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Abstract

The geometric modeling of urban objects from physical measurements, and

their representation in an accurate, compact and e�cient way, is an enduring

problem in computer vision and computer graphics. In the literature, the

geometric data structures at the interface between input physical measure-

ments and output models typically su�er from scalability issues, and fail to

partition 2D and 3D bounding domains of complex scenes.

In this thesis, we propose a new family of geometric data structures

that relies on a kinetic framework. More precisely, we compute partitions

of bounding domains by detecting geometric shapes such as line-segments

and planes, and extending these shapes until they collide with each other.

This process results in light partitions, containing a low number of polygonal

cells. We propose two geometric modeling pipelines, one for the vectoriza-

tion of regions of interest in images, another for the reconstruction of con-

cise polygonal meshes from point clouds. Both approaches exploit kinetic

data structures to decompose e�ciently either a 2D image domain or a 3D

bounding domain into cells. Then, we extract objects from the partitions by

optimizing a binary labeling of the cells.

Conducted on a wide range of data in terms of contents, complexity, sizes

and acquisition characteristics, our experiments demonstrate the scalability

and the versatility of our methods. We show the applicative potential of

our method by applying our kinetic formulation to the problem of urban

modeling from remote sensing data.

Keywords: Kinetic data structures, image partitioning, object contour-

ing, surface reconstruction, surface approximation, polygonal surface mesh,

energy minimization, 3D modeling, urban scene reconstruction, Lidar data
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Résumé

La modélisation géométrique d'objets urbains à partir de mesures physiques

et leur représentation de manière e�cace, compacte et précise est un prob-

lème di�cile en vision par ordinateur et en infographie. Dans la littéra-

ture scienti�que, les structures de données géométriques à l'interface entre

les mesures physiques en entrée et les modèles produits en sortie passent

rarement à l'échelle et ne permettent pas de partitionner des domaines fer-

més 2D et 3D représentant des scènes complexes.

Dans cette thèse, on étudie une nouvelle famille de structures de données

géométrique qui repose sur une formulation cinétique. Plus précisément, on

réalise une partition de domaines fermés en détectant et en propageant au

cours du temps des formes géométriques telles que des segments de droites

ou des plans, jusqu'à collision et création de cellules polygonales. On pro-

pose en particulier deux méthodes de modélisation géométrique, une pour

la vectorisation de régions d'intérêt dans des images, et une autre pour la

reconstruction d'objets en maillages polygonaux concis à partir de nuages de

points 3D. Les deux approches exploitent les structures de données cinétiques

pour décomposer e�cacement en cellules soit un domaine image en 2D, soit

un domaine fermé en 3D. Les objets sont ensuite extraits de la partition à

l'aide d'une procédure d'étiquetage binaire des cellules.

Les expériences menées sur une grande variété de données en termes de

nature, contenus, complexité, taille et caractéristiques d'acquisition démon-

trent la polyvalence de ces deux méthodes. On montre en particulier leur

potentiel applicatif sur le problème de modélisation urbaine à grande échelle

à partir de données aériennes et satellitaires

Mots clés: structures de données cinétiques, partitionnement d'images,

reconstruction de surfaces, extraction d'objets, approximation de surfaces,

maillage polygonaux surfaciques, minimisation d'énergies, modélisation 3D,

reconstruction de scènes urbaines, données Lidar
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Chapter 1

Introduction

1.1 Context and motivations

The geometric modeling of urban objects and environments from physical

measurements is a long-discussed topic within the computer vision, computer

graphics and remote sensing communities. It has a wide range of practical

applications, which mainly lie on three aspects: manufacturing, rendering

and environmental simulations.

Recent years have witnessed a technological evolution of the sensors used

to acquire data. As a result, the collected datasets get much larger. This

emphasizes the need for scalable algorithms, capable of processing massive

amounts of data. However, the complexity of the models produced by ge-

ometric modeling techniques is also of critical importance for some appli-

cations. For instance, simulating the propagation of acoustic or electro-

magnetic waves in urban areas requires accurate, as well as simple models.

Computer-aided designed models can be used to perform physical simula-

tions, but the creation of such models is too time-consuming and labor-

intensive. For large and complex scenes, automated tools should be preferred.

This thesis addresses the problem of converting data issued from physical

measurements into geometric models with the �ve following objectives:

1. Fidelity. Our models should constitute faithful approximations of the

observed data.

2. Simplicity. These models should be composed of a low number of

geometric elements, ideally just enough, given a user-de�ned tolerance

approximation error.

3. E�ciency. We are interested in designing algorithms that are fast,

scalable, and proceed with a low memory consumption.
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4. Automation. These algorithms should be fully automatic and only take

into account a few intuitive and user-de�ned parameters.

5. Genericity. Our algorithms should be applicable on all types of scenes

and objects, without relying on any particular geometric assumption.

1.2 Data sources

Various data types may be considered for the geometric modeling of urban

objects or scenes. In this thesis, we will focus on two usual data sources:

optical imagery and 3D point clouds.

1.2.1 Optical imagery

1.2.1.1 General description

Digital cameras are now accessible to a general public. A camera is built

upon an image sensor, that converts captured light into an analogic electric

signal. This signal is then ampli�ed and digitalized to obtain an image: a

bidimensional array of red, green and blue integer values. An entry of this

table is called a pixel.

Nowadays, standard cameras have an image resolution exceeding 10 mil-

lions of pixels. Compact cameras are sold at low prices, and are also embed-

ded into most smartphones. Users collect and share images on the Internet

using applications such as Flickr, Instagram, or Google Maps. Since the

contents of these images often depict urban objects, Web databases may

constitute a valuable data source for geometric modeling and urban recon-

struction.

1.2.1.2 Aerial imagery

Aerial imagery is a popular technique to acquire data for the geometric mod-

eling of large urban scenes. It consists in taking a digital camera aboard a

hot-air balloon, a drone or a plane that �ies over an area, following a prede-

�ned �ight map. The further processing of the images by photogrammetry

tools, for instance to generate digital elevation models, may require overlap-

ping constraints between the images.

We distinguish oblique and vertical aerial imagery. In oblique imagery,

photographs are taken at an angle relative to the Earth's surface. The no-
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tions of low, or high oblique imagery refer to the value of this angle. In

contrast, vertical photographs are taken from a straight down angle.

Aerial images can be combined for various purposes, including image

stitching for the creation of panoramas, and 3D reconstruction. Vertical

images, for their part, can be used to generate orthophotos, which are simu-

lations of photographs taken at in�nite distance, without perspective e�ects.

Orthophotos have applications in GIS systems, and urban planning o�ces

may be interested in extracting all building footprints, or road networks,

from such images.

One of the contraints posed by aerial imagery can be its high acquisition

cost. Also, depending on countries, the use of aircrafts may be restricted by

local authorities.

1.2.1.3 Satellite imagery

Satellite imagery is a commonly used data source for natural and Earth

sciences, such as meteorology, oceanography or forestry. It was initially re-

stricted to military applications, and observation purposes. However, the

development of commercial satellite imagery has attracted an increasing at-

tention from the computer vision community, and the technological advances

in terms of image resolution now open the door to precise cartography of ur-

ban environments.

Launched in 2014 by DitigalGlobe, WorldView-3 is a satellite that has,

for instance, a panchromatic resolution of 0.31 meters per pixel. WorldView-

3 also has a multispectral and infrared resolution at the scale of the meter.

In addition, it has an average revisit time of less than once a day, and can

collect up to 680 000 km2 per day.

For companies and land surveying o�ces, one of the main strengths of

satellite imagery comes from its signi�cantly lower acquisition cost compared

to aerial imagery. On the other hand, acquisition depends on atmospheric

conditions and requires a weak cloud cover. Furthermore, the automatic pro-

cessing of these massive amounts of data raises a concern for the scalability

of the applied methods.
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1.2.2 Point clouds

1.2.2.1 Lidar data

General description. Standing for "LIght Detection And Ranging", Li-

dar [Cra07] is a surveying method that measures distance to a target. This

technology was initially used for meteorological applications. However, it is

nowadays commonly used for creating high-resolution topographic maps in

land surveying, as well as for navigation and control in autonomous trans-

portation systems.

A Lidar scanner is �rst composed of a laser emitter, that generates lu-

minous beams directed towards an object. Then, the re�ected light pattern

is captured by a photodetector and converted to an electric impulse, which

is further analyzed by an embedded signal processing chain. According to

the time-of-�ight principle, the time di�erence between the emission of the

signal and the reception of its most important echo is proportional to the

distance between the scanner and the object.

The wavelengths of beams emitted by Lidar scanners vary between 250

nanometers to 10 micrometers. Depending on the application context, beams

of di�erent wavelengths can be emitted by Lidar devices. The choice of an

appropriate wavelength is indeed motivated by the absorbtion and backscat-

tering properties of the target material. Airborne topographic mapping Li-

dar systems operate in the near-infrared domain with a typical wavelength

of 1064 nanometers, when bathymetric systems rather use a wavelength of

532 nanometers to better penetrate waterbodies.

Better target resolution is achieved with shorter pulses, and Lidar scan-

ners can emit up to several hundreds of thousands of pulses per second. This

enables very dense and precise measurements of target objects, with a sam-

pling error at the scale of the centimeter or even the millimeter, depending

on the acquisition mode (aerial or terrestrial). For this reason, Lidar scans

constitute a valuable data source for the geometric modeling or urban ob-

jects or environments. However, the very high cost of laser scanners curbs

the use of this technology.

Although Lidar scanners were primarily designed to measure distances,

extra information are sometimes provided by these devices for each captured

point, such as the amplitude of the signal, or the number of echoes. This

information depends on the target material, and can be used for classi�cation
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purposes. For instance, the number of echoes is a discriminative feature for

detecting vegetation in airborne Lidar data.

Terrestrial Lidar scans. Terrestrial Lidar scans are a way to acquire

Lidar data. In a stationary mode, the scanner is usually mounted on a tripod.

Due to occlusions, multiple scans at di�erent locations can be required to

obtain a full dataset, for instance when scanning an indoor scene. The fusion

step can be performed using the iterative closest point algorithm [BM92].

However, we can observe the absence of measured data in areas that are too

close to the sensor.

A laser scanner can also be mounted on a vehicle, generally for ground-

based urban reconstruction purposes. For example, Zhao et al [ZS01] de-

scribe an acquisition protocol in which two one-dimensional lasers scan fa-

cades of buildings along the horizontal and vertical axes. Backpack systems

can also be used for acquiring high resolution data in complex indoor envi-

ronments [LCC+10].

For terrestrial Lidar scans, the density of points is usually comprised

between 100 and 3000 points per squared meter, with a sampling error at

the scale of the millimeter.

Airborne Lidar scans. Airborne Lidar scans can be obtained by mount-

ing a scanner on a plane or an unmanned aerial vehicle. This enables the

capture of data coverage of large areas like cities, in a short amount of time.

In urban modeling, one of the main di�culties posed by airborne Lidar data

comes from the fact that the sensor is oriented downwards. As a consequence,

vertical structures such as facades are often completely or almost completely

missing from the generated datasets. We might also observe missing holes

over re�ective surfaces, such as waterbodies.

The density of points clouds in airborne Lidar scans is lower than in

terrestrial scans, since it varies between 1 and 50 points per square meter.

Not surprisingly, the precision also decreases at the scale of the centimeter,

even the decimeter.

1.2.2.2 Multi-View Stereo data

Recovering 3D geometry of an object from photographs is a major research

topic in computer vision. Given several images of the same object or scene,
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Multi-View Stereo (MVS) vision techniques refer to the estimation of the

most likely 3D shape that explains the observed photographs, under known

assumptions of materials, viewpoints, and lighting conditions, using stereo

correspondances as their main cue [FH+15]. Some early techniques showed

the potential of large crowd-sourced dabatases of images for 3D reconstruc-

tion [SSS06].

Typical MVS pipelines consist of two steps. Over a �rst phase, the

camera parameters are estimated for each image. Then, the 3D geometry is

reconstructed from the image and the set of camera parameters.

The �rst step is achieved using Structure from Motion (SfM) techniques.

Based on the pinhole camera model, SfM techniques output the camera

parameters of each image (focal length and projection matrix), but also a

sparse set of 3D locations that are associated to subsets of pixels in the

input images. This is done by a feature extraction step in images [Low04],

a feature matching step in which a set of candidate pairs of overlapping

images is identi�ed, followed by a geometric veri�cation step in which a

transformation is estimated to map feature points across images. Examples

of SfM techniques are described in [AFS+11, HSDF15, SF16].

Then, a dense representation of the scene is generated by MVS tech-

niques. According to the review of Seitz et al [SCD+06], MVS algorithms

can be categorized into four classes: voxel-based methods [SMP07], surface

evolution based methods [HKLP09], patch-based methods [FP09] and depth

map based methods [SZFP16, XT19]. Within the scope this thesis, we have

been led to use some results generated by the algorithm of Schönberger et

al [SZFP16]. In a nutshell, this method jointly optimizes depth and normal

information in a large collection of images using priors strengthening the

photometric and geometric consistency of the result.

As illustrated by the Tanks and Temples benchmark [KPZK17], MVS

techniques now achieve high-quality 3D reconstructions of large indoor or

outdoor scenes from collections of images, with an error at the scale of the

centimeter. Algorithms such as Poisson reconstruction [KBH06] can be used

to turn the obtained point clouds into smooth surfaces. The latter are how-

ever complex and cannot be used in many applications. Still, the point

clouds resulting from MVS techniques provide a good basis for the geomet-

ric modeling of concise meshes.
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1.2.2.3 RGB-D cameras

Recent years have witnessed the rise of mass-manufactured, a�ordable and

hand-held RGB-D cameras. Microsoft started the development of the Kinect

in 2010. Initially designed as an entertainement device, it associates a video

stream recorded by a RGB camera to a depth sensor. The depth is acquired

by stuctured light: a pattern is projected into the scene using infrared (IR)

light. The deformed pattern is recorded by an IR camera and the depth is

calculated from the deformation.

Computer graphics and computer vision researchers quickly understood

the potential of this a�ordable technology in a context of 3D reconstruction

[NIH+11, IKH+11]. RGB-D sensors can be integrated to robots for the

mapping of unknown environments, which is of great interest for military

operations or emergency situations. This problem is known as Simultaneous

Mapping And Localization (SLAM) and is a major topic in robotics and

computer vision. There exists a vast literature on the broader topic of 3D

reconstruction of static or dynamic scenes using RGB-D cameras, recently

surveyed by [ZSG+18].

The reconstruction of dynamic scenes is beyond the scope of this thesis.

We refer to the aforementioned survey for more details. In order to recon-

struct a static object or scenes from a RGB-D stream, a typical pipeline takes

the shape of a loop incorporating the following steps. Firstly, the depth map

is preprocessed and denoised, using for instance a bilateral �lter. Secondly,

camera poses are estimated. Various strategies can be explored, including

frame-to-frame tracking, frame-to-model tracking that locates the camera

with respect to the so-far reconstructed model, or global pose estimation.

Finally, the 3D geometry of the scene is obtained. Again, several represen-

tation schemes can be used: a voxel grid associated to an implicit distance

function, or a sparse set of point locations that can be later converted into

a smooth mesh.

3D reconstruction from RGB-D sensors now achieves a excellent level of

detail, with an average reconstruction error of a few millimeters, including

for large scenes. However the meshes generated by these techniques are

generally complex and require to be simpli�ed.
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1.3 Challenges

The geometric modeling of urban enviroments is a di�cult problem that

meets three main challenges: acquisition constraints, full automation, and

quality of output models [MWA+13].

Acquisition constraints. We observe a set of recurrent defects in data

captured from the real world, that geometric modeling techniques should be

able to handle.

Noise, for instance, is a typical problem. It can directly result from the

sensor, or be caused by failures in the data registration process. Outliers

are also frequent, and are the consequence of the presence of unwanted,

yet unavoidable objects in the scene. We may think of temporary objects

such as pedestrians, tra�c signs or cars in a context of urban modeling.

Likewise, it is di�cult to deal with heterogeneous sampling conditions. The

density of points acquired by a terrestrial laser scanner decreases with its

distance to the captured objects in the scene. On the other hand, overlapped

areas in aerial LiDAR scans are described by more points than other areas,

whereas facades are often partly or completely missing in these scans, due

to geometric constraints. Also, some materials like glass cannot be captured

by laser scanners. Lighting conditions can also play a role in the quality of

the obtained data, and shadows may pose speci�c problems to some image

processing algorithms. Finally, the absence of data covering speci�c parts of

an object, due to occlusions, also constitutes a challenge in computer vision.

Full automation. The ultimate goal of geometric modeling is to provide

e�cient and fully automatic algorithms.

Interactive modeling techniques can be proposed for some speci�c ap-

plication �elds, like in architecture or in the entertainement industry where

the expected quality of the models is beyond the capacities of the start-

of-the-art techniques. However, interactive techniques are inadapted to the

processing of large amounts of data, like in remote sensing where industrials

and researchers aim at parsing the Earth's entire surface. Therefore, there

is not only a quest for accurate, but also for fast and scalable algorithms.

However, one of the major di�culties in the design of such techniques comes

from the diversity or urban objects and landscapes. Even within a small

scene, very di�erent objects can be found in terms of shape and appearance.
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Some geometric modeling techniques rely on assumptions, characterizing for

example the regularity of the objects to extract, but these approaches fail

to model entire scenes. On the other hand, assumption-free algorithms are

more �exible, but tend to produce less structured results.

Quality of models. Depending on the application context, di�erent cri-

teria can be used to assess the quality of models generated by geometric

modeling techniques.

Geometric accuracy, i.e. the quality of �t to the measured data, is the

most straightforward way to evaluate a model. In some situations, some

geometric guarantees reinforcing the regularity of the result can also be ex-

pected. The compactness of the model can also be a very important crite-

rion, enabling further uses for reverse engineering or physical simulations,

for instance. On the other hand, the entertainement industry lays a bigger

emphasis on the visual aspect of the generated model.

We observe that these evaluation criteria may con�ict with each other.

For instance, a less complex model can be obtained at the price of a higher

geometric error. The search for a uni�ed metric combining these criteria

remains an open problem in geometric modeling, where ground truth data

is not always available.

1.4 Outline

In the next chapter, we review the problem of object extraction and approx-

imation from images and point clouds. We discuss the limitations of these

methods, and present our contributions in chapter 3.

Chapters 4 to 7 present our pipeline for object extraction from images

or point clouds. In a nutshell, our algorithm �rst detects a set of primitives

that may be regularized (chapter 4). These primitives are then used to

create a partition of the appropriate space (chapters 5 and 6). Finally, we

formulate the object extraction step as a labelling problem of the polygonal

or polyhedral cells, depending on the dimension (chapter 7).

In chapter 8, we show the applicative potential of this pipeline by ad-

dressing the speci�c problem of city modeling from airborne LiDAR data.

We �nally draw conclusions of our works in chapter 9.





Chapter 2

Related works

Numerous scienti�c challenges are related to image analysis and understand-

ing. In this chapter, we review the problem of object vectorization in im-

ages. In contrast to traditional segmentation methods, which approximate

di�erent objects of interest in an image as multiple regions of pixels, free-

form polygons o�er a compact and structure-aware representation of these

objects. Polygons are particularly adapted to the extraction of man-made

objects, such as rooftop buildings in aerial images, which are characterized

by a few number of vertices and strong geometric signatures. We present

various strategies that focus on this di�cult problem.

This chapter also focuses on the generation of concise polygonal meshes

from point clouds. This is a distinct problem from dense mesh generation,

which focuses on reconstructing a smooth representation from a sampled

shape. Here, we review strategies that approximate a 3D object using a

small number of meaningful facets.

2.1 Object contouring by polygonal shapes

In our review of algorithms addressing the problem of object contouring by

polygonal shapes, we distinguish three main types of methods : direct ap-

proaches, vectorization pipelines and methods based on polygonal partitions.

2.1.1 Direct extraction of polygons

A �rst category of works focuses on the direct extraction of polygonal shapes

from images. A possible strategy consists in detecting a set of geometric

shapes from the image, such as line-segments, before assembling them to ob-

tain the closed contour of an object. Sun et al [SCF14] for instance, address

this problem by identifying plausible elementary cycles in adjacency graphs
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of line-segments. In contrast, Zhang et al [ZCS+10, ZFW+12] generate ad-

ditional line-segments to connect the previously detected line fragments, and

�nd an optimal cycle by applying the ratio-contour algorithm [WKSW05].

Stochastic approaches coupled with simulated annealing might also be

used to detect parametric shapes in images, such as rectangles [KvLS07,

LDZPD08]. However, these methods are harmed by a slow convergence

speed.

