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The geometric modeling of urban objects from physical measurements, and their representation in an accurate, compact and ecient way, is an enduring problem in computer vision and computer graphics. In the literature, the geometric data structures at the interface between input physical measurements and output models typically suer from scalability issues, and fail to partition 2D and 3D bounding domains of complex scenes.

In this thesis, we propose a new family of geometric data structures that relies on a kinetic framework. More precisely, we compute partitions of bounding domains by detecting geometric shapes such as line-segments and planes, and extending these shapes until they collide with each other. This process results in light partitions, containing a low number of polygonal cells. We propose two geometric modeling pipelines, one for the vectorization of regions of interest in images, another for the reconstruction of concise polygonal meshes from point clouds. Both approaches exploit kinetic data structures to decompose eciently either a 2D image domain or a 3D bounding domain into cells. Then, we extract objects from the partitions by optimizing a binary labeling of the cells.

Conducted on a wide range of data in terms of contents, complexity, sizes and acquisition characteristics, our experiments demonstrate the scalability and the versatility of our methods. We show the applicative potential of our method by applying our kinetic formulation to the problem of urban modeling from remote sensing data.
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Dans cette thèse, on étudie une nouvelle famille de structures de données géométrique qui repose sur une formulation cinétique. Plus précisément, on réalise une partition de domaines fermés en détectant et en propageant au cours du temps des formes géométriques telles que des segments de droites ou des plans, jusqu'à collision et création de cellules polygonales. On propose en particulier deux méthodes de modélisation géométrique, une pour la vectorisation de régions d'intérêt dans des images, et une autre pour la reconstruction d'objets en maillages polygonaux concis à partir de nuages de points 3D. Les deux approches exploitent les structures de données cinétiques pour décomposer ecacement en cellules soit un domaine image en 2D, soit un domaine fermé en 3D. Les objets sont ensuite extraits de la partition à l'aide d'une procédure d'étiquetage binaire des cellules.

Les expériences menées sur une grande variété de données en termes de nature, contenus, complexité, taille et caractéristiques d'acquisition démontrent la polyvalence de ces deux méthodes. On montre en particulier leur potentiel applicatif sur le problème de modélisation urbaine à grande échelle à partir de données aériennes et satellitaires Mots clés: structures de données cinétiques, partitionnement d'images, reconstruction de surfaces, extraction d'objets, approximation de surfaces, maillage polygonaux surfaciques, minimisation d'énergies, modélisation 3D, reconstruction de scènes urbaines, données Lidar Introduction

Context and motivations

The geometric modeling of urban objects and environments from physical measurements is a long-discussed topic within the computer vision, computer graphics and remote sensing communities. It has a wide range of practical applications, which mainly lie on three aspects: manufacturing, rendering and environmental simulations.

Recent years have witnessed a technological evolution of the sensors used to acquire data. As a result, the collected datasets get much larger. This emphasizes the need for scalable algorithms, capable of processing massive amounts of data. However, the complexity of the models produced by geometric modeling techniques is also of critical importance for some applications. For instance, simulating the propagation of acoustic or electromagnetic waves in urban areas requires accurate, as well as simple models. Computer-aided designed models can be used to perform physical simulations, but the creation of such models is too time-consuming and laborintensive. For large and complex scenes, automated tools should be preferred. This thesis addresses the problem of converting data issued from physical measurements into geometric models with the ve following objectives: 1. Fidelity. Our models should constitute faithful approximations of the observed data.

2. Simplicity. These models should be composed of a low number of geometric elements, ideally just enough, given a user-dened tolerance approximation error.

3. Eciency. We are interested in designing algorithms that are fast, scalable, and proceed with a low memory consumption.

4. Automation. These algorithms should be fully automatic and only take into account a few intuitive and user-dened parameters.

5. Genericity. Our algorithms should be applicable on all types of scenes and objects, without relying on any particular geometric assumption.

Data sources

Various data types may be considered for the geometric modeling of urban objects or scenes. In this thesis, we will focus on two usual data sources: optical imagery and 3D point clouds.

Optical imagery 1.2.1.1 General description

Digital cameras are now accessible to a general public. A camera is built upon an image sensor, that converts captured light into an analogic electric signal. This signal is then amplied and digitalized to obtain an image: a bidimensional array of red, green and blue integer values. An entry of this table is called a pixel.

Nowadays, standard cameras have an image resolution exceeding 10 millions of pixels. Compact cameras are sold at low prices, and are also embedded into most smartphones. Users collect and share images on the Internet using applications such as Flickr, Instagram, or Google Maps. Since the contents of these images often depict urban objects, Web databases may constitute a valuable data source for geometric modeling and urban reconstruction.

Aerial imagery

Aerial imagery is a popular technique to acquire data for the geometric modeling of large urban scenes. It consists in taking a digital camera aboard a hot-air balloon, a drone or a plane that ies over an area, following a predened ight map. The further processing of the images by photogrammetry tools, for instance to generate digital elevation models, may require overlapping constraints between the images.

We distinguish oblique and vertical aerial imagery. In oblique imagery, photographs are taken at an angle relative to the Earth's surface. The no-tions of low, or high oblique imagery refer to the value of this angle. In contrast, vertical photographs are taken from a straight down angle.

Aerial images can be combined for various purposes, including image stitching for the creation of panoramas, and 3D reconstruction. Vertical images, for their part, can be used to generate orthophotos, which are simulations of photographs taken at innite distance, without perspective eects. Orthophotos have applications in GIS systems, and urban planning oces may be interested in extracting all building footprints, or road networks, from such images.

One of the contraints posed by aerial imagery can be its high acquisition cost. Also, depending on countries, the use of aircrafts may be restricted by local authorities.

Satellite imagery

Satellite imagery is a commonly used data source for natural and Earth sciences, such as meteorology, oceanography or forestry. It was initially restricted to military applications, and observation purposes. However, the development of commercial satellite imagery has attracted an increasing attention from the computer vision community, and the technological advances in terms of image resolution now open the door to precise cartography of urban environments.

Launched in 2014 by DitigalGlobe, WorldView-3 is a satellite that has, for instance, a panchromatic resolution of 0.31 meters per pixel. WorldView-3 also has a multispectral and infrared resolution at the scale of the meter. In addition, it has an average revisit time of less than once a day, and can collect up to 680 000 km 2 per day.

For companies and land surveying oces, one of the main strengths of satellite imagery comes from its signicantly lower acquisition cost compared to aerial imagery. On the other hand, acquisition depends on atmospheric conditions and requires a weak cloud cover. Furthermore, the automatic processing of these massive amounts of data raises a concern for the scalability of the applied methods.

Point clouds

1.2.2.1 Lidar data General description. Standing for "LIght Detection And Ranging", Lidar [START_REF] Cracknell | Introduction to remote sensing[END_REF] is a surveying method that measures distance to a target. This technology was initially used for meteorological applications. However, it is nowadays commonly used for creating high-resolution topographic maps in land surveying, as well as for navigation and control in autonomous transportation systems.

A Lidar scanner is rst composed of a laser emitter, that generates luminous beams directed towards an object. Then, the reected light pattern is captured by a photodetector and converted to an electric impulse, which is further analyzed by an embedded signal processing chain. According to the time-of-ight principle, the time dierence between the emission of the signal and the reception of its most important echo is proportional to the distance between the scanner and the object.

The wavelengths of beams emitted by Lidar scanners vary between 250 nanometers to 10 micrometers. Depending on the application context, beams of dierent wavelengths can be emitted by Lidar devices. The choice of an appropriate wavelength is indeed motivated by the absorbtion and backscattering properties of the target material. Airborne topographic mapping Lidar systems operate in the near-infrared domain with a typical wavelength of 1064 nanometers, when bathymetric systems rather use a wavelength of 532 nanometers to better penetrate waterbodies.

Better target resolution is achieved with shorter pulses, and Lidar scanners can emit up to several hundreds of thousands of pulses per second. This enables very dense and precise measurements of target objects, with a sampling error at the scale of the centimeter or even the millimeter, depending on the acquisition mode (aerial or terrestrial). For this reason, Lidar scans constitute a valuable data source for the geometric modeling or urban objects or environments. However, the very high cost of laser scanners curbs the use of this technology.

Although Lidar scanners were primarily designed to measure distances, extra information are sometimes provided by these devices for each captured point, such as the amplitude of the signal, or the number of echoes. This information depends on the target material, and can be used for classication purposes. For instance, the number of echoes is a discriminative feature for detecting vegetation in airborne Lidar data.

Terrestrial Lidar scans. Terrestrial Lidar scans are a way to acquire Lidar data. In a stationary mode, the scanner is usually mounted on a tripod. Due to occlusions, multiple scans at dierent locations can be required to obtain a full dataset, for instance when scanning an indoor scene. The fusion step can be performed using the iterative closest point algorithm [START_REF] Besl | Method for registration of 3-d shapes[END_REF]. However, we can observe the absence of measured data in areas that are too close to the sensor.

A laser scanner can also be mounted on a vehicle, generally for groundbased urban reconstruction purposes. For example, Zhao et al [START_REF] Zho | Reconstructing urban 3d model using vehicle-borne laser range scanners[END_REF] describe an acquisition protocol in which two one-dimensional lasers scan facades of buildings along the horizontal and vertical axes. Backpack systems can also be used for acquiring high resolution data in complex indoor environments [LCC + 10].

For terrestrial Lidar scans, the density of points is usually comprised between 100 and 3000 points per squared meter, with a sampling error at the scale of the millimeter.

Airborne Lidar scans. Airborne Lidar scans can be obtained by mounting a scanner on a plane or an unmanned aerial vehicle. This enables the capture of data coverage of large areas like cities, in a short amount of time.

In urban modeling, one of the main diculties posed by airborne Lidar data comes from the fact that the sensor is oriented downwards. As a consequence, vertical structures such as facades are often completely or almost completely missing from the generated datasets. We might also observe missing holes over reective surfaces, such as waterbodies.

The density of points clouds in airborne Lidar scans is lower than in terrestrial scans, since it varies between 1 and 50 points per square meter. Not surprisingly, the precision also decreases at the scale of the centimeter, even the decimeter.

Multi-View Stereo data

Recovering 3D geometry of an object from photographs is a major research topic in computer vision. Given several images of the same object or scene, Multi-View Stereo (MVS) vision techniques refer to the estimation of the most likely 3D shape that explains the observed photographs, under known assumptions of materials, viewpoints, and lighting conditions, using stereo correspondances as their main cue [FH + 15]. Some early techniques showed the potential of large crowd-sourced dabatases of images for 3D reconstruction [START_REF] Snavely | Photo tourism: exploring photo collections in 3d[END_REF].

Typical MVS pipelines consist of two steps. Over a rst phase, the camera parameters are estimated for each image. Then, the 3D geometry is reconstructed from the image and the set of camera parameters.

The rst step is achieved using Structure from Motion (SfM) techniques. Based on the pinhole camera model, SfM techniques output the camera parameters of each image (focal length and projection matrix), but also a sparse set of 3D locations that are associated to subsets of pixels in the input images. This is done by a feature extraction step in images [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], a feature matching step in which a set of candidate pairs of overlapping images is identied, followed by a geometric verication step in which a transformation is estimated to map feature points across images. Examples of SfM techniques are described in [AFS + 11, HSDF15, SF16].

Then, a dense representation of the scene is generated by MVS techniques. According to the review of Seitz et al [SCD + 06], MVS algorithms can be categorized into four classes: voxel-based methods [START_REF] Sinha | Multi-view stereo via graph cuts on the dual of an adaptive tetrahedral mesh[END_REF], surface evolution based methods [START_REF] Hiep | Towards high-resolution large-scale multi-view stereo[END_REF], patch-based methods [START_REF] Furukawa | Accurate, dense, and robust multiview stereopsis[END_REF] and depth map based methods [START_REF] Schönberger | Pixelwise view selection for unstructured multi-view stereo[END_REF][START_REF] Xu | Multi-scale geometric consistency guided multi-view stereo[END_REF]. Within the scope this thesis, we have been led to use some results generated by the algorithm of Schönberger et al [START_REF] Schönberger | Pixelwise view selection for unstructured multi-view stereo[END_REF]. In a nutshell, this method jointly optimizes depth and normal information in a large collection of images using priors strengthening the photometric and geometric consistency of the result.

As illustrated by the Tanks and Temples benchmark [START_REF] Knapitsch | Tanks and temples: Benchmarking large-scale scene reconstruction[END_REF], MVS techniques now achieve high-quality 3D reconstructions of large indoor or outdoor scenes from collections of images, with an error at the scale of the centimeter. Algorithms such as Poisson reconstruction [START_REF] Kazhdan | Poisson surface reconstruction[END_REF] can be used to turn the obtained point clouds into smooth surfaces. The latter are however complex and cannot be used in many applications. Still, the point clouds resulting from MVS techniques provide a good basis for the geometric modeling of concise meshes.

RGB-D cameras

Recent years have witnessed the rise of mass-manufactured, aordable and hand-held RGB-D cameras. Microsoft started the development of the Kinect in 2010. Initially designed as an entertainement device, it associates a video stream recorded by a RGB camera to a depth sensor. The depth is acquired by stuctured light: a pattern is projected into the scene using infrared (IR) light. The deformed pattern is recorded by an IR camera and the depth is calculated from the deformation.

Computer graphics and computer vision researchers quickly understood the potential of this aordable technology in a context of 3D reconstruction [NIH + 11, IKH + 11]. RGB-D sensors can be integrated to robots for the mapping of unknown environments, which is of great interest for military operations or emergency situations. This problem is known as Simultaneous Mapping And Localization (SLAM) and is a major topic in robotics and computer vision. There exists a vast literature on the broader topic of 3D reconstruction of static or dynamic scenes using RGB-D cameras, recently surveyed by [ZSG + 18].

The reconstruction of dynamic scenes is beyond the scope of this thesis. We refer to the aforementioned survey for more details. In order to reconstruct a static object or scenes from a RGB-D stream, a typical pipeline takes the shape of a loop incorporating the following steps. Firstly, the depth map is preprocessed and denoised, using for instance a bilateral lter. Secondly, camera poses are estimated. Various strategies can be explored, including frame-to-frame tracking, frame-to-model tracking that locates the camera with respect to the so-far reconstructed model, or global pose estimation. Finally, the 3D geometry of the scene is obtained. Again, several representation schemes can be used: a voxel grid associated to an implicit distance function, or a sparse set of point locations that can be later converted into a smooth mesh.

3D reconstruction from RGB-D sensors now achieves a excellent level of detail, with an average reconstruction error of a few millimeters, including for large scenes. However the meshes generated by these techniques are generally complex and require to be simplied.

Challenges

The geometric modeling of urban enviroments is a dicult problem that meets three main challenges: acquisition constraints, full automation, and quality of output models [MWA + 13].

Acquisition constraints. We observe a set of recurrent defects in data captured from the real world, that geometric modeling techniques should be able to handle.

Noise, for instance, is a typical problem. It can directly result from the sensor, or be caused by failures in the data registration process. Outliers are also frequent, and are the consequence of the presence of unwanted, yet unavoidable objects in the scene. We may think of temporary objects such as pedestrians, trac signs or cars in a context of urban modeling. Likewise, it is dicult to deal with heterogeneous sampling conditions. The density of points acquired by a terrestrial laser scanner decreases with its distance to the captured objects in the scene. On the other hand, overlapped areas in aerial LiDAR scans are described by more points than other areas, whereas facades are often partly or completely missing in these scans, due to geometric constraints. Also, some materials like glass cannot be captured by laser scanners. Lighting conditions can also play a role in the quality of the obtained data, and shadows may pose specic problems to some image processing algorithms. Finally, the absence of data covering specic parts of an object, due to occlusions, also constitutes a challenge in computer vision.

Full automation. The ultimate goal of geometric modeling is to provide ecient and fully automatic algorithms.

Interactive modeling techniques can be proposed for some specic application elds, like in architecture or in the entertainement industry where the expected quality of the models is beyond the capacities of the startof-the-art techniques. However, interactive techniques are inadapted to the processing of large amounts of data, like in remote sensing where industrials and researchers aim at parsing the Earth's entire surface. Therefore, there is not only a quest for accurate, but also for fast and scalable algorithms. However, one of the major diculties in the design of such techniques comes from the diversity or urban objects and landscapes. Even within a small scene, very dierent objects can be found in terms of shape and appearance. Some geometric modeling techniques rely on assumptions, characterizing for example the regularity of the objects to extract, but these approaches fail to model entire scenes. On the other hand, assumption-free algorithms are more exible, but tend to produce less structured results.

Quality of models. Depending on the application context, dierent criteria can be used to assess the quality of models generated by geometric modeling techniques.

Geometric accuracy, i.e. the quality of t to the measured data, is the most straightforward way to evaluate a model. In some situations, some geometric guarantees reinforcing the regularity of the result can also be expected. The compactness of the model can also be a very important criterion, enabling further uses for reverse engineering or physical simulations, for instance. On the other hand, the entertainement industry lays a bigger emphasis on the visual aspect of the generated model.

We observe that these evaluation criteria may conict with each other. For instance, a less complex model can be obtained at the price of a higher geometric error. The search for a unied metric combining these criteria remains an open problem in geometric modeling, where ground truth data is not always available.

Outline

In the next chapter, we review the problem of object extraction and approximation from images and point clouds. We discuss the limitations of these methods, and present our contributions in chapter 3. Chapters 4 to 7 present our pipeline for object extraction from images or point clouds. In a nutshell, our algorithm rst detects a set of primitives that may be regularized (chapter 4). These primitives are then used to create a partition of the appropriate space (chapters 5 and 6). Finally, we formulate the object extraction step as a labelling problem of the polygonal or polyhedral cells, depending on the dimension (chapter 7).

In chapter 8, we show the applicative potential of this pipeline by addressing the specic problem of city modeling from airborne LiDAR data. We nally draw conclusions of our works in chapter 9.

Chapter 2

Related works

Numerous scientic challenges are related to image analysis and understanding. In this chapter, we review the problem of object vectorization in images. In contrast to traditional segmentation methods, which approximate dierent objects of interest in an image as multiple regions of pixels, freeform polygons oer a compact and structure-aware representation of these objects. Polygons are particularly adapted to the extraction of man-made objects, such as rooftop buildings in aerial images, which are characterized by a few number of vertices and strong geometric signatures. We present various strategies that focus on this dicult problem. This chapter also focuses on the generation of concise polygonal meshes from point clouds. This is a distinct problem from dense mesh generation, which focuses on reconstructing a smooth representation from a sampled shape. Here, we review strategies that approximate a 3D object using a small number of meaningful facets.

Object contouring by polygonal shapes

In our review of algorithms addressing the problem of object contouring by polygonal shapes, we distinguish three main types of methods : direct approaches, vectorization pipelines and methods based on polygonal partitions.

Direct extraction of polygons

A rst category of works focuses on the direct extraction of polygonal shapes from images. A possible strategy consists in detecting a set of geometric shapes from the image, such as line-segments, before assembling them to obtain the closed contour of an object. Sun et al [START_REF] Sun | Free-shape polygonal object localization[END_REF] for instance, address this problem by identifying plausible elementary cycles in adjacency graphs of line-segments. In contrast, Zhang et al [ZCS + 10, ZFW + 12] generate additional line-segments to connect the previously detected line fragments, and nd an optimal cycle by applying the ratio-contour algorithm [START_REF] Wang | Salient closed boundary extraction with ratio contour[END_REF].

Stochastic approaches coupled with simulated annealing might also be used to detect parametric shapes in images, such as rectangles [START_REF] Kluszczy«ski | Image segmentation by polygonal markov elds[END_REF][START_REF] Lafarge | Automatic building extraction from dems using an object approach and application to the 3d-city modeling[END_REF]. However, these methods are harmed by a slow convergence speed. Some recent works focus on learning the geometric characteristics of polygons. Polygon-RNN [CKUF17, ALKF18], for instance, is a semi-automatic object annotation tool via polygons. Assuming the existence of a bounding box enclosing an object instance, this methods sequentially predicts the vertices of a polygon tightening the object using a recurrent neural network (RNN). Although ecient, these mechanisms oer no shape control on the nal polygons, which may be approximated by a large number of points. Moreover, since the RNN only keeps in memory the two last predicted vertices, polygons generated by this technique may contain self-intersections. The latter issue has been addressed in a recent work [LGK + 19] in which all vertices of a bounding polygon or curve are simultaneously predicted, using a graph convolutional network.

