(

k

n− k

)∥∥t̃∥∥2
+O

(
k2

(n− k)2

)∥∥t̃∥∥4
(2.5.31)

Therefore,[
1 +O

(
k

n

)]
exp

(
−
∥∥t#∥∥2

2

)
= 1 +O

(
k

n

)
+O

(
k

n

)∥∥t̃∥∥2
+O

(
k2

n2

)∥∥t̃∥∥4
(2.5.32)
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Lemma 10. For ν = 1, 2, 3, 4 we have that∫ ∥∥t̃∥∥ν fk(t)dt = O(1) (2.5.33)

Proof. We only need to prove the case ν = 4. Setting I4 :=
∫ ∥∥t̃∥∥4

fk(t)dt, we readily obtain that

I4 =

∫ ∥∥∥∥∥∥k−1/2B̃1,k

 k∑
j=1

X̃j −mj(θ
a
n)

∥∥∥∥∥∥
4

dP ≤ k−2
∥∥∥B̃1,k

∥∥∥4
∫  k∑

j=1

∥∥∥X̃j −mj(θ
a
n)
∥∥∥
4

dP.

(2.5.34)

Since the
(
X̃j −mj(θ

a
n)
)

are centered and mutually independent, we obtain that

I4 ≤ k−2
∥∥∥B̃1,k

∥∥∥4

 k∑
j=1

∫ ∥∥∥X̃j −mj(θ
a
n)
∥∥∥4
dP +

∑
j1 6=j2

∫ ∥∥∥X̃j1 −mj1(θan)
∥∥∥2 ∥∥∥X̃j2 −mj2(θan)

∥∥∥2
dP


(2.5.35)

The assumption on the absolute moments of order 4 and the inequality of Cauchy-Schwartz imply

that
k∑
j=1

∫ ∥∥∥X̃j −mj(θ
a
n)
∥∥∥4
dP = O(k) and

∑
j1 6=j2

∫ ∥∥∥X̃j1 −mj1(θan)
∥∥∥2 ∥∥∥X̃j2 −mj2(θan)

∥∥∥2
dP = O(k2).

Then, since
∥∥∥B̃1,k

∥∥∥4
= O(1), we conclude from (2.5.35) that I4 = O(1).

We are now able to prove (2.5.5). Setting κ(t) :=
∣∣∣fk+1,n(na−t)

f1,n(na) − 1
∣∣∣ f1,k(t), we have that

∥∥∥Qnak − P̃1,k

∥∥∥
TV

=

∫
‖t#‖≤θ2

κ(t)dt+

∫
‖t#‖>θ2

κ(t)dt. (2.5.36)

Now, Lemma 9 and Lemma 10 imply that∫
‖t#‖≤θ2

κ(t)dt = O
(
k

n

)
(2.5.37)

On the other hand, we get from Lemma 8 and Lemma 10 that

∫
‖t#‖>θ2

κ(t)dt =

∫
‖t#‖>θ2

∣∣∣∣∣
[
1 +O

(
k

n

)]
exp

(
−
∥∥t#∥∥2

2

)
− 1

∣∣∣∣∣ fk(t)dt+O
(
k

n

)
(2.5.38)

Recall that
∥∥t#∥∥ = O

(√
k
n

)∥∥t̃∥∥. Therefore,
∥∥t#∥∥ > θ2 implies that there exists an absolute

constant A, with 0 < A < ∞, such that A
√

k
n

∥∥t̃∥∥ > θ2. This is equivalent to
∥∥t̃∥∥4

> A−4θ4
2

(
n
k

)2
.
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Then, since

∣∣∣∣[1 +O
(
k
n

)]
exp

(
−‖t

#‖2
2

)
− 1

∣∣∣∣ is uniformly bounded, we get from Markov’s inequality

and Lemma 10 that ∫
‖t#‖>θ2

∣∣∣∣∣
[
1 +O

(
k

n

)]
exp

(
−
∥∥t#∥∥2

2

)
− 1

∣∣∣∣∣ fk(t)dt = O
(
k2

n2

)
. (2.5.39)

2.6 Appendix

2.6.1 Proof of Lemma 2

Proof. We adapt the proof of Theorem 9.1. (ii)∗ in (Barndorff-Nielsen Ole, 2014). So, it is enough
to prove that

int(CX) ⊂ dom((κn)∗) ⊂ CX . (2.6.1)

Let t /∈ CX . Let H be a hyperplane separating CX and t strongly, and let e be the unit vector in
Rd which is normal to H and such that CX lies in the negative halfspace determined by H and e.
For any r > 0, we have that

`n(re; t) := 〈re, t〉 − κn(re) =
1

n

 n∑
j=1

(rd− κj(re))

 , where d := 〈e, t〉. (2.6.2)

Since t /∈ CX , we obtain from (5) of Section 7.1 in (Barndorff-Nielsen Ole, 2014) that for all
1 ≤ j ≤ n, rd − κj(re) −→ ∞ as r → ∞. Therefore, `n(re; t) −→ ∞ as r → ∞. So (κn)∗(t) =
sup
θ∈Θ
{〈θ, t〉 − κn(θ)} =∞, which means that t /∈ dom((κn)∗). Consequently, dom((κn)∗) ⊂ CX .

Conversely, let t ∈ int(CX). Applying Jensen’s inequality, we have that for any θ ∈ Rd,

κn(θ) ≥ logE [exp〈θ, S1,n/n〉] . (2.6.3)

Now, we apply Lemma 9.1. in (Barndorff-Nielsen Ole, 2014) (which follows readily from Markov’s
inequality) to the random vector Sn/n to get that for any θ, τ ∈ Rd,

〈θ, τ〉 − logE [exp〈θ, S1,n/n〉] ≤ − log ρn(τ) (2.6.4)

where

ρn(τ) = inf
e
P (〈e, S1,n/n〉 ≥ 〈e, τ〉) , (2.6.5)

the infimum being taken over all unit vectors in Rd. Then, Lemma 9.2. in (Barndorff-Nielsen
Ole, 2014) implies that, since t ∈ int(CX), we have that ρn(t) > 0. Consequently, we have that
t ∈ dom((κn)∗), since for any θ ∈ Rd,

〈θ, t〉 − κn(θ) ≤ 〈θ, t〉 − logE [exp〈θ, S1,n/n〉] ≤ − log ρn(t) <∞, (2.6.6)

and ρn(t) is independent of θ.
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2.6.2 Proof of Lemma 4

A Preliminary result

Let Ω be an open subset of Rm+q = Rm × Rq. Let T be a function of class C1 from Ω to Rq such
that for any a ∈ Ω, the differential at a of T in the second direction (of Rq) is invertible. Define the
map h : Rm+q −→ Rm+q by

h : (x1, ..., xm;xm+1, ..., xm+q) 7→ (x1, ..., xm;T (x1, ..., xm+q)) (2.6.7)

The local inversion theorem implies that for any a ∈ Ω, there exist an open neighborhood ωa of a
and open sets Ua ⊂ Rm and Ta ⊂ Rq such that h induces a diffeomorphism of class C1 from ωa to
Ua × Ta. Denote by ξa the inverse of the restriction of h to ωa.

Lemma 11. Assume that for any a ∈ Ω, and any (u, t) ∈ Ua × Ta,

|Jξa(u, t)| = 1, (2.6.8)

where Jξa(u, t) is the determinant of the jacobian matrix of ξa at (u, t). For any fixed t ∈ Ta, let ξta
be the map from Ua to ωa defined by ξta(u) = ξa(u, t). Then, ξta is a diffeomorphism of class C1 and
clearly, we have that

ξta(Ua) = {T = t} ∩ ωa. (2.6.9)

For any u ∈ Ua, let gξta(u) be the Gram determinant of the partial derivatives of ξta at u. Assume
that gξta(u) is independent of u, t and a, that is

gξta(u) = g, (2.6.10)

for some constant g > 0. For any t ∈ Rq, set Lt := {T = t}. Then, for any measurable non negative
function f on Ω, we have that∫

Ω
f(x)dx =

1
√
g

∫
{t:Lt∩Ω6=∅}

(∫
Lt∩Ω

f(x)dσt(x)

)
dt, (2.6.11)

where σt is the natural measure on the submanifold Lt ∩ Ω.

Proof. We recall that σt is a Borel measure on Lt, defined as follows for any submanifold V of
dimension p. Let ω be a neighborhood of a point of V such that there exists a local parametrization
(U, ξ) of V , where U is an open subset of Rp with ξ(U) = V ∩ ω. Then, we define a measure σω on
V ∩ ω by

σω = ξ(
√
gξλU ), (2.6.12)

where λU is the Lebesgue measure on U and gξ is the Gram determinant of the partial derivatives
of ξ. Then, σ is a Borel measure on V , satisfying that for any such ω, the restriction of σ to V ∩ ω
is σω.

Now, we have Ω =
⋃
a∈Ω

ωa, from which we can extract a countable subcover, that is Ω =
⋃
n≥1

ωan .

Without loss of generality, we can assume that the (ωan)n≥1 are non-overlapping and that

Ω =

⋃
n≥1

ωan

 ∪N ,
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for some negligible set N . Therefore, f =
∑
n≥1

f1ωan
a.e., so

∫
{t:Lt∩Ω6=∅}

(∫
Lt∩Ω

f(x)dσt(x)

)
dt =

∑
n≥1

∫
{t:Lt∩ωan 6=∅}

 ∫
Lt∩ωan

f(x)dσtan(x)

 dt, (2.6.13)

where σtan is the natural measure on the submanifold Lt∩ωan . Now, (2.6.9) implies that the couple(
Uan , ξ

t
an

)
is a local parametrization of the submanifold Lt. Furthermore, we clearly have that

{t : Lt ∩ ωan 6= ∅} = Tan . Therefore,

∫
{t:Lt∩Ω6=∅}

(∫
Lt∩Ω

f(x)dσt(x)

)
dt =

∑
n≥1

∫
Tan

∫
Uan

f(ξtan(u))
√
gξtan (u)du

 dt. (2.6.14)

Now, we obtain from (2.6.10) and the definition of ξtan that

∫
{t:Lt∩Ω6=∅}

(∫
Lt∩Ω

f(x)dσt(x)

)
dt =

√
g
∑
n≥1

∫
Tan

∫
Uan

f(ξan(u, t))du

 dt. (2.6.15)

We deduce from Fubini’s theorem and the change of variables formula that, under (2.6.8),∫
{t:Lt∩Ω6=∅}

(∫
Lt∩Ω

f(x)dσt(x)

)
dt =

√
g
∑
n≥1

∫
ωan

f(x)dx =
√
g

∫
Ω

f(x)dx. (2.6.16)

Proof of Lemma 4

Proof. For any open set A ⊂ (Rd)k and any meaurable set B ⊂ Rd,

P(A ∩ {T ∈ B}) =

∫
A

1B(T(x))p(x)dx. (2.6.17)

The map h : (Rd)k −→ (Rd)k is defined by

h : x = (x1, ..., xk−1;xk) 7→ (x1, ..., xk−1;T (x)) (2.6.18)

We readily get from the local inversion theorem that h is a local diffeomorphism of class C1. Fur-
thermore, for any a ∈ (Rd)k, the maps ξa and ξta are defined by

ξa : (u, t) = (u1, ..., uk−1; t) 7→ (u1, ..., uk−1; t− s1,k−1), (2.6.19)

where s1,k−1 =
k−1∑
i=1

ui, and

ξta : u 7→ (u; t− s1,k−1) (2.6.20)
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We readily check that (2.6.8) and (2.6.10) hold here. Therefore, we get from the preceding Lemma
that

P(A ∩ {T ∈ B}) =
1
√
g

∫
{t:Lt∩A 6=∅}

1B(t)

 ∫
Lt∩A

p(x)dσt(x)

dt. (2.6.21)

In particular, applying (2.6.21) with A = (Rd)k, we get that for any B ∈ B(Rd),

(PT−1)(B) =
1
√
g

∫
Rd

1B(t)

∫
Lt

p(x)dσt(x)

dt. (2.6.22)

Therefore, the probability measure PT−1 is a.c. w.r.t. the Lebesgue measure, with

d(PT−1)

dx
=

1
√
g

∫
Lt

p(x)dσt(x) (2.6.23)

So, we deduce from (2.6.21) that for any open set A,

P(A ∩ {T ∈ B}) =

∫
B
νP(t, A)(PT−1)(dt) (2.6.24)

First, we clearly have that for any fixed t ∈ Rd, the map A 7→ νP(t, A) is a probability measure.
We deduce from this fact and the monotone class theorem that (2.6.24) holds for any Borel set A.

Finally, we need to prove that for any fixed Borel set A, the map t 7→ νP(t, A) is measurable. Notice
that Lt ∩ A = ∅ if and only if t ∈ T (A). Therefore, it is enough to prove that T (A) is a Borel set

and that the map t 7→
∫

Lt∩A

p(x)dσt(x) is measurable.

For the first point, write A = F ∪ (A ∩ F c), for some F ∈ Fσ included in A (which means that
F is a countable union of closed sets). The key point is then that A ∩ F c is negligible w.r.t. the
Lebesgue measure, and so is T (A ∩ F c), which is obtained using that T is Lipschitz. We conclude
by the completeness of the Lebesgue measure.

For the second point, it is enough to prove it when A = ωa, for some a ∈ A. Then, we have that∫
Lt∩ωa

p(x)dσt(x) =
√
g

∫
Ua

p(u; t− s1,k−1)du, (2.6.25)

which is clearly measurable w.r.t t.

2.6.3 Proof of Lemma 6

Proof. Let a ∈ int(CX). Consequently, we may apply (2.4.4) to Ka. We set δ := δKa , C := CKa
and R := RKa . Now, for any p > 0, any n large enough to insure that αn ≥ p + 1, and any
0 ≤ m ≤ αn − p, ∫

g̃m,n(t)dt =

∫
{t:‖B̃Ln t‖≥R}

g̃m,n(t)dt+

∫
{t:‖B̃Ln t‖<R}

g̃m,n(t)dt. (2.6.26)



34CHAPTER 2. ASYMPTOTIC DISTRIBUTION OF INDEPENDENT RANDOM VECTORS GIVEN THEIR SUM

Then, for ‖B̃Lnt‖ ≥ R, we get from (2.4.4) that

|ξ̃j(B̃Ln)| ≤ C

‖B̃Lnt‖δ
. (2.6.27)

Furthermore, setting λmin := λKamin, we have that ‖B̃Lnt‖ ≥ λmin‖t‖. Therefore,

∫
‖B̃Ln t‖≥R

g̃m,n(t)dt =

∫
‖B̃Ln t‖≥R

m+p∏
j=m+1

|ξ̃j(B̃Lnt)|dt ≤ Cp
∫

‖B̃Ln t‖≥R

1

(λmin‖t‖)δp
dt. (2.6.28)

So, if p > 1
δ , then

∫
‖B̃Ln t‖≥R

g̃m,n(t)dt ≤ DKa <∞, for some constant DKa depending only on a.

Notice that, without loss of generality, we can assume that R > 2C
1
δ . Therefore, (2.4.4) implies

that for all t satisfying ‖B̃Lnt‖ ≥ R, for all j ≥ 1,

|ξ̃j(B̃Lnt)| ≤
C

Rδ
< 1. (2.6.29)

Therefore, we obtain from Theorem 1, Chapter 1 in (Petrov, 1975) that for all t satisfying ‖B̃Lnt‖ <
R, for all j ≥ 1,

|ξ̃j(B̃Lnt)| ≤ 1−
1− ( C

Rδ
)2

8R2
‖B̃Lnt‖2. (2.6.30)

Setting Γ :=
1−( C

Rδ
)2

8R2 , we deduce that for all t satisfying ‖B̃Lnt‖ < R, for all j ≥ 1,

ξ̃j(B̃Lnt)| ≤ exp
(
−Γ‖B̃Lnt‖2

)
≤ exp

(
−Γλ2

min‖t‖2
)

(2.6.31)

Consequently, ∫
‖B̃Ln t‖<R

g̃m,n(t)dt ≤
∫

‖B̃Ln t‖≥R

exp
(
−pΓλ2

min‖t‖2
)
dt. (2.6.32)

Therefore,
∫

‖B̃Ln t‖<R
g̃m,n(t)dt ≤ EKa < ∞, for some constant EKa depending only on a. So, we

obtain that

sup
n≥Np

sup
0≤m≤αn−p

∫
g̃m,n(t)dt ≤ DKa + EKa <∞ (2.6.33)

Lemma 12. Let p ∈ L1(Rd), d ≥ 1. Let p̂ be the characteristic function of p, defined for all t ∈ Rd
by p̂(t) :=

∫
exp〈it, x〉p(x)dx. Assume that p ∈ C1(Rd) and that for all ` ∈ {1, ..., d}, ∂p

∂x`
∈ L1(Rd).

Then, there exists an absolute constant C such that for all t ∈ Rd,

|p̂(t)| ≤ C

‖t‖
(2.6.34)
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Proof. Let t = (t`)1≤`≤d ∈ Rd. For any ` ∈ {1, ..., d}, we have that

t`p̂(t) = i

(̂
∂p

∂x`

)
(2.6.35)

The preceding equality is obtained by applying a multidimensional version of integration by parts,
which holds when one of the involved functions has compact support. Then, notice that p can be
approximated in L1 - norm by a sequence of functions of compact support. We deduce that

‖t`p̂(t)‖∞ =

∥∥∥∥∥
(̂
∂p

∂x`

)∥∥∥∥∥
∞

≤
∥∥∥∥ ∂p∂x`

∥∥∥∥
L1

<∞. (2.6.36)

Setting C := max
1≤`≤d

∥∥∥ ∂p
∂x`

∥∥∥
L1

, we deduce that for all t ∈ Rd,

|p̂(t)| ≤ C

‖t‖
. (2.6.37)
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Chapter 3

A conditional limit theorem for
independent random variables

3.1 Introduction

3.1.1 Context and Scope, Importance Sampling Framework

Let (Xj)j≥1 be a sequence of independent, not necessarily identically distributed (i.d.), random
variables (r.v.) valued in R, such that (s.t.) the (Xj) have a common support SX . In this chapter,
we restrict ourselves to the one-dimensional case, for technical reasons. Indeed, the proof of the
Edgeworth expansion theorem which we use here (see (Petrov, 1975)) is specific to the case d = 1
and can be extended to our framework (see Section 3.3.1 below). We keep the notations of the
preceding chapter. For a ∈ SX and n ≥ 1, we denote by Qnak a regular version of the conditional
distribution of Xk

1 := (X1, ..., Xk) given {S1,n = na}.

We have obtained in the preceding chapter an approximation of Qnak when k = o(n). A natural
question arises : What can be said about the distribution of the n − k other r.v.’s, that is of
(Xj)k+1≤j≤n, given {S1,n = na}. In terms of Statistical Mechanics, the question would be : What
can be said about the distribution of energy for the large component ? Set

k′ := n− k, so that
k′

n
→ 1 as n→∞. (3.1.1)

Therefore, we study the distribution of Qnak when k
n is allowed to converge to 1 as n → ∞. In

(Dembo and Zeitouni, 1996), it is explained that the condition k = o(n) is necessary to get a Gibbs
Conditioning Principle. In this paper, as expected we do not obtain a Gibbs type measure as an
approximation of Qnak, if k

n does not converge to 0.

Now, we describe an Importance Sampling (IS) framework within which it is natural to consider
Qnak for large k. Consider a sequence (Xj)j≥1 of r.v.’s. For large n but fixed, we intend to estimate

Πn := P (Xn
1 ∈ En), for some event En. (3.1.2)

A classical IS estimator of Πn is the following.

Π̂n(N) :=
1

N

N∑
i=1

pn1 (Y n
1 (i))

qn1 (Y n
1 (i))

1En(Y n
1 (i)), (3.1.3)

37
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where pn1 is the density of Xn
1 and the (Y n

1 (i)) are i.i.d copies of a random vector Y n
1 with density qn1 .

