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Bayesian inference refers to Thomas Bayes (170?-1761) who first used conditional
probability to describe the probability of an event given prior knowledge of con-
ditions related to the event, known as Bayes’ theorem and published as [47]. A
more general version of Bayes’ theorem was introduced by Pierre-Simon Laplace
(1749-1827). Bayesian inference used to be called "inverse probability" due to the
fact that inference goes backward from effects to causes, or from observations to pa-
rameters in statistics terms. In the beginning of the twentieth century, alternative
approaches referred to as frequentist statistics were developped and essentially su-
perseded Bayesian methods. Bayesian inference research and applications attracted
again a lot of attention in the eighties, mostly due to the advent of Markov chain
Monte Carlo algorithms.

Bayesian inference has found applications in a broad range of fields. This chapter
introduces the scientific context of my research activities within Bayesian Nonpara-
metrics and Bayesian Machine Learning (Section 0.1) and then summarizes my con-
tributions (Section 0.2) arranged in three parts: Chapter 1. Bayesian Nonparametric
Mixture Modeling, Chapter 2. Approximate Bayesian Inference and Chapter 3. Dis-
tributional Properties of Statistical and Machine Learning Models.
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0.1 Scientific context

0.1.1 Bayesian Nonparametrics (BNP)

The Bayesian nonparametric choice comes from two main ideas. The Bayesian choice
[284], on the one hand, which assumes that each physical system is subject to uncer-
tainty, and models the data and the parameters by probability distributions. Non-
parametric models [324], which are of particular interest when the parametric hy-
pothesis proves to be too restrictive. At the intersection of these two concepts,
Bayesian nonparametric methods provide a flexible methodology within a solid
probabilistic framework [see monographs 157, 131]. Historically, Bayesian nonpara-
metrics started in the early 1970s in California with the work of members of the
Berkeley Department of Statistics. More specifically, the Dirichlet process, defined
by [117], has given rise to a number of methodological and applied contributions.
Most of the current BNP tools are based on extensions of the Dirichlet process.

The nonparametric denomination, commonly adopted, is rather to be understood
as massively parametric: indeed, we consider large dimensional, or infinite dimen-
sional, parameter spaces such as functional spaces. A Bayesian requires formulating
a joint probability distribution on observations and parameters. This joint distribu-
tion consists of (i) the sample distribution of the model, which describes the degree
of confidence given to the data for a particular value of the parameters, and (ii) the
prior distribution, which can be interpreted in several ways, notably as informa-
tion available on the parameters before experiment, or as regularization. The prior
distribution takes the opposite of the so-called classical approach, where the param-
eters are assumed to be fixed. There is an optimal way to update the prior from
the observations, which is Bayes’ theorem. This learning rule defines the posterior
distribution, which describes all the information available on the parameters, after
experience. The main strengths of the non-parametric Bayes approach are:

• to define a natural framework for quantifying uncertainty, via the posterior
distribution,

• to naturally avoid overfitting by regularizing the parameters thanks to the
prior distribution specification,

• to adapt to the data complexity thanks to models whose number of parameters
increases with the size of the data.

The flexibility of Bayesian nonparametric methods comes at a price, such as con-
structing prior distributions and sampling from posterior distributions over infinite
dimensional parameter spaces.

Designing priors

Building a prior distribution on an infinite dimensional space may appear like con-
tradictory: on the one hand, quantifying the information in the form of a distribu-
tion requires to know many fine aspects of the parameter to be modeled, while on
the other hand the nonparametric choice stems from the desire to relax parametric
assumptions. As a balance, an acceptable prior should take the form of a default
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prior which ‘is proposed by some automatic mechanism that is not in favor of any
particular parameter values, and has low information content compared with the
data’ [131]. Key features of the prior, such as mean value, concentration around the
mean value, should be available as hyperparameters to be set by the user, while the
bulk of the prior is derived by some automatic mechanism. Such a prior does not
need be noninformative. However, it should have large support in the sense that it
spreads over the whole parameter space without overconcentrating in some parts of
the space.

There is a wide range of tools for building prior distributions on infinite dimen-
sional spaces. For functional spaces, stochastic processes such as Gaussian processes
or processes with positive increments, or developments in function bases are typi-
cally used. In the context of probability measurement spaces, prior distributions are
generally based on discrete processes that can be roughly divided into two main cat-
egories. First species sampling models (SSM), a class that is generally considered
too general to be directly usable because key features mentioned above are not al-
ways tractable. This is why tractable special cases attracted a lot of attention, includ-
ing stick-breaking processes, Gibbs-type processes, the Pitman–Yor process, or the
Dirichlet process already mentioned. The second large family is obtained by normal-
izing so-called completely random measures (CRM), also known as Lévy processes.
The advantage of this family over the first is that the moments of every order of the
processes are generally known which can be very useful from a posterior sampling
perspective. All these generalizations of the Dirichlet process offer a greater flexi-
bility. In particular in the context of mixture models, they can induce a prior on the
number of components that is less informative than the Dirichlet process.

Sampling from posteriors

Practical Bayesian inference requires to sample from the posterior distribution. Be-
fore the advent of Markov chain Monte Carlo methods [287], conjugacy used to be
essential since it enabled to update by closed form expressions a prior into a poste-
rior. Conjugacy still plays a central role in BNP for simplifying the posterior.

By essence, a BNP posterior distribution is infinite dimensional and cannot be sam-
pled from directly. Reducing the parameter space from infinite to finite dimension
is necessary, being it by analytically integrating out some parts of the parameters, or
by approximating it, for example by truncating infinite summations. The aim is to
break up the parameter into (a finite number of) finite-dimensional parts whose pos-
terior distributions are tractable. The properties of the prior are important as they
may suggest appropriate integration or approximation of the posterior. For instance,
a Gaussian process prior induces a joint probability at a finite number of positions
in the form of a simple multivariate normal.

Marginal methods Efficient posterior computation techniques often incorporate
analytic integration of infinite dimensional parts of the parameter and posterior
sampling. For instance, density estimation under a Dirichlet process mixture can
be recast in a hierarchical model by introducing a latent (allocation) variable for
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CRM SSM

SBP NRMI SB Gibbs

BP Non-homo. Homo. ‡ Ø 0 ‡ < 0

NGG ‡ = 0 PY

NIG ‡-stable DP PT

FIGURE 1: Some random probability distributions often used as pri-
ors. An arrow indicates that the target is a special case, a limit case
or a normalization of its origin. CRM: Completely random mea-
sures. SSM: Species sampling models. SBP: Stable Beta process.
NRMI: Normalized random measure with independent increments.
SB: stick-breaking process. Gibbs: Gibbs-type process. BP: Beta pro-
cess. (Non-) Homo: (Non-) Homogeneous NRMI. σ: discount param-
eter of Gibbs-type process. NGG: Normalized generalized Gamma
process. PY: Pitman–Yor process. NIG: Normalized inverse Gaussian
process. σ-stable: normalized σ-stable process. DP: Dirichlet process.

PT: Pólya-tree.

each observation and integrate out analytically the Dirichlet process, given the la-
tent variables, turning the problem into a finite dimensional one. Such techniques
that rely on analytic integration of (part of) the process are termed marginal methods.
The Blackwell–MacQueen Pólya urn scheme is a Markov chain Monte Carlo sam-
pling scheme that relies on predictive distributions. For a description in the context
of mixture modeling, see [220, 112] for the Dirichlet process, [164] for general stick-
breaking priors, e.g., the two parameter Poisson–Dirichlet process prior, and [A1]
for Gibbs-type process priors.

Conditional methods Techniques that directly sample trajectories of the process
are termed conditional methods. Some are exact: they rely on augmenting the param-
eter space with some random variables, conditional on which only a finite number
of parameters need be sampled and posterior sampling becomes feasible. These
include the slice sampler [333] and the retrospective sampler [259]. Some are ap-
proximate: they consist in approximating the process by removing some infinite-
dimensional part of it, preferably some part of least importance. When a stick-
breaking representation is avalaible, we can mention the blocked Gibbs sampler
[164], ε approximations of processes ([236] for the Dirichlet process, [A6] for the
Pitman–Yor process). Without a stick-breaking representation, for example with
normalized random measure with independent increments (NRMI), one typically
resorts to the Ferguson and Klass algorithm or inverse Lévy method [119]. This is
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usually considered as a slow sampling technique due to some heavy numerical eval-
uation, but it has the advantage to sample the elements of the process in (strictly)
decreasing order (i.e. in order of least importance) while stick-breaking strategies
sample them in stochastic decreasing order only. See [34, 43, 94, 111, 149, 148, 251,
249, 252, 248, 247, 335, 29, 257].

R packages Many R packages can solve BNP computational problem: DPpackage
[173, 174] is a bundle of functions for many Bayesian nonparametric models based
essentially on the Dirichlet process and Pólya tree, BNPmix package [70] addresses
density estimation with the Dirichlet process and Pitman–Yor process mixing mea-
sures via marginal algorithms, while BNPdensity package [43], [S3] focusses on den-
sity estimation under normalized random measures with independent increments
(see Figure 1).

Approximate Bayesian computation (ABC) This short review of computational
aspects is far from exhaustively listing all techniques available for posterior sam-
pling, leaving aside particle filtering or sequential Monte Carlo for instance [72].
However, let us mention approximate Bayesian computation (ABC), the most promi-
nent strategy in situations where the likelihood function is known but not tractable,
or when the likelihood function has entirely unknown form. In that case, one can-
not exactly sample from the posterior in an inexpensive manner, or at all. In such
situations, a sample from an approximation of the posterior may suffice in order to
conduct the user’s desired inference. Such a sample can be drawn via ABC. The
ABC paradigm originates from the works of [291, 316, 274]; see [315] for details.
Stemming from the initial listed works, there are now numerous variants of ABC
methods. Some good reviews of the current ABC literature can be found in the ex-
positions of [224, 332, 216, 184, 285]. The volume [302] provides a comprehensive
treatment regarding ABC methodologies. The core philosophy of ABC is to define
a quasi-posterior by comparing data with plausibly simulated replicates. The com-
parison is traditionally based on some summary statistics, the choice of which be-
ing regarded as a key challenge of the approach. In recent years, data discrepancy
measures bypassing the construction of summary statistics have been proposed by
viewing data sets as empirical measures. Examples include the Wasserstein distance
[52], the Kullback–Leibler divergence [176], the energy distance [S4].

0.1.2 Bayesian Machine Learning

Machine learning is a fairly recent research field which requires skills from statistics
and computer science. Neural networks (NNs), and their deep counterparts [139],
have largely been used in many research areas such as image analysis [198], signal
processing [142], or reinforcement learning [301], just to name a few. The impressive
performance provided by such machine learning approaches has greatly motivated
research that aims at a better understanding the driving mechanisms behind their
effectiveness. In particular, the study of the NNs distributional properties through
Bayesian analysis has recently gained much attention.



Contents 6

Distributional properties of Bayesian neural networks Studying the distributional
behaviour of feedforward networks has been a fruitful avenue for understanding
these models, as pioneered by the works of Radford Neal [241, 242] and David
MacKay [221]. The first results in the field addressed the limiting setting when the
number of units per layer tends to infinity, also called the wide regime. [242] proved
that a single hidden layer neural network with normally distributed weights tends
in distribution in the wide limit either to a Gaussian process [281] or to an α-stable
process, depending on how the prior variance on the weights is rescaled. In recent
works, [226] and [204] extend the result of Neal to more-than-one-layer neural net-
works: when the number of hidden units grows to infinity, deep neural networks
(DNNs) also tend in distribution to the Gaussian process, under the assumption of
Gaussian weights for properly rescaled prior variances. For the rectified linear unit
(ReLU) activation function, the Gaussian process covariance function is obtained
analytically [82]. For other nonlinear activation functions, [204] use a numerical ap-
proximation algorithm. This Gaussian process approximation is used for instance
by [152] for improving neural networks training strategies. [255] extend the results
by proving the Gaussian process limit for convolutional neural networks.

Various distributional properties are also studied in NNs regularization methods.
The dropout technique [306] was reinterpreted as a form of approximate Bayesian
variational inference [188, 124]. While [124] built a connection between dropout
and the Gaussian process, [188] proposed a way to interpret Gaussian dropout.
They suggested variational dropout where each weight of a model has its individ-
ual dropout rate. Sparse variational dropout [235] extends variational dropout to all
possible values of dropout rates, and leads to a sparse solution. The approximate
posterior is chosen to factorize either over rows or individual entries of the weight
matrices. The prior usually factorizes in the same way, and the choice of the prior
and its interaction with the approximating posterior family are studied by [162]. Per-
forming dropout can be used as a Bayesian approximation but, as noted by [106], it
has no regularization effect on infinitely-wide hidden layers. Recent work by [56]
provides the expression of the first two moments of the output units of a one layer
NN. Obtaining the moments is a first step towards characterizing the full distribu-
tion. However, the methodology of [56] is limited to the first two moments and to
single-layer NNs, while we address the problem in more generality for deep NNs.

0.2 Research activity

My long term research objective is to contribute methodological and theoretical ad-
vances in Bayesian statistical learning. This section describes my process towards
this goal.

0.2.1 Research conducted before and during my Ph.D.

I have started doing research during my final study internship from École polytech-
nique in the summer of 2006 at the University of Liverpool. I worked with Hugh
Morton on knot theory, a field from topology concerned among other things with
classifying knots up to invariance transformations. My contribution was to derive
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some new relations between the crossing index of a knot (the minimal number of
crossings in a planar representation of a knot) and its arc index (the minimal num-
ber of half planes needed to represented the knot in an open-book structure).

The next year, my first encounter with Bayesian statistic in an academic context was
at the University of Valencia, Spain. Thanks to Nicolas Chopin, I had the chance to
discover this research field by collaborating with José Miguel Bernardo, one of the
founding fathers3 of the International Society for Bayesian Analysis (ISBA). During
this project, I have proposed a Bayesian model for studying the positive predicted
value (PPV) of a medical test. Given a diagnostic test on a certain disease, the PPV
represents the probability of having the disease given a positive test result.

Moving back to Paris, I decided to work on the problem of level set estimation with
Judith Rousseau for my M2 thesis. At the beginning of my Ph.D., supervised by
Judith Rousseau and Ghislaine Gayraud, I then moved to the infinite normal means
model [A14], where I derived asymptotic frequentist properties of generic Bayesian
procedures based on sieve priors. The main result is that these priors give rise to
minimax adaptive posterior concentration rates. The result can be applied to dif-
ferent models, as illustrated in the article on the density, regression, nonlinear auto-
regression and Gaussian white noise models. We also prove in the paper that a well-
behaved posterior distribution for a global loss can have a pathological behaviour
for a pointwise loss (in the white noise model).

Later, I started to work on Bayesian nonparametric models based on discrete ran-
dom probability models after attending a summer school course on Bayesian non-
parametrics given by Peter Müller in 2010 at University of California, Santa Cruz. I
am grateful to Sonia Petrone for hosting me for two months in 2011 and for fruitful
discussions on this new line of research. At that time, I wanted to apply my work
to some concrete data. I met with Kerrie Mengersen, from Queensland University
of Technology, who was visiting Crest in Paris, and she introduced me to Australian
ecologists colleagues of her. They had soil microbial data collected in Antarctica
and wanted to understand how an environmental factor, a contaminant called Total
Petroleum Hydrocarbon, would affect species diversity in the soil. I developped a
covariate-dependent process as a prior distribution for modelling species data par-
tially replicated at different locations. Such data can be represented as a frequency
matrix giving the number of times each species is observed in each site. The aim
is to study the impact of additional factors (covariates), for instance environmen-
tal factors, on the data structure, and in particular on the diversity. This work was
published in [A13] with a focus on the application, and in [A10] with a complete
description of the methodology and of theoretical results, such as moments and full
support of the process.

As part of my work as a statistician at Insee (national statistics bureau of France) in
parallel of my Ph.D., I developped with Vianney Costemalle a Bayesian model for
describing migration flows from dissimilar datasets [A11], in French.

3Whose "ISBA Fellow status has been permanently revoked" in the meantime...

https://sites.google.com/site/nicolaschopinstatistician/
https://www.uv.es/bernardo/
https://bayesian.org/
https://www.ceremade.dauphine.fr/~rousseau/
https://www.ceremade.dauphine.fr/~rousseau/
http://www.lmac.utc.fr/membres/gayraud
https://www.ma.utexas.edu/users/pmueller/
http://faculty.unibocconi.eu/soniapetrone/
http://staff.qut.edu.au/staff/mengerse/
https://www.researchgate.net/profile/Vianney_Costemalle


Contents 8

0.2.2 Contributions since my Ph.D.

After my Ph.D., I moved to Turin for a postdoc funded with the ERC of Igor Prün-
ster. I feel extremely lucky to have worked there: at the time, Igor Prünster statis-
tics group at the Collegio Carlo Alberto was composed of a number of experts of
BNP including Antonio Lijoi, Matteo Ruggiero, Pierpaolo De Blasi, Stefano Favaro,
Bernardo Nipoti and Antonio Canale. I also benefited a lot from discussions with
Bertrand Lods and Giovanni Pistone, while Guillaume Kon Kam King joined the
group in 2015. My research there flourished in a number of directions, includ-
ing Bayesian nonparametric mixture modeling and approximate Bayesian inference,
the first two chapters of this manuscript. I stayed three years in Italy, including a
semester at the University of Bocconi in Milan when Igor Prünster moved there.

I then moved to Inria Grenoble Rhône-Alpes in 2016 for a research position (Chargé
de recherche). I joined MISTIS team (soon to be called Statify) with Florence Forbes,
Stéphane Girard and Jean-Baptiste Durand as permanent members. I wanted to
take the opportunity of this new research environment to delve into new research
areas. I got interested in Machine Learning with a Deep Learning reading group
organized at Inria. Discussions with the team members opened some new research
interests such as Markov random fields with Florence Forbes, extreme value theory
and copulas with Stéphane Girard. I am also grateful to Inria for financial support
of a three-month visit to Stephen Walker at the University of Texas at Austin in 2017
where I started to work on the sub-Gaussian property of random variables [A7].
Joint work with Steven started during this visit is still ongoing.

The rest of this manuscript is devoted to my main contributions to Bayesian statisti-
cal learning since my Ph.D. It is divided into three main chapters presenting :

• Chapter 1. Bayesian Nonparametric Mixture Modeling

• Chapter 2. Approximate Bayesian Inference

• Chapter 3. Distributional Properties of Statistical and Machine Learning
Models

The borders between the categories are rather blurred and could be easily crossed
depending on where the focus is put, should it be on applications, on models, on
posterior sampling strategies, or whatsoever. Looking back, the three chapters roughly
correspond to arXiv Statistics categories as follows:

• Chapter 1. stat.AP - Applications & stat.ME - Methodology

• Chapter 2. stat.CO - Computation

• Chapter 3. stat.ML - Machine Learning & stat.TH - Statistics Theory

But for the sake of readability, I will keep my original and more explicit chapter
titles. . .

http://sites.carloalberto.org/pruenster/
http://sites.carloalberto.org/pruenster/
http://sites.carloalberto.org/pruenster/
https://www.carloalberto.org/research/statistics-initiative/
http://economia.unipv.it/alijoi/
http://www.matteoruggiero.it/
https://sites.google.com/a/carloalberto.org/pdeblasi/home
http://sites.carloalberto.org/favaro/
https://sites.google.com/a/carloalberto.org/nipoti/
https://tonycanale.github.io/
https://scholar.google.com/citations?user=RDg-f-wAAAAJ&hl=en
https://scholar.google.com/citations?user=UvJIHu8AAAAJ&hl=en
https://sites.google.com/site/guillaumekonkamking/
http://sites.carloalberto.org/pruenster/
https://team.inria.fr/mistis/
http://mistis.inrialpes.fr/people/forbes/
http://mistis.inrialpes.fr/people/girard/
http://mistis.inrialpes.fr/people/jbdurand/
http://mistis.inrialpes.fr/people/forbes/
http://mistis.inrialpes.fr/people/girard/
http://www.ma.utexas.edu/users/s.g.walker/
https://arxiv.org/archive/stat
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Chapter 1. Bayesian Nonparametric Mixture Modeling

This chapter is devoted to mixture models which are central to Bayesian nonpara-
metrics. The original motive for mixture modeling is the desire to expand the spec-
trum of available distributions. For example, Quetelet [277] used mixtures in the
nineteenth century to describe asymmetric or multimodal distributions. My con-
tributions described in this chapter are concerned with mixtures of some kernel
K(· | θ) by a nonparametric mixing measure P following some (nonparametric)
prior Q as described in the Designing priors paragraph of Section 0.1.1. Such mix-
tures can be formulated as follows

P ∼ Q,

f (·) =
∫
K(· | θ)P(dθ).

If P is a discrete random probability measure as those described in Figure 1, then the
random function f may take the form of a countable infinite mixture. Depending
on the choice of kernel, f can model a broad spectrum of functional objects: density,
hazard rate, survival function or regression function.

My work on mixtures has focussed on methodological aspects, including on survival
analysis [A12], [C5], robust analysis [S6]; on computational questions, such as recast-
ing Dirichlet process mixtures into the sequential quasi Monte Carlo framework of
[129] in [P8], [D4], and contributing to the R package BNPdensity [S3] with Guil-
laume Kon Kam King and other colleagues from the Collegio Carlo Alberto, de-
signed for posterior sampling from mixtures of NRMI (see Figure 1); and finally on
applications, including ecotoxicological risk assessment [C3], industrial applications
[C2], and image segmentation [S2]. In this chapter, I focus essentially on survival
analysis [A12], image segmentation [S2], and ecotoxicological applications [C3].

Section 1.1 Survival analysis: modeling hazard functions with mixtures [A12].
Bayesian nonparametric inferential procedures based on Markov chain Monte Carlo
marginal methods typically yield point estimates in the form of posterior expecta-
tions. Though very useful and easy to implement in a variety of statistical problems,
these methods may suffer from some limitations if used to estimate non-linear func-
tionals of the posterior distribution. The main goal of [A12] is to develop a novel
methodology that extends a well-established marginal procedure designed for haz-
ard mixture models, in order to draw approximate inference on survival functions
that is not limited to the posterior mean but includes, as remarkable examples, cred-
ible intervals and median survival time. Our approach relies on a characterization of
the posterior moments that, in turn, is used to approximate the posterior distribution
by means of a technique based on Jacobi polynomials.

Section 1.2 Image segmentation: mixtures with hidden Markov random fields
[S2]. One of the central issues in statistics and machine learning is how to select an
adequate model that can automatically adapt its complexity to the observed data.
We focus on the issue of determining the structure of clustered data, both in terms of
finding the appropriate number of clusters and of modelling the right dependence

https://sites.google.com/site/guillaumekonkamking/
https://sites.google.com/site/guillaumekonkamking/
https://www.carloalberto.org/research/statistics-initiative/
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structure between the observations. Bayesian nonparametric (BNP) models, which
do not impose an upper limit on the number of clusters, are appropriate to avoid
the required guess on the number of clusters but have been mainly developed for
independent data. In contrast, Markov random fields (MRF) have been extensively
used to model dependencies in a tractable manner but usually reduce to finite cluster
numbers when clustering tasks are addressed. Our main contribution is to propose
a general scheme to design tractable BNP-MRF priors that combine both features: no
commitment to an arbitrary number of clusters and a dependence modelling. A key
ingredient in this construction is the availability of a stick-breaking representation
which has the three-fold advantage to allowing us to extend standard discrete MRFs
to infinite state space, to design a tractable estimation algorithm using variational
approximation and to derive theoretical properties on the predictive distribution
and the number of clusters of the proposed model. This approach is illustrated on a
challenging natural image segmentation task for which it shows good performance
with respect to the literature.

Section 1.3 Ecotoxicological application to species sensitivity distribution model-
ing [C3]. We revisit a classical method for ecological risk assessment, the Species
Sensitivity Distribution (SSD) approach, in a Bayesian nonparametric framework.
SSD is a mandatory diagnostic required by environmental regulatory bodies from
the European Union, the United States, Australia, China etc. Yet, it is subject to
much scientific criticism, notably concerning a historically debated parametric as-
sumption for modelling species variability. Tackling the problem using nonpara-
metric mixture models, it is possible to shed this parametric assumption and build a
statistically sounder basis for SSD.

Chapter 2. Approximate Bayesian Inference

This chapter is concerned in large parts with computational aspects of Bayesian in-
ference, see the Sampling from posteriors paragraph of Section 0.1.1 for an overview of
the existing methods. More specifically, I present conditional approaches in the form
of truncation-based approximations for the Pitman–Yor process [A6] and for com-
pletely random measures [A8] (see Figure 1). Then I move to a marginal approach
based on approximations of the predictive distribution of Gibbs-type processes [A1].
Finally, I describe an approximate Bayesian computation (ABC) algorithm using the
energy distance as data discrepancy.

Section 2.1 Truncation-based approximations: Pitman–Yor [A6]. We consider ap-
proximations to the popular Pitman–Yor process obtained by truncating the stick-
breaking representation. The truncation is determined by a random stopping rule
that achieves an almost sure control on the approximation error in total variation
distance. We derive the asymptotic distribution of the random truncation point as
the approximation error ε goes to zero in terms of a polynomially tilted positive sta-
ble random variable. The practical usefulness and effectiveness of this theoretical
result is demonstrated by devising a sampling algorithm to approximate functionals
of the ε-version of the Pitman–Yor process.
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Section 2.2 Truncation-based approximations: normalized random measures [A8].
Completely random measures (CRM) represent the key building block of a wide va-
riety of popular stochastic models and play a pivotal role in modern Bayesian Non-
parametrics. A popular representation of CRMs as a random series with decreasing
jumps is due to
[119] T. S. Ferguson and M. J. Klass. A representation of independent increment pro-
cesses without gaussian components. The Annals of Mathematical Statistics, 43(5):1634–
1643, 1972.
This can immediately be turned into an algorithm for sampling realizations of CRMs
or more elaborate models involving transformed CRMs. However, concrete imple-
mentation requires to truncate the random series at some threshold resulting in an
approximation error. The goal of this paper is to quantify the quality of the approx-
imation by a moment-matching criterion, which consists in evaluating a measure of
discrepancy between actual moments and moments based on the simulation out-
put. Seen as a function of the truncation level, the methodology can be used to
determine the truncation level needed to reach a certain level of precision. The re-
sulting moment-matching Ferguson and Klass algorithm is then implemented and
illustrated on several popular Bayesian nonparametric models.

Section 2.3 Approximating the predictive weights of Gibbs-type priors [A1].
This section presents the results of [A1] which is a follow-up to [A9], extending
results from the Pitman–Yor process to Gibbs-type processes. Gibbs-type random
probability measures, or Gibbs-type priors, are arguably the most "natural" gen-
eralization of the celebrated Dirichlet process prior. Among them the Pitman–Yor
process prior certainly stands out in terms of mathematical tractability and inter-
pretability of its predictive probabilities, which made it the natural candidate in a
plethora of applications. Given a random sample of size n from an arbitrary Gibbs-
type prior, we show that the corresponding predictive probabilities admit a large n
approximation, with an error term vanishing as o(1/n), which maintains the same
desirable features as the predictive probabilities of the Pitman–Yor process prior.
Our result is illustrated through an extensive simulation study, which includes an
application in the context of Bayesian nonparametric mixture modeling.

Section 2.4 Approximate Bayesian computation based on the energy distance [S4].
Approximate Bayesian computation (ABC) has become an essential part of the Bayesian
toolbox for addressing problems in which the likelihood is prohibitively expensive
or entirely unknown, making it intractable. ABC defines a quasi-posterior by com-
paring observed data with simulated data, traditionally based on some summary
statistics, the elicitation of which is regarded as a key difficulty. In recent years, a
number of data discrepancy measures bypassing the construction of summary statis-
tics have been proposed, including the Kullback–Leibler divergence, the Wasserstein
distance and maximum mean discrepancies. Here we propose a novel importance-
sampling (IS) ABC algorithm relying on the so-called two-sample energy statistic. We
establish a new asymptotic result for the case where both the observed sample size
and the simulated data sample size increase to infinity, which highlights to what ex-
tent the data discrepancy measure impacts the asymptotic pseudo-posterior. The re-
sult holds in the broad setting of IS-ABC methodologies, thus generalizing previous
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results that have been established only for rejection ABC algorithms. Furthermore,
we propose a consistent V-statistic estimator of the energy statistic, under which we
show that the large sample result holds. Our proposed energy statistic based ABC
algorithm is demonstrated on a variety of models, including a Gaussian mixture,
a moving-average model of order two, a bivariate beta and a multivariate g-and-
k distribution. We find that our proposed method compares well with alternative
discrepancy measures.

Chapter 3. Distributional Properties of Statistical and Machine Learning Models

This chapter is concerned with general distributional properties of statistical and
machine learning models. These properties include the sub-Gaussian and sub-Weibull
properties of random variables [A7], [A2], [S5]. This sub-Weibull property defined
in [S5] is then used in [A4], [P5], [P6] for characterizing the prior distribution of
neural network units with Gaussian weight priors and under ReLU-like nonlinear-
ity function; see Section 0.1.2 for an overview of Bayesian neural networks. We
conclude the chapter by a presentation of novel theoretical properties of a large class
of asymmetric copulas [A3].

Section 3.1 Sub-Gaussian and sub-Weibull properties [A7], [A2], [S5]. The line
of research on the sub-Gaussian property of random variables started in 2017 while
I was refereeing a machine learning conference paper (COLT). It was stating some
conjectures about the sub-Gaussian property and optimal proxy variance of the beta
distribution (see Section 3.1). I liked this conjecture because the problem was very
simply stated. We solved this conjecture with my friend Olivier Marchal [A7]. This
short note opened many more questions: once, Hien Nguyen asked me whether
the methodology of [A7] could be used for other bounded support random vari-
ables such as Bernoulli, binomial, Kumaraswamy or triangular distributions. Of
course such bounded random variables are de facto sub-Gaussian, but how to char-
acterize the optimal sub-Gaussian proxy variance remains in general an open ques-
tion. Another question is how to characterize strict sub-Gaussianity, defined by a
proxy variance equal to the (standard) variance? With Olivier Marchal and Hien
Nguyen, we address these questions in [A2]. A particular focus is given to the re-
lationship between strict sub-Gaussianity and symmetry of the distribution. In par-
ticular, we demonstrate that symmetry is neither sufficient nor necessary for strict
sub-Gaussianity. In contrast, simple necessary conditions on the one hand, and sim-
ple sufficient conditions on the other hand, for strict sub-Gaussianity are provided.

Section 3.2 Understanding priors in Bayesian neural networks [A4], [P5], [P6]. I
started to be interested in neural networks in 2018 also as a consequence of attending
a reading group on Deep Learning at Inria and of refereeing for machine learning
conferences. The ICLR paper [226] dealing with distributional properties of neural
networks in the infinite width regime (ie when the number of neurons or units per
layer tends to infinity) and discussions with Thibaud Rahier have been quite inspira-
tional for me and were in a sense the starting point of the internship and then Ph.D.
work of Mariia Vladimirova with Jakob Verbeek and Pablo Mesejo focussing on un-
derstanding priors in Bayesian neural networks [A4], [P5], [P6]. We investigate deep

https://www.researchgate.net/profile/Olivier_Marchal
https://hiendn.github.io/
https://www.researchgate.net/profile/Olivier_Marchal
https://hiendn.github.io/
https://hiendn.github.io/
https://www.linkedin.com/in/thibaud-rahier-8874208a
https://www.mvladimirova.com/
http://lear.inrialpes.fr/people/verbeek/
https://sites.google.com/site/pablomesejo/
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Bayesian neural networks with Gaussian weight priors and a class of ReLU-like non-
linearities. Bayesian neural networks with Gaussian priors are well known to induce
an L2, "weight decay", regularization. Our results characterize a more intricate reg-
ularization effect at the level of the unit activations. Our main result establishes that
the induced prior distribution on the units before and after activation becomes in-
creasingly heavy-tailed with the depth of the layer. We show that first layer units
are Gaussian, second layer units are sub-exponential, and units in deeper layers are
characterized by sub-Weibull distributions [S5]. Our results provide new theoretical
insight on deep Bayesian neural networks, which we corroborate with simulation
experiments.

Section 3.3 Dependence properties of asymmetric copulas [A3]. Discussions with
my office mate Stéphane Girard at the intersection of our scientific interests (extreme
value theory on the one hand of the office and Bayesian analysis on the other hand)
led us to propose a postdoc offer on extreme value theory and copula modeling from
a Bayesian perspective. We had the chance to hire Marta Crispino and we started to
work in 2018 on copulas. In [A3], we study a broad class of asymmetric copulas in-
troduced by [207] as a combination of multiple—usually symmetric—copulas. The
main thrust of the paper is to provide new theoretical properties including exact
tail dependence expressions and stability properties. A subclass of Liebscher cop-
ulas obtained by combining comonotonic copulas is studied in more details. We
establish further dependence properties for copulas of this class and show that they
are characterized by an arbitrary number of singular components. Furthermore, we
introduce a novel iterative representation for general Liebscher copulas which de
facto insures uniform margins, thus relaxing a constraint of Liebscher’s original con-
struction. Besides, we show that this iterative construction proves useful for infer-
ence by developing an Approximate Bayesian computation (ABC) sampling scheme.
This inferential procedure is demonstrated on simulated data and is compared to a
likelihood-based approach in a setting where the latter is available.

http://mistis.inrialpes.fr/people/girard/
https://sites.google.com/site/crispinostat/
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[A12] J. Arbel, A. Lijoi, and B. Nipoti. Full Bayesian inference with hazard mix-
ture models. Computational Statistics & Data Analysis, 93:359–372, 2016

[C5] J. Arbel, A. Lijoi, and B. Nipoti. Bayesian Statistics from Methods to Models
and Applications, chapter Bayesian Survival Model based on Moment Character-
ization, pages 3–14. Springer Proceedings in Mathematics & Statistics, Volume
126. Springer International Publishing, Editors: Sylvia Frühwirth-Schnatter et
al., 2015

1.1 Survival analysis: modeling hazard functions with mix-
tures

1.1.1 Introduction

Most commonly used inferential procedures in Bayesian nonparametric practice rely
on the implementation of sampling algorithms that can be gathered under the gen-
eral umbrella of Blackwell–MacQueen Pólya urn schemes. These are characterized
by the marginalization with respect to an infinite-dimensional random element that
defines the de Finetti measure of an exchangeable sequence of observations or latent
variables. Henceforth these will be referred to as marginal methods. Besides being
useful for the identification of the basic building blocks of ready to use Markov chain
Monte Carlo (MCMC) sampling strategies, marginal methods have proved to be ef-
fective for an approximate evaluation of Bayesian point estimators in the form of
posterior means. They are typically used with models for which the predictive dis-
tribution is available in closed form. Popular examples are offered by mixtures of the
Dirichlet process for density estimation [112] and mixtures of gamma processes for
hazard rate estimation [165]. While becoming well-established tools, these computa-
tional techniques are easily accessible also to practitioners through a straightforward
software implementation [173]. Though it is important to stress their relevance both
in theory and in practice, it is also worth pointing out that Blackwell–MacQueen
Pólya urn schemes suffer from some drawbacks which we wish to address here. In-
deed, one easily notes that the posterior estimates provided by marginal methods
are not suitably endowed with measures of uncertainty such as posterior credible
intervals. Furthermore, using the posterior mean as an estimator is equivalent to
choosing a square loss function whereas in many situations of interest other choices
such as absolute error or 0–1 loss functions and, as corresponding estimators, me-
dian or mode of the posterior distribution of the survival function, at any fixed time
point t, would be preferable. Finally, they do not naturally allow inference on func-
tionals of the distribution of survival times, such as the median survival time, to
be drawn. A nice discussion of these issues is provided by [126] where the focus
is on mixtures of the Dirichlet process: the authors suggest complementing the use
of marginal methods with a sampling strategy that aims at generating approximate
trajectories of the Dirichlet process from its truncated stick-breaking representation.

The aim is to propose a new procedure that combines closed-form analytical results
arising from the application of marginal methods with an approximation of the pos-
terior distribution which makes use of posterior moments. The whole machinery
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is developed for the estimation of survival functions that are modeled in terms of
hazard rate functions. To this end, let F denote the cumulative distribution function
(CDF) associated to a probability distribution on R+. The corresponding survival
and cumulative hazard functions are denoted as

S(t) = 1− F(t) and H(t) = −
∫
[0,t]

dF(s)
F(s−) ,

for any t > 0, respectively, where F(s−) := limε↓0 F(s− ε) for any positive s. If F is
absolutely continuous, one has H(t) = − log(S(t)) and the hazard rate function as-
sociated to F is, thus, defined as h(t) = F′(t)/[1− F(t−)]. It should be recalled that
survival analysis has been one of the most relevant areas of application of Bayesian
nonparametric methodology soon after the groundbreaking contribution of [117]. A
number of papers in the ’70s and the ’80s have been devoted to the proposal of new
classes of priors that accommodate for a rigorous analytical treatment of Bayesian
inferential problems with censored survival data. Among these it is worth mention-
ing the neutral to the right processes proposed in [100] and used to define a prior for
the CDF F: since they share a conjugacy property they represent a tractable tool for
drawing posterior inferences. Another noteworthy class of priors has been proposed
in [156], where a beta process is used as a nonparametric prior for the cumulative
hazard function H has been proposed. Also in this case, one can considerably benefit
from a useful conjugacy property.

As already mentioned, the plan consists in proposing a method for full Bayesian
analysis of survival data by specifying a prior on the hazard rate h. The most pop-
ular example is the gamma process mixture that has been originally proposed in
[107] and generalized in later work by [218] and [168] to include any mixing random
measure and any mixed kernel. Recently [212] have extended such framework to the
context of partially exchangeable observations. The uses of random hazard mixtures
in practical applications have been boosted by the recent developments of power-
ful computational techniques that allow for an approximate evaluation of posterior
inferences on quantities of statistical interest. Most of these arise from a marginal-
ization with respect to a completely random measure that identifies the de Finetti
measure of the exchangeable sequence of observations. See, e.g., [165]. Though they
are quite simple to implement, the direct use of their output can only yield point esti-
mation of the hazard rates, or of the survival functions, at fixed time points through
posterior means. The main goal of the present paper is to show that a clever use of a
moment-based approximation method does provide a relevant upgrade on the type
of inference one can draw via marginal sampling schemes. The takeaway message
is that the information gathered by marginal methods is not confined to the poste-
rior mean but is actually much richer and, if properly exploited, can lead to a more
complete posterior inference. To understand this, one can refer to a sequence of ex-
changeable survival times (Xi)i≥1 such that P[X1 > t1, . . . , Xn > tn | P̃] = ∏n

i=1 S̃(ti)

where P̃ is a random probability measure on R+ and S̃(t) = P̃((t, ∞)) is the corre-
sponding random survival function. Given a suitable sequence of latent variables
(Yi)i≥1, a closed-form expression for

E[S̃r(t) |X, Y ], for any r ≥ 1, and t > 0, (1.1)

with X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), will be provided. Our strategy consists
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in approximating the posterior distribution of S̃(t), at each instant t, and relies on the
fact that, along with the posterior mean, marginal models allow to straightforwardly
estimate posterior moments of any order of S̃(t). Indeed, an MCMC sampler yields
a sample from the posterior distribution of Y given X: this can be used to integrate
out the latent variables appearing in (1.1) and obtain a numerical approximate eval-
uation of the posterior moments E[S̃r(t) |X]. These are finally used to deduce, with
almost negligible effort, an approximation of the posterior distribution of S̃(t) and,
in turn, to estimate some meaningful functionals of S̃(t).

It is to be mentioned that one could alternatively resort to a different approach that
boils down to the simulation of the trajectories of the completely random measure
that defines the underlying random probability measure from its posterior distri-
bution. In density estimation problems, this is effectively illustrated in [250], [248]
and [43]. As for hazard rates mixtures estimation problems, one can refer to [168],
[252] and [247]. In particular, [168] provides a posterior characterization that is the
key for devising a [119] representation of the posterior distribution of the completely
random measure which enters the definition of the prior for the hazards. Some nu-
merical aspects related to the implementation of the algorithm can be quite tricky
since one needs to invert the Lévy intensity to simulate posterior jumps and a set of
suitable latent variables need to be introduced in order to sample from the full con-
ditionals of the hyperparameters. These aspects are well described and addressed in
[247].

The section is organized as follows. In Section 1.1.2 hazard mixture models are
briefly reviewed together with some of their most important properties. Further-
more, explicit expressions characterizing the posterior moments of any order of a
random survival function are provided both for general framework and for the ex-
tended gamma process case. Section 1.1.3 is dedicated to the problem of approx-
imating the distribution of a random variable on [0, 1], provided that the first N
moments are known. In particular, a convenient methodology based on Jacobi poly-
nomials is described in Section 1.1.3 and, then, implemented in Section 1.1.3 in order
to approximate random survival functions. Its performance is tested through a thor-
ough numerical investigation. The focus of Section 1.1.4 is the use of the introduced
methodology for carrying out Bayesian inference on survival functions. Specifically,
the algorithm is presented in Section 1.1.4 whereas simulated data and a real two-
sample dataset on leukemia remission times are analysed in Sections 1.1.4 and 1.1.4
respectively.

1.1.2 Hazard mixture models

A well-known nonparametric prior for the hazard rate function within multiplica-
tive intensity models used in survival analysis arises as a mixture of completely ran-
dom measures (CRMs). To this end, recall that a CRM µ̃ on a space Y is a boundedly fi-
nite random measure that, when evaluated at any collection of pairwise disjoint sets
A1, . . . , Ad, gives rise to mutually independent random variables µ̃(A1), . . . , µ̃(Ad),
for any d ≥ 1. Importantly, CRMs are almost surely discrete measures [192]. A de-
tailed treatment on CRMs can also be found in [90]. With reference to Theorem 1 in
[189], it is assumed that µ̃ has no fixed atoms, which in turn implies the existence of
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a measure ν on R+ ×Y such that
∫

R+×Y
min{s, 1}ν(ds, dy) < ∞ and

E
[
e−

∫
Y

f (y)µ̃(dy)
]
= exp

(
−
∫

R+×Y
[1− exp (−s f (y))] ν(ds, dy)

)
, (1.2)

for any measurable function f : Y→ R such that
∫

Y
| f | dµ̃ < ∞, with probability 1.

The measure ν is termed the Lévy intensity of µ̃. For our purposes, it will be useful to
rewrite ν as

ν(ds, dy) = ρy(s)ds c P0(dy),

where P0 is a probability measure on Y, c a positive parameter, and ρy(s) is some
transition kernel on Y×R+. If ρy = ρ, for any y in Y, the CRM µ̃ is said homogeneous.
Henceforth, it is further assumed that P0 is non-atomic. A well-known example
corresponds to ρy(s) = ρ(s) = e−s/s, for any y in Y, which identifies a so-called
gamma CRM. With such a choice of the Lévy intensity, it can be seen, from (1.2), that
for any A such that P0(A) > 0, the random variable µ̃(A) is gamma distributed,
with shape parameter 1 and rate parameter cP0(A). If k( · ; · ) is a transition kernel
on R+ ×Y, a prior for h is the distribution of the random hazard rate (RHR)

h̃(t) =
∫

Y
k(t; y)µ̃(dy), (1.3)

where µ̃ is a CRM on Y. It is worth noting that, if limt→∞
∫ t

0 h̃(s)ds = ∞ with proba-
bility 1, then one can adopt the following model

Xi | P̃ i.i.d.∼ P̃

P̃(( · , ∞))
d
= exp

(
−
∫ ·

0
h̃(s)ds

) (1.4)

for a sequence of (possibly censored) survival data (Xi)i≥1. This means that h̃ in (1.3)
defines a random survival function t 7→ S̃(t) = exp(−

∫ t
0 h̃(s)ds). In this setting,

[107] characterize the posterior distribution of the so-called extended gamma process:
this is obtained when µ̃ is a gamma CRM and k(t; y) = I(0,t](y) β(y) for some positive
right-continuous function β : R+ → R+. The same kind of result is proved in
[218] for weighted gamma processes corresponding to RHRs obtained when µ̃ is still a
gamma CRM and k( · ; · ) is an arbitrary kernel. Finally, a posterior characterization
has been derived in [168] for any CRM µ̃ and kernel k( · ; · ).

We shall quickly display such a characterization since it represents the basic result
our construction relies on. For the ease of exposition we confine ourselves to the
case where all the observations are exact, the extension to the case that includes
right-censored data being straightforward and detailed in [168]. For an n-sample
X = (X1, . . . , Xn) of exact data, the likelihood function equals

L(µ̃; X) = e−
∫

Y
KX (y)µ̃(dy)

n

∏
i=1

∫
Y

k(Xi; y)µ̃(dy), (1.5)
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where Kt(y) =
∫ t

0 k(s; y)ds and KX(y) = ∑n
i=1 KXi(y). A useful augmentation sug-

gests introducing latent random variables Y = (Y1, . . . , Yn) such that the joint distri-
bution of (µ̃, X, Y) coincides with

e−
∫

Y
KX (y)µ̃(dy)

n

∏
i=1

k(Xi; Yi)µ̃(dYi) Q(dµ̃), (1.6)

where Q is the probability distribution of the completely random measure µ̃, charac-
terized by the Laplace transform functional in (1.2) [see for instance 90]. The almost
sure discreteness of µ̃ implies there might be ties among the Yi’s with positive prob-
ability. Therefore, the distinct values among Y are denoted as (Y∗1 , . . . , Y∗k ), where

k ≤ n, and, for any j = 1, . . . , k, Cj :=
{

l : Yl = Y∗j
}

with nj = #Cj as the cardinality
of Cj. Thus, the joint distribution in (1.6) may be rewritten as

e−
∫

Y
KX (y)µ̃(dy)

k

∏
j=1

µ̃(dY∗j )
nj ∏

i∈Cj

k(Xi; Y∗j ) Q(dµ̃). (1.7)

We introduce, also, the density function

f (s | κ, ξ, y) ∝ sκ e−ξs ρy(s) IR+(s) (1.8)

for any κ ∈ N and ξ > 0. The representation displayed in (1.7), combined with
results concerning disintegrations of Poisson random measures, leads to prove the
following
Proposition 1.1.1. (168) Let h̃ be a RHR as defined in (1.3). The posterior distribution of
h̃, given X and Y , coincides with the distribution of the random hazard

h̃∗ +
k

∑
j=1

Jjk( · ; Y∗j ), (1.9)

where h̃∗( · ) =
∫

Y
k( · ; y) µ̃∗(dy) and µ̃∗ is a CRM without fixed points of discontinuity

whose Lévy intensity is

ν∗(ds, dy) = e−sKX (y)ρy(s)ds cP0(dy).

The jumps J1, . . . , Jk are mutually independent and independent of µ̃∗. Moreover, for every
j = 1, . . . , k, the distribution of the jump Jj has density function f ( · | nj, KX(Y∗j ), Y∗j ) with
f defined in (1.8).

See [215] for an alternative proof of this result. The posterior distribution of h̃ dis-
plays a structure that is common to models based on CRMs, since it consists of the
combination of two components: one without fixed discontinuities and the other
with jumps at fixed points. In this case, the points at which jumps occur coincide
with the distinct values of the latent variables Y∗1 , . . . , Y∗k . Furthermore, the distribu-
tion of the jumps Jj depends on the respective locations Y∗j .

Beside allowing us to gain insight on the posterior distribution of h̃, Proposition 1.1.1
is also very convenient for simulation purposes. See, e.g., [165]. Indeed, (1.9) allows
obtaining an explicit expression for the posterior expected value of S̃(t) (or, equiva-
lently, of h̃(t)), for any t > 0, conditionally on the latent variables Y . One can, thus,
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integrate out the vector of latent variables Y , by means of a Gibbs type algorithm, in
order to approximately evaluate the posterior mean of S̃(t) (or h̃(t)). As pointed out
in next section, a combination of Proposition 1.1.1 and of the same Gibbs sampler
we have briefly introduced actually allows moments of S̃(t), of any order, to be esti-
mated. We will make use of the first N of these estimated moments to approximate,
for each t > 0, the posterior distribution of S̃(t) and therefore to have the tools for
drawing meaningful Bayesian inference. The choice of a suitable value for N will be
discussed in Section 1.1.3.

As pointed out in the Introduction, one can, in line of principle, combine Proposi-
tion 1.1.1 with the Ferguson and Klass representation to undertake an alternative ap-
proach that aims at simulating the trajectories from the posterior distribution of the
survival function. This can be achieved by means of a Gibbs type algorithm that in-
volves sampling µ̃∗ and Y∗j , for j = 1, . . . , k, from the corresponding full conditional
distributions. Starting from the simulated trajectories one could then approximately
evaluate all the posterior quantities of interest. The latter is an important feature
of the method based on the Ferguson and Klass representation, that is shared only
in part by our proposal. Indeed, extending the moment-based procedure to esti-
mate functionals of S̃(t), although achievable in many cases of interest, is not always
straightforward. For instance, in order to carry out inference based on the posterior
distribution of the random hazard rate h̃(t), one should start with the estimation
of the posterior moments of h̃(t) and adapt accordingly the methodology which
throughout the paper is developed for S̃(t). An illustration, with an application
to survival analysis, is provided in [247] and it appears that the approach, though
achievable, may be difficult to implement. The main non-trivial issues one has to
deal with are the inversion of the Lévy measure, needed to sample the jumps, and
the sampling from the full conditionals of the hyperparameters. The latter has been
addressed by [247] through a clever augmentation scheme that relies on a suitable
collection of latent variables. The approach based on the simulation of trajectories
is an example of non-marginal, or conditional, method since it does not rely on the
marginalization with respect to the mixing CRM µ̃.

In the next sections, attention will be mainly devoted to marginal methods with
the aim of showing that they allow for a full Bayesian inference, beyond the usual
evaluation of posterior means. The required additional effort to accomplish this task
is minimal and boils down to computing a finite number of posterior moments of
S̃(t), at a given t. An approximate evaluation of these moments can be determined
by resorting to (1.9) which yields closed-form expressions for the posterior moments
of the random variable S̃(t), conditionally on both the data X and the latent variables
Y .
Proposition 1.1.2. For every t > 0 and r > 0,

E[S̃r(t) |X, Y ] = exp
{
−c

∫
R+×Y

(
1− e−rKt(y)s

)
e−KX (y)sρ(s)dsP0(dy)

}
×

k

∏
j=1

1
Bj

∫
R+

exp
{
−s
(

rKt(Y∗j ) + KX(Y∗j )
)}

snj ρ(s)ds,

where Bj =
∫

R+ snj exp
{
−sKX(Y∗j )

}
ρ(s)ds, for j = 1, . . . , k.
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Although the techniques that will be described hold true for any specification of µ̃

and kernel k( · ; · ), the proposed illustration will focus on on the extended gamma
process case [107]. More specifically, we consider a kernel k(t; y) = I(0,t](y)β, with
β > 0. This choice of kernel is known to be suitable for modeling monotone in-
creasing hazard rates and to give rise to a class of random hazard functions with
nice asymptotic properties [96]. Moreover, without loss of generality, it is assumed
that X1 > X2 > . . . > Xn. For notational convenience, one further sets X0 ≡ ∞,
Xn+1 ≡ 0, ξl ≡ ∑l

i=1 Xi, for any l ≥ 1, and ξ0 ≡ 0. The next Corollary displays an
expression for the conditional moments corresponding to this prior specification.
Corollary 1.1.1. For every t > 0 and r > 0,

E[S̃r(t) |X, Y ] =
n

∏
i=0

exp
{
−c

∫ Xi∧t

Xi+1∧t
log
(

1 + r
t− y

ξi − iy + 1/β

)
P0(dy)

}

×
k

∏
j=1

(
1 + r

(t−Y∗j )I[Y∗j ,∞)(t)

∑n
i=1(Xi −Y∗j )I[Y∗j ,∞)(Xi) + 1/β

)−nj

. (1.10)

By integrating out the vector of latent variables Y in (1.10) one obtains an estimate
of the posterior moments of S̃(t). To this end one can resort to a Gibbs algorithm
whose steps will be described in Section 1.1.4.

1.1.3 Approximate inference via moments

Moment-based density approximation and sampling

Recovering a probability distribution from the explicit knowledge of its moments is
a classical problem in probability and statistics that has received great attention in
the literature. See, e.g., [275], references and motivating applications therein. Our
specific interest in the problem is motivated by the goal of determining an approx-
imation of the density function of a distribution supported on [0, 1] that equals the
posterior distribution of a random survival function evaluated at some instant t.
This is a convenient case since, as the support is a bounded interval, all the mo-
ments exist and uniquely characterize the distribution, see [280]. Moment-based
methods for density functions’ approximation can be essentially divided into two
classes, namely methods that exploit orthogonal polynomial series [275] and maxi-
mum entropy methods [87, 231]. Both these procedures rely on systems of equations
that relate the moments of the distribution with the coefficients involved in the ap-
proximation. For our purposes the use of orthogonal polynomial series turns out to
be more convenient since it ensures faster computations as it involves uniquely lin-
ear equations. This property is particularly important in our setting since the same
approximation procedure needs to be implemented a large number of times in order
to approximate the posterior distribution of a random survival function. Moreover,
as discussed in [110], maximum entropy techniques can lead to numerical instability.