In a similar vein, PolyCNN extracts building rooftops from remote sensing images [START_REF] Girard | End-to-End Learning of Polygons for Remote Sensing Image Classication[END_REF], but these polygons are restricted to quadrilaterals. Poly-Mapper [START_REF] Li | Polymapper: Extracting city maps using polygons[END_REF] alleviates this problem and directly predicts vectorial city maps that include road networks and complex rooftop shapes. However, these approaches remain heavily data-dependent, and the output polygons come up with no geometric guarantees, such as orthogonality.

Vectorization pipelines

Vectorization pipelines are composed of two steps. Over a rst phase, an object is extracted from an input image as a region of pixels. Then, a line approximation algorithm is used to simplify its contours and obtain a polygon.

There exists several approaches to extract a given object from an image. One may refer, for instance, to interactive image segmentation methods such as Intelligent Scissors [START_REF] Mortensen | Interactive segmentation with intelligent scissors[END_REF] or GrabCut [START_REF] Rother | Grabcut: Interactive foreground extraction using iterated graph cuts[END_REF].

Another strategy consists in over-segmenting the image before extracting Vectorizing the contours of each building instance will result in numerous approximations. Right: polygons are directly extracted using an adapted architecture [START_REF] Li | Polymapper: Extracting city maps using polygons[END_REF]. Image taken from [START_REF] Li | Polymapper: Extracting city maps using polygons[END_REF].

an object as a group of superpixels, i.e. perceptually homogeneous atomic regions. Decomposing an image into superpixels is a well-known problem in computer vision. Various models have been proposed [ASS + 12, AS17, LTRC11, VdBBR + 12, TLJ + 18] in order to meet a certain set of expected properties, including adherence of the superpixels to the boundaries of visible objects. In this context, we are interested in nding a subset of superpixels whose boundaries overlap the true contours of the object, which can be formulated as a cost minimization problem [START_REF] Levinshtein | Optimal contour closure by superpixel grouping[END_REF] or by designing a hierarchical segmentation algorithm [START_REF] Ren | Image segmentation by cascaded region agglomeration[END_REF].

Another popular way to extract the contours of an object consists in computing a saliency map. In a highly inuential work, Cheng et al [CMH + 14] achieve this goal by reasoning on the notion of color contrast. Learning methods, based on convolutional neural networks, can also be employed [WWL + 16]. However, since convolutional neural networks operate at the scale of image patches instead of pixels, the resulting saliency maps might be blurry, especially near the boundaries of the object of interest, leading to imprecise detection. Some strategies have been recently suggested to alleviate this problem [LY16, QZH + 19].

Once objects of interest are extracted, the subsequent approximation step is usually performed using the well-known Douglas-Peucker algorithm and its variants [START_REF] Douglas | Algorithms for the reduction of the number of points required to represent a digitizedline or its caricature[END_REF][START_REF] Wu | A non-self-intersection Douglas-Peucker algorithm[END_REF]. Alternative algorithms can be used, casting for instance shape simplication as an optimal transport problem [START_REF] De Goes | An optimal transport approach to robust reconstruction and simplication of 2d shapes[END_REF] or by lattice renement [START_REF] Tasar | Polygonization of binary classication maps using mesh approximation with right angle regularity[END_REF]. In a remote sensing context [START_REF] San | Building extraction from high resolution satellite images using hough transform[END_REF], the Hough transform can also be applied to an edge map to vectorize patches in raster format that correspond to regions of interest: the detected buildings in an image.

Polygonal partitions

Inspired by superpixel grouping approaches, another strategy for object vectorization consists in generating a partition of polygonal cells of an image, and selecting a subset of connected cells that approximate well the contours of all objects of interest.

Polygonal partitions oer some advantages over superpixel decomposition techniques. Indeed, they oer resolution-independent representations of images, contrary to superpixels which typically operate at pixel level. Polygonal partitions also benet from a low storage cost, since the construction of polygonal cells requires only a few vertices. In contrast, borders of free-form superpixels are dened as sequences of pixels. Moreover, polygonal partitions can exploit the geometric information present in the image, and we observe that several methods build a polygonal partition using a pre-detected set of line-segments that roughly approximate the contours of the objects.

A natural way to obtain a partition of polygons in an image is to vectorize a set of superpixels. This approach is followed by Achanta et al [START_REF] Achanta | Superpixels and polygons using simple non-iterative clustering[END_REF], who position vertices where three superpixels meet, and simplify the sequence of pixels found in between by applying the Douglas-Peucker algorithm. However, this operation may generate approximation errors and requires a good superpixel connectivity, which is dicult to guarantee in practice. We note that this method also returns non-convex polygons.

Line-segment detection

Fitting geometric shapes to images is an ecient way to synthesize a large number of pixels into a few parametric functions. Line-segments are the most common geometric shapes for analyzing images, especially when the observed structures are lineic. The detection of line-segments is a longdiscussed topic in computer vision. Most existing algorithms are composed of two-step pipelines, in which line-segments are tted to a previously generated heat map. These techniques may be classied into two categories.

A popular approach consists in rst estimating an edge map, by means of dierent lters like the Canny edge detector [START_REF] Canny | A computational approach to edge detection[END_REF]. Then, the Hough transform [DH71, DHH11] detects a set of prominent lines in the edge map. Therefore, extracting line-segments means identifying peaks of maximal intensity along these lines in the image. Hough-based methods oer the advantage to accumulate information from the whole image for detecting lines, but the determination of appropriate endpoinds for the line-segments is a dicult problem. Various peak-localization algorithms are discussed in the literature, for example based on the notion of persistance [START_REF] Kurlin | A persistence-based approach to automatic detection of line segments in images[END_REF], on probabilistic models [START_REF] Almazan | Mcmlsd: A dynamic programming approach to line segment detection[END_REF] or by analyzing the voting distribution in the Hough space [START_REF] Xu | Accurate and robust line segment extraction using minimum entropy with hough transform[END_REF].

On the other hand, perceptual grouping approaches use image gradient as a low-level cue and locally group pixels into a set of line-segment candidates, from which false positives are later discarded. The most representative example of this family of techniques is the Line-Segment Detector (LSD) of van Gioi et al [START_REF] Gioi | Lsd: A fast line segment detector with a false detection control[END_REF]. This linear-time algorithm is based on the Helmholtz principle [START_REF] Desolneux | From gestalt theory to image analysis: a probabilistic approach[END_REF], according to which an observed geometric structure is perceptually ε-meaningful if its expected number of occurrences is less than ε under the a contrario random assumption. Here, the tested structures are obviously the candidate line-segments, set as approximations of regions where the image gradient shows a similar orientation. ε is by default set to 1, a natural value. But this parameter can be tuned, thus allowing the user to control the number of false detections in the returned set of line-segments. Another example of perceptual grouping method is described in the work of Cho et al [START_REF] Cho | A novel linelet-based representation for line segment detection[END_REF].

Recently, learning methods have been used to address the problem of line-segment detection. For instance, Huang et al [HWZ + 18] present deep convolutional neural networks for jointly retrieving line-segments and junctions from an image. Another interesting contribution is provided by Xue et al [XBW + 19]. In this paper, the authors use a dual representation for line-segments maps: region-based attraction eld maps. The line-segment detection problem from an input image thus becomes a region coloring problem. Attraction eld maps are learnt by convolutional neural networks and are converted to line-segments. Although data-dependent, and computationally complex, these methods both achieve very promising results.

In this thesis, we do not bring any contribution to the problem of linesegment detection in images. However, we observe that line-segments returned by state-of-the-art algorithms may not preserve well geometric regularities of observed structures, as for instance line alignments in a regular layout of windows on a facade. This is due to noise, insucient resolution of the Hough space [START_REF] Guerreiro | Connectivity-enforcing hough transform for the robust extraction of line segments[END_REF], or approximation mechanisms when shrinking regions to line-segments [vGJMR10, XBW + 19]. Global regularization can be a valuable tool to correct these inaccuracies, and reduce output complexity by removing redundant shapes. Existing regularization methods typically operate from 3D shapes, either by iterative renements [OLA16] or by energy minimization [START_REF] Pham | Interacting geometric priors for robust multimodel tting[END_REF].

Image partitioning

The output of line-segment detection algorithms can be used to generate a polygonal partition of the image.

For example, Duan et al [START_REF] Duan | Image partitioning into convex polygons[END_REF] build a constrained Voronoi tessellation whose edges conform to these line-segments. A Poisson-disk sampling is then applied to the Voronoi cells to obtain uniformly-sized polygons. Gevers et al [START_REF] Gevers | Combining region splitting and edge detection through guided delaunay image subdivision[END_REF] and Forsythe et al [START_REF] Forsythe | Resolutionindependent superpixels based on convex constrained meshes without small angles[END_REF][START_REF] Forsythe | Convex constrained meshes for superpixel segmentations of images[END_REF] build Delaunay triangulations, before regrouping triangles into polygons. The former operates by iteratively splitting triangles with heterogeneous radiometry, whereas the latter uses a constrained Delaunay triangulation with a minimal angle for all triangles, that conforms to pre-detected line-segments. The higher this angle, the more complex the partition [START_REF] Shewchuk | Delaunay renement algorithms for triangular mesh generation[END_REF]. Although exploiting line-segments to guide the polygonal partitioning is computationally ecient, existing methods [START_REF] Duan | Image partitioning into convex polygons[END_REF][START_REF] Forsythe | Resolutionindependent superpixels based on convex constrained meshes without small angles[END_REF][START_REF] Forsythe | Convex constrained meshes for superpixel segmentations of images[END_REF] fail to properly recover the junctions of lineic structures, leading in best situations to the generation of several polygons around a junction. Another approach [START_REF] Prasad | Vectorized image segmentation via trixel agglomeration[END_REF] applies a constrained Delaunay triangulation of Canny edge contours, before grouping the obtained triangles based on perceptual cues.

However, let us note that the literature oers other examples of image partitioning techniques that do not necessarily rely on a set of line-segments.

We mention, for instance, the work of Hermes et al [START_REF] Hermes | A minimum entropy approach to adaptive image polygonization[END_REF], in which a triangular mesh is iteratively rened based on conditional entropy. Polygons are later aggregated, based on the Jensen-Shannon divergence that measures the similarity of the discrete probability distributions associated to two adjacent cells. In another recent work, Favreau et al propose a Delaunay point process for sampling a Delaunay triangulation in images. The triangles are later augmented with binary activation labels for object contouring purposes [START_REF] Favreau | Extracting geometric structures in images with delaunay point processes[END_REF].

2.2

Generation of concise polygonal meshes from point clouds

We distinguish three families of algorithms for converting a point cloud into a concise polygonal mesh: approximation methods, simplication methods and shape assembling methods. A rst way to produce concise polygonal meshes from point clouds consists in reconstructing a smooth surface from the input points before simplifying it. The rst step can rely upon mature algorithms from the geometry processing toolbox, such as the popular Poisson reconstruction method [START_REF] Kazhdan | Poisson surface reconstruction[END_REF][START_REF] Kazhdan | Screened poisson surface reconstruction[END_REF]. We may refer to a recent survey that discusses the main algorithms for smooth surface reconstruction [BTS + 17].

Approximation methods

Once extracted, the dense triangle mesh is simplied into a coarser mesh. The most common approach consists in contracting edges until reaching a target number of facets [START_REF] Garland | Surface simplication using quadric error metrics[END_REF][START_REF] Lindstrom | Out-of-core simplication of large polygonal models[END_REF]. To better preserve the piecewiseplanar structure of objects, the edge contraction operators can account for planar shapes detected in the dense mesh [START_REF] Salinas | Structure-Aware Mesh Decimation[END_REF]. However, on planar parts such approaches yield triangle meshes whose adjacent facets are unlikely to be coplanar and form a meaningful decomposition. Other methods [START_REF] Cohen-Steiner | Variational shape approximation[END_REF][START_REF] Chen | Computing and fabricating multiplanar models[END_REF] alleviate this problem by connecting planar shapes using the adjacency inferred from the input mesh. These surface approximation methods are in general eective, but they require as input a mesh that is both geometrically and topologically accurate to deliver faithful results. Unfortunately, such as requirement is rarely guaranteed from real-world data which are often highly corrupted by noise, outliers and occlusions.

Simplication methods

Another line of works reduces the combinatorial problem of mesh generation by imposing geometric assumptions for the output surface. For instance, the Manhattan-World assumption [START_REF] Coughlan | The manhattan world assumption: Regularities in scene statistics which enable bayesian inference[END_REF] enforces the generation of polycubes [THCM04, HJS + 14, IYF15] by imposing output facets to follow only three orthogonal directions. Another popular geometric assumption consists in constraining the output surface to specic disk-topologies. For instance, 2.5D view-dependent representations is typically well suited to buildings with airborne data [MWA + 13] and facades with streetside images [START_REF] Bodis-Szomoru | Superpixel meshes for fast edge-preserving surface reconstruction[END_REF]. Some approaches also approximate surfaces with specic layouts of polygonal facets. Such polyhedral patterns are particularly relevant for architectural design [JWWP14, JTV + 15]. However, such geometric assumptions are only relevant for specic application domains. 

Shape assembling methods

Finally, some algorithms address the problem of mesh generation by extracting a set of planar shapes from the point cloud as a preprocessing step, before assembling them into a unied polygonal mesh. Planar shapes are sets of points to which a plane is tted, and constitute an intermediate presentation between input points and the output mesh.

We distinguish two categories of shape assembling methods, either based on connectivity graphs or plane slicing. We shall begin our study by focusing on a problem of planar shape detection in a point cloud.

Planar shape detection

The detection of geometric shapes in 3D data is a fundamental problem in computer vision and computer graphics. Many applications, including scene reconstruction or robotics, benet from the representation of the data at an intermediate level of abstraction, by means of simple geometric shapes like planes, cuboids or cylinders. The robustness of primitive detection techniques to common defects observed in real data, such as noise, outliers, or varying sampling densities, is one of the main challenges that shape detection techniques should overcome.

In this paragraph, we review the problem of plane detection from raw and unstructured point clouds. There exists a wide range of methods addressing this problem, recently surveyed by Kaiser et al [START_REF] Kaiser | A survey of simple geometric primitives detection methods for captured 3d data[END_REF]. Each family of methods has its own advantages and drawbacks, and scores dierently in terms of data delity, speed or scalability.

RANSAC-based methods [START_REF] Schnabel | Ecient ransac for point-cloud shape detection[END_REF][START_REF] Schnabel | Shape recognition in 3d point-clouds[END_REF] are popular techniques of plane detection, achieving real-time performance requirements. This class of algorithms iteratively generate random plane hypotheses from the data, and select the planes that t the most points. However, these approaches are non-deterministic. The geometric accuracy of the nal set of planes can be improved by adding a regularization procedure as a postprocessing step. Li et al optimize the orientation and the placement of the planes using a nonlinear energetic formulation [LWC + 11]. In a similar fashion, Monszpart et al [START_REF] Monszpart | Rapter: Rebuilding man-made scenes with regular arrangements of planes[END_REF] use a mixed-integer quadratic program to lter out a regular arrangement of planes from a set of candidates.

Originally used to detect sets of 2D lines in images, the Hough transform [START_REF] Duda | Use of the hough transformation to detect lines and curves in pictures[END_REF] has been extended to the detection of arbitrary shapes [START_REF] Ballard | Generalizing the hough transform to detect arbitrary shapes[END_REF]. The detection of a set of planes in a point clouds follows the same scheme as in 2D, with the search for local laxima in a discretized 3D parameter space [START_REF] Hulik | Continuous plane detection in point-cloud data based on 3d hough transform[END_REF]LO15,[START_REF] Holz | Real-time plane segmentation using rgb-d cameras[END_REF]. This approach is particularly ecient against incomplete data, but the continuous and unbounded nature of the parameter space, and the choice of an appropriate quantization step may become a computational issue, especially when dealing with large datasets.

Region-growing algorithms [START_REF] Marshall | Robust segmentation of primitives from range data in the presence of geometric degeneracy[END_REF][START_REF] Rabbani | Segmentation of point clouds using smoothness constraint[END_REF] oer an interesting alternative to the strategies discussed above. These approaches consist in the propagation of a plane hypothesis from a seed point to its neighbors. The hypothesis is validated if it can be associated to a minimal number of points. The choice of appropriate seed points [OLA16] is an important algorithmic step, that may enhance running times and quality of the results. By design, region-growing approaches are slower than other methods, but they also tend to produce more accurate planes by exploiting connectivity information between points.

Shapes can also be detected by learning approaches trained from CAD model databases. In the work of Fang et al [START_REF] Fang | Planar Shape Detection at Structural Scales[END_REF], planar shapes are extracted depending on a target level of detail. Point properties can also be learnt [START_REF] Qi | Pointnet++: Deep hierarchical feature learning on point sets in a metric space[END_REF] in order to estimate dierent types and parameters of primitives that t the point cloud. This process is not only restricted to plane detection but may include other shapes, like cuboids or cylinders [LSD + 19].

There remains some challenges in the problem of shape detection. The introduction of learning methods represents an interesting way to improve the accuracy and the semantic meaning of the returned shapes, but the enhancement of such techniques is beyond the scope of this thesis. Let us now describe the two main families of shape assembling techniques introduced before.

Connectivity-based methods

Connectivity-based methods analyze an adjacency graph between planar shapes in order to extract the vertices, edges and facets of the output mesh [START_REF] Chen | Architectural modeling from sparsely scanned range data[END_REF][START_REF] Van Kreveld | On the shape of a set of points and lines in the plane[END_REF][START_REF] Schindler | Classication and reconstruction of surfaces from point clouds of man-made objects[END_REF]. Although these methods are fast, they are likely to produce incomplete models on challenging, defect-laden data where adjacency graphs often contain linkage errors.

One possible solution consists in completing the missing parts either interactively with user-guided mesh operations [ASF + 13], or automatically with dense triangle meshes [START_REF] Lafarge | Surface reconstruction through point set structuring[END_REF]. Unfortunately, the rst alternative does not oer a relevant solution for processing large volumes of data, and the second one does not output concise polygon meshes.

Slicing-based methods

Slicing-based methods [CLP10, BDLGM14, OLA14, MMP16, NW17] are more robust to challenging data. They operate by slicing the input 3D space with the supporting planes of the detected shapes. The output partition is a decomposition into convex polyhedral cells. The output mesh is then extracted by labeling the cells as inside or outside the surface, or equivalently, by selecting the polygonal facets of the cells that are part of the surface. The main limitation is the high algorithmic complexity for constructing the 3D partition, commonly performed via a binary space partition (BSP) tree updated at each plane insertion [START_REF] Murali | Consistent solid and boundary representations from arbitrary polygonal data[END_REF]. Such a data structure can take hours to construct, and consume dozens of gigabytes when several hundred shapes are considered. Moreover, the returned partitions are overly complex, comprising many small anisotropic cells which are hampering the subsequent surface extraction process. Other approaches [START_REF] Schnabel | Completion and reconstruction with primitive shapes[END_REF][START_REF] Verdie | LOD Generation for Urban Scenes[END_REF] discretize the partitioning space instead of computing the exact geometry of the whole partition. This option is less costly, but often yields geometric artifacts when the discretization is not ne enough.

Data structures for space partitioning

In addition with the slicing approaches discussed before [BDLGM14, CLP10, NW17], based on BSP trees, several algorithmic data structures have been used to partition a 3D volume into polyhedra in a context of surface reconstruction.

Indeed, some algorithms rely on a voxel grid to recover an implicit surface from a point cloud. The voxel grid is seen as an occupancy map, and the surface itself is extracted using a least-square formulation [START_REF] Kazhdan | Poisson surface reconstruction[END_REF], or a graph-cut formulation [START_REF] Hornung | Robust reconstruction of watertight 3 d models from non-uniformly sampled point clouds without normal information[END_REF][START_REF] Lempitsky | Global optimization for shape tting[END_REF], where the voxels represent the nodes of the graph. However, the computational cost of the grid can grow cubicly with the desired level of detail. Some other methods generate a 3D Delaunay triangulation from an input point cloud. Intuitively, triangles connect points that are sampled on the same plane, and polyhedrons are elongated in a direction that is approximatively orthogonal to the inferred surface. This technique, however, requires a dense point cloud. It is also sensitive to noise. To reduce the complexity of the partition, Lafarge et al [START_REF] Lafarge | Surface reconstruction through point set structuring[END_REF] propose a structuring approach.