Then, the law of large numbers insures that Π̂n(N) converges almost surely to Πn, as N →∞. The
interest of this resampling procedure is to reduce the variance of the resulting estimator, compared
to the usual Monte Carlo method. It is well known that the optimal density from the point of view of
the variance is the conditional density p(Xn

1 |En). Therefore, it is natural to search an approximation
of p(Xn

1 |En). This approach has been developed in ?, for an i.i.d. sequence (Xj)j≥1 of centered
r.v.’s, with

En =

{
(xi)1≤i≤n ∈ Rn :

n∑
i=1

xi ≥ nan

}
, (3.1.4)

for some sequence (an) converging slowly to 0. Therefore, Π̂n(N) estimates the moderate deviation
probability of S1,n/n. In ?, they get an approximation of p(Xk

1 |En), which should be close to
p(Xn

1 |En) if k is large. For a r.v. X, denote by L(X) its probability distribution. They obtain that,
for some density gk on Rk,

p
(
Xk

1 = Y k
1

∣∣∣S1,n ≥ nan
)
≈ gk(Y k

1 ), where Y k
1 ∼ L

(
Xk

1

∣∣∣S1,n ≥ nan
)
. (3.1.5)

The precise sense of ≈ is given in Section 3.2.3 below. They deduce from an elementary lemma that

gk(Z
k
1 ) ≈ p

(
Xk

1 = Zk1

∣∣∣S1,n ≥ nan
)
, where Zk1 has density gk. (3.1.6)

Then, the approximation density gk has a computable expression, which allows to simulate Zk1 . A
density gn on Rn is constructed from gk. In (3.1.3), qn1 and (Y n

1 (i)) are replaced respectively by gn
and copies of a r.v. with density gn. The IS estimator obtained has better performances than the
existing ones which estimate Πn.

Now, it is reasonable to expect that (3.1.5) implies that the distribution of Xk
1 given {S1,n ≥ nan}

is close to the distribution associated to gk. We can use this idea to get an approximation of Qnak
for some k such that k

n → 1 (see Theorem 18), but also for a class of k which are some o(n) (see
Theorem 17). However, in both cases, the condition n − k → ∞ is required for the Edgeworth
expansions.

We consider a sequence (Xj)j≥1 of independent r.v.’s. For any a ∈ SX , let p
(
Xk

1 = ·
∣∣S1,n = na

)
be

the density of Xk
1 given {S1,n = na}. In this paper, we obtain that, for some density gk on Rk,

p
(
Xk

1 = Y k
1

∣∣∣S1,n = na
)
≈ gk(Y k

1 ), where Y k
1 ∼ L

(
Xk

1

∣∣∣S1,n = na
)
. (3.1.7)

We deduce (see Section 2.4) that

‖Qnak −Gk‖TV −→ 0 as n→∞, (3.1.8)

where Gk is the distribution associated to gk. More precisely, when k is small (k = o(nρ) with
0 < ρ < 1/2), Gk is the same Gibbs type measure as in the preceding chapter, while for large k (see
the assumptions of Theorem 18), Gk is a slight modification of this measure.

Kolmogorov’s extension theorem does not apply to the sequence (Qnan)n≥1 of probability measures.
Therefore, we need to consider a sequence ((Ωn,An,Pn))n≥1 of probability spaces s.t. for any n ≥ 1,
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Y n
1 is a random vector defined on (Ωn,An,Pn) and the distribution of Y n

1 is Qnan. Then, for k ≤ n,
Qnak is the distribution of Y k

1 . The properties of (Y n
1 )n≥1 are studied in Section 3, after some

elementary results and statement of the Assumptions in Section 2, while Section 4 is devoted to our
main Results and their proofs.

3.2 Assumptions and elementary results

All the r.v.’s considered are a.c. w.r.t. the Lebesgue measure on R. For any r.v. X, let PX be its
distribution, pX its density and ΦX its moment generating function (mgf). For any j ≥ 1, set

Pj := PXj ; pj := pXj ; Φj := ΦXj . (3.2.1)

3.2.1 Conditional density

Let U and V be r.v.’s having respective densities pU and pV and a joint density denoted by p(U,V ).
Then, there exists a conditional density of U given V , denoted as follows.

p (U = u|V = v) =
p(U,V ) (u, v)

pV (v)
.

Fact 16. Let (Xj)j≥1 be a sequence of independent r.v.’s. For any n ≥ 1 and 1 ≤ i ≤ n, let Jn be
a subset of {i, ..., n} s.t. αn := |Jn| < n − i + 1. Let Ln be the complement of Jn in {i, ..., n}. Set
SLn :=

∑
j∈Ln

Xj. Then, there exists a conditional density of (Xj)j∈Jn given Si,n, defined by

p ((Xj)j∈Jn = (xj)|Si,n = s) =

{ ∏
j∈Jn

pj(xj)

}
pSLn

(
s−

∑
j∈Jn

xj

)
pSi,n (s)

, (3.2.2)

3.2.2 The tilted density

Definition 10. For a r.v. X, let ΦX be its mgf and let ΘX := {θ ∈ R : ΦX(θ) <∞}. For any
θ ∈ ΘX , denote by X̃θ a random vector having the tilted density, defined by

p
X̃θ(x) :=

(exp θx)pX(x)

ΦX(θ)
. (3.2.3)

For any j ≥ 1, set Φj := ΦXj . We suppose throughout the text that the functions (Φj)j≥1 have the
same domain of finiteness denoted by Θ, which is assumed to be of non void interior. We write, for
any j ≥ 1,

Θ :=
{
θ ∈ Rd : Φj(θ) <∞

}
.

Fact 17. For any j ≥ 1, there exists a probability space (Ωθ,Aθ,Pθ) such that for all finite subset
J ⊂ N and for all (Bj)j∈J ∈ B(R)|J |,

Pθ
((

X̃θ
j

)
j∈J
∈ (Bj)j∈J

)
=
∏
j∈J

P̃ θj (Bj) =
∏
j∈J

∫
Bj

p̃θj(x)dx, (3.2.4)
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where P̃ θj := P
X̃θ
j

and p̃θj := p
X̃θ
j
. In other words,

(
X̃θ
j

)
j≥1

is a sequence of independent r.v.’s

defined on (Ωθ,Aθ,Pθ).

Fact 18. For any j ≥ 1, and θ ∈ Θ, we have that

E
[
X̃θ
j

]
= mj(θ) where mj(θ) :=

dκj
dθ

(θ) and κj(θ) := log Φj(θ). (3.2.5)

Fact 19. For any θ ∈ Θ, j ≥ 1 and j′ ≥ 1,

E
[

˜Xj +Xj′
θ
]

= E
[
X̃θ
j + X̃θ

j′

]
. (3.2.6)

Corollary 4. For any n ≥ 1 and 1 ≤ ` ≤ n, for any θ ∈ Θ,

E
[
S̃`,n

θ
]

=
n∑
j=`

mj(θ). (3.2.7)

Fact 20.
For any j ≥ 1 and θ ∈ Θ, set

X
θ
j := X̃θ

j − E[X̃θ
j ] = X̃θ

j −mj(θ)

and for any ` ≥ 3,

s2
j (θ) := V ar

(
X̃θ
j

)
; σj(θ) :=

√
s2
j (θ) ; µ`j(θ) := E

[(
X
θ
j

)`]
; |µ|`j(θ) := E

[∣∣∣Xθ
j

∣∣∣`] .
Then,

s2
j (θ) =

d2κj
dθ2

(θ) and µ`j(θ) =
d`κj
dθ`

(θ). (3.2.8)

3.2.3 Landau Notations

Definition 11. Let (Xn)n≥1 be a sequence of r.v.’s such that for any n ≥ 1, Xn is defined on a
probability space (Ωn,An,Pn). Let (un) be a sequence of real numbers. We say that

(Xn)n≥1 is a OPn(un) if for all ε > 0, there exists A ≥ 0 and Nε ∈ N, s.t. for all n > Nε,

Pn
(∣∣∣∣Xn

un

∣∣∣∣ 6 A

)
> 1− ε. (3.2.9)

(Xn)n≥1 is a oPn(un) if for all ε > 0 and δ > 0, there exists Nε,δ ∈ N s.t. for all n > Nε,

Pn
(∣∣∣∣Xn

un

∣∣∣∣ 6 δ

)
> 1− ε. (3.2.10)

(Xn)n≥1 converges to ` ∈ R in Pn- probability and we note Xn −→
Pn

` if

Xn = `+ oPn(1). (3.2.11)
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Remark 4. These notations differ from the classical Landau notations in probability by the fact
that here, the rv’s (Xn) are not defined on the same probability space. However, they satisfy similar
properties, which we will use implicitly in the proofs.

3.2.4 A criterion for convergence in Total Variation Distance

Definition 12. Set

A→1 :=

(Bn)n≥1 ∈
∏
n≥1

An : Pn(Bn) −→
n∞

1

 .

Lemma 13. For all integer n ≥ 1, let Y n
1 : (Ωn,An,Pn) −→ (Rn,B(Rn)) be a random vector. For

any 1 ≤ k ≤ n, the distribution of Y k
1 is denoted by Pk. Let Gk be a probability measure on Rk.

Assume that Pk and Gk have positive densities pk and gk, and that k → ∞ as n → ∞. If there
exists (Bn)n≥1 ∈ A→1 s.t. for any n ≥ 1, we have on Bn that

pk(Y
k

1 ) = gk(Y
k

1 ) [1 + Tn] where Tn = oPn(1), (3.2.12)

then,
‖Pk −Gk‖TV −→n∞ 0. (3.2.13)

Proof. For any δ > 0, set

E(n, δ) :=

{
(yk1 ) ∈ Rk :

∣∣∣∣pk(yk1 )

gk(y
k
1 )
− 1

∣∣∣∣ 6 δ

}
. (3.2.14)

Then,

Pn ({|Tn| 6 δ} ∩Bn) 6 Pn
(∣∣∣∣pk(Y k

1 )

gk(Y
k

1 )
− 1

∣∣∣∣ 6 δ

)
= Pk(E(n, δ))

=

∫
E(n,δ)

pk(y
k
1 )

gk(y
k
1 )
gk(y

k
1 )dyk1

6 (1 + δ)Gk(E(n, δ)).

By (3.2.12), for all n large enough,

Pn ({|Tn| 6 δ} ∩Bn) ≥ 1− Pn ({|Tn| > δ})− Pn(Bc
n)

≥ 1− 2δ.

Combining the preceding inequalities, we obtain that for all n large enough,

1− 2δ ≤ Pk(E(n, δ)) ≤ (1 + δ)Gk(E(n, δ)). (3.2.15)

Therefore,
sup

C∈B(Rk)

|Pk(C)− Pk(C ∩ E(n, δ))| 6 Pk(E(n, δ)c) ≤ 2δ (3.2.16)
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and

sup
C∈B(Rk)

|Gk(C)−Gk(C ∩ E(n, δ))| ≤ 1−Gk(E(n, δ))

≤ 1− 1− 2δ

1 + δ

=
3δ

1 + δ
.

Now, we have that

sup
C∈B(Rk)

|Pk(C ∩ E(n, δ))−Gk(C ∩ E(n, δ))| 6 sup
C∈B(Rk)

∫
C∩E(n,δ)

|pk(yk1 )− gk(yk1 )|dyk1 (3.2.17)

From the definition of E(n, δ), we deduce that

sup
C∈B(Rk)

|Pk(C ∩ E(n, δ))−Gk(C ∩ E(n, δ))| 6 δ sup
C∈B(Rk)

∫
C∩E(n,δ)

gk(y
k
1 )dyk1

6 δ.

Finally, applying the triangle inequality, we have that for all n large enough,

sup
C∈B(Rk)

|Pk(C)−Gk(C)| ≤ 2δ + δ +
3δ

1 + δ

= 3δ

(
2 + δ

1 + δ

)
,

which converges to 0 as δ → 0.

Remark 5. A rate of convergence is not obtainable by this method.

3.2.5 A first calculus

Set

pk

(
Y k

1

)
:= p

(
Xk

1 = Y k
1

∣∣∣S1,n = na
)
. (3.2.18)

First, we have that

p
(
Xk

1 = Y k
1

∣∣∣S1,n = na
)

= p
(
Xk = Yk|Xk−1

1 = Y k−1
1 ;S1,n = na

)
p
(
Xk−1

1 = Y k−1
1

∣∣∣S1,n = na
)

(3.2.19)

Set pk
(
Y k

1

)
:= p

(
Xk

1 = Y k
1

∣∣S1,n = ns
)
, then we deduce by induction on k that

pk

(
Y k

1

)
=

{
k−1∏
i=1

p
(
Xi+1 = Yi+1|Xi

1 = Y i
1 ;S1,n = na

)}
p (X1 = Y1|S1,n = na) . (3.2.20)
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For 1 ≤ i1 ≤ i2 ≤ n, set Σi1,i2 :=
i2∑
j=i1

Yj . We deduce from (3.2.20) that

pk

(
Y k

1

)
=

{
k−1∏
i=1

p (Xi+1 = Yi+1|Si+1,n = na− Σ1,i)

}
p (X1 = Y1|S1,n = na) . (3.2.21)

Let Σ1,0 = 0. Then,

pk

(
Y k

1

)
=

k−1∏
i=0

πi, where πi := p (Xi+1 = Yi+1|Si+1,n = na− Σ1,i) . (3.2.22)

The conditioning event being {Si+1,n = na− Σ1,i}, we search θ s.t.

E

[
S̃i+1,n

θ
]

=
n∑

j=i+1

mj(θ) = na− Σ1,i. (3.2.23)

Since Pn-a.s., Σ1,i + Σi+1,n = na, this is equivalent to solve the following equation, where θ is
unknown.

mi+1,n(θ) :=

n∑
j=i+1

mj(θ)

n− i
=

Σi+1,n

n− i
. (3.2.24)

We will see below (see Definition 15) that, under suitable assumptions, equation (3.2.24) has a
unique solution ti,n. In the following lines, the tilted densities pertain to θ = ti,n.

For e = 1, 2, let qi+e,n be the density of Si+e,n, where

Si+e,n :=
S̃i+e,n − E

[
S̃i+e,n

]
√
V ar

(
S̃i+e,n

) =

S̃i+e,n −
n∑

j=i+e
mj(ti,n)√

n∑
j=i+e

s2
j (ti,n)

. (3.2.25)

Using the invariance of the conditional density under the tilting operation, Fact 16 and then renor-
malizing, we obtain that

πi = p
(
X̃i+1 = Yi+1|S̃i+1,n = na− Σ1,i

)
= p̃i+1(Yi+1)

σi+1,n

σi+2,n

qi+2,n(Zi+1)

qi+1,n(0)
, (3.2.26)

where

Zi+1 :=
mi+1 − Yi+1

σi+2,n
.

3.2.6 Assumptions

Definition 13. Let f : (α, β) −→ (A,B) be a function, where α, β, A and B may be finite or not.
Consider the following condition (H).

(H) : f is strictly increasing and lim
θ→α

f(θ) = A ; lim
θ→β

f(θ) = B.
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Statements

We suppose throughout the text that the following assumptions hold. So in the statements of the
results, we will not always precise which among them are required.

(Supp) : The (Xj), j ≥ 1 have a common support SX = (A,B), where A and B may be finite or
not.

(Mgf) : The mgf’s (Φj)j≥1 have the same domain of finiteness Θ = (α, β), where α and β may be
finite or not.

(Hκ) : For all j ≥ 1, mj :=
dκj
dθ satisfies (H).

(Uf) : There exist functions f+ and f− which satisfy (H) and such that

∀j ≥ 1, ∀θ ∈ Θ, f−(θ) ≤ mj(θ) ≤ f+(θ). (3.2.27)

(Cv) : For any compact K ⊂ Θ,

0 < inf
j≥1

inf
θ∈K

s2
j (θ) ≤ sup

j≥1
sup
θ∈K

s2
j (θ) <∞, (3.2.28)

(AM6) : For any compact K ⊂ Θ,

sup
j≥1

sup
θ∈K

|µ|6j (θ) <∞. (3.2.29)

(Cf) : For any j ≥ 1, pj is a function of class C1 and for any compact K ⊂ Θ,

sup
j≥1

sup
θ∈K

∥∥∥∥∥dp̃θjdx
∥∥∥∥∥
L1

<∞. (3.2.30)

Elementary Facts

Fact 21. If a function f satisfies (H), then f is a homeomorphism from (α, β) to (A,B).

Fact 22. If a function f is defined as the mean of functions satisfying (H), then f satisfies (H).
In particular, f is a homeomorphism from (α, β) to (A,B).

Corollary 5. Let `, n be integers with 1 ≤ ` ≤ n. Set

m`,n :=
1

n− `+ 1

n∑
j=`

mj .

Then, we deduce from (Hκ) and Fact 22 that m`,n is a homeomorphism from (α, β) to (A,B).
Consequently, for any s ∈ SX , the equation

m`,n(θ) = s (3.2.31)

has a unique solution in Θ = (α, β).
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Definition 14. We deduce from Corollary 5 that for any a ∈ SX , for any n ≥ 1, there exists a
unique θan ∈ Θ s.t.

m1,n(θan) = a.

Fact 23. We deduce from (Hκ) that for any a ∈ SX , there exists a compact set Ka of R s.t.

{θan : n ≥ 1} ⊂ Ka ⊂ Θ. (3.2.32)

Corollary 6. We deduce from the preceding Fact and the Assumptions that, for any a ∈ SX ,

sup
n≥1

sup
j≥1

|mj(θ
a
n)| <∞, (3.2.33)

0 < inf
n≥1

inf
j≥1

Φj(θ
a
n) ≤ sup

n≥1
sup
j≥1

Φj(θ
a
n) <∞, (3.2.34)

0 < inf
n≥1

inf
j≥1

s2
j (θ

a
n) ≤ sup

n≥1
sup
j≥1

s2
j (θ

a
n) <∞, (3.2.35)

and for any 3 ≤ ` ≤ 6,

sup
n≥1

sup
j≥1

|µ`j(θan)| ≤ sup
n≥1

sup
j≥1

|µ|`j(θan) <∞. (3.2.36)

Definition 15. We deduce from Corollary 5 that for any n ≥ 1 and 0 ≤ i ≤ k − 1, there exists a
unique ti,n ∈ Θ s.t.

mi+1,n(ti,n) =

n∑
j=i+1

Yj

n− i
. (3.2.37)

Since mi+1,n is a homeomorphism from SX to Θ, ti,n is a r.v. defined on (Ωn,An).

Fact 24. Assume that

max
0≤i≤k−1

|ti,n| = OPn(1) (3.2.38)

Then, under the Assumptions, we have that

max
0≤i≤k−1

sup
j≥1

|mj(ti,n)| = OPn(1), (3.2.39)

max
0≤i≤k−1

sup
j≥1

max

{
1

Φj(ti,n)
; Φj(ti,n)

}
= OPn(1), (3.2.40)

max
0≤i≤k−1

sup
j≥1

max

{
1

s2
j (ti,n)

; s2
j (ti,n)

}
= OPn(1), (3.2.41)

and for any 3 ≤ ` ≤ 6,

max
0≤i≤k−1

sup
j≥1

|µ`j(ti,n)| ≤ max
0≤i≤k−1

sup
j≥1

|µ|`j(ti,n) = OPn(1). (3.2.42)
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Proof. We prove only (3.2.41), the other proofs being similar. Let ε > 0. Then, (3.2.38) implies
that there exists Aε > 0 s.t. for all n large enough,

Pn
(

max
0≤i≤k−1

|ti,n| ≤ Aε
)
≥ 1− ε. (3.2.43)

Now, (Cv) implies that

s2
Aε := sup

j≥1
sup

θ∈[−Aε;Aε]
s2
j (θ) <∞. (3.2.44)

Therefore,

Pn

(
max

0≤i≤k−1
sup
j≥1

s2
j (ti,n) ≤ s2

Aε

)
≥ 1− ε. (3.2.45)

Remark 6. We will prove in Section 3.4. that, under the Assumptions, (3.2.38) holds.

3.3 Properties of (Y n
1 )n≥1

3.3.1 Edgeworth expansion

Let (Xj)j≥1 be a sequence of independent r.v.’s with zero means and finite variances. For any j ≥ 1
and ` ≥ 3, set

s2
j := E[X2

j ] = V ar(Xj) ; σj :=
√
s2
j ; µ`j := E[X`

j ] ; |µ|`j := E
[
|Xj |`

]
.

For any p, q with 1 ≤ p ≤ q and ` > 2, set

s2
p,q :=

q∑
j=p

s2
j ; σp,q :=

√
s2
p,q ; µ`p,q :=

q∑
j=p

µ`j .

For any j ≥ 1, if pj is of class C1, set

dj :=

∥∥∥∥dpjdx
∥∥∥∥
L1

.

For ν ≥ 3, let Hν be the Hermite polynomial of degree ν. For example,

H3(x) = x3 − 3x ; H4(x) = x4 − 6x2 + 3 ; H5(x) = x5 − 10x3 + 15x.

