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Introduction

Bayesian inference has found applications in a broad range of fields. This chapter introduces the scientific context of my research activities within Bayesian Nonparametrics and Bayesian Machine Learning (Section 0.1) and then summarizes my contributions (Section 0.2) arranged in three parts: Chapter 1. Bayesian Nonparametric Mixture Modeling, Chapter 2. Approximate Bayesian Inference and Chapter 3. Distributional Properties of Statistical and Machine Learning Models.

Scientific context 0.1.1 Bayesian Nonparametrics (BNP)

The Bayesian nonparametric choice comes from two main ideas. The Bayesian choice [START_REF] Robert | The Bayesian choice: from decision-theoretic foundations to computational implementation[END_REF], on the one hand, which assumes that each physical system is subject to uncertainty, and models the data and the parameters by probability distributions. Nonparametric models [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF], which are of particular interest when the parametric hypothesis proves to be too restrictive. At the intersection of these two concepts, Bayesian nonparametric methods provide a flexible methodology within a solid probabilistic framework [see monographs [START_REF] Hjort | Bayesian nonparametrics[END_REF][START_REF] Ghosal | Fundamentals of nonparametric Bayesian inference[END_REF]. Historically, Bayesian nonparametrics started in the early 1970s in California with the work of members of the Berkeley Department of Statistics. More specifically, the Dirichlet process, defined by [START_REF] Ferguson | A Bayesian analysis of some nonparametric problems[END_REF], has given rise to a number of methodological and applied contributions. Most of the current BNP tools are based on extensions of the Dirichlet process.

The nonparametric denomination, commonly adopted, is rather to be understood as massively parametric: indeed, we consider large dimensional, or infinite dimensional, parameter spaces such as functional spaces. A Bayesian requires formulating a joint probability distribution on observations and parameters. This joint distribution consists of (i) the sample distribution of the model, which describes the degree of confidence given to the data for a particular value of the parameters, and (ii) the prior distribution, which can be interpreted in several ways, notably as information available on the parameters before experiment, or as regularization. The prior distribution takes the opposite of the so-called classical approach, where the parameters are assumed to be fixed. There is an optimal way to update the prior from the observations, which is Bayes' theorem. This learning rule defines the posterior distribution, which describes all the information available on the parameters, after experience. The main strengths of the non-parametric Bayes approach are:

• to define a natural framework for quantifying uncertainty, via the posterior distribution,

• to naturally avoid overfitting by regularizing the parameters thanks to the prior distribution specification,

• to adapt to the data complexity thanks to models whose number of parameters increases with the size of the data.

The flexibility of Bayesian nonparametric methods comes at a price, such as constructing prior distributions and sampling from posterior distributions over infinite dimensional parameter spaces.

Designing priors

Building a prior distribution on an infinite dimensional space may appear like contradictory: on the one hand, quantifying the information in the form of a distribution requires to know many fine aspects of the parameter to be modeled, while on the other hand the nonparametric choice stems from the desire to relax parametric assumptions. As a balance, an acceptable prior should take the form of a default prior which 'is proposed by some automatic mechanism that is not in favor of any particular parameter values, and has low information content compared with the data' [START_REF] Ghosal | Fundamentals of nonparametric Bayesian inference[END_REF]. Key features of the prior, such as mean value, concentration around the mean value, should be available as hyperparameters to be set by the user, while the bulk of the prior is derived by some automatic mechanism. Such a prior does not need be noninformative. However, it should have large support in the sense that it spreads over the whole parameter space without overconcentrating in some parts of the space.

There is a wide range of tools for building prior distributions on infinite dimensional spaces. For functional spaces, stochastic processes such as Gaussian processes or processes with positive increments, or developments in function bases are typically used. In the context of probability measurement spaces, prior distributions are generally based on discrete processes that can be roughly divided into two main categories. First species sampling models (SSM), a class that is generally considered too general to be directly usable because key features mentioned above are not always tractable. This is why tractable special cases attracted a lot of attention, including stick-breaking processes, Gibbs-type processes, the Pitman-Yor process, or the Dirichlet process already mentioned. The second large family is obtained by normalizing so-called completely random measures (CRM), also known as Lévy processes.

The advantage of this family over the first is that the moments of every order of the processes are generally known which can be very useful from a posterior sampling perspective. All these generalizations of the Dirichlet process offer a greater flexibility. In particular in the context of mixture models, they can induce a prior on the number of components that is less informative than the Dirichlet process.

Sampling from posteriors

Practical Bayesian inference requires to sample from the posterior distribution. Before the advent of Markov chain Monte Carlo methods [START_REF] Robert | Monte Carlo statistical methods[END_REF], conjugacy used to be essential since it enabled to update by closed form expressions a prior into a posterior. Conjugacy still plays a central role in BNP for simplifying the posterior.

By essence, a BNP posterior distribution is infinite dimensional and cannot be sampled from directly. Reducing the parameter space from infinite to finite dimension is necessary, being it by analytically integrating out some parts of the parameters, or by approximating it, for example by truncating infinite summations. The aim is to break up the parameter into (a finite number of) finite-dimensional parts whose posterior distributions are tractable. The properties of the prior are important as they may suggest appropriate integration or approximation of the posterior. For instance, a Gaussian process prior induces a joint probability at a finite number of positions in the form of a simple multivariate normal.

Marginal methods Efficient posterior computation techniques often incorporate analytic integration of infinite dimensional parts of the parameter and posterior sampling. For instance, density estimation under a Dirichlet process mixture can be recast in a hierarchical model by introducing a latent (allocation) variable for FIGURE 1: Some random probability distributions often used as priors. An arrow indicates that the target is a special case, a limit case or a normalization of its origin. CRM: Completely random measures. SSM: Species sampling models. SBP: Stable Beta process. NRMI: Normalized random measure with independent increments. SB: stick-breaking process. Gibbs: Gibbs-type process. BP: Beta process. (Non-) Homo: (Non-) Homogeneous NRMI. σ: discount parameter of Gibbs-type process. NGG: Normalized generalized Gamma process. PY: Pitman-Yor process. NIG: Normalized inverse Gaussian process. σ-stable: normalized σ-stable process. DP: Dirichlet process. PT: Pólya-tree.

each observation and integrate out analytically the Dirichlet process, given the latent variables, turning the problem into a finite dimensional one. Such techniques that rely on analytic integration of (part of) the process are termed marginal methods.

The Blackwell-MacQueen Pólya urn scheme is a Markov chain Monte Carlo sampling scheme that relies on predictive distributions. For a description in the context of mixture modeling, see [START_REF] Maceachern | Estimating normal means with a conjugate style Dirichlet process prior[END_REF][START_REF] Escobar | Bayesian density estimation and inference using mixtures[END_REF] for the Dirichlet process, [START_REF] Ishwaran | Gibbs sampling methods for stick-breaking priors[END_REF] for general stickbreaking priors, e.g., the two parameter Poisson-Dirichlet process prior, and [A1] for Gibbs-type process priors.

Conditional methods

Techniques that directly sample trajectories of the process are termed conditional methods. Some are exact: they rely on augmenting the parameter space with some random variables, conditional on which only a finite number of parameters need be sampled and posterior sampling becomes feasible. These include the slice sampler [START_REF] Walker | Sampling the Dirichlet mixture model with slices[END_REF] and the retrospective sampler [START_REF] Papaspiliopoulos | Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models[END_REF]. Some are approximate: they consist in approximating the process by removing some infinitedimensional part of it, preferably some part of least importance. When a stickbreaking representation is avalaible, we can mention the blocked Gibbs sampler [START_REF] Ishwaran | Gibbs sampling methods for stick-breaking priors[END_REF], approximations of processes ( [START_REF] Muliere | Approximating distributions of random functionals of ferguson-dirichlet priors[END_REF] for the Dirichlet process, [A6] for the Pitman-Yor process). Without a stick-breaking representation, for example with normalized random measure with independent increments (NRMI), one typically resorts to the Ferguson and Klass algorithm or inverse Lévy method [START_REF] Ferguson | A representation of independent increment processes without gaussian components[END_REF]. This is usually considered as a slow sampling technique due to some heavy numerical evaluation, but it has the advantage to sample the elements of the process in (strictly) decreasing order (i.e. in order of least importance) while stick-breaking strategies sample them in stochastic decreasing order only. See [START_REF] Argiento | A blocked Gibbs sampler for NGGmixture models via a priori truncation[END_REF][START_REF] Barrios | Modeling with normalized random measure mixture models[END_REF][START_REF] Blasi | A class of neutral to the right priors induced by superposition of beta processes[END_REF][START_REF] Epifani | Exponential functionals and means of neutral-to-the-right priors[END_REF][START_REF] Griffin | Posterior simulation of normalized random measure mixtures[END_REF][START_REF] Griffin | An adaptive truncation method for inference in Bayesian nonparametric models[END_REF][START_REF] Nieto-Barajas | Markov Beta and Gamma Processes for Modelling Hazard Rates[END_REF][START_REF] Nieto-Barajas | Normalized random measures driven by increasing additive processes[END_REF][START_REF] Nieto-Barajas | Bayesian nonparametric survival analysis driven by Lévy driven Markov processes[END_REF][START_REF] Nieto-Barajas | A sensitivity analysis for Bayesian nonparametric density estimators[END_REF][START_REF] Nieto-Barajas | Bayesian semiparametric analysis of short-and long-term hazard ratios with covariates[END_REF][START_REF] Walker | Representations of Lévy processes without Gaussian components[END_REF][START_REF] Arbel | A moment-matching Ferguson & Klass algorithm[END_REF][START_REF] Orbanz | Unit-rate poisson representations of completely random measures[END_REF].

R packages Many R packages can solve BNP computational problem: DPpackage [START_REF] Jara | Applied Bayesian non-and semi-parametric inference using DPpackage. SpherWave: An R Package for Analyzing Scattered Spherical Data by Spherical Wavelets[END_REF][START_REF] Jara | DPpackage: Bayesian semi and nonparametric modelling in R[END_REF] is a bundle of functions for many Bayesian nonparametric models based essentially on the Dirichlet process and Pólya tree, BNPmix package [START_REF] Canale | BNPmix: an R package for Bayesian nonparametric modelling via Pitman-Yor mixtures[END_REF] addresses density estimation with the Dirichlet process and Pitman-Yor process mixing measures via marginal algorithms, while BNPdensity package [START_REF] Barrios | Modeling with normalized random measure mixture models[END_REF], [S3] focusses on density estimation under normalized random measures with independent increments (see Figure 1).

Approximate Bayesian computation (ABC)

This short review of computational aspects is far from exhaustively listing all techniques available for posterior sampling, leaving aside particle filtering or sequential Monte Carlo for instance [START_REF] Cappé | An overview of existing methods and recent advances in sequential Monte Carlo[END_REF]. However, let us mention approximate Bayesian computation (ABC), the most prominent strategy in situations where the likelihood function is known but not tractable, or when the likelihood function has entirely unknown form. In that case, one cannot exactly sample from the posterior in an inexpensive manner, or at all. In such situations, a sample from an approximation of the posterior may suffice in order to conduct the user's desired inference. Such a sample can be drawn via ABC. The ABC paradigm originates from the works of [START_REF] Rubin | Bayesian justifiable and relevant frequency calculations for the applied statistician[END_REF][START_REF] Tavaré | Inferring coalescence times from DNA sequence data[END_REF][START_REF] Pritchard | Population growth of human Y chromosomes: a study of Y chromosome microsatellites[END_REF]; see [START_REF] Tavaré | On the history of ABC[END_REF] for details.

Stemming from the initial listed works, there are now numerous variants of ABC methods. Some good reviews of the current ABC literature can be found in the expositions of [START_REF] Marin | Approximate Bayesian computation methods[END_REF][START_REF] Voss | An Introduction to Statistical Computing: A Simulation-based Approach[END_REF][START_REF] Lintusaari | Fundamentals and recent developments in approximate Bayesian computation[END_REF][START_REF] Karabatsos | An approximate likelihood perspective on ABC methods[END_REF][START_REF] Robert | Approximate Bayesian computation, an introduction[END_REF]. The volume [START_REF] Sisson | Handbook of Approximate Bayesian Computation[END_REF] provides a comprehensive treatment regarding ABC methodologies. The core philosophy of ABC is to define a quasi-posterior by comparing data with plausibly simulated replicates. The comparison is traditionally based on some summary statistics, the choice of which being regarded as a key challenge of the approach. In recent years, data discrepancy measures bypassing the construction of summary statistics have been proposed by viewing data sets as empirical measures. Examples include the Wasserstein distance [START_REF] Bernton | Approximate Bayesian computation with the Wasserstein distance[END_REF], the Kullback-Leibler divergence [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF], the energy distance [S4].

Bayesian Machine Learning

Machine learning is a fairly recent research field which requires skills from statistics and computer science. Neural networks (NNs), and their deep counterparts [START_REF] Goodfellow | Deep learning[END_REF], have largely been used in many research areas such as image analysis [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF], signal processing [START_REF] Graves | Speech recognition with deep recurrent neural networks[END_REF], or reinforcement learning [START_REF] Silver | Mastering the game of go with deep neural networks and tree search[END_REF], just to name a few. The impressive performance provided by such machine learning approaches has greatly motivated research that aims at a better understanding the driving mechanisms behind their effectiveness. In particular, the study of the NNs distributional properties through Bayesian analysis has recently gained much attention.

Distributional properties of Bayesian neural networks

Studying the distributional behaviour of feedforward networks has been a fruitful avenue for understanding these models, as pioneered by the works of Radford Neal [START_REF] Neal | Bayesian training of backpropagation networks by the hybrid Monte Carlo method[END_REF][START_REF] Neal | Bayesian learning for neural networks[END_REF] and David MacKay [START_REF] Mackay | A practical Bayesian framework for backpropagation networks[END_REF]. The first results in the field addressed the limiting setting when the number of units per layer tends to infinity, also called the wide regime. [START_REF] Neal | Bayesian learning for neural networks[END_REF] proved that a single hidden layer neural network with normally distributed weights tends in distribution in the wide limit either to a Gaussian process [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] or to an α-stable process, depending on how the prior variance on the weights is rescaled. In recent works, [START_REF] Matthews | Gaussian process behaviour in wide deep neural networks[END_REF] and [START_REF] Lee | Deep neural networks as Gaussian processes[END_REF] extend the result of Neal to more-than-one-layer neural networks: when the number of hidden units grows to infinity, deep neural networks (DNNs) also tend in distribution to the Gaussian process, under the assumption of Gaussian weights for properly rescaled prior variances. For the rectified linear unit (ReLU) activation function, the Gaussian process covariance function is obtained analytically [START_REF] Cho | Kernel methods for deep learning[END_REF]. For other nonlinear activation functions, [START_REF] Lee | Deep neural networks as Gaussian processes[END_REF] use a numerical approximation algorithm. This Gaussian process approximation is used for instance by [START_REF] Hayou | On the impact of the activation function on deep neural networks training[END_REF] for improving neural networks training strategies. [START_REF] Novak | Bayesian deep convolutional networks with many channels are Gaussian processes[END_REF] extend the results by proving the Gaussian process limit for convolutional neural networks.

Various distributional properties are also studied in NNs regularization methods. The dropout technique [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF] was reinterpreted as a form of approximate Bayesian variational inference [START_REF] Kingma | Variational dropout and the local reparameterization trick[END_REF][START_REF] Gal | Dropout as a Bayesian approximation: Representing model uncertainty in deep learning[END_REF]. While [START_REF] Gal | Dropout as a Bayesian approximation: Representing model uncertainty in deep learning[END_REF] built a connection between dropout and the Gaussian process, [START_REF] Kingma | Variational dropout and the local reparameterization trick[END_REF] proposed a way to interpret Gaussian dropout. They suggested variational dropout where each weight of a model has its individual dropout rate. Sparse variational dropout [START_REF] Molchanov | Variational dropout sparsifies deep neural networks[END_REF] extends variational dropout to all possible values of dropout rates, and leads to a sparse solution. The approximate posterior is chosen to factorize either over rows or individual entries of the weight matrices. The prior usually factorizes in the same way, and the choice of the prior and its interaction with the approximating posterior family are studied by [START_REF] Hron | Variational Bayesian dropout: pitfalls and fixes[END_REF]. Performing dropout can be used as a Bayesian approximation but, as noted by [START_REF] Duvenaud | Avoiding pathologies in very deep networks[END_REF], it has no regularization effect on infinitely-wide hidden layers. Recent work by [START_REF] Bibi | Analytic expressions for probabilistic moments of PL-DNN with Gaussian input[END_REF] provides the expression of the first two moments of the output units of a one layer NN. Obtaining the moments is a first step towards characterizing the full distribution. However, the methodology of [START_REF] Bibi | Analytic expressions for probabilistic moments of PL-DNN with Gaussian input[END_REF] is limited to the first two moments and to single-layer NNs, while we address the problem in more generality for deep NNs.

Research activity

My long term research objective is to contribute methodological and theoretical advances in Bayesian statistical learning. This section describes my process towards this goal.

Research conducted before and during my Ph.D.

I have started doing research during my final study internship from École polytechnique in the summer of 2006 at the University of Liverpool. I worked with Hugh Morton on knot theory, a field from topology concerned among other things with classifying knots up to invariance transformations. My contribution was to derive some new relations between the crossing index of a knot (the minimal number of crossings in a planar representation of a knot) and its arc index (the minimal number of half planes needed to represented the knot in an open-book structure).

The next year, my first encounter with Bayesian statistic in an academic context was at the University of Valencia, Spain. Thanks to Nicolas Chopin, I had the chance to discover this research field by collaborating with José Miguel Bernardo, one of the founding fathers 3 of the International Society for Bayesian Analysis (ISBA). During this project, I have proposed a Bayesian model for studying the positive predicted value (PPV) of a medical test. Given a diagnostic test on a certain disease, the PPV represents the probability of having the disease given a positive test result.

Moving back to Paris, I decided to work on the problem of level set estimation with Judith Rousseau for my M2 thesis. At the beginning of my Ph.D., supervised by Judith Rousseau and Ghislaine Gayraud, I then moved to the infinite normal means model [A14], where I derived asymptotic frequentist properties of generic Bayesian procedures based on sieve priors. The main result is that these priors give rise to minimax adaptive posterior concentration rates. The result can be applied to different models, as illustrated in the article on the density, regression, nonlinear autoregression and Gaussian white noise models. We also prove in the paper that a wellbehaved posterior distribution for a global loss can have a pathological behaviour for a pointwise loss (in the white noise model).

Later, I started to work on Bayesian nonparametric models based on discrete random probability models after attending a summer school course on Bayesian nonparametrics given by Peter Müller in 2010 at University of California, Santa Cruz. I am grateful to Sonia Petrone for hosting me for two months in 2011 and for fruitful discussions on this new line of research. At that time, I wanted to apply my work to some concrete data. I met with Kerrie Mengersen, from Queensland University of Technology, who was visiting Crest in Paris, and she introduced me to Australian ecologists colleagues of her. They had soil microbial data collected in Antarctica and wanted to understand how an environmental factor, a contaminant called Total Petroleum Hydrocarbon, would affect species diversity in the soil. I developped a covariate-dependent process as a prior distribution for modelling species data partially replicated at different locations. Such data can be represented as a frequency matrix giving the number of times each species is observed in each site. The aim is to study the impact of additional factors (covariates), for instance environmental factors, on the data structure, and in particular on the diversity. This work was published in [A13] with a focus on the application, and in [A10] with a complete description of the methodology and of theoretical results, such as moments and full support of the process.

As part of my work as a statistician at Insee (national statistics bureau of France) in parallel of my Ph.D., I developped with Vianney Costemalle a Bayesian model for describing migration flows from dissimilar datasets [A11], in French.

Contributions since my Ph.D.

After my Ph.D., I moved to Turin for a postdoc funded with the ERC of Igor Prünster. I feel extremely lucky to have worked there: at the time, Igor Prünster statistics group at the Collegio Carlo Alberto was composed of a number of experts of BNP including Antonio Lijoi, Matteo Ruggiero, Pierpaolo De Blasi, Stefano Favaro, Bernardo Nipoti and Antonio Canale. I also benefited a lot from discussions with Bertrand Lods and Giovanni Pistone, while Guillaume Kon Kam King joined the group in 2015. My research there flourished in a number of directions, including Bayesian nonparametric mixture modeling and approximate Bayesian inference, the first two chapters of this manuscript. I stayed three years in Italy, including a semester at the University of Bocconi in Milan when Igor Prünster moved there.

I then moved to Inria Grenoble Rhône-Alpes in 2016 for a research position (Chargé de recherche). I joined MISTIS team (soon to be called Statify) with Florence Forbes, Stéphane Girard and Jean-Baptiste Durand as permanent members. I wanted to take the opportunity of this new research environment to delve into new research areas. I got interested in Machine Learning with a Deep Learning reading group organized at Inria. Discussions with the team members opened some new research interests such as Markov random fields with Florence Forbes, extreme value theory and copulas with Stéphane Girard. I am also grateful to Inria for financial support of a three-month visit to Stephen Walker at the University of Texas at Austin in 2017 where I started to work on the sub-Gaussian property of random variables [A7].

Joint work with Steven started during this visit is still ongoing.

The rest of this manuscript is devoted to my main contributions to Bayesian statistical learning since my Ph.D. It is divided into three main chapters presenting :

• Chapter 1. Bayesian Nonparametric Mixture Modeling

• Chapter 2. Approximate Bayesian Inference

• Chapter 3. Distributional Properties of Statistical and Machine Learning Models

The borders between the categories are rather blurred and could be easily crossed depending on where the focus is put, should it be on applications, on models, on posterior sampling strategies, or whatsoever. Looking back, the three chapters roughly correspond to arXiv Statistics categories as follows:

• But for the sake of readability, I will keep my original and more explicit chapter titles. . .

Chapter 1. Bayesian Nonparametric Mixture Modeling

This chapter is devoted to mixture models which are central to Bayesian nonparametrics. The original motive for mixture modeling is the desire to expand the spectrum of available distributions. For example, Quetelet [START_REF] Quetelet | Sur quelques propriétés curieuses que présentent les résultats d'une série d'observations, faites dans la vue de déterminer une constante, lorsque les chances de rencontrer des écarts en plus et en moins sont égales et indépendantes les unes des autres[END_REF] used mixtures in the nineteenth century to describe asymmetric or multimodal distributions. My contributions described in this chapter are concerned with mixtures of some kernel K(• | θ) by a nonparametric mixing measure P following some (nonparametric) prior Q as described in the Designing priors paragraph of Section 0.1.1. Such mixtures can be formulated as follows

P ∼ Q, f (•) = K(• | θ)P(dθ).
If P is a discrete random probability measure as those described in Figure 1, then the random function f may take the form of a countable infinite mixture. Depending on the choice of kernel, f can model a broad spectrum of functional objects: density, hazard rate, survival function or regression function.

My work on mixtures has focussed on methodological aspects, including on survival analysis [A12], [C5], robust analysis [S6]; on computational questions, such as recasting Dirichlet process mixtures into the sequential quasi Monte Carlo framework of [START_REF] Gerber | Sequential quasi Monte Carlo[END_REF] in [P8], [D4], and contributing to the R package BNPdensity [S3] with Guillaume Kon Kam King and other colleagues from the Collegio Carlo Alberto, designed for posterior sampling from mixtures of NRMI (see Figure 1); and finally on applications, including ecotoxicological risk assessment [C3], industrial applications [C2], and image segmentation [S2]. In this chapter, I focus essentially on survival analysis [A12], image segmentation [S2], and ecotoxicological applications [C3].

Section 1.1 Survival analysis: modeling hazard functions with mixtures [A12]. Bayesian nonparametric inferential procedures based on Markov chain Monte Carlo marginal methods typically yield point estimates in the form of posterior expectations. Though very useful and easy to implement in a variety of statistical problems, these methods may suffer from some limitations if used to estimate non-linear functionals of the posterior distribution. The main goal of [A12] is to develop a novel methodology that extends a well-established marginal procedure designed for hazard mixture models, in order to draw approximate inference on survival functions that is not limited to the posterior mean but includes, as remarkable examples, credible intervals and median survival time. Our approach relies on a characterization of the posterior moments that, in turn, is used to approximate the posterior distribution by means of a technique based on Jacobi polynomials.

Section 1.2 Image segmentation: mixtures with hidden Markov random fields [S2]. One of the central issues in statistics and machine learning is how to select an adequate model that can automatically adapt its complexity to the observed data. We focus on the issue of determining the structure of clustered data, both in terms of finding the appropriate number of clusters and of modelling the right dependence structure between the observations. Bayesian nonparametric (BNP) models, which do not impose an upper limit on the number of clusters, are appropriate to avoid the required guess on the number of clusters but have been mainly developed for independent data. In contrast, Markov random fields (MRF) have been extensively used to model dependencies in a tractable manner but usually reduce to finite cluster numbers when clustering tasks are addressed. Our main contribution is to propose a general scheme to design tractable BNP-MRF priors that combine both features: no commitment to an arbitrary number of clusters and a dependence modelling. A key ingredient in this construction is the availability of a stick-breaking representation which has the three-fold advantage to allowing us to extend standard discrete MRFs to infinite state space, to design a tractable estimation algorithm using variational approximation and to derive theoretical properties on the predictive distribution and the number of clusters of the proposed model. This approach is illustrated on a challenging natural image segmentation task for which it shows good performance with respect to the literature.

Section 1.3 Ecotoxicological application to species sensitivity distribution modeling [C3]. We revisit a classical method for ecological risk assessment, the Species Sensitivity Distribution (SSD) approach, in a Bayesian nonparametric framework. SSD is a mandatory diagnostic required by environmental regulatory bodies from the European Union, the United States, Australia, China etc. Yet, it is subject to much scientific criticism, notably concerning a historically debated parametric assumption for modelling species variability. Tackling the problem using nonparametric mixture models, it is possible to shed this parametric assumption and build a statistically sounder basis for SSD.

Chapter 2. Approximate Bayesian Inference

This chapter is concerned in large parts with computational aspects of Bayesian inference, see the Sampling from posteriors paragraph of Section 0.1.1 for an overview of the existing methods. More specifically, I present conditional approaches in the form of truncation-based approximations for the Pitman-Yor process [A6] and for completely random measures [A8] (see Figure 1). Then I move to a marginal approach based on approximations of the predictive distribution of Gibbs-type processes [A1].

Finally, I describe an approximate Bayesian computation (ABC) algorithm using the energy distance as data discrepancy.

Section 2.1 Truncation-based approximations: Pitman-Yor [A6]. We consider approximations to the popular Pitman-Yor process obtained by truncating the stickbreaking representation. The truncation is determined by a random stopping rule that achieves an almost sure control on the approximation error in total variation distance. We derive the asymptotic distribution of the random truncation point as the approximation error goes to zero in terms of a polynomially tilted positive stable random variable. The practical usefulness and effectiveness of this theoretical result is demonstrated by devising a sampling algorithm to approximate functionals of the -version of the Pitman-Yor process.

Section 2.2 Truncation-based approximations: normalized random measures [A8].

Completely random measures (CRM) represent the key building block of a wide variety of popular stochastic models and play a pivotal role in modern Bayesian Nonparametrics. A popular representation of CRMs as a random series with decreasing jumps is due to [START_REF] Ferguson | A representation of independent increment processes without gaussian components[END_REF] T. S. Ferguson and M. J. Klass. A representation of independent increment processes without gaussian components. The Annals of Mathematical Statistics, 43 [START_REF] Alexits | Convergence problems of orthogonal series[END_REF]: [1634][1635][1636][1637][1638][1639][1640][1641][1642][1643]1972. This can immediately be turned into an algorithm for sampling realizations of CRMs or more elaborate models involving transformed CRMs. However, concrete implementation requires to truncate the random series at some threshold resulting in an approximation error. The goal of this paper is to quantify the quality of the approximation by a moment-matching criterion, which consists in evaluating a measure of discrepancy between actual moments and moments based on the simulation output. Seen as a function of the truncation level, the methodology can be used to determine the truncation level needed to reach a certain level of precision. The resulting moment-matching Ferguson and Klass algorithm is then implemented and illustrated on several popular Bayesian nonparametric models.

Section 2.3 Approximating the predictive weights of Gibbs-type priors [A1]. This section presents the results of [A1] which is a follow-up to [A9], extending results from the Pitman-Yor process to Gibbs-type processes. Gibbs-type random probability measures, or Gibbs-type priors, are arguably the most "natural" generalization of the celebrated Dirichlet process prior. Among them the Pitman-Yor process prior certainly stands out in terms of mathematical tractability and interpretability of its predictive probabilities, which made it the natural candidate in a plethora of applications. Given a random sample of size n from an arbitrary Gibbstype prior, we show that the corresponding predictive probabilities admit a large n approximation, with an error term vanishing as o(1/n), which maintains the same desirable features as the predictive probabilities of the Pitman-Yor process prior. Our result is illustrated through an extensive simulation study, which includes an application in the context of Bayesian nonparametric mixture modeling.

Section 2.4 Approximate Bayesian computation based on the energy distance [S4]. Approximate Bayesian computation (ABC) has become an essential part of the Bayesian toolbox for addressing problems in which the likelihood is prohibitively expensive or entirely unknown, making it intractable. ABC defines a quasi-posterior by comparing observed data with simulated data, traditionally based on some summary statistics, the elicitation of which is regarded as a key difficulty. In recent years, a number of data discrepancy measures bypassing the construction of summary statistics have been proposed, including the Kullback-Leibler divergence, the Wasserstein distance and maximum mean discrepancies. Here we propose a novel importancesampling (IS) ABC algorithm relying on the so-called two-sample energy statistic. We establish a new asymptotic result for the case where both the observed sample size and the simulated data sample size increase to infinity, which highlights to what extent the data discrepancy measure impacts the asymptotic pseudo-posterior. The result holds in the broad setting of IS-ABC methodologies, thus generalizing previous results that have been established only for rejection ABC algorithms. Furthermore, we propose a consistent V-statistic estimator of the energy statistic, under which we show that the large sample result holds. Our proposed energy statistic based ABC algorithm is demonstrated on a variety of models, including a Gaussian mixture, a moving-average model of order two, a bivariate beta and a multivariate g-andk distribution. We find that our proposed method compares well with alternative discrepancy measures.

Chapter 3. Distributional Properties of Statistical and Machine Learning Models

This chapter is concerned with general distributional properties of statistical and machine learning models. These properties include the sub-Gaussian and sub-Weibull properties of random variables [A7], [A2], [S5]. This sub-Weibull property defined in [S5] is then used in [A4], [P5], [P6] for characterizing the prior distribution of neural network units with Gaussian weight priors and under ReLU-like nonlinearity function; see Section 0.1.2 for an overview of Bayesian neural networks. We conclude the chapter by a presentation of novel theoretical properties of a large class of asymmetric copulas [A3].

Section 3.1 Sub-Gaussian and sub-Weibull properties [A7], [A2], [S5]. The line of research on the sub-Gaussian property of random variables started in 2017 while I was refereeing a machine learning conference paper (COLT). It was stating some conjectures about the sub-Gaussian property and optimal proxy variance of the beta distribution (see Section 3.1). I liked this conjecture because the problem was very simply stated. We solved this conjecture with my friend Olivier Marchal [A7]. This short note opened many more questions: once, Hien Nguyen asked me whether the methodology of [A7] could be used for other bounded support random variables such as Bernoulli, binomial, Kumaraswamy or triangular distributions. Of course such bounded random variables are de facto sub-Gaussian, but how to characterize the optimal sub-Gaussian proxy variance remains in general an open question. Another question is how to characterize strict sub-Gaussianity, defined by a proxy variance equal to the (standard) variance? With Olivier Marchal and Hien Nguyen, we address these questions in [A2]. A particular focus is given to the relationship between strict sub-Gaussianity and symmetry of the distribution. In particular, we demonstrate that symmetry is neither sufficient nor necessary for strict sub-Gaussianity. In contrast, simple necessary conditions on the one hand, and simple sufficient conditions on the other hand, for strict sub-Gaussianity are provided.

Section 3.2 Understanding priors in Bayesian neural networks [A4], [P5], [P6]. I started to be interested in neural networks in 2018 also as a consequence of attending a reading group on Deep Learning at Inria and of refereeing for machine learning conferences. The ICLR paper [START_REF] Matthews | Gaussian process behaviour in wide deep neural networks[END_REF] dealing with distributional properties of neural networks in the infinite width regime (ie when the number of neurons or units per layer tends to infinity) and discussions with Thibaud Rahier have been quite inspirational for me and were in a sense the starting point of the internship and then Ph.D. work of Mariia Vladimirova with Jakob Verbeek and Pablo Mesejo focussing on understanding priors in Bayesian neural networks [A4], [P5], [P6]. We investigate deep Bayesian neural networks with Gaussian weight priors and a class of ReLU-like nonlinearities. Bayesian neural networks with Gaussian priors are well known to induce an L 2 , "weight decay", regularization. Our results characterize a more intricate regularization effect at the level of the unit activations. Our main result establishes that the induced prior distribution on the units before and after activation becomes increasingly heavy-tailed with the depth of the layer. We show that first layer units are Gaussian, second layer units are sub-exponential, and units in deeper layers are characterized by sub-Weibull distributions [S5]. Our results provide new theoretical insight on deep Bayesian neural networks, which we corroborate with simulation experiments.

Section 3.3 Dependence properties of asymmetric copulas [A3]. Discussions with my office mate Stéphane Girard at the intersection of our scientific interests (extreme value theory on the one hand of the office and Bayesian analysis on the other hand) led us to propose a postdoc offer on extreme value theory and copula modeling from a Bayesian perspective. We had the chance to hire Marta Crispino and we started to work in 2018 on copulas. In [A3], we study a broad class of asymmetric copulas introduced by [START_REF] Liebscher | Construction of asymmetric multivariate copulas[END_REF] as a combination of multiple-usually symmetric-copulas. The main thrust of the paper is to provide new theoretical properties including exact tail dependence expressions and stability properties. A subclass of Liebscher copulas obtained by combining comonotonic copulas is studied in more details. We establish further dependence properties for copulas of this class and show that they are characterized by an arbitrary number of singular components. Furthermore, we introduce a novel iterative representation for general Liebscher copulas which de facto insures uniform margins, thus relaxing a constraint of Liebscher's original construction. Besides, we show that this iterative construction proves useful for inference by developing an Approximate Bayesian computation (ABC) sampling scheme. This inferential procedure is demonstrated on simulated data and is compared to a likelihood-based approach in a setting where the latter is available. 

Survival analysis: modeling hazard functions with mixtures 1.Introduction

Most commonly used inferential procedures in Bayesian nonparametric practice rely on the implementation of sampling algorithms that can be gathered under the general umbrella of Blackwell-MacQueen Pólya urn schemes. These are characterized by the marginalization with respect to an infinite-dimensional random element that defines the de Finetti measure of an exchangeable sequence of observations or latent variables. Henceforth these will be referred to as marginal methods. Besides being useful for the identification of the basic building blocks of ready to use Markov chain Monte Carlo (MCMC) sampling strategies, marginal methods have proved to be effective for an approximate evaluation of Bayesian point estimators in the form of posterior means. They are typically used with models for which the predictive distribution is available in closed form. Popular examples are offered by mixtures of the Dirichlet process for density estimation [START_REF] Escobar | Bayesian density estimation and inference using mixtures[END_REF] and mixtures of gamma processes for hazard rate estimation [START_REF] Ishwaran | Computational methods for multiplicative intensity models using weighted gamma processes: proportional hazards, marked point processes, and panel count data[END_REF]. While becoming well-established tools, these computational techniques are easily accessible also to practitioners through a straightforward software implementation [START_REF] Jara | Applied Bayesian non-and semi-parametric inference using DPpackage. SpherWave: An R Package for Analyzing Scattered Spherical Data by Spherical Wavelets[END_REF]. Though it is important to stress their relevance both in theory and in practice, it is also worth pointing out that Blackwell-MacQueen Pólya urn schemes suffer from some drawbacks which we wish to address here. Indeed, one easily notes that the posterior estimates provided by marginal methods are not suitably endowed with measures of uncertainty such as posterior credible intervals. Furthermore, using the posterior mean as an estimator is equivalent to choosing a square loss function whereas in many situations of interest other choices such as absolute error or 0-1 loss functions and, as corresponding estimators, median or mode of the posterior distribution of the survival function, at any fixed time point t, would be preferable. Finally, they do not naturally allow inference on functionals of the distribution of survival times, such as the median survival time, to be drawn. A nice discussion of these issues is provided by [START_REF] Gelfand | A computational approach for full nonparametric Bayesian inference under Dirichlet process mixture models[END_REF] where the focus is on mixtures of the Dirichlet process: the authors suggest complementing the use of marginal methods with a sampling strategy that aims at generating approximate trajectories of the Dirichlet process from its truncated stick-breaking representation.

The aim is to propose a new procedure that combines closed-form analytical results arising from the application of marginal methods with an approximation of the posterior distribution which makes use of posterior moments. The whole machinery is developed for the estimation of survival functions that are modeled in terms of hazard rate functions. To this end, let F denote the cumulative distribution function (CDF) associated to a probability distribution on R + . The corresponding survival and cumulative hazard functions are denoted as

S(t) = 1 -F(t) and H(t) = - [0,t] dF(s) F(s-) ,
for any t > 0, respectively, where F(s-) := lim ε↓0 F(sε) for any positive s. If F is absolutely continuous, one has H(t) =log(S(t)) and the hazard rate function associated to F is, thus, defined as

h(t) = F (t)/[1 -F(t-)].
It should be recalled that survival analysis has been one of the most relevant areas of application of Bayesian nonparametric methodology soon after the groundbreaking contribution of [START_REF] Ferguson | A Bayesian analysis of some nonparametric problems[END_REF]. A number of papers in the '70s and the '80s have been devoted to the proposal of new classes of priors that accommodate for a rigorous analytical treatment of Bayesian inferential problems with censored survival data. Among these it is worth mentioning the neutral to the right processes proposed in [START_REF] Doksum | Tailfree and neutral random probabilities and their posterior distributions[END_REF] and used to define a prior for the CDF F: since they share a conjugacy property they represent a tractable tool for drawing posterior inferences. Another noteworthy class of priors has been proposed in [START_REF] Hjort | Nonparametric bayes estimators based on beta processes in models for life history data[END_REF], where a beta process is used as a nonparametric prior for the cumulative hazard function H has been proposed. Also in this case, one can considerably benefit from a useful conjugacy property.

As already mentioned, the plan consists in proposing a method for full Bayesian analysis of survival data by specifying a prior on the hazard rate h. The most popular example is the gamma process mixture that has been originally proposed in [START_REF] Dykstra | A Bayesian nonparametric approach to reliability[END_REF] and generalized in later work by [START_REF] Lo | On a class of Bayesian nonparametric estimates. II. Hazard rate estimates[END_REF] and [START_REF] James | Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages[END_REF] to include any mixing random measure and any mixed kernel. Recently [START_REF] Lijoi | A class of hazard rate mixtures for combining survival data from different experiments[END_REF] have extended such framework to the context of partially exchangeable observations. The uses of random hazard mixtures in practical applications have been boosted by the recent developments of powerful computational techniques that allow for an approximate evaluation of posterior inferences on quantities of statistical interest. Most of these arise from a marginalization with respect to a completely random measure that identifies the de Finetti measure of the exchangeable sequence of observations. See, e.g., [START_REF] Ishwaran | Computational methods for multiplicative intensity models using weighted gamma processes: proportional hazards, marked point processes, and panel count data[END_REF]. Though they are quite simple to implement, the direct use of their output can only yield point estimation of the hazard rates, or of the survival functions, at fixed time points through posterior means. The main goal of the present paper is to show that a clever use of a moment-based approximation method does provide a relevant upgrade on the type of inference one can draw via marginal sampling schemes. The takeaway message is that the information gathered by marginal methods is not confined to the posterior mean but is actually much richer and, if properly exploited, can lead to a more complete posterior inference. To understand this, one can refer to a sequence of exchangeable survival times (X i ) i≥1 such that P[X 1 > t 1 , . . . , X n > t n | P] = ∏ n i=1 S(t i ) where P is a random probability measure on R + and S(t) = P((t, ∞)) is the corresponding random survival function. Given a suitable sequence of latent variables (Y i ) i≥1 , a closed-form expression for

E[ Sr (t) | X, Y],
for any r ≥ 1, and t > 0, (

with X = (X 1 , . . . , X n ) and Y = (Y 1 , . . . , Y n ), will be provided. Our strategy consists in approximating the posterior distribution of S(t), at each instant t, and relies on the fact that, along with the posterior mean, marginal models allow to straightforwardly estimate posterior moments of any order of S(t). Indeed, an MCMC sampler yields a sample from the posterior distribution of Y given X: this can be used to integrate out the latent variables appearing in (1.1) and obtain a numerical approximate evaluation of the posterior moments E[ Sr (t) | X]. These are finally used to deduce, with almost negligible effort, an approximation of the posterior distribution of S(t) and, in turn, to estimate some meaningful functionals of S(t).

It is to be mentioned that one could alternatively resort to a different approach that boils down to the simulation of the trajectories of the completely random measure that defines the underlying random probability measure from its posterior distribution. In density estimation problems, this is effectively illustrated in [START_REF] Nieto-Barajas | Normalized random measures driven by Increasing Additive Processes[END_REF], [START_REF] Nieto-Barajas | A sensitivity analysis for Bayesian nonparametric density estimators[END_REF] and [START_REF] Barrios | Modeling with normalized random measure mixture models[END_REF]. As for hazard rates mixtures estimation problems, one can refer to [START_REF] James | Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages[END_REF], [START_REF] Nieto-Barajas | Bayesian nonparametric survival analysis driven by Lévy driven Markov processes[END_REF] and [START_REF] Nieto-Barajas | Bayesian semiparametric analysis of short-and long-term hazard ratios with covariates[END_REF]. In particular, [START_REF] James | Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages[END_REF] provides a posterior characterization that is the key for devising a [START_REF] Ferguson | A representation of independent increment processes without gaussian components[END_REF] representation of the posterior distribution of the completely random measure which enters the definition of the prior for the hazards. Some numerical aspects related to the implementation of the algorithm can be quite tricky since one needs to invert the Lévy intensity to simulate posterior jumps and a set of suitable latent variables need to be introduced in order to sample from the full conditionals of the hyperparameters. These aspects are well described and addressed in [START_REF] Nieto-Barajas | Bayesian semiparametric analysis of short-and long-term hazard ratios with covariates[END_REF].

The section is organized as follows. In Section 1.1.2 hazard mixture models are briefly reviewed together with some of their most important properties. Furthermore, explicit expressions characterizing the posterior moments of any order of a random survival function are provided both for general framework and for the extended gamma process case. Section 1.1.3 is dedicated to the problem of approximating the distribution of a random variable on [START_REF]1such that Rahier[END_REF][START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF], provided that the first N moments are known. In particular, a convenient methodology based on Jacobi polynomials is described in Section 1.1.3 and, then, implemented in Section 1.1.3 in order to approximate random survival functions. Its performance is tested through a thorough numerical investigation. The focus of Section 1.1.4 is the use of the introduced methodology for carrying out Bayesian inference on survival functions. Specifically, the algorithm is presented in Section 1.1.4 whereas simulated data and a real twosample dataset on leukemia remission times are analysed in Sections 1.1.4 and 1.1.4 respectively.

Hazard mixture models

A well-known nonparametric prior for the hazard rate function within multiplicative intensity models used in survival analysis arises as a mixture of completely random measures (CRMs). To this end, recall that a CRM μ on a space Y is a boundedly finite random measure that, when evaluated at any collection of pairwise disjoint sets A 1 , . . . , A d , gives rise to mutually independent random variables μ(A 1 ), . . . , μ(A d ), for any d ≥ 1. Importantly, CRMs are almost surely discrete measures [START_REF] Kingman | Poisson processes[END_REF]. A detailed treatment on CRMs can also be found in [START_REF] Daley | An introduction to the theory of point processes[END_REF]. With reference to Theorem 1 in [START_REF] Kingman | Completely random measures[END_REF], it is assumed that μ has no fixed atoms, which in turn implies the existence of a measure ν on R + × Y such that R + ×Y min{s, 1}ν(ds, dy) < ∞ and

E e -Y f (y) μ(dy) = exp - R + ×Y [1 -exp (-s f (y))] ν(ds, dy) , (1.2) 
for any measurable function f : 

Y → R such that Y | f | d μ < ∞,
h(t) = Y k(t; y) μ(dy), (1.3) 
where μ is a CRM on Y. It is worth noting that, if lim t→∞ t 0 h(s)ds = ∞ with probability 1, then one can adopt the following model

X i | P i.i.d. ∼ P P(( • , ∞)) d = exp - • 0 h(s) ds (1.4)
for a sequence of (possibly censored) survival data (X i ) i≥1 . This means that h in (1.3) defines a random survival function t → S(t) = exp(-t 0 h(s)ds). In this setting, [START_REF] Dykstra | A Bayesian nonparametric approach to reliability[END_REF] characterize the posterior distribution of the so-called extended gamma process: this is obtained when μ is a gamma CRM and k(t; y) = I (0,t] (y) β(y) for some positive right-continuous function β : R + → R + . The same kind of result is proved in [START_REF] Lo | On a class of Bayesian nonparametric estimates. II. Hazard rate estimates[END_REF] for weighted gamma processes corresponding to RHRs obtained when μ is still a gamma CRM and k( • ; • ) is an arbitrary kernel. Finally, a posterior characterization has been derived in [START_REF] James | Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages[END_REF] for any CRM μ and kernel k( • ; • ).

We shall quickly display such a characterization since it represents the basic result our construction relies on. For the ease of exposition we confine ourselves to the case where all the observations are exact, the extension to the case that includes right-censored data being straightforward and detailed in [START_REF] James | Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages[END_REF]. For an n-sample X = (X 1 , . . . , X n ) of exact data, the likelihood function equals

L( μ; X) = e -Y K X (y) μ(dy) n ∏ i=1 Y k(X i ; y) μ(dy), (1.5) 
where K t (y) = t 0 k(s; y)ds and K X (y) = ∑ n i=1 K X i (y). A useful augmentation suggests introducing latent random variables Y = (Y 1 , . . . , Y n ) such that the joint distribution of ( μ, X, Y) coincides with

e -Y K X (y) μ(dy) n ∏ i=1 k(X i ; Y i ) μ(dY i ) Q(d μ), (1.6) 
where Q is the probability distribution of the completely random measure μ, characterized by the Laplace transform functional in (1. with n j = #C j as the cardinality of C j . Thus, the joint distribution in (1.6) may be rewritten as

e -Y K X (y) μ(dy) k ∏ j=1 μ(dY * j ) n j ∏ i∈C j k(X i ; Y * j ) Q(d μ). (1.7)
We introduce, also, the density function

f (s | κ, ξ, y) ∝ s κ e -ξs ρ y (s) I R + (s) (1.8) 
for any κ ∈ N and ξ > 0. The representation displayed in (1.7), combined with results concerning disintegrations of Poisson random measures, leads to prove the following Proposition 1.1.1. [START_REF] James | Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages[END_REF] Let h be a RHR as defined in (1.3). The posterior distribution of h, given X and Y, coincides with the distribution of the random hazard

h * + k ∑ j=1 J j k( • ; Y * j ), (1.9) 
where h * ( • ) = Y k( • ; y) μ * (dy) and μ * is a CRM without fixed points of discontinuity whose Lévy intensity is ν * (ds, dy) = e -sK X (y) ρ y (s)ds cP 0 (dy).

The jumps J 1 , . . . , J k are mutually independent and independent of μ * . Moreover, for every j = 1, . . . , k, the distribution of the jump J j has density function f (

• | n j , K X (Y * j ), Y * j ) with f defined in (1.8).
See [START_REF] Lijoi | Posterior analysis for some classes of nonparametric models[END_REF] for an alternative proof of this result. The posterior distribution of h displays a structure that is common to models based on CRMs, since it consists of the combination of two components: one without fixed discontinuities and the other with jumps at fixed points. In this case, the points at which jumps occur coincide with the distinct values of the latent variables Y * 1 , . . . , Y * k . Furthermore, the distribution of the jumps J j depends on the respective locations Y * j .

Beside allowing us to gain insight on the posterior distribution of h, Proposition 1.1.1 is also very convenient for simulation purposes. See, e.g., [START_REF] Ishwaran | Computational methods for multiplicative intensity models using weighted gamma processes: proportional hazards, marked point processes, and panel count data[END_REF]. Indeed, (1.9) allows obtaining an explicit expression for the posterior expected value of S(t) (or, equivalently, of h(t)), for any t > 0, conditionally on the latent variables Y. One can, thus, integrate out the vector of latent variables Y, by means of a Gibbs type algorithm, in order to approximately evaluate the posterior mean of S(t) (or h(t)). As pointed out in next section, a combination of Proposition 1.1.1 and of the same Gibbs sampler we have briefly introduced actually allows moments of S(t), of any order, to be estimated. We will make use of the first N of these estimated moments to approximate, for each t > 0, the posterior distribution of S(t) and therefore to have the tools for drawing meaningful Bayesian inference. The choice of a suitable value for N will be discussed in Section 1.1.3.

As pointed out in the Introduction, one can, in line of principle, combine Proposition 1.1.1 with the Ferguson and Klass representation to undertake an alternative approach that aims at simulating the trajectories from the posterior distribution of the survival function. This can be achieved by means of a Gibbs type algorithm that involves sampling μ * and Y * j , for j = 1, . . . , k, from the corresponding full conditional distributions. Starting from the simulated trajectories one could then approximately evaluate all the posterior quantities of interest. The latter is an important feature of the method based on the Ferguson and Klass representation, that is shared only in part by our proposal. Indeed, extending the moment-based procedure to estimate functionals of S(t), although achievable in many cases of interest, is not always straightforward. For instance, in order to carry out inference based on the posterior distribution of the random hazard rate h(t), one should start with the estimation of the posterior moments of h(t) and adapt accordingly the methodology which throughout the paper is developed for S(t). An illustration, with an application to survival analysis, is provided in [START_REF] Nieto-Barajas | Bayesian semiparametric analysis of short-and long-term hazard ratios with covariates[END_REF] and it appears that the approach, though achievable, may be difficult to implement. The main non-trivial issues one has to deal with are the inversion of the Lévy measure, needed to sample the jumps, and the sampling from the full conditionals of the hyperparameters. The latter has been addressed by [START_REF] Nieto-Barajas | Bayesian semiparametric analysis of short-and long-term hazard ratios with covariates[END_REF] through a clever augmentation scheme that relies on a suitable collection of latent variables. The approach based on the simulation of trajectories is an example of non-marginal, or conditional, method since it does not rely on the marginalization with respect to the mixing CRM μ.

In the next sections, attention will be mainly devoted to marginal methods with the aim of showing that they allow for a full Bayesian inference, beyond the usual evaluation of posterior means. The required additional effort to accomplish this task is minimal and boils down to computing a finite number of posterior moments of S(t), at a given t. An approximate evaluation of these moments can be determined by resorting to (1.9) which yields closed-form expressions for the posterior moments of the random variable S(t), conditionally on both the data X and the latent variables Y. Proposition 1.1.2. For every t > 0 and r > 0,

E[ Sr (t) | X, Y] = exp -c R + ×Y
1e -rK t (y)s e -K X (y)s ρ(s)dsP 0 (dy)

× k ∏ j=1 1 B j R + exp -s rK t (Y * j ) + K X (Y * j ) s n j ρ(s)ds,
where B j = R + s n j exp -sK X (Y * j ) ρ(s)ds, for j = 1, . . . , k.

Although the techniques that will be described hold true for any specification of μ and kernel k( • ; • ), the proposed illustration will focus on on the extended gamma process case [START_REF] Dykstra | A Bayesian nonparametric approach to reliability[END_REF]. More specifically, we consider a kernel k(t; y) = I (0,t] (y)β, with β > 0. This choice of kernel is known to be suitable for modeling monotone increasing hazard rates and to give rise to a class of random hazard functions with nice asymptotic properties [START_REF] Blasi | Asymptotics for posterior hazards[END_REF]. Moreover, without loss of generality, it is assumed that X 1 > X 2 > . . . > X n . For notational convenience, one further sets X 0 ≡ ∞, X n+1 ≡ 0, ξ l ≡ ∑ l i=1 X i , for any l ≥ 1, and ξ 0 ≡ 0. The next Corollary displays an expression for the conditional moments corresponding to this prior specification. Corollary 1.1.1. For every t > 0 and r > 0,

E[ Sr (t) | X, Y] = n ∏ i=0 exp -c X i ∧t X i+1 ∧t log 1 + r t -y ξ i -iy + 1/β P 0 (dy) × k ∏ j=1 1 + r (t -Y * j )I [Y * j ,∞) (t) ∑ n i=1 (X i -Y * j )I [Y * j ,∞) (X i ) + 1/β -n j . (1.10)
By integrating out the vector of latent variables Y in (1.10) one obtains an estimate of the posterior moments of S(t). To this end one can resort to a Gibbs algorithm whose steps will be described in Section 1.1.4.