Some recent works focus on learning the geometric characteristics of poly-

gons. Polygon-RNN [CKUF17, ALKF18], for instance, is a semi-automatic

object annotation tool via polygons. Assuming the existence of a bound-

ing box enclosing an object instance, this methods sequentially predicts the

vertices of a polygon tightening the object using a recurrent neural network

(RNN). Although e�cient, these mechanisms o�er no shape control on the

�nal polygons, which may be approximated by a large number of points.

Moreover, since the RNN only keeps in memory the two last predicted ver-

tices, polygons generated by this technique may contain self-intersections.

The latter issue has been addressed in a recent work [LGK+19] in which all

vertices of a bounding polygon or curve are simultaneously predicted, using

a graph convolutional network.

In a similar vein, PolyCNN extracts building rooftops from remote sens-

ing images [GT18], but these polygons are restricted to quadrilaterals. Poly-

Mapper [LWL18] alleviates this problem and directly predicts vectorial city

maps that include road networks and complex rooftop shapes. However,

these approaches remain heavily data-dependent, and the output polygons

come up with no geometric guarantees, such as orthogonality.

2.1.2 Vectorization pipelines

Vectorization pipelines are composed of two steps. Over a �rst phase, an

object is extracted from an input image as a region of pixels. Then, a line

approximation algorithm is used to simplify its contours and obtain a poly-

gon.

There exists several approaches to extract a given object from an image.

One may refer, for instance, to interactive image segmentation methods such

as Intelligent Scissors [MB98] or GrabCut [RKB04].

Another strategy consists in over-segmenting the image before extracting
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Figure 2.1: Vectorization vs. direct extraction of polygons. Left: a pixel-

wise segmentation of aerial images, predicted by a neural network [LQQ+18].

Vectorizing the contours of each building instance will result in numerous

approximations. Right: polygons are directly extracted using an adapted

architecture [LWL18]. Image taken from [LWL18].

an object as a group of superpixels, i.e. perceptually homogeneous atomic

regions. Decomposing an image into superpixels is a well-known problem

in computer vision. Various models have been proposed [ASS+12, AS17,

LTRC11, VdBBR+12, TLJ+18] in order to meet a certain set of expected

properties, including adherence of the superpixels to the boundaries of visible

objects. In this context, we are interested in �nding a subset of superpix-

els whose boundaries overlap the true contours of the object, which can be

formulated as a cost minimization problem [LSD10] or by designing a hier-

archical segmentation algorithm [RS13].

Another popular way to extract the contours of an object consists in com-

puting a saliency map. In a highly in�uential work, Cheng et al [CMH+14]

achieve this goal by reasoning on the notion of color contrast. Learning

methods, based on convolutional neural networks, can also be employed

[WWL+16]. However, since convolutional neural networks operate at the

scale of image patches instead of pixels, the resulting saliency maps might

be blurry, especially near the boundaries of the object of interest, leading to

imprecise detection. Some strategies have been recently suggested to allevi-

ate this problem [LY16, QZH+19].

Once objects of interest are extracted, the subsequent approximation step

is usually performed using the well-known Douglas-Peucker algorithm and

its variants [DP73, WM03]. Alternative algorithms can be used, casting for

instance shape simpli�cation as an optimal transport problem [dGCSAD11]

or by lattice re�nement [TMAT18]. In a remote sensing context [ST10], the
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Figure 2.2: Superpixels and polygons. Left: superpixel decomposition gener-

ated by Liu et al [LTRC11] (300 cells). Right: polygonal image partitioning

returned by Duan et al [DL15] (322 cells). While a polygonal cell is delimited

by a few vertices, contours of superpixels must be de�ned as lists of pixels.

Hough transform can also be applied to an edge map to vectorize patches in

raster format that correspond to regions of interest: the detected buildings

in an image.

2.1.3 Polygonal partitions

Inspired by superpixel grouping approaches, another strategy for object vec-

torization consists in generating a partition of polygonal cells of an image,

and selecting a subset of connected cells that approximate well the contours

of all objects of interest.

Polygonal partitions o�er some advantages over superpixel decomposi-

tion techniques. Indeed, they o�er resolution-independent representations of

images, contrary to superpixels which typically operate at pixel level. Polyg-

onal partitions also bene�t from a low storage cost, since the construction of

polygonal cells requires only a few vertices. In contrast, borders of free-form

superpixels are de�ned as sequences of pixels. Moreover, polygonal partitions

can exploit the geometric information present in the image, and we observe

that several methods build a polygonal partition using a pre-detected set of

line-segments that roughly approximate the contours of the objects.

A natural way to obtain a partition of polygons in an image is to vectorize

a set of superpixels. This approach is followed by Achanta et al [AS17], who

position vertices where three superpixels meet, and simplify the sequence of

pixels found in between by applying the Douglas-Peucker algorithm. How-

ever, this operation may generate approximation errors and requires a good
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superpixel connectivity, which is di�cult to guarantee in practice. We note

that this method also returns non-convex polygons.

2.1.3.1 Line-segment detection

Fitting geometric shapes to images is an e�cient way to synthesize a large

number of pixels into a few parametric functions. Line-segments are the

most common geometric shapes for analyzing images, especially when the

observed structures are lineic. The detection of line-segments is a long-

discussed topic in computer vision. Most existing algorithms are composed of

two-step pipelines, in which line-segments are �tted to a previously generated

heat map. These techniques may be classi�ed into two categories.

A popular approach consists in �rst estimating an edge map, by means

of di�erent �lters like the Canny edge detector [Can87]. Then, the Hough

transform [DH71, DHH11] detects a set of prominent lines in the edge map.

Therefore, extracting line-segments means identifying peaks of maximal in-

tensity along these lines in the image. Hough-based methods o�er the ad-

vantage to accumulate information from the whole image for detecting lines,

but the determination of appropriate endpoinds for the line-segments is a

di�cult problem. Various peak-localization algorithms are discussed in the

literature, for example based on the notion of persistance [KM19], on prob-

abilistic models [ATQE17] or by analyzing the voting distribution in the

Hough space [XSK14].

On the other hand, perceptual grouping approaches use image gradient as

a low-level cue and locally group pixels into a set of line-segment candidates,

from which false positives are later discarded. The most representative ex-

ample of this family of techniques is the Line-Segment Detector (LSD) of van

Gioi et al [vGJMR10]. This linear-time algorithm is based on the Helmholtz

principle [DMM07], according to which an observed geometric structure is

perceptually ε-meaningful if its expected number of occurrences is less than

ε under the a contrario random assumption. Here, the tested structures

are obviously the candidate line-segments, set as approximations of regions

where the image gradient shows a similar orientation. ε is by default set to

1, a natural value. But this parameter can be tuned, thus allowing the user

to control the number of false detections in the returned set of line-segments.

Another example of perceptual grouping method is described in the work of

Cho et al [CYL17].
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Recently, learning methods have been used to address the problem of

line-segment detection. For instance, Huang et al [HWZ+18] present deep

convolutional neural networks for jointly retrieving line-segments and junc-

tions from an image. Another interesting contribution is provided by Xue

et al [XBW+19]. In this paper, the authors use a dual representation for

line-segments maps: region-based attraction �eld maps. The line-segment

detection problem from an input image thus becomes a region coloring prob-

lem. Attraction �eld maps are learnt by convolutional neural networks and

are converted to line-segments. Although data-dependent, and computation-

ally complex, these methods both achieve very promising results.

In this thesis, we do not bring any contribution to the problem of line-

segment detection in images. However, we observe that line-segments re-

turned by state-of-the-art algorithms may not preserve well geometric reg-

ularities of observed structures, as for instance line alignments in a regular

layout of windows on a facade. This is due to noise, insu�cient resolution of

the Hough space [GA12], or approximation mechanisms when shrinking re-

gions to line-segments [vGJMR10, XBW+19]. Global regularization can be a

valuable tool to correct these inaccuracies, and reduce output complexity by

removing redundant shapes. Existing regularization methods typically op-

erate from 3D shapes, either by iterative re�nements [OLA16] or by energy

minimization [PCSS14].

2.1.3.2 Image partitioning

The output of line-segment detection algorithms can be used to generate a

polygonal partition of the image.

For example, Duan et al [DL15] build a constrained Voronoi tessellation

whose edges conform to these line-segments. A Poisson-disk sampling is then

applied to the Voronoi cells to obtain uniformly-sized polygons. Gevers et

al [GS97] and Forsythe et al [FKF16, FK17] build Delaunay triangulations,

before regrouping triangles into polygons. The former operates by itera-

tively splitting triangles with heterogeneous radiometry, whereas the latter

uses a constrained Delaunay triangulation with a minimal angle for all trian-

gles, that conforms to pre-detected line-segments. The higher this angle, the

more complex the partition [She02]. Although exploiting line-segments to

guide the polygonal partitioning is computationally e�cient, existing meth-

ods [DL15, FKF16, FK17] fail to properly recover the junctions of lineic
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structures, leading in best situations to the generation of several polygons

around a junction. Another approach [PS05] applies a constrained Delaunay

triangulation of Canny edge contours, before grouping the obtained triangles

based on perceptual cues.

However, let us note that the literature o�ers other examples of image

partitioning techniques that do not necessarily rely on a set of line-segments.

We mention, for instance, the work of Hermes et al [HB03], in which a tri-

angular mesh is iteratively re�ned based on conditional entropy. Polygons

are later aggregated, based on the Jensen-Shannon divergence that measures

the similarity of the discrete probability distributions associated to two ad-

jacent cells. In another recent work, Favreau et al propose a Delaunay point

process for sampling a Delaunay triangulation in images. The triangles are

later augmented with binary activation labels for object contouring purposes

[FLBA19].

2.2 Generation of concise polygonal meshes from

point clouds

We distinguish three families of algorithms for converting a point cloud into

a concise polygonal mesh: approximation methods, simpli�cation methods

and shape assembling methods.

2.2.1 Approximation methods

(a) (b) (c)

Figure 2.3: An example of mesh approximation. (a) An input mesh, com-

posed of 13k vertices, with a set of detected planar proxies. (b) Decimated

mesh with 1300 vertices. (c) Final mesh with 115 vertices. Image taken from

[SLA15].
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A �rst way to produce concise polygonal meshes from point clouds con-

sists in reconstructing a smooth surface from the input points before sim-

plifying it. The �rst step can rely upon mature algorithms from the geome-

try processing toolbox, such as the popular Poisson reconstruction method

[KBH06, KH13]. We may refer to a recent survey that discusses the main

algorithms for smooth surface reconstruction [BTS+17].

Once extracted, the dense triangle mesh is simpli�ed into a coarser mesh.

The most common approach consists in contracting edges until reaching a

target number of facets [GH97, Lin00]. To better preserve the piecewise-

planar structure of objects, the edge contraction operators can account for

planar shapes detected in the dense mesh [SLA15]. However, on planar

parts such approaches yield triangle meshes whose adjacent facets are un-

likely to be coplanar and form a meaningful decomposition. Other methods

[CSAD04, CSALM13] alleviate this problem by connecting planar shapes

using the adjacency inferred from the input mesh. These surface approxima-

tion methods are in general e�ective, but they require as input a mesh that

is both geometrically and topologically accurate to deliver faithful results.

Unfortunately, such as requirement is rarely guaranteed from real-world data

which are often highly corrupted by noise, outliers and occlusions.

2.2.2 Simpli�cation methods

Another line of works reduces the combinatorial problem of mesh generation

by imposing geometric assumptions for the output surface. For instance, the

Manhattan-World assumption [CY00] enforces the generation of polycubes

[THCM04, HJS+14, IYF15] by imposing output facets to follow only three

orthogonal directions. Another popular geometric assumption consists in

constraining the output surface to speci�c disk-topologies. For instance,

2.5D view-dependent representations is typically well suited to buildings with

airborne data [MWA+13] and facades with streetside images [BSRVG15].

Some approaches also approximate surfaces with speci�c layouts of polygonal

facets. Such polyhedral patterns are particularly relevant for architectural

design [JWWP14, JTV+15]. However, such geometric assumptions are only

relevant for speci�c application domains.
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Figure 2.4: An example of mesh simpli�cation. Tetrahedral meshes are

deformed into polycube maps through minimization of the `1 norm of mesh

normals. Image taken from [HJS+14].

2.2.3 Shape assembling methods

Finally, some algorithms address the problem of mesh generation by extract-

ing a set of planar shapes from the point cloud as a preprocessing step, before

assembling them into a uni�ed polygonal mesh. Planar shapes are sets of

points to which a plane is �tted, and constitute an intermediate presentation

between input points and the output mesh.

We distinguish two categories of shape assembling methods, either based

on connectivity graphs or plane slicing. We shall begin our study by focusing

on a problem of planar shape detection in a point cloud.

2.2.3.1 Planar shape detection

The detection of geometric shapes in 3D data is a fundamental problem in

computer vision and computer graphics. Many applications, including scene

reconstruction or robotics, bene�t from the representation of the data at an

intermediate level of abstraction, by means of simple geometric shapes like

planes, cuboids or cylinders. The robustness of primitive detection tech-

niques to common defects observed in real data, such as noise, outliers, or

varying sampling densities, is one of the main challenges that shape detection

techniques should overcome.

In this paragraph, we review the problem of plane detection from raw and

unstructured point clouds. There exists a wide range of methods addressing

this problem, recently surveyed by Kaiser et al [KYZB18]. Each family of

methods has its own advantages and drawbacks, and scores di�erently in

terms of data �delity, speed or scalability.

RANSAC-based methods [SWK07, SWWK08] are popular techniques of

plane detection, achieving real-time performance requirements. This class of
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algorithms iteratively generate random plane hypotheses from the data, and

select the planes that �t the most points. However, these approaches are

non-deterministic. The geometric accuracy of the �nal set of planes can be

improved by adding a regularization procedure as a postprocessing step. Li

et al optimize the orientation and the placement of the planes using a non-

linear energetic formulation [LWC+11]. In a similar fashion, Monszpart et

al [MMBM15] use a mixed-integer quadratic program to �lter out a regular

arrangement of planes from a set of candidates.

Originally used to detect sets of 2D lines in images, the Hough transform

[DH71] has been extended to the detection of arbitrary shapes [Bal81]. The

detection of a set of planes in a point clouds follows the same scheme as

in 2D, with the search for local laxima in a discretized 3D parameter space

[HSMS13, LO15, HHRB11]. This approach is particularly e�cient against

incomplete data, but the continuous and unbounded nature of the parameter

space, and the choice of an appropriate quantization step may become a

computational issue, especially when dealing with large datasets.

Region-growing algorithms [MLM01, RVDHV06] o�er an interesting al-

ternative to the strategies discussed above. These approaches consist in the

propagation of a plane hypothesis from a seed point to its neighbors. The

hypothesis is validated if it can be associated to a minimal number of points.

The choice of appropriate seed points [OLA16] is an important algorithmic

step, that may enhance running times and quality of the results. By design,

region-growing approaches are slower than other methods, but they also tend

to produce more accurate planes by exploiting connectivity information be-

tween points.

Shapes can also be detected by learning approaches trained from CAD

model databases. In the work of Fang et al [FLD18], planar shapes are ex-

tracted depending on a target level of detail. Point properties can also be

learnt [QYSG17] in order to estimate di�erent types and parameters of prim-

itives that �t the point cloud. This process is not only restricted to plane

detection but may include other shapes, like cuboids or cylinders [LSD+19].

There remains some challenges in the problem of shape detection. The

introduction of learning methods represents an interesting way to improve

the accuracy and the semantic meaning of the returned shapes, but the

enhancement of such techniques is beyond the scope of this thesis.
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(a) (b) (c) (d)

Figure 2.5: An example of shape assembling method. (a) Input point cloud.

(b) Detected planar primitives. (c) Generation of a set of candidate faces,

obtained through the arrangement of in�nite planes supporting the planar

primitives. (d) Selected faces and �nal mesh. Image taken from [NW17].

Let us now describe the two main families of shape assembling techniques

introduced before.

2.2.3.2 Connectivity-based methods

Connectivity-based methods analyze an adjacency graph between planar

shapes in order to extract the vertices, edges and facets of the output mesh

[CC08, VKVLV11, SWF11]. Although these methods are fast, they are likely

to produce incomplete models on challenging, defect-laden data where adja-

cency graphs often contain linkage errors.

One possible solution consists in completing the missing parts either in-

teractively with user-guided mesh operations [ASF+13], or automatically

with dense triangle meshes [LA13]. Unfortunately, the �rst alternative does

not o�er a relevant solution for processing large volumes of data, and the

second one does not output concise polygon meshes.

2.2.3.3 Slicing-based methods

Slicing-based methods [CLP10, BDLGM14, OLA14, MMP16, NW17] are

more robust to challenging data. They operate by slicing the input 3D space

with the supporting planes of the detected shapes. The output partition

is a decomposition into convex polyhedral cells. The output mesh is then

extracted by labeling the cells as inside or outside the surface, or equivalently,

by selecting the polygonal facets of the cells that are part of the surface.

The main limitation is the high algorithmic complexity for constructing the

3D partition, commonly performed via a binary space partition (BSP) tree

updated at each plane insertion [MF97]. Such a data structure can take

hours to construct, and consume dozens of gigabytes when several hundred
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shapes are considered. Moreover, the returned partitions are overly complex,

comprising many small anisotropic cells which are hampering the subsequent

surface extraction process. Other approaches [SDK09, VLA15] discretize

the partitioning space instead of computing the exact geometry of the whole

partition. This option is less costly, but often yields geometric artifacts when

the discretization is not �ne enough.

2.2.3.4 Data structures for space partitioning

In addition with the slicing approaches discussed before [BDLGM14, CLP10,

NW17], based on BSP trees, several algorithmic data structures have been

used to partition a 3D volume into polyhedra in a context of surface recon-

struction.

Indeed, some algorithms rely on a voxel grid to recover an implicit surface

from a point cloud. The voxel grid is seen as an occupancy map, and the

surface itself is extracted using a least-square formulation [KBH06], or a

graph-cut formulation [HK06, LB07], where the voxels represent the nodes

of the graph. However, the computational cost of the grid can grow cubicly

with the desired level of detail.

Some other methods generate a 3D Delaunay triangulation from an in-

put point cloud. Intuitively, triangles connect points that are sampled on the

same plane, and polyhedrons are elongated in a direction that is approxima-

tively orthogonal to the inferred surface. This technique, however, requires

a dense point cloud. It is also sensitive to noise. To reduce the complex-

ity of the partition, Lafarge et al [LA13] propose a structuring approach.

Outliers are �ltered out, and the triangulation is computed from a uniformly

resampled point cloud. Van Kreveld et al [VKVLV13], for their part, build a

conformed constrained triangulation with planar polygons that approximate

the point cloud.

Finally, combinatorial maps [DL14] represent an interesting alternative

to partition 3D spaces into more meaningful polyhedrons. A combinato-

rial map is an edge-centered data structure, composed of a set of oriented

half-edges called darts, and adjacency relations between these darts. Under

this approach, a facet is represented by a cycle of darts, and linking adja-

cent facets returns a polyhedron. Starting with of soup of planar polygons

describing buildings or cities, Diakite et al use this topological information

maps to represent objects using a certain levels of detail [DDVM14] or assign
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semantic labels [DDG14].





Chapter 3

Our contributions

3.1 Limitations of previous works

Our previous review shows that the vectorization of objects in images re-

mains an open problem. Automatic direct extraction methods come at the

price of slow convergence rates or require high amounts of data, and the

results generated by these techniques often lack of geometric guarantees. On

the other hand, vectorization pipelines seem a natural way to produce poly-

gons, but the simpli�cation of pixel subregions turns out to be not that easy.

While simpli�cation algorithms o�er the user some control on the complex-

ity of the output polygons, they do not take into account some structural

information contained in the image, and may drift from the initial object

silhouettes. As a consequence, vectorization pipelines are prone to approxi-

mation errors.

For these reasons, the construction of a polygonal partition of the image

coupled with a cell activation mechanism may constitute an interesting ap-

proach in the quest for a generic vectorization tool. Most existing approaches

rely on a set of pre-detected line-segments that are �tted on object contours.

Although robust and o�ering geometric guarantees, these line-segment-based

methods may lack of accuracy. Indeed, they poorly deal with potential in-

tersections of line-segments that might occur in a spatial neighborhood. In

particular, they assume line-segments overlap entirely or almost entirely the

lineic components of an object. Experience shows that this is not always

true, and that the line-segments need to be extended to properly capture

the underlying structure. Also, Delaunay triangulations or Voronoi diagrams

are quite restrictive. Finally, we observe that imposing homogeneously-sized

polygons does not allow the capture of meaningful polygons as line-segments

are not uniformly distributed on the image domain. Therefore, we would

like to design a polygonal partition technique that addresses the problems

previously exposed and brings more semantic meaning to the obtained cells.
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(a) (b) (c) (d)

Figure 3.1: Overview of our 2D vectorization pipeline. Our algorithm takes

as input an image (a). We extract a set of line-segments that roughly approx-

imate the contours of the image (b). These segments are used to generate

a polygonal partition of the image, using a kinetic data structure (c). A

subset of connected cells is then obtained to vectorize objects of interest in

the image, here the building rooftops, with only a few vertices (d).

