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Chapter 1

Introduction

In Sections 1.1 to 1.3, we present the general context of this thesis by giving a brief in-
troduction to Markov chains, Bayesian statistics and the unadjusted Langevin algorithm
(ULA). Our contributions are divided and introduced in three main topics:

1. extensions of ULA in Section 1.4,

2. applications of ULA in Section 1.5,

3. analysis of Stochastic Gradient Langevin Dynamics (SGLD) in Section 1.6.

1.1 Some preliminaries on Markov chains

Markov chains are a class of stochastic processes commonly used to model many random
systems in signal processing and control theory. A Markov chain is a sequence of random
variables (Xk)k∈N defined on an appropriate filtered space (Fk)k∈N such that the law of
Xn+1 conditioned on the filtration Fn is equal to the law of Xn+1 conditioned on Xn, P-
almost surely. Heuristically, a discrete-time stochastic process has the Markov property
if the past and future are independent given the present. For the theoretical aspects
of Markov chains, we give here three references which each include a very extensive
bibliography: [MT09; Dou+18], and [LP17] for discrete-space Markov chains.

Markov chains can appear from the modelling of various situations such as financial
time series, storage or queuing models. They can also be built by the practitioner in order
to sample from a target probability distribution; in that case, they are called Markov
Chains Monte Carlo algorithms (MCMC) and have become increasingly popular these
last three decades.

In this thesis, we study Markov chains with values in Rd endowed with the Borel
sigma algebra B(Rd). A homogeneous Markov chain (Xk)k∈N is characterized by its
kernel R : Rd × B(Rd) → [0, 1] which satisfies: 1) for all x ∈ Rd, R(x, ·) is a probability
measure on B(Rd), 2) for all A ∈ B(Rd), x 7→ R(x,A) is a measurable function. For any
probability measure µ on B(Rd) and A ∈ B(Rd), we denote by µR(A) =

∫
Rd R(x,A)µ(dx)

1



2 1.1. Some preliminaries on Markov chains

and for any k ∈ N, x ∈ Rd, Rk+1(x,A) =
∫
Rd R(x,dy)Rk(y,A). For µ a probability

measure on B(Rd), and f a µ-integrable function, µ(f) =
∫
Rd f(x)µ(dx). For x ∈ Rd

and f integrable under R(x, ·), we denote by Rf(x) =
∫
Rd R(x,dy)f(y).

A question of major interest is to know if the Markov chain (Xk)k∈N of kernel R
has a (unique) invariant probability measure π satisfying πR = π. A related concept,
sometimes easier to check in practice, is the notion of reversibility. A probability measure
π is said to be reversible with respect to R, if for all A,B ∈ B(Rd),

∫
A π(dx)R(x,B) =∫

B π(dx)R(x,A). Reversibility implies invariance. If π is invariant for R, the next step
is the analysis of the convergence rate of µ0R

k to π when k → +∞ for any initial
probability measure µ0.

In particular, MCMC methods consist in building an appropriate Markov chain,
preferably easy to simulate, such that it has a unique invariant probability measure π:
the target distribution. The hope is that, for any initial probability measure µ0, for n ∈ N
large enough, µ0R

n is approximately equal to π. In that case, (Xk)k≥n are (correlated)
samples approximately drawn from π.

Let us illustrate these different concepts through one of the simplest examples of
MCMC algorithms: the Random Walk Metropolis (RWM) algorithm with a Gaussian
proposal. Let π be a target probability measure on B(Rd) with density with respect to
the Lebesgue measure also denoted by π, such that for all x ∈ Rd, π(x) > 0. The Markov
chain (Xk)k∈N associated to the RWM algorithm is defined for σ > 0 and k ∈ N by

X0 drawn from the initial probability measure µ0 ,

Xk+1 =
{
Xk + σWk+1, with probability min (1, π(Xk + σWk+1)/π(Xk)) ,
Xk, otherwise,

where (Wk)k∈N is an i.i.d. sequence of d-dimensional standard Gaussian vectors. The
kernel R of the RWM algorithm is given for x ∈ Rd and A ∈ B(Rd) by

R(x,A) =
∫

A
min

(
1, π(y)
π(x)

)
e−‖y−x‖

2/(2σ2) dy
(2πσ2)d/2

+ δx(A)
∫
Rd

max
(

0, 1− π(y)
π(x)

)
e−‖y−x‖

2/(2σ2) dy
(2πσ2)d/2

.

It is easy to check that π is reversible with respect to R.
Despite the undeniable success of MCMC methods, one of the major obstacles faced

by practitioners is to know when the Markov chain reaches convergence, i.e. when µ0R
n

is approximately equal to π in an appropriate sense, see e.g. [Gel+14, Sections 11.4 and
11.5]. Therefore, precise non-asymptotic bounds of convergence have a significant value
for the practice of MCMC.

1.1.1 Convergence of Markov chains in V -total variation and Wasser-
stein distances

To measure the convergence of the sequence of probability measures (µ0R
k)k∈N to π for

any initial probability measure µ0, several distances between probability measures can
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be used. Let V : Rd → [1,∞) be a measurable function. We define the V -total variation
distance between two probability measures µ and ν as ‖µ−ν‖V = sup|f |≤V |µ(f)− ν(f)|.
If V = 1, then ‖ · ‖V is the total variation denoted by ‖ · ‖TV.

Convergence of Markov chains has been mainly studied using the V -total variation
distance [MT09]. Recently, Wasserstein distance has been more and more advocated as
a useful and convenient tool to study the convergence of Markov chains, see for example
[Dou+18, Section 20.7] for references on the subject. To define Wasserstein distance,
some notations have to be introduced. We say that ζ is a transference plan of µ and ν if
it is a probability measure on (Rd×Rd,B(Rd×Rd)) such that for any Borel set A of Rd,
ζ(A× Rd) = µ(A) and ζ(Rd ×A) = ν(A). We denote by Π(µ, ν) the set of transference
plans of µ and ν. Furthermore, we say that a couple of Rd-random variables (X,Y ) is a
coupling of µ and ν if there exists ζ ∈ Π(µ, ν) such that (X,Y ) are distributed according
to ζ. For two probability measures µ and ν, we define the Wasserstein distance of order
p ≥ 1 (or p-Wasserstein distance) as

Wp(µ, ν) =
(

inf
ζ∈Π(µ,ν)

∫
Rd×Rd

‖x− y‖p dζ(x, y)
)1/p

.

By [Vil09, Theorem 4.1], for all µ, ν probability measure on Rd, there exists a transfer-
ence plan ζ? ∈ Π(µ, ν) such that for any coupling (X,Y ) distributed according to ζ?,
Wp(µ, ν) = E[‖X − Y ‖p]1/p.

Based on the V -total variation distance, we introduce here the notion of V -uniform
geometric ergodicity [Dou+18, Section 15.2] in order to present a concrete example of
convergence bounds, and because some of our results are expressed through this notion.
Let V : Rd → [1,∞) be a measurable function. The Markov kernel R is said to be
V -uniformly geometrically ergodic is there exist C > 0 and ρ ∈ [0, 1) such that for all
x ∈ Rd and n ∈ N,

‖δxRn − π‖V ≤ CV (x)ρn . (1.1)

It is a strong notion of convergence and it can be relaxed in multiple ways. We refer
to [MT09; Dou+18] for an extensive presentation of various concepts of convergence for
Markov chains. To prove (1.1), operator methods are one possibility [Dou+18, Chap-
ter 18], [HM11]. Two conditions have to be checked. First, there must exist a Doeblin
set C in Rd and ε > 0 such that for all x, x′ ∈ C,

‖R(x, ·)−R(x′, ·)‖TV ≤ 1− ε . (1.2)

Inside this Doeblin set C, the Markov kernel R should have some uniformity in x, in
order to be able to couple two Markov chains of kernel R, starting from two different
points. To control the time spent outside this Doeblin set C, we can use a drift condition:
there exist λ ∈ [0, 1), b ∈ [0,+∞) such that

RV ≤ λV + b1C . (1.3)

Under some conditions on C, λ, b, (1.2) and (1.3) imply (1.1).
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Wasserstein distance has shown itself to be a useful tool to study the convergence of
Markov chains [Dou+18, Chapter 20]. We give a quick overview of its application in the
case of the Unadjusted Langevin Algorithm in Section 1.3.

1.1.2 Weak error bounds and a central limit theorem

Once we are able to generate approximate samples (Xk)k∈{0,...,n−1} from a target proba-
bility measure π, and to quantify in some sense their distance to π, we can turn to their
utilisation. A popular request is the computation of integrals of specific, π-integrable
functions f : Rd → Rm under π:

π(f) =
∫
Rd
f(x)π(dx) ≈ 1

n

n−1∑
k=0

f(Xk) , (1.4)

where m ∈ N∗. Common examples cover the mean of π where f(x) = x and m = d, and
the second order moment of π with f(x) = xxT and m = d2. Obviously, the empirical
average (1.4) is only an approximation of the quantity of interest π(f), and we try to
quantify as precisely as possible the error. Convergence bounds such as the V -uniform
geometric ergodicity (1.1) directly translate into error bounds for (1.4). Let (Xk)k∈N be
a Markov chain of kernel R. If R is V -uniformly geometrically ergodic, we have for any
initial probability measure µ0, any f : Rd → R such that |f | ≤ V and any N,n ∈ N∗,∣∣∣∣∣E

[
1
n

N+n−1∑
k=N

f(Xk)
]
− π(f)

∣∣∣∣∣ ≤ Cµ0(V ) ρN

1− ρ . (1.5)

Using the duality formula for the Wasserstein distance, see e.g. [Dou+18, Theorem 20.1.2],
a similar control of the error (1.4) can be obtained. However, instead of a condition on
the infinity norm of f , the function f : Rd → R is here assumed to be L-Lipschitz. Under
this assumption, we get∣∣∣∣∣E

[
1
n

N+n−1∑
k=N

f(Xk)
]
− π(f)

∣∣∣∣∣ ≤ L

n

N+n−1∑
k=N

W2(µ0R
k, π) . (1.6)

If W2(µ0R
k, π) decreases exponentially fast, i.e. W2(µ0R

k, π) ≤ Cµ0ρ
k for ρ ∈ [0, 1),

we recover (1.5). The upper bounds (1.5) and (1.6) are on the first order moment; the
second order moment demands more work but can be handled in a similar way. These
bounds are non-asymptotic and are valid for all n ∈ N∗. However, the constants involved
such as ρ and C are often not tight, and the obtained upper bounds are often very large
and unusable in practice.

Another fruitful point of view on the approximation (1.4) is possible through the
asymptotic n → +∞. Under appropriate conditions, a central limit theorem (CLT) for
f : Rd → R can be derived:

n−1/2
{
n−1∑
k=0

(f(Xk)− π(f))
}

=⇒
n→+∞

N
(
0, σ2(f)

)
, (1.7)
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where N (m,σ2) is a real Gaussian random variable of mean m and variance σ2, and =⇒
denotes the convergence in law on the canonical space, see e.g. [Dou+18, Chapter 21]
for a precise formulation. The asymptotic variance σ2(f) can be expressed using various
formulas; under some assumptions on R, it can be shown to be equal to

σ2(f) = lim
n→+∞

n−1Eπ

(n−1∑
k=0

f(Xk)
)2 .

Note that a CLT holds for f if R is V -uniformly geometrically ergodic and f is dominated
by V , [Dou+18, Theorem 21.2.11]. This asymptotic point of view on (1.4) is a convenient
way to build confidence intervals for π(f).

1.2 A short presentation of Bayesian statistics

To give a concrete example of an application of MCMC algorithms, we introduce briefly
Bayesian statistics. We refer for example to [Gel+14; Rob07; MR07] for many more
resources and references on the subject. Note that the field of applications of MCMC
is much wider than Bayesian statistics, but the primary goal of this thesis is to develop
and extend MCMC algorithms for which Bayesian statistics is a sufficiently vast subject
to illustrate our results.

Let D be some observed data. A common situation is when we observe N ∈ N∗ pairs
(xi, yi) for i ∈ {1, . . . , N} where xi ∈ Rd are the covariates associated to the observation
yi which can be continuous or discrete. Here, D = {xi, yi}Ni=1. To explain the patterns
in the observed data D, we assume that there exists a statistical model underlying the
observations. Some popular models are the Gaussian regression model for a continuous
observation y, and the logistic regression model for a binary y:

Gaussian regression: p (y|x, θ) = (2πσ2)−1/2e−(y−xTθ)2/(2σ2) ,

Logistic regression: p (y|x, θ) = (1 + e−xTθ)−y(1 + exTθ)y−1 .

In both cases, the models are parametric, with a parameter θ ∈ Rd. For the Gaussian
regression, the variance σ2 can also be considered as a parameter; here, the variance is
assumed to be known. For the logistic regression, the observation y can take only two
values 0 or 1. Assuming that the observations are i.i.d. , the probability of observing the
data D given the parameter θ is given by

Gaussian regression: p (D|θ) = (2πσ2)−N/2
N∏
i=1

e−(yi−xT
i θ)

2/(2σ2) ,

Logistic regression: p (D|θ) =
N∏
i=1

(1 + e−xT
i θ)−yi(1 + exT

i θ)yi−1 .

In the Bayesian paradigm, the parameter θ is a random variable, drawn according to
a prior distribution p0 on B(Rd). Under some weak assumptions on the model and the
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prior distribution, by Bayes’ rule, the posterior distribution is given for all θ ∈ Rd by

p (θ|D) = p (D|θ) p0(θ)
Z

, Z =
∫
Rd
p
(
D
∣∣∣θ̃) p0(dθ̃) ∈ (0,+∞) . (1.8)

Going back to the examples of the Gaussian and logistic regressions, a Gaussian prior for
θ is a simple conceivable option for p0. A practical limitation of Bayesian statistics is the
necessity to sample from the posterior distribution θ 7→ p (θ|D). Except for conjugate
distributions, sampling from the posterior (1.8) is in general a difficult problem, because
the normalizing constant Z is unknown. MCMC algorithms enable to target probability
distributions with unknown normalizing constants, and are thus particularly adapted to
Bayesian statistics. Note that this situation occurs also in other fields such as molecular
dynamics and statistical physics, see e.g. [LSR10].

In Chapter 5, we propose an algorithm to compute normalizing constants Z with
precise theoretical guarantees. An important application for Bayesian statistics is related
to the computation of Bayes factors. In the Gaussian and logistic regressions presented
above, we assume that the data D comes from a specified model; this assumption may
be wrong. A reasonable approach consists in suggesting different models and comparing
them given the observed data. Consider two different (parametric) statistical modelM1
and M2, with respective parameters θ1 ∈ Rd1 and θ2 ∈ Rd2 . The Bayes factor B12
between M1 and M2 is defined as

B12 = p (M1|D)
p (M2|D) = p (D|M1) p0(M1)

p (D|M2) p0(M2) ,

where p0 is a prior distribution on the models considered. Assume that we only look at
2 models with a uniform prior: p0(M1) = p0(M2) = 1/2. Besides, we have

p (D|M1) =
∫
Rd1

p (D|θ1,M1) p (dθ1|M1) ,

and similarly for M2. θ1 7→ p (θ1|M1) is a prior distribution on the parameter θ1 under
the model M1. Therefore, computing the Bayes factor B12 requires to evaluate two
normalizing constants p (D|M1) and p (D|M2) and to calculate their ratio.

For illustrative purposes, we consider the example of a binomial distribution. We
compare a model M1 where the probability of success is θ1 = 1/2 and another model
M2 where θ2 is unknown and we take a prior distribution for θ2 that is uniform on [0, 1].
We take a sample D of 200, and find 115 successes and 85 failures. We have then

p (D|M1) =
(

200
115

)
(1/2)200 ≈ 0.005956 ,

p (D|M2) =
∫ 1

0

(
200
115

)
θ115

2 (1− θ2)85dθ2 = 1/201 ≈ 0.004975 .

The Bayes factor B12 is approximately equal to 1.197 which tends to indicate that both
models are equally likely to interpret the data.
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1.3 The unadjusted Langevin algorithm and avatars

1.3.1 The unadjusted Langevin algorithms

The overdamped Langevin algorithm In this Section, we present the Unadjusted
Langevin Algorithm (ULA), also called the Langevin Monte Carlo (LMC) algorithm: an
MCMC algorithm which is the main focus of this thesis. Consider π, a target probability
measure on Rd with density w.r.t. the Lebesgue measure given for all x ∈ Rd by π(x) =
e−U(x)/Z, where U : Rd → (−∞,+∞] is a measurable function and Z =

∫
Rd e−U(y)dy ∈

(0,+∞) is an unknown normalizing constant. U is usually referred to as the potential
associated with π. Assume for the moment that U is continuously differentiable. Then,
the unadjusted Langevin algorithm introduced in [Erm75; Par81] (see also [RT96]) can be
used to sample from π. This algorithm is based on the overdamped Langevin stochastic
differential equation (SDE) associated with U ,

dYt = −∇U(Yt)dt+
√

2dBt , (1.9)

where (Bt)t≥0 is a d-dimensional Brownian motion. Under mild assumptions on ∇U ,
this SDE has a unique strong solution (Yt)t≥0 and defines a strong Markovian semigroup
(Pt)t≥0 on (Rd,B(Rd)) which is ergodic with respect to π. Since simulating exact so-
lutions of (5.7) is in general computationally impossible or very hard, ULA considers
the Euler-Maruyama discretization associated with (5.7) to approximate samples from
π. Precisely, ULA constructs the discrete-time Markov chain (Xk)k≥0, started at X0,
given for k ∈ N by:

Xk+1 = Xk − γ∇U(Xk) +
√

2γWk+1 , (1.10)

where γ > 0 is the stepsize and (Wk)k∈N is a sequence of i.i.d. standard Gaussian d-
dimensional vectors; the process (Xk)k≥0 is used as approximate samples from π.

If∇U is globally Lipschitz, the Markov chain (1.10) has a unique invariant probability
measure πγ which is in general different from the target distribution π. Note that if∇U is
not globally Lipschitz, the Markov chain may not have an invariant probability measure
and exhibit a transient behaviour, see e.g. [MSH02, Section 6]. Since πγ is in general
different from π, the usual methodology developed to analyze the convergence of Markov
chains to their invariant distribution [MT09; Dou+18] is therefore not applicable. To
bypass this difficulty, a series of works [Dal17b], [DM17], [DM16], [Dal17a], [DK17]
directly compare the Markov chain (Xk)k∈N to the solution (Yt)t≥0 of the continuous-
time SDE (1.9) ergodic with respect to π. More precisely, if R denotes the Markov
kernel of the ULA algorithm, they study the V -total variation distance and Wasserstein
distance between µ0R

n and ν0Pnγ for n ∈ N, where µ0 and ν0 are two initial probability
measures.

Let us briefly sketch the idea of the proof for the Wasserstein distance when the
potential U is strongly convex. Let (Y0, X0) be drawn according to the optimal coupling
for the 2-Wasserstein distance, where Y0 ∼ ν0 and X0 ∼ µ0. Consider the pair of random
variables (Yγ , X1) such that Yγ is the solution at time t = γ of the SDE

dYt = −∇U(Yt)dt+
√

2dBt ,
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where (Bt)t≥0 is a d-dimensional Brownian motion and

X1 = X0 − γ∇U(X0) +
√

2Bγ .

Then,

‖Yγ −X1‖2 = ‖Y0 − γ∇U(Y0)−X0 + γ∇U(X0)‖2 +O(γ2)
≤ ργ ‖Y0 −X0‖2 +O(γ2) ,

where ‖·‖ denotes the Euclidian norm and ργ ∈ [0, 1), see e.g. [Dal17a, Section 6].
Since the 2-Wasserstein distance is the infimum on all the couplings between Yγ and X1
of ‖Yγ −X1‖2, we obtain by recurrence an upper bound on the 2-Wasserstein distance
between µ0R

n and ν0Pnγ for all n ∈ N. As a particular case, taking ν0 = π, the invariant
measure for the semigroup (Pt)t≥0, we get an upper bound on W2(µ0R

n, π). When U is
strongly convex, it is known that W2(µ0R

n, π) ≤ ε for a number of iterations n & d/ε2,
see e.g. [Dal17a, Theorem 1].

Another interpretation consists in viewing the ULA algorithm as an optimisation al-
gorithm on the space of measures endowed with the 2-Wasserstein distance, see [DMM18;
Wib18].

In Section 1.1, we highlighted that practitioners are often interested in estimating the
integral of specific functions f : Rd → R under the target distribution π: π(f), see (1.4).
In the special case of ULA, it is possible to go one step further, still by comparing ULA
to its continuous-time dynamic counterpart (1.9), but this time, in terms of generators.
The generator L associated to the semigroup (Pt)t≥0 of the Langevin diffusion (1.9) is
defined for any smooth function f : Rd → R compactly supported by

Lf = lim
t→0+

(Ptf − f)/t = −〈∇U,∇f〉+ ∆f . (1.11)

The generator of the discrete-time Markov chain (1.10) of kernel R is defined by Rf −f .
A simple calculation shows that the two generators are very close. More precisely, let
X1 be the first step of ULA (1.10) starting at X0 = x. A Taylor expansion of f around
x gives

E [f(X1)] = f(x) + γLf(x) +O(γ2) .
Let f̂ be a solution of the Poisson equation associated with f , Lf̂ = −(f − π(f)). We
obtain heuristically

n−1∑
k=0
{f(Xk)− π(f)} = γ−1

n−1∑
k=0

{
f̂(Xk)− EFk

[
f̂(Xk+1)

]}
+O(nγ)

= γ−1
{
f̂(X0)− EFn−1

[
f̂(Xn)

]}
+ γ−1

n−1∑
k=1

{
f̂(Xk)− EFk−1

[
f̂(Xk)

]}
+O(nγ) .

The first term comes from the initial conditions and the second term is a sum of mar-
tingale increments. Taking the expectation, we get the equivalent of (1.5):∣∣∣∣∣E

[
1
n

n−1∑
k=0

f(Xk)
]
− π(f)

∣∣∣∣∣ . 1
nγ

+ γ . (1.12)
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To the best of our knowledge, this methodology was first employed in [TT90]. An
example of application is provided in Chapter 4.

The underdamped Langevin algorithm The overdamped Langevin SDE (1.9) can
be seen as the limit of the kinetic or underdamped Langevin diffusion (Xt, Vt)t≥0 on R2d

solution of the SDE:

dXt = Vtdt ,
dVt = −ηVtdt− u∇U(Xt)dt+

√
2ηu dBt , (1.13)

when the friction coefficient η > 0 tends to infinity, [Pav14, Section 6.5]. u > 0 is the
inverse mass and (Bt)t≥0 is a d-dimensional Brownian motion. If U is gradient Lipschitz,
there exists a unique strong solution (Xt, Vt)t≥0 for any initial conditions (X0, V0). We
refer to [EGZ17] for references on the subject and precise rates of convergence using a
“sticky” coupling approach. When U is strongly convex, the semigroup associated to the
unique strong solution (Xt, Vt)t≥0 of (1.13) has a unique invariant probability measure
πkin of density with respect to the Lebesgue measure proportional to

πkin(x, v) ∝ exp
(
−U(x)− ‖v‖2 /(2u)

)
.

An appropriate discretization of (1.13) enables to draw approximate samples (Xk)k∈N
of π, such that W2(Xn, π) ≤ ε for n &

√
d/ε, see [Che+18; DR18]. The dependence of

the number of iterations with respect to d and ε is thus better for the kinetic Langevin
algorithm compared to ULA. Note that we compare first order discretization schemes:
each step takes time linear in d. Second order schemes are studied in [DK19, Section 4]
and [DR18, Section 4].

The discretization of the continuous-time SDEs (1.9) and (1.13) enables an easy
simulation of the associated MCMC algorithms. However, their invariant distributions
are in general different from the target distributions π and πkin. If the desired precision
on the approximate samples (Xk)k∈N is less than ε > 0 (in Wasserstein distance for
example), the step size γ has to be chosen of the order ε2 or ε, which directly reflects on
the number of iterations proportional to ε−2 and ε−1 respectively.

1.3.2 Adjusted Langevin algorithms

This poor dependence on ε, the precision parameter, can be mitigated by modifying
the Langevin MCMC algorithms such that their invariant distributions are π and πkin.
A simple way to proceed consists in incorporating a Metropolis Hastings step in these
algorithms. For ULA, we obtain the Metropolis-Adjusted Langevin Algorithm (MALA)
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algorithm, introduced in [RDF78], given for k ∈ N by

X̃k+1 = Xk − γ∇U(Xk) +
√

2γWk+1 ,

Xk+1 =

X̃k+1, if Uk+1 ≤ min
(
1, e−τγ(Xk,X̃k+1)

)
Xk, otherwise.

where τγ(x, y) = U(y)− U(x) + ‖x− y + γ∇U(y)‖2 − ‖y − x+ γ∇U(x)‖2

4γ .

Bounds in total variation distance are available for the MALA algorithm. [BH13, The-
orem 3.1] shows that the number of iterations for MALA is only proportional to the
logarithm of the precision parameter ε > 0, i.e. n & log(1/ε)p, where p ∈ N∗. The main
theoretical difficulty in the analysis of MALA lies in the accept/reject step: the proba-
bility of rejecting a potential step has to be controlled. In [BH13], the analysis relies on
a modified MALA algorithm restrained on a well-chosen compact set where it is possible
to control the acceptance ratio uniformly. A comparison between the original MALA
algorithm and the modified one gives then the result. A different path is followed by
[Dwi+18]: since π is reversible with respect to the Markov kernel of MALA, it is possible
to rely on tools based on the conductance of the Markov chain to prove convergence rates.
The conductance, also known as the bottleneck ratio or Cheeger constant, is a notion
originally defined and applied for discrete-space Markov chains [LP17, Section 7.2]. An
extension of this concept, the µ-conductance, that disregards small sets is formulated
in [LS90] and an application for general state space Markov chains is given in [LS93,
Theorem 1.4]. Based on these founding principles, [Dwi+18] shows that for a strongly
convex U , about d log(1/ε) iterations are sufficient to obtain samples at TV distance at
most ε from π. Note that a restriction on the initial probability measure µ0 is required
for this result. A recent bound on the Kantorovich or Wasserstein distance (with an
appropriate distance function) is formulated in [EM18, Section 2.5] but the dependence
on the parameters d and ε is intricate.

The MALA algorithm is a particular case of the Hybrid/Hamiltonian Monte Carlo
algorithm (HMC). HMC targets the same probability measure as the kinetic Langevin
diffusion: πHMC(x, v) ∝ e−H(x,v) on R2d where H(x, v) = U(x) + ‖v‖2 /2 is the Hamilto-
nian function. Note that we are only interested in the first component which is a Markov
chain on Rd with invariant probability measure π. Using the terminology of [BEZ18],
one step of the exact HMC takes as inputs an initial position x ∈ Rd and a duration
parameter T > 0, and outputs a final position by taking the following steps

1. Draw an initial velocity ξ ∼ N (0, Id),

2. Run the Hamiltonian dynamics associated to the Hamiltonian function H for a
duration T with initial position x and initial velocity ξ,

3. Output the final position of this Hamiltonian dynamics.

In practice, the Hamiltonian dynamics is approximated by a numerical integrator, such
as the leap-frog or Störmer-Verlet integrator, that keeps the reversibility and volume-
preserving properties of the Hamiltonian flow. A Metropolis Hastings step is added to
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remove the bias due to time discretization error; the resulting algorithm is called numeri-
cal HMC. This method has been first introduced in [Dua+87] and partially analyzed from
a mathematical viewpoint in [Sch99]. The study of HMC has led to numerous research
works, see [BEZ18; DMS17; BS18; MV18; TV17; HJ17; MS17; BS17] and references
therein. [DMS17] shows the geometric ergodicity of HMC under certain conditions. For
a potential U strongly convex outside of a ball, [BEZ18] provides precise rates of con-
vergence in Wasserstein distance, using a coupling approach. Note that the dependence
of the bounds with respect to the dimension d for the numerical HMC is however not
clear [BEZ18, Remark 2.5]. For strongly convex potentials U and under additional as-
sumptions, [MS17; MV18] establish that numerical HMC can give approximate samples
from π with a number of iterations of the order d1/4, to be compared with the kinetic
Langevin Monte Carlo scaling as d1/2.

1.3.3 Remarks

Nonreversible Langevin dynamic The Langevin SDE given in (1.9) defines a semi-
group (Pt)t≥0 which is reversible with respect to the invariant distribution π. The as-
sociated generator L, see (1.11), is self-adjoint in L2(π), i.e. for all f, g : Rd → R twice
continuously differentiable and compactly supported,

∫
Rd fLgdπ =

∫
Rd gLfdπ. Non-

reversible dynamics that leave the distribution π invariant, have been introduced and
analysed in [HHS93; HHS05; DLP16; RS15a; RS15b; WHC14]. They consist in consid-
ering the SDE

dYt = −∇U(Yt)dt+ F (Yt)dt+
√

2dBt ,

where F : Rd → Rd is a divergence-free vector field with respect to π, i.e. ∇ · (πF ) = 0.
Under this constraint and the non-explosion condition, π is still the invariant distribution
of the associated semigroup. It has been shown that nonreversible dynamics (with F
different from 0) improve the spectral gap in L2(π) and decrease the asymptotic variance
for the time averages. Note that ULA is nonreversible, the Euler discretization scheme
breaks the reversibility of the associated SDE. Several works have studied the discrete-
time equivalent of making a reversible dynamic, nonreversible, see e.g. [DPZ17] and
references therein. In particular, piecewise deterministic Markov processes are such a
class of algorithms; we refer to [DGM18] for references on the subject.

Convexity and beyond In this thesis, we often make the assumption that the po-
tential U is convex or strongly convex. Many widely-used and well-known losses used
in statistical learning are convex, which partly justifies this assumption, see e.g. [BV04].
The analysis under this constraint is obviously a first step in a better understanding of
the ULA algorithm, and recent works have begun studying the non-convex setting, in-
cluding [DM17; EGZ17; BEZ18]. Furthermore, a series of works has tackled non-convex
optimization problems using discretized diffusions, see e.g. [RRT17; ZLC17; EMS18].

Big data setting In this thesis, we focus on the ULA algorithm because we are
mainly interested in sampling from high-dimensional distributions in the big data setting,
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where the number of observations (for Bayesian statistics) is very large. In that context,
computing the gradient ∇U at each iteration of the Langevin algorithm or HMC is
very expensive. Akin to Stochastic Gradient Descent (SGD) in optimization, versions
of ULA and kinetic Langevin algorithm have been developed where the gradient of U
is estimated by subsampling the data, thus reducing drastically the computational cost
of one iteration. Note that this methodology is difficult to transpose to Metropolis
Hastings type algorithms such as MALA or HMC, see [Bet15]. Moreover, the kinetic
Langevin algorithm does not bring any improvement over the overdamped version when
the gradient is noisy, see [Che+18, Section 2.2.1]. All these reasons have led us to
concentrate on the ULA algorithm in a first place. Obviously, the different methodologies
and contributions introduced below may be adapted to more sophisticated algorithms
such as kinetic Langevin and HMC and might be the subjects of future works.

1.4 Extensions of the unadjusted Langevin algorithm

In Part I of this thesis, two limitations of the ULA algorithm defined in (1.10) are ad-
dressed. First, ULA is well defined and feasible if the potential U is continuously differ-
entiable on Rd: it cannot be directly applied to a distribution π restricted to a compact
convex set. However, many statistical inference problems involve estimating parame-
ters subject to constraints on the parameter space. The MYULA algorithm proposed in
[DMP18] enables to draw approximate samples from distributions with compact support
by regularizing appropriately the potential U . In Chapter 3, we derive precise bounds
of convergence in total variation norm and Wasserstein distance for this algorithm.

Second, when the potential U grows too fast at infinity, i.e. ‖U(x)‖ & ‖x‖2+α when
‖x‖ → +∞ and with α > 0, ULA is unstable and may diverge with positive probability.
Inspired by some recent works on discretization of SDEs with superlinear drift coefficients
[HJK12; Sab13], we propose a new algorithm in Chapter 4, the tamed ULA, and provide
convergence guarantees in V -total variation distance and 2-Wasserstein distance.

1.4.1 Sampling from a distribution with compact support: MYULA

Consider in a Bayesian setting a posterior distribution π with bounded support. Some
examples include truncated data problems which arise naturally in failure and survival
time studies [KM05], ordinal data models [JA06], constrained Lasso and ridge regressions
[Cel+12], Latent Dirichlet Allocation [BNJ03], and non-negative matrix factorization
[PBJ14]. Drawing samples from such constrained distributions is a challenging prob-
lem that has been investigated in many papers; see [GSL92], [PP14], [LS15], [BEL15],
[Hsi+18]. All these works are based on efficient Markov Chain Monte Carlo methods
to approximate the posterior distribution; however, with the exception of [BEL15] and
[Hsi+18], these methods are not theoretically well understood and do not provide any
theoretical guarantees on the estimations delivered.

A modification of ULA has been proposed in [DMP18] to sample from a non-smooth
log-concave probability distribution on Rd. This method named MYULA is mainly based



Chapter 1. Introduction 13

on a regularised version of the target distribution π that enjoys a number of favourable
properties that are useful for MCMC simulation. In this study, we analyse the complexity
of this algorithm when applied to log-concave distributions constrained to a convex set,
with a focus on complexity as the dimension of the state space increases. More precisely,
we establish explicit bounds in total variation norm and in Wasserstein distance of order
1 between the iterates of the Markov kernel defined by the algorithm and the target
density π.

Note that the Metropolis-Adjusted Langevin Algorithm (MALA) is a viable alterna-
tive to ULA to sample from a constrained distribution. However, no precise convergence
bounds were available for MALA. Subsequent to this work, [Dwi+18] provided tight con-
vergence bounds for MALA and analyzing again the problem of sampling a constrained
distribution under this perspective would be an interesting research work.

Let K ⊂ Rd be a compact convex set such that B(0, r) ⊂ K ⊂ B(0, R) and ιK : Rd →
{0,+∞} be the (convex) indicator function of K, defined for x ∈ Rd by,

ιK(x) =
{

+∞ if x /∈ K,

0 if x ∈ K .

Let f : Rd → R be a convex, gradient Lipschitz, continuously differentiable function.
Consider a probability density π associated to a potential U : Rd → (−∞,+∞] of the
form U = f + ιK. To apply ULA, [DMP18] suggested to regularize U in such a way that

1. the convexity of U is preserved (this property is key to the theoretical analysis of
the algorithm),

2. the regularisation of U is continuously differentiable and gradient Lipschitz (this
regularity property is key to the algorithm’s stability),

3. the resulting approximation is close to π (e.g. in total variation norm).

The tool used to construct such an approximation is the Moreau-Yosida envelope of
ιK, ιλK : Rd → R+ defined for x ∈ Rd by,

ιλK(x) = inf
y∈Rd

(
ιK(y) + (2λ)−1 ‖x− y‖2

)
= (2λ)−1 ‖x− projK (x)‖2 ,

where λ > 0 is a regularization parameter and projK is the projection onto K. ιλK is
convex and continuously differentiable with gradient given for all x ∈ Rd by:

∇ιλK(x) = λ−1(x− projK (x)) .

∇ιλK is λ−1-Lipschitz. Adding f to ιλK leads to the regularization Uλ : Rd → R of the
potential U defined for all x ∈ Rd by Uλ(x) = f(x) + ιλK(x). The associated probability
measure πλ on Rd given for all x ∈ Rd by

πλ(x) = e−Uλ(x)
/∫

Rd
e−Uλ(y)dy ,
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Figure 1.1: Moreau-Yosida approximations πλ of π = 1[−1,1]/2 for λ ∈ {1, 0.1, 0.01, 0}.

is well-defined and log-concave. Furthermore, Uλ is gradient Lipschitz and continuously
differentiable with ∇Uλ given for all x ∈ Rd by

∇Uλ(x) = −∇ log πλ(x) = ∇f(x) + λ−1(x− projK (x)) .

In Figure 1.1, the Moreau-Yosida approximation of the uniform distribution on K =
[−1, 1] is plotted for different values of λ. We observe that as λ decreases, πλ becomes
a better approximation of π.

The algorithm proposed in [DMP18] then proceeds by using the Euler-Maruyama
discretization of the Langevin equation associated with Uλ, with πλ as proxy, to generate
approximate samples from π. It uses the Markov chain (Xk)k∈N, started at X0, given
for all k ∈ N by

Xk+1 = (1− γ

λ
)Xk − γ∇f(Xk) + γ

λ
projK (Xk) +

√
2γWk+1 , (1.14)

where (Wk)k∈N is a sequence of i.i.d. standard Gaussian d-dimensional vectors and γ > 0
is the stepsize. Note that this algorithm assumes that the projection on K is relatively
easy to compute. An example of a trajectory of the MYULA algorithm in 2 dimensions
is represented in Figure 1.2 where the target distribution π is the uniform distribution
on the rectangle K = [0, 5] × [0, 1]. Some samples end up outside of K but they are
repelled from going to far from the boundary because of the form of the potential Uλ =
(2λ)−1 ‖x− projK (x)‖2.
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Figure 1.2: A trajectory of the MYULA algorithm targeting the uniform distribution on K =
[0, 5]× [0, 1] for γ = 0.01 and λ = 0.001.

The kernel of the homogeneous Markov chain defined by (1.14) is given for x ∈ Rd
and A ∈ B(Rd) by,

Rγ,λ(x,A) = (4πγ)−d/2
∫

A
exp

(
−(4γ)−1

∥∥∥y − x+ γ∇Uλ(x)
∥∥∥2
)

dy .

Since the target density for the Markov chain (1.14) is the regularized measure πλ and
not π, the algorithm is named the Moreau-Yosida regularized Unadjusted Langevin
Algorithm (MYULA).

The main result proved in Chapter 3 is that for all ε > 0 and x ∈ Rd, there exist
λ, γ0 > 0 such that for all γ ∈ (0, γ0],

‖δxRnγ,λ − π‖TV ≤ ε for n & d5 .

An interesting point of this study is the dependence of the regularization parameter
λ with respect to the dimension d. We show that λ should be of the order d−2 to have a
non-trivial bound on ‖πλ − π‖TV when d→ +∞. This dependence may appear severe;
geometry and probability measures in high dimension often exhibit counter-intuitive
behaviours. For example, most of the volume of a high dimensional ball of radius 1 is
contained in a narrow annulus near its surface of thickness of order 1/d. Similarly, the
volume of a high dimensional cube is mostly contained in its corners.

Subsequent to this work, [Hsi+18] suggested a mirrored Langevin Dynamics algo-
rithm to sample from constrained domains in Rd. When π is strongly log-concave, the
authors show that it is possible to draw approximate samples from π by iterating at
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most about d times an appropriate Markov chain defined on the unconstrained space
Rd. However, this general result is only existential and practical algorithms have to
be developed on a case-by-case basis. The authors give an explicit application on the
simplex. Besides, contrary to what is reported in [Hsi+18, Table 1], our result holds for
non-strongly log-concave distributions π and is thus more general than their framework.

1.4.2 Sampling from superquadratic potentials U : TULA

The ULA algorithm is unstable if ∇U is superlinear i.e. lim inf‖x‖→+∞ ‖∇U(x)‖ / ‖x‖ =
+∞, see [RT96, Theorem 3.2], [MSH02] and [HJK11]. This is illustrated with a particular
example in [MSH02, Lemma 6.3] where the SDE (1.9) is considered in one dimension
with U(x) = x4/4 along with the associated Euler discretization (1.10). It is shown that
for all γ > 0, if E

[
X2

0
]
≥ 2/γ, then limn→+∞ E

[
X2
n

]
= +∞. Moreover, the sample path

(Xn)n∈N diverges to infinity with positive probability.

Until recently, either implicit numerical schemes, e.g. see [MSH02] and [HMS02], or
adaptive stepsize schemes, e.g. see [LMS07], were used to address this problem. So called
S-ROCK methods were also developed to tackle this issue, see [AL08; AC08]. In the last
few years, a new generation of explicit numerical schemes, which are computationally
efficient, has been introduced by “taming” appropriately the superlinearly growing drift,
see [HJK12] and [Sab13] for more details.

Nonetheless, with the exception of [MSH02], these works focus on the discretization
of SDEs with superlinear coefficients in finite time. We aim at extending these techniques
to sample from π. To deal with the superlinear nature of ∇U , based on previous studies
on the tamed Euler scheme [HJK12], [Sab13], [HJ15], we introduce the tamed ULA
(TULA) defined for k ∈ N by

Xk+1 = Xk − γ
∇U(Xk)

1 + γ ‖∇U(Xk)‖
+
√

2γWk+1 , X0 = x0 . (1.15)

We denote by Rγ the associated Markov kernel. Note that in Chapter 4, we deal with a
more general framework, allowing various ways to tame the superlinear drift.

We provide a simple qualitative comparison of ULA and TULA in dimension 2 with
a potential U(x) = ‖x‖4 /4, X0 ∼ N (0, Id) and γ = 0.2. Table 1.1 displays the values of
the coordinates of the trajectory of ULA just before divergence. In contrast, the TULA
algorithm stays stable and the trajectory centered around 0.

The potential U is assumed to be locally gradient Lipschitz, with a Lipschitz constant
growing at most polynomially, i.e. for all x, y ∈ Rd,

‖∇U(x)−∇U(y)‖ ≤ L
{

1 + ‖x‖` + ‖y‖`
}
‖x− y‖ ,

where `, L ≥ 0. Under an additional weak assumption, we show in Chapter 4 that there
exist a function V : Rd → [1,+∞), λ ∈ (0, 1) such that for all γ small enough, x ∈ Rd
and n ∈ N, ∥∥∥δxRnγ − π∥∥∥

V
. nγλnγV (x) +√γ .
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x1 x2
0.219694 0.543533
−0.557107 0.633944
−3.11446 1.12509
3.91808 −0.0845583
−7.76336 0.392261
85.5875 −3.7498
−125545 5500.15

Table 1.1: Excerpt of the coordinates of ULA before divergence.

In addition of this V -uniform geometric ergodicity of the TULA Markov kernel, an upper
bound on the 2-Wasserstein distance is provided:

W 2
2 (δxRnγ , π) . nγλnγV (x) + γ . (1.16)

If the Hessian of U , ∇2U , is locally β-Hölder, with β ∈ [0, 1], (1.16) can be improved as

W 2
2 (δxRnγ , π) . nγ1+βλnγV (x) + γ1+β .

Under smoothness assumptions on the potential U , we recover standard bounds with
respect to n ∈ N∗ and γ > 0 on the weak error, see [MST10, Theorems 5.1, 5.2],∣∣∣∣∣E

[
1
n

n−1∑
k=0

f(Xk)− π(f)
]∣∣∣∣∣ . γ + 1

nγ
,

and on the mean square error

E

( 1
n

n−1∑
k=0

f(Xk)− π(f)
)2 . γ2 + 1

nγ
.

The proof technique is a simple adaptation from the method presented in Section 1.3
to show (1.12). In conclusion, TULA is more robust than ULA, with similar theoretical
guarantees and should be preferred in practice, especially when the potential U is likely
to grow fast at infinity.

1.5 Applications of the unadjusted Langevin algorithm

In Part II, we present a direct application of the ULA algorithm to compute normalizing
constants with precise theoretical guarantees. In a second step, we give a new control
variates methodology for the ULA, RWM and MALA algorithms, that is directly inspired
by the comparison of ULA dynamics to the (overdamped) Langevin diffusion.
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1.5.1 Estimating the normalizing constant of log-concave densities

Let U : Rd → R be a continuously differentiable convex function such that Z =∫
Rd e−U(x)dx < +∞. Z is the (unknown) normalizing constant of the probability density
π associated with the potential U, defined for x ∈ Rd by π(x) = Z−1e−U(x). In Chap-
ter 5, we present and discuss a method to estimate Z with polynomial complexity in the
dimension d.

Computing the normalizing constant is a challenge which has applications in Bayesian
inference and statistical physics in particular. In statistical physics, Z is better known
under the name of partition function or free energy [Bal07], [LSR10]. Free energy differ-
ences allow to quantify the relative likelihood of different states (microscopic configura-
tions) and are linked to thermodynamic work and heat exchanges. In Bayesian inference,
the models can be compared by the computation of the Bayes factor which is the ratio of
two normalizing constants (see e.g. [Rob07, chapter 7]). This problem has consequently
attracted a wealth of contribution; see for example [CSI00, chapter 5], [MR09], [FW12],
[Ard+12], [D+13], [Knu+15], [ZJA15] and, for a more specific molecular simulations fla-
vor, [LSR10]. [CLS12] considers an application originated from computational statistical
physics to enhance the sampling of MCMC for mixture Bayesian posterior distributions.

Our algorithm relies on a sequence of Gaussian densities with increasing variances,
combined with the precise bounds of [DM16]. Assume without loss of generality that U
has a minimum x? = 0 and U(x?) = 0. Let M ∈ N?, {σ2

i }Mi=0 be a positive increasing
sequence of real numbers and set σ2

M = +∞. Consider the sequence of functions {Ui}Mi=0
defined for all i ∈ {0, . . . ,M} and x ∈ Rd by

Ui(x) = ‖x‖
2

2σ2
i

+ U(x) ,

with the convention 1/∞ = 0. We define a sequence of probability densities {πi}Mi=0 for
i ∈ {0, . . . ,M} and x ∈ Rd by

πi(x) = Z−1
i e−Ui(x) , Zi =

∫
Rd

e−Ui(y)dy .

By definition, note that UM = U, ZM = Z and πM = π. As in the multistage sampling
method [GM98, Section 3.3], we use the following decomposition

Z

Z0
=

M−1∏
i=0

Zi+1
Zi

.

Z0 is estimated by choosing σ2
0 small enough so that π0 is sufficiently close to a Gaussian

distribution of mean 0 and covariance σ2
0 Id. For i ∈ {0, . . . ,M − 1}, the ratio Zi+1/Zi

may be expressed as
Zi+1
Zi

=
∫
Rd
gi(x)πi(x)dx = πi(gi) ,

where gi : Rd → R+ is defined for all x ∈ Rd by

gi(x) = exp
(
ai ‖x‖2

)
, ai = 1

2

(
1
σ2
i

− 1
σ2
i+1

)
.
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The quantity πi(gi) is estimated by ULA targeting πi. More precisely, we define M
(ULA) Markov chains for i ∈ {0, . . . ,M − 1} and k ∈ N by

Xi,k+1 = Xi,k − γi∇Ui(Xi,k) +
√

2γiWi,k+1 , Xi,0 = 0 ,

where {(Wi,k)k∈N?}M−1
i=0 are independent i.i.d. sequences of standard Gaussian random

variables and γi > 0 is the stepsize. For i ∈ {0, . . . ,M − 1}, consider the following
estimator of Zi+1/Zi,

π̂i(gi) = 1
ni

Ni+ni∑
k=Ni+1

gi(Xi,k) ,

where ni ≥ 1 is the sample size and Ni ≥ 0 the burn-in period. To simplify the presen-
tation, we assume that U is m-strongly convex. In Chapter 5, we give an explicit choice
of the simulation parameters

S =
{
M, {σ2

i }M−1
i=0 , {γi}M−1

i=0 , {ni}M−1
i=0 , {Ni}M−1

i=0

}
,

such that Ẑ the following estimator of Z,

Ẑ = (2πσ2
0)d/2(1 + σ2

0m)−d/2
{
M−1∏
i=0

π̂i(gi)
}
, (1.17)

satisfies
P
(∣∣∣Ẑ/Z − 1

∣∣∣ > ε
)
≤ µ , for µ, ε ∈ (0, 1) .

The cost of the algorithm defined by cost =
∑M−1
i=0 {Ni + ni} is upper bounded by d5/2

up to logarithmic factors when U is strongly convex, and ∇U , ∇2U are Lipschitz. Note
that in the expression of Ẑ (1.17), Z0 is approximated by (2πσ2

0)d/2(1 + σ2
0m)−d/2. A

more refined decomposition is possible to compute Z0:

Z0 = (2πσ2
0)d/2

∫
Rd

e−U(x) e−‖x‖2/(2σ2
0)

(2πσ2
0)d/2

dx .

The integral can be estimated by a classical Monte Carlo method using i.i.d. samples
from the Gaussian distribution of covariance matrix σ2

0 Id. In Figure 1.3, we display the
values of the estimators π̂i(gi) in y-axis, with respect to the iteration i ∈ {0, . . . ,M − 1}
in x-axis for a Bayesian logistic regression model. 10 independent simulations are run
at each phase i ∈ {0, . . . ,M − 1} to measure the variability of each estimator π̂i(gi).

1.5.2 Diffusion approximations and control variates for MCMC

In Section 1.1, we underlined the fact that one of the main goals of MCMC methods is
to estimate π(f) for a specific, π-integrable function f : Rd → R, see (1.4). A natural
Monte Carlo estimator of π(f) is π̂n(f) defined for n ∈ N∗ by

π̂n(f) = 1
n

n−1∑
k=0

f(Xk) , (1.18)
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Figure 1.3: Error plot of π̂i(gi) for i ∈ {0, . . . ,M − 1} in the example of a logistic regression.
The mean of π̂i(gi) is displayed in black and is spaced apart from the other two curves by the
standard deviation of π̂i(gi).

where (Xk)k∈N are the samples of a Markov chain targeting π. Reducing the variance of
Monte Carlo estimators such as π̂n(f) is a very active research domain: see e.g. [RC04,
Chapter 4], [Liu08, Section 2.3], and [RK17, Chapter 5] for an overview of the main
methods.

In Chapter 6, we propose a method based on control variates, i.e. π-integrable func-
tions h = (h1, . . . , hp) : Rd → Rp satisfying π(hi) = 0 for i ∈ {1, . . . , p}. Note that for
all θ ∈ Rp, π(f) = π(f + θTh), and we try to find ϑ ∈ Rp such that the variance of
π̂n(f + ϑTh) is smaller than the variance of π̂n(f).

Unfortunately, explicit, non-asymptotic expressions of the variance of π̂n(f) are often
intricate. Our methodology relies on the asymptotic variance of π̂n(f) when n → +∞.
Indeed, under weak conditions [MT09, Chapter 17], the estimator π̂n(f) satisfies for any
initial distribution a Central Limit Theorem (CLT)

n−1/2
n−1∑
k=0

(f(Xk)− π(f)) weakly=⇒
n→+∞

N (0, σ2
∞,d(f)) , σ2

∞,d(f) = π
(
(f̂d)2 − (Rf̂d)2

)
,

(1.19)
where N (m,σ2) denotes a Gaussian distribution with mean m and variance σ2, and f̂d
is a solution of the Poisson equation

(R− Id)f̂d = −{f − π(f)} . (1.20)

We seek to minimize the asymptotic variance and choose θ ∈ Rp such that σ2
∞,d(f +

θTh) ≤ σ2
∞,d(f).
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[Hen97] and [Mey08, Section 11.5] proposed control variates of the form (R− Id)θTψ
where ψ = (ψ1, . . . , ψp) are known π-integrable functions. The parameter θ ∈ Rp is
obtained by minimizing the asymptotic variance

min
θ∈Rp

σ2
∞,d(f + (R− Id)θTψ) = min

θ∈Rp
π

({
f̂d − θTψ

}2
−
{
R(f̂d − θTψ)

}2
)
, (1.21)

noting that (−θTψ) is a solution of the Poisson equation associated to (R− Id)θTψ and
f̂d is defined in (1.20). The method suggested in [Mey08, Section 11.5] to minimize
(1.21) requires estimates of the solution f̂d of the Poisson equation. Temporal Differ-
ence learning is a possible candidate, but this method is complex and suffers from high
variance.

[DK12] noticed that if R is reversible w.r.t. π, it is possible to optimize the limiting
variance (1.21) without computing explicitly the Poisson solution f̂d. Reversibility plays
also an important role in our methodology.

Each of the algorithms in the aforementioned literature requires computation of Rψi
for each i ∈ {1, . . . , p}, which is in general a computational challenge. In [Hen97; Mey08]
this is addressed by restricting to kernels for which R(x, · ) has finite support for each x,
and in [DK12] the authors restrict mainly to Gibbs samplers in their numerical examples.

In Chapter 6, an alternative class of control variates is used to avoid this compu-
tational barrier. This approach follows [AC99] (applications to quantum Monte Carlo
calculations) and [MSI13; PMG14] (Bayesian statistics): assume that U is continuously
differentiable, and for any twice continuously differentiable function ϕ, define Lϕ by

Lϕ = −〈∇U,∇ϕ〉+ ∆ϕ . (1.22)

Note that L is the generator of the Langevin diffusion given in (1.11). Under mild
conditions on ϕ, it may be shown that π(Lϕ) = 0. [MSI13] suggested to use L(θTψ)
with ψ = (ψ1, . . . , ψp) as control variates and choose θ by minimizing θ 7→ π({f −
π(f) + LθTψ}2). This approach has triggered numerous work, among others [OGC16],
[OG16] and [Oat+18] which introduce control functionals; a nonparametric extension of
control variates. A drawback of this method stems from the fact that the optimization
criterion π({f−π(f)+LθTψ}2) is only theoretically justified if (Xk)k∈N is i.i.d. and might
significantly differ from the asymptotic variance σ2

∞,d(f + L(θTψ)) defined in (6.1).

In Chapter 6, we propose a new method to construct control variates. Analysis and
motivation are based on the overdamped Langevin diffusion defined in (1.9). Under
smoothness and ‘tail’ conditions on f and ∇U , the following CLT holds for any initial
condition (see [Bha82; CCG12])

t−1/2
∫ t

0
{f(Ys)− π(f)}ds weakly=⇒

t→+∞
N (0, σ2

∞(f)) , σ2
∞(f) = 2π

(
f̂{f − π(f)}

)
, (1.23)

where f̂ : Rd → R is a solution of the (continuous-time) Poisson equation

Lf̂ = −{f − π(f)} . (1.24)
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We introduce a new class of control variates based on the expression of the asymptotic
variance σ2

∞(f) given in (1.23). Since π(L(θTψ)) = 0 for any θ ∈ Rd, we consider the
control variate L(θ∗(f)Tψ) where θ∗(f) is chosen by minimizing

θ 7→ σ2
∞(f + L(θTψ)) . (1.25)

Although L(θ∗(f)Tψ) is a control variate for the Langevin diffusion associated with f ,
the choice of this optimization criterion is motivated by the fact that for some MCMC
algorithms, the asymptotic variance σ2

∞,d(f) defined in (1.19) is (up to a scaling factor) a

good approximation of the asymptotic variance of the Langevin diffusion σ2
∞(f) defined

in (1.23). Moreover, the minimization of (1.25) admits a unique solution θ∗(f), which is
in general easy to estimate. It is worthwhile to note that it is not required to know the
Poisson solution f̂ to minimize (1.25).

1.6 Stochastic Gradient Langevin Dynamics

The ULA algorithm defined in (1.10) requires to compute at each step the gradient of
the potential U . However, in Bayesian machine learning, U is proportional to minus
the logarithm of the posterior distribution and is the sum of a large number of items.
More precisely, let denote by z = {zi}Ni=1 the observations and consider a situation where
the target distribution π arises as the posterior in a Bayesian inference problem with
prior density π0(θ) and a large number N � 1 of i.i.d. observations zi with likelihoods
p(zi|θ). In this case, π(θ) = π0(θ)

∏N
i=1 p(zi|θ). We denote Ui(θ) = − log(p(zi|θ)) for

i ∈ {1, . . . , N}, U0(θ) = − log(π0(θ)), U =
∑N
i=0 Ui. Evaluating the gradient of U ,

∇U(θ) =
∑N
i=0∇Ui(θ) in θ ∈ Rd is computationally intensive. The cost of one iteration

of ULA is Nd which is prohibitively large for massive datasets (N � 1).

In order to scale up to the big data setting, Welling and Teh [WT11] suggested to
replace ∇U with an unbiased estimate ∇U0 + (N/p)

∑
i∈S ∇Ui where S is a minibatch

of {1, . . . , N} with replacement of size p. A single update of the resulting algorithm,
Stochastic Gradient Langevin Dynamics (SGLD), is then given for k ∈ N by

θk+1 = θk − γ

∇U0(θk) + N

p

∑
i∈Sk+1

∇Ui(θk)

+
√

2γWk+1 .

The idea of using only a fraction of data points to compute an unbiased estimate of the
gradient at each iteration comes from Stochastic Gradient Descent (SGD) which is a
popular algorithm to minimize the potential U . SGD is very similar to SGLD because
it is characterised by the same recursion as SGLD but without Gaussian noise:

θk+1 = θk − γ

∇U0(θk) + N

p

∑
i∈Sk+1

∇Ui(θk)

 .
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Assuming for simplicity that U has a minimizer θ?, we can define a control variates
version of SGLD, SGLDFP, see [Dub+16; Che+17], given for k ∈ N by

θk+1 = θk − γ

∇U0(θk)−∇U0(θ?) + N

p

∑
i∈Sk+1

{∇Ui(θk)−∇Ui(θ?)}

+
√

2γWk+1 .

In Chapter 7, we provide insights on the links between SGLD, SGLDFP, ULA and
SGD. In our analysis, the algorithms are used with a constant step size and the pa-
rameters are set to the standard values used in practice: in particular, γ ≈ 1/N . The
ULA, SGD, SGLD and SGLDFP algorithms define homogeneous Markov chains, each
of which admits a unique stationary distribution used as a hopefully close proxy of π.
Our main contribution is to show that, while the invariant distributions of ULA and
SGLDFP become closer to π as the number of data points N increases, on the opposite,
the invariant measure of SGLD never comes close to the target distribution π and is in
fact very similar to the invariant measure of SGD.

We show that the number of iterations necessary to obtain a sample ε-close from
π in Wasserstein distance is the same for ULA and SGLDFP. However for ULA, the
cost of one iteration is Nd which is much larger than pd the cost of one iteration for
SGLDFP. In other words, to obtain an approximate sample from the target distribution
at an accuracy O(1/

√
N) in 2-Wasserstein distance, LMC requires about N operations,

in contrast with SGLDFP that needs only a number of operations independent of N .

Summary of our contributions
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� Brosse, N., Durmus, A., Moulines, É. Normalizing constants of log-concave densi-
ties. Electron. J. Statist. 12 (2018), no. 1, 851–889. doi:10.1214/18-EJS1411.

� Brosse, N., Durmus, A., Moulines, É., & Sabanis, S. The Tamed Unadjusted
Langevin Algorithm. Stochastic Processes and their Applications (2018), ISSN
0304-4149.

� Brosse, N., Durmus, A., Moulines, É. The promises and pitfalls of Stochastic Gra-
dient Langevin Dynamics, NeurIps 2018.

and preprint:

� Brosse, N., Durmus, A., Meyn, S., & Moulines, E. (2018). Diffusion approxima-
tions and control variates for MCMC. arXiv preprint arXiv:1808.01665.
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Chapter 2

Résumé de la thèse

Dans ce Chapitre, nous présentons nos contributions qui sont divisées en 3 grandes
parties:

1. les extensions d’ULA en Section 1.4,

2. les applications d’ULA en Section 1.5,

3. une analyse de Stochastic Gradient Langevin Dynamics (SGLD) en Section 1.6.

2.1 Extensions de l’algorithme de Langevin non-ajusté

Dans la partie I de cette thèse, deux limitations de l’algorithme ULA défini en (1.10) sont
traitées. Premièrement, ULA est bien défini et réalisable si le potentiel U est continuelle-
ment différentiable sur Rd : il ne peut pas être appliqué directement à une distribution π
limitée à un ensemble compact convexe. Cependant, de nombreux problèmes d’inférence
statistique impliquent l’estimation de paramètres soumis à des contraintes sur l’espace
des paramètres. L’algorithme MYULA proposé dans [DMP18] permet de tirer des échan-
tillons approximatifs à partir de distributions avec un support compact en régularisant
correctement le potentiel U . Dans le Chapitre 3, nous calculons des limites précises de
convergence en variation totale et en distance de Wasserstein pour cet algorithme.

Deuxièmement, quand le potentiel U augmente trop vite à l’infini, i.e. ‖U(x)‖ &
‖x‖2+α lorsque ‖x‖ → +∞ et avec α > 0, ULA est instable et peut diverger avec prob-
abilité non nulle. Inspirés par des travaux récents sur la discrétisation des SDEs avec
des coefficients de dérive superlinéaire [HJK12; Sab13], nous proposons un nouvel algo-
rithme dans le Chapitre 4, le ”tamed” ULA, et fournissons des garanties de convergence
en V -variation totale et en distance de Wasserstein d’ordre 2.

2.1.1 Echantillonnage d’une distribution avec un support compact :
MYULA

Considérons dans un cadre bayésien une distribution postérieure π avec un support
borné. Voici quelques exemples : les problèmes de données tronquées qui surviennent

25
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naturellement dans les études de temps de survie et d’extinction, [KM05], modèles de
données ordinales [JA06], régressions Lasso et régressions ridge [Cel+12], Latent Dirichlet
Allocation [BNJ03], et la factorisation matricielle positive [PBJ14]. Tirer des échantillons
d’une distribution ainsi contrainte est un problème difficile à résoudre qui a fait l’objet de
nombreux articles ; voir [GSL92], [PP14], [LS15], [BEL15], [Hsi+18]. Tous ces travaux
sont basés sur l’efficacité de la châıne de Markov pour estimer la distribution postérieure ;
cependant, à l’exception de [BEL15] et [Hsi+18], ces méthodes ne sont pas bien comprises
en théorie et ne fournissent aucune garantie théorique sur les estimations fournies.

Une modification d’ULA a été proposée dans [DMP18] pour échantillonner à partir
d’une distribution de probabilité log-concave non lisse sur Rd. Cette méthode appelée
MYULA est principalement basée sur une version régularisée de la distribution cible π
qui jouit d’un certain nombre de propriétés favorables qui sont utiles pour la simulation
MCMC. Dans cette étude, nous analysons la complexité de cet algorithme lorsqu’il est
appliqué à des distributions log-concave limitées à un ensemble convexe, l’accent étant
mis sur la complexité à mesure que la dimension de l’espace d’état augmente. Plus
précisément, nous établissons des limites explicites en variation totale et en distance de
Wasserstein d’ordre 1 entre les itérations de la châıne de Markov et la densité cible π.

Il est à noter que l’algorithme de Langevin ajusté par Metropolis (MALA) est une
solution alternative à ULA pour échantillonner à partir d’une distribution à support
compact. Toutefois, aucune limite de convergence précise n’était disponible pour MALA.
Suite à ces travaux, [Dwi+18] a fourni des limites de convergence précises pour MALA
et une nouvelle analyse du problème de l’échantillonnage d’une distribution à support
compact dans cette perspective serait un travail de recherche intéressant.

Soit K ⊂ Rd un ensemble compact convexe tel que B(0, r) ⊂ K ⊂ B(0, R) et ιK :
Rd → {0,+∞} la fonction indicatrice (convexe) de K, définie pour tout x ∈ Rd par,

ιK(x) =
{

+∞ si x /∈ K,

0 si x ∈ K .

Soit f : Rd → R une fonction convexe, gradient Lipschitz, continuellement différentiable.
Considérons une densité de probabilité π associée à un potentiel U : Rd → (−∞,+∞]
de la forme U = f + ιK. Pour appliquer ULA, [DMP18] a suggéré de régulariser U de
telle sorte que

1. la convexité de U est préservée (cette propriété est la clé de l’analyse théorique de
l’algorithme),

2. la régularisation de U est continuellement différentiable et gradient Lipschitz (cette
propriété de régularité est la clé de la stabilité de l’algorithme),

3. l’approximation résultante est proche de π (e.g. en variation totale).

L’outil utilisé pour construire une telle approximation est l’enveloppe Moreau-Yosida
de ιK, ιλK : Rd → R+ définie pour x ∈ Rd par,

ιλK(x) = inf
y∈Rd

(
ιK(y) + (2λ)−1 ‖x− y‖2

)
= (2λ)−1 ‖x− projK (x)‖2 ,
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où λ > 0 est un paramètre de régularisation et projK est la projection sur K. ιλK est
convexe et continuellement différentiable avec un gradient donné pour tout x ∈ Rd par :

∇ιλK(x) = λ−1(x− projK (x)) .

∇ιλK est λ−1-Lipschitz. Ajouter f à ιλK conduit à la régularisation Uλ : Rd → R du
potentiel U défini pour tout x ∈ Rd par Uλ(x) = f(x) + ιλK(x). La probabilité associée
πλ sur Rd est donnée pour tout x ∈ Rd par

πλ(x) = e−Uλ(x)
/∫

Rd
e−Uλ(y)dy ,

est bien définie et log-concave. De plus, Uλ est gradient Lipschitz et continuellement
différentiable avec ∇Uλ donné pour tout x ∈ Rd par

∇Uλ(x) = −∇ log πλ(x) = ∇f(x) + λ−1(x− projK (x)) .

L’algorithme proposé dans [DMP18] utilise ensuite la discrétisation d’Euler-Maruyama
de l’équation de Langevin associée à Uλ, avec πλ comme proxy, pour générer des échan-
tillons approximatifs à partir de π. Il utilise la châıne de Markov (Xk)k∈N, débutée à
X0, donnée pour tout k ∈ N par

Xk+1 = (1− γ

λ
)Xk − γ∇f(Xk) + γ

λ
projK (Xk) +

√
2γWk+1 , (2.1)

où (Wk)k∈N est une séquence de vecteurs d-dimensionnels gaussiens standards et γ > 0
est le pas. Notez que cet algorithme suppose que la projection sur K est relativement
facile à calculer.

Le noyau de la châıne de Markov homogène définie par (2.1) est donné pour x ∈ Rd
et A ∈ B(Rd) par,

Rγ,λ(x,A) = (4πγ)−d/2
∫

A
exp

(
−(4γ)−1

∥∥∥y − x+ γ∇Uλ(x)
∥∥∥2
)

dy .

Puisque la densité cible de la châıne de Markov (1.14) est la mesure régularisée πλ et non
π, l’algorithme est appelé MYULA (Moreau-Yosida Unadjusted Langevin Algorithm).

Le résultat principal prouvé dans le Chapitre 3 est que pour tout ε > 0 et x ∈ Rd, il
existe λ, γ0 > 0 tel que pour tout γ ∈ (0, γ0],

‖δxRnγ,λ − π‖TV ≤ ε pour n & d5 .

Un point intéressant de cette étude est la dépendance du paramètre de régularisation
λ par rapport à la dimension d. Nous montrons que λ devrait être de l’ordre d−2 pour
avoir une borne non triviale sur ‖πλ − π‖TV quand d → +∞. Cette dépendance peut
sembler importante; La géométrie et les probabilités en haute dimension présentent sou-
vent des comportements contre-intuitifs. Par exemple, la plus grande partie du volume
d’une boule de grande dimension de rayon 1 est contenue dans un anneau étroit près
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de sa surface d’épaisseur de l’ordre de 1/d. De même, le volume d’un cube de grande
dimension est principalement contenu dans ses coins.

Suite à ce travail, [Hsi+18] a suggéré un algorithme de dynamique de Langevin en
miroir pour échantillonner des domaines contraints dans Rd. Lorsque π est fortement
log-concave, les auteurs montrent qu’il est possible de tirer des échantillons approximatifs
de π en itérant au maximum environ d fois une châıne de Markov appropriée définie sur
l’espace entier Rd. Cependant, ce résultat général n’est qu’existentiel et des algorithmes
pratiques doivent être développés au cas par cas. Les auteurs donnent une application
explicite sur le simplex. En outre, contrairement à ce qui est rapporté dans [Hsi+18,
Tableau 1], notre résultat est valable pour les distributions non fortement log-concaves
π et est donc plus général que leur cadre.

2.1.2 Echantillonnage des potentiels superquadratiques U : TULA

L’algorithme ULA est instable si∇U est super linéaire i.e. lim inf‖x‖→+∞ ‖∇U(x)‖ / ‖x‖ =
+∞, voir [RT96, Theorem 3.2], [MSH02] et [HJK11]. Ceci est illustré par un exemple
particulier dans [MSH02, Lemma 6.3] où la SDE (1.9) est considérée en une dimension
avec U(x) = x4/4 avec la discrétisation Euler associée (1.10). Il est montré que pour
tout γ > 0, si E

[
X2

0
]
≥ 2/γ, alors limn→+∞ E

[
X2
n

]
= +∞. De plus, (Xn)n∈N diverge à

l’infini avec une probabilité positive.
Jusqu’à récemment, soit des schémas numériques implicites, par exemple voir [MSH02]

et [HMS02], soit des schémas pas à pas adaptatifs, par exemple voir [LMS07], étaient
utilisés pour aborder ce problème. Des méthodes dites S-ROCK ont également été mises
au point pour résoudre ce problème, voir [AL08; AC08]. Au cours des dernières an-
nées, une nouvelle génération de schémas numériques explicites, qui sont efficaces sur le
plan informatique, a été introduite en ”amortissant” de manière appropriée la dérive de
croissance superlinéaire, voir [HJK12] et [Sab13] pour plus de détails.