Outliers are ltered out, and the triangulation is computed from a uniformly resampled point cloud. Van Kreveld et al [START_REF] Van Kreveld | Watertight scenes from urban lidar and planar surfaces[END_REF], for their part, build a conformed constrained triangulation with planar polygons that approximate the point cloud.

Finally, combinatorial maps [START_REF] Damiand | Combinatorial maps: ecient data structures for computer graphics and image processing[END_REF] represent an interesting alternative to partition 3D spaces into more meaningful polyhedrons. A combinatorial map is an edge-centered data structure, composed of a set of oriented half-edges called darts, and adjacency relations between these darts. Under this approach, a facet is represented by a cycle of darts, and linking adjacent facets returns a polyhedron. Starting with of soup of planar polygons describing buildings or cities, Diakite et al use this topological information maps to represent objects using a certain levels of detail [START_REF] Diakité | Topological reconstruction of complex 3d buildings and automatic extraction of levels of detail[END_REF] or assign 2.2. Generation of concise polygonal meshes from point clouds23 semantic labels [START_REF] Diakité | Automatic Semantic Labelling of 3D Buildings Based on Geometric and Topological Information[END_REF].

Chapter 3

Our contributions

Limitations of previous works

Our previous review shows that the vectorization of objects in images remains an open problem. Automatic direct extraction methods come at the price of slow convergence rates or require high amounts of data, and the results generated by these techniques often lack of geometric guarantees. On the other hand, vectorization pipelines seem a natural way to produce polygons, but the simplication of pixel subregions turns out to be not that easy. While simplication algorithms oer the user some control on the complexity of the output polygons, they do not take into account some structural information contained in the image, and may drift from the initial object silhouettes. As a consequence, vectorization pipelines are prone to approximation errors.

For these reasons, the construction of a polygonal partition of the image coupled with a cell activation mechanism may constitute an interesting approach in the quest for a generic vectorization tool. Most existing approaches rely on a set of pre-detected line-segments that are tted on object contours. Although robust and oering geometric guarantees, these line-segment-based methods may lack of accuracy. Indeed, they poorly deal with potential intersections of line-segments that might occur in a spatial neighborhood. In particular, they assume line-segments overlap entirely or almost entirely the lineic components of an object. Experience shows that this is not always true, and that the line-segments need to be extended to properly capture the underlying structure. Also, Delaunay triangulations or Voronoi diagrams are quite restrictive. Finally, we observe that imposing homogeneously-sized polygons does not allow the capture of meaningful polygons as line-segments are not uniformly distributed on the image domain. Therefore, we would like to design a polygonal partition technique that addresses the problems previously exposed and brings more semantic meaning to the obtained cells. The generation of a concise polygonal mesh from raw input data is also a challenging task. We observe that performances of approximation methods may depend on the geometric and topological accuracy of the dense meshes they process, which is dicult to guarantee with data acquired in real conditions. Simplication methods are also powerful tools, but some geometric assumptions are in contradiction with our quest towards genericity.

Finally, the main issue of shape assembling methods is the lack of scalability of the underlying geometric data structures that produce a polyhedral decomposition of the space. Splitting the 3D space into subcells using the innite support plane of each previously detected shape is an interesting strategy, but it is way too computationally complex and memory-intensive when several hundred planes are involved.

We now present our contributions in order to address the aforementioned issues.

Contributions

In this thesis, we present two generic, versatile and scalable pipelines for the polygonization of objects of interest in images, and the generation of concise and polygonal meshes from 3D point clouds. 

Kinetic framework for partitioning images and 3D spaces

The principal contribution of this thesis is a kinetic framework for the polygonal partitioning of 2D domains, and the polyhedral partitioning of 3D spaces.

In this framework, a set of pre-detected shapes grow within a certain space, using a dynamic stop criterion that allows us to control the complexity of the generated partitions.

In the 2D case, a set of line-segments progressively widen within the image, and intersect each other. We then decide whether line-segments must keep extending based on image gradient considerations, or a user-dened number of collisions. In chapter 5, we will observe that this strategy allows us to both recover better junctions in lineic structures and describe objects with polygons in a more meaningful manner than superpixel-based polygons.

In the 3D case, we consider a set of convex planar polygons detected in an input point cloud. Like for images, polygons grow inside a bounding box enclosing the point cloud until colliding each other. The stopping condition is again a xed number of intersections or a function of the density of vertices from the point cloud near the collision point. In chapter 6 we will show that our approach yields much lighter partitions, with a signicantly lower algorithmic complexity than exhaustive partitioning techniques.

Global regularization of 2D and 3D primitives

Our second contribution is an algorithm of global regularization of a set of line-segments. Indeed, we observe that line-segment detection techniques do not always preserve the geometric relationships that which are initially visible in an image. In order to improve the spatial coherence of the obtained set of linesegments, Duan et al [START_REF] Duan | Image partitioning into convex polygons[END_REF] proposed a solution to this problem by building an adjacency graph and locally applying a set of operations (fusion, removal, or concurrence reinforcement) to this graph. In our case, we addressed this problem at global scale, by formulating it as an energy minimization problem which aims at recovering parallelism, orthogonality and collinarity relationships between the line-segments. Our formulation is described in chapter 4 of this document.

We extend this mechanism to the regularization of a set of planar shapes, by taking into account additional relationships, including z-symmetry.

Algorithm of 2D and 3D object extraction

Our third contribution is a min-cut algorithm for object extraction using our kinetic partitions. Using a saliency map for images, we perform a binary labelling of the generated cells and return the closed set of edges that separate the active cells from the inactive ones. Our experiments, detailed in chapter 7, suggest that kinetic partitions may constitute a valuable tool for addressing the problem of object vectorization. This is the same approach in 3D, where our formulation relies upon a visibility criterion that leverages the orientations of point normals to extract watertight meshes from the 3D partition. We further evaluate and compare our approach with state-of-the-art mesh generation methods, against several metrics, on a wide range of datasets in terms of complexity, size and acquisition constraints.

Benchmark for concise mesh generation

In this thesis, we evaluate and compare our algorithm for concise polygonal mesh generation with state-of-the-art methods against several quality and performance metrics, on a wide range of 42 datasets that dier in terms of complexity, size, and acquisition characteristics. Our results, from both quantitative and qualitative poins of view, are presented in section 7.2.2. This evaluation material will be released online to the Computer Vision and Compter Graphics communities.

City reconstruction pipeline

We nally propose a computational geometry approach for addressing the problem of city reconstruction from airborne Lidar data. Our algorithm actually combines the 2D vectorization and the 3D reconstruction pipelines introduced before, and turns large datasets with millions of points into a LOD2 representation of the scene, in compliance with the CityGML format [START_REF] Groger | Citygml interoperable semantic 3d city models[END_REF]. Under this formalism, buildings are reconstructed with piecewiseplanar roofs and vertical facades. We present our method and our experiments in chapter 8.

Chapter 4

Shape detection

In this chapter, we focus on the problem of shape detection and regularization from 2D and 3D data. These shapes, also called primitives, constitute the input of the kinetic data structures that we use for modeling urban objects.

We present an algorithm of global regularization of the detected set of primitives. This algorithm reinforces geometric relationships between pairs of spatially close primitives, such as parallelism or orthogonality. We present our formulation, and show that it can be a valuable option in order to generate less complex kinetic partitions.

4.1

Line-segment detection and regularization

Choice of a line-segment detector

Although any of the line-segment detection techniques reviewed in chapter 2 can be used to provide an input to our vectorization pipeline, our experiments use the Line-Segment Detector (LSD) of Van Gioi et al [START_REF] Gioi | Lsd: A fast line segment detector with a false detection control[END_REF].

As previously mentioned, this algorithm has several interesting properties, including a linear algorithmic complexity in the number of pixels in the image, and a mostly parameterless control scheme with respect to other existing algorithms.

Regularization of a set of 2D line-segments

We may optionally operate a global regularization of line-segments in order to (i) correct imprecisions and (ii) reduce the occurrences of skinny cells in the subsequent image partitioning, later detailed in chapter 5. This process is mainly designed for images with man-made objects without strong perspective eects.

We propose two quadratic formulations, performed sequentially for computational eciency, that rst re-orient and then re-align line-segments with respect to the three principal geometric regularities used for characterizing shapes of man-made objects, i.e. parallelism, orthogonality and collinearity.

By denoting by x i ∈ [-θ max , θ max ] the quantity to be added to the initial orientation of the line-segment i with respect to its center, we formulate the line-segment re-orientation problem by minimizing the energy

U (x) = (1 -λ)D(x) + λV (x) (4.1)
where x = (x 1 , .., x n ) is a conguration of perturbations operated on the n line-segments, D(x) and V (x) represent a data term and pairwise potential respectively, and λ ∈ [0, 1] is a parameter weighting these two terms, typically 0.8 in our experiments.

Data term D(x) discourages strong angle deviations with respect to their initial orientation. It is expressed by

D(x) = 1 n n i=1 x i θ max 2 (4.2)
Pairwise potential V (x) encourages pairs of spatially close line-segments which are nearly-parallel or nearly-orthogonal to be exactly parallel or orthogonal:

V (x) = 1 n i=1 j>i µ ij n i=1 j>i µ ij |θ ij -x i + x j | 4θ max (4.3)
where θ ij measures how far the relative angle α ij between line-segments i and j is from a straight or right angle. Formally,

θ ij = α ij (mod π) if α ij ∈ [-π 4 , π 4 [∪[ 3π 4 , 5π 4 [ and θ ij = α ij -π 2 (mod π) otherwise.
The dummy variable µ ij returns 1 if line-segments i and j are (i) spatially close and (ii) |θ ij | < 2θ max , and 0 otherwise. We consider that two line-segments are spatially close if, after building a Delaunay triangulation of points regularly sampled on all the line-segments, at least one Delaunay edge connects their respective sampled points. In practice, sampled points are distant by 10 pixels. Note that time for building a Delaunay triangulation is rather negligible with respect to other operations. Such a neighborhood strongly reduces the number of irrelevant interactions with respect to a standard Euclidean distance by imposing direct visibility between line-segments. Assuming there are m non-zero µ ij , we introduce a new set of variables y = (y 1 , .., y m ) so that our formulation can be turned to a quadratic optimization problem with (n + m) variables and 2(n + m) linear constraints:

minimize x,y (1 -λ) n i=1 x i θ max 2 + λ m k=1 y k subject to x i ≤ θ max , i = 1, . . . , n -x i ≤ θ max , i = 1, . . . , n y k ≤ 1 4θ max (θ ij -x i + x j ), k = 1, . . . , m -y k ≤ 1 4θ max (θ ij -x i + x j ), k = 1, . . . , m (4.4) 
This minimization problem is solved using a standard optimization library [START_REF] Gertz | Object-oriented software for quadratic programming[END_REF].

We then use an analogous formulation to re-align line-segments. By now denoting by x i ∈ [-d max , d max ] the translation to be operated on the linesegment i along its orthogonal vector, we minimize the energy U (x) of Equation 4.4 with

D(x) = n i=1 (x i /d max ) 2 and V (x) = n i=1 j>i µ ij (|d ij -x i + x j |/4d max ).
Here, d ij corresponds to the distance between the support lines of parallel line-segments i and j, whereas µ ij returns 1 if (i) µ ij = 1, (ii) line-segments i and j are parallel, and (iii) d ij < 2d max , and 0 otherwise. In our experiments, we typically xed θ max and d max to 5 • and 1 pixel. Figures 4.1 and 4.2 show the impact of regularization on urban scenes.

Running times of the regularization procedure vary between a few seconds and a few minutes, depending on the size of the problem. On an indicative basis, a 9 Mpixels satellite image of Seoul city, whose a cropped part is showed in Figure 4.2, is processed in 13.5 seconds. We refer the reader to the Table 5.1 for more values.

4.2

Plane detection and regularization

Choice of a plane detection technique

To extract planar primitives from 3D data, we use the region-growing implementation of the CGAL library [OVJ + 19]. This approach requires a few parameters: a minimal number σ of plane inliers, a tting tolerence ε to the plane and a normal deviation θ for matching a neighbor vertex to the current processed point.

In our experiments, the tting tolerance ε and the minimal shape size σ are typically set to 0.2% of the bounding box diagonal and 0.01% of the total number of input points in case of Laser acquisition and synthetic data. The tting tolerance is increased to 0.5% for multi-view stereo acquisition which generates more noisy point clouds. For approximation of freeform objects, these values vary according to the desired abstraction level: the higher the values of ε and σ, the more concise the output model. θ, for its part, it set to a default value of 25 • . Note that our polyhedral partitioning algorithm does not require planes, but planar polygons. However, obtaining polygons from planes is easy. A possible method only requires to project all inliers onto a plane and compute a convex hull of the projected points.

Regularization of a set of 3D planar primitives

Inspired by our approach in the 2D case, we now introduce a global regularization procedure of the set of planes supporting the planar primitives extracted from an input point cloud. It can correct imprecisions in the planar primitives extraction step, improve the performances of the kinetic partitioning algorithm, and decrease the complexity of the subsequent partition.

Our procedure takes the shape of a two-step process, in which the planes are rst re-oriented, then re-aligned, in order to favor geometric relationships between the planes. Like in 2D, both stages of the process are formulated as quadratic optimization problems with linear constraints. The targeted relationships are parallelism, coplanarity, and z-symmetry, and a particular case of orthogonality. Our approach is tailored for point clouds describing man-made structures like buildings, and assumes that the data is correctly oriented in the usual 3D frame.

Let P = (P 1 , P 2 , . . . P N ) be a set of N detected planes. Each plane P i is represented by a couple ( -→ n i , d i ) where the former is the unit normal vector to the plane, and the latter its signed distance to the origin of the 3D frame.

-→ ni = -→ nj ϕ θ (a) -→ ni -→ nj ϕ θ (b) -→ ni -→ nj ϕ θ (c) -→ ni -→ nj ϕ θ (d)

Re-orienting the planes

Each plane P i is associated to a normal vector -→ n i that can be converted to a couple of spherical coordinates (ϕ i , θ i ) on a half-unit sphere. We obtain the latitude ϕ i ∈ [0, π/2] and the longitude θ i ∈] -π, π]. These spherical coordinates can be used to establish one geometric relationship between two adjacent planes P i and P j among those listed in Table 4.1.

Note that we only consider a simplied version of orthogonality, since the equation that ties couples (ϕ i , θ i ) and (ϕ j , θ j ) is not linear in the general case. Given a vector -→ n i , there exists indeed a innity of vectors -→ n j that are orthogonal to it. However, this formulation still handles most of the cases

Relationship

Mathematical formulation

Parallelism ϕ i = ϕ j θ i = θ j Z-symmetry ϕ i = ϕ j θ i -θ j ≡ π mod 2π Orthogonality-1 ϕ i -ϕ j = ±π/2
Orthogonality-2

ϕ i + ϕ j = 0 θ i -θ j ≡ π/2 mod π Table 4
.1: Optimized geometric relationships and their mathematical pairwise formulations. observed in the real world, and applies well to buildings in particular.

Energy. Similarly to the 2D case, our reorientation procedure consists in adding quantities x 2i-1 ∈ [-ϕ max , ϕ max ] and x 2i ∈ [-θ max , θ max ] to the rst and second elements of each couple (ϕ i , θ i ) in order to obtain new couples (ϕ i , θ i ) satisfying one of the equations of Table 4.1. The optimal vector of perturbations x = (x 1 , . . . x 2N ) is then obtained by minimizing the energy

U (x) = (1 -λ)D(x) + λV (x) (4.5)
where D(x) is a data term discouraging high perturbations, and V (x) is a pairwise potential encouraging pairs of near-parallel, near-z-symmetric and near-orthogonal planes to become exactly parallel, z-symmetric or orthogonal. As for the balancing term λ ∈ [0, 1], it is again typically set to 0.8. The data term D(x) is dened as:

D(x) = 1 N N i=1 x 2i-1 ϕ max 2 + x 2i θ max 2 (4.6)
The pairwise potential V (x), for its part, is a normalized sum of four terms, each of them being associated to one of the geometric relationships we would like to optimize:

V (x) = 1 M V P (x) + V Z (x) + V 1 O (x) + V 2 O (x) (4.7)
Indeed, when initializing this optimization problem, we take each pair of spatially close planes P i and P j and assign this pair to one of the terms

V P (x), V Z (x), V 1 O (x) or V 2 O (x)
, depending on if these planes are near-parallel, near-z-symmetric or near-orthogonal. To this end, we compute variables ϕ ij and θ ij that indicate how far P i and P j are from a given relationship.

Parallelism. Re-oriented planes P i and P j become parallel if and only if

ϕ i + x 2i-1 = ϕ j + x 2j-1 θ i + x 2i ≡ θ j + x 2j mod 2π ⇐⇒ x 2i-1 -x 2j-1 = -ϕ i + ϕ j x 2i -x 2j ≡ -θ i + θ j mod 2π
Let us set:

   ϕ P ij = -ϕ i + ϕ j θ P ij = -θ i + θ j + 2kπ, k ∈ Z
If there exists k such that |ϕ P ij | < 2ϕ max and |θ P ij | < 2θ max , then we mark the planes P i and P j as near-parallel and set a boolean variable µ P ij to 1. Otherwise, it is set to 0. V P (x), which encourages these planes to become exactly parallel, is dened as:

V P (x) = N i=1 j>i µ P ij |ϕ P ij -x 2i-1 + x 2j-1 | 4ϕ max + |θ P ij -x 2i + x 2j | 4θ max (4.8)
Now, assuming that there are µ P near-parallel planes, we can actually reformulate V P (x) as a sum of constrained variables:

V P (x) = µ P k=1 (y k + z k ) y k ≤ 1 4ϕ max (ϕ P ij -x 2i-1 + x 2j-1 ) -y k ≤ 1 4ϕ max (ϕ P ij -x 2i-1 + x 2j-1 ) z k ≤ 1 4θ max (θ P ij -x 2i + x 2j ) -z k ≤ 1 4θ max (θ P ij -x 2i + x 2j ) (4.9)
Z-symmetry. Likewise, planes P i and P j become z-symmetric if and only if

ϕ i + x 2i-1 = ϕ j + x 2j-1 (θ i + x 2i ) -(θ j + x 2j ) ≡ π mod 2π ⇐⇒ x 2i-1 -x 2j-1 = -ϕ i + ϕ j x 2i -x 2j ≡ -θ i + θ j + π mod 2π
We set:

   ϕ Z ij = -ϕ i + ϕ j θ Z ij = -θ i + θ j + (2k + 1)π, k ∈ Z If there exists k such that |ϕ Z ij | < 2ϕ max and |θ Z ij | < 2θ max ,
then planes P i and P j are considered near-z-symmetric. We set a dummy variable µ Z ij to 1 and we dene V Z (x) as:

V Z (x) = N i=1 j>i µ Z ij |ϕ Z ij -x 2i-1 + x 2j-1 | 4ϕ max + |θ Z ij -x 2i + x 2j | 4θ max (4.10)
Assuming that we identied µ Z planes as near-z-symmetric, V Z (x) can also be rewritten as a sum of constrained variables:

V Z (x) = µ Z k=1 (y k + z k ) y k ≤ 1 4ϕ max (ϕ Z ij -x 2i-1 + x 2j-1 ) -y k ≤ 1 4ϕ max (ϕ Z ij -x 2i-1 + x 2j-1 ) z k ≤ 1 4θ max (θ Z ij -x 2i + x 2j ) -z k ≤ 1 4θ max (θ Z ij -x 2i + x 2j ) (4.11)
Orthogonality-1. In this particular case of orthogonality, only latitudes are taken into account. Planes P i and P j become orthogonal if and only if:

(ϕ i + x 2i-1 ) -(ϕ j + x 2j-1 ) = ± π 2 ⇐⇒ x 2i-1 -x 2j-1 = ± π 2 -ϕ i + ϕ j
Similarly to above, we dene a variable:

ϕ O 1 ij = ± π 2 -ϕ i + ϕ j If |ϕ O 1 ij | < 2ϕ max ,
then planes P i and P j are considered as near-orthogonal and the boolean variable µ O 1 ij is set to 1. We dene:

V 1 O (x) = N i=1 j>i µ O 1 ij |ϕ O 1 ij -x 2i-1 + x 2j-1 | 4ϕ max (4.12)
Assuming that there exists µ O 1 near-orthogonal pairs of planes considered by this function, we get:

V O 1 (x) = µ O 1 k=1 y k y k ≤ 1 4ϕ max (ϕ O 1 ij -x 2i-1 + x 2j-1 ) -y k ≤ 1 4ϕ max (ϕ O 1 ij -x 2i-1 + x 2j-1 ) (4.13) 
Orthogonality-2. Finally, the other case of orthogonality applies to the reoriented planes P i and P j when:

(ϕ i + x 2i-1 ) + (ϕ j + x 2j-1 ) = 0 (θ i + x 2i ) -(θ j + x 2j ) ≡ π 2 mod 2π ⇐⇒ x 2i-1 + x 2j-1 = -ϕ i -ϕ j x 2i -x 2j ≡ π 2 -θ i + θ j mod 2π Finally, we set:    ϕ O 2 ij = -ϕ i -ϕ j θ O 2 ij = π 2 -θ i + θ j + 2kπ, k ∈ Z Again, if there exists k such that |ϕ O 2 ij | < 2ϕ max and |θ O 2 ij | < 2θ max ,
then planes P i and P j are considered near-orthogonal. As a consequence, we trigger the corresponding boolean variable µ O 2 ij in the nal term V 2 O (x), which is dened as:

V 2 O (x) = N i=1 j>i µ O 2 ij |ϕ O 2 ij -x 2i-1 -x 2j-1 | 4ϕ max + |θ O 2 ij -x 2i + x 2j | 4θ max (4.14)
Finally, considering that there exists µ O 2 pairs of near-orthogonal planes regularized via V 2 O (x), we reformulate the previous equation as:

V O 2 (x) = µ O 2 k=1 (y k + z k ) y k ≤ 1 4ϕ max (ϕ O 2 ij -x 2i-1 -x 2j-1 ) -y k ≤ 1 4ϕ max (ϕ O 2 ij -x 2i-1 -x 2j-1 ) z k ≤ 1 4θ max (θ O 2 ij -x 2i + x 2j ) -z k ≤ 1 4θ max (θ O 2 ij -x 2i + x 2j ) (4.15)
Normalization term. The normalizing term of equation 4.7 is nally dened as the number of pairs of planes taken into account in all the terms

V P (x), V Z (x), V 1 O (x) and V 2 O (x).
In other words: 

M = 2µ P + 2µ Z + µ O 1 + 2µ

Re-aligning the planes

Once planes are re-oriented, we re-align them in order to make pairs of nearcoplanar planes exactly coplanar. This is the same problem as in 2D, when pairs of near-collinear line-segments are made exactly collinear.