Approximate inference via moments

Moment-based density approximation and sampling

Recovering a probability distribution from the explicit knowledge of its moments is a classical problem in probability and statistics that has received great attention in the literature. See, e.g., [START_REF] Provost | Moment-based density approximants[END_REF], references and motivating applications therein. Our specific interest in the problem is motivated by the goal of determining an approximation of the density function of a distribution supported on [0, 1] that equals the posterior distribution of a random survival function evaluated at some instant t. This is a convenient case since, as the support is a bounded interval, all the moments exist and uniquely characterize the distribution, see [START_REF] Rao | Linear statistical inference and its applications[END_REF]. Moment-based methods for density functions' approximation can be essentially divided into two classes, namely methods that exploit orthogonal polynomial series [START_REF] Provost | Moment-based density approximants[END_REF] and maximum entropy methods [START_REF] Csiszár | I-divergence geometry of probability distributions and minimization problems[END_REF][START_REF] Mead | Maximum entropy in the problem of moments[END_REF]. Both these procedures rely on systems of equations that relate the moments of the distribution with the coefficients involved in the approximation. For our purposes the use of orthogonal polynomial series turns out to be more convenient since it ensures faster computations as it involves uniquely linear equations. This property is particularly important in our setting since the same approximation procedure needs to be implemented a large number of times in order to approximate the posterior distribution of a random survival function. Moreover, as discussed in [START_REF] Epifani | Moment-based approximations for the law of functionals of Dirichlet processes[END_REF], maximum entropy techniques can lead to numerical instability.

Specifically, we work with Jacobi polynomials, a broad class which includes, among others, Legendre and Chebyshev polynomials. They are well suited for the expansion of densities with compact support contrary to other polynomials like Laguerre and Hermite which can be preferred for densities with infinite of semi-infinite support [see 275]. While the classical Jacobi polynomials are defined on [-1, 1], a suitable transformation of such polynomials is considered so that their support coincides with [START_REF]1such that Rahier[END_REF][START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] and therefore matches the support of the density we aim at approximating. That is, we consider a sequence of polynomials (G i ) i≥0 such that, for every i ∈ N, G i is a polynomial of order i defined by G i (s) = ∑ i r=0 G i,r s r , with s ∈ [0, 1]. The coefficients G i,r can be defined by a recurrence relation [see for example 311]. Such polynomials are orthogonal with respect to the L 2 -product

F, G = 1 0 F(s)G(s)w a,b (s)ds, where w a,b (s) = s a-1 (1 -s) b-1
is named weight function of the basis. Moreover, without loss of generality, the G i 's can be assumed to be normalized and, therefore, G i , G j = δ ij for every i, j ∈ N, where δ ij is the Kronecker symbol. Any univariate density f supported on [0, 1] can be uniquely decomposed on such a basis and therefore there is a unique sequence of real numbers (λ i ) i≥0 such that

f (s) = w a,b (s) ∞ ∑ i=0 λ i G i (s). (1.11) 
Let us now consider a random variable S whose density f has support on [START_REF]1such that Rahier[END_REF][START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF]. Its raw moments will be denoted by µ r = E S r , with r ∈ N. From the evaluation of 1 0 f (s) G i (s) ds it follows that each λ i coincides with a linear combination of the first i moments, specifically λ i = ∑ i r=0 G i,r µ r . Then, the polynomial approximation method consists in truncating the sum in (1.11) at a given level i = N. This procedure leads to a methodology that makes use only of the first N moments and provides the approximation

f N (s) = w a,b (s) N ∑ i=0 i ∑ r=0 G i,r µ r G i (s).
(1.12)

It is important to stress that the polynomial expansion approximation (1.12) is not necessarily a density as it might fail to be positive or to integrate to 1. In order to overcome this problem, the density π N proportional to the positive part of f N , i.e.

π N (s) ∝ max( f N (s), 0), will be considered. An importance sampling algorithm [see, e.g., 287] will be used to sample from π N . This is a method for drawing independent weighted samples ( , S ) from a distribution proportional to a given non-negative function, that exempts us from computing the normalizing constant. More precisely, the method requires to pick a proposal distribution p whose support contains the support of π N . A natural choice for p is the Beta distribution proportional to the weight function w a,b . The weights are then defined by ∝ max( f N (S ), 0)/p(S ) such that they add up to 1.

An important issue related to any approximating method refers to the quantification of the approximating error. As for the described polynomial approach, the error can be assessed for large N by applying the asymptotic results in [START_REF] Alexits | Convergence problems of orthogonal series[END_REF]. Specifically, the convergence f N (s) → f (s) for N → ∞, for all s ∈ (0, 1), implies π N (s) → f (s)

for N → ∞. Thus, if S N denotes a random variable with distribution π N , then the following convergence in distribution to the target random variable S holds:

S N D -→ S as N → ∞.
However, here the interest is in evaluating whether few moments allow for a good approximation of the posterior distribution of S(t). This question will be addressed by means of an extensive numerical study in the next section. See [START_REF] Epifani | Exponential functionals and means of neutral-to-the-right priors[END_REF] and [START_REF] Epifani | Moment-based approximations for the law of functionals of Dirichlet processes[END_REF] for a similar treatment referring to functionals of neutral-to-the-right priors and Dirichlet processes respectively.

Numerical study

In this section the quality of the approximation procedure described above is assessed by means of a simulation study. The rationale of the analysis consists in considering random survival functions for which moments of any order can be explicitly evaluated at any instant t, and then compare the true distribution with the approximation obtained by exploiting the knowledge of the first N moments. This in turn will provide an insight on the impact of N on the approximation error. To this end three examples of random survival functions will be considered, namely Sj with j = 1, 2, 3. For the illustrative purposes of this Section, it suffices to specify the distribution of the random variable that coincides with Sj evaluated in t, for every t > 0. Specifically, we consider a Beta, a mixture of Beta, and a normal distribution truncated to [START_REF]1such that Rahier[END_REF][START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF], that is

S1 (t) ∼ Beta S 0 (t) a 1 , 1 -S 0 (t) a 1 , S2 (t) ∼ 1 2 Beta S 0 (t) a 2 , 1 -S 0 (t) a 2 + 1 2 Beta S 0 (t) a 3 , 1 -S 0 (t) a 3 , S3 (t) ∼ tN [0,1] S 0 (t), S 0 (t)(1 -S 0 (t)) a 4 ,
where S 0 (t) = e -t and we have set a 1 = 20, (a 2 , a 3 ) = (10, 30) and a 4 = 2. Observe that, for every t > 0, E[ S1 (t)] = E[ S2 (t)] = S 0 (t) but the same does not hold true for S3 (t).

For each j = 1, 2, 3, the first 10 moments of Sj (t) were computed on a grid {t 1 , . . . , t 50 } of 50 equidistant values of t in the range [0, 2.5]. The choice of working with 10 moments will be motivated at the end of the section. The importance sampler described in Section 1.1.3 was then used to obtain samples of size 10 000 from the distribution of Sj (t i ), for each j = 1, 2, 3 and i = 1, . . . , 50. In Figure 1.1, for each Sj , we plot the true mean as well as the 95% highest density intervals for the true distribution and for the approximated distribution obtained by exploiting 10 moments. Notice that the focus is not on approximating the mean since moments of any order are the starting point of our procedure. Interestingly, the approximated intervals show a very good fit to the true ones in all the three examples. As for the Beta case, the fit is exact since the Beta-shaped weight function allows the true density to be recovered with the first two moments. As for the mixture of Beta, exact and approximated intervals can hardly be distinguished. Finally, the fit is pretty good also for the intervals in the truncated normal example. Similarly, in Figure 1.2 the true and the approximated densities of each Sj (t) are compared for fixed t in {0.1, 0.5, 2.5}. Again, all the three examples show a very good pointwise fit. This section is concluded by assessing how the choice of N affects the approximation error. To this end, for each instant t on the grid, the true and approximated distributions of Sj (t) are compared by computing the integrated squared error (L 2 error) between the two. Thus the average of these values is considered as a measure of the overall error of approximation. The results are illustrated in Figure 1.3. As expected, the approximation is exact in the Beta example. In the two other cases, it can be observed that the higher is the number of exploited moments, the lower is the average approximation error. Nonetheless, it is apparent that the incremental gain of using more moments is more substantial when N is small whereas it is less impactful as N increases: for example in the mixture of Beta case, the L 2 error is 2.11, 0.97, 0.38 and 0.33 with N equal to 2, 4, 10 and 20 respectively. Moreover, when using a large number of moments, e.g. N > 20, some numerical instability can occur. These observations suggest that working with N = 10 moments in (1.12) strikes a good balance between accuracy of approximation and numerical stability.

Bayesian inference

In this section the characterization of the posterior moments of S(t) provided in Proposition 1.1.2 is combined with the approximation procedure described in Section 1.1.3. The model specification (1.4) is completed by assuming an extended gamma prior for h(t), with exponential base measure P 0 (dy) = λ exp(-λy)dy, and considering the hyperparameters c and β random. Finally we choose for both c and β independent gamma prior distributions with shape parameter 1 and rate parameter 1/3 (so to ensure large prior variance) and set λ = 1. Given a sample of survival times X = {X 1 , . . . , X n }, the first N moments of the posterior distribution of S(t) are estimated for t on a grid of q equally-spaced points {t 1 , . . . , t q } in an interval [0, M]. Such estimates are then exploited to approximate the posterior distribution of S(t i ) for i = 1, . . . , q. This allows us to devise an algorithm for carrying out full Bayesian inference on survival data. In the illustrations the focus will be on the estimation of the median survival time and, at any given t in the grid, of the posterior mean, posterior median, posterior mode and credibility intervals for S(t). The same approach can be, in principle, used to estimate other functionals of interest.

Algorithm

The two main steps needed in order to draw samples from the posterior distribution of S(t), for any t ∈ {t 1 , . . . , t q }, are summarized in Algorithm 1.1.1. First a Gibbs sampler is performed to marginalize the latent variables Y and the hyperparameters (c, β) and therefore, for every i = 1, . . . , q, an estimate for the posterior moments E[ Sr (t i )|X], with r = 1, . . . , N, is obtained. The algorithm was run for q q q q q q q q q q q q q q q FIGURE 1.3: Average across t of the L 2 error between the true and the approximated densities of Sj (t), in the Beta example (blue triangles), the mixture of Beta (red dots) and the truncated normal example (black squares). The approximation is exact in the Beta example.

l max = 100 000 iterations, with a burn-in period of l min = 10 000. Visual investigation of the traceplots of the parameters, in the illustrations of Sections 1.1.4 and 1.1.4, did not reveal any convergence issue. The second part consists in sampling from the posterior distribution of S(t i ), for every i = 1, . . . , q, by means of the importance sampler described in Section 1.1.3. Specifically max = 10 000 values were sampled for each t i on the grid. 

n }, c = c (0) and β = β (0) 2: while l < l max , set l = l + 1, and

• update Y j = Y (l) j for every j = 1, . . . , n • update c = c (l) and β = β (l) • if l > l min , compute µ (l) r,t = E[ Sr (t) | X, Y (l) , c (l) , β (l) ]
(1.13)

for each r = 1, . . . , N and for each t in the grid 3: for each r = 1, . . . , N and each t define μr,t =

1 l max -l min ∑ l max l=l min +1 µ (l) r,t
Part 2. Importance sampler 1: for each t, use (1.12) and define the approximate posterior density of S(t) by 

f N,t ( • ) = w a,b ( • ) ∑ N i=0 ∑ i r=0 G i,
= E X [m] = ∞ 0 P[m > t|X] dt ≈ M q -1 q ∑ i=1 (1 -c i ) (1.14)
where the subscript X in E X [m] indicates that the integral is with respect to the distribution of S(•) conditional to X. Equivalently,

m ≈ q ∑ i=1 t i (c i+1 -c i ), (1.15) 
with the proviso that c q+1 ≡ 1. Moreover, the sequence (c i ) q i=1 can be used to devise credible intervals for the median survival time, cf. Part 1 of Algorithm 1.1.2. Note that both in (1.14) and in (1.15) the integrals on the left-hand-side are approximated by means of simple Riemann sums and the quality of such an approximation clearly depends on the choice of q and on M. Nonetheless, our investigations suggest that if q is sufficiently large the estimates we obtain are pretty stable and that the choice of M is not crucial since, for t i sufficiently large, the term 1c i involved in (1.14) is approximately equal to 0. Finally, the posterior samples generated by Algorithm 1.1.1 can be used to obtain a t-by-t estimation of other functionals that convey meaningful information such as the posterior mode and median (together with the posterior mean), cf. Part The rest of this section is divided in two parts in which Algorithms 1.1.1 and 1.1.2 are applied to analyse simulated and real survival data. In Section 1.1.4 the focus is on the estimation of the median survival time for simulated samples of varying size. In Section 1.1.4 we analyse a real two-sample dataset and we estimate posterior median and mode, together with credible intervals, of S(t). In both illustrations our approximations are based on the first N = 10 moments.

Application to simulated survival data

Consider four samples of size n = 25, 50, 100, 200, from a mixture f of Weibull distributions, defined by

f = 1 2 Weib(2, 2) + 1 2 Weib(2, 1/2).
After observing that the largest observation in the samples is 4.21, we set M = 5 and q = 100 for the analysis of each sample. By applying Algorithms 1. The performance of the introduced methodology is investigated as the sample size n grows. Table 1.1 summarizes the values obtained for m and the corresponding credible intervals. For all the sample sizes considered, credible intervals for m contain the true value. Moreover, as expected, as n grows, they shrink around m 0 : for example the length of the interval reduces from 0.526 to 0.227 when the size n changes from 25 to 200. Finally, for all these samples, the estimated median survival time m is closer to m 0 than the empirical estimator me . For this illustration we set M = 2 max(X), that is M = 70, and q = 50. For both samples posterior mean, median and mode as well as 95% credible intervals, are estimated and compared. In the left panel of Figure 2.3 such estimates are plotted for sample T. By inspecting the plot, it is apparent that, for large values of t, posterior mean, median and mode show significantly different behaviors, with posterior mean being more optimistic than posterior median and mode. It is worth stressing that such differences, while very meaningful for clinicians, could not be captured by marginal methods for which only the posterior mean would be available. A fair analysis must take into account the fact that, up to t = 23, i.e. the value corresponding to the largest non-censored observation, the three curves are hardly distinguishable. The different patterns for larger t might therefore depend on the prior specification of the model. Nonetheless, this example is meaningful as it shows that a more complete posterior analysis is able to capture differences, if any, between posterior mean, median and mode.

When relying on marginal methods, the most natural choice for estimating the uncertainty of posterior estimates consists in considering the quantiles intervals corresponding to the output of the Gibbs sampler, that we refer to as marginal intervals. This leads to consider, for any fixed t, the interval whose lower and upper extremes are the quantiles of order 0.025 and 0.975, respectively, of the sample of conditional moments {µ

(l min +1) 1,t , . . . , µ (l max ) 1,t
} defined in (1.13). In the middle panel of Figure 2.3 the estimated 95% HPD intervals for S(t) and the marginal intervals corresponding to the output of the Gibbs sampler are compared. In this example, the marginal method clearly underestimates the uncertainty associated to the posterior estimates. This can be explained by observing that, since the underlying completely random measure has already been marginalized out, the intervals arising from the Gibbs sampler output, capture only the variability of the posterior mean that can be traced back to the latent variables Y and the parameters (c, β). As a result, the uncertainty detected by the marginal method leads to credible intervals that can be significantly narrower than the actual posterior credible intervals that we approximate through the moment-based approach. This suggests that the use of intervals produced by marginal methods as proxies for posterior credible intervals should be, in general, avoided.

The analysis is concluded by observing that the availability of credible intervals for survival functions can be of great help in comparing treatments. In the right panel of Figure 2.3 posterior means as well as corresponding 95% HPD intervals are plotted for both samples T and P. By inspecting the plot, for example, the effectiveness of the treatment seems clearly significant as, essentially, there is no overlap between credible intervals of the two groups. [START_REF] Chandler | Introduction to modern statistical mechanics[END_REF][START_REF] Stoehr | A review on statistical inference methods for discrete Markov random fields[END_REF]. HMRF can be seen as spatial extensions of independent mixture models. As for standard mixtures, one concern is the automatic selection of the proper number of clusters in the data, or equivalently the number of states in the HMRF. In the independent data case, several criteria exist to select this number automatically based on penalized likelihoods (e.g., AIC, BIC, ICL, etc.) and have been extended in the HMRF framework using variational approximation [START_REF] Forbes | Hidden Markov Random Field model selection criteria based on mean field-like approximations[END_REF]. They require running several models with different cluster numbers so as to choose the best one, with a potential waste of computational effort as all the other models are usually discarded. Other techniques use a fully Bayesian setting including a prior on the number of components. The most celebrated method in this case is reversible jump Markov chain Monte Carlo [START_REF] Green | Reversible jump Markov chain Monte Carlo computation and Bayesian model determination[END_REF].

Although simplifications in the inference have been proposed recently in [START_REF] Miller | Mixture models with a prior on the number of components[END_REF], the computational cost of reversible jump techniques remains considerably high.

In the present work, we investigate alternatives based on Bayesian nonparametric (BNP) methods. In particular, Dirichlet process mixture (DPM) models have emerged as promising candidates for clustering applications where the number of clusters is unknown. Nevertheless, applications of DPMs involve observations which are assumed to be independent. For more complex tasks such as unsupervised image segmentation with spatial relationships or dependencies between the observations, DPMs are not satisfactory. Therefore, we propose to introduce MRF dependencies between data points in BNP models, and we term the resulting model BNP-MRF. This requires to extend finite state space MRF models to an infinite number of states. We show that this can be achieved by incorporating a stick-breaking scheme in an MRF formulation more general than the standard Potts model commonly used.

The addition of MRF dependencies between data points in BNP models raises the question of how they impact the natural clustering and rich-get-richer properties of BNP priors? We answer this question by providing theoretical results about two quantities of interest for BNP priors: the predictive distribution, that represents the distribution of one datum conditional on previous observations, and the number of clusters induced by a BNP-MRF prior.

The links to other similar attempts is reviewed in Section 1.2.1. The proposed BNP-MRF model is explained in Section 1.2.2 and theoretical properties are investigated in Section 1.2.3. The model implementation using variational approximation is detailed in Section 1.2.4. An illustration of its performance on an image segmentation task is provided in Section 1.2.5 and a conclusion ends the section.

Related work

Attempts to build countably infinite state space MRF models using BNP priors have already appeared in the literature. In particular, we can distinguish attempts such as [START_REF] Chatzis | A Markov random field-regulated Pitman-Yor process prior for spatially constrained data clustering[END_REF][START_REF] Chatzis | The infinite hidden Markov random field model[END_REF][START_REF] Da Silva | A Dirichlet process mixture model for brain MRI tissue classification[END_REF] from the work in [START_REF] Albughdadi | A Bayesian nonparametric hidden Markov random model for hemodynamic brain parcellation[END_REF][START_REF] Orbanz | Nonparametric Bayesian image segmentation[END_REF][START_REF] Xu | Bayesian nonparametric image segmentation using a generalized Swendsen-Wang algorithm[END_REF][START_REF] Sodjo | A generalized Swendsen-Wang algorithm for Bayesian nonparametric joint segmentation of multiple images[END_REF]. The approach in [START_REF] Chatzis | A Markov random field-regulated Pitman-Yor process prior for spatially constrained data clustering[END_REF][START_REF] Chatzis | The infinite hidden Markov random field model[END_REF][START_REF] Da Silva | A Dirichlet process mixture model for brain MRI tissue classification[END_REF] differs in that it is not based on a generalization of the Potts model but on a transformation of an inference algorithm. More specifically in [START_REF] Chatzis | A Markov random field-regulated Pitman-Yor process prior for spatially constrained data clustering[END_REF][START_REF] Chatzis | The infinite hidden Markov random field model[END_REF], a standard mean field approximation is first considered and then transformed to account for an infinite number of states. In that sense it is closer to an Iterated Conditional Mode (ICM) algorithm [START_REF] Besag | Spatial interaction and the statistical analysis of lattice systems[END_REF], but does not provide a spatial generalization of DPMs. Typically, the simple Potts model considered in [START_REF] Chatzis | A Markov random field-regulated Pitman-Yor process prior for spatially constrained data clustering[END_REF][START_REF] Chatzis | The infinite hidden Markov random field model[END_REF] cannot be extended to an infinite number of states as it will become clear in our Section 1.2.2. Other attempts include the work in [START_REF] Johnson | A Bayesian nonparametric Potts model with application to pre-surgical fMRI data[END_REF], but there the number of states is known to be three and the Dirichlet process (DP) prior is used instead to model intensity distributions non-parametrically. Segmentation with spatially dependent Pitman-Yor processes (PY) has also been considered in [START_REF] Sudderth | Shared segmentation of natural scenes using dependent Pitman-Yor processes[END_REF], but using Gaussian processes.

We build on the approach in [START_REF] Albughdadi | A Bayesian nonparametric hidden Markov random model for hemodynamic brain parcellation[END_REF] which differs from [START_REF] Orbanz | Nonparametric Bayesian image segmentation[END_REF][START_REF] Xu | Bayesian nonparametric image segmentation using a generalized Swendsen-Wang algorithm[END_REF][START_REF] Sodjo | A generalized Swendsen-Wang algorithm for Bayesian nonparametric joint segmentation of multiple images[END_REF] which all use a partition model representation. In particular, [START_REF] Xu | Bayesian nonparametric image segmentation using a generalized Swendsen-Wang algorithm[END_REF] generalizes [START_REF] Orbanz | Nonparametric Bayesian image segmentation[END_REF] and proposes a more efficient Markov chain Monte Carlo (MCMC) inference by means of the Swendsen-Wang algorithm, while [START_REF] Sodjo | A generalized Swendsen-Wang algorithm for Bayesian nonparametric joint segmentation of multiple images[END_REF] extends this idea to hierarchical DP priors for multiple image segmentation. In contrast to [START_REF] Orbanz | Nonparametric Bayesian image segmentation[END_REF][START_REF] Xu | Bayesian nonparametric image segmentation using a generalized Swendsen-Wang algorithm[END_REF][START_REF] Sodjo | A generalized Swendsen-Wang algorithm for Bayesian nonparametric joint segmentation of multiple images[END_REF], we propose to use a stick-breaking-based scheme for the mixing weights, thus providing a more comprehensive representation than partition models which integrate out the process. In addition, stick-breaking representations lead naturally to variational approximations for performing inference [START_REF] Blei | Variational inference for Dirichlet process mixtures[END_REF]. The advantage is to reduce the computational cost in complex data clustering without suffering from label switching complications. In other words, in our approach the MRF is imposed internally in the BNP mechanics leading to well defined infinite state HMRF models. This construction is valid for any stick-breaking representation. We show how it can be implemented for the DP and PY priors, and provide references for extensions to larger classes of BNP priors.

BNP Markov random field mixture models

The clustering task is addressed through a missing data model that includes a set y = (y 1 , . . . , y n ) of observed variables from R d and a set z = (z 1 , . . . , z n ) of missing (also called hidden) variables whose joint distribution p(y, z | Θ) is governed by a set of parameters denoted by Θ and possibly by additional hyperparameters φ not specified in the notation. The latter ones are usually fixed and not considered at first. Typically, the z i 's corresponding to group memberships (or labels), take their values in {1, . . . , K} where K is the number of clusters or groups. We shall denote by Z = {1, . . . , K} n the set in which z takes its values and by Θ the parameter space. To account for dependencies between the z i 's, z can be modeled as a discrete MRF. If in addition, the y j 's are independent conditionally on z, the joint distribution p(y, z | Θ) is referred to as an HMRF model. In this case, the conditional distribution p(z | y, Θ) is also an MRF. For clustering dependent data into K groups, the most commonly used MRF is the so-called Potts model [START_REF] Chandler | Introduction to modern statistical mechanics[END_REF][START_REF] Stoehr | A review on statistical inference methods for discrete Markov random fields[END_REF].

As already mentioned, our goal is to bypass the issue of selecting the number K of clusters by considering a countably infinite number of them while allowing MRF dependencies between the y i 's. The construction of the proposed model is explained starting from the link between standard finite mixtures and Dirichlet process mixtures. Basic DP principles and notations are recalled in Section 1.2.2. The extension of finite state space MRF to a countably infinite number of states is given in Section 1.2.2 and the resulting BNP-MRF mixture models is summarized in Section 1.2.2.

From finite mixtures to DP mixture models

A generative approach to clustering consists of picking one of K clusters from a multinomial distribution with weights parameter π = (π 1 , . . . , π K ) and then to generate a data point y from a cluster specific distribution p(y | θ * k ) with cluster specific parameter θ * k . This yields a finite mixture model

p(y | θ * , π) = K ∑ k=1 π k p(y | θ * k ) (1.16) 
where θ * = (θ * 1 , . . . , θ * K ) and π are the parameters. For instance, for Gaussian mixtures, θ * k = (µ k , Σ k ) and p(y | θ * k ) is a Gaussian distribution with mean µ k and covariance matrix Σ k , denoted by N (µ k , Σ k ) or N (y | µ k , Σ k ) when referring to the probability density function (pdf). The observations (y 1 , . . . , y n ) are therefore i.i.d. and generated from the same mixture (1.16). It follows that the kth cluster is by definition the set of data points arising from the kth mixture component. This is usually expressed by introducing for each y j an additional hidden variable Z j that takes its values in {1, . . . , K}, so that p(z j = k | π) = π k . Another way to obtain a sample from a finite mixture model consists of defining a discrete measure G = ∑ K k=1 π k δ θ * k and then of considering the following hierarchical representation, for all j = 1, . . . , n,

θ j | G i.i.d. ∼ G, y j | θ j ind ∼ p( . | θ j ).
The subset of θ j 's that are equal to θ * k corresponds to the y j 's in the kth cluster. In a Bayesian setting, in addition, a prior distribution is placed on θ * and π. The most common choice for π is the Dirichlet distribution Dir(α 1 , . . . α K ) depending on a vector of positive parameters α = (α 1 , . . . , α K ). The choice of the prior on θ * (denoted by G 0 ) is model-specific, usually following a conjugate prior such as a Normal inverse-Wishart distribution for Gaussian mixture models. Other cases are possible and tractable (e.g. [START_REF] Corduneanu | Variational Bayesian Model Selection for Mixture Distributions[END_REF]). It follows the hierarchical representation:

π 1 π 2 π 3 π ∞ ... τ 1 1-τ 1 ...
θ * 1 , . . . , θ * K | G 0 ∼ G 0 , (1.17) π | α ∼ Dir(α 1 , . . . α K ), (1.18) 
G = K ∑ k=1 π k δ θ * k , (1.19) θ j | G i.i.d. ∼ G, j = 1, . . . , n, (1.20) 
y j | θ j ind ∼ p( . | θ j ) j = 1, . . . , n.
To become non-parametric, a first approach is to consider an infinite number of π k 's.

Using an infinite number of random variables τ = (τ 1 , τ 2 , . . . ) on [0, 1], we can construct an infinite number of π k 's that sum to one as follows: 

π 1 (τ) = τ 1 and π k (τ) = τ k k-1 ∏ l=1 (1 -τ l ), k = 2,
G = ∞ ∑ k=1 π k (τ)δ θ * k .
We can also add after step (1.20) the fact that z j = k if θ j = θ * k and replace the last step by y j |z j , θ * ind ∼ p( . | θ * z j ). Then the distributions of the τ k 's need to be specified. The Dirichlet process [START_REF] Ferguson | A Bayesian analysis of some nonparametric problems[END_REF], denoted by DP(G 0 , α), is characterized by a base distribution G 0 and a positive scaling parameter α. Its stick-breaking representation corresponds to i.i.d τ k 's that follow the same beta B(1, α) distribution [START_REF] Ishwaran | Gibbs sampling methods for stick-breaking priors[END_REF]. All together, using the same notation G 0 for the prior of each θ * k simulated as i.i.d. variables, it comes the following hierarchical representation:

θ * k | G 0 i.i.d. ∼ G 0 , k = 1, 2, . . . , (1.21) τ k | α i.i.d. ∼ B(1, α), k = 1, 2, . . . , π k (τ) = τ k k-1 ∏ l=1 (1 -τ l ), k = 1, 2, . . . , (1.22) 
G = ∞ ∑ k=1 π k (τ)δ θ * k , (1.23) θ j | G i.i.d.
∼ G, and 

z j = k if θ j = θ * k (1.24) y j | z j , θ * ind ∼ p( . | θ * z j ). ( 1 

Infinite MRF priors

The explicit use of the labels z = (z 1 , . . . , z n ) in the DPM construction above makes it closer to clustering generative models and opens the way to an HMRF extension. Such a generalization is only possible from Potts models with an external field parameter. In the finite state space case, an MRF model is defined using a dependence structure coded via a graph G whose nodes correspond to the variables. A K-state Potts model with an external field, defined over z = (z 1 , . . . , z n ) with for all j = 1, . . . , n, z j ∈ {1, . . . , K}, corresponds to the following pdf,

p(z; β, v) ∝ exp n ∑ j=1 v z j + β ∑ i∼j δ (z i =z j ) , (1.26) 
where i ∼ j means that i and j are neighbors, i.e. linked by an edge, in the considered dependence structure described by graph G, δ (z i =z j ) is the indicator function which is 1 if z i = z j and 0 otherwise, β is a positive scalar interaction parameter and v = (v 1 , . . . , v K ) represents an additional external field parameter where each v k is a scalar. The distribution (1.26) is insensitive to an addition of the same constant to all the v k 's. Such non-identifiability can be overcome by an additional constraint on v such as requiring ∑ K k=1 π k = 1 with v k = log π k . The Potts model in (1.26) can then be rewritten as

p(z; β, π) ∝ n ∏ j=1 π z j exp β ∑ i∼j δ (z i =z j ) .
(1.27)

In the finite state space case, we can equivalently use the Gibbs representation, p(z; β, π) ∝ e V(z;β,π) , (1.28) where V(z; β, π) := ∑ n j=1 log π z j + β ∑ i∼j δ (z i =z j ) is often referred to as the energy function. The first sum in V represents the first order potentials while the second sum represents the second order potentials. In the finite state space case, the Hammersley-Clifford theorem [START_REF] Besag | Spatial interaction and the statistical analysis of lattice systems[END_REF] applied to the Gibbs representation (1.28) entails that the distribution in (1.26) is a Markov random field. What is interesting about formulas (1.26) and (1.27) is that they do not involve the number of states K. As long as a stick-breaking construction is available, we can consider a countably infinite number of probabilities π k that sum to one, i.e., ∑ ∞ k=1 π k = 1 and define the same energy function V as before but over an infinite countable set of states. Using the Gibbs representation (1.28), the Hammersley-Clifford theorem still holds if we can show that ∑ z e V(z;π,β) < ∞, where the sum runs over all n-uples of positive integers z ∈ {1, 2, . . .} n . Note that this latter condition that is automatically satisfied in the finite state space case (for reasonable potential functions), may not be satisfied in the infinite case. However, the stick-breaking representation of π ensures this property since:

∑ z e V(z;β,π) (a) ≤ ∑ z n ∏ j=1 π z j e β n(n-1) 2 , (b) = e β n(n-1) 2 < ∞
where we used for (a) the fact that n(n -1)/2 is the maximum number of neighbors among n observations (complete dependence or graph), while (b) comes from

∑ z ∏ n j=1 π z j = ∑ ∞ k=1 π k n = 1.
It follows that p(z; β, π), in the infinite state space case, is still a valid probability distribution and is an MRF by the Hammersley-Clifford theorem. Such a generalization is possible because of the presence of the external field parameters π k that satisfy ∑ ∞ k=1 π k = 1 as ensured by the stick-breaking construction. A standard Potts model with equal or no external field parameters cannot be as simply extended to an infinite countable state space because in the Kstate case this Potts model is equivalent to π k = 1/K for all k which possesses a degenerate limit when K tends to infinity.

BNP-MRF mixture models

The stick-breaking representation amounts to identifying a set of random variables τ = (τ k ) ∞ k=1 with each τ k ∈ [0, 1] and so that the weights π k are defined by (1.22). Then the Potts model construction (1.27) is valid for any set of parameters τ = (τ k ) ∞ k=1 with each τ k ∈ [0, 1]. Bayesian non-parametric priors specify a prior distribution on τ k 's. For instance, as already mentioned for the DP stick-breaking, all τ k 's are independent and identically distributed according to a B(1, α) distribution. For the Pitman-Yor (PY) process [START_REF] Pitman | The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator[END_REF], the τ k 's are independent but not identically distributed with

τ k | α, σ ind ∼ B(1 -σ, α + kσ) for k = 1, 2, . . . , (1.29) 
where σ ∈ (0, 1) is a discount parameter and α a concentration parameter α > -σ.

The PY is a two-parameter generalisation of the DP which allows to control the tail behavior when modeling data with either exponential or power-law tails [START_REF] Ishwaran | Gibbs sampling methods for stick-breaking priors[END_REF][START_REF] Pitman | The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator[END_REF]. When σ = 0, the PY reduces to a DP. More general stick-breaking representations are possible (e.g., for Gibbs-type priors [START_REF] Blasi | Are Gibbs-type priors the most natural generalization of the Dirichlet process[END_REF][START_REF] Ghosal | Fundamentals of nonparametric Bayesian inference[END_REF] or homogeneous normalized random measures with independent increments (NRMIs) [START_REF] Favaro | On the Stick-Breaking Representation for Homogeneous NRMIs[END_REF]) but the Pitman-Yor case provides a clear interpretation in terms of number of clusters. The rich-getsricher property of the DP is preserved meaning that there are a small number of large clusters, but there is also a large number of small clusters with parameter σ decreasing the probability that observations join small clusters. The PY yields a power-law behavior which can make it more suitable for a number of applications.

In other words, the number of clusters grows as O(n σ ) for the PY while it grows more slowly at O(log n) for the DP.

The extension we propose is therefore to augment the original HMRF formulation with additional variables (τ k ) ∞ k=1 . We refer to it as the BNP-MRF mixture model. It corresponds to the following hierarchical construction written here in the PY case:

θ * k | G 0 i.i.d. ∼ G 0 , k = 1, 2, . . . , (1.30 
)

τ k | α, σ ind ∼ B(1 -σ, α + kσ), k = 1, 2, . . . , (1.31 
)

π k (τ) = τ k k-1 ∏ l=1 (1 -τ l ), (1.32) 
p(z | τ; β) ∝ n ∏ j=1 π z j (τ) exp β ∑ i∼j δ (z i =z j ) , (1.33) 
y j | z j , θ * ind ∼ p(y j | θ * z j ) . (1.34)
The prior on τ k 's from (1.31) can be adapted to more general classes of BNP priors, see for example Theorem 14.23 of [START_REF] Ghosal | Fundamentals of nonparametric Bayesian inference[END_REF] for Gibbs-type priors, and [START_REF] Favaro | On the Stick-Breaking Representation for Homogeneous NRMIs[END_REF] for NRMIs. Importantly, in the BNP-MRF model above, the θ j 's and z j 's are not i.i.d conditionally on G anymore. The joint distribution (1.33) on z = (z 1 , . . . , z n ) induces a joint distribution on (θ 1 , . . . , θ n ) using that θ j = θ * z j . If we still denote for simplicity by G this joint distribution, we can define it in a similar manner as in the i.i.d. case, using its conditional specifications,

θ j |θ N j ; G ∼ ∞ ∑ k=1 p(z j = k|z N j , τ; β) δ θ * k ,
where N j denotes the neighbors of j in the graph dependence structure G and the p(z j = k|z N j , τ; β)'s are the conditional specifications of (1.33).

In Section 1.2.4, we detail the case when cluster specific distributions are Gaussian, with

θ * k = (µ k , Σ k ) and p(y j | θ * k ) = N (y j | µ k , Σ k ).

Predictive distribution and number of clusters for a BNP-MRF prior

In this section, we provide theoretical results about two quantities of interest for Bayesian nonparametric priors: the predictive distribution, that represents the distribution of one datum conditional on previous observations, and the number of clusters induced by a BNP-MRF prior. We consider data of varying sample size, and denote by G n the subgraph of G induced by node {1, . . . , n}.

We focus on the large class of Gibbs-type priors [START_REF] Blasi | Are Gibbs-type priors the most natural generalization of the Dirichlet process[END_REF], of which the DP and PY are special cases. Consider n observations (θ 1 , . . . , θ n ) sampled from a BNP-MRF prior Eq (1.30)-(1.33) but using a Gibbs-type prior instead of PY prior (1.31). We are interested in the predictive distribution of observation θ n+1 conditional on (θ 1 , . . . , θ n ), but unconditional on G. With a BNP-MRF prior, this predictive distribution depends on the structure of the graph G, more specifically on the neighbors of θ n+1 . Denote by K n the number of clusters in (θ 1 , . . . , θ n ), by (θ 1 , . . . , θ K n ) their K n different values 1and by (n 1 , . . . , n K n ) their size. We first consider the Gibbs-type prior case without the addition of a Markov component. The predictive distribution [START_REF] Ghosal | Fundamentals of nonparametric Bayesian inference[END_REF] is given by,

p(θ n+1 | θ 1 , . . . , θ n ) = V n+1,k n +1 V n,k n G 0 + V n+1,k n V n,k n k n ∑ =1 (n -σ)δ θ (1.35)
where the triangular array of nonnegative parameters V n,k , 1 ≤ k ≤ n, satisfy the backward recurrence relation

V n,k = (n -σk)V n+1,k + V n+1,k+1 , (1.36) 
with V 1,1 = 1. This predictive can be specialized to the PY case with

V n,k = σ k (1 + α σ ) (k-1) (1 + α) (n-1)
,

where (a) (x) := Γ(a + x)/Γ(a) denotes the rising factorial. It follows

p(θ n+1 | θ 1 , . . . , θ n ) = α + σk n α + n G 0 + 1 α + n k n ∑ =1 (n -σ)δ θ , (1.37) 
while the case of the DP is obtained by setting σ = 0 above.

For the sake of simplicity, we propose to use the labels notation z 1:n = (z 1 , . . . , z n ) defined so that z j = when θ j = θ , we denote by {z 1 , . . . , z n } the set of label values which includes only K n different labels. In the Gibbs-type prior case, it is clear from (1.35) that

p(z n+1 | z 1:n ) = V n+1,k n +1 V n,k n if z n+1 ∈ {z 1 , . . . , z n }, (1.38) p(z n+1 = | z 1:n ) = V n+1,k n V n,k n (n -σ) if ∈ {z 1 , . . . , z n } .
The next proposition indicates how the predictive is impacted by the addition of a Markov dependence. The neighbors of θ n+1 in G n is denoted by N n+1 and ñ is the number of neighbors of θ n+1 which belong to cluster , hence satisfying ñ ≤ n . Also z N n+1 = {z i , i ∈ N n+1 } denotes the labels in the neighborhood. Proposition 1.2.1 (Predictive distribution of a Gibbs-MRF prior). The predictive distribution for a Gibbs-MRF prior is given by

p(θ n+1 | θ 1 , . . . , θ n ) = V n+1,k n +1 V n,k n + V n+1,k n η n+1 G 0 + V n+1,k n V n,k n + V n+1,k n η n+1 k n ∑ =1 λ n+1, δ θ (1.39)
where

η n+1 = η n+1 (σ, β) = ∑ ∈z N n+1 (n -σ)(e β ñ -1), λ n+1, = λ n+1, (σ, β) = (n -σ) e β ñ δ N n+1 ( ) .
and δ N n+1 ( ) is 1 when is a label present in the neighborhood of θ n+1 and 0 otherwise.

Refer to the paper [S2] for a proof. Remark 1.2.1. When β = 0, η n+1 (σ, 0) = 0 and λ n+1, (σ, 0) = nσ so that the Gibbs-type prior predictive (1.35) is recovered. In contrast, for β > 0, the above predictive specialized to the PY-MRF case is,

p(θ n+1 | θ 1 , . . . , θ n ) = α + σk n α + n + η n+1 G 0 + 1 α + n + η n+1 k n ∑ =1 λ n+1, δ θ , (1.40)
while the case of the DP-MRF is obtained by setting σ = 0. Comparing the probability of a new draw for a Gibbs-type prior, V n+1,kn +1

V n,kn , with that of a new draw for a Gibbs-MRF prior, V n+1,kn +1

V n,kn +V n+1,kn +1 η n+1 , we see that the MRF has the effect of reducing this probability. In the PY case, this increase corresponds to increasing the sample size from n to n + η n+1 when β > 0, where η n+1 can be quite a large number. More specifically for a label in the neighborhood of z n+1 , the weight of each previous observations with label (in the neighborhood or not) is multiplied by a factor (e β ñ -1). The effect is then all the more important as β is large and as n is large.

The predictive distribution (1.39) provides in turn the following lower bounds on the prior expectation of the number of clusters. Proposition 1.2.2 (Lower bound for expected number of clusters). Assume that the graph G has maximal degree D. Then the expected prior number of clusters for a BNP-MRF distribution has the following lower bound

E[K n ] α e Dβ log n (1.41)
for the Dirichlet process and

E[K n ] cn σe -Dβ , (1.42) 
for the Pitman-Yor process, with some positive constant c, and where a n b n stands for lim sup a n /b n ≥ 1.

Refer to the paper [S2] for a proof. Remark 1.2.2. We do not have a proof for the general case of Gibbs-type priors, but we conjecture that the same power-law lower bound (1.42) as for PY holds. Note that the MRF component of a BNP prior can only reduce the prior expected number of clusters. For instance, for the DP with a simple graph where the first two nodes are connected, we have

E[K 2 ] = 1 + α α + e β ≤ 1 + α α + 1 = E[K 2 ; β = 0]
where the last two terms above correspond the expectation of K 2 for a DP, i.e. when β = 0.

Thus natural upper bounds that complement the lower bounds of Proposition 1.2.2 are given by

E[K n ] α log n
for the Dirichlet process and

E[K n ] Γ(α + 1) σΓ(α + σ) n σ (1.43)
for the Pitman-Yor process (see [START_REF] Pitman | Combinatorial stochastic processes[END_REF]).

Inference using Variational approximation

Sampling based inference (MCMC) for a similar BNP-MRF model has been proposed in [START_REF] Orbanz | Nonparametric Bayesian image segmentation[END_REF][START_REF] Xu | Bayesian nonparametric image segmentation using a generalized Swendsen-Wang algorithm[END_REF] for the case of a DP prior. As an alternative, we propose a variational approximation that is facilitated by the stick-breaking representation. For that purpose, we shall briefly recall the variational principle.

Variational Bayesian Expectation Maximization

The clustering task consists primarily of estimating the unknown labels z = (z 1 , . . . , z n ) from observed y = (y 1 , . . . , y n ) assuming a joint distribution p(y, z | Θ; φ) governed by a set of parameters denoted by Θ and often by additional hyperparameters φ. However to perform good label estimation, the parameters Θ values (and hyperparameters φ) have to be available. A natural approach for parameter estimation is based on maximum likelihood, where Θ is estimated by Θ = arg max Θ∈Θ p(y | Θ).

Then an estimate of z can be obtained by maximizing p(z | y, Θ). However, p(y | Θ) is a marginal distribution over the unknown z variables, so that direct maximum likelihood is intractable in general. The Expectation-Maximization (EM) algorithm [START_REF] Mclachlan | The EM Algorithm and Extensions[END_REF] is a general iterative technique for maximum likelihood estimation in the presence of unobserved latent variables or missing data. An EM iteration consists of two steps usually referred to as the E-step in which the expectation of the so-called complete log-likelihood is computed and the M-step in which this expectation is maximized over Θ. An equivalent way to define EM is the following. As discussed in [START_REF] Neal | A view of the EM algorithm that justifies incremental, sparse and other variants[END_REF], EM can be viewed as an alternating maximization procedure of a function F 0 defined, for any probability distribution q Z on Z by

F 0 (q Z , Θ, φ) = ∑ z∈Z q Z (z) log p(y, z | Θ; φ) + I[q Z ] = E q Z log p(y, Z | Θ; φ) q Z (z) (1.44)
where I[q Z ] = -E q Z [log q Z (Z)] is the entropy of q Z (E q denotes the expectation with regard to q). The function F 0 depends on observations y which are fixed throughout, hence are omitted from the notation.

Instead of considering only point estimation of Θ, a fully Bayesian approach can be carried out, for instance when prior knowledge on the parameters Θ is available. In this case, we have to compute

p(z | y) = Θ p(z | y, Θ) p(Θ | y)dΘ (1.45)
Integrating out Θ in this way requires the computation of p(Θ | y) which is not usually available in closed-form. As an alternative to costly simulation-based methods (MCMC), an EM-like procedure using variational approximation can provide approximations of the marginal posterior distributions p(Θ | y) and p(z | y). This approach is referred to as VBEM for Variational Bayesian EM [START_REF] Beal | The variational Bayesian EM Algorithm for incomplete data: with application to scoring graphical model structures[END_REF]. Let q Z and q Θ denote respectively distributions over Z and Θ that will serve as approximations to the true posteriors. Similarly to standard EM, VBEM is maximizing the following free energy function defined for any q Z and q Θ distributions F (q Z , q Θ , φ) = E q Z q Θ log p(y, Z, Θ; φ) q Z (z)q Θ (Θ)

alternatively over q Z , q Θ and φ. Adding a prior on Θ is formally the same as adding Θ to the missing variables, while the hyperparameters φ play the role of the parameters of interest in maximum likelihood estimation.

The alternate maximization of F yields the VBEM algorithm that decomposes into three steps. It is easy to show, using the Kullback-Leibler (KL) divergence properties, that the maximization over q Z and q Θ leads to the following E-steps (see Appendix A of [START_REF] Chaari | Fast joint detectionestimation of evoked brain activity in event-related fMRI using a variational approach[END_REF]). At the rth iteration, using current values φ (r-1) and q (r-1) Θ

, we get the following updating,

VB-E-Z: q (r) Z (z) ∝ exp E q (r-1) Θ [log p(y, z, Θ; φ (r-1) )], VB-E-Θ: q (r) Θ (Θ) ∝ exp E q (r) Z [log p(y, Z, Θ; φ (r-1) )], VB-M-φ: φ (r) = arg max φ E q (r) Z q (r) Θ [log p(y, Z, Θ; φ)].
Also, it is worth noticing that if Y and Z are independent of φ conditionally on Θ, as this is often the case when φ gathers the parameters that describe the prior on Θ, then the VB-M-step simplifies into

φ (r) = arg max φ E q (r) Θ [log p(Θ; φ)] = arg min φ KL(q (r) Θ p(Θ; φ)).
(1.46)

Then φ (r) is the value that minimizes the KL distance between the prior p(Θ; φ) and the variational posterior q (r)

Θ (Θ). In the conjugate exponential family case, it is known that both distributions belong to the same family [START_REF] Beal | The variational Bayesian EM Algorithm for incomplete data: with application to scoring graphical model structures[END_REF]. If this family is identifiable it follows that φ (r) = φ(r) where φ(r) are the variational parameters defining q (r) Θ (Θ). A more detailed example is given in Section 1.2.4. In practice, we can decide which parameters are treated as genuine parameters Θ or as hyperparameters φ, depending on whether some prior knowledge is available only for a subset of the parameters or whether the model has hyperparameters φ for which no prior information is available. Also for complex models, q Θ and q Z may need to be further restricted to simpler forms, such as factorized forms, in order to ensure tractable VB-E-steps. This is illustrated in the next section for the PY-MRF inference.

VBEM for a PY-MRF mixture model with Gaussian components

The VBEM steps are described for a PY-MRF mixture model as defined in Eq. (1.31) to (1.34), with Gaussian distributed observations y. As hyperparameters α and σ may have a significant effect on the growth of the number of clusters with data sample size, it is possible to specify priors on them. For the DP case obtained with σ = 0, it is suggested in [START_REF] Blei | Variational inference for Dirichlet process mixtures[END_REF] to use a gamma prior over α with two hyperparameters s 1 and s 2 , i.e. α ∼ G(s 1 , s 2 ) where s 1 and s 2 can be estimated or fixed. A natural question that arises is then whether one can also find a tractable prior for the discount parameter σ. We propose to use the following prior that accounts for the constraints σ ∈ (0, 1) and α > -σ,

p(α, σ; s 1 , s 2 , a) = p(α | σ; s 1 , s 2 ) p(σ; a) (1.47)
where p(α | σ; s 1 , s 2 ) is a shifted gamma distribution SG(s 1 , s 2 , σ) and p(σ; a) is a distribution depending on some parameter a not specified for the moment but that can typically be taken as the uniform distribution on the interval (0, 1). Such a shifted gamma distribution is the distribution of a variable Uσ where σ is considered as fixed and U follows a gamma distribution G(s 1 , s 2 ). The pdf of this shifted gamma distribution is obtained from the standard gamma distribution as

p(α | σ; s 1 , s 2 ) = G(α + σ; s 1 , s 2 ).
It follows that the joint distribution of the observed data y and all latent variables becomes

p(y, z, Θ; φ) = p(α, σ; s 1 , s 2 , a) n ∏ j=1 p(y j |z j , θ * )p(z|τ; β) ∞ ∏ k=1 p(τ k |α, σ) ∞ ∏ k=1 p(θ * k ; ρ k ),
where the notation ∏ ∞ k=1 is a distributional notation, and in addition to the terms already defined in (1.31) and (1.33), we specify the likelihood term (1.34) as a Gaussian distribution p(y j |θ * z j ) = N (y j |µ z j , Σ z j ) and the G 0 prior on cluster specific parameters θ * k = (µ k , Σ k ) as a Normal-inverse-Wishart distribution parameterized by

ρ k = (m k , λ k , Ψ k , ν k ) with a pdf p(θ * k ; ρ k ) = N IW (µ k , Σ k ; ρ k ) = N (µ k ; m k , λ -1 k Σ k ) IW (Σ k ; Ψ k , ν k ).
In the above notation, we consider as hyperparameters the set φ = (s 1 , s 2 , a, β, (ρ k ) ∞ k=1 ) while Θ = (τ, α, σ, θ * ).

In most variational approximations, the posteriors are approximated in a factorized form (mean-field approximation). In particular, the intractable MRF posterior on z is approximated as q z (z) that factorizes so as to handle intractability due to spatial dependencies, namely

q z (z) = n ∏ j=1 q z j (z j ).
Then, the infinite state space for each z i is dealt with by choosing a truncation of the state space to a maximum label K [START_REF] Blei | Variational inference for Dirichlet process mixtures[END_REF]. In practice, this consists of assuming that the variational distributions q z j , for j = 1, . . . , n, satisfy q z j (k) = 0 for k > K and that the variational distribution on τ also factorizes as q τ (τ) = ∏ K-1 k=1 q τ k (τ k ), with the additional condition that τ K = 1. Thus, the truncated variational posterior of parameters Θ is given by

q Θ (Θ) = q α,σ (α, σ) K-1 ∏ k=1 q τ k (τ k ) K ∏ k=1 q θ * k (θ * k ). (1.48) 
These forms of q z and q Θ lead to four VB-E steps and three VB-M steps summarized below (refer to [2] for details). Set the initial value of φ to φ (0) . Then, repeat iteratively the following steps. The iteration index is omitted in the update formulas for simplicity.

VB-E-τ step

The VB-E-τ step corresponds to a variational approximation in the exponential family case and results in a posterior from the same family as the prior. It comes for k

= 1, . . . , K, q τ k (τ k ) = B(τ k ; γk,1 , γk,2 ) (1.49) with γk,1 = 1 -E q σ [σ] + nk , γk,2 = E q α [α] + kE q σ [σ] + K ∑ =k+1 n , (1.50) 
where

for k = 1, . . . , K, nk = n ∑ j=1 q z j (k) (1.51)
corresponds to the weight of cluster k.

VB-E-(α, σ) step

The (α, σ) variational posterior is more complex but has a simple gamma form in the DP (σ = 0) case. More specifically, we need to compute

ŝ1 = s 1 + K -1, and ŝ2 = s 2 - K-1 ∑ k=1 ψ( γk,2 ) -ψ( γk,1 + γk,2 ) (1.52)
where ψ(•) is the digamma function defined by

ψ(z) = d dz log Γ(z) = Γ (z) Γ(z) . When σ = 0 then q α is a gamma distribution G(ŝ 1 , ŝ2 ) and E q α [α] = ŝ1 ŝ2
. Otherwise (PY case), q α,σ is only identified up to a normalizing constant but the required E q α [α] and E q σ [σ] can be computed by importance sampling. See the appendix of [2] for details.

VB-E-Z step

Due to the mean field approximation and the truncation, this step consists in computing, for all j = 1, . . . , n and for k ≤ K,

q z j (k) = qj (k) ∑ K =1 qj ( ) , (1.53) 
where log qj (k) is defined by

- 1 2 log Ψk 2 - d ∑ i=1 ψ νk + (1 -i) 2 + νk (y j -mk ) T Ψ-1 k (y j -mk ) + d λk + ψ( γk,1 ) -ψ( γk,1 + γk,2 ) + k-1 ∑ l=1 ψ( γl,2 ) -ψ( γl,1 + γl,2 ) + β ∑ i∈N j q z i (k), (1.54) 
where in the last sum, N j represents the neighbours of j. In the above formula, symbols ( mk , λk , Ψk , νk ) are the variational hyperparameters for q θ * k more specifically defined in the following step and d is the dimension of the data. The advantage of Eq. (1.53) is that it provides assignment probabilities q z i (k) and does not require intermediate commitments to hard assignments of the z j 's. The hard assignments can be postponed to the end if desired to get a segmentation through the following maximum a posteriori (MAP) estimation: ẑj = arg max k∈{1,...,K} q z j (k).

