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In this thesis we consider several aspects of parameter estimation for statistics and machine learning, and optimization techniques applicable to these problems. The goal of parameter estimation is to find the unknown hidden parameters, which govern the data, for example parameters of an unknown probability density. The construction of estimators through optimization problems is only one side of the coin, finding the optimal value of the parameter often is an optimization problem that needs to be solved, using various optimization techniques. Hopefully these optimization problems are convex for a wide class of problems, and we can exploit their structure to get fast convergence rates.

The first main contribution of the thesis is to develop moment-matching techniques for multi-index non-linear regression problems. We consider the classical non-linear regression problem, which is unfeasible in high dimensions due to the curse of dimensionality; that is why we assume a model, which states that in fact the data is a nonlinear function of several linear projections of data. We combine two existing techniques: average derivative estimator (ADE) and Sliced Inverse Regression (SIR) to develop the hybrid method (SADE) without some of the weak sides of its parents: it works both in multi-index models and with weak assumptions on the data distribution. We also extend this method to high-order moments. We provide theoretical analysis of constructed estimators both for finite sample and population cases.

In the second main contribution we use a special type of averaging for stochastic gradient descent. We consider generalized linear models for conditional exponential families (such as logistic regression), where the goal is to find the unknown value of the parameter. Classical approaches, such as Stochastic Gradient Descent (SGD) with constant step-size are known to converge only to some neighborhood of the optimal value of the parameter, even with Rupert-Polyak averaging. We propose the averaging of moment parameters, which we call prediction functions. For finitedimensional models this type of averaging surprisingly can lead to negative error, i.e., this approach provides us with the estimator better than any linear estimator can ever achieve. For infinite-dimensional models our approach converges to the optimal prediction, while parameter averaging never does.

The third main contribution of this thesis deals with Fenchel-Young losses. We consider multi-class linear classifiers with the losses of a certain type, such that their v dual conjugate has a direct product of simplices as a support. The corresponding saddle-point convex-concave formulation has a special form with a bilinear matrix term and classical approaches suffer from the time-consuming multiplication of matrices. We show, that for multi-class SVM losses, under mild regularity assumption and with smart matrix-multiplication sampling techniques, our approach has an iteration complexity which is sublinear in the size of the data. It means, that to do one iteration, we need to pay only trice 𝑂(𝑛 + 𝑑 + 𝑘): for number of classes 𝑘, number of features 𝑑 and number of samples 𝑛, whereas all existing techniques use at least one of 𝑛𝑑, 𝑛𝑘 or 𝑑𝑘 arithmetical operations per iteration. This is possible due to the right choice of geometries and using a mirror descent approach.

Résumé

Dans cette thèse, nous examinons plusieurs aspects de l'estimation des paramètres pour les statistiques et les techniques d'apprentissage automatique, aussi que les méthodes d'optimisation applicables à ces problèmes. Le but de l'estimation des paramètres est de trouver les paramètres cachés inconnus qui régissent les données, par exemple les paramètres dont la densité de probabilité est inconnue. La construction d'estimateurs par le biais de problèmes d'optimisation n'est qu'une partie du problème, trouver la valeur optimale du paramètre est souvent un problème d'optimisation qui doit être résolu, en utilisant diverses techniques. Ces problèmes d'optimisation sont souvent convexes pour une large classe de problèmes, et nous pouvons exploiter leur structure pour obtenir des taux de convergence rapides.

La première contribution principale de la thèse est de développer des techniques d'appariement de moments pour des problèmes de régression non linéaire multi-index. Nous considérons le problème classique de régression non linéaire, qui est irréalisable dans des dimensions élevées en raison de la malédiction de la dimensionnalité et c'est pourquoi nous supposons que les données sont en fait une fonction non linéaire de plusieurs projections linéaires des données. Nous combinons deux techniques existantes : "average derivative estimator" (ADE) et "Sliced Inverse Regression" (SIR) pour développer la méthode hybride (SADE) sans certains des aspects faibles de ses parents : elle fonctionne à la fois dans des modèles multi-index et avec des hypothèses faibles sur la distribution des données. Nous étendons également cette méthode aux moments d'ordre élevé. Nous fournissons une analyse théorique des estimateurs construits à la fois pour les cas d'échantillons finis et les cas population.

Dans la deuxième contribution principale, nous utilisons un type particulier de calcul de la moyenne pour la descente stochastique du gradient. Nous considérons des modèles linéaires généralisés pour les familles exponentielles conditionnelles (comme la régression logistique), où l'objectif est de trouver la valeur inconnue du paramètre. Les approches classiques, telles que la descente à gradient stochastique (SGD) avec une taille de pas constante, ne convergent que vers un certain voisinage de la valeur optimale du paramètre, même avec le calcul de la moyenne de Rupert-Polyak. Nous proposons le calcul de la moyenne des paramètres de moments, que nous appelons fonctions de prédiction. Dans le cas des modèles à dimensions finies, ce type de calcul de la moyenne peut, de façon surprenante, conduire à une erreur négative, c'est-à-dire que cette approche nous fournit un estimateur meilleur que tout estimateur linéaire ne vii peut jamais le faire. Pour les modèles à dimensions infinies, notre approche converge vers la prédiction optimale, alors que le calcul de la moyenne des paramètres ne le fait jamais.

La troisième contribution principale de cette thèse porte sur les pertes de Fenchel-Young. Nous considérons des classificateurs linéaires multi-classes avec les pertes d'un certain type, de sorte que leur double conjugué a un produit direct de simplices comme support. La formulation convexe-concave à point-selle correspondante a une forme spéciale avec un terme de matrice bilinéaire, et les approches classiques souffrent de la multiplication des matrices qui prend beaucoup de temps. Nous montrons que pour les pertes SVM multi-classes, sous hypothèse de régularité légère et avec des techniques d'échantillonnage efficaces, notre approche a une complexité d'itération qui est souslinéaire dans la taille des données. Cela signifie que pour faire une itération, nous n'avons besoin de payer que trois fois : 𝑂(𝑛 + 𝑑 + 𝑘) pour le nombre de classes 𝑘, le nombre de caractéristiques 𝑑 et le nombre d'échantillons 𝑛, alors que toutes les techniques existantes utilisent au moins une des opérations arithmétiques 𝑛𝑑, 𝑛𝑘 ou 𝑑𝑘 par itération. Ceci est possible grâce au bon choix des géométries et à l'utilisation d'une approche de descente en miroir.

Mots Clés : estimation des paramètres, méthode des moments, SGD à pas constant, famille exponentielle conditionnelle, fonction objectif du Fenchel-Young, descente en miroir. 

Contributions and thesis outline

In Chapter 1 we give a brief overview of parameter estimation, concerning the method of moments, maximum likelihood and loss minimization problems.

Chapter 2 is dedicated to a special application of method of moments for non-linear regression. This chapter is based on the journal article: Slice inverse regression with score functions, D. Babichev, F. Bach, In Electronic Journal of Statistics [Babichev and Bach, 2018b]. The main contributions of this chapter are as follows:

-We propose score function extensions to sliced inverse regression problems, both for the first-order and second-order score functions. -We consider the infinite sample case and show that in the population case our estimators are superior to the non-sliced versions. -We consider also finite sample case and show their consistency given the exact score functions. We provide non-asymptotical bounds, given sub-Gaussian assumptions. -We propose to learn the score function as well, in two steps, i.e., first learning the score function and then learning the effective dimension reduction space, or directly, by solving a convex optimization problem regularized by the nuclear norm. -We illustrate our results on a series of experiments.

In Chapter 3 we consider special type of averaging for Stochastic SGD applied to generalized linear models. This chapter is based on the conference paper published as an UAI 2018 paper, which was accepted as an oral presentation: Constant step size stochastic gradient descent for probabilistic modeling, D. Babichev, F.Bach, Proceedings in Uncertainty in Artificial Intelligence [Babichev and Bach, 2018a]. The main contributions of this chapter are:

-For generalized linear models, we propose averaging moment parameters instead of natural parameters for constant step size stochastic gradient descent. -For finite-dimensional models, we show that this can sometimes (and suprisingly) lead to better predictions than the best linear model. -For infinite-dimensional models, we show that it always converges to optimal predictions, while averaging natural parameter never does. -We illustrate our finding with simulations on synthetic data and classical 1 benchmarks with many observations. In Chapter 4 we develop sublinear method for Fenchel-Young losses, this is joint work with Dmitrii Ostrovskii. We have submitted this work to ICML 2019 under a title Sublinear-time training of mlticlass classifiers with Fenchel-Young losses, Dmitry Babichev, Dmitrii Ostrovskii and Francis Bach. The main contributions of this chapter are:

-We develop efficient algorithms for solving the regularized empirical risk minimization problems via associated saddle-point problem and using : (i) sampling for computationally heavy matrix multiplication and (ii) right choice of geometry for mirror descent type algorithms. -The less aggressive partial sampling scheme is applicable for any loss minimization problem, such that its dual conjugate has a direct product of simlices as a support. This leads to the cost 𝑂(𝑛(𝑑 + 𝑘)) of one iteration. -The more aggressive full sampling scheme, applied to multiclass hinge loss leads to the sublinear cost 𝑂(𝑑 + 𝑛 + 𝑘) of one iteration. -We conclude the chapter with numerical experiments.

Chapter 1 Introduction

In this chapter we give the brief overview of two main pillars of this thesis: parameter estimation, and optimization (mostly convex minimization and convex-concave saddle point problems).

Principles for parameter estimation

Parameter estimation is a branch of statistics and machine learning, that solves problems of estimation of an unknown set of parameters given some observations. There are a big variety of different methods and models and we consider the three probably most famous of them: moment matching, maximum likelihood and risk minimization. The main application of parameter estimation is density and conditional density estimation (and more generally model estimation), which in turn are used in regression, classification and clustering problems.

Moment matching

Moment matching is a technique for finding the values of parameters, using several moments of the distribution, i.e., expectations of powers of random variable. The method of moments was introduced at least by Chebyshev and Pearson in the late 1800s (see for example [START_REF] Casella | Statistical inference[END_REF] for a discussion). Suppose, that we have a real valued random variable 𝑋 drawn from a family of distributions

{𝑓 (• | 𝜃) | 𝜃 ∈ Θ}.
Given a sample (𝑥 1 , . . . , 𝑥 𝑛 ), the goal is to estimate the true value of the parameter 𝜃 * . The classical approach is to consider the first 𝑘 moments: 𝜇 𝑖 = E[𝑋 𝑖 ] = 𝑔 𝑖 (𝜃), 𝑖 = 1, . . . , 𝑘, and solve the non-linear system of equations to find the estimator θ:

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ μ1 = 1 𝑛 𝑛 ∑︀ 𝑖=1 𝑥 𝑖 = 𝑔 1 ( θ), . . . μ𝑘 = 1 𝑛 𝑛 ∑︀ 𝑖=1 𝑥 𝑘 𝑖 = 𝑔 𝑘 ( θ).
Even though the method is called moment matching, it is non necessary to use moments of random variable, but in general it can use any functions ℎ 𝑖 (𝑋) as long as the expectations ∫︀ ℎ 𝑖 (𝑥)𝑓 (𝑥 | 𝜃)𝑑𝑥 can be easily computed. This approach can be extended for the case of random vectors and cross-moments [START_REF] Hansen | Large sample properties of generalized method of moments estimators[END_REF]. Now we discuss some good and bad points of this approach. Also we illustrate the method on several examples, starting from the toy ones and finishing with state-of-the-art methods applicable to non-linear regression.

Disadvantages and advantages

The main advantage of this approach is that it is quite simple and the estimators are consistent under mild assumptions [START_REF] Hansen | Large sample properties of generalized method of moments estimators[END_REF]. Also in some cases the solutions can be found in closed form, where maximum likelihood approach may require a large computational effort.

However in some sense, this approach is inferior to the maximum likelihood approach and estimators are often biased. In some cases, especially for small samples, the results can be outside of the parameter space. Also the nonlinear set of equations may be hard to solve.

Uniform distribution example

Let us start with a simple example, where we need to estimate the parameters of the one-dimensional uniform distribution: 𝑋 ∼ 𝑈 [𝑎, 𝑏]. The first and the second moments can be evaluated as 𝜇 1 = E𝑋 = 1 2 (𝑎 + 𝑏) and 𝜇 2 = E𝑋 2 = 1 3 (𝑎 2 + 𝑎𝑏 + 𝑏 2 ). Solving the system of these two equations, given a sample (𝑥 1 , . . . , 𝑥 𝑛 ) and using the sample moments μ1 and μ2 instead of true ones, we get a formula for estimating parameters 𝑎 and 𝑏:

(𝑎, 𝑏) = (μ 1 - √︁ 3(μ 2 -μ2 1 ), μ1 + √︁ 3(μ 2 -μ2 1 
)).

Linear regression example

Consider now a simple linear regression model, where 𝑦 = 𝑥 ⊤ 𝑏 + 𝜀, where 𝑦 ∈ R, vectors 𝑥, 𝑏 ∈ R 𝑑 and error 𝜀 has a zero expectation. The goal is to estimate the unknown vector of parameters 𝑏. Consider the cross moment E(𝑥 𝑖 𝑦) = E(𝑥 𝑖 𝑥 ⊤ 𝑏), for 𝑖 = 1, . . . , 𝑑, where 𝑥 𝑖 is the 𝑖-th component of 𝑥. Replacing the expectations with empirical ones for the sample (𝑥 𝑖 , 𝑦 𝑖 ), we get the equation:

𝑦 1 𝑥 1 + • • • + 𝑦 𝑛 𝑥 𝑛 𝑛 = 𝑥 1 𝑥 ⊤ 1 + • • • + 𝑥 𝑛 𝑥 ⊤ 𝑛 𝑛 • b,
which is the traditional normal equation [START_REF] Goldberger | Econometric theory[END_REF]. Finally, arranging the vectors in the matrix 𝑋 ∈ R 𝑛×𝑑 and 𝑦 ∈ R 𝑛 , we recover the b = (𝑋 𝑇 𝑋) -1 𝑋 𝑇 𝑦, Hence in this particular formulation the moment matching estimator coincides with the ordinary least squares estimator.

Exponential families

Note, that for exponential families with probability density given by 𝑓 (𝑥|𝜃) = ℎ(𝑥) exp(𝜃 ⊤ 𝑇 (𝑥) -𝐴(𝜃), moment matching is equivalent to maximum likelihood estimation [START_REF] Lehmann | Theory of point estimation[END_REF]. We discuss this in more details in the next section.

Score functions

Consider the general non-linear regression problem 𝑦 = 𝑓 (𝑥) + 𝜀, 𝑥 ∈ R 𝑑 , 𝑦 ∈ R, error 𝜀 independent of the data and E𝜀 = 0.

The ambitious goal is to estimate the unknown function 𝑓 , given samples (𝑥 𝑖 , 𝑦 𝑖 ). However it is impossible to solve this problem in this loose formulation, due to the curse of dimensionality and non-parametric regression setup. Indeed, classical nonparametric estimation results show that convergence rates with any relevant performance measure can decrease as 𝑛 -𝐶/𝑑 [START_REF] Tsybakov | Introduction to Nonparametric Estimation[END_REF][START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF]. This means that the number of sample points 𝑛 to reach some level of precision is exponential in the dimension 𝑑. A classical way to circumvent the curse of dimensionality is to impose an additional condition: the dependence on some hidden lower dimension of data. Let us start with a simple assumption:

-𝑥 is normal and 𝑓 (𝑥) = 𝑔(𝑤 ⊤ 𝑥), with a matrix 𝑤 ∈ R 𝑑×𝑘 .

If 𝑘 = 1, this model is called a single-index model and a multi-index in the other case [START_REF] Horowitz | Semiparametric methods in econometrics[END_REF]. In this formulation, the goal is to estimate the unknown matrix of parameters 𝑤 ∈ R 𝑘×𝑑 and we can use moment matching techniques. We use again cross-moments and it is not difficult to show that for a single-index, using Stein's lemma, that E(𝑦𝑥) ∼ 𝑤 1 [START_REF] Stein | Estimation of the Mean of a Multivariate Normal Distribution[END_REF][START_REF] Brillinger | A Generalized Linear Model with 'Gaussian' Regressor Variables[END_REF]. Indeed, using independence of noise, the Gaussian probability density 𝑝(𝑥) ∼ exp(-𝑥 2 /2) and integration by parts:

E(𝑦𝑥) = E (︀ (𝑓 (𝑥) + 𝜀)𝑥 )︀ = E (︀ 𝑔(𝑤 ⊤ 1 𝑥)𝑥 )︀ = ∫︁ 𝑔(𝑤 ⊤ 1 𝑥)𝑝(𝑥)𝑥𝑑𝑥 = = ∫︁ 𝑔(𝑤 ⊤ 1 𝑥)∇𝑝(𝑥)𝑑𝑥 = ∫︁ ∇𝑔(𝑤 ⊤ 1 𝑥)𝑝(𝑥)𝑑𝑥 ∼ 𝑤 1 .
The straightforward extension of this approach uses the notion of score function:

𝒮 1 (𝑥) = -∇ log 𝑝(𝑥),
where 𝑝(𝑥) is the probability density of data 𝑥. We use a moment matching technique in the form E(𝒮 1 (𝑥)𝑦) ∼ 𝑤 1 as it is done in [START_REF] Stoker | Consistent estimation of scaled coefficients[END_REF]. The most recent approach for multi-index models by [START_REF] Janzamin | Score function features for discriminative learning: Matrix and tensor framework[END_REF] and [START_REF] Janzamin | Generalization Bounds for Neural Networks through Tensor Factorization[END_REF] uses the notion of high-order scores 𝒮 𝑚 (𝑥) = (-1) 𝑚 ∇ (𝑚) 𝑝(𝑥) 𝑝(𝑥)

(which are tensors) and cross moments E[𝑦 • 𝒮 𝑚 (𝑥)] to train neural networks.

Contribution of this thesis

One more extension of the method of moments uses conditional moments E(𝑥|𝑦), known as Sliced Inverse Regression (SIR, [START_REF] Li | Sliced Inverse Regression for Dimensional Reduction[END_REF]) and second order moments E(𝑥𝑥 ⊤ |𝑦) (Principal Hessian Directions PHD, [START_REF] Li | On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma[END_REF]) which use a normal distribution assumption. We develop a new method, combining strong sides of Stein's lemma and SIR in Chapter 2 of this thesis. We proposed new approaches (SADE and SPHD) and develop analysis for both population and sample cases.

Maximum likelihood

Maximum likelihood estimation or MLE is an another classical approach to estimate the unknown parameters, maximizing the likelihood function: it means intuitively, that the selected parameter makes the data most probable. More formally, let 𝑋 = (𝑥 1 , . . . , 𝑥 𝑛 ) be a random sample from a family of distributions

{𝑓 (• | 𝜃) | 𝜃 ∈ Θ}, then θ ∈ arg max 𝜃∈Θ ℒ(𝜃 ; 𝑋),
where ℒ(𝜃 ; 𝑋) = 𝑓 𝑋 (𝑋 | 𝜃) is the so-called Likelihood function : that is, the joint probability density for the given realization of sample.

In practice, it is often convenient to work with the negative natural logarithm of the likelihood function, called the negative log-likelihood : 𝑙(𝜃 ; 𝑋) = -ln ℒ(𝜃 ; 𝑋). If the data (𝑥 1 , . . . , 𝑥 𝑛 ) are independent and identically distributed, then the joint distribution density can be written as a product of densities for a single 𝑥 𝑖 and the average negative log-likelihood minimization problem takes the form: where 𝑓 (𝑥 𝑖 |𝜃) is the value of the probability density at the point 𝑥 𝑖 .

Advantages and disadvantages

Under mild assumptions the maximum likelihood estimator is consistent, asymptotically efficient and asymptotically normal [START_REF] Lecam | On some asymptotic properties of maximum likelihood estimates and related bayes estimates[END_REF][START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF]. Even though for a simple model, solutions can be found in closed form, for more advanced models, methods of optimization must be used to get the solution. Hopefully the optimization problem is convex for a wide class of likelihood estimators, such as exponential families and conditional exponential families [START_REF] Koller | Probabilistic Graphical Models: Principles and Techniques -Adaptive Computation and Machine Learning[END_REF]Friedman, 2009, Murphy, 2012]. On the other hand, the optimization problem could be not convex if we consider for example mixture models. Moreover, maximum likelihood estimators are robust to mis-specified data: if the real data distribution 𝑓 * does not come from the model {𝑓 (• | 𝜃) | 𝜃 ∈ Θ}, we can still use the approach and the solution with infinity data will be the projection (in the Kullback-Leibler sense) of 𝑓 * to the set of allowed distributions.

Example: Exponential families

The probability density for an exponential family can be written in the following form:

𝑓 (𝑥|𝜃) = ℎ(𝑥) exp(𝜃 ⊤ 𝑇 (𝑥) -𝐴(𝜃)),

where ℎ(𝑥) is the base measure, 𝑇 (𝑥) ∈ R 𝑑 is the sufficient statistics and 𝐴 the logpartition function, which is always convex. Note that we do not assume that the data distribution 𝑝(𝑥) comes from this exponential family. Then the average negative log-likelihood is equal to

l(𝜃; 𝑥) = 1 𝑛 𝑛 ∑︁ 𝑖=1 [︁ 𝐴(𝜃) -𝜃 ⊤ 𝑇 (𝑥 𝑖 ) ]︁ ,
which is a convex problem and can be solved, using any convex minimization approach. Another view to this problem is moment matching: the solution can be found as:

𝐴 ′ (𝜃) = 1 𝑛 𝑛 ∑︁ 𝑖=1 𝑇 (𝑥 𝑖 ),
where we consider the moment of the sufficient statistics 𝑇 (𝑥). Note, that in a fact a big variety of classical distributions can be represented in this form: Bernoulli, normal, Poisson, exponential, Gamma, Beta, Dirichlet and many others. However, also, there are few which are not for example Student's distribution and mixtures of classical distribution are not in this family. Again, writing down the average negative log-likelihood, the goal is to minimize

1 𝑛 𝑛 ∑︁ 𝑖=1 [︁ -𝑦 𝑖 • 𝜂 𝜃 (𝑥 𝑖 ) + 𝑎(𝜂 𝜃 (𝑥 𝑖 )) ]︁ .
These families are used for regression and classification problems and closely related to the generalized linear models [START_REF] Mccullagh | Generalized linear models[END_REF], if the natural parameter is linear combination in known basis: 𝜂 𝜃 (𝑥) = 𝜃 ⊤ Φ(𝑥). On of the most popular choices of function 𝑎 ′ (•) is the sigmoid function 𝑎 ′ (𝑡) = 𝜎(𝑡) = 1/(1 + 𝑒 -𝑡 ), which leads to the logistic regression model. Let us illustrate the connection of logistic regression with a Bernoulli distribution. Let 𝑝 be a parameter of Bernoulli distribution with 𝑥 ∈ {0, 1}, then the probability density is written as:

𝑞(𝑥|𝑝) = 𝑥 log 𝑝 -(1 -𝑥) log(1 -𝑝) = 𝑥 log 𝑝 1 -𝑝 + log(1 -𝑝) = exp(𝑥 • 𝜃 -log(1 + 𝑒 𝜃 )),
where 𝜃 = log 𝑝 1-𝑝 and hence logistic model is unconstrained reformulation of Bernoulli model, and the lack of constraint is often seen as a benefit for optimization.

Another common choice is Poisson regression [START_REF] Mccullagh | Generalized linear models[END_REF], where 𝑎(𝑡) = exp(𝑡), which is used, when the dependent variable is a count.

Contribution of this thesis

In Chapter 3 of this thesis we consider constant step-size stochastic gradient descent for conditional exponential families. Instead of averaging of parameters 𝜃, we propose averaging of so-called prediction functions 𝜇 = 𝑎 ′ (𝜃 ⊤ Φ(𝑥)), which leads to better convergence to the optimal prediction, especially for infinite-dimensional models.

Loss functions

One more view to the parameter estimation problem is risk minimization, which goes beyond the maximum likelihood approach. A non-negative real-valued loss function ℓ(𝑦, ŷ) measures the performance for classification or regression problem: i.e., the difference between prediction ŷ of a and the true outcome 𝑦. The expected loss 𝑅(𝜃) = E[ℓ(𝑓 (𝑥|𝜃), 𝑦)] is called the risk. However, in practice the true distribution 𝑃 (𝑥, 𝑦) is inaccessible and the empirical risk used instead. Hence, the classical regularized empirical risk minimization problem is written as:

min 𝜃 1 𝑛 𝑛 ∑︁ 𝑖=1 ℓ
(︀ 𝑓 (𝑥 𝑖 |𝜃), 𝑦 𝑖 )︀ + 𝜆 Ω(𝜃), (1.1.1) where Ω(𝜃) is a regularizer, which is used to avoid overfitting. There are several classical choices of loss function, and we start with in some sense the most intuitive ones:

0 -1 loss
This loss, which is also called misclassification loss is used in classification problems, where the response 𝑦 is located in a finite set. The definition speaks for itself: the loss is zero, in the case of true classification and one in the other case:

ℓ(𝑓 (𝑥 𝑖 |𝜃), 𝑦 𝑖 ) = 1 ⇐⇒ 𝑓 (𝑥 𝑖 |𝜃) ̸ = 𝑦 𝑖 .
It is known to lead to NP-hard problems, even for linear classifiers [START_REF] Feldman | Agnostic learning of monomials by halfspaces is hard[END_REF][START_REF] Ben-David | On the difficulty of approximately maximizing agreements[END_REF]. That is why in practice people use a convex relaxation of the 0 -1 loss functions (see below).

Quadratic loss

One of the other classical choices for loss function in the case of regression problems is the quadratic loss: ℓ(𝑓 (𝑥 𝑖 |𝜃), 𝑦 𝑖 ) = (𝑓 (𝑥 𝑖 |𝜃) -𝑦 𝑖 ) 2 .

It has a simple form, smooth (in contradiction to the ℓ 1 loss) and convex. Thus, the empirical risk minimization problem becomes mean squared error minimization.

The connection with likelihood estimators can be shown, using the linear model with Gaussian noise: 𝑦 = 𝑥 ⊤ 𝜃 + 𝜀, where 𝜀 ∼ 𝒩 (0, 𝜎 2 ).

Then, the negative log-likelihood is

𝑙(𝑦; 𝑥, 𝜃) ∼ (𝑥 ⊤ 𝜃 -𝑦) 2 ,
and the empirical likelihood minimization problem for this problem is equivalent to the mean squared error minimization (but the application of least squares is not limited to Gaussian noise).

Let us illustrate also a connection of quadratic loss with regression: consider that we are looking for a function 𝑓 , such that 𝑦 = 𝑓 (𝑥) + 𝜀, where 𝑥 ∈ R 𝑑 and 𝑦 ∈ R. Then, the expected loss (risk) can be written as

𝑅(𝑓 ) = ∫︁ ℓ(𝑓 (𝑥), 𝑦)𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.
Solving this functional minimization problem for the quadratic loss, we get the solution 𝑓 (𝑥) = E 𝑦 [𝑦|𝑥], which is the conditional expectation of 𝑦 given 𝑥 and is known as the regression function.

Convex surrogates

Here we consider the main examples for convex surrogates of the 0 -1 loss, which make the computation more tractable.

Hinge loss. It is written as

ℓ(𝑓 (𝑥 𝑖 |𝜃), 𝑦 𝑖 ) = max(0, 1 -𝑓 (𝑥 𝑖 |𝜃)𝑦 𝑖 ),
and is used in soft-margin support vector machines (SVM) approach introduced in its modern form by [START_REF] Cortes | Support-vector networks[END_REF]. The method tries to find a hyperplane which separates the data. In practice, usually regularized problem is considered due to non-robustness, especially for separable data:

[︃ 1 𝑛 𝑛 ∑︁ 𝑖=1 max (0, 1 -𝑦 𝑖 𝜃𝑥 𝑖 ) ]︃ + 𝜆‖𝜃‖ 2 .
The classical way of solving the minimization problem is to switch to quadratic programming problem (originally [START_REF] Cortes | Support-vector networks[END_REF], see also [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]).

However, now the most recent approaches are used, such as gradient descent and stochastic gradient descent types [START_REF] Shalev-Shwartz | Pegasos: Primal estimated sub-gradient solver for SVM[END_REF].

Logistic loss and Exponential loss. The logistic loss is defined as ℓ(𝑓 (𝑥 𝑖 |𝜃), 𝑦 𝑖 ) = log(1 + exp(-𝑦 • 𝑓 (𝑥 𝑖 |𝜃))) and the Exponential loss is defined as ℓ(𝑓 (𝑥 𝑖 |𝜃), 𝑦 𝑖 ) = exp(-𝑦 • 𝑓 (𝑥 𝑖 |𝜃)). In fact, these two losses are dictated by maximum log-likelihood formulations: the logistic loss takes its origin in logistic regression and exponential loss is used in Poisson regression. Moreover, we can say that every negative log-likelihood minimization problem is equivalent to loss minimization problem, if we introduce the corresponding log-likelihood loss. The opposite is typically not true (for example for the hinge loss).

Graphical representation

We summarize the discussed losses in the Figure 1-1, where we renormalize some of them to pass through the point (1, 0). The dashed line represents the regression formulation and solid ones are for classification problems. 

Contribution of this thesis

In Chapter 4 of this thesis we consider so-called Fenchel-Young losses for multiclass linear classifiers, which extend convex surrogates to the multiclass setting. This leads to saddle-point convex-concave problems with expensive matrix multiplications. Using stochastic optimization methods for non-Euclidean setup (using mirror descent) and specific variance reduction techniques we are able to reach sublinear (in the natural dimensionality of the problem) running time complexity per iteration.

Convex optimization

In this section we discuss the basics of convex optimization. Convexity is a prevailing setup for optimization problems, due to the theoretical guarantees for this class of functions. The classical convex minimization problem is the following:

min 𝑥∈𝒳 𝑓 (𝑥),
where 𝒳 ∈ R 𝑑 is a convex set: for any two points 𝑥, 𝑦 ∈ 𝒳 and for every 𝛼 ∈ [0, 1] the point 𝛼𝑥 + (1 -𝛼)𝑦 is also in 𝒳 . This means, that for any two points inside the set, the whole segment, connecting these points is also in the set. The function 𝑓 is convex as well: for any 𝑥, 𝑦 ∈ 𝒳 and 𝛼 ∈ [0, 1]: 𝑓 (𝛼𝑥 + (1 -𝛼)𝑦) 𝛼𝑓 (𝑥) + (1 -𝛼)𝑓 (𝑦) and this means, that the epigraph of function 𝑓 is a convex set: every chord lies above the graph of a function. It is known for convex minimization problems, that:

-If a local minimum exists, it is also a global minimum.

-The set of all global minima is convex (note, that global minimum is not necessarily unique).

Consider the unconstrained minimization problem, where 𝒳 = R 𝑑 . The first property provides us with the criterion of global minimum: if the function 𝑓 is differentiable, then

∇𝑓 (𝑥 * ) = 0 ⇔ 𝑥 * is global minimum.
If the function 𝑓 is not differentiable, we still can use the criterion, where the gradient of the function is replaced by a sub-gradient : a generalization of gradient for convex function which defines the cone of directions in which the function increases [START_REF] Rockafellar | Convex analysis[END_REF]:

𝜕𝑓 (𝑥 * ) ∋ 0 ⇔ 𝑥 * is global minimum.
However in practice, only for simple problems the solution can be found in closed form. For the majority of convex problems computational iterative methods are used, and the starting point for them are gradient descent or the steepest descent

𝑥 𝑡+1 = 𝑥 𝑡 -𝛾 𝑡 ∇𝑓 (𝑥 𝑡 ).
The idea is straightforward: we are looking for the direction in which the function increases and then descend in the opposite direction. Classical choices for stepsize are constant and decaying:

𝛾 𝑡 = 𝐶𝑡 -𝛼 , where 𝛼 ∈ [0, 1].
We also consider classical assumptions, such that bounded gradients, smoothness (which requires differentiability) and strong convexity (for more details see [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF][START_REF] Bubeck | Convex optimization: Algorithms and complexity[END_REF]):

The first definition is the weakest one: bounded gradients, which does not require differentiability: 

𝑓 (𝑦) 𝑓 (𝑥) + ∇𝑓 (𝑥) ⊤ (𝑦 -𝑥) + 𝐿 2 ‖𝑦 -𝑥‖ 2 ,
which is equivalent to, when 𝑓 is convex, ‖∇𝑓 (𝑥) -∇𝑓 (𝑦)‖ 𝐿‖𝑥 -𝑦‖. 

𝑓 (𝑦) 𝑓 (𝑥) + ∇𝑓 (𝑥) ⊤ (𝑦 -𝑥) + 𝜇 2 ‖𝑦 -𝑥‖ 2 .
The intuitive definition of Lipschitz smoothness is that at every point, the function 𝑓 can be bounded above by quadratic function with coefficient 𝐿/2, strong convexity means, that at every point the function 𝑓 is bounded below by quadratic function with coefficient 𝜇/2. A graphical representation of one dimensional case can be found in Figure 12. 

Lipschitz bound

Strongly convexity bound

Euclidean geometry

Note, that we did not define norms for smoothness and strong convexity. If we define them as standard Euclidean norms, we reproduce the so-called Euclidean geometry and constants 𝐿 and 𝜇 correspond to the biggest and the smallest eigenvalues of Hessians, if the function is twice differentiable.

Projected gradient descent

The gradient descent method for constrained problem is called projected gradient descent (see [START_REF] Bertsekas | Nonlinear programming[END_REF] and references therein) and one iteration is the following:

𝑥 𝑡+1 = Π 𝒳 (︀ 𝑥 𝑡 -𝛾 𝑡 𝑔(𝑥 𝑡 ) )︀ , with 𝑔(𝑥 𝑡 ) ∈ 𝜕𝑓 (𝑥 𝑡 )
where Π 𝒳 (𝑥) = arg min 𝑦∈𝒳 ‖𝑥 -𝑦‖ is the Euclidean projection of the point 𝑥 to the set 𝒳 . We illustrate this approach in Figure 1-3. We can also to look at this equation through the prism of proximal approaches [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF][START_REF] Rockafellar | Monotone operators and the proximal point algorithm[END_REF] as done for example in [START_REF] Beck | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF]:

𝑥 𝑡+1 = arg min 𝑥∈𝒳 {︂ ⟨𝑥, 𝑔(𝑥 𝑡 )⟩ + 1 𝛾 𝑡 ‖𝑥 -𝑥 𝑡 ‖ 2

}︂

, where 𝑔(𝑥 𝑡 ) ∈ 𝜕𝑓 (𝑥 𝑡 ).

x t

x t+1/2

x t+1 X gradient step proximal step Note, that the proximal operator should be simple, i.e., the structure of the set 𝒳 be simple enough to compute it in either in closed form or with a number of iterations commensurate with the computation of the gradient. Now we formulate main results for functions with different assumpions (short proofs can be found for example in [START_REF] Bubeck | Convex optimization: Algorithms and complexity[END_REF]): 

𝑓 (𝑥 𝑡 ) -𝑓 (𝑥 * ) 4𝐿‖𝑥 1 -𝑥 * ‖ 2 𝑡 .
Hence in case of 𝐿-smooth function we get an 1/𝑡 convergence rate. If we add an assumption about strong convexity of the function 𝑓 , we recover exponential rate: Theorem 1.3. Let 𝑓 be 𝜇 strongly convex and 𝐿-smooth on 𝒳 . Then the projected gradient descent with constant stepsize 𝛾 𝑡 = 1 𝐿 satisfies:

‖𝑥 𝑡+1 -𝑥 * ‖ 2 exp (︁ -𝑡 • 𝜇 𝐿 )︁ ‖𝑥 1 -𝑥 * ‖ 2 .
Note also that acceleration techniques, proposed by Nesterov can be used to increase the convergence rates. The first work in this direction [START_REF] Nesterov | A method for solving the convex programming problem with convergence rate o (1/kˆ2)[END_REF] was proposed for smooth functions and unconstrained setup. It improved the rates from 1/𝑡 to 1/𝑡 2 . The case of non-smooth function was considered in [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF] and improved the rates from 1/ √ 𝑡 to 1/𝑡, using a special smoothing technique, which can be applied to functions with explicit max-structure. Constrained problems were considered in [START_REF] Nesterov | Gradient methods for minimizing composite objective function[END_REF] and [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] with the same convergence rates.

Note, that Theorems 1.1, 1.2 and 1.3 use Euclidean geometries: definitions of smoothness and strongly convexity are given with respect with usual Euclidean geometry. In the next section we extend these result for a more general setup.

Non-Euclidean geometry

The ideas of non-Euclidean approach are to exploit the geometry of the set 𝒳 and achieve the rates of projected gradient descent with constants adapting to the geometry of the set 𝒳 . Let us fix an arbitrary norm ‖ • ‖ X and a compact set 𝒳 ∈ R 𝑑 . We introduce a definition of the dual norm:

Definition 1.4. The norm ‖•‖ X * is called the dual norm, if ‖𝑔‖ X * = sup 𝑥∈R 𝑑 :‖𝑥‖ X 1 𝑔 ⊤ 𝑥.
Now we need to adapt definitions of bounded gradients, smoothness and strong convexity: (see for example [Bubeck, 2015, Beck and[START_REF] Beck | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF]) (i) we say, that function 𝑓 (𝑥) has bounded gradients, if ‖𝑔‖ X * 𝐵 for any 𝑔(𝑥) ∈ 𝜕𝑓 (𝑥).

(ii) we say, that function

𝑓 (𝑥) is 𝐿-smooth with respect to norm ‖ • ‖ X if ‖∇𝑓 (𝑥) -∇𝑓 (𝑦)‖ X * ‖𝑥 -𝑦‖ X , where ‖ • ‖ X * is dual norm, (iii) 𝜇-strongly convex if 𝑓 (𝑦) 𝑓 (𝑥) + ∇𝑓 (𝑥) ⊤ (𝑦 -𝑥) + 𝜇 2 ‖𝑦 -𝑥‖ 2 X .
The idea of the mirror approach is to consider a so-called potential function Φ(𝑥) (which is also called DGF -distance generating function or mirror map), then switch to the mirror space (using gradient of potential), do the gradient step in this space, return back to the main space and project the point to the set 𝒳 .

Mirror descent

More formally, one step of Mirror descent [START_REF] Nemirovsky | Problem complexity and method efficiency in optimization[END_REF] is

∇Φ(𝑥 𝑡+1/2 ) = ∇Φ(𝑥 𝑡 ) -𝛾 𝑡 ∇𝑓 (𝑥 𝑡 ), 𝑥 𝑡+1 ∈ Π Φ 𝒳 (𝑥 𝑡+1/2 ), where Π Φ 𝒳 (𝑥, 𝑦) = arg min 𝑥∈𝒳 𝐵 Φ (𝑥, 𝑦)
is the projection in the Bregman divergence sense:

𝐵 Φ (𝑥, 𝑦) = Φ(𝑥) -Φ(𝑦) -∇Φ(𝑦) ⊤ (𝑥 -𝑦).
However, this notation could be difficult to embrace and [START_REF] Beck | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF] introduced the equivalent definition without switching to the mirror space, and one step of mirror descent can be written as:

𝑥 𝑡+1 = arg min 𝑥∈𝒳 {︂ ⟨𝑥, ∇𝑓 (𝑥 𝑡 )⟩ + 1 𝛾 𝑡 𝐵 𝜑 (𝑥, 𝑥 𝑡 ) }︂ . ( Mirror descent) 
Note the similarity with projected gradient descent. In practice, the potential Φ(𝑥) should be a strictly convex and differentiable function with the following properties:

-Φ(𝑥) is 1-strongly convex on 𝒳 with respect to ‖ • ‖ X .

-The effective square radius of set 𝒳 , which is defined as

Ω = sup 𝑥∈𝒳 Φ(𝑥) - inf 𝑥∈𝒳 Φ(𝑥) should be small.
-The proximal step above should be feasible.

Finally, we can formulate convergence rates for the Mirror descent algorithm for nonsmooth case (a short proof can be found for example in [START_REF] Bubeck | Convex optimization: Algorithms and complexity[END_REF]): Theorem 1.4. Let Φ be a 1-strongly convex with respect to ‖ • ‖ X and 𝑓 be convex with 𝐵-bounded gradients with respect to ‖ • ‖ X . Then mirror descent with

𝛾 𝑡 = √ 2Ω 𝐵 √ 𝑡 satisfies: 𝑓 (x 𝑡 ) -𝑓 (𝑥 * ) 𝐵 √︂ 2Ω 𝑡 , where x𝑡 = 1 𝑡 𝑡 ∑︁ 𝑖=1 𝑥 𝑖 .
Note, that there are various extensions of mirror descent, such as mirror prox [START_REF] Nemirovski | Prox-method with rate of convergence 𝑂(1/𝑡) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems[END_REF], Dual Averaging [START_REF] Nesterov | Gradient methods for minimizing composite objective function[END_REF] and extentions to saddle point minimax problems [Juditsky andNemirovski, 2011a,b, Nesterov and[START_REF] Nesterov | On first-order algorithms for 𝑙 1 /nuclear norm minimization[END_REF].

One more direction is NoLips approach, where the idea is to get rid of the Lipschitzcontinuous gradient, using convexity condition which captures the geometry of the constraints [START_REF] Bauschke | A descent lemma beyond lipschitz gradient continuity: first-order methods revisited and applications[END_REF].

Examples of geometries ℓ 2 geometry. This is the simplest geometry, which actually corresponds to the Euclidean case. Indeed, in this case Φ(𝑥) = 1 2 ‖𝑥‖ 2 2 is 1-strongly convex with respect to the ℓ 2 norm on the whole R 𝑑 . The Bregman divergence, associated with this norm is 𝐵 𝜑 (𝑥, 𝑦) = 1 2 ‖𝑥 -𝑦‖ 2 2 and one step of mirror descent is reduced to one step of projected gradient descent. Note, that Theorem 1.4 is reduced to Theorem 1.1 in this case. ℓ 1 geometry. This is more interesting choice of geometry, which is also called simplex setup. If we define potential as negative entropy:

Φ(𝑥) = 𝑑 ∑︁ 𝑖=1 𝑥 𝑖 log 𝑥 𝑖 ,
then, using Pinsker's inequality, we can show, that Φ is 1-strongly convex with respect to ℓ 1 norm on the simplex

∆ 𝑑 = {𝑥 ∈ R 𝑑 + : 𝑑 ∑︀ 𝑖=1
𝑥 𝑖 = 1}. The Bregman divergence associated with negative entropy is so-called he Kullback-Leibler divergence :

𝐵 𝜑 (𝑥, 𝑦) = 𝐷 KL (𝑥‖𝑦) = 𝑑 ∑︀ 𝑖=1 𝑥 𝑖 log 𝑥 𝑖 𝑦 𝑖 .
The effective squared radius of ∆ 𝑑 is Ω = log 𝑑 and moreover the solution for one step of MD can be found in closed form and lead to so-called multiplicative updates. This implies, that if we minimize function 𝑓 on the simplex ∆ 𝑑 , such that ‖∇𝑓 ‖ ∞ are bounded, the right choice of geometry give rates as 𝑂 (︀ log 𝑑

𝑡

)︀ , whereas the Euclidean geometry give rates only as 𝑂 (︀ 𝑑

𝑡

)︀ . One more classical setup is often used: the ℓ 1 ball can be obtained from the simplex setup, by doubling the number of variables. Instead of 𝑑 real values (positive or negative), we consider 2𝑑 positive values and transform the 𝑑-dimensional ball to the 2𝑑-dimensional simplex.

Stochastic setup

In this section we consider stochastic approaches going back to [START_REF] Robbins | ªa stochastic approximation method, º annals math[END_REF], where we do not use the gradient ∇𝑓 (𝑥), but evaluate the noisy version of it: namely a stochastic oracle ̃︀ 𝑔(𝑥), such that Ẽ︀ 𝑔(𝑥) = ∇𝑓 (𝑥). The classical setting in machine learning is when the objective function 𝑓 is the sampled mean of observations 𝑓 𝑖 (probably with some regularizer term):

𝑓 (𝑥) = 1 𝑛 𝑛 ∑︁ 𝑖=1 𝑓 𝑖 (𝑥) + 𝑅(𝑥),
and we can choose oracle as 𝑓 𝑖 (𝑥), where 𝑖 is chosen uniformly from 𝑛 points. In fact, all negative log-likelihood minimization and loss minimization problems have this form. This also applies to the situation of single pass SGD where the bounds are then on the generalization error. To define the quality of an oracle ̃︀ 𝑔(𝑥), we assume the existence of the moment

𝐵 2 = sup 𝑥∈𝒳 E‖̃︀ 𝑔(𝑥)‖ 2 X * ,
in the non-smooth case, and assume the existence of the variance in the smooth case:

𝜎 2 = sup 𝑥∈𝒳 E‖̃︀ 𝑔(𝑥) -∇𝑓 (𝑥)‖ 2 X * ,
where the norm depends on the geometry. Let us consider the general Stochastic Mirror Descent approach:

𝑥 𝑡+1 = arg min 𝑥∈𝒳 {︂ ⟨𝑥, ̃︀ 𝑔(𝑥 𝑡 )⟩ + 1 𝛾 𝑡 𝐵 𝜑 (𝑥, 𝑥 𝑡 ) }︂ . (Stochastic Mirror Descent)
Now we can formulate the theorem: [Juditsky et al., 2011[START_REF] Lan | An optimal method for stochastic composite optimization[END_REF][START_REF] Xiao | Dual averaging methods for regularized stochastic learning and online optimization[END_REF] Theorem 1.5. Let Φ be a 1-strongly convex with respect to ‖•‖ 𝒳 and 𝐵 2 be the second moment of an oracle ̃︀ 𝑔(𝑥). 

E𝑓 (x 𝑡 ) -𝑓 (𝑥 * ) 𝐵 √︂ 2Ω 𝑡 , where x𝑡 = 1 𝑡 𝑡 ∑︁ 𝑖=1 𝑥 𝑖 .
Note the similarity of this result with Theorem 1.4: the only difference is that bounded gradients are replaced with the bounded moment of the oracle.

Saddle point optimization

In this section we consider saddle point optimization. Consider two convex and compact sets 𝒳 ∈ R 𝑑 1 and 𝒴 ∈ R 𝑑 2 . Let 𝜑(𝑥, 𝑦) : 𝒳 × 𝒴 → R be a function, such that 𝜑(•, 𝑦) is convex and 𝜑(𝑥, •) is concave. The goal is to find

min 𝑥∈𝒳 max 𝑦∈𝒴

𝜑(𝑥, 𝑦).

A classical example is obtained from Fenchel duality below. We present here results from [Juditsky andNemirovski, 2011a,b, Nesterov and[START_REF] Nesterov | On first-order algorithms for 𝑙 1 /nuclear norm minimization[END_REF], concerning the mirror descent approach.

Introduce the (sub)gradient field : 𝐺(𝑥, 𝑦) = (︁ 𝜕 𝑥 𝜑(𝑥, 𝑦), -𝜕 𝑦 𝜑(𝑥, 𝑦) )︁ -analogue of (sub)gradients for saddle point problems. Then subgradients are given by

(︁ 𝑔 𝒳 (𝑥, 𝑦), 𝑔 𝒴 (𝑥, 𝑦) )︁ ∈ 𝐺(𝑥, 𝑦).
The analogue of bounded gradients is written as: 𝑦). Introduce the variable 𝑧 = (𝑥, 𝑦) and the set 𝒵 = 𝒳 × 𝒴. The main motivation of the duality gap is that it can be controlled in the following way, similar for the convex optimization:

∆ 𝑑𝑢𝑎𝑙 (̃︀ 𝑧) 𝑔(̃︀ 𝑧) ⊤ (̃︀ 𝑧 -𝑧),
where 𝑔(̃︀ 𝑧) in the gradient field 𝐺(̃︀ 𝑧), for more details see [START_REF] Bertsekas | Nonlinear programming[END_REF].

Recall, that in order to apply mirror descent, we firstly need to construct potential and choose geometries. Let Φ 𝒳 (𝑥) be a potential, defined for variable the 𝑥, such that it is 1-strongly convex with respect to a norm ‖ • ‖ X on 𝒳 . Similarly, let Φ 𝒴 (𝑦) be a potential, defined for the variable 𝑦, such that it is 1-strongly convex with respect to a norm ‖ • ‖ Y on 𝒴. Let Ω 𝒳 and Ω 𝒴 be the effective square radii of sets 𝒳 and 𝒴 with respect to the corresponding norms.

Let us construct the composite potential 

Φ 𝒵 (𝑧) = ℒ 𝒳 √ Ω 𝒳 Φ 𝒳 (𝑥) + ℒ 𝒴 √ Ω 𝒴 Φ 𝒴 (𝑦),
max 𝑦∈𝒴 𝜑(x 𝑡 , 𝑦) -min 𝑥∈𝒳 𝜑(𝑥, ȳ𝑡 ) (︁ √︀ Ω 𝒳 ℒ 𝒳 + √︀ Ω 𝒴 ℒ 𝒴 )︁ √︂ 2 𝑡 .

Fenchel duality

We finish this introduction with the classical Fenchel duality result which provides us with the way to switch from convex problems to saddle-point problems. Let us firstly define the notion of the Fenchel conjugate of the convex function 𝑓 : Finally, we provide the way to switch between primal, dual and saddle point formulations of the convex problem:

Primal problem : inf 𝑥 {︁ 𝑓 (𝑥) + 𝑔(𝐴𝑥) }︁ .
Dual problem : sup

𝑦 {︁ -𝑓 * (𝐴 ⊤ 𝑦) -𝑔 * (-𝑦) }︁ .
Saddle problem : inf

𝑥 sup 𝑦 {︁ 𝑓 (𝑥) -𝑔 * (-𝑦) + 𝑦 ⊤ 𝐴𝑥 }︁ .
Machine learning motivation. These optimization problems are motivated by machine learning applications, where 𝑥 is the parameter to estimate, matrix 𝐴 the data, 𝑔 the loss and 𝑓 the regularizer (note similarity with regularized empirical risk minimization (1.1.1)). Dual or saddle problem formulations help to switch to an equivalent task, which in some sense has a simpler structure, like bilinear saddle-point problem with composite terms and moreover allows to control the duality gap. 19

Introduction

Non-linear regression and related problems such as non-linear classification are core important tasks in machine learning and statistics. In this chapter, we consider a random vector 𝑥 ∈ R 𝑑 , a random response 𝑦 ∈ R, and a regression model of the form 𝑦 = 𝑓 (𝑥) + 𝜀, (2.1.1) which we want to estimate from 𝑛 independent and identically distributed (i.i.d.) observations (𝑥 𝑖 , 𝑦 𝑖 ), 𝑖 = 1, . . . , 𝑛. Our goal is to estimate the function 𝑓 from these data. A traditional key difficulty in this general regression problem is the lack of parametric assumptions regarding the functional form of 𝑓 , leading to a problem of non-parametric regression. This is often tackled by searching implicitly or explicitly a function 𝑓 within an infinite-dimensional vector space. While several techniques exist to estimate such a function, e.g., kernel methods, local-averaging, or neural networks [see, e.g., [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF][START_REF] Tsybakov | Introduction to Nonparametric Estimation[END_REF], they also suffer from the curse of dimensionality, that is, the rate of convergence of the estimated function to the true function (with any relevant performance measure) can only decrease as a small power of 𝑛, and this power cannot be larger than a constant divided by 𝑑. In other words, the number 𝑛 of observations for any level of precision is exponential in dimension.

A classical way of by-passing the curse of dimensionality is to make extra assumptions regarding the function to estimate, such as the dependence on a lower unknown low-dimensional subspace, such as done by projection pursuit or neural networks. More precisely, throughout the chapter, we make the following assumption:

(A1) For all 𝑥 ∈ R 𝑑 , we have 𝑓 (𝑥) = 𝑔(𝑤 ⊤ 𝑥) for a certain matrix 𝑤 ∈ R 𝑑×𝑘 and a function 𝑔 : R 𝑘 → R. Moreover, 𝑦 = 𝑓 (𝑥) + 𝜀 with 𝜀 independent of 𝑥 with zero mean and finite variance. The subspace of R 𝑑 spanned by the 𝑘 columns 𝑤 1 , . . . , 𝑤 𝑘 ∈ R 𝑑 of 𝑤 has dimension less than or equal to 𝑘, and is often called the effective dimension reduction (e.d.r.) space. The model above is often referred to as a multiple-index model [START_REF] Yuan | On the identifiability of additive index models[END_REF]. We will always make the assumption that the e.d.r. space has exactly rank 𝑘, that is the matrix 𝑤 has rank 𝑘 (which implies that 𝑘 𝑑).

