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Chapter 1

Introduction

This document contains two independent Parts. The first one is composed by Chapters 2 and 3,
while the second one is Chapter 4.

1.1 Introduction to Chapters 2 and 3

In these chapters, we study the asymptotic distribution of independent not necessarily identically
distributed random variables or random vectors, which is closely linked to some Statistical Mechanics
issue.

1.1.1 Statistical Mechanics Framework

Following (Khinchin, 1949), we present hereafter the Statistical Mechanics framework within which
this question is natural.

The Phase Space

Let G be a mechanical system with s degrees of freedom. The state of G is described by values
of its 2s dynamical variables denoted by ¢i,...qs;p1,...ps. In other words, there is a one-to-one
correspondence which associates to each possible state of GG, a point of an Euclidian space I', whose
coordinates are the values of (g;, pi)1<i<s. I' is called the phase space of G. During any interval of
time At, each point P € I' describes a curve corresponding to some successive changes of states of
G during At. Thus, the whole space I' is transformed into itself during A¢. This motion of I' is
called its natural motion. A subset M of I which is stable under the natural motion is called an
invariant part of I'. From point of view of physics, the most important function on I' is the total
energy of G, denoted by

E=FE(g;pi), 1<i<s. (1.1.1)

Assume that G is an isolated system. Then, by the law of conservation of energy, the function F
has a constant value. Consequently, for any constant a, the set

Se={E=a}CT (1.1.2)

is an invariant part of I" and is called a surface of constant energy. We can assume that F is positive

over I'. Set
Ve ={E <z} CTI and V(x):= Volume of V;. (1.1.3)

V(+) is a monotone function which increases from 0 to 0o as x varies between the same limits. Then,
we have the following lemma.

Lemma 1. Let f(-) be a function defined on T', integrable over V,.. Then,

ax

d
T L e (1.1.)
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2 CHAPTER 1. INTRODUCTION

where dV and dX are the volume elements of I' and of 3.

Let M be a measurable subset of X,. Then in the natural motion of I', M is transformed into a set
M' C %,. However, if we define the measure of M by (M) := [,,d%, then in general, u(M) #
u(M’). We are deprived of important mathematical tools without this invariance. Therefore, we
consider another measure of any set M contained in X, as follows. At each point of M, draw the
outward normal to ¥, to its intersection with the infinitely near surface X, 4,. Denote by D the
bounded part of I which is filled by these normal vectors. Then set

M(M) :_/de_/KEqm 1p(P)dV. (1.1.5)

This volume is clearly invariant with respect to the natural motion. Its ratio to Az and the limit
of this ratio as Ax — 0 are also invariant. Now, by Lemma 1, this limits is

dx dx
/ o) Grad®)] = . e (1.1.6)

Therefore, we obtain an invariant measure on subsets of ¥, by considering the measure M defined
by
dx

M(M) = /M”Grad(E)H (1.1.7)

Definition 1. The measure Q(z) of the whole surface ¥, is

s
Q(z) = /E TGraa@)] ~ M=) (1.1.8)

Assume that for all P, f(P) =1 in Lemma 1. Then we obtain that
Qz) = V'(x). (1.1.9)

The function SU(-) determines the most important features of the mechanical structure of G and is
therefore called the structure function of G.

Definition 2. We denote by x1, ..., x2s the dynamical ccordinates of a point of I', where the order
of numeration is irrelevant. Assume that the energy E = E(x1, ..., x2s) can be written as

E($1, ...,:DQS) = El(.%'l, ...,xr) + EQ(.%'TJ,_I, ...,ZCQS> (1110)

We say that the set {x1,...,x2s} is decomposed in two components, that is

{z1, .., x5} = {21, ..., 0} |_| {Zrs1, .0y Tas}, (1.1.11)

which we write

G =G| |Ga. (1.1.12)

A component defined in this sense does not necessarily coincide with a separate physical subsystem
of G. The isolated character of such components is of a purely energy nature.

Fach component, being a subset of dynamical coordinates, has its own phase space. With obvious
notations, if G = G| | G2 then

['=T1 x Iy and dV = dV;dVa. (1.1.13)
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Let 2,91 and 9 be the respective structure functions of G, G; and G5. Then we prove that
Q) =/ Q1 (y)Qa(z — y)dy. (1.1.14)
0

We deduce readily that if G = G1 | |G2|]...Gy, then

n—1 n—1
Q(z) :/{Hﬂi(ui)dui}ﬁn (U—Zu,). (1.1.15)
=1 =1

In order to be able to split G = G1| |G2 in two components in this sense, we need to neglect the
mixed terms of energy interactions which would involve variables from both G; and Gbs.

Reduction to Probability Theory

We shall now consider the dynamical variables (z1, ..., z25) as a random vector X = (X7, ..., Xo4).
We still assume that G is an isolated system, so that the natural motion of I' is limited within ¥,,,
and the support of X is contained in X,,. We assume that the distribution law of X is given by

MM 1 ax
P(XeM)= M(Sh) ~ Q) /M [Grad(EB)|’ for any set M C X,,. (1.1.16)

Assume that G is divided into two components G) and G®. Therefore, we can write X =
(XM X@) with XM = (X1,...,X,) and X® = (X,41, ..., X25). Then, we can prove that for any
subset M, contained in I'q,

1

P(XW e M) = )

/ Q@ (na — E1)dvi. (1.1.17)
My

Consequently, the distribution law of X 1) is absolutely continuous w.r.t the Lebesgue measure with

density given by

QO (na — By (2!
Px@ (:Ul) = (ng(na)l(x )), for any z! € I';. (1.1.18)

We can then deduce that the random variable Ej is absolutely continuous w.r.t the Lebesgue measure
with density given by

QW (2)Q®) (na — z)
Q(na)

Let ¥(:) be the Laplace transform of the function Q(-), called the partition function of G. We

assume that for any a > 0,

PE, () = (1.1.19)

U(a) := /exp(am)Q(m)dm < 00 (1.1.20)
Then, we have the following facts.

Fact 1. For any constant ¢ > 0, there exist a unique solution 5% > 0 to the equation of unknown «

d
— %log U(a) =c. (1.1.21)

Fact 2. The partition function of a system G is equal to the product of the partition functions of
1ts components.

We introduce now the family (U®)qs0 of distribution laws conjugate with the system G, defined by

U(x) = exp(—ax)(x) if x >0, (1.1.22)

U(a)
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and
U%x)=0 if x <0. (1.1.23)

For any a > 0, U%(z) is the probability density of a random variable X, since
U%x) >0 and /Ua(a:)dac =1, (1.1.24)

Furthermore, we have the following

Fact 3. For any a > 0,
E[X®] = /xU"‘(az)dm = —di log ¥(av). (1.1.25)
(6%

Gibbs Measure

We intend to evaluate the energy E; of a given component G of G. However, we can not
approximate directly the structure functions which appear in (1.1.19). Instead, we will be able to
approximate the U®’s, since they are densities. In that purpose, we assume that G is divided into
a large number n of components and that G(!) is a collection of some of them, that is

n k
G= |_| gi =GW |_|G(2), where G = |_| g; and k <n. (1.1.26)

j=1 j=1

We still assume that G is an isolated system, so that its energy has some constant value denoted by
na, where a is the average energy of g1, ..., gn.

Let (UM)aso (resp. (US)as0) be the family of distribution laws conjugate with G(1) (resp. G(%)).
Using that Q(z) = V() exp(az)U*(z), we readily get that for any o > 0,

Us'(na — x)

pi () = Uf () =500

(1.1.27)

The objective is now to evaluate U§'(na — x) and U%(na). We can prove the following fact.

n
Fact 4. Assume that G = || g;. Then, for any a > 0,
j=1

n—1 n—1
v = [ Ty s o= 3w ) (1.1.28)
j=1 j=1

where for all 1 < j <n, the (u?)a>0 are the distribution laws conjugate with g;.

In other words, for any o > 0, one can interpret U%(:) as the density of a sum of independent

random variables qu, which are not necessarily identically distributed.
The Theory of Probability provides then an asymptotic approximation of U%(-). More precisely, we
may apply the following Central Limit Theorem.

Theorem 1. Consider a sequence of independent random variables (X;);j>1 with probability densi-
ties (uj)j>1 and characteristic functions (g;)j>1, that is g;(t) = [ exp(itz)u;j(x)dz.

Let (aj);j>1 be the sequence of expectations of the X;’s and for 2 < { <5, let (aﬁ)jzl be the sequence
of their centered absolute moments of order £. Assume that

(1) For any j > 1, u; is differentiable and there exists L > 0 such that sg;l) [ 1w (2)|dx < L.
3>
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2) There exist 0 < a < 8% such that inf a® > a and sup max at < 52,
(2) B Inf ] Sup max 5 <0,

(3) There exist positive constants X and T such that in the region |t| < T, sup |g;(t)| > A.
Jj=1

(4) For any 0 < ¢1 < ca, there exists p = p(c1,c2) < 1 such that for any t € (c1,c2), sup |g;(t)| < p.
j=1

Set A, = > aj and By, = ) a,?. Let Uy (x) be the density of > X;. Then,
j=1 j=1 j=1

2
Un(z) = (27rB1n)1/2€Xp {—(:E;];Ln)] + Un, (1.1.29)
where
Up =0 (W) for |z — A,| < 2log?n (1.1.30)
and
Up =0 (i) for all . (1.1.31)

Recall that (U%)a>0 is the family of distribution laws conjugate with G, which is composed of n
components. We will write U%, the number n being omitted. We assume that for any o > 0, for
very large n, the densities (Uf)1<i<p satisfy the assumptions (1), (2), (3), (4). This essentially means
that the components (g;) are of a small number of different kinds, which is a reasonable assumption.

Applying Theorem 1, we obtain that for any o > 0, (1.1.29) holds for U%, with A, = E[X*] and
B, = Var(X®). We get from Fact 3 that 4, = —%log ®(a). Then, (1.1.21) implies that there
exists a unique B2 > 0 such that

d
A, =|——1logV¥ = na. 1.1.32
(- 4510w (‘”)a_ﬂa no (1.1.32)
We deduce that .
B - - -3/2
UPn(na) = CALE + o(n=%/?). (1.1.33)

We assume that the number k of components of G(!) satisfies that k = o(n). Therefore, n — k ~ n
and we may appply Theorem 1 to Uf ™ to obtain that

exp {_(x_ALkP} 1
'lrlL o o 2Bk+1,n -
Uy (na —x) = @rBrrin) +o <n> , (1.1.34)

7

S Var(X f Z). The assumptions of Theorem 1 imply that
j=k+1

B, and Bj1, are respectively of order n and n — k, and are therefore of the same order since
k = o(n). Consequently, for any = > 0,

Up(na—a) [ T (@A)
UPi(na) 2Bit1,n

k ~ga
where A; ;= > E[Xjﬁ"] and By11, =
j=1

]}{Ho(l)} (1.1.35)

However, if we only consider those x such that « — Ay j, = o(n'/?), we obtain that

(x — A1 g)?

Brorr } ={1+0(1)}. (1.1.36)

exp [—
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Therefore, writing (1.1.27) for a = 82, we get that for x satisfying 2 — A; x = o(n'/?),

p, (2) = U (2) {1+ o(1)}. (1.1.37)

Thus, when z belongs to an interval of wide radius (equal to nt/ 2), the density of F; is approximated
by Ulg(x), which is the density of a Gibbs measure. One can interpret (1.1.37) as follows. G is
an isolated system divided in two components : a small one, GW ., immersed in a large heat bath
G@. GM and G? interact only by exchanges of energy and their temperatures are equal to the
same value 7" when thermal equilibrium is reached. Then, the distribution of energy in G and
in any small component of G is given by (1.1.37), and the parameter 5%, usually called an inverse
temperature, is equal to kBLT, where kp is Boltzmann’s constant.

We will explain in chapter 2 why these Statistical Mechanics considerations are linked to the issues
of Chapters 2 and 3.

1.1.2 Presentation of Chapters 2 and 3

In both Chapters 2 and 3, the essential technique is the commonly called Saddlepoint Approxima-
tion (see (Jensen, 1995)), which is an asymptotic local approximation of the density of a sum of
independent random variables. It is composed of two steps. Firstly, one performs an exponential
change of measure, as in Large Deviations Theory, in order to localize around a given value of the
sum. Here, we call it the tilting operation. Secondly, one performs an Edgeworth expansion of the
density of the resulting sum. This expansion is a central Limit Theorem, as the Theorem stated
hereabove in (Khinchin, 1949), but at higher orders.

In Chapters 2 and 3, we consider a sequence (X;);>1 of independent random vectors, valued in R,
d > 1. Let (ky)n>1 be a sequence of integers with 1 < k, < n, for all n > 1. We write k instead
of k. We assume that the (X;) have a common support Sx and that their moment generating
functions have a common domain of finiteness, denoted by ©. For a € Sx and n > 1, let Qpax

be a regular version of the conditional distribution of X¥ := (X7, ..., X3) given {S1,, = na}, where
n

Sin =, X;. We study the asymptotic behaviour (as n — 00) of Qper, under various assumptions
i=1
on k.

Our results are given in total variation distance. We denote by [P — Q|| the total variation
distance between probability measures P and Q.
The tilting operation is described hereunder.

Definition 3. Let X be a r.v. valued in R, d > 1. Denote by ®x its mgf. Let Ox = {0 eRY: dy(0) < oo}
For any 0 € Ox, denote by X? a random vector having the tilted density, defined by

_exp(f, z)px (x)

Pgo(T) = By (0) (1.1.38)

1.2 Summary of Chapter 2

We present here our strategy to obtain the asymptotic behaviour of Q. when k = o(n).

Since the conditioning event is {57, = na}, we prove that for any n > 1, there exists a unique
05 € © such that

E [éﬁfﬂ — na. (1.2.1)

The main result of Chapter 2 is the following. In the sequel, all the tilted densities pertain to 8 = 03.
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Theorem 2. Under suitable assumptions, if k = o(n), then,

Hka - ?f)(TV =0 <k> : (1.2.2)

n

where ﬁlk is the joint distribution of independent r.v.’s (Xj)1<j<k-

k
Proof. We give a sketch of the proof. Let R, be the distribution of S;  := > Xj given S1, = na.

j=1
~ ~ ko
Let Ry be the distribution of S, := > X;. Then, we obtain from Sufficiency Theory that
j=1
o~ 7], -], 129
Now, by Scheffe’s theorem, we deduce that
|@uar = P, = / [P(S1k =t S10 = na) = pg, ()] dt, (1.2.4)

where p(S1 5 = | S1,n = na) is the density of S; j given 51, = na and s, . is the density of gl,k-

Then, we can check readily the following invariance of the conditional density : for any ¢ € R%,

P v (na —t) )

v (1.2.5)

P(S1 = t| S1n = na) = p(Six = t’ Sijn = na) = Pz, () <

~ mo
For any integers ¢, m with 1 < ¢ < m, we denote by f; ., the density of Sy, := > X;. Therefore,

j=L
we deduce readily from (2.5.6), (2.5.7) and (2.5.8) that
= Ser1n(na —1)
nak = Pr _/ Tetln B8 1) £y a(t)dt. 1.2.6
HQ kP, Fin(na) fre(t) (1.2.6)

Finally, we perform Edgeworth expansions for fi11, and fi1, and we get the desired result.

1.3 Summary of Chapter 3

This Chapter contains a generalisation of the preceding one. Indeed, we obtain the asymptotic
behaviour of Q. when k is not necessarily a o(n), and even when % converges to 1.

We need to consider some quantities inspired from an Importance Sampling setting, which allow to
use a criterion for convergence in total variation distance. We perform an Adaptative Scheme to
estimate the density of (4%, and still perform a Saddlepoint Approximation to conclude the proof.

1.4 Introduction to Chapter 4

Let (X;)i>1 be an ii.d. sequence of random variables. Let Fx be their common distribution

n
function. For n > 1, set Sop =0 and S, = > X;.
i=1

Assume first that (X;);>1 is a sequence of Bernoulli of parameter p. For n > 1, let L,, be the longest
chain of consecutive 1 among (X;)1<i<n.

Theorem 3. For any p € (0,1), we have that almost surely,

L, 1
H —
logn logp

as n — oo. (1.4.1)
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The study of L,, is of interest in insurance, finance and even molecular biology. For any n > 1, and
any integer k such that 1 < k < n, set

Mn(k) (= max i {Sz+k - SZ}

0<i<n—
= max {X;1+..+X; .
Ogign—k{ i+ z+k}

Then, in a Bernoulli model,

L, =max{k € {1,...,n}: M,(k) =k}. (1.4.2)

From now, we consider any sequence (X;);>1 and we focus on

e forn>1 and 1<k <n. (1.4.3)
Then, I,,(k) is called an Erdés-Rényi increment. For example, if (X;) represent daily values of a
financial asset, then I, (k) is the maximal average gain over a period of k£ days. Notice that

I,(1) = X; hil I()—& (1.4.4)

n _112%)(711 wiile nn—n- 4.
Therefore, I,,(k) can be viewed as an intermediate object between Extreme Value Theory and the
classical Theory of mean of variables. Notice also that, if E[X;] = 0 then by the law of large
numbers, I,(n) — 0 as n — oco. On the other hand, if Fx(¢) < 1 for any real ¢, then I,,(1) — oo
as n — oo. The following result asserts that somewhere between these two extremes, the limit is
positive and finite. It is the classical Erdds and Rényi theorem for the partial sum process.

Theorem 4. Assume that the distribution of X1 is nondegenerate, E[X1] = 0 and
inf {s:9(s) < oo} <0 <sup{s:(s) <oo}, where(s):=Elexp(sX1)]. (1.4.5)

Fiz ¢ > 0. Let k, be the integer part of clogn. Then,

M, (kp) = ae, (1.4.6)
where
ac:=inf{a>u:V(a) >1/c} and ¥(a)= sup {ta—Ilogy(t)}. (1.4.7)
t:p(t)<oo
Proof. The proof makes use of classical large deviations results for @ and on the Borel-Cantelli
lemma. See (Deheuvels, 2007) for details. O

This result has given rise to many developments and extensions to processes related to the partial
sum one, among which a functional version, established in Deheuvels (1991). In Chapter 3, we
extend it to Lévy processes.

1.5 Summary of Chapter 4

This chapter is devoted to functional Erdés-Rényi theorems for Lévy processes. Let Z be a Lévy
process. For > 0, and ¢ > 0, define the standardized increment functions of Z(-) by setting

Z(x+10s)— Z(x)
1

Nee(8) = for s € [0, 1]. (1.5.1)
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For any ¢ > 0, consider the following random sets Gr of increment functions.
Or :={Npap :0<2<T —ar}, wherear=-clogT. (1.5.2)
and

Mo a, = {Nm.a, :m € {0,....,n —an}}, where a, is the integer part of clogn. (1.5.3)

We have established that, under suitable assumptions, the random sets Gr and M, ,, converge
(in the sense of the Hausdorff distance defined below) almost surely (a.s.) to deterministic sets of
functions.

Now, we define the Hausdorff distance. Let £ be a set of functions on [0, 1] such that for all 7' > 0,
Gr C £ . We endow & with a metric topology T, defined by a distance dy. For any subset A C &,
and € > 0, consider an enlargement of A defined by

A= AST = {g €& :dr(f,g) < e for some f € A}. (1.5.4)
The Hausdorff distance between the subsets A, B C £ is defined by
A7(A, B) := inf {e >0:AC B and B C AE}. (1.5.5)
Let K(c) be a fixed set. Then, Tlgréo A7 (Gr,K(c)) =0 a.s. if and only if, for any € > 0, there exists
a.s. T(e) < oo such that for all ' > T'(e),
Gr C (K(¢)) and K(c) C (Gr)°. (1.5.6)

Let 1) be the moment generating function of Z(1). Introduce the following assumptions.
(C): Y(t) <ooforallteR.

(A): inf{t:(t) <oo} <0 <sup{t:(t) < oo} and Z(1) has no Gaussian component.
(&) : There exists a constant p such that for all ¢t > 0, E[Z(t)] = ut.

We have obtained the following theorems, called functional Erdés-Rényi laws.

Theorem 5. Assume that (C) and (£) hold. Then, for any ¢ > 0, there exists a fized set K(c) such

that
lim Ay (Gr,K(c)) =0 a.s. (1.5.7)
T—o0
where Ay is associated to the distance dy defined on the set of bounded functions on [0, 1] by
du(f,g) = sup |f(z)—g(x)|. (1.5.8)
z€[0,1]

Theorem 6. Assume that (A) and (€) hold. Let BVy(0,1) be the set of functions on [0,1] which
are right-continuous, with bounded variations and vanish at the origin. Then, for all ¢ large enough,
there exists a fized set L(c) such that

lim Ay (Myq,,L(c) =0 a.s. (1.5.9)

n—oo

where Ayy is associated to the distance dyy defined on BVp(0,1) by

1
dwlf.g) = /0 1) — g(w)ldu + |£(1) - g(1)]. (1.5.10)

The proofs of these results rely heavily on functional large deviations theorems for processes with
stationary and independent increments.
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Chapter 2

Asymptotic distribution of
independent random vectors given
their sum
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2.1 Introduction

2.1.1 Context and scope

Let (X;);j>1 be a sequence of independent, not necessarily identically distributed (i.d.), random
vectors (r.v.) valued in R?, d > 1. Let (ky)n>1 be a sequence of integers with 1 < k,, < n, for all
n > 1. We write k instead of k,,. We assume that the (X;) have a common support Sx. For a € Sx
and n > 1, let Qpqr be a regular version of the conditional distribution of X {“ = (X1, ..., Xk) given
n
{81 = na}, where S1,, := > X;. Such a version exists since R? is a Polish space (see (Stroock,
j=1
1994)). In this paper, we study the asymptotic behaviour (as n — 00) of Qpqk-

This question is closely related to the well-known Gibbs Conditioning Principle (GCP) (see (Stroock
and Zeitouni, 1991)), which states that when the r.v.’s are independent and identically distributed

(ii.d.) and valued in any Polish space, the distribution of X} given { 1 > f(X;) = a}, where f
j=1

is a measurable real function, converges weakly to some limit distribution. Let Px be the common
law of the (X;). Denote by B (R?) the Borel o-algebra of R?. Then, under suitable conditions, the

GCP asserts that for fixed k, we have for any B € (B (Rd))k and a # Ep, [f],
6—0 n—oo

lim  Tim P | X} € B| A(a,0) := %Zf(Xj)E[a—é,a-i—(F] — (MB),  (2.1.1)
=1

where the measure %, called a Gibbs measure, minimizes the relative entropy H(-|Px) under an

11
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energy constraint. Let 8% € R be a solution of the equation

log(®/
dog(e)(e) —a, where &/ () = / exp(6f(x))dPx (x). (2.1.2)
R4
Then 7, is absolutely continuous (a.c.) with respect to (w.r.t.) Px, with
A" () = (/@)
dPx cpf(ga) )

(2.1.3)

The GCP extends to the case where k — 0o as n — oo, provided that & = o(n). (See (Dembo and
Zeitouni, 1996)). It has an interpretation in Statistical Mechanics, since it describes the distribution
of a typical small subset in a system composed of a very large number n of particles, under a
constraint of averaged energy. The classical approach to obtain statements of the form (2.1.1)
is to interpret the event A(a,d) in terms of the empirical distribution and to use Sanov’s large
deviations theorem (see Section 7.3. in (Dembo and Zeitouni, 1993)). However, this method uses
the exchangeability of the (X;) under the conditioning event, which does not hold anymore when the
r.0.’s are not i.d..

