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Résumé

Les travaux de cette thése ont été initiés par des problémes d’apprentissage
de données radiomiques. La Radiomique est une discipline médicale qui vise
I'analyse a grande échelle de données issues d’imageries médicales tradition-
nelles, pour aider au diagnostique et au traitement des cancers. L'hypotheése
principale de cette discipline est qu’en extrayant une grande quantité d’infor-
mations des images, on peut caractériser de bien meilleure fagon que 1'oeil
humain les spécificités de cette pathologie. Pour y parvenir, les données ra-
diomiques sont généralement constituées de plusieurs types d’images et/ou
de plusieurs types de caractéristiques (images, cliniques, génomiques).

Cette these aborde ce probleme sous l'angle de I’apprentissage automatique et
a pour objectif de proposer une solution générique, adaptée a tous problemes
d’apprentissage du méme type. Nous identifions ainsi en Radiomique deux
problématiques d’apprentissage: (i) 'apprentissage de données en grande
dimension et avec peu d’instances (high dimension, low sample size, a.k.a.
HDLSS) et (ii) 'apprentissage multi-vues. Les solutions proposées dans ce
manuscrit exploitent des représentations de dissimilarités obtenues a 1'aide
des Foréts Aléatoires. L'utilisation d"une représentation par dissimilarité per-
met de contourner les difficultés inhérentes a I’apprentissage en grande di-
mension et facilite I’analyse conjointe des descriptions multiples (les vues).

Les contributions de cette these portent sur 'utilisation de la mesure de dis-
similarité embarquée dans les méthodes de Foréts Aléatoires pour I'apprentis-
sage multi-vue de données HDLSS. En particulier, nous présentons trois ré-
sultats: (i) la démonstration et I'analyse de 1’efficacité de cette mesure pour
I'apprentissage multi-vue de données HDLSS; (ii) une nouvelle méthode pour
mesurer les dissimilarités a partir de Foréts Aléatoires, plus adaptée a ce type
de probleme d’apprentissage; et (iii) une nouvelle fagon d’exploiter 1'hétérogé-
neité des vues, a l'aide d’'un mécanisme de combinaison dynamique. Ces ré-
sultats ont été obtenus sur des données radiomiques mais aussi sur des prob-

lemes multi-vue classiques.

Mots-clés: Espace de dissimilarité, forét aléatoire, apprentissage multi-vue,
dimension élevée, taille réduite de I’échantillon, apprentissage de dissimilar-
ité, sélection dynamique
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Abstract

The work of this thesis was initiated by a Radiomic learning problem. Ra-
diomics is a medical discipline that aims at the large-scale analysis of data
from traditional medical imaging to assist in the diagnosis and treatment of
cancer. The main hypothesis of this discipline is that by extracting a large
amount of information from the images, we can characterize the specificities
of this pathology in a much better way than the human eye. To achieve this,
Radiomics data are generally based on several types of images and/or several
types of features (from images, clinical, genomic).

This thesis approaches this problem from the perspective of Machine Learning
(ML) and aims to propose a generic solution, adapted to any similar learning
problem. To do this, we identify two types of ML problems behind Radiomics:
(i) learning from high dimension, low sample size (HDLSS) and (ii) multi-
view learning. The solutions proposed in this manuscript exploit dissimilar-
ity representations obtained using the Random Forest method. The use of
dissimilarity representations makes it possible to overcome the well-known
difficulties of learning high dimensional data, and to facilitate the joint analy-
sis of the multiple descriptions, i.e. the views.

The contributions of this thesis focus on the use of the dissimilarity measure-
ment embedded in the Random Forest method for HDLSS multi-view learn-
ing. In particular, we present three main results: (i) the demonstration and
analysis of the effectiveness of this measure for HDLSS multi-view learning;
(if) a new method for measuring dissimilarities from Random Forests, better
adapted to this type of learning problem; and (iii) a new way to exploit the
heterogeneity of views, using a dynamic combination mechanism. These re-
sults have been obtained on radiomic data but also on classical multi-view

learning problems.

Keywords: Dissimilarity space, random forest, multi-view learning, high di-

mension, low sample size, dissimilarity learning, dynamic selection
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In many real-world Pattern Recognition problems, the data available are com-
plex, in the sense that they cannot be described by a single numerical rep-
resentation. For example, they can come from multiple sources as in video
surveillance problems ([119]), where multiple cameras are used to captured
the same scene, from different angles. This is necessary to avoid blind spot
or occlusions of object or persons. The images captured by these multiple
cameras are expected to complement each other to have a more accurate and
complete representation of the scene.

Another widespread situation is problems for which the raw data are de-
scribed via multiple feature extractors, with the goal to better capture their
complexity. In certain image recognition task for example, an image is de-
scribed by multiple feature representations, e.g. colour descriptors, shape de-
scriptors, texture descriptors, etc. Each of these descriptor families is used to
capture a particular characteristic of the images, and using them all together

is expected to help to better address the complexity of the recognition task.

The starting point of this work is a medical imaging problem of this type,
i.e. for which the data are derived from several image modalities and/or
several feature extractors. This problem is computer-aided cancer diagno-
sis/treatment based on Radiomic features, a key application of the DAISI
project, co-financed by the European Union with the European Regional De-
velopment Fund (ERDF) and by the Normandy Region. As part of the DAISI
project, this thesis has been initiated around the Radiomics application in col-
laboration with experts and doctors from the Henri Becquerel center, one of
the French Comprehensive Cancer Centers (FCCCs).