Néanmoins, à l’exception de [MSH02], ces travaux se concentrent sur la discrétisation
des SDEs à coefficients superlinéaires en temps fini. Notre objectif est d’étendre ces
techniques à l’échantillonnage à partir de π. Pour traiter de la nature super-linéaire
de ∇U , nous nous basons sur des études antérieures sur le schéma d’Euler ”apprivoisé”
[HJK12], [Sab13], [HJ15], et présentons le Tamed ULA (TULA) défini pour k ∈ N par

Xk+1 = Xk − γ
∇U(Xk)

1 + γ ‖∇U(Xk)‖
+
√

2γWk+1 , X0 = x0 . (2.2)

Nous désignons par Rγ le noyau de Markov associé. Notez que dans le Chapitre 4,
nous traitons d’un cadre plus général, permettant de réduire la dérive super-linéaire de
différentes manières.

Le potentiel U est supposé être localement gradient Lipschitz, avec une constante de
Lipschitz au plus polynomiale, i.e. pour tout x, y ∈ Rd,

‖∇U(x)−∇U(y)‖ ≤ L
{

1 + ‖x‖` + ‖y‖`
}
‖x− y‖ ,

où `, L ≥ 0. Sous une hypothèse faible supplémentaire, nous montrons dans le Chapitre 4
qu’il existe une fonction V : Rd → [1,+∞), λ ∈ (0, 1) telle que pour tout γ assez petit,
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x ∈ Rd et n ∈ N, ∥∥∥δxRnγ − π∥∥∥
V
. nγλnγV (x) +√γ .

En plus de cette ergodicité géométrique uniforme de V du noyau de Markov TULA, une
borne supérieure sur la distance en 2-Wasserstein est fournie :

W 2
2 (δxRnγ , π) . nλnγV (x) + γ . (2.3)

Si la hessienne de U , ∇2U , est localement β-Hölder, avec β ∈ [0, 1], (2.3) peut être
amélioré:

W 2
2 (δxRnγ , π) . nγ1+βλnγV (x) + γ1+β .

En supposant que le potentiel U est suffisamment lisse, nous récupérons les bornes stan-
dards par rapport à n ∈ N∗ et γ > 0 sur l’erreur faible, voir [MST10, Theorems 5.1,
5.2], ∣∣∣∣∣E

[ 1
n

∑
k=0;n− 1
f

(Xk)− π(f)
]∣∣∣∣∣ . γ + 1

nγ
,

et sur l’erreur quadratique moyenne

E

( 1
n

∑
k=0;n− 1
f

(Xk)− π(f)
)2
 . γ2 + 1

nγ
.

La technique de preuve est une adaptation simple de la méthode présentée dans la
Section 1.3 pour montrer (1.12). En conclusion, TULA est plus robuste que ULA, avec
des garanties théoriques similaires et devrait être préféré dans la pratique, surtout lorsque
le potentiel U est susceptible de crôıtre rapidement à l’infini.

2.2 Applications de l’algorithme de Langevin non-ajusté

Dans la partie II, nous présentons une application directe de l’algorithme ULA pour
calculer des constantes de normalisation avec des garanties théoriques précises. Dans
une deuxième étape, nous donnons une nouvelle méthodologie de variables de contrôle
pour les algorithmes ULA, RWM et MALA, qui s’inspire directement de la comparaison
de la dynamique ULA à la diffusion de Langevin.

2.2.1 Estimation de la constante de normalisation de densités log-
concaves

Soit U : Rd → R une fonction convexe continuellement différentiable telle que Z =∫
Rd e−U(x)dx < +∞. Z est la constante de normalisation (inconnue) de la densité de

probabilité π associée au potentiel U, définie pour tout x ∈ Rd par π(x) = Z−1e−U(x).
Dans le Chapitre 5, nous présentons et discutons une méthode pour estimer Z avec une
complexité polynomiale dans la dimension d.

Le calcul de la constante de normalisation est un défi qui a des applications en in-
férence bayésienne et en physique statistique en particulier. En physique statistique, Z
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est mieux connu sous le nom de fonction de partition ou énergie libre [Bal07], [LSR10].
Les différences d’énergie libre permettent de quantifier la probabilité relative des dif-
férents états (configurations microscopiques) et sont liées au travail thermodynamique
et aux échanges thermiques. Dans l’inférence bayésienne, les modèles peuvent être com-
parés par le calcul du facteur de Bayes qui est le rapport de deux constantes de normali-
sation (voir e.g. [Rob07, chapitre 7]). Ce problème a par conséquent attiré de nombreuses
contributions ; voir par exemple [CSI00, chapitre 5], [MR09], [FW12], [Ard+12], [D+13],
[Knu+15], [ZJA15] et, pour la simulation moléculaire, [LSR10].

Notre algorithme repose sur une séquence de densités gaussiennes avec des variances
croissantes, combinées aux bornes précises de [DM16]. Supposons sans perte de général-
ité que U a un minimum en x? = 0 et U(x?) = 0. Soit M ∈ N?, {σ2

i }Mi=0 une séquence
croissante positive de nombres réels et définissons σ2

M = +∞. Considérons la séquence
de fonctions {Ui}Mi=0 définie pour tous les i ∈ {0, . . . ,M} et x ∈ Rd par

Ui(x) = ‖x‖
2

2σ2
i

+ U(x) ,

avec la convention 1/∞ = 0. Nous définissons une séquence de densités de probabilité
{πi}Mi=0 pour i ∈ {0, . . . ,M} et x ∈ Rd par

πi(x) = Z−1
i e−Ui(x) , Zi =

∫
Rd

e−Ui(y)dy .

Par définition, notons que UM = U, ZM = Z et πM = π. Comme dans la méthode
d’échantillonnage à plusieurs échelles [GM98, Section 3.3], nous utilisons la décomposi-
tion suivante

Z

Z0
=

M−1∏
i=0

Zi+1
Zi

.

Z0 est estimée en choisissant σ2
0 assez petit pour que π0 soit suffisamment proche d’une

distribution gaussienne de moyenne 0 et de covariance σ2
0 Id. Pour i ∈ {0, . . . ,M − 1},

le ratio Zi+1/Zi peut être exprimé comme suit

Zi+1
Zi

=
∫
Rd
gi(x)πi(x)dx = πi(gi) ,

où gi : Rd → R+ est définie pour tout x ∈ Rd par

gi(x) = exp
(
ai ‖x‖2

)
, ai = 1

2

(
1
σ2
i

− 1
σ2
i+1

)
.

La quantité πi(gi) est estimée par ULA ciblant πi. Plus précisément, nous définissons
M châınes de Markov basées sur ULA pour i ∈ {0, . . . ,M − 1} et k ∈ N par

Xi,k+1 = Xi,k − γi∇Ui(Xi,k) +
√

2γiWi,k+1 , Xi,0 = 0 ,
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où {(Wi,k)k∈N?}M−1
i=0 sont des séquences indépendantes de variables aléatoires gaussiennes

et γi > 0 est le pas. Pour i ∈ {0, . . . ,M−1}, considérons l’estimateur suivant de Zi+1/Zi,

π̂i(gi) = 1
ni

Ni+ni∑
k=Ni+1

gi(Xi,k) ,

où ni ≥ 1 est la taille de l’échantillon et Ni ≥ 0 la ”burn-in” période. Pour simplifier la
présentation, nous supposons que U est m-fortement convexe. Dans le Chapitre 5, nous
donnons un choix explicite des paramètres de simulation

S =
{
M, {σ2

i }M−1
i=0 , {γi}M−1

i=0 , {ni}M−1
i=0 , {Ni}M−1

i=0

}
,

de sorte que Ẑ l’estimateur suivant de Z,

Ẑ = (2πσ2
0)d/2(1 + σ2

0m)−d/2
{
M−1∏
i=0

π̂i(gi)
}
, (2.4)

satisfait
P
(∣∣∣Ẑ/Z − 1

∣∣∣ > ε
)
≤ µ , pour µ, ε ∈ (0, 1) .

Le coût de l’algorithme défini par cost =
∑M−1
i=0 {Ni + ni} est borné par d5/2 à des

facteurs logarithmiques près lorsque U est fortement convexe, et∇U ,∇2U sont Lipschitz.
Notez que dans l’expression Ẑ (2.4), Z0 est approximé par (2πσ2

0)d/2(1 +σ2
0m)−d/2. Une

décomposition plus fine est possible pour calculer Z0 :

Z0 = (2πσ2
0)d/2

∫
Rd

e−U(x) e−‖x‖2/(2σ2
0)

(2πσ2
0)d/2

dx .

L’intégrale peut être estimée par une méthode classique de Monte Carlo en utilisant des
échantillons i.i.d. de la distribution gaussienne avec une matrice de covariance σ2

0 Id. Un
point important à souligner est le fait que notre algorithme fournit un choix théorique-
ment fondé de la séquence de recuit des variances {σ2

i }
M−1
i=0 .

2.2.2 Limites diffusives et variables de contrôle pour MCMC

Dans la Section 1.1, nous avons souligné le fait que l’un des principaux objectifs des
méthodes MCMC est d’estimer π(f) pour une fonction spécifique, π-intégrable f : Rd →
R, voir (1.4). Un estimateur de Monte Carlo naturel de π(f) est π̂n(f) défini pour n ∈ N∗
par

π̂n(f) = 1
n

n−1∑
k=0

f(Xk) , (2.5)

où (Xk)k∈N sont les échantillons d’une châıne de Markov ciblant π. La réduction de la
variance des estimateurs de Monte Carlo tels que π̂n(f) est un domaine de recherche très
actif : voir e.g. [RC04, Chapitre 4], [Liu08, Section 2.3] et [RK17, Chapitre 5] pour une
présentation des principales méthodes.
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Dans le Chapitre 6, nous proposons une méthode basée sur les variables de contrôle,
i.e. π-fonctions intégrables h = (h1, . . . , hp) : Rd → Rp satisfaisant π(hi) = 0 pour
i ∈ {1, . . . , p}. Notez que pour tout θ ∈ Rp, π(f) = π(f + θTh), et nous essayons de
trouver ϑ ∈ Rp tel que la variance de π̂n(f + ϑTh) soit inférieure à celle de π̂n(f).

Malheureusement, les expressions explicites, non-asymptotiques de la variance de
π̂n(f) sont souvent complexes. Notre méthodologie repose sur la variance asymptotique
de π̂n(f) quand n → +∞. En effet, sous des hypothèses faibles [MT09, Chapitre 17],
l’estimateur π̂n(f) satisfait pour toute distribution initiale un théorème central limite
(TCL)

n−1/2
n−1∑
k=0

(f(Xk)−π(f)) weakly=⇒
n→+∞

N (0, σ2
∞,d(f)) , σ2

∞,d(f) = π
(
(f̂d)2 − (Rf̂d)2

)
, (2.6)

où N (m,σ2) désigne une distribution gaussienne avec moyenne m et variance σ2, et f̂d
est une solution de l’équation de Poisson

(R− Id)f̂d = −{f − π(f)} . (2.7)

Nous cherchons à minimiser la variance asymptotique et choisissons θ ∈ Rp tel que
σ2
∞,d(f + θTh) ≤ σ2

∞,d(f).
[Hen97] et [Mey08, Section 11.5] ont proposé des variables de contrôle de la forme (R−

Id)θTψ où ψ = (ψ1, . . . , ψp) sont des fonctions fixées intégrables sous π. Le paramètre
θ ∈ Rp est obtenu en minimisant la variance asymptotique

min
θ∈Rp

σ2
∞,d(f + (R− Id)θTψ) = min

θ∈Rp
π

({
f̂d − θTψ

}2
−
{
R(f̂d − θTψ)

}2
)
, (2.8)

notant que (−θTψ) est une solution de l’équation de Poisson associée à (R−Id)θTψ et f̂d
est définie dans (2.7). La méthode suggérée dans [Mey08, Section 11.5] pour minimiser
(2.8) nécessite des estimations de la solution f̂d de l’équation de Poisson. L’apprentissage
par différence temporelle est un candidat possible, mais cette méthode est complexe et
souffre d’une grande variance.

[DK12] a remarqué que si R est réversible w.r.t. π, il est possible d’optimiser la
variance limite (2.8) sans calculer explicitement la solution de Poisson f̂d. La réversibilité
joue également un rôle important dans notre méthodologie.

Chacun des algorithmes susmentionnés nécessite le calcul de Rψi pour chaque i ∈
{1, . . . , p}, ce qui est en général difficile. Dans [Hen97; Mey08] cela est résolu en se
limitant aux noyaux pour lesquels R(x, · ) a un support fini pour chaque x, et dans
[DK12] les auteurs se limitent principalement aux échantillonneurs Gibbs dans leurs
exemples numériques.

Dans le Chapitre 6, une classe alternative de variables de contrôle est utilisée pour
éviter cette barrière informatique. Cette approche suit [AC99] (applications aux calculs
quantiques de Monte Carlo) et [MSI13; PMG14] (statistiques bayésiennes): supposons
que U est continuellement différentiable, et pour toute fonction deux fois continuellement
différentiable ϕ, définissons Lϕ par

Lϕ = −〈∇U,∇ϕ〉+ ∆ϕ . (2.9)
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Notons que L est le générateur de la diffusion Langevin donnée dans (1.11). Avec des
conditions faibles sur ϕ, on peut montrer que π(Lϕ) = 0. [MSI13] suggère d’utiliser
L(θTψ) avec ψ = (ψ1, . . . , ψp) comme variables de contrôle et de choisir θ en minimisant
θ 7→ π({f − π(f) + LθTψ}2). Cette approche a déclenché de nombreux travaux, entre
autres [OGC16], [OG16] et [Oat+18] qui introduisent des fonctions de contrôle ; une ex-
tension non paramétrique des variables de contrôle. Un inconvénient de cette méthode
vient du fait que le critère d’optimisation π({f − π(f) + LθTψ}2) n’est théoriquement
justifié que si (Xk)k∈N est i.i.d. et peut différer significativement de la variance asymp-
totique σ2

∞,d(f + L(θTψ)) définie dans (??).
Dans le Chapitre 6, nous proposons une nouvelle méthode pour construire des vari-

ables de contrôle. L’analyse est basée sur la diffusion de Langevin définie dans (1.9).
Sous des conditions faibles sur f et ∇U , un TCL s’applique pour toute condition initiale
(voir [Bha82; CCG12])

t−1/2
∫ t

0
{f(Ys)− π(f)}ds weakly=⇒

t→+∞
N (0, σ2

∞(f)) , σ2
∞(f) = 2π

(
f̂{f − π(f)}

)
, (2.10)

où f̂ : Rd → R est une solution de l’équation de Poisson (en temps continu)

Lf̂ = −{f − π(f)} . (2.11)

Nous introduisons une nouvelle classe de variables de contrôle basée sur l’expression
de la variance asymptotique σ2

∞(f) donnée dans (2.10). Puisque π(L(θTψ)) = 0 pour
tout θ ∈ Rd, nous considérons la variable de contrôle L(θ∗(f)Tψ) où θ∗(f) est choisi en
minimisant

θ 7→ σ2
∞(f + L(θTψ)) . (2.12)

Bien que L(θ∗(f)Tψ) soit une variable de contrôle pour la diffusion Langevin associée à
f , le choix de cette option est motivé par le fait que pour certains MCMCs, le critère
d’optimisation de la variance asymptotique σ2

∞,d(f) définie dans (2.6) est (à un facteur
multiplicatif près) une bonne approximation de la variance asymptotique de la diffusion
de Langevin σ2

∞(f) définie dans (2.10). De plus, la minimisation de (2.12) admet une
solution unique θ∗(f), qui est en général facile à estimer. Il est intéressant de noter qu’il
n’est pas nécessaire de connâıtre la solution de Poisson f̂ pour minimiser (2.12).

2.3 Stochastic Gradient Langevin Dynamics

L’algorithme ULA défini dans (1.10) nécessite de calculer à chaque étape le gradient
du potentiel U . Cependant, dans l’apprentissage machine bayésien, U est proportionnel
au (moins le) logarithme de la distribution postérieure et est la somme d’un grand
nombre d’observations. Plus précisément, dénotons par z = {zi}Ni=1 les observations et
considérons une situation où la distribution cible π apparâıt comme le postérieur dans
un problème d’inférence bayésien avec une densité a priori π0(θ) et un grand nombre
N � 1 d’observations zi avec probabilités p(zi|θ). Dans ce cas, π(θ) = π0(θ)

∏N
i=1 p(zi|θ).

Nous dénotons Ui(θ) = − log((p(zi|θ)) pour i ∈ {1, . . . , N}, U0(θ) = − log(π0(θ)), U =
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∑N
i=0 Ui. Evaluer le gradient de U , ∇U(θ) =

∑N
i=0∇Ui(θ) en θ ∈ Rd est un calcul

coûteux. Le coût d’une itération d’ULA est de l’ordre de Nd, ce qui est prohibitif pour
des ensembles de données massifs (N � 1).

Afin d’adapter l’algorithme aux grandes données, Welling and Teh [WT11] a suggéré
de remplacer ∇U par une estimation non biaisée ∇U0 + (N/p)

∑
i∈S ∇Ui où S est un

mini-batch avec remplacement de {1, . . . , N} de la taille p. Une seule mise à jour de
l’algorithme en résultant, Stochastic Gradient Langevin Dynamics (SGLD), est alors
donnée pour k ∈ N par

θk+1 = θk − γ

∇U0(θk) + N

p

∑
i∈Sk+1

∇Ui(θk)

+
√

2γWk+1 .

L’idée de n’utiliser qu’une fraction des points de données pour calculer une estimation
non biaisée du gradient à chaque itération vient de Stochastic Gradient Descent (SGD)
qui est un algorithme populaire pour minimiser le potentiel U . SGD est très similaire au
SGLD car il se caractérise par la même récursivité que le SGLD mais sans bruit gaussien:

θk+1 = θk − γ

∇U0(θk) + N

p

∑
i∈Sk+1

∇Ui(θk)

 .

En supposant pour simplifier que U a un minimiseur θ?, nous pouvons définir une version
des variables de contrôle pour SGLD, SGLDFP, voir [Dub+16; Che+17], donnée pour
k ∈ N par

θk+1 = θk − γ

∇U0(θk)−∇U0(θ?) + N

p

∑
i∈Sk+1

{∇Ui(θk)−∇Ui(θ?)}

+
√

2γWk+1 .

Dans le Chapitre 7, nous donnons un aperçu des liens entre SGLD, SGLDFP, ULA et
SGD. Dans notre analyse, les algorithmes sont utilisés avec une taille de pas constante
et les paramètres sont réglés sur les valeurs standards utilisées dans la pratique : en
particulier, γ ≈ 1/N . Les algorithmes ULA, SGD, SGLD et SGLDFP définissent des
châınes de Markov homogènes, dont chacune admet une distribution stationnaire unique
utilisée comme proxy de π. Notre principale contribution est de montrer que, si les
distributions invariantes d’ULA et de SGLDFP se rapprochent de π à mesure que le
nombre de points de données N augmente, au contraire, la mesure invariante de SGLD
ne s’approche jamais de la distribution cible π et est en fait très similaire à celle de SGD.

Nous montrons que le nombre d’itérations nécessaires pour obtenir un échantillon à
distance ε de π en distance de Wasserstein est le même pour ULA et SGLDFP. Cepen-
dant, pour ULA, le coût d’une itération est de Nd, ce qui est beaucoup plus élevé que
pd le coût d’une itération pour SGLDFP. En d’autres termes, pour obtenir un échantil-
lon approximatif de la distribution cible avec une précision de O(1/

√
N) en distance de

2-Wasserstein, LMC nécessite environ N d’opérations, contrairement au SGLDFP qui
ne nécessite qu’un nombre d’opérations indépendant de N .
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support with proximal Langevin
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Abstract

This paper presents a detailed theoretical analysis of the Langevin Monte Carlo sam-
pling algorithm recently introduced in [DMP18] when applied to log-concave probability
distributions that are restricted to a convex body K. This method relies on a regularisa-
tion procedure involving the Moreau-Yosida envelope of the indicator function associated
with K. Explicit convergence bounds in total variation norm and in Wasserstein distance
of order 1 are established. In particular, we show that the complexity of this algorithm
given a first order oracle is polynomial in the dimension of the state space. Finally, some
numerical experiments are presented to compare our method with competing MCMC
approaches from the literature.
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3.1 Introduction

Many statistical inference problems involve estimating parameters subject to constraints
on the parameter space. In a Bayesian setting, these constraints define a posterior
distribution π with bounded support. Some examples include truncated data problems
which arise naturally in failure and survival time studies [KM05], ordinal data models
[JA06], constrained Lasso and ridge regressions [Cel+12], Latent Dirichlet Allocation
[BNJ03], and non-negative matrix factorization [PBJ14]. Drawing samples from such
constrained distributions is a challenging problem that has been investigated in many
papers; see [GSL92], [PP14], [LS15], [BEL15]. All these works are based on efficient
Markov Chain Monte Carlo methods to approximate the posterior distribution; however,
with the exception of the recent work [BEL15], these methods are not theoretically well
understood and do not provide any theoretical guarantees on the estimations delivered.

Recently a new MCMC method has been proposed in [DMP18] to sample from a
non-smooth log-concave probability distribution on Rd. This method is mainly based on
a carefully designed regularised version of the target distribution π that enjoys a number
of favourable properties that are useful for MCMC simulation. In this study, we analyse
the complexity of this algorithm when applied to log-concave distributions constrained
to a convex set, with a focus on the complexity as the dimension of the state space
increases. More precisely, we establish explicit bounds in total variation norm and in
Wasserstein distance of order 1 between the iterates of the Markov kernel defined by the
algorithm and the target density π.

The paper is organised as follows. Section 3.2.1 introduces the MCMC method of
[DMP18]. The main complexity result is stated in Section 3.2.2 and compared to previous
works on the subject. The proof of this result is presented in Section 3.3 and Section 3.4.
The methodology is then illustrated and compared to other approaches via experiments
in Section 3.5. Proofs are finally reported in Section 3.6.

3.2 The Moreau-Yosida Unadjusted Langevin Algorithm
(MYULA)

3.2.1 Presentation of MYULA

Let π be a probability measure on Rd with density w.r.t. the Lebesgue measure given for
all x ∈ Rd by π(x) = e−U(x)/

∫
Rd e−U(y)dy, where U : Rd → (−∞,+∞] is a measurable

function. In the sequel, U will be referred to as the potential associated with π. Assume
for the moment that U is continuously differentiable. Then, the unadjusted Langevin
algorithm (ULA) introduced in [Par81] (see also [RT96]) can be used to sample from
π. This algorithm is based on the overdamped Langevin stochastic differential equation
(SDE) associated with U ,

dYt = −∇U(Yt)dt+
√

2dBt , (3.1)

where (Bt)t≥0 is a d-dimensional Brownian motion. Under mild assumptions on ∇U ,
this SDE has a unique strong solution (Yt)t≥0 and defines a strong Markovian semigroup
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(Pt)t≥0 on (Rd,B(Rd)) which is ergodic with respect to π, where B(Rd) is the Borel
σ-field on Rd. Since simulating exact solutions of (5.7) is in general computationally
impossible or very hard, ULA considers the Euler-Maruyama discretization associated
with (5.7) to approximate samples from π. Precisely, ULA constructs the discrete-time
Markov chain (Xk)k≥0, started at X0, given for k ∈ N by:

Xk+1 = Xk − γ∇U(Xk) +
√

2γZk+1 ,

where γ > 0 is the stepsize and (Zk)k∈N is a sequence of i.i.d. standard Gaussian d-
dimensional vectors; the process (Xk)k≥0 is used as approximate samples from π. How-
ever, the ULA algorithm cannot be directly applied to a distribution π restricted to a
compact convex set. Let K ⊂ Rd be a convex body, i.e. a compact convex set with non-
empty interior and ιK : Rd → {0,+∞} be the (convex) indicator function of K, defined
for x ∈ Rd by,

ιK(x) =
{

+∞ if x /∈ K,

0 if x ∈ K .

Let f : Rd → R. In this paper we consider any probability density π associated to a
potential U : Rd → (−∞,+∞] of the form

U = f + ιK , (3.2)

and assume that the function f and the convex body K satisfy the following assumptions.
For x ∈ Rd and r > 0, denote by B(x, r) the closed ball of center x and radius r:

B(x, r) =
{
y ∈ Rd : ‖y − x‖ ≤ r

}
.

H1. (i) f is convex.

(ii) f is continuously differentiable on Rd and gradient Lipschitz with Lipschitz constant
Lf , i.e. for all x, y ∈ Rd

‖∇f(x)−∇f(y)‖ ≤ Lf ‖x− y‖ . (3.3)

H2. There exist r,R > 0, r ≤ R, such that,

B(0, r) ⊂ K ⊂ B(0, R) .

To apply ULA, [DMP18] suggested to carefully regularize U in such a way that
1) the convexity of U is preserved (this property is key to the theoretical analysis of
the algorithm), 2) the regularisation of U is continuously differentiable and gradient
Lipschitz (this regularity property is key to the algorithm’s stability), and 3) the resulting
approximation is close to π (e.g. in total variation norm). The tool used to construct
such an approximation is the Moreau-Yosida envelope of ιK, ιλK : Rd → R+ defined for
x ∈ Rd (see e.g. [RW98, Chapter 1 Section G]) by,

ιλK(x) = inf
y∈Rd

(
ιK(y) + (2λ)−1 ‖x− y‖2

)
= (2λ)−1 ‖x− projK (x)‖2 , (3.4)
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where λ > 0 is a regularization parameter and projK is the projection onto K. By [RW98,
Example 10.32, Theorem 9.18], the function ιλK is convex and continuously differentiable
with gradient given for all x ∈ Rd by:

∇ιλK(x) = λ−1(x− projK (x)) . (3.5)

Moreover, [RW98, Proposition 12.19] implies that ιλK is λ−1-gradient Lipschitz: for all
x, y ∈ Rd, ∥∥∥∇ιλK(x)−∇ιλK(y)

∥∥∥ ≤ λ−1 ‖x− y‖ . (3.6)

Adding f to ιλK under H1 leads to the regularization Uλ : Rd → R of the potential U
defined for all x ∈ Rd by

Uλ(x) = f(x) + ιλK(x) . (3.7)

The following lemma shows that the probability measure πλ on Rd, with density with
respect to the Lebesgue measure, also denoted by πλ and given for all x ∈ Rd by

πλ(x) = e−Uλ(x)∫
Rd e−Uλ(s)ds

, (3.8)

is well defined. It also shows that Uλ has a minimizer x? ∈ Rd, a fact that will be used
in Section 3.4. Note that the dependence of x? on λ is implicit.

Lemma 3.1. Assume H1-(i) and H2. For all λ > 0 ,

a) Uλ has a minimizer x? ∈ Rd, i.e. for all x ∈ Rd, Uλ(x) ≥ Uλ(x?).

b) e−Uλ defines a proper density of a probability measure on Rd, i.e.

0 <
∫
Rd

e−Uλ(y)dy < +∞ .

Proof. Note that [DMP18, Proposition 1] provides a proof in a more general case. Given
the specific form of Uλ, a short and self-contained proof can be found in Section 3.6.1.

Under H1, for all λ > 0, πλ is log-concave and Uλ is continuously differentiable by
(3.5), with ∇Uλ given for all x ∈ Rd by

∇Uλ(x) = −∇ log πλ(x) = ∇f(x) + λ−1(x− projK (x)) . (3.9)

In addition, by (3.6), ∇Uλ is Lipschitz with constant L ≤ Lf + λ−1. Since Uλ is
continuously differentiable, ULA is well defined. The algorithm proposed in [DMP18]
then proceeds by using the Euler-Maruyama discretization of the Langevin equation
associated with Uλ, with πλ as proxy, to generate approximate samples from π. Precisely,
it uses the Markov chain (Xk)k∈N, started at X0, given for all k ∈ N by

Xk+1 = (1− γ
λ)Xk − γ∇f(Xk) + γ

λ projK (Xk) +
√

2γZk+1 , (3.10)
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where (Zk)k∈N is a sequence of i.i.d. standard Gaussian d-dimensional vectors and γ > 0
is the stepsize. Note that one iteration (3.10) requires a projection onto the convex body
K and the evaluation of ∇f . The kernel of the homogeneous Markov chain defined by
(3.10) is given for x ∈ Rd and A ∈ B(Rd) by,

Rγ(x,A) = (4πγ)−d/2
∫

A
exp

(
−(4γ)−1

∥∥∥y − x+ γ∇Uλ(x)
∥∥∥2
)

dy , (3.11)

where Uλ is defined in (3.7). Since the target density for the Markov chain (3.10) is the
regularized measure πλ and not π, the algorithm is named the Moreau-Yosida regularized
Unadjusted Langevin Algorithm (MYULA).

3.2.2 Context and contributions

The total variation distance between two probability measures µ and ν is defined by
‖µ − ν‖TV = 2 supA∈B(Rd) |µ(A)− ν(A)|. Let φ, ψ : R+ → R+. Denote by φ = Õ(ψ)
or φ = Ω̃(ψ) if there exist C, c ≥ 0 such that for all t ∈ R+ φ(t) ≤ Cψ(t)(log t)c or
φ(t) ≥ Cψ(t)(log t)c respectively. Our main result is the following:

Theorem 3.2. Assume H1 and H2. For all ε > 0 and x ∈ Rd, there exist λ > 0 and

γ ∈
(
0, λ(1 + L2

fλ
2)−1

)
such that,

‖δxRnγ − π‖TV ≤ ε for n = Ω̃(d5) ,

where Rγ is defined in (3.11).

The proof of Theorem 3.2 follows from combining Proposition 3.6 and Proposition 3.4
below. Note that these two results imply explicit bounds between Rnγ and π for all n ∈ N
and γ > 0.

The problem of sampling from a probability measure restricted to a convex com-
pact support has been investigated in several works, mainly in the fields of theoretical
computer science and Bayesian statistics. In computer science, a line of works starting
with [DF91] has studied the convergence of the ball walk and the hit-and-run algorithm
towards the uniform density on a convex body K, or more generally to a log-concave
density. The best complexity result is achieved by [LV07, Theorem 2.1] who establishes
a mixing time for these two algorithms of order Õ(d4). However, observe that contrary
to Theorem 3.2, this result assumes that π is in near-isotropic position, i.e. there exists
C ∈ R∗+ such that for all u ∈ Rd, ‖u‖ = 1,

C−1 ≤
∫
Rd
〈u, x〉2 π(dx) ≤ C . (3.12)

Note that [LV07, Section 2.5] gives also an algorithm of complexity Õ(d5) which provides
an invertible linear map T of Rd such that the measure πT defined for all A ∈ B(Rd) by

πT (A) = π(T−1(A)) ,
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is log-concave and near-isotropic. Also note that, unlike our method, each iteration of
the ball walk or the hit-and-run algorithm requires a call to a zero-order oracle, which
given x ∈ Rd, returns the value U(x). MYULA does not require to fulfill the condition
(3.12) and is thus dispensed of preprocessing step. However, MYULA needs a first-order
oracle which returns the value ∇f(x) for x ∈ Rd.

As emphasized in the introdution, probability distributions with convex compact
supports or more generally with constrained parameters arise naturally in Bayesian
statistics. [GSL92] includes many examples of such problems and suggests to use a
Gibbs sampler, see also [RDS04]. [CSI12, Chapter 6] addresses the subject with the
additional difficulty of computing normalizing constants. Recently, [PP14] adapted the
Hamiltonian Monte Carlo method to sample from a truncated multivariate gaussian, and
[LS15] suggested a new approach which consists in mapping the constrained domain to a
sphere in an augmented space. However, these methods are not well understood from a
theoretical viewpoint, and do not provide any theoretical guarantees for the estimations
delivered.

Concerning the ULA algorithm, when U is continuously differentiable, the first ex-
plicit convergence bounds have been obtained by [Dal17b], [DM17], [DM16]. In the
constrained case U = f + ιK, [BEL15] suggests a projection step in ULA i.e. to consider
the Markov chain (X̃k)k≥0, defined for all k ∈ N by

X̃k+1 = projK
(
X̃k − γ∇U(X̃k) +

√
2γZk+1

)
. (3.13)

with X̃0 = 0. This method is referred to as the Projected Langevin Monte Carlo (PLMC)
algorithm. As in MYULA, one iteration of PLMC requires a projection onto K and an
evaluation of ∇f . Let R̃γ be the Markov kernel defined by (3.13). [BEL15] proved that
for all ε > 0, ‖δ0R̃

n
γ − π‖TV ≤ ε for n = Ω̃(d7) if π is the uniform density on K and

n = Ω̃(d12) if π is a log-concave density. Theorem 3.2 improves these bounds for the
MYULA algorithm. Note however that the iterations of PLMC stay within the constraint
set K and this property can be useful in some specific problems. Nevertheless, there is a
wide range of settings where this property is not particularly beneficial, for example in
the case of the computation of volumes discussed in Section 3.5, or in Bayesian model
selection where it is necessary to estimate marginal likelihoods.

3.3 Distance between π and πλ

In this section, we derive bounds between π and πλ in total variation and in Wasserstein
distance (recall that π is associated with a potential of the form (3.2) and πλ is given by
(3.8)). It is shown that the approximation error in both distances can be made arbitrarily
small by adjusting the regularisation parameter λ.

The main quantity of interest to analyze the distance between π and πλ will appear
to be the integral of x 7→ e−(2λ)−1‖x−projK(x)‖2

over Rd. This constant is linked to useful
notions borrowed from the field of convex geometry [Kam09, Proposition 3]. Indeed,
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Fubini’s theorem gives the following equality:∫
Rd

e−(2λ)−1‖x−projK(x)‖2
dx =

∫
R+

∫
Rd
1[‖x−projK(x)‖,+∞)(t)λ−1te−t2/(2λ)dxdt ,

=
∫
R+

Vol (K + B(0, t))λ−1te−t2/(2λ)dt , (3.14)

where A + B is the Minkowski sum of A,B ⊂ Rd, i.e. A + B = {x+ y : x ∈ A, y ∈ B}, and
we have used in the last line that for all t ∈ R+, K+B(0, t) = {x ∈ Rd : ‖x− projK (x)‖ ≤
t}. It turns out that t 7→ Vol (K + B(0, t)) on R+ is a polynomial. More precisely,
Steiner’s formula states that for all t ≥ 0,

Vol(K + B(0, t)) =
d∑
i=0

tiκiVd−i(K) , (3.15)

where {Vi(K)}0≤i≤d are the intrinsic volumes of K, κi denotes the volume of the unit
ball in Ri, i.e.

κi = πi/2/Γ(1 + i/2) , (3.16)

and Γ : R∗+ → R∗+ is the Gamma function. We refer to [Sch13, Chapter 4.2] for this
result and an introduction to this topic. Combining (3.14) and (3.15) gives:∫

Rd
e−(2λ)−1‖x−projK(x)‖2

dx =
d∑
i=0

Vi(K)(2πλ)(d−i)/2 . (3.17)

This expression will provide a precise analysis of the distance in total variation and
Wasserstein distance between π and πλ, in particular when π is the uniform density on
K. However, in more general cases, an additional assumption on the relation between f
and K is necessary to bound the distance between π and πλ. Under H1-(i) and H2, f
has a minimum xK on K. Define

K̃ = {x ∈ K | B(x, r) ⊂ K} . (3.18)

K̃ has the following property.

Lemma 3.3. Assume H2. K̃ is a non-empty convex compact set.

Proof. The proof is postponed to Section 3.6.2.

H3. (i) There exists ∆1 > 0 such that exp (infKc(f)−maxK(f)) ≥ ∆1.

(ii) There exists ∆2 ≥ 0 such that 0 ≤ f(projK̃ (xK))− f(xK) ≤ ∆2.

These assumptions are illustrated in Figure 3.1. Under H3-(i), the application of
Steiner’s formula is possible and reveals the precise dependence of the bounds with
respect to the intrinsic volumes of K. A complementary view is possible under H3-(ii).
The obtained bounds are less precise regarding K but more robust with respect to f .
Note that if xK ∈ K̃, ∆2 can be chosen equal to 0. On the other hand, if f is assumed
to be `-Lipschitz inside K, ∆2 is less than `R.
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K

K̃
•xK

×
projK̃ (xK)

Figure 3.1: Illustration of H3

Proposition 3.4. Assume H1-(i) and H2.

a) Assume H3-(i). For all λ > 0,

‖πλ − π‖TV ≤ 2
(
1 + ∆1D(K, λ)−1

)−1
, (3.19)

where

D(K, λ) = (Vol K)−1
d−1∑
i=0

(2πλ)(d−i)/2Vi(K) , (3.20)

and Vi(K) are defined in (3.15). In addition, for all λ ∈
(
0, (2π)−1(r/d)2),

‖πλ − π‖TV ≤ 23/2∆−1
1 (πλ)1/2dr−1 . (3.21)

b) Assume H3-(ii). For all λ ∈
(
0, 16−1(r/d)2],

‖πλ − π‖TV ≤ (4/r) exp
(
4λ (∆2/r)2

){√
λ(d+ ∆2) + (2λ∆2)/r

}
. (3.22)

Proof. The proof is postponed to Section 3.6.3.

In the particular case where f = 0 and π is the uniform density on K, ∆1 equals 1
and the inequality (3.19) is in fact an equality. The dependence of the upper bound in
(3.19) w.r.t. to λ, d, r is sharp. Indeed, for the cube C of side c, D(C, λ) can be explicitly
computed. [KR97, Theorem 4.2.1] gives for i ∈ {0, . . . , d}, Vi(C) =

(d
i

)
ci, which implies:

D(C, λ) =
(
1 + c−1√2πλ

)d
− 1 ,

‖πλ − π‖TV = 2
{

1−
(
1 + c−1√2πλ

)−d}
, for U = ιC .

For two probability measures µ and ν on B(Rd), the Wasserstein distance of order
p ∈ N∗ between µ and ν is defined by

Wp(µ, ν) =
(

inf
ζ∈Π(µ,ν)

∫
Rd×Rd

‖x− y‖p dζ(x, y)
)1/p

,
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where Π(µ, ν) is the set of transference plans of µ and ν. ζ is a transference plan of µ
and ν if it is a probability measure on (Rd×Rd,B(Rd×Rd)) such that for all A ∈ B(Rd),
ζ(A× Rd) = µ(A) and ζ(Rd × A) = ν(A).

Proposition 3.5. Assume H1-(i) and H2.

a) Assume H3-(i). For all λ > 0,

W1(π, πλ) ≤ ∆−1
1 E(K, λ,R) ,

where

E(K, λ,R) = (Vol(K))−1
d−1∑
i=0

Vi(K) (2πλ)(d−i)/2
{

2R+ [λ(d− i+ 2)]1/2
}
,

and Vi(K) are defined in (3.15).

b) In addition, assuming H3-(i), for all λ ∈
(
0, (2π)−1d−2r2),

W1(π, πλ) ≤ ∆−1
1 (2πλ)1/2dr−1

(
2R+ r (3/(2dπ))1/2

)
.

c) Assume H3-(ii). For all λ ∈
(
0, 16−1(r/d)2],

W1(π, πλ) ≤ 4 exp
(
4λ (∆2/r)2

){√
λ(d+ ∆2)(R/r) + (2λ∆2R)/r2 +

√
πλ
}
.

Proof. The proof is postponed to Section 3.6.4.

Note that the bounds in Wasserstein distance between π and πλ are roughly similar
to those obtained in total variation norm.

3.4 Convergence analysis of MYULA

We now analyse the convergence of the Markov kernel Rγ , given by (3.11), to the target
density πλ defined in (3.8). For x ∈ Rd and n ∈ N, explicit bounds in total variation
norm and in Wasserstein distance between δxR

n
γ and πλ are provided in Proposition 3.6

and Proposition 3.7. Because of the regularisation procedure performed in Section 3.2.1,
the convergence analysis of MYULA (3.10) is an application of results of [DM17] and
[DM16].

3.4.1 Convergence in total variation norm

Define ω : R+ → R+ for all r ≥ 0 by

ω(r) = r2/
{

2Φ−1(3/4)
}2

, (3.23)

where Φ(x) = (2π)−1/2 ∫ x
−∞ e−t2/2dt.



46 3.4. Convergence analysis of MYULA

Proposition 3.6. Assume H1 and H2. Let λ > 0, L be the Lipschitz constant of ∇Uλ
defined in (3.7) and γ̄ ∈

(
0, λ−1L−2). Then for all ε > 0 and x ∈ Rd, we get:

‖δxRnγ − πλ‖TV ≤ ε , (3.24)

provided that n > Tγ−1 with

T = (log{A2(x)} − log(ε/2))
/

(− log(κ)) , (3.25a)

γ ≤ −d+
√
d2 + (2/3)A1(x)ε2(L2T )−1

2A1(x)/3 ∧ γ̄ , (3.25b)

where

A1(x) = L2
(
‖x− x?‖2 + 2(d+ 8λ−1R2)eγ(λ−1−γ̄L2)(λ−1 − γ̄L2)−1

)
,

log(κ) = − log(2)(4λ)−1
[
log

{(
1 + e(8λ)−1ω{max(1,4R)}

)
(1 + max(1, 4R))

}
+ log(2)

]−1
,

A2(x) = 6 + 23/2
(
dλ+ 8R2

)1/2
+ 2(A1(x)/L2)1/2 ,

and x? is a minimizer of Uλ.

Proof. To apply [DM17, Theorem 21], it is sufficient to check the assumption [DM17,
H3], i.e. there exist R̃ ≥ 0 and m > 0 such that for all x, y ∈ Rd, ‖x− y‖ ≥ R̃,〈

∇Uλ(x)−∇Uλ(y), x− y
〉
≥ m ‖x− y‖2 . (3.26)

By (3.5) and the Cauchy-Schwarz inequality, we have:

〈
∇ιλK(x)−∇ιλK(y), x− y

〉
≥ λ−1

(
‖x− y‖2 − 2

{
sup
z∈K
‖z‖

}
‖x− y‖

)
,

which implies under H1-(i) and H2 that (3.26) holds for R̃ = 4R and m = (2λ)−1.

Combining Proposition 3.4 and Proposition 3.6 determines the stepsize γ and the
number of samples n to get ‖δx?Rnγ −π‖TV ≤ ε. λ is chosen of order ε2r2d−2∆2

1 under H

3-(i) and ε2r2 min(d−2,∆−2
2 ) under H3-(ii). The orders of magnitude of n in d, ε,R, r are

reported in Table 3.1, along with the results of [BEL15]. The dependency of n towards
∆1,∆2 is presented in Table 3.2. A detailed table is provided in Table 3.3.

3.4.2 Convergence in Wasserstein distance for strongly convex f

In this section, f is assumed to satisfy an additional assumption.

H4. f : Rd 7→ R is m-strongly convex , i.e. there exists m > 0 such that for all x, y ∈ Rd,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ (m/2) ‖x− y‖2 . (3.27)
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Upper bound on n to get ‖δx?Rnγ − π‖TV ≤ ε d→ +∞ ε→ 0 R→ +∞ r → 0
Proposition 3.4 and Proposition 3.6 Õ(d5) Õ(ε−6) Õ(R4) Õ(r−4)
[BEL15, Theorem 1] π uniform on K Õ(d7) Õ(ε−8) Õ(R6) Õ(r−6)
[BEL15, Theorem 1] π log concave Õ(d12) Õ(ε−12) Õ(R18) Õ(r−18)

Table 3.1: dependency of n on d, ε, R and r to get ‖δx?Rnγ − π‖TV ≤ ε

Upper bound on n to get ‖δx?Rnγ − π‖TV ≤ ε ∆1 → 0 ∆2 → +∞
Proposition 3.4 and Proposition 3.6 Õ(∆−4

1 ) Õ(∆4
2)

Table 3.2: dependency of n on ∆1 and ∆2 to get ‖δx?Rnγ − π‖TV ≤ ε

d→ +∞ ε→ 0 R→ +∞ r → 0 ∆1 → 0 ∆2 → +∞
L, λ−1 d2 ε−2 1 r−2 ∆−2

1 ∆2
2

A1(x) d4 ε−4 R2 r−4 ∆−4
1 ∆4

2
− log(κ) 1 1 R−2 1 1 1
A2(x) 1 ε−1 R r−1 ∆−1

1 ∆2
T 1 log(ε−1) R2 log(r−1) log(∆−1

1 ) log(∆2)
γ d−5 ε6 R−2 r−4 ∆4

1 ∆−4
2

Table 3.3: dependency of L,A1(x),− log(κ), A2(x), T, γ on d, ε, R, r, ∆1 and ∆2.

Note that under H4, Uλ defined in (3.7) is m-strongly convex as well. The following
Proposition 3.7 relies on the convergence analysis in Wasserstein distance done in [DM16],
which assumes that f is strongly convex. It may be possible to extend the range of
validity of these results but this work goes beyond the scope of this paper.

Proposition 3.7. Assume H1 and H4. Let λ > 0, L be the Lipschitz constant of ∇Uλ
defined in (3.7) and κ = (2mL)(m+ L)−1. Let ε > 0 and x ∈ Rd. We have,

W2(δxRnγ , πλ) ≤ ε ,

provided that,

γ ≤ m

L2

−13
12 +

[(13
12

)2
+ ε2κ2

8md

]1/2
 ∧ 1

m+ L
,

n ≥ 2(κγ)−1
{
− log(ε2/4) + log

(
‖x− x?‖2 + d/m

)}
.

Proof. Assume that γ ∈
(
0, (m+ L)−1). [DM16, Theorem 5] gives for all n ∈ N?:

W 2
2 (δxRnγ , πλ) ≤ 2 (1− (κγ)/2)n

{
‖x− x?‖2 + d/m

}
+ u(γ) ,
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Upper bound on n to get W1(δx?Rnγ , π) ≤ ε d→ +∞ ε→ 0 R→ +∞ r → 0
Proposition 3.5-c) and Proposition 3.7 Õ(d5) Õ(ε−6) Õ(R4) Õ(r−4)

Table 3.4: dependency of n on d, ε, R and r to get W1(δx?Rnγ , π) ≤ ε

Upper bound on n to get W1(δx?Rnγ , π) ≤ ε ∆1 → 0 ∆2 → +∞
Proposition 3.5-c) and Proposition 3.7 Õ(∆−4

1 ) Õ(∆4
2)

Table 3.5: dependency of n on ∆1 and ∆2 to get W1(δx?Rnγ , π) ≤ ε

where,

u(γ) = 2κ−1L2dγ(κ−1 + γ)
(

2 + L2γ

m
+ L2γ2

6

)
.

Noting that κγ ≤ 1 and L2γ2 ≤ 1, it is then sufficient for γ, n to satisfy,

4κ−2L2dγ

(
2 + 1

6 + L2γ

m

)
≤ ε2/2 ,

2 (1− (κγ)/2)n
{
‖x− x?‖2 + d/m

}
≤ ε2/2 ,

which concludes the proof.

Combining Proposition 3.5 and Proposition 3.7 determines the stepsize γ and the
number of samples n to get W1(δx?Rnγ , π) ≤ ε. λ is chosen of order ε2∆2

1r
2d−2R−2

under H3-(i) and ε2r2R−2 min(d−2,∆−2
2 ) under H3-(ii). The orders of magnitude of n

in d, ε,R, r,∆1,∆2 are reported in Tables 3.4 and 3.5.

3.5 Numerical experiments

In this section we illustrate MYULA with the following three numerical experiments:
computation of the volume of a high-dimensional convex set, sampling from a truncated
multivariate Gaussian distribution, and Bayesian inference with the constrained LASSO
model. We benchmark our results with model-specific specialised algorithms, namely
the hit-and-run algorithm [LV06] for set volume computation, the wall HMC (WHMC)
[PP14] for truncated Gaussian models, and the auxiliary-variable Gibbs sampler for the
Bayesian Lasso model [PC08]. Where relevant we also compare with the Random Walk
Metropolis Hastings (RWM) algorithm.

First we consider the computation of the volume of a high-dimensional hypercube.
In a manner akin to [CV15a], to apply MYULA to this problem we use an annealing
strategy involving truncated Gaussian distributions whose variance is gradually increased
at each step i ∈ N of the annealing process. Precisely, for M ∈ N? and i ∈ {0, . . . ,M−1},
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the potential Ui (3.2) of the phase i is given for all x ∈ Rd by, Ui(x) = (2σ2
i )−1 ‖x‖2 + ιK

where K = [−1, 1]d. Observing that,∫
Rd e−Ui+1(x)dx∫
Rd e−Ui(x)dx

= πi (gi) , gi(x) = e2−1(σ−2
i −σ

−2
i+1)‖x‖2

, (3.28)

where πi is the probability measure associated with Ui, the volume of K is

Vol(K) =
M−1∏
i=0

πi(gi)
∫
Rd

e−U0(x) ,

where UM = ιK. To use MYULA we consider for all i ∈ {0, . . . ,M − 1} the potential
Uλii defined for all x ∈ Rd by Uλii (x) = (2σ2

i )−1 ‖x‖2 + ιλiK where ιλiK is given by (3.4).
We choose the step-size γi proportional to 1/{dmax(d, σ−1

i )} and the regularization
parameter λi is set equal to 2γi. The counterpart of (3.28) is then

∫
Rd e−U

λi+1
i+1 (x)dx∫

Rd e−U
λi
i (x)dx

= πλii

(
gλii

)
, gλii (x) = e2−1(σ−2

i −σ
−2
i+1)‖x‖2+ιλiK −ι

λi+1
K ,

where πλii is the probability measure associated with Uλii , and the volume of K is

Vol(K) =
M−1∏
i=0

πλii (gλii )
∫
Rd

e−U
λ0
0 (x)dx ,

where UλMM = UM = ιK. We estimate πλii (gλii ) for i ∈ {0, . . . ,M − 1} by the empirical

averages and we approximate
∫
Rd e−U

λ0
0 (x)dx by (2πσ2

0)d/2.

Figure 3.2 shows the volume estimates (over 10 experiments) obtained with MYULA
and the hit-and-run algorithm for a unit hypercube of dimension d ranging from d = 10
to d = 90 (to simplify visual comparison the estimates are normalised w.r.t. the true
volume). Observe that the estimates of MYULA are in agreement with the results of
the hit-and-run algorithm, which serves as a benchmark for this problem. The outputs
of both algorithms are at similar distances with respect to the true value 1.

The second experiment we consider is the simulation from a d-dimensional truncated
Gaussian distribution restricted on a convex set Kd, with mean zero, and covariance
matrix Σ with (i, j)th element given by (Σ)i,j = 1/(1 + |i− j|). Let βββ ∈ Rd. The
potential U , given by (3.2) and associated with the density π(βββ), is given by U(βββ) =
(1/2)

〈
βββ,Σ−1βββ

〉
+ ιKd(βββ). We consider three scenarios of increasing dimension: d =

2 with K2 = [0, 5] × [0, 1], d = 10 with K10 = [0, 5] × [0, 0.5]9, and d = 100 with
K100 = [0, 5]× [0, 0.5]99. We generate 106 samples for MYULA, 105 samples for WHMC,
and 106 samples for RWM (in all cases the initial 10% is discarded as burn-in period).
Regarding algorithm parameters, we set γ = 1/1000 and λ = 2γ for MYULA, and adjust
the parameters of RWM and WHMC such that their acceptance rates are approximately
25% and 70%.
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Figure 3.2: Computation of the volume of the cube with MYULA and hit-and-run algorithm.



Chapter 3. Sampling from a log-concave distribution with compact support 51

rwm whmc myula

0.
70

0.
71

0.
72

0.
73

0.
74

0.
75

0.
76

rwm whmc myula

0.
25

2
0.

25
3

0.
25

4
0.

25
5

0.
25

6
0.

25
7

rwm whmc myula

0.
24

8
0.

24
9

0.
25

0
0.

25
1

0.
25

2

Figure 3.3: Boxplots of β1, β2, β3 for the truncated Gaussian variable in dimension 10.

Table 3.6 shows the results obtained with each method for the model d = 2, and
by performing 100 repetitions to obtain 95% confidence intervals. For this model we
also report a solution by a cubature integration [NJ16] which provides a ground truth.
Moreover, Figure 3.3 and Figure 3.4 show the results for the first three coordinates of βββ
(i.e., β1, β2, β3) for d = 10 and d = 100 respectively. Observe the good performance of
MYULA as dimensionality increases, particularly in the challenging case d = 100 where
it performs comparably to the specialised algorithm WHMC.

Method Mean Covariance

Truth

[
0.790
0.488

] [
0.326 0.017
0.017 0.080

]

RWM

[
0.791± 0.013
0.486± 0.002

] [
0.330± 0.011 0.017± 0.002
0.017± 0.002 0.080± 0.0003

]

WHMC

[
0.789± 0.005
0.490± 0.005

] [
0.324± 0.008 0.017± 0.002
0.017± 0.002 0.079± 0.0007

]

MYULA

[
0.758± 0.052
0.484± 0.016

] [
0.309± 0.038 0.017± 0.009
0.017± 0.009 0.088± 0.002

]

Table 3.6: Mean and covariance of βββ in dimension 2 obtained by RWM, WHMC and MYULA.

Finally, we also report an experiment involving the analysis of a real dataset with
an `1-norm constrained Bayesian LASSO model (i.e. least squares regression subject to
an `1-ball constraint). Precisely, the observations Y = {Y1, . . . , Yn} ∈ Rn, for n ≥ 1, are
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Figure 3.4: Boxplots of β1, β2, β3 for the truncated Gaussian variable in dimension 100.

assumed to be distributed from the Gaussian distribution with mean Xβββ and covariance
matrix σ2 In, where X ∈ Rn×d is the design matrix, βββ ∈ Rd is the regression parameter,
σ2 > 0 and In is the identity matrix of dimension n. The prior on βββ is the uniform
distribution over the `1 ball, B(0, s) = {βββ ∈ Rd ‖βββ‖1 ≤ s}, for s > 0, where ‖βββ‖1 =∑d
i=1 |βββi|, βββi is the i-th component of βββ. The potential U s, for s > 0, associated with

the posterior distribution is given for all βββ ∈ Rd by U s(βββ) = ‖Y −Xβββ‖2 + ιB(0,s)(βββ). We
consider in our experiment the diabetes data set1, which consists in n = 442 observations
and d = 10 explanatory variables.

Figure 3.5 shows the“LASSO paths”obtained using MYULA, the WHMC algorithm,
and with the specialised Gibbs sampler of [PC08] (these paths are the posterior marginal

medians associated with πs for s = t
∥∥∥βββOLS

∥∥∥
1
, t ∈ [0, 1], and where βββOLS is the estimate

obtained by the ordinary least square regression). The dot lines represent the confidence
interval at level 95%, obtained by performing 100 repetitions. MYULA estimates were
obtained by using 105 samples (with the initial 104 samples discarded as burn-in period)
and stepsize s3/2×10−5. WHMC estimates were obtained by using 104 samples (with the
initial 103 samples discarded as burn-in period), and by adjusting parameters to achieve
an acceptance rate of approximately 90%. Finally, the Gibbs sampler is targeting an
unconstrained LASSO model with prior βββ 7→ (2s)−de−‖βββ‖1/s, for s > 0. The results are
comparable for the three algorithms.

1http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
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Figure 3.5: Lasso path for the Gibbs sampler, Wall HMC and MYULA algorithms.

3.6 Proofs

3.6.1 Proof of Lemma 3.1

Since f is a (proper) convex function, there exist a ∈ R, b ∈ Rd such that f(x) ≥ a+〈b, x〉
[Roc15, Theorem 23.4]. By H2 and a straightforward calculation, for ‖x‖ ≥ R+4λ ‖b‖+
2 {λ(|a|+R ‖b‖)}1/2, we have,

Uλ(x) ≥ (4λ)−1(‖x‖ −R)2 ,

which concludes the proof.

3.6.2 Proof of Lemma 3.3

Under H2, 0 ∈ K̃. Let x1, x2 ∈ K̃ and t ∈ [0, 1]. We have by definition of K̃ (3.18) that
B(tx1 + (1− t)x2, r) ⊂ tB(x1, r) + (1− t) B(x2, r) ⊂ K, which implies that K̃ is convex.

To show that K̃ is closed, it is enough to show that K̃ = {x ∈ K | dist(x,Kc) ≥ r}
where dist(x,Kc) = infy∈Kc ‖x− y‖ since x 7→ dist(x,Kc) is Lipschitz continuous. First

by definition, we have K̃ ⊂ {x ∈ K | dist(x,Kc) ≥ r}. To show the converse, let x ∈
{y ∈ K | dist(y,Kc) ≥ r}. Then, Bo(x, r) ⊂ K, where Bo(x, r) =

{
y ∈ Rd | ‖y − x‖ < r

}
,

which yields B(x, r) ⊂ K since K is assumed to be closed. This result then concludes the
proof by definition of K̃.
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3.6.3 Proof of Proposition 3.4

a) By a direct calculation, we have:

‖πλ − π‖TV =
∫
Rd

∣∣∣π(x)− πλ(x)
∣∣∣ dx = 2

(
1 +

{∫
Kc

e−Uλ(x)dx
}−1 ∫

K
e−f(x)dx

)−1

(3.29)

≤ 2
(

1 + exp
(

min
Kc

(f)−max
K

(f)
)
A

)−1
. (3.30)

where

A = Vol(K)
/∫

Kc
e−(2λ)−1‖x−projK(x)‖2

dx . (3.31)

The conclusion follows then from (3.17) and H3-(i).

We give two proofs for (3.21), which both consist in lower bounding A. The obtained
bounds are identical up to an universal constant. The first one is simpler and was
suggested by a referee. The second one is more involved ; however, it has the benefit of
establishing the relation between the intrinsic volumes of K and the bound on the total
variation norm.

Under H2, we have K + B(0, t) ⊂ (1 + t/r)K and using (3.14),

∫
Kc

e−(1/2λ)‖x−projK(x)‖2
dx ≤

{∫
R+

Vol(K(1 + t/r))λ−1te−t2/(2λ)dt−Vol(K)
}

= Vol(K)
{∫

R+
(1 + t/r)dλ−1te−t2/(2λ)dt− 1

}

= Vol(K)
d∑
i=1

(
d

i

)(√
2λ
r

)i
Γ(1 + i/2)

≤ Vol(K)
d∑
i=1

(√
2λd
r

)i
,

where the second equality follows from developping (1 + t/r)d, making the change of
variable t 7→ t2/(2λ) and using the Gamma function and the last inequality from

(d
i

)
Γ(1+

i/2) ≤ di for i ∈ {1, . . . , d}. For λ ∈
(
0, r2d−2/8

]
, we get

A−1 ≤
d∑
i=1

(√
2λd
r

)i
≤ 2
√

2λd
r

.

Combining it with (3.30) and H3-(i) concludes the proof.

For the second proof, it is necessary to introduce first a generalized notion of the in-
trinsic volumes (3.15), the mixed volumes. Let K be the class of convex bodies of Rd,
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K1, . . . ,Km ∈ K and λ1, . . . , λm ≥ 0. By [Sch13, Theorem 5.1.7], there is a nonnegative
symmetric function V : (K)d → R+, the mixed volume, such that,

Vol(λ1K1 + . . .+ λmKm) =
m∑

i1,...,id=1
λi1 . . . λidV(Ki1 , . . . ,Kid) . (3.32)

Let m > 1, a1, . . . , am ≥ 0 and K1, . . . ,Km, L be (m+ 1) convex bodies in Rd such that
K1 ⊂ L. By unicity of the coefficients of the polynomial in λ1, . . . , λm (3.32) and [Sch13,
p.282], we have:

V(a1K1, . . . , amKm) =
(
m∏
i=1

ai

)
V(K1, . . . ,Km) , (3.33)

V(K1,K2, . . . ,Km) ≤ V(L,K2, . . . ,Km) . (3.34)

Denote by B the unity ball of Rd, B = B(0, 1). Taking m = 2,K1 = K,K2 = B, λ1 =
1, λ2 = t in (3.32), we get:

Vol(K + B(0, t)) =
d∑
i=0

ti
(
d

i

)
V(K[d− i],B[i]) , (3.35)

where for a set A ⊂ Rd, the notation A[i] means A repeated i times: A[i] = A, . . . , A
i times. The quermassintegrals of K are defined for i ∈ {0, . . . , d} by Wi(K) = V(K[d −
i],B[i]) [Sch13, equation 5.31]. We get then by (3.35) and (3.15),(

d

i

)
Wi(K) = κiVd−i(K) , (3.36)

where κi is given by (3.16).

The proof consists then in identifying an upper bound on Vi(K)(Vol K)−1 for i ∈ {0, . . . , d}.
First, the sequence {i!Vi(K)}0≤i≤d is shown to be log-concave, i.e. for i ∈ {1, . . . , d− 1}

(i!Vi(K))2 ≥ (i+ 1)!Vi+1(K)(i− 1)!Vi−1(K) . (3.37)

The Aleksandrov-Fenchel inequality [Sch13, equation 7.66] states, for i ∈ {1, . . . , d− 1},

Wi(K)2 ≥ Wi−1(K)Wi+1(K) . (3.38)

By (3.16), κi/κi−2 = (2π)/i and the log convexity of the gamma function, we get for
i ∈ {1, . . . , d− 1}:

1
i+ 1

κi
κi+1

= 1
i

κi−2
κi−1

≤ 1
i

κi−1
κi

. (3.39)

Combining (3.39), (3.38) and (3.36) shows (3.37).

The log-concavity of {i!Vi(K)}0≤i≤d gives for i ∈ {0, . . . , d− 1},

Vi(K)
Vi+1(K) ≤

Vd−1(K)
Vol(K) = d

2
W1(K)
W0(K) . (3.40)
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Combining the definition of the quermassintegrals, (3.33), (3.34) and H2 give:

rW1(K) = V(K, . . . ,K,B(0, r)) ≤ V(K, . . . ,K,K) = W0(K) . (3.41)

By (3.41) and (3.40), we get:

D(K, λ) ≤
d∑
i=1

{
dr−1(πλ/2)1/2

}i
, (3.42)

where D(K, λ) is defined in (3.20). For all λ ∈
(
0, 2π−1(r/d)2), (3.19) gives then,

‖πλ − π‖TV ≤ 2
{

1 + exp
(

min
Kc

(f)−max
K

(f)
)({

dr−1(πλ/2)1/2
}−1
− 1

)}−1
.

Using that for all a, b ∈ R∗+, b ≥ 2, (1 + a(b − 1))−1 ≤ b−1/(b−1 + a/2) and H3-(i), we
get for λ ∈

(
0, 2π−1(r/d)2)
‖πλ − π‖TV ≤ 23/2(πλ)1/2dr−1

{
(2πλ)1/2dr−1 + ∆1

}−1
.

b) The proof consists in using (3.29) to bound ‖πλ− π‖TV. In the first step we give

an upper bound on
∫
Rd e−Uλ(x)dx/

∫
K e−f(x)dx. By Fubini’s theorem, similarly to (3.14)

we have ∫
Rd

e−Uλ(x)dx ≤
∫
R+

∫
K+B(0,t)

e−f(x)λ−1te−t2/(2λ)dxdt . (3.43)

Let t ≥ 0. By definition of K̃, using Lemma 3.3 and K − projK̃ (xK) + B(0, t) ⊂ (1 +
t/r)(K− projK̃ (xK)), we have∫

K+B(0,t)
e−f(x)dx =

∫
K−proj̃

K
(xK)+B(0,t)

e−f(x+proj̃
K

(xK))dx

≤
∫

(1+t/r)(K−proj̃
K

(xK))
e−f(x+proj̃

K
(xK))dx

= (1 + t/r)d
∫

K−proj̃
K

(xK)
e−f((1+t/r)x+proj̃

K
(xK))dx . (3.44)

By H1-(i) f is convex and therefore for all x ∈ K− projK̃ (xK),

f((1 + t/r)x+ projK̃ (xK)) ≥ (t/r)
{
f(x+ projK̃ (xK))− f(projK̃ (xK))

}
+ f(x+ projK̃ (xK))

≥ −(∆2t)/r + f(x+ projK̃ (xK)) .

Combining it with (3.43) and (3.44), we get∫
Rd

e−Uλ(x)dx ≤
(∫

K
e−f(x)dx

)∫
R+

(1 + t/r)de(∆2t)/rλ−1te−t2/(2λ)dt . (3.45)
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We now bound B =
∫

Kc e−Uλ(x)dx/
∫

K e−f(x)dx. Using (3.45) and an integration by
parts, we have

B ≤
∫
R+

{
(1 + t/r)de(∆2t)/r − 1

}
λ−1te−t2/(2λ)dt

≤
∫
R+

(1 + t/r)d−1e(∆2t)/rr−1 (d+ ∆2 + (∆2t)/r) e−t2/(2λ)dt .

Since for all t ≥ 0, (∆2t)/r − t2/(2λ) ≤ −t2/(4λ) + 4λ(∆2/r)2, it holds

B ≤ 1
r

exp
(

4λ
(∆2
r

)2)∫
R+

(1 + t/r)d−1 (d+ ∆2 + (∆2t)/r) e−t2/(4λ)dt .

By developping (1 + t/r)d−1, using the change of variable t 7→ t2/(4λ) and the definition
of the Gamma function, we have

B ≤ 2λ
r

exp
(

4λ
(∆2
r

)2) d−1∑
i=0

(
d− 1
i

)(
2
√
λ

r

)i {
d+ ∆2

2
√
λ

Γ
(1 + i

2

)
+ ∆2

r
Γ
(

1 + i

2

)}
.

Using that for all i ∈ {0, . . . , d− 1},
(d−1
i

)
Γ(1 + i/2) ≤ di, we get for λ ∈

(
0, 16−1r2d−2]

B ≤ 2
r

exp
(

4λ
(∆2
r

)2){√
λ(d+ ∆2) + 2λ∆2

r

}
,

which combined with (3.29) concludes the proof.

3.6.4 Proof of Proposition 3.5

a) The proof relies on a control of the Wasserstein distance by a weighted total
variation. The arguments are similar to those of Proposition 3.4. [Vil09, Theorem 6.15]
implies:

W1(π, πλ) ≤
∫
Rd
‖x‖ |π(x)− πλ(x)|dx = C +D , (3.46)

where

C =
∫

Kc
‖x‖πλ(x)dx , D =

{
1−

∫
K e−f∫

Rd e−Uλ

}∫
K
‖x‖π(x)dx . (3.47)

We bound these two terms separately. First using the same decomposition as in (3.14),
‖x‖ ≤ R+‖x− projK (x)‖ and that for all t ∈ R+, K+B(0, t) = {x ∈ Rd : ‖x− projK (x)‖ ≤
t}, we get

C =
(∫

Rd
e−Uλ

)−1 ∫ +∞

0

∫
Kc

e−f(x) ‖x‖ tλ−1e−t2/(2λ)
1[‖x−projK(x)‖,+∞)(t) dx dt (3.48)

≤ emaxK(f)−minKc (f)
∫ +∞

0
(R+ t)tλ−1e−t2/(2λ)

(Vol(K + B(0, t))−Vol(K)
Vol(K)

)
dt .

(3.49)
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Combining (3.15)-(3.49), H3-(i) and using Vd(K) = Vol(K) give

C ≤ ∆−1
1

d−1∑
i=0

κd−i
Vi(K)
Vol(K)

∫ +∞

0
(Rtd−i+1 + td−i+2)λ−1e−t2/(2λ)dt . (3.50)

Using (3.16), for all k ≥ 0,
∫
R+
tket2/(2λ)dt = (2λ)(k+1)/2Γ((k + 1)/2) and for all a > 1,

Γ(a+ 1/2) ≤ a1/2Γ(a) (by log-convexity of the Gamma function), we have

C ≤ ∆−1
1

d−1∑
i=0

Vi(K)
Vol(K) (2πλ)(d−i)/2

{
R+ [λ(d− i+ 2)]1/2

}
. (3.51)

Regarding D defined in (3.47), by H2, H3-(i), (3.30) and (3.17), we get:

D ≤ R∆−1
1 D(K, λ) , (3.52)

where D(K, λ) is defined in (3.20). Combining (3.51) and (3.52) in (3.46) concludes the
proof.

b) Using (3.40) and (3.41) in (3.51) gives for all λ ∈
(
0, (2π)−1r2d−2)

C ≤ ∆−1
1

d−1∑
i=0

d
r

√
πλ

2

d−i {R+ [λ(d− i+ 2)]1/2
}

≤ ∆−1
1 (2πλ)1/2dr−1

(
R+ r

( 3
2dπ

)1/2
)
.

Finally this bound, (3.52), (3.42) and (3.46) conclude the proof.

c) The proof still relies on the decomposition (3.46), where C and D are defined in
(3.47). Eq. (3.48) gives

C ≤
∫ +∞

0
(R+ t)tλ−1e−t2/(2λ)

∫K+B(0,t) e−f(x)dx∫
K e−f(x)dx

− 1

dt .