The generation of a concise polygonal mesh from raw input data is also a

challenging task. We observe that performances of approximation methods

may depend on the geometric and topological accuracy of the dense meshes

they process, which is di�cult to guarantee with data acquired in real con-

ditions. Simpli�cation methods are also powerful tools, but some geometric

assumptions are in contradiction with our quest towards genericity.

Finally, the main issue of shape assembling methods is the lack of scala-

bility of the underlying geometric data structures that produce a polyhedral

decomposition of the space. Splitting the 3D space into subcells using the

in�nite support plane of each previously detected shape is an interesting

strategy, but it is way too computationally complex and memory-intensive

when several hundred planes are involved.

We now present our contributions in order to address the aforementioned

issues.

3.2 Contributions

In this thesis, we present two generic, versatile and scalable pipelines for the

polygonization of objects of interest in images, and the generation of concise

and polygonal meshes from 3D point clouds.
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(a) (b) (c) (d)

Figure 3.2: Overview of our 3D reconstruction pipeline. Our algorithm takes

as input a point cloud with oriented normals (a) and a con�guration of convex

polygons that approximate the object (b). Convex polygons are obtained

through plane detection as the convex hulls of inlier points are projected

onto the plane. The 3D bounding box of the object is decomposed into

polyhedra by kinetic partitioning from the convex polygons (c). A concise

polygonal mesh is then extracted by labeling each polyhedron as inside or

outside the object (d). Model: Full thing.

3.2.1 Kinetic framework for partitioning images and 3D spaces

The principal contribution of this thesis is a kinetic framework for the polygo-

nal partitioning of 2D domains, and the polyhedral partitioning of 3D spaces.

In this framework, a set of pre-detected shapes grow within a certain space,

using a dynamic stop criterion that allows us to control the complexity of

the generated partitions.

In the 2D case, a set of line-segments progressively widen within the

image, and intersect each other. We then decide whether line-segments must

keep extending based on image gradient considerations, or a user-de�ned

number of collisions. In chapter 5, we will observe that this strategy allows

us to both recover better junctions in lineic structures and describe objects

with polygons in a more meaningful manner than superpixel-based polygons.

In the 3D case, we consider a set of convex planar polygons detected in

an input point cloud. Like for images, polygons grow inside a bounding box

enclosing the point cloud until colliding each other. The stopping condition is

again a �xed number of intersections or a function of the density of vertices

from the point cloud near the collision point. In chapter 6 we will show

that our approach yields much lighter partitions, with a signi�cantly lower

algorithmic complexity than exhaustive partitioning techniques.
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3.2.2 Global regularization of 2D and 3D primitives

Our second contribution is an algorithm of global regularization of a set of

line-segments.

Indeed, we observe that line-segment detection techniques do not always

preserve the geometric relationships that which are initially visible in an

image. In order to improve the spatial coherence of the obtained set of line-

segments, Duan et al [DL15] proposed a solution to this problem by building

an adjacency graph and locally applying a set of operations (fusion, removal,

or concurrence reinforcement) to this graph. In our case, we addressed this

problem at global scale, by formulating it as an energy minimization problem

which aims at recovering parallelism, orthogonality and collinarity relation-

ships between the line-segments. Our formulation is described in chapter 4

of this document.

We extend this mechanism to the regularization of a set of planar shapes,

by taking into account additional relationships, including z-symmetry.

3.2.3 Algorithm of 2D and 3D object extraction

Our third contribution is a min-cut algorithm for object extraction using

our kinetic partitions. Using a saliency map for images, we perform a binary

labelling of the generated cells and return the closed set of edges that sep-

arate the active cells from the inactive ones. Our experiments, detailed in

chapter 7, suggest that kinetic partitions may constitute a valuable tool for

addressing the problem of object vectorization.

This is the same approach in 3D, where our formulation relies upon a

visibility criterion that leverages the orientations of point normals to extract

watertight meshes from the 3D partition. We further evaluate and compare

our approach with state-of-the-art mesh generation methods, against sev-

eral metrics, on a wide range of datasets in terms of complexity, size and

acquisition constraints.

3.2.4 Benchmark for concise mesh generation

In this thesis, we evaluate and compare our algorithm for concise polygonal

mesh generation with state-of-the-art methods against several quality and

performance metrics, on a wide range of 42 datasets that di�er in terms

of complexity, size, and acquisition characteristics. Our results, from both
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quantitative and qualitative poins of view, are presented in section 7.2.2.

This evaluation material will be released online to the Computer Vision and

Compter Graphics communities.

3.2.5 City reconstruction pipeline

We �nally propose a computational geometry approach for addressing the

problem of city reconstruction from airborne Lidar data. Our algorithm ac-

tually combines the 2D vectorization and the 3D reconstruction pipelines

introduced before, and turns large datasets with millions of points into a

LOD2 representation of the scene, in compliance with the CityGML format

[GP12]. Under this formalism, buildings are reconstructed with piecewise-

planar roofs and vertical facades. We present our method and our experi-

ments in chapter 8.





Chapter 4

Shape detection

In this chapter, we focus on the problem of shape detection and regularization

from 2D and 3D data. These shapes, also called primitives, constitute the

input of the kinetic data structures that we use for modeling urban objects.

We present an algorithm of global regularization of the detected set of

primitives. This algorithm reinforces geometric relationships between pairs

of spatially close primitives, such as parallelism or orthogonality. We present

our formulation, and show that it can be a valuable option in order to gen-

erate less complex kinetic partitions.

4.1 Line-segment detection and regularization

4.1.1 Choice of a line-segment detector

Although any of the line-segment detection techniques reviewed in chapter

2 can be used to provide an input to our vectorization pipeline, our experi-

ments use the Line-Segment Detector (LSD) of Van Gioi et al [vGJMR10].

As previously mentioned, this algorithm has several interesting properties,

including a linear algorithmic complexity in the number of pixels in the im-

age, and a mostly parameterless control scheme with respect to other existing

algorithms.

4.1.2 Regularization of a set of 2D line-segments

We may optionally operate a global regularization of line-segments in order

to (i) correct imprecisions and (ii) reduce the occurrences of skinny cells in

the subsequent image partitioning, later detailed in chapter 5. This pro-

cess is mainly designed for images with man-made objects without strong

perspective e�ects.

We propose two quadratic formulations, performed sequentially for com-

putational e�ciency, that �rst re-orient and then re-align line-segments with

respect to the three principal geometric regularities used for characterizing



32 Chapter 4. Shape detection

shapes of man-made objects, i.e. parallelism, or-

thogonality and collinearity.

By denoting by xi ∈ [−θmax, θmax] the quan-

tity to be added to the initial orientation of the

line-segment i with respect to its center, we for-

mulate the line-segment re-orientation problem by

minimizing the energy

U(x) = (1− λ)D(x) + λV (x) (4.1)

where x = (x1, .., xn) is a con�guration of perturbations operated on the

n line-segments, D(x) and V (x) represent a data term and pairwise poten-

tial respectively, and λ ∈ [0, 1] is a parameter weighting these two terms,

typically 0.8 in our experiments.

Data term D(x) discourages strong angle deviations with respect to their

initial orientation. It is expressed by

D(x) =
1

n

n∑
i=1

(
xi
θmax

)2

(4.2)

Pairwise potential V (x) encourages pairs of spatially close line-segments

which are nearly-parallel or nearly-orthogonal to be exactly parallel or or-

thogonal:

V (x) =
1∑n

i=1

∑
j>i µij

n∑
i=1

∑
j>i

µij
|θij − xi + xj |

4θmax
(4.3)

where θij measures how far the relative angle αij between line-segments i

and j is from a straight or right angle. Formally, θij = αij (mod π) if

αij ∈ [−π
4 ,

π
4 [∪[

3π
4 ,

5π
4 [ and θij = αij − π

2 (mod π) otherwise.

The dummy variable µij returns 1 if line-segments i and j are (i) spa-

tially close and (ii) |θij | < 2θmax, and 0 otherwise. We consider that two

line-segments are spatially close if, after building a Delaunay triangulation

of points regularly sampled on all the line-segments, at least one Delaunay

edge connects their respective sampled points. In practice, sampled points

are distant by 10 pixels. Note that time for building a Delaunay triangulation

is rather negligible with respect to other operations. Such a neighborhood

strongly reduces the number of irrelevant interactions with respect to a stan-

dard Euclidean distance by imposing direct visibility between line-segments.
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Figure 4.1: Line-segment re-orientation on a 9 Mpixels satellite image of

Seoul city. The quite-uniform orientation histogram of initial line-segments

(left) makes a few dominant orientations appear after the regularization

(right).

Assuming there are m non-zero µij , we introduce a new set of variables

y = (y1, .., ym) so that our formulation can be turned to a quadratic opti-

mization problem with (n+m) variables and 2(n+m) linear constraints:

minimize
x,y

(1− λ)
n∑
i=1

(
xi
θmax

)2

+ λ
m∑
k=1

yk

subject to xi ≤ θmax, i = 1, . . . , n

−xi ≤ θmax, i = 1, . . . , n

yk ≤
1

4θmax
(θij − xi + xj), k = 1, . . . ,m

−yk ≤
1

4θmax
(θij − xi + xj), k = 1, . . . ,m

(4.4)

This minimization problem is solved using a standard optimization library

[GW03].

We then use an analogous formulation to re-align line-segments. By now

denoting by xi ∈ [−dmax, dmax] the translation to be operated on the line-

segment i along its orthogonal vector, we minimize the energy U(x) of Equa-

tion 4.4 with D(x) =
∑n

i=1 (xi/dmax)
2 and V (x) =

∑n
i=1

∑
j>i µ

′
ij(|dij−xi+

xj |/4dmax). Here, dij corresponds to the distance between the support lines

of parallel line-segments i and j, whereas µ′ij returns 1 if (i) µij = 1, (ii)

line-segments i and j are parallel, and (iii) dij < 2dmax, and 0 otherwise. In

our experiments, we typically �xed θmax and dmax to 5◦ and 1 pixel. Figures

4.1 and 4.2 show the impact of regularization on urban scenes.

Running times of the regularization procedure vary between a few seconds

and a few minutes, depending on the size of the problem. On an indicative
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Figure 4.2: Global regularization of line-segments. Floating line-segments

detecting by the Line-Segment Detector of Van Gioi et al [vGJMR10] (top

left) yields a complex polygonal partition with many meaningless polygons

(top right). By regularizing them (bottom left), we both simplify the par-

tition with typically around 20% less polygons, and improve the polygon

alignments with typical building layouts.

basis, a 9 Mpixels satellite image of Seoul city, whose a cropped part is

showed in Figure 4.2, is processed in 13.5 seconds. We refer the reader to

the Table 5.1 for more values.
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4.2 Plane detection and regularization

4.2.1 Choice of a plane detection technique

To extract planar primitives from 3D data, we use the region-growing im-

plementation of the CGAL library [OVJ+19]. This approach requires a few

parameters: a minimal number σ of plane inliers, a �tting tolerence ε to the

plane and a normal deviation θ for matching a neighbor vertex to the current

processed point.

In our experiments, the �tting tolerance ε and the minimal shape size σ

are typically set to 0.2% of the bounding box diagonal and 0.01% of the total

number of input points in case of Laser acquisition and synthetic data. The

�tting tolerance is increased to 0.5% for multi-view stereo acquisition which

generates more noisy point clouds. For approximation of freeform objects,

these values vary according to the desired abstraction level: the higher the

values of ε and σ, the more concise the output model. θ, for its part, it set

to a default value of 25◦.

Note that our polyhedral partitioning algorithm does not require planes,

but planar polygons. However, obtaining polygons from planes is easy. A

possible method only requires to project all inliers onto a plane and compute

a convex hull of the projected points.

4.2.2 Regularization of a set of 3D planar primitives

Inspired by our approach in the 2D case, we now introduce a global reg-

ularization procedure of the set of planes supporting the planar primitives

extracted from an input point cloud. It can correct imprecisions in the planar

primitives extraction step, improve the performances of the kinetic partition-

ing algorithm, and decrease the complexity of the subsequent partition.

Our procedure takes the shape of a two-step process, in which the planes

are �rst re-oriented, then re-aligned, in order to favor geometric relationships

between the planes. Like in 2D, both stages of the process are formulated

as quadratic optimization problems with linear constraints. The targeted

relationships are parallelism, coplanarity, and z-symmetry, and a particular

case of orthogonality. Our approach is tailored for point clouds describing

man-made structures like buildings, and assumes that the data is correctly

oriented in the usual 3D frame.

Let P = (P1, P2, . . . PN ) be a set of N detected planes. Each plane Pi is
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−→ni = −→nj ϕ

θ
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Figure 4.3: Optimized geometric relationships for normal vectors ~ni and ~nj .

(a) Parallelism and coplanarity. (b) Z-symmetry. (c) Orthogonality-1. (d)

Orthogonality-2.

represented by a couple (−→ni , di) where the former is the unit normal vector

to the plane, and the latter its signed distance to the origin of the 3D frame.

4.2.2.1 Re-orienting the planes

Each plane Pi is associated to a normal vector −→ni that can be converted

to a couple of spherical coordinates (ϕi, θi) on a half-unit sphere. We obtain

the latitude ϕi ∈ [0, π/2] and the longitude θi ∈] − π, π]. These spherical

coordinates can be used to establish one geometric relationship between two

adjacent planes Pi and Pj among those listed in Table 4.1.

Note that we only consider a simpli�ed version of orthogonality, since

the equation that ties couples (ϕi, θi) and (ϕj , θj) is not linear in the general

case. Given a vector −→ni , there exists indeed a in�nity of vectors −→nj that are
orthogonal to it. However, this formulation still handles most of the cases
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Relationship Mathematical formulation

Parallelism
ϕi = ϕj

θi = θj

Z-symmetry
ϕi = ϕj

θi − θj ≡ π mod 2π

Orthogonality-1 ϕi − ϕj = ±π/2

Orthogonality-2
ϕi + ϕj = 0

θi − θj ≡ π/2 mod π

Table 4.1: Optimized geometric relationships and their mathematical pair-

wise formulations.

observed in the real world, and applies well to buildings in particular.

Energy. Similarly to the 2D case, our reorientation procedure consists in

adding quantities x2i−1 ∈ [−ϕmax, ϕmax] and x2i ∈ [−θmax, θmax] to the �rst
and second elements of each couple (ϕi, θi) in order to obtain new couples

(ϕ′i, θ
′
i) satisfying one of the equations of Table 4.1. The optimal vector of

perturbations x = (x1, . . . x2N ) is then obtained by minimizing the energy

U(x) = (1− λ)D(x) + λV (x) (4.5)

where D(x) is a data term discouraging high perturbations, and V (x)

is a pairwise potential encouraging pairs of near-parallel, near-z-symmetric

and near-orthogonal planes to become exactly parallel, z-symmetric or or-

thogonal. As for the balancing term λ ∈ [0, 1], it is again typically set to

0.8.

The data term D(x) is de�ned as:

D(x) =
1

N

N∑
i=1

[(
x2i−1
ϕmax

)2

+

(
x2i
θmax

)2
]

(4.6)

The pairwise potential V (x), for its part, is a normalized sum of four

terms, each of them being associated to one of the geometric relationships

we would like to optimize:

V (x) =
1

M

(
VP (x) + VZ(x) + V 1

O(x) + V 2
O(x)

)
(4.7)
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Indeed, when initializing this optimization problem, we take each pair

of spatially close planes Pi and Pj and assign this pair to one of the terms

VP (x), VZ(x), V
1
O(x) or V

2
O(x), depending on if these planes are near-parallel,

near-z-symmetric or near-orthogonal. To this end, we compute variables ϕij

and θij that indicate how far Pi and Pj are from a given relationship.

Parallelism. Re-oriented planes Pi and Pj become parallel if and only if{
ϕi + x2i−1 = ϕj + x2j−1

θi + x2i ≡ θj + x2j mod 2π

⇐⇒

{
x2i−1 − x2j−1 = −ϕi + ϕj

x2i − x2j ≡ −θi + θj mod 2π

Let us set:  ϕPij = −ϕi + ϕj

θPij = −θi + θj + 2kπ, k ∈ Z

If there exists k such that |ϕPij | < 2ϕmax and |θPij | < 2θmax, then we

mark the planes Pi and Pj as near-parallel and set a boolean variable µPij to

1. Otherwise, it is set to 0. VP (x), which encourages these planes to become

exactly parallel, is de�ned as:

VP (x) =
N∑
i=1

∑
j>i

µPij

(
|ϕPij − x2i−1 + x2j−1|

4ϕmax
+
|θPij − x2i + x2j |

4θmax

)
(4.8)

Now, assuming that there are µP near-parallel planes, we can actually

reformulate VP (x) as a sum of constrained variables:

VP (x) =

µP∑
k=1

(yk + zk)

yk ≤
1

4ϕmax
(ϕPij − x2i−1 + x2j−1)

−yk ≤
1

4ϕmax
(ϕPij − x2i−1 + x2j−1)

zk ≤
1

4θmax
(θPij − x2i + x2j)

−zk ≤
1

4θmax
(θPij − x2i + x2j)

(4.9)
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Z-symmetry. Likewise, planes Pi and Pj become z-symmetric if and only

if {
ϕi + x2i−1 = ϕj + x2j−1

(θi + x2i)− (θj + x2j) ≡ π mod 2π

⇐⇒

{
x2i−1 − x2j−1 = −ϕi + ϕj

x2i − x2j ≡ −θi + θj + π mod 2π

We set:  ϕZij = −ϕi + ϕj

θZij = −θi + θj + (2k + 1)π, k ∈ Z

If there exists k such that |ϕZij | < 2ϕmax and |θZij | < 2θmax, then planes

Pi and Pj are considered near-z-symmetric. We set a dummy variable µZij to

1 and we de�ne VZ(x) as:

VZ(x) =
N∑
i=1

∑
j>i

µZij

(
|ϕZij − x2i−1 + x2j−1|

4ϕmax
+
|θZij − x2i + x2j |

4θmax

)
(4.10)

Assuming that we identi�ed µZ planes as near-z-symmetric, VZ(x) can

also be rewritten as a sum of constrained variables:

VZ(x) =

µZ∑
k=1

(yk + zk)

yk ≤
1

4ϕmax
(ϕZij − x2i−1 + x2j−1)

−yk ≤
1

4ϕmax
(ϕZij − x2i−1 + x2j−1)

zk ≤
1

4θmax
(θZij − x2i + x2j)

−zk ≤
1

4θmax
(θZij − x2i + x2j)

(4.11)

Orthogonality-1. In this particular case of orthogonality, only latitudes

are taken into account. Planes Pi and Pj become orthogonal if and only if:

(ϕi + x2i−1)− (ϕj + x2j−1) = ±π
2

⇐⇒ x2i−1 − x2j−1 = ±π
2 − ϕi + ϕj
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Similarly to above, we de�ne a variable:

ϕO1
ij = ±π

2
− ϕi + ϕj

If |ϕO1
ij | < 2ϕmax, then planes Pi and Pj are considered as near-orthogonal

and the boolean variable µO1
ij is set to 1. We de�ne:

V 1
O(x) =

N∑
i=1

∑
j>i

µO1
ij

|ϕO1
ij − x2i−1 + x2j−1|

4ϕmax
(4.12)

Assuming that there exists µO1 near-orthogonal pairs of planes considered

by this function, we get:

VO1(x) =

µO1∑
k=1

yk

yk ≤
1

4ϕmax
(ϕO1

ij − x2i−1 + x2j−1)

−yk ≤
1

4ϕmax
(ϕO1

ij − x2i−1 + x2j−1)

(4.13)

Orthogonality-2. Finally, the other case of orthogonality applies to the

reoriented planes Pi and Pj when:{
(ϕi + x2i−1) + (ϕj + x2j−1) = 0

(θi + x2i)− (θj + x2j) ≡ π
2 mod 2π

⇐⇒

{
x2i−1 + x2j−1 = −ϕi − ϕj

x2i − x2j ≡ π
2 − θi + θj mod 2π

Finally, we set: ϕO2
ij = −ϕi − ϕj

θO2
ij = π

2 − θi + θj + 2kπ, k ∈ Z

Again, if there exists k such that |ϕO2
ij | < 2ϕmax and |θO2

ij | < 2θmax,

then planes Pi and Pj are considered near-orthogonal. As a consequence,

we trigger the corresponding boolean variable µO2
ij in the �nal term V 2

O(x),

which is de�ned as:

V 2
O(x) =

N∑
i=1

∑
j>i

µO2
ij

(
|ϕO2
ij − x2i−1 − x2j−1|

4ϕmax
+
|θO2
ij − x2i + x2j |

4θmax

)
(4.14)
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Finally, considering that there exists µO2 pairs of near-orthogonal planes

regularized via V 2
O(x), we reformulate the previous equation as:

VO2(x) =

µO2∑
k=1

(yk + zk)

yk ≤
1

4ϕmax
(ϕO2

ij − x2i−1 − x2j−1)

−yk ≤
1

4ϕmax
(ϕO2

ij − x2i−1 − x2j−1)

zk ≤
1

4θmax
(θO2
ij − x2i + x2j)

−zk ≤
1

4θmax
(θO2
ij − x2i + x2j)

(4.15)

Normalization term. The normalizing term of equation 4.7 is �nally de-

�ned as the number of pairs of planes taken into account in all the terms

VP (x), VZ(x), V
1
O(x) and V

2
O(x). In other words:

M = 2µP + 2µZ + µO1 + 2µO2 (4.16)

Quadratic optimization problem. By regrouping the equations 4.6, 4.7,

and the systems of inequations 4.9, 4.11, 4.13 and 4.15, minimizing the en-

ergy initially introduced in equation 4.5 turns into a quadratic optimization

problem of 2N +M variables with 4N +2M linear constraints. It can easily

be solved using a standard optimization library.