(1.55)

VB-E-θ * step

This step is divided into K parts where the computation is similar to that in standard Bayesian finite mixtures with a choice of conjugate prior, here for Gaussian distributions. Hence, for each k ≤ K, the variational posterior is a Normal-inverse-Wishart distribution defined as

q θ * k (µ k , Σ k ) = N IW (µ k , Σ k ; mk , λk , Ψk , νk ), (1.56) 
where the hyperparameters are updated as follows (see for instance [START_REF] Murphy | Conjugate Bayesian analysis of the Gaussian distribution[END_REF])

λk = λ k + nk , νk = ν k + nk , Ψk = Ψ k + S k + λ k nk λ k + nk (m k -μk )(m k -μk ) T , mk = λ k m k + nk μk λ k + nk = λ k m k + nk μk λk , (1.57) 
with nk defined in (1.51) and

μk = 1 nk n ∑ j=1 q z j (k)y j , S k = n ∑ j=1 q z j (k)(y j -μk )(y j -μk ) T .
(1.58)

VB-M steps

The maximization step consists of updating the hyperparameters φ = (β, s 1 , s 2 , a, ρ), where ρ = (ρ 1 , . . . , ρ K ), by maximizing the free energy, if they are not set heuristically:

φ (r) = arg max φ E q (r) Z q (r) τ q (r) α,σ q (r) θ * [log p(y, Z, τ, α, σ, θ * ; φ)] . (1.59) 
The VB-M-step can therefore be divided into 3 independent sub-steps as listed below. From the conditional independence of (s 1 , s 2 , a, ρ) and (Y, Z) given (τ, α, σ, θ * ), the VB-M-step writes as in (1.46) so that the solutions for the VB-M-(s 1 , s 2 ) (in the DP case) and VB-M-ρ steps are straightforward. Only the β step and the M-(s 1 , s 2 , a) step (in the PY case) are more involved.

VB-M-β:

The maximization of (1.59) with respect to β leads to

β (r) = arg max β E q (r) Z q (r) τ [log p(Z|τ; β)] . (1.60) 
This step does not admit a closed-form solution but can be solved numerically.

VB-M-(s 1 , s2 , a): This step is straightforward in the DP case (σ = 0). It can be expressed easily using the fact that both the prior and the variational posterior are Gamma distributions, and using the cross-entropy properties,

(s 1 , s 2 ) (r) = arg max (s 1 ,s 2 ) E q (r) α [log p(α; s 1 , s 2 )] = (ŝ (r) 1 , ŝ(r) 2 ) (1.61)
where (ŝ (r)

VB-M-ρ: This step divides into K sub-steps that involve again cross-entropies,

ρ (r) k = arg max ρ E q (r) θ * k [log p(θ * k ; ρ k )] = ρ(r) k (1.62) where ρ(r) k = ( λ(r) k , ν(r) k , Ψ(r) k , m(r) k ) is given in Eq. (1.57).

Application to image segmentation

To validate the proposed approach, we consider its application to unsupervised image segmentation as a spatial clustering task. Image segmentation consists of partitioning a digital image into distinct regions that contain pixels with similar properties. Extensive research work has been done in this field using various clustering techniques. In practice, to be meaningful for image analysis and interpretation, the segmented regions should closely relate to depicted objects or features of interest.

A number of tasks in image analysis often depends on the reliability of preliminary segments, but an accurate partitioning of an image is still quite challenging.

Feature extraction for image segmentation

The color and texture features in a natural image are often very complex. For our experiments, we mainly focus on two special types of features based on the HSV (Hue, Saturation, Value) color space and the maximum response (MR) filter bank.

The HSV color space is often used in natural image analysis because it corresponds better to how people experience color than the RGB color space does. Regarding the texture information, we shall consider the MR8 filter bank [START_REF] Varma | A statistical approach to texture classification from single images[END_REF], which consists of 38 filters but only 8 filter responses. More precisely, the MR8 filter bank contains filters at multiple orientations but their outputs are compressed by recording only the maximum filter response across all orientations. This achieves rotation invariance. Furthermore, the images are presegmented into superpixels that group pixels similar in color and other low-level properties [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF]. In this respect, superpixels are regarded as more natural entities that allow reducing the number of observations drastically for running clustering algorithms. In all our experiments, each image is presegmented into approximately 1 000 superpixels using the SLIC algorithm proposed in [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF]. Finally, we compute the feature vectors at superpixel level, i.e., the average of features on the centroid of each superpixel.

Berkeley Segmentation Data Set

To quantify the performance of our segmentation algorithm, numerical experiments were conducted on a subset of images selected from the Berkeley Segmentation Data Set 500 (BSDS500) already studied by [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF][START_REF] Chatzis | A Markov random field-regulated Pitman-Yor process prior for spatially constrained data clustering[END_REF], which provides multiple human annotated segments as many ground truths for each image. The considered subset consists of 154 images as listed in Tables 1 and2 in [START_REF] Chatzis | A Markov random field-regulated Pitman-Yor process prior for spatially constrained data clustering[END_REF].

In the literature, a standard measure for comparing a test segmentation to another is the rand index (RI) [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF]. The RI is one when two segmentations are exactly the same. However, when having for one image a set of ground truths which do not completely agree, the probabilistic rand index (PRI) [START_REF] Unnikrishnan | A measure for objective evaluation of image segmentation algorithms[END_REF] is preferable. Given a set of ground truths S = (S 1 , . . . , S T ), the PRI is defined as follows:

PRI(S test , S) = 2 n(n -1) ∑ i<j [c ij p ij + (1 -c ij )(1 -p ij )] (1.63) 
where c ij = 1 if pixels i and j belong to the same segment in S test and c ij = 0 otherwise, n is the number of image pixels and p ij is the probability of two pixels i and j having the same label, i.e., the fraction of all available ground truths in S where pixels i and j belong to the same segment. In fact, it can be shown that Eq. (1.63) is simply the mean of the RI computed between each pair (S test , S k ), namely 1 T ∑ T k=1 RI(S test , S k ). By definition, the PRI always takes values in [START_REF]1such that Rahier[END_REF][START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF], where 0 means that S test and (S 1 , . . . , S T ) have no similarities and 1 means all segments are identical. The larger the PRI, the better. In practice, PRI values are often reported as percentages in [START_REF]1such that Rahier[END_REF][START_REF] Doksum | Tailfree and neutral random probabilities and their posterior distributions[END_REF].

Our approach has been tested on the considered subset of the BSDS500 and the summary statistics of the PRI score are shown in Figure 1.7 as a function of the truncation level K for the PY-MRF case. Similar results were observed for the DP. It appears that for K ≥ 30, the global performance does not change much and is satisfying with respect to existing results in the literature. We compared our best results with those reported in [START_REF] Chatzis | A Markov random field-regulated Pitman-Yor process prior for spatially constrained data clustering[END_REF]. Table 1.2 shows that our approach outperforms the existing results. The improvement in PRI may appear overall small but it can be assessed by visualizing original images and their segmentations. We show in Figure 1.8 segmentation results for four images. The main differences between the non spatial PY and PY-MRF mixture models can be visualized for the first image in the ground and water which are segmented in the latter case into a smaller number of regions whose shapes are in addition smoother. This is typical of more spatial interaction in the clustering process. Similarly, the same phenomenon is also visible in the peak part of the second image, in the sky and grass parts of the third image and in the plant parts of the fourth image.

We also examined, for the PY-MRF mixture model with K = 50, the values of the expected α, σ and β for each of the 154 segmented images presented in Figure 1.9

Proposed model

Results given in [ [START_REF] Chatzis | The infinite hidden Markov random field model[END_REF] for our PY-MRF mixture model and the approaches tested in [START_REF] Chatzis | The infinite hidden Markov random field model[END_REF][START_REF] Chatzis | A Markov random field-regulated Pitman-Yor process prior for spatially constrained data clustering[END_REF].

as scatter plots (one point per image). Recall from Section 1.2.4 that α and σ are elements of the parameters Θ while β is considered as a hyperparameter from φ. Figure 1.9 shows also the correlations (across the 154 images) between the expected values of α, σ and β. It appears that the estimated σ values are most of the time smaller than 0.5 and sometimes closer to 0 with some anti-correlation with respect to α values. In contrast, β values appear quite independent from α or σ.

In terms of pure PRI performance, the BSDS500 data set is not an easy example because the ground truth segmentations are labeled manually by humans and are sometimes quite subjective and inconsistent across users. However, this example allows comparison of methods and visualization. Two interesting findings are that the choice of K does not seem to be too sensitive as soon as K is large enough, and there seems to be some correlation between α and σ while β is rather independent of the latest. Further analysis would be needed to confirm these properties but in practice, they could be used to guide the segmentations into more or less spatially smooth versions without risking to eliminate too small segments.

Discussion

In this paper, we proposed a general scheme to build BNP priors that can model dependencies through the addition of a Markov random field term. In contrast to other existing attempts that reduce to spatially constrained standard BNP priors such as [START_REF] Chatzis | A Markov random field-regulated Pitman-Yor process prior for spatially constrained data clustering[END_REF][START_REF] Chatzis | The infinite hidden Markov random field model[END_REF], our proposal leads to proper spatial priors. Our construction is based on the stick-breaking representation and was illustrated starting from the Dirichlet and Pitman-Yor processes, although this approach could be extended to other forms of BNP priors admitting a stick-breaking representation such as Gibbs-type priors. The stick-breaking representation was further exploited to derive clustering properties of the model and to provide a variational inference algorithm. In addition to the usual BNP parameters, an estimation of the Markov interaction parameter β was proposed. The variational approximation chosen was based on a standard truncation but it would be interesting to investigate other approximations, e.g. [START_REF] Wang | Truncation-free stochastic variational inference for Bayesian nonparametric models[END_REF]. Also the variational algorithm is greatly simplified for standard stick-breaking representations (e.g. DP and PY) with independent weight variables. Nevertheless, it would be interesting to investigate more general stick-breaking representations possibly using some MCMC counterpart for estimation. The approach was illustrated on a challenging unsupervised image segmentation task with good results with respect to the literature, but the proposed scheme is quite flexible and can be used in more general settings including community detection or disease mapping in epidemiology. 

Ecotoxicological application to species sensitivity distribution modeling 1.3.1 Introduction

Assessing the response of a community of species to an environmental stress is critical for ecological risk assessment. Methods for this purpose vary in levels of complexity and realism. Species Sensitivity Distribution (SSD) represents an intermediate tier, more refined than rudimentary assessment factors [START_REF] Posthuma | Species sensitivity distributions in ecotoxicology[END_REF] but practical enough for routine use by environmental managers and regulators in most developed countries (Australia, Canada, China, EU, South Africa, USA. . . ). The SSD approach is intended to provide, for a given contaminant, a description of the tolerance of all species possibly exposed using information collected on a sample of those species. This information consists of Critical Effect Concentrations (CECs), a concentration specific to a species which marks a limit over which the species suffers a critical level of effect. This is for instance the concentration at which 50% of the tested organisms died (Lethal Concentration 50%), or the concentration which inhibited growth or reproduction by 50% compared to the control experiment (Lethal Concentration 50%, LC 50 ). Each CEC is the summary of long and costly bioassay experiments for a single species, so they are rarely available in large number. Typical sample sizes range from 10 to 15 [START_REF] Echa | Characterisation of dose concentration-response for environment[END_REF].

To describe the tolerance of all species to be protected, the distribution of the CECs is then estimated from the sample. In practice, a parametric distributional assumption is often adopted [START_REF] Forbes | Species Sensitivity Distributions Revisited: A Critical Appraisal[END_REF] where the CECs are assumed to follow a log-normal, loglogistic, triangular or BurrIII distributions.

Once the response of the community is characterised by the distribution, the goal of risk assessment is to define a safe concentration protecting all or most of the species.

In the case of distributions without a lower threshold strictly above 0, a cut-off value is often chosen as the safe concentration. Typically, this is the Hazardous Concentration for 5% of the Species HC 5 , which is the 5th percentile of the distribution.

Reasonings behind this choice include: that the lowest bound of the confidence interval around the 5th percentile will be used instead of the estimate, that a safety factor will be subsequently applied to that value and that ecosystems have a certain resilience to perturbations.

The lack of justification for the choice of any given parametric distribution has sparked several research directions. Some authors [START_REF] Xu | Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment[END_REF][START_REF] He | Ecological risk assessment and priority setting for typical toxic pollutants in the water from Beijing-Tianjin-Bohai area using Bayesian matbugs calculator (BMC)[END_REF] have sought to find the best parametric distribution by model comparison using goodness-of-fit measures. The general understanding is that no single distribution seems to provide a superior fit and that the answer is dataset dependent [START_REF] Forbes | Species Sensitivity Distributions Revisited: A Critical Appraisal[END_REF]. Therefore, the log-normal distribution has become the customary choice, notably because it readily provides confidence intervals on the HC 5 , and because model comparison and goodness of fit tests have relatively low power on small datasets, precluding the emergence of a definite answer to the question. Another research direction consisted in seeking to avoid any reference to a distribution, using so-called nonparametric or distributionfree approaches. Those efforts included using the empirical distribution function [START_REF] Suter | Ecological Risk Assessment in a Large River-Reservoir: 2. Fish Community[END_REF][START_REF] Jones | Ecological risk assessment in a large river-reservoir: 3. Benthic invertebrates[END_REF], bootstrap resampling [START_REF] Wang | Development of species sensitivity distributions and estimation of HC(5) of organochlorine pesticides with five statistical approaches[END_REF] or nonparametric kernel density estimation [START_REF] Wang | Nonparametric kernel density estimation of species sensitivity distributions in developing water quality criteria of metals[END_REF]. All these approaches have in common that they require large sample sizes to be effectively applicable. Finally, authors have considered the possibility that the distribution of the CECs might not be a single distribution but rather a mixture of distributions [START_REF] Zajdlik | Estimating Water Quality Guidelines for Environmental Contaminants Using Multimodal Species Sensitivity Distributions: A Case Study with Atrazine[END_REF], datasets being an assemblage of several log-normally distributed subgroups [START_REF] Kefford | Global scale variation in the salinity sensitivity of riverine macroinvertebrates: Eastern Australia, France, Israel and South Africa[END_REF]. This is more realistic from an ecological point of view because several factors influence the tolerance of a species to a contaminant such as the taxonomic group or the mode of action, and contaminant such as pesticides might even target specific species groups. Therefore, there is strong evidence in favour of the presence of groups of CECs, although the CECs within a group might remain lognormally distributed.

Ignorance of the group structure is a strong motivation for a nonparametric approach. However, the method must remain applicable to small datasets, which suggests trying to improve on the existing frequentist nonparametric methods. Bayesian nonparametric mixture models offer an interesting solution for both large and small datasets, because the complexity of the mixture model adapts to the size of the dataset. It offers a good compromise between a simplistic one-component parametric model and a kernel density method which in a certain sense lacks flexibility and might cause overfitting. Moreover, the low amount of information available in small datasets to estimate the groups parameters can be complemented via the prior, as some a priori degree of information is generally available from other species or contaminants [START_REF] Awkerman | Development of species sensitivity distributions for wildlife using interspecies toxicity correlation models[END_REF].

The rest of the section is organised as follows. In Section 1.3.2 we present the BNP model and existing frequentist models for SSD and explain how to obtain a density estimate. Then in Section 1.3.3 we compare the different methods on a real dataset, illustrating the benefits of the BNP SSD.

Models for SSD

Given that concentrations vary on a wide range, it is common practice to work on log-transformed concentrations. Consider a sample of n log-concentrations denoted by X = (X 1 , . . . , X n ). We propose to carry out density estimation for the SSD based on sample X by use of nonparametric mixtures. Bayesian nonparametric mixtures were introduced in [START_REF] Lo | On a class of Bayesian nonparametric estimates: I. Density estimates[END_REF] with DPM. Generalizations of the DPM correspond to allowing the mixing distribution to be any discrete nonparametric prior. A large class of such prior distributions is obtained by normalizing increasing additive processes [? ]. The normalization step, under suitable conditions, gives rise to so-called NRMI as defined by [? ], see also [START_REF] Barrios | Modeling with normalized random measure mixture models[END_REF] for a recent review. An NRMI mixture model is defined hierarchically as:

X i |µ i , σ ind ∼ k(•|µ i , σ), µ i | P i.i.d. ∼ P, i = 1, . . . , n, (1.64) P ∼ NRMI, σ ∼ Ga(a σ , b σ ).
where k is a kernel, which we assume parametrized by some θ = (µ, σ) ∈ R × R + , and P is a random probability on R whose distribution is an NRMI. In our model, all clusters have a common variance. This is easier to fit on a small dataset, because information about the variance is pooled across clusters. As described in the Introduction, concentrations are commonly fitted with a log-normal distribution. Our aim is to move from this parametric model to the nonparametric one in (1.64). In order to allow comparisons to be made, we stick to the normal specification for k on the log-concentrations X by letting: k(x|µ, σ) = N (x|µ, σ). Under this framework, density estimation is carried out by evaluating the posterior predictive density along the lines of [START_REF] Barrios | Modeling with normalized random measure mixture models[END_REF]:

f (x| P, X) = k(x|µ, σ)dπ(σ)d P(µ) (1.65)
for any x in R, where π denotes the posterior distribution of σ.

To specify the prior, we choose as mixing random measure the normalized stable process [START_REF] Kingman | Random discrete distributions[END_REF] with: i a stability parameter γ = 0.4, which controls the flatness of the prior on the number of clusters. The parameter γ can take values in (0, 1). Taking the limit γ → 0 reduces the model to a Dirichlet process, larger values of γ lead to less informative priors on the number of clusters. The parameter γ was chosen as a good compromise between model flexibility and numerical stability. The total mass parameter is, without loss of generality, set equal to 1.

ii a base measure (which corresponds to the mean of the random probability measure)

P 0 ( • ) = N( • | ϕ 1 , ϕ 2 )
with mean ϕ 1 and standard deviation ϕ 2 , hyperparameters fixed a priori to specify a certain knowledge in the degree of smoothness iii a common variance for all the clusters with a vaguely informative prior distribution Ga(0.5, 0.5).

Recent years have witnessed the appearance of a wealth of softwares dedicated to implement Bayesian nonparametric models and sample from their posterior. To cite a few, the R package DPpackage, is a rather comprehensive bundle of functions for Bayesian nonparametric models, while Bayesian Regression [START_REF] Karabatsos | A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation[END_REF] is a software for Bayesian nonparametric regression. For posterior sampling, we use the R package BNPdensity and the function MixNRMI1 which implements BNP density models under a general specification of normalized random measures based on the generalised gamma processes [see 43]. The package is available from the Comprehensive R Archive Network (CRAN).

To illustrate the interest of the Bayesian nonparametric SSD, we compare our proposed BNP model to two commonly used frequentist models: the normal distribution [START_REF] Aldenberg | Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions[END_REF] and the nonparametric KDE recently proposed by [START_REF] Wang | Nonparametric kernel density estimation of species sensitivity distributions in developing water quality criteria of metals[END_REF]. For both frequentist approaches, the data is assumed to be iid. Density estimates take on respectively the following form ( μ and σ are MLE) 5 ).

fN (x) = N (x | μ, σ) and fKDE (x) = 1 n n ∑ i=1 N (x | X i , 1.06 σn - 1 
(1.66)

Model comparison and cross-validation

For the purpose of comparing the predictive performance of the model, we resort to Leave-One-Out (LOO) cross-validation. We compute the LOO for each of the methods as ∀i,

LOO i = f (X i | X -i ) where f (x | X -i )
is the density for one of the three methods estimated from X with X i left out. The LOO for the BNP model correspond to the conditional predictive ordinate (CPO) statistics which are commonly used in applications, see [START_REF] Gelfand | Model determination using sampling-based methods[END_REF]. A CPO statistic is defined for each log-concentration X i as follows:

CPO i = f (X i |X -i ) = k(X i |θ)dπ(θ|X -i ) (1.67)
where X -i denotes the whole sample X but X i , dπ(θ|X -i ) is the posterior distribution associated to X -i and f is the (cross-validated) posterior predictive distribution of Equation (1.65). As shown by [START_REF] Barrios | Modeling with normalized random measure mixture models[END_REF], CPO can be easily approximated by Monte Carlo as

CPO i = 1 T T ∑ t=1 1 k(X i |θ (t) ) -1 (1.68)
where {θ (t) , t = 1, 2, . . . , T} is an MCMC sample from the posterior distribution.

Quantile estimation and HC 5

The quantity of interest for ecological risk assessment is the HC 5 , which corresponds to the 5th percentile of the SSD distribution. We choose as an estimator the median of the posterior distribution of the 5th percentile, while the 95% credible bands are formed by the 2.5% and 97.5% quantiles of the posterior distribution of the 5th percentile. The 5th percentile of the KDE is obtained by numerical inversion of the cumulative distribution function, and the confidence intervals using nonparametric bootstrap. The 5th percentile of the normal SSD and its confidence intervals are obtained following the classical method of [START_REF] Aldenberg | Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions[END_REF].

Application to real data

We applied this model to a selection of contaminants extracted from a large database collected by the National Institute for Public Health and the Environment (RIVM). We only considered non censored data, left or right censored data were discarded, while interval censored data were replaced by the centre of the interval. Using a continuous distribution for the CEC implies that the model does not support ties (or, in other words, observing ties has zero probability). However, ties may appear in the dataset due to the rounding of concentrations. Hence, we used a small jittering of the data. We selected three example datasets which feature three typical sample sizes: a relatively large carbaryl dataset (CAS: 63-25-2, insecticide, 55 species), a mediumsized temephos dataset (CAS: 3383-96-8, mosquito larvicide, 21 species), and a small captan dataset (CAS: 133-06-2, fungicide, 13 species). Datasets for new contaminants are always small, the minimum requirement set by the European Chemical Agency being 10 species. The datasets can be visualised on the histograms of Figure 1.10 (left panel).

These datasets illustrate different features of the three approaches: when there is a clear multimodality in the data, the BNP SSD is more flexible than the fixed bandwidth KDE SSD (Figure 1.10, carbaryl and captan). When the data do not exhibit strong multimodality, as for temephos, the BNP reduces to the normal SSD model, whereas the KDE remains by construction a mixture of many normal components.

One might think to increase the flexibility of the KDE by simply decreasing the bandwidth. However, that would also decrease the robustness of the method. On the middle panel of Figure 1.10, the LOO give an indication of the robustness to overfitting of the three methods. For carbaryl and captan, they show that the superior flexibility of the BNP SSD compared to the KDE SSD does not come at the expense of robustness, because the median CPO of the BNP SSD is higher than the other two. In the case of temephos, the median LOO likelihood estimate of the normal model is very similar to the median CPO for the BNP SSD, sign that there is little over-fitting. This generally illustrates the fact that model complexity in a BNP model scales with the amount and structure of the data. On the right panel of Figure 1.10, the credible intervals of the HC 5 for the BNP SSD are generally larger than the confidence interval of the normal SSD, which is coherent with the model uncertainty of the nonparametric approach.

Discussion

The BNP SSD seems to perform well when the dataset deviates from a normal distribution. Its great flexibility is an asset to describe the variability of the data, while it does not seem prone to over-fitting. It can be thought of as an intermediate model between the normal SSD with a single component on the one hand, and the KDE which counts as many components as there are species on the other hand. We chose to base the BNP SSD on NRMI rather than on the more common Dirichlet Process, because it is more robust in case of misspecification of the number of clusters [START_REF] Lijoi | Controlling the reinforcement in Bayesian non-parametric mixture models[END_REF][START_REF] Barrios | Modeling with normalized random measure mixture models[END_REF]. The BNP SSD provides several benefits for risk assessment: it is an effective and robust standard model which adapts to many datasets. Moreover, it readily provides credible intervals. While it is always possible to obtain confidence intervals for a frequentist method using bootstrap, it can be difficult to stabilise the interval for small datasets even with a large number of bootstrap samples. As such, the BNP SSD represents a safe tool to remove one of the arbitrary parametric assumptions of SSD [START_REF] Forbes | Species Sensitivity Distributions Revisited: A Critical Appraisal[END_REF]. q q q q q q 0.01 0.10
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2.1 Truncation-based approximations: Pitman-Yor

Introduction

The Pitman-Yor process defines a rich and flexible class of random probability measures used as prior distribution in Bayesian nonparametric inference. It originates from the work of [START_REF] Perman | Size-biased sampling of poisson point processes and excursions[END_REF], further investigated in [START_REF] Pitman | Exchangeable and partially exchangeable random partitions[END_REF][START_REF] Pitman | The two-parameter generalization of Ewens random partition structure[END_REF], and its use in nonparametric inference was initiated by [START_REF] Ishwaran | Gibbs sampling methods for stick-breaking priors[END_REF]. Thanks to its analytical tractability and flexibility, it has found applications in a variety of inferential problems which include species sampling [START_REF] Lijoi | Bayesian nonparametric estimation of the probability of discovering new species[END_REF][START_REF] Favaro | Bayesian non-parametric inference for species variety with a two-parameter Poisson-Dirichlet process prior[END_REF][START_REF] Navarrete | Some issues in nonparametric Bayesian modeling using species sampling models[END_REF], survival analysis and gene networks [START_REF] Jara | Bayesian semiparametric inference for multivariate doubly-interval-censored data[END_REF][START_REF] Ni | Heterogeneous reciprocal graphical models[END_REF], linguistics and image segmentation [START_REF] Teh | Hierarchical Dirichlet processes[END_REF][START_REF] Sudderth | Shared segmentation of natural scenes using dependent Pitman-Yor processes[END_REF], curve estimation [START_REF] Canale | On the Pitman-Yor process with spike and slab base measure[END_REF] and time-series and econometrics [START_REF] Caron | Sparse graphs using exchangeable random measures[END_REF][START_REF] Bassetti | Beta-product dependent Pitman-Yor processes for Bayesian inference[END_REF]. The Pitman-Yor process is a discrete probability measure

P(dx) = ∑ i≥1 p i δ ξ i (dx) (2.1)
where (ξ i ) i≥1 are iid random variables with common distribution P 0 on a Polish space X , and (p i ) i≥1 are random frequencies, i.e. p i ≥ 0 and ∑ i≥1 p i = 1, independent of (ξ i ) i≥1 . The distribution of the frequencies of the Pitman-Yor process is known in the literature as the two-parameter Poisson-Dirichlet distribution. Its distinctive property is that the frequencies in size-biased order, that is the random arrangement in the order of appearance in a simple random sampling without replacement, admit the stick-breaking representation, or residual allocation model,

p i d = V i i-1 ∏ j=1 (1 -V j ), V j ind ∼ beta(1 -α, θ + jα) (2.2)
for 0 ≤ α < 1 and θ > -α, see [START_REF] Pitman | The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator[END_REF]. By setting α = 0 one recovers the Dirichlet process of [START_REF] Ferguson | A Bayesian analysis of some nonparametric problems[END_REF]. Representation (2.2) turns out very useful in devising finite support approximation to the Pitman-Yor process obtained by truncating the summation in (2.1). A general method consists in setting the truncation level n by replacing

p n+1 with 1 -(p 1 + • • • + p n ) in (2.1).
The key quantity is the truncation error of the infinite summation (2.1),

R n = ∑ i>n p i = ∏ j≤n (1 -V j ), (2.3) 
since the resulting truncated process, say P n (•), will be close to P(•) according to |P(A) -P n (A)| ≤ R n for any measurable A ⊂ X . It is then important to study the distribution of the truncation error R n as n gets large in order to control the approximation error. [START_REF] Ishwaran | Gibbs sampling methods for stick-breaking priors[END_REF] proposes to determine the truncation level based on the moments of R n . Cf. also [START_REF] Ishwaran | Exact and approximate sum representations for the Dirichlet process[END_REF][START_REF] Gelfand | A computational approach for full nonparametric Bayesian inference under Dirichlet process mixture models[END_REF]. In this paper we propose and investigate a random truncation by setting n such that R n is smaller than a predetermined value ∈ (0, 1) with probability one. Specifically, we define

τ( ) = min{n ≥ 1 : R n < } (2.4)
as the stopping time of the multiplicative process (R n ) n≥1 and, following Section 4.3.3 of [START_REF] Ghosal | Fundamentals of nonparametric Bayesian inference[END_REF], we call -Pitman-Yor ( -PY) process the Pitman-Yor process truncated at n = τ( ), namely

P (dx) = τ( ) ∑ i=1 p i δ ξ i (dx) + R τ( ) δ ξ 0 (dx), (2.5) 
where ξ 0 has distribution P 0 , independent of the sequences (p i ) i≥1 and (ξ i ) i≥1 . By construction, P is the finite stick-breaking approximation to P with the smallest number of support points given a predetermined approximation level. In fact τ( ) controls the error of approximation according to the total variation bound

d TV (P , P) = sup A⊂X |P(A) -P (A)| ≤ (2.6)
almost surely (a.s.). As such, it also guarantees the almost sure convergence of measurable functionals of P by the corresponding functionals of P as → 0, cf. Proposition 4.20 of [START_REF] Ghosal | Fundamentals of nonparametric Bayesian inference[END_REF]. A typical application is in Bayesian nonparametric inference on mixture models where the Pitman-Yor process is used as prior distribution on the mixing measure. The approximation P can be applied to the posterior distribution given the latent variables, cf. Section 2.1.2 for details. In the Dirichlet process case, P has been studied by [START_REF] Muliere | Approximating distributions of random functionals of ferguson-dirichlet priors[END_REF]. In this setting τ( ) -1 is Poisson distributed with parameter θ log 1/ , which makes an exact sampling of the -approximation (2.5) feasible. This has been implemented in the highly popular R software DPpackage, see [START_REF] Jara | Applied Bayesian non-and semi-parametric inference using DPpackage. SpherWave: An R Package for Analyzing Scattered Spherical Data by Spherical Wavelets[END_REF], to draw posterior inference on the random effect distribution of linear and generalized linear mixed effect model. Finally, in [2] a different type of finite dimensional truncation of the Pitman-Yor process based on decreasing frequencies has been proposed, see Section 2.1.5 for a discussion.

The main theoretical contribution of this paper is the derivation of the asymptotic distribution of τ( ) as → 0 for α > 0. As (2.4) suggests, the asymptotic distribution of τ( ) is related to that of R n in (2.3) as n → ∞. According to [START_REF] Pitman | Combinatorial stochastic processes[END_REF]Lemma 3.11], the latter involves a polynomially tilted stable random variable T α,θ , see Section 2.1.2 for a formal definition. The main idea is to work with T n =log R n so to deal with sums of the independent random variables 

Y i = -log(1 -V i ).
( T α,θ /α) -α/(1-α) as → 0.
The form of the asymptotic distribution reveals how large the truncation point τ( ) is as gets small in terms of the model parameters α and θ. In particular, it highlights the power law behavior of τ( ) as → 0, namely the growth at the polynomial rate 1/ α/(1-α) compared to the slower logarithmic rate θ log 1/ in the Dirichlet process case. This is further illustrated by a simulation study in which we generate from the asymptotic distribution of τ( ) by using Zolotarev's integral representation of the positive stable distribution as in [START_REF] Devroye | Random variate generation for exponentially and polynomially tilted stable distributions[END_REF]. As far as the simulation of the -PY process is concerned, exact sampling is feasible by implementing the stopping rule in (2.4), that is by simulating the stick breaking frequencies p j until the error R n crosses the approximation level . As this can be computationally expensive when is small, as an alternative we propose to use the asymptotic distribution of τ( ) by simulating the truncation point first, then run the stick breaking procedure up to that point. It results in an approximate sampler of the -PY process that we compare with the exact sampler in a simulation study involving moments and mean functionals.

The rest of the paper is organized as follows. In Section 2.1.2, we derive the asymptotic distribution of τ( ) and explain how to use it to simulate from the -PY process. Section 2.1.3 reports a simulation study on the distribution of τ( ) and on functionals of the -PY process. In Section 2.1.4, to help the understanding and gain additional insight on the asymptotic distribution, we highlight the connections of τ( ) with Pitman's theory on random partition structures. We conclude with a discussion of open problems in Section 2.1.5. The details of Devroye's algorithm for generating from a polynomially tilted positive stable random variable are given in Section 2.1.6.

Theory and algorithms

Asymptotic distribution of τ( )

In this section we derive the asymptotic distribution of the stopping time τ( ) and show how to simulate from it. We start by introducing the renewal process interpretation which is crucial for the asymptotic results. As explained in the previous section, in order to study the distribution of τ( ) it is convenient to work with the log transformation of the truncation error R n in (2.3), that is

T n = n ∑ i=1 Y i , Y i = -log(1 -V i ), (2.7) 
with V j ind ∼ beta(1α, θ + jα) as in (2.2). Being a sum of independent and nonnegative random variables, (T n ) n≥1 takes the interpretation of a (generalized) renewal process with independent waiting times Y i . For t ≥ 0 define

N(t) = max{n : T n ≤ t}, (2.8) 
to be the renewal counting process associated to (T n ) n≥1 , which is related to τ( ) via τ( ) = N(log 1/ ) + 1. Classical renewal theory pertains to iid waiting times while here there is no identity in distribution unless α = 0, i.e. the Dirichlet process case.

In the latter setting, one gets Y i iid ∼ Exp(θ) so that T n has gamma distribution with scale parameter n. We immediately get from the relation {T n ≤ t} = {N(t) ≥ n} that N(t) ∼ Pois(θt) and, in turn, that τ( ) -1 has Pois(θ log(1/ )) distribution. As far as asymptotics is concerned, T n satisfies the CLT with (T nn/θ)/( √ n/θ) → d Z where Z ∼ N(0, 1). The asymptotic distribution of N(t) can be obtained via Ascombe theorem, cf. [START_REF] Gut | Probability : a graduate course[END_REF]Theorem 7.4

.1], to get (N(t) -θt)/( √ θt) → d Z, as t → ∞,
in accordance with the standard normal approximation of the Poisson distribution with large rate parameter.

In the general Pitman-Yor case α > 0, the waiting times Y i are no more identically distributed. More importantly, generalizations of the CLT such as the Lindeberg-Feller theorem do not apply for T n , hence we cannot resort to Anscombe's theorem to derive the asymptotic distribution of N(t) and, in turn, of τ( ). Nevertheless, the limit exists but is not normal as stated in Theorem 2.1.1 below. To this aim, let T α be a positive stable random variable with exponent α, that is E(e -sT α ) = e -s α , and denote its density by f α (t). A polynomially tilted version of T α is defined as the random variable T α,θ with density proportional to t -θ f α (t), that is

f α,θ (t) = Γ(θ + 1) Γ(θ/α + 1) t -θ f α (t), t > 0.
(2.9)

The random variable T α,θ is of paramount importance in the theory of random partition structures associated to the frequency distribution of the Pitman-Yor process, see Section 2.1.4 for details. In particular, the convergence of R n can be expressed in terms of T α,θ . In Theorem 2.1.1 the a.s. limit of log 

N(t) as t → ∞ is obtained from that of T n = -log R n as n → ∞ by showing that N(t) → ∞ a.s.
{T n ≤ t} = {N(t) ≥ n}. (2.10) Since N(T n ) = n, we have T N(t) = T n when t = T n , thus 0 = t -T N(t) for t = T n . Moreover, since N(t) is increasing, when T n < t < T n+1 , N(T n ) < N(t) < N(t) + 1, hence T N(t) < t < T N(t)+1 , i.e. 0 < t -T N(t) < T N(t)+1 -T N(t) = Y N(t)+1
. Together the two relations above yield

0 ≤ t -T N(t) < Y N(t)+1 . (2.11)
From Lemma 3.11 of [START_REF] Pitman | Combinatorial stochastic processes[END_REF] and an application of the continuous mapping theorem [see Theorem 10.1 in 151] the asymptotic distribution of T n is obtained as

T n -(1/α -1) log n + log α → a.s. log T α,θ as n → ∞.
Now we would like to take the limit with respect to n = N(t) as t → ∞, that is apply the law of large numbers for randomly indexed sequence [see Theorem 6.8.1 in 151]. To this aim, we first need to prove that N(t) → a.s. ∞ as t → ∞. Since N(t) is non decreasing, by an application of Theorem 5.3.5 in [START_REF] Gut | Probability : a graduate course[END_REF], it is sufficient to prove that N(t) → ∞ in probability as t → ∞, that is P(N(t) ≥ n) → 1 as t → ∞ for any n ∈ N. But this is an immediate consequence of the inversion formula (2.10). We have then established that

T N(t) -(1/α -1) log N(t) + log α → a.s. log T α,θ as t → ∞.
To conclude the proof, we need to replace T N(t) with t in the limit above. Note that, from (2.11), |t -T N(t) | ≤ Y N(t)+1 so it is sufficient to show that the upper bound goes to zero a.s.. Actually, by a second application of Theorem 6.8.1 in [START_REF] Gut | Probability : a graduate course[END_REF] it is sufficient to show that Y n → a.s. 0 as n → ∞. This last result is established as follows. Recall that

Y j = -log(1 -V j ) for V j ind ∼ beta(1 -α, θ + jα). For > 0, P(1 -V n < e -) = e - 0 Γ(θ + nα + 1 -α) Γ(θ + nα)Γ(1 -α) v θ+nα-1 (1 -v) -α dx ≤ (1 -e -) -α Γ(1 -α) Γ(θ + nα + 1 -α) Γ(θ + nα) e -(θ+nα) θ + nα = (1 -e -) -α Γ(1 -α) (θ + nα) -α e -(θ+nα) 1 + O 1 θ + nα (2.12)
where in equality (2.12) we have used Euler's formula

Γ(z + α)/Γ(z + β) = z α-β 1 + (α -β)(α + β -1) 2z + O(z -2 )
for z → ∞, see [START_REF] Tricomi | The asymptotic expansion of a ratio of gamma functions[END_REF]. Since P(Y n > ) = P(1 -V n < e -), (2.12) implies that P(Y n > ) is exponentially decreasing in n and, in turn, that

∑ n≥1 P(Y n > ) < ∞.
An application of Borel-Cantelli Lemma yields Y n → a.s. 0 and the proof is complete.

The asymptotic distribution of τ( ) is readily derived from Theorem 2.1.1 via the formula τ( ) = N(log 1/ ) + 1 and an application of the continuous mapping theorem. The proof is omitted. Theorem 2.1.2. Let τ( ) be defined in (2.4) and T α,θ be the random variable with density in (2.9). Then τ( ) -1 ∼ a.s. ( T α,θ /α) -α/(1-α) as → 0.

In order to sample from the asymptotic distribution of τ( ), the key ingredient is random generation from the polynomially tilted stable random variable T α,θ . Following [START_REF] Devroye | Random variate generation for exponentially and polynomially tilted stable distributions[END_REF], we resort to Zolotarev's integral representation, so let A(u) be the Zolotarev function

A(x) = sin(αx) α sin((1 -α)x) 1-α sin(x) 1 1-α , x ∈ [0, π]
and Z α,b , α ∈ (0, 1) and b > -1 be a Zolotarev random variable with density given by

f (x) = Γ(1 + bα)Γ(1 + b(1 -α)) πΓ(1 + b)A(x) b(1-α) , x ∈ [0, π].
According to Theorem 1 of [START_REF] Devroye | Random variate generation for exponentially and polynomially tilted stable distributions[END_REF], for G a a gamma distributed random variable with shape a > 0 and unit rate,

T α,θ d = A(Z α,θ/α ) G 1+θ(1-α)/α 1-α α
so that random variate generation simply requires one gamma random variable and one Zolotarev random variable. For the latter, rejection sampler can be used as detailed in [START_REF] Devroye | Random variate generation for exponentially and polynomially tilted stable distributions[END_REF]. See ALGORITHM 3 in Appendix 2.1.6.

Simulation of the -PY process

Given α, θ, and a probability measure P 0 on X , an -PY process can be generated by implementing the stopping rule in the definition of τ( ), cf. (2.4). The algorithm consists in a while loop as follows:

ALGORITHM 1 (Exact sampler of -PY)

1. set i = 1, R = 1 2. while R ≥ : generate V from beta(1 -α, θ + iα). set p i = VR, R = R(1 -V), i = i + 1 3. set τ = i, R τ = R 4. generate τ + 1 random variates ξ 0 , ξ 1 , . . . , ξ τ from P 0 5. set P (dx) = ∑ τ i=1 p i δ ξ i (dx) + R τ δ ξ 0 (dx)
When is small, the while loop happens to be computationally expensive since conditional evaluations at each iteration slow down computation, and memory allocation for the frequency and location vectors cannot be decided beforehand. In order to avoid these pitfalls and make the algorithm faster, one should generate the stopping time τ( ) first, and the frequencies up to that point later. We propose to exploit the asymptotic distribution of τ( ) in Theorem 2.1.2 as follows: ALGORITHM 2 (Approximate sampler of -PY)

1: generate T d = T α,θ 2: set τ ← 1 + ( T/α) -α/(1-α) 3. for i = 1, . . . , τ: generate V i from beta(1 -α, θ + iα). set p i = V i ∏ i-1 j=1 (1 -V j ) 4. set R τ = 1 -∑ τ i=1 p i = ∏ τ i=1 (1 -V j ) 5: generate τ + 1 random variates ξ 0 , ξ 1 , . . . , ξ τ from P 0 6: set P (dx) = ∑ τ i=1 p i δ ξ i (dx) + Rδ ξ 0 (dx) ALGORITHM 2 is
an approximate sampler of the -PY process (while ALGORITHM 1 is an exact one) since it introduces two sources of approximations. First, through the use of the asymptotic distribution of τ( ). Second, through Step 3 since the V i 's are not generated according to the conditional distribution given τ( ), rather unconditionally. Finding the conditional distribution of V i , or an asymptotic approximation thereof, is not an easy task and is object of current research. In terms of the renewal process interpretation in (2.7)-(2.8), the problem is to generate the waiting times

Y i = -log(1 -V i ), i = 1, . . . , n, from the conditional distribution of the renewal epochs (T 1 , . . . , T n ) given N(t) = n for t = -log 1/ .
A typical use of samples from the Pitman-Yor process we have in mind is in infinite mixture models. In fact, the discrete nature of the Pitman-Yor process makes it a suitable prior on the mixing distribution. ALGORITHM 1 or ALGORITHM 2 can be then applied to approximate a functional of the posterior distribution of the mixing distribution. In such models, the process components can be seen as latent features exhibited by the data. Let P denote such a process, n denote the sample size and X 1:n = (X 1 , . . . , X n ) be an exchangeable sequence from P, that is X 1:n |P iid ∼ P. Variables X 1:n are latent variables in a model conditionally on which observed data Y 1:n come from:

Y j |X j ind ∼ f ( • |X j )
where f denotes a kernel density. Actually, independence is not necessary here and applications also encompass dependent models such as Markov chain transition density estimation. In order to deal with the infinite dimensionality of the process, a strategy is to marginalize it and to draw posterior inference with a marginal sampler. Since draws from a marginal sampler allows to make inference only on posterior expectations of the process, for more general functionals of P, in the form of ψ(P), one typically needs to resort to an additional sampling step. Exploiting the composition rule L(ψ(P)|Y

1:n ) = L(ψ(P)|X 1:n ) × L(X 1:n |Y 1:n )
this additional step boils down to sampling P conditional on latent variables X 1:n . At this stage, recalling the conditional conjugacy of the Pitman-Yor process is useful. Among X 1:n , there are a number k ≤ n of unique values that we denote by X * 1:k . Let n *

1:k denote their frequencies. Then the following identity in distribution holds

P|X 1:n = k ∑ j=1 q j δ X * j + q k+1 P * ,
where, independently, (q 1 , . . . , q k , q k+1 ) ∼ Dirichlet(n * 1α, . . . , n * kα, θ + αk) and P * is a Pitman-Yor process of parameter (α, θ + αk), see Corollary 20 of [? ]. Thus sampling from L(P|X 1:n ), hence from L(ψ(P)|X 1:n ), requires sampling the infinite dimensional P * . Cf. [START_REF] Ishwaran | Gibbs sampling methods for stick-breaking priors[END_REF]Section 4.4]. For the sake of comparison, the conjugacy of the Dirichlet process similarly leads to the need of sampling an infinite dimensional process, where P|X 1:n takes the form of a Dirichlet process. As already noticed, the truncation of the Dirichlet process is very well understood, both theoretically and practically. The popular R package DPpackage [START_REF] Jara | Applied Bayesian non-and semi-parametric inference using DPpackage. SpherWave: An R Package for Analyzing Scattered Spherical Data by Spherical Wavelets[END_REF] makes use of the posterior truncation point τ * ( ), as defined in (2.5), but here with respect to the posterior distribution of the process. Thus, it satisfies τ * ( ) -1 ∼ Pois((θ + n) log(1/ )), where θ + n is the precision of the posterior Dirichlet process. Adopting here similar lines for the Pitman-Yor process, we replace P * by the truncated process

P * P * (dx) = τ * ( ) ∑ i=1 p * i δ ξ i (dx) + R τ * ( ) δ ξ 0 (dx), cf. equation (2.5).
Here (p * i ) i≥1 are defined according to (2.2) with θ + αk in place of θ, i.e. V j ind ∼ beta(1α, θ + α(k + j)). Hence, according to Theorem 2.1.2 we have τ * ( ) -1 ∼ a.s. ( T α,θ+αk /α) -α/(1-α) , as → 0 hence ALGORITHM 2 can be applied here.

Simulation study

Stopping time τ( )

According to Theorem 2.1.2, the asymptotic distribution of τ( ) changes with , α and θ. For illustration, we simulate τ( ) from Steps 1.-2. in ALGORITHM 2 using Devroye's sampler, cf. ALGORITHM 3 in Appendix 2.1.6. In Figure 2.1 we compare density plots obtained with 10 4 iterations with respect to different combinations of , α and θ. The plot in the left panel shows how smaller values of result in larger values of τ( ). In fact, as → 0, τ( ) increases proportional to 1/ α/ (1-α) . Note also that ( T α,θ /α) -α/(1-α) is nonnegative for T α, < α/ , which happens with high probability when is small. As for α, the plot in the central panel shows how τ( ) increases as α gets large. In fact, it is easy to see that ( T α,θ /α) -α/(1-α) is increasing in α when T α, < e 1-α α/ , which also happens with high probability when is small, so the larger α, the more stick-breaking frequencies are needed in order to account for a prescribed approximation error . Finally, the plot in the right panel shows that the larger θ, the larger τ( ). In fact, by definition, the polynomial tilting makes T α,θ stochastically decreasing in θ. In order to illustrate the rate of convergence in Theorem 2.1.2, we compare next the exact distribution of τ( ) with the asymptotic one. To do so, we repeat the following experiment several times: we simulate τ( ) from Steps 1.-3. in ALGORITHM 1, then we compare the empirical distribution of ( /α) α (τ( ) -1) 1-α with T -α α,θ , the latter corresponding to the α-diversity of the PY process, see Section 2.1.4 for a formal definition. In Table 2.1 we report the Kolmogorov distance together with expected value, median, first and third quartiles for both the exact and the asymptotic distribution obtained with 10 4 iterations. This is repeated for α = 0.5, θ = {0, 1, 10} and = {0.10, 0.05, 0.01}. As expected, as we decrease , the Kolmogorov distance gets smaller to somehow different rates according to the parameter choice. The derivation of convergence rates is left for future research. 

Functionals of the -PY process

In the case that P is defined on X ⊆ R, the total variation bound (2.6) implies that |F(x) -F (x)| < almost surely for any x ∈ R, where F and F are the cumulative distribution functions of P and P. Also, measurable functionals ψ(P) such as the mean µ = xP(dx) can be approximated in distribution by the corresponding functionals ψ(P ). For illustration, we set X = [0, 1] and P 0 the uniform distribution on [START_REF]1such that Rahier[END_REF][START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF]. For given α and θ, we then compare the distribution under P with that under the -PY process P for F(1/2), F(1/3) and µ = xP(dx). As for the distribution of the finite dimensional distributions F(1/2) and F(1/3) under the full process P, we set α = 0.5 so to exploit results in [START_REF] James | Poisson process partition calculus with applications to exchangeable models and Bayesian nonparametrics[END_REF]. According to their Proposition 4.7, the finite dimensional distributions of P when α = 0.5 are given by

f (w 1 , . . . , w n-1 ) = (∏ n i=1 p i )Γ(θ + n/2) π (n-1)/2 Γ(θ + 1/2) w -3/2 1 • • • w -3/2 n-1 (1 -∑ n-1 i=1 w i ) -3/2 A n (w 1 , . . . , w n-1 ) θ+n/2 for any partition A 1 , . . . , A n of X with p i = P 0 (A i ) and A n (w 1 , . . . , w n-1 ) = ∑ n-1 i=1 p 2 i w -1 i + p 2 n (1 -∑ n-1 i=1 w i ) -1 . Direct calculation shows that F(1/2) has beta distribution with parameters (θ + 1/2, θ + 1/2) while F(1/3) has density f (w) = 2 √ π 9 θ Γ(θ + 1) Γ(θ + 1/2) (w(1 -w)) θ-1/2 (1 + 3w) θ+1 .
As for the mean functional µ = xP(dx), the distribution under the full process P is approximated by simulations by setting a deterministic truncation point sufficiently large. As for the distribution under P , we use both ALGORITHM 1 and ALGORITHM 2.

In Figure 2.2 we compare the density plots of F(1/2) for = {0, 1.0.05, 0.001} and θ = {0, 10} under P with the beta density under P so to illustrate that the two distributions get close as gets small. As for F(1/3) and µ = xP(dx), in Tables 2 and 2.3 we report the Kolmogorov distance between P and P for the two sampling algorithms, together with expected value, median, first and third quartiles. For each case and each parameter configuration, we have sampled 10 4 trajectories from the -PY process and 10 4 trajectories from the Pitman-Yor process in the case of µ = xP(dx). As expected, the Kolmogorov distances are generally larger, still close, when using ALGORITHM 2 versus ALGORITHM 1 due to the approximate nature of the former.

Computation time

In this section, we provide a concrete justification of the computational advantage of using ALGORITHM 2 versus ALGORITHM 1. We simulate 10 4 -PY iterations by using ALGORITHM 1 and ALGORITHM 2 for different combinations of the α and θ parameters and of the error threshold. In Table 2.4 (resp. Table 2.5), we report the average computing time 1 per iteration (resp. per support point) for ALGORITHM 1 The experiments were conducted on an Intel Core i5 processor (3.1 GHz) computer. 1 and ALGORITHM 2. By iteration, we mean a full realization of the -PY process including frequencies and locations, while by support point, we mean that we divide the total time by the number of support points τ( ) + 1. In order to account for the computational task required per iteration, the expected stopping time E[τ( )] is also reported. Both tables illustrate that our proposed approach is faster than ALGORITHM 1 when the -PY is composed of about 20 support points or more. The more support points, the faster ALGORITHM 2 is compared to ALGORITHM 1. This disadvantage of the former for small numbers of support points comes from the fixed cost of initially generating a random variable with the same distribution as T α,θ . Conversely, as the number of support points increases, this fixed cost is largely counterbalanced by the fast vector-sampling of a prescribed size, which is in contrast with ALGORITHM 1 while loop whose cost increases with the number of support points. This can be seen in Table 2.5 where the actual sampling time per support point is essentially increasing for ALGORITHM 1 and decreasing for ALGORITHM 2.

With the parameter configurations tested, ALGORITHM 2 can be up to 90 times faster ALGORITHM 1 for α = 0.6, θ = 10 and = 0.01. 

Connections with random partition structures α-diversity and asymptotic distribution of R n

The random variable T α,θ in Theorem 2.1.1 plays a key role in the Pitman-Yor process, in particular for its link with the α-diversity of the process. The α-diversity is defined as the almost sure limit of n -α K n where K n denotes the (random) number of unique values in the first n terms of an exchangeable sequence from P in (2.1).

According to Theorem 3.8 in [START_REF] Pitman | Combinatorial stochastic processes[END_REF], n -α K n ∼ a.s. (T α,θ ) -α , in particular, for θ = 0, T -α α has a Mittag-Leffler distribution with p-th moment Γ(p + 1)/Γ(pα + 1), p > -1.

According to [START_REF] Pitman | Combinatorial stochastic processes[END_REF]Lemma 3.11,eqn (3.36)], the asymptotic distribution of the truncation error R n can be derived from that of

K n to get R n ∼ a.s. α(T α,θ ) -1 n 1-1/α as n → ∞.
The proof relies on Kingman's representation of random partitions [START_REF] Kingman | The representation of partition structures[END_REF] together with techniques set forth by [START_REF] Gnedin | Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws[END_REF]. In the proof of Theorem 2.1.1 the asymptotic distribution of T n =log R n is a direct consequence of the above by an application of the continuous mapping theorem.

When θ = 0 it is possible to give an interpretation of the asymptotic distribution of R n in terms of the jumps of a stable subordinator. In this case the weights of P can be represented as the renormalized jumps of a stable subordinator, with T α denoting the total mass. Denote the (unormalized) jumps as (J i ) i≥1 in decreasing order and as ( Ji ) i≥1 when in size-biased order,

T α = ∑ i≥1 J i = ∑ i≥1
Ji , and

T α R n = ∑ i>n Ji .
By the asymptotic distribution of R n , n 1/α-1 ∑ i>n Ji → a.s. α as n → ∞. That is, once properly scaled, the small jumps of the stable subordinator (in size-biased random order), interpreted as the "dust", converge to the "proportion" α. This is reminiscent to the number of singletons which is asymptotically (n → ∞) a α proportion of the number of groups in a sample of size n, see Lemma 3.11, eqn (3.39), of [START_REF] Pitman | Combinatorial stochastic processes[END_REF].