Under H3-(ii), following the steps of Section 3.6.3-b) to upper bound the term∫
K+B(0,t)

e−f(x)dx/
∫

K
e−f(x)dx ,

we have

C ≤
∫ +∞

0
(R+ t)tλ−1e−t2/(2λ)

(
(1 + t/r)de(t∆2)/r − 1

)
dt

= C1 + C2 ,
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where

C1 = R

∫ +∞

0
tλ−1e−t2/(2λ)

(
(1 + t/r)de(t∆2)/r − 1

)
dt ,

C2 =
∫ +∞

0
t2λ−1e−t2/(2λ)

(
(1 + t/r)de(t∆2)/r − 1

)
dt .

C1 is upper bounded in the same way as B in Section 3.6.3-b). Regarding C2, since for
all t ≥ 0, (∆2t)/r − t2/(2λ) ≤ −t2/(4λ) + 4λ(∆2/r)2, developping (1 + t/r)d and using
the change of variable t 7→ t2/(4λ) we get

C2 ≤ e4λ(∆2/r)2
d∑
i=0

(
d

i

)
r−i

∫
R+
ti+2λ−1e−t2/(4λ)dt

≤ 4
√
λe4λ(∆2/r)2

√
π

2

d∑
i=0

(
d

i

)(
2
√
λ

r

)i
Γ
(3

2 + i

2

)
.

Using
(d
i

)
Γ((3 + i)/2) ≤ (

√
π/2)di for i ∈ {0, . . . , d}, we have for λ ∈

(
0, 16−1r2d−2],

C2 ≤ 2
√
πλe4λ(∆2/r)2

d∑
i=0

(
2
√
λd

r

)i
≤ 4
√
πλe4λ(∆2/r)2

.

D defined in (3.47) is upper bounded by RB where B is defined in Section 3.6.3-b).
Combining the bounds on C1, C2, D gives the result.
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Chapter 4

The Tamed Unadjusted Langevin
Algorithm

Nicolas Brosse 1, Alain Durmus 2, Éric Moulines 1 and Sotirios Sa-

banis 3

Abstract

In this article, we consider the problem of sampling from a probability measure π having
a density on Rd proportional to x 7→ e−U(x). The Euler discretization of the Langevin
stochastic differential equation (SDE) is known to be unstable, when the potential U is
superlinear. Based on previous works on the taming of superlinear drift coefficients for
SDEs, we introduce the Tamed Unadjusted Langevin Algorithm (TULA) and obtain non-
asymptotic bounds in V -total variation norm and Wasserstein distance of order 2 between
the iterates of TULA and π, as well as weak error bounds. Numerical experiments are
presented which support our findings.

4.1 Introduction

The Unadjusted Langevin Algorithm (ULA) first introduced in the physics literature
by [Par81] and popularized in the computational statistics community by [Gre83] and
[GM94] is a technique to sample complex and high-dimensional probability distributions.
This issue has far-reaching consequences in Bayesian statistics and machine learning
[And+03], [Cot+13], aggregation of estimators [DT12] and molecular dynamics [LS16].
More precisely, let π be a probability distribution on Rd which has density (also denoted
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by π) with respect to the Lebesgue measure given for all x ∈ Rd by,

π(x) = e−U(x)/ ∫
Rd

e−U(y)dy , with

∫
Rd

e−U(y)dy < +∞ .

Assuming that U : Rd → R is continuously differentiable, the overdamped Langevin
stochastic differential equation (SDE) associated with π is given by

dYt = −∇U(Yt)dt+
√

2dBt , (4.1)

where (Bt)t≥0 is a d-dimensional Brownian motion. The discrete time Markov chain
associated with the ULA algorithm is obtained by the Euler-Maruyama discretization
scheme of the Langevin SDE defined for k ∈ N by,

Xk+1 = Xk − γ∇U(Xk) +
√

2γZk+1 , X0 = x0 , (4.2)

where x0 ∈ Rd, γ > 0 and (Zk)k∈N are i.i.d. standard d-dimensional Gaussian variables.
Under adequate assumptions on a globally Lipschitz∇U , non-asymptotic bounds in total
variation and Wasserstein distances between the distribution of (Xk)k∈N and π can be
found in [Dal17b], [DM17], [DM16]. However, the ULA algorithm is unstable if ∇U is
superlinear i.e. lim inf‖x‖→+∞ ‖∇U(x)‖ / ‖x‖ = +∞, see [RT96, Theorem 3.2], [MSH02]
and [HJK11]. This is illustrated with a particular example in [MSH02, Lemma 6.3]
where, the SDE (5.7) is considered in one dimension with U(x) = x4/4 along with the
associated Euler discretization (4.2) and it is shown that for all γ > 0, if E

[
X2

0
]
≥ 2/γ,

one obtains limn→+∞ E
[
X2
n

]
= +∞. Moreover, the sample path (Xn)n∈N diverges to

infinity with positive probability.
Until recently, either implicit numerical schemes, e.g. see [MSH02] and [HMS02], or

adaptive stepsize schemes, e.g. see [LMS07], were used to address this problem. However,
in the last few years, a new generation of explicit numerical schemes, which are com-
putationally efficient, has been introduced by “taming” appropriately the superlinearly
growing drift, see [HJK12] and [Sab13] for more details.

Nonetheless, with the exception of [MSH02], these works focus on the discretization
of SDEs with superlinear coefficients in finite time. We aim at extending these techniques
to sample from π, the invariant measure of (5.7). To deal with the superlinear nature
of ∇U , we introduce a family of drift functions (Gγ)γ>0 with Gγ : Rd → Rd indexed by
the step size γ which are close approximations of ∇U in a sense made precise below.
Consider then the following Markov chain (Xk)k∈N defined for all k ∈ N by

Xk+1 = Xk − γGγ(Xk) +
√

2γZk+1 , X0 = x0 . (4.3)

We suggest two different explicit choices for the family (Gγ)γ>0 based on previous studies
on the tamed Euler scheme [HJK12], [Sab13], [HJ15]. Define for all γ > 0, Hγ , Hγ,c :
Rd → Rd for all x ∈ Rd by

Hγ(x) = ∇U(x)
1 + γ ‖∇U(x)‖ and Hγ,c(x) =

(
∂iU(x)

1 + γ |∂iU(x)|

)
i∈{1,...,d}

, (4.4)
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where ∂iU is the ith-coordinate of ∇U . The Euler scheme (4.3) with Gγ = Hγ , respec-
tively Gγ = Hγ,c, is referred to as the Tamed Unadjusted Langevin Algorithm (TULA),
respectively the coordinate-wise Tamed Unadjusted Langevin Algorithm (TULAc).

Another line of work has focused on the Metropolis Adjusted Langevin Algorithm
(MALA) that consists in adding a Metropolis-Hastings step to the ULA algorithm.
[BH13] provides a detailed analysis of MALA in the case where the drift coefficient
is superlinear. Note also that a normalization of the gradient was suggested in [RT96,
Section 1.4.3] calling it MALTA (Metropolis Adjusted Langevin Truncated Algorithm)
and analyzed in [Atc06] and [BV10].

The article is organized as follows. In Section 4.2, the Markov chain (Xk)k∈N defined
by (4.3) is shown to be V -geometrically ergodic w.r.t. an invariant measure πγ . Non-
asymptotic bounds between the distribution of (Xk)k∈N and π in total variation and
Wasserstein distances are provided, as well as weak error bounds. In Section 4.3, the
methodology is illustrated through numerical examples. Finally, proofs of the main
results appear in Section 4.4.

Notations

Let B(Rd) denote the Borel σ-field of Rd. Moreover, let L1(µ) be the set of µ-integrable
functions for µ a probability measure on (Rd,B(Rd)). Further, µ(f) =

∫
Rd f(x)dµ(x) for

an f ∈ L1(µ). Given a Markov kernel R on Rd, for all x ∈ Rd and f integrable under
R(x, ·), denote by Rf(x) =

∫
Rd f(y)R(x,dy). Let V : Rd → [1,∞) be a measurable

function. The V -total variation distance between µ and ν is defined as ‖µ − ν‖V =
sup|f |≤V |µ(f)− ν(f)|. If V = 1, then ‖ · ‖V is the total variation denoted by ‖ · ‖TV.
Let µ and ν be two probability measures on a state space Ω with a given σ-algebra. If
µ � ν, we denote by dµ/dν the Radon-Nikodym derivative of µ w.r.t. ν. In that case,
the Kullback-Leibler divergence of µ w.r.t. to ν is defined as

KL(µ|ν) =
∫

Ω

dµ
dν log

(dµ
dν

)
dν .

We say that ζ is a transference plan of µ and ν if it is a probability measure on
(Rd × Rd,B(Rd × Rd)) such that for any Borel set A of Rd, ζ(A × Rd) = µ(A) and
ζ(Rd × A) = ν(A). We denote by Π(µ, ν) the set of transference plans of µ and ν.
Furthermore, we say that a couple of Rd-random variables (X,Y ) is a coupling of µ and
ν if there exists ζ ∈ Π(µ, ν) such that (X,Y ) are distributed according to ζ. For two
probability measures µ and ν, we define the Wasserstein distance of order p ≥ 1 as

Wp(µ, ν) =
(

inf
ζ∈Π(µ,ν)

∫
Rd×Rd

‖x− y‖p dζ(x, y)
)1/p

.

By [Vil09, Theorem 4.1], for all µ, ν probability measure on Rd, there exists a transfer-
ence plan ζ? ∈ Π(µ, ν) such that for any coupling (X,Y ) distributed according to ζ?,
Wp(µ, ν) = E[‖X − Y ‖p]1/p.
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For u, v ∈ Rd, define the scalar product 〈u, v〉 =
∑d
i=1 uivi and the Euclidian norm

‖u‖ = 〈u, u〉1/2. Denote by Sd−1 =
{
u ∈ Rd : ‖u‖ = 1

}
. For k ∈ N, m,m′ ∈ N∗ and

Ω,Ω′ two open sets of Rm,Rm′ respectively, denote by Ck(Ω,Ω′), the set of k-times
continuously differentiable functions. For f ∈ C2(Rd,R), denote by ∇f the gradient of
f , ∂if the ith-coordinate of ∇f , ∆f the Laplacian of f and ∇2f the Hessian of f . Define
then for x ∈ Rd,

∥∥∇2f(x)
∥∥ = supu∈Sd−1

∥∥∇2f(x)u
∥∥. For k ∈ N and f ∈ Ck(Rd,R),

denote by Di f the i-th derivative of f for i ∈ {0, . . . , k}, i.e. Di f is a symmetric i-
linear map defined for all x ∈ Rd and j1, . . . , ji ∈ {1, . . . , d} by Di f(x)[ej1 , . . . , eji ] =
∂j1...jif(x) where e1, . . . , ed is the canonical basis of Rd. For x ∈ Rd and i ∈ {1, . . . , k},
define

∥∥∥D0 f(x)
∥∥∥ = |f(x)|,

∥∥∥Di f(x)
∥∥∥ = supu1,...,ui∈Sd−1 Di f(x)[u1, . . . , ui]. Note that∥∥∥D1 f(x)

∥∥∥ = ‖∇f(x)‖ and
∥∥∥D2 f(x)

∥∥∥ =
∥∥∇2f(x)

∥∥. For m,m′ ∈ N∗, define

Cpoly(Rm,Rm′) =
{
f ∈ C(Rm,Rm′)|∃Cq, q ≥ 0,∀x ∈ Rm,

‖f(x)‖ ≤ Cq(1 + ‖x‖q)
}
.

For all x ∈ Rd and M > 0, we denote by B(x,M) (respectively B(x,M)), the open
(respectively closed) ball centered at x of radius M . In the sequel, we take the convention
that for n, p ∈ N, n < p then

∑n
p = 0 and

∏n
p = 1.

4.2 Ergodicity and convergence analysis

In this Section, under appropriate assumptions on∇U andGγ , we show that the diffusion
process (Yt)t≥0 defined by (5.7) and its discretization (Xk)k∈N defined by (4.3) satisfy a
Foster-Lyapunov drift condition and are V -geometrically ergodic, see Proposition 4.1 and
Proposition 4.3. Second, for all k ∈ N∗, non-asymptotic bounds in V -norm between the
distribution of Xk and π are established. Our next results give non-asymptotic bounds
in Wasserstein distance of order 2, under the additional assumption that U is strongly
convex. A summary of our main contributions is given in Table 4.1, where λ ∈ [0, 1).
We conclude this part by non-asymptotic bounds on the bias and the variance of the
ergodic average n−1∑n−1

k=0 f(Xk), n ∈ N∗, used as an estimator of π(f), for f : Rd → R
sufficiently smooth.

Henceforth, it is assumed that U is continuously differentiable. Consider the following
assumptions on U .

distance order of the upper bound assumptions∥∥∥δxRnγ − π∥∥∥
V 1/2

nγλnγV (x) +√γ A1, A2, H5 and H6

W 2
2 (δxRnγ , π) nγλnγV (x) + γ A1, A2, H5, H6 and H7

W 2
2 (δxRnγ , π) nγ1+βλnγV (x) + γ1+β A1, A2, H6, H7 and H8

Table 4.1: Summary of the upper bounds on the distances between the distribution of the nth

iteration of the Markov chain defined by (4.3) and π.
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H5. There exist `, L ∈ R+ such that for all x, y ∈ Rd,

‖∇U(x)−∇U(y)‖ ≤ L
{

1 + ‖x‖` + ‖y‖`
}
‖x− y‖ .

H6. i) lim inf‖x‖→+∞ ‖∇U(x)‖ = +∞.

ii) lim inf‖x‖→+∞
〈

x
‖x‖ ,

∇U(x)
‖∇U(x)‖

〉
> 0.

Note that under H6, lim inf‖x‖→+∞ U(x) = +∞, U has a minimum x? and∇U(x?) =
0. Without loss of generality, it is assumed that x? = 0. It implies under H5 that for
all x ∈ Rd,

‖∇U(x)‖ ≤ 2L
{

1 + ‖x‖`+1
}
. (4.5)

Besides, under H6-ii), there exists C ∈ R such that for all x ∈ Rd, 〈−∇U(x), x〉 ≤ C.
By [MT93, Theorem 2.1], [IW89, Chapter IV, Theorems 2.3, 3.1] and [RT96, Theorem
2.1], (5.7) has a unique strong solution denoted (Yt)t≥0. By [KS91, Section 5.4.C, The-
orem 4.20], one constructs the associated strongly Markovian semigroup (Pt)t≥0 given
for all t ≥ 0, x ∈ Rd and A ∈ B(Rd) by Pt(x,A) = E [1A(Yt)|Y0 = x]. Consider the
infinitesimal generator L associated with (5.7) defined for all h ∈ C2(Rd) and x ∈ Rd by

Lh(x) = −〈∇U(x),∇h(x)〉+ ∆h(x) , (4.6)

and for any a ∈ R∗+, define the Lyapunov function Va : Rd → [1,+∞) for all x ∈ Rd by

Va(x) = exp
(
a(1 + ‖x‖2)1/2

)
. (4.7)

Foster-Lyapunov conditions enable to control the moments of the diffusion process
(Yt)t≥0, see e.g. [MT93, Section 6] or [RT96, Theorem 2.2].

Proposition 4.1. Assume H 5, H 6 and let a ∈ R∗+. There exists ba ∈ R+ (given
explicitly in the proof) such that for all x ∈ Rd

LVa(x) ≤ −aVa(x) + aba (4.8)

and
sup
t≥0

PtVa(x) ≤ Va(x) + ba .

Moreover, there exist Ca ∈ R+ and ρa ∈ [0, 1) such that for all t ∈ R+ and probability
measures µ0, ν0 on (Rd,B(Rd)) satisfying µ0(Va) + ν0(Va) < +∞,

‖µ0Pt − ν0Pt‖Va ≤ Caρ
t
a ‖µ0 − ν0‖Va , ‖µ0Pt − π‖Va ≤ Caρ

t
aµ0(Va) . (4.9)

Proof. The proof is postponed to Section 4.4.1.

The Markov chain (Xk)k∈N defined in (4.3) is a discrete-time approximation of the dif-
fusion (Yt)t≥0. To control the total variation and Wasserstein distances of the marginal
distributions of (Xk)k∈N and (Yt)t≥0, it is necessary to assume that for γ > 0 small
enough, Gγ and ∇U are close. This is formalized by A1. Under the additional assump-
tion A2, we obtain the stability and ergodicity of (Xk)k∈N.
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A 1. For all γ > 0, Gγ is continuous. There exist α ≥ 0, Cα < +∞ such that for all
γ > 0 and x ∈ Rd,

‖Gγ(x)−∇U(x)‖ ≤ γCα (1 + ‖x‖α) .

Note that under H5, A1 and by (4.5), we have for all x ∈ Rd

‖Gγ(x)‖ ≤ 2L
{

1 + ‖x‖`+1
}

+ γCα (1 + ‖x‖α) . (4.10)

A2. For all γ > 0, lim inf‖x‖→+∞
〈

x
‖x‖ , Gγ(x)

〉
− γ

2‖x‖ ‖Gγ(x)‖2 > 0.

Lemma 4.2. Assume H5 and H6. Let γ > 0 and Gγ be equal to Hγ or Hγ,c defined in
(4.4). Then A1 and A2 are satisfied.

Proof. The proof is postponed to Section 4.4.2.

The Markov kernel Rγ associated with (4.3) is given for all γ > 0 , x ∈ Rd and
A ∈ B(Rd) by

Rγ(x,A) = (2π)−d/2
∫
Rd
1A
(
x− γGγ(x) +

√
2γz

)
e−‖z‖

2/2dz . (4.11)

We then obtain the counterpart of Proposition 4.1 for the Markov chain (Xk)k∈N.

Proposition 4.3. Assume H 5, A 1, A 2 and let γ ∈ R∗+. There exist M, ae, b ∈ R∗+
(given explicitly in the proof) satisfying for all x ∈ Rd

RγVae(x) ≤ e−ae2γVae(x) + γb1B(0,M)(x) . (4.12)

In addition, Rγ has a unique invariant measure πγ, Rγ is Vae-geometrically ergodic
w.r.t. πγ.

Proof. The proof is postponed to Section 4.4.3.

Note that a straightforward induction of (4.12) gives for all n ∈ N and x ∈ Rd,

RnγVae(x) ≤ e−nae2γVae(x) + {(bγ)(1− e−nae2γ)}/(1− e−ae2γ) .

Using 1− e−ae2γ =
∫ γ

0 ae2e−ae2tdt ≥ γae2e−ae2γ , we get for all n ∈ N

RnγVae(x) ≤ e−ae2nγVae(x) + (b/ae2)eae2γ . (4.13)

In the following result, we compare the discrete and continuous time processes (Xk)k∈N
and (Yt)t≥0 using Girsanov’s theorem and Pinsker’s inequality, see [Dal17b] and [DM17,
Theorem 10] for similar arguments.
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Theorem 4.4. Assume H 5, H 6, A 1 and A 2. Let γ0 > 0. There exist C > 0 and
λ ∈ (0, 1) such that for all γ ∈ (0, γ0], x ∈ Rd and n ∈ N,∥∥∥δxRnγ − π∥∥∥

V
1/2

ae
≤ C (nγλnγVae(x) +√γ) , (4.14)

where ae is defined in Proposition 4.3 and for all γ ∈ (0, γ0],

‖πγ − π‖V 1/2
ae
≤ C√γ . (4.15)

Proof. The proof is postponed to Section 4.4.4.

By adding strong convexity for the potential, one obtains the corresponding bounds
for the Wasserstein distance of order 2.

H7. U is strongly convex, i.e. there exists m > 0 such that for all x, y ∈ Rd,

〈∇U(x)−∇U(y), x− y〉 ≥ m ‖x− y‖2 .

By coupling (Yt)t≥0 and the linear interpolation of (Xk)k∈N with the same Brownian
motion, the following result is obtained.

Theorem 4.5. Assume A1, A2, H5, H6 and H7. Let γ0 > 0. There exist C > 0 and
λ ∈ (0, 1) such that for all x ∈ Rd, γ ∈ (0, γ0] and n ∈ N,

W 2
2 (δxRnγ , π) ≤ C (nγλnγVae(x) + γ) , (4.16)

where ae is defined in Proposition 4.3 and for all γ ∈ (0, γ0],

W 2
2 (πγ , π) ≤ Cγ . (4.17)

Proof. The proof is postponed to Section 4.4.5.

If U ∈ C2(Rd,R) and under the following assumption on ∇2U , the bound can be
improved.

H 8. U is twice continuously differentiable and there exist ν, LH ∈ R+ and β ∈ [0, 1]
such that for all x, y ∈ Rd,∥∥∥∇2U(x)−∇2U(y)

∥∥∥ ≤ LH {1 + ‖x‖ν + ‖y‖ν} ‖x− y‖β .

It is shown in Section 4.4.5 that H8 implies H5.

Theorem 4.6. Assume A1, A2, H6, H7 and H8. Let γ0 > 0. There exist C > 0 and
λ ∈ (0, 1) such that for all x ∈ Rd, γ ∈ (0, γ0] and n ∈ N,

W 2
2 (δxRnγ , π) ≤ C

(
nγ1+βλnγVae(x) + γ1+β

)
, (4.18)

where ae is defined in Proposition 4.3 and for all γ ∈ (0, γ0],

W 2
2 (πγ , π) ≤ Cγ1+β . (4.19)
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Proof. The proof is postponed to Section 4.4.5.

The exponent of γ in (4.16) is improved from 1 to 1 + β. In particular, if ∇2U is
Lipschitz, ν = 0, β = 1, and [DM16, Theorem 8] is recovered.

Let (Xk)k∈N be the Markov chain defined in (4.3). To study the empirical average
(1/n)

∑n−1
k=0{f(Xk)− π(f)} for n ∈ N∗, we follow a method introduced in [MST10] and

based on the Poisson equation. For f a π-integrable function, the Poisson equation
associated with the generator L defined in (4.6) is given for all x ∈ Rd by

Lφ(x) = − (f(x)− π(f)) , (4.20)

where φ, if it exists, is a solution of the Poisson equation. This equation has proved to be
a useful tool to analyze additive functionals of diffusion processes, see e.g. [CCG12] and
references therein. The existence and regularity of a solution of the Poisson equation has
been investigated in [GM96], [PV01], [Kop15], [Gor+16]. For that purpose, the following
additional assumption on U is introduced.

H9. U ∈ C4(Rd,R) and
∥∥∥Di U

∥∥∥ ∈ Cpoly(Rd,R+) for i ∈ {1, . . . , 4}.

Theorem 4.7. Assume H6, H9, A1 and A2. Let f ∈ C3(Rd,R) be such that
∥∥∥Di f

∥∥∥ ∈
Cpoly(Rd,R+) for i ∈ {0, . . . , 3}. Let γ0 > 0 and (Xk)k∈N be the Markov chain defined
by (4.3) and starting at X0 = 0. There exists C > 0 such that for all γ ∈ (0, γ0] and
n ∈ N∗, ∣∣∣∣∣E

[
1
n

n−1∑
k=0

f(Xk)− π(f)
]∣∣∣∣∣ ≤ C

(
γ + 1

nγ

)
(4.21)

and

E

( 1
n

n−1∑
k=0

f(Xk)− π(f)
)2 ≤ C (γ2 + 1

nγ

)
. (4.22)

Proof. The proof is postponed to Section 4.4.6.

Note that the standard rates of convergence are recovered, see [MST10, Theorems 5.1, 5.2].

4.3 Numerical examples

We illustrate our theoretical results using three numerical examples.

Multivariate Gaussian variable in high dimension We first consider a mul-
tivariate Gaussian variable in dimension d ∈ {100, 1000} of mean 0 and covariance
matrix Σ = diag(1, . . . , d). The potential U : Rd → R defined for all x ∈ Rd by
U(x) = (1/2)xTΣ−1x is d−1-strongly convex and 1-gradient Lipschitz. The assumptions
H5, H6, H7, H8 with β = 1 and H9 are thus satisfied. Note that in this case, ULA is
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stable and the analysis of [Dal17b], [DM17], [DM16] valid. Nevertheless, implementing
TULA and TULAc on this example is still of interest. Indeed, some Bayesian posterior
distributions have intricate expressions and identifying the superlinear part in the gradi-
ent ∇U may be a difficult task. Within this context, we check the robustness of TULA
and TULAc with respect to (globally) Lipschitz ∇U .

We also consider in Section 4.E a badly conditioned multivariate Gaussian variable
in dimension d = 100 of mean 0 and covariance matrix Σ = diag(10−5, 1, . . . , 1). In
this example, ULA requires a step size of order 10−5 to be stable which implies a large
number of iterations to obtain relevant results. On the other side, TULA and TULAc
are applicable with a step size of order 10−2 and within a relatively small number of
iterations, valid results for the axes 2 to 100 are obtained.

Double well The potential is defined for all x ∈ Rd by U(x) = (1/4) ‖x‖4−(1/2) ‖x‖2.
We have ∇U(x) = (‖x‖2−1)x and ∇2U(x) = (‖x‖2−1) Id +2xxT. We get

∥∥∇2U(x)
∥∥ =

3 ‖x‖2 − 1, 〈x,∇U(x)〉 = ‖x‖ ‖∇U(x)‖ for ‖x‖ ≥ 1 and∥∥∥∇2U(x)−∇2U(y)
∥∥∥ ≤ 3 (‖x‖+ ‖y‖) ‖x− y‖ ,

so that H5, H6, H8 with β = 1 and H9 are satisfied.

Ginzburg-Landau model This model of phase transitions in physics [LFR17, Section
6.2] is defined on a three-dimensional d = p3 lattice for p ∈ N∗ and the potential is given
for x = (xijk)i,j,k∈{1,...,p} ∈ Rd by

U(x) =
p∑

i,j,k=1

{1− τ
2 x2

ijk + τα

2

∥∥∥∇̃xijk∥∥∥2
+ τλ

4 x4
ijk

}
,

where α, λ, τ > 0 and ∇̃xijk = (xi+jk−xijk, xij+k−xijk, xijk+−xijk) with i± = i±1 mod p
and similarly for j±, k±. In the simulations, p is equal to 10. We have

∇U(x) =
{
τα
(
6xijk − xi+jk − xij+k − xijk+ − xi−jk − xij−k − xijk−

)
+ (1− τ)xijk + τλx3

ijk

}
i,j,k∈{1,...,p}

,

and

∇2U(x) = diag
((

1− τ + 6τα+ 3τλx2
ijk

)
i,j,k∈{1,...,p}

)
+M ,

where M ∈ Rd×d is a constant matrix. H5, H8 with β = 1 and H9 are thus satisfied.

Using that x 7→
∑p
i,j,k=1

∥∥∥∇̃xijk∥∥∥2
is convex by composition of convex functions and its

gradient evaluated at 0 is 0, we have for all x ∈ Rd,

〈x,∇U(x)〉 ≥
p∑

i,j,k=1
{(1− τ)x2

ijk + τλx4
ijk} .
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By Cauchy-Schwarz inequality,
{∑p

i,j,k=1 x
2
ijk

}2
≤ d

∑p
i,j,k=1 x

4
ijk, and for all x ∈ Rd,

‖x‖2 ≥ (2 |1− τ | d)/(τλ), we get 〈x,∇U(x)〉 ≥ {(τλ)/2}
∑p
i,j,k=1 x

4
ijk. Besides, we have

‖∇U(x)‖ ≤ (|1− τ |+ 12τα) ‖x‖+ τλ
∥∥∥(x3

ijk)i,j,k∈{1,...,p}
∥∥∥ .

Let a, b, c ∈ {1, . . . , p} be such that |xabc| = max |xijk|. We get

‖x‖
∥∥∥(x3

ijk)i,j,k∈{1,...,p}
∥∥∥ ≤ dx4

abc ≤ d
p∑

i,j,k=1
x4
ijk .

Finally, for ‖x‖2 ≥ max{1, (2 |1− τ | d)/(τλ)}, we obtain

‖x‖ ‖∇U(x)‖ ≤
{2d |1− τ |

τλ
+ 24αd

λ
+ 2d

}
〈x,∇U(x)〉 ,

and H6 is satisfied.
We benchmark TULA and TULAc against ULA given by (4.2), MALA and a Random

Walk Metropolis-Hastings with a Gaussian proposal (RWM). TMALA (Tamed Metropo-
lis Adjusted Langevin Algorithm) and TMALAc (coordinate-wise Tamed Metropolis
Adjusted Langevin Algorithm), the Metropolized versions of TULA and TULAc, are
also included in the numerical tests. Their theoretical analysis is similar to the one of
MALTA [Atc06, Proposition 2.1].

Since double well and Ginzburg-Landau models are coordinate-wise exchangeable,
the results are provided only for their first coordinate. The Markov chains associated
with these models are started at X0 = 0, (10, 0⊗(d−1)), (100, 0⊗(d−1)), (1000, 0⊗(d−1))
and for the multivariate Gaussian at a random vector of norm 0, 10, 100, 1000. For
the Gaussian and double well examples, for each initial condition, algorithm, step size
γ ∈

{
10−3, 10−2, 10−1}, we run 100 independent Markov chains started at X0 of 106

samples (respectively 105) in dimension d = 100 (respectively d = 1000). For the
Ginzburg-Landau model, we run 100 independent Markov chains started at X0 of 105

samples. For each run, we estimate the 1st and 2nd moment for the first and last
coordinate, i.e.

∫
Rd xiπ(x)dx for i ∈ {1, d}, by the empirical average and we compute the

boxplots of the errors. For ULA, if the norm of Xk for k ∈ N exceeds 105, the chain is
stopped and for this step size γ the trajectory of ULA is not taken into account. For
MALA, RWM, TMALA and TMALAc, if the acceptance ratio is below 0.05, we similarly
do not take into account the corresponding trajectories.

For the three examples and for i ∈ {1, . . . , d},
∫
Rd xiπ(x)dx = 0. By symmetry, for

the double well, we have for i ∈ {1, . . . , d} and r ∈ R+,

E
[
X2
i

]
= d−1

∫
R+
r2ν(r)dr

/∫
R+
ν(r)dr , ν(r) = rd−1 exp

{
(r2/2)− (r4/4)

}
.

A Random Walk Metropolis run of 107 samples gives
∫
Rd x

2
iπ(x)dx ≈ 0.104 ± 0.001 for

d = 100 and
∫
Rd x

2
iπ(x)dx ≈ 0.032± 0.001 for d = 1000.
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We display boxplots in Figures 4.1 to 4.4. The Python code and all the figures are
available at https://github.com/nbrosse/TULA. We remark that TULA, TULAc and
to a lesser extent, TMALA and TMALAc, have a stable behavior even with large step
sizes and starting far from the origin. This is particularly visible in Figures 4.2 and 4.4
where ULA diverges (i.e. lim infk→+∞ E [‖Xk‖] = +∞) and MALA does not move even
for small step sizes γ = 10−3. Note however the existence of a bias for ULA, TULA and
TULAc in Figure 4.3. Finally, comparison of the results shows that TULAc is preferable
to TULA.

Note that other choices are possible for Gγ , depending on the model under study.
For example, in the case of the double well, we could ”tame” only the superlinear part
of ∇U , i.e. consider for all γ > 0 and x ∈ Rd,

Gγ(x) = ‖x‖2 x
1 + γ ‖x‖2

− x . (4.23)

A1 is satisfied and we have〈
x

‖x‖
, Gγ(x)

〉
− γ

2 ‖x‖ ‖Gγ(x)‖2 = ‖x‖3

1 + γ ‖x‖2
{

1 + γ − γ

2
‖x‖2

1 + γ ‖x‖2
}

− ‖x‖ {1 + (γ/2)} ,

lim inf
‖x‖→+∞

〈
x

‖x‖2
, Gγ(x)

〉
− γ

2 ‖x‖2
‖Gγ(x)‖2 = γ−1 − γ

2 .

A2 is satisfied if and only if γ ∈ (0, 1). It is striking to see that this theoretical threshold
is clearly visible on the simulations. The algorithm (4.3) with Gγ defined by (4.23)
obtains similar results as TULAc for γ < 1 but for γ = 1, the algorithm diverges.

Given the results of the numerical experiments, TULAc should be chosen over ULA
to sample from general probability distributions. Indeed, TULAc has similar results as
ULA when the step size is small and is more stable when using larger step sizes.

https://github.com/nbrosse/TULA
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Figure 4.1: Boxplots of the error on the first moment for the multivariate Gaussian (first
coordinate) in dimension 1000 starting at 0 for different step sizes.
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Figure 4.2: Boxplots of the error on the first moment for the double well in dimension 100
starting at (100, 0⊗99) for different step sizes.
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Figure 4.3: Boxplots of the error on the second moment for the double well in dimension 100
starting at 0 for different step sizes.
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Figure 4.4: Boxplots of the error on the first moment for the Ginzburg-Landau model in dimen-
sion 1000 starting at (100, 0⊗999) for different step sizes.
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4.4 Proofs

4.4.1 Proof of Proposition 4.1

We have for all x ∈ Rd,

LVa(x)
aVa(x) = −

〈
∇U(x), x

(1 + ‖x‖2)1/2

〉
+ a ‖x‖2

1 + ‖x‖2
+ d

(1 + ‖x‖2)1/2

− ‖x‖2

(1 + ‖x‖2)3/2
. (4.24)

By H6-ii) and using s 7→ s/(1+s2)1/2 is non-decreasing for s ≥ 0, there exist M1, κ ∈ R∗+
such that for all x ∈ Rd, ‖x‖ ≥M1,

〈
∇U(x), x(1 + ‖x‖2)−1/2

〉
≥ κ ‖∇U(x)‖. By H6-i),

there exists M2 ≥M1 such that for all x ∈ Rd, ‖x‖ ≥M2, ‖∇U(x)‖ ≥ κ−1{1 +a+d(1 +
M2

1 )−1/2}. We then have for all x ∈ Rd, ‖x‖ ≥M2, LVa(x) ≤ −aVa(x). Define

ba = exp(a(1 +M2
2 )1/2){2L(1 +M `+1

2 ) + a+ d} .

Combining (4.5) and (4.24) gives (4.8). By [MT93, Theorem 1.1], we get PtVa(x) ≤
e−atVa(x) + ba(1− e−at). The second statement is a consequence of [RT96, Theorem 2.2]
and [MT93, Theorem 6.1].

4.4.2 Proof of Lemma 4.2

Let γ > 0. We have for all x ∈ Rd, ‖Hγ(x)−∇U(x)‖ ≤ γ ‖∇U(x)‖2 and

‖Hγ,c(x)−∇U(x)‖ ≤ γ
{

d∑
i=1

(∂iU(x))4
}1/2

≤ γ ‖∇U(x)‖2 .

By (4.5), A1 is satisfied with α = 2`+ 2. Define for all x ∈ Rd, x 6= 0,

Aγ(x) =
〈
x

‖x‖
, Hγ(x)

〉
− γ

2 ‖x‖ ‖Hγ(x)‖2 .

By H6-ii), there exist M1, κ > 0 such that for all x ∈ Rd, ‖x‖ ≥ M1, 〈x,∇U(x)〉 ≥
κ ‖x‖ ‖∇U(x)‖. We get then for all x ∈ Rd, ‖x‖ ≥M1,

Aγ(x) = 1
2 ‖x‖ {1 + γ ‖∇U(x)‖}

{
2 〈x,∇U(x)〉 − ‖∇U(x)‖ γ ‖∇U(x)‖

1 + γ ‖∇U(x)‖

}
≥ ‖∇U(x)‖

1 + γ ‖∇U(x)‖
2κ ‖x‖ − 1

2 ‖x‖ .

By H6-i), there exist M2, C > 0 such that for all x ∈ Rd, ‖x‖ ≥ M2, ‖∇U(x)‖ ≥ C.
Using that s 7→ s(1 + γs)−1 is non-decreasing for s ≥ 0, we get for all x ∈ Rd, ‖x‖ ≥
max(κ−1,M1,M2), Aγ(x) ≥ (κC)/{2(1 + γC)}.
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Define for all x ∈ Rd, x 6= 0,

Bγ(x) =
〈
x

‖x‖
, Hγ,c(x)

〉
− γ

2 ‖x‖ ‖Hγ,c(x)‖2 .

We have for all x ∈ Rd, γ ‖Hγ,c(x)‖ ≤
√
d and for all x ∈ Rd, ‖x‖ ≥M1,〈

x,

(
∂iU(x)

1 + γ |∂iU(x)|

)
i∈{1,...,d}

〉
≥ κ ‖x‖ ‖∇U(x)‖

1 + γmaxi∈{1,...,d} |∂iU(x)|

and ∥∥∥∥∥
(

∂iU(x)
1 + γ |∂iU(x)|

)
i∈{1,...,d}

∥∥∥∥∥ ≤ ‖∇U(x)‖
1 + γmaxi∈{1,...,d} |∂iU(x)| .

Combining these inequalities, we get for all x ∈ Rd, ‖x‖ ≥ max(κ−1√d,M1),

Bγ(x) ≥ ‖∇U(x)‖
1 + γmaxi∈{1,...,d} |∂iU(x)|

1
2 ‖x‖

{
2κ ‖x‖ −

√
d
}
≥ ‖∇U(x)‖

1 + γ ‖∇U(x)‖
κ

2 ,

and for all x ∈ Rd, ‖x‖ ≥ max(κ−1√d,M1,M2), we get Bγ(x) ≥ (κC)/{2(1 + γC)}.

4.4.3 Proof of Proposition 4.3

Let γ, a ∈ R∗+. Note that the function x 7→ (1 + ‖x‖2)1/2 is Lipschitz continuous with
Lipschitz constant equal to 1. By the log-Sobolev inequality [BGL14, Proposition 5.5.1],
and the Cauchy-Schwarz inequality, we have for all x ∈ Rd and a > 0

RγVa(x) ≤ ea2γ exp
{
a

∫
Rd

(1 + ‖y‖2)1/2Rγ(x,dy)
}

≤ ea2γ exp
{
a
(
1 + ‖x− γGγ(x)‖2 + 2γd

)1/2
}
. (4.25)

We now bound the term inside the exponential in the right hand side. For all x ∈ Rd,

‖x− γGγ(x)‖2 = ‖x‖2 − 2γ
(
〈Gγ(x), x〉 − (γ/2) ‖Gγ(x)‖2

)
. (4.26)

By A 2, there exist M1, κ ∈ R∗+ such that for all x ∈ Rd, ‖x‖ ≥ M1, 〈x,Gγ(x)〉 −
(γ/2) ‖Gγ(x)‖2 ≥ κ ‖x‖. Denote by M = max(M1, 2dκ−1). For all x ∈ Rd, ‖x‖ ≥ M ,
we have

‖x− γGγ(x)‖2 + 2γd ≤ ‖x‖2 − γκ ‖x‖ .
Using for all t ∈ [0, 1], (1 − t)1/2 ≤ 1 − t/2 and s 7→ s/(1 + s2)1/2 is non-decreasing for
s ≥ 0, we have for all x ∈ Rd, ‖x‖ ≥M ,

(
1 + ‖x− γGγ(x)‖2 + 2γd

)1/2
≤
(
1 + ‖x‖2

)1/2
(

1− γκ ‖x‖
1 + ‖x‖2

)1/2

≤
(
1 + ‖x‖2

)1/2
− γκM

2(1 +M2)1/2 .
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Plugging this result in (4.25) shows that for all x ∈ Rd, ‖x‖ ≥M ,

RγVae(x) ≤ e−ae2γVae(x) for ae = κM

4(1 +M2)1/2 . (4.27)

By (4.10), we have

max
‖x‖≤M

‖Gγ(x)‖ ≤ 2L
{

1 + ‖M‖`+1
}

+ γCα (1 + ‖M‖α) .

Combining it with (4.25), (4.26), s 7→ s/(1 + s2)1/2 is non-decreasing for s ≥ 0 and
(1+t1+t2)1/2 ≤ (1+t1)1/2+t2/2 for t1 = ‖x‖2, t2 = γ2 ‖Gγ(x)‖2+2γ ‖x‖ ‖Gγ(x)‖+2γd,
we have for all x ∈ Rd, ‖x‖ ≤M ,

RγVae(x) ≤ eγcVae(x) , (4.28)

where

c = ae2 + ae
[
M
{

2L
{

1 + ‖M‖`+1
}

+ γCα (1 + ‖M‖α)
}

+ γ

2
{

2L
{

1 + ‖M‖`+1
}

+ γCα (1 + ‖M‖α)
}2

+ d

]
.

Then, using that for all t ≥ 0, 1− e−t ≤ t, we get for all x ∈ Rd, ‖x‖ ≤M ,

RγVae(x)− e−ae2γVae(x) ≤ eγc(1− e−γ(ae2+c))Vae(x) ≤ γeγc(ae2 + c)Vae(x) , (4.29)

which combined with (4.27) gives (4.12) with b = eγc(ae2 + c)eκM/4. Finally, using
Jensen’s inequality and (s + t)ς ≤ sς + tς for ς ∈ (0, 1), s, t ≥ 0 in (4.12), by [RT96,
Section 3.1], for all γ > 0, Rγ has a unique invariant probability measure πγ and Rγ is
V ς

ae-geometrically ergodic w.r.t. πγ .

4.4.4 Proof of Theorem 4.4

The proof is adapted from [DT12, Proposition 2] and [DM17, Theorem 10]. We first
state a lemma.

Lemma 4.8. Assume H5, H6, A1 and A2. Let γ0 > 0, p ∈ N∗ and ν0 be a probability
measure on (Rd,B(Rd)). There exists C > 0 such that for all γ ∈ (0, γ0]

KL(ν0R
p
γ |ν0Ppγ) ≤ Cγ2

∫
Rd

p−1∑
i=0

{∫
Rd
Vae(z)Riγ(y,dz)

}
ν0(dy) .

Proof. Let y ∈ Rd and γ > 0. Denote by (Yt, Y t)t≥0 the unique strong solution of dYt = −∇U(Yt)dt+
√

2dBt , Y0 = y ,

dY t = −Gγ
(
Y bt/γcγ

)
dt+

√
2dBt , Y 0 = y ,

(4.30)
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and by (Ft)t≥0 the filtration associated with (Bt)t≥0. Denote by µyp and µyp the marginal

distributions on C([0, pγ] ,Rd) of (Yt, Y t)t≥0. By (4.5), (4.10) and Propositions 4.1
and 4.3, we have

P
(∫ pγ

0
‖∇U(Yt)‖2 +

∥∥∥Gγ (Ybt/γcγ)∥∥∥2
dt < +∞

)
= 1 ,

P
(∫ pγ

0

∥∥∥∇U(Y t)
∥∥∥2

+
∥∥∥Gγ (Y bt/γcγ)∥∥∥2

dt < +∞
)

= 1 .

By [LS13, Theorem 7.19], µyp and µyp are equivalent and P-almost surely,

dµyp
dµyp

((Y t)t∈[0,pγ]) = exp
(1

2

∫ pγ

0

〈
−∇U(Y s) +Gγ

(
Y bs/γcγ

)
,dY s

〉
− 1

4

∫ pγ

0

{∥∥∥∇U(Y s)
∥∥∥2
−
∥∥∥Gγ (Y bs/γcγ)∥∥∥2

}
ds
)
.

We get then

KL(µyp|µyp) = E
[
− log

{dµyp
dµyp

((Y t)t∈[0,pγ])
}]

= (1/4)
∫ pγ

0
E
[∥∥∥∇U(Y s)−Gγ

(
Y bs/γcγ

)∥∥∥2
]

ds

= (1/4)
p−1∑
i=0

∫ (i+1)γ

iγ
E
[∥∥∥∇U(Y s)−Gγ(Y iγ)

∥∥∥2
]

ds .

For i ∈ {0, . . . , p− 1} and s ∈ [iγ, (i+ 1)γ), we have
∥∥∥∇U(Y s)−Gγ(Y iγ)

∥∥∥2
≤ 2(A1+A2)

where

A1 =
∥∥∥∇U(Y s)−∇U(Y iγ)

∥∥∥2
, A2 =

∥∥∥∇U(Y iγ)−Gγ(Y iγ)
∥∥∥2

.

By A1, A2 ≤ γ2C2
α

(
1 +

∥∥∥Y iγ

∥∥∥α)2
and by H5,

A1 ≤ L2
(

1 +
∥∥∥Y s

∥∥∥` +
∥∥∥Y iγ

∥∥∥`)2 ∥∥∥Y s − Y iγ

∥∥∥2
. (4.31)

On the other hand for s ∈ [iγ, (i+ 1)γ),∥∥∥Y s − Y iγ

∥∥∥2
= (s− iγ)2

∥∥∥Gγ(Y iγ)
∥∥∥2

+ 2 ‖Bs −Biγ‖2

− 23/2(s− iγ)
〈
Bs −Biγ , Gγ(Y iγ)

〉
, (4.32)∥∥∥Y s

∥∥∥ ≤ ∥∥∥Y iγ

∥∥∥+ γ
∥∥∥Gγ(Y iγ)

∥∥∥+
√

2 ‖Bs −Biγ‖ . (4.33)

Define Pγ,1 : R+ → R+ for all t ∈ R+ by

Pγ,1(t) = (2π)−d/2L2
∫
Rd

[
2 ‖z‖2 + γ

{
2L(1 + t`+1) + γCα(1 + tα)

}2
]

×
[
1 + t` +

{
t+ γ

(
2L(1 + t`+1) + γCα(1 + tα)

)
+
√

2γ ‖z‖
}`]2

e−‖z‖
2/2dz . (4.34)
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By (4.10), (4.31), (4.32) and (4.33), we have for i ∈ {0, . . . , p− 1}

∫ (i+1)γ

iγ
EFiγ [A1] ds ≤ (γ2/2)Pγ,1

(∥∥∥Y iγ

∥∥∥)
and we get

∫ (i+1)γ

iγ
EFiγ

[∥∥∥∇U(Y s)−Gγ(Y iγ)
∥∥∥2
]

ds ≤ γ2
{

Pγ,1
(∥∥∥Y iγ

∥∥∥)+ 2γP2
(∥∥∥Y iγ

∥∥∥)} ,

where P2 : R+ → R+ is defined for all t ∈ R+ by

P2(t) = C2
α (1 + tα)2 . (4.35)

By [Kul97, Theorem 4.1, Chapter 2], we obtain

KL(δyRpγ |δyPpγ) ≤ KL(µyp|µyp) ≤ (γ2/4)
p−1∑
i=0

E
[
Pγ,1

(∥∥∥Y iγ

∥∥∥)+ 2γP2
(∥∥∥Y iγ

∥∥∥)] .
By (4.34) and (4.35), there exists C > 0 such that for all γ ∈ (0, γ0] and x ∈ Rd,
Pγ,1(‖x‖) + 2γP2(‖x‖) ≤ 4CVae(x). Combining it with the chain rule for the Kullback-
Leibler divergence concludes the proof.

Proof of Theorem 4.4. Let γ ∈ (0, γ0]. By Proposition 4.1, we have for all n ∈ N and
x ∈ Rd, ∥∥∥δxRnγ − π∥∥∥

V
1/2

ae
≤ Cae/2ρ

nγ
ae/2V

1/2
ae (x) +

∥∥∥δxRnγ − δxPnγ∥∥∥
V

1/2
ae

.

Denote by kγ =
⌈
γ−1⌉ and by qγ , rγ the quotient and the remainder of the Euclidian

division of n by kγ . We have ‖δxRnγ − δxPnγ‖V 1/2
ae
≤ A+B where

A =
∥∥∥δxRqγkγγ Prγγ − δxRnγ

∥∥∥
V

1/2
ae

B =
qγ∑
i=1

∥∥∥δxR(i−1)kγ
γ P(n−(i−1)kγ)γ − δxRikγγ P(n−ikγ)γ

∥∥∥
V

1/2
ae

≤
qγ∑
i=1

Cae/2ρ
(n−ikγ)γ
ae/2

∥∥∥δxR(i−1)kγ
γ Pkγγ − δxRikγγ

∥∥∥
V

1/2
ae

. (4.36)

For i ∈ {1, . . . , qγ} we have by [DM17, Lemma 24],

∥∥∥δxR(i−1)kγ
γ Pkγγ − δxRikγγ

∥∥∥2

V
1/2

ae
≤ 2

{
δxR

(i−1)kγ
γ Pkγγ(Vae) + δxR

ikγ
γ (Vae)

}
×KL(δxRikγγ |δxR(i−1)kγ

γ Pkγγ) . (4.37)
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By Proposition 4.3, Lemma 4.8 and kγ ≤ 1 + γ−1, we have for all i ∈ {1, . . . , qγ}

KL(δxRikγγ |δxR(i−1)kγ
γ Pkγγ) ≤ Cγ2

kγ−1∑
j=0

∫
Rd
Vae(z)δxR(i−1)kγ+j

γ (dz)

≤ Cγ2(1 + γ−1)
{

e−ae2γkγ(i−1)Vae(x) + b

ae2 eae2γ
}
, (4.38)

where C is the constant defined in Lemma 4.8. By Proposition 4.1, we have for x ∈ Rd,
PkγγVae(x) ≤ Vae(x) + bae and by Proposition 4.3, we get for all i ∈ {1, . . . , qγ}

δxR
(i−1)kγ
γ Pkγγ(Vae) + δxR

ikγ
γ (Vae) ≤ 2

{
e−ae2γkγ(i−1)Vae(x) + b

ae2 eae2γ + bae

}
. (4.39)

By (4.36), (4.37), (4.38) and (4.39), we obtain

B ≤ 2Cae/2C
1/2γ(1 + γ−1)1/2

×
qγ∑
i=1

ρ
(qγ−i)γkγ
ae/2

{
e−(i−1)γkγae2

Vae(x) +
(
bae + b

ae2 eae2γ
)}

and we get

B
{

2Cae/2C
1/2γ(1 + γ−1)1/2

}−1
≤
(
bae + b

ae2 eae2γ
) 1

1− ρkγγae/2

+ Vae(x)qγ max(ρae/2, e−ae2)(qγ−1)γkγ .

Bounding A along the same lines and using kγγ ≥ 1, we get (4.14). By Proposition 4.3
and taking the limit n→ +∞, we obtain (4.15).

4.4.5 Proofs of Theorems 4.5 and 4.6

We first state preliminary technical lemmas on the diffusion (Yt)t≥0. The proofs are
postponed to the Appendix. Define for all p ∈ N∗ and k ∈ {0, · · · , p},

ak,p = mk−p
p∏

i=k+1

{
i(d+ 2(i− 1))(i− k)−1

}
. (4.40)

Lemma 4.9. Assume H 7. Let p ∈ N∗, x ∈ Rd and (Yt)t≥0 be the solution of (5.7)
started at x. For all t ≥ 0,

E
[
‖Yt‖2p

]
≤ a0,p

(
1− e−2pmt

)
+

p∑
k=1

ak,pe−2kmt ‖x‖2k ,

where for k ∈ {0, · · · , p}, ak,p is given in (4.40).



82 4.4. Proofs

Proof. The proof is postponed to Section 4.A.

Lemma 4.10. Assume H7 and let p ∈ N∗. We have
∫
Rd ‖y‖

2p π(dy) ≤ a0,p.

Proof. By Equation (4.58) and [RT96, Theorem 2.2], (Yt)t≥0 the solution of (5.7) is Vp-
geometrically ergodic w.r.t. π. Taking the limit t → +∞ in Lemma 4.9 concludes the
proof.

Let γ > 0 and under H5 set

N = d(`+ 1)/2e . (4.41)

Consider Pγ,3 : R+ → R+ defined for all s ∈ R+ by

Pγ,3(s) = 2d+ 8L2(1 + s`+1)
{
γ

2

(
2 +

N∑
k=1

ak,Ns
2k
)

+Nma0,N
γ2

3

}
. (4.42)

Lemma 4.11. Assume H5 and H7. Let x ∈ Rd, γ > 0 and (Yt)t≥0 be the solution of

(5.7) started at x. For all t ∈ [0, γ], we have E
[
‖Yt − x‖2

]
≤ tPγ,3(‖x‖), where Pγ,3 is

defined in (4.42).

Proof. The proof is postponed to Section 4.B.

For p ∈ N and γ > 0, define Qγ,p : R+ → R+ for all s ∈ R+ by,

Qγ,p(s) =
{ p∏
i=1

2i(d+ 3i− 2)
}[

2d γp

(p+ 1)! + 8L2(1 + s`+1)

×
{

(2 +
N∑
k=1

ak,Ns
2k) γp+1

(p+ 2)! + 2Nma0,N
γp+2

(p+ 3)!

}]

+ 2
p∑

k=1


p∏

i=k+1
2i(d+ 3i− 2)


{
d+ 4 + L2(1 + s`+1)2

m(k + 1)

}

×
{(

k∑
i=1

ai,ks
2i
)

γp−k

(p+ 1− k)! + 2kma0,k
γp+1−k

(p+ 2− k)!

}
(4.43)

where N is defined in (4.41).

Lemma 4.12. Assume H5 and H7. Let p ∈ N, γ > 0, x ∈ Rd and (Yt)t≥0 be the solution

of (5.7) started at x. For all t ∈ [0, γ], we have E
[
‖Yt‖2p ‖Yt − x‖2

]
≤ tQγ,p(‖x‖), where

Qγ,p is defined in (4.43).

Proof. The proof is postponed to Section 4.C.

Lemma 4.13. Assume H8.
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a) For all x ∈ Rd, ‖∇2U(x)‖ ≤ CH{1 + ‖x‖ν+β} where CH = max(2LH ,
∥∥∇2U(0)

∥∥).
b) For all x, y ∈ Rd,

∥∥∥∇U(x)−∇U(y)−∇2U(y)(x− y)
∥∥∥ ≤ 2LH

1 + β
{1 + ‖x‖ν + ‖y‖ν} ‖x− y‖1+β .

Proof. a) By H8, we get for all x ∈ Rd∥∥∥∇2U(x)
∥∥∥ ≤ ∥∥∥∇2U(x)−∇2U(0)

∥∥∥+
∥∥∥∇2U(0)

∥∥∥
≤ LH {1 + ‖x‖ν} ‖x‖β +

∥∥∥∇2U(0)
∥∥∥ .

The proof then follows from the upper bound for all x ∈ Rd, ‖x‖β ≤ 1 + ‖x‖ν+β.

b) Let x, y ∈ Rd. By H8,∥∥∥∇U(x)−∇U(y)−∇2U(y)(x− y)
∥∥∥

≤
∫ 1

0

∥∥∥∇2U(tx+ (1− t)y)−∇2U(y)
∥∥∥dt ‖x− y‖

≤ LH
∫ 1

0
{1 + ‖y‖ν + ‖tx+ (1− t)y‖ν} ‖t(x− y)‖β dt ‖x− y‖ ,

and the proof follows from ‖tx+ (1− t)y‖ν ≤ ‖x‖ν + ‖y‖ν .

For all n ∈ N, we now bound the Wasserstein distance W2 between π and the distri-
bution of the nth iterate of Xn defined by (4.3). The strategy consists given two initial
conditions (x, y), in coupling Xn and Yγn solution of (5.7) at time γn, using the same
Brownian motion. Similarly to (4.30), for γ > 0, consider the unique strong solution
(Yt, Y t)t≥0 of  dYt = −∇U(Yt)dt+

√
2dBt , Y0 = y ,

dY t = −Gγ
(
Y bt/γcγ

)
dt+

√
2dBt , Y 0 = x ,

(4.44)

where (Bt)t≥0 is a d-dimensional Brownian motion. Note that for n ∈ N, Y nγ = Xn and
let (Ft)t≥0 be the filtration associated with (Bt)t≥0.

Lemma 4.14. Assume A1, A2, H5 and H7. Let γ0 > 0. Define (Yt)t≥0, (Y t)t≥0 by
(4.44). Then there exists C > 0 such that for all n ∈ N and γ ∈ (0, γ0], almost surely,

EFnγ
[∥∥∥Y(n+1)γ − Y (n+1)γ

∥∥∥2
]
≤ e−mγ

∥∥∥Ynγ − Y nγ

∥∥∥2
+ Cγ2Vae(Y nγ) .
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Proof. Using the Markov property, we only need to show the result for n = 0. Define
for t ∈ [0, γ), Θt = Yt − Y t. By Itô’s formula, we have for all t ∈ [0, γ),

‖Θt‖2 = ‖y − x‖2 − 2
∫ t

0
〈Θs,∇U(Ys)−Gγ(x)〉ds .

By (4.5) and Lemma 4.9, the family of random variables (〈Θs,∇U(Ys)−Gγ(x)〉)s∈[0,γ)
is uniformly integrable. Pathwise continuity implies then for s ∈ [0, γ) the continuity
of s 7→ E [〈Θs,∇U(Ys)−Gγ(x)〉]. Taking the expectation and deriving, we have for
t ∈ [0, γ),

d
dtE

[
‖Θt‖2

]
= −2E [〈Θt,∇U(Yt)−Gγ(x)〉]

= −2E
[〈

Θt,∇U(Yt)−∇U(Y t)
〉]
− 2A1 − 2A2

≤ −2mE
[
‖Θt‖2

]
− 2A1 − 2A2 , (4.45)

where

A1 = E
[〈

Θt,∇U(Y t)−∇U(x)
〉]

, A2 = E [〈Θt,∇U(x)−Gγ(x)〉] . (4.46)

Using that |〈a, b〉| ≤ (m/4) ‖a‖2 +m−1 ‖b‖2 for all a, b ∈ Rd,

|A1| ≤ (m/4)E
[
‖Θt‖2

]
+m−1E

[∥∥∥∇U(Y t)−∇U(x)
∥∥∥2
]
.

Similarly to the proof of Lemma 4.8, we have E
[∥∥∥∇U(Y t)−∇U(x)

∥∥∥2
]
≤ tPγ,1(‖x‖)

where Pγ,1 is defined in (4.34). For A2, we have

|A2| ≤ (m/4)E
[
‖Θt‖2

]
+m−1 ‖∇U(x)−∇Gγ(x)‖2 (4.47)

and ‖∇U(x)−Gγ(x)‖2 ≤ γ2P2(‖x‖) where P2 is defined in (4.35). We get for t ∈ [0, γ),

d
dtE

[
‖Θt‖2

]
≤ −mE

[
‖Θt‖2

]
+ 2m−1

{
tPγ,1(‖x‖) + γ2P2(‖x‖)

}
.

Using Grönwall’s lemma and 1− e−s ≤ s for all s ≥ 0, we obtain

E
[∥∥∥Yγ − Y γ

∥∥∥2
]
≤ e−mγ ‖y − x‖2 +m−1γ2 {Pγ,1(‖x‖) + 2γP2(‖x‖)} .

Finally, by (4.34) and (4.35), there exists C > 0 such that for all x ∈ Rd, Pγ,1(‖x‖) +
2γP2(‖x‖) ≤ CmVae(x).

Lemma 4.15. Assume A1, A2, H7 and H8. Let γ0 > 0. Define (Yt)t≥0, (Y t)t≥0 by
(4.44). Then there exists C > 0 such that for all n ∈ N and γ ∈ (0, γ0], almost surely,

EFnγ
[∥∥∥Y(n+1)γ − Y (n+1)γ

∥∥∥2
]
≤ e−mγ

∥∥∥Ynγ − Y nγ

∥∥∥2

+ Cγ2+βVae(Y nγ) + Cγ3Vae(Y nγ) .
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Remark 4.16. The calculations in the proof show that the dependence w.r.t. Y nγ and
Ynγ is in fact polynomial but their exact expressions are very involved. For the sake
of simplicity, we bound these polynomials by Vae. The same remark applies equally to
Lemma 4.14.

Proof. Note first that by Lemma 4.13-a), H8 implies H5 with L = CH and ` = ν + β.
By the Markov property, we only need to show the result for n = 0. The proof is a
refinement of Lemma 4.14 and we use the same notations. We have to improve the
bound on A1 defined in (4.46). We decompose A1 = A11 +A12 where

A11 = E
[〈

Θt,∇U(Y t)−∇U(x)−∇2U(x)(Y t − x)
〉]

,

A12 = E
[〈

Θt,∇2U(x)(Y t − x)
〉]

.

Using |〈a, b〉| ≤ (m/6) ‖a‖2 + {3/(2m)} ‖b‖2 for all a, b ∈ Rd,

|A11| ≤
m

6 E
[
‖Θt‖2

]
+ 3

2mE
[∥∥∥∇U(Y t)−∇U(x)−∇2U(x)(Y t − x)

∥∥∥2
]
. (4.48)

By Lemma 4.13-b),∥∥∥∇U(Y t)−∇U(x)−∇2U(x)(Y t − x)
∥∥∥2

≤ 4L2
H

(1 + β)2

(
1 + ‖x‖ν +

∥∥∥Y t

∥∥∥ν)2 ∥∥∥Y t − x
∥∥∥2(1+β)

.

Following the proof of Lemma 4.8, using (4.32) and (4.33), we have

E
[∥∥∥∇U(Y t)−∇U(x)−∇2U(x)(Y t − x)

∥∥∥2
]
≤ t1+βPγ,4(‖x‖) . (4.49)

where Pγ,4 : R+ → R+ is defined for all s ∈ R+ by,

Pγ,4(s) = 4L2
H

(1 + β)2

∫
Rd

[√
2 ‖z‖+√γ

{
2L(1 + s`+1) + γCα(1 + sα)

}]2(1+β)

×
[
1 + sν +

{
s+ γ

(
2L(1 + s`+1) + γCα(1 + sα)

)
+
√

2γ ‖z‖
}ν]2 e−‖z‖2/2

(2π)d/2
dz . (4.50)

We decompose A12 in A12 = A121 +A122 where

A121 = E
[〈

Θt,−t∇2U(x)Gγ(x)
〉]

, A122 =
√

2E
[〈

Θt,∇2U(x)Bt
〉]

.

Define Pγ,5 : R+ → R+ for s ∈ R+ by,

Pγ,5(s) = C2
H

(
1 + sν+β

)2 {
2L(1 + s`+1) + γCα(1 + sα)

}2
. (4.51)

By Lemma 4.13-a) and (4.10),

|A121| ≤ (m/6)E
[
‖Θt‖2

]
+ {3/(2m)}t2Pγ,5(‖x‖) . (4.52)
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By Cauchy-Schwarz inequality and Lemma 4.13-a),

|A122| =
√

2
∣∣∣∣E [〈∫ t

0
{∇U(Ys)−∇U(y)} ds,∇2U(x)Bt

〉]∣∣∣∣
≤
√

2dtCH(1 + ‖x‖ν+β)E
[∥∥∥∥∫ t

0
{∇U(Ys)−∇U(y)} ds

∥∥∥∥2]1/2

. (4.53)

By H5, Cauchy-Schwarz inequality and using (1+‖y‖`+‖Ys‖`)2 ≤ 3(2+‖y‖2`+‖Ys‖2d`e)
for s ∈ [0, γ), we have

E
[∥∥∥∥∫ t

0
{∇U(Ys)−∇U(y)}ds

∥∥∥∥2]
≤ 3tL2(2 + ‖y‖2`)

∫ t

0
E
[
‖Ys − y‖2

]
ds

+ 3tL2
∫ t

0
E
[
‖Ys‖2d`e ‖Ys − y‖2

]
ds .

By Lemmas 4.11 and 4.12, we get

E
[∥∥∥∥∫ t

0
{∇U(Ys)−∇U(y)} ds

∥∥∥∥2]
≤ 3t3L2

2
{(

2 + ‖y‖2`
)

Pγ,3(‖y‖) + Qγ,d`e(‖y‖)
}
,

where Pγ,3,Qγ,d`e ∈ Cpoly(R+,R+) are defined in (4.42) and (4.43). Plugging this result
in (4.53), we obtain

|A122| ≤ t2
√

3dCHL
(
1 + ‖x‖ν+β

){(
2 + ‖y‖2`

)
Pγ,3(‖y‖) + Qγ,d`e(‖y‖)

}1/2
. (4.54)

Combining (4.48), (4.49), (4.52) and (4.54), we get

|A1| ≤ (m/3)E
[
‖Θt‖2

]
+ {3/(2m)}

{
t1+βPγ,4(‖x‖) + t2Pγ,5(‖x‖)

}
+ t2
√

3dCHL
(
1 + ‖x‖ν+β

){(
2 + ‖y‖2`

)
Pγ,3(‖y‖) + Qγ,d`e(‖y‖)

}1/2
,

and by (4.47), |A2| ≤ (m/6)E
[
‖Θt‖2

]
+ {3/(2m)}γ2P2(‖x‖), where P2 ∈ Cpoly(R+,R+)

is defined in (4.35). Combining these inequalities in (4.45), we get

d
dtE

[
‖Θt‖2

]
≤ −mE

[
‖Θt‖2

]
+ 3m−1

{
γ2P2(‖x‖) + t1+βPγ,4(‖x‖) + t2Pγ,5(‖x‖)

}
+ 2t2

√
3dCHL

(
1 + ‖x‖ν+β

){(
2 + ‖y‖2`

)
Pγ,3(‖y‖) + Qγ,d`e(‖y‖)

}1/2
.

Using Grönwall’s lemma and 1− e−s ≤ s for all s ≥ 0, we obtain

E
[∥∥∥Yγ − Y γ

∥∥∥2
]
≤ e−mγ ‖y − x‖2

+ 3m−1
{
γ3P2(‖x‖) + γ2+β

2 + β
Pγ,4(‖x‖) + γ3

3 Pγ,5(‖x‖)
}

+ 2γ3
√
d/3CHL

(
1 + ‖x‖ν+β

){(
2 + ‖y‖2`

)
Pγ,3(‖y‖) + Qγ,d`e(‖y‖)

}1/2
.
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Finally, by (4.35), (4.42), (4.50), (4.51) and (4.43), there exists C > 0 such that for all
x ∈ Rd and γ ∈ (0, γ0],

3m−1
{
γ3P2(‖x‖) + γ2+β

2 + β
Pγ,4(‖x‖) + γ3

3 Pγ,5(‖x‖)
}
≤ Cγ2+βVae(x) ,

2
√
d/3CHL

(
1 + ‖x‖ν+β

)
≤ C1/2Vae(x)1/2 ,(

2 + ‖x‖2`
)

Pγ,3(‖x‖) + Qγ,d`e(‖x‖) ≤ CVae(x) .

Proof of Theorem 4.5. Let γ ∈ (0, γ0]. Define (Yt)t≥0, (Y t)t≥0 by (4.44) and Xn = Y nγ

for n ∈ N. By Lemma 4.14 and Proposition 4.3, we have for all n ∈ N,

E
[
‖Ynγ −Xn‖2

]
≤ e−nmγ ‖y − x‖2 + Cγ2

n−1∑
k=0

e−mγ(n−1−k)E [Vae(Xk)]

≤ e−nmγ ‖y − x‖2 + Cγ2

1− e−mγ
b

ae2 eae2γ + Cγ2Vae(x)
n−1∑
k=0

e−mγ(n−1−k)e−ae2γk . (4.55)

Note that
n−1∑
k=0

e−mγ(n−1−k)e−ae2γk ≤ n

1−max(e−m, e−ae2)γ

and 1 − sγ ≥ −γ log(s)eγ log(s) for s ∈ (0, 1). In eq. (4.55), integrating y with respect
to π, for all n ∈ N, (Ynγ , Xn) is a coupling between π and δxR

n
γ . By Lemma 4.10,

we get (4.16). By Proposition 4.3 and [Vil09, Corollary 6.11], we have for all x ∈ Rd,
limn→+∞W2(δxRnγ , π) = W2(πγ , π) and we obtain (4.17).

Proof of Theorem 4.6. Let γ ∈ (0, γ0]. Define (Yt)t≥0, (Y t)t≥0 by (4.44) and Xn = Y nγ

for n ∈ N. By Lemma 4.15, we have for all n ∈ N,

E
[
‖Ynγ −Xn‖2

]
≤ e−nmγ ‖y − x‖2 +An +Bn ,

where

An = Cγ2+β
n−1∑
k=0

e−mγ(n−1−k)E [Vae(Xk)] ,

Bn = Cγ3
n−1∑
k=0

e−mγ(n−1−k)E [Vae(Ykγ)] .

Analysis similar to the proof of Theorem 4.5 using Proposition 4.1 instead of Proposi-
tion 4.3 for Bn shows then the result.
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4.4.6 Proof of Theorem 4.7

We first state a lemma on the existence and regularity of a solution of the Poisson
equation (4.20) which is adapted from [PV01, Theorem 1].

Lemma 4.17. Assume H6 and H9. Let f ∈ C3(Rd,R) be such that
∥∥∥Di f

∥∥∥ ∈ Cpoly(Rd,R+)
for i ∈ {0, . . . , 3}. Then, there exists a solution of the Poisson equation (4.20) φ ∈
C4(Rd,R), such that

∥∥∥Di φ
∥∥∥ ∈ Cpoly(Rd,R+) for i ∈ {0, . . . , 4}.

Proof. The proof is postponed to Section 4.D.

Proof of Theorem 4.7. The proof is adapted from [MST10, Section 5.1] Let γ ∈ (0, γ0].
In this Section, C is a positive constant which can change from line to line but does not
depend on γ. For k ∈ N, denote by

δk+1 = Xk+1 −Xk = −γGγ(Xk) +
√

2γZk+1 .