The objective of Radiomics is to describe radio-graphic medical images with
a large number of heterogeneous image features, in the hope of discovering
characteristics of the disease that cannot be discerned with the naked eye. The
main hypothesis is that exploiting numerous heterogeneous features may be
useful for predicting prognosis and therapeutic response for various condi-

tions, thus providing valuable information for personalized therapy.

This thesis work addresses the Radiomics problem from a Machine Learning
(ML) point of view. In doing so, Radiomics can be considered a Multi-View
Learning (MVL) problem, in which a "view’ is the set of features obtained
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from one modality and/or one feature extractor. Each instance of the problem
is therefore described by multiple views, and the goal is to learn a predic-
tive model by taking into account the complementarities of all views. MVL
tasks usually needs dedicated methods because it exhibits specific ML diffi-
culties. The first difficulty often relates to the overall dimension of the prob-
lem. Considering all the features extracted in all views, most MVL problems
are (very) high dimensional learning problems. This will largely narrow down
the choice of machine learning methods. For example, the popular machine
learning method Support Vector Machine (SVM) can suffer from data piling
problem on very high dimensional features ([163]). The high feature dimen-
sion usually requires a large number of labelled training instances. However,
it is impossible to collect a lot of training instances in various fields, espe-
cially in the medical field. Due to the problem of data collection and shar-
ing, the number of patients is always very small compared to the high fea-
ture dimension, which usually leads to the High Dimension Low Sample Size
(HDLSS) problem. Due to the small sample size, the instances are very sparse
in the feature space, which also makes it harder to deal with noise or outliers.
When multi-view problems are coupled with HDLSS problems, it becomes
more difficult because many multi-view techniques are unable to handle the
HDLSS problems while HDLSS solutions do not take multi-view information

into consideration.

Radiomics is a typical example of HDLSS multi-view problem. Each view of
Radiomic problem can easily have hundreds or thousands of features while
the sample size is usually smaller than one hundred. The state-of-the-art
works in Radiomics, however, concatenate the multi-view information into
one view and use feature selection techniques to decrease the feature dimen-
sion. These feature selection methods may lose some important information,
especially when only few features are selected. Furthermore, these meth-
ods also overlook the multi-view challenge, which deviates from the original
intention of extracting heterogeneous information. Features from different
views generally have distinct descriptions of the same instance and can pro-
vide additional information for the learning task, making it necessary to use
multi-view alternatives to take benefit of the complementary information.
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In the first part of the thesis, we aim at finding a solution to deal with both
HDLSS and multi-view challenges. A literature review on multi-view learn-
ing methods with a focus on the HDLSS problem is given in Chapter 1. One
straightforward solution is to find a low dimensional intermediate represen-
tation that can be comparable among all the views to tackle the HDLSS chal-
lenge. Then, these intermediate representations can be merged into a joint
representation to tackle the multi-view challenge. In this work, we propose
to use dissimilarity representations as the solution because it can naturally re-
duce the feature dimension to a lower space. The dissimilarity values are also
directly comparable from one view to another and easy to integrate.

As the only information shared by the different views is the class informa-
tion, we propose to use a dissimilarity measure that can take this information
into account. Among different supervised dissimilarity learning methods, we
propose to use the Random Forest Dissimilarity (RFD). Random Forest (RF)
is a successful machine learning method due to its interpretability and its ac-
curacy in classification and regression tasks. RF can also naturally handle
HDLSS problems thanks to the implicit feature selection mechanism as well
as the bootstrap procedure ([103]). RF also embed a dissimilarity measure,
the RFD measure, which reflects both feature and class dissimilarities. A first
solution of RFD based intermediate integration is proposed in Chapter 2 as
the solution for HDLSS multi-view problem: the features from each view are
firstly projected into a dissimilarity space built with RFD, then these dissim-
ilarity spaces are merged to form a joint dissimilarity space, used as the new
representation for learning. The proposed solution is compared to multiple
state-of-the-art Radiomic and multi-view solutions during the experiments
on real world datasets. We show that this proposed approach is accurate and
competitive on several real-world HDLSS multi-view problems.

In the second part of this thesis, we mainly focus on deepening this first so-
lution and make it more efficient for the HDLSS multi-view problem. We
identify two ways to improve the proposed method in Chapter 2: one in the
way the dissimilarity is computed from the RF and the other in the way the
view-specific dissimilarity representations are merged. For the first one, we
propose a finer and a more accurate dissimilarity measure based on Random

Forests, by better exploiting the tree structures. Each tree in a Random Forest
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estimates the dissimilarity between two instances with a binary value, which
may not be precise enough. Furthermore, the RFD estimate is a simple aver-
age over these binary values, while different trees may contribute differently
to the final dissimilarity value. To overcome these limitations, our proposal
is based on the evaluation of each terminal node confidence so that we can
tell which tree to trust for each test instance. Based on this proposal, we also
propose another more refined confidence measure using instance hardness to
make the dissimilarity measure more adaptive to the HDLSS problem.

The second improvement is to propose a more adaptive dissimilarity matrix
combination method to take better advantage of the multi-view information.
For the experiments in Chapter 2 and Chapter 3, the joint dissimilarity repre-
sentation is calculated by averaging over all the dissimilarity representations
from each view. With averaging, different views are assumed to have the
same importance for the classification task. However, for multi-view prob-
lem, different views usually offer very heterogeneous information and may
have different importance for the given task. To estimate this importance, two
methods based on static weighting and dynamic view selection respectively
are proposed in Chapter 4. We firstly propose to use the Out Of Bag (OOB)
accuracy of the Random Forest classifier used to built the dissimilarity repre-
sentation to estimate the importance of each view. The intuition is that if a
Random Forest has better generalization performance, the corresponding dis-
similarity measure also has better quality. Secondly, a dynamic view selection
method is proposed to select different view combinations for different test in-
stances with the intuition that the information provided from one view for

one test instance may not be as useful for another test instance.