Let

x i ∈ [-d max , d max ]
be the argument of the translation to be operated on the plane P i , along its normal vector -→ n i . The optimal conguration of arguments x = (x 1 , x 2 , . . . x N ) is obtained through the minimization of an energy 

U (x) = (1 -λ)D(x) + λV (x) D(x) = 1 N N i=1 x i d max 2 V (x) = 1 M n i=1 j>i µ C ij |d ij -x i + x j | 4d max (4.17)
where

• d ij corresponds to the signed distance between the planes P i and P j ;

• µ C ij = 1 if and only if (i) µ P ij = 1, (ii) planes P i and P j are parallel, and (iii)

|d ij | < 2d max ; • M = N i=1 j>i µ C ij .
In our experiments, we typically set ϕ max and θ max to 5 • and d max to the tting tolerance ε dened during the plane detection phase. From a visual point of view, enabling the regularization returns a simplied version of the model by removing asperities noticed in the non-regularized surface. Consequently, the geometric error increases, with respect to the noised CAD model. However, the performances of the polyhedral partitioning algorithm are signicantly improved. The regularization procedure itself is quite fast, with an execution time of 2.89 seconds for this example involving 1096 initial planes. Like in 2D, our implementation relies on the OOQP library [START_REF] Gertz | Object-oriented software for quadratic programming[END_REF].

In our experiments, we apply this regularization procedure when the point cloud describes a man-made object or a urban scene. In average, applying the regularization on man-made objects leads to the generation of partitions that contain 10 to 20% less cells than the non-regularized partitions. However, it requires point clouds to be coherently oriented with respect to the usual 3D frame.

Conclusions

In this chapter, we introduced a generic, global and ecient regularization procedure for improving a set of basic geometric relationships between a set of line-segments detected in an image. This procedure is formulated as a quadratic optimization problem in the real domain with linear constraints, and can be solved in a short lapse of time. We gave an overview of its impact in the subsequent partitioning step of our vectorization pipeline.

Likewise, we presented a global regularization procedure for improving the geometric consistency of a set of planes, and showed how it can be used to improve the quality of reconstructed models for man-made objects. To this end, we assume that the data is consistently oriented with respect to the usual 3D frame.

In next chapters, we describe a kinetic approach for generating decompositions of 2D or 3D spaces from a set of predetected shapes. We will show that our approach produces lighter and simpler partitions with respect to naive, exhaustive approaches.

Chapter 5

Polygonal partitioning in 2D

In this chapter, we present an algorithm that constructs a 2D polygonal partition from a pre-detected set of line-segments in an image. Polygonal partitions oer a good alternative to traditional superpixels, especially for analyzing scenes that have strong geometric signatures. Current applications of polygonal partitions include for instance image-based rendering [START_REF] Rodriguez | Exploiting repetitions for image-based rendering of facades[END_REF], scene illumination [START_REF] Duchene | Mixed illumination analysis in single image for interactive color grading[END_REF], city modeling [START_REF] Duan | Towards large-scale city reconstruction from satellites[END_REF] or indoor reconstruction [MMV + 14].

Existing algorithms produce homogeneously-sized polygons that fail to capture thin geometric structures and over-partition large uniform areas. We propose a kinetic approach that brings more exibility on polygon shape and size. The key idea consists in progressively extending pre-detected linesegments until they meet each other. Our experiments demonstrate that output partitions both contain less polygons and better capture geometric structures than those delivered by existing methods.

Background on kinetic data structures

A kinetic data structure consists in a set of geometric primitives, whose coordinates are continuous functions of time. The purpose of kinetic frameworks [START_REF] Basch | Data structures for mobile data[END_REF][START_REF] Guibas | Kinetic data structures[END_REF] is to maintain the validity of a set of statements that apply to such a data structure. These statements, called certicates, are built upon predicates, which are functions of the geometric primitives that return a discrete set of values. Most often, predicates evaluate the sign of an algebraic expression binding two primitives or more, and therefore convey an idea of interaction between them.

As primitives move, events may occur when certicates become invalid.

Kinetic frameworks show a strong algorithmic interest to dynamically order the times of occurrences of the events within a priority queue. When an event actually happens on top of the priority queue, the geometric objects responsible for a certicate failure and the priority queue itself are updated, so that the kinetic data structure remains valid at any time of the simulation.

Examples of kinetic data structures include dynamic Delaunay triangulations of a set of moving vertices [AGG + 10], or polyhedral surface reconstruction from point clouds [START_REF] Brédif | 3d building model tting using a new kinetic framework[END_REF].

In what follows, we address the problem of image partitioning using the terminology introduced by Basch and Guibas in the aforementioned articles, leading us to design our own kinetic framework, later used to generate the desired partitions. We propose a kinetic framework in which the line-segments are progressively lengthening in the image domain. The underlying data structure is a dynamic planar graph G t = (V t , E t ) that partitions the image domain, with V t and E t the set of vertices and edges respectively at time t. When line-segments intersect, the complexity of the graph evolves with typically the insertion of new vertices and edges so that it remains planar. We dene below the primitives, certicates and update operations of our kinetic formulation.

Primitives. Because the two extremities of a line-segment should be able to expand independently, our primitives correspond to half line-segments. Formally, a detected line-segment between points A and B generates two

M B A P k' (t) P k (t) v k' v k Figure 5.2: Initialisation. A line-segment [AB] is split into two primitives s k (t) = [M P k (t)] and s k (t) = [M P k (t)], of speed vectors - → v k and -→ v k
, respectively. These primitives are later integrated to our kinetic data structure.

primitives s k (t) = [M P k (t)] and s k (t) = [M P k (t)]
where xed point M is the mid-point of A and B, and moving points P k (t) and P k (t) evolve with time such that

P k (t) = A + - → v k × t (5.1) P k (t) = B + -→ v k × t (5.2) where - → v k (respectively -→ v k ) is the speed vector of primitive s k (t) (resp. s k (t)) of direction --→ M A (resp.
--→ M B) and intensity v k (resp. v k ). In our experiments, v k is set to 1.

Certicates. For each primitive s i , we dene the certicate function C i (t)

as C i (t) = N j=1 j =i Pr i,j (t) (5.3)
where N is the number of primitives of the kinetic system, and Pr i,j (t) the predicate function that returns 0 when primitive s i enters in collision with primitive s j , i.e. when the distance from point to line-segment d(P i (t), s j (t)) = 0, and 1 otherwise. Primitive s i is called the source primitive, and s j , the target primitive. We also call collision point, the point located at the intersection of two primitives.

Initialization. We construct the planar graph at t = 0 by inserting as vertices (i) the mid-point of each segment, (ii) the four corner points of the image domain, and (iii) points located at the intersection of two linesegments, if any. We set edges between the four successive corner points as well as in between possible intersection points and the mid-points of their corresponding line-segments, as illustrated in Figure 5.1-(b).

We also create the priority queue by computing and sorting all the times for which certicates C i (t) = 0 for i = 1..N . Instead of considering all possible pairs of line-segments at once, we compute several priority queues in successive time intervals [kT, (k + 1)T [ to reduce the algorithmic complexity. In practice, when k is incremented, a new priority queue is built from events occurring within this temporal range. By dening the bounding box of a primitive as the smallest image-aligned square that contain the primitive at time (k+1)T , and by assuming primitives extend at constant speed, we easily nd these events as the pairs of primitives whose bounding boxes overlap.

T is xed to 50 in our experiments, which is a good compromise between running time and memory consumption.

Updating operations. The planarity property of our graph is broken when an event happens, i.e. when one of the N certicates become null.

We repair it by rst inserting the collision point in the graph. When three primitives or more are concurrent, we do not insert this point if it already exists. We then update the edge set of the graph by (i) inserting a new edge between the collision point and the last collision point of the source primitive, and (ii) splitting the edge supporting the target primitive with respect to the collision point, as illustrated in Figure 5.1-(c).

In addition to graph updates, we also decide whether the source primitive should keep propagating. We stop the propagation of the source primitive if it has entered into collision more than a user-dened number of times K, or else if its potential prolongation aligns well with high gradients in the input image. This second condition allows us to not stop the primitive when an obvious image discontinuity along its supporting line exists. Note that our kinetic data-structure is a motorcycle graph [START_REF] Eppstein | Raising roofs, crashing cycles, and playing pool: Applications of a data structure for nding pairwise interactions[END_REF] when K = 1 and the gradient-based condition is deactivated. Figure 5.3 shows the impact of the stopping conditions on the output partition.

Finally we update the priority queue by removing the processed event from it, and also, in case the propagation is stopped, all the events created from the certicate function of the source primitive. Finalization. Once the priority queue is empty, we simplify the planar graph by removing the unnecessary vertices, i.e. vertices adjacent to two colinear edges which are thus merged, as illustrated in Figure 5.1-(e). Optionally, we also remove skinny polygons when the width of their oriented bounding rectangles is lower than 2 pixels. Such polygons, that can hardly be exploited by subsequent tasks, are merged to the biggest adjacent polygon under the condition the new polygon is convex.

Algorithm 1 Pseudo-code of the Kinetic partitioning 1: Initialize the planar graph G 2: Initialize the priority queue Q

3: while Q = ∅ do 4:
Pop the source and target primitives from

Q 5: Update G 6:
Test the stopping condition of the source primitive 7:

Update Q 8: end while 9: Finalize the planar graph

The global mechanism of our algorithm is summarized in Algorithm 1. In all our experiments, we set the maximal number of collisions K to 1, except for Figure 5.3. Note that the returned polygons are convex by construction. As concavities inside polygons only appear when two non-colinear primitives intersect at exactly the same time during the propagation phase, we simply force one of the two primitives to keep propagating. Convexity is an interesting property that makes some geometric computations simpler as polygon intersection, point sampling or Constructive Solid Geometry operations. This is for instance useful in 3D reconstruction [START_REF] Bodis-Szomoru | Fast, approximate piecewise-planar modeling based on sparse structure-from-motion and superpixels[END_REF]. However, to obtain non-convex polygons, a possible postprocessing could be to group adjacent convex polygons following a color metric.

Experiments

We tested our algorithm on large-scale satellite images, aerial images, as well as on the Berkeley dataset [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF]. We deactivated the line-segment regularization for Berkeley images which are mainly composed of organic shapes.

Control on the complexity of the partition

Our main parameter is the LSD scale parameter, which allows us to control the sensitivity to image noise, and thus the amount of input line-segments. Despite our algorithm does not oer an exact control on the output number of polygons, this parameter directly impacts on it, as illustrated in Figure 5.4.

Comparison with superpixel methods

We compared our algorithm with state-of-the-art superpixel methods SNIC [START_REF] Achanta | Superpixels and polygons using simple non-iterative clustering[END_REF] and ERS [START_REF] Liu | Entropy rate superpixel segmentation[END_REF] and polygonal partitioning methods VORONOI [START_REF] Duan | Image partitioning into convex polygons[END_REF] and SNICPOLY [START_REF] Achanta | Superpixels and polygons using simple non-iterative clustering[END_REF]. Because these methods are designed to produce homogeneously-sized regions, our output partitions are visually different, combining both large polygons on homogeneous image areas and thin polygons on lineic structures as illustrated in Figure 5.5. Among the tested methods, only ERS oers enough exibility on region shapes to capture lineic structures like us. However, converting ERS superpixels into polygons is a delicate task because of boundary irregularities and region connectivity am- biguities. Our algorithm performs best on man-made scenes in which objects or object parts can be well captured by polygons.

We evaluated our algorithm on the Berkeley300 dataset [MFTM01] using standard quality criteria of superpixel methods, in particular the boundary recall as dened in [START_REF] Neubert | Superpixel benchmark and comparison[END_REF] as well as the boundary precision. The former indicates the ratio of Ground Truth contours correctly recovered by the output region boundaries, whereas the latter measures the ratio of output region boundaries that correctly recovers the Ground Truth contours. We measured the boundary precision on the entire image, contrary to some works [START_REF] Achanta | Superpixels and polygons using simple non-iterative clustering[END_REF] that compute it on an ε-domain around the Ground Truth contours. For measuring the quality criteria from polygonal partitions, the edges of oating polygons have been discretized into pixel boundaries. We measured these criteria for partitions returning between 50 and 1, 000 regions.

Figure 5.6 shows our algorithm outperforms polygonal partitioning methods VORONOI and SNICPOLY on boundary recall by quite a big margin as their scores at a given number of polygons remain lower than ours with twice less polygons. Our algorithm performs best for a number of regions between 400 and 800, with a boundary recall even higher than superpixel method SNIC. Because our partitions contain large-sized polygons, our algorithm even outperforms superpixel methods on the precision to recall curve when recall is higher than 0.85. To get homogeneously-sized polygons, we can apply a Poisson-disk sampling as postprocessing, similarly to [START_REF] Duan | Image partitioning into convex polygons[END_REF]. Its By reasoning at the scale of geometric shapes instead of pixels, and by exploiting an ecient framework based on Computational Geometry, our algorithm is computationally ecient and scalable. As shown in 

Results on aerial and satellite imagery

We also tested our algorithm on urban environments, using data produced by satellite or aerial imagery. For satellite images, the data was collected by the WorldView-2 and WorldView-3 satellites, therefore the resolution of the images varies between 30 and 50 centimeters per pixel. Aerial images were acquired thanks to UAVs. Assembled orthophotos could be accessed thanks to the OpenAerialMap database [Ope19], and have a standard resolution of 4 centimeters. Figures 5.7 and 5.8 show results generated by our algorithm on these two kinds of images. We observe that most individual structures are captured by subsets of polygonal cells. This assessment opens the door to the extraction of regions of interest, here the building rooftops, as polygonal shapes. . We observe that most building rooftops can be approximated as simple subsets of polygonal cells. This paves the way for the vectorization of such objects using a saliency map.

Limitations

Our algorithm has a few shortcomings.

First of all, it does not oer to the user an exact control on the number of output polygons.

In addition, the regularization of line-segments is not eective on organic images. It reduces the complexity of the partition, but at the expense of accuracy.

Moreover, missing line-segments on small structural parts can lead to under-segmentation situations that are currently not handled by our algorithm. One solution would be to split polygons with heterogeneous radiometry within the kinetic data structure, or as a postprocessing step. Also, all line-segments propagate in the same way, regardless of their relevance.

Conclusion

We presented a kinetic approach to partition images into oating polygons. Whereas some existing methods impose homogeneously-sized polygons in the style of superpixels, our line-segment extension mechanism oers more exibility on polygonal shapes. This allows us to better recover geometric matters contained in man-made and organic images, and capture thin structures without over-partitioning large homogeneous areas. By reasoning at the scale of geometric shapes, instead of pixels, within a computational geometry framework, our algorithm is scalable and computationally ecient. In chapter 7, we show that our partitions can be used to approximate objects of interest, such as buildings in images or more organic shapes, as simple polygons with a low number of edges.

Chapter 6

Polyhedral partitioning in 3D

Converting point clouds into concise polygonal meshes is an automated manner is an enduring problem in computer graphics.

Existing methods commonly operate by assembling a set of planar shapes, previously detected from the input points, which can be done interactively or automatically. These automatic approaches [CLP10, NW17] operate by slicing the 3D space bounding the input point cloud into a partition of convex polyhedral cells with the innite supporting plane of each primitive. The output mesh is then extracted by labelling the cells as inside our outside the 3D objects. These approaches yield concise meshes, but are not scalable. Complex objects and scenes, which are composed of more than 100 planar shapes, result in huge partitions and too complex energetic formulations when constructing the mesh.

Inspired by our previous work on the polygonal partitioning of images, this chapter describes a shape assembling method which is at least one order of magnitude more ecient than existing methods, both in time and number of processed shapes. Given a set of convex planar polygons as input, we design a kinetic data structure in the 3D space, in which polygons grow until they collide each other. This simple, yet natural idea produces much lighter and meaningful partitions than exhaustive ones and constitute a good support for the subsequent mesh extraction step.

Algorithm

Our algorithm takes as input a set of convex planar polygons, and returns as output a partition of the bounding 3D space. It consists of a kinetic data structure [START_REF] Guibas | Kinetic data structures[END_REF] in which convex polygons extend at constant speed until colliding with each other. When a collision between two or more polygons occurs, we modify the evolution of these polygons by either stopping their growth, changing their direction of propagation or splitting them. This set of polygons progressively partitions the 3D space into polyhedra, the nal partition being obtained when no polygon can grow anymore. We observe that each facet of the underlying connected 3D graph is therefore a part or an extension of the convex polygons.

An introduction of kinetic data structures has been provided in Section 5.1 of this thesis. In what follows, we describe the ingredients of our kinetic framework for the partitioning of a bounding volume. To our knowledge, we are the rst to design and implement a kinetic data structure that collides polygons in the 3D space.

Primitives and kinetic data structure. The primitives of our kinetic framework are polygons whose vertices move at constant speeds along given directions. The initial set of polygons is dened as the convex hulls of the planar shapes. Polygons grow by uniform scaling: each vertex moves in the opposite direction to the center of mass of the initial polygon. The underlying kinetic data structure P is the set of these polygons that, we assume, do not intersect with each other. When two or more polygons intersect, we modify primitives to maintain valid the intersection-free property. Certicates. For each primitive i, we dene the certicate function C i (t)

as

C i (t) = N j=1 j =i Pr i,j (t) (6.1)
where N is the number of primitives of the kinetic data structure, and Pr i,j (t) the predicate function that returns 0 when primitive i collides with primitive j, i.e. when the minimal distance between the polygon boundary of primitive i and the closed polygon of primitive j equates zero for the rst time, and 1 otherwise. Primitive i is called the source primitive, and j, the target primitive. Because the directions of propagation of polygons can change along time, the computation of this minimal distance is a dicult task in practice. We detail in Section 6.2 how we compute this distance eciently.