By H 6, H 9 and Lemma 4.17, there exists a solution to the Poisson equation (4.20)
φ ∈ C4(Rd,R), such that for all x ∈ Rd and i ∈ {0, . . . , 4},

Lφ(x) = − (f(x)− π(f)) and
∥∥∥Di φ

∥∥∥ ∈ Cpoly(Rd,R+) . (4.56)

By Taylor’s formula, we have for k ∈ N,

φ(Xk+1) = φ(Xk) + Dφ(Xk)[δk+1] + (1/2) D2 φ(Xk)[δk+1, δk+1]
+ (1/6) D3 φ(Xk)[δk+1, δk+1, δk+1] + rk ,

rk = (1/6)
∫ 1

0
(1− s)3 D4 φ(Xk + sδk+1)[δk+1, δk+1, δk+1, δk+1]ds .

Using the expression of δk+1 and (4.6), we get

φ(Xk+1) = φ(Xk) + γLφ(Xk) +
√

2γDφ(Xk)[Zk+1]

+ γ
{

D2 φ(Xk)[Zk+1, Zk+1]−∆φ(Xk)
}

+ γDφ(Xk)[∇U(Xk)−Gγ(Xk)]

+ (γ2/2) D2 φ(Xk)[Gγ(Xk), Gγ(Xk)]−
√

2γ3/2 D2 φ(Xk)[Gγ(Xk), Zk+1]
+ (1/6) D3 φ(Xk)[δk+1, δk+1, δk+1] + rk .

Summing from k = 0 to n− 1 for n ∈ N?, dividing by nγ, we get

1
n

n−1∑
k=0

(f(Xk)− π(f)) = φ(X0)− φ(Xn)
nγ

+ 1
nγ

( 3∑
i=0

Mi,n +
3∑
i=0

Si,n

)
,
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where

M0,n = ((
√

2γ3/2)/6)
n−1∑
k=0

{
2 D3 φ(Xk)[Zk+1, Zk+1, Zk+1]

+ 3γD3 φ(Xk)[Gγ(Xk), Gγ(Xk), Zk+1]
}
,

M1,n = γ
n−1∑
k=0

(D2 φ(Xk)[Zk+1, Zk+1]−∆φ(Xk)) ,

M2,n =
√

2γ
n−1∑
k=0

Dφ(Xk)[Zk+1] ,

M3,n = −
√

2γ3/2
n−1∑
k=0

D2 φ(Xk)[Gγ(Xk), Zk+1] ,

and

S0,n = −(γ2/6)
n−1∑
k=0

{
6 D3 φ(Xk)[Gγ(Xk), Zk+1, Zk+1]

+ γD3 φ(Xk)[Gγ(Xk), Gγ(Xk), Gγ(Xk)]
}
,

S1,n = γ
n−1∑
k=0

Dφ(Xk)[∇U(Xk)−Gγ(Xk)] ,

S2,n = (γ2/2)
n−1∑
k=0

D2 φ(Xk)[Gγ(Xk), Gγ(Xk)] ,

S3,n =
n−1∑
k=0

rk .

By A1, we calculate for n ∈ N∗, |S1,n| ≤ γ2Cα
∑n−1
k=0 ‖Dφ(Xk)‖ (1 + ‖Xk‖α). By H9,

(4.10) and (4.56), there exist p, q ≥ 1 and Cq > 0 such that the summands of (Mi,n)n∈N
and (Si,n)n∈N for i ∈ {0, . . . , 3} are dominated by Cq (1 + ‖Xk‖q) (1 + ‖Zk+1‖p) for
k ∈ {0, . . . , n− 1}. Therefore, by Proposition 4.1, for i ∈ {0, . . . , 3}, (Mi,n)n∈N are

martingales and for n ∈ N∗, E
[
S2
i,n

]
≤ Cn2γ4,

E
[
M2

0,n

]
≤ Cnγ3 , E

[
M2

1,n

]
≤ Cnγ2 , E

[
M2

2,n

]
≤ Cnγ , E

[
M2

3,n

]
≤ Cnγ3 ,

which yield the result.
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4.A Proof of Lemma 4.9

By H 7, (5.7) has a unique strong solution (Yt)t≥0 for any initial data Y0 = x ∈ Rd.
Define for p ∈ N∗, Vp : Rd → R+ by Vp(y) = ‖y‖2p for y ∈ Rd. We have using H7,

LVp(x) = −2p ‖x‖2(p−1) 〈∇U(x), x〉+ 2p(d+ 2(p− 1)) ‖x‖2(p−1) (4.57)

≤ −2pm ‖x‖2p + 2p ‖x‖2(p−1) (d+ 2(p− 1)) . (4.58)

Applying [MT93, Theorem 1.1] with V (x, t) = Vp(x)e2pmt, g−(t) = 0 and g+(x, t) =
2p(d+2(p−1))Vp−1(x)e2pmt for x ∈ Rd and t ≥ 0, we get denoting by vp(t, x) = PtVp(x),

vp(t, x) ≤ e−2pmtVp(x) + 2p(d+ 2(p− 1))
∫ t

0
e−2pm(t−s)vp−1(s, x)ds .

A straightforward induction concludes the proof.

4.B Proof of Lemma 4.11

Define Ṽx : Rd → R+ for all y ∈ Rd by Ṽx(y) = ‖y − x‖2. By Lemma 4.9, the process
(Ṽx(Yt) − Ṽx(x) −

∫ t
0 LṼx(Ys)ds)t≥0, is a (Ft)t≥0-martingale. Denote for all t ≥ 0 and

y ∈ Rd by ṽ(t, x) = PtṼx(x). Then we get,

∂ṽ(t, x)
∂t

= PtLṼx(x) . (4.59)

By H7, we have for all y ∈ Rd,

LṼx(y) = 2 (−〈∇U(y), y − x〉+ d) ≤ 2
(
−mṼx(y) + d− 〈∇U(x), y − x〉

)
. (4.60)

Using (4.59), this inequality and that Ṽx is nonnegative, we get

∂ṽ(t, x)
∂t

= PtLṼx(x) ≤ 2
(
d−

∫
Rd
〈∇U(x), y − x〉Pt(x,dy)

)
. (4.61)

Using (4.5) and (5.7), we have

|Ex [〈∇U(x), Yt − x〉]| ≤ ‖∇U(x)‖ ‖Ex [Yt − x]‖

≤ ‖∇U(x)‖
∥∥∥∥Ex [∫ t

0
{∇U(Ys)} ds

]∥∥∥∥
≤ 2L

{
1 + ‖x‖`+1

}∫ t

0
Ex [‖∇U(Ys)‖] ds . (4.62)

Using (4.5) again,∫ t

0
Ex [‖∇U(Ys)‖] ds ≤ 2L

∫ t

0
E
[
1 + ‖Ys‖`+1

]
ds

≤ 2L
{

2t+
∫ t

0
E
[
‖Ys‖2N

]
ds
}
. (4.63)
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Furthermore using that for all s ≥ 0, 1 − e−s ≤ s, s + e−s − 1 ≤ s2/2, and Lemma 4.9
we get∫ t

0
Ex
[
‖Ys‖2N

]
ds ≤ a0,N

2Ntm+ e−2Nmt − 1
2Nm +

N∑
k=1

ak,N ‖x‖2k
1− e−2mkt

2km

≤ t2Nma0,N + t
N∑
k=1

ak,N ‖x‖2k .

Plugging this inequality in (4.63) and (4.62), we get

|Ex [〈∇U(x), Yt − x〉]| ≤ 4L2(1 + ‖x‖`+1)
{

2t+Nma0,N t
2 + t

N∑
k=1

ak,N ‖x‖2k
}
. (4.64)

Using this bound in (4.61) and integrating the inequality gives

ṽ(t, x) ≤ 2dt+ 8L2(1 + ‖x‖`+1)
{
t2 +Nma0,N (t3/3) + (t2/2)

N∑
k=1

ak,N ‖x‖2k
}
. (4.65)

4.C Proof of Lemma 4.12

We show the result by induction on p. The case p = 0 follows from (4.65). Suppose
p ≥ 1. Define for y ∈ Rd, Wx,p : Rd → R+ by Wx,p(y) = ‖y‖2p ‖y − x‖2. We have

LWx,p(y) = −2 ‖y‖2p 〈∇U(y), y − x〉 − (2p) ‖y‖2(p−1) ‖y − x‖2 〈∇U(y), y〉

+ 2 ‖y‖2(p−1)
{
d ‖y‖2 + 4p 〈y, y − x〉+ p(d+ 2p− 2) ‖y − x‖2

}
.

By H7, (4.5) and using |〈a, b〉| ≤ η ‖a‖2 + (4η)−1 ‖b‖2 for all η > 0, we have

LWx,p(y) ≤ ‖y‖
2p ‖∇U(x)‖2

2m(p+ 1) + 2 ‖y‖2(p−1)
{

(d+ 4) ‖y‖2 + p(d+ 3p− 2) ‖y − x‖2
}

≤ ‖y‖2p
{

2(d+ 4) + 2L2(1 + ‖x‖`+1)2

m(p+ 1)

}
+ 2p(d+ 3p− 2) ‖y − x‖2 ‖y‖2(p−1) . (4.66)

By Lemma 4.9, the process (Wx,p(Yt) − Wx,p(x) −
∫ t

0 LWx,p(Ys)ds)t≥0 is a (Ft)t≥0-
martingale. For x ∈ Rd and t ≥ 0, denote by wx,p(x, t) = PtWx,p(x) and vp(x, t) =
Ex
[
‖Yt‖2p

]
. Taking the expectation of (4.66) w.r.t. δxPt and integrating w.r.t. t, we get

wx,p(t, x) ≤ 2
{
d+ 4 + L2(1 + ‖x‖`+1)2

m(p+ 1)

}∫ t

0
vp(s, x)ds

+ 2p(d+ 3p− 2)
∫ t

0
wx,p−1(s, x)ds .

By Lemma 4.9, vp(t, x) ≤ 2pma0,pt +
∑p
k=1 ak,p ‖x‖

2k. A straightforward induction
concludes the proof.



92 4.D. Proof of lemma 4.17

4.D Proof of Lemma 4.17

The proof is adapted from [PV01, Theorem 1] and follows the same steps. Define f̄ =
f − π(f). Note that H9 implies H5. By H6, [SV07, Corollary 11.1.5], (Pt)t≥0 is Feller
continuous, which implies that for all t > 0, if (xn)n∈N is a sequence in Rd converging
to x ∈ Rd, then δxnPt weakly converges to δxPt. Therefore, for all t > 0 and K > 0,
x 7→ Pt(f ∨ (−K)∧K)(x) is continuous. By Cauchy-Schwarz and Markov’s inequalities,
for all t,K > 0 and x ∈ Rd, we have

|Pt(f ∨ (−K) ∧K)(x)− Ptf(x)| ≤ Pt(|f |1 {|f | ≥ K})(x)
≤ Ptf2(x)/K

By Proposition 4.1 and the polynomial growth of f , we get for all R > 0,

lim
K→+∞

sup
‖x‖≤R

|Pt(f ∨ (−K) ∧K)(x)− Pt(f)(x)| = 0

and therefore x 7→ Ptf̄(x) is continuous for all t > 0.
By (4.57) and [DFG09, Theorem 3.10, Section 4.1], there exist C, ς > 0 and p ∈ N

such that for all x ∈ Rd and N > 0,∫ +∞

N

∣∣∣Ptf̄(x)
∣∣∣ dt ≤ C (1 + ‖x‖p)N−ς .

Therefore, we may define φ(x) =
∫+∞

0 Ptf̄(x)dt for all x ∈ Rd. Denote by φN =∫N
0 Ptf̄(x)dt for all N > 0 and x ∈ Rd. We have limN→+∞ φN (x) = φ(x) locally

uniformly in x and by continuity of φN for all N > 0, φ ∈ Cpoly(Rd,R).
Let x ∈ Rd and consider the Dirichlet problem,

Lφ̂(y) = −f̄(y) for y ∈ B(x, 1) and φ̂(y) = φ(y) for y ∈ ∂ B(x, 1) ,

where ∂ B(x, 1) = B(x, 1) \B(x, 1). By [GT15, Lemma 6.10, Theorem 6.17], there exists
a solution φ̂ ∈ C4(B(x, 1),R) ∩ C(B(x, 1),R). Let x̃ ∈ B(x, 1/2). By H6, (5.7) has a
unique strong solution denoted (Y x̃

t )t≥0 starting at Y0 = x̃. Define the stopping time
τ = inf

{
t ≥ 0 : Y x̃

t /∈ B(x, 1)
}
. By [Fri12, Volume I, Chapter 6, Theorem 5.1], we have

φ̂(x̃) = E
[
φ(Y x̃

τ )
]

+ E
[∫ τ

0
f̄(Y x̃

t )dt
]
.

For all N > 0, we decompose φN (x̃) = AN +BN where

AN =
∫ N

0
E
[
f̄(Y x̃

t )1 {t ≤ τ}
]

dt , BN =
∫ N

0
E
[
f̄(Y x̃

t )1 {t > τ}
]

dt .

Since E [τ ] < +∞ by [Fri12, Volume I, Chapter 6, equation (5.11)],

E
[∫ +∞

0

∣∣∣f̄(Y x̃
t )
∣∣∣1 {t ≤ τ} dt

]
< +∞ ,
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and by Fubini’s theorem and the dominated convergence theorem, limN→+∞AN =
E
[∫ τ

0 f̄(Y x̃
t )dt

]
. We also have

BN = E
[∫ (N−τ)+

0
f̄(Y x̃

τ+t)dt
]

= E
[
φ(N−τ)+(Y x̃

τ )
]
.

Since E [τ ] < +∞, we have limN→+∞ φ(N−τ)+(Y x̃
τ ) = φ(Y x̃

τ ) almost surely. Besides,

there exist C, p > 0 such that φÑ (Y x̃
τ ) ≤ C(1 + ‖x‖p) almost surely and for all Ñ ≥ 0

because Y x̃
τ ∈ B(x, 1) and φÑ converges locally uniformly to φ. By the dominated

convergence theorem, we get limN→+∞BN = E
[
φ(Y x̃

τ )
]
. Taking the limit N → +∞ of

φN (x̃) = AN +BN , we obtain φ(x̃) = φ̂(x̃).
Finally, by [GT15, Problem 6.1 (a)], we obtain

∥∥∥Di φ
∥∥∥ ∈ Cpoly(Rd,R+) for i ∈

{0, . . . , 4} which concludes the proof.

4.E Badly conditioned multivariate Gaussian variable

In this example, we consider a badly conditioned multivariate Gaussian variable in di-
mension d = 100, of mean 0 and covariance matrix diag(10−5, 1 . . . , 1). We run 100
independent simulations of ULA and TULAc, starting at 0, with a step size γ ∈{
10−3, 10−2, 10−1} and a number of iterations equal to 106. ULA diverges for all step

sizes. We plot the boxplots of the errors for TULAc, for the first and second moment of
the first and last coordinate in Figure 4.5. Although the results for the first coordinate
are expectedly inaccurate, the results for the last coordinate are valid. In this context,
TULAc enables to obtain relevant results for the well-conditioned coordinates within a
relatively small number of iterations, which is not possible using ULA.
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Ill conditionned Gaussian, first and last coordinate, error on the first and second moment for TULAc

Figure 4.5: Boxplots of the error for TULAc on the first and second moments for the badly
conditioned Gaussian variable in dimension 100 starting at 0 for different step sizes.
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Chapter 5

Normalizing constants of
log-concave densities

Nicolas Brosse 1, Alain Durmus 2, Éric Moulines 3

Abstract

We derive explicit bounds for the computation of normalizing constants Z for log-concave
densities π = e−U/Z w.r.t. the Lebesgue measure on Rd. Our approach relies on a Gaus-
sian annealing combined with recent and precise bounds on the Unadjusted Langevin
Algorithm [DM16]. Polynomial bounds in the dimension d are obtained with an ex-
ponent that depends on the assumptions made on U. The algorithm also provides a
theoretically grounded choice of the annealing sequence of variances. A numerical ex-
periment supports our findings. Results of independent interest on the mean squared
error of the empirical average of locally Lipschitz functions are established.

5.1 Introduction

Let U : Rd → R be a continuously differentiable convex function such that Z =∫
Rd e−U(x)dx < +∞. Z is the normalizing constant of the probability density π as-

sociated with the potential U, defined for x ∈ Rd by π(x) = Z−1e−U(x). We discuss in
this paper a method to estimate Z with polynomial complexity in the dimension d.

Computing the normalizing constant is a challenge which has applications in Bayesian
inference and statistical physics in particular. In statistical physics, Z is better known

1Centre de Mathématiques Appliquées, UMR 7641, Ecole Polytechnique, France.
nicolas.brosse@polytechnique.edu

2Ecole Normale Supérieure CMLA 61, Av. du Président Wilson 94235 Cachan Cedex, France
Email: alain.durmus@cmla.ens-cachan.fr

3Centre de Mathématiques Appliquées, UMR 7641, Ecole Polytechnique, France.
eric.moulines@polytechnique.edu
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under the name of partition function or free energy [Bal07], [LSR10]. Free energy differ-
ences allow to quantify the relative likelihood of different states (microscopic configura-
tions) and are linked to thermodynamic work and heat exchanges. In Bayesian inference,
the models can be compared by the computation of the Bayes factor which is the ratio of
two normalizing constants (see e.g. [Rob07, chapter 7]). This problem has consequently
attracted a wealth of contribution; see for example [CSI00, chapter 5], [MR09], [FW12],
[Ard+12], [D+13], [Knu+15], [ZJA15] and, for a more specific molecular simulations
flavor, [LSR10]. Compared to the large number of proposed methods to estimate Z, few
theoretical guarantees have been obtained on the output of these algorithms; see below
for further references and comments. Our algorithm relies on a sequence of Gaussian
densities with increasing variances, combined with the precise bounds of [DM16].

The paper is organized as follows. The outline of the algorithm is first described,
followed by the assumptions made on U. Our main results are then stated and compared
to previous works on the subject. The theoretical analysis of the algorithm is detailed
in Section 5.2. In Section 5.3, a numerical experiment is provided to support our the-
oretical claims. Finally, the proofs are gathered in Section 5.5. In Section 5.4, a result
of independent interest on the mean squared error of the empirical average of locally
Lipschitz functions is established.

Notations and conventions

Denote by B(Rd) the Borel σ-field of Rd. For µ a probability measure on (Rd,B(Rd))
and f a µ-integrable function, denote by µ(f) the integral of f w.r.t. µ. We say that ζ
is a transference plan of µ and ν if it is a probability measure on (Rd ×Rd,B(Rd ×Rd))
such that for all measurable sets A of Rd, ζ(A×Rd) = µ(A) and ζ(Rd×A) = ν(A). We
denote by Π(µ, ν) the set of transference plans of µ and ν. Furthermore, we say that a
couple of Rd-random variables (X,Y ) is a coupling of µ and ν if there exists ζ ∈ Π(µ, ν)
such that (X,Y ) are distributed according to ζ. For two probability measures µ and ν,
we define the Wasserstein distance of order p ≥ 1 as

Wp(µ, ν) def=
(

inf
ζ∈Π(µ,ν)

∫
R×R
‖x− y‖p dζ(x, y)

)1/p

. (5.1)

By [Vil09, Theorem 4.1], for all µ, ν probability measure on Rd, there exists a transference
plan ζ? ∈ Π(µ, ν) such that the infimum in (5.1) is reached in ζ?. ζ? is called an optimal
transference plan associated with Wp.

f : Rd → R is a Lipschitz function if there exists C ≥ 0 such that for all x, y ∈ Rd,
|f(x)− f(y)| ≤ C ‖x− y‖. Then we denote

Lip f = sup{|f(x)− f(y)| ‖x− y‖−1 | x, y ∈ Rd, x 6= y} .

For k ∈ N, Ck(Rd) denotes the set of k-continuously differentiable functions Rd → R,
with the convention that C0(Rd) is the set of continuous functions. Let N∗ = N \ {0},
n,m ∈ N∗ and F : Rn → Rm be a twice continuously differentiable function. Denote by
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∇F and ∇2F the Jacobian and the Hessian of F respectively. For m = 1, the Laplacian
is defined by ∆F = Tr∇2F where Tr is the trace operator. In the sequel, we take
the convention that for n, p ∈ N, n < p then

∑n
p = 0 and

∏n
p = 1. By convention,

inf {∅} = +∞, sup {∅} = −∞ and for j > i in Z, {j, . . . , i} = ∅. For a finite set E,
|E| denotes the cardinality of E. For a, b ∈ R, a ∧ b = min(a, b) and a ∨ b = max(a, b).
Let ψ, φ : R?+ → R?+. We write ψ = Õ(φ) if there exists t0 > 0, C, c > 0 such that

ψ(t) ≤ Cφ(t) |log t|c for all t ∈ (0, t0]. Denote by B(x, r) =
{
y ∈ Rd : ‖y − x‖ ≤ r

}
.

Presentation of the algorithm

Since Z < +∞ and U is convex, by [Bra+14, Lemma 2.2.1], there exist constants ρ1 > 0
and ρ2 ∈ R such that U(x) ≥ ρ1 ‖x‖ − ρ2. Therefore, by continuity, U has a minimum
x?. Without loss of generality, it is assumed in the sequel that x? = 0 and U(x?) = 0.

Let M ∈ N?, {σ2
i }Mi=0 be a positive increasing sequence of real numbers and set

σ2
M = +∞. Consider the sequence of functions {Ui}Mi=0 defined for all i ∈ {0, . . . ,M}

and x ∈ Rd by

Ui(x) = ‖x‖
2

2σ2
i

+ U(x) , (5.2)

with the convention 1/∞ = 0. We define a sequence of probability densities {πi}Mi=0 for
i ∈ {0, . . . ,M} and x ∈ Rd by

πi(x) = Z−1
i e−Ui(x) , Zi =

∫
Rd

e−Ui(y)dy . (5.3)

The dependence of Zi in σ2
i is implicit. By definition, note that UM = U, ZM = Z

and πM = π. As in the multistage sampling method [GM98, Section 3.3], we use the
following decomposition

Z

Z0
=

M−1∏
i=0

Zi+1
Zi

. (5.4)

Z0 is estimated by choosing σ2
0 small enough so that π0 is sufficiently close to a Gaussian

distribution of mean 0 and covariance σ2
0 Id. For i ∈ {0, . . . ,M − 1}, the ratio Zi+1/Zi

may be expressed as
Zi+1
Zi

=
∫
Rd
gi(x)πi(x)dx = πi(gi) , (5.5)

where gi : Rd → R+ is defined for all x ∈ Rd by

gi(x) = exp
(
ai ‖x‖2

)
, ai = 1

2

(
1
σ2
i

− 1
σ2
i+1

)
. (5.6)

The quantity πi(gi) is estimated by the Unadjusted Langevin Algorithm (ULA) targeting
πi. Introduced in [Erm75] and [Par81] (see also [RT96]), the ULA algorithm can be
described as follows. For i ∈ {0, . . . ,M − 1}, the (overdamped) Langevin stochastic
differential equation (SDE) is given by

dYi,t = −∇Ui(Yi,t)dt+
√

2dBi,t , Yi,0 = 0 , (5.7)
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where {(Bi,t)t≥0}M−1
i=0 are independent d-dimensional Brownian motions. The sampling

method is based on the Euler discretization of the Langevin diffusion, which defines a
discrete-time Markov chain, for i ∈ {0, . . . ,M − 1} and k ∈ N

Xi,k+1 = Xi,k − γi∇Ui(Xi,k) +
√

2γiWi,k+1 , Xi,0 = 0 , (5.8)

where {(Wi,k)k∈N?}M−1
i=0 are independent i.i.d. sequences of standard Gaussian random

variables and γi > 0 is the stepsize. For i ∈ {0, . . . ,M − 1}, consider the following
estimator of Zi+1/Zi,

π̂i(gi) = 1
ni

Ni+ni∑
k=Ni+1

gi(Xi,k) , (5.9)

where ni ≥ 1 is the sample size and Ni ≥ 0 the burn-in period. We introduce the
following assumptions on U.

H 10. U : Rd → R is continuously differentiable and L-gradient Lipschitz, i.e. there
exists L ≥ 0 such that for all x, y ∈ Rd,

‖∇U(x)−∇U(y)‖ ≤ L ‖x− y‖ . (5.10)

H11 (m). U : Rd → R is continuously differentiable and satisfies for all x, y ∈ Rd,

U(y) ≥ U(x) + 〈∇U(x), y − x〉+ (m/2) ‖x− y‖2 . (5.11)

H12. The function U is three times continuously differentiable and there exists L̃ ≥ 0
such that for all x, y ∈ Rd ∥∥∥∇2U(x)−∇2U(y)

∥∥∥ ≤ L̃ ‖x− y‖ . (5.12)

The strongly convex case (H11(m) with m > 0) is considered in Section 5.2.1 and
the convex case (H11(m) with m = 0) is dealt with in Section 5.2.2. Assuming H10
and H11(m) for m ≥ 0, for i ∈ {0, . . . ,M}, Ui defined in (5.2) is Li-gradient Lipschitz
and mi-strongly convex if mi > 0 (and convex if mi = 0) where

Li = L+ 1
σ2
i

, mi = m+ 1
σ2
i

. (5.13)

Define also the following useful quantities,

κ = 2mL
m+ L

, κi = 2miLi
mi + Li

. (5.14)

H12 enables to have tighter bounds on the mean squared error of π̂i(gi) defined in (5.9).
Under H12, for all i ∈ {0, . . . ,M}, Ui satisfies (5.12) with L̃. Finally, since Z < +∞
and by [Bra+14, Lemma 2.2.1], there exist ρ1 > 0 and ρ2 ∈ R such that for all x ∈ Rd,

U(x) ≥ ρ1 ‖x‖ − ρ2 . (5.15)
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Denote by S the set of simulation parameters,

S =
{
M, {σ2

i }M−1
i=0 , {γi}M−1

i=0 , {ni}M−1
i=0 , {Ni}M−1

i=0

}
, (5.16)

and by Ẑ the following estimator of Z,

Ẑ = (2πσ2
0)d/2(1 + σ2

0m)−d/2
{
M−1∏
i=0

π̂i(gi)
}
, (5.17)

where π̂i(gi) is defined in (5.9). The dependence of Ẑ in S is implicit. Note that Ẑ is a
biased estimator of Z because Z0 is approximated by (2πσ2

0)d/2(1+σ2
0m)−d/2. We define

the cost of the algorithm by the total number of iterations performed by the M Markov
chains (Xi,n)n≥0 for i ∈ {0, . . . ,M − 1}, i.e.

cost =
M−1∑
i=0
{Ni + ni} . (5.18)

Observe that each step of the Markov chain takes time linear in d. We state below a
simplified version of our results; explicit bounds are given in Theorems 5.5, 5.6, 5.12
and 5.13.

Theorem 5.1. Assume H10, H11(m) for m ≥ 0. Let µ, ε ∈ (0, 1). There exists an
explicit choice of the simulation parameters S such that the estimator Ẑ defined in (5.17)
satisfies

P
(∣∣∣Ẑ/Z − 1

∣∣∣ > ε
)
≤ µ . (5.19)

Moreover, the cost of the algorithm (5.18) is upper-bounded by,

H10,H11(m) for m > 0
cost L3

µ2m3 log(d)d3 × Õ(ε−4)
H10,H11(m) for m > 0,H12

cost
(

L̃
µ3/2m3/2 + L2

µ3/2m2

)
log(d)d5/2 × Õ(ε−3)

H10,H11(m) for m ≥ 0
cost L2

µ2ρ4
1
(d+ ρ2)4 log(d)d3 × Õ(ε−4)

H10,H11(m) for m ≥ 0,H12

cost
(

L2

µ3/2ρ4
1

+ L̃
µ3/2(d+ρ2)ρ3

1

)
(d+ ρ2)4 log(d)d5/2 × Õ(ε−3)

By the median trick (see e.g. [JVV86, Lemma 6.1] or [NP09]), the dependence in µ
of the cost can be reduced to a logarithmic factor, see Corollaries 5.7 and 5.14.

It is interesting to compare these complexity bounds with previously reported re-
sults. In [MDJ06] and [Bes+14] (see also [Del04]), the authors propose to use sequential
Monte Carlo (SMC) samplers to estimate the normalizing constant Z of a probability
distribution π. In [Bes+14], π is supported on a compact set K included in Rd and
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satisfies for x = (x1, . . . , xd) ∈ K, π(x) = Z−1∏d
i=1 exp(g(xi)). [Bes+14, Theorem 3.2]

states that there exists an estimator Ẑ of Z such that limd→+∞ E[|Ẑ/Z − 1|2] = C/N
where N is the number of particles and C depends on g and on the parameters of the
SMC (choice of the Markov kernel and of the annealing schedule). With our definition
(5.18), the computational cost of the SMC algorithm is O(Nd) (there are d phases and
N particles for each phase). To obtain an estimator Ẑ satisfying (5.19) implies a cost
of dµ−1O(ε−2). However, the product form of the density π is restrictive, the result is
only asymptotic in d and the state space is assumed to be compact. [Del+16] combines
SMC with a multilevel approach and [Jas+16] establishes results on a multilevel particle
filter.

[Hub15] deals with the case where π(x) = exp(−βH(x))/Z(β) where x ∈ Ω, a finite
state space, β ≥ 0 and H(x) ∈ {0, . . . , n}. These distributions known as Gibbs distri-
butions include in particular the Ising model. To compute Z(β), [Hub15] relies on an
annealing process on the parameter β, starting from Z(0). Let q = log(Z(0))/ log(Z(β)).
[Hub15, Theorem 1.1] states that there exists an estimator Ẑ(β) of Z(β) such that (5.19)
is satisfied with µ = 1/4 and q log(n)Õ(ε−2) draws from the Gibbs distribution.

Our complexity results can also be related to the computation of the volume of
a convex body K (compact convex set with non-empty interior) on Rd. This prob-
lem has attracted a lot of attention in the field of computer science, starting with the
breakthrough of [DF91] until the most recent results of [CV15b]. Define for x ∈ Rd,
π(x) = 1K(x)/Vol(K). Under the assumptions B(0, 1) ⊂ K and

∫
Rd ‖x‖

2 π(x)dx = O(d),
[CV15b, Theorem 1.1] states that there exists an estimator Ẑ of Z = Vol(K) such that
(5.19) is satisfied with µ = 1/4 and a cost of log(d)d3Õ(ε−2).

Nonequilibrium methods have been recently developed and studied in order to com-
pute free energy differences or Bayes factors, see [Jar97] and [LSR10, Chapter 4]. They
are based on an inhomogeneous diffusion evolving (for example) from t = 0 to t = 1
such that π0 and π1 are the stationary distributions respectively for t = 0 and t = 1.
Recently, [ARW16] provided an asymptotic and non-asymptotic analysis of the bias and
variance for estimators associated with this methodology. The main aim of this paper is
to obtain polynomial complexity and inspection of their results suggests a cost of order
d15 at most to compute an estimator Ẑ satisfying (5.19). However, this cost may be due
to the strategy of proofs.

Multistage sampling type algorithms are widely used and known under different
names: multistage sampling [VC72], (extended) bridge sampling [GM98], annealed im-
portance sampling (AIS) [Nea01], thermodynamic integration [OPG16], power posterior
[BFH12]. For the stability and accuracy of the method, the choice of the parameters
(in our case {σ2

i }
M−1
i=0 ) is crucial and is known to be difficult. Indeed, the issue has been

pointed out in several articles under the names of tuning tempered transitions [BFH12],
temperature placement [FHW14], annealing sequence [Bes+14, Sections 3.2.1, 4.1], tem-
perature ladder [OPG16, Section 3.3.2], effects of grid size [D+13], cooling schedule
[CV15b]. An approach based on large deviation has also been suggested to derive an
optimal choice of the annealing schedule, see [DD09]. In Sections 5.2.1 and 5.2.2, we
explicitly define the sequence {σ2

i }
M−1
i=0 .
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5.2 Theoretical analysis of the algorithm

In this Section, we analyse the algorithm outlined in Section 5.1. The strongly convex and
convex cases are considered in Sections 5.2.1 and 5.2.2, respectively. The choice of the
simulation parameters S explicitly depends on the (strong) convexity of U. Throughout
this Section, we assume that L > m; note that if L = m, π is a Gaussian density and Z
is known. For M ∈ N? and i ∈ {0, . . . ,M − 1}, we first provide an upper bound on the
mean squared error MSEi of π̂i(gi) defined by

MSEi = E
[
{π̂i(gi)− πi(gi)}2

]
, (5.20)

where πi(gi) and π̂i(gi) are given by (5.5) and (5.9) respectively. The MSEi can be
decomposed as a sum of the squared bias and variance,

MSEi = {E[π̂i(gi)]− πi(gi)}2 + Var [π̂i(gi)] . (5.21)

Propositions 5.2 and 5.3 give upper bounds on the squared bias and Proposition 5.4 on
the variance. The results are based on the non-asymptotic bounds of the Wasserstein
distance for a strongly convex potential obtained in [DM16] (see also [Dal17b], [DM17]).
We introduce the following conditions on the stepsize γi used in the Euler discretization
and the variance σ2

i+1

γi ∈
(

0, 1
m+ L+ 2/σ2

i

]
, σ2

i+1 ≤ 2(d+ 4)
(

2d+ 7
σ2
i

−m
)−1

+
, (5.22)

where by convention 1/0 = +∞. Note that the condition on σ2
i+1 is equivalent to

ai ∈
[
0,mi/{4(d+ 4)} ∧ (2σ2

i )−1] where ai is defined in (5.6) and mi in (5.13). Assuming
that γi and σ2

i+1 satisfy (5.22), we define the positive quantities

Ci,0 = exp
(4ai(d+ 2)
κi − 8ai

)
, Ci,1 = 2d1− 8aiγi

κi − 8ai
, Ci,2 = 4 d

mi
, (5.23)

where mi, Li and κi are defined in (5.13) and (5.14), respectively. Denote by,

Ai,0 = 2L2
iκ
−1
i d , (5.24)

Ai,1 = 2dL2
i + dL4

i (κ−1
i + (mi + Li)−1)(m−1

i + 6−1(mi + Li)−1) . (5.25)

Proposition 5.2. Assume H10 and H11(m) for some m ≥ 0. For Ni ∈ N, ni ∈ N∗
and γi, σ

2
i+1 satisfying (5.22), we have

{E[π̂i(gi)]− πi(gi)}2 ≤ 4a2
i (Ci,2 + Ci,0Ci,1)

×
{ 4d
nimiκiγi

exp
(
−Ni

κiγi
2

)
+ 2κ−1

i (Ai,0γi +Ai,1γ
2
i )
}
.

Proof. The proof is postponed to Section 5.5.1.
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The first term exp(−Niκiγi/2) is the exponential forgetting of the initial condition
and the second term proportional to γi is the stationary term. The squared bias can
thus be controlled by adjusting the parameters γi, ni and Ni. If U satisfies H12, the
bound on the squared bias can be improved. Define,

Bi,0 = d
(
2L2

i + κ−1
i {(dL̃

2)/3 + 4L4
i /(3mi)}

)
, (5.26)

Bi,1 = dL4
i

(
κ−1
i + {6(mi + Li)}−1 +m−1

i

)
. (5.27)

Proposition 5.3. Assume H 10, H 11(m) for some m ≥ 0, and H 12. For Ni ∈ N,
ni ∈ N∗ and γi, σ

2
i+1 satisfying (5.22), we have

{E[π̂i(gi)]− πi(gi)}2 ≤ 4a2
i (Ci,2 + Ci,0Ci,1)

×
{ 4d
nimiκiγi

exp
(
−Ni

κiγi
2

)
+ 2κ−1

i (Bi,0γ2
i +Bi,1γ

3
i )
}
.

Proof. The proof is postponed to Section 5.5.1.

Note that the leading term is of order γ2
i instead of γi. We consider now the variance

term in (5.21).

Proposition 5.4. Assume H10 and H11(m) for some m ≥ 0. For Ni ∈ N, ni ∈ N∗
and γi, σ

2
i+1 satisfying (5.22), we have

Var [π̂i(gi)] ≤
32a2

iCi,0Ci,1
κ2
iniγi

(
1 + 2

κiniγi

)
.

Proof. The proof is postponed to Section 5.5.1.

5.2.1 Strongly convex potential U

Theorem 5.5. Assume H10 and H11(m) for m > 0 and let µ, ε ∈ (0, 1). There exists
an explicit choice of the simulation parameters S (5.16) such that the estimator Ẑ defined
in (5.17) satisfies with probability at least 1− µ

(1− ε)Z ≤ Ẑ ≤ (1 + ε)Z ,

and the cost (5.18) of the algorithm is upper-bounded by

cost ≤
(6272C

ε2µ
+ log(5Cd2)

) (1088C)2d2(d+ 4)
ε2µ

(
m+ L

2m

)3
(C + 3) , (5.28)

with

C =
⌈ 1

log(2) log
(
d

(
d+ 7

2

)(
L

m
− 1

) 1
log(1 + ε/3)

)⌉
. (5.29)

Proof. The proof is postponed to Section 5.5.3.
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Theorem 5.6. Assume H 10, H 11(m) for m > 0, H 12 and let µ, ε ∈ (0, 1). There
exists an explicit choice of the simulation parameters S (5.16) such that the estimator Ẑ
defined in (5.17) satisfies with probability at least 1− µ

(1− ε)Z ≤ Ẑ ≤ (1 + ε)Z ,

and the cost (5.18) of the algorithm is upper-bounded by

cost ≤
(6272C

ε2µ
+ log(5Cd2)

)√7
3

512Cd3/2

ε
√
µ

(d+ 4)(C + 3)

×
{
L̃

23/2

m3/2 +
√

10
(
m+ L

2m

)2
}
, (5.30)

with C defined in (5.29).

Proof. The proof is postponed to Section 5.5.3.

The dependence of the upper bound with respect to d is improved from d3 to d5/2.
Using the median trick (see e.g. [JVV86, Lemma 6.1] or [NP09]), we have the following
corollary,

Corollary 5.7. Let ε, µ̃ ∈ (0, 1). Repeat 2
⌈
4 log(µ̃−1)

⌉
+ 1 times the algorithm of The-

orems 5.5 and 5.6 with µ = 1/4 and denote by Ẑ the median of the output values. We
have with probability at least 1− µ̃,

(1− ε)Z ≤ Ẑ ≤ (1 + ε)Z .

Proof. The proof is postponed to Section 5.5.3.

The proof of Theorems 5.5 and 5.6 and Corollary 5.7 rely on several lemmas which are
stated below. These lemmas explain how the simulation parameters S must be chosen.
The details of the proofs are gathered in Section 5.5.3. Set

σ2
0 = {2 log(1 + ε/3)}/{d(L−m)} . (5.31)

This choice of σ2
0 is justified by the following result,

Lemma 5.8. Under H10 and H11(m) for m ≥ 0, we have

Z0 ≤ (2πσ2
0)d/2/(1 + σ2

0m)d/2 ≤ Z0 (1 + ε/3) . (5.32)

Proof. The proof is postponed to Section 5.5.3.

Given a choice of S, define the event

AS,ε =
{∣∣∣∣∣

M−1∏
i=0

π̂i(gi)−
M−1∏
i=0

πi(gi)
∣∣∣∣∣ ≤

M−1∏
i=0

πi(gi)
ε

2

}
. (5.33)
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On AS,ε, using Lemma 5.8, (5.4) and (5.17), we have:

Z (1− ε/2) ≤ Ẑ ≤ Z (1 + ε) .

It remains to choose S to minimize approximately the cost defined in (5.18) under
the constraint P(AS,ε) ≥ 1 − µ. We define the positive increasing sequence {σ2

i }
M−1
i=0

recursively, starting from i = 0. For i ∈ N, set

σ2
i+1 = ςs(σ2

i ) , (5.34)

where ςs : R?+ → R is defined for t ∈ (0, (2d+ 7)/m) by

ςs(t) =
(

1
t
− m+ (2k(t)+1σ2

0)−1

2(d+ 4)

)−1

, k(t) =
⌊

log(t/σ2
0)

log(2)

⌋
(5.35)

and ςs(t) = +∞ otherwise. The subscript s in ςs stresses that this choice is valid for
the strongly convex case and will be different for the convex case. With this choice of
(σ2
i )i≥0, the number of phases M is defined by

M = inf
{
i ≥ 1 : σ2

i−1 ≥ (2d+ 7)/m
}
. (5.36)

By (5.35), for t ∈
[
σ2

0, (2d+ 7)/m
)
, ςs(t) ≥ t(4d+16)/(4d+15), which implies M < +∞.

With this definition of ςs, for i ∈ {0, . . . ,M − 2}, we have

ai = 1
2

(
1
σ2
i

− 1
σ2
i+1

)
= m+ (2k+1σ2

0)−1

4(d+ 4) , if 2kσ2
0 ≤ σ2

i < 2k+1σ2
0 , (5.37)

and aM−1 = (2σ2
M−1)−1. Define Ik ⊂ N for k ∈ N and K ∈ N by,

Ik =
{
i ∈ {0, . . . ,M − 2} : 2kσ2

0 ≤ σ2
i < 2k+1σ2

0

}
, (5.38)

K = inf {k ≥ 0 : Ik = ∅} < +∞ . (5.39)

The number of phases M and variances {σ2
i }
M−1
i=0 being defined, we now proceed with

the choice of the stepsize γi, the number of samples ni and the burn-in period Ni for
i ∈ {0, . . . ,M − 1}.

Lemma 5.9. Set η = (ε√µ)/8. Assume that there exists a choice of the simulation

parameters {Ni}M−1
i=0 , {ni}M−1

i=0 and {γi}M−1
i=0 satisfying,

i) For all k ∈ {0, . . . ,K − 1}, i ∈ Ik,

|E [π̂i(gi)]− πi(gi)| ≤
η

K |Ik|
, Var [π̂i(gi)] ≤

η2

K |Ik|
,

ii) |E [π̂M−1(gM−1)]− πM−1(gM−1)| ≤ η, Var [π̂M−1(gM−1)] ≤ η2 ,
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where πi(gi) is defined in (5.5) and π̂i(gi) in (5.9). Then P(AS,ε) ≥ 1−µ, where AS,ε is
defined in (5.33).

Proof. The proof is postponed to Section 5.5.2

To show the existence of γi, ni, Ni satisfying the conditions of Lemma 5.9 , we apply
Propositions 5.2 to 5.4 for each i ∈ {0, . . . ,M − 1}. We then have the following lemmas,

Lemma 5.10. Set η = (ε√µ)/8. Assume H10, H11(m) for m > 0 and,

i) for all k ∈ {0, . . . ,K − 1}, i ∈ Ik,

γi ≤
1

2285
η2κ2

iσ
4
imi

K2d2L2
i

≤ 1
mi + Li

, (5.40)

ni ≥
196K
η2

√
mi

κiσi

1
κiγi

, (5.41)

Ni ≥ 2(κiγi)−1 log
(
5Kd2

)
, (5.42)

ii)

γM−1 ≤ 40−1η2L−2
M−1mM−1 ≤ (mM−1 + LM−1)−1 , (5.43)

nM−1 ≥ 19(κM−1γM−1)−1η−2 , (5.44)

NM−1 ≥ (κM−1γM−1)−1 . (5.45)

Then, the conditions i)-ii) of Lemma 5.9 are satisfied.

Proof. The proof is postponed to Section 5.5.3.

We have a similar result under the additional assumption H12.

Lemma 5.11. Set η = (ε√µ)/8. Assume H10, H11(m) for m > 0, H12 and,

i) for all k ∈ {0, . . . ,K − 1}, i ∈ Ik,

γi ≤
√

3
7
ηκim

1/2
i σ2

i

8Kd
(
dL̃2 + 10L4

im
−1
i

)−1/2
≤ 1
mi + Li

, (5.46)

and ni, Ni as in (5.41), (5.42),

ii)

γM−1 ≤
√

3
7
ηκM−1m

−1/2
M−1

4
(
dL̃2 + 10L4

M−1m
−1
M−1

)−1/2
≤ 1
mM−1 + LM−1

, (5.47)

and nM−1, NM−1 as in (5.44), (5.45).

Then, the conditions i)-ii) of Lemma 5.9 are satisfied.

Proof. The proof is postponed to Section 5.A.2.



108 5.2. Theoretical analysis of the algorithm

5.2.2 Convex potential U

We now consider the convex case. The annealing process on the variances {σ2
i }
M−1
i=0

is different from the strongly convex case and is defined in (5.54). In particular, the
stopping criteria for the annealing process is distinct from the case where U is strongly
convex and relies on a truncation argument. More precisely, a concentration theorem
for log-concave functions [Per16, Theorem 3.1] states that for α ∈ (0, 1),∫

Rd
1{U≥d(τα+1)}(x)π(x)dx ≤ α , τα =

(16 log(3/α)
d

)1/2
.

Let ε ∈ (0, 1), τ = τε/2 and D = ρ−1
1 {d(τ + 1) + ρ2}. By (5.15), we have∫

Rd
1B(0,D)(x)π(x)dx ≥ 1− ε/2 . (5.48)

Given a choice of M and σ2
M−1, define ḡM−1 : Rd → R+ for all x ∈ Rd by

ḡM−1(x) = exp
{

1
2σ2

M−1
(‖x‖2 ∧D2)

}
, (5.49)

and J by,

J =
∫
Rd

e−U(x)dx
/∫

Rd
e−U(x)−(‖x‖2−D2)+/(2σ2

M−1)dx .

Note that Z/ZM−1 = J × πM−1(ḡM−1) and by (5.48),

J(1− ε/2) ≤ 1 ≤ J . (5.50)

On the event AS,ε defined in (5.33) with gM−1 replaced by ḡM−1 and by (5.32) (with
m = 0), (5.50), we get

Z (1− ε/2)2 ≤ Ẑ ≤ Z (1 + ε) ,

where Ẑ is defined in (5.17) with gM−1 replaced by ḡM−1. We now state our results in
the convex case.

Theorem 5.12. Assume H10, H11(m) for m ≥ 0. Let ε, µ ∈ (0, 1). There exists an
explicit choice of the simulation parameters S (5.16) such that the estimator Ẑ defined in
(5.17) (with gM−1 replaced by ḡM−1 defined in (5.49)) satisfies with probability at least
1− µ

(1− ε)Z ≤ Ẑ ≤ (1 + ε)Z ,

and the cost (5.18) of the algorithm is upper-bounded by

cost ≤
(17728C

ε2µ
+ log(Cd2)

) (487C)2d2(d+ 4)
ε2µ

×
(
C + 6L{d(τ + 1) + ρ2}2

ρ2
1

+ 8L2{d(τ + 1) + ρ2}4

3ρ4
1

)
, (5.51)



Chapter 5. Normalizing constants of log-concave densities 109

where ρ1, ρ2 are defined in (5.15), τ = 4d−1/2{log(6/ε)}1/2 and

C =
⌈

1
log(2) log

(
dL{d(τ + 1) + ρ2}2

2ρ2
1 log(1 + ε/3)

)⌉
. (5.52)

Theorem 5.13. Assume H10, H11(m) for m ≥ 0 and H12. Let ε, µ ∈ (0, 1). There
exists an explicit choice of the simulation parameters S (5.16) such that the estimator Ẑ
defined in (5.17) (with gM−1 replaced by ḡM−1 defined in (5.49)) satisfies with probability
at least 1− µ

(1− ε)Z ≤ Ẑ ≤ (1 + ε)Z ,

and the cost (5.18) of the algorithm is upper-bounded by

cost ≤ 2474
(17728C

ε2µ
+ log(Cd2)

) (C + 1)d(d+ 4)
ε
√
µ

{
8L2{d(τ + 1) + ρ2}4

3ρ4
1

+ d1/2L̃{d(τ + 1) + ρ2}3√
10ρ3

1
max

 5ρ1
d(τ + 1) + ρ2

,

(
5
9 + ρ2

1
{d(τ + 1) + ρ2}2L

)2


+ 6L{d(τ + 1) + ρ2}2

ρ2
1

+ C

}
, (5.53)

where ρ1, ρ2, C are defined in (5.15), (5.52) respectively and τ = 4d−1/2{log(6/ε)}1/2.

Corollary 5.14. Let ε, µ̃ ∈ (0, 1). Repeat 2
⌈
4 log(µ̃−1)

⌉
+ 1 times the algorithm of

Theorems 5.12 and 5.13 with µ = 1/4 and denote by Ẑ the median of the output values.
We have with probability at least 1− µ̃,

(1− ε)Z ≤ Ẑ ≤ (1 + ε)Z .

The proofs follow the same arguments as Theorems 5.5 and 5.6 and corollary 5.7 and
are detailed in the appendix Section 5.B.3.

Note that ḡM−1 (5.49) is a Lip ḡM−1-Lipschitz function where,

Lip ḡM−1 = D

σ2
M−1

exp
(

D2

2σ2
M−1

)
.

The results of Section 5.4 give an upper bound on MSEM−1 which is polynomial in
the parameters if σ2

M−1 is approximately equal to D2. For i ∈ N?, we define (σ2
i )i≥0

recursively. Set σ2
0 as in (5.31) and

σ2
i+1 = ςc(σ2

i ) , (5.54)

where ςc : R?+ → R is defined for t ∈
(
0, D2) by,

ςc(t) =
(

1
t
− 1

2(d+ 4)(2k(t)+1σ2
0)

)−1

, k(t) =
⌊

log(t/σ2
0)

log(2)

⌋
, (5.55)
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and ςc(t) = +∞ otherwise. Define M in this Section by,

M = inf
{
i ≥ 1 : σ2

i−1 ≥ D2
}
. (5.56)

By (5.55), for t ∈
[
σ2

0, D
2), ςc(t) ≥ {(4d+ 16)/(4d+ 15)} t, which implies M < +∞.

The following lemmas are the counterparts of Lemmas 5.10 and 5.11. They specify the
choice of {γi}M−1

i=0 , {ni}M−1
i=0 , {Ni}M−1

i=0 to satisfy the conditions of Lemma 5.9.

Lemma 5.15. Set η = (ε√µ)/8. Assume H10, H11(m) for m ≥ 0 and,

i) for all k ∈ {0, . . . ,K − 1}, i ∈ Ik,

γi ≤
1

462
η2L−2

i σ−2
i

K2d2 ≤ 1
mi + Li

, (5.57)

ni ≥
453K
η2

1
κiγi

, (5.58)

Ni ≥ 2(κiγi)−1 log
(
Kd2

)
, (5.59)

ii)

γM−1 ≤ (1/26)η2d−1L−2
M−1κM−1 ≤ (mM−1 + LM−1)−1 , (5.60)

nM−1 ≥ 29η−2(κM−1γM−1)−1 , (5.61)

NM−1 ≥ 2(κM−1γM−1)−1 log(d) . (5.62)

Then, the conditions i)-ii) of Lemma 5.9 are satisfied, with gM−1 replaced by ḡM−1.

Proof. The proof is postponed to Section 5.B.1.

We have a similar result under the additional assumption H12.

Lemma 5.16. Set η = (ε√µ)/8. Assume H10, H11(m) for m ≥ 0, H12 and,

i) for all k ∈ {0, . . . ,K − 1}, i ∈ Ik,

γi ≤
√

3
7
ησ−1

i

8Kd
(
dL̃2 + 10L4

iσ
2
i

)−1/2
≤ 1
mi + Li

, (5.63)

ni, Ni as in (5.58), (5.59) and,

ii)

γM−1 ≤
√

3
8e
ηκM−1σM−1√

d

(
dL̃2 + 10L4

M−1σ
2
M−1

)−1/2
≤ 1
mM−1 + LM−1

, (5.64)

nM−1, NM−1 as in (5.61), (5.62).

Then, the conditions i)-ii) of Lemma 5.9 are satisfied, with gM−1 replaced by ḡM−1.

Proof. The proof is postponed to Section 5.B.2.
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Figure 5.1: Boxplots of the logarithm of the normalizing constants of a multivariate Gaussian
distribution in dimension d ∈ {10, 25, 50}.

5.3 Numerical experiments

For the following numerical experiments, the code and data are available at https:

//github.com/nbrosse/normalizingconstant. We first experiment our algorithm to
compute the logarithm of the normalizing constant of a multivariate Gaussian distribu-
tion in dimension d ∈ {10, 25, 50}, of mean 0 and inverse covariance matrix diag(2, 1⊗(d−1)).
We set ε = µ = 0.1. The number of phases M of the algorithm and the variances{
σ2
i

}M−1
i=0 are chosen according to the formulas (5.34) and (5.36). For each phase of the

algorithm, the step size γi is set equal to 10−2(mi +Li)−1, the burn-in period Ni to 104

and the number of samples ni to 105 where mi, Li are defined in (5.13). We carry out
10 independent runs of the algorithm and compute the boxplots in Figure 5.1. The true
values of the logarithm of the normalizing constants are known and displayed by the red
points in Figure 5.1.

We illustrate then our methodology to compute Bayesian model evidence; see [FW12]
and the references therein. Let y ∈ Rp be a vector of observations andM1, . . . ,Ml be a
collection of competing models. Let {p(Mi)}li=1 be a prior distribution on the collection
of models. For i ∈ {0, . . . , l}, denote by p(y|θ(Mi),Mi) the likelihood of the model Mi.
The dominating measure is implicitly considered to be the Lebesgue measure on Rp.
Similarly, for i ∈ {0, . . . , l}, denote by p(θ(Mi)|Mi) the prior density on the parameters
θ(Mi) under the model Mi where the dominating measure is implicitly considered to
be the Lebesgue measure on Rd(Mi) . The posterior distribution of interest is then for
i ∈ {0, . . . , l},

p(θ(Mi),Mi|y) ∝ p(y|θ(Mi),Mi)p(θ(Mi)|Mi)p(Mi)

https://github.com/nbrosse/normalizingconstant
https://github.com/nbrosse/normalizingconstant
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The posterior distribution conditional on model Mi can also be considered

p(θ(Mi)|Mi, y) ∝ p(y|θ(Mi),Mi)p(θ(Mi)|Mi) (5.65)

For i ∈ {0, . . . , l}, the evidence p(y|Mi) of the model Mi is defined by the normalizing
constant for the posterior distribution (5.65)

p(y|Mi) =
∫
Rd(Mi)

p(y|θ(Mi),Mi)p(θ(Mi)|Mi)dθ(Mi) .

The Bayes factor BF12 between two models Mi and Mj is then defined by the ratio
of evidences [Rob07, Section 7.2.2], BFij = p(y|Mi)/p(y|Mj). In the following experi-
ments, we estimate the log evidence log(p(y|Mi)). For ease of notation, the dependence
on the model M of the parameters θ and the dimension d of the state space is implicit
in the sequel.

Define `(M) : Rd → R by `(M)(θ) = − log(p(y|θ,M)p(θ|M)) for θ ∈ Rd. In the

examples we consider, `(M) satisfies H10, H11, H12 and has a unique minimum θ
(M)
? .

Define then U (M) : Rd → R+ by U (M)(θ) = `(M)(θ + θ
(M)
? ) − `(M)(θ(M)

? ) for θ ∈ Rd.
The algorithm described in Section 5.2 can be applied to U (M). For each example, two
different models will be considered and U (M) will be written as U (k) for k = 1, 2.

The numerical experiments are carried out on a Gaussian linear and logistic regression
following the experimental setup of [FW12, Section 4], which is now considered as a
classical benchmark.

Linear regression The linear regression is conducted on p = 42 specimens of radiata
pine [WW59]. The response variable y ∈ Rp is the maximum compression strength
parallel to the grain. The explanatory variables are x ∈ Rp the density and z ∈ Rp
the density adjusted for resin content. x and z are centered. The covariates of the first
modelM1, X(1) ∈ Rp×2, are composed of an intercept and x, while the covariates of the
second model M2, X(2) ∈ Rp×2, are composed of an intercept and z. For k = 1, 2, the
likelihood is defined by,

p(y|θ,Mk) =
(
λ

2π

)d/2
exp

(
−(λ/2)

∥∥∥y −X(k)θ
∥∥∥2
)
,

where λ = 10−5. For the two models, the parameter θ follows the same Gaussian prior of
mean (3000, 185) and inverse covariance matrix λQ0 = λ diag(0.06, 6) where diag denotes
a diagonal matrix. These values are taken from [FW12, section 4.1]. For k = 1, 2,
U (k) is m(k)-strictly convex and L(k)-gradient Lipschitz, where m(k) (resp. L(k)) is the
minimal (resp. maximal) eigenvalue of λ([X(k)]TX(k) + Q0). We set ε = µ = 0.1. The

number of phases M of the algorithm and the variances
{
σ2
i

}M−1
i=0 are chosen accordingly

to the formulas (5.34) and (5.36). For each phase, the step size γi is set equal to
10−2(κiσ2

imi)/(dL2
i ), the burn-in period Ni to 103(κiγi)−1 and the number of samples

ni to 104m
1/2
i /(κ2

iσiγi) where mi, Li, κi are defined in (5.13) and (5.14). The experiments
are repeated 10 times and the boxplots for each modelM are plotted in Figure 5.2. Note
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Figure 5.2: Boxplots of the log evidence for the two models on the Gaussian regression.

that for this Gaussian model, the log evidence is known and displayed by the red points
in Figure 5.2.

With the same parameters for the algorithm, we run 10 independent runs at each
phase to measure the variability of each estimator π̂i(gi) defined in (5.9). The result is
plotted in Figure 5.3 for the model M1.

Logistic regression The logistic regression is performed on the Pima Indians dataset1.
In this case, y ∈ {0, 1}p is a vector of diabetes indicators for p = 532 Pima Indian women
and the potential predictors for diabetes are: number of pregnancies NP ∈ Rp, plasma
glucose concentration PGC ∈ Rp, diastolic blood pressure BP ∈ Rp, triceps skin fold
thickness TST ∈ Rp, body mass index BMI ∈ Rp, diabetes pedigree function DP ∈ Rp
and age AGE ∈ Rp. These variates are centered and standardized. The covariates of the
first model M1 are X(1) = (intercept,NP,PGC,BMI,DP) ∈ Rp×5 and the covariates of
the second model M2 are X(2) = (intercept,NP,PGC,BMI,DP,AGE) ∈ Rp×6, where
intercept is the intercept of the regressions. The likelihood is defined for k = 1, 2 by,

p(y|θ,Mk) = exp
( p∑
i=1

{
yiθ

TX
(k)
i − log

(
1 + eθTX

(k)
i

)})
,

where X
(k)
i denotes the ith row of X(k). For the two models, the prior on θ is Gaussian,

of mean 0 and inverse covariance matrix τ Id where τ = 0.01. For k = 1, 2, U (k) is τ -
strongly convex and L(k)-gradient Lipschitz, where L(k) = λmax([X(k)]TX(k))/4 + τ and
λmax([X(k)]TX(k)) is the maximal eigenvalue of [X(k)]TX(k). We set ε = µ = 0.1. The
algorithm to estimate log(p(y|M)) described in Section 5.2.1 is applied with the following

1http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
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Figure 5.3: Error plot of π̂i(gi) for i ∈ {0, . . . ,M − 1} in the example of the Gaussian regression
(model M1). The mean of π̂i(gi) is displayed in black and is spaced apart from the other two
curves by the standard deviation of π̂i(gi).

modifications. The number of phases is decreased and the recurrence for the variances
{σ2

i }
M−1
i=0 is thus redefined by σ2

i+1 = ς5
s (σ2

i ) as long as the stopping condition (5.36) is
not fulfilled. For i ∈ {1, . . . , 30}, the burn-in period Ni is set equal to 104, the number
of samples ni to 106 and the step size γi to 10−2(mi +Li)−1 where mi, Li are defined in
(5.13); for i > 30, the number of samples ni is set equal to 105 and the step size γi to
10−1(mi+Li)−1. We compare our results with different methods reviewed in [FW12] and
implemented in [Wys11]. These are the Laplace method (L), Laplace at the Maximum
a Posteriori (L-MAP), Chib’s method (C) Annealed Importance Sampling (AIS) and
Power Posterior (PP). The experiments are repeated 10 times and the boxplots for each
modelM and each method are plotted in Figure 5.4. The comparison is difficult because
of the absence of ground truth; nevertheless, we observe that AIS has a high variance
and our methodology AV seems to have a bias.

With the same parameters for the algorithm, we run 10 independent runs at each
phase to measure the variability of each estimator π̂i(gi) defined in (5.9) and display
the result in Figure 5.5 for the model M1. We observe that in the initial phase of the
algorithm, π̂i(gi) is high and decreases gradually.

Mixture of Gaussian distributions The final example we address is a Bayesian
analysis of a finite mixture of Gaussian distributions, see [MDJ06, Section 4.2] and
we aim at estimating the log evidence of the posterior distribution. Note that this
model does not fit into our assumptions because the potential U is not continuously
differentiable on Rd and neither convex. Nevertheless, we experiment heuristically our
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Figure 5.4: Boxplots of the log evidence for the two models on the logistic regression. The
methods are the Laplace method (L), Laplace at the Maximum a Posteriori (L-MAP), Chib’s
method (C), Annealed Importance Sampling (AIS), Power Posterior (PP) and our method (AV).
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Figure 5.5: Error plot of π̂i(gi) for i ∈ {0, . . . ,M − 1} in the example of the logistic regression
(model M1). The mean of π̂i(gi) is displayed in black and is spaced apart from the other two
curves by the standard deviation of π̂i(gi).

algorithm on a close model given by its likelihood

p(y|{θj}4j=1) =
p∏
i=1

1
4

(
λ

2π

)2


4∑
j=1

exp
(
−(λ/2)(yi − θj)2

)


for y = (y1, . . . , yp) ∈ Rp a vector of observations. The prior distributions are set
following the recommendations of [MDJ06, Section 4.2.1] and [RG97]. For j ∈ {1, . . . , 4},
θj is drawn from a Gaussian distribution of mean ξ = 1.35 and inverse variance ς =
7.6×10−3. λ is set equal to 0.03. The observations y ∈ R100 are 100 simulated data points
from an equally weighted mixture of four Gaussian densities with means (−3, 0, 3, 6)
and standard deviations 0.55, taken from [JHS05]. Define for θ = (θ1, . . . , θ4) ∈ R4,
` : R4 → R by `(θ) = − log(p(y|θ)p(θ)). The optim function of R [R C18] gives a
local minimum at θ∗ ≈ (1.76562⊗4). Define then the potential U : R4 → R for θ ∈ R4

by U(θ) = `(θ + θ∗) − `(θ∗). Set ε = µ = 0.1, m = ς and L = 1. Similarly to the
logistic regression, to decrease the running time of the algorithm, the recurrence for the
variances {σ2

i }
M−1
i=0 is defined by σ2

i+1 = ς5
s (σ2

i ) as long as the stopping condition (5.36)
is not fulfilled. For each phase, the step size γi is set equal to 10−1(κiσ2

imi)/(dL2
i ),

the burn-in period Ni to 104 and the number of samples ni to 105 where mi, Li, κi are
defined in (5.13) and (5.14). For comparison purposes, we run the same algorithm using
the Metropolis Adjusted Langevin Algorithm (MALA) instead of ULA to estimate π̂i(gi)
at each phase. The step size γi is set equal to (κiσ2

imi)/(dL2
i ) and the number of samples

ni to 106. The experiments are repeated 10 times. The boxplot is plotted in Figure 5.6
and the red point indicates the mean of our algorithm using MALA.
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Figure 5.6: Boxplot of the log evidence for the mixture of Gaussian distributions.

5.4 Mean squared error for locally Lipschitz functions

In this Section, we extend the results of [DM16, Section 3] to locally Lipschitz functions.
This Section is of independent interest and only Propositions 5.17 and 5.20 are used
in ??. Let U : Rd → R be a continuously differentiable function. Consider the target
distribution π with density x 7→ e−U(x)/

∫
Rd e−U(y)dy w.r.t. the Lebesgue measure. We

deal with the problem of estimating
∫
Rd f(x)dπ(x) for locally Lipschitz f : Rd → R by

the ULA algorithm defined for k ∈ N by,

Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1Zk+1 , (5.66)

where (Zk)k≥1 is an i.i.d. sequence of d-dimensional Gaussian vectors with zero mean,
identity covariance and (γk)k≥1 is a sequence of positive step sizes, which can either be
held constant or be chosen to decrease to 0. For n, p ∈ N, denote by

Γn,p
def=

p∑
k=n

γk , Γn = Γ1,n , (5.67)

and consider the Markov kernel Rγ given for all A ∈ B(Rd) and x ∈ Rd by

Rγ(x,A) =
∫

A
(4πγ)−d/2 exp

(
−(4γ)−1 ‖y − x+ γ∇U(x)‖2

)
dy . (5.68)

Define

Qn,pγ = Rγn · · ·Rγp , Qnγ = Q1,n
γ , (5.69)

with the convention that for n, p ≥ 0, n < p, Qp,nγ and Q0,0
γ are the identity operator.
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For all initial distribution µ0 on (Rd,B(Rd)), Pµ0 and Eµ0 denote the probability and
the expectation respectively associated with the sequence of Markov kernels (5.68) and
the initial distribution µ0 on the canonical space ((Rd)N,B(Rd)⊗N) and (Xk)k∈N denotes
the canonical process. Let f : Rd → R and consider the following assumption,

L1. 1. There exists Lf : Rd → [0,+∞) a continuous function such that for all x, y ∈
Rd, |f(y)− f(x)| ≤ ‖y − x‖max {Lf (x), Lf (y)}.

2. There exist ε > 0, Cπ > 0 and continuous functions CQ, CQ,ε : Rd → [0,+∞) such
that for all x ∈ Rd,

π(L2
f ) ≤ Cπ , sup

p≥n≥0
δxQ

n,p
γ

(
L2
f

)
≤ CQ(x) , (5.70)

sup
p≥n≥0

δxQ
n,p
γ

(
L

2(1+ε)
f

)
≤ CQ,ε(x)

Under L 1, we study the approximation of
∫
Rd f(y)π(dy) by the weighted average

estimator

π̂Nn (f) =
N+n∑
k=N+1

ωNk,nf(Xk) , ωNk,n = γk+1Γ−1
N+2,N+n+1 , (5.71)

where N ≥ 0 is the length of the burn-in period and n ≥ 1 is the number of samples.
The Mean Squared Error (MSE) of π̂Nn (f) is defined by:

MSEf (x,N, n) = Ex
[{
π̂Nn (f)− π(f)

}2
]
, (5.72)

and can be decomposed as,

MSEf (x,N, n) =
{
Ex[π̂Nn (f)]− π(f)

}2
+ Varx

[
π̂Nn (f)

]
. (5.73)

The analysis of MSEf (x,N, n) is similar to [DM16, Section 3]. First, the squared bias
in (5.73) is bounded. Denote by,

A0 = 2L2κ−1d , (5.74)

A1 = 2dL2 + dL4(κ−1 + (m+ L)−1)(m−1 + 6−1(m+ L)−1) , (5.75)

B0 = d
(
2L2 + κ−1{dL̃2/3 + 4L4/(3m)}

)
, (5.76)

B1 = dL4
(
κ−1 + {6(m+ L)}−1 +m−1

)
, (5.77)

where κ is given by (5.14). Define then for n ∈ N?,

u(1)
n (γ) =

n∏
k=1

(1− κγk/2) , (5.78)

u(2)
n (γ) =

n∑
i=1

(
A0γ

2
i +A1γ

3
i

) n∏
k=i+1

(1− κγk/2) , (5.79)

u(3)
n (γ) =

n∑
i=1

(
B0γ

3
i +B1γ

4
i

) n∏
k=i+1

(1− κγk/2) . (5.80)
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Proposition 5.17. Assume H10 and H11(m) for m > 0. Let f : Rd → R satisfying L
1. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 1/(m + L). Let x? be the unique
minimizer of U . Let (Xn)n≥0 be given by (5.66) and started at x ∈ Rd. Then for all
N ≥ 0, n ≥ 1:{

Ex[π̂Nn (f)]− π(f)
}2
≤ {Cπ + CQ(x)}

×
N+n∑
k=N+1

ωNk,n

{
2(‖x− x?‖2 + d/m)u(1)

k (γ) + wk(γ)
}
, (5.81)

where u
(1)
n (γ) is given in (5.78) and wn(γ) is equal to u

(2)
n (γ) defined by (5.79) and to

u
(3)
n (γ), defined by (5.80), if H12 holds.

Proof. For all k ∈ {N + 1, . . . , N + n}, let ξk be the optimal transference plan between
δxQ

k
γ and π for W2. By the Jensen and the Cauchy-Schwarz inequalities, and L1, we

have: (
Ex[π̂Nn (f)]− π(f)

)2
=

 N+n∑
k=N+1

ωNk,n

∫
Rd×Rd

{f(z)− f(y)}ξk(dz,dy)

2

≤
N+n∑
k=N+1

ωNk,n

(∫
Rd×Rd

‖z − y‖max {Lf (z), Lf (y)} ξk(dz, dy)
)2

≤ {Cπ + CQ(x)}
N+n∑
k=N+1

ωNk,n

∫
Rd×Rd

‖z − y‖2 ξk(dz, dy) .