In this paper, we consider the conditioning point approach of (Diaconis and Freedman, 1988).
Instead of enlarging the conditioning event as in (2.1.1), this approach uses that, when all the X;’s
are a.c. w.r.t the Lebesgue measure on R?, @Q,,,; may be defined by a conditional density (see Fact
16 below). We prove that this method can be applied to r.v.’s which are not i.d. More precsisely,
we generalize Theorem 1.6 in (Diaconis and Freedman, 1988), which holds, when k& = o(n), for
a sequence of i.i.d. r.v.’s valued in R (d = 1). We extend it to a sequence of independent non
i.d. r.v.’s. valued in R? with d > 1. We obtain that @, is asymptotically approximated in total
variation distance, by the product of k£ probability measures (’Yﬁn)lgg’gk described as follows. For
any j > 1, let ®;(-) := [pa exp(-,z)dPx,(x) be the moment generating function (mgf) of X;. Then,
forany n > 1and 1 <j <k, 7§, is a.c. wr.t. Pj:= Px,, with

d’y}{n
dP;

(z) = exé),((egcz)@, for z € RY, (2.1.4)
VANE )

where for any n > 1, 62 € R? is a solution of the equation
1 n
— E Viog ®;(0) = a. (2.1.5)
n
j=1

Although our conditioning event is less general than in the GCP, our result still has a Statistical
Mechanics interpretation, as explained in Section 2. After some preliminary results in Section 3,
we precise our assumptions in Section 4. Then, we state and prove our main theorem in Section 5,
while some technical lemmas are deferred to the Appendix.

2.1.2 Notations and elementary Facts

All the r.v.’s considered are a.c. w.r.t. the Lebesgue measure on R%. For any r.v. X, let Py be its
distribution and px its density. For any j > 1, set

Pj:=Px,; and p;:=px;.
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Conditional density

Let U and V' be r.v.’s having a joint density denoted by p ). Then, there exists a conditional

density of U given V', denoted as follows.
pPw,v) (U, ’U)
p(U=u|lV =v)=——"——.
( | ) o)

Fact 5. Let (Xj);>1 be a sequence of independent r.v.’s valued in R?, d > 1. For anyn > 1, let
Jn be a subset of {1,...,n} s.t. a, := |Jn| < n. Let L, be the complement of Jy, in {1,...,n}. Set
St. = Y, Xj. Then, there exists a conditional density of (X;)jes, given S, defined by

j€Ln
{H Pj(%’j)}PsLn (8— P xj)
I I (2.1.6)

pSl,n (S) ’

p((Xj)jes, = ()| S1n=5) =

(e79)

Proof. For any measurable function ¢ : (Rd) x R4 — R?, we calculate

E o ((X))jer.; Sin)] = /gb((xj);sl’n) Hpj(xj) dxi...dxi, where si, = Z:Uj. (2.1.7)

7=1 7j=1
Then, we apply the change of variables formula with the diffeomorphism of class C! defined by
(:L'l, vy Tp—1, .%'n) — (1‘1, cey Tp—1, 817n). (2.1.8)

We obtain thus that the joint density of (X;);es, and 51, is the numerator of (3.2.2). O

The Tilted Density
Definition 4. Let X be a r.v. valued in R?, d > 1. Denote by ®x its mgf. Let Ox := {9 cRY: dy(0) < oo}.
For any 0 € Ox, denote by X? a random vector having the tilted density, defined by

pea(a) = ’W (2.1.9)

Fact 6. For any 0 € Ox, the mean of the r.v. X0 is equal to the gradient of k at 6. Thus,

E[X?] = Vk(6). (2.1.10)
The covariance matriz of X0 s equal to the Hessian matriz of k at 8. Thus, for for any 1 <1i,j <d,

B 0%k
N 00,00,

[COU(XG)}

, (9)] . (2.1.11)
(2%} 27]
For any j > 1, set ®; := ®x . We suppose throughout the text that the functions (®;);>1 have the
same domain of finiteness denoted by ©, which is assumed to be of non void interior. We write, for
any j > 1,

O := {GERd:@j(9)<oo}.
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Fact 7. For any j > 1, there exists a probability space (29, A° PY) such that for all finite subset
J C N and for all (Bj)je; € BRI

P’ <<)~(Je>jeJ < (BJ)J€J> =173 =11 /ﬁ?(l‘)dﬂs, (2.1.12)
jeJ B;

ﬁ? = p)??. In other words, ()Z'f) is a sequence of independent r.v.’s

where P? = P)?g and
J J §>1

defined on (07, A% PY).

Fact 8. Forany 0 € ©, j > 1 and j' > 1,

—_ T — 0 ~ ~
E [Xj + X ] =E [Xf+X§/]. (2.1.13)

Corollary 1. For anyn > 1, for any 6 € O,

E [éﬁf] - f:mj(e). (2.1.14)
j=1

We will prove in Section 2.1 that, for a suitable choice of a, the equation (3.2.24) has a unique
solution denoted by 05.. Throughout the text, when we write X; without any subscript 8, this means

that we refer implicitly to ij@ii'

2.2 Analogies with Statistical Mechanics

We have the following analogies between the mathematical point of view and the statistical me-
chanics one developed in the Chapter of Introduction.

Sik «— Energy of gi||...| gk
Density of S; — Structure function of g1 | |...| | g
Moment generating function of S}, <+— Partition function of g1 | |...| | gk

0n

— [

Notice that, although the energies (e;) of the components (g;) are the analogues of the (X;), the
(e;) are not stochastically independent. However, splitting G in components (g;) in this sense, gives
raise to some (U{) such that (U?) is the density of a sum of independent random variables ()?f‘)
The assumptions on the ()? @) of Theorem 1 are actually analytical conditions of uniformity on their
densities (U). They mean that the components (g;) have rather similar characteristics, although
they are not identical. Now, we have from (1.1.37) that

QM) (2)0(2) — U (na— Q) xp(— B2
p(S1 = 2|S1,0 = na) aet) = Up(a) iyt ~ St
Therefore, we expect that p(S; x = #|S1,, = na) should be approximated by * (51,?11)(6;;1;(9%)7 where

® ;. is the mgf of S; ;.. This approximation is a consequence of our general result, which is therefore
natural.



2.3. PRELIMINARY RESULTS
2.3 Preliminary Results

2.3.1 Existence of the tilted density

For any set £ C RY, we denote respectively by int(E), c{(E) and conv(E) the interior, the closure
and the convex hull of E. Let Sx be the common support of the (X;);>1. Set

Cx := cl(conv(Sx)).

Definition 5. Let f be a conver function on RY. Set dom(f) := {z € R?: f(x) < co}. Assume
that int(dom(f)) # @ and f is differentiable throughout int(dom(f)). Then, for any boundary point
x of dom(f), we say that f is steep at x if

IV f(@:)|| — oo (2.3.1)

whenever (x;) is a sequence of points in int(dom(f)) converging to x. Furthermore, f is called steep
if it is steep at all boundary point of dom(f).

We have the following characterization of steepness, which is Theorem 5.27 in (Barndorff-Nielsen
Ole, 2014).

Theorem 7. Let f be a conver function on RY. Assume that int(dom(f)) # @ and that f is
differentiable throughout int(dom(f)). Then f is steep if and only if for any z € int(dom(f)) and
any boundary point x € dom(f),

%(x +A(z— 1)) | —00, as ALO. (2.3.2)

Fact 9. Assume that for all j > 1, k; is steep. For alln > 1, set

1 n
Fn = Zl Kj. (2.3.3)
]:

Then, for alln > 1, R, is steep.

Proof. For all n > 1, &, clearly satisfies the assumptions of Theorem 7. Now, for all j > 1, ;
being steep, r; satisfies (2.3.2). We deduce readily that %,, satisfies (2.3.2), which implies that &,
is steep. ]

Definition 6. Let C' be an open conver subset of RY. Let f be a strictly convex and differentiable
function on C. Assume that f is steep. Then the pair (C, f) is said to be of Legendre type.

Definition 7. Let f be a convex function on R®. Its conjugate function is defined on R by

F*(a) = sup {(z,a) - f(2)} (2.3.4)

z€RC
We have the following result, which is Theorem 5.33. in (Barndorff-Nielsen Ole, 2014).

Theorem 8. Let f be a convex and lower semi-continuous function. Let C = int(dom(f)) and
C* = int(dom(f*)). If the pair (C,f) is of Legendre type, then the gradient mapping Vf is a
homeomorphism from the open convex set C' onto the open convex set C*, and V(f*) = (Vf)~L.



16CHAPTER 2. ASYMPTOTIC DISTRIBUTION OF INDEPENDENT RANDOM VECTORS GIVEN THEIR S

Then, we can state and prove the main result of this Section.

Theorem 9. Assume that for all j > 1, k; := log ®; is strictly convex and steep. Then, for all
n>1 and any a € int(Cx), there exists a unique 0% € int(O) such that

VEn(02) = a. (2.3.5)
Namely, for anyn > 1 and a € int(Cx),
0% =V (Rp)*(a). (2.3.6)

Proof. For all n > 1, dom(%,) = © is an open convex set and &y, is strictly convex and differentiable
on int(©), since by assumption, the x;’s are. Now, we get from Fact 9 that %,, is steep. Therefore,
the pair (0, &,,) is of Legendre type. Furthermore, %, is lower semi-continuous. Therefore, we obtain
from Theorem 8 that the gradient mapping V&, : © — int(dom((k,)*)) is a homeomorphism. We
conclude the proof by Lemma 2 below. O
Lemma 2. For any n > 1, we have that int(dom((k,)*)) = int(Cx).

Proof. The proof is given in Appendix. O

2.3.2 Sufficiency Theory

Definition 8. Let (£,.A) be a measurable space. Let ¥ be a sub o-algebra of A. Let P and @ be
probability measures on (€, A). We say that ¥ is sufficient w.r.t. P and Q if for all A € A,

P(A|Y) = Q(A|X) almost everywhere (a.e.) P and a.e. Q. (2.3.7)
Lemma 3. For any sub o-algebra G of A, set

IP = Qllg :=2sup [P(A) — Q(A)].
Aeg
Assume that X C A is sufficient w.r.t. P and Q). Then

1P =Qlls =P - Qll.a- (2.3.8)
Proof. The proof is elementary. See Lemma (2.4) in (Diaconis and Freedman, 1987) for details. [

Lemma 4. Let P be a probability measure on ((RY)*, B((RY)*)) with density p w.r.t the Lebesgue
k

measure. Let T be the map defined on (RY)* by T(x) = > z;, for v = (2;)1<i<kx € (RY)*. For any
i=1

t e RY, let

Li= {a: e (RYF : T(z) = t}.

and let o' be the natural measure on Ly. (The definition is recalled in Appendiz). Then, the map
vp defined on RY x B((R)*) by

[ paraota)

up(t, A) =404 fLNA#@, and vp(t,A)=0 if LLnA=2  (2.3.9)

[ plaras'(a)

Ly

is a regular conditional P-distribution for I given T, where Iy is the identity map on (R%)F.
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Proof. The proof, which uses some elementary differential geometry, is given in Appendix. O
k

Lemma 5. Let T be the map defined on (RY)* by T(z) = 3. 2, for ¥ = (vi)1<i<k € (RY)*. Let
i=1

the sub o-algebra of B((R)¥) generated by T. Then, for an; 0 €0,
~ ~ ~ k ~
| Qnak — Pﬁng = ||Qnak — Pf,k”A: where Pf}k = H Pje. (2.3.10)
j=1

Proof. Let 8 € ©. Recall that ;41 and ﬁf , are a.c. w.r.t. the Lebesgue measure with respective
densities ¢pqr and f)‘i ;. given by

k(..k k k

k Py ($1)psk+l,n (na - T(:L'l)) b/ k
nak(T7) = , Where x7) = i(x4), 2.3.11
nan(2%) e whiet) =TTt (2:3.11)

and i
k(..k k
~0 k _ P1 ($1)eXP<9,T($1)> k._
p1g(ay) = o) , where @7 := jl_Ilq)j. (2.3.12)

Since on Ly, we have that T'(z¥) = t, we deduce readily that for any ¢t € R? and A € B((R%)*),

pi(af)do" ()
L:NA .
VQuar (1, A) =vpo (1, A) = if LLNA#02, (2.3.13)
[ dhabyio'x)
Lt

and

VQuae(t, A) =vpo (£, A)=0 if LiNnA=0. (2.3.14)
1,k

Consequently, ¥ is sufficient w.r.t Q,qx and ]519 i» Which concludes the proof. O

2.3.3 Edgeworth expansion

We obtain from the following theorem (theorem 19.3 in (Bhattacharya and Rao, 1976)) an Edge-
worth expansion for a sequence of independent random vectors.

Theorem 10. Let {X,, : n > 1} be a sequence of independent random vectors with values in RY,
having zero means and average positive-definite covariance matrices Vi, for any n large enough. Set

1 n
By, = (V,)"Y2,  where V, := - Z Cov(Xj). (2.3.15)
j=1

Assume that

_ 1 &
Tim —ZE[HBanH‘l] < . (2.3.16)
7=1

n—oo N 4
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Assume also the existence of an integer p > 0 such that forn > p+1 and 0 < m < n — p, the
functions

Jj=m+p
gma(t) = ] [|Elexp{i{t, B.X;)}]| (2.3.17)
Jj=m-+1
satisfy
v := sup sup /gm,n(t)dt < o0 (2.3.18)
n>p+1 0<m<n-—p

and, for all b >0,
o(b) := sup sup  sup gma(t) < 1. (2.3.19)
n>p+l 0<m<n—p |t||>b

Let ¢ be the density of the standard normal distribution on R®. Then, the distribution Q. of
n~Y2B,S, has a density q, for all n large enough, and

sup (1+ [|z]|*) |gn(2) — [qb(x) +n7 2P (= X)) (x)” =0 <1> : (2.3.20)
zeR4 n
where Py (—¢ : {X,n}) (z) = qb(w)Pl#(x) and
Pf(a) =" %, HY (), (2.3.21)

where Héy) is a polynomial function of degree 3 which vanish at 0 andX,,,, is the average of the vth
cumulants of B, X; with 1 < j <n, for |v| = 3. See (7.20) in (Bhattacharya and Rao, 1976) for
the precise expressions.

Proof. We write hereafter a sketch of the proof. For a given nonnegative integral vector a with
la] <4, set

hp(z) = z¢ (qn(x) — [(]ﬁ(&:) +n 2P, (—gi) : {ng}) (a:)D (2.3.22)

Let iln be the Fourier transform of h,. Then, the Fourier inversion theorem implies that

sup [n(z)] < (2m)~° /

rERY

ﬁn(t)‘ dt (2.3.23)

The aim is then to bound / ‘ﬁn(t)‘ dt, by splitting it into a sum of three integrals which are bounded

by some O (%) The key point is that these controls are made at fixed n. O
We recall that all the notations™ considered in the sequel pertain to 0 = 02.

Corollary 2. Forn > 1, let J, be a subset of {1,...,n} and Ly, be its complement in {1,...,n}. Set
ay, = |Jy| and assume that
lim |L,| = lim n — a;, = . (2.3.24)

n—oo n—oo
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Set )
Vi, = — - Z Cou(X;). (2.3.25)
JELy
Assume that N
Im Apin(Vz,) >0, (2.3.26)

which implies in particular that for all n large enough, ‘7Ln is positive-definite, so that we may set

- ~ \—1/2
Br, = (VLn) . (2.3.27)
Suppose that
fm —— S E HE (f( (03)) H4 < (2.3.28)
1m i — My Q. 0.
n—oo N — OQp jer Ln J T

Suppose also that there exists an integer p > 0 such that for all n larger than some N, to insure
that o, > p+ 1, the functions

m-+p

ORI | | (E [exp {z <t,§Ln)~(ﬂ>}] ) 0<m<an—p) (2.3.29)
j=m+1
satisfy
5 := sup sup /ﬁm,n(t)dt < 00, (2.3.30)
n>Np 0<m<an—p
and, for all b >0, ~
d(b) :== sup sup sup gmn(t) < 1. (2.3.31)

n>Np 0<m<an—p [|t||>b

Then the density q;, of S, = aﬁlmeLn <§Ln - > mj£(92)> satisfies
Je€Ln

sup (14 2]) |7, () = [6(2) + 0 2Py (=0 {Rour}) ()] [ = © () | (2.3.32)

1
r€R4 (7))
where X, 1, is the average of the vth cumulants of gLn ()z] — mJ(H?l)) with j € Ly, for |v] = 3.

Proof. We need to perform an Edgeworth expansion when, instead of a sequence {X,, : n > 1} of
independent random vectors, we consider a triangular array whose row of index n is composed of
the «,, independent random vectors
02 09 vo0n | _

(Xj —E [Xj DjeLn , where we recall that E [Xj } =m;(0y). (2.3.33)
Therefore, in the framework of triangular arrays, we can write analogously these controls, for a fixed
row of the array. So, we consider the row of index n of the triangular array defined by (2.3.33). A
careful study of the preceding proof implies that (2.3.32) holds if the assumptions of this corollary
hold. O

19
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2.4 Assumptions and Examples

2.4.1 Assumptions

The following assumptions are essentially those of our main Theorem, since they imply those of the
Preliminary Results.

(Supp) : The (X;), j > 1 have a common support Sx, and they have positive densisties p;.
(Mgf) : The mgf’s (®;);>1 have the same domain of finiteness ©, and int(0) # @.
(Stp) : For all j > 1, k; :=log ®; is a strictly convex and steep function.

(Bdf) : For any a € int(Cx), there exists a compact set K, of R? such that

{02 :n>1} C K, C int(O). (2.4.1)

(Cv) : For all j > 1 and 6 € O, CJQ = Cov ()?f) is a positive definite matrix and for any compact
K Cint(©),

0 < inf inf M\, (CY9) < Amaz(C9) < 2.4.2
inf inf min(C) < 3121113 sup maz(C}) < 00, (2.4.2)

where )\mm(Cf) (resp. )\mw(Cf)) is the smallest (resp. largest) eigenvalue of C’;-).

(AM4) : For any compact K C int(©),

- 4
sup sup E [HXJQ —mj(Q)H ] < 0. (2.4.3)
Jj>1 0eK

For any j > 1, let §; be the characteristic function of X; and for any 6 € ©, denote respectively by
ﬁ? and §? the density and the characteristic function of XJQ.

(Cf1) : For any compact K C int(0©), there exist positive constants dx, Cx, R such that

. ~ C
Vi > 1, V|t > Rk, sup |€0(1)] < — . (2.4.4)
oK [1£]]%%
(Cf2) : For any j > 1, p; is a function of class C! and for any compact K C int(©),
o]
max  sup sup |[=—- < 00. (2.4.5)
te{ldt j>1 ek ||Oe||,,
(Cf3) : For any compact K C int(0©), for all § > 0,
sup sup sup ‘gf(t)’ =egp < 1. (2.4.6)

> |t|>8 €K
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Remark 1. (Bdf) is reasonable, since V K, is a mean of functions. We will see that, when d =1,
it can be replaced by a natural uniformity assumption, denoted by (Uf).

Denote by [Ad] the set of assumptions (Bdf), (Cv), (AM4) and (Cf1), (Cf2), (Cf3).

Remark 2. [Ad] is natural since it concerns each individual r.v. X;, j > 1. Thereby, the order of
the r.v.’s is irrelevant (as in Statistical Mechanics), which makes sense since we intend to study the
distribution of any small subset of r.v.’s among those defining the global constraint {S1, = na}.

Remark 3. Most of the assumptions in [Ad] are of the form sup sup F;(0), where for any j > 1,
j>1 0eK
F; is a continuous function. Therefore, for fized j > 1, sup F;(0) < oo, since K is compact. So
0K

[Ad] is a convenient to check set of uniformity assumptions.

We prove hereunder that [Ad] implies the assumptions of Corollary 2. We also prove that (Bd6f)
and (Cf2) imply (Cf1).

Covariance

Fact 10. Assume that (Bd@) holds and that for any compact K C int(0©),

K . . 0
e . : . 4.
Amin jlgfl gél}f( Amin(Cj) >0 (2.4.7)
Then, B
lim Amm(VLn) > 0. (2.4.8)

Proof. Recall from the Courant-Fischer min-max theorem that for any Hermitian matrix M,
' Mx
inf

B {:vG]Rd:a:#O} zle

Amin (M) (2.4.9)
Let K, be a compact subset of int(0) such that (%),>1 C K,. Then, for any 6 € K,, any = € R?
(x #0), and any j € L,,

xthx

Therefore, for all n > 1,
~ V0
inf Apin(VY )= inf  inf Ln” > \Ka 0 2.4.11
9161}((1 mzn( Ln) 0161}(41 {xe]lgil::c;é[)} sty = (min > ( )
O

Absolute Moments of order 4

Fact 11. (AM4), (Bdf) and (Cv) imply that (2.3.28) holds.
Proof. For any j € L,,

| [B. (%5 - ms @) '] < win () 5[5 - myem

4] . (2.4.12)

Therefore, (2.3.28) holds if lim Ap,in (an) > 0 and (Bdf) together with (AM4) hold. O

n—oo
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Characteristic function

Lemma 6. Assume that (Bdf) and (Cf1) hold. Then, (2.3.30) holds for any p > ﬁ.
A

Proof. The proof is given in Appendix. O

Corollary 3. Assume that (Bdf) and (Cf2) hold. Then, (Cf1) holds for all t € R, t # 0, with
0 = 1.

Proof. The proof is given in Appendix. O
Lemma 7. Assume that (Bdf) and (Cf3) hold. Then, (2.3.31) holds for any p > 0.

Proof. Let p > 0,n > N, and 0 < m < @, —p. For any b > 0 and ¢ € R? such that ||t| > b, we
have that

m-+p

Gnan®)i= T 16 (Brut)| < (ertanmat < 1. (2.4.13)
j=m+1

O

2.4.2 The one-dimensional case

Assume here that d = 1. For any r.v. X or for a sequence (Xj;);>1 of i.i.d. r.v.’s, set

d d?
k:=log(®x) ; m:= d—g and s?:= df@g

If (X;)j>1 is not an identically distributed sequence of r.v.’s, then for any j > 1, set

dk; d’k;
Kj = log(<I>X].) ;omy = d—aj and s? = WQJ
Fact 12. For any 0 € Ox,
E[X’] = m(0) and Var(X%) = s*(0). (2.4.14)

In the sequel, ©® and Sx pertain to r.v.’s Xj;, j > 1, with common support and common domain
of finitness of their mgf’s. Since © and conv(Sx) are convex, int(©) and int(Cx) are open convex
subsets of R, which are open intervals. Therefore, we can write int(0) = («, ) and int(Cx) =
(A, B), where a, 3, A, B may be finite or not.

Definition 9. Let f : (o, ) — (A, B) be a differentiable function. Consider the following property.

(H) : For all § € int(©), 4(0) >0 and lim f(#) = A ; lim f(d) = B.

0—a 0—p3

Fact 13. If f satisfies (H), then f is a homeomorphism from int(©) = (a, B) to int(Cx) = (4, B).

If d > 1, then Theorem 8 requires that %,, is steep, in the sense of Definition 5, while when d = 1,
this notion of steepness is not necessary to get the conclusion of Theorem 8. Indeed, for all n > 1,
% is a homeomorphism from int(©) to int(Cx), provided that dc’l%gl satisfies (H). Consider the

following assumptions.