Theorem 13. Let m be an integer with m ≥ 3. Assume that

sup
j≥1

1

s2
j

<∞, (3.3.1)

sup
j≥1

|µ|m+1
j <∞, (3.3.2)

sup
j≥1

dj <∞. (3.3.3)
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Let n be the density of the standard normal distribution. For any n ≥ 1, let qn be the density of
(s2

1,n)−1/2S1,n. Then, for all n large enough, we have that

sup
x∈R

∣∣∣∣∣qn(x)− n(x)

(
1 +

m∑
ν=3

Pν,n(x)

)∣∣∣∣∣ =
o(1)

n(m−2)/2
, (3.3.4)

where, for example,

P3,n(x) =
µ3

1,n

6(s2
1,n)3/2

H3(x)

P4,n(x) =
(µ3

1,n)2

72(s2
1,n)3

H6(x) +

µ4
1,n − 3

n∑
j=1

(s2
j )

2

24(s2
1,n)2

H4(x)

P5,n(x) =
(µ3

1,n)3

1296(s2
1,n)9/2

H9(x) +

µ3
1,n

(
µ4

1,n − 3
n∑
j=1

(s2
j )

2

)
144(s2

1,n)7/2
H7(x) +

µ5
1,n − 10

n∑
j=1

µ3
js

2
j

120(s2
1,n)5/2

H5(x)

Remark 7. We obtain from (3.3.1) and (3.3.2) that

P3,n(x) = O
(

1

n1/2

)
H3(x) (3.3.5)

P4,n(x) = O
(

1

n

)
H6(x) +O

(
1

n

)
H4(x) (3.3.6)

P5,n(x) = O
(

1

n3/2

)
H9(x) +O

(
1

n3/2

)
H7(x) +O

(
1

n3/2

)
H5(x) (3.3.7)

3.3.2 Extensions of the Edgeworth expansion

For any integers p, q with 1 ≤ p ≤ q and θ ∈ Θ, set

s2
p,q(θ) :=

q∑
j=p

s2
j (θ) ; σp,q(θ) :=

√
s2
p,q(θ) ; µ`p,q(θ) :=

p∑
j=p

µ`j(θ).

For any j ≥ 1 and θ ∈ Θ, set

dj(θ) :=

∥∥∥∥∥dp̃θjdx
∥∥∥∥∥
L1

.
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First Extension

For any n ≥ 1, let Jn be a subset of {1, ..., n} s.t. αn := |Jn| < n. Let Ln be the complement of Jn
in {1, ..., n}. Set

SLn :=
∑
j∈Ln

X̃
θan
j − E

[
X̃
θan
j

]
= X̃

θan
j −mj(θ

a
n).

For any θ ∈ Θ and ` ≥ 3, set

s2
Ln(θ) :=

∑
j∈Ln

s2
j (θ) ; σLn(θ) :=

√
s2
Ln

(θ) ; µ`Ln(θ) :=
∑
j∈Ln

µ`j(θ).

Theorem 14. Let m be an integer with m ≥ 3. Assume that

sup
j≥1

1

s2
j (θ

a
n)

= O(1), (3.3.8)

sup
j≥1

|µ|m+1
j (θan) = O(1), (3.3.9)

sup
j≥1

dj(θ
a
n) = O(1). (3.3.10)

For any n ≥ 1, let qLn be the density of (s2
Ln

)−1/2SLn. Then, for all n large enough, we have that

sup
x∈R

∣∣∣∣∣qLn(x)− n(x)

(
1 +

m∑
ν=3

P ν,Ln(x)

)∣∣∣∣∣ =
o (1)

(n− αn)(m−2)/2
, (3.3.11)

where the P ν,Ln are defined as the Pν,n, except that the s2
1,n and the µ`1,n are replaced respectively

by s2
Ln

(θan) and µ`Ln(θan).

Corollary 7. Assume that (Cv), (AM(m+ 1)), (Cf) and (Uf) hold. Then, (3.3.11) holds.

Remark 8. By Remark 7, for ν = 3, 4, 5, some O
(

1
n(ν−2)/2

)
appear in Pν,n. They are replaced by

some O(1)

(n−αn)(ν−2)/2 in P ν,Ln.

Second Extension

Theorem 15. Let m be an integer with m ≥ 3. Assume that

max
0≤i≤k−1

sup
j≥1

1

s2
j (ti,n)

= OPn(1), (3.3.12)

max
0≤i≤k−1

sup
j≥1

|µ|m+1
j (ti,n) = OPn(1), (3.3.13)

max
0≤i≤k−1

sup
j≥1

dj(ti,n) = OPn(1). (3.3.14)
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Let e ∈ {1, 2}. We recall that qi+e,n is the density of Si+e,n, defined by (3.2.25). Then,

sup
x∈R

∣∣∣∣∣qi+e,n(x)− n(x)

(
1 +

m∑
ν=3

P
(i,e)
ν,n (x)

)∣∣∣∣∣ =
oPn(1)

(n− i− e+ 1)(m−2)/2
, (3.3.15)

where the P
(i,e)
ν,n are defined as the Pν,n, except that the s2

1,n and the µ`1,n are replaced respectively by

s2
i+e,n(ti,n) and µ`i+e,n(ti,n).

Proof. We follow the lines of the proof of Theorem 13, given in (Petrov, 1975). For j ≥ 1, let ξ̃j

be the characteristic function of X̃j
ti,n

. Then, for any τ ∈ R,

ξ̃j(τ) =

∫
exp(iτx)

exp(ti,nx)pj(x)

Φj(ti,n)
dx (3.3.16)

is a r.v. defined on (Ωn,An). Performing a Taylor expansion of exp(iτx), we obtain that

ξ̃j(τ) = 1 +
s2
j (ti,n)

2
(iτ)2 +

m∑
ν=3

µνj (ti,n)

ν!
(iτ)ν + rj(τ). (3.3.17)

Then, we deduce from Fact 24 that

n∑
j=i+e

rj

(
τ

σi+e,n

)
≤ δi,n

(n− i− e+ 1)(m−2)/2
|τ |m, where max

0≤i≤k−1
|δi,n| = oPn(1). (3.3.18)

For any n ≥ 1, and ω ∈ Ωn, we consider a triangular array whose row of index n is composed of the
n− i− e+ 1 independent r.v.’s (

X
ti,n(ω)
j

)
i+e≤j≤n

Let ξi+e,n be the characteristic function of S
ti,n
i+e,n, given by ξi+e,n(τ) =

∫
exp(iτx)qi+e,n(x)dx. By

independence of the
(
X
ti,n(ω)
j

)
i+e≤j≤n

and (3.3.17) combined with (3.3.18), we obtain that for

suitable some constant ρ > 0, for |τ | ≤ nρ,

∣∣ξi+e,n(τ)− um,n(τ)
∣∣ ≤ δi,n

(n− i− e+ 1)(m−2)/2

(
|τ |m + |τ |3(m−1)

)
exp

(
−τ

2

2

)
, (3.3.19)

where um,n is the Fourier transform of n(x)

(
1 +

m∑
ν=3

P
(i,e)
ν,n (x)

)
and max

0≤i≤k−1
|δi,n| = oPn(1).

Now, we have that

I :=

∞∫
−∞

∣∣ξi+e,n(τ)− um,n(τ)
∣∣ dτ (3.3.20)

≤
∫

|τ |≤nρ

∣∣ξi+e,n(τ)− um,n(τ)
∣∣ dτ +

∫
|τ |>nρ

|um,n(τ)| dτ +

∫
|τ |>nρ

∣∣ξi+e,n(τ)
∣∣ dτ. (3.3.21)
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Then, we obtain from (3.3.19) that∫
|τ |≤nρ

∣∣ξi+e,n(τ)− um,n(τ)
∣∣ dτ =

oPn(1)

(n− i− e+ 1)(m−2)/2
.

Then, using general results on characteristic functions (see Lemma 12 in (Petrov, 1975)), we prove
that ∫

|τ |>nρ

|um,n(τ)| dτ =
oPn(1)

(n− i− e+ 1)(m−2)/2
. (3.3.22)

Now, (3.3.14) implies that for any α > 0 and η > 0,

max
0≤i≤k−1

(n− i− e+ 1)α
∫
|τ |>η

n∏
j=i+e

∣∣∣ξ̃j(τ)
∣∣∣ dτ = oPn(1), (3.3.23)

which implies in turn that ∫
|τ |>nρ

∣∣ξi+e,n(τ)
∣∣ dτ =

oPn(1)

(n− i− e+ 1)(m−2)/2
. (3.3.24)

Considering (3.3.21), we deduce that

I =
oPn(1)

(n− i− e+ 1)(m−2)/2
.

Then, Fourier inversion yields that

qi+e,n(x)− n(x)

(
1 +

m∑
ν=3

P
(i,e)
ν,n (x)

)
=

1

2π

∞∫
−∞

exp(−iτx)(ξi+e,n(τ)− um,n(τ))dτ. (3.3.25)

Therefore,

sup
x∈R

∣∣∣∣∣qi+e,n(x)− n(x)

(
1 +

m∑
ν=3

P
(i,e)
ν,n (x)

)∣∣∣∣∣ ≤ I

2π
=

oPn(1)

(n− i− e+ 1)(m−2)/2
. (3.3.26)

Corollary 8. Assume that (Cv), (AM(m+ 1)), (Cf) hold, and that

max
0≤i≤k−1

|ti,n| = OPn(1) (3.3.27)

Then, (3.3.15) holds.

Remark 9. By Remark 7, for ν = 3, 4, 5, some O
(

1
n(ν−2)/2

)
appear in Pν,n. They are replaced by

some
OPn (1)

(n−i−1)(ν−2)/2 in P
(i,e)
ν,n .
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3.3.3 Moments of Yj

Throughout this Section 3.3, all the tilted densities considered pertain to θ = θan, defined by

m1,n(θan) = a. (3.3.28)

The moments of the Yj ’s are obtained by integration of the conditional density. As expected, their

first order approximations are the moments of X̃j .

Lemma 14.

max
1≤j≤n

|EPn [Yj ]−mj(θ
a
n)| = O

(
1√
n

)
. (3.3.29)

Proof. For any n ≥ 1 and 1 ≤ j ≤ n, we have that

EPn [Yj ] =

∫
xp(Xj = x|S1,n = na)dx =

∫
xp(X̃j = x|S̃1,n = na)dx. (3.3.30)

Let Ln = {1, ..., n} \ {j}. Normalizing, we obtain that

p(X̃j = x|S̃1,n = na) = p̃j(x)

(
σ1,n(θan)

σLn(θan)

) pSLn
(γjn(x))

pS1,n
(0)

, where γjn(x) :=
mj(θ

a
n)− x

σLn(θan)
. (3.3.31)

Since (AM6) implies (AM4), we get from Corollary 7 with m = 3 that

pSLn
(γjn(x)) = n(γjn(x))

[
1 +

µ3
Ln

(θan)

6(s2
Ln

(θan))3/2
H3(γjn(x))

]
+

o(1)√
n− 1

(3.3.32)

and

pS1,n
(0) = n(0) +

o(1)√
n
. (3.3.33)

Now, (Cv), (AM6) and the boundedness of the sequence (θan)n≥1 imply readily that

σ1,n(θan)

σLn(θan)
= 1 +O

(
1

n

)
and

µ3
Ln

(θan)

6(s2
Ln

(θan))3/2
= O

(
1√
n− 1

)
. (3.3.34)

Since the functions θ 7→ n(θ) and θ 7→ n(θ)H3(θ) are bounded, we deduce that

pSLn
(γjn(x))

pS1,n
(0)

=

{
n(γjn(x))

(
1 +O

(
1√
n

)
H3(γjn(x))

)
+

o(1)√
n− 1

}{
1

n(0)
+
o(1)√
n

}
(3.3.35)

=
n(γjn(x))

n(0)
+O

(
1√
n

)
= exp

(
−γ

j
n(x)2

2

)
+O

(
1√
n

)
. (3.3.36)

Consequently,

p(X̃j = x|S̃1,n = na) = p̃j(x)

(
1 +O

(
1

n

)){
exp

(
−γ

j
n(x)2

2

)
+O

(
1√
n

)}
. (3.3.37)
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Recalling that
∫
xp̃j(x)dx = mj(θ

a
n), we deduce from (3.3.30) and (3.3.37) that

EPn [Yj ] =

{∫
xp̃j(x) exp

(
−γ

j
n(x)2

2

)
dx+mj(θ

a
n)O

(
1√
n

)}(
1 +O

(
1

n

))
. (3.3.38)

Therefore, it is enough to prove that∫
xp̃j(x) exp

(
−γ

j
n(x)2

2

)
dx = mj(θ

a
n) +O

(
1√
n

)
(3.3.39)

Now, for any u ∈ R,
1− u2/2 ≤ exp

(
−u2/2

)
≤ 1, (3.3.40)

from which we deduce that
∞∫

0

xp̃j(x)dx− 1

2

∞∫
0

xp̃j(x)γjn(x)2dx ≤
∞∫

0

xp̃j(x) exp

(
−γ

j
n(x)2

2

)
dx ≤

∞∫
0

xp̃j(x)dx (3.3.41)

and

0∫
−∞

xp̃j(x)dx ≤
0∫

−∞

xp̃j(x) exp

(
−γ

j
n(x)2

2

)
dx ≤

0∫
−∞

xp̃j(x)dx− 1

2

0∫
−∞

xp̃j(x)γjn(x)2dx. (3.3.42)

Adding (3.3.41) and (3.3.42), we obtain that

mj(θ
a
n)− 1

2

∞∫
0

xp̃j(x)γjn(x)2dx ≤
∫
xp̃j(x) exp

(
−γ

j
n(x)2

2

)
dx ≤ mj(θ

a
n)− 1

2

0∫
−∞

xp̃j(x)γjn(x)2dx.

(3.3.43)
For any B ∈ B(R), we have that∫

B
xp̃j(x)γjn(x)2dx =

1

s2
Ln

(θan)

{∫
B
xp̃j(x) (mj(θ

a
n)− x)2 dx

}
(3.3.44)

=
1

s2
Ln

(θan)

2∑
i=0

(
2

i

)
mj(θ

a
n)2−i(−1)i

∫
B
x1+ip̃j(x)dx. (3.3.45)

Let i ∈ {0, 1, 2}. Recalling that Ln = {1, ..., n} \ {j}, we get from (Cv) and (Uf) that

max
1≤j≤n

1

s2
Ln

(θan)
= O

(
1

n

)
and max

1≤j≤n
|mj(θ

a
n)|2−i = O(1). (3.3.46)

Then, (AM6) implies that for all n ≥ 1,

max
1≤j≤n

∣∣∣∣∫
B
x1+ip̃j(x)dx

∣∣∣∣ ≤ max
1≤j≤n

∫
R
|x|1+ip̃j(x)dx ≤ sup

j≥1

{
1 + sup

θ∈Ka
E
[∣∣∣X̃θ

j

∣∣∣6]} <∞. (3.3.47)

So we deduce from (3.3.45) that

max
1≤j≤n

∫
B
xp̃j(x)γjn(x)2dx = O

(
1

n

)
. (3.3.48)

Taking B = (−∞, 0) and B = (0,∞) in (3.3.48), we conclude the proof by (3.3.43).
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Lemma 15. We have that

max
1≤j<j′≤n

∣∣EPn [YjYj′ ]−mj(θ
a
n)mj′(θ

a
n)
∣∣ = O

(
1√
n

)
(3.3.49)

and

max
1≤j≤n

∣∣EPn [Y 2
j ]−

(
s2
j (θ

a
n) +mj(θ

a
n)2
)∣∣ = O

(
1√
n

)
. (3.3.50)

Proof. For any 1 ≤ j < j′ ≤ n, we have that

EPn [YjYj′ ] =

∫
xx′p

(
X̃j = x; X̃j′ = x′

∣∣∣ S̃1,n = na
)
dxdx′.

Let Ln = {1, ..., n} \ {j, j′}. Normalizing, we obtain that

p
(
X̃j = x; X̃j′ = x′

∣∣∣ S̃1,n = na
)

= p̃j(x)p̃j′(x
′)

(
σ1,n(θan)

σLn(θan)

) pSLn

(
Γj,j

′
n (x)

)
pS1,n

(0)
,

where

Γjn(x) :=
mj(θ

a
n) +mj′(θ

a
n)− x− x′

σLn(θan)
.

Since (AM4) holds, we get from Corollary 7 with m = 3 that

p
(
X̃j = x; X̃j′ = x′

∣∣∣ S̃1,n = na
)

= p̃j(x)p̃j′(x
′)

(
1 +O

(
1

n

)){
exp

(
−Γjn(x)2

2

)
+O

(
1√
n

)}
.

(3.3.51)

As in the preceding proof, we get from (3.3.40) (applied to exp
(
−Γjn(x)2

2

)
) that, uniformly in j,

EPn [YjYj′ ] =

∫
xx′p̃j(x)p̃j′(x

′)dxdx′ +O
(

1√
n

)
= mj(θ

a
n)mj′(θ

a
n) +O

(
1√
n

)
.

The proof of (3.3.50) is quite similar.

Corollary 9. We have that

max
1≤j<j′≤n

CovPn(Yj , Y
′
j ) = O

(
1√
n

)
(3.3.52)

and

max
1≤j≤n

∣∣V arPn(Yj)−
(
s2
j (θ

a
n)
)∣∣ = O

(
1√
n

)
. (3.3.53)
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Proof. We deduce from the preceding Lemmas that for any 1 ≤ j < j′ ≤ n,

CovPn(Yj , Y
′
j ) = EPn [YjYj′ ]− EPn [Yj ]EPn [Yj′ ]

=

(
mj(θ

a
n)mj′(θ

a
n) +O

(
1√
n

))
−
(
mj(θ

a
n)mj′(θ

a
n) +O

(
1√
n

))
= O

(
1√
n

)
.

3.3.4 Proof of max
0≤i≤k−1

|ti,n| = OPn(1)

For any n ≥ 1 and i = 0, ..., k − 1, set

Vi+1,n :=
1

n− i

n∑
j=i+1

Zj where Zj := Yj − E[Yj ]. (3.3.54)

Lemma 16. We have that

EPn [V 2
1,n] = o(1). (3.3.55)

Proof. We have that

EPn [V 2
1,n] =

1

n2


n∑
j=1

V arPn(Yj) + 2
∑

1≤j<j′≤n
CovPn(Yj , Yj′)

 . (3.3.56)

Then, we get from Corollary 9 that

EPn [V 2
1,n] =

1

n2


n∑
j=1

[
s2
j (θ

a
n) +O

(
1√
n

)]
+ n(n− 1)O

(
1√
n

) . (3.3.57)

We conclude the proof by Corollary 6 which implies that

1

n2

n∑
j=1

[
s2
j (θ

a
n) +O

(
1√
n

)]
= o(1). (3.3.58)

Lemma 17. We have that

max
0≤i≤k−1

|Vi+1,n| = oPn(1). (3.3.59)

Proof. We follow the lines of Kolmogorov’s maximal inequality proof. Let n ≥ 1 and i ∈ {0, ..., k − 1}.
For any δ > 0, set

Ai,n := {|Vi+1,n| ≥ δ}
⋂i−1⋂

j=0

{|Vj+1,n| < δ}

 , (3.3.60)
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and

An :=

{
max

0≤i≤k−1
|Vi+1,n| ≥ δ

}
=

k−1⋃
i=0

Ai,n. (3.3.61)

Since the (Ai,n)0≤i≤k−1 are non-overlapping, we have that

EPn [V 2
1,n] ≥

k−1∑
i=0

∫
Ai,n

V 2
1,ndPn (3.3.62)

=
k−1∑
i=0

∫
Ai,n

{(V1,n − Vi+1,n) + Vi+1,n}2 dPn (3.3.63)

≥ 2
k−1∑
i=0

∫
Ai,n

(V1,n − Vi+1,n)Vi+1,ndPn +
k−1∑
i=0

∫
Ai,n

V 2
i+1,ndPn (3.3.64)

≥ 2

k−1∑
i=0

∫
Ai,n

(V1,n − Vi+1,n)Vi+1,ndPn + δ2Pn(An). (3.3.65)

By Lemma 16, it is enough to prove that

k−1∑
i=0

∫
Ai,n

(V1,n − Vi+1,n)Vi+1,ndPn = o(1). (3.3.66)

In the proof of Kolmogorov, the corresponding term is equal to 0, by independence of the involved
random variables. Similarly (3.3.66) will follow from Corollary 15, which states that the (Zj) are
asymptotically uncorrelated. Indeed, we have that

k−1∑
i=0

∫
Ai,n

(V1,n − Vi+1,n)Vi+1,ndPn =
k−1∑
i=0

EPn
[
1Ai,nV1,nVi+1,n

]
−
k−1∑
i=0

EPn
[
1Ai,nV

2
1,n

]
. (3.3.67)

Then, it is enough to prove that each sum in the right-hand side of (3.3.67) is a o(1). We get readily
that

EPn
[
1Ai,nV1,nVi+1,n

]
=

1

n(n− i)


n∑

j=i+1

EPn
[
1Ai,nZ

2
j

]
+

∑
1≤j≤n

i+1≤j′≤n
j 6=j′

EPn [1Ai,nZjZj′ ]


(3.3.68)

and

EPn
[
1Ai,nV

2
i+1,n

]
=

1

(n− i)2


n∑

j=i+1

EPn
[
1Ai,nZ

2
j

]
+

∑
i+1≤j,j′≤n

j 6=j′

EPn [1Ai,nZjZj′ ]

 . (3.3.69)
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Now, the Cauchy-Schwarz inequality applied twice, first in L2 and then in Rk, implies that

k−1∑
i=0

1

n(n− i)

n∑
j=i+1

EPn
[
1Ai,nZ

2
j

]
≤ 1

n

k−1∑
i=0

Pn(Ai,n)1/2


n∑

j=i+1
EPn

[
Z4
j

]1/2

n− i

 (3.3.70)

≤ 1

n

{
k−1∑
i=0

Pn(Ai,n)

}1/2


k−1∑
i=0


n∑

j=i+1
EPn

[
Z4
j

]1/2

n− i


2

1/2

.