Specifically, we work with Jacobi polynomials, a broad class which includes, among
others, Legendre and Chebyshev polynomials. They are well suited for the expan-
sion of densities with compact support contrary to other polynomials like Laguerre
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and Hermite which can be preferred for densities with infinite of semi-infinite sup-
port [see 275]. While the classical Jacobi polynomials are defined on [−1, 1], a suit-
able transformation of such polynomials is considered so that their support coin-
cides with [0, 1] and therefore matches the support of the density we aim at approx-
imating. That is, we consider a sequence of polynomials (Gi)i≥0 such that, for every
i ∈ N, Gi is a polynomial of order i defined by Gi(s) = ∑i

r=0 Gi,rsr, with s ∈ [0, 1].
The coefficients Gi,r can be defined by a recurrence relation [see for example 311].
Such polynomials are orthogonal with respect to the L2-product

〈F, G〉 =
∫ 1

0
F(s)G(s)wa,b(s)ds,

where
wa,b(s) = sa−1(1− s)b−1

is named weight function of the basis. Moreover, without loss of generality, the Gi’s
can be assumed to be normalized and, therefore, 〈Gi, Gj〉 = δij for every i, j ∈ N,
where δij is the Kronecker symbol. Any univariate density f supported on [0, 1] can
be uniquely decomposed on such a basis and therefore there is a unique sequence of
real numbers (λi)i≥0 such that

f (s) = wa,b(s)
∞

∑
i=0

λiGi(s). (1.11)

Let us now consider a random variable S whose density f has support on [0, 1]. Its
raw moments will be denoted by µr = E

[
Sr], with r ∈ N. From the evaluation

of
∫ 1

0 f (s) Gi(s)ds it follows that each λi coincides with a linear combination of the
first i moments, specifically λi = ∑i

r=0 Gi,rµr. Then, the polynomial approximation
method consists in truncating the sum in (1.11) at a given level i = N. This procedure
leads to a methodology that makes use only of the first N moments and provides the
approximation

fN(s) = wa,b(s)
N

∑
i=0

(
i

∑
r=0

Gi,rµr

)
Gi(s). (1.12)

It is important to stress that the polynomial expansion approximation (1.12) is not
necessarily a density as it might fail to be positive or to integrate to 1. In order to
overcome this problem, the density πN proportional to the positive part of fN , i.e.
πN(s) ∝ max( fN(s), 0), will be considered. An importance sampling algorithm [see,
e.g., 287] will be used to sample from πN . This is a method for drawing independent
weighted samples (v`, S`) from a distribution proportional to a given non-negative
function, that exempts us from computing the normalizing constant. More precisely,
the method requires to pick a proposal distribution p whose support contains the
support of πN . A natural choice for p is the Beta distribution proportional to the
weight function wa,b. The weights are then defined by v` ∝ max( fN(S`), 0)/p(S`)

such that they add up to 1.

An important issue related to any approximating method refers to the quantification
of the approximating error. As for the described polynomial approach, the error can
be assessed for large N by applying the asymptotic results in [5]. Specifically, the
convergence fN(s) → f (s) for N → ∞, for all s ∈ (0, 1), implies πN(s) → f (s)
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for N → ∞. Thus, if SN denotes a random variable with distribution πN , then the
following convergence in distribution to the target random variable S holds:

SN
D−→ S as N → ∞.

However, here the interest is in evaluating whether few moments allow for a good
approximation of the posterior distribution of S̃(t). This question will be addressed
by means of an extensive numerical study in the next section. See [111] and [110] for
a similar treatment referring to functionals of neutral-to-the-right priors and Dirich-
let processes respectively.

Numerical study

In this section the quality of the approximation procedure described above is as-
sessed by means of a simulation study. The rationale of the analysis consists in
considering random survival functions for which moments of any order can be ex-
plicitly evaluated at any instant t, and then compare the true distribution with the
approximation obtained by exploiting the knowledge of the first N moments. This
in turn will provide an insight on the impact of N on the approximation error. To
this end three examples of random survival functions will be considered, namely S̃j
with j = 1, 2, 3. For the illustrative purposes of this Section, it suffices to specify the
distribution of the random variable that coincides with S̃j evaluated in t, for every
t > 0. Specifically, we consider a Beta, a mixture of Beta, and a normal distribution
truncated to [0, 1], that is

S̃1(t) ∼ Beta
(

S0(t)
a1

,
1− S0(t)

a1

)
,

S̃2(t) ∼
1
2

Beta
(

S0(t)
a2

,
1− S0(t)

a2

)
+

1
2

Beta
(

S0(t)
a3

,
1− S0(t)

a3

)
,

S̃3(t) ∼ tN[0,1]

(
S0(t),

S0(t)(1− S0(t))
a4

)
,

where S0(t) = e−t and we have set a1 = 20, (a2, a3) = (10, 30) and a4 = 2. Observe
that, for every t > 0, E[S̃1(t)] = E[S̃2(t)] = S0(t) but the same does not hold true for
S̃3(t).
For each j = 1, 2, 3, the first 10 moments of S̃j(t) were computed on a grid {t1, . . . , t50}
of 50 equidistant values of t in the range [0, 2.5]. The choice of working with 10 mo-
ments will be motivated at the end of the section. The importance sampler described
in Section 1.1.3 was then used to obtain samples of size 10 000 from the distribution
of S̃j(ti), for each j = 1, 2, 3 and i = 1, . . . , 50. In Figure 1.1, for each S̃j, we plot the
true mean as well as the 95% highest density intervals for the true distribution and
for the approximated distribution obtained by exploiting 10 moments. Notice that
the focus is not on approximating the mean since moments of any order are the start-
ing point of our procedure. Interestingly, the approximated intervals show a very
good fit to the true ones in all the three examples. As for the Beta case, the fit is exact
since the Beta-shaped weight function allows the true density to be recovered with
the first two moments. As for the mixture of Beta, exact and approximated intervals
can hardly be distinguished. Finally, the fit is pretty good also for the intervals in the
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truncated normal example. Similarly, in Figure 1.2 the true and the approximated
densities of each S̃j(t) are compared for fixed t in {0.1, 0.5, 2.5}. Again, all the three
examples show a very good pointwise fit.

0 0.5 1 1.5 2 2.5

0

0.5

1

0 0.5 1 1.5 2 2.5

0

0.5

1

0 0.5 1 1.5 2 2.5

0

0.5

1

FIGURE 1.1: Mean of S̃j(t) (dashed black) and 95% highest density
intervals for the true distribution (solid black) and the approximated
distribution (dashed red) for the Beta (j = 1), mixture of Beta (j =
2) and truncated normal (j = 3) examples (left, middle and right,

respectively).

This section is concluded by assessing how the choice of N affects the approxima-
tion error. To this end, for each instant t on the grid, the true and approximated
distributions of S̃j(t) are compared by computing the integrated squared error (L2

error) between the two. Thus the average of these values is considered as a measure
of the overall error of approximation. The results are illustrated in Figure 1.3. As
expected, the approximation is exact in the Beta example. In the two other cases,
it can be observed that the higher is the number of exploited moments, the lower
is the average approximation error. Nonetheless, it is apparent that the incremental
gain of using more moments is more substantial when N is small whereas it is less
impactful as N increases: for example in the mixture of Beta case, the L2 error is 2.11,
0.97, 0.38 and 0.33 with N equal to 2, 4, 10 and 20 respectively. Moreover, when us-
ing a large number of moments, e.g. N > 20, some numerical instability can occur.
These observations suggest that working with N = 10 moments in (1.12) strikes a
good balance between accuracy of approximation and numerical stability.

1.1.4 Bayesian inference

In this section the characterization of the posterior moments of S̃(t) provided in
Proposition 1.1.2 is combined with the approximation procedure described in Sec-
tion 1.1.3. The model specification (1.4) is completed by assuming an extended
gamma prior for h̃(t), with exponential base measure P0(dy) = λ exp(−λy)dy, and
considering the hyperparameters c and β random. Finally we choose for both c and
β independent gamma prior distributions with shape parameter 1 and rate parame-
ter 1/3 (so to ensure large prior variance) and set λ = 1. Given a sample of survival
times X = {X1, . . . , Xn}, the first N moments of the posterior distribution of S̃(t) are
estimated for t on a grid of q equally-spaced points {t1, . . . , tq} in an interval [0, M].
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FIGURE 1.2: True density (solid black) and approximated one (dashed
red) at time values t = 0.1 (left column), t = 0.5 (middle column)
and t = 2.5 (right column), for the Beta (j = 1, top row), mixture of
Beta (j = 2, middle row) and truncated normal (j = 3, bottom row)

examples.

Such estimates are then exploited to approximate the posterior distribution of S̃(ti)

for i = 1, . . . , q. This allows us to devise an algorithm for carrying out full Bayesian
inference on survival data. In the illustrations the focus will be on the estimation of
the median survival time and, at any given t in the grid, of the posterior mean, pos-
terior median, posterior mode and credibility intervals for S̃(t). The same approach
can be, in principle, used to estimate other functionals of interest.

Algorithm

The two main steps needed in order to draw samples from the posterior distribu-
tion of S̃(t), for any t ∈ {t1, . . . , tq}, are summarized in Algorithm 1.1.1. First a
Gibbs sampler is performed to marginalize the latent variables Y and the hyperpa-
rameters (c, β) and therefore, for every i = 1, . . . , q, an estimate for the posterior
moments E[S̃r(ti)|X], with r = 1, . . . , N, is obtained. The algorithm was run for
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FIGURE 1.3: Average across t of the L2 error between the true and
the approximated densities of S̃j(t), in the Beta example (blue trian-
gles), the mixture of Beta (red dots) and the truncated normal exam-
ple (black squares). The approximation is exact in the Beta example.

lmax = 100 000 iterations, with a burn-in period of lmin = 10 000. Visual investiga-
tion of the traceplots of the parameters, in the illustrations of Sections 1.1.4 and 1.1.4,
did not reveal any convergence issue. The second part consists in sampling from the
posterior distribution of S̃(ti), for every i = 1, . . . , q, by means of the importance
sampler described in Section 1.1.3. Specifically `max = 10 000 values were sampled
for each ti on the grid.

Algorithm 1.1.1 Posterior sampling

Part 1. Gibbs sampler
1: set l = 0 and admissible values for latent variables and hyperparameters,

i.e. {Y1 = Y(0)
1 , . . . , Yn = Y(0)

n }, c = c(0) and β = β(0)

2: while l < lmax, set l = l + 1, and
• update Yj = Y(l)

j for every j = 1, . . . , n

• update c = c(l) and β = β(l)

• if l > lmin, compute

µ
(l)
r,t = E[S̃r(t) |X, Y (l), c(l), β(l)] (1.13)

for each r = 1, . . . , N and for each t in the grid
3: for each r = 1, . . . , N and each t define µ̂r,t =

1
lmax−lmin

∑lmax
l=lmin+1 µ

(l)
r,t

Part 2. Importance sampler
1: for each t, use (1.12) and define the approximate posterior density of S̃(t) by

fN,t( · ) = wa,b( · )∑N
i=0

(
∑i

r=0 Gi,rµ̂r,t

)
Gi( · ), where µ̂0,t ≡ 1

2: draw a weighted posterior sample (v`,t, S`,t)`=1,...,`max of S̃(t), of size `max, from
πN,t( · ) ∝ max

(
fN,t( · ), 0

)
by means of the important sampler described in Sec-

tion 1.1.3

The drawn samples allow us to approximately evaluate the posterior distribution of
S̃(ti), for every i = 1, . . . , q. This, in turn, can be exploited to carry out meaningful
Bayesian inference (Algorithm 1.1.2). As a remarkable example, we consider the
median survival time, denoted by m. The identity for the cumulative distribution
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function of m
P (m ≤ t|X) = P

(
S̃(t) ≤ 1/2|X

)
allows us to evaluate the CDF of m at each time point ti as ci = P

(
S̃(ti) ≤ 1/2|X

)
.

Then, the median survival time m can be estimated by means of the following ap-
proximation:

m̂ = EX [m] =
∫ ∞

0
P[m > t|X] dt ≈ M

q− 1

q

∑
i=1

(1− ci) (1.14)

where the subscript X in EX [m] indicates that the integral is with respect to the
distribution of S̃(·) conditional to X. Equivalently,

m̂ ≈
q

∑
i=1

ti(ci+1 − ci), (1.15)

with the proviso that cq+1 ≡ 1. Moreover, the sequence (ci)
q
i=1 can be used to devise

credible intervals for the median survival time, cf. Part 1 of Algorithm 1.1.2. Note
that both in (1.14) and in (1.15) the integrals on the left-hand-side are approximated
by means of simple Riemann sums and the quality of such an approximation clearly
depends on the choice of q and on M. Nonetheless, our investigations suggest that if
q is sufficiently large the estimates we obtain are pretty stable and that the choice of
M is not crucial since, for ti sufficiently large, the term 1− ci involved in (1.14) is ap-
proximately equal to 0. Finally, the posterior samples generated by Algorithm 1.1.1
can be used to obtain a t-by-t estimation of other functionals that convey meaning-
ful information such as the posterior mode and median (together with the posterior
mean), cf. Part 2 of Algorithm 1.1.2.

Algorithm 1.1.2 Bayesian inference

Part 1. Median survival time
1: use the weighted sample (v`,ti , S`,ti)`=1,...,`max to estimate, for each i = 1, . . . , q,

ci = P(S̃(ti) ≤ 1/2|X)

2: plug the ci’s in (1.15) to obtain m̂

3: use the sequence (ci)
q
i=1 as a proxy for the posterior distribution of m so to devise

credible intervals for m̂.

Part 2. t-by-t functionals
1: use the weighted sample (v`,ti , S`,ti)`=1,...,`max to estimate, for each i = 1, . . . , q,

ai = infx∈[0,1]{P(S̃(ti) ≤ x|X) ≥ 1/2} and bi = mode{S̃(ti)|X}

2: use the sequences (ai)
q
i=1 and (bi)

q
i=1 to approximately evaluate, t-by-t, posterior

median and mode respectively

3: use the weighted sample (v`,ti , S`,ti)`=1,...,`max to devise t-by-t credible intervals

The rest of this section is divided in two parts in which Algorithms 1.1.1 and 1.1.2
are applied to analyse simulated and real survival data. In Section 1.1.4 the focus
is on the estimation of the median survival time for simulated samples of varying
size. In Section 1.1.4 we analyse a real two-sample dataset and we estimate posterior
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median and mode, together with credible intervals, of S̃(t). In both illustrations our
approximations are based on the first N = 10 moments.

Application to simulated survival data

Consider four samples of size n = 25, 50, 100, 200, from a mixture f of Weibull dis-
tributions, defined by

f =
1
2

Weib(2, 2) +
1
2

Weib(2, 1/2).

After observing that the largest observation in the samples is 4.21, we set M = 5
and q = 100 for the analysis of each sample. By applying Algorithms 1.1.1 and
1.1.2 we approximately evaluate, t-by-t, the posterior distribution of S̃(t) together
with the posterior distribution of the median survival time m. In Figure 1.4 the
focus is on the sample corresponding to n = 100. On the left panel, true survival
function and Kaplan–Meier estimate are plotted. By investigating the right panel it
can be appreciated that the estimated HPD credible regions for S̃(t) contain the true
survival function. Moreover, the posterior distribution of m is nicely concentrated
around the true value m0 = 0.724.
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FIGURE 1.4: (Simulated dataset, n = 100.) Left: true survival func-
tion (red line) and Kaplan–Meier estimate (balk line). Right: true sur-
vival function (red line) and estimated posterior mean (black solid
line) with 95% HPD credible intervals for S̃(t) (black dashed lines);
the blue plot appearing in the panel on the right is the posterior dis-

tribution of the median survival time m.

The performance of the introduced methodology is investigated as the sample size n
grows. Table 1.1 summarizes the values obtained for m̂ and the corresponding cred-
ible intervals. For all the sample sizes considered, credible intervals for m̂ contain
the true value. Moreover, as expected, as n grows, they shrink around m0: for ex-
ample the length of the interval reduces from 0.526 to 0.227 when the size n changes
from 25 to 200. Finally, for all these samples, the estimated median survival time m̂
is closer to m0 than the empirical estimator m̂e.
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TABLE 1.1: (Simulated datasets.) Comparison of the estimated me-
dian survival time (m̂) obtained by means of our Bayesian nonpara-
metric procedure (BNP) and the empirical median survival time m̂e,
for different sample sizes. For BNP estimation we show m̂, the ab-
solute error |m̂ − m0| and the 95%-credible interval (CI); last two
columns show the empirical estimate m̂e and the corresponding ab-

solute error |m̂e −m0|. The true median survival time m0 is 0.724.

BNP Empirical

sample size m̂ error CI m̂e error

25 0.803 0.079 (0.598, 1.124) 0.578 0.146

50 0.734 0.010 (0.577, 0.967) 0.605 0.119

100 0.750 0.026 (0.622, 0.912) 0.690 0.034

200 0.746 0.022 (0.669, 0.896) 0.701 0.023

Application to real survival data

The described methodology is now used to analyse a well known two-sample dataset
involving leukemia remission times, in weeks, for two groups of patients, under ac-
tive drug treatment and placebo respectively. The same dataset was studied, e.g., by
[85]. Observed remission times for patients under treatment (T) are

{6, 6, 6, 6∗, 7, 9∗, 10, 10∗, 11, 13, 16, 17∗, 19∗, 20∗, 22, 23, 25∗, 32∗, 32∗, 34∗, 35∗},

where stars denote right-censored observations. On the other side, remission times
of patients under placebo (P) are all exact and coincide with

{1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23}.

For this illustration we set M = 2 max(X), that is M = 70, and q = 50. For both
samples posterior mean, median and mode as well as 95% credible intervals, are
estimated and compared. In the left panel of Figure 2.3 such estimates are plotted
for sample T. By inspecting the plot, it is apparent that, for large values of t, poste-
rior mean, median and mode show significantly different behaviors, with posterior
mean being more optimistic than posterior median and mode. It is worth stressing
that such differences, while very meaningful for clinicians, could not be captured by
marginal methods for which only the posterior mean would be available. A fair anal-
ysis must take into account the fact that, up to t = 23, i.e. the value corresponding
to the largest non-censored observation, the three curves are hardly distinguishable.
The different patterns for larger t might therefore depend on the prior specification
of the model. Nonetheless, this example is meaningful as it shows that a more com-
plete posterior analysis is able to capture differences, if any, between posterior mean,
median and mode.

When relying on marginal methods, the most natural choice for estimating the un-
certainty of posterior estimates consists in considering the quantiles intervals corre-
sponding to the output of the Gibbs sampler, that we refer to as marginal intervals.
This leads to consider, for any fixed t, the interval whose lower and upper extremes
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are the quantiles of order 0.025 and 0.975, respectively, of the sample of conditional
moments {µ(lmin+1)

1,t , . . . , µ
(lmax)
1,t } defined in (1.13). In the middle panel of Figure 2.3

the estimated 95% HPD intervals for S̃(t) and the marginal intervals correspond-
ing to the output of the Gibbs sampler are compared. In this example, the marginal
method clearly underestimates the uncertainty associated to the posterior estimates.
This can be explained by observing that, since the underlying completely random
measure has already been marginalized out, the intervals arising from the Gibbs
sampler output, capture only the variability of the posterior mean that can be traced
back to the latent variables Y and the parameters (c, β). As a result, the uncertainty
detected by the marginal method leads to credible intervals that can be significantly
narrower than the actual posterior credible intervals that we approximate through
the moment-based approach. This suggests that the use of intervals produced by
marginal methods as proxies for posterior credible intervals should be, in general,
avoided.

The analysis is concluded by observing that the availability of credible intervals for
survival functions can be of great help in comparing treatments. In the right panel of
Figure 2.3 posterior means as well as corresponding 95% HPD intervals are plotted
for both samples T and P. By inspecting the plot, for example, the effectiveness of
the treatment seems clearly significant as, essentially, there is no overlap between
credible intervals of the two groups.
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FIGURE 1.5: Left: comparison of posterior mean (solid line), median
(dashed line) and mode (point dashed line) in dataset T, with 95%
HPD credible intervals (dashed line). The Kaplan–Meier estimate is
plotted in red. Middle: comparison of the 95% HPD credible inter-
val (dashed black line) with the marginal interval (dashed red line).
Right: comparison of samples T (black) and P (red), with posterior

means (solid) and 95% HPD credible intervals (dashed).
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1.2 Image segmentation: mixtures with hidden Markov ran-
dom fields

1.2.1 Introduction

Hidden Markov random field (HMRF) models are widely used for clustering data
under spatial constraints. Spatial dependencies are encoded by modelling the clus-
ter labels as a discrete state Markov random field (MRF) such as Ising (two clusters
or states) or Potts (more than two clusters) model [78, 307]. HMRF can be seen as
spatial extensions of independent mixture models. As for standard mixtures, one
concern is the automatic selection of the proper number of clusters in the data, or
equivalently the number of states in the HMRF. In the independent data case, sev-
eral criteria exist to select this number automatically based on penalized likelihoods
(e.g., AIC, BIC, ICL, etc.) and have been extended in the HMRF framework using
variational approximation [120]. They require running several models with differ-
ent cluster numbers so as to choose the best one, with a potential waste of compu-
tational effort as all the other models are usually discarded. Other techniques use
a fully Bayesian setting including a prior on the number of components. The most
celebrated method in this case is reversible jump Markov chain Monte Carlo [144].
Although simplifications in the inference have been proposed recently in [234], the
computational cost of reversible jump techniques remains considerably high.

In the present work, we investigate alternatives based on Bayesian nonparamet-
ric (BNP) methods. In particular, Dirichlet process mixture (DPM) models have
emerged as promising candidates for clustering applications where the number of
clusters is unknown. Nevertheless, applications of DPMs involve observations which
are assumed to be independent. For more complex tasks such as unsupervised im-
age segmentation with spatial relationships or dependencies between the observa-
tions, DPMs are not satisfactory. Therefore, we propose to introduce MRF depen-
dencies between data points in BNP models, and we term the resulting model BNP-
MRF. This requires to extend finite state space MRF models to an infinite number of
states. We show that this can be achieved by incorporating a stick-breaking scheme
in an MRF formulation more general than the standard Potts model commonly used.

The addition of MRF dependencies between data points in BNP models raises the
question of how they impact the natural clustering and rich-get-richer properties of
BNP priors? We answer this question by providing theoretical results about two
quantities of interest for BNP priors: the predictive distribution, that represents the
distribution of one datum conditional on previous observations, and the number of
clusters induced by a BNP-MRF prior.

The links to other similar attempts is reviewed in Section 1.2.1. The proposed BNP-
MRF model is explained in Section 1.2.2 and theoretical properties are investigated
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in Section 1.2.3. The model implementation using variational approximation is de-
tailed in Section 1.2.4. An illustration of its performance on an image segmentation
task is provided in Section 1.2.5 and a conclusion ends the section.

Related work

Attempts to build countably infinite state space MRF models using BNP priors have
already appeared in the literature. In particular, we can distinguish attempts such as
[79, 80, 89] from the work in [3, 256, 340, 305]. The approach in [79, 80, 89] differs in
that it is not based on a generalization of the Potts model but on a transformation of
an inference algorithm. More specifically in [79, 80], a standard mean field approx-
imation is first considered and then transformed to account for an infinite number
of states. In that sense it is closer to an Iterated Conditional Mode (ICM) algorithm
[53], but does not provide a spatial generalization of DPMs. Typically, the simple
Potts model considered in [79, 80] cannot be extended to an infinite number of states
as it will become clear in our Section 1.2.2. Other attempts include the work in [179],
but there the number of states is known to be three and the Dirichlet process (DP)
prior is used instead to model intensity distributions non-parametrically. Segmenta-
tion with spatially dependent Pitman–Yor processes (PY) has also been considered
in [308], but using Gaussian processes.

We build on the approach in [3] which differs from [256, 340, 305] which all use a
partition model representation. In particular, [340] generalizes [256] and proposes
a more efficient Markov chain Monte Carlo (MCMC) inference by means of the
Swendsen–Wang algorithm, while [305] extends this idea to hierarchical DP priors
for multiple image segmentation. In contrast to [256, 340, 305], we propose to use a
stick-breaking-based scheme for the mixing weights, thus providing a more compre-
hensive representation than partition models which integrate out the process. In ad-
dition, stick-breaking representations lead naturally to variational approximations
for performing inference [58]. The advantage is to reduce the computational cost in
complex data clustering without suffering from label switching complications. In
other words, in our approach the MRF is imposed internally in the BNP mechanics
leading to well defined infinite state HMRF models. This construction is valid for
any stick-breaking representation. We show how it can be implemented for the DP
and PY priors, and provide references for extensions to larger classes of BNP priors.

1.2.2 BNP Markov random field mixture models

The clustering task is addressed through a missing data model that includes a set
y = (y1, . . . , yn) of observed variables from Rd and a set z = (z1, . . . , zn) of missing
(also called hidden) variables whose joint distribution p(y, z | Θ) is governed by a
set of parameters denoted by Θ and possibly by additional hyperparameters φ not
specified in the notation. The latter ones are usually fixed and not considered at
first. Typically, the zi’s corresponding to group memberships (or labels), take their
values in {1, . . . , K} where K is the number of clusters or groups. We shall denote
by Z = {1, . . . , K}n the set in which z takes its values and by Θ the parameter
space. To account for dependencies between the zi’s, z can be modeled as a discrete
MRF. If in addition, the yj’s are independent conditionally on z, the joint distribution
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p(y, z | Θ) is referred to as an HMRF model. In this case, the conditional distribution
p(z | y, Θ) is also an MRF. For clustering dependent data into K groups, the most
commonly used MRF is the so-called Potts model [78, 307].

As already mentioned, our goal is to bypass the issue of selecting the number K of
clusters by considering a countably infinite number of them while allowing MRF de-
pendencies between the yi’s. The construction of the proposed model is explained
starting from the link between standard finite mixtures and Dirichlet process mix-
tures. Basic DP principles and notations are recalled in Section 1.2.2. The extension
of finite state space MRF to a countably infinite number of states is given in Section
1.2.2 and the resulting BNP-MRF mixture models is summarized in Section 1.2.2.

From finite mixtures to DP mixture models

A generative approach to clustering consists of picking one of K clusters from a
multinomial distribution with weights parameter π = (π1, . . . , πK) and then to gen-
erate a data point y from a cluster specific distribution p(y | θ∗k ) with cluster specific
parameter θ∗k . This yields a finite mixture model

p(y | θ∗, π) =
K

∑
k=1

πk p(y | θ∗k ) (1.16)

where θ∗ = (θ∗1 , . . . , θ∗K) and π are the parameters. For instance, for Gaussian mix-
tures, θ∗k = (µk, Σk) and p(y | θ∗k ) is a Gaussian distribution with mean µk and co-
variance matrix Σk, denoted by N (µk, Σk) or N (y | µk, Σk) when referring to the
probability density function (pdf). The observations (y1, . . . , yn) are therefore i.i.d.
and generated from the same mixture (1.16). It follows that the kth cluster is by defi-
nition the set of data points arising from the kth mixture component. This is usually
expressed by introducing for each yj an additional hidden variable Zj that takes its
values in {1, . . . , K}, so that p(zj = k | π) = πk. Another way to obtain a sample
from a finite mixture model consists of defining a discrete measure G = ∑K

k=1 πkδθ∗k
and then of considering the following hierarchical representation, for all j = 1, . . . , n,

θj | G i.i.d.∼ G,

yj | θj
ind∼ p( . | θj).

The subset of θj’s that are equal to θ∗k corresponds to the yj’s in the kth cluster.

In a Bayesian setting, in addition, a prior distribution is placed on θ∗ and π. The
most common choice for π is the Dirichlet distribution Dir(α1, . . . αK) depending on
a vector of positive parameters α = (α1, . . . , αK). The choice of the prior on θ∗ (de-
noted by G0) is model-specific, usually following a conjugate prior such as a Normal
inverse-Wishart distribution for Gaussian mixture models. Other cases are possible
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FIGURE 1.6: Illustration of the stick-breaking representation.

and tractable (e.g. [84]). It follows the hierarchical representation:

θ∗1 , . . . , θ∗K | G0 ∼ G0, (1.17)

π | α ∼ Dir(α1, . . . αK), (1.18)

G =
K

∑
k=1

πkδθ∗k , (1.19)

θj | G i.i.d.∼ G, j = 1, . . . , n, (1.20)

yj | θj
ind∼ p( . | θj) j = 1, . . . , n.

To become non-parametric, a first approach is to consider an infinite number of πk’s.
Using an infinite number of random variables τ = (τ1, τ2, . . . ) on [0, 1], we can con-
struct an infinite number of πk’s that sum to one as follows:

π1(τ) = τ1 and πk(τ) = τk

k−1

∏
l=1

(1− τl), k = 2, 3, . . .

The intuition behind this construction, referred to as stick-breaking, is that it consists
of recursively breaking a unit-length stick as shown in Fig. 1.6. It follows an explicit
formula for the πk’s. Hence, the τk’s simulation replaces step (1.18), and G in (1.19)
can be replaced by

G =
∞

∑
k=1

πk(τ)δθ∗k .

We can also add after step (1.20) the fact that zj = k if θj = θ∗k and replace the last step

by yj|zj, θ∗ ind∼ p( . | θ∗zj
). Then the distributions of the τk’s need to be specified. The

Dirichlet process [117], denoted by DP(G0, α), is characterized by a base distribution
G0 and a positive scaling parameter α. Its stick-breaking representation corresponds
to i.i.d τk’s that follow the same beta B(1, α) distribution [164]. All together, using
the same notation G0 for the prior of each θ∗k simulated as i.i.d. variables, it comes
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the following hierarchical representation:

θ∗k | G0
i.i.d.∼ G0, k = 1, 2, . . . , (1.21)

τk | α
i.i.d.∼ B(1, α), k = 1, 2, . . . ,

πk(τ) = τk

k−1

∏
l=1

(1− τl), k = 1, 2, . . . , (1.22)

G =
∞

∑
k=1

πk(τ)δθ∗k , (1.23)

θj | G i.i.d.∼ G, and zj = k if θj = θ∗k (1.24)

yj | zj, θ∗ ind∼ p( . | θ∗zj
). (1.25)

The above hierarchical representation corresponds to a countably infinite mixture
model referred to as a Dirichlet process mixture (DPM) model. It is an explicit char-
acterization of the DP (Eq. (1.21) to (1.23)) and of the DPM (Eq. (1.21) to Eq. (1.25))
using a stick-breaking construction. The stick-breaking representation will be par-
ticularly useful in our study for both the definition of our model (Sections 1.2.2 and
1.2.2) and its estimation (Section 1.2.4).

Infinite MRF priors

The explicit use of the labels z = (z1, . . . , zn) in the DPM construction above makes
it closer to clustering generative models and opens the way to an HMRF extension.
Such a generalization is only possible from Potts models with an external field pa-
rameter. In the finite state space case, an MRF model is defined using a depen-
dence structure coded via a graph G whose nodes correspond to the variables. A
K-state Potts model with an external field, defined over z = (z1, . . . , zn) with for all
j = 1, . . . , n, zj ∈ {1, . . . , K}, corresponds to the following pdf,

p(z; β, v) ∝ exp

(
n

∑
j=1

vzj + β ∑
i∼j

δ(zi=zj)

)
, (1.26)

where i ∼ j means that i and j are neighbors, i.e. linked by an edge, in the con-
sidered dependence structure described by graph G, δ(zi=zj) is the indicator function
which is 1 if zi = zj and 0 otherwise, β is a positive scalar interaction parameter and
v = (v1, . . . , vK) represents an additional external field parameter where each vk is a
scalar. The distribution (1.26) is insensitive to an addition of the same constant to all
the vk’s. Such non-identifiability can be overcome by an additional constraint on v
such as requiring ∑K

k=1 πk = 1 with vk = log πk. The Potts model in (1.26) can then
be rewritten as

p(z; β, π) ∝

(
n

∏
j=1

πzj

)
exp

(
β ∑

i∼j
δ(zi=zj)

)
. (1.27)
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In the finite state space case, we can equivalently use the Gibbs representation,

p(z; β, π) ∝ eV(z;β,π), (1.28)

where V(z; β, π) := ∑n
j=1 log πzj + β ∑i∼j δ(zi=zj) is often referred to as the energy

function. The first sum in V represents the first order potentials while the second
sum represents the second order potentials. In the finite state space case, the Ham-
mersley–Clifford theorem [53] applied to the Gibbs representation (1.28) entails that
the distribution in (1.26) is a Markov random field. What is interesting about for-
mulas (1.26) and (1.27) is that they do not involve the number of states K. As long
as a stick-breaking construction is available, we can consider a countably infinite
number of probabilities πk that sum to one, i.e., ∑∞

k=1 πk = 1 and define the same
energy function V as before but over an infinite countable set of states. Using the
Gibbs representation (1.28), the Hammersley–Clifford theorem still holds if we can
show that ∑z eV(z;π,β) < ∞, where the sum runs over all n-uples of positive integers
z ∈ {1, 2, . . .}n. Note that this latter condition that is automatically satisfied in the
finite state space case (for reasonable potential functions), may not be satisfied in the
infinite case. However, the stick-breaking representation of π ensures this property
since:

∑
z

eV(z;β,π)
(a)
≤
(

∑
z

n

∏
j=1

πzj

)
eβ

n(n−1)
2 ,

(b)
= eβ

n(n−1)
2 < ∞

where we used for (a) the fact that n(n − 1)/2 is the maximum number of neigh-
bors among n observations (complete dependence or graph), while (b) comes from
∑z ∏n

j=1 πzj =
(

∑∞
k=1 πk

)n
= 1. It follows that p(z; β, π), in the infinite state space

case, is still a valid probability distribution and is an MRF by the Hammersley–
Clifford theorem. Such a generalization is possible because of the presence of the ex-
ternal field parameters πk that satisfy ∑∞

k=1 πk = 1 as ensured by the stick-breaking
construction. A standard Potts model with equal or no external field parameters
cannot be as simply extended to an infinite countable state space because in the K-
state case this Potts model is equivalent to πk = 1/K for all k which possesses a
degenerate limit when K tends to infinity.

BNP-MRF mixture models

The stick-breaking representation amounts to identifying a set of random variables
τ = (τk)

∞
k=1 with each τk ∈ [0, 1] and so that the weights πk are defined by (1.22).

Then the Potts model construction (1.27) is valid for any set of parameters τ =

(τk)
∞
k=1 with each τk ∈ [0, 1]. Bayesian non-parametric priors specify a prior dis-

tribution on τk’s. For instance, as already mentioned for the DP stick-breaking, all
τk’s are independent and identically distributed according to a B(1, α) distribution.
For the Pitman–Yor (PY) process [270], the τk’s are independent but not identically
distributed with

τk | α, σ
ind∼ B(1− σ, α + kσ) for k = 1, 2, . . . , (1.29)
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where σ ∈ (0, 1) is a discount parameter and α a concentration parameter α > −σ.
The PY is a two-parameter generalisation of the DP which allows to control the tail
behavior when modeling data with either exponential or power-law tails [164, 270].
When σ = 0, the PY reduces to a DP. More general stick-breaking representations
are possible (e.g., for Gibbs-type priors [93, 131] or homogeneous normalized ran-
dom measures with independent increments (NRMIs) [114]) but the Pitman–Yor
case provides a clear interpretation in terms of number of clusters. The rich-gets-
richer property of the DP is preserved meaning that there are a small number of
large clusters, but there is also a large number of small clusters with parameter σ

decreasing the probability that observations join small clusters. The PY yields a
power-law behavior which can make it more suitable for a number of applications.
In other words, the number of clusters grows as O(nσ) for the PY while it grows
more slowly at O(log n) for the DP.

The extension we propose is therefore to augment the original HMRF formulation
with additional variables (τk)

∞
k=1. We refer to it as the BNP-MRF mixture model. It

corresponds to the following hierarchical construction written here in the PY case:

θ∗k | G0
i.i.d.∼ G0, k = 1, 2, . . . , (1.30)

τk | α, σ
ind∼ B(1− σ, α + kσ), k = 1, 2, . . . , (1.31)

πk(τ) = τk

k−1

∏
l=1

(1− τl), (1.32)

p(z | τ; β) ∝

(
n

∏
j=1

πzj(τ)

)
exp

(
β ∑

i∼j
δ(zi=zj)

)
, (1.33)

yj | zj, θ∗ ind∼ p(yj | θ∗zj
) . (1.34)

The prior on τk’s from (1.31) can be adapted to more general classes of BNP priors,
see for example Theorem 14.23 of [131] for Gibbs-type priors, and [114] for NRMIs.
Importantly, in the BNP-MRF model above, the θj’s and zj’s are not i.i.d condition-
ally on G anymore. The joint distribution (1.33) on z = (z1, . . . , zn) induces a joint
distribution on (θ1, . . . , θn) using that θj = θ∗zj

. If we still denote for simplicity by G
this joint distribution, we can define it in a similar manner as in the i.i.d. case, using
its conditional specifications,

θj|θNj ; G ∼
∞

∑
k=1

p(zj = k|zNj , τ; β) δθ∗k ,

where Nj denotes the neighbors of j in the graph dependence structure G and the
p(zj = k|zNj , τ; β)’s are the conditional specifications of (1.33).

In Section 1.2.4, we detail the case when cluster specific distributions are Gaussian,
with θ∗k = (µk, Σk) and p(yj | θ∗k ) = N (yj | µk, Σk).
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1.2.3 Predictive distribution and number of clusters for a BNP-MRF prior

In this section, we provide theoretical results about two quantities of interest for
Bayesian nonparametric priors: the predictive distribution, that represents the dis-
tribution of one datum conditional on previous observations, and the number of
clusters induced by a BNP-MRF prior. We consider data of varying sample size, and
denote by Gn the subgraph of G induced by node {1, . . . , n}.
We focus on the large class of Gibbs-type priors [93], of which the DP and PY are
special cases. Consider n observations (θ1, . . . , θn) sampled from a BNP-MRF prior
Eq (1.30)-(1.33) but using a Gibbs-type prior instead of PY prior (1.31). We are in-
terested in the predictive distribution of observation θn+1 conditional on (θ1, . . . , θn),
but unconditional on G. With a BNP-MRF prior, this predictive distribution depends
on the structure of the graph G, more specifically on the neighbors of θn+1. Denote
by Kn the number of clusters in (θ1, . . . , θn), by (θ?1 , . . . , θ?Kn

) their Kn different values1

and by (n1, . . . , nKn) their size. We first consider the Gibbs-type prior case without
the addition of a Markov component. The predictive distribution [131] is given by,

p(θn+1 | θ1, . . . , θn) =
Vn+1,kn+1

Vn,kn

G0 +
Vn+1,kn

Vn,kn

kn

∑
`=1

(n` − σ)δθ?`
(1.35)

where the triangular array of nonnegative parameters Vn,k, 1 ≤ k ≤ n, satisfy the
backward recurrence relation

Vn,k = (n− σk)Vn+1,k + Vn+1,k+1, (1.36)

with V1,1 = 1. This predictive can be specialized to the PY case with

Vn,k =
σk(1 + α

σ )(k−1)

(1 + α)(n−1)
,

where (a)(x) := Γ(a + x)/Γ(a) denotes the rising factorial. It follows

p(θn+1 | θ1, . . . , θn) =
α + σkn

α + n
G0 +

1
α + n

kn

∑
`=1

(n` − σ)δθ?`
, (1.37)

while the case of the DP is obtained by setting σ = 0 above.

For the sake of simplicity, we propose to use the labels notation z1:n = (z1, . . . , zn)

defined so that zj = ` when θj = θ?` , we denote by {z1, . . . , zn} the set of label values
which includes only Kn different labels. In the Gibbs-type prior case, it is clear from
(1.35) that

p(zn+1 | z1:n) =
Vn+1,kn+1

Vn,kn

if zn+1 6∈ {z1, . . . , zn}, (1.38)

p(zn+1 = ` | z1:n) =
Vn+1,kn

Vn,kn

(n` − σ) if ` ∈ {z1, . . . , zn} .

1Note that the notation introduced for the different θ?j differs from that devoted to the stick-breaking
variables, θ∗j .
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The next proposition indicates how the predictive is impacted by the addition of a
Markov dependence. The neighbors of θn+1 in Gn is denoted by Nn+1 and ñ` is the
number of neighbors of θn+1 which belong to cluster `, hence satisfying ñ` ≤ n`.
Also zNn+1 = {zi, i ∈ Nn+1} denotes the labels in the neighborhood.
Proposition 1.2.1 (Predictive distribution of a Gibbs-MRF prior). The predictive dis-
tribution for a Gibbs-MRF prior is given by

p(θn+1 | θ1, . . . , θn) =
Vn+1,kn+1

Vn,kn + Vn+1,kn ηn+1
G0 +

Vn+1,kn

Vn,kn + Vn+1,kn ηn+1

kn

∑
`=1

λn+1,` δθ?`

(1.39)

where

ηn+1 = ηn+1(σ, β) = ∑
`∈zNn+1

(n` − σ)(eβñ` − 1),

λn+1,` = λn+1,`(σ, β) = (n` − σ) eβñ`δNn+1 (`).

and δNn+1(`) is 1 when ` is a label present in the neighborhood of θn+1 and 0 otherwise.

Refer to the paper [S2] for a proof.
Remark 1.2.1. When β = 0, ηn+1(σ, 0) = 0 and λn+1,`(σ, 0) = n` − σ so that the
Gibbs-type prior predictive (1.35) is recovered. In contrast, for β > 0, the above predictive
specialized to the PY-MRF case is,

p(θn+1 | θ1, . . . , θn) =
α + σkn

α + n + ηn+1
G0 +

1
α + n + ηn+1

kn

∑
`=1

λn+1,` δθ?`
, (1.40)

while the case of the DP-MRF is obtained by setting σ = 0. Comparing the probability of a
new draw for a Gibbs-type prior, Vn+1,kn+1

Vn,kn
, with that of a new draw for a Gibbs-MRF prior,

Vn+1,kn+1
Vn,kn+Vn+1,kn+1ηn+1

, we see that the MRF has the effect of reducing this probability. In the PY
case, this increase corresponds to increasing the sample size from n to n + ηn+1 when β > 0,
where ηn+1 can be quite a large number. More specifically for a label ` in the neighborhood
of zn+1, the weight of each previous observations with label ` (in the neighborhood or not) is
multiplied by a factor (eβñ` − 1). The effect is then all the more important as β is large and
as n` is large.

The predictive distribution (1.39) provides in turn the following lower bounds on
the prior expectation of the number of clusters.
Proposition 1.2.2 (Lower bound for expected number of clusters). Assume that the
graph G has maximal degree D. Then the expected prior number of clusters for a BNP-MRF
distribution has the following lower bound

E[Kn] &
α

eDβ
log n (1.41)

for the Dirichlet process and

E[Kn] & cnσe−Dβ
, (1.42)
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for the Pitman–Yor process, with some positive constant c, and where an & bn stands for
lim sup an/bn ≥ 1.

Refer to the paper [S2] for a proof.
Remark 1.2.2. We do not have a proof for the general case of Gibbs-type priors, but we
conjecture that the same power-law lower bound (1.42) as for PY holds. Note that the MRF
component of a BNP prior can only reduce the prior expected number of clusters. For in-
stance, for the DP with a simple graph where the first two nodes are connected, we have

E[K2] = 1 +
α

α + eβ
≤ 1 +

α

α + 1
= E[K2; β = 0]

where the last two terms above correspond the expectation of K2 for a DP, i.e. when β = 0.
Thus natural upper bounds that complement the lower bounds of Proposition 1.2.2 are given
by

E[Kn] . α log n

for the Dirichlet process and

E[Kn] .
Γ(α + 1)

σΓ(α + σ)
nσ (1.43)

for the Pitman–Yor process (see [267]).

1.2.4 Inference using Variational approximation

Sampling based inference (MCMC) for a similar BNP-MRF model has been pro-
posed in [256, 340] for the case of a DP prior. As an alternative, we propose a varia-
tional approximation that is facilitated by the stick-breaking representation. For that
purpose, we shall briefly recall the variational principle.

Variational Bayesian Expectation Maximization

The clustering task consists primarily of estimating the unknown labels z = (z1, . . . , zn)

from observed y = (y1, . . . , yn) assuming a joint distribution p(y, z | Θ; φ) governed
by a set of parameters denoted by Θ and often by additional hyperparameters φ.
However to perform good label estimation, the parameters Θ values (and hyperpa-
rameters φ) have to be available. A natural approach for parameter estimation is
based on maximum likelihood, where Θ is estimated by Θ̂ = arg maxΘ∈Θ p(y | Θ).
Then an estimate of z can be obtained by maximizing p(z | y, Θ̂). However, p(y | Θ)

is a marginal distribution over the unknown z variables, so that direct maximum
likelihood is intractable in general. The Expectation-Maximization (EM) algorithm
[230] is a general iterative technique for maximum likelihood estimation in the pres-
ence of unobserved latent variables or missing data. An EM iteration consists of
two steps usually referred to as the E-step in which the expectation of the so-called
complete log-likelihood is computed and the M-step in which this expectation is
maximized over Θ. An equivalent way to define EM is the following. As discussed
in [243], EM can be viewed as an alternating maximization procedure of a function
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F0 defined, for any probability distribution qZ on Z by

F0(qZ, Θ, φ) = ∑
z∈Z

qZ(z) log p(y, z | Θ; φ) + I[qZ]

= EqZ

[
log

p(y, Z | Θ; φ)

qZ(z)

]
(1.44)

where I[qZ] = −EqZ [log qZ(Z)] is the entropy of qZ (Eq denotes the expectation with
regard to q). The functionF0 depends on observations y which are fixed throughout,
hence are omitted from the notation.

Instead of considering only point estimation of Θ, a fully Bayesian approach can be
carried out, for instance when prior knowledge on the parameters Θ is available. In
this case, we have to compute

p(z | y) =
∫

Θ
p(z | y, Θ) p(Θ | y)dΘ (1.45)

Integrating out Θ in this way requires the computation of p(Θ | y) which is not
usually available in closed-form. As an alternative to costly simulation-based meth-
ods (MCMC), an EM-like procedure using variational approximation can provide
approximations of the marginal posterior distributions p(Θ | y) and p(z | y). This
approach is referred to as VBEM for Variational Bayesian EM [48]. Let qZ and qΘ

denote respectively distributions over Z and Θ that will serve as approximations to
the true posteriors. Similarly to standard EM, VBEM is maximizing the following
free energy function defined for any qZ and qΘ distributions

F (qZ, qΘ, φ) = EqZqΘ

[
log

p(y, Z, Θ; φ)

qZ(z)qΘ(Θ)

]
alternatively over qZ, qΘ and φ. Adding a prior on Θ is formally the same as adding
Θ to the missing variables, while the hyperparameters φ play the role of the param-
eters of interest in maximum likelihood estimation.

The alternate maximization of F yields the VBEM algorithm that decomposes into
three steps. It is easy to show, using the Kullback–Leibler (KL) divergence proper-
ties, that the maximization over qZ and qΘ leads to the following E-steps (see Ap-
pendix A of [77]). At the rth iteration, using current values φ(r−1) and q(r−1)

Θ , we get
the following updating,

VB-E-Z: q(r)Z (z) ∝ exp E
q(r−1)

Θ
[log p(y, z, Θ; φ(r−1))],

VB-E-Θ: q(r)Θ (Θ) ∝ exp E
q(r)Z

[log p(y, Z, Θ; φ(r−1))],

VB-M-φ: φ(r) = arg max
φ

E
q(r)Z q(r)Θ

[log p(y, Z, Θ; φ)].

Also, it is worth noticing that if Y and Z are independent of φ conditionally on Θ,
as this is often the case when φ gathers the parameters that describe the prior on Θ,
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then the VB-M-step simplifies into

φ(r) = arg max
φ

E
q(r)Θ

[log p(Θ; φ)] = arg min
φ

KL(q(r)Θ ‖p(Θ; φ)). (1.46)

Then φ(r) is the value that minimizes the KL distance between the prior p(Θ; φ)

and the variational posterior q(r)Θ (Θ). In the conjugate exponential family case, it
is known that both distributions belong to the same family [48]. If this family is
identifiable it follows that φ(r) = φ̂(r) where φ̂(r) are the variational parameters
defining q(r)Θ (Θ). A more detailed example is given in Section 1.2.4.

In practice, we can decide which parameters are treated as genuine parameters Θ

or as hyperparameters φ, depending on whether some prior knowledge is available
only for a subset of the parameters or whether the model has hyperparameters φ for
which no prior information is available. Also for complex models, qΘ and qZ may
need to be further restricted to simpler forms, such as factorized forms, in order to
ensure tractable VB-E-steps. This is illustrated in the next section for the PY-MRF
inference.

VBEM for a PY-MRF mixture model with Gaussian components

The VBEM steps are described for a PY-MRF mixture model as defined in Eq. (1.31)
to (1.34), with Gaussian distributed observations y. As hyperparameters α and σ

may have a significant effect on the growth of the number of clusters with data sam-
ple size, it is possible to specify priors on them. For the DP case obtained with σ = 0,
it is suggested in [58] to use a gamma prior over α with two hyperparameters s1 and
s2, i.e. α ∼ G(s1, s2) where s1 and s2 can be estimated or fixed. A natural question
that arises is then whether one can also find a tractable prior for the discount pa-
rameter σ. We propose to use the following prior that accounts for the constraints
σ ∈ (0, 1) and α > −σ,

p(α, σ; s1, s2, a) = p(α | σ; s1, s2) p(σ; a) (1.47)

where p(α | σ; s1, s2) is a shifted gamma distribution SG(s1, s2, σ) and p(σ; a) is a
distribution depending on some parameter a not specified for the moment but that
can typically be taken as the uniform distribution on the interval (0, 1). Such a
shifted gamma distribution is the distribution of a variable U − σ where σ is con-
sidered as fixed and U follows a gamma distribution G(s1, s2). The pdf of this
shifted gamma distribution is obtained from the standard gamma distribution as
p(α | σ; s1, s2) = G(α + σ; s1, s2). It follows that the joint distribution of the observed
data y and all latent variables becomes

p(y, z, Θ; φ) = p(α, σ; s1, s2, a)
n

∏
j=1

p(yj|zj, θ∗)p(z|τ; β)
∞

∏
k=1

p(τk|α, σ)
∞

∏
k=1

p(θ∗k ; ρk),

where the notation ∏∞
k=1 is a distributional notation, and in addition to the terms

already defined in (1.31) and (1.33), we specify the likelihood term (1.34) as a Gaus-
sian distribution p(yj|θ∗zj

) = N (yj|µzj , Σzj) and the G0 prior on cluster specific pa-
rameters θ∗k = (µk, Σk) as a Normal-inverse-Wishart distribution parameterized by
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ρk = (mk, λk, Ψk, νk) with a pdf

p(θ∗k ; ρk) = NIW(µk, Σk; ρk) = N (µk; mk, λ−1
k Σk) IW(Σk; Ψk, νk).

In the above notation, we consider as hyperparameters the set φ = (s1, s2, a, β, (ρk)
∞
k=1)

while Θ = (τ, α, σ, θ∗).

In most variational approximations, the posteriors are approximated in a factorized
form (mean-field approximation). In particular, the intractable MRF posterior on z
is approximated as qz(z) that factorizes so as to handle intractability due to spatial
dependencies, namely

qz(z) =
n

∏
j=1

qzj(zj).

Then, the infinite state space for each zi is dealt with by choosing a truncation of the
state space to a maximum label K [58]. In practice, this consists of assuming that
the variational distributions qzj , for j = 1, . . . , n, satisfy qzj(k) = 0 for k > K and
that the variational distribution on τ also factorizes as qτ(τ) = ∏K−1

k=1 qτk(τk), with
the additional condition that τK = 1. Thus, the truncated variational posterior of
parameters Θ is given by

qΘ(Θ) = qα,σ(α, σ)
K−1

∏
k=1

qτk(τk)
K

∏
k=1

qθ∗k (θ
∗
k ). (1.48)

These forms of qz and qΘ lead to four VB-E steps and three VB-M steps summarized
below (refer to [2] for details). Set the initial value of φ to φ(0). Then, repeat itera-
tively the following steps. The iteration index is omitted in the update formulas for
simplicity.