4.2.2.2 Re-aligning the planes

Once planes are re-oriented, we re-align them in order to make pairs of near-

coplanar planes exactly coplanar. This is the same problem as in 2D, when

pairs of near-collinear line-segments are made exactly collinear.

Let xi ∈ [−dmax, dmax] be the argument of the translation to be operated

on the plane Pi, along its normal vector −→ni . The optimal con�guration of

arguments x = (x1, x2, . . . xN ) is obtained through the minimization of an

energy
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Figure 4.4: Impact of the regularization on the histograms of orientations.

Initially, 1096 planes are extracted from the point cloud (left). The regular-

ization procedure reduces this amount to 122 planes (right) in 2.89 seconds,

and highlights a few dominant orientations. Model: Hilbert Cube.

U(x) = (1− λ)D(x) + λV (x)

D(x) =
1

N

N∑
i=1

(
xi
dmax

)2

V (x) =
1

M

n∑
i=1

∑
j>i

µCij
|dij − xi + xj |

4dmax

(4.17)

where

• dij corresponds to the signed distance between the planes Pi and Pj ;

• µCij = 1 if and only if (i) µPij = 1, (ii) planes Pi and Pj are parallel, and

(iii) |dij | < 2dmax;

• M =
∑N

i=1

∑
j>i µ

C
ij .

In our experiments, we typically set ϕmax and θmax to 5◦ and dmax to

the �tting tolerance ε de�ned during the plane detection phase.

Figure 4.4 and 4.5 illustrate the e�ects of the regularization on the recon-

struction pipeline. To this end, we apply a random vertex displacement to

the vertices of a CAD model from the Thingi10k database [ZJ16], Hilbert

Cube and produce two models, with or without applying the regularization.
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e=0.399

s=0.985

t=771

m=0.688

e=0.406

s=1.110

t=43.3

m=0.082

Figure 4.5: Impact of the regularization on the reconstructed models. Left:

non-regularized version. Red ellipses highlight asperities and irregularities

visible on the surface. in the Right: regularized version. e, s, t and m

represent respectively the geometric error, the simplicity index, the running

times and memory peaks of the subsequent kinetic partitioning algorithm. t

and m are given in seconds and gigabytes. Model: Hilbert Cube.

From a visual point of view, enabling the regularization returns a simpli-

�ed version of the model by removing asperities noticed in the non-regularized

surface. Consequently, the geometric error increases, with respect to the

noised CAD model. However, the performances of the polyhedral partition-

ing algorithm are signi�cantly improved. The regularization procedure itself

is quite fast, with an execution time of 2.89 seconds for this example involv-

ing 1096 initial planes. Like in 2D, our implementation relies on the OOQP

library [GW03].

In our experiments, we apply this regularization procedure when the

point cloud describes a man-made object or a urban scene. In average, ap-

plying the regularization on man-made objects leads to the generation of

partitions that contain 10 to 20% less cells than the non-regularized par-

titions. However, it requires point clouds to be coherently oriented with

respect to the usual 3D frame.
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4.3 Conclusions

In this chapter, we introduced a generic, global and e�cient regularization

procedure for improving a set of basic geometric relationships between a set

of line-segments detected in an image. This procedure is formulated as a

quadratic optimization problem in the real domain with linear constraints,

and can be solved in a short lapse of time. We gave an overview of its impact

in the subsequent partitioning step of our vectorization pipeline.

Likewise, we presented a global regularization procedure for improving

the geometric consistency of a set of planes, and showed how it can be used

to improve the quality of reconstructed models for man-made objects. To

this end, we assume that the data is consistently oriented with respect to

the usual 3D frame.

In next chapters, we describe a kinetic approach for generating decom-

positions of 2D or 3D spaces from a set of predetected shapes. We will show

that our approach produces lighter and simpler partitions with respect to

naive, exhaustive approaches.



Chapter 5

Polygonal partitioning in 2D

In this chapter, we present an algorithm that constructs a 2D polygonal par-

tition from a pre-detected set of line-segments in an image. Polygonal par-

titions o�er a good alternative to traditional superpixels, especially for ana-

lyzing scenes that have strong geometric signatures. Current applications of

polygonal partitions include for instance image-based rendering [RBDD18],

scene illumination [DAPP17], city modeling [DL16] or indoor reconstruction

[MMV+14].

Existing algorithms produce homogeneously-sized polygons that fail to

capture thin geometric structures and over-partition large uniform areas.

We propose a kinetic approach that brings more �exibility on polygon shape

and size. The key idea consists in progressively extending pre-detected line-

segments until they meet each other. Our experiments demonstrate that

output partitions both contain less polygons and better capture geometric

structures than those delivered by existing methods.

5.1 Background on kinetic data structures

A kinetic data structure consists in a set of geometric primitives, whose coor-

dinates are continuous functions of time. The purpose of kinetic frameworks

[BGH99, Gui04] is to maintain the validity of a set of statements that apply

to such a data structure. These statements, called certi�cates, are built upon

predicates, which are functions of the geometric primitives that return a dis-

crete set of values. Most often, predicates evaluate the sign of an algebraic

expression binding two primitives or more, and therefore convey an idea of

interaction between them.

As primitives move, events may occur when certi�cates become invalid.

Kinetic frameworks show a strong algorithmic interest to dynamically order

the times of occurrences of the events within a priority queue. When an

event actually happens on top of the priority queue, the geometric objects
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responsible for a certi�cate failure and the priority queue itself are updated,

so that the kinetic data structure remains valid at any time of the simulation.

Examples of kinetic data structures include dynamic Delaunay triangu-

lations of a set of moving vertices [AGG+10], or polyhedral surface recon-

struction from point clouds [BBPDM08].

In what follows, we address the problem of image partitioning using the

terminology introduced by Basch and Guibas in the aforementioned articles,

leading us to design our own kinetic framework, later used to generate the

desired partitions.

5.2 Algorithm

(a) (b) (c) (d) (e)

Figure 5.1: Illustration of the kinetic partitioning mechanism. Detected line-

segments (a) are converted into an initial planar graph (b). As extremities

of primitives extend (blue dots), they meet each other, which enriches the

planar graph with new nodes and edges (c, d). After the last collision, the

planar graph is simpli�ed by removing all unnecessary nodes (e).

We propose a kinetic framework in which the line-segments are progres-

sively lengthening in the image domain. The underlying data structure is

a dynamic planar graph Gt = (Vt, Et) that partitions the image domain,

with Vt and Et the set of vertices and edges respectively at time t. When

line-segments intersect, the complexity of the graph evolves with typically

the insertion of new vertices and edges so that it remains planar. We de-

�ne below the primitives, certi�cates and update operations of our kinetic

formulation.

Primitives. Because the two extremities of a line-segment should be able

to expand independently, our primitives correspond to half line-segments.

Formally, a detected line-segment between points A and B generates two
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Figure 5.2: Initialisation. A line-segment [AB] is split into two primitives

sk(t) = [MPk(t)] and sk′(t) = [MPk′(t)], of speed vectors −→vk and −→vk′ , respec-
tively. These primitives are later integrated to our kinetic data structure.

primitives sk(t) = [MPk(t)] and sk′(t) = [MPk′(t)] where �xed point M is

the mid-point of A and B, and moving points Pk(t) and Pk′(t) evolve with

time such that

Pk(t) = A+−→vk × t (5.1)

Pk′(t) = B +−→vk′ × t (5.2)

where −→vk (respectively −→vk′) is the speed vector of primitive sk(t) (resp. sk′(t))

of direction
−−→
MA (resp.

−−→
MB) and intensity vk (resp. vk′). In our experiments,

vk is set to 1.

Certi�cates. For each primitive si, we de�ne the certi�cate function Ci(t)

as

Ci(t) =
N∏
j=1
j 6=i

Pr i,j(t) (5.3)

where N is the number of primitives of the kinetic system, and Pr i,j(t)

the predicate function that returns 0 when primitive si enters in collision with

primitive sj , i.e. when the distance from point to line-segment d(Pi(t), sj(t)) =

0, and 1 otherwise. Primitive si is called the source primitive, and sj , the

target primitive. We also call collision point, the point located at the inter-

section of two primitives.

Initialization. We construct the planar graph at t = 0 by inserting as

vertices (i) the mid-point of each segment, (ii) the four corner points of
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the image domain, and (iii) points located at the intersection of two line-

segments, if any. We set edges between the four successive corner points as

well as in between possible intersection points and the mid-points of their

corresponding line-segments, as illustrated in Figure 5.1-(b).

We also create the priority queue by computing and sorting all the times

for which certi�cates Ci(t) = 0 for i = 1..N . Instead of considering all

possible pairs of line-segments at once, we compute several priority queues in

successive time intervals [kT, (k+1)T [ to reduce the algorithmic complexity.

In practice, when k is incremented, a new priority queue is built from events

occurring within this temporal range. By de�ning the bounding box of a

primitive as the smallest image-aligned square that contain the primitive at

time (k+1)T , and by assuming primitives extend at constant speed, we easily

�nd these events as the pairs of primitives whose bounding boxes overlap.

T is �xed to 50 in our experiments, which is a good compromise between

running time and memory consumption.

Updating operations. The planarity property of our graph is broken

when an event happens, i.e. when one of the N certi�cates become null.

We repair it by �rst inserting the collision point in the graph. When three

primitives or more are concurrent, we do not insert this point if it already

exists. We then update the edge set of the graph by (i) inserting a new

edge between the collision point and the last collision point of the source

primitive, and (ii) splitting the edge supporting the target primitive with

respect to the collision point, as illustrated in Figure 5.1-(c).

In addition to graph updates, we also decide whether the source primitive

should keep propagating. We stop the propagation of the source primitive if

it has entered into collision more than a user-de�ned number of times K, or

else if its potential prolongation aligns well with high gradients in the input

image. This second condition allows us to not stop the primitive when an

obvious image discontinuity along its supporting line exists. Note that our

kinetic data-structure is a motorcycle graph [EE99] when K = 1 and the

gradient-based condition is deactivated. Figure 5.3 shows the impact of the

stopping conditions on the output partition.

Finally we update the priority queue by removing the processed event

from it, and also, in case the propagation is stopped, all the events created

from the certi�cate function of the source primitive.
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(a) (b) (c)

Figure 5.3: Stopping conditions. Setting K to 1 is su�cient to capture the

di�erent parts of buildings (a). Deactivating the gradient-based condition

leads to omit a few structural components (b) whereas �xing K to a too

high value, here 20, gives a too complex partition in which polygons are not

meaningful anymore (c).

Finalization. Once the priority queue is empty, we simplify the planar

graph by removing the unnecessary vertices, i.e. vertices adjacent to two

colinear edges which are thus merged, as illustrated in Figure 5.1-(e). Op-

tionally, we also remove skinny polygons when the width of their oriented

bounding rectangles is lower than 2 pixels. Such polygons, that can hardly

be exploited by subsequent tasks, are merged to the biggest adjacent polygon

under the condition the new polygon is convex.

Algorithm 1 Pseudo-code of the Kinetic partitioning

1: Initialize the planar graph G

2: Initialize the priority queue Q

3: while Q 6= ∅ do
4: Pop the source and target primitives from Q

5: Update G

6: Test the stopping condition of the source primitive

7: Update Q

8: end while

9: Finalize the planar graph
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The global mechanism of our algorithm is summarized in Algorithm 1.

In all our experiments, we set the maximal number of collisions K to 1,

except for Figure 5.3. Note that the returned polygons are convex by con-

struction. As concavities inside polygons only appear when two non-colinear

primitives intersect at exactly the same time during the propagation phase,

we simply force one of the two primitives to keep propagating. Convexity is

an interesting property that makes some geometric computations simpler as

polygon intersection, point sampling or Constructive Solid Geometry opera-

tions. This is for instance useful in 3D reconstruction [BSRVG14]. However,

to obtain non-convex polygons, a possible postprocessing could be to group

adjacent convex polygons following a color metric.

5.3 Experiments

We tested our algorithm on large-scale satellite images, aerial images, as well

as on the Berkeley dataset [MFTM01]. We deactivated the line-segment

regularization for Berkeley images which are mainly composed of organic

shapes.

5.3.1 Control on the complexity of the partition

Our main parameter is the LSD scale parameter, which allows us to control

the sensitivity to image noise, and thus the amount of input line-segments.

Despite our algorithm does not o�er an exact control on the output number

of polygons, this parameter directly impacts on it, as illustrated in Figure 5.4.

5.3.2 Comparison with superpixel methods

We compared our algorithm with state-of-the-art superpixel methods SNIC

[AS17] and ERS [LTRC11] and polygonal partitioning methods VORONOI

[DL15] and SNICPOLY [AS17]. Because these methods are designed to

produce homogeneously-sized regions, our output partitions are visually dif-

ferent, combining both large polygons on homogeneous image areas and thin

polygons on lineic structures as illustrated in Figure 5.5. Among the tested

methods, only ERS o�ers enough �exibility on region shapes to capture lineic

structures like us. However, converting ERS superpixels into polygons is a

delicate task because of boundary irregularities and region connectivity am-
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Figure 5.4: Partition complexity. We can produce partitions with varying

numbers of polygons by tuning the sensitivity of the line-segment detector.

Left partition with 113 polygons is su�cient for capturing the indoor struc-

ture and the main furnitures. Right partition (365 polygons) also captures

smaller details as some patterns of the background painting.

biguities. Our algorithm performs best on man-made scenes in which objects

or object parts can be well captured by polygons.

We evaluated our algorithm on the Berkeley300 dataset [MFTM01] using

standard quality criteria of superpixel methods, in particular the boundary

recall as de�ned in [NP12] as well as the boundary precision. The former

indicates the ratio of Ground Truth contours correctly recovered by the out-

put region boundaries, whereas the latter measures the ratio of output region

boundaries that correctly recovers the Ground Truth contours. We measured

the boundary precision on the entire image, contrary to some works [AS17]

that compute it on an ε-domain around the Ground Truth contours. For

measuring the quality criteria from polygonal partitions, the edges of �oat-

ing polygons have been discretized into pixel boundaries. We measured these

criteria for partitions returning between 50 and 1, 000 regions.

Figure 5.6 shows our algorithm outperforms polygonal partitioning meth-

ods VORONOI and SNICPOLY on boundary recall by quite a big margin

as their scores at a given number of polygons remain lower than ours with

twice less polygons. Our algorithm performs best for a number of regions

between 400 and 800, with a boundary recall even higher than superpixel

method SNIC. Because our partitions contain large-sized polygons, our algo-

rithm even outperforms superpixel methods on the precision to recall curve

when recall is higher than 0.85. To get homogeneously-sized polygons, we

can apply a Poisson-disk sampling as postprocessing, similarly to [DL15]. Its
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Input
ERS

[LTRC11]

SNICPOLY

[AS17]

VORONOI

[DL15]
Ours

Figure 5.5: Visual comparisons with superpixel and polygonal partitioning

methods. Contrary to existing methods designed to deliver homogeneously-

sized regions, our partitions combine large polygons capturing homogeneous

areas, as the shadow under the airplane, and thin polygons describing lineic

structures as the legs of the dragon�y. For an identical number of output re-

gions, our algorithm produces more meaningful polygons, as those capturing

the windows of the facade image.

e�ects on the boundary recall are shown through the curve KIPPI-HOMO:

the recall decreases but remains higher than SNICPOLY and VORONOI.

When deactivating Poisson disk sampling on VORONOI, the boundary re-

call improves by a few hundredths but remains lower than SNICPOLY as

shown with the curve VORONOI-HETERO.

By reasoning at the scale of geometric shapes instead of pixels, and by

exploiting an e�cient framework based on Computational Geometry, our

algorithm is computationally e�cient and scalable. As shown in Table 5.1,
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Figure 5.6: Quantitative evaluation. Our algorithm outperforms polygonal

partitiong methods VORONOI and SNICPOLY on boundary recall while

approaching the scores of the best superpixel methods. Because we allow

polygons to be large for capturing big homogeneous areas, our algorithm

o�ers a better compromise between boundary precision and boundary recall

than other methods when recall is high, i.e. higher than 0.85.

a few minutes are necessary to process a massive satellite image of several

hundred millions pixels on a single standard computer. In terms of storage,

polygons and their connectivity can be saved in a very compact way with a

planar graph.
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Facade Aerial Satellite

154k pixels 2.46M pixels 106M pixels

# Line-segments 847 3178 171.1k

# Output polygons 530 2488 124.5k

Line-segment detection 52.4 ms 0.59 s 70.7 s

Regularization 72.8 ms 0.35 s 654.5 s

Kinetic partitioning 51.2 ms 0.23 s 45.1 s

Total time 0.195 s 1.41 s 795.6 s

Table 5.1: Performances on three di�erent image sizes (Facade from Fig-

ure 5.5 -bottom, Aerial from Figure 7.2-right, and Satellite whose a cropped

part is illustrated on Figure 5.7)-top in terms of running time.

5.3.3 Results on aerial and satellite imagery

We also tested our algorithm on urban environments, using data produced

by satellite or aerial imagery. For satellite images, the data was collected by

the WorldView-2 and WorldView-3 satellites, therefore the resolution of the

images varies between 30 and 50 centimeters per pixel. Aerial images were

acquired thanks to UAVs. Assembled orthophotos could be accessed thanks

to the OpenAerialMap database [Ope19], and have a standard resolution of

4 centimeters. Figures 5.7 and 5.8 show results generated by our algorithm

on these two kinds of images. We observe that most individual structures are

captured by subsets of polygonal cells. This assessment opens the door to

the extraction of regions of interest, here the building rooftops, as polygonal

shapes.
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Figure 5.7: Results on satellite images. From top to bottom: Denver (US-

CO), Minsk (BY), Prague (CZ). Our algorithm captures the structures of

most observed buildings and could serve as a basis for the vectorization of

their shapes. Best displayed on screen.
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Figure 5.8: Results on aerial images. Top: El Alto (BO). Bottom: Zanzibar

(TZ). Images taken from [Ope19]. (Continued next page.)
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Figure 5.8: Results on aerial images. Top: New York (US-NY). Bottom:

Kokomo (US-IN). Images taken from [Ope19]. We observe that most building

rooftops can be approximated as simple subsets of polygonal cells. This paves

the way for the vectorization of such objects using a saliency map.
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5.4 Limitations

Our algorithm has a few shortcomings.

First of all, it does not o�er to the user an exact control on the number

of output polygons.

In addition, the regularization of line-segments is not e�ective on organic

images. It reduces the complexity of the partition, but at the expense of

accuracy.

Moreover, missing line-segments on small structural parts can lead to

under-segmentation situations that are currently not handled by our algo-

rithm. One solution would be to split polygons with heterogeneous radiom-

etry within the kinetic data structure, or as a postprocessing step. Also, all

line-segments propagate in the same way, regardless of their relevance.

5.5 Conclusion

We presented a kinetic approach to partition images into �oating polygons.

Whereas some existing methods impose homogeneously-sized polygons in

the style of superpixels, our line-segment extension mechanism o�ers more

�exibility on polygonal shapes. This allows us to better recover geomet-

ric matters contained in man-made and organic images, and capture thin

structures without over-partitioning large homogeneous areas. By reasoning

at the scale of geometric shapes, instead of pixels, within a computational

geometry framework, our algorithm is scalable and computationally e�cient.