(3.3.71)

Then,

[
k−1∑
i=0
Pn(Ai,n)

]1/2

= Pn(An)1/2 ≤ 1 and we obtain from Corollary 15 and Fact 6 that, for all

i ∈ {0, ..., k − 1},
n∑

j=i+1
EPn

[
Z4
j

]1/2

n− i


2

=


n∑

j=i+1

{
µ4
j (θ

a
n) +O

(
1
n

)}1/2

n− i


2

= O(1). (3.3.72)

Finally, we deduce from (3.3.71) and (3.3.72) that

k−1∑
i=0

1

n(n− i)

n∑
j=i+1

EPn
[
1Ai,nZ

2
j

]
=

1

n
{kO(1)}1/2 = o(1). (3.3.73)

We obtain similarly that

k−1∑
i=0

1

(n− i)2

n∑
j=i+1

EPn
[
1Ai,nZ

2
j

]
≤ Pn(An)1/2


k−1∑
i=0

1

(n− i)2


n∑

j=i+1
EPn

[
Z4
j

]1/2

n− i


2

1/2

(3.3.74)

= O(1)

{
k−1∑
i=0

1

(n− i)2

}1/2

= o(1). (3.3.75)

To conclude, we consider the sums involving EPn [1Ai,nZjZj′ ], for j 6= j′, in (3.3.68) and (3.3.69).
The Cauchy-Scwarz inequality brings terms of the form EPn [Z2

jZ
2
j′ ]. Clearly, Z2

j and Z2
j′ are similarly

asymptotically uncorrelated and thereby, we obtain analogously that

min


k−1∑
i=0

1

n(n− i)
∑

1≤j≤n
i+1≤j′≤n
j 6=j′

EPn [1Ai,nZjZj′ ] ;

k−1∑
i=0

1

(n− i)2

∑
i+1≤j,j′≤n

j 6=j′

EPn [1Ai,nZjZj′ ]


= o(1),

which ends the proof.
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Theorem 16. We have that

max
0≤i≤k−1

|ti,n| = OPn(1). (3.3.76)

Proof. The triangle inequality implies that for any n ≥ 1,

max
0≤i≤k−1

|mi+1,n(ti,n)| ≤ max
0≤i≤k−1

|Vi+1,n|+ max
0≤i≤k−1

∣∣∣∣∣∣
 1

n− i

n∑
j=i+1

E[Yj ]

−mi+1,n(θan)

∣∣∣∣∣∣+ max
0≤i≤k−1

|mi+1,n(θan)| .

(3.3.77)

We get from Lemma 17 and assumption (E) that

max
0≤i≤k−1

|Vi+1,n| = oPn(1). (3.3.78)

Then, Lemma 14 implies that

max
0≤i≤k−1

∣∣∣∣∣∣
 1

n− i

n∑
j=i+1

E[Yj ]

−mi+1,n(θan)

∣∣∣∣∣∣ ≤ max
0≤i≤k−1

 1

n− i

n∑
j=i+1

|E[Yj ]−mj(θ
a
n)|

 = O
(

1

n

)
.

(3.3.79)

Now, Fact 6 implies that

max
0≤i≤k−1

|mi+1,n(θan)| = O(1). (3.3.80)

Combining (3.3.77), (3.3.78), (3.3.79), and (3.3.80), we obtain that

max
0≤i≤k−1

|mi+1,n(ti,n)| = OPn(1). (3.3.81)

Now, (Hκ) implies that for all i = 0, ..., k − 1, mi+1,n is a homeomorphism from Θ to SX . Then,
we get from (Uf) that for all s ∈ SX ,

(f+)−1(s) ≤ (mi+1,n)−1(s) ≤ (f−)−1(s). (3.3.82)

We deduce that Pn - a.s.,

(f+)−1(mi+1,n(ti,n)) ≤ ti,n ≤ (f−)−1(mi+1,n(ti,n)), (3.3.83)

which combined to (3.3.81) concludes the proof.

3.3.5 The max of the trajectories

Throughout this Section 3.5, all the tilted densities considered pertain to θ = θan, defined by

m1,n(θan) = a. (3.3.84)

Lemma 18. We have that

max
1≤j≤n

|Yj | = OPn(log n). (3.3.85)
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Proof. For any n ≥ 1, set Mn := max
1≤j≤n

|Yj |. For all s > 0, we have that

Pn (Mn ≥ s) ≤
n∑
j=1

Pn(Yj ≤ −s) + Pn(Yj ≥ s) (3.3.86)

=
n∑
j=1

∫ −s
−∞

P (X̃j = x|S̃1,n = na)dx+

∫ ∞
s

P (X̃j = x|S̃1,n = na)dx. (3.3.87)

Now, we recall from (3.3.37) that

p(X̃j = x|S̃1,n = na) = p̃j(x)

(
1 +O

(
1

n

)){
exp

(
−γ

j
n(x)2

2

)
+O

(
1√
n

)}
= p̃j(x)O(1).

(3.3.88)
Consequently, there exists an absolute constant C > 0 s.t. for all n ≥ 1,

Pn (Mn ≥ s) ≤ C


n∑
j=1

P
(
X̃j ≤ −s

)
+ P

(
X̃j ≥ s

) . (3.3.89)

We get from Markov’s inequality that for any λ > 0,

P
(
X̃j ≤ −s

)
= P

(
exp(−λX̃j) ≥ exp(λs)

)
≤ E

[
exp(−λX̃j)

]
exp(−λs) (3.3.90)

and

P
(
X̃j ≥ s

)
≤ E

[
exp(λX̃j)

]
exp(−λs). (3.3.91)

Then, for any λ 6= 0,

E
[
exp(λX̃j)

]
=

∫
exp(λx)

[
exp(θanx)pj(x)

Φj(θan)
dx

]
=

Φj(θ
a
n + λ)

Φj(θan)
. (3.3.92)

Therefore,

Pn (Mn ≥ s) ≤ C


n∑
j=1

Φj(θ
a
n − λ)

Φj(θan)
+

Φj(θ
a
n + λ)

Φj(θan)

 exp(−λs). (3.3.93)

Since the sequence (θan)n≥1 is bounded, we can find λ > 0 s.t. each of the sequences (θan − λ)n≥1

and (θan + λ)n≥1 is included in a compact subset of Θ. Therefore, we deduce that there exists an
absolute constant D s.t.

sup
n≥1

sup
j≥1

max

{
Φj(θ

a
n − λ)

Φj(θan)
;

Φj(θ
a
n + λ)

Φj(θan)

}
≤ D. (3.3.94)

Therefore,

Pn (Mn ≥ s) ≤ CDn exp(−λs) = CD exp (log n− λs) . (3.3.95)

Consequently, for all sequence (sn)n≥1 s.t. sn
logn →∞ as n→∞, we have that

Pn (Mn ≥ sn)→ 0 as n→∞. (3.3.96)
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Set Zn := Mn
logn . For any sequence (an)n≥1 s.t. an →∞ as n→∞, we have that

Pn (Zn ≥ an) = Pn (Mn ≥ sn) where sn := an log n, so that
sn

log n
→∞ as n→∞. (3.3.97)

Finally, we conclude the proof by applying the following Fact, since we get from (3.3.96) that

Pn (Zn ≥ an)→ 0 as n→∞. (3.3.98)

Fact 25. For all n ≥ 1, let Zn : (Ωn,An,Pn) −→ R be a r.v. Assume that for any sequence (an)n≥1

s.t. an →∞ as n→∞, we have that Pn(|Zn| ≥ an)→ 0 as n→∞. Then,

Zn = OPn(1). (3.3.99)

Proof. Suppose that the sequence (Zn) is not a OPn(1). This means that there exists ε > 0 s.t. for
all k ∈ N, there exists n(k) ∈ N s.t.

Pn(k)(|Zn(k)| ≥ k) > ε. (3.3.100)

If the sequence (n(k))k is bounded, then there exists a fixed n0 ∈ N and a subsequence (n(kj))j≥1

such that for all j ≥ 1, n(kj) = n0. We can clearly assume that kj → ∞ as j → ∞, which implies
that

lim
j→∞

Pn(kj)(|Zn(kj)| ≥ kj) = lim
j→∞

Pn0(|Zn0 | ≥ kj) = 0, (3.3.101)

which contradicts (3.3.100).

If the sequence (n(k))k is not bounded, then there exists a strictly increasing subsequence (n(kj))j
s.t. n(kj) → ∞ as j → ∞. Now, we can define a sequence (an) s.t. for all j ≥ 1, an(kj) = kj . We
still can assume that kj →∞ as j →∞. Therefore, we can assume that an →∞ as n→∞, which
implies that

lim
j→∞

Pn(kj)(|Zn(kj)| ≥ kj) = lim
j→∞

Pn(kj)(|Zn(kj)| ≥ an(kj)) = 0, (3.3.102)

which contradicts (3.3.100).

3.3.6 Taylor expansion

Lemma 19. Let I be an interval of R containing 0, of non void interior, and f : I −→ R a function
of class C2. Let (Un) be a sequence of random variables Un : (Ωn,An) −→ (R,B(R)) s.t.

Un = oPn(1). (3.3.103)

Then, there exists (Bn)n≥1 ∈ A→1 s.t. for any n ≥ 1,

f(Un) = f(0) + Unf
′(0) + U2

nOPn(1) on Bn. (3.3.104)

Furthermore, if Un = oPn(un), with un −→
n∞

0, then

f(Un) = f(0) + oPn(un) on Bn. (3.3.105)
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Proof. Let ε > 0. Let δ > 0 s.t. (−δ, δ) ⊂ I. Set

Bn := {|Un| < δ}.

Since Un = oPn(1), we have that (Bn)n≥1 ∈ A→1. For any n ≥ 1, f(Un) is well defined on Bn, and
the Taylor-Lagrange formula provides a Cn with |Cn| ≤ |Un|, s.t.

f(Un) = f(0) + Unf
′(0) +

U2
n

2
f ′′(Cn). (3.3.106)

Now, Cn can be obtained from a dichotomy process, initialized with Un. This implies that for all
n, Cn is a measurable mapping from (Ωn,An) to (R,B(R)), for Cn is the limit of such mappings.
Then, as |Cn| ≤ |Un| and f ′′ is continuous, we have that

Cn −→
Pn

0 =⇒ f ′′(Cn) −→
Pn

f ′′(0) =⇒ f ′′(Cn) = OPn(1). (3.3.107)

Furthermore, if Un = oPn(un) with un −→
n∞

0, then U2
n

2 f
′′(Cn) is also a oPn(un).

3.4 Main Results

3.4.1 Theorem with small k

Theorem 17. Suppose that the Assumptions stated in Section 2.6 hold. Assume that

k −→∞ as n −→∞ and that k = o(nρ), with 0 < ρ < 1/2. (3.4.1)

Then, ∥∥∥Qnak − P̃ k1 ∥∥∥
TV
−→
n∞

0, (3.4.2)

where P̃ k1 is the joint distribution of independent r.v.’s
(
X̃j

θan
)

1≤j≤k
.

Proof. We have that

πk(Y
k

1 ) := p
(
Xk

1 = Y k
1 |S1,n = na

)
=
p
X̃k

1

(
Y k

1

)
p
S̃k+1,n

(na− Σ1,k)

p
S̃1,n

(na)
. (3.4.3)

Then we normalize, so that

πk(Y
k

1 ) = p
X̃k

1

(
Y k

1

) σ1,n(θan)

σk+1,n(θan)

pSk+1,n
(Zk)

pS1,n
(0)

where Zk :=

k∑
j=1

mj(θ
a
n)− Yj

σk+1,n(θan)
. (3.4.4)

Since (AM4) holds, we get from Corollary 7 with m = 3 that

πk(Y
k

1 ) = p
X̃k

1

(
Y k

1

) σ1,n(θan)

σk+1,n(θan)

n(Zk)

(
1 +

µ3k+1,n(θan)

6(s2k+1,n(θan))3/2
H3(Zk)

)
+ o(1)

(n−k)3/2

n(0) + o(1)

n3/2

(3.4.5)



3.4. MAIN RESULTS 61

First, we get from Corollary 6 that

σ1,n(θan)

σk+1,n(θan)
=

(
1 +

s2
1,k(θ

a
n)

s2
k+1,n(θan)

)1/2

=

(
1 +

k

n− k
O(1)

)1/2

and
µ3
k+1,n(θan)

6(s2
k+1,n(θan))3/2

=
O(1)

(n− k)1/2
.

Then, (3.4.1) implies that

σ1,n(θan)

σk+1,n(θan)
= 1 + o(1) and

µ3
k+1,n(θan)

6(s2
k+1,n(θan))3/2

= o(1). (3.4.6)

Now, we get from Corollary 6 and Lemma 18 that

Zk =
k log n√
n− k

OPn(1). (3.4.7)

Then, (3.4.1) implies that

Zk = oPn(1), so that n(Zk) −→
Pn

n(0) and H3(Zk) −→
Pn

H3(0) = 0. (3.4.8)

We obtain from the preceding lines that

πk(Y
k

1 ) = p
X̃k

1

(
Y k

1

)
(1 + oPn(1)). (3.4.9)

Finally, we apply Lemma 13 to conclude the proof.

3.4.2 Theorem with large k

Statement of the Theorem

Let yn1 ∈ (SX)n. Then, for any 0 ≤ i ≤ k − 1, there exists a unique τi(y
n
1 ) s.t.

mi+1,n(τi(y
n
1 )) =

n∑
j=i+1

yj

n− i
. (3.4.10)

For 0 ≤ i ≤ k − 1, define a density g(yi+1|yi1) by

g(yi+1|yi1) := C−1
i p̃i+1(yi+1) exp

(
−(yi+1 −mi+1(τi(y

n
1 )))2

2s2
i+2,n(τi(yn1 ))

)
exp

(
3α

(3)
i+2,n(τi(y

n
1 ))

σi+2,n(τi(yn1 ))
yi+1

)
,

where Ci is a normalizing constant which insures that
∫
g(yi+1|yi1)dyi+1 = 1 and

α
(3)
i+e,n(τi(y

n
1 )) :=

µ3
i+e,n(τi(y

n
1 ))

6(s2
i+e,n(τi(yn1 )))3/2

.

Then, we define the limiting density on Rk by

gk(y
k
1 ) :=

k−1∏
i=0

g(yi+1|yi1). (3.4.11)
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Theorem 18. Suppose that the Assumptions stated in Section 2.6 hold. Assume that k is of order
n− (log n)τ with τ > 6.

‖Qnak −Gk‖TV −→n∞ 0, (3.4.12)

where Gk is the distribution associated to the density gk.

Proof. We get from the criterion for convergence in total variation distance stated in Section 2.4.
that it is enough to prove the following Theorem.

Theorem 19. Suppose that the Assumptions stated in Section 2.6 hold. Assume that k is of order
n− (log n)τ with τ > 6. Then, there exists (Bn)n≥1 ∈ A→1 s.t. for any n ≥ 1,

pk(Y
k

1 ) := p(Xk
1 = Y k

1 |S1,n = na) = gk(Y
k

1 )[1 + oPn(1)] on Bn. (3.4.13)

The proof is given hereafter, in three steps. Throughout the proof, all the tilted densities consid-
ered pertain to θ = ti,n. We write s2

j , µ
`
j instead of s2

j (ti,n), µ`j(ti,n).

Identifying g(Yi+1|Y i
1 )

When yn1 = Y n
1 , we have that

n∑
j=i+1

yj =
n∑

j=i+1

Yj = na−
i∑

j=1

Yj Pn a.s. (3.4.14)

and

τi(Y
n

1 ) = ti,n. (3.4.15)

We recall from the first calculus of Section 3.2.5 that

πi = p̃i+1(Yi+1)
σi+1,n

σi+2,n

qi+2,n(Zi+1)

qi+1,n(0)
, where Zi+1 :=

mi+1 − Yi+1

σi+2,n
. (3.4.16)

Since (AM6) holds, we get from Corollary 8 with m = 5 that

πi = p̃i+1(Yi+1)
σi+1,n

σi+2,n


n(Zi+1)

[
1 +

5∑
ν=3

P
i+2,n
ν (Zi+1)

]
+

oPn (1)

(n−i−1)3/2

n(0)

[
1 +

5∑
ν=3

P
i+1,n
ν (0)

]
+

oPn (1)

(n−i)3/2

 . (3.4.17)

For e ∈ {1, 2}, set

α
(3)
i+e,n :=

µ3
i+e,n

6(s2
i+e,n)3/2

=
OPn(1)

(n− i− e+ 1)1/2
,
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β
(6)
i+e,n :=

(µ3
i+e,n)2

72(s2
i+e,n)3

=
OPn(1)

n− i− e+ 1
; β

(4)
i+e,n :=

µ4
i+e,n − 3

n∑
j=i+e

(s2
j )

2

24(s2
i+e,n)2

=
OPn(1)

n− i− e+ 1
,

γ
(9)
i+e,n :=

(µ3
i+e,n)3

1296(s2
i+e,n)9/2

; γ
(7)
i+e,n :=

µ3
i+e,n

(
µ4
i+e,n − 3

n∑
j=i+e

(s2
j )

2

)
144(s2

i+e,n)7/2
; γ

(5)
i+e,n :=

µ5
i+e,n − 10

n∑
j=i+e

µ3
js

2
j

120(s2
i+e,n)5/2

,

where, for ` ∈ {5, 7, 9},

γ
(`)
i+e,n =

OPn(1)

(n− i− e+ 1)3/2
. (3.4.18)

For m ∈ {3, ..., 9}, replacing Hm(Zi+1) by its expression, we have that

P
i+e,n
3 (Zi+1) = α

(3)
i+e,n

[
Z3
i+1 − 3Zi+1

]
, (3.4.19)

P
i+e,n
4 (Zi+1) = β

(6)
i+e,n

[
Z6
i+1 − 15Z4

i+1 + 45Z2
i+1 − 15

]
+ β

(4)
i+e,n

[
Z4
i+1 − 6Z2

i+1 + 3
]
, (3.4.20)

P
i+e,n
5 (Zi+1) = γ

(9)
i+e,n

[
Z9
i+1 + ...+ 945Zi+1

]
+γ

(7)
i+e,n

[
Z7
i+1 + ...− 105Zi+1

]
+γ

(5)
i+e,n

[
Z5
i+1 + ...+ 15Zi+1

]
.

(3.4.21)

Therefore,

5∑
ν=3

P
i+2,n
ν (Zi+1) = −3α

(3)
i+2,nZi+1 − 15β

(6)
i+2,n + 3β

(4)
i+2,n +OPn(1)

(log n)3

(n− i− 1)2
. (3.4.22)

and
5∑

ν=3

P
i+1
ν,n (0) = −15β

(6)
i+1,n + 3β

(4)
i+1,n.

Since n(Zi+1) = OPn(1), we can factorize n(Zi+1) in the numerator of the bracket of (3.4.17), so
that

πi = p̃i+1(Yi+1)
σi+1,n

σi+2,n

n(Zi+1)
[
1− 3α

(3)
i+2,nZi+1 − 15β

(6)
i+2,n + 3β

(4)
i+2,n +OPn(1) (logn)3

(n−i−1)2
+

oPn (1)

(n−i−1)3/2

]
n(0)

[
1− 15β

(6)
i+1,n + 3β

(4)
i+1,n +

oPn (1)

(n−i)3/2

] .