Finally, we summarize our contributions in the last chapter, along with the
future works we are interested in for both short and long terms.
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1.1 Introduction

During the last decades, the field of computer vision and machine learning has
made a lot of progress in both hardware and software. To tackle more complex
problems, many studies use a large number of features as well as training in-
stances. Nowadays, it is common to have several heterogeneous descriptions
of the same set of instances. These multiple descriptions can come from "hard-
ware" such as several complementary modalities or from "software" such as
heterogeneous feature extractors for the same raw data. In machine learning,
these datasets are called multi-view problem with "view" being the name of

each type of information.

(a) Optical data (b) Range data

FIGURE 1.1: In the scenario of pedestrian detection, (a) opti-

cal data can provide useful RGB information while (b) range

data can provide useful distance information. Data from

different sensors can provide complementary information to

improve the detection performance. This figure is extracted
from [186].

From the perspective of hardware, plenty of new sensors or devices are in-
vented to collect more complementary data. For example, the Internet of
Things (IoT) has attracted a lot of attention in many countries by collecting
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data using numerous sensors. It is also very common to have data from dif-
ferent sensors to describe the same object in self driving car scenarios. In [186],
the authors use data from camera (Figure 1.1a) and lidar ( Figurel.1b) to have
a better pedestrian detection system. Data from different sensors usually can
provide complementary information (color and depth information in the ex-

ample of [186]) to improve the accuracy of machine learning models.

From the perspective of software, a large amount of new algorithms have
been proposed for both information extraction and data analysis. To make
the process of data analysis more efficient, many different feature extractors
have been proposed to better represent the characteristics of instances. Mul-
tiple feature extractors are usually used together to represent the data hetero-
geneity for complex problems. For example in Figure 1.2, the AWA dataset
used in [143] for natural scene image classification, is build with six different
groups of traditional features including RGB color histograms ([143]), Scale-
Invariant Feature Transform (SIFT [158]), rgSIFT ([229]), Pyramid Histogram
of Oriented Gradients (PHOG [31]), Speeded Up Robust Features (SURF [22])
and local self-similarity histograms ([207]), which results in a total of 10940
features.

There are also a lot of "genuine" multi-view problems. For example, social
media data from Facebook or Instagram contain image data along with tex-
tual data such as hashtags; videos are made up of visual data such as images
and texts (subtitles) as well as audio data; news data can always be found in
multiple different languages, etc. These multiple views generally convey ad-
ditional information, and successfully combining them often makes it possible

to obtain better overall performance than treating them individually.

In real world applications, the feature dimension is becoming higher and
higher in each view, which makes the feature dimension extremely high when
all multi-view features are concatenated. For example in [145], a total of 1403
handcrafted features and 98304 deep features from magnetic resonance imag-
ing (MRI) are extracted. Because of the curse of dimensionality, a lot of ma-
chine learning methods will suffer from over-fitting problem ([163, 256]). To
avoid this problem, a large amount of training instances are required, espe-

cially in multi-view learning when extra validation instances are often needed
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RGB color -
histograms F

—_
| |

rgSIFT features

Local self-similarity
histograms PHOG features

SURF features

FIGURE 1.2: Six different groups of features including RGB

color histograms, SIFT, rgSIFT, PHOG, SURF and local self-

similarity histograms are extracted from each individual im-
age to constitute the AWA dataset ([143]).

for the view combination. However, it is very expensive to collect a lot of train-
ing instances in many fields, which can easily make the sample size much
smaller than the feature size. When the high feature dimension problem is
combined with low sample size, it will lead to the High Dimension Low Sam-
ple Size (HDLSS) problem.

For multi-view problems, HDLSS may happen in the concatenated feature
space as well as in each individual view. It becomes more challenging when
multi-view problem meets HDLSS problem, because a lot of multi-view learn-
ing methods can not deal with HDLSS problem while HDLSS solutions do not
take multi-view into consideration. These two difficulties, when combined,
are referred to as HDLSS multi-view learning problems. The work of this
thesis was motivated by a real problem named Radiomics with these charac-
teristics, on which we will give more details in section 1.2. Then in section 1.3,
a literature review of HDLSS multi-view learning is given. In section 1.4, the
most appropriate solution for HDLSS multi-view problems is concluded and
the contributions of this thesis are listed.



1.2. The example of Radiomics 11

1.2 The example of Radiomics

In this section, the HDLSS multi-view problem is introduced and analyzed
in detail through the medical example of Radiomics. Although this work is
not restricted to this particular application, it is important here to present in
detail what Radiomics is and why it is a typical HDLSS multi-view learning
problem. The main mission of the thesis is to propose efficient new solutions
for the HDLSS multi-view problems such as Radiomics.

1.2.1 Background and workflow

Background of Radiomics

One of the main difficulties in the diagnosis and treatment of cancer rises from
the fact that tumors can show very heterogeneous profiles. This phenomenon
is called the tumour heterogeneity and may occur for both between tumours
(inter-tumour heterogeneity) and within tumours (intra-tumour heterogene-
ity). The tumor heterogeneity makes the diagnosis and treatment of cancer

more difficult.