Given 𝑤, estimating 𝑔 may be done by any technique in non-parametric regression, with a convergence rate which requires a number of observations 𝑛 to be exponential in 𝑘, with methods based on local averaging (e.g., Nadaraya-Watson estimators) or on least-squares regression [see, e.g., [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF][START_REF] Tsybakov | Introduction to Nonparametric Estimation[END_REF]. Given the non-linear function 𝑔, estimating 𝑤 is computationally difficult because the resulting optimization problem may not be convex and thus leads to several local minima. The difficulty is often even stronger since one often wants to estimate both the function 𝑔 and the matrix 𝑤.

Our main goal in this chapter is to estimate the matrix 𝑤, with the hope of obtaining a convergence rate where the inverse power of 𝑛 will now be proportional to 𝑘 and not 𝑑. Note that the matrix 𝑤 is only identifiable up to a (right) linear transform, since only the subspace spanned by its column is characteristic.

Method of moments vs. optimization. This multiple-index problem and the goal of estimating 𝑤 only can be tackled from two points of views: (a) the method of moments, where certain moments are built so that the effect of the unknown function 𝑔 disappears [Brillinger, 1982, Li and[START_REF] Li | Regression analysis under link violation[END_REF], a method that we follow here and describe in more details below. These methods rely heavily on the model being correct, and in the instances that we consider here lead to provably polynomial-time algorithms (and most often linear in the number of observations since only moments are computed). In contrast, (b) optimization-based methods use implicitly or explicitly non-parametric estimation, e.g., using local averaging methods to design an objective function that can be minimized to obtain an estimate of 𝑤 [Xia et al., 2002a[START_REF] Fukumizu | Kernel dimension reduction in regression[END_REF]. The objective function is usually non-convex and gradient descent techniques are used to obtain a local minimum. While these procedures offer no theoretical guarantees due to the potential unknown difficulty of the optimization problem, they often work well in practice, and we have observed this in our experiments.

In this chapter, we consider and improve a specific instantiation of the method of moments, which partially circumvents the difficulty of joint estimation by estimating 𝑤 directly without the knowledge of 𝑔. The starting point for this method is the work by [START_REF] Brillinger | A Generalized Linear Model with 'Gaussian' Regressor Variables[END_REF], which shows, as a simple consequence of Stein's lemma [START_REF] Stein | Estimation of the Mean of a Multivariate Normal Distribution[END_REF], that if the distribution of 𝑥 is Gaussian, (A1) is satisfied with 𝑘 = 1 (e.d.r. of dimension one, e.g., a single-index model), and the input data have zero mean and identity covariance matrix, then the expectation E(𝑦𝑥) is proportional to 𝑤. Thus, a certain expectation, which can be easily approximated given i.i.d. observations, simultaneously eliminates 𝑔 and reveals 𝑤.

While the result above provides a very simple algorithm to recover 𝑤, it has several strong limitations: (a) it only applies to normally distributed data 𝑥, or more generally to elliptically symmetric distributions [START_REF] Cambanis | On the Theory of Elliptically Contoured Distributions[END_REF], (b) it only applies to 𝑘 = 1, and (c) in many situations with symmetries, the proportionality constant is equal to zero and thus we cannot recover the vector 𝑤. This has led to several extensions in the statistical literature which we now present.

Using score functions. The use of Stein's lemma with a Gaussian random variable can be directly extended using the score function 𝒮 1 (𝑥) defined as the negative gradient of the log-density, that is, 𝒮 1 (𝑥) = -∇ log 𝑝(𝑥) = -1 𝑝(𝑥) ∇𝑝(𝑥), which leads to the following assumption:

(A2) The distribution of 𝑥 has a strictly positive density 𝑝(𝑥) which is differentiable with respect to the Lebesgue measure, and such that 𝑝(𝑥) → 0 when ‖𝑥‖ → +∞. We will need the score to be sub-Gaussian to obtain consistency results. Given Assumption (A2), then [START_REF] Stoker | Consistent estimation of scaled coefficients[END_REF] showed, as a simple consequence of integration by parts, that, for 𝑘 = 1 and if Assumption (A1) is satisfied, then E(𝑦𝒮 1 (𝑥)) is proportional to 𝑤, for all differentiable functions 𝑔, with a proportionality constant that depends on 𝑤 and ∇𝑔. This leads to the "average derivative method" (ADE) and thus replaces the Gaussian assumption by the existence of a differentiable log-density, which is much weaker. This however does not remove the restriction 𝑘 = 1, which can be done in two ways which we now present. Sliced inverse regression. Given a normalized Gaussian distribution for 𝑥 (or any elliptically symmetric distribution), then, if (A1) is satisfied, almost surely in 𝑦, the conditional expectation E(𝑥|𝑦) happens to belong to the e.d.r. subspace. Given several distinct values of 𝑦, the vectors E(𝑥|𝑦) or any estimate thereof, will hopefully span the entire e.d.r. space and we can recover the entire matrix 𝑤, leading to "slice inverse regression" (SIR), originally proposed by [START_REF] Li | Regression analysis under link violation[END_REF], [START_REF] Duan | Slicing regression: a link-free regression method[END_REF], [START_REF] Li | Sliced Inverse Regression for Dimensional Reduction[END_REF]. This allows the estimation with 𝑘 > 1, but this is still restricted to Gaussian data. In this chapter, we propose to extend SIR by the use of score functions to go beyond elliptically symmetric distributions, and we show that the new method combining SIR and score functions is formally better than the plain ADE method.

From first-order to second-order moments. Another line of extension of the simple method of [START_REF] Brillinger | A Generalized Linear Model with 'Gaussian' Regressor Variables[END_REF] is to consider higher-order moments, namely the matrix E(𝑦𝑥𝑥 ⊤ ) ∈ R 𝑑×𝑑 , which, with normally distributed input data 𝑥 and, if (A1) is satisfied, will be proportional (in a particular form to be described in Section 2.2.2) to the Hessian of the function 𝑔, leading to the method of "principal Hessian directions" (PHD) from [START_REF] Li | On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma[END_REF]. Again, 𝑘 > 1 is allowed (more than a single projection), but thus is limited to elliptically symmetric data. However [START_REF] Janzamin | Score function features for discriminative learning: Matrix and tensor framework[END_REF] proposed to used second-order score functions to go beyond this assumption. In order to define this new method, we consider the following assumption:

(A3) The distribution of 𝑥 has a strictly positive density 𝑝(𝑥) which is twice differentiable with respect to the Lebesgue measure, and such that 𝑝(𝑥) and ‖∇𝑝(𝑥)‖ → 0 when ‖𝑥‖ → +∞. Given (A1) and (A3), then one can show [START_REF] Janzamin | Score function features for discriminative learning: Matrix and tensor framework[END_REF]] that E(𝑦𝒮 2 (𝑥)) will be proportional to the Hessian of the function 𝑔, where 𝒮 2 (𝑥) = ∇ 2 log 𝑝(𝑥) + 𝒮 1 (𝑥)𝒮 1 (𝑥) ⊤ = 1 𝑝(𝑥) ∇ 2 𝑝(𝑥), thus extending the Gaussian situation above where 𝒮 1 was a linear function and 𝒮 2 (𝑥), up to linear terms, proportional to 𝑥𝑥 ⊤ .

In this chapter, we propose to extend the method above to allow an SIR estimator for the second-order score functions, where we condition on 𝑦, and we show that the new method is formally better than the plain method of [START_REF] Janzamin | Score function features for discriminative learning: Matrix and tensor framework[END_REF].

Learning score functions through score matching. Relying on score functions immediately raises the following question: is estimating the score function (when not available) really simpler than our original problem of non-parametric regression? Fortunately, a recent line of work [START_REF] Hyvärinen | Estimation of non-normalized statistical models by score matching[END_REF] has considered this exact problem, and formulated the task of density estimation directly on score functions, which is particularly useful in our context. We may then use the data, first to learn the score, and then to use the novel score-based moments to estimate 𝑤. We will also consider a direct approach that jointly estimates the score function and the e.d.r. subspace, by regularizing by a sparsity-inducing norm.

Fighting the curse of dimensionality. Learning the score function is still a nonparametric problem, with the associated curse of dimensionality. If we first learn the score function (through score matching) and then learn the matrix 𝑤, we will not escape that curse, while our direct approach is empirically more robust.

Note that Hristache, Juditsky and Spokoiny [START_REF] Hristache | Direct estimation of the index coefficient in a single index model[END_REF] suggested iterative improvements of the ADE method, using elliptic windows which shrink in the directions of the columns of 𝑤, stretch in all others directions and tend to flat layers orthogonal to 𝑤. Dalalyan, Juditsky and Spokoiny [START_REF] Dalalyan | A new algorithm for estimating the effective dimension-reduction subspace[END_REF] generalize the algorithm to multi-index models and proved √ 𝑛-consistency of the proposed procedure in the case when the structural dimension is not larger than 4 and weaker dependence for 𝑑 > 4. In particular, they provably avoid the curse of dimensionality. Such extensions are outside the scope of this chapter.

Contributions. In this chapter, we make the following contributions:

-We propose score function extensions to sliced inverse regression problems, both for the first-order and second-order score functions. We consider the infinite sample case in Section 2.2 and the finite sample case in Section 2.3. They provably improve estimation in the population case over the non-sliced versions, while we study in Section 2. 

Estimation with infinite sample size

In this section, we focus on the population situation, where we can compute expectations and conditional expectations exactly, while we focus on finite sample estimators with known score functions in Section 2.3 with consistency results in Section 2.3.3, and with learned score functions in Section 2.4.

SADE: Sliced average derivative estimation

Before presenting our new moments which will lead to the novel SADE method, we consider the non-sliced method, which is based on Assumptions (A1) and (A2) and score functions (the method based on the Gaussian assumption will be derived later as corollaries). The ADE method is based on the following lemma: Lemma 2.1 (ADE moment [START_REF] Stoker | Consistent estimation of scaled coefficients[END_REF]). Assume (A1), (A2), the differentiability of 𝑔 and the existence of expectation E(𝑔 ′ (𝑤 ⊤ 𝑥)). Then E(𝒮 1 (𝑥)𝑦) is in the e.d.r. subspace.

Proof. Since 𝑦 = 𝑓 (𝑥) + 𝜀, and 𝜀 is independent of 𝑥 with zero mean, we have

E(𝒮 1 (𝑥)𝑦) = E(𝒮 1 (𝑥)𝑓 (𝑥)) = ∫︁ R 𝑑 -∇𝑝(𝑥) 𝑝(𝑥) 𝑓 (𝑥)𝑝(𝑥)𝑑𝑥 = - ∫︁ R 𝑑 ∇𝑝(𝑥)𝑓 (𝑥)𝑑𝑥 = ∫︁ R 𝑑
𝑝(𝑥)∇𝑓 (𝑥)𝑑𝑥 by integration by parts,

= 𝑤 • E(𝑔 ′ (𝑤 ⊤ 𝑥)),
which leads to the desired result. Note that in the integration by parts above, the decay of 𝑝(𝑥) to zero for ‖𝑥‖ → +∞ is needed.

The ADE moment above only provides a single vector in the e.d.r. subspace, which can only potentially lead to recovery for 𝑘 = 1, and only if E(𝑔 ′ (𝑤 ⊤ 𝑥)) ̸ = 0, which may not be satisfied, e.g., if 𝑥 has a a symmetric distribution and 𝑔 is even.

We can now present our first new lemma, the proof of which relies on similar arguments as for SIR [START_REF] Li | Regression analysis under link violation[END_REF]] but extended to score functions. Note that we do not require the differentiability of the function 𝑔.

Lemma 2.2 (SADE moment). Assume (A1) and (A2). Then, E(𝒮 1 (𝑥)|𝑦) is in the e.d.r. subspace almost surely (in 𝑦).

Proof. We consider any vector 𝑏 ∈ R 𝑑 in the orthogonal complement of the subspace Span{𝑤 1 , . . . , 𝑤 𝑘 }. We need to show, that 𝑏 ⊤ E(𝒮 1 (𝑥)|𝑦) = 0 with probability 1. We have by the law of total expectation

𝑏 ⊤ E (︀ 𝒮 1 (𝑥)|𝑦 )︀ = E (︁ E (︀ 𝑏 ⊤ 𝒮 1 (𝑥)|𝑤 ⊤ 1 𝑥, . . . , 𝑤 ⊤ 𝑘 𝑥, 𝑦 )︀ |𝑦 )︁ .
Because of Assumption (A1), we have 𝑦 = 𝑔(𝑤 ⊤ 𝑥) + 𝜀 with 𝜀 independent of 𝑥, and thus

E (︀ 𝑏 ⊤ 𝒮 1 (𝑥)|𝑤 ⊤ 𝑥, 𝑦 )︀ = E (︀ 𝑏 ⊤ 𝒮 1 (𝑥)|𝑤 ⊤ 𝑥, 𝜀 )︀ = E (︀ 𝑏 ⊤ 𝒮 1 (𝑥)|𝑤 ⊤ 𝑥 )︀ almost surely.
This leads to

𝑏 ⊤ E (︀ 𝒮 1 (𝑥)|𝑦 )︀ = E [︀ E (︀ 𝑏 ⊤ 𝒮 1 (𝑥)|𝑤 ⊤ 𝑥 )︀⃒ ⃒ 𝑦 ]︀ .
We now prove that almost surely E (︀ 

𝑏 ⊤ 𝒮 1 (𝑥)|𝑤 ⊤ 𝑥 )︀ = 0,
E (︀ ̃︀ 𝑏 ⊤ ̃︀ 𝒮 1 (̃︀ 𝑥)|̃︀ 𝑥 1 , . . . , ̃︀ 𝑥 𝑘 )︀ , since ̃︀ 𝑤 ̃︀ 𝒮 1 (̃︀ 𝑥) = ̃︀ 𝑤∇̃︀ 𝑝(̃︀ 𝑥) ︀ 𝑝(̃︀ 𝑥) = ∇𝑝(𝑥) 𝑝(𝑥) = 𝒮 1 (𝑥) and hence 𝑏 ⊤ 𝒮 1 (𝑥) = 𝑏 ⊤ ̃︀ 𝑤 ̃︀ 𝒮 1 (̃︀ 𝑥) = ︀ 𝑏 ⊤ ̃︀ 𝒮 1 (̃︀ 𝑥).
It is thus sufficient to show that [START_REF] Li | Sliced Inverse Regression for Dimensional Reduction[END_REF] anymore and can be used with a smooth enough probability density. In the population case, we will consider the following matrix (using the fact that

∫︁ R 𝑑-𝑘 ̃︀ 𝑏 ⊤ ̃︀ 𝒮 1 (̃︀ 𝑥)̃︀ 𝑝(̃︀ 𝑥 1 , . . . , ̃︀ 𝑥 𝑑 )𝑑̃︀ 𝑥 𝑘+1 . . . 𝑑̃︀ 𝑥 𝑑 = 0, for all ︀ 𝑥 1 , . . . , ̃︀ 𝑥 𝑘 . We have ∫︁ R 𝑑-𝑘 ̃︀ 𝑏 ⊤ ̃︀ 𝒮 1 (̃︀ 𝑥)̃︀ 𝑝(̃︀ 𝑥 1 , . . . , ̃︀ 𝑥 𝑑 )𝑑̃︀ 𝑥 𝑘+1 . . . 𝑑̃︀ 𝑥 𝑑 = ̃︀ 𝑏 ⊤ ∫︁ R 𝑑-𝑘 ∇̃︀ 𝑝(̃︀ 𝑥) • 𝑑̃︀ 𝑥 𝑘+1 . . . 𝑑̃︀ 𝑥 𝑑 = 𝑑 ∑︁ 𝑗=𝑘+1 ̃︀ 𝑏 𝑗 • ∞ ∫︁ -∞ ∞ ∫︁ -∞ • • • ∞ ∫︁ -∞ 𝜕 ̃︀ 𝑝(̃︀
E(𝒮 1 (𝑥)) = 0): 𝒱 1,cov = E [︀ E(𝒮 1 (𝑥)|𝑦)E(𝒮 1 (𝑥)|𝑦) ⊤ ]︀ = Cov [︀ E(𝒮 1 (𝑥)|𝑦) ]︀ ∈ R 𝑑×𝑑 ,
which we will also denote

E [︀ E(𝒮 1 (𝑥)|𝑦) ⊗2 ]︀
, where for any matrix 𝑎, 𝑎 ⊗2 denotes 𝑎𝑎 ⊤ . The matrix above is positive semi-definite, and its column space is included in the e.d.r. space. If it has rank 𝑘, then we can exactly recover the entire subspace by an eigenvalue decomposition. When 𝑘 = 1, which is the only case where ADE may be used, the following proposition shows that if ADE allows to recover 𝑤, so is SADE.

We will also consider the other matrix (note the presence of the extra term 𝑦 2 )

𝒱 ′ 1,cov = E [︀ 𝑦 2 E(𝒮 1 (𝑥)|𝑦)E(𝒮 1 (𝑥)|𝑦) ⊤ ]︀ ,
because of its direct link with the non-sliced version. Note that we made the weak assumption of existence of matrices 𝒱 1,cov and 𝒱 ′ 1,cov , which is satisfied for majority of problems. Proposition 2.1. Assume (A1) and (A2), with 𝑘 = 1, as well as differentiability of 𝑔 and existence of the expectation E𝑔 ′ (𝑤 ⊤ 𝑥). The vector 𝑤 may be recovered from the ADE moment (up to scale) if and only if E𝑔 ′ (𝑤 ⊤ 𝑥) ̸ = 0. If this condition is satisfied, then SADE also recovers 𝑤 up to scale (i.e., 𝒱 1,cov and 𝒱 ′ 1,cov are different from zero).

Proof. The first statement is a consequence of the proof of Lemma 2.1. If SADE fails, that is, for almost all 𝑦, E(𝒮 1 (𝑥)|𝑦) = 0, then E(𝒮 1 (𝑥)𝑦|𝑦) = 0 which implies that E(𝒮 1 (𝑥)𝑦) = 0 and thus ADE fails. Moreover, we have, using operator convexity [START_REF] Donoghue | Monotone Matrix Functions and Analytic Continuation[END_REF]:

𝒱 ′ 1,cov = E [︀ E(𝑦𝒮 1 (𝑥)|𝑦)E(𝑦𝒮 1 (𝑥)|𝑦) ⊤ ]︀ [︀ E(E(𝑦𝒮 1 (𝑥)|𝑦)) ]︀[︀ E(E(𝑦𝒮 1 (𝑥)|𝑦)) ]︀ ⊤ = = [︀ E(𝑦𝒮 1 (𝑥)) ]︀[︀ E(𝑦𝒮 1 (𝑥)) ]︀ ⊤ ,
showing that the new moment is dominating the ADE moment, which provides an alternative proof of the rank of 𝒱 ′ 1,cov being larger than one if E(𝑦𝒮 1 (𝑥)) ̸ = 0.

Elliptically symmetric distributions. If 𝑥 is normally distributed with mean vector 𝜇 and covariance matrix Σ, then we have 𝒮 1 (𝑥) = Σ -1 (𝑥 -𝜇) and we recover the result from [START_REF] Li | Regression analysis under link violation[END_REF]. Note that the lemma then extends to all elliptical distributions of the form 𝜙( 1 2 (𝑥 -𝜇) ⊤ Σ -1 (𝑥 -𝜇)), for a certain function 𝜙 : R + → R. See [START_REF] Li | Regression analysis under link violation[END_REF] for more details.

Failure modes. In some cases, slice inverse regression does not span the entire e.d.r. space, because the inverse regression curve E(𝒮 1 (𝑥)|𝑦) is degenerated. For example, this can occur, if 𝑘 = 1, 𝑦 = ℎ(𝑤 ⊤ 1 𝑥) + 𝜀, ℎ is an even function and 𝑤 ⊤ 1 𝑥 has a symmetric distribution around 0. Then E(𝒮 1 (𝑥)|𝑦) ≡ 0, and thus it is a poor estimation of the desired e.d.r. directions [START_REF] Cook | Discussion of 'Sliced Inverse Regression' by K. C. Li[END_REF].

The second drawback of SIR occurs when we have a classification task, for example, 𝑦 ∈ {0, 1}. In this case, we have only two slices (i.e., possible values of 𝑦) and SIR can recover only one direction in the e.d.r. space [START_REF] Cook | Dimension Reduction in Binary Response Regression[END_REF]. [START_REF] Li | On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma[END_REF] suggested another way to estimate the e.d.r. space which can handle such symmetric cases: principal Hessian directions (PHD). However, this method uses the normality of the vector 𝑋. As in the SIR case, we can extend this method, using score functions to use it for any distribution, which we will refer to as SPHD, which we now present.

SPHD: Sliced principal Hessian directions

Before presenting our new moment which will lead to the SPHD method, we consider the non-sliced method, which is based on Assumptions (A1) and (A3) and score functions (the method based on the Gaussian assumption will be derived later as corollaries). The method of [START_REF] Janzamin | Score function features for discriminative learning: Matrix and tensor framework[END_REF], which we refer to as "PHD+" is based on the following lemma (we reproduce the proof for readability): Lemma 2.3 (second-order score moment (PHD+) [START_REF] Janzamin | Score function features for discriminative learning: Matrix and tensor framework[END_REF]). Assume (A1),(A3),twice differentiability of function 𝑔 and existence of the expectation E(∇ 2 𝑔(𝑤 ⊤ 𝑥)). Then E(𝒮 2 (𝑥)𝑦) has a column space included in the e.d.r. subspace.

Proof. Since 𝑦 = 𝑓 (𝑥) + 𝜀, and 𝜀 is independent of 𝑥, we have

E (︀ 𝑦𝒮 2 (𝑥)) = E (︀ 𝑓 (𝑥)𝒮 2 (𝑥) )︀ = ∫︁ ∇ 2 𝑝(𝑥) 𝑝(𝑥) 𝑝(𝑥)𝑓 (𝑥)𝑑𝑥 = = ∫︁ ∇ 2 𝑝(𝑥) • 𝑓 (𝑥)𝑑𝑥 = ∫︁ 𝑝(𝑥) • ∇ 2 𝑓 (𝑥)𝑑𝑥 = E [︀ ∇ 2 𝑓 (𝑥)
]︀ , using integration by parts and the decay of 𝑝(𝑥) and ∇𝑝(𝑥) for ‖𝑥‖ → ∞. This leads to the desired result since ∇ 2 𝑓 (𝑥) = 𝑤∇ 2 𝑔(𝑤 ⊤ 𝑥)𝑤 ⊤ . This was proved by [START_REF] Li | On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma[END_REF] for normal distributions. We can now present our second new lemma, the proof of which relies on similar arguments as for PHD [START_REF] Li | On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma[END_REF] 

∫︁ R 𝑑-𝑘 ̃︀ 𝑎 ⊤ • ̃︁ 𝒮 2 (̃︀ 𝑥) • ̃︀ 𝑏 • ̃︀ 𝑝(̃︀ 𝑥 1 , . . . , ̃︀ 𝑥 𝑑 )𝑑̃︀ 𝑥 𝑘+1 . . . 𝑑̃︀ 𝑥 𝑑 = 0.
We have:

∫︁ R 𝑑-𝑘 ̃︀ 𝑎 ⊤ • ̃︀ 𝒮 2 (̃︀ 𝑥) • ̃︀ 𝑏 • ̃︀ 𝑝(̃︀ 𝑥 1 , . . . , ̃︀ 𝑥 𝑑 )𝑑̃︀ 𝑥 𝑘+1 . . . 𝑑̃︀ 𝑥 𝑑 = ̃︀ 𝑎 ⊤ • [︂ ∫︁ R 𝑑-𝑘 ∇ 2 ̃︀ 𝑝(̃︀ 𝑥) • 𝑑̃︀ 𝑥 𝑘+1 • • • 𝑑̃︀ 𝑥 𝑑 ]︂ • ̃︀ 𝑏 = ∑︁ 1 𝑖 𝑑 𝑘+1 𝑗 𝑑 ̃︀ 𝑎 𝑖 ̃︀ 𝑏 𝑗 ∞ ∫︁ -∞ ∞ ∫︁ -∞ • • • [︃ ∞ ∫︁ -∞ 𝜕 2 ̃︀ 𝑃 (̃︀ 𝑥) 𝜕̃︀ 𝑥 𝑖 𝜕̃︀ 𝑥 𝑗 • 𝑑̃︀ 𝑥 𝑗 ]︃ • ∏︁ 𝑘+1 𝑡 𝑑 𝑡̸ =𝑗 𝑑̃︀ 𝑥 𝑡 = 0, because for any 𝑗 ∈ {𝑘 + 1, . . . , 𝑛}: ∞ ∫︁ -∞ 𝜕 2 ̃︀ 𝑃 (̃︀ 𝑥) 𝜕̃︀ 𝑥 𝑖 𝜕̃︀ 𝑥 𝑗 • 𝑑̃︀ 𝑥 𝑗 = 0 due to Assumption (A3),
which leads to the desired result.

In order to be able to use several values of 𝑦, we will estimate the matrix

𝒱 2 = E (︁ [E (︀ 𝒮 2 (𝑥)|𝑦)] 2 )︁
, which is the expectation with respect to 𝑦 of the square (in the matrix multiplication sense) of the conditional expectation from Lemma 2.4, as well

as 𝒱 ′ 2 = E (︁ 𝑦 2 [E (︀ 𝒮 2 (𝑥)|𝑦)] 2 )︁
, and consider the 𝑘 largest eigenvectors (we made the weak assumption of existence of matrices 𝒱 2 and 𝒱 ′ 2 , which is satisfied for majority of problems). From the lemma above, this matrix has a column space included in the e.d.r. subspace, thus, if it has rank 𝑘, we get exact recovery by an eigenvalue decomposition.

Effect of slicing. We now study the effect of slicing and show that in the population case, it is superior to the non-sliced version, as it recovers the true e.d.r. subspace in more situations. Proposition 2.2. Assume (A1) and (A3). The matrix 𝑤 may be recovered from the moment in Lemma 2.3 (up to right linear transform) if and only if E[∇ 2 𝑔(𝑤 ⊤ 𝑥)] has full rank. If this condition is satisfied, then SPHD also recovers 𝑤 up to scale.

Proof. The first statement is a consequence of the proof of Lemma 2.3. Moreover, using the Lowner-Heinz theorem about operator convexity [START_REF] Donoghue | Monotone Matrix Functions and Analytic Continuation[END_REF]:

𝒱 ′ 2 = E [︀ E(𝑦𝒮 2 (𝑥)|𝑦) 2 ]︀ [︀ E[E(𝑦𝒮 2 (𝑥)|𝑦)] ]︀ 2 = [︀ E(𝑦𝒮 2 (𝑥)) ]︀ 2 ,
showing that the new moment is dominating the PHD moment, thus implying that

rank[𝒱 ′ 2 ] rank [︀ E(𝑦𝒮 2 (𝑥)) ]︀ . Therefore, if rank [︀ E(𝑦𝒮 2 (𝑥)) ]︀ = 𝑘, then rank[𝒱 ′ 2 ] = 𝑘 (note that there is not such a simple proof for 𝒱 2 ). Elliptically symmetric distributions. When 𝑥 is a standard Gaussian random variable, then 𝒮 2 (𝑥) = -𝐼 + 𝑥𝑥 ⊤ , and thus E (︁ [E (︀ 𝒮 2 (𝑥)|𝑦)] 2 )︁ = E (︁ [𝐼 -Cov(𝑥|𝑦)] 2
)︁ , and we recover the sliced average variance estimation (SAVE) method by [START_REF] Cook | Save: a method for dimension reduction and graphics in regression[END_REF]. However, our method applies to all distributions (with known score functions).

Relationship between first and second order methods

All considered methods have their own failure modes. The simplest one: ADE works only in single-index model and has quite a simple working condition :

E[𝑔 ′ (𝑤 ⊤ 𝑥)] ̸ = 0.
The sliced improvement (e.g., SADE) of this algorithm has a better performance, however it still suffers from symmetric cases, when the inverse regression curve is partly degenerated. PHD+ can not work properly in linear models and symmetric cases. SPHD is stronger than PHD+ and potentially has the widest application area among four described methods. See summary in Table 2.1.

Our conditions rely on the full possible rank of certain expected covariance matrices. When the function 𝑔 is selected randomly from all potential functions from R 𝑘 to R, rank-deficiencies typically do not occur and it would be interesting to show that indeed they appear with probability zero for certain random function models.

Estimation from finite sample

In this section, we consider finite sample estimators for the moments we have defined in Section 2.2. Since our extensions are combinations of existing techniques method main equation score sliced

ADE E(𝒮 1 (𝑥)𝑦) first no SADE E 𝑦 [︁ E (︀ 𝒮 1 (𝑥)|𝑦) ⊗2 ]︁ first yes PHD+ E(𝒮 2 (𝑥)𝑦) second no SPHD E 𝑦 [︁ E (︁ (𝒮 2 (𝑥)|𝑦) 2 )︁]︁ second yes method single-index multi-index ADE E[𝑔 ′ (𝑤 ⊤ 𝑥)] ̸ = 0 does not work SADE E 𝑦 [︁ ‖E (︀ 𝒮 1 (𝑥)|𝑦‖ 2 ]︁ > 0 rank E 𝑦 [︁ E (︀ 𝒮 1 (𝑥)|𝑦) ⊗2 ]︁ = 𝑘 PHD+ E[𝑔 ′′ (𝑤 ⊤ 𝑥)] ̸ = 0 rank [︀ E[∇ 2 𝑔(𝑥)] ]︀ = 𝑘 SPHD E 𝑦 [︁ trE (︁ (𝒮 2 (𝑥)|𝑦) 2 )︁]︁ > 0 rank E 𝑦 [︁ E (︁ (𝒮 2 (𝑥)|𝑦) 2 )︁]︁ = 𝑘 Table 2.
1 -Comparison of different methods using score functions.

(using score functions and slicing) our finite-sample estimators naturally rely on existing work [START_REF] Hsing | An asymptotic theory for sliced inverse regression[END_REF]Carroll, 1992, Zhu and[START_REF] Zhu | Asymptotics of sliced inverse regression[END_REF].

In this section, we assume that the score function is known. We consider learning the score function in Section 2.4.

Estimator and algorithm for SADE

Our goal is to provide an estimator for 𝒱

1,cov = E [︁ E (︀ 𝒮 1 (𝑥)|𝑦)E (︀ 𝒮 1 (𝑥)|𝑦 )︀ ⊤ ]︁ = Cov [︁ E (︀ 𝒮 1 (𝑥)|𝑦 )︀ ]︁
given a finite sample (𝑥 𝑖 , 𝑦 𝑖 ), 𝑖 = 1, . . . , 𝑛. A similar estimator for 𝒱 ′ 1,cov could be derived. In order to estimate

𝒱 1,cov = Cov [︁ E (︀ 𝒮 1 (𝑥)|𝑦 )︀ ]︁ , we will use the identity Cov [︀ 𝒮 1 (𝑥) ]︀ = Cov [︁ E (︀ 𝒮 1 (𝑥)|𝑦 )︀ ]︁ + E [︁ Cov (︀ 𝒮 1 (𝑥)|𝑦 )︀ ]︁ .
We use the natural consistent estimator 1

𝑛 𝑛 ∑︀ 𝑖=1 𝒮 1 (𝑥 𝑖 )𝒮 1 (𝑥 𝑖 ) ⊤ of Cov [︀ 𝒮 1 (𝑥) ]︀ .
In order to obtain an estimator of E

[︁ Cov (︀ 𝒮 1 (𝑥)|𝑦 )︀ ]︁
, we consider slicing the real numbers in 𝐻 different slices, 𝐼 1 , . . . , 𝐼 𝐻 , which are contiguous intervals that form a partition of R (or of the range of all 𝑦 𝑖 , 𝑖 = 1, . . . , 𝑛). We then compute an estimator of the conditional expectation (𝒮 1 ) ℎ = E(𝒮 1 (𝑥)|𝑦 ∈ 𝐼 ℎ ) with empirical averages: denoting pℎ the empirical proportion of 𝑦 𝑖 , 𝑖 = 1, . . . , 𝑛, that fall in the slice 𝐼 ℎ (which is assumed to be strictly positive), we estimate E(𝒮 1 (𝑥)|𝑦 ∈ 𝐼 ℎ ) by

( Ŝ1 ) ℎ = 1 𝑛p ℎ 𝑛 ∑︁ 𝑖=1 1 𝑦 𝑖 ∈𝐼 ℎ 𝒮 1 (𝑥 𝑖 ). We then estimate Cov (︀ 𝒮 1 (𝑥)|𝑦 ∈ 𝐼 ℎ )︀ by ( Ŝ1 ) cov,ℎ = 1 𝑛p ℎ -1 𝑛 ∑︁ 𝑖=1 1 𝑦 𝑖 ∈𝐼 ℎ (︀ 𝒮 1 (𝑥 𝑖 ) -( Ŝ1 ) ℎ )︀(︀ 𝒮 1 (𝑥 𝑖 ) -( Ŝ1 ) ℎ )︀ ⊤ .
Note that it is important here to normalize the covariance computation by

1 𝑛p ℎ -1
(usual unbiased normalization of the variance) and not 1 𝑛p ℎ , to allow consistent estimation even when the number of elements per slice is small (e.g., equal to 2).

We finally use the following estimator of 𝒱 1,cov :

V1,cov = 1 𝑛 𝑛 ∑︁ 𝑖=1 𝒮 1 (𝑥 𝑖 )𝒮 1 (𝑥 𝑖 ) ⊤ - 𝐻 ∑︁ ℎ=1 pℎ • ( Ŝ1 ) cov,ℎ .
The final SADE algorithm is thus the following:

-Divide the range of 𝑦 1 , . . . , 𝑦 𝑛 into 𝐻 slices 𝐼 1 , . . . , 𝐼 𝐻 . Let pℎ > 0 be the proportion of 𝑦 𝑖 , 𝑖 = 1, . . . , 𝑛, that fall in slice 𝐼 ℎ .

-For each slice 𝐼 ℎ , compute the sample mean ( Ŝ1 ) ℎ and covariance ( Ŝ1 ) cov,ℎ :

( Ŝ1 ) ℎ = 1 𝑛p ℎ 𝑛 ∑︁ 𝑖=1 1 𝑦 𝑖 ∈𝐼 ℎ 𝒮 1 (𝑥 𝑖 ) and ( Ŝ1 ) cov,ℎ = 1 𝑛p ℎ -1 𝑛 ∑︁ 𝑖=1 1 𝑦 𝑖 ∈𝐼 ℎ (︀ 𝒮 1 (𝑥 𝑖 ) -( Ŝ1 ) ℎ )︀(︀ 𝒮 1 (𝑥 𝑖 ) -( Ŝ1 ) ℎ )︀ ⊤ . -Compute V1,cov = 1 𝑛 𝑛 ∑︀ 𝑖=1 𝒮(𝑥 𝑖 )𝒮(𝑥 𝑖 ) ⊤ - 𝐻 ∑︀ ℎ=1 pℎ • ( Ŝ) cov,ℎ .
-Find the 𝑘 largest eigenvalues and let ŵ1 , . . . , ŵ𝑘 be eigenvectors in R 𝑑 corresponding to these eigenvalues.

The schematic graphical representation of this method given in Figure 2-1.

Choice of slices. There are different ways to choose slices 𝐼 1 , . . . , 𝐼 𝐻 : -all slices have the same length, that is we choose the maximum and the minimum of 𝑦 1 , . . . , 𝑦 𝑛 , and divide the range of 𝑦 into 𝐻 equal slices (for simplicity, we assume that 𝑛 is a multiple of 𝐻), -we can also use the distribution of 𝑦 to ensure a balanced distribution of observations in each slice, and choose

𝐼 ℎ = ( F -1 𝑦 ((ℎ -1)/𝐻), F -1 𝑦 (ℎ/𝐻)],
where

F𝑦 (𝑡) = 1 𝑛 𝑛 ∑︁ 𝑖=1 1 𝑦 𝑖 𝑡 is the empirical distribution function of 𝑦. If 𝑛 is a
multiple 𝐻, there are exactly 𝑐 = 𝑛/𝐻 observations per slice. Later on in our experiments, we use the second way, where every slice has 𝑐 = 𝑛/𝐻 points, and our consistency result applies to this situation as well. Note that there is a variation of SADE, which uses standardized data. If we denote the standardized

P(𝑦 ∈ 𝐼 1 ) P(𝑦 ∈ 𝐼 𝐻 ) p1 p𝐻 I 1 I 2 I H y x E(𝒮 1 (𝑥)|𝑦 ∈ 𝐼 1 ) E(𝒮 1 (𝑥)|𝑦 ∈ 𝐼 𝐻 ) ( Ŝ1 ) 1 ( Ŝ1 ) 𝐻 Figure 2
-1 -Graphical explanation of SADE: firstly we divide 𝑦 into 𝐻 slices, let pℎ be a proportion of 𝑦 𝑖 in slice 𝐼 ℎ . This is an empirical estimator of P(𝑦 ∈ 𝐼 ℎ ). Then we evaluate the empirical estimator ( Ŝ1 ) ℎ of E(𝒮 1 (𝑥)|𝑦 ∈ 𝐼 ℎ ). Finally, we evaluate weighted covariance matrix and find the 𝑘 largest eigenvectors. [START_REF] Li | Sliced Inverse Regression for Dimensional Reduction[END_REF]).

data as ̃︀ 𝒮 1 (𝑥 𝑖 ) = [︁ 1 𝑛 𝑛 ∑︀ 𝑗=1 𝒮 1 (𝑥 𝑗 )𝒮 1 (𝑥 𝑗 ) ⊤ ]︁ -1/2 𝒮 1 (𝑥 𝑖 ) (Remark 5.3 in
Computational complexity. The first step of the algorithm requires 𝑂(𝑛) elementary operations, the second 𝑂(𝑛𝑑 2 ) operations, the third 𝑂(𝐻𝑑 2 ) and the fourth 𝑂(𝑘𝑑 2 ) operations. The overall dependence on dimension 𝑑 is quadratic, while the dependence on the number of observations is linear in 𝑛, as common in momentmatching methods.

Estimating the number of components. Our estimation method does not depend on 𝑘, up to the last step where the first 𝑘 largest eigenvectors are selected. A simple heuristic to select 𝑘, similar to the selection of the number of components in principal component analysis, would select the largest 𝑘 such that the gap between the 𝑘-th and (𝑘 + 1)-th eigenvalue is large enough. This could be made more formal using the technique of [START_REF] Li | Sliced Inverse Regression for Dimensional Reduction[END_REF] for sliced inverse regression.

Estimator and algorithm for SPHD

We follow the same approach as for the SADE algorithm above, leading to the following algorithm, which estimates

𝒱 2 = E (︁ [E (︀ 𝒮 2 (𝑥)|𝑦)] 2 )︁ and computes its principal eigenvectors. Note that E [︀ E(𝒮 2 (𝑥)|𝑦 ∈ 𝐼 ℎ ) ]︀ = E [︀ 𝒮 2 (𝑥) ]︀ = 0.
-Divide the range of 𝑦 1 , . . . , 𝑦 𝑛 into 𝐻 slices 𝐼 1 , . . . , 𝐼 𝐻 . Let pℎ > 0 be the proportion of 𝑦 𝑖 , 𝑖 = 1, . . . , 𝑛, that fall in slice 𝐼 ℎ . -For each slice, compute the sample mean ( Ŝ2

) ℎ of 𝒮 2 (𝑥): ( Ŝ2 ) ℎ = 1 𝑛p ℎ 𝑛 ∑︁ 𝑖=1 1 𝑦 𝑖 ∈𝐼 ℎ 𝒮 2 (𝑥 𝑖 ). -Compute the weighted covariance matrix V2 = 𝐻 ∑︀ ℎ=1 pℎ ( Ŝ2 ) 2
ℎ , find the 𝑘 largest eigenvalues and let ŵ1 , . . . , ŵ𝑘 be eigenvectors corresponding to these eigenval- ues. The matrix V2 is then an estimator of E

(︁ [E (︀ 𝒮 2 (𝑥)|𝑦)] 2 )︁ .
Computational complexity. The first step of the algorithm requires 𝑂(𝑛) elementary operations, the second 𝑂(𝑛𝑑 2 ) operations, the third 𝑂(𝐻𝑑 3 ) and the fourth 𝑂(𝑘𝑑 2 ) operations. The overall dependence on dimension 𝑑 is cubic, hence the method is slower than SADE (but still linear in the number of observations 𝑛).

Consistency for the SADE estimator and algorithm

In this section, we prove the consistency of the SADE moment estimator and the resulting algorithm, when the score function is known. Following [START_REF] Hsing | An asymptotic theory for sliced inverse regression[END_REF] and [START_REF] Zhu | Asymptotics of sliced inverse regression[END_REF], we can get √ 𝑛-consistency for the SADE algorithm with very broad assumptions regarding the problem.

In this section, we focus on the simplest set of assumptions to pave the way to the analysis for the nuclear norm in future work. The key novelty compared to [START_REF] Hsing | An asymptotic theory for sliced inverse regression[END_REF], [START_REF] Zhu | Asymptotics of sliced inverse regression[END_REF] is a precise non-asymptotic analysis with precise constants.

We make the following assumptions: 

(L1) The function 𝑚 : R → R 𝑑 such that E(ℓ(𝑥)|𝑦) = 𝑚(𝑦) is 𝐿-Lipschitz- continuous. (L2) The random variable 𝑦 ∈ R is sub-Gaussian, i.e., such that E𝑒 𝑡(𝑦-𝐸𝑦) 𝑒 𝜏 2 𝑦 𝑡 2 /2 , for some 𝜏 𝑦 > 0. (L3) The random variables ℓ 𝑗 (𝑥) ∈ R are sub-Gaussian, i.e., such that E𝑒 𝑡ℓ 𝑗 (𝑥) 𝑒 𝜏 2 ℓ 𝑡 2 /2 for each component 𝑗 ∈ {1, . . . , 𝑑}, for some 𝜏 ℓ > 0. (L4) The random variables 𝜂 𝑗 = ℓ 𝑗 (𝑥) -𝑚 𝑗 (𝑦) ∈ R are sub-Gaussian, i.e., such that E𝑒 𝑡𝜂 𝑗 𝑒 𝜏 2 𝜂 𝑡 2 /2 for each component 𝑗 ∈ {1, . . . ,
‖ V1,cov -𝒱 1,cov ‖ * 𝑑 √ 𝑑(195𝜏 2 𝜂 + 2𝜏 2 ℓ ) √ 𝑛 √︂ log 24𝑑 2 𝛿 + 8𝐿 2 𝜏 2 𝑦 + 16𝜏 𝜂 𝜏 𝑦 𝐿 √ 𝑑 + (157𝜏 2 𝜂 + 2𝜏 2 ℓ )𝑑 √ 𝑑 𝑛 log 2 32𝑑 2 𝑛 𝛿 .
The proof of the theorem can be found in Appendix 2.7.2. The leading term

is proportional to 𝑑 √ 𝑑𝜏 2 𝜂 √ 𝑛
, with a tail which is sub-Gaussian. We thus get a √ 𝑛consistent estimator or 𝒱 1 . The dependency in 𝑑 could probably be improved, in particular when using slices of sizes 𝑐 that tend to infinity (as done in [START_REF] Lin | On consistency and sparsity for sliced inverse regression in high dimensions[END_REF]).

Learning score functions

All previous methods can work only if we know the score function of first or second order. In practice, we do not have such information, and we have to learn score functions from sampled data. In this section, we only consider the first-order score function ℓ

(𝑥) = 𝒮 1 (𝑥) = -∇ log 𝑝(𝑥).
We first present the score matching approach of [START_REF] Hyvärinen | Estimation of non-normalized statistical models by score matching[END_REF], and then apply it to our problem.

Score matching to estimate score from data

Given the true score function ℓ(𝑥) = 𝒮 1 (𝑥) = -∇ log 𝑝(𝑥) and some i.i.d. data generated from 𝑝(𝑥), score matching aims at estimating the parameter of a model for the score function l(𝑥), by minimizing a empirical quantity aiming to estimate

ℛ score ( l) = 1 2 ∫︁ R 𝑑 𝑝(𝑥)‖ℓ(𝑥) -l(𝑥)‖ 2 𝑑𝑥.
As is, the quantity above leads to consistent estimation (i.e., pushing l close to ℓ), but seems to need the knowledge of the true score ℓ(𝑥). A key insight from [START_REF] Hyvärinen | Estimation of non-normalized statistical models by score matching[END_REF] is to use integration by parts to get (assuming the integrals exist):

ℛ score ( l) = 1 2 ∫︁ R 𝑑 𝑝(𝑥) [︀ ‖ℓ(𝑥)‖ 2 + ‖ l(𝑥)‖ 2 + 2 l(𝑥) ⊤ ∇ log 𝑝(𝑥) ]︀ 𝑑𝑥 = 1 2 ∫︁ R 𝑑 𝑝(𝑥)‖ℓ(𝑥)‖ 2 𝑑𝑥 + 1 2 ∫︁ R 𝑑 𝑝(𝑥)‖ l(𝑥)‖ 2 𝑑𝑥 + ∫︁ R 𝑑 l(𝑥) ⊤ ∇𝑝(𝑥)𝑑𝑥 = 1 2 ∫︁ R 𝑑 𝑝(𝑥)‖ℓ(𝑥)‖ 2 𝑑𝑥 + 1 2 ∫︁ R 𝑑 𝑝(𝑥)‖ l(𝑥)‖ 2 𝑑𝑥 - ∫︁ R 𝑑 (∇ • l)(𝑥)𝑝(𝑥)𝑑𝑥,
by integration by parts, where

(∇ • l)(𝑥) = ∑︀ 𝑑 𝑖=1 𝜕 l 𝜕𝑥 𝑖 (𝑥)
is the divergence of l at 𝑥 [START_REF] Arfken | Divergence[END_REF].

The first part of the last right hand side does not depend on l while the two other parts are expectations under 𝑝(𝑥) of quantities that only depend on l. Thus is can we well approximated, up to a constant, by:

Rscore ( l) = 1 2𝑛 𝑛 ∑︁ 𝑖=1 ‖ l(𝑥 𝑖 )‖ 2 - 1 𝑛 𝑛 ∑︁ 𝑖=1 (∇ • l)(𝑥 𝑖 ).
Parametric assumption. If we assume that the score is linear combination of finitely many basis functions, we will get a consistent estimator of these parameters.

That is, we make the following assumption:

(A4) The score function ℓ(𝑥) is a linear combination of known basis functions

𝜓 𝑗 (𝑥), 𝑗 = 1, . . . , 𝑚, where 𝜓 𝑗 : R 𝑑 → R 𝑑 , that is ℓ(𝑥) = 𝑚 ∑︀ 𝑗=1
𝜓 𝑗 (𝑥)𝜃 * 𝑗 , for some 𝜃 * ∈ R 𝑚 . We assume that the score function and its derivatives are squared-integrable with respect to 𝑝(𝑥).

In this chapter, we consider for simplicity a parametric assumption for the score. In order to go towards non-parametric estimation, we would need to let the number 𝑚 of basis functions to grow with 𝑛 (exponentially with no added assumptions), and this is an interesting avenue for future work. In simulations in 2.5, we consider a simple set of basis function which are localized functions around observations; these can approximate reasonably well in practice most densities and led to good estimation of the e.d.r. subspace. Moreover, if we have the additional knowledge that the components of 𝑥 are statistically independent (potentially after linearly transforming them using independent component analysis [START_REF] Hyvärinen | Independent Component Analysis[END_REF]), we can use separable functions for the scores.

We introduce the notation

Ψ(𝑥) = ⎛ ⎜ ⎝ 𝜓 1 1 (𝑥) • • • 𝜓 1 𝑑 (𝑥) . . . . . . . . . 𝜓 𝑚 1 (𝑥) • • • 𝜓 𝑚 𝑑 (𝑥) ⎞ ⎟ ⎠ ∈ R 𝑚×𝑑 ,
so that the score function l we wish to estimate has the form

l(𝑥) = Ψ(𝑥) ⊤ 𝜃 ∈ R 𝑑 .
We also introduce the notation

(∇ • Ψ)(𝑥) = ⎛ ⎜ ⎝ (∇ • Ψ 1 )(𝑥) . . . (∇ • Ψ 𝑚 )(𝑥) ⎞ ⎟ ⎠ ∈ R 𝑚 , so that (∇ • l)(𝑥) = 𝜃 ⊤ (∇ • Ψ)(𝑥).
The empirical score function may then be written as:

Rscore (𝜃) = 1 2 𝜃 ⊤ (︀ 1 𝑛 𝑛 ∑︁ 𝑖=1 Ψ(𝑥 𝑖 )Ψ(𝑥 𝑖 ) ⊤ )︀ 𝜃 -𝜃 ⊤ (︀ 1 𝑛 𝑛 ∑︁ 𝑖=1 (∇ • Ψ)(𝑥 𝑖 ) )︀ , (2.4.1)
which is a quadratic function of 𝜃 and can thus be minimized by solving a linear system in running time 𝑂(𝑚 3 + 𝑚 2 𝑑𝑛) (to form the matrix and to solve the system).

Given standard results regarding the convergence of

1 𝑛 ∑︀ 𝑛 𝑖=1 Ψ(𝑥 𝑖 )Ψ(𝑥 𝑖 ) ⊤ ∈ R 𝑚×𝑚 to its expectation and of 1 𝑛 ∑︀ 𝑛 𝑖=1 (∇ • l)(𝑥 𝑖 ) ∈ R 𝑚
to its expectation, we get a √ 𝑛consistent estimation of 𝜃 * under simple assumptions (see Theorem 2.2).

Score matching for sliced inverse regression: two-step approach

We can now combine our linear parametrization of the score with the SIR approach outlined in Section 2.3. The true conditional expectation is

E (︀ ℓ(𝑥)|𝑦 )︀ = 𝑚 ∑︁ 𝑗=1 E (︀ 𝜓 𝑗 (𝑥)|𝑦)𝜃 * 𝑗 ,
and belongs to the e.d.r. subspace. We consider 𝐻 different slices 𝐼 1 , . . . , 𝐼 𝐻 , and the following estimator, which simply replaces the true score by the estimated score (i.e., 𝜃 * by 𝜃), and highlights the dependence in 𝜃.

The estimator V1,cov can be rewritten as

V1,cov = 𝑛 ∑︁ 𝑖=1 𝑛 ∑︁ 𝑗=1 𝛼 𝑖,𝑗 𝑛(|𝐼 ℎ (𝑖, 𝑗)| -1) ℓ(𝑥 𝑖 )ℓ(𝑥 𝑗 ) ⊤ ,
where

𝛼 𝑖,𝑗 = {︂ 1 if 𝑖 ̸ = 𝑗 in the same slice 0 otherwise
Using linear property ℓ(𝑥) = Ψ(𝑥) ⊤ 𝜃:

V1,cov (𝜃) = 1 𝑛 𝑛 ∑︁ 𝑖=1 𝑛 ∑︁ 𝑗=1 𝛼 𝑖,𝑗 |𝐼 ℎ (𝑖, 𝑗)| -1 Ψ(𝑥 𝑖 ) ⊤ 𝜃𝜃 ⊤ Ψ(𝑥 𝑖 ). (2.4.2)
In the two-step approach, we first solve the score matching optimization problem to obtain an estimate for the optimal parameters 𝜃 * and then use them to get the 𝑘 largest eigenvectors of covariance matrix V1 . This approach works well in low dimensions when the score function can be well approximated; otherwise, we may suffer from the curse of dimensionality: if we want a good approximation of the score function, we would need an exponential number of basis functions. In Section 2.4.3, we consider a direct approach aiming at improving robustness.