VB-E-τ step

The VB-E-τ step corresponds to a variational approximation in the exponential fam-
ily case and results in a posterior from the same family as the prior. It comes for
k = 1, . . . , K,

qτk(τk) = B(τk; γ̂k,1, γ̂k,2) (1.49)

with

γ̂k,1 = 1−Eqσ [σ] + n̄k, γ̂k,2 = Eqα [α] + kEqσ [σ] +
K

∑
`=k+1

n̄`, (1.50)

where

for k = 1, . . . , K, n̄k =
n

∑
j=1

qzj(k) (1.51)

corresponds to the weight of cluster k.
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VB-E-(α, σ) step

The (α, σ) variational posterior is more complex but has a simple gamma form in the
DP (σ = 0) case. More specifically, we need to compute

ŝ1 = s1 + K− 1, and ŝ2 = s2 −
K−1

∑
k=1

ψ(γ̂k,2)− ψ(γ̂k,1 + γ̂k,2) (1.52)

where ψ(·) is the digamma function defined by ψ(z) = d
dz log Γ(z) = Γ′(z)

Γ(z) . When

σ = 0 then qα is a gamma distribution G(ŝ1, ŝ2) and Eqα [α] =
ŝ1

ŝ2
. Otherwise (PY

case), qα,σ is only identified up to a normalizing constant but the required Eqα [α] and
Eqσ [σ] can be computed by importance sampling. See the appendix of [2] for details.

VB-E-Z step

Due to the mean field approximation and the truncation, this step consists in com-
puting, for all j = 1, . . . , n and for k ≤ K,

qzj(k) =
q̃j(k)

∑K
`=1 q̃j(`)

, (1.53)

where log q̃j(k) is defined by

− 1
2

{
log
∣∣∣∣ Ψ̂k

2

∣∣∣∣− d

∑
i=1

ψ

(
ν̂k + (1− i)

2

)
+ ν̂k(yj − m̂k)

TΨ̂−1
k (yj − m̂k) +

d
λ̂k

}
+

ψ(γ̂k,1)− ψ(γ̂k,1 + γ̂k,2) +
k−1

∑
l=1

ψ(γ̂l,2)− ψ(γ̂l,1 + γ̂l,2) + β ∑
i∈Nj

qzi(k),
(1.54)

where in the last sum, Nj represents the neighbours of j. In the above formula,
symbols (m̂k, λ̂k, Ψ̂k, ν̂k) are the variational hyperparameters for qθ∗k more specifically
defined in the following step and d is the dimension of the data. The advantage of
Eq. (1.53) is that it provides assignment probabilities qzi(k) and does not require
intermediate commitments to hard assignments of the zj’s. The hard assignments
can be postponed to the end if desired to get a segmentation through the following
maximum a posteriori (MAP) estimation:

ẑj = arg max
k∈{1,...,K}

qzj(k). (1.55)

VB-E-θ∗ step

This step is divided into K parts where the computation is similar to that in standard
Bayesian finite mixtures with a choice of conjugate prior, here for Gaussian distribu-
tions. Hence, for each k ≤ K, the variational posterior is a Normal-inverse-Wishart
distribution defined as

qθ∗k (µk, Σk) = NIW(µk, Σk; m̂k, λ̂k, Ψ̂k, ν̂k), (1.56)
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where the hyperparameters are updated as follows (see for instance [238])

λ̂k = λk + n̄k, ν̂k = νk + n̄k,

Ψ̂k = Ψk + Sk +
λkn̄k

λk + n̄k
(mk − µ̄k)(mk − µ̄k)

T,

m̂k =
λkmk + n̄kµ̄k

λk + n̄k
=

λkmk + n̄kµ̄k

λ̂k
,

(1.57)

with n̄k defined in (1.51) and

µ̄k =
1
n̄k

n

∑
j=1

qzj(k)yj,

Sk =
n

∑
j=1

qzj(k)(yj − µ̄k)(yj − µ̄k)
T.

(1.58)

VB-M steps

The maximization step consists of updating the hyperparameters φ = (β, s1, s2, a, ρ),
where ρ = (ρ1, . . . , ρK), by maximizing the free energy, if they are not set heuristi-
cally:

φ(r) = arg max
φ

E
q(r)Z q(r)τ q(r)α,σq(r)

θ∗
[log p(y, Z, τ, α, σ, θ∗; φ)] . (1.59)

The VB-M-step can therefore be divided into 3 independent sub-steps as listed be-
low. From the conditional independence of (s1, s2, a, ρ) and (Y , Z) given (τ, α, σ, θ∗),
the VB-M-step writes as in (1.46) so that the solutions for the VB-M-(s1, s2) (in the
DP case) and VB-M-ρ steps are straightforward. Only the β step and the M-(s1, s2, a)
step (in the PY case) are more involved.

VB-M-β: The maximization of (1.59) with respect to β leads to

β(r) = arg max
β

E
q(r)Z q(r)τ

[log p(Z|τ; β)] . (1.60)

This step does not admit a closed-form solution but can be solved numerically.

VB-M-(s1, s2, a): This step is straightforward in the DP case (σ = 0). It can be ex-
pressed easily using the fact that both the prior and the variational posterior are
Gamma distributions, and using the cross-entropy properties,

(s1, s2)
(r) = arg max

(s1,s2)

E
q(r)α

[log p(α; s1, s2)] = (ŝ(r)1 , ŝ(r)2 ) (1.61)

where (ŝ(r)1 , ŝ(r)2 ) is given in (1.52). In the more general PY case, we can solve this step
numerically using also importance sampling.



Chapter 1. Bayesian Nonparametric Mixture Modeling 47

VB-M-ρ: This step divides into K sub-steps that involve again cross-entropies,

ρ
(r)
k = arg max

ρ
E

q(r)
θ∗k
[log p(θ∗k ; ρk)] = ρ̂

(r)
k (1.62)

where ρ̂
(r)
k = (λ̂

(r)
k , ν̂

(r)
k , Ψ̂(r)

k , m̂(r)
k ) is given in Eq. (1.57).

1.2.5 Application to image segmentation

To validate the proposed approach, we consider its application to unsupervised im-
age segmentation as a spatial clustering task. Image segmentation consists of par-
titioning a digital image into distinct regions that contain pixels with similar prop-
erties. Extensive research work has been done in this field using various clustering
techniques. In practice, to be meaningful for image analysis and interpretation, the
segmented regions should closely relate to depicted objects or features of interest.
A number of tasks in image analysis often depends on the reliability of preliminary
segments, but an accurate partitioning of an image is still quite challenging.

Feature extraction for image segmentation

The color and texture features in a natural image are often very complex. For our
experiments, we mainly focus on two special types of features based on the HSV
(Hue, Saturation, Value) color space and the maximum response (MR) filter bank.
The HSV color space is often used in natural image analysis because it corresponds
better to how people experience color than the RGB color space does. Regarding the
texture information, we shall consider the MR8 filter bank [327], which consists of
38 filters but only 8 filter responses. More precisely, the MR8 filter bank contains
filters at multiple orientations but their outputs are compressed by recording only
the maximum filter response across all orientations. This achieves rotation invari-
ance. Furthermore, the images are presegmented into superpixels that group pixels
similar in color and other low-level properties [1]. In this respect, superpixels are
regarded as more natural entities that allow reducing the number of observations
drastically for running clustering algorithms. In all our experiments, each image is
presegmented into approximately 1 000 superpixels using the SLIC algorithm pro-
posed in [1]. Finally, we compute the feature vectors at superpixel level, i.e., the
average of features on the centroid of each superpixel.

Berkeley Segmentation Data Set

To quantify the performance of our segmentation algorithm, numerical experiments
were conducted on a subset of images selected from the Berkeley Segmentation Data
Set 500 (BSDS500) already studied by [33, 79], which provides multiple human an-
notated segments as many ground truths for each image. The considered subset
consists of 154 images as listed in Tables 1 and 2 in [79].

In the literature, a standard measure for comparing a test segmentation to another
is the rand index (RI) [279]. The RI is one when two segmentations are exactly the
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FIGURE 1.7: PY-MRF mixture model: Mean and standard deviation
of the PRI score over the considered subset of the BSDS500 data set as

a function of the truncation level K.

same. However, when having for one image a set of ground truths which do not
completely agree, the probabilistic rand index (PRI) [325] is preferable. Given a set
of ground truths S = (S1, . . . , ST), the PRI is defined as follows:

PRI(Stest,S) =
2

n(n− 1) ∑
i<j

[cij pij + (1− cij)(1− pij)] (1.63)

where cij = 1 if pixels i and j belong to the same segment in Stest and cij = 0
otherwise, n is the number of image pixels and pij is the probability of two pix-
els i and j having the same label, i.e., the fraction of all available ground truths
in S where pixels i and j belong to the same segment. In fact, it can be shown
that Eq. (1.63) is simply the mean of the RI computed between each pair (Stest, Sk),
namely 1

T ∑T
k=1 RI(Stest, Sk). By definition, the PRI always takes values in [0, 1], where

0 means that Stest and (S1, . . . , ST) have no similarities and 1 means all segments are
identical. The larger the PRI, the better. In practice, PRI values are often reported as
percentages in [0, 100].

Our approach has been tested on the considered subset of the BSDS500 and the sum-
mary statistics of the PRI score are shown in Figure 1.7 as a function of the truncation
level K for the PY-MRF case. Similar results were observed for the DP. It appears that
for K ≥ 30, the global performance does not change much and is satisfying with re-
spect to existing results in the literature. We compared our best results with those
reported in [79]. Table 1.2 shows that our approach outperforms the existing re-
sults. The improvement in PRI may appear overall small but it can be assessed by
visualizing original images and their segmentations. We show in Figure 1.8 segmen-
tation results for four images. The main differences between the non spatial PY and
PY-MRF mixture models can be visualized for the first image in the ground and wa-
ter which are segmented in the latter case into a smaller number of regions whose
shapes are in addition smoother. This is typical of more spatial interaction in the
clustering process. Similarly, the same phenomenon is also visible in the peak part
of the second image, in the sky and grass parts of the third image and in the plant
parts of the fourth image.

We also examined, for the PY-MRF mixture model with K = 50, the values of the
expected α, σ and β for each of the 154 segmented images presented in Figure 1.9
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Proposed model Results given in [79]

PRI (%) PY-MRF DPM iHMRF MRF-PYP Graph Cuts

Mean 79.05 74.15 75.50 76.49 76.10

Median 80.62 75.49 76.89 78.08 77.59

St. Dev. 7.9 8.4 8.2 7.9 8.3

TABLE 1.2: Performance comparison: Summary statistics of the PRI
score over the 154 images from BSDS500 studied by [80] for our PY-

MRF mixture model and the approaches tested in [80, 79].

as scatter plots (one point per image). Recall from Section 1.2.4 that α and σ are
elements of the parameters Θ while β is considered as a hyperparameter from φ.
Figure 1.9 shows also the correlations (across the 154 images) between the expected
values of α, σ and β. It appears that the estimated σ values are most of the time
smaller than 0.5 and sometimes closer to 0 with some anti-correlation with respect
to α values. In contrast, β values appear quite independent from α or σ.

In terms of pure PRI performance, the BSDS500 data set is not an easy example
because the ground truth segmentations are labeled manually by humans and are
sometimes quite subjective and inconsistent across users. However, this example
allows comparison of methods and visualization. Two interesting findings are that
the choice of K does not seem to be too sensitive as soon as K is large enough, and
there seems to be some correlation between α and σ while β is rather independent
of the latest. Further analysis would be needed to confirm these properties but in
practice, they could be used to guide the segmentations into more or less spatially
smooth versions without risking to eliminate too small segments.

1.2.6 Discussion

In this paper, we proposed a general scheme to build BNP priors that can model de-
pendencies through the addition of a Markov random field term. In contrast to other
existing attempts that reduce to spatially constrained standard BNP priors such as
[79, 80], our proposal leads to proper spatial priors. Our construction is based on
the stick-breaking representation and was illustrated starting from the Dirichlet and
Pitman–Yor processes, although this approach could be extended to other forms of
BNP priors admitting a stick-breaking representation such as Gibbs-type priors. The
stick-breaking representation was further exploited to derive clustering properties
of the model and to provide a variational inference algorithm. In addition to the
usual BNP parameters, an estimation of the Markov interaction parameter β was
proposed. The variational approximation chosen was based on a standard trunca-
tion but it would be interesting to investigate other approximations, e.g. [337]. Also
the variational algorithm is greatly simplified for standard stick-breaking represen-
tations (e.g. DP and PY) with independent weight variables. Nevertheless, it would
be interesting to investigate more general stick-breaking representations possibly
using some MCMC counterpart for estimation.
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FIGURE 1.8: Segmentation results for four images from the BSDS500
data set. From left to right, columns show respectively, the original
images, the segmentation results with the PY and PY-MRF mixture

models.

The approach was illustrated on a challenging unsupervised image segmentation
task with good results with respect to the literature, but the proposed scheme is quite
flexible and can be used in more general settings including community detection or
disease mapping in epidemiology.
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FIGURE 1.9: Estimated parameter values (ᾱ, σ̄) obtained from VB-
E steps and β̂ obtained from a VB-M step using the PY-MRF model
with truncation level K = 50, on the 154 images from the Berkeley

benchmark.
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1.3 Ecotoxicological application to species sensitivity distri-
bution modeling

1.3.1 Introduction

Assessing the response of a community of species to an environmental stress is crit-
ical for ecological risk assessment. Methods for this purpose vary in levels of com-
plexity and realism. Species Sensitivity Distribution (SSD) represents an intermedi-
ate tier, more refined than rudimentary assessment factors [272] but practical enough
for routine use by environmental managers and regulators in most developed coun-
tries (Australia, Canada, China, EU, South Africa, USA. . . ). The SSD approach is
intended to provide, for a given contaminant, a description of the tolerance of all
species possibly exposed using information collected on a sample of those species.
This information consists of Critical Effect Concentrations (CECs), a concentration
specific to a species which marks a limit over which the species suffers a critical level
of effect. This is for instance the concentration at which 50% of the tested organisms
died (Lethal Concentration 50%), or the concentration which inhibited growth or re-
production by 50% compared to the control experiment (Lethal Concentration 50%,
LC50). Each CEC is the summary of long and costly bioassay experiments for a sin-
gle species, so they are rarely available in large number. Typical sample sizes range
from 10 to 15 [108].

To describe the tolerance of all species to be protected, the distribution of the CECs is
then estimated from the sample. In practice, a parametric distributional assumption
is often adopted [121] where the CECs are assumed to follow a log-normal, log-
logistic, triangular or BurrIII distributions.

Once the response of the community is characterised by the distribution, the goal of
risk assessment is to define a safe concentration protecting all or most of the species.
In the case of distributions without a lower threshold strictly above 0, a cut-off value
is often chosen as the safe concentration. Typically, this is the Hazardous Concen-
tration for 5% of the Species HC5, which is the 5th percentile of the distribution.
Reasonings behind this choice include: that the lowest bound of the confidence in-
terval around the 5th percentile will be used instead of the estimate, that a safety
factor will be subsequently applied to that value and that ecosystems have a certain
resilience to perturbations.

The lack of justification for the choice of any given parametric distribution has sparked
several research directions. Some authors [341, 153] have sought to find the best
parametric distribution by model comparison using goodness-of-fit measures. The
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general understanding is that no single distribution seems to provide a superior fit
and that the answer is dataset dependent [121]. Therefore, the log-normal distri-
bution has become the customary choice, notably because it readily provides con-
fidence intervals on the HC5, and because model comparison and goodness of fit
tests have relatively low power on small datasets, precluding the emergence of a
definite answer to the question. Another research direction consisted in seeking to
avoid any reference to a distribution, using so-called nonparametric or distribution-
free approaches. Those efforts included using the empirical distribution function
[309, 180], bootstrap resampling [336] or nonparametric kernel density estimation
[338]. All these approaches have in common that they require large sample sizes to
be effectively applicable. Finally, authors have considered the possibility that the
distribution of the CECs might not be a single distribution but rather a mixture of
distributions [343], datasets being an assemblage of several log-normally distributed
subgroups [186]. This is more realistic from an ecological point of view because sev-
eral factors influence the tolerance of a species to a contaminant such as the taxo-
nomic group or the mode of action, and contaminant such as pesticides might even
target specific species groups. Therefore, there is strong evidence in favour of the
presence of groups of CECs, although the CECs within a group might remain log-
normally distributed.

Ignorance of the group structure is a strong motivation for a nonparametric ap-
proach. However, the method must remain applicable to small datasets, which sug-
gests trying to improve on the existing frequentist nonparametric methods. Bayesian
nonparametric mixture models offer an interesting solution for both large and small
datasets, because the complexity of the mixture model adapts to the size of the
dataset. It offers a good compromise between a simplistic one-component para-
metric model and a kernel density method which in a certain sense lacks flexibility
and might cause overfitting. Moreover, the low amount of information available in
small datasets to estimate the groups parameters can be complemented via the prior,
as some a priori degree of information is generally available from other species or
contaminants [36].

The rest of the section is organised as follows. In Section 1.3.2 we present the BNP
model and existing frequentist models for SSD and explain how to obtain a density
estimate. Then in Section 1.3.3 we compare the different methods on a real dataset,
illustrating the benefits of the BNP SSD.

1.3.2 Models for SSD

Given that concentrations vary on a wide range, it is common practice to work on
log-transformed concentrations. Consider a sample of n log-concentrations denoted
by X = (X1, . . . , Xn). We propose to carry out density estimation for the SSD based
on sample X by use of nonparametric mixtures. Bayesian nonparametric mixtures
were introduced in [217] with DPM. Generalizations of the DPM correspond to al-
lowing the mixing distribution to be any discrete nonparametric prior. A large class
of such prior distributions is obtained by normalizing increasing additive processes
[? ]. The normalization step, under suitable conditions, gives rise to so-called NRMI
as defined by [? ], see also [43] for a recent review. An NRMI mixture model is
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defined hierarchically as:

Xi|µi, σ
ind∼ k(·|µi, σ), µi|P̃ i.i.d.∼ P̃, i = 1, . . . , n, (1.64)

P̃ ∼ NRMI, σ ∼ Ga(aσ, bσ).

where k is a kernel, which we assume parametrized by some θ = (µ, σ) ∈ R ×
R+, and P̃ is a random probability on R whose distribution is an NRMI. In our
model, all clusters have a common variance. This is easier to fit on a small dataset,
because information about the variance is pooled across clusters. As described in
the Introduction, concentrations are commonly fitted with a log-normal distribution.
Our aim is to move from this parametric model to the nonparametric one in (1.64). In
order to allow comparisons to be made, we stick to the normal specification for k on
the log-concentrations X by letting: k(x|µ, σ) = N (x|µ, σ). Under this framework,
density estimation is carried out by evaluating the posterior predictive density along
the lines of [43]:

f̂ (x|P̃, X) =
∫∫

k(x|µ, σ)dπ(σ)dP̃(µ) (1.65)

for any x in R, where π denotes the posterior distribution of σ.

To specify the prior, we choose as mixing random measure the normalized stable
process [190] with:

i a stability parameter γ = 0.4, which controls the flatness of the prior on the
number of clusters. The parameter γ can take values in (0, 1). Taking the limit
γ → 0 reduces the model to a Dirichlet process, larger values of γ lead to less
informative priors on the number of clusters. The parameter γ was chosen as a
good compromise between model flexibility and numerical stability. The total
mass parameter is, without loss of generality, set equal to 1.

ii a base measure (which corresponds to the mean of the random probability mea-
sure) P0( · ) = N( · | ϕ1, ϕ2) with mean ϕ1 and standard deviation ϕ2, hyperpa-
rameters fixed a priori to specify a certain knowledge in the degree of smooth-
ness

iii a common variance for all the clusters with a vaguely informative prior distri-
bution Ga(0.5, 0.5).

Recent years have witnessed the appearance of a wealth of softwares dedicated to
implement Bayesian nonparametric models and sample from their posterior. To cite
a few, the R package DPpackage, is a rather comprehensive bundle of functions for
Bayesian nonparametric models, while Bayesian Regression [183] is a software for
Bayesian nonparametric regression. For posterior sampling, we use the R pack-
age BNPdensity and the function MixNRMI1 which implements BNP density models
under a general specification of normalized random measures based on the gener-
alised gamma processes [see 43]. The package is available from the Comprehensive
R Archive Network (CRAN).

To illustrate the interest of the Bayesian nonparametric SSD, we compare our pro-
posed BNP model to two commonly used frequentist models: the normal distribu-
tion [4] and the nonparametric KDE recently proposed by [338]. For both frequentist



Chapter 1. Bayesian Nonparametric Mixture Modeling 55

approaches, the data is assumed to be iid. Density estimates take on respectively the
following form (µ̂ and σ̂ are MLE)

f̂N (x) = N (x | µ̂, σ̂) and f̂KDE(x) =
1
n

n

∑
i=1
N (x |Xi, 1.06σ̂n−

1
5 ). (1.66)

Model comparison and cross-validation

For the purpose of comparing the predictive performance of the model, we resort
to Leave-One-Out (LOO) cross-validation. We compute the LOO for each of the
methods as ∀i, LOOi = f̂ (Xi |X−i) where f̂ (x |X−i) is the density for one of the three
methods estimated from X with Xi left out. The LOO for the BNP model correspond
to the conditional predictive ordinate (CPO) statistics which are commonly used in
applications, see [125]. A CPO statistic is defined for each log-concentration Xi as
follows:

CPOi = f̂ (Xi|X−i) =
∫

k(Xi|θ)dπ(θ|X−i) (1.67)

where X−i denotes the whole sample X but Xi, dπ(θ|X−i) is the posterior distribu-
tion associated to X−i and f̂ is the (cross-validated) posterior predictive distribution
of Equation (1.65). As shown by [43], CPO can be easily approximated by Monte
Carlo as

ĈPOi =

(
1
T

T

∑
t=1

1
k(Xi|θ(t))

)−1

(1.68)

where {θ(t), t = 1, 2, . . . , T} is an MCMC sample from the posterior distribution.

Quantile estimation and HC5

The quantity of interest for ecological risk assessment is the HC5, which corresponds
to the 5th percentile of the SSD distribution. We choose as an estimator the median
of the posterior distribution of the 5th percentile, while the 95% credible bands are
formed by the 2.5% and 97.5% quantiles of the posterior distribution of the 5th per-
centile. The 5th percentile of the KDE is obtained by numerical inversion of the
cumulative distribution function, and the confidence intervals using nonparamet-
ric bootstrap. The 5th percentile of the normal SSD and its confidence intervals are
obtained following the classical method of [4].

1.3.3 Application to real data

We applied this model to a selection of contaminants extracted from a large database
collected by the National Institute for Public Health and the Environment (RIVM).
We only considered non censored data, left or right censored data were discarded,
while interval censored data were replaced by the centre of the interval. Using a
continuous distribution for the CEC implies that the model does not support ties
(or, in other words, observing ties has zero probability). However, ties may appear
in the dataset due to the rounding of concentrations. Hence, we used a small jittering
of the data.



Chapter 1. Bayesian Nonparametric Mixture Modeling 56

We selected three example datasets which feature three typical sample sizes: a rel-
atively large carbaryl dataset (CAS: 63-25-2, insecticide, 55 species), a medium-
sized temephos dataset (CAS: 3383-96-8, mosquito larvicide, 21 species), and a small
captan dataset (CAS: 133-06-2, fungicide, 13 species). Datasets for new contaminants
are always small, the minimum requirement set by the European Chemical Agency
being 10 species. The datasets can be visualised on the histograms of Figure 1.10 (left
panel).

These datasets illustrate different features of the three approaches: when there is a
clear multimodality in the data, the BNP SSD is more flexible than the fixed band-
width KDE SSD (Figure 1.10, carbaryl and captan). When the data do not exhibit
strong multimodality, as for temephos, the BNP reduces to the normal SSD model,
whereas the KDE remains by construction a mixture of many normal components.

One might think to increase the flexibility of the KDE by simply decreasing the band-
width. However, that would also decrease the robustness of the method. On the
middle panel of Figure 1.10, the LOO give an indication of the robustness to over-
fitting of the three methods. For carbaryl and captan, they show that the superior
flexibility of the BNP SSD compared to the KDE SSD does not come at the expense
of robustness, because the median CPO of the BNP SSD is higher than the other two.
In the case of temephos, the median LOO likelihood estimate of the normal model is
very similar to the median CPO for the BNP SSD, sign that there is little over-fitting.
This generally illustrates the fact that model complexity in a BNP model scales with
the amount and structure of the data. On the right panel of Figure 1.10, the cred-
ible intervals of the HC5 for the BNP SSD are generally larger than the confidence
interval of the normal SSD, which is coherent with the model uncertainty of the non-
parametric approach.

1.3.4 Discussion

The BNP SSD seems to perform well when the dataset deviates from a normal distri-
bution. Its great flexibility is an asset to describe the variability of the data, while it
does not seem prone to over-fitting. It can be thought of as an intermediate model be-
tween the normal SSD with a single component on the one hand, and the KDE which
counts as many components as there are species on the other hand. We chose to base
the BNP SSD on NRMI rather than on the more common Dirichlet Process, because
it is more robust in case of misspecification of the number of clusters [211, 43]. The
BNP SSD provides several benefits for risk assessment: it is an effective and ro-
bust standard model which adapts to many datasets. Moreover, it readily provides
credible intervals. While it is always possible to obtain confidence intervals for a
frequentist method using bootstrap, it can be difficult to stabilise the interval for
small datasets even with a large number of bootstrap samples. As such, the BNP
SSD represents a safe tool to remove one of the arbitrary parametric assumptions of
SSD [121].



Chapter 1. Bayesian Nonparametric Mixture Modeling 57

0.0

0.2

0.4

0.6

0.8

0.0 2.5 5.0 7.5

●●

●

●

●

●0.01

0.10

●

●

●

●

●

●

0.4 0.8 1.2

0.0

0.2

0.4

0.6

−3 0 3 6

●●

●

●

●

●

●

●

●

●

0.01

0.10

●

●

●

●

●

●

−1 0 1 2

0.0

0.5

1.0

1.5

0 2 4 6

(A) Density

●

●

●

●

●

●

●

●

0.01

1.00

(B) LOO and CPO

●

●

●

●

●

●

0.75 1.00 1.25 1.50 1.75

(C) log HC5

FIGURE 1.10: The top panel represents the large-size carbaryl
dataset, the middle panel represents the medium-sized temephos
dataset, the bottom panel represents the small-sized captan dataset.
The Normal is in green, the KDE in red and the BNP in blue. Concen-

trations are log transformed.
Left: Histogram and density estimates.

Centre: Boxplot for the LOO (for Normal and KDE) and the CPO (for
BNP) on logarithmic scale. The horizontal line corresponds to the
median. The box hinges extend to the inner quartiles. The whiskers
extend to cover points up to one and a half times the inter-quartile
distance away from the hinges. For both frequentist methods, the n
LOO are obtained by fitting the model n times, while an analytical

expression is available for the BNP method (1.68).
Right: log HC5 and associated confidence/credible intervals (for Nor-

mal, KDE and BNP).
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[A6] J. Arbel, P. De Blasi, and I. Prünster. Stochastic approximations to the
Pitman–Yor process. Bayesian Analysis, 14(3):753–771, 2019

2.1 Truncation-based approximations: Pitman–Yor

2.1.1 Introduction

The Pitman–Yor process defines a rich and flexible class of random probability mea-
sures used as prior distribution in Bayesian nonparametric inference. It originates
from the work of [261], further investigated in [265, 264], and its use in nonparamet-
ric inference was initiated by [164]. Thanks to its analytical tractability and flexibility,
it has found applications in a variety of inferential problems which include species
sampling [210, 113, 240], survival analysis and gene networks [175, 246], linguistics
and image segmentation [318, 308], curve estimation [71] and time-series and econo-
metrics [74, 44]. The Pitman–Yor process is a discrete probability measure

P(dx) = ∑
i≥1

piδξi(dx) (2.1)

where (ξi)i≥1 are iid random variables with common distribution P0 on a Polish
space X , and (pi)i≥1 are random frequencies, i.e. pi ≥ 0 and ∑i≥1 pi = 1, inde-
pendent of (ξi)i≥1. The distribution of the frequencies of the Pitman–Yor process
is known in the literature as the two-parameter Poisson–Dirichlet distribution. Its
distinctive property is that the frequencies in size-biased order, that is the random
arrangement in the order of appearance in a simple random sampling without re-
placement, admit the stick-breaking representation, or residual allocation model,

pi
d
= Vi

i−1

∏
j=1

(1−Vj), Vj
ind∼ beta(1− α, θ + jα) (2.2)

for 0 ≤ α < 1 and θ > −α, see [270]. By setting α = 0 one recovers the Dirichlet
process of [117]. Representation (2.2) turns out very useful in devising finite support
approximation to the Pitman–Yor process obtained by truncating the summation
in (2.1). A general method consists in setting the truncation level n by replacing
pn+1 with 1− (p1 + · · ·+ pn) in (2.1). The key quantity is the truncation error of the
infinite summation (2.1),

Rn = ∑
i>n

pi = ∏
j≤n

(1−Vj), (2.3)

since the resulting truncated process, say Pn(·), will be close to P(·) according to
|P(A) − Pn(A)| ≤ Rn for any measurable A ⊂ X . It is then important to study
the distribution of the truncation error Rn as n gets large in order to control the
approximation error. [164] proposes to determine the truncation level based on the
moments of Rn. Cf. also [166, 126]. In this paper we propose and investigate a
random truncation by setting n such that Rn is smaller than a predetermined value
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ε ∈ (0, 1) with probability one. Specifically, we define

τ(ε) = min{n ≥ 1 : Rn < ε} (2.4)

as the stopping time of the multiplicative process (Rn)n≥1 and, following Section
4.3.3 of [131], we call ε-Pitman–Yor (ε-PY) process the Pitman–Yor process truncated
at n = τ(ε), namely

Pε(dx) =
τ(ε)

∑
i=1

piδξi(dx) + Rτ(ε)δξ0(dx), (2.5)

where ξ0 has distribution P0, independent of the sequences (pi)i≥1 and (ξi)i≥1. By
construction, Pε is the finite stick-breaking approximation to P with the smallest
number of support points given a predetermined approximation level. In fact τ(ε)

controls the error of approximation according to the total variation bound

dTV(Pε, P) = sup
A⊂X
|P(A)− Pε(A)| ≤ ε (2.6)

almost surely (a.s.). As such, it also guarantees the almost sure convergence of mea-
surable functionals of P by the corresponding functionals of Pε as ε → 0, cf. Propo-
sition 4.20 of [131]. A typical application is in Bayesian nonparametric inference on
mixture models where the Pitman–Yor process is used as prior distribution on the
mixing measure. The approximation Pε can be applied to the posterior distribution
given the latent variables, cf. Section 2.1.2 for details. In the Dirichlet process case, Pε

has been studied by [236]. In this setting τ(ε)− 1 is Poisson distributed with param-
eter θ log 1/ε, which makes an exact sampling of the ε-approximation (2.5) feasible.
This has been implemented in the highly popular R software DPpackage, see [173],
to draw posterior inference on the random effect distribution of linear and general-
ized linear mixed effect model. Finally, in [2] a different type of finite dimensional
truncation of the Pitman–Yor process based on decreasing frequencies has been pro-
posed, see Section 2.1.5 for a discussion.

The main theoretical contribution of this paper is the derivation of the asymptotic
distribution of τ(ε) as ε→ 0 for α > 0. As (2.4) suggests, the asymptotic distribution
of τ(ε) is related to that of Rn in (2.3) as n → ∞. According to [268, Lemma 3.11],
the latter involves a polynomially tilted stable random variable Tα,θ , see Section 2.1.2
for a formal definition. The main idea is to work with Tn = − log Rn so to deal with
sums of the independent random variables Yi = − log(1 − Vi). The distribution
of τ(ε) can be then studied in terms of the allied renewal counting process N(t) =

max{n : Tn ≤ t}, according to the relation τ(ε) = N(log 1/ε) + 1. The problem
boils down to the derivation of an appropriate a.s. convergence of N(t) as t → ∞,
which, in turn, is obtained from the asymptotic distribution of Tn by showing that
N(t) → ∞ a.s. as t → ∞ together with a (non standard) application of the law of
large numbers for randomly indexed sequences. This strategy proves successful in
establishing the almost sure convergence of τ(ε)− 1 to (εTα,θ/α)−α/(1−α) as ε → 0.
The form of the asymptotic distribution reveals how large the truncation point τ(ε)

is as ε gets small in terms of the model parameters α and θ. In particular, it highlights
the power law behavior of τ(ε) as ε → 0, namely the growth at the polynomial rate
1/εα/(1−α) compared to the slower logarithmic rate θ log 1/ε in the Dirichlet process
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case. This is further illustrated by a simulation study in which we generate from the
asymptotic distribution of τ(ε) by using Zolotarev’s integral representation of the
positive stable distribution as in [98]. As far as the simulation of the ε-PY process
is concerned, exact sampling is feasible by implementing the stopping rule in (2.4),
that is by simulating the stick breaking frequencies pj until the error Rn crosses the
approximation level ε. As this can be computationally expensive when ε is small, as
an alternative we propose to use the asymptotic distribution of τ(ε) by simulating
the truncation point first, then run the stick breaking procedure up to that point.
It results in an approximate sampler of the ε-PY process that we compare with the
exact sampler in a simulation study involving moments and mean functionals.

The rest of the paper is organized as follows. In Section 2.1.2, we derive the asymp-
totic distribution of τ(ε) and explain how to use it to simulate from the ε-PY process.
Section 2.1.3 reports a simulation study on the distribution of τ(ε) and on functionals
of the ε-PY process. In Section 2.1.4, to help the understanding and gain additional
insight on the asymptotic distribution, we highlight the connections of τ(ε) with
Pitman’s theory on random partition structures. We conclude with a discussion of
open problems in Section 2.1.5. The details of Devroye’s algorithm for generating
from a polynomially tilted positive stable random variable are given in Section 2.1.6.

2.1.2 Theory and algorithms

Asymptotic distribution of τ(ε)

In this section we derive the asymptotic distribution of the stopping time τ(ε) and
show how to simulate from it. We start by introducing the renewal process inter-
pretation which is crucial for the asymptotic results. As explained in the previous
section, in order to study the distribution of τ(ε) it is convenient to work with the
log transformation of the truncation error Rn in (2.3), that is

Tn =
n

∑
i=1

Yi, Yi = − log(1−Vi), (2.7)

with Vj
ind∼ beta(1− α, θ + jα) as in (2.2). Being a sum of independent and nonneg-

ative random variables, (Tn)n≥1 takes the interpretation of a (generalized) renewal
process with independent waiting times Yi. For t ≥ 0 define

N(t) = max{n : Tn ≤ t}, (2.8)

to be the renewal counting process associated to (Tn)n≥1, which is related to τ(ε) via
τ(ε) = N(log 1/ε) + 1. Classical renewal theory pertains to iid waiting times while
here there is no identity in distribution unless α = 0, i.e. the Dirichlet process case.

In the latter setting, one gets Yi
iid∼ Exp(θ) so that Tn has gamma distribution with

scale parameter n. We immediately get from the relation {Tn ≤ t} = {N(t) ≥ n}
that N(t) ∼ Pois(θt) and, in turn, that τ(ε)− 1 has Pois(θ log(1/ε)) distribution. As
far as asymptotics is concerned, Tn satisfies the CLT with (Tn − n/θ)/(

√
n/θ)→d Z

where Z ∼ N(0, 1). The asymptotic distribution of N(t) can be obtained via As-
combe theorem, cf. [151, Theorem 7.4.1], to get (N(t)− θt)/(

√
θt) →d Z, as t → ∞,
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in accordance with the standard normal approximation of the Poisson distribution
with large rate parameter.

In the general Pitman–Yor case α > 0, the waiting times Yi are no more identically
distributed. More importantly, generalizations of the CLT such as the Lindeberg–
Feller theorem do not apply for Tn, hence we cannot resort to Anscombe’s theorem
to derive the asymptotic distribution of N(t) and, in turn, of τ(ε). Nevertheless,
the limit exists but is not normal as stated in Theorem 2.1.1 below. To this aim, let
Tα be a positive stable random variable with exponent α, that is E(e−sTα) = e−sα

,
and denote its density by fα(t). A polynomially tilted version of Tα is defined as the
random variable Tα,θ with density proportional to t−θ fα(t), that is

fα,θ(t) =
Γ(θ + 1)

Γ(θ/α + 1)
t−θ fα(t), t > 0. (2.9)

The random variable Tα,θ is of paramount importance in the theory of random par-
tition structures associated to the frequency distribution of the Pitman–Yor process,
see Section 2.1.4 for details. In particular, the convergence of Rn can be expressed in
terms of Tα,θ . In Theorem 2.1.1 the a.s. limit of log N(t) as t → ∞ is obtained from
that of Tn = − log Rn as n → ∞ by showing that N(t) → ∞ a.s. as t → ∞ and by an
application of the law of large numbers for randomly indexed sequences.
Theorem 2.1.1. Let N(t) be defined in (2.7)–(2.8) and Tα,θ be the random variable with
density in (2.9). Then t− (1/α− 1) log N(t) + log α→a.s. log Tα,θ as t→ ∞.

Proof. By definition (2.8), the renewal process N(t) is related to the sequence of re-
newal epochs Tn through

{Tn ≤ t} = {N(t) ≥ n}. (2.10)

Since N(Tn) = n, we have TN(t) = Tn when t = Tn, thus 0 = t− TN(t) for t = Tn.
Moreover, since N(t) is increasing, when Tn < t < Tn+1, N(Tn) < N(t) < N(t) + 1,
hence TN(t) < t < TN(t)+1, i.e. 0 < t− TN(t) < TN(t)+1 − TN(t) = YN(t)+1. Together
the two relations above yield

0 ≤ t− TN(t) < YN(t)+1. (2.11)

From Lemma 3.11 of [268] and an application of the continuous mapping theorem
[see Theorem 10.1 in 151] the asymptotic distribution of Tn is obtained as

Tn − (1/α− 1) log n + log α→a.s. log Tα,θ as n→ ∞.

Now we would like to take the limit with respect to n = N(t) as t → ∞, that is
apply the law of large numbers for randomly indexed sequence [see Theorem 6.8.1
in 151]. To this aim, we first need to prove that N(t)→a.s. ∞ as t→ ∞. Since N(t) is
non decreasing, by an application of Theorem 5.3.5 in [151], it is sufficient to prove
that N(t) → ∞ in probability as t → ∞, that is P(N(t) ≥ n) → 1 as t → ∞ for any
n ∈ N. But this is an immediate consequence of the inversion formula (2.10). We
have then established that

TN(t) − (1/α− 1) log N(t) + log α→a.s. log Tα,θ as t→ ∞.
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To conclude the proof, we need to replace TN(t) with t in the limit above. Note that,
from (2.11), |t− TN(t)| ≤ YN(t)+1 so it is sufficient to show that the upper bound goes
to zero a.s.. Actually, by a second application of Theorem 6.8.1 in [151] it is sufficient
to show that Yn →a.s. 0 as n → ∞. This last result is established as follows. Recall
that Yj = − log(1−Vj) for Vj

ind∼ beta(1− α, θ + jα). For ε > 0,

P(1−Vn < e−ε) =
∫ e−ε

0

Γ(θ + nα + 1− α)

Γ(θ + nα)Γ(1− α)
vθ+nα−1(1− v)−αdx

≤ (1− e−ε)−α

Γ(1− α)

Γ(θ + nα + 1− α)

Γ(θ + nα)

e−ε(θ+nα)

θ + nα

=
(1− e−ε)−α

Γ(1− α)
(θ + nα)−αe−ε(θ+nα)

(
1 + O

( 1
θ + nα

))
(2.12)

where in equality (2.12) we have used Euler’s formula

Γ(z + α)/Γ(z + β) = zα−β

[
1 +

(α− β)(α + β− 1)
2z

+ O(z−2)

]
for z → ∞, see [322]. Since P(Yn > ε) = P(1 − Vn < e−ε), (2.12) implies that
P(Yn > ε) is exponentially decreasing in n and, in turn, that ∑n≥1 P(Yn > ε) < ∞.
An application of Borel–Cantelli Lemma yields Yn →a.s. 0 and the proof is complete.

�

The asymptotic distribution of τ(ε) is readily derived from Theorem 2.1.1 via the
formula τ(ε) = N(log 1/ε) + 1 and an application of the continuous mapping theo-
rem. The proof is omitted.
Theorem 2.1.2. Let τ(ε) be defined in (2.4) and Tα,θ be the random variable with density
in (2.9). Then τ(ε)− 1 ∼a.s. (εTα,θ/α)−α/(1−α) as ε→ 0.

In order to sample from the asymptotic distribution of τ(ε), the key ingredient is ran-
dom generation from the polynomially tilted stable random variable Tα,θ . Following
[98], we resort to Zolotarev’s integral representation, so let A(u) be the Zolotarev
function

A(x) =
(

sin(αx)α sin((1− α)x)1−α

sin(x)

) 1
1−α

, x ∈ [0, π]

and Zα,b, α ∈ (0, 1) and b > −1 be a Zolotarev random variable with density given
by

f (x) =
Γ(1 + bα)Γ(1 + b(1− α))

πΓ(1 + b)A(x)b(1−α)
, x ∈ [0, π].

According to Theorem 1 of [98], for Ga a gamma distributed random variable with
shape a > 0 and unit rate,

Tα,θ
d
=

(
A(Zα,θ/α)

G1+θ(1−α)/α

) 1−α
α

so that random variate generation simply requires one gamma random variable and
one Zolotarev random variable. For the latter, rejection sampler can be used as de-
tailed in [98]. See ALGORITHM 3 in Appendix 2.1.6.
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Simulation of the ε-PY process

Given α, θ, ε and a probability measure P0 on X , an ε-PY process can be generated
by implementing the stopping rule in the definition of τ(ε), cf. (2.4). The algorithm
consists in a while loop as follows:

ALGORITHM 1 (Exact sampler of ε-PY)

1. set i = 1, R = 1

2. while R ≥ ε: generate V from beta(1− α, θ + iα).
set pi = VR, R = R(1−V), i = i + 1

3. set τ = i, Rτ = R

4. generate τ + 1 random variates ξ0, ξ1, . . . , ξτ from P0

5. set Pε(dx) = ∑τ
i=1 piδξi(dx) + Rτδξ0(dx)

When ε is small, the while loop happens to be computationally expensive since con-
ditional evaluations at each iteration slow down computation, and memory alloca-
tion for the frequency and location vectors cannot be decided beforehand. In order
to avoid these pitfalls and make the algorithm faster, one should generate the stop-
ping time τ(ε) first, and the frequencies up to that point later. We propose to exploit
the asymptotic distribution of τ(ε) in Theorem 2.1.2 as follows:

ALGORITHM 2 (Approximate sampler of ε-PY)

1: generate T d
= Tα,θ

2: set τ ← 1 + b(εT/α)−α/(1−α)c

3. for i = 1, . . . , τ: generate Vi from beta(1− α, θ + iα).
set pi = Vi ∏i−1

j=1(1−Vj)

4. set Rτ = 1−∑τ
i=1 pi = ∏τ

i=1(1−Vj)

5: generate τ + 1 random variates ξ0, ξ1, . . . , ξτ from P0

6: set Pε(dx) = ∑τ
i=1 piδξi(dx) + Rδξ0(dx)

ALGORITHM 2 is an approximate sampler of the ε-PY process (while ALGORITHM 1
is an exact one) since it introduces two sources of approximations. First, through the
use of the asymptotic distribution of τ(ε). Second, through Step 3 since the Vi’s are
not generated according to the conditional distribution given τ(ε), rather uncondi-
tionally. Finding the conditional distribution of Vi, or an asymptotic approximation
thereof, is not an easy task and is object of current research. In terms of the renewal
process interpretation in (2.7)–(2.8), the problem is to generate the waiting times
Yi = − log(1 − Vi), i = 1, . . . , n, from the conditional distribution of the renewal
epochs (T1, . . . , Tn) given N(t) = n for t = − log 1/ε.

A typical use of samples from the Pitman–Yor process we have in mind is in infinite
mixture models. In fact, the discrete nature of the Pitman–Yor process makes it a
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suitable prior on the mixing distribution. ALGORITHM 1 or ALGORITHM 2 can be then
applied to approximate a functional of the posterior distribution of the mixing dis-
tribution. In such models, the process components can be seen as latent features ex-
hibited by the data. Let P denote such a process, n denote the sample size and X1:n =

(X1, . . . , Xn) be an exchangeable sequence from P, that is X1:n|P iid∼ P. Variables X1:n

are latent variables in a model conditionally on which observed data Y1:n come from:

Yj|Xj
ind∼ f ( · |Xj) where f denotes a kernel density. Actually, independence is not

necessary here and applications also encompass dependent models such as Markov
chain transition density estimation. In order to deal with the infinite dimension-
ality of the process, a strategy is to marginalize it and to draw posterior inference
with a marginal sampler. Since draws from a marginal sampler allows to make in-
ference only on posterior expectations of the process, for more general functionals
of P, in the form of ψ(P), one typically needs to resort to an additional sampling
step. Exploiting the composition rule L(ψ(P)|Y1:n) = L(ψ(P)|X1:n)× L(X1:n|Y1:n)

this additional step boils down to sampling P conditional on latent variables X1:n.
At this stage, recalling the conditional conjugacy of the Pitman–Yor process is useful.
Among X1:n, there are a number k ≤ n of unique values that we denote by X∗1:k. Let
n∗1:k denote their frequencies. Then the following identity in distribution holds

P|X1:n =
k

∑
j=1

qjδX∗j + qk+1P∗,

where, independently, (q1, . . . , qk, qk+1) ∼ Dirichlet(n∗1 − α, . . . , n∗k − α, θ + αk) and
P∗ is a Pitman–Yor process of parameter (α, θ + αk), see Corollary 20 of [? ]. Thus
sampling from L(P|X1:n), hence from L(ψ(P)|X1:n), requires sampling the infinite
dimensional P∗. Cf. [164, Section 4.4]. For the sake of comparison, the conjugacy of
the Dirichlet process similarly leads to the need of sampling an infinite dimensional
process, where P|X1:n takes the form of a Dirichlet process. As already noticed,
the truncation of the Dirichlet process is very well understood, both theoretically
and practically. The popular R package DPpackage [173] makes use of the posterior
truncation point τ∗(ε), as defined in (2.5), but here with respect to the posterior
distribution of the process. Thus, it satisfies τ∗(ε) − 1 ∼ Pois((θ + n) log(1/ε)),
where θ + n is the precision of the posterior Dirichlet process. Adopting here similar
lines for the Pitman–Yor process, we replace P∗ by the truncated process P∗ε

P∗ε (dx) =
τ∗(ε)

∑
i=1

p∗i δξi(dx) + Rτ∗(ε)δξ0(dx),

cf. equation (2.5). Here (p∗i )i≥1 are defined according to (2.2) with θ + αk in place of

θ, i.e. Vj
ind∼ beta(1− α, θ + α(k + j)). Hence, according to Theorem 2.1.2 we have

τ∗(ε)− 1 ∼a.s. (εTα,θ+αk/α)−α/(1−α), as ε→ 0

hence ALGORITHM 2 can be applied here.
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2.1.3 Simulation study

Stopping time τ(ε)

According to Theorem 2.1.2, the asymptotic distribution of τ(ε) changes with ε, α

and θ. For illustration, we simulate τ(ε) from Steps 1.-2. in ALGORITHM 2 using
Devroye’s sampler, cf. ALGORITHM 3 in Appendix 2.1.6. In Figure 2.1 we compare
density plots obtained with 104 iterations with respect to different combinations of
ε, α and θ. The plot in the left panel shows how smaller values of ε result in larger
values of τ(ε). In fact, as ε → 0, τ(ε) increases proportional to 1/εα/(1−α). Note
also that (εTα,θ/α)−α/(1−α) is nonnegative for Tα,ε < α/ε, which happens with high
probability when ε is small. As for α, the plot in the central panel shows how τ(ε)

increases as α gets large. In fact, it is easy to see that (εTα,θ/α)−α/(1−α) is increasing
in α when Tα,ε < e1−αα/ε, which also happens with high probability when ε is small,
so the larger α, the more stick-breaking frequencies are needed in order to account
for a prescribed approximation error ε. Finally, the plot in the right panel shows that
the larger θ, the larger τ(ε). In fact, by definition, the polynomial tilting makes Tα,θ

stochastically decreasing in θ.
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FIGURE 2.1: Density plot for the asymptotic approximation of τ(ε)
based on 104 values under the following parameter configurations.
Left: ε ∈ {0.10, 0.05, 0.01}, α = 0.4, θ = 1. Center: α ∈ {0.4, 0.5, 0.6},

θ = 1, ε = 0.1. Right: θ ∈ {0, 1, 10}, α = 0.25, ε = 0.05.

In order to illustrate the rate of convergence in Theorem 2.1.2, we compare next the
exact distribution of τ(ε) with the asymptotic one. To do so, we repeat the follow-
ing experiment several times: we simulate τ(ε) from Steps 1.-3. in ALGORITHM 1,
then we compare the empirical distribution of (ε/α)α(τ(ε)− 1)1−α with T−α

α,θ , the lat-
ter corresponding to the α-diversity of the PY process, see Section 2.1.4 for a formal
definition. In Table 2.1 we report the Kolmogorov distance together with expected
value, median, first and third quartiles for both the exact and the asymptotic distri-
bution obtained with 104 iterations. This is repeated for α = 0.5, θ = {0, 1, 10} and
ε = {0.10, 0.05, 0.01}. As expected, as we decrease ε, the Kolmogorov distance gets
smaller to somehow different rates according to the parameter choice. The deriva-
tion of convergence rates is left for future research.
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dK Mean 25% Median 75%

θ ε As Ex As Ex As Ex As Ex

0 0.10 3.42 1.06 1.05 0.45 0.45 0.89 0.89 1.61 1.55

0 0.05 2.17 1.10 1.08 0.45 0.45 0.95 0.95 1.64 1.58

0 0.01 1.73 1.14 1.11 0.45 0.45 0.97 0.95 1.64 1.60

1 0.10 4.79 2.24 2.14 1.55 1.48 2.14 2.10 2.86 2.76

1 0.05 2.38 2.25 2.20 1.55 1.52 2.17 2.14 2.86 2.79

1 0.01 1.40 2.26 2.25 1.57 1.54 2.19 2.19 2.87 2.85

10 0.10 11.93 6.39 6.07 5.69 5.40 6.34 6.06 7.04 6.72

10 0.05 6.12 6.39 6.24 5.70 5.56 6.34 6.22 7.05 6.88

10 0.01 1.93 6.40 6.37 5.71 5.70 6.34 6.34 7.05 7.00

TABLE 2.1: Summary statistics for the asymptotic distribution (As)
and exact distribution (Ex) of τ(ε) at the scale of the α-diversity based
on 104 values. The Kolmogorov distance (dK) is between the empirical
cumulative distribution function of the sample from the exact distri-
bution and the asymptotic one (multiplied by a factor of 100). The
parameter values are α = 0.5, θ ∈ {0, 1, 10} and ε ∈ {0.10, 0.05, 0.01}.

Functionals of the ε-PY process

In the case that P is defined on X ⊆ R, the total variation bound (2.6) implies that
|F(x)− Fε(x)| < ε almost surely for any x ∈ R, where Fε and F are the cumulative
distribution functions of Pε and P. Also, measurable functionals ψ(P) such as the
mean µ =

∫
xP(dx) can be approximated in distribution by the corresponding func-

tionals ψ(Pε). For illustration, we set X = [0, 1] and P0 the uniform distribution on
[0, 1]. For given α and θ, we then compare the distribution under P with that under
the ε-PY process Pε for F(1/2), F(1/3) and µ =

∫
xP(dx). As for the distribution of

the finite dimensional distributions F(1/2) and F(1/3) under the full process P, we
set α = 0.5 so to exploit results in [169]. According to their Proposition 4.7, the finite
dimensional distributions of P when α = 0.5 are given by

f (w1, . . . , wn−1) =
(∏n

i=1 pi)Γ(θ + n/2)
π(n−1)/2Γ(θ + 1/2)

w−3/2
1 · · ·w−3/2

n−1 (1−∑n−1
i=1 wi)

−3/2

An(w1, . . . , wn−1)θ+n/2

for any partition A1, . . . , An ofX with pi = P0(Ai) andAn(w1, . . . , wn−1) = ∑n−1
i=1 p2

i w−1
i +

p2
n(1− ∑n−1

i=1 wi)
−1. Direct calculation shows that F(1/2) has beta distribution with

parameters (θ + 1/2, θ + 1/2) while F(1/3) has density

f (w) =
2√
π

9θ Γ(θ + 1)
Γ(θ + 1/2)

(w(1− w))θ−1/2

(1 + 3w)θ+1 .