In chapter 7, we show that our partitions can be used to approximate

objects of interest, such as buildings in images or more organic shapes, as

simple polygons with a low number of edges.
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Polyhedral partitioning in 3D

Converting point clouds into concise polygonal meshes is an automated man-

ner is an enduring problem in computer graphics.

Existing methods commonly operate by assembling a set of planar shapes,

previously detected from the input points, which can be done interactively

or automatically. These automatic approaches [CLP10, NW17] operate by

slicing the 3D space bounding the input point cloud into a partition of convex

polyhedral cells with the in�nite supporting plane of each primitive. The

output mesh is then extracted by labelling the cells as inside our outside the

3D objects. These approaches yield concise meshes, but are not scalable.

Complex objects and scenes, which are composed of more than 100 planar

shapes, result in huge partitions and too complex energetic formulations

when constructing the mesh.

Inspired by our previous work on the polygonal partitioning of images,

this chapter describes a shape assembling method which is at least one order

of magnitude more e�cient than existing methods, both in time and number

of processed shapes. Given a set of convex planar polygons as input, we

design a kinetic data structure in the 3D space, in which polygons grow

until they collide each other. This simple, yet natural idea produces much

lighter and meaningful partitions than exhaustive ones and constitute a good

support for the subsequent mesh extraction step.

6.1 Algorithm

Our algorithm takes as input a set of convex planar polygons, and returns

as output a partition of the bounding 3D space. It consists of a kinetic data

structure [Gui04] in which convex polygons extend at constant speed until

colliding with each other. When a collision between two or more polygons

occurs, we modify the evolution of these polygons by either stopping their

growth, changing their direction of propagation or splitting them. This set
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of polygons progressively partitions the 3D space into polyhedra, the �nal

partition being obtained when no polygon can grow anymore. We observe

that each facet of the underlying connected 3D graph is therefore a part or

an extension of the convex polygons.

An introduction of kinetic data structures has been provided in Section

5.1 of this thesis. In what follows, we describe the ingredients of our kinetic

framework for the partitioning of a bounding volume. To our knowledge, we

are the �rst to design and implement a kinetic data structure that collides

polygons in the 3D space.

Primitives and kinetic data structure. The primitives of our kinetic

framework are polygons whose vertices move at constant speeds along given

directions. The initial set of polygons is de�ned as the convex hulls of the

planar shapes. Polygons grow by uniform scaling: each vertex moves in the

opposite direction to the center of mass of the initial polygon. The underlying

kinetic data structure P is the set of these polygons that, we assume, do not

intersect with each other. When two or more polygons intersect, we modify

primitives to maintain valid the intersection-free property.

t0 + δt

t0

Figure 6.1: A primitive of our kinetic data structure. As a general propaga-

tion law, we apply homothetic transformations of ratio (1+t) to the detected

planar shapes, where t is the simulation time.
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Certi�cates. For each primitive i, we de�ne the certi�cate function Ci(t)

as

Ci(t) =

N∏
j=1
j 6=i

Pr i,j(t) (6.1)

whereN is the number of primitives of the kinetic data structure, and Pr i,j(t)

the predicate function that returns 0 when primitive i collides with primitive

j, i.e. when the minimal distance between the polygon boundary of primitive

i and the closed polygon of primitive j equates zero for the �rst time, and

1 otherwise. Primitive i is called the source primitive, and j, the target

primitive. Because the directions of propagation of polygons can change

along time, the computation of this minimal distance is a di�cult task in

practice. We detail in Section 6.2 how we compute this distance e�ciently.

Initialization. Before starting growing the set of convex hulls, we �rst

need to decompose them into intersection-free polygons. As illustrated in

Figure 6.2, each non intersection-free polygon is cut along the intersection

lines with the other polygons. Because the propagation of polygons outside

the bounding box is not relevant in practice, we also insert the six facets of

the bounding box into the kinetic data structure. We denote by P0 this set
of intersection-free polygons. In addition, we populate the priority queue by

computing and sorting in ascending order the times of collision, i.e. times

for which certi�cates Ci(t) = 0 for each polygon i of P0.

Updating operations. When a collision between primitives occurs, we

need to update the kinetic data structure to keep the set of polygons free of

intersection.

We �rst modify the source polygon. As illustrated in Figure 6.3, four

cases are distinguished:

• A vertex of the source polygon collides with the target polygon (case

a). We replace the vertex by two sliding vertices that move along the

intersection line in opposite directions.

• A sliding vertex of the source polygon collides with the target polygon

(case b). We modify the direction of propagation of the sliding vertex

to follow the intersection line with the target polygon. In addition, we
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Figure 6.2: Initialization. At t = 0, the blue polygon intersects two other

polygons, the intersections being represented by the red and green line-

segments (left). We decompose it into intersection-free polygons with cuts

along the intersection lines (red and green dashed lines). The new vertices

are either kept �xed when located at the junction of several intersection lines

(white points) or are moving along the intersection lines (gray points). We

denote them as frozen vertices and sliding vertices respectively (right). A

polygon is active if not all its vertices are frozen.

create a frozen vertex where the intersection line with the target poly-

gon and the intersection line with the polygon supporting the sliding

vertex before collision meet.

• A sliding vertex of the source polygon collides with the target polygon

while a sliding vertex guided by the target polygon already exists (case

c). We create a frozen vertex where the two intersection lines meet:

the propagation of the source polygon is locally stopped.

• An edge of the source polygon collides with an edge or vertex of the

target polygon (case d). Source and target polygons are split along

their intersection line with the creation of eight sliding vertices (two

per new polygon).

Note that collisions between two coplanar polygons are included in cases a

and b. In some particular situations, it might also happen that an edge

of the source polygon collides with the interior of the target polygon. We

simply treat it as case a.
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case a case b case c case d

Figure 6.3: Collision typology and corresponding primitive updates. A ver-

tex or an edge of the source polygon (blue shape) typically collides with the

target polygon (red segment) in four di�erent manners. The correponding

updates operated on the source polygon (bottom) consist in inserting sliding

vertices and/or frozen vertices (cases a, b and c) or splitting polygons (case

d).

In many situations, it is interesting to extend the source polygon on

the other side of the target polygon. To decide whether this should hap-

pen, we de�ne a crossing condition which is valid if (i) the source poly-

gon has collided a number of times lower than a user-speci�ed parame-

ter K, or else if (ii) relevant input points omitted during shape detection

can be found in the other side of the target polygon. Parameter K is a

trade-o� between the complexity of the polyhedron partition and the ro-

bustness to missing data. In particular, K = 1 yields the simplest par-

tition whereas K = ∞ produces the partition returned by the exhaustive

plane slicing approach. Parameter K is typically set to 2 in our experi-

ments. The second criterion is data-driven: it counts the number of input

ε

d

points contained in a box (black dashed rect-

angle in the inset) located behind the target

polygon (red segment) and aligned with the

source polygon (black segment). In the in-

set, this number is 5. The thickness of the

box is twice the �tting tolerance ε used for detecting planar shapes while its

depth d is chosen as 10 times the average distance d̂ between neighbors of the
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k-nearest neighbor graph of the input points. Assuming the average density

of points sampling the object surface is approximately d̂−2, we validate the

criterion when the density of points in the box is higher than half of d̂−2 in

practice. This data-driven criterion is useful to recover planar parts missed

during shape detection, as illustrated in Figure 6.4.

Figure 6.4: Data-driven criterion. Small planar parts are often missed during

shape extraction (see missing shapes on the left closeup). The output surface

then becomes overly simpli�ed (middle). The data-driven criterion allows us

to recover the correct geometry when these planar parts belong to a repetitive

structure such as the ramparts (right). Model: Castle.

If the crossing condition is valid, a new polygon that extends the source

primitive on the other side of the target polygon must be inserted into the ki-

netic data structure. This situation

case a case b

can only happen to cases a and b in

Figure 6.3. The new polygon is ini-

tialized as a triangle composed of two

sliding vertices and one original ver-

tex for case a, or of two sliding ver-

tices and one frozen vertex for case

b (see inset).

Finally we update the priority queue. We �rst remove the processed

event between the source and the target polygons from the queue. If the two

polygons have been modi�ed, we recompute their times of collision with the

active polygons if not all their vertices are frozen, or remove their times of
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collision with the active polygons from the queue otherwise. If new polygons

have been created (case d or cases a/b with valid crossing condition), we

compute their times of collision with the active polygons and insert them

into the priority queue.

Algorithm 2 Kinetic partitioning

Initialize the kinetic data structure P to P0
Initialize the priority queue Q

while Q 6= ∅ do
Pop the source and target primitives from Q

Test the crossing condition of the source primitive

Update P
Update Q

end while

Finalize the tessellation

Finalization. When the priority queue is empty, the kinetic data struc-

ture does not evolve anymore. The output polygons are composed of frozen

vertices only and form a partition of polyhedra. We extract this partition

as a half-edge data structure by connecting the polygons. Note that the

polyhedra are convex by construction. The global mechanism of the kinetic

partitioning is summarized in Algorithm 2. A detailed pseudo-code is also

provided in appendix.

6.2 Implementation details

Our algorithm has been implemented in C++ using the CGAL library for

the geometric operations. In particular, we used the exact predicates, exact

constructions kernel for the computation of distances and times of collision.

We now explain three important implementation details that improve the

e�ciency and scalability of our method.

Reformulation as collaborative 2D collision problems. At each up-

date of the kinetic data structure, the propagation of the source polygon is

likely to be modi�ed. Consequently, the update of the priority queue requires

the distance of this polygon to each other active polygons to be recomputed.
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Figure 6.5: Reformulation as collaborative 2D collision problems. The co-

ordinates of N planar polygons in 3D (left) are mapped onto each of their

N supporting planes (right). The dashed lines also represent mapped in-

tersection lines between the current supporting plane and another plane.

Therefore, events of the kinetic data structure can be computed using a

simple point-to-line 2D distance.

To avoid such time consuming operations, we algorithmically reformulate

the 3D collision problem as N collaborative propagations of polygons in 2D

controlled by a global priority queue, N being the number of planar shapes.

The intuition behind this reformulation is that two non-coplanar polygons

cannot collide somewhere else than along the 3D line intersecting their re-

spective planes. This 3D line being represented by a 2D line in the planes

containing the two polygons, we can then use a simple point-to-line distance

in 2D to compute the times of collisions. Although more events must be pro-

cessed with this reformulation, the update of the priority queue is drastically

simpli�ed. Figure 6.5 illustrates our approach.

Priority queue Although all possible collisions should be inserted into

the priority queue, we observe that an active vertex often collides with only

the three closest lines. To reduce memory consumption and processing time,

we thus restrict the number of collisions per vertex in the priority queue to

three. If the three collisions occur and the vertex is not frozen we insert the

three next collisions of this vertex in the priority queue and repeat this op-

eration as many times as necessary. This reduces running time and memory

consumption by a factor close to 1.5 and 3 respectively.
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m=6.4GB

|F|=5.5K
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m=194MB
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749 shapes

146 shapes

73 shapes

Planar shapes Exhaustive partition Kinetic partition

Figure 6.6: Exhaustive vs. kinetic partitionings. By naively slicing all planes

supporting the shapes, exhaustive partitions are much more complex than

our kinetic partitions. The construction of kinetic partitions is also faster

and consumes less memory, especially from complex con�gurations of planar

shapes (see middle and bottom examples). |F|, |C|, t and m refer to the

number of facets in the partition, the number of polyhedra, the construction

time of the partition and the memory consumption respectively. Models

from top to bottom: Rocker arm, Capron and Navhis.

Spatial subdivision To increase the scalability of our algorithm, we o�er

the option to subdivide the bounding box of the object into uniformly-sized

3D blocks in which independent kinetic partitionings are operated. For each

block, we collect the closest planar shapes, i.e. those whose initial convex

polygon is either inside the block or intersecting at least one of its sides.

We then operate the kinetic partitioning inside the block from this subset of

planar shapes.

Once all blocks are processed, we merge the polyhedral partitions. An

important speed-up factor lies into the fact that only a portion of planar

shapes is involved in the partitioning of each block. Our implementation
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treats blocks sequentially, but one could process them in parallel for even

better performances.

6.3 Experiments

6.3.1 Kinetic vs. exhaustive partitions

We compare our algorithm of polyhedral partitioning of a 3D space with the

naive, exhaustive approach that is implemented in current shape assembling

techniques [CLP10, NW17]. Figure 6.7 plots the average number of obtained

polyhedra and the running times of both methods for a variety of models,

against the number of detected planar shapes.

These plots demonstrate the scalability of our kinetic algorithm. For

N = 100 planar shapes, which approximatively corresponds to the processing

limits of the aforementioned techniques, it can return, in average, 100 times

less polyhedra and run twice as fast as the exhaustive approach. These

factors keep increasing with the number of input planar shapes.

Figure 6.6, which shows examples of kinetic and exhaustive partitions,

con�rms this trend. Generated in a shorter lapse of time, a kinetic parti-

tion is much lighter than an exhaustive one, and contains more meaningful

polyhedra.

6.3.2 Spatial subdivision

Figure 6.8 plots the time and memory savings against the number of planar

shapes for several subdivision schemes. While the savings are signi�cant, the

use of spatial subdivision produces a simpli�ed polyhedral partition as poly-

gons do not propagate to neighboring blocks. Figure 7.10, in next chapter,

illustrates this compromise between algorithm e�ciency and surface quality.
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Figure 6.7: Comparative performances between kinetic and exhautive par-

titioning in terms of construction time, number of polyhedra, and memory

consumption. K represents the maximal number of intersections.
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Figure 6.8: Performances with spatial subdivision. The lowest curve in each

graph indicates the most e�cient subdivision scheme given the number of

planar shapes. For instance, one thousand planar shapes can be processed in

one minute by subdividing the 3D bounding box into 83 blocks (yellow curve

in top graph), whereas half an hour is required without subdivision (blue

curve). Memory peak evolves similarly to running time. The performances

have been obtained from 100k input points uniformly sampled on a sphere.

6.4 Conclusion

We presented an algorithm generates a polyhedral partition of the 3D space

using a set of prede�ned convex planar polygons. Our approach is based on

a kinetic data structure, in which these polygons progressively extend until

ful�lling a user-de�ned stopping condition.

By contrast with exhaustive partitions computed in the state-of-the-art

shape assembling techniques, our approach generates much lighter partitions.
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For 100 detected shapes, which approximatively correspond to the maximal

number of shapes that can be digested by these techniques in a reasonable

time, a kinetic partition with K = 1 contains in average 100 times less

polyhedrons than an exhaustive one, and this gap keeps increasing with the

number of input shapes. The scalability of our algorithm is further reinforced

by a spatial subdivision procedure, that decomposes a complex problem into

a set of simpler ones.

In the next chapter, we describe a formulation for producing compact

meshes using these partitions, and compare them to the state-of-art polyg-

onal surface reconstruction techniques.





Chapter 7

Object extraction

Chapters 5 and 6 detailed two kinetic algorithms for the polygonal partition-

ing of a image from a pre-detected set of line-segments, and the polygonal

partitioning of a 3D volume based on an initial con�guration of planar prim-

itives.

In this chapter, we show how these kinetic partitions can be used for

extracting objects and regions of interest in images and point clouds, using

a binary cell activation mechanism. The �nal result is a closed set of edges

or facets that approximates these objects by separating the active cells from

the inactive ones.

7.1 Object contouring

7.1.1 Description of the model

Object contouring by polygonal shapes provides a compact and structure-

aware representation of object silhouettes, in particular in man-made envi-

ronments [CKUF17, SCF14].

To achieve polygonal object contouring from our partition, we associate

each polygon with a binary activation variable indicating if it belongs to

the objects of interest or not, similarly to [LSD10] with superpixels. The

output polygonal contours correspond to the set of edges separating active

polygons from inactive ones, which ensures that the contours are closed by

construction.

The problem is formulated as a standard energy minimization problem

[BK04]. For each input image, we �rst compute the probability map H from

a few user-provided scribbles, which roughly characterize the radiometric

distribution of the foreground objects of interest and the image background.

We express the probability H(i|l) of a pixel i to belong to class l = {0, 1}
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as its normalized RGB distance to the closest color in the set of scribbled

pixels belonging to that class

H(i|l) =
min
j∈Sl
‖I(i)− Î(j)‖22

min
j∈S0

‖I(i)− Î(j)‖22 + min
j∈S1

‖I(i)− Î(j)‖22
(7.1)

where S0 (respectively S1) is the set of pixels scribbled as foreground

(resp. background), and Î is the input image convolved by a 11 × 11 mean

�lter to remove noise.

Now, let us denote by F the set of polygonal facets of the graph generated

by the partitioning algorithm, and by xi ∈ {0, 1} a binary activation variable

that indicates whether the cell fi ∈ F is considered as a part of an object

of interest in the image. We call x = (xi)i∈F the con�guration of all binary

variables. We minimize the energy U(x) de�ned as:

U(x) = (1− λ)D(x) + λV (x) (7.2)

where D(x) is data term measuring the agreement between the binary

variable of each polygon and the underlying probability map H, V (x) is a

smoothness term based on a Potts model to favor compact contours, and

λ ∈ [0, 1] is a parameter balancing these two terms. More precisely, we have:

D(x) =
∑
i∈F

1

|fi|
∑
p∈fi

H(p|xi) (7.3)

where |fi| is the area of the facet fi and p ∈ fi refers to the set of pixels

that are included in fi. The smoothness term is de�ned, for its part, as:

V (x) =
∑
i∼j

lij · 1{xi 6=xj} (7.4)

where i ∼ j denotes pairs of adjacent facets, and lij is the length of the

edge separating facets fi and fj .

Note that more advanced methods could be used to predict foreground

and background pixels. This would certainly lead to better results, but this

is has not been explored within the scope of this thesis.

7.1.2 Experiments and comparisons

Despite the simplicity of our color model H, Figure 7.2 shows our method

achieves good results with both organic and man-made shapes. Output poly-
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#edges = 65 (28) #edges = 169 (85) #edges = 238 (111)

Figure 7.1: Trade-o� between �delity and simplicity. Polygonal partitions

with low complexity give compact polygonal contours that roughly approxi-

mate the object silhouette (left). More re�ned partitions allow us to better

capture shape details (right). The numbers between parentheses indicate

the �nal number of edges if we merge all successive collinear edges as a

postprocess.

gons capture well the object silhouettes while having a low complexity. In

particular, it outperforms results returned by Grabcut [RKB04] followed by

a Douglas-Peucker vectorization of the border pixels [DP73]. Replacing our

partitions by VORONOI [DL15] reduces accuracy. In particular, VORONOI

partitions cannot handle thin structures and tend to produce complex polyg-

onal contours zigzagging around the true silhouettes.

7.1.3 Limitations

Our algorithm of polygonal object contouring seems to return promising

results. Thanks to our kinetic partitions, thin structures, such as the legs

of the dragon�y in Figure 7.2 are approximated in a satisfactory way, and

man-made structures like rooftops can be approximated with a low number

of edges.

However, as a cascade pipeline, the results of our algorithm directly de-

pend on the quality of the partitions generated during the previous stage.

In particular, cells with heterogeneous contents will decrease the accuracy of

our results. A possible strategy would consist in splitting and merging cells

based on radiometric or semantic information.
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Figure 7.2: Object contouring. Using our partition as input, we are able

to capture details in the image missed by other algorithms while producing

polygons with lower complexity. Note in particular how thin structures as

the legs of the dragon�y or the propeller of the airplane are recovered. Our

method performs best on man-made objects composed of piecewise-linear

contours, as roofs (right).

In addition, this object contouring model only favors compact contours.

It neither explicitely reinforce geometric relations between the selected edges,

nor penalizes the lack of regularity of the returned contours. As a result, this

object contouring model tends to return too complex and inaccurate results

on large partitions with multiple objects of interest, like rooftops in satellite

images. This problem can be solved by adding a regularization term to the

minimized energy, thus resulting in a more complex formulation.

7.2 Surface extraction

7.2.1 Description of the model

Given a partition of polyhedra, generated by the algorithm described in

chapter 6, we wish to extract a surface from it.

We operate a min-cut to �nd an inside-outside labeling of the polyhe-

dra, the output surface being de�ned as the interface facets between inside

and outside. This strategy garantees the output surface to be watertight
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and intersection-free [LPK09]. The methods relying upon this approach

[CLP10, BDLGM14, VLA15] typically assign an inside-outside guess on each

polyhedron by ray shooting: this is both imprecise in presence of missing data

and computationally costly. Instead, we propose a faster voting scheme that

exploits the oriented normals of inlier points to more robustly assign a guess

on a portion of the polyhedra only.