2.4. ASSUMPTIONS AND EXAMPLES

(Hk) : Forall j > 1, m; := % satisfies (H).
(Uf) : There exist functions fy and f_ which satisfy (#) and such that
V=1, V0E®, f(6)<ms0) < fi(0) (2.4.15)

Fact 14. (Hk) implies that " is a homeomorphism from int(©) to int(Cx) and in particular that
for any a € int(Cx), for any n > 1, there exists a unique 03 such that

d”" ij 09) = (2.4.16)

Fact 15. The uniformity assumption (Uf) implies that (Bdf) holds.

Proof. For any j > 1 and n > 1, we have that

Fo(602) < my(82) < £(65). (2.4.17)
Therefore, for all n > 1,
f-(07) <mn(0) = a < f1.(67), (2.4.18)
which implies that
(f2) () < 62 < (£)"\(a). (2.4.19)
O

We deduce from these considerations that, when d = 1, we can replace (Stp) and (Bdf) by respec-
tiely (Hk) and (Uf).

2.4.3 Examples
Normal distribution

For any j > 1, X; is a r.v. with normal distribution. Set p; := E[X;] and I'; := Cov(X). Assume
that
sup ||ij]] < oo and 0 < inf Apin(I';) < sup Apaa(I'j) < oo. (2.4.20)
j>1 j=1 j>1

We recall that, for any j > 1, for all § € © = R¢,

1
I{j(e) = #;9 + §G/FJ9 and VIQJ( < ,u] ¢+ Z (95/ gg/) . (2421)
=1 1<e<d

So, for all § € R?, the Hessian matrix of kj at 0 is equal to I';. Since for all § € R?, this matrix is
equal to C’JQ, we get that (Cv) holds. Since for any j > 1, I'; is positive definite, we deduce also that
k; is strictly convex. Clearly, Vk; satisfies (2.3.1), so that k; is steep and (Stp) holds.
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n . n
Set &, = % > i and Iy = % >.I'j. We get after some elementary calculations that for any
j=1 j=1

) and n > 1, the equation V&, (f) = a is equivalent to

(Tp) 0 = a — 1, (2.4.22)

Then, (2.4.20) implies readily that (2.4.22) defines a unique 6% and that the sequence (0%),>1 is
bounded, so that (Bdf) holds. Finally, it is straightforward to get from the expression of p; and the
boundedness conditions, that (AM4) and (Cf2) hold.

Gamma distribution

Fix t > 0. For any j > 1, X is a random variable (d = 1) with distribution I'(k;,t), such that

2 <k_:=infk; <ky:=supk; < oo. (2.4.23)
j=1 j>1
For any j > 1 and = > 0,
£ exp(— )

i(2) = ———7— 2.4.24
Pi@) = (2.4.24)

Recall that for any j > 1,

1

Sx =Cx = (0;00) ; ®j(0)=(1—td) " ; © = (-0, - (2.4.25)

We check readily that (Mgf), (Stp) and (Cv) hold, since, for any j > 1 and 6 € O,

kj(0) = —kjlog(1—0t) ; m;(0) = kt(1—6t)"" ; s3(0) = k;(1—6t)"" [L+6t(1 —6t)~']. (2.4.26)

Furthermore, (U f) holds, since for any j > 1 and 6 € O,

<m;(0) < f(0) == . (2.4.27)

Now, we have that, for any j > 1 and 0 € O,

ot exp [o (0~ 1))

P = g G

(2.4.28)

For 6 € O, we have that 6§ — % < 0. Thereby, we deduce readily that (AM4) holds. We also get
/\»9
(Cf2), since %(w) is of the form P(z)exp [z (§ — 1)], where P is a polynomial function.

2.5 Main Result

In the sequel, for any probability measures P and @ on R¥, we denote the total variation distance
between P and @ by

1P =Qllpy == sup [P(B) - Q(B)].
BeB(RF)
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2.5.1 Theorem of Diaconis and Freedman

Theorem 11. Let (X;);>1 be a sequence of i.i.d. random variables (d =1). Assume that © = («, 3)
and Sx = (A, B), where «, 3, A, B may be finite or not. This implies that int(©) = («, ) and
int(Cx) = (A, B). Assume that the function

m = d(l()gd(fx)) satisfies (H)

and that for any 0 € O,

g | (X =mO) 4 < 00 (2.5.1)
e . 5.

Suppose that there exists v > 1 such that for any 6 € O,

and that for any 6 € ©, for all b > 0,
_X?
E [exp <Zts(0) ]

Assume that % — 0 and k — 00, asn — oo. Set v := %]E Ul — Z2|] , where Z is of standard normal
distribution. Then, for any a € Sx,

E dt < oo, (2.5.2)

sup <L (2.5.3)

[t]|>b

~ k k
na _PkH =7 — |, 2.5.4
| @uer — B 7n+0<n> (25.4)

where ﬁlk 18 the joint distribution of independent r.v.’s ()Z'jhgjgk, having the tilted density defined
by 6% such that m(6*) = a.

2.5.2 Main Theorem and Proof

Theorem 12. When d > 1, assume that (Mgf), (Stp), (Bdf), (Cv), (AM4), (Cf2), (Cf3) hold.
(See Section 4 for weaker assumptions). When d = 1, we can replace (Stp) and (Bdf) by respectively
(Hk) and (Uf). If k = o(n), then for any a € int(Cx),

Hka - ﬁfHTV -0 <k> : (2.5.5)

n

where ﬁlk is the joint distribution of independent r.v.’s (Xj)lsj‘gk-
k ~

Proof. Let n > 1. Let Ryqk be the distribution of Sy := ) X; given Si, = na. Let Ry be the
j=1

~ ko
distribution of Sy := Y  X;. Then, we obtain from Sufficiency Theory (Section 3.2) that
j=1

HQnak - ﬁlkHTV = HRnak - él,kH (256)

TV
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Now, by Scheffe’s theorem, we deduce that
Hka ) k /(p (Sik = 1] Sin = na) — pg, k(t)‘ dt. (2.5.7)

Then, we can check readily the following invariance of the conditional density : for any ¢ € R%,

(S1x =t S1n=na) =p(S1 =t|S1n =na) =pz (1) Sktun e " (2.5.8)
n = na n = na . .5.
P(O1k 1, P91k 1, P35, Sl,n(n )

~ mo
For any integers ¢, m with 1 < ¢ < m, we denote by f;,, the density of Sy, := > X;. Therefore,

=t
we deduce readily from (2.5.6), (2.5.7) and (2.5.8) that
5 frt1n(na —1)
nak = Pr :/ Tl W20 ] fy (8t 2.5.9
| Quar = Pr ) fi(®) (2.5.9)

First, we need to normalize in order to perform Edgeworth expansions. Recall that if X is a random
vector with density px, then the normalized random vector X has a density given by

px(z) = det [COU(X)—W] . (COU(X)—W(:C - ]E[X])) . (2.5.10)

Set
_ _ _ k
= Cov(S1) V2 (t —E[Sie]) = k2B [t =) m;(0%) (2.5.11)
j=1

and

t# 1= Cov(Spy1n) "2 (na — t — E[Sps1,n)) = (n— k)72 Brgrp | Y m;(02) —t (2.5.12)

j=1

Therefore, t and t# are linked by

B2 . _ -
th = — [n_ /J Bii1a(Brgy) 't (2.5.13)

Lemma 8. Let 0 < 0y < 1. Then,

W:{Ho(?’mexp( ”‘) ( )W+o<> (25.14)

(2.5.14) holds uniformly in n,k,a,t with k < 61n.



2.5. MAIN RESULT 27

Proof. For any integers ¢,m with 1 < /¢ < m, we denote by g;., the density of the normalized r.v.
associated to Sy,,. So, we have that

- 1/2
frsin(na—t)  det (Cov(Ser)) Ges1n(t#)

fin(na) det (Cov(gkﬂm))lm 91.2(0) (2.5.15)
The assumptions allow us to perform Edgeworth expansions to obtain that
91.n(0) = ¢(0) + O <;> , since P;(0) = 0. (2.5.16)
and
G0 (t7F) = G(t7) + (n_lk)mﬁl (=0 {Xur,}) )+ O (n i k) (2.5.17)
where Ly = {k+ 1,...,n} and Py (=6 : {X,.1,, }) (t#) = 6(t#) Py (t#), with
= > N H(F). (2.5.18)

lv|=3

Now, for |v| = 3, the v-cumulant of a centered random vector is equal to its v-moment. See (6.21)
in (Bhattacharya and Rao, 1976) for details. Furthermore, the cumulants are invariant by any
translation. Therefore,

Xor, =5 > ElBr.X) (2.5.19)
k+1<j<n
Then, we have that
Kor | < —— 3 IEH(EL 5(7)”} <1 E HEL 5('-”'”' : (2.5.20)
V,n—n_k / n<*] “n—k ‘ n]oo
k+1<j<n k+1<j<n

Now, we have that
vl

HBL (2.5.21)

o =B < 4B %

where A is an absolute constant which appears by equivalence of the norms. Now, the assumptions

i

Gri1n(t7) = ¢(t%) |1+ O <(n_1k)1/2) S HP )| +0 <n 1 k) (2.5.22)

lv|=3

on the covariance matrices and on the absolute moments of order 4 imply that E [HB L, X

O(1), so that X, ;,, = O(1) and

Now, since Hé'/)(O) = 0, we can factorize by t# in Héy) (t*) and get that
lv|=3

o(t1).0 (( 1/2) S B ()| = <(n_1k)1/2> o(|e#]) =0 <n\ﬁ:> il @5.23)

v|=3
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We deduce readily, after some elementary calculations, that

# 2
g’“;:((g)) = exp (‘@) +0 (ﬁ) £l +© <;> (2.5.24)

Now,
det (C’ov(glm)) _ -1 .
— = det [Id + (COU(SHL”)) Cov(SLk)] (2.5.25)
det (COU(S[H_Ln))
Furthermore, we have that
Jlomnn) | s o) et emi@in] < oty

mwn

" (AKG )2 (2.5.26)

=0 (n f k) . (2.5.27)

Consequently, performing a Taylor expansion of det at Iz, we obtain that

Therefore,

‘ (Cov(gk“,n)) - CO"U(gl,k)

~ -1 ~ ~ -1 ~ k
det [Id + (C’ov(SkH,n)) COU(SM)] =14Tr [(C’ov(SkJan)) C’ov(SLk)] +o (n — k) .
(2.5.28)
~ -1 -
Now, we have that T'r [(Cov(Sk+1,n)) COU(SLk)] =0 <nkfk), since Tr(-) = Trace(-) is a linear

and continuous mapping. Therefore,

det (Cov(G1,)) " N )
det (Cov(§k+1,n))1/2 { o (n - kﬂ =1+0 <n> (2.5.29)

Lemma 9. If k = o(n), and Ht#H < B9 < 00, then uniformly in a and t, we have that

frowle 1o (E) w0 (B) 1o () o (B) Mo (L) @am

fin(na

Proof. Since Ht#H is bounded, we get from the Taylor-Lagrange inequality that

exp<—Ht#2H2>:1 HEH +0<Ht#H> 1+O( )M +O< )m (2.5.31)

Therefore,

1+0(5)]ex (HH) vo(B) o (B rvo(B) it esm
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Lemma 10. Forv =1,2,3,4 we have that
/ I fu(de = 0(1) (2.5.33)

Proof. We only need to prove the case v = 4. Setting I, := [ HZH4 fr(t)dt, we readily obtain that

4
dP.

(2.5.34)

4
- P -4 LTS
Iy = / k2B, ZXj —m;(6y) ||| dP < k72 HBIkH / Z HXJ' —m;(0;)
=1 =1

Since the ( mJ(G“)) are centered and mutually independent, we obtain that

-2 B 4 . v a a 2 & a 2
Iy <k HBl,kH > HXj —my (b —my, (67) HXJé —mj,(03)|| dP
Jj=1 J17j2
(2.5.35)
The assumption on the absolute moments of order 4 and the inequality of Cauchy—Schwartz imply
that z I HX — ;69" dP = 0k) ana z I H —mj, (0 —my, 09| P = 0(2).
J1#j2
Then, since HBlkH = O(1), we conclude from (2.5.35) that I, = O(1). O
We are now able to prove (2.5.5). Setting k(t) := % 1‘ f1,,(t), we have that
| @t — P = / (1)t + / ()t (2.5.36)
Je#1 <o [e#]1>0:
Now, Lemma 9 and Lemma 10 imply that
k
k(t)dt = O | — (2.5.37)
n
J¢# <02

On the other hand, we get from Lemma 8 and Lemma 10 that
2
k t
[1 +0 <>} exp (—HH> -1
n 2

Recall that [|[¢#] = O (ﬁ) 7. Therefore,

constant A, with 0 < A < oo, such that A\/iHAH > 5. This is equivalent to }ﬂ‘ > A~405 (%) .

k(t)dt =

]| Je#]l>0

fe(t)dt + O (i) (2.5.38)

t#H > 0, implies that there exists an absolute
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2
Then, since |[1+ O (%)] exp <_Ht?:||> -1

and Lemma 10 that
# 2
[1 +0 <k>} exp <—HtH> -1
n 2

is uniformly bounded, we get from Markov’s inequality

fr(t)dt = O <k2> : (2.5.39)

n2

Je#]l >

2.6 Appendix

2.6.1 Proof of Lemma 2

Proof. We adapt the proof of Theorem 9.1. (ii)* in (Barndorff-Nielsen Ole, 2014). So, it is enough
to prove that
int(Cx) C dom((R,)*) C Cx. (2.6.1)

Let t ¢ Cx. Let H be a hyperplane separating Cx and ¢ strongly, and let e be the unit vector in
R? which is normal to H and such that Cx lies in the negative halfspace determined by H and e.
For any r > 0, we have that
1 n
lp(re;t) := (re,t) — Rp(re) = — Z (rd — kj(re)) |, whered:= (e,t). (2.6.2)

n |4
Jj=1

Since t ¢ Cx, we obtain from (5) of Section 7.1 in (Barndorff-Nielsen Ole, 2014) that for all
1 <j<n,rd—kjre) — oo as r — oo. Therefore, £,(re;t) — oo as r — 0o. So (Rn)*(t) =
sup {(0,t) — ()} = oo, which means that ¢ ¢ dom((k,)*). Consequently, dom((%y)*) C Cx.

USS)

Conversely, let t € int(Cx). Applying Jensen’s inequality, we have that for any § € R,
Fn(0) > log E [exp(0, S1.,/n)] . (2.6.3)

Now, we apply Lemma 9.1. in (Barndorff-Nielsen Ole, 2014) (which follows readily from Markov’s
inequality) to the random vector S, /n to get that for any #,7 € R?,

(0,7) —logE [exp(f, S1,n/n)] < —log pp(T) (2.6.4)

where
pn(T) = ilng ((e, Sin/n) > (e,1)), (2.6.5)

the infimum being taken over all unit vectors in R?. Then, Lemma 9.2. in (Barndorff-Nielsen
Ole, 2014) implies that, since ¢t € int(Cx), we have that p,(t) > 0. Consequently, we have that
t € dom((Ry)*), since for any 6 € R?,

(0,t) —Fn(8) < (0,t) —logE [exp(f, S1,n/n)] < —log pn(t) < oo, (2.6.6)

and p,(t) is independent of 6. O
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2.6.2 Proof of Lemma 4
A Preliminary result

Let © be an open subset of R4 = R™ x RY. Let T be a function of class C! from €2 to R? such
that for any a € Q, the differential at @ of 7" in the second direction (of R?) is invertible. Define the
map h : R4 —3 R™+4 by

Rt (Z1, o T Ty oo Tingeq) > (T15 ooy T T (21, ooy Ting)) (2.6.7)

The local inversion theorem implies that for any a € §2, there exist an open neighborhood w, of a
and open sets U, C R™ and 7, C R? such that h induces a diffeomorphism of class C! from w, to
U, x T4 Denote by &, the inverse of the restriction of h to wy.

Lemma 11. Assume that for any a € Q, and any (u,t) € Uy X Ty,
‘Jéa (uat)’ =1, (268)

where Jg, (u,t) is the determinant of the jacobian matriz of &, at (u,t). For any fived t € Ty, let &,
be the map from U, to w, defined by & (u) = &q(u,t). Then, € is a diffeomorphism of class C' and
clearly, we have that

Ea(Ua) = {T =t} Nwa. (2.6.9)

For any u € U, let get (u) be the Gram determinant of the partial derivatives of & at u. Assume
that ggg(u) is independent of u, t and a, that is

et (u) = g, (2.6.10)

for some constant g > 0. For anyt € R?, set Ly := {T = t}. Then, for any measurable non negative
function f on Q, we have that

/Q f(@)dz = \}g < /L B f(:r)dat(x)> n (2.6.11)

{t:L:NQ#£D}
where o' is the natural measure on the submanifold L, N ).

Proof. We recall that o is a Borel measure on L;, defined as follows for any submanifold V of
dimension p. Let w be a neighborhood of a point of V' such that there exists a local parametrization
(U,€) of V, where Uis an open subset of RP with £(U) = V Nw. Then, we define a measure o,, on
V Nw by

0w = E(/TEN); (26.12)
where Ay is the Lebesgue measure on U and g¢ is the Gram determinant of the partial derivatives
of £&. Then, o is a Borel measure on V, satisfying that for any such w, the restriction of o to VNw
is oy,.

Now, we have Q = [J wg, from which we can extract a countable subcover, that is @ = |J w,,, .
acf) n>1

Without loss of generality, we can assume that the (w,, )n>1 are non-overlapping and that

Q= Uwan UN,

n>1
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for some negligible set /. Therefore, f = > f1,, a.e., so

n>1

/ </me( )dt 2 / / f(x)dog, () | dt,  (2.6.13)

{t:L.NQAD} "2l L a0} \DtNWan

where o}, is the natural measure on the submanifold L; Nw,,,. Now, (2.6.9) implies that the couple
(Uamfén) is a local parametrization of the submanifold L;. Furthermore, we clearly have that

{t: Ly Nw,, # D} =Ta,. Therefore,

</me( )dt > / /ffan gst ( )du | dt. (2.6.14)

{t:L:NQ#2)} nzl

Now, we obtain from (2.6.10) and the definition of &, that

(/me() >dt VI / /ffa (u,t))du | dt. (2.6.15)

{t:L,NQ#D) =

We deduce from Fubini’s theorem and the change of variables formula that, under (2.6.8),

(/me() )dt VI /f dw—f/f (2.6.16)

{t:L:NQ#£o} nzl
O
Proof of Lemma 4
Proof. For any open set A C (R?)* and any meaurable set B C R,
P(AN{T € B}) = / 1p(T(x))p(x)dx. (2.6.17)
A
The map h : (R)F — (R?)* is defined by
h:x=(x1,...,c5-1;2) — (T1, ..., xp—1; T(2)) (2.6.18)

We readily get from the local inversion theorem that h is a local diffeomorphism of class C'. Fur-
thermore, for any a € (R%)*, the maps &, and & are defined by

€a : (uvt) = (Ul, "'7uk—1;t> = (uh ey Up—151 — 51776—1)7 (2619)

k—1
where s; -1 = Y u;, and
i=1
€ ums (uyt —s1 1) (2.6.20)
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We readily check that (2.6.8) and (2.6.10) hold here. Therefore, we get from the preceding Lemma
that

1
PAN{T € B}) = % / 1p(t) / p(x)dot(x) | dt. (2.6.21)
{t:LenA#2} tNA
In particular, applying (2.6.21) with A = (R%)*, we get that for any B € B(R?),
1
(PT~Y(B) = /1B(t) /p(x)dat(x) dt. (2.6.22)
V9
R4 t
Therefore, the probability measure PT~! is a.c. w.r.t. the Lebesgue measure, with
d(PT—1) 1 .
—_—t = — d 2.6.2
= [ @) (26.23)
Ly

So, we deduce from (2.6.21) that for any open set A,
P(AN{T € B}) = / vp(t, A)(PT1)(dt) (2.6.24)
B

First, we clearly have that for any fixed t € R?, the map A — vp(t, A) is a probability measure.
We deduce from this fact and the monotone class theorem that (2.6.24) holds for any Borel set A.

Finally, we need to prove that for any fixed Borel set A, the map ¢ — vp(t, A) is measurable. Notice
that L; N A = @ if and only if ¢ € T'(A). Therefore, it is enough to prove that T(A) is a Borel set
and that the map ¢ — p(x)do(x) is measurable.

LiNA

For the first point, write A = F U (AN F°), for some F' € F, included in A (which means that
F is a countable union of closed sets). The key point is then that A N F° is negligible w.r.t. the
Lebesgue measure, and so is T'(A N F°), which is obtained using that 7" is Lipschitz. We conclude
by the completeness of the Lebesgue measure.

For the second point, it is enough to prove it when A = w,, for some a € A. Then, we have that

/ p(z)do'(z) = \/§/p(u;t — 51,k—1)du, (2.6.25)
LiNwg Ug
which is clearly measurable w.r.t t. ]

2.6.3 Proof of Lemma 6

Proof. Let a € int(Cx). Consequently, we may apply (2.4.4) to K,. We set 0 := dg,, C := Ck,
and R := Rg,. Now, for any p > 0, any n large enough to insure that «, > p + 1, and any
0<m< an—p,

/%(t)dt = / G (t)dt + / G (t)dL. (2.6.26)

{:I1BL, tI>R} {t:11BL, tI<R}



34CHAPTER 2. ASYMPTOTIC DISTRIBUTION OF INDEPENDENT RANDOM VECTORS GIVEN THEIR S

Then, for || By, t|| > R, we get from (2.4.4) that

~ ~ C
& (BL,)| < —=—. (2.6.27)
J | Br,t]?
Furthermore, setting \pin := )\g‘;n, we have that || By t]| = Amin||t]|. Therefore,
m+p o 1
/ ()t = / T 1&(Brndt < cv / Sl (2629)
T min
|Br,tl=R 1Be,tizr T |Brotl=R

So, if p > %, then | Gma(t)dt < Dk, < oo, for some constant D, depending only on a.
IBL, tlI>R

Notice that, without loss of generality, we can assume that R > 2075 Therefore, (2.4.4) implies
that for all ¢t satisfying || By, t| > R, for all j > 1,

~ C
& (Br, ) < o5 < 1. (2.6.29)

Therefore, we obtain from Theorem 1, Chapter 1 in (Petrov, 1975) that for all ¢ satisfying || By, t|| <
R, for all j > 1,

c(B 1- (%)2 > 2
€5(Br,t)] <1 = ——=5—|Br,t|". (2.6.30)
S8R
. 1-(55)? e = ‘
Setting I' := —f>—, we deduce that for all ¢ satisfying || By, t|| < R, for all j > 1,
§(Br,t)| < exp (T Br,t2) < exp (~TXu1]%) (2.631)
Consequently,
/ Tmn()dt < / exp (—pL'AZ,in|t]1?) dt. (2.6.32)
I1BL <R |BLntl=R
Therefore, | Gma(t)dt < Bk, < oo, for some constant Fg, depending only on a. So, we
B, tlI<R
obtain that
sup sup /"gvmm(t)dt <Dk, + FEg, < (2.6.33)
n>Np 0<m<an—p

O]
Lemma 12. Let p € LY(R%), d > 1. Let p be the characteristic function of p, defined for all t € R?

by p(t) := [ exp(it, x)p(z)dz. Assume that p € C*(RY) and that for all £ € {1, ...,d}, 8‘% € L'(RY).
Then, there exists an absolute constant C' such that for all t € RY,

()] < HC” (2.6.34)
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Proof. Let t = (ty)1<e<d € R, For any ¢ € {1,...,d}, we have that

tip(t) = < op > (2.6.35)

oxy

The preceding equality is obtained by applying a multidimensional version of integration by parts,
which holds when one of the involved functions has compact support. Then, notice that p can be
approximated in L! - norm by a sequence of functions of compact support. We deduce that

t 2.6.36
H ep H 8$g H H&w ( )
Setting C' := max ‘ Jag |0 We deduce that for all t € RY,
1<e<d It
N C
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Chapter 3

A conditional limit theorem for
independent random variables

3.1 Introduction

3.1.1 Context and Scope, Importance Sampling Framework

Let (X;);>1 be a sequence of independent, not necessarily identically distributed (i.d.), random
variables (r.v.) valued in R, such that (s.t.) the (X;) have a common support Sx. In this chapter,
we restrict ourselves to the one-dimensional case, for technical reasons. Indeed, the proof of the
Edgeworth expansion theorem which we use here (see (Petrov, 1975)) is specific to the case d =1
and can be extended to our framework (see Section 3.3.1 below). We keep the notations of the
preceding chapter. For a € Sx and n > 1, we denote by Q4 a regular version of the conditional
distribution of X¥ := (Xi, ..., X;) given {S1,, = na}.