The usual process of cancer detection is from certain signs and symptoms to
the further investigation by medical imaging and at last confirmed by biopsy
([3]). However, with the improvement of medical imaging technology, more
and more attention has been paid on the data collected from medical images
such as computed tomography (CT), positron emission tomography (PET) or
magnetic resonance imaging (MRI) in medical research during the last two
decades. Compared to the traditional procedure, medical imaging has the
advantage of being easy to perform, low cost, and non-invasive ([64]). One
of the most important reason which makes medical imaging popular in di-
agnosis and treatment of cancer is that tumor phenotype characteristics can
be visualized. One typical example can be found in Figure 1.3: representa-
tive CT images of lung cancer are shown on the left and the corresponding
3D visualizations are shown on the right. It can be seen that strong pheno-
typic heterogeneity can be visualized ([3]): some tumors are smaller, some are
bigger; some are round shaped while others are more spiky.
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FIGURE 1.3: Visualization of tumor heterogeneity from med-

ical imaging technology: example of CT images of lung can-

cer, CT scans are shown on the left and the corresponding 3D

visualization of tumor is shown to the right. This figure is
extracted from [3].

Radiomics was originally introduced in 2012 mainly for the diagnosis, prog-
nosis and prediction of cancer. It is easy to perform, low cost and non-invasive
as the information is collected from medical images such as CT or MRI other
than biopsy ([142]). The core principle of Radiomics is to extract a very large
number of features from multiple medical imaging modalities, in order to bet-
ter capture the tumor heterogeneity and improve the diagnosis and treatment
for cancer, but it has also been extended to many other medical studies where
a disease can be tomographically imaged ([170]).

Radiomics has aroused great interest over the past few years ([92]). Com-
pared to the current qualitative analysis in radiology, Radiomics can provide
a quantitative analysis including much more useful information to make op-
timal treatment decisions and make cancer treatment more effective and less
expensive ([136]). Many studies focus on the prediction for survival or the
prediction for the response of patients to the treatment. A lot of classifica-

tion tasks like classifying between patients with cancer and without cancer
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have also been done. Furthermore, the information provided by Radiomics
is thought nowadays to be complementary to clinical, pathological, and ge-
nomic information ([146, 234]).

Workflow of Radiomics

The process of Radiomics mainly contains three steps: data acquisition and
segmentation , feature extraction and data analysis. One typical example is
shown in Figure 1.4:

e From step 1) to 3) the data are collected from different medical imaging
devices and the regions of interest (ROI) are segmented. Collecting data
is quite hard in medical fields due to different data acquisition proto-
cols, data sharing policies, data privacy, etc. In many Radiomics studies,
researchers use no more than 50 patients in their dataset ([18, 43, 48, 61,

]). In [43], they have only 13 prostate cancer patients for example.

o Then from step 4) to 6), different feature extraction techniques are used
to extract multiple heterogeneous feature groups that can be comple-
mentary to each other. Due to the limited number of cancer patients, it is
common to have Radiomic datasets with many features but very small
number of training instances in comparison. Before the data analysis,
Radiomic features can also be combined with other features such as ge-
nomics, clinics or protein features in practice, which makes the problem
"more multi-view" with both multiple data sources and feature extrac-
tors, leading to a even higher feature dimension at the meantime.

¢ Finally, machine learning methods are used to build predictive, diagnos-
tic or prognostic models to help realize the personalized treatment. Due
to the large amount of features, it is common for traditional machine
learning methods to suffer from the curse of dimensionality. Hence, fea-
ture selection methods are usually used before machine learning model.
The most used machine learning methods in Radiomics include Ran-

dom Forest (RF), support vector machine (SVM) and neural networks

([84, 125, 211, 242]).
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FIGURE 1.4: Example of workflow in Radiomics: it can be

divided into three parts: 1. Data collection and segmentation

from step 1) to 3); 2. Feature extraction from step 4) to 6); 3.
Data analysis. This figure is extracted from [172]

In the following sections, we will review different features used in Radiomic
works as well as the machine learning methods used in the Radiomic litera-
ture.

1.2.2 Radiomic features

Handcrafted feature extraction

Most of the publications in Radiomics report the use of handcrafted image
features because of their interpretability even though they may cause an in-
evitable bias. There is no standard way to extract features from medical im-
ages. For different imaging modalities (CT, PET, MRI, etc.), features may be
different due to different modality characteristics. Different researchers also
have their own preference for extracting features too.
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Even though the choices of feature extractors may be different across Ra-
diomics studies, there are two aspects in common. The first one is that mul-
tiple heterogeneous feature extractors are often used to better represent the
tumor heterogeneity. Aerts et al have used four feature groups for lung and
head-and-neck cancer captured by CT images in [3] (shown in Figure 1.5),
including features calculated with first-order statistics from the histogram,
shape features, texture features and wavelet features. Similar feature extrac-
tion method can also be found in [173, ] (CT scans for lung and head-
and-neck cancer), [65, ] (CT scans for non-small-cell lung carcinoma), [87]
(MRI scans for head-and-neck cancer) and [237] (DCE-MRI for breast cancer).
However, for Radiomics in brain tumor, three different feature extractors are
used including local binary patterns (LBP), histogram of oriented gradients
(HOG) and SIFT features ([259]). Despite of the different feature extractors
for different cancers, there are at least two or three feature groups extracted
in Radiomic works. These features are also often combined with additional
information, like clinical and genomic information for example ([3]).

The second aspect in common for handcrafted Radiomic features is the "large
quantity of features". However, "large quantity” is a qualitative expression
and there is no study that defines the minimum number of features to be
large. In the workflow of Radiomics, we have pointed out that the sample
size of Radiomic problem is usually very small (fewer than one hundred pa-
tients), while the number of features is usually at least 4 or 5 times above the
number of learning instances ([3, 64, ). Hence, the large number of fea-
tures generally means that the feature size is much bigger than the sample
size in Radiomics. For example, the Radiomic dataset used in [258] is made
up of 84 patients and 6746 features.