Regenerative random compositions and Anscombe's theorem

We review next the connections of the counting renewal process N(t) defined in (2.7)-(2.8) and the theory of regenerative random compositions. The reader is referred to the survey of [START_REF] Gnedin | A species sampling model with finitely many types[END_REF] for a review. Recall that, when α = 0 (Dirichlet pro-

cess case), V i iid ∼ beta(1, θ) in the stick-breaking representation (2.
2), and in turns

Y i = -log(1 -V i ) iid ∼ Exp(θ) and T n = -log R n ∼ Gamma(n, θ)
. By direct calculus, N(t) ∼ Pois(θt) so that τ( ) -1 = N(log 1/ ) has Pois(θ log 1/ ) distribution. More generally, the stick-breaking frequencies (p i ) i≥1 correspond to the gaps in [START_REF]1such that Rahier[END_REF][START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] identified by the multiplicative regenerative set R ⊂ (0, 1) consisting of the random partial sums 1 -R k = ∑ i≤k p i . The complement open set R c = (0, 1)/R can be represented as a disjoint union of countably many open intervals or gaps,

R c = ∞ k=0 (1 -R k , 1 -R k+1 ), R 0 = 1.
A random composition of the integer n into an ordered sequence κ n = (n 1 , n 2 , . . . , n k ) of positive integers with ∑ j n j = n can be generated as follows: independently of R, sample U 1 , U 2 , . . . from the uniform distribution on [START_REF]1such that Rahier[END_REF][START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] and group them in clusters by the rule: U i , U j belong to the same cluster if they hit the same interval. The random composition of κ n corresponds then to the record of positive counts in the left-to-right order of the intervals. The composition structure (κ n ) is called regenerative since for all n > m ≥ 1, conditionally given the first part of κ n is m, if the part is deleted then the remaining composition of nm is distributed like κ n-m . The regenerative set R corresponds to the closed range of the multiplicative subordinator {1exp(-S t ), t ≥ 0}, where S t is the compound Poisson process with Lévy intensity ν(dy) = θe -θy dy. Since the range of S t is a homogeneous Poisson point process on R + with rate θ, R is an inhomogeneous Poisson point process N (dx) on [START_REF]1such that Rahier[END_REF][START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] with Lévy intensity ν(dx) = θ/(1x)dx so that, for t = log 1/ ,

N(log 1/ ) = N [0, 1 -] ∼ Pois(λ), λ = 1- 0 θ 1 -x dx = θ log 1/
as expected. Suppose now that (V i ) i≥1 are independent copies of some random variable V on [0, 1], not necessarily beta(1, θ) distributed. The corresponding random composition structure has been studied in [START_REF] Gnedin | The bernoulli sieve[END_REF][START_REF] Gnedin | The bernoulli sieve revisited[END_REF] as the outcome of a Bernoulli sieve procedure. We recall here the relevant asymptotic analysis. Let µ = E(log(1 -V)) and σ 2 = Var(-log(1 -V)), equal respectively to 1/θ and 1/θ 2 in the DP case, respectively. If those moments are finite, by the CLT,

T n -nµ √ nσ → d Z, as n → ∞,
where Z ∼ N(0, 1), and, by means of Anscobe's Theorem, one obtains that

N(t) -t/µ σ 2 t/µ 3 → d Z, as t → ∞.
It turns out that the normal limit of N(log n) corresponds to the normal limit of K n ,

K n -log n/µ σ 2 log n/µ 3 → d Z, as n → ∞ provided that E(-log V) < ∞. To see why, consider iid random variables X 1 , X 2 , . . . with values in N such that {X i = k} = {U i ∈ (1 -R k-1 , 1 -R k )}. Hence P(X 1 = k|R) = p k . We then have that K n = #{k : X i = k for at least one i among 1, . . . , n}. Define M n = max{X 1 , . . . , X n }. For U 1,n ≤ U 2,n ≤ . . . ≤ U n,n
denoting the order statistics corresponding to the uniform variates U 1 , . . . , U n , we have

M n = min{j : 1 -R j ≥ U n,n } = min{j : T j ≥ E n,n } upon transformation x → -log(1 -x)
, where E n,n is the maximum of an iid sample of size n from the standard exponential distribution. Since N(t) = max{n :

T n ≤ t} = min{n : T n ≥ t} -1 we have M n -1 = N(E n,n
). [START_REF] Gnedin | The bernoulli sieve revisited[END_REF] proves the equivalence

M n -b n a n → d X ⇐⇒ N(log n) -b n a n → d X
where X is a random variable with a proper and non degenerate distribution with a n > 0, a n → ∞ and b n ∈ R. A key fact exploited in the proof is that, from extremevalue theory, E n,nlog n has an asymptotic distribution of Gumbel type. That M n can be replaced by K n in the equivalence relation above follows from the fact that M n -K n , the number of integers k < M n not appearing in the sample X 1 , . . . , X n , is bounded in probability when E(log V) < ∞, see Proposition 5.1 in [START_REF] Gnedin | The bernoulli sieve revisited[END_REF].

Back to the Pitman-Yor process case, by Theorem 2.1.1 we have n

-α/(1-α) N(log n) → d (T α,θ /α) -α/(1-α) while n -α K n → a.s. (T α,θ ) -α
. So we see that N(log n) and K n do not have the same asymptotic behavior as in the α = 0 case. By using the fact that

P(X 1 > n|(p i )) = R n , R n ∼ a.s. αn -(1-α)/α T -1 α,θ ,
and the fact that, conditional on (p i ) i≥1 , M n belongs to the domain of attraction of Fréchet distribution, [269, Theorem 6.1] establishes that

P(M n ≤ xn α/(1-α) ) → E exp -αT -1 α,θ x -(1-α)/α
so we see that N(log n) and M n do not have the same asymptotic behavior as in the α = 0 case, although they share the same growth rate n α/ (1-α) . Finally, the non correspondence of the asymptotic distribution of M n and K n suggests that the behavior of M n -K n is radically different with respect to the α = 0 case.

Discussion

In this paper we have studied stochastic approximations of the Pitman-Yor process consisting in the truncation of the sequence of stick-breaking frequencies at a random stopping time τ( ) that controls the accuracy of the approximation in the total variation distance by . We name this finite dimensional approximation the -Pitman-Yor process. We have derived the asymptotic distribution of τ( ) as goes to zero and we have advanced its use to devise a sampling scheme that generates the stopping time first, and then the frequencies up to that point. The simulations in Section 2.1.3 show that the proposed sampler proves computationally very efficient in the moderate to large stopping time regime (for approximately τ( ) ≥ 20). The asymptotic distribution illustrates how large the stopping time is as the approximation error gets small in terms of the prior parameters θ and α. In particular, it shows that the distribution of τ( ) in the Dirichlet process case is not recovered in the limit α → 0 in Theorem 2.1.2. In fact, in the Dirichlet process case τ( ) grows at a logarithmic rate in 1/ while in Pitman-Yor case it grows at the polynomial rate α/ (1-α) and the first regime is not recovered by letting α approach 0 in the second regime. We have also drawn important connections with the theory of random partition structures developed by Jim Pitman and coauthors which highlight the relationship of the the stopping time τ( ) with the number K n of unique values in a sample of size n from the Pitman-Yor process.

We have left as open problem for future research the study of the conditional distribution of the stick-breaking frequencies given the stopping time. In the Dirichlet process case one can exploit the renewal process interpretation to generate exactly from this conditional distribution. In fact, when α = 0, the sequence (log R n ) n≥1 corresponds to the jump times of a Poisson process and the conditional distribution of the jumps given the number of jumps at time t can be described in terms of the ordered statistics of i.i.d. uniform random variates on (0, t). The case α > 0 does not seem to be easily tractable, as it would be if the counting process associated to τ( ) were a mixed sample process or, equivalently, a Cox process, cf. Section 6.3 in [START_REF] Grandell | Mixed Poisson Processes[END_REF].

It would be also interesting to compare the accuracy of our finite dimensional approximation of the Pitman-Yor process to the one proposed in [2]. The latter is based on a representation of the frequencies in decreasing order, cf. [Proposition 22 270]. [2] compare the accuracy of their approximation scheme to a stick-breaking truncation at a number n of stick-breaking frequencies that matches the number of frequencies used in their scheme. Not surprisingly, their approximation is superior since it generates weights in decreasing order, specially when α is large. In contrast, Theorem 2.1.2 describes precisely how large the truncation threshold n should be as α gets large for a given approximation level , cf. the center panel of Figure 2.1.

It also underlines that the approximation deteriorates for fixed n and increasing α, which is coherent with the findings in [2]. A fair comparison with their approach can only be done for a given nominal approximation error, but unfortunately the authors did not provide a precise assessment of it. The number of stick-breaking frequencies needed to match the approximation accuracy of [2] would be de facto larger due to the non monotonicity. However, since the stopping rule (2.4) adapts to the size of α, we do not expect the accuracy of our approximation scheme to deteriorate for α large. As for computation time, the techniques used by [2] in order to obtain decreasing frequencies are computational heavy. Their average computing time for α = 0.5 is about 2.30 seconds/iteration with 10 4 locations. This amounts to 0.23 milliseconds/support point, which is 1000 times slower than the computing time for our Algorithm 2 in the parameter configuration α = 0.5, θ = 10 and = 0.01, equal to 0.23 microsecond/support point. It would be interesting to investigate what are the consequences in terms of computation time per iteration for a given approximation error.

Appendix: Random generation of T α,θ

Let Y be a standard Exp(1) random variable. Note that

P((Y/T α ) α > x) = ∞ 0 P(Y > x 1/α t) f α (t)dt = ∞ 0 exp[-x 1/α t] f α (t)dt = E e -x 1/α T α = e -x = P(Y > x) so we have Y = d (Y/T α ) α . For r < α, E(Y -r/α ) < ∞, so we find that E(Y -r/α ) = E(T r α )E(Y -r ) and E(T r α ) = E(Y -r/α ) E(Y -r ) = Γ(1 -r/α) Γ(1 -r) . ( 2 

.13)

The normalizing constant in

f α,θ (t) is ∞ 0 t -θ f α (t)dt = E(T -θ α )
, so set r = -θ and note that -θ < α. Let G a be a gamma random variable with shape a > 0 and unit rate. Simple moment comparisons using (2.13) yield the distributional equality

G 1+θ/α d = (G 1+θ /T α,θ ) α ,
which, however, does not provide a way to generate from T α,θ . For this we resort to [START_REF] Devroye | Random variate generation for exponentially and polynomially tilted stable distributions[END_REF]. First we recall how to generate a Zolotarev random variable Z α,b for α ∈ (0, 1) and b = θ/α > -1. Let

C = Γ(1 + bα)Γ(1 + b(1 -α)) πΓ(1 + b)
and

B(u) = A(u) -(1-α) = sin(u) sin(αu) α sin((1 -α)u) 1-α .
A simple asymptotic argument yields the value B(0

) = α -α (1 -α) -(1-α) . Then f (x) = C B(x) b , 0 ≤ x ≤ π. The following bound holds f (x) ≤ CB(0) b e -x 2 2σ 2 , with σ 2 = 1 bα(1 -α) .
This Gaussian upper bound suggests a simple rejection sampler for sampling Zolotarev random variates. Following [START_REF] Devroye | Random variate generation for exponentially and polynomially tilted stable distributions[END_REF], it is most efficient to adapt the sampler to the value of σ. If σ ≥ √ 2π, rejection from a uniform random variate is best. Otherwise, use a normal dominating curve as suggested in the bound above. The details are given below.

ALGORITHM 3 (Sampler of T α,θ )

1. set b = θ/α and σ = bα(1 -α) 2. if σ ≥ √ 2π: then repeat: generate U ∼ Unif(0, π) and V ∼ Unif(0, 1). set X ← U, W ← B(X). until V ≤ (W/B(0)) b else repeat: generate N ∼ N(0, 1) and V ∼ Unif(, 1). set X ← σ|N|, W ← B(X). until X ≤ π and Ve -N 2 /2 ≤ (W/B(0)) b 3. generate G d = G 1+b(1-α)/α 4. set T ← 1/(WG 1-α ) 1/α 5. return T

Truncation-based approximations: normalized random measures 2.2.1 Introduction

Independent increment processes or, more generally, completely random measures (CRMs) are ubiquitous in modern stochastic modeling and inference. They form the basic building block of countless popular models in, e.g., Finance, Biology, Reliability, Survival Analysis. Within Bayesian nonparametric statistics they play a pivotal role. The Dirichlet process, the cornerstone of the discipline introduced in [START_REF] Ferguson | A Bayesian analysis of some nonparametric problems[END_REF], can be obtained as normalization or exponentiation of suitable CRMs [see 118]. Moreover, as shown in [START_REF] Lijoi | Models beyond the Dirichlet process[END_REF], CRMs can be seen as the unifying concept of a wide variety of Bayesian nonparametric models. See also [START_REF] Jordan | Hierarchical models, nested models and completely random measures[END_REF]. The concrete implementation of models based on CRMs often requires to simulate their realizations. Given they are discrete infinite objects, ∑ i≥1 J i δ Z i , some kind of truncation is required, producing an approximation error ∑ i≥M+1 J i δ Z i . Among the various representations useful for simulating realizations of CRMs the method due to [START_REF] Ferguson | A representation of independent increment processes without gaussian components[END_REF] and popularized by [START_REF] Walker | Miscellanea. Representations of Lévy processes without Gaussian components[END_REF] stands out in that, for each realization, the weights J i 's are sampled in decreasing order. This clearly implies that for a given truncation level M the approximation error over the whole sample space is minimized. The appealing feature of decreasing jumps has lead to a huge literature exploiting the Ferguson & Klass algorithm. Limiting ourselves to recall contributions within Bayesian Nonparametrics we mention, among others, [START_REF] Argiento | A blocked Gibbs sampler for NGGmixture models via a priori truncation[END_REF][START_REF] Barrios | Modeling with normalized random measure mixture models[END_REF][START_REF] Blasi | A class of neutral to the right priors induced by superposition of beta processes[END_REF][START_REF] Epifani | Exponential functionals and means of neutral-to-the-right priors[END_REF][START_REF] Griffin | Posterior simulation of normalized random measure mixtures[END_REF][START_REF] Griffin | An adaptive truncation method for inference in Bayesian nonparametric models[END_REF][START_REF] Nieto-Barajas | Markov Beta and Gamma Processes for Modelling Hazard Rates[END_REF][START_REF] Nieto-Barajas | Normalized random measures driven by increasing additive processes[END_REF][START_REF] Nieto-Barajas | Bayesian nonparametric survival analysis driven by Lévy driven Markov processes[END_REF][START_REF] Nieto-Barajas | A sensitivity analysis for Bayesian nonparametric density estimators[END_REF][START_REF] Nieto-Barajas | Bayesian semiparametric analysis of short-and long-term hazard ratios with covariates[END_REF]. General references dealing with the simulation of Lévy processes include [START_REF] Rosi | Series representations of Lévy processes from the perspective of point processes[END_REF] and [START_REF] Cont | Financial modelling with jump processes[END_REF], who review the Ferguson & Klass algorithm and the compound Poisson process approximation to a Lévy process.

However, the assessment of the quality of the approximation due to the truncation for general CRMs is limited to some heuristic criteria. For instance, [START_REF] Barrios | Modeling with normalized random measure mixture models[END_REF] implement the Ferguson & Klass algorithm for mixture models by using the so called relative error index. The corresponding stopping rule prescribes to truncate when the relative size of an additional jump is below a pre-specified fraction of the sum of sampled jumps. The inherent drawbacks of such a procedure and related heuristic thresholdtype procedures employed in the several of the above references is two-fold. On the one hand the threshold is clearly arbitrary without quantifying the total mass of the ignored jumps. On the other hand the total mass of the jumps beyond the threshold, i.e. the approximation error, can be very different for different CRMs or, even, for the same CRM with different parameter values; this implies that the same threshold can produce very different approximation errors in different situations.

Starting from similar concerns about the quality of the approximation, the recent paper by [START_REF] Griffin | An adaptive truncation method for inference in Bayesian nonparametric models[END_REF] adopts an algorithmic approach and proposes an adaptive truncation sampler based on sequential Monte Carlo for infinite mixture models based on normalized random measures and on stick-breaking priors. The measure of discrepancy that is used in order to assess the convergence of the sampler is based on the effective sample size (ESS) calculated over the set of particles: the algorithm is run until the absolute value of the difference between two consecutive ESS gets under a pre-specified threshold. Also motivated by the same concerns, [START_REF] Argiento | A blocked Gibbs sampler for NGGmixture models via a priori truncation[END_REF][START_REF] Argiento | Posterior sampling from εapproximation of normalized completely random measure mixtures[END_REF] adopt an interesting approach to circumvent the problem of truncation by changing the model in the sense of replacing the CRM part of their model with a Poisson process approximation, which having an (almost surely) finite number of jumps can be sampled exactly. However, this leaves the question of the determination of the quality of approximation for truncated CRMs open. Another line of research, originated by [START_REF] Ishwaran | Gibbs sampling methods for stick-breaking priors[END_REF], is dedicated to validating the trajectories from the point of view of the marginal density of the observations in mixture models. In this context, the quality of the approximation is measured by the L 1 distance between the marginal densities under truncated and non-truncated priors. Recent interesting contributions in this direction include bounds for a Ferguson & Klass representation of the beta process [START_REF] Doshi | Variational inference for the indian buffet process[END_REF] and bounds for the beta process, the Dirichlet process as well as for arbitrary CRMs in a size biased representation [START_REF] Paisley | Stick-breaking beta processes and the poisson process[END_REF][START_REF] Campbell | Truncated random measures[END_REF].

This paper faces the problem by a simple yet effective idea. In contrast to the above strategies, our approach takes all jumps of the CRMs into account and hence leads to select truncation levels in a principled way, which vary according to the type of CRM and its parameters. The idea is as follows: given moments of CRMs are simple to compute, one can quantify the quality of the approximation by evaluating some measure of discrepancy between the actual moments of the CRM at issue (which involve all its jumps) and the "empirical" moments, i.e. the moments computed based on the truncated sampled realizations of the CRM. By imposing such a measure of discrepancy not to exceed a given threshold and selecting the truncation level M large enough to achieve the desired bound, one then obtains a set of "validated" realizations of the CRM, or, in other terms, satisfying a moment-matching criterion.

An important point to stress is that our validation criterion is all-purpose in spirit since it aims at validating the CRM samples themselves rather than samples of a transformation of the CRM. Clearly the latter type of validation would be ad hoc, since it would depend on the specific model. For instance, with the very same set of moment-matching realizations of a gamma process, one could obtain a set of realizations of the Dirichlet process via normalization and a set gamma mixture hazards by combination with a suitable kernel. Moreover, given moments of transformed CRMs are typically challenging to derive, a moment-matching strategy would not be possible in most cases. Hence, while the quantification of the approximation error does not automatically translate to transformed CRMs, one can still be confident that the moment-matching output at the CRM level produces good approximations. That this is indeed the case is explicitly shown in some practical examples both for prior and posterior quantities in Section 2.2.3.

Ferguson and Klass algorithm for completely random measures Definition and main properties

Let M X be the set of boundedly finite measures on X, which means that if µ ∈ M X then µ(A) < ∞ for any bounded set A. X is assumed to be a complete and separable metric space and both X and M X are equipped with the corresponding Borel σalgebras. See [START_REF] Daley | An introduction to the theory of point processes[END_REF] for details. Definition 2.2.1. A random element μ, defined on (Ω, F , P) and taking values in M X , is called a completely random measure (CRM) if, for any collection of pairwise disjoint sets A 1 , . . . , A n in X, the random variables μ(A 1 ), . . . , μ(A n ) are mutually independent.

An important feature is that a CRM μ selects (almost surely) discrete measures and hence can be represented as

μ = ∑ i≥1 J i δ Z i (2.14)
where the jumps J i 's and locations Z i 's are random and independent. In (2.14) and throughout we assume there are no fixed points of discontinuity a priori. The main technical tool for dealing with CRMs is given by their Laplace transform, which admits a simple structural form known as Lévy-Khintchine representation. In fact, the Laplace transform of μ(A), for any A in X, is given by

L A (u) = E e -λ μ(A) = exp - R + ×A 1 -e -λv ν(dv, dx) (2.15) 
for any λ > 0. The measure ν is known as Lévy intensity and uniquely characterizes μ. In particular, there corresponds a unique CRM μ to any measure ν on R + × X satisfying the integrability condition

B R + min{v, 1}ν(dv, dx) < ∞ (2.16)
for any bounded B in X. From an operational point of view this is extremely useful, since a single measure ν encodes all the information about the jumps J i 's and the locations Z i 's. The measure ν will be conveniently rewritten as

ν(dv, dx) = ρ(dv|x)α(dx), (2.17)
where ρ is a transition kernel on R + × X controlling the jump intensity and α is a measure on X determining the locations of the jumps. If ρ does not depend on x, the CRM is said homogeneous, otherwise it is non-homogeneous.

We now introduce two popular examples of CRMs that we will serve as illustrations throughout the paper. Example 2.2.1. The generalized gamma process introduced by [START_REF] Brix | Generalized gamma measures and shot-noise Cox processes[END_REF] is characterized by a Lévy intensity of the form

ν(v . , x . ) = e -θv Γ(1 -γ)v 1+γ v . α(x . ), (2.18) 
whose parameters θ ≥ 0 and γ ∈ [0, 1) are such that at least one of them is strictly positive. Notable special cases are: (i) the gamma CRM which is obtained by setting γ = 0; (ii) the inverse-Gaussian CRM, which arises by fixing γ = 0.5; (iii) the stable CRM which corresponds to θ = 0. Moreover, such a CRM stands out for its analytical tractability. In the following we work with θ = 1, a choice which excludes the stable CRM. This is justified in our setting because the moments of the stable process do not exist. See Remark 2.2.1. Example 2.2.2. The stable-beta process, or three-parameter beta process, was defined by [START_REF] Teh | Indian buffet processes with power-law behavior[END_REF] as an extension of the beta process [START_REF] Hjort | Nonparametric bayes estimators based on beta processes in models for life history data[END_REF]. Its jump sizes are upper-bounded by 1 and its Lévy intensity on [0, 1] × X is given by

ν(v . , x . ) = Γ(c + 1) Γ(1 -σ)Γ(c + σ) v -σ-1 (1 -v) c+σ-1 v . α(x . ), (2.19) 
where σ ∈ [0, 1) is termed discount parameter and c > -σ concentration parameter. When σ = 0, the stable-beta process reduces to the beta CRM of [START_REF] Hjort | Nonparametric bayes estimators based on beta processes in models for life history data[END_REF]. Moreover, if c = 1σ, it boils down to a stable CRM where the jumps larger than 1 are discarded.

Moments of a CRM

For any measurable set A of X, the n-th (raw) moment of μ(A) is defined by

m n (A) = E μn (A) .
In the sequel the multinomial coefficient is denoted by

( n k 1 •••k n ) = n! k 1 !...k n ! .
In the next proposition we collect known results about moments of CRMs which are crucial for our methodology. Proposition 2.2.1. Let μ be a CRM with Lévy intensity ν(v . , x . ). Then the i-th cumulant of μ(A), denoted by κ i (A), is given by

κ i (A) = R + ×A v i ν(v . , x . ),
which, in the homogeneous case ν(v . , x . ) = ρ(v . )α(x . ), simplifies to

κ i (A) = α(A) ∞ 0 v i ρ(v . ).
The n-th moment of μ(A) is given by

m n (A) = ∑ ( * ) ( n k 1 •••kn ) n ∏ i=1 κ i (A)/i! k i ,
where the sum ( * ) is over all n-tuples of nonnegative integers (k 1 , . . . ,

k n ) satisfying the constraint k 1 + 2k 2 + • • • + nk n = n.
In the following we focus on (almost surely) finite CRMs i.e. μ(X) < ∞. This is motivated by the fact that most Bayesian nonparametric models, but also models in other application areas, involve finite CRMs. Hence, we assume that the measure α in (2.16) is finite i.e. α(X) := a ∈ (0, ∞). This is a sufficient condition for μ(X) < ∞ in the non-homogeneous case and also necessary in the homogeneous case [see e.g. 282]. A common useful parametrization of α is then given as aP * with P * a probability measure and a a finite constant. Note that, if μ(X) = ∞, one could still

CRM Cumulants Moments

κ i m 1 m 2 m 3 m 4 G a(i -1)! a a (2) a (3) a (4) IG a(1/2) (i-1) a a 2 + 1 2 a a 3 + 3 2 a 2 a 4 + 3a 3 + 3 4 a + 15 4 a 2 + 15 8 a GG a(1 -γ) (i-1) a a 2 + a(1-γ) a 3 + 3a 2 (1-γ) a 4 + 6a 3 (1-γ) +a(1-γ) (2) +a 2 (1-γ)(11-7γ) + a(1-γ) (3) B a (i-1)! (c+1) (i-1) a a 2 + a c+1 a 3 + 3a 2 c+1 a 4 + 6a 3 c+1 + 8a 2 (c+1) (2) + 2a (c+1) (2) + 3a 2 (c+1) 2 + 6a (c+1) (3) SB a (1-σ) (i-1) (c+1) (i-1) a a 2 + a 1-σ c+1 a 3 + 3a 2 1-σ c+1 a 4 + 6a 3 1-σ c+1 + 4a 2 (1-σ) (2) (c+1) (2) +a (1-σ) (2) (c+1) (2) +3a 2 (1-σ) 2 (c+1) 2 + a (1-σ) (3) (c+1) (3)
TABLE 2.6: Cumulants and first four moments of the random total mass μ(X) for the gamma (G), inverse-Gaussian (IG), generalized gamma (GG), beta (B) and stable-beta (SB) CRMs.

identify a bounded set of interest A and the whole following analysis carries over by replacing μ(X) with μ(A).

As we shall see in Section 2.2.2, the key quantity for evaluating the truncation error is given by the random total mass of the CRM, μ(X). Proposition 2.2.1 shows how the moments m n = m n (X) can be obtained from the cumulants κ i = κ i (X) and, in particular, the relations between the first four moments and the cumulants are

m 1 = κ 1 , m 2 = κ 2 1 + κ 2 , m 3 = κ 3 1 + 3κ 1 κ 2 + κ 3 , m 4 = κ 4 1 + 6κ 2 1 κ 2 + 4κ 1 κ 3 + 3κ 2 2 + κ 4 .
With reference to the two examples considered in Section 2.2.2, in both cases the expected value of μ(X) is a, which explains the typical terminology total mass parameter attributed to a. For the generalized gamma CRM the variance is given by Var( μ(X)) = a(1γ), which shows how the parameter γ affects the variability. Moreover,

κ i = a(1 -γ) (i-1) with x (k) = x(x + 1) . . . (x + k -1)
denoting the ascending factorial. As for the stable-beta CRM, we have Var( μ(X)) = a 1-σ c+1 with both discount and concentration parameter affecting the variability, and also

κ i = a (1-σ) (i-1) (1+c) (i-1)
. Table 2.6 summarizes the cumulants κ i and moments m n for the random total mass μ(X) for the generalized gamma (assuming as in Example 2.2.1 θ = 1), stable-beta CRMs and some of their special cases. Remark 2.2.1. The stable CRM, which can be derived from the generalized gamma CRM by setting θ = 0, does not admit moments. Hence, it cannot be included in our moment-matching methodology. However, the stable CRM with jumps larger than 1 discarded, derived from the stable-beta process by setting c = 1σ, has all moments. Moreover, even when working with the standard stable CRM, posterior quantities typically involve an exponential updating of the Lévy intensity [see 213], which makes the corresponding moments finite. This then allows to apply the moment matching methodology to the posterior.

Ferguson & Klass algorithm

For notational simplicity we present the Ferguson & Klass algorithm for the case X = R. However, note that it can be readily extended to more general Euclidean spaces [see e.g. 257]. Given a CRM

μ = ∞ ∑ i=1 J i δ Z i , (2.20) 
the Ferguson & Klass representation consists in expressing random jumps J i occurring at random locations Z i in terms of the underlying Lévy intensity.

In particular, the random locations Z i , conditional on the jump sizes J i , are obtained from the distribution function F Z i |J i given by

F Z i |J i (s) = ν(dJ i , (-∞, s]) ν(dJ i , R) .
In the case of a homogeneous CRM with Lévy intensity ν(v . , x . ) = ρ(v . ) aP * (x . ), the jumps are independent of the locations and, therefore F Z i |J i = F Z i implying that the locations are i.i.d. samples from P * .

As far as the random jumps are concerned, the representation produces them in decreasing order, that is, J 1 ≥ J 2 ≥ • • • . Indeed, they are obtained as ∼ Exp(1). Therefore, the J i 's are obtained by solving the equations ξ i = N(J i ). In general, this is achieved by numerical integration, e.g., relying on quadrature methods [see, e.g. 68]. For specific choices of the CRM, it is possible to make the equations explicit or at least straightforward to evaluate. For instance, if μ is a generalized gamma process (see Example 2.2.1), the function N takes the form

ξ i = N(J i ), where N(v) = ν([v, ∞),
N(v) = a Γ(1 -γ) ∞ v e -u u -(1+γ) u . = a Γ(1 -γ) Γ(v; -γ), (2.21) 
with Γ( • ; • ) indicating an incomplete gamma function. If μ is the stable-beta process, one has 

N(v) = a Γ(c + 1) Γ(1 -σ)Γ(c + σ) 1 v u -σ-1 (1 -u) c+σ-1 u . = a Γ(c + 1) Γ(1 -σ)Γ(c + σ) B(1 -v; c + σ, -σ),
ξ i ∼ PP for i = 1, . . . , M 2: Define J i = N -1 (ξ i ) for i = 1, . . . , M 3: Sample Z i ∼ P * for i = 1, . . . , M 4: Approximate μ by ∑ M i=1 J i δ Z i
Since it is impossible to sample an infinite number of jumps, approximate simulation of μ is in order. This becomes a question of determining the number M of jumps to sample in (2.20) leading to the truncation

μ ≈ μM = M ∑ i=1 J i δ Z i , (2.23) 
with approximation error in terms of the un-sampled jumps equal to ∑ ∞ i=M+1 J i . The Ferguson & Klass representation has the key advantage of generating the jumps in decreasing order implicitly minimizing such an approximation error. Then, the natural path to determining the truncation level M would be the evaluation of the Ferguson & Klass tail sum

∞ ∑ i=M+1 N -1 (ξ i ). (2.24) 
[63, Theorem A.1] provided an upper bound for (2.24) in the generalized gamma case.

Moment-matching criterion

Our methodology for assessing the quality of approximation of the Ferguson & Klass algorithm consists in comparing the actual distribution of the random total mass μ(X) with its empirical counterpart, where by empirical distribution we mean the distribution obtained by the sampled trajectories, i.e. by replacing random quantities by Monte Carlo averages of their sampled trajectories. In particular, based on the fact that the first K moments carry much information about a distribution, theoretical and empirical moments of μ(X) are compared.

The infinite vector of jumps is denoted by J = (J i ) ∞ i=1 and a vector of jumps sampled by the Ferguson & Klass algorithm by

J (l) = (J (l) 1 , . . . , J (l) 
M ). Here, l = 1, . . . , N FK stands for the l-th iteration of the algorithm, i.e. for the l-th sampled realization. We then approximate the expectation E of a statistic of the jumps, say S(J), by the following empirical counterpart, denoted by E FK ,

E S(J)] ≈ E FK S(J)] := 1 N FK N FK ∑ l=1 S J (l) .
(2.25)

Note that there are two layers of approximation involved in (2.25): first, only a finite number of jumps M is used; second, the actual expected value is estimated through an empirical average which typically conveys on Monte Carlo error. The latter is not the focus of the paper, so we take a large enough number of trajectories, N FK = 10 4 , in order to insure a limited Monte Carlo error of the order of 0.01. We focus on the first approximation inherent to the Ferguson & Klass algorithm.

More specifically, as far as moments are concerned, m K = (m 1 , . . . , m K ) denotes the first K moments of the random total mass μ(X) = ∑ ∞ i=1 J i provided in Section 2.2.2 and mK = ( m1 , . . . , mK ) indicates the first K empirical moments given by

mn = E FK M ∑ i=1 J i n .
(2.26)

As measure of discrepancy between theoretical and empirical moments, a natural choice is given by the mean squared error between the vectors of moments or, more precisely, between the n-th roots of theoretical and empirical moments

= (m K , mK ) = 1 K K ∑ n=1 m 1/n n -m1/n n 2 1/2 .
(2.27)

When using the Ferguson & Klass representation for computing the empirical moments the index depends on the truncation level M and we highlight such a dependence by using the notation M . Of great importance is also a related quantity, namely the number of jumps necessary for achieving a given level of precision, which essentially consists in inverting M and is consequently denoted by M( ).

The index of discrepancy (2.27) clearly also depends on K, the number of moments used to compute it and 1/K in (2.27) normalizes the indices in order to make them comparable as K varies. A natural question is then about the sensitivity of (2.27) w.r.t. K. It is desirable for M to capture fine variations between the theoretical and empirical distributions, which is assured for large K. In extensive simulation studies not reported here we noted that increasing K in the range {1, . . . , 10} makes the index increase and then plateau and this holds for all processes and parameter specifications used in the paper. Recalling also the whole body of work by Pearson on eponymous curves, which shows that the knowledge of four moments suffices to cover a large number of known distributions, we adhere to his rule of thumb and choose K = 4 in our analyses. On the one hand it is a good compromise between targeted precision of the approximation and speed of the algorithm. On the other hand it is straightforward to check the results as K varies in specific applications; for the ones considered in the following sections the differences are negligible.

In the literature several heuristic indices based on the empirical jump sizes around the level of truncation have been discussed [cf Remark 3 in 43]. Here, in order to compare such procedures with our moment criterion, we consider the relative error index which is based on the jumps themselves. It is defined as the expected value of the relative error between two consecutive partial sums of jumps. Its empirical counterpart is denoted by e M and given by

e M = E FK J M ∑ M i=1 J i .
(2.28)

Applications to Bayesian Nonparametrics

In this section we concretely implement the proposed moment-matching Ferguson & Klass algorithm to several Bayesian nonparametric models. The performance in terms of both a priori and a posteriori approximation is evaluated. A comparison of the quality of approximation resulting from using (2.28) as benchmark index is provided.

A priori simulation study

We start by investigating the performance of the proposed moment-matching version of the ing γ and a = 1 fixed; the inverse-Gaussian process with varying total mass a (which is a generalized gamma process process with γ = 0.5); the stable-beta process with varying discount parameter σ and a = 1 fixed.

First consider the behaviour of the indices as the parameter specifications vary. It is apparent that, for any fixed truncation level M, the indices M and e M increase as each of the parameters a, γ or σ increases. For instance, roughly speaking, a total mass parameter a corresponds to sampling trajectories defined on the interval [0, a] [see 282], and a larger interval worsens the quality of approximation for any given truncation level. Also it is natural that γ and σ impact in similar way M and e M given they stand for the "stable" part of the Lévy intensity. See first and third rows of Figure 2.3.

As far as the comparison between M and e M is concerned, it is important to note that e M consistently downplays the error of approximation related to the truncation. This can be seen by comparing the two columns of Figure 2.3. M is significantly more conservative than e M for both the generalized gamma and the stable-beta processes, especially for increasing values of the parameters γ, a or σ. This indicates quite a serious issue related to e M as a measure for the quality of approximation and one should be cautious when using it. In contrast, the moment-matching index M matches more accurately the known behaviour of these processes as the parameters vary.

By reversing the viewpoint and looking at the truncation level M( ) needed for achieving a certain error of approximation in terms of moment-match, the results become even more intuitive. We set = 0.1 and computed M( ) on a grid of size 20 × 20 with equally-spaced points for the parameters (a, γ) ∈ (0, 2) × (0, 0.8) for the generalized gamma process and (a, c) ∈ (0, 2) × (0, .6 q q q q q q q q q q q q q q q q q q q q q q q q q q GG : a = .3 q q q q q q q q q q q q q q q q q q q q q q q q q GG : a = 1 γ = 0 γ = 0.25 γ = 0.5 γ = 0.75
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Normalized random measures with independent increments

Having illustrated the behaviour of the moment-matching methodology for plain CRMs we now investigate it on specific classes of nonparametric priors, which typically involve a transformation of the CRM. Moreover, given their posterior distributions involve updated CRMs it is important to test the moment-matching Ferguson & Klass algorithm also on posterior quantities. The first class of models we consider are normalized random measures with independent increments (NRMI) introduced by [START_REF] Regazzini | Distributional results for means of normalized random measures with independent increments[END_REF]. Such nonparametric priors have been used as ingredients of a variety of models and in several application contexts. Recent reviews can be found in [START_REF] Lijoi | Models beyond the Dirichlet process[END_REF][START_REF] Barrios | Modeling with normalized random measure mixture models[END_REF].

If μ is a CRM with Lévy intensity (2.17) such that 0 < μ(X) < ∞ (almost surely), then an NRMI is defined as P = μ μ(X) .

(2.29)

Particular cases of NRMI are then obtained by specifying the CRM in (2.29). For instance, by picking the generalized gamma process defined in Example 2.2.1 one obtains the normalized generalied gamma process, first used in a Bayesian context by [START_REF] Lijoi | Controlling the reinforcement in Bayesian non-parametric mixture models[END_REF].

Posterior Distribution of an NRMI The basis of any Bayesian inferential procedure is represented by the posterior distribution. In the case of NRMIs, the determination of the posterior distribution is a challenging task since one cannot rely directly on Bayes' theorem (the model is not dominated) and, with the exception of the Dirichlet process, NRMIs are not conjugate as shown in [START_REF] James | Conjugacy as a distinctive feature of the Dirichlet process[END_REF]. Nonetheless, a posterior characterization has been established in [START_REF] James | Posterior analysis for normalized random measures with independent increments[END_REF] and it turns out that, even though NRMIs are not conjugate, they still enjoy a sort of "conditional conjugacy." This means that, conditionally on a suitable latent random variable, the posterior distribution of an NRMI coincides with the distribution of an NRMI having fixed points of discontinuity located at the observations. Such a simple structure suggests that when working with a general NRMI, instead of the Dirichlet process, one faces only one additional layer of difficulty represented by the marginalization with respect to the conditioning latent variable.

Before stating the posterior characterization to be used with our algorithm, we need to introduce some notation and basic facts. Let (Y n ) n≥1 be an exchangeable sequence directed by an NRMI, i.e. 

Y
f U|Y (u) ∝ u n-1 exp -ψ(u) k ∏ j=1 τ n j u|Y * j , (2.31) 
where τ n j (u|Y * j ) = ∞ 0 v n j e -uv ρ(v . |Y * j ) and ψ is the Laplace exponent of μ defined by ψ(u) =log L X (u) , cf (2.15). Finally, assume P * = E[ P] to be nonatomic. Proposition 2.2.2 ([172]). Let (Y n ) n≥1 be as in (2.30) where P is an NRMI defined in (2.29) with Lévy intensity as in (2.17 

* j (v) ∝ v n j e -uv ρ v . |Y * j , (2.34) 
(c) μ * and J * j , j = 1, . . . , k, are independent.

Moreover, the posterior distribution of the NRMI P, conditional on U, is given by

[ P|U, Y] d = w μ * μ * (X) + (1 -w) ∑ k k=1 J * j δ Y * j ∑ k l=1 J * l , (2.35) 
where w = μ * (X)/( μ * (X) + ∑ k l=1 J * l ). In order to simplify the notation, in the statement we have omitted explicit reference to the dependence on [U|Y] of both μ * and {J * j : j = 1, . . . , k}, which is apparent from (2.33) and (2.34). A nice feature of the posterior representation of Proposition 2.2.2 is that the only quantity needed for deriving explicit expressions for particular cases of NRMI is the Lévy intensity (2.17). For instance, in the case of the generalized gamma process, the CRM part μ * in (2.32) is still a generalized gamma process characterized by a Lévy intensity of the form of (2.18)

ν * (v . , y . ) = e -(1+u)v Γ(1 -γ)v 1+γ v . aP * (y . ).
(2.36)

Moreover, the distribution of the jumps (2.34) corresponding to the fixed points of discontinuity Y * j 's in (2.32) reduces to a gamma distribution with density

f * j (v) = (1 + u) n j -γ Γ(n j -γ) v n j -γ-1 e -(1+u)v . ( 2.37) 
Finally, the conditional distribution of the non-negative latent variable U given Y (2.31) is given by

f U|Y (u) ∝ u n-1 (u + 1) kγ-n exp - a γ (u + 1) γ . (2.38)
The availability of this posterior characterization makes it then possible to determine several important quantities such as the predictive distributions and the induced partition distribution. See [START_REF] James | Posterior analysis for normalized random measures with independent increments[END_REF] for general NRMI and [START_REF] Lijoi | Controlling the reinforcement in Bayesian non-parametric mixture models[END_REF] for the subclass of the normalized generalized gamma process. See also [START_REF] Argiento | A blocked Gibbs sampler for NGGmixture models via a priori truncation[END_REF] for another approach to approximate the normalized generalized gamma process with a finite number of jumps.

Moment-matching for posterior NRMI From (2.32) it is apparent that the posterior of the unnormalized CRM μ, conditional on the latent variable U, is composed of the independent sum of a CRM μ * and fixed points of discontinuity at the distinct observations Y * j . The part which is at stake here is obviously μ * for which only approximate sampling is possible. As for the fixed points of discontinuities, they are independent from μ * and can be sampled exactly, at least in special cases.

We focus on the case of the normalized generalized gamma process. By (2.33) the Lévy intensity of μ * is obtained by exponentially tilting the Lévy intensity of the prior μ. Hence, the Ferguson & Klass algorithm applies in the same way as for the prior. The sampling of the fixed points jumps is straightforward from the gamma distributions (2.37). As far as the moments are concerned, key ingredient of our algorithm, the cumulants of μ * are equal to κ * i = a

(1-γ) (i-1) (u+1) i-γ and the corresponding moments are then obtained via Proposition 2.2.1.

Our simulation study is based on a sample of size n = 10. Such a small sample size is challenging in the sense that the data provide rather few information and the CRM part of the model is still prevalent. We examine three possible clustering configurations of the observations Y * i s: (i) k = 1 group, with n 1 = 10, (ii) k = 3 groups, with n 1 = 1, n 2 = 3, n 3 = 6, and (iii) k = 10 groups, with n j = 1 for j = 1, . . . , 10. First let us consider the behaviour of f U|Y , which is illustrated in Figure 2.5 for n = 10 and k ∈ {1, 2, . . . , 10}. It is clear that the smaller the number of clusters, the more f U|Y is concentrated on small values, and vice versa. Now we consider μ * (X), the random total mass corresponding to the CRM part of the posterior only given in (2.35). Such a quantity depends on U whose distribution is driven by the data Y. In order to keep the presentation as neat as possible, and in the same time to remain consistent with the data, we choose to condition on U = u for u equal to the mean of f U|Y , the most natural representative value. Given this, it is possible to run the Ferguson & Klass algorithm on the CRM part μ * of the posterior and compute moment-matching index M as the number of jumps varies. Figure 2.6 shows these results for the inverse-Gaussian CRM, a special case of the generalized gamma process corresponding to γ = 0.5. Such posteriors were sampled under the above mentioned Y clustering configuration scenarios (i)-(iii), which led to mean values of U|Y of, respectively, 6.3, 8.9 and 25.1. The plot also displays a comparison to the prior values of M and indicates that for a given number of jumps the approximation error, measured in terms of M , is smaller for the posterior CRM part μ * w.r.t. to the prior CRM μ.

Additionally, instead of considering only the CRM part μ * of the posterior, one may be interested in the quality of the full posterior which includes also the fixed discontinuities. For this purpose we consider an index which is actually of interest in its own. In particular, we evaluate the relative importance of the CRM part w.r.t. the part corresponding to the fixed points of discontinuity in terms of the ratio E ∑ k j=1 J * j /E μ * (X) . Loosely speaking one can think of the numerator as the expected weight of the data and the denominator as the expected weight of the prior.

Recall that in the normalized generalized gamma process case, for a given pair (n, k) and conditional on U = u, the sum of fixed location jumps is a gamma(nkγ, u + 1). Hence, the index becomes

E ∑ k j=1 J * j |U = u E μ * (X)|U = u = (n -kγ)/(u + 1) a/(u + 1) 1-γ = n -kγ a(u + 1) γ .
(2.39)

By separately mixing the conditional expected values in (2.39) over f U|Y (we use an adaptive rejection algorithm to sample from f U|Y ) we obtained the results summarized in the table of Figure 2.6. We can appreciate that the fixed part typically overcomes (or is at least of the same order than) the CRM part, a phenomenon which uniformly accentuates as the sample size n increases. Returning to the original problem of measuring the quality of approximation in terms of moment matching, these findings make it apparent that the comparative results of Figure 2.6 between prior and posterior are conservative. In fact, if performing the moment-match on the whole posterior, i.e. including the fixed jumps which can be sampled exactly, the corresponding moment-matching index would, for any given truncation level M, indicate a better quality of approximation w.r.t. the index based solely on μ * . Note that computing the moments of μ * (X) + ∑ k i=1 J i straightforward given the independence between μ * and the fixed jumps J i 's and also among the jumps themselves. From a practical point of view the findings of this section suggest that a given quality of approximation in terms of moment-match for the prior represents an upper bound for the quality of approximation in the posterior. .6 q q q q q q q q q q q q q q q q q q q q q q q q q q IG : γ = 0.5, a = 1 
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A note on the inconsistency for diffuse distributions

In the context of Gibbs-type priors, of which the normalized generalized gamma process is a special case, [START_REF] Blasi | An asymptotic analysis of a class of discrete nonparametric priors[END_REF] showed that, if the data are generated from a "true" P 0 , the posterior of P concentrates at a point mass which is the linear combination

bP * (•) + (1 -b)P 0 (•)
of the prior guess P * = E( P) and P 0 . The weight b depends on the prior and, indirectly, on P 0 , since P 0 dictates the rate at which the distinct observations k are generated. For a diffuse P 0 , all observations are distinct and k = n (almost surely). In the normalized generalized gamma process case this implies that b = γ and hence the posterior is inconsistent since it does not converge to P 0 . For the inverse-Gaussian process, i.e. with γ = 0.5, the posterior distribution gives asymptotically the same weight to P * and P 0 . The last row of the table of Figure 2.6, which displays the ratio E ∑ k j=1 J * j /E μ * (X) for k = n, is an illustration of this inconsistency result since the ratio gets close to 1 as n grows. In contrast, when P 0 is discrete, which implies that k increases at a slower rate than n, one always has consistency. This is illustrated by the first two rows of the table of Figure 2.6, where one can appreciate that the ratio E ∑ k j=1 J * j /E μ * (X) increases as n increases, giving more and more weight to the data. These findings suggest that consistency issues for general NRMI could be explored from new perspectives based on the study of the asymptotic behavior of f U|Y , which will be subject to future work.

Stable-beta Indian buffet process

The Indian buffet process (IBP), introduced in [START_REF] Ghahramani | Infinite latent feature models and the Indian buffet process[END_REF], is one of the most popular models for feature allocation and is closely connected to the beta process discussed in Example 2.2.2. In fact, when marginalizing out the Dirichlet process and considering the resulting partition distribution one obtains the well known Chinese restaurant process. Likewise, as shown in [START_REF] Thibaux | Hierarchical beta processes and the Indian buffet process[END_REF], when integrating out a beta process in a Bernoulli process (BeP) model one obtains the IBP. Recall that a Bernoulli process, with an atomic base measure μ, is a stochastic process whose realizations are collections of atoms of mass 1, with possible locations given by the atoms of the base measure μ. Such an atom is element of the collection with probability given by the jump size in μ. Later, [START_REF] Teh | Indian buffet processes with power-law behavior[END_REF] generalized the construction and defined the stable-beta Indian buffet process as

Y i | μ i.i.d. ∼ BeP( μ) for i = 1, . . . , n, (2.40 
) μ|c, σ, aP * ∼ SBP(c, σ, aP * ).

Given the construction involves a CRM, it is clear that any conditional simulation algorithm will need to rely on some truncation for which we use our momentmatching Ferguson & Klass algorithm.

Posterior distribution in the IBP Let us consider a conditional iid sample Y = (Y 1 , . . . , Y n ) as in (2.40). Note that due to the discreteness of μ, ties appear with positive probability. We adopt the same notations for the ties Y * j and frequencies n j as in Section 2.2.3. Then we can state the following result which highlights the posterior structure of the stable-beta process in the Indian buffet process.

Proposition 2.2.3 ([319]

). Let (Y n ) n≥1 be as in (2.40). Then the posterior distribution of μ conditional on Y is given by the distribution of

μ * + k ∑ j=1 J * j δ Y * j
where (a) μ * is a stable-beta process characterized by the Lévy intensity

ν * (v . , x . ) = (1 -v) n ν(v . , x . ), (b) the jump height J * j corresponding to Y * j is beta distributed J * j ∼ beta(n j -σ, c + σ + n -n j ),
(c) μ * and J * j , j = 1, . . . , k, are independent. Note that due to the polynomial tilting of ν by (1u) n in (a) above, the CRM part μ * is still a stable-beta process with updated parameters

c * = c + n and a * = a (c + σ) (n) (c + 1) (n) ,
while the discount parameter σ remains unchanged.

Moment-matching for the IBP In order to implement the moment-matching methodology we first need to evaluate the posterior moments of the random total mass. For this purpose, we rely on the moments characterization in terms of the cumulants provided in Proposition 2.2.1. The cumulants κ * i of the CRM part μ * (X) are obtained from Table 2.6 with the appropriate parameter updates which leads to

κ * i = a * (1 -σ) (i-1) (1 + c * ) (i-1) = a (1 -σ) (i-1) (c + σ) (n) (1 + c) (n+i-1)
.

We consider two stable-beta processes: the beta process prior μ ∼ SBP(c = 1, σ = 0, a = 1) and the stable-beta process prior μ ∼ SBP(c = 1, σ = 0.5, a = 1). We let n vary in {5, 10, 20}. In contrast to the NRMI case, there is no need to work under different scenarios for the clustering profile of the data, since the posterior CRM μ * is not affected by them with only the sample size entering the updating scheme. We compare the prior moment-match for μ with the posterior moment-match for μ * in terms of our discrepancy index M and the results are displayed in Figure 2.7.

The comparison shows that there is a gain in precision between prior and posterior distributions in terms of M suggesting that the a priori error level represents an upper bound for the posterior approximation error.

As in Section 2.2.3, we also evaluate the relative weights of fixed jumps and posterior CRM or, roughly, of the data w.r.t. the prior. Recalling that fixed location jumps J * j are independent and beta(n jσ, c + σ + nn j ) and some algebra allow to re-write the ratio of interest as

E ∑ k j=1 J * j E μ * (X) = (n -kσ)(c + 1) (n-1) a(c + σ) (n) .
Table 2.7 displays the corresponding values for different choices of n and k. As in the NRMI case, the fixed part overcomes the CRM part, which means that the data dominate the prior, and, moreover, their relative weight increases as n increases.

In terms of moment-matching this shows that, if one looks at the overall posterior structure, the approximation error connected to the truncation is further dampened.
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Moment-matching criterion implementation for mixtures

We illustrate the use of the moment-matching strategy by implementing it within location-scale NRMI mixture models, which can be represented in hierarchical form as

Y i |µ i , σ i ind ∼ k(•|µ i , σ i ), i = 1, . . . , n, (µ i , σ i )| P i.i.d. ∼ P, i = 1, . . . , n, P ∼ NRMI,
where k is a kernel parametrized by (µ, σ) ∈ R × R + and the NRMI P is defined in (2.29). Under this framework, density estimation is carried out by evaluating the posterior predictive density. Specifically, we consider the Gaussian kernel k(x|µ, σ) = N (x|µ, σ) and normalized generalized gamma process on locations and scales with a normal base measure P 0 , parameter θ = 1 in Equation (2.18), and varying stability parameter γ ∈ {0, 0.25, 0.5, 0.75}.

The dataset we consider is the popular Galaxy dataset, which consists of velocities of 82 distant galaxies diverging from our own galaxy. Since the data are clearly away from zero (range from 9.2 to 34), Gaussian kernels, although having the whole real line as support, are typically employed in its analysis.

As far as the simulation algorithm is concerned, based on Sections 2.2.3 to 2.2.3, the following moment-matching Ferguson & Klass posterior sampling strategy is implemented: (1) evaluate the threshold M( ) which validates trajectories of the CRM using Algorithm 2.2.1 on the prior distribution; (2) implement Algorithm 2.2.1 on the posterior distribution using the threshold M( ). More elaborate and suitably tailored moment-matching strategies can be devised for specific models. However, to showcase the generality and simplicity of our proposal we do not pursue this here.

In particular, we set M = 0.01. We compare the output to the Ferguson & Klass algorithm with heuristic relative error e M criterion, which consists of step (2) only with truncation dictated by the relative error for which we set e M ∈ {0.1, 0.05, 0.01}. For both algorithms the Gibbs sampler is run for 20, 000 iterations with a burn-in of 4, 000, thinned by a factor of 5.

In order to compare the results, we compute the Kolmogorov-Smirnov distance d KS ( F M , Fe M ) between associated estimated cumulative distribution functions (cdf) F

M and Fe M under, respectively, the moment-match and the relative error criteria. The results are displayed in Table 2.8. The estimated cdf F M with M = 0.01 can be seen as a reference estimate since the truncation error is controlled uniformly across the different values of γ by the moment-match at the CRM level. First, one immediately notes that the smaller e M , the closer the two estimates become (in the d KS distance). Second, and more importantly, the numerical values of the distances heavily depend on the particular choice of the parameter γ for any given e M . In fact, F

M and Fe M are significantly further apart for large values of γ than for small ones. This clearly shows that the quality of approximation with the heuristic criterion of the relative index is highly variable in terms of a single parameter; in passing from γ = 0 to γ = 0.75 the distance increases by at least a factor of 2. This means that for comparing correctly CRM based models with different parameters one would need to pick different relative indices for each value of the parameter. However, there is no way to guess such thresholds without the guidance of an analytic criterion. And, this already happens by varying a single parameter, let alone when changing CRMs for which the same e M could imply drastically different truncation errors. This seems quite convincing evidence supporting the abandonment of heuristic criteria for determining the truncation threshold and the adoption of principled approaches such as the moment-matching criterion proposed in this paper. 