Consistency. Let also provide the result of consistency in the case of unknown score function under Assumption (A4) for the two-step algorithm. We will make the additional assumptions:

(M1) The random variables

Ψ 𝑗 𝑖 (𝑥) ∈ R are sub-Gaussian, i.e., such that E𝑒 𝑡(Ψ 𝑗 𝑖 (𝑥)-𝐸Ψ 𝑗 𝑖 (𝑥)) 𝑒 𝜏 2 Ψ 𝑡 2 /2 , for some 𝜏 Ψ > 0. (M2) The random variables (∇ • Ψ 𝑖 )(𝑥) are sub-Gaussian, i.e., such that E𝑒 𝑡((∇•Ψ 𝑖 )(𝑥)-𝐸(∇•Ψ 𝑖 )(𝑥) 𝑒 𝜏 2 ∇Φ 𝑡 2 /2 , for some 𝜏 ∇Ψ > 0. (M3) The matrix E [︀ Ψ(𝑥)Ψ(𝑥) ⊤ ]︀
is not degenerated and we let 𝜆 0 denote its minimal eigenvalue. Theorem 2.2. Let θ be the estimated 𝜃, obtained on the first step of the algorithm.

Under Assumptions (A1), (A2), (A4), (L1) -( L4) and (M1), (M2), (M3), for 𝛿 1/𝑛 and 𝑛 large enough, that is, 𝑛 > 𝑐 1 + 𝑐 2 log 1 𝛿 for some positive constants 𝑐 1 and 𝑐 2 not depending on 𝑛 and 𝛿:

‖𝒱 1,cov (𝜃 * ) -V1,cov ( θ)‖ * 1 √ 𝑛 √︂ 2 log 48𝑚 2 𝑑 𝛿 × [︃ 𝑑 √ 𝑑(195𝜏 2 𝜂 + 2𝜏 2 ℓ ) + 9𝑚 2 E‖Ψ(𝑥)‖ 2 2 • ‖𝜃 * ‖ (︂ 2𝜏 ∇Ψ √ 𝑚 𝜆 0 + 4‖𝑏‖𝜏 2 Ψ √ 𝑚 3 𝑑 𝜆 0 )︂ ]︃ + 𝑂 (︂ 1 
𝑛
)︂ .

with probability not less than 1 -𝛿.

Now, let us formulate and proof non-asymptotic result about the real and the estimated e.d.r. spaces. We need to define a notion of distance between subspaces spanned by two sets of vectors. We use the square trace error 𝑅 2 (𝑤, ŵ) [START_REF] Hooper | Simultaneous Equations and Canonical Correlation Theory[END_REF]:

𝑅 2 (𝑤, ŵ) = 1 - 1 𝑘 tr [︀ 𝑤 • ŵ]︀ , (2.4.3) 
where 𝑤 ∈ R 𝑘×𝑑 and ŵ ∈ R 𝑘×𝑑 both have orthonormal columns. It is always between zero and one, and equal to zero if and only if 𝑤 = ŵ. This distance is closely related to principal angles notion:

sin Θ( ŵ⊤ 𝑤) = diag(sin(cos -1 𝜎 1 ), . . . , sin(cos -1 𝜎 𝑑 ),
where 𝜎 1 , . . . , 𝜎 𝑑 are the singular values of the matrix ŵ⊤ 𝑤. Actually, 𝑅(𝑤, ŵ)

• √ 𝑘 = ‖ sin Θ( ŵ⊤ 𝑤)‖ 𝐹 .
We use Davis-Kahan "sin 𝜃 theorem" [Stewart and Sun, 1990, Theorem V.3.6] in the following form [Yu et al., 2015, Theorem 2]: .4.4) Using Corollary 4.1 and its discussion by [START_REF] Vu | Minimax sparse principal subspace estimation in high dimensions[END_REF], we can derive, that

Theorem 2.3. Let Σ and Σ ∈ R 𝑑×𝑑 be symmetric, with eigenvalues 𝜆 1 • • • 𝜆 𝑑 and λ1 , . . . , λ𝑑 respectively. Fix 1 𝑟 𝑠 𝑑, let 𝑘 = 𝑠 -𝑟 + 1, and let 𝑈 = (𝑢 𝑟 , 𝑢 𝑟+1 , . . . , 𝑢 𝑠 ) ∈ R 𝑑×𝑘 and Û = (û 𝑟 , û𝑟+1 , . . . , û𝑠 ) ∈ R 𝑑×𝑘 have orthonormal columns satisfying Σ𝑢 𝑗 = 𝜆 𝑗 𝑢 𝑗 and Σû 𝑗 = λ𝑗 û𝑗 for 𝑗 = 𝑟, . . . , 𝑠. Let 𝛿 = inf{| λ -𝜆| : 𝜆 ∈ [𝜆 𝑠 , 𝜆 𝑟 ], λ ∈ (-∞, λ𝑠+1 ]∪[ λ𝑟-1 , +∞), where λ0 = +∞ and λ𝑝+1 = -∞. Assume, that 𝛿 > 0, then: 𝑅(𝑈, Û ) ‖ Σ -Σ‖ 𝐹 𝛿 √ 𝑘 . ( 2 
𝑅(𝑤, ŵ) ‖𝒱 1 (𝜃 * ) -V1 ( θ)‖ 𝐹 |𝜆 𝑘 -λ𝑘+1 | √ 𝑘
, where 𝑤 and ŵ are the real and the estimated e.d.r.

spaces respectively. Using Weyl's inequality [START_REF] Stewart | Matrix perturbation theory (computer science and scientific computing[END_REF] 

: if ‖𝒱 1 (𝜃 * ) - V1 ( θ)‖ 2 < 𝜀 ⇒ | λ𝑖 -𝜆 𝑖 | < 𝜀 for all 𝑖 = 1, . . . , 𝑑 and taking 𝜀 = (𝜆 𝑘 -𝜆 𝑘+1 )/2 = 𝜆 𝑘 /2
we get:

𝑅(𝑤, ŵ) 2‖𝒱 1 (𝜃 * ) -V1 ( θ)‖ * 𝜆 𝑘 √ 𝑘 , if ‖𝒱 1 (𝜃 * ) -V1 ( θ)‖ 𝐹 < 𝜆 𝑘 /2, because ‖ • ‖ 𝐹 ‖ • ‖ * .
We can now formulate our main theorem for the analysis of the SADE algorithm: Theorem 2.4. Consider assumptions (A1), (A2), (A4), (L1)-( L4), (M1), (M2), (M3) and:

(K1) The matrix 𝒱 1 has a rank 𝑘: 𝜆 𝑘 > 0.

For 𝛿 1/𝑛 and 𝑛 large enough: 𝑛 > 𝑐 1 + 𝑐 2 log 1 𝛿 for some positive constants 𝑐 1 and 𝑐 2 not depending on 𝑛 and 𝛿:

𝑅( ŵ, 𝑤) 2 √ 𝑛𝜆 𝑘 √ 𝑘 √︂ 2 log 48𝑚 2 𝑑 𝛿 × [︃ 𝑑 √ 𝑑(195𝜏 2 𝜂 + 2𝜏 2 ℓ ) + 9𝑚 2 E‖Ψ(𝑥)‖ 2 2 • ‖𝜃 * ‖ (︂ 2𝜏 ∇Ψ √ 𝑚 𝜆 0 + 4‖𝑏‖𝜏 2 Ψ √ 𝑚 3 𝑑 𝜆 0 )︂ ]︃ + 𝑂 (︂ 1 
𝑛
)︂ .

with probability not less than 1 -𝛿.

We thus obtain a convergence rate in 1/ √ 𝑛, with an explicit dependence on all constants of the problem. The dependence on dimension 𝑑 and number of basis functions 𝑚 is of the order (forgetting logarithmic terms):

𝑂( 𝑑 3/2 𝑛 1/2 + 𝑚 5/2 𝑛 1/2 ‖𝜃 * ‖).
For 𝑘 > 1, our dependence on the sample size 𝑛 is improved compared to existing work such as [START_REF] Dalalyan | A new algorithm for estimating the effective dimension-reduction subspace[END_REF] (while it matches the dependence for 𝑘 = 1 with [START_REF] Hristache | Direct estimation of the index coefficient in a single index model[END_REF]), but this comes at the expense of assuming that the score functions satisfy a parametric model.

For a fixed number of basis functions 𝑚, we thus escape the curse of dimensionality as we get a polynomial dependence on 𝑑 (which we believe could be improved). However, when no assumptions are made on score functions, the number 𝑚 and potentially the norm ‖𝜃 * ‖ has to grow with the number of observations 𝑛. We are indeed faced with a traditional non-parametric estiamation problem, and the number 𝑚 will need to grow when 𝑛 grows depending on the smoothness assumptions we are willing to make on the score function, with an effect on 𝜃 * (and probably 𝜆 0 , which we will neglect in the discussion below). While a precise analysis is out of the scope of the chapter and left for future work, we can make an informal argument as follows: in order to approximate the score with precision 𝜀 with a set of basis function where ‖𝜃 * ‖ is bounded, we need 𝑚(𝜀) basis functions. Thus, we end up with two sources of errors, an approximation error 𝜀 and an estimation error of order 𝑂(𝑚(𝜀) 5/2 /𝑛 1/2 ). Typically, if we assume that the score has a number of bounded derivatives proportional to dimension or if we assume the input variables are independent and we can thus estimate the score independently for each dimension, 𝑚(𝜀) is of the order 1/𝜀 1/𝑟 , where 𝑟 is independent of the dimension, leading to an overall rate which is independent of the dimension.

Score matching for SIR: direct approach

We can also try to combine these two steps to try to avoid the "curse of dimensionality". Our estimation of the score, i.e., of the parameter 𝜃 is done only to be used within the SIR approach where we expect the matrix V1,cov to have rank 𝑘. Thus when estimating 𝜃 by minimizing Rscore (𝜃), we may add a regularization that penalizes large ranks for V1,cov (𝜃) = 1

𝑛 ∑︀ 𝑛 𝑖,𝑗=1 𝛼 𝑖,𝑗 |𝐼 ℎ (𝑖,𝑗)|-1 Ψ(𝑥 𝑖 ) ⊤ 𝜃𝜃 ⊤ Ψ(𝑥 𝑖 )
, where we highlight the dependence on 𝜃 ∈ R 𝑚 . By enforcing the low-rank constraint, our aim is to circumvent a potential poor estimation of the score function, which could be enough for the task of estimating the e.d.r. space (we see a better behavior in our simulations in 2.5).

Introduce matrix

ℒ(𝜃) = (Ψ(𝑥 𝑖 ) ⊤ 𝜃, . . . , Ψ(𝑥 𝑛 ) ⊤ 𝜃) ∈ R 𝑑×𝑛 and 𝐴 ∈ R 𝑛×𝑛 with 𝐴 𝑖,𝑗 = 𝛼 𝑖,𝑗 𝑛•(|𝐼 ℎ (𝑖,𝑗)|-1) and 𝒜(𝜃) = ℒ • 𝐴 1/2 ∈ R 𝑑×𝑛 .
We may then penalize the nuclear norm of 𝒜(𝜃), or potentially consider norms that take into account that we look for a rank 𝑘 (e.g., the 𝑘-support norm on the spectrum of 𝒜(𝜃) [START_REF] Mcdonald | Spectral 𝑘-support norm regularization[END_REF]). We have,

‖𝒜(𝜃)‖ * = tr(𝒜(𝜃)𝒜(𝜃) ⊤ ) 1/2 = tr [︀ V1,cov (𝜃) 1/2 ]︀ .
Combining two penalties, we have a convex optimization task: .4.5) Efficient algorithm. Following [START_REF] Argyriou | Convex multi-task feature learning[END_REF], we consider reweighted leastsquares algorithms. The trace norm admits the variational form:

R(𝜃) = Rscore (𝜃) + 𝜆 • tr [︀ V1,cov (𝜃) 1/2 ]︀ . ( 2 
‖𝑊 ‖ * = 1 2 inf 𝐷≻0 tr(𝑊 𝑇 𝐷 -1 𝑊 + 𝐷).
The optimization problem (2.4.5) can be reformulated in the following way:

𝜃 ← arg min 𝜃 Rscore (𝜃) + 𝜆 2 tr (︁ 𝒜(𝜃) ⊤ 𝐷 -1 𝒜(𝜃) )︁ and 𝐷 ← (︀ 𝒜(𝜃)𝒜(𝜃) ⊤ + 𝜀𝐼 𝑑 )︀ 1/2 .
Note that the objective function is a quadratic function of 𝜃. Decompose matrix 𝒜 in the form:

𝒜(𝜃) = 𝑚 ∑︁ 𝑘=1 𝜃 𝑘 𝒜 𝑘 , where 𝒜 𝑘 ∈ R 𝑑×𝑛 .
Rearrange the regularizer term:

tr (︁ 𝒜(𝜃) ⊤ 𝐷 -1 𝒜(𝜃) )︁ = 𝑚 ∑︁ 𝑘=1 𝑚 ∑︁ 𝑙=1 tr [︁ 𝜃 𝑘 𝒜 ⊤ 𝑘 𝐷 -1 𝒜 𝑙 𝜃 𝑙 ]︁ = 𝜃 ⊤ 𝒴𝜃,
where

𝒴 𝑘,𝑙 = tr [︀ 𝒜 ⊤ 𝑘 𝐷 -1 𝒜 𝑙 ]︀ .
Introduce notation:

̃︀ 𝒜 = (︁ vect(𝒜 1 ), . . . , vect(𝒜 𝑚 ) )︁ ∈ R 𝑑𝑛×𝑚 ︀ ℬ = (︁ vect(𝐷 -1 𝒜 1 ), . . . , vect(𝐷 -1 𝒜 𝑚 ) )︁ ∈ R 𝑑𝑛×𝑚 , then 𝒴 = ̃︀ 𝒜 ⊤ ̃︀ ℬ.
We can now estimate the complexity of this algorithm. Firstly we need to evaluate the quadratic form in Rscore (𝜃): it is a summation of 𝑛 multiplications of 𝑚 × 𝑑 and 𝑑 × 𝑚 matrices. Complexity of this step is 𝑂(𝑛𝑚 2 𝑑). Secondly, we need to evaluate matrix matrices 𝐷 -1 , ̃︀ 𝒜 and ̃︀ ℬ using 𝑂(𝑑 3 ), 𝑂(𝑑𝐻𝑚) and 𝑂(𝑚 × 𝑑 2 𝐻) operations respectively. Next, we need to evaluate matrix 𝒴, using 𝑂(𝑑𝑛𝑚 2 ) operations. Finally, evaluating 𝒜(𝜃) requires 𝑂(𝑑𝑛𝑚) operations, 𝒜(𝜃)𝒜(𝜃) ⊤ requires 𝑂(𝑑 2 𝑛) operations and evaluation of 𝐷 requires 𝑂(𝑑 3 ) operations. Combining complexities, we get 𝑂(𝑚𝑑 2 𝑛 + 𝑑 3 + 𝑛𝑚 2 𝑑) operations, which is still linear in 𝑛.

Experiments

In this section we provide numerical experiments for SADE, PHD+ and SPHD on different functions 𝑓 . We denote the true and estimated e.d.r. subspaces as ℰ and Ê respectively, defined from 𝑤 and ŵ.

Known score functions

Consider a Gaussian mixture model with 2 components in R 𝑑 :

𝑝(𝑥) = 2 ∑︁ 𝑖=1 𝜃 𝑖 • 1 (2𝜋) 𝑑/2 • |Σ 𝑖 | 1/2 • exp {︂ - 1 2 (𝑋 -𝜇 𝑖 ) ⊤ Σ -1 𝑖 (𝑋 -𝜇 𝑖 ) }︃ , (2.5.1) 
where 𝜃 = (6/10, 4/10),

𝜇 1 = (-1, . . . , -1 ⏟ ⏞ 𝑑 ), 𝜇 2 = (1, . . . , 1 ⏟ ⏞ 𝑑 ), Σ 1 = 𝐼 𝑑 , Σ 2 = 2 • 𝐼 𝑑 .
Contour lines of this distribution, when 𝑑 = 2 are shown in Figure 2-2.

The error 𝜀 has a standard normal distribution. To estimate the effectiveness of an estimated e.d.r. subspace, we use the square trace error 𝑅 2 (𝑤, ŵ)

𝑅 2 (𝑤, ŵ) = 1 - 1 𝑘 tr [︀ 𝑃 • P ]︀ ,
where 𝑤 and ŵ are the real and the estimated e.d.r. vectors respectively and 𝑃 and P are projectors, corresponding to these matrices. Note, that (2.4.3) is the special case of this formula with orthonormal matrices.

To show the dominance of SADE over SIR (which should only work for elliptically symmetric distributions), we consider the rational multi-index model of the form

𝑑 = 10; 𝑦 = 𝑥 1 1/2 + (𝑥 2 + 2) 2 + 𝜎 • 𝜀. (2.5.2)
Here the real e.d.r. space is generated by 2 specific vectors: (1, 0, 0, . . . , 0) and (0, 1, 0, . . . , 0). The number of slices is 𝐻 = 10, and we consider numbers of observations 𝑛 from 2 10 to 2 16 equally spaced in logarithmic scale, and we conduct 100 replicates to obtain means and standard deviations of the logarithms of square trace errors divided by √ 100 = 10 (to assess significance of differences) as shown in Figure 23. Even in this simple model, the ordinary SIR algorithm does not work properly, because the distribution of the inputs 𝑥 has no elliptical symmetry. When 𝑛 → ∞, the squared trace error tends to some nonzero constant depending on the properties of the density function, whereas SADE shows good performance with slope -1 (corresponding to a √ 𝑛-consistent estimator). Now, we compare the moments methods SADE, PHD+, SPHD. Although the goal of this chapter is to compare moment matching techniques, we compare them with the state-of-the-art MAVE method [Xia et al., 2002b[START_REF] Wang | On directional regression for dimension reduction[END_REF], 2008]. It is worth noting two properties which we have already discussed concerning these methods:

1. Sliced methods have a wider application area than unsliced ones: SADE is stronger than ADE and SPHD is stronger than PHD+.

We conduct 3 experiments, where 𝐻 = 10, 𝑑 = 10, the error term 𝜀 has a normal standard distribution; numbers of observation 𝑛 from 2 10 to 2 16 equally spaced in logarithmic scale and we made 10 replicas to evaluate sample means and variations:

-Rational model of the form: 2.5.3) where the effective reduction subspace dimension is 𝑘 = 2.

𝑦 = 𝑘 ∑︁ 𝑖=1 tanh(8𝑥 𝑖 -16) • 𝑖 + tanh(8𝑥 𝑖 + 16) • (𝑘 + 1 -𝑖) + 𝜀/4, ( 
Results are shown of Figure 2-4 and we can see, that first-order method SADE works better, than second-order SPHD + and SPHD works better, than PHD+, that is slicing make the method more robust. -Classification problem of the form

𝑦 = 1 𝑥 2 1 +2𝑥 2 2 >4 + 𝜀/4.
(2.5.4)

We can see, that the error of SADE is close to 0.5 (Figure 2345). This means that the method finds only one direction in the e.d.r. space. Moreover, SPHD gave better results than PHD+. -Quadratic model of the form

𝑑 = 10; 𝑦 = 𝑥 1 (𝑥 1 + 𝑥 2 -3) + 𝜀.
(2.5.5)

Both SADE and SPHD show a good performance (Figure 2-6), while PHD+ can not recover the desired projection due to linearity of the function 𝑔. 

Unknown score functions

Now, we conduct numerical experiments for SADE with unknown score functions. We consider a "toy" experiment and first examine results of the 2-step algorithm. We consider again a Gaussian mixture model (2.5.1) with 2 components in R 2 , where 𝜃 = (0.6, 0.4), 𝜇 1 = (-0.5, 0.5), 𝜇 2 = (0.5, 0.5), Σ

1 = 0.3 • 𝐼 2 , Σ 2 = 0.4 • 𝐼 2 , with 𝑦 = sin(𝑥 1 + 𝑥 2 ) + 𝜀,
where error 𝜀 has a standard normal distribution. We choose these parameters of Gaussian mixture to make sure, that the probability of the vector 𝑋 to be in the square [-2, 2] 2 is close to 1.

We chose 100 Gaussian kernels as basis functions:

𝜓 𝑖,𝑗 (𝑥) = ∇ exp {︂ - ‖𝑋 -𝑋 𝑖,𝑗 ‖ 2 2ℎ 2 }︂ , 1 𝑖, 𝑗 10,
where 𝑋 𝑖,𝑗 form the uniform grid on the square [-2, 2] 2 (note that this does not imply any notion of Gaussianity for the underlying density, and the Gaussian kernel here could be replaced by any differentiable local function).

In practice, Ψ in (2.4.1) is close to be degenerated, and we use a regularized estimator 𝜃 * = -

(︀ Ψ + 𝛼𝐼 𝑇 )︀ -1 • Φ instead.
We choose 𝛼 = 0.01, 𝜎 = 1 and conduct 100 replicates with numbers of observations 𝑛 from 2 10 to 2 16 equally spaced in logarithmic scale. The results of the experiments are presented in Figure 234567: the square trace error tends to zero as 𝑛 increases.

In high dimensions, we can not use a uniform grid because of the curse of dimensionality. Instead of this, we will use 𝑛 Gaussian kernels, centered in the sample points 𝑋 𝑖 . Note here that we can only recover an approximate score function, but our goal is the estimation of the e.d.r. subspace.

We use our reweighted least-squares algorithm to solve the convex problem (2.4.5). We conduct several experiments on functions from the previous section. We plot the performance as a function of the kernel bandwidth ℎ to assess the robustness of the methods. On Figure 2-8 we provide the relationship between the square trace error and ℎ for quadratic model (2.5.5) for 𝑑 = 10 and 𝑛 = 1000. In Figures 23456789, 2-10, 2-11, we provide the relationship between the square trace error and 𝜎 for rational model (2.5.2) for 𝑑 = 10, 𝑛 = 1000; 𝑑 = 20, 𝑛 = 2000 and 𝑑 = 50, 𝑛 = 5000. We see that for large 𝑑, the one-step algorithm is more robust than the two-step algorithm. Moreover, the experiments show that even with weak score functions, correct estimation of the e.d.r. space can be performed.

Comparison with MAVE. We consider the rational model (2.5.3) with 𝑛 = 10000, 𝑘 = 10 and dimension 𝑑 of data in the range [20,150]. Probability density 𝑝(𝑥) has independent components, each of which has a form of mixture of 2 Gaussians with weights (6/10, 4/10), means (-1, 1) and standard variations [START_REF]-2 Graphical representation of Lipschitz smoothness and strong convexity. 1-3 Graphical representation of projected gradient descent: firstly we do gradient step and then project onto 𝒳[END_REF]2). The results for MAVE, SADE with known score and for SADE with unknown score are shown on the Figure 2-12. We can see, that both SADE with known and unknown scores lose in case of low dimension of data, but more resistant to the curse of dimensionality (as expected as MAVE relies on non-parametric estimation in a space of dimension 𝑘, which is here larger). Moreover, the complexity of our moment-matching technique is linear in the number of observations 𝑛, while MAVE is superlinear.

Conclusion

In this chapter we consider a general non-linear regression model and the dependence on a unknown 𝑘-dimensional subspace assumption. Our goal was direct estimation of this unknown 𝑘-dimensional space, which is often called the effective dimension reduction or e.d.r. space. We proposed new approaches (SADE and SPHD), combining two existing techniques (sliced inverse regression (SIR) and score function-based estimation). We obtained consistent estimation for 𝑘 > 1 only using the first-order score and proposed explicit approaches to learn the score from data.

It would be interesting to extend our sliced extensions to learning neural networks: indeed, our work focused on the subspace spanned by 𝑤 and cannot identify individual columns, while [START_REF] Janzamin | Generalization Bounds for Neural Networks through Tensor Factorization[END_REF] showed that by using proper tensor decomposition algorithms and second-order score functions, columns of 𝑤 can be consistently estimated (in polynomial time).

Appendix. Proofs

In this appendix, we provide proofs which were omitted in the chapter.

Probabilistic lemma

Let us first formulate and proof an auxiliary lemma about tail inequalities: Lemma 2.5. Let 𝑋 be a non-negative random variable such that for some positive constants 𝐴 and 𝐵, and all 𝑝:

E𝑋 𝑝 (𝐴 √ 𝑝 + 𝐵𝑛 1/𝑝 𝑝 2 ) 𝑝 .
Then, for 𝑡 (log 𝑛)/2:

P(𝑋 3𝐴 √ 𝑡 + 3𝐵𝑛 1/𝑡 𝑡 2 ) 3𝑒 -𝑡 .
Proof. By Markov's inequality, for every non-negative integer 𝑝:

P(𝑋 3𝐴 √ 𝑝 + 3𝐵𝑛 1/𝑝 𝑝 2 ) = P(𝑋 𝑝 [3𝐴 √ 𝑝 + 3𝐵𝑛 1/𝑝 𝑝 2 ] 𝑝 ) [𝐴 √ 𝑝 + 𝐵𝑛 1/𝑝 𝑝 2 ] 𝑝 [3𝐴 √ 𝑝 + 3𝐵𝑛 1/𝑝 𝑝 2 ] 𝑝 𝑒 -𝑝 .
Consider any 𝑡 > (log 𝑛)/2 and 𝑝 = [𝑡], then: 

P(𝑋 3𝐴 √ 𝑡 + 3𝐵𝑛 1/𝑡 𝑡 2 ) P(𝑋 3𝐴 √ 𝑝 + 3𝐵𝑛 1/𝑝 𝑝 2 ) 𝑒 -𝑝 3𝑒 -𝑡 , because function 𝑓 (𝑡) = 3𝐴 √ 𝑡 + 3𝐵𝑛
𝑦 (2) • • • 𝑦 (𝑛)
. The 𝑥 (𝑖) are called the concomitants of order statistics by [START_REF] Yang | General distribution theory of the concomitants of order statistics[END_REF]. Introduce double subscripts:

ℓ (ℎ,1) = ℓ (︀ 𝑥 (2ℎ-1) )︀ , ℓ (ℎ,2) = ℓ (︀ 𝑥 (2ℎ) )︀ , 𝑦 (ℎ,1) = 𝑦 (2ℎ-1) and 𝑦 (ℎ,2) = 𝑦 (2ℎ) .
Introduce firstly alternative matrix (under the weak assumptoin of its existance):

𝒱 1,E = E [︀ Cov(𝒮 1 (𝑥)|𝑦) ]︀ .
We have the following estimator for this matrix, for 𝑐 = 2, and 𝐻 = 𝑛/𝑐 = 𝑛/2:

V1,E = 1 𝑛 𝐻 ∑︁ ℎ=1 (︀ ℓ (ℎ,1) -ℓ (ℎ,2) )︀(︀ ℓ (ℎ,1) -ℓ (ℎ,2) )︀ ⊤ ,
Firstly, we estimate a norm of V1,E -𝒱 1,E and afterwards a norm of V1,cov -𝒱 1,cov .

Thus, the deviation from the population version, may be split into four terms as follows:

V1,E -𝒱 1,E = 1 𝑛 𝐻 ∑︁ ℎ=1 (︀ ℓ (ℎ,1) -ℓ (ℎ,2) )︀(︀ ℓ (ℎ,1) -ℓ (ℎ,2) )︀ ⊤ -E𝜂𝜂 ⊤ = 1 𝑛 𝐻 ∑︁ ℎ=1 (︀ 𝜂 (ℎ,1) -𝜂 (ℎ,2) )︀(︀ 𝜂 (ℎ,1) -𝜂 (ℎ,2) )︀ ⊤ -E𝜂𝜂 ⊤ + 1 𝑛 𝐻 ∑︁ ℎ=1 (︀ 𝑚(𝑦 (ℎ,1) ) -𝑚(𝑦 (ℎ,2) ) )︀(︀ 𝜂 (ℎ,1) -𝜂 (ℎ,2) )︀ ⊤ + 1 𝑛 𝐻 ∑︁ ℎ=1 (︀ 𝜂 (ℎ,1) -𝜂 (ℎ,2) )︀(︀ 𝑚(𝑦 (ℎ,1) ) -𝑚(𝑦 (ℎ,2) ) )︀ ⊤ + 1 𝑛 𝐻 ∑︁ ℎ=1 (︀ 𝑚(𝑦 (ℎ,1) ) -𝑚(𝑦 (ℎ,2) ) )︀(︀ 𝑚(𝑦 (ℎ,1) ) -𝑚(𝑦 (ℎ,2) ) )︀ ⊤ = 𝑇 4 + 𝑇 3 + 𝑇 2 + 𝑇 1 .
We now bound each term separately.

Bounding 𝑇 1 . We have

𝑇 1 1 𝑛 𝐻 ∑︁ ℎ=1 𝐿 2 (𝑦 (ℎ,1) -𝑦 (ℎ,2) )(𝑦 (ℎ,1) -𝑦 (ℎ,2) ) ⊤ tr𝑇 1 = ‖𝑇 1 ‖ * 1 𝑛 𝐻 ∑︁ ℎ=1 𝐿 2 • diameter(𝑦 1 , . . . , 𝑦 𝑛 )|𝑦 (ℎ,1) -𝑦 (ℎ,2) | 1 𝑛 𝐿 2 • diameter(𝑦 1 , . . . , 𝑦 𝑛 ) 2 .
The range cannot grow too much, i.e., as log 𝑛. Indeed, assuming without loss of generality that E𝑦 = 0, we have max{𝑦 1 , . . . , 𝑦 𝑛 } 𝑢/2 and min{𝑦 1 , . . . , 𝑦 𝑛 } -𝑢/2 implies that the range is less than 𝑢, and thus, P(diameter(𝑦 Bounding 𝑇 2 and 𝑇 3 . We also have Thus combining the two terms above, with probability greater than 1 -𝛿/4,

max{‖𝑇 2 ‖ * , ‖𝑇 3 ‖ * } 1 𝑛 𝐻 ∑︁ ℎ=1 𝐿|𝑦 (ℎ,1) 𝑦 (ℎ,2) | • diameter(𝜂 1 , . . . , 𝜂 𝑛 ) 1 𝑛 𝐿 • diameter(𝑦
‖𝑇 1 ‖ * + ‖𝑇 2 ‖ * + ‖𝑇 3 ‖ * 8𝐿(𝐿𝜏 2 𝑦 + 2𝜏 𝜂 𝜏 𝑦 √ 𝑑) 𝑛 (︀ log(2𝑛) + log(8𝑑) + log(1/𝛿) )︀ .
Note the term in √ 𝑑, which corresponds to the definition of the diameter(𝜂 1 , . . . , 𝜂 𝑛 ) in terms of the ℓ 2 -norm.

Bounding 𝑇 4 . We have:

𝑇 4 = 1 𝑛 𝐻 ∑︁ ℎ=1 {︀ 𝜂 (ℎ,1) 𝜂 ⊤ (ℎ,1) + 𝜂 (ℎ,2) 𝜂 ⊤ (ℎ,2) -𝜂 (ℎ,2) 𝜂 ⊤ (ℎ,1) -𝜂 (ℎ,1) 𝜂 ⊤ (ℎ,2) }︀ -E𝜂𝜂 ⊤ = 1 𝑛 𝐻 ∑︁ ℎ=1 {︀ -𝜂 (ℎ,2) 𝜂 ⊤ (ℎ,1) -𝜂 (ℎ,1) 𝜂 ⊤ (ℎ,2) }︀ + 1 𝑛 𝑛 ∑︁ 𝑖=1 𝜂 𝑖 𝜂 ⊤ 𝑖 -E𝜂𝜂 ⊤ = 𝑇 4,1 + 𝑇 4,2 .
For the second term 𝑇 4,2 above, if we select any element indexed by 𝑎, 𝑏, then

1 𝑛 𝑛 ∑︁ 𝑖=1 (𝜂 𝑖 ) 𝑎 (𝜂 𝑖 ) 𝑏 -E𝜂 𝑎 𝜂 𝑏 .
Using [Boucheron et al., 2013, Theorem 2.1], we get

E[(𝜂 𝑖 ) 𝑎 (𝜂 𝑖 ) 𝑏 ] 2 √︁ E(𝜂 𝑖 ) 4 𝑎 E(𝜂 𝑖 ) 4 𝑏 4(2𝜏 2 𝜂 ) 2 = 16𝜏 4 𝜂 ,
and

E[|(𝜂 𝑖 ) 𝑎 (𝜂 𝑖 ) 𝑏 | 𝑞 ] √︁ E(𝜂 𝑖 ) 2𝑞 𝑎 E(𝜂 𝑖 ) 2𝑞 𝑏 2𝑞!(2𝜏 2 𝜂 ) 𝑞 = 𝑞! 2 (2𝜏 2 𝜂 ) 𝑞-2 16𝜏 4 𝜂 .
We can then use Bernstein's inequality [Boucheron et al., 2013, Theorem 2.10], to get that with probability less than 𝑒 -𝑡 then

1 𝑛 𝑛 ∑︁ 𝑖=1 (𝜂 𝑖 ) 𝑎 (𝜂 𝑖 ) 𝑏 -E𝜂 𝑎 𝜂 𝑏 2 𝜏 2 𝜂 𝑛 𝑡 + √︁ 32𝜏 4 𝜂 √ 𝑡/ √ 𝑛.
We can also get upper bound for this quantity, using -𝜂 𝑎 instead of 𝜂 𝑎 . Thus, with 𝑡 = log 8𝑑 2 𝛿 , we get that all 𝑑(𝑑 + 1)/2 absolute deviations are less than 2𝜏 A key result from the theory of order statistics is that the 𝑛 random variables 𝜂 (ℎ,2) , 𝜂 (ℎ,1) , ℎ ∈ {1, . . . , 𝑛/2} are independent given 𝑌 [START_REF] Yang | General distribution theory of the concomitants of order statistics[END_REF]. This allows us to compute expectations. Using Rosenthal's inequality [Boucheron et al., 2013, Theorem 15.11] conditioned on Y, for which we have E((𝜂 (ℎ,2) ) 𝑎 (𝜂 (ℎ,1) ) 𝑏 |Y) = 0, we get:

[︀ E(|𝑍| 𝑝 |Y) ]︀ 1/𝑝 √︀ 8𝑝 [︀ ∑︁ ℎ E [︀ ((𝜂 (ℎ,2) ) 2 𝑎 (𝜂 (ℎ,1) ) 2 𝑏 |Y ]︀]︀ 1/2 + 𝑝 • 2 [︀ E max ℎ [︀ ((𝜂 (ℎ,2) ) 𝑝 𝑎 (𝜂 (ℎ,1) ) 𝑝 𝑏 |Y ]︀]︀ 1/𝑝 √︀ 8𝑝 [︀ ∑︁ ℎ E [︀ ((𝜂 (ℎ,2) ) 2 𝑎 (𝜂 (ℎ,1) ) 2 𝑏 |Y ]︀]︀ 1/2 + 𝑝 • 2 [︀ ∑︁ ℎ E [︀ ((𝜂 (ℎ,2) ) 𝑝 𝑎 (𝜂 (ℎ,1) ) 𝑝 𝑏 |Y ]︀]︀ 1/𝑝 .
By taking the 𝑝-th power, we get:

E(|𝑍| 𝑝 |Y) 2 𝑝-1 √︀ 8𝑝 𝑝 [︀ ∑︁ ℎ E [︀ ((𝜂 (ℎ,2) ) 2 𝑎 (𝜂 (ℎ,1) ) 2 𝑏 |Y ]︀]︀ 𝑝/2 + 2 𝑝-1 𝑝 𝑝 • 2 𝑝 ∑︁ ℎ E [︀ ((𝜂 (ℎ,2) ) 𝑝 𝑎 (𝜂 (ℎ,1) ) 𝑝 𝑏 |Y ]︀ .
By now taking expectations with respect to Y, we get, using Jensen's inequality:

E|𝑍| 𝑝 2 𝑝-1 √︀ 8𝑝 𝑝 E (︁ [︀ ∑︁ ℎ (𝜂 (ℎ,2) ) 2 𝑎 (𝜂 (ℎ,1) ) 2 𝑏 ]︀ 𝑝/2 )︁ + 2 𝑝-1 𝑝 𝑝 • 2 𝑝 ∑︁ ℎ E [︀ ((𝜂 (ℎ,2) ) 𝑝 𝑎 (𝜂 (ℎ,1) ) 𝑝 𝑏 ]︀ 2 𝑝-1 √︀ 8𝑝 𝑝 E (︁ [︀ 1 2 ∑︁ ℎ (𝜂 (ℎ,2) ) 4 𝑎 + (𝜂 (ℎ,1) ) 4 𝑏 ]︀ 𝑝/2 )︁ + 2 𝑝-1 𝑝 𝑝 • 2 𝑝 • 1 2 ∑︁ ℎ E [︀ ((𝜂 (ℎ,2) ) 2𝑝 𝑎 + (𝜂 (ℎ,1) ) 2𝑝 𝑏 ]︀ 2 𝑝-1 √︀ 8𝑝 𝑝 E (︁ [︀ ∑︁ 𝑖 (𝜂 𝑖 ) 4 𝑎 + (𝜂 𝑖 ) 4 𝑏 ]︀ 𝑝/2 )︁ + 2 𝑝-1 𝑝 𝑝 • 2 𝑝 ∑︁ 𝑖 E [︀ ((𝜂 𝑖 ) 2𝑝 𝑎 + (𝜂 𝑖 ) 2𝑝 𝑏 ]︀ .
Because summing over all order statistics is equivalent to summing over all elements. Thus, using the bound on moments of (𝜂 𝑖 ) 2 𝑏 , we get:

E|𝑍| 𝑝 2 𝑝-1 √︀ 8𝑝 𝑝 2 𝑝/2-1 E (︁ [︀ ∑︁ 𝑖 (𝜂 𝑖 ) 4 𝑎 ]︀ 𝑝/2 )︁ + 2 𝑝-1 √︀ 8𝑝 𝑝 2 𝑝/2-1 E (︁ [︀ ∑︁ 𝑖 (𝜂 𝑖 ) 4 𝑏 ]︀ 𝑝/2 )︁ + 2 𝑝-1 𝑝 𝑝 • 2 𝑝 𝑛 • 4𝑝!(2𝜏 2 𝜂 ) 𝑝
We can now use [Boucheron et al., 2013, Theorem 15.10], to get

[︁ E (︁ [︀ ∑︁ 𝑖 (𝜂 𝑖 ) 4 𝑎 ]︀ 𝑝/2 )︁]︁ 2/𝑝 2E [︀ ∑︁ 𝑖 (𝜂 𝑖 ) 4 𝑎 ]︀ + 𝑝 2 
(︀ E [︀ max 𝑖 ((𝜂 𝑖 ) 4 𝑎 ) 𝑝/2 ]︀)︀ 2/𝑝 2E [︀ ∑︁ 𝑖 (𝜂 𝑖 ) 4 𝑎 ]︀ + 𝑝 2 
(︀ E [︀ ∑︁ 𝑖 ((𝜂 𝑖 ) 4 𝑎 ) 𝑝/2 ]︀)︀ 2/𝑝 2𝑛 × 4(2𝜏 2 𝜂 ) 2 + 𝑝 2 𝑛 2/𝑝 E𝜂 2𝑝 𝑖 (︀ 32𝑛 + 𝑛 2/𝑝 𝑝 2 (2𝑝!) 2/𝑝 )︀ 𝜏 4 𝜂 (︀ 32𝑛 + 𝑛 2/𝑝 𝑝 3 )︀ 𝜏 4 𝜂 .
Thus

E|𝑍| 𝑝 2 𝑝 √︀ 8𝑝 𝑝 2 𝑝/2-1 (︀ 32𝑛 + 𝑛 2/𝑝 𝑝 3 )︀ 𝑝/2 𝜏 2𝑝 𝜂 + 2 𝑝-1 𝑝 𝑝 • 2 𝑝 𝑛 • 4𝑝!(2𝜏 2 𝜂 ) 𝑝 2 3𝑝-1 𝑝 𝑝/2 • 2 𝑝/2-1 (︀ (32𝑛) 𝑝/2 + 𝑛 • 𝑝 3𝑝/2 )︀ 𝜏 2𝑝 𝜂 + 2 3𝑝+1 𝜏 2𝑝 𝜂 𝑛𝑝 2𝑝 (︀ 2 6𝑝-2 𝑝 𝑝/2 𝑛 𝑝/2 + 𝑛𝑝 2𝑝 [2 7𝑝/2-2 + 2 3𝑝+1 ] )︀ 𝜏 2𝑝 𝜂 (︁ 64 𝑝 • 𝑝 𝑝/2 𝑛 𝑝/2 + 19 𝑝 • 𝑛𝑝 2𝑝 )︁ 𝜏 2𝑝 𝜂 .
Thus

(E|𝑍| 𝑝 ) 1/𝑝 (︁ 64 • √ 𝑝𝑛 1/2 + 19 • 𝑛 1/𝑝 𝑝 2 )︁ 𝜏 2 𝜂 .
Thus, for any 𝛿 1/𝑛, using Lemma 2.5 for random variable 𝑍/𝑛 with 𝑡 = log( 12𝑑 2 𝛿 ) > (log 𝑛)/2 and we obtain:

P [︂⃒ ⃒ ⃒ ⃒ 𝑍 𝑛 ⃒ ⃒ ⃒ ⃒ 192𝜏 2 𝜂 √ 𝑛 √ 𝑡 + 57𝜏 2 𝜂 𝑛 𝑛 1/𝑡 𝑡 2 ]︂ 3𝑒 -𝑡 ⇒ P [︂⃒ ⃒ ⃒ ⃒ 𝑍 𝑛 ⃒ ⃒ ⃒ ⃒ 192𝜏 2 𝜂 √ 𝑛 √︁ log( 12𝑑 2 𝛿 ) + 57𝜏 2 𝜂 𝑛 𝑛 1/ log( 12𝑑 2 𝛿 ) log 2 ( 12𝑑 2 𝛿 ) ]︂ 𝛿 4𝑑 2 ⇒ P [︂⃒ ⃒ ⃒ ⃒ 𝑍 𝑛 ⃒ ⃒ ⃒ ⃒ 192𝜏 2 𝜂 √ 𝑛 √︁ log( 12𝑑 2 𝛿 ) + 155𝜏 2 𝜂 𝑛 log 2 ( 12𝑑 2 𝛿 ) ]︂ 𝛿 4𝑑 2 .
Combining all terms 𝑇 1 , 𝑇 2 , 𝑇 3 , 𝑇 4,1 and 𝑇 4,2 we get with probability not less than

1 -𝛿: ‖ V1,E -𝒱 1,E ‖ * 1 𝑛 • [︁ 8𝐿(𝐿𝜏 2 𝑦 + 2𝜏 𝜂 𝜏 𝑦 √ 𝑑) • log( 16𝑑𝑛 𝛿 )+ 2𝑑 √ 𝑑𝜏 2 𝜂 log 8𝑑 2 𝛿 + 155𝜏 2 𝜂 𝑑 log 2 ( 12𝑑 2 𝛿 ) ]︁ + 1 √ 𝑛 [︂ 2𝑑 √ 𝑑𝜏 2 𝜂 √︁ 2 log 8𝑑 2 𝛿 + 192𝜏 2 𝜂 𝑑 √︁ log 12𝑑 2 𝛿 ]︂ .
Rearranging terms and replacing 𝛿 by 𝛿/2, with probability not less, than 1 -𝛿/2:

‖ V1,E -𝒱 1,E ‖ * 195𝑑 √ 𝑑𝜏 2 𝜂 √ 𝑛 √︂ log 24𝑑 2 𝛿 + 8𝐿 2 𝜏 2 𝑦 + 16𝜏 𝜂 𝜏 𝑦 𝐿 √ 𝑑 + 157𝜏 2 𝜂 𝑑 √ 𝑑 𝑛 log 2 32𝑑 2 𝑛 𝛿 .
Using expression:

𝒱 1,cov + 𝒱 1,E = cov[ℓ 1 (𝑥)],
we can suggest estimator for 𝒱 1,cov as V1,cov = 1

𝑛 𝑛 ∑︀ 𝑖=1 ℓ(𝑥 𝑖 )ℓ(𝑥 𝑖 ) ⊤ -V1,E .
Applying the triangle inequality:

‖ V1,cov -𝒱 1,cov ‖ * ‖ V1,E -𝒱 1,E ‖ * + ‖ 1 𝑛 𝑛 ∑︁ 𝑖=1 ℓ(𝑥 𝑖 )ℓ(𝑥 𝑖 ) ⊤ -E(ℓ(𝑥)ℓ(𝑥) ⊤ )‖ * .
To estimate the second term, we can use the same arguments as for bounding 𝑇 4,2 : with probability greater than

1 -𝛿/2, ‖ 1 𝑛 𝑛 ∑︀ 𝑖=1 ℓ(𝑥 𝑖 )ℓ(𝑥 𝑖 ) ⊤ -E(ℓ(𝑥)ℓ(𝑥) ⊤ )‖ * is less than 2𝑑 √ 𝑑𝜏 2 ℓ (︂ log 4𝑑 2 𝛿 𝑛 + √︁ 2 log 4𝑑 2 𝛿 𝑛 )︂
. Finally, combining this bound with bound for

‖ V1,cov -𝒱 1,cov ‖ * : ‖ V1,cov -𝒱 1,cov ‖ * 𝑑 √ 𝑑(195𝜏 2 𝜂 + 2𝜏 2 ℓ ) √ 𝑛 √︂ log 24𝑑 2 𝛿 + 8𝐿 2 𝜏 2 𝑦 + 16𝜏 𝜂 𝜏 𝑦 𝐿 √ 𝑑 + (157𝜏 2 𝜂 + 2𝜏 2 ℓ )𝑑 √ 𝑑 𝑛 log 2 32𝑑 2 𝑛 𝛿 .

Proof of Theorem 2.2

Proof. Using triangle inequality, we get:

‖𝒱 1,cov (𝜃 * ) -V1,cov ( θ)‖ * ‖𝒱 1,cov (𝜃 * ) -V1,cov (𝜃 * )‖ * + ‖ V1,cov (𝜃 * ) -V1,cov ( θ)‖ * = ℱ 1 + ℱ 2 . (2.7.1)
Theorem 2.1 supplies us with non-asymptotic analysis for the ℱ 1 term: with probability not less then 1 -𝛿/2:

‖ V1,cov (𝜃 * ) -𝒱 1,cov (𝜃 * )‖ * 𝑑 √ 𝑑(195𝜏 2 𝜂 + 2𝜏 2 ℓ ) √ 𝑛 √︂ log 48𝑑 2 𝛿 + 8𝐿 2 𝜏 2 𝑦 + 16𝜏 𝜂 𝜏 𝑦 𝐿 √ 𝑑 + (157𝜏 2 𝜂 + 2𝜏 2 ℓ )𝑑 √ 𝑑 𝑛 log 2 64𝑑 2 𝑛 𝛿 .
(2.7.2)

For the second term, let us firstly analyse the norm ‖𝜃 * -θ‖. For simplicity, introduce notation:

Ĉ = 1 𝑛 ∑︀ 𝑛 𝑖=1 Ψ(𝑥 𝑖 )Ψ(𝑥 𝑖 ) ⊤ ∈ R 𝑚×𝑚 , 𝐶 = E [︀ Ψ(𝑥)Ψ(𝑥) ⊤ ]︀ ∈ R 𝑚×𝑚 , b = 1 𝑛 ∑︀ 𝑛 𝑖=1 (∇ • Ψ)(𝑥 𝑖 ) ∈ R 𝑚 and 𝑏 = E [︀ (∇ • Ψ)(𝑥) ]︀ ∈ R 𝑚 Let us estimate ‖ Ĉ -𝐶‖ 𝐹 and ‖ b -𝑏‖. Introduce notation: 𝐶 𝑐 𝑎,𝑏 = 1 𝑛 𝑛 ∑︁ 𝑖=1 Ψ 𝑎 𝑐 (𝑥 𝑖 ) • Ψ 𝑏 𝑐 (𝑥 𝑖 ) -E [︀ Ψ 𝑎 𝑐 (𝑥) • Ψ 𝑏 𝑐 (𝑥)
]︀ .