Automatic feature learning

As manually extracted features would contain inevitable bias, researchers try
to develop some automatic feature extraction methods. Deep learning is the
most used, especially convolutional neural network (CNN). The advantage of
using CNN is that given the region of interest as input, and an objective as
output (e.g. classification), the features can be learned automatically.
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FIGURE 1.5: Example of popular feature extractors used in
Radiomics. Heterogeneous feature groups make Radiomic
problem multi-view. This figure is extracted from [3].

In [61], the authors propose a CNN architecture with 17 layers for multi-
parametric MRI data. The structure of the designed CNN is shown in Figure
1.6. The difficulty here is that their dataset only contains 20 patients which
is obviously too few for learning such a deep architecture. To overcome this
difficulty, the authors firstly reduce the numbers of parameters by treating the
receptive field as a random field with the connection weights in the receptive
field being spatially correlated subject to a spatial correlation parameter. Then
they augment the sample size by rotating the original images, resulting in 640
cancerous regions and 5712 healthy regions. However, compared to the num-
ber of parameters in CNN, the sample size is still not sufficient. There are also
some other works trying to use shallower networks to reduce the number of
parameters. In [254], they build a 4-layer CNN with 96 training instances (PET
images). Similarly in [48], they also propose a 4-layer CNN for the prediction
of 5 year mortality with 48 CT scans of chest.

There are mainly two disadvantages of CNN based feature extractors. Firstly,
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FIGURE 1.6: Example of feature extractors based on CNN.
This figure is extracted from [61].

they lack of interpretability. CNN is very often treated as black-box function
approximator that learns the mapping between a given input to a classifica-
tion output ([50]). This makes it less suitable for medical case because it is
hard to explain the utility of each feature and to provide human understand-
able justifications for its output. Secondly, CNN can be very accurate when
there are a lot of training instances, but in the case of Radiomics, the sam-
ple size is usually very small. Some papers use only 13-25 patients in total
for training and tests. Due to the lack of instances in Radiomics, more and
more works have tried to use transfer learning instead of training a CNN on
very small sample size ([120, 145, 154, 176]). To improve the performance of
transfer learning based features, handcrafted features are used in addition.
For example, in [145], they extract a total of 1403 handcrafted features and
98304 deep features from MRI of 75 patients. We have also combined transfer
learning features with handcrafted features for breast cancer histology data in
[46]. Deep learning features from ResNet-18 from [115] (512 features), ResNet-
152 from [115] (2048 features), ResNeXt from [250] (2048 features), NASNet-A
from [262] (4032 features) and VGG16 from [212] (25088 features) along with
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175 handcrafted features are used which result in a total of 33903 features (de-
tails about this work can be found in Appendix A).

1.2.3 Machine Learning for Radiomics

The previous section has detailed the first steps of the workflow of Radiomics
presented in Figure 1.4, until the feature extraction. This section focus on how
the literature addresses the next step of this workflow: the learning phase.

In the previous section, it has been shown that Radiomic problems are typical
HDLSS multi-view problems. In a large majority of Radiomic works, the mul-
tiple views are concatenated to form a single-view feature vector. Among the
multiple views, it is very often to have some high dimensional views. When
these multiple feature groups are concatenated, it usually worsens the HDLSS
problem. This constitutes the major obstacle for the traditional machine learn-
ing methods. For example, linear discriminant analysis (LDA) is not suitable
for HDLSS problem as the pooled covariance matrix is not invertible ([256]).
Support vector machine (SVM) is also proved to have data piling problem on
very high dimensional data ([163]), which may adversely affect the general-
ization performance of SVM in some HDLSS situations.

As a consequence, feature selection methods are systematically used to over-
come the difficulty of learning in high dimension. The goal is to reduce the
redundancy, noise, or irrelevant features while at the same time keep good
performance. There are mainly two feature selection strategies used in Ra-
diomic works. The first one is to select features by some predefined criteria
and then build machine learning classifiers on the selected features. The sec-
ond one combines the feature selection procedure with classification by using
the performance of a predefined classifier as the feature selection criteria.

Most of the studies of Radiomics belong to the first category, where feature
selection is used independently from the machine learning methods. Usually
a feature score showing the relevance or reliability (such as in [65], [174] and
[3]) is calculated to rank all the features. Then, the features with the lowest
ranks are removed. The number of features or the threshold should be pre-
defined. In Radiomics, most studies choose no more than 15 features among
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hundreds of features ([3, 64, 87, 114, 248]). Afterwards, statistical analysis and
machine learning methods are applied to the selected feature subsets. The ad-
vantages of the first methodology is obvious: it is computationally simple and
fast, hence it can scale to very high dimensional feature space easily. However,
these methods do not take into account the interaction with classifiers and the
search in the feature subset space is separated from the search in the hypothe-

sis space ([201]), which may hurt the performance of classifiers in some cases.

AUC
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Feature Selection Methods
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FIGURE 1.7: Heatmap depicting the predictive performance

(AUCQ) of feature selection (in rows) and classification (in

columns) methods. It can be observed that RF, BAG and BY

classification methods and feature selection methods WLCX,

MRMR show relatively high predictive performance in many
cases. This figure is extracted from [173].