We denote by C, the set of polyhedra of the tessellation, and by xi =

{in, out}, the binary label that speci�es whether polyhedron i is inside (xi =
in) or outside (xi = out) the surface. We measure the quality of a possible

output surface x = (xi)i∈C with a two-term energy of the form

U(x) = D(x) + λV (x) (7.5)

where D(x) and V (x) are terms living in [0, 1] that measure data �delity and

surface complexity respectively. λ ∈ [0, 1] is a parameter balancing these two

terms. The optimal output surface that minimizes U is found by a max-�ow

algorithm [BK04].

Data �delity D(x) measures the coherence between the inside-outside

label of each polyhedron and the orientation of normals of inlier points.

Similarly to signed distances proposed in smooth surface reconstruction, we

assume here that the normals point towards the outside. After associating

each inlier point with the facet of the partition that contains its orthogonal

projection on the in�nite plane of its planar shape, we express data �delity

by a voting function on each inlier point. More precisely:

D(x) =
1

|I|
∑
i∈C

∑
p∈Ii

di(p, xi) (7.6)

where |I| is twice the total number of inlier points, Ii is the set of inlier

points associated with all the facets of polyhedron i, and di(p, xi) is a voting

function that tests whether the orientation of inlier point p is coherent with

the label xi of polyhedron i.

This function is de�ned by di(p, in) = 1{~n·~u>0} and di(p, out) = 1{~n·~u<0}

where 1{.} is the characteristic function, ~n the normal vector of inlier point p,

and ~u the vector from p to the center of mass of polyhedron i. In Figure 7.3,

we prefer assigning label in to polyhedron i and label out to polyhedron

j. In particular, di(p, xi = out) and dj(p, xj = in) return a penalty of 1

whereas di(p, xi = in) = dj(p, xj = out) = 0. Because the voting function di
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p

~n

~u

polyhedron i

polyhedron j

Figure 7.3: Voting criterion.

is binary, normals only need to point towards the right half-space separating

the facet. This brings robustness to imprecise normal directions.

The second term V (x) is more conventional: it measures the complexity

of the output surface by its area, where lower is simpler. It is expressed by

V (x) =
1

A

∑
i∼j

aij · 1{xi 6=xj} (7.7)

where i ∼ j denotes the pairs of adjacent polyhedra, aij represents the

area of the common facet between polyhedra i and j, andA is a normalization

factor de�ned as the sum of the areas of all facets of the partition. As

illustrated in Figure 7.4, this term avoids the surface zigzagging. Giving

a too high importance to this term however shrinks the surface. In our

experiments, we typically set parameter λ to 0.5.

7.2.2 Experiments

We evaluated our algorithm with respect to our �delity, simplicity and e�-

ciency objectives. We measure the �delity to 3D data by the mean symmetric

Hausdor� (MSH) distance between input point cloud and output mesh. The

simplicity of output representation is quanti�ed by the ratio between the

number of output facets to the number of initial planar shapes. We mea-

sure the e�ciency of the algorithm by both running time and memory peak.
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Figure 7.4: Impact of parameter λ. Increasing λ simpli�es the output surface

by reducing the number of facets (see blue curve). A too high value however

makes parts of the object disappear and increases the geometric error (see red

curve). The best compromise between simplicity and accuracy is returned

in the interval [0.4, 0.8]. The geometric error is computed as the symmetric

mean Hausdor� distance between input points and output mesh. Model:

Stanford bunny.

In addition to these four measures, we also evaluate the scalability of al-

gorithms by the maximal number of planar shapes that can be processed

without exceeding both 105 seconds on a single computer with a core i9

processor clocked at 2.9Ghz, and 32GB memory consumption.

7.2.2.1 Flexibility

Our algorithm has been tested on a variety of objects, scenes, and acquisition

systems.

Our method produces concise polygonal meshes for both freeform objects

such as Horse, Ignatius and Asian dragon. Piecewise-planar structures

such as Church, Barn and Euler or Full thing are reconstructed with
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Figure 7.5: Reconstruction of Tower of Pi. 10.8K planar shapes are

detected from 2.9M input points (left) and assembled by our algorithm into

a concise polygonal mesh of 12.1K facets (middle). Each digit is nicely

represented by a few facets (see closeups). In contrast, the mesh produced

by the traditional surface approximation pipeline ([KBH06] + [GH97]) fails

to preserve the structure of the mesh.

�ne details, as long as planar shapes are correctly detected from data. Com-

plex objects such as M60 are approximated with a good amount of details

by a few hundred facets mesh only.

Figures 7.6 and 7.7 present reconstructions obtained from laser and Multi-

View Stereo (MVS) datasets. The latter have been generated by COLMAP

[SF16] from image sequences mostly provided by the Tanks and Temples

benchmark [KPZK17]. Because of the high amount of noise, these point

clouds are particularly challenging to reconstruct. Point clouds generated

by Laser scanning are geometrically more accurate, but su�er from missing

data and heterogeneous point density. As illustrated with Barn model, our

algorithm typically returns more accurate output meshes with Laser acqui-

sition. MVS point clouds are usually too noisy to capture �ne details with

small planar shapes. Conversely, frequent occlusions contained in Laser scans

are more e�ectively handled by our kinetic approach that naturally �lls in

empty space in between planar shapes.

Some point clouds have also been sampled from CAD models. This is

the case of Full thing, Castle, Tower of Pi and Hilbert cube whose
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(a) Meeting room. (b) Asian dragon.

(c) Barn Laser. (d) Church.

(e) Euler. (f) Courthouse.

Figure 7.6: Reconstructions from laser datasets. The number of points, de-

tected planar shapes, and facets of the output models are given in Table 7.1.

CAD models originate from the Thingi10k database [ZJ16].



82 Chapter 7. Object extraction

(a) Horse. (b) M60. (c) Building block.

(d) Barn MVS. (e) Temple. (f) Ignatius. (g) Cottage.

Figure 7.7: Reconstructions from multi-view stereo datasets. The number

of points, detected planar shapes, and facets of the output models are given

in Table 7.1.
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Meeting room 3.07M 1,655 1,491

Asian dragon 3.61M 2,712 3,132

Barn Laser 613K 151 196

Church 31.1M 1,188 394

Euler 2.73M 887 1,317

Courthouse 1.9M 2,716 1,795

Horse 788K 274 347

M60 2.8M 362 471

Building block 793K 160 142

Barn MVS 619K 95 39

Temple 621K 69 95

Ignatius 1.38M 294 443

Cottage 143K 23 28

Table 7.1: Number of points, planar shapes and output facets for the models

presented in Figures 7.6 and 7.7.

7.2.2.2 Robustness to imperfect data

Figure 7.8 shows the robustness of our algorithm to noise. Below 1% noise

(with respect to the bounding box diagonal), our algorithm outputs accurate

meshes. Above 1%, planar shapes become missing or inaccurately detected.

Because our goal is not to correct or complete the shape con�guration, the

output mesh cannot preserve the structure of the object anymore. Beside

noise, the propagation of planar shapes within the kinetic algorithm o�ers

high resilience to occlusions, especially when parameter K is strictly greater

than 1. This allows, for instance, to recover the skylights on Barn laser

and the rampart structures on Castle.

As illustrated by Figure 7.9, our algorithm is also robust to heterogeneous

sampling and outliers by inheriting the good behavior of shape detection

methods with respect to these two defects.
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0% noise 0.5% noise 1% noise 1.5% noise

Figure 7.8: Robustness to noise. Our algorithm is robust to noise as long

as planar shapes can be decently extracted from input points. At 1% noise,

some shapes become missing or inaccurately detected, leading to an overly

complex output mesh. At 1.5%, the poorly extracted shapes do not allow us

to capture the structure of the cube anymore. Note that normals have been

recomputed for each degraded point cloud. Model: Hilbert Cube.
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# input points 3.07M 1.38M 2.9M 621K 31.1M

# planar shapes 1,655 1,648 10.8K 69 1,188

#output facets 1,491 1,807 12,051 95 394

Subdivision 4 4 8 - 2

kinetic partitioning (sec) 197 443 2,599 11 310

surface extraction (sec) 84 49 154 10 717

memory peak (MB) 642 552 4,224 69 325

Table 7.2: Performances of our algorithm on various models.

7.2.2.3 Performances

Table 7.2 presents the performances of our algorithm in terms of running

time and memory consumption from various models. Kinetic partitioning
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Figure 7.9: Robustness to outliers and heterogeneous sampling. Our algo-

rithm returns an accuracte model when adding 500% of outliers in the object

bounding box, but starts compacting the structure around 1500% of added

outliers. In the two right examples, the point clouds have been progressively

subsampled from the bottom left to the top right of the cube in a linear

manner. Our algorithm is resilient to such heterogeneous sampling as long

as shapes can be retreived in the low density of points.

is typically the most time-consuming step. In particular, around 90% of

computing e�orts focuses on the processing of the priority queue. The total

number of collisions depends on multiple factors which include the number

of initial convex polygons, their number of vertices, their mutual positioning

within the bounding box as well as parameterK. For instance, 53K collisions

are processed for the 75 shapes of the Hand model shown in Figure 7.13.

The most frequent collision cases are b and c with an occurrence of 51% and

30% respectively. Case a is the most time-consuming update, because of the

insertion of several sliding vertices.

The costly operation for the surface extraction step is the computation of

the voting function di(p, xi) which must be performed for each inlier point.

The shape detection step, which is not a contribution of our work, typically

requires few seconds for processing several millions input points. In terms of

scalability, our algorithm can handle dozens of thousands of planar shapes

on a standard computer without parallelization schemes.
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Figure 7.10: Spatial subdivision: e�ciency vs. quality. Our algorithm pro-

duces an ideal mesh with 314 polygonal facets from 314 planar shapes ap-

proximating a sphere (left). Subdividing the bounding box into blocks re-

duces running time and memory consumption, and produces simpli�ed poly-

hedra partitions (top). This option may degrade the quality of the output

meshes (bottom) with typically the presence of extra facets at the block bor-

ders (see closeup). |f |, #f , t and m correspond to the number of facets in

the polyhedral partition, the number of polygonal facets in the output mesh,

running time (in sec) and memory peak (in GB) respectively.

7.2.2.4 Impact of spatial subdivision

Figure 7.10 shows the impact of the spatial subdivision scheme in terms of

performances and quality. We saw in the previous chapter that the decom-

position of an initial problem into multiple subproblems of lower complexity

decreases the complexity of the partitioning algorithm in terms of time and

memory consumptions. However, this may a�ect the quality of the output

surface with typically the presence of extra facets at the borders of blocks.

Therefore, the dimensions of the subdivision grid, which are left to the

user, must result from a compromise between e�ciency and quality of the

surface approximation. The choice of an appropriate grid depends, of course,

on the complexity of the initial problem.
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Figure 7.11: Ablation study. Combining exhaustive partitions with our

graph-cut (GC) solver typically produces accurate models resulting from

the exploration of a large solution space. However, this option is not time-

e�cient and gives models with a low simplicity score illustrated by numer-

ous visual artifacts (left). Plugging the IP solver on kinetic partitions is a

more e�cient option, but output models are weakly accurate (middle). Our

framework o�ers the best performances and the best compromise between

accuracy and output simplicity (right). Models from Figure 6.6.

7.2.3 Comparisons

7.2.3.1 Ablation study

We evaluated the impact of the kinetic partitioning and the surface extrac-

tion modules with an ablation study.
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Figure 7.12: Ablation study. When partitions contain less than one thou-

sand polyhedra, our graph-cut (GC) formulation for surface extraction and

the integer programming (IP) solver of [NW17] have similar running times

and geometric errors (bottom row). However, the IP solver consumes more

memory and can hardly digest partitions with more than ten thousands poly-

hedra. Moreover, the IP solver is less stable as running times and memory

peaks can unpredictably vary (see light orange bands in bottom left/middle

graphs). In contrast, the variation in time observed for our GC formulation

only depends on the number of input points, the lower (respectively upper)

bound of the light blue band corresponding to the model with the lowest

(resp. highest) number of points. Statistics were drawn from a collection of

seven di�erent models with input point sizes ranging from 100K to 5M.
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This paragraph is a follow-up to section 6.3.1. Indeed, in the previous

chapter, we already compared the performances of exhaustive and kinetic

partitionings. Figure 6.7 showed that kinetic partitioning produces more

compact sets of polyhedra in a more time- and memory-e�cient manner than

exhaustive partitioning. In particular, memory consumption is reduced by

more than one order of magnitude from 150 planar shapes. Kinetic partitions

are also signi�cantly lighter with a reduction of polyhedra by a factor close to

the number of shapes when parameter K is �xed to 1. Figure 6.6 illustrated

this gap of performances with visual results obtained from 73, 146 and 749

planar shapes.

Here, we measure the e�ciency of our graph-cut (GC) formulation against

the integer programming (IP) problem proposed in Poly�t [NW17] on kinetic

partitions. Running time, memory consumption and MSH error of output

models in function of the number of polyhedra in the partition are plotted in

Figure 7.12. While MSH errors are similar for small partitions, our graph-

cut formulation is signi�cantly more scalable and stable. The solution based

on integer programming typically fails to deliver results under reasonable

time when partitions contain more than ten thousand polyhedra. Moreover,

the convergence time of the branch-and-bound optimization run by the IP

solver [GO19] is hardly predictable: small variations on the energy parame-

ters can increase running times by more than three orders of magnitude for

a given partition. This solver is also very memory consuming. In contrast,

our solver always digests millions of polyhedra in a few minutes, at most.

Running times only depend on the number of polyhedra and the size of the

point cloud, and memory consumption evolves linearly at a rate of 2KB per

polyhedron.

Finally, we measured the quality of output models obtained from di�erent

combinations of partitioning schemes and surface extraction solvers in Figure

7.11. The combination of kinetic partitioning with our graph-cut solver

delivers the best results in terms of output simplicity and performances,

especially when more than one hundred shapes are handled. On the other

hand, using exhaustive partitions with our graph-cut solver allows to strongly

extend the solution space: this typically produces more accurate models, but

at the expense of output simplicity, performance and scalability. Plugging

the IP solver on kinetic partitions is an e�cient option. However, the IP

solver operates on restricted solution spaces in which candidate facets cannot
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lie on the object bounding box. This problem both prevents us from using

spatial subdivision schemes for increasing scalability, and strongly decreases

geometric accuracy of output models in case of occlusions located on the

object borders (see the missing ground in the Capron model).

Nonetheless, this ablation study highlights the fact that the gain of per-

formances in our solution mainly comes from kinetic partitioning. Note that

running the IP solver on exhaustive partitions was not considered in this

study, since this solution does not allow to process more than one hundred

shapes.

7.2.3.2 Surface reconstruction methods

We compared our algorithm with Poly�t [NW17] and Chauve's method

[CLP10], which are arguably the two most robust existing methods in the

�eld. To fairly compare the reconstruction mechanisms, we used the same

con�guration of planar shapes for all methods. In particular, we deacti-

vated the shape completion module in Chauve's method. Figure 7.13 shows

the results obtained on Hand from 75 planar shapes. Because Poly�t and

Chauve's method naively slice the object bounding box by the planar shapes,

they produce overly-dense partitions. For example, their exhaustive partition

for Hand is composed of 30K cells and 91K facets, whereas our partition

contains 0.7K cells and 3.5K facets only. Building and extracting output

surface from a much lighter partition thus becomes faster and less memory-

consuming. Our algorithm also outperforms Poly�t and Chauve's method

in terms of �delity and simplicity. Our surface extraction is more e�cient

in balancing between �delity and simplicity. The main reason relies on the

use of a simpler data term where only inlier points are taken into account

to measure the faithfulness. This technical choice o�ers more robustness to

imperfect data than the visibility criterion of Chauve's method and more

stability than the three-term energy of Poly�t.

Graphs presented in Figure 7.14 compare the scalability of the methods.

Poly�t may require days of computing when more than one hundred planar

shapes are handled whereas Chauve's method exceeds 32GB memory for

processing slightly more than two hundred shapes. In particular, the former

exploits a time-consuming integer programming solver while the latter su�ers

from a memory-consuming visibility estimation. Conversely, our algorithm

with no subdivision scheme can process one thousand planar shapes under
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t = 31

m = 0.08
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Figure 7.13: Comparisons with surface reconstruction methods. Starting

from the same 75 planar shapes, Chauve's method [CLP10] and Poly�t

[NW17] are both more time- and memory-consuming than our algorithm

while delivering less concise polygonal meshes, both less accurate and less

compact. e, s, t and m corresponds to the symmetric mean Hausdor� error

(in % of the bounding box diagonal), simplicity, running time (in sec) and

memory peak (in GB) respectively. The colored point clouds show the error

distribution (yellow=0, black≥ 1% of the bounding box diagonal).

more reasonable processing times and without exceeding 32GB memory.

Table 7.3, provides a quantitative comparison between our algorithm,

Poly�t and Chauve's method, illustrated by Figures Figures 7.16 and 7.17.

Di�erent criteria assess the quality of the output surface, but also the perfor-

mances of the three algorithms. In our experiments, we considered a set of 42

segmented point clouds, that di�er in terms of size, contents and acquisition

constraints. More precisely, these point clouds may represent freeform (F)

or structured objects (S), but also an indoor (I) or a urban scene (U). They

may stem from CAD models, Laser scans, or MVS techniques. We split our

dataset into three subsets, namely simple, intermediate or advanced models

depending on the number of detected planar shapes in the point clouds: less

than 100 shapes for simple models, between 100 and 500 for intermediate
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Figure 7.14: Performances of surface reconstruction methods. Poly�t

[NW17] requires days of computing for assembling one hundred shapes,

whereas Chauve's method [CLP10] exceeds 32GB memory for slightly more

than two hundred shapes. Our algorithm is one order magnitude more scal-

able than these two methods. Tests have been performed on the Hand model

(Fig.7.13) without using subdivision schemes.

models (approximatively), and more than 500 for advanced ones.

However, our comparison with Poly�t and Chauve's method only focuses

on simple models, since they correspond to the processing capacities of these

techniques. The algorithm of Chauve et al may process a few models of

intermediate complexity: this is illustrated by Table 7.4, and Figure 7.18.

We observe that, overall, our algorithm returns simpler surfaces, with a sim-

ilar or lower geometric error than our competitors. As exhaustive methods
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Figure 7.15: Comparisons with surface approximation methods. The left

curves, that measure the geometric error in function of the number of facets

of the output mesh, show that our algorithm outclasses simpli�cation meth-

ods for both a freeform object (Fertility, top) and a nearly piecewise

planar structure (Lans, bottom). QEM [GH97] cannot output large mean-

ingful facets whereas SAMD [SLA15] and VSA [CSAD04] fail to correct the

geometric inaccuracies contained in the dense triangle mesh. For each row,

the four meshes contain the same number of facets #f . The geometric error

is measured as the symmetric mean Hausdor� distance between input points

and output mesh.

bene�t from an extended solution space, they sometimes return meshes with

lower geometric errors than our technique, but these meshes are also more

complex. In addition to this, we observe that our algorithm is character-

ized by similar or faster running times than other algorithms, and a lower
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memory consumption. We plan to release all models on a public repository,

including our segmented point clouds, our results, and those generated by

surface reconstruction methods.

7.2.3.3 Surface approximation pipelines

We compared our algorithm with the surface approximation methods QEM

[GH97], SAMD [SLA15] and VSA [CSAD04]. Because these methods operate

from meshes, we �rst reconstructed a dense triangle mesh from input points

using the Screened Poisson (SP) algorithm [KH13]. Both a freeform object

(Fertility) and a nearly piecewise-planar structure (Lans) were used for

this comparison. As shown in Figure 7.15, polyhedral meshes produced by

our algorithm are geometrically more accurate than those returned by these

three methods at a similar mesh complexity, i.e. with the same number of

output facets. The accuracy gain is particularly high at low mesh complexity

where approximation methods cannot capture correctly the structure of the

object and tend to shrink the output surface. By operating directly from

input points, our algorithm does not depend on an intermediate dense mesh

reconstruction step in which geometric and topological errors are likely to

occur. Moreover, the large polygonal facets returned by our algorithm ap-

proximate the object more e�ectively than the triangle facets returned by

edge contraction (QEM and SAMD) or constrained Delaunay triangulation

built from a primitive connectivity graph (VSA). In terms of performance,

the approximation pipelines have similar processing times and memory con-

sumption to our algorithm when producing low complexity meshes. For

instance, the four methods process the Lans model with 25 output facets

(see bottom row in Figure 7.15) in approximately half a minute. High com-

plexity meshes, i.e. with more than 200 facets, are produced more quickly

by the approximation pipelines than by our algorithm.