γ e M = 0

Approximating the predictive weights of Gibbs-type priors 2.3.1 Introduction and main result

Gibbs-type random probability measures, or Gibbs-type priors, are arguably the most "natural" generalization of the Dirichlet process prior by [START_REF] Ferguson | A Bayesian analysis of some nonparametric problems[END_REF]. They have been first introduced in the seminal works of [START_REF] Pitman | Poisson-Kingman partitions[END_REF] and [START_REF] Gnedin | Exchangeable Gibbs partitions and Stirling triangles[END_REF], and their importance in Bayesian nonparametrics have been extensively discussed in [START_REF] Lijoi | Models beyond the Dirichlet process[END_REF], [START_REF] Blasi | Are Gibbs-type priors the most natural generalization of the Dirichlet process[END_REF] and [START_REF] Bacallado | Sufficientness postulates for Gibbs-type priors and hierarchical generalizations[END_REF]. Gibbs-type priors have been widely used in the context of Bayesian nonparametric inference for species sampling problems, where their mathematical tractably allowed to obtain explicit expressions for the posterior distributions of various population's features, and to predict features of additional unobservable samples. See, e.g., [START_REF] Lijoi | Bayesian nonparametric estimation of the probability of discovering new species[END_REF], [START_REF] Lijoi | Investigating nonparametric priors with Gibbs structure[END_REF], [START_REF] Favaro | Bayesian non-parametric inference for species variety with a two-parameter Poisson-Dirichlet process prior[END_REF], [START_REF] Favaro | A new estimator of the discovery probability[END_REF], [START_REF] Bacallado | Looking-backward probabilities for Gibbs-type exchangeable random partitions[END_REF] and [START_REF] Arbel | Bayesian nonparametric inference for discovery probabilities: credible intervals and large sample asymptotics[END_REF]. The class of Gibbs-type priors has been also applied in the context of nonparametric mixture modeling, thus generalizing the celebrated Dirichlet process mixture model of Lo [START_REF] Lo | On a class of Bayesian nonparametric estimates: I. Density estimates[END_REF]. In particular, nonparametric mixture models based in Gibbs-type priors are characterized by a more flexible parameterization than Dirichlet process mixture model, thus allowing for a better control of the clustering behaviour. See, e.g., [START_REF] Ishwaran | Gibbs sampling methods for stick-breaking priors[END_REF], [START_REF] Lijoi | Hierarchical mixture modeling with normalized inverse-Gaussian priors[END_REF], [START_REF] Lijoi | Controlling the reinforcement in Bayesian non-parametric mixture models[END_REF], [START_REF] Favaro | Slice sampling σ-stable poisson-kingman mixture models[END_REF]. Most recently, Gibbs-type priors have been used in Bayesian nonparametric inference for ranked data [START_REF] Caron | Bayesian nonparametric Plackett-Luce models for the analysis of preferences for college degree programmes[END_REF], sparse exchangeable random graphs and networks [START_REF] Caron | Sparse graphs using exchangeable random measures[END_REF][START_REF] Herlau | Completely random measures for modelling block-structured sparse networks[END_REF], exchangeable feature allocations [e.g. [START_REF] Teh | Indian buffet processes with power-law behavior[END_REF][START_REF] Broderick | Feature allocations, probability functions, and paintboxes[END_REF][START_REF] Heaukulani | Gibbs-type Indian buffet processes[END_REF][START_REF] Roy | The continuum-of-urns scheme, generalized beta and Indian buffet processes, and hierarchies thereof[END_REF][START_REF] Battiston | A characterization of productform exchangeable feature probability functions[END_REF], reversible Markov chains [START_REF] Bacallado | Bayesian nonparametric analysis of reversible Markov chains[END_REF], dynamic textual data [START_REF] Chen | Dependent hierarchical normalized random measures for dynamic topic modeling[END_REF], and bipartite graphs [START_REF] Caron | Bayesian nonparametric models for bipartite graphs[END_REF].

The definition of Gibbs-type random probability measures relies on the notion of α-stable Poisson-Kingman model, first introduced by [START_REF] Pitman | Poisson-Kingman partitions[END_REF]. Specifically, let (J i ) i≥1 be the decreasing ordered jumps of an α-stable subordinator, i.e. subordinator with Lévy measure ρ(dx) = C α x -α-1 dx for some constant C α , and let P i = J i /T α with T α = ∑ i≥1 J i < +∞ almost surely; in particular T α is a positive α-stable random variable, and we denote its density function by f α . If PK(α; t) denotes the conditional distribution of (P i ) i≥1 given T α = t, and if T α,h is a random variable with density function f T α,h (t) = h(t) f α (t), for any nonnegative function h, then an αstable Poisson-Kingman model is defined as the discrete random probability measure P α,h = ∑ i≥1 P i,h δ X * i , where (P i,h ) i≥1 is distributed as (0,+∞) PK(α; t) f T α,h (t)dt and (X * i ) i≥1 are random variables, independent of (P i,h ) i≥1 , and independent and identically distributed according to a nonatomic probability measure ν 0 . An α-stable Poisson-Kingman model thus provides with a generalization of the normalized αstable process in [START_REF] Kingman | Random discrete distributions[END_REF], which is recovered by setting h = 1. According to the work of [START_REF] Gnedin | Exchangeable Gibbs partitions and Stirling triangles[END_REF], Gibbs-type random probability measures are defined as a class of (almost sure) discrete random probability measures indexed by a parameter α < 1 such that: i) for any α < 0 they are M-dimensional symmetric Dirichlet distribution, with M being a nonnegative random variable on the set N; ii) for α = 0 they coincide with the Dirichlet process; iii) for any α ∈ (0, 1) they are α-stable Poisson-Kingman models.

In this paper we focus on the predictive probabilities of Gibbs-type priors with α ∈ (0, 1), i.e. the posterior expectation E[P α,h (•) | X n ], with X n = (X 1 , . . . , X n ) being a random sample from P α,h . Due to the (almost sure) discreteness of the Gibbs-type random probability measure P α,h , we expect ties in a sample X n from P α,h , that is

X n features K n = k n ≤ n distinct types, labelled by X * 1 , . . . , X * K n , with correspond- ing frequencies (N 1 , . . . , N K n ) = (n 1 , . . . , n k n ) such that ∑ 1≤i≤k n n i = n.
That is, the sample X n induces a random partition of the set {1, . . . , n}; see [START_REF] Pitman | Combinatorial stochastic processes[END_REF] for details on Gibbs-type random partitions. According to [START_REF] Pitman | Poisson-Kingman partitions[END_REF], the predictive probabilities of P α,h are

Pr[X n+1 ∈ • | X n ] = V n+1,k n +1 V n,k n ν 0 (•) + V n+1,k n V n,k n k n ∑ i=1 (n i -α)δ X * i (•) (2.41)
for n ≥ 1, where

V n,k n = α k n Γ(n -k n α) +∞ 0 1 0 t -k n α p n-k n α-1 h(t) f α ((1 -p)t)dtdp, (2.42) 
with Γ(•) being the Gamma function. See, e.g., [START_REF] Pitman | Poisson-Kingman partitions[END_REF] and [START_REF] Gnedin | Exchangeable Gibbs partitions and Stirling triangles[END_REF] for a detailed account on (2.41) and (2.42). Hereafter we briefly recall two noteworthy examples of Gibbs-type random probability measures: the Pitman-Yor process and the normalized generalized gamma process. Example 2.3.1. Let (a) n be the rising factorial of a of order n, i.e. (a) n = ∏ 0≤i≤n-1 (a + i), for a > 0. For any α ∈ (0, 1) and θ > -α the Pitman-Yor process, say P α,θ , is a Gibbs-type random probability measure with

h(t) = αΓ(θ) Γ(θ/α) t -θ (2.43) such that V n,k n = ∏ k n -1 i=0 (θ + iα) (θ) n . ( 2 

.44)

The normalized α-stable process is P α,0 , whereas the Dirichlet process may be recovered as a limiting special case for α → 0. See, e.g., [START_REF] Perman | Size-biased sampling of poisson point processes and excursions[END_REF][START_REF] Pitman | The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator[END_REF][START_REF] James | Poisson process partition calculus with applications to exchangeable models and Bayesian nonparametrics[END_REF][START_REF] Pitman | Poisson-Kingman partitions[END_REF][START_REF] James | Stick-breaking PG(α ,ζ)-Generalized Gamma Processes[END_REF] for detailed accounts on

P α,θ . Example 2.3.2. Let Γ(•, •) be the incomplete Gamma function, i.e., Γ(a, b) = ∞ b x a-1 exp{-x}dx for (a, b) ∈ R × R + .
For any α ∈ (0, 1) and τ ≥ 0 the normalized generalized gamma process, say G α,τ , is a Gibbs-type random probability measure with h(t) = e τ α -τt (2.45)

such that V n,k n = α k n e τ Γ(n) n-1 ∑ i=0 n -1 i (-τ 1/α ) i Γ k n - i α , τ . (2.

46)

The normalized α-stable process coincides with G α,0 , whereas G 1/2,τ is the normalized inverse Gaussian process. See [START_REF] James | Poisson process partition calculus with applications to exchangeable models and Bayesian nonparametrics[END_REF][START_REF] Pitman | Poisson-Kingman partitions[END_REF][START_REF] Lijoi | Hierarchical mixture modeling with normalized inverse-Gaussian priors[END_REF][START_REF] Lijoi | Bayesian nonparametric estimation of the probability of discovering new species[END_REF][START_REF] Lijoi | Investigating nonparametric priors with Gibbs structure[END_REF][START_REF] James | Stick-breaking PG(α ,ζ)-Generalized Gamma Processes[END_REF] for detailed accounts on G α,τ and applications.

Within the large class of predictive probabilities of the form (2.41), those of the Pitman-Yor process P α,θ certainly stand out for their mathematical tractability, and for having an intuitive interpretability with respect to the parameter α ∈ (0, 1) and θ > -α. See [START_REF] Bacallado | Sufficientness postulates for Gibbs-type priors and hierarchical generalizations[END_REF] for a description of the predictive probabilities of P α,θ in terms of a simple generalized Pólya like urn scheme. These desirable features of P α,θ arise from the product form of the V n,k n 's in (2.44), which makes the ratio V n+1,k n +1 /V n,k n a simple linear function of k n , and the ratio V n+1,k n /V n,k n independent of k n . Specifically, the predictive probabilities of P α,θ reduce to the following

Pr[X n+1 ∈ • | X n ] = θ + k n α θ + n ν 0 (•) + 1 θ + n k n ∑ i=1 (n i -α)δ X * i (•), (2.47) 
for n ≥ 1. The weight attached to ν 0 in (2.47) can be read as a sum of two terms with distinct asymptotic orders of magnitude: i) αk n , referred to as the first order term, and θ, referred to as the second order term. An analogous two-term decomposition holds for the weight attached to the empirical part of (2.47). Our distinction and phrasing is formally captured by writing the weights as follows

θ + k n α θ + n = k n α n + θ n + o 1 n (2.48) 
and 1 Theorem 2.3.1 may be applied to obtain a first and a second order approximations of the predictive probabilities of an arbitrary Gibbs-type prior P α,h . This result then contributes to a remarkable simplification in the evaluation of (2.41) for any choice of the function h. Besides that, Theorem 2.3.1 highlights, for large n, the role of h from a purely predictive perspective. In particular, according to Theorem 2.3.1, the function h does not affect the first order term in the asymptotic decompositions (2.50) and (2.51), and it is sufficient to consider a second order term in order to take into account h. This leads to two meaningful approximations of the predictive probabilities (2.41).

θ + n = 1 n - θ n 2 + o 1 n 2 , ( 2 
In particular, by considering the sole first order term in (2.50) and (2.51), one obtains the first order approximation

Pr[X n+1 ∈ • | X n ] ∼ k n α n ν 0 (•) + 1 n k n ∑ i=1 (n i -α)δ X * i (•), (2.52) 
which is the predictive of the normalized α-stable process, i.e. h = 1. By including the second order term in (2.50) and (2.51), one obtains the second order approximation

Pr[X n+1 ∈ • | X n ] ≈ β n + k n α β n + n ν 0 (•) + 1 β n + n k n ∑ i=1 (n i -α)δ X * i (•), (2.53) 
which resembles the predictive probabilities (2.47) of the Pitman-Yor process P α,θ , with the parameter θ replaced by a suitable function of h, α and the number k n of distinct types in the sample X n . Note that (2.53) is obtained by normalizing the weights (2.50) and (2.51) which lead to a proper predictive distribution (the weights of (2.53) sum up to one) while preserving the second order approximation since

β n + k n α β n + n = k n α n + β n n + o 1 n and 1 
β n + n = 1 n - β n n 2 + o 1 n 2 .
The predictive probabilities of any Gibbs-type prior thus admit a second order approximation, for large n, with an error term vanishing as o(1/n). More importantly, such a second order approximation maintains the same mathematical tractability and interpretability as the predictive probability of the Pitman-Yor process.

The section is structured as follows. In Section 2. 

Proofs

Throughout this section, we will use the notation a n b n when a n /b n → 1 as n → ∞, almost surely. The main argument of the proof consists in a Laplace approximation of the integral form for V n,k n in (2.42) as n → ∞. This approximation basically replaces an exponentially large term in an integrand by a Gaussian kernel which matches both mean and variance of the integrand. From evaluating the Gibbs-type predictive probabilities (2.41) on the whole space it is clear that we have

V n+1,k n +1 V n,k n = 1 -(n -αk n ) V n+1,k n V n,k n . (2.54)
Denote the integrand function of (2.42) by f n (p, t) = t -αk n p n-1-k n α h(t) f α ((1p)t), and denote integration over its domain (0, 1) × R * + by . Then we can write

V n+1,k n V n,k n = 1 n -αk n p f n f n . (2.55)
Note that this ratio of integrals coincides with E n (P), that is the expectation under the probability distribution with density proportional to f n . This, combined with (2.54) provides V n+1,k n +1 /V n,k n = E n (1 -P). In order to apply the Laplace approximation method, write the nonnegative integrand f n in exponential form f n = e nl n , and further define functions g(p, t) = 1p and g(p, t) = 1. Then

V n+1,k n +1 V n,k n = ge nl n ge nl n . (2.56)
The mode (t n , p n ) of f n (or equivalently of l n ) is determined by the root of the partial derivatives

n ∂l n (p, t) ∂p = n -αk n -1 p -t f α (t(1 -p)) f α (t(1 -p)) (2.57) 
and

n ∂l n (p, t) ∂t = -αk n t + h (t) h(t) + (1 -p) f α (t(1 -p)) f α (t(1 -p)) , (2.58) 
where f α and h denote respectively the derivatives of the α-stable density f α and of the function h. Now consider the Laplace approximations to the numerator and the denominator of the ratio (2.56) with the notations set forth in Section 6.9 of Small [START_REF] Small | Expansions and asymptotics for statistics[END_REF]. The exponential term is identical in both integrands of the ratio (2.56), hence the term involving det f n , the Hessian of f n , is also identical and equal to

C n = (2π/n) 2/2 (-det f n ) -1/2 e nl n (t n ,p n ) .
Thus it simplifies in the ratio. One needs only to consider the asymptotic series expansions, where we require a second order term a(t n , p n ) for the numerator, that is

V n+1,k n +1 V n,k n = C n × g(t n , p n ) + 1 n a(t n , p n ) + O 1 n 2 C n × g(t n , p n ) + O 1 n .
The expression of a(t n , p n ) is provided in Equation (6.14) of Small [START_REF] Small | Expansions and asymptotics for statistics[END_REF]. In our case, a(t n , p n ) = o(1/n), hence with g = 1, the previous display simplifies to the following 

V n+1,k n +1 V n,k n = g(t n , p n ) + o 1 n . ( 2 
g(t n , p n ) = 1 -p n = αk n + ϕ h (t n ) n + ϕ h (t n ) -1 (2.60)
so, in view of (2.59),

V n+1,k n +1 V n,k n = αk n + ϕ h (t n ) n + ϕ h (t n ) -1 + o 1 n . (2.61) Let ψ(x) = (x f α (x))/(α f α (x)). By (2.57), ψ((1 -p n )t n ) = (1 -p n )(n -αk n -1)/αp n .
By Theorem 2 in Arbel et al. [START_REF] Arbel | Bayesian nonparametric inference for discovery probabilities: credible intervals and large sample asymptotics[END_REF], 1p n αk n /n. Hence, ψ((1p n )t n ) grows to infinity when n → ∞ at the same rate as k n . But studying the variations of the αstable density f α , Nolan [START_REF] Nolan | Stable distributions: models for heavy-tailed data[END_REF] shows that the only infinite limit of ψ is in 0 + according to

ψ(x) [ 0 + ] (α/x) α 1-α .
In order that ψ((1p n )t n ) matches with its infinite limit when n → ∞, its argument (1p n )t n needs go to 0 + , which yields to the following asymptotic equivalence

k n ψ((1 -p n )t n ) α (1 -p n )t n α 1-α , which in turn gives t n α k 1-1/α n 1 -p n α k 1-1/α n αk n /n n k 1/α n T α,h ,
where the last equivalence is from [START_REF] Pitman | Poisson-Kingman partitions[END_REF]. Since function h is assumed to be positive and continuous differentiable, ϕ h (T α,h ) is a.s. well defined (and finite) and

ϕ h (t n ) ϕ h (nk -1/α n ) ϕ h (T α,h ) a.
s., so (2.61) can be rewritten

V n+1,k n +1 V n,k n = αk n n + β n n + o 1 n ,
where we set

β n = ϕ h (nk -1/α n ).
In other terms, to match the expression of the second order approximate predictive probability displayed in Equation (2.53), we have

V n+1,k n +1 V n,k n = β n + k n α β n + n + o 1 n .
The expression of the second weight in the predictive of the theorem follows from (2.54), i.e.,

V n+1,k n V n,k n = 1 -V n+1,k n +1 /V n,k n n -αk n = 1 - αk n n + β n n + o 1 n 1 n + αk n n 2 + o k n n 2 , = 1 n - αk n n 2 - β n n 2 + αk n n 2 + o 1 n 2 = 1 n - β n n 2 + o 1 n 2 ,
or, to match the expression of the second order approximate predictive of equation (2.53),

V n+1,k n V n,k n = 1 β n + n + o 1 n 2 .

Numerical illustrations

As we recalled in Example 2.3.1, the Pitman-Yor process P α,θ is a Gibbs-type random probability measure with α ∈ (0, 1) and h(t) = t -θ Γ(θ + 1)/Γ(θ/α + 1), for any θ > -α. By an application of Theorem 2.3.1, the predictive probabilities of P α,θ admit a first order approximation of the form (2.52) and a second order approximation of the form (2.53) with ϕ h (t) = θ, and such that β n = θ. Among Gibbs-type random probability measures with α ∈ (0, 1), the Pitman-Yor process certainly stands out for a predictive structure which admits a simple numerical evaluation. This made the Pitman-Yor process a natural candidate in several applications within the large class of Gibbs-type priors. Hereafter we present a brief numerical illustration to compare the predictive probabilities of P α,θ with their first and second order approximations given in terms of Equation (2.48) and Equation (2.49). While there is no practical reason to make use our approximate predictive probabilities, because of the simple expression of (2.47), the illustration is useful to show the accuracy of our approximations. We then present the same numerical illustration for the normalized generalized gamma process G α,τ of Example 2.3.2. We will see that, differently from the Pitman-Yor process, the predictive probabilities of the normalized generalized gamma process do not admits a simple numerical evaluation. This motivates the use of Theorem 2.3.1.

We consider 500 data points sampled independently and identically distributed from the ubiquitous Zeta distribution. For any σ > 1 this is a distribution with probability mass function Pr(Z = z) ∝ z -σ , for z ∈ N. Here we choose σ = 1.5. For each n = 1, . . . , 500 we record the number k n of distinct types at the n-th draw, and we evaluate the predictive weight V n+1,k n +1 /V n,k n for the Pitman-Yor process, i.e. the left-hand side of (2.48). We consider the following pairs of parameters (α, θ): (0.25, 1), (0.25, 3), (0.25, 10), (0.5, 1), (0.5, 3), (0.5, respectively. Figure 2.8 shows the curve, as functions of n, of the "exact" predictive weight (2.62) and its first order approximation (2.63) and second order approximation (2.64). The first order approximation consistently underestimates the "exact" predictive weight, while the second order approximation consistently overestimates it. This is due to the fact that the parameter θ is positive. The discrepancy between the first order approximation and (2.62) stays substantial even for large values of n, all the more for large θ. On the contrary, the second order approximation consistently outperforms the first order approximation, closely following (2.62). For n = 500, the "exact" predictive weight and its second order approximation are barely distinguishable in all the considered pairs of parameters.

The normalized generalized gamma process

As we recalled in Example 2.3.2, the normalized generalized gamma process is a Gibbs-type random probability measure with α ∈ (0, 1) and h(t) = exp{τ α -τt}, for any τ ≥ 0. From Theorem 2.3.1, the predictive probabilities of the normalized generalized gamma process admit a first order approximation of the form (2.52) and a second order approximation of the form (2.53) with ϕ h (t) = τt, and

β n = τn k 1/α n .
The predictive probabilities of the normalized generalized gamma process are of the form (2.41), with the predictive weights V n+1,k n +1 /V n,k n and V n+1,k n /V n,k n admitting an explicit (closed-form) expression in terms of (2.46). However, differently from the Pitman-Yor process, the evaluation of the predictive weights is cumbersome, thus preventing their practical implementation. In particular, as pointed out in Lijoi et al. [START_REF] Lijoi | Controlling the reinforcement in Bayesian non-parametric mixture models[END_REF] in the context of mixture models with a normalized generalized Gamma prior, the evaluation of (2.46) gives rise to severe numerical issues, even for not too large values of n. These issues are mainly due to the evaluation of the incomplete gamma function, as well as with handling very small terms and very large terms within the summation (2.46). Because of these numerical issues in evaluating (2.46), we propose an alternative approach to evaluate the V n,k n 's of the normalized generalized gamma process. This is a Monte Carlo approach, and it relies on the fact that V n,k n in (2.46) can be written as the expectation of a suitable ratio of independent random variables.

Recall that f α denotes the density function of a positive α-stable random variable. Then, using (2.42) with h(t) = exp{τ α -τt}, we can write

V n,k n = α k n Γ(n -k n α) +∞ 0 1 0 p n-1-k n α t -k n α exp{τ α -τt} f α (t(1 -p))dpdt = α k n -1 Γ(k n ) Γ(n) +∞ 0 exp{τ α -τt} αΓ(n) Γ(k n )Γ(n -k n α) t -k n α 1 0 (1 -p) n-k n α-1 f α (tp)dpdt = α k n -1 Γ(k n ) Γ(n) E exp τ α - τX Y , (2.65)
where X and Y are two independent random variables such that Y is distributed according to a Beta distribution with parameter (k n α, nk n α), and X is distributed according to a polynomially tilted positive α-stable random variable, i.e.,

Pr[X ∈ dx] = Γ(k n α + 1) Γ(k n + 1) x -k n α f α (x)dx. (2.66)
We refer to [START_REF] Pitman | Poisson-Kingman partitions[END_REF], [START_REF] Pitman | Combinatorial stochastic processes[END_REF] and Devroye [START_REF] Devroye | Random variate generation for exponentially and polynomially tilted stable distributions[END_REF] for a detailed account on the polynomially tilted α-stable random variable X. Given the representation (2.65) we can perform a Monte Carlo evaluation of V n,k n by simply sampling from the Beta random variable Y and from the random variable X with distribution (2.66).

Sampling form the Beta random variable Y is straightforward. The random variable X can be sampled by using an augmentation argument that reduces the problem of sampling X to the problem of sampling a Gamma random variable and, given that, an exponentially tilted α-stable random variable, i.e. a random variable with density function exp{c α -cx} f α (x), for some constant c > 0. The problem of sampling exponentially tilted α-stable random variables has been considered in Devroye [START_REF] Devroye | Random variate generation for exponentially and polynomially tilted stable distributions[END_REF] and Hofert [START_REF] Hofert | Efficiently sampling nested Archimedean copulas[END_REF]. Specifically, we can write (2.66) as follows

Γ(k n α + 1) Γ(k n + 1) x -k n α f α (x) = α Γ(k n ) +∞ 0 c k n α-1 exp{-c α } exp{-cx} f α (x) exp{-c α } dc = +∞ 0 f C (c) f X|C=c (x)dc,
where f X|C=c is the density function of an exponentially tilted positive α-stable random variable, and f C is the density function of the random variable C = G 1/α , where G being a Gamma random variable with parameter (k n , 1). We apply Hofert [START_REF] Hofert | Efficiently sampling nested Archimedean copulas[END_REF] for sampling the exponentially tilted positive α-stable random variable with density function f X|C=c . Note that, as k n grows, the tilting parameter C = G 1/α gets larger in distribution. As a result, the acceptance probability decreases and the Monte Carlo algorithm slows down. Let Be, Ga and tSt respectively denote Beta, Gamma and exponentially tilted positive α-stable distributions, and let Γ l represents the logarithm of the Γ function. Hereafter is the step-by-step pseudocode for the Monte Carlo evaluation of the V n,k n 's:

(i) Set M = 10 4 , n, k n , α, τ; (ii) Sample Y ∼ Be(αk n , n -αk n ) of size M; (iii) Sample G ∼ Ga(k n , 1) of size M; (iv) Sample X ∼ tSt(α, G 1/α ) of size M (v) Set v = (k n -1) log α + Γ l (k n ) -Γ l (n) + τ α -τX/Y; (vi) Set V = exp(v).
In the same setting described for the Pitman-Yor process, we perform a numerical study for the normalized generalized gamma process. More specifically, 500 data points are sampled independently and identically distributed from the Zeta distribution with parameter σ = 1.5. We consider the following pairs of parameters (α, τ): (0.25, 1), (0.25, 3), (0.25, 10), (0.5, 1), (0.5, 3), (0.5, 10), (0.75, 1), (0.75, 3) and (0.75, 10). For these pairs of parameters the predictive weight V n+1,k n +1 /V n,k n is evaluated by means of the above steps 1-6, and this evaluation is compared with the first order approximation and with the second order approximation of V n+1,k n +1 /V n,k n given by Theorem 2. respectively. Figure 2.9 shows that the Monte Carlo evaluation of V n+1,k n +1 /V n,k n lays between the first order approximation and the second order approximation of V n+1,k n +1 /V n,k n . As n moves, the difference between the resulting Monte Carlo curve and the approximate curves is imperceptible for α = 0.25; such a difference is also very small for τ = 1. Larger values of α and/or τ lead to larger discrepancies between the Monte Carlo curve and the approximate curves. The second order approximation is consistently closer to the Monte Carlo value than the first order approximation. In particular we observe that for n = 500 the second order approximation and the Monte Carlo value are indistinguishable, whereas the first order approximation may still be far from the Monte Carlo value for several choices of the parameters, e.g. (α, τ) = (0.75, 3) and (α, τ) = (0.75, 10).

We conclude by motivating the use of the second order approximation instead of the Monte Carlo evaluation. First of all, for pairs of parameters with large α and large τ, e.g. (α, τ) = (0.75, 10) in our numerical study, the Monte Carlo evaluation is extremely noisy, although we have used a large number of iterations, i.e 10 4 .

In particular, as shown in Figure 2.9, the noise does not vanish as n grows. On the contrary, the second order approximation has a more stable behavior, and for (α, τ) = (0.75, 10) it converges to the bulk of the Monte Carlo curve, which makes it more reliable than the latter for large values of n. Furthermore, evaluating the second order approximation is fast. On the other hand, the computational burden of the Monte Carlo evaluation is very heavy, e.g. 35 hours were required for the nine configurations of Figure 2.9, with 10 4 iterations for each weight. This is because of the sampling of the exponentially tilted α stable random variable. Indeed the rejection sampler originally proposed by Hofert [START_REF] Hofert | Efficiently sampling nested Archimedean copulas[END_REF] has an acceptance probability that decreases as n grows, making this approach prohibitive for large sample sizes. Although our Monte Carlo code could certainly be fastened, our empirical study suggests that the computing time increases exponentially with the sample size n. time and cumulated running time for each of the nine parameter configurations in Figure 2.11 and Figure 2.12.

See the average Monte Carlo running time in

Posterior sampling

In this section we present an application of Theorem 2.3.1 in the context of Bayesian nonparametric mixture modeling. Among various posterior sampling schemes for Bayesian nonparametric mixture modeling, the so-called Blackwell-MacQueen Pólya urn scheme certainly stands out. It is a Markov chain Monte Carlo sampling scheme belonging to the class of "marginal" schemes, since it relies on the predictive distributions. See MacEachern [START_REF] Maceachern | Estimating normal means with a conjugate style Dirichlet process prior[END_REF] and Escobar and West [START_REF] Escobar | Bayesian density estimation and inference using mixtures[END_REF] for a description of the Blackwell-MacQueen Pólya urn scheme in the context of mixture modeling based on Dirichlet process priors, and Ishwaran and James [START_REF] Ishwaran | Gibbs sampling methods for stick-breaking priors[END_REF] for mixture modeling based on general stick-breaking priors, e.g., the Pitman-Yor process prior. We compare the Blackwell-MacQueen Pólya urn scheme based on the exact predictive distributions with the Blackwell-MacQueen Pólya urn scheme based on our approximated predictive distributions. The performance is evaluated by computing the Kolmogorov-Smirnov (KS) distance between the estimated distribution function and the cumulative distribution function (cdf) of the true data generating process.

As an illustrative example, we considered simulated data of varying size n = 50, 100, 200, 500 sampled from a mixture of two Gaussian distributions, say

w 1 N (µ 1 , σ 2 1 ) + (1 -w 1 )N (µ 2 , σ 2 2 ). Precisely, we set (µ 1 , σ 2 1 ) = (1, 0.2), (µ 2 , σ 2 
2 ) = (10, 0.2) and w 1 = 0.5. The Bayesian nonparametric mixture model can be defined as where P α,h denotes a Gibbs-type prior, and IG(a, b) stands for an inverse-gamma distribution with parameters a and b. Following Section 2.3.3, we focus on the two common choices for the random probability measure P α,h , namely the Pitman-Yor process and the normalized generalized gamma process. In both cases we assume that the nonatomic probability measure ν 0 is the standard Gaussian distribution. In the model (2.69) we assume that a = b = 1.

Y i | X i ind ∼ N (Y i | X i , σ 2 ), i = 1, . . . , n, X i | P α,h i.i.d. ∼ P α,h , i = 1, . . . , n, P α,h ∼ P α,h ,
Under the assumption of the Pitman-Yor process prior and the assumption of the normalized generalized gamma process prior, we apply the Blackwell-MacQueen Pólya urn scheme with the exact predictive distributions and with the corresponding approximated predictive distributions given by Theorem 2.3.1. We used 10 4 iterations after a burn-in of 2 000. In Figure 2.13, we show the KS distance between the true distribution function and the estimated distribution function obtained by using the Blackwell-MacQueen Pólya urn scheme with

• the exact predictive distributions (2.47) of the Pitman-Yor process; the second order approximation (2.53) of the predictive distribution of the Pitman-Yor process coincides with this exact predictive distribution.

• the first order approximation (2.52) of the predictive distributions of the Pitman-Yor process, which coincides with the first order approximation of the predictive distributions of the normalized generalized gamma process.

• the second order approximation (2.53) of the predictive distributions of the normalized generalized gamma process, which is different from the second order approximation of the predictive distribution of the Pitman-Yor process.

The values of the hyperparameters α, θ and τ correspond to those used in the numerical illustrations of Section 2.3.3. Results in Figure 2.13 show that both first and second order approximations of predictive distributions produce posterior estimates with comparable performance to that the exact predictive distribution of the Pitman-Yor process. Also, the sampling scheme based on the first order approximation outperforms the sampling scheme based on the exact predictive distributions of the Pitman-Yor process, and of the second order approximation of the predictive distribution of the normalized generalized gamma process. A reason for this superiority of the first order approximation is the following: this first order approximation, both for the Pitman-Yor process and for the normalized generalized gamma process, boils down to the normalized α-stable process. For a given parameter α, such normalized α-stable process has a lower prior expected number of clusters than the Pitman-Yor process and the normalized generalized gamma process counterparts. Thus the normalized α-stable process is a better specified prior than the latter two processes for the true data generating process which is only made of two components, leading to an overall better performance.

Discussion

Gibbs-type priors form a flexible class of nonparametric priors, which is parameterized by an index α ∈ (0, 1) and a function h. According to the definition of Gibbstype random probability measures in terms of α-stable Poisson-Kingman models, the function h has the primary role of enriching the parameterization of the normalized α-stable process by introducing additional parameters other than α. See, e.g., Example 2.3.1 and Example 2.3.2. In this paper we introduced a first order approximation (2.52) and a second order approximation (2.53) for the predictive probabilities of Gibbs-type priors, for any α ∈ (0, 1) and any function h. In particular, we have proved that at the level of the first order approximation the function h has no impact on the predictive probabilities. Indeed Equation (2.52) coincides with the predictive probability of the normalized α-stable process, i.e. a Gibbs-type random probability measure with α ∈ (0, 1) and h(t) = 1. However, it is sufficient to consider a second order approximation in order to take into account the function h. Indeed, Equation ( 2 purely predictive perspective, and at the same time they provide practitioners with a way to easily handle the predictive probabilities of any Gibbs-type prior.
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Approximate Bayesian computation based on the energy distance 2.4.1 Introduction

In recent years, Bayesian inference has become a popular paradigm for machine learning and statistical analysis. Good introductions and references to the primary methods and philosophies of Bayesian inference can be found in texts such as [START_REF] Press | Subjective and Objective Bayesian Statistics: Principles, Models, and Applications[END_REF], [START_REF] Ghosh | An Introduction to Bayesian Analysis: Theory and Methods[END_REF], [START_REF] Koch | Introduction to Bayesian Statistics[END_REF], [START_REF] Koop | Bayesian Econometric Methods[END_REF], [START_REF] Robert | The Bayesian choice: from decision-theoretic foundations to computational implementation[END_REF], [START_REF] Barber | Bayesian Reasoning and Machine Learning[END_REF], and [START_REF] Murphy | Machine Learning: A Probabilistic Perspective[END_REF].

In this article, we are concerned with the problem of parametric, or classical Bayesian inference. For details regarding nonparametric Bayesian inference, the reader is referred to the expositions of [START_REF] Ghosh | Bayesian Nonparametrics[END_REF], [START_REF] Hjort | Bayesian Nonparametrics[END_REF], and [START_REF] Ghosal | Fundamentals of nonparametric Bayesian inference[END_REF].

When conducting parametric Bayesian inference, we observe some realizations x of the data X ∈ X that are generated from some data generating process (DGP), which can be characterized by a parametric likelihood, given by a probability density function (PDF) f (x|θ), determined entirely via the parameter vector θ. Using the information that the parameter vector θ is a realization of a random variable Θ ∈ T, which arises from a DGP that can be characterized by some known prior PDF π (θ), we wish to characterize the posterior distribution In very simple cases, such as cases when the prior PDF is a conjugate of the likelihood (cf. [START_REF] Robert | The Bayesian choice: from decision-theoretic foundations to computational implementation[END_REF]Sec. 3.3]), the posterior distribution (2.70) can be expressed explicitly.

π (θ|x) = f (x|θ) π (θ) c (x) , ( 2 
In the case of more complex but still tractable pairs of likelihood and prior PDFs, one can sample from (2.70) via a variety of Monte Carlo methods, such as those reported in [START_REF] Press | Subjective and Objective Bayesian Statistics: Principles, Models, and Applications[END_REF]Ch. 6].

In cases where the likelihood function is known but not tractable, or when the likelihood function has entirely unknown form, one cannot exactly sample from (2.70) in an inexpensive manner, or at all. In such situations, a sample from an approximation of (2.70) may suffice in order to conduct the user's desired inference. Such a sample can be drawn via the method of approximate Bayesian computation (ABC).

It is generally agreed that the ABC paradigm originated from the works of [START_REF] Rubin | Bayesian justifiable and relevant frequency calculations for the applied statistician[END_REF], [START_REF] Tavaré | Inferring coalescence times from DNA sequence data[END_REF], and [START_REF] Pritchard | Population growth of human Y chromosomes: a study of Y chromosome microsatellites[END_REF]; see [START_REF] Tavaré | On the history of ABC[END_REF] for details. Stemming from the initial listed works, there are now numerous variants of ABC methods. Some good reviews of the current ABC literature can be found in the expositions of [START_REF] Marin | Approximate Bayesian computation methods[END_REF], [START_REF] Voss | An Introduction to Statistical Computing: A Simulation-based Approach[END_REF]Sec. 5.1], [START_REF] Lintusaari | Fundamentals and recent developments in approximate Bayesian computation[END_REF], and [START_REF] Karabatsos | An approximate likelihood perspective on ABC methods[END_REF]. The volume of [START_REF] Sisson | Handbook of Approximate Bayesian Computation[END_REF] provides a comprehensive treatment regarding ABC methodologies.

The core philosophy of ABC is to define a quasi-posterior by comparing data with plausibly simulated replicates. The comparison is traditionally based on some summary statistics, the choice of which being regarded as a key challenge of the approach.

In recent years, data discrepancy measures bypassing the construction of summary statistics have been proposed by viewing data sets as empirical measures. Examples of such an approach is via the use of the Kullback-Leibler divergence, the Wasserstein distance, or a maximum mean discrepancy (MMD) variant.

In this section, we develop upon the discrepancy measurement approach of [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF], via the importance sampling ABC (IS-ABC) approach which makes use of a weight function [see e.g., 184]. In particular, we report on a class of ABC algorithms that utilize the two-sample energy statistic (ES) of [START_REF] Szekely | Testing for equal distributions in high dimension[END_REF] (see also [START_REF] Baringhaus | On a new multivariate two-sample test[END_REF], [START_REF] Szekely | Energy statistics: a class of statistics based on distances[END_REF], and [START_REF] Szekely | The energy of data[END_REF]).

Our approach is related to the maximum MMD ABC algorithms that were implemented in [START_REF] Park | K2-ABC: approximate Bayesian computation with kernel embeddings[END_REF], [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF], and [START_REF] Bernton | Approximate Bayesian computation with the Wasserstein distance[END_REF]. The MMD is a discrepancy measurement that is closely related to the ES (cf. [START_REF] Sejdinovic | Equivalence of distance-based and RKHS-based statistics in hypothesis testing[END_REF]).

We establish new asymptotic results that have not been proved in these previous papers. In the IS-ABC setting and in the regime where both the observation sample size and the simulated data sample size increase to infinity, our theoretical result highlights how the data discrepancy measure impacts the asymptotic pseudo-posterior. More specifically, under the assumption that the data discrepancy measure converges to some asymptotic value D ∞ (θ 0 , θ), we show that the pseudo-posterior dis- tribution converges almost surely to a distribution proportional to π(θ)w(D ∞ (θ 0 , θ)): the prior distribution times the IS weight w function evaluated at D ∞ (θ 0 , θ), where θ 0 stands for the 'true' parameter value associated to the DGP that generates observations X. Although devised in settings where likelihoods are assumed intractable, ABC can also be cast in the setting of robucitestness with respect to misspecification, where the ABC posterior distribution can be viewed as a special case of a coarsened posterior distribution [cf. 233].

The remainder of the article proceeds as follows. In Section 2.4. 

Importance sampling ABC

Assume that we observe n independent and identically distributed (IID) replicates of X from some DGP, which we put into X n = {X i } n i=1 . We suppose that the DGP that generates X is dependent on some parameter vector θ, a realization of Θ from space T, which is random and has prior PDF π (θ).

Denote f (x|θ) to be the PDF of X, given θ, and write

f (x n |θ) = n ∏ i=1 f (x i |θ) ,
where x n is a realization of X n , and each x i is a realization of X i (i ∈ [n] = {1, . . . , n}).

If f (x n |θ) were known, then we could use (2.70) to write the posterior PDF

π (θ|x n ) = f (x n |θ) π (θ) c (x n ) , (2.71) where c (x n ) = T f (x n |θ) π (θ) dθ is a constant that makes T π (θ|x n ) dθ = 1.
When evaluating f (x|θ) is prohibitive and ABC is required, then operating with f (x n |θ) is similarly difficult. We suppose that given any θ 0 ∈ T, we at least have the capability of sampling from the DGP with PDF f (x|θ 0 ). That is, we have a simula- tion method that allows us to feasibly sample the IID vector Y m = {Y i } m i=1 , for any m ∈ N, for a DGP with PDF

f (y n |θ) = m ∏ i=1 f (y i |θ) .
Using the simulation mechanism that generates samples Y m and the prior distribution that generates parameters Θ, we can simulate a set of N ∈ N simulations

Z N = {Z m,k } N k=1 , where Z m,k = Y m,k , Θ k and (•)
is the transposition opera- tor. Here, for each k ∈ [N], Z m,k is an observation from the DGP with joint PDF f (y m |θ) π (θ), hence each Z m,k is composed of a parameter value and a datum con- ditional on the parameter value. We now consider how X n and Z N can be combined in order to construct an approximation of (2.71).

Following the approach of [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF], we define D (x n , y m ) to be some non-negative real- valued function that outputs a small value if x n and y m are similar, and outputs a large value if x n and y m are different, in some sense. We call D (x n , y m ) the data discrepancy measurement between x n and y m , and we say that D (•, •) is the data discrepancy function.

Next, we let w (d, ) be a non-negative, decreasing (in d), and bounded (importance sampling) weight function (cf. Section 3 of [START_REF] Karabatsos | An approximate likelihood perspective on ABC methods[END_REF]), which takes as inputs a data discrepancy measurement d = D (x n , y m ) ≥ 0 and a calibration parameter > 0. Using the weight and discrepancy functions, we can propose the following approximation for (2.71).

In the language of [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF], we call

π m, (θ|x n ) = π (θ) L m, (x n |θ) c m, (x n ) (2.72)
the quasi-posterior PDF, where

L m, (x n |θ) = X m w (D (x n , y m ) , ) f (y m |θ) dy m
is the approximate likelihood function, and

c m, (x n ) = T π (θ) L m, (x n |θ) dθ
is a normalization constant. We can use (2.72) to approximate (2.71) in the following way. For any functional of the parameter vector Θ of interest, g (Θ) say, we may approximate the posterior Bayes estimator of g (Θ) via the expression

E [g (Θ) |x n ] ≈ T g (θ) π (θ) L m, (x n |θ) dθ c m, (x n ) , (2.73)
where the right-hand side of (2.73) can be unbiasedly estimated using 

Z N via M [g (Θ) |x n ] = ∑ N k=1 g (Θ k ) w (D (X n , Y m,k ) , ) ∑ N k=1 w (D (X n , Y m,k ) , ) . ( 2 
); put Z k = (Y m,k , Θ k ) into Z N .
Output: Z N and construct the estimator M [g (Θ) |x n ].

The energy statistic (ES)

Let δ define a metric and let X ∈ X ⊆ R d and Y ∈ X be two random variables that are in a metric space endowed with δ, where d ∈ N. Furthermore, let X and Y be two random variables that have the same distributions as X and Y, respectively.

Here, X, X , Y, and Y are all independent of one another.

Upon writing

E δ (X, Y) = 2E [δ (X, Y)] -E δ X, X -E δ Y, Y ,
we can define the original ES of [START_REF] Baringhaus | On a new multivariate two-sample test[END_REF] and [START_REF] Szekely | Testing for equal distributions in high dimension[END_REF], as a function of X and Y, via the expression E δ 2 (X, Y), where δ p (x, y) = xy p is the metric corresponding to the

p -norm (p ∈ [1, ∞]
). Thus, the original ES statistic, which we shall also denote as E (X, Y), is defined using the Euclidean norm δ 2 .

The original ES has numerous useful mathematic properties. For instance, under the assumption that

E X 2 + E Y 2 < ∞, it was shown that E (X, Y) = Γ d+1 2 π (d+1)/2 R d |ϕ X (t) -ϕ Y (t)| 2 t d+1 2 dt, (2.75)
in Proposition 1 of [START_REF] Szekely | Energy statistics: a class of statistics based on distances[END_REF], where Γ (•) is the gamma function and ϕ X (respectively, ϕ Y ) is the characteristic function of X (respectively, Y). Thus, we have the fact that E (X, Y) ≥ 0 for any X, Y ∈ X, and E (X, Y) = 0 if and only if X and Y are identically distributed.

The result above is generalized in Proposition 3 of [START_REF] Szekely | Energy statistics: a class of statistics based on distances[END_REF], where we have the following statement. If δ (x, y) = δ (xy) is a continuous function and X, Y ∈ R d are independent random variables, then it is necessary and sufficient that δ (•) is strictly negative definite (see [START_REF] Szekely | Energy statistics: a class of statistics based on distances[END_REF] for the precise definition) for the following conclusion to hold: E δ (X, Y) ≥ 0 for any X, Y ∈ X, and E δ (X, Y) = 0 if and only if X and Y are identically distributed.

We observe that there is thus an infinite variety of functions δ from which we can construct energy statistics. We shall concentrate on the use of the original ES, based on δ 2 , since it is the most well known and popular of the varieties.

The V-statistic estimator

Suppose that we observe

X n = {X i } n i=1 and Y m = {Y i } m i=1
, where the former is a sample containing n IID replicates of X, and the latter is a sample containing m IID replicates of Y, respectively, with X n and Y m being independent. In [START_REF] Gretton | A kernel two-sample test[END_REF], it was shown that for any δ, upon assuming that δ (x, y) < ∞, the so-called V-statistic estimator (cf. [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF]Ch. 5] and [START_REF] Koroljuk | Theory of U-Statistics[END_REF])

V δ (X n , Y m ) = 2 mn n ∑ i=1 m ∑ j=1 δ X i , Y j - 1 n 2 n ∑ i=1 n ∑ j=1 δ X i , X j - 1 m 2 m ∑ i=1 m ∑ j=1 δ Y i , Y j ,
(2.76) can be proved to converge in probability to E δ (X, Y), as n → ∞ and m → ∞, under the condition that m/n → α < ∞, for some constant α (see also [START_REF] Gretton | A kernel method for the two-sample-problem[END_REF]).

We note that the assumption of this result is rather restrictive, since it either requires the bounding of the space X or the function δ. In the sequel, we will present a result for the almost sure convergence of the V-statistic that depends on the satisfaction of a more realistic hypothesis.

It is noteworthy that if the ES is non-negative, then the V-statistic retains the nonnegativity property of its corresponding ES (cf. [START_REF] Gretton | A kernel two-sample test[END_REF]). That is, for any continuous and negative definite function δ (x, y) = δ (xy), we have V δ (X n , Y m ) ≥ 0.

The ES-based IS-ABC algorithm

From Algorithm 2.4.1, we observe that an IS-ABC algorithm requires three components. A data discrepancy measurement d = D (X n , Y m ) ≥ 0, a weighting function w (d, ) ≥ 0, and a tuning parameter > 0. We propose the use of the ES in the place of the data discrepancy measurement d, in combination with various weight functions that have been used in the literature. That is we set

D (X n , Y m ) = V δ (X n , Y m ) , in Algorithm 2.4.1.
In particular, we consider original ES, where δ = δ 2 . We name our framework the ES-ABC algorithm. In Section 2.4.4, we shall demonstrate that the proposed algorithm possesses desirable large sample qualities that guarantees its performance in practice, as illustrated in Section 2.4.5.

Related methods

The ES-ABC algorithm that we have presented here is closely related to ABC algorithms based on the maximum mean discrepancy (MMD) that were implemented in [START_REF] Park | K2-ABC: approximate Bayesian computation with kernel embeddings[END_REF], [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF], and [START_REF] Bernton | Approximate Bayesian computation with the Wasserstein distance[END_REF]. For each positive definite Mercer kernel function χ (x, y) (x, y ∈ X), the corresponding MMD is defined via the equation

MMD 2 χ (X, Y) = E χ X, X + E χ Y, Y -2E [χ (X, Y)] ,
where X, X , Y, Y are random variable such that X and Y are identically distributed to X and Y , respectively.

The MMD as a statistic for testing goodness-of-fit was studied prominently in articles such as [START_REF] Gretton | A kernel method for the two-sample-problem[END_REF], [START_REF] Gretton | A fast, consistent kernel two-sample test[END_REF], and [START_REF] Gretton | A kernel two-sample test[END_REF]. It is clear that if δ = -χ, the forms of the ES and the squared MMD are identical. More details regarding the relationship between the two classes of statistics can be found in [START_REF] Sejdinovic | Equivalence of distance-based and RKHS-based statistics in hypothesis testing[END_REF].

We note two shortcomings with respect to the applications of the MMD as a basis for an ABC algorithm in the previous literature. Firstly, no theoretical results regarding the consistency of the MMD-based methods have been proved. And secondly, in the application by [START_REF] Park | K2-ABC: approximate Bayesian computation with kernel embeddings[END_REF] and [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF], the MMD was implemented using the unbiased U-statistic estimator, rather than the biased V-statistic estimator. Although both estimators are consistent, in the sense that they can be proved to be convergent to the desired limiting MMD value, the U-statistic estimator has the unfortunate property of not being bounded from below by zero (cf. [START_REF] Gretton | A kernel two-sample test[END_REF]). As such, it does not meet the criteria for a data discrepancy measurement.

Theoretical results

General asymptotic analysis

We now establish a consistency result for the quasi-posterior density (2.72), when n and m approach infinity. Our result generalizes the main result of [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF] (i.e., Theorem 1), which is the specific case when the weight function is restricted to the form

w (d, ) = d < , (2.77)
where • is the Iverson bracket notation, which equals 1 when the internal statement is true, and 0, otherwise (cf. [START_REF] Graham | Concrete Mathematics[END_REF]).

The weighting function of form (2.77), when implemented within the IS-ABC framework, produces the common rejection ABC algorithms, that were suggested by [START_REF] Tavaré | Inferring coalescence times from DNA sequence data[END_REF], and [START_REF] Pritchard | Population growth of human Y chromosomes: a study of Y chromosome microsatellites[END_REF]. We extended upon the result of [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF] so that we may provide theoretical guarantees for more exotic ABC procedures, such as the kernel-smoothed ABC procedure of [START_REF] Park | K2-ABC: approximate Bayesian computation with kernel embeddings[END_REF], which implements weights of the form w (d, ) = exp (-d q / ) , (2.78)

for q > 0. See [START_REF] Karabatsos | An approximate likelihood perspective on ABC methods[END_REF] for further discussion and examples.

In order to prove our consistency result, we require Hunt's lemma, which is reported in [START_REF] Dellacherie | Probability and Potential B: Theory of Martingales[END_REF], as Theorem 45 of Section V.5. For convenience to the reader, we present the result, below. Theorem 2.4.1. Let (Ω, F , P) be a probability space with increasing σ-fields {F n } and let F ∞ = ∪ n F n . Suppose that {U n } is a sequence of random variables that is bounded from above in absolute value by some integrable random variable V, and further suppose that U n converges almost surely to the random variable U. Then, 

lim n→∞ E (U n |F n ) = E (U|F ∞ ) almost
(x n |θ 0 ) = ∏ n i=1 f (x i |θ 0 ) and f (y m |θ) = ∏ m i=1 f (y i |θ)
, respectively, with corresponding parameter vectors θ 0 and θ. Suppose that the data discrepancy D (X n , Y m ) converges to some D ∞ (θ 0 , θ), which is a function of θ 0 and θ, almost surely as n → ∞, for some m = m (n) → ∞. If w (d, ) is piecewise continuous and decreasing in d and w (d, ) ≤ a < ∞ for all d ≥ 0 and any > 0, and if

D ∞ (θ 0 , θ) ∈ C (w (•, )) , then we have π m, (θ|x n ) → π (θ) w (D ∞ (θ 0 , θ) , ) π (θ) w (D ∞ (θ 0 , θ) , ) dθ , (2.79)
almost surely, as n → ∞.

Proof. Using the notation of Theorem 2.4.1, we set

U n = w (d (X n , Y m ) , ). Since w (d, ) ≤ a < ∞, for any d, we have the existence of a |U n | ≤ V < ∞ such that V is integrable, since we can take V = a. Since D (X n , Y m ) converges almost surely to D ∞ (θ 0 , θ), and w (•, ) is continuous at D ∞ (θ 0 , θ), we have U n → U = w (D ∞ (θ 0 , θ) ,
) with probability one by the extended continuous mapping theo- rem (cf. [START_REF] Dasgupta | Probability for Statistics and Machine Learning: Fundamentals and Advance[END_REF]Thm. 7.10]). Now, let F n be the σ-field generated by the sequence {X 1 , . . . , X n }. Thus, F n is an increasing σ-field, which approaches F ∞ = ∪ n F n . We are in a position to directly apply Theorem 2.4.1. This yields

E [w (D (X n , Y m ) , ) |X n ] → E [w (D ∞ (θ 0 , θ) , ) |X ∞ ] ,
almost surely, as n → ∞, where the right-hand side equals w (D ∞ (θ 0 , θ) , ).

Notice that the left-hand side has the form

E [w (D (X n , Y m ) , ) |X n ] = L m, (X n |θ)
and therefore L m, (X n |θ) → w (D ∞ (θ 0 , θ) , ), almost surely, as n → ∞. Thus, the numerator of (2.72) converges to

π (θ) w (D ∞ (θ 0 , θ) , ) , (2.80) 
almost surely.

To complete the proof, it suffices to show that the denominator of (2.72) converges almost surely to The following result and proof guarantees the applicability of Theorem 2.4.2 to rejection ABC procedures, and to kernel-smoothed ABC procedures, as used in [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF] and [START_REF] Park | K2-ABC: approximate Bayesian computation with kernel embeddings[END_REF], respectively. Proposition 2.4.1. The result of Theorem 2.4.2 applies to rejection ABC and importance sampling ABC, with weight functions of respective forms (2.77) and (2.78).