Since n− k is of order (log n)τ with τ > 6, we have for all n > 1, and i = 0, ..., k − 1,

0 ≤ (log n)3

(n− i− 1)2
(n− i− 1)3/2 ≤ (log n)3

(n− k)1/2
−→ 0 as n→∞.
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Therefore,

(log n)3

(n− i− 1)2
=

o(1)

(n− i− 1)3/2
, so that OPn(1)

(log n)3

(n− i− 1)2
=

oPn(1)

(n− i− 1)3/2

Consequently,

πi = p̃i+1(Yi+1)
σi+1,n

σi+2,n
exp

(
−
Z2
i+1

2

)
1 +

3α
(3)
i+2,n

σi+2,n
Yi+1 −

3α
(3)
i+2,n

σi+2,n
mi+1 − 15β

(6)
i+2,n + 3β

(4)
i+2,n +

oPn (1)

(n−i−1)3/2

1− 15β
(6)
i+1,n + 3β

(4)
i+1,n +

oPn (1)

(n−i)3/2


Now, we need to extract Yi+1 from the numerator of the bracket hereabove. In that purpose, set

Ui,n :=
3α

(3)
i+2,n

σi+2,n
Yi+1 + U ′i,n where U ′i,n := −

3α
(3)
i+2,n

σi+2,n
mi+1 − 15β

(6)
i+2,n + 3β

(4)
i+2,n +

oPn(1)

(n− i− 1)3/2
,

and

Vi,n := −15β
(6)
i+1,n + 3β

(4)
i+1,n +

oPn(1)

(n− i)3/2
.

Fact 26. For any n ≥ 1, let (Wi,n)0≤i≤k−1 be r.v.’s defined on (Ωn,An) s.t. max
0≤i≤k−1

|Wi,n| = oPn(1).

Then, there exists (Bn)n≥1 ∈ A→1 s.t. for all n ≥ 1, we have on Bn that for all i = 0, ..., k − 1,

1 +Wi,n = exp(Wi,n +W 2
i,nAi,n) where max

0≤i≤k−1
|Ai,n| = OPn(1). (3.4.23)

Proof. Let ε > 0. For any n ≥ 1, set

Bn :=

{
max

0≤i≤k−1
|Wi,n| < 1/2

}
.

Since max
0≤i≤k−1

|Wi,n| = oPn(1), we have that (Bn)n≥1 ∈ A→1. Now, set

f(x) := log(1 + x).

Then f satisfies the conditions of Lemma 19. Therefore, for all i = 0, ..., k − 1, there exists Ci,n
with max

0≤i≤k−1
|Ci,n| ≤ max

0≤i≤k−1
|Wi,n| s.t.

f(Wi,n) = f(0) +Wi,nf
′(0) +

W 2
i,n

2
f ′′(Ci,n) (3.4.24)

For n ≥ 1 and 0 ≤ i ≤ k−1, set Ai,n := 1
2f
′′(Ci,n). Now, f ′′(x) = − 1

(1+x)2
. Clearly, for all x ∈ (0, 1

2),

|f ′′(x)| ≤ 1
(1−x)2

. Therefore, for any n ≥ 1, we have on Bn that

max
0≤i≤k−1

|Ai,n| ≤
1(

1− max
0≤i≤k−1

|Ci,n|
)2 ≤

1(
1− max

0≤i≤k−1
|Wi,n|

)2 , (3.4.25)

which implies that max
0≤i≤k−1

|Ai,n| = OPn(1).
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Since
max

0≤i≤k−1
|Ui,n| = oPn(1) and max

0≤i≤k−1
|Vi,n| = oPn(1), (3.4.26)

we have that
1 + Ui,n
1 + Vi,n

= exp
(
Ui,n + U2

i,nAi,n − Vi,n − V 2
i,nBi,n

)
, (3.4.27)

where
max

0≤i≤k−1
|Ai,n| = OPn(1) and max

0≤i≤k−1
|Bi,n| = OPn(1).

Consequently, the preceding Fact implies that there exists (Bn)n≥1 ∈ A→1 s.t. for any n ≥ 1 and
0 ≤ i ≤ k − 1,

πi = Γi on Bn,

where

Γi = p̃i+1(Yi+1) exp

(
−(Yi+1 −mi+1)2

2s2
i+2,n

)
exp

(
3α

(3)
i+2,n

σi+2,n
Yi+1

)
σi+1,n

σi+2,n
exp

{
U ′i,n + U2

i,nAi,n − Vi,n − V 2
i,nBi,n

}
.

In order to identify g(Yi+1|Y i
1 ), we have grouped the factors containing Yi+1. Thereby, we obtain a

function of Yi+1, which we normalize to get a density. Thus, set

g(Yi+1|Y i
1 ) := C−1

i p̃i+1(Yi+1) exp

(
−(Yi+1 −mi+1)2

2s2
i+2,n

)
exp

(
3α

(3)
i+2,n

σi+2,n
Yi+1

)
,

where Ci satisfies that

Ci =

∫
exp

(
−(y −mi+1)2

2s2
i+2,n

)
exp

(
3α

(3)
i+2,n

σi+2,n
y

)
p̃i+1(y)dy.

Therefore,

Γi = g(Yi+1|Y i
1 )

{
Ci
σi+1,n

σi+2,n
exp

(
U ′i,n − Vi,n + U2

i,nAi,n − V 2
i,nBi,n

)}
. (3.4.28)

Our objective is now to prove that

k−1∏
i=0

Ci
σi+1,n

σi+2,n
exp

(
U ′i,n − Vi,n + U2

i,nAi,n − V 2
i,nBi,n

)
= 1 + oPn(1). (3.4.29)

In that purpose, we consider firstly the following result.

Lemma 20. For n ≥ 1, let (Zi,n)0≤i≤k−1 be r.v.’s defined on (Ωn,An) and (ui,n)0≤i≤k−1 be a

sequence of reals. Assume that max
0≤i≤k−1

|Zi,n| = OPn(1) and
k−1∑
i=0

ui,n −→ 0 as n→∞. Then,

k−1∏
i=0

exp (ui,nZi,n) = 1 + oPn (1) .
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Consequently, for any α ≥ 0 and β > 1,

k−1∏
i=0

exp

(
(log n)α

(n− i− 1)β
Zi,n

)
= 1 + oPn (1) .

Proof. It is enough to prove that
k−1∑
i=0

ui,nZi,n = oPn (1) . (3.4.30)

Let ε > 0 and δ > 0. There exists Aε > 0 and Nε > 0 s.t. for all n ≥ Nε,

Pn
(

max
0≤i≤k−1

|Zi,n| ≤ Aε
)
≥ 1− ε.

Now, there exists Nε,δ > 0 s.t. for all n ≥ Nε,δ,

k−1∑
i=0

|ui,n| <
δ

Aε
.

Then, for all n ≥ max {Nε;Nε,δ},

Pn

(∣∣∣∣∣
k−1∑
i=0

ui,nZi,n

∣∣∣∣∣ < δ

)
≥ Pn

({
k−1∑
i=0

|ui,n| |Zi,n| < δ

}⋂{
max

0≤i≤k−1
|Zi,n| ≤ Aε

})

≥ Pn

({
k−1∑
i=0

|ui,n| <
δ

Aε

}⋂{
max

0≤i≤k−1
|Zi,n| ≤ Aε

})

= Pn
(

max
0≤i≤k−1

|Zi,n| ≤ Aε
)

≥ 1− ε.

The factors estimated by applying Lemma 20

Corollary 10. We have that

k−1∏
i=0

{
exp

(
U2
i,nAi,n − V 2

i,nBi,n
)}

= 1 + oPn(1). (3.4.31)

Proof. We may apply Lemma 20, since

max
0≤i≤k−1

|Ui,n| =
log n

n− i− 1
OPn(1) and max

0≤i≤k−1
|Vi,n| =

OPn(1)

n− i− 1
. (3.4.32)
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Unfortunately, (3.4.32) implies that we can not apply Lemma 20 to U ′i,n and Vi,n. However, we have
that

U ′i,n − Vi,n = −
3α

(3)
i+2,n

σi+2,n
mi+1 + 3

(
β

(4)
i+2,n − β

(4)
i+1,n

)
− 15

(
β

(6)
i+2,n − β

(6)
i+1,n

)
+

oPn(1)

(n− i− 1)3/2
. (3.4.33)

Now,

β
(4)
i+2,n − β

(4)
i+1,n =

λi+2,n(s2
i+1,n)2 − λi+1,n(s2

i+2,n)2

24(s2
i+1,n)2(s2

i+2,n)2
, where λi+e,n =

n∑
j=i+e

λj and λj = µ4
j − 3(s2

j )
2

(3.4.34)

=
λi+2,n

[
(s2
i+2,n)2 + 2s2

i+2,nsi+1 + (s2
i+1)2

]
− (λi+2,n + λi+1)(s2

i+2,n)2

24(s2
i+1,n)2(s2

i+2,n)2
(3.4.35)

=
OPn(1)

(n− i− 1)2
, (3.4.36)

since in the numerator of (3.4.35), the terms of order (n− i− 1)3, that is the terms λi+2,n(s2
i+2,n)2,

vanish.

Similarly, we obtain that (
β

(6)
i+2,n − β

(6)
i+1,n

)
=

OPn(1)

(n− i− 1)2
. (3.4.37)

Combining (3.4.33), (3.4.36), (3.4.37), we obtain that

k−1∏
i=0

exp
(
U ′i,n − Vi,n

)
=

{
k−1∏
i=0

exp

(
−

3α
(3)
i+2,n

σi+2,n
mi+1

)}{
k−1∏
i=0

exp

(
OPn(1)

(n− i− 1)2
+

oPn(1)

(n− i− 1)3/2

)}
(3.4.38)

=

{
k−1∏
i=0

exp

(
−

3α
(3)
i+2,n

σi+2,n
mi+1

)}
{1 + oPn(1)} , (3.4.39)

where the last equality follows from Lemma 20. Notice that
3α

(3)
i+2,n

σi+2,n
=
OPn (1)
n−i−1 , so that the corre-

sponding factor is not in the range of Lemma 20. Finally, (3.4.31) and (3.4.39) imply that

k−1∏
i=0

Ci
σi+1,n

σi+2,n
exp

(
U ′i,n − Vi,n + U2

i,nAi,n − V 2
i,nBi,n

)
=

{
k−1∏
i=0

Ci
σi+1,n

σi+2,n
exp

(
−

3α
(3)
i+2,n

σi+2,n
mi+1

)}
{1 + oPn(1)} .
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The other factors

Therefore, in order to conclude, it is enough to prove that

k−1∏
i=0

Li,n = 1 + oPn (1) , where Li,n := Ci
σi+1,n

σi+2,n
exp

(
−

3α
(3)
i+2,n

σi+2,n
mi+1

)
. (3.4.40)

Fact 27. We have that
σi+1,n

σi+2,n
= 1 +

s2
i+1

2s2
i+2,n

+
OPn(1)

(n− i− 1)2
, (3.4.41)

and

exp

(
−

3α
(3)
i+2,n

σi+2,n
mi+1

)
= 1−

3α
(3)
i+2,n

σi+2,n
mi+1 +

OPn(1)

(n− i− 1)2
(3.4.42)

Proof. We have that

σi+1,n

σi+2,n
=

(
1 +

s2
i+1

s2
i+2,n

)1/2

and
s2
i+1

s2
i+2,n

=
OPn(1)

(n− i− 1)2
. (3.4.43)

Therefore, (3.4.41) follows readily from Lemma 19, applied with the function f : x 7→ (1 + x)1/2.
Similarly, we get (3.4.42) by applying Lemma 19 with the function f : x 7→ exp(x).

Lemma 21. We have that

Ci = 1 +
3α

(3)
i+2,n

σi+2,n
mi+1 −

s2
i+1

2s2
i+2,n

+
OPn(1)

(n− i− 1)2
. (3.4.44)

Proof. Recall that

Ci =

∫
exp (vi(y)) p̃i+1(y)dy where vi(y) := −(y −mi+1)2

2s2
i+2,n

+
3α

(3)
i+2,n

σi+2,n
y.

A Taylor expansion implies the existence of wi(y) with |wi(y)| ≤ |vi(y)| s.t.

exp(vi(y)) = 1 + vi(y) +
vi(y)2

2
exp(wi(y)). (3.4.45)

Now,∫
(1 + vi(y))p̃i+1(y)dy =

∫ [
1− (y −mi+1)2

2s2
i+2,n

+
3α

(3)
i+2,n

σi+2,n
y

]
p̃i+1(y)dy

=

∫
p̃i+1(y)dy − 1

2s2
i+2,n

∫
(y −mi+1)2p̃i+1(y)dy +

3α
(3)
i+2,n

σi+2,n

∫
yp̃i+1(y)dy

= 1−
s2
i+1

2s2
i+2,n

+
3α

(3)
i+2,n

σi+2,n
mi+1.

Consequently, it is enough to prove the following Fact.
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Fact 28. We have that

Ji :=

∫
vi(y)2

2
exp(wi(y))p̃i+1(y)dy =

OPn(1)

(n− i− 1)2
. (3.4.46)

Proof. We have that |wi(y)| ≤ |vi(y)|. Moreover, wi(y) and vi(y) are actually of the same sign, so
that exp(wi(y)) ≤ 1 + exp(vi(y)). Therefore,

Ji ≤ J (1)
i + J

(2)
i where J

(1)
i :=

∫
vi(y)2

2
p̃i+1(y)dy and J

(2)
i :=

∫
vi(y)2

2
exp(vi(y))p̃i+1(y)dy.

(3.4.47)
Now, expanding vi(y), we get readily that

J
(1)
i =

OPn(1)

(n− i− 1)2
. (3.4.48)

Fix ε > 0.

Then there exist αε, βε, γε positive and a compact Kε s.t., for all n large enough,

Pn

(
Bε
n :=

k−1⋂
i=0

{
ti ∈ Kε ; |mi+1| ≤ αε ;

1

2s2
i+2,n

≤ βε
n− i− 1

;

∣∣∣∣∣3α
(3)
i+2,n

σi+2,n

∣∣∣∣∣ ≤ γε
n− i− 1

})
≥ 1−ε.

The following lines hold on Bε
n.

For all real y, we have that

|vi(y)| ≤ βε(|y|+ αε)
2

n− i− 1
+

γε|y|
n− i− 1

(3.4.49)

For |y| ≥ αε, we have that |y −mi+1| ≥ |y − αε|, so that

vi(y) ≤ −βε(y − αε)
2

n− i− 1
+

γε|y|
n− i− 1

. (3.4.50)

Therefore,

J
(2)
i ≤ 1

2(n− i− 1)2

∫
|y|≤αε

[
βε(|y|+ αε)

2 + γε|y|
]2

exp(vi(y))p̃i+1(y)dy (3.4.51)

+
1

2(n− i− 1)2

∫
|y|≥αε

[
βε(|y|+ αε)

2 + γε|y|
]2

exp

(
−βε(y − αε)

2

n− i− 1
+

γε|y|
n− i− 1

)
p̃i+1(y)dy.

(3.4.52)

Clearly, on Bε
n, the first integral hereabove is bounded by a constant Iε. For the second integral, an

integration by parts and Assumption (Cf) imply that, on Bε
n, it is also bounded by a constant Lε.

So,

J
(2)
i =

OPn(1)

(n− i− 1)2
, (3.4.53)

which concludes the proof.
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Combining (3.4.44), (3.4.41) and (3.4.42), we obtain that

Li,n := Ci
σi+1,n

σi+2,n
exp (−κi,nmi+1) where κi,n :=

3α
(3)
i+2,n

σi+2,n

=

[
1 + κi,nmi+1 −

s2
i+1

2s2
i+2,n

+
OPn(1)

(n− i− 1)2

][
1 +

s2
i+1

2s2
i+2,n

+
OPn(1)

(n− i− 1)2

][
1− κi,nmi+1 +

OPn(1)

(n− i− 1)2

]

=

[
1 + κi,nmi+1 −

s2
i+1

2s2
i+2,n

+
OPn(1)

(n− i− 1)2

][
1− κi,nmi+1 +

s2
i+1

2s2
i+2,n

+
OPn(1)

(n− i− 1)2

]

= 1 +
OPn(1)

(n− i− 1)2
.

Therefore, we may write Li,n = 1 +
Wi,n

(n−i−1)2
, where max

0≤i≤k−1
|Wi,n| = OPn(1). Then, we get from

Lemma 19 applied with f : x 7→ log(1 + x) that

log(Li,n) = log

(
1 +

Wi,n

(n− i− 1)2

)
=

Wi,n

(n− i− 1)2
+

(
Wi,n

(n− i− 1)2

)2

OPn(1)

Therefore,

log

(
k−1∏
i=0

Li,n

)
=

k−1∑
i=0

log(Li) = OPn(1)

k−1∑
i=0

1

(n− i− 1)2
= oPn(1). (3.4.54)

Consequently,
k−1∏
i=0

Li,n = 1 + oPn(1). (3.4.55)

Finally, we have proved that there exists (Bn)n≥1 ∈ A→1 s.t. for any n ≥ 1,

pk(Y
k

1 ) =

k−1∏
i=0

Γi on Bn

and
k−1∏
i=0

Γi = gk(Y
k

1 ) [1 + oPn(1)] .



Chapter 4

Functional Limit Laws for the
increments of L‘evy processes

4.1 Introduction

Let {Z(t) : t ≥ 0} be a right-continuous with left-hand limits Lévy process (see, e.g., Bertoin
(1998)). We assume that Z(0) = 0 , so that the distribution of {Z(t) : t ≥ 0} is fully characterized
by the law of Z := Z(1). Denote the increment functions on Z(·) by γZx,a(s) := Z(x + as) − Z(x),
for x ≥ 0, a > 0 and s ∈ [0, 1]. The purpose of the present paper is to establish functional limit
laws for sets of rescaled increments of Z(·), of the form

HT = HZT :=
{
b−1
T γZx,aT (·) : 0 ≤ x ≤ T − aT

}
for T > 0. (4.1.1)

Limit laws for increment functions such that we have in mind have been established by Révész
(1979), Borovkov (1990), Deheuvels (1991), Deheuvels and Mason (1993), Sanchis (1994a) and
Sanchis (1994b), among others, for variants of Z(·), and under various assumptions on aT and bT .
Here, 0 < aT ≤ T and bT > 0 are functions of T > 0 which will be specified later on. Our aim is to
show that, under appropriate conditions, we have almost surely (a.s.)

lim
T→∞

∆
(
HZT ,K

)
= 0, (4.1.2)

where K is a deterministic limit set of functions, and ∆(·, ·), a Hausdorff-type set-distance (see,
e.g., (4.1.4) below). Our main results will be stated in Theorems 25 and 26, in the sequel.

We will make use of the following notation. We denote by E be a set of right-continuous functions
on [0, 1] fulfilling HZT ⊆ E for all T > 0. We endow E with a metric topology T , defined by a
suitable distance dT . Mostly, we shall limit ourselves to the cases where dT is either the uniform
distance (denoted by dU ), or the Högnäs distance (denoted by dW), whose definition is postponed
until (4.1.14) below. For each f ∈ E and ε > 0, we denote by BT (f, ε) := {g ∈ E : dT (f, g) < ε},
the open ball of center f and radius ε, pertaining to (E , T ). For each non-empty subset A ⊆ E , and
each ε > 0, we set

Aε = Aε;T :=
{
g ∈ E : dT (f, g) < ε for some f ∈ A

}
=
⋃
f∈A

BT (f, ε). (4.1.3)

71
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We extend the definition (4.1.3) to A = ∅, by setting ∅ε = ∅ for all ε > 0. The Hausdorff distance
between the subsets A,B ⊆ E of E is defined, in turn, by

∆T (A,B) := inf
{
ε > 0 : A ⊆ Bε and B ⊆ Aε

}
. (4.1.4)

Let X denote a random variable [rv], with moment-generating function [mgf] defined by ψX(t) =
E(exp(tX)) ∈ (0,∞] for t ∈ R. The Legendre transform ΨX of ψX is denoted by

ΨX(α) := sup
{t:ψX(t)<∞}

{αt− logψX(t)} for α ∈ R. (4.1.5)

Set t1 := inf {t : ψX(t) <∞} and t0 := sup {t : ψX(t) <∞}. We refer to Deheuvels (1991) for a
discussion of the properties of the mgf ψX(·), and its Legendre transform ΨX(·). The observation
that ψX(0) = 1 entails that −∞ ≤ t0 ≤ 0 ≤ t1 ≤ ∞. We shall make use, at times, of the following
assumptions on ψX .