As for the mean functional µ =
∫

xP(dx), the distribution under the full process P is
approximated by simulations by setting a deterministic truncation point sufficiently
large. As for the distribution under Pε, we use both ALGORITHM 1 and ALGORITHM

2.
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In Figure 2.2 we compare the density plots of F(1/2) for ε = {0, 1.0.05, 0.001} and
θ = {0, 10} under Pε with the beta density under P so to illustrate that the two
distributions get close as ε gets small. As for F(1/3) and µ =

∫
xP(dx), in Tables 2.2
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FIGURE 2.2: Density plots for the random probability F(1/2) using
the ALGORITHM 2 (in red solid curve) and ALGORITHM 1 (in blue
dashed curve) to sample from the ε-PY process. The density under
the Pitman–Yor process is the black dotted curve. The parameter α is
fixed equal to 0.5, θ is equal to 0 on the first row and 10 on the second
row, while ε is respectively equal to {0.10, 0.05, 0.01} in the left, center

and right columns.

and 2.3 we report the Kolmogorov distance between P and Pε for the two sampling
algorithms, together with expected value, median, first and third quartiles. For each
case and each parameter configuration, we have sampled 104 trajectories from the
ε-PY process and 104 trajectories from the Pitman–Yor process in the case of µ =∫

xP(dx). As expected, the Kolmogorov distances are generally larger, still close,
when using ALGORITHM 2 versus ALGORITHM 1 due to the approximate nature of
the former.

Computation time

In this section, we provide a concrete justification of the computational advantage
of using ALGORITHM 2 versus ALGORITHM 1. We simulate 104 ε-PY iterations by
using ALGORITHM 1 and ALGORITHM 2 for different combinations of the α and θ

parameters and of the ε error threshold. In Table 2.4 (resp. Table 2.5), we report
the average computing time1 per iteration (resp. per support point) for ALGORITHM

1The experiments were conducted on an Intel Core i5 processor (3.1 GHz) computer.



Chapter 2. Approximate Bayesian Inference 70

TABLE 2.2: Simulation study on F(1/3)

dK Mean 25% Median 75%

θ ε AL1 AL2 AL1 AL2 PY AL1 AL2 PY AL1 AL2 PY AL1 AL2 PY

0 0.10 16.29 16.48 0.33 0.33 0.33 0.04 0.01 0.04 0.20 0.16 0.20 0.60 0.64 0.59

0 0.05 11.53 12.52 0.33 0.33 0.33 0.05 0.01 0.04 0.20 0.17 0.20 0.58 0.63 0.59

0 0.01 5.49 5.60 0.34 0.33 0.33 0.04 0.03 0.04 0.21 0.19 0.20 0.59 0.61 0.59

1 0.10 3.08 5.65 0.33 0.33 0.33 0.14 0.12 0.14 0.29 0.28 0.28 0.49 0.50 0.49

1 0.05 1.34 3.11 0.33 0.33 0.33 0.14 0.13 0.14 0.28 0.28 0.28 0.48 0.50 0.49

1 0.01 0.56 0.89 0.33 0.34 0.33 0.14 0.14 0.14 0.28 0.29 0.28 0.49 0.49 0.49

10 0.10 3.10 3.81 0.33 0.33 0.33 0.25 0.25 0.26 0.32 0.32 0.32 0.40 0.41 0.40

10 0.05 1.41 1.38 0.33 0.33 0.33 0.26 0.26 0.26 0.32 0.32 0.32 0.40 0.40 0.40

10 0.01 0.75 0.65 0.33 0.33 0.33 0.26 0.26 0.26 0.33 0.32 0.32 0.40 0.40 0.40

TABLE 2.3: Simulation study on µ =
∫

xP(dx)

dK Mean 25% Median 75%

θ ε AL1 AL2 AL1 AL2 PY AL1 AL2 PY AL1 AL2 PY AL1 AL2 PY

0 0.10 1.60 3.57 0.50 0.50 0.50 0.36 0.34 0.36 0.50 0.50 0.50 0.64 0.67 0.65

0 0.05 0.94 2.72 0.50 0.50 0.50 0.35 0.34 0.36 0.50 0.50 0.50 0.64 0.66 0.65

0 0.01 1.18 2.10 0.50 0.50 0.50 0.36 0.35 0.36 0.50 0.50 0.50 0.64 0.65 0.65

1 0.10 1.61 3.18 0.50 0.50 0.50 0.40 0.39 0.40 0.50 0.50 0.50 0.60 0.61 0.60

1 0.05 1.28 2.32 0.50 0.50 0.50 0.40 0.40 0.40 0.50 0.50 0.50 0.59 0.60 0.60

1 0.01 1.12 0.57 0.50 0.50 0.50 0.40 0.41 0.40 0.50 0.50 0.50 0.60 0.60 0.60

10 0.10 2.81 4.18 0.50 0.50 0.50 0.45 0.46 0.46 0.50 0.50 0.50 0.55 0.55 0.54

10 0.05 1.78 1.28 0.50 0.50 0.50 0.46 0.46 0.46 0.50 0.50 0.50 0.54 0.54 0.54

10 0.01 2.01 1.09 0.50 0.50 0.50 0.46 0.46 0.46 0.50 0.50 0.50 0.54 0.54 0.54
Summary statistics for F(1/3) (Table 2.2) and µ =

∫
xP(dx) (Table

2.3) using ALGORITHM 1 (AL1) and ALGORITHM 2 (AL2) to sam-
ple from the ε-PY process. The Kolmogorov distance (dK) is between
the cumulative distribution functions with respect to the Pitman–Yor
(PY) process (multiplied by a factor of 100). The parameter values are

α = 0.5, θ ∈ {0, 1, 10} and ε ∈ {0.10, 0.05, 0.01}.

1 and ALGORITHM 2. By iteration, we mean a full realization of the ε-PY process
including frequencies and locations, while by support point, we mean that we divide
the total time by the number of support points τ(ε) + 1. In order to account for
the computational task required per iteration, the expected stopping time E[τ(ε)]

is also reported. Both tables illustrate that our proposed approach is faster than
ALGORITHM 1 when the ε-PY is composed of about 20 support points or more. The
more support points, the faster ALGORITHM 2 is compared to ALGORITHM 1. This
disadvantage of the former for small numbers of support points comes from the
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fixed cost of initially generating a random variable with the same distribution as
Tα,θ . Conversely, as the number of support points increases, this fixed cost is largely
counterbalanced by the fast vector-sampling of a prescribed size, which is in contrast
with ALGORITHM 1 while loop whose cost increases with the number of support
points. This can be seen in Table 2.5 where the actual sampling time per support
point is essentially increasing for ALGORITHM 1 and decreasing for ALGORITHM 2.
With the parameter configurations tested, ALGORITHM 2 can be up to 90 times faster
ALGORITHM 1 for α = 0.6, θ = 10 and ε = 0.01.

TABLE 2.4: Computing time (ms) per iteration

α = 0.4 α = 0.5 α = 0.6

θ ε AL1 AL2 n AL1 AL2 n AL1 AL2 n

0 0.10 0.01 0.20 5 0.02 0.04 11 0.11 0.05 38

0 0.05 0.01 0.04 8 0.04 0.04 21 0.20 0.06 105

0 0.01 0.04 0.04 20 0.36 0.05 101 15.10 0.26 1163

1 0.10 0.03 0.19 17 0.07 0.05 31 0.23 0.07 92

1 0.05 0.06 0.06 26 0.13 0.06 61 0.80 0.12 258

1 0.01 0.18 0.09 73 0.80 0.12 301 27.75 0.57 2877

10 0.10 0.22 0.15 121 0.61 0.10 211 2.11 0.18 567

10 0.05 0.45 0.10 191 1.52 0.15 421 9.22 0.37 1603

10 0.01 1.93 0.20 558 13.24 0.48 2101 760.68 4.01 17911

TABLE 2.5: Computing time (µs) per support point

α = 0.4 α = 0.5 α = 0.6

θ ε AL1 AL2 n AL1 AL2 n AL1 AL2 n

0 0.10 1.92 38.46 5 1.82 3.64 11 2.91 1.32 38

0 0.05 1.30 5.22 8 1.90 1.90 21 1.91 0.57 105

0 0.01 1.95 1.95 20 3.56 0.50 101 12.98 0.22 1163

1 0.10 1.81 11.45 17 2.26 1.61 31 2.50 0.76 92

1 0.05 2.33 2.33 26 2.13 0.98 61 3.10 0.46 258

1 0.01 2.45 1.23 73 2.66 0.40 301 9.65 0.20 2877

10 0.10 1.82 1.24 121 2.89 0.47 211 3.72 0.32 567

10 0.05 2.35 0.52 191 3.61 0.36 421 5.75 0.23 1603

10 0.01 3.46 0.36 558 6.30 0.23 2101 42.47 0.22 17911
Average computing time per iteration (in millisecond in Table 2.4)
and per support point (in microsecond in Table 2.5) for ALGORITHM
1 (AL1) and ALGORITHM 2 (AL2) based on 104 iterations, and ex-
pected stopping time n = E[τ(ε)]. The parameter values are α ∈

{0.4, 0.5, 0.6}, θ ∈ {0, 1, 10} and ε ∈ {0.10, 0.05, 0.01}.
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2.1.4 Connections with random partition structures

α-diversity and asymptotic distribution of Rn

The random variable Tα,θ in Theorem 2.1.1 plays a key role in the Pitman–Yor pro-
cess, in particular for its link with the α-diversity of the process. The α-diversity is
defined as the almost sure limit of n−αKn where Kn denotes the (random) number
of unique values in the first n terms of an exchangeable sequence from P in (2.1).
According to Theorem 3.8 in [268], n−αKn ∼a.s. (Tα,θ)

−α, in particular, for θ = 0, T−α
α

has a Mittag-Leffler distribution with p-th moment Γ(p + 1)/Γ(pα + 1), p > −1.
According to [268, Lemma 3.11, eqn (3.36)], the asymptotic distribution of the trun-
cation error Rn can be derived from that of Kn to get Rn ∼a.s. α(Tα,θ)

−1 n1−1/α as
n → ∞. The proof relies on Kingman’s representation of random partitions [191]
together with techniques set forth by [135]. In the proof of Theorem 2.1.1 the asymp-
totic distribution of Tn = − log Rn is a direct consequence of the above by an appli-
cation of the continuous mapping theorem.

When θ = 0 it is possible to give an interpretation of the asymptotic distribution of
Rn in terms of the jumps of a stable subordinator. In this case the weights of P can
be represented as the renormalized jumps of a stable subordinator, with Tα denoting
the total mass. Denote the (unormalized) jumps as (Ji)i≥1 in decreasing order and as
( J̃i)i≥1 when in size-biased order,

Tα = ∑
i≥1

Ji = ∑
i≥1

J̃i, and TαRn = ∑
i>n

J̃i.

By the asymptotic distribution of Rn, n1/α−1 ∑i>n J̃i →a.s. α as n → ∞. That is, once
properly scaled, the small jumps of the stable subordinator (in size-biased random
order), interpreted as the “dust”, converge to the “proportion” α. This is reminiscent
to the number of singletons which is asymptotically (n → ∞) a α proportion of the
number of groups in a sample of size n, see Lemma 3.11, eqn (3.39), of [268].

Regenerative random compositions and Anscombe’s theorem

We review next the connections of the counting renewal process N(t) defined in
(2.7)–(2.8) and the theory of regenerative random compositions. The reader is re-
ferred to the survey of [134] for a review. Recall that, when α = 0 (Dirichlet pro-

cess case), Vi
iid∼ beta(1, θ) in the stick-breaking representation (2.2), and in turns

Yi = − log(1− Vi)
iid∼ Exp(θ) and Tn = − log Rn ∼ Gamma(n, θ). By direct cal-

culus, N(t) ∼ Pois(θt) so that τ(ε)− 1 = N(log 1/ε) has Pois(θ log 1/ε) distribu-
tion. More generally, the stick-breaking frequencies (pi)i≥1 correspond to the gaps
in [0, 1] identified by the multiplicative regenerative set R ⊂ (0, 1) consisting of the
random partial sums 1− Rk = ∑i≤k pi. The complement open set Rc = (0, 1)/R
can be represented as a disjoint union of countably many open intervals or gaps,
Rc =

⋃∞
k=0(1− Rk, 1− Rk+1), R0 = 1. A random composition of the integer n into

an ordered sequence κn = (n1, n2, . . . , nk) of positive integers with ∑j nj = n can be
generated as follows: independently of R, sample U1, U2, . . . from the uniform dis-
tribution on [0, 1] and group them in clusters by the rule: Ui, Uj belong to the same
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cluster if they hit the same interval. The random composition of κn corresponds then
to the record of positive counts in the left-to-right order of the intervals. The com-
position structure (κn) is called regenerative since for all n > m ≥ 1, conditionally
given the first part of κn is m, if the part is deleted then the remaining composition
of n−m is distributed like κn−m. The regenerative set R corresponds to the closed
range of the multiplicative subordinator {1− exp(−St), t ≥ 0}, where St is the com-
pound Poisson process with Lévy intensity ν̃(dy) = θe−θydy. Since the range of St

is a homogeneous Poisson point process on R+ with rate θ,R is an inhomogeneous
Poisson point process N (dx) on [0, 1] with Lévy intensity ν(dx) = θ/(1− x)dx so
that, for t = log 1/ε,

N(log 1/ε) = N [0, 1− ε] ∼ Pois(λ), λ =
∫ 1−ε

0

θ

1− x
dx = θ log 1/ε

as expected. Suppose now that (Vi)i≥1 are independent copies of some random vari-
able V on [0, 1], not necessarily beta(1, θ) distributed. The corresponding random
composition structure has been studied in [137, 138] as the outcome of a Bernoulli
sieve procedure. We recall here the relevant asymptotic analysis. Let µ = E(− log(1−
V)) and σ2 = Var(− log(1−V)), equal respectively to 1/θ and 1/θ2 in the DP case,
respectively. If those moments are finite, by the CLT,

Tn − nµ√
nσ

→d Z, as n→ ∞,

where Z ∼ N(0, 1), and, by means of Anscobe’s Theorem, one obtains that

N(t)− t/µ√
σ2t/µ3

→d Z, as t→ ∞.

It turns out that the normal limit of N(log n) corresponds to the normal limit of Kn,

Kn − log n/µ√
σ2 log n/µ3

→d Z, as n→ ∞

provided that E(− log V) < ∞. To see why, consider iid random variables X1, X2, . . .
with values in N such that {Xi = k} = {Ui ∈ (1− Rk−1, 1− Rk)}. Hence P(X1 =

k|R) = pk. We then have that Kn = #{k : Xi = k for at least one i among 1, . . . , n}.
Define Mn = max{X1, . . . , Xn}. For U1,n ≤ U2,n ≤ . . . ≤ Un,n denoting the order
statistics corresponding to the uniform variates U1, . . . , Un, we have Mn = min{j :
1 − Rj ≥ Un,n} = min{j : Tj ≥ En,n} upon transformation x → − log(1 − x),
where En,n is the maximum of an iid sample of size n from the standard exponential
distribution. Since N(t) = max{n : Tn ≤ t} = min{n : Tn ≥ t} − 1 we have
Mn − 1 = N(En,n). [138] proves the equivalence

Mn − bn

an
→d X ⇐⇒ N(log n)− bn

an
→d X

where X is a random variable with a proper and non degenerate distribution with
an > 0, an → ∞ and bn ∈ R. A key fact exploited in the proof is that, from extreme-
value theory, En,n − log n has an asymptotic distribution of Gumbel type. That Mn

can be replaced by Kn in the equivalence relation above follows from the fact that
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Mn − Kn, the number of integers k < Mn not appearing in the sample X1, . . . , Xn, is
bounded in probability when E(− log V) < ∞, see Proposition 5.1 in [138].

Back to the Pitman–Yor process case, by Theorem 2.1.1 we have n−α/(1−α)N(log n)→d
(Tα,θ/α)−α/(1−α) while n−αKn →a.s. (Tα,θ)

−α. So we see that N(log n) and Kn do not
have the same asymptotic behavior as in the α = 0 case. By using the fact that

P(X1 > n|(pi)) = Rn, Rn ∼a.s. αn−(1−α)/αT−1
α,θ ,

and the fact that, conditional on (pi)i≥1, Mn belongs to the domain of attraction of
Fréchet distribution, [269, Theorem 6.1] establishes that

P(Mn ≤ xnα/(1−α))→ E
[

exp
(
− αT−1

α,θ x−(1−α)/α
)]

so we see that N(log n) and Mn do not have the same asymptotic behavior as in
the α = 0 case, although they share the same growth rate nα/(1−α). Finally, the
non correspondence of the asymptotic distribution of Mn and Kn suggests that the
behavior of Mn − Kn is radically different with respect to the α = 0 case.

2.1.5 Discussion

In this paper we have studied stochastic approximations of the Pitman–Yor pro-
cess consisting in the truncation of the sequence of stick-breaking frequencies at a
random stopping time τ(ε) that controls the accuracy of the approximation in the
total variation distance by ε. We name this finite dimensional approximation the ε-
Pitman–Yor process. We have derived the asymptotic distribution of τ(ε) as ε goes
to zero and we have advanced its use to devise a sampling scheme that generates
the stopping time first, and then the frequencies up to that point. The simulations in
Section 2.1.3 show that the proposed sampler proves computationally very efficient
in the moderate to large stopping time regime (for approximately τ(ε) ≥ 20). The
asymptotic distribution illustrates how large the stopping time is as the approxima-
tion error gets small in terms of the prior parameters θ and α. In particular, it shows
that the distribution of τ(ε) in the Dirichlet process case is not recovered in the limit
α→ 0 in Theorem 2.1.2. In fact, in the Dirichlet process case τ(ε) grows at a logarith-
mic rate in 1/ε while in Pitman–Yor case it grows at the polynomial rate εα/(1−α) and
the first regime is not recovered by letting α approach 0 in the second regime. We
have also drawn important connections with the theory of random partition struc-
tures developed by Jim Pitman and coauthors which highlight the relationship of
the the stopping time τ(ε) with the number Kn of unique values in a sample of size
n from the Pitman–Yor process.

We have left as open problem for future research the study of the conditional dis-
tribution of the stick-breaking frequencies given the stopping time. In the Dirichlet
process case one can exploit the renewal process interpretation to generate exactly
from this conditional distribution. In fact, when α = 0, the sequence (− log Rn)n≥1

corresponds to the jump times of a Poisson process and the conditional distribution
of the jumps given the number of jumps at time t can be described in terms of the
ordered statistics of i.i.d. uniform random variates on (0, t). The case α > 0 does not
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seem to be easily tractable, as it would be if the counting process associated to τ(ε)

were a mixed sample process or, equivalently, a Cox process, cf. Section 6.3 in [141].

It would be also interesting to compare the accuracy of our finite dimensional ap-
proximation of the Pitman–Yor process to the one proposed in [2]. The latter is
based on a representation of the frequencies in decreasing order, cf. [Proposition
22 270]. [2] compare the accuracy of their approximation scheme to a stick-breaking
truncation at a number n of stick-breaking frequencies that matches the number of
frequencies used in their scheme. Not surprisingly, their approximation is superior
since it generates weights in decreasing order, specially when α is large. In contrast,
Theorem 2.1.2 describes precisely how large the truncation threshold n should be
as α gets large for a given approximation level ε, cf. the center panel of Figure 2.1.
It also underlines that the approximation deteriorates for fixed n and increasing α,
which is coherent with the findings in [2]. A fair comparison with their approach
can only be done for a given nominal approximation error, but unfortunately the
authors did not provide a precise assessment of it. The number of stick-breaking fre-
quencies needed to match the approximation accuracy of [2] would be de facto larger
due to the non monotonicity. However, since the stopping rule (2.4) adapts to the
size of α, we do not expect the accuracy of our approximation scheme to deteriorate
for α large. As for computation time, the techniques used by [2] in order to obtain
decreasing frequencies are computational heavy. Their average computing time for
α = 0.5 is about 2.30 seconds/iteration with 104 locations. This amounts to 0.23
milliseconds/support point, which is 1000 times slower than the computing time for
our Algorithm 2 in the parameter configuration α = 0.5, θ = 10 and ε = 0.01, equal
to 0.23 microsecond/support point. It would be interesting to investigate what are
the consequences in terms of computation time per iteration for a given approxima-
tion error.

2.1.6 Appendix: Random generation of Tα,θ

Let Y be a standard Exp(1) random variable. Note that

P((Y/Tα)
α > x) =

∫ ∞

0
P(Y > x1/αt) fα(t)dt =

∫ ∞

0
exp[−x1/αt] fα(t)dt

= E
[
e−x1/αTα

]
= e−x = P(Y > x)

so we have Y =d (Y/Tα)α. For r < α, E(Y−r/α) < ∞, so we find that E(Y−r/α) =

E(Tr
α)E(Y−r) and

E(Tr
α) =

E(Y−r/α)

E(Y−r)
=

Γ(1− r/α)

Γ(1− r)
. (2.13)

The normalizing constant in fα,θ(t) is
∫ ∞

0 t−θ fα(t)dt = E(T−θ
α ), so set r = −θ and

note that −θ < α. Let Ga be a gamma random variable with shape a > 0 and
unit rate. Simple moment comparisons using (2.13) yield the distributional equality

G1+θ/α
d
= (G1+θ/Tα,θ)

α, which, however, does not provide a way to generate from
Tα,θ . For this we resort to [98]. First we recall how to generate a Zolotarev random
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variable Zα,b for α ∈ (0, 1) and b = θ/α > −1. Let

C =
Γ(1 + bα)Γ(1 + b(1− α))

πΓ(1 + b)

and

B(u) = A(u)−(1−α) =
sin(u)

sin(αu)α sin((1− α)u)1−α
.

A simple asymptotic argument yields the value B(0) = α−α(1 − α)−(1−α). Then
f (x) = C B(x)b, 0 ≤ x ≤ π. The following bound holds

f (x) ≤ CB(0)be−
x2

2σ2 , with σ2 =
1

bα(1− α)
.

This Gaussian upper bound suggests a simple rejection sampler for sampling Zolotarev
random variates. Following [98], it is most efficient to adapt the sampler to the value
of σ. If σ ≥

√
2π, rejection from a uniform random variate is best. Otherwise, use

a normal dominating curve as suggested in the bound above. The details are given
below.

ALGORITHM 3 (Sampler of Tα,θ)

1. set b = θ/α and σ =
√

bα(1− α)

2. if σ ≥
√

2π:
then repeat: generate U ∼ Unif(0, π) and V ∼ Unif(0, 1).

set X ← U, W ← B(X).
until V ≤ (W/B(0))b

else repeat: generate N ∼ N(0, 1) and V ∼ Unif(, 1).
set X ← σ|N|, W ← B(X).

until X ≤ π and Ve−N2/2 ≤ (W/B(0))b

3. generate G d
= G1+b(1−α)/α

4. set T ← 1/(WG1−α)1/α

5. return T
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2.2 Truncation-based approximations: normalized random mea-
sures

2.2.1 Introduction

Independent increment processes or, more generally, completely random measures
(CRMs) are ubiquitous in modern stochastic modeling and inference. They form the
basic building block of countless popular models in, e.g., Finance, Biology, Reliabil-
ity, Survival Analysis. Within Bayesian nonparametric statistics they play a pivotal
role. The Dirichlet process, the cornerstone of the discipline introduced in [117], can
be obtained as normalization or exponentiation of suitable CRMs [see 118]. More-
over, as shown in [213], CRMs can be seen as the unifying concept of a wide variety
of Bayesian nonparametric models. See also [182]. The concrete implementation of
models based on CRMs often requires to simulate their realizations. Given they are
discrete infinite objects, ∑i≥1 JiδZi , some kind of truncation is required, producing
an approximation error ∑i≥M+1 JiδZi . Among the various representations useful for
simulating realizations of CRMs the method due to [119] and popularized by [334]
stands out in that, for each realization, the weights Ji’s are sampled in decreasing
order. This clearly implies that for a given truncation level M the approximation er-
ror over the whole sample space is minimized. The appealing feature of decreasing
jumps has lead to a huge literature exploiting the Ferguson & Klass algorithm. Lim-
iting ourselves to recall contributions within Bayesian Nonparametrics we mention,
among others, [34, 43, 94, 111, 149, 148, 251, 249, 252, 248, 247]. General references
dealing with the simulation of Lévy processes include [289] and [83], who review
the Ferguson & Klass algorithm and the compound Poisson process approximation
to a Lévy process.

However, the assessment of the quality of the approximation due to the truncation
for general CRMs is limited to some heuristic criteria. For instance, [43] implement
the Ferguson & Klass algorithm for mixture models by using the so called relative er-
ror index. The corresponding stopping rule prescribes to truncate when the relative
size of an additional jump is below a pre-specified fraction of the sum of sampled
jumps. The inherent drawbacks of such a procedure and related heuristic threshold-
type procedures employed in the several of the above references is two-fold. On
the one hand the threshold is clearly arbitrary without quantifying the total mass
of the ignored jumps. On the other hand the total mass of the jumps beyond the
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threshold, i.e. the approximation error, can be very different for different CRMs or,
even, for the same CRM with different parameter values; this implies that the same
threshold can produce very different approximation errors in different situations.
Starting from similar concerns about the quality of the approximation, the recent
paper by [148] adopts an algorithmic approach and proposes an adaptive trunca-
tion sampler based on sequential Monte Carlo for infinite mixture models based on
normalized random measures and on stick-breaking priors. The measure of dis-
crepancy that is used in order to assess the convergence of the sampler is based on
the effective sample size (ESS) calculated over the set of particles: the algorithm is
run until the absolute value of the difference between two consecutive ESS gets un-
der a pre-specified threshold. Also motivated by the same concerns, [34, 35] adopt
an interesting approach to circumvent the problem of truncation by changing the
model in the sense of replacing the CRM part of their model with a Poisson process
approximation, which having an (almost surely) finite number of jumps can be sam-
pled exactly. However, this leaves the question of the determination of the quality
of approximation for truncated CRMs open. Another line of research, originated
by [164], is dedicated to validating the trajectories from the point of view of the
marginal density of the observations in mixture models. In this context, the quality
of the approximation is measured by the L1 distance between the marginal densities
under truncated and non-truncated priors. Recent interesting contributions in this
direction include bounds for a Ferguson & Klass representation of the beta process
[101] and bounds for the beta process, the Dirichlet process as well as for arbitrary
CRMs in a size biased representation [258, 69].

This paper faces the problem by a simple yet effective idea. In contrast to the above
strategies, our approach takes all jumps of the CRMs into account and hence leads
to select truncation levels in a principled way, which vary according to the type of
CRM and its parameters. The idea is as follows: given moments of CRMs are simple
to compute, one can quantify the quality of the approximation by evaluating some
measure of discrepancy between the actual moments of the CRM at issue (which in-
volve all its jumps) and the “empirical” moments, i.e. the moments computed based
on the truncated sampled realizations of the CRM. By imposing such a measure of
discrepancy not to exceed a given threshold and selecting the truncation level M
large enough to achieve the desired bound, one then obtains a set of “validated”
realizations of the CRM, or, in other terms, satisfying a moment-matching criterion.
An important point to stress is that our validation criterion is all-purpose in spirit
since it aims at validating the CRM samples themselves rather than samples of a
transformation of the CRM. Clearly the latter type of validation would be ad hoc,
since it would depend on the specific model. For instance, with the very same set of
moment-matching realizations of a gamma process, one could obtain a set of real-
izations of the Dirichlet process via normalization and a set gamma mixture hazards
by combination with a suitable kernel. Moreover, given moments of transformed
CRMs are typically challenging to derive, a moment-matching strategy would not
be possible in most cases. Hence, while the quantification of the approximation er-
ror does not automatically translate to transformed CRMs, one can still be confident
that the moment-matching output at the CRM level produces good approximations.
That this is indeed the case is explicitly shown in some practical examples both for
prior and posterior quantities in Section 2.2.3.
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2.2.2 Ferguson and Klass algorithm for completely random measures

Definition and main properties

Let MX be the set of boundedly finite measures on X, which means that if µ ∈ MX

then µ(A) < ∞ for any bounded set A. X is assumed to be a complete and separable
metric space and both X and MX are equipped with the corresponding Borel σ-
algebras. See [90] for details.
Definition 2.2.1. A random element µ̃, defined on (Ω, F , P) and taking values in MX, is
called a completely random measure (CRM) if, for any collection of pairwise disjoint sets
A1, . . . , An in X, the random variables µ̃(A1), . . . , µ̃(An) are mutually independent.

An important feature is that a CRM µ̃ selects (almost surely) discrete measures and
hence can be represented as

µ̃ = ∑
i≥1

JiδZi (2.14)

where the jumps Ji’s and locations Zi’s are random and independent. In (2.14) and
throughout we assume there are no fixed points of discontinuity a priori. The main
technical tool for dealing with CRMs is given by their Laplace transform, which
admits a simple structural form known as Lévy–Khintchine representation. In fact,
the Laplace transform of µ̃(A), for any A in X, is given by

LA(u) = E
[
e−λµ̃(A)

]
= exp

{
−
∫

R+×A

[
1− e−λv]ν(dv, dx)

}
(2.15)

for any λ > 0. The measure ν is known as Lévy intensity and uniquely characterizes
µ̃. In particular, there corresponds a unique CRM µ̃ to any measure ν on R+ ×X

satisfying the integrability condition∫
B

∫
R+

min{v, 1}ν(dv, dx) < ∞ (2.16)

for any bounded B in X. From an operational point of view this is extremely useful,
since a single measure ν encodes all the information about the jumps Ji’s and the
locations Zi’s. The measure ν will be conveniently rewritten as

ν(dv, dx) = ρ(dv|x)α(dx), (2.17)

where ρ is a transition kernel on R+ ×X controlling the jump intensity and α is a
measure on X determining the locations of the jumps. If ρ does not depend on x, the
CRM is said homogeneous, otherwise it is non-homogeneous.

We now introduce two popular examples of CRMs that we will serve as illustrations
throughout the paper.
Example 2.2.1. The generalized gamma process introduced by [63] is characterized by a
Lévy intensity of the form

ν(v. , x. ) =
e−θv

Γ(1− γ)v1+γ
v. α(x. ), (2.18)

whose parameters θ ≥ 0 and γ ∈ [0, 1) are such that at least one of them is strictly positive.
Notable special cases are: (i) the gamma CRM which is obtained by setting γ = 0; (ii) the
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inverse-Gaussian CRM, which arises by fixing γ = 0.5; (iii) the stable CRM which corre-
sponds to θ = 0. Moreover, such a CRM stands out for its analytical tractability. In the
following we work with θ = 1, a choice which excludes the stable CRM. This is justified in
our setting because the moments of the stable process do not exist. See Remark 2.2.1.
Example 2.2.2. The stable-beta process, or three-parameter beta process, was defined by
[319] as an extension of the beta process [156]. Its jump sizes are upper-bounded by 1 and
its Lévy intensity on [0, 1]×X is given by

ν(v. , x. ) =
Γ(c + 1)

Γ(1− σ)Γ(c + σ)
v−σ−1(1− v)c+σ−1v. α(x. ), (2.19)

where σ ∈ [0, 1) is termed discount parameter and c > −σ concentration parameter. When
σ = 0, the stable-beta process reduces to the beta CRM of [156]. Moreover, if c = 1− σ, it
boils down to a stable CRM where the jumps larger than 1 are discarded.

Moments of a CRM

For any measurable set A of X, the n-th (raw) moment of µ̃(A) is defined by

mn(A) = E
[
µ̃n(A)

]
.

In the sequel the multinomial coefficient is denoted by ( n
k1···kn

) = n!
k1!...kn ! . In the next

proposition we collect known results about moments of CRMs which are crucial for
our methodology.
Proposition 2.2.1. Let µ̃ be a CRM with Lévy intensity ν(v. , x. ). Then the i-th cumulant of
µ̃(A), denoted by κi(A), is given by

κi(A) =
∫

R+×A
viν(v. , x. ),

which, in the homogeneous case ν(v. , x. ) = ρ(v. )α(x. ), simplifies to

κi(A) = α(A)
∫ ∞

0
viρ(v. ).

The n-th moment of µ̃(A) is given by

mn(A) = ∑
(∗)

( n
k1 ···kn)

n

∏
i=1

(
κi(A)/i!

)ki ,

where the sum (∗) is over all n-tuples of nonnegative integers (k1, . . . , kn) satisfying the
constraint k1 + 2k2 + · · ·+ nkn = n.

In the following we focus on (almost surely) finite CRMs i.e. µ̃(X) < ∞. This is
motivated by the fact that most Bayesian nonparametric models, but also models in
other application areas, involve finite CRMs. Hence, we assume that the measure α

in (2.16) is finite i.e. α(X) := a ∈ (0, ∞). This is a sufficient condition for µ̃(X) <

∞ in the non-homogeneous case and also necessary in the homogeneous case [see
e.g. 282]. A common useful parametrization of α is then given as aP∗ with P∗ a
probability measure and a a finite constant. Note that, if µ̃(X) = ∞, one could still
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CRM Cumulants Moments

κi m1 m2 m3 m4

G a(i− 1)! a a(2) a(3) a(4)

IG a(1/2)(i−1) a a2 + 1
2 a a3 + 3

2 a2 a4 + 3a3

+ 3
4 a + 15

4 a2 + 15
8 a

GG a(1− γ)(i−1) a a2 + a(1−γ) a3 + 3a2(1−γ) a4 + 6a3(1−γ)

+a(1−γ)(2) +a2(1−γ)(11−7γ)+ a(1−γ)(3)

B a (i−1)!
(c+1)(i−1)

a a2 + a
c+1 a3 + 3a2

c+1 a4 + 6a3

c+1 +
8a2

(c+1)(2)

+ 2a
(c+1)(2)

+ 3a2

(c+1)2 +
6a

(c+1)(3)

SB a
(1−σ)(i−1)
(c+1)(i−1)

a a2 + a 1−σ
c+1 a3 + 3a2 1−σ

c+1 a4 + 6a3 1−σ
c+1 + 4a2 (1−σ)(2)

(c+1)(2)

+a
(1−σ)(2)
(c+1)(2)

+3a2 (1−σ)2

(c+1)2 + a
(1−σ)(3)
(c+1)(3)

TABLE 2.6: Cumulants and first four moments of the random to-
tal mass µ̃(X) for the gamma (G), inverse-Gaussian (IG), generalized

gamma (GG), beta (B) and stable-beta (SB) CRMs.

identify a bounded set of interest A and the whole following analysis carries over
by replacing µ̃(X) with µ̃(A).

As we shall see in Section 2.2.2, the key quantity for evaluating the truncation error
is given by the random total mass of the CRM, µ̃(X). Proposition 2.2.1 shows how
the moments mn = mn(X) can be obtained from the cumulants κi = κi(X) and, in
particular, the relations between the first four moments and the cumulants are

m1 = κ1, m2 = κ2
1 + κ2, m3 = κ3

1 + 3κ1κ2 + κ3, m4 = κ4
1 + 6κ2

1κ2 + 4κ1κ3 + 3κ2
2 + κ4.

With reference to the two examples considered in Section 2.2.2, in both cases the
expected value of µ̃(X) is a, which explains the typical terminology total mass pa-
rameter attributed to a. For the generalized gamma CRM the variance is given by
Var(µ̃(X)) = a(1 − γ), which shows how the parameter γ affects the variability.
Moreover, κi = a(1−γ)(i−1) with x(k) = x(x+ 1) . . . (x+ k− 1) denoting the ascend-
ing factorial. As for the stable-beta CRM, we have Var(µ̃(X)) = a 1−σ

c+1 with both dis-

count and concentration parameter affecting the variability, and also κi = a
(1−σ)(i−1)
(1+c)(i−1)

.
Table 2.6 summarizes the cumulants κi and moments mn for the random total mass
µ̃(X) for the generalized gamma (assuming as in Example 2.2.1 θ = 1), stable-beta
CRMs and some of their special cases.
Remark 2.2.1. The stable CRM, which can be derived from the generalized gamma
CRM by setting θ = 0, does not admit moments. Hence, it cannot be included in
our moment-matching methodology. However, the stable CRM with jumps larger
than 1 discarded, derived from the stable-beta process by setting c = 1− σ, has all
moments. Moreover, even when working with the standard stable CRM, posterior
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quantities typically involve an exponential updating of the Lévy intensity [see 213],
which makes the corresponding moments finite. This then allows to apply the mo-
ment matching methodology to the posterior.

Ferguson & Klass algorithm

For notational simplicity we present the Ferguson & Klass algorithm for the case
X = R. However, note that it can be readily extended to more general Euclidean
spaces [see e.g. 257]. Given a CRM

µ̃ =
∞

∑
i=1

JiδZi , (2.20)

the Ferguson & Klass representation consists in expressing random jumps Ji occur-
ring at random locations Zi in terms of the underlying Lévy intensity.

In particular, the random locations Zi, conditional on the jump sizes Ji, are obtained
from the distribution function FZi |Ji

given by

FZi |Ji
(s) =

ν(dJi, (−∞, s])
ν(dJi, R)

.

In the case of a homogeneous CRM with Lévy intensity ν(v. , x. ) = ρ(v. ) aP∗(x. ), the
jumps are independent of the locations and, therefore FZi |Ji

= FZi implying that the
locations are i.i.d. samples from P∗.

As far as the random jumps are concerned, the representation produces them in
decreasing order, that is, J1 ≥ J2 ≥ · · · . Indeed, they are obtained as ξi = N(Ji),
where N(v) = ν([v, ∞), R) is a decreasing function, and ξ1, ξ2, . . . are jump times of

a standard Poisson process (PP) of unit rate i.e. ξ1, ξ2− ξ1, . . . i.i.d.∼ Exp(1). Therefore,
the Ji’s are obtained by solving the equations ξi = N(Ji). In general, this is achieved
by numerical integration, e.g., relying on quadrature methods [see, e.g. 68]. For
specific choices of the CRM, it is possible to make the equations explicit or at least
straightforward to evaluate. For instance, if µ̃ is a generalized gamma process (see
Example 2.2.1), the function N takes the form

N(v) =
a

Γ(1− γ)

∫ ∞

v
e−uu−(1+γ) u. =

a
Γ(1− γ)

Γ(v;−γ), (2.21)

with Γ( · ; · ) indicating an incomplete gamma function. If µ̃ is the stable-beta pro-
cess, one has

N(v) = a
Γ(c + 1)

Γ(1− σ)Γ(c + σ)

∫ 1

v
u−σ−1(1−u)c+σ−1 u. = a

Γ(c + 1)
Γ(1− σ)Γ(c + σ)

B(1− v; c+σ,−σ),

(2.22)
where B( · ; · , · ) denotes the incomplete beta function.

Hence, the Ferguson & Klass algorithm can be summarized as follows.
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Algorithm 2.2.1 Ferguson & Klass algorithm

1: Sample ξi ∼ PP for i = 1, . . . , M
2: Define Ji = N−1(ξi) for i = 1, . . . , M
3: Sample Zi ∼ P∗ for i = 1, . . . , M
4: Approximate µ̃ by ∑M

i=1 JiδZi

Since it is impossible to sample an infinite number of jumps, approximate simulation
of µ̃ is in order. This becomes a question of determining the number M of jumps to
sample in (2.20) leading to the truncation

µ̃ ≈ µ̃M =
M

∑
i=1

JiδZi , (2.23)

with approximation error in terms of the un-sampled jumps equal to ∑∞
i=M+1 Ji. The

Ferguson & Klass representation has the key advantage of generating the jumps
in decreasing order implicitly minimizing such an approximation error. Then, the
natural path to determining the truncation level M would be the evaluation of the
Ferguson & Klass tail sum

∞

∑
i=M+1

N−1(ξi). (2.24)

[63, Theorem A.1] provided an upper bound for (2.24) in the generalized gamma
case.

Moment-matching criterion

Our methodology for assessing the quality of approximation of the Ferguson & Klass
algorithm consists in comparing the actual distribution of the random total mass
µ̃(X) with its empirical counterpart, where by empirical distribution we mean the
distribution obtained by the sampled trajectories, i.e. by replacing random quanti-
ties by Monte Carlo averages of their sampled trajectories. In particular, based on
the fact that the first K moments carry much information about a distribution, theo-
retical and empirical moments of µ̃(X) are compared.

The infinite vector of jumps is denoted by J = (Ji)
∞
i=1 and a vector of jumps sampled

by the Ferguson & Klass algorithm by J(l) = (J(l)1 , . . . , J(l)M ). Here, l = 1, . . . , NFK

stands for the l-th iteration of the algorithm, i.e. for the l-th sampled realization.
We then approximate the expectation E of a statistic of the jumps, say S(J), by the
following empirical counterpart, denoted by EFK,

E
[
S(J)] ≈ EFK

[
S(J)] :=

1
NFK

NFK

∑
l=1

S
(

J(l)
)
. (2.25)

Note that there are two layers of approximation involved in (2.25): first, only a finite
number of jumps M is used; second, the actual expected value is estimated through
an empirical average which typically conveys on Monte Carlo error. The latter is not
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the focus of the paper, so we take a large enough number of trajectories, NFK = 104,
in order to insure a limited Monte Carlo error of the order of 0.01. We focus on the
first approximation inherent to the Ferguson & Klass algorithm.

More specifically, as far as moments are concerned, mK = (m1, . . . , mK) denotes the
first K moments of the random total mass µ̃(X) = ∑∞

i=1 Ji provided in Section 2.2.2
and m̂K = (m̂1, . . . , m̂K) indicates the first K empirical moments given by

m̂n = EFK

[(
M

∑
i=1

Ji

)n]
. (2.26)

As measure of discrepancy between theoretical and empirical moments, a natural
choice is given by the mean squared error between the vectors of moments or, more
precisely, between the n-th roots of theoretical and empirical moments

` = `(mK, m̂K) =

(
1
K

K

∑
n=1

(
m1/n

n − m̂1/n
n
)2
)1/2

. (2.27)

When using the Ferguson & Klass representation for computing the empirical mo-
ments the index ` depends on the truncation level M and we highlight such a de-
pendence by using the notation `M. Of great importance is also a related quan-
tity, namely the number of jumps necessary for achieving a given level of precision,
which essentially consists in inverting `M and is consequently denoted by M(`).

The index of discrepancy (2.27) clearly also depends on K, the number of moments
used to compute it and 1/K in (2.27) normalizes the indices in order to make them
comparable as K varies. A natural question is then about the sensitivity of (2.27)
w.r.t. K. It is desirable for `M to capture fine variations between the theoretical
and empirical distributions, which is assured for large K. In extensive simulation
studies not reported here we noted that increasing K in the range {1, . . . , 10} makes
the index increase and then plateau and this holds for all processes and parameter
specifications used in the paper. Recalling also the whole body of work by Pearson
on eponymous curves, which shows that the knowledge of four moments suffices
to cover a large number of known distributions, we adhere to his rule of thumb and
choose K = 4 in our analyses. On the one hand it is a good compromise between
targeted precision of the approximation and speed of the algorithm. On the other
hand it is straightforward to check the results as K varies in specific applications; for
the ones considered in the following sections the differences are negligible.

In the literature several heuristic indices based on the empirical jump sizes around
the level of truncation have been discussed [cf Remark 3 in 43]. Here, in order to
compare such procedures with our moment criterion, we consider the relative error
index which is based on the jumps themselves. It is defined as the expected value
of the relative error between two consecutive partial sums of jumps. Its empirical
counterpart is denoted by eM and given by

eM = EFK

[
JM

∑M
i=1 Ji

]
. (2.28)
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2.2.3 Applications to Bayesian Nonparametrics

In this section we concretely implement the proposed moment-matching Ferguson
& Klass algorithm to several Bayesian nonparametric models. The performance in
terms of both a priori and a posteriori approximation is evaluated. A comparison
of the quality of approximation resulting from using (2.28) as benchmark index is
provided.

A priori simulation study

We start by investigating the performance of the proposed moment-matching ver-
sion of the Ferguson & Klass algorithm w.r.t. the CRMs defined in Examples 2.2.1
and 2.2.2, namely the generalized gamma and stable-beta processes. Figure 2.3 dis-
plays the behaviour of both the moment-matching distance `M (left panel) and the
relative jumps’ size index eM (right panel) as the truncation level M increases. The
plots, from top to bottom, correspond to: the generalized gamma process with vary-
ing γ and a = 1 fixed; the inverse-Gaussian process with varying total mass a (which
is a generalized gamma process process with γ = 0.5); the stable-beta process with
varying discount parameter σ and a = 1 fixed.

First consider the behaviour of the indices as the parameter specifications vary. It
is apparent that, for any fixed truncation level M, the indices `M and eM increase as
each of the parameters a, γ or σ increases. For instance, roughly speaking, a total
mass parameter a corresponds to sampling trajectories defined on the interval [0, a]
[see 282], and a larger interval worsens the quality of approximation for any given
truncation level. Also it is natural that γ and σ impact in similar way `M and eM

given they stand for the “stable” part of the Lévy intensity. See first and third rows
of Figure 2.3.

As far as the comparison between `M and eM is concerned, it is important to note
that eM consistently downplays the error of approximation related to the truncation.
This can be seen by comparing the two columns of Figure 2.3. `M is significantly
more conservative than eM for both the generalized gamma and the stable-beta pro-
cesses, especially for increasing values of the parameters γ, a or σ. This indicates
quite a serious issue related to eM as a measure for the quality of approximation and
one should be cautious when using it. In contrast, the moment-matching index `M

matches more accurately the known behaviour of these processes as the parameters
vary.

By reversing the viewpoint and looking at the truncation level M(`) needed for
achieving a certain error of approximation ` in terms of moment-match, the results
become even more intuitive. We set ` = 0.1 and computed M(`) on a grid of size
20× 20 with equally-spaced points for the parameters (a, γ) ∈ (0, 2) × (0, 0.8) for
the generalized gamma process and (a, c) ∈ (0, 2)× (0, 30) for the beta process. Fig-
ure 2.4 displays the corresponding plots. In general, it is interesting to note that a
limited number of jumps is sufficient to achieve good precision levels. Analogously
to Figure 2.3, larger values of the parameters require a larger number of jumps to
achieve a given precision level. In particular, when γ > 0.5, one needs to sample a
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significantly larger number of jumps. For instance, in the generalized gamma pro-
cess case, with a = 1, the required number of jumps increases from 28 to 53 when
passing from γ = 0.5 to γ = 0.75. It is worth noting that for the normalized version
of the generalized gamma process, to be discussed in Section 2.2.3 and quite popu-
lar in applications, the estimated value of γ rarely exceeds 0.75 in species sampling,
whereas it is typically in the range [0.2, 0.4] in mixture modeling.
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FIGURE 2.3: Left panel: `M as M varies; right panel: eM as M varies.
Top row: generalized gamma process (GG) with varying γ and a =
1 fixed; middle row: inverse-Gaussian process (IG), γ = 0.5, with
varying total mass a; bottom row: stable-beta process (SBP) with a =
1, c = 0.5 fixed and varying discount parameter σ. The points are

connected by straight lines only for visual simplification.
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FIGURE 2.4: Number of jumps M(`) required to achieve a precision
level of ` = 0.1 for `M. Left panel: generalized gamma process for
a ∈ (0, 2) and γ ∈ (0, 0.8). Right panel: beta process for a ∈ (0, 2) and

c ∈ (0, 30).

Normalized random measures with independent increments

Having illustrated the behaviour of the moment-matching methodology for plain
CRMs we now investigate it on specific classes of nonparametric priors, which typi-
cally involve a transformation of the CRM. Moreover, given their posterior distribu-
tions involve updated CRMs it is important to test the moment-matching Ferguson
& Klass algorithm also on posterior quantities. The first class of models we consider
are normalized random measures with independent increments (NRMI) introduced
by [282]. Such nonparametric priors have been used as ingredients of a variety of
models and in several application contexts. Recent reviews can be found in [213, 43].

If µ̃ is a CRM with Lévy intensity (2.17) such that 0 < µ̃(X) < ∞ (almost surely),
then an NRMI is defined as

P̃ =
µ̃

µ̃(X)
. (2.29)

Particular cases of NRMI are then obtained by specifying the CRM in (2.29). For
instance, by picking the generalized gamma process defined in Example 2.2.1 one
obtains the normalized generalied gamma process, first used in a Bayesian context
by [211].

Posterior Distribution of an NRMI The basis of any Bayesian inferential proce-
dure is represented by the posterior distribution. In the case of NRMIs, the deter-
mination of the posterior distribution is a challenging task since one cannot rely
directly on Bayes’ theorem (the model is not dominated) and, with the exception of
the Dirichlet process, NRMIs are not conjugate as shown in [171]. Nonetheless, a
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posterior characterization has been established in [172] and it turns out that, even
though NRMIs are not conjugate, they still enjoy a sort of “conditional conjugacy.”
This means that, conditionally on a suitable latent random variable, the posterior
distribution of an NRMI coincides with the distribution of an NRMI having fixed
points of discontinuity located at the observations. Such a simple structure suggests
that when working with a general NRMI, instead of the Dirichlet process, one faces
only one additional layer of difficulty represented by the marginalization with re-
spect to the conditioning latent variable.

Before stating the posterior characterization to be used with our algorithm, we need
to introduce some notation and basic facts. Let (Yn)n≥1 be an exchangeable sequence
directed by an NRMI, i.e.

Yi|P̃ i.i.d.∼ P̃, for i = 1, . . . , n,
(2.30)

P̃ ∼ Q,

with Q the law of NRMI, and set Y = (Y1, . . . , Yn). Due to the discreteness of NRMIs,
ties will appear with positive probability in Y and, therefore, the sample information
can be encoded by the Kn = k distinct observations (Y∗1 , . . . , Y∗k ) with frequencies
(n1, . . . , nk) such that ∑k

j=1 nj = n. Moreover, introduce the nonnegative random
variable U such that the distribution of [U|Y] has density, w.r.t. the Lebesgue mea-
sure, given by

fU|Y(u) ∝ un−1 exp
{
−ψ(u)

} k

∏
j=1

τnj

(
u|Y∗j

)
, (2.31)

where τnj(u|Y∗j ) =
∫ ∞

0 vnj e−uvρ(v. |Y∗j ) and ψ is the Laplace exponent of µ̃ defined by
ψ(u) = − log

(
LX(u)

)
, cf (2.15). Finally, assume P∗ = E[P̃] to be nonatomic.

Proposition 2.2.2 ([172]). Let (Yn)n≥1 be as in (2.30) where P̃ is an NRMI defined in
(2.29) with Lévy intensity as in (2.17). Then the posterior distribution of the unnormalized
CRM µ̃, given a sample Y, is a mixture of the distribution of [µ̃|U, Y] with respect to the
distribution of [U|Y]. The latter is identified by (2.31), whereas [µ̃|U = u, Y] is equal in
distribution to a CRM with fixed points of discontinuity at the distinct observations Y∗j ,

µ̃∗ +
k

∑
j=1

J∗j δY∗j (2.32)

such that:

(a) µ̃∗ is a CRM characterized by the Lévy intensity

ν∗(v. , x. ) = e−uvν(v. , x. ), (2.33)

(b) the jump height J∗j corresponding to Y∗j has density, w.r.t. the Lebesgue measure, given
by

f ∗j (v) ∝ vnj e−uvρ
(
v. |Y∗j

)
, (2.34)

(c) µ̃∗ and J∗j , j = 1, . . . , k, are independent.
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Moreover, the posterior distribution of the NRMI P̃, conditional on U, is given by

[P̃|U, Y] d
= w

µ̃∗

µ̃∗(X)
+ (1− w)

∑k
k=1 J∗j δY∗j

∑k
l=1 J∗l

, (2.35)

where w = µ̃∗(X)/(µ̃∗(X) + ∑k
l=1 J∗l ).

In order to simplify the notation, in the statement we have omitted explicit reference
to the dependence on [U|Y] of both µ̃∗ and {J∗j : j = 1, . . . , k}, which is apparent
from (2.33) and (2.34). A nice feature of the posterior representation of Proposi-
tion 2.2.2 is that the only quantity needed for deriving explicit expressions for par-
ticular cases of NRMI is the Lévy intensity (2.17). For instance, in the case of the
generalized gamma process, the CRM part µ̃∗ in (2.32) is still a generalized gamma
process characterized by a Lévy intensity of the form of (2.18)

ν∗(v. , y. ) =
e−(1+u)v

Γ(1− γ)v1+γ
v. aP∗(y. ). (2.36)

Moreover, the distribution of the jumps (2.34) corresponding to the fixed points of
discontinuity Y∗j ’s in (2.32) reduces to a gamma distribution with density

f ∗j (v) =
(1 + u)nj−γ

Γ(nj − γ)
vnj−γ−1e−(1+u)v. (2.37)

Finally, the conditional distribution of the non-negative latent variable U given Y
(2.31) is given by

fU|Y(u) ∝ un−1(u + 1)kγ−n exp
{
− a

γ
(u + 1)γ

}
. (2.38)

The availability of this posterior characterization makes it then possible to deter-
mine several important quantities such as the predictive distributions and the in-
duced partition distribution. See [172] for general NRMI and [211] for the subclass
of the normalized generalized gamma process. See also [34] for another approach
to approximate the normalized generalized gamma process with a finite number of
jumps.