The proof follows from [DM16, Theorems 5 and 8].

To deal with the variance term in (5.73), we adapt the proof of [JO10, Theorem 2]
to our setting, where f is only locally Lipschitz and the Markov chain (5.66) is inhomo-
geneous. It is based on the Gaussian Poincaré inequality [BLM13, Theorem 3.20]. Let
Z = (Z1, . . . , Zd) be a Gaussian vector with identity covariance matrix and f : Rd → R
be a locally Lipschitz function. Recall that by Rademacher’s Theorem [EG15, Theo-
rem 3.2], a locally Lipschitz function is almost everywhere differentiable w.r.t. Lebesgue
measure on Rd. The Gaussian Poincaré inequality states that Var [f(Z)] ≤ E[‖∇f(Z)‖2].
Noticing that for all x ∈ Rd, Rγ(x, ·) defined in (5.68) is a Gaussian distribution with
mean x−γ∇U(x) and covariance matrix 2γ Id, the Gaussian Poincaré inequality implies:

0 ≤
∫
Rγ(x,dy) {f(y)−Rγf(x)}2 ≤ 2γ

∫
Rγ(x,dy) ‖∇f(y)‖2 . (5.82)

First consider the following decomposition of π̂Nn (f)−Ex[π̂Nn (f)] as the sum of mar-
tingale increments,

π̂Nn (f)− Ex[π̂Nn (f)] =
N+n−1∑
k=N

{
EGk+1
x

[
π̂Nn (f)

]
− EGkx

[
π̂Nn (f)

]}
+ EGNx

[
π̂Nn (f)

]
− Ex[π̂Nn (f)] ,
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where (Gn)n≥0 is the natural filtration associated with the Markov chain (Xn)n≥0. This
implies that the variance may be decomposed as the following sum

Varx
[
π̂Nn (f)

]
=

N+n−1∑
k=N

Ex
[(

EGk+1
x

[
π̂Nn (f)

]
− EGkx

[
π̂Nn (f)

])2
]

+ Ex
[(

EGNx
[
π̂Nn (f)

]
− Ex[π̂Nn (f)]

)2
]
. (5.83)

Because π̂Nn (f) is an additive functional, the martingale increment EGk+1
x

[
π̂Nn (f)

]
−

EGkx
[
π̂Nn (f)

]
has a simple expression. For k = N +n, . . . , N +1, define backward in time

the function

ΦN
n,k : xk 7→ ωNk,nf(xk) +Rγk+1ΦN

n,k+1(xk) , (5.84)

with the convention ΦN
n,N+n+1 = 0. Denote finally

ΨN
n : xN 7→ RγN+1ΦN

n,N+1(xN ) . (5.85)

Note that for k ∈ {N, . . . , N + n− 1}, by the Markov property,

ΦN
n,k+1(Xk+1)−Rγk+1ΦN

n,k+1(Xk) = EGk+1
x

[
π̂Nn (f)

]
− EGkx

[
π̂Nn (f)

]
, (5.86)

and ΨN
n (XN ) = EGNx

[
π̂Nn (f)

]
. With these notations, (5.83) may be equivalently ex-

pressed as

Varx
[
π̂Nn (f)

]
=

N+n−1∑
k=N

Ex
[
Rγk+1

{
ΦN
n,k+1(·)−Rγk+1ΦN

n,k+1(Xk)
}2

(Xk)
]

+ Varx
[
ΨN
n (XN )

]
. (5.87)

Now for k = N + n, . . . , N + 1, we will use the Gaussian Poincaré inequality (5.82) to
the sequence of function ΦN

n,k. It is required to prove that ΦN
n,k is locally Lipschitz (see

Lemma 5.18). For the variance of ΨN
n (XN ), similar arguments apply using Lemma 5.19.

Lemma 5.18. Assume H10, H11(m) for m > 0 and let f : Rd → R satisfying L1. Let
(γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+L). Then for all ` ≥ n ≥ 0, Qn,`γ f

is locally Lipschitz and differentiable for almost all x ∈ Rd. Its gradient is bounded by,

∥∥∥∇Qn,`γ f(x)
∥∥∥ ≤ ∏̀

k=n
(1− κγk)1/2(δxQn,`γ L2

f )1/2 . (5.88)

Proof. Let ξx,y be the optimal transference plan between δxQ
n,`
γ and δyQ

n,`
γ for W2. By

Rademacher’s Theorem [EG15, Theorem 3.2], ∇Qn,`γ f(x) exists for almost all x ∈ Rd.
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For such x, using Cauchy-Schwarz’s inequality and [DM16, Theorem 4], we have∥∥∥∇Qn,`γ f(x)
∥∥∥ = sup

‖u‖≤1
lim
t→0

∣∣∣(Qn,`γ f(x+ tu)−Qn,`γ f(x)
)
/t
∣∣∣

= sup
‖u‖≤1

lim
t→0

∣∣∣∣t−1
∫
Rd×Rd

{f(z2)− f(z1)} ξx,x+tu(dz1, dz2)
∣∣∣∣

≤ sup
‖u‖≤1

lim inf
t→0

t−1W2(δxQn,`γ , δx+tuQ
n,`
γ )

×
{∫

Rd×Rd
(L2

f (z1) ∨ L2
f (z2))ξx,x+tu(dz1,dz2)

}1/2

≤ sup
‖u‖≤1

lim inf
t→0

∏̀
k=n

(1− κγk)1/2
{∫

Rd×Rd
(L2

f (z1) ∨ L2
f (z2))ξx,x+tu(dz1, dz2)

}1/2
.

It is then sufficient to prove that,

lim
y→x

∫
Rd×Rd

L2
f (z1) ∨ L2

f (z2)ξx,y(dz1, dz2) =
∫
Rd
L2
f (z1)δxQn,`γ (dz1) .

Let ε, η,R > 0 and y ∈ Rd. Since a ∨ b− a = (b− a)+, we have∫
Rd×Rd

(L2
f (z2)− L2

f (z1))+ξx,y(dz1,dz2) = E1(y) + E2(y) + E3(y)

where,

E1(y) =
∫
Rd×Rd

(
L2
f (z2)− L2

f (z1)
)

+
1{‖z1‖+‖z2‖≥2R}ξx,y(dz1,dz2) ,

E2(y) =
∫
Rd×Rd

(
L2
f (z2)− L2

f (z1)
)

+
1{‖z1‖+‖z2‖≤2R}1{‖z1−z2‖≤η}ξx,y(dz1, dz2) ,

E3(y) =
∫
Rd×Rd

(
L2
f (z2)− L2

f (z1)
)

+
1{‖z1‖+‖z2‖≤2R}1{‖z1−z2‖≥η}ξx,y(dz1, dz2) .

Hölder’s inequality gives for p, q > 1, 1/p+ 1/q = 1,

E1(y) ≤
(∫

Rd
L2q
f (z2)δyQn,`γ (dz2)

)1/q

×
(∫

Rd
1{‖z1‖≥R}δxQ

n,`
γ (dz1) +

∫
Rd
1{‖z2‖≥R}δyQ

n,`
γ (dz2)

)1/p
.

Under L1-2, the first term on the right hand side is dominated by a constant for q small
enough, and the second term tends to 0 for R large enough, uniformly for y in a compact
neighborhood of x by [DM16, Theorem 3] and∫

Rd
1{‖z2‖≥R}δyQ

n,`
γ (dz2) ≤ R−2

∫
Rd
‖z2‖2 δyQn,`γ (dz2) .
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We can then choose R such that E1(y) ≤ ε/3. We consider now E2(y). L2
f is a

continuous function, uniformly continuous on a compact set and we can then choose
η such that E2(y) ≤ ε/3. We finally consider E3(y). By Markov’s inequality and
limy→xW

2
2 (δxQn,`γ , δyQ

n,`
γ ) = 0, there exists a compact neighborhood V(x) of x such

that y ∈ V(x) implies E3(y) ≤ ε/3.

Lemma 5.19. Assume H10 and H11(m) for m > 0. Let (γk)k≥1 be a nonincreasing
sequence with γ1 ≤ 2/(m + L) and N ≥ 0. Let f : Rd → R be such that Qk+1,N

γ f is

locally Lipschitz for k ∈ {1, . . . , N}. Then for all x ∈ Rd,

∫
Rd
QNγ (x,dy)

{
f(y)−QNγ f(x)

}2
≤ 2

N∑
k=1

γk

∫
Rd
Qkγ(x, dy)

∥∥∥∇Qk+1,N
γ f(y)

∥∥∥2
.

Proof. Using EGkx [f(XN )] = Qk+1,N
γ f(Xk), we get

Varx[f(XN )] =
N∑
k=1

Ex
[
EGk−1
x

[(
EGkx [f(XN )]− EGk−1

x [f(XN )]
)2
]]

=
N∑
k=1

Ex
[
Rγk

{
Qk+1,N
γ f(·)−RγkQ

k+1,N
γ f(Xk−1)

}2
(Xk−1)

]
.

Eq. (5.82) implies that

Varx[f(XN )] ≤ 2
N∑
k=1

γk

∫
Rd
Qkγ(x,dy)

∥∥∥∇Qk+1,N
γ f(y)

∥∥∥2
,

which concludes the proof.

Proposition 5.20. Assume H10 and H11(m) for m > 0. Let f : Rd → R satisfying L
1 and (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m + L). Then for all N ≥ 0,
n ≥ 1, we get

Varx
[
π̂Nn (f)

]
≤ 8CQ(x)
κ2ΓN+2,N+n+1

{
1 + Γ−1

N+2,N+n+1

(
κ−1 + 2

m+ L

)}
. (5.89)

Proof. For k ∈ {N, . . . , N + n− 1} and for all y, x ∈ Rd, we have

∣∣∣ΦN
n,k+1(y)− ΦN

n,k+1(x)
∣∣∣ =

∣∣∣∣ωNk+1,n {f(y)− f(x)}

+
N+n∑
i=k+2

ωNi,n

{
Qk+2,i
γ f(y)−Qk+2,i

γ f(x)
} ∣∣∣∣ . (5.90)
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By Lemma 5.18, ΦN
n,k+1 is locally Lipschitz and for almost all x ∈ Rd,

∥∥∥∇ΦN
n,k+1(x)

∥∥∥ ≤ N+n∑
i=k+1

ωNi,n


i∏

`=k+2
(1− κγ`)1/2

 (δxQk+2,i
γ L2

f )1/2 .

For k ∈ {N, . . . , N + n− 1} and x ∈ Rd, we have by (5.82) and the Cauchy-Schwarz
inequality,

Rγk+1

{
ΦN
n,k+1(·)−Rγk+1ΦN

n,k+1(x)
}2

(x)

≤ 2γk+1ΩN
k,n


N+n∑
i=k+1

ωNi,n

i∏
`=k+2

(1− κγ`)1/2(δxQk+1,i
γ L2

f )

 ,

where,

ΩN
k,n =

N+n∑
i=k+1

ωNi,n

i∏
`=k+2

(1− κγ`)1/2 . (5.91)

By L1-2, we get for k ∈ {N, . . . , N + n− 1}

Ex
[
Rγk+1

{
ΦN
n,k+1(·)−Rγk+1ΦN

n,k+1(Xk)
}2

(Xk)
]

≤ 2γk+1ΩN
k,n


N+n∑
i=k+1

ωNi,n

i∏
`=k+2

(1− κγ`)1/2(δxQiγL2
f )

 ≤ 2γk+1CQ(x)(ΩN
k,n)2 .

Using (1− t)1/2 ≤ (1− t/2) for t ∈ [0, 1], we have

ΩN
k,n ≤ (κΓN+2,N+n+1/2)−1 . (5.92)

Using this inequality, we get

N+n−1∑
k=N

Ex
[
Rγk+1

{
ΦN
n,k+1(·)−Rγk+1ΦN

n,k+1(Xk)
}2

(Xk)
]

≤ 8CQ(x)ΓN+1,N+n/(κΓN+2,N+n+1)2 . (5.93)

We now bound Varx
[
ΨN
n (XN )

]
. Since for all x ∈ Rd, we have

ΨN
n (x) =

N+n∑
i=N+1

ωNi,nQ
N+1,i
γ f(x) ,

by Lemma 5.18, Qk+1,N
γ ΨN

n is locally Lipschitz for k ∈ {1, . . . , N} with for almost all

x ∈ Rd,

∥∥∥∇Qk+1,N
γ ΨN

n (x)
∥∥∥ ≤ N+n∑

i=N+1
ωNi,n

i∏
`=k+1

(1− κγ`)1/2
(
δxQ

k+1,i
γ L2

f

)1/2
.
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Isolating the term
∏N
`=k+1(1−κγ`)1/2 and since (1−κγN+1)1/2 ≤ 1, the Cauchy-Schwarz

inequality implies

∥∥∥∇Qk+1,N
γ ΨN

n (x)
∥∥∥2
≤


N∏

`=k+1
(1− κγ`)


× ΩN

N,n

N+n∑
i=N+1

ωNi,n

i∏
`=N+1

(1− κγ`)1/2δxQ
k+1,i
γ L2

f .

Plugging this inequality in Lemma 5.19, using L1-2,
∑N
k=1 γk

∏N
i=k+1(1−κγi) ≤ κ−1 and

(5.92), we get

Varx
[
ΨN
n (XN )

]
≤ 2κ−1CQ(x)(κ/2)−2Γ−2

N+2,N+n+1 . (5.94)

Combining (5.93) and (5.94) in (5.83) concludes the proof.

5.5 Proofs

5.5.1 Proofs of propositions 5.2, 5.3, 5.4

We assume in this Section that H10 and H11(m) for some m ≥ 0 hold. The proofs rely
on the results given in Section 5.4, Propositions 5.17 and 5.20 which establish bounds on
the mean squared error for locally Lipschitz functions. For i ∈ {0, . . . ,M − 1}, σ2

i > 0
and γi > 0, consider the Markov chain (Xi,n)n≥0 (5.8) and its associated Markov kernel
Ri defined for all A ∈ B(Rd) and x ∈ Rd by

Ri(x,A) =
∫

A
(4πγi)−d/2 exp

(
−(4γi)−1 ‖y − x+ γi∇Ui(x)‖2

)
dy . (5.95)

Under H10 and H11(m) for m ≥ 0, [Nes13, Theorems 2.1.12, 2.1.9] show the following
useful inequalities for all x, y ∈ Rd,

〈∇Ui(y)−∇Ui(x), y − x〉 ≥ κi
2 ‖y − x‖

2 + 1
mi + Li

‖∇Ui(y)−∇Ui(x)‖2 , (5.96)

〈∇Ui(y)−∇Ui(x), y − x〉 ≥ mi ‖y − x‖2 , (5.97)

where Li,mi are defined in (5.13) and κi in (5.14). We then check L 1 for gi, where
gi : Rd → R is defined in (5.6). Note that gi is continuously differentiable and for

x ∈ Rd, ∇gi(x) = 2aixeai‖x‖2
. Define Lgi : Rd → R+ for x ∈ Rd by,

Lgi(x) = 2ai ‖x‖ eai‖x‖
2

(5.98)

We have for all x, y ∈ Rd:

|gi(y)− gi(x)| =
∣∣∣∣∫ 1

0
〈∇gi(ty + (1− t)x), y − x〉 dt

∣∣∣∣
≤ ‖y − x‖max(Lgi(x), Lgi(y)) , (5.99)
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which implies that L1-1 holds for gi. The following Lemmas 5.21 and 5.22 enable to
check L1-2 for gi.

Lemma 5.21. Assume H10 and H11(m) for m ≥ 0. For all σ2
i ∈ (0,+∞), n ∈ N,

γi ∈ (0, 2/(mi + Li)], ai ∈
[
0, κi/8 ∧ (2σ2

i )−1) and x ∈ Rd, we have:

sup
n∈N

Rni

(
L2
gi

)
(x) ≤ 4a2

i g
2
i (x)Ci,0

{
‖x‖2 + Ci,1

}
,

where Lgi is defined in (5.98) and Ci,0, Ci,1 in (5.23).

Proof. In the proof, the subscript i is not specified for ease of notation. Let γ ∈
(0, 2/(m+ L)]. Note that for all α ∈

[
0, (4γ)−1), we have

Rγ(eα‖·‖
2
)(x) = e−(4γ)−1‖x−γ∇U(x)‖2

(4πγ)d/2
∫
Rd

e(α−(4γ)−1)‖y‖2+(2γ)−1〈y,x−γ∇U(x)〉dy

= φ(x) ,

where φ(x) = (1−4γα)−d/2 exp{(α/(1−4αγ)) ‖x− γ∇U(x)‖2}. By the Leibniz integral
rule and (5.96), we obtain:

Rγ(‖·‖2 eα‖·‖
2
)(x) = ∂αRγ(eα‖·‖

2
)(x)

= (1− 4γα)−d/2−1
{

2γd+ ‖x− γ∇U(x)‖2

1− 4αγ

}
exp

(
α

1− 4αγ ‖x− γ∇U(x)‖2
)

≤ (1− 4γα)−d/2−1
{

2γd+ 1− κγ
1− 4αγ ‖x‖

2
}

exp
(
α(1− κγ)
1− 4αγ ‖x‖

2
)
.

Let a ∈ [0, κ/8). Since a < (4γ)−1, by a straightforward induction we have

δxR
p
γ(‖·‖2 e2a‖·‖2

) ≤ (1− 4γα0)−d/2−1 exp
(
αp ‖x‖2

)
×
p−1∑
`=0

2γdα`α−1
0

{∏̀
k=1

(1− 4γαk)−d/2−1
}

p−1∏
k=`+1

(1− 4γαk)−d/2


+ (1− 4γα0)−d/2−1


p−1∏
k=1

(1− 4γαk)−d/2−1

αpα−1
0 ‖x‖

2 exp
(
αp ‖x‖2

)

≤ 1
α0

exp
(
αp ‖x‖2

)
p−1∏
k=0

(1− 4γαk)−d/2−1


αp ‖x‖2 + 2dγ

p−1∑
`=0

α`

 , (5.100)

where (α`)`∈N is the decreasing sequence defined for ` ≥ 1 by:

α0 = 2a, α` = α`−1
(1− κγ)

1− 4α`−1γ
. (5.101)
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We now bound the right-hand-side of (5.100). First, by using the following inequality,

log(1− 4γα) = −4α
∫ γ

0
(1− 4αt)−1dt ≥ −4αγ(1− 4αγ)−1 ,

we have:

p−1∏
k=0

(1− 4γαk)−d/2−1 = exp

−(d2 + 1
) p−1∑
k=0

log(1− 4αkγ)


≤ exp

(d
2 + 1

) 4γ
1− κγ

p−1∑
k=0

αk
1− κγ

1− 4αkγ

 . (5.102)

Second, by a straightforward induction we get for all ` ≥ 0, α` ≤ 2a{(1−κγ)(1−8aγ)−1}`.
Using (5.101) and this result implies:

p−1∑
k=0

αk
1− κγ

1− 4αkγ
=

p∑
k=1

αk ≤ 2a 1− κγ
κγ − 8aγ ,

p−1∑
`=0

α` ≤ 2a 1− 8aγ
κγ − 8aγ .

Combining these inequalities and (5.102) in (5.100) concludes the proof.

Lemma 5.22. Assume H 10 and H 11(m) for m ≥ 0. For all σ2
i ∈ (0,+∞) and

ai ∈
[
0,mi/{4(d+ 4)} ∧ (2σ2

i )−1], we have

π(L2
gi) ≤ 4a2

iCi,2 ,

where Ci,2 is defined in (5.23).

Proof. In the proof, the subscript i is not specified for ease of notations. Recall that the
generator of the Langevin diffusion (5.7) associated to U is defined for any f in C2(Rd)
by

Lf = −〈∇U,∇f〉+ ∆f .

In particular, for f(x) = ‖x‖2 e2a‖x‖2
and x ∈ Rd, we have

∇f(x) = 2(1 + 2a ‖x‖2)xe2a‖x‖2
,

∆f(x) = e2a‖x‖2 {
16a2 ‖x‖4 + 4a(d+ 4) ‖x‖2 + 2d

}
.

Using (5.97) and ∇U(0) = 0, we get

L(‖·‖2 e2a‖·‖2
)(x) ≤ e2a‖x‖2 {

2d+ 2 (2a(d+ 4)−m) ‖x‖2 + 4a (4a−m) ‖x‖4
}
.

Using that a ∈ [0,m/(4(d+ 4))], we have 2a(4a−m) ≤ −(8/5)am. Then an elementary
study of t 7→ e2at {2d+ 4a (4a−m) t2

}
on R+ shows that:

sup
x∈Rd

e2a‖x‖2 {
2d+ 4a (4a−m) ‖x‖4

}
≤ 4d .
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Therefore we get using 2(2a(d+ 4)−m) ≤ −m,

L(‖·‖2 e2a‖·‖2
)(x) ≤ −m ‖x‖2 e2a‖x‖2

+ 4d .

Finally applying [MT93, Theorem 4.3-(ii)] shows the result.

Proofs of Propositions 5.2 and 5.3. Lemmas 5.21 and 5.22 and proposition 5.17 prove
the result.

Proof of Proposition 5.4. The proof follows from Lemma 5.21 and proposition 5.20.

5.5.2 Proof of Lemma 5.9

The case K = 0 being straightforward, assume K ∈ N?. Using Markov’s inequality, we
have

P(Ac
S,ε) ≤

4
ε2

E
[(∏M−1

i=0 π̂i(gi)−
∏M−1
i=0 πi(gi)

)2
]

(∏M−1
i=0 πi(gi)

)2 . (5.103)

Since π̂i(gi) for i ∈ {0, . . . ,M − 1} are independent, we get

E
[(∏M−1

i=0 π̂i(gi)−
∏M−1
i=0 πi(gi)

)2
]

(∏M−1
i=0 πi(gi)

)2 = F 2
1 (F2 − 1) + (F1 − 1)2 , (5.104)

where

F1 =
M−1∏
i=0

E [π̂i(gi)] /πi(gi) , F2 =
M−1∏
i=0

E
[
{π̂i(gi)}2

]
/E2 [π̂i(gi)] .

In addition, since {0, . . . ,M − 2} = ∪K−1
k=0 Ik, we can consider the following decomposi-

tion

F1 =
K−1∏
k=0

∏
i∈Ik

(
1 + E [π̂i(gi)]− πi(gi)

πi(gi)

)

×
(

1 + E [π̂M−1(gM−1)]− πM−1(gM−1)
πM−1(gM−1)

)
,

F2 =
K−1∏
k=0

∏
i∈Ik

(
1 + Var [π̂i(gi)]

E [π̂i(gi)]2

)(
1 + Var [π̂M−1(gM−1)]

E [π̂M−1(gM−1)]2

)
.

We now bound F1, F2 separately. Using 1 + t ≤ exp(t) for t ∈ R with t = η/(K |Ik|) and
leaving the term i = M − 1 out, we get by conditions i)-ii)

F1 ≤ (1 + η) exp (η) . (5.105)
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Since π̂i(gi) ≥ 1, we have Var [π̂i(gi)] /E [π̂i(gi)]2 ≤ η2/K |Ik|. Therefore using 1 + t ≤
exp(t) for t ∈ R with t = η2/(K |Ik|) leaving the term i = M − 1 out, we obtain by
conditions i)-ii)

F2 ≤
(
1 + η2

)
exp(η2) . (5.106)

By combining (5.103), (5.104), (5.105) and (5.106), we get:

(ε2/4)P(Ac
S,ε) ≤ (1 + η)2e2η

(
(1 + η2)eη2 − 1

)
+ ((1 + η)eη − 1)2 .

With η ≤ 1/8 and et − 1 ≤ tet for t ≥ 0, we have (ε2/4)P(Ac
S,ε) ≤ 9η2.

5.5.3 Proofs of Section 5.2.1

We preface the proofs by a technical lemma which gathers useful bounds and inequalities.
We recall that in this Section the number of phases M is defined by (5.36)

M = inf
{
i ≥ 1 : σ2

i−1 ≥ (2d+ 7)/m
}
.

Lemma 5.23. Assume H10 and H11(m) for m > 0. Let {σ2
i }
M−1
i=0 defined by (5.34)

for σ2
0 given in (5.31) and M in (5.36).

1. K ≤
⌈
(1/ log(2)) log{(2d+ 7)/(mσ2

0)}
⌉

where K is defined in (5.39).

2. For all k ∈ {0, . . . ,K − 1} and i ∈ Ik, 2k+1σ2
0ai |Ik| ≤ 1, where ai is defined in

(5.37) and Ik in (5.38).

3. For all i ∈ {0, . . . ,M − 1} and γi ≤ 1/(mi + Li), there exist αi ∈ [4, 14] and βi ∈
[1, 10] such that Ci,2+Ci,0Ci,1 = αidm

−1
i and Ci,0Ci,1 = βidκ

−1
i where Ci,0, Ci,1, Ci,2

and κi are given in (5.23) and (5.14) respectively.

4. For all i ∈ {0, . . . ,M −1}, 0 < Ai,1 ≤ 4dL4
iκ
−1
i m−1

i , where Li,mi and κi are given
in (5.13) and (5.14) respectively.

5. For all i ∈ {0, . . . ,M − 2}, κiσ2
i ≤ 4d+ 16.

6. For all i ∈ {0, . . . ,M − 1}, √mi/(κiσi) ≤ 1

7. For all i ∈ {0, . . . ,M − 1},

mi + Li
2mi

≤ m+ L

2m ,
L2
i

κ3
iσ

4
imi

≤
(
m+ L

2m

)3
.

8. For all k ∈ {0, . . . ,K − 1} and i ∈ Ik,

κ−2
i m

−1/2
i σ−2

i ≤
(2k+1σ2

0)3/2

(1 +m2kσ2
0)5/2 ,

L2
im
−1/2
i

κ2
iσ

2
im

1/2
i

≤
(
m+ L

2m

)2 1
1 +m2kσ2

0
.
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Proof. 1. By (5.36) and (5.38),

K ≤ inf
{
k ≥ 0 : 2kσ2

0 ≥
2d+ 7
m

}
=
⌈ 1

log(2) log
(2d+ 7
mσ2

0

)⌉
.

2. Let k ∈ {0, . . . ,K − 1}. Denote by i0 = inf Ik. By (5.37) and (5.38),

|Ik| ai =
∑
i∈Ik

ai ≤
1

2σ2
i0

≤ 1
2k+1σ2

0
,

and the proof follows.

3. Let k ∈ {0, . . . ,K − 1} and i ∈ Ik, Since mi ≥ m+(2k+1σ2
0)−1, ai ≤ mi/{4(d+4)}.

Therefore using in addition that γi ≤ 1/(mi+Li), we have κi−8ai ≥ κi(d+2)/(d+
4) and 1−8aiγi ≥ (d+3)/(d+4). The definition of Ci,0, Ci,1, Ci,2 (5.23) completes
the proof.

4. The upper bound is a straightforward consequence of (1 + κi(mi + Li)−1)(1 +
6−1mi(mi + Li)−1) ≤ 2.

5. The bound follows using that σ2
M−2 ≤ (2d + 7)/m by (5.36) and the sequence

{κiσ2
i }
M−2
i=0 is non-decreasing since

κiσ
2
i = 2

{
1 + mLσ2

i − 1/σ2
i

m+ L+ 2/σ2
i

}
,

and {σ2
i }
M−2
i=0 is non-decreasing.

6. The proof is a direct consequence of the fact that the sequence i 7→ √mi/(κiσi) is
non-increasing since m < L, {σ2

i }
M−2
i=0 is non-decreasing and

√
mi

κiσi
= 1

2
1√

1 +mσ2
i

{
1 + 1 +mσ2

i

1 + Lσ2
i

}
.

7. Using that {σ2
i }
M−2
i=0 is non-decreasing and

mi + Li
2mi

= 2 + (m+ L)σ2
i

2 + 2mσ2
i

,
L2
i

κ3
iσ

4
imi

≤
(

(m+ L)σ2
i + 2

(2m)σ2
i + 2

)3

,

concludes the proof.

8. Let k ∈ {0, . . . ,K − 1} and i ∈ Ik. Since κi ≥ mi and 2kσ2
0 ≤ σ2

i ≤ 2k+1σ2
0, we

have

κ−2
i m

−1/2
i σ−2

i ≤
σ3
i

(miσ2
i )5/2 ≤

(2k+1σ2
0)3/2

(1 +m2kσ2
0)5/2 ,

and
L2
i

κ2
i

≤
(
m+ L

2m

)2
,

1
miσ2

i

≤ 1
1 +m2kσ2

0
.
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Proof of Lemma 5.8

Because U satisfies H10, H11(m) for m ≥ 0 and U(0) = 0, ∇U(0) = 0, we have:

exp(−(L/2) ‖x‖2) ≤ exp(−U(x)) ≤ exp(−(m/2) ‖x‖2) ,

which implies by integration that,

(2πσ2
0)d/2/(1 + σ2

0L)d/2 ≤ Z0 ≤ (2πσ2
0)d/2/(1 + σ2

0m)d/2 ,

where Z0 =
∫
Rd e−U0 and U0 is defined in (5.2). The proof follows from the expression

of σ2
0 and the bound, (

1 + Lσ2
0

1 +mσ2
0

)d/2
≤ exp

(
d

2σ
2
0(L−m)

)
.

Proof of Lemma 5.10

Let k ∈ {0, . . . ,K − 1} and i ∈ Ik. Assume that γi ≤ (mi + Li)−1. By Proposition 5.2,
Proposition 5.4, Lemma 5.23-2 and σ2

i ≤ 2k+1σ2
0, to check condition-i) of Lemma 5.9, it

is then sufficient for γi, ni, Ni to satisfy,

4d
nimiκiγi

exp
(
−Ni

κiγi
2

)
+ 2κ−1

i

(
Ai,0γi +Ai,1γ

2
i

)
≤ η2

4K2
σ4
i

Ci,2 + Ci,0Ci,1
, (5.107)

32aiCi,0Ci,1
κ2
iniγi

(
1 + 2

κiniγi

)
≤ σ2

i η
2

K
. (5.108)

By (5.24), Lemma 5.23-3 and Lemma 5.23-4, there exist αi ∈ [4, 14] and βi ∈ [1, 10] such
that these two inequalities hold if γi, ni, Ni satisfy

2L2
iκ
−1
i dγi + 4dL4

iκ
−1
i m−1

i γ2
i ≤

η2

16K2
κimiσ

4
i

αid
, (5.109)

1
ni

(
1 + 2

κiniγi

)
≤ η2σ2

i κ
3
i γi

32Kaiβid
, (5.110)

Ni ≥ N̄i = −2(κiγi)−1 log
(
η2σ4

im
2
iniκiγi

32K2αid2

)
. (5.111)

These inequalities are shown to be true successively for γi, ni and Ni chosen as in the
statement of the Lemma. Denote by γ̄i and n̄−1

i the positive roots associated to (5.109)
and (5.110) seen as equalities and given by

γ̄i = 4−1L−2
i mi

−1 +
√

1 + η2κ2
iσ

4
i

4αiK2d2

 , (5.112)

n̄−1
i = 4−1κiγi

−1 +

√
1 + η2κ2

iσ
2
i

4Kaiβid

 . (5.113)
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Note that for (5.109) and (5.110) to hold, it suffices that γi ≤ γ̄i and ni ≥ n̄i. We now
lower bound γ̄i and upper bound n̄i.

Using that
√

1 + t ≥ 1+2−1t(1+t)−1/2 for t = η2κ2
iσ

4
i /(4αiK2d2) and (η2κ2

iσ
4
i )/(4αiK2d2) ≤

25 by αi ≥ 4 and Lemma 5.23-5, concludes that if (5.40) holds then γi ≤ γ̄i. The fact
that γi ≤ (mi + Li)−1 can be checked by simple algebra.

First, by (5.37) and the definition of Ik, ai ≤ mi/{4(d+ 4)},

n̄−1
i ≥ 4−1κiγi

−1 +

√
1 + η2κ2

iσ
2
i (d+ 4)

Kmiβid

 .

Then using that
√

1 + t ≥ 1+2−1t(1+ t)−1/2 for t = η2κ2
iσ

2
i (d+4)/(Kmiβid) and βi ≥ 1

concludes that if (5.41) holds then ni ≥ n̄i. Finally, we have by (5.41), (niκiγi)−1 ≤
η2κiσi/(196√miK), which gives with κi ≥ mi,

N̄i ≤ 2(κiγi)−1 log
{64αi

196 Kd
2(1 +mσ2

i )−3/2
}

≤ 2(κiγi)−1 log
(
5Kd2

)
,

which concludes that (5.42) implies (5.111).

The same reasoning applies to check condition-ii) of Lemma 5.9. The details are
gathered in the appendix Section 5.A.1.

Proof of Theorems 5.5 and 5.6 and Corollary 5.7

For i ∈ {0, . . . ,M − 1}, set γi, ni, Ni such that (5.40), (5.41), (5.42), (5.43), (5.44) and
(5.45) are equalities. By (5.18), we consider the following decomposition for the cost =
A + B where A =

∑M−2
i=0 {Ni + ni} and B = nM−1 + NM−1. We bound A and B

separately.

First Lemma 5.23-6 implies that for all i ∈ {0, . . . ,M − 2}, ni ≤ (196K)/(η2κiγi)
and therefore using Lemma 5.23-7

A ≤
(196K

η2 + 2 log(5Kd2)
) 2285K2d2

η2

(
m+ L

2m

)3
(M − 1) . (5.114)

We now give a bound on M − 1. Define

Kint = sup
{
k ≥ 1 : m2kσ2

0 ≤ 1
}
∧K ≤

⌊
− log(mσ2

0)
log(2)

⌋
. (5.115)

By Lemma 5.23-2 and (5.37), we have

M − 1
4(d+ 4) =

K−1∑
k=0

|Ik|
4(d+ 4) ≤ Kint + 2 . (5.116)
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Note that Kint ≤ K ≤ C by (5.115) and Lemma 5.23-1. Combining (5.114), Lemma 5.23-
7 and (5.116), we get

M−2∑
i=0

Ni + ni ≤
(98K
η2 + log(5Kd2)

) 4570K2d2

η2

(
m+ L

2m

)3
4(d+ 4)(C + 2) . (5.117)

Regarding the term i = M − 1, we have

nM−1 +NM−1 ≤
(19
η2 + 1

) 40
η2
m+ L

2m
L

m
. (5.118)

Replacing η by (ε√µ)/8 and combining (5.117) and (5.118) gives (5.28).
Assume H12. We now prove Theorem 5.6 and use Lemma 5.11 instead of Lemma 5.10.

For i ∈ {0, . . . ,M − 1}, set γi, ni, Ni such that (5.46), (5.41), (5.42), (5.47), (5.44)
and (5.45) are equalities. By (5.18), we have the decomposition cost = A + B where
A =

∑M−2
i=0 {Ni + ni} and B = nM−1 + NM−1. Lemma 5.23-6 implies that for all

i ∈ {0, . . . ,M − 2}, ni ≤ (196K)/(η2κiγi), and using that for a, b ≥ 0,
√
a+ b ≤

√
a+
√
b,

we have

A ≤
(196K

η2 + 2 log(5Kd2)
)√7

3
8Kd
η

M−2∑
i=0

d1/2L̃+
√

10L2
im
−1/2
i

κ2
iσ

2
im

1/2
i

.

Then, by Lemma 5.23-2 and Lemma 5.23-8, and splitting the sum in two parts k ≤ Kint
and k > Kint,

M−2∑
i=0

1
κ2
iσ

2
im

1/2
i

≤
K−1∑
k=0

∑
i∈Ik

(2k+1σ2
0)3/2

(1 +m2kσ2
0)5/2

≤ 4(d+ 4) 23/2

m3/2

K−1∑
k=0

(m2kσ2
0)3/2

(1 +m2kσ2
0)7/2

≤ 4(d+ 4) 23/2

m3/2

Kint +
K−1∑

k=Kint+1
(m2kσ2

0)−2


≤ 4(d+ 4) 23/2

m3/2

(
Kint + 4

3

)
.

We have similarly by Lemma 5.23-2 and Lemma 5.23-8,

M−2∑
i=0

L2
im
−1/2
i

κ2
iσ

2
im

1/2
i

≤ 4(d+ 4)
(
m+ L

2m

)2
(Kint + 2) .

Combining these inequalities with

nM−1 +NM−1 ≤
(19
η2 + 1

)√7
3

4
η

{
d1/2L̃

m3/2 +
√

10
(
m+ L

2m

)2
}
, (5.119)

and replacing η by (ε√µ)/8 establish (5.30).
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Proof of Corollary 5.7. Let N =
⌈
4 log(µ̃−1)

⌉
and (Ẑi)i∈{1,...,2N+1} be 2N + 1 indepen-

dent outputs of the algorithms of Theorems 5.5 and 5.6 with µ = 1/4, sorted by increas-
ing order. Denote by Ẑ = ẐN+1 the median of (Ẑi)i∈{1,...,2N+1}. In addition, define the
independent Bernoulli random variables (Wi)i∈{1,...,2N+1} by

Wi = 1Ai , where Ai =
{∣∣∣Ẑi/Z − 1

∣∣∣ ≥ ε} .

Since Ẑ is the median of (Ẑi)i∈{1,...,2N+1}, we have

P
(∣∣∣Ẑ/Z − 1

∣∣∣ > ε
)
≤ P

(2N+1∑
i=1

Wi ≥ N + 1
)
.

In addition since P(Wi = 1) ≤ 1/4, we have by [PS76, Corollary 5.2]

P
(2N+1∑

i=1
Wi ≥ N + 1

)
≤ P

(2N+1∑
i=1

W̃i ≥ N + 1
)
,

where (W̃i)i∈{1,...,2N+1} are i.i.d. Bernoulli random variables with parameter 1/4. Then
by Hoeffding’s inequality [BLM13, Theorem 2.8] and using for all t ≥ 1, 8(t/2 +
3/4)2/{t(2t+ 1)} ≥ 1, we get

P
(2N+1∑

i=1
W̃i ≥ N + 1

)
≤ P

(2N+1∑
i=1

W̃i − (1/4)(2N + 1) ≥ N/2 + 3/4
)

≤ exp
(
−2(N/2 + 3/4)2

2N + 1

)
≤ exp(−N/4) ,

which concludes the proof.
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5.A Additional proofs of Section 5.2.1

5.A.1 Proof of Lemma 5.10

In this Section, the proof for the case i = M − 1 of Lemma 5.10 is dealt with. Note that
aM−1 = (2σ2

M−1)−1. By Propositions 5.2 and 5.4, to check condition-ii) of Lemma 5.9,
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it is then sufficient for γM−1, nM−1, NM−1 to satisfy,

4d
nM−1mM−1κM−1γM−1

exp
(
−NM−1

κM−1γM−1
2

)
+ 2κ−1

M−1

(
AM−1,0γM−1 +AM−1,1γ

2
M−1

)
≤

η2σ4
M−1

CM−1,2 + CM−1,0CM−1,1
, (5.120)

8CM−1,0CM−1,1
κ2
M−1nM−1γM−1

(
1 + 2

κM−1nM−1γM−1

)
≤ σ4

M−1η
2 . (5.121)

Then (5.120) and (5.121) are satisfied if,

2L2
M−1κ

−1
M−1dγM−1 + 4dL4

M−1κ
−1
M−1m

−1
M−1γ

2
M−1 ≤

η2

4
κM−1mM−1σ

4
M−1

αM−1d
, (5.122)

1
nM−1

(
1 + 2

κM−1nM−1γM−1

)
≤
η2σ4

M−1κ
3
M−1γM−1

8βM−1d
, (5.123)

− 2(κM−1γM−1)−1 log
(
η2σ4

M−1m
2
M−1nM−1κM−1γM−1

8αM−1d2

)
= N̄M−1 ≤ NM−1 . (5.124)

Denote by γ̄M−1 and n̄−1
M−1 the positive roots associated to (5.122) and (5.123) seen as

equalities. We have:

γ̄M−1 = 4−1L−2
M−1mM−1

−1 +

√
1 +

η2κ2
M−1σ

4
M−1

αM−1d2

 , (5.125)

n̄−1
M−1 = 4−1κM−1γM−1

−1 +

√
1 +

η2κ2
M−1σ

4
M−1

βM−1d

 . (5.126)

Note that for (5.122) and (5.123) to hold, it suffices that γM−1 ≤ γ̄M−1 and nM−1 ≥
n̄M−1. We now lower bound γ̄M−1 and upper bound n̄M−1.

Using that t ≥ 0,
√

1 + t ≥ 1 + 2−1t(1 + t)−1/2 for t = (η2κ2
M−1σ

4
M−1)/(αM−1d

2) and
κM−1σ

2
M−1d

−1 ≥ 2, αM−1 ≥ 4 concludes that if (5.43) holds then γM−1 ≤ γ̄M−1. The
fact that γM−1 ≤ (mM−1 + LM−1)−1 can be checked by simple algebra.

Then using that
√

1 + t ≥ 1 + 2−1t(1 + t)−1/2 for t = (η2κ2
M−1σ

4
M−1)/(βM−1d) and

κM−1σ
2
M−1 ≥ 10, βM−1 ≥ 1 concludes that if (5.44) holds then nM−1 ≥ n̄M−1. Finally,

by (5.44), we get
N̄M−1 ≤ (κM−1γM−1)−1 log(7/3) ,

which concludes that (5.45) implies (5.124).

5.A.2 Proof of Lemma 5.11

Let k ∈ {0, . . . ,K − 1} and i ∈ Ik. Assume that γi ≤ (mi + Li)−1. The proof of
Lemma 5.10 only needs to be slightly adapted. More precisely, Proposition 5.3 is applied
instead of Proposition 5.2. By (5.26) and (5.27), we have

Bi,0 ≤ 3−1dκ−1
i (dL̃2 + 10L4

im
−1
i ) , Bi,1 ≤ (25/12)dL4

im
−1
i . (5.127)
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It is sufficient for γi, ni, Ni to satisfy (5.107) and (5.108) with Ai,0γi + Ai,1γ
2
i replaced

by Bi,0γ
2
i +Bi,1γ

3
i . The counterpart of (5.109) is then

1
3κi

(
dL̃2 + 10L4

im
−1
i

)
γ2
i + 25

12L
4
im
−1
i γ3

i ≤
η2κimiσ

4
i

16K2αid2 . (5.128)

Since γi ≤ 1/(mi + Li) and κi ≤ Li, we have

(3κi)−1
(
dL̃2 + 10L4

im
−1
i

)
≥ (25/12)L4

im
−1
i γi ,

which establishes that if (5.46) holds, then (5.128) is satisfied. γi ≤ (mi + Li)−1 can be
checked by simple algebra. For i = M−1, the conclusion follows from mM−1σ

2
M−1d

−1 ≥
2 because σ2

M−1 ≥ (2d+ 7)/m.

5.B Additional proofs of Section 5.2.2

First, we state a technical lemma that gathers useful bounds. We recall that M is defined
in this Section by (5.56),

M = inf
{
i ≥ 1 : σ2

i−1 ≥ D2
}
.

Lemma 5.24. Assume H10 and H11(m) for m ≥ 0. Let {σ2
i }
M−1
i=0 defined by (5.54)

for σ2
0 given in (5.31) and M in (5.56).

1. K ≤
⌈
(1/ log(2)) log

(
σ−2

0 ρ−2d2(τ + 1)2
)⌉

where K is defined in (5.39).

2. For k ∈ {0, . . . ,K − 1} and i ∈ Ik, 2k+1σ2
0ai |Ik| ≤ 1 where ai is defined in (5.37)

(with m = 0) and Ik in (5.38). As a consequence, |Ik| ≤ 4(d+ 4).

3. For i ∈ {0, . . . ,M − 1}, κiσ2
i ∈ [1, 2].

4. σ2
M−1 ∈

[
D2, (10/9)D2].

5. For all i ∈ {0, . . . ,M − 1} and γi ≤ 1/(mi + Li), there exist αi ∈ [4, 14] and βi ∈
[1, 10] such that Ci,2+Ci,0Ci,1 = αidm

−1
i and Ci,0Ci,1 = βidκ

−1
i where Ci,0, Ci,1, Ci,2

and κi are given in (5.23) and (5.14) respectively.

6. For all i ∈ {0, . . . ,M −1}, 0 < Ai,1 ≤ 4dL4
iκ
−1
i m−1

i , where Li,mi and κi are given
in (5.13) and (5.14) respectively.

Proof. The proofs of 1,2,5,6 are identical to the ones of Lemma 5.23.

3. κiσ
2
i = (2Li)/(mi + Li).

4. By definition of M , σ2
M−2 ≤ D2 and aM−2 ≤ σ−2

M−2/{4(d+ 4)}. By (5.6), we get:

σ−2
M−1 = σ−2

M−2 − 2aM−2 ≥ σ−2
M−2

(
1− 1

2(d+ 4)

)
that is σ2

M−1 ≤ (10/9)σ2
M−2 ≤ (10/9)D2.
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5.B.1 Proof of Lemma 5.15

Let k ∈ {0, . . . ,K − 1} and i ∈ Ik. Assume that γi ≤ (mi+Li)−1. The proof follows the
same lines as the one in Section 5.5.3. By Lemma 5.24-5 and Lemma 5.24-6, to check
condition-i) of Lemma 5.9, it suffices that γi ≤ γ̄i, ni ≥ n̄i and Ni satisfies (5.111), where
γ̄i is defined in (5.112) and n̄i in (5.113).

Using that
√

1 + t ≥ 1+2−1t(1+t)−1/2 for t = (η2κ2
iσ

4
i )/(4αiK2d2) and by Lemma 5.24-

3, concludes that if (5.57) holds then γi ≤ γ̄i. γi ≤ (mi+Li)−1 can be checked by simple
algebra.

By (5.37) (with m = 0) and the definition of Ik, ai ≤ σ−2
i /{4(d+ 4)},

n̄−1
i ≥ 4−1κiγi

−1 +

√
1 + η2κ2

iσ
4
i (d+ 4)

Kβid

 .

Using that
√

1 + t ≥ 1+2−1t(1+t)−1/2 for t = (η2κ2
iσ

4
i )/(4αiK2d2) and by Lemma 5.24-

3, concludes that if (5.58) holds then ni ≥ n̄i. Finally, by (5.58), if (5.59) holds, (5.111)
is satisfied.

The case i = M−1 is different because ḡM−1 is Lipschitz. Assume γM−1 ≤ (mM−1 +
LM−1)−1. [DM16, section 2.1] entails that condition-ii) of Lemma 5.9 is satisfied if

Lip ḡM−1
2
{ 4d
nM−1mM−1κM−1γM−1

exp
(
−NM−1

κM−1γM−1
2

)
+2κ−1

M−1

(
AM−1,0γM−1 +AM−1,1γ

2
M−1

)}
≤ η2 , (5.129)

8 Lip ḡM−1
2

κ2
M−1nM−1γM−1

{
1 + 2

nM−1κM−1γM−1

}
≤ η2 .

Using Lip ḡM−1
2 ≤ (σ−2

M−1e) and (5.24), Lemma 5.24-6 for i = M − 1, it is sufficient for
γM−1, nM−1, nM−1 to satisfy

2L2
M−1κ

−1
M−1dγM−1 + 4dL4

M−1κ
−1
M−1m

−1
M−1γ

2
M−1 ≤ (4e)−1κM−1η

2σ2
M−1 , (5.130)

n−1
M−1

(
1 + 2(κM−1γM−1nM−1)−1

)
≤
η2κ2

M−1σ
2
Mc−1γM−1

8e , (5.131)

−2log
(
(8ed)−1nM−1κM−1γM−1η

2)
κM−1γM−1

= N̄M−1 ≤ NM−1 . (5.132)

Denote by γ̄M−1, n̄
−1
M−1 the roots of (5.130), (5.131) seen as equalities. We have

γ̄M−1 = 4−1L−2
M−1σ

−2
Mc−1

−1 +

√
1 +

η2κ2
M−1σ

4
M−1

ed

 , (5.133)

n̄−1
M−1 = 4−1κM−1γM−1

{
−1 +

√
1 + e−1η2κM−1σ2

M−1

}
. (5.134)
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Using that
√

1 + t ≥ 1+2−1t(1+t)−1/2 for t = (η2κ2
M−1σ

4
M−1)/(ed) and by Lemma 5.24-

3, concludes that if (5.60) holds then γM−1 ≤ γ̄M−1. γM−1 ≤ (mM−1 +LM−1)−1 can be
checked by simple algebra.

Using that
√

1 + t ≥ 1+2−1t(1+t)−1/2 for t = e−1η2κM−1σ
2
M−1 and by Lemma 5.24-

3, concludes that if (5.61) holds then nM−1 ≥ n̄M−1.

Finally by (5.61), if (5.62) holds, (5.132) is satisfied.

5.B.2 Proof of Lemma 5.16

The proof is identical to the one of Lemma 5.11. For k ∈ {0, . . . ,K − 1} and i ∈ Ik, it
is sufficient for γi to satisfy (5.63) by (5.46) and Lemma 5.24-3.

Regarding the case i = M − 1, assuming that γM−1 ≤ (mM−1 + LM−1)−1, it is
sufficient for γM−1, nM−1, NM−1 to satisfy (5.129) with AM−1,0γM−1 + AM−1,1γ

2
M−1

replaced by BM−1,0γ
2
M−1 +BM−1,1γ

3
M−1. The counterpart of (5.130) is then,

1
3κM−1

(
dL̃2 + 10L4

M−1m
−1
M−1

)
γ2
M−1 + 25

12
L4
M−1

mM−1
γ3
M−1 ≤

η2κM−1σ
2
M−1

4ed .

This concludes the proof with the same argument as in Section 5.A.2.

5.B.3 Proof of Theorems 5.12 and 5.13 and corollary 5.14

For i ∈ {0, . . . ,M − 1}, set γi, ni, Ni such that (5.57), (5.58), (5.59), (5.60), (5.61) and
(5.62) are equalities. By (5.18), we have

cost =
(453K

η2 + 2 log(Kd2)
) 462K2d2

η2

M−2∑
i=0

κ−1
i L2

iσ
2
i + nM−1 +NM−1 .

Note that for i ∈ {0, . . . ,M − 2},

κ−1
i L2

iσ
2
i = 1 + (3/2)Lσ2

i + (L2/2)σ4
i .

By Lemma 5.24-2, for k ∈ {0, . . . ,K − 1}, |Ik| ≤ 4(d + 4) and for i ∈ Ik, σ2
i ≤ 2k+1σ2

0.
We then have

M−2∑
i=0

L2
iσ

2
i

κi
≤ 4(d+ 4)

K−1∑
k=0

{
1 + 3L

2 2k+1σ2
0 + L2

2 (2k+1σ2
0)2
}

≤ 4(d+ 4)
{
K + 3L(2Kσ2

0) + 2L2

3 (2Kσ2
0)2
}
.

By (5.56) and the definition ofK, (5.39), 2Kσ2
0 ≤ 2D2. The expressions of γM−1, nM−1, NM−1

give

nM−1 +NM−1 =
(29
η2 + 2 log(d)

) 26d
η2 κ

−2
M−1L

2
M−1 ,
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with κ−2
M−1L

2
M−1 = (1 + 2−1Lσ2

M−1)2. By Lemma 5.24-4, we then have

nM−1 +NM−1 ≤
(29
η2 + 2 log(d)

) 26d
η2

(
1 + 5L

9 D2
)2

, (5.135)

and (5.51) is established.
Assume H12. We now prove Theorem 5.13 and use Lemma 5.11 instead of Lemma 5.10.

For i ∈ {0, . . . ,M − 1}, set γi, ni, Ni such that (5.63), (5.58), (5.59), (5.64), (5.61) and
(5.62) are equalities. By (5.18) and using that for a, b ≥ 0,

√
a+ b ≤

√
a+
√
b, we have

cost ≤
(453K

η2 + 2 log(Kd2)
)√7

3
8Kd
η

M−2∑
i=0

σi
κi

(
d1/2L̃+

√
10L2

iσi
)

+ nM−1 +NM−1 .

For k ∈ {0, . . . ,K − 1} and i ∈ Ik, note that

κ−1
i σi ≤ σ3

i , κ−1
i σ2

i L
2
i = 1 + 3L

2 σ2
i + L2

2 σ4
i .

Using for k ∈ {0, . . . ,K − 1}, |Ik| ≤ 4(d + 4) by Lemma 5.24-2 and for i ∈ Ik, σ2
i ≤

2k+1σ2
0, we get

M−2∑
i=0

σi
κi

(
d1/2L̃+

√
10L2

iσi
)
≤ 4(d+ 4)

K−1∑
k=0

{
d1/2L̃(2k+1σ2

0)3/2

+
√

10
(

1 + 3L
2 (2k+1σ2

0) + L2

2 (2k+1σ2
0)2
)}

≤ 4(d+ 4)
{

5d1/2L̃D3 +
√

10
(
K + 6LD2 + 8L2

3 D4
)}

,

with 2Kσ2
0 ≤ 2D2. The expressions of γM−1, nM−1, NM−1 give

nM−1 +NM−1 ≤
(

2 log(d) + 29
η2

)√8e
3

√
d

η

d1/2L̃+
√

10L2
M−1σM−1

κ2
M−1σM−1

.

By Lemma 5.24-4, σ2
M−1 ∈

[
D2, (10/9)D2]. We get then

κ−2
M−1σ

−1
M−1 =

(
1 + (L/2)σ2

M−1

)2

L2σM−1
≤ 1
DL2

(
1 + 5L

9 D2
)2

,

and,

κ−2
M−1L

2
M−1 =

(
1 + L

2 σ
2
M−1

)2
≤
(

1 + 5L
9 D2

)2
,

which gives,

nM−1 +NM−1 ≤
(

2 log(d) + 29
η2

)√8e
3

√
d

η

(
1 + 5L

9 D2
)2
(
d1/2L̃

DL2 +
√

10
)
. (5.136)

(5.53) is established. The proof of Corollary 5.14 is the same as the one of Corollary 5.7.
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Diffusion approximations and
control variates for MCMC
Nicolas Brosse 1, Alain Durmus 2, Sean Meyn 3 and Éric Moulines 1

Abstract

A new methodology is presented for the construction of control variates to reduce the
variance of additive functionals of Markov Chain Monte Carlo (MCMC) samplers. Our
control variates are defined as linear combinations of functions whose coefficients are
obtained by minimizing a proxy for the asymptotic variance. The construction is the-
oretically justified by two new results. We first show that the asymptotic variances
of some well-known MCMC algorithms, including the Random Walk Metropolis and
the (Metropolis) Unadjusted/Adjusted Langevin Algorithm, are close to the asymptotic
variance of the Langevin diffusion. Second, we provide an explicit representation of
the optimal coefficients minimizing the asymptotic variance of the Langevin diffusion.
Several examples of Bayesian inference problems demonstrate that the corresponding
reduction in the variance is significant, and that in some cases it can be dramatic.

6.1 Introduction

Let U : Rd → R be a measurable function on (Rd,B(Rd)) such that
∫
Rd e−U(x)dx < ∞.

This function is associated to a probability measure π on (Rd,B(Rd)) defined for all A ∈
B(Rd) by π(A) def=

∫
A e−U(x)dx/

∫
Rd e−U(x)dx. We are interested in approximating π(f) def=∫

f(x)π(dx), where f is a π-integrable function. The classical Monte Carlo solution to
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this problem is to simulate i.i.d. random variables (Xk)k∈N with distribution π, and then
to estimate π(f) by the sample mean

π̂n(f) = n−1
n−1∑
i=0

f(Xi) . (6.1)

In most applications, sampling from π is not an option. Markov Chain Monte Carlo
(MCMC) methods amount to sample a Markov chain (Xk)k∈N from a Markov kernel
R with (unique) invariant distribution π. Under weak additional conditions [MT09,
Chapter 17], the estimator π̂n(f) defined by (6.1) satisfies for any initial distribution a
Central Limit Theorem (CLT)

n−1/2
n−1∑
k=0

(f(Xk)−π(f)) weakly=⇒
n→+∞

N (0, σ2
∞,d(f)) , σ2

∞,d(f) = π
(
(f̂d)2 − (Rf̂d)2

)
, (6.2)

where N (m,σ2) denotes a Gaussian distribution with mean m and variance σ2, and f̂d
is a solution of the Poisson equation

(R− Id)f̂d = −{f − π(f)} . (6.3)

Reducing the variance of Monte Carlo estimators is a very active research domain:
see e.g. [RC04, Chapter 4], [Liu08, Section 2.3], and [RK17, Chapter 5] for an overview
of the main methods. In this paper, we use control variates, i.e. π-integrable functions
h = (h1, . . . , hp) : Rd → Rp satisfying π(hi) = 0 for i ∈ {1, . . . , p} and then choose
θ ∈ Rp such that σ2

∞,d(f + θTh) ≤ σ2
∞,d(f). [Hen97] and [Mey08, Section 11.5] proposed

control variates of the form (R− Id)θTψ where ψ = (ψ1, . . . , ψp) are known π-integrable
functions. The parameter θ ∈ Rp is obtained by minimizing the asymptotic variance

min
θ∈Rp

σ2
∞,d(f + (R− Id)θTψ) = min

θ∈Rp
π

({
f̂d − θTψ

}2
−
{
R(f̂d − θTψ)

}2
)
, (6.4)

noting that (−θTψ) is a solution of the Poisson equation associated to (R − Id)θTψ
and f̂d is defined in (6.3). The method suggested in [Mey08, Section 11.5] to minimize
(6.4) requires estimates of the solution f̂d of the Poisson equation. Temporal Differ-
ence learning is a possible candidate, but this method is complex and suffers from high
variance.

[DK12] noticed that if R is reversible w.r.t. π, it is possible to optimize the limiting
variance (6.4) without computing explicitly the Poisson solution f̂d. Reversibility will
play an important role in this paper as well.

Each of the algorithms in the aforementioned literature requires computation of Rψi
for each i ∈ {1, . . . , p}, which is in general a computational challenge. In [Hen97; Mey08]
this is addressed by restricting to kernels for which R(x, · ) has finite support for each x,
and in [DK12] the authors restrict mainly to Gibbs samplers in their numerical examples.

In this paper an alternative class of control variates is used to avoid this compu-
tational barrier. This approach follows [AC99] (applications to quantum Monte Carlo
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calculations) and [MSI13; PMG14] (Bayesian statistics): assume that U is continuously
differentiable, and for any twice continuously differentiable function ϕ, define Lϕ by

Lϕ = −〈∇U,∇ϕ〉+ ∆ϕ . (6.5)

Under mild conditions on ϕ, it may be shown that π(Lϕ) = 0. [MSI13] suggested
to use L (θTψ) with ψ = (ψ1, . . . , ψp) as control variates and choose θ by minimizing
θ 7→ π({f−π(f)+L θTψ}2). This approach has triggered numerous work, among others
[OGC16], [OG16] and [Oat+18] which introduce control functionals; a nonparametric
extension of control variates. A drawback of this method stems from the fact that the
optimization criterion π({f − π(f) + L θTψ}2) is only theoretically justified if (Xk)k∈N
is i.i.d. and might significantly differ from the asymptotic variance σ2

∞,d(f + L (θTψ))
defined in (6.1).

In this paper, we propose a new method to construct control variates. Analysis and
motivation are based on the overdamped Langevin diffusion defined for t ≥ 0 by

dYt = −∇U(Yt)dt+
√

2dBt , (6.6)

where (Bt)t≥0 is a d-dimensional Brownian motion. If ∇U is Lipschitz, the Stochastic
Differential Equation (SDE) (6.6) has a unique strong solution (Yt)t≥0 for every initial
condition x ∈ Rd. Denote by (Pt)t≥0 the semigroup associated to the SDE (6.6) defined
by Ptf(x) = E [f(Yt)] where f is bounded measurable and (Yt)t≥0 is a solution of (6.6)
started at x. Under mild additional conditions (see e.g. [RT96]), π is invariant for the
semigroup (Pt)t≥0, i.e. πPt = π for all t ≥ 0. In addition, under smoothness and ‘tail’
conditions on f and ∇U , the following CLT holds for any initial condition (see [Bha82;
CCG12])

t−1/2
∫ t

0
{f(Ys)− π(f)}ds weakly=⇒

t→+∞
N (0, σ2

∞(f)) , σ2
∞(f) = 2π

(
f̂{f − π(f)}

)
, (6.7)

where f̂ : Rd → R is a solution of the (continuous-time) Poisson equation

L f̂ = −{f − π(f)} . (6.8)

The main contribution of this paper is the introduction of a new class of control
variates based on the expression of the asymptotic variance σ2

∞(f) given in (6.7). Since
π(L (θTψ)) = 0 for any θ ∈ Rd, we consider the control variate L (θ∗(f)Tψ) where θ∗(f)
is chosen by minimizing

θ 7→ σ2
∞(f + L (θTψ)) . (6.9)

Although L (θ∗(f)Tψ) is a control variate for the Langevin diffusion associated with f ,
the choice of this optimization criterion is motivated by the fact that for some MCMC
algorithms, the asymptotic variance σ2

∞,d(f) defined in (6.2) is (up to a scaling factor) a

good approximation of the asymptotic variance of the Langevin diffusion σ2
∞(f) defined

in (6.7). Moreover, the minimization of (6.9) admits a unique solution θ∗(f), which is
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in general easy to estimate. It is worthwhile to note that it is not required to know the
Poisson solution f̂ to minimize (6.9).

The construction of control variates for MCMC and the related problem of approxi-
mating solutions of Poisson equations are very active fields of research. It is impossible
to give credit for all the contributions undertaken in this area; see [DK12], [PMG14] and
references therein for further background.

Amongst recent studies on this subject, [MV15] approximate directly the solution
f̂d of the Poisson equation by subdividing the state space. Close to the methodology
presented in the present paper, [MV17] uses the scaling limit of the RWM algorithm when
the dimension d of the state space Rd goes to infinity to implement a control variates
based on a solution of the Poisson equation for the Langevin diffusion. This approach
uses a strong assumption on the stationary distribution which is assumed to be in product
form. It is difficult to predict the performance of this methodology when this assumption
is not met. Based on [LS16, Section 3.4.2], [RS17] addresses the control variates design
for diffusions with possibly unknown invariant probability measures. Concerning the link
between σ2

∞,d(f) and σ2
∞(f), an analogous result associated to the error estimates for

the Green-Kubo formula can be found in [LS16, Theorem 5.6]. It was initially derived in
[LMS16]. An analogous study [DPZ17] uses the comparison between the discrete Markov
chain and the Langevin diffusion limit. Note that in this paper, we explicit check the
assumptions introduced to prove the geometric ergodicity of the Markov chain on Rd.

The remainder of the paper is organized as follows. In Section 6.2, we present our
methodology to compute the minimizer θ∗(f) of (6.9) and the construction of control
variates for some MCMC algorithms. In Section 6.3, we state our main result which
guarantees that the asymptotic variance σ2

∞,d(f) defined in (6.2) and associated with
a given MCMC method is close (up to a scaling factor) to the asymptotic variance of
the Langevin diffusion σ2

∞(f) defined in (6.7). We provide a CLT and we show that
under appropriate conditions on U , the Unadjusted Langevin Algorithm (ULA) fits the
framework of our methodology. In Section 6.4, a Monte Carlo experiment illustrating
the performance of our method is presented. In Section 6.5, we establish conditions
under which the results of Sections 6.2 and 6.3 can be applied to the Random Walk
Metropolis (RWM) and the Metropolis Adjusted Langevin Algorithm (MALA). The
proofs are postponed to Section 6.6 and to the Appendix.

Notation

Let B(Rd) denote the Borel σ-field of Rd. Moreover, let L1(µ) be the set of µ-integrable
functions for µ a probability measure on (Rd,B(Rd)). Further, µ(f) =

∫
Rd f(x)dµ(x) for

an f ∈ L1(µ). Given a Markov kernel R on Rd, for all x ∈ Rd and f integrable under
R(x, ·), denote by Rf(x) =

∫
Rd f(y)R(x,dy). Let V : Rd → [1,∞) be a measurable

function. The V -total variation distance between two probability measures µ and ν on
(Rd,B(Rd)) is defined as ‖µ − ν‖V = sup|f |≤V |µ(f)− ν(f)|. If V = 1, then ‖ · ‖V is

the total variation denoted by ‖ · ‖TV. For a measurable function f : Rd → R, define
‖f‖V = supx∈Rd |f(x)| /V (x).
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For u, v ∈ Rd, define the scalar product 〈u, v〉 =
∑d
i=1 uivi and the Euclidian norm

‖u‖ = 〈u, u〉1/2. Denote by S(Rd) =
{
u ∈ Rd : ‖u‖ = 1

}
. For a, b ∈ R, denote by

a ∨ b = max(a, b), a ∧ b = min(a, b) and a+ = a ∨ 0. For a ∈ R+, bac and dae denote
respectively the floor and ceil functions evaluated in a. We take the convention that
for n, p ∈ N, n < p then

∑n
p = 0,

∏n
p = 1 and {p, . . . , n} = ∅. Define for t ∈ R,

Φ(t) = (2π)−1/2 ∫ t
−∞ e−r2/2dr and Φ̄(t) = 1− Φ(t).

For k ∈ N, m,m′ ∈ N∗ and Ω,Ω′ two open sets of Rm,Rm′ respectively, denote by
Ck(Ω,Ω′), the set of k-times continuously differentiable functions. For f ∈ C2(Rd,R), de-
note by∇f the gradient of f and by ∆f the Laplacian of f . For k ∈ N and f ∈ Ck(Rd,R),
denote by Di f the i-th order differential of f for i ∈ {0, . . . , k}. For x ∈ Rd and i ∈
{1, . . . , k}, define

∥∥∥D0 f(x)
∥∥∥ = |f(x)|,

∥∥∥Di f(x)
∥∥∥ = supu1,...,ui∈S(Rd) Di f(x)[u1, . . . , ui].

For k, p ∈ N and f ∈ Ck(Rd,R), define the norm

‖f‖k,p = sup
x∈Rd, i∈{0,...,k}

∥∥∥Di f(x)
∥∥∥ /(1 + ‖x‖p) ,

and Ck
poly(Rd,R) =

{
f ∈ Ck(Rd,R) : infp∈N ‖f‖k,p < +∞

}
.

6.2 Langevin-based control variates for MCMC methods

Before introducing our new methodology based on the Langevin diffusion (6.6), we need
to briefly recall some of its properties; this requires ‘tail’ and regularity assumptions on
U . Let k ≥ 2.

H13 (k). U ∈ Ck
poly(Rd,R) and there exist υ > 0 and Mυ ≥ 0 such that for all x ∈ Rd,

‖x‖ ≥Mυ, 〈∇U(x), x〉 ≥ υ ‖x‖.

Proposition 6.1. Assume H13(k) for k ≥ 2.

(i) The semigroup (Pt)t≥0 associated to (6.6) admits π as its unique invariant proba-
bility measure and for all p ∈ N,

∫
Rd ‖x‖

p π(dx) < +∞.

(ii) For any initial condition Y0 and f ∈ Cpoly(Rd,R), the solution (Yt)t≥0 of the
Langevin diffusion (6.6) satisfies the CLT (6.7).

(iii) For all f ∈ Ck−1
poly(Rd,R), there exists f̂ ∈ Ck

poly(Rd,R) such that L f̂ = π(f) − f ,
where L is the generator of the Langevin diffusion defined in (6.5). For all p ∈ N,
there exist C ≥ 0, q ∈ N such that for all f ∈ Ck−1

poly(Rd,R), ‖f̂‖k,q ≤ C‖f‖k−1,p.

(iv) For all f, g ∈ C2
poly(Rd,R),

π (f(−L )g) = π (g(−L )f) = π (〈∇f,∇g〉) . (6.10)

Proof. All these results are classical. A sketch of proof together with relevant references
is postponed to Section 6.C.1.



144 6.2. Langevin-based control variates for MCMC methods

Proposition 6.1-(iii) ensures the existence and regularity of a solution of the Poisson
equation (6.8) for any f ∈ Ck−1

poly(Rd,R) and k ∈ N, k ≥ 2. Proposition 6.1-(iv) is
a classical “carré du champ” identity, see for example [BGL14, Section 1.6.2, formula
1.6.3]. It means in particular that the generator L is (formally) self-adjoint in L2(π)
which plays a key role in the construction of our control variates.