T π (θ) w (D ∞ (θ 0 , θ) , ) dθ. (2.81) Since L m, (X n |θ) → w (D ∞ (θ 0 , θ) , ) and c m, (x n ) = T π (θ) L m
Proof. For weights of form (2.77), we note that w (d, ) = d < is continuous in d at all points, other than when d = . Furthermore, w (d, ) ∈ {0, 1} and is hence non-negative and bounded. Thus, under the condition that D ∞ (θ 0 , θ) = , we have the desired conclusion of Theorem 2.4.2.

For weights of form (2.78), we note that for fixed , w (d, ) is continuous and pos- itive in d. Since w is uniformly bounded by 1, differentiating with respect to d, we obtain dw/dd = -(q/ ) d q-1 exp (-d q / ), which is negative for any d ≥ 0 and q > 0. Thus, (2.78) constitutes a weight function and satisfies the conditions of Theorem 2.4.2.

Asymptotic of the energy statistic

Let X and Y be arbitrary elements of X n and Y m , respectively. That is X and Y arise from DGPs that can be characterized by PDFs f (x; θ 0 ) and f (y; θ), respectively. Under the assumption E X 2 + E Y 2 < ∞, Proposition 1 of [START_REF] Szekely | Energy statistics: a class of statistics based on distances[END_REF] states that we can write the ES as

E (X, Y) = Γ d+1 2 π (d+1)/2 R d |ϕ (t; θ 0 ) -ϕ (t; θ)| 2 t d+1 2 dt, (2.82) 
where ϕ (t; θ) is the characteristic function corresponding to the PDF f (y; θ).

We write log + x = log (max {1, x}). From [312] we have the fact that for arbitrary δ,

V δ (X n , Y m ) = 1 n 2 m 2 n ∑ i 1 =1 n ∑ i 2 =1 m ∑ j 1 =1 m ∑ j 2 =1 κ δ X i 1 , X i 2 ; Y j 1 , Y j 2 ,
where

κ δ x i 1 , x i 2 ; y j 1 , y j 2 = δ x i 1 , y j 1 + δ x i 2 , y j 2 -δ (x i 1 , x i 2 ) -δ y j 1 , y j 2
is the kernel of the V-statistic that is based on the function δ. The following result is a direct consequence of Theorem 1 of [START_REF] Sen | Almost sure convergence of generalized U-statistics[END_REF], when applied to V-statistics constructed from functionals δ that satisfy the hypothesis of [START_REF] Szekely | Energy statistics: a class of statistics based on distances[END_REF]Prop. 3]. Lemma 2.4.1. Make the same assumptions regarding X n and Y m as in Theorem 2.4.2. Let δ (x, y) = δ (xy) be a continuous and strictly negative definite function. If

E |κ δ (X 1, X 2 ; Y 1 , Y 2 )| log + |κ δ (X 1, X 2 ; Y 1 , Y 2 )| < ∞, (2.83 
)

then V δ (X n , Y m ) converges almost surely to E δ (X 1 , Y 1 ) ≥ 0, as min {n, m} → ∞, where X 1 , X 2 ∈ X and Y 1 , Y 2 ∈ X are arbitrary elements of X n and Y m , respectively. Furthermore, E δ (X 1 , Y 1 ) = 0 if and only if X 1 and Y 1 are identically distributed.
We may apply the result of Lemma 2.4.1 directly to the case of δ = δ 2 in order to provide an almost sure convergence result regarding the V-statistic V δ 2 (X n , Y m ). Corollary 2.4.1. Make the same assumptions regarding X n and Y m as in Theorem 2.4.2. If X 1 ∈ X and Y 1 ∈ X are arbitrary elements of X n and Y m , respectively, and

E X 1 2 2 + E Y 1 2 2 < ∞, (2.84) 
and if min {n, m} → ∞, then V δ 2 (X n , Y m ) converges almost surely to E (X 1 , Y 1 ), of form (2.82).

Proof. By the law of total expectation, we apply Lemma 2.4.1 by considering the two cases of (2.83): when |κ δ 2 | ≤ 1 and when |κ δ 2 | > 1, separately, to write

E |κ δ 2 | log + |κ δ 2 | = p 0 E |κ δ 2 | log + |κ δ 2 | | |κ δ 2 | ≤ 1 + p 1 E |κ δ 2 | log + |κ δ 2 | | |κ δ 2 | > 1 , (2.85 
) where p 0 = P (|κ δ 2 | ≤ 1) and p 1 = P (|κ δ 2 | > 1). The first term on the right-hand side of (2.85) is equal to zero, since log

+ |κ δ 2 | = log (1) = 0, whenever |κ δ 2 | ≤ 1.
Thus, we need only be concerned with bounding the second term.

For |κ δ 2 | > 1, |κ δ 2 | log |κ δ 2 | ≤ |κ δ 2 | 2 , thus E |κ δ 2 | log + |κ δ 2 | | |κ δ 2 | > 1 ≤ E |κ δ 2 | 2 | |κ δ 2 | > 1 The condition that E |κ δ 2 | log + |κ δ 2 | < ∞ is thus fulfilled if E |κ δ 2 | 2 | |κ δ 2 | > 1 < ∞, which is equivalent to E |κ δ 2 | 2 = p 0 E |κ δ 2 | 2 | |κ δ 2 | ≤ 1 + p 1 E |κ δ 2 | 2 | |κ δ 2 | > 1 < ∞, by virtue of the integrability of |κ δ 2 | 2 | |κ δ 2 | ≤ 1 implying the existence of E |κ δ 2 | 2 | |κ δ 2 | ≤ 1 ,
since it is defined on a bounded support.

Next, by the triangle inequality, |κ

δ 2 | ≤ 2 ( X 1 2 + X 2 2 + Y 1 2 + Y 2 2 ), and hence |κ δ 2 | 2 ≤ 4 X 1 2 2 + X 2 2 2 + Y 1 2 2 + Y 2 2 2 + 8( X 1 2 X 2 2 + X 1 2 Y 1 2 + X 1 2 Y 2 2 + X 2 2 Y 1 2 + X 2 2 Y 2 2 + Y 1 2 Y 2 2 ).
Since X 1 , X 2 , Y 1 , Y 2 are all pairwise independent, and X 1 and Y 1 are identically distributed to X 2 and Y 2 , respectively, we have

E |κ δ 2 | 2 ≤ 8 E X 1 2 2 + E Y 1 2 2 + 8 (E X 1 2 ) 2 + (E Y 1 2 ) 2 + 32 [E X 1 2 E Y 1 2 ] , which concludes the proof since E X 1 2 2 + E Y 1 2 2 < ∞ is satisfied by the hypoth- esis and implies E X 1 2 + E Y 1 2 < ∞.
We note that condition (2.84) is stronger than a direct application of condition (2.83), which may be preferable in some situations. However, condition (2.84) is somewhat more intuitive and verifiable since it is concerned with the polynomial moments of norms and does not involve the piecewise function log + x. It is also suggested in [START_REF] Zygmund | An individual ergodic theorem for non-comutative transformations[END_REF] that one may replace log + x by log (2 + x) if it is more convenient to do so.

Combining the result of Theorem 2.4.2 with Corollary 2.4.1 and the conclusion from Proposition 1 of [START_REF] Szekely | Energy statistics: a class of statistics based on distances[END_REF] provided in Equation (2.82) yields the key result below. This result justifies the use of the V-statistic estimator V δ 2 (X n , Y m ) for the energy distance E (X, Y) within the IS-ABC framework. Corollary 2.4.2. Under the assumptions of Corollary 2

.4.1. If D (X n , Y m ) = V δ 2 (X n , Y m ), then the conclusion of Theorem 2.4.2 follows with D (X n , Y m ) → Γ d+1 2 π (d+1)/2 R d |ϕ (t; θ 0 ) -ϕ (t; θ)| 2 t d+1 2 dt = D ∞ (θ 0 , θ) ,
almost surely, as n → ∞, where D ∞ (θ 0 , θ) ≥ 0 and D ∞ (θ 0 , θ) = 0, if and only if θ 0 = θ.

Illustrations

We illustrate the use of the ES on some standard models. The standard rejection ABC algorithm is employed (that is, we use Algorithm 2.4.1 with weight function w of form (2.77)) for constructing estimators (2.74). The proposed ES is compared to the Kullback-Leibler divergence (KL), the Wasserstein distance (WA), and the maximum mean discrepancy (MMD). Here, the ES is applied using the Euclidean metric δ 2 , the Wasserstein distance using the exponent p = 2 [cf. 52] and the MMD using a Gaussian kernel χ(x, y) = exp [-(xy) 2 ]. The Gaussian kernel is commonly used in the MMD literature, and was also considered for ABC in [START_REF] Park | K2-ABC: approximate Bayesian computation with kernel embeddings[END_REF] and [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF]. Details regarding the use of the Kullback-Leibler divergence as a discrepancy function for ABC algorithms can be found in [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF]Sec. 2].

We use X ∼ L to denote that the random variable X has probability law L. Furthermore, we denote the normal law by N (µ, Σ), where X ∼ N (µ, Σ) states that the DGP of X is multivariate normal distribution with mean vector µ and covariance matrix Σ. We further denote the uniform law, in the interval (a, b), for a < b, by Unif(a, b).

We consider examples explored in [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF]Sec. 4.1]. For each illustration below, we sample synthetic data of the same size m as the observed data size, n, whose value is specified for each model below. We consider only the rejection weight function, and the number of ABC iterations in Algorithm 2.4.1 is set to N = 10 5 . The tuning parameter is set so that only the 0.05% smallest discrepancies are kept to form ABC posterior sample. We postpone the discussion of the results of our simulation experiments to Section 2.4.5

The experiments were implemented in R, using in particular the winference package [START_REF] Bernton | Approximate Bayesian computation with the Wasserstein distance[END_REF] and the FNN package [START_REF] Beygelzimer | FNN: Fast Nearest Neighbor Search miller and Applications[END_REF]. The Kullback-Leibler divergence between two PDFs is computed within the 1-nearest neighbor framework [START_REF] Boltz | High-dimensional statistical measure for region-of-interest tracking[END_REF]. Moreover, the k-d trees is adopted for implementing the nearest neighbor search, which is the same as the method of [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF]. For estimating the 2-Wasserstein distance between two multivariate empirical measures, we propose to employ the swapping algorithm [START_REF] Puccetti | An algorithm to approximate the optimal expected inner product of two vectors with given marginals[END_REF], which is simple to implement, and is more accurate and less computationally expensive than other algorithms commonly used in the literature [START_REF] Bernton | Approximate Bayesian computation with the Wasserstein distance[END_REF]. Regarding the MMD, the same unbiased U-statistic estimator is adopted as given in [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF] and [START_REF] Park | K2-ABC: approximate Bayesian computation with kernel embeddings[END_REF]. For reproduction of the the experimental results, the original source code can be accessed at https://github.com/hiendn/Energy_Statistics_ABC.

Bivariate Gaussian mixture model

Let X n be a sequence of IID random variables, such that each X i has mixture of Gaussian probability law

X i ∼ pN (µ 0 , Σ 0 ) + (1 -p)N (µ 1 , Σ 1 ), (2.86) 
with known covariance matrices

Σ 0 =     0.5 -0.3 -0.3 0.5     and Σ 1 =     0.25 0 0 0.25     .
We aim to estimate the generative parameters θ = (p, µ 0 , µ 1 ) consisting of the mixing probability p and the population means µ 0 and µ 1 . To this end, we perform ABC using n = 500 observations, sampled from model (2.86) with p = 0.3, 

Moving-average model of order 2

The moving-average model of order q, MA(q), is a stochastic process {Y t } t∈N * defined as

Y t = Z t + q ∑ i=1 θ i Z t-i ,
with {Z t } t∈Z being a sequence of unobserved noise error terms. [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF] used a MA(2) model for their benchmarking; namely

Y t = Z t + θ 1 Z t-1 + θ 2 Z t-2 , t ∈ [d].
Each observation Y corresponds to a time series of length d. Here, we use the same model as that proposed in [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF], where Z t follows the Student-t distribution with 5 degrees of freedom, and d = 10. The priors on the model parameters θ 1 and θ 2 are taken to be uniform, that is, θ 1 ∼ Unif(-2, 2) and θ 2 ∼ Unif(-1, 1). We performed ABC using n = 200 samples generated from a model with the true parameter values (θ 1 , θ 2 ) = (0.6, 0.2). A KDE of the ABC posterior distribution is displayed in Figure 2.15.

Bivariate beta model

The bivariate beta model proposed by [START_REF] Crackel | Bayesian inference for a flexible class of bivariate beta distributions[END_REF] is defined with five positive parameters θ 1 , . . . , θ 5 by letting

V 1 = U 1 + U 3 U 5 + U 4 , and 
V 2 = U 2 + U 4 U 5 + U 3 , (2.87) 
where U i ∼ Gamma(θ i , 1), for i ∈ [START_REF] Alexits | Convergence problems of orthogonal series[END_REF], and setting

Z 1 = V 1 /(1 + V 1 ) and Z 2 = V 2 /(1 + V 2 ). The bivariate random variable Z = (Z 1 , Z 2 ) has marginal laws Z 1 ∼ Beta(θ 1 + θ 3 , θ 5 + θ 4 ) and Z 2 ∼ Beta(θ 2 + θ 4 , θ 5 + θ 3
). We performed ABC using samples of size n = 500, which are generated from a DGP with true parameter values (θ 1 , θ 2 , θ 3 , θ 4 , θ

. The prior on each of the model parameters is taken to be independent Unif(0, 5). A KDE of the ABC posterior distribution is displayed in Figure 2.16.

Multivariate g-and-k distribution

A univariate g-and-k distribution can be defined via its quantile function [START_REF] Drovandi | Likelihood-free Bayesian estimation of multivariate quantile distributions[END_REF]:

F -1 (x) = A + B 1 + 0.8 1 -exp(-g × z x ) 1 + exp(-g × z x ) 1 + z 2 x k z x , (2.88) 
where parameters (A, B, g, k) respectively relate to location, scale, skewness, and kurtosis. Here, z x is the xth quantile of the standard normal distribution. Given a set of parameters (A, B, g, k), it is easy to simulate d observations of a DGP with quantile function (2.88), by generating a sequence of IID sample {Z i } d i=1 , where

Z i ∼ N (0, 1), for i ∈ [d].
A so-called d-dimensional g-and-k DGP can instead be defined by applying the quantile function (2.88) to each of the d elements of a multivariate normal vector Z = (Z 1 , ..., Z d ) ∼ N (0, Σ), where Σ is a covariance matrix. In our experiment, we use a 5-dimensional g-and-k model with the same covariance matrix and parameter values for (A, B, g, k) as that considered by [START_REF] Jiang | Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy[END_REF]. That is, we generate samples of size n = 200 from a g-and-k DGP with the true parameter values (A, B,

and the covariance matrix

Σ =                1 ρ 0 0 0 ρ 1 ρ 0 0 0 ρ 1 ρ 0 0 0 ρ 1 ρ 0 0 0 ρ 1               
, where ρ = -0.3. Marginal KDEs of the ABC posterior distributions is presented in Figure 2.17. 

Discussion of the results and performance

For each of the four experiments and each parameter, we computed the posterior mean θmean , posterior median θmed , mean absolute error and mean squared error defined by

MAE = 1 M M ∑ k=1 |θ k -θ 0 |, and MSE = 1 M M ∑ k=1 |θ k -θ 0 | 2 ,
where {θ k } M k=1 denotes the pseudo-posterior sample and θ 0 denotes the true parameter. Here M = 50 since N = 10 5 and is chosen as to retain 0.05% of the samples. Each experiment was replicated ten times by keeping the same fixed (true) values for the parameters and by sampling new observed data each of the ten times. The estimated quantities θmean , θmed , and errors MAE and RMSE = MSE 1/2 were then averaged over the ten replications, and are reported along with standard deviations σ(•) in columns associated with each estimator and true values θ 0 for each parameter in Tables 2.9, 2.10, 2.11 and 2.12.

Upon inspection, Tables 2.9, 2.10, 2.11 and 2.12 showed some advantage in performance from WA on the bivariate Gaussian mixtures, some advantage from the MMD on the bivariate beta model, and some advantage from the ES on the g-and-k model, while multiple methods are required to make the best inference in the case of the MA(2) experiment. When we further take into account the standard deviations of the estimators, we observe that all four data discrepancy measures essentially perform comparatively well across the four experimental models. Thus, we may conclude that there is no universally best performing discrepancy measure, and one must choose the right method for each problem of interest. Alternatively, one may also consider some kind of averaging over the results of the different discrepancy measures. We have not committed to an investigation of such methodologies and leave it as a future research direction. 

Discussion

We have introduced a novel importance-sampling ABC algorithm that is based on the so-called two-sample energy statistic. Along with other data discrepancy measures that view data sets as empirical measures, such as the Kullback-Leibler divergence, the Wasserstein distance and maximum mean discrepancies, our proposed approach bypasses the cumbersome use of summary statistics.

We have shown that the V-statistic estimator of the ES is consistent under mild moment conditions. Furthermore, we have established a new asymptotic result for cases when the observed sample and simulated sample sizes increasing to infinity, that shows a kind of consistency of the pseudo-posterior in the infinite data scenario. This is in concordance with previous results in such cases [see for instance 176, 52] and extends upon existing theory for the application in the general IS-ABC framework.

Illustrations of the proposed ES-ABC algorithm on four experimental models have shown that it performs comparatively well to alternative discrepancy measures.

Considering computing costs, KL should be preferred over the other three discrepancy measures, with a linearithmic computational time of O((n + m) log(n + m)). This can be contrasted against the quadratic time O((n + m) 2 ) for a single computation of D (X n , Y m ) when we consider the Wasserstein distance, instead. Both the ES and MMD estimators require quadratic computational time, like the Wasserstein distance. We note that linear time estimators are also available for the MMD and the ES, although these are unbiased and cannot be guaranteed to be positive [see Lemma 14 in 146].

In the rejection ABC setting, Proposition 2 of [START_REF] Bernton | Approximate Bayesian computation with the Wasserstein distance[END_REF] shows that under some regularity assumptions on the DGP and if the data discrepancy measure satisfies the condition:

D (X n , Y n ) = 0 if and only if X n = Y n , (2.89) 
then the ABC pseudo-posterior contracts to the posterior distribution as the rejection threshold converges to zero. It can be shown that the V-statistic estimator of the ES only satisfies the only if direction of (2.89) and thus does not necessarily enjoy the conclusions of Proposition 2 of [START_REF] Bernton | Approximate Bayesian computation with the Wasserstein distance[END_REF]. The condition is not known to be necessary and thus we do not know if the conclusion can be satisfied in another way. We observe, from our simulation experiments, that ES did not perform differently to the Wasserstein distance, which can be shown to satisfy Proposition 2 of [START_REF] Bernton | Approximate Bayesian computation with the Wasserstein distance[END_REF].
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This chapter is based on the following papers and preprints Section 3.1

E[X j ] = (α) j (α + β) j , (3.5) 
where (x

) j = x(x + 1) • • • (x + j -1) = Γ(x+j) Γ(x)
is the Pochhammer symbol, also known in the literature as a rising factorial. In particular, the mean and variance are given by:

E[X] = α α + β , Var[X] = αβ (α + β) 2 (α + β + 1)
.

The Beta distribution is ubiquitous in statistics. It plays a central role in the binomial model in Bayesian statistics where it is a conjugate prior distribution (the associated posterior distribution is also Beta): if X ∼ Binomial(θ, N) and θ ∼ Beta(α, β), then θ|X ∼ Beta(α + X, β + N -X). It is also key to Bayesian nonparametrics where it embodies, among others, the distribution of the breaks in the stick-breaking representation of the Dirichlet process and the Pitman-Yor process; marginal distributions of Polya trees [START_REF] Castillo | Pólya tree posterior distributions on densities[END_REF]; the posterior distribution of discovery probabilities under a Bayesian nonparametrics model [START_REF] Arbel | Bayesian nonparametric inference for discovery probabilities: credible intervals and large sample asymptotics[END_REF]. Our main result opens new research avenues for instance about asymptotic (frequentist) assessments of these procedures.

Theorem 3.1.1 (Optimal proxy variance for the Beta distribution). For any α, β > 0, the Beta distribution Beta(α, β) is σ 2 opt (α, β)-sub-Gaussian with optimal proxy variance σ 2 opt (α, β) given by:

             σ 2 opt (α, β) = α (α+β)x 0 1 F 1 (α+1;α+β+1;x 0 ) 1 F 1 (α;α+β;x 0 ) -1
where x 0 is the unique solution of the equation

ln( 1 F 1 (α; α + β; x 0 )) = αx 0 2(α+β) 1 + 1 F 1 (α+1;α+β+1;x 0 ) 1 F 1 (α;α+β;x 0 ) . (3.6) 
A simple and explicit upper bound to σ 2 opt (α, β) is given by σ

2 0 (α, β) = 1 4(α+β+1) : -for α = β we have Var[Beta(α, β)] < σ 2 opt (α, β) < 1 4(α+β+1) -for α = β we have Var[Beta(α, α)] = σ 2 opt (α, α) = 1 4(2α+1) 
. refer to [START_REF] Marchal | On the sub-Gaussianity of the Beta and Dirichlet distributions[END_REF] for a proof. Equation (3.6) defining x 0 is a transcendental equation, the solution of which is not available in closed form. However, it is simple to evaluate numerically. The values of the variance, optimal proxy variance and its simple upper bound are illustrated on Figure 3.1. Note that for a fixed value of the sum of the parameters, α + β = S, the optimal proxy variance deteriorates when α, or equivalently β, gets close to 0 or to S. This is reminiscent of the Bernoulli optimal proxy variance behavior which deteriorates when the success probability moves away from 1 2 [START_REF] Buldygin | The sub-Gaussian norm of a binary random variable[END_REF]. Corollary 3.1.1. The Beta distribution Beta(α, β) is strictly sub-Gaussian if and only if α = β.

As a direct consequence, we obtain the strict sub-Gaussianity of the uniform, the arcsine and the Wigner semicircle distributions, as special cases up to a trivial rescaling of the Beta(α, α) distribution respectively with α equal to 1, 1 2 and 3 2 . 

Optimal proxy variance for the Bernoulli distribution

The proof technique can be used to recover the optimal proxy variance for the Bernoulli distribution, known since [START_REF] Kearns | Large deviation methods for approximate probabilistic inference[END_REF]. This is illustrated by the center panel of Figure 3.1. Theorem 3.1.2 (Optimal proxy variance for the Bernoulli distribution). For any µ ∈ (0, 1), the Bernoulli distribution with mean µ is sub-Gaussian with optimal proxy variance σ 2 opt (µ) given by:

σ 2 opt (µ) = (1 -2µ) 2 ln 1-µ µ . ( 3.7) 

On strict sub-Gaussianity, optimal proxy variance and symmetry for bounded random variables

We focus here on the study of almost surely bounded random variables, where Bernoulli, beta, binomial, Kumaraswamy [START_REF] Jones | Kumaraswamy's distribution: A beta-type distribution with some tractability advantages[END_REF] or triangular [START_REF] Kotz | Beyond Beta: Other Continuous Families of Distributions with Bounded Support and Applications[END_REF] distributions are taken as standard and common examples. If sub-Gaussianity per se is de facto ensured because the support of said random variables is bounded, then exciting research avenues remain open in the area. Among these questions are (a) how to obtain the optimal sub-Gaussian proxy variance, and (b) how to characterize strict sub-Gaussianity?

Regarding question (a), we propose general conditions characterizing the optimal sub-Gaussian proxy variance, thus generalizing previous work [START_REF] Marchal | On the sub-Gaussianity of the Beta and Dirichlet distributions[END_REF] that was tailored to the beta and Dirichlet distributions. Several techniques based on studying variations of functions are proposed.

As for question (b), it turns out that the symmetry of the distribution plays a crucial role. By symmetry, we mean symmetry with respect to the mean µ = E[X]. That is, we say that X is symmetrically distributed if X and 2µ -X have the same distribution. Thus, if X has a density, this means that the density is symmetric with respect to µ. A simple, and remarkable, equivalence holds for most of the standard bounded random variables. Proposition 3.1.1. Let X be a Bernoulli, beta, binomial, Kumaraswamy or triangular random variable. Then, X is symmetric ⇐⇒ X is strictly sub-Gaussian.

The result is known for the beta distribution [START_REF] Marchal | On the sub-Gaussianity of the Beta and Dirichlet distributions[END_REF]. In this article, we provide proofs for the Bernoulli, binomial, Kumaraswamy and triangular distributions.

From Proposition 3.1.1, it may be tempting to conjecture that the equivalence holds true for any random variable having a bounded support. However, we establish that this is not the case. This was actually one of the starting points for the present work.

More precisely, we shall provide a proof of the following result. Proposition 3.1.2. Symmetry of X is neither (i) a sufficient condition, nor (ii) a necessary condition, for the strict sub-Gaussian property.

The proof of this result is presented in [START_REF] Arbel | On strict sub-Gaussianity, optimal proxy variance and symmetry for bounded random variables[END_REF], where we demonstrate that (i) there exists simple symmetric mixtures of distributions (e.g., a two-components mixture of beta distribution and a three-components mixture distribution of Dirac masses) which are not strictly sub-Gaussian, and that (ii) there exists an asymmetric threecomponents mixture of Dirac masses which is strictly sub-Gaussian.

Before delving into detailing the strict sub-Gaussianity property in Section 3.1.3, we first investigate some conditions that characterize the optimal proxy variance σ 2 opt , in Section 3.1.3.

Characterizations of the optimal proxy variance σ 2 opt

Let X be an almost surely bounded random variable with mean µ = E[X]. Then, X is sub-Gaussian and satisfies Definition 3.1 for some σ 2 > 0.

An equivalent definition is that

∀ λ ∈ R : σ 2 ≥ 2 λ 2 K(λ),
where the function K, defined on R by: K(λ) = ln E[exp(λ[Xµ])], corresponds to the cumulants generating function of Xµ. Thus the optimal proxy variance σ 2 opt can be defined as the supremum

σ 2 opt = sup λ∈R 2 λ 2 K(λ). (3.8) 
If X is almost surely bounded, then this supremum is attained.
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Note that the function h, defined on R by

h(λ) = 2 λ 2 K(λ), (3.9) 
is continuous at λ = 0, since a standard series expansion demonstrates that:

h(λ) λ→0 = Var[X] + o(1). (3.10) 
Moreover, h may never vanish. In fact, since the logarithm function is strictly concave, Jensen's inequality implies that for any λ ∈ R,

h(λ) = 2 λ 2 ln E[e λ(X-µ) ] > 2 λ 2 E[ln e λ(X-µ) ] = 0. (3.11) 
Equation (3.10) also explains directly why σ 2 opt ≥ Var[X], since the variance is the value of the right-hand side (r.h.s.) function at λ = 0 and thus the maximum is always greater or equal to it. We therefore have the following result. Proposition 3.1.3 (Characterization of σ 2 opt by h). The optimal proxy variance is given by:

σ 2 opt = max λ∈R h(λ) = max λ∈R 2 λ 2 K(λ). (3.12) 
We may now present a necessary (but not always sufficient) system of equations for σ 2 opt . Indeed, since the maximum is achieved at a finite point, then this point must necessarily be a zero of the derivative of h, if h is differentiable (we will denote by D k the space of functions that are k times differentiable on R and by C k the space of functions that are k times differentiable on R and for which the k th derivative is continuous on R).

Thus, we obtain the following corollary. Corollary 3.1.2 (Necessary condition for σ 2 opt , with respect to h). Let σ 2 opt be the optimal proxy variance, and assume that h and K are D 1 . Then there exists a finite λ 0 , such that

σ 2 opt = h(λ 0 ) and h (λ 0 ) = 0, (3.13) 
which is equivalent to

σ 2 opt = 2 λ 2 0 K(λ 0 ) and λ 0 K (λ 0 ) = 2K(λ 0 ), (3.14) 
using only the centered cumulants generating function K.

In practice, the previous set of equations has to used with caution, since there may be more than one solution to the second equation involving the derivative of h (or that of K), and a global maximizer is required to be picked among the stationary points, instead of a minimizer or a local maximizer. On a case-by-case basis, the following approach based on ordinary differential equations (ODEs), satisfied by h, can be used to demonstrate that it has a unique global maximum.

Proposition 3.1.4. If the function h is C 2 , then it is the unique solution of the ordinary differential equations:

h (λ) + 2 λ h(λ) = 2 λ 2 K (λ) with h(0) = Var[X], (3.15) 
or h (λ) + 3 λ h (λ) = 2 λ K (λ) λ with h(0) = Var[X] and h (0) = 1 3 E[(X -µ) 3 ]. (3.16) 
Proof. The result is directly obtained by differentiating h and via standard analysis theorems.

Remark 3.1.1. For cases such as the Bernoulli and uniform distributions, we may prove that the r.h.s. of (3.16) is strictly negative on R * := R \ {0}. This implies that if λ 0 is extremal (i.e., h (λ 0 ) = 0), then it satisfies h (λ 0 ) < 0 so that it is a local maximum. This implies that h has no local minimum and thus may only have one critical point which is necessarily the unique global maximum.

We conclude this section with another possible methodology for deriving a necessary and sufficient condition for σ 2 opt . To this end, the problem needs to be addressed from a different point of view, by studying the difference of the terms of Definition 3.1:

∆ : (σ 2 , λ) ∈ R * + × R → exp λ 2 σ 2 2 -E[exp(λ[X -µ])]. (3.17) 
Proposition 3.1.5 (Characterization of σ 2 opt , with respect to ∆). If ∆ is C 1 , then the optimal proxy variance is characterized by:

λ → ∆(σ 2 opt , λ) ≥ 0 and ∃ λ 0 ∈ R, such that ∆(σ 2 opt , λ 0 ) = 0 and ∂ λ ∆(σ 2 opt , λ 0 ) = 0. (3.18) 
Proof. See [START_REF] Arbel | On strict sub-Gaussianity, optimal proxy variance and symmetry for bounded random variables[END_REF].

This proof technique was used by [START_REF] Marchal | On the sub-Gaussianity of the Beta and Dirichlet distributions[END_REF] for obtaining the optimal proxy variance of the beta and Dirichlet distributions. However we find more convenient to use the conditions stated in Proposition 3.1.4 using the function h to address the issues presented in this article. Remark 3.1.2. In general, we would like to remove the condition: λ → ∆(σ 2 , λ) ≥ 0 on the r.h.s. of Proposition 3.1.5, in order to have a simpler (and local) characterization of the optimal proxy variance, as a solution of (3.18). However, this is not possible, since we may not exclude that there exists a value σ 2 < σ 2 opt for which ∆(σ 2 , λ) presents a double zero λ 0 where locally it remains non-negative but at the same time a whole interval far from λ 0 where it would be strictly negative.

On strict sub-Gaussianity

Conditions based on the cumulants Strict sub-Gaussianity is fulfilled when the optimal proxy variance equals the variance. In view of Equation (3.10), Proposition 3.1.3 can be rewritten as the following corollary in order to characterize the strict sub-Gaussianity property. Corollary 3.1.3 (Corollary of Proposition 3.1.3). A distribution is strictly sub-Gaussian if and only if the maximum of function h, defined in (3.9), is attained in zero (and is automatically equal to Var[X]). That is:

max λ∈R h(λ) = h(0) = Var[X]. (3.19) 
This characterization provides necessary conditions, based on cumulants, that are required for strict sub-Gaussianity to hold. Proposition 3.1.6 (Necessary conditions based on cumulants). If X is strictly sub-Gaussian, then the 3 rd and 4 th cumulants of X must satisfy

κ 3 = E[(X -E[X]) 3 ] = 0, and (3.20 
)

κ 4 = E[(X -E[X]) 4 ] -3 Var[X] 2 ≤ 0. (3.21) 
Proof. By definition of the cumulant generating function K(λ) of Xµ,

K(λ) = ∞ ∑ i=1 κ i λ i i! , (3.22) 
where κ i are the cumulants of Xµ. Since κ 1 = µµ = 0 and κ 2 = Var[X], and using values for the third and fourth cumulants given in (3.20) and (3.21), we may write (locally around λ → 0):

h(λ) = Var[X] + E[(X -µ) 3 ] λ 3 + E[(X -µ) 4 ] -3 Var[X] 2 λ 2 12 + O(λ 3 ). (3.23)
Therefore if E[(Xµ) 3 ] = 0, the maximum of h(λ) cannot be h(0) and thus strict sub-Gaussianity cannot be achieved. We conclude the proof by noting that if E[(Xµ) 3 ] = 0, we have the fact that λ = 0 can be a local maximum, only if

E[(X -µ) 4 ] ≤ 3 Var[X] 2 .
Condition (3.20) requires that the third centered moment is zero and Condition (3.21) imposes a relation between the second and fourth centered moments. Note that the latter condition can be compactly formulated via an alternative condition on the kurtosis of X:

Kurt[X] = E[(X -E[X]) 4 ] E[(X -E[X]) 2 ] 2 ≤ 3.
More specifically, sub-Gaussianity requires that the random variable has kurtosis less than or equal to three, which is the kurtosis of a standard Gaussian random variable. Such distributions are referred to as platycurtic. The fourth cumulant defined in (3.21) is also termed excess kurtosis. Thus, strict sub-Gaussianity requires negative excess kurtosis.

When the above necessary conditions (3.20) and (3.21) hold, we are not able to obtain simple additional necessary conditions on the next cumulants. In particular, note that strict sub-Gaussianity does not imply symmetry (i.e., E[(X -E[X]) 2j+1 ] = 0, for any j ≥ 0), as will be discussed in the next section.

In contrast, more can be said when the distribution is symmetric. In fact, in the symmetric case, the moments of odd order are zero, and a simple sufficient condition can be readily obtained by comparing the Taylor expansions at λ = 0 of both terms of inequality (3.1), as stated in the following proposition. Proposition 3.1.7 (Sufficient condition based on moments). If X is symmetric with respect to its mean µ = E[X], then a sufficient condition for X to be strictly sub-Gaussian can be stated in terms of all its even moments. That is, for X to be strictly sub-Gaussian, it is sufficient that

∀j ≥ 2, E[(X -µ) 2j ] (2j)! ≤ (Var[X]) j 2 j j! (3.24)
holds.

Proof. The proof is based on series expansions at λ = 0 of both terms of inequality (3.1), when the proxy variance σ 2 is set to the variance Var[X]. Namely:

E[exp(λX)] = ∞ ∑ j=0 E X 2j λ 2j (2j)! , and exp λ 2 Var[X] 2 = ∞ ∑ j=0 (Var[X]) j 2 j λ 2j j! , (3.25) 
when compared term-by-term, leads to inequality (3.1), under assumption (3.24). Note that inequality (3.24) needs be checked only for j ≥ 2, as it trivially holds for j = 0, 1.

This technique was used by [START_REF] Marchal | On the sub-Gaussianity of the Beta and Dirichlet distributions[END_REF] (Section 2.2) for showing that a (symmetric) Beta(α, α) random variable is strictly sub-Gaussian. We also use it to address the cases of Bernoulli and binomial, and triangular distributions in Section 2.4.5.

Link with symmetry

The relationship between strict sub-Gaussianity and symmetry was discussed in the Introduction. Here, we provide a proof of Proposition 3.1.2, while the proof of Proposition 3.1.1 is deferred to Section 2.4.5.

Symmetry is neither a sufficient condition. . .

Simple symmetric distributions which break the necessary condition of negative excess kurtosis can easily be constructed by hand. One such construction is by means of mixture of Dirac masses. First, consider the discrete random variable

X ∼ η 2 (δ -1 + δ 1 ) + (1 -η)δ 0 , (3.26) 
which is a three-component mixture of Dirac masses at locations -1, 0 and 1, with η ∈ [0, 1]. It is symmetric, by construction, and its excess kurtosis equals

κ 4 = E[X 4 ] -3 Var[X] 2 = η -3η 2 = η(1 -3η), (3.27) 
which is strictly positive for all values η ∈ 0, 1 3 , hence X is not strictly sub-Gaussian for these values by virtue of Proposition 3.1.6. On the other hand when η → 1, the distribution of X degenerates to that of the so-called Rademacher random variable, which leads to the least possible excess kurtosis of -2.

Similar counter-examples to the sufficientness of symmetry can be built in the form of mixtures of two symmetric beta variables:

X ∼ η Beta(α, α) + (1 -η) Beta(β, β),
for η ∈ (0, 1) and α, β > 0. For any value of η ∈ (0, 1), values for α, β leading to positive excess kurtosis can be obtained. For instance, we may set (η, α, β) = (0.1, 1.5, 9), to obtain the excess kurtosis κ 4 ≈ 1.1 × 10 -4 .

. . . nor a necessary condition for strict sub-Gaussianity

Although most typical bounded random variables that are strictly sub-Gaussian are symmetric (see, e.g., Proposition 3.1.1), the symmetry of the distributions of such variables is not a necessary condition for strict sub-Gaussianity. Examples of such distributions include mixtures of Dirac masses. For example,

X ∼ 3 ∑ i=1 p i δ x i with 3 ∑ i=1 p i = 1 (3.28)
with (x 1 , x 2 , x 3 ) = -2, -1 2 , 5 4 and (p 1 , p 2 , p 3 ) = 1 13 , 4 7 , 32 91 . The function h for the random variable characterized by (3.28) is plotted in Figure 3.2b. Note that it attains its maximum in λ = 0.

Sub-Weibull property

It is tempting to generalise the sub-Gaussian property by considering the class of distributions satisfying P(|X| ≥ x) ≤ a exp -bx 1/θ , for all x > 0, for some θ > 0, (3.29) which is the goal of the present section. Since a Weibull random variable X on R + is defined by a survival function, for x > 0,

F(x) = P(X ≥ x) = exp -bx 1/θ , for some b > 0, θ > 0, (3.30) 
we term a distribution satisfying (3.37) a sub-Weibull distribution in the following definition. Interest in such heavier-tailed distributions than Gaussian or Exponential arises in our experience from their emergence in the field Bayesian deep neural networks [START_REF] Vladimirova | Understanding Priors in Bayesian Neural Networks at the Unit Level[END_REF]. While writing this note, we came across the preprint [START_REF] Kuchibhotla | Moving beyond sub-Gaussianity in high-dimensional statistics: Applications in covariance estimation and linear regression[END_REF], independent of our work, which also introduces sub-Weibull distributions but from a different perspective. The definition proposed by [START_REF] Kuchibhotla | Moving beyond sub-Gaussianity in high-dimensional statistics: Applications in covariance estimation and linear regression[END_REF] is based on Orlitz norm and is equivalent to Definition 3.2.3. While [START_REF] Kuchibhotla | Moving beyond sub-Gaussianity in high-dimensional statistics: Applications in covariance estimation and linear regression[END_REF] focus on establishing tail bounds and rates of convergence for problems in high dimensional statistics, including covariance estimation and linear regression, under the sole sub-Weibull assumption, we prove here sub-Weibull characterization properties. In addition, we illustrate their link with deep neural networks, not in the form of a model assumption as in [START_REF] Kuchibhotla | Moving beyond sub-Gaussianity in high-dimensional statistics: Applications in covariance estimation and linear regression[END_REF], but as a characterisation of the prior distribution of deep neural networks units. Informally, the tails of a subW(θ) distribution are dominated by (i.e. decay at least as fast as) the tails of a Weibull variable with shape parameter 2 equal to 1/θ. Sub-Gaussian and sub-Exponential variables, which are commonly used, are special cases of sub-Weibull random variables with tail parameter θ = 1/2 and θ = 1, respectively, see Table 3.1. Symmetric sub-Weibull distributions (their survival function) are represented in Figure 3.3 for varying tail parameter θ. Since only the tail is relevant for the illustration, the sub-Weibull random variables depicted here consist of Weibull random variables with shape parameter 1/θ and scale parameter 1, truncated at their mode (which is equal to zero if θ ≥ 1 and to (1θ) 1/θ otherwise), and then symmetrized.

Additional properties

The Sub-Gaussian distribution is known to obey the sub-Exponential distribution definition. It leads to the inclusion of a sub-Gaussian distribution family into a sub-Exponential one. The following proposition generalizes this property for Sub-Weibull distributions with different tail parameters. Proposition 3.1.8 (Inclusion). Let θ 1 and θ 2 such that 0 < θ 1 < θ 2 be tail parameters for some sub-Weibull distributed variables. Then the following inclusion holds subW(θ 1 ) ⊂ subW(θ 2 ).

2 Weibull distributions are commonly parameterized by a shape parameter κ. Here we use instead θ = 1/κ for the convenience that the larger the tail parameter θ, the heavier the tails of the sub-Weibull distribution.

Proof. For X ∼ subW(θ 1 ), there exists some constant K 2 > 0 such that for all k > 0,

X k ≤ K 2 k θ 1 . Since k θ 1 ≤ k θ 2 for all k ≥ 1, this yields X k ≤ K 2 k θ 2 ,
which by definition implies X ∼ subW(θ 2 ).

Let a random variable X follow a sub-Weibull distribution with tail parameter θ. Due to the property of inclusion from Proposition 3.1.8, the sub-Weibull definition states an upper bound for the tail. To describe a tail lower bound of X through some sub-Weibull distribution family, i.e. a distribution of X to have the tail heavier than some sub-Weibull, we define an optimal tail parameter for that distribution through an asymptotic equivalence in the moment property 2. of Theorem 3. Proposition 3.1.9 (Optimal sub-Weibull tail coefficient and moment condition). Let θ > 0 and let X be a random variable satisfying the following asymptotic equivalence on moments

X k k θ .
Then X is sub-Weibull distributed with optimal tail parameter θ, in the sense that for any θ < θ, X is not subW(θ ).

It is typically assumed that the random variable X has zero mean. If this is not the case, we can always center X by subtracting the mean. We state in the following lemma that variable centering does not change the optimal tail parameter of a sub-Weibull distribution. The reader is referred to [START_REF] Alexits | Convergence problems of orthogonal series[END_REF] for a proof. Proposition 3.1.10 (Centering variables). Centering does not harm tail properties of sub-Weibull distributions. In particular, if a random variable X is sub-Weibull with optimal tail parameter θ, then the same holds for the centered variable (X -E[X]).

[A4] M. Vladimirova, J. 

Introduction

Neural networks (NNs), and their deep counterparts [START_REF] Goodfellow | Deep learning[END_REF], have largely been used in many research areas such as image analysis [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF], signal processing [START_REF] Graves | Speech recognition with deep recurrent neural networks[END_REF], or reinforcement learning [START_REF] Silver | Mastering the game of go with deep neural networks and tree search[END_REF], just to name a few. The impressive performance provided by such machine learning approaches has greatly motivated research that aims at a better understanding the driving mechanisms behind their effectiveness. In particular, the study of the NNs distributional properties through Bayesian analysis has recently gained much attention.

Bayesian approaches investigate models by assuming a prior distribution on their parameters. Bayesian machine learning refers to extending standard machine learning approaches with posterior inference, a line of research pioneered by works on Bayesian neural networks [START_REF] Neal | Bayesian training of backpropagation networks by the hybrid Monte Carlo method[END_REF][START_REF] Mackay | A practical Bayesian framework for backpropagation networks[END_REF]. There is a large variety of applications, e.g. gene selection [START_REF] Liang | Bayesian neural networks for selection of drug sensitive genes[END_REF], and the range of models is now very broad, including e.g. Bayesian generative adversarial networks [START_REF] Saatci | Bayesian GAN[END_REF]. See [START_REF] Polson | Deep learning: A Bayesian perspective[END_REF] for a review. The interest of the Bayesian approach to NNs is at least twofold. First, it offers a principled approach for modeling uncertainty of the training procedure, which is a limitation of standard NNs which only provide point estimates. A second main asset of Bayesian models is that they represent regularized versions of their classical counterparts. For instance, maximum a posteriori (MAP) estimation of a Bayesian regression model with double exponential (Laplace) prior is equivalent to Lasso regression [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF], while a Gaussian prior leads to ridge regression. When it comes to NNs, the regularization mechanism is also well appreciated in the literature, since they traditionally suffer from overparameterization, resulting in overfitting.

Central in the field of regularization techniques is the weight decay penalty [START_REF] Krogh | A simple weight decay can improve generalization[END_REF], which is equivalent to MAP estimation of a Bayesian neural network with independent Gaussian priors on the weights. Dropout has recently been suggested as a regularization method in which neurons are randomly turned off [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF], and [START_REF] Gal | Dropout as a Bayesian approximation: Representing model uncertainty in deep learning[END_REF] proved that a neural network with arbitrary depth and non-linearities, with dropout applied before every weight layer, is mathematically equivalent to an approximation to the probabilistic deep Gaussian process [START_REF] Damianou | Deep Gaussian processes[END_REF], leading to the consideration of such NNs as Bayesian models.

This section is devoted to the investigation of hidden units prior distributions in Bayesian neural networks under the assumption of independent Gaussian weights. We first describe a fully connected neural network architecture as illustrated in Figure 3.4. Given an input x ∈ R N , the -th hidden layer unit activations are defined as

g ( ) (x) = W ( ) h ( -1) (x), h ( ) (x) = φ(g ( ) (x)), (3.32) 
where W ( ) is a weight matrix including the bias vector. A nonlinear activation function φ : R → R is applied element-wise, which is called nonlinearity, g ( ) = g ( ) (x) is a vector of pre-nonlinearities, and h ( ) = h ( ) (x) is a vector of post-nonlinearities. When we refer to either pre-or post-nonlinearities, we will use the notation U ( ) .

We extend the theoretical understanding of feedforward fully connected NNs by studying prior distributions at the units level, under the assumption of independent and normally distributed weights. Our contributions are the following:

(i) As our main contribution, we prove in Theorem 3.2.1 that under some conditions on the activation function φ, a Gaussian prior on the weights induces a sub-Weibull distribution on the units (both pre-and post-nonlinearities) with optimal tail parameter θ = /2, see Figure 3.4. The condition on φ essentially imposes that φ strikes at a linear rate to +∞ or -∞ for large absolute values of the argument, as ReLU does. In the case of bounded support φ, like sigmoid or tanh, the units are bounded, making them de facto sub-Gaussian3 

(ii) We offer an interpretation of the main result from a more elaborate regularization scheme at the level of the units in Section 3.2.3.

Bayesian neural networks have heavy-tailed deep units

The deep learning approach uses stochastic gradient descent and error back-propagation in order to fit the network parameters (W ( ) ) 1≤ ≤L , where iterates over all network layers. In the Bayesian approach, the parameters are random variables described by probability distributions.

Assumptions on neural network

We assume a prior distribution on the model parameters, that are the weights W.

In particular, let all weights (including biases) be independent and have zero-mean normal distribution

W ( ) i,j ∼ N (0, σ 2 w ), (3.33) 
for all 1 ≤ ≤ L, 1 ≤ i ≤ H -1 and 1 ≤ j ≤ H , with fixed variance σ 2 w . Given some input x, such prior distribution induces by forward propagation (3.32) a prior distribution on the pre-nonlinearities and post-nonlinearities, whose tail properties are the focus of this section. To this aim, the nonlinearity φ is required to span at least half of the real line as follows. We introduce an extended version of the nonlinearity assumption from [START_REF] Matthews | Gaussian process behaviour in wide deep neural networks[END_REF]: Definition 3.2.1 (Extended envelope property for nonlinearities). A nonlinearity φ : R → R is said to obey the extended envelope property if there exist c 1 , c 2 ≥ 0, d 1 , d 2 > 0 such that the following inequalities hold

|φ(u)| ≥ c 1 + d 1 |u| for all u ∈ R + or u ∈ R -, |φ(u)| ≤ c 2 + d 2 |u| for all u ∈ R. (3.34)
The interpretation of this property is that φ must shoot to infinity at least in one direction (R + or R -, at least linearly (first line of (3.34)), and also at most linearly (second line of (3.34)). Of course, compactly supported nonlinearities such as sigmoid and tanh do not satisfy the extended envelope property but the majority of other nonlinearities do, including ReLU, ELU, PReLU, and SeLU.

We need to recall the definition of asymptotic equivalence between numeric sequences which we use to describe characterization properties of distributions: The extended envelope property of a function yields the following asymptotic equivalence: Lemma 3.2.1. Let a nonlinearity φ : R → R obey the extended envelope property. Then for any symmetric random variable X the following asymptotic equivalence holds φ(X) k X k , for all k ≥ 1, (3.36) where

X k = E[|X| k ] 1/k is a k-th norm of X.
The proof can be found in the supplementary material.

Main theorem

This section postulates the rigorous result with a proof sketch. In the supplementary material one can find proofs of intermediate lemmas.

Firstly, we define the notion of sub-Weibull random variables [START_REF] Kuchibhotla | Moving beyond sub-Gaussianity in high-dimensional statistics: Applications in covariance estimation and linear regression[END_REF][START_REF] Vladimirova | Sub-Weibull distributions: generalizing sub-Gaussian and sub-Exponential properties to heavier-tailed distributions[END_REF]. Definition 3.2.3 (Sub-Weibull random variable). A random variable X satisfying for all x > 0 and for some θ > 0

P(|X| ≥ x) ≤ a exp -x 1/θ , ( 3.37) 
is called a sub-Weibull random variable with so-called tail parameter θ, which is denoted by X ∼ subW(θ).

Sub-Weibull distributions are characterized by tails lighter than (or equally light as) Weibull distributions; in the same way as sub-Gaussian or sub-exponential distributions correspond to distributions with tails lighter than Gaussian and exponential distributions, respectively. Sub-Weibull distributions are parameterized by a positive tail index θ and are equivalent to sub-Gaussian for θ = 1/2 and sub-exponential for θ = 1. To describe a tail lower bound through some sub-Weibull distribution family, i.e. a distribution of X to have the tail heavier than some sub-Weibull, we define the optimal tail parameter for that distribution as the positive parameter θ characterized by:

X k k θ . (3.38)
Then X is sub-Weibull distributed with optimal tail parameter θ, in the sense that for any θ < θ, X is not sub-Weibull with tail parameter θ [see 328, for a proof].

The following theorem postulates the main results. Proof. The idea is to prove by induction with respect to hidden layer depth that pre-and post-nonlinearities satisfy the asymptotic moment equivalence

g ( ) k k /2 and h ( ) k k /2 .
The statement of the theorem then follows by the moment characterization of optimal sub-Weibull tail coefficient in Equation (3.38).

According to Lemma 1.1 from from the supplementary material, centering does not harm tail properties, then, for simplicity, we consider zero-mean distributions W ( ) i,j ∼ N (0, σ 2 w ). Base step: Consider the distribution of the first hidden layer pre-nonlinearity g = g (1) . Since weights W m follow normal distribution and x is a feature vector, then each hidden unit W m x follow also normal distribution

g = W m x ∼ N (0, σ 2 w x 2 ).
Then, for normal zero-mean variable g, having variance σ 2 = σ 2 w x 2 , holds the equality in sub-Gaussian property with variance proxy equals to normal distribution variance and from Lemma 1.1 in the supplementary material:

g k √ k.
As activation function φ obeys the extended envelope property, nonlinearity moments are asymptotically equivalent to symmetric variable moments

φ(g) k g k √ k.
It implies that first hidden layer post-nonlinearities h have sub-Gaussian distribution or sub-Weibull with tail parameter θ = 1/2 (Definition 3.2.3).

Inductive step: show that if the statement holds for -1, then it also holds for .

Suppose the post-nonlinearity of ( -1)-th hidden layer satisfies the moment condition. Hidden units satisfy the non-negative covariance theorem (Theorem 3.2.2):

Cov h ( -1) s , h( -1) t ≥ 0, for any s, t ∈ N.

Let the number of hidden units in ( -1)-th layer equals to H. Then according to Lemma 2.2 from the supplementary material, under assumption of zero-mean Gaussian weights, pre-nonlinearities of -th hidden layer g ( ) = ∑ H i=1 W

( -1) m,i h ( -1) i also satisfy the moment condition, but with θ = /2

g ( ) k k /2 .
From the extended envelope property (Definition 3.2.1) post-nonlinearities h ( ) satisfy the same moment condition as pre-nonlinearities g ( ) . This finishes the proof.

Remark 3.2.1. If the activation function φ is bounded, such as the sigmoid or tanh, then the units are bounded. As a result, by Hoeffding's Lemma, they have a sub-Gaussian distribution. Remark 3.2.2. Normalization techniques, such as batch normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] or layer normalization [START_REF] Ba | Layer normalization[END_REF], significantly reduce the training time in feed-forward neural networks. Normalization operations can be decomposed into a set of elementary operations. According to Proposition 1.4 from the supplementary material, elementary operations do not harm the distribution tail parameter. Therefore, normalization methods do not have an influence on tail behavior.

Intermediate theorem

This section states with a proof sketch that the covariance between hidden units in the neural network is non-negative.

Theorem 3.2.2 (Non-negative covariance between hidden units). Consider the deep neural network described in, and with the assumptions of, Theorem 3.2.1. The covariance between hidden units of the same layer is non-negative. Moreover, for given -th hidden layer units h ( ) and h( ) , it holds Cov h ( ) s , h( ) t ≥ 0, where s, t ∈ N.

For first hidden layer = 1 there is equality for all s and t.

Proof. A more detailed proof can be found in the supplementary material in Section 3.

Recall the covariance definition for random variables X and Y

Cov [X, Y] = E[XY] -E[X]E[Y]. (3.39) 
The proof is based on induction with respect to the hidden layer number.

In the proof let us make notation simplifications: w m = W m and w mi = W mi for all m ∈ H . If the index m is omitted, then w is some the vectors w m , w i is i-th element of the vector w m .