Tables 7.3, 7.4 and 7.5 propose a quantitative comparison between our al-

gorithm and surface approximation pipelines on the full dataset of 42 models

mentioned before. A qualitative comparison of all algorithms, on the same

models, is provided by Figures 7.16 to 7.21. Results con�rm that our al-

gorithm competes with surface approximation pipelines based on QEM or

VSA, by relying on quantitative indicators. Admittedly, surface approxi-

mation pipelines may complete in a shorter time, especially when the input

point cloud contains a lot of planar shapes. However, for an equal or lower
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number of facets, our technique almost always returns meshes with the lowest

geometric error.

All models listed and compared in Tables 7.3, 7.4 and 7.5 will be made

public to the Computer Graphics community in near future.

7.2.4 Limitations

Our work focuses on assembling planar shapes, not on detecting them. We

assume planar shapes can be accurately detected from input points by stan-

dard algorithms.

However, this assumption might be wrong in presence of data highly

corrupted by noise and severe occlusions. For such cases, con�gurations of

planar shapes returned by existing algorithms are typically inaccurate and

incomplete. Our kinetic algorithm can only correct con�gurations where

missing planar shapes are parts of a repetitive structure as illustrated in

Figure 6.4.
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Origin MVS MVS MVS MVS Laser Laser MVS Laser

#p 619K 101K 73K 577K 146K 756K 143K 911K

#s 95 20 34 32 98 23 23 21

KSR

eA 0.231 0.951 0.605 0.372 0.454 0.557 0.401 0.560

eS 0.179 1.522 0.735 0.344 0.540 0.580 0.471 1.681

s 2.5 0.690 1.478 0.941 0.856 1 0.821 0.84

#f 38 29 23 34 111 23 28 25

t 28.9 3.4 2.5 18.4 53.3 25 4.2 25.1

m 53 10 13 15 97 34 15.7 11.6

Poly�t

eA - 1.347 2.097 0.461 - 1.447 1.491 6.385

eS - 1.170 1.385 0.343 - 1.089 1.259 3.325

s - 1.429 1.36 1.067 - 1.438 1.278 1.235

#f - 14 25 30 - 16 18 17

t - 2.1 2.5 10.2 - 16.9 5.3 18.8

m - 144 169 252 - 241 177 299

Chauve et al

eA 1.042 9.585 2.626 0.407 0.545 1.422 1.429 3.931

eS 0.772 5.172 1.704 0.308 0.555 1.082 0.823 2.137
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#f 25 32 103 56 261 25 18 14
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eA 2.815 4.081 6.344 2.873 1.435 4.287 2.373 2.922

eS 1.575 2.482 3.856 1.934 1.069 3.000 1.513 1.971

#f 39 28 22 26 110 24 27 25

t 36 17.4 14.2 21.4 21 70.1 22.7 22.8

m 232 162 111 458 195 495 156 406

SP + VSA

eA 0.752 4.222 2.673 1.593 1.002 1.906 1.181 1.762

eS 0.538 3.107 1.921 1.316 1.031 1.664 0.958 1.806

#f 717 213 157 947 175 420 528 113

t 45.3 27.5 15.1 24.3 27.1 96.7 26.4 27.1

m 675 428 347 480 352 1572 473 556
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Type F S F U S I I S

Origin Laser Laser Laser Laser Laser Laser Laser MVS

#p 242K 382K 369K 1.22M 733K 186K 176K 621K

#s 75 61 75 24 73 48 28 69

KSR

eA 0.350 0.247 0.423 0.491 0.257 0.677 0.553 0.381

eS 0.498 0.291 0.480 0.726 0.382 0.603 0.538 0.481

s 0.789 0.968 0.815 0.96 1 1.043 1.077 0.726

#f 95 63 92 25 73 46 26 95

t 25 15 31 33.4 43.4 7.9 4.8 21.6

m 61.2 29 76.6 11.5 53.8 19.1 8.8 48.1

Poly�t

eA 0.388 0.221 0.460 3.977 0.361 0.590 0.680 0.548

eS 0.500 0.297 0.537 2.592 0.524 0.556 0.572 0.683

s 0.5 0.968 0.765 0.923 0.507 0.941 1.474 0.767

#f 150 63 98 26 144 51 19 90

t 1070 672 296 26.6 9343 4.5 3.1 1943

m 1919 1748 1600 331 1896 221 135 900

Chauve et al

eA 0.328 0.207 0.462 0.421 0.357 0.790 0.526 0.459

eS 0.407 0.261 0.488 1.195 0.411 0.671 0.465 0.911

s 0.142 0.570 0.399 0.667 0.361 0.384 0.519 0.099

#f 528 107 188 36 202 125 54 700

t 53.1 31.5 115 4.4 93.6 8.9 1.7 76.7

m 1037 1131 1400 96 2141 196 56 1673
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SP + QEM

eA 0.722 2.969 0.724 2.814 2.124 2.847 2.871 2.127

eS 0.756 1.933 0.777 1.831 1.509 1.984 1.645 1.498

#f 100 62 92 25 72 46 26 92

t 38.5 55 29.1 31.6 38.1 34.7 29.9 43.5

m 289 518 241 311 142 377 399 453

SP + VSA

eA 1.724 1.404 1.058 2.894 1.201 2.066 0.911 0.894

eS 1.287 0.960 0.918 2.355 1.091 1.422 0.704 0.806

#f 93 682 127 31 83 568 123 270

t 28.8 78.8 39.6 31.8 54.4 41.2 40.2 69.3

m 361 1341 740 311 142 901 758 1013

Table 7.3: Quantitative comparison between surface reconstruction and sur-

face approximation algorithms on simple models. Models Building A,

Building B, Building C, Rooms A, Rooms B, Foam box, Chair and

Couch are from Nan et al [NW17] and correspond to the Figures 4-(b) to

4-(i) of their paper. eA stands for the asymmetric geometric error between

the input point cloud and the output model (point cloud to mesh), and eS

for the symmetric geometric error. s represents the simplicity index of the

output surface, #f its number of facets. t indicates the running time of

all methods (in seconds) and m, the memory peak (in megabytes). Poly�t

was unable to process models Barn MVS and Bunny after several hours

of execution. Visual results are listed in Figures 7.16 and 7.17.
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Type U U F S S S S S

Origin Laser MVS MVS CAD CAD CAD CAD CAD

#p 2.1M 793K 168K 144K 144K 144K 144K 864K

#s 222 160 146 986 1135 2601 480 1003

KSR

eA 0.133 0.232 0.282 0 0.030 0.122 0.741 0.009

eS 0.128 0.222 0.290 0.124 0.140 0.229 0.929 0.128

#f 142 142 156 986 997 2087 894 986

t 93.5 107.5 106.8 16.1 16.8 121.2 21.4 18.2

m 54 147 194 105 66 451 62 59

Chauve et al

eA 0.465 1.115 0.223 - - - - -

eS 0.627 0.419 0.466 - - - - -

#f 814 589 10k - - - - -

t 2475 333.4 555.7 - - - - -

m > 32 GB 5361 6080 - - - - -

SP + QEM

eA 0.375 1.094 0.855 1.501 1.583 0.858 1.382 3.794

eS 0.339 0.690 0.587 1.044 1.060 0.640 1.156 2.420

#f 143 143 155 986 998 2088 894 978

t 28.8 27.8 34.5 26.8 29 27.7 27.7 161.4

m 307 391 98 155 179 367 350 1427

SP + VSA

eA 0.388 0.566 0.738 4.884 2.173 2.002 2.962 3.459

eS 0.332 0.454 0.5 2.594 1.288 1.252 1.807 2.286

#f 501 158 712 2486 2737 2049 1938 55K

t 33.8 35.3 44 36 40 36.5 35.6 210.3

m 579 551 608 507 577 617 666 4617
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Type S S S F F U S F

Origin CAD CAD CAD MVS MVS Laser MVS CAD

#p 2.3M 36K 108K 788K 1.4M 1.2M 2.8M 100K

#s 1184 531 965 274 294 306 362 304

KSR

eA 0.537 4.755 0.021 0.249 0.212 0.112 0.442 0.054

eS 0.448 2.513 0.135 0.237 0.288 0.355 0.348 0.119

#f 626 720 1032 351 443 179 471 319

t 19.9 7.4 13.8 712.8 201.8 576.7 281.1 138.9

m 50 79 126 1018 372 824 378 256

Chauve et al

eA - - - - - 0.083 - 0.054

eS - - - - - 0.491 - 0.387

#f - - - - - 3719 - 1256

t - - - - - 6510 - 294

m - - - - - > 32 GB - 8616

SP + QEM

eA 10.89 2.172 1.465 0.471 0.330 0.255 0.867 0.174

eS 6.073 1.439 1.025 0.341 0.277 0.386 0.627 0.214

#f 568 721 1030 350 443 175 470 318

t 494.4 7.8 22.5 38.4 35.8 31.6 43.3 24.6

m 4576 137 156 339 422 311 287 198

SP + VSA

eA 0.815 3.655 5.722 1.208 0.725 0.354 0.533 0.060

eS 0.975 2.223 3.096 0.818 0.625 0.383 0.427 0.141

#f 489K 887 1081 451 468 164 1694 311

t 806.5 10.1 30.4 52 47.7 37 58.6 40

m 15571 179 492 825 773 311 772 487

Table 7.4: Quantitative comparison between our algorithm, Chauve's

method, and surface approximation pipelines on models of intermediate com-

plexity (between 100 and 500 shapes, in average). For all versions of Hilbert

Cube, we consider the ideal, non-perturbed point set as reference. We refer

the reader to Figures 7.18 and 7.19 for visual comparisons between these

models.
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Type F U I U I

Origin Laser CAD Laser Laser Laser

#p 3.6M 737K 31.1M 1.9M 2.7M

#s 2712 735 1188 2716 887

KSR

eA 0.065 0.006 0.460 0.134 0.069

eS 0.069 0.038 0.292 0.183 0.108

#f 3132 711 394 1795 1317

t 1109 268.8 1040 375.4 354.2

m 1667 321 324 862 711

SP + QEM

eA 0.071 0.044 0.292 0.155 0.148

eS 0.072 0.082 0.345 0.245 0.237

#f 3132 712 394 1795 1318

t 27.6 100.5 42.8 44.3 40.5

m 300 1127 558 352 639

SP + VSA

eA 0.125 0.098 0.569 0.254 0.242

eS 0.108 0.110 0.377 0.262 0.240

#f 3351 1894 494 1818 4070

t 49.9 146.1 47.1 67.8 39.7

m 594 1975 588 876 870
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Type F S I I F

Origin Laser CAD Laser Laser CAD

#p 242K 1.4M 3.1M 3.6M 2.9M

#s 812 1648 1655 749 10834

KSR

eA 0.061 0.064 0.198 0.061 0.020

eS 0.095 0.064 0.146 0.057 0.039

#f 998 1807 1491 457 12051

t 1467 462.1 268.4 962.1 2754

m 1466 552 642 1569 4224

SP + QEM

eA 0.082 0.170 0.229 0.167 0.135

eS 0.117 0.141 0.204 0.146 0.098

#f 1000 1806 1490 458 12050

t 41.3 67.3 65.5 36.4 205.8

m 361 595 869 646 1422

SP + VSA

eA 0.183 0.378 0.202 0.192 0.295

eS 0.243 0.245 0.160 0.164 0.241

#f 982 4368 4949 522 27285

t 30 104 105.8 46.3 365.1

m 361 1455 1328 692 4176

Table 7.5: Quantitative comparison between our algorithm and surface ap-

proximation pipelines on models of high complexity (more than 500 shapes).

A qualitative comparison is provided by Figures 7.20 and 7.21.
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Ours Poly�t Chauve et al SP + VSA SP + QEM
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Figure 7.16: Qualitative comparisons on simple models (part 1). The error

maps correspond to the Hausdor� error from input points to output models

and ranges from 0 (yellow) to ε or higher (black), ε being the �tting tolerance

parameter for the detection of planar shapes (�xed similarly for each model).
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Figure 7.17: Qualitative comparisons on simple models (part 2).
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Figure 7.18: Qualitative comparisons on intermediate models (part 1).
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Ours SP + VSA SP + QEM
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Figure 7.19: Qualitative comparisons on intermediate models (part 2). This

�gure only considers the model Hilbert Cube and its defect-laden variants,

presented in Figures 7.8 and 7.9.
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Figure 7.20: Qualitative comparisons on advanced models (part 1).
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Figure 7.21: Qualitative comparisons on advanced models (part 2).
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7.3 Conclusions

This chapter exposed the last part of our object approximation pipeline for

images. Starting with a kinetic partition of this image, we implemented a

simple object contouring model based on the min-cut/max-�ow algorithm,

in order to select the polygonal cells that are part of the objects of interest

in the image. These objects can therefore be approximated using a small set

of edges. In spite of its simplicity, our model shows the applicative potential

of kinetic partitions for object approximation in images.

Likewise, by combining the polyhedral partitioning algorithm and a sur-

face extraction model based on graph cuts, we obtain a full pipeline for

converting an oriented point cloud into a compact polygonal mesh. Our

experiments demonstrate the �exibility and the robustness of our approach,

that delivers compact, yet geometrically accurate surfaces. A qualitative and

quantitative comparison, conducted on a wide range of datasets, show that

our algorithm can compete with existing surface reconstruction methods and

traditional approximation pipelines. We carried out an ablation study, eval-

uating the impact of the kinetic partitioning and surface extraction modules

of our processing chain. It highlights, on one hand, the perfomance gain

induced by our polyhedral partitioning technique, and on the other hand,

the stability and the scalability of our solver compared with another method

based on integer programming.



Chapter 8

Application to urban modeling

Urban reconstruction techniques have attracted an increasing attention from

the scienti�c community over the last decade. Applications of such tech-

niques include, for instance, urban planning, natural disaster management,

or radio-wave propagation [BSL+15].

Various data sources are considered by such algorithms, such as ground

imagery, satellite imagery, or pre-existing GIS data. However, despite high

acquisition costs, Lidar point clouds are more accurate and remain a data

source commonly used by land surveying o�ces or civil engineers [MWA+13].

Yet, models generated by current city modeling techniques may be en-

riched with semantic information, or represented using progressive levels of

detail. The CityGML standard [GKNH12] considers four coarse-to-�ne levels

applicable to airborne datasets, from LOD0 to LOD3.

In this chapter, we present a pipeline that receives as input an unstruc-

tured point set describing a large-scale urban scene, and generates as output

a LOD2 representation of the scene in compliance with the CityGML stan-

dard, meaning that we aim at providing a faithful reconstruction of buildings

with tilted roofs. LOD2 models can be used for visualization purposes, vis-

ibility analyses, solar radiation estimation, and other tasks LOD1 models

cannot be used for. Our method consists of three main steps: classi�ca-

tion, building contouring, and building reconstruction, the two last steps

being achieved using kinetic data structures. We emphasize the accuracy

and the scalability of our method, since it is able to process large datasets

with millions of points, dense or sparse, in a few minutes.

8.1 Related works

There exists a vast literature on automatic urban reconstruction techniques,

[HK10, RSG+14, MWA+13], demonstrating the deep interest of scientists

and industrials for this research topic. Various data sources may be consid-
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ered, leading us to draw a �rst distinction between all existing approaches,

based on this criterion. Indeed, some algorithms may speci�cally address the

problem of large-scale urban reconstruction from aerial imagery [ZBKB08,

ZWF18], satellite imagery [DL16] or multi-view stereo dense meshes [ZSGH18,

VLA15, SLA15]. Some others combine di�erent sources of data to generate

urban models with the �nest level of detail [KFWM17].

In this work, we focus on the problem of city modeling from Lidar point

clouds. Roof height estimation and building reconstruction is often the most

valuable information to extract from such data, which is acquired using ter-

restrial or aerial devices. In particular, nadir or near-nadir acquisitions pose

a speci�c constraint, as facades are missed by scanners. Current state-of-the-

art approaches have been extensively reviewed [WPC18] and can be divided

in three categories.

Data-driven methods are probably the most popular techniques. These

are bottom-up approaches, in which parametric primitives are extracted from

the data and assembled to form a reconstructed model. Existing pipelines

typically consist of three successive steps: classi�cation, segmentation and

geometric modeling. The semantic interpretation of the data, and the clus-

tering of buildings into individual structures may involve statistical argu-

ments [PY09] or discriminative geometric features coupled with energetic

formulations [LM11]. However, the models produced by such techniques do

not achieve the same level of detail. For instance, the methods proposed

in [ZN09] and [Pou13] only reconstruct multi-level �at buildings from air-

borne point clouds, which is suitable for Manhattan-like districts but less

accurate for residential areas. In contrast, the algorithm of [SHT08] con-

siders a binary space partitioning tree to generate LOD2 polyhedral meshes

from a point cloud. The one of [ZN10] reaches a similar level of detail by

minimizing 2.5D quadric error functions, i.e. taking into account both the

surface being reconstructed and its projected boundary. However, due to

the projection of the points on a 2D grid, the reconstructed facades show a

zig-zagging e�ect, which might be corrected by the mesh simpli�cation pro-

cedure described in [ZN12]. The cell decomposition approach proposed in

[KM09] allows to reconstruct buildings with a compact representation, but

requires precise building footprints as input. The method of [LM11] also

returns persuasive results over large-scale areas, but su�ers from the same

failing. Recently, deep-learning-based methods have also been developed in a
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context of LOD2 urban modeling and achieve very promising results [ZZ18].

Model-driven methods, for their part, represent the opposite, top-down

strategy. This family of techniques considers a pre-de�ned library of template

structures (e.g. �at, gable, hip or mansard roofs) that is matched to the

input data. The work of [VKH06] o�ers a �rst example of model-driven

algorithm: elements of the point cloud are �rst classi�ed as �at or non-�at

and a roof topology graph is considered to decompose a complex building

into simpler structures. Another example is the work of [HBS13] in which a

stochastic approach is used to select the roof templates that best �t the input

data. Also requiring building footprints as prior knowledge, the method

of [HGSP13] uses RANSAC and supervised machine learning techniques to

generate a LOD2 reconstruction of a sparse Lidar point in a model-driven

way. However, such approaches may lack of �exibility with respect to the

variety of urban landscapes.

Finally, hybrid-driven methods try to take the best of both worlds: pa-

rameterized primitives are extracted and assembled with respect to a set of

constraints derived from constructive solid geometry [XEV14, LDZPD10].

In the following, we present an algorithm that addresses the problems we

exposed before by exploiting powerful computational geometry tools. Given

an airborne input point cloud, we design a scalable and data-driven algo-

rithm that generates LOD2 representations of di�erent urban environments

as concise polyhedral meshes.

8.2 Pipeline

8.2.1 Input

As depicted by Figure 8.1, our algorithm takes as input a point cloud with

oriented normals. Normals can be easily estimated thanks to the acquisition

system information. If not provided, then basic mathematical tools like

principal component analysis can be used.

8.2.2 Classi�cation

The �rst step of our pipeline consists in assigning semantic labels to points

of the point cloud. Three labels are considered: ground, vegetation, and

building.
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Figure 8.1: Overview of our pipeline. Our method consists of three main

steps. We �rst label points of the Lidar scan as ground, vegetation or roof.

Then, we apply a contouring algorithm to the height map, revealing the

facades initially absent in the point set. Finally, we extract and propagate

planar primitives from the point cloud, dividing the space into polyhedra

that are labelled to obtain a 3D reconstruction of buildings.

To this end, we rely on the classi�cation package provided by the CGAL

library [GL19]. For each point of the input dataset, this method computes

multi-scale geometric features such as elevation, planarity or vertical disper-

sion for instance. Extra features provided along with the dataset, like the

number of returns, are also taken into account. Given a ground truth train-

ing set, these features are then used to train a classi�er. The default choice

for the classi�er is a random forest, that constructs several decision trees to

assign each point to one of the three aforementioned subsets.

Interactively labelling the data to get a representative training dataset is

a tedious work. However, the CGAL library o�ers the possibility to save and

reuse a trained classi�er, which is particularly useful for processing urban

scenes of similar nature (dense or surburban areas, downtowns, historical

centers...).
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8.2.3 Building contouring

Facades of buildings are often partially or completely missing in aerial point

clouds. To obtain accurate reconstructions of cities from such data, we �rst

need a robust method that detects signi�cant height discontinuities in the

classi�ed point cloud.

To this end, we project all points on a horizontal, uniformly sampled

grid, in order to generate two kinds of maps: (i) a height map, normalized

as a grayscale image, (ii) a probability map, measuring the proportion of

projected points labelled as buildings in each cell of the grid.