(CX) ψX(t) <∞ for all t ∈ R ⇔ t1 = −∞ and t0 =∞.

(AX) ψX(t) <∞ in a neighborhood of 0 ⇔ t1 < 0 < t0.

Also, at times, we shall impose the following conditions upon {aT : T > 0}.

(A1) aT and Ta−1
T are ultimately non-decreasing functions of T > 0;

(A2) aT
log T → d ∈ (0,∞] and

log Ta−1
T

log log T →∞ as T →∞.

The Proposition 1 below, which is an is an easy consequence of the results of Deheuvels and Mason
(1993), gives some motivation to our work. Denote by B(0, 1) (resp. C(0, 1), resp. AC(0,1)) the set
of bounded left-continuous (resp., continuous, resp., absolutely continuous) functions on [0, 1]. We
endow, at first, B(0, 1) ⊇ C[0, 1] ⊇ AC(0, 1) with the uniform distance defined by dU (f, g) := ‖f−g‖,
where ‖f‖ := sup0≤s≤1 |f(s)|. Introduce a functional IW , defined on B(0, 1) by

IW (f) =

{∫ 1
0 ḟ(s)2ds if f ∈ AC(0, 1) and f(0) = 0,

∞ otherwise.

Set log+ t = log(t ∨ e) and log2(t) = log+log+ t for t ∈ R. Consider the Strassen-type set (refer to
Strassen (1964))

S :=
{
f ∈ C[0, 1] : IW (f) ≤ 1

}
. (4.1.6)

Proposition 1. Let (A1) and (A2) hold with d = ∞. Assume that,for all t ≥ 0, E[Z(t)] = 0 and
Var[Z(t)] = t. Set bT := [2aT

(
log+(T/aT ) + log2 T )

)
]1/2 for T > 0. Then, under (AZ), we have

lim
T→∞

∆U
(
HZT , S

)
= 0 a.s. (4.1.7)

Proof. Let {W (t) : t ≥ 0} be a standard Wiener process. In view of the notation (4.1.1) and under
the assumptions above, we infer from the results of Révész (1979) that

lim
T→∞

∆U
(
HWT ,S

)
= 0 a.s. (4.1.8)
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Under the assumptions of the proposition, the following strong invariance principle holds (see, e.g.,
Deheuvels and Mason (1993)). There exists a probability space on which we can define a standard
Wiener process {W (t) : t ≥ 0} jointly with {Z(t) : t ≥ 0}, in such a way that, as T →∞,

sup
0≤t≤T

|Z(t)−W (t)| = O(log T ) a.s. (4.1.9)

By combining (4.1.8) with (4.1.9), we conclude readily (4.1.7).2

In the remainder of our paper, we investigate the case of ”intermediate increments” aT , namely, when
(A2) holds for some 0 < d <∞ (we leave aside ”small increments”, for which d = 0. Intermediate
increments correspond to the increment sizes investigated by Erdős and Rényi (see, e.g., Erdős and
Rényi, (1970)) for increments of partial sums. In this case, invariance principles of the form given
in (4.1.9) cannot be used to obtain variants of Propostion 1. This follows from the fact that the
rate in (4.1.9) cannot be reduced to o(log T ) (see, e.g., Deheuvels and Mason (1993)). For such
”intermediate increments”, functional limit laws for rescaled increments of the form (4.1.2), when
Z(·) is formally replaced in the definition (4.1.1) by a partial sum process S(·), are well known. For
their statement, we need the following notation. Letting {Xi : i ≥ 1}, with X := X1, denote a
sequence of independent and identically distributed [iid] rv’s, the corresponding partial sum process
is defined by

S(t) :=

btc∑
i=1

Xi for t ≥ 0, (4.1.10)

where btc ≤ t < btc + 1 denotes the integer part of t. In this setup, functional limit laws may be
obtained through the formal replacement of Z(·) by S(·). The appropriate choice of the scaling
factor is here bT = aT , in relation with Cramér type large deviations principles (see, e.g., (Cramér,
1937)). We refer to Borovkov (1990), Deheuvels (1991), Sanchis (1994a) and Sanchis (1994b), for
the corresponding results. The following Theorem 20 is a consequence of their results, for sets of
increment functions of S(·) of the form

Mn,k := {si,k : 0 ≤ i ≤ n− k} ,
where

si,k(t) :=
S(i+ bktc)− S(i) + (kt− bktc)Xi+bktc+1

k
for 0 ≤ t ≤ 1.

For each pair of integers n and k such that 1 ≤ k ≤ n,Mn,k ⊆ C0(0, 1) := {f ∈ C(0, 1) : f(0) = 0}.
Define a functional IX on C0(0, 1) by setting, for each f ∈ C0(0, 1),

IX(f) =

{∫ 1
0 ΨX(ḟ(s))ds if f ∈ AC(0, 1),

∞ otherwise.

Now, for any α > 0, introduce the set

Kα := {f ∈ C0(0, 1) : IX(f) ≤ α} . (4.1.11)

Theorem 20. Under (CX), for any c > 0 and k = bc log nc, we have that

lim
T→∞

∆U
(
Mn,k,K1/c

)
= 0 a.s. (4.1.12)
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Theorem 21 below is a variant of Theorem 20, obtained under more general assumptions. For c > 0
and aT = c log+ T , let FT be the set of Erdős-Rényi-type increment functions of {S(t) : t ≥ 0},
defined by

FT := {c βx,T : 0 ≤ x ≤ T−aT } where βx,T (s) :=
S(x+ saT )− S(x)

aT
for 0 ≤ s ≤ 1. (4.1.13)

We see here that FT ⊆ BV0(0, 1), where BV0(0, 1) denotes the set of all right-continuous functions
f on [0, 1] with bounded variation, and such that f(0) = 0. In words, BV0(0, 1) is the space of
all distribution functions of totally bounded signed Radon measures on [0, 1]. In the sequel, we
will identify f ∈ BV0(0, 1) with the signed measure µf such that df = µf . We define below on
BV0(0, 1) a distance dW (see, e.g., (Högnäs, 1977)), which metricizes the weak convergence of signed
measures. We denote by ∆W the corresponding Hausdorff distance. Set, for f, g ∈ BV0(0, 1),

dW(f, g) =

∫ 1

0
|f(u)− g(u)|du+ |f(1)− g(1)|. (4.1.14)

For f ∈ BV0(0, 1), write f = f+ − f−, where df = df+ − df− is the Hahn-Jordan decomposition of
df . For any g ∈ BV0(0, 1), denote by g = gA + gS , where dg = dgA + dgS stands for the Lebesgue
decomposition of dg into an absolutely continuous and a singular component. For c > 0, we define
functionals JX and JX,c on BV0(0, 1) by setting, for each f ∈ BV0(0, 1)

JX(f) =

∫ 1

0
ΨX

(
d

ds
fA(s)

)
ds+ t0f

S
+(1)− t1fS−(1) (4.1.15)

and

JX,c(f) := cJX

(
f

c

)
. (4.1.16)

We set, further,
Dc := {f ∈ BV0(0, 1) : JX,c(f) ≤ 1} . (4.1.17)

Theorem 21. Let X be centered, with finite variance, and nondegenerate, meaning that P (X =
x) < 1 for all x. Assume further that (A2) holds with 0 < d <∞. Then, under (AX1), we have

lim
T→∞

∆W (FT,c, Dc) = 0 a.s. (4.1.18)

In addition, under (CX1), we have

lim
T→∞

∆U (FT,c, Dc) = 0 a.s. (4.1.19)

The limiting behaviour of rescaled increments of Lévy processes mimicks closely the limiting be-
havior of rescaled increments of partial sums processes given in Theorems 20 and 21. As expected,
we obtain results analogous to Theorem 21 when we replace partial sum processes by Lévy pro-
cesses. The following additional notation will be useful. For x ≥ 0, and ` > 0, define standardized
increment functions of Z(·) by setting

ηx,`(s) :=
Z(x+ `s)− Z(x)

`
for s ∈ [0, 1]. (4.1.20)
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In this paper, we consider intermediate Erdős-Rényi-type increments of the form

aT = c log T, for some c > 0. (4.1.21)

Our aim is to characterize the limiting behavior of the random set of increment functions

GT := {ηx,aT : 0 ≤ x ≤ T − aT }. (4.1.22)

The forthcoming Fact 32 in Section 3.1 will show that the Theorem 22, stated below, due to (Frolov,
2008), is a consequence of a functional limit theorem for GT .

Theorem 22. Set Ψ := ΨZ(1). Define c0 by 1/c0 = sup {Ψ(z) : Ψ(z) <∞}. For any c > c0, set
aT = c log(T ). For any u > 0, set γ(u) := sup{z ≥ 0 : Ψ(z) ≤ u}. Then, under

(
AZ(1)

)
, we have

lim
T→∞

{
sup
f∈GT

f(1)

}
= lim

T→∞

{
sup

0≤x≤T−aT

Z(x+ aT )− Z(x)

aT

}
= γ(1/c) a.s. (4.1.23)

This remainder of the present paper is organized as follows. In Section 2, we present general results
on Lévy processes which will be needed in our proofs. Our main results are stated in Section 3,
with proofs detailed in Section 4. Some technical results are deferred to the Appendix.

4.2 General results

4.2.1 Lévy Processes

Let {Z(t) : t ≥ 0} be a Lévy process. The similarities between the structure of {Z(t) : t ≥ 0} and
that of {S(t) : t ≥ 0} are essentially due to the infinitely divisibility of the distribution of Z(1). This
implies that, for each λ > 0, the discretized version {Z(nλ) : n ≥ 0} of Z(·) is a sequence of partial
sums of iid random variables. The law of the random variable Z(1) (and hence, the distribution of
{Z(t) : t ≥ 0}, see, e.g., Bertoin (1998)) is characterized by a unique triple of constants, (a, σ2, π),
whith a ∈ R, σ2 ≥ 0, and where π denotes a measure on R − {0} such

∫
R−{0}min

{
x2, 1

}
π(dx) <

∞. This relies on the Lévy-Itô decomposition, implying that the process {Z(t) : t ≥ 0} may be
decomposed into

Z(t) = Z(1)(t) + Z(2)(t) + Z(3)(t), (4.2.1)

where Z(1), Z(2) and Z(3) are three independent stochastic processes described hereafter. Z(1)(·) is
a Wiener process with linear drift, namely such that Z(1)(t) = σW (t)− at, where {W (t) : t ≥ 0} is
a standard Wiener process; Z(2)(·) is a compound Poisson process and Z(3)(·) is a square integrable
martingale, both defined in terms of π. Consequently, the distribution of {Z(t) : t ≥ 0} is fully
determined by that of Z(1), which is itself characterized by its mgf, denoted by ψ(t) = E(exp(tZ(1)).
Denote by Ψ the Legendre transform of ψ. Introduce the following assumptions.

(C) : ψ(t) <∞ for all t ∈ R.

(A) : t1 := inf {t : ψ(t) <∞} < 0 < t0 := sup {t : ψ(t) <∞} and Z(1) has no Gaussian compo-
nent.
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4.2.2 Functional spaces

Our results rely heavily on the large deviations principles (LDP) for the distributions (Pλ)λ>0 of
the processes {Zλ(t) : 0 ≤ t ≤ 1}, defined by

Zλ(t) :=
1

λ
Z(λt). (4.2.2)

Below we present some useful results concerning the spaces of functions which contain the sample
paths of {Zλ(t) : 0 ≤ t ≤ 1}.

The Skorohod space

By definition of a Lévy process, for any λ > 0, the sample paths of {Zλ(t) : 0 ≤ t ≤ 1} belong to the
space D(0, 1) of right-continuous with left-hand limits functions on [0, 1]. We endow D(0, 1) either
with the uniform topology U , or with the Skorohod topology S. We recall from (Billingsley, 1999)
that the Skohorod topology S on D(0, 1) is induced by the distance dS defined by

dS(f, g) = inf
ν∈Λ

{
max (‖ν − I‖ ; ‖f − g ◦ ν‖)

}
, (4.2.3)

where Λ is the class of strictly increasing, continuous mappings of [0, 1] onto itself.

Let C(0, 1) denote the set of continuous functions on [0, 1]. For any f ∈ C(0, 1), let ωf denote the
modulus of continuity of f , defined by

ωf (δ) = sup
|s−t|≤δ

|f(s)− f(t)| . (4.2.4)

Fact 29. Let K be a compact subset of (C(0, 1),U). Then, for any ε > 0, there exists a ζ > 0 such
that for all g ∈ K,

BU (g, ε) ⊇ BS(g, ζ). (4.2.5)

Proof. Let ε > 0. By the Arzelà-Ascoli theorem, there exists a δ > 0 such that

sup
g∈K

ωg(δ) <
ε

2
. (4.2.6)

Set ζ := min
{
δ; ε2
}

. We infer from (4.2.3) that, for all g ∈ K and h ∈ BS(g, ζ), there exists a
νh ∈ Λ satisfying

‖νh − I‖ < ζ ≤ δ and ‖h− g ◦ νh‖ < ζ ≤ ε

2
. (4.2.7)

Therefore,

‖g ◦ νh − g‖ ≤ wg(‖νh − I‖) <
ε

2
and

‖h− g‖ ≤ ‖h− g.νh‖+ ‖g ◦ νh − g‖ < ε.

Fact 30. Let x ≥ 0. Then, for any B ∈ BS , we have

P
(
(Z(x+ ·)− Z(x)) ∈ B

)
= P (Z(·) ∈ B) . (4.2.8)
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Proof. Let k ∈ N and (ti)1≤i≤k with 0 ≤ t1 < ... < tk ≤ 1. Let π(ti) be the natural projection from

D(0, 1) to Rk defined by π(ti)(f) = (f(ti)). Since Z has independent and stationary increments, for

all Borel subset H of Rk, we have that

P
(

(Z(x+ ·)− Z(x)) ∈ π−1
(ti)

(H)
)

= P
(
Z(·) ∈ π−1

(ti)
(H)

)
. (4.2.9)

Finally, we conclude our proof by an application of Theorem 12.5 of (Billingsley, 1999), which
asserts that if the laws of two processes valued in D(0, 1) agree on all sets of the form π−1

(ti)
(H), then

they agree on the whole family of sets BS .

Fact 31. For all x ≥ 0 and u > 0, we have

P

(
sup

0≤s≤1
|Z(x+ s)− Z(x)| > u

)
= P

(
sup

0≤s≤1
|Z(s)| > u

)
. (4.2.10)

Proof. Let (sk)k∈N be an enumeration of Q ∩ [0, 1]. Since any f ∈ D(0, 1) is right-continuous, we
have that

P

(
sup

0≤s≤1
|Z(x+ s)− Z(x)| > u

)
= P

(
(Z(x+ ·)− Z(x)) ∈

⋃
k∈N
{f ∈ D(0, 1) : |f(sk)| > u}

)
.

(4.2.11)
We recall from Section 12 of (Billingsley, 1999) that for any s ∈ [0, 1], the map f ∈ D(0, 1) 7→ f(s) is
measurable with respect to BS . Therefore,

{⋃
k∈N {f ∈ D(0, 1) : |f(sk)| > u}

}
∈ BS , so we conclude

by an application of Fact 30.

The space BV0,M (0, 1)

Whenever (A) is in force, it follows from general properties of infinitely divisible distributions (see,
e.g., the discussion, Section 5 in (Lynch and Sethuraman, 1987)), that for each λ > 0, the sample
paths of {Zλ(t) : 0 ≤ t ≤ 1} belong to BV0(0, 1). We endow this set with the topology W of weak
convergence of the underlying signed measures. Next, for each A ⊂ BV0(0, 1) and ε > 0, we set

Aε =
⋃
f∈A

BW(f, ε),

where BW(f, ε) := {g ∈ BV0(0, 1) : dW(f, g) < ε}. We observe that the Aε is not necessarily open
with respect to W, since dW does not define the weak topology on the whole set BV0(0, 1). Thus,
we are not allowed to apply a LDP to some Aε or to its complement. Therefore, we need to restrict
the weak topology as follows. For f ∈ BV0(0, 1), let |f |v(1) := f+(1) + f−(1) be the total variation
of f in the interval [0, 1]. For any M > 0, set

BV0,M (0, 1) := {f ∈ BV0(0, 1) : |f |v(1) ≤M} . (4.2.12)

Then, for M > 0, the restriction of the weak topology to BV 0,M (0, 1) is metricized by the distance
dW . In the sequel, we endow BV 0,M (0, 1) with the weak topology.

Lemma 22. For any M > 0, BV0,M (0, 1) is a compact metric space.

Proof. see, e.g., Proposition 1.4. in (Deheuvels, 2007).
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4.2.3 Functional large deviations

We recall some definitions and results on large deviations theory.

Definition 16. Let E be a topological space, endowed with a topology T and its Borel σ-algebra,
denoted by BT . A function I : E −→ [0,∞) is a rate function if I is lower semicontinuous.
Furthermore, we say that I is a good rate function if for all α < ∞, the level set KI(α) :=
{f ∈ E : I(f) ≤ α} is compact. We say that a family of probability measures (Pλ)λ≥0 on (E ,BT )
satisfies a Large Deviation Principle (LDP) with rate function I if for any closed (resp. open)
subset F (resp. G) of T , we have :

lim
λ→∞

1

λ
logPλ(F ) ≤ −I(F ) (upper bound) (4.2.13)

and lim
λ→∞

1

λ
logPλ(G) ≥ −I(G) (lower bound). (4.2.14)

where for any non-empty subset A of E, I(A) := inf
f∈A
I(f).

First, we have the following general result.

Lemma 23. Let (E , d) be a metric space. Let I be a good rate function on (E , d). Then, for all
positive α and ε, we have that

inf
f /∈(Kα)ε

I(f) > α. (4.2.15)

Proof. Suppose that I((Kε
α)c) = α. Then there’s a sequence (xn) with xn /∈ (Kα)ε for all n, such that

I(xn)↘ α. For some N and all n ≥ N , we have I(xn) ≤ α+1, so that xn ∈ {x ∈ E : I(x) ≤ α+ 1},
which is a compact set. Hence, (xn)n≥N has a convergent subsequence xnk → x, as k → ∞. Since
I is lower semicontinuous, we have that I(x) ≤ lim

k→∞
I(xnk) = α. Therefore, x ∈ Kα. Now, for all

n, xn /∈ (Kα)ε, so that d(xn, x) ≥ ε, which leads to a contradiction.

Now, we state the functional LDP, under (C) and then under (A) on which our proofs rely. In the
sequel, ΨZ(1) is denoted by Ψ.

Let I be the functional defined on D[0, 1], by

I(f) =

{∫ 1
0 Ψ(ḟ(s))ds if f ∈ AC(0, 1) and f(0) = 0,

∞ otherwise.

Lemma 24. Under (C), I is a good rate function.

Proof. Since I(f) =∞ whenever f /∈ AC(0, 1), we obtain that for any α > 0, KI(α) := {f ∈ D(0, 1) : I(f) ≤ α} =
{f ∈ AC(0, 1) : I(f) ≤ α}. Now, since (C) holds, Theorem 1.1. in (Deheuvels, 2007) implies that
the set {f ∈ AC(0, 1) : I(f) ≤ α} is a compact subset of (C(0, 1),U). We conclude by recalling
that the restriction of S to C(0, 1) coincides there with U , which implies that a compact subset of
(C(0, 1),U) is also a compact subset of (D(0, 1),S).
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Theorem 23. Under (C), the distributions (Pλ)λ>0 satisfy a LDP in (D(0, 1),S), with rate function
I.

Proof. See, e.g., (Varadhan, 1966).

Let J be the functional defined on BV0(0, 1) by

J(f) =

∫ 1

0
Ψ

(
d

ds
fA(s)

)
ds+ t0f

S
+(1)− t1fS−(1). (4.2.16)

Theorem 24. Under (A), the distributions (Pλ)λ>0 satisfy a LDP in (BV0(0, 1),W), with good
rate function J .

Proof. See, e.g., (Lynch and Sethuraman, 1987).

4.3 Functional Erdős-Rényi theorems

4.3.1 Main results

We consider the following assummption.

(E) : There exists a constant µ such that for all t ≥ 0, E[Z(t)] = µt.

The next two theorems, called Erdős-Rényi functional laws (ERFL), are the main results of this
paper.