Initialization. Before starting growing the set of convex hulls, we rst need to decompose them into intersection-free polygons. As illustrated in Figure 6.2, each non intersection-free polygon is cut along the intersection lines with the other polygons. Because the propagation of polygons outside the bounding box is not relevant in practice, we also insert the six facets of the bounding box into the kinetic data structure. We denote by P 0 this set of intersection-free polygons. In addition, we populate the priority queue by computing and sorting in ascending order the times of collision, i.e. times for which certicates C i (t) = 0 for each polygon i of P 0 .

Updating operations. When a collision between primitives occurs, we need to update the kinetic data structure to keep the set of polygons free of intersection.

We rst modify the source polygon. As illustrated in Figure 6.3, four cases are distinguished:

• A vertex of the source polygon collides with the target polygon (case a). We replace the vertex by two sliding vertices that move along the intersection line in opposite directions.

• A sliding vertex of the source polygon collides with the target polygon (case b). We modify the direction of propagation of the sliding vertex to follow the intersection line with the target polygon. In addition, we Figure 6.2: Initialization. At t = 0, the blue polygon intersects two other polygons, the intersections being represented by the red and green linesegments (left). We decompose it into intersection-free polygons with cuts along the intersection lines (red and green dashed lines). The new vertices are either kept xed when located at the junction of several intersection lines (white points) or are moving along the intersection lines (gray points). We denote them as frozen vertices and sliding vertices respectively (right). A polygon is active if not all its vertices are frozen.

create a frozen vertex where the intersection line with the target polygon and the intersection line with the polygon supporting the sliding vertex before collision meet.

• A sliding vertex of the source polygon collides with the target polygon while a sliding vertex guided by the target polygon already exists (case c). We create a frozen vertex where the two intersection lines meet: the propagation of the source polygon is locally stopped.

• An edge of the source polygon collides with an edge or vertex of the target polygon (case d). Source and target polygons are split along their intersection line with the creation of eight sliding vertices (two per new polygon).

Note that collisions between two coplanar polygons are included in cases a and b. In some particular situations, it might also happen that an edge of the source polygon collides with the interior of the target polygon. We simply treat it as case a. In many situations, it is interesting to extend the source polygon on the other side of the target polygon. To decide whether this should happen, we dene a crossing condition which is valid if (i) the source polygon has collided a number of times lower than a user-specied parameter K, or else if (ii) relevant input points omitted during shape detection can be found in the other side of the target polygon. Parameter K is a trade-o between the complexity of the polyhedron partition and the robustness to missing data. In particular, K = 1 yields the simplest partition whereas K = ∞ produces the partition returned by the exhaustive plane slicing approach. Parameter K is typically set to 2 in our experiments. The second criterion is data-driven: it counts the number of input ε d points contained in a box (black dashed rectangle in the inset) located behind the target polygon (red segment) and aligned with the source polygon (black segment). In the inset, this number is 5. The thickness of the box is twice the tting tolerance ε used for detecting planar shapes while its depth d is chosen as 10 times the average distance d between neighbors of the k-nearest neighbor graph of the input points. Assuming the average density of points sampling the object surface is approximately d -2 , we validate the criterion when the density of points in the box is higher than half of d -2 in practice. This data-driven criterion is useful to recover planar parts missed during shape detection, as illustrated in Figure 6.4. Finally we update the priority queue. We rst remove the processed event between the source and the target polygons from the queue. If the two polygons have been modied, we recompute their times of collision with the active polygons if not all their vertices are frozen, or remove their times of collision with the active polygons from the queue otherwise. If new polygons have been created (case d or cases a/b with valid crossing condition), we compute their times of collision with the active polygons and insert them into the priority queue.

Algorithm 2 Kinetic partitioning

Initialize the kinetic data structure P to P 0 Initialize the priority queue

Q while Q = ∅ do
Pop the source and target primitives from Q Test the crossing condition of the source primitive Update P Update Q end while Finalize the tessellation Finalization. When the priority queue is empty, the kinetic data structure does not evolve anymore. The output polygons are composed of frozen vertices only and form a partition of polyhedra. We extract this partition as a half-edge data structure by connecting the polygons. Note that the polyhedra are convex by construction. The global mechanism of the kinetic partitioning is summarized in Algorithm 2. A detailed pseudo-code is also provided in appendix.

Implementation details

Our algorithm has been implemented in C++ using the CGAL library for the geometric operations. In particular, we used the exact predicates, exact constructions kernel for the computation of distances and times of collision. We now explain three important implementation details that improve the eciency and scalability of our method.

Reformulation as collaborative 2D collision problems. At each update of the kinetic data structure, the propagation of the source polygon is likely to be modied. Consequently, the update of the priority queue requires the distance of this polygon to each other active polygons to be recomputed. Therefore, events of the kinetic data structure can be computed using a simple point-to-line 2D distance.

To avoid such time consuming operations, we algorithmically reformulate the 3D collision problem as N collaborative propagations of polygons in 2D controlled by a global priority queue, N being the number of planar shapes. The intuition behind this reformulation is that two non-coplanar polygons cannot collide somewhere else than along the 3D line intersecting their respective planes. This 3D line being represented by a 2D line in the planes containing the two polygons, we can then use a simple point-to-line distance in 2D to compute the times of collisions. Although more events must be processed with this reformulation, the update of the priority queue is drastically simplied. Figure 6.5 illustrates our approach.

Priority queue Although all possible collisions should be inserted into the priority queue, we observe that an active vertex often collides with only the three closest lines. To reduce memory consumption and processing time, we thus restrict the number of collisions per vertex in the priority queue to three. If the three collisions occur and the vertex is not frozen we insert the three next collisions of this vertex in the priority queue and repeat this operation as many times as necessary. This reduces running time and memory consumption by a factor close to 1.5 and 3 respectively. Spatial subdivision To increase the scalability of our algorithm, we oer the option to subdivide the bounding box of the object into uniformly-sized 3D blocks in which independent kinetic partitionings are operated. For each block, we collect the closest planar shapes, i.e. those whose initial convex polygon is either inside the block or intersecting at least one of its sides.

We then operate the kinetic partitioning inside the block from this subset of planar shapes.

Once all blocks are processed, we merge the polyhedral partitions. An important speed-up factor lies into the fact that only a portion of planar shapes is involved in the partitioning of each block. Our implementation treats blocks sequentially, but one could process them in parallel for even better performances.

Experiments

Kinetic vs. exhaustive partitions

We compare our algorithm of polyhedral partitioning of a 3D space with the naive, exhaustive approach that is implemented in current shape assembling techniques [START_REF] Chauve | Robust piecewiseplanar 3D reconstruction and completion from large-scale unstructured point data[END_REF][START_REF] Nan | Polyt: Polygonal surface reconstruction from point clouds[END_REF]. Figure 6.7 plots the average number of obtained polyhedra and the running times of both methods for a variety of models, against the number of detected planar shapes. These plots demonstrate the scalability of our kinetic algorithm. For N = 100 planar shapes, which approximatively corresponds to the processing limits of the aforementioned techniques, it can return, in average, 100 times less polyhedra and run twice as fast as the exhaustive approach. These factors keep increasing with the number of input planar shapes. Figure 6.6, which shows examples of kinetic and exhaustive partitions, conrms this trend. Generated in a shorter lapse of time, a kinetic partition is much lighter than an exhaustive one, and contains more meaningful polyhedra.

Spatial subdivision

Figure 6.8 plots the time and memory savings against the number of planar shapes for several subdivision schemes. While the savings are signicant, the use of spatial subdivision produces a simplied polyhedral partition as polygons do not propagate to neighboring blocks. Figure 7.10, in next chapter, illustrates this compromise between algorithm eciency and surface quality. 

Conclusion

We presented an algorithm generates a polyhedral partition of the 3D space using a set of predened convex planar polygons. Our approach is based on a kinetic data structure, in which these polygons progressively extend until fullling a user-dened stopping condition.

By contrast with exhaustive partitions computed in the state-of-the-art shape assembling techniques, our approach generates much lighter partitions.

For 100 detected shapes, which approximatively correspond to the maximal number of shapes that can be digested by these techniques in a reasonable time, a kinetic partition with K = 1 contains in average 100 times less polyhedrons than an exhaustive one, and this gap keeps increasing with the number of input shapes. The scalability of our algorithm is further reinforced by a spatial subdivision procedure, that decomposes a complex problem into a set of simpler ones.

In the next chapter, we describe a formulation for producing compact meshes using these partitions, and compare them to the state-of-art polygonal surface reconstruction techniques.

Chapter 7

Object extraction

Chapters 5 and 6 detailed two kinetic algorithms for the polygonal partitioning of a image from a pre-detected set of line-segments, and the polygonal partitioning of a 3D volume based on an initial conguration of planar primitives.

In this chapter, we show how these kinetic partitions can be used for extracting objects and regions of interest in images and point clouds, using a binary cell activation mechanism. The nal result is a closed set of edges or facets that approximates these objects by separating the active cells from the inactive ones. To achieve polygonal object contouring from our partition, we associate each polygon with a binary activation variable indicating if it belongs to the objects of interest or not, similarly to [START_REF] Levinshtein | Optimal contour closure by superpixel grouping[END_REF] with superpixels. The output polygonal contours correspond to the set of edges separating active polygons from inactive ones, which ensures that the contours are closed by construction.

The problem is formulated as a standard energy minimization problem [START_REF] Boykov | An experimental comparison of min-cut/max-ow algorithms for energy minimization in vision[END_REF]. For each input image, we rst compute the probability map H from a few user-provided scribbles, which roughly characterize the radiometric distribution of the foreground objects of interest and the image background. We express the probability H(i|l) of a pixel i to belong to class l = {0, 1} as its normalized RGB distance to the closest color in the set of scribbled pixels belonging to that class

H(i|l) = min j∈S l I(i) -I(j) 2 2 min j∈S 0 I(i) -I(j) 2 2 + min j∈S 1 I(i) -I(j) 2 2 (7.1)
where S 0 (respectively S 1 ) is the set of pixels scribbled as foreground (resp. background), and I is the input image convolved by a 11 × 11 mean lter to remove noise. Now, let us denote by F the set of polygonal facets of the graph generated by the partitioning algorithm, and by x i ∈ {0, 1} a binary activation variable that indicates whether the cell f i ∈ F is considered as a part of an object of interest in the image. We call x = (x i ) i∈F the conguration of all binary variables. We minimize the energy U (x) dened as:

U (x) = (1 -λ)D(x) + λV (x) (7.2)
where D(x) is data term measuring the agreement between the binary variable of each polygon and the underlying probability map H, V (x) is a smoothness term based on a Potts model to favor compact contours, and λ ∈ [0, 1] is a parameter balancing these two terms. More precisely, we have:

D(x) = i∈F 1 |f i | p∈f i H(p|x i ) (7.3)
where |f i | is the area of the facet f i and p ∈ f i refers to the set of pixels that are included in f i . The smoothness term is dened, for its part, as:

V (x) = i∼j l ij • 1 {x i =x j } (7.4)
where i ∼ j denotes pairs of adjacent facets, and l ij is the length of the edge separating facets f i and f j .

Note that more advanced methods could be used to predict foreground and background pixels. This would certainly lead to better results, but this is has not been explored within the scope of this thesis.

Experiments and comparisons

Despite the simplicity of our color model H, Figure 7.2 shows our method achieves good results with both organic and man-made shapes. Output poly- gons capture well the object silhouettes while having a low complexity. In particular, it outperforms results returned by Grabcut [START_REF] Rother | Grabcut: Interactive foreground extraction using iterated graph cuts[END_REF] followed by a Douglas-Peucker vectorization of the border pixels [START_REF] Douglas | Algorithms for the reduction of the number of points required to represent a digitizedline or its caricature[END_REF]. Replacing our partitions by VORONOI [START_REF] Duan | Image partitioning into convex polygons[END_REF] reduces accuracy. In particular, VORONOI partitions cannot handle thin structures and tend to produce complex polygonal contours zigzagging around the true silhouettes.

Limitations

Our algorithm of polygonal object contouring seems to return promising results. Thanks to our kinetic partitions, thin structures, such as the legs of the dragony in Figure 7.2 are approximated in a satisfactory way, and man-made structures like rooftops can be approximated with a low number of edges.

However, as a cascade pipeline, the results of our algorithm directly depend on the quality of the partitions generated during the previous stage. In particular, cells with heterogeneous contents will decrease the accuracy of our results. A possible strategy would consist in splitting and merging cells based on radiometric or semantic information. In addition, this object contouring model only favors compact contours. It neither explicitely reinforce geometric relations between the selected edges, nor penalizes the lack of regularity of the returned contours. As a result, this object contouring model tends to return too complex and inaccurate results on large partitions with multiple objects of interest, like rooftops in satellite images. This problem can be solved by adding a regularization term to the minimized energy, thus resulting in a more complex formulation.

7.2

Surface extraction

Description of the model

Given a partition of polyhedra, generated by the algorithm described in chapter 6, we wish to extract a surface from it.

We operate a min-cut to nd an inside-outside labeling of the polyhedra, the output surface being dened as the interface facets between inside and outside. This strategy garantees the output surface to be watertight and intersection-free [START_REF] Labatut | Robust and Ecient Surface Reconstruction From Range Data[END_REF]. The methods relying upon this approach [CLP10, BDLGM14, VLA15] typically assign an inside-outside guess on each polyhedron by ray shooting: this is both imprecise in presence of missing data and computationally costly. Instead, we propose a faster voting scheme that exploits the oriented normals of inlier points to more robustly assign a guess on a portion of the polyhedra only.

We denote by C, the set of polyhedra of the tessellation, and by x i = {in, out}, the binary label that species whether polyhedron i is inside (x i = in) or outside (x i = out) the surface. We measure the quality of a possible output surface x = (x i ) i∈C with a two-term energy of the form

U (x) = D(x) + λV (x) (7.5)
where D(x) and V (x) are terms living in [0, 1] that measure data delity and surface complexity respectively. λ ∈ [0, 1] is a parameter balancing these two terms. The optimal output surface that minimizes U is found by a max-ow algorithm [START_REF] Boykov | An experimental comparison of min-cut/max-ow algorithms for energy minimization in vision[END_REF].

Data delity D(x) measures the coherence between the inside-outside label of each polyhedron and the orientation of normals of inlier points. Similarly to signed distances proposed in smooth surface reconstruction, we assume here that the normals point towards the outside. After associating each inlier point with the facet of the partition that contains its orthogonal projection on the innite plane of its planar shape, we express data delity by a voting function on each inlier point. More precisely:

D(x) = 1 |I| i∈C p∈I i d i (p, x i ) (7.6)
where |I| is twice the total number of inlier points, I i is the set of inlier points associated with all the facets of polyhedron i, and d i (p, x i ) is a voting function that tests whether the orientation of inlier point p is coherent with the label x i of polyhedron i.

This function is dened by

d i (p, in) = 1 { n• u>0} and d i (p, out) = 1 { n• u<0}
where 1 {.} is the characteristic function, n the normal vector of inlier point p, and u the vector from p to the center of mass of polyhedron i. In Figure 7.3, we prefer assigning label in to polyhedron i and label out to polyhedron is binary, normals only need to point towards the right half-space separating the facet. This brings robustness to imprecise normal directions.

The second term V (x) is more conventional: it measures the complexity of the output surface by its area, where lower is simpler. It is expressed by

V (x) = 1 A i∼j a ij • 1 {x i =x j } (7.7)
where i ∼ j denotes the pairs of adjacent polyhedra, a ij represents the area of the common facet between polyhedra i and j, and A is a normalization factor dened as the sum of the areas of all facets of the partition. As illustrated in Figure 7.4, this term avoids the surface zigzagging. Giving a too high importance to this term however shrinks the surface. In our experiments, we typically set parameter λ to 0.5.

Experiments

We evaluated our algorithm with respect to our delity, simplicity and eciency objectives. We measure the delity to 3D data by the mean symmetric Hausdor (MSH) distance between input point cloud and output mesh. The simplicity of output representation is quantied by the ratio between the number of output facets to the number of initial planar shapes. We measure the eciency of the algorithm by both running time and memory peak. Stanford bunny.

In addition to these four measures, we also evaluate the scalability of algorithms by the maximal number of planar shapes that can be processed without exceeding both 10 5 seconds on a single computer with a core i9 processor clocked at 2.9Ghz, and 32GB memory consumption.

Flexibility

Our algorithm has been tested on a variety of objects, scenes, and acquisition systems.

Our method produces concise polygonal meshes for both freeform objects such as Horse, Ignatius and Asian dragon. Piecewise-planar structures such as Church, Barn and Euler or Full thing are reconstructed with ne details, as long as planar shapes are correctly detected from data. Complex objects such as M60 are approximated with a good amount of details by a few hundred facets mesh only.

Figures 7.6 and 7.7 present reconstructions obtained from laser and Multi-View Stereo (MVS) datasets. The latter have been generated by COLMAP [START_REF] Schönberger | Structure-from-Motion Revisited[END_REF] from image sequences mostly provided by the Tanks and Temples benchmark [START_REF] Knapitsch | Tanks and temples: Benchmarking large-scale scene reconstruction[END_REF]. Because of the high amount of noise, these point clouds are particularly challenging to reconstruct. Point clouds generated by Laser scanning are geometrically more accurate, but suer from missing data and heterogeneous point density. As illustrated with Barn model, our algorithm typically returns more accurate output meshes with Laser acquisition. MVS point clouds are usually too noisy to capture ne details with small planar shapes. Conversely, frequent occlusions contained in Laser scans are more eectively handled by our kinetic approach that naturally lls in empty space in between planar shapes. Some point clouds have also been sampled from CAD models. This is the case of Full thing, Castle, Tower of Pi and Hilbert cube whose 

Robustness to imperfect data

Figure 7.8 shows the robustness of our algorithm to noise. Below 1% noise (with respect to the bounding box diagonal), our algorithm outputs accurate meshes. Above 1%, planar shapes become missing or inaccurately detected. Because our goal is not to correct or complete the shape conguration, the output mesh cannot preserve the structure of the object anymore. Beside noise, the propagation of planar shapes within the kinetic algorithm oers high resilience to occlusions, especially when parameter K is strictly greater than 1. This allows, for instance, to recover the skylights on Barn laser and the rampart structures on Castle.

As illustrated by Figure 7.9, our algorithm is also robust to heterogeneous sampling and outliers by inheriting the good behavior of shape detection methods with respect to these two defects. 0% noise 0.5% noise 1% noise 1.5% noise Figure 7.8: Robustness to noise. Our algorithm is robust to noise as long as planar shapes can be decently extracted from input points. At 1% noise, some shapes become missing or inaccurately detected, leading to an overly complex output mesh. At 1.5%, the poorly extracted shapes do not allow us to capture the structure of the cube anymore. Note that normals have been recomputed for each degraded point cloud. Model: Hilbert Cube. points Figure 7.9: Robustness to outliers and heterogeneous sampling. Our algorithm returns an accuracte model when adding 500% of outliers in the object bounding box, but starts compacting the structure around 1500% of added outliers. In the two right examples, the point clouds have been progressively subsampled from the bottom left to the top right of the cube in a linear manner. Our algorithm is resilient to such heterogeneous sampling as long as shapes can be retreived in the low density of points. is typically the most time-consuming step. In particular, around 90% of computing eorts focuses on the processing of the priority queue. The total number of collisions depends on multiple factors which include the number of initial convex polygons, their number of vertices, their mutual positioning within the bounding box as well as parameter K. For instance, 53K collisions are processed for the 75 shapes of the Hand model shown in Figure 7.13.

The most frequent collision cases are b and c with an occurrence of 51% and 30% respectively. Case a is the most time-consuming update, because of the insertion of several sliding vertices.