It can be shown like in the bounding of 𝑇 4,2 term in the Theorem's 2.1 proof, using [Boucheron et al., 2013, Theorem 2.1] and Bernstein's inequality [Boucheron et al., 2013, Theorem 2.10] that with probability less then 𝑒 -𝑡 :

𝐶 𝑐 𝑎,𝑏 2 𝜏 2 Ψ 𝑛 𝑡 + √︁ 32𝜏 4 Ψ √ 𝑡/ √ 𝑛.
Taking 𝑡 = log 2𝑚 2 𝑑 𝛿 we show that:

P ⎡ ⎣ ‖ Ĉ -𝐶‖ 𝐹 2𝜏 2 Ψ √ 𝑚 3 𝑑 (︂ log 2𝑚 2 𝑑 𝛿 𝑛 + √︃ 2 log 2𝑚 2 𝑑 𝛿 𝑛 )︂ ⎤ ⎦ < 𝛿.
According to assumption (M2) and Hoeffding bound:

P [︂ ‖ b𝑖 -𝑏 𝑖 ‖ 𝑡 𝑛 ]︂ 𝑒 -𝑡 2 2𝜏 2 ∇Ψ 𝑛 ,
combining inequalities for all 𝑚 components of 𝑏, we have:

P [︂ ‖𝑏 -b‖ 𝜏 ∇Ψ √ 𝑚 √ 𝑛 √︁ log 𝑚 2 𝛿 2 ]︂ 𝛿.
Now, let estimate ‖𝜃 * -θ‖:

𝜃 * -θ = Ĉ-1 b -𝐶 -1 𝑏 = Ĉ-1 ( b -𝑏) + ( Ĉ-1 -𝐶 -1 )𝑏 ⇒ ‖𝜃 * -θ‖ ‖ b -𝑏‖ 𝜆 min ( Ĉ) + ‖𝑏‖ 2 • ‖𝐶 -Ĉ‖ op 𝜆 min (𝐶) • 𝜆 min ( Ĉ) .
For 𝑛 large enough (for some constants 𝑐 1 and 𝑐 2 , not depending on 𝑛 and 𝛿: 𝑛 >

𝑐 1 + 𝑐 2 log 1 𝛿 ) ‖ Ĉ -𝐶‖ 𝜆 min 2
with probability more, than 1 -𝛿/12 hence for this 𝑛: 𝜆 min ( Ĉ) 𝜆 min (𝐶) 2 , hence, combining 3 estimations for ‖ b -𝑏‖, ‖ Ĉ -𝐶‖ and for 𝜆 min ( Ĉ), we obtain estimation for ‖𝜃 * -θ‖: with probability not less, than 1 -𝛿/4:

‖𝜃 * -θ‖ 2𝜏 ∇Ψ √ 𝑚 √ 𝑛𝜆 min (𝐶) √︀ 2 log 12𝑚 𝛿 + 2‖𝑏‖ 𝜆 2 min (𝐶) • 2𝜏 2 Ψ √ 𝑚 3 𝑑 (︂ log 24𝑚 2 𝑑 𝛿 𝑛 + √︂ 2 log 24𝑚 2 𝑑 𝛿 𝑛 )︂ (2.7.3)
Consider now (𝑎, 𝑏) element of V1,cov (𝜃 * ) -V1,cov ( θ) (using 2.4.2): 

[︁ V1,cov (𝜃 * ) -V1,cov ( θ) ]︁ 𝑎,𝑏 = 1 𝑛 𝑛 ∑︁ 𝑖,𝑗=1 𝛼 𝑖,𝑗 |𝐼 ℎ (𝑖, 𝑗)| -1 𝑚 ∑︁ 𝛼,𝛽=1 Ψ(𝑥 𝑖 ) 𝛼 𝑎 Ψ(𝑥 𝑗 ) 𝛽 𝑏 • |𝜃 * 𝛼 𝜃 * 𝛽 -θ𝛼 θ𝛽 | 1 2𝑛 𝑛 ∑︁ 𝑖,𝑗=1 𝛼 𝑖,𝑗 |𝐼 ℎ (𝑖, 𝑗)| -1 𝑚 ∑︁ 𝛼,𝛽=1 [︁ [︀ Ψ(𝑥 𝑖 ) 𝛼 𝑎 ]︀ 2 + [︀ Ψ(𝑥 𝑗 ) 𝛽 𝑏 ]︀ 2 ]︁ • |𝜃 * 𝛼 𝜃 * 𝛽 -θ𝛼 θ𝛽 | 𝑚 ∑︁ 𝛼,𝛽=1 1 2𝑛 [︃ 𝑛 ∑︁ 𝑖=1 [Ψ(𝑥 𝑖 ) 𝛼 𝑎 ] 2 + 𝑛 ∑︁ 𝑖=1 [︁ Ψ(𝑥 𝑖 ) 𝛽 𝑏 ]︁ 2 ]︃ • ⃒ ⃒ 𝜃 * 𝛼 𝜃 * 𝛽 -θ𝛼 θ𝛽 ⃒ ⃒ ,
‖ V1,cov (𝜃 * )-V1,cov ( θ)‖ * 𝑚• 𝑛 ∑︁ 𝑘=1 𝑑 ∑︁ 𝑙=1 𝑛 ∑︀ 𝑖=1 |Ψ 𝑘 𝑙 (𝑥 𝑖 )| 2 𝑛 • (︀ 2‖𝜃 * ‖+‖ θ-𝜃 * ‖ )︀ •‖ θ-𝜃 * ‖ (2.7.4)
Using again [Boucheron et al., 2013, Theorem 2.1] and Bernstein's inequality [Boucheron et al., 2013, Theorem 2.10] with probability not less then 1 -𝛿/8:

𝑛 ∑︁ 𝑘=1 𝑑 ∑︁ 𝑙=1 𝑛 ∑︀ 𝑖=1 |Ψ 𝑘 𝑙 (𝑥 𝑖 )| 2 𝑛 E‖Ψ(𝑥)‖ 2 2 + 2𝑚𝑑𝜏 2 𝜓 (︃ log 16𝑚𝑑 𝛿 𝑛 + √︂ 2 log 16𝑚𝑑 𝛿 𝑛 )︃ (2.7.5)
For 𝑛 large enough (for some constants 𝑐 1 and 𝑐 2 , not depending on 𝑛 and 𝛿: 𝑛 >

𝑐 1 + 𝑐 2 log 1 𝛿 ): 𝑛 ∑︁ 𝑘=1 𝑑 ∑︁ 𝑙=1 𝑛 ∑︀ 𝑖=1 |Ψ 𝑘 𝑙 (𝑥 𝑖 )| 2 𝑛 3 2 E‖Ψ(𝑥)‖ 2 2
with probability no less then 1 -𝛿/8, and

(︀ 2‖𝜃 * ‖ + ‖ θ -𝜃 * ‖ )︀ 3‖𝜃 * ‖ with probability no less then 1 -𝛿/8 ‖ V1,cov (𝜃 * ) -V1,cov ( θ)‖ * 𝑚 • 9 2 E‖Ψ(𝑥)‖ 2 2 • ‖𝜃 * ‖• [︃ 2𝜏 ∇Ψ √ 𝑚 √ 𝑛𝜆 min (𝐶) √︀ 2 log 12𝑚 𝛿 + 2‖𝑏‖ 𝜆 2 min (𝐶) • 2𝜏 2 Ψ √ 𝑚 3 𝑑 (︂ log 24𝑚 2 𝑑 𝛿 𝑛 + √︂ 2 log 24𝑚 2 𝑑 𝛿 𝑛 )︂ ]︃
with probability not less then 1-𝛿/2. Combining and simplifying obtained inequality and (2.7.2) we obtain final inequality: with probablility not less, then 1 -𝛿:

‖𝒱 1,cov (𝜃 * ) -V1,cov ( θ)‖ * 1 √ 𝑛 √︂ 2 log 48𝑚 2 𝑑 𝛿 × [︃ 𝑑 √ 𝑑(195𝜏 2 𝜂 + 2𝜏 2 ℓ ) + 9𝑚 2 E‖Ψ(𝑥)‖ 2 2 • ‖𝜃 * ‖ (︂ 2𝜏 ∇Ψ √ 𝑚 𝜆 0 + 4‖𝑏‖𝜏 2 Ψ √ 𝑚 3 𝑑 𝜆 0 )︂ ]︃ + 𝑂 (︂ 1 𝑛 
)︂ .

Chapter 3

Constant step-size Stochastic Gradient Descent for probabilistic modeling Abstract Stochastic gradient methods enable learning probabilistic models from large amounts of data. While large step-sizes (learning rates) have shown to be best for least-squares (e.g., Gaussian noise) once combined with parameter averaging, these are not leading to convergent algorithms in general. In this chapter, we consider generalized linear models, that is, conditional models based on exponential families. We propose averaging moment parameters instead of natural parameters for constantstep-size stochastic gradient descent. For finite-dimensional models, we show that this can sometimes (and surprisingly) lead to better predictions than the best linear model. For infinite-dimensional models, we show that it always converges to optimal predictions, while averaging natural parameters never does. We illustrate our findings with simulations on synthetic data and classical benchmarks with many observations. This chapter is based on the conference paper published as a Uncertainty in Artificial Intelligence (UAI) 2018 paper, which was accepted as an oral presentation [Babichev and Bach, 2018a].

Introduction

Faced with large amounts of data, efficient parameter estimation remains one of the key bottlenecks in the application of probabilistic models. Once cast as an optimization problem, for example through the maximum likelihood principle, difficulties may arise from the size of the model, the number of observations, or the potential non-convexity of the objective functions, and often all three [START_REF] Koller | Probabilistic Graphical Models: Principles and Techniques -Adaptive Computation and Machine Learning[END_REF]Friedman, 2009, Murphy, 2012].

In this chapter we focus primarily on situations where the number of observations is large; in this context, stochastic gradient descent (SGD) methods which look at one sample at a time are usually favored for their cheap iteration cost. However, finding the correct step-size (sometimes referred to as the learning rate) remains a practical and theoretical challenge, for probabilistic modeling but also in most other situations beyond maximum likelihood [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF].

In order to preserve convergence, the step size 𝛾 𝑛 at the 𝑛-th iteration typically has to decay with the number of gradient steps (here equal to the number of data points which are processed), typically as 𝐶/𝑛 𝛼 for 𝛼 ∈ [1/2, 1] [see, e.g., [START_REF] Bach | Sharp analysis of low-rank kernel matrix approximations[END_REF]Moulines, 2011, Bottou et al., 2016]. However, these often leads to slow convergence and the choice of 𝛼 and 𝐶 is difficult in practice. More recently, constant stepsizes have been advocated for their fast convergence towards a neighborhood of the optimal solution [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate 𝑂(1/𝑛)[END_REF], while it is a standard practice in many areas [START_REF] Goodfellow | Deep Learning[END_REF]. However, it is not convergent in general and thus small step-sizes are still needed to converge to a decent estimator.

Constant step-sizes can however be made to converge in one situation. When the functions to optimize are quadratic, like for least-squares regression, using a constant step-size combined with an averaging of all estimators along the algorithm can be shown to converge to the global solution with the optimal convergence rates [START_REF] Bach | Sharp analysis of low-rank kernel matrix approximations[END_REF]Moulines, 2013, Dieuleveut andBach, 2016].

The goal of this chapter is to explore the possibility of such global convergence with a constant step-size in the context of probabilistic modeling with exponential families, e.g., for logistic regression or Poisson regression [START_REF] Mccullagh | Generalized linear models[END_REF]. This would lead to the possibility of using probabilistic models (thus with a principled quantification of uncertainty) with rapidly converging algorithms. Our main novel idea is to replace the averaging of the natural parameters of the exponential family by the averaging of the moment parameters, which can also be formulated as averaging predictions instead of estimators. For example, in the context of predicting binary outcomes in {0, 1} through a Bernoulli distribution, the moment parameter is the probability 𝑝 ∈ [0, 1] that the variable is equal to one, while the natural parameter is the "log odds ratio" log 𝑝 1-𝑝 , which is unconstrained. This lack of constraint is often seen as a benefit for optimization; it turns out that for stochastic gradient methods, the moment parameter is better suited to averaging. Note that for least-squares, which corresponds to modeling with the Gaussian distribution with fixed variance, moment and natural parameters are equal, so it does not make a difference.

More precisely, our main contributions are:

-For generalized linear models, we propose in Section 3.4 averaging moment parameters instead of natural parameters for constant-step-size stochastic gradient descent. -For finite-dimensional models, we show in Section 3.5 that this can sometimes (and surprisingly) lead to better predictions than the best linear model. -For infinite-dimensional models, we show in Section 3.6 that it always converges to optimal predictions, while averaging natural parameters never does. -We illustrate our findings in Section 3.7 with simulations on synthetic data and classical benchmarks with many observations. 

θn θ n θγ θ * θ 0 θ n -θγ = O p (γ 1/2 ) θ n -θγ = O p (n -1/2 ) θ * -θγ = O(γ)

Constant step size stochastic gradient descent

In this section, we present the main intuitions behind stochastic gradient descent (SGD) with constant step-size. For more details, see [START_REF] Dieuleveut | Bridging the gap between constant step size stochastic gradient descent and markov chains[END_REF]. We consider a real-valued function 𝐹 defined on the Euclidean space R 𝑑 (this can be generalized to any Hilbert space, as done in Section 3.6 when considering Gaussian processes and positive-definite kernels), and a sequence of random functions (𝑓 𝑛 ) 𝑛 1 which are independent and identically distributed and such that E𝑓 𝑛 (𝜃) = 𝐹 (𝜃) for all 𝜃 ∈ R 𝑑 . Typically, 𝐹 will the expected negative log-likelihood on unseen data, while 𝑓 𝑛 will be the negative log-likelihood for a single observation. Since we require independent random functions, we assume that we make single pass over the data, and thus the number of iterations is equal to the number of observations.

Starting from an initial 𝜃 0 ∈ R 𝑑 , then SGD will perform the following recursion, from 𝑛 = 1 to the total number of observations:

𝜃 𝑛 = 𝜃 𝑛-1 -𝛾 𝑛 ∇𝑓 𝑛 (𝜃 𝑛-1 ). (3.2.1)
Since the functions 𝑓 𝑛 are independent, the iterates (𝜃 𝑛 ) 𝑛 form a Markov chain. When the step-size 𝛾 𝑛 is constant (equal to 𝛾) and the functions 𝑓 𝑛 are identically distributed, the Markov chain is homogeneous. Thus, under additional assumptions [see, e.g., Dieuleveut et al., 2017, Meyn and[START_REF] Meyn | Markov chains and stochastic stability[END_REF], it converges in distribution to a stationary distribution, which we refer to as 𝜋 𝛾 . These additional assumptions include that 𝛾 is not too large (otherwise the algorithm diverges) and in the traditional analysis of step-sizes for gradient descent techniques, we analyze the situation of small 𝛾's (and thus perform asymptotic expansions around 𝛾 = 0).

The distribution 𝜋 𝛾 is in general not equal to a Dirac mass, and thus, constant-step-size SGD is not convergent. However, averaging along the path of the Markov chain has some interesting properties. Indeed, several versions of the "ergodic theorem" [see, e.g., [START_REF] Meyn | Markov chains and stochastic stability[END_REF] show that for functions 𝑔 from R 𝑑 to any vector space, then the empirical average 1

𝑛

∑︀ 𝑛 𝑖=1 𝑔(𝜃 𝑖 ) converges in probability to the expectation ∫︀ 𝑔(𝜃)𝑑𝜋 𝛾 (𝜃) of 𝑔 under the stationary distribution 𝜋 𝛾 . This convergence can also be quantified by a central limit theorem with an error whichs tends to a normal distribution with variance proportional equal to a constant times 1/𝑛.

Thus, if denote θ𝑛 = 1

𝑛+1

∑︀ 𝑛 𝑖=0 𝜃 𝑖 , applying the previous result to the identity function 𝑔, we immediately obtain that θ𝑛 converges to θ𝛾 = ∫︀ 𝜃𝑑𝜋 𝛾 (𝜃), with a squared error converging in 𝑂(1/𝑛). The key question is the relationship between θ𝛾 and the global optimizer 𝜃 * of 𝐹 , as this characterizes the performance of the algorithm with an infinite number of observations. By taking expectations in Eq. (3.2.1), and taking a limit with 𝑛 tending to infinity we obtain that

∫︁ ∇𝐹 (𝜃)𝑑𝜋 𝛾 (𝜃) = 0, (3.2.2)
that is, under the stationary distribution 𝜋 𝛾 , the average gradient is zero. When the gradient is a linear function (like for a quadratic objective 𝐹 ), this leads to

∇𝐹 (︂∫︁ 𝜃𝑑𝜋 𝛾 (𝜃) )︂ = ∇𝐹 ( θ𝛾 ) = 0,
and thus θ𝛾 is a stationary point of 𝐹 (and hence the global minimizer if 𝐹 is convex). However this is not true in general.

As shown by [START_REF] Dieuleveut | Bridging the gap between constant step size stochastic gradient descent and markov chains[END_REF], the deviation θ𝛾 -𝜃 * is of order 𝛾, which is an improvement on the non-averaged recursion, which is at average distance 𝑂(𝛾 1/2 ) (see an illustration in Figure 3-1); thus, small or decaying step-sizes are needed. In this chapter, we explore alternatives which are not averaging the estimators 𝜃 1 , . . . , 𝜃 𝑛 , and rely instead on the specific structure of our cost functions, namely negative loglikelihoods.

Warm-up: exponential families

In order to highlight the benefits of averaging moment parameters, we first consider unconditional exponential families. We thus consider the standard exponential family

𝑞(𝑥|𝜃) = ℎ(𝑥) exp(𝜃 ⊤ 𝑇 (𝑥) -𝐴(𝜃)),
where ℎ(𝑥) is the base measure, 𝑇 (𝑥) ∈ R 𝑑 is the sufficient statistics and 𝐴 the log-partition function. The function 𝐴 is always convex [see, e.g., [START_REF] Koller | Probabilistic Graphical Models: Principles and Techniques -Adaptive Computation and Machine Learning[END_REF]Friedman, 2009, Murphy, 2012]. Note that we do not assume that the data distribution 𝑝(𝑥) comes from this exponential family. The expected (with respect to the input distribution 𝑝(𝑥)) negative log-likelihood is equal to

𝐹 (𝜃) = -E 𝑝(𝑥) log 𝑞(𝑥|𝜃) = 𝐴(𝜃) -𝜃 ⊤ E 𝑝(𝑥) 𝑇 (𝑥) -E 𝑝(𝑥) log ℎ(𝑥).
It is known to be minimized by 𝜃 * such that ∇𝐴(𝜃 * ) = E 𝑝(𝑥) 𝑇 (𝑥). Given i.i.d. data (𝑥 𝑛 ) 𝑛 1 sampled from 𝑝(𝑥), then the SGD recursion from Eq. (3.2.1) becomes:

𝜃 𝑛 = 𝜃 𝑛-1 -𝛾 [︀ ∇𝐴(𝜃 𝑛-1 ) -𝑇 (𝑥 𝑛 ) ]︀ ,
while the stationarity equation in Eq. (3.2.2) becomes

∫︁ [︀ ∇𝐴(𝜃) -E 𝑝(𝑥) 𝑇 (𝑥)]𝑑𝜋 𝛾 (𝜃) = 0, which leads to ∫︁ ∇𝐴(𝜃)𝑑𝜋 𝛾 (𝜃) = E 𝑝(𝑥) 𝑇 (𝑥) = ∇𝐴(𝜃 * ).
Thus, averaging ∇𝐴(𝜃 𝑛 ) will converge to ∇𝐴(𝜃 * ), while averaging 𝜃 𝑛 will not converge to 𝜃 * . This simple observation is the basis of our work.

Note that in this context of unconditional models, a simpler estimator exists, that is, we can simply compute the empirical average 1 𝑛 ∑︀ 𝑛 𝑖=1 𝑇 (𝑥 𝑖 ) that will converge to ∇𝐴(𝜃 * ). Nevertheless, this shows that averaging moment parameters ∇𝐴(𝜃) rather than natural parameters 𝜃 can bring convergence benefits. We now turn to conditional models, for which no closed-form solutions exist.

Conditional exponential families

Now we consider the conditional exponential family

𝑞(𝑦|𝑥, 𝜃) = ℎ(𝑦) exp (︀ 𝑦 • 𝜂 𝜃 (𝑥) -𝑎(𝜂 𝜃 (𝑥)) )︀ .
For simplicity we consider only one-dimensional families where 𝑦 ∈ R -but our framework would also extend to more complex models such as conditional random fields [START_REF] Lafferty | Conditional random fields: Probabilistic models for segmenting and labeling sequence data[END_REF]. We will also assume that ℎ(𝑦) = 1 for all 𝑦 to avoid carrying constant terms in log-likelihoods. We consider functions of the form 𝜂 𝜃 (𝑥) = 𝜃 ⊤ Φ(𝑥), which are linear in a feature vector Φ(𝑥), where Φ : 𝒳 → R 𝑑 can be defined on an arbitrary input set 𝒳 . Calculating the negative log-likelihood, one obtains:

𝑓 𝑛 (𝜃) = -log 𝑞(𝑦 𝑛 |𝑥 𝑛 𝜃) = -𝑦 𝑛 Φ(𝑥 𝑛 ) ⊤ 𝜃 + 𝑎 (︀ Φ(𝑥 𝑛 )𝜃 )︀ ,
and, for any distribution 𝑝(𝑥, 𝑦), for which 𝑝(𝑦|𝑥) may not be a member of the conditional exponential family,

𝐹 (𝜃) = E 𝑝(𝑥𝑛,𝑦𝑛) 𝑓 𝑛 (𝜃) = E 𝑝(𝑥𝑛,𝑦𝑛) [︁ -𝑦 𝑛 Φ(𝑥 𝑛 ) ⊤ 𝜃 + 𝑎 (︀ Φ(𝑥 𝑛 )𝜃 )︀ ]︁ .
The goal of estimation in such generalized linear models is to find an unknown parameter 𝜃 given 𝑛 observations (𝑥 𝑖 , 𝑦 𝑖 ) 𝑖=1,...,𝑛 :

𝜃 * = arg min 𝜃∈R 𝑑
𝐹 (𝜃).

(3.4.1)

From estimators to prediction functions

Another point of view is to consider that an estimator 𝜃 ∈ R 𝑑 in fact defines a function 𝜂 : 𝒳 → R, with value a natural parameter for the exponential family 𝑞(𝑦) = exp(𝜂𝑦 -𝑎(𝜂)). This particular choice of function 𝜂 𝜃 is linear in Φ(𝑥), and we have, by decomposing the joint probability 𝑝(𝑥 𝑛 , 𝑦 𝑛 ) in two (and dropping the dependence on 𝑛 since we have assumed i.i.d. data):

𝐹 (𝜃) = E 𝑝(𝑥) (︁ E 𝑝(𝑦|𝑥) [︀ -𝑦Φ(𝑥) ⊤ 𝜃 + 𝑎(Φ(𝑥) ⊤ 𝜃) ]︀ )︁ = E 𝑝(𝑥) (︁ -E 𝑝(𝑦|𝑥) 𝑦Φ(𝑥) ⊤ 𝜃 + 𝑎(Φ(𝑥) ⊤ 𝜃) )︁ = ℱ(𝜂 𝜃 ), with ℱ(𝜂) = E 𝑝(𝑥) (︀ -E 𝑝(𝑦|𝑥) 𝑦 • 𝜂(𝑥) + 𝑎(𝜂(𝑥)) )︀ is the performance measure defined for a function 𝜂 : 𝒳 → R. By definition 𝐹 (𝜃) = ℱ(𝜂 𝜃 ) = ℱ(𝜃 ⊤ Φ(•)).
However, the global minimizer of ℱ(𝜂) over all functions 𝜂 : 𝒳 → R may not be attained at a linear function in Φ(𝑥) (this can only be the case if the linear model is well-specified or if the feature vector Φ(𝑥) is flexible enough). Indeed, the global minimizer of ℱ is the function

𝜂 ** : 𝑥 ↦ → (𝑎 ′ ) -1 (E 𝑝(𝑦|𝑥) 𝑦) (starting from ℱ(𝜂) = ∫︀ [︀ 𝑎(𝜂(𝑥)) -E 𝑝(𝑥|𝑦) 𝑦 • 𝜂(𝑥)
]︀ 𝑝(𝑥)𝑑𝑥 and writing down the Euler -Lagrange equation:

𝜕ℱ 𝜕𝜂 -𝑑 𝑑𝑥 𝜕𝐹 𝜕𝜂 ′ = 0 ⇔ [︀ 𝑎 ′ (𝜂) -E 𝑝(𝑥|𝑦) 𝑦
]︀ 𝑝(𝑥) = 0 and finally 𝜂 ↦ → (𝑎 ′ ) -1 (E 𝑝(𝑥|𝑦) 𝑦)) and is typically not a linear function in Φ(𝑥) (note here that 𝑝(𝑦|𝑥) is the conditional data-generating distribution).

The function 𝜂 corresponds to the natural parameter of the exponential family, and it is often more intuitive to consider the moment parameter, that is defining functions 𝜇 : 𝒳 → R that now correspond to moments of outputs 𝑦; we will refer to them as prediction functions. Going from natural to moment parameter is known to be done through the gradient of the log-partition function, and we thus consider for 𝜂 a function from 𝒳 to R, 𝜇(•) = 𝑎 ′ (𝜂(•)), and this leads to the performance measure

𝒢(𝜇) = ℱ((𝑎 ′ ) -1 (𝜇(•))).
Note now, that the global minimum of 𝒢 is reached at

𝜇 ** (𝑥) = E 𝑝(𝑦|𝑥) 𝑦.
We introduce also the prediction function 𝜇 * (𝑥) corresponding to the best 𝜂 which is linear in Φ(𝑥), that is:

𝜇 * (𝑥) = 𝑎 ′ (︀ 𝜃 ⊤ * Φ(𝑥)
)︀ .

We say that the model is well-specified when 𝜇 * = 𝜇 ** , and for these models, Logistic regression. The special case of conditional family is logistic regression, where 𝑦 ∈ {0, 1}, 𝑎(𝑡) = log(1 + 𝑒 -𝑡 ) and 𝑎 ′ (𝑡) = 𝜎(𝑡) = 1 1+𝑒 -𝑡 is the sigmoid function and the probability mass function is given by 𝑝(𝑦|𝜂) = exp(𝜂𝑦 -log(1 + 𝑒 𝜂 )).

Poisson regression. One more special case is Poisson regression with 𝑦 ∈ N, 𝑎(𝑡) = exp(𝑡) and the response variable 𝑦 has a Poisson distribution. The probability mass function is given by 𝑝(𝑦|𝜂) = exp(𝜂𝑦 -𝑒 𝜂 -log(𝑦!)). Poisson regression may be appropriate when the dependent variable is a count, for example in genomics, network packet analysis, crime rate analysis, fluorescence microscopy, etc. [START_REF] Hilbe | Negative binomial regression[END_REF].

Averaging predictions

Recall from Section 3.2 that 𝜋 𝛾 is the stationary distribution of 𝜃. Taking expectation of both parts of Eq. (3.2.1), we get, by using the fact that 𝜋 𝛾 is the limiting distribution of 𝜃 𝑛 and 𝜃 𝑛-1 :

E 𝜋𝛾 (𝜃𝑛) 𝜃 𝑛 = E 𝜋𝛾 (𝜃 𝑛-1 ) 𝜃 𝑛-1 -𝛾E 𝜋𝛾 (𝜃 𝑛-1 ) E 𝑝(𝑥𝑛,𝑦𝑛) 𝑓 ′ 𝑛 (𝜃 𝑛-1 ),
which leads to E 𝜋𝛾 (𝜃) E 𝑝(𝑥𝑛,𝑦𝑛) ∇𝑓 𝑛 (𝜃) = 0, that is, now removing the dependence on 𝑛 (data (𝑥, 𝑦) are i.i.d.):

E 𝜋𝛾 (𝜃) E 𝑝(𝑥,𝑦) [︁ -𝑦Φ(𝑥) + 𝑎 ′ (︀ Φ(𝑥) ⊤ 𝜃 )︀ Φ(𝑥) ]︁ = 0,
which finally leads to

E 𝑝(𝑥) [︁ E 𝜋𝛾 (𝜃) 𝑎 ′ (︀ Φ(𝑥) ⊤ 𝜃 )︀ -𝜇 ** (𝑥) ]︁ Φ(𝑥) = 0. (3.4.2)
This is the core equation our method relies on. It does not imply that 𝑏(𝑥) = E 𝜋𝛾 (𝜃) 𝑎 ′ (︀ Φ(𝑥) ⊤ 𝜃 )︀ -𝜇 ** (𝑥) is uniformly equal to zero (which we want), but only that E 𝑝(𝑥) Φ(𝑥)𝑏(𝑥) = 0, i.e., 𝑏(𝑥) is uncorrelated with Φ(𝑥).

If the feature vector Φ(𝑥) is "large enough" then this is equivalent to 𝑏 = 0. 1 For example, when Φ(𝑥) is composed of an orthonormal basis of the space of integrable functions (like for kernels in Section 3.6), then this is exactly true. Thus, in this situation, .4.3) and averaging predictions 𝑎 ′ (︀ Φ(𝑥) ⊤ 𝜃 𝑛 )︀ , along the path (𝜃 𝑛 ) of the Markov chain should exactly converge to the optimal prediction. This exact convergence is weaker (requires high-dimensional fatures) than for the unconditional family in Section 3.3 but it can still bring surprising benefits even when Φ is not large enough, as we present in Section 3.5 and Section 3.6.

𝜇 ** (𝑥) = E 𝜋𝛾 (𝜃) 𝑎 ′ (︀ Φ(𝑥) ⊤ 𝜃 )︀ , ( 3 

Two types of averaging Now we can introduce two possible ways to estimate the prediction function 𝜇(𝑥).

Averaging estimators. The first one is the usual way: we first estimate parameter 𝜃, using Ruppert-Polyak averaging [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF]: θ𝑛 = 1

𝑛+1

∑︀ 𝑛 𝑖=0 𝜃 𝑖 and then we denote

μ𝑛 (𝑥) = 𝑎 ′ (Φ(𝑥) ⊤ θ𝑛 ) = 𝑎 ′ (︁ Φ(𝑥) ⊤ 1 𝑛+1 ∑︀ 𝑛 𝑖=0 𝜃 𝑖 )︁
the corresponding prediction. As discussed in Section 3.2 it converges to μ𝛾 : 𝑥 ↦ → 𝑎 ′ (Φ(𝑥) ⊤ θ𝛾 ), which is not equal to in general to 𝑎 ′ (Φ(𝑥) ⊤ 𝜃 * ), where 𝜃 * is the optimal parameter in R 𝑑 . Since, as presented at the end of Section 3.2, θ𝛾 -𝜃 * is of order 𝑂(𝛾), 𝐹 ( θ𝛾 ) -𝐹 (𝜃 * ) is of order 𝑂(𝛾 2 ) (because ∇𝐹 (𝜃 * ) = 0), and thus an error of 𝑂(𝛾 2 ) is added to the usual convergence rates in 𝑂(1/𝑛).

Note that we are limited here to prediction functions which corresponds to linear functions in Φ(𝑥) in the natural parameterization, and thus 𝐹 (𝜃 * ) 𝒢(𝜇 ** ), and the 1. Let Φ(𝑥) = (𝜑 1 (𝑥), . . . , 𝜑 𝑛 (𝑥)) ⊤ be an orthogonal basis and 𝑏(𝑥) = ∑︀ 𝑛 𝑖=1 𝑐 𝑖 𝜑 𝑖 (𝑥) + 𝜀(𝑥), where 𝜀(𝑥) is small if the basis is big enough. Then E 𝑝(𝑥) Φ(𝑥)𝑏(𝑥) = 0 ⇔ E𝜑 𝑖 (𝑥)

[︀ ∑︀ 𝑛 𝑖=1 𝑐 𝑖 𝜑 𝑖 (𝑥) + 𝜀(𝑥)

]︀ = 0 for every 𝑖, and due to the orthogonality of the basis and the smallness of 𝜀(𝑥): 𝑐 𝑖 • E 𝑝(𝑥) 𝜑 2 (𝑥) ≈ 0 and hence 𝑐 𝑖 ≈ 0 and thus 𝑏(𝑥) ≈ 0.

inequality is often strict.

Averaging predictions. We propose a new estimator

μ𝑛 (𝑥) = 1 𝑛 + 1 𝑛 ∑︁ 𝑖=0 𝑎 ′ (𝜃 ⊤ 𝑖 Φ(𝑥)).
In general 𝒢( μ𝑛 )-𝒢(𝜇 ** ) does not converge to zero either (unless the feature vector Φ is large enough and Eq. (3.4.3) is satisfied). Thus, on top of the usual convergence in 𝑂(1/𝑛) with respect to the number of iterations, we have an extra term that depends only on 𝛾, which we will study in Section 3.5 and Section 3.6. We denote by μ𝛾 (𝑥) the limit when 𝑛 → ∞, that is, using properties of converging Markov chains, μ𝛾 (𝑥) = E 𝜋𝛾 (𝜃) 𝑎 ′ (︀ Φ(𝑥) ⊤ 𝜃 )︀ . Rewriting Eq. (3.4.2) using our new notations, we get:

E [︀ (𝜇 ** (𝑥) -μ𝛾 (𝑥))Φ(𝑥 𝑛 ) ]︀ = 0.
When Φ : R → R 𝑑 is high-dimensional, this leads to 𝜇 ** = μ𝛾 and in contrast to μ𝛾 , averaging predictions potentially converge to the optimal prediction.

Graphical representation. We propose a schematic graphical representation of averaging estimators and averaging predictions in the Figure 3-3.

Computational complexity. Usual averaging of estimators [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF] to compute μ𝑛 (𝑥) = 𝑎 ′ (Φ(𝑥) ⊤ θ𝑛 )

is simple to implement as we can simply update the average θ𝑛 with essentially no extra cost on top the complexity 𝑂(𝑛𝑑) of the SGD recursion. Given the number 𝑛 of training data points and the number 𝑚 of testing data points, the overall complexity is 𝑂(𝑑(𝑛 + 𝑚)).

Averaging prediction functions is more challenging as we have to store all iterates 𝜃 𝑖 , 𝑖 = 1, . . . , 𝑛, and for each testing point 𝑥, compute

μ𝑛 (𝑥) = 1 𝑛 + 1 𝑛 ∑︁ 𝑖=0 𝑎 ′ (𝜃 ⊤ 𝑖 Φ(𝑥)).
Thus the overall complexity is 𝑂(𝑑𝑛 + 𝑚𝑛𝑑), which could be too costly with many test points (i.e., 𝑚 large).

There are several ways to alleviate this extra cost: (a) using sketching techniques [START_REF] Woodruff | Sketching as a tool for numerical linear algebra[END_REF], (b) using summary statistics like done in applications of MCMC [START_REF] Gilks | Markov chain Monte Carlo in practice[END_REF], or (c) leveraging the fact that all iterates 𝜃 𝑖 will end up being close to θ𝛾 and use a Taylor expansion of 𝑎 ′ (︀ 𝜃 ⊤ Φ(𝑥) )︀ around θ𝛾 . This expansion is equal to:

𝑎 ′ (︀ Φ(𝑥) ⊤ 𝜃 𝛾 )︀ + (𝜃 -𝜃 𝛾 ) ⊤ Φ(𝑥) • 𝑎 ′′ (︀ Φ(𝑥) ⊤ 𝜃 𝛾 )︀ + Figure 3-3 -
Visualisation of the space of parameters and its transformation to the space of predictions. Averaging estimators in red vs averaging predictions in green. 𝜇 * is optimal linear predictor and 𝜇 ** is the global optimum.

+ 1 2 (︀ (𝜃 -𝜃 𝛾 ) ⊤ Φ(𝑥) )︀ 2 • 𝑎 ′′′ (︀ Φ(𝑥) ⊤ 𝜃 𝛾 )︀ + 𝑂 (︀ ‖𝜃 -𝜃 𝛾 ‖ 3 )︀ .
Taking expectation in both sides above leads to:

μ𝛾 (𝑥) ≈ μ𝛾 (𝑥) + 1 2 Φ(𝑥) ⊤ cov (𝜃) • Φ(𝑥) • 𝑎 ′′′ (︀ 𝜃 ⊤ 𝛾 Φ(𝑥) )︀ ,
where cov (𝜃) is the covariance matrix of 𝜃 under 𝜋 𝛾 . This provides a simple correction to μ𝛾 , and leads to an approximation of μ𝑛 (𝑥) as

μ𝑛 (𝑥) + 1 2 Φ(𝑥) ⊤ cov 𝑛 (𝜃) Φ(𝑥) • 𝑎 ′′′ (︀ 𝜃 ⊤ 𝑛 Φ(𝑥) )︀ ,
where cov 𝑛 (𝜃) is the empirical covariance matrix of the iterates (𝜃 𝑖 ). The computational complexity now becomes 𝑂(𝑛𝑑 2 + 𝑚𝑑 2 ), which is an improvement when the number of testing points 𝑚 is large. In all of our experiments, we used this approximation.

Finite-dimensional models

In this section we study the behavior of Ā(𝛾) = 𝒢( μ𝛾 )-𝒢(𝜇 * ) for finite-dimensional models, for which it is usually not equal to zero. We know that our estimators μ𝑛 will converge to μ𝛾 , and our goal is to compare it to Ā(𝛾) = 𝒢(μ 𝛾 )-𝒢(𝜇 * ) = 𝐹 ( θ𝛾 )-𝐹 (𝜃 * ) which is what averaging estimators tends to. We also consider for completeness the non-averaged performance 𝐴(𝛾) = E 𝜋𝛾 (𝜃)

[︀ 𝐹 (𝜃) -𝐹 (𝜃 * ) ]︀ . Note that we must have 𝐴(𝛾) and Ā(𝛾) non-negative, because we compare the negative log-likelihood performances to the one of of the best linear prediction (in the natural parameter), while Ā(𝛾) could potentially be negative (it will in certain situations), because the the corresponding natural parameters may not be linear in Φ(𝑥).

We consider the same standard assumptions as [START_REF] Dieuleveut | Bridging the gap between constant step size stochastic gradient descent and markov chains[END_REF], namely smoothness of the negative log-likelihoods 𝑓 𝑛 (𝜃) and strong convexity of the expected negative log-likelihood 𝐹 (𝜃). We first recall the results from [START_REF] Dieuleveut | Bridging the gap between constant step size stochastic gradient descent and markov chains[END_REF]. See detailed explicit formulas in the supplementary material.

Earlier work

Without averaging. We have that 𝐴(𝛾) = 𝛾𝐵 + 𝑂(𝛾 3/2 ), that is 𝛾 is linear in 𝛾, with 𝐵 non-negative.

Averaging estimators. We have that Ā(𝛾) = 𝛾 2 B + 𝑂(𝛾 5/2 ), that is Ā is quadratic in 𝛾, with B non-negative. Averaging does provably bring some benefits because the order in 𝛾 is higher (we assume 𝛾 small).

Averaging predictions

We are now ready to analyze the behavior of our new framework of averaging predictions. The following result is shown in the supplementary material. -In the case of well-specified data, that is, there exists 𝜃 * such that for all (𝑥, 𝑦), 𝑝(𝑦|𝑥) = 𝑞(𝑦|𝑥, 𝜃 * ), then Ā ∼ 𝛾 2 Bwell , where Bwell is a positive constant. -In the general case of potentially mis-specified data, Ā = 𝛾 Bmis + 𝑂(𝛾 2 ), where

Bmis is constant which may be positive or negative.

Note, that in contrast to averaging parameters, the constant Bmis can be negative. It means, that we obtain the estimator better than the optimal linear estimator, which is the limit of capacity for averaging parameters. In our simulations, we show examples for which Bmis is positive, and examples for which it is negative. Thus, in general, for low-dimensional models, averaging predictions can be worse or better than averaging parameters. However, as we show in the next section, for infinite dimensional models, we always get convergence.

Figure 34-Visualisation of the space of parameters and its transformation to the space of predictions. Averaging estimators in red vs averaging predictions in green. Global optimizer coincides with the best linear: 𝜇 * = 𝜇 ** .

Infinite-dimensional models

Recall, that we have the following objective function to minimize:

𝐹 (𝜃) = E 𝑥,𝑦 [︁ -𝑦 • 𝜂 𝜃 (𝑥) + 𝑎 (︀ 𝜂 𝜃 (𝑥) )︀ ]︁ , (3.6.1)
where till this moment we consider unknown functions 𝜂 𝜃 (𝑥) which were linear in Φ(𝑥) with Φ(𝑥) ∈ R 𝑑 , leading to a complexity in 𝑂(𝑑𝑛).

We now consider infinite-dimensional features, by considering that Φ(𝑥) ∈ ℋ, where ℋ is a Hilbert space. Note that this corresponds to modeling the function 𝜂 𝜃 as a Gaussian process [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF]. This is computationally feasible through the usual "kernel trick" [START_REF] Scholkopf | Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond[END_REF]Smola, 2001, Shawe-Taylor and[START_REF] Shawe-Taylor | Kernel Methods for Pattern Analysis[END_REF], where we assume that the kernel function 𝑘(𝑥, 𝑦) = ⟨Φ(𝑥), Φ(𝑦)⟩ is easy to compute. Indeed, following [START_REF] Bordes | Fast kernel classifiers with online and active learning[END_REF] and [START_REF] Dieuleveut | Nonparametric stochastic approximation with large stepsizes[END_REF], starting from 𝜃 0 , each iterate of constantstep-size SGD is of the form 𝜃 𝑛 = ∑︀ 𝑛 𝑡=1 𝛼 𝑡 Φ(𝑥 𝑡 ), and the gradient descent recursion 𝜃 𝑛 = 𝜃 𝑛-1 -𝛾[𝑎 ′ (𝜂 𝜃 𝑛-1 (𝑥 𝑛 )) -𝑦 𝑛 ]Φ(𝑥 𝑛 ) leads to the following recursion on 𝛼 𝑡 's:

𝛼 𝑛 = -𝛾 [︀ 𝑎 ′ (︁ ∑︀ 𝑛-1 𝑡=1 𝛼 𝑡 ⟨Φ(𝑥 𝑡 ), Φ(𝑥 𝑛 )⟩ )︀ -𝑦 𝑛 ]︀ = -𝛾 [︀ 𝑎 ′ (︀ ∑︀ 𝑛-1 𝑡=1 𝛼 𝑡 𝑘(𝑥 𝑡 , 𝑥 𝑛 ) )︀ -𝑦 𝑛 ]︀ .
This leads to 𝜂 𝜃𝑛 (𝑥) = ⟨Φ(𝑥), 𝜃 𝑛 ⟩ and 𝜇 𝜃𝑛 (𝑥) = 𝑎 ′ (︀ 𝜂 𝜃𝑛 (𝑥) )︀ with

𝜂 𝜃𝑛 (𝑥) = 𝑛 ∑︁ 𝑡=1 𝛼 𝑡 ⟨Φ(𝑥), Φ(𝑥 𝑡 )⟩ = 𝑛 ∑︁ 𝑡=1 𝛼 𝑡 𝑘(𝑥, 𝑥 𝑡 ),
and finally we can express μ𝑛 (𝑥) in kernel form as:

μ𝑛 (𝑥) = 1 𝑛 + 1 𝑛 ∑︁ 𝑡=0 𝑎 ′ [︁ 𝑡 ∑︁ 𝑙=1 𝛼 𝑙 • 𝑘(𝑥, 𝑥 𝑙 ) ]︁ .
There is also a straightforward estimator for averaging parameters, i.e., μ𝑛 (𝑥) =

𝑎 ′ (︁ 1 𝑛+1 𝑛 ∑︀ 𝑡=0 𝑡 ∑︀ 𝑙=1 𝛼 𝑙 𝑘(𝑥, 𝑥 𝑙 )
)︁

. If we assume that the kernel function is universal, that is, ℋ is dense in the space of squared integrable functions, then it is known that if E 𝑥 𝑏(𝑥)Φ(𝑥) = 0, then 𝑏 = 0 [START_REF] Sriperumbudur | Injective hilbert space embeddings of probability measures[END_REF]. This implies that we must have μ𝛾 = 0 and thus averaging predictions does always converge to the global optimum (note that in this setting, we must have a well-specified model because we are in a non-parametric setting).

Graphical representation. We propose a schematic graphical representation of averaging estimators and averaging predictions for Hilbert space setup in the Figure 34.

Column sampling. Because of the usual high running-time complexity of kernel method in 𝑂(𝑛 2 ), we consider a "column-sampling approximation" [START_REF] Williams | Using the nyström method to speed up kernel machines[END_REF]. We thus choose a small subset 𝐼 = (𝑥 1 , . . . , 𝑥 𝑚 ) of samples and construct a new finite 𝑚-dimensional feature map Φ(𝑥) = 𝐾(𝐼, 𝐼) -1/2 𝐾(𝐼, 𝑥) ∈ R 𝑚 , where 𝐾(𝐼, 𝐼) is the 𝑚 × 𝑚 kernel matrix of the 𝑚 points and 𝐾(𝐼, 𝑥) the vector composed of kernel evaluations 𝑘(𝑥 𝑖 , 𝑥). This allows a running-time complexity in 𝑂(𝑚 2 𝑛). In theory and practice, 𝑚 can be chosen small [START_REF] Bach | Sharp analysis of low-rank kernel matrix approximations[END_REF][START_REF] Rudi | Falkon: An optimal large scale kernel method[END_REF].

Regularized learning with kernels. Although we can use an unregularized recursion with good convergence properties [START_REF] Dieuleveut | Nonparametric stochastic approximation with large stepsizes[END_REF], adding a regularisation by the squared Hilbertian norm is easier to analyze and more stable with limited amounts of data. We thus consider the recursion (in Hilbert space), with 𝜆 small:

𝜃 𝑛 = 𝜃 𝑛-1 -𝛾 [︀ 𝑓 ′ 𝑛 (𝜃 𝑛-1 ) + 𝜆𝜃 𝑛-1 ]︀ = 𝜃 𝑛-1 + 𝛾(𝑦 𝑛 -𝑎 ′ (⟨Φ(𝑥 𝑛 ), 𝜃⟩))Φ(𝑥 𝑛 ) -𝛾𝜆𝜃 𝑛-1 .
This recursion can also be computed efficiently as above using the kernel trick and column sampling approximations.

In terms of convergence, the best we can hope for is to converge to the minimizer 𝜃 *,𝜆 of the regularized expected negative log-likelihood 𝐹 (𝜃)+ 𝜆 2 ‖𝜃‖2 (which we assume to exist). When 𝜆 tends to zero, then 𝜃 *,𝜆 converges to 𝜃 * .

Averaging parameters will tend to a limit θ𝛾,𝜆 which is 𝑂(𝛾)-close to 𝜃 *,𝜆 , thus leading to predictions which deviate from the optimal predictions for two reasons: because of regularization and because of the constant step-size. Since 𝜆 should decrease as we get more data, the first effect will vanish, while the second will not.

When averaging predictions, the two effects will vanish as 𝜆 tends to zero. Indeed, by taking limits of the gradient equation, and denoting by μ𝛾,𝜆 the limit of μ𝑛 , we have

E [︀ (𝜇 ** (𝑥) -μ𝛾,𝜆 (𝑥))Φ(𝑥) ]︀ = 𝜆 θ𝛾,𝜆 . (3.6.2)
Given that θ𝛾,𝜆 is 𝑂(𝛾)-away from 𝜃 * , if we assume that 𝜃 * corresponds to a sufficiently regular 2 element of the Hilbert space ℋ, then the 𝐿 2 -norm of the deviation satisfies ‖𝜇 ** (𝑥) -μ𝛾,𝜆 ‖ = 𝑂(𝜆) and thus as the regularization parameter 𝜆 tends to zero, our predictions tend to the optimal one.

Experiments

In this section, we compare the two types of averaging (estimators and predictions) on a variety of problems, both on synthetic data and on standard benchmarks. When averaging predictions, we always consider the Taylor expansion approximation presented at the end of Section 3.4.3. 

Synthetic data

ℱ ** = E 𝑝(𝑥) [︀ -𝜇 ** (𝑥) • 𝜂 ** (𝑥) + 𝑎(𝜂 ** (𝑥)) ]︀ .
We also introduce the performance measure ℱ(𝜂)

ℱ(𝜂) = E 𝑝(𝑥) [︀ -𝜇 ** (𝑥) • 𝜂(𝑥) + 𝑎(𝜂(𝑥)) ]︀ , (3.7.1)
which can be evaluated directly in the case of synthetic data. Note that in our situation, the model is misspecified because 𝜂 ** (𝑥) is not linear in Φ(𝑥) = 𝑥, and thus, inf 𝜃 𝐹 (𝜃) > ℱ ** , and thus our performance measures ℱ(𝜇 𝑛 ) -ℱ ** for various estimators 𝜇 𝑛 will not converge to zero. The results of averaging 10 replications are shown in Fig. 3-5 and Fig. 3-6. We first observed that constant step-size SGD without averaging leads to a bad performance.

Moreover, we can see, that in the first case (Fig. 345) averaging predictions beats averaging parameters, and moreover beats the best linear model: if we use the best linear error ℱ * instead of ℱ ** , at some moment ℱ(𝜂 𝑛 ) -ℱ * becomes negative. However in the second case (Fig. 3456), averaging predictions is not superior to averaging parameters. Moreover, by looking at the final differences between performances with different values of 𝛾, we can see the dependency of the final performance in 𝛾 for averaging predictions, instead of 𝛾 2 for averaging parameters (as suggested by our theoretical results in Section 3.5). In particular in Fig. 3-5, we can observe the surprising behavior of a larger step-size leading to a better performance (note that we cannot increase too much otherwise the algorithm would diverge). Infinite-dimensional models Here we consider the kernel setup described in Section 3.6. We consider Laplacian kernels 𝑘(𝑠, 𝑡) = exp (︀ ‖𝑠-𝑡‖ 1

𝜎

)︀ with 𝜎 = 50, dimension 𝑑 = 5 and generating log odds ratio 𝜂 ** (𝑥) = 5 5+𝑥 ⊤ 𝑥 . We also use a squared norm regularization with several values of 𝜆 and column sampling with 𝑚 = 100 points. We use the exact value of ℱ ** which we can compute directly for synthetic data. The results are shown in Fig. 34567, where averaging predictions leads to a better performance than averaging estimators. 

Real data

Note, that in the case of real data, one does not have access to unknown 𝜇 ** (𝑥) and computing the performance measure in Eq. (3.7.1) is inapplicable. Instead of it we use its sampled version on held out data:

F(𝜂) = - ∑︁ 𝑖:𝑦 𝑖 =1 log (︀ 𝜇(𝑥 𝑖 ) )︀ - ∑︁ 𝑗:𝑦 𝑗 =0 log (︀ 1 -𝜇(𝑥 𝑖 ) )︀ .
We use two datasets, with 𝑑 not too large, and 𝑛 large, from [START_REF] Lichman | UCI machine learning repository[END_REF]: the "MiniBooNE particle identification" dataset (𝑑 = 50, 𝑛 = 130 064), the "Covertype" dataset (𝑑 = 54, 𝑛 = 581 012).

We use two different approaches for each of them: a linear model 𝜂 𝜃 (𝑥) = 𝜃 ⊤ 𝑥 and a kernel approach with Laplacian kernel 𝑘(𝑠, 𝑡) = exp (︀ ‖𝑠-𝑡‖ 1

𝜎

)︀

, where 𝜎 = 𝑑. The results are shown in Figures 3-8 to 3-11. Note, that for linear models we use F* -the estimator of the best performance among linear models (learned on the test set, and hence not reachable from learning on the training data), and for kernels we use F** (same definition as F* but with the kernelized model), that is why graphs are not comparable (but, as shown below, the value of F** is lower than the value of F* because using kernels correspond to a larger feature space).

For the "MiniBooNE particle identification" dataset F* = 0.35 and F** = 0.21; for the"Covertype" dataset F* = 0.46 and F** = 0.39. We can see from the four plots that, especially in the kernel setting, averaging predictions also shows better performance than averaging parameters. 

Conclusion

In this chapter, we have explored how averaging procedures in stochastic gradient descent, which are crucial for fast convergence, could be improved by looking at the specifics of probabilistic modeling. Namely, averaging in the moment parameterization can have better properties than averaging in the natural parameterization.

While we have provided some theoretical arguments (asymptotic expansion in the finite-dimensional case, convergence to optimal predictions in the infinite-dimensional case), a detailed theoretical analysis with explicit convergence rates would provide a better understanding of the benefits of averaging predictions. 3.9 Appendix. Explicit form of 𝐵, B, B𝑤 and B𝑚

In this appendix we provide explicit expressions for the asymptotic expansions from the chapter. All assumptions from [START_REF] Dieuleveut | Bridging the gap between constant step size stochastic gradient descent and markov chains[END_REF] are reused, namely, beyond the usual sampling assumptions, smoothness of the cost functions.

We have, even for mis-specified models:

ℱ(𝜂) -ℱ(𝜂 * ) = 𝒢(𝜇) -𝒢(𝜇 * ) = = E [︀ -E 𝑝(𝑦𝑛|𝑥𝑛) 𝑦 𝑛 𝜂(𝑥 𝑛 ) + 𝑎(𝜂(𝑥 𝑛 )) + E 𝑝(𝑦𝑛|𝑥𝑛) 𝑦 𝑛 𝜂 * (𝑥 𝑛 ) -𝑎(𝜂 * (𝑥 𝑛 )) ]︀ = = E [︁ 𝑎(𝜂(𝑥 𝑛 )) -𝑎(𝜂 * (𝑥 𝑛 )) -𝑎 ′ (𝜂 * (𝑥 𝑛 ))(𝜂(𝑥 𝑛 ) -𝜂 * (𝑥 𝑛 )) ]︁ + +E [︁ (︀ 𝑎 ′ (𝜂 * (𝑥 𝑛 )) -E 𝑝(𝑦𝑛|𝑥𝑛) 𝑦 𝑛 )︀ • (︀ 𝜂(𝑥 𝑛 ) -𝜂 * (𝑥 𝑛 ) )︀ ]︁ = E [︁ 𝐷 𝑎 (︀ 𝜂(𝑥 𝑛 ) ⃒ ⃒ 𝜂 * (𝑥 𝑛 ) )︀ ]︁ + E [︁ (︀ 𝜇 * (𝑥) -𝜇 ** (𝑥) )︀ • (︀ 𝜂(𝑥 𝑛 ) -𝜂 * (𝑥 𝑛 ) )︀ ]︁ = E [︁ 𝐷 𝑎 * (︀ 𝜇(𝑥 𝑛 ) ⃒ ⃒ 𝜇 * (𝑥 𝑛 ) )︀ ]︁ + E [︁ (︀ 𝜇 * (𝑥) -𝜇 ** (𝑥) )︀ • 𝜂(𝑥 𝑛 ) ]︁ (3.9.1)
for 𝐷 𝑎 the Bregman divergence associated to 𝑎, and 𝐷 𝑎 * the one associated to 𝑎 * . We also use the optimality condition for the predictor 𝜂 * (𝑥):

E𝜂 * (𝑥)[𝑎 ′ (𝜂 * (𝑥))-E 𝑝(𝑥|𝑦) 𝑦] = 0 in the last step.
When the model is well-specified, we have

𝑎 ′ (𝜂 * (𝑥 𝑛 )) = E(𝑦 𝑛 |𝑥 𝑛 ) and thus 𝐹 (𝜂) -𝐹 (𝜂 * ) = E [︀ 𝐷 𝑎 * (𝜇 * (𝑥 𝑛 )||𝜇(𝑥 𝑛 )) ]︀ . If 𝜂 is linear in Φ(𝑥)
, and even if the model is mis-specified, then we also have

𝐹 (𝜂) -𝐹 (𝜂 * ) = E [︀ 𝐷 𝑎 * (𝜇 * (𝑥 𝑛 )||𝜇(𝑥 𝑛 ))
]︀ . Using asymptotic expansions of moments of the averaged SGD iterate with zeromean statistically independent noise 𝑓 𝑛 (𝜃) = 𝐹 (𝜃) + 𝜀 𝑛 (𝜃) from [START_REF] Dieuleveut | Nonparametric stochastic approximation with large stepsizes[END_REF], Theorem 2 one obtains:

𝜃 𝛾 = E 𝜋𝛾 (𝜃) = 𝜃 * + 𝛾∆ + 𝑂(𝛾 2 ),
(3.9.2) 3.9.3) where

E 𝜋𝛾 (𝜃 -𝜃 * )(𝜃 -𝜃 * ) ⊤ = 𝛾𝐶 + 𝑂(𝛾 2 ), ( 
𝐶 = [︀ 𝐹 ′′ (𝜃 * ) ⊗ 𝐼 + 𝐼 ⊗ 𝐹 ′′ (𝜃 * ) ]︀ -1 Σ. and Σ = ∫︀ R 𝑑 𝜀(𝜃) ⊗2 𝜋 𝛾 (𝑑𝜃) ∈ R 𝑑×𝑑 .
The "drift" 𝜃 𝛾 -𝜃 * is linear in 𝛾 and can be interpreted as an additional error due to the function is not being quadratic and step sizes are not decaying to zero.