Moment-matching for posterior NRMI From (2.32) it is apparent that the poste-
rior of the unnormalized CRM µ̃, conditional on the latent variable U, is composed
of the independent sum of a CRM µ̃∗ and fixed points of discontinuity at the distinct
observations Y∗j . The part which is at stake here is obviously µ̃∗ for which only ap-
proximate sampling is possible. As for the fixed points of discontinuities, they are
independent from µ̃∗ and can be sampled exactly, at least in special cases.

We focus on the case of the normalized generalized gamma process. By (2.33) the
Lévy intensity of µ̃∗ is obtained by exponentially tilting the Lévy intensity of the
prior µ̃. Hence, the Ferguson & Klass algorithm applies in the same way as for the
prior. The sampling of the fixed points jumps is straightforward from the gamma
distributions (2.37). As far as the moments are concerned, key ingredient of our
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algorithm, the cumulants of µ̃∗ are equal to κ∗i = a
(1−γ)(i−1)

(u+1)i−γ and the corresponding
moments are then obtained via Proposition 2.2.1.

Our simulation study is based on a sample of size n = 10. Such a small sample
size is challenging in the sense that the data provide rather few information and
the CRM part of the model is still prevalent. We examine three possible clustering
configurations of the observations Y∗i s: (i) k = 1 group, with n1 = 10, (ii) k = 3
groups, with n1 = 1, n2 = 3, n3 = 6, and (iii) k = 10 groups, with nj = 1 for
j = 1, . . . , 10. First let us consider the behaviour of fU|Y, which is illustrated in
Figure 2.5 for n = 10 and k ∈ {1, 2, . . . , 10}. It is clear that the smaller the number of
clusters, the more fU|Y is concentrated on small values, and vice versa.
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FIGURE 2.5: NGG posterior: density fU|Y with n = 10 observations,
a = 1, γ = 0.5, and number of clusters k ∈ {1, . . . , 10}; k = 1 corre-

sponds to the most peaked density and k = 10 to the flattest.

Now we consider µ̃∗(X), the random total mass corresponding to the CRM part of
the posterior only given in (2.35). Such a quantity depends on U whose distribu-
tion is driven by the data Y. In order to keep the presentation as neat as possible,
and in the same time to remain consistent with the data, we choose to condition on
U = u for u equal to the mean of fU|Y, the most natural representative value. Given
this, it is possible to run the Ferguson & Klass algorithm on the CRM part µ̃∗ of the
posterior and compute moment-matching index `M as the number of jumps varies.
Figure 2.6 shows these results for the inverse-Gaussian CRM, a special case of the
generalized gamma process corresponding to γ = 0.5. Such posteriors were sam-
pled under the above mentioned Y clustering configuration scenarios (i)-(iii), which
led to mean values of U|Y of, respectively, 6.3, 8.9 and 25.1. The plot also displays a
comparison to the prior values of `M and indicates that for a given number of jumps
the approximation error, measured in terms of `M, is smaller for the posterior CRM
part µ̃∗ w.r.t. to the prior CRM µ̃.

Additionally, instead of considering only the CRM part µ̃∗ of the posterior, one
may be interested in the quality of the full posterior which includes also the fixed
discontinuities. For this purpose we consider an index which is actually of inter-
est in its own. In particular, we evaluate the relative importance of the CRM part
w.r.t. the part corresponding to the fixed points of discontinuity in terms of the ratio
E
(

∑k
j=1 J∗j

)
/E
(
µ̃∗(X)

)
. Loosely speaking one can think of the numerator as the ex-

pected weight of the data and the denominator as the expected weight of the prior.
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Recall that in the normalized generalized gamma process case, for a given pair (n, k)
and conditional on U = u, the sum of fixed location jumps is a gamma(n− kγ, u+ 1).
Hence, the index becomes

E
(

∑k
j=1 J∗j |U = u

)
E
(
µ̃∗(X)|U = u

) =
(n− kγ)/(u + 1)

a/(u + 1)1−γ
=

n− kγ

a(u + 1)γ
. (2.39)

By separately mixing the conditional expected values in (2.39) over fU|Y (we use an
adaptive rejection algorithm to sample from fU|Y) we obtained the results summa-
rized in the table of Figure 2.6. We can appreciate that the fixed part typically over-
comes (or is at least of the same order than) the CRM part, a phenomenon which uni-
formly accentuates as the sample size n increases. Returning to the original problem
of measuring the quality of approximation in terms of moment matching, these find-
ings make it apparent that the comparative results of Figure 2.6 between prior and
posterior are conservative. In fact, if performing the moment-match on the whole
posterior, i.e. including the fixed jumps which can be sampled exactly, the corre-
sponding moment-matching index would, for any given truncation level M, indi-
cate a better quality of approximation w.r.t. the index based solely on µ̃∗. Note that
computing the moments of µ̃∗(X) + ∑k

i=1 Ji straightforward given the independence
between µ̃∗ and the fixed jumps Ji’s and also among the jumps themselves. From
a practical point of view the findings of this section suggest that a given quality of
approximation ` in terms of moment-match for the prior represents an upper bound
for the quality of approximation in the posterior.
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√
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FIGURE 2.6: Inverse-Gaussian process (γ = 0.5) with a = 1.
Left: Moment-matching errors `M as the number of jumps M
varies. `M corresponding to prior µ̃ (continuous line) and poste-
rior µ̃∗ under Y clustering scenarios (i) (dashed line), (ii) (dotted
line), (iii) (dotted-dashed line). Right: Index of relative importance

E
(

∑k
j=1 J∗j

)
/E
(
µ̃∗(X)

)
for varying (n, k).

A note on the inconsistency for diffuse distributions In the context of Gibbs-type
priors, of which the normalized generalized gamma process is a special case, [95]
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showed that, if the data are generated from a “true” P0, the posterior of P̃ concen-
trates at a point mass which is the linear combination

bP∗(·) + (1− b)P0(·)

of the prior guess P∗ = E(P̃) and P0. The weight b depends on the prior and, indi-
rectly, on P0, since P0 dictates the rate at which the distinct observations k are gener-
ated. For a diffuse P0, all observations are distinct and k = n (almost surely). In the
normalized generalized gamma process case this implies that b = γ and hence the
posterior is inconsistent since it does not converge to P0. For the inverse-Gaussian
process, i.e. with γ = 0.5, the posterior distribution gives asymptotically the same
weight to P∗ and P0. The last row of the table of Figure 2.6, which displays the ratio
E
(

∑k
j=1 J∗j

)
/E
(
µ̃∗(X)

)
for k = n, is an illustration of this inconsistency result since

the ratio gets close to 1 as n grows. In contrast, when P0 is discrete, which implies
that k increases at a slower rate than n, one always has consistency. This is illustrated
by the first two rows of the table of Figure 2.6, where one can appreciate that the ra-
tio E

(
∑k

j=1 J∗j
)
/E
(
µ̃∗(X)

)
increases as n increases, giving more and more weight to

the data. These findings suggest that consistency issues for general NRMI could be
explored from new perspectives based on the study of the asymptotic behavior of
fU|Y, which will be subject to future work.

Stable-beta Indian buffet process

The Indian buffet process (IBP), introduced in [130], is one of the most popular mod-
els for feature allocation and is closely connected to the beta process discussed in
Example 2.2.2. In fact, when marginalizing out the Dirichlet process and consider-
ing the resulting partition distribution one obtains the well known Chinese restau-
rant process. Likewise, as shown in [320], when integrating out a beta process in a
Bernoulli process (BeP) model one obtains the IBP. Recall that a Bernoulli process,
with an atomic base measure µ̃, is a stochastic process whose realizations are col-
lections of atoms of mass 1, with possible locations given by the atoms of the base
measure µ̃. Such an atom is element of the collection with probability given by the
jump size in µ̃. Later, [319] generalized the construction and defined the stable-beta
Indian buffet process as

Yi|µ̃ i.i.d.∼ BeP(µ̃) for i = 1, . . . , n,
(2.40)

µ̃|c, σ, aP∗ ∼ SBP(c, σ, aP∗).

Given the construction involves a CRM, it is clear that any conditional simulation
algorithm will need to rely on some truncation for which we use our moment-
matching Ferguson & Klass algorithm.

Posterior distribution in the IBP Let us consider a conditional iid sample Y =

(Y1, . . . , Yn) as in (2.40). Note that due to the discreteness of µ̃, ties appear with
positive probability. We adopt the same notations for the ties Y∗j and frequencies
nj as in Section 2.2.3. Then we can state the following result which highlights the
posterior structure of the stable-beta process in the Indian buffet process.
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Proposition 2.2.3 ([319]). Let (Yn)n≥1 be as in (2.40). Then the posterior distribution of µ̃

conditional on Y is given by the distribution of

µ̃∗ +
k

∑
j=1

J∗j δY∗j

where

(a) µ̃∗ is a stable-beta process characterized by the Lévy intensity

ν∗(v. , x. ) = (1− v)nν(v. , x. ),

(b) the jump height J∗j corresponding to Y∗j is beta distributed

J∗j ∼ beta(nj − σ, c + σ + n− nj),

(c) µ̃∗ and J∗j , j = 1, . . . , k, are independent.

Note that due to the polynomial tilting of ν by (1− u)n in (a) above, the CRM part
µ̃∗ is still a stable-beta process with updated parameters

c∗ = c + n and a∗ = a
(c + σ)(n)
(c + 1)(n)

,

while the discount parameter σ remains unchanged.

Moment-matching for the IBP In order to implement the moment-matching method-
ology we first need to evaluate the posterior moments of the random total mass. For
this purpose, we rely on the moments characterization in terms of the cumulants
provided in Proposition 2.2.1. The cumulants κ∗i of the CRM part µ̃∗(X) are obtained
from Table 2.6 with the appropriate parameter updates which leads to

κ∗i = a∗
(1− σ)(i−1)

(1 + c∗)(i−1)
= a

(1− σ)(i−1)(c + σ)(n)
(1 + c)(n+i−1)

.

We consider two stable-beta processes: the beta process prior µ̃ ∼ SBP(c = 1, σ =

0, a = 1) and the stable-beta process prior µ̃ ∼ SBP(c = 1, σ = 0.5, a = 1). We let
n vary in {5, 10, 20}. In contrast to the NRMI case, there is no need to work under
different scenarios for the clustering profile of the data, since the posterior CRM µ̃∗

is not affected by them with only the sample size entering the updating scheme.
We compare the prior moment-match for µ̃ with the posterior moment-match for
µ̃∗ in terms of our discrepancy index `M and the results are displayed in Figure 2.7.
The comparison shows that there is a gain in precision between prior and posterior
distributions in terms of `M suggesting that the a priori error level ` represents an
upper bound for the posterior approximation error.

As in Section 2.2.3, we also evaluate the relative weights of fixed jumps and posterior
CRM or, roughly, of the data w.r.t. the prior. Recalling that fixed location jumps J∗j
are independent and beta(nj − σ, c + σ + n− nj) and some algebra allow to re-write
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the ratio of interest as

E
(

∑k
j=1 J∗j

)
E
(
µ̃∗(X)

) =
(n− kσ)(c + 1)(n−1)

a(c + σ)(n)
.

Table 2.7 displays the corresponding values for different choices of n and k. As in
the NRMI case, the fixed part overcomes the CRM part, which means that the data
dominate the prior, and, moreover, their relative weight increases as n increases.
In terms of moment-matching this shows that, if one looks at the overall posterior
structure, the approximation error connected to the truncation is further dampened.
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FIGURE 2.7: Moment-matching errors `M as the number of jumps M
varies for the stable-beta process with c = 1, a = 1, and, respec-
tively, σ = 0 (left panel) and σ = 0.5 (right panel). `M corresponding
to prior µ̃ (continuous line) and the posterior µ̃∗ given with n = 5
(dashed line) and n = 10 (dotted line) and n = 20 (dashed-dotted

line) observations.

E
(

∑k
j=1 J∗j

)
/E
(
µ∗(X)

)
k \ n 10 30 100

1 2.57 4.71 8.79

nσ 2.28 4.36 8.39

n 1.35 2.40 4.41

TABLE 2.7: Stable-beta process with σ = 0.5, c = 1 and a = 1: Index
of relative importance E

(
∑k

j=1 J∗j
)
/E
(
µ∗(X)

)
for varying (n, k).

2.2.4 Moment-matching criterion implementation for mixtures

We illustrate the use of the moment-matching strategy by implementing it within
location-scale NRMI mixture models, which can be represented in hierarchical form
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as

Yi|µi, σi
ind∼ k(·|µi, σi), i = 1, . . . , n,

(µi, σi)|P̃ i.i.d.∼ P̃, i = 1, . . . , n,

P̃ ∼ NRMI,

where k is a kernel parametrized by (µ, σ) ∈ R×R+ and the NRMI P̃ is defined
in (2.29). Under this framework, density estimation is carried out by evaluating the
posterior predictive density. Specifically, we consider the Gaussian kernel k(x|µ, σ) =

N (x|µ, σ) and normalized generalized gamma process on locations and scales with
a normal base measure P0, parameter θ = 1 in Equation (2.18), and varying stability
parameter γ ∈ {0, 0.25, 0.5, 0.75}.
The dataset we consider is the popular Galaxy dataset, which consists of velocities
of 82 distant galaxies diverging from our own galaxy. Since the data are clearly away
from zero (range from 9.2 to 34), Gaussian kernels, although having the whole real
line as support, are typically employed in its analysis.

As far as the simulation algorithm is concerned, based on Sections 2.2.3 to 2.2.3,
the following moment-matching Ferguson & Klass posterior sampling strategy is
implemented: (1) evaluate the threshold M(`) which validates trajectories of the
CRM using Algorithm 2.2.1 on the prior distribution; (2) implement Algorithm 2.2.1
on the posterior distribution using the threshold M(`). More elaborate and suitably
tailored moment-matching strategies can be devised for specific models. However,
to showcase the generality and simplicity of our proposal we do not pursue this
here.

In particular, we set `M = 0.01. We compare the output to the Ferguson & Klass
algorithm with heuristic relative error eM criterion, which consists of step (2) only
with truncation dictated by the relative error for which we set eM ∈ {0.1, 0.05, 0.01}.
For both algorithms the Gibbs sampler is run for 20, 000 iterations with a burn-in of
4, 000, thinned by a factor of 5.

In order to compare the results, we compute the Kolmogorov–Smirnov distance
dKS(F̂`M , F̂eM) between associated estimated cumulative distribution functions (cdf)
F̂`M and F̂eM under, respectively, the moment-match and the relative error criteria.
The results are displayed in Table 2.8. The estimated cdf F̂`M with `M = 0.01 can
be seen as a reference estimate since the truncation error is controlled uniformly
across the different values of γ by the moment-match at the CRM level. First, one
immediately notes that the smaller eM, the closer the two estimates become (in the
dKS distance). Second, and more importantly, the numerical values of the distances
heavily depend on the particular choice of the parameter γ for any given eM. In fact,
F̂`M and F̂eM are significantly further apart for large values of γ than for small ones.
This clearly shows that the quality of approximation with the heuristic criterion of
the relative index is highly variable in terms of a single parameter; in passing from
γ = 0 to γ = 0.75 the distance increases by at least a factor of 2. This means that for
comparing correctly CRM based models with different parameters one would need
to pick different relative indices for each value of the parameter. However, there is
no way to guess such thresholds without the guidance of an analytic criterion. And,
this already happens by varying a single parameter, let alone when changing CRMs
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for which the same eM could imply drastically different truncation errors. This seems
quite convincing evidence supporting the abandonment of heuristic criteria for de-
termining the truncation threshold and the adoption of principled approaches such
as the moment-matching criterion proposed in this paper.

γ eM = 0.1 eM = 0.05 eM = 0.01

0 19.4 15.5 9.2

0.25 31.3 23.7 15.1

0.5 42.4 28.9 18.3

0.75 64.8 41.0 23.2

TABLE 2.8: Galaxy dataset. Kolmogorov–Smirnov distance
dKS(F̂`M , F̂eM ) between estimated cdfs F̂`M and F̂eM under, respec-
tively, the moment-match (with `M = 0.01) and the relative error
(with eM = 0.1, 0.05, 0.01) criteria. The mixing measure of normal
mixture is the normalized generalized gamma process with varying

γ ∈ {0, 0.25, 0.5, 0.75}.
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2.3 Approximating the predictive weights of Gibbs-type pri-
ors

2.3.1 Introduction and main result

Gibbs-type random probability measures, or Gibbs-type priors, are arguably the
most “natural" generalization of the Dirichlet process prior by [117]. They have
been first introduced in the seminal works of [266] and [136], and their importance
in Bayesian nonparametrics have been extensively discussed in [213], [93] and [38].
Gibbs-type priors have been widely used in the context of Bayesian nonparamet-
ric inference for species sampling problems, where their mathematical tractably al-
lowed to obtain explicit expressions for the posterior distributions of various pop-
ulation’s features, and to predict features of additional unobservable samples. See,
e.g., [210], [214], [113], [115], [40] and [17]. The class of Gibbs-type priors has been
also applied in the context of nonparametric mixture modeling, thus generalizing
the celebrated Dirichlet process mixture model of Lo [217]. In particular, nonpara-
metric mixture models based in Gibbs-type priors are characterized by a more flexi-
ble parameterization than Dirichlet process mixture model, thus allowing for a better
control of the clustering behaviour. See, e.g., [164], [209], [211], [116]. Most recently,
Gibbs-type priors have been used in Bayesian nonparametric inference for ranked
data [75], sparse exchangeable random graphs and networks [74, 155], exchangeable
feature allocations [e.g. 319, 64, 154, 290, 45], reversible Markov chains [39], dynamic
textual data [81], and bipartite graphs [73].

The definition of Gibbs-type random probability measures relies on the notion of
α-stable Poisson–Kingman model, first introduced by [266]. Specifically, let (Ji)i≥1

be the decreasing ordered jumps of an α-stable subordinator, i.e. subordinator with
Lévy measure ρ(dx) = Cαx−α−1dx for some constant Cα, and let Pi = Ji/Tα with
Tα = ∑i≥1 Ji < +∞ almost surely; in particular Tα is a positive α-stable random
variable, and we denote its density function by fα. If PK(α; t) denotes the condi-
tional distribution of (Pi)i≥1 given Tα = t, and if Tα,h is a random variable with
density function fTα,h(t) = h(t) fα(t), for any nonnegative function h, then an α-
stable Poisson–Kingman model is defined as the discrete random probability mea-
sure Pα,h = ∑i≥1 Pi,hδX∗i , where (Pi,h)i≥1 is distributed as

∫
(0,+∞) PK(α; t) fTα,h(t)dt and

(X∗i )i≥1 are random variables, independent of (Pi,h)i≥1, and independent and iden-
tically distributed according to a nonatomic probability measure ν0. An α-stable
Poisson–Kingman model thus provides with a generalization of the normalized α-
stable process in [190], which is recovered by setting h = 1. According to the work of
[136], Gibbs-type random probability measures are defined as a class of (almost sure)
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discrete random probability measures indexed by a parameter α < 1 such that: i) for
any α < 0 they are M-dimensional symmetric Dirichlet distribution, with M being
a nonnegative random variable on the set N; ii) for α = 0 they coincide with the
Dirichlet process; iii) for any α ∈ (0, 1) they are α-stable Poisson–Kingman models.

In this paper we focus on the predictive probabilities of Gibbs-type priors with
α ∈ (0, 1), i.e. the posterior expectation E[Pα,h(·) |Xn], with Xn = (X1, . . . , Xn) being
a random sample from Pα,h. Due to the (almost sure) discreteness of the Gibbs-type
random probability measure Pα,h, we expect ties in a sample Xn from Pα,h, that is
Xn features Kn = kn ≤ n distinct types, labelled by X∗1 , . . . , X∗Kn

, with correspond-
ing frequencies (N1, . . . , NKn) = (n1, . . . , nkn) such that ∑1≤i≤kn

ni = n. That is, the
sample Xn induces a random partition of the set {1, . . . , n}; see [268] for details on
Gibbs-type random partitions. According to [266], the predictive probabilities of Pα,h
are

Pr[Xn+1 ∈ · |Xn] =
Vn+1,kn+1

Vn,kn

ν0(·) +
Vn+1,kn

Vn,kn

kn

∑
i=1

(ni − α)δX∗i (·) (2.41)

for n ≥ 1, where

Vn,kn =
αkn

Γ(n− knα)

∫ +∞

0

∫ 1

0
t−knα pn−knα−1h(t) fα((1− p)t)dtdp, (2.42)

with Γ(·) being the Gamma function. See, e.g., [266] and [136] for a detailed ac-
count on (2.41) and (2.42). Hereafter we briefly recall two noteworthy examples of
Gibbs-type random probability measures: the Pitman–Yor process and the normal-
ized generalized gamma process.
Example 2.3.1. Let (a)n be the rising factorial of a of order n, i.e. (a)n = ∏0≤i≤n−1(a + i),
for a > 0. For any α ∈ (0, 1) and θ > −α the Pitman–Yor process, say Pα,θ , is a Gibbs-type
random probability measure with

h(t) =
αΓ(θ)

Γ(θ/α)
t−θ (2.43)

such that

Vn,kn =
∏kn−1

i=0 (θ + iα)
(θ)n

. (2.44)

The normalized α-stable process is Pα,0, whereas the Dirichlet process may be recovered as a
limiting special case for α → 0. See, e.g., [261, 270, 169, 266, 170] for detailed accounts on
Pα,θ .
Example 2.3.2. Let Γ(·, ·) be the incomplete Gamma function, i.e., Γ(a, b) =

∫ ∞
b xa−1 exp{−x}dx

for (a, b) ∈ R×R+. For any α ∈ (0, 1) and τ ≥ 0 the normalized generalized gamma
process, say Gα,τ, is a Gibbs-type random probability measure with

h(t) = eτα−τt (2.45)

such that

Vn,kn =
αkn eτ

Γ(n)

n−1

∑
i=0

(
n− 1

i

)
(−τ1/α)iΓ

(
kn −

i
α

, τ

)
. (2.46)

The normalized α-stable process coincides with Gα,0, whereas G1/2,τ is the normalized inverse
Gaussian process. See [169, 266, 209, 210, 214, 170] for detailed accounts on Gα,τ and
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applications.

Within the large class of predictive probabilities of the form (2.41), those of the
Pitman–Yor process Pα,θ certainly stand out for their mathematical tractability, and
for having an intuitive interpretability with respect to the parameter α ∈ (0, 1) and
θ > −α. See [38] for a description of the predictive probabilities of Pα,θ in terms of a
simple generalized Pólya like urn scheme. These desirable features of Pα,θ arise from
the product form of the Vn,kn ’s in (2.44), which makes the ratio Vn+1,kn+1/Vn,kn a sim-
ple linear function of kn, and the ratio Vn+1,kn /Vn,kn independent of kn. Specifically,
the predictive probabilities of Pα,θ reduce to the following

Pr[Xn+1 ∈ · |Xn] =
θ + knα

θ + n
ν0(·) +

1
θ + n

kn

∑
i=1

(ni − α)δX∗i (·), (2.47)

for n ≥ 1. The weight attached to ν0 in (2.47) can be read as a sum of two terms with
distinct asymptotic orders of magnitude: i) αkn, referred to as the first order term,
and θ, referred to as the second order term. An analogous two-term decomposition
holds for the weight attached to the empirical part of (2.47). Our distinction and
phrasing is formally captured by writing the weights as follows

θ + knα

θ + n
=

knα

n
+

θ

n
+ o

(
1
n

)
(2.48)

and
1

θ + n
=

1
n
− θ

n2 + o
(

1
n2

)
, (2.49)

where o is almost sure, recovering both contributions in a two-term asymptotic de-
composition. Equations (2.48) and (2.49) lead to two large n approximations of the
predictive distribution displayed in (2.47): i) a first order approximation of (2.47),
denoted by ∼, is obtained by combining (2.47) with the first term on the right-hand
side of (2.48) and (2.49); ii) a second order approximation of (2.47), denoted by ≈, is
obtained by combining (2.47) with the first two terms on the right-hand side of (2.48)
and (2.49).

[292] and [17] extended the decompositions displayed in (2.48) and (2.49) to the nor-
malized inverse Gaussian process and the normalized generalized gamma process,
respectively, thus covering the setting described in Example 2.3.2. In the next theo-
rem we generalize (2.48) and (2.49) to the entire class of Gibbs-type priors, that is, for
any continuously differentiable function h and any α ∈ (0, 1) we provide a two-term
asymptotic decomposition for the weights Vn+1,kn+1/Vn,kn and Vn+1,kn /Vn,kn of the
predictive probabilities (2.41).
Theorem 2.3.1. Let Xn be a sample from Pα,h featuring Kn = kn ≤ n distinct types, labelled
by X∗1 , . . . , X∗Kn

, with frequencies (N1, . . . , NKn) = (n1, . . . , nkn). Assume that function h
is continuously differentiable and denote its derivative by h′. Then

Vn+1,kn+1

Vn,kn

=
knα

n
+

βn

n
+ o

(
1
n

)
(2.50)

and
Vn+1,kn

Vn,kn

=
1
n
− βn

n2 + o
(

1
n2

)
(2.51)
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for any n ≥ 1, where βn = ϕh(nk−1/α
n ) with ϕh being defined as ϕh(t) = −th′(t)/h(t).

Theorem 2.3.1 may be applied to obtain a first and a second order approximations
of the predictive probabilities of an arbitrary Gibbs-type prior Pα,h. This result then
contributes to a remarkable simplification in the evaluation of (2.41) for any choice of
the function h. Besides that, Theorem 2.3.1 highlights, for large n, the role of h from a
purely predictive perspective. In particular, according to Theorem 2.3.1, the function
h does not affect the first order term in the asymptotic decompositions (2.50) and
(2.51), and it is sufficient to consider a second order term in order to take into account
h. This leads to two meaningful approximations of the predictive probabilities (2.41).
In particular, by considering the sole first order term in (2.50) and (2.51), one obtains
the first order approximation

Pr[Xn+1 ∈ · |Xn] ∼
knα

n
ν0(·) +

1
n

kn

∑
i=1

(ni − α)δX∗i (·), (2.52)

which is the predictive of the normalized α-stable process, i.e. h = 1. By including
the second order term in (2.50) and (2.51), one obtains the second order approxima-
tion

Pr[Xn+1 ∈ · |Xn] ≈
βn + knα

βn + n
ν0(·) +

1
βn + n

kn

∑
i=1

(ni − α)δX∗i (·), (2.53)

which resembles the predictive probabilities (2.47) of the Pitman–Yor process Pα,θ ,
with the parameter θ replaced by a suitable function of h, α and the number kn of
distinct types in the sample Xn. Note that (2.53) is obtained by normalizing the
weights (2.50) and (2.51) which lead to a proper predictive distribution (the weights
of (2.53) sum up to one) while preserving the second order approximation since

βn + knα

βn + n
=

knα

n
+

βn

n
+ o

(
1
n

)
and

1
βn + n

=
1
n
− βn

n2 + o
(

1
n2

)
.

The predictive probabilities of any Gibbs-type prior thus admit a second order ap-
proximation, for large n, with an error term vanishing as o(1/n). More importantly,
such a second order approximation maintains the same mathematical tractability
and interpretability as the predictive probability of the Pitman–Yor process.

The section is structured as follows. In Section 2.3.2 we prove Theorem 2.3.1 and
the approximate predictive probabilities displayed in Equation (2.52) and Equation
(2.53). In Section 2.3.3 we present a numerical illustration of our approximate predic-
tive probabilities, thus showing their usefulness from a practical point of view. Sec-
tion 2.3.4 describes a marginal Blackwell–MacQueen Pólya urn posterior sampling
scheme based on the proposed first order and second approximations. Section 2.3.5
contains a brief discussion of our results.

2.3.2 Proofs

Throughout this section, we will use the notation an� bn when an/bn → 1 as n→ ∞,
almost surely. The main argument of the proof consists in a Laplace approxima-
tion of the integral form for Vn,kn in (2.42) as n → ∞. This approximation basically
replaces an exponentially large term in an integrand by a Gaussian kernel which
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matches both mean and variance of the integrand. From evaluating the Gibbs-type
predictive probabilities (2.41) on the whole space it is clear that we have

Vn+1,kn+1

Vn,kn

= 1− (n− αkn)
Vn+1,kn

Vn,kn

. (2.54)

Denote the integrand function of (2.42) by fn(p, t) = t−αkn pn−1−knαh(t) fα((1− p)t),
and denote integration over its domain (0, 1)×R∗+ by

∫∫
. Then we can write

Vn+1,kn

Vn,kn

=
1

n− αkn

∫∫
p fn∫∫
fn

. (2.55)

Note that this ratio of integrals coincides with En(P), that is the expectation under
the probability distribution with density proportional to fn. This, combined with
(2.54) provides Vn+1,kn+1/Vn,kn = En(1− P). In order to apply the Laplace approx-
imation method, write the nonnegative integrand fn in exponential form fn = enln ,
and further define functions g(p, t) = 1− p and g̃(p, t) = 1. Then

Vn+1,kn+1

Vn,kn

=

∫∫
genln∫∫
g̃enln

. (2.56)

The mode (tn, pn) of fn (or equivalently of ln) is determined by the root of the partial
derivatives

n
∂ln(p, t)

∂p
=

n− αkn − 1
p

− t
f ′α(t(1− p))
fα(t(1− p))

(2.57)

and

n
∂ln(p, t)

∂t
=
−αkn

t
+

h′(t)
h(t)

+ (1− p)
f ′α(t(1− p))
fα(t(1− p))

, (2.58)

where f ′α and h′ denote respectively the derivatives of the α-stable density fα and of
the function h. Now consider the Laplace approximations to the numerator and the
denominator of the ratio (2.56) with the notations set forth in Section 6.9 of Small
[304]. The exponential term is identical in both integrands of the ratio (2.56), hence
the term involving det fn, the Hessian of fn, is also identical and equal to

Cn = (2π/n)2/2(−det fn)
−1/2enln(tn,pn).

Thus it simplifies in the ratio. One needs only to consider the asymptotic series
expansions, where we require a second order term a(tn, pn) for the numerator, that
is

Vn+1,kn+1

Vn,kn

=
Cn ×

(
g(tn, pn) +

1
n a(tn, pn) +O

( 1
n2

))
Cn ×

(
g̃(tn, pn) +O

( 1
n

)) .
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The expression of a(tn, pn) is provided in Equation (6.14) of Small [304]. In our case,
a(tn, pn) = o(1/n), hence with g̃ = 1, the previous display simplifies to the follow-
ing

Vn+1,kn+1

Vn,kn

= g(tn, pn) + o
(

1
n

)
. (2.59)

Let ϕh(t) = −th′(t)/h(t). Note that, adding (1− pn)×(2.57) and tn×(2.58) we can
write

g(tn, pn) = 1− pn =
αkn + ϕh(tn)

n + ϕh(tn)− 1
(2.60)

so, in view of (2.59),

Vn+1,kn+1

Vn,kn

=
αkn + ϕh(tn)

n + ϕh(tn)− 1
+ o

(
1
n

)
. (2.61)

Let ψ(x) = (x f ′α(x))/(α fα(x)). By (2.57), ψ((1− pn)tn) = (1− pn)(n− αkn− 1)/αpn.
By Theorem 2 in Arbel et al. [17], 1− pn� αkn/n. Hence, ψ((1− pn)tn) grows to
infinity when n → ∞ at the same rate as kn. But studying the variations of the α-
stable density fα, Nolan [254] shows that the only infinite limit of ψ is in 0+ according
to

ψ(x)
[

0
+

]�(α/x)
α

1−α .

In order that ψ((1− pn)tn) matches with its infinite limit when n→ ∞, its argument
(1− pn)tn needs go to 0+, which yields to the following asymptotic equivalence

kn�ψ((1− pn)tn)�
(

α

(1− pn)tn

) α
1−α

,

which in turn gives

tn� α
k1−1/α

n
1− pn

� α
k1−1/α

n
αkn/n

� n
k1/α

n
� Tα,h,

where the last equivalence is from [266]. Since function h is assumed to be pos-
itive and continuous differentiable, ϕh(Tα,h) is a.s. well defined (and finite) and
ϕh(tn)� ϕh(nk−1/α

n )� ϕh(Tα,h) a.s., so (2.61) can be rewritten

Vn+1,kn+1

Vn,kn

=
αkn

n
+

βn

n
+ o

(
1
n

)
,

where we set βn = ϕh(nk−1/α
n ). In other terms, to match the expression of the second

order approximate predictive probability displayed in Equation (2.53), we have

Vn+1,kn+1

Vn,kn

=
βn + knα

βn + n
+ o

(
1
n

)
.
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The expression of the second weight in the predictive of the theorem follows from
(2.54), i.e.,

Vn+1,kn

Vn,kn

=
1−Vn+1,kn+1/Vn,kn

n− αkn

=

(
1− αkn

n
+

βn

n
+ o

(
1
n

))(
1
n
+

αkn

n2 + o
(

kn

n2

))
,

=
1
n
− αkn

n2 −
βn

n2 +
αkn

n2 + o
(

1
n2

)
=

1
n
− βn

n2 + o
(

1
n2

)
,

or, to match the expression of the second order approximate predictive of equa-
tion (2.53),

Vn+1,kn

Vn,kn

=
1

βn + n
+ o

(
1
n2

)
.

2.3.3 Numerical illustrations

As we recalled in Example 2.3.1, the Pitman–Yor process Pα,θ is a Gibbs-type random
probability measure with α ∈ (0, 1) and h(t) = t−θΓ(θ + 1)/Γ(θ/α + 1), for any
θ > −α. By an application of Theorem 2.3.1, the predictive probabilities of Pα,θ ad-
mit a first order approximation of the form (2.52) and a second order approximation
of the form (2.53) with ϕh(t) = θ, and such that βn = θ. Among Gibbs-type ran-
dom probability measures with α ∈ (0, 1), the Pitman–Yor process certainly stands
out for a predictive structure which admits a simple numerical evaluation. This
made the Pitman–Yor process a natural candidate in several applications within the
large class of Gibbs-type priors. Hereafter we present a brief numerical illustration
to compare the predictive probabilities of Pα,θ with their first and second order ap-
proximations given in terms of Equation (2.48) and Equation (2.49). While there is
no practical reason to make use our approximate predictive probabilities, because of
the simple expression of (2.47), the illustration is useful to show the accuracy of our
approximations. We then present the same numerical illustration for the normalized
generalized gamma process Gα,τ of Example 2.3.2. We will see that, differently from
the Pitman–Yor process, the predictive probabilities of the normalized generalized
gamma process do not admits a simple numerical evaluation. This motivates the use
of Theorem 2.3.1.

We consider 500 data points sampled independently and identically distributed from
the ubiquitous Zeta distribution. For any σ > 1 this is a distribution with probabil-
ity mass function Pr(Z = z) ∝ z−σ, for z ∈ N. Here we choose σ = 1.5. For
each n = 1, . . . , 500 we record the number kn of distinct types at the n-th draw,
and we evaluate the predictive weight Vn+1,kn+1/Vn,kn for the Pitman–Yor process,
i.e. the left-hand side of (2.48). We consider the following pairs of parameters
(α, θ): (0.25, 1), (0.25, 3), (0.25, 10), (0.5, 1), (0.5, 3), (0.5, 10), (0.75, 1), (0.75, 3) and
(0.75, 10). For each of these pairs we compare the left-hand side of Equation (2.48)
with the first term of the right-hand side of Equation (2.48) (first oder approxima-
tion) and with the first two terms of the right-hand side of Equation (2.48) (second
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order approximation), that are
θ + knα

θ + n
, (2.62)

knα

n
(2.63)

and
knα

n
+

θ

n
, (2.64)

respectively. Figure 2.8 shows the curve, as functions of n, of the “exact" predictive
weight (2.62) and its first order approximation (2.63) and second order approxima-
tion (2.64). The first order approximation consistently underestimates the “exact"
predictive weight, while the second order approximation consistently overestimates
it. This is due to the fact that the parameter θ is positive. The discrepancy between
the first order approximation and (2.62) stays substantial even for large values of
n, all the more for large θ. On the contrary, the second order approximation con-
sistently outperforms the first order approximation, closely following (2.62). For
n = 500, the “exact" predictive weight and its second order approximation are barely
distinguishable in all the considered pairs of parameters.

The normalized generalized gamma process

As we recalled in Example 2.3.2, the normalized generalized gamma process is a
Gibbs-type random probability measure with α ∈ (0, 1) and h(t) = exp{τα − τt},
for any τ ≥ 0. From Theorem 2.3.1, the predictive probabilities of the normalized
generalized gamma process admit a first order approximation of the form (2.52) and
a second order approximation of the form (2.53) with ϕh(t) = τt, and

βn =
τn

k1/α
n

.

The predictive probabilities of the normalized generalized gamma process are of the
form (2.41), with the predictive weights Vn+1,kn+1/Vn,kn and Vn+1,kn /Vn,kn admitting
an explicit (closed-form) expression in terms of (2.46). However, differently from the
Pitman–Yor process, the evaluation of the predictive weights is cumbersome, thus
preventing their practical implementation. In particular, as pointed out in Lijoi et al.
[211] in the context of mixture models with a normalized generalized Gamma prior,
the evaluation of (2.46) gives rise to severe numerical issues, even for not too large
values of n. These issues are mainly due to the evaluation of the incomplete gamma
function, as well as with handling very small terms and very large terms within the
summation (2.46). Because of these numerical issues in evaluating (2.46), we propose
an alternative approach to evaluate the Vn,kn ’s of the normalized generalized gamma
process. This is a Monte Carlo approach, and it relies on the fact that Vn,kn in (2.46)
can be written as the expectation of a suitable ratio of independent random variables.
Recall that fα denotes the density function of a positive α-stable random variable.
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FIGURE 2.8: Predictive weights Vn+1,kn+1/Vn,kn in the Pitman–Yor
process. In black: the “exact” value (2.62). In blue: the first order
approximation (2.63). In red: the second order approximation (2.64).
The following values for the parameters are considered: α = 0.25, 0.5
and 0.75 in the top, middle and bottom rows respectively; θ = 1, 3
and 10 for the left, middle and right columns respectively. The sam-
ple size on the x-axis in log scale runs from n = 50 to n = 500. The
points are connected by straight lines only for visual simplification.
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Then, using (2.42) with h(t) = exp{τα − τt}, we can write

Vn,kn =
αkn

Γ(n− knα)

∫ +∞

0

∫ 1

0
pn−1−knαt−knα exp{τα − τt} fα(t(1− p))dpdt

=
αkn−1Γ(kn)

Γ(n)

∫ +∞

0
exp{τα − τt} αΓ(n)

Γ(kn)Γ(n− knα)
t−knα

∫ 1

0
(1− p)n−knα−1 fα(tp)dpdt

=
αkn−1Γ(kn)

Γ(n)
E

[
exp

{
τα − τX

Y

}]
, (2.65)

where X and Y are two independent random variables such that Y is distributed
according to a Beta distribution with parameter (knα, n− knα), and X is distributed
according to a polynomially tilted positive α-stable random variable, i.e.,

Pr[X ∈ dx] =
Γ(knα + 1)
Γ(kn + 1)

x−knα fα(x)dx. (2.66)

We refer to [266], [268] and Devroye [98] for a detailed account on the polynomially
tilted α-stable random variable X. Given the representation (2.65) we can perform a
Monte Carlo evaluation of Vn,kn by simply sampling from the Beta random variable
Y and from the random variable X with distribution (2.66).

Sampling form the Beta random variable Y is straightforward. The random variable
X can be sampled by using an augmentation argument that reduces the problem of
sampling X to the problem of sampling a Gamma random variable and, given that,
an exponentially tilted α-stable random variable, i.e. a random variable with density
function exp{cα − cx} fα(x), for some constant c > 0. The problem of sampling
exponentially tilted α-stable random variables has been considered in Devroye [98]
and Hofert [160]. Specifically, we can write (2.66) as follows

Γ(knα + 1)
Γ(kn + 1)

x−knα fα(x) =
α

Γ(kn)

∫ +∞

0
cknα−1 exp{−cα}exp{−cx} fα(x)

exp{−cα} dc

=
∫ +∞

0
fC(c) fX|C=c(x)dc,

where fX|C=c is the density function of an exponentially tilted positive α-stable ran-
dom variable, and fC is the density function of the random variable C = G1/α, where
G being a Gamma random variable with parameter (kn, 1). We apply Hofert [160]
for sampling the exponentially tilted positive α-stable random variable with density
function fX|C=c. Note that, as kn grows, the tilting parameter C = G1/α gets larger in
distribution. As a result, the acceptance probability decreases and the Monte Carlo
algorithm slows down. Let Be, Ga and tSt respectively denote Beta, Gamma and ex-
ponentially tilted positive α-stable distributions, and let Γl represents the logarithm
of the Γ function. Hereafter is the step-by-step pseudocode for the Monte Carlo
evaluation of the Vn,kn ’s:

(i) Set M = 104, n, kn, α, τ;

(ii) Sample Y ∼ Be(αkn, n− αkn) of size M;
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(iii) Sample G ∼ Ga(kn, 1) of size M;

(iv) Sample X ∼ tSt(α, G1/α) of size M

(v) Set v = (kn − 1) log α + Γl(kn)− Γl(n) + τα − τX/Y;

(vi) Set V = exp(v).

In the same setting described for the Pitman–Yor process, we perform a numerical
study for the normalized generalized gamma process. More specifically, 500 data
points are sampled independently and identically distributed from the Zeta dis-
tribution with parameter σ = 1.5. We consider the following pairs of parameters
(α, τ): (0.25, 1), (0.25, 3), (0.25, 10), (0.5, 1), (0.5, 3), (0.5, 10), (0.75, 1), (0.75, 3) and
(0.75, 10). For these pairs of parameters the predictive weight Vn+1,kn+1/Vn,kn is eval-
uated by means of the above steps 1-6, and this evaluation is compared with the first
order approximation and with the second order approximation of Vn+1,kn+1/Vn,kn

given by Theorem 2.3.1, i.e.
knα

n
(2.67)

and
knα

n
+

τ

k1/α
n

, (2.68)

respectively. Figure 2.9 shows that the Monte Carlo evaluation of Vn+1,kn+1/Vn,kn

lays between the first order approximation and the second order approximation
of Vn+1,kn+1/Vn,kn . As n moves, the difference between the resulting Monte Carlo
curve and the approximate curves is imperceptible for α = 0.25; such a difference
is also very small for τ = 1. Larger values of α and/or τ lead to larger discrepan-
cies between the Monte Carlo curve and the approximate curves. The second order
approximation is consistently closer to the Monte Carlo value than the first order
approximation. In particular we observe that for n = 500 the second order approx-
imation and the Monte Carlo value are indistinguishable, whereas the first order
approximation may still be far from the Monte Carlo value for several choices of the
parameters, e.g. (α, τ) = (0.75, 3) and (α, τ) = (0.75, 10).

We conclude by motivating the use of the second order approximation instead of
the Monte Carlo evaluation. First of all, for pairs of parameters with large α and
large τ, e.g. (α, τ) = (0.75, 10) in our numerical study, the Monte Carlo evalua-
tion is extremely noisy, although we have used a large number of iterations, i.e 104.
In particular, as shown in Figure 2.9, the noise does not vanish as n grows. On
the contrary, the second order approximation has a more stable behavior, and for
(α, τ) = (0.75, 10) it converges to the bulk of the Monte Carlo curve, which makes it
more reliable than the latter for large values of n. Furthermore, evaluating the sec-
ond order approximation is fast. On the other hand, the computational burden of
the Monte Carlo evaluation is very heavy, e.g. 35 hours were required for the nine
configurations of Figure 2.9, with 104 iterations for each weight. This is because of
the sampling of the exponentially tilted α stable random variable. Indeed the re-
jection sampler originally proposed by Hofert [160] has an acceptance probability
that decreases as n grows, making this approach prohibitive for large sample sizes.
Although our Monte Carlo code could certainly be fastened, our empirical study
suggests that the computing time increases exponentially with the sample size n.
See the average Monte Carlo running time in Figure 2.10, as well as the running
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FIGURE 2.9: Predictive weights Vn+1,kn+1/Vn,kn in the normalized
generalized gamma process. In black: the “exact” value evaluated
by the Monte Carlo approach. In blue: the first order approxima-
tion (2.67). In red: the second order approximation (2.68). The fol-
lowing values for the parameters are considered: α = 0.25, 0.5 and
0.75 in the top, middle and bottom rows respectively; τ = 1, 3 and 10
for the left, middle and right columns respectively. The sample size
on the x-axis in log scale runs from n = 50 to n = 500. The points are

connected by straight lines only for visual simplification.
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FIGURE 2.10: Left panel: running time (in seconds) averaged over all
nine parameter configurations, and right panel: cumulated running
time (in hours) averaged over all nine parameter configurations, for
the Monte Carlo approach applied to the evaluation of the predictive
weights Vn+1,kn+1/Vn,kn in the normalized generalized gamma pro-
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simplification.

time and cumulated running time for each of the nine parameter configurations in
Figure 2.11 and Figure 2.12.

2.3.4 Posterior sampling

In this section we present an application of Theorem 2.3.1 in the context of Bayesian
nonparametric mixture modeling. Among various posterior sampling schemes for
Bayesian nonparametric mixture modeling, the so-called Blackwell–MacQueen Pólya
urn scheme certainly stands out. It is a Markov chain Monte Carlo sampling scheme
belonging to the class of “marginal" schemes, since it relies on the predictive distri-
butions. See MacEachern [220] and Escobar and West [112] for a description of the
Blackwell–MacQueen Pólya urn scheme in the context of mixture modeling based on
Dirichlet process priors, and Ishwaran and James [164] for mixture modeling based
on general stick-breaking priors, e.g., the Pitman–Yor process prior. We compare the
Blackwell–MacQueen Pólya urn scheme based on the exact predictive distributions
with the Blackwell–MacQueen Pólya urn scheme based on our approximated pre-
dictive distributions. The performance is evaluated by computing the Kolmogorov–
Smirnov (KS) distance between the estimated distribution function and the cumula-
tive distribution function (cdf) of the true data generating process.

As an illustrative example, we considered simulated data of varying size n = 50, 100, 200, 500
sampled from a mixture of two Gaussian distributions, say w1N (µ1, σ2

1 )+ (1−w1)N (µ2, σ2
2 ).

Precisely, we set (µ1, σ2
1 ) = (1, 0.2), (µ2, σ2

2 ) = (10, 0.2) and w1 = 0.5. The Bayesian
nonparametric mixture model can be defined as

Yi | Xi
ind∼ N (Yi | Xi, σ2), i = 1, . . . , n,

Xi | Pα,h
i.i.d.∼ Pα,h, i = 1, . . . , n,

Pα,h ∼ Pα,h,

σ2 ∼ IG(a, b),

(2.69)
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FIGURE 2.11: Running time (in seconds) for the Monte Carlo ap-
proach for evaluating the predictive weights Vn+1,kn+1/Vn,kn in the
normalized generalized gamma process case. The following values
for the parameters are considered: α = 0.25, 0.5 and 0.75 in the top,
middle and bottom rows respectively; τ = 1, 3 and 10 for the left,
middle and right columns respectively. The sample size on the x-axis
in log scale runs from n = 50 to n = 500. The points are connected by

straight lines only for visual simplification.

where Pα,h denotes a Gibbs-type prior, and IG(a, b) stands for an inverse-gamma
distribution with parameters a and b. Following Section 2.3.3, we focus on the two
common choices for the random probability measure Pα,h, namely the Pitman–Yor
process and the normalized generalized gamma process. In both cases we assume
that the nonatomic probability measure ν0 is the standard Gaussian distribution. In
the model (2.69) we assume that a = b = 1.

Under the assumption of the Pitman–Yor process prior and the assumption of the
normalized generalized gamma process prior, we apply the Blackwell–MacQueen
Pólya urn scheme with the exact predictive distributions and with the correspond-
ing approximated predictive distributions given by Theorem 2.3.1. We used 104 iter-
ations after a burn-in of 2 000. In Figure 2.13, we show the KS distance between the
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FIGURE 2.12: Cumulated running time (in hours) for the Monte Carlo
approach for evaluating the predictive weights Vn+1,kn+1/Vn,kn in the
normalized generalized gamma process case. The following values
for the parameters are considered: α = 0.25, 0.5 and 0.75 in the top,
middle and bottom rows respectively; τ = 1, 3 and 10 for the left,
middle and right columns respectively. The sample size on the x-axis
in log scale runs from n = 50 to n = 500. The points are connected by

straight lines only for visual simplification.
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true distribution function and the estimated distribution function obtained by using
the Blackwell–MacQueen Pólya urn scheme with

• the exact predictive distributions (2.47) of the Pitman–Yor process; the second
order approximation (2.53) of the predictive distribution of the Pitman–Yor
process coincides with this exact predictive distribution.

• the first order approximation (2.52) of the predictive distributions of the Pitman–
Yor process, which coincides with the first order approximation of the predic-
tive distributions of the normalized generalized gamma process.

• the second order approximation (2.53) of the predictive distributions of the
normalized generalized gamma process, which is different from the second
order approximation of the predictive distribution of the Pitman–Yor process.

The values of the hyperparameters α, θ and τ correspond to those used in the nu-
merical illustrations of Section 2.3.3. Results in Figure 2.13 show that both first and
second order approximations of predictive distributions produce posterior estimates
with comparable performance to that the exact predictive distribution of the Pitman–
Yor process. Also, the sampling scheme based on the first order approximation out-
performs the sampling scheme based on the exact predictive distributions of the
Pitman–Yor process, and of the second order approximation of the predictive distri-
bution of the normalized generalized gamma process. A reason for this superiority
of the first order approximation is the following: this first order approximation, both
for the Pitman–Yor process and for the normalized generalized gamma process, boils
down to the normalized α-stable process. For a given parameter α, such normalized
α-stable process has a lower prior expected number of clusters than the Pitman–Yor
process and the normalized generalized gamma process counterparts. Thus the nor-
malized α-stable process is a better specified prior than the latter two processes for
the true data generating process which is only made of two components, leading to
an overall better performance.

2.3.5 Discussion

Gibbs-type priors form a flexible class of nonparametric priors, which is parameter-
ized by an index α ∈ (0, 1) and a function h. According to the definition of Gibbs-
type random probability measures in terms of α-stable Poisson–Kingman models,
the function h has the primary role of enriching the parameterization of the normal-
ized α-stable process by introducing additional parameters other than α. See, e.g.,
Example 2.3.1 and Example 2.3.2. In this paper we introduced a first order approx-
imation (2.52) and a second order approximation (2.53) for the predictive probabil-
ities of Gibbs-type priors, for any α ∈ (0, 1) and any function h. In particular, we
have proved that at the level of the first order approximation the function h has no
impact on the predictive probabilities. Indeed Equation (2.52) coincides with the
predictive probability of the normalized α-stable process, i.e. a Gibbs-type random
probability measure with α ∈ (0, 1) and h(t) = 1. However, it is sufficient to con-
sider a second order approximation in order to take into account the function h. In-
deed, Equation (2.53) coincides with the predictive probability of the two parameter
Poisson–Dirichlet process in which the parameter θ is replaced by a suitable function
of h. The proposed approximations thus highlight the role of the function h from a
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FIGURE 2.13: Kolmogorov–Smirnov distance between the true cdf
and the cdf obtained by using the mixture model (2.69) with the fol-
lowing color code. In black: exact predictive distributions (2.47) of
the Pitman–Yor process. In blue: first order approximation (2.52) of
the predictive distributions of the Pitman–Yor process and the nor-
malized generalized gamma process. In red: second order approx-
imation (2.53) of the predictive distributions of the normalized gen-
eralized gamma process. The following values for the parameters
are considered: α = 0.25, 0.5 and 0.75 in the top, middle and bottom
rows respectively; θ = τ = 1, 3 and 10 for the left, middle and right
columns respectively. The sample size on the x-axis in log scale runs
from n = 50 to n = 500. The points are connected by straight lines

only for visual simplification.
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purely predictive perspective, and at the same time they provide practitioners with
a way to easily handle the predictive probabilities of any Gibbs-type prior.
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[S4] H. D. Nguyen, J. Arbel, H. Lü, and F. Forbes. Approximate Bayesian com-
putation via the energy statistic. Submitted, 2019

2.4 Approximate Bayesian computation based on the energy
distance

2.4.1 Introduction

In recent years, Bayesian inference has become a popular paradigm for machine
learning and statistical analysis. Good introductions and references to the primary
methods and philosophies of Bayesian inference can be found in texts such as [273],
[132], [193], [195], [284], [41], and [239].