The costly operation for the surface extraction step is the computation of the voting function d i (p, x i ) which must be performed for each inlier point. The shape detection step, which is not a contribution of our work, typically requires few seconds for processing several millions input points. In terms of scalability, our algorithm can handle dozens of thousands of planar shapes on a standard computer without parallelization schemes. 

Impact of spatial subdivision

Figure 7.10 shows the impact of the spatial subdivision scheme in terms of performances and quality. We saw in the previous chapter that the decomposition of an initial problem into multiple subproblems of lower complexity decreases the complexity of the partitioning algorithm in terms of time and memory consumptions. However, this may aect the quality of the output surface with typically the presence of extra facets at the borders of blocks. Therefore, the dimensions of the subdivision grid, which are left to the user, must result from a compromise between eciency and quality of the surface approximation. The choice of an appropriate grid depends, of course, on the complexity of the initial problem. Combining exhaustive partitions with our graph-cut (GC) solver typically produces accurate models resulting from the exploration of a large solution space. However, this option is not timeecient and gives models with a low simplicity score illustrated by numerous visual artifacts (left). Plugging the IP solver on kinetic partitions is a more ecient option, but output models are weakly accurate (middle). Our framework oers the best performances and the best compromise between accuracy and output simplicity (right). Models from Figure 6.6.

Comparisons

Ablation study

We evaluated the impact of the kinetic partitioning and the surface extraction modules with an ablation study. Figure 7.12: Ablation study. When partitions contain less than one thousand polyhedra, our graph-cut (GC) formulation for surface extraction and the integer programming (IP) solver of [START_REF] Nan | Polyt: Polygonal surface reconstruction from point clouds[END_REF] have similar running times and geometric errors (bottom row). However, the IP solver consumes more memory and can hardly digest partitions with more than ten thousands polyhedra. Moreover, the IP solver is less stable as running times and memory peaks can unpredictably vary (see light orange bands in bottom left/middle graphs). In contrast, the variation in time observed for our GC formulation only depends on the number of input points, the lower (respectively upper) bound of the light blue band corresponding to the model with the lowest (resp. highest) number of points. Statistics were drawn from a collection of seven dierent models with input point sizes ranging from 100K to 5M. This paragraph is a follow-up to section 6.3.1. Indeed, in the previous chapter, we already compared the performances of exhaustive and kinetic partitionings. Figure 6.7 showed that kinetic partitioning produces more compact sets of polyhedra in a more time-and memory-ecient manner than exhaustive partitioning. In particular, memory consumption is reduced by more than one order of magnitude from 150 planar shapes. Kinetic partitions are also signicantly lighter with a reduction of polyhedra by a factor close to the number of shapes when parameter K is xed to 1. Figure 6.6 illustrated this gap of performances with visual results obtained from 73, 146 and 749 planar shapes.

Here, we measure the eciency of our graph-cut (GC) formulation against the integer programming (IP) problem proposed in Polyt [NW17] on kinetic partitions. Running time, memory consumption and MSH error of output models in function of the number of polyhedra in the partition are plotted in Figure 7.12. While MSH errors are similar for small partitions, our graphcut formulation is signicantly more scalable and stable. The solution based on integer programming typically fails to deliver results under reasonable time when partitions contain more than ten thousand polyhedra. Moreover, the convergence time of the branch-and-bound optimization run by the IP solver [START_REF]Gurobi optimizer reference manual[END_REF] is hardly predictable: small variations on the energy parameters can increase running times by more than three orders of magnitude for a given partition. This solver is also very memory consuming. In contrast, our solver always digests millions of polyhedra in a few minutes, at most. Running times only depend on the number of polyhedra and the size of the point cloud, and memory consumption evolves linearly at a rate of 2KB per polyhedron.

Finally, we measured the quality of output models obtained from dierent combinations of partitioning schemes and surface extraction solvers in Figure 7.11. The combination of kinetic partitioning with our graph-cut solver delivers the best results in terms of output simplicity and performances, especially when more than one hundred shapes are handled. On the other hand, using exhaustive partitions with our graph-cut solver allows to strongly extend the solution space: this typically produces more accurate models, but at the expense of output simplicity, performance and scalability. Plugging the IP solver on kinetic partitions is an ecient option. However, the IP solver operates on restricted solution spaces in which candidate facets cannot lie on the object bounding box. This problem both prevents us from using spatial subdivision schemes for increasing scalability, and strongly decreases geometric accuracy of output models in case of occlusions located on the object borders (see the missing ground in the Capron model).

Nonetheless, this ablation study highlights the fact that the gain of performances in our solution mainly comes from kinetic partitioning. Note that running the IP solver on exhaustive partitions was not considered in this study, since this solution does not allow to process more than one hundred shapes.

Surface reconstruction methods

We compared our algorithm with Polyt [NW17] and Chauve's method [START_REF] Chauve | Robust piecewiseplanar 3D reconstruction and completion from large-scale unstructured point data[END_REF], which are arguably the two most robust existing methods in the eld. To fairly compare the reconstruction mechanisms, we used the same conguration of planar shapes for all methods. In particular, we deactivated the shape completion module in Chauve's method. Figure 7. 13 shows the results obtained on Hand from 75 planar shapes. Because Polyt and Chauve's method naively slice the object bounding box by the planar shapes, they produce overly-dense partitions. For example, their exhaustive partition for Hand is composed of 30K cells and 91K facets, whereas our partition contains 0.7K cells and 3.5K facets only. Building and extracting output surface from a much lighter partition thus becomes faster and less memoryconsuming. Our algorithm also outperforms Polyt and Chauve's method in terms of delity and simplicity. Our surface extraction is more ecient in balancing between delity and simplicity. The main reason relies on the use of a simpler data term where only inlier points are taken into account to measure the faithfulness. This technical choice oers more robustness to imperfect data than the visibility criterion of Chauve's method and more stability than the three-term energy of Polyt.

Graphs presented in Figure 7.14 compare the scalability of the methods. Polyt may require days of computing when more than one hundred planar shapes are handled whereas Chauve's method exceeds 32GB memory for processing slightly more than two hundred shapes. In particular, the former exploits a time-consuming integer programming solver while the latter suers from a memory-consuming visibility estimation. Conversely, our algorithm with no subdivision scheme can process one thousand planar shapes under more reasonable processing times and without exceeding 32GB memory. Table 7.3, provides a quantitative comparison between our algorithm, Polyt and Chauve's method, illustrated by Figures Figures 7.16 and7.17. Dierent criteria assess the quality of the output surface, but also the performances of the three algorithms. In our experiments, we considered a set of 42 segmented point clouds, that dier in terms of size, contents and acquisition constraints. More precisely, these point clouds may represent freeform (F) or structured objects (S), but also an indoor (I) or a urban scene (U). They may stem from CAD models, Laser scans, or MVS techniques. We split our dataset into three subsets, namely simple, intermediate or advanced models depending on the number of detected planar shapes in the point clouds: less than 100 shapes for simple models, between 100 and 500 for intermediate benet from an extended solution space, they sometimes return meshes with lower geometric errors than our technique, but these meshes are also more complex. In addition to this, we observe that our algorithm is characterized by similar or faster running times than other algorithms, and a lower memory consumption. We plan to release all models on a public repository, including our segmented point clouds, our results, and those generated by surface reconstruction methods.

Surface approximation pipelines

We compared our algorithm with the surface approximation methods QEM [START_REF] Garland | Surface simplication using quadric error metrics[END_REF], SAMD [START_REF] Salinas | Structure-Aware Mesh Decimation[END_REF] and VSA [START_REF] Cohen-Steiner | Variational shape approximation[END_REF]. Because these methods operate from meshes, we rst reconstructed a dense triangle mesh from input points using the Screened Poisson (SP) algorithm [START_REF] Kazhdan | Screened poisson surface reconstruction[END_REF]. Both a freeform object (Fertility) and a nearly piecewise-planar structure (Lans) were used for this comparison. As shown in Figure 7.15, polyhedral meshes produced by our algorithm are geometrically more accurate than those returned by these three methods at a similar mesh complexity, i.e. with the same number of output facets. The accuracy gain is particularly high at low mesh complexity where approximation methods cannot capture correctly the structure of the object and tend to shrink the output surface. By operating directly from input points, our algorithm does not depend on an intermediate dense mesh reconstruction step in which geometric and topological errors are likely to occur. Moreover, the large polygonal facets returned by our algorithm approximate the object more eectively than the triangle facets returned by edge contraction (QEM and SAMD) or constrained Delaunay triangulation built from a primitive connectivity graph (VSA). In terms of performance, the approximation pipelines have similar processing times and memory consumption to our algorithm when producing low complexity meshes. For instance, the four methods process the Lans model with 25 output facets (see bottom row in Figure 7.15) in approximately half a minute. High complexity meshes, i.e. with more than 200 facets, are produced more quickly by the approximation pipelines than by our algorithm.

Tables 7.3, 7.4 and 7.5 propose a quantitative comparison between our algorithm and surface approximation pipelines on the full dataset of 42 models mentioned before. A qualitative comparison of all algorithms, on the same models, is provided by Figures 7.16 to 7.21. Results conrm that our algorithm competes with surface approximation pipelines based on QEM or VSA, by relying on quantitative indicators. Admittedly, surface approximation pipelines may complete in a shorter time, especially when the input point cloud contains a lot of planar shapes. However, for an equal or lower number of facets, our technique almost always returns meshes with the lowest geometric error.

All models listed and compared in Tables 7.3, 7.4 and 7.5 will be made public to the Computer Graphics community in near future.

Limitations

Our work focuses on assembling planar shapes, not on detecting them. We assume planar shapes can be accurately detected from input points by standard algorithms.

However, this assumption might be wrong in presence of data highly corrupted by noise and severe occlusions. For such cases, congurations of planar shapes returned by existing algorithms are typically inaccurate and incomplete. Our kinetic algorithm can only correct congurations where missing planar shapes are parts of a repetitive structure as illustrated in Figure 6.4. Barn 

Conclusions

This chapter exposed the last part of our object approximation pipeline for images. Starting with a kinetic partition of this image, we implemented a simple object contouring model based on the min-cut/max-ow algorithm, in order to select the polygonal cells that are part of the objects of interest in the image. These objects can therefore be approximated using a small set of edges. In spite of its simplicity, our model shows the applicative potential of kinetic partitions for object approximation in images. Likewise, by combining the polyhedral partitioning algorithm and a surface extraction model based on graph cuts, we obtain a full pipeline for converting an oriented point cloud into a compact polygonal mesh. Our experiments demonstrate the exibility and the robustness of our approach, that delivers compact, yet geometrically accurate surfaces. A qualitative and quantitative comparison, conducted on a wide range of datasets, show that our algorithm can compete with existing surface reconstruction methods and traditional approximation pipelines. We carried out an ablation study, evaluating the impact of the kinetic partitioning and surface extraction modules of our processing chain. It highlights, on one hand, the perfomance gain induced by our polyhedral partitioning technique, and on the other hand, the stability and the scalability of our solver compared with another method based on integer programming. Yet, models generated by current city modeling techniques may be enriched with semantic information, or represented using progressive levels of detail. The CityGML standard [START_REF] Gröger | Ogc city geography markup language (citygml) encoding standard[END_REF] considers four coarse-to-ne levels applicable to airborne datasets, from LOD0 to LOD3.

In this chapter, we present a pipeline that receives as input an unstructured point set describing a large-scale urban scene, and generates as output a LOD2 representation of the scene in compliance with the CityGML standard, meaning that we aim at providing a faithful reconstruction of buildings with tilted roofs. LOD2 models can be used for visualization purposes, visibility analyses, solar radiation estimation, and other tasks LOD1 models cannot be used for. Our method consists of three main steps: classication, building contouring, and building reconstruction, the two last steps being achieved using kinetic data structures. We emphasize the accuracy and the scalability of our method, since it is able to process large datasets with millions of points, dense or sparse, in a few minutes.

Related works

There exists a vast literature on automatic urban reconstruction techniques, [HK10, RSG + 14, MWA + 13], demonstrating the deep interest of scientists and industrials for this research topic. Various data sources may be consid-ered, leading us to draw a rst distinction between all existing approaches, based on this criterion. Indeed, some algorithms may specically address the problem of large-scale urban reconstruction from aerial imagery [ZBKB08, ZWF18], satellite imagery [START_REF] Duan | Towards large-scale city reconstruction from satellites[END_REF] or multi-view stereo dense meshes [ZSGH18, VLA15, SLA15]. Some others combine dierent sources of data to generate urban models with the nest level of detail [START_REF] Kelly | Bigsur: Largescale structured urban reconstruction[END_REF].

In this work, we focus on the problem of city modeling from Lidar point clouds. Roof height estimation and building reconstruction is often the most valuable information to extract from such data, which is acquired using terrestrial or aerial devices. In particular, nadir or near-nadir acquisitions pose a specic constraint, as facades are missed by scanners. Current state-of-theart approaches have been extensively reviewed [START_REF] Wang | Lidar point clouds to 3-d urban models : a review[END_REF] and can be divided in three categories.

Data-driven methods are probably the most popular techniques. These are bottom-up approaches, in which parametric primitives are extracted from the data and assembled to form a reconstructed model. Existing pipelines typically consist of three successive steps: classication, segmentation and geometric modeling. The semantic interpretation of the data, and the clustering of buildings into individual structures may involve statistical arguments [START_REF] Poullis | Automatic reconstruction of cities from remote sensor data[END_REF] or discriminative geometric features coupled with energetic formulations [START_REF] Lafarge | Building large urban environments from unstructured point data[END_REF]. However, the models produced by such techniques do not achieve the same level of detail. For instance, the methods proposed in [START_REF] Zhou | A streaming framework for seamless building reconstruction from large-scale aerial lidar data[END_REF] and [START_REF] Poullis | A framework for automatic modeling from point cloud data[END_REF] only reconstruct multi-level at buildings from airborne point clouds, which is suitable for Manhattan-like districts but less accurate for residential areas. In contrast, the algorithm of [SHT08] considers a binary space partitioning tree to generate LOD2 polyhedral meshes from a point cloud. The one of [ZN10] reaches a similar level of detail by minimizing 2.5D quadric error functions, i.e. taking into account both the surface being reconstructed and its projected boundary. However, due to the projection of the points on a 2D grid, the reconstructed facades show a zig-zagging eect, which might be corrected by the mesh simplication procedure described in [START_REF] Zhou | 2.5 D building modeling by discovering global regularities[END_REF]. The cell decomposition approach proposed in [START_REF] Kada | 3d building reconstruction from lidar based on a cell decomposition approach[END_REF] allows to reconstruct buildings with a compact representation, but requires precise building footprints as input. The method of [LM11] also returns persuasive results over large-scale areas, but suers from the same failing. Recently, deep-learning-based methods have also been developed in a context of LOD2 urban modeling and achieve very promising results [ZZ18].

Model-driven methods, for their part, represent the opposite, top-down strategy. This family of techniques considers a pre-dened library of template structures (e.g. at, gable, hip or mansard roofs) that is matched to the input data. The work of [START_REF] Verma | 3d building detection and modeling from aerial lidar data[END_REF] oers a rst example of model-driven algorithm: elements of the point cloud are rst classied as at or non-at and a roof topology graph is considered to decompose a complex building into simpler structures. Another example is the work of [START_REF] Huang | A generative statistical approach to automatic 3d building roof reconstruction from laser scanning data[END_REF] in which a stochastic approach is used to select the roof templates that best t the input data. Also requiring building footprints as prior knowledge, the method of [START_REF] Henn | Model driven reconstruction of roofs from sparse lidar point clouds[END_REF] uses RANSAC and supervised machine learning techniques to generate a LOD2 reconstruction of a sparse Lidar point in a model-driven way. However, such approaches may lack of exibility with respect to the variety of urban landscapes.

Finally, hybrid-driven methods try to take the best of both worlds: parameterized primitives are extracted and assembled with respect to a set of constraints derived from constructive solid geometry [XEV14, LDZPD10].

In the following, we present an algorithm that addresses the problems we exposed before by exploiting powerful computational geometry tools. Given an airborne input point cloud, we design a scalable and data-driven algorithm that generates LOD2 representations of dierent urban environments as concise polyhedral meshes.

Pipeline

Input

As depicted by Figure 8.1, our algorithm takes as input a point cloud with oriented normals. Normals can be easily estimated thanks to the acquisition system information. If not provided, then basic mathematical tools like principal component analysis can be used.

Classication

The rst step of our pipeline consists in assigning semantic labels to points of the point cloud. Three labels are considered: ground, vegetation, and building.

Figure 8.1: Overview of our pipeline. Our method consists of three main steps. We rst label points of the Lidar scan as ground, vegetation or roof. Then, we apply a contouring algorithm to the height map, revealing the facades initially absent in the point set. Finally, we extract and propagate planar primitives from the point cloud, dividing the space into polyhedra that are labelled to obtain a 3D reconstruction of buildings.

To this end, we rely on the classication package provided by the CGAL library [START_REF] Giraudot | Classication. In CGAL User and Reference Manual[END_REF]. For each point of the input dataset, this method computes multi-scale geometric features such as elevation, planarity or vertical dispersion for instance. Extra features provided along with the dataset, like the number of returns, are also taken into account. Given a ground truth training set, these features are then used to train a classier. The default choice for the classier is a random forest, that constructs several decision trees to assign each point to one of the three aforementioned subsets.

Interactively labelling the data to get a representative training dataset is a tedious work. However, the CGAL library oers the possibility to save and reuse a trained classier, which is particularly useful for processing urban scenes of similar nature (dense or surburban areas, downtowns, historical centers...).

Building contouring

Facades of buildings are often partially or completely missing in aerial point clouds. To obtain accurate reconstructions of cities from such data, we rst need a robust method that detects signicant height discontinuities in the classied point cloud.

To this end, we project all points on a horizontal, uniformly sampled grid, in order to generate two kinds of maps: (i) a height map, normalized as a grayscale image, (ii) a probability map, measuring the proportion of projected points labelled as buildings in each cell of the grid. These two maps are then processed by the polygonal partitioning technique detailed in chapter 5. We remind the reader that, given an input image, our algorithm rst detects line-segments, which are linear approximations of regions where the image gradient is high and regular. These line-segments propagate across the image, until intersecting each other, resulting in a decomposition of the image into convex polygons. Here, we generate a polygonal decomposition of the height map. Intuitively, the detected line-segments, later included in the edges of the partition, correspond to regular height discontinuities in a given direction, i.e. to facades.

Using the probability map previously dened, we further assign a binary activation variable to each polygonal cell, indicating if it is part, or not, of a building footprint. Our strategy is similar to the model described in section 7.1.1. In order to simplify the partition, and decrease the number of cells, we nally apply a clustering algorithm that merges neighbor cells upon condition that there is no height discontinuity at their common border.

Building reconstruction

To obtain a LOD2 reconstruction from an oriented point cloud, from which we discard all points labelled as vegetation, we propose an algorithm in three steps.

First of all, we extract planar primitives from the point cloud. We apply the region-growing algorithm implemented in the CGAL library [OVJ + 19]. A plane hypothesis is iteratively propagated from a point to its neighbors. It is accepted if it has a minimum number of inliers σ, with respect to a maximal point-to-plane distance ε and a normal deviation θ. If input points are noisy, more robust methods such as ecient RANSAC [START_REF] Schnabel | Ecient ransac for point-cloud shape detection[END_REF] or structure-aware shape collapse [START_REF] Fang | Planar Shape Detection at Structural Scales[END_REF] can be considered. The threshold σ should be set depending on the density of the cloud, so that σ points cover an area of 5 m 2 approximately, whereas ε and θ are typically set to 0.5 m and 25 • . Once all planes have been extracted, we obtain a set of primitives represented by the planar convex hulls of the dierent sets of inliers associated to those planes.

The second step of our algorithm consists in computing a partition of the 3D space, dened by the previously extracted set of planar primitives. To this end, we rely on our kinetic approach described in chapter 6. However, for large datasets with millions of points, the primitive extraction step leads to the detection of thousands of primitives, and the simultaneous propagation of this huge set of primitives exceeds the capacities of our algorithm. Furthermore, vertical planes corresponding to facades cannot be extracted from the input point cloud, since the data is missing. This is the reason why we split the spatial propagation problem into F subproblems, where F is the number of polygonal footprints returned by the building contouring procedure described in section 8.2.3. More precisely, for each footprint we get the list of primitives that intersect or are included in it by projection, and perform a spatial propagation restricted to the dimensions of the footprint. We obtain a set of F 3D subgraphs G 1 , G 2 , . . . G F .