Theorem 25. Assume that (C) and (E) hold. For c > 0, set

K1/c := {f ∈ D(0, 1) : I(f) ≤ 1/c} , (4.3.1)

where I is the rate function defined in Section 2. Then, for any c > 0 and aT = c log(T ), we have

lim
T→∞

∆U
(
GT ,K1/c

)
= 0 a.s. (4.3.2)

Theorem 26. Assume that (A) and (E) hold. For any integers n > 0 and q < n, set

Mn,q := {ηm,q : m ∈ {0, ..., n− q}} . (4.3.3)

For any c > 0, set An := bc log nc. Assume that for all c large enough, there exists a constant
M > 0 such that almost surely for all n large enough, we have that

Mn,An ⊂ BV0,M (0, 1). (4.3.4)

For c > 0, set

L1/c := {f ∈ BV0(0, 1) : J(f) ≤ 1/c} , (4.3.5)

where J is the rate function defined in Section 2. Then, for all c large enough, we have that

lim
n→∞

∆W(Mn,An , L1/c) = 0 a.s. (4.3.6)
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The following Fact usually provides applications when functional limit theorems are established.

Fact 32. Let (E , d) be a metric space of functions defined on [0, 1]. Let Θ : (E , d) −→ R be a
continuous map. Assume that for some compact subset K of E, lim

T→∞
∆(HT ,K) = 0 a.s. Then, we

have that

lim
T→∞

{
sup
f∈HT

Θ(f)

}
= sup

f∈K
Θ(f) a.s. (4.3.7)

Corollary 1 below follows from Theorems 25 and 26 (and their proofs) combined to Fact 32 applied
to the functional f 7→ f(1), which is continuous with respect to the uniform topology and the weak
topology.

Corollary 11. Under the assumptions of Theorem 25, we have that for any c > 0,

lim
T→∞

sup
0≤x≤T−aT

Z(x+ aT )− Z(x)

aT
= γ(1/c) a.s. (4.3.8)

and lim
n→∞

sup
0≤m≤n−An

Z(m+An)− Z(m)

An
= γ(1/c) a.s. (4.3.9)

Under the assumptions of Theorem 26, we have that for all c large enough, (4.3.9) holds.

4.3.2 Examples

Continuous paths

Let {Z(t) : t ≥ 0} be a Lévy process with continuous paths. We recall that in this case, {Z(t) : t ≥ 0}
is a brownian motion with drift. Therefore, Theorem 25 yields an ERFL for {Z(t) : t ≥ 0}, since it
satisfies (E) and (C).

Subordinators

Let {Z(t) : t ≥ 0} be a subordinator, that is a Lévy process with almost surely increasing paths.
Then, for any n > 0 and m ∈ {0, ..., n−An}, we have that

|ηm,An |v(1) =
Z(m+An)− Z(m)

An
. (4.3.10)

Then, we deduce easily from Theorem 22 that for any c > 0 large enough, there exists a constant
Mc <∞ such that

lim
n→∞

sup
0≤m≤n−An

|ηm,An |v(1) ≤Mc a.s. (4.3.11)

So if we assume in addition that (E) and (A) hold, then {Z(t) : t ≥ 0} satisfies the assumptions of
Theorem 26.
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Compound Poisson process

Recall that given a sequence {Yi : i ≥ 1} of i.i.d. r.v.’s. and a homogeneous, right continuous Poisson
process {N(t) : t ≥ 0} which we assume to be independent of {Yi : i ≥ 1}, the compound Poisson
process {SN (t) : t ≥ 0} is defined by

SN (t) =

N(t)∑
i=1

Yi. (4.3.12)

Denote by λ the parameter of {N(t) : t ≥ 0}. Recall that for any t ≥ 0, we have that

E[SN (t)] = λtE[Y1] ; ψSN (1)(u) = exp[λ(ψY1(u)− 1)]. (4.3.13)

Consequently, (E) holds. If we assume that (CY1) holds, then {SN (t) : t ≥ 0} satisfies (C), and
therefore the assumptions of Theorem 25.

Now, assume that (AY1) holds. Notice that for any x ≥ 0 and ` > 0, we have that

|ηx,`|v(1) = `−1

N(x+`)∑
j=N(x)+1

|Yj | = `−1 {|SN |(x+ `)− |SN |(x)} , (4.3.14)

where |SN |(t) :=
N(t)∑
j=1
|Yj |. Then, {|SN |(t) : t ≥ 0} is also a compound Poisson process with ψ|SN |(1)(u) =

exp[λ(ψ|Y1|(u)− 1)]. So for |u| < β := min {|t1|, |t0|}, we have that

ψ|Y1|(u) =

∫ 0

−∞
exp(−ux)dP (Y1 ≤ x)+

∫ ∞
0

exp(ux)dP (Y1 ≤ x) ≤ ψY1(−u)+ψY1(u) <∞. (4.3.15)

Therefore, (A|SN |(1)) holds and we deduce from (4.3.14) combined with Theorem 22 that {SN (t) : t ≥ 0}
satisfies the assumptions of Theorem 26.

4.4 Proofs

The statement that lim
T→∞

∆T (HT ,K) = 0 a.s. is equivalent to the statement that, for any ε > 0,

there exists a.s. T (ε) <∞ such that for all T ≥ T (ε),

HT ⊂ Kε and K ⊂ (HT )ε. (4.4.1)

We give several preliminary lemmas which lead to the proofs of Theorems 25 and 26 in Section 4.3.
We call the first statement in (4.4.1) the upper bound, while the second is called the lower bound.
The reason is that for the first we use an upper bound in a functional LDP while we use a lower
bound for the second one. For any c > 0, set

Ln := {ηx,An : 0 ≤ x ≤ n−An} . (4.4.2)

For any integer j large enough, set nj := max {n : An = j}, so that exp( jc ) ≤ nj < exp( j+1
c ).
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4.4.1 The upper bound

Lemma 25. Assume that (C) holds. Then, for any ε > 0, the series
∑
j
P
(
Mnj ,j 6⊂ (K1/c)

ε;U) is

convergent.

Proof. Fix ε > 0. Since for all c > 0, K1/c is a compact subset of (C(0, 1),U), Fact 29 implies that
there exists ζ > 0 such that

(K1/c)
ε;U =

⋃
g∈K1/c

BU (g, ε) ⊃
⋃

g∈K1/c

BS(g, ζ) = (K1/c)
ζ;S . (4.4.3)

Let F be the complement in D(0, 1) of (K1/c)
ζ;S . Therefore, for all n > 0, we have that

P
(
Mn,An 6⊂ (K1/c)

ε;U) ≤ n−An∑
m=0

P (ηm,An ∈ F ) ≤ nP
(
Z(An·)
An

∈ F
)
. (4.4.4)

The last inequality is justified by Fact 30. Since (C) holds, we can apply Theorem 23 : F being a
closed subset of (D(0, 1),S), for any θ > 0, we have for all n large enough,

P
(
Mn,An 6⊂ (K1/c)

ε;U) ≤ n exp [An (−I(F ) + θ)] . (4.4.5)

Then, by Lemma 23, I is a good rate function. Therefore, applying Lemma 22 with (E , d) =
(D(0, 1), dS), we can write I(F ) = 1

c + δ with δ > 0. So applying (4.4.5) with θ = δ
4 , we have for all

n large enough,

P
(
Mn,An 6⊂ (K1/c)

ε;U) ≤ n exp

(
−An

(
1

c
+

3δ

4

))
. (4.4.6)

Applying this inequality with n = nj , so that An = j, we obtain that

P
(
Mnj ,j 6⊂ (K1/c)

ε;U) ≤ nj exp

(
−j
(

1

c
+

3δ

4

))
< exp

(
j + 1

c

)
exp

(
−j
(

1

c
+

3δ

4

))
= exp

(
1

c
− j 3δ

4

)
.

Lemma 26. Suppose that the assumptions of Theorem 26 hold. Then, for any ε > 0, the series∑
j
P
(
Mnj ,j 6⊂ (L1/c)

ε;W) is convergent.

Proof. Set L̃ε1/c := (L1/c)
ε;W ⋂BV0,M (0, 1). Then, it is enough to prove that the series

∑
j
P
(
Mnj ,j 6⊂ L̃ε1/c

)
is convergent. Denote by F the complement of L̃ε1/c in BV0,M (0, 1). Then F is a closed subset of

(BV0,M (0, 1),W), and therefore a closed subset of (BV0(0, 1),W). Since (A) holds, we can apply
Theorem 24. As in (3.5) in Deheuvels (1991), for any θ > 0, we have for all n large enough,

P
(
Mn,an 6⊂ L̃ε1/c

)
≤ nP

(
Z(An·)
An

∈ F
)
≤ n exp[An (−J(F) + θ)]. (4.4.7)
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Denote by JM the restriction of J to BV0,M (0, 1). Since F ⊂ BV0,M (0, 1), we have that J(F) =
JM (F). Now, a level set of JM is a closed subset of the compact set BV0,M (0, 1),W). Therefore,
JM is a good rate function on the metric space (BV0,M (0, 1), dW). So applying Lemma 23, we get
that J(F) > 1/c. We conclude as in the proof of Lemma 25.

Lemma 27. Assume that, for all ε > 0, we have that∑
j

P
(
Mnj ,j 6⊂ Kε

)
<∞ (4.4.8)

and ∑
j

njP

(
sup

0≤τ≤1
|Z(τ)| ≥ jε

)
<∞. (4.4.9)

Then almost surely, for all n large enough, we have that

Ln ⊂ Kε. (4.4.10)

Proof. For any ε > 0, we have for all j large enough,

P
(
Lnj 6⊂ Kε

)
≤ P

({
Lnj 6⊂ Kε

}
∩
{
Mnj ,j ⊂ Kε/2

})
+ P

({
Mnj ,j 6⊂ Kε/2

})
. (4.4.11)

Set Pj := P
({
Lnj 6⊂ Kε

}
∩
{
Mnj ,j ⊂ Kε/2

})
. For any real x, let kx be the integer which is nearest

to x (we choose kx = bx log nc if x ∈ 1
2N). Assume that the event

{{
Lnj 6⊂ Kε

}
∩
{
Mnj ,j ⊂ Kε/2

}}
is realized. So there exists ηx0,j ∈ Lnj , with x0 /∈ N, such that for all g ∈ K, dU (ηx0,j , g) ≥ ε. Now,
there exists gkx0 ∈ K such that dU (ηkx0 ,j , gkx0 ) < ε

2 . Then, the triangle inequality implies that
necessarily, dU (ηx0,j , ηkx0 ,j) ≥

ε
2 . Therefore,

Pj ≤ P

(
sup

0≤x≤nj−j

{∥∥∥∥Z(x+ j·)− Z(x)

j
− Z(kx + j·)− Z(kx)

j

∥∥∥∥} ≥ ε

2

)
(4.4.12)

and so

Pj ≤ P

(
sup

0≤x≤nj−j
{‖Z(x+ j·)− Z(kx + j·)‖+ ‖Z(x)− Z(kx)‖} ≥ j ε

2

)
. (4.4.13)

Now, for all s ∈ [0, 1], we have that |(x+ js)− (kx + js)| ≤ 1
2 , so that

sup
0≤x≤nj−j

sup
0≤s≤1

|Z(x+ js)− Z(kx + js)| ≤ sup
0≤y≤nj

sup
0≤a≤ 1

2

|Z(y + a)− Z(y)| . (4.4.14)

Consequently,

Pj ≤ P

(
sup

0≤y≤nj
sup

0≤a≤ 1
2

|Z(y + a)− Z(y)| ≥ j ε
4

)
. (4.4.15)

Applying Fact 33 below we obtain that there exists a constant β > 0 such that for all j large enough,

Pj ≤ βnjP
(

sup
0≤τ≤1

|Z (τ)| > j
ε

12

)
. (4.4.16)
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Therefore, (4.4.9) and (4.4.8) imply that the series
∑
j
Pj and

∑
j
P
(
Lnj 6⊂ Kε

)
are convergent. So,

the Borel-Cantelli Lemma implies that P
(
Lnj 6⊂ Kε i.o. (in j)

)
= 0. Finally, we observe that, for all

n satisfying nj−1 < n ≤ nj , we have that Ln ⊂ Lnj . Consequently, the event {Ln 6⊂ Kε i.o. (in n)}
is included in

{
Lnj 6⊂ Kε i.o. (in j)

}
, which concludes the proof.

Fact 33. Let 0 < h < 1. Then there exists a constant β > 0 such that for all u > 0 and n ≥ 1,

P

(
sup

0≤x≤n
sup

0≤a≤h
|Z(x+ a)− Z(x)| ≥ u

)
≤ βnP

(
sup

0≤τ≤1
|Z (τ)| > u

3

)
. (4.4.17)

Proof. Fix n ≥ 1 and let Rn := [nh ]+ 1. Then, δn := n
Rn

< h. For any x ∈ [0, n], let ix be the unique
integer such that ixδn ≤ x < (ix + 1)δn. Then, for a ∈ [0, h], two cases occur.

Case 1 : x+ a ≤ (ix + 1)δn.
Then, 0 ≤ (x+ a)− ixδn ≤ h and 0 ≤ x− ixδn ≤ h, so that

|Z(x+a)−Z(x)| ≤ |Z (ixδn)− Z(x+ a)|+|Z (ixδn)− Z(x)| ≤ 2 max
0≤i≤Rn

sup
0≤τ≤h

|Z (iδn)− Z(iδn + τ)| .

(4.4.18)
Case 2 : x+ a > (ix + 1)δn.
Then, 0 ≤ (x+ a)− (ix + 1)δn ≤ h, 0 ≤ (ix + 1)δn − ixδn ≤ h and 0 ≤ x− ixδn ≤ h, so that

|Z(x+ a)− Z(x)| ≤ |Z ((ix + 1)δn)− Z(x+ a)|+ |Z (ixδn)− Z ((ix + 1)δn)|+ |Z (ixδn)− Z(x)|
(4.4.19)

and so
|Z(x+ a)− Z(x)| ≤ 3 max

0≤i≤Rn
sup

0≤τ≤h
|Z(iδn)− Z (iδn + τ)| . (4.4.20)

Therefore, we obtain in both cases a bound independent of x and a, so that

sup
0≤x≤n

sup
0≤a≤h

|Z(x+ a)− Z(x)| ≤ 3 max
0≤i≤Rn

sup
0≤τ≤h

|Z (iδn + τ)− Z(iδn)| . (4.4.21)

Now, for all u > 0, we get from Fact 31 that

P

(
max

0≤i≤Rn
sup

0≤τ≤h
|Z (iδn + τ)− Z(iδn)| > u

)
≤ RnP

(
sup

0≤τ≤1
|Z (τ)| > u

)
. (4.4.22)

Lemma 28. Assume that (C) holds and that {Z(t) : t ≥ 0} is centered. Then, for all ε > 0, we
have that ∑

j

njP

(
sup

0≤τ≤1
|Z(τ)| ≥ jε

)
<∞. (4.4.23)

Proof. Assumption (C) implies that for any s > 0, As := ψ(s) + ψ(−s) is finite. Now, for any fixed
s > 0, we have that for all u > 0,

P

(
sup

0≤τ≤1
|Z (τ)| > u

)
≤ P

(
sup

0≤τ≤1
exp(sZ(τ)) > exp(su)

)
+ P

(
sup

0≤τ≤1
exp(−sZ(τ)) > exp(su)

)
.

(4.4.24)
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Then, {Z(t) : t ≥ 0} being a centered Lévy process, it is a martingale. Now, the function x 7→
exp(±sx) is nonnegative, continuous and convex. Therefore, the process (exp[±sZ(t)])t≥0 is a
nonnegative submartingale. Then, by Doob’s inequality, we obtain that

P

(
sup

0≤τ≤1
|Z (τ)| > u

)
≤ As exp(−su). (4.4.25)

Therefore, recalling that nj ≤ exp
(
j+1
c

)
, we have that

njP

(
sup

0≤τ≤1
|Z(τ)| ≥ jε

)
≤ njAs exp (−sjε) ≤ As exp

(
1

c

)
exp

[
−j
(
sε− 1

c

)]
. (4.4.26)

Now, by choosing s large enough so that sε > 1
c , we conclude the proof.

4.4.2 The lower bound

For any integer n > 0, set Rn := [(n−An)/An] and Qn := {ηrAn,An : 1 ≤ r ≤ Rn}.

Lemma 29. Assume that (C) holds and that {Z(t) : t ≥ 0} is centered. Let c > 0. For any ε > 0,
we have a.s. that for all n large enough,

K1/c ⊂ Lεn. (4.4.27)

Proof. Fix ε > 0. Let g ∈ K1/c and set G := BU (g, ε/2). From Fact 29, there exists ζ > 0 such that
G ⊃ G′ := BS(g, ζ). Therefore,

P
(
g /∈ Qε/2n

)
= P

 ⋂
1≤r≤Rn

{ηrAn,An /∈ G}

 ≤ P
 ⋂

1≤r≤Rn

{
ηrAn,An /∈ G′

} . (4.4.28)

Then, the mutual independence of the ηrAn,An for 1 ≤ r ≤ Rn and Fact 30 imply that

P
(
g /∈ Qε/2n

)
≤

Rn∏
r=1

(
1− P

(
ηrAn,An ∈ G′

))
=

(
1− P

(
Z(An·)
An

∈ G′
))Rn

. (4.4.29)

Now, G′ is S-open. Therefore, under (C), Theorem 23 implies that for all θ > 0, we have for all n
large enough,

P

(
Z(An·)
An

∈ G′
)
≥ exp

(
An
(
−I(G′)− θ

))
. (4.4.30)

Since I(f) =∞ for f /∈ C(0, 1), we have I(G′) = I (G′ ∩ C(0, 1)). Now, since the Skorohod topology
relativized to C(0, 1) coincides with the uniform topology, we have that G′′ := G′ ∩ C(0, 1) is an
open subset of (C(0, 1),U) containing g.

Now, we claim that I(G′′) < 1/c. Indeed, if I(g) < 1/c, then it is clear. Otherwise, assume that
I(g) = 1/c and for all f ∈ G′′, I(f) ≥ 1/c. Therefore, I(g) would be a local minimum of the
restriction of I to C(0, 1), which is a convex function. Since (C(0, 1),U) is a convex topological
vector space, I(g) would be a global minimum of this function. Now, since E[Z(1)] = 0, we have
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that Ψ(0) = 0. So, for any constant function g0, I(g0) = 0 is a global minimum of I on C(0, 1).
Consequently, we would have that I(g) = 0, which leads to a contradiction.

So, we can write I(G′′) = 1
c − δ with δ > 0. Taking θ = δ

4 in (4.4.30), we obtain for all n large
enough,

P

(
Z(An·)
An

∈ G′
)
≥ exp

(
−An

(
1

c
− 3δ

4

))
≥ n−(1−c 3δ

4 ). (4.4.31)

Consequently, for all n large enough,

P
(
g /∈ Qε/2n

)
≤
(

1− n−(1−c 3δ
4 )
)(n−An)/An

≤
(

1− n−(1−c 3δ
4 )
) n
c logn

(4.4.32)

and

P
(
g /∈ Qε/2n

)
≤ exp

(
−n−(1−c 3δ

4 ) n

c log n

)
= exp

(
− nc

3δ
4

c log n

)
. (4.4.33)

Therefore, the Borel-Cantelli lemma implies that

P
(
g /∈ Qε/2n i.o. (in n)

)
= 0. (4.4.34)

Finally, since K1/c is a compact subset of (C(0, 1),U), we can find d ∈ N and functions (gq)q=1,...,d

in K1/c such that K1/c ⊂
⋃d
q=1BU (gq, ε/2). Then, the triangle inequality and (4.4.34) applied to

each gq imply that there exists almost surely an integer N(ε) such that for all n ≥ N(ε),

K1/c ⊂ Qεn ⊂ Lεn. (4.4.35)

Lemma 30. Assume that (A) holds and that {Z(t) : t ≥ 0} is centered. Furthermore, assume that
we can choose M <∞ large enough, so that a.s., for all n large enough,

Qn ⊂ BV0,M (0, 1). (4.4.36)

Then, for any ε > 0, there exists almost surely N(ε) <∞ such that for all n ≥ N(ε),

L1/c ⊂ Qεn. (4.4.37)

Proof. Let ε > 0.

Let P = {0 = t0 < t1 < ... < tm−1 < tm = 1} be a partition of [0; 1]. Set d(P) := max
1≤i≤m

{ti − ti−1}.