In this article, we are concerned with the problem of parametric, or classical Bayesian
inference. For details regarding nonparametric Bayesian inference, the reader is re-
ferred to the expositions of [133], [158], and [131].

When conducting parametric Bayesian inference, we observe some realizations x
of the data X ∈ X that are generated from some data generating process (DGP),
which can be characterized by a parametric likelihood, given by a probability den-
sity function (PDF) f (x|θ), determined entirely via the parameter vector θ. Using
the information that the parameter vector θ is a realization of a random variable
Θ ∈ T, which arises from a DGP that can be characterized by some known prior
PDF π (θ), we wish to characterize the posterior distribution

π (θ|x) = f (x|θ)π (θ)

c (x)
, (2.70)

where
c (x) =

∫
T

f (x|θ)π (θ)dθ .

In very simple cases, such as cases when the prior PDF is a conjugate of the likeli-
hood (cf. [284, Sec. 3.3]), the posterior distribution (2.70) can be expressed explicitly.
In the case of more complex but still tractable pairs of likelihood and prior PDFs, one
can sample from (2.70) via a variety of Monte Carlo methods, such as those reported
in [273, Ch. 6].

In cases where the likelihood function is known but not tractable, or when the likeli-
hood function has entirely unknown form, one cannot exactly sample from (2.70) in
an inexpensive manner, or at all. In such situations, a sample from an approximation
of (2.70) may suffice in order to conduct the user’s desired inference. Such a sample
can be drawn via the method of approximate Bayesian computation (ABC).

It is generally agreed that the ABC paradigm originated from the works of [291],
[316], and [274]; see [315] for details. Stemming from the initial listed works, there
are now numerous variants of ABC methods. Some good reviews of the current ABC
literature can be found in the expositions of [224], [332, Sec. 5.1], [216], and [184]. The
volume of [302] provides a comprehensive treatment regarding ABC methodologies.
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The core philosophy of ABC is to define a quasi-posterior by comparing data with
plausibly simulated replicates. The comparison is traditionally based on some sum-
mary statistics, the choice of which being regarded as a key challenge of the ap-
proach.

In recent years, data discrepancy measures bypassing the construction of summary
statistics have been proposed by viewing data sets as empirical measures. Examples
of such an approach is via the use of the Kullback–Leibler divergence, the Wasser-
stein distance, or a maximum mean discrepancy (MMD) variant.

In this section, we develop upon the discrepancy measurement approach of [176],
via the importance sampling ABC (IS-ABC) approach which makes use of a weight
function [see e.g., 184]. In particular, we report on a class of ABC algorithms that
utilize the two-sample energy statistic (ES) of [312] (see also [42], [313], and [314]).
Our approach is related to the maximum MMD ABC algorithms that were imple-
mented in [260], [176], and [52]. The MMD is a discrepancy measurement that is
closely related to the ES (cf. [297]).

We establish new asymptotic results that have not been proved in these previous pa-
pers. In the IS-ABC setting and in the regime where both the observation sample size
and the simulated data sample size increase to infinity, our theoretical result high-
lights how the data discrepancy measure impacts the asymptotic pseudo-posterior.
More specifically, under the assumption that the data discrepancy measure con-
verges to some asymptotic value D∞ (θ0, θ), we show that the pseudo-posterior dis-
tribution converges almost surely to a distribution proportional to π(θ)w(D∞ (θ0, θ)):
the prior distribution times the IS weight w function evaluated at D∞ (θ0, θ), where
θ0 stands for the ‘true’ parameter value associated to the DGP that generates obser-
vations X. Although devised in settings where likelihoods are assumed intractable,
ABC can also be cast in the setting of robucitestness with respect to misspecification,
where the ABC posterior distribution can be viewed as a special case of a coarsened
posterior distribution [cf. 233].

The remainder of the article proceeds as follows. In Section 2.4.2, we introduce the
general IS-ABC framework. In Section 2.4.3, we introduce the two-sample ES and
demonstrate how it can be incorporated into the IS-ABC framework. Theoretical
results regarding the IS-ABC framework and the two-sample ES are presented in
Section 2.4.4. Illustrations of the IS-ABC framework are presented in Section 2.4.5.
Conclusions are drawn in Section 2.4.6.

2.4.2 Importance sampling ABC

Assume that we observe n independent and identically distributed (IID) replicates
of X from some DGP, which we put into Xn = {Xi}n

i=1. We suppose that the DGP
that generates X is dependent on some parameter vector θ, a realization of Θ from
space T, which is random and has prior PDF π (θ).

Denote f (x|θ) to be the PDF of X, given θ, and write

f (xn|θ) =
n

∏
i=1

f (xi|θ) ,
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where xn is a realization of Xn, and each xi is a realization of Xi (i ∈ [n] = {1, . . . , n}).
If f (xn|θ) were known, then we could use (2.70) to write the posterior PDF

π (θ|xn) =
f (xn|θ)π (θ)

c (xn)
, (2.71)

where c (xn) =
∫

T
f (xn|θ)π (θ)dθ is a constant that makes

∫
T

π (θ|xn)dθ = 1.
When evaluating f (x|θ) is prohibitive and ABC is required, then operating with
f (xn|θ) is similarly difficult. We suppose that given any θ0 ∈ T, we at least have the
capability of sampling from the DGP with PDF f (x|θ0). That is, we have a simula-
tion method that allows us to feasibly sample the IID vector Ym = {Yi}m

i=1, for any
m ∈N, for a DGP with PDF

f (yn|θ) =
m

∏
i=1

f (yi|θ) .

Using the simulation mechanism that generates samples Ym and the prior distri-
bution that generates parameters Θ, we can simulate a set of N ∈ N simulations
ZN = {Zm,k}N

k=1, where Z>m,k =
(

Y>m,k, Θ>k
)

and (·)> is the transposition opera-
tor. Here, for each k ∈ [N], Zm,k is an observation from the DGP with joint PDF
f (ym|θ)π (θ), hence each Zm,k is composed of a parameter value and a datum con-
ditional on the parameter value. We now consider how Xn and ZN can be combined
in order to construct an approximation of (2.71).

Following the approach of [176], we define D (xn, ym) to be some non-negative real-
valued function that outputs a small value if xn and ym are similar, and outputs a
large value if xn and ym are different, in some sense. We call D (xn, ym) the data
discrepancy measurement between xn and ym, and we say that D (·, ·) is the data
discrepancy function.

Next, we let w (d, ε) be a non-negative, decreasing (in d), and bounded (importance
sampling) weight function (cf. Section 3 of [184]), which takes as inputs a data dis-
crepancy measurement d = D (xn, ym) ≥ 0 and a calibration parameter ε > 0. Using
the weight and discrepancy functions, we can propose the following approximation
for (2.71).

In the language of [176], we call

πm,ε (θ|xn) =
π (θ) Lm,ε (xn|θ)

cm,ε (xn)
(2.72)

the quasi-posterior PDF, where

Lm,ε (xn|θ) =
∫

Xm
w (D (xn, ym) , ε) f (ym|θ)dym

is the approximate likelihood function, and

cm,ε (xn) =
∫

T
π (θ) Lm,ε (xn|θ)dθ
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is a normalization constant. We can use (2.72) to approximate (2.71) in the following
way. For any functional of the parameter vector Θ of interest, g (Θ) say, we may
approximate the posterior Bayes estimator of g (Θ) via the expression

E [g (Θ) |xn] ≈
∫

T
g (θ)π (θ) Lm,ε (xn|θ)dθ

cm,ε (xn)
, (2.73)

where the right-hand side of (2.73) can be unbiasedly estimated using ZN via

M [g (Θ) |xn] =
∑N

k=1 g (Θk)w (D (Xn, Ym,k) , ε)

∑N
k=1 w (D (Xn, Ym,k) , ε)

. (2.74)

We call the process of constructing (2.74), to approximate (2.73), the IS-ABC pro-
cedure. The general form of the IS-ABC procedure is provided in Algorithm 2.4.1.

Algorithm 2.4.1 IS-ABC procedure for approximating E [g (Θ) |xn]

Input: a data discrepancy function D, a weight function w, and a calibration param-
eter ε > 0.
For k ∈ [N];
sample Θk from the DGP with PDF π (θ);
generate Ym,k from the DGP with PDF f (ym|Θk);
put Zk = (Ym,k, Θk) into ZN .
Output: ZN and construct the estimator M [g (Θ) |xn].

2.4.3 The energy statistic (ES)

Let δ define a metric and let X ∈ X ⊆ Rd and Y ∈ X be two random variables that
are in a metric space endowed with δ, where d ∈ N. Furthermore, let X ′ and Y ′

be two random variables that have the same distributions as X and Y , respectively.
Here, X, X ′, Y , and Y ′ are all independent of one another.

Upon writing

Eδ (X, Y) = 2E [δ (X, Y)]−E
[
δ
(
X, X ′

)]
−E

[
δ
(
Y , Y ′

)]
,

we can define the original ES of [42] and [312], as a function of X and Y , via the
expression Eδ2 (X, Y), where δp (x, y) = ‖x− y‖p is the metric corresponding to the
`p-norm (p ∈ [1, ∞]). Thus, the original ES statistic, which we shall also denote as
E (X, Y), is defined using the Euclidean norm δ2.

The original ES has numerous useful mathematic properties. For instance, under the
assumption that E ‖X‖2 + E ‖Y‖2 < ∞, it was shown that

E (X, Y) =
Γ
(

d+1
2

)
π(d+1)/2

∫
Rd

|ϕX (t)− ϕY (t)|2

‖t‖d+1
2

dt, (2.75)

in Proposition 1 of [313], where Γ (·) is the gamma function and ϕX (respectively,
ϕY) is the characteristic function of X (respectively, Y). Thus, we have the fact that
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E (X, Y) ≥ 0 for any X, Y ∈ X, and E (X, Y) = 0 if and only if X and Y are identically
distributed.

The result above is generalized in Proposition 3 of [313], where we have the follow-
ing statement. If δ (x, y) = δ (x− y) is a continuous function and X, Y ∈ Rd are
independent random variables, then it is necessary and sufficient that δ (·) is strictly
negative definite (see [313] for the precise definition) for the following conclusion to
hold: Eδ (X, Y) ≥ 0 for any X, Y ∈ X, and Eδ (X, Y) = 0 if and only if X and Y are
identically distributed.

We observe that there is thus an infinite variety of functions δ from which we can
construct energy statistics. We shall concentrate on the use of the original ES, based
on δ2, since it is the most well known and popular of the varieties.

The V-statistic estimator

Suppose that we observe Xn = {Xi}n
i=1 and Ym = {Yi}m

i=1, where the former is a
sample containing n IID replicates of X, and the latter is a sample containing m IID
replicates of Y , respectively, with Xn and Ym being independent. In [146], it was
shown that for any δ, upon assuming that δ (x, y) < ∞, the so-called V-statistic
estimator (cf. [299, Ch. 5] and [196])

Vδ (Xn, Ym) =
2

mn

n

∑
i=1

m

∑
j=1

δ
(
Xi, Yj

)
− 1

n2

n

∑
i=1

n

∑
j=1

δ
(
Xi, Xj

)
− 1

m2

m

∑
i=1

m

∑
j=1

δ
(
Yi, Yj

)
,

(2.76)
can be proved to converge in probability to Eδ (X, Y), as n → ∞ and m → ∞, under
the condition that m/n→ α < ∞, for some constant α (see also [145]).

We note that the assumption of this result is rather restrictive, since it either requires
the bounding of the space X or the function δ. In the sequel, we will present a result
for the almost sure convergence of the V-statistic that depends on the satisfaction of
a more realistic hypothesis.

It is noteworthy that if the ES is non-negative, then the V-statistic retains the non-
negativity property of its corresponding ES (cf. [146]). That is, for any continuous
and negative definite function δ (x, y) = δ (x− y), we have Vδ (Xn, Ym) ≥ 0.

The ES-based IS-ABC algorithm

From Algorithm 2.4.1, we observe that an IS-ABC algorithm requires three compo-
nents. A data discrepancy measurement d = D (Xn, Ym) ≥ 0, a weighting function
w (d, ε) ≥ 0, and a tuning parameter ε > 0. We propose the use of the ES in the
place of the data discrepancy measurement d, in combination with various weight
functions that have been used in the literature. That is we set

D (Xn, Ym) = Vδ (Xn, Ym) ,

in Algorithm 2.4.1.
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In particular, we consider original ES, where δ = δ2. We name our framework the
ES-ABC algorithm. In Section 2.4.4, we shall demonstrate that the proposed algo-
rithm possesses desirable large sample qualities that guarantees its performance in
practice, as illustrated in Section 2.4.5.

Related methods

The ES-ABC algorithm that we have presented here is closely related to ABC algo-
rithms based on the maximum mean discrepancy (MMD) that were implemented
in [260], [176], and [52]. For each positive definite Mercer kernel function χ (x, y)
(x, y ∈ X), the corresponding MMD is defined via the equation

MMD2
χ (X, Y) = E

[
χ
(
X, X ′

)]
+ E

[
χ
(
Y , Y ′

)]
− 2E [χ (X, Y)] ,

where X, X ′, Y , Y ′ are random variable such that X and Y are identically distributed
to X ′ and Y ′, respectively.

The MMD as a statistic for testing goodness-of-fit was studied prominently in arti-
cles such as [145], [147], and [146]. It is clear that if δ = −χ, the forms of the ES and
the squared MMD are identical. More details regarding the relationship between the
two classes of statistics can be found in [297].

We note two shortcomings with respect to the applications of the MMD as a basis for
an ABC algorithm in the previous literature. Firstly, no theoretical results regarding
the consistency of the MMD-based methods have been proved. And secondly, in
the application by [260] and [176], the MMD was implemented using the unbiased
U-statistic estimator, rather than the biased V-statistic estimator. Although both es-
timators are consistent, in the sense that they can be proved to be convergent to the
desired limiting MMD value, the U-statistic estimator has the unfortunate property
of not being bounded from below by zero (cf. [146]). As such, it does not meet the
criteria for a data discrepancy measurement.

2.4.4 Theoretical results

General asymptotic analysis

We now establish a consistency result for the quasi-posterior density (2.72), when n
and m approach infinity. Our result generalizes the main result of [176] (i.e., Theorem
1), which is the specific case when the weight function is restricted to the form

w (d, ε) = Jd < εK , (2.77)

where J·K is the Iverson bracket notation, which equals 1 when the internal statement
is true, and 0, otherwise (cf. [140]).

The weighting function of form (2.77), when implemented within the IS-ABC frame-
work, produces the common rejection ABC algorithms, that were suggested by [316],
and [274]. We extended upon the result of [176] so that we may provide theoretical
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guarantees for more exotic ABC procedures, such as the kernel-smoothed ABC pro-
cedure of [260], which implements weights of the form

w (d, ε) = exp (−dq/ε) , (2.78)

for q > 0. See [184] for further discussion and examples.

In order to prove our consistency result, we require Hunt’s lemma, which is reported
in [97], as Theorem 45 of Section V.5. For convenience to the reader, we present the
result, below.
Theorem 2.4.1. Let (Ω,F , P) be a probability space with increasing σ-fields {Fn} and let
F∞ = ∪nFn. Suppose that {Un} is a sequence of random variables that is bounded from
above in absolute value by some integrable random variable V, and further suppose that Un

converges almost surely to the random variable U. Then, limn→∞ E (Un|Fn) = E (U|F∞)
almost surely, and in L1 mean, as n→ ∞.

Define the continuity set of a function d 7→ w (d) as

C (w) = {d : w is continuous at d} .

Using Theorem 2.4.1, we can now prove the following result regarding the asymp-
totic behavior of the quasi-posterior density function (2.72).
Theorem 2.4.2. Let Xn and Ym be IID samples from DGPs that can be characterized by
PDFs f (xn|θ0) = ∏n

i=1 f (xi|θ0) and f (ym|θ) = ∏m
i=1 f (yi|θ), respectively, with cor-

responding parameter vectors θ0 and θ. Suppose that the data discrepancy D (Xn, Ym)
converges to some D∞ (θ0, θ), which is a function of θ0 and θ, almost surely as n → ∞,
for some m = m (n) → ∞. If w (d, ε) is piecewise continuous and decreasing in d and
w (d, ε) ≤ a < ∞ for all d ≥ 0 and any ε > 0, and if

D∞ (θ0, θ) ∈ C (w (·, ε)) ,

then we have
πm,ε (θ|xn)→

π (θ)w (D∞ (θ0, θ) , ε)∫
π (θ)w (D∞ (θ0, θ) , ε)dθ

, (2.79)

almost surely, as n→ ∞.

Proof. Using the notation of Theorem 2.4.1, we set Un = w (d (Xn, Ym) , ε). Since
w (d, ε) ≤ a < ∞, for any d, we have the existence of a |Un| ≤ V < ∞ such
that V is integrable, since we can take V = a. Since D (Xn, Ym) converges almost
surely to D∞ (θ0, θ), and w (·, ε) is continuous at D∞ (θ0, θ), we have Un → U =

w (D∞ (θ0, θ) , ε) with probability one by the extended continuous mapping theo-
rem (cf. [92, Thm. 7.10]).

Now, let Fn be the σ-field generated by the sequence {X1, . . . , Xn}. Thus, Fn is an
increasing σ-field, which approaches F∞ = ∪nFn. We are in a position to directly
apply Theorem 2.4.1. This yields

E [w (D (Xn, Ym) , ε) |Xn]→ E [w (D∞ (θ0, θ) , ε) |X∞] ,

almost surely, as n→ ∞, where the right-hand side equals w (D∞ (θ0, θ) , ε).
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Notice that the left-hand side has the form

E [w (D (Xn, Ym) , ε) |Xn] = Lm,ε (Xn|θ)

and therefore Lm,ε (Xn|θ) → w (D∞ (θ0, θ) , ε), almost surely, as n → ∞. Thus, the
numerator of (2.72) converges to

π (θ)w (D∞ (θ0, θ) , ε) , (2.80)

almost surely.

To complete the proof, it suffices to show that the denominator of (2.72) converges
almost surely to ∫

T
π (θ)w (D∞ (θ0, θ) , ε)dθ. (2.81)

Since Lm,ε (Xn|θ) → w (D∞ (θ0, θ) , ε) and cm,ε (xn) =
∫

T
π (θ) Lm,ε (xn|θ)dθ, we

obtain our desired convergence via the dominated convergence theorem, because
w (d, ε) ≤ a < ∞. An application of a Slutsky-type theorem yields the almost sure
convergence of the ratio between (2.80) and (2.81) to the right-hand side of (2.79), as
n→ ∞. �

The following result and proof guarantees the applicability of Theorem 2.4.2 to re-
jection ABC procedures, and to kernel-smoothed ABC procedures, as used in [176]
and [260], respectively.
Proposition 2.4.1. The result of Theorem 2.4.2 applies to rejection ABC and importance
sampling ABC, with weight functions of respective forms (2.77) and (2.78).

Proof. For weights of form (2.77), we note that w (d, ε) = Jd < εK is continuous in
d at all points, other than when d = ε. Furthermore, w (d, ε) ∈ {0, 1} and is hence
non-negative and bounded. Thus, under the condition that D∞ (θ0, θ) 6= ε, we have
the desired conclusion of Theorem 2.4.2.

For weights of form (2.78), we note that for fixed ε, w (d, ε) is continuous and pos-
itive in d. Since w is uniformly bounded by 1, differentiating with respect to d, we
obtain dw/dd = − (q/ε) dq−1 exp (−dq/ε), which is negative for any d ≥ 0 and
q > 0. Thus, (2.78) constitutes a weight function and satisfies the conditions of The-
orem 2.4.2.

�

Asymptotic of the energy statistic

Let X and Y be arbitrary elements of Xn and Ym, respectively. That is X and Y
arise from DGPs that can be characterized by PDFs f (x; θ0) and f (y; θ), respectively.
Under the assumption E ‖X‖2 + E ‖Y‖2 < ∞, Proposition 1 of [313] states that we
can write the ES as

E (X, Y) =
Γ
(

d+1
2

)
π(d+1)/2

∫
Rd

|ϕ (t; θ0)− ϕ (t; θ)|2

‖t‖d+1
2

dt, (2.82)
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where ϕ (t; θ) is the characteristic function corresponding to the PDF f (y; θ).

We write log+ x = log (max {1, x}). From [312] we have the fact that for arbitrary δ,

Vδ (Xn, Ym) =
1

n2m2

n

∑
i1=1

n

∑
i2=1

m

∑
j1=1

m

∑
j2=1

κδ

(
Xi1,Xi2 ; Yj1 , Yj2

)
,

where

κδ

(
xi1 , xi2 ; yj1 , yj2

)
= δ

(
xi1 , yj1

)
+ δ

(
xi2 , yj2

)
− δ (xi1 , xi2)− δ

(
yj1 , yj2

)
is the kernel of the V-statistic that is based on the function δ. The following result is
a direct consequence of Theorem 1 of [298], when applied to V-statistics constructed
from functionals δ that satisfy the hypothesis of [313, Prop. 3].
Lemma 2.4.1. Make the same assumptions regarding Xn and Ym as in Theorem 2.4.2. Let
δ (x, y) = δ (x− y) be a continuous and strictly negative definite function. If

E
(
|κδ (X1,X2; Y1, Y2)| log+ |κδ (X1,X2; Y1, Y2)|

)
< ∞, (2.83)

then Vδ (Xn, Ym) converges almost surely to Eδ (X1, Y1) ≥ 0, as min {n, m} → ∞, where
X1, X2 ∈ X and Y1, Y2 ∈ X are arbitrary elements of Xn and Ym, respectively. Furthermore,
Eδ (X1, Y1) = 0 if and only if X1 and Y1 are identically distributed.

We may apply the result of Lemma 2.4.1 directly to the case of δ = δ2 in order to
provide an almost sure convergence result regarding the V-statistic Vδ2 (Xn, Ym).
Corollary 2.4.1. Make the same assumptions regarding Xn and Ym as in Theorem 2.4.2. If
X1 ∈ X and Y1 ∈ X are arbitrary elements of Xn and Ym, respectively, and

E
(
‖X1‖2

2

)
+ E

(
‖Y1‖2

2

)
< ∞, (2.84)

and if min {n, m} → ∞, then Vδ2 (Xn, Ym) converges almost surely to E (X1, Y1), of form
(2.82).

Proof. By the law of total expectation, we apply Lemma 2.4.1 by considering the two
cases of (2.83): when |κδ2 | ≤ 1 and when |κδ2 | > 1, separately, to write

E
(
|κδ2 | log+ |κδ2 |

)
= p0E

(
|κδ2 | log+ |κδ2 | | |κδ2 | ≤ 1

)
+ p1E

(
|κδ2 | log+ |κδ2 | | |κδ2 | > 1

)
,

(2.85)
where p0 = P (|κδ2 | ≤ 1) and p1 = P (|κδ2 | > 1). The first term on the right-hand
side of (2.85) is equal to zero, since log+ |κδ2 | = log (1) = 0, whenever |κδ2 | ≤ 1.
Thus, we need only be concerned with bounding the second term.

For |κδ2 | > 1, |κδ2 | log |κδ2 | ≤ |κδ2 |2, thus

E
(
|κδ2 | log+ |κδ2 | | |κδ2 | > 1

)
≤ E

(
|κδ2 |2 | |κδ2 | > 1

)
The condition that E

(
|κδ2 | log+ |κδ2 |

)
< ∞ is thus fulfilled if E

(
|κδ2 |2 | |κδ2 | > 1

)
<

∞, which is equivalent to

E
(
|κδ2 |2

)
= p0E

(
|κδ2 |2 | |κδ2 | ≤ 1

)
+ p1E

(
|κδ2 |2 | |κδ2 | > 1

)
< ∞,
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by virtue of the integrability of
{
|κδ2 |2 | |κδ2 | ≤ 1

}
implying the existence of

E
(
|κδ2 |2 | |κδ2 | ≤ 1

)
,

since it is defined on a bounded support.

Next, by the triangle inequality, |κδ2 | ≤ 2 (‖X1‖2 + ‖X2‖2 + ‖Y1‖2 + ‖Y2‖2), and
hence

|κδ2 |2 ≤ 4
(
‖X1‖2

2 + ‖X2‖2
2 + ‖Y1‖2

2 + ‖Y2‖2
2

)
+ 8(‖X1‖2 ‖X2‖2 + ‖X1‖2 ‖Y1‖2 + ‖X1‖2 ‖Y2‖2

+ ‖X2‖2 ‖Y1‖2 + ‖X2‖2 ‖Y2‖2 + ‖Y1‖2 ‖Y2‖2).

Since X1, X2, Y1, Y2 are all pairwise independent, and X1 and Y1 are identically dis-
tributed to X2 and Y2, respectively, we have

E
(
|κδ2 |2

)
≤ 8

[
E
(
‖X1‖2

2

)
+ E

(
‖Y1‖2

2

)]
+ 8

[
(E ‖X1‖2)

2 + (E ‖Y1‖2)
2
]

+ 32 [E ‖X1‖2 E ‖Y1‖2] ,

which concludes the proof since E ‖X1‖2
2 + E ‖Y1‖2

2 < ∞ is satisfied by the hypoth-
esis and implies E ‖X1‖2 + E ‖Y1‖2 < ∞.

�

We note that condition (2.84) is stronger than a direct application of condition (2.83),
which may be preferable in some situations. However, condition (2.84) is somewhat
more intuitive and verifiable since it is concerned with the polynomial moments of
norms and does not involve the piecewise function log+ x. It is also suggested in
[345] that one may replace log+ x by log (2 + x) if it is more convenient to do so.

Combining the result of Theorem 2.4.2 with Corollary 2.4.1 and the conclusion from
Proposition 1 of [313] provided in Equation (2.82) yields the key result below. This
result justifies the use of the V-statistic estimator Vδ2 (Xn, Ym) for the energy distance
E (X, Y) within the IS-ABC framework.
Corollary 2.4.2. Under the assumptions of Corollary 2.4.1. If D (Xn, Ym) = Vδ2 (Xn, Ym),
then the conclusion of Theorem 2.4.2 follows with

D (Xn, Ym)→
Γ
(

d+1
2

)
π(d+1)/2

∫
Rd

|ϕ (t; θ0)− ϕ (t; θ)|2

‖t‖d+1
2

dt = D∞ (θ0, θ) ,

almost surely, as n→ ∞, where D∞ (θ0, θ) ≥ 0 and D∞ (θ0, θ) = 0, if and only if θ0 = θ.

2.4.5 Illustrations

We illustrate the use of the ES on some standard models. The standard rejection
ABC algorithm is employed (that is, we use Algorithm 2.4.1 with weight function w
of form (2.77)) for constructing estimators (2.74). The proposed ES is compared to
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the Kullback–Leibler divergence (KL), the Wasserstein distance (WA), and the maxi-
mum mean discrepancy (MMD). Here, the ES is applied using the Euclidean metric
δ2, the Wasserstein distance using the exponent p = 2 [cf. 52] and the MMD using a
Gaussian kernel χ(x, y) = exp [−(x− y)2]. The Gaussian kernel is commonly used
in the MMD literature, and was also considered for ABC in [260] and [176]. Details
regarding the use of the Kullback–Leibler divergence as a discrepancy function for
ABC algorithms can be found in [176, Sec. 2].

We use X ∼ L to denote that the random variable X has probability law L. Further-
more, we denote the normal law by N (µ, Σ), where X ∼ N (µ, Σ) states that the
DGP of X is multivariate normal distribution with mean vector µ and covariance
matrix Σ. We further denote the uniform law, in the interval (a, b), for a < b, by
Unif(a, b).

We consider examples explored in [176, Sec. 4.1]. For each illustration below, we
sample synthetic data of the same size m as the observed data size, n, whose value
is specified for each model below. We consider only the rejection weight function,
and the number of ABC iterations in Algorithm 2.4.1 is set to N = 105. The tuning
parameter ε is set so that only the 0.05% smallest discrepancies are kept to form
ABC posterior sample. We postpone the discussion of the results of our simulation
experiments to Section 2.4.5

The experiments were implemented in R, using in particular the winference package
[52] and the FNN package [54]. The Kullback–Leibler divergence between two PDFs
is computed within the 1-nearest neighbor framework [59]. Moreover, the k-d trees
is adopted for implementing the nearest neighbor search, which is the same as the
method of [176]. For estimating the 2-Wasserstein distance between two multivariate
empirical measures, we propose to employ the swapping algorithm [276], which
is simple to implement, and is more accurate and less computationally expensive
than other algorithms commonly used in the literature [52]. Regarding the MMD,
the same unbiased U-statistic estimator is adopted as given in [176] and [260]. For
reproduction of the the experimental results, the original source code can be accessed
at https://github.com/hiendn/Energy_Statistics_ABC.

Bivariate Gaussian mixture model

Let Xn be a sequence of IID random variables, such that each Xi has mixture of
Gaussian probability law

Xi ∼ pN (µ0, Σ0) + (1− p)N (µ1, Σ1), (2.86)

with known covariance matrices

Σ0 =

 0.5 −0.3

−0.3 0.5

 and Σ1 =

 0.25 0

0 0.25

 .

We aim to estimate the generative parameters θ> = (p, µ>0 , µ>1 ) consisting of the
mixing probability p and the population means µ0 and µ1. To this end, we per-
form ABC using n = 500 observations, sampled from model (2.86) with p = 0.3,

https://github.com/hiendn/Energy_Statistics_ABC
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FIGURE 2.14: Marginal KDEs of the ABC posterior for the mean pa-
rameters µ0 and µ1 of the bivariate Gaussian mixture model (2.86).
The intersections of black dashed lines indicate the positions of the

population means.

µ>0 = (0.7, 0.7) and µ>1 = (−0.7,−0.7). A kernel density estimate (KDE) of the ABC
posterior distribution is presented in Figure 2.14.

Moving-average model of order 2

The moving-average model of order q, MA(q), is a stochastic process {Yt}t∈N∗ de-
fined as

Yt = Zt +
q

∑
i=1

θiZt−i,

with {Zt}t∈Z being a sequence of unobserved noise error terms. [176] used a MA(2)
model for their benchmarking; namely Yt = Zt + θ1Zt−1 + θ2Zt−2, t ∈ [d]. Each
observation Y corresponds to a time series of length d. Here, we use the same model
as that proposed in [176], where Zt follows the Student-t distribution with 5 degrees
of freedom, and d = 10. The priors on the model parameters θ1 and θ2 are taken to be
uniform, that is, θ1 ∼ Unif(−2, 2) and θ2 ∼ Unif(−1, 1). We performed ABC using
n = 200 samples generated from a model with the true parameter values (θ1, θ2) =

(0.6, 0.2). A KDE of the ABC posterior distribution is displayed in Figure 2.15.

Bivariate beta model

The bivariate beta model proposed by [86] is defined with five positive parameters
θ1, . . . , θ5 by letting

V1 =
U1 + U3

U5 + U4
, and V2 =

U2 + U4

U5 + U3
, (2.87)

where Ui ∼ Gamma(θi, 1), for i ∈ [5], and setting Z1 = V1/(1 + V1) and Z2 =

V2/(1 + V2). The bivariate random variable Z> = (Z1, Z2) has marginal laws Z1 ∼
Beta(θ1 + θ3, θ5 + θ4) and Z2 ∼ Beta(θ2 + θ4, θ5 + θ3). We performed ABC using
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FIGURE 2.15: KDE of the ABC posterior for the parameters θ1 and
θ2 of the MA(2) model experiment. The intersections of black dashed

lines indicate the true parameter values.

samples of size n = 500, which are generated from a DGP with true parameter
values (θ1, θ2, θ3, θ4, θ5) = (1, 1, 1, 1, 1). The prior on each of the model parameters
is taken to be independent Unif(0, 5). A KDE of the ABC posterior distribution is
displayed in Figure 2.16.

Multivariate g-and-k distribution

A univariate g-and-k distribution can be defined via its quantile function [102]:

F−1(x) = A + B
[

1 + 0.8
1− exp(−g× zx)

1 + exp(−g× zx)

] (
1 + z2

x
)k

zx, (2.88)

where parameters (A, B, g, k) respectively relate to location, scale, skewness, and
kurtosis. Here, zx is the xth quantile of the standard normal distribution. Given a set
of parameters (A, B, g, k), it is easy to simulate d observations of a DGP with quantile
function (2.88), by generating a sequence of IID sample {Zi}d

i=1, where Zi ∼ N (0, 1),
for i ∈ [d].

A so-called d-dimensional g-and-k DGP can instead be defined by applying the
quantile function (2.88) to each of the d elements of a multivariate normal vec-
tor Z> = (Z1, ..., Zd) ∼ N (0, Σ), where Σ is a covariance matrix. In our experi-
ment, we use a 5-dimensional g-and-k model with the same covariance matrix and
parameter values for (A, B, g, k) as that considered by [176]. That is, we gener-
ate samples of size n = 200 from a g-and-k DGP with the true parameter values
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FIGURE 2.16: Marginal KDEs of the ABC posterior for the parameters
θ1, . . . , θ5 for the bivariate beta model. The black dashed lines indicate

the true parameter values.

(A, B, g, k) = (3, 1, 2, 0.5) and the covariance matrix

Σ =



1 ρ 0 0 0

ρ 1 ρ 0 0

0 ρ 1 ρ 0

0 0 ρ 1 ρ

0 0 0 ρ 1


,

where ρ = −0.3. Marginal KDEs of the ABC posterior distributions is presented in
Figure 2.17.
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A, B, g, k and ρ of the g-and-k model. The black dashed lines indicate

the true parameter values.
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Discussion of the results and performance

For each of the four experiments and each parameter, we computed the posterior
mean θ̂mean, posterior median θ̂med, mean absolute error and mean squared error
defined by

MAE =
1
M

M

∑
k=1
|θk − θ0|, and MSE =

1
M

M

∑
k=1
|θk − θ0|2,

where {θk}M
k=1 denotes the pseudo-posterior sample and θ0 denotes the true param-

eter. Here M = 50 since N = 105 and ε is chosen as to retain 0.05% of the samples.
Each experiment was replicated ten times by keeping the same fixed (true) values
for the parameters and by sampling new observed data each of the ten times. The
estimated quantities θ̂mean, θ̂med, and errors MAE and RMSE = MSE1/2 were then
averaged over the ten replications, and are reported along with standard deviations
σ(·) in columns associated with each estimator and true values θ0 for each parameter
in Tables 2.9, 2.10, 2.11 and 2.12.

Upon inspection, Tables 2.9, 2.10, 2.11 and 2.12 showed some advantage in perfor-
mance from WA on the bivariate Gaussian mixtures, some advantage from the MMD
on the bivariate beta model, and some advantage from the ES on the g-and-k model,
while multiple methods are required to make the best inference in the case of the
MA(2) experiment. When we further take into account the standard deviations of
the estimators, we observe that all four data discrepancy measures essentially per-
form comparatively well across the four experimental models. Thus, we may con-
clude that there is no universally best performing discrepancy measure, and one
must choose the right method for each problem of interest. Alternatively, one may
also consider some kind of averaging over the results of the different discrepancy
measures. We have not committed to an investigation of such methodologies and
leave it as a future research direction.
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TABLE 2.9: Estimation performance for bivariate Gaussian mixtures
(Section 2.4.5). The best results in each column is highlighted in bold-

face.

θ̂mean σ(θ̂mean) θ̂med σ(θ̂med) MAE σ(MAE) RMSE σ(RMSE)

µ00 = 0.7

ES 0.594 0.045 0.607 0.063 0.215 0.030 0.283 0.055

KL 0.648 0.039 0.666 0.048 0.165 0.016 0.205 0.026

WA 0.675 0.035 0.682 0.043 0.152 0.020 0.181 0.021

MMD 0.564 0.079 0.582 0.076 0.234 0.054 0.311 0.101

µ01 = 0.7

ES 0.587 0.063 0.613 0.059 0.215 0.038 0.282 0.069

KL 0.651 0.042 0.667 0.061 0.169 0.022 0.210 0.027

WA 0.655 0.050 0.669 0.047 0.152 0.015 0.187 0.019

MMD 0.559 0.076 0.598 0.075 0.235 0.049 0.313 0.092

µ10 = −0.7

ES -0.699 0.046 -0.716 0.040 1.401 0.043 1.412 0.039

KL -0.709 0.029 -0.712 0.035 1.409 0.029 1.415 0.029

WA -0.699 0.030 -0.704 0.037 1.399 0.030 1.404 0.030

MMD -0.709 0.054 -0.731 0.036 1.411 0.051 1.422 0.038

µ11 = −0.7

ES -0.696 0.058 -0.712 0.043 1.396 0.058 1.407 0.049

KL -0.711 0.047 -0.704 0.057 1.411 0.047 1.416 0.047

WA -0.695 0.043 -0.695 0.053 1.395 0.043 1.401 0.043

MMD -0.711 0.066 -0.726 0.046 1.411 0.066 1.424 0.052

TABLE 2.10: Estimation performance for the MA(2) model (Sec-
tion 2.4.5). The best results in each column is highlighted in boldface.

θ̂mean σ(θ̂mean) θ̂med σ(θ̂med) MAE σ(MAE) RMSE σ(RMSE)

θ1 = 0.6

ES 0.569 0.042 0.570 0.045 0.083 0.015 0.100 0.017

KL 0.664 0.028 0.658 0.031 0.106 0.017 0.132 0.019

WA 0.509 0.033 0.505 0.038 0.112 0.022 0.133 0.026

MMD 0.583 0.044 0.586 0.048 0.079 0.013 0.096 0.015

θ2 = 0.2

ES 0.215 0.035 0.219 0.035 0.111 0.015 0.135 0.019

KL 0.274 0.023 0.280 0.027 0.110 0.014 0.134 0.014

WA 0.205 0.025 0.207 0.030 0.090 0.029 0.112 0.034

MMD 0.220 0.037 0.220 0.036 0.108 0.010 0.132 0.012
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TABLE 2.11: Estimation performance for the bivariate beta model
(Section 2.4.5). The best results in each column is highlighted in bold-

face.

θ̂mean σ(θ̂mean) θ̂med σ(θ̂med) MAE σ(MAE) RMSE σ(RMSE)

θ1 = 1.0

ES 1.299 0.223 1.189 0.264 0.713 0.130 0.885 0.165

KL 1.389 0.190 1.333 0.165 0.696 0.151 0.877 0.205

WA 1.286 0.220 1.193 0.265 0.672 0.128 0.828 0.153

MMD 1.229 0.188 1.143 0.241 0.676 0.092 0.836 0.121

θ2 = 1.0

ES 1.362 0.185 1.290 0.237 0.716 0.118 0.904 0.131

KL 1.235 0.152 1.153 0.170 0.588 0.070 0.745 0.097

WA 1.292 0.196 1.240 0.241 0.657 0.114 0.817 0.139

MMD 1.268 0.173 1.170 0.171 0.669 0.103 0.841 0.131

θ3 = 1.0

ES 1.170 0.132 1.183 0.157 0.459 0.045 0.552 0.049

KL 1.083 0.100 1.077 0.088 0.394 0.034 0.496 0.045

WA 1.229 0.118 1.216 0.132 0.426 0.054 0.521 0.059

MMD 1.181 0.116 1.182 0.143 0.456 0.051 0.548 0.061

θ4 = 1.0

ES 1.128 0.112 1.113 0.138 0.435 0.032 0.534 0.045

KL 1.133 0.111 1.086 0.135 0.390 0.038 0.498 0.051

WA 1.218 0.110 1.196 0.108 0.409 0.049 0.514 0.066

MMD 1.150 0.098 1.133 0.130 0.423 0.041 0.518 0.049

θ5 = 1.0

ES 1.343 0.096 1.360 0.104 0.428 0.052 0.514 0.059

KL 1.300 0.087 1.250 0.065 0.384 0.040 0.491 0.061

WA 1.300 0.101 1.298 0.105 0.370 0.058 0.446 0.066

MMD 1.258 0.115 1.232 0.120 0.375 0.055 0.454 0.063
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TABLE 2.12: Estimation performance for the g-and-k distribution
(Section 2.4.5). The best results in each column is highlighted in bold-

face.

θ̂mean σ(θ̂mean) θ̂med σ(θ̂med) MAE σ(MAE) RMSE σ(RMSE)

A = 3.0

ES 3.024 0.044 3.009 0.047 0.133 0.016 0.170 0.018

KL 2.955 0.030 2.948 0.033 0.105 0.013 0.128 0.013

WA 3.043 0.045 3.052 0.067 0.232 0.020 0.277 0.020

MMD 3.081 0.061 3.062 0.065 0.177 0.029 0.221 0.036

B = 1.0

ES 1.046 0.062 1.027 0.079 0.268 0.024 0.322 0.029

KL 0.918 0.071 0.885 0.068 0.313 0.026 0.375 0.029

WA 0.894 0.127 0.869 0.136 0.277 0.044 0.334 0.045

MMD 0.899 0.069 0.855 0.079 0.374 0.029 0.440 0.030

g = 2.0

ES 2.289 0.101 2.264 0.210 0.872 0.098 1.026 0.091

KL 2.993 0.080 3.046 0.121 1.043 0.070 1.193 0.066

WA 2.581 0.101 2.599 0.147 0.858 0.078 1.025 0.075

MMD 2.184 0.128 2.227 0.190 0.904 0.103 1.052 0.100

k = 0.5

ES 0.476 0.046 0.444 0.067 0.225 0.014 0.270 0.015

KL 0.550 0.059 0.498 0.064 0.252 0.029 0.317 0.045

WA 0.544 0.095 0.526 0.094 0.189 0.035 0.238 0.046

MMD 0.691 0.056 0.621 0.072 0.380 0.041 0.502 0.070

ρ = −0.3

ES -0.163 0.047 -0.178 0.069 0.197 0.032 0.246 0.034

KL -0.291 0.034 -0.324 0.037 0.117 0.014 0.144 0.020

WA -0.288 0.026 -0.314 0.035 0.125 0.016 0.152 0.020

MMD -0.194 0.047 -0.210 0.063 0.174 0.030 0.218 0.035
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2.4.6 Discussion

We have introduced a novel importance-sampling ABC algorithm that is based on
the so-called two-sample energy statistic. Along with other data discrepancy measures
that view data sets as empirical measures, such as the Kullback–Leibler divergence,
the Wasserstein distance and maximum mean discrepancies, our proposed approach
bypasses the cumbersome use of summary statistics.

We have shown that the V-statistic estimator of the ES is consistent under mild mo-
ment conditions. Furthermore, we have established a new asymptotic result for
cases when the observed sample and simulated sample sizes increasing to infinity,
that shows a kind of consistency of the pseudo-posterior in the infinite data sce-
nario. This is in concordance with previous results in such cases [see for instance
176, 52] and extends upon existing theory for the application in the general IS-ABC
framework.

Illustrations of the proposed ES-ABC algorithm on four experimental models have
shown that it performs comparatively well to alternative discrepancy measures.
Considering computing costs, KL should be preferred over the other three discrep-
ancy measures, with a linearithmic computational time of O((n + m) log(n + m)).
This can be contrasted against the quadratic time O((n + m)2) for a single compu-
tation of D (Xn, Ym) when we consider the Wasserstein distance, instead. Both the
ES and MMD estimators require quadratic computational time, like the Wasserstein
distance. We note that linear time estimators are also available for the MMD and
the ES, although these are unbiased and cannot be guaranteed to be positive [see
Lemma 14 in 146].

In the rejection ABC setting, Proposition 2 of [52] shows that under some regularity
assumptions on the DGP and if the data discrepancy measure satisfies the condition:

D (Xn, Yn) = 0 if and only if Xn = Yn, (2.89)

then the ABC pseudo-posterior contracts to the posterior distribution as the rejection
threshold ε converges to zero. It can be shown that the V-statistic estimator of the
ES only satisfies the only if direction of (2.89) and thus does not necessarily enjoy
the conclusions of Proposition 2 of [52]. The condition is not known to be necessary
and thus we do not know if the conclusion can be satisfied in another way. We
observe, from our simulation experiments, that ES did not perform differently to the
Wasserstein distance, which can be shown to satisfy Proposition 2 of [52].
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[A7] O. Marchal and J. Arbel. On the sub-Gaussianity of the Beta and Dirichlet
distributions. Electronic Communications in Probability, 22:1–14, 2017
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ity & Statistics, forthcoming, 2019
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Gaussian and sub-Exponential properties to heavier-tailed distributions. Sub-
mitted, 2019

3.1 Sub-Gaussian and sub-Weibull properties

3.1.1 Introduction

The sub-Gaussian property [66, 65, 263] and related concentration inequalities [60,
278] have attracted a lot of attention in the last couple of decades due to their ap-
plications in various areas such as pure mathematics, physics, information theory
and computer sciences. Recent interest focused on deriving the optimal proxy vari-
ance for discrete random variables like the Bernoulli distribution [67, 185, 50] and
the missing mass [229, 228, 50, 49]. Our focus is instead on two continuous random
variables, the Beta and Dirichlet distributions, for which the optimal proxy variance
was not known to the best of our knowledge. Some upper bounds were recently con-
jectured by [109] that we prove in the present article by providing the optimal proxy
variance for both Beta and Dirichlet distributions. Similar concentration properties
of the Beta distribution have been recently used in many contexts including Bayesian
adaptive data analysis [109], Bayesian nonparametrics [76] and spectral properties
of random matrices [262].

We start by reminding the definition of sub-Gaussian property for random variables:
Definition 3.1.1 (Sub-Gaussian variables). A random variable X with finite mean µ =

E[X] is sub-Gaussian if there is a positive number σ such that:

E[exp(λ(X− µ))] ≤ exp
(

λ2σ2

2

)
for all λ ∈ R. (3.1)

Such a constant σ2 is called a proxy variance (or sub-Gaussian norm), and we say that X
is σ2-sub-Gaussian. If X is sub-Gaussian, one is usually interested in the optimal proxy
variance:

σ2
opt(X) = min{σ2 ≥ 0 such that X is σ2-sub-Gaussian}.

Note that the variance always gives a lower bound on the optimal proxy variance: Var[X] ≤
σ2

opt(X). In particular, when σ2
opt(X) = Var[X], X is said to be strictly sub-Gaussian.

Every compactly supported distribution, as is the Beta(α, β) distribution, is sub-
Gaussian. This can be seen by Hoeffding’s classic inequality: any random variable
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X supported on [0, 1] with mean µ satisfies

∀λ ∈ R, E
[
eλ(X−µ)

]
≤ e

λ2
8 ,

thus exhibiting 1
4 as an upper bound to the proxy variance. This bound can be im-

proved by taking into account the location of the mean µ within the interval [0, 1].
An early step in this direction is the second inequality in [159] paper, indexed (2.2).
It states that if µ < 1/2, then for any positive ε, P(X− µ > ε) ≤ e−ε2g(µ), where

g(µ) =
1

1− 2µ
ln

1− µ

µ
(3.2)

thus indicating that X has a right tail lighter than a Gaussian tail of variance 1
2g(µ) .

Hoeffding’s result was strengthened by [185] to comply with Definition 3.1.1 of sub-
Gaussianity1 as follows

E[exp(λ(X− µ))] ≤ exp
(

λ2

4g(µ)

)
for all λ ∈ R, (3.3)

thus indicating that 1
2g(µ) is a distribution-sensitive proxy variance for any [0, 1]-

supported random variable with mean µ [see also 50, for a detailed proof of this
result]. If this is the optimal proxy variance for the Bernoulli distribution [see Theo-
rem 2.1 and Theorem 3.1 of 67], it is clear from our result that it does not hold true
for the Beta distribution. However, fixing α

α+β = µ and letting α → 0, β → 0, the
Beta(α, β) distribution concentrates to the Bern(µ) distribution, and we show that
we recover the optimal proxy variance for the Bernoulli distribution (Theorem 3.1.2).

3.1.2 Optimal proxy variance for the Beta distribution

The Beta(α, β) distribution, with α, β > 0, is characterized by a density on the seg-
ment [0, 1] given by:

f (x) =
1

B(α, β)
xα−1(1− x)β−1,

where B(α, β) =
∫ ∞

0 xα−1(1− x)β−1dx = Γ(α)Γ(β)
Γ(α+β)

is the Beta function. The moment-
generating function of a Beta(α, β) distribution is given by a confluent hypergeomet-
ric function (also known as Kummer’s function):

E[exp(λX)] = 1F1(α; α + β; λ) =
∞

∑
j=0

Γ(α + j)Γ(α + β)

(j!)Γ(α)Γ(α + β + j)
λj. (3.4)

This is equivalent to say that the jth raw moment of a Beta(α, β) random variable X
is given by:

E[X j] =
(α)j

(α + β)j
, (3.5)

1Note indeed that Equation (3.1), together with Markov inequality, imply P(X− µ > ε) ≤ e−
ε2

2σ2 .
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where (x)j = x(x + 1) · · · (x + j− 1) = Γ(x+j)
Γ(x) is the Pochhammer symbol, also known

in the literature as a rising factorial. In particular, the mean and variance are given
by:

E[X] =
α

α + β
, Var[X] =

αβ

(α + β)2(α + β + 1)
.

The Beta distribution is ubiquitous in statistics. It plays a central role in the binomial
model in Bayesian statistics where it is a conjugate prior distribution (the associated
posterior distribution is also Beta): if X ∼ Binomial(θ, N) and θ ∼ Beta(α, β), then
θ|X ∼ Beta(α + X, β + N − X). It is also key to Bayesian nonparametrics where
it embodies, among others, the distribution of the breaks in the stick-breaking rep-
resentation of the Dirichlet process and the Pitman–Yor process; marginal distribu-
tions of Polya trees [76]; the posterior distribution of discovery probabilities under a
Bayesian nonparametrics model [17]. Our main result opens new research avenues
for instance about asymptotic (frequentist) assessments of these procedures.

Theorem 3.1.1 (Optimal proxy variance for the Beta distribution). For any α, β >

0, the Beta distribution Beta(α, β) is σ2
opt(α, β)-sub-Gaussian with optimal proxy variance

σ2
opt(α, β) given by:

σ2
opt(α, β) = α

(α+β)x0

(
1F1(α+1;α+β+1;x0)

1F1(α;α+β;x0)
− 1
)

where x0 is the unique solution of the equation

ln(1F1(α; α + β; x0)) =
αx0

2(α+β)

(
1 + 1F1(α+1;α+β+1;x0)

1F1(α;α+β;x0)

)
.

(3.6)

A simple and explicit upper bound to σ2
opt(α, β) is given by σ2

0 (α, β) = 1
4(α+β+1) :

- for α 6= β we have Var[Beta(α, β)] < σ2
opt(α, β) < 1

4(α+β+1)

- for α = β we have Var[Beta(α, α)] = σ2
opt(α, α) = 1

4(2α+1) .

refer to [223] for a proof.

Equation (3.6) defining x0 is a transcendental equation, the solution of which is not
available in closed form. However, it is simple to evaluate numerically. The values
of the variance, optimal proxy variance and its simple upper bound are illustrated
on Figure 3.1. Note that for a fixed value of the sum of the parameters, α + β = S,
the optimal proxy variance deteriorates when α, or equivalently β, gets close to 0
or to S. This is reminiscent of the Bernoulli optimal proxy variance behavior which
deteriorates when the success probability moves away from 1

2 [67].
Corollary 3.1.1. The Beta distribution Beta(α, β) is strictly sub-Gaussian if and only if
α = β.

As a direct consequence, we obtain the strict sub-Gaussianity of the uniform, the arc-
sine and the Wigner semicircle distributions, as special cases up to a trivial rescaling
of the Beta(α, α) distribution respectively with α equal to 1, 1

2 and 3
2 .
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FIGURE 3.1: Left: curves of Var[Beta(α, β)] (green), σ2
opt(α, β) (purple)

and 1
4(α+β+1) (dotted black) for the Beta(α, β) distribution with α + β

set to 1, σ2
opt(µ) for the Bern(µ) distribution (blue); varying mean µ

on the x-axis. Center: curves of σ2
opt(µ) for the Bern(µ) distribution

(blue), and of σ2
opt(α, β) for the Beta(α, β) distribution with α+ β vary-

ing on a log scale from 0.1 (purple) to 10 (red); varying mean µ on the
x-axis. Right: surfaces of Var[Beta(α, β)] (green) and σ2

opt(α, β) (pur-
ple), for values of α and β varying in [0.2, 4].

Optimal proxy variance for the Bernoulli distribution

The proof technique can be used to recover the optimal proxy variance for the Bernoulli
distribution, known since [185]. This is illustrated by the center panel of Figure 3.1.
Theorem 3.1.2 (Optimal proxy variance for the Bernoulli distribution). For any µ ∈
(0, 1), the Bernoulli distribution with mean µ is sub-Gaussian with optimal proxy variance
σ2

opt(µ) given by:

σ2
opt(µ) =

(1− 2µ)

2 ln 1−µ
µ

. (3.7)

3.1.3 On strict sub-Gaussianity, optimal proxy variance and symmetry for
bounded random variables

We focus here on the study of almost surely bounded random variables, where
Bernoulli, beta, binomial, Kumaraswamy [181] or triangular [197] distributions are
taken as standard and common examples. If sub-Gaussianity per se is de facto en-
sured because the support of said random variables is bounded, then exciting re-
search avenues remain open in the area. Among these questions are (a) how to
obtain the optimal sub-Gaussian proxy variance, and (b) how to characterize strict
sub-Gaussianity?