These two maps are then processed by the polygonal partitioning tech-

nique detailed in chapter 5. We remind the reader that, given an input

image, our algorithm �rst detects line-segments, which are linear approx-

imations of regions where the image gradient is high and regular. These

line-segments propagate across the image, until intersecting each other, re-

sulting in a decomposition of the image into convex polygons. Here, we

generate a polygonal decomposition of the height map. Intuitively, the de-

tected line-segments, later included in the edges of the partition, correspond

to regular height discontinuities in a given direction, i.e. to facades.

Using the probability map previously de�ned, we further assign a binary

activation variable to each polygonal cell, indicating if it is part, or not,

of a building footprint. Our strategy is similar to the model described in

section 7.1.1. In order to simplify the partition, and decrease the number of

cells, we �nally apply a clustering algorithm that merges neighbor cells upon

condition that there is no height discontinuity at their common border.

8.2.4 Building reconstruction

To obtain a LOD2 reconstruction from an oriented point cloud, from which

we discard all points labelled as vegetation, we propose an algorithm in three

steps.

First of all, we extract planar primitives from the point cloud. We apply

the region-growing algorithm implemented in the CGAL library [OVJ+19].

A plane hypothesis is iteratively propagated from a point to its neighbors. It

is accepted if it has a minimum number of inliers σ, with respect to a maximal

point-to-plane distance ε and a normal deviation θ. If input points are noisy,

more robust methods such as e�cient RANSAC [SWK07] or structure-aware

shape collapse [FLD18] can be considered. The threshold σ should be set
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depending on the density of the cloud, so that σ points cover an area of 5 m2

approximately, whereas ε and θ are typically set to 0.5 m and 25◦. Once all

planes have been extracted, we obtain a set of primitives represented by the

planar convex hulls of the di�erent sets of inliers associated to those planes.

The second step of our algorithm consists in computing a partition of the

3D space, de�ned by the previously extracted set of planar primitives. To

this end, we rely on our kinetic approach described in chapter 6. However,

for large datasets with millions of points, the primitive extraction step leads

to the detection of thousands of primitives, and the simultaneous propaga-

tion of this huge set of primitives exceeds the capacities of our algorithm.

Furthermore, vertical planes corresponding to facades cannot be extracted

from the input point cloud, since the data is missing.

This is the reason why we split the spatial propagation problem into F

subproblems, where F is the number of polygonal footprints returned by the

building contouring procedure described in section 8.2.3. More precisely, for

each footprint we get the list of primitives that intersect or are included in it

by projection, and perform a spatial propagation restricted to the dimensions

of the footprint. We obtain a set of F 3D subgraphs G1, G2, . . . GF .

The third and �nal step of our pipeline consists in labelling the polyhedra

of each subgraph Gi as inside or outside the buildings to reconstruct. The

facets at the interface between outside and inside polyhedra then correspond

to the output surface.

We use a voting scheme, based on the observation that in aerial datasets,

points delimit the upper parts of the objects of interest. Let Pi be the

set of polyhedrons of the subgraph Gi. For each polyhedron pj ∈ Pi, where
j = 1, 2 . . . |Pi|, we initialize a counter cj to 0. All polyhedrons located below

(resp. above) any plane inlier decrement (resp. increment) their counters.

Let us now consider a vector X with |Pi| binary activation variables:

xj = 1 (resp. xj = 0) if the polyhedron pj is labelled as inside (resp.

outside) a building to extract. We measure the quality of an output surface

using a two-term energy of the form

U(X) = D(X) + λV (X) (8.1)

D(X) is a data term that encourages the selection of a polyhedron pj

when cj < 0, and its rejection when cj > 0. We have:
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D(X) =
1

|I|

|Pi|∑
j=1

dj(xj) (8.2)

where

dj(xj) =

−cj when xj = 0

cj when xj = 1
(8.3)

and |I| is twice the number of inliers. V (X), for its part, is a generalized

Potts model that penalizes the total area of the surface:

V (X) =
1

A

∑
j∼k

ajk · 1xj 6=xk (8.4)

where j ∼ k denotes an adjacency relationship between two polyhedra

pj and pk, ajk is the surface of their common facet, and A is a normalization

term de�ned as the sum of the areas of all facets of the subgraph Gi.

Given a balancing term λ ∈ [0, 1], the optimal surface that minimizes

energy U is determined by a min-cut algorithm [BK04]. A low value of λ

returns a too large and too complex surface, while a high value of λ tends

to shrink it. In our experiments, we typically set λ to 0.5.

8.3 Experiments

Datasets. We tested our algorithm on four datasets, representing various

urban landscapes. The covered cities are listed in Table 8.1. The size is

given in millions of points.

Qualitative results. We present in Figures 8.2, 8.3 and 8.4 the models

generated by our algorithm for these cities. From a qualitative point of view,

we obtain persuasive LOD2 reconstructions of most buildings. The Biberach

and Vaihingen data-sets contain a lot of gable and hip roofs which are cor-

rectly approximated by our algorithm. As for the Portland and San Diego

datasets, our technique also succeeds in determining intermediate levels in

complex structures, as well as tilted roofs if any. Facades, which are almost

completely missing in the input scans, are generally recovered by a single
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(a) Biberach. 0

≥ 1 m

(b) Vaihingen.

0

≥ 1 m

Figure 8.2: Results on European-style urban landscapes. Left column: clas-

si�ed point clouds. Points labelled as ground, vegetation or buildings are

colored in gray, green and red, respectively. Center column: reconstructed

models. Right column: altimetric error map, in which a darker color repre-

sents a larger error. From left to right: classi�ed point cloud, reconstructed

model, and altimetric error map.

plane in a given direction. Some of them, however, might be a�ected by

an unwanted zig-zagging e�ect, re�ecting errors in the building contouring
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(a) Portland.

0

≥ 3 m

(b) San Diego.
0

≥ 3 m

Figure 8.3: Results on American-style urban landscapes.

City Type Size Density (pts/m2)

Biberach Historical center 2.3M 3.0

Vaihingen Residental area 7.3M 6.3

Portland Downtown 8.7M 7.8

San Diego Downtown 4.5M 1.6

Table 8.1: Presentation of the dataset.

procedure. Note that trees could be also reconstructed in 3D by template

matching [VL12] to better represent the urban landscapes.
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Figure 8.4: Close-ups on the reconstructed models. Top: residential area

(Vaihingen). Bottom: urban landscape (San Diego).

Quantitative results. In Figures 8.2 and 8.3, we provide altimetric error

maps for each dataset. To generate them, we restrict the input point cloud to

elements labelled as rooftops, and compute the one-sided Hausdor� distance

from every point to the reconstructed surface. This way, we can evaluate

the precision of our method. We compute a raw reconstruction error: the

mean one-sided Hausdor� distance. However, this measure may be biased.

Indeed, isolated mislabelled points in the classi�cation process, and a few

buildings missed by the contouring algorithm and further ignored in the

reconstruction phase, tend to overestimate the average reconstruction error.

That is why we suggest, on an indicative basis, a corrected reconstruction

error, which discards points located at more than 3 meters from a building

which corresponds to the average height of a �oor. Our measures are listed

in Table 8.2.

The geometric error is typically caused by: (i) undetected superstructures

on rooftops, (ii) uncorrectly approximated primitives in the plane extraction

procedure (e.g. a unique plane approximates the two sides of a gable roof)

and (iii) the resolution of the generated height map, that may shift the

extracted footprints towards one direction or another.



8.3. Experiments 117

City Raw error (m) Corrected error (m)

Biberach 0.85 0.31

Vaihingen 1.91 0.43

Portland 1.75 0.53

San Diego 2.34 0.62

Table 8.2: Geometric error for each dataset.

Performances. We list in Table 8.3 the performances of our algorithm

for our two biggest datasets, Vaihingen and Portland, in terms of memory

peak and running times. Measures were performed on a machine equiped

with an Intel R© CoreTM i7-6700HQ processor clocked at 2.60 GHz and a 32

GB RAM. The obtained values demonstrate the ability of our algorithm to

process large volumes of data in a short time.

Vaihingen Portland

Building contouring (s) 13.5 20.9

Building reconstruction (s) 509.3 872.8

Memory peak (GB) 2.2 2.6

Table 8.3: Performance measures for datasets Vaihingen and Portland.

Limitations. Despite its advantages, our algorithm su�ers from a few

shortcomings. Any error caused by an intermediate step of the pipeline

has an impact on the �nal result. Parts of the cloud representing buildings

mislabelled by the classi�er will not be reconstructed. Besides, the recon-

struction is very sensitive to building contouring errors: if some footprints

or intermediate heights inside multi-level structures are missed in the cou-

touring process, then buildings will also be missing or badly approximated

in the �nal result.

Besides, our primitive detection scheme only extracts planes from the

input point cloud. This feature is su�cient for reconstructing accurately

most buildings, but free-form shapes like domes or curved walls will only be

approximated as a set of planar shapes. Small structures like dormers and
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chimneys may also be ignored in the reconstructed model, if the minimal

number of inliers by the plane extraction procedure is too high.

8.4 Conclusions

We presented a pipeline for automatically reconstructing a urban scene from

an airborne Lidar scan at the level of detail LOD2. We used the kinetic

approach described in previous chapters, in which a set of predetected line-

segments and planar polygons progressively extend to decompose the 2D and

3D spaces into cells that are labelled and assembled in our �nal model. Our

approach is fast, scalable and delivers simple polyhedral meshes. It returns

promising results on various datasets, representing di�erent types of urban

environments.

In future works, we plan to re�ne the building contouring algorithm in

order to simplify and improve the accuracy of our reconstructed models. We

might resort to deep-learning-based methods to this end. Another research

path would consist in integrating non-linear primitives to our kinetic scheme

to achieve better reconstructions of free-form structures.
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Conclusion and perspectives

9.1 Summary

This thesis addressed the problem of geometric modeling of urban objects

from physical measurements, and their represention in an accurate and com-

pact manner. We presented two pipelines, one for the vectorization of regions

of interest in images, another for the generation of concise polygonal meshes

from point clouds.

Provided a set of predetected shapes, the core contribution of our work

lies in the design of kinetic data structures for decomposing the 2D and 3D

bounding volumes into partitions of polygonal cells. Experiments on images

demonstrate that our algorithm o�ers an interesting alternative to superpixel

decomposition techniques. Indeed, the latter typically operate at pixel level

and produce homogeneously-sized cells with complex boundaries [LTRC11,

ASS+12]. By reasoning at the scale of geometric shapes, our method returns

lighter and more meaningful partitions. Capable of processing large satellite

images with several dozen millions pixels in a few minutes only, our algorithm

is scalable and computationally e�cient.

Another range of experiments emphasizes the bene�ts of kinetic data

structures for 3D space partitioning. Our algorithm solves the scalability

issue induced by a naive decomposition of a bounding volume using in�-

nite planes [CLP10, NW17]. It produces a partition with a small number

of polyhedral cells compared with an exhaustive decomposition, or alter-

native strategies constructing for instance a Delaunay triangulation of an

input point cloud [LA13, VKVLV13]. As a shape assembling algorithm,

our approach forms in some way a bond between slicing-based methods and

connectivity-based methods that analyze an adjacency graph in a set of

input planar shapes, but that are prone to linkage errors. Note that our

kinetic frameworks return 2D and 3D partitions whose cells are convex by
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construction. Convexity can be a valuable property for speci�c applications,

including for instance physical simulations.

Secondary contributions of our work include a global regularization pro-

cedure for optimizing geometric relationships in a set of predetected shapes,

and a cell selection model for extracting objects from the kinetic partions

based on graph cuts. In 2D, we use a saliency map to vectorize regions

of interest in images. Although very simple, our model can correctly vec-

torize organic shapes as well as man-made structures, and provide a brief

geometric description of such objects using a small number of edges. In 3D,

we use a visibility criterion based on normal orientation in point clouds.

This model o�ers a stable and e�cient alternative to more complex ener-

getic formulations, for instance based on integer programming [NW17]. As

a result, we obtain a scalable pipeline that successfully approximates various

freeform or structured objects as concise polygonal meshes. From qualita-

tive and quantitative points of view, our pipeline can compete with existing

polygonal surface reconstruction methods, but also with traditional surface

approximation pipelines.

We underline the fact that, except for the 3D global regularization pro-

cedure, our algorithms are fully generic and �exible. We could show, for

instance, the applicative potential of kinetic data structures in city model-

ing. By combining the object vectorization and polygonal mesh generation

procedures, we were able to turn large-scale airborne Lidar scans into com-

pact CityGML-LOD2 representations of urban scenes, while guaranteeing a

relatively low altimetric error, at the scale of the meter. These promising

results might open the door to practical uses for the generated models, such

as environmental simulations or entertainment applications.

Our work su�ers from some weaknesses. In particular, the object vector-

ization and mesh generation algorithms are mostly parameter-free methods,

but strongly depend on the quality of the set of input shapes. If there

exists no shape roughly approximating some part of an object of interest,

kinetic data structures will create cells with heterogeneous contents, and

therefore lead to a bad approximation of the objects. However, retrieving

line-segments or planar shapes in some input data can be challenging when

the latter is too noisy. We also observe that the cell selection techniques for
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object extraction from kinetic partitions favor data �delity and compacity

of the output models, with respect to the total edge length or surface area,

but omit the notion of regularity that could bene�t to some applications.

Let us now present some perspectives opened by our work.

9.2 Perspectives

Generalization to non-linear shapes. A natural extension of this work

would be to support more complex primitives in our kinetic data structures,

including non-linear shapes.

The use of Bézier curves, splines, NURBS or other parametric functions

would bring more versatility to the partitions, and would allow to approx-

imate or reconstruct freeform objects with a better complexity-distortion

tradeo�. Obviously, the e�cient computation of collisions involving non-

linear shapes represents the main challenge to overcome.

Learning primitives. As mentioned before, one of the main limitations

of our vectorization and reconstruction pipelines is the fact that the quality

of the approximation directly depends on the correctness of the predected

set of shapes.

Indeed, if a line-segment or a planar polygon slightly drifts from its ex-

pected orientation, then the �nal result can be impacted. Our regularization

procedure, though, can correct some faults observed in the initial arrange-

ment of line-segments or planes, and enhance the visual quality of the result.

However, the main di�culty encountered by our algorithm is the absence

of primitive in a certain location of the image or the point cloud. This

problem is all the more critical for images that objects of interest must be

roughly approximated by a minimal set of line-segments covering at least a

part of each contour before starting the partition, in order to guarantee a

good approximation. If it is not the case, then regions of interest will be

badly approximated or ignored by the object contouring model.

Yet, obtaining this minimal set of line-segments might be a di�cult task.

Extracting relevant line-segments from noisy images and gradient maps is

a di�cult problem that requires thresholding operations. The same con-

cern applies to 3D point clouds. The region growing implementation used

in our experiments requires three parameters (minimal number of inliers,
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maximal point-to-plane distance and normal deviation) that are, for now,

manually set. How to generalize the choice of such detection parameters ?

We believe that methods learning the characteristics of primitives, either

in images [HWZ+18, XBW+19] or point clouds [FLD18, LSD+19] o�er an

interesting research path that should be further investigated.

Cell re�nement. An alternative strategy for improving the quality of the

partition despite the misdetection or absence of primitives leads to the re-

�nement of the cells, using split and merge operations.

In 2D, analyzing the colorimetric distribution within a polygonal cell can

constitute a good hint for detecting heterogeneous contents. We may de�ne a

split operator on this basis. The latter can integrate geometric reasoning: for

instance, a cell is more likely to be divided if it is located near two collinear

line-segments, with one on each side of the cell. Likewise, we can de�ne a

merge operator for merging two cells that represent the same object.

Such a mechanism would reduce for sure undersegmentation errors, but

also improve the quality of the object contouring results.

Geometry reinforcement. Another idea, which has not been explored

within the frame of this thesis, would consist in improving the quality of

the geometric models produced by the vectorization and 3D reconstruction

pipelines by reinforcing geometric regularities.

We have a global regularization procedure at our disposal, which opti-

mizes parallelism, orthogonality and collinearity relationships among a set of

detected line-segments in an image. However, the object contouring model

described in section 7.1 doesn't exploit the geometric relationships between

the cells and edges of the partition. Penalizing irregularities will require to

adapt our energy formulation and will lead to a more complex formulation,

but many applications would bene�t from the extraction of regularized con-

tours. In particular, the urban modeling pipeline described in chapter 8 will

return more compact and accurate models with regularized building foot-

prints.

The same criticism can be formulated about the surface extraction model

in section 7.2, since our formulation doesn't encourage the construction of

regular surfaces, coming up with geometric guarantees. We plan to address

these problems in some near future.
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Applications of kinetic data structures. Finally, we plan to investigate

on further applications of kinetic data structures.

We may cite, for instance, mesh repairing. Indeed, CAD models can

be hampered by geometric insanities like holes, edge or vertex duplication,

self-intersecting or redundant facets [BS96, Att10]. Yet, the construction of

a kinetic partition from a �awed mesh, followed by the subsequent recon-

struction step, may lead to the creation of a repaired model. Inspired by the

work of Häne et al [HZC+13], another research path might include joint 3D

reconstruction and semantic classi�cation with N classes from our kinetic

partitions, using a more advanced optimization framework.
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Appendix A

Appendix

This appendix provides a detailed pseudo-code illustrating the di�erent steps

of the kinetic partitioning algorithm presented in chapter 6.

A.1 Polyhedral partitioning in 3D: a pseudo-code

Notations. Let:

• P = (P1, .., PN ), be the input set of N convex polygons;

• P = (P 1, .., Pn), be the set of n (in�nite) supporting planes of polygons

P with n ≤ N ;

• P = (P1, ..,Pn), be the set of 2D polygonal partitions with Pi de�ned
in the supporting plane Pi by the triplet (Li, Ti, Si) :

� Li is the set of intersection lines Lij = Pi ∩ Pj ;

� Ti is the set of intersection-free polygons that propagate on the

plane Pi;

� Si is the set of line-segments sij = Pi ∩ Tj ;

• Q, be the a global priority queue;

• C, be the output partition of polyhedra;

• F , be the set of polygonal facets contained in C.

Some comments on the pseudo-code. An illustration of the initializa-

tion procedure can be found in Figure 6.2 of the paper. On the left side, the

blue polygon is an input convex polygon Pi in the plane Pi. On the right

side, the dashed lines, the line-segments and the four blue intersection-free

polygons are elements of Li, Si and Ti, respectively. Among the collition

cases illustrated in Figure 6.3 of the paper, note that the initial polygon

decomposition avoids considering collision case (d) in practice.
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Algorithm 3 Kinetic partitiong (part 1/2)

1: P ← (P1, P2, . . . , Pn)

2: P ← (P1, P2, . . . , Pn)

3: P ← ∅
4: Q← ∅
5:

6: function Initialization

7: for Pi ∈ P do

8: Li ←
⋃
j 6=i Lij where Lij = Pi ∩ Pj

9: Ti ← {Pi}
10: Si ← ∅
11: Pi ← (Li, Ti, Si)

12: Add Pi to P
13: end for

14: for Pi ∈ P do

15: for Lij ∈ Li do
16: for P ∈ Ti do
17: if Lij ∩ P 6= ∅ then
18: Create sliding or frozen vertices along Lij

19: Split P into subpolygons P1, P2

20: Add P1, P2 to Ti

21: Remove P from Ti

22: Add line-segment s = P1 ∩ P2 to Sj

23: end if

24: end for

25: end for

26: for P ∈ Ti do
27: for each non-frozen vertex v ∈ P do

28: Determine the 3 next events ev,j = {t | v(t) ∩ Lij 6= ∅}
where Lij ∈ Li

29: Add these events to Q

30: end for

31: end for

32: end for

33: end function
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Algorithm 4 Kinetic partitioning (part 2/2)

34: function Processing_events

35: while Q 6= ∅ do
36: Pop the vertex v intersecting the line Lij from Q

37: Get the polygon P of Ti containing v

38: Determine the collision case (see Figure 4)

39: Update P with sliding and/or frozen vertices

40: Determine the 3 next events of the new vertices of P

41: Add these events to Q

42: Add line-segment s = P j ∩ P to Sj

43: if Crossing_Condition(P,Lij) = True then

44: Add a new polygon P ′ to Ti

45: Determine the 3 next events of the vertices of P ′

46: Add these events to Q

47: Add line-segment s′ = P j ∩ P ′ to Sj
48: end if

49: if v is not frozen then

50: if Q has no more events involving v then

51: Determine the 3 next events involving v

52: Add these events to Q

53: end if

54: else

55: Remove all future events of v from Q

56: end if

57: end while

58: end function

59:

60: function Finalization

61: F ← ∅
62: C ← ∅
63: for Pi ∈ P do

64: Assemble adjacent polygons of Ti into facets Fi
65: Add Fi to F
66: end for

67: Assemble adjacent facets of F into polyhedra C

68: end function
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