The third and nal step of our pipeline consists in labelling the polyhedra of each subgraph G i as inside or outside the buildings to reconstruct. The facets at the interface between outside and inside polyhedra then correspond to the output surface.

We use a voting scheme, based on the observation that in aerial datasets, points delimit the upper parts of the objects of interest. Let P i be the set of polyhedrons of the subgraph G i . For each polyhedron p j ∈ P i , where j = 1, 2 . . . |P i |, we initialize a counter c j to 0. All polyhedrons located below (resp. above) any plane inlier decrement (resp. increment) their counters.

Let us now consider a vector X with |P i | binary activation variables:

x j = 1 (resp. x j = 0) if the polyhedron p j is labelled as inside (resp. outside) a building to extract. We measure the quality of an output surface using a two-term energy of the form

U (X) = D(X) + λV (X) (8.1)
D(X) is a data term that encourages the selection of a polyhedron p j when c j < 0, and its rejection when c j > 0. We have:

D(X) = 1 |I| |P i | j=1 d j (x j ) (8.2)
where

d j (x j ) =    -c j when x j = 0 c j when x j = 1 (8.3)
and |I| is twice the number of inliers. V (X), for its part, is a generalized Potts model that penalizes the total area of the surface:

V (X) = 1 A j∼k a jk • 1 x j =x k (8.4)
where j ∼ k denotes an adjacency relationship between two polyhedra p j and p k , a jk is the surface of their common facet, and A is a normalization term dened as the sum of the areas of all facets of the subgraph G i .

Given a balancing term λ ∈ [0, 1], the optimal surface that minimizes energy U is determined by a min-cut algorithm [START_REF] Boykov | An experimental comparison of min-cut/max-ow algorithms for energy minimization in vision[END_REF]. A low value of λ returns a too large and too complex surface, while a high value of λ tends to shrink it. In our experiments, we typically set λ to 0.5.

Experiments

Datasets. We tested our algorithm on four datasets, representing various urban landscapes. The covered cities are listed in plane in a given direction. Some of them, however, might be aected by an unwanted zig-zagging eect, reecting errors in the building contouring procedure. Note that trees could be also reconstructed in 3D by template matching [START_REF] Verdie | Ecient Monte Carlo sampler for detecting parametric objects in large scenes[END_REF] to better represent the urban landscapes. Quantitative results. In Figures 8.2 and 8.3, we provide altimetric error maps for each dataset. To generate them, we restrict the input point cloud to elements labelled as rooftops, and compute the one-sided Hausdor distance from every point to the reconstructed surface. This way, we can evaluate the precision of our method. We compute a raw reconstruction error: the mean one-sided Hausdor distance. However, this measure may be biased. Indeed, isolated mislabelled points in the classication process, and a few buildings missed by the contouring algorithm and further ignored in the reconstruction phase, tend to overestimate the average reconstruction error.

That is why we suggest, on an indicative basis, a corrected reconstruction error, which discards points located at more than 3 meters from a building which corresponds to the average height of a oor. Our measures are listed in Table 8.2.

The geometric error is typically caused by: (i) undetected superstructures on rooftops, (ii) uncorrectly approximated primitives in the plane extraction procedure (e.g. a unique plane approximates the two sides of a gable roof) and (iii) the resolution of the generated height map, that may shift the extracted footprints towards one direction or another. Limitations. Despite its advantages, our algorithm suers from a few shortcomings. Any error caused by an intermediate step of the pipeline has an impact on the nal result. Parts of the cloud representing buildings mislabelled by the classier will not be reconstructed. Besides, the reconstruction is very sensitive to building contouring errors: if some footprints or intermediate heights inside multi-level structures are missed in the coutouring process, then buildings will also be missing or badly approximated in the nal result.

Besides, our primitive detection scheme only extracts planes from the input point cloud. This feature is sucient for reconstructing accurately most buildings, but free-form shapes like domes or curved walls will only be approximated as a set of planar shapes. Small structures like dormers and chimneys may also be ignored in the reconstructed model, if the minimal number of inliers by the plane extraction procedure is too high.

Conclusions

We presented a pipeline for automatically reconstructing a urban scene from an airborne Lidar scan at the level of detail LOD2. We used the kinetic approach described in previous chapters, in which a set of predetected linesegments and planar polygons progressively extend to decompose the 2D and 3D spaces into cells that are labelled and assembled in our nal model. Our approach is fast, scalable and delivers simple polyhedral meshes. It returns promising results on various datasets, representing dierent types of urban environments.

In future works, we plan to rene the building contouring algorithm in order to simplify and improve the accuracy of our reconstructed models. We might resort to deep-learning-based methods to this end. Another research path would consist in integrating non-linear primitives to our kinetic scheme to achieve better reconstructions of free-form structures.

Chapter 9

Conclusion and perspectives

Summary

This thesis addressed the problem of geometric modeling of urban objects from physical measurements, and their represention in an accurate and compact manner. We presented two pipelines, one for the vectorization of regions of interest in images, another for the generation of concise polygonal meshes from point clouds.

Provided a set of predetected shapes, the core contribution of our work lies in the design of kinetic data structures for decomposing the 2D and 3D bounding volumes into partitions of polygonal cells. Experiments on images demonstrate that our algorithm oers an interesting alternative to superpixel decomposition techniques. Indeed, the latter typically operate at pixel level and produce homogeneously-sized cells with complex boundaries [LTRC11, ASS + 12]. By reasoning at the scale of geometric shapes, our method returns lighter and more meaningful partitions. Capable of processing large satellite images with several dozen millions pixels in a few minutes only, our algorithm is scalable and computationally ecient.

Another range of experiments emphasizes the benets of kinetic data structures for 3D space partitioning. Our algorithm solves the scalability issue induced by a naive decomposition of a bounding volume using innite planes [START_REF] Chauve | Robust piecewiseplanar 3D reconstruction and completion from large-scale unstructured point data[END_REF][START_REF] Nan | Polyt: Polygonal surface reconstruction from point clouds[END_REF]. It produces a partition with a small number of polyhedral cells compared with an exhaustive decomposition, or alternative strategies constructing for instance a Delaunay triangulation of an input point cloud [START_REF] Lafarge | Surface reconstruction through point set structuring[END_REF][START_REF] Van Kreveld | Watertight scenes from urban lidar and planar surfaces[END_REF]. As a shape assembling algorithm, our approach forms in some way a bond between slicing-based methods and connectivity-based methods that analyze an adjacency graph in a set of input planar shapes, but that are prone to linkage errors. Note that our kinetic frameworks return 2D and 3D partitions whose cells are convex by construction. Convexity can be a valuable property for specic applications, including for instance physical simulations.

Secondary contributions of our work include a global regularization procedure for optimizing geometric relationships in a set of predetected shapes, and a cell selection model for extracting objects from the kinetic partions based on graph cuts. In 2D, we use a saliency map to vectorize regions of interest in images. Although very simple, our model can correctly vectorize organic shapes as well as man-made structures, and provide a brief geometric description of such objects using a small number of edges. In 3D, we use a visibility criterion based on normal orientation in point clouds. This model oers a stable and ecient alternative to more complex energetic formulations, for instance based on integer programming [START_REF] Nan | Polyt: Polygonal surface reconstruction from point clouds[END_REF]. As a result, we obtain a scalable pipeline that successfully approximates various freeform or structured objects as concise polygonal meshes. From qualitative and quantitative points of view, our pipeline can compete with existing polygonal surface reconstruction methods, but also with traditional surface approximation pipelines.

We underline the fact that, except for the 3D global regularization procedure, our algorithms are fully generic and exible. We could show, for instance, the applicative potential of kinetic data structures in city modeling. By combining the object vectorization and polygonal mesh generation procedures, we were able to turn large-scale airborne Lidar scans into compact CityGML-LOD2 representations of urban scenes, while guaranteeing a relatively low altimetric error, at the scale of the meter. These promising results might open the door to practical uses for the generated models, such as environmental simulations or entertainment applications.

Our work suers from some weaknesses. In particular, the object vectorization and mesh generation algorithms are mostly parameter-free methods, but strongly depend on the quality of the set of input shapes. If there exists no shape roughly approximating some part of an object of interest, kinetic data structures will create cells with heterogeneous contents, and therefore lead to a bad approximation of the objects. However, retrieving line-segments or planar shapes in some input data can be challenging when the latter is too noisy. We also observe that the cell selection techniques for object extraction from kinetic partitions favor data delity and compacity of the output models, with respect to the total edge length or surface area, but omit the notion of regularity that could benet to some applications.

Let us now present some perspectives opened by our work.

Perspectives

Generalization to non-linear shapes. A natural extension of this work would be to support more complex primitives in our kinetic data structures, including non-linear shapes.

The use of Bézier curves, splines, NURBS or other parametric functions would bring more versatility to the partitions, and would allow to approximate or reconstruct freeform objects with a better complexity-distortion tradeo. Obviously, the ecient computation of collisions involving nonlinear shapes represents the main challenge to overcome.

Learning primitives. As mentioned before, one of the main limitations of our vectorization and reconstruction pipelines is the fact that the quality of the approximation directly depends on the correctness of the predected set of shapes. Indeed, if a line-segment or a planar polygon slightly drifts from its expected orientation, then the nal result can be impacted. Our regularization procedure, though, can correct some faults observed in the initial arrangement of line-segments or planes, and enhance the visual quality of the result. However, the main diculty encountered by our algorithm is the absence of primitive in a certain location of the image or the point cloud. This problem is all the more critical for images that objects of interest must be roughly approximated by a minimal set of line-segments covering at least a part of each contour before starting the partition, in order to guarantee a good approximation. If it is not the case, then regions of interest will be badly approximated or ignored by the object contouring model. Yet, obtaining this minimal set of line-segments might be a dicult task. Extracting relevant line-segments from noisy images and gradient maps is a dicult problem that requires thresholding operations. The same concern applies to 3D point clouds. The region growing implementation used in our experiments requires three parameters (minimal number of inliers, maximal point-to-plane distance and normal deviation) that are, for now, manually set. How to generalize the choice of such detection parameters ? We believe that methods learning the characteristics of primitives, either in images [HWZ + 18, XBW + 19] or point clouds [FLD18, LSD + 19] oer an interesting research path that should be further investigated.

Cell renement. An alternative strategy for improving the quality of the partition despite the misdetection or absence of primitives leads to the renement of the cells, using split and merge operations.

In 2D, analyzing the colorimetric distribution within a polygonal cell can constitute a good hint for detecting heterogeneous contents. We may dene a split operator on this basis. The latter can integrate geometric reasoning: for instance, a cell is more likely to be divided if it is located near two collinear line-segments, with one on each side of the cell. Likewise, we can dene a merge operator for merging two cells that represent the same object. Such a mechanism would reduce for sure undersegmentation errors, but also improve the quality of the object contouring results.

Geometry reinforcement. Another idea, which has not been explored within the frame of this thesis, would consist in improving the quality of the geometric models produced by the vectorization and 3D reconstruction pipelines by reinforcing geometric regularities.

We have a global regularization procedure at our disposal, which optimizes parallelism, orthogonality and collinearity relationships among a set of detected line-segments in an image. However, the object contouring model described in section 7.1 doesn't exploit the geometric relationships between the cells and edges of the partition. Penalizing irregularities will require to adapt our energy formulation and will lead to a more complex formulation, but many applications would benet from the extraction of regularized contours. In particular, the urban modeling pipeline described in chapter 8 will return more compact and accurate models with regularized building footprints.

The same criticism can be formulated about the surface extraction model in section 7.2, since our formulation doesn't encourage the construction of regular surfaces, coming up with geometric guarantees. We plan to address these problems in some near future. (Cited on page 109.)
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 21 Figure 2.1: Vectorization vs. direct extraction of polygons. Left: a pixelwise segmentation of aerial images, predicted by a neural network [LQQ + 18].Vectorizing the contours of each building instance will result in numerous approximations. Right: polygons are directly extracted using an adapted architecture[START_REF] Li | Polymapper: Extracting city maps using polygons[END_REF]. Image taken from[START_REF] Li | Polymapper: Extracting city maps using polygons[END_REF].
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 22 Figure 2.2: Superpixels and polygons. Left: superpixel decomposition generated by Liu et al [LTRC11] (300 cells). Right: polygonal image partitioning returned by Duan et al [DL15] (322 cells). While a polygonal cell is delimited by a few vertices, contours of superpixels must be dened as lists of pixels.
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 23 Figure 2.3: An example of mesh approximation. (a) An input mesh, composed of 13k vertices, with a set of detected planar proxies. (b) Decimated mesh with 1300 vertices. (c) Final mesh with 115 vertices. Image taken from [SLA15].
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 24 Figure 2.4: An example of mesh simplication. Tetrahedral meshes are deformed into polycube maps through minimization of the 1 norm of mesh normals. Image taken from [HJS + 14].
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 25 Figure 2.5: An example of shape assembling method. (a) Input point cloud. (b) Detected planar primitives. (c) Generation of a set of candidate faces, obtained through the arrangement of innite planes supporting the planar primitives. (d) Selected faces and nal mesh. Image taken from [NW17].
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 31 Figure3.1: Overview of our 2D vectorization pipeline. Our algorithm takes as input an image (a). We extract a set of line-segments that roughly approximate the contours of the image (b). These segments are used to generate a polygonal partition of the image, using a kinetic data structure (c). A subset of connected cells is then obtained to vectorize objects of interest in the image, here the building rooftops, with only a few vertices (d).
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 32 Figure 3.2: Overview of our 3D reconstruction pipeline. Our algorithm takes as input a point cloud with oriented normals (a) and a conguration of convex polygons that approximate the object (b). Convex polygons are obtained through plane detection as the convex hulls of inlier points are projected onto the plane. The 3D bounding box of the object is decomposed into polyhedra by kinetic partitioning from the convex polygons (c). A concise polygonal mesh is then extracted by labeling each polyhedron as inside or outside the object (d). Model: Full thing.
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 4 Figure 4.1: Line-segment re-orientation on a 9 Mpixels satellite image of Seoul city. The quite-uniform orientation histogram of initial line-segments (left) makes a few dominant orientations appear after the regularization (right).
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 42 Figure 4.2: Global regularization of line-segments. Floating line-segments detecting by the Line-Segment Detector of Van Gioi et al [vGJMR10] (top left) yields a complex polygonal partition with many meaningless polygons (top right). By regularizing them (bottom left), we both simplify the partition with typically around 20% less polygons, and improve the polygon alignments with typical building layouts.
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 43 Figure 4.3: Optimized geometric relationships for normal vectors n i and n j . (a) Parallelism and coplanarity. (b) Z-symmetry. (c) Orthogonality-1. (d) Orthogonality-2.
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 4 Figure 4.4: Impact of the regularization on the histograms of orientations. Initially, 1096 planes are extracted from the point cloud (left). The regularization procedure reduces this amount to 122 planes (right) in 2.89 seconds, and highlights a few dominant orientations. Model: Hilbert Cube.
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 4 Figure 4.4 and 4.5 illustrate the eects of the regularization on the reconstruction pipeline. To this end, we apply a random vertex displacement to the vertices of a CAD model from the Thingi10k database [ZJ16], Hilbert Cube and produce two models, with or without applying the regularization.
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 4 Figure 4.5: Impact of the regularization on the reconstructed models. Left: non-regularized version. Red ellipses highlight asperities and irregularities visible on the surface. in the Right: regularized version. e, s, t and m represent respectively the geometric error, the simplicity index, the running times and memory peaks of the subsequent kinetic partitioning algorithm. t and m are given in seconds and gigabytes. Model: Hilbert Cube.
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 51 Figure 5.1: Illustration of the kinetic partitioning mechanism. Detected linesegments (a) are converted into an initial planar graph (b). As extremities of primitives extend (blue dots), they meet each other, which enriches the planar graph with new nodes and edges (c, d). After the last collision, the planar graph is simplied by removing all unnecessary nodes (e).
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 5 Figure 5.3: Stopping conditions. Setting K to 1 is sucient to capture the dierent parts of buildings (a). Deactivating the gradient-based condition leads to omit a few structural components (b) whereas xing K to a too high value, here 20, gives a too complex partition in which polygons are not meaningful anymore (c).
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 54 Figure 5.4: Partition complexity. We can produce partitions with varying numbers of polygons by tuning the sensitivity of the line-segment detector. Left partition with 113 polygons is sucient for capturing the indoor structure and the main furnitures. Right partition (365 polygons) also captures smaller details as some patterns of the background painting.
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 55 Figure 5.5: Visual comparisons with superpixel and polygonal partitioning methods. Contrary to existing methods designed to deliver homogeneouslysized regions, our partitions combine large polygons capturing homogeneous areas, as the shadow under the airplane, and thin polygons describing lineic structures as the legs of the dragony. For an identical number of output regions, our algorithm produces more meaningful polygons, as those capturing the windows of the facade image.
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 57 Figure 5.7: Results on satellite images. From top to bottom: Denver (US-CO), Minsk (BY), Prague (CZ). Our algorithm captures the structures of most observed buildings and could serve as a basis for the vectorization of their shapes. Best displayed on screen.
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 58 Figure 5.8: Results on aerial images. Top: El Alto (BO). Bottom: Zanzibar (TZ). Images taken from [Ope19]. (Continued next page.)
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 06 Figure6.1: A primitive of our kinetic data structure. As a general propagation law, we apply homothetic transformations of ratio (1+t) to the detected planar shapes, where t is the simulation time.
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 6 Figure 6.3: Collision typology and corresponding primitive updates. A vertex or an edge of the source polygon (blue shape) typically collides with the target polygon (red segment) in four dierent manners. The correponding updates operated on the source polygon (bottom) consist in inserting sliding vertices and/or frozen vertices (cases a, b and c) or splitting polygons (case d).
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 6 Figure 6.4: Data-driven criterion. Small planar parts are often missed during shape extraction (see missing shapes on the left closeup). The output surface then becomes overly simplied (middle). The data-driven criterion allows us to recover the correct geometry when these planar parts belong to a repetitive structure such as the ramparts (right). Model: Castle.
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 65 Figure6.5: Reformulation as collaborative 2D collision problems. The coordinates of N planar polygons in 3D (left) are mapped onto each of their N supporting planes (right). The dashed lines also represent mapped intersection lines between the current supporting plane and another plane. Therefore, events of the kinetic data structure can be computed using a simple point-to-line 2D distance.
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 66 Figure 6.6: Exhaustive vs. kinetic partitionings. By naively slicing all planes supporting the shapes, exhaustive partitions are much more complex than our kinetic partitions. The construction of kinetic partitions is also faster and consumes less memory, especially from complex congurations of planar shapes (see middle and bottom examples). |F|, |C|, t and m refer to the number of facets in the partition, the number of polyhedra, the construction time of the partition and the memory consumption respectively. Models from top to bottom: Rocker arm, Capron and Navhis.
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 6768 Figure 6.7: Comparative performances between kinetic and exhautive partitioning in terms of construction time, number of polyhedra, and memory consumption. K represents the maximal number of intersections.

  Description of the modelObject contouring by polygonal shapes provides a compact and structureaware representation of object silhouettes, in particular in man-made environments[START_REF] Castrejon | Annotating object instances with a polygon-rnn[END_REF][START_REF] Sun | Free-shape polygonal object localization[END_REF].

#

  Figure 7.1: Trade-o between delity and simplicity. Polygonal partitions with low complexity give compact polygonal contours that roughly approximate the object silhouette (left). More rened partitions allow us to better capture shape details (right). The numbers between parentheses indicate the nal number of edges if we merge all successive collinear edges as a postprocess.