For f ∈ BV0(0, 1) define fP± (u) =
∑k−1

i=1 (f(ti) − f(ti−1))± +
u−tk−1

tk−tk−1
(f(tk) − f(tk−1))± for tk−1 ≤

u ≤ tk, 2 ≤ k ≤ m, and fP± (u) = u
t1
f(t1)± for 0 ≤ u ≤ t1. Let fP := fP+ − fP− .

Let s ∈ L1/c. Then the triangle inequality implies that for any 1 ≤ r ≤ Rn, we have that

dW(s, ηrAn,An) ≤ dW(s, sP) + dW(sP , ηPrAn,An) + dW(ηrAn,An , η
P
rAn,An). (4.4.38)

By (2.56) in Deheuvels (1991), we have that for any f ∈ BV0(0, 1),

dW(f, fP) ≤ d(P)

2
|f |v(1). (4.4.39)
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By (3.9) in Deheuvels (1991), we can choose M <∞ large enough, so that

L1/c ⊂ BV0,M (0, 1). (4.4.40)

Now, we fix M < ∞ such that both (4.4.40) and (4.4.36) hold. Then, we choose P such that
d(P) ≤ 2ε

3M . Define (yi)1≤i≤m by yi = s(ti)− s(ti−1). Then for any δ > 0, set

Pn,δ := P

(
min

0≤r≤Rn
max

1≤i≤m

∣∣∣∣Z(rAn + tiAn)− Z(rAn + ti−1An)

An
− yi

∣∣∣∣ ≥ δ) . (4.4.41)

Since the process Z(·) has independent and stationary increments, we get that

Pn,δ =

[
1− P

(
max

1≤i≤m

∣∣∣∣Z(tiAn)− Z(ti−1An)

An
− yi

∣∣∣∣ < δ

)]Rn
≤ exp

−Rn ∏
1≤i≤m

P

(∣∣∣∣Z((ti − ti−1)An)

An
− yi

∣∣∣∣ < δ

) .
Then, under (A), we obtain from results of (Lynch and Sethuraman, 1987) that for all 1 ≤ i ≤ m,

the sequence
(
Z((ti−ti−1)n)

n

)
n

satisfies a LDP with rate function

z 7→ ψ

(
z

ti − ti−1

)
(ti − ti−1). (4.4.42)

Setting B(yi; δ) := {z : |z − yi| < δ}, we deduce that for any θ > 0, we have for all n large enough,

P

(∣∣∣∣Z((ti − ti−1)An)

An
− yi

∣∣∣∣ < δ

)
≥ exp

[
An

(
− inf
z∈B(yi;δ)

ψ

(
z

ti − ti−1

)
(ti − ti−1)− θ

m

)]
.

(4.4.43)
Let JP be the function defined on Rm by

JP((zi)) =

i=m∑
i=1

ψ

(
zi

ti − ti−1

)
(ti − ti−1). (4.4.44)

Let Gδ := {(zi)i ∈ Rm : max
i
|zi − yi| < δ}. Then we obtain that for all n large enough,

Pn,δ ≤ exp
[
−Rn exp

[
An
(
−JP(Gδ)− θ

)]]
. (4.4.45)

Now, we claim that JP(Gδ) < 1. The proof is analogous to that of the fact that I(G′′) < 1/c
previously, since JP is a convex function on Rm. We also obtain analogously that for any δ > 0,∑∞

n=1 Pn,δ < ∞. By the Borel-Cantelli lemma, there exists almost surely N = N(δ,P) such that
for all n ≥ N , there exists 1 ≤ r ≤ Rn satisfying

max
1≤i≤m

|(ηrAn,An(ti)− ηrAn,An(ti−1))− (s(ti)− s(ti−1))| = max
1≤i≤m

∣∣∣∣Z(rAn + tiAn)− Z(rAn + ti−1An)

An
− yi

∣∣∣∣
< δ.

Now, by (2.62) in Deheuvels (1991), we have that for any f, g ∈ BV0(0, 1),

dW
(
fP , gP

)
≤ 2m max

1≤i≤m
|(f(ti)− f(ti − 1))− (g(ti)− g(ti − 1))| . (4.4.46)
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Then, we choose δ > 0 such that δ ≤ ε
6m . Therefore we obtain from (??) that almost surely, for

all n large enough, there exists 1 ≤ r ≤ Rn such that dW

(
ηPrAn,An , s

P
)
≤ ε

3 and then from (4.4.38)

and the choice of d(P) ≤ 2ε
3M that

dW (s, ηrAn,An) ≤ ε. (4.4.47)

Finally, since J is a good rate function, L1/c is a compact subset of (BV0,M (0, 1),W). Therefore,
analogously to the end of the previous proof, we obtain that almost surely, for all n large enough,
L1/c ⊂ Q2ε

n .

4.4.3 Proof of main theorems

Remark 10. For any real µ, let
{
Z(µ)(t) : t ≥ 0

}
be the Lévy process defined by

Z(µ)(t) := Z(t) + µt, for t ≥ 0. (4.4.48)

We prove in Appendix that, if an ERFL holds for {Z(t) : t ≥ 0}, then an ERFL holds for
{
Z(µ)(t) : t ≥ 0

}
.

Therefore, in order to prove Theorems 25 and 26 under assumption (E), it is enough to obtain them
for centered Lévy processes.

Proof of Theorem 25

Proof. First, assume that {Z(t) : t ≥ 0} is centered. Then, we combine Lemmas 25, 27, 28 and
Lemma 31 in the Appendix to get the the upper bound, that is first part of (4.4.1). Then, we
combine Lemma 29 and Lemma 32 in the Appendix to get the lower bound, that is the second part
of (4.4.1). We conclude by applying Remark 1.

Proof of Theorem 26

Proof. First, assume that {Z(t) : t ≥ 0} is centered. Notice that the following statement

lim
n→∞

∆W(Mn,An , L1/c) = 0 a.s. (4.4.49)

is equivalent to the statement that, for any ε > 0, there exists a.s. an integer N(ε) <∞ such that
for all n ≥ N(ε),

Mn,An ⊂ Lε1/c and L1/c ⊂Mε
n,An . (4.4.50)

Then, Lemma 26 and the Borel-Cantelli Lemma imply that

P
(
Mnj ,j 6⊂ (L1/c)

ε;W i.o. (in j)
)

= 0, (4.4.51)

from which we deduce readily the first statement of (4.4.50). Then the second statement of (4.4.50)
follows from Lemma 30, under the assumptions of Theorem 26. We conclude by applying Remark
1.
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4.5 Appendix

4.5.1 Proof of Remark 1

We define the set of Erdős-Rényi-type increment functions associated to Z(µ)(·) by

G(µ)
T :=

{
η(µ)
x,aT

(·) :=
Z(µ)(x+ aT ·)− Z(µ)(x)

aT
= ηx,aT (·) + µId : 0 ≤ x ≤ T − aT

}
. (4.5.1)

Let I(µ) be the functional defined on D[0, 1] by I(µ)(f) =
∫ 1

0 Ψ(µ)(ḟ(u))du if f is absolutely continu-

ous and f(0) = 0, while I(µ)(f) =∞ otherwise. For any α > 0, setK
(µ)
α :=

{
f ∈ D(0, 1) : I(µ)(f) ≤ α

}
.

Fact 34. Assume that for some {aT , T > 0} and α > 0, we have that

lim
T→∞

∆ (GT ,Kα) = 0 a.s. (4.5.2)

Then, for all real µ, we have that

lim
T→∞

∆
(
G(µ)
T ,K(µ)

α

)
= 0 a.s. (4.5.3)

Proof. Let Ψ(µ) be the Legendre transform of the mgf of Z(µ)(1). Then, for any real a, Ψ(µ)(a) =

Ψ(a − µ), which implies easily that K
(µ)
α = Kα + µId. Now, the assumption and a translation

argument imply that for all ε > 0, a.s., for all T large enough,

G(µ)
T = GT + µId ⊂ (Kα + µId)

ε =
(
K(µ)
α

)ε
(4.5.4)

and
K(µ)
α = Kα + µId ⊂ (GT + µId)

ε =
(
G(µ)
T

)ε
. (4.5.5)

4.5.2 End of proof of Theorem 25

For any c > 0, set K := K1/c. Denote by I the identity function on [0, 1]. Fix λ0 with 0 < λ0 < 1.

Fact 35. For any f ∈ K, we define the function ρf by

ρf (λ) =
∥∥λ−1f(λI)− f

∥∥ . (4.5.6)

Then there exists a function δ(·), independent of f and satisfying δ(x)→ 0 as x→ 0, such that for
all λ, µ ∈ [λ0, 1],

|ρf (λ)− ρf (µ)| ≤ δ(|λ− µ‖). (4.5.7)

Proof. For any λ, µ ∈ [λ0, 1], we have that

|ρf (λ)− ρf (µ)| =
∣∣∥∥λ−1f(λI)− f

∥∥− ∥∥µ−1f(µI)− f
∥∥∣∣ ≤ ∥∥λ−1f(λI)− µ−1f(µI)

∥∥ (4.5.8)

and ∥∥λ−1f(λI)− µ−1f(µI)
∥∥ ≤ ∥∥λ−1f(λI)− λ−1f(µI)

∥∥+
∥∥λ−1f(µI)− µ−1f(µI)

∥∥ . (4.5.9)
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Then, we have that ∥∥λ−1f(λI)− λ−1f(µI)
∥∥ ≤ λ−1

0 sup
f∈K

wf (|λ− µ|) (4.5.10)

and ∥∥λ−1f(µI)− µ−1f(µI)
∥∥ ≤ ∣∣λ−1 − µ−1

∣∣ sup
f∈K
‖f‖ . (4.5.11)

Now, K being U-compact, we apply the Arzela-Ascoli theorem to conclude.

Fact 36. For any g, h ∈ D(0, 1) and λ ∈ [λ0, 1], we have that∥∥λ−1g(λI)− g
∥∥ ≤ (1 + λ−1

0 ) ‖h− g‖+
∥∥λ−1h(λI)− h

∥∥ . (4.5.12)

Proof. For any λ ∈ [λ0, 1], we have that∥∥λ−1g(λI)− g
∥∥ ≤ ∥∥λ−1g(λI)− λ−1h(λI)

∥∥ ≤ +
∥∥λ−1h(λI)− h

∥∥+ ‖h− g‖ . (4.5.13)

Since λ0 ≤ λ ≤ 1, we get readily that∥∥λ−1g(λI)− λ−1h(λI)
∥∥ ≤ λ−1

0 ‖h− g‖ . (4.5.14)

Fact 37. For all δ > 0, there exists γ = γ(δ) > 0 such that |λ− 1| < γ implies that

sup
g∈K

∥∥λ−1g(λI)− g
∥∥ < δ. (4.5.15)

Proof. Fix δ > 0. Then K being U-compact, for any α > 0, there exists a finite number of functions
(gq)q=1,...,d in K such that K ⊂

⋃d
q=1 BU (gq, α). Now, we obtain from Fact 35 that for all κ > 0,

there exists γ > 0 depending only on κ, such that |λ− 1| < γ implies that for all q ∈ {1, ..., d},∥∥λ−1gq(λI)− gq
∥∥ < κ. For any g ∈ K, there exists q ∈ {1, ..., d} such that g ∈ BS(gq, α) and we

deduce from (4.5.12) applied to h = gq that∥∥λ−1g(λI)− g
∥∥ ≤ α(1 + λ−1

0 ) + κ. (4.5.16)

Finally, for any δ > 0, we can choose γ and α small enough to get that α(1 + λ−1
0 ) + κ < δ.

Fact 38. For all δ > 0, there exist θ = θ(δ), with 0 < θ < δ, and γ = γ(δ) > 0 such that

|λ− 1| < γ =⇒ sup
f∈Kθ

∥∥λ−1f(λI)− f
∥∥ < δ. (4.5.17)

Proof. Fix δ >. For any θ > 0 and f ∈ Kθ, let g ∈ K such that ‖g − f‖ < θ. Then (4.5.12) implies
that ∥∥λ−1f(λI)− f

∥∥ ≤ θ (1 + λ−1
0

)
+ sup
g∈K

∥∥λ−1g(λI)− g
∥∥ . (4.5.18)

Observing that 1 + λ−1
0 > 1, we conclude by applying Fact 37.

Lemma 31. For any ε > 0, there exists a.s. a real T (ε) such that for all real T ≥ T (ε), we have
that

GT ⊂ Kε. (4.5.19)
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Proof. For any T > 0, set
nT := inf {n : An ≥ aT } .

Notice that necessarily, nT ≥ T . Now, the Mean value theorem implies that AnT −aT ≤ c
T (nT − T ),

so there exists τ > 0 such that for all T ≥ τ , T − aT ≤ nT − AnT . Furthermore, the definition of
nT implies that An+1 < aT and we prove readily that

lim
T→∞

aT
AnT

= 1. (4.5.20)

Fix ε > 0.

We get from Lemmas 25, 27 and 28 that for any θ > 0, there exists a.s. an integer N(θ) such that

∀n ≥ N(θ),Ln ⊂ Kθ. (4.5.21)

Now, Fact 38 implies that there exist θ(ε/2) > 0 and γ(ε/2) > 0 such that

|λ− 1| < γ(ε/2) =⇒ sup
f∈Kθ(ε/2)

∥∥λ−1f(λI)− f
∥∥ < ε/2. (4.5.22)

From (4.5.20), there exists T0(ε) > 0 such that for all T ≥ T0(ε),
∣∣∣ aTAnT − 1

∣∣∣ < γ(ε/2).

Then, we can define a.s. T (ε) by

T (ε) := max {τ ;T0(ε);N(θ(ε/2))} . (4.5.23)

Let T ≥ T (ε). Since T ≥ τ , we have that [0, T − aT ] ⊂ [0, nT − AnT ]. Then for all x ∈ [0, T − aT ]
and all s ∈ [0, 1], we have that

ηx,aT (s) =
AnT
aT

ηx,AnT

(
s
aT
AnT

)
. (4.5.24)

Since T (ε) ≥ N(θ(ε/2)) we have that, for all x ∈ [0, nT − AnT ], ηx,AnT ∈ K
θ(ε/2). Since T ≥ T0(ε),

we have that
∣∣∣ aTAnT − 1

∣∣∣ < γ(ε/2). By (4.5.22), we have consequently that, for all x ∈ [0, T − aT ],∥∥∥∥AnTaT ηx,AnT

(
aT
AnT

I

)
− ηx,AnT

∥∥∥∥ < ε/2. (4.5.25)

Now, since θ(ε/2) < ε/2, we have that Kθ(ε/2) ⊂ Kε/2. Therefore, for all x ∈ [0, T − aT ], ηx,AnT ∈
Kε/2. Then we obtain from (4.5.25) and the triangle inequality that

∀x ∈ [0, T − aT ], ηx,aT =
AnT
aT

ηx,AnT

(
aT
AnT

I

)
∈ Kε. (4.5.26)

Lemma 32. For any ε > 0, there exists a.s. a real T ′(ε) such that for all T ≥ T ′(ε), we have that

K ⊂ GεT . (4.5.27)
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Proof. For all T ≥ c, we have that 1 ≤ T − aT . Set

mT := max {n : n ≤ T and n−An ≤ T − aT } .

Then, if T ≥ c then mT exists. The definition of mT implies that mT + 1− AmT+1 > T − aT . We
deduce readily that

lim
T→∞

mT

T
= lim

T→∞

AmT
aT

= 1. (4.5.28)

Fix ε > 0.

Lemma 29 implies that a.s., for all n large enough, K ⊂ Lε/2n . Since mT −→ ∞ as T →∞, we can
find a.s. T1(ε) > 0 such that

∀T ≥ T1(ε),K ⊂ Lε/2mT
. (4.5.29)

Then for all x ∈ [0,mT −AmT ] ⊂ [0, T − aT ], and all s ∈ [0, 1], we have that

ηx,AmT (s) =
aT
AmT

ηx,aT

(
s
AmT
aT

)
. (4.5.30)

Now, let γ(ε/2) and θ(ε/2) be as in (4.5.22). Let T2(ε) > 0 such that for all T ≥ T2(ε),
∣∣∣AmTaT

− 1
∣∣∣ <

γ(ε/2).

From Lemma 31, there exists a.s. T (θ(ε/2)) > 0 such that

∀T ≥ T (θ(ε/2)),GT ⊂ Kθ(ε/2). (4.5.31)

Then, we can define a.s. T ′(ε) by

T ′(ε) := max {c, T1(ε);T2(ε);T (θ(ε/2))} . (4.5.32)

Let T ≥ T ′(ε). Since T ≥ T (θ(ε/2)), we have that

∀x ∈ [0, T − aT ], ηx,aT ∈ K
θ(ε/2). (4.5.33)

Since, moreover T ≥ T2(ε), and noticing that
AmT
aT
≤ 1, we obtain that for all x ∈ [0, T − aT ]∥∥∥∥ aT

AmT
ηx,aT

(
AmT
aT

I

)
− ηx,aT

∥∥∥∥ < ε/2. (4.5.34)

Consequently, for all x ∈ [0,mT −AmT ] ⊂ [0, T − aT ], we have that
∥∥∥ηx,AmT − ηx,aT ∥∥∥ < ε/2. Then,

since T ≥ T1(ε), for all f ∈ K, there exists xf ∈ [0,mT −AmT ] such that
∥∥∥ηxf ,AmT − f∥∥∥ < ε/2 and,

by the triangle inequality,
∥∥ηxf ,aT − f∥∥ < ε.



Chapter 5

Conclusion

5.1 Conclusion of chapters 2 and 3

In this section, we compare the methods of Chapter 1 and Chapter 2 and we present some perspec-
tives.

An obvious similarity between them is the use of the commonly called saddlepoint approximation
(see (Jensen, 1995)). This technique is the combination of tilting operation and of Edgeworth
expansion of the density of the resulting partial sum. This approximation provides usually an
accurate approximation of the tail of partial sums, which justifies its use in the Importance Sampling
scheme described in the Introduction of Chapter 2. In the framework of conditional limit theorems,
the tilting operation allows to obtain an exponential family for which the statistic of sum is sufficient.
The idea of sufficiency is also essential in Chapter 1, since the sub σ-algebra σ(T ) generated by
the sum is sufficient in the sense given in Chapter 1. Heuristically, in both cases, the notion of
sufficiency expresses that the knowledge of the value of the sum contains enough information to
deduce the distribution of the sampling given this value.

From Chapter 2 to Chapter 3, we have used several ideas to get a result even when k is not a o(n)
anymore. Firstly, we have performed an adaptative scheme to estimate pk(Y

k
1 ). Secondly, we have

performed a higher order Edgeworth expansion. However, a rate of convergence is not obtainable
by the method of Chapter 2. For k = o(n), Chapter 2 provides a rate for the convergence of
‖Qnak −Gk‖TV to 0, which is equal to k

n . So a possible perspective is to get a rate for this
convergence when k is not a o(n).

In statistical mechanics, in an isolated system, we obtain the distribution of a small component
given the total energy when thermal equilibrium is reached, that is when the entropy is maximal.
Thereby, a further development of our work is to establish a conditional limit theorem of this kind
by optimisation of some entropy, and without performing Edgeworth expansions.

5.2 Conclusion of chapter 4

Under A, we have obtained that for any c > 0,

lim
n→∞

∆W(Mn,an , L1/c) = 0 a.s., (5.2.1)
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where an := bc log nc and

Mn,an := {ηm,an : m ∈ {0, ..., n− an}} . (5.2.2)

In future work, we would like to obtain, under (A), the limiting behavior of a random set containing
all the ηx,an , for all real x with 0 ≤ x ≤ n− an. Since the tail of the distribution of Z(1) is heavier
under (A) than under (C), the increment functions have a wider amplitude under (A). Therefore,
it is more difficult to study their asymptotic inclusion in some fixed set. However, even under (A),
the distribution of Z(1) still has a light tail, so that it is reasonable to expect a positive result.

Another further development is to establish a functional Erdős-Rényi theorem (FERT) for renewal
or compound renewal processes. We recall that a compound renewal process is of the form

Z(t) =

N(t)∑
i=1

Xi, (5.2.3)

where N(·) is any renewal process, independent of (Xi). We have obtained a (FERT) in the
particular case of the compound Poisson process, which is a Lévy process. In ?, the author obtains an
Erdős-Rényi theorem for compound renewal process, which could be a manifestation of a functional
version. In (Deheuvels and Steinebach, 2016), a FERT is established for renewal processes, by
reducing to the FERT for the partial sum process which defines the renewal process. Therefore, we
can expect a FERT for any compound renewal process, but it should require additional functional
large deviations results.
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