We have obtained in the preceding chapter an approximation of @, when k& = o(n). A natural
question arises : What can be said about the distribution of the n — k other r.v.’s, that is of
(X;)k+1<j<n, given {S1,, = na}. In terms of Statistical Mechanics, the question would be : What
can be said about the distribution of energy for the large component 7 Set

/

k' :=n—k, sothat s — 1 as n — oo. (3.1.1)
n

Therefore, we study the distribution of Q,.x when % is allowed to converge to 1 as n — oco. In
(Dembo and Zeitouni, 1996), it is explained that the condition k = o(n) is necessary to get a Gibbs
Conditioning Principle. In this paper, as expected we do not obtain a Gibbs type measure as an
approximation of Q,qk, if % does not converge to 0.

Now, we describe an Importance Sampling (IS) framework within which it is natural to consider
Qnak for large k. Consider a sequence (X;);>1 of r.v.’s. For large n but fized, we intend to estimate

II,, := P(X{ €&,), forsome event &,. (3.1.2)
A classical IS estimator of II,, is the following.
N ‘
~ 1 (Y
A (V) = = SYPETE)y gy (3.1.3)

() e
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where p7 is the density of X7 and the (Y]"(7)) are i.i.d copies of a random vector Y;* with density ¢f.
Then, the law of large numbers insures that ﬁn(N ) converges almost surely to II,,, as N — co. The
interest of this resampling procedure is to reduce the variance of the resulting estimator, compared
to the usual Monte Carlo method. It is well known that the optimal density from the point of view of
the variance is the conditional density p(X7'|&,). Therefore, it is natural to search an approximation
of p(XT'|€,). This approach has been developed in ?, for an ii.d. sequence (X;);>1 of centered

r.v.’s, with

En = {(xi)lgign e R™: sz > nan} , (3.1.4)

=1

for some sequence (a,) converging slowly to 0. Therefore, ﬁn(N ) estimates the moderate deviation
probability of Si,/n. In ?, they get an approximation of p(X¥|&,), which should be close to
p(XT|En) if k is large. For ar.v. X, denote by £(X) its probability distribution. They obtain that,
for some density g5 on R¥,

D (Xf = Ylk‘ Sin > nan> ~ gr(YF), where Y}~ L (Xf‘ Sin > nan> . (3.1.5)
The precise sense of & is given in Section 3.2.3 below. They deduce from an elementary lemma that
ge(ZF) ~ p (X{C = Z{“’ Sin > nan> ., where ZF has density g. (3.1.6)

Then, the approximation density g; has a computable expression, which allows to simulate Z{“. A
density g,, on R" is constructed from gx. In (3.1.3), ¢ and (Y{"(7)) are replaced respectively by g,
and copies of a r.v. with density g,,. The IS estimator obtained has better performances than the
existing ones which estimate II,,.

Now, it is reasonable to expect that (3.1.5) implies that the distribution of X} given {S1, > na,}
is close to the distribution associated to gp. We can use this idea to get an approximation of Q,qx
for some k such that % — 1 (see Theorem 18), but also for a class of k which are some o(n) (see
Theorem 17). However, in both cases, the condition n — k — oo is required for the Edgeworth

expansions.

We consider a sequence (X;);>1 of independent r.v.’s. For any a € Sx, let p (Xf = ‘ Sin = na) be
the density of XF given {S,, = na}. In this paper, we obtain that, for some density g on R,

D (X{C = Ylk‘ Sin= na) ~ gr(Y), where Y}~ L (Xf‘ St = na) . (3.1.7)
We deduce (see Section 2.4) that

HQnak - GkHTV — 0 as n— oo, (318)

where G}, is the distribution associated to gx. More precisely, when k is small (k = o(n”) with
0 < p < 1/2), Gy, is the same Gibbs type measure as in the preceding chapter, while for large k (see
the assumptions of Theorem 18), G is a slight modification of this measure.

Kolmogorov’s extension theorem does not apply to the sequence (Qnan)n>1 of probability measures.
Therefore, we need to consider a sequence ((€2,, Ap, Pn))n>1 of probability spaces s.t. for any n > 1,



3.2. ASSUMPTIONS AND ELEMENTARY RESULTS

Y]" is a random vector defined on (€2, Ay, Pp) and the distribution of Y{* is Qpnan. Then, for k <mn,
Qnar is the distribution of Y. The properties of (Y")n>1 are studied in Section 3, after some
elementary results and statement of the Assumptions in Section 2, while Section 4 is devoted to our
main Results and their proofs.

3.2 Assumptions and elementary results

All the r.v.’s considered are a.c. w.r.t. the Lebesgue measure on R. For any r.v. X, let Px be its
distribution, px its density and ®x its moment generating function (mgf). For any j > 1, set

Pj:=Px, ; pj=px; ; ®j:=2x,. (3.2.1)

3.2.1 Conditional density

Let U and V' be r.v.’s having respective densities py and py and a joint density denoted by p(y ).
Then, there exists a conditional density of U given V', denoted as follows.

pw,v) (u,v)

plU=uV=v)= pv(v)

Fact 16. Let (X;);>1 be a sequence of independent r.v.’s. For anyn > 1 and 1 <1i <mn, let J, be
a subset of {i,...,n} s.t. an = |Jp| <n—i+1. Let L, be the complement of Jp, in {i,...,n}. Set
St. = >, Xj. Then, there exists a conditional density of (X;);cs, given Sin, defined by

j€Ln
{'H pj(xj)}PsLn (8— 2 xj)
j€JIn J€JIn
(3.2.2)

p((Xj)jet, = ()| Sim = 8) = P ,

3.2.2 The tilted density

Definition 10. For a r.v. X, let ®x be its mgf and let Ox := {§ € R: ®x(0) < co}. For any
0 € O, denote by X? a random vector having the tilted density, defined by

Pgo(T) = W. (3.2.3)

For any j > 1, set ®; := ®x,. We suppose throughout the text that the functions (®;)j>1 have the
same domain of finiteness denoted by ©, which is assumed to be of non void interior. We write, for
any j > 1,

0:= {GeRd:<I>j(9)<oo}.

Fact 17. For any j > 1, there exists a probability space (0, A%, P%) such that for all finite subset
J C N and for all (Bj)je; € BR)V],

P ((X‘f)jej € (Bj)jeJ> =123 =11 / (@) dz, (3.2.4)

jeJ i€,

39
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where ]5](9 = Pgo and 'pﬁg = pxo- In other words, ()Z'f) s a sequence of independent r.v.’s
J J

Jj=1
defined on (07, A%, PY).
Fact 18. For any j > 1, and 6 € ©, we have that
E [Xf] =m;(0) where m;(f):= %(9) and k;j(0) :=log ®;(8). (3.2.5)
Fact 19. For any# €©, j>1 and j' > 1,
.7 50 w0
E|X;+X; | =E [Xj n Xj,] . (3.2.6)

Corollary 4. For anyn > 1 and 1 <{ <mn, for any 0 € O,

—0 n
E|Sn | = > mj(0). (3.2.7)
=t
Fact 20.
Forany j>1 and 0 € ©, set
57 . yo 01 _ O
and for any £ > 3,
- — ¢ ol
3?(9) =Var (Xf) ;o o0(0) = s?(@) ; ,u?(@) =E [(Xj) ] ; |M|§(0) =E “Xj‘ ] .
Then,
d’k d's
20)= 2250 and o) = L 0) (328)

3.2.3 Landau Notations

Definition 11. Let (X,,)n>1 be a sequence of r.v.’s such that for any n > 1, X,, is defined on a
probability space (Lp, Ap, Pp). Let (uy) be a sequence of real numbers. We say that

(Xn)n>1 ts a Op, (uy) if for all € > 0, there exists A >0 and Ne € N, s.t. for alln > N,
X,
Un
(Xn)n>1 is a op, (uy) if for all e >0 and § > 0, there exists Nes € N s.t. for alln > N,
X

(Xn)n>1 converges to £ € R in Py,- probability and we note X, ? L if

< A> >1—e (3.2.9)

< 5) >1—e (3.2.10)

Un
n

X, =0+ op,(1). (3.2.11)
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Remark 4. These notations differ from the classical Landau notations in probability by the fact
that here, the rv’s (X,,) are not defined on the same probability space. However, they satisfy similar
properties, which we will use implicitly in the proofs.

3.2.4 A criterion for convergence in Total Variation Distance

Definition 12. Set

Asri=S (Bunz1 € [[ An ¢ Pu(Bn) — 1

noo
n>1

Lemma 13. For all integer n > 1, let Y{" : (Q, Ap, Pr) — (R™, B(R™)) be a random vector. For
any 1 < k < n, the distribution of Ylk is denoted by P,. Let Gy be a probability measure on RF.
Assume that P, and G, have positive densities py and g, and that k — oo as n — oo. If there
exists (Bp)n>1 € A1 s.t. for any n > 1, we have on By, that

o (YF) = e (V) [1 + T0] where T, = op, (1), (3.2.12)
then,
I1Pe = Gellry — 0 3:213)

Proof. For any § > 0, set

E(n,d) = {(ylf) e RF:

LI EO 1‘ < 5} . (3.2.14)

Then,

Po ({|Tal < 6} 1 Ba) <Py < Pe() _ 1‘ < 5)

gk(Y1k)
= Py(E(n,9))

k
= / };:Ez%;gk(yf )dyy

E(n,8)
< (14 8)GR(E(n,d)).

By (3.2.12), for all n large enough,

P ({Tn] < 03 0 Bn) = 1= P ({[Tn] > 6}) = Pu(By)
>1-— 2.

Combining the preceding inequalities, we obtain that for all n large enough,
1—26 < Py(E(n,6)) < (1+ 0)Gy(E(n,d)). (3.2.15)
Therefore,

sup |Py(C) — Py(CNE(n,9))| < P(E(n,0)°) <26 (3.2.16)
CeB(RF)
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and

sup |Gk(C) —G(CNE(n,0)) <1—Gr(E(n,0d))

CEeB(RF)
“1_ 1—-26
- 1+96
30
1446

Now, we have that

sup  |Px(C'N E(n,d)) — Gx(CNE(n,d))[ < sup / ok (yt) — ge(yi)ldyt  (3.2.17)
CeB(Rk) ceB( Rk Bin,

From the definition of E(n,d), we deduce that

sup [Pe(C N E(n,8)) — Ge(CNE(n,6)| <8 sup / gk (v )y
CEeB(RF) CEB(Rk)CﬁE(n )

<.

Finally, applying the triangle inequality, we have that for all n large enough,

36
sup |Py(C) —Gr(C)| <20+ + ——
OEB(Rk) 1 + 5
249
=30 ——
(1+5)’
which converges to 0 as § — 0. O

Remark 5. A rate of convergence is not obtainable by this method.

3.2.5 A first calculus

Set
Dk (Ylk) =p (X{c = Ylk‘ Sin = na) . (3.2.18)
First, we have that
D (X{C = Ylk’ Sip = na) =p (Xk =Y X =Y} 8, = na) D (Xf_l = Ylk_l‘ Sin = na)

(3.2.19)
Set py, (Y{) == p (X} = Y| S1,n = ns), then we deduce by induction on k that

k-1
m@ﬁ—{prm_nmm—wﬁm—mﬁmx—nwm—m» (32.20)
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12
For 1 <y <y < n, set 3;, 4, := > Y;. We deduce from (3.2.20) that
Jj=i1
k—1
e (YF) = {H P (Xis1 = Yis1| Sizin = na - Em}p (X1 =Yi[Sin=na).  (3221)
i=1
Let 2170 =0. Then,
k—1
Pk (Ylk) = H e where T = p(Xi—i-l = Yvi+1|5i+1,n = na — Zl,i) . (3.2.22)
i=0
The conditioning event being {S; 41, = na — 31 ;}, we search 0 s.t.
9 n
E [Si+1,n :| = Z mJ(G) =na — 2172'. (3.2.23)

j=i+1

Since Pp-a.s., X1, + Liy1,n = na, this is equivalent to solve the following equation, where 6 is

unknown.
n

> my(0)
_ =it _ it

(3.2.24)

We will see below (see Definition 15) that, under suitable assumptions, equation (3.2.24) has a
unique solution t; . In the following lines, the tilted densities pertain to 6 =t; .

)

For e = 1,2, let ;. ,, be the density of Siten, where

n
_ Siten —E [Si—&-e,n} Si+e,n - j%e m; (ti,n)
Si“l’e,n = = = ) (3.2‘25)
Var (Si-i—e,n) Z 832 (ti,n)
Jj=it+e

Using the invariance of the conditional density under the tilting operation, Fact 16 and then renor-
malizing, we obtain that

Oi+ln qi—l—?,n(ZH-l)
Tiv2n Gip1,0(0)

T =p (Xi—i—l = Yi1|Sig1m = na — El,i) = pir1(Yiy1) 7 (3.2.26)

where v
mi+1 — Yit1
Zi-i—l =

0i+2,n

3.2.6 Assumptions
Definition 13. Let f : (o, 8) — (A, B) be a function, where «, 3, A and B may be finite or not.
Consider the following condition (H).

(H) : f is strictly increasing and lim f(0) =A ; lim f(9) = B.
0—a 0—p3

43
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Statements

We suppose throughout the text that the following assumptions hold. So in the statements of the
results, we will not always precise which among them are required.

(Supp) : The (X;), j > 1 have a common support Sx = (A, B), where A and B may be finite or
not.

(Mgf) : The mgf’s (®;);>1 have the same domain of finiteness © = («, 3), where a and  may be
finite or not.

Hr) : Forall j > 1, m; := 2% gatisfies (H).
J do

(Uf) : There exist functions fy and f_ which satisfy () and such that

V> 1, V9eO, f(6)<myb)< fi(0). (3.2.27)

(Cv) : For any compact K C O,

0 < inf inf s2(0) < 2(0) < oo, 3.2.28
inf jnf 55(0) < sup sup sj(0) < o0 ( )

(AMG6) : For any compact K C ©,

sup sup \,u\?(é?) < 0. (3.2.29)
j>1 6K

(Cf) : For any j > 1, p; is a function of class C! and for any compact K C O,

ap;
sup sup ||[—==|| < oc. (3.2.30)
i>1 ek || dx I

Elementary Facts
Fact 21. If a function f satisfies (H), then f is a homeomorphism from («, B) to (A, B).

Fact 22. If a function f is defined as the mean of functions satisfying (H), then f satisfies (H).
In particular, f is a homeomorphism from («, B) to (A, B).

Corollary 5. Let £,n be integers with 1 < £ < n. Set

_ 1
mMyn = M%mj
]:

Then, we deduce from (Hr) and Fact 22 that Ty, is a homeomorphism from («, ) to (A, B).
Consequently, for any s € Sx, the equation

My (0) = s (3.2.31)

has a unique solution in © = («, f3).
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Definition 14. We deduce from Corollary 5 that for any a € Sx, for any n > 1, there exists a
unique 05 € © s.t.
mi,(0;) = a.

Fact 23. We deduce from (Hk) that for any a € Sx, there exists a compact set K, of R s.t.
{0 :n>1} C K, C ©. (3.2.32)

Corollary 6. We deduce from the preceding Fact and the Assumptions that, for any a € Sx,

sup sup |m;(0n)] < oo, (3.2.33)
n>1 j>1
0 < inf inf @;(0;) <sup sup P;(;) < oo, (3.2.34)
nzl j=1 n>1 j>1
inf inf s2(62) < HUA 2.
0< inf inf s55(0n) < ilgl) ?1215) s7(0n) < oo, (3.2.35)
and for any 3 < £ <6,
sup sup |u§(92)\ <sup sup \,u\ﬁ(@fl) < 0. (3.2.36)
n>1 j>1 n>1 j>1

Definition 15. We deduce from Corollary 5 that for anyn > 1 and 0 < i < k — 1, there exists a
unique t; , € O s.t.

n
. =1
Mit1,n(tin) = ’ T (3.2.37)
Since M1, is a homeomorphism from Sx to ©, t; ,, is a r.v. defined on (2, Ay,).
Fact 24. Assume that
tin| = 1 2.
omax tin| = Op, (1) (3.2.38)
Then, under the Assumptions, we have that
(tin)| = 1 2.
pdmax, sup Im;j(tin)| = Op, (1), (3.2.39)
L et = 0p (1) (3.2.40)
a s a Dt = 2.
0<ich 1 lelll) tmax Qi(tin) " Pt
! 2(tin) ¢ = Op, (1) (3.2.41)
max sup max<s —s——;85(¢; = 2.
0<i<k—1 jZIID S?(ti7n)7 J\n Pn )
and for any 3 < ¢ <6,
Lot | < it ) = , 2.
odlEx | Sup 1 (tim)| < | max sup ulj(tin) = Op, (1) (3.2.42)
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Proof. We prove only (3.2.41), the other proofs being similar. Let ¢ > 0. Then, (3.2.38) implies
that there exists A¢ > 0 s.t. for all n large enough,

P ( max |t ,| < AE> >1—e (3.2.43)
0<i<k—1

Now, (Cv) implies that

5?46 :=sup  sup s?(@) < 0. (3.2.44)
J=1 0e[—AcAl]
Therefore,

n <0§r§1§a’§_1 ?1211? s?(tm) < 3346> >1—e (3.2.45)
O

Remark 6. We will prove in Section 3.4. that, under the Assumptions, (3.2.38) holds.

3.3 Properties of (Y{"),>1

3.3.1 Edgeworth expansion

Let (Xj);>1 be a sequence of independent r.v.’s with zero means and finite variances. For any j > 1
and ¢ > 3, set

s? = E[ij] =Var(X;) ; oj:= \/% ; Mﬁ = E[Xf] ; !u!? =E [‘Xjﬂ :

For any p,q with 1 < p < ¢ and ¢ > 2, set

q q

2 2 . o 2 . ‘. § : 4

Spq "= Z Sj 5 Opaq = \V Spa 5 Hpg = Hyj-
J=p

Jj=p

For any j > 1, if p; is of class C!, set
dp;

9 :_' dx

Ll
For v > 3, let H, be the Hermite polynomial of degree v. For example,

Hi(z) =2 -3z ; Hy(x)=2"—-62>4+3 ; Hs(zx)=2"—102> + 15z.

Theorem 13. Let m be an integer with m > 3. Assume that

1
sup — < 0o, (3.3.1)
i1 S
sup \,u]?”“l < 00, (3.3.2)
Jj=1
sup dj < o0. (3.3.3)

Jj=1



3.3. PROPERTIES OF (Y{¥)n>1 47

Let n be the density of the standard normal distribution. For any n > 1, let g, be the density of
(5%,n)_1/251,n- Then, for all n large enough, we have that

< __o(1)
i2£ gn(z) — n(z) (1 + Vz::gpun(x)) ‘ = 22 (3.3.4)
where, for example,
i
Pg,n(x) 6(32 7;>3/2 H3({E)
-3 3 52)2
Pun(z) = in)” () + e 72 5 Hy(x)
T (s, )R 240302
(Y 13 (an -3 21(8]2-)2> 13, —10 37 pls3
Pya(e) = ——2 __H - H s H
Remark 7. We obtain from (3.3.1) and (3.3.2) that
1
P3p(z) =0 <1/2> Hs(x) (3.3.5)
n
1 1
Pyp(x)=0 <n) Hg(z) + O <n> Hy(z) (3.3.6)
1 1 1

3.3.2 Extensions of the Edgeworth expansion
For any integers p,q with 1 <p < g and 6 € O, set

q

spa(0):=>"s3(0) i 0pg(0):=1/s2,(0) i ph(0) = ui(0).
Jj=p

Jj=p

For any j > 1 and 0 € O, set

ap;

dx

Il
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First Extension

For any n > 1, let J,, be a subset of {1,...,n} s.t. ay, := |J,,| < n. Let L,, be the complement of J,,
in {1,...,n}. Set
Su, = > X B (K] = X - my(00).
J€Ln
For any 0 € © and ¢ > 3, set
S.(0):= D 55(0) 1 00, (0):= /51, (0) 1 pp,(0):= ) w0
jeLn ]eLn
Theorem 14. Let m be an integer with m > 3. Assume that

1

su =0(1), 3.3.8

=1 52(0) ® (3.38)
sup ([ (65) = O(1), (339)
j>1

sup d;(6y) = O(1). (3.3.10)

j>1

For anyn > 1, let q;, be the density of (S%n)_l/QgLn. Then, for all n large enough, we have that

sup
zeR

qr, (x) —n(z) (1 +Y Pup, (m)) ‘ = o ;()1(2”_2)/2, (3.3.11)
v=3 n

where the P, 1, are defined as the P,,,, except that the sin and the ,ufn are replaced respectively
by s7,,(05) and py, (07).

Corollary 7. Assume that (Cv), (AM(m + 1)), (Cf) and (Uf) hold. Then, (3.3.11) holds.