Connection between ∆ and 𝐶 can be easily obtained using

𝜃 𝑛 = 𝜃 𝑛-1 -𝛾 [︀ 𝐹 ′ (𝜃 𝑛-1 )+ 𝜀 𝑛 ]︀
. Taking expectation of both parts and using Tailor expansion up to the second order:

𝐹 ′′ (𝜃 * )(𝜃 𝛾 -𝜃 * ) = - 1 2 𝐹 ′′′ (𝜃 * )E 𝜋𝛾 (𝜃 -𝜃 * ) ⊗2 ⇒ 𝐹 ′′ (𝜃 * )∆ = - 1 2 𝐹 ′′′ (𝜃 * )𝐶.
(3.9.4)

Estimation without averaging

We start with the simplest estimator of the prediction function: 𝜇 0 (𝑥) = 𝑎 ′ (Φ ⊤ 𝜃 𝑛 ), where we do not use any averaging:

𝒢(𝜇 𝑛 ) -𝒢(𝜇 * ) = 𝑓 (𝜃 𝑛 ) -𝑓 (𝜃 * ) = 𝑓 ′ (𝜃 * )(𝜃 𝑛 -𝜃 * ) + 1 2 𝑓 ′′ (𝜃 * )(𝜃 𝑛 -𝜃 * ) ⊗2 + + 1 6 𝑓 ′′′ (𝜃 * )(𝜃 𝑛 -𝜃 * ) ⊗3 + 𝑂(𝛾 3/2 )
Taking expectation of both sides, when 𝑛 → ∞ and using Eq. ( 3.9.3) one obtains:

𝐴(𝛾) = E 𝜋𝛾 𝑓 (𝜃 𝑛 ) -𝑓 (𝜃 * ) = 1 2 tr𝑓 ′′ (𝜃 * )𝛾𝐶 + 𝑂(𝛾 3/2 ).
So, we have linear dependence of 𝛾 and 𝐵 = 1 2 tr𝑓 ′′ (𝜃 * )𝐶.

Estimation with averaging parameters

Now, let us estimate 𝐴(𝛾):

𝒢(μ 𝑛 ) -𝒢(𝜇 * ) = 𝑓 ( θ𝑛 ) -𝑓 (𝜃 * ) = 𝑓 ′ (𝜃 * )( θ𝑛 -𝜃 * ) + 1 2 ( θ𝑛 -𝜃 * )𝑓 ′′ (𝜃 * )( θ𝑛 -𝜃 * ) + 𝑂(𝛾 3 ).
Taking expectation of both sides, when 𝑛 → ∞:

𝒢(μ 𝛾 ) -𝒢(𝜇 * ) = 𝑓 ( θ𝛾 ) -𝑓 (𝜃 * ) = 1 2 tr𝑓 ′′ (𝜃 * )( θ𝛾 -𝜃 * ) ⊗2 + 𝑂 (︀ 𝛾 3 )︀ = = 1 2 tr𝑓 ′′ (𝜃 * )𝛾 2 ∆ ⊗2 + 𝑂(𝛾 3 ).
Finally we have a quadratic dependence of 𝛾:

Ā(𝛾) = 1 2 tr𝑓 ′′ (𝜃 * )𝛾 2 ∆ ⊗2 + 𝑂(𝛾 3 ).
And the coefficient B = 1 2 tr𝑓 ′′ (𝜃 * )∆ ⊗2 .

Estimation with averaging predictions

Recall, that by definition, Ā(𝛾) = 𝒢( μ𝛾 ) -𝒢(𝜇 * ), where μ𝛾 (𝑥

) = E 𝜋𝛾 𝑎 ′ (︀ 𝜃 ⊤ Φ(𝑥) )︀ . We again use Tailor expansion for 𝑎 ′ (︀ 𝜃 ⊤ Φ(𝑥) )︀ at 𝜃 * : 𝑎 ′ (︀ 𝜃 ⊤ Φ(𝑥) )︀ = 𝑎 ′ (︀ 𝜃 ⊤ * Φ(𝑥) )︀ + 𝑎 ′′ (︀ 𝜃 ⊤ * Φ(𝑥) )︀ (𝜃 -𝜃 * ) ⊤ Φ(𝑥)+ + 1 2 𝑎 ′′′ (︀ 𝜃 ⊤ * Φ(𝑥) )︀ • (︁ (𝜃 -𝜃 * ) ⊤ Φ(𝑥) )︁ 2 + 𝑂(𝛾 3/2 ).
Taking expectation of both parts:

μ𝛾 (𝑥) = 𝜇 * (𝑥) + 𝑎 ′′ (︀ 𝜃 ⊤ * Φ(𝑥) )︀ ( θ𝛾 -𝜃 * ) ⊤ Φ(𝑥)+ + 1 2 𝑎 ′′′ (︀ 𝜃 ⊤ * Φ(𝑥) )︀ tr [︀ Φ(𝑥)Φ(𝑥) ⊤ E(𝜃 -𝜃 * ) ⊗2 ]︀ + 𝑂(𝛾 3/2 ) = = 𝜇 * (𝑥) + 𝑎 ′′ (︀ 𝜃 ⊤ * Φ(𝑥) )︀ 𝛾∆ ⊤ Φ(𝑥) + 1 2 𝑎 ′′′ (︀ 𝜃 ⊤ * Φ(𝑥) )︀ tr [︀ Φ(𝑥)Φ(𝑥) ⊤ 𝛾𝐶 ]︀ + 𝑂(𝛾 3/2 ).
Finally, we showed, that:

μ𝛾 (𝑥) -𝜇 * (𝑥) = 𝑂(𝛾 3/2 ) + 𝛾 [︁ 𝑎 ′′ (︀ 𝜂 * (𝑥) )︀ ∆ ⊤ Φ(𝑥) + 1 2 𝑎 ′′′ (︀ 𝜂 * (𝑥) )︀ tr [︀ Φ(𝑥) ⊗2 𝐶 ]︀ ]︁
Now we use Bregram divergence notation Eq. ( 3.9.1):

Ā(𝛾) = 𝒢( μ𝛾 ) -𝒢(𝜇 * ) = 𝒢 1 + 𝒢 2 ,
As mentioned above, the term 𝒢 2 vanishes if model is well-specified or 𝜂 is linear in Φ(𝑥). Note, that for the case Ā(𝛾) indeed linear in Φ(𝑥).

Estimation of 𝒢 1 .

By definition 𝐷 𝑎

* (𝜇 * (𝑥)||𝜇(𝑥)) = 1 2 (︀ 𝜇 * (𝑥) -𝜇(𝑥) )︀ (𝑎 * ) ′′ (︀ 𝜇 * (𝑥) )︀(︀ 𝜇 * (𝑥) -𝜇(𝑥)
)︀ and

𝒢 1 = 1 2 E (︀ 𝜇 * (𝑥) -μ𝛾 (𝑥) )︀ 2 𝑎 ′′ (︀ 𝜃 ⊤ * Φ(𝑥) )︀ = 𝛾 2 2 E [︁ (𝑎 ′′ (︀ 𝜂 * (𝑥) )︀ ∆ ⊤ Φ(𝑥) + 1 2 𝑎 ′′′ (︀ 𝜂 * (𝑥) )︀ tr [︀ Φ(𝑥) ⊗2 𝐶 ]︀ ) 2 𝑎 ′′ (︀ 𝜃 ⊤ * Φ(𝑥) )︀ ]︁ . Since E 𝑥 [︁ 𝑎 ′′ ( (︀ 𝜃 ⊤ * Φ(𝑥) )︀ (∆ ⊤ Φ(𝑥)) 2 ]︁ = ∆ ⊤ 𝑓 ′′ (𝜃 * )∆ and E 𝑥 [︁ ∆ ⊤ 𝑎 ′′′ (︀ 𝜃 ⊤ * Φ(𝑥) )︀ Φ(𝑥) ⊗3 𝐶 ]︁ = ∆ ⊤ 𝑓 ′′′ (𝜃 * )𝐶 = -2∆ ⊤ 𝑓 ′′ (𝜃 * )∆, 𝒢 1 = 𝛾 2 [︃ - 1 2 ∆ ⊤ 𝑓 ′′ (𝜃 * )∆ + 1 8 E [︁ 𝑎 ′′′ (𝜂 * (𝑥)) 2 𝑎 ′′ (𝜂 * (𝑥)) • (︀ tr [︀ Φ(𝑥) ⊗2 𝐶 ]︀)︀ 2 ]︁ ]︃ + 𝑂(𝛾 3 ) And the coefficient B𝑤 = -1 2 ∆ ⊤ 𝑓 ′′ (𝜃 * )∆ + 1 8 E [︁ 𝑎 ′′′ (𝜂*(𝑥)) 2 𝑎 ′′ (𝜂*(𝑥)) • (︀ tr [︀ Φ(𝑥) ⊗2 𝐶 ]︀)︀ 2 ]︁ . Estimation of 𝒢 2 . 𝒢 2 = E [︁ (︀ 𝜇 * (𝑥) -𝜇 ** (𝑥) )︀ • (︀ η(𝑥 𝑛 ) -𝜂 * (𝑥 𝑛 ) )︀ ]︁ ,
using properties of conjugated functions,

𝒢 2 = E [︁ (︀ (𝑎 * ) ′ ( μ(𝑥)) -(𝑎 * ) ′ (𝜇 * (𝑥)) )︀ • (︀ 𝜇 * (𝑥) -𝜇 ** (𝑥) )︀ ]︁ = E [︁ (𝑎 * ) ′′ (︀ μ* (𝑥))( μ(𝑥) -𝜇 * (𝑥) )︀ • (︀ 𝜇 * (𝑥) -𝜇 ** (𝑥) )︀ + 𝑂(𝛾 2 ) = = E μ(𝑥) -𝜇 * (𝑥) 𝑎 ′′ (𝜂 * (𝑥)) • (︀ 𝜇 * (𝑥) -𝜇 ** (𝑥) )︀ + 𝑂(𝛾 2 ) = = 𝛾 • E [︂ (︁ ∆ ⊤ Φ(𝑥) + 𝑎 ′′′ (𝜂 * (𝑥)) 2𝑎 ′′ (𝜂 * (𝑥)) tr [︀ Φ(𝑥) ⊗2 𝐶 ]︀ )︁ • (︁ 𝜇 * (𝑥) -𝜇 ** (𝑥) )︁ ]︂ + 𝑂(𝛾 2 ).
And the coefficient

B𝑚 = E (︁ ∆ ⊤ Φ(𝑥) + 𝑎 ′′′ (𝜂*(𝑥)) 2𝑎 ′′ (𝜂*(𝑥)) tr [︀ Φ(𝑥) ⊗2 𝐶 ]︀ )︁ • (︁ 𝜇 * (𝑥) -𝜇 ** (𝑥) )︁ .
empirical risk. This can be formalized as the following minimization problem:

min 𝑈 ∈R 𝑑×𝑘 1 𝑛 𝑛 ∑︁ 𝑖=1 ℓ(𝑈 ⊤ 𝑥 𝑖 , 𝑦 𝑖 ) + 𝜆‖𝑈 ‖ U . (4.1.1)
Here, 𝑈 ∈ R 𝑑×𝑘 is the matrix whose columns specify the parameter vectors for each of the 𝑘 classes; ℓ(𝑈 ⊤ 𝑥, 𝑦), with ℓ : R 𝑘 × R 𝑘 → R, is the loss corresponding to the margins 𝑈 ⊤ 𝑥 ∈ R 𝑘 assigned to 𝑥 when its true class happens to be 𝑦; finally, 𝜆‖𝑈 ‖ U , with 𝜆 > 0, is the regularization term corresponding to some norm ‖ • ‖ U on R 𝑑×𝑘 which will be specified later on (cf. Section 4.2). For now, we only assume that ‖•‖ U is "simple" -intuitively, one can think of ‖𝑈 ‖ U as being quasi-separable in the elements of 𝑈 , for example, belong to the class of row-wise mixed ℓ 𝑝 × ℓ 𝑞 -norms, cf. Section 4.2.

Our focus is on the so-called Fenchel-Young losses [START_REF] Blondel | Learning classifiers with fenchelyoung losses: Generalized entropies, margins, and algorithms[END_REF] which can be expressed in the form

ℓ(𝑈 ⊤ 𝑥, 𝑦) = max 𝑣∈Δ 𝑘 {︀ -f(𝑣, 𝑦) + (𝑣 -𝑦) ⊤ 𝑈 ⊤ 𝑥 }︀ , (4.1.2)
where ∆ 𝑘 is the probability simplex in R 𝑘 , and the function f : ∆ 𝑘 → R is convex and "simple" (i.e., quasi-separable in 𝑣) implying that the maximization in (4.1.2) can be performed in running time 𝑂(𝑘). In particular, this allows to encompass two most commonly used multiclass losses:

-the multiclass logistic (or softmax) loss

ℓ(𝑈 ⊤ 𝑥, 𝑦) = log (︃ 𝑘 ∑︁ 𝑗=1 exp(𝑈 ⊤ 𝑗 𝑥) )︃ -𝑦 ⊤ 𝑈 ⊤ 𝑥, (4.1.3)
where 𝑈 𝑗 is the 𝑗-th column of 𝑈 so that 𝑈 ⊤ 𝑗 𝑥 is the 𝑗-th element of 𝑈 ⊤ 𝑥; this loss corresponds to (4.1.2) with the negative entropy f(𝑣, 𝑦) = ∑︀ 𝑘 𝑖=1 𝑣 𝑖 log 𝑣 𝑖 ; -the multiclass hinge loss, given by (4.1.4) and used in multiclass support vector machines (SVM), reduces to (4.1.2) by setting f(𝑣, 𝑦) = 𝑣 ⊤ 𝑦 -1 (see Appendix 4.7.1 for details). Additional examples of Fenchel-Young losses are described by [START_REF] Blondel | Learning classifiers with fenchelyoung losses: Generalized entropies, margins, and algorithms[END_REF].

ℓ(𝑈 ⊤ 𝑥, 𝑦) = max 𝑗∈{1,...,𝑘} {︀ 1[𝑒 𝑗 ̸ = 𝑦] + 𝑈 ⊤ 𝑗 𝑥 }︀ -𝑦 ⊤ 𝑈 ⊤ 𝑥,
Arranging the feature vectors into the design matrix 𝑋 ∈ R 𝑛×𝑑 , and the label vectors in the matrix 𝑌 ∈ R 𝑛×𝑘 , and using the Fenchel dual representation (4.1.2) of the loss, we recast the initial minimization problem (4.1.1) as a convex-concave saddle-point problem of the following form: .1.5) be obtained by randomized subsampling of the rows and columns of 𝑈 , 𝑉 , 𝑌 , and 𝑋.

min 𝑈 ∈R 𝑑×𝑘 max 𝑉 ∈𝒱 -ℱ(𝑉, 𝑌 ) + 1 𝑛 tr [︀ (𝑉 -𝑌 ) ⊤ 𝑋𝑈 ]︀ + 𝜆‖𝑈 ‖ U . ( 4 
While this approach has been extensively studied by Juditsky and Nemirovski [2011b] in the case of bilinear saddle-point problems with vector-valued variables arising in sparse signal recovery, its extension to problems of the type (4.1.5) is non-trivial.

In fact, for a sampling scheme to be deemed "good", it clearly has to satisfy two concurrent requirements:

(a) On one hand, one must control the stochastic variability of the estimates in the chosen sampling scheme. Ideally, the variance -or its suitable analogue in the case of a non-Euclidean geometry -should be comparable to the squared norm of 𝑋 whose choice depends on the proximal setup. (b) On the other hand, the estimates must be cheap to compute, much cheaper than 𝑂(𝑑𝑛𝑘) required for the full gradient computation. While the apparent goal is 𝑂(𝑑𝑘 + 𝑛𝑘) per iteration (the cost of the primal-dual proximal mapping for the full gradients), one could even want to go beyond that, to 𝑂(𝑑 + 𝑛 + 𝑘) per iteration, possibly paying a larger price once, during pre/post-processing. Devising a sampling scheme satisfying these requirements is a delicate task. To solve it, one should exploit the geometric structure of (4.1.5) associated to 𝒱 and ‖ • ‖ U .

Contributions and outline. We identify "good" sampling schemes satisfying the above requirements, rigorously analyze their statistical properties, carefuly implement the basic algorithms equipped with these sampling schemes, and analyze the total computational complexity of the resulting algorithms. Namely, we consider the situation where ‖ • ‖ U is the entrywise ℓ 1 -norm, which corresponds to the implicit assumption that both the classes and the features are sparse. Moreover, we choose the proximal setup adapted to the geometry of the saddle-point problem (4.1.5), thus achieving favorable accuracy guarantees for both of the basic algorithms without subsampling (cf. . In this setup, we propose two sampling schemes with various levels of "aggressiveness", and study their statistical properties, showing that both of the basic primal-dual algorithms preserve their favorable accuracy bounds when combined with the proposed sampling schemes. At the same time, equipping the algorithms with these sampling schemes drastically reduces the total numerical complexity (cf. (b)), with improvement depending on the sampling scheme:

-The Partial Sampling Scheme, described in Section 4.3.1, is applicable to any problem of the form (4.1.5). Here the main idea is to sample only one row of 𝑈 and 𝑉 at a time, with probabilities nearly minimizing the variance proxy of the current estimates of 𝑈 and 𝑉 . After careful implementation of the primal-dual proximal step, this leads to the cost 𝑂(𝑑𝑘 + 𝑛𝑘 + 𝑑𝑛) of one iteration. -In the more aggressive Full Sampling Scheme, described in Section 4.3.2, sampling of the rows of 𝑈 and 𝑉 is augmented with column sampling. Applying this scheme to multiclass hinge loss (4.1.4), we are able to carry out the updates in only 𝑂(𝑑 + 𝑘 + 𝑛) arithmetic operations, with additional cost

𝑂(𝑑𝑛 + (𝑑 + 𝑛) • min(𝑘, 𝑇 ))
of pre-and post-processing, 𝑇 being the number of iterations. Note that these numerical complexity estimates can be justified from the viewpoint of statistical learning theory: according to it, 𝑇 = 𝑂(𝑛) iterations of a stochastic first-order algorithm must be sufficient to extract most of statistical information contained in the sample, since at each iteration we effectively select a single training example by subsampling a row of 𝑉 . We see that in the high-dimensional regime 𝑑, 𝑘 ≫ 𝑛, this criterion is satisfied since the price of pre/post-processing becomes 𝑂(𝑑𝑛).

We conclude the chapter with numerical experiments on synthetic data presented in Section 4.5.

Related work

While we have passed to the saddle-point problem (4.1.5), there is still an option to solve the original problem (4.1.1). The complexity of deterministic approach for it is 𝑂(𝑑𝑛𝑘) and the complexity of stochastic approach is 𝑂(𝑑𝑘), and because of the structure of the problem, the ideas of Full Sampling Scheme cannot be used. Due to the easy access to noisy gradients, the classical approach is stochastic gradient descent (SGD). Algorithms such as SVRG [START_REF] Johnson | Accelerating stochastic gradient descent using predictive variance reduction[END_REF], SDCA [START_REF] Shalev-Shwartz | Stochastic dual coordinate ascent methods for regularized loss minimization[END_REF], SAGA [START_REF] Defazio | Saga: A fast incremental gradient method with support for non-strongly convex composite objectives[END_REF], SAG [START_REF] Schmidt | Minimizing finite sums with the stochastic average gradient[END_REF], largescale linearly convergent algorithms [START_REF] Palaniappan | Stochastic variance reduction methods for saddle-point problems[END_REF], Breg-SVRG [START_REF] Shi | Bregman divergence for stochastic variance reduction: saddle-point and adversarial prediction[END_REF] use variance-reduced techniques to obtain accelerated convergence rates, but all have 𝑂(𝑑𝑘) or 𝑂(𝑑𝑘 + 𝑛𝑘) complexity. Note, however, that our variance reduction technique is different from all these methods, and none of these approaches is sublinear.

Sublinear algorithms. Formally, we call an algorithm sublinear if the computational complexity of one iteration has a linear (or linear with a logarithmic factor) dependence on natural dimensions of data -such as sample size, number of features and number of classes. For the biclass setting several results can be found in the literature. Probably, the first result for bilinear problems was considered by [START_REF] Grigoriadis | A sublinear-time randomized approximation algorithm for matrix games[END_REF], which was also considered by Juditsky and Nemirovski [2011b], [START_REF] Xiao | Dscovr: Randomized primal-dual block coordinate algorithms for asynchronous distributed optimization[END_REF]. A sublinear algorithm for SVM was considered by [START_REF] Hazan | Beating SGD: Learning SVMs in sublinear time[END_REF], for semidefinite programs was considered by Garber andHazan [2011, 2016] and more general results were given by [START_REF] Clarkson | Sublinear optimization for machine learning[END_REF]. However, none of these approaches can be easily extended to the multiclass setting without an extra 𝑂(𝑘) factor appearing in the numerical complexity bounds.

Choice of geometry and basic routines

Preliminaries. We focus on the convex-concave saddle-point problem of the form:

min 𝑈 ∈R 𝑑×𝑘 max 𝑉 ∈(Δ ⊤ 𝑘 ) ⊗𝑛 -ℱ(𝑉, 𝑌 ) + Φ(𝑈, 𝑉 -𝑌 ) + 𝜆‖𝑈 ‖ U , (4.2.1)
with the bilinear part Φ(𝑈, 𝑉 -𝑌 ) of the objective being given by (4.1.8), and the composite term ℱ(𝑉, 𝑌 ) by (4.1.6). From now on, we make the following mild assumption:

Assumption 1. The ‖ • ‖ U -radius of some optimal solution 𝑈 * to (4.2.1) is known:

‖𝑈 * ‖ U = 𝑅 𝒰 .
Remark 1. All the algorithms presented later on preserve their accuracy bounds when 𝑅 𝒰 is an upper bound on ‖𝑈 * ‖ U instead of being its exact value. However in this case they become suboptimal by factors proportional to the looseness of this bound, hence we are interested in this upper bound to be a tight as possible. Note that since 𝑈 = 0 is a feasible solution, in the case of positive losses 𝑅 𝒰 1/𝜆, but this bound is usually very loose, since 𝜆 must decrease with the number of observations as dictated by statistical learning theory. A better approach is to solve a series of problems, starting with a small radius, and increasing it exponentially until the obtained solution leaves the boundary of the feasible set. This strategy works when the solution set is bounded. Since the complexity bounds that we obtain grow linearly with 𝑅 𝒰 , this method enjoys the same overall complexity bound, up to a constant factor, as in the case when Assumption 1 is precisely satisfied.

With Assumption 1, we can recast the problem (4.2.1) in the constrained form:

min 𝑈 ∈𝒰 max 𝑉 ∈𝒱 -ℱ(𝑉, 𝑌 ) + Φ(𝑈, 𝑉 -𝑌 ) + 𝜆‖𝑈 ‖ U , (4.2.2) 
where

𝒰 := {𝑈 ∈ R 𝑑×𝑘 : ‖𝑈 ‖ U ≤ 𝑅 𝒰 } is a ‖ • ‖ U -norm ball, and 𝒱 := [∆ ⊗𝑛 𝑘 ]
⊤ is the direct product of 𝑛 probability simplices in R 𝑘 . This problem has a very particular structure associated to the sets 𝒰 and 𝒱, and ideally, this structure should be exploited by the optimization algorithm in order to obtain efficiency estimates scaling with the "correct" norm of the optimal primal-dual solution, see, e.g., Juditsky and Nemirovski [2011a], [START_REF] Nesterov | On first-order algorithms for 𝑙 1 /nuclear norm minimization[END_REF], [START_REF] Beck | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF], [START_REF] Shi | Bregman divergence for stochastic variance reduction: saddle-point and adversarial prediction[END_REF]. This issue can be addressed in the framework of proximal algorithms, in which one starts by choosing the norms that capture the inherent geometry of the problem, and then replaces the usual (projected) gradient step with the proximal step, i.e., uses the general Bregman divergence corresponding to some potential (also called distance-generating function ) instead of the squared Euclidean distance. The potential must be compatible with the chosen norm in the sense of Juditsky and Nemirovski [2011a] (essentially, grow as the squared norm while being 1-strongly convex with respect to the norm, see Section 4.2.2), and at the same time allow for an efficient implementation of the proximal step. We will discuss the question of choosing the potentials in the next section, when describing Mirror Descent [see e.g. [START_REF] Nemirovsky | Problem complexity and method efficiency in optimization[END_REF], the simplest general proximal algorithm applicable to (4.2.2). Before that, let us specify the choice of the norms themselves.

Choice of the norms. A natural strategy for choosing the norm in each variable is by ensuring, whenever possible, that its ball of a certain radius is simply the convex hull of the symmetrization of the feasible set (note that scaling is not important since first-order algorithms are invariant with respect to it), see, e.g., Juditsky and Nemirovski [2011a]. Following this strategy, we must choose ‖ • ‖ U itself for 𝑈 , whatever is the norm ‖ • ‖ U . On the other hand, the norm ‖ • ‖ U has not yet been defined at this point; correspondingly, the "implicit" geometry of the problem in 𝑈 has not been specified. For some reasons explained in Section 4.4, we choose the elementwise ℓ 1 -norm for 𝑈 : (4.2.3) where we use the "Matlab" indexing notation, and define the mixed ℓ 𝑝 × ℓ 𝑞 norms by 4.2.4) i.e., the ℓ 𝑝 -norm of the vector of ℓ 𝑞 -norms of the individual rows of the matrix. Note that this choice of ‖ • ‖ U favors solutions that are sparse in terms of both features and classes.

‖𝑈 ‖ U = ‖𝑈 ‖ 1×1 = 𝑑 ∑︁ 𝑖=1 𝑘 ∑︁ 𝑗=1 |𝑈 (𝑖, 𝑗)|,
‖𝐴‖ 𝑝×𝑞 := (︃ ∑︁ 𝑖 ‖𝐴(𝑖, :)‖ 𝑝 𝑞 )︃ 1/𝑝 , 𝑝, 𝑞 ≥ 1, ( 
As for the norm on 𝒱, one could choose the ℓ 1 -norm in the case 𝑛 = 1, and ℓ ∞ ×ℓ 1norm in the general case (recall that 𝒱 is the direct product of simplices). However, it is known (see Juditsky and Nemirovski [2011a]) that for the ℓ ∞ -norm there is no compatible potential in the sense of Juditsky and Nemirovski [2011a] (the existence of such a potential would cotradict the known worst-case complexity lower bounds [START_REF] Nemirovsky | Problem complexity and method efficiency in optimization[END_REF]. The remedy, leading to near-optimal accuracy estimates, is to replace the ℓ ∞ -norm with the ℓ 2 -norm, leading us to the ℓ 2 × ℓ 1 -norm for 𝑉 :

‖𝑉 ‖ V = ‖𝑉 ‖ 2×1 = (︃ 𝑛 ∑︁ 𝑖=1 ‖𝑉 (𝑖, :)‖ 2 1 )︃ 1/2 . ( 4 

.2.5)

Alternative choices for both norms will be briefly discussed in Section 4.4. However, we will see that this choice of norms, when equipped with the properly chosen potentials, is the only one in a broad class of those using the mixed ℓ 𝑝 × ℓ 𝑞 norms, for which we can achieve the goal stated in Section 4.1, that is, to combine near-optimal complexity estimates with a numerically efficient implementation of the proximal step.

Basic schemes: Mirror Descent and Mirror Prox

Basic schemes in minimization problems. The classical Mirror Descent scheme was introduced by Nemirovsky and Yudin [1983], and generalizes the standard Projected Subgradient Descent to the case of non-Euclidean distance measures. The general presentation of Mirror Descent is described by [START_REF] Beck | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF]; here we only provide a brief exposition. When minimizing a convex function 𝑓 (𝑢) on a domain 𝒰, the Mirror Descent scheme amounts to choosing the potential 𝜑 𝒰 (𝑢) that generalizes the squared Euclidean distance 1 2 ‖𝑢‖ 2 2 , and the sequence of stepsizes 𝛾 𝑡 , starting with the initial point 𝑢 0 = min 𝑢∈𝒰 𝜑 𝒰 (𝑢) called the prox-center, and then performing iterations of the form

𝑢 𝑡+1 = arg min 𝑢∈𝒰 {︂ ⟨∇𝑓 (𝑢 𝑡 ), 𝑢 -𝑢 𝑡 ⟩ + 1 𝛾 𝑡 𝐷 𝜑 𝒰 (𝑢, 𝑢 𝑡 ) }︂ ,
where

𝐷 𝜑 (𝑢, 𝑢 𝑡 ) = 𝜑(𝑢) -𝜑(𝑢 𝑡-1 ) -⟨∇𝜑(𝑢 𝑡 ), 𝑢 -𝑢 𝑡 ⟩
is the Bregman divergence between the candidate point 𝑢 and the previous point 𝑢 𝑡 that corresponds to the chosen potential 𝜑(•) = 𝜑 𝒰 (•) and replaces the squared Euclidean distance 1 2 ‖𝑢 -𝑢 𝑡 ‖ 2 2 . After computing 𝑇 iterates, the scheme outputs the averaged point ū𝑇 as the candidate solution; one can choose the uniform averaging ū𝑇 = 1 𝑇 ∑︀ 𝑇 -1 𝑡=0 𝑢 𝑡 or more complex averaging schedules (for example, with the weights proportional to the stepsizes); for simplicity, we will focus on the uniform averaging.

The counterpart of the Mirror Descent scheme, called Mirror Prox, was introduced by [START_REF] Nemirovski | Prox-method with rate of convergence 𝑂(1/𝑡) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems[END_REF], and combines the use of Bregman divergences with an extrapolation step, first proposed in the Euclidean setting by [START_REF] Korpelevich | Extragradient method for finding saddle points and other problems[END_REF]. In the context of minimization problems, the difference is that Mirror Prox iterates as

𝑢 𝑡+1/2 = arg min 𝑢∈𝒰 {︂ ⟨∇𝑓 (𝑢 𝑡 ), 𝑢 -𝑢 𝑡 ⟩ + 1 𝛾 𝑡 𝐷 𝜑 𝒰 (𝑢, 𝑢 𝑡 ) }︂ , 𝑢 𝑡+1 = arg min 𝑢∈𝒰 {︂ ⟨∇𝑓 (𝑢 𝑡+1/2 ), 𝑢 -𝑢 𝑡+1/2 ⟩ + 1 𝛾 𝑡 𝐷 𝜑 𝒰 (𝑢, 𝑢 𝑡 ) }︂ ;
in other words, one first performs the proximal step from the current point 𝑢 𝑡 to obtain the auxilliary point 𝑢 𝑡+1/2 , and then perfoms the extragradient step from 𝑢 𝑡 , i.e., the proximal step in which the gradient at 𝑢 𝑡 is replaced with that at 𝑢 𝑡+1/2 .

Basic schemes for composite saddle-point problems. Both approaches can be extended to composite minimization and, most importantly in our context, to composite saddle-point problems such as (4.2.2). In particular, introducing the combined variable 𝑊 = (𝑈, 𝑉 ) ∈ 𝒲 [:= 𝒰 × 𝒱], the (Composite) Mirror Descent scheme for the saddle-point problem (4.2.2) first constructs the joint potential 𝜑 𝒲 (𝑊 ) from the intial potentials 𝜑 𝒰 and 𝜑 𝒱 , in the way specified later on, and then performs iterations

𝑊 0 = min 𝑊 ∈𝒲 𝜑 𝒲 (𝑊 ); 𝑊 𝑡+1 = arg min 𝑊 ∈𝒲 {︂ ℎ(𝑊 ) + ⟨𝐺(𝑊 𝑡 ), 𝑊 ⟩ + 1 𝛾 𝑡 𝐷 𝜑 𝒲 (𝑊, 𝑊 𝑡 ) }︂ , 𝑡 ≥ 1 (4.2.6)
where ℎ(𝑊 ) = ℱ(𝑉, 𝑌 ) + 𝜆‖𝑈 ‖ 𝒰 is the combined composite term, cf. (4.1.6), and 𝐺(𝑊 ) is the vector field of the partial gradients of Φ(𝑈, 𝑉 -𝑌 ), cf. (4.1.8):

𝐺(𝑊 ) := (∇ 𝑈 Φ(𝑈, 𝑉 -𝑌 ), -∇ 𝑉 Φ(𝑈, 𝑉 -𝑌 )) = (𝑋 ⊤ (𝑉 -𝑌 ), -𝑋𝑈 ). (4.2.7)
Accordingly, the (Composite) Mirror Prox scheme for (4.2.2) performs iterations

𝑊 0 = min 𝑊 ∈𝒲 𝜑 𝒲 (𝑊 ); 𝑊 𝑡+1/2 = arg min 𝑊 ∈𝒲 {︂ ℎ(𝑊 ) + ⟨𝐺(𝑊 𝑡 ), 𝑊 ⟩ + 1 𝛾 𝑡 𝐷 𝜑 𝒲 (𝑊, 𝑊 𝑡 ) }︂ , 𝑊 𝑡+1 = arg min 𝑊 ∈𝒲 {︂ ℎ(𝑊 ) + ⟨𝐺(𝑊 𝑡+1/2 ), 𝑊 ⟩ + 1 𝛾 𝑡 𝐷 𝜑 𝒲 (𝑊, 𝑊 𝑡 ) }︂ , 𝑡 1. (4.2.8)
Note that the joint minimization in (4.2.6) and (4.2.8) can be performed separately in 𝑈 and 𝑉 as long as the joint potential is a linear combination of 𝜑 𝒰 and 𝜑 𝒱 . To specify the accuracy guarantees for both schemes, we need to introduce two objects: the potential differences Ω 𝒰 and Ω 𝒱 , and the "cross" Lipschitz constant ℒ U ,V . The choice of the joint potential will be given once we give the definitions of these objects.

Differences of potentials. The potential differences (called "omega-radii" in the literature co-authored by A. Nemirovski), are defined by

Ω 𝒰 = max 𝑈 ∈𝒰 𝜑 𝒰 (𝑈 ) -min 𝑈 ∈𝒰 𝜑 𝒰 (𝑈 ), Ω 𝒱 = max 𝑉 ∈𝒱 𝜑 𝒱 (𝑉 ) -min 𝑉 ∈𝒱 𝜑 𝒱 (𝑉 ); (4.2.9)
note that all maxima and minima are attained when the potentials are continuous, and 𝒰, 𝒱 are compact. When the potentials 𝜑 𝒰 , 𝜑 𝒱 are compatible with the corresponding norms ‖ • ‖ 𝒰 , ‖ • ‖ 𝒱 in the sense of Juditsky and Nemirovski [2011a] (see Section 4.2.2), the potential differences grow as the squared radii of 𝒰 and 𝒱 in the corresponding norms, up to factors logarithmic in the dimensions of 𝒰, 𝒱, see, e.g., Nemirovsky and Yudin [1983], [START_REF] Shapiro | Lectures on stochastic programming: modeling and theory[END_REF]; in particular, this holds for the choice of 𝜑 𝒰 and 𝜑 𝒱 discussed later on.

"Cross" Lipschitz constant. Given a smooth convex-concave function ̃︀ Φ(𝑈, 𝑉 ) = Φ(𝑈, 𝑉 -𝑌 ), the "cross" Lipschitz constant ℒ U ,V of the field

𝐺(𝑊 ) := (∇ 𝑈 Ψ(𝑈, 𝑉 ), -∇ 𝑉 Ψ(𝑈, 𝑉 )) with respect to the pair of norms ‖•‖ U , ‖•‖ V is defined as ℒ U ,V = max(ℒ U →V , ℒ V →U ), where ℒ U →V , ℒ V →U deliver tight inequalities of the form ‖∇ 𝑈 Ψ(𝑈 ′ , 𝑉 ) -∇ 𝑈 Ψ(𝑈, 𝑉 )‖ V * ℒ U →V ‖𝑈 ′ -𝑈 ‖ U , ‖∇ 𝑉 Ψ(𝑈, 𝑉 ′ ) -∇ 𝑉 Ψ(𝑈, 𝑉 )‖ U * ℒ V →U ‖𝑉 ′ -𝑉 ‖ V , uniformly over 𝒰 × 𝒱, where ‖ • ‖ U * , ‖ • ‖ V * are the dual norms to ‖ • ‖ U , ‖ • ‖ V .
For the bilinear function Φ(𝑈, 𝑉 -𝑌 ) given by (4.1.8), ℒ U →V and ℒ V →U are equal, and we can express ℒ U ,V as a norm of the linear operator acting on R 𝑑×𝑘 → R 𝑛×𝑘 as 𝑈 ↦ → 1 𝑛 𝑋𝑈 : .2.11) Constructing the joint potential. Given the partial potentials 𝜑 𝒰 (•) and 𝜑 𝒱 (•), the natural way to construct the joint potential 𝜑 𝒲 is by taking a weighted average of 𝜑 𝒰 (•) and 𝜑 𝒱 (•), since this leads to 𝜑 𝒲 being separable in 𝑈 and 𝑉 , and allows to exploit the structure of the partial potentials to obtain accuracy guarantees. In fact, one can show that the simplistic choice 𝜑 𝒲 (𝑊 ) = (𝜑 𝒰 (𝑈 ) + 𝜑 𝒱 (𝑉 ))/2 leads to the accuracy guarantee proportional to ℒ U ,V (Ω 𝒰 +Ω 𝒱 ) where ℒ U ,V is the "cross" Lipschitz constant, and Ω 𝒰 , Ω 𝒱 are the potential differences defined above. On the other hand, if Ω 𝒰 and Ω 𝒱 are known, one can consider, following Juditsky and Nemirovski [2011b] and [START_REF] Ostrovskii | Efficient first-order algorithms for adaptive signal denoising[END_REF], the "balanced" joint potential

ℒ U ,V = 1 𝑛 [︃ ‖𝑋‖ U →V := sup ‖𝑈 ‖ U ≤1 ‖𝑋𝑈 ‖ V * ]︃ . (4.2.10) Furthermore, for the chosen norms ‖ • ‖ U = ‖ • ‖ 1×1 and ‖ • ‖ V = ‖ • ‖ 2×1 we can express ℒ U ,V
ℒ U ,V = ‖𝑋 ⊤ ‖ ∞×2 𝑛 . ( 4 
𝜑 𝒲 (𝑊 ) = 𝜑 𝒰 (𝑈 ) 2Ω 𝒰 + 𝜑 𝒱 (𝑉 ) 2Ω 𝒱 , (4.2.12) 
for which one can achieve the better accuracy guarantee proportional to ℒ U ,V √ Ω 𝒰 Ω 𝒱 , cf. Theorem 4.3 in Appendix. Moreover, this construction is, in a sense, "robust": if the ratio of the weights in (4.2.12) is multiplied with a constant factor, the accuracy estimate is preserved up to a constant factor. Besides, note that for the choice of 𝜑 𝒱 considered below Ω 𝒱 is known; for the choice of 𝜑 𝒰 considered below Ω 𝒱 is known when Assumption 1 is satisfied, and is known up to a constant factor when one allows 𝑅 𝒰 to be an upper bound for ‖𝑈 * ‖ U as explained in Remark 1. For all these reasons, we choose the joint potential according to (4.2.12).

Choice of the partial potentials

We now discuss construction of the partial potentials for the chosen geometry as given by the norms ‖ • ‖ U , ‖ • ‖ V , cf. (4.2.3), (4.2.5). The choice of potentials for the alternative geometries is discussed in Section 4.4.

Potential for the dual variable. Since 𝑉 ∈ (∆ ⊤ 𝑘 ) ⊗𝑛 is the direct product of probability simplices, the natural choice for the dual potential 𝜑 𝒱 (•) is the sum of negative entropies [START_REF] Beck | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF]: denoting log(•) the natural logarithm, .2.13) This choice reflects the fact that 𝑉 ∈ 𝒱 corresponds to the marginals of an 𝑛-fold product distribution for which the entropy is the sum of the marginal entropies. By Pinsker's inequality [START_REF] Johannes Hb Kemperman | On the optimum rate of transmitting information[END_REF], 𝜑 𝒱 (𝑉 ) is 1-strongly convex on 𝒱. On the other hand, Ω 𝒱 = 𝑛 log 𝑘, (4.2.14) whereas the squared ‖ • ‖ V -norm of any feasible solution 𝑉 to (4.2.2) is precisely 𝑛, cf. (4.2.5). Finally, 𝜑 𝒱 (𝑉 ) is clearly continuously differentiable in the interior of 𝒰.

𝜑 𝒱 (𝑉 ) = 𝑛 ∑︁ 𝑖=1 𝑘 ∑︁ 𝑗=1 𝑉 𝑖𝑗 log(𝑉 𝑖𝑗 ). ( 4 
As such, we see that the potential (4.2.13) is compatible with 𝒰 and ‖ • ‖ U , i.e., the triple (𝒰, ‖ • ‖ U , 𝜑 𝑉 (•)) comprises a valid proximal setup in the sense of Juditsky and Nemirovski [2011a], and grows nearly as the squared ‖ • ‖ V -radius of the feasible set 𝒱. Note that the Bregman divergence corresponding to (4.2.13) is the sum of the Kullback-Leibler divergences between the individual rows:

𝐷 𝜑 𝒱 (𝑉, 𝑉 𝑡 ) = 𝑛 ∑︁ 𝑖=1 𝐷 KL (𝑉 (𝑖, :)‖𝑉 𝑡 (𝑖, :)), (4.2.15) 
where 𝐷 𝐷 KL (𝑝, 𝑞) := ∑︀ 𝑗 𝑝 𝑗 log(𝑝 𝑗 /𝑞 𝑗 ) for two discrete measures 𝑝, 𝑞 (not necessarily normalized to one).

Final reduction and the primal potential. Recall that we chose the elementwise norm ‖ • ‖ U = ‖𝑈 ‖ 1×1 , and the primal feasible set of the problem (4.2.2) corresponds to the ball with radius 𝑅 𝒰 in this norm. In this situation, the standard option is the power potential 𝜑(𝑈 ) = 𝐶 𝑑,𝑘 ‖𝑈 ‖ 2 𝑝 , where 𝑝 = 1 + 1/ log(𝑑𝑘), and the constant 𝐶 𝑑,𝑘 can be chosen, depending on 𝑑 and 𝑘, so that 𝜑(•) is 1-strongly convex on the whole space R 𝑑×𝑘 , see [START_REF] Nesterov | On first-order algorithms for 𝑙 1 /nuclear norm minimization[END_REF]. This leads to the compatible proximal setup in the sense defined above, and the correct scaling Ω 𝒰 = 𝑂(log(𝑑𝑘)𝑅 2 𝒰 ). However, it turns out that the specific algebraic structure of this potential does not allow for "sublinear" numerical complexity in the full sampling scheme which we will present later on in Section 4.3.2. Hence, we advocate an alternative approach: first transform the ℓ 1 -constraint into the "solid" simplex constraint (borrowing the idea from Juditsky and Nemirovski [2011b]), and then construct a compatible potential for the new problem based on the unnormalized negative entropy, using the fact that 𝑅 𝒰 is known, cf. Assumption 1. To this end, let ̂︀ 𝒰 be the "solid" simplex in R 2𝑑×𝑘 :

︀ 𝒰 := {︁ ̂︀ 𝑈 ∈ R 2𝑑×𝑘 : ̂︀ 𝑈 𝑖𝑗 0, tr[1 ⊤ 2𝑑×𝑘 ̂︀ 𝑈 ] 𝑅 𝒰 }︁ , (4.2.16) 
where 1 2𝑑×𝑘 ∈ R 2𝑑×𝑘 is the matrix of all ones so that tr[1

⊤ 2𝑑×𝑘 ̂︀ 𝑈 ] = ∑︀ 𝑖,𝑗 ̂︀ 𝑈 𝑖𝑗 = ‖ ̂︀ 𝑈 ‖ 1×1 whenever ̂︀ 𝑈 ∈ ̂︀ 𝒰.
Consider the following saddle-point problem:

min ︀ 𝑈 ∈ ̂︀ 𝒰 max 𝑉 ∈𝒱 -ℱ(𝑉, 𝑌 ) + ̂︀ Φ( ̂︀ 𝑈 , 𝑉 -𝑌 ) + 𝜆 tr[1 ⊤ 2𝑑×𝑘 ̂︀ 𝑈 ], (4.2.17) 
where ℱ(𝑉, 𝑌 ) and 𝒱 are the same as before (cf. (4.1.6)-(4.1.7)), and Clearly, the quantities ℒ U ,V , Ω 𝒰 , Ω 𝒱 for the new problem remain the same as their counterparts for the problem (4.2.2); the only difference is a slight change of Ω 𝒰 (see below). On the other hand, the primal feasible set of the new problem (4.2.17) -the "solid" simplex (4.2.16) -admits a compatible entropy-type potential. Indeed, consider first the "unit solid" simplex given by (4.2.16) with 𝑅 𝒰 = 1. On this set, the unnormalized negative entropy

︀ Φ( ̂︀ 𝑈 , 𝑉 -𝑌 ) := 1 𝑛 tr [︁ (𝑉 -𝑌 ) ⊤ ̂︀ 𝑋 ̂︀ 𝑈 ]︁ , where ̂︀ 𝑋 := [𝑋, -𝑋] ∈ R 𝑛×2𝑑 . ( 4 
ℋ( ̂︀ 𝑈 ) = ∑︁ 𝑖,𝑗 ̂︀ 𝑈 𝑖𝑗 log ̂︀ 𝑈 𝑖𝑗 -̂︀ 𝑈 𝑖𝑗 (4.2.19)
is 1-strongly convex (see [START_REF] Yu | The strong convexity of von Neumann's entropy[END_REF] for an elementary proof), and clearly is continuously differentiable in its interior; thus, ℋ(•) is a compatible potential on the "unit solid" simplex in the sense of Juditsky and Nemirovski [2011a]. Finally, using Assumption 1, we can construct a compatible (i.e., 1-strongly convex and continuously differentiable in the interior) potential on the initial "solid" simplex (4.2.16) with arbitrary radius by scaling the argument of ℋ(•) and then renormalizing it as follows:

𝜑 ̂︀ 𝒰 ( ̂︀ 𝑈 ) := 𝑅 2 𝒰 • ℋ( ̂︀ 𝑈 /𝑅 𝒰 ) = 𝑅 𝒰 [︃ 2𝑑 ∑︁ 𝑖=1 𝑘 ∑︁ 𝑗=1 ̂︀ 𝑈 𝑖𝑗 log (︃ ̂︀ 𝑈 𝑖𝑗 𝑅 𝒰 )︃ -̂︀ 𝑈 𝑖𝑗 ]︃ . (4.2.20) 
Note that the potential difference in this case is

Ω ̂︀ 𝒰 = 𝑅 2 𝒰 log(2𝑑𝑘), (4.2.21) 
and the corresponding Bregman divergence is given by

𝐷 𝜑 ̂︀ 𝒰 ( ̂︀ 𝑈 , ̂︀ 𝑈 𝑡 ) = 𝑅 2 𝒰 𝐷 KL (︃ ̂︀ 𝑈 𝑅 𝒰 ⃦ ⃦ ⃦ ⃦ ⃦ ̂︀ 𝑈 𝑡 𝑅 𝒰 )︃ -𝑅 𝒰 tr[1 ⊤ 2𝑑×𝑘 ̂︀ 𝑈 ] + 𝑅 𝒰 tr[1 ⊤ 2𝑑×𝑘 ̂︀ 𝑈 𝑡 ], (4.2.22) 
where the last term does not depend on ̂︀ 𝑈 .

Recap of the deterministic algorithms

We can now formulate the iterations of the Mirror Descent and Mirror Prox schemes applied to the reformulation (4.2.17) of the saddle-point problem (4.2.2)

1. The idea of this reduction is that for any optimal primal solution ̂︀ 𝑈 to (4.2.17), only one of the blocks ̂︀ 𝑈 1 , ̂︀ 𝑈 2 is non-zero, and these blocks can then be interpreted as the positive and negative parts of the corresponding optimal solution to (4.2.2).

with the specified choice of geometry. Both of them are initialized with

𝑉 0 = 1 𝑛×𝑘 𝑘 , ̂︀ 𝑈 0 = 𝑅 𝒰 1 2𝑑×𝑘 2𝑑𝑘 , (Init) 
corresponding to the uniform distributions. Mirror Descent then iterates (𝑡 ≥ 1):

𝑉 𝑡+1 = arg min 𝑉 ∈𝒱 {︂ ℱ(𝑉, 𝑌 ) -̂︀ Φ( ̂︀ 𝑈 𝑡 , 𝑉 ) + 𝐷 𝜑 𝒱 (𝑉, 𝑉 𝑡 ) 2𝛾 𝑡 Ω 𝒱 }︂ , ︀ 𝑈 𝑡+1 = arg min ︀ 𝑈 ∈ ̂︀ 𝒰 {︃ 𝜆 tr[1 ⊤ 2𝑑×𝑘 ̂︀ 𝑈 ] + ̂︀ Φ( ̂︀ 𝑈 , 𝑉 𝑡 -𝑌 ) + 𝐷 𝜑 ̂︀ 𝒰 ( ̂︀ 𝑈 , ̂︀ 𝑈 𝑡 ) 2𝛾 𝑡 Ω ̂︀ 𝒰 }︃ , (MD) 
where

ℱ(𝑉, 𝑌 ), ̂︀ Φ(•, •), 𝒱, ̂︀ 𝒰, 𝐷 𝜑 𝒱 (𝑉, 𝑉 𝑡 ), 𝐷 𝜑 ̂︀ 𝒰 ( ̂︀ 𝑈 , ̂︀ 𝑈 𝑡 ), Ω 𝒱 , Ω
̂︀ 𝒰 were defined above. On the other hand, Mirror Prox performs iterations

𝑉 𝑡+1/2 = arg min 𝑉 ∈𝒱 {︂ ℱ(𝑉, 𝑌 ) -̂︀ Φ( ̂︀ 𝑈 𝑡 , 𝑉 ) + 𝐷 𝜑 𝒱 (𝑉, 𝑉 𝑡 ) 2𝛾 𝑡 Ω 𝒱 }︂ , ︀ 𝑈 𝑡+1/2 = arg min ︀ 𝑈 ∈ ̂︀ 𝒰 {︃ 𝜆 tr[1 ⊤ 2𝑑×𝑘 ̂︀ 𝑈 ] + ̂︀ Φ( ̂︀ 𝑈 , 𝑉 𝑡 -𝑌 ) + 𝐷 𝜑 ̂︀ 𝒰 ( ̂︀ 𝑈 , ̂︀ 𝑈 𝑡 ) 2𝛾 𝑡 Ω ̂︀ 𝒰 }︃ ; 𝑉 𝑡+1 = arg min 𝑉 ∈𝒱 {︂ ℱ(𝑉, 𝑌 ) -̂︀ Φ( ̂︀ 𝑈 𝑡+1/2 , 𝑉 ) + 𝐷 𝜑 𝒱 (𝑉, 𝑉 𝑡 ) 2𝛾 𝑡 Ω 𝒱 }︂ , ︀ 𝑈 𝑡+1 = arg min ︀ 𝑈 ∈ ̂︀ 𝒰 {︃ 𝜆 tr[1 ⊤ 2𝑑×𝑘 ̂︀ 𝑈 ] + ̂︀ Φ( ̂︀ 𝑈 , 𝑉 𝑡+1/2 -𝑌 ) + 𝐷 𝜑 ̂︀ 𝒰 ( ̂︀ 𝑈 , ̂︀ 𝑈 𝑡 ) 2𝛾 𝑡 Ω ̂︀ 𝒰 }︃ . (MP) 
Complexity of one iteration. Note that the primal updates in both algorithms can be expressed in closed form: using Lemma 4.1 in Appendix 4.7.3 we can verify that the primal update in (MD) amounts to

︀ 𝑈 𝑡+1 𝑖𝑗 = ̂︀ 𝑈 𝑡 𝑖𝑗 • exp(-2𝛾 𝑡 𝑆 𝑡 𝑖𝑗 𝑅 𝒰 log(2𝑑𝑘)) • min {︂ exp(-2𝛾 𝑡 𝜆𝑅 𝒰 log(2𝑑𝑘)), 𝑅 𝒰 𝑀 }︂ ,
where

𝑆 𝑡 = 1 𝑛 ̂︀ 𝑋 ⊤ (𝑉 𝑡 -𝑌 ), and 𝑀 = 2𝑑 ∑︁ 𝑖=1 𝑘 ∑︁ 𝑗=1 ̂︀ 𝑈 𝑡 𝑖𝑗 • exp(-2𝛾 𝑡 𝑆 𝑡 𝑖𝑗 𝑅 𝒰 log(2𝑑𝑘)).
(4.2.23) On the other hand, the primal updates depend on the expression for f(𝑣, 𝑦) in the definition (4.1.2) of Fenchel-Young losses (cf. also (4.1.6)). Crucially, when f(𝑣, 𝑦) is separable in 𝑣 -which is the case for the Fenchel-Young losses including the multiclass logistic (4.1.3) and hinge (4.1.4) loss -we can perform the update for 𝑉 as follows:

-pass to the Lagrange dual formulation of the proximal step for 𝑉 ; -minimize the Lagrangian for the given value of the multiplier by solving 𝑂(𝑛𝑘) one-dimensional problems exactly (when possible) or to numerical tolerance; -on top of that, find the optimal Lagrange multiplier via one-dimensional search.