  Figure 7.2: Object contouring. Using our partition as input, we are able to capture details in the image missed by other algorithms while producing polygons with lower complexity. Note in particular how thin structures as the legs of the dragony or the propeller of the airplane are recovered. Our method performs best on man-made objects composed of piecewise-linear contours, as roofs (right).
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  Figure 7.3: Voting criterion.
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 74 Figure 7.4: Impact of parameter λ. Increasing λ simplies the output surface by reducing the number of facets (see blue curve). A too high value however makes parts of the object disappear and increases the geometric error (see red curve). The best compromise between simplicity and accuracy is returned in the interval [0.4, 0.8]. The geometric error is computed as the symmetric mean Hausdor distance between input points and output mesh. Model:
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 75 Figure 7.5: Reconstruction of Tower of Pi. 10.8K planar shapes are detected from 2.9M input points (left) and assembled by our algorithm into a concise polygonal mesh of 12.1K facets (middle). Each digit is nicely represented by a few facets (see closeups). In contrast, the mesh produced by the traditional surface approximation pipeline ([KBH06] + [GH97]) fails to preserve the structure of the mesh.
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 76 Figure 7.6: Reconstructions from laser datasets. The number of points, detected planar shapes, and facets of the output models are given in Table 7.1.
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 77 Figure 7.7: Reconstructions from multi-view stereo datasets. The number of points, detected planar shapes, and facets of the output models are given in Table 7.1.
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 710 Figure 7.10: Spatial subdivision: eciency vs. quality. Our algorithm produces an ideal mesh with 314 polygonal facets from 314 planar shapes approximating a sphere (left). Subdividing the bounding box into blocks reduces running time and memory consumption, and produces simplied polyhedra partitions (top). This option may degrade the quality of the output meshes (bottom) with typically the presence of extra facets at the block borders (see closeup). |f |, #f , t and m correspond to the number of facets in the polyhedral partition, the number of polygonal facets in the output mesh, running time (in sec) and memory peak (in GB) respectively.
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 711 Figure7.11: Ablation study. Combining exhaustive partitions with our graph-cut (GC) solver typically produces accurate models resulting from the exploration of a large solution space. However, this option is not timeecient and gives models with a low simplicity score illustrated by numerous visual artifacts (left). Plugging the IP solver on kinetic partitions is a more ecient option, but output models are weakly accurate (middle). Our framework oers the best performances and the best compromise between accuracy and output simplicity (right). Models from Figure6.6.
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 713 Figure 7.13: Comparisons with surface reconstruction methods. Starting from the same 75 planar shapes, Chauve's method [CLP10] and Polyt [NW17] are both more time-and memory-consuming than our algorithm while delivering less concise polygonal meshes, both less accurate and less compact. e, s, t and m corresponds to the symmetric mean Hausdor error (in % of the bounding box diagonal), simplicity, running time (in sec) and memory peak (in GB) respectively. The colored point clouds show the error distribution (yellow=0, black≥ 1% of the bounding box diagonal).
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 714715 Figure 7.14: Performances of surface reconstruction methods. Polyt[START_REF] Nan | Polyt: Polygonal surface reconstruction from point clouds[END_REF] requires days of computing for assembling one hundred shapes, whereas Chauve's method[START_REF] Chauve | Robust piecewiseplanar 3D reconstruction and completion from large-scale unstructured point data[END_REF] exceeds 32GB memory for slightly more than two hundred shapes. Our algorithm is one order magnitude more scalable than these two methods. Tests have been performed on the Hand model (Fig.7.13) without using subdivision schemes.
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 77197 Figure7.16: Qualitative comparisons on simple models (part 1). The error maps correspond to the Hausdor error from input points to output models and ranges from 0 (yellow) to ε or higher (black), ε being the tting tolerance parameter for the detection of planar shapes (xed similarly for each model).

  modeling Urban reconstruction techniques have attracted an increasing attention from the scientic community over the last decade. Applications of such techniques include, for instance, urban planning, natural disaster management, or radio-wave propagation [BSL + 15].Various data sources are considered by such algorithms, such as ground imagery, satellite imagery, or pre-existing GIS data. However, despite high acquisition costs, Lidar point clouds are more accurate and remain a data source commonly used by land surveying oces or civil engineers [MWA+ 13].

Figure 8

 8 Figure 8.2: Results on European-style urban landscapes. Left column: classied point clouds. Points labelled as ground, vegetation or buildings are colored in gray, green and red, respectively. Center column: reconstructed models. Right column: altimetric error map, in which a darker color represents a larger error. From left to right: classied point cloud, reconstructed model, and altimetric error map.
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 83 Figure 8.3: Results on American-style urban landscapes.

Figure 8

 8 Figure 8.4: Close-ups on the reconstructed models. Top: residential area (Vaihingen). Bottom: urban landscape (San Diego).
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  Conference on Computer Vision (ECCV), 2018. (Cited on page 108.) [ZZ18] L. Zhang and L. Zhang. Deep learning-based classication and reconstruction of residential scenes from large-scale point clouds. Trans. on Geoscience and Remote Sensing, 56(4), 2018.

  

  

  

  

  

  

  

  

  

  

Table 5

 5 Table 5.1: Performances on three dierent image sizes (Facade from Figure 5.5 -bottom, Aerial from Figure 7.2-right, and Satellite whose a cropped part is illustrated on Figure 5.7)-top in terms of running time.
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Boundary Recall

Figure

5

.6: Quantitative evaluation. Our algorithm outperforms polygonal partitiong methods VORONOI and SNICPOLY on boundary recall while approaching the scores of the best superpixel methods. Because we allow polygons to be large for capturing big homogeneous areas, our algorithm oers a better compromise between boundary precision and boundary recall than other methods when recall is high, i.e. higher than 0.85.
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 7 

	.1.

Table 7.1: Number of points, planar shapes and output facets for the models presented in Figures 7.6 and 7.7.

  Foam box, Chair and Couch are from Nan et al[START_REF] Nan | Polyt: Polygonal surface reconstruction from point clouds[END_REF] and correspond to the Figures4-(b) to 4-(i) of their paper. e A stands for the asymmetric geometric error between the input point cloud and the output model (point cloud to mesh), and e S for the symmetric geometric error. s represents the simplicity index of the output surface, #f its number of facets. t indicates the running time of all methods (in seconds) and m, the memory peak (in megabytes). Polyt was unable to process models Barn MVS and Bunny after several hours of execution. Visual results are listed in Figures 7.16 and 7.17.

	MVS U MVS 619K 95 0.231 0.179 2.5 38 28.9 53 ------1.042 0.772 3.8 25 131.2 3189 2.815 1.575 39 36 232 0.752 0.538 717 45.3 675 Fertility-Coarse F Laser 242K 75 0.350 0.498 0.789 95 25 61.2 0.388 0.500 0.5 150 1070 1919 0.328 0.407 0.142 528 53.1 1037 0.566 e A e S s #f t m e A e S s #f t m e A e S s #f t m e A e S #f t m e A e S #f t m e A e S s #f t m e A e S s #f t m e A e S s #f t m 0.738 MVS Building A U 101K 20 0.951 1.522 0.690 29 3.4 10 1.347 1.170 1.429 14 2.1 144 9.585 5.172 0.625 32 0.4 10 4.081 2.482 28 17.4 162 4.222 3.107 213 27.5 428 Foam box S Laser 382K 61 0.247 0.291 0.968 63 15 29 0.221 0.297 0.968 63 672 1748 0.207 0.261 0.570 107 31.5 1131 4.884 MVS Building B U 73K 34 0.605 0.735 1.478 23 2.5 13 2.097 1.385 1.36 25 2.5 169 2.626 1.704 0.330 103 1.9 103 6.344 3.856 22 14.2 111 2.673 1.921 157 15.1 347 Hand F Laser 369K 75 0.423 0.480 0.815 92 31 76.6 0.460 0.537 0.765 98 296 1600 0.462 0.488 0.399 188 115 1400 2.173 577K Building C U MVS 32 0.372 0.344 0.941 34 18.4 15 0.461 0.343 1.067 30 10.2 252 0.407 0.308 0.571 56 5.5 125 2.873 1.934 26 21.4 458 1.593 1.316 947 24.3 480 Lans-Coarse U Laser 1.22M 24 0.491 0.726 0.96 25 33.4 11.5 3.977 2.592 0.923 26 26.6 331 0.421 1.195 0.667 36 4.4 96 0.454 0.5 2.594 1.288 158 712 2486 2737 35.3 44 36 40 551 608 507 577 2.969 0.724 2.814 2.124 2.847 Laser Bunny F 146K 98 0.454 0.540 0.856 111 53.3 97 ------0.545 0.555 0.375 261 94 2924 1.435 1.069 110 21 195 1.002 1.031 175 27.1 352 Rocker arm S Laser 733K 73 0.257 0.382 1 73 43.4 53.8 0.361 0.524 0.507 144 9343 1896 0.357 0.411 0.361 202 93.6 2141 2.002 1.252 2049 36.5 617 2.871 Laser Chair S 756K 23 0.557 0.580 1 23 25 34 1.447 1.089 1.438 16 16.9 241 1.422 1.082 0.92 25 9.7 501 4.287 3.000 24 70.1 495 1.906 1.664 420 96.7 1572 Rooms A I Laser 186K 48 0.677 0.603 1.043 46 7.9 19.1 0.590 0.556 0.941 51 4.5 221 0.790 0.671 0.384 125 8.9 196 2.962 1.807 1938 35.6 666 2.127 143K Cottage U MVS 23 0.401 0.471 0.821 28 4.2 15.7 1.491 1.259 1.278 18 5.3 177 1.429 0.823 1.278 18 1.5 56 2.373 1.513 27 22.7 156 1.181 0.958 528 26.4 473 Rooms B I Laser 176K 28 0.553 0.538 1.077 26 4.8 8.8 0.680 0.572 1.474 19 3.1 135 0.526 0.465 0.519 54 1.7 56 4617 210.3 55K 2.286 3.459 1.933 0.777 1.831 1.509 1.984 1.645 1.498 62 92 25 72 46 26 92 55 29.1 31.6 38.1 34.7 29.9 43.5 518 241 311 142 377 399 453 1.404 1.058 2.894 1.201 2.066 0.911 0.894 0.960 0.918 2.355 1.091 1.422 0.704 0.806 682 127 31 83 568 123 270 78.8 39.6 31.8 54.4 41.2 40.2 69.3 1341 740 311 142 901 758 1013 Table 7.3: Quantitative comparison between surface reconstruction and sur-Type Origin #p #s KSR Polyt Chauve et al SP + QEM SP + VSA Type Origin #p #s KSR Polyt Chauve et al SP + VSA e A 0.388 e S 0.332 #f 501 t 33.8 m 579 SP + QEM e A 0.722 e S 0.756 #f 100 t 38.5 m 289 SP + VSA e A 1.724 e S 1.287 #f 93 t 28.8 m 361 face approximation algorithms on simple models. Models Building A, Building B, Building C, Rooms A, Rooms B, Barn Laser Building Block Capron Hilbert Cube Hilbert Cube (N 0.5) Hilbert Cube (N 1) Hilbert Cube (N 1.5) Type U U F S S S S S Origin Laser MVS MVS CAD CAD CAD CAD CAD #p 2.1M 793K 168K 144K 144K 144K 144K 864K #s 222 160 146 986 1135 2601 480 1003 KSR e A 0.133 0.232 0.282 0 0.030 0.122 0.741 0.009 e S 0.128 0.222 0.290 0.124 0.140 0.229 0.929 0.128 #f 142 142 156 986 997 2087 894 t 93.5 107.5 106.8 16.1 16.8 121.2 21.4 18.2 m 54 147 194 105 66 451 62 59 Chauve et al e A 0.465 1.115 0.223 -----e S 0.627 0.419 0.466 -----#f 814 589 10k ----t 2475 333.4 555.7 ----m > 32 GB 5361 6080 ----SP + QEM e A 0.375 1.094 0.855 1.501 1.583 0.858 1.382 e S 0.339 0.690 0.587 1.044 1.060 0.640 1.156 #f 143 143 155 986 998 2088 894 t 28.8 27.8 34.5 26.8 29 27.7 27.7 m 307 391 98 155 179 367 350 1427 A qualitative comparison is provided by Figures 7.20 and 7.21. 161.4 978 proximation pipelines on models of high complexity (more than 500 shapes). 2.420 3.794 Table 7.5: Quantitative comparison between our algorithm and surface ap----SP + VSA e A 0.183 0.378 0.202 0.192 0.295 e S 0.243 0.245 0.160 0.164 0.241 #f 982 4368 4949 522 t 30 104 105.8 46.3 m 361 1455 1328 692 4176 365.1 27285 Couch 986 plexity (between 100 and 500 shapes, in average). For all versions of Hilbert Couch S Laser 911K 21 0.560 1.681 0.84 25 25.1 11.6 6.385 3.325 1.235 17 18.8 299 3.931 2.137 1.5 14 6.7 308 2.922 1.971 25 22.8 406 1.762 1.806 113 27.1 556 Temple S MVS 621K 69 0.381 0.481 0.726 95 21.6 48.1 0.548 0.683 0.767 90 1943 900 0.459 0.911 700 76.7 1673 0.099 Cube, we consider the ideal, non-perturbed point set as reference. We refer the reader to Figures 7.18 and 7.19 for visual comparisons between these models. #p 242K 1.4M 3.1M 3.6M 2.9M #s 812 1648 1655 749 10834 KSR e A 0.061 0.064 0.198 0.061 0.020 e S 0.095 0.064 0.146 0.057 0.039 #f 998 1807 1491 457 12051 t 1467 462.1 268.4 962.1 m 1466 552 642 1569 SP + QEM e A 0.082 0.170 0.229 0.167 0.135 e S 0.117 0.141 0.204 0.146 0.098 #f 1000 1806 1490 458 t 41.3 67.3 65.5 36.4 m 361 595 869 646 1422 205.8 12050 Cottage 4224 2754 Chair Hilbert Cube (O 500) Hilbert Cube (O 1500) Hilbert Cube (D -75) Ours Polyt Chauve et al SP + VSA SP + QEM Hilbert Cube (D -25) Horse Ignatius Lans-Fine M60 Sphere Type S S S F F U S Asian dragon Castle Church Courthouse Building A Euler F Origin CAD CAD CAD MVS MVS Laser MVS CAD #p 2.3M 36K 108K 788K 1.4M 1.2M 2.8M 100K #s 1184 531 965 274 294 306 362 304 KSR e A 0.537 4.755 0.021 0.249 0.212 0.112 0.442 0.054 e S 0.448 2.513 0.135 0.237 0.355 0.348 0.119 Type F U I U I Origin Laser CAD Laser Laser Laser #p 3.6M 737K 31.1M 1.9M 2.7M #s 2712 735 1188 2716 887 e A 0.065 0.006 0.460 0.134 0.069 not computable Barn MVS 0.288 #f 626 720 1032 351 443 179 471 319 t 19.9 7.4 13.8 712.8 201.8 576.7 281.1 138.9 m 50 79 126 1018 372 824 378 256 Chauve et al e A -----0.083 -0.054 e S -----0.491 -0.387 #f -----3719 -1256 t -----6510 -294 m -----> 32 GB -8616 SP + QEM e A 10.89 2.172 1.465 0.471 0.330 0.255 0.867 0.174 e S 6.073 1.439 1.025 0.341 0.277 0.386 0.627 0.214 #f 568 721 1030 350 443 175 470 318 t 494.4 7.8 22.5 38.4 35.8 31.6 43.3 24.6 m 4576 137 156 339 422 311 287 198 SP + VSA e A 0.815 3.655 5.722 1.208 0.725 0.354 0.533 0.060 e S 0.975 2.223 3.096 0.818 0.625 0.383 0.427 0.141 #f 489K 887 1081 451 468 164 1694 311 t 806.5 10.1 30.4 52 47.7 37 58.6 40 m 15571 179 492 825 773 311 772 487 Table 7.4: Quantitative comparison between our algorithm, Chauve's Origin Laser CAD Laser Laser CAD method, and surface approximation pipelines on models of intermediate com-KSR 0.069 0.038 0.292 0.183 0.108 e S #f 3132 711 394 1795 1317 t 1109 268.8 1040 375.4 354.2 m 1667 321 324 862 711 SP + QEM e A 0.071 0.044 0.292 0.155 0.148 e S 0.072 0.082 0.345 0.245 0.237 #f 3132 712 394 1795 Building B 1318 t 27.6 100.5 42.8 44.3 40.5 m 300 1127 558 352 639 SP + VSA e A 0.125 0.098 0.569 0.254 0.242 e S 0.108 0.110 0.377 0.262 0.240 #f 3351 1894 494 1818 4070 t 49.9 146.1 47.1 67.8 Building C 39.7 m 594 1975 588 876 870 Fertility-Fine Full thing Meeting Room Navhis Tower of Pi Type F S I I F Stanford Bunny not computable

  Table 8.1. The size is given in millions of points.Qualitative results. We present in Figures 8.2, 8.3 and 8.4 the models generated by our algorithm for these cities. From a qualitative point of view, we obtain persuasive LOD2 reconstructions of most buildings. The Biberach and Vaihingen data-sets contain a lot of gable and hip roofs which are correctly approximated by our algorithm. As for the Portland and San Diego datasets, our technique also succeeds in determining intermediate levels in complex structures, as well as tilted roofs if any. Facades, which are almost completely missing in the input scans, are generally recovered by a single

Table 8

 8 .2: Geometric error for each dataset.Performances. We list in Table8.3 the performances of our algorithm for our two biggest datasets, Vaihingen and Portland, in terms of memory peak and running times. Measures were performed on a machine equiped with an Intel R Core TM i7-6700HQ processor clocked at 2.60 GHz and a 32 GB RAM. The obtained values demonstrate the ability of our algorithm to process large volumes of data in a short time. Table 8.3: Performance measures for datasets Vaihingen and Portland.

	City	Raw error (m) Corrected error (m)
	Biberach	0.85	0.31
	Vaihingen	1.91	0.43
	Portland	1.75	0.53
	San Diego	2.34	0.62
			Vaihingen Portland
	Building contouring (s)	13.5	20.9
	Building reconstruction (s)	509.3	872.8
	Memory peak (GB)	2.2	2.6
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Applications of kinetic data structures. Finally, we plan to investigate on further applications of kinetic data structures.

We may cite, for instance, mesh repairing. Indeed, CAD models can be hampered by geometric insanities like holes, edge or vertex duplication, self-intersecting or redundant facets [START_REF] Butlin | Cad data repair[END_REF][START_REF] Attene | A lightweight approach to repairing digitized polygon meshes[END_REF]. Yet, the construction of a kinetic partition from a awed mesh, followed by the subsequent reconstruction step, may lead to the creation of a repaired model. Inspired by the work of Häne et al [HZC + 13], another research path might include joint 3D reconstruction and semantic classication with N classes from our kinetic partitions, using a more advanced optimization framework.
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Appendix

This appendix provides a detailed pseudo-code illustrating the dierent steps of the kinetic partitioning algorithm presented in chapter 6.

A.1

Polyhedral partitioning in 3D: a pseudo-code Notations. Let:

• P = (P 1 , .., P N ), be the input set of N convex polygons;

• P = (P 1 , .., P n ), be the set of n (innite) supporting planes of polygons P with n ≤ N ;

• P = (P 1 , .., P n ), be the set of 2D polygonal partitions with P i dened in the supporting plane P i by the triplet (L i , T i , S i ) :

L i is the set of intersection lines L ij = P i ∩ P j ;

T i is the set of intersection-free polygons that propagate on the plane P i ; S i is the set of line-segments s ij = P i ∩ T j ;

• Q, be the a global priority queue;

• C, be the output partition of polyhedra;

• F, be the set of polygonal facets contained in C.

Some comments on the pseudo-code. An illustration of the initialization procedure can be found in Figure 6.2 of the paper. On the left side, the blue polygon is an input convex polygon P i in the plane P i . On the right side, the dashed lines, the line-segments and the four blue intersection-free polygons are elements of L i , S i and T i , respectively. Among the collition cases illustrated in Figure 6.3 of the paper, note that the initial polygon decomposition avoids considering collision case (d) in practice. for P i ∈ P do 8:

S i ← ∅ 11:

12:

Add P i to P if

Create sliding or frozen vertices along L ij 19:

Split P into subpolygons P 1 , P 2 20:

Add P 1 , P 2 to T i 21:

Remove P from T i

22:

Add line-segment s = P 1 ∩ P 2 to S j 23:

end if 24:

end for 25:

end for 26:

for P ∈ T i do 27:

for each non-frozen vertex v ∈ P do 28:

Determine the 3 next events e v,j

Add these events to Q