Remark 8. By Remark 7, for v = 3,4,5, some O (W) appear in P, ,,. They are replaced by

O(1 )
some (nian)% m Pl/,Ln'

Second Extension

Theorem 15. Let m be an integer with m > 3. Assume that

- = 1 3.12
pnax ?;If Sg(tzn) Op, (1), (3.3.12)
m+1
e+l 1), 31
odlEx, sup [l (tin) = Op, (1) (3.3.13)
max sup d;(tin) = Op,(1). (3.3.14)

0<i<k—1 j>1
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Let e € {1,2}. We recall that G, ., is the density of Siyen, defined by (3.2.25). Then,

sup
z€R

_ (ie) Opn(]')
Tiren(@) <1 +ZP >| it R (3.3.15)

where the P( ) are defined as the P, ,,, except that the sin and the u{}n are replaced respectively by
i+e,n(t17n) a’nd Mf—&—e,n(tim«)'

Proof. We follow the lines of the proof of Theorem 13, given in (Petrov, 1975). For j > 1, let Ej
S tin
be the characteristic function of X; " . Then, for any 7 € R,

~ tl n .
E(r) = / exp(ira) SPUnIPi (@) ) (3.3.16)
P, (ti,n)
is a r.v. defined on (£, A,). Performing a Taylor expansion of exp(i7x), we obtain that
- 52(tim) i (tin)
&(r) =1+ = 0m)" + ; ) (). (3.3.17)

Then, we deduce from Fact 24 that

- T 5i,n m
Z Tj( > < e+ 1)(m_2)/2]7\ ,  where .. max |(5m| op, (1). (3.3.18)

j=ite Oiten

For any n > 1, and w € €, we consider a triangular array whose row of index n is composed of the
n —1i—e+ 1 independent r.v.’s
(337)
J ite<j<n

Let &; ., be the characteristic function of SHen, given by &, (1) = [exp(iT2)q; . ,(x)dz. By
independence of the (X;’"(w)) e and (3.3.17) combined with (3.3.18), we obtain that for

i+e<j<n
suitable some constant p > 0, for |7| < n?,

ra 5zn m m— 7'2
Eoven() = ()] < s (4 1P V) e (<) @319

m .
where u,, p, is the Fourier transform of n(x) <1 + 3 Pl(:’;) (gg)) and [Jnax 6in| = op, (1).
v=3 SUISR—

Now, we have that
I:= / Ewe’n(T) - umm(T)‘ dr (3.3.20)

< / Eiten(T) = Umn(T)| dT + / |tm,n ()] dT + / €iven(T)|dr. (3.3.21)

|T|<nP |T|>nP |T|>nP
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Then, we obtain from (3.3.19) that

_ op, (1
[ [Erenr) = ()| dr = — 7’"(1)><m_2>/2-

I7|<nr

Then, using general results on characteristic functions (see Lemma 12 in (Petrov, 1975)), we prove

that )
_ P,
/ ’um’n(T)‘ dT - (n —i—e + 1)(m_2)/2 . (3322)
|T|>nP
Now, (3.3.14) implies that for any o > 0 and n > 0,
s (n—i—e+1)° / 11 |66 ar = op, (3.3.23)
[r>n I
which implies in turn that
|T|>nr
Considering (3.3.21), we deduce that
I op, (1)
(n—i—e+1)(m=2)/2
Then, Fourier inversion yields that
_ B = (e _ 1 N B
Toren(@) (@) (14 S PE0@) ) = o [ exp(cim) Eaen(r) — umn(r)dr. (3325)
v=3 —c0
Therefore,
_ o~ 75ie) ! op. (1)
4 - < =
ilelﬁ QH-e,n(x) n(:c) (1 + VZZSPVJL (x)> = o (n —i—e+ 1)(m—2)/2 ’ (3326)
]
Corollary 8. Assume that (Cv), (AM(m +1)), (Cf) hold, and that
max |t = Op, (1) (3.3.27)

0<i<k—1
Then, (3.3.15) holds.

Remark 9. By Remark 7, for v = 3,4,5, some O (W) appear in P, . They are replaced by

Op, (1) ;. plic).

some m
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3.3.3 Moments of Y
Throughout this Section 3.3, all the tilted densities considered pertain to 0 = 02, defined by

L (0%) = a. (3.3.28)

The moments of the Yj’s are obtained by integration of the conditional density. As expected, their
first order approximations are the moments of X;.

Lemma 14. )

max |Ep,[Y;] —m;(05)| = O <\/ﬁ> . (3.3.29)

1<j<n

Proof. For any n > 1 and 1 < j < n, we have that
Ep,[Y;] = /:cp(Xj = z|S1,n = na)dr = /a:p()N(j = 2|51 = na)dz. (3.3.30)

Let L, ={1,...,n} \ {j}. Normalizing, we obtain that

j
=~ ~ _ o1 n(@“)) ps, (m()) » m;(0%) —x
X, = z|S1,n = na) = p;(x — n ,  where ~)(z):=—""——. (3.3.31
R e i) = T Baa)
Since (AMG6) implies (AM4), we get from Corollary 7 with m = 3 that
3 a
J = J 14+ —=2———Hs(v] 3.3.32
ps,, (A1) =nGA@) |1+ ot S B + 225 (3332
and )
0
Now, (Cv), (AM6) and the boundedness of the sequence (6%),>1 imply readily that
71,0(02) 1 ui, (07) < 1 )
— M =14+0( - d ——=2—+-=0 . 3.3.34
e =1 o ) = gm0 (s (3350

Since the functions 6 — n() and 0 — n(0)Hs3(f) are bounded, we deduce that

P, 07(2) {niton (1+0 () mdon) + 22 s DL 3as)

pe ) Vi Vi1 (a0 " Vi
n(7h(2)) 1 v (x)? 1
=) +O<ﬁ>:e"p<_ 2 )+O<\/ﬁ>‘ (3330
Consequently,

p(X; = /S0 = na) = 5 () (1 40 (i)) {exp (—7’2‘(2”3)2> +0 (%) } L (3.3.37)
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Recalling that [ 2p;j(z)dz = m;(62), we deduce from (3.3.30) and (3.3.37) that

Ep, [V;] = {/xﬁj(x) exp (-7’%(29”)2) d + m;(6%)0 (%)} (1 40 (i)) L (33.39)

Therefore, it is enough to prove that
N 7 (x)? 1
/:ij(x) exp (_7 (2515) ) dz =m;(6y) + O <\/ﬁ> (3.3.39)

u?/2 < exp (—u?/2) < 1, (3.3.40)

Now, for any v € R,

from which we deduce that

00 0o . 00 ; . ) 0o
[ etz =5 [aminirds < [ o) e (—”"g) )dﬂzﬁ [ems@ar @

0 0 0 0
and
0 0 o 0 . 0
/ zpj(x)de < / zp;(z) exp ( %(;) > dzr < / xpj(x)dr — 5 / zpj(z)yd (2)de.  (3.3.42)
Adding (3.3.41) and (3.3.42), we obtain that
1 00 j 9 1 0
2/:U Dj )2 < /xﬁj(x) exp (—%(;) >d:1: <m;(0,) — 5 / xp;(x)yd (x) d.
0 —00
(3.3.43)
For any B € B(R), we have that
1
[ amsteri@rae = s { [ i (o) - o7 as (3.3.49)
B S n(& )
2.2
= 08> (-1)" | 2''pj(x)dw. 3.3.45
= i & (e e [ (3.3.45
Let ¢ € {0,1,2}. Recalling that L, = {1,...,n} \ {7}, we get from (Cv) and (U f) that
1 _ 1 (pay|2—i __
élgagxn S%n @) = (@] <n> and 121]%}{” Im;(05)]"" = O(1). (3.3.46)

Then, (AMS6) implies that for all n > 1,

/ ﬂil—Hﬁj(
B

So we deduce from (3.3.45) that

max
1<j<n

~ 16
< max / ‘$|1+z x)dx < sup {1 + sup E “Xf‘ ]} <oo. (3.347)
1<j<n j>1 PEK,

max /B o (2)y) (2)2da = O (1) | (3.3.48)

1<j<n n

Taking B = (—00,0) and B = (0,00) in (3.3.48), we conclude the proof by (3.3.43). O
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Lemma 15. We have that

a ay| 1
[, Y] = my@)my(62)| = 0 () (3:3.49)
and
1
2 2/pna a\2
B, 7] - (530 + my 62)%) = 0 (=) (3.3.50)

Proof. For any 1 < j < j' < n, we have that

Ep,[Y;Y] = /xac’p (Xj = x;/)_(? = x" g;L = na) drdx’.

Let L, ={1,....,n}\ {j,4'}. Normalizing, we obtain that

(%5 =X = 2] 51 = na) = oy r) ( L2008 ) 2o (i @)

where
m;(0y) +my (0}) —x — 2

I (z) = o1 (69)

Since (AMA4) holds, we get from Corollary 7 with m = 3 that

N __ __ NS 1 Y (z)2 1
| (3.3.51)
As in the preceding proof, we get from (3.3.40) (applied to exp (—F%(TI)Q)) that, uniformly in j,

B [1Yy] = [ 205 (0)f )z + 0 ()

7
a a 1
= m;(0)m;e(6) + O <\/ﬁ> :
The proof of (3.3.50) is quite similar. O
Corollary 9. We have that
Covp, (V;,V!) = O [ —— (3.3.52)

and

max |Varp, (Y;) — (33(92))‘ =0 1) . (3.3.53)

1<j<n 4D
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Proof. We deduce from the preceding Lemmas that for any 1 < j < 7/ < n,

Covp, (Y;,Y]) = Ep, [Y;Yy] — Ep, [Y)]Ep, [V
= (msempe+ 0 (=) ) = (mommyten +0 (1))
()

O
3.3.4 Proof of max |t;,| =O0p,(1)
0<i<k—1
Foranyn>1andi=0,..,k — 1, set
1 n
Vi = ; =Y, — il 3.
= Z Z; where Z;:=Y; —E[Y]] (3.3.54)
Jj=1+1
Lemma 16. We have that
Ep, [VZ2,] = o(1). (3.3.55)
Proof. We have that
1 n
Ep, Vin] = 15 2 Vars, (V) +2 3 Covp, (Y5, ) o (3.3.56)
J=1 1<j<j'<n
Then, we get from Corollary 9 that
E [1/2]—i zn: s2(0%) + O =S +n(n—1)O 1 (3.3.57)
PrlV1inl — n2 ~ j\Yn \/ﬁ \/ﬁ : e
We conclude the proof by Corollary 6 which implies that
LT 9 1
ﬁz s3(09) + O 7| = o(1). (3.3.58)
j=1
O
Lemma 17. We have that
max |Viy1.| = op,(1). (3.3.59)

0<i<k—1

Proof. We follow the lines of Kolmogorov’s maximal inequality proof. Let n > 1 andi € {0, ...,k — 1}.
For any 6 > 0, set

i—1
Ain = {Virral = (V[ () {IVigral <6} |, (3.3.60)
j=0
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and

Ay = {0<r£1<ax ’Vz—&-l n‘ > 5} = L_J A (3'3'61)

Since the (A;n)o<i<k—1 are non-overlapping, we have that

k-1

B, (V2 2 Y [ VP, (3.3.62)
i:OAZ_ "
k—1
= Z / {(Vl,n - V:i+1,n) + ‘/iJrl,n}Q dpn (3363)
iZOAi n
k—1
Z / (Vl n ‘/:L+1 n z+1 ndP + Z / i+1, n (3364)
ZZOAZ' n
> 2 / Vl n H—l n)‘/z-i-l ndp + 5277 (An) (3365)
1= OAz N

By Lemma 16, it is enough to prove that

Z / Vl n T Vit n)V1+1 ndPn = 0( ) (3.3.66)

= OAzn

In the proof of Kolmogorov, the corresponding term is equal to 0, by independence of the involved
random variables. Similarly (3.3.66) will follow from Corollary 15, which states that the (Z;) are
asymptotically uncorrelated. Indeed, we have that

k—1 k—1 k—1
> / (Vi = Vig10) Vi 1ndPr =Y Ep, [1a, VinVirin] — Y Ep, [14,, V2], (3.3.67)
=045, i=0 i=0

Then, it is enough to prove that each sum in the right-hand side of (3.3.67) is a o(1). We get readily
that

1 n
Ep, [14,, VinVitin] = "D > Ep, 14,21+ > Ep[14,,.ZZ;] (3.3.68)

j=i+1 1<5<

o i+1§Jj’T§ln
J#

and
1
2 _ 7

J=it+l i+1<j,5'<n

J#5'

55
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Now, the Cauchy-Schwarz inequality applied twice, first in £2 and then in R¥, implies that

n 1/2
k—1 1 k—1 .Z.+1EP" [Zjﬂ
21 < 2 12 | = _
ol Z Ep, (14, 2] € =3 PalAin) — (3.3.70)
=0 j =i+1 =0
n 1/2 2y 1/2
k-1 2 e [ 2 ]Eﬁh/{z?}
1{ ,P } Z Jj=t+1
n n( . n—1
1=0 =0
(3.3.71)

k—1 1/2
Then, [Z Pn(Ai,n)] = P, (A,)"/? < 1 and we obtain from Corollary 15 and Fact 6 that, for all

=0
i€ {0, k—1},

172\ 2 n 1/2\ 2
> Er, (2] > {uen o)}
s : — | == : = 0Q1). (3.3.72)
n—i n—i
Finally, we deduce from (3.3.71) and (3.3.72) that
k—1
Z Ep, [14,,27] = - {kO(l)}1/2 =o(1). (3.3.73)
1=0 TL ] =i+1
We obtain similarly that
n 1/2 25 1/2
k-1 B ZilEPn {Zf]
2) < Py (A,)'V2 = 3
Zn_z ZEpn [14,,, 23] < Pul Z e — (3.3.74)
=0 Jj=i+1 =0
S 1/2
=01 — =o0(1). 3.
O( ){;(n—iﬁ} o(1) (3.3.75)

To conclude, we consider the sums involving Ep, [14, ,7Z;Z;], for j # j', in (3.3.68) and (3.3.69).
The Cauchy-Scwarz inequality brings terms of the form Ep, [ZJ2 ZJ%]. Clearly, Z; and Z]% are similarly
asymptotically uncorrelated and thereby, we obtain analogously that

k— k—1

1
:o 1<j<n i=0 i+1<5,5'<n
ZHSJ”SH i#
J#5

which ends the proof. O
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Theorem 16. We have that
oJnax ltin| = Op, (1). (3.3.76)

Proof. The triangle inequality implies that for any n > 1,

n

1
< EY;] | —m; oy ; o) .
0<i<h- 1|m2+1n( i)l 0Sihe 1 Vitrnl+ ogichot |\ n —i Z;l Yl | = is1.n(0n) ot i1 (6]
j=t
(3.3.77)
We get from Lemma 17 and assumption (E) that
max |Vig1n| = op, (1). (3.3.78)

0<i<k—1

Then, Lemma 14 implies that

1 Z” Y Z 1
- - - < a = — .
Ogr?galgil n—i E[Y;] Mt 1n(0n)| < 0cishotl ) n— z [B[Y5] = m; (0r)] © (n)

j=i+1 == j=i+1
(3.3.79)
Now, Fact 6 implies that
oJnax [Mit1.0(05)] = O(1). (3.3.80)
Combining (3.3.77), (3.3.78), (3.3.79), and (3.3.80), we obtain that
max |Mi+1n(tin)| = Op,(1). (3.3.81)

0<i<k—1

Now, (Hk) implies that for all ¢ = 0, ...,k — 1, Mjt1, is a homeomorphism from © to Sx. Then,
we get from (U f) that for all s € Sx,

(f+)71(8) < (Mig10) " (5) < (F2)71(s). (3.3.82)

We deduce that P, -
(f+)_1(mi+1,n(ti,n)) <tin < (f2) M ig1n(tin)), (3.3.83)
which combined to (3.3.81) concludes the proof. O

3.3.5 The max of the trajectories

Throughout this Section 3.5, all the tilted densities considered pertain to 8 = 6%, defined by

iLn(09) = a. (3.3.84)

Lemma 18. We have that

Jpax |Y;| = Op, (logn). (3.3.85)
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Proof. For any n > 1, set M,, := max |Yj|. For all s > 0, we have that

1<j<n
Po (M > 5) <) " Pu(Y; < —s) + Pu(Y; > 5) (3.3.86)
j=1
= Z/ P()N(j = x\glm = na)dx +/ P(Xj = x]gl,n = na)dx. (3.3.87)

Now, we recall from (3.3.37) that

p(X; = 2|10 = na) = p;(z) <1 +O (i)) {exp (-7%(2:”)2> +O (%) } = 5i(2)0(1).

(3.3.88)
Consequently, there exists an absolute constant C' > 0 s.t. for all n > 1,
Pu(My > s) SCSY P (X< —s)+ P (X 25) ¢t (3.3.89)
j=1
We get from Markov’s inequality that for any A > 0,
P (f(j < —s) —p (exp(_w?j) > exp(As)) <E [exp(—)\)?j)} exp(—\s) (3.3.90)
and _
P (Xj ) <E [exp(AX )} exp(—A\s). (3.3.91)
Then, for any A # 0,
> exp(0p2)p; (x) ®;(0n + )
E AX)| = Ax) | ————————dx| = ————. .3.92
Therefore,
"3 D;(02 — \) L (65 +
P (M, > s) Z 5 sOn+ ) exp(—As). (3.3.93)
g FCH) ®;(07)

Since the sequence (6%),>1 is bounded, we can find A > 0 s.t. each of the sequences (0% — \),>1
and (0% + A)p>1 is included in a compact subset of ©. Therefore, we deduce that there exists an
absolute constant D s.t.

Q0% —N)  D@;(0% 4+ N) }
Sup sup max a : a <D. 3.3.94
w1 { D;(65) D;(65) ( )
Therefore,
P (M, > s) < CDnexp(—As) = CDexp (logn — As) . (3.3.95)

Consequently, for all sequence (sp)p>1 s.t. — 00 as n — 0o, we have that

logn

Pn (M, > s,) — 0 as n — oo. (3.3.96)
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Set Z,, := 1%%- For any sequence (ap)p>1 s.t. an, — 00 as n — oo, we have that

Pn(Zp > an) = Pp (M, > s,) where s, :=a,logn, so that lc;sg — 00 as n—o0o.  (3.3.97)
n

Finally, we conclude the proof by applying the following Fact, since we get from (3.3.96) that
Pn(Zn > an) — 0 as n — 0. (3.3.98)
O

Fact 25. For alln > 1, let Z,, : (Qp, Ap, Pn) — R be a r.v. Assume that for any sequence (ap)n>1
s.t. an — 00 as n — 0o, we have that Pp(|Zy| > an) — 0 as n — oco. Then,

Zn = Op, (1). (3.3.99)

Proof. Suppose that the sequence (Z,,) is not a Op, (1). This means that there exists € > 0 s.t. for
all k € N, there exists n(k) € N s.t.

Pk ([ Zny| = k) > e (3.3.100)

If the sequence (n(k))x is bounded, then there exists a fixed ng € N and a subsequence (n(k;));>1
such that for all j > 1, n(k;) = ng. We can clearly assume that k; — oo as j — oo, which implies
that

Jim Py (2| 2 K5) = Tm Prg ([ Zny| = k) =0, (3.3.101)

which contradicts (3.3.100).

If the sequence (n(k)); is not bounded, then there exists a strictly increasing subsequence (n(k;));
s.t. n(kj) = oo as j — co. Now, we can define a sequence (ay,) s.t. for all j > 1, Un(k;) = kj. We
still can assume that k; — 0o as j — oco. Therefore, we can assume that a,, — oo as n — oo, which
implies that
jliglo Ptk (| Zney)) = k) = jlggo Ptk | Zny)| = angy)) =0, (3.3.102)
which contradicts (3.3.100).
O

3.3.6 Taylor expansion

Lemma 19. Let I be an interval of R containing 0, of non void interior, and f : I — R a function
of class C?. Let (Uy,) be a sequence of random variables Uy, : (Q, A,) — (R, B(R)) s.t.

Uy, =op,(1). (3.3.103)
Then, there exists (Bp)n>1 € A s.t. for anyn > 1,
F(U) = £(0) + Upnf'(0) + U7 Op, (1)  on By. (3.3.104)

Furthermore, if U,, = op, (uy,), with u, — 0, then
noo

fU,) = f(0) + op, (un) on By. (3.3.105)
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Proof. Let € > 0. Let § > 0s.t. (—0,9) C I. Set
By, :=A{|U,| < d}.

Since U,, = op, (1), we have that (B,)n>1 € A_;. For any n > 1, f(U,) is well defined on B,,, and
the Taylor-Lagrange formula provides a C,, with |C),| < |U,|, s.t.

2

Un 1), (3.3.106)

f(Un) = f(O) + Unf/(o) + 2

Now, (), can be obtained from a dichotomy process, initialized with U,. This implies that for all
n, Cp is a measurable mapping from (£2,,.4,,) to (R, B(R)), for C), is the limit of such mappings.
Then, as |Cy| < |Uy,| and f” is continuous, we have that

Cn — 0= f"(Cy) = 17(0) = f"(Cyn) = Op, (1). (3.3.107)
Furthermore, if U,, = op, (u,,) with u, — 0, then UT’%f”(Cn) is also a op, (uy). O

3.4 Main Results

3.4.1 Theorem with small £
Theorem 17. Suppose that the Assumptions stated in Section 2.6 hold. Assume that

k— 00 as n— o0 and that k=o(nf), with 0<p<1/2. (3.4.1)

Then,

HQnak - PlkHTV x Oa (342)

—~0

where ]3114 is the joint distribution of independent r.v.’s (Xj ")K i
<j<

Proof. We have that
gy (M) pg,,, . (na — Zig)

me(YE) == p (Xf = YF|S), = na) - ST . (3.4.3)
Sl,n

Then we normalize, so that

k
m;(0%) —Y;
o1n(88) PS5, (Z) > m;(07) = Y;

(V) = por (Y] where  Zj, := "~ 3.4.4
k( 1 ) p}({C ( 1 ) O-k+1,n(0%) pglyn(o) k O'k;+1,n(9%) ( )
Since (AM4) holds, we get from Corollary 7 with m = 3 that
P10 (07) o(1)
- (1) a5 n(Zk) (1 * WH3<ZH> T b 545
Tk = Psk ’ a : A
' N o110 (02) n(0) + 242

n3/2
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First, we get from Corollary 6 that

al,nw:;)): <1+8%,k<9%))>”2:(1+’fou))w a0 o)

Uk+1,n(9% $k+1 n(@a n—k 6(Sk+1 n(ga))3/2 (n - k)1/2 '
Then, (3.4.1) implies that
3 a
01 n(e%) iukJrl n(an)
——_=1+0(1) and : =o(1). 3.4.6
e B e E S () K (349
Now, we get from Corollary 6 and Lemma 18 that
klogn
Z ——0 . 3.4.7
= 0,1 (347
Then, (3.4.1) implies that
A2 :Opn(l), so that n(Zk) — n(O) and Hg(Zk) ? Hg(O) 0. (348)
We obtain from the preceding lines that
m() = pgy (YF) (14 0, (1)). (3.4.9)
Finally, we apply Lemma 13 to conclude the proof. 0

3.4.2 Theorem with large £

Statement of the Theorem

Let y}" € (Sx)". Then, for any 0 < i < k — 1, there exists a unique 7;(y}) s.t
n
> Y

Jj=t+1
n—i

Miv1a(Ti(y1)) = (3.4.10)

For 0 <i < k — 1, define a density g(vi+1|yt) by

U mi+1<n~<y?>>>2> o <3a£i>2,n<n<y’f>> )

9(yir1|y1) = C; Pir1 (yir1) exp Yitl
e e 2579, (Ti (Y1) Tiran(ri(y))
where C; is a normalizing constant which insures that [ g(yi+1]y})dy;+1 = 1 and

M?Jre,n (T’i (y?))
6(822-‘1-6,71 (Ti (y?) ))3/2 '

o), (ri(y) =

Then, we define the limiting density on R* by

k—1
gk(t) =[] 9wiralvd)- (3.4.11)
1=0
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Theorem 18. Suppose that the Assumptions stated in Section 2.6 hold. Assume that k is of order
n — (logn)™ with T > 6.
HQnak - GkHTV EO) 0, (3.4.12)

where Gy, is the distribution associated to the density g.