See Ostrovskii and Harchaoui [2018, Supp. Mat.] for an illustration of this technique. Note also that in the case of multiclass SVM (cf. (4.1.4)), we have an explicit formula:

𝑉 𝑡+1 𝑖𝑗 = 𝑉 𝑡 𝑖𝑗 exp (︀ 2𝛾 𝑡 𝑄 𝑡 𝑖𝑗 log(𝑘) )︀ 𝑘 ∑︀ 𝑙=1 𝑉 𝑡 𝑖𝑙 exp (2𝛾 𝑡 𝑄 𝑡 𝑖𝑙 log(𝑘))
, where

𝑄 𝑡 = ̂︀ 𝑋 ̂︀ 𝑈 𝑡-1 -𝑌. (4.2.24)
Overall, we see that the computational bottleneck in the deterministic schemes is the matrix-matrix multiplication which costs 𝑂(𝑑𝑛𝑘) arithmetic operations; the remaining part of the combined proximal step takes only 𝑂(𝑑𝑘 + 𝑛𝑘) operations.

We now present accuracy guarantees that follow from the general analysis of the proximal saddle-point optimization schemes (see Appendix 4.7.2) combined with the obtained expressions for ℒ U ,V , Ω ̂︀ 𝒰 , and Ω 𝒱 .

Accuracy bounds for the deterministic algorithms

Preliminaries. In what follows, we denote by 𝑂(1) generic constants. Recall that the accuracy of a candidate solution ( Ū , V ) to a saddle-point problem

min 𝑈 ∈𝒰 max 𝑉 ∈𝒱 𝑓 (𝑈, 𝑉 ), (4.2.25) 
assuming continuity of 𝑓 and compactness of 𝒰 and 𝒱, can be quantified via the duality gap

∆ 𝑓 ( Ū , V ) := max 𝑉 ∈𝒱 𝑓 ( Ū , 𝑉 ) -min 𝑈 ∈𝒰 𝑓 (𝑈, V ). (4.2.26)
In particular, under Slater's conditions (which holds for (4.2.17) in particular), the problem (4.2.25) possesses an optimal solution 𝑊 * = (𝑈 * , 𝑉 * ), called a saddle point, for which it holds 𝑓 (𝑈 * , 𝑉 * ) = max 𝑉 ∈𝒱 𝑓 (𝑈 * , 𝑉 ) = min 𝑈 ∈𝒰 𝑓 (𝑈, 𝑉 * ) -that is, 𝑈 * (resp. 𝑉 * ) is optimal in the primal problem of minimizing 𝑓 prim (𝑈 ) := max 𝑉 ∈𝒱 𝑓 (𝑈, 𝑉 ) in 𝑈 (resp. the dual problem of maximizaing 𝑓 dual (𝑉 ) := min 𝑈 ∈𝒰 𝑓 (𝑈, V ) in 𝑉 ). Hence, in this case ∆ 𝑓 ( Ū , V ) is the sum of the primal and dual accuracies, and bounds from above the primal accuracy, which is of main interest in the initial problem (4.1.1).

We can derive the following accuracy guarantee for the composite saddle-point Mirror Descent (MD) applied to the saddle-point problem (4.2.17). 2 To simplify the exposition, we only consider constant stepsize and simple averaging of the iterates; empirically we observe similar accuracy for the sample sizes descreasing as ∝ 1/ √ 𝑡.

Theorem 4.1. Let ( Ū 𝑇 , V 𝑇 ) = 1 𝑇 ∑︀ 𝑇 -1 𝑡=0 ( ̂︀ 𝑈 𝑡 , 𝑉 𝑡 ) be the average of the first 𝑇 iterates of Mirror Descent (MD) with initialization (Init) and constant stepsize

𝛾 𝑡 ≡ 1 ℒ U ,V √︀ 5𝑇 Ω ̂︀ 𝒰 Ω 𝒱
with the values of ℒ U ,V , Ω 𝒱 , Ω ̂︀ 𝒰 given by (4.2.11), (4.2.14), (4.2.21). Then it holds

∆ 𝑓 ( Ū 𝑇 , V 𝑇 ) [︃ 2 √ 5ℒ U ,V √ Ω 𝒰 Ω 𝒱 √ 𝑇 + 𝐹 (𝑉 0 , 𝑌 ) -min 𝑉 ∈𝒱 𝐹 (𝑉, 𝑌 ) 𝑇 ]︃ 2 √ 5‖𝑋 ⊤ ‖ ∞×2 √ 𝑛 • log(2𝑑𝑘)‖𝑈 * ‖ 1×1 √ 𝑇 + r 𝑇 , (4.2.27) 
where r = max 𝑦∈Δ 𝑘 {f(1/𝑘, 𝑦) -min 𝑣∈Δ 𝑘 f(𝑣, 𝑦)}. Moreover, for the multiclass hinge loss (4.1.4) the 𝑂(1/𝑇 ) term vanishes from the brackets, and we can put r = 0.

Proof. The bracketed bound in (4.2.27) follows from the general accuracy bound for the composite saddle-point Mirror Descent scheme (Theorem 4.3 in Appendix), combined with the observation that the primal "simple" term 𝜆tr[1 ⊤

2𝑑×𝑘

̂︀ 𝑈 ] of the objective is linear, whence the corresponding error term is not present. In the case of the hinge loss (4.1.4), the same holds for the primal "simple" term ℱ(𝑉, 𝑌 ), hence the final remark in the claim. To obtain the right-hand side of (4.2.27), we use (4.2.11), (4.2.14), (4.2.21), and bound 𝐹 (𝑉 0 , 𝑌 )-min 𝑉 ∈𝒱 𝐹 (𝑉, 𝑌 ) from above. This result merits some discussion.

Remark 2. Denoting 𝑋(:, 𝑗) ∈ R 𝑛 the 𝑗-th column of 𝑋 for 1 ≤ 𝑗 ≤ 𝑑, we have 

‖𝑋 ⊤ ‖ ∞×2 √ 𝑛 = max 𝑗 𝑑 √︂ ‖𝑋(:, 𝑗)‖ 2 2 𝑛 . ( 4 
‖𝑋 ⊤ ‖ ∞×2 √ 𝑛 a.s. -→ max 𝑗 𝑑 (E𝜙 2 𝑗 ) 1/2 , (4.2 

.29)

In the non-asymptotic regime, (4.2.28) is the largest empirical 𝐿 2 -moment of an individual feature, and can be controlled if the features are bounded, or, more generally, if they are sufficiently light-tailed, via standard concentration inequalities. In particular,

‖𝑋 ⊤ ‖ ∞×2 √ 𝑛 𝐵
if the features are uniformly bounded by 𝐵. Also, using the standard 𝜒 2 -bound, see Laurent and Massart [2000, Lemma 1], with probability at least 1 -𝛿 it holds 4.2.30) if the features are zero-mean and Gaussian with variances uniformly bounded by 𝜎 2 .

‖𝑋 ⊤ ‖ ∞×2 √ 𝑛 𝑂(1)𝜎 (︃ 1 + √︂ log(𝑑/𝛿) 𝑛 )︃ ( 
Remark 3. The accuracy bound in Theorem 4.1 includes the remainder term r/𝑇 due to the presence of ℱ(𝑉, 𝑌 ). Note that r does not depend on 𝑑; moreover, we can expect that r = 𝑂(log(𝑘)) in the case when f(𝑣, 𝑦) corresponds to some notion of entropy on ∆ 𝑘 as is the case, in particular, for the multiclass logistic loss (4.1.3). Finally, as stated in the theorem, one can set r = 0 for the multiclass hinge loss (4.1.4). Thus, overall we see that the additional term is relatively small, and can be neglected.

Remark 4. Finally, note that the 𝑂(1/ √ 𝑇 ) can be improved to the 𝑂(1/𝑇 ) one if instead of Mirror Descent we use Mirror Prox. While here we do not state the precise accuracy bound for the "direct" version of the algorithm (MP), such results are known for the more flexible "epigraph" version, in which the "simple" terms are moved into the constraints (which allows to address a more general class of semi-separable problems), see, e.g., [START_REF] He | Mirror prox algorithm for multiterm composite minimization and semi-separable problems[END_REF]. Also, in the case of multiclass hinge loss (4.1.4), both "simple" terms are linear, and can be formally absorbed into Ψ(𝑈, 𝑉 ) = Φ(𝑈, 𝑉 -𝑌 ) without changing ℒ U ,V . This would result in the bound

∆ 𝑓 ( Ū 𝑇 , V 𝑇 ) 𝑂(1)ℒ U ,V √ Ω 𝒰 Ω 𝒱 𝑇 ︀ 𝑂 𝑑,𝑘 (1)‖𝑈 * ‖ 1×1 𝑇 • ‖𝑋 ⊤ ‖ ∞×2 √ 𝑛 , (4.2.31) 
where ̃︀ 𝑂 𝑑,𝑘 [START_REF]-2 Graphical representation of Lipschitz smoothness and strong convexity. 1-3 Graphical representation of projected gradient descent: firstly we do gradient step and then project onto 𝒳[END_REF] is a logarithmic factor in 𝑑 and 𝑘, see Juditsky and Nemirovski [2011b]. While the 𝑂(1/𝑇 ) rate is not preserved for Mirror Prox with stochastic oracle, this result is still useful if we are willing to use the mini-batching technique.

Sampling schemes

As prevously noted, the main drawback of the deterministic approach is the high numerical complexity 𝑂(𝑑𝑛𝑘) of operations due to the cost of matrix multiplications when computing the partial gradients ̂︀ 𝑋 ̂︀ 𝑈 and ̂︀ 𝑋 ⊤ (𝑉 -𝑌 ). Following Juditsky and Nemirovski [2011b], the natural approach to accelerate the computation of these matrix products is by sampling the matrices 𝑈 and 𝑉 -𝑌 . Denoting 𝜉 ̂︀ 𝑈 and 𝜂 𝑉,𝑌 unbiased estimates of the matrix products ̂︀ 𝑋 ̂︀ 𝑈 and ̂︀ 𝑋 ⊤ (𝑉 -𝑌 ) obtained in this way, we arrive at the following version of Stochastic Mirror Descent scheme (cf. (MD)):

𝑉 𝑡+1 = arg min 𝑉 ∈𝒱 {︂ ℱ(𝑉, 𝑌 ) - 1 𝑛 tr [︀ 𝜉 ⊤ ︀ 𝑈 𝑡 𝑉 ]︀ + 𝐷 𝜑 𝒱 (𝑉, 𝑉 𝑡 ) 2𝛾 𝑡 Ω 𝒱 }︂ , ︀ 𝑈 𝑡+1 = arg min ︀ 𝑈 ∈ ̂︀ 𝒰 {︃ 𝜆 tr[1 ⊤ 2𝑑×𝑘 ̂︀ 𝑈 ] + 1 𝑛 tr [︁ 𝜂 𝑉 𝑡 ,𝑌 ̂︀ 𝑈 ]︁ + 𝐷 𝜑 ̂︀ 𝒰 ( ̂︀ 𝑈 , ̂︀ 𝑈 𝑡 ) 2𝛾 𝑡 Ω ̂︀ 𝒰 }︃ , (S-MD)
and its counterpart in the case of Mirror Prox, which can be formulated analogously.

The immediate question is how to obtain 𝜉 ̂︀ 𝑈 and 𝜂 𝑉,𝑌 . For example, we might sample one row of 𝑈 and 𝑉 -𝑌 at a time, obtaining unbiased estimates of the true partial gradients that can be computed in just 𝑂(𝑑𝑘 + 𝑛𝑘) operations -comparable with the remaining volume of computations for proximal mapping itself. In fact, one can try to go even further, sampling a single element at a time, and using explicit expressions for the updates available in the case of SVM,, allowing to reduce the complexity even further -to 𝑂(𝑑 + 𝑛 + 𝑘) as we show below. Yet, there is a price to pay: the gradient oracle becomes stochastic, and the accuracy bounds should be augmented with an extra term that reflects stochastic variability of the gradients. In fact, the effect of the gradient noise on the accuracy bounds for both schemes is known: we get the extra term

𝑂 ⎛ ⎝ √︁ Ω ̂︀ 𝒰 𝜎 2 𝒱 + Ω 𝒱 𝜎 2 ︀ 𝒰 √ 𝑇 ⎞ ⎠ , (4.3.1)
where 𝜎 2 ︀ 𝒰 and 𝜎 2 𝒱 are "variance proxies" -expected squared dual norms of the noise in the gradients (see Juditsky and Nemirovski [2011b, Sec. 2.5.1]) and Appendix 4.7.2):

𝜎 2 ︀ 𝒰 = 1 𝑛 2 sup ︀ 𝑈 ∈ ̂︀ 𝒰 E [︂ ⃦ ⃦ ⃦ ̂︀ 𝑋 ̂︀ 𝑈 -𝜉 ̂︀ 𝑈 ⃦ ⃦ ⃦ 2 V * ]︂ , 𝜎 2 𝒱 = 1 𝑛 2 sup (𝑉,𝑌 )∈𝒱×𝒱 E [︂ ⃦ ⃦ ⃦ ̂︀ 𝑋 ⊤ (𝑉 -𝑌 ) -𝜂 𝑉,𝑌 ⃦ ⃦ ⃦ 2 U * ]︂ , (4.3. 
2) In this section, we consider two sampling schemes for the estimates 𝜉 ̂︀ 𝑈 and 𝜂 𝑉,𝑌 : the partial scheme, in which the estimates are obtained by sampling (non-uniformly) the rows of 𝑈 and 𝑉 -𝑌 ; and the full scheme, in which one also samples the columns of these matrices. In both cases, we derive the probabilities that nearly minimize the variance proxies. As it turns out, for the choice of the norms and potentials done in Section 4.2, and under weak assumptions on the feature distribution, these choices of probabilities force the additional term (4.3.1) to be of the same order of magnitude as the accuracy bound in Theorem 4.1 for the deterministic Mirror Descent (cf. Theorems 4.2-1 below). Due to the reduced cost of iterations, this leads to the drastic reductions in the overall numerical complexity.

Partial sampling

In the partial sampling scheme, we draw the rows of ̂︀ 𝑈 and 𝑉 with non-uniform probabilities. In other words, we choose a pair of distributions 𝑝 = (𝑝 The next result gives the optimal sampling distributions (4.3.3) and upper bounds for their variance proxies. 

• ‖ U = ‖ • ‖ 1×1 , ‖ • ‖ V = ‖ • ‖ 2×1 .
Then, optimal solutions 𝑝 * = 𝑝 * ( ̂︀ 𝑋, ̂︀ 𝑈 ) and 𝑞 * = 𝑞 * ( ̂︀ 𝑋, 𝑉, 𝑌 ) to (4.3.3) are given by (4.3.4) Moreover, their respective variance proxies satisfy the bounds .3.5) Proof. See Appendix 4.7.5 for the proof of a generalized result with mixed norms.

𝑝 * 𝑖 = ‖ ̂︀ 𝑋(:, 𝑖)‖ 2 • ‖ ̂︀ 𝑈 (𝑖, :)‖ ∞ ∑︀ 2𝑑 𝚤=1 ‖ ̂︀ 𝑋(:, 𝚤)‖ 2 • ‖ ̂︀ 𝑈 (𝚤, :)‖ ∞ , 𝑞 * 𝑗 = ‖ ̂︀ 𝑋(𝑗, :)‖ ∞ • ‖𝑉 (𝑗, :) -𝑌 (𝑗, :)‖ ∞ ∑︀ 𝑛 𝚥=1 ‖ ̂︀ 𝑋(𝚥, :)‖ ∞ • ‖𝑉 (𝚥, :) -𝑌 (𝚥, :)‖ ∞ .
𝜎 2 ︀ 𝒰 (𝑝 * ) 4𝑅 2 𝒰 ‖𝑋 ⊤ ‖ 2 ∞×2 𝑛 2 , 𝜎 2 𝒱 (𝑞 * ) 8‖𝑋 ⊤ ‖ 2 ∞×2 𝑛 + 8‖𝑋‖ 2 1×∞ 𝑛 2 . ( 4 
Combining Proposition 4.2 with the general accuracy bound for Stochastic Mirror Descent (see Theorem 4.4 in Appendix 4.7.2), we arrive at the following result: 

4.2. Let ( Ū 𝑇 , V 𝑇 ) = 1 𝑇 ∑︀ 𝑇 -1
𝑡=0 ( ̂︀ 𝑈 𝑡 , 𝑉 𝑡 ) be the average of the first 𝑇 iterates of Stochastic Mirror Descent (S-MD) with initialization (Init), equipped with sampling scheme (Part-SS) with distributions given by (4.3.4), and constant stepsize 𝒱 on the variance proxies given by (4.3.5). Then it holds 𝑑𝑘+𝑛𝑘) operations; note that this includes computing the optimal sampling probabil-ities (4.3.4). The combined complexity of the proximal steps, given these estimates, is 𝑂(𝑑𝑘 + 𝑛𝑘); in particular, in the case of SVM we have explicit formulae both for the primal and dual updates, and in the general case the dual updates are reduced to the root search on top of an explicit 𝑂(𝑛𝑘) computation -cf. (4.2.23)-(4.2.24) and the accompanying discussion.

𝛾 𝑡 ≡ 1 √ 𝑇 min ⎧ ⎨ ⎩ 1 √ 10ℒ U ,V √︀ Ω ̂︀ 𝒰 Ω 𝒱 , 1 √ 2 √︁ Ω ̂︀ 𝒰 σ2 𝒱 + Ω 𝒱 σ2 ︀ 𝒰 ⎫ ⎬ ⎭ , ( 4 
E[∆ 𝑓 ( Ū 𝑇 , V 𝑇 )] [︃ 2 √ 10ℒ U ,V √︀ Ω ̂︀ 𝒰 Ω 𝒱 √ 𝑇 + 2 √ 2 √︀ Ω 𝒰 σ2 𝒱 + Ω 𝒱 σ2 𝒰 √ 𝑇 + 𝐹 (𝑉 0 , 𝑌 ) -min 𝑉 ∈𝒱 𝐹 (𝑉, 𝑌 ) 𝑇 ]︃ (︃ (4 √ 6 + 2 √ 10)‖𝑋 ⊤ ‖ ∞×2 √ 𝑛 + 8‖𝑋‖ 1×∞ 𝑛 )︃ • log(2𝑑𝑘)‖𝑈 * ‖ 1×1 √ 𝑇 + r 𝑇 , ( 4 

Full sampling

In the full sampling scheme, the sampling of the rows of ̂︀ 𝑈 and 𝑉 -𝑌 is augmented with the subsequent column sampling. This can be formalized (see as

𝜉 ̂︀ 𝑈 (𝑝, 𝑃 ) = ̂︀ 𝑋 𝑒 𝑖 𝑒 ⊤ 𝑖 𝑝 𝑖 ̂︀ 𝑈 𝑒 𝑙 𝑒 ⊤ 𝑙 𝑃 𝑖𝑙 , 𝜂 𝑉,𝑌 (𝑞, 𝑄) = ̂︀ 𝑋 ⊤ 𝑒 𝑗 𝑒 ⊤ 𝑗 𝑞 𝑗 (𝑉 -𝑌 ) 𝑒 𝑙 𝑒 ⊤ 𝑙 𝑄 𝑗𝑙 , (Full-SS)
where the indices 𝑖 ∈ [2𝑑] and 𝑗 ∈ [𝑛] are sampled with distributions 𝑝 ∈ ∆ 2𝑑 and 𝑞 ∈ ∆ 𝑛 as before, and the rows of the stochastic matrices 𝑃 ∈ (∆ ⊤ 𝑘 ) ⊗2𝑑 and 𝑄 ∈ (∆ ⊤ 𝑘 ) ⊗𝑛 specify the conditional sampling distribution of the class 𝑙 ∈ [𝑘], provided that we drew the 𝑖-th feature (in the primal) and 𝑗-th example (in the dual). Clearly, this gives us unbiased estimates of the matrix products.

Next we derive the optimal sampling distributions and bound their variance proxies (see Appendix 4.7.6 for the proof). (4.3.7) of Theorem 4.2 remains true when we replace the sampling scheme (Part-SS) with the scheme (Full-SS) with parameters chosen according to (4.3.8).

Computational complexity. In the next section, we describe efficient implementation for the multiclass hinge loss (4.1.4) which has 𝑂(𝑑 + 𝑘 + 𝑛) complexity of one 98 arithmetic operations (a.o.'s). While the detailed analysis is deferred to the next section, let us briefly present the main ideas on which it relies.

𝑙 ∈ [𝑘] ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ . . . ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⏟ ⏞ 𝜉 ̂︀ 𝑈 ∈ R 𝑛×𝑘 = 𝑖 ∈ [2𝑑] ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ . . . ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⏟ ⏞ ︀ 𝑋 ∈ R 𝑛×2𝑑 × ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ . . . 𝑙 . . . ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⏟ ⏞ ︀ 𝑈 ∈ R 2𝑑×𝑘 𝑖 𝑙 ∈ [𝑘] ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ . . . ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⏟ ⏞ 𝜂 𝑉,𝑌 ∈ R 2𝑑×𝑘 = 𝑗 ∈ [𝑛] ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ . . . ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⏟ ⏞ ︀ 𝑋 ⊤ ∈ R 2𝑑×𝑛 × ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ . . . 𝑙 . . . ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⏟ ⏞ 𝑉 -𝑌 ∈ R 𝑛×𝑘 𝑗
-For the optimal sampling distributions 𝑝 * and 𝑞 Recalling that at each iteration all but one elements of ̂︀ 𝑈 (𝑖, :) are scaled by the same coefficient, we can update any such pair in 𝑂 [START_REF]-2 Graphical representation of Lipschitz smoothness and strong convexity. 1-3 Graphical representation of projected gradient descent: firstly we do gradient step and then project onto 𝒳[END_REF], with the total complexity of 𝑂(𝑑 + 𝑛) a.o.'s.

-It can be shown that given the pairs ( ̃︀ 𝑈 (𝑖, :), 𝛼 𝑖 ) and (𝑉 (𝑗, :), 𝛽 𝑗 ), the computation of the averages Ū 𝑇 , V 𝑇 after 𝑇 iterations requires 𝑂(𝑑 + 𝑛) a.o.'s per iteration plus the post-processing of 𝑂((𝑑 + 𝑛) • min(𝑘, 𝑇 )), resulting in the outlined complexity estimate. Note that the computation of the duality gap (which can be used as the online stopping criterion, see, e.g., [START_REF] Ostrovskii | Efficient first-order algorithms for adaptive signal denoising[END_REF]) also has the same complexity. Hence, in practice it is reasonable to employ the "doubling" technique, computing the averages and the duality gap at iterations 𝑇 𝑚 = 2 𝑚 with increasing values of 𝑚. This will result in the same overall complexity while allowing for an online stopping criterion.

Remark 6. The way to avoid averaging of iterations is to consider averaging of stochastic gradients as done by Juditsky and Nemirovski [2011b]. Stochastic gradients 𝜉 ̂︀ 𝑈 and 𝜂 𝑉 have only 𝑂(𝑛) and 𝑂(𝑑) non-zero elements respectively, and their running averages can be computed in 𝑂(𝑑 + 𝑛) a.o.'s. However, in this case we lose the duality gap guarantee (and thus an online stopping criterion), and only have a guarantee on the primal accuracy. 3

Remark 7. Unfortunately, we were not able to achieve the 𝑂(𝑑 + 𝑛 + 𝑘) complexity for the multiclass logistic loss (4.1.3). The reason is that in this case the composite term ℱ(𝑉, 𝑌 ) is the sum of negative entropies (same as the potential (4.2.13)), and the corresponding proximal updates are not reduced to rescalings of rows (modulo 𝑂(1) elements). However, due to the sparsity of stochastic gradients, the updates have a special form, and we believe that 𝑂(𝑑 + 𝑛 + 𝑘) complexity is possible to achieve in this case as well. We are planning to investigate it in the future.

Efficient implementation of SVM with Full Sampling

In this section we consider updates for fully stochastic case and show that one iteration complexity is indeed 𝑂(𝑑 + 𝑛 + 𝑘). We will show, that it is possible to the special form of "lazy" updates for scaling coefficients. Recall, that one iteration of the fully stochastic mirror descent is written as S-MD:

𝑉 𝑡+1 = arg min 𝑉 ∈𝒱 {︂ ℱ(𝑉, 𝑌 ) - 1 𝑛 tr [︀ 𝜉 ⊤ ︀ 𝑈 𝑡 𝑉 ]︀ + 𝐷 𝜑 𝒱 (𝑉, 𝑉 𝑡 ) 2𝛾 𝑡 Ω 𝒱 }︂ , ︀ 𝑈 𝑡+1 = arg min ︀ 𝑈 ∈ ̂︀ 𝒰 {︃ 𝜆 tr[1 ⊤ 2𝑑×𝑘 ̂︀ 𝑈 ] + 1 𝑛 tr [︁ 𝜂 𝑉 𝑡 ,𝑌 ̂︀ 𝑈 ]︁ + 𝐷 𝜑 ̂︀ 𝒰 ( ̂︀ 𝑈 , ̂︀ 𝑈 𝑡 ) 2𝛾 𝑡 Ω ̂︀ 𝒰 }︃ , (S-MD)
where 𝜉 ̂︀ 𝑈 𝑡 and 𝜂 𝑉 𝑡 ,𝑌 are stochastic gradients.

Lazy Updates.

Note that although the estimates 𝜉 ̂︀ 𝑈 , 𝜂 𝑉,𝑌 produced in (Full-SS) are sparse (each contains a single non-zero column), the updates in (S-MD), which can be expressed as (4.2.23)-(4.2.24) with 𝜉 ̂︀ 𝑈 , 𝜂 𝑉,𝑌 instead of the corresponding matrix products, are dense, and implementing them naively costs 𝑂(𝑑𝑘 + 𝑛𝑘) a.o.'s. Fortunately, these updates have a special form: all elements in each row of ̂︀ 𝑈 𝑡 and 𝑉 𝑡 are simply rescaled with the same factor -except for at most two elements corresponding to a single nonzero element of 𝜂 𝑉 𝑡 ,𝑌 and at most two non-zero elements of 𝜉 (4.3.9). Thus, 𝑝 * and 𝑞 * can be updated in 𝑂(𝑑 + 𝑛). Once it is done, we can sample 𝑖 𝑡 ∼ 𝑝 * and 𝑗 𝑡 ∼ 𝑞 * , and then sample the class from 𝑃 * and 𝑄 * , cf. (4.3.8), by computing only the 𝑖 𝑡 -th row of 𝑃 * and the 𝑗 𝑡 -th row of 𝑄 * , both in 𝑂(𝑘) a.o.'s. Thus, the total complexity of producing 𝜉 𝑈 𝑡 , 𝜂 𝑉 𝑡 ,𝑌 is 𝑂(𝑑 + 𝑛 + 𝑘).

Tracking the Averages.

Similar "lazy" updates can be performed for the running averages of the iterates. Omitting the details, this requires 𝑂(𝑑 + 𝑛) a.o.'s per iteration, plus post-processing of 𝑂(𝑑𝑘 + 𝑛𝑘) a.o.'s.

The above ideas are implemented in Algorithm 1 whose correctness is formally shown in Appendix, Sec. 4.7.7 (see also Sec. 4.7.8 for an additional discussion). Its close inspection shows the iteration cost of 𝑂(𝑑 + 𝑛 + 𝑘) a.o.'s, plus 𝑂(𝑑𝑛 + 𝑑𝑘 + 𝑛𝑘) a.o.'s for pre/post-processing, and the memory complexiy of 𝑂(𝑑𝑛 + 𝑑𝑘 + 𝑛𝑘). Moreover, the term 𝑂(𝑑𝑘), which dominates in high-dimensional and highly multiclass problems, can be removed if one exploits sparsity of the corresponding primal solution to the ℓ 1 -constrained problem (4.2.2), and outputs it directly, bypassing the explicit storage of ̃︀ 𝑈 (see Appendix Sec. 4.7.7 for details). Note that when 𝑛 = 𝑂(min(𝑑, 𝑘)), the resulting algorithm enters the sublinear regime after as few as 𝑂(𝑛) iterations.

Discussion of Alternative Geometries

Here we consider alternative choices of the proximal geometry in mirror descent applied to the saddle-point formulation of the CCSPP (4.1.1), possibly with other choices of regularization than the entrywise ℓ 1 -norm. The goal is to show that the geometry chosen in Sec. 4.2 is the only one for which we can obtain favorable accuracy guarantees for stochastic mirror descent (S-MD).

Given the structure of the primal and dual feasible sets, it is reasonable to consider general mixed norms of the type (4.2.4):

‖ • ‖ U = ‖ • ‖ 𝑝 1 𝑈 ×𝑝 2 𝑈 , ‖ • ‖ V = ‖ • ‖ 𝑝 1 𝑉 ×𝑝 2 𝑉 ,
where 𝑝 1,2 𝑈 , 𝑝 1,2 𝑉 ≥ 1 (in the case of ‖•‖ U , we also assume the same norm for regularization). Note that their dual norms can be easily computed: the dual norm of ‖

• ‖ 𝑝 1 ×𝑝 2 is ‖ • ‖ 𝑞 1 ×𝑞 2 ,
where 𝑞 1,2 are the corresponding conjugates to 𝑝 1,2 , i.e., 1/𝑝 𝑖 + 1/𝑞 𝑖 = 1 (see, e.g., Lemma 3 in Sra [2012]). Moreover, it makes sense to fix 𝑝 𝑉 Σ (:, 𝑙) ← 𝑉 Σ (:, 𝑙) + ̃︀ 𝑉 (:, 𝑙) ∘ (𝛽 + 𝐵 -𝐵 pr (:, 𝑙))

Ensure: 

1 𝑇 + 1 𝑈 Σ , 1 𝑇 + 1 𝑉 Σ # Averages ( Ū 𝑇 +1 , V 𝑇 +1 ) Procedure 1 UpdatePrimal Require: ̃︀ 𝑈 ∈ R 2𝑑×𝑘 , 𝛼, 𝜋, 𝜂 ∈ R 2𝑑 , 𝑙 ∈ [𝑘], 𝛾, 𝜆, 𝑅 1 1: 𝐿 ≡ log(2𝑑𝑘) 2: for 𝑖 = 1 to 2𝑑 do 3: 𝜇 𝑖 = 𝜋 𝑖 -𝛼 𝑖 • ̃︀ 𝑈 (𝑖, 𝑙) • (1 -𝑒 -2𝛾𝐿𝑅*𝜂 𝑖 /𝑛 ) 4: 𝑀 = ∑︀ 2𝑑 𝑖=1 𝜇 𝑖 5: 𝜈 = min{𝑒 -2𝛾𝐿𝑅*𝜆 , 𝑅 * /𝑀 } 6: for 𝑖 = 1 to 2𝑑 do 7: ̃︀ 𝑈 (𝑖, 𝑙) ← ̃︀ 𝑈 (𝑖, 𝑙) • 𝑒 -2𝛾𝐿𝑅*𝜂 𝑖 /𝑛 8: 𝛼 + 𝑖 = 𝜈 • 𝛼 𝑖 9: 𝜋 + 𝑖 = 𝜈 • 𝜇 𝑖 Ensure: ̃︀ 𝑈 , 𝛼 + , 𝜋 + Procedure 2 UpdateDual Require: ̃︀ 𝑉 , 𝑌 ∈ R 𝑛×𝑘 , 𝛽, 𝜌, 𝜉 ∈ R 𝑛 , ℓ ∈ [𝑘], 𝑦 ∈ [𝑘] ⊗𝑛 , 𝛾 1: 𝜃 = 𝑒 -2𝛾 log(𝑘) 2: for 𝑗 = 1 to 𝑛 do 3: 𝜔 𝑗 = 𝑒 2𝛾 log(𝑘)𝜉 𝑗 4: 𝜀 𝑗 = 𝑒 -2𝛾 log(𝑘)𝑌 (𝑗,ℓ) 5: 𝜒 𝑗 = 1 -𝛽 𝑗 • ̃︀ 𝑉 (𝑗, ℓ) • (1 -𝜔 𝑗 • 𝜀 𝑗 ) 6: if ℓ ̸ = 𝑦 𝑗 then # not
ℒ 𝒰 ,𝒱 := ‖𝑋‖ 1×𝛼, 2×𝛽 𝑛 = ‖𝑋 ⊤ ‖ ∞×2 𝑛 .
The proof of this proposition follows the steps in the proof of Proposition 4.1, and is omitted.

Finally, the corresponding partial potentials could be constructed by combining the Euclidean and an entropy-type potential in a way similar to the one described in Sec. 4.2 for the dual variable; alternatively, one could use the power potential of [START_REF] Nesterov | On first-order algorithms for 𝑙 1 /nuclear norm minimization[END_REF] that results in the same rates up to a constant factor.

Using Proposition 4.4, we can also compute the potential differences for the four remaining setups (4.4.1). The results are shown in Table 4.1. Up to logarithmic factors, we have equivalent results for all four geometries, with the radius 𝑅 * evaluated in the corresponding norm ‖

• ‖ 1×2 or ‖ • ‖ 1×1 = ‖ • ‖ 1 .
As a result, for the deterministic Mirror Descent (with balanced potentials) we

Norm for 𝑉 ∈ R 𝑛×𝑘 2 × 1 2 × 2 Norm for 𝑈 ∈ R 𝑑×𝑘 1 × 2 Ω 𝒰 = ‖𝑈 * ‖ 2 1×2 log 𝑑 Ω 𝒱 = 𝑛 log 𝑘 Ω 𝒰 = ‖𝑈 * ‖ 2 1×2 log 𝑑 Ω 𝒱 = 𝑛 1 × 1 Ω 𝒰 = ‖𝑈 * ‖ 2 1 log(𝑑𝑘) Ω 𝒱 = 𝑛 log 𝑘 Ω 𝒰 = ‖𝑈 * ‖ 2 1 log(𝑑𝑘) Ω 𝒱 = 𝑛 Table 4.
1 -Comparison of the potential differences for the norms corresponding to (4.4.1).

obtain the accuracy bound (cf. (4.2.27)):

∆ 𝑓 ( Ū 𝑇 , V 𝑇 ) 𝑂(1)ℒ 𝒰 ,𝒱 √ Ω 𝒰 Ω 𝒱 √ 𝑇 ︀ 𝑂 𝑑,𝑘 (1)𝑅 * √ 𝑇 ‖𝑋 ⊤ ‖ ∞×2 √ 𝑛 + r 𝑇 .
in all four cases, where ̃︀ 𝑂 𝑑,𝑘 (1) is a logarithmic factor in 𝑑 and 𝑘, and

𝑅 * = ‖𝑈 * ‖ 1×2 or 𝑅 * = ‖𝑈 * ‖ 1 depending on 𝑝 2 𝑈 ∈ {1, 2}.
In other words, the deterministic accuracy bound of Theorem 4.1 is essentially preserved for all four geometries in (4.4.1). On the other hand, using Proposition 4.5, we obtain that in the case of (Part-SS), the extra part of the accuracy bound due to sampling (cf. (4.3.7)) is also essentially preserved:

E[∆ 𝑓 ( Ū 𝑇 , V 𝑇 )] ︀ 𝑂 𝑑,𝑘 (1)𝑅 * √ 𝑇 (︂ ‖𝑋 ⊤ ‖ ∞×2 √ 𝑛 + ‖𝑋‖ 1×∞ 𝑛 )︂ + r 𝑇 .
However, if we consider full sampling, the situation changes: in the case 𝑝 2 𝑈 = 2 the variance bound that holds for (Part-SS) is not preserved for (Full-SS). This is because our argument to control the variance of the full sampling scheme always requires that 𝑝 2 𝑈 1 (see the proof of Proposition 4.3 in Appendix 4.7.6 for details; note that for 𝑞 2 𝑉 we do not have such a restriction since the variance proxy 𝜎 2 𝒱 is controlled on the set 𝒱 given by (4.1.7) that has ℓ ∞ × ℓ 1 -type geometry regardless of the norm ‖ • ‖ V . This leaves us with the final choice between the ‖ • ‖ 2×1 and ‖ • ‖ 2×2 norm in the dual, as we have to use the elementwise ‖ • ‖ 1 -norm in the primal. Both choices result in essentially the same accuracy bound (note that this choice only influences the algorithm but not the saddle-point problem itself). We have focused on the ‖ • ‖ 2×1 norm because of the algorithmic considerations: with this norm, we have multiplicative updates in the case of the multiclass hinge loss, which allows for a sublinear algorithm presented in Section 4.3.3.

Experiments

The natural way to estimate the performance measure for saddle-point problems is the so-called duality gap:

∆ 𝑓 ( ̃︀ 𝑈 , ̃︀ 𝑉 ) = max 𝑉 ∈𝒱 𝑓 ( ̃︀ 𝑈 , 𝑉 ) -min 𝑈 ∈𝒰 𝑓 (𝑈, ̃︀ 𝑉 ).
In the case of the multi-class SVM formulation:

min ‖ ̂︀ 𝑈 ‖ 1 ℛ 1 ︀ 𝑈 ∈R 2𝑑×𝑘 + max 𝑉 ∈(Δ ⊤ 𝑘 ) ⊗𝑛 - 1 𝑛 tr[𝑉 ⊤ 𝑌 ] + 1 𝑛 tr [︀ (𝑉 -𝑌 ) ⊤ ̂︀ 𝑋 ̂︀ 𝑈 ]︀ + 𝜆‖ ̂︀ 𝑈 ‖ 1 ,
the solution can be found in closed form:

∆ 𝑑𝑢𝑎𝑙 ( ̃︀ 𝑈 , ̃︀ 𝑉 ) = - 1 𝑛 tr[𝑌 ⊤ ̂︀ 𝑋 ̃︀ 𝑈 ] + 𝜆‖ ̃︀ 𝑈 ‖ 1 + 1 𝑛 𝑛 ∑︁ 𝑖=1 max 𝑗 [︁ ( ̂︀ 𝑋 ̃︀ 𝑈 -𝑌 )(𝑖, 𝑗) ]︁ + + 1 𝑛 tr[ ̃︀ 𝑉 ⊤ 𝑌 ] + [︂ max 𝑖,𝑗 [︁(︁ - 1 𝑛 ̂︀ 𝑋 ⊤ ( ̃︀ 𝑉 -𝑌 ) -𝜆𝐼 )︁ (𝑖, 𝑗) ]︁ • ℛ 1 ]︂ + Sublinear Runtime.
To illustrate the sublinear iteration cost of Algorithm 1, we consider the following experiment. Fixing 𝑛 = 𝑑 = 𝑘, we generate 𝑋 with i.i.d. standard Gaussian entries, take 𝑈 𝑜 to be the identity matrix (thus very sparse), and generate the labels by arg max 𝑙∈[𝑘] 𝑥 𝑗 𝑈 𝑜 𝑙 + 1 √ 𝑑 𝒩 (0, 𝐼 𝑑 ), where 𝑥 𝑗 's are the rows of 𝑋, and 𝑈 𝑜 𝑙 's are the columns of 𝑈 𝑜 . This is repeated 10 times with 𝑛 = 𝑑 = 𝑘 increasing by a constant factor 𝜅; each time we run Algorithm 1 for a fixed (large) number of iterations to dominate the cost of pre/post-processing, with 𝑅 * = ‖𝑈 𝑜 ‖ 1 and 𝜆 = 10 -3 , and measure its runtime. We observe (see Tab. 4 We compare Algorithm 1 with two competitors: ‖•‖ 1 -composite stochastic subgradient method (SSM) for the primal problem (4.1.1), in which one uniformly samples one training example at a time [START_REF] Shalev-Shwartz | Pegasos: Primal estimated sub-gradient solver for SVM[END_REF], leading to 𝑂(𝑑𝑘) iteration cost; deterministic saddle-point Mirror Prox (MP) with geometry chosen as in Algorithm 1, for which we have 𝑂(𝑑𝑛𝑘) cost of iterations but 𝑂(1/𝑇 ) convergence in terms of the number of iterations. We generate data as in the previous experiment, fixing 𝑛 = 𝑑 = 𝑘 = 10 3 . The randomized algorithms are run 10 times for 𝑇 ∈ {10 𝑚/2 , 𝑚 = 1, ..., 12} iterations with constant stepsize (we use stepsize (4.3.6) in Algorithm 1, choose the one recommended in Theorem 4.1 for MP, and use the theoretical stepsize for SSM, explicitly computing the variance of subgradients and the Lipschitz constant). Each time we compute the duality gap and the primal accuracy, and measure the runtime (see Fig. 4-2). We see that Algorithm 1 outperforms SSM, which might be the combined effect of sublinearity and our choice of geometry. It also outmatches MP up to high accuracy due to the sublinear effect (MP eventually "wins" because of its 𝑂(1/𝑇 ) rate). 5 When running the fully stochastic algorithm, we observed one practical issue: the scaling coefficients 𝛼 and 𝛽 tend to rapidly increase or decrease, causing occasional arithmetic over/underflows. We suggest two solutions for this problem:

-The immediate solution is to use arbitrary-precision arithmetic. In theory, this results in the 𝑂(𝑑+𝑛+𝑘) cost of an iteration being inflated by the allowed limit of digits. The resulting complexity can still be beneficial, vis-à-vis the partial sampling scheme, when 𝑘 is large enough. This solution is not practical, since one has to use external libraries or implement arbitrary-precision arithmetic. -A better solution, actually used in our codes, is to perform "urgent" rescales in the case of an over/underflow. Hopefully, it will be required not too often, and the more seldom the closer we are to the optimal solution. For example, in the above experiment the "urgent" rescaling was required in about 10 iterations.

5. We provide the Matlab codes of our experiments in Supp. Mat.

Conclusion and perspectives

In this chapter we considered sublinear algorithms for the saddle-points problems constructed for certain type Fenchel-Young losses. The main contribution of this work is the algorighm for the ℓ 1 -regularized multiclass SVM with numerical cost 𝑂(𝑑+𝑛+𝑘) of one iteration, where 𝑑 is the number of features, 𝑛 the sample size, and 𝑘 the number of classes. This was possible due to the right choice of the proximal setup, and ad-hoc sampling techniques for matrix multiplication.

We envision the following directions for future research:

-Extension to the multi-class logistic regression (softmax) model, which is widely used in Natural Language Processing (NLP) problems, where 𝑑, 𝑛 and 𝑘 are on order of millions or even billions [Chelba et al., 2013, Partalas et We justify the multiclass extension (4.1.4) of the hinge loss due to Shalev-Shwartz and Ben-David [2014]. In the binary case, the soft-margin SVM objective is

1 𝑛 𝑛 ∑︁ 𝑖=1 [︀ max(0, 1 -̃︀ 𝑦 𝑖 𝑢 ⊤ 𝑥 𝑖 ) ]︀ + 𝜆‖𝑢‖,
where 𝑢 ∈ R 𝑑 , ‖ • ‖ is some norm, and ̃︀

𝑦 𝑖 ∈ {-1, 1}. Introducing 𝑦 = 𝑒 ̃︀ 𝑦 ∈ {𝑒 -1 , 𝑒 1 }
where 𝑒 𝑗 is the 𝑗-th standard basis vector (the dimension of space are symbolically indexed in {-1, 1}), and putting 𝑢 1 = -𝑢 -1 = 𝑢 2 , we can rewrite the loss as

max(0, 1 -̃︀ 𝑦𝑢 ⊤ 𝑥) = max 𝑘∈{1,-1} {︀ 1{𝑒 𝑘 ̸ = 𝑦} + 𝑢 ⊤ 𝑘 𝑥 -𝑢 ⊤ ︀ 𝑦 𝑥 }︀ .
The advantage of this reformulation is that we can naturally pass to the multiclass case, by replacing the set {-1, 1} with {1, ..., 𝐾} and introducing 𝑢 1 , ..., 𝑢 𝐾 ∈ R 𝑑 without any restrictions:

max 𝑘∈{1,...,𝐾} {︀ 1{𝑒 𝑘 ̸ = 𝑦} + 𝑢 ⊤ 𝑘 𝑥 -𝑢 ⊤ ︀ 𝑦 𝑥 }︀ = max 𝑣∈{𝑒 1 ,...,𝑒 𝐾 } {︃ 1{𝑣 ̸ = 𝑦} + 𝐾 ∑︁ 𝑗=1 (𝑣[𝑗] -𝑦[𝑗])𝑢 ⊤ 𝑗 𝑥 }︃ = max 𝑣∈{𝑒 1 ,...,𝑒 𝐾 } {︃ 1{𝑣 ̸ = 𝑦} + 𝐾 ∑︁ 𝑗=1 (𝑣 -𝑦) ⊤ 𝑈 ⊤ 𝑥 }︃ =: ℓ(𝑈, (𝑥, 𝑦)),
where •[𝑗] denotes the 𝑗-th element of a vector, and 𝑈 ∈ R 𝑑×𝐾 has 𝑢 𝑗 as its 𝑗-th column. Finally, we can rewrite ℓ(𝑈, (𝑥, 𝑦)) as follows:

ℓ(𝑈, (𝑥, 𝑦)) = max 𝑣∈Δ 𝐾 {︃ 1 -𝑣 ⊤ 𝑦 + 𝐾 ∑︁ 𝑗=1 (𝑣 -𝑦) ⊤ 𝑈 ⊤ 𝑥 }︃ .
This is because we maximize an affine function of 𝑣, and 1 -𝑣 ⊤ 𝑦 = 1{𝑣 ̸ = 𝑦} at the vertices. Thus, we arrive at the announced saddle-point problem the "balanced" joint potential given by (4.2.12), and stepsizes 𝛾 𝑡 . We now provide the convergence analysis of the Mirror Descent scheme, extending the argument of [Duchi et al., 2010, Lemma 1] to composite saddle-point optimization.

min 𝑈 ∈R 𝑑×𝑘 max 𝑉 ∈(Δ ⊤ 𝑘 ) ⊗𝑛 1 - 1 𝑛 tr[𝑉 ⊤ 𝑌 ] + 1 𝑛 tr [︀ (𝑉 -𝑌 ) ⊤ 𝑋𝑈 ]︀ + 𝜆‖𝑈 ‖ U . 4 
:= Φ(𝑈, 𝑉 -𝑌 ) is 𝐺(𝑊 ) : = (∇ 𝑈 Ψ(𝑈, 𝑉 ), -∇ 𝑉 Ψ(𝑈, 𝑉 )) = 1 𝑛 (𝑋 ⊤ (𝑉 -𝑌 ), -𝑋𝑈 ) ( 4 
Theorem 4.3. In the above setting, let ( Ū 𝑇 , V 𝑇 ) = 1 𝑇 ∑︀ 𝑇 -1 𝑡=0 (𝑈 𝑡 , 𝑉 𝑡 ) be the average of the first 𝑇 iterates of the composite Mirror Descent (4.2.6) with constant stepsize

𝛾 𝑡 ≡ 1 ℒ U ,V √ 5𝑇 Ω 𝒰 Ω 𝒱 , where ℒ U ,V := 1 𝑛 sup ‖𝑈 ‖ U ≤1 ‖𝑋𝑈 ‖ V * .
6. Note that the linear term 1

𝑛 𝑌 ⊤ 𝑋𝑈 can be absorbed into the simple term ϒ(𝑈 ), which will slightly improve the bound in Theorem 4.3. However, this improvement is impossible in the stochastic version of the algorithm, in which we sample the linear form 𝑌 ⊤ 𝑋 but not the gradient of ϒ(𝑈 ).

Let us now bound the right-hand side. Note that the first-order optimality condition for (4. see, e.g., [Beck and Teboulle, 2003, Lemma 4.1]. On the other hand, by the Fenchel-Young inequality we have 4.7.11) where we used (4.7.6) and 1-strong convexity of 𝜑(•) with respect to ‖ • ‖ W . Thus, we obtain

𝛾 𝑡 ⟨︀ 𝐺(𝑊 𝑡-1 ), 𝑊 𝑡-1 -𝑊 𝑡 ⟩︀ 𝛾 2 𝑡 ‖𝐺(𝑊 𝑡-1 )‖ 2 W * 2 + ‖𝑊 𝑡-1 -𝑊 𝑡 ‖ 2 W 2 5𝛾 2 𝑡 ℒ 2 U ,V Ω 𝒰 Ω 𝒱 + 𝐷 𝜑 (𝑊 𝑡 , 𝑊 𝑡-1 ), ( 
𝛾 𝑡 [Ψ(𝑈 𝑡-1 , 𝑉 ) -Ψ(𝑈, 𝑉 𝑡-1 ) + ℎ(𝑊 𝑡 ) -ℎ(𝑊 )] ≤𝐷 𝜑 (𝑊, 𝑊 𝑡-1 ) -𝐷 𝜑 (𝑊, 𝑊 𝑡 ) + 5𝛾 2 𝑡 ℒ 2 U ,V Ω 𝒰 Ω 𝒱 . ( 4 
.7.12) 3 𝑜 . Now, assuming the constant stepsize, by the convexity properties of Ψ(•, •) and ℎ(•) we obtain

𝑓 ( Ū 𝑇 , 𝑉 ) -𝑓 (𝑈, V 𝑇 ) = Ψ( Ū 𝑇 , 𝑉 ) -Ψ(𝑈, V 𝑇 ) + ℎ( W 𝑇 ) -ℎ(𝑊 ) 1 𝑇 𝑇 ∑︁ 𝑡=1 Ψ(𝑈 𝑡-1 , 𝑉 ) -Ψ(𝑈, 𝑉 𝑡-1 ) + ℎ(𝑊 𝑡-1 ) -ℎ(𝑊 ) 1 𝑇 (︂ ℎ(𝑊 0 ) -ℎ(𝑊 𝑇 ) + 𝐷 𝜑 (𝑊, 𝑊 0 ) 𝛾 + 5𝑇 𝛾ℒ 2 U ,V Ω 𝒰 Ω 𝒱 )︂ 1 𝑇 (︂ ℎ(𝑊 0 ) -min 𝑊 ∈𝒲 ℎ(𝑊 ) + 1 𝛾 + 5𝑇 𝛾ℒ 2 U ,V Ω 𝒰 Ω 𝒱 )︂ . 
(4.7.13) where for the third line we substituted (4.7.12), simplified the telescoping sum, and used that 𝐷(𝑊, 𝑊 𝑇 ) 0, and in the last line we used 𝐷(𝑊, 𝑊 0 ) Ω 𝒲 1, cf. (4.7.5). The choice

𝛾 = 1 ℒ U ,V √ 5𝑇 Ω 𝒰 Ω 𝒱 ,
results in the accuracy bound from the premise of the theorem:

∆ 𝑓 ( Ū 𝑇 , V 𝑇 ) 2 √ 5ℒ U ,V √ Ω 𝒰 Ω 𝒱 √ 𝑇 + ℎ(𝑊 0 ) -min 𝑊 ∈𝒲 ℎ(𝑊 ) 𝑇 .
Finally, assume that one of the terms Υ(𝑈 ), ℱ(𝑉 ) is affine -w.l.o.g. let it be Υ(𝑈 ).