Regarding question (a), we propose general conditions characterizing the optimal
sub-Gaussian proxy variance, thus generalizing previous work [223] that was tai-
lored to the beta and Dirichlet distributions. Several techniques based on studying
variations of functions are proposed.

As for question (b), it turns out that the symmetry of the distribution plays a crucial
role. By symmetry, we mean symmetry with respect to the mean µ = E[X]. That is,
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we say that X is symmetrically distributed if X and 2µ− X have the same distribu-
tion. Thus, if X has a density, this means that the density is symmetric with respect
to µ. A simple, and remarkable, equivalence holds for most of the standard bounded
random variables.
Proposition 3.1.1. Let X be a Bernoulli, beta, binomial, Kumaraswamy or triangular ran-
dom variable. Then,

X is symmetric⇐⇒ X is strictly sub-Gaussian.

The result is known for the beta distribution [223]. In this article, we provide proofs
for the Bernoulli, binomial, Kumaraswamy and triangular distributions.

From Proposition 3.1.1, it may be tempting to conjecture that the equivalence holds
true for any random variable having a bounded support. However, we establish that
this is not the case. This was actually one of the starting points for the present work.
More precisely, we shall provide a proof of the following result.
Proposition 3.1.2. Symmetry of X is neither

(i) a sufficient condition, nor

(ii) a necessary condition,

for the strict sub-Gaussian property.

The proof of this result is presented in [22], where we demonstrate that (i) there
exists simple symmetric mixtures of distributions (e.g., a two-components mixture
of beta distribution and a three-components mixture distribution of Dirac masses)
which are not strictly sub-Gaussian, and that (ii) there exists an asymmetric three-
components mixture of Dirac masses which is strictly sub-Gaussian.

Before delving into detailing the strict sub-Gaussianity property in Section 3.1.3, we
first investigate some conditions that characterize the optimal proxy variance σ2

opt,
in Section 3.1.3.

Characterizations of the optimal proxy variance σ2
opt

Let X be an almost surely bounded random variable with mean µ = E[X]. Then, X
is sub-Gaussian and satisfies Definition 3.1 for some σ2 > 0.

An equivalent definition is that

∀ λ ∈ R : σ2 ≥ 2
λ2K(λ),

where the functionK, defined on R by: K(λ) = ln E[exp(λ[X− µ])], corresponds to
the cumulants generating function of X − µ. Thus the optimal proxy variance σ2

opt
can be defined as the supremum

σ2
opt = sup

λ∈R

2
λ2K(λ). (3.8)

If X is almost surely bounded, then this supremum is attained.
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Note that the function h, defined on R by

h(λ) =
2

λ2K(λ), (3.9)

is continuous at λ = 0, since a standard series expansion demonstrates that:

h(λ) λ→0
= Var[X] + o(1). (3.10)

Moreover, h may never vanish. In fact, since the logarithm function is strictly con-
cave, Jensen’s inequality implies that for any λ ∈ R,

h(λ) =
2

λ2 ln E[eλ(X−µ)] >
2

λ2 E[ln eλ(X−µ)] = 0. (3.11)

Equation (3.10) also explains directly why σ2
opt ≥ Var[X], since the variance is the

value of the right-hand side (r.h.s.) function at λ = 0 and thus the maximum is
always greater or equal to it. We therefore have the following result.
Proposition 3.1.3 (Characterization of σ2

opt by h). The optimal proxy variance is given
by:

σ2
opt = max

λ∈R
h(λ) = max

λ∈R

2
λ2K(λ). (3.12)

We may now present a necessary (but not always sufficient) system of equations for
σ2

opt. Indeed, since the maximum is achieved at a finite point, then this point must
necessarily be a zero of the derivative of h, if h is differentiable (we will denote by
Dk the space of functions that are k times differentiable on R and by Ck the space
of functions that are k times differentiable on R and for which the kth derivative is
continuous on R).

Thus, we obtain the following corollary.
Corollary 3.1.2 (Necessary condition for σ2

opt, with respect to h). Let σ2
opt be the optimal

proxy variance, and assume that h and K are D1. Then there exists a finite λ0, such that

σ2
opt = h(λ0) and h′(λ0) = 0, (3.13)

which is equivalent to

σ2
opt =

2
λ2

0
K(λ0) and λ0K′(λ0) = 2K(λ0), (3.14)

using only the centered cumulants generating function K.

In practice, the previous set of equations has to used with caution, since there may
be more than one solution to the second equation involving the derivative of h (or
that of K), and a global maximizer is required to be picked among the stationary
points, instead of a minimizer or a local maximizer. On a case-by-case basis, the
following approach based on ordinary differential equations (ODEs), satisfied by h,
can be used to demonstrate that it has a unique global maximum.
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Proposition 3.1.4. If the function h is C2, then it is the unique solution of the ordinary
differential equations:

h′(λ) +
2
λ

h(λ) =
2

λ2K
′(λ) with h(0) = Var[X], (3.15)

or

h′′(λ) +
3
λ

h′(λ) =
2
λ

(K′(λ)
λ

)′
with h(0) = Var[X] and h′(0) =

1
3

E[(X− µ)3].

(3.16)

Proof. The result is directly obtained by differentiating h and via standard analysis
theorems. �

Remark 3.1.1. For cases such as the Bernoulli and uniform distributions, we may prove that
the r.h.s. of (3.16) is strictly negative on R∗ := R \ {0}. This implies that if λ0 is extremal
(i.e., h′(λ0) = 0), then it satisfies h′′(λ0) < 0 so that it is a local maximum. This implies
that h has no local minimum and thus may only have one critical point which is necessarily
the unique global maximum.

We conclude this section with another possible methodology for deriving a neces-
sary and sufficient condition for σ2

opt. To this end, the problem needs to be addressed
from a different point of view, by studying the difference of the terms of Defini-
tion 3.1:

∆ : (σ2, λ) ∈ R∗+ ×R 7→ exp
(

λ2σ2

2

)
−E[exp(λ[X− µ])]. (3.17)

Proposition 3.1.5 (Characterization of σ2
opt, with respect to ∆). If ∆ is C1, then the

optimal proxy variance is characterized by:

λ 7→ ∆(σ2
opt, λ) ≥ 0 and ∃ λ0 ∈ R, such that ∆(σ2

opt, λ0) = 0 and ∂λ∆(σ2
opt, λ0) = 0.

(3.18)

Proof. See [22]. �

This proof technique was used by [223] for obtaining the optimal proxy variance
of the beta and Dirichlet distributions. However we find more convenient to use
the conditions stated in Proposition 3.1.4 using the function h to address the issues
presented in this article.
Remark 3.1.2. In general, we would like to remove the condition: λ 7→ ∆(σ2, λ) ≥ 0 on
the r.h.s. of Proposition 3.1.5, in order to have a simpler (and local) characterization of the
optimal proxy variance, as a solution of (3.18). However, this is not possible, since we may
not exclude that there exists a value σ2 < σ2

opt for which ∆(σ2, λ) presents a double zero
λ0 where locally it remains non-negative but at the same time a whole interval far from λ0

where it would be strictly negative.
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On strict sub-Gaussianity

Conditions based on the cumulants Strict sub-Gaussianity is fulfilled when the
optimal proxy variance equals the variance. In view of Equation (3.10), Proposi-
tion 3.1.3 can be rewritten as the following corollary in order to characterize the
strict sub-Gaussianity property.
Corollary 3.1.3 (Corollary of Proposition 3.1.3). A distribution is strictly sub-Gaussian
if and only if the maximum of function h, defined in (3.9), is attained in zero (and is auto-
matically equal to Var[X]). That is:

max
λ∈R

h(λ) = h(0) = Var[X]. (3.19)

This characterization provides necessary conditions, based on cumulants, that are
required for strict sub-Gaussianity to hold.
Proposition 3.1.6 (Necessary conditions based on cumulants). If X is strictly sub-
Gaussian, then the 3rd and 4th cumulants of X must satisfy

κ3 = E[(X−E[X])3] = 0, and (3.20)

κ4 = E[(X−E[X])4]− 3 Var[X]2 ≤ 0. (3.21)

Proof. By definition of the cumulant generating function K(λ) of X− µ,

K(λ) =
∞

∑
i=1

κi
λi

i!
, (3.22)

where κi are the cumulants of X − µ. Since κ1 = µ− µ = 0 and κ2 = Var[X], and
using values for the third and fourth cumulants given in (3.20) and (3.21), we may
write (locally around λ→ 0):

h(λ) = Var[X] + E[(X− µ)3]
λ

3
+
(

E[(X− µ)4]− 3 Var[X]2
) λ2

12
+ O(λ3). (3.23)

Therefore if E[(X − µ)3] 6= 0, the maximum of h(λ) cannot be h(0) and thus strict
sub-Gaussianity cannot be achieved. We conclude the proof by noting that if E[(X−
µ)3] = 0, we have the fact that λ = 0 can be a local maximum, only if E[(X− µ)4] ≤
3 Var[X]2. �

Condition (3.20) requires that the third centered moment is zero and Condition (3.21)
imposes a relation between the second and fourth centered moments. Note that the
latter condition can be compactly formulated via an alternative condition on the
kurtosis of X:

Kurt[X] =
E[(X−E[X])4]

E[(X−E[X])2]2
≤ 3.

More specifically, sub-Gaussianity requires that the random variable has kurtosis
less than or equal to three, which is the kurtosis of a standard Gaussian random
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variable. Such distributions are referred to as platycurtic. The fourth cumulant de-
fined in (3.21) is also termed excess kurtosis. Thus, strict sub-Gaussianity requires
negative excess kurtosis.

When the above necessary conditions (3.20) and (3.21) hold, we are not able to obtain
simple additional necessary conditions on the next cumulants. In particular, note
that strict sub-Gaussianity does not imply symmetry (i.e., E[(X−E[X])2j+1] = 0, for
any j ≥ 0), as will be discussed in the next section.

In contrast, more can be said when the distribution is symmetric. In fact, in the
symmetric case, the moments of odd order are zero, and a simple sufficient condition
can be readily obtained by comparing the Taylor expansions at λ = 0 of both terms
of inequality (3.1), as stated in the following proposition.
Proposition 3.1.7 (Sufficient condition based on moments). If X is symmetric with
respect to its mean µ = E[X], then a sufficient condition for X to be strictly sub-Gaussian
can be stated in terms of all its even moments. That is, for X to be strictly sub-Gaussian, it
is sufficient that

∀j ≥ 2,
E[(X− µ)2j]

(2j)!
≤ (Var[X])j

2j j!
(3.24)

holds.

Proof. The proof is based on series expansions at λ = 0 of both terms of inequal-
ity (3.1), when the proxy variance σ2 is set to the variance Var[X]. Namely:

E[exp(λX)] =
∞

∑
j=0

E
[

X2j
] λ2j

(2j)!
, and exp

(
λ2 Var[X]

2

)
=

∞

∑
j=0

(Var[X])j

2j
λ2j

j!
,

(3.25)

when compared term-by-term, leads to inequality (3.1), under assumption (3.24).
Note that inequality (3.24) needs be checked only for j ≥ 2, as it trivially holds for
j = 0, 1. �

This technique was used by [223] (Section 2.2) for showing that a (symmetric) Beta(α, α)

random variable is strictly sub-Gaussian. We also use it to address the cases of
Bernoulli and binomial, and triangular distributions in Section 2.4.5.

Link with symmetry The relationship between strict sub-Gaussianity and symme-
try was discussed in the Introduction. Here, we provide a proof of Proposition 3.1.2,
while the proof of Proposition 3.1.1 is deferred to Section 2.4.5.

Symmetry is neither a sufficient condition. . .

Simple symmetric distributions which break the necessary condition of negative ex-
cess kurtosis can easily be constructed by hand. One such construction is by means
of mixture of Dirac masses. First, consider the discrete random variable

X ∼ η

2
(δ−1 + δ1) + (1− η)δ0, (3.26)
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which is a three-component mixture of Dirac masses at locations −1, 0 and 1, with
η ∈ [0, 1]. It is symmetric, by construction, and its excess kurtosis equals

κ4 = E[X4]− 3 Var[X]2 = η − 3η2 = η(1− 3η), (3.27)

which is strictly positive for all values η ∈
(
0, 1

3

)
, hence X is not strictly sub-Gaussian

for these values by virtue of Proposition 3.1.6. On the other hand when η → 1, the
distribution of X degenerates to that of the so-called Rademacher random variable,
which leads to the least possible excess kurtosis of −2.

Similar counter-examples to the sufficientness of symmetry can be built in the form
of mixtures of two symmetric beta variables:

X ∼ η Beta(α, α) + (1− η)Beta(β, β),

for η ∈ (0, 1) and α, β > 0. For any value of η ∈ (0, 1), values for α, β leading
to positive excess kurtosis can be obtained. For instance, we may set (η, α, β) =

(0.1, 1.5, 9), to obtain the excess kurtosis κ4 ≈ 1.1× 10−4.

. . . nor a necessary condition for strict sub-Gaussianity

Although most typical bounded random variables that are strictly sub-Gaussian are
symmetric (see, e.g., Proposition 3.1.1), the symmetry of the distributions of such
variables is not a necessary condition for strict sub-Gaussianity. Examples of such
distributions include mixtures of Dirac masses. For example,

X ∼
3

∑
i=1

piδxi with
3

∑
i=1

pi = 1 (3.28)

with (x1, x2, x3) =
(
−2,− 1

2 , 5
4

)
and (p1, p2, p3) =

( 1
13 , 4

7 , 32
91

)
. The function h for the

random variable characterized by (3.28) is plotted in Figure 3.2b. Note that it attains
its maximum in λ = 0.

3.1.4 Sub-Weibull property

It is tempting to generalise the sub-Gaussian property by considering the class of
distributions satisfying

P(|X| ≥ x) ≤ a exp
(
−bx1/θ

)
, for all x > 0, for some θ > 0, (3.29)

which is the goal of the present section. Since a Weibull random variable X on R+ is
defined by a survival function, for x > 0,

F̄(x) = P(X ≥ x) = exp
(
−bx1/θ

)
, for some b > 0, θ > 0, (3.30)

we term a distribution satisfying (3.37) a sub-Weibull distribution in the following
definition.
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(A) Distribution (3.26): symmetric but not
strictly sub-Gaussian when η ∈

(
0, 1

3

)
−2 −1/2 5/4

1/13

4/7

32/91

(B) Distribution (3.28): asymmetric but
strictly sub-Gaussian
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(C) Function h for (3.26) with η ∈ [0.25, 0.4]

− 1.5a 0 1.5a

hmin

1

(D) Function h for (3.28), zoomed-in for red
curves

FIGURE 3.2: Illustration of the mixtures of Dirac masses, proving
Proposition 3.1.2 described in Sections 3.1.3 (a,c) and 3.1.3 (b,d). In
(c), η varies from 0.25 (red curve, maximum not at zero) to 0.4 (blue
curve, maximum at zero). In (d), we illustrate the function h with dif-
ferent zooming scales (around λ = 0): from [−1.55, 1.55] (blue curve,
maximum zoom-out) to [−1.5−5, 1.5−5] (red curve, maximum zoom-
in), with an adapted y-scale, showing that the maximum is attained

in zero.

Definition 3.1.2 (Sub-Weibull random variable). A random variable X, satisfying (3.37)
for some positive a, b and θ, is called a sub-Weibull random variable with tail parameter θ,
which is denoted by X ∼ subW(θ).

Interest in such heavier-tailed distributions than Gaussian or Exponential arises in
our experience from their emergence in the field Bayesian deep neural networks
[331]. While writing this note, we came across the preprint [200], independent of
our work, which also introduces sub-Weibull distributions but from a different per-
spective. The definition proposed by [200] is based on Orlitz norm and is equivalent
to Definition 3.2.3. While [200] focus on establishing tail bounds and rates of conver-
gence for problems in high dimensional statistics, including covariance estimation
and linear regression, under the sole sub-Weibull assumption, we prove here sub-
Weibull characterization properties. In addition, we illustrate their link with deep
neural networks, not in the form of a model assumption as in [200], but as a charac-
terisation of the prior distribution of deep neural networks units.
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Sub-Weibull distributions: characteristic properties

Let X be a random variable. When the kth moment of X exist, k > 0, we denote
‖X‖k =

(
E[|X|k]

)1/k. The following theorem states different equivalent distribution
properties, such as tail decay and growth of moments. The proof of this result shows
how to transform one type of information about the random variable into another.
See [? ] for similar characteristic properties of sub-Gaussian and sub-Exponential
distributions.
Theorem 3.1.3 (Sub-Weibull equivalent properties). Let X be a random variable. Then
the following properties are equivalent; the parameters Ki > 0 appearing in these properties
differ from each other by at most an absolute constant factor1.

(i) The tails of X satisfy

P(|X| ≥ x) ≤ exp
(
−(x/K1)

1/θ
)

for all x ≥ 0.

(ii) The moments of X satisfy

‖X‖k ≤ K2kθ for all k ≥ 1.

(iii) The MGF of |X|1/θ satisfies

E
[
exp

(
λ1/θ |X|1/θ

)]
≤ exp(λ1/θK1/θ

3 )

for all λ such that |λ| ≤ 1
K3

.

(iv) The MGF of |X|1/θ is bounded at some point, namely

E
[
exp

(
|X|1/θ/K1/θ

4

)]
≤ 2.

Remark 3.1.3. The constant 2 that appears in some properties in Theorem 3.1.3 does not
have any special meaning. It is chosen for simplicity and can be replaced by other absolute
constants.

Distribution Tails Moments

Sub-Gaussian P(|X| ≥ x) ≤ e−(x/K1)
2 ‖X‖k ≤ K2

√
k

Sub-Exponential P(|X| ≥ x) ≤ e−x/K1 ‖X‖k ≤ K2k

Sub-Weibull P(|X| ≥ x) ≤ e−(x/K1)
1/θ ‖X‖k ≤ K2kθ

TABLE 3.1: Sub-Gaussian, sub-Exponential and sub-Weibull distribu-
tions comparison in terms of tail P(|X| ≥ x) and moment condition,
with K1 and K2 some positive constants. The first two are a special

case of the last with θ = 1/2 and θ = 1 respectively.

1There exists an absolute constant C such that property i implies property j with parameter Kj ≤
CKi for any two properties i, j = 1, . . . , 4.
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FIGURE 3.3: Illustration of sub-Weibull survival curves on R+ with
varying tail parameters θ.

Informally, the tails of a subW(θ) distribution are dominated by (i.e. decay at least
as fast as) the tails of a Weibull variable with shape parameter2 equal to 1/θ. Sub-
Gaussian and sub-Exponential variables, which are commonly used, are special cases
of sub-Weibull random variables with tail parameter θ = 1/2 and θ = 1, respec-
tively, see Table 3.1. Symmetric sub-Weibull distributions (their survival function)
are represented in Figure 3.3 for varying tail parameter θ. Since only the tail is rele-
vant for the illustration, the sub-Weibull random variables depicted here consist of
Weibull random variables with shape parameter 1/θ and scale parameter 1, trun-
cated at their mode (which is equal to zero if θ ≥ 1 and to (1− θ)1/θ otherwise), and
then symmetrized.

Additional properties

The Sub-Gaussian distribution is known to obey the sub-Exponential distribution
definition. It leads to the inclusion of a sub-Gaussian distribution family into a
sub-Exponential one. The following proposition generalizes this property for Sub-
Weibull distributions with different tail parameters.
Proposition 3.1.8 (Inclusion). Let θ1 and θ2 such that 0 < θ1 < θ2 be tail parameters for
some sub-Weibull distributed variables. Then the following inclusion holds

subW(θ1) ⊂ subW(θ2).
2Weibull distributions are commonly parameterized by a shape parameter κ. Here we use instead

θ = 1/κ for the convenience that the larger the tail parameter θ, the heavier the tails of the sub-Weibull
distribution.
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Proof. For X ∼ subW(θ1), there exists some constant K2 > 0 such that for all k > 0,
‖X‖k ≤ K2kθ1 . Since kθ1 ≤ kθ2 for all k ≥ 1, this yields ‖X‖k ≤ K2kθ2 , which by
definition implies X ∼ subW(θ2). �

Let a random variable X follow a sub-Weibull distribution with tail parameter θ.
Due to the property of inclusion from Proposition 3.1.8, the sub-Weibull definition
states an upper bound for the tail. To describe a tail lower bound of X through some
sub-Weibull distribution family, i.e. a distribution of X to have the tail heavier than
some sub-Weibull, we define an optimal tail parameter for that distribution through
an asymptotic equivalence in the moment property 2. of Theorem 3.1.3. Introduce
the definition of asymptotic equivalence between numeric sequences:
Definition 3.1.3 (Asymptotic equivalence). Two positive sequences (ak)k and (bk)k are
called asymptotic equivalent and denoted as ak � bk if there exist positive constants d and
D such that

d ≤ ak

bk
≤ D, for all k ∈N. (3.31)

Proposition 3.1.9 (Optimal sub-Weibull tail coefficient and moment condition). Let
θ > 0 and let X be a random variable satisfying the following asymptotic equivalence on
moments

‖X‖k � kθ .

Then X is sub-Weibull distributed with optimal tail parameter θ, in the sense that for any
θ′ < θ, X is not subW(θ′).

It is typically assumed that the random variable X has zero mean. If this is not the
case, we can always center X by subtracting the mean. We state in the following
lemma that variable centering does not change the optimal tail parameter of a sub-
Weibull distribution. The reader is referred to [5] for a proof.
Proposition 3.1.10 (Centering variables). Centering does not harm tail properties of sub-
Weibull distributions. In particular, if a random variable X is sub-Weibull with optimal tail
parameter θ, then the same holds for the centered variable (X−E[X]).
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[A4] M. Vladimirova, J. Verbeek, P. Mesejo, and J. Arbel. Understanding Priors
in Bayesian Neural Networks at the Unit Level. ICML, 2019

[P5] M. Vladimirova, J. Arbel, and P. Mesejo. Bayesian neural networks become
heavier-tailed with depth. NeurIPS Bayesian Deep Learning Workshop, 2018

[P6] M. Vladimirova, J. Arbel, and P. Mesejo. Bayesian neural network priors at
the level of units. 1st Symposium on Advances in Approximate Bayesian Inference,
2018

3.2 Understanding priors in Bayesian neural networks

3.2.1 Introduction

Neural networks (NNs), and their deep counterparts [139], have largely been used
in many research areas such as image analysis [198], signal processing [142], or rein-
forcement learning [301], just to name a few. The impressive performance provided
by such machine learning approaches has greatly motivated research that aims at a
better understanding the driving mechanisms behind their effectiveness. In partic-
ular, the study of the NNs distributional properties through Bayesian analysis has
recently gained much attention.

Bayesian approaches investigate models by assuming a prior distribution on their
parameters. Bayesian machine learning refers to extending standard machine learn-
ing approaches with posterior inference, a line of research pioneered by works on
Bayesian neural networks [241, 221]. There is a large variety of applications, e.g.
gene selection [206], and the range of models is now very broad, including e.g.
Bayesian generative adversarial networks [293]. See [271] for a review. The inter-
est of the Bayesian approach to NNs is at least twofold. First, it offers a princi-
pled approach for modeling uncertainty of the training procedure, which is a lim-
itation of standard NNs which only provide point estimates. A second main as-
set of Bayesian models is that they represent regularized versions of their classical
counterparts. For instance, maximum a posteriori (MAP) estimation of a Bayesian
regression model with double exponential (Laplace) prior is equivalent to Lasso re-
gression [321], while a Gaussian prior leads to ridge regression. When it comes to
NNs, the regularization mechanism is also well appreciated in the literature, since
they traditionally suffer from overparameterization, resulting in overfitting.

Central in the field of regularization techniques is the weight decay penalty [199],
which is equivalent to MAP estimation of a Bayesian neural network with inde-
pendent Gaussian priors on the weights. Dropout has recently been suggested as
a regularization method in which neurons are randomly turned off [306], and [124]
proved that a neural network with arbitrary depth and non-linearities, with dropout
applied before every weight layer, is mathematically equivalent to an approximation
to the probabilistic deep Gaussian process [91], leading to the consideration of such
NNs as Bayesian models.

This section is devoted to the investigation of hidden units prior distributions in
Bayesian neural networks under the assumption of independent Gaussian weights.
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FIGURE 3.4: Neural network architecture and characterization of the
`-layer units prior distribution as sub-Weibull distribution with tail

parameter `/2, see Definition 3.2.3.

We first describe a fully connected neural network architecture as illustrated in Fig-
ure 3.4. Given an input x ∈ RN , the `-th hidden layer unit activations are defined
as

g(`)(x) = W (`)h(`−1)(x), h(`)(x) = φ(g(`)(x)), (3.32)

where W (`) is a weight matrix including the bias vector. A nonlinear activation func-
tion φ : R → R is applied element-wise, which is called nonlinearity, g(`) = g(`)(x)
is a vector of pre-nonlinearities, and h(`) = h(`)(x) is a vector of post-nonlinearities.
When we refer to either pre- or post-nonlinearities, we will use the notation U(`).

We extend the theoretical understanding of feedforward fully connected NNs by
studying prior distributions at the units level, under the assumption of independent
and normally distributed weights. Our contributions are the following:

(i) As our main contribution, we prove in Theorem 3.2.1 that under some condi-
tions on the activation function φ, a Gaussian prior on the weights induces a
sub-Weibull distribution on the units (both pre- and post-nonlinearities) with
optimal tail parameter θ = `/2, see Figure 3.4. The condition on φ essentially
imposes that φ strikes at a linear rate to +∞ or −∞ for large absolute values of
the argument, as ReLU does. In the case of bounded support φ, like sigmoid
or tanh, the units are bounded, making them de facto sub-Gaussian3

(ii) We offer an interpretation of the main result from a more elaborate regulariza-
tion scheme at the level of the units in Section 3.2.3.

3.2.2 Bayesian neural networks have heavy-tailed deep units

The deep learning approach uses stochastic gradient descent and error back-propagation
in order to fit the network parameters (W(`))1≤`≤L, where ` iterates over all network
layers. In the Bayesian approach, the parameters are random variables described by
probability distributions.

3A trivial version of our main result holds, see Remark 3.2.1.
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Assumptions on neural network

We assume a prior distribution on the model parameters, that are the weights W .
In particular, let all weights (including biases) be independent and have zero-mean
normal distribution

W(`)
i,j ∼ N (0, σ2

w), (3.33)

for all 1 ≤ ` ≤ L, 1 ≤ i ≤ H`−1 and 1 ≤ j ≤ H`, with fixed variance σ2
w. Given

some input x, such prior distribution induces by forward propagation (3.32) a prior
distribution on the pre-nonlinearities and post-nonlinearities, whose tail properties
are the focus of this section. To this aim, the nonlinearity φ is required to span at least
half of the real line as follows. We introduce an extended version of the nonlinearity
assumption from [226]:
Definition 3.2.1 (Extended envelope property for nonlinearities). A nonlinearity φ :
R → R is said to obey the extended envelope property if there exist c1, c2 ≥ 0, d1, d2 > 0
such that the following inequalities hold

|φ(u)| ≥ c1 + d1|u| for all u ∈ R+ or u ∈ R−,

|φ(u)| ≤ c2 + d2|u| for all u ∈ R.
(3.34)

The interpretation of this property is that φ must shoot to infinity at least in one
direction (R+ or R−, at least linearly (first line of (3.34)), and also at most linearly
(second line of (3.34)). Of course, compactly supported nonlinearities such as sig-
moid and tanh do not satisfy the extended envelope property but the majority of
other nonlinearities do, including ReLU, ELU, PReLU, and SeLU.

We need to recall the definition of asymptotic equivalence between numeric se-
quences which we use to describe characterization properties of distributions:
Definition 3.2.2 (Asymptotic equivalence for sequences). Two sequences ak and bk are
called asymptotic equivalent and denoted as ak � bk if there exist constants d > 0 and
D > 0 such that

d ≤ ak

bk
≤ D, for all k ∈N. (3.35)

The extended envelope property of a function yields the following asymptotic equiv-
alence:
Lemma 3.2.1. Let a nonlinearity φ : R→ R obey the extended envelope property. Then for
any symmetric random variable X the following asymptotic equivalence holds

‖φ(X)‖k � ‖X‖k, for all k ≥ 1, (3.36)

where ‖X‖k =
(
E[|X|k]

)1/k is a k-th norm of X.

The proof can be found in the supplementary material.

Main theorem

This section postulates the rigorous result with a proof sketch. In the supplementary
material one can find proofs of intermediate lemmas.
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Firstly, we define the notion of sub-Weibull random variables [200, 328].
Definition 3.2.3 (Sub-Weibull random variable). A random variable X satisfying for all
x > 0 and for some θ > 0

P(|X| ≥ x) ≤ a exp
(
−x1/θ

)
, (3.37)

is called a sub-Weibull random variable with so-called tail parameter θ, which is denoted by
X ∼ subW(θ).

Sub-Weibull distributions are characterized by tails lighter than (or equally light as)
Weibull distributions; in the same way as sub-Gaussian or sub-exponential distribu-
tions correspond to distributions with tails lighter than Gaussian and exponential
distributions, respectively. Sub-Weibull distributions are parameterized by a posi-
tive tail index θ and are equivalent to sub-Gaussian for θ = 1/2 and sub-exponential
for θ = 1. To describe a tail lower bound through some sub-Weibull distribution
family, i.e. a distribution of X to have the tail heavier than some sub-Weibull, we
define the optimal tail parameter for that distribution as the positive parameter θ

characterized by:
‖X‖k � kθ . (3.38)

Then X is sub-Weibull distributed with optimal tail parameter θ, in the sense that for
any θ′ < θ, X is not sub-Weibull with tail parameter θ′ [see 328, for a proof].

The following theorem postulates the main results.
Theorem 3.2.1 (Sub-Weibull units). Consider a feed-forward Bayesian neural network
with Gaussian priors (3.33) and with nonlinearity φ satisfying the extended envelope con-
dition of Definition 3.2.1. Then conditional on the input x, the marginal prior distribution4

induced by forward propagation (3.32) on any unit (pre- or post-nonlinearity) of the `-th hid-
den layer is sub-Weibull with optimal tail parameter θ = `/2. That is for any 1 ≤ ` ≤ L,
and for any 1 ≤ m ≤ H`,

U(`)
m ∼ subW(`/2),

where a subW distribution is defined in Definition 3.2.3, and U(`)
m is either a pre-nonlinearity

g(`)m or a post-nonlinearity h(`)m .

Proof. The idea is to prove by induction with respect to hidden layer depth ` that
pre- and post-nonlinearities satisfy the asymptotic moment equivalence

‖g(`)‖k � k`/2 and ‖h(`)‖k � k`/2.

The statement of the theorem then follows by the moment characterization of opti-
mal sub-Weibull tail coefficient in Equation (3.38).

According to Lemma 1.1 from from the supplementary material, centering does
not harm tail properties, then, for simplicity, we consider zero-mean distributions
W(`)

i,j ∼ N (0, σ2
w).

Base step: Consider the distribution of the first hidden layer pre-nonlinearity g =

g(1). Since weights Wm follow normal distribution and x is a feature vector, then

4We define the marginal prior distribution of a unit as its distribution obtained after all other units
distributions are integrated out. Marginal is to be understood by opposition to joint, or conditional.
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each hidden unit Wᵀ
mx follow also normal distribution

g = Wᵀ
mx ∼ N (0, σ2

w‖x‖2).

Then, for normal zero-mean variable g, having variance σ2 = σ2
w‖x‖2, holds the

equality in sub-Gaussian property with variance proxy equals to normal distribution
variance and from Lemma 1.1 in the supplementary material:

‖g‖k �
√

k.

As activation function φ obeys the extended envelope property, nonlinearity mo-
ments are asymptotically equivalent to symmetric variable moments

‖φ(g)‖k � ‖g‖k �
√

k.

It implies that first hidden layer post-nonlinearities h have sub-Gaussian distribution
or sub-Weibull with tail parameter θ = 1/2 (Definition 3.2.3).

Inductive step: show that if the statement holds for `− 1, then it also holds for `.

Suppose the post-nonlinearity of (`− 1)-th hidden layer satisfies the moment con-
dition. Hidden units satisfy the non-negative covariance theorem (Theorem 3.2.2):

Cov
[(

h(`−1)
)s

,
(

h̃(`−1)
)t
]
≥ 0, for any s, t ∈N.

Let the number of hidden units in (` − 1)-th layer equals to H. Then according
to Lemma 2.2 from the supplementary material, under assumption of zero-mean
Gaussian weights, pre-nonlinearities of `-th hidden layer g(`) = ∑H

i=1 W(`−1)
m,i h(`−1)

i
also satisfy the moment condition, but with θ = `/2

‖g(`)‖k � k`/2.

From the extended envelope property (Definition 3.2.1) post-nonlinearities h(`) sat-
isfy the same moment condition as pre-nonlinearities g(`). This finishes the proof.

�

Remark 3.2.1. If the activation function φ is bounded, such as the sigmoid or tanh, then the
units are bounded. As a result, by Hoeffding’s Lemma, they have a sub-Gaussian distribu-
tion.
Remark 3.2.2. Normalization techniques, such as batch normalization [163] or layer nor-
malization [37], significantly reduce the training time in feed-forward neural networks. Nor-
malization operations can be decomposed into a set of elementary operations. According to
Proposition 1.4 from the supplementary material, elementary operations do not harm the dis-
tribution tail parameter. Therefore, normalization methods do not have an influence on tail
behavior.

Intermediate theorem

This section states with a proof sketch that the covariance between hidden units in
the neural network is non-negative.
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Theorem 3.2.2 (Non-negative covariance between hidden units). Consider the deep
neural network described in, and with the assumptions of, Theorem 3.2.1. The covariance
between hidden units of the same layer is non-negative. Moreover, for given `-th hidden
layer units h(`) and h̃(`), it holds

Cov
[(

h(`)
)s

,
(

h̃(`)
)t
]
≥ 0, where s, t ∈N.

For first hidden layer ` = 1 there is equality for all s and t.

Proof. A more detailed proof can be found in the supplementary material in Section
3.

Recall the covariance definition for random variables X and Y

Cov [X, Y] = E[XY]−E[X]E[Y]. (3.39)

The proof is based on induction with respect to the hidden layer number.

In the proof let us make notation simplifications: w`
m = W `

m and w`
mi = W`

mi for all
m ∈ H`. If the index m is omitted, then w` is some the vectors w`

m, w`
i is i-th element

of the vector w`
m.

1. First hidden layer. Consider the first hidden layer units h(1) and h̃(1). The covariance
between units is equal to zero and the units are Gaussian, since the weights w(1)

and w̃(1) are from N (0, σ2
w) and independent. Thus, the first hidden layer units are

independent and its covariance (3.39) is equal to 0. Moreover, since h(1) and h̃(1) are

independent, then
(

h(1)
)s

and
(

h̃(1)
)t

are also independent.

2. Next hidden layers. Assume that the (`− 1)-th hidden layer has H`−1 hidden units,
where ` > 1. Then the `-th hidden layer pre-nonlinearity is equal to

g(`) =
H`−1

∑
i=1

w(`)
i h(`−1)

i . (3.40)

We want to prove that the covariance (3.39) between the `-th hidden layer pre-
nonlinearities is non-negative. Let us show firstly the idea of the proof in the case
H`−1 = 1 and then briefly describe the proof for any finite H`−1 > 1, H`−1 ∈N.

2.1 One hidden unit. In the case H`−1 = 1, the covariance (3.39) sign is the same as of
the expression

E

[(
h(`−1)

)2(s1+t1)
]
−E

[(
h(`−1)

)2s1
]

E

[(
h(`−1)

)2t1
]

,

since the weighs are zero-mean distributed, its moments are equal to zero with
an odd order. According to Jensen’s inequality for convex function f , we have
E[ f (x1, x2)] ≥ f (E[x1], E[x2]). Since a function f (x1, x2) = x1x2 is convex for x1 ≥ 0

and x2 ≥ 0, then, taking x1 =
(

h(`−1)
)2s1

and x2 =
(

h(`−1)
)2t1

, we have the condi-
tion we need (3.41) being satisfied.
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2.1. H hidden units. Now let us consider the covariance between pre-nonlinearities (3.40)
for H`−1 = H > 1. Raise the sum in the brackets to the power

( H

∑
i=1

w(`)
i h(`−1)

i

)s
=

=
s

∑
sH=0

CsH
s

(
w(`)

H h(`−1)
H

)sH
(H−1

∑
i=1

w(`)
i h(`−1)

i

)s−sH
.

And the same way for the second bracket
(

∑H
i=1 w̃(`)

i h(`−1)
i

)t
. Notice that binomial

terms will be the same in the minuend and the subtrahend terms of (3.39). So the
covariance in our notations can be written in the form of

Cov

[(H`−1

∑
i=1

w(`)
i h(`−1)

i

)s
,
(H`−1

∑
i=1

w̃(`)
i h(`−1)

i

)t
]
=

= ∑ ∑ C (E [AB]−E [A]E [B]) ,

where C-terms contain binomial coefficients, A-terms — all possible products of hid-

den units in
(

g(`)
)s

and B-terms — all possible products of hidden units in
(

g̃(`)
)t

.
In order for the covariance to be non-negative, it is sufficient to show that the dif-
ference E [AB] − E [A]E [B] is non-negative. Since the weights are Gaussian and
independent, we have the following equation, omitting the superscript for simplic-
ity,

E [AB] = WW̃ ·E
[

H

∏
i=1

hsi+ti
i

]
,

E [A]E [B] = WW̃ ·E
[

H

∏
i=1

hsi
i

]
E

[
H

∏
i=1

hti
i

]
,

where WW̃ is the product of weights moments

WW̃ =
H

∏
i=1

E
[
wsi

i

]
E
[
w̃ti

i

]
.

For WW̃ not equal to zero, all the powers must be even. Now we need to prove

E

[
H/2

∏
i=1

h2(si+ti)
i

]
≥ E

[
H/2

∏
i=1

h2si
i

]
E

[
H/2

∏
i=1

h2ti
i

]
. (3.41)

According to Jensen’s inequality for convex functions, since a function f (x1, x2) =

x1x2 is convex for x1 ≥ 0 and x2 ≥ 0, then, taking x1 = ∏H/2
i=1 h2si

i and x2 = ∏H/2
i=1 h2ti

i ,
the condition from (3.41) is satisfied.

3. Post-nonlinearities.

Let show the proof for the ReLU nonlinearity.

The distribution of the `-th hidden layer pre-nonlinearity g(`) is the sum of symmet-
ric distributions, which are products of Gaussian variables w(`) and the non-negative
ReLU output, i.e. the (`− 1)-th hidden layer post-nonlinearity h(`−1). Therefore, g(`)
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follows a symmetric distribution and the following inequality

∫ +∞

−∞

∫ +∞

−∞
gg′ p(g, g′) dg dg′ ≥

≥
∫ +∞

−∞
g p(g) dg ·

∫ +∞

−∞
g′ p(g′) dg′

implies the same inequality for a positive part

∫ +∞

0

∫ +∞

0
gg′ p(g, g′) dg dg′ ≥

≥
∫ +∞

0
g p(g) dg ·

∫ +∞

0
g′ p(g′) dg′.

Notice that the equality above is the ReLU function output and for a symmetric
distribution we have ∫ +∞

0
x p(x) dx =

1
2

E [|X|] . (3.42)

That means if the non-negative covariance is proven for pre-nonlinearities, for post-
nonlinearities it is also non-negative. We omit the proof for the other nonlinearities
with the extended envelope property, since instead of precise equation (3.42), the
asymptotic equivalence for moments will be used for a positive part and for a nega-
tive part — precise expectation expressions which depend on certain nonlinearity.

�

Convolutional neural networks

Convolutional neural networks [123, 203] are a particular kind of neural network
for processing data that has a known grid-like topology, which allows to encode
certain properties into the architecture. These then make the forward function more
efficient to implement and vastly reduce the amount of parameters in the neural
network. Neurons in such networks are arranged in three dimensions: width, height
and depth. There are three main types of layers that can be concatenated in these
architectures: convolutional, pooling, and fully-connected layers (exactly as seen in
standard NNs). The convolutional layer computes dot products between a region in
the inputs and its weights. Therefore, each region can be considered as a particular
case of a fully-connected layer. Pooling layers control overfitting and computations
in deep architectures. They operate independently on every slice of the input and
reduces it spatially. The most commonly functions used in pooling layers are max
pooling and average pooling.
Proposition 3.2.1. The operations: 1. max pooling and 2. averaging do not modify the
optimal tail parameter θ of sub-Weibull family. Consequently, the result of Theorem 3.2.1
carries over to convolutional neural networks.

The proof can be found in the supplementary material.
Corollary 3.2.1. Consider a convolutional neural network containing convolutional, pool-
ing and fully-connected layers under assumptions from Section 3.2.2. Then a unit of `-th
hidden layer has sub-Weibull distribution with optimal tail parameter θ = `/2, where ` is
the number of convolutional and fully-connected layers.
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Proof. Proposition 3.2.1 implies that the pooling layer keeps the tail parameter. From
discussion at the beginning of the section, the result of Theorem 3.2.1 is also applied
to convolutional neural networks where the depth is considered as the number of
convolutional and fully-connected layers. �

3.2.3 Regularization scheme on the units

Our main theoretical contribution, Theorem 3.2.1, characterizes the marginal prior
distribution of the network units as follows: when the depth increases, the distribu-
tion becomes more heavy-tailed. In this section, we provide an interpretation of the
result in terms of regularization at the level of the units. To this end, we first briefly
recall shrinkage and penalized estimation methods.

Short digest on penalized estimation

The notion of penalized estimation is probably best illustrated on the simple linear
regression model, where the aim is to improve prediction accuracy by shrinking,
or even putting exactly to zero, some coefficients in the regression. Under these
circumstances, inference is also more interpretable since, by reducing the number of
coefficients effectively used in the model, it is possible to grasp its salient features.
Shrinking is performed by imposing a penalty on the size of the coefficients, which
is equivalent to allowing for a given budget on their size. Denote the regression
parameter by β ∈ Rp, the regression sum-of-squares by R(β), and the penalty by
λL(β), where L is some norm on Rp and λ some positive tuning parameter. Then,
the two formulations of the regularized problem

min
β∈Rp

R(β) + λL(β), and

min
β∈Rp

R(β) subject to L(β) ≤ t,

are equivalent, with some one-to-one correspondence between λ and t, and are re-
spectively termed the penalty and the constraint formulation. This latter formulation
provides an interesting geometrical intuition of the shrinkage mechanism: the con-
straint L(β) ≤ t reads as imposing a total budget of t for the parameter size in terms
of the norm L. If the ordinary least squares estimator β̂ols lives in the L-ball with
surface L(β) = t, then there is no effect on the estimation. In contrast, when β̂ols is
outside the ball, then the intersection of the lowest level curve of the sum-of-squares
R(β) with the L-ball defines the penalized estimator.

The choice of the L norm has considerable effects on the problem, as can be sensed
geometrically. Consider for instance Lq norms, with q ≥ 0. For any q > 1, the
associated Lq norm is differentiable and contours have a round shape without sharp
angles. In that case, the penalty effect is to shrink the β coefficients towards 0. The
most well-known estimator falling in this class is the ridge regression obtained with
q = 2, see Figure 3.5 top-left panel. In contrast, for any q ∈ (0, 1], the Lq norm has
some non differentiable points along the axis coordinates, see Figure 3.5 top-right
and bottom panels. Such critical points are more likely to be hit by the level curves
of the sum-of-squares R(β), thus setting exactly to zero some of the parameters. A
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very successful approach in this class is the Lasso obtained with q = 1. Note that the
problem is computationally much easier in the convex situation which occurs only
for q ≥ 1.
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FIGURE 3.5: L2/`-norm unit balls (in dimension 2) for layers ` =
1, 2, 3 and 10.

MAP on weights W is weight decay

These penalized methods have a simple Bayesian counterpart in the form of the
maximum a posteriori (MAP) estimator. In this context, the objective function R
is the negative log-likelihood, while the penalty L is the negative log-prior. The
objective function takes on the form of sum-of-squared errors for regression under
Gaussian errors, and of cross-entropy for classification.

For neural networks, it is well-known that an independent Gaussian prior on the
weights

π(W) ∝
L

∏
`=1

∏
i,j

e−
1
2 (W

(`)
i,j )2

, (3.43)

is equivalent to the weight decay penalty, also known as ridge regression:

L(W) =
L

∑
`=1

∑
i,j
(W(`)

i,j )
2 = ‖W‖2

2, (3.44)

where products in (3.43) and sums in (3.44) involving i and j above are over 1 ≤ i ≤
H`−1 and 1 ≤ j ≤ H`, H0 and HL representing respectively the input and output
dimensions.

MAP on units U

Now moving the point of view from weights to units leads to a radically different
shrinkage effect. Let U(`)

m denote the m-th unit of the `-th layer (either pre- or post-
nonlinearity). We prove in Theorem 3.2.1 that conditional on the input x, a Gaussian
prior on the weights translates into some prior on the units U(`)

m that is marginally
sub-Weibull with optimal tail index θ = `/2. This means that the tails of U(`)

m satisfy

P(|U(`)
m | ≥ u) ≤ exp

(
−u2/`/K1

)
for all u ≥ 0, (3.45)
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for some positive constant K1. The exponent of u in the exponential term above is op-
timal in the sense that Equation (3.45) is not satisfied with some parameter θ′ smaller
than `/2. Thus, the marginal density of U(`)

m on R is approximately proportional to

π
(`)
m (u) ≈ e−|u|

2/`/K1 . (3.46)

The joint prior distribution for all the units U = (U(`)
m )1≤`≤L,1≤m≤H`

can be expressed
from all the marginal distributions by Sklar’s representation theorem [303] as

π(U) =
L

∏
`=1

H`

∏
m=1

π
(`)
m (U(`)

m )C(F(U)), (3.47)

where C represents the copula of U (which characterizes all the dependence between
the units) while F denotes its cumulative distribution function. The penalty incurred
by such a prior distribution is obtained as the negative log-prior,

L(U) = −
L

∑
`=1

H`

∑
m=1

log π
(`)
m (U(`)

m )− log C(F(U)),

(a)≈
L

∑
`=1

H`

∑
m=1
|U(`)

m |2/` − log C(F(U)),

≈ ‖U(1)‖2
2 + ‖U(2)

1 ‖1 + · · ·+ ‖U(L)‖2/L
2/L

− log C(F(U)), (3.48)

where (a) comes from (3.46). The first L terms in (3.48) indicate that some shrinkage
operates at every layer of the network, with a penalty term that approximately takes
the form of the L2/` norm at layer `. Thus, the deeper the layer, the stronger the
regularization induced at the level of the units, as summarized in Table 3.2.

Layer Penalty on W Approximate penalty on U

1 ‖W (1)‖2
2, L2 ‖U(1)‖2

2 L2 (weight decay)

2 ‖W (2)‖2
2, L2 ‖U(2)‖ L1 (Lasso)

` ‖W (`)‖2
2, L2 ‖U(`)‖2/`

2/` L2/`

TABLE 3.2: Comparison of Bayesian neural network penalties on
weights W and units U.

3.2.4 Experiments

We illustrate the result of Theorem 3.2.1 on a 100 layers MLP. The hidden layers of
neural network have H1 = 1000, H2 = 990, H3 = 980, . . . , H` = 1000− 10(`− 1),
. . . , H100 = 10 hidden units, respectively. The input x is a vector of features from
R104

. Figure 3.6 represents the tails of first three, 10th and 100th hidden layers pre-
nonlinearity marginal distributions in logarithmic scale. Units of one layer have
the same sub-Weibull distribution since they share the same input and prior on the
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FIGURE 3.6: Illustration of layers ` = 1, 2, 3, 10 and 100 hidden
units (pre-nonlinearities) marginal prior distributions. They corre-
spond respectively to subW(1/2), subW(1), subW(3/2), subW(5) and

subW(50).

corresponding weights. The curves are obtained as histograms from a sample of size
105 from the prior on the pre-nonlinearities, which is itself obtained by sampling 105

sets of weights W from the Gaussian prior (3.33) and forward propagation via (3.32).
The input vector x is sampled with independent features from a standard normal
distribution once for all at the start. The nonlinearity φ is the ReLU function. Being
a linear combination involving symmetric weights W , pre-nonlinearities g also have
a symmetric distribution, thus we visualize only their distribution on R+.

Figure 3.6 corroborates our main result. On the one hand, the prior distribution of
the first hidden units is Gaussian (green curve), which corresponds to a subW(1/2)
distribution. On the other hand, deeper layers are characterized by heavier-tailed
distributions. The deepest considered layer (100th, violet curve) has an extremely
flat distribution, which corresponds to a subW(50) distribution.

3.2.5 Discussion

Despite the ubiquity of deep learning throughout science, medicine and engineering,
the underlying theory has not kept pace with applications for deep learning. In this
section, we have extended the state of knowledge on Bayesian neural networks by
providing a characterization of the marginal prior distribution of the units. [226]
and [204] proved that unit distributions have a Gaussian process limit in the wide
regime, i.e. when the number of hidden units tends to infinity. We showed that
they are heavier-tailed as depth increases, and discussed this result in terms of a
regularizing mechanism at the level of the units. We anticipate that the Gaussian
process limit of sub-Weibull distributions in a given layer for increasing width could
be also recovered through a modification of the Central Limit Theorem for heavy-
tailed distributions, see [200].

Since initialization and learning dynamics are key in modern machine learning in
order to properly tune deep learning algorithms, a good implementation practice
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requires a proper understanding of the prior distribution at play and of the regular-
ization it incurs.

We hope that our results will open avenues for further research. Firstly, Theo-
rem 3.2.1 regards the marginal prior distribution of the units, while a full characteri-
zation of the joint distribution of all units U remains an open question. More specif-
ically, a precise description of the copula defined in Equation (3.47) would provide
valuable information about the dependence between the units, and also about the
precise geometrical structure of the balls induced by that penalty. Secondly, the in-
terpretation of our result (Section 3.2.3) is concerned with the maximum a posteriori
of the units, which is a point estimator. One of the benefits of the Bayesian approach
to neural networks lies in its ability to provide a principled approach to uncertainty
quantification, so that an interpretation of our result in terms of the full posterior
distribution would be very appealing. Lastly, the practical potentialities of our re-
sults are many: to better comprehend the regularizing mechanisms in deep neural
networks will contribute to design and understand strategies to avoid overfitting
and improve generalization.
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[A3] J. Arbel, M. Crispino, and S. Girard. Dependence properties and Bayesian
inference for asymmetric multivariate copulas. Journal of Multivariate Analysis,
174, 2019

3.3 Dependence properties of asymmetric copulas

3.3.1 Introduction

Let X = (X1, . . . , Xd) be a continuous random vector with d-variate cumulative dis-
tribution function (cdf) F, and let Fj, j ∈ {1, . . . , d}, be the marginal cdf of Xj. Ac-
cording to Sklar’s theorem [303], there exists a unique d-variate function C : [0, 1]d →
[0, 1] such that

F(x) = C(F1(x1), . . . , Fd(xd)), x = (x1, . . . , xd) ∈ Rd.

The function C is referred to as the copula associated with F. It is the d-dimensional
cdf of the random vector (F1(X1), . . . , Fd(Xd)) with uniform margins on [0, 1].

A copula is said to be symmetric (or exchangeable) if for any u ∈ [0, 1]d, and for any
permutation (σ1, . . . , σd) of the first d integers {1, . . . , d}, it holds that C(u1, . . . , ud) =

C(uσ1 , . . . , uσd). The assumption of exchangeability may be unrealistic in many do-
mains, including quantitative risk management [99], reliability modeling [339], and
oceanography [344]. The urge for asymmetric copula models in order to better ac-
count for complex dependence structures has recently stimulated research in several
directions, including [288, 6, 103, 339, 104]. We focus here on a simple yet general
method for building asymmetric copulas introduced by [207, Theorem 2.1, Property
(i)]:
Theorem 3.3.1. [Liebscher, 207] Let C1, . . . , CK : [0, 1]d → [0, 1] be copulas, g(k)j :

[0, 1] → [0, 1] be increasing functions such that g(k)j (0) = 0 and g(k)j (1) = 1 for all
k ∈ {1, . . . , K} and j ∈ {1, . . . , d}. Then,

u ∈ [0, 1]d 7→ C̃(u) =
K

∏
k=1

Ck(g(k)1 (u1), . . . , g(k)d (ud)) (3.49)

is also a copula under the constraint that

K

∏
k=1

g(k)j (u) = u for all u ∈ [0, 1], j ∈ {1, . . . , d}. (3.50)

Theorem 3.3.1 provides a generic way to construct an asymmetric copula C̃, hence-
forth referred to as Liebscher copula, starting from a sequence of symmetric copu-
las C1, . . . , CK. This mechanism was first introduced by [187] in the particular case
where K = 2 and with the functions g(k)j assumed to be power functions, for each
j ∈ {1, . . . , d} and k ∈ {1, . . . , K}, that satisfy condition (3.50). The class of Liebscher
copulas covers a broad range of dependencies and benefits from tractable bounds
on dependence coefficients of the bivariate marginals [207, 208, 227]. However,
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there are two main reasons why the practical implementation of this approach is
not straightforward: (i) it is not immediate to construct functions that satisfy con-
dition (3.50); and (ii) the product form complicates the density computation even
numerically, which makes it difficult to perform likelihood inference on the model
parameters [227].