Proof. We get from the criterion for convergence in total variation distance stated in Section 2.4.
that it is enough to prove the following Theorem. O

Theorem 19. Suppose that the Assumptions stated in Section 2.6 hold. Assume that k is of order
n — (logn)™ with 7 > 6. Then, there exists (Bp)n>1 € A1 s.t. for anyn > 1,

pr(YE) == p(XF = YIS = na) = g (YF)[1 + 0p, (1)] on B,. (3.4.13)

The proof is given hereafter, in three steps. Throughout the proof, all the tilted densities consid-
ered pertain to 0 = t;,,. We write s?, u§ instead of s?(tim), uﬁ (tim)-

Identifying g(Yj;1|Y})
When y}' = Y]", we have that
Z Y = Z Y; = na — ZY] P a.s. (3.4.14)
j=i+1 j=i+l J=1
and

7i(Y1") = tin. (3.4.15)

We recall from the first calculus of Section 3.2.5 that

= pz’+1(Yi+1)m+Ln inrQ,n( z+1)’ where Zipq = M1 = Yig1 (3.4.16)
0i42,n Qi+1,n(0) Oi+2.n
Since (AMG6) holds, we get from Corollary 8 with m = 5 that
5 .
i1 n(ZZ'+1) |:1 + 23 P2+27”(Zi+1):| —+ %
™ = I7z‘+1(Y2+1)UZ 2’n — . (3.4.17)
i+2,n —i+1,n (1
8O |1+ S0+ 2,
For e € {1,2}, set
3 'u:is—ire,n _ Op, (1)

Yiten "= 6(s2. )32 (n—i—e+ 1)l/2’

i+e,n
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n
4 2\2
Hiten —3 22 (s5)
3O . (M§+e n)’ __ Op,(1) - men it __ 0p,(1)
vhen 72( Site, n)g n—i—e+1 ’ vren 24(522+e7n)2 n—i—e+1’
3 M?—I—e,n (lu?—l-e,n 3 Z ( ) > 'u’?-f-eﬂ 10 Z ,U, S
R ) e e
z+e,n . 1296( Z+€ n)9/2 ’ i+en * 144( Z+e n)7/2 ) itemn * 120( z+6 n)5/2
where, for ¢ € {5,7,9},
©  _ Op, (1)
For m € {3, ...,9}, replacing H,,(Z;+1) by its expression, we have that
Py (Zig) = o, (23— 8Zi41] (3.4.19)
Hite, 6
Py " (Zipr) = B, (28, — 1524, + 4522, —15] + 8L, [ZE, — 622, +3],  (3.4.20)

_ 9 5
P Gi) =l Z (B b W o [ = 10 [ - 15
3.4.21
Therefore,
5 3
o (log )

Zﬁu n(ZiJr = _30‘§+)2 nZit1 — 155@+2 nt 36z+2 nt Omﬂ)m- (3.4.22)

and

Since n(Z;j+1) =

that

T = E+1(E+1)

Zﬁj@l(o) = —1551'(?1,71 + 351@1,71-

v=3

Op, (1), we can factorize n(Z;;1) in the numerator of the bracket of (3.4.17), so

3 6 4 logn op, (1
oi1n M Zit1) [1 - 3a§+)2 W Zit1 — 1557;(+)2 Lt 35§+)2 .+ Op, (1) (1(1 — i)g + (nj_(l)l,ﬂ}

Citon n(0) [1 =156, + 3611, + 2=l

Since n — k is of order (logn)” with 7 > 6, we have for all n > 1, and i =0, ...,k — 1,

1 3 1 3
O<M(n—i—1)3/2< (logn) — 0 asn — oo.

“(n—i—1)2 = (n—k)/2

9
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Therefore,

(logn)® o(1)
(n—i—1)2 (n—i—1)3/?2

(logn)®*  op,(1)
(n—i—1)2  (n—i—1)32

so that Op, (1)

Consequently,

(3

+1n ( Zi2+1) 1+ o Yipr — S mig — 1562'(+)2,n + 35@'(4-)2,71 + %
[$) J—

7 = pir1(Yig1) it iz iz
A () 4 e
0i42,n 2 1- 15ﬁi+1,n + 36@'(+)1,n + (27;-)3/)2

Now, we need to extract Y;y1 from the numerator of the bracket hereabove. In that purpose, set

SN Y , Sl W . on()
ey i+1+ U, where U, := P Mt 15ﬁlJr2 nt3Bifan + (i1
and
Vi 1= —1560,, 380, + 2

Fact 26. For anyn > 1, let (W;)o<i<k—1 be r.v.’s defined on (€2, Ay,) s.t. <max |Win|=op,(1).
Then, there exists (Bp)n>1 € A1 s.t. for alln > 1, we have on By, that for alli=0,....,k — 1,

1+ W, =exp(Wip + WiQ,nAz’,n) where omax | |A; n| = Op, (1). (3.4.23)
Proof. Let € > 0. For any n > 1, set

By, = { max. ]Wm\ < 1/2}

0<i<k

Since 0<max |Win| = op, (1), we have that (By)p>1 € A-1. Now, set

f(z) :==log(1 + x).

Then f satisfies the conditions of Lemma 19. Therefore, for all 7 = 0, ...,k — 1, there exists C;,
with <rnax |Cs, max |I/Vm] s.t.

- 0<
w2

F(Win) = F(0) + Wi (0) + = ['(Ci) (3.424)
Forn >1 and() <i<k-1,set A, =1f"(C;p). Now, f"(z) = —ﬁ. Clearly, for all z € (0, 1),

| ()] < ) Therefore, for any n > 1, we have on B,, that

1 1
< 4.
02iche 1|AZ"| 2= 2 (34.25)
<1 — max ’Cz n|> <1 — max ’Wz n‘)
0<i<k—1 0<i<k—1

which implies that <max |Ain| = Op, (1). O
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Since
OSI?Salgc—l \Uin| =o0p,(1) and ogl?gakx—l |Vinl = o0p,(1), (3.4.26)
we have that
1 + Ui,n o 2 2
—— = exp (Uin + Ui Ain — Vi — ViouBim) (3.4.27)
T+ Vi ’ ’

where

Ain|=0p, (1) and Bin| = Op, (1).
odnax |Ain|=Op, (1) and  max |Bin|=Op,(1)

Consequently, the preceding Fact implies that there exists (By,)n>1 € A1 s.t. for any n > 1 and
0<i<k-—-1,
m; =1 on B,,

where

_ (Yig1 — mig1)? 3“51)2 n Titln 9 9
[ = piv1(Yiq1) exp o2 | exp ~Yit1 exp {Uj, + U Ain —Vin — Vi Bin} -
Siton Oi+2,n 0i+2,n

In order to identify g(Y;4+1|Y{), we have grouped the factors containing Y;11. Thereby, we obtain a
function of Y1, which we normalize to get a density. Thus, set

(3)
. 1~ Y — MM 2 30[
9(Yi1|YY) == C; ' piy1 (Yig1) exp (—M> exp ( Z+2nYz’+1> ,

0i4+2,n

where C; satisfies that
2 30
C; = /eXp< mit1) )eXp <”2”y Pir1(y)dy.
z+2 n 0i4+2,n

Fi = 9( z+1|Y1) {C Z+; & exXp (Ui/,n - Vi,n + UiQ,nAi,n - anBz,n)} . (3'4'28)
04 n

Therefore,

Our objective is now to prove that

Hc T oxp (Ul = Vi + Ul Ai = Vi Bin) = 1+ 0p, (1). (3.4.29)

0i4+2,n

In that purpose, we consider firstly the following result.

Lemma 20. For n > 1, let (Z;,)o<i<k—1 be r.v.’s defined on (Qn, An) and (u;n)o<i<k—1 be a

k—1
sequence of reals. Assume that 0<m<ax | Zin| =Op,(1) and > ujp —> 0 as n — oo. Then,
i i=0
k—1

H exp (ui,nZi,n) =1+ op, (1) .
=0
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Consequently, for any o > 0 and g > 1,

k—1
log n)®
HeXp < ( gn) ﬁZi,n> =1+op,(1).
( )
Proof. 1t is enough to prove that
k—1
> tinZin =op, (1). (3.4.30)
i=0
Let € > 0 and § > 0. There exists Ac > 0 and N, > 0 s.t. for all n > N,
Pn ( max |Zjn| < A€> >1—e
0<i<k—1

Now, there exists N5 > 0 s.t. for all n > N,

Then, for all n > max {N¢; N5},

k-1 k—1
. . > . . . <
Pa ( Z;unzn < 5) > Pn {Z (i | Zin| < 5} N {og%i‘_l | Zin] < A€}>

k—
)
. l I | <
{ — [tin] < Ae} {03111?13(_1 [ Zinl < AE})

The factors estimated by applying Lemma 20
Corollary 10. We have that

k—1
I {exp (U2, Ain — Vi Bin)} =1+ 0p,(1). (3.4.31)
=0

Proof. We may apply Lemma 20, since

logn

Op, (1
max [Uin| = ———0p,(1) and  max |Vin|= P, (1) (3.4.32)

0<i<k—1 <k n—i—1
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Unfortunately, (3.4.32) implies that we can not apply Lemma 20 to Ui”n and V; ,,. However, we have
that

(3)
3a 1
_ 9. (4) (4) (6) (6) op, (1)
Ul = Vin = = 2mip +3 (812 = Bn) =15 (B — 8%10) + e (3:439)

Now,

Nit2n(s @2+1 2 = i85 0,)?
24( H—l n)2(822+2,n)2 ’

n
ﬁi(i)m — ﬁi(i)l,n = where Ajiyen = Z Aj and \j = ,u? — 3(5?)2

j=ti+te
(3.4.34)
Ait+2,n (512+2,n) + 251+2 nSi+1 + (s z+1)2] - ()\i+2,n + >\i+1)(812+2,n)2
= 5 5 (3.4.35)
24( Z+1 n) (Si+2,n)
Op, (1)
— n 3.4.36
(n—1—1)% ( )
since in the numerator of (3.4.35), the terms of order (n —i — 1)3, that is the terms )‘i+2,n(5?+2,n)27
vanish.
Similarly, we obtain that
© \__9r.()
</87,+2 n_ i—l—l,n) - (n i 1)2 . (3437)

Combining (3.4.33), (3.4.36), (3.4.37), we obtain that

k-1 / k-1 3%(3) ) X o
Z1;!)6)(13 (Ui —Vin) = {il;[)exp ( UZ::,L A )} {Hexp < = Zn(_ )1) n - _7;,1_( 1))3/2>}

(3.4.38)
k—1 3)
3
= {H exp (— as "mm) } {1+op, (1)}, (3.4.39)
- Oi+2,n
1=0
o® Op (1)
where the last equality follows from Lemma 20. Notice that 01:22 = —Puiz 5o that the corre-

sponding factor is not in the range of Lemma 20. Finally, (3.4.31) and (3.4.39) imply that

®3)
3
H Ci T exp (UL, — Vi + U2y Ain — Vi, Bin) {H O 7L exp < Mmi+1> } {1+op, (1)}

0i4+2,n 0i4+2,n 0i4+2,n
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The other factors

Therefore, in order to conclude, it is enough to prove that

k—1 . 30
H Lin=1+o0p, (1), where L;, :=C; itln exp | — i+2n miy1 | - (3.4.40)
=0 0i+2,n 0i+2n
Fact 27. We have that )
; s: Op (1
Oi+1,n =1+ ;Jrl + 'Pn( ) - (3441)
Oi+2,n 25“_27” (n — 1= 1)
and 3) 3)
3a; 3a; Op (1
exp | —oom2n,, ) g = 2, 7’7( )72 (3.4.42)
0i4+2,n Oi+2,n (n — 1= 1)
Proof. We have that
2 1/2 2
Oit1, Sitq Sit1 Opn(l)
UL o [ and - = o (3.4.43)
Oit+2n Sitan Siton (n—i—1)

Therefore, (3.4.41) follows readily from Lemma 19, applied with the function f :  — (1 + z)'/2.

Similarly, we get (3.4.42) by applying Lemma 19 with the function f : z — exp(x). O

Lemma 21. We have that

0i4+2,n 25124_27” (n — 17— 1)2

Proof. Recall that

9 (3)
(y —mir1)? | 3%,
5 .
257 90 Oit2,n

Ci = [ e () Bual)dy where vi(y) i= -

A Taylor expansion implies the existence of w;(y) with |w;(y)| < |vi(y)]| s.t.

vi(y)?
exp(vi(y) = 1+ vily) + 2 explun(y)). (3.4.45)
Now,
—m. 2 30[(3)
~ Y—mi+1 i+2,n ~
/(1+v¢(y))pi+1(y)dy—/ [1— ( e " - y] Pis1(y)dy
Sitan Ti+2,n
= /pi+1(y)dy ~ 5 /(Z/ — mit1) Pit1(y)dy + ———— /ypz‘+1(y)dy
8i+2,n 0i4+2,n
3
—1 312+1 30‘1(432,71

my; .
P} +1
257 9 n Oit+2,n

Consequently, it is enough to prove the following Fact. O
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Fact 28. We have that

U; 2
s [ U i (4)) P () y = : Op. (1)

2 m. (3.4.46)

Proof. We have that |w;(y)| < |vi(y)|. Moreover, w;(y) and v;(y) are actually of the same sign, so
that exp(w;(y)) < 1+ exp(v;(y)). Therefore,

. 2 . 2
52 a0+ 5 were g = [Py ana g2 = [P et ()

2 2
(3.4.47)
Now, expanding v;(y), we get readily that
Op, (1
g0 _9r() (3.4.48)

g (n—i—1)2
Fix e > 0.

Then there exist ., B¢, 7e positive and a compact K. s.t., for all n large enough,

k—1 3)
1 /Be 3az+2 n Ye
Pn | B = t; € K¢ ; 1] < ae < - : < - >1—e
The following lines hold on B;,.
For all real y, we have that
Bellyl + ae)® | ely
lviy)] < ;Ui_? +n—ill (3.4.49)
For |y| > a., we have that |y — m;1| > |y — ae|, so that
2
-«
mwg—%%ijf+nfﬂ4. (3.4.50)
Therefore,
2 2 -
I < gy [yl 00 ] exp(esty) i )y (3:451)
B |<ae
2 /Be(y — ae)2 ’Ye’y‘ =~
€ € € - . . 3 d .
T 2/) [Be(lyl + ae)? +7elyl] wp( 1 T ) Py
(3.4.52)

Clearly, on By, the first integral hereabove is bounded by a constant I.. For the second integral, an
integration by parts and Assumption (Cf) imply that, on B¢, it is also bounded by a constant L.
So,

2 _ Op,(1) 4
J; i1 (3.4.53)

which concludes the proof.
O
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Combining (3.4.44), (3.4.41) and (3.4.42), we obtain that

1 30‘(3)2
ni=C; Tit1n exp (—KinMmit1) where Ky = 2n
0i+2n 0i+2n
2 2
Op, (1) 1 Op, (1) Op, (1)
1 + i i Z-‘rl n 1 ’l+ n 1 _ . X n
FhnTitl = 2sz+2 s | T, Tmio1p FonMitl + Ty
Op, (1) s741 Op, (1)
O o et ] | B S T
Op (1
_ 14 O
(n—i—1)>2

Therefore, we may write Lin = 1+ = ll “yz> Where o nax |[Win| = Op,(1). Then, we get from

Lemma 19 applied with f : x — log(1 + x) that

log(Lj ) = log <1+ ( VVM > = ( Wm + <( Wm )2>20Pn(1)

n—i—1)>2 n—i—1)>2 n—i—1
Therefore,
k—1 k—1 k—1 1
log (H Li,n) = log(L;) = Op, (1) h—is1)2 = op, (1). (3.4.54)
i=0 i=0 i=0
Consequently,
k—1
[[Zin=1+0p,1). (3.4.55)
i=0

Finally, we have proved that there exists (B, )n>1 € A1 s.t. for any n > 1,

k—1
= H I' on B,
=0

and
k—1

[1 T = ou(¥) [1 + 0p, (1))
i=0



Chapter 4

Functional Limit Laws for the
increments of L‘evy processes

4.1 Introduction

Let {Z(t) : t > 0} be a right-continuous with left-hand limits Lévy process (see, e.g., Bertoin
(1998)). We assume that Z(0) = 0, so that the distribution of {Z(¢) : ¢ > 0} is fully characterized
by the law of Z := Z(1). Denote the increment functions on Z(-) by via(s) = Z(x + as) — Z(x),
for x > 0, a > 0 and s € [0,1]. The purpose of the present paper is to establish functional limit
laws for sets of rescaled increments of Z(-), of the form

Hr = HE = {brfl’ygaT(-) :0<z<T—ar} for T>0. (4.1.1)

Limit laws for increment functions such that we have in mind have been established by Révész
(1979), Borovkov (1990), Deheuvels (1991), Deheuvels and Mason (1993), Sanchis (1994a) and
Sanchis (1994b), among others, for variants of Z(-), and under various assumptions on ar and br.
Here, 0 < ap < T and by > 0 are functions of T' > 0 which will be specified later on. Our aim is to
show that, under appropriate conditions, we have almost surely (a.s.)

Jim A (HZ,K) =0, (4.1.2)

where K is a deterministic limit set of functions, and A(:,-), a Hausdorff-type set-distance (see,
e.g., (4.1.4) below). Our main results will be stated in Theorems 25 and 26, in the sequel.

We will make use of the following notation. We denote by £ be a set of right-continuous functions
on [0,1] fulfilling #% C & for all T > 0. We endow £ with a metric topology 7, defined by a
suitable distance dy. Mostly, we shall limit ourselves to the cases where dy is either the uniform
distance (denoted by di), or the Hognés distance (denoted by dyy), whose definition is postponed
until (4.1.14) below. For each f € £ and ¢ > 0, we denote by By (f,¢) :={g € £ : dr(f,9) < €},
the open ball of center f and radius €, pertaining to (£, 7). For each non-empty subset A C £, and
each € > 0, we set

A€ = AST = {g € &:dr(f,g) < e for some f € A} = U Br(f,e€). (4.1.3)
feA

71



72CHAPTER 4. FUNCTIONAL LIMIT LAWS FOR THE INCREMENTS OF L‘EVY PROCESSES

We extend the definition (4.1.3) to A = (), by setting ()¢ = () for all ¢ > 0. The Hausdorff distance
between the subsets A, B C £ of £ is defined, in turn, by

A7(A, B) := inf {e >0:AC B and B C Af}. (4.1.4)

Let X denote a random variable [rv], with moment-generating function [mgf]| defined by ¥ x (t) =
E(exp(tX)) € (0,00] for t € R. The Legendre transform ¥x of ¢x is denoted by

Ux(a):= sup {at—logx(t)} for a € R. (4.1.5)
{tpx (t)<oo}

Set t1 = inf{t : ¢x(t) < oo} and ¢y := sup{t: ¢¥x(t) < co}. We refer to Deheuvels (1991) for a
discussion of the properties of the mgf ¢ x(-), and its Legendre transform Wx(-). The observation
that ¥ x(0) = 1 entails that —oo <ty <0 < t; < oo. We shall make use, at times, of the following
assumptions on ¥x.

(Cx) Yx(t) < oo forallt € R & t; = —o0 and tg = oo.
(Ax) 1x (t) < oo in a neighborhood of 0 = t1 <0< tp.

Also, at times, we shall impose the following conditions upon {ar : T' > 0}.

(A1) ar and Ta}1 are ultimately non-decreasing functions of 7' > 0;

-1
(A2) 22~ — d € (0, 00] and llzggﬂagTT

Tog T — o0 as T — oo.

The Proposition 1 below, which is an is an easy consequence of the results of Deheuvels and Mason
(1993), gives some motivation to our work. Denote by B(0, 1) (resp. C(0,1), resp. AC(0,1)) the set
of bounded left-continuous (resp., continuous, resp., absolutely continuous) functions on [0, 1]. We
endow, at first, B(0,1) 2 C[0,1] D AC(0, 1) with the uniform distance defined by dy/(f, g) := || f—¢||,
where || f]| := supg<s<1 | f($)|- Introduce a functional Iy, defined on B(0,1) by

U f(s)2ds i an =
IW(f):{({Oof()d f feAC(0,1) and f(0)=0,

otherwise.

Set log, t = log(t V e) and logy(t) = log,log, t for t € R. Consider the Strassen-type set (refer to
Strassen (1964))

S = {f € 0[0,1] : Iy (f) < 1}. (4.1.6)

Proposition 1. Let (A1) and (A2) hold with d = co. Assume that,for allt > 0, E[Z(t)] = 0 and
VarlZ(t)] = t. Set by := [2ar (log, (T/ar) + log, T))|Y/? for T > 0. Then, under (Az), we have

. 7 _
Jim Ay (H7,5) =0 as. (4.1.7)

Proof. Let {W(t) : t > 0} be a standard Wiener process. In view of the notation (4.1.1) and under
the assumptions above, we infer from the results of Révész (1979) that

. 1%74 _
Tlgl;o Ay (Hy ,S) =0 as. (4.1.8)
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Under the assumptions of the proposition, the following strong invariance principle holds (see, e.g.,
Deheuvels and Mason (1993)). There exists a probability space on which we can define a standard
Wiener process {W (t) : t > 0} jointly with {Z(¢) : ¢ > 0}, in such a way that, as T — oo,

sup |Z(t) —W(t)| = O(ogT) a.s. (4.1.9)
0<t<T
By combining (4.1.8) with (4.1.9), we conclude readily (4.1.7).0 O

In the remainder of our paper, we investigate the case of ”intermediate increments” a, namely, when
(A2) holds for some 0 < d < oo (we leave aside "small increments”, for which d = 0. Intermediate
increments correspond to the increment sizes investigated by Erdés and Rényi (see, e.g., Erdés and
Rényi, (1970)) for increments of partial sums. In this case, invariance principles of the form given
in (4.1.9) cannot be used to obtain variants of Propostion 1. This follows from the fact that the
rate in (4.1.9) cannot be reduced to o(logT) (see, e.g., Deheuvels and Mason (1993)). For such
"intermediate increments”, functional limit laws for rescaled increments of the form (4.1.2), when
Z(+) is formally replaced in the definition (4.1.1) by a partial sum process S(-), are well known. For
their statement, we need the following notation. Letting {X; : ¢ > 1}, with X := X;, denote a
sequence of independent and identically distributed [iid] rv’s, the corresponding partial sum process
is defined by
[t
S(t):=>_X; for t>0, (4.1.10)
i=1

where [t] <t < |t] + 1 denotes the integer part of t. In this setup, functional limit laws may be
obtained through the formal replacement of Z(-) by S(-). The appropriate choice of the scaling
factor is here by = ap, in relation with Cramér type large deviations principles (see, e.g., (Cramér,
1937)). We refer to Borovkov (1990), Deheuvels (1991), Sanchis (1994a) and Sanchis (1994b), for
the corresponding results. The following Theorem 20 is a consequence of their results, for sets of
increment functions of S(-) of the form

MnJg :Z{Si,k:OS’iSn—k},

where S+ |kt S(e kt — | kt]) X
oo S D =80 G Bt g s

For each pair of integers n and k such that 1 <k <n, M, C Cy(0,1) := {f € C(0,1) : f(0) = 0}.
Define a functional Ix on Cy(0, 1) by setting, for each f € Cy(0,1),

Now, for any a > 0, introduce the set
Ko :={fe€Cy0,1): Ix(f) <a}. (4.1.11)
Theorem 20. Under (Cx), for any ¢ > 0 and k = |clogn|, we have that

TIEEO Ay (M, Ki7c) =0 a.s. (4.1.12)
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Theorem 21 below is a variant of Theorem 20, obtained under more general assumptions. For ¢ > 0
and ar = clog, T, let Fr be the set of Erdés-Rényi-type increment functions of {S(t) : ¢ > 0},
defined by

S(z + sar) — S(x)
ar

Fro={cByr:0<x<T—ar} where B,r(s):= for 0<s<1. (4.1.13)
We see here that Fr C BVj(0, 1), where BVp(0,1) denotes the set of all right-continuous functions
f on [0,1] with bounded variation, and such that f(0) = 0. In words, BVp(0,1) is the space of
all distribution functions of totally bounded signed Radon measures on [0,1]. In the sequel, we
will identify f € BVy(0,1) with the signed measure py such that df = py. We define below on
BVp(0,1) a distance dyy (see, e.g., (Hognés, 1977)), which metricizes the weak convergence of signed
measures. We denote by Ayy the corresponding Hausdorff distance. Set, for f,g € BV;(0,1),

1
dw(f. ) = /0 () — g(w)ldu + |£(1) - g(1)]. (4.1.14)

For f € BVy(0,1), write f = f1 — f—, where df = dfy —df- is the Hahn-Jordan decomposition of
df. For any g € BV;(0,1), denote by g = g + ¢°, where dg = dg* + dg° stands for the Lebesgue
decomposition of dg into an absolutely continuous and a singular component. For ¢ > 0, we define
functionals Jx and Jx . on BV;(0,1) by setting, for each f € BV;(0,1)

1
Jx(f) =/0 Wy <(ifA(s)> ds + tof3(1) — t1£5(1) (4.1.15)
and
JX?C(f) =cJx <_]CC> . (4.1.16)
We set, further,
D.:={f € BV(0,1) : Jx(f) <1}. (4.1.17)

Theorem 21. Let X be centered, with finite variance, and nondegenerate, meaning that P(X =
x) <1 for all x. Assume further that (A2) holds with 0 < d < co. Then, under (Ax,), we have

lim Aw (Fre, D) =0 a.s. (4.1.18)
T—00
In addition, under (Cx,), we have
lim Ay (Fre,De) =0 a.s. (4.1.19)
T—o0

The limiting behaviour of rescaled increments of Lévy processes mimicks closely the limiting be-
havior of rescaled increments of partial sums processes given in Theorems 20 and 21. As expected,
we obtain results analogous to Theorem 21 when we replace partial sum processes by Lévy pro-
cesses. The following additional notation will be useful. For z > 0, and ¢ > 0, define standardized
increment functions of Z(-) by setting

Nz e(S) = Z(= +£S€) — () for s € [0,1]. (4.1.20)




4.2. GENERAL RESULTS
In this paper, we consider intermediate Erdos-Rényi-type increments of the form
ar = clogT, for some ¢ > 0. (4.1.21)
Our aim is to characterize the limiting behavior of the random set of increment functions
Gr :={ngar :0<z<T—ar}. (4.1.22)

The forthcoming Fact 32 in Section 3.1 will show that the Theorem 22, stated below, due to (Frolov,
2008), is a consequence of a functional limit theorem for Gr.