Then, since ∇Υ(𝑈 ) is constant, 𝜕ℎ(𝑊 𝑡 ) = (∇Υ(𝑈 𝑡 ), 𝜕ℱ(𝑉 𝑡 )) in (4.7.8) can be replaced with (∇Υ(𝑈 𝑡-1 ), 𝜕ℱ(𝑉 𝑡 )). Then in (4.7.12) we can replace ℎ(𝑊 𝑡 ) -ℎ(𝑊 0 ) with Υ(𝑈 𝑡-1 ) -Υ(𝑈 ) + ℱ(𝑉 𝑡 ) -ℱ(𝑉 ), implying that the term ℎ(𝑊 0 ) -ℎ(𝑊 𝑇 ) in the right-hand side of (4.7.13) gets replaced with ℱ(𝑉 0 )-ℱ(𝑉 𝑡 ). The claim is proved.

Stochastic Mirror Descent. We now consider the stochastic setting that allows to encompass (S-MD). Stochastic Mirror Descent is given by 4.7.14) where

𝑊 0 = min 𝑊 ∈𝒲 𝜑 𝒲 (𝑊 ); 𝑊 𝑡 = arg min 𝑊 ∈𝒲 {︂ ℎ(𝑊 ) + ⟨Ξ(𝑊 𝑡-1 ), 𝑊 ⟩ + 1 𝛾 𝑡 𝐷 𝜑 𝒲 (𝑊, 𝑊 𝑡-1 ) }︂ , 𝑡 ≥ 1, ( 
Ξ(𝑊 ) := 1 𝑛 (𝜂 𝑉,𝑌 , -𝜉 𝑈 )
is the unbiased estimate of the first-order oracle 𝐺(𝑊 ) = 1 𝑛 (𝑋 ⊤ (𝑉 -𝑌 ), -𝑋𝑈 ). Let us introduce the corresponding variance proxies (refer to the preamble of Section 4.3 for the discussion):

𝜎 2 𝒰 = 1 𝑛 2 sup 𝑈 ∈𝒰 E [︀ ‖𝑋𝑈 -𝜉 𝑈 ‖ 2 V * ]︀ , 𝜎 2 𝒱 = 1 𝑛 2 sup (𝑉,𝑌 )∈𝒱×𝒱 E [︁ ⃦ ⃦ 𝑋 ⊤ (𝑉 -𝑌 ) -𝜂 𝑉,𝑌 ⃦ ⃦ 2 U * ]︁ . 
(4.7.15) We assume that the noises 𝐺(𝑊 𝑡-1 ) -Ξ(𝑊 𝑡-1 ) are independent along the iterations of (4.7.14). In this setting, we prove the following generalization of Theorem 4.3:

Theorem 4.4. Let ( Ū 𝑇 , V 𝑇 ) = 1 𝑇 ∑︀ 𝑇 -1
𝑡=0 (𝑈 𝑡 , 𝑉 𝑡 ) be the average of the first 𝑇 iterates of the Stochastic Composite Mirror Descent (4.7.14) with constant stepsize

𝛾 𝑡 ≡ 1 √ 𝑇 min {︃ 1 √ 10ℒ U ,V √ Ω 𝒰 Ω 𝒱 , 1 √ 2 √︀ Ω 𝒰 σ2 𝒱 + Ω 𝒱 σ2 𝒰 }︃ ,
where ℒ U ,V , Ω 𝒰 , Ω 𝒱 are the same as in Theorem 4.4, and σ2 𝒰 , σ2

for 𝜎 2 𝒰 , 𝜎 2 𝒱 , cf. (4.7.15). Then it holds

E[∆ 𝑓 ( Ū 𝑇 , V 𝑇 )] 2 √ 10ℒ U ,V √ Ω 𝒰 Ω 𝒱 √ 𝑇 + 2 √ 2 √︀ Ω 𝒰 σ2 𝒱 + Ω 𝒱 σ2 𝒰 √ 𝑇 + Υ(𝑈 0 ) -min 𝑈 ∈𝒰 Υ(𝑈 ) 𝑇 + ℱ(𝑉 0 ) -min 𝑉 ∈𝒱 ℱ(𝑉 ) 𝑇 ,
where E[•] is the expectation over the randomness in (4.7.14). Moreover, if one of the functions Υ(𝑈 ), ℱ(𝑉 ) is affine, the corresponding 𝑂(1/𝑇 ) term can be discarded.

Proof. The proof closely follows that of Theorem 4.3. First, 1 𝑜 remains unchanged.

Then, in the first-order condition (4.7.8) one must replace 𝐺(𝑊 𝑡-1 ) with Ξ(𝑊 𝑡-1 ), which results in replacing (4.7.9) with

𝛾 𝑡 [Ψ(𝑈 𝑡-1 , 𝑉 ) -Ψ(𝑈, 𝑉 𝑡-1 ) + ℎ(𝑊 𝑡 ) -ℎ(𝑊 )] ⟨︀ ∇𝜑(𝑊 𝑡-1 ) -∇𝜑(𝑊 𝑡 ), 𝑊 𝑡 -𝑊 ⟩︀ + 𝛾 𝑡 ⟨︀ Ξ(𝑊 𝑡-1 ), 𝑊 𝑡-1 -𝑊 𝑡 ⟩︀ + 𝛾 𝑡 ⟨︀ 𝐺(𝑊 𝑡-1 ) -Ξ(𝑊 𝑡-1 ), 𝑊 𝑡-1 -𝑊 ⟩︀ ,
where the last term has zero mean. The term 𝛾 𝑡 ⟨Ξ(𝑊 𝑡-1 ), 𝑊 𝑡-1 -𝑊 𝑡 ⟩ can be bounded using Young's inequality, and 1-strong convexity of 𝜑(•), cf. (4.7.11):

𝛾 𝑡 ⟨︀ Ξ(𝑊 𝑡-1 ), 𝑊 𝑡-1 -𝑊 𝑡 ⟩︀ 𝛾 2 𝑡 ‖Ξ(𝑊 𝑡-1 )‖ 2 W * 2 + ‖𝑊 𝑡-1 -𝑊 𝑡 ‖ 2 W 2 𝛾 2
𝑡 ‖𝐺(𝑊 𝑡-1 )‖ 2 W * + 𝛾 2 𝑡 ‖Ξ(𝑊 𝑡-1 ) -𝐺(𝑊 𝑡-1 )‖ note that maximization on the left is under the expectation (and not vice versa) because the right hand side is independent from 𝑊 = (𝑈, 𝑉 ). Choosing 𝛾 to balance the terms, we arrive at the desired bound. Finally, improvement in the case of affine Υ(𝑈 ), ℱ(𝑉 ) is obtained in the same way as in Theorem 4.4. 

ℒ U ,V = sup ‖𝑈 ‖ 1×1 1 ‖𝑋𝑈 ‖ 2×∞ .
The maximization over the unit ball ‖𝑈 ‖ 1×1 1 can be replaced with that over its extremal points, which are the matrices 𝑈 that have zeroes in all positions except for one in which there is 1. Let (𝑖, 𝑗) be this position, then for every such 𝑈 we have: We prove an extended result that holds when ‖ • ‖ U and ‖ • ‖ V are more general mixed (ℓ 𝑝 × ℓ 𝑞 )-norms, cf. (4.2.4). (4.3.3) 

‖𝑋𝑈 ‖ 2×∞ = ⎯ ⎸
]︃ 2 = 2𝑅 2 𝒰 ̂︀ ℒ 2 U ,V + 2 𝑛 2 𝑅 2 𝒰 ‖ ̂︀ 𝑋 ⊤ ‖ 2 2×1 = 4 𝑛 2 𝑅 2 𝒰 ‖𝑋 ⊤ ‖ 2 2×1 ,
where in the last two transitions we used Lemma 4.2 and Proposition 4.1 (note that ‖ ̂︀ 𝑋 ⊤ ‖ 2×1 = ‖𝑋 ⊤ ‖ 2×1 ). Note that the last transition requires that ‖ • ‖ U has ℓ 1geometry in the classes -otherwise, Lemma 4.2 cannot be applied.

To obtain (𝑞 * , 𝑄 * ) we proceed in a similar way: The corresponding variance proxy can then be bounded in the same way as in the proof of Proposition 4.5.

Correctness of subroutines in Algorithm 1

In this section, we recall the subroutines used in Algorithm 1 -those for performing the lazy updates and tracking the running averages -and demonstrate their correctness. (4.7.16) where 𝑈 𝑡 is the 𝑡-th primal iterate of (S-MD) equipped with (Full-SS) with the optimal sampling distributions (4.3.8), and 𝜂 𝑡 was the only non-zero column 𝜂 𝑉 𝑡 ,𝑌 (:, 𝑙 𝑡 ) of 𝜂 𝑉 𝑡 ,𝑌 . Moreover, suppose also that 𝜔 𝑗 = 𝑒 2𝛾 log(𝑘)𝜉 𝑗

4:

𝜀 𝑗 = 𝑒 -2𝛾 log(𝑘)𝑌 (𝑗,ℓ) (4.7.22) where 𝑉 𝑡 is the 𝑡-th dual iterate of (S-MD) equipped with (Full-SS) with the optimal sampling distributions (4.3.8), and 𝜉 𝑡 was the only non-zero column 𝜉 𝑈 𝑡 (:, ℓ 𝑡 ) of 𝜉 𝑈 𝑡 .

Moreover, suppose also that 𝜌 𝑡 (𝚥) = ‖𝑉 𝑡 (𝚥, :) -𝑌 (𝚥, :)‖ (4.7.26) which indeed corresponds to the update in line 11 of the procedure.

Correctness of tracking the cumulative sums.

We only consider the primal variables (Procedure 3 and line 21 of Algorithm 1); the complimentary case can be treated analogously. Note that due to the previous two lemmas, at any iteration 𝑡 of Algorithm 1 Procedure 3 is fed with 𝑙 = 𝑙 𝑡 , ̃︀ 𝑈 = ︀ 𝑈 𝑡 , 𝛼 = 𝛼 𝑡 for which it holds ̃︀ 𝑈 𝑡 𝛼 𝑡 = 𝑈 𝑡 . Now, assume that all previous input values 𝐴 𝜏 , 𝜏 ≤ 𝑡, of variable 𝐴, and the current inputs 𝐴 𝑡 pr , 𝑈 𝑡 Σ of variables 𝐴 pr , 𝑈 Σ , candidate solution ̂︀ 𝑈 𝑇 = [ Ū 𝑇 1 -Ū 𝑇 2 ] to the ℓ 1 -constrained problem will actually have at most 𝑂(𝑑𝑇 ) non-zero entries that correspond to the entries of ̃︀ 𝑈 that were changed in the course of the algorithm. To exploit this, we can modify Algorithm 1 as follows:

-Instead of explicitly initializing and storing the whole matrices ̃︀ 𝑈 , 𝑈 Σ , and 𝐴 pr , we can hard-code the "default" value ̃︀ 𝑈 (𝑖, 𝑙) = 1 (cf. line 2 of Algorithm 1), and use a bit mask to flag the entries ̃︀ 𝑈 (𝑖, 𝑙) that have already been changed at least once. This mask can be stored as a list Changed of pairs (𝑖, 𝑙), i.e. in a sparse form.

-When post-processing the cumulative sum 𝑈 Σ (see line (21) of Algorithm 1), instead of post-processing all entries of 𝑈 Σ , we can only process those in the list Changed, and ignore the remaining ones, since the corresponding to them entries in ̂︀ 𝑈 𝑇 (a candidate solution to (4.2.2)) will have zero values. We can then directly output ̂︀ 𝑈 𝑇 in a sparse form. It is clear that such modification of Algorithm 1 results in the replacement of the 𝑂(𝑑𝑘) term in runtime complexity with 𝑂(𝑑𝑇 ) (which is always an improvement since 𝑂(𝑑) a.o.'s are done anyway in each iteration); moreover, the memory complexity changes from 𝑂(𝑑𝑛 + 𝑛𝑘 + 𝑑𝑘) to 𝑂(𝑑𝑛 + 𝑛𝑘 + 𝑑 min(𝑇, 𝑘)).

Infeasibility of the noisy dual iterates. Note that when we generate an estimate of the primal gradient 𝑋 𝑇 (𝑉 𝑡 -𝑌 ) according to (Full-SS) or (Part-SS), we also obtain an unbiased estimate of the dual iterate 𝑉 𝑡 , and vice versa. In the setup with vector variables, Juditsky and Nemirovski [2011b] propose to average such noisy iterates instead of the acutal iterates (𝑈 𝑡 , 𝑉 𝑡 ) as we do in (S-MD). Averaging of noisy iterates is easier to implement since they are sparse (one does not need to track the cumulative sums), and one could show similar guarantees for the primal accuracy of their running averages. However, in the case of the dual variable its noisy counterpart is infeasible (see Juditsky and Nemirovski [2011b, Sec. 2.5.1]); as a result, one loses the guarantee for the duality gap. Hence, we prefer to track the averages of the actual iterates of (S-MD) as we do in Algorithm 1.

In Chapter 4 we considered the Fenchel-Young losses and the corresponding saddle-point problems for multi-class classification problems. We develop sublinear algorithm, i.e., with computational complexity of one iteration of 𝑂(𝑑 + 𝑛 + 𝑘), where 𝑑 is the number of features, 𝑛 is the sample size and 𝑘 it the number of classes.

Though our approach has a sublinear rates for the classical SVM setup, it is interesting to investigate the efficiency estimates for more general geometries and losses (which is actually partly done). Multinomial logit loss or softmax loss is widely used in Natural Language Processing (NLP) and recommendation systems, where 𝑛, 𝑑 and 𝑘 are on order of millions or even billions [START_REF] Chelba | One billion word benchmark for measuring progress in statistical language modeling[END_REF], [START_REF] Partalas | LSHTC: A benchmark for large-scale text classification[END_REF]) and developing an 𝑂(𝑛 + 𝑑 + 𝑘) approach will be an important development in this area. Even though we provided simple experiments in this chapter, bigger experiments with more expressed convergence rates will be a good illustration of our approach. We are planning to put the code online, due to the full implementation of Algorithm 1 is time-consuming. Another direction of research is to develop the approach with flexible step-sizes, which can be learned from the data as well.

  𝑥 𝑖 | 𝜃),

  Example: Conditional Exponential families Now, let us consider the classical conditional exponential families: 𝑓 (𝑦|𝑥, 𝜃) = ℎ(𝑦) • exp(𝑦 • 𝜂 𝜃 (𝑥) -𝑎(𝜂 𝜃 (𝑥))).
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 11 Figure 1-1 -Graphical representation of classical loss functions.
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 12 Figure 1-2 -Graphical representation of Lipschitz smoothness and strong convexity.
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 13 Figure 1-3 -Graphical representation of projected gradient descent: firstly we do gradient step and then project onto 𝒳 .

Definition 1 .

 1 7. The function 𝑓 * (𝑦) given by 𝑓 ⋆ (𝑦) := sup {⟨𝑦, 𝑥⟩ -𝑓 (𝑥)| 𝑥 ∈ R 𝑛 } is called the Fenchel conjugate of the function 𝑓 . Now we can formulate the theorem [see e.g. Borwein and Lewis, 2010]: Theorem 1.7. (Fenchel's duality theorem) Let 𝑓 : 𝒳 → R and 𝑔 : 𝒴 → R be convex functions and 𝐴 : 𝒳 → 𝒴 be a linear map. Then inf 𝑥∈𝒳 {︁ 𝑓 (𝑥) + 𝑔(𝐴𝑥) }︁ = sup 𝑦∈𝒴 {︁ -𝑓 * (𝐴 ⊤ 𝑦) -𝑔 * (-𝑦) }︁ .
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 2223 Figure 2-2 -Contour lines of Gaussian mixture pdf in 2D case.
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 24 Figure 2-4 -Mean and standard deviation of 𝑅 2 (ℰ, Ê) divided by √ 10 for the rational function (2.5.3) with 𝜎 = 1/4.
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 2 Figure 2-5 -Mean and standard deviation of 𝑅 2 (ℰ, Ê) divided by √ 10 for the the classification problem (2.5.4).
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 2 Figure 2-6 -Mean and standard deviation of 𝑅 2 (ℰ, Ê) divided by √ 10 for the quadratic model (2.5.2) with 𝜎 = 1/4.
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 2 Figure 2-7 -Square trace error 𝑅(ℰ, Ê) for different sample sizes.
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 2 Figure 2-8 -Quadratic model, 𝑑 = 10, 𝑛 = 1000.

Figure 2

 2 Figure 2-9 -Rational model, 𝑑 = 10, 𝑛 = 1000.
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 2 Figure 2-10 -Rational model, 𝑑 = 20, 𝑛 = 2000.
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 2 Figure 2-11 -Rational model, 𝑑 = 50, 𝑛 = 5000.
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 2 Figure 2-12 -Increasing dimensions, with rational model 2.5.3, 𝑛 = 10000, 𝑘 = 10, 𝑑 = 20 to 150.
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 31 Figure 3-1 -Convergence of iterates 𝜃 𝑛 and averaged iterates θ𝑛 to the mean θ𝛾 under the stationary distribution 𝜋 𝛾 .
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 32 Figure 3-2 -Graphical representation of reparametrization: firstly we expand the class of functions, replacing parameter 𝜃 with function 𝜂(•) = Φ ⊤ (•)𝜃 and then we do one more reparametrization: 𝜇(•) = 𝑎 ′ (𝜂(•)). Best linear prediction 𝜇 * is constructed using 𝜃 * and the global minimizer of 𝒢 is 𝜇 ** . Model is well-specified if and only if 𝜇 * = 𝜇 ** .

Proposition 3 . 1 .

 31 Under the assumptions on the negative loglikelihoods 𝑓 𝑛 of each observation from[START_REF] Dieuleveut | Bridging the gap between constant step size stochastic gradient descent and markov chains[END_REF]:

Finite

  -dimensional models. we consider the following logistic regression model: 𝑞(𝑦|𝑥, 𝜃) = exp (︀ 𝑦 • 𝜂 𝜃 (𝑥) -𝑎(𝜂 𝜃 (𝑥)) )︀ , where we consider a linear model 𝜂 𝜃 (𝑥) = 𝜃 ⊤ 𝑥 in 𝑥 (i.e., Φ(𝑥) = 𝑥), the link function 𝑎(𝑡) = log(1 + 𝑒 𝑡 ) and 𝑎 ′ (𝑡) = 𝜎(𝑡) is the sigmoid function. Let 𝑥 be distributed as a standard normal random variable in dimension 𝑑 = 2, 𝑦 ∈ {0, 1} and P(𝑦 = 1|𝑥) = 𝜇 ** (𝑥) = 𝜎 (︀ 𝜂 ** (𝑥) )︀ , where we consider two different settings: -Model 1: 𝜂 ** (𝑥) = sin 𝑥 1 + sin 𝑥 2 , -Model 2: 𝜂 ** (𝑥) = 𝑥 3 1 + 𝑥 3 2 . The global minimum ℱ ** of the corresponding optimization problem can be found as
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 3536 Figure 3-5 -Synthetic data for linear model 𝜂 𝜃 (𝑥) = 𝜃 ⊤ 𝑥 and 𝜂 ** (𝑥) = sin 𝑥 1 + sin 𝑥 2 . Excess prediction performance vs. number of iterations (both in log-scale).
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 37 Figure 3-7 -Synthetic data for Laplacian kernel for 𝜂 ** (𝑥) = 5 5+𝑥 ⊤ 𝑥 . Excess prediction performance vs. number of iterations (both in log-scale).
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 23839 Figure 3-8 -MiniBooNE dataset, dimension 𝑑 = 50, linear model. Excess prediction performance vs. number of iterations (both in log-scale).
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 333 Figure 3-10 -CoverType dataset, dimension 𝑑 = 54, linear model. Excess prediction performance vs. number of iterations (both in log-scale).
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Proposition 4 . 3 .

 43 Consider the choice of norms ‖ • ‖ U = ‖ • ‖ 1×1 , ‖ • ‖ V = ‖ • ‖ 2×1 . Optimal solutions (𝑝*, 𝑃 * ), (𝑞 * , 𝑄 * ) to the optimization problems min 𝑝∈Δ 2𝑑 ,𝑃 ∈(Δ ⊤ 𝑘 ) ⊗2𝑑E‖𝜉 ̂︀ 𝑈 (𝑝, 𝑃 )‖
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 41 Figure 4-1 -Depiction of the Full Sampling Scheme (Full-SS).
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 42 Figure 4-2 -Primal accuracy and duality gap (when available) for Algorithm 1, stochastic subgradient method (SSM), and Mirror Prox (MP) with exact gradients, on a synthetic data benchmark.

.7. 2 )-

 2 Given the partial proximal setups (‖•‖ U , 𝜑 𝒰 (•)) and (‖•‖ V , 𝜑 𝒱 (•)), we run Composite Mirror Descent (4.2.6) or Mirror Prox (4.2.8) on the vector field 𝐺(𝑊 ) with the joint penalty term ℎ(𝑊 ) = Υ(𝑈 ) + ℱ(𝑉 ),

Proposition 4 .

 4 5. Let ‖ • ‖ U = ‖ • ‖ 𝑝 1 𝑈 ×𝑝 2 𝑈 on R 2𝑑×𝑘 , and ‖ • ‖ V = ‖ • ‖ 𝑝 1 𝑉 ×𝑝 2 𝑉 on R 𝑛×𝑘 .Then, optimal solutions 𝑝 * = 𝑝 * ( ̂︀ 𝑋, ̂︀ 𝑈 ) and 𝑞 * = 𝑞 * ( ̂︀ 𝑋, 𝑉, 𝑌 ) to

  , :)‖ ∞ • ‖𝑉 (𝑗, :) -𝑌 (𝑗, :)‖ 1 ∑︀ 𝑛 𝚥=1 ‖ ̂︀ 𝑋(𝚥, :)‖ ∞ • ‖𝑉 (𝚥, :) -𝑌 (𝚥, :)‖ 1 𝑄 * 𝑗𝑙 = |𝑉 𝑗𝑙 -𝑌 𝑗𝑙 | ‖𝑉 (𝑗, :) -𝑌 (𝑗, :)‖ 1 .

  𝑈 ∈ R 2𝑑×𝑘 , 𝛼, 𝜋, 𝜂 ∈ R 2𝑑 , 𝑙 ∈ [𝑘], 𝛾, 𝜆, 𝑅 1 1: 𝐿 ≡ log(2𝑑𝑘) 2: for 𝑖 = 1 to 2𝑑 do 3: 𝜇 𝑖 = 𝜋 𝑖 -𝛼 𝑖 • ̃︀ 𝑈 (𝑖, 𝑙) • (1 -𝑒 -2𝛾𝐿𝑅*𝜂 𝑖 /𝑛 ) 4: 𝑀 = ∑︀ 2𝑑 𝑖=1 𝜇 𝑖 5: 𝜈 = min{𝑒 -2𝛾𝐿𝑅*𝜆 , 𝑅 * /𝑀 } 6: for 𝑖 = 1 to 2𝑑 do 7: ̃︀ 𝑈 (𝑖, 𝑙) ← ̃︀ 𝑈 (𝑖, 𝑙) • 𝑒 -2𝛾𝐿𝑅*𝜂 𝑖 /𝑛 8: 𝛼 + 𝑖 = 𝜈 • 𝛼 𝑖 9: 𝜋 + 𝑖 = 𝜈 • 𝜇 𝑖 Ensure: ̃︀ 𝑈 , 𝛼 + , 𝜋 +Lemma 4.4. Suppose that at 𝑡-iteration of Algorithm 1, Procedure 1 was fed with ̃︀ 𝑈 = ︀ 𝑈 𝑡 , 𝛼 = 𝛼 𝑡 , 𝜋 = 𝜋 𝑡 , 𝜂 = 𝜂 𝑡 , 𝑙 = 𝑙 𝑡 for which one had ︀ 𝑈 𝑡 (:, 𝑙) ∘ 𝛼 𝑡 = 𝑈 𝑡 (:, 𝑙), ∀𝑙 ∈ [𝑘],

𝜋

  𝑡 (𝚤) = ‖𝑈 𝑡 (𝚤, :)‖ 1 = ∑︁ 𝑙∈[𝑘]𝑈 𝑡 (𝚤, 𝑙), 𝚤 ∈ [2𝑑],(4.7.17) were the correct norms at the 𝑡-th step. Then Procedure 1 will output ̃︀ 𝑈 𝑡+𝑡 , 𝛼 𝑡+1 , 𝜋 𝑡+1such that̃︀ 𝑈 𝑡+1 (:, 𝑙) ∘ 𝛼 𝑡+1 = 𝑈 𝑡+1 (:, 𝑙), ∀𝑙 ∈ [𝑘]and𝜋 𝑡+1 (𝚤) = ∑︁ 𝑙∈[𝑘] 𝑈 𝑡+1 (𝚤, 𝑙), 𝚤 ∈ [2𝑑].Proof. Recall that the matrix 𝜂 𝑡 = 𝜂 𝑉 𝑡 ,𝑌 produced in (Full-SS) has a single non-zero column 𝜂 𝑡 = 𝜂 𝑡 (:, 𝑙 𝑡 ), and according to (S-MD), the primal update 𝑈 𝑡 → 𝑈 𝑡+1 writes as (cf. (4.2.23)):𝑈 𝑡+1 𝑖𝑙 = 𝑈 𝑡 𝑖𝑙 • 𝑒 -2𝛾𝑡𝑅*𝐿𝜂 𝑉 𝑡 ,𝑌 (𝑖,𝑙)/𝑛 • min {︀ 𝑒 -2𝛾𝑡𝑅*𝐿𝜆 , 𝑅 * /𝑀 }︀ ,where 𝐿 := log(2𝑑𝑘), 𝑀 𝑡 := • 𝑒 -2𝛾𝑡𝑅*𝐿𝜂 𝑉 𝑡 ,𝑌

𝜒

  𝑗 = 1 -𝛽 𝑗 • ̃︀ 𝑉 (𝑗, ℓ) • (1 -𝜔 𝑗 • 𝜀 𝑗 ) 6: if ℓ ̸ = 𝑦 𝑗 then# not the actual class of 𝑗 drawn 7:𝜒 𝑗 ← 𝜒 𝑗 -𝛽 𝑗 • ̃︀ 𝑉 (𝑗, 𝑦 𝑗 ) • (1 -𝜃) , ℓ) ← ̃︀ 𝑉 (𝑗, ℓ) • 𝜔 𝑗 • 𝜀 𝑗 10: ̃︀ 𝑉 (𝑗, 𝑦 𝑗 ) ← ̃︀ 𝑉 (𝑗, 𝑦 𝑗 ) • 𝜔 𝑗 • 𝜃 11: 𝜌 + 𝑗 = 2 -2𝛽 + 𝑗 • ̃︀ 𝑉 (𝑗, 𝑦 𝑗 ) Ensure: ̃︀ 𝑉 , 𝛽 + , 𝜌 +Dual updates (Procedure 2). To demonstrate the correctness of Procedure 2, we prove the following result: Lemma 4.5. Suppose that at 𝑡-iteration of Algorithm 1, Procedure 2 was fed with ̃︀ 𝑉 = ︀ 𝑉 𝑡 , 𝛽 = 𝛽 𝑡 , 𝜌 = 𝜌 𝑡 , 𝜉 = 𝜉 𝑡 , ℓ = ℓ 𝑡 , for which one had ︀ 𝑉 𝑡 (:, 𝑙) ∘ 𝛽 𝑡 = 𝑉 𝑡 (:, 𝑙), ∀𝑙 ∈ [𝑘],

  Definition 1.1. The function 𝑓 has bounded gradients (subgradients), if for any 𝑥 ∈ 𝒳 and for any 𝑔(𝑥) ∈ 𝜕𝑓 (𝑥): ‖𝑔(𝑥)‖ 𝐵. 1.2. The function 𝑓 is called smooth with Lipschitz constant 𝐿 if, for all 𝑥, 𝑦 ∈ 𝒳 :

	Definition

  Definition 1.3. The function 𝑓 is called strongly convex with constant 𝜇 if, for all 𝑥, 𝑦 ∈ 𝒳 :

  Theorem 1.1. Let 𝑓 be convex with bounded gradients with constant 𝐵; the radius of set 𝒳 is 𝑅, i.e., sup 1.2. Let 𝑓 be convex and 𝐿-smooth on 𝒳 . Then the projected gradient descent with constant stepsize 𝛾 𝑡 = 1

				𝐿 satisfies:	
		‖𝑥 -𝑦‖ = 2𝑅. Then the projected gradient descent with
	𝑥,𝑦∈𝒳					
	decaying stepsize 𝛾 𝑡 = 𝑅 𝐵 √	𝑡	satisfies:			
	𝑓 (x 𝑡 ) -𝑓 (𝑥 * )	𝑅𝐵 √ 𝑡	, where x𝑡 =	1 𝑡	𝑡 𝑖=1 ∑︁	𝑥 𝑖 .
	Hence in case of bounded gradients we get an 1/ √ 𝑡 convergence rate.

Theorem

  Then Stochastic Mirror Descent with stepsize 𝛾 𝑡 =

	√ 2Ω 𝐵 √ 𝑡

satisfies:

  Definition 1.5. Function 𝜑(𝑥, 𝑦) has bounded gradients, if ‖𝑔 𝒳 (𝑥, 𝑦)‖ 𝒳 * ℒ 𝒳 and ‖𝑔 𝒴 (𝑥, 𝑦)‖ 𝒴 * ℒ 𝒴 for any (𝑥, 𝑦) ∈ (𝒳 × 𝒴). evaluate the quality of the point (̃︀ 𝑥, ̃︀ 𝑦) ∈ (𝒳 × 𝒴), we introduce the notion of the so-called duality gap: Definition 1.6. The duality gap is ∆ 𝑑𝑢𝑎𝑙 (̃︀ 𝑥, ̃︀ 𝑦) = max

	To Observe, that the duality gap is the sum of the primal gap max

𝑦∈𝒴 𝜑(̃︀ 𝑥, 𝑦) -min 𝑥∈𝒳 𝜑(𝑥, ̃︀ 𝑦). 𝑦∈𝒴 𝜑(̃︀ 𝑥, 𝑦) -𝜑(𝑥 * , 𝑦 * ) and the dual gap 𝜑(𝑥 * , 𝑦 * ) -min 𝑥∈𝒳 𝜑(𝑥, ̃︀

  ̃︀ 𝑏 𝑘+1 , . . . , ̃︀ 𝑏 𝑑 ) ∈ R 𝑑 (because 𝑏 ⊥ Span{𝑤 1 , . . . , 𝑤 𝑘 }). The desired conditional expectation equals

	which will be sufficient to
	prove Lemma 2.2. We consider the linear transformation of coordinates: ̃︀ 𝑥 = ̃︀ 𝑤 ⊤ 𝑥 ∈ 𝑤 = (𝑤 1 , . . . , 𝑤 𝑘 , 𝑤 𝑘+1 , . . . , 𝑤 𝑑 ) is a square matrix with full rank obtained by R 𝑑 , where ̃︀ adding a basis of the subspace orthogonal to the span of the 𝑘 columns of 𝑤. Then, if
	︀ 𝑝 is the density of ̃︀ 𝑥, we have 𝑝(𝑥) = (det ̃︀ 𝑤)• ̃︀ 𝑝(̃︀ 𝑥) and thus ∇𝑝(𝑥) = (det ̃︀ 𝑤)• ̃︀ 𝑤 •∇̃︀ 𝑝(̃︀ 𝑥) and ̃︀ 𝑏 = ̃︀ 𝑤 ⊤ 𝑏 = (0, . . . , 0,

  Failure modes. The method does not work properly if rank(E(∇ 2 𝑔(𝑤 ⊤ 𝑥))) < 𝑘. For example, if 𝑔 is linear function, E(∇ 2 𝑔(𝑤 ⊤ 𝑥)) ≡ 0 and the estimated e.d.r. space is degenerated. Moreover, the method fails in symmetric cases, for example, if 𝑔 is an odd function with respect to any variable and 𝑝(𝑥) is even function, then rank(E(∇ 2 𝑔(𝑤 ⊤ 𝑥))) < 𝑘.

  𝑑}, for some 𝜏 𝜂 > 0. Now we formulate and proof the main theorem, where ‖ • ‖ * is the nuclear norm, defined as ‖𝐴‖ * = tr

	(︀√	𝐴 𝑇 𝐴 )︀	:
	Theorem 2.1. Under assumptions (L1) -(L4) we get the following bound on

‖ V1,cov -𝒱 1,cov ‖ * : for any 𝛿 < 1 𝑛 , with probability not less than 1 -𝛿:

  Like for 𝑇 1 , the ranges cannot grow too much, i.e., as log 𝑛. Similarly P(diameter((𝜂 𝑗 ) 1 , . . . , (𝜂 𝑗 ) 𝑛 ) 𝑢) 𝑛P((𝜂 𝑗 ) > 𝑢/2) + 𝑛P((𝜂 𝑗 ) < -𝑢/2) 2𝑛 exp(-𝑢 2 /8𝜏 2 𝜂 ).

	We thus with get with probability greater then 1 -𝛿/(8𝑑) that
	max 𝑗∈{1,...,𝑑}	diameter((𝜂 𝑗 ) 1 , . . . , (𝜂 𝑗 ) 𝑛 ) 2 √	2𝜏 𝜂	√︀ log(2𝑛) + log(8𝑑/𝛿).

1 , . . . , 𝑦 𝑛 ) • diameter(𝜂 1 , . . . , 𝜂 𝑛 ).

  𝑑‖𝐾‖ ∞ , where ‖𝐾‖ ∞ = max 𝑗,𝑘 |𝐾 𝑗𝑘 |.

									2 𝜂	(︂	log 8𝑑 2 𝛿 𝑛	+
	√︁	2 log 8𝑑 2 𝛿 𝑛	)︂ , with probability greater than 1 -𝛿/4. This implies that the nuclear norm
	of the second term is less than 2𝑑 √	𝑑𝜏 2 𝜂	(︂	log 8𝑑 2 𝛿 𝑛	+	√︁	2 log 8𝑑 2 𝛿 𝑛	)︂ , because for any matrix
	𝐾 ∈ R For the first term, we consider 𝑍 =				

𝑑×𝑑 : ‖𝐾‖ * 𝑑 √ 𝐻 ∑︀ ℎ=1 (𝜂 (ℎ,2) ) 𝑎 (𝜂 (ℎ,1) ) 𝑏 , and consider conditioning on Y = (𝑦 1 , . . . , 𝑦 𝑛 ).

  ). Best linear prediction 𝜇 * is constructed using 𝜃 * and the global minimizer of 𝒢 is 𝜇 ** . Model is well-specified if and only if 𝜇

* = 𝜇 ** .

inf 𝜃 𝐹 (𝜃) = inf 𝜇 𝒢(𝜇). However, in general, we only have inf 𝜃 𝐹 (𝜃) > inf 𝜇 𝒢(𝜇) and (very often) the inequality is strict (see examples in our simulations).

To make the further developments more concrete, we now present two classical examples: logistic regression and Poisson regression.

  as a certain mixed norm (cf. (4.2.3)-(4.2.5)) as stated by the following lemma proved in Appendix: Proposition 4.1. The "cross" Lipschitz constant can be expressed as

  .2.18) It can be easily verified that the new saddle-point problem (4.2.17) is equivalent to (4.2.2) in the following sense: any 𝜀-accurate (in the sence of duality gap, cf Section 4.2.4) solution ( ̂︀ 𝑈 , 𝑉 ) to (4.2.17) with ̂︀ 𝑈 = [ ̂︀ 𝑈 1 ; ̂︀ 𝑈 2 ] provides an 𝜀-accurate solution (𝑈, 𝑉 ) to (4.2.2) by taking 𝑈 = ̂︀ 𝑈 1 -̂︀ 𝑈 2 . 1

  1 , . . . , 𝑝 2𝑑 ) ∈ ∆ 2𝑑 and 𝑞 = (𝑞 1 , . . . , 𝑞 𝑛 ) ∈ ∆ 𝑛 , and sample 𝜉 and 𝜂 𝒱,𝑌 = 𝜂 𝑉,𝑌 (𝑞) according to2𝑑 and 𝑒 𝑗 ∈ R 𝑛 are the standard basis vectors, and 𝑖 ∈ [2𝑑] := {1, ..., 2𝑑} and 𝑗 ∈ [𝑛] have distributions 𝑝 and 𝑞 correspondingly (clearly, this guarantees un-biasedness). Thus, in this scheme we sample the features and the training examples, but not the classes. The main challenge is to correctly choose the distributions 𝑝, 𝑞. This can be done in a data-dependent manner to approximately minimize the variance proxies 𝜎 2 ︀ 𝒰 , 𝜎2 𝒱 defined in(4.3.2). Note that minimization of the variance proxies can only be done explicitly in the Euclidean case, when ‖ • ‖ U * , ‖ • ‖ V * are the Frobenius norms. Instead, we minimize the expected squared norm of the gradient estimate itself (corresponding to the second moment in the Euclidean case), that is, choose 𝑝 * = 𝑝 * ( ̂︀ 𝑋, ̂︀ 𝑈 ) and 𝑞 * = 𝑞 * ( ̂︀ 𝑋, 𝑉, 𝑌 ) according toAs we show next in Proposition 4.2, these minimization problems can indeed be solved explicitly. On the other hand, we can then easily bound the variance proxies for 𝑝 * and 𝑞 * as well via the triangle inequality. The approach is justified by the observation that these bounds result in the stochastic term(4.3.1) of the same order as the terms already present in the accuracy bound of Theorem 4.1 (cf. Theorem 4.2).Remark 5. For the stochastic Mirror Descent it is sufficient to control the second moment proxies directly, and passing to the variance proxies only deteriorates the constants. Nonetheless, we choose to provide bounds for the variance proxies: such bounds are needed in the analysis of Stochastic Mirror Prox.

	̂︀ 𝒰 = 𝜉 𝑈 (𝑝) 𝜉 ̂︀ ̂︀ 𝑈 (𝑝) = ̂︀ 𝑋 𝑒 𝑖 𝑒 ⊤ 𝑖 𝑝 𝑖 ̂︀ 𝑈 , 𝜂 𝑉,𝑌 (𝑞) = ̂︀ 𝑋 ⊤ 𝑒 𝑗 𝑒 ⊤ 𝑗 𝑞 𝑗 where 𝑒 𝑖 ∈ R 𝑝 * ( ̂︀ 𝑋, ̂︀ 𝑈 ) ∈ arg min E [︀ ‖𝜉 ̂︀ 𝑈 (𝑝)‖ 2 (𝑉 -𝑌 ) ]︀ , V * 𝑝∈Δ 2𝑑 𝑞 * ( ̂︀ 𝑋, 𝑉, 𝑌 ) ∈ arg min 𝑞∈Δ𝑛 E [︀ ‖𝜂 𝑉,𝑌 (𝑞)‖ 2 U * ]︀	.	(Part-SS) (4.3.3)

  .3.6) with the values of ℒ U ,V , Ω 𝒱 , Ω

	upper bounds σ2 ︀ 𝒰 , σ2	𝒰 given by (4.2.11), (4.2.14), (4.2.21), and the ̂︀

  .3.7) whereE[•] is the expectation over the randomness of the algorithm, and r is the same as in Theorem 4.1.Discussion. The main message of Theorem 4.2 (cf. Theorem 4.1) is as follows: for the chosen geometry of ‖ • ‖ U and potentials, partial sampling scheme (Part-SS) does not result in any growth of computational complexity, in terms of the number of iterations to guarantee a given value of the duality gap, as long as ‖𝑋‖ 1×∞ /𝑛 does not dominate ‖𝑋 ⊤ ‖ ∞×2 / √ 𝑛. This is a reasonable assumption as soon as the data has a light-tailed distribution. Indeed, recall that‖𝑋 ⊤ ‖ ∞×2 / √ 𝑛is the largest 𝐿 2 -norm of an individual feature 𝜙 𝑗 (cf. Remark 2); on the other hand, ‖𝑋‖ 1×∞ /𝑛 is the sample average of max 𝑗∈[𝑑] |𝜙 𝑗 |, and thus has the finite limit E max 𝑗 𝑑 |𝜙 𝑗 | when 𝑛 → ∞. If 𝜙 𝑗 are subgaussian, E max 𝑗 𝑑 |𝜙 𝑗 | ︀ 𝑂 𝑑 (1) max 𝑗 𝑑 E|𝜙 𝑗 | Similar observations can be made in the finite-sample regime. In particular, both terms admit the same bound in terms of the uniform a.s. bound on the features. Also, if 𝜙 𝑗 ∼ 𝒩 (0, 𝜎 2 𝑗 ) with 𝜎 𝑗 ≤ 𝜎 for any 𝑗 ∈ [𝑑], then with probability at least 1 -𝛿, ) and 𝜂 𝑉,𝑌 (𝑞 * ) requires 𝑂(𝑑𝑛+

						︀ 𝑂 𝑑 (1) max 𝑗 𝑑 (E𝜙 2 𝑗 ) 1/2 ,
	whence (cf. (4.2.29)):				
	lim 𝑛→∞	‖𝑋‖ 1×∞ 𝑛	︀ 𝑂 𝑑 (1) lim 𝑛→∞	‖𝑋 ⊤ ‖ ∞×2 √ 𝑛	.
		‖𝑋‖ 1×∞ 𝑛	𝜎	√︀	log(𝑑𝑛/𝛿)
	with a similar bound for ‖𝑋 ⊤ ‖ ∞×2 / √ 𝑛, cf. (4.2.30).
	Computational complexity. Computation of 𝜉 𝑈 (𝑝 ̂︀

* 

  ), 𝜎 2 𝒱 (𝑞 * , 𝑄 * ) admit the same upper bounds as in(4.3.5).

		2 V * ,	min 𝑞∈Δ𝑛,𝑄∈(Δ ⊤ 𝑘 ) ⊗𝑛	E‖𝜂 𝑉,𝑌 (𝑞, 𝑄)‖ 2 U *
	are given by				
	𝑝 * 𝑖 = 𝑞 * 𝑗 =	‖ ̂︀ 𝑋(:, 𝑖)‖ 2 • ‖ ̂︀ 𝑈 (𝑖, :)‖ 1 ∑︀ 2𝑑 𝚤=1 ‖ ̂︀ 𝑋(:, 𝚤)‖ 2 • ‖ ̂︀ 𝑈 (𝚤, :)‖ 1 ‖ ̂︀ 𝑋(𝑗, :)‖ ∞ • ‖𝑉 (𝑗, :) -𝑌 (𝑗, :)‖ 1 , ∑︀ 𝑛 𝚥=1 ‖ ̂︀ 𝑋(𝚥, :)‖ ∞ • ‖𝑉 (𝚥, :) -𝑌 (𝚥, :)‖ 1	𝑃 * 𝑖𝑙 = , 𝑄 * 𝑗𝑙 =	| ̂︀ 𝑈 𝑖𝑙 | ‖ ̂︀ 𝑈 (𝑖, :)‖ 1 ‖𝑉 (𝑗, :) -𝑌 (𝑗, :)‖ 1 , |𝑉 𝑗𝑙 -𝑌 𝑗𝑙 |	.	(4.3.8)
	The variance proxies 𝜎 2 ︀ 𝒰 (𝑝 Combining Proposition 4.3 with the general bound used in Theorem 4.2, we obtain
	Corollary 1. The accuracy bound				

* , 𝑃 *

  , we need to compute the norms 𝜎 𝑖 = ‖ ̂︀ 𝑋(:, 𝑖)‖ 2 and 𝜏 𝑗 = ‖ ̂︀ 𝑋(𝑗, :)‖ ∞ for all 𝑖 ∈ [2𝑑] and 𝑗 ∈ [𝑛]. This requires 𝑂(𝑑𝑛) iterations but only once, during preprocessing. -We also need to calculate 𝑂(𝑑) quantities 𝜋 𝑖 = ‖ ̂︀ 𝑈 (𝑖, :)‖ 1 and 𝑂(𝑛) quantities 𝜌 𝑗 = ‖𝑉 (𝑗, :) -𝑌 (𝑗, :)‖ 1 . While the direct calculation of each of them takes 𝑂(𝑘) a.o.'s, we can update them dynamically in 𝑂(1) in the case of the hinge loss. Examining the explicit formulae for the updates in the case of hinge loss (cf. (4.2.23)-(4.2.24)), we notice that in the case of full sampling, but one elements of each row of ̂︀ 𝑈 and 𝑉 are simply scaled by the same coefficient, and thus one can maintain each of the quantities ‖ ̂︀ 𝑈 (𝑖, :)‖ 1 and ‖𝑉 (𝑗, :) -𝑌 (𝑗, :)‖ 1 in 𝑂(1) a.o.'s, leading to 𝑂(𝑑+𝑛) complexity of this step. This result is fragile, requiring the specific combination of hinge loss (for which f(𝑣, 𝑦) is linear) and entropic potentials. -We do not need to compute the full matrices 𝑃, 𝑄. Instead, we can compute only one row of each of them, corresponding to the drawn pair 𝑖, 𝑗, which requires 𝑂(𝑘) a.o.'s. Hence we can implement sampling in 𝑂(𝑑 + 𝑛 + 𝑘) a.o.'s -Note that updates of the matrices 𝑈 and 𝑉 are not dense even in the case of the full sampling scheme, so implementing them naively would result in 𝑂(𝑑𝑘+𝑛𝑘) a.o.'s per iteration. Instead, we employ "lazy updates": for each 𝑖 ∈ [2𝑑] and 𝑗 ∈

	[𝑛], instead of ̂︀ 𝑈 (𝑖, :) and 𝑉 (𝑗, :) we maintain the pairs ( ̃︀ 𝑈 (𝑖, :), 𝛼 𝑖 ), (𝑉 (𝑗, :), 𝛽 𝑗 )
	such that
	̂︀ 𝑈 (𝑖, :) = 𝛼 𝑖 ̃︀ 𝑈 (𝑖, :), 𝑉 (𝑗, :) = 𝛽 𝑗 ̃︀ 𝑉 (𝑗, :).