1. First hidden layer. Consider the first hidden layer units h (1) and h [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] . The covariance between units is equal to zero and the units are Gaussian, since the weights w (1) and w(1) are from N (0, σ 2 w ) and independent. Thus, the first hidden layer units are independent and its covariance (3.39) is equal to 0. Moreover, since h (1) and h(1) are independent, then h (1) s and h [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] t are also independent.

2. Next hidden layers. Assume that the ( -1)-th hidden layer has H -1 hidden units, where > 1. Then the -th hidden layer pre-nonlinearity is equal to

g ( ) = H -1 ∑ i=1 w ( ) i h ( -1) i . ( 3.40) 
We want to prove that the covariance (3.39) between the -th hidden layer prenonlinearities is non-negative. Let us show firstly the idea of the proof in the case H -1 = 1 and then briefly describe the proof for any finite

H -1 > 1, H -1 ∈ N.
2.1 One hidden unit. In the case H -1 = 1, the covariance (3.39) sign is the same as of the expression

E h ( -1) 2(s 1 +t 1 ) -E h ( -1) 2s 1 E h ( -1) 2t 1 ,
since the weighs are zero-mean distributed, its moments are equal to zero with an odd order. According to Jensen's inequality for convex function f , we have

E[ f (x 1 , x 2 )] ≥ f (E[x 1 ], E[x 2 ]
). Since a function f (x 1 , x 2 ) = x 1 x 2 is convex for x 1 ≥ 0 and x 2 ≥ 0, then, taking x 1 = h ( -1) 2s 1 and x 2 = h ( -1) 2t 1 , we have the condition we need (3.41) being satisfied.

2.1. H hidden units. Now let us consider the covariance between pre-nonlinearities (3.40) for H -1 = H > 1. Raise the sum in the brackets to the power

H ∑ i=1 w ( ) i h ( -1) i s = = s ∑ s H =0 C s H s w ( ) H h ( -1) H s H H-1 ∑ i=1 w ( ) i h ( -1) i s-s H .
And the same way for the second bracket ∑ H i=1 w( ) i h

( -1) i t
. Notice that binomial terms will be the same in the minuend and the subtrahend terms of (3.39). So the covariance in our notations can be written in the form of Cov

H -1 ∑ i=1 w ( ) i h ( -1) i s , H -1 ∑ i=1 w( ) i h ( -1) i t = = ∑ ∑ C (E [AB] -E [A] E [B]) ,
where C-terms contain binomial coefficients, A-terms -all possible products of hidden units in g ( )

s
and B-terms -all possible products of hidden units in g( ) t . In order for the covariance to be non-negative, it is sufficient to show that the difference E [AB] -E [A] E [B] is non-negative. Since the weights are Gaussian and independent, we have the following equation, omitting the superscript for simplicity,

E [AB] = W W • E H ∏ i=1 h s i +t i i , E [A] E [B] = W W • E H ∏ i=1 h s i i E H ∏ i=1 h t i i ,
where W W is the product of weights moments

W W = H ∏ i=1 E w s i i E wt i i .
For W W not equal to zero, all the powers must be even. Now we need to prove

E H/2 ∏ i=1 h 2(s i +t i ) i ≥ E H/2 ∏ i=1 h 2s i i E H/2 ∏ i=1 h 2t i i . ( 3.41) 
According to Jensen's inequality for convex functions, since a function f (x 1 , x 2 ) = x 1 x 2 is convex for x 1 ≥ 0 and x 2 ≥ 0, then, taking x 1 = ∏ H/2 i=1 h 2s i i and x 2 = ∏ H/2 i=1 h 2t i i , the condition from (3.41) is satisfied.

Post-nonlinearities.

Let show the proof for the ReLU nonlinearity.

The distribution of the -th hidden layer pre-nonlinearity g ( ) is the sum of symmetric distributions, which are products of Gaussian variables w ( ) and the non-negative ReLU output, i.e. the ( -1)-th hidden layer post-nonlinearity h ( -1) . Therefore, g ( ) follows a symmetric distribution and the following inequality Notice that the equality above is the ReLU function output and for a symmetric distribution we have

+∞ 0 x p(x) dx = 1 2 E [|X|] . (3.42)
That means if the non-negative covariance is proven for pre-nonlinearities, for postnonlinearities it is also non-negative. We omit the proof for the other nonlinearities with the extended envelope property, since instead of precise equation (3.42), the asymptotic equivalence for moments will be used for a positive part and for a negative part -precise expectation expressions which depend on certain nonlinearity.

Convolutional neural networks

Convolutional neural networks [START_REF] Fukushima | Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition[END_REF][START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] are a particular kind of neural network for processing data that has a known grid-like topology, which allows to encode certain properties into the architecture. These then make the forward function more efficient to implement and vastly reduce the amount of parameters in the neural network. Neurons in such networks are arranged in three dimensions: width, height and depth. There are three main types of layers that can be concatenated in these architectures: convolutional, pooling, and fully-connected layers (exactly as seen in standard NNs). The convolutional layer computes dot products between a region in the inputs and its weights. Therefore, each region can be considered as a particular case of a fully-connected layer. Pooling layers control overfitting and computations in deep architectures. They operate independently on every slice of the input and reduces it spatially. The most commonly functions used in pooling layers are max pooling and average pooling. Proposition 3.2.1. The operations: 1. max pooling and 2. averaging do not modify the optimal tail parameter θ of sub-Weibull family. Consequently, the result of Theorem 3.2.1 carries over to convolutional neural networks.

The proof can be found in the supplementary material. Corollary 3.2.1. Consider a convolutional neural network containing convolutional, pooling and fully-connected layers under assumptions from Section 3.2.2. Then a unit of -th hidden layer has sub-Weibull distribution with optimal tail parameter θ = /2, where is the number of convolutional and fully-connected layers.

Proof. Proposition 3.2.1 implies that the pooling layer keeps the tail parameter. From discussion at the beginning of the section, the result of Theorem 3.2.1 is also applied to convolutional neural networks where the depth is considered as the number of convolutional and fully-connected layers.

Regularization scheme on the units

Our main theoretical contribution, Theorem 3.2.1, characterizes the marginal prior distribution of the network units as follows: when the depth increases, the distribution becomes more heavy-tailed. In this section, we provide an interpretation of the result in terms of regularization at the level of the units. To this end, we first briefly recall shrinkage and penalized estimation methods.

Short digest on penalized estimation

The notion of penalized estimation is probably best illustrated on the simple linear regression model, where the aim is to improve prediction accuracy by shrinking, or even putting exactly to zero, some coefficients in the regression. Under these circumstances, inference is also more interpretable since, by reducing the number of coefficients effectively used in the model, it is possible to grasp its salient features. Shrinking is performed by imposing a penalty on the size of the coefficients, which is equivalent to allowing for a given budget on their size. Denote the regression parameter by β ∈ R p , the regression sum-of-squares by R(β), and the penalty by λL(β), where L is some norm on R p and λ some positive tuning parameter. Then, the two formulations of the regularized problem min β∈R p R(β) + λL(β), and min β∈R p R(β) subject to L(β) ≤ t, are equivalent, with some one-to-one correspondence between λ and t, and are respectively termed the penalty and the constraint formulation. This latter formulation provides an interesting geometrical intuition of the shrinkage mechanism: the constraint L(β) ≤ t reads as imposing a total budget of t for the parameter size in terms of the norm L. If the ordinary least squares estimator βols lives in the L-ball with surface L(β) = t, then there is no effect on the estimation. In contrast, when βols is outside the ball, then the intersection of the lowest level curve of the sum-of-squares R(β) with the L-ball defines the penalized estimator.

The choice of the L norm has considerable effects on the problem, as can be sensed geometrically. Consider for instance L q norms, with q ≥ 0. For any q > 1, the associated L q norm is differentiable and contours have a round shape without sharp angles. In that case, the penalty effect is to shrink the β coefficients towards 0. The most well-known estimator falling in this class is the ridge regression obtained with q = 2, see Figure 3.5 top-left panel. In contrast, for any q ∈ (0, 1], the L q norm has some non differentiable points along the axis coordinates, see Figure 3.5 top-right and bottom panels. Such critical points are more likely to be hit by the level curves of the sum-of-squares R(β), thus setting exactly to zero some of the parameters. A very successful approach in this class is the Lasso obtained with q = 1. Note that the problem is computationally much easier in the convex situation which occurs only for q ≥ 1. 

MAP on weights W is weight decay

These penalized methods have a simple Bayesian counterpart in the form of the maximum a posteriori (MAP) estimator. In this context, the objective function R is the negative log-likelihood, while the penalty L is the negative log-prior. The objective function takes on the form of sum-of-squared errors for regression under Gaussian errors, and of cross-entropy for classification.

For neural networks, it is well-known that an independent Gaussian prior on the weights

π(W ) ∝ L ∏ =1 ∏ i,j e -1 2 (W ( ) i,j ) 2 , ( 3.43) 
is equivalent to the weight decay penalty, also known as ridge regression:

L(W ) = L ∑ =1 ∑ i,j (W ( ) i,j ) 2 = W 2 2 , (3.44) 
where products in (3.43) and sums in (3.44) involving i and j above are over 1 ≤ i ≤ H -1 and 1 ≤ j ≤ H , H 0 and H L representing respectively the input and output dimensions.

MAP on units U

Now moving the point of view from weights to units leads to a radically different shrinkage effect. Let U ( ) m denote the m-th unit of the -th layer (either pre-or postnonlinearity). We prove in Theorem 3.2.1 that conditional on the input x, a Gaussian prior on the weights translates into some prior on the units U ( ) m that is marginally sub-Weibull with optimal tail index θ = /2. This means that the tails of U ( )

m satisfy P(|U ( ) m | ≥ u) ≤ exp -u 2/ /K 1 for all u ≥ 0, (3.45) 
for some positive constant K 1 . The exponent of u in the exponential term above is optimal in the sense that Equation (3.45) is not satisfied with some parameter θ smaller than /2. Thus, the marginal density of U ( )

m on R is approximately proportional to π ( ) m (u) ≈ e -|u| 2/ /K 1 . (3.46)
The joint prior distribution for all the units U = (U ( ) m ) 1≤ ≤L,1≤m≤H can be expressed from all the marginal distributions by Sklar's representation theorem [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF] as

π(U) = L ∏ =1 H ∏ m=1 π ( ) m (U ( ) m ) C(F(U)), (3.47) 
where C represents the copula of U (which characterizes all the dependence between the units) while F denotes its cumulative distribution function. The penalty incurred by such a prior distribution is obtained as the negative log-prior,

L(U) = - L ∑ =1 H ∑ m=1 log π ( ) m (U ( ) m ) -log C(F(U)), (a) 
≈ L ∑ =1 H ∑ m=1 |U ( ) m | 2/ -log C(F(U)), ≈ U (1) 2 2 + U (2) 1 1 + • • • + U (L) 2/L 2/L -log C(F(U)), (3.48) 
where (a) comes from (3.46). The first L terms in (3.48) indicate that some shrinkage operates at every layer of the network, with a penalty term that approximately takes the form of the L 2/ norm at layer . Thus, the deeper the layer, the stronger the regularization induced at the level of the units, as summarized in Table 3.2.

Layer Penalty on W Approximate penalty on U 

1 W (1) 2 2 , L 2 U (1) 2 2 L 2 (weight decay) 2 W (2) 2 2 , L 2 U (2) L 1 (Lasso) W ( ) 2 2 , L 2 U ( ) 2/ 2/ L 2/

Experiments

We illustrate the result of Theorem 3.2.1 on a 100 layers MLP. The hidden layers of neural network have H 1 = 1000, H 2 = 990, H 3 = 980, . . . , H = 1000 -10( -1), . . . , H 100 = 10 hidden units, respectively. The input x is a vector of features from R 10 4 . Figure 3.6 represents the tails of first three, 10th and 100th hidden layers prenonlinearity marginal distributions in logarithmic scale. Units of one layer have the same sub-Weibull distribution since they share the same input and prior on the corresponding weights. The curves are obtained as histograms from a sample of size 10 5 from the prior on the pre-nonlinearities, which is itself obtained by sampling 10 5 sets of weights W from the Gaussian prior (3.33) and forward propagation via (3.32).

The input vector x is sampled with independent features from a standard normal distribution once for all at the start. The nonlinearity φ is the ReLU function. Being a linear combination involving symmetric weights W, pre-nonlinearities g also have a symmetric distribution, thus we visualize only their distribution on R + .

Figure 3.6 corroborates our main result. On the one hand, the prior distribution of the first hidden units is Gaussian (green curve), which corresponds to a subW(1/2) distribution. On the other hand, deeper layers are characterized by heavier-tailed distributions. The deepest considered layer (100th, violet curve) has an extremely flat distribution, which corresponds to a subW(50) distribution.

Discussion

Despite the ubiquity of deep learning throughout science, medicine and engineering, the underlying theory has not kept pace with applications for deep learning. In this section, we have extended the state of knowledge on Bayesian neural networks by providing a characterization of the marginal prior distribution of the units. [START_REF] Matthews | Gaussian process behaviour in wide deep neural networks[END_REF] and [START_REF] Lee | Deep neural networks as Gaussian processes[END_REF] proved that unit distributions have a Gaussian process limit in the wide regime, i.e. when the number of hidden units tends to infinity. We showed that they are heavier-tailed as depth increases, and discussed this result in terms of a regularizing mechanism at the level of the units. We anticipate that the Gaussian process limit of sub-Weibull distributions in a given layer for increasing width could be also recovered through a modification of the Central Limit Theorem for heavytailed distributions, see [START_REF] Kuchibhotla | Moving beyond sub-Gaussianity in high-dimensional statistics: Applications in covariance estimation and linear regression[END_REF].

Since initialization and learning dynamics are key in modern machine learning in order to properly tune deep learning algorithms, a good implementation practice requires a proper understanding of the prior distribution at play and of the regularization it incurs.

We hope that our results will open avenues for further research. Firstly, Theorem 3.2.1 regards the marginal prior distribution of the units, while a full characterization of the joint distribution of all units U remains an open question. More specifically, a precise description of the copula defined in Equation (3.47) would provide valuable information about the dependence between the units, and also about the precise geometrical structure of the balls induced by that penalty. Secondly, the interpretation of our result (Section 3.2.3) is concerned with the maximum a posteriori of the units, which is a point estimator. One of the benefits of the Bayesian approach to neural networks lies in its ability to provide a principled approach to uncertainty quantification, so that an interpretation of our result in terms of the full posterior distribution would be very appealing. Lastly, the practical potentialities of our results are many: to better comprehend the regularizing mechanisms in deep neural networks will contribute to design and understand strategies to avoid overfitting and improve generalization.

there are two main reasons why the practical implementation of this approach is not straightforward: (i) it is not immediate to construct functions that satisfy condition (3.50); and (ii) the product form complicates the density computation even numerically, which makes it difficult to perform likelihood inference on the model parameters [START_REF] Mazo | A class of multivariate copulas based on products of bivariate copulas[END_REF].

The aim of this section is to deepen the understanding of Liebscher's construction in order to overcome drawbacks (i) and (ii). Our contributions in this regard are three-fold. First, we provide theoretical properties of the asymmetric copulas in (3.49), including exact expressions of tail dependence indices, thus complementing the partial results of [START_REF] Liebscher | Construction of asymmetric multivariate copulas[END_REF][START_REF] Liebscher | Erratum to "Construction of asymmetric multivariate copulas[END_REF]. Second, we give an iterative representation of (3.49) which has the advantage to relax assumption (3.50) by automatically satisfying it. Third, we develop an inferential procedure and a sampling scheme that rely on the newly developed iterative representation.

The Bayesian paradigm proves very useful for inference in our context as it overcomes the problematic computation of the maximum likelihood estimate, which requires the maximization of a very complicated likelihood function (see recent contributions [START_REF] Valle | Bayesian non-parametric conditional copula estimation of twin data[END_REF][START_REF] Ning | A nonparametric Bayesian approach to copula estimation[END_REF]). General Bayesian sampling solutions in the form of Markov chain Monte Carlo are not particularly well-suited neither since they require the evaluation of that complex likelihood. Instead, we resort to Approximate Bayesian computation (ABC), a technique dedicated to models with complicated, or intractable, likelihoods (see [START_REF] Marin | Approximate Bayesian computation methods[END_REF][START_REF] Robert | Approximate Bayesian computation, an introduction[END_REF][START_REF] Karabatsos | An approximate likelihood perspective on ABC methods[END_REF] for recent reviews). ABC requires the ability to sample from the model, which is straightforward with our iterative representation of Liebscher copula. The adequacy of ABC for inference in copula models was leveraged by [START_REF] Grazian | Approximate Bayesian inference in semiparametric copula models[END_REF], although in the different context of empirical likelihood estimation. A reversed approach to ours is followed by [START_REF] Li | Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model[END_REF], who make use of copulas in order to adapt ABC to high-dimensional settings.

Since its introduction, the construction by Liebscher has received much attention in the copula literature (e.g., [START_REF] Salvadori | Multivariate multiparameter extreme value models and return periods: A copula approach[END_REF][START_REF] Durante | On the construction of multivariate extreme value models via copulas[END_REF][START_REF] Lauterbach | Some extensions of singular mixture copulas[END_REF]). However, most studies have been limited to simple cases where the product in (3.49) has only two terms. We hope that this paper will contribute to the further spreading of Liebscher's copulas, because it allows to exploit their full potential by: (i) better understanding their properties; (ii) providing a novel construction, which facilitates their use with an arbitrary number K of terms in (3.49); and (iii) giving a strategy to make inference on them.

On top of what has been presented above, an additional contribution of this paper is to derive specific results for the subclass of Liebscher's copula when two or more comonotonic copulas are combined, which we call comonotonic-based Liebscher copula. This subclass is characterized by an arbitrary number of singular components. To the best of our knowledge, this is the first paper to investigate this copula's properties and to provide an inference procedure.

The section is organized as follows. Section 3.3.2 provides some theoretical results concerning the properties of asymmetric Liebscher copulas, also presenting the novel iterative construction. In Section 3.3.3, we introduce and analyze the comonotonicbased Liebscher copula. Section 3.3.4 is dedicated to the inference strategy. It demonstrates our approach on simulated data and provides a comparison with a likelihoodbased approach for a class of Liebscher copulas where maximum likelihood estimation is feasible. We conclude with a short discussion in Section 3.3.5. The reader is referred to [START_REF] Albughdadi | A Bayesian nonparametric hidden Markov random model for hemodynamic brain parcellation[END_REF] for proofs.

Properties of Liebscher copula

In this section, some new properties of the copula C are established, complementing the ones in [START_REF] Liebscher | Construction of asymmetric multivariate copulas[END_REF][START_REF] Liebscher | Erratum to "Construction of asymmetric multivariate copulas[END_REF] 

Tail dependence

The lower and upper tail dependence functions, denoted by Λ L (C; •) and Λ U (C, •) respectively, are defined for all (x, y) ∈ R 2 + by

Λ L (C; x, y) = lim ε→0 C(εx, εy) ε , and Λ U (C; x, y) = x + y + lim ε→0 C(1 -εx, 1 -εy) -1 ε ,
where C is a given bivariate copula, see for instance [START_REF] Joe | Tail dependence functions and vine copulas[END_REF]. Note that these limits exist under a bivariate regular variation assumption, see [START_REF] Resnick | Extreme values, regular variation and point processes[END_REF], Section 5.4.2 for details. When they exist, these functions are homogeneous ([178], Proposition 2.2), i.e., for all t ∈ (0, 1] and (x, y) ∈ R 2 + , Λ(C; tx, ty) = tΛ(C; x, y), where Λ is equal to Λ L or Λ U . The lower and upper tail dependence coefficients, denoted by λ L (C) and λ U (C) respectively, are defined as the conditional probabilities that a random vector associated with a copula C belongs to lower or upper tail orthants given that a univariate margin takes extreme values:

λ L (C) = lim u→0 C(u, u) u , λ U (C) = 2 -lim u→1 C(u, u) -1 u -1 .
These coefficients can also be interpreted in terms of the tail dependence functions: 

λ L (C) = Λ L (C; 1, 1) and λ U (C) = Λ U (C;
(k) 1 = g (k)
2 is a regularly varying function with index γ (k) > 0 for all k ∈ {1, . . . , K}. Then,

Λ L ( C; x, y) = K ∏ k=1 Λ L (C k ; x γ (k) , y γ (k) )
and, necessarily, ∑ K k=1 γ (k) = 1.

(ii) Lower tail, asymmetric case. Suppose there exists k 0 ∈ {1, . . . , K} such that g

(k 0 ) 1 (ε)/g (k 0 ) 2 (ε) → 0 as ε → 0. Then, Λ L ( C; x, y) = 0.
(iii) Upper tail, general case. Assume that, for all k ∈ {1, . . . , K}, g

1 and g (k)

2 are differentiable at 1, with derivative at 1 denoted by d (k)

1 and d (k) 2 respectively. Then Λ U ( C; x, y) = K ∑ k=1 Λ U (C k ; d (k) 1 x, d (k) 2 y) and, necessarily, ∑ K k=1 d (k) j = 1, for j ∈ {1, 2}.
(iv) Upper tail, particular case. If, in addition to (iii), d

(k) 2 =: d (k) for all k ∈ {1, . . . , K}, then Λ U ( C; x, y) = K ∑ k=1 d (k) Λ U (C k ; x, y) and, necessarily, ∑ K k=1 d (k) = 1. (k) 1 = d 
Let us note that the functions g (k) j considered by [START_REF] Liebscher | Construction of asymmetric multivariate copulas[END_REF] and indexed by (I-III) in his Section 2.1 all satisfy the assumptions of Proposition 3. 

(iii), λ U ( C) = ∑ K k=1 Λ U (C k ; d (k) 1 , d (k) 
2 ) and, necessarily, ∑ K k=1 d

(k) j = 1, for j ∈ {1, 2}. (iv) Upper tail, particular case. Under the assumptions of Proposition 3.3.1(iv),

λ U ( C) = ∑ K k=1 d (k) λ U (C k ) and, necessarily, ∑ K k=1 d (k) = 1.
It appears that the lower and upper tail dependence coefficients have very different behaviors. In the case (i) of a symmetric copulas, the lower tail dependence coefficient λ L is the product of the lower tail dependence coefficients associated with the components. Besides, λ L = 0 as soon as a component k 0 has functions g

(k 0 ) 1 and g (k 0 ) 2
with different behaviors at the origin (case (ii)). At the opposite, the upper tail dependence coefficient does not vanish even though a component k 0 has functions g

(k 0 ) (k 0 ) 2
with different behaviors at 1 (case (iii)). In the particular situation where all components k ∈ {1, . . . , K} have functions g (k)

1 and g (k)

2 with the same behavior at 1 (case (iv)), λ U is a convex combination of the upper tail dependence coefficients associated with the components.

Dependence

Let (X, Y) be a pair of random variables with continuous margins and associated copula C.

• X and Y are said to be totally positive of order 2, TP 2 (see [START_REF] Joe | Multivariate models and dependence concepts[END_REF]), if for all

x 1 < y 1 , x 2 < y 2 , Pr(X ≤ x 1 , Y ≤ x 2 )Pr(X ≤ y 1 , Y ≤ y 2 ) ≥ Pr(X ≤ x 1 , Y ≤ y 2 )Pr(X ≤ y 1 , Y ≤ x 2 ).
Since this can be equivalently written in terms of C, we will write in short that C is TP 2 .

• X and Y are said to be positively quadrant dependent (PQD) if Pr(X ≤ x, Y ≤ y) ≥ Pr(X ≤ x)Pr(Y ≤ y) for all (x, y).

Since this property can be characterized by the copula property C ≥ Π where Π denotes the independence copula, see for instance [ functions in Theorem 3.3.1 are additionally required to be concave functions (respectively convex functions) and the copulas C k to be twice differentiable, k ∈ {1, . . . , K}, j ∈ {1, . . . , d}.

Stability properties

Let us focus on the situation where the functions g (k) j of Theorem 3.3.1 are power functions: for all j ∈ {1, . . . , d}, k ∈ {1, . . . , K} and t ∈ [0, 1], let

g (k) j (t) = t p (k) j , p (k) j ∈ (0, 1), K ∑ =1 p ( ) j = 1. (3.55) 
Recall that a copula C # is said to be max-stable if for all integer n ≥ 1 and (u 1 , . . . , Proposition 3], it is clear that associating max-stable copulas C k with power functions (3.55) in Liebscher construction (3.49) still yields a max-stable copula. The goal of this paragraph is to investigate to what extent this result can be generalized. Our first result establishes the stability of a family of Liebscher copulas built from homogeneous functions. More specifically, each copula

u d ) ∈ [0, 1] d : C n # (u 1/n 1 , . . . , u 1/n d ) = C # (u 1 , . . . , u d ). From [127,
C k (•) in (3.49) is rewritten as C(• | θ k ) where C(• | θ k ) := m ∏ i=1 ϕ θ ik i (•), (3.56) 
with θ k = (θ 1k , . . . , θ mk ) T and ϕ 

i : [0, 1] d → [0, 1], i ∈ {1, . . . ,
j be given by (3.55) where p (k) j = p (k) for all k ∈ {1, . . . , K}. Let m > 0 and for all i ∈ {1, . . . , m} introduce ϕ i :

[0, 1] d → [0, 1] such that ln • ϕ i • exp is homogeneous of degree λ i . For all k ∈ {1, . . . , K}, assume that C(• | θ k ) in (3.56) is a copula for some θ k ∈ R m . Then, copula (3.49) is given for all K ≥ 1 by C(K) (•) = C(• | θK ),
with θK = ( θ1K , . . . , θmK ) T , and for all i ∈ {1, . . . , m}, where L : R d + → R + is homogeneous of degree 1, see for instance [START_REF] Gudendorf | Extreme-value copulas[END_REF]. It is thus clear that every max-stable copula C k fulfills the assumptions of Proposition 3.3.3 with m = 1,

θiK = K ∑ k=1 θ ik (p (k) ) λ i . Chapter 
(u) = C(u | θ k ) = d ∏ j=1 u j exp θ k d ∏ j=1 ln(1/u j ) = ϕ θ 1k 1 (u)ϕ θ 2k 2 (u) with θ 1k = 1, θ 2k = θ k ≥ 1, ϕ 1 (u) =
θ 1k = 1, λ 1 = 1 and ln •ϕ 1 • exp(t) = -L(-t), t ∈ R d -. Moreover, θ1K = K ∑ k=1 p (k) = 1 and thus C(K) = C for all K ≥ 1.
It appears that max-stable copulas can be considered as fixed-points of Liebscher's construction (3.49). The next result shows that, under mild assumptions, they are the only copulas verifying this property. Proposition 3.3.4. For all j ∈ {1, . . . , d}, let g (k) j be given by (3.55) where p

(k) j = p (k)
for all k ∈ {1, . . . , K}. Assume C k = C for all k ∈ {1, . . . , K} and let C(K) be the copula defined by (3.49). Then, C(K) = C for all K ≥ 1 and for all sequences p (1) , . . . , p (K) ∈ (0, 1) such that ∑ K k=1 p (k) = 1 if and only if C is max-stable. To complete the links with max-stable copulas, let us consider the situation where C k = C and p (k) j = 1/K for all j ∈ {1, . . . , d} and k ∈ {1, . . . , K}. Liebscher's construction thus yields

C(K) (u) := C(u) = C K (u 1/K 1 , . . . , u 1/K d ),
which is the normalized cdf associated with the maximum of K independent uniform random vectors distributed according to the cdf C. Therefore, as K → ∞, C(K) converges to a max-stable copula under standard extreme-value assumptions on C.

An iterative construction

Let F be the class of increasing functions f : 

[0, 1] → [0, 1] such that f (0) = 0, f (1) 
(1) (u) = C 1 (u), (3.57) C(k) (u) = C k u 1 f (k) 1 (u 1 ) , . . . , u d f (k) d (u d ) C(k-1) f (k) 1 (u 1 ), . . . , f (k) d (u d ) , k ≥ 2.
(3.58)

We prove in [START_REF] Arbel | Dependence properties and Bayesian inference for asymmetric multivariate copulas[END_REF] that C(k) is a d-variate copula, for all k ≥ 1.

Let K ≥ 1. For all functions f (1) , . . . , f (K) : [0, 1] → [0, 1] and i, j ∈ {1, . . . , K}, let us introduce the notation

j k=i f (k) := f (i) • . . . • f (j) if i ≤ j and j k=i f (k) := Id otherwise. ( 3.59) 
The next result shows that there is a one-to-one correspondence between copulas built by the iterative procedure (3.57), (3.58) and Liebscher copulas, reported in Theorem 3.3.1. Proposition 3.3.5. The copula C(K) , K ≥ 1 defined iteratively by (3.57), (3.58) is a Liebscher copula. It can be rewritten as

C(K) (u) = K ∏ k=1 C k g (K-k+1,K) 1 (u 1 ), . . . , g (K-k+1,K) d (u d ) (3.60) 
for all u ∈ [0, 1] d where, for all j ∈ {1, . . . , d} and K ≥ 1, 

g (1,K) j = Id/ f (K) j , (3.61) 
g (k,K) j = K i=K-k+2 f (i) j K i=K-k+1 f (i) j , k ∈ {2, . . . , K}. (3 
1 , . . . , X 

d ) ∼ C 1 For k = 2, . . . , K (Y 1 , . . . , Y d ) ∼ C k independently of (X (k-1) 1 , . . . , X (k-1) d ) For j ∈ {1, . . . , d} X (k) j = max f (k) j -1 (X (k-1) j ), Id/ f (k) j -1 (Y j ) Output X = (X (K) 1 , . . . , X (K) d ) ∼ C Example 3.3.3 (Power functions f (k) j ). Let functions f (k) j be power functions in the form of f (k) j (t) = t 1-a (k) j , a (1) 
j = 1, a (1) 
j (t) = g (k,K) j (t) = t p (k,K) j with        p (1,K) j = a (K) j , p (k,K) j = a (K-k+1) j K ∏ i=K-k+2 (k) 
(i) j ), if 2 ≤ k ≤ K, (1 -a 
       p (1,K) j = ã(1,K) j , p (k,K) j = ã(k,K) j k-1 ∏ i=1 (1 - ã(i,K) j ), if 2 ≤ k ≤ K,
which corresponds to the so-called stick-breaking construction [START_REF] Sethuraman | A constructive definition of Dirichlet priors[END_REF].

The comonotonic-based Liebscher copula

We analyze here in more details the Liebscher copula obtained by combining K ≥ 2 comonotonic (also called Fréchet) copulas defined by C(u, v) = min(u, v). We here focus on the bivariate case d = 2, although some of the derivations carry over to the general d-dimensional case. We consider the specific case of Example 3.3.3, where the functions in Liebscher's construction are power functions, g of CCL and the singular component SCL are as follows:

CCL (u, v) =            u on A 0 , u 2/3 v 3/4 on A 1 , v on A 2 , and SCL (u, v) = 1 3 min u, v 9/4 + 1 4 min u 8/3 , v .
Appropriate choices of pairs (p k , q k ) k=1,...,K may lead to a number of singular components ranging from 0 to K. The independence copula (no singular component) is obtained for instance with p i = b j = 1 for a given pair (i, j), i = j, the comonotonic copula (one singular component) is obtained by choosing p k = q k , ∀k ∈ {1, . . . , K}, and a copula with exactly K singular components can be obtained provided that 0 < r 1 < r 2 < • • • < r K < ∞. See Fig. 3.8 and Fig. 3.9 for illustrations. As a comparison, [START_REF] Cuadras | A continuous general multivariate distribution and its properties[END_REF] copula given by C(u, v) = (uv) 1-θ min(u, v) θ , θ ∈ [0, 1] is limited to a single singular component, necessarily on the diagonal v = u. Similarly, [START_REF] Marshall | A generalized bivariate exponential distribution[END_REF] copula is defined by C(u, v) = min(u 1-α v, uv 1-β ), (α, β) ∈ [0, 1] 2 and has only one singular component located on the curve v = u α/β . The proposal by [START_REF] Lauterbach | Some extensions of singular mixture copulas[END_REF] based on singular mixture copulas includes comonotonic-based Liebscher copula (3.65) in the particular case when K = 2 but is limited to two singular components. Finally, Sibuya copulas [START_REF] Hofert | Sibuya copulas[END_REF] is a very general family of copulas: Let us point out that, in the bivariate case, a non-homogeneous Poisson Sibuya copula allows for only one singular component, this singular component being supported by a curve with very flexible shape (see Remark 4.2 in the previously referenced work for further details).

Dependence and association properties of CCL

We consider here several measures of dependence and measures of association between the components of the bivariate comonotonic-based Liebscher copula (3.65). Some of these measures are already dealt with in great generality in Section 3.3.2, while some others seem to be tractable only in the comonotonic-based Liebscher copula case: Blomqvist's medial correlation coefficient, Kendall's τ and Spearman's ρ. Other five panels: scatter plots of n = 10 4 data points sampled from comonotonic-based Liebscher copula with K = 2. Choices for parameters (p, q) (such that p 1 = p, p 2 = 1p, q 1 = q, q 2 = 1q) are summarized on the top-left panel. Complete dependence (top-middle), complete independence (top-right), symmetric (bottom-left), asymmetric (bottom-middle), degenerate asymmetric (bottom-right).

Tail dependence Recall that for the comonotonic copula C C , it holds Λ U (C C ; •, •) = min(•, •). Then, Corollary 3.3.1 yields

λ L ( CCL ) = K ∏ k=1 1(p k = q k ), λ U ( CCL ) = K ∑ k=1 min(p k , q k ).
In other words, the lower tail dependence coefficient is non zero only in the case when p k = q k for all k ∈ {1, . . . , K}, where CCL boils down to the comonotonic copula, while the upper tail dependence coefficient coincides with the weight of the singular component SCL (see Proposition 3.3.6). These results were also established in [START_REF] Mai | Bivariate extreme-value copulas with discrete Pickands dependence measure[END_REF]Lemma 3], in the particular case where K = 2.

Dependence It is well-known that the comonotonic copula C F fulfills the following positive dependence properties defined in Section 3.3.2, namely it is TP 2 , PQD, LTD and SI [START_REF] Nelsen | An introduction to copulas[END_REF]. According to Proposition 3.3.2, we can thus conclude that the comonotonic-based Liebscher copula CCL also satisfies these positive dependence properties. 

Stability properties

(C) = 4 [0,1] 2 C(u, v) dC(u, v) -1 and ρ(C) = 12 [0,1] 2 C(u, v) dudv
β( CCL ) = 2 ∑ K k=1 min(p k ,q k ) -1, τ( CCL ) = 1 - K-1 ∑ k=1 (1 -pk ) qk (r k+1 -r k ) ( qk r k + (1 -pk ))( qk r k+1 + (1 -pk )) , ρ( CCL ) = 12(1 + r 1 + r 1 r K ) (2 + r 1 )(1 + 2r K ) -3 + K-1 ∑ k=1 r k+1 -r k ((1 + qk )r k + (2 -pk ))((1 + qk )r k+1 + (2 -pk ))
,

where xk = x 1 + . . . + x k .
ABC approach in point 3. amounts to a priori specifying a tolerance level > 0, and then keeping θ if d(X, X obs ) < for some distance d( • , • ) between samples. Another common approach employed in this section consists in selecting the tolerance level as a fixed quantile of the distances d(X, X obs ). More specifically, Steps 1. to 3. are repeated M times, out of which M are retained, yielding a quantile of order M/M [START_REF] Robert | Approximate Bayesian computation, an introduction[END_REF]. In other words, the M retained parameters are those associated with the smallest values of the distance d(X, X obs ). In this section, we choose as distance between samples the Hilbert distance introduced by [START_REF] Bernton | Approximate Bayesian computation with the Wasserstein distance[END_REF], henceforth denoted by d H ( • , • ). The Hilbert distance is an approximation of the Wasserstein distance between empirical probability distributions which preserves the desirable properties of the latter in the context of ABC, while being considerably faster to compute in multivariate data settings. More precisely, given two samples, y 1:n and z 1:n , the Hilbert distance of order 1 associated with the Euclidean distance (henceforth simply referred to as the Hilbert distance) is defined as d H (y 1:n , z 1

:n ) = 1 n ∑ n i=1 ||y i -z σ(i) ||, where σ(i) = σ z • σ -1
y (i) for all i = 1, . . . , n, and σ y and σ z are the permutations obtained by mapping the vectors y 1:n and z 1:n through their projection via the Hilbert space-filling curve [START_REF] Sagan | Space-filling curves[END_REF] and sorting the resulting vectors in increasing order (see [START_REF] Bernton | Approximate Bayesian computation with the Wasserstein distance[END_REF] for details).

The choice for ABC is motivated by two main reasons. First, it is nontrivial in general to derive the likelihood of copulas, especially for Liebscher copulas which involve differentiating a product of K terms. All the more, the specific case of comonotonicbased Liebscher copulas induces up to K singular components which precludes a general evaluation of the likelihood. Second, sampling new data (step 2. above) from a Liebscher copula is straightforward and fast thanks to the iterative procedure of Algorithm 3.3.1 (Section 3.3.2). Section 3.3.4 introduces the ABC procedure in the case of the Liebscher copula (3.49) and describes the prior distributions on the model parameters. The methodology is then illustrated on two data generating distributions: Section 3.3.4 focuses on the well-specified setting where the data are sampled from the comonotonic-based Liebscher copula; we show that the estimation procedure performs well in this case. Then, Section 3.3.4 investigates the misspecified setting where the data are sampled from a noisy version of the model; we show that the estimation procedure still performs well, but the estimation accuracy may deteriorate for too large values of the noise. Finally, Section 3.3.4 compares our proposed ABC approach to a likelihoodbased technique.

ABC inference for Liebscher copulas

The description of the ABC procedure is first completed by specifying the prior distributions on the model parameters. For simplicity, we here focus on the case of the d-dimensional Liebscher copula with the functions f ∼ U (0, 1). More flexible distributions like the Beta distribution could be thought of in order to reflect some prior knowledge on these parameters. Additionally, note that different functions f (k) j (•) would simply require setting prior distributions adapted to the parameters used.

The number of iterative steps K is also considered as a parameter of the model. Independently of parameters A, K is assigned a Zipf distribution, K ∼ Zipf(ξ) + 1, for ξ > 1. Such a distribution is supported on integers k ≥ 2 and has probability mass function P(K = k) proportional to (k -1) -ξ . We further choose the parameter ξ to be equal to 2, which insures that 90% of the prior mass for K is supported on most realistic values 2 ≤ K ≤ 6. This can be changed depending on applications at hand. Another option, useful in case where some prior information is available on K, is to adopt a Binomial distribution (translated, such that K ≥ 2). The choice of the two hyper-parameters of the Binomial density could then be set as a function of prior knowledge, such as prior mode and confidence, that one may be able to elicit thanks to expert knowledge or previous studies.

We are now ready to state the main ABC inference procedure as Algorithm 3.3.3.

Algorithm 3.3.3 ABC inference for Liebscher copulas

Input X obs , M , M, (C k ) k . For s = 1, . . . , M K (s) ∼ Zipf(ξ) + 1 sample number of iterations in construction (3.49) For j ∈ {1, . . . , d} and k ∈ {2, . . . , K (s) } a (1) j = 1 a (k) j ∼ U (0, 1)
sample copula parameters 

A (s) = [a (k) j ] j,
H ] M s=1 Output {(X (m) , A (m) , K (m) ) : d (m) H < d * } M m=1 return M parameters with smallest d H from X obs
In general, the sequence of copulas (C k ) k depends on some sequence of parameters (γ k ) k . In such a case, Algorithm 3.3.3 can be easily amended by adding a step consisting in sampling γ k parameters from some prior distribution to be set based on available prior information or expert knowledge. In the following section, we focus on the case of comonotonic-based Liebscher copulas, which do not depend on any additional parameter. Thus, the sampling step for new data X (s) in Algorithm 3.3.3 is performed with the iterative construction of Algorithm 3.3.2 tailored to comonotonic-based Liebscher copulas.

Numerical illustrations with comonotonic-based Liebscher copulas

This section provides two illustrations of the inferential procedures described so far. The first investigates a setting where data are sampled from the comonotonic-based Liebscher model, while the second is concerned with observations from a noisy version of it. The code is implemented in R using the copula package [START_REF] Yan | Enjoy the Joy of Copulas: With a Package copula[END_REF] and winference package [START_REF] Bernton | winference: Approximate Bayesian Computation with the Wasserstein distance[END_REF] for the Hilbert distance implementation [START_REF] Bernton | Approximate Bayesian computation with the Wasserstein distance[END_REF].

Well-specified setting: data from comonotonic-based Liebscher copula We generate n = 500 data points from a 2-dimensional comonotonic-based Liebscher copula (3.65) with d = 2, varying values of K ≥ 2 and of the parameters in the matrix A, using Algorithm 3.3.2. The estimation is then performed with the ABC procedure summarized in Algorithm 3.3.3.

Our method provides the full (approximate) posterior distribution of the parameters of interest, making possible to select any strategy to summarize them, possibly driven by the application at hand. One can for instance compute the posterior distribution of the Spearman's ρ, and, thanks to the retained samples, any other quantity of interest. Here, the performance of the estimation procedure is assessed basing on the following three summary statistics: (i) Kendall's distribution function 

K(t) = Pr C (C(U, V) < t), ( 
[(C(U, V) -C(V, U)) 2
] defined in [START_REF] Genest | Tests of symmetry for bivariate copulas[END_REF] has been selected since it emerged as a powerful statistic to test the symmetry of a copula. Following the strategy of [START_REF] Genest | Tests of symmetry for bivariate copulas[END_REF], the approximate p-values associated with the symmetry test, performed both on the observed sample X obs and on the retained samples X m , m ∈ {1, . . . , M}, are computed on the basis of 250 bootstrap replicates.

The results obtained on a single simulation experiment are displayed on Fig. We then vary the generating number of iterative steps K and compute the average relative errors η K and η ρ for K and ρ between the values computed on the observed sample and on the M samples retained by ABC:

η K = 1 M M ∑ m=1 Kobs -Km 1 Kobs 1 , and η ρ = 1 M M ∑ m=1 | ρobs -ρm | | ρobs | , ( 3.70) 
where • 1 denotes the 1 -norm. In order to take care of the randomness involved in sampling the parameters in the matrix A, the previous procedure has been replicated 20 times based on 20 independent data samples repetitions. The average relative errors η K and η ρ in (3.70) were therefore averaged over the 20 independent samples, and reported as ηK and ηρ in Table 3.3 (first two rows), along with standard deviations in parentheses. As for the asymmetry test, we computed for each of the 20 data replications the fraction of times (out of M) that the same decision is taken ('reject' vs 'do not reject') at the 5% level, based on the approximate p-values computed on X m and X obs . The obtained values were averaged over the 20 independent data samples repetitions and reported in the third row of Table 3.3 as ftest .
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1 = 0.4, a (2) 
2 = 0.8 (top-left panel) and from five noisy versions of it, where, for each data point i ∈ {1, . . . , n}, a The inference results obtained from Algorithm 3.3.3 (ran with M = 10 4 ABC iterations of which M = 300 were retained) are reported in Table 3.4. Unsurprisingly, it appears that the larger the noise variance is, the more difficult is the estimation. Again, the estimation procedure yields good results for all cases considered. Let us note that the results reported in Table 3.4 are not averaged over 20 independent replications like in the previous section. The reason is that, here, the interest is in illustrating how the procedure deteriorates with the increasing noise in the observed data. Therefore, it is sufficient to illustrate the results of the analysis on a single dataset. 

Comparison of ABC with likelihood-based estimation

In this section, the inference based on our ABC procedure is compared with the likelihood-based method provided in the copula R package [START_REF] Yan | Enjoy the Joy of Copulas: With a Package copula[END_REF].

As a matter of fact, in some specific cases it is possible to derive the density of Liebscher copulas, and hence, to perform likelihood-based inference on them. We work here with the following bivariate Liebscher copula obtained by combining Clayton copula C 1 (u, v) = u -θ + v -θ -1 -1/θ with the independence copula C 2 (u, v) = uv, and by using power functions (Example 3.3.3), C(u, v) = C 1 (u p , v q )C 2 (u 1-p , v 1-q ). (3.71) In this illustration we set θ = 5, p = 0.3, and q = 0.8, and estimate these parameters on 100 data sets independently sampled from copula (3.71), with both our ABC procedure and the optimization procedure implemented in the fitCopula function of the copula package. The above procedure is repeated for samples of size n = 500 and n = 10 000. In order to compare the results of our Bayesian procedure with the likelihood-based one, which provides only point estimates (maximum likelihood estimator, MLE), the posterior distribution of the model parameters is summarized into two point estimates: the posterior mean and the posterior median.

The results are plotted in Fig. 3.12, where each boxplot is made out of the 100 estimated values. In each panel, three quantities are plotted: MLE, which refers to the likelihood-based estimation, Post.median, which refers to the posterior median ABC estimation, and Post.mean, which refers to the posterior mean ABC estimation. It appears from the three plots that, as expected, the MLE is asymptotically unbiased. This can be seen by noticing the convergence to the true value as n increases. On the other hand, both the mean and the median of the posterior distribution obtained with our ABC procedure show some bias. Unexpectedly, the results from MLE show a larger variance than ABC in some cases, particularly when n = 500. This could be due to difficulties in the optimisation procedure of the fitCopula R function which, for small sample sizes, could have problems converging. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q MLE Post.median Post.mean 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 n=500 n=10000
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Discussion

In this section, we have studied the class of asymmetric copulas first introduced by [START_REF] Khoudraji | Contributions à l'étude des copules et à la modélisation des valeurs extrêmes bivariées[END_REF], and developed in its general form by [START_REF] Liebscher | Construction of asymmetric multivariate copulas[END_REF]. Some new theoretical properties of these copulas were provived, including novel closed form expressions for its tail dependence coefficients, thus complementing the partial results of [START_REF] Liebscher | Construction of asymmetric multivariate copulas[END_REF] and [START_REF] Liebscher | Erratum to "Construction of asymmetric multivariate copulas[END_REF]. An iterative procedure is also introduced to flexibly sample from these copulas, which makes it easy to apply an Approximate Bayesian computation procedure to make inference on them.

New Perspectives and Future Research

I conclude with some future research directions.

Perspectives with applications in Ecology

I plan to work on methodological developments in Ecology with Wilfried Thuiller and students Daria Bystrova and Giovanni Poggiato. The modelling of species distribution plays an important role in both theoretical and applied ecology: given a set of species occurrence, the aim is to infer its spatial distribution over a given territory. Joint Species Distribution Models (JSDM) aim to model and predict the distribution of species jointly at each location, to capture both abiotic and biotic dependencies. However, JSDMs have several limitations. First, they provide estimates for residual correlations between the species, and these residual correlations are interpreted as species interactions. However, this assumption is not true in general. An objective is to evaluate the performance of JSDMs for detecting the signal of biotic interactions using abundance data. A possible direction is the study of conditional prediction and its performance regarding different types of interactions, including missing data imputations. A second problem of JSDMs is the curse of dimensionality as models incorporate a large number of parameters [START_REF] Taylor-Rodriguez | Joint species distribution modeling: dimension reduction using Dirichlet processes[END_REF]. There is a need for new algorithms for dimension reduction and variable selection. The data related imperfections such as sparse information in space and time measurements, and different observational scales would be addressed with machine learning approaches adapted to an ecology framework. For instance, Bayesian nonparametric priors, such as Dirichlet process, Dependent Dirichlet process and Hierarchical Dirichlet process, could be used to address different data-related questions and scenarios. The high-dimension problems would be addressed with the use of shrinkage priors [START_REF] Bhattacharya | Sparse Bayesian infinite factor models[END_REF].

Perspectives with deep learning

Although deep learning provides state-of-the-art algorithm for prediction in almost any application field, a major essentially unsolved problem is how to handle uncertainty quantification -all the more when applications are consequential as is often the case today. If this could in principle be solved by the posterior distribution of Bayesian neural networks, there remain many open questions and research directions. One is to design scalable sampling algorithms. This is made challenging due to the very high dimensionality of the parameter space, up to several millions in modern deep neural networks. Recent proposals in this direction [START_REF] Izmailov | Subspace inference for bayesian deep learning[END_REF] suggest to focus the inferential procedure on low-dimensional subspaces of parameter space, for instance on the first principal components of the stochastic gradient descent trajectory. A second open question is the assessment of credibility sets derived from the posterior distribution of Bayesian neural networks. A theoretical framework for such evaluation is known as the Bernstein-von Misses (BvM) theorem which implies, for regular parametric models, that the posterior distribution of the parameter centered at the maximum likelihood estimator (MLE) converges to a normal distribution given as the limit of the renormalized MLE. The main thrust of this theorem is to show that asymptotically, a Bayesian posterior distribution and (frequentist) sampling probabilities agree, hence the posterior can be used to build approximate confidence regions. Refer to [START_REF] Szabó | Frequentist coverage of adaptive nonparametric Bayesian credible sets[END_REF] for details and discussions in the Bayesian nonparametric setting. Although Bayesian neural networks are parametric objects, the dimension of their parameter space is often huge. Also, recent results on approximation theory [START_REF] Schmidt-Hieber | Nonparametric regression using deep neural networks with ReLU activation function[END_REF][START_REF] Bauer | On deep learning as a remedy for the curse of dimensionality in nonparametric regression[END_REF] suggest how their size (in terms of depth) should be scaled to the data size for optimal approximation properties. A major complication for deriving a BvM theorem for deep neural networks is the complexity of their likelihood function.
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1 FIGURE 1 . 1 :

 111 FIGURE 1.1: Mean of Sj (t) (dashed black) and 95% highest density intervals for the true distribution (solid black) and the approximated distribution (dashed red) for the Beta (j = 1), mixture of Beta (j = 2) and truncated normal (j = 3) examples (left, middle and right, respectively).

12 FIGURE 1 . 2 :

 1212 FIGURE 1.2: True density (solid black) and approximated one (dashed red) at time values t = 0.1 (left column), t = 0.5 (middle column) and t = 2.5 (right column), for the Beta (j = 1, top row), mixture of Beta (j = 2, middle row) and truncated normal (j = 3, bottom row) examples.
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 111 Posterior sampling Part 1. Gibbs sampler 1: set l = 0 and admissible values for latent variables and hyperparameters, i.e. {Y 1 = Y (0) 1 , . . . , Y n = Y

FIGURE 1 . 4 :

 14 FIGURE 1.4: (Simulated dataset, n = 100.) Left: true survival function (red line) and Kaplan-Meier estimate (balk line). Right: true survival function (red line) and estimated posterior mean (black solid line) with 95% HPD credible intervals for S(t) (black dashed lines); the blue plot appearing in the panel on the right is the posterior distribution of the median survival time m.

1 FIGURE 1 .

 11 FIGURE 1.5: Left: comparison of posterior mean (solid line), median (dashed line) and mode (point dashed line) in dataset T, with 95% HPD credible intervals (dashed line). The Kaplan-Meier estimate is plotted in red. Middle: comparison of the 95% HPD credible interval (dashed black line) with the marginal interval (dashed red line). Right: comparison of samples T (black) and P (red), with posterior means (solid) and 95% HPD credible intervals (dashed).
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 16 FIGURE 1.6: Illustration of the stick-breaking representation.
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 17 FIGURE 1.7: PY-MRF mixture model: Mean and standard deviation of the PRI score over the considered subset of the BSDS500 data set as a function of the truncation level K.
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 18 FIGURE 1.8: Segmentation results for four images from the BSDS500 data set. From left to right, columns show respectively, the original images, the segmentation results with the PY and PY-MRF mixture models.
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 019 FIGURE 1.9: Estimated parameter values (ᾱ, σ) obtained from VB-E steps and β obtained from a VB-M step using the PY-MRF model with truncation level K = 50, on the 154 images from the Berkeley benchmark.
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 21 FIGURE 2.1: Density plot for the asymptotic approximation of τ( ) based on 10 4 values under the following parameter configurations. Left: ∈ {0.10, 0.05, 0.01}, α = 0.4, θ = 1. Center: α ∈ {0.4, 0.5, 0.6}, θ = 1, = 0.1. Right: θ ∈ {0, 1, 10}, α = 0.25, = 0.05.
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 4040404441022 FIGURE 2.2: Density plots for the random probability F(1/2) using the ALGORITHM 2 (in red solid curve) and ALGORITHM 1 (in blue dashed curve) to sample from the -PY process. The density under the Pitman-Yor process is the black dotted curve. The parameter α is fixed equal to 0.5, θ is equal to 0 on the first row and 10 on the second row, while is respectively equal to {0.10, 0.05, 0.01} in the left, center and right columns.
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 2 [START_REF] Arbel | On strict sub-Gaussianity, optimal proxy variance and symmetry for bounded random variables[END_REF] where B( • ; • , • ) denotes the incomplete beta function.Hence, the Ferguson & Klass algorithm can be summarized as follows.
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 221 Ferguson & Klass algorithm 1: Sample

= 1 , c = 0
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FIGURE 2 . 3 :

 23 FIGURE 2.3: Left panel: M as M varies; right panel: e M as M varies.Top row: generalized gamma process (GG) with varying γ and a = 1 fixed; middle row: inverse-Gaussian process (IG), γ = 0.5, with varying total mass a; bottom row: stable-beta process (SBP) with a = 1, c = 0.5 fixed and varying discount parameter σ. The points are connected by straight lines only for visual simplification.

FIGURE 2 . 4 :

 24 FIGURE 2.4: Number of jumps M( ) required to achieve a precision level of = 0.1 for M . Left panel: generalized gamma process for a ∈ (0, 2) and γ ∈ (0, 0.8). Right panel: beta process for a ∈ (0, 2) and c ∈ (0, 30).