Some studies also realize the important role of the classifier in Radiomics and

propose to combine feature selection methods with reliable machine learning
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methods to find the most accurate combination. For example, in [173], the
authors use 14 feature selection methods along with 12 classifier families on
CT images of lung cancer patients. Two similar studies has been done in [174]
and in [248]. The experimental result of [173] is shown in Figure 1.7: it can
be seen that feature selection criteria Minimum Redundancy Maximum Rel-
evance (MRMR) and Wilcoxon (WLCX) have the best general performance;
machine learning methods Bagging (BAG), RF and SVM have good overall
performance with selected features. But choosing the proper classifier on se-
lected features is very important too. For example, the features selected by
MRMR have the best performance if fed into BAG, RF or SVM. But when
Bayesian (BY) is used as the classifier on the same selected features, the perfor-
mance is the worst, which motivates the second category of feature selection
in Radiomics by taking the interaction of classifiers into consideration.

The second category of feature selection in Radiomics integrate the classifier
into the selection procedure to improve the classification performance. Gen-
erally speaking, a classifier needs to be chosen in advance and some feature
weighting or ranking approach is usually embedded in the training process.
The feature elimination is then realized according to the weight/rank of fea-
tures. Few Radiomic works have successfully used Support Vector Machine
Recursive Feature Elimination (SVM-RFE [107]) and obtained very good per-
formance. This approach differs from the most popular approaches used in
Radiomics by embedding the feature selection into the learning procedure of
the SVM, so that it can take the resulting classifier performance into account.
In [238, 257], they showed that SVM-RFE had very good performance on Ra-
diomic problem. The workflow of [257] is shown in Figure 1.8: SVM-REFE is
used to rank all the features, then SVM classifier is trained to select the best
size of feature subset. For other HDLSS problems, SVM-RFE also had very

good performance ([30]).



1.3. HDLSS multi-view learning: a literature review 21

Feature matrix with orig

Top-1 Feature
Top-2 Feature Set
Top-3 Feature Set

a— i

1 Top-N Feature Set)

SVM Classification For
Each Feature Set

; Jr”?"mmur_e_ set with best

: average performance

fos

Optimal Feature Subset
(With Top-n,Features)

FIGURE 1.8: The process for finding the optimal Radiomics
feature subset by SVM-RFE. This figure is extracted from
[257].

1.3 HDLSS multi-view learning: a literature review

In the previous section, we have introduced the HDLSS multi-view machine
learning problem through the example of Radiomics. The state-of-the-art Ra-
diomics solutions always ignore the multi-view machine learning challenge
behind the problem and use feature selection methods. However, multi-view

learning solutions that can take advantage of complementary information from
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different views should be considered to improve the performance. This sec-
tion presents a taxonomy of multi-view learning methods with an empha-
sis on HDLSS problems to provide better solutions to the HDLSS multi-view
learning problems. Our goal here is not to give an exhaustive survey on this
machine learning field but to present a panorama of the different multi-view
approaches, especially for the methods that can deal with the HDLSS prob-
lem. According to [204], there are three main kinds of multi-view approaches:
early integration, late integration and intermediate integration. Each of these

approaches is detailed in the following sections.

1.3.1 Problem statement

Before introducing the different multi-view learning approaches, this section
gives a formal definition of this type of problems, and details all the notations
that will be used in the rest of this manuscript.

Supervised learning

Supervised learning tasks strive to infer a function /, often called a model,
that maps an input domain &” to an output domain ):

h: X =Y

For cases where Y = IR, the problem is called a regression problem. For cases
where ) is a finite set of classes, the problems is called a classification problem.

In the latter case, the C classes are denoted {w1, wo, ..., we}.

For simplicity, and because it concerns most of the Radiomics tasks found in
the literature, this manuscript mainly focus on classification. However, note

that most of the methods described in this section also suit to regression tasks.

As for the input domain &, it is typically a m-dimensional space, i.e. X =
X1 x Ay x - -+ x Xy, where A&] is the domain of the ith feature of the problem.
Consequently, an instance x € X is a m-dimensional vector noted:

X = (xl/ X2, s Xm—1s xm)
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where x; is the value of the jth feature of x.

In supervised learning, & is said to be learnt from a set 7 of labeled instances.
This set is usually called a training set, and is composed of n input-output
pairs:

T = {Gca, ), (2, 2), -, Oon )}

Such a training set is often written as a n x m matrix:

X11 X12 X13 ... Xim
X21 X22 X23 ... X2m

X=1. ) . ) (1.1)
Xn1l Xn2 Xp3 - Xum

where x; ; is the value for the jth feature of the ith instance in 7. In the same
way, the n output values are gathered in a vector y = (yl,yz, .. .,yn), where
y; is the class label of the ith instance in 7.

Multi-view learning

Multi-view learning is a learning task where each instance is described by Q
different input vectors instead of only one. Formally, the task is to infer a
model h:

hexWx x@ o xQ 5y

where the X'(9) are called the views. These views constitute different descrip-
tion spaces of different dimensions, noted 1, to mg. In such learning frame-
work, the training set 7 is actually decomposed in Q training set:

70 = {64",y1), 647 2, (687 ) } ¥ = 1.0
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Similarly to 7, a multi-view dataset can be written as Q matrices:

Al
(@ @) . (q) (q)

X = xz_'l xz.,z xz_'3 x2’_’”q Vg =1.Q (1.2)
W,

()

where x; ;s the value of the jth feature of the ith instance in the gth view.