Theorem 22. Set ¥ := Wy(y. Define co by 1/co = sup{¥(z) : ¥(z) < oo}. For any c > g, set
ar = clog(T). For any u >0, set y(u) :=sup{z > 0: U(z) < u}. Then, under (Azq)), we have

lim {sup f(l)} = lim { sup Z(@+ar) = Z(a:)} =~(1/c) a.s. (4.1.23)

T—o0 feGr T—oo | 0<z<T—ar ar

This remainder of the present paper is organized as follows. In Section 2, we present general results
on Lévy processes which will be needed in our proofs. Our main results are stated in Section 3,
with proofs detailed in Section 4. Some technical results are deferred to the Appendix.

4.2 General results

4.2.1 Lévy Processes

Let {Z(t) : t > 0} be a Lévy process. The similarities between the structure of {Z(¢) : ¢t > 0} and
that of {S(t) : t > 0} are essentially due to the infinitely divisibility of the distribution of Z(1). This
implies that, for each A > 0, the discretized version {Z(n\) : n > 0} of Z(+) is a sequence of partial
sums of iid random variables. The law of the random variable Z (1) (and hence, the distribution of
{Z(t) : t > 0}, see, e.g., Bertoin (1998)) is characterized by a unique triple of constants, (a,o?, ),
whith @ € R, 02 > 0, and where 7 denotes a measure on R — {0} such fR—{o} min {z?,1} 7(dz) <
0o. This relies on the Lévy-I1t6 decomposition, implying that the process {Z(t) : t > 0} may be
decomposed into

Z(t)=zV) + 23 (t) + 23 (1), (4.2.1)

where Z(1) | Z3) and Z®) are three independent stochastic processes described hereafter. Z (1)(-) is
a Wiener process with linear drift, namely such that Z(1)(t) = ¢W (t) — at, where {W (t) : t > 0} is
a standard Wiener process; Z (2)(-) is a compound Poisson process and Z (3)(-) is a square integrable
martingale, both defined in terms of m. Consequently, the distribution of {Z(t) : ¢ > 0} is fully
determined by that of Z(1), which is itself characterized by its mgf, denoted by ¥ (t) = E(exp(tZ(1)).
Denote by ¥ the Legendre transform of 1. Introduce the following assumptions.

(C): (t) < oo forall t €R.

(A): t1:=inf{t:y(t) < oo} <0 <ty:=sup{t:¥(t) <oo} and Z(1) has no Gaussian compo-
nent.
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4.2.2 Functional spaces

Our results rely heavily on the large deviations principles (LDP) for the distributions (Py)xso of
the processes {Z,(t) : 0 <t < 1}, defined by

Za(t) = %Z(At). (4.2.2)

Below we present some useful results concerning the spaces of functions which contain the sample
paths of {Z)(t) : 0 <t <1}.

The Skorohod space

By definition of a Lévy process, for any A > 0, the sample paths of {Z(¢) : 0 < ¢ < 1} belong to the
space D(0,1) of right-continuous with left-hand limits functions on [0, 1]. We endow D(0, 1) either
with the uniform topology U, or with the Skorohod topology S. We recall from (Billingsley, 1999)
that the Skohorod topology S on D(0,1) is induced by the distance ds defined by

ds(f.9) = inf { max (v~ 1]1:1f =g o vI) |- (423)

where A is the class of strictly increasing, continuous mappings of [0, 1] onto itself.

Let C(0,1) denote the set of continuous functions on [0, 1]. For any f € C(0,1), let wy denote the
modulus of continuity of f, defined by

wr(6) = sup [f(s) = f(t)]. (4.2.4)
ls—t]<d
Fact 29. Let K be a compact subset of (C(0,1),U). Then, for any € > 0, there exists a ¢ > 0 such
that for all g € K,
Bu(g,€) 2 Bs(g,¢)- (4.2.5)

Proof. Let € > 0. By the Arzela-Ascoli theorem, there exists a § > 0 such that

sup wy(d) < (4.2.6)

geK

N

Set ¢ := min {4;5}. We infer from (4.2.3) that, for all ¢ € K and h € Bs(g,(), there exists a
v, € A satisfying

|l — Il < ¢ <dand |h—gow| << % (4.2.7)
Therefore,
€
lg o vh = gll < w(llvn = 11I) < 5
and
1h =gl < lh = gvnl +llgovn — gl <e
0

Fact 30. Let x > 0. Then, for any B € Bs, we have

P((Z(x+-) — Z(x)) € B) =P(Z(-) € B). (4.2.8)
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Proof. Let k € N and (t;)1<i<x with 0 <#; < ... <t < 1. Let 7,y be the natural projection from
D(0,1) to R¥ defined by m(;,)(f) = (f(t:)). Since Z has independent and stationary increments, for
all Borel subset H of R¥, we have that

P ((Z(:U L) = Z(2) € w(—t?)(H)) —P (Z(-) € w(—tj)(H)) : (4.2.9)

(3

Finally, we conclude our proof by an application of Theorem 12.5 of (Billingsley, 1999), which
asserts that if the laws of two processes valued in D(0, 1) agree on all sets of the form W(ft_l)(H ), then
they agree on the whole family of sets Bs. O

Fact 31. For all x > 0 and u > 0, we have

P < sup |Z(z+s) — Z(z)| > u) =P ( sup |Z(s)| > u> : (4.2.10)

0<s<1 0<s<1
Proof. Let (si)keny be an enumeration of Q N [0, 1]. Since any f € D(0,1) is right-continuous, we
have that

P< sup |Z(z+s) — Z(z)| > u) =P ((Z(x+ ) —Z(x)) € U {f € D(,1):|f(sk)| > u}) .

Ossxl keN
(4.2.11)
We recall from Section 12 of (Billingsley, 1999) that for any s € [0, 1], the map f € D(0,1) — f(s) is
measurable with respect to Bs. Therefore, {Ucn {f € D(0,1) : |f(sk)| > u}} € Bs, so we conclude
by an application of Fact 30. 0

The space BVj (0, 1)

Whenever (A) is in force, it follows from general properties of infinitely divisible distributions (see,
e.g., the discussion, Section 5 in (Lynch and Sethuraman, 1987)), that for each A\ > 0, the sample
paths of {Z)(¢) : 0 <t < 1} belong to BVy(0,1). We endow this set with the topology W of weak
convergence of the underlying signed measures. Next, for each A C BV;(0,1) and € > 0, we set

A = U BW(f7 6)7
feA

where By (f,€) := {g € BV,(0,1) : dw(f,g) < €}. We observe that the A is not necessarily open
with respect to W, since dyy does not define the weak topology on the whole set BV;(0,1). Thus,
we are not allowed to apply a LDP to some A€ or to its complement. Therefore, we need to restrict
the weak topology as follows. For f € BV;(0,1), let |f|,(1) := f+(1) + f—(1) be the total variation
of f in the interval [0,1]. For any M > 0, set

BVoar(0,1) := {f € BVp(0,1) : | fls(1) < M} (4.2.12)

Then, for M > 0, the restriction of the weak topology to BV r(0,1) is metricized by the distance
dy. In the sequel, we endow BV 3/(0,1) with the weak topology.

Lemma 22. For any M >0, BV 3(0,1) is a compact metric space.

Proof. see, e.g., Proposition 1.4. in (Deheuvels, 2007). O
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4.2.3 Functional large deviations

We recall some definitions and results on large deviations theory.

Definition 16. Let £ be a topological space, endowed with a topology T and its Borel o-algebra,
denoted by Br. A function T : € — [0,00) is a rate function if T is lower semicontinuous.
Furthermore, we say that T is a good rate function if for all a < oo, the level set Kz(a) =
{fe&:I(f) <a} is compact. We say that a family of probability measures (Px)x>o on (£,B7)
satisfies a Large Deviation Principle (LDP) with rate function T if for any closed (resp. open)
subset F' (resp. G) of T, we have :

— 1

)\lim Xlog Py\(F) < -I(F) (upper bound) (4.2.13)
— 00
1

and lim Xlog P\(G) > -Z(G) (lower bound). (4.2.14)

A—00

where for any non-empty subset A of £, Z(A) := JicngI(f).
€

First, we have the following general result.

Lemma 23. Let (€,d) be a metric space. Let I be a good rate function on (€,d). Then, for all
positive o and €, we have that

inf Z(f) > a. 4.2.15
ot I ( )

Proof. Suppose that Z((K§,)¢) = a. Then there’s a sequence (x,,) with z,, ¢ (K, )€ for all n, such that
Z(zy) \y @. For some N and all n > N, we have Z(x,,) < a+1,sothat z, € {r € £: Z(z) < a + 1},
which is a compact set. Hence, (z,),>n has a convergent subsequence x,, — x, as k — oco. Since
7 is lower semicontinuous, we have that Z(z) < kli)ngo Z(xp,) = o Therefore, x € K,. Now, for all

n, tn ¢ (Ky )¢, so that d(z,,z) > €, which leads to a contradiction. O

Now, we state the functional LDP, under (C) and then under (A) on which our proofs rely. In the
sequel, W71y is denoted by W.

Let I be the functional defined on DJ0, 1], by

1 ; . .
1) {ioo\ll(f(s))ds if feAC(0,1) and f(0)=0,

otherwise.

Lemma 24. Under (C), I is a good rate function.

Proof. Since I(f) = oo whenever f ¢ AC(0,1), we obtain that for any a > 0, K7(a) :={f € D(0,1) : I(f) < a} =
{f € AC(0,1) : I(f) < a}. Now, since (C) holds, Theorem 1.1. in (Deheuvels, 2007) implies that
the set {f € AC(0,1) : I(f) < a} is a compact subset of (C(0,1),U). We conclude by recalling
that the restriction of S to C'(0,1) coincides there with ¢, which implies that a compact subset of
(C(0,1),U) is also a compact subset of (D(0,1),S). O
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Theorem 23. Under (C), the distributions (Px)x>o satisfy a LDP in (D(0,1),S), with rate function
1.

Proof. See, e.g., (Varadhan, 1966). O

Let J be the functional defined on BV;(0,1) by

1
J(f) :/O v ((ifA(s)) ds + tofS(1) — t1 f5(1). (4.2.16)

Theorem 24. Under (A), the distributions (Px)a>o satisfy a LDP in (BVy(0,1),W), with good
rate function J.

Proof. See, e.g., (Lynch and Sethuraman, 1987). O

4.3 Functional Erd6s-Rényi theorems
4.3.1 Main results
We consider the following assummption.
(€) : There exists a constant p such that for all ¢ > 0, E[Z(t)] = ut.

The next two theorems, called Erdds-Rényi functional laws (ERFL), are the main results of this
paper.

Theorem 25. Assume that (C) and (€) hold. For ¢ >0, set
Kyje:={f€D(0,1): I(f) <1/c}, (4.3.1)
where I is the rate function defined in Section 2. Then, for any ¢ > 0 and ar = clog(T'), we have

TIEEOAM (61, K1/c) =0 a.s. (4.3.2)

Theorem 26. Assume that (A) and (€) hold. For any integers n >0 and g < n, set
Mg i ={mq:me{0,...,n—q}}. (4.3.3)

For any ¢ > 0, set A, := |clogn|. Assume that for all c large enough, there exists a constant
M > 0 such that almost surely for all n large enough, we have that

Mo, C BVyar(0,1). (4.3.4)

Forc> 0, set
Ly = {f € BV(0,1) : J(f) <1/c}, (4.3.5)

where J is the rate function defined in Section 2. Then, for all ¢ large enough, we have that

lim Ayw(Mpa,, L) =0 as. (4.3.6)

n—oo
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The following Fact usually provides applications when functional limit theorems are established.

Fact 32. Let (£,d) be a metric space of functions defined on [0,1]. Let © : (£,d) — R be a
continuous map. Assume that for some compact subset K of £, Tlim A(Hr,K) =0 a.s. Then, we
—00

have that

lim { sup @(f)} =sup O(f) a.s. (4.3.7)

T—oo | feHr fek
Corollary 1 below follows from Theorems 25 and 26 (and their proofs) combined to Fact 32 applied
to the functional f — f(1), which is continuous with respect to the uniform topology and the weak
topology.
Corollary 11. Under the assumptions of Theorem 25, we have that for any ¢ > 0,

Z(x +ar) — Z(x)

lim  sup =~v(1/c) a.s. (4.3.8)
T—00 0<g<T—ar ar
A A, —Z
and lim sup (m + An) (m) =v(1/¢) a.s. (4.3.9)

nN—=30 0<m<n—A, Ay

Under the assumptions of Theorem 26, we have that for all ¢ large enough, (4.5.9) holds.

4.3.2 Examples
Continuous paths

Let {Z(t) : t > 0} be a Lévy process with continuous paths. We recall that in this case, {Z(t) : t > 0}
is a brownian motion with drift. Therefore, Theorem 25 yields an ERFL for {Z(¢) : ¢t > 0}, since it
satisfies (£) and (C).

Subordinators

Let {Z(t) : t > 0} be a subordinator, that is a Lévy process with almost surely increasing paths.
Then, for any n > 0 and m € {0,...,n — A, }, we have that

Z(m+ Ay) — Z(m)
Ay, '

Mm, 4, 10(1) = (4.3.10)

Then, we deduce easily from Theorem 22 that for any ¢ > 0 large enough, there exists a constant
M. < oo such that
Im  sup  [mmoa,le(l) < M. as. (4.3.11)

n—=00 0<m<n—Ay,

So if we assume in addition that (£) and (A) hold, then {Z(t) : t > 0} satisfies the assumptions of
Theorem 26.
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Compound Poisson process

Recall that given a sequence {Y; : i > 1} of i.i.d. r.v.’s. and a homogeneous, right continuous Poisson
process {N(t) : t > 0} which we assume to be independent of {Y;:i > 1}, the compound Poisson
process {Sn(t) : t > 0} is defined by

N(t)

Sn(t) =) Y (4.3.12)
i=1
Denote by A the parameter of {N(t) : t > 0}. Recall that for any ¢ > 0, we have that

ESn(®)] = MEVI] 5 gy (u) = explA(uy (u) — 1)) (4.3.13)

Consequently, (£) holds. If we assume that (Cy,) holds, then {Sn(t):¢ > 0} satisfies (C), and
therefore the assumptions of Theorem 25.

Now, assume that (Ay,) holds. Notice that for any x > 0 and ¢ > 0, we have that

N(z+2¢)

eelo(1) =71 Y |V = £ H{|Swl(@ + ) = |Sn|(2)}, (4.3.14)
J=N(z)+1

N(t)

where [Sn|(t) := > |Yj|. Then, {|Sn|(t) : t > 0} is also a compound Poisson process with ¢, 1)(u) =
j=1

exp[A(Y)y;|(w) — 1)]. So for [u| < B := min {|t1], [to[}, we have that

0 00
Yiyy(uw) = /_ exp(—ux)dP(Y; < x)+/0 exp(ux)dP (Y1 < z) < ¥y, (—u)+y, (u) < oo. (4.3.15)

Therefore, (Ag, (1)) holds and we deduce from (4.3.14) combined with Theorem 22 that {Sy(t) : t > 0}
satisfies the assumptions of Theorem 26.

4.4 Proofs

The statement that Tlim A7 (Hp,K) = 0 a.s. is equivalent to the statement that, for any € > 0,
—00
there exists a.s. T'(¢) < oo such that for all 7' > T'(e),

Hr C K¢ and K C (Hr)". (4.4.1)

We give several preliminary lemmas which lead to the proofs of Theorems 25 and 26 in Section 4.3.
We call the first statement in (4.4.1) the upper bound, while the second is called the lower bound.
The reason is that for the first we use an upper bound in a functional LDP while we use a lower
bound for the second one. For any ¢ > 0, set

Ly :={nza, 0<z<n-—A,}. (4.4.2)

For any integer j large enough, set n; := max{n : A, = j}, so that exp(%) <n; < exp(%).
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4.4.1 The upper bound

Lemma 25. Assume that (C) holds. Then, for any € > 0, the series ZP (Mnj,j ¢ (Kl/c)“u) is
convergent. !

Proof. Fix e > 0. Since for all ¢ > 0, K is a compact subset of (C(0,1),U), Fact 29 implies that
there exists ¢ > 0 such that

(Kiy)™ = |J Bulgoe) > |J Bs(9,0) = (K170)%°. (4.4.3)
geKl/c gEKl/C

Let F' be the complement in D(0, 1) of (Kl/c)c;s. Therefore, for all n > 0, we have that

n

n—An
P (Mo, ¢ (K1) < Y P(nma, € F) <nP <Zf”') € F) . (4.4.4)

m=0

The last inequality is justified by Fact 30. Since (C) holds, we can apply Theorem 23 : F being a
closed subset of (D(0,1),S), for any 6 > 0, we have for all n large enough,

P (Mupa, ¢ (Ki0)™) < nexp[A, (~1(F) +6)]. (4.4.5)

Then, by Lemma 23, I is a good rate function. Therefore, applying Lemma 22 with (£,d) =
(D(0,1),ds), we can write I(F) = 1 +6 with 6 > 0. So applying (4.4.5) with 6 = g, we have for all
n large enough,

P (Mp,a, & (Ki0)%) <nexp <—An <i + 345>> . (4.4.6)

Applying this inequality with n = n;, so that A,, = j, we obtain that

P (Mo ¢ (K H) <meso (<5 (14 2))

j+1 (1 35
< exp T exp| —2 E+Z

O

Lemma 26. Suppose that the assumptions of Theorem 26 hold. Then, for any € > 0, the series
S P (M, ¢ (Ll/C)QW) is convergent.
J

Proof. Set EE/C := (L1/¢)"Y N BVo,0(0,1). Then, it is enough to prove that the series > P <./\/ln]. JZ Ei/c)
J

is convergent. Denote by F the complement of L] Je in BV a(0,1). Then F is a closed subset of

(BVo,m(0,1), W), and therefore a closed subset of (BV;(0,1),W). Since (A) holds, we can apply

Theorem 24. As in (3.5) in Deheuvels (1991), for any 6 > 0, we have for all n large enough,

P (Mn ¢ LS /C) <nP (Z(j:') € ]-') < nexp[An (—J(F) + 6)]. (4.4.7)
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Denote by Jys the restriction of J to BVpar(0,1). Since F C BVp ar(0,1), we have that J(F) =
Ju (F). Now, a level set of Jys is a closed subset of the compact set BVj as(0,1),V). Therefore,
Ju is a good rate function on the metric space (BVp ar(0,1),dy). So applying Lemma 23, we get
that J(F) > 1/c. We conclude as in the proof of Lemma 25. O

Lemma 27. Assume that, for all € > 0, we have that

> P (My,; ¢ K) < o0 (4.4.8)
J
and
anP( sup |Z(7)| > je) < 0. (4.4.9)
r 0<r<1

Then almost surely, for all n large enough, we have that
L, C K¢ (4.4.10)

Proof. For any ¢ > 0, we have for all j large enough,
P (Lo, @ K) <P ({L£a, ¢ KY 0 {Mp 5 < K2}) 4 P ({Mo5 ¢ K}) . (aa11)

Set Pj := P ({[,nj s Ke} N {Mnj,j C KE/Q}). For any real x, let k, be the integer which is nearest
to z (we choose k, = |zlogn| if z € $N). Assume that the event H{Ln, ¢ Ky n{M,,; C Ke/z}}
is realized. So there exists 7;,,; € Ln;, with 29 ¢ N, such that for all g € K, diy(1z,5,9) > €. Now,
there exists Jk., € K such that du(nkxo,j,gkm) < 5. Then, the triangle inequality implies that
necessarily, du(1,5; Mk, .,j) > 5- Therefore,

Z(x+j-) — Z(x)  Z(ka+ ) — Z(ka) €
Fisp <og§§£§j {H j - j ’} - 2) (a12)
and so
P <P (0<535__j{\\z<x ) = Z(ka + )| + 12(@) = Z(ko)II} > j;> . (4.4.13)

Now, for all s € [0, 1], we have that |(z + js) — (k, + js)| < 3, so that

sup  sup |Z(x+js) — Z(ky+js)| < sup sup |[Z(y+a)—Z(y)|. (4.4.14)
0<w<n;—j 0<s<1 0<y<n; 0<a<i
Consequently,
P;<P| sup sup |Z(y+a)—Z(y)| > jE . (4.4.15)
0<y<n; 0<a<l 4

Applying Fact 33 below we obtain that there exists a constant 5 > 0 such that for all j large enough,

P; < n;P < sup |Z (1) > je) . (4.4.16)
0<r<1 12
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Therefore, (4.4.9) and (4.4.8) imply that the series Y Pj and Y P (L, ¢ K¢) are convergent. So,
J J

the Borel-Cantelli Lemma implies that P (L’nj ¢ Kio. (in ])) = 0. Finally, we observe that, for all
n satisfying n; 1 <n < nj;, we have that £, C L,,. Consequently, the event {L,, ¢ K¢ i.0. (in n)}
is included in {£,, ¢ K€ i.0. (in j)}, which concludes the proof. O

Fact 33. Let 0 < h < 1. Then there exists a constant > 0 such that for allu >0 and n > 1,

P ( sup sup |Z(z+a)— Z(x)| > u) < fnP ( sup |Z (7)| > u) . (4.4.17)
0<z<n 0<a<h 0<r<1 3

Proof. Fixn > 1 and let R, := [#]+1. Then, 6, := £~ < h. For any z € [0,n], let i, be the unique
integer such that i,6, <z < (iy + 1)d,. Then, for a € [0, h], two cases occur.