  ). Then the posterior distribution of the unnormalized CRM μ, given a sample Y, is a mixture of the distribution of [ μ|U, Y] with respect to the distribution of [U|Y]. The latter is identified by (2.31), whereas [ μ|U = u, Y] is equal in distribution to a CRM with fixed points of discontinuity at the distinct observations Y * j , μ * is a CRM characterized by the Lévy intensity ν * (v . , x . ) = e -uv ν(v . , x . ), (2.33) (b) the jump height J * j corresponding to Y * j has density, w.r.t. the Lebesgue measure, given by f

15 FIGURE 2 . 5 :

 1525 FIGURE 2.5: NGG posterior: density f U|Y with n = 10 observations, a = 1, γ = 0.5, and number of clusters k ∈ {1, . . . , 10}; k = 1 corresponds to the most peaked density and k = 10 to the flattest.
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 27 FIGURE 2.7: Moment-matching errors M as the number of jumps M varies for the stable-beta process with c = 1, a = 1, and, respectively, σ = 0 (left panel) and σ = 0.5 (right panel). M corresponding to prior μ (continuous line) and the posterior μ * given with n = 5 (dashed line) and n = 10 (dotted line) and n = 20 (dashed-dotted line) observations.
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 28 FIGURE 2.8: Predictive weights V n+1,k n +1 /V n,k n in the Pitman-Yor process. In black: the "exact" value (2.62). In blue: the first order approximation (2.63). In red: the second order approximation (2.64). The following values for the parameters are considered: α = 0.25, 0.5 and 0.75 in the top, middle and bottom rows respectively; θ = 1, 3 and 10 for the left, middle and right columns respectively. The sample size on the x-axis in log scale runs from n = 50 to n = 500. The points are connected by straight lines only for visual simplification.
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 242930210 FIGURE 2.9: Predictive weights V n+1,k n +1 /V n,k n in the normalized generalized gamma process. In black: the "exact" value evaluated by the Monte Carlo approach. In blue: the first order approximation (2.67). In red: the second order approximation (2.68). The following values for the parameters are considered: α = 0.25, 0.5 and 0.75 in the top, middle and bottom rows respectively; τ = 1, 3 and 10 for the left, middle and right columns respectively. The sample size on the x-axis in log scale runs from n = 50 to n = 500. The points are connected by straight lines only for visual simplification.
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 2160211 FIGURE 2.11: Running time (in seconds) for the Monte Carlo approach for evaluating the predictive weights V n+1,k n +1 /V n,k n in the normalized generalized gamma process case. The following values for the parameters are considered: α = 0.25, 0.5 and 0.75 in the top, middle and bottom rows respectively; τ = 1, 3 and 10 for the left, middle and right columns respectively. The sample size on the x-axis in log scale runs from n = 50 to n = 500. The points are connected by straight lines only for visual simplification.

α = 0 . 25 , τ = 1 4 FIGURE 2 . 12 :

 02514212 FIGURE 2.12: Cumulated running time (in hours) for the Monte Carlo approach for evaluating the predictive weights V n+1,k n +1 /V n,k n in the normalized generalized gamma process case. The following values for the parameters are considered: α = 0.25, 0.5 and 0.75 in the top, middle and bottom rows respectively; τ = 1, 3 and 10 for the left, middle and right columns respectively. The sample size on the x-axis in log scale runs from n = 50 to n = 500. The points are connected by straight lines only for visual simplification.

20 FIGURE 2 . 13 :

 20213 FIGURE 2.13: Kolmogorov-Smirnov distance between the true cdf and the cdf obtained by using the mixture model (2.69) with the following color code. In black: exact predictive distributions (2.47) of the Pitman-Yor process. In blue: first order approximation (2.52) of the predictive distributions of the Pitman-Yor process and the normalized generalized gamma process. In red: second order approximation (2.53) of the predictive distributions of the normalized generalized gamma process. The following values for the parameters are considered: α = 0.25, 0.5 and 0.75 in the top, middle and bottom rows respectively; θ = τ = 1, 3 and 10 for the left, middle and right columns respectively. The sample size on the x-axis in log scale runs from n = 50 to n = 500. The points are connected by straight lines only for visual simplification.
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 214 FIGURE 2.14: Marginal KDEs of the ABC posterior for the mean parameters µ 0 and µ 1 of the bivariate Gaussian mixture model (2.86). The intersections of black dashed lines indicate the positions of the population means.
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 2215 FIGURE 2.15: KDE of the ABC posterior for the parameters θ 1 and θ 2 of the MA(2) model experiment. The intersections of black dashed lines indicate the true parameter values.
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 216 FIGURE 2.16: Marginal KDEs of the ABC posterior for the parameters θ 1 , . . . , θ 5 for the bivariate beta model. The black dashed lines indicate the true parameter values.
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 217 FIGURE 2.17: Marginal KDEs of the ABC posterior for the parameters A, B, g, k and ρ of the g-and-k model. The black dashed lines indicate the true parameter values.
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15 FIGURE 3 . 1 :

 1531 FIGURE 3.1: Left: curves of Var[Beta(α, β)] (green), σ 2 opt (α, β) (purple) and 1 4(α+β+1) (dotted black) for the Beta(α, β) distribution with α + β set to 1, σ 2 opt (µ) for the Bern(µ) distribution (blue); varying mean µ on the x-axis. Center: curves of σ 2 opt (µ) for the Bern(µ) distribution (blue), and of σ 2 opt (α, β) for the Beta(α, β) distribution with α + β varying on a log scale from 0.1 (purple) to 10 (red); varying mean µ on the x-axis. Right: surfaces of Var[Beta(α, β)] (green) and σ 2 opt (α, β) (purple), for values of α and β varying in [0.2, 4].

4 (FIGURE 3 . 2 :Definition 3 . 1 . 2 (

 432312 FIGURE 3.2: Illustration of the mixtures of Dirac masses, proving Proposition 3.1.2 described in Sections 3.1.3 (a,c) and 3.1.3 (b,d). In (c), η varies from 0.25 (red curve, maximum not at zero) to 0.4 (blue curve, maximum at zero). In (d), we illustrate the function h with different zooming scales (around λ = 0): from [-1.5 5 , 1.5 5 ] (blue curve, maximum zoom-out) to [-1.5 -5 , 1.5-5 ] (red curve, maximum zoomin), with an adapted y-scale, showing that the maximum is attained in zero.

10 FIGURE 3 . 3 :

 1033 FIGURE 3.3: Illustration of sub-Weibull survival curves on R + with varying tail parameters θ.

  1.3. Introduce the definition of asymptotic equivalence between numeric sequences: Definition 3.1.3 (Asymptotic equivalence). Two positive sequences (a k ) k and (b k ) k are called asymptotic equivalent and denoted as a k b k if there exist positive constants d and D such that d ≤ a k b k ≤ D, for all k ∈ N. (3.31)
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 322 Asymptotic equivalence for sequences). Two sequences a k and b k are called asymptotic equivalent and denoted as a k b k if there exist constants d > 0 and D > 0 such that d ≤ a k b k ≤ D, for all k ∈ N. (3.35)

Theorem 3 . 2 . 1 (

 321 Sub-Weibull units). Consider a feed-forward Bayesian neural network with Gaussian priors (3.33) and with nonlinearity φ satisfying the extended envelope condition of Definition 3.2.1. Then conditional on the input x, the marginal prior distribution4 induced by forward propagation (3.32) on any unit (pre-or post-nonlinearity) of the -th hidden layer is sub-Weibull with optimal tail parameter θ = /2. That is for any 1 ≤ ≤ L, and for any 1≤ m ≤ H , U ( ) m ∼ subW( /2),where a subW distribution is defined in Definition 3.2.3, and U

  g ) dg .

10 FIGURE 3 . 5 :

 1035 FIGURE 3.5: L 2/ -norm unit balls (in dimension 2) for layers = 1, 2, 3 and 10.

FIGURE 3 . 6 :

 36 FIGURE 3.6: Illustration of layers = 1, 2, 3, 10 and 100 hidden units (pre-nonlinearities) marginal prior distributions. They correspond respectively to subW(1/2), subW(1), subW(3/2), subW(5) and subW(50).

3 . 1 .

 31 The following result complements [207, Proposition 2.3] and [208, Proposition 0.1] which provide bounds on the tail dependence coefficients. Here instead, explicit calculations are provided. Corollary 3.3.1. Let C be the bivariate copula defined by (3.49) with d = 2. (i) Lower tail, symmetric case. Under the assumptions of Proposition 3.3.1(i), λ L ( C) = ∏ K k=1 λ L (C k ). (ii) Lower tail, asymmetric case. Under the assumptions of Proposition 3.3.1(ii), λ L ( C) = 0. (iii) Upper tail, general case. Under the assumptions of Proposition 3.3.1

  u j ) . It thus fulfills the assumptions of Proposition 3.3.3 with m = 2, λ 1 = 1 and λ 2 = d. Example 3.3.2 (Extreme-value copula C k ). Extreme-value copulas exactly correspond to max-stable copulas and are characterized by their tail-dependence function L as: C # (u 1 , . . . , u d ) = exp(-L(ln(1/u 1 ), . . . , ln(1/u d ))),

j 2 FIGURE 3 . 7 :

 237 FIGURE 3.7: Partition of the unit square defined in (3.66), for the copula of Equation (3.69).

FIGURE 3 . 8 :

 38 FIGURE 3.8: Top-left: representation of the p × q square unit space.Other five panels: scatter plots of n = 10 4 data points sampled from comonotonic-based Liebscher copula with K = 2. Choices for parameters (p, q) (such that p 1 = p, p 2 = 1p, q 1 = q, q 2 = 1q) are summarized on the top-left panel. Complete dependence (top-middle), complete independence (top-right), symmetric (bottom-left), asymmetric (bottom-middle), degenerate asymmetric (bottom-right).

FIGURE 3 . 9 :

 39 FIGURE 3.9: Scatter plots of n = 10 4 data points sampled from comonotonic-based Liebscher copula with K > 2. Top-left: K = 3, r k ∈ {0, 1, ∞}; Top-middle: K = 3, r k ∈ {0.3, 1, ∞}; Top-right: K = 4, r k ∈ {0, 0.7, 0.9, 17}; Bottom-left: K = 4, r k ∈ {0.3, 1.9, 8.3, 8.3}; Bottom-middle: K = 5, r k ∈ {0.6, 0.9, 1.1, 1.4, 3.6}; Bottom-right: K = 6, r k ∈ {0.04, 0.3, 2.8, 3.3, 4.2, 58}.

- 3 are provided in next proposition. Proposition 3 . 3 . 7 .

 3337 Blomqvist's medial correlation coefficient, Kendall's τ and Spearman's ρ for the comonotonic-based Liebscher copula (3.65) are respectively given by

  ), k ∈ {1, . . . , K}, j ∈ {1, . . . , d} of Algorithm 3.3.1 chosen as the power functions (3.63) introduced in Example 3.3.3. The parameters of the f(k) j (•) functions are collected in a K × d matrix A = [a (k) j ] k,j , where a (1) = (a (1) 1 , . . . , a(1)d ) = (1, . . . , 1). Since the (K -1)d free parameters are constrained to a (k) j ∈ (0, 1) for 2 ≤ k ≤ K, we simply choose, by symmetry, independent and uniform distributions a (k) j i.i.d.

  3.10, where n = 500 data points were simulated from the comonotonic-based Liebscher copula (3.65) with d = 2 and K = 3 (top-left panel). The number of ABC iterations was set to M = 10 4 , of which M = 300 were retained (resulting in a quantile of order 3%). The empirical Kendall's distribution functions of the observed and retained samples are compared on the top-right panel; The posterior distribution of ρ is compared to the empirical Spearman's ρ of the observed sample on the bottom-left panel; Finally, the posterior distribution of the approximate p-values is displayed on the bottom-right panel. Let us highlight that the estimating procedure provides distributions around the true values in the three considered cases.

10 :

 10 FIGURE 3.10: Results from a simulation experiment with K = 3. Topleft: n = 500 data points simulated from a comonotonic-based Liebscher copula with d = 2, K = 3 and r k ∈ {0.26, 0.44, 17.32}. Topright: empirical Kendall's distribution function K of the observed (black) and retained (gray) samples; Bottom-left: boxplot of the posterior distribution of ρ (the dashed line corresponds to the empirical Spearman's ρ of the observed sample); Bottom-right: boxplot of the posterior distribution of the approximate p-values (the dashed line corresponds to X obs , and the dotted line is the 5% threshold).

0 FIGURE 3 . 11 :

 0311 FIGURE 3.11: Samples from the exact comonotonic-based Liebscher copula with d = K = 2, a

  α 1 , β 1 ) and a

  10 -5 , 10 -4 , 10 -3 , 10 -2 , 10 -1 (other panels). Sample size n = 10 3 .
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 312 FIGURE 3.12: Results from the comparison. (A): boxplot of the parameter p; (B): boxplot of the parameter q; (C): boxplot of the parameter θ. Red corresponds to samples of size n = 500, blue to samples of size n = 10 000. The horizontal dotted line represents the true value.
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  with probability 1. The measure ν is termed the Lévy intensity of μ. For our purposes, it will be useful to rewrite ν as ν(ds, dy) = ρ y (s) ds c P 0 (dy), where P 0 is a probability measure on Y, c a positive parameter, and ρ y (s) is some transition kernel on Y × R + . If ρ y = ρ, for any y in Y, the CRM μ is said homogeneous. Henceforth, it is further assumed that P 0 is non-atomic. A well-known example corresponds to ρ y (s) = ρ(s) = e -s /s, for any y in Y, which identifies a so-called gamma CRM. With such a choice of the Lévy intensity, it can be seen, from (1.2), that for any A such that P

0 (A) > 0, the random variable μ(A) is gamma distributed, with shape parameter 1 and rate parameter cP 0 (A). If k( • ; • ) is a transition kernel on R + × Y, a prior for h is the distribution of the random hazard rate (RHR)

  2) [see for instance 90]. The almost sure discreteness of μ implies there might be ties among the Y i 's with positive probability. Therefore, the distinct values among Y are denoted as (Y * 1 , . . . , Y * k ), where k ≤ n, and, for any j = 1, . . . , k, C j := l : Y l = Y *

	j

Algorithm 1.1.2 Bayesian inference Part 1. Median survival time 1: use the

  2 of Algorithm 1.1.2. weighted sample ( ,t i , S ,t i ) =1,..., max to estimate, for each i = 1, . . . : use the weighted sample ( ,t i , S ,t i ) =1,..., max to estimate, for each i= 1, . . . , q, a i = inf x∈[0,1] {P( S(t i ) ≤ x|X) ≥ 1/2} and b i = mode{ S(t i )|X}

				, q,
	c i = P( S(t i ) ≤ 1/2|X)
	2: plug the c i 's in (1.15) to obtain	m
	3: use the sequence (c i )	q i=1 as a proxy for the posterior distribution of m so to devise
	credible intervals for m.
	Part 2. t-by-t functionals	
	2: use the sequences (a i )	q i=1 and (b i )	q i=1 to approximately evaluate, t-by-t, posterior
	median and mode respectively
	3: use the weighted sample ( ,t i , S ,t i ) =1,..., max to devise t-by-t credible intervals

1

TABLE 1 .

 1 1: (Simulated datasets.) Comparison of the estimated median survival time ( m) obtained by means of our Bayesian nonparametric procedure (BNP) and the empirical median survival time me , for different sample sizes. For BNP estimation we show m, the absolute error | mm 0 | and the 95%-credible interval (CI); last two columns show the empirical estimate me and the corresponding absolute error | mem 0 |. The true median survival time m 0 is 0.724.

			BNP	Empirical
	sample size	m	error CI	me	error
	25	0.803 0.079 (0.598, 1.124)	0.578 0.146
	50	0.734 0.010 (0.577, 0.967)	0.605 0.119
	100	0.750 0.026 (0.622, 0.912)	0.690 0.034
	200	0.746 0.022 (0.669, 0.896)	0.701 0.023
	Application to real survival data			
	The described methodology is now used to analyse a well known two-sample dataset
	involving leukemia remission times, in weeks, for two groups of patients, under ac-
	tive drug treatment and placebo respectively. The same dataset was studied, e.g., by
	[85]. Observed remission times for patients under treatment (T) are	
	{6, 6, 6, 6 where stars denote right-censored observations. On the other side, remission times
	of patients under placebo (P) are all exact and coincide with		
	{1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23}.

* , 7, 9 * , 10, 10 * , 11, 13, 16, 17 * , 19 * , 20 * , 22, 23, 25 * , 32 * , 32 * , 34 * , 35 * },

1.2 Image segmentation: mixtures with hidden Markov ran- dom fields 1.2.1 Introduction

  

	[S2] H. Lü, J. Arbel, and F. Forbes. Bayesian Nonparametric Priors for Hidden
	Markov Random Fields. Under major revision, Statistics and Computing, 2019
	Hidden Markov random field (HMRF) models are widely used for clustering data
	under spatial constraints. Spatial dependencies are encoded by modelling the clus-
	ter labels as a discrete state Markov random field (MRF) such as Ising (two clusters
	or states) or Potts (more than two clusters) model
	5: Left: comparison of posterior mean (solid line), median
	(dashed line) and mode (point dashed line) in dataset T, with 95%
	HPD credible intervals (dashed line). The Kaplan-Meier estimate is
	plotted in red. Middle: comparison of the 95% HPD credible inter-
	val (dashed black line) with the marginal interval (dashed red line).
	Right: comparison of samples T (black) and P (red), with posterior
	means (solid) and 95% HPD credible intervals (dashed).

TABLE 1 .

 1 

	79]

2: Performance comparison: Summary statistics of the PRI score over the 154 images from BSDS500 studied by

  The distribution of τ( ) can be then studied in terms of the allied renewal counting process N(t) = max{n : T n ≤ t}, according to the relation τ( ) = N(log 1/ ) + 1. The problem boils down to the derivation of an appropriate a.s. convergence of N(t) as t → ∞, which, in turn, is obtained from the asymptotic distribution of T n by showing that N(t) → ∞ a.s. as t → ∞ together with a (non standard) application of the law of large numbers for randomly indexed sequences. This strategy proves successful in establishing the almost sure convergence of τ( ) -1 to

TABLE 2 .

 2 

		d K	Mean	25%	Median	75%
	θ		As Ex	As Ex	As Ex	As Ex
	0 0.10	3.42 1.06 1.05 0.45 0.45 0.89 0.89 1.61 1.55
	0 0.05	2.17 1.10 1.08 0.45 0.45 0.95 0.95 1.64 1.58
	0 0.01	1.73 1.14 1.11 0.45 0.45 0.97 0.95 1.64 1.60
	1 0.10	4.79 2.24 2.14 1.55 1.48 2.14 2.10 2.86 2.76
	1 0.05	2.38 2.25 2.20 1.55 1.52 2.17 2.14 2.86 2.79
	1 0.01	1.40 2.26 2.25 1.57 1.54 2.19 2.19 2.87 2.85
	10 0.10 11.93 6.39 6.07 5.69 5.40 6.34 6.06 7.04 6.72
	10 0.05	6.12 6.39 6.24 5.70 5.56 6.34 6.22 7.05 6.88
	10 0.01	1.93 6.40 6.37 5.71 5.70 6.34 6.34 7.05 7.00

1: Summary statistics for the asymptotic distribution (As) and exact distribution (Ex) of τ( ) at the scale of the α-diversity based on 10 4 values. The Kolmogorov distance (d K ) is between the empirical cumulative distribution function of the sample from the exact distribution and the asymptotic one (multiplied by a factor of 100). The parameter values are α = 0.5, θ ∈ {0, 1, 10} and ∈ {0.10, 0.05, 0.01}.

TABLE 2 .

 2 

			2: Simulation study on F(1/3)
		d K	Mean	25%	Median	75%
	θ	AL1 AL2 AL1 AL2 PY AL1 AL2 PY AL1 AL2 PY AL1 AL2 PY
	0 0.10 16.29 16.48 0.33 0.33 0.33 0.04 0.01 0.04 0.20 0.16 0.20 0.60 0.64 0.59
	0 0.05 11.53 12.52 0.33 0.33 0.33 0.05 0.01 0.04 0.20 0.17 0.20 0.58 0.63 0.59
	0 0.01 5.49 5.60 0.34 0.33 0.33 0.04 0.03 0.04 0.21 0.19 0.20 0.59 0.61 0.59
	1 0.10 3.08 5.65 0.33 0.33 0.33 0.14 0.12 0.14 0.29 0.28 0.28 0.49 0.50 0.49
	1 0.05 1.34 3.11 0.33 0.33 0.33 0.14 0.13 0.14 0.28 0.28 0.28 0.48 0.50 0.49
	1 0.01 0.56 0.89 0.33 0.34 0.33 0.14 0.14 0.14 0.28 0.29 0.28 0.49 0.49 0.49
	10 0.10 3.10 3.81 0.33 0.33 0.33 0.25 0.25 0.26 0.32 0.32 0.32 0.40 0.41 0.40
	10 0.05 1.41 1.38 0.33 0.33 0.33 0.26 0.26 0.26 0.32 0.32 0.32 0.40 0.40 0.40
	10 0.01 0.75 0.65 0.33 0.33 0.33 0.26 0.26 0.26 0.33 0.32 0.32 0.40 0.40 0.40
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		d K	Mean	25%	Median	75%
	θ	AL1 AL2 AL1 AL2 PY AL1 AL2 PY AL1 AL2 PY AL1 AL2 PY
	0 0.10 1.60 3.57 0.50 0.50 0.50 0.36 0.34 0.36 0.50 0.50 0.50 0.64 0.67 0.65
	0 0.05 0.94 2.72 0.50 0.50 0.50 0.35 0.34 0.36 0.50 0.50 0.50 0.64 0.66 0.65
	0 0.01 1.18 2.10 0.50 0.50 0.50 0.36 0.35 0.36 0.50 0.50 0.50 0.64 0.65 0.65
	1 0.10 1.61 3.18 0.50 0.50 0.50 0.40 0.39 0.40 0.50 0.50 0.50 0.60 0.61 0.60
	1 0.05 1.28 2.32 0.50 0.50 0.50 0.40 0.40 0.40 0.50 0.50 0.50 0.59 0.60 0.60
	1 0.01 1.12 0.57 0.50 0.50 0.50 0.40 0.41 0.40 0.50 0.50 0.50 0.60 0.60 0.60
	10 0.10 2.81 4.18 0.50 0.50 0.50 0.45 0.46 0.46 0.50 0.50 0.50 0.55 0.55 0.54
	10 0.05 1.78 1.28 0.50 0.50 0.50 0.46 0.46 0.46 0.50 0.50 0.50 0.54 0.54 0.54
	10 0.01 2.01 1.09 0.50 0.50 0.50 0.46 0.46 0.46 0.50 0.50 0.50 0.54 0.54 0.54

3: Simulation study on µ = xP(dx)

Summary statistics for F(1/3) (Table

2

.2) and µ = xP(dx) (Table

2

.3) using ALGORITHM 1 (AL1) and ALGORITHM 2 (AL2) to sample from the -PY process. The Kolmogorov distance (d K ) is between the cumulative distribution functions with respect to the Pitman-Yor (PY) process (multiplied by a factor of 100). The parameter values are α = 0.5, θ ∈ {0, 1, 10} and ∈ {0.10, 0.05, 0.01}.

TABLE 2 .
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		4: Computing time (ms) per iteration
		α = 0.4	α = 0.5	α = 0.6
	θ	AL1 AL2 n AL1 AL2	n AL1 AL2	n
	0 0.10 0.01 0.20 5 0.02 0.04 11 0.11 0.05	38
	0 0.05 0.01 0.04 8 0.04 0.04 21 0.20 0.06 105
	0 0.01 0.04 0.04 20 0.36 0.05 101 15.10 0.26 1163
	1 0.10 0.03 0.19 17 0.07 0.05 31 0.23 0.07	92
	1 0.05 0.06 0.06 26 0.13 0.06 61 0.80 0.12 258
	1 0.01 0.18 0.09 73 0.80 0.12 301 27.75 0.57 2877
	10 0.10 0.22 0.15 121 0.61 0.10 211 2.11 0.18 567
	10 0.05 0.45 0.10 191 1.52 0.15 421 9.22 0.37 1603
	10 0.01 1.93 0.20 558 13.24 0.48 2101 760.68 4.01 17911

TABLE 2 .
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		5: Computing time (µs) per support point
		α = 0.4	α = 0.5	α = 0.6
	θ	AL1 AL2 n AL1 AL2	n AL1 AL2	n
	0 0.10 1.92 38.46 5 1.82 3.64 11 2.91 1.32	38
	0 0.05 1.30 5.22 8 1.90 1.90 21 1.91 0.57 105
	0 0.01 1.95 1.95 20 3.56 0.50 101 12.98 0.22 1163
	1 0.10 1.81 11.45 17 2.26 1.61 31 2.50 0.76	92
	1 0.05 2.33 2.33 26 2.13 0.98 61 3.10 0.46 258
	1 0.01 2.45 1.23 73 2.66 0.40 301 9.65 0.20 2877
	10 0.10 1.82 1.24 121 2.89 0.47 211 3.72 0.32 567
	10 0.05 2.35 0.52 191 3.61 0.36 421 5.75 0.23 1603
	10 0.01 3.46 0.36 558 6.30 0.23 2101 42.47 0.22 17911

Average computing time per iteration (in millisecond in Table

2

.4) and per support point (in microsecond in Table

2

.5) for ALGORITHM 1 (AL1) and ALGORITHM 2 (AL2) based on 10 4 iterations, and expected stopping time n = E[τ( )]. The parameter values are α ∈ {0.4, 0.5, 0.6}, θ ∈ {0, 1, 10} and ∈ {0.10, 0.05, 0.01}.

  Ferguson & Klass algorithm w.r.t. the CRMs defined in Examples 2.2.1 and 2.2.2, namely the generalized gamma and stable-beta processes. Figure 2.3 displays the behaviour of both the moment-matching distance M (left panel) and the relative jumps' size index e M (right panel) as the truncation level M increases. The plots, from top to bottom, correspond to: the generalized gamma process with vary-

  [START_REF] Arbel | Bayesian Statistics in Action, chapter On the truncation error of a superposed gamma process[END_REF] for the beta process. Figure2.4 displays the corresponding plots. In general, it is interesting to note that a limited number of jumps is sufficient to achieve good precision levels. Analogously to Figure2.3, larger values of the parameters require a larger number of jumps to achieve a given precision level. In particular, when γ > 0.5, one needs to sample a significantly larger number of jumps. For instance, in the generalized gamma process case, with a = 1, the required number of jumps increases from 28 to 53 when passing from γ = 0.5 to γ = 0.75. It is worth noting that for the normalized version of the generalized gamma process, to be discussed in Section 2.2.3 and quite popular in applications, the estimated value of γ rarely exceeds 0.75 in species sampling, whereas it is typically in the range [0.2, 0.4] in mixture modeling.

  i | P i.i.d. ∼ P, for i = 1, . . . , n, (2.30) P ∼ Q, with Q the law of NRMI, and set Y = (Y 1 , . . . , Y n ). Due to the discreteness of NRMIs, ties will appear with positive probability in Y and, therefore, the sample information can be encoded by the K n = k distinct observations (Y * 1 , . . . , Y * k ) with frequencies (n 1 , . . . , n k ) such that ∑ k j=1 n j = n. Moreover, introduce the nonnegative random variable U such that the distribution of [U|Y] has density, w.r.t. the Lebesgue measure, given by

TABLE 2 .

 2 

	7: Stable-beta process with σ = 0.5, c = 1 and a = 1: Index
	of relative importance E ∑ k j=1 J * j /E µ

* (X) for varying (n, k).

  and Fe M under, respectively, the moment-match (with M = 0.01) and the relative error (with e M = 0.1, 0.05, 0.01) criteria. The mixing measure of normal mixture is the normalized generalized gamma process with varying γ ∈ {0, 0.25, 0.5, 0.75}.

			.1 e M = 0.05 e M = 0.01
	0		19.4	15.5	9.2
	0.25	31.3	23.7	15.1
	0.5		42.4	28.9	18.3
	0.75	64.8	41.0	23.2
	TABLE 2.8:	Galaxy dataset.	Kolmogorov-Smirnov distance
	d KS ( F			

M , Fe M ) between estimated cdfs F M

  Gaussian process and the normalized generalized gamma process, respectively, thus covering the setting described in Example 2.3.2. In the next theorem we generalize (2.48) and (2.49) to the entire class of Gibbs-type priors, that is, for any continuously differentiable function h and any α ∈ (0, 1) we provide a two-term asymptotic decomposition for the weights V n+1,k n +1 /V n,k n and V n+1,k n /V n,k n of the predictive probabilities (2.41). ≥ 1, where β n = ϕ h (nk -1/α

	for any n							
	Theorem 2.3.1. Let X n be a sample from P α,h featuring K n = k n ≤ n distinct types, labelled by X * 1 , . . . , X * K n , with frequencies (N 1 , . . . , N K n ) = (n 1 , . . . , n k n ). Assume that function h
	is continuously differentiable and denote its derivative by h . Then
		V n+1,k n +1 V n,k n	=	k n α n	+	β n n	+ o	1 n	(2.50)
	and	V n+1,k n V n,k n	=	1 n	-	β n n 2 + o	1 n 2	(2.51)

.

[START_REF] Ben-Hamou | Concentration inequalities in the infinite urn scheme for occupancy counts and the missing mass, with applications[END_REF] 

where o is almost sure, recovering both contributions in a two-term asymptotic decomposition. Equations (2.48) and (2.49) lead to two large n approximations of the predictive distribution displayed in (2.47): i) a first order approximation of (2.47), denoted by ∼, is obtained by combining (2.47) with the first term on the right-hand side of (2.48) and (2.49); ii) a second order approximation of (2.47), denoted by ≈, is obtained by combining (2.47) with the first two terms on the right-hand side of (2.48) and (2.49).

[292] and

[START_REF] Arbel | Bayesian nonparametric inference for discovery probabilities: credible intervals and large sample asymptotics[END_REF] 

extended the decompositions displayed in (2.48) and (2.49) to the normalized inverse n ) with ϕ h being defined as ϕ h (t) = -th (t)/h(t).

  2, we introduce the general IS-ABC framework. In Section 2.4.3, we introduce the two-sample ES and demonstrate how it can be incorporated into the IS-ABC framework. Theoretical results regarding the IS-ABC framework and the two-sample ES are presented in Section 2.4.4. Illustrations of the IS-ABC framework are presented in Section 2.4.5. Conclusions are drawn in Section 2.4.6.

  .[START_REF] Caron | Sparse graphs using exchangeable random measures[END_REF] We call the process of constructing (2.74), to approximate (2.73), the IS-ABC procedure. The general form of the IS-ABC procedure is provided in Algorithm 2.4.1.

Algorithm 2.4.1 IS-ABC procedure for approximating E [g (Θ) |x n ] Input: a data discrepancy function D, a weight function w, and a calibration parameter > 0. For k ∈ [N]; sample Θ k from the DGP with PDF π (θ); generate Y m,k from the DGP with PDF f (y m |Θ k

  surely, and in L 1 mean, as n → ∞.

Define the continuity set of a function d → w (d) as C (w) = {d : w is continuous at d} . Using Theorem 2.4.1, we can now prove the following result regarding the asymptotic behavior of the quasi-posterior density function (2.72). Theorem 2.4.2. Let X n and Y m be IID samples from DGPs that can be characterized by PDFs f

  , (x n |θ) dθ, we obtain our desired convergence via the dominated convergence theorem, because w (d, ) ≤ a < ∞. An application of a Slutsky-type theorem yields the almost sure convergence of the ratio between (2.80) and (2.81) to the right-hand side of (2.79), as n → ∞.

TABLE 2 .

 2 9: Estimation performance for bivariate Gaussian mixtures (Section 2.4.5). The best results in each column is highlighted in boldface.

			θmean σ( θmean )	θmed σ( θmed ) MAE σ(MAE) RMSE σ(RMSE)
		ES	0.594	0.045	0.607	0.063	0.215	0.030	0.283	0.055
	µ 00 = 0.7	KL	0.648	0.039	0.666	0.048	0.165	0.016	0.205	0.026
		WA	0.675	0.035	0.682	0.043	0.152	0.020	0.181	0.021
		MMD 0.564	0.079	0.582	0.076	0.234	0.054	0.311	0.101
		ES	0.587	0.063	0.613	0.059	0.215	0.038	0.282	0.069
	µ 01 = 0.7	KL	0.651	0.042	0.667	0.061	0.169	0.022	0.210	0.027
		WA	0.655	0.050	0.669	0.047	0.152	0.015	0.187	0.019
		MMD 0.559	0.076	0.598	0.075	0.235	0.049	0.313	0.092
		ES	-0.699	0.046	-0.716	0.040	1.401	0.043	1.412	0.039
	µ 10 = -0.7	KL WA	-0.709 -0.699	0.029 0.030	-0.712 -0.704	0.035 0.037	1.409 1.399	0.029 0.030	1.415 1.404	0.029 0.030
		MMD -0.709	0.054	-0.731	0.036	1.411	0.051	1.422	0.038
		ES	-0.696	0.058	-0.712	0.043	1.396	0.058	1.407	0.049
	µ 11 = -0.7	KL WA	-0.711 -0.695	0.047 0.043	-0.704 -0.695	0.057 0.053	1.411 1.395	0.047 0.043	1.416 1.401	0.047 0.043
		MMD -0.711	0.066	-0.726	0.046	1.411	0.066	1.424	0.052

TABLE 2 .

 2 

		ES	0.569	0.042	0.570	0.045	0.083	0.015	0.100	0.017
	θ 1 = 0.6	KL	0.664	0.028	0.658	0.031	0.106	0.017	0.132	0.019
		WA	0.509	0.033	0.505	0.038	0.112	0.022	0.133	0.026
		MMD 0.583	0.044	0.586	0.048	0.079	0.013	0.096	0.015
		ES	0.215	0.035	0.219	0.035	0.111	0.015	0.135	0.019
	θ 2 = 0.2	KL	0.274	0.023	0.280	0.027	0.110	0.014	0.134	0.014
		WA	0.205	0.025	0.207	0.030	0.090	0.029	0.112	0.034
		MMD 0.220	0.037	0.220	0.036	0.108	0.010	0.132	0.012

10: Estimation performance for the MA(2) model (Section 2.4.5). The best results in each column is highlighted in boldface. θmean σ( θmean ) θmed σ( θmed ) MAE σ(MAE) RMSE σ(RMSE)

2 Understanding priors in Bayesian neural networks

  Verbeek, P. Mesejo, and J. Arbel. Understanding Priors in Bayesian Neural Networks at the Unit Level. ICML, 2019 [P5] M. Vladimirova, J. Arbel, and P. Mesejo. Bayesian neural networks become heavier-tailed with depth. NeurIPS Bayesian Deep Learning Workshop, 2018 [P6] M. Vladimirova, J. Arbel, and P. Mesejo. Bayesian neural network priors at the level of units. 1st Symposium on Advances in Approximate Bayesian Inference, 2018 3.

TABLE 3 .

 3 2: Comparison of Bayesian neural network penalties on weights W and units U.

  . Sections 3.3.2 and 3.3.2 are dedicated to (tail) dependence properties. For the sake of simplicity, we focus on the case d = 2 of bivariate copulas. Some stability properties of Liebscher's construction are highlighted in Section 3.3.2. Finally, an alternative construction to Liebscher copula (3.49) is introduced in Section 3.3.2.

  [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF][START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF]. Conversely, in view of the homogeneity property, the behavior of the tail dependence functions on the diagonal is determined by the tail dependence coefficients: Λ L (C; t, t) = λ L (C)t and Λ U (C; t, t) = λ U (C)t for all t ∈ (0, 1]. The tail dependence functions for Liebscher copula are provided by Proposition 3.3.1 which, in view of the previous remarks, allows us to derive the tail dependence coefficients in Corollary 3.3.1. Some of these results rely on the notion of (univariate) regular variation. Recall that a positive Lower tail, symmetric case. Assume that g

function g is said to be regularly varying with index γ if g(xt)/g(x) → t γ as x → ∞ for all t > 0, see

[START_REF] Bingham | Regular variation[END_REF]

. Proposition 3.3.1. Let (x, y) ∈ R

2 

+ and consider C the bivariate copula defined by (3.49) with d = 2.

(i)

  and we shall thus write that C is SI. The stochastically decreasing (SD) property is similarly defined by replacing increasing by decreasing in (3.53) and concave by convex in(3.54). If copulas C 1 , . . . , C K all satisfy any of the properties defined above, TP 2 , PQD, NQD, LTD, LTI, SI or SD, then the same is satisfied for the Liebscher copula C defined in (3.49)-for SI (respectively SD), the g

	In the next proposition, we show that under mild conditions, the above dependence
	properties are preserved under Liebscher's construction, thus complementing LTD
	and TP 2 properties established in [207, Proposition 2.2].	
	Proposition 3.3.2. (k)	
	j	
	1],	(3.52)
	and we shall thus write that C is LTD. The left-tail increasing property (LTI)
	is similarly defined by reversing the directions of the monotonicity in (3.51)
	and (3.52).	
	• X and Y are said to be stochastically increasing (SI) if	
	Pr(X > x|Y = y) is an increasing function of y for all x, Pr(Y > y|X = x) is an increasing function of x for all y.	(3.53)
	From [244, Corollary 5.2.11], this property can be characterized by the copula
	properties	

244, Paragraph 5.2.1], we shall write for short that C is PQD. The negatively quadrant dependence (NQD) property is similarly defined by C ≤ Π. • X and Y are said to be left-tail decreasing (LTD) if Pr(X ≤ x|Y ≤ y) is a decreasing function of y for all x, Pr(Y ≤ y|X ≤ x) is a decreasing function of x for all y.

(3.51)

From [244, Theorem 5.2.5], this property can be characterized by the copula properties

C(u, v)/u is decreasing in u for all v ∈ [0, 1], C(u, v)/v is decreasing in v for all u ∈ [0, C(u, v) is a concave function of u for all v ∈ [0, 1],

C(u, v) is a concave function of v for all u ∈ [0, 1],

(3.54) 

  3. Distributional Properties of Statistical and Machine Learning Models170 Example 3.3.1 (Gumbel-Barnett copula C k ). Let C k be the Gumbel-Barnett copula [244, Table 4.1]. It can be written as C k

  (t) = 1 for all t ∈ [0, 1]. We propose the following iterative construction of copulas. For all u ∈ [0, 1] d , consider the sequence defined by C

= 1 and Id/ f is increasing, where Id denotes the identity function. For all k ≥ 1 let C k be a d-variate copula and f (k) j ∈ F for all j ∈ {1, . . . , d}, with the assumption f (1) j

  ii) Spearman's ρ index of association, introduced in Section 3.3.3, and for which an explicit closed form is obtained for comonotonic-based Liebscher copula in Proposition 3.3.7, and (iii) an asymmetry measure, since it is a central motivation of the present work. More specifically, the Cramér-von Mises test statistics E C

TABLE 3 .

 3 3: First two rows: average relative errors (3.70) for Kendall's distribution function and Spearman's ρ between the observed sample and the samples retained by the ABC procedure, for varying K (columns). Third row: fraction of times that the same decision is taken ('reject' vs 'do not reject', at the 5% level) based on X m and X obs . The results are averaged over 20 independent repetitions. Standard deviations in parentheses. All values are in %.

	K	2	3	4	5
	ηK	1.99 (0.16) 2.32 (0.49) 2.38 (0.40) 2.37 (0.56)
	ηρ	5.44 (3.98) 8.16 (5.62) 6.34 (3.74) 9.66 (4.12)
	ftest 16.8 (18.1) 19.4 (22.0) 9.2 (13.2) 13.3 (18.1)

Table 3 .

 3 3 suggests a general trend: the larger K is, the more difficult the estimation Chapter 3. Distributional Properties of Statistical and Machine Learning Models182

TABLE 3 .

 3 4: First two rows: average relative errors (3.70) for Kendall's distribution function and Spearman's ρ between the observed sample and the samples retained by the ABC procedure, for growing noise (columns). Third row: fraction of times that the same decision is taken at the 5% level based on X m and X obs . All values are in %. 10 -4 10 -3 10 -2 10 -1

	σ 2 a 10 -5 η K 0 1.7 1.68 1.77 1.68 2.03	2.81
	η ρ	4.07 3.77 4.66 4.30 4.88 13.00
	f test 9.00 1.33 15.7 3.33 2.33	7.00

Whose "ISBA Fellow status has been permanently revoked" in the meantime...

Note that the notation introduced for the different θ j differs from that devoted to the stick-breaking variables, θ * j .

, ŝ(r)

) is given in(1.52). In the more general PY case, we can solve this step numerically using also importance sampling.

Note indeed that Equation (3.1), together with Markov inequality, imply P(Xµ > ) ≤ e -2

2σ 2 .

There exists an absolute constant C such that property i implies property j with parameter K j ≤ CK i for any two properties i, j = 1, . . . , 4.

A trivial version of our main result holds, see Remark 3.2.1.

We define the marginal prior distribution of a unit as its distribution obtained after all other units distributions are integrated out. Marginal is to be understood by opposition to joint, or conditional.

Sub-Gaussian and sub-Weibull properties

Introduction

The sub-Gaussian property [START_REF] Buldygin | Sub-Gaussian random variables[END_REF][START_REF] Buldygin | Metric characterization of random variables and random processes[END_REF][START_REF] Pisier | Subgaussian sequences in probability and Fourier analysis[END_REF] and related concentration inequalities [START_REF] Boucheron | Concentration inequalities: A nonasymptotic theory of independence[END_REF][START_REF] Raginsky | Concentration of measure inequalities in information theory, communications, and coding[END_REF] have attracted a lot of attention in the last couple of decades due to their applications in various areas such as pure mathematics, physics, information theory and computer sciences. Recent interest focused on deriving the optimal proxy variance for discrete random variables like the Bernoulli distribution [START_REF] Buldygin | The sub-Gaussian norm of a binary random variable[END_REF][START_REF] Kearns | Large deviation methods for approximate probabilistic inference[END_REF][START_REF] Berend | On the concentration of the missing mass[END_REF] and the missing mass [START_REF] Mcallester | On the Convergence Rate of Good-Turing Estimators[END_REF][START_REF] Mcallester | Concentration inequalities for the missing mass and for histogram rule error[END_REF][START_REF] Berend | On the concentration of the missing mass[END_REF][START_REF] Ben-Hamou | Concentration inequalities in the infinite urn scheme for occupancy counts and the missing mass, with applications[END_REF]. Our focus is instead on two continuous random variables, the Beta and Dirichlet distributions, for which the optimal proxy variance was not known to the best of our knowledge. Some upper bounds were recently conjectured by [START_REF] Elder | Bayesian adaptive data analysis guarantees from subgaussianity[END_REF] that we prove in the present article by providing the optimal proxy variance for both Beta and Dirichlet distributions. Similar concentration properties of the Beta distribution have been recently used in many contexts including Bayesian adaptive data analysis [START_REF] Elder | Bayesian adaptive data analysis guarantees from subgaussianity[END_REF], Bayesian nonparametrics [START_REF] Castillo | Pólya tree posterior distributions on densities[END_REF] and spectral properties of random matrices [START_REF] Perry | Statistical limits of spiked tensor models[END_REF].

We start by reminding the definition of sub-Gaussian property for random variables: Definition 3.1.1 (Sub-Gaussian variables). A random variable X with finite mean µ = E[X] is sub-Gaussian if there is a positive number σ such that:

Such a constant σ 2 is called a proxy variance (or sub-Gaussian norm), and we say that X is σ 2 -sub-Gaussian. If X is sub-Gaussian, one is usually interested in the optimal proxy variance:

Note that the variance always gives a lower bound on the optimal proxy variance: Var[X] ≤ σ 2 opt (X). In particular, when σ 2 opt (X) = Var[X], X is said to be strictly sub-Gaussian. Every compactly supported distribution, as is the Beta(α, β) distribution, is sub-Gaussian. This can be seen by Hoeffding's classic inequality: any random variable X supported on [START_REF]1such that Rahier[END_REF][START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] with mean µ satisfies ∀λ ∈ R, E e λ(X-µ) ≤ e λ 2 8 , thus exhibiting 1 4 as an upper bound to the proxy variance. This bound can be improved by taking into account the location of the mean µ within the interval [START_REF]1such that Rahier[END_REF][START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF]. An early step in this direction is the second inequality in [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF] paper, indexed (2.2). It states that if µ < 1/2, then for any positive , P(Xµ > ) ≤ e -2 g(µ) , where

thus indicating that X has a right tail lighter than a Gaussian tail of variance 1 2g(µ) . Hoeffding's result was strengthened by [START_REF] Kearns | Large deviation methods for approximate probabilistic inference[END_REF] to comply with Definition 3.1.1 of sub-Gaussianity 1 as follows

thus indicating that 1 2g(µ) is a distribution-sensitive proxy variance for any [0, 1]supported random variable with mean µ [see also 50, for a detailed proof of this result]. If this is the optimal proxy variance for the Bernoulli distribution [see Theorem 2.1 and Theorem 3.1 of 67], it is clear from our result that it does not hold true for the Beta distribution. However, fixing α α+β = µ and letting α → 0, β → 0, the Beta(α, β) distribution concentrates to the Bern(µ) distribution, and we show that we recover the optimal proxy variance for the Bernoulli distribution (Theorem 3.1.2).

Optimal proxy variance for the Beta distribution

The Beta(α, β) distribution, with α, β > 0, is characterized by a density on the segment [START_REF]1such that Rahier[END_REF][START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] given by:

is the Beta function. The momentgenerating function of a Beta(α, β) distribution is given by a confluent hypergeometric function (also known as Kummer's function):

This is equivalent to say that the j th raw moment of a Beta(α, β) random variable X is given by:

Sub-Weibull distributions: characteristic properties

Let X be a random variable. When the kth moment of X exist, k > 0, we denote

The following theorem states different equivalent distribution properties, such as tail decay and growth of moments. The proof of this result shows how to transform one type of information about the random variable into another. See [? ] for similar characteristic properties of sub-Gaussian and sub-Exponential distributions. Theorem 3.1.3 (Sub-Weibull equivalent properties). Let X be a random variable. Then the following properties are equivalent; the parameters K i > 0 appearing in these properties differ from each other by at most an absolute constant factor 1 .

(i) The tails of X satisfy

(ii) The moments of X satisfy

for all λ such that |λ| ≤ 1 K 3 .

(iv) The MGF of |X| 1/θ is bounded at some point, namely

Remark 3.1.3. The constant 2 that appears in some properties in Theorem 3.1.3 does not have any special meaning. It is chosen for simplicity and can be replaced by other absolute constants.

Distribution Tails Moments

Sub-Gaussian 

The function C is referred to as the copula associated with

A copula is said to be symmetric (or exchangeable) if for any u ∈ [0, 1] d , and for any permutation (σ 1 , . . . , σ d ) of the first d integers {1, . . . , d}, it holds that C(u 1 , . . . ,

The assumption of exchangeability may be unrealistic in many domains, including quantitative risk management [START_REF] Bernardino | On an asymmetric extension of multivariate Archimedean copulas based on quadratic form[END_REF], reliability modeling [START_REF] Wu | Construction of asymmetric copulas and its application in twodimensional reliability modelling[END_REF], and oceanography [START_REF] Zhang | Modeling multivariate ocean data using asymmetric copulas[END_REF]. The urge for asymmetric copula models in order to better account for complex dependence structures has recently stimulated research in several directions, including [START_REF] Rodrıguez-Lallena | A new class of bivariate copulas[END_REF][START_REF] Alfonsi | New families of copulas based on periodic functions[END_REF][START_REF] Durante | Construction of non-exchangeable bivariate distribution functions[END_REF][START_REF] Wu | Construction of asymmetric copulas and its application in twodimensional reliability modelling[END_REF][START_REF] Durante | Copulas based on Marshall-Olkin machinery[END_REF]. We focus here on a simple yet general method for building asymmetric copulas introduced by [207, Theorem 2.1, Property (i)]: Theorem 3.3.1. [Liebscher,[START_REF] Liebscher | Construction of asymmetric multivariate copulas[END_REF] Let C 1 , . . . ,

j (1) = 1 for all k ∈ {1, . . . , K} and j ∈ {1, . . . , d}. Then,

is also a copula under the constraint that

Theorem 3.3.1 provides a generic way to construct an asymmetric copula C, henceforth referred to as Liebscher copula, starting from a sequence of symmetric copulas C 1 , . . . , C K . This mechanism was first introduced by [START_REF] Khoudraji | Contributions à l'étude des copules et à la modélisation des valeurs extrêmes bivariées[END_REF] in the particular case where K = 2 and with the functions g (k) j assumed to be power functions, for each j ∈ {1, . . . , d} and k ∈ {1, . . . , K}, that satisfy condition (3.50). The class of Liebscher copulas covers a broad range of dependencies and benefits from tractable bounds on dependence coefficients of the bivariate marginals [START_REF] Liebscher | Construction of asymmetric multivariate copulas[END_REF][START_REF] Liebscher | Erratum to "Construction of asymmetric multivariate copulas[END_REF][START_REF] Mazo | A class of multivariate copulas based on products of bivariate copulas[END_REF]. However, to d = 2, we denote for notation simplicity p k := p (k,K) 1 and q k := p (k,K) 2 for k ∈ {1, . . . , K}. Recall that, in view of (3.50), ∑ K k=1 p k = ∑ K k=1 q k = 1. Under the above assumptions, the comonotonic-based Liebscher copula denoted by CCL has the form

In the particular case where K = 2, it is referred to as the BC2 copula by [START_REF] Mai | Bivariate extreme-value copulas with discrete Pickands dependence measure[END_REF] and it is proved that any bivariate extreme-value copula with arbitrary discrete dependence measure can be represented as the geometric mean of BC2 copulas, which corresponds to the situation where K is even in (3.65). We also refer to [START_REF] Trutschnig | Mass distributions of two-dimensional extreme-value copulas and related results[END_REF] for further links with extreme-value theory.

Geometric description of CCL

For all k ∈ {1, . . . , K}, introduce

For notation simplicity, we shall let r 0 = 0 and r K+1 = ∞. Since the above product (3.65) is commutative, one can assume without loss of generality that the sequence (r k ) 0≤k≤K+1 is nondecreasing.

The copula CCL can be easily expressed on the partition of the unit square [0, 1] 2 defined by the following moon shaped subsets (see the illustration in Fig. 3.7 with

Proposition 3.3.6. Let CCL be the comonotonic-based Liebscher copula defined in (3.65).

Then, for all (u, v)

where xk = x 1 + . . . + x k , with the convention that x0 = 0. Moreover, the singular component of CCL is

The singular component SCL and the absolute continuous component ÃCL = CCL -SCL weights are ∑ K k=1 min(p k , q k ) and 1 -∑ K k=1 min(p k , q k ), respectively. A key property of the comonotonic-based Liebscher copula (3.65) is the presence of multiple singular components lying on the curves v = u r k with associated weights min(p k , q k ), k ∈ {1, . . . , K}. As an illustrative example, let us consider the bivariate comonotonic-based Liebscher copula defined with

which entails r 0 = 0, r 1 = 4/9, r 2 = 8/3 and r 3 = ∞. The moon shaped subsets of the partition of the unit square [0, 1] 2 are represented on Fig. 3.7, and the expressions It appears that β-Blomqvist medial correlation coefficient is closely related to the upper tail dependence coefficient:

Besides, in the particular case where K = 2, these results coincide the ones of Lemma 2 of [START_REF] Mai | Bivariate extreme-value copulas with discrete Pickands dependence measure[END_REF]: the Kendall's τ can be simplified as τ( CCL ) = p 1 + q 2 = λ U ( CCL ). No similar simplification seems to be possible for Spearman's ρ.

For the special case of copula (3.69), we have λ

Iterative construction for CCL Algorithm 3.3.1 can be simplified when specified to comonotonic-based Liebscher setting since: (i) sampling from the comonotonic copula is straightforward and only requires sampling from the uniform distribution U (0, 1), and (ii) power functions benefit from an explicit inverse. The specific sampling procedure for this construction is described in detail as Algorithm 3.3.2.

Algorithm 3.3.2 Iterative sampling scheme for comonotonic-based Liebscher copula (

exponents of power functions f

∼ U (0, 1) for each j = 1, . . . , d

Bayesian inference

In this section, we provide a simple strategy to make Bayesian inference on any Liebscher copula based on an Approximate Bayesian computation algorithm (ABC, see for instance [START_REF] Marin | Approximate Bayesian computation methods[END_REF][START_REF] Robert | Approximate Bayesian computation, an introduction[END_REF][START_REF] Karabatsos | An approximate likelihood perspective on ABC methods[END_REF] for reviews). ABC is a "likelihood-free" method usually employed for inference of models with intractable likelihood: it enables to perform approximate Bayesian analysis on any statistical model from which it is possible to sample new data, without the need to explicitly evaluate the likelihood function.

Let X obs = {X obs,1 , . . . , X obs,n } be the observed data, where X obs,i = (X obs,i,1 , . . . , X obs,i,d ), i ∈ {1, . . . , n}, and assume that the statistical model for X obs is described by a likelihood function L θ with parameter θ which is to be inferred. The basic scheme of one step of ABC is the following:

(i) Sample θ from the prior distribution π(θ);

(ii) Given θ, sample X 1 , . . . , X n from L θ , and set X = {X 1 , . . . , X n };

(iii) If X is too different from X obs , discard θ, otherwise, keep θ.

The outcome of the ABC algorithm is a sample of values of the parameter θ approximately distributed according to its posterior distribution. The basic (rejection) q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q Publication List All the papers are available on my website : https://www.julyanarbel.com/publications Articles in peer-reviewed journals