The aim of this section is to deepen the understanding of Liebscher’s construction
in order to overcome drawbacks (i) and (ii). Our contributions in this regard are
three-fold. First, we provide theoretical properties of the asymmetric copulas in
(3.49), including exact expressions of tail dependence indices, thus complementing
the partial results of [207, 208]. Second, we give an iterative representation of (3.49)
which has the advantage to relax assumption (3.50) by automatically satisfying it.
Third, we develop an inferential procedure and a sampling scheme that rely on the
newly developed iterative representation.

The Bayesian paradigm proves very useful for inference in our context as it over-
comes the problematic computation of the maximum likelihood estimate, which re-
quires the maximization of a very complicated likelihood function (see recent con-
tributions [326, 253]). General Bayesian sampling solutions in the form of Markov
chain Monte Carlo are not particularly well-suited neither since they require the
evaluation of that complex likelihood. Instead, we resort to Approximate Bayesian
computation (ABC), a technique dedicated to models with complicated, or intractable,
likelihoods (see [224, 285, 184] for recent reviews). ABC requires the ability to sam-
ple from the model, which is straightforward with our iterative representation of
Liebscher copula. The adequacy of ABC for inference in copula models was lever-
aged by [143], although in the different context of empirical likelihood estimation. A
reversed approach to ours is followed by [205], who make use of copulas in order to
adapt ABC to high-dimensional settings.

Since its introduction, the construction by Liebscher has received much attention in
the copula literature (e.g., [295, 105, 201]). However, most studies have been limited
to simple cases where the product in (3.49) has only two terms. We hope that this
paper will contribute to the further spreading of Liebscher’s copulas, because it al-
lows to exploit their full potential by: (i) better understanding their properties; (ii)
providing a novel construction, which facilitates their use with an arbitrary number
K of terms in (3.49); and (iii) giving a strategy to make inference on them.

On top of what has been presented above, an additional contribution of this paper is
to derive specific results for the subclass of Liebscher’s copula when two or more
comonotonic copulas are combined, which we call comonotonic-based Liebscher
copula. This subclass is characterized by an arbitrary number of singular compo-
nents. To the best of our knowledge, this is the first paper to investigate this copula’s
properties and to provide an inference procedure.

The section is organized as follows. Section 3.3.2 provides some theoretical results
concerning the properties of asymmetric Liebscher copulas, also presenting the novel
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iterative construction. In Section 3.3.3, we introduce and analyze the comonotonic-
based Liebscher copula. Section 3.3.4 is dedicated to the inference strategy. It demon-
strates our approach on simulated data and provides a comparison with a likelihood-
based approach for a class of Liebscher copulas where maximum likelihood estima-
tion is feasible. We conclude with a short discussion in Section 3.3.5. The reader is
referred to [3] for proofs.

3.3.2 Properties of Liebscher copula

In this section, some new properties of the copula C̃ are established, complement-
ing the ones in [207, 208]. Sections 3.3.2 and 3.3.2 are dedicated to (tail) dependence
properties. For the sake of simplicity, we focus on the case d = 2 of bivariate copulas.
Some stability properties of Liebscher’s construction are highlighted in Section 3.3.2.
Finally, an alternative construction to Liebscher copula (3.49) is introduced in Sec-
tion 3.3.2.

Tail dependence

The lower and upper tail dependence functions, denoted by ΛL(C; ·) and ΛU(C, ·) re-
spectively, are defined for all (x, y) ∈ R2

+ by

ΛL(C; x, y) = lim
ε→0

C(εx, εy)
ε

, and ΛU(C; x, y) = x + y + lim
ε→0

C(1− εx, 1− εy)− 1
ε

,

where C is a given bivariate copula, see for instance [178]. Note that these limits
exist under a bivariate regular variation assumption, see [283], Section 5.4.2 for de-
tails. When they exist, these functions are homogeneous ([178], Proposition 2.2), i.e.,
for all t ∈ (0, 1] and (x, y) ∈ R2

+, Λ(C; tx, ty) = tΛ(C; x, y), where Λ is equal to ΛL

or ΛU . The lower and upper tail dependence coefficients, denoted by λL(C) and λU(C)
respectively, are defined as the conditional probabilities that a random vector associ-
ated with a copula C belongs to lower or upper tail orthants given that a univariate
margin takes extreme values:

λL(C) = lim
u→0

C(u, u)
u

, λU(C) = 2− lim
u→1

C(u, u)− 1
u− 1

.

These coefficients can also be interpreted in terms of the tail dependence functions:
λL(C) = ΛL(C; 1, 1) and λU(C) = ΛU(C; 1, 1). Conversely, in view of the ho-
mogeneity property, the behavior of the tail dependence functions on the diago-
nal is determined by the tail dependence coefficients: ΛL(C; t, t) = λL(C)t and
ΛU(C; t, t) = λU(C)t for all t ∈ (0, 1]. The tail dependence functions for Liebscher
copula are provided by Proposition 3.3.1 which, in view of the previous remarks,
allows us to derive the tail dependence coefficients in Corollary 3.3.1. Some of these
results rely on the notion of (univariate) regular variation. Recall that a positive
function g is said to be regularly varying with index γ if g(xt)/g(x)→ tγ as x → ∞
for all t > 0, see [57].
Proposition 3.3.1. Let (x, y) ∈ R2

+ and consider C̃ the bivariate copula defined by (3.49)
with d = 2.
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(i) Lower tail, symmetric case. Assume that g(k)1 = g(k)2 is a regularly varying function
with index γ(k) > 0 for all k ∈ {1, . . . , K}. Then,

ΛL(C̃; x, y) =
K

∏
k=1

ΛL(Ck; xγ(k)
, yγ(k)

)

and, necessarily, ∑K
k=1 γ(k) = 1.

(ii) Lower tail, asymmetric case. Suppose there exists k0 ∈ {1, . . . , K} such that g(k0)
1 (ε)/g(k0)

2 (ε)→
0 as ε→ 0. Then,

ΛL(C̃; x, y) = 0.

(iii) Upper tail, general case. Assume that, for all k ∈ {1, . . . , K}, g(k)1 and g(k)2 are differ-
entiable at 1, with derivative at 1 denoted by d(k)

1 and d(k)
2 respectively. Then

ΛU(C̃; x, y) =
K

∑
k=1

ΛU(Ck; d(k)
1 x, d(k)

2 y)

and, necessarily, ∑K
k=1 d(k)

j = 1, for j ∈ {1, 2}.

(iv) Upper tail, particular case. If, in addition to (iii), d(k)1 = d(k)2 =: d(k) for all k ∈
{1, . . . , K}, then

ΛU(C̃; x, y) =
K

∑
k=1

d(k)ΛU(Ck; x, y)

and, necessarily, ∑K
k=1 d(k) = 1.

Let us note that the functions g(k)j considered by [207] and indexed by (I-III) in his
Section 2.1 all satisfy the assumptions of Proposition 3.3.1. The following result com-
plements [207, Proposition 2.3] and [208, Proposition 0.1] which provide bounds on
the tail dependence coefficients. Here instead, explicit calculations are provided.
Corollary 3.3.1. Let C̃ be the bivariate copula defined by (3.49) with d = 2.

(i) Lower tail, symmetric case. Under the assumptions of Proposition 3.3.1(i), λL(C̃) =

∏K
k=1 λL(Ck).

(ii) Lower tail, asymmetric case. Under the assumptions of Proposition 3.3.1(ii),
λL(C̃) = 0.

(iii) Upper tail, general case. Under the assumptions of Proposition 3.3.1(iii), λU(C̃) =
∑K

k=1 ΛU(Ck; d(k)1 , d(k)2 ) and, necessarily, ∑K
k=1 d(k)j = 1, for j ∈ {1, 2}.

(iv) Upper tail, particular case. Under the assumptions of Proposition 3.3.1(iv),
λU(C̃) = ∑K

k=1 d(k)λU(Ck) and, necessarily, ∑K
k=1 d(k) = 1.

It appears that the lower and upper tail dependence coefficients have very different
behaviors. In the case (i) of a symmetric copulas, the lower tail dependence coeffi-
cient λL is the product of the lower tail dependence coefficients associated with the
components. Besides, λL = 0 as soon as a component k0 has functions g(k0)

1 and g(k0)
2

with different behaviors at the origin (case (ii)). At the opposite, the upper tail de-
pendence coefficient does not vanish even though a component k0 has functions g(k0)

1
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and g(k0)
2 with different behaviors at 1 (case (iii)). In the particular situation where

all components k ∈ {1, . . . , K} have functions g(k)1 and g(k)2 with the same behavior
at 1 (case (iv)), λU is a convex combination of the upper tail dependence coefficients
associated with the components.

Dependence

Let (X, Y) be a pair of random variables with continuous margins and associated
copula C.

• X and Y are said to be totally positive of order 2, TP2 (see [177]), if for all x1 <

y1, x2 < y2,

Pr(X ≤ x1, Y ≤ x2)Pr(X ≤ y1, Y ≤ y2) ≥ Pr(X ≤ x1, Y ≤ y2)Pr(X ≤ y1, Y ≤ x2).

Since this can be equivalently written in terms of C, we will write in short that
C is TP2.

• X and Y are said to be positively quadrant dependent (PQD) if

Pr(X ≤ x, Y ≤ y) ≥ Pr(X ≤ x)Pr(Y ≤ y) for all (x, y).

Since this property can be characterized by the copula property C ≥ Π where
Π denotes the independence copula, see for instance [244, Paragraph 5.2.1], we
shall write for short that C is PQD. The negatively quadrant dependence (NQD)
property is similarly defined by C ≤ Π.

• X and Y are said to be left-tail decreasing (LTD) if

Pr(X ≤ x|Y ≤ y) is a decreasing function of y for all x,

Pr(Y ≤ y|X ≤ x) is a decreasing function of x for all y.
(3.51)

From [244, Theorem 5.2.5], this property can be characterized by the copula
properties

C(u, v)/u is decreasing in u for all v ∈ [0, 1],

C(u, v)/v is decreasing in v for all u ∈ [0, 1],
(3.52)

and we shall thus write that C is LTD. The left-tail increasing property (LTI)
is similarly defined by reversing the directions of the monotonicity in (3.51)
and (3.52).

• X and Y are said to be stochastically increasing (SI) if

Pr(X > x|Y = y) is an increasing function of y for all x,

Pr(Y > y|X = x) is an increasing function of x for all y.
(3.53)

From [244, Corollary 5.2.11], this property can be characterized by the copula
properties

C(u, v) is a concave function of u for all v ∈ [0, 1],

C(u, v) is a concave function of v for all u ∈ [0, 1],
(3.54)
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and we shall thus write that C is SI. The stochastically decreasing (SD) property is
similarly defined by replacing increasing by decreasing in (3.53) and concave
by convex in (3.54).

In the next proposition, we show that under mild conditions, the above dependence
properties are preserved under Liebscher’s construction, thus complementing LTD
and TP2 properties established in [207, Proposition 2.2].
Proposition 3.3.2. If copulas C1, . . . , CK all satisfy any of the properties defined above, TP2,
PQD, NQD, LTD, LTI, SI or SD, then the same is satisfied for the Liebscher copula C̃ defined
in (3.49)—for SI (respectively SD), the g(k)j functions in Theorem 3.3.1 are additionally
required to be concave functions (respectively convex functions) and the copulas Ck to be
twice differentiable, k ∈ {1, . . . , K}, j ∈ {1, . . . , d}.

Stability properties

Let us focus on the situation where the functions g(k)j of Theorem 3.3.1 are power
functions: for all j ∈ {1, . . . , d}, k ∈ {1, . . . , K} and t ∈ [0, 1], let

g(k)j (t) = tp(k)j , p(k)j ∈ (0, 1),
K

∑
`=1

p(`)j = 1. (3.55)

Recall that a copula C# is said to be max-stable if for all integer n ≥ 1 and (u1, . . . , ud) ∈
[0, 1]d:

Cn
# (u

1/n
1 , . . . , u1/n

d ) = C#(u1, . . . , ud).

From [127, Proposition 3], it is clear that associating max-stable copulas Ck with
power functions (3.55) in Liebscher construction (3.49) still yields a max-stable cop-
ula. The goal of this paragraph is to investigate to what extent this result can be
generalized. Our first result establishes the stability of a family of Liebscher copulas
built from homogeneous functions. More specifically, each copula Ck(·) in (3.49) is
rewritten as C(· | θk) where

C(· | θk) :=
m

∏
i=1

ϕθik
i (·), (3.56)

with θk = (θ1k, . . . , θmk)
T and ϕi : [0, 1]d → [0, 1], i ∈ {1, . . . , m}.

Proposition 3.3.3. For all j ∈ {1, . . . , d} and t ∈ [0, 1], let g(k)j be given by (3.55) where

p(k)j = p(k) for all k ∈ {1, . . . , K}. Let m > 0 and for all i ∈ {1, . . . , m} introduce ϕi :
[0, 1]d → [0, 1] such that ln ◦ ϕi ◦ exp is homogeneous of degree λi. For all k ∈ {1, . . . , K},
assume that C(· | θk) in (3.56) is a copula for some θk ∈ Rm. Then, copula (3.49) is given
for all K ≥ 1 by

C̃(K)(·) = C(· | θ̃K),

with θ̃K = (θ̃1K, . . . , θ̃mK)
T, and for all i ∈ {1, . . . , m},

θ̃iK =
K

∑
k=1

θik(p(k))λi .
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Example 3.3.1 (Gumbel-Barnett copula Ck). Let Ck be the Gumbel-Barnett copula [244,
Table 4.1]. It can be written as

Ck(u) = C(u | θk) =
d

∏
j=1

uj exp

(
θk

d

∏
j=1

ln(1/uj)

)
= ϕθ1k

1 (u)ϕθ2k
2 (u)

with θ1k = 1, θ2k = θk ≥ 1,

ϕ1(u) =
d

∏
j=1

uj and ϕ2(u) = exp

(
d

∏
j=1

ln(1/uj)

)
.

It thus fulfills the assumptions of Proposition 3.3.3 with m = 2, λ1 = 1 and λ2 = d.
Example 3.3.2 (Extreme-value copula Ck). Extreme-value copulas exactly correspond to
max-stable copulas and are characterized by their tail-dependence function L as:

C#(u1, . . . , ud) = exp(−L(ln(1/u1), . . . , ln(1/ud))),

where L : Rd
+ → R+ is homogeneous of degree 1, see for instance [150]. It is thus clear

that every max-stable copula Ck fulfills the assumptions of Proposition 3.3.3 with m = 1,
θ1k = 1, λ1 = 1 and ln ◦ϕ1 ◦ exp(t) = −L(−t), t ∈ Rd

−. Moreover,

θ̃1K =
K

∑
k=1

p(k) = 1

and thus C̃(K) = C for all K ≥ 1.

It appears that max-stable copulas can be considered as fixed-points of Liebscher’s
construction (3.49). The next result shows that, under mild assumptions, they are
the only copulas verifying this property.
Proposition 3.3.4. For all j ∈ {1, . . . , d}, let g(k)j be given by (3.55) where p(k)j = p(k)

for all k ∈ {1, . . . , K}. Assume Ck = C for all k ∈ {1, . . . , K} and let C̃(K) be the copula
defined by (3.49). Then, C̃(K) = C for all K ≥ 1 and for all sequences p(1), . . . , p(K) ∈ (0, 1)
such that ∑K

k=1 p(k) = 1 if and only if C is max-stable.

To complete the links with max-stable copulas, let us consider the situation where
Ck = C and p(k)j = 1/K for all j ∈ {1, . . . , d} and k ∈ {1, . . . , K}. Liebscher’s con-
struction thus yields

C̃(K)(u) := C̃(u) = CK(u1/K
1 , . . . , u1/K

d ),

which is the normalized cdf associated with the maximum of K independent uni-
form random vectors distributed according to the cdf C. Therefore, as K → ∞, C̃(K)

converges to a max-stable copula under standard extreme-value assumptions on C.

An iterative construction

Let F be the class of increasing functions f : [0, 1] → [0, 1] such that f (0) = 0,
f (1) = 1 and Id/ f is increasing, where Id denotes the identity function. For all k ≥ 1
let Ck be a d-variate copula and f (k)j ∈ F for all j ∈ {1, . . . , d}, with the assumption
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f (1)j (t) = 1 for all t ∈ [0, 1]. We propose the following iterative construction of
copulas. For all u ∈ [0, 1]d, consider the sequence defined by

C̃(1)(u) = C1(u), (3.57)

C̃(k)(u) = Ck

(
u1

f (k)1 (u1)
, . . . ,

ud

f (k)d (ud)

)
C̃(k−1)

(
f (k)1 (u1), . . . , f (k)d (ud)

)
, k ≥ 2.

(3.58)

We prove in [14] that C̃(k) is a d-variate copula, for all k ≥ 1.

Let K ≥ 1. For all functions f (1), . . . , f (K) : [0, 1] → [0, 1] and i, j ∈ {1, . . . , K}, let us
introduce the notation

j⊙
k=i

f (k) := f (i) ◦ . . . ◦ f (j) if i ≤ j and
j⊙

k=i

f (k) := Id otherwise. (3.59)

The next result shows that there is a one-to-one correspondence between copulas
built by the iterative procedure (3.57), (3.58) and Liebscher copulas, reported in The-
orem 3.3.1.
Proposition 3.3.5. The copula C̃(K), K ≥ 1 defined iteratively by (3.57), (3.58) is a Lieb-
scher copula. It can be rewritten as

C̃(K)(u) =
K

∏
k=1

Ck

(
g(K−k+1,K)

1 (u1), . . . , g(K−k+1,K)
d (ud)

)
(3.60)

for all u ∈ [0, 1]d where, for all j ∈ {1, . . . , d} and K ≥ 1,

g(1,K)
j = Id/ f (K)j , (3.61)

g(k,K)
j =

K⊙
i=K−k+2

f (i)j

/
K⊙

i=K−k+1

f (i)j , k ∈ {2, . . . , K}. (3.62)

Conversely, each Liebscher copula (defined in Theorem 3.3.1) can be built iteratively from (3.57), (3.58).

Let us note that the iterative construction (3.57), (3.58) thus provides a way to build
functions (3.61), (3.62) that automatically fulfill Liebscher’s constraints (3.50) of The-
orem 3.3.1. As a consequence, the construction (3.57), (3.58) also gives an itera-
tive way to sample from a Liebscher copula (3.49), described in detailed in Algo-
rithm 3.3.1 (see the proof of Lemma ?? in ?? for a theoretical justification).
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Algorithm 3.3.1 Iterative sampling scheme for Liebscher cop-
ula (3.49)

Input
[

f (k)j

]
k,j

, (Ck)k . functions in F appearing in (3.58), and copulas

(X(1)
1 , . . . , X(1)

d ) ∼ C1
For k = 2, . . . , K
(Y1, . . . , Yd) ∼ Ck independently of (X(k−1)

1 , . . . , X(k−1)
d )

For j ∈ {1, . . . , d}
X(k)

j = max
((

f (k)j

)−1
(X(k−1)

j ),
(

Id/ f (k)j

)−1
(Yj)

)
Output X = (X(K)

1 , . . . , X(K)
d ) ∼ C̃

Example 3.3.3 (Power functions f (k)j ). Let functions f (k)j be power functions in the form
of

f (k)j (t) = t1−a(k)j , a(1)j = 1, a(k)j ∈ (0, 1), for all k ≥ 2, (3.63)

for all j ∈ {1, . . . , d} and t ∈ [0, 1]. From Proposition 3.3.5, g(k)j (t) = g(k,K)
j (t) = tp(k,K)

j

with 
p(1,K)

j = a(K)j ,

p(k,K)
j = a(K−k+1)

j

K

∏
i=K−k+2

(1− a(i)j ), if 2 ≤ k ≤ K,
(3.64)

for all K ≥ 1 and j ∈ {1, . . . , d}. Note that, by construction,

K

∑
k=1

p(k,K)
j = 1,

for all j ∈ {1, . . . , d} and thus
(

p(1,K)
j , . . . , p(K,K)

j

)
can be interpreted as a discrete prob-

ability distribution on {1, . . . , K}. Besides, let ã(k,K)
j := a(K+1−k)

j for all k ∈ {1, . . . , K}.
Equations (3.64) can be rewritten as

p(1,K)
j = ã(1,K)

j ,

p(k,K)
j = ã(k,K)

j

k−1

∏
i=1

(1− ã(i,K)j ), if 2 ≤ k ≤ K,

which corresponds to the so-called stick-breaking construction [300].

3.3.3 The comonotonic-based Liebscher copula

We analyze here in more details the Liebscher copula obtained by combining K ≥ 2
comonotonic (also called Fréchet) copulas defined by C(u, v) = min(u, v). We here
focus on the bivariate case d = 2, although some of the derivations carry over to the
general d-dimensional case. We consider the specific case of Example 3.3.3, where

the functions in Liebscher’s construction are power functions, g(k)j (t) = tp(k,K)
j with

p(k,K)
j ∈ [0, 1], j ∈ {1, 2} as in (3.64). Assuming that K is fixed and limiting ourselves
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to d = 2, we denote for notation simplicity pk := p(k,K)
1 and qk := p(k,K)

2 for k ∈
{1, . . . , K}. Recall that, in view of (3.50), ∑K

k=1 pk = ∑K
k=1 qk = 1. Under the above

assumptions, the comonotonic-based Liebscher copula denoted by C̃CL has the form

C̃CL(u, v) =
K

∏
k=1

min(upk , vqk), (u, v) ∈ [0, 1]2. (3.65)

In the particular case where K = 2, it is referred to as the BC2 copula by [222] and it is
proved that any bivariate extreme-value copula with arbitrary discrete dependence
measure can be represented as the geometric mean of BC2 copulas, which corre-
sponds to the situation where K is even in (3.65). We also refer to [323] for further
links with extreme-value theory.

Geometric description of C̃CL

For all k ∈ {1, . . . , K}, introduce rk = pk/qk ∈ [0, ∞]. For notation simplicity, we shall
let r0 = 0 and rK+1 = ∞. Since the above product (3.65) is commutative, one can
assume without loss of generality that the sequence (rk)0≤k≤K+1 is nondecreasing.
The copula C̃CL can be easily expressed on the partition of the unit square [0, 1]2

defined by the following moon shaped subsets (see the illustration in Fig. 3.7 with
K = 2)

Ak =
{
(u, v) ∈ [0, 1]2 : urk+1 < v ≤ urk

}
, k ∈ {0, . . . , K}. (3.66)

Proposition 3.3.6. Let C̃CL be the comonotonic-based Liebscher copula defined in (3.65).
Then, for all (u, v) ∈ [0, 1]2,

C̃CL(u, v) =
K

∑
k=0

u1− p̄k vq̄k 1[(u, v) ∈ Ak], (3.67)

where x̄k = x1 + . . . + xk, with the convention that x̄0 = 0. Moreover, the singular compo-
nent of C̃CL is

S̃CL(u, v) =
K

∑
k=1

min(pk, qk)min(u, v1/rk)max(1,rk). (3.68)

The singular component S̃CL and the absolute continuous component ÃCL = C̃CL − S̃CL

weights are ∑K
k=1 min(pk, qk) and 1−∑K

k=1 min(pk, qk), respectively.

A key property of the comonotonic-based Liebscher copula (3.65) is the presence of
multiple singular components lying on the curves v = urk with associated weights
min(pk, qk), k ∈ {1, . . . , K}. As an illustrative example, let us consider the bivariate
comonotonic-based Liebscher copula defined with p1 = 1− p2 = 1/3, q1 = 1− q2 =

3/4,

C̃CL(u, v) = min(u1/3, v3/4)min(u2/3, v1/4), (u, v) ∈ [0, 1]2, (3.69)

which entails r0 = 0, r1 = 4/9, r2 = 8/3 and r3 = ∞. The moon shaped subsets of
the partition of the unit square [0, 1]2 are represented on Fig. 3.7, and the expressions
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u

v

0 1

0

1
A0

A1
A2

FIGURE 3.7: Partition of the unit square defined in (3.66), for the cop-
ula of Equation (3.69).

of C̃CL and the singular component S̃CL are as follows:

C̃CL(u, v) =


u on A0,

u2/3v3/4 on A1,

v on A2,

and S̃CL(u, v) =
1
3

min
(
u, v9/4)+ 1

4
min

(
u8/3, v

)
.

Appropriate choices of pairs (pk, qk)k=1,...,K may lead to a number of singular com-
ponents ranging from 0 to K. The independence copula (no singular component) is
obtained for instance with pi = bj = 1 for a given pair (i, j), i 6= j, the comonotonic
copula (one singular component) is obtained by choosing pk = qk, ∀k ∈ {1, . . . , K},
and a copula with exactly K singular components can be obtained provided that
0 < r1 < r2 < · · · < rK < ∞. See Fig. 3.8 and Fig. 3.9 for illustrations. As a
comparison, [88] copula given by C(u, v) = (uv)1−θ min(u, v)θ , θ ∈ [0, 1] is limited
to a single singular component, necessarily on the diagonal v = u. Similarly, [225]
copula is defined by C(u, v) = min(u1−αv, uv1−β), (α, β) ∈ [0, 1]2 and has only one
singular component located on the curve v = uα/β. The proposal by [201] based
on singular mixture copulas includes comonotonic-based Liebscher copula (3.65) in
the particular case when K = 2 but is limited to two singular components. Finally,
Sibuya copulas [161] is a very general family of copulas: Let us point out that, in
the bivariate case, a non-homogeneous Poisson Sibuya copula allows for only one
singular component, this singular component being supported by a curve with very
flexible shape (see Remark 4.2 in the previously referenced work for further details).

Dependence and association properties of C̃CL

We consider here several measures of dependence and measures of association be-
tween the components of the bivariate comonotonic-based Liebscher copula (3.65).
Some of these measures are already dealt with in great generality in Section 3.3.2,
while some others seem to be tractable only in the comonotonic-based Liebscher
copula case: Blomqvist’s medial correlation coefficient, Kendall’s τ and Spearman’s
ρ.
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FIGURE 3.8: Top-left: representation of the p × q square unit space.
Other five panels: scatter plots of n = 104 data points sampled from
comonotonic-based Liebscher copula with K = 2. Choices for param-
eters (p, q) (such that p1 = p, p2 = 1− p, q1 = q, q2 = 1− q) are sum-
marized on the top-left panel. Complete dependence (top-middle),
complete independence (top-right), symmetric (bottom-left), asym-

metric (bottom-middle), degenerate asymmetric (bottom-right).

Tail dependence Recall that for the comonotonic copula CC, it holds ΛU(CC; ·, ·) =
min(·, ·). Then, Corollary 3.3.1 yields

λL(C̃CL) =
K

∏
k=1

1(pk = qk), λU(C̃CL) =
K

∑
k=1

min(pk, qk).

In other words, the lower tail dependence coefficient is non zero only in the case
when pk = qk for all k ∈ {1, . . . , K}, where C̃CL boils down to the comonotonic
copula, while the upper tail dependence coefficient coincides with the weight of the
singular component S̃CL (see Proposition 3.3.6). These results were also established
in [222, Lemma 3], in the particular case where K = 2.

Dependence It is well-known that the comonotonic copula CF fulfills the follow-
ing positive dependence properties defined in Section 3.3.2, namely it is TP2, PQD,
LTD and SI [244]. According to Proposition 3.3.2, we can thus conclude that the
comonotonic-based Liebscher copula C̃CL also satisfies these positive dependence
properties.

Stability properties It is easily seen that comonotonic-based Liebscher copula (3.65)
is max-stable. Proposition 3.3.4 thus entails that this copula is stable with respect
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FIGURE 3.9: Scatter plots of n = 104 data points sampled from
comonotonic-based Liebscher copula with K > 2. Top-left: K = 3,
rk ∈ {0, 1, ∞}; Top-middle: K = 3, rk ∈ {0.3, 1, ∞}; Top-right: K = 4,
rk ∈ {0, 0.7, 0.9, 17}; Bottom-left: K = 4, rk ∈ {0.3, 1.9, 8.3, 8.3};
Bottom-middle: K = 5, rk ∈ {0.6, 0.9, 1.1, 1.4, 3.6}; Bottom-right:

K = 6, rk ∈ {0.04, 0.3, 2.8, 3.3, 4.2, 58}.

to Liebscher’s construction. Another consequence is that comonotonic-based Lieb-
scher construction (3.65) can be interpreted as a possible cdf for modelling bivariate
maxima.

Dependence coefficients The β-Blomqvist’s medial correlation coefficient ([244],
Paragraph 5.1.4) defined by β(C) = 4C

( 1
2 , 1

2

)
− 1, Kendall’s τ ([244], Paragraph 5.1.1)

and Spearman’s ρ ([244], Paragraph 5.1.2) defined by

τ(C) = 4
∫
[0,1]2

C(u, v)dC(u, v)− 1 and ρ(C) = 12
∫
[0,1]2

C(u, v)dudv− 3

are provided in next proposition.
Proposition 3.3.7. Blomqvist’s medial correlation coefficient, Kendall’s τ and Spearman’s
ρ for the comonotonic-based Liebscher copula (3.65) are respectively given by

β(C̃CL) = 2∑K
k=1 min(pk ,qk) − 1,

τ(C̃CL) = 1−
K−1

∑
k=1

(1− p̄k)q̄k(rk+1 − rk)

(q̄krk + (1− p̄k))(q̄krk+1 + (1− p̄k))
,

ρ(C̃CL) =
12(1 + r1 + r1rK)

(2 + r1)(1 + 2rK)
− 3 +

K−1

∑
k=1

rk+1 − rk

((1 + q̄k)rk + (2− p̄k))((1 + q̄k)rk+1 + (2− p̄k))
,

where x̄k = x1 + . . . + xk.
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It appears that β-Blomqvist medial correlation coefficient is closely related to the
upper tail dependence coefficient: β(C̃CL) = 2λU(C̃CL) − 1. Besides, in the particular
case where K = 2, these results coincide the ones of Lemma 2 of [222]: the Kendall’s
τ can be simplified as τ(C̃CL) = p1 + q2 = λU(C̃CL). No similar simplification seems
to be possible for Spearman’s ρ.

For the special case of copula (3.69), we have λL(C̃CL) = 0, λU(C̃CL) = τ(C̃CL) =

p1 + q2 = 1
3 +

1
4 = 7

12 ≈ 0.583, β(C̃CL) = 27/12 − 1 ≈ 0.498 and ρ(C̃CL) ≈ 0.298.

Iterative construction for C̃CL

Algorithm 3.3.1 can be simplified when specified to comonotonic-based Liebscher
setting since: (i) sampling from the comonotonic copula is straightforward and only
requires sampling from the uniform distribution U (0, 1), and (ii) power functions
benefit from an explicit inverse. The specific sampling procedure for this construc-
tion is described in detail as Algorithm 3.3.2.

Algorithm 3.3.2 Iterative sampling scheme for comonotonic-based Liebscher
copula (3.65)

Input
[

a(k)j

]
(k,j)

. exponents of power functions f (k)j X(1)
j ∼ U (0, 1) for each j = 1, . . . , d

For k = 2, . . . , K
Sample Y ∼ U (0, 1), independently of X(k−1)

1 , . . . , X(k−1)
d

For j ∈ {1, . . . , d}

Compute X(k)
j = max

((
X(k−1)

j

) 1

1−a(k)j , Y
1

a(k)j

)
Output X = (X(K)

1 , . . . , X(K)
d ) ∼ C̃CL

3.3.4 Bayesian inference

In this section, we provide a simple strategy to make Bayesian inference on any Lieb-
scher copula based on an Approximate Bayesian computation algorithm (ABC, see
for instance [224, 285, 184] for reviews). ABC is a “likelihood-free” method usually
employed for inference of models with intractable likelihood: it enables to perform
approximate Bayesian analysis on any statistical model from which it is possible to
sample new data, without the need to explicitly evaluate the likelihood function.

Let Xobs = {Xobs,1, . . . , Xobs,n} be the observed data, where Xobs,i = (Xobs,i,1, . . . , Xobs,i,d),
i ∈ {1, . . . , n}, and assume that the statistical model for Xobs is described by a likeli-
hood function Lθ with parameter θ which is to be inferred. The basic scheme of one
step of ABC is the following:

(i) Sample θ from the prior distribution π(θ);

(ii) Given θ, sample X1, . . . , Xn from Lθ , and set X = {X1, . . . , Xn};
(iii) If X is too different from Xobs, discard θ, otherwise, keep θ.

The outcome of the ABC algorithm is a sample of values of the parameter θ ap-
proximately distributed according to its posterior distribution. The basic (rejection)
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ABC approach in point 3. amounts to a priori specifying a tolerance level ε > 0,
and then keeping θ if d(X, Xobs) < ε for some distance d( · , · ) between samples.
Another common approach employed in this section consists in selecting the toler-
ance level ε as a fixed quantile of the distances d(X, Xobs). More specifically, Steps
1. to 3. are repeated M′ times, out of which M are retained, yielding a quantile of
order M/M′ [285]. In other words, the M retained parameters are those associated
with the smallest values of the distance d(X, Xobs). In this section, we choose as dis-
tance between samples the Hilbert distance introduced by [52], henceforth denoted
by dH( · , · ). The Hilbert distance is an approximation of the Wasserstein distance
between empirical probability distributions which preserves the desirable proper-
ties of the latter in the context of ABC, while being considerably faster to compute
in multivariate data settings. More precisely, given two samples, y1:n and z1:n, the
Hilbert distance of order 1 associated with the Euclidean distance (henceforth simply
referred to as the Hilbert distance) is defined as dH(y1:n, z1:n) =

1
n ∑n

i=1 ||yi − zσ(i)||,
where σ(i) = σz ◦ σ−1

y (i) for all i = 1, . . . , n, and σy and σz are the permutations ob-
tained by mapping the vectors y1:n and z1:n through their projection via the Hilbert
space-filling curve [294] and sorting the resulting vectors in increasing order (see
[52] for details).

The choice for ABC is motivated by two main reasons. First, it is nontrivial in general
to derive the likelihood of copulas, especially for Liebscher copulas which involve
differentiating a product of K terms. All the more, the specific case of comonotonic-
based Liebscher copulas induces up to K singular components which precludes a
general evaluation of the likelihood. Second, sampling new data (step 2. above)
from a Liebscher copula is straightforward and fast thanks to the iterative procedure
of Algorithm 3.3.1 (Section 3.3.2).

Section 3.3.4 introduces the ABC procedure in the case of the Liebscher copula (3.49)
and describes the prior distributions on the model parameters. The methodology
is then illustrated on two data generating distributions: Section 3.3.4 focuses on the
well-specified setting where the data are sampled from the comonotonic-based Lieb-
scher copula; we show that the estimation procedure performs well in this case.
Then, Section 3.3.4 investigates the misspecified setting where the data are sampled
from a noisy version of the model; we show that the estimation procedure still per-
forms well, but the estimation accuracy may deteriorate for too large values of the
noise. Finally, Section 3.3.4 compares our proposed ABC approach to a likelihood-
based technique.

ABC inference for Liebscher copulas

The description of the ABC procedure is first completed by specifying the prior
distributions on the model parameters. For simplicity, we here focus on the case
of the d-dimensional Liebscher copula with the functions f (k)j (·), k ∈ {1, . . . , K},
j ∈ {1, . . . , d} of Algorithm 3.3.1 chosen as the power functions (3.63) introduced in
Example 3.3.3. The parameters of the f (k)j (·) functions are collected in a K× d matrix

A = [a(k)j ]k,j, where a(1) = (a(1)1 , . . . , a(1)d ) = (1, . . . , 1). Since the (K− 1)d free param-

eters are constrained to a(k)j ∈ (0, 1) for 2 ≤ k ≤ K, we simply choose, by symmetry,
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independent and uniform distributions a(k)j
i.i.d.∼ U (0, 1). More flexible distributions

like the Beta distribution could be thought of in order to reflect some prior knowl-
edge on these parameters. Additionally, note that different functions f (k)j (·) would
simply require setting prior distributions adapted to the parameters used.

The number of iterative steps K is also considered as a parameter of the model. In-
dependently of parameters A, K is assigned a Zipf distribution, K ∼ Zipf(ξ) + 1, for
ξ > 1. Such a distribution is supported on integers k ≥ 2 and has probability mass
function P(K = k) proportional to (k− 1)−ξ . We further choose the parameter ξ to
be equal to 2, which insures that 90% of the prior mass for K is supported on most
realistic values 2 ≤ K ≤ 6. This can be changed depending on applications at hand.
Another option, useful in case where some prior information is available on K, is to
adopt a Binomial distribution (translated, such that K ≥ 2). The choice of the two
hyper-parameters of the Binomial density could then be set as a function of prior
knowledge, such as prior mode and confidence, that one may be able to elicit thanks
to expert knowledge or previous studies.

We are now ready to state the main ABC inference procedure as Algorithm 3.3.3.

Algorithm 3.3.3 ABC inference for Liebscher copulas
Input Xobs, M′, M, (Ck)k.
For s = 1, . . . , M′

K(s) ∼ Zipf(ξ) + 1 . sample number of iterations in construction (3.49)
For j ∈ {1, . . . , d} and k ∈ {2, . . . , K(s)}
a(1)j = 1

a(k)j ∼ U (0, 1) . sample copula parameters

A(s) = [a(k)j ]j,k . set parameters for Liebscher’s construction

X1, . . . , Xn
i.i.d.∼ C̃(K(s))

L . sample data using Algo. 3.3.1 with power functions and A = A(s)

X(s) = {X1, . . . , Xn} . set synthetic data

d(s)H = dH(Xobs, X(s)) . compute Hilbert distances

Compute d∗: the quantile of order M/M′ of the distances [d(s)H ]M
′

s=1

Output {(X(m), A(m), K(m)) : d(m)
H < d∗}M

m=1 . return M parameters with smallest dH from Xobs

In general, the sequence of copulas (Ck)k depends on some sequence of parame-
ters (γk)k. In such a case, Algorithm 3.3.3 can be easily amended by adding a step
consisting in sampling γk parameters from some prior distribution to be set based
on available prior information or expert knowledge. In the following section, we
focus on the case of comonotonic-based Liebscher copulas, which do not depend
on any additional parameter. Thus, the sampling step for new data X(s) in Algo-
rithm 3.3.3 is performed with the iterative construction of Algorithm 3.3.2 tailored
to comonotonic-based Liebscher copulas.

Numerical illustrations with comonotonic-based Liebscher copulas

This section provides two illustrations of the inferential procedures described so far.
The first investigates a setting where data are sampled from the comonotonic-based
Liebscher model, while the second is concerned with observations from a noisy
version of it. The code is implemented in R using the copula package [342] and
winference package [51] for the Hilbert distance implementation [52].
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Well-specified setting: data from comonotonic-based Liebscher copula We gen-
erate n = 500 data points from a 2-dimensional comonotonic-based Liebscher cop-
ula (3.65) with d = 2, varying values of K ≥ 2 and of the parameters in the matrix
A, using Algorithm 3.3.2. The estimation is then performed with the ABC procedure
summarized in Algorithm 3.3.3.

Our method provides the full (approximate) posterior distribution of the parame-
ters of interest, making possible to select any strategy to summarize them, possi-
bly driven by the application at hand. One can for instance compute the posterior
distribution of the Spearman’s ρ, and, thanks to the retained samples, any other
quantity of interest. Here, the performance of the estimation procedure is assessed
basing on the following three summary statistics: (i) Kendall’s distribution function
K(t) = PrC(C(U, V) < t), (ii) Spearman’s ρ index of association, introduced in Sec-
tion 3.3.3, and for which an explicit closed form is obtained for comonotonic-based
Liebscher copula in Proposition 3.3.7, and (iii) an asymmetry measure, since it is
a central motivation of the present work. More specifically, the Cramér-von Mises
test statistics EC[(C(U, V) − C(V, U))2] defined in [128] has been selected since it
emerged as a powerful statistic to test the symmetry of a copula. Following the strat-
egy of [128], the approximate p-values associated with the symmetry test, performed
both on the observed sample Xobs and on the retained samples Xm, m ∈ {1, . . . , M},
are computed on the basis of 250 bootstrap replicates.

The results obtained on a single simulation experiment are displayed on Fig. 3.10,
where n = 500 data points were simulated from the comonotonic-based Liebscher
copula (3.65) with d = 2 and K = 3 (top-left panel). The number of ABC iterations
was set to M′ = 104, of which M = 300 were retained (resulting in a quantile of
order 3%). The empirical Kendall’s distribution functions of the observed and re-
tained samples are compared on the top-right panel; The posterior distribution of ρ

is compared to the empirical Spearman’s ρ of the observed sample on the bottom-left
panel; Finally, the posterior distribution of the approximate p-values is displayed on
the bottom-right panel. Let us highlight that the estimating procedure provides dis-
tributions around the true values in the three considered cases.

We then vary the generating number of iterative steps K and compute the average
relative errors ηK and ηρ for K and ρ between the values computed on the observed
sample and on the M samples retained by ABC:

ηK =
1
M

M

∑
m=1

‖K̂obs − K̂m‖1

‖K̂obs‖1
, and ηρ =

1
M

M

∑
m=1

|ρ̂obs − ρ̂m|
|ρ̂obs|

, (3.70)

where ‖ · ‖1 denotes the `1-norm. In order to take care of the randomness involved in
sampling the parameters in the matrix A, the previous procedure has been replicated
20 times based on 20 independent data samples repetitions. The average relative er-
rors ηK and ηρ in (3.70) were therefore averaged over the 20 independent samples,
and reported as η̄K and η̄ρ in Table 3.3 (first two rows), along with standard devia-
tions in parentheses. As for the asymmetry test, we computed for each of the 20 data
replications the fraction of times (out of M) that the same decision is taken (‘reject’ vs
‘do not reject’) at the 5% level, based on the approximate p-values computed on Xm

and Xobs. The obtained values were averaged over the 20 independent data samples
repetitions and reported in the third row of Table 3.3 as f̄test.
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FIGURE 3.10: Results from a simulation experiment with K = 3. Top-
left: n = 500 data points simulated from a comonotonic-based Lieb-
scher copula with d = 2, K = 3 and rk ∈ {0.26, 0.44, 17.32}. Top-
right: empirical Kendall’s distribution function K̂ of the observed
(black) and retained (gray) samples; Bottom-left: boxplot of the pos-
terior distribution of ρ (the dashed line corresponds to the empirical
Spearman’s ρ of the observed sample); Bottom-right: boxplot of the
posterior distribution of the approximate p-values (the dashed line

corresponds to Xobs, and the dotted line is the 5% threshold).

TABLE 3.3: First two rows: average relative errors (3.70) for Kendall’s
distribution function and Spearman’s ρ between the observed sam-
ple and the samples retained by the ABC procedure, for varying K
(columns). Third row: fraction of times that the same decision is taken
(‘reject’ vs ‘do not reject’, at the 5% level) based on Xm and Xobs. The
results are averaged over 20 independent repetitions. Standard devi-

ations in parentheses. All values are in %.

K 2 3 4 5

η̄K 1.99 (0.16) 2.32 (0.49) 2.38 (0.40) 2.37 (0.56)

η̄ρ 5.44 (3.98) 8.16 (5.62) 6.34 (3.74) 9.66 (4.12)

f̄test 16.8 (18.1) 19.4 (22.0) 9.2 (13.2) 13.3 (18.1)

Table 3.3 suggests a general trend: the larger K is, the more difficult the estimation
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is. However, the estimation procedure yields satisfactory results for all cases consid-
ered.

Misspecified setting: data from a noisy comonotonic-based Liebscher copula In
this section, we generate data from a noisy version of the comonotonic-based Lieb-
scher copula, and demonstrate that our inference procedure works well even if the
data are not sampled from the exact model (so-called misspecified setting). In or-
der to sample data from such a noisy model, a slightly changed version of Algo-
rithm 3.3.2 is used in which the parameters A are not fixed. Instead, they are sam-
pled from a beta distribution with given variance σ2

a (interpreted as the error vari-
ance) around some fixed value corresponding to the zero noise version. The latter
is illustrated on Fig. 3.11: a sample of n = 103 data points from a 2-dimensional
comonotonic-based Liebscher copula is depicted on the top-left panel with K = 2
iterative steps, and with the two parameters of the power functions set to a(2)1 = 0.4
and a(2)2 = 0.8 (recall that a(1)1 = a(1)2 = 1). The remaining five panels correspond to
samples from comonotonic-based Liebscher copula with increasing noise variance
σ2

a = 10−5, 10−4, 10−3, 10−2, 10−1.
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FIGURE 3.11: Samples from the exact comonotonic-based Liebscher
copula with d = K = 2, a(2)1 = 0.4, a(2)2 = 0.8 (top-left panel) and from
five noisy versions of it, where, for each data point i ∈ {1, . . . , n},
a(2)i1 ∼ B(α1, β1) and a(2)i2 ∼ B(α2, β2) such that E(a(2)i1 ) = 0.4,

E(a(2)i2 ) = 0.8, and increasing noise variance σ2
a = var(a(2)i1 ) =

var(a(2)i2 ) = 10−5, 10−4, 10−3, 10−2, 10−1 (other panels). Sample size
n = 103.

The inference results obtained from Algorithm 3.3.3 (ran with M′ = 104 ABC iter-
ations of which M = 300 were retained) are reported in Table 3.4. Unsurprisingly,
it appears that the larger the noise variance is, the more difficult is the estimation.
Again, the estimation procedure yields good results for all cases considered. Let
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us note that the results reported in Table 3.4 are not averaged over 20 independent
replications like in the previous section. The reason is that, here, the interest is in il-
lustrating how the procedure deteriorates with the increasing noise in the observed
data. Therefore, it is sufficient to illustrate the results of the analysis on a single
dataset.

TABLE 3.4: First two rows: average relative errors (3.70) for Kendall’s
distribution function and Spearman’s ρ between the observed sample
and the samples retained by the ABC procedure, for growing noise
(columns). Third row: fraction of times that the same decision is taken

at the 5% level based on Xm and Xobs. All values are in %.

σ2
a 0 10−5 10−4 10−3 10−2 10−1

ηK 1.7 1.68 1.77 1.68 2.03 2.81

ηρ 4.07 3.77 4.66 4.30 4.88 13.00

ftest 9.00 1.33 15.7 3.33 2.33 7.00

Comparison of ABC with likelihood-based estimation

In this section, the inference based on our ABC procedure is compared with the
likelihood-based method provided in the copula R package [342].

As a matter of fact, in some specific cases it is possible to derive the density of Lieb-
scher copulas, and hence, to perform likelihood-based inference on them. We work
here with the following bivariate Liebscher copula obtained by combining Clayton
copula C1(u, v) =

(
u−θ + v−θ − 1

)−1/θ with the independence copula C2(u, v) = uv,
and by using power functions (Example 3.3.3),

C(u, v) = C1(up, vq)C2(u1−p, v1−q). (3.71)

In this illustration we set θ = 5, p = 0.3, and q = 0.8, and estimate these parame-
ters on 100 data sets independently sampled from copula (3.71), with both our ABC
procedure and the optimization procedure implemented in the fitCopula function
of the copula package. The above procedure is repeated for samples of size n = 500
and n = 10 000. In order to compare the results of our Bayesian procedure with the
likelihood-based one, which provides only point estimates (maximum likelihood
estimator, MLE), the posterior distribution of the model parameters is summarized
into two point estimates: the posterior mean and the posterior median.

The results are plotted in Fig. 3.12, where each boxplot is made out of the 100 es-
timated values. In each panel, three quantities are plotted: MLE, which refers to the
likelihood-based estimation, Post.median, which refers to the posterior median ABC
estimation, and Post.mean, which refers to the posterior mean ABC estimation. It
appears from the three plots that, as expected, the MLE is asymptotically unbiased.
This can be seen by noticing the convergence to the true value as n increases. On
the other hand, both the mean and the median of the posterior distribution obtained
with our ABC procedure show some bias. Unexpectedly, the results from MLE show
a larger variance than ABC in some cases, particularly when n = 500. This could be
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due to difficulties in the optimisation procedure of the fitCopula R function which,
for small sample sizes, could have problems converging.
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FIGURE 3.12: Results from the comparison. (A): boxplot of the pa-
rameter p; (B): boxplot of the parameter q; (C): boxplot of the parame-
ter θ. Red corresponds to samples of size n = 500, blue to samples of
size n = 10 000. The horizontal dotted line represents the true value.

3.3.5 Discussion

In this section, we have studied the class of asymmetric copulas first introduced by
[187], and developed in its general form by [207]. Some new theoretical properties of
these copulas were provived, including novel closed form expressions for its tail de-
pendence coefficients, thus complementing the partial results of [207] and [208]. An
iterative procedure is also introduced to flexibly sample from these copulas, which
makes it easy to apply an Approximate Bayesian computation procedure to make
inference on them.
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New Perspectives and Future
Research

I conclude with some future research directions.

Perspectives with applications in Ecology

I plan to work on methodological developments in Ecology with Wilfried Thuiller
and students Daria Bystrova and Giovanni Poggiato. The modelling of species dis-
tribution plays an important role in both theoretical and applied ecology: given a set
of species occurrence, the aim is to infer its spatial distribution over a given territory.
Joint Species Distribution Models (JSDM) aim to model and predict the distribution
of species jointly at each location, to capture both abiotic and biotic dependencies.
However, JSDMs have several limitations. First, they provide estimates for residual
correlations between the species, and these residual correlations are interpreted as
species interactions. However, this assumption is not true in general. An objective is
to evaluate the performance of JSDMs for detecting the signal of biotic interactions
using abundance data. A possible direction is the study of conditional prediction
and its performance regarding different types of interactions, including missing data
imputations. A second problem of JSDMs is the curse of dimensionality as models
incorporate a large number of parameters [317]. There is a need for new algorithms
for dimension reduction and variable selection. The data related imperfections such
as sparse information in space and time measurements, and different observational
scales would be addressed with machine learning approaches adapted to an ecology
framework. For instance, Bayesian nonparametric priors, such as Dirichlet process,
Dependent Dirichlet process and Hierarchical Dirichlet process, could be used to ad-
dress different data-related questions and scenarios. The high-dimension problems
would be addressed with the use of shrinkage priors [55].

Perspectives with deep learning

Although deep learning provides state-of-the-art algorithm for prediction in almost
any application field, a major essentially unsolved problem is how to handle uncer-
tainty quantification — all the more when applications are consequential as is often
the case today. If this could in principle be solved by the posterior distribution of
Bayesian neural networks, there remain many open questions and research direc-
tions. One is to design scalable sampling algorithms. This is made challenging due
to the very high dimensionality of the parameter space, up to several millions in
modern deep neural networks. Recent proposals in this direction [167] suggest to

http://www.will.chez-alice.fr/
https://www-ljk.imag.fr/membres/Daria.Bystrova/
https://www.researchgate.net/profile/Giovanni_Poggiato
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focus the inferential procedure on low-dimensional subspaces of parameter space,
for instance on the first principal components of the stochastic gradient descent tra-
jectory. A second open question is the assessment of credibility sets derived from
the posterior distribution of Bayesian neural networks. A theoretical framework for
such evaluation is known as the Bernstein–von Misses (BvM) theorem which im-
plies, for regular parametric models, that the posterior distribution of the parameter
centered at the maximum likelihood estimator (MLE) converges to a normal distri-
bution given as the limit of the renormalized MLE. The main thrust of this theorem
is to show that asymptotically, a Bayesian posterior distribution and (frequentist)
sampling probabilities agree, hence the posterior can be used to build approximate
confidence regions. Refer to [310] for details and discussions in the Bayesian non-
parametric setting. Although Bayesian neural networks are parametric objects, the
dimension of their parameter space is often huge. Also, recent results on approxi-
mation theory [296, 46] suggest how their size (in terms of depth) should be scaled
to the data size for optimal approximation properties. A major complication for de-
riving a BvM theorem for deep neural networks is the complexity of their likelihood
function.
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