A straightforward consequence of (6.10) (setting f = 1) is that for any function
g ∈ C2

poly(Rd,R), π(L g) = 0. This suggests taking as a class of control variates for π

the family of functions {L (θTψ) : θ ∈ Rp}, where ψ = (ψ1, . . . , ψp) : Rd → Rp, p ∈ N∗,
is a fixed sieve of functions such that for all i ∈ {1, . . . , p}, ψi ∈ C2

poly(Rd,R). Let

f ∈ Cpoly(Rd,R); by Proposition 6.1-(ii), for all θ ∈ Rp,

t−1/2
∫ t

0
{(f + L (θTψ))(Ys)− π(f)}ds weakly=⇒

t→+∞
N (0, σ2

∞(f + L (θTψ))) ,

and an appropriate choice for the parameter θ ∈ Rp is given by a minimizer of θ 7→
σ2
∞(f + L (θTψ)) defined in (6.7). We now show that this minimization problem has a

unique solution which can be computed explicitly.
By Proposition 6.1-(iii), for any f ∈ C1

poly(Rd,R), the Poisson equation L f̂ = −{f−
π(f)} has a solution f̂ ∈ C2

poly(Rd,R). Then, for all θ ∈ Rp, f̂θ = f̂−θTψ ∈ C2
poly(Rd,R)

is a solution of the Poisson equation L f̂θ = −{fθ − π(fθ)}, where fθ = f + L (θTψ).
Using the expression (6.7) of the asymptotic variance and π(L (θTψ)) = 0, we get for
all θ ∈ Rp

σ2
∞(fθ) = 2π

(
(f̂ − θTψ)

{
f − π(f) + L (θTψ)

})
. (6.11)

Now by Proposition 6.1-(iv) and since L f̂ = π(f)− f , we obtain

π(f̂Lψ) = π({π(f)− f}ψ) .

Plugging this identity in (6.11) and using Proposition 6.1-(iv) imply for all θ ∈ Rp,

σ2
∞(f + L (θTψ)) = 2θTHθ − 4θTπ (ψ {f − π(f)}) + 2π

(
f̂ {f − π(f)}

)
,

where H ∈ Rp×p is given for any i, j ∈ {1, . . . , p} by

Hij = π(〈∇ψi,∇ψj〉) . (6.12)

Therefore, θ 7→ σ2
∞(f + L (θTψ)) is a quadratic function and has a unique minimizer if

and only if H is symmetric positive definite and this minimizer is given by

θ∗(f) = H−1π (ψ{f − π(f)}) . (6.13)

Note that H is by definition a symmetric semi-positive definite matrix. It is easily
seen that if (1, ψ1, . . . , ψp) is linearly independent in C(Rd,R), then H is full rank and
the minimizer of σ2

∞(f + L (θTψ)) is given by (6.13).
To sum up, constructing control variates of the form L (θTψ) for the Langevin dif-

fusion is straightforward and the optimal parameter θ∗(f) minimizing the asymptotic
variance has an explicit expression (6.13) that does not involve the (usually unknown)
solution f̂ of the Poisson equation L f̂ = π(f)− f .
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Implications for MCMC The continuous-time setting has mainly theoretical inter-
est. The main contribution of this paper is to show that the optimal control variate for
the diffusion remains nearly optimal for many classes of discrete-time MCMC algorithms.

One example is the Markov kernel associated with the Unadjusted Langevin Algo-
rithm (ULA). A diffusion approximation is to be expected since the ULA algorithm
is the Euler discretization scheme associated to the Langevin SDE (6.6): Xk+1 =
Xk − γ∇U(Xk) +

√
2γZk+1, where γ > 0 is the step size and (Zk)k∈N is an i.i.d. se-

quence of standard Gaussian d-dimensional random vectors. The idea of using the
Markov chain (Xk)k∈N to sample approximately from π has been first introduced in the
physics literature by [Par81] and popularized in the computational statistics commu-
nity by [Gre83] and [GM94]. Other examples include the Metropolis Adjusted Langevin
Algorithm (MALA) algorithm, and the Random Walk Metropolis algorithm (RWM).

Each of these MCMC algorithms define a family of Markov kernels {Rγ , γ ∈ (0, γ̄]},
indexed by the step-size parameter γ ∈ (0, γ̄], for γ̄ > 0. For any initial distribution ξ on
(Rd,B(Rd)) and γ ∈ (0, γ̄], denote by Pξ,γ and Eξ,γ the probability and the expectation
respectively on the canonical space of a Markov chain with initial distribution ξ and of
transition kernel Rγ . By convention, we set Ex,γ = Eδx,γ for all x ∈ Rd. We denote
by (Xk)k≥0 the canonical process. Under Pξ,γ , (Xk)k≥0 is a Markov chain with initial
distribution ξ and Markov kernel Rγ . The following assumptions are imposed here.
General criteria to justify (I)–(III) are postponed to Section 6.3.

(I) For each γ ∈ (0, γ̄], Rγ is a positive Harris Markov kernel with invariant distribution
πγ satisfying πγ(|f |) <∞ for any f ∈ Cpoly(Rd,R).

(II) For any initial condition X0, each f ∈ Cpoly(Rd,R) and γ ∈ (0, γ̄],

√
n(π̂n(f)− πγ(f)) weakly=⇒

n→+∞
N (0, σ2

∞,γ(f)) (6.14)

where π̂n(f) is defined by (6.1), and σ2
∞,γ(f) ≥ 0 is the asymptotic variance asso-

ciated with f defined by (6.2) relatively to Rγ .

(III) For any functions f, g sufficiently smooth and satisfying growth conditions,

σ2
∞,γ(f + γg) = γ−1σ2

∞(f) + o(γ−1) (6.15)

πγ(f) = π(f) +O(γ) , (6.16)

where σ2
∞(f) is defined in (6.7) and for γ ↓ 0+.

The standard conditions (I)–(II) are in particular satisfied if Rγ is V -uniformly geomet-
rically ergodic, see e.g. [MT09]. Let V : Rd → [1,+∞) be a measurable function. We
say that Rγ , γ ∈ (0, γ̄] is V -uniformly geometrically ergodic if it admits an invariant
probability measure πγ such that πγ(V ) < +∞ and there exist C ≥ 0 and ρ ∈ [0, 1) such
that for any probability measure ξ on (Rd,B(Rd)) and n ∈ N,

‖ξRnγ − πγ‖V ≤ Cξ(V )ρn .
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The approximation result (III) requires more sophisticated arguments given in Sec-
tion 6.3.

Based on (I)–(III) and (6.13), the estimator of π(f) we suggest is given for n ∈ N∗
by

πCV
n (f) = 1

n

n−1∑
k=0

{
f(Xk) + L

(
θ̂∗n(f)Tψ(Xk)

)}
, (6.17)

and θ̂∗n(f) is an estimator of θ∗(f) defined in (6.13) given by

θ̂∗n(f) = H+
n

[
1
n

n−1∑
k=0

ψ(Xk) {f(Xk)− π̂n(f)}
]
, (6.18)

where H+
n is the Moore-Penrose pseudoinverse of Hn ∈ Rp×p defined for all i, j ∈

{1, . . . , p} by

(Hn)ij = 1
n

n−1∑
k=0
〈∇ψi(Xk),∇ψj(Xk)〉 . (6.19)

We sketch informally the arguments required to justify (6.17). Since, under (I), for
any γ ∈ (0, γ̄], the Markov kernel Rγ is positive Harris, by the strong law of large num-
bers, π̂n(ψ {f − π̂n(f)}) and Hn converge Pξ,γ-almost surely for any initial probability
measure ξ to πγ({f − πγ(f)}ψ) and Hγ where

(Hγ)ij = πγ (〈∇ψi,∇ψj〉) , i, j ∈ {1, . . . , p} . (6.20)

If (1, ψ1, . . . , ψp) is linearly independent in C(Rd,R) and πγ admits a positive density
w.r.t. the Lebesgue measure, Hγ is a symmetric positive definite matrix. Hence, the

sequence (θ̂∗n(f))n≥0 converges Pξ,γ-almost surely to

θ∗γ(f) = H−1
γ πγ {(f − πγ(f))ψ} . (6.21)

Under (II), using standard arguments, see Proposition 6.15, the following central limit
theorem holds

√
nγ
{
πCV
n (f)− πγ(f + L (θ∗γ(f)Tψ))

} Pξ,γ−weakly=⇒
n→+∞

N (0, γσ2
∞,γ(f + L (θ∗γ(f)Tψ))) .

(6.22)
Moreover, under (III), since θ∗γ(f) = θ∗(f) +O(γ), we get that

γσ2
∞,γ(f + L (θ∗γ(f)Tψ)) = γσ2

∞,γ

(
f + L (θ∗(f)Tψ) +O(γ)

p∑
i=1

Lψi

)
= σ2

∞(f + L (θ∗(f)Tψ)) + o(1) , (6.23)

for γ ↓ 0+. Therefore for any γ ∈ (0, γ̄], we get

√
nγ
{
πCV
n (f)− πγ(f + L (θ∗γ(f)Tψ))

} Pξ,γ−weakly=⇒
n→+∞

N (0, σ2
∞(f + L (θ∗(f)Tψ)) + o(1)) ,

(6.24)
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showing that the optimal control variate for the Langevin diffusion L (θ∗(f)Tψ) is
asymptotically optimal as γ ↓ 0+ for the considered MCMC algorithm. Note that (6.24)
also displays the existence of a bias term πγ(f + L (θ∗γ(f)Tψ)) − π(f) which vanishes
when πγ = π. As shown in Section 6.3, we may get rid of the bias term by letting the
step size γ depend on the number of samples n.

6.3 Asymptotic expansion for the asymptotic variance of
MCMC algorithms

In this Section, we justify (III). Let γ̄ > 0, V : Rd → [1,+∞) and k ∈ N. Consider the
following assumptions:

A3 (V, γ̄). There exist λ ∈ [0, 1), b < +∞ and c > 0 such that

sup
x∈Rd

{exp(c ‖x‖)/V (x)} < +∞ and RγV ≤ λγV + γb , for all γ ∈ (0, γ̄]. (6.25)

Moreover, there exists ε ∈ (0, 1] such that for all γ ∈ (0, γ̄] and x, x′ ∈ {V ≤M},

‖Rd1/γeγ (x, ·)−Rd1/γeγ (x′, ·)‖TV ≤ 1− ε , (6.26)

where

M >

(
4bλ−γ̄

log(1/λ) − 1
)
∨ 1 . (6.27)

A4 (γ̄, k). There exist α ≥ 3/2 and a family of operators (Aγ)γ∈(0,γ̄] with Aγ : C4+i
poly(Rd,R)→

Ci
poly(Rd,R) for i ∈ {0, . . . , k}, such that for all ϕ ∈ C4+i

poly(Rd,R) and γ ∈ (0, γ̄],

Rγϕ = ϕ+ γLϕ+ γαAγϕ .

For all p ∈ N, there exist C ≥ 0 and q ∈ N such that for all i ∈ {0, . . . , k}, ϕ ∈
C4+i

poly(Rd,R) and γ ∈ (0, γ̄],

‖Aγϕ‖i,q ≤ C ‖ϕ‖4+i,p .

For any ϕ ∈ C4
poly(Rd,R) and x ∈ Rd, limγ↓0+ Aγϕ(x) exists (this limit is denoted

A0ϕ(x)).

We show below and in Section 6.5 that these conditions are satisfied for the Metropolis
Adjusted / Unadjusted Langevin Algorithm (MALA and ULA) algorithms (in which case
γ is the stepsize in the Euler discretization of the Langevin diffusion) and also by the
Random Walk Metropolis algorithm (RWM) (in which case γ is the variance of the
increment distribution). In the following result, we establish the V -uniform geometric
ergodicity of Rγ for γ ∈ (0, γ̄].
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Lemma 6.2. Let V : Rd → [1,+∞) and γ̄ > 0. Assume A3(V, γ̄). For all γ ∈ (0, γ̄],
Rγ has a unique invariant measure πγ. There exist C > 0 and ρ ∈ (0, 1) such that for
all γ ∈ (0, γ̄], x ∈ Rd and n ∈ N,

‖δxRnγ − πγ‖V ≤ CρnγV (x) . (6.28)

Proof. The proof is postponed to Section 6.6.1.

Note that under A3(V, γ̄), iterating the drift condition (6.25), using Lemma 6.2 and
1− λγ ≥ γ ln(1/λ)λγ , we obtain for all γ ∈ (0, γ̄], n ∈ N∗, x ∈ Rd,

RnγV (x) ≤ λnγV (x) + bλ−γ̄

ln(1/λ) and πγ(V ) ≤ bλ−γ̄

ln(1/λ) . (6.29)

We next give an upper bound on the bias between πγ and π, i.e. |πγ(ϕ)− π(ϕ)| for ϕ
smooth enough and πγ 6= π.

Proposition 6.3. Assume H13(4). Let V : Rd → [1,+∞), γ̄ > 0 and assume A3(V, γ̄)
and A4(γ̄, 0). For all p ∈ N, there exists C ≥ 0 such that for all ϕ ∈ C3

poly(Rd,R) and
γ ∈ (0, γ̄],

|πγ(ϕ)− π(ϕ)| ≤ C ‖ϕ‖3,p γ
α−1 . (6.30)

Proof. The proof is postponed to Section 6.6.2.

We now state the main theorem of this Section.

Theorem 6.4. Let V : Rd → [1,+∞), γ̄ > 0. Assume H13(7), A3(V, γ̄) and A4(γ̄, 3).
Then, for all p ∈ N, there exists C ≥ 0 such that for all f ∈ C6

poly(Rd,R), γ ∈ (0, γ̄],
x ∈ Rd, and n ∈ N∗∣∣∣∣∣∣γnEx,γ

(n−1∑
k=0
{f(Xk)− πγ(f)}

)2− σ2
∞(f)

∣∣∣∣∣∣ ≤ C ‖f‖26,p
{
γ(α−1)∧1 + V (x)

nγ

}
, (6.31)

where σ2
∞(f) is defined in (6.7).

Proof. The proof is postponed to Section 6.6.3.

Bias and confidence intervals In the CLT given in (6.24), the bias πγ(f+L (θ∗γ(f)Tψ))−
π(f) is different from 0, except if πγ = π. To obtain asymptotically valid confidence in-
tervals for π(f), we let the step size γ depend on the total number of iterations n.

Let (γn)n∈N∗ be a positive sequence and πCV
n,γn(f) be defined in (6.17) where (Xk)k∈N

is associated to the kernel Rγn . We show that, for an appropriate sequence (γn)n∈N∗ ,
πCV
n,γn(f) targets π(f) and a CLT holds with an asymptotic variance equal to σ2

∞(f +
L (θ∗(f)Tψ)). The optimal control variates for the Langevin diffusion L (θ∗(f)Tψ) is
then also optimal for the MCMC algorithm of kernel Rγn in the limit n→ +∞.
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Theorem 6.5. Let V : Rd → [1,+∞), γ̄ > 0. Assume H 13(10), A 3(V, γ̄), and
A4(γ̄, 6). Let f ∈ C9

poly(Rd,R), ψ = (ψ1, . . . , ψp) : Rd → Rp, p ∈ N∗, be a fixed

sieve of functions such that (1, ψ1, . . . , ψp) is linearly independent in C(Rd,R) and for
all i ∈ {1, . . . , p}, ψi ∈ C11

poly(Rd,R). Let (γn)n∈N∗ be a positive sequence satisfying

limn→+∞(nγn)−1 + γn = 0, f̂ be a solution of the Poisson equation L f̂ = π(f) − f ,
θ∗(f) be defined in (6.13) and ξ be a probability measure such that ξ(V ) < +∞. Then,

(i) if π(A0(f̂ − θ∗(f)Tψ)) limn→+∞ n
1/2γ

α−1/2
n = 0,

n1/2γ1/2
n

{
πCV
n,γn(f)− π(f)

} Pξ,γn−weakly=⇒
n→+∞

N (0, σ2
∞(f + L (θ∗(f)Tψ))) ,

(ii) if limn→+∞ n
1/2γ

α−1/2
n = γ∞ ∈ [0,+∞),

n1/2γ1/2
n

{
πCV
n,γn(f)− π(f)

}
Pξ,γn−weakly=⇒
n→+∞

N (γ∞π(A0(f̂ − θ∗(f)Tψ)), σ2
∞(f + L (θ∗(f)Tψ))) ,

(iii) if π(A0(f̂ − θ∗(f)Tψ)) lim infn→+∞ n
1/2γ

α−1/2
n = +∞,

γ1−α
n

{
πCV
n,γn(f)− π(f)

} Pξ,γn−weakly=⇒
n→+∞

π
(
A0(f̂ − θ∗(f)Tψ)

)
,

where πCV
n,γn(f) and σ2

∞(f) are defined in (6.17) and (6.7), respectively.

Proof. The proof is postponed to Section 6.B.

Note that if the invariant distribution of Rγ is π for all γ ∈ (0, γ̄] (e.g. the case of
MALA or RWM), we have under A4(γ̄, 0) and by the dominated convergence theorem,
π(A0(f̂−θ∗(f)Tψ)) = 0 and (i) always holds. For the ULA algorithm (see below), α = 2
and setting γn = n−a for a ∈ (0, 1), we have:

(i) a ∈ (1/3, 1), a CLT without bias term,

(ii) a = 1/3, a CLT with a bias term,

(iii) a ∈ (0, 1/3), a LGN.

The ULA algorithm The Markov kernel RULA
γ associated to the ULA algorithm is

given for γ > 0, x ∈ Rd and A ∈ B(Rd) by

RULA
γ (x,A) = (4πγ)−d/2

∫
A

exp
(
−(4γ)−1 ‖y − x+ γ∇U(x)‖2

)
dy . (6.32)

Based on the results of [DM17] and [DM16], the following lemmas enable to check A
3(V, γ̄) and A4(γ̄, k), k ∈ N, for the ULA algorithm. Analysis of the MALA and RWM
algorithms is postponed to Section 6.5. Consider the following assumptions on U .
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H14. U : Rd → R is gradient Lipschitz, i.e. there exists L ≥ 0 such that for all x, y ∈ Rd,
‖∇U(x)−∇U(y)‖ ≤ L ‖x− y‖.

H15. There exist ν > 0, α ∈ (1, 2], a minimizer x? ∈ arg minU and Mν ≥ 0 such that
for all x ∈ Rd, ‖x− x?‖ ≥Mν , 〈∇U(x), x− x?〉 ≥ ν ‖x− x?‖α.

H16. U is convex and admits a minimizer x? ∈ arg minU .

For simplicity we have assumed that ∇U is Lipschitz but following [Bro+18], this
assumption can be relaxed. Note that under H 16, by [Bra+14, Lemma 2.2.1], there
exist η > 0 and Mη ≥ 0 such that for all x ∈ Rd, ‖x− x?‖ ≥ Mη, 〈∇U(x), x− x?〉 ≥
U(x) − U(x?) ≥ η ‖x− x?‖ where x? ∈ arg minRd U . Let k ∈ N, k ≥ 2. Note that if
U ∈ Ck

poly(Rd,R) and U satisfies H14 and H15 or H16, then H13(k) holds.

Lemma 6.6. (i) Assume H14. RULA
γ satisfies the Doeblin condition (6.26).

(ii) Assume H14 and H15 or H16. Then A3(V,L−1) is satisfied where V is defined
for x ∈ Rd by,

V (x) =

exp(U(x)/2) under H15

exp
(
(η/4)(1 + ‖x− x?‖2)1/2

)
under H16.

Proof. The proof is postponed to Section 6.C.2.

To establish A 4(γ̄, 6), let i ∈ {0, . . . , 6}, ϕ ∈ C4+i
poly(Rd,R), γ̄ > 0, γ ∈ [0, γ̄] and

x ∈ Rd. Using X1 = X0−γ∇U(X0)+
√

2γZ1 where Z1 is an i.i.d. standard d-dimensional
Gaussian vector, we get

ϕ(X1) = ϕ(x)− γ 〈∇U(x),∇ϕ(x)〉+
√

2γ 〈∇ϕ(x), Z〉+ γD2 ϕ(x)[Z⊗2]
−
√

2γ3/2 D2 ϕ(x)[∇U(x), Z] + (γ2/2) D2 ϕ(x)[∇U(x)⊗2]− γ2 D3 ϕ(x)[∇U(x), Z⊗2]
− (1/6)γ3 D3 ϕ(x)[∇U(x)⊗3] + 2−1/2γ5/2 D3 ϕ(x)[∇U(x)⊗2, Z]

+
√

2
3 γ3/2 D3 ϕ(x)[Z⊗3] + 1

6

∫ 1

0
(1− t)3 D4 ϕ(x+ t(X1 − x))[(X1 − x)⊗4]dt . (6.33)

Taking the expectation in (6.33), we obtain Rγϕ(x) = ϕ(x) + γLϕ(x) + γ2A ULA
γ ϕ(x)

where,

A ULA
γ ϕ(x) = 1

2 D2 ϕ(x)[∇U(x)⊗2]− 1
6γD3 ϕ(x)[∇U(x)⊗3]− E

[
D3 ϕ(x)[∇U(x), Z⊗2]

]
+ 1

6

∫ 1

0
(1− t)3E

[
D4 ϕ(x− tγ∇U(x) + t

√
2γZ)[(−√γ∇U(x) +

√
2Z)⊗4]

]
dt . (6.34)

Taking the limit γ ↓ 0+ in (6.34), we get for any ϕ ∈ C4
poly(Rd,R) and x ∈ Rd,

limγ↓0+ A ULA
γ ϕ(x) = A ULA

0 ϕ(x) where

A ULA
0 ϕ(x) = 1

2 D2 ϕ(x)[∇U(x)⊗2]− E
[
D3 ϕ(x)[∇U(x), Z⊗2]

]
+ 1

6E
[
D4 ϕ(x)[Z⊗4]

]
.

(6.35)
Summarizing this discussion, it is easy to show that
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Lemma 6.7. Assume that U ∈ C7
poly(Rd,R).

(i) For all ϕ ∈ C4+i
poly(Rd,R) and i ∈ {0, . . . , 6}, A ULA

γ ϕ ∈ Ci
poly(Rd,R) for γ > 0 and

for any γ̄ > 0 and p ∈ N, there exist C ≥ 0, q ∈ N such that for all i ∈ {0, . . . , 6},
ϕ ∈ C4+i

poly(Rd,R) and γ ∈ (0, γ̄], ‖A ULA
γ ϕ‖i,q ≤ C‖ϕ‖4+i,p.

(ii) For any ϕ ∈ C4
poly(Rd,R) and x ∈ Rd, limγ↓0+ A ULA

γ ϕ(x) = A ULA
0 ϕ(x).

If U ∈ C7
poly(Rd,R), under H14 and H15 or H16, by Lemma 6.6 and Lemma 6.7, A

3(V,L−1) and A4(L−1, 6) with α = 2 are satisfied; Theorem 6.4 and Theorem 6.5 then
hold.

6.4 Numerical experiments

We illustrate the proposed control variates method on Bayesian logistic and probit re-
gressions, see [Gel+14, Chapter 16], [MR07, Chapter 4]. The examples and the data
sets are taken from [PMG14]. The code used to run the experiments is available at
https://github.com/nbrosse/controlvariates. Let Y = (Y1, . . . ,Yn) ∈ {0, 1}N be
a vector of binary response variables, x ∈ Rd be the regression coefficients, and X ∈ RN×d
be a design matrix. The log-likelihood for the logistic and probit regressions are given
respectively by

`log(Y|x,X) =
N∑
i=1

{
YiXT

i x− ln
(
1 + eXT

i x
)}

,

`pro(Y|x,X) =
N∑
i=1

{
Yi ln(Φ(XT

i x)) + (1− Yi) ln(Φ(−XT
i x))

}
,

where XT
i is the ith row of X for i ∈ {1, . . . , N}. For both models, a Gaussian prior of

mean 0 and variance ς2 Id is assumed for x where ς2 = 100. The posterior probability
distributions πlog and πpro for the logistic and probit regressions are proportional for all
x ∈ Rd to

πlog(x|Y,X) ∝ exp (−Ulog(x)) with Ulog(x) = −`log(Y|x,X) + (2ς2)−1 ‖x‖2 ,

πpro(x|Y,X) ∝ exp (−Upro(x)) with Upro(x) = −`pro(Y|x,X) + (2ς2)−1 ‖x‖2 .

In the following lemma, we check the assumptions on Ulog and Upro in order to apply
Theorem 6.4 and Theorem 6.5 for the ULA, MALA and RWM algorithms. Note that
H17 and H18 are two additional conditions on U given in Section 6.5, introduced to
check A3(exp(U/2), γ̄) and A4(γ̄, 6), for the RWM algorithm.

Lemma 6.8. Ulog and Upro satisfy H13(k) for any k ∈ N∗, H14, H16, H17 and H18.

Proof. The proof is postponed to Section 6.C.3.

https://github.com/nbrosse/controlvariates
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Following [PMG14, Section 2.1], we compare two bases for the construction of a con-
trol variate, based on first and second degree polynomials. Define ψ1st = (ψ1st

1 , . . . , ψ1st
d )

given for i ∈ {1, . . . , d} and x = (x1, . . . , xd) ∈ Rd by ψ1st
i (x) = xi and ψ2nd =

(ψ2nd
1 , . . . , ψ2nd

d(d+3)/2) given for x = (x1, . . . , xd) ∈ Rd by

ψ2nd
k (x) = xk for k ∈ {1, . . . , d} , ψ2nd

k+d(x) = x2
k for k ∈ {1, . . . , d} ,

ψ2nd
k (x) = xixj for k = 2d+ (j − 1)(d− j/2) + (i− j) and all 1 ≤ j < i ≤ d .

ψ1st and ψ2nd are in C∞poly(Rd,R) and are linearly independent in C(Rd,R). The estima-

tors associated to ψ1st and ψ2nd are referred to as CV-1 and CV-2, respectively.
For the ULA, MALA and RWM algorithms, we make a run of n = 106 samples with

a burn-in period of 105 samples, started at the mode of the posterior. The step size is set
equal to 10−2 for ULA and to 5×10−2 for MALA and RWM, the acceptance ratio in the
stationary regime being close to 0.23 for RWM and 0.57 for MALA, see [RGG97; RR98].
We consider 2d scalar test functions {fk}2dk=1 defined for all x ∈ Rd and k ∈ {1, . . . , d}
by fk(x) = xk and fk+d(x) = x2

k. For k ∈ {1, . . . , 2d}, we compute the empirical average
π̂n(fk) and the control variate estimator πCV

n (fk) defined in (6.1) and (6.17) respectively.
For comparison purposes, the zero-variance estimators of [PMG14] using the same bases
of functions ψ1st, ψ2nd are also computed and are referred to as ZV-1 for ψ1st and ZV-2
for ψ2nd. We run 100 independent Markov chains for ULA, MALA, RWM algorithms.
The boxplots for the logistic example are displayed in Figure 6.2 for x1 and x2

1. Note the
impressive decrease in the variance using the control variates for each algorithm ULA,
MALA and RWM. It is worthwhile to note that for ULA, the bias |π(f)− πγ(f)| is
reduced dramatically using the CV-2 estimator. It can be explained by the fact that for
n large enough, θ∗n(f)Tψ2nd is an efficient approximation of the solution f̂ of the Poisson
equation L f̂ = −(f − π(f)). We then get

lim
n→+∞

πCV
n,γn(f) ≈ πγ(f) + πγ

(
L (θ∗γ(f)Tψ2nd)

)
≈ πγ(f)− πγ (f − π(f)) = π(f)

where πCV
n,γn(f) is defined in (6.17).

To have a more quantitative estimate of the variance reduction, we compute for
each algorithm and test function f ∈ Cpoly(Rd,R), the spectral estimator σ̂2

n(f) of the
asymptotic variance with a Tukey-Hanning window, see [FJ10], given by

σ̂2
n(f) =

bn1/2c−1∑
k=−(bn1/2c−1)

{
1
2 + 1

2 cos
(

π |k|⌊
n1/2⌋

)}
ωfn(|k|) , (6.36)

ωfn(k) = 1
n

n−1−k∑
s=0

{f(Xs)− π̂n(f)} {f(Xs+k)− π̂n(f)} .

We compute the average of these estimators σ̂2
n(f) over the 100 independent runs of

the Markov chains and the values for the logistic regression are given in Table 6.1. The
Variance Reduction Factor (VRF) is defined as the ratio of the asymptotic variances
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obtained by the ordinary empirical average and the control variate (or zero-variance)
estimator. We again observe the considerable decrease of the asymptotic variances using
control variates. In this example, our approach produces slightly larger VRFs compared
to the zero-variance estimators. We obtain similar results for the probit regression; see
Section 6.D.



154 6.4. Numerical experiments

O CV-1 CV-2 ZV-1 ZV-2
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Figure 6.1: Boxplots of x1, x
2
1 using the ULA, MALA and RWM algorithms for the logistic

regression. The compared estimators are the ordinary empirical average (O), our estimator with
a control variate (6.17) using first (CV-1) or second (CV-2) order polynomials for ψ, and the
zero-variance estimators of [PMG14] using a first (ZV-1) or second (ZV-2) order polynomial
bases. The plots in the second column are close-ups for CV-2 and ZV-2.
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Table 6.1: Estimates of the asymptotic variances for ULA, MALA and RWM and each parameter
xi, x

2
i for i ∈ {1, . . . , d}, and of the variance reduction factor (VRF) on the example of the logistic

regression.

MCMC CV-1-MCMC CV-2-MCMC ZV-1-MCMC ZV-2-MCMC
Variance VRF Variance VRF Variance VRF Variance VRF Variance

x1 ULA 2 33 0.061 3.2e+03 0.00062 33 0.061 3e+03 0.00066
MALA 0.41 33 0.012 2.6e+03 0.00016 30 0.014 2.5e+03 0.00017
RWM 1.3 33 0.039 2.6e+03 0.00049 32 0.04 2.7e+03 0.00048

x2 ULA 10 57 0.18 8.1e+03 0.0013 53 0.19 7.4e+03 0.0014
MALA 2.5 59 0.042 7.7e+03 0.00032 54 0.046 7.3e+03 0.00034
RWM 5.6 52 0.11 5.6e+03 0.001 50 0.11 5.6e+03 0.001

x2 ULA 10 56 0.18 7.3e+03 0.0014 52 0.19 6.7e+03 0.0015
MALA 2.4 58 0.041 6.8e+03 0.00035 52 0.045 6.5e+03 0.00037
RWM 5.6 45 0.13 5.1e+03 0.0011 42 0.13 5.1e+03 0.0011

x4 ULA 13 26 0.5 3.9e+03 0.0033 22 0.59 3.4e+03 0.0038
MALA 3.1 25 0.12 3.6e+03 0.00087 21 0.14 3.3e+03 0.00095
RWM 7.5 19 0.4 2.5e+03 0.003 18 0.43 2.4e+03 0.0031

x2
1 ULA 4.6 10 0.46 5.5e+02 0.0084 9.3 0.49 4.8e+02 0.0095

MALA 0.98 9.6 0.1 4.6e+02 0.0021 8.6 0.11 4.2e+02 0.0023
RWM 3 8.3 0.36 4.3e+02 0.0069 8 0.37 4.3e+02 0.0069

x2
2 ULA 29 11 2.6 5.2e+02 0.055 10 2.8 4.7e+02 0.062

MALA 7 11 0.64 5.2e+02 0.013 10 0.68 4.8e+02 0.014
RWM 16 9.1 1.8 4.4e+02 0.037 8.8 1.8 4.3e+02 0.037

x2
3 ULA 46 11 4.1 6.7e+02 0.069 10 4.5 5.9e+02 0.079

MALA 11 11 0.97 6e+02 0.018 10 1 5.6e+02 0.019
RWM 26 9 2.9 4.3e+02 0.061 8.6 3.1 4.2e+02 0.062

x2
4 ULA 5.1e+02 14 37 8.2e+02 0.62 12 43 6.9e+02 0.73

MALA 1.2e+02 14 9 7.9e+02 0.15 12 10 7.1e+02 0.17
RWM 2.9e+02 11 27 5.8e+02 0.51 10 29 5.6e+02 0.53
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6.5 The RWM and MALA algorithms

In this Section, we establish the assumptions of Theorem 6.4 and Theorem 6.5 for the
RWM and MALA algorithms. For γ > 0, the Markov kernelRRWM

γ of the RWM algorithm

with a Gaussian proposal of mean 0 and variance 2γ is given for x ∈ Rd and A ∈ B(Rd)
by

RRWM
γ (x,A) =

∫
A

exp
(
−(4γ)−1 ‖y − x‖2

)
min(1, e−τRWM(x,y)) dy

(4πγ)d/2

+ δx(A)
{

1−
∫
Rd

exp
(
−(4γ)−1 ‖y − x‖2

)
min(1, e−τRWM(x,y)) dy

(4πγ)d/2

}
,

(6.37)

τRWM(x, y) = U(y)− U(x) . (6.38)

For all x ∈ Rd and γ > 0, define the acceptance region

ARWM
x,γ =

{
z ∈ Rd : τRWM(x, x+

√
2γz) ≤ 0

}
(6.39)

and denote by ∂ARWM
x,γ the boundaries of the connected components of ARWM

x,γ .

H17. For all x ∈ Rd and γ > 0, ∂ARWM
x,γ is a Lebesgue null set.

Set for all γ > 0,
A RWM
γ = (RRWM

γ − Id−γL )/γ3/2 . (6.40)

If U ∈ C2
poly(Rd,R), define for any ϕ ∈ C2

poly(Rd,R) and x, z ∈ Rd,

A RWM
0 ϕ(x) = −

√
2E
[
〈∇U(x), Z〉+ D2 ϕ(x)[Z⊗2] + ζ0(x, Z) 〈∇ϕ(x), Z〉

]
,

ζ0(x, z) =
{

D2 U(x)[z⊗2] + 〈∇U(x), z〉2
}
1〈∇U(x),z〉>0

+
(
D2 U(x)[z⊗2]

)
+
1〈∇U(x),z〉=0 , (6.41)

where Z is a standard d-dimensional Gaussian vector.

Lemma 6.9. (i) Assume that U ∈ C7
poly(Rd,R) and H 17. For all i ∈ {0, . . . , 6}

and ϕ ∈ C4+i
poly(Rd,R), A RWM

γ ϕ ∈ Ci
poly(Rd,R) for γ > 0 and for any γ̄ > 0 and

p ∈ N, there exist C ≥ 0, q ∈ N such that for all ϕ ∈ C4
poly(Rd,R) and γ ∈ (0, γ̄],

‖A RWM
γ ϕ‖0,q ≤ C‖ϕ‖4,p.

(ii) Assume that U ∈ C2
poly(Rd,R). For any ϕ ∈ C4

poly(Rd,R) and x ∈ Rd, limγ↓0+ A RWM
γ ϕ(x) =

A RWM
0 ϕ(x).

Proof. The proof is postponed to Section 6.E.1.

We now proceed to check the drift condition (6.25). For that purpose, consider the
following additional assumption on U .
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H18. There exist χ,M > 0 such that for all x ∈ Rd, ‖x‖ ≥M ,

‖∇U(x)‖ ≥ χ−1 ,
∥∥∥D3 U(x)

∥∥∥ ≤ χ ∥∥∥D2 U(x)
∥∥∥ , ∥∥∥D2 U(x)

∥∥∥ ≤ χ ‖∇U(x)‖

and lim‖x‖→+∞

∥∥∥D2 U(x)
∥∥∥ / ‖∇U(x)‖2 = 0.

Lemma 6.10. Assume that U ∈ C3
poly(Rd,R) and H18. There exists γ̄ > 0 such that

for all γ ∈ (0, γ̄], RRWM
γ satisfies the drift condition (6.25) with V = exp(U/2).

Proof. The proof is postponed to Section 6.E.2.

We now consider the MALA algorithm. The Markov kernel RMALA
γ of the MALA

algorithm, see [RT96], is given for γ > 0, x ∈ Rd, and A ∈ B(Rd) by

RMALA
γ (x,A) =

∫
A
RULA
γ (x,dy) min(1, e−τMALA

γ (x,y))

+ δx(A)
{

1−
∫
Rd
RULA
γ (x,dy) min(1, e−τMALA

γ (x,y))
}
, (6.42)

τMALA
γ (x, y) = U(y)− U(x) + ‖x− y + γ∇U(y)‖2 − ‖y − x+ γ∇U(x)‖2

4γ . (6.43)

For all x ∈ Rd and γ > 0, define the acceptance region

AMALA
x,γ =

{
z ∈ Rd : τMALA

γ (x, x− γ∇U(x) +
√

2γz) ≤ 0
}

and denote by ∂AMALA
x,γ the boundaries of the connected components of AMALA

x,γ .

H19. For all x ∈ Rd and γ > 0, ∂AMALA
x,γ is a Lebesgue null set.

Under this assumption, the following Lemma shows that A4(γ̄, k) is satisfied for the
MALA algorithm for any γ̄ > 0 and k ∈ N. Set for all γ > 0,

A MALA
γ = (RMALA

γ − Id−γL )/γ2 , (6.44)

and define for all ϕ ∈ C4
poly(Rd,R), x, z ∈ Rd,

A MALA
0 ϕ(x) = A ULA

0 ϕ(x)−
√

2E [max(0, ξ0(x, Z)) 〈∇ϕ(x), Z〉] ,

ξ0(x, z) = −(
√

2/6) D3 U(x)[z⊗3] + 2−1/2
〈
∇U(x),D2 U(x)[z]

〉
, (6.45)

where Z is a standard d-dimensional Gaussian vector and A ULA
0 ϕ is given in (6.35).

Lemma 6.11. (i) Assume that U ∈ C10
poly(Rd,R) and H19. For all i ∈ {0, . . . , 6} and

ϕ ∈ C4+i
poly(Rd,R), A MALA

γ ϕ ∈ Ci
poly(Rd,R) for γ > 0 and for any γ̄ > 0 and p ∈ N,

there exist C ≥ 0, q ∈ N such that for all ϕ ∈ C4+i
poly(Rd,R), i ∈ {0, . . . , 6} and

γ ∈ (0, γ̄], ‖A MALA
γ ϕ‖i,q ≤ C‖ϕ‖4+i,p.

(ii) Assume that U ∈ C4
poly(Rd,R). For any ϕ ∈ C4

poly(Rd,R) and x ∈ Rd, limγ↓0+ A MALA
γ ϕ(x) =

A MALA
0 ϕ(x).

Proof. The proof is postponed to Section 6.C.4.
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6.6 Proofs

6.6.1 Proof of Lemma 6.2

By (6.25), the drift condition Dg(V, λγ , γb) is satisfied. By (6.26) and (6.27), the set
{V ≤M} is an (d1/γe , 1 − ε)-Doeblin set and by the choice of M , see (6.27), λγ +
(2γb)/(1 + M) < 1. A direct application of [Dou+18, Theorem 18.4.3] concludes the
proof.

6.6.2 Proof of Proposition 6.3

Under H13(4), by Proposition 6.1-(iii) with k = 4, there exist q1 ∈ N and C ≥ 0 such that
for all ϕ ∈ C3

poly(Rd,R), ϕ̂ ∈ C4
poly(Rd,R) where L ϕ̂ = π(ϕ)−ϕ and ‖ϕ̂‖4,q1 ≤ C‖ϕ‖3,p.

Under A4(γ̄, 0), we have for all γ ∈ (0, γ̄],

Rγϕ̂ = ϕ̂+ γL ϕ̂+ γαAγϕ̂ . (6.46)

By Proposition 6.1-(iii), A4(γ̄, 0) and (6.29), there exist q2 ∈ N and C ≥ 0 such that for
all γ ∈ (0, γ̄],

|πγ(Aγϕ̂)| ≤ πγ(|Aγϕ̂|) ≤ C ‖Aγϕ̂‖0,q2
≤ C ‖ϕ̂‖4,q1

≤ C ‖ϕ‖3,p . (6.47)

Integrating (6.46) w.r.t. πγ and using L ϕ̂ = π(ϕ) − ϕ, we obtain that πγ(ϕ) − π(ϕ) =
γα−1πγ(Aγϕ̂). Combining this result with (6.47) concludes the proof.

6.6.3 Proof of Theorem 6.4

The proof is divided into two parts. In the first part, we derive some elementary bounds
on the first and second order moments of the estimator π̂n(f) defined in (6.1) and where
(Xk)k∈N is a Markov chain of kernel Rγ , see Lemma 6.12 below. The arguments are
based solely on the study of Rγ and rely on A3(V, γ̄) and Lemma 6.2. We also provide

an upper bound on Ex,γ
[
{f(X1)−Rγf(x)}2

]
for f ∈ Cpoly(Rd,R), see Lemma 6.13. In

a second part, we compare the discrete-time Markov chain (Xk)k∈N and the Langevin
diffusion (Yt)t≥0, see Lemma 6.14. The proof of Theorem 6.4 is then derived by a
bootstrap argument based on Lemma 6.14. In the sequel, C is a non-negative constant
independent of γ > 0 which may take different values at each appearance.

Note that if (6.25) holds, we obtain by Jensen’s inequality and using
√
a+ b−

√
a ≤

b/(2
√
a) for all a, b > 0,

RγV
1/2 ≤ (λγV + γb)1/2 ≤ λγ/2V 1/2 + γbλ−γ/2/2 . (6.48)
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Lemma 6.12. Let V : Rd → [1,+∞) and γ̄ > 0. Assume A3(V, γ̄). There exists C > 0
such that for all γ ∈ (0, γ̄], x ∈ Rd, n ∈ N∗ and f ∈ Cpoly(Rd,R),

∣∣∣∣∣Ex,γ
[
n−1∑
k=0
{f(Xk)− πγ(f)}

]∣∣∣∣∣ ≤ Cγ−1 ‖f‖V 1/2 V 1/2(x) , (6.49)

Ex,γ

(n−1∑
k=0
{f(Xk)− πγ(f)}

)2 ≤ Cγ−2 ‖f‖2V 1/2

{
n+ γ−1V (x)

}
. (6.50)

Proof. By (6.48), A3(V 1/2, γ̄) is satisfied and using Lemma 6.2 with V 1/2, and 1− ργ ≥
γ ln(1/ρ)ργ , we obtain for all γ ∈ (0, γ̄] and x ∈ Rd,

+∞∑
k=0

∣∣∣Rkγ{f − πγ(f)}(x)
∣∣∣ ≤ Cγ−1 ‖f‖V 1/2 V 1/2(x) , (6.51)

which gives (6.49). For all γ ∈ (0, γ̄], define f̂γ : Rd → R by f̂γ(x) =
∑+∞
k=0R

k
γ{f −

πγ(f)}(x), which is a solution of the Poisson equation, (Rγ − Id)f̂γ = −{f − πγ(f)}, see
[MT09, Section 17.4.1]. We get for all n ∈ N∗,

n−1∑
k=0
{f(Xk)− πγ(f)} = f̂γ(X0)− f̂γ(Xn) +

n−1∑
k=0
{f̂γ(Xk+1)−Rγ f̂γ(Xk)} . (6.52)

By (6.51), for all x ∈ Rd,
f̂2
γ (x) ≤ Cγ−2 ‖f‖2V 1/2 V (x) (6.53)

and (
∑n−1
k=0{f̂γ(Xk+1)−Rγ f̂γ(Xk)})n∈N is a square integrable martingale under Px,γ for

all x ∈ Rd. By (6.52), we have

Ex,γ

(n−1∑
k=0
{f(Xk)− πγ(f)}

)2 ≤ 2Ex,γ
[(
f̂γ(X0)− f̂γ(Xn)

)2
]

+ 2Ex,γ

[
n−1∑
k=0
{f̂γ(Xk+1)−Rγ f̂γ(Xk)}2

]
. (6.54)

Set gγ(x) = Ex,γ
[
{f̂γ(X1)−Rγ f̂γ(x)}2

]
. By (6.29) and (6.53), for all x ∈ Rd, gγ(x) ≤

Cγ−2 ‖f‖2V 1/2 V (x) and πγ(gγ) ≤ Cγ−2 ‖f‖2V 1/2 . By (6.51) for f = gγ , we obtain

∣∣∣∣∣
n−1∑
k=0
{Ex,γ [gγ(Xk)]− πγ(gγ)}

∣∣∣∣∣ ≤ Cγ−3 ‖f‖2V 1/2 V (x) .

Combining this result with (6.54), we obtain (6.50).
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Lemma 6.13. Let γ̄ > 0 and k ∈ N. Assume that U ∈ Ck+1
poly(Rd,R) and A4(γ̄, k). For

any p ∈ N, there exist q ∈ N and C ≥ 0 such that for all γ ∈ (0, γ̄] and f ∈ Ck+4
poly(Rd,R),

‖f̃γ‖k,q ≤ Cγ‖f‖2k+4,p where f̃γ : Rd → R is defined for all x ∈ Rd by

f̃γ(x) = Ex,γ
[
{f(X1)−Rγf(x)}2

]
.

Proof. Let p ∈ N. By A4(γ̄, k), for all f ∈ Ck+4
poly(Rd,R), γ ∈ (0, γ̄] and x ∈ Rd,

f̃γ(x) = Ex,γ
[
{f(X1)− f(x)− γL f(x)− γαAγf(x)}2

]
= Ex,γ

[
{f(X1)− f(x)}2

]
+ γ2

{
L f(x) + γα−1Aγf(x)

}2

− 2γ
{
L f(x) + γα−1Aγf(x)

}
Ex,γ [f(X1)− f(x)] . (6.55)

Besides, for all γ ∈ (0, γ̄] and x ∈ Rd,

Ex,γ
[
{f(X1)− f(x)}2

]
= Ex,γ

[
f2(X1)

]
+ f2(x)− 2f(x)Ex,γ [f(X1)]

= γL (f2)(x) + γαAγ(f2)(x)− 2γf(x)L f(x)− 2γαf(x)Aγf(x)

= γ
{

2 ‖∇f(x)‖2 + γα−1
(
Aγ(f2)(x)− 2f(x)Aγf(x)

)}
(6.56)

and Ex,γ [f(X1)− f(x)] = γL f(x) + γαAγf(x). Then, combining (6.55) and (6.56),
under A4(γ̄, k), f̃γ ∈ Ck

poly(Rd,R) and there exist q ∈ N and C ≥ 0 such that ‖f̃γ‖k,q ≤
Cγ‖f‖2k+4,p.

Lemma 6.14. Let V : Rd → [1,+∞) and γ̄ > 0. Assume H13(4), A3(V, γ̄) and A
4(γ̄, 0). Then, for all p ∈ N, there exists C > 0 such that for all f ∈ C3

poly(Rd,R),
γ ∈ (0, γ̄], x ∈ Rd and n ∈ N∗,∣∣∣∣∣∣Ex,γ

 1
n

(
n−1∑
k=0
{f(Xk)− πγ(f)}

)2− σ2
∞(f)
γ

∣∣∣∣∣∣ ≤ C
{
‖f‖23,p γ

(α−2)∧0 +
‖f‖23,p V (x)

nγ2

+Af1(x, n, γ)+
‖f‖23,p V 1/2(x)γ(α/2−1)∧0

n1/2γ
+Af1(x, n, γ)1/2 ‖f‖3,p

(
γ−1/2 + V 1/2(x)

n1/2γ

)}
,

(6.57)

where σ2
∞(f) is defined in (6.7) and

Af1(x, n, γ) = γ2(α−1)

n
Ex,γ

(n−1∑
k=0

{
Aγ f̂(Xk)− γ1−α (πγ(f)− π(f))

})2 , (6.58)

α,Aγ are given in A4(γ̄, 0), and f̂ is a solution of L f̂ = −{f − π(f)}. Moreover,

Af1(x, n, γ) ≤ Cγ2(α−2) ‖f‖23,p {1 + V (x)/(nγ)} . (6.59)
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Proof. Under H13(4) and by Proposition 6.1-(iii), let f̂ ∈ C4
poly(Rd,R) be a solution of

the Poisson equation L f̂ = −{f − π(f)}. Under A4(γ̄, 0), we get for all γ ∈ (0, γ̄],

Rγ f̂ = f̂ + γL f̂ + γαAγ f̂ . (6.60)

Since L f̂ = −{f − π(f)}, we have for all n ∈ N∗ and γ ∈ (0, γ̄],

n−1∑
k=0
{f(Xk)− πγ(f)} = f̂(X0)− f̂(Xn)

γ
+ 1
γ

n−1∑
k=0

{
f̂(Xk+1)−Rγ f̂(Xk)

}

+ γα−1
n−1∑
k=0

{
Aγ f̂(Xk)− γ1−α (πγ(f)− π(f))

}
. (6.61)

Consider the following decomposition

Ex,γ

 1
n

(
n−1∑
k=0
{f(Xk)− πγ(f)}

)2 =
4∑
i=1

Afi (x, n, γ) , (6.62)

where Af1(x, n, γ) is given in (6.58),

Af2(x, n, γ) = Ex,γ
[
(f̂(X0)− f̂(Xn))2/(nγ2)

]
, (6.63)

Af3(x, n, γ) = Ex,γ

 1
nγ2

(
n−1∑
k=0

f̂(Xk+1)−Rγ f̂(Xk)
)2 ,

and by Cauchy-Schwarz inequality,

(1/2)
∣∣∣Af4(x, n, γ)

∣∣∣ ≤ ∑
1≤i<j≤3

Afi (x, n, γ)1/2Afj (x, n, γ)1/2 . (6.64)

We show below that maxi∈{1,...,4}
∣∣∣Afi (x, n, γ)

∣∣∣ < +∞ for any f ∈ C3
poly(Rd,R). By

Proposition 6.1-(iii), there exists q1 ∈ N such that ‖f̂‖4,q1 ≤ C‖f‖3,p and combining it
with A3(V, γ̄) and (6.29), we obtain for all x ∈ Rd, γ ∈ (0, γ̄] and n ∈ N∗,

Af2(x, n, γ) ≤ C ‖f‖23,p V (x)/(nγ2) . (6.65)

For all γ ∈ (0, γ̄] and x ∈ Rd, set gγ(x) = Ex,γ
[{
f̂(X1)−Rγ f̂(x)

}2
]
. By Proposition 6.1-(iii)

and Lemma 6.13 with k = 0, gγ ∈ Cpoly(Rd,R) and for all γ ∈ (0, γ̄], ‖gγ‖V ≤ Cγ‖f‖23,p.
Since (

∑n−1
k=0 f̂(Xk+1) − Rγ f̂(Xk))k∈N is a Px,γ-square integrable martingale, for all

x ∈ Rd, n ∈ N∗ and γ ∈ (0, γ̄], we have by the Markov property

Af3(x, n, γ) = γ−2Ex,γ

[
1
n

n−1∑
k=0

gγ(Xk)
]
. (6.66)
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By Lemma 6.12, eq. (6.49), we have for all x ∈ Rd, γ ∈ (0, γ̄] and n ∈ N∗,∣∣∣∣∣Ex,γ
[

1
n

n−1∑
k=0

gγ(Xk)
]
− πγ(gγ)

∣∣∣∣∣ ≤ C ‖gγ‖V V (x)
nγ

≤ C ‖f‖23,p
V (x)
n

. (6.67)

We now show that πγ(gγ) is approximately equal to γσ2
∞(f). Observe that

πγ(gγ) = Eπγ ,γ
[{
f̂(X1)−Rγ f̂(X0)

}2
]

= Eπγ ,γ
[{
f̂(X1)− f̂(X0)

}2
]
− Eπγ ,γ

[{
f̂(X0)−Rγ f̂(X0)

}2
]
. (6.68)

We have by (6.60)

Eπγ ,γ
[{
f̂(X1)− f̂(X0)

}2
]

= 2Eπγ ,γ
[
f̂(X0)

{
f̂(X0)−Rγ f̂(X0)

}]
(6.69)

= −2γπγ(f̂L f̂)− 2γαπγ(f̂Aγ f̂) . (6.70)

In the next step, we consider separately the cases πγ = π and πγ 6= π.

• If π = πγ , −πγ(f̂L f̂) = (1/2)σ2
∞(f).

• If πγ 6= π, (−L f̂)f̂ ∈ C3
poly(Rd,R) and by Proposition 6.3, for all γ ∈ (0, γ̄],∣∣∣πγ(f̂L f̂)− π(f̂L f̂)

∣∣∣ ≤ C ‖f‖23,p γα−1 .

In both cases, using A4(γ̄, 0), (6.29) and
∣∣∣πγ(f̂Aγ f̂)

∣∣∣ ≤ C‖f‖23,p, (6.70) becomes

∣∣∣∣Eπγ ,γ [{f̂(X1)− f̂(X0)
}2
]
− γσ2

∞(f)
∣∣∣∣ ≤ C ‖f‖23,p γα . (6.71)

By A4(γ̄, 0), (6.29) and (6.60), Eπγ ,γ
[{
f̂(X0)−Rγ f̂(X0)

}2
]
≤ C‖f‖23,pγ2. Combining

this result, (6.68) and (6.71),∣∣∣πγ(gγ)− γσ2
∞(f)

∣∣∣ ≤ C ‖f‖23,p γα∧2 . (6.72)

Combining it with (6.67), for all x ∈ Rd, γ ∈ (0, γ̄] and n ∈ N∗,∣∣∣∣∣Af3(x, n, γ)− σ2
∞(f)
γ

∣∣∣∣∣ ≤ C ‖f‖23,p
{
γ(α−2)∧0 + V (x)

nγ2

}
. (6.73)

Combining (6.62), (6.64), (6.65) and (6.73) give (6.57).
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For any γ ∈ (0, γ̄], by (6.60), πγ(Aγ f̂) = γ1−α{πγ(f)−π(f)}. Hence, by Lemma 6.12
and A4(γ̄, 0), there exists q3 ∈ N such that for all x ∈ Rd and n ∈ N∗,

Af1(x, n, γ) ≤ Cγ2(α−2)
∥∥∥Aγ f̂

∥∥∥2

V 1/2
{1 + V (x)/(nγ)}

≤ Cγ2(α−2)
∥∥∥Aγ f̂

∥∥∥2

0,q3
{1 + V (x)/(nγ)}

≤ Cγ2(α−2) ‖f‖23,p {1 + V (x)/(nγ)} , (6.74)

which gives (6.59). Finally, for any f ∈ C3
poly(Rd,R), there exists pf ∈ N such that

‖f‖3,pf < +∞, and by (6.64), (6.65), (6.73) and (6.74), maxi∈{1,...,4}
∣∣∣Afi (x, n, γ)

∣∣∣ <
+∞.

Proof of Theorem 6.4. To get the result, we use a bootstrap argument based on Lemma 6.14.
Let f̂ ∈ C7

poly(Rd,R) be given by Proposition 6.1-(iii). We first apply Lemma 6.14 to the

function Aγ f̂ ∈ C3
poly(Rd,R). Note that by Proposition 6.1-(iii), A4(γ̄, 3) and (6.59),

there exist q1, q2 ∈ N such that for all γ ∈ (0, γ̄], x ∈ Rd and n ∈ N∗,

∥∥∥Aγ f̂
∥∥∥

3,q1
≤ C

∥∥∥f̂∥∥∥
7,q2
≤ C ‖f‖6,p ,

A
Aγ f̂
1 (x, n, γ) ≤ Cγ2(α−2) ‖f‖26,p {1 + V (x)/(nγ)} .

By Lemma 6.14 applied to the function Aγ f̂ , (6.57) and using πγ(Aγ f̂) = γ1−α{πγ(f)−
π(f)}, we obtain for all x ∈ Rd, γ ∈ (0, γ̄] and n ∈ N∗

Af1(x, n, γ) = γ2(α−1)

n
Ex,γ

(n−1∑
k=0

{
Aγ f̂(Xk)− γ1−α (πγ(f)− π(f))

})2
≤ C ‖f‖26,p γ

2(α−1)
{
γ−1 + V 1/2(x)γ(α/2−1)∧0

n1/2γ
+ V (x)

nγ2

}
. (6.75)

Combining Lemma 6.14 applied to the function f ∈ C6
poly(Rd,R), (6.57) and the upper

bound (6.75) give

∣∣∣∣∣∣Ex,γ
 1
n

(
n−1∑
k=0
{f(Xk)− πγ(f)}

)2− σ2
∞(f)
γ

∣∣∣∣∣∣ ≤ C ‖f‖26,p
{
γ(α−2)∧0

+ V 1/2(x)γ(α/2−1)∧0

n1/2γ
+ V 1/4(x)γ(α/4−1/2)∧0

n1/4γ3/2−α

(
γ−1/2 + V 1/2(x)

n1/2γ

)
+ V (x)

nγ2

}
.

(6.76)
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variates estimator

Note that by Young’s inequality, we get for all x ∈ Rd, γ ∈ (0, γ̄] and n ∈ N∗,

V 1/4(x)
n1/4γ1/2γ

(5α/4−2)∧(α−3/2) ≤ 1
4
V (x)
nγ2 + 3

4γ
(5α/3−8/3)∧(4α/3−2) ,

2V
1/2(x)γ(α/2−1)∧0

n1/2γ
≤ V (x)

nγ2 + γ(α−2)∧0 ,

V (x)3/4

n3/4γ3/2γ
(5α/4−3/2)∧(α−1) ≤ 4

3
V (x)
nγ2 + 1

4γ
(5α−6)∧4(α−1) .

Combining it with the fact that for all α ≥ 3/2 and γ ∈ (0, γ̄],

γ(5α/3−8/3)∧(4α−2) + γ(5α−6)∧4(α−1) ≤ Cγ(α−2)∧0 ,

concludes the proof.
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This work was supported by the École Polytechnique Data Science Initiative.

6.A Strong Law of Large Numbers and Central Limit The-
orem for the control variates estimator

Proposition 6.15. Let V : Rd → [1,+∞), γ̄ > 0. Assume A3(V, γ̄) and that πγ admits
a positive density w.r.t. the Lebesgue measure for all γ ∈ (0, γ̄]. Let f ∈ Cpoly(Rd,R),
ψ = (ψ1, . . . , ψp) : Rd → Rp, p ∈ N∗ be a fixed sieve of functions such that (1, ψ1, . . . , ψp)
is linearly independent in C(Rd,R) and for all i ∈ {1, . . . , p}, ψi ∈ C2

poly(Rd,R). Then,

for any initial probability measure ξ on (Rd,B(Rd))

lim
n→+∞

θ̂∗n(f) = θ∗γ(f) , Pξ,γ − a.s , (6.77)

where θ̂∗n(f) and θ∗γ(f) are defined in (6.18) and (6.21) respectively. Moreover, the
following CLT holds for πCV

n (f) defined in (6.17),

√
n
{
πCV
n (f)− πγ(f + L (θ∗γ(f)Tψ))

} Pξ,γ−weakly=⇒
n→+∞

N (0, σ2
∞,γ(f + L (θ∗γ(f)Tψ))) , (6.78)

where σ2
∞,γ(f + L (θ∗γ(f)Tψ)) is defined in (6.14).

Proof. By [Dou+18, Proposition 5.2.14], π̂n(ψ {f − π̂n(f)}) and Hn converges Pξ,γ-
almost surely to πγ({f − πγ(f)}ψ) and Hγ where Hγ is a symmetric positive definite
matrix defined in (6.20), and we obtain (6.77). Denote Wγ,n ∈ Rp+1 for n ∈ N∗ and
γ ∈ (0, γ̄] by

Wγ,n =
√
n (π̂n(f)− πγ(f), π̂n(Lψ)− πγ(Lψ)) .
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By [Dou+18, Proposition 21.1.3 and Theorem 21.2.11], ((1, θ)TWγ,n)n∈N∗ converges Pξ,γ-
weakly, for every θ ∈ Rp and any initial probability measure ξ, to a one-dimensional
Gaussian variable of mean 0 and variance σ2

∞,γ(f + L (θTψ)). By the Cramér-Wold
theorem, (Wγ,n)n∈N∗ converges Pξ,γ-weakly to a (p+1)-dimensional Gaussian vector Wγ

for any initial probability measure ξ, of mean 0 and covariance matrix

πγ
(
(f̂γ , L̂ψγ)(f̂γ , L̂ψγ)T − (Rγ f̂γ , RγL̂ψγ)(Rγ f̂γ , RγL̂ψγ)T

)
,

where f̂γ and L̂ψγ are solutions of the Poisson equations

(Rγ − Id)f̂γ = − (f − πγ(f)) , (Rγ − Id)L̂ψγ = − (Lψ − πγ(Lψ)) .

By Slutsky’s theorem, (θ̂∗n(f),Wγ,n)n∈N∗ converges Pξ,γ-weakly to (θ∗γ(f),Wγ) and we
obtain (6.78).

Note that for the MALA and RWM algorithms, πγ = π and π has a positive density
w.r.t. Leb (where Leb denotes the Lebesgue measure on Rd). For ULA, since RULA

γ

is Leb-irreducible for γ > 0 , Leb is absolutely continuous w.r.t. πγ . Indeed, πγ is a
maximal irreducibility measure and then Leb� πγ .

6.B Law of Large Numbers and Central Limit Theorem
for a step size γn function of the number of samples n

In this Section, we move away from the formalism of the canonical space to construct
iteratively an array of Markov chains on the same filtered probability space, which allows
us to give a precise meaning to the convergence in law of Theorem 6.5. Note first that
every homogeneous Markov chain (Xk)k∈N with values in Rd can be represented as a
random iterative sequence, i.e. Xk+1 = F (Xk, ζk+1), where (ζk)k∈N∗ is an i.i.d. sequence
of uniform random variables on [0, 1], X0 is independent of (ζk)k∈N∗ and F is a measurable
function. See for example [Dou+18, Section 1.3.2] for a proof for R-valued Markov chains,
which can be extended to any Polish space by Kuratowski’s theorem [BS78, Corollary
7.16.1].

Let (ζk)k∈N∗ be an i.i.d. sequence of uniform random variables on [0, 1] and Ξ be
a random variable distributed according to the initial probability measure ξ, defined
on the same probability space (Ω,F ,P). Consider the filtration (Fk)k∈N defined for all
k ∈ N by Fk = σ(Ξ, ζ1, . . . , ζk). Let (γn)n∈N∗ be a positive sequence. By the preceding
discussion, for all n ∈ N∗, there exists a Borel measurable function Fγn : Rd× [0, 1]→ Rd
such that the process (Xn

k )k∈N defined for all k ∈ N by

Xn
k+1 = Fγn(Xn

k , ζk+1) and Xn
0 = Ξ , (6.79)

is a Markov chain on (Ω, (Fk)k∈N) associated with the Markov kernel Rγn .
In the sequel, C is a non-negative constant independent of n ∈ N∗ which may take

different values at each appearance. We first derive a Law of Large Numbers for the array
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the number of samples n

{(Xn
k )k∈{0,...,n−1}, n ∈ N} in Lemma 6.16. As an application, we show in Lemma 6.17

that θ̂∗n(f) converges in probability to θ∗(f) for a smooth f : Rd → R, where θ̂∗n(f)
and θ∗(f) are defined in (6.18) and (6.13), relatively to (Xn

k )k∈N. A Central Limit
Theorem is provided in Proposition 6.18. Combining these results, we obtain the proof
of Theorem 6.5.

Lemma 6.16. Let V : Rd → [1,+∞), γ̄ > 0. Assume H13(4), A3(V, γ̄), and A4(γ̄, 0).
Let {(Xn

k )k∈{0,...,n−1}, n ∈ N} be defined in (6.79) and assume that ξ(V ) < +∞. Let

f ∈ C3
poly(Rd,R), (γn)n∈N∗ be a positive sequence such that γn ≤ γ̄ for all n ∈ N∗, and

limn→+∞(nγn)−1 + γn = 0. Then,

n−1
n−1∑
k=0
{f(Xn

k )− π(f)} P=⇒
n→+∞

0 .

Proof. Let f ∈ C3
poly(Rd,R) and p ∈ N such that ‖f‖3,p < +∞. By Proposition 6.1-(iii),

there exists f̂ ∈ C4
poly(Rd,R) such that L f̂ = −(f − π(f)). By (6.61), we have for all

n ∈ N∗,

n−1
n−1∑
k=0
{f(Xn

k )− π(f)} =
4∑
i=1

T fi (n) ,

where

T f1 (n) = (nγn)−1
{
f̂(Xn

0 )− f̂(Xn
n )
}
,

T f2 (n) = (nγn)−1
n−1∑
k=0

{
f̂(Xn

k+1)−Rγn f̂(Xn
k )
}
,

T f3 (n) = n−1γα−1
n

n−1∑
k=0

Aγn f̂(Xn
k ) .

By (6.29), limn→+∞ E
[(
T f1 (n)

)2
]

= 0. Set gγn(x) = E
[(
f̂(Xn

1 )−Rγn f̂(x)
)2
]
. By

Lemma 6.13 with k = 0, gγn ∈ C0
poly(Rd,R) and there exists q1 ∈ N such that for all

n ∈ N∗, ‖gγn‖0,q1 ≤ Cγn‖f‖23,p. By the Markov property and (6.29), we obtain for all
n ∈ N∗,

E
[(
T f2 (n)

)2
]

= (nγn)−2
n−1∑
k=0

E [gγn(Xn
k )] ≤ C(nγn)−2n ‖gγn‖0,q1

≤ C(nγn)−1 ‖f‖23,p ,

and limn→+∞ E
[(
T f2 (n)

)2
]

= 0 by assumption on (γn)n∈N∗ . By A4(γ̄, 0), there exists

q2 such that for all n ∈ N∗, ‖Aγn f̂‖0,q2 ≤ C‖f‖3,p and we get

E
[(
T f3 (n)

)2
]
≤ n−1γ2(α−1)

n

n−1∑
k=0

E
[(

Aγn f̂(Xn
k )
)2
]
≤ Cγ2(α−1)

n ‖f‖23,p ,
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and limn→+∞ E
[(
T f3 (n)

)2
]

= 0 by assumption on (γn)n∈N∗ , which concludes the proof.

Lemma 6.17. Let V : Rd → [1,+∞), γ̄ > 0. Assume H13(4), A3(V, γ̄), and A4(γ̄, 0).
Let {(Xn

k )k∈{0,...,n−1}, n ∈ N} be defined in (6.79) and assume that ξ(V ) < +∞. Let

f ∈ C3
poly(Rd,R), ψ = (ψ1, . . . , ψp) : Rd → Rp, p ∈ N∗ be a fixed sieve of functions

such that (1, ψ1, . . . , ψp) is linearly independent in C(Rd,R) and for all i ∈ {1, . . . , p},
ψi ∈ C5

poly(Rd,R). Let (γn)n∈N∗ be a positive sequence such that γn ≤ γ̄ for all n ∈ N∗,
limn→+∞(nγn)−1 + γn = 0. Then,

θ̂∗n(f)− θ∗(f) P=⇒
n→+∞

0 ,

where θ̂∗n(f) and θ∗(f) are defined in (6.18) and (6.13), respectively, relatively to (Xn
k )k∈N.

Proof. For all n ∈ N∗,

θ̂∗n(f)− θ∗(f) =
(
H+
n −H−1

)
π̂n (ψ(f − π̂n(f)))

+H−1 {π̂n (ψ(f − π̂n(f)))− π (ψ(f − π(f)))} .

By Lemma 6.16,

π̂n (ψ(f − π̂n(f)))− π (ψ(f − π(f))) P=⇒
n→+∞

0 ,

and it is enough to show that

H+
n −H−1 P=⇒

n→+∞
0 ,

to conclude the proof. Let ε > 0 and consider the following decomposition:{∥∥∥H+
n −H−1

∥∥∥ ≥ ε} =
{∥∥∥H+

n −H−1
∥∥∥ ≥ ε} ∩ {∥∥∥H−1

∥∥∥ ‖Hn −H‖ ≤ 1/2
}

∪
{∥∥∥H+

n −H−1
∥∥∥ ≥ ε} ∩ {∥∥∥H−1

∥∥∥ ‖Hn −H‖ > 1/2
}
,

where ‖·‖ denotes the operator norm. Since by Lemma 6.16,

Hn −H
P=⇒

n→+∞
0 ,

we obtain

P
({∥∥∥H+

n −H−1
∥∥∥ ≥ ε} ∩ {∥∥∥H−1

∥∥∥ ‖Hn −H‖ > 1/2
})

≤ P
(∥∥∥H−1

∥∥∥ ‖Hn −H‖ > 1/2
)
−→

n→+∞
0 .
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By [Dou+18, Corollary 22.A.6], on the event
{∥∥H−1∥∥ ‖Hn −H‖ ≤ 1/2

}
,

∥∥∥H+
n −H−1

∥∥∥ =
∥∥∥H−1

n −H−1
∥∥∥ ≤ ∥∥H−1∥∥2 ‖Hn −H‖

1− ‖H−1‖ ‖Hn −H‖
≤ 2

∥∥∥H−1
∥∥∥2
‖Hn −H‖ ,

and,

P
({∥∥∥H+

n −H−1
∥∥∥ ≥ ε} ∩ {∥∥∥H−1

∥∥∥ ‖Hn −H‖ ≤ 1/2
})

≤ P
(

2
∥∥∥H−1

∥∥∥2
‖Hn −H‖ ≥ ε

)
−→

n→+∞
0 ,

which gives the result.