Case 1 : x+a < (ig + 1)0p.
Then, 0 < (z +a) — i;0, < h and 0 < z —i,0, < h, so that

|Z(z+a)—Z(x)| < |Z (ig0n) — Z(x + a)|+|Z (ix6n) — Z(z)] <2 max sup |Z(id,) — Z(i6, + T)|.
0<i<Rn 0<7<h
(4.4.18)

Case 2 : x+a > (iy + 1)0y.
Then, 0 < (z+a) — (iy +1)6, < h, 0 < (iy + 1)0y, — 930, < h and 0 < x — 4,0, < h, so that

1Z(z +a) = Z(2)| < [Z ((iz +1)0n) — Z(x +a)| +[Z (i20n) = Z ((iz + 1)6n)| + 2 (iz0n) — Z(2)]

(4.4.19)
and so
|Z(z+a)— Z(z)] <3 max sup |Z(idn) — Z (id, +7)|. (4.4.20)
0<i<Rn 0<7<h
Therefore, we obtain in both cases a bound independent of x and a, so that
sup sup |Z(z+a)—Z(x)| <3 max sup |Z(id,+7)— Z(id,)]. (4.4.21)
0<z<n 0<a<h 0<i<Rn 0<r<h
Now, for all u > 0, we get from Fact 31 that
P | max sup |Z(i6,+7)— Z(idy)| >u | < R,P < sup |Z (7)| > u> . (4.4.22)
0<i<Rn 0<r<h 0<r<1
O

Lemma 28. Assume that (C) holds and that {Z(t) :t > 0} is centered. Then, for all € > 0, we
have that

anp< sup |Z(7)| > je) < 0. (4.4.23)

0<r<1

Proof. Assumption (C) implies that for any s > 0, A := 1(s) 4+ 1(—s) is finite. Now, for any fixed
s > 0, we have that for all u© > 0,

P <0221 Z (7)| > u> <p <021T1216xp(sZ(7')) > exp(su)> +P ((JilTlglexp(—sZ(T)) > exp(su)> .
(4.4.24)
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Then, {Z(t) : t > 0} being a centered Lévy process, it is a martingale. Now, the function z
exp(+sr) is nonnegative, continuous and convex. Therefore, the process (exp[£sZ(t)]);5, is a
nonnegative submartingale. Then, by Doob’s inequality, we obtain that

P < sup |Z (1) > u) < Ag exp(—su). (4.4.25)
0<r<1

Therefore, recalling that n; < exp (j H), we have that

c

1 1

n;P < sup |Z(7)| > je) < njAsexp (—sje) < Asexp () exp [—j <se - ﬂ . (4.4.26)
0<7<1 c c

Now, by choosing s large enough so that se > %, we conclude the proof. O

4.4.2 The lower bound
For any integer n > 0, set R, := [(n — Ay)/Ay] and Q,, :={na,,4, : 1 <r < R,}.

Lemma 29. Assume that (C) holds and that {Z(t) : t > 0} is centered. Let ¢ > 0. For any € > 0,
we have a.s. that for all n large enough,

Ky, C LS. (4.4.27)

Proof. Fix € > 0. Let g € K. and set G := By(g,¢/2). From Fact 29, there exists ¢ > 0 such that
G D G’ := Bs(g, (). Therefore,

Plog ) =P N maa €G] <P N (pana g6} (4428

1<r<R, 1<r<R,

Then, the mutual independence of the 7,4, 4, for 1 <r < R, and Fact 30 imply that

P (g ¢ Q;ﬂ) < ﬁ (1=P (nra,a, €G)) = (1 - P <Z(jn') € G’))Rn : (4.4.29)
r=1

n

Now, G’ is S-open. Therefore, under (C), Theorem 23 implies that for all § > 0, we have for all n
large enough,
P M €G | >exp(A, (-I(G) -
N > exp (An (-1(G") —0)) . (4.4.30)
Since I(f) = oo for f ¢ C(0,1), we have I(G') = I (G'NC(0,1)). Now, since the Skorohod topology
relativized to C(0,1) coincides with the uniform topology, we have that G” := G’ N C(0,1) is an
open subset of (C(0,1),U) containing g.

Now, we claim that I(G”) < 1/c. Indeed, if I(g) < 1/¢, then it is clear. Otherwise, assume that
I(g) = 1/c and for all f € G”, I(f) > 1/c. Therefore, I(g) would be a local minimum of the
restriction of I to C(0,1), which is a convex function. Since (C(0,1),U) is a convex topological
vector space, I(g) would be a global minimum of this function. Now, since E[Z(1)] = 0, we have
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that U(0) = 0. So, for any constant function go, I(go) = 0 is a global minimum of I on C(0,1).
Consequently, we would have that I(g) = 0, which leads to a contradiction.

So, we can write I(G”) = 2 — § with § > 0. Taking 0 = % in (4.4.30), we obtain for all n large

enough,
Z (A 1 4] _(1—e38
I R B R
Consequently, for all n large enough,
(n—An)/An s
P (g ¢ Q;/Q) < (1 - n*(lfc%‘s)) < (1 - n*(lf%ﬂ) o8 (4.4.32)
and i
€/2 < - —(1—03—5) n _ _ na
P (g ¢ QO ) < exp < n 4 log exp clogn | (4.4.33)

Therefore, the Borel-Cantelli lemma implies that
P <g ¢ 0% i.0. (in n) ) = 0. (4.4.34)

Finally, since K}/, is a compact subset of (C(0,1),U), we can find d € N and functions (gg)¢=1,....d
in K/, such that K;,. C ngl Bui(gq,€/2). Then, the triangle inequality and (4.4.34) applied to
each g, imply that there exists almost surely an integer N (e) such that for all n > N(e),

Ky CQ; C L. (4.4.35)
O

Lemma 30. Assume that (A) holds and that {Z(t) : t > 0} is centered. Furthermore, assume that
we can choose M < oo large enough, so that a.s., for all n large enough,

Q, C BVy(0,1). (4.4.36)
Then, for any € > 0, there exists almost surely N(€) < oo such that for all n > N(e),
Ly C Q. (4.4.37)

Proof. Let ¢ > 0.

Let P={0=1tg <t <..<tm1 <tm=1} be a partition of [0;1]. Set d(P) := max {t; —ti—1}
For f € BVy(0,1) define fT(u) = S50 (F(t:) — f(tim1))® + 7= (f(tk) — f(tr—1))* for tx1 <

lk—tk—1
u <ty 2<k<m,and fz_f(u) = Y f(t)F for 0 <u <ty Let fP:= ff—ff.

1

Let s € Ly /.. Then the triangle inequality implies that for any 1 < r < R,, we have that

dW(S7 nT'AnyAn) S dW(S7 SP) + dW(SP7 annyAn) + dW(nTAn,Aw /'777')1477.714714) (4438)
By (2.56) in Deheuvels (1991), we have that for any f € BV;(0,1),

aw(£.17) < D2 p1,0). (1439
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By (3.9) in Deheuvels (1991), we can choose M < oo large enough, so that
Lyje C BVor(0,1). (4.4.40)

Now, we fix M < oo such that both (4.4.40) and (4.4.36) hold. Then, we choose P such that
d(P) < 327]\64 Define (yi)lgigm by Yi = S(ti) — S(tifl). Then for any o> 0, set

Z(rA, +t;An) — Z(rA, +ti—14y)
A —Yi

P,s:=P| min max
’ 0<r<R, 1<i<m

> 5) : (4.4.41)

Since the process Z(-) has independent and stationary increments, we get that

i
2

Then, under (A), we obtain from results of (Lynch and Sethuraman, 1987) that for all 1 <1i <m,
M) satisfies a LDP with rate function
n

Z(tiA) — Z(tiaAn)
An y’b

<‘ Z((ti —ti—1)An)

P,s= [1 - P ( max

1<i<m

<exp |—Rn H P

—Yi
1<i<m An

the sequence (

n

z
Z = ’QZ) (tl—tll> (ti — tifl). (4442)

Setting B(y;;0) := {2z : |z — yi| < ¢}, we deduce that for any 6 > 0, we have for all n large enough,

Z((tl — tifl)An) . z 0
— s > _ - ot ) — & .
P (‘ A, yi| <0 ) >exp |4, zEg(lgi-;é) P t—t; 1 (tz t; 1) m

(4.4.43)
Let J” be the function defined on R™ by
> i=m %
i)) = — | (& — ti—1)- 4.4.44
TN =30 (55 ) 6t (4.4.4)
Let Gs := {(z): € R™ : max |z; — y;| < d}. Then we obtain that for all n large enough,
P, s <exp [—Rn exp [An (—JP(Gg) — 9)]] . (4.4.45)

Now, we claim that J”(Gs) < 1. The proof is analogous to that of the fact that I(G”) < 1/c
previously, since J¥ is a convex function on R™. We also obtain analogously that for any ¢ > 0,
Yool Pys < co. By the Borel-Cantelli lemma, there exists almost surely N = N(§,P) such that
for all n > N, there exists 1 <r < R, satisfying

87

Z(rA, +t;Ay) — Z(rA, +t;,_1A,
5 101, (8) = e, (5-0)) = (5(8) = (1) = mas |24 BN

< 4.

Now, by (2.62) in Deheuvels (1991), we have that for any f,g € BV;(0,1),

dw (f7,4") <2m pax |(f(t:) — f(ti = 1)) — (9(t:i) — gt — 1))|. (4.4.46)

—Yi
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Then, we choose § > 0 such that § < . Therefore we obtain from (??) that almost surely, for
all n large enough, there exists 1 < r < R,, such that dyy (ann,An’ 5P> < £ and then from (4.4.38)
and the choice of d(P) < 2 that

dw (S, Mr A, A,) < €. (4.4.47)

Finally, since J is a good rate function, L, /. is a compact subset of (BVp (0,1), W). Therefore,
analogously to the end of the previous proof, we obtain that almost surely, for all n large enough,
Ll/c C Q?f ]

4.4.3 Proof of main theorems

Remark 10. For any real u, let {Z(“) (t): t> O} be the Lévy process defined by
ZW(t) .= Z(t) + pt, fort > 0. (4.4.48)

We prove in Appendiz that, if an ERFL holds for {Z(t) : t > 0}, then an ERFL holds for { ZW(t) : t > 0}.
Therefore, in order to prove Theorems 25 and 26 under assumption (£), it is enough to obtain them
for centered Lévy processes.

Proof of Theorem 25

Proof. First, assume that {Z(t) :t > 0} is centered. Then, we combine Lemmas 25, 27, 28 and
Lemma 31 in the Appendix to get the the upper bound, that is first part of (4.4.1). Then, we
combine Lemma 29 and Lemma 32 in the Appendix to get the lower bound, that is the second part
of (4.4.1). We conclude by applying Remark 1. O

Proof of Theorem 26

Proof. First, assume that {Z(t) : ¢ > 0} is centered. Notice that the following statement

lim Ayy(Mpa,, L) =0 as. (4.4.49)

n—oo

is equivalent to the statement that, for any € > 0, there exists a.s. an integer N(e) < oo such that
for all n > N(e),

My, C LY. and Ly C M, 4, (4.4.50)

Then, Lemma 26 and the Borel-Cantelli Lemma imply that
P (My,; ¢ (L1)%" io. (inj)) =0, (4.4.51)
from which we deduce readily the first statement of (4.4.50). Then the second statement of (4.4.50)

follows from Lemma 30, under the assumptions of Theorem 26. We conclude by applying Remark
1. O
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4.5 Appendix

4.5.1 Proof of Remark 1

We define the set of Erdés-Rényi-type increment functions associated to Z()(-) by

Q;“) = { (1) ()= ZW(x + ap-) — ZW (x)

- — Noar () il os:cST—aT}. (45.1)

Let I be the functional defined on D[0,1] by I"(f) = fol UM (f(u))du if f is absolutely continu-
ous and f(0) = 0, while I¥)(f) = oo otherwise. For any o > 0, set KW .= {feD(,1): IW(f) < a}.

Fact 34. Assume that for some {ar,T > 0} and o > 0, we have that

lim A(Gr,K,) =0 a.s. (4.5.2)
T—00
Then, for all real i, we have that
lim A (g(“),Kgﬂ)) ~0 as. (4.5.3)
T—o0

Proof. Let (") be the Legendre transform of the mgf of Z(¥)(1). Then, for any real a, ¥(¥(a) =

U(a — ), which implies easily that K&“ ) = K, + ply. Now, the assumption and a translation
argument imply that for all € > 0, a.s., for all T' large enough,

G = Gr + ply © (Ko + nla)* = (K$) (45.4)

and €
Ké“) =Ko+ ply C (Gr + plg) = (grfpu)) . (4.5.5)
0

4.5.2 End of proof of Theorem 25
For any ¢ > 0, set K := K /.. Denote by I the identity function on [0, 1]. Fix Ao with 0 < Ag < 1.

Fact 35. For any f € K, we define the function py by
pr(A) = [[ATTFOAD) — ]| - (4.5.6)

Then there exists a function 0(-), independent of f and satisfying 6(x) — 0 as © — 0, such that for
all A1 € Do, 1],

lps(A) = pr()] < O([A = pl]). (4.5.7)
Proof. For any A, uu € [Ao, 1], we have that
105 = s ()| = [N FOD) = 7] = [ () = £ € NS OD = D) (25.8)

and

AL = p7 (D] < [NTUFD) = AT ()| + [N () = o7 F ()] (4.5.9)
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Then, we have that

INTLFOT) = A F (D) < A3 sup wy(IA — u) (4.5.10)
feK
and
N (D) = 7 (D] < AT =T sup £ (4.5.11)
fex
Now, K being U-compact, we apply the Arzela-Ascoli theorem to conclude. O

Fact 36. For any g,h € D(0,1) and X € [Xo, 1], we have that
IATTg(AD) = g|| < (L+ A || — gl + [|[XNTFROAD) — R (4.5.12)
Proof. For any A € [Ag, 1], we have that
A" g(AD) = g|| < [[ATg(AL) = A R || < 4+ [[ATTR(AT) = B[ + |h — g]|- (4.5.13)
Since Ao < A < 1, we get readily that

[ATTg(AD) = ATTROAD|| < Mgt IR — gl - (4.5.14)

Fact 37. For all 6 > 0, there exists v = v(0) > 0 such that |\ — 1| <~ implies that

sup H/\_lg()\l) —g|| <o (4.5.15)
geK

Proof. Fix 6 > 0. Then K being U-compact, for any « > 0, there exists a finite number of functions
(9q)q=1,...a in K such that K C ngl Bui(9q, ). Now, we obtain from Fact 35 that for all K > 0,
there exists v > 0 depending only on &, such that |A — 1| < « implies that for all ¢ € {1,...,d},
H)\_lgq()\I) — qu < k. For any g € K, there exists ¢ € {1,...,d} such that g € Bs(gq, ) and we
deduce from (4.5.12) applied to h = g, that

[ATTg(AD) — g]| < a(@ +Xgh) + & (4.5.16)
Finally, for any 6 > 0, we can choose 7 and « small enough to get that a(1 + )\61) + Kk < 4. O
Fact 38. For all § > 0, there exist 0 = 0(0), with 0 < 0 < 0, and v = v(6) > 0 such that
A —1] <y = sup H)\_lf()\l)—fH < 0. (4.5.17)
Jek?
Proof. Fix 6 >. For any § > 0 and f € K% let g € K such that ||g — f|| < 6. Then (4.5.12) implies

that
IANTHFOD) = £ <0 (1421 + 8161][; [A"tg(A) — g - (4.5.18)
g

Observing that 1+ Ay 1 > 1, we conclude by applying Fact 37. O

Lemma 31. For any € > 0, there exists a.s. a real T'(€) such that for all real T > T'(€), we have
that
Gr C K*. (4.5.19)
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Proof. For any T > 0, set
nry:=inf{n: A, > ar}.

Notice that necessarily, np > T'. Now, the Mean value theorem implies that A, —ar < & (np — 1),
so there exists 7 > 0 such that for all T > 7, T — ar < ny — A,,. Furthermore, the definition of
np implies that A,11 < ar and we prove readily that

lim L =1, (4.5.20)
Fix e > 0.

We get from Lemmas 25, 27 and 28 that for any 6 > 0, there exists a.s. an integer N(6) such that
¥n > N(),L, C K°. (4.5.21)
Now, Fact 38 implies that there exist 6(e/2) > 0 and 7(e/2) > 0 such that

A—1] <y(e/2) = sup |A\TUFOAD) - f| < e€/2. (4.5.22)
fEKO(e/2)

From (4.5.20), there exists Tp(e) > 0 such that for all " > Tp(e),

o - 1) < (e/2).
Then, we can define a.s. T'(¢) by

T(e) := max {1;To(e); N(0(e/2))} . (4.5.23)

Let T' > T'(e). Since T > 7, we have that [0,7 — ar] C [0,n7 — Ap,]. Then for all x € [0,T — ag]
and all s € [0,1], we have that

ATLT aT
Ne,ar (5) = L0 (8 A, ) (4.5.24)
Since T'(e) > N(6(e/2)) we have that, for all x € [0,ny — Apy ], Mp,4,,. € K%€/2) Since T > Ty(e),
we have that |47~ — 1’ < 7v(e/2). By (4.5.22), we have consequently that, for all x € [0,T — ar],
nr

ATLT a’T
ar nw,AnT (A |- na:,AnT

nr

< €/2. (4.5.25)

Now, since 0(e/2) < €/2, we have that K%¢/2 ¢ K¢/2. Therefore, for all 2 € [0,T — a7, Na,Apy €
K€/?. Then we obtain from (4.5.25) and the triangle inequality that

An ar
Ve € [0,T —ar),Npar = —— Na,A, ( I> e K°. (4.5.26)
T ar T AnT

O]

Lemma 32. For any ¢ > 0, there exists a.s. a real T'(€) such that for all T > T'(¢), we have that

K C G5. (4.5.27)
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Proof. For all T > ¢, we have that 1 < T — ap. Set
mp:=max{n:n<Tandn—- A, <T —ar}.

Then, if T > ¢ then my exists. The definition of my implies that m¢y +1 — Ay, 41 > T — ar. We
deduce readily that

A
lim L = Jim 277 =1, (4.5.28)
T—oo T T—oo ar

Fix e > 0.

Lemma 29 implies that a.s., for all n large enough, K C EZ/Q. Since mp — o0 as T' — oo, we can
find a.s. Tj(e) > 0 such that
VT > Ti(e), K C L2, (4.5.29)

Then for all z € [0,mp — A ] C[0,T — ar], and all s € [0,1], we have that

N, Ay (8) = ijT Na,ar <sjt"f> : (4.5.30)
Now, let v(e/2) and 6(e/2) be as in (4.5.22). Let T5(e) > 0 such that for all ' > Th(e), A(ZFT - 1) <
(€/2).
From Lemma 31, there exists a.s. T(6(¢/2)) > 0 such that
VT > T(0(e/2)),Gr c K/2). (4.5.31)
Then, we can define a.s. T'(¢e) by
T'(¢) := max {c, Ty (¢); To(e); T(0(¢/2))} . (4.5.32)
Let T > T'(¢). Since T' > T'(0(¢/2)), we have that
Vo € [0,T — ar), Ne.ap € K92 (4.5.33)

Since, moreover T' > T5(e), and noticing that Aa% <1, we obtain that for all z € [0,T — ar]

ar A
’ TmT nx,aT < ;;T I) - nac,aT

Consequently, for all z € [0, mp — Ay, | C [0,T — ar], we have that ‘

< €/2. (4.5.34)

< €/2. Then,

nx,AmT — Nz,ar
Na g, Amgy — fH < €/2 and,
Nejar — f]| <€ O

since T' > T (€), for all f € K, there exists ¢ € [0, mp — Ap,,] such that ‘

by the triangle inequality,



Chapter 5

Conclusion

5.1 Conclusion of chapters 2 and 3

In this section, we compare the methods of Chapter 1 and Chapter 2 and we present some perspec-
tives.

An obvious similarity between them is the use of the commonly called saddlepoint approximation
(see (Jensen, 1995)). This technique is the combination of tilting operation and of Edgeworth
expansion of the density of the resulting partial sum. This approximation provides usually an
accurate approximation of the tail of partial sums, which justifies its use in the Importance Sampling
scheme described in the Introduction of Chapter 2. In the framework of conditional limit theorems,
the tilting operation allows to obtain an exponential family for which the statistic of sum is sufficient.
The idea of sufficiency is also essential in Chapter 1, since the sub o-algebra o(T') generated by
the sum is sufficient in the sense given in Chapter 1. Heuristically, in both cases, the notion of
sufficiency expresses that the knowledge of the value of the sum contains enough information to
deduce the distribution of the sampling given this value.

From Chapter 2 to Chapter 3, we have used several ideas to get a result even when k& is not a o(n)
anymore. Firstly, we have performed an adaptative scheme to estimate pk(Ylk). Secondly, we have
performed a higher order Edgeworth expansion. However, a rate of convergence is not obtainable
by the method of Chapter 2. For k = o(n), Chapter 2 provides a rate for the convergence of
|@Qnat — G|l to 0, which is equal to % So a possible perspective is to get a rate for this
convergence when k is not a o(n).

In statistical mechanics, in an isolated system, we obtain the distribution of a small component
given the total energy when thermal equilibrium is reached, that is when the entropy is maximal.
Thereby, a further development of our work is to establish a conditional limit theorem of this kind
by optimisation of some entropy, and without performing Edgeworth expansions.

5.2 Conclusion of chapter 4

Under A, we have obtained that for any ¢ > 0,
lim Ayw(Mpa,,Lie) =0 as, (5.2.1)

n—oo
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where a,, := |clogn| and
Mo.an = {Nm,an :m € {0,...;n —an}}. (5.2.2)

In future work, we would like to obtain, under (\A), the limiting behavior of a random set containing
all the 1 q,,, for all real x with 0 <z < n — a,,. Since the tail of the distribution of Z(1) is heavier
under (A) than under (C), the increment functions have a wider amplitude under (A). Therefore,
it is more difficult to study their asymptotic inclusion in some fixed set. However, even under (A),
the distribution of Z(1) still has a light tail, so that it is reasonable to expect a positive result.

Another further development is to establish a functional Erdés-Rényi theorem (FERT) for renewal
or compound renewal processes. We recall that a compound renewal process is of the form

N(t)

Z(t)=> X, (5.2.3)

where N(:) is any renewal process, independent of (X;). We have obtained a (FERT) in the
particular case of the compound Poisson process, which is a Lévy process. In 7, the author obtains an
Erdés-Rényi theorem for compound renewal process, which could be a manifestation of a functional
version. In (Deheuvels and Steinebach, 2016), a FERT is established for renewal processes, by
reducing to the FERT for the partial sum process which defines the renewal process. Therefore, we
can expect a FERT for any compound renewal process, but it should require additional functional
large deviations results.
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