High dimension, low sample size (HDLSS)

HDLSS problems are learning problems for which the dimension m of the in-
put space is very high in regards to n, the number of instances available in
the training set 7. Machine learning problems described in high-dimensional
spaces are known in the scientific community to be particularly difficult, since
an enormous amount of training instances is typically required for learning
an accurate classifier. A typical rule of thumb is that there should be at least
5 training examples for each dimension in the representation ([224]). It is well
known that such “curse of dimensionality” problem leads to serious break-
down in many algorithms with an under-determined problem. According to
[163], in the context of HDLSS, classical multivariate analysis is useless due
to the need of the root inverse of the covariance matrix, which does not exist
(because the covariance is not of full rank). Many traditional machine learn-
ing techniques such as Logistic Regression (LR), discriminant analysis or K-
Nearest Neighbors (KNN) are not able to give a solution to HDLSS problem
due to the ill-posedness ([103]). For example, Linear Discriminant Analysis
(LDA) is not suitable for HDLSS problem as the pooled covariance matrix is
not invertible ([256]). Support Vector Machine (SVM) is also known to have
data piling problem on very high dimensional data ([163]). When the sample
size is small, the distribution of data in the high dimensional space is very
sparse, which makes it also harder to deal with outliers ([32]) and may easily
cause overfitting problem. Unlike these classifiers discussed above, Random
Forest can deal well with high dimensional data due to the implicit feature
selection mechanism during the tree construction ([57, 222]).
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Nevertheless, as already extensively discussed in the previous section, many
machine learning problems are naturally described in high-dimensional spaces
but with very few training instances; that is to say with m >> n. These prob-
lems are called HDLSS learning problems.

When transposed to multi-view learning problems, the HDLSS setting is even
more critical. The reason is that the different m, values are all potentially in-
dividually greater than n: m,; >> n,Vq = 1..Q. Besides, if it is not strictly the
case for all views, one can reasonably assume that (Zqul m,,) >> n. As it has
been explained previously and as it will be further discussed in the following,
concatenating all the views together, to form a new joint description space, is
a principle often encountered in the literature when dealing with real-world
HDLSS multi-view learning problems. In such a case, the dimension m of this
joint description space is m = (Zqul mq), which exacerbates the difficulties
that stem from the HDLSS setting. As an example, when compiling works
from the Radiomics literature, the values for m, are often between 400 and
2000 while the values for n are from 50 to 200 ([59, , , ). Further-
more, g is usually bigger than 3 which could lead to a joint description space
of dimension m easily bigger than 1000 ([65, 87, , , D-

The state-of-the-art Radiomic solutions usually ignore the multi-view chal-
lenge by concatenating all the views together. To take better advantage of
multi-view information, we firstly review the multi-view literature with the
focus on the state-of-the-art methods offered for HDLSS problem. In the fol-
lowing sections, three different categories of multi-view solutions (early, late

and intermediate integration) are introduced.

1.3.2 Early integration

Early integration methods directly concatenate different views together and
treat the multi-view learning as single-view learning ([204]). All the Radiomics
works discussed in the previous section belong to this category. The flowchart
of early integration is given in Figure 1.9. The dimension of the description
space formed by this concatenation is inherently high and a lot of machine
learning methods can suffer from it. This would be especially the case, if the
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number of learning instances is not sufficient in regards of this high dimen-
sion, as for HDLSS settings.

Concatenation
[T, 7@, . T

Feature
Selection

Classifier

FIGURE 1.9: Flowchart of early integration methods.

To deal with the HDLSS problem, most of the studies use feature selection
methods to reduce the dimension. Generally speaking, according to the state-
of-the-art works ([30, 52, 1), feature selection methods can be divided into
three groups: filter methods (Figure 1.10a), wrapper methods (Figure 1.10b),
and embedded methods (Figure 1.10c). These three groups of feature selec-
tion methods mainly differ in the interaction with classifiers, which will be
discussed in the following sections.

Filter methods

Filter methods consist in ranking features according to a given criterion mea-
sured on each feature separately, and in using only the best ones according
to a predefined number or to a threshold ([52]). The general scheme of filter
method for feature selection can be found in Figure 1.10a. It is very impor-
tant to find a suitable ranking criterion so that relevant features for the clas-
sification have higher ranks and irrelevant features have lower ranks. The
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FIGURE 1.10: The general scheme of (a)filter method, (b)
wrapper method and (c) embedded method for feature se-
lection. This figure is extracted from [167].

next step is to filter the features by removing features with the rank below the
predefined threshold. Finally, the selected feature subset is used to learn the

machine learning model.

It can be told that the most important step for filter methods is to measure
the relevancy of a feature to the given classification problem. Generally, the
relevancy of the feature is related to the dependency of this feature to the class
labels: if a feature is totally independent from the class labels, it means that
this feature has no influence on the classification task and should be discarded
([52]). However, as filter methods are independent from the classifier and do
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not take the correlation among features into consideration, the optimal feature

subset may not be unique.

One of the most direct and simplest ranking criteria is the Pearson correlation
coefficient ([106]) to detect the dependencies between a feature and the class
label. Given the ith feature vector X. ; and the class label vector y, the Pearson
correlation coefficient can be calculated with:

_ cov(X.;,y)
Voar(X.;) x var(y)

where cov() is the covariance and var() is the variance. This correlation based

P(i) (1.3)

ranking is simple but limited to detect only the linear dependencies between
the feature and the class label.

During the last decades, a large number of filter methods have been proposed,
especially methods based on Mutual Information (MI), Relief and its variant
RELF ([223]). Ml is one of the most popular feature selection criteria due to its
computational efficiency and simple interpretation ([30, 223]). Relief selects
features that help to separate instances from different classes. RELF adds the
ability of dealing with multi-class problems and is also more robust and capa-
ble of dealing with incomplete and noisy data ([30]). RELF can be interpreted
as margin maximization, which explains why it has superior performance in
many applications ([64, 223, 248]).