Proposition 6.18. Let V : Rd → [1,+∞), γ̄ > 0. Assume H13(10), A3(V, γ̄), and
A4(γ̄, 6). Let {(Xn

k )k∈{0,...,n−1}, n ∈ N} be defined in (6.79) and assume that ξ(V ) <
+∞. Let f ∈ C9

poly(Rd,R), (γn)n∈N∗ be a positive sequence satisfying limn→+∞(nγn)−1+
γn = 0 and f̂ be a solution of the Poisson equation L f̂ = π(f)− f . Then,

(i) if π(A0f̂) limn→+∞ n
1/2γ

α−1/2
n = 0,

n−1/2γ1/2
n

n−1∑
k=0
{f(Xn

k )− π(f)} P−weakly=⇒
n→+∞

N (0, σ2
∞(f)) ,

(ii) if limn→+∞ n
1/2γ

α−1/2
n = γ∞ ∈ [0,+∞),

n−1/2γ1/2
n

n−1∑
k=0
{f(Xn

k )− π(f)} P−weakly=⇒
n→+∞

N (γ∞π(A0f̂), σ2
∞(f)) ,

(iii) if π(A0f̂) lim infn→+∞ n
1/2γ

α−1/2
n = +∞,

γ1−α
n

n−1∑
k=0
{f(Xn

k )− π(f)} P=⇒
n→+∞

π(A0f̂) ,

where σ2
∞(f) is defined in (6.7).

Note that if the invariant distribution of Rγ is π for all γ ∈ (0, γ̄] (e.g. the case of
MALA or RWM), we have under A4(γ̄, 0) and by the dominated convergence theorem,
π(A0f̂) = 0.

Proof. Let f ∈ C9
poly(Rd,R) and p ∈ N such that ‖f‖9,p < +∞. By Proposition 6.1-(iii),

there exists f̂ ∈ C10
poly(Rd,R) such that L f̂ = −(f − π(f)). By (6.61), we have for all

n ∈ N∗,

n−1/2γ1/2
n

n−1∑
k=0
{f(Xn

k )− π(f)} =
4∑
i=1

Bf
i (n) ,
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where

Bf
1 (n) = (nγn)−1/2

{
f̂(Xn

0 )− f̂(Xn
n )
}
,

Bf
2 (n) = (nγn)−1/2

n−1∑
k=0

{
f̂(Xn

k+1)−Rγn f̂(Xn
k )
}
,

Bf
3 (n) = n−1/2γ1/2

n γα−1
n

n−1∑
k=0

{
Aγn f̂(Xn

k )− πγn(Aγn f̂)
}
,

Bf
4 (n) = n1/2γ1/2

n γα−1
n πγn(Aγn f̂) .

We show in the sequel that Bf
1 (n) and Bf

3 (n) are remainder terms that converge in

probability to 0 as n→ +∞. Bf
2 (n) converges in law to a Gaussian random variable of

mean 0 and variance σ2
∞(f). Bf

4 (n) is the bias term.

By (6.29), limn→+∞ E
[∣∣∣Bf

1 (n)
∣∣∣] = 0 and then Bf

1 (n) converges in probability to 0
as n→ +∞. By A4(γ̄, 6), Aγn f̂ ∈ C6

poly(Rd,R) and there exists q1 ∈ N such that for all

n ∈ N∗, ‖Aγn f̂‖6,q1 ≤ C‖f‖9,p. We obtain by Theorem 6.4 and using that ξ(V ) < +∞,

E
[(
Bf

3 (n)
)2
]
≤ C

∥∥∥Aγn f̂
∥∥∥2

6,p
γ2(α−1)
n

{
1 + 1

nγn

}
,

and limn→+∞ E
[(
Bf

3 (n)
)2
]

= 0.

We now consider Bf
2 (n) for n ∈ N∗. For k ∈ {0, . . . , n− 1}, denote by

θk+1,n = (nγn)−1/2
{
f̂(Xn

k+1)−Rγn f̂(Xn
k )
}
.

By [HH14, Corollary 3.1, Chapter 3], Bf
2 (n) converges in law to a Gaussian random

variable of mean 0 and variance σ2
∞(f) if

n−1∑
k=0

E
[
θ2
k+1,n

∣∣∣Fk] P=⇒
n→+∞

σ2
∞(f) , (6.80)

n−1∑
k=0

E
[
θ4
k+1,n

∣∣∣Fk] P=⇒
n→+∞

0 . (6.81)

Set gγn(x) = E
[(
f̂(Xn

1 )−Rγn f̂(x)
)2
]
. By Lemma 6.13 with k = 6, gγn ∈ C6

poly(Rd,R)
and there exists q2 ∈ N such that for all n ∈ N∗

‖gγn‖6,q2 ≤ Cγn‖f‖29,p . (6.82)

By Proposition 6.1-(iii), for all n ∈ N∗, there exists ĝγn ∈ C7
poly(Rd,R) such that L ĝγn =

−(gγn − πγn(gγn)). By the Markov property and (6.61), we have for all n ∈ N∗

n−1∑
k=0

E
[
θ2
k+1,n

∣∣∣Fk] = 1
nγn

n−1∑
k=0

gγn(Xn
k ) = Bf

21(n) +Bf
22(n) +Bf

23(n) +Bf
24(n) ,
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where

Bf
21(n) = γ−1

n πγn(gγn) ,

Bf
22(n) = (nγ2

n)−1 {ĝγn(Xn
0 )− ĝγn(Xn

n )} ,

Bf
23(n) = (nγ2

n)−1
n−1∑
k=0

{
ĝγn(Xn

k+1)−Rγn ĝγn(Xn
k )
}
,

Bf
24(n) = 1

nγn
γα−1
n

n−1∑
k=0

{
Aγn ĝγn(Xn

k )− γ1−α
n (πγn(ĝγn)− π(ĝγn))

}
.

By (6.29),

E
[∣∣∣Bf

22(n)
∣∣∣] ≤ C(nγ2

n)−1 ‖gγn‖6,q2
≤ C(nγn)−1 ‖f‖29,p ,

limn→+∞ E
[∣∣∣Bf

22(n)
∣∣∣] = 0, and Bf

22(n) converges in probability to 0 as n → +∞. By

(6.29), (6.82), the Markov property and Lemma 6.13 with k = 0, we get for all n ∈ N∗

E
[(
Bf

23(n)
)2
]

= 1
nγ4

n

1
n

n−1∑
k=0

E
[(
ĝγn(Xn

k+1)−Rγn ĝγn(Xn
k )
)2]

≤ C 1
nγ4

n

γn ‖gγn‖
2
6,q2
≤ C 1

nγn
‖f‖49,p ,

and limn→+∞ E
[(
Bf

23(n)
)2
]

= 0. We can decompose Bf
24(n) as,

E
[(
Bf

24(n)
)2
]

= γ
2(α−1)
n

nγ2
n

E

 1
n

(
n−1∑
k=0

{
Aγn ĝγn(Xn

k )− γ1−α
n (πγn(ĝγn)− π(ĝγn))

})2
= 1
nγ3

n

Bf
241(n) (6.83)

where,

Bf
241(n) = γ2(α−1)

n γnE

 1
n

(
n−1∑
k=0

{
Aγn ĝγn(Xn

k )− γ1−α
n (πγn(ĝγn)− π(ĝγn))

})2 .

By A 4(γ̄, 6) and Proposition 6.1-(iii), there exists q3 ∈ N such that for all n ∈ N∗,
‖Aγn ĝγn‖3,q3 ≤ C‖gγn‖6,q2 . By Lemma 6.14, (6.59), (6.82) and using that ξ(V ) < +∞,

Bf
241(n) ≤ Cγnγ2(α−2)

n ‖Aγn ĝγn‖
2
3,q3
{1 + 1/(nγn)} ≤ C ‖gγn‖

2
6,q2
{1 + 1/(nγn)}

≤ Cγ2
n ‖f‖

4
9,p {1 + 1/(nγn)} .

Combining it with (6.83), we obtain limn→+∞ E
[(
Bf

24(n)
)2
]

= 0. For Bf
21(n), we have

by (6.72) and (6.82) for all n ∈ N∗,∣∣∣γ−1
n πγn(gγn)− σ2

∞(f)
∣∣∣ ≤ C ‖gγn‖23,q2

γα∧2
n γ−1

n ≤ C ‖f‖
4
9,p γnγ

α∧2
n ,
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and limn→+∞ γ
−1
n πγn(gγn) = σ2

∞(f). This gives (6.80). For (6.81), we have for k ∈
{0, . . . , n− 1}

E
[
θ4
k+1,n

∣∣∣Fk] = (nγn)−2hγn(Xn
k )

where hγn(x) = E
[{
f̂(Xn

1 )−Rγn f̂(x)
}4
]
. By Cauchy-Schwarz inequality and Lemma 6.13,

there exists q4 ∈ N such that for all n ∈ N∗, ‖hγn‖0,q4 ≤ Cγ2
n‖f‖43,p. By (6.29), we obtain

for all n ∈ N∗

E
[∣∣∣∣∣
n−1∑
k=0

E
[
θ4
k+1,n

∣∣∣Fk]
∣∣∣∣∣
]
≤ Cn−1 ‖f‖43,p

and (6.81) is satisfied.

For Bf
4 (n), we only have to show that limn→+∞ πγn(Aγn f̂) = π(A0f̂). Using Propo-

sition 6.3, we have for all n ∈ N∗,∣∣∣πγn(Aγn f̂)− π(Aγn f̂)
∣∣∣ ≤ C ∥∥∥Aγn f̂

∥∥∥
3,q1

γα−1
n ≤ C ‖f‖9,p γ

α−1
n .

Combining it with A 4(γ̄, 6) and the dominated convergence theorem, we obtain the
result, which concludes the proof.

Proof of Theorem 6.5. We consider the case limn→+∞ n
1/2γ

α−1/2
n = γ∞ ∈ [0,+∞), and

we denote by µCV
f = γ∞π(A0(f̂ − θ∗(f)Tψ) ∈ [0,+∞). The case

π(A0(f̂ − θ∗(f)Tψ)) lim inf
n→+∞

n1/2γα−1/2
n = +∞

can be handled in a similar way. Denote Wn ∈ Rp+1 for n ∈ N∗ by

Wn = n1/2γ1/2
n (π̂n(f)− π(f), π̂n(Lψ)) .

By Proposition 6.18, ((1, θ)TWn)n∈N∗ converges P-weakly, for every θ ∈ Rp, to a one-
dimensional Gaussian variable of mean µCV

f and variance σ2
∞(f + L (θTψ)). By the

Cramér-Wold theorem, (Wn)n∈N∗ converges P-weakly to a (p+ 1)-dimensional Gaussian

vector W of mean γ∞
(
π(A0f̂),−π(A0ψ)

)
and covariance matrix

2π
(
(f̂,−ψ)(−L )(f̂,−ψ)T

)
.

By Lemma 6.17 and Slutsky’s theorem, (θ̂∗n(f),Wn)n∈N∗ converges P-weakly to (θ∗(f),W ),
which concludes the proof.
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6.C Additional proofs

6.C.1 Proof of Proposition 6.1

(i) By H13(2), [RT96, Theorems 2.1], π is the unique stationary distribution of the
semigroup (Pt)t≥0 associated to (6.6). In addition, by [RT96, Theorems 2.1] and
[Bak+08, Corollary 1.6], (Pt)t≥0 is V -uniformly geometrically ergodic w.r.t. π with
V (x) = exp{(υ/4)(1 + ‖x− x?‖2)1/2}.

(ii) is given by [GM96, Theorem 4.4] using that (Pt)t≥0 is V -uniformly geometrically
ergodic; see also see [Bha82] and [CCG12].

(iii) follows from [PV01, Theorem 1].

(iv) Let f, g ∈ C2
poly(Rd,R) and M > 0. We split π(f(−L )g) into I1 + I2 where

I1 =
∫

[−M,M ]d
f(x)(−L )g(x)π(dx) , I2 =

∫
([−M,M ]d)c

f(x)(−L )g(x)π(dx) .

By the dominated convergence theorem, limM→+∞ I2 = 0. For all i ∈ {1, . . . , d},
a ∈ R and x ∈ Rd, denote by xa−i = (x1, . . . , xi−1, a, xi+1, . . . , xd) and by x−i =
(x1, . . . , xi−1, xi+1, . . . , xd). By integrations by parts,

I1 =
∫

[−M,M ]d
f(x) 〈∇U(x),∇g(x)〉π(dx) +

∫
[−M,M ]d

f(x)(−∆g(x))π(dx)

=
∫

[−M,M ]d
f(x) 〈∇U(x),∇g(x)〉π(dx)

+
d∑
i=1

∫
[−M,M ]d−1

{
f(x−M−i ) ∂g

∂xi
(x−M−i )π(x−M−i )− f(xM−i)

∂g

∂xi
(xM−i)π(xM−i)

}
dx−i

+
∫

[−M,M ]d
{〈∇f(x),∇g(x)〉 − f(x) 〈∇U(x),∇g(x)〉}π(dx)

and limM→+∞ I1 = π(〈∇f,∇g〉) which concludes the proof.

6.C.2 Proof of Lemma 6.6

By [DM16, Theorem 32], we have for x, y ∈ Rd and γ > 0

‖δx(RULA
γ )d1/γe − δy(RULA

γ )d1/γe‖TV ≤ 1− 2Φ

−‖x− y‖
2Ξ1/2
d1/γe


where

Ξd1/γe =
d1/γe∑
i=1

(2γ)
i∏

j=1
(1 + γL)−2 = 1− exp (−2 d1/γe ln(1 + γL))

L+ (γL2)/2 ,

which gives (i). The assertion (ii) follows from [DM17, Proposition 8] and [DM17,
Proposition 13].
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6.C.3 Proof of Lemma 6.8

We have for all x ∈ Rd

∇Ulog(x) = −XTY +
N∑
i=1

Xi/(1 + e−XT
i x) + x/ς2 ,

D2 Ulog(x) =
N∑
i=1

e−XT
i x(

1 + e−XT
i x
)2 XiXT

i + Id /ς2 ,

D3 Ulog(x) =
N∑
i=1

e−XT
i x(

1 + e−XT
i x
)2

{
2 e−XT

i x

1 + e−XT
i x
− 1

}
X⊗3
i .

Using for all i ∈ {1, . . . , N} and x ∈ Rd that 0 < e−XT
i x/(1 + e−XT

i x)2 ≤ 1/4, Ulog is
strongly convex, gradient Lipschitz and satisfies H14, H16, H13(k) for all k ∈ N∗, H17
and H18.

For Upro, define h : R→ R− for all t ∈ R by h(t) = ln(Φ(t)). We have for all t ∈ R,

h′(t) = Φ′(t)
Φ(t) , h′′(t) = −Φ′(t)

Φ(t)

{
t+ Φ′(t)

Φ(t)

}
,

h(3)(t) = Φ′(t)
Φ(t)

{
2
(Φ′(t)

Φ(t)

)2
+ 3tΦ

′(t)
Φ(t) + t2 − 1

}

and for all x ∈ Rd

∇Upro(x) =
N∑
i=1

{
(1− Yi)h′(−XT

i x)− Yih′(XT
i x)

}
Xi + x/ς2 ,

D2 Upro(x) =
N∑
i=1

{
−(1− Yi)h′′(−XT

i x)− Yih′′(XT
i x)

}
XiXT

i + Id /ς2 ,

D3 Upro(x) =
N∑
i=1

{
(1− Yi)h(3)(−XT

i x)− Yih(3)(XT
i x)

}
X⊗3
i .

By an integration by parts, we have for all t < 0

t+ Φ′(t)
Φ(t) = − t

Φ(t)

∫ t

−∞

e−s2/2
√

2πs2 ds

and t+ Φ′(t)/Φ(t) ≥ 0 for all t ∈ R. Let t < 0 and s = −t > 0. We have Φ(t) = Φ̄(s) =
erfc(s/

√
2)/2 where erfc : R → R+ is the complementary error function defined for all

u ∈ R by erfc(u) = (2/
√
π)
∫+∞
u e−v2dv. By [GR14, Section 8.25, formula 8.254], we

have the following asymptotic expansion for s→ +∞

Φ̄(s) = e−s2/2
√

2πs

(
1− s−2 + 3s−4 +O(s−6)

)
.
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Using that Φ′(t) = (2π)−1/2e−t2/2 for all t ∈ R, we get asymptotically for t → −∞ and
s = −t→ +∞,

Φ′(t)/Φ(t) = s
(
1 + s−2 − 2s−4 +O(s−6)

)
(6.84)

and limt→−∞ h
′′(t) = −1. There exists then C > 0 such that for all t ∈ R, −C ≤ h′′(t) ≤

0. Upro is then strongly convex, gradient Lipschitz and satisfies H14, H16, H13(k) for all
k ∈ N and H17. By (6.84), we have for t→ −∞ and s = −t→ +∞, h(3)(t) = O(s−1).
Upro satisfies then H18.

6.C.4 Proof of Lemma 6.11

The proof is adapted from [FHS15, Lemma 1]. Let i ∈ {0, . . . , 6}, ϕ ∈ C4+i
poly(Rd,R),

γ̄ > 0, γ ∈ [0, γ̄] and x, y ∈ Rd. Note that τMALA
γ (x, y) defined in (6.43) may be expressed

as

τMALA
γ (x, y) = U(y)− U(x)− (1/2) 〈y − x,∇U(x) +∇U(y)〉

+ (γ/4)
{
‖∇U(y)‖2 − ‖∇U(x)‖2

}
. (6.85)

A Taylor expansion of U and ∇U around x yields

U(y)− U(x) = 〈∇U(x), y − x〉+ (1/2) D2 U(x)[(y − x)⊗2] + (1/6) D3 U(x)[(y − x)⊗3]

+ (1/6)
∫ 1

0
(1− t)3 D4 U((1− t)x+ ty)[(y − x)⊗4]dt , (6.86)

∇U(y) = ∇U(x) + D2 U(x)[y − x] + (1/2) D3 U(x)[(y − x)⊗2]

+ (1/2)
∫ 1

0
(1− t)2 D4 U((1− t)x+ ty)[(y − x)⊗3]dt . (6.87)

Substituting (6.86) and (6.87) into (6.85), we obtain for z ∈ Rd, τMALA
γ (x, x− γ∇U(x) +√

2γz) = γ3/2ξγ(x, z) where ξγ is defined for all x, z ∈ Rd and γ ∈ [0, γ̄] by

ξγ(x, z) = −(1/12) D3 U(x)[(−√γ∇U(x) +
√

2z)⊗3]

− (√γ/12)
∫ 1

0
(1− t)2(1 + 2t) D4 U(x− tγ∇U(x) + t

√
2γz)[(−√γ∇U(x) +

√
2z)⊗4]dt

+ (1/2)
〈
∇U(x),

∫ 1

0
D2 U(x− tγ∇U(x) + t

√
2γz)[−√γ∇U(x) +

√
2z]dt

〉
+ (√γ/4)

∥∥∥∥∫ 1

0
D2 U(x− tγ∇U(x) + t

√
2γz)[−√γ∇U(x) +

√
2z]dt

∥∥∥∥2
.

Note that by the dominated convergence theorem, for all x, z ∈ Rd, limγ→0 ξγ(x, z) =
ξ0(x, z) where ξ0 is defined in (6.45). By (6.42), we get

RMALA
γ ϕ(x)− ϕ(x) = E

[
ϕ(x− γ∇U(x) +

√
2γZ)− ϕ(x)

]
+ E

[(
e−γ3/2ξγ(x,Z)+ − 1

){
ϕ(x− γ∇U(x) +

√
2γZ)− ϕ(x)

}]
, (6.88)
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where Z is an i.i.d. standard d-dimensional Gaussian variable. Combining (6.88) with
the Taylor expansion (6.33), we get (i) with A MALA

γ : C4+i
poly(Rd,R)→ Ci

poly(Rd,R) given

for all ϕ ∈ C4+i
poly(Rd,R), x ∈ Rd and γ ∈ (0, γ̄] by

A MALA
γ ϕ(x) = A ULA

γ ϕ(x) + E
[
γ−3/2

{
1− e−γ3/2 max(0,ξγ(x,Z))

}
×
{∫ 1

0

〈
∇ϕ(x− tγ∇U(x) + t

√
2γZ),√γ∇U(x)−

√
2Z
〉

dt
}]

(6.89)

and A ULA
γ given in (6.34). The assertion (ii) follows from taking the limit γ ↓ 0+ in

(6.89) and the dominated convergence theorem.

6.D Numerical experiments - additional results

We provide additional plots for the logistic regression, see Figure 6.2 and Figure 6.3,
and the results for the Bayesian probit regression presented in Section 6.4, see Table 6.2,
Figure 6.4 and Figure 6.5. The parameters are set to the same values as for the Bayesian
logistic regression. The results are similar to the results obtained for the Bayesian logistic
regression.
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Figure 6.2: Boxplots of x1, x2, x3, x4 using the ULA, MALA and RWM algorithms for the logistic
regression. The compared estimators are the ordinary empirical average (O), our estimator with
a control variate (6.17) using first (CV-1) or second (CV-2) order polynomials for ψ, and the
zero-variance estimator of [PMG14] using a first (ZV-1) or second (ZV-2) order polynomial basis.
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Figure 6.3: Boxplots of x2
1, x

2
2, x

2
3, x

2
4 using the ULA, MALA and RWM algorithms for the logistic

regression. The compared estimators are the ordinary empirical average (O), our estimator with
a control variate (6.17) using first (CV-1) or second (CV-2) order polynomials for ψ, and the
zero-variance estimator of [PMG14] using a first (ZV-1) or second (ZV-2) order polynomial basis.
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Figure 6.4: Boxplots of x1, x2, x3 using the ULA, MALA and RWM algorithms for the probit
regression. The compared estimators are the ordinary empirical average (O), our estimator with
a control variate (6.17) using first (CV-1) or second (CV-2) order polynomials for ψ, and the
zero-variance estimator of [PMG14] using a first (ZV-1) or second (ZV-2) order polynomial basis.



Chapter 6. Diffusion approximations and control variates for MCMC 179

O CV-1 CV-2 ZV-1 ZV-2
method

0.126

0.128

0.130

0.132

0.134

x2 1

algorithm
ULA
MALA
RWM

O CV-1 CV-2 ZV-1 ZV-2
method

3.82

3.84

3.86

3.88

3.90

3.92

3.94

3.96

x2 2

algorithm
ULA
MALA
RWM

O CV-1 CV-2 ZV-1 ZV-2
method

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

x2 3

algorithm
ULA
MALA
RWM

Figure 6.5: Boxplots of x2
1, x

2
2, x

2
3 using the ULA, MALA and RWM algorithms for the probit

regression. The compared estimators are the ordinary empirical average (O), our estimator with
a control variate (6.17) using first (CV-1) or second (CV-2) order polynomials for ψ, and the
zero-variance estimator of [PMG14] using a first (ZV-1) or second (ZV-2) order polynomial basis.
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Table 6.2: Estimates of the asymptotic variances for ULA, MALA and RWM and each parameter
xi, x

2
i for i ∈ {1, . . . , d}, and of the variance reduction factor (VRF) on the example of the probit

regression.

MCMC CV-1-MCMC CV-2-MCMC ZV-1-MCMC ZV-2-MCMC
Variance VRF Variance VRF Variance VRF Variance VRF Variance

x1 ULA 2.1 24 0.089 2.9e+03 0.00073 20 0.11 2.7e+03 0.00078
MALA 0.41 22 0.019 2.7e+03 0.00015 18 0.023 2.6e+03 0.00016
RWM 1.2 23 0.05 2.2e+03 0.00054 21 0.056 2.2e+03 0.00053

x2 ULA 27 24 1.1 2.8e+03 0.0099 18 1.5 2.4e+03 0.011
MALA 6.4 24 0.27 2.9e+03 0.0022 19 0.34 2.6e+03 0.0025
RWM 13 18 0.72 1.8e+03 0.0073 16 0.81 1.8e+03 0.0075

x3 ULA 11 24 0.47 6.7e+03 0.0017 18 0.62 6.3e+03 0.0018
MALA 2.6 23 0.11 7e+03 0.00037 18 0.14 6.8e+03 0.00038
RWM 5.5 18 0.3 4.3e+03 0.0013 16 0.34 4.3e+03 0.0013

x2
1 ULA 0.75 3.5 0.22 1.6e+02 0.0048 2.8 0.26 1.3e+02 0.0057

MALA 0.15 3.5 0.043 1.5e+02 0.001 2.8 0.053 1.3e+02 0.0011
RWM 0.43 2.6 0.16 1.2e+02 0.0035 2.4 0.18 1.2e+02 0.0037

x2
2 ULA 4.7e+02 9.3 51 1.4e+03 0.33 7.5 63 1.2e+03 0.4

MALA 1.1e+02 9.1 12 1.5e+03 0.073 7.6 14 1.3e+03 0.085
RWM 2.2e+02 7.7 29 1e+03 0.22 6.9 33 9.8e+02 0.23

x2
3 ULA 1.1e+02 9.8 11 9.7e+02 0.11 7.9 14 7.9e+02 0.14

MALA 24 9.7 2.5 9.8e+02 0.025 8.1 3 8.5e+02 0.029
RWM 52 7.9 6.7 6.1e+02 0.086 7.1 7.4 5.9e+02 0.088
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6.E Additional proofs on the diffusion approximation of
RWM

In this Section, we give the proofs of Lemma 6.9 and Lemma 6.10. These results deal
with the diffusion approximation for the Random Walk Metropolis algorithm.

In the sequel, C is a positive constant which can change from line to line but does
not depend on γ. For M ∈ Rd×d, denote by ‖M‖F the Frobenius norm of M . For a set

A ⊂ Rd, define by Ac = Rd \ A. For all x ∈ Rd̃ and M > 0, we denote by Bd̃(x,M)
(respectively Bd̃(x,M)), the open (respectively close) ball centered at x of radius M .
When the dimension d of the state space Rd is unambiguous, they are respectively
denoted by B(x,M) and B(x,M).

6.E.1 Proof of Lemma 6.9

The proof is adapted from [FHS15, Lemma 1]. Let ϕ ∈ C4
poly(Rd,R), γ̄ > 0, γ ∈ [0, γ̄],

x ∈ Rd and Z be an i.i.d. standard d-dimensional Gaussian variable. By a Taylor
expansion, we obtain

τRWM(x, x+
√

2γZ) =
√

2γ 〈∇U(x), Z〉+(2γ)
∫ 1

0
(1−t) D2 U(x+t

√
2γZ)[Z⊗2]dt (6.90)

where τRWM is defined in (6.38). Define ζγ : Rd × Rd → R for all x, z ∈ R and γ ∈ (0, γ̄]
by,

ζγ(x, z) =
[
1− exp

{
−τRWM(x, x+

√
2γz)+

}
−
√

2γ 〈∇U(x), z〉+
]/

γ . (6.91)

ζγ is continuous. Note that for all x, y ∈ Rd,

τRWM(x, y)+ − (1/2) {τRWM(x, y)+}2 ≤ 1− e−τRWM(x,y)+ ≤ τRWM(x, y)+ . (6.92)

By (6.90), there exists p1 ≥ 0 such that for all γ ∈ (0, γ̄] and x, z ∈ Rd∣∣∣τRWM(x, x+
√

2γz)+ −
√

2γ 〈∇U(x), z〉+
∣∣∣ ≤ Cγ(1 + ‖x‖p1 + ‖z‖p1) .

Combining it with (6.92), there exists p2 ≥ 0 such that for all γ ∈ (0, γ̄], x, z ∈ Rd,
|ζγ(x, z)| ≤ C(1 + ‖x‖p2 + ‖z‖p2). By (6.37), we have

RRWM
γ ϕ(x)− ϕ(x) = E

[
ϕ(x+

√
2γZ)− ϕ(x)

]
+ E

[(
e−τRWM(x,Y )+ − 1

){
ϕ(x+

√
2γZ)− ϕ(x)

}]
(6.93)

and using a Taylor expansion again, we get for all z ∈ Rd,

ϕ(x+
√

2γz)− ϕ(x) =
√

2γ 〈∇ϕ(x), z〉+ (2γ)
∫ 1

0
(1− t) D2 ϕ(x+ t

√
2γz)[z⊗2]dt

=
√

2γ 〈∇ϕ(x), z〉+ γD2 ϕ(x)[z⊗2] + (
√

2/3)γ3/2 D3 ϕ(x)[z⊗3]

+ (2/3)γ2
∫ 1

0
(1− t)3 D4 ϕ(x+ t

√
2γz)[z⊗4]dt . (6.94)
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Note that (6.40) is equivalent to RRWM
γ = Id +γL + γ3/2A RWM

γ for γ > 0. By (6.93),

(6.94) and using for all x ∈ Rd,

E
[
〈∇U(x), Z〉+ 〈∇ϕ(x), Z〉

]
= (1/2) 〈∇U(x),∇ϕ(x)〉 ,

A RWM
γ : C4

poly(Rd,R)→ C0
poly(Rd,R) is given for ϕ ∈ C4

poly(Rd,R), x ∈ Rd and γ ∈ (0, γ̄]
by

A RWM
γ ϕ(x) = −E

[ ∫ 1

0
(1− t) D2 ϕ(x+ t

√
2γZ)[Z⊗2]dt

{
23/2 〈∇U(x), Z〉+ + 2√γζγ(x, Z)

}
+
√

2ζγ(x, Z) 〈∇ϕ(x), Z〉 − (2/3)√γ
∫ 1

0
(1− t)3 D4 ϕ(x+ t

√
2γZ)[Z⊗4]dt

]
,

(6.95)

which gives (i).

For the assertion (ii), for any x, z ∈ Rd, distinguishing the cases where 〈∇U(x), z〉 is
positive, zero, or negative, respectively, we obtain taking the limit γ ↓ 0+ in (6.91) and
using (6.90), limγ↓0+ ζγ(x, z) = ζ0(x, z) where ζ0 is defined in (6.41). By the dominated
convergence theorem, taking the limit γ ↓ 0+ in (6.95), we get (ii).

6.E.2 Proof of Lemma 6.10

We first state two technical lemmas. Define G : R+ → [0, 1] for all t ≥ 0 by

G(t) = 1/2 + 2et2/2Φ̄(t)− e2t2Φ̄(2t) . (6.96)

Lemma 6.19. There exists t0 > 0 such that for all t ∈ [0, t0], G(t) ≤ 1− (t2/2) and the
function G is non-increasing.

Proof. We have for all t ≥ 0,

G′(t) = 2tet2/2
{

Φ̄(t)− 2e(3t2)/2Φ̄(2t)
}

(6.97)

and G′(0) = 0, G′′(0) = −1 so there exists t0 > 0 such that for all t ∈ [0, t0], G(t) ≤
1− (t2/2), which is the first statement of the lemma. Regarding the second statement,
by an integration by parts, we have for all s > 0

Φ̄(s) = e−s2/2
√

2πs
− 1√

2π

∫ +∞

s

e−u2/2

u2 du

and using a change of variables u = v + t, we get for all t > 0

Φ̄(t)− 2e(3t2)/2Φ̄(2t) =
∫ +∞

t

{
2et(t−v)

(v + t)2 −
1
v2

}
e−v2/2
√

2π
dv .
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We now show that Φ̄(t) − 2e(3t2)/2Φ̄(2t) ≤ 0 for all t ≥ 0 which will finish the proof
using (6.97). We distinguish the case t ≥ 0.4 and t ∈ [0, 0.4]. For t ≥ 0.4, define
ht : [t,+∞)→ R given for all v ≥ t by

ht(v) = 2 ln(1 + t/v)− ln(2)− t2 + vt .

We show in the sequel that ht(v) ≥ 0 for all v ≥ t ≥ 0.4, which implies Φ̄(t) −
2e(3t2)/2Φ̄(2t) ≤ 0 for all t ≥ 0.4. We have for all v ≥ t

h′t(v) = t {−2/{v(t+ v)}+ 1}

and ht is decreasing on [t, vmin ∨ t] and increasing on [vmin ∨ t,+∞) where vmin = (−t+√
t2 + 8)/2. Note that vmin ≥ t is equivalent to t ≤ 1 and for all t ≥ 1, ht(t) = ln(2) > 0.

Define ` : (0, 1]→ R given for all t ∈ (0, 1] by

`(t) = ht(vmin) = 2 ln
(√

t2 + 8 + t√
t2 + 8− t

)
− ln(2) + (t/2)

(
−3t+

√
t2 + 8

)
= 5 ln(2)− 4 ln

(
−t+

√
t2 + 8

)
+ (t/2)

(
−3t+

√
t2 + 8

)
.

We have for all t ∈ (0, 1]
`′(t) = −3t+

√
t2 + 8 ≥ 0 ,

` is non-decreasing and `(0.4) > 0, which implies that for all t ∈ [0.4, 1] and v ≥ t,
ht(v) ≥ 0. Therefore, G′(t) ≤ 0 for all t ≥ 0.4.

For t ∈ [0, 0.4], we use the following lower and upper bounds by [CCM11, Theorems
1 and 2] for all s ≥ 0 √

e
3
√
π

e−(3/4)s2 ≤ Φ̄(s) ≤ (1/2)e−s2/2

and we get for all t ∈ [0, 0.4]

2e(3t2)/2Φ̄(2t)− Φ̄(t) ≥ e−t2/2
{

2
√

e
3
√
π

e−t2 − 1
2

}
.

The right hand side is decreasing on [0, 0.4] and positive because (2
√

ee−(0.4)2)/(3
√
π)−

(1/2) ≥ 0.02, which implies that G′(t) ≤ 0 for all t ∈ [0, 0.4].

Lemma 6.20. Assume that U ∈ C3
poly(Rd,R) and H 18. Let x ∈ Rd, ‖x‖ ≥ M and

K > 0. For all γ > 0 and z ∈ B(0,K), we have∥∥∥D2 U(x+
√

2γz)
∥∥∥ ≤ ∥∥∥D2 U(x)

∥∥∥ {1 + C(K)} where C(K) = (CχK)1/2γ1/4eCχ
√
γK/2 .

Proof. Let z ∈ B(0,K). Define f : [0, 1]→ Rd×d by f(t) = D2 U(x+ t
√

2γz)−D2 U(x)
for t ∈ [0, 1]. We have

d
dt ‖f(t)‖2F =

〈
f(t),D3 U(x+ t

√
2γz) ·

√
2γz

〉
F
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where for i, j ∈ {1, . . . , d}

(
D3 U(x+ t

√
2γz) ·

√
2γz

)
ij

=
d∑

k=1
∂ijkU(x+ t

√
2γz)

√
2γzk .

Using the equivalence of norms in finite dimension and H18, we get∣∣∣∣ d
dt ‖f(t)‖2F

∣∣∣∣ ≤ C ‖f(t)‖F
∥∥∥D3 U(x+ t

√
2γz)

∥∥∥√2γ ‖z‖ ≤ Cχ
(
‖f(t)‖2F +

∥∥∥D2 U(x)
∥∥∥2
)√

γ ‖z‖

which gives by Grönwall’s inequality,

‖f(1)‖2 ≤
∥∥∥D2 U(x)

∥∥∥2 (
eCχ
√
γ‖z‖ − 1

)
.

Using (es − 1)1/2 ≤
√
ses/2 for all s ≥ 0, we get the result.

We now proceed to the proof of Lemma 6.10. Note that we have for all x ∈ Rd and
γ > 0

RRWM
γ V (x)
V (x) =

∫
ARWM
x,γ

√
π(x)

π(x+
√

2γz)
e−‖z‖2/2

(2π)d/2
dz

+
∫

(ARWM
x,γ )c

{
1 +

√
π(x+

√
2γz)

π(x) − π(x+
√

2γz)
π(x)

}
e−‖z‖2/2

(2π)d/2
dz (6.98)

where ARWM
x,γ is defined in (6.39).

Intuition behind the proof Before giving the proof of Lemma 6.10, we sketch here
the analysis of a simple case in one dimension where U(x) = a |x| (with a proper regu-
larization near 0), a > 0 and let x > 0 be large enough. By (6.98), we get

RRWM
γ V (x)
V (x) ≈

∫ +∞

0
e−a
√
γ/2z e−z2/2

√
2π

dz +
∫ +∞

0

{
1 + e−a

√
γ/2z − e−a

√
2γz/2

} e−z2/2
√

2π
dz

= (1/2) + 2ea2γ/4Φ̄(
√
γ/2a)− ea2γΦ̄(

√
2γa)

= G(a
√
γ/2) ≈ 1− (γa2)/4 +O(γ3/2a3)

and the expected contraction in 1 − Cγ. The proof below is devoted to make this
intuition rigorous and the main steps are a localization argument, a comparison to the
one dimensional case and an upper bound on the remainder terms.

In the sequel, let x ∈ Rd, ‖x‖ ≥M where M is given by H18.
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(z2, . . . , zd)
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B(0,Kγ)
θγ

b(z−1)c(z−1)

ϕ(z−1)

Figure 6.6: Figure illustrating the definitions of cone(0, θγ), b(z−1), c(z−1) and ϕ(z−1).

Step 1: restriction to B(0,Kγ). Define for all γ > 0

Kγ = {8 log((1/γ) ∨ 1) + 2d log(2)}1/2 . (6.99)

Let Z be an i.i.d. standard d-dimensional Gaussian variable. By Markov’s inequality
and (6.99), we have

P (‖Z‖ ≥ Kγ) ≤ e−K2
γ/4E

[
e‖Z‖

2/4
]
≤ exp

(
−
K2
γ

4 + d

2 log(2)
)
≤ γ2 . (6.100)

Using π(x)/π(x+
√

2γz) ≤ 1 for z ∈ ARWM
x,γ , 1+

√
π(x+

√
2γz)/π(x)−π(x+

√
2γz)/π(x) ≤

5/4 for z ∈ (ARWM
x,γ )c, (6.98) and (6.100), we get

RRWM
γ V (x)
V (x) ≤ (5/4)γ2 +

∫
ARWM
x,γ

1B(0,Kγ)(z)
√

π(x)
π(x+

√
2γz)

e−‖z‖2/2

(2π)d/2
dz

+
∫

(ARWM
x,γ )c

1B(0,Kγ)(z)
{

1 +
√
π(x+

√
2γz)

π(x) − π(x+
√

2γz)
π(x)

}
e−‖z‖2/2

(2π)d/2
dz . (6.101)

Step 2: splitting B(0,Kγ) into B(0,Kγ) ∩ARWM
x,γ and B(0,Kγ) ∩ (ARWM

x,γ )c. In this
paragraph, we introduce several geometric quantities illustrated with Figure 6.6. Define
γ̄ > 0 by

max
{

(CχKγ̄)1/2γ̄1/4 exp(Cχγ̄1/2Kγ̄/2), (3/2)
√

2γ̄Kγ̄χ
}

= 1/2 , (6.102)
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where C is the positive constant given in Lemma 6.20. Denote by

C1 = (CχKγ̄)1/2γ̄1/4 exp(Cχγ̄1/2Kγ̄/2) ∈ [0, 1/2] . (6.103)

Let e1(x) = ∇U(x)/ ‖∇U(x)‖ and consider the decomposition z = (z1, . . . , zd) of z in
an orthonormal basis (e1(x), e2(x), . . . , ed(x)) of Rd. For all z ∈ Rd, denote by z−1 =
(z2, . . . , zd) ∈ Rd−1. For all γ ∈ (0, γ̄], define θγ ∈ [0,π/4] by

tan θγ = 2
√

2γKγ

∥∥∥D2 U(x)
∥∥∥

‖∇U(x)‖ (1 + C1) ∈ [0, 1] . (6.104)

Denote by

cone(0, θγ) =
{
z ∈ Rd : |z1| ≤ (tan θγ) ‖z−1‖

}
.

Define b, c : Bd−1(0,Kγ)→ R+ for all z−1 ∈ Bd−1(0,Kγ) by

b(z−1) = (K2
γ − ‖z−1‖2)1/2 and c(z−1) = (tan θγ) ‖z−1‖ . (6.105)

By Lemma 6.20 with K = Kγ , we have for all z ∈ B(0,Kγ)∥∥∥D2 U(x+
√

2γz)
∥∥∥ ≤ ∥∥∥D2 U(x)

∥∥∥ (1 + C1) . (6.106)

where C1 is given in (6.103). By Taylor’s theorem, we have for all z ∈ B(0,Kγ)

U(x+
√

2γz)− U(x) =
√

2γ ‖∇U(x)‖ z1 + 2rγ(z) (6.107)

where rγ : B(0,Kγ)→ R is defined for all z ∈ B(0,Kγ) by

rγ(z) = γ

∫ 1

0
(1− t) D2 U(x+ t

√
2γz)[z⊗2]dt . (6.108)

By (6.104), (6.106) and (6.108), we have for all z ∈ B(0,Kγ) ∩ cone(0, θγ)c

4rγ(z) ≤ 2γKγ

∥∥∥D2 U(x)
∥∥∥ (1 + C1) (|z1|+ ‖z−1‖)

≤
√

2γ ‖∇U(x)‖ (1/2) tan θγ
{

1 + (tan θγ)−1
}
|z1| ≤

√
2γ ‖∇U(x)‖ |z1| .

(6.109)

By (6.107) and (6.109), we obtain for all z ∈ B(0,Kγ) ∩ cone(0, θγ)c, z 6= 0,{
U(x+

√
2γz)− U(x)

}
z1 > 0 . (6.110)

Moreover, by H18 and (6.106), we have for all z ∈ B(0,Kγ)〈
e1(x),∇U(x+

√
2γz)

〉
− ‖∇U(x)‖ =

√
2γ
∫ 1

0
D2 U(x+ t

√
2γz)[z, e1(x)]dt ,∣∣∣〈e1(x),∇U(x+

√
2γz)

〉
− ‖∇U(x)‖

∣∣∣ ≤ √2γ(1 + C1)χKγ ‖∇U(x)‖
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and 〈e1(x),∇U(x+
√

2γz)〉 > 0. By a version of the implicit function theorem given in
Section 6.E.3, there exists ϕ : Bd−1(0,Kγ)→ R continuous such that for all γ ∈ (0, γ̄],{

z ∈ B(0,Kγ) : U(x+
√

2γz) = U(x)
}

=
{

(ϕ(z−1), z−1) : z−1 ∈ Bd−1(0,Kγ)
}
.

(6.111)
Combining (6.110) and (6.111), we obtain for all γ ∈ (0, γ̄],

ARWM
x,γ ∩B(0,Kγ) =

{
z ∈ B(0,Kγ) : z1 ≤ ϕ(z−1)

}
, (6.112)

(ARWM
x,γ )c ∩B(0,Kγ) =

{
z ∈ B(0,Kγ) : z1 ≥ ϕ(z−1)

}
, (6.113)

and for all z−1 ∈ Bd−1(0,Kγ), |ϕ(z−1)| ≤ c(z−1). These properties and definitions are
summarized in Figure 6.6.

Step 3: intermediate upper bound on RRWM
γ V (x)/V (x). Using (6.101) and the

definitions of b and ϕ, see (6.105), (6.111), (6.112) and (6.113), we have

RRWM
γ V (x)
V (x) ≤ (5/4)γ2 +

∫
z−1∈Bd−1(0,Kγ)

gγ(z−1) e−‖z−1‖2/2

(2π)(d−1)/2 dz−1 (6.114)

where gγ : Bd−1(0,Kγ)→ R+ is defined for all z−1 ∈ Bd−1(0,Kγ) by

gγ(z−1) =
∫ (ϕ(z−1)∨−b(z−1))∧b(z−1)

−b(z−1)

√
π(x)

π(x+
√

2γz)
e−z2

1/2

(2π)1/2 dz1

+
∫ b(z−1)

(ϕ(z−1)∨−b(z−1))∧b(z−1)

{
1 +

√
π(x+

√
2γz)

π(x) − π(x+
√

2γz)
π(x)

}
e−z2

1/2

(2π)1/2 dz1 .

For all z−1 ∈ Bd−1(0,Kγ), we decompose gγ(z−1) in gγ(z−1) = A1(z−1) +A2(z−1) where
A1(z−1) and A2(z−1) are defined by

A1(z−1) =
∫ (ϕ(z−1)∨−b(z−1))∧0

−b(z−1)

√
π(x)

π(x+
√

2γz)
e−z2

1/2

(2π)1/2 dz1

+
∫ 0

(ϕ(z−1)∨−b(z−1))∧0

{
1 +

√
π(x+

√
2γz)

π(x) − π(x+
√

2γz)
π(x)

}
e−z2

1/2

(2π)1/2 dz1 ,

(6.115)

A2(z−1) =
∫ (ϕ(z−1)∨0)∧b(z−1)

0

√
π(x)

π(x+
√

2γz)
e−z2

1/2

(2π)1/2 dz1

+
∫ b(z−1)

(ϕ(z−1)∨0)∧b(z−1)

{
1 +

√
π(x+

√
2γz)

π(x) − π(x+
√

2γz)
π(x)

}
e−z2

1/2

(2π)1/2 dz1 .

(6.116)
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Combining it with (6.114), we obtain

RRWM
γ V (x)
V (x) ≤ (5/4)γ2 +

∫
z−1∈Bd−1(0,Kγ)

{A1(z−1) +A2(z−1)} e−‖z−1‖2/2

(2π)(d−1)/2 dz−1 . (6.117)

By (6.107) and (6.115), we have for all z−1 ∈ Bd−1(0,Kγ)

A1(z−1) = A11(z−1) +A12(z−1) +A13(z−1) +A14(z−1) (6.118)

where

A11(z−1) =
∫ 0

−b(z−1)
e
√
γ/2‖∇U(x)‖z1 e−z2

1/2

(2π)1/2 dz1 ,

A12(z−1) =
∫ −b(z−1)∨−c(z−1)

−b(z−1)
e
√
γ/2‖∇U(x)‖z1+rγ(z)

{
1− e−rγ(z)

} e−z2
1/2

(2π)1/2 dz1 ,

A13(z−1) =
∫ (ϕ(z−1)∨−b(z−1))∧0

−b(z−1)∨−c(z−1)
e
√
γ/2‖∇U(x)‖z1+rγ(z)

{
1− e−rγ(z)

} e−z2
1/2

(2π)1/2 dz1 ,

A14(z−1) =
∫ 0

(ϕ(z−1)∨−b(z−1))∧0

{
1 +

√
π(x+

√
2γz)

π(x) − π(x+
√

2γz)
π(x)

− e
√
γ/2‖∇U(x)‖z1

}
e−z2

1/2

(2π)1/2 dz1 .

By (6.107) and (6.116), we have for all z−1 ∈ Bd−1(0,Kγ)

A2(z−1) = A21(z−1) +A22(z−1) +A23(z−1) +A24(z−1) +A25(z−1)

+
∫ (ϕ(z−1)∨0)∧b(z−1)

0

{√
π(x)

π(x+
√

2γz) − 1− e−
√
γ/2‖∇U(x)‖z1

+ e−
√

2γ‖∇U(x)‖z1

}
e−z2

1/2

(2π)1/2 dz1 (6.119)

where

A21(z−1) =
∫ b(z−1)

0

{
1 + e−

√
γ/2‖∇U(x)‖z1 − e−

√
2γ‖∇U(x)‖z1

} e−z2
1/2

(2π)1/2 dz1 ,

A22(z−1) =
∫ c(z−1)∧b(z−1)

(ϕ(z−1)∨0)∧b(z−1)
e−
√
γ/2‖∇U(x)‖z1−rγ(z)

{
1− erγ(z)

} e−z2
1/2

(2π)1/2 dz1 ,

A23(z−1) =
∫ c(z−1)∧b(z−1)

(ϕ(z−1)∨0)∧b(z−1)
e−
√

2γ‖∇U(x)‖z1
{

1− e−2rγ(z)
} e−z2

1/2

(2π)1/2 dz1 ,

A24(z−1) =
∫ b(z−1)

c(z−1)∧b(z−1)
e−
√
γ/2‖∇U(x)‖z1−rγ(z)

{
1− erγ(z)

} e−z2
1/2

(2π)1/2 dz1 ,

A25(z−1) =
∫ b(z−1)

c(z−1)∧b(z−1)
e−
√

2γ‖∇U(x)‖z1
{

1− e−2rγ(z)
} e−z2

1/2

(2π)1/2 dz1 .
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By (6.112), {π(x)/π(x+
√

2γz)}1/2 ≤ 1 for all z1 ∈ [0, ϕ(z−1) ∨ 0]. Hence, the last term
in the right hand side of (6.119) is nonpositive and we get

A2(z−1) ≤ A21(z−1) +A22(z−1) +A23(z−1) +A24(z−1) +A25(z−1) . (6.120)

Combining (6.118) and (6.120), we obtain for all z−1 ∈ Bd−1(0,Kγ)

A1(z−1) +A2(z−1) ≤ A11(z−1) +A21(z−1) +A12(z−1) +A13(z−1) +A14(z−1)
+A22(z−1) +A23(z−1) +A24(z−1) +A25(z−1) . (6.121)

Step 4: upper bound on A1(z−1)+A2(z−1). We upper bound each term in the right
hand side of (6.121) and we first consider the terms A11+A21. Define a : (0, γ̄]×Rd → R+
for all γ̃ ∈ (0, γ̄] and x̃ ∈ Rd, ‖x̃‖ ≥M by

a(γ̃, x̃) =
√
γ̃/2 ‖∇U(x̃)‖ . (6.122)

We have for all z−1 ∈ Bd−1(0,Kγ),

A11(z−1) +A21(z−1) ≤ G(a(γ, x)) (6.123)

where G is defined in (6.96).
We now consider the remainder termsA12(z−1), A13(z−1), A14(z−1), A22(z−1), A23(z−1),

A24(z−1) and A25(z−1) in (6.121). Let z−1 ∈ Bd−1(0,Kγ). By definition of c(z−1), see
(6.105), we have for all z1 ∈ [−b(z−1),−c(z−1) ∨ −b(z−1)], z /∈ cone(0, θγ), and by (6.109)√

γ/2 ‖∇U(x)‖ z1 + rγ(z) ≤ (1/2)
√
γ/2 ‖∇U(x)‖ z1 .

Combining it with 1− es ≤ |s| for all s ∈ R, (6.106) and (6.108), we get

A12(z−1) ≤ C
∫ −c(z−1)∨−b(z−1)

−b(z−1)
e(1/2)

√
γ/2‖∇U(x)‖z1γ

∥∥∥D2 U(x)
∥∥∥ ‖z‖2 e−z2

1/2

(2π)1/2 dz1 .

Considering the upper bound ‖z‖2 ≤ K2
γ or the decomposition ‖z‖2 = z2

1 + ‖z−1‖2, we
obtain

A12(z−1) ≤ Cγ
∥∥∥D2 U(x)

∥∥∥min
{
K2
γea(γ,x)2/8Φ̄(a(γ, x)/2), (‖z−1‖2 + 1)

}
where a(γ, x) is defined in (6.122), and using for all t > 0, et2/8Φ̄(t/2) ≤

√
2/(
√
πt), we

get

A12(z−1) ≤ C min

√γK2
γ

∥∥∥D2 U(x)
∥∥∥

‖∇U(x)‖ , (‖z−1‖2 + 1)

∥∥∥D2 U(x)
∥∥∥

‖∇U(x)‖2
a(γ, x)2

 . (6.124)

Similarly, we have the same upper bound (6.124) for A24(z−1) and A25(z−1).
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Using for all s ∈ R, 1−es ≤ min(1, |s|), π(x)/π(x+
√

2γz) ≤ 1 for z ∈ ARWM
x,γ , (6.104),

(6.105), (6.106), (6.107), (6.108) and (6.112), we have for all z−1 ∈ Bd−1(0,Kγ),

A13(z−1) ≤
∫ (ϕ(z−1)∨−b(z−1))∧0

−b(z−1)∨−c(z−1)
min(1, |rγ(z)|) e−z2

1/2

(2π)1/2 dz1

≤ c(z−1) min(1, C
∥∥∥D2 U(x)

∥∥∥ γK2
γ)

≤ C√γK2
γ

∥∥∥D2 U(x)
∥∥∥

‖∇U(x)‖ min(1, C
∥∥∥D2 U(x)

∥∥∥ γK2
γ)

≤ C min

√γK2
γ

∥∥∥D2 U(x)
∥∥∥

‖∇U(x)‖ ,
√
γK4

γ

∥∥∥D2 U(x)
∥∥∥2

‖∇U(x)‖3
a(γ, x)2

 . (6.125)

where a(γ, x) is defined in (6.122). Similarly, we have the same upper bound (6.125) for
A22(z−1) and A23(z−1).

Concerning A14(z−1), note first that by definition of ϕ(z−1), see (6.111), (6.112),
(6.113), and (6.107), (6.108) we have for all z1 ∈ [(ϕ(z−1) ∨ −b(z−1)) ∧ 0, 0]

2rγ(z) ≥
∣∣∣√2γ ‖∇U(x)‖ z1

∣∣∣ . (6.126)

Using 1 − es ≤ |s| for all s ∈ R,
√
π(x+

√
2γz)/π(x) ≤ 1 for all z ∈ (ARWM

x,γ )c, (6.106),

(6.108) and (6.126), we obtain

{
1− e

√
γ/2‖∇U(x)‖z1

}
+
√
π(x+

√
2γz)

π(x)

{
1− e−

√
γ/2‖∇U(x)‖z1−rγ(z)

}
≤ min

(
1,
√
γ/2 ‖∇U(x)‖ |z1|

)
+ min

(
1,
∣∣∣∣√γ/2 ‖∇U(x)‖ z1 + rγ(z)

∣∣∣∣)
≤ C min

(
1, γ

∥∥∥D2 U(x)
∥∥∥K2

γ

)
.

By (6.104), (6.105) and using |ϕ(z−1)| ≤ c(z−1), we obtain

A14(z−1) ≤ C min

√γK2
γ

∥∥∥D2 U(x)
∥∥∥

‖∇U(x)‖ ,
√
γK4

γ

∥∥∥D2 U(x)
∥∥∥2

‖∇U(x)‖3
a(γ, x)2

 (6.127)

where a(γ, x) is defined in (6.122).

Step 5: conclusion. Let ε = (1/4) min(1, t20) where t0 is defined in Lemma 6.19.

Let γ̃ > 0 be defined by C
√
γ̃K2

γ̃χmax
(
1,K2

γ̃χ
2
)

= ε where C is the maximum of the

positive constants given in (6.124), (6.125) and (6.127). Define then γ̄1 = γ̄ ∧ γ̃ ∧ t20 ∧
min(1, χ2/2)/10 where γ̄ is given in (6.102). By H18, there exists M̃ ≥M such that for

all x ∈ Rd, ‖x‖ ≥ M̃ , Cd
∥∥∥D2 U(x)

∥∥∥ / ‖∇U(x)‖2 ≤ ε, where C is given in (6.124).
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By (6.124), (6.125) and (6.127), we have for all x ∈ Rd, ‖x‖ ≥ M̃ and γ ∈ (0, γ̄1]∫
z−1∈Bd−1(x,Kγ)

{A12(z−1) +A13(z−1) +A14(z−1) +A22(z−1)

+A23(z−1) +A24(z−1) +A25(z−1)} e−‖z−1‖2/2

(2π)(d−1)/2 dz−1 ≤ min(ε, εa(γ, x)2)

(6.128)

where a(γ, x) is defined in (6.122). We consider now two cases:

� if a(γ, x) > t0, by (6.121), (6.123), (6.128) and Lemma 6.19, for all x ∈ Rd,
‖x‖ ≥ M̃ , γ ∈ (0, γ̄1]

∫
z−1∈Bd−1(0,Kγ)

{A1(z−1) +A2(z−1)} e−‖z−1‖2/2

(2π)(d−1)/2 dz−1

≤ 1− (t20/2) + ε ≤ 1− (t20/4) ≤ 1− (1/4)γ .

� if a(γ, x) ∈ (0, t0], by (6.121), (6.123), (6.128), Lemma 6.19 and H18, for all x ∈ Rd,
‖x‖ ≥ M̃ , γ ∈ (0, γ̄1],

∫
z−1∈Bd−1(0,Kγ)

{A1(z−1) +A2(z−1)} e−‖z−1‖2/2

(2π)(d−1)/2 dz−1

≤ 1− (1/2− ε)a(γ, x)2 ≤ 1− γ ‖∇U(x)‖2

8 ≤ 1− χ−2γ

8 .

Combining it with (6.117), we obtain for all x ∈ Rd, ‖x‖ ≥ M̃ , γ ∈ (0, γ̄1],

RRWM
γ V (x)/V (x) ≤ 1−min(1, χ−2/2)γ/8 .

Besides, denote by

A = sup
y,‖y‖≤M̃

{
L V (y)
V (y) + γ̄

1/2
1

A RWM
γ V (y)
V (y)

}
.

By Lemma 6.9, we have for all x ∈ Rd, ‖x‖ ≤ M̃ , γ ∈ (0, γ̄1], RRWM
γ V (x)/V (x) ≤ 1+γA.

We get then for all x ∈ Rd, γ ∈ (0, γ̄1],

RRWM
γ V (x) ≤

(
1− min(1, χ−2/2)γ

8

)
V (x) + γ

(
A+ min(1, χ−2/2)

8

)
V (x)1

{
‖x‖ ≤ M̃

}
which concludes the proof.
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6.E.3 A version of the implicit function theorem

The following proposition is taken from [Apo69, Theorem 7.21] and [Bor13, Theorem 6].

Proposition 6.21. Let K be a compact metric space and f : R×K→ R be a continuous
function. Assume that there exist M ≥ m > 0 such that for all z ∈ K, x, y ∈ R, x 6= y,

m ≤ f(x, z)− f(y, z)
x− y

≤M . (6.129)

Then, there exists a unique continuous function ξ : K → R satisfying for all z ∈ K,
f(ξ(z), z) = 0.

Proof. Denote by C(K) the set of real continuous functions on K. By standard arguments,
C(K) is complete under the uniform norm defined for all g1, g2 ∈ C(K) by ‖g1 − g2‖∞ =
supz∈K ‖g1(z)− g2(z)‖. Define ψ : C(K)→ C(K) for all g ∈ C(K) and z ∈ K by

ψ(g)(z) = g(z)− (1/M)f(g(z), z) .

By (6.129), we have for all g, h ∈ C(K) and z ∈ K,

|ψ(g)(z)− ψ(h)(z)| ≤ {1− (m/M)} |g(z)− h(z)|

and ‖ψ(g) − ψ(h)‖∞ ≤ {1 − (m/M)}‖g − h‖∞. ψ is a contraction on C(K) and has a
unique fixed point ξ in C(K) which satisfies f(ξ(z), z) = 0 for all z ∈ K.
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Chapter 7

The promises and pitfalls of
Stochastic Gradient Langevin
Dynamics

Nicolas Brosse 1, Alain Durmus 2 and Éric Moulines 1

Abstract

Stochastic Gradient Langevin Dynamics (SGLD) has emerged as a key MCMC algorithm
for Bayesian learning from large scale datasets. While SGLD with decreasing step sizes
converges weakly to the posterior distribution, the algorithm is often used with a constant
step size in practice and has demonstrated successes in machine learning tasks. The
current practice is to set the step size inversely proportional to N where N is the number
of training samples. As N becomes large, we show that the SGLD algorithm has an
invariant probability measure which significantly departs from the target posterior and
behaves like Stochastic Gradient Descent (SGD). This difference is inherently due to the
high variance of the stochastic gradients. Several strategies have been suggested to reduce
this effect; among them, SGLD Fixed Point (SGLDFP) uses carefully designed control
variates to reduce the variance of the stochastic gradients. We show that SGLDFP gives
approximate samples from the posterior distribution, with an accuracy comparable to
the Langevin Monte Carlo (LMC) algorithm for a computational cost sublinear in the
number of data points. We provide a detailed analysis of the Wasserstein distances
between LMC, SGLD, SGLDFP and SGD and explicit expressions of the means and
covariance matrices of their invariant distributions. Our findings are supported by some
numerical experiments.

1Centre de Mathématiques Appliquées, UMR 7641, Ecole Polytechnique, France.
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2Ecole Normale Supérieure CMLA 61, Av. du Président Wilson 94235 Cachan Cedex, France
Email: alain.durmus@cmla.ens-cachan.fr
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7.1 Introduction

Most MCMC algorithms have not been designed to process huge sample sizes, a typical
setting in machine learning. As a result, many classical MCMC methods fail in this
context, because the mixing time becomes prohibitively long and the cost per iteration
increases proportionally to the number of training samples N . The computational cost in
standard Metropolis-Hastings algorithm comes from 1) the computation of the proposals,
2) the acceptance/rejection step. Several approaches to solve these issues have been
recently proposed in machine learning and computational statistics.

Among them, the stochastic gradient langevin dynamics (SGLD) algorithm, intro-
duced in [WT11], is a popular choice. This method is based on the Langevin Monte
Carlo (LMC) algorithm proposed in [Gre83; GM94]. Standard versions of LMC require
to compute the gradient of the log-posterior at the current fit of the parameter, but avoid
the accept/reject step. The LMC algorithm is a discretization of a continuous-time pro-
cess, the overdamped Langevin diffusion, which leaves invariant the target distribution
π. To further reduce the computational cost, SGLD uses unbiased estimators of the
gradient of the log-posterior based on subsampling. This method has triggered a huge
number of works among others [ABW12; KCW14; ASW14; CDC15; CFG14; Din+14;
MCF15; Dub+16; BDH17] and have been successfully applied to a range of state of the
art machine learning problems [PT13; LAW16].

The properties of SGLD with decreasing step sizes have been studied in [TTV16].
The two key findings in this work are that 1) the SGLD algorithm converges weakly to the
target distribution π, 2) the optimal rate of convergence to equilibrium scales as n−1/3

where n is the number of iterations, see [TTV16, Section 5]. However, in most of the
applications, constant rather than decreasing step sizes are used, see [ABW12; CFG14;
Has+17; Li+16; SN14; VZT16]. A natural question for the practical design of SGLD is
the choice of the minibatch size. This size controls on the one hand the computational
complexity of the algorithm per iteration and on the other hand the variance of the gra-
dient estimator. Non-asymptotic bounds in Wasserstein distance between the marginal
distribution of the SGLD iterates and the target distribution π have been established in
[Dal17a; DK17]. These results highlight the cost of using stochastic gradients and show
that, for a given precision ε in Wasserstein distance, the computational cost of the plain
SGLD algorithm does not improve over the LMC algorithm; Nagapetyan et al. [Nag+17]
reports also similar results on the mean square error.

It has been suggested to use control variates to reduce the high variance of the
stochastic gradients. For strongly log-concave models, Nagapetyan et al. [Nag+17] and
Baker et al. [Bak+17] use the mode of the posterior distribution as a reference point
and introduce the SGLDFP (Stochastic Gradient Langevin Dynamics Fixed Point) al-
gorithm. Nagapetyan et al. [Nag+17] and Baker et al. [Bak+17] provide upper bounds
on the mean square error and the Wasserstein distance between the marginal distribu-
tion of the iterates of SGLDFP and the posterior distribution. In addition, Nagapetyan
et al. [Nag+17] and Baker et al. [Bak+17] show that the overall cost remains sublinear in
the number of individual data points, up to a preprocessing step. Other control variates
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methodologies are provided for non-concave models in the form of SAGA-Langevin Dy-
namics and SVRG-Langevin Dynamics [Dub+16; Che+17], albeit a detailed analysis in
Wasserstein distance of these algorithms is only available for strongly log-concave models
[Cha+18].

In this paper, we provide further insights on the links between SGLD, SGLDFP, LMC
and SGD (Stochastic Gradient Descent). In our analysis, the algorithms are used with
a constant step size and the parameters are set to the standard values used in practice
[ABW12; CFG14; Has+17; Li+16; SN14; VZT16]. The LMC, SGLD and SGLDFP
algorithms define homogeneous Markov chains, each of which admits a unique stationary
distribution used as a hopefully close proxy of π. The main contribution of this paper
is to show that, while the invariant distributions of LMC and SGLDFP become closer
to π as the number of data points increases, on the opposite, the invariant measure of
SGLD never comes close to the target distribution π and is in fact very similar to the
invariant measure of SGD.

In Section 7.3.1, we give an upper bound in Wasserstein distance of order 2 between
the marginal distribution of the iterates of LMC and the Langevin diffusion, SGLDFP
and LMC, and SGLD and SGD. We provide a lower bound on the Wasserstein distance
between the marginal distribution of the iterates of SGLDFP and SGLD. In Section 7.3.2,
we give a comparison of the means and covariance matrices of the invariant distributions
of LMC, SGLDFP and SGLD with those of the target distribution π. Our claims are
supported by numerical experiments in Section 7.4.

7.2 Preliminaries

Denote by z = {zi}Ni=1 the observations. We are interested in situations where the target
distribution π arises as the posterior in a Bayesian inference problem with prior density
π0(θ) and a large number N � 1 of i.i.d. observations zi with likelihoods p(zi|θ). In this
case, π(θ) = π0(θ)

∏N
i=1 p(zi|θ). We denote Ui(θ) = − log(p(zi|θ)) for i ∈ {1, . . . , N},

U0(θ) = − log(π0(θ)), U =
∑N
i=0 Ui.

Under mild conditions, π is the unique invariant probability measure of the Langevin
Stochastic Differential Equation (SDE):

dθt = −∇U(θt)dt+
√

2dBt , (7.1)

where (Bt)t≥0 is a d-dimensional Brownian motion. Based on this observation, Langevin
Monte Carlo (LMC) is an MCMC algorithm that enables to sample (approximately)
from π using an Euler discretization of the Langevin SDE:

θk+1 = θk − γ∇U(θk) +
√

2γZk+1 , (7.2)

where γ > 0 is a constant step size and (Zk)k≥1 is a sequence of i.i.d. standard d-
dimensional Gaussian vectors. Discovered and popularised in the seminal works [Gre83;
GM94; RT96], LMC has recently received renewed attention [Dal17b; DM17; DM16;
DK17]. However, the cost of one iteration is Nd which is prohibitively large for massive
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datasets. In order to scale up to the big data setting, Welling and Teh [WT11] suggested
to replace ∇U with an unbiased estimate ∇U0 +(N/p)

∑
i∈S ∇Ui where S is a minibatch

of {1, . . . , N} with replacement of size p. A single update of SGLD is then given for
k ∈ N by

θk+1 = θk − γ

∇U0(θk) + N

p

∑
i∈Sk+1

∇Ui(θk)

+
√

2γZk+1 . (7.3)

The idea of using only a fraction of data points to compute an unbiased estimate of the
gradient at each iteration comes from Stochastic Gradient Descent (SGD) which is a
popular algorithm to minimize the potential U . SGD is very similar to SGLD because
it is characterised by the same recursion as SGLD but without Gaussian noise:

θk+1 = θk − γ

∇U0(θk) + N

p

∑
i∈Sk+1

∇Ui(θk)

 . (7.4)

Assuming for simplicity that U has a minimizer θ?, we can define a control variates
version of SGLD, SGLDFP, see [Dub+16; Che+17], given for k ∈ N by

θk+1 = θk − γ

∇U0(θk)−∇U0(θ?) + N

p

∑
i∈Sk+1

{∇Ui(θk)−∇Ui(θ?)}

+
√

2γZk+1 .

(7.5)
It is worth mentioning that the objectives of the different algorithms presented so far

are distinct. On the one hand, LMC, SGLD and SGDLFP are MCMC methods used to
obtain approximate samples from the posterior distribution π. On the other hand, SGD
is a stochastic optimization algorithm used to find an estimate of the mode θ? of the
posterior distribution. In this paper, we focus on the fixed step-size SGLD algorithm and
assess its ability to reliably sample from π. For that purpose and to quantify precisely the
relation between LMC, SGLD, SGDFP and SGD, we make for simplicity the following
assumptions on U .

H 20. For all i ∈ {0, . . . , N}, Ui is four times continuously differentiable and for all

j ∈ {2, 3, 4}, supθ∈Rd
∥∥∥Dj Ui(θ)

∥∥∥ ≤ L̃. In particular for all i ∈ {0, . . . , N}, Ui is L̃-

gradient Lipschitz, i.e. for all θ1, θ2 ∈ Rd, ‖∇Ui(θ1)−∇Ui(θ2)‖ ≤ L̃ ‖θ1 − θ2‖.

H 21. U is m-strongly convex, i.e. for all θ1, θ2 ∈ Rd, 〈∇U(θ1)−∇U(θ2), θ1 − θ2〉 ≥
m ‖θ1 − θ2‖2.

H22. For all i ∈ {0, . . . , N}, Ui is convex.

Note that under H20, U is four times continuously differentiable and for j ∈ {2, 3, 4},
supθ∈Rd

∥∥∥Dj U(θ)
∥∥∥ ≤ L, with L = (N + 1)L̃ and where∥∥∥Dj U(θ)

∥∥∥ = sup
‖u1‖≤1,...,‖uj‖≤1

Dj U(θ)[u1, . . . , uj ] .
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In particular, U is L-gradient Lipschitz and m ≤ L. Furthermore, under H21, U has a
unique minimizer θ?. In this paper, we focus on the asymptotic N → +∞,. We assume
that lim infN→+∞N

−1m > 0, which is a common assumption for the analysis of SGLD
and SGLDFP [Bak+17; Cha+18]. In practice [ABW12; CFG14; Has+17; Li+16; SN14;
VZT16], γ is of order 1/N and we adopt this convention in this article.