* 

  ̂︀𝑈 𝑡 -𝑌 in this row. To exploit this fact, we perform "lazy" updates: instead of explicitly computing the actual iterates ( ̂︀ 𝑈 𝑡 , 𝑉 𝑡 ), we maintain the quadruple ( ̃︀ 𝑈 , 𝛼, ̃︀ 𝑉 , 𝛽), where ̃︀ 𝑈 , ̃︀ 𝑉 have the same dimensions as 𝑈, 𝑉 , while 𝛼 ∈ R 2𝑑 and 𝛽 ∈ R 𝑛 are the "scaling vectors", so that at any iteration 𝑡 it holds 𝛼 = 1 2𝑑 , 𝛽 = 1 𝑛 , we can update the whole quadruple, while maintaining(4.3.9), by updating at most two elements in each row of ̃︀ 𝑈 and ̃︀ 𝑉 , and encapsulating the overall scaling of rows in 𝛼 and 𝛽. Clearly, this update requires only 𝑂(𝑑 + 𝑛) operations once 𝜉 ̂︀ 𝑈 𝑡 , 𝜂 𝑉 𝑡 ,𝑌 have been drawn. ∞ which can be precomputed in 𝑂(𝑑𝑛) a.o.'s, and maintaining 𝑂(𝑑 + 𝑛) norms 𝜋 𝑖 , 𝜌 𝑗 of the rows of ̂︀ 𝑈 𝑡 and 𝑉 𝑡 -𝑌 that can maintained in 𝑂(1) a.o.'s each using

	︀ 𝑈 𝑡 (𝑖, :) = ̃︀ 𝑈 (𝑖, :) • 𝛼(𝑖), 𝑉 𝑡 (𝑗, :) = ̃︀ 𝑉 (𝑗, :) • 𝛽(𝑗) 𝑈 𝑡 and 𝑉 𝑡 . Initializing with ( ̃︀ for any row of ̂︀ 𝑈 , ̃︀ 𝑉 ) = ( ̂︀ Computing the distributions 𝑝 * , 𝑞 * from (4.3.8) requires the knowledge of ‖ ̂︀ 𝑋(:, 𝑖)‖ 2 (4.3.9) 𝑈 , 𝑉 ), Sampling. and ‖ ̂︀ 𝑋(𝑗, :)‖

  1 𝑉 = 2 for Algorithm 1 Sublinear Multiclass ℓ 1 -Regularized SVM Require: 𝑋 ∈ R 𝑛×𝑑 , 𝑦 ∈ [𝑘] ⊗𝑛 , 𝜆, 𝑅 1 , 𝑇 1, {𝛾 𝑡 } 𝑇 -1 𝑈 Σ ← 0 2𝑑×𝑘 ; 𝑉 Σ ← 0 𝑛×𝑘 # Cumulative sums 8: 𝐴 ← 0 2𝑑 ; 𝐵 ← 0 𝑛 ; 𝐴 pr ← 0 2𝑑×𝑘 ; 𝐵 pr ← 0 𝑛×𝑘 9: for 𝑡 = 0 to 𝑇 -1 do # (S-MD) iterations #The only non-zero column of 𝜂 𝑉 𝑡 ,𝑌 , cf. (Full-SS): # The only non-zero column of 𝜉 𝑈 𝑡 , cf. (Full-SS):

			𝑡=0
	1: Obtain 𝑌 ∈ ∆ ⊗𝑛 𝑘 from the labels 𝑦; 2: 𝛼 ← 1 2𝑑 ; ̃︀ 𝑈 ← 𝑅 * 1 2𝑑×𝑘 2𝑑𝑘 ; 𝛽 ← 1 𝑛 ; ̃︀ ̂︀ 𝑋 ≡ [𝑋, -𝑋] 1 𝑛×𝑘 𝑉 ← 𝑘 3: for 𝚤 = 1 to 2𝑑 do
	4:	𝜎(𝚤) ≡ ‖ ̂︀ 𝑋(:, 𝚤)‖ 2 ; 𝜋(𝚤) ← ‖ ̃︀ 𝑈 (𝚤, :)‖ 1	
	5: for 𝚥 = 1 to 𝑛 do	
	6:	𝜏 (𝚥) ≡ ‖ ̂︀ 𝑋(𝚥, :)‖ ∞ ; 𝜌(𝚥) ← ‖ ̃︀ 𝑉 (𝚥, :) -𝑌 (𝚥, :)‖ 1
	# Initialize machinery to track the cumulative sums
	7: 10:	Draw 𝑗 ∼ 𝜏 ∘ 𝜌	# ∘ is the elementwise product
	11:		
	15:	Draw 𝑖 ∼ 𝜎 ∘ 𝜋	
	16:	Draw ℓ ∼ ̃︀ 𝑈 (𝑖, :)	
	17:		
	18: 19:	𝜉 ← ̂︀ 𝑋(:, 𝑖) • [ ̃︀ 𝑉 , 𝛽, 𝜌] ← UpdateDual( ̃︀ ∑︀ 2𝑑 𝚤=1 𝜎(𝚤) • 𝜋(𝚤) 𝜎(𝑖) 𝑉 , 𝑌, 𝛽, 𝜌, 𝜉, ℓ, 𝑦, 𝛾 𝑡 )
	20: for 𝑙 = 1 to 𝑘 do	# Postprocessing of cumulative sums
	21:	𝑈	

Draw 𝑙 ∼ | ̃︀ 𝑉 (𝑗, :) • 𝛽 𝑗 -𝑌 (𝑗, :)| 12:

[𝑈 Σ , 𝐴 pr , 𝐴] ← TrackPrimal( ̃︀ 𝑈 , 𝑈 Σ , 𝐴 pr , 𝐴, 𝛼, 𝑙)

13: 𝜂 ← ̂︀ 𝑋(𝑗, :) • ∑︀ 𝑛 𝚥=1 𝜏 (𝚥) • 𝜌(𝚥) • sgn[𝛽 𝚥 • 𝑉 (𝚥, 𝑙) -𝑌 (𝚥, 𝑙)] 𝜏

(

𝑗) 14: [ ̃︀ 𝑈 , 𝛼, 𝜋] ← UpdatePrimal( ̃︀ 𝑈 , 𝛼, 𝜋, 𝜂, 𝑙, 𝛾 𝑡 , 𝜆, 𝑅 * ) [𝑉 Σ , 𝐵 pr , 𝐵] ← TrackDual( ̃︀ 𝑉 , 𝑉 Σ , 𝐵 pr , 𝐵, 𝛽, ℓ, 𝑦) Σ (:, 𝑙) ← 𝑈 Σ (:, 𝑙) + ̃︀ 𝑈 (:, 𝑙) ∘ (𝛼 + 𝐴 -𝐴 pr (:, 𝑙)) 22:

  the actual class of 𝑗 drawn ̃︀ 𝑈 , 𝑈 Σ , 𝐴 pr ∈ R 2𝑑×𝑘 , 𝐴, 𝛼 ∈ R 2𝑑 , 𝑙 ∈ [𝑘] 1: for 𝑖 = 1 to 2𝑑 do 𝑈 Σ (𝑖, 𝑙) ← 𝑈 Σ (𝑖, 𝑙) + ̃︀ 𝑈 (𝑖, 𝑙) • (𝐴 𝑖 + 𝛼 𝑖 -𝐴 pr (𝑖, 𝑙)) 𝐴 𝑖 ← 𝐴 𝑖 + 𝛼 𝑖 Ensure: 𝑈 Σ , 𝐴 pr , 𝐴 ̃︀ 𝑉 , 𝑉 Σ , 𝐵 pr ∈ R 𝑛×𝑘 , 𝐵, 𝛽 ∈ R 𝑛 , ℓ ∈ [𝑘], 𝑦 ∈ [𝑘] ⊗𝑛 1: for 𝑗 = 1 to 𝑛 do 2: for 𝑙 ∈ {ℓ, 𝑦 𝑗 } do # {ℓ, 𝑦 𝑗 }has 1 or 2 elements 𝑉 Σ (𝑗, 𝑙) ← 𝑉 Σ (𝑗, 𝑙) + ̃︀ 𝑉 (𝑗, 𝑙) • (𝐵 𝑗 + 𝛽 𝑗 -𝐵 pr (𝑗, 𝑙)) 𝐵 pr (𝑗, 𝑙) ← 𝐵 𝑗 + 𝛽 𝑗 𝐵 𝑗 ← 𝐵 𝑗 + 𝛽 𝑗 Ensure: 𝑉 Σ , 𝐵 pr , 𝐵 the reasons discussed in Section 4.2. This leaves us with the obvious choices 𝑝 2 𝑉 ∈ {1, 2}, 𝑝 2 𝑈 ∈ {1, 2} which corresponds to the sparsity-inducing or the standard Euclidean geometry of the classes in the dual/primal; 𝑝 1𝑈 ∈ {1, 2} which corresponds to the sparsity-inducing or Euclidean geometry of the features. Finally, the choice 𝑝 1 𝑈 = 2 (i.e., the Euclidean geometry in the features) can also be excluded: its combination with 𝑝 1 𝑉 = 2 is known to lead to the large variance term in the biclass case.4 This leaves us with the possibilities

	Procedure 4 TrackDual
	Require: 3:
	4:	
	5:	
		𝑝 2 𝑈 , 𝑝 2 𝑉 ∈ {1, 2} × {1, 2}.	(4.4.1)
	11:	𝜌 + 𝑗 = 2 -2𝛽 + 𝑗 • ̃︀ 𝑉 (𝑗, 𝑦 𝑗 )
	Ensure: ̃︀ 𝑉 , 𝛽 + , 𝜌 +
	Procedure 3 TrackPrimal
	2:	
	3:	𝐴 pr (𝑖, 𝑙) ← 𝐴 𝑖 + 𝛼 𝑖
	4:	

7:

𝜒 𝑗 ← 𝜒 𝑗 -𝛽 𝑗 • ̃︀ 𝑉 (𝑗, 𝑦 𝑗 ) • (1 -𝜃) 8: 𝛽 + 𝑗 = 𝛽 𝑗 /𝜒 𝑗 9: ̃︀ 𝑉 (𝑗, ℓ) ← ̃︀ 𝑉 (𝑗, ℓ) • 𝜔 𝑗 • 𝜀 𝑗 10: ̃︀ 𝑉 (𝑗, 𝑦 𝑗 ) ← ̃︀ 𝑉 (𝑗, 𝑦 𝑗 ) • 𝜔 𝑗 • 𝜃 Require:

In all these cases, the quantity ℒ 𝒰 ,𝒱 defined in (4.2.10) can be controlled by extending Proposition 4.1:

Proposition 4.4. For any 𝛼 1 and 𝛽 1 such that 𝛽 𝛼 it holds:

Table 4 .

 4 .2) that the runtime is proportional to 𝜅, as expected. 2 -Runtime (in seconds) of Algorithm 1 on synthetic data.

	𝑛 = 𝑑 = 𝑘	200 400 800 1600 3200 6400
	𝑇 = 10 4	0.80 1.17 2.07 4.27 7.55 15.56
	𝑇 = 2 • 10 4 1.63 2.47 4.27 8.74 14.65 30.77
	Synthetic Data Experiment.

  al., 2015]. -Provide more experiments with larger dimensions to highlight the advantages of the algorithm; use real data as well. -Implement more flexible stepsizes, including the online stepsize search in the vein of Juditsky and Nemirovski [2011a].

	4.7 Appendix
	4.7.1 Motivation for the multiclass hinge loss

  ℱ(𝑉 ) are convex "simple" terms. Moreover, we assume that the primal feasible set 𝒰 belongs to the ‖ • ‖ U -norm ball with radius 𝑅 𝒰 , the dual constraint set 𝒱 belongs to the ‖ • ‖ V -norm ball with radius 𝑅 𝒱 , and ‖𝑌 ‖ V ≤ 𝑅 𝒱 .6 To simplify the results, we make the mild assumption (satisfied in all known to us situations):

	-We consider a convex-concave saddle-point problem
		min 𝑈 ∈𝒰	max 𝑉 ∈𝒱	𝑓 (𝑈, 𝑉 )
	with a composite objective,			
	𝑓 (𝑈, 𝑉 ) = Φ(𝑈, 𝑉 -𝑌 ) + Υ(𝑈 ) -ℱ(𝑉 ),
	where	Φ(𝑈, 𝑉 ) =	1 𝑛	𝑉 ⊤ 𝑋𝑈
	is a bilinear function, and Υ(𝑈 ), Ω 𝒰 𝑅 2 𝒰 , Ω 𝒱 𝑅 2 𝒱 .	(4.7.1)
	.7.2 General accuracy bounds for the composite saddle-point
	Mirror Descent			
	Deterministic case. Here we provide general accuracy bounds which are instan-
	tiated in Theorems 4.1-1. Below we outline the general setting that encompasses, in
	particular, the case of (4.2.17) solved via (MD) or (MP) with initialization (Init).
		110	

-Recall that the vector field of partial gradients of Ψ(𝑈, 𝑉 )

  2.6) (denoting 𝜑(•) := 𝜑 𝒲 (•) the joint potential) writes 7 ⟨︀ 𝛾 𝑡 [𝐺(𝑊 𝑡-1 ) + 𝜕ℎ(𝑊 𝑡 )] + ∇𝜑(𝑊 𝑡 ) -∇𝜑(𝑊 𝑡-1 ), 𝑊 𝑡 -𝑊 ⟨︀ ∇𝜑(𝑊 𝑡-1 ) -∇𝜑(𝑊 𝑡 ), 𝑊 𝑡 -𝑊 ⟩︀ = 𝐷 𝜑 (𝑊, 𝑊 𝑡-1 ) -𝐷 𝜑 (𝑊, 𝑊 𝑡 ) -𝐷 𝜑 (𝑊 𝑡 , 𝑊 𝑡-1 ), (4.7.10)

				⟩︀	0.	(4.7.8)
	Combining this with (4.7.7), we get			
	𝛾 𝑡 [Ψ(𝑈 𝑡-1 , 𝑉 ) -Ψ(𝑈, 𝑉 𝑡-1 ) + ℎ(𝑊 𝑡 ) -ℎ(𝑊 )]	⟨︀ ∇𝜑(𝑊 𝑡-1 ) -∇𝜑(𝑊 𝑡 ), 𝑊 𝑡 -𝑊	⟩︀
		+ 𝛾 𝑡	⟨︀	𝐺(𝑊 𝑡-1 ), 𝑊 𝑡-1 -𝑊 𝑡 ⟩︀	.
					(4.7.9)
	By the well-known identity,			

  2 W * + 𝐷 𝜑 (𝑊 𝑡 , 𝑊 𝑡-1 ). 𝑊 𝑡-1 ), 𝑊 𝑡-1 -𝑊 𝑡 ⟩︀ 10𝛾 2 𝑡 ℒ 2 U ,V Ω 𝒰 Ω 𝒱 + 2𝛾 2Using (4.7.10) and (4.7.5), this results in∆ 𝑓 ( Ū 𝑇 , V 𝑇 ) = E

	Combining (4.7.6), (4.7.4), and (4.7.15), this implies
						𝛾 𝑡 Ξ(𝑡 ⟨︀ (︀ Ω 𝒰 σ2 𝒱 + Ω 𝒱	σ2
		[︂	max	{︀	𝑓 ( Ū 𝑇 , 𝑉 ) -𝑓 (𝑈, V 𝑇 ) }︀	]︂
		(𝑈,𝑉 )∈𝒲							
	1 𝑇	[︂ ℎ(𝑊 0 ) -min 𝑊 ∈𝒲	ℎ(𝑊 ) +	1 𝛾	+ 2𝑇 𝛾	(︀ 5ℒ 2 U ,V Ω 𝒰 Ω 𝒱 + Ω 𝒰	σ2 𝒱 + Ω 𝒱	σ2 𝒰	]︂ )︀	;

𝒰

)︀ + 𝐷 𝜑 (𝑊 𝑡 , 𝑊 𝑡-1 ).

  4.7.3 Auxiliary lemmasLemma 4.1. Let 𝑋 0 ∈ R 𝑛 + and 𝑋 1 = arg min 𝑗 • exp(-𝑆 𝑗 /𝐶 2 ) and 𝜌 = min(𝑀 • 𝑒 Let us first do the internal minimization. By simple algebra, the first-order optimality condition for the Lagrangian dual problem (with constraint ‖𝑋‖ 1 = 𝑅) amounts to𝑆 𝑖 + 𝐶 2 + 𝐶 2 log 𝑋 1 𝑖 -𝐶 2 log 𝑋 0 𝑖 + 𝜅 = 0,where 𝜅 is Lagrange multiplier, and 𝑗 • 𝐷 𝑗 and substituting for 𝑋 1 in the external minimization problem, we arrive at𝜌 = arg minOne can easily verify that the counterpart of this minimization problem with 𝑅 = ∞ has a unique stationary point 𝑟 * = 𝑀 • 𝑒 As the minimized function is convex, the minimum is attained at the point 𝜌 = min(𝑟 * , 𝑅). 4.2. Given 𝑋 ∈ R 𝑛×𝑑 and mixed norms (cf.(4.2.4)) ‖ • ‖ 𝑝 1 𝑉 on R 𝑛×𝑘 with 𝑝 2 𝑖)‖ 𝑞 1 𝑉 • ‖𝑈 (𝑖, :)‖ 𝑞 2 𝑉 }︃ = ‖𝑋 ⊤ ‖ 𝑞 1 𝑈 is the conjugate of 𝑝 1 𝑈 , i.e., 1/𝑝 1 𝑈 + 1/𝑞 1 𝑈 = 1. Proof. First assume 𝑝 2 𝑈 = 𝑞 2 𝑉 . Let 𝑎 𝑖 = ‖𝑋(:, 𝑖)‖ 𝑞 1 𝑉 , 𝑢 𝑖 = ‖𝑈 (𝑖, :)‖ 𝑞 2 𝑉 , 1 𝑖 𝑑. Then, 𝑎 𝑖 𝑢 𝑖 = ‖𝑎‖ 𝑞 1 𝑈 = ‖𝑋 ⊤ ‖ 𝑞 1 Now let 𝑝 2 𝑈 < 𝑞2 𝑉 . Then, for any 𝑖 ≤ 𝑑 one has ‖𝑈 (𝑖, :)‖ 𝑞 2 𝑉 < ‖𝑈 (𝑖, :)‖ 𝑝 2 𝑈 unless 𝑈 (𝑖, :) has a single non-zero element, in which case ‖𝑈 (𝑖, :)‖ 𝑞 2 𝑉 = ‖𝑈 (𝑖, :)‖ 𝑝 2 𝑈 . Hence, the supremum must be attained on such 𝑈 , for which the previous argument applies. Lemma 4.3. In the setting of Lemma 4.2, for any 𝑞 1 . The claim follows by instatiating Lemma 4.2. 4.7.4 Proof of Proposition 4.1 By (4.2.10), and verifying that the dual norm to ‖ • ‖ 2×1 is ‖ • ‖ 2×∞ , we have

	and ‖ • ‖ 𝑞 1 𝑉 ×𝑞 2						𝑈	𝑞 2 𝑉 , one has
		sup ‖𝑈 ‖ 𝑝 1 𝑈 ×𝑝 2 𝑈	1	{︃ ∑︁ 𝑑 𝑖=1	‖𝑋‖ 1 𝑅 𝑋∈R 𝑛 + ‖𝑋(:, 𝑈 ×𝑞 1 {︂ 𝐶 1 ‖𝑋‖ 1 +⟨𝑆, 𝑋⟩+𝐶 2 𝑉 , 𝑛 ∑︀ 𝑖=1	𝑋 𝑖 log	𝑋 𝑖 𝑋 0 𝑖	}︂ .
	Then,											
							𝑋 1 𝑖 = 𝜌 •	𝑋 0 𝑖 • exp(-𝑆 𝑖 /𝐶 2 ) 𝑀	,
	where 𝑀 =	𝑛 ∑︀	𝑋 0										-	𝐶 1 +𝐶 2 𝐶 2	, 𝑅).
		𝑗=1 {︃ 𝑑										}︃	𝑑
	Proof. Clearly, we have sup ‖𝑈 ‖ 𝑝 1 𝑈 ×𝑝 2 𝑈 1 ∑︁ 𝑖=1 ‖𝑋(:, 𝑖)‖ 𝑞 1 𝑉 • ‖𝑈 (𝑖, :)‖ 𝑞 2 𝑉	= sup ‖𝑢‖ 𝑝 1 𝑈	1	𝑖=1 ∑︁	𝑈 ×𝑞 1 𝑉 .
		𝑋 1 = arg min 𝑟 𝑅	min ‖𝑋‖ 1 =𝑟 𝑋∈R 𝑛 +	{︂ 𝐶 1 𝑟 + ⟨𝑆, 𝑋⟩ + 𝐶 2	𝑛 ∑︁ 𝑖=1	𝑋 𝑖 log	𝑋 𝑖 𝑖 𝑋 0	}︂ .
													𝑈	1 and 𝑞 2 𝑈	1 one has:
						{︃						
				sup								
			‖𝑉 ‖ ∞×1 ≤1						𝑛 ∑︀	𝑖 = 𝑟. Equivalently, 𝑋 1
											𝑖=1
					𝑋 1 𝑖 = 𝑋 0 𝑖 • exp	(︂ -	(︂	𝜅 + 𝐶 2 + 𝑆 𝑖 𝐶 2	)︂)︂	,
	that is,											
						𝑋 1 𝑖 = 𝑟 •	𝑋 0 𝑖 • exp(-𝑆 𝑖 /𝐶 2 ) ∑︀
		𝑟 𝑅	{︃ 𝐶 1 𝑟 + 𝑟	∑︁ 𝑖	𝑋 0 𝑖 𝐷 𝑖 𝑆 𝑖 𝑀	+ 𝐶 2 • 𝑟	∑︁ 𝑖	𝑋 0 𝑖 𝐷 𝑖 𝑀	• log	[︂	𝑟 • 𝐷 𝑖 𝑀	]︂ }︃	.
	-> 0. Lemma 𝑈 ×𝑝 2 𝐶 1 +𝐶 2 𝐶 2 𝑈	on R 𝑑×𝑘

𝑗 𝑋 0 𝑗 • exp(-𝑆 𝑗 /𝐶 2 )

.

Denoting 𝐷 𝑗 = exp(-𝑆 𝑗 /𝐶 2 ) and 𝑀 = ∑︀ 𝑗 𝑋 0 where 𝑞 1 𝑛 ∑︁ 𝑖=1 ‖𝑋 ⊤ (:, 𝑖)‖ 𝑞 1 𝑈 • ‖𝑉 (𝑖, :)‖ 𝑞 2 𝑈 }︃ = ‖𝑋‖ 1×𝑞 1 𝑈 .

Proof

.

  are given by 𝑞 1 𝑈 • ‖𝑉 (𝑗, :) -𝑌 (𝑗, :)‖ 𝑞 2 𝑞 1 𝑈 • ‖𝑉 (𝚥, :) -𝑌 (𝚥, :)‖ 𝑞 2 𝑈 . Moreover, we can bound their respective variance proxies (cf. (4.3.2)): introducing Proof. Note that the dual norms to ‖ • ‖ 𝑝 1 where the last transition can be verified directly. The right-hand side can be easily minimized on ∆ 2𝑑 explicitly, which results in Now we can bound 𝜎 2 ︀ 𝒰 (𝑝 * ) via the triangle inequality: where we used Lemma 4.2 (see Appendix 4.7.3) in the last transition. 2 𝑜 . We now deal with E [‖𝜂 𝑉,𝑌 (𝑞)‖ 2 U * ]. As previously, we can explicitly compute 𝑞 * 𝑗 = ‖ ̂︀ 𝑋(𝑗, :)‖ 𝑞 1 𝑈 • ‖𝑉 (𝑗, :) -𝑌 (𝑗, :)‖ 𝑞 2 ̂︀ 𝑋(𝚥, :)‖ 𝑞 1 𝑈 • ‖𝑉 (𝚥, :) -𝑌 (𝚥, :)‖ 𝑞 2 Here in the second line we used that the Minkowski sum ∆ 𝑘 +(-∆ 𝑘 ) belongs to the ℓ 1ball with radius 2 (whence 𝒱 + (-𝒱) belongs to the (ℓ ∞ × ℓ 1 )-ball with radius 2); in the third line we used Lemma 4.3 (see Appendix 4.7.3) and the relation on R 𝑛×𝑘 : Proof of Proposition 4.2. We instantiate Proposition 4.5 with ‖ • ‖ U = ‖ • ‖ 1×1 and ‖•‖ V = ‖•‖ 2×1 , and observe, using Proposition 4.1, that for ̂︀ 𝑋 = [𝑋, -𝑋] ∈ R 𝑛×2𝑑 it holds ̂︀ ℒ U ,V = 1 𝑛 ‖ ̂︀ 𝑋 ⊤ ‖ ∞×2 = 1 𝑛 ‖𝑋 ⊤ ‖ ∞×2 , ‖ ̂︀ 𝑋‖ 1×∞ = ‖𝑋‖ 1×∞ .

	𝜎 2 ︀ 𝒰 (𝑝 * )	2 𝑛 2 sup ︀ 𝑈 ∈ ̂︀ 𝒰	‖ ̂︀ 𝑋 ̂︀ 𝑈 ‖ 2 V * +	2 𝑛 2 sup ︀ 𝑈 ∈ ̂︀ 𝒰	E	[︀	‖𝜉 𝑈 (𝑝 * )‖ 2 ̂︀ V *	]︀
	𝑝 * 𝑖 = 4.7.6 Proof of Proposition 4.3 ‖ ̂︀ 𝑋(:, 𝑖)‖ 𝑞 1 𝑉 • ‖ ̂︀ 𝑈 (𝑖, :)‖ 𝑞 2 𝑉 ∑︀ 2𝑑 𝚤=1 ‖ ̂︀ 𝑋(:, 𝚤)‖ 𝑞 1 𝑉 • ‖ ̂︀ 𝑈 (𝚤, :)‖ 𝑞 2 𝑉 , 𝑞 * 𝑗 = = 2𝑅 2 𝒰 ̂︀ ℒ 2 U ,V + [︃ 2𝑑 2 ∑︁ 𝑛 2 sup ︀ 𝑈 ∈ ̂︀ 𝒰 𝑖=1 = 2𝑅 2 𝒰 ̂︀ ℒ 2 U ,V + [︃ ∑︀ 𝑛 ‖ ̂︀ 𝑋(𝑗, :)‖ 𝑈 𝚥=1 ‖ ̂︀ ]︃ 2 ‖ ̂︀ 𝑋(:, 𝑖)‖ 𝑞 1 𝑉 • ‖ ̂︀ 𝑈 (𝑖, :)‖ 𝑞 2 𝑉 2𝑑 ]︃ 2 2 𝑛 2 sup ‖ ̂︀ 𝑈 ‖ U ≤𝑅 𝒰 ∑︁ 𝑖=1 ‖ ̂︀ 𝑋(:, 𝑖)‖ 𝑞 1 𝑉 • ‖ ̂︀ 𝑈 (𝑖, :)‖ 𝑞 2 𝑉 We have 𝑋(𝚥, :)‖ ︀ ℒ 2 U ,V = = 2𝑅 2 𝒰 ̂︀ ℒ 2 U ,V + 2 𝑛 2 𝑅 2 𝒰 ‖ ̂︀ 𝑋 ⊤ ‖ 2 𝑞 1 𝑈 ×𝑞 1 𝑉 , min 𝑝∈Δ 2𝑑 , 𝑃 ∈(Δ ⊤ 𝑘 ) ⊗2𝑑 E‖𝜉 ̂︀ 𝑈 (𝑝, 𝑃 )‖ 2 2×∞ = min 𝑝∈Δ 2𝑑 , 𝑃 ∈(Δ ⊤ 2𝑑 ∑︁ 𝑖=1 1 𝑝 𝑖 ‖ ̂︀ 𝑋(:, 𝑖)‖ 2 2 • [︃ 𝑘 ∑︁ 𝑙=1 ]︃ 1 • | ̂︀ 𝑈 (𝑖, 𝑙)| 2 𝑃 𝑖𝑙 𝑘 ) ⊗2𝑑 1 𝑛 2 sup ‖ ̂︀ 𝑈 ‖ U ≤1 ‖ ̂︀ 𝑋 ̂︀ 𝑈 ‖ 2 V * , we have, as long as 𝑝 2 𝑈 = min 𝑝∈Δ 2𝑑 2𝑑 ∑︁ 1 ‖ ̂︀ 𝑋(:, 𝑖)‖ 2 2 • ‖ ̂︀ 𝑈 (𝑖, :)‖ 2 1 , 𝑝 𝑖 𝑖=1 𝑞 2 𝑉 , 𝜎 2 ︀ 𝒰 (𝑝 * ) 2𝑅 2 𝒰 ̂︀ ℒ 2 U ,V + 2 𝑛 2 𝑅 2 𝒰 ‖ ̂︀ 𝑋 ⊤ ‖ 2 𝑞 1 𝑈 ×𝑞 1 𝑉 , and, as long as 𝑝 1 𝑉 2, 𝜎 2 𝒱 (𝑞 * ) 8𝑛 ̂︀ ℒ 2 U ,V + 8 𝑛 2 ‖ ̂︀ 𝑋‖ 2 1×𝑞 1 𝑈 𝑈 ×𝑝 2 𝑈 and ‖ • ‖ 𝑝 1 𝑉 ×𝑝 2 𝑉 are given by ‖ • ‖ 𝑞 1 𝑈 ×𝑞 2 𝑈 and ‖ • ‖ 𝑞 1 𝑉 ×𝑞 2 𝑉 correspondingly, see, e.g., Sra [2012]. 1 𝑜 . For E [︀ ‖𝜉 ̂︀ 𝑈 (𝑝)‖ 2 V * 𝑈 ∑︀ 𝑛 where we carried out the internal minimization explicitly, obtaining 𝑃 * 𝑖𝑙 = | ̂︀ 𝑈 𝑖𝑙 | ‖ ̂︀ 𝑈 (𝑖, :)‖ 1 . Optimization in 𝑝 gives: 𝚥=1 ‖ Thus, by the triangle inequality, 𝜎 2 𝒱 (𝑞 * ) 2 𝑛 2 sup (𝑉,𝑌 )∈𝒱×𝒱 ‖ ̂︀ 𝑋 ⊤ (𝑉 -𝑌 )‖ 2 U * + 2 𝑛 2 sup E [︀ ‖𝜂 𝑉,𝑌 (𝑞 * )‖ 2 U * 𝑝 * ‖ ̂︀ 𝑋(:, 𝑖)‖ 2 • ‖ ̂︀ 𝑈 (𝑖, :)‖ 1 𝑖 = 2𝑑 ]︀ ∑︀ ‖ ̂︀ 𝑋(:, 𝚤)‖ 2 • ‖ ̂︀ 𝑈 (𝚤, :)‖ 1 (𝑉,𝑌 )∈𝒱×𝒱 𝚤=1 ]︀ we have: E [︀ ‖𝜉 ̂︀ 𝑈 (𝑝)‖ 2 V * ]︀ = 2𝑑 ∑︁ 𝑖=1 𝑝 𝑖 ⃦ ⃦ ⃦ ⃦ ̂︀ 𝑋 𝑒 𝑖 𝑒 ⊤ 𝑖 𝑝 𝑖 ̂︀ 𝑈 ⃦ ⃦ ⃦ ⃦ 2 𝑞 1 𝑉 ×𝑞 2 𝑉 = 2𝑑 ∑︁ 𝑖=1 1 𝑝 𝑖 ⃦ ⃦ ̂︀ 𝑋(:, 𝑖) • ̂︀ 𝑈 (𝑖, :) ⃦ ⃦ 2 𝑞 1 𝑉 ×𝑞 2 𝑉 = 2𝑑 ∑︁ 𝑖=1 2 𝑛 2 sup ‖𝑉 ‖ ∞×1 2 ‖ ̂︀ 𝑋 ⊤ 𝑉 ‖ 2 U * + 2 𝑛 2 sup ‖𝑉 ‖ ∞×1 2 [︃ 𝑛 ∑︁ ‖ ̂︀ 𝑋(𝑗, :)‖ 𝑞 1 ]︃ 2 Defining 𝑈 • ‖𝑉 (𝑗, :)‖ 𝑞 2 𝑈 ̂︀ ℒ U ,V = sup ‖𝑋 ̂︀ 𝑈 ‖ V * 𝑗=1 = 8 𝑛 sup ‖𝑉 ‖ 2×1 1 ‖ ̂︀ 𝑋 ⊤ 𝑉 ‖ 2 U * + ‖ ̂︀ 𝑈 ‖ U ≤1 8 𝑋‖ 2 1×𝑞 1 𝑈 and proceeding as in the proof of Proposition 4.5, we get 𝑛 2 ‖ ̂︀ 1 𝑝 𝑖 ‖ ̂︀ 𝑋(:, 𝑖)‖ 2 𝑞 1 𝑉 • ‖ ̂︀ 𝑈 (𝑖, :)‖ 2 𝑞 2 𝑉 , 8 𝑛 sup ‖𝑉 ‖ 𝑝 1 𝑉 ×𝑝 2 𝑉 1 ‖ ̂︀ 𝑋 ⊤ 𝑉 ‖ 2 U * + 8 𝑛 2 ‖ ̂︀ 𝑋‖ 2 1×𝑞 1 𝑈 𝜎 2 ︀ 𝒰 (𝑝 * , 𝑃 * ) 2 𝑛 2 sup ︀ 𝑈 ∈ ̂︀ 𝒰 ‖ ̂︀ 𝑋 ̂︀ 𝑈 ‖ 2 2×∞ + 2 ︀ 𝑈 ∈ ̂︀ 𝒰 𝑛 2 sup E [︀ 2×∞ ‖𝜉 2 ]︀
	= 8𝑛 ̂︀ ℒ 2 U ,V + = 2𝑅 2 8 𝑛 2 ‖ ̂︀ 𝑋‖ 2 1×𝑞 1 𝑈 𝒰 ̂︀ ℒ 2 U ,V + 𝑛 2 sup . ︀ 𝑈 ∈ ̂︀ 𝒰 2	[︃	𝑖=1 ∑︁ 2𝑑	‖ ̂︀ 𝑋(:, 𝑖)‖ 2 • ‖ ̂︀ 𝑈 (𝑖, :)‖ 1	]︃ 2
		𝑝 * 𝑖 = = 2𝑅 2 𝒰 ̂︀ ℒ 2 U ,V + ‖ ̂︀ 𝑋(:, 𝑖)‖ 𝑞 1 𝑉 • ‖ ̂︀ 𝑈 (𝑖, :)‖ 𝑞 2 𝑉 ∑︀ 2𝑑 𝚤=1 ‖ ̂︀ 𝑋(:, 𝚤)‖ 𝑞 1 𝑉 • ‖ ̂︀ 𝑈 (𝚤, :)‖ 𝑞 2 𝑉 [︃ 2𝑑 2𝑅 2 𝒰 ‖ ̂︀ 𝑈 ‖ 1×1 1 𝑖=1 𝑛 2 sup ∑︁ ‖ ̂︀ 𝑋(:, 𝑖)‖ 2 • ‖ ̂︀ 𝑈 (𝑖, :)‖ 1
	and		[︃ ‖ • ‖ 2×1 2𝑑	√	𝑛‖ • ‖ ∞×1 ;	]︃ 2
	E lastly, we used that 𝑝 1 [︀ ‖𝜉 𝑈 (𝑝 * )‖ 2 ̂︀ V * 𝑉 ≥ 2 and that ‖ • ‖ 𝑝 1 ]︀ = ∑︁ 𝑖=1 ‖ ̂︀ 𝑋(:, 𝑖)‖ 𝑞 1 𝑉 • ‖ ̂︀ 𝑈 (𝑖, :)‖ 𝑞 2 𝑉 𝑉 ×𝑝 2 𝑉 is non-increasing in 𝑝 1 . 𝑉 , 𝑝 2 𝑉 ≥ 1.

𝑈

and

E [︀ ‖𝜂 𝑉,𝑌 (𝑞 * )‖ 2 U * ]︀ = [︃ 𝑛 ∑︁ 𝑗=1 ‖ ̂︀ 𝑋(𝑗, :)‖ 𝑞 1 𝑈 • ‖𝑉 (𝑗, :) -𝑌 (𝑗, :)‖ 𝑞 2 𝑈 ]︃ 2 . , E‖𝜉 𝑈 (𝑝 * , 𝑃 * )‖ 2 2×∞ = 2𝑑 ∑︁ 𝑖=1 ‖ ̂︀ 𝑋(:, 𝑖)‖ 2 • ‖ ̂︀ 𝑈 (𝑖, :)‖ 1 .

̂︀ 𝑈 (𝑝 * , 𝑃 * )‖

  (𝑖,𝑙)/𝑛 , and 𝜂 𝑉 𝑡 ,𝑌 has a single non-zero column 𝜂 𝑡 = 𝜂 𝑡 𝑉 𝑡 ,𝑌 (:, 𝑙 𝑡 ). This can be rewritten as 𝑒 -2𝛾𝑡𝐿𝑅*𝜂 𝑡 𝑖 /𝑛 , 𝜈 = min{𝑒 -2𝛾𝑡𝐿𝑅*𝜆 , 𝑅 * /𝑀 }, Thus, 𝑀 and 𝜈 can be expressed via 𝜋 𝑡 (𝑖) = ∑︀ 𝑙∈[𝑘] 𝑈 𝑡 (𝑖, 𝑙), cf. (4.7.17): where we used the premise (4.7.16). Now we can see that lazy updates of ̃︀ One can immediately verify that this is exactly the update produced in the call of Procedure 1 in line 13 of Algorithm 1. ̃︀ 𝑉 , 𝑌 ∈ R 𝑛×𝑘 , 𝛽, 𝜌, 𝜉 ∈ R 𝑛 , ℓ ∈ [𝑘], 𝑦 ∈ [𝑘] ⊗𝑛 , 𝛾 1: 𝜃 = 𝑒 -2𝛾 log(𝑘) 2: for 𝑗 = 1 to 𝑛 do

								𝑈 can be
	expressed as						
						𝛼 𝑡+1 𝑖 𝑈 𝑡+1 ︀ 𝑖,𝑙 𝑡 = ̃︀ = 𝜈 • 𝛼 𝑡 𝑖 , 𝑈 𝑡 𝑖,𝑙 𝑡 • 𝑞 𝑡 𝑖 ,	(4.7.20)
	and the updates for the norms 𝜋 𝑡+1 as
		𝜋 𝑡+1 𝑖	= 𝜈 𝑡	[︁	𝜋 𝑡 𝑖 + 𝛼 𝑡 𝑖	̃︀ 𝑈 𝑡 𝑖,𝑙 𝑡 (𝑞 𝑡 𝑖 -1) ]︁	(4.7.21)
	Procedure 2 UpdateDual					
	Require:						
		𝑈 𝑡+1 𝑖𝑙	=	{︃ 𝑈 𝑡 𝑖𝑙 • 𝜈 • 𝑞 𝑡 𝑖 , 𝑙 = 𝑙 𝑡 , 𝑈 𝑡 𝑖𝑙 • 𝜈, 𝑙 ̸ = 𝑙 𝑡 ,	(4.7.18)
	where	𝑞 𝑡 𝑖 = 𝑀 =	∑︁	𝑈 𝑡 𝑖𝑙 𝑡 • 𝑞 𝑡 𝑖 +	∑︁	∑︁	𝑈 𝑡 𝑖𝑙 .
			𝑖∈[2𝑑]			𝑖∈[2𝑑]	𝑙∈[𝑘]∖{𝑙 𝑡 }
		𝑀 =	∑︁	𝜋 𝑡 𝑖 -𝛼 𝑡 𝑖 ̃︀ 𝑈 𝑡 𝑖,𝑙 𝑡	(1 -𝑞 𝑡 𝑖 ),	(4.7.19)
					𝑖∈[2𝑑]	⏟ ⏞ 𝑈 𝑡 𝑖,𝑙 𝑡

3:

  1 , 𝚥 ∈ [𝑛](4.7.23) were the correct norms at the 𝑡-th step. Then Procedure 2 will output ̃︀ 𝑉 𝑡+𝑡 , 𝛽 𝑡+1 , 𝜌 𝑡+1 𝑡+1 (𝚥) = ‖𝑉 𝑡+1 (𝚥, :) -𝑌 (𝚥, :)‖ 1 , 𝚥 ∈ [𝑛].Proof. Recall that the random matrix 𝜉 𝑈 𝑡 has a single non-zero column 𝜉 𝑡 := 𝜉 𝑈 𝑡 (:, ℓ 𝑡 ), and according to (S-MD), the update 𝑉 𝑡 → 𝑉 𝑡+1 writes as (cf. (4.2.24)): 𝑡 log(𝑘)• (𝜉 𝑈 𝑡 (𝑗, 𝑙) -𝑌 (𝑗, 𝑙))] 2𝛾 𝑡 log(𝑘) • (𝜉 𝑈 𝑡 (𝑗, ℓ) -𝑌 (𝑗, ℓ))]Note that all elements of the matrix 𝜉 𝑈 𝑡 -𝑌 in each row 𝑗 have value 1, except for at most two elements in the columns ℓ 𝑡 and 𝑦 𝑗 , where 𝑦 𝑗 is the actual label of the 𝑗-th training example, that is, the only 𝑙 ∈ [𝑘] for which 𝑌 (𝑗, 𝑙) = 1. Recall also that ∑︀ ℓ∈[𝑘] 𝑉 𝑡 (𝑗, ℓ) = 1 for any 𝑗 ∈ [𝑛]. Thus, introducing𝜔 𝑗 = 𝑒 2𝛾𝑡 log(𝑘)𝜉 𝑡 𝑗 , 𝜀 𝑗 = 𝑒 -2𝛾𝑡 log(𝑘)𝑌 (𝑗,𝑙)as defined in Procedure 2, we can express the denominator in(4.7.24) as𝜔 𝑗 • 𝜀 𝑗 ), if ℓ 𝑡 = 𝑦 𝑗 , 𝑒 -2𝛾𝑡 log(𝑘) ), if ℓ 𝑡 ̸ = 𝑦 𝑗 ,(4.7.25)where we used the premise(4.7.22). One can verify that this corresponds to the value of 𝜒 𝑗 produced by line 7 of Procedure 2. Then, examining the numerator in (4.7.24), we can verify that lines 8-10 guarantee that holds for the updated values. To verify the second invariant, we combining this result with the premise(4.7.23). This gives

			𝑉 𝑡+1 𝑗𝑙	= 𝑉 𝑡 𝑗𝑙 •	exp[2𝛾 𝑘 ∑︀ 𝑉 𝑡 𝑗ℓ • exp[.	(4.7.24)
					ℓ=1
	𝜒 𝑗 =	⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩	1 -𝛽 𝑡 𝑗 • ̃︀ 𝑉 𝑡 𝑗,ℓ 𝑡 ⏟ ⏞ 𝑉 𝑡 𝑗,ℓ 𝑡 •(1 -1 -𝛽 𝑡 𝑗 • ̃︀ 𝑉 𝑡 𝑗,ℓ 𝑡 ⏟ ⏞ 𝑉 𝑡 𝑗,ℓ 𝑡	𝑉 𝑡 𝑗,𝑦 𝑗 ⏟ ⏞ 𝑉 𝑡 𝑗,𝑦 𝑗 •(1 -︀ 𝑉 𝑡+1 𝑗,𝑙 • 𝛽 𝑡+1 𝑗 = 𝑉 𝑡+1 𝑗,𝑙 , ∀𝑙 ∈ [𝑘]
					𝜌 𝑡+1 𝑗	= 2 -𝑉 𝑡+1 𝑗,𝑦 𝑗 = 2 -2𝛽 𝑡+1 𝑗	• ̃︀ 𝑉 𝑡+1 𝑗,𝑦 𝑗 ,

such that ̃︀ 𝑉 𝑡+1 (:, 𝑙) ∘ 𝛽 𝑡+1 = 𝑉 𝑡+1 (:, 𝑙), ∀𝑙 ∈ [𝑘] 123 and 𝜌 •(1 -𝜔 𝑗 • 𝜀 𝑗 ) -𝛽 𝑡 𝑗 • ̃︀

SADE can not recover the entire e.d.r. space in several cases, for example, a classification task or symmetric cases. For those cases, we should use secondorder methods (i.e., methods based on 𝒮 2 ).

3. MAVE works better, but the goal of this chapter is to compare momentmatching techniques. In Figure2-12, we provide examples where MAVE suffers from the curse of dimensionality and performs worse than moment-matching methods.

While our reasoning is informal here, it can be made more precise by considering so-called "source conditions" commonly used in the analysis of kernel methods[START_REF] Caponnetto | Optimal rates for the regularized least-squares algorithm[END_REF], but this is out of the scope of this chapter.

Surprisingly, we could not find accuracy guarantees for the composite-objective variants of Mirror Descent and Mirror Prox when applied to saddle-point problems. Note that the results of[START_REF] Duchi | Composite objective mirror descent[END_REF] only hold for Mirror Descent in a composite minimization problem, and those of[START_REF] Nesterov | On first-order algorithms for 𝑙 1 /nuclear norm minimization[END_REF] use a different (in fact, more robust) formulation of the algorithms.

This situation corresponds to the "general case" in the terminology[Juditsky and Nemirovski, 2011b, Sec. 2.5.2.1 and Prop. 2.6(ii)].

Note that in the biclass case, our variance estimate for the partial sampling scheme (cf. Theorem 4.2) reduces to those in[Juditsky and Nemirovski, 2011b, Section 2.5.2.3]. They consider the cases of ℓ 1 /ℓ 1 and ℓ 1 /ℓ 2 geometries for the primal/dual, and omit the case of ℓ 2 /ℓ 2 -geometry, in which the sampling variance "explodes".

Note that 𝜑(𝑊 ) is continuously differentiable in the interior of 𝒲, and ∇𝜑 diverges on the border of 𝒲, then the iterates are guaranteed to stay in the interior of[START_REF] Beck | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF].

Primal updates (Procedure 1). To demonstrate the correctness of Procedure 1, we prove the following result:
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Chapter 4

Sublinear Primal-Dual Algorithms for Large-Scale Multiclass Classification Abstract In this chapter, we study multiclass classification problems with potentially large number of classes 𝑘, number of features 𝑑, and sample size 𝑛. Our goal is to develop efficient algorithms to train linear classifiers with losses of a certain type, allowing to address, in particular, multiclass support vector machines (SVM) and softmax regression. The developed algorithms are based on first-order proximal primal-dual schemes -Mirror Descent and Mirror Prox. In particular, forthe multiclass SVM with elementwise ℓ 1 -regularization we propose a sublinear algorithm with numerical complexity of one iteration being only 𝑂(𝑑 + 𝑛 + 𝑘). This result relies on the combination of three ideas: (i) passing to the saddle-point problem with a quasi-bilinear objective; (ii) ad-hoc variance reduction technique based on a non-uniform sampling of matrix multiplication; (iii) the proper choice of the proximal setup in Mirror Descent type schemes leading to the balance between the stochastic and deterministic error terms.

The material presented in this chapter is a joint work with Dmitrii M. Ostrovskii and Francis Bach. It is submitted to the ICML 2019 conference.

Introduction

We focus on efficient training of multiclass linear classifiers, potentially with very large numbers of classes and dimensionality of the feature space, and with losses of a certain type. Formally, consider a dataset comprised of 𝑛 pairs (𝑥 𝑖 , 𝑦 𝑖 ), 𝑖 = 1, ..., 𝑛, where 𝑥 𝑖 ∈ R 𝑑 is the feature vector of the 𝑖-th training example, and 𝑦 𝑖 ∈ {𝑒 1 , ..., 𝑒 𝑘 } is the label vector encoding one of the 𝑘 possible classes, 𝑒 1 , ..., 𝑒 𝑘 ⊆ R 𝑘 being the standard basis vectors (we assume there are no ambiguities in the class assignment). Given such data, we would like to find a linear classifier that minimizes the regularized Here we denote

where 𝑣 𝑖 , 𝑦 𝑖 ∈ ∆ 𝑘 are the 𝑖-th rows of 𝑉 and 𝑌 , whereas

is the Cartesian product of probability simplices comprising all matrices in R 𝑛×𝑘 with rows belonging to ∆ 𝑘 . Taking into account the availability of the Fenchel dual representation (4.1.2), recasting the convex minimization problem (4.1.1) in the form (4.1.5) is quite natural. Indeed, while the objective in (4.1.1) can be non-smooth, the "non-trivial" part of the objective in (4.1.5), given by

is necessarily bilinear. On the other hand, the presence of the dual constraints, as given by (4.1.7), also does not seem problematic since 𝒱 allows for a computationally cheap projection oracle. Finally, the primal-dual formulation (4.1.5) allows one to control the duality gap, thus providing online accuracy certificates for the initial problem (see [START_REF] Nemirovski | Accuracy certificates for computational problems with convex structure[END_REF]).

In this chapter, we develop efficient algorithms for solving (4.1.1) via the associated saddle-point problem (4.1.5), building upon the two basic schemes for saddlepoint optimization: Mirror Descent and Mirror Prox (see Juditsky and Nemirovski [2011a,b], [START_REF] Nesterov | On first-order algorithms for 𝑙 1 /nuclear norm minimization[END_REF] and references therein). When applied to the class of general convex-concave saddle-point problems with available first-order information given by the partial (sub-)gradients of the objective, these basic schemes are well suited for obtaining medium-accuracy solutions -which is not a limitation in the context of empirical risk minimization, where the ultimate goal is to minimize the true (expected) risk.

Moreover, these basic schemes must be able, at least in principle, to capture the specific structure of quasi-bilinear saddle-point problems of the form (4.1.5). First, they rely on general Bregman divergences, rather than the standard Euclidean distance, to measure proximity of the points, which allows one to adjust to the particular non-Euclidean geometry associated to the set 𝒱 and the norm ‖ • ‖ U . Second, Mirror Descent and Mirror Prox retain their favorable convergence guarantees when the partial gradients are replaced with their unbiased estimates. To see why this circumstance is so important, recall that the computation of the partial gradients ∇ 𝑈 [Φ(𝑈, 𝑉 -𝑌 )] and ∇ 𝑉 [Φ(𝑈, 𝑉 -𝑌 )], cf. (4.1.8), is reduced to the computation of the matrix products 𝑋𝑈 and 𝑋 ⊤ (𝑉 -𝑌 ), and thus requires 𝑂(𝑑𝑛𝑘) operations. Given the partial gradients, the proximal steps associated to 𝑈 and 𝑉 variables, assuming the "simplicity" of ‖ • ‖ U in the aforementioned sense, can be computed in 𝑂(𝑑𝑘 + 𝑛𝑘). Thus, in the regime interesting to us, where both 𝑑 and 𝑘 can be very large, the computation of these matrix products becomes the main bottleneck. On the other hand, unbiased estimates of these matrix products, with reduced complexity of computation, can be Then we have the following guarantee for the duality gap:

Moreover, if one of the functions Υ(𝑈 ), ℱ(𝑉 ) is affine, the corresponding 𝑂(1/𝑇 ) error term vanishes from the bound.

Proof. 1 𝑜 . We begin by introducing the norm for 𝑊 = (𝑈, 𝑉 ):

and its dual norm defined for 𝐺 = (𝐺 𝑈 , 𝐺 𝑉 ) with 𝐺 𝑈 ∈ R 𝑑×𝑘 and 𝐺 𝑉 ∈ R 𝑛×𝑘 : 4.7.4) where ‖ • ‖ U * and ‖ • ‖ V * are the dual norms for ‖ • ‖ U and ‖ • ‖ V correspondingly.

We now make a few observations. First, the joint potential 𝜑 𝒲 (𝑊 ) given by (4.2.12) is 1-strongly convex with respect to the norm ‖ • ‖ W . Second, we can compute the potential difference corresponding to 𝜑 𝒲 :

Finally, by (4.7.2) and (4.2.10) we have

combining which with (4.7.1) we bound the ‖ • ‖ W * -norm of 𝐺(𝑊 ) on 𝒲:

2 𝑜 . We now follow the classical convergence analysis of composite Mirror Descent, see [START_REF] Duchi | Composite objective mirror descent[END_REF], extending it for convex-concave objectives. By the convexity properties of Ψ(𝑈, 𝑉 ) = Φ(𝑈, 𝑉 -𝑌 ), for any ( Ū , V ) ∈ 𝒲 and (𝑈, 𝑉 ) ∈ 𝒲 it holds

Let 𝑊 𝑡 = (𝑈 𝑡 , 𝑉 𝑡 ) be the 𝑡-th iterate of (4.2.6) for 𝑡 ≥ 1. By convexity of Υ(𝑈 ) and ℱ(𝑉 ), and denoting ℎ(𝑊 ) = Υ(𝑈 ) + ℱ(𝑉 ), we have, for any 𝑊 = [𝑈, 𝑉 ], that pr , 𝐴 𝑡+1 (note that the variables 𝑈 Σ , 𝐴 pr , 𝐴 𝑡+1 only changed within Procedure 3, so their output values are also the input values at the next iteration).

Proof. Indeed, it is clear that (4.7.27) will be preserved (cf. line 4 of Procedure 3). To verify (4.7.28), note that 𝐴 pr (𝑖, 𝑙) only gets updated when 𝑙 = 𝑙 𝑡 (cf. line 3), and in this case we will have 𝜏 𝑡+1 (𝑖, 𝑙) = 𝑡, and otherwise 𝜏 𝑡+1 (𝑖, 𝑙) = 𝜏 𝑡 (𝑖, 𝑙), cf. (4.7.30).

Thus, it only remains to verify the validity of (4.7.29) after the update. To this end, note that by (4.7.30) we know that the value ̃︀ 𝑈 𝑠 (𝑖, 𝑙) of the variable ̃︀ 𝑈 (𝑖, 𝑙) remained constant for 𝜏 𝑡 (𝑖, 𝑙) ≤ 𝑠 < 𝑡, and it will not change after the call at 𝑡-th iteration unless 𝑙 𝑡 = 𝑙, that is, unless 𝜏 𝑡+1 (𝑖, 𝑙) = 𝑡. This is exactly when line ( 2) is invoked, and it ensures (4.7.29) for 𝑡 + 1.

Finally, invoking (4.7.27)-(4.7.30) at 𝑡 = 𝑇 , we see that line 21 results in the correct final value ∑︀ 𝑇 𝑡=0 𝑈 𝑡 of the cumulative sum 𝑈 Σ . Thus, the correctness of Algorithm 1 is verified.

Additional remarks on Algorithm 1

Removing the 𝑂(𝑑𝑘) complexity term. In fact, the extra term 𝑂(𝑑𝑘) in the runtime and memory complexities of Algorithm 1 can be easily avoided. To see this, recall that when solving the simplex-constrained CCSPP (4.2.17), we are foremost interested in solving the ℓ 1 -constrained CCSPP (4.2.2), and an 𝜀-accurate solu-

2). Recall that we initialize Algorithm 1 with ̃︀ 𝑈 0 = 1 2𝑑×𝑘 and 𝛼 0 = 1 2𝑑 , which corresponds to ̂︀ 𝑈 0 = 0 2𝑑×𝑘 . Moreover, at any iteration we change a single entry of ̃︀ 𝑈 𝑡 , and scale the whole scaling vector 𝛼 0 = 1 2𝑑 by a constant (in fact, all entries of 𝛼 𝑡 are always equal to each other; we omitted this fact in the main text to simplify the presentation, since the entries of 𝛽 generally have different values). Hence, the final Chapter 5

Conclusion and Future Work

In this thesis we considered several parameter estimation problems: the extension of the moment-matching technique for non-linear regression, a special type of averaging for generalized linear models and sublinear algorithms for multiclass Fenchel-Young losses. We get theoretical guarantees for the corresponding convex and saddlepoint minimization problems.

In Chapter 2 we considered a general non-linear regression model and the dependence on an unknown 𝑘-dimensional subspace assumption. Our goal was direct estimation of this unknown 𝑘-dimensional space, which is often called the effective dimension reduction or e.d.r. space. We proposed new approaches (SADE and SPHD), combining two existing techniques (sliced inverse regression (SIR) and score functionbased estimation). We obtained consistent estimation for 𝑘 > 1 only using the firstorder score and proposed explicit approaches to learn the score from data.

It would be interesting to extend our sliced extensions to learning neural networks: indeed, our work focused on the subspace spanned by 𝑤 and cannot identify individual columns, while [START_REF] Janzamin | Generalization Bounds for Neural Networks through Tensor Factorization[END_REF] used tensor approaches to to estimate columns of 𝑤 in polynomial time. Another direction is to use smarter score matching techniques to estimate score functions from the data: try to learn only relevant directions. Indeed, our current approach for learning score functions uses a parametric assumption, i.e., that the score is the linear combination of 𝑚 basis functions and this number grows with the number of observations. This disadvantage can be avoided if we somehow manage to learn scores only in relevant directions.

In Chapter 3 we have explored how averaging procedures in stochastic gradient descent, which are crucial for fast convergence, could be improved by looking at the specifics of probabilistic modeling. Namely, averaging in the moment parameterization can have better properties than averaging in the natural parameterization.

While we have provided some theoretical arguments (asymptotic expansion in the finite-dimensional case, convergence to optimal predictions in the infinite-dimensional case), a detailed theoretical analysis with explicit convergence rates would provide a better understanding of the benefits of averaging predictions. 
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