For a practical implementation of SGLDFP, an estimator θ̂ of θ? is necessary. The
theoretical analysis and the bounds remain unchanged if, instead of considering SGLDFP
centered w.r.t. θ?, we study SGLDFP centered w.r.t. θ̂ satisfying E[‖θ̂−θ?‖2] = O(1/N).
Such an estimator θ̂ can be computed using for example SGD with decreasing step sizes,
see [Nem+09, eq.(2.8)] and [Bak+17, Section 3.4], for a computational cost linear in N .

7.3 Results

7.3.1 Analysis in Wasserstein distance

Before presenting the results, some notations and elements of Markov chain theory have
to be introduced. Denote by P2(Rd) the set of probability measures with finite sec-
ond moment and by B(Rd) the Borel σ-algebra of Rd. For λ, ν ∈ P2(Rd), define the
Wasserstein distance of order 2 by

W2(λ, ν) = inf
ξ∈Π(λ,ν)

(∫
Rd×Rd

‖θ − ϑ‖2 ξ(dθ,dϑ)
)1/2

,

where Π(λ, ν) is the set of probability measures ξ on B(Rd) ⊗ B(Rd) satisfying for all
A ∈ B(Rd), ξ(A× Rd)) = λ(A) and ξ(Rd × A) = ν(A).

A Markov kernel R on Rd × B(Rd) is a mapping R : Rd × B(Rd) → [0, 1] satisfying
the following conditions: (i) for every θ ∈ Rd, R(θ, ·) : A 7→ R(θ,A) is a probability
measure on B(Rd) (ii) for every A ∈ B(Rd), R(·, A) : θ 7→ R(θ,A) is a measurable
function. For any probability measure λ on B(Rd), we define λR for all A ∈ B(Rd) by
λR(A) =

∫
Rd λ(dθ)R(θ,A). For all k ∈ N∗, we define the Markov kernel Rk recursively

by R1 = R and for all θ ∈ Rd and A ∈ B(Rd), Rk+1(θ,A) =
∫
Rd R

k(θ,dϑ)R(ϑ,A). A
probability measure π̄ is invariant for R if π̄R = π̄.

The LMC, SGLD, SGD and SGLDFP algorithms defined respectively by (7.2),
(7.3), (7.4) and (7.5) are homogeneous Markov chains with Markov kernels denoted
RLMC, RSGLD, RSGD, and RFP. To avoid overloading the notations, the dependence on γ
and N is implicit.

Lemma 7.1. Assume H20, H21 and H22. For any step size γ ∈ (0, 2/L), RSGLD (re-
spectively RLMC, RSGD, RFP) has a unique invariant measure πSGLD ∈ P2(Rd) (respectively
πLMC, πSGD, πFP). In addition, for all γ ∈ (0, 1/L], θ ∈ Rd and k ∈ N,

W2
2(RkSGLD(θ, ·), πSGLD) ≤ (1−mγ)k

∫
Rd
‖θ − ϑ‖2 πSGLD(dϑ)

and the same inequality holds for LMC, SGD and SGLDFP.



200 7.3. Results

Proof. The proof is postponed to Section 7.A.1.

Under H 20, (7.1) has a unique strong solution (θt)t≥0 for every initial condition
θ0 ∈ Rd [KS91, Chapter 5, Theorems 2.5 and 2.9]. Denote by (Pt)t≥0 the semigroup of
the Langevin diffusion defined for all θ0 ∈ Rd and A ∈ B(Rd) by Pt(θ0,A) = P(θt ∈ A).

Theorem 7.2. Assume H20, H21 and H22. For all γ ∈ (0, 1/L], λ, µ ∈ P2(Rd) and
n ∈ N, we have the following upper-bounds in Wasserstein distance between

i) LMC and SGLDFP,

W2
2(λRnLMC, µR

n
FP) ≤ (1−mγ)n W2

2(λ, µ) + 2L2γd

pm2

+ L2γ2

p
n(1−mγ)n−1

∫
Rd
‖ϑ− θ?‖2 µ(dϑ) ,

ii) the Langevin diffusion and LMC,

W2
2(λRnLMC, µPnγ) ≤ 2

(
1− mLγ

m+ L

)n
W2

2(λ, µ) + dγ
m+ L

2m

(
3 + L

m

)(13
6 + L

m

)
+ ne−(m/2)γ(n−1)L3γ3

(
1 + m+ L

2m

)∫
Rd
‖ϑ− θ?‖2 µ(dϑ) ,

iii) SGLD and SGD,

W2
2(λRnSGLD, µR

n
SGD) ≤ (1−mγ)n W2

2(λ, µ) + (2d)/m .

Proof. The proof is postponed to Section 7.A.2.

The two last terms in the right hand side of Theorem 7.2-i) come from the approx-
imation by minibatch of the gradient ∇U . Theorem 7.2-ii) is a direct application of
[DM16, Theorem 5]. Finally, 2d/m in Theorem 7.2-iii) originates from the addition of
the Gaussian noise

√
2γZ at each step of the algorithm.

Corollary 7.3. Assume H20, H21 and H22. Set γ = η/N with η ∈ (0, 1/(2L̃)] and
assume that lim infN→∞mN−1 > 0. Then,

i) for all n ∈ N, we get W2(RnLMC(θ?, ·), RnFP(θ?, ·)) =
√
dη O(N−1/2) and W2(πLMC, πFP) =√

dη O(N−1/2), W2(πLMC, π) =
√
dη O(N−1/2).

ii) for all n ∈ N, we get W2(RnSGLD(θ?, ·), RnSGD(θ?, ·)) =
√
dO(N−1/2) and W2(πSGLD, πSGD) =√

dO(N−1/2).

Theorem 7.2 implies that the number of iterations necessary to obtain a sample ε-
close from π in Wasserstein distance is the same for LMC and SGLDFP. However for
LMC, the cost of one iteration is Nd which is larger than pd the cost of one iteration for
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SGLDFP. In other words, to obtain an approximate sample from the target distribution
at an accuracy O(1/

√
N) in 2-Wasserstein distance, LMC requires Θ(N) operations, in

contrast with SGLDFP that needs only Θ(1) operations.
We show in the sequel that W2(πFP, πSGLD) = Ω(1) when N → +∞ in the case of a

Bayesian linear regression, where for two sequences (uN )N≥1, (vN )N≥1, uN = Ω(vN ) if
lim infN→+∞ uN/vN > 0. The dataset is z = {(yi, xi)}Ni=1 where yi ∈ R is the response
variable and xi ∈ Rd are the covariates. Set y = (y1, . . . , yN ) ∈ RN and X ∈ RN×d the
matrix of covariates such that the ith row of X is xi. Let σ2

y , σ
2
θ > 0. For i ∈ {1, . . . , N},

the conditional distribution of yi given xi is Gaussian with mean xT
i θ and variance σ2

y .
The prior π0(θ) is a normal distribution of mean 0 and variance σ2

θ Id. The posterior

distribution π is then proportional to π(θ) ∝ exp
(
−(1/2)(θ − θ?)TΣ(θ − θ?)

)
where

Σ = Id /σ2
θ + XTX/σ2

y and θ? = Σ−1(XTy)/σ2
y .

We assume that XTX � m Id, with lim infN→+∞m/N > 0. Let S be a minibatch of
{1, . . . , N} with replacement of size p. Define

∇U0(θ) + (N/p)
∑
i∈S
∇Ui(θ) = Σ(θ − θ?) + ρ(S)(θ − θ?) + ξ(S)

where

ρ(S) = Id
σ2
θ

+ N

pσ2
y

∑
i∈S

xix
T
i − Σ , ξ(S) = θ?

σ2
θ

+ N

pσ2
y

∑
i∈S

(
xT
i θ

? − yi
)
xi . (7.6)

ρ(S)(θ − θ?) is the multiplicative part of the noise in the stochastic gradient, and ξ(S)
the additive part that does not depend on θ. The additive part of the stochastic gradient
for SGLDFP disappears since

∇U0(θ)−∇U0(θ?) + (N/p)
∑
i∈S
{∇Ui(θ)−∇Ui(θ?)} = Σ(θ − θ?) + ρ(S)(θ − θ?) .

In this setting, the following theorem shows that the Wasserstein distances between
the marginal distribution of the iterates of SGLD and SGLDFP, and πSGLD and π, is of
order Ω(1) when N → +∞. This is in sharp contrast with the results of Corollary 7.3
where the Wasserstein distances tend to 0 as N → +∞ at a rate N−1/2. For simplicity,
we state the result for d = 1.

Theorem 7.4. Consider the case of the Bayesian linear regression in dimension 1.

i) For all γ ∈ (0,Σ−1{1 +N/(p
∑N
i=1 x

2
i )}−1] and n ∈ N∗,( 1− µ

1− µn
)1/2

W2(RnSGLD(θ?, ·), RnFP(θ?, ·))

≥

2γ + γ2N

p

N∑
i=1

(
(xiθ? − yi)xi

σ2
y

+ θ?

Nσ2
θ

)2


1/2

−
√

2γ ,

where µ ∈ (0, 1− γΣ].
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ii) Set γ = η/N with η ∈ (0, lim infN→+∞NΣ−1{1 + N/(p
∑N
i=1 x

2
i )}−1] and assume

that lim infN→+∞N
−1∑N

i=1 x
2
i > 0. We have W2(πSGLD, π) = Ω(1).

Proof. The proof is postponed to Section 7.A.3.

The study in Wasserstein distance emphasizes the different behaviors of the LMC,
SGLDFP, SGLD and SGD algorithms. When N → ∞ and limN→+∞m/N > 0, the
marginal distributions of the kth iterates of the LMC and SGLDFP algorithm are very
close to the Langevin diffusion and their invariant probability measures πLMC and πFP are
similar to the posterior distribution of interest π. In contrast, the marginal distributions
of the kth iterates of SGLD and SGD are analogous and their invariant probability
measures πSGLD and πSGD are very different from π when N → +∞.

Note that to fix the asymptotic bias of SGLD, other strategies can be considered:
choosing a step size γ ∝ N−β where β > 1 and/or increasing the batch size p ∝ Nα

where α ∈ [0, 1]. Using the Wasserstein (of order 2) bounds of SGLD w.r.t. the target
distribution π, see e.g. [DK17, Theorem 3], α + β should be equal to 2 to guarantee
the ε-accuracy in Wasserstein distance of SGLD for a cost proportional to N (up to
logarithmic terms), independently of the choice of α and β.

7.3.2 Mean and covariance matrix of πLMC, πFP, πSGLD

We now establish an expansion of the mean and second moments of πLMC, πFP, πSGLD and
πSGD as N → +∞, and compare them. We first give an expansion of the mean and
second moments of π as N → +∞.

Proposition 7.5. Assume H20 and H21 and that lim infN→+∞N
−1m > 0. Then,∫

Rd
(θ − θ?)⊗2π(dθ) = ∇2U(θ?)−1 +ON→+∞(N−3/2) ,∫
Rd
θ π(dθ)− θ? = −(1/2)∇2U(θ?)−1 D3 U(θ?)[∇2U(θ?)−1] +ON→+∞(N−3/2) .

Proof. The proof is postponed to Section 7.B.1.

Contrary to the Bayesian linear regression where the covariance matrices can be
explicitly computed, see Section 7.C, only approximate expressions are available in the
general case. For that purpose, we consider two types of asymptotics. For LMC and
SGLDFP, we assume that limN→+∞m/N > 0, γ = η/N , for η > 0, and we develop an
asymptotic when N → +∞. Combining Proposition 7.5 and Theorem 7.6 , we show that
the biases and covariance matrices of πLMC and πFP are of order Θ(1/N) with remainder
terms of the form O(N−3/2), where for two sequences (uN )N≥1, (vN )N≥1, u = Θ(v) if
0 < lim infN→+∞ uN/vN ≤ lim supN→+∞ uN/vN < +∞.

Regarding SGD and SGLD, we do not have such concentration properties when
N → +∞ because of the high variance of the stochastic gradients. The biases and
covariance matrices of SGLD and SGD are of order Θ(1) when N → +∞. To obtain
approximate expressions of these quantities, we set γ = η/N where η > 0 is the step
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size for the gradient descent over the normalized potential U/N . Assuming that m is
proportional to N and N ≥ 1/η, we show by combining Proposition 7.5 and Theorem 7.7
that the biases and covariance matrices of SGLD and SGD are of order Θ(η) with
remainder terms of the form O(η3/2) when η → 0.

Before giving the results associated to πLMC, πFP, πSGLD and πSGD, we need to introduce
some notations. For any matrices A1, A2 ∈ Rd×d, we denote by A1 ⊗ A2 the Kronecker
product defined on Rd×d by A1 ⊗ A2 : Q 7→ A1QA2 and A⊗2 = A ⊗ A. Besides, for all
θ1 ∈ Rd and θ2 ∈ Rd, we denote by θ1 ⊗ θ2 ∈ Rd×d the tensor product of θ1 and θ2. For
any matrix A ∈ Rd×d, Tr(A) is the trace of A.

Define K : Rd×d → Rd×d for all A ∈ Rd×d by

K(A) = N

p

N∑
i=1

∇2Ui(θ?)−
1
N

N∑
j=1
∇2Uj(θ?)

⊗2

A , (7.7)

and H and G : Rd×d → Rd×d by

H = ∇2U(θ?)⊗ Id + Id⊗∇2U(θ?)− γ∇2U(θ?)⊗∇2U(θ?) , (7.8)

G = ∇2U(θ?)⊗ Id + Id⊗∇2U(θ?)− γ(∇2U(θ?)⊗∇2U(θ?) + K) . (7.9)

K, H and G can be interpreted as perturbations of∇2U(θ?)⊗2 and∇2U(θ?), respectively,
due to the noise of the stochastic gradients. It can be shown, see Section 7.B.2, that for
γ small enough, H and G are invertible.

Theorem 7.6. Assume H20, H21 and H22. Set γ = η/N and assume that lim infN→+∞N
−1m >

0. There exists an (explicit) η0 independent of N such that for all η ∈ (0, η0),∫
Rd

(θ − θ?)⊗2πLMC(dθ) = H−1(2 Id) +ON→+∞(N−3/2) , (7.10)∫
Rd

(θ − θ?)⊗2πFP(dθ) = G−1(2 Id) +ON→+∞(N−3/2) , (7.11)

and ∫
Rd
θπLMC(dθ)− θ? = −∇2U(θ?)−1 D3 U(θ?)[H−1 Id] +ON→+∞(N−3/2) ,∫

Rd
θπFP(dθ)− θ? = −∇2U(θ?)−1 D3 U(θ?)[G−1 Id] +ON→+∞(N−3/2) .

Proof. The proof is postponed to Section 7.B.2.

Theorem 7.7. Assume H20, H21 and H22. Set γ = η/N and assume that lim infN→+∞N
−1m >

0. There exists an (explicit) η0 independent of N such that for all η ∈ (0, η0) and
N ≥ 1/η, ∫

Rd
(θ − θ?)⊗2πSGLD(dθ) = G−1 {2 Id +(η/p) M}+Oη→0(η3/2) , (7.12)∫

Rd
(θ − θ?)⊗2πSGD(dθ) = (η/p) G−1 M +Oη→0(η3/2) , (7.13)
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and∫
Rd
θπSGLD(dθ)− θ? = −(1/2)∇2U(θ?)−1 D3 U(θ?)[G−1 {2 Id +(η/p) M}] +Oη→0(η3/2) ,∫

Rd
θπSGD(dθ)− θ? = −(η/2p)∇2U(θ?)−1 D3 U(θ?)[G−1 M] +Oη→0(η3/2) ,

where

M =
N∑
i=1

∇Ui(θ?)− 1
N

N∑
j=1
∇Uj(θ?)

⊗2

, (7.14)

and G is defined in (7.9).

Proof. The proof is postponed to Section 7.B.2.

Note that this result implies that the mean and the covariance matrix of πSGLD and
πSGD stay lower bounded by a positive constant for any η > 0 as N → +∞. Figure 7.1
illustrates the results of Theorem 7.6 and Theorem 7.7 in the asymptotic N → +∞.
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θ̄
•

1/N

θ̄LMC•
1/N

θ̄FP• • θ̄SGD∼ 1

•
θ̄SGLD

1/N

Figure 7.1: Illustration of Proposition 7.5, Theorem 7.6 and Theorem 7.7 in the asymptotic
N → +∞. θ̄, θ̄SGD, θ̄LMC, θ̄FP and θ̄SGLD are the means under the stationary distributions π,
πSGD, πLMC, πFP and πSGLD, respectively. The associated circles indicate the order of magnitude
of the covariance matrix. While LMC and SGLDFP concentrate to the posterior mean θ̄ with a
covariance matrix of the order 1/N , SGLD and SGD are at a distance of order ∼ 1 of θ̄ and do
not concentrate as N → +∞.
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7.4 Numerical experiments

Simulated data For illustrative purposes, we consider a Bayesian logistic regression
in dimension d = 2. We simulate N = 105 covariates {xi}Ni=1 drawn from a standard 2-
dimensional Gaussian distribution and we denote by X ∈ RN×d the matrix of covariates
such that the ith row of X is xi. Our Bayesian regression model is specified by a Gaussian
prior of mean 0 and identity covariance matrix, and a likelihood given for yi ∈ {0, 1}
by p(yi|xi, θ) = (1 + e−xT

i θ)−yi(1 + exT
i θ)yi−1. We simulate N observations {yi}Ni=1 under

this model. In this setting, H20 and H22 are satisfied, and H21 holds if the state space
is compact.

To illustrate the results of Section 7.3.2, we consider 10 regularly spaced values of N
between 102 and 105 and we truncate the dataset accordingly. We compute an estimator
θ̂ of θ? using SGD [Ped+11] combined with the BFGS algorithm [J+01]. For the LMC,
SGLDFP, SGLD and SGD algorithms, the step size γ is set equal to (1 + δ/4)−1 where
δ is the largest eigenvalue of XTX. We start the algorithms at θ0 = θ̂ and run n = 1/γ
iterations where the first 10% samples are discarded as a burn-in period.

We estimate the means and covariance matrices of πLMC, πFP, πSGLD and πSGD by their
empirical averages θ̄n = (1/n)

∑n−1
k=0 θk and {1/(n − 1)}

∑n−1
k=0(θk − θ̄n)⊗2. We plot the

mean and the trace of the covariance matrices for the different algorithms, averaged over
100 independent trajectories, in Figure 7.2 and Figure 7.3 in logarithmic scale.

The slope for LMC and SGLDFP is −1 which confirms the convergence of
∥∥∥θ̄n − θ?∥∥∥

to 0 at a rate N−1. On the other hand, we can observe that
∥∥∥θ̄n − θ?∥∥∥ converges to a

constant for SGD and SGLD.

Covertype dataset We then illustrate our results on the covertype dataset1 with a
Bayesian logistic regression model. The prior is a standard multivariate Gaussian distri-
bution. Given the size of the dataset and the dimension of the problem, LMC requires
high computational resources and is not included in the simulations. We truncate the
training dataset at N ∈

{
103, 104, 105}. For all algorithms, the step size γ is set equal

to 1/N and the trajectories are started at θ̂, an estimator of θ?, computed using SGD
combined with the BFGS algorithm.

We empirically check that the variance of the stochastic gradients scale as N2 for
SGD and SGLD, and as N for SGLDFP. We compute the empirical variance estimator of
the gradients, take the mean over the dimension and display the result in a logarithmic
plot in Figure 7.4. The slopes are 2 for SGD and SGLD, and 1 for SGLDFP.

On the test dataset, we also evaluate the negative loglikelihood of the three algorithms
for different values of N ∈

{
103, 104, 105}, as a function of the number of iterations. The

plots are shown in Figure 7.5. We note that for large N , SGLD and SGD give very
similar results that are below the performance of SGLDFP.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/covtype.libsvm.binary.

scale.bz2

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/covtype.libsvm.binary.scale.bz2
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/covtype.libsvm.binary.scale.bz2
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Figure 7.2: Distance to θ?,
∥∥θ̄n − θ?∥∥ for LMC, SGLDFP, SGLD and SGD, function of N , in

logarithmic scale.
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7.A Proofs of Section 7.3.1

7.A.1 Proof of Lemma 7.1

The convergence in Wasserstein distance is classically done via a standard synchronous
coupling [DDB17, Proposition 2]. We prove the statement for SGLD; the adaptation
for LMC, SGLDFP and SGD is immediate. Let γ ∈ (0, 2/L) and λ1, λ2 ∈ P2(Rd).
By [Vil09, Theorem 4.1], there exists a couple of random variables (θ(1)

0 , θ
(2)
0 ) such that

W2
2(λ1, λ2) = E

[∥∥∥θ(1)
0 − θ

(2)
0

∥∥∥2
]
. Let (θ(1)

k , θ
(2)
k )k∈N be the SGLD iterates starting from

θ
(1)
0 and θ

(2)
0 respectively and driven by the same noise, i.e. for all k ∈ N,θ
(1)
k+1 = θ

(1)
k − γ

{
∇U0(θ(1)

k ) + (N/p)
∑
i∈Sk+1

∇Ui(θ(1)
k )

}
+
√

2γZk+1 ,

θ
(2)
k+1 = θ

(2)
k − γ

{
∇U0(θ(2)

k ) + (N/p)
∑
i∈Sk+1

∇Ui(θ(2)
k )

}
+
√

2γZk+1 ,

where (Zk)k≥1 is an i.i.d. sequence of standard Gaussian variables and (Sk)k≥1 an i.i.d. se-
quence of subsamples of {1, . . . , N} of size p. Denote by (Fk)k∈N the filtration associated

to (θ(1)
k , θ

(2)
k )k∈N. We have for k ∈ N,∥∥∥θ(1)

k+1 − θ
(2)
k+1

∥∥∥2
=

∥∥∥θ(1)
k − θ

(2)
k

∥∥∥2
+ γ2

∥∥∥∥∥∥∇U0(θ(1)
k ) + N

p

∑
i∈Sk+1

∇Ui(θ(1)
k )−∇U0(θ(2)

k )− N

p

∑
i∈Sk+1

∇Ui(θ(2)
k )

∥∥∥∥∥∥
2

− 2γ
〈
θ

(1)
k − θ

(2)
k ,∇U0(θ(1)

k ) + N

p

∑
i∈Sk+1

∇Ui(θ(1)
k )−∇U0(θ(2)

k )− N

p

∑
i∈Sk+1

∇Ui(θ(2)
k )

〉
.

By H 20 and H 22, θ 7→ ∇U0(θ) + (N/p)
∑
i∈S ∇Ui(θ) is P-a.s L-co-coercive [ZM96].

Taking the conditional expectation w.r.t. Fk, we obtain

E
[∥∥∥θ(1)

k+1 − θ
(2)
k+1

∥∥∥2
∣∣∣∣Fk] ≤ ∥∥∥θ(1)

k − θ
(2)
k

∥∥∥2
−2γ {1− (γL)/2}

〈
θ

(1)
k − θ

(2)
k ,∇U(θ(1)

k )−∇U(θ(2)
k )

〉
,

and by H21

E
[∥∥∥θ(1)

k+1 − θ
(2)
k+1

∥∥∥2
∣∣∣∣Fk] ≤ {1− 2mγ(1− (γL)/2)}

∥∥∥θ(1)
k − θ

(2)
k

∥∥∥2
.

Since for all k ≥ 0, (θ(1)
k , θ

(2)
k ) belongs to Π(λ1R

k
SGLD, λ2R

k
SGLD), we get by a straightfor-

ward induction

W2
2(λ1R

k
SGLD, λ2R

k
SGLD) ≤ E

[∥∥∥θ(1)
k − θ

(2)
k

∥∥∥2
]
≤ {1− 2mγ(1− (γL)/2)}k W2

2(λ1, λ2) .
(7.15)

By H20, λ1RSGLD ∈ P2(Rd) and taking λ2 = λ1RSGLD, we get
∑+∞
k=0 W2

2(λ1R
k
SGLD, λ1R

k+1
SGLD) <

+∞.By [Vil09, Theorem 6.16], P2(Rd) endowed with W2 is a Polish space. (λ1R
k
SGLD)k≥0



210 7.A. Proofs of Section 7.3.1

is a Cauchy sequence and converges to a limit πλ1
SGLD ∈ P2(Rd). The limit πλ1

SGLD does not
depend on λ1 because, given λ2 ∈ P2(Rd), by the triangle inequality

W2(πλ1
SGLD, π

λ2
SGLD) ≤W2(πλ1

SGLD, λ1R
k
SGLD)+W2(λ1R

k
SGLD, λ2R

k
SGLD)+W2(πλ2

SGLD, λ2R
k
SGLD) .

Taking the limit k → +∞, we get W2(πλ1
SGLD, π

λ2
SGLD) = 0. The limit is thus the same for

all initial distributions and is denoted πSGLD. πSGLD is invariant for RSGLD since we have
for all k ∈ N∗,

W2(πSGLD, πSGLDRSGLD) ≤W2(πSGLD, πSGLDR
k
SGLD) + W2(πSGLDRSGLD, πSGLDR

k
SGLD) .

Taking the limit k → +∞, we obtain W2(πSGLD, πSGLDRSGLD) = 0. Using (7.15), πSGLD

is the unique invariant probability measure for RSGLD.

7.A.2 Proof of Theorem 7.2

Proof of i). Let γ ∈ (0, 1/L] and λ1, λ2 ∈ P2(Rd). By [Vil09, Theorem 4.1], there

exists a couple of random variables (θ0, ϑ0) such that W2
2(λ1, λ2) = E

[
‖θ0 − ϑ0‖2

]
. Let

(θk, ϑk)k∈N be the LMC and SGLDFP iterates starting from θ0 and ϑ0 respectively and
driven by the same noise, i.e. for all k ∈ N,θk+1 = θk − γ∇U(θk) +

√
2γZk+1 ,

ϑk+1 = ϑk − γ
(
∇U0(ϑk)−∇U0(θ?) + (N/p)

∑
i∈Sk+1

{∇Ui(ϑk)−∇Ui(θ?)}
)

+
√

2γZk+1 ,

where (Zk)k≥1 is an i.i.d. sequence of standard Gaussian variables and (Sk)k≥1 an i.i.d. se-
quence of subsamples with replacement of {1, . . . , N} of size p. Denote by (Fk)k∈N the
filtration associated to (θk, ϑk)k∈N. We have for k ∈ N,

E
[
‖θk+1 − ϑk+1‖2

∣∣∣Fk] = ‖θk − ϑk‖2 − 2γ 〈θk − ϑk,∇U(θk)−∇U(ϑk)〉+ γ2A (7.16)

where

A = E


∥∥∥∥∥∥∇U(θk)−

∇U0(ϑk)−∇U0(θ?) + (N/p)
∑

i∈Sk+1

{∇Ui(ϑk)−∇Ui(θ?)}

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣Fk


= A1 +A2 ,

A1 = ‖∇U(θk)−∇U(ϑk)‖2 ,

A2 = E


∥∥∥∥∥∥∇U(ϑk)−

∇U0(ϑk)−∇U0(θ?) + (N/p)
∑

i∈Sk+1

{∇Ui(ϑk)−∇Ui(θ?)}

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣Fk

 .

Denote by W the random variable equal to ∇Ui(ϑk)−∇Ui(θ?)−(1/N)
∑N
j=1{∇Uj(ϑk)−

∇Uj(θ?)} for i ∈ {1, . . . , N} with probability 1/N . By H20 and using the fact that the
subsamples (Sk)k≥1 are drawn with replacement, we obtain

A2 = (N2/p)E
[
‖W‖2 |Fk

]
≤ (L2/p) ‖ϑk − θ?‖2 .
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Combining it with (7.16), and using the L-co-coercivity of ∇U under H20 and H21, we
get

E
[
‖θk+1 − ϑk+1‖2

∣∣∣Fk] ≤ (1−mγ) ‖θk − ϑk‖2 + {(L2γ2)/p} ‖ϑk − θ?‖2 .

Iterating and using Lemma 7.8-i), we have for n ∈ N

W2
2(λ1R

n
LMC, λ2R

n
FP) ≤ E

[
‖θn − ϑn‖2

]
≤ (1−mγ)n W2

2(λ1, λ2) + L2γ2

p

n−1∑
k=0

(1−mγ)n−1−kE
[
‖ϑk − θ?‖2

]
≤ (1−mγ)n W2

2(λ1, λ2) + L2γ2

p
n(1−mγ)n−1

∫
Rd
‖ϑ− θ?‖2 λ2(dϑ) + 2L2γd

pm2 .

Proof of ii). Denote by κ = (2mL)/(m+L). By H20, H21 and [DM16, Theorem 5],
we have for all n ∈ N,

W2
2(λ1Pnγ , λ2R

n
LMC) ≤ 2 (1− κγ/2)n W2

2(λ1, λ2) + 2L2γ

κ
(κ−1 + γ)

(
2d+ dL2γ2

6

)

+ L4γ3(κ−1 + γ)
n∑
k=1

δk {1− κγ/2}n−k

where for all k ∈ {1, . . . , n},

δk ≤ e−2m(k−1)γ
∫
Rd
‖ϑ− θ?‖2 λ1(dϑ) + d/m .

We get the result by straightforward simplifications and using γ ≤ 1/L.
Proof of iii). Let γ ∈ (0, 1/L] and λ1, λ2 ∈ P2(Rd). By [Vil09, Thereom 4.1], there

exists a couple of random variables (θ0, ϑ0) such that W2
2(λ1, λ2) = E

[
‖θ0 − ϑ0‖2

]
. Let

(θk, ϑk)k∈N be the SGLD and SGD iterates starting from θ0 and ϑ0 respectively and
driven by the same noise, i.e. for all k ∈ N,θk+1 = θk − γ

(
∇U0(θk) + (N/p)

∑
i∈Sk+1

∇Ui(θk)
)

+
√

2γZk+1 ,

ϑk+1 = ϑk − γ
(
∇U0(ϑk) + (N/p)

∑
i∈Sk+1

∇Ui(ϑk)
)
,

where (Zk)k≥1 is an i.i.d. sequence of standard Gaussian variables and (Sk)k≥1 an i.i.d. se-
quence of subsamples with replacement of {1, . . . , N} of size p. Denote by (Fk)k∈N the
filtration associated to (θk, ϑk)k∈N. We have for k ∈ N,

E
[
‖θk+1 − ϑk+1‖2

∣∣∣Fk] = ‖θk − ϑk‖2 − 2γ 〈θk − ϑk,∇U(θk)−∇U(ϑk)〉+ 2γd

+ γ2E


∥∥∥∥∥∥∇U0(θk) + (N/p)

∑
i∈Sk+1

∇Ui(θk)−∇U0(ϑk)− (N/p)
∑

i∈Sk+1

∇Ui(ϑk)

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣Fk

 .
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By H20 and H22, θ 7→ ∇U0(θ)+(N/p)
∑
i∈S ∇Ui(θ) is P-a.s L-co-coercive and we obtain

E
[
‖θk+1 − ϑk+1‖2

∣∣∣Fk] ≤ {1− 2mγ(1− γL/2)} ‖θk − ϑk‖2 + 2γd ,

which concludes the proof by a straightforward induction.

7.A.3 Proof of Theorem 7.4

Proof of i). Let γ ∈
(
0,Σ−1{1 +N/(p

∑N
i=1 x

2
i )}−1

]
, (θk)k∈N be the iterates of SGLD

(7.3) started at θ? and (Fk)k∈N the associated filtration. For all k ∈ N, E [θk] = θ?. The
variance of θk satisfies the following recursion for k ∈ N

E
[
(θk+1 − θ?)2

∣∣∣Fk]
= E

[{
θk − θ? − γ (Σ(θk − θ?) + ρ(Sk+1)(θk − θ?) + ξ(Sk+1)) +

√
2γZk+1

}2
∣∣∣∣Fk]

= µ(θk − θ?)2 + 2γ + γ2A ,

where

µ = E

{1− γ
(

1
σ2
θ

+ N

σ2
yp

∑
i∈S

x2
i

)}2
 , A = E

{ θ?
σ2
θ

+ N

σ2
yp

∑
i∈S

(xiθ? − yi)xi

}2
 .

We have for µ,

µ = 1− 2γΣ + γ2E

{ N

σ2
yp

∑
i∈S

x2
i −

1
σ2
y

N∑
i=1

x2
i

}2+ γ2Σ2

= 1− 2γΣ + γ2

Σ2 + N

σ4
yp

N∑
i=1

x2
i −

1
N

N∑
j=1

x2
j

 ≤ 1− γΣ ,

and for A,

A = N

p

N∑
i=1

{
(xiθ? − yi)xi

σ2
y

+ θ?

Nσ2
θ

}2

.

By a straightforward induction, we obtain that the variance of the nth iterate of SGLD
started at θ? is for n ∈ N∗∫

R
(θ − θ?)2RnSGLD(θ?, dθ) = 1− µn

1− µ 2γ + 1− µn

1− µ
Nγ2

p

N∑
i=1

{
(xiθ? − yi)xi

σ2
y

+ θ?

Nσ2
θ

}2

.

For SGLDFP, the additive part of the noise in the stochastic gradient disappears and
we obtain similarly for n ∈ N∗∫

R
(θ − θ?)2RnFP(θ?,dθ) = 1− µn

1− µ 2γ .
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To conclude, we use that for two probability measures with given mean and covariance
matrices, the Wasserstein distance between the two Gaussians with these respective
parameters is a lower bound for the Wasserstein distance between the two measures
[Gel, Theorem 2.1].

The proof of ii) is straightforward.

7.B Proofs of Section 7.3.2

7.B.1 Proof of Proposition 7.5

Let θ be distributed according to π. By H 21, for all ϑ ∈ Rd, U(ϑ) ≥ U(θ?) +
(m/2) ‖ϑ− θ?‖2 and E [∇U(θ)] = 0. By a Taylor expansion of ∇U around θ?, we obtain

0 = E [∇U(θ)] = ∇2U(θ?) (E [θ]− θ?) + (1/2) D3 U(θ?)
[
E
[
(θ − θ?)⊗2

]]
+ E [R1(θ)] ,

where by H20, R1 : Rd → Rd satisfies

sup
ϑ∈Rd

{
‖R1(ϑ)‖ / ‖ϑ− θ?‖3

}
≤ L/6 . (7.17)

Rearranging the terms, we get

E [θ]− θ? = −(1/2)∇2U(θ?)−1 D3 U(θ?)
[
E
[
(θ − θ?)⊗2

]]
−∇2U(θ?)−1E [R1(θ)] .

To estimate the covariance matrix of π around θ?, we start again from the Taylor ex-
pansion of ∇U around θ? and we obtain

E
[
∇U(θ)⊗2

]
= E

[(
∇2U(θ?)(θ − θ?) +R2(θ)

)⊗2
]

= ∇2U(θ?)⊗2E
[
(θ − θ?)⊗2

]
+E [R3(θ)]

(7.18)
where by H20, R2 : Rd → Rd satisfies

sup
ϑ∈Rd

{
‖R2(ϑ)‖ / ‖ϑ− θ?‖2

}
≤ L/2 , (7.19)

and R3 : Rd → Rd×d is defined for all ϑ ∈ Rd by

R3(ϑ) = ∇2U(θ?)(ϑ− θ?)⊗R2(ϑ) +R2(ϑ)⊗∇2U(θ?)(ϑ− θ?) +R2(ϑ)⊗2 . (7.20)

E
[
∇U(θ)⊗2] is the Fisher information matrix and by a Taylor expansion of ∇2U around

θ? and an integration by parts,

E
[
∇U(θ)⊗2

]
= E

[
∇2U(θ)

]
= ∇2U(θ?) + E [R4(θ)]

where by H20, R4 : Rd → Rd×d satisfies

sup
ϑ∈Rd

{‖R4(ϑ)‖ / ‖ϑ− θ?‖} ≤ L . (7.21)

Combining this result, (7.17), (7.18), (7.19), (7.20), (7.21) and E[‖θ − θ?‖4] ≤ d(d +
2)/m2 by [Bro+18, Lemma 9] conclude the proof.
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7.B.2 Proofs of Theorem 7.6 and Theorem 7.7

First note that under H20, H21 and H22, there exists r ∈ [0, L/(√pm)] such that

K � r2(∇2U(θ?))⊗2 , (7.22)

i.e. for all A ∈ Rd×d,

Tr(AT K(A)) ≤ r2 Tr(AT(∇2U(θ?))⊗2A) ,

and where K is defined in (7.7). In addition, if lim infN→+∞N
−1m > 0, r can be chosen

independently of N .

Moreover, for all γ ∈ (0, 2/L), H defined in (7.8), is invertible and for all γ ∈
(0, 2/{(1 + r2)L}), G defined in (7.9), is invertible. Indeed,

H = ∇2U(θ?)⊗
(

Id−γ2∇
2U(θ?)

)
+
(

Id−γ2∇
2U(θ?)

)
⊗∇2U(θ?) � 0 ,

G � ∇2U(θ?)⊗ Id + Id⊗∇2U(θ?)− γ(1 + r2)∇2U(θ?)⊗∇2U(θ?)

� ∇2U(θ?)⊗
(

Id−γ(1 + r2)
2 ∇2U(θ?)

)
+
(

Id−γ(1 + r2)
2 ∇2U(θ?)

)
⊗∇2U(θ?) � 0 .

For simplicity of notation, in this Section, we use ε(θ) to denote the difference between
the stochastic and the exact gradients at θ ∈ Rd. More precisely, ε is the null function
for LMC and is defined for θ ∈ Rd by

ε(θ) = N

p

∑
i∈S
∇Ui(θ)−

N∑
j=1
∇Uj(θ) for SGLD and SGD, (7.23)

ε(θ) = ∇U0(θ)−∇U0(θ?) + N

p

∑
i∈S
{∇Ui(θ)−∇Ui(θ?)} − ∇U(θ) for SGLDFP,

(7.24)

where S is a random subsample of {1, . . . , N} with replacement of size p ∈ N∗. In this
setting, the update equation for LMC, SGLD and SGLDFP is given for k ∈ N by

θk+1 = θk − (∇U(θk) + εk+1(θk)) +
√

2γZk+1 , (7.25)

where (Zk)k≥1 is a sequence of i.i.d. standard d-dimensional Gaussian variables and the
sequence of vector fields (εk)k≥1 is associated to a sequence (Sk)k≥1 of i.i.d. random
subsample of {1, . . . , N} with replacement of size p ∈ N∗. We also denote by π̄ ∈ P2(Rd)
the invariant probability measure of LMC, SGLDFP or SGLD.

Control of the moments of order 2 and 4 of LMC, SGLDFP and SGLD

Lemma 7.8. Assume H20, H21 and H22.



Chapter 7. The promises and pitfalls of Stochastic Gradient Langevin Dynamics 215

i) For all initial distribution λ ∈ P2(Rd), γ ∈ (0, 1/L] and k ∈ N,

E
[
‖θk − θ?‖2

]
≤ (1−mγ)k

∫
Rd
‖ϑ− θ?‖2 λ(dϑ) + (2d)/m

where (θk)k∈N are the iterates of SGLDFP (7.5) or LMC (7.2).

ii) For all initial distribution λ ∈ P2(Rd), γ ∈ (0, 1/(2L)] and k ∈ N,

E
[
‖θk − θ?‖2

]
≤ (1−mγ)k

∫
Rd
‖ϑ− θ?‖2 λ(dϑ) + 2d

m

+ 2γN
mp

N∑
i=1

∥∥∥∥∥∥∇Ui(θ?)− 1
N

N∑
j=1
∇Uj(θ?)

∥∥∥∥∥∥
2

where (θk)k∈N are the iterates of SGLD (7.3).

Proof. i). We prove the result for SGLDFP, the case of LMC is identical. Let γ ∈
(0, 1/L], (θk)k∈N be the iterates of SGLDFP and (Fk)k∈N the filtration associated to
(θk)k∈N. By (7.5), we have for all k ∈ N,

E
[
‖θk+1 − θ?‖2

∣∣∣Fk] = ‖θk − θ?‖2 − 2γ 〈θk − θ?,∇U(θk)−∇U(θ?)〉+ 2γd

+ γ2E


∥∥∥∥∥∥∇U0(θk)−∇U0(θ?) + N

p

∑
i∈Sk+1

{∇Ui(θk)−∇Ui(θ?)}

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣Fk


By H20 and H22, θ 7→ ∇U0(θ)−∇U0(θ?) + (N/p)

∑
i∈S{∇Ui(θ)−∇Ui(θ?)} is P-a.s L-

co-coercive and we obtain

E
[
‖θk+1 − θ?‖2

∣∣∣Fk] ≤ {1− 2mγ(1− γL/2)} ‖θk − θ?‖2 + 2γd .

A straightforward induction concludes the proof.
ii). Let γ ∈ (0, 1/(2L)], (θk)k∈N be the iterates of SGLD and (Fk)k∈N the filtration

associated to (θk)k∈N. By (7.3), we have for all k ∈ N,

E
[
‖θk+1 − θ?‖2

∣∣∣Fk] = ‖θk − θ?‖2 − 2γ 〈θk − θ?,∇U(θk)−∇U(θ?)〉+ 2γd

+ γ2E


∥∥∥∥∥∥∇U0(θk) + N

p

∑
i∈Sk+1

∇Ui(θk)

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣Fk


≤ ‖θk − θ?‖2 − 2γ 〈θk − θ?,∇U(θk)−∇U(θ?)〉+ 2γd

+ 2γ2E


∥∥∥∥∥∥∇U0(θk)−∇U0(θ?) + N

p

∑
i∈Sk+1

{∇Ui(θk)−∇Ui(θ?)}

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣Fk


+ 2γ2E


∥∥∥∥∥∥∇U0(θ?) + N

p

∑
i∈Sk+1

∇Ui(θ?)

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣Fk

 .
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By H20 and H22, θ 7→ ∇U0(θ)+(N/p)
∑
i∈S ∇Ui(θ) is P-a.s L-co-coercive and we obtain

E
[
‖θk+1 − θ?‖2

∣∣∣Fk] ≤ {1− 2mγ(1− γL)} ‖θk − θ?‖2 + 2γd

+ 2γ2N

p

N∑
i=1

∥∥∥∥∥∥∇Ui(θ?)− 1
N

N∑
j=1
∇Uj(θ?)

∥∥∥∥∥∥
2

.

A straightforward induction concludes the proof.

Lemma 7.9. Assume H 20, H 21 and H 22. For all initial distribution λ ∈ P4(Rd),
γ ∈ (0, 1/{12(L ∨ 1)}] and k ∈ N,

E
[
‖θk − θ?‖4

]
≤ (1− 2mγ)k

∫
Rd
‖ϑ− θ?‖4 λ(dϑ)

+
{

12γ2E
[
‖ε(θ?)‖2

]
+ 2γ(2d+ 1)

}
k(1−mγ)k−1

∫
Rd
‖ϑ− θ?‖2 λ(dϑ)

+
{2d+ 1

m
+ 6γ
m

E
[
‖ε(θ?)‖2

]}2

+ 2γd(2 + d)
m

+ 4γ3

m
E
[
‖ε(θ?)‖4

]
+ 4γ2(d+ 2)

m
E
[
‖ε(θ?)‖2

]
.

where (θk)k∈N are the iterates of LMC (7.2), SGLD (7.3) or SGLDFP (7.5).

Proof. Let γ ∈ (0, 1/{12(L ∨ 1)}], (θk)k∈N be the iterates of LMC (7.2), SGLD (7.3) or
SGLDFP (7.5) and (Fk)k∈N be the associated filtration. By developing the square, we
have

‖θ1 − θ?‖4 =
(
‖θ0 − θ?‖2 + 2γ ‖Z1‖2 + γ2 ‖∇U(θ0) + ε1(θ0)‖2

−2γ 〈∇U(θ0) + ε1(θ0), θ0 − θ?〉+
√

2γ 〈θ0 − θ?, Z1〉−(2γ)3/2 〈∇U(θ0) + ε1(θ0), Z1〉
)2
,

and taking the conditional expectation w.r.t. F0,

E
[
‖θ1 − θ?‖4

∣∣∣F0
]

= E
[
‖θ0 − θ?‖4 + 4γ2 ‖Z1‖4 + γ4 ‖∇U(θ0) + ε1(θ0)‖4

+ 4γ2 〈∇U(θ0) + ε1(θ0), θ0 − θ?〉2 + 2γ 〈θ0 − θ?, Z1〉2 + (2γ)3 〈∇U(θ0) + ε1(θ0), Z1〉2

+ 4γ ‖Z1‖2 ‖θ0 − θ?‖2 + 2γ2 ‖θ0 − θ?‖2 ‖∇U(θ0) + ε1(θ0)‖2

− 4γ ‖θ0 − θ?‖2 〈∇U(θ0), θ0 − θ?〉+ 4γ3 ‖Z1‖2 ‖∇U(θ0) + ε1(θ0)‖2

− 8γ2 ‖Z1‖2 〈∇U(θ0), θ0 − θ?〉 − 4γ3 ‖∇U(θ0) + ε1(θ0)‖2 〈∇U(θ0) + ε1(θ0), θ0 − θ?〉

− 8γ2 〈θ0 − θ?, Z1〉 〈∇U(θ0) + ε1(θ0), Z1〉 |F0
]
.

By H20 and H22, θ 7→ ∇U(θ) + ε1(θ) is P-a.s L-co-coercive and we have for all θ ∈ Rd,
P-a.s ,

‖∇U(θ) + ε1(θ)− ε1(θ?)‖2 ≤ L 〈θ − θ?,∇U(θ) + ε1(θ)− ε1(θ?)〉 ,
‖∇U(θ) + ε1(θ)− ε1(θ?)‖4 ≤ L2 ‖θ − θ?‖2 〈θ − θ?,∇U(θ) + ε1(θ)− ε1(θ?)〉 .
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Combining it with E
[
‖Z1‖4

]
= d(2 + d), we obtain

E
[
‖θ1 − θ?‖4

∣∣∣F0, S1
]
≤ ‖θ0 − θ?‖4 − 4γ(1− 3γL− 2γ3L2) ‖θ0 − θ?‖2

× 〈θ0 − θ?,∇U(θ0) + ε1(θ0)− ε1(θ?)〉+ (12γ2 ‖ε1(θ?)‖2 + 2γ(2d+ 1)) ‖θ0 − θ?‖2

+ 4γ2d(2 + d) + 8γ4 ‖ε1(θ?)‖4 + 8γ3(d+ 2) ‖ε1(θ?)‖2

− 8(d+ 1)γ2(1− 2γL) 〈θ0 − θ?,∇U(θ0) + ε1(θ0)− ε1(θ?)〉 .

By H21 and using γ ≤ 1/{12(L ∨ 1)}, we get

E
[
‖θ1 − θ?‖4

∣∣∣F0
]
≤ (1− 2mγ) ‖θ0 − θ?‖4 +

{
12γ2E

[
‖ε1(θ?)‖2

]
+ 2γ(2d+ 1)

}
‖θ0 − θ?‖2

+ 4γ2d(2 + d) + 8γ4E
[
‖ε1(θ?)‖4

]
+ 8γ3(d+ 2)E

[
‖ε1(θ?)‖2

]
.

By a straightforward induction, we have for all n ∈ N

E
[
‖θn − θ?‖4

]
≤ (1− 2mγ)nE

[
‖θ0 − θ?‖4

]
+
{

12γ2E
[
‖ε(θ?)‖2

]
+ 2γ(2d+ 1)

} n−1∑
k=0

(1− 2mγ)n−1−kE
[
‖θk − θ?‖2

]
+ (2mγ)−1

{
4γ2d(2 + d) + 8γ4E

[
‖ε(θ?)‖4

]
+ 8γ3(d+ 2)E

[
‖ε(θ?)‖2

]}
and by Lemma 7.8,

E
[
‖θn − θ?‖4

]
≤ (1− 2mγ)n

∫
Rd
‖ϑ− θ?‖4 λ(dϑ)

+
{

12γ2E
[
‖ε1(θ?)‖2

]
+ 2γ(2d+ 1)

}
n(1−mγ)n−1

∫
Rd
‖ϑ− θ?‖2 λ(dϑ)

+
{2d+ 1

m
+ 6γ
m

E
[
‖ε(θ?)‖2

]}2

+ 2γd(2 + d)
m

+ 4γ3

m
E
[
‖ε(θ?)‖4

]
+ 4γ2(d+ 2)

m
E
[
‖ε(θ?)‖2

]
.

Thanks to this lemma, we obtain the following corollary. The upper bound for SGD
is given by [DDB17, Lemma 13].

Corollary 7.10. Assume H20, H21 and H22.

i) Let γ = η/N with η ∈ (0, 1/{24(L̃∨1)}] and assume that lim infN→+∞N
−1m > 0.

Then, ∫
Rd
‖θ − θ?‖4 πLMC(dθ) = d2ON→+∞(N−2) ,∫

Rd
‖θ − θ?‖4 πFP(dθ) = d2ON→+∞(N−2) .
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ii) Let γ = η/N with η ∈ (0, 1/{24(L̃∨ 1)}] and assume that lim infN→+∞N
−1m > 0

and that N ≥ 1/η. Then,∫
Rd
‖θ − θ?‖4 πSGLD(dθ) = d2Oη→0(η2) ,

∫
Rd
‖θ − θ?‖4 πSGD(dθ) = d2Oη→0(η2) .

Proofs of Theorem 7.6 and Theorem 7.7

Denote by

η0 = inf
N≥1

{
N

12(L ∨ 1) ∧
2N

(1 + r2)L

}
> 0 , (7.26)

and set γ = η/N with η ∈ (0, η0). Let δ ∈ {0, 1} be equal to 1 for LMC, SGLDFP
and SGLD and 0 for SGD. Let θ0 be distributed according to π̄. By (7.25) and using a
Taylor expansion around θ? for ∇U , we obtain

θ1 − θ? = θ0 − θ? − γ
(
∇2U(θ?)(θ0 − θ?) +R1(θ0) + ε1(θ0)

)
+ δ

√
2γZ1 ,

where by H20, R1 : Rd → Rd satisfies

sup
θ∈Rd

{
‖R1(θ)‖ / ‖θ − θ?‖2

}
≤ L/2 . (7.27)

Taking the tensor product and the expectation, and using that θ0, ε1, Z1 are mutually
independent, we obtain

HE
[
(θ0 − θ?)⊗2

]
= 2δ Id +γE

[
ε1(θ0)⊗2

]
+E [R1(θ0)⊗ {θ0 − θ?}+ {θ0 − θ?} ⊗R1(θ0)]

+ γE
[
R1(θ0)⊗2 + {∇2U(θ?)(θ0 − θ?)} ⊗R1(θ0) +R1(θ0)⊗∇2U(θ?)(θ0 − θ?)

]
.

(7.28)

For LMC, ε1 is the null function and by Corollary 7.10-i), (7.27) and (7.28), we obtain
(7.10). Regarding SGLDFP, SGLD and SGD, by a Taylor expansion of ε1 around θ?, we
get for all θ ∈ Rd, P-a.s ,

ε1(θ) = ε1(θ?) +∇ε1(θ?)(θ − θ?) +R2(θ)

where by H20,R2 : Rd → Rd satisfies

sup
θ∈Rd

{
‖R2(θ)‖ / ‖θ − θ?‖2

}
≤ L/2 . (7.29)

Therefore, taking the tensor product and the expectation, we obtain

E
[
ε1(θ0)⊗2

]
= E

[
ε1(θ?)⊗2

]
+ (∇ε1(θ?))⊗2 E

[
(θ0 − θ?)⊗2

]
+ E [R3(θ0)] (7.30)

where R3 : Rd → Rd×d is defined for all θ ∈ Rd, P-a.s ,

R3(θ) = ε1(θ?)⊗ {∇ε1(θ?)(θ − θ?)}+ {∇ε1(θ?)(θ − θ?)} ⊗ ε1(θ?)
+ {ε1(θ?) +∇ε1(θ?)(θ − θ?)} ⊗R2(θ) +R2(θ)⊗ {ε1(θ?) +∇ε1(θ?)(θ − θ?)}+R⊗2

2 (θ) .
(7.31)
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Note that K = E
[
(∇ε1(θ?))⊗2

]
. For SGLDFP, ε1(θ?) = 0 a.s By Corollary 7.10-i),

(7.27), (7.28), (7.29), (7.30) and (7.31), we obtain (7.11).
Regarding SGLD and SGD, we have E

[
ε1(θ?)⊗2] = (N/p) M where M is defined in

(7.14). By Corollary 7.10-ii), (7.27), (7.28), (7.29), (7.30) and (7.31), we obtain (7.12)
and (7.13).

For the mean of πLMC, πFP, πSGLD and πSGD, by a Taylor expansion around θ? for ∇U
of order 3, we obtain

θ1−θ? = θ0−θ?−γ
(
∇2U(θ?)(θ0 − θ?) + (1/2) D3 U(θ?)(θ0 − θ?)⊗2 +R4(θ0) + ε1(θ0)

)
+ δ

√
2γZ1 ,

where by H20, R4 : Rd → Rd satisfies

sup
θ∈Rd

{
‖R4(θ)‖ / ‖θ − θ?‖3

}
≤ L/6 . (7.32)

Taking the expectation and using that θ1 is distributed according to π̄, we get

E [θ0]− θ? = −(1/2)∇2U(θ?) D3 U(θ?)[E
[
(θ0 − θ?)⊗2

]
]−∇2U(θ?)−1E [R4(θ0)] .

(7.10), (7.11), (7.12),(7.13), (7.32) and Corollary 7.10 conclude the proof.

7.C Means and covariance matrices of πLMC, πFP, πSGLD and
πSGD in the Bayesian linear regression

In this Section, we provide explicit expressions of the covariance matrices of πLMC, πFP, πSGLD

and πSGD in the context of the Bayesian linear regression. In this setting, the algorithms
are without bias, i.e.∫

Rd
θπLMC(dθ) =

∫
Rd
θπFP(dθ) =

∫
Rd
θπSGLD(dθ) =

∫
Rd
θπSGD(dθ) =

∫
Rd
θπ(dθ) = θ? .

(7.33)
Before giving the expressions of the variances in Theorem 7.11, we define T : Rd×d →
Rd×d for all A ∈ Rd×d by

T(A) = E

( Id
σ2
θ

+ N

pσ2
y

∑
i∈S

xix
T
i − Σ

)⊗2

A

 = N

p

N∑
i=1

(
xix

T
i

σ2
y

+ Id
Nσ2

θ

− Σ
N

)⊗2

A ,

(7.34)
where S is a random subsample of {1, . . . , N} with replacement of size p ∈ N∗. Note
that, in this setting, L̃ = maxi∈{1,...,N} ‖xi‖2 and m is the smallest eigenvalue of Σ.
There exists r ∈ [0, L/(√pm)] such that

T � r2Σ⊗2 (7.35)

i.e. for allA ∈ Rd×d, Tr(AT T ·A) ≤ r2 Tr(ATΣ⊗2A). Assuming that lim infN→+∞N
−1m >

0, r can be chosen independently of N .
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7.C. Means and covariance matrices of πLMC, πFP, πSGLD and πSGD in the Bayesian

linear regression

Theorem 7.11. Consider the case of the Bayesian linear regression. We have for all
γ ∈ (0, 2/L) ∫

Rd
(θ − θ?)⊗2πLMC(dθ) = (Id⊗Σ + Σ⊗ Id−γΣ⊗ Σ)−1 (2 Id) ,

and for all γ ∈
(
0, 2/{(1 + r2)L}

)
,∫

Rd
(θ − θ?)⊗2πFP(dθ) =

{
Id⊗Σ + Σ⊗ Id−γ(Σ⊗2 + T)

}−1
(2 Id) ,∫

Rd
(θ − θ?)⊗2πSGLD(dθ) =

{
Id⊗Σ + Σ⊗ Id−γ(Σ⊗2 + T)

}−1

·

2 Id +γN

p

N∑
i=1

(
(xT
i θ

? − yi)xi
σ2
y

+ θ?

σ2
θ

)⊗2
 ,

∫
Rd

(θ − θ?)⊗2πSGD(dθ) =
{

Id⊗Σ + Σ⊗ Id−γ(Σ⊗2 + T)
}−1

· γN
p

N∑
i=1

(
(xT
i θ

? − yi)xi
σ2
y

+ θ?

σ2
θ

)⊗2

.

Proof. We prove the result for SGLD, the adaptation to the other algorithms is imme-
diate. Let γ ∈

(
0, 2/{(1 + r2)L}

)
, θ0 be distributed according to πSGLD and θ1 be given

by (7.3). By definition of πSGLD, θ1 is distributed according to πSGLD. We have

E
[
(θ1 − θ?)⊗2

]
= E

[[Id−γ

 Id
σ2
θ

+ N

pσ2
y

∑
i∈S1

xix
T
i

 (θ0 − θ?)

− γ

 θ?
σ2
θ

+ N

pσ2
y

∑
i∈S1

(xT
i θ

? − yi)xi

+
√

2γZ1

]⊗2]
.

Using that θ0, S1, Z1 are mutually independent, we obtainId⊗Σ + Σ⊗ Id−γE


 Id
σ2
θ

+ N

pσ2
y

∑
i∈S1

xix
T
i

⊗2

E

[
(θ0 − θ?)⊗2

]

= 2 Id +γE


 θ?
σ2
θ

+ N

pσ2
y

∑
i∈S1

(xT
i θ

? − yi)xi

⊗2


and{
Id⊗Σ + Σ⊗ Id−γ(Σ⊗2 + T)

}
E
[
(θ0 − θ?)⊗2

]
= 2 Id +γN

p

N∑
i=1

(
(xT
i θ

? − yi)xi
σ2
y

+ θ?

σ2
θ

)⊗2

.
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On Rd×d equipped with the Hilbert-Schmidt inner product, Id⊗Σ+Σ⊗ Id−γ(Σ⊗2 +T)
is a positive definite operator. Indeed, by (7.35),

Id⊗Σ + Σ⊗ Id−γ(Σ⊗2 + T) � Id⊗Σ + Σ⊗ Id−γ(1 + r2)Σ⊗2

=
(

Id−γ 1 + r2

2 Σ
)
⊗ Σ + Σ⊗

(
Id−γ 1 + r2

2 Σ
)
� 0

for γ ∈
(
0, 2/{(1 + r2)L}

)
. Id⊗Σ+Σ⊗Id−γ(Σ⊗2+T) is thus invertible, which concludes

the proof.

The covariance matrices make clearly visible the different origins of the noise. The
Gaussian noise is responsible of the term 2 Id, while the multiplicative and additive parts
of the stochastic gradient (see (7.6)) are related to the operator T and to the term

γN

p

N∑
i=1

(
(xT
i θ

? − yi)xi
σ2
y

+ θ?

σ2
θ

)⊗2

(7.36)

respectively.
Denote by

η1 = inf
N≥1

{2N
L
∧ 2N

(1 + r2)L

}
> 0 . (7.37)

Corollary 7.12. Consider the case of the Bayesian linear regression. Set γ = η/N with
η ∈ (0, η1) and assume that lim infN→+∞N

−1m > 0.∫
Rd
‖θ − θ?‖2 πLMC(dθ) = dΘN→+∞(N−1) ,

∫
Rd
‖θ − θ?‖2 πFP(dθ) = dΘN→+∞(N−1) ,∫

Rd
‖θ − θ?‖2 πSGLD(dθ) = ηdΘN→+∞(1) ,

∫
Rd
‖θ − θ?‖2 πSGD(dθ) = ηdΘN→+∞(1) .

Recall that, according to the Bernstein-von Mises theorem, the variance of π is of
the order d/N when N is large. The corollary confirms that πSGLD is very far from π
when the constant step size γ is chosen proportional to 1/N .
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The Indian Journal of Statistics, Series A (1961-2002) 44.1 (1982), pp. 47–
71. issn: 0581572X.
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[DM17] Alain Durmus and Éric Moulines. “Nonasymptotic convergence analysis for
the unadjusted Langevin algorithm”. In: Ann. Appl. Probab. 27.3 (June
2017), pp. 1551–1587.

[DMM18] Alain Durmus, Szymon Majewski, and B lażej Miasojedow.“Analysis of Langevin
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[DMP18] A. Durmus, É. Moulines, and M. Pereyra. “Efficient Bayesian Computation
by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau”.
In: SIAM Journal on Imaging Sciences 11.1 (2018), pp. 473–506.

[DMS17] Alain Durmus, Eric Moulines, and Eero Saksman. “On the convergence of
Hamiltonian Monte Carlo”. In: arXiv e-prints, arXiv:1705.00166 (Apr. 2017),
arXiv:1705.00166.

[Dou+18] Randal Douc, Eric Moulines, Pierre Priouret, and Philippe Soulier. Markov
Chains. Ed. by Springer. Springer Series in Operations Research and Finan-
cial Engineering. Springer, Dec. 2018. isbn: 978-3319977034.

[DPZ17] A. B. Duncan, G. A. Pavliotis, and K. C. Zygalakis.“Nonreversible Langevin
Samplers: Splitting Schemes, Analysis and Implementation”. In: ArXiv e-
prints (Jan. 2017).

[DR18] Arnak S. Dalalyan and Lionel Riou-Durand. On sampling from a log-concave
density using kinetic Langevin diffusions. Submitted 1807.09382. arXiv, July
2018.

[DT12] A. S. Dalalyan and A. B. Tsybakov. “Sparse regression learning by aggre-
gation and Langevin Monte-Carlo”. In: J. Comput. System Sci. 78.5 (2012),
pp. 1423–1443.

[Dua+87] Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth.
“Hybrid Monte Carlo”. In: Physics Letters B 195.2 (1987), pp. 216–222.
issn: 0370-2693.

[Dub+16] Kumar Avinava Dubey, Sashank J. Reddi, Sinead A Williamson, Barn-
abas Poczos, Alexander J Smola, and Eric P Xing. “Variance Reduction in
Stochastic Gradient Langevin Dynamics”. In: Advances in Neural Informa-
tion Processing Systems 29. Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett. Curran Associates, Inc., 2016, pp. 1154–1162.



BIBLIOGRAPHY vii

[Dwi+18] Raaz Dwivedi, Yuansi Chen, Martin J Wainwright, and Bin Yu.“Log-concave
sampling: Metropolis-Hastings algorithms are fast!” In: Proceedings of the
31st Conference On Learning Theory. Ed. by Sébastien Bubeck, Vianney
Perchet, and Philippe Rigollet. Vol. 75. Proceedings of Machine Learning
Research. PMLR, June 2018, pp. 793–797.

[EG15] Lawrence Craig Evans and Ronald F Gariepy. Measure theory and fine prop-
erties of functions. CRC press, 2015.

[EGZ17] Andreas Eberle, Arnaud Guillin, and Raphael Zimmer.“Couplings and quan-
titative contraction rates for Langevin dynamics”. In: arXiv e-prints, arXiv:1703.01617
(Mar. 2017), arXiv:1703.01617.

[EM18] Andreas Eberle and Mateusz B. Majka. “Quantitative contraction rates for
Markov chains on general state spaces”. In: arXiv e-prints, arXiv:1808.07033
(Aug. 2018), arXiv:1808.07033.

[EMS18] Murat A Erdogdu, Lester Mackey, and Ohad Shamir. “Global Non-convex
Optimization with Discretized Diffusions”. In: Advances in Neural Informa-
tion Processing Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates, Inc., 2018,
pp. 9671–9680.

[Erm75] D. L Ermak. “A computer simulation of charged particles in solution. I.
Technique and equilibrium properties”. In: The Journal of Chemical Physics
62.10 (1975), pp. 4189–4196.

[FHS15] Max Fathi, Ahmed-Amine Homman, and Gabriel Stoltz. “Error analysis of
the transport properties of Metropolized schemes”. In: ESAIM: Proc. 48
(2015), pp. 341–363.

[FHW14] Nial Friel, Merrilee Hurn, and Jason Wyse. “Improving power posterior es-
timation of statistical evidence”. In: Statistics and Computing 24.5 (2014),
pp. 709–723. issn: 1573-1375.

[FJ10] James M. Flegal and Galin L. Jones. “Batch means and spectral variance
estimators in Markov chain Monte Carlo”. In: Ann. Statist. 38.2 (Apr. 2010),
pp. 1034–1070.

[Fri12] Avner Friedman. Stochastic differential equations and applications. Courier
Corporation, 2012.

[FW12] Nial Friel and Jason Wyse.“Estimating the evidence–a review”. In: Statistica
Neerlandica 66.3 (2012), pp. 288–308.

[Gel] Matthias Gelbrich. “On a Formula for the L2 Wasserstein Metric between
Measures on Euclidean and Hilbert Spaces”. In: Mathematische Nachrichten
147.1 (), pp. 185–203.

[Gel+14] Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian
data analysis. Vol. 2. Chapman & Hall/CRC Boca Raton, FL, USA, 2014.



viii BIBLIOGRAPHY

[GM94] U. Grenander and M. I. Miller. “Representations of knowledge in complex
systems”. In: J. Roy. Statist. Soc. Ser. B 56.4 (1994). With discussion and
a reply by the authors, pp. 549–603. issn: 0035-9246.

[GM96] Peter W. Glynn and Sean P. Meyn. “A Liapounov bound for solutions of
the Poisson equation”. In: Ann. Probab. 24.2 (Apr. 1996), pp. 916–931.

[GM98] Andrew Gelman and Xiao-Li Meng.“Simulating normalizing constants: From
importance sampling to bridge sampling to path sampling”. In: Statistical
science (1998), pp. 163–185.

[Gor+16] J. Gorham, A. B. Duncan, S. J. Vollmer, and L. Mackey.“Measuring Sample
Quality with Diffusions”. In: ArXiv e-prints (Nov. 2016).

[GR14] Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik. Table of inte-
grals, series, and products. Academic press, 2014.

[Gre83] U. Grenander. “Tutorial in pattern theory”. Division of Applied Mathemat-
ics, Brown University, Providence. 1983.

[GSL92] A. E. Gelfand, A. F. Smith, and T.-M. Lee.“Bayesian analysis of constrained
parameter and truncated data problems using Gibbs sampling”. In: Journal
of the American Statistical Association 87.418 (1992), pp. 523–532.

[GT15] David Gilbarg and Neil S Trudinger. Elliptic partial differential equations of
second order. springer, 2015.

[Has+17] Leonard Hasenclever, Stefan Webb, Thibaut Lienart, Sebastian Vollmer,
Balaji Lakshminarayanan, Charles Blundell, and Yee Whye Teh.“Distributed
Bayesian Learning with Stochastic Natural Gradient Expectation Propaga-
tion and the Posterior Server”. In: Journal of Machine Learning Research
18.106 (2017), pp. 1–37.

[Hen97] Shane G Henderson. “Variance reduction via an approximating markov pro-
cess”. Available at http://people.orie.cornell. edu/shane/pubs/thesis.pdf. PhD
thesis. Department of Operations Research, Stanford University, 1997.

[HH14] Peter Hall and Christopher C Heyde. Martingale limit theory and its appli-
cation. Academic press, 2014.

[HHS05] Chii-Ruey Hwang, Shu-Yin Hwang-Ma, and Shuenn-Jyi Sheu. “Accelerating
diffusions”. In: Ann. Appl. Probab. 15.2 (May 2005), pp. 1433–1444.

[HHS93] Chii-Ruey Hwang, Shu-Yin Hwang-Ma, and Shuenn-Jyi Sheu. “Accelerating
Gaussian Diffusions”. In: Ann. Appl. Probab. 3.3 (Aug. 1993), pp. 897–913.

[HJ15] Martin Hutzenthaler and Arnulf Jentzen. Numerical approximations of stochas-
tic differential equations with non-globally Lipschitz continuous coefficients.
Vol. 236. 1112. American Mathematical Society, 2015.

[HJ17] Jeremy Heng and Pierre E. Jacob.“Unbiased Hamiltonian Monte Carlo with
couplings”. In: arXiv e-prints, arXiv:1709.00404 (Sept. 2017), arXiv:1709.00404.



BIBLIOGRAPHY ix

[HJK11] Martin Hutzenthaler, Arnulf Jentzen, and Peter E. Kloeden. “Strong and
weak divergence in finite time of Euler’s method for stochastic differential
equations with non-globally Lipschitz continuous coefficients”. In: Proceed-
ings of the Royal Society of London A: Mathematical, Physical and Engi-
neering Sciences 467.2130 (2011), pp. 1563–1576. issn: 1364-5021.

[HJK12] Martin Hutzenthaler, Arnulf Jentzen, and Peter E. Kloeden.“Strong conver-
gence of an explicit numerical method for SDEs with nonglobally Lipschitz
continuous coefficients”. In: Ann. Appl. Probab. 22.4 (Aug. 2012), pp. 1611–
1641.

[HM11] M. Hairer and J. C. Mattingly. “Yet another look at Harris’ ergodic theorem
for Markov chains”. In: Seminar on Stochastic Analysis, Random Fields and
Applications VI. Vol. 63. Progr. Probab. Birkhäuser/Springer Basel AG,
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