To summarize, filter methods are computationally simple and fast, which
makes it very popular when facing HDLSS problems ([223]). However, the
major disadvantage is that filter methods ignore the interaction with the clas-
sifier, the search in the feature subset space is separated from the search in
the hypothesis space ([251]). In contrast to filter methods, we will introduce
wrapper methods in the next section which obtain a feature subset relying on
the classification.

Wrapper methods

Wrapper methods consist in using a classifier for selecting a subset of features,
the objective being to optimize the classifier performance by searching for the
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best subset ([30]). The general scheme of wrapper methods for feature selec-
tion is shown in Figure 1.10b. Given a predefined classifier, wrapper feature
selection methods usually include the following steps: the first step consists
in finding a particular subset of features among the 2™ possible subsets. The
second step usually consists in training the classifier from a given subset of
features and estimating its performance. The estimated performance is usu-
ally accessed by a validation dataset or cross-validation. The final subset of
features, retained at the end of this procedure, is the one that has allowed to
obtain the best performance.

However, exhaustive search systematically enumerates all possible combina-
tion of features and find the best feature subset, which is computationally
intensive. For dataset with m features, the size of searching space is O(2™).
In the case of HDLSS problem, the feature dimension m is normally very big,
an exhaustive search is intractable. This problem is known to be NP-hard
([106]). Wrapper methods usually adopt sub-optimal searches, such as se-
quential search, or heuristics algorithms ([52]). The sequential selection meth-
ods are iterative algorithms that add or remove features at each iteration until
the maximum objective function is obtained ([188, 196]). For example, the
Sequential Forward Selection (SFS) adds one feature each time so that the
maximum classification accuracy is obtained until the required number of fea-
tures are obtained ([196]). However, SFS suffers from producing nested sub-
sets since the forward inclusion is always unconditional ([52]). The feature
selected in the next iteration is highly dependent on the previous selected fea-
tures. Heuristics algorithms such as Genetic Algorithm (GA) are also very of-
ten used for feature subset selection ([9, 63, 97]). The global maximum for the
objective function (classification accuracy for example) can be found, which
gives the best sub-optimal subset ([52]).

To summarize, the main disadvantage of wrapper methods is the intensive
computational cost. For each new subset, the classifier needs to be retrained to
evaluate the performance. And overfitting may occur easily when the training
instances are not enough. To provide better generalization ability, extra vali-
dation datasets are usually needed. For the HDLSS setting, it may be impossi-
ble to use an independent validation dataset for the search of the best feature
subset. In the next section, the third category of feature selection methods,
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namely embedded methods, are presented, which are usually considered to
be better alternatives to filter and wrapper methods.

Embedded methods

Embedded methods consist in selecting features during the training process
without splitting the instances into training and validation sets ([52]). The
general scheme of embedded methods for feature selection can be found in
Figure 1.10c. Compared to wrapper methods, embedded methods have the
main advantage to be less computationally intensive ([201]); while compared
to filter methods, embedded methods take into account the interaction with

classifiers.

One of the most used embedded methods are pruning methods. Pruning
methods firstly train the classifier with the entire feature set and eliminate fea-
tures gradually by some ranking criteria while maintaining the performance
of the classifier. SVM-RFE ([107]) is the most famous pruning based embed-
ded method. It is a recursive feature elimination method using the learned
feature weight as ranking criterion ([107]). As shown in Algorithm 1, firstly,
all the features are used to train the SVM classifier, then the weight and the
ranking criterion of each feature is calculated. The feature with the smallest
ranking is eliminated. This process continues until all the features are elimi-
nated, and at last a ranked list can be given, so that we can choose how many
features we want in the ranked list. This approach differs from the filter ap-
proaches by embedding the feature selection into the learning procedure, so
that it can take the resulting classifier performance into account. SVM-RFE
method is known to be efficient and accurate on many kinds of HDLSS appli-

cations ([30, 238, 257]).

Apart from using SVM as the predefined classifier, neural networks can also
be used for feature selection. A saliency measure calculated from trained
multilayer perceptron networks is used to calculate the feature weights ([198,

]). Network Pruning commonly used to obtain the optimum network ar-
chitecture for neural networks can be used for feature selection ([52]). In [205],
a penalty is applied for features with small magnitude at the node and the
nodes connecting to these input features are excluded.
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Algorithm 1 SVM-RFE

: Input: training sample 7T, labels y, m features
: Survival subset s=[1,2,...m], rank list r = [ ]
: Repeat untils =[ ]
1. Train SVM with s
2. Update weight w; for each feature i.
3. Calculate the ranking criterion: (w;)?
4. Add the feature with lowest ranking criteria to r, and remove the
feature from s.
: Output: The updated feature ranks.

N TN

o]

Discussion

Filter methods have the advantage not to require a validation set to perform
feature selection, which is probably the reason why they are mostly used in
many real world applications. However, they ignore the resulting classifica-
tion performance and therefore, are usually less accurate than embedded and
wrapper methods. On the other side, these two other families of approaches
usually have a higher computational cost and are not very suitable for very

low sample size problems.

1.3.3 Late integration

Late integration methods firstly build separate models on each view and com-
bine them afterwards. These methods are named "late" because the data fu-
sion process is done in the late stage of classification after the classifiers are
trained. Most late integration methods belong to Multiple Classifier System
(MCS) approach, which can be divided into two main categories: co-training
and Independent Classifier Combination (ICC). The major difference between
these two approaches is the interaction among classifiers: co-training meth-
ods re-train classifiers multiple times taking into account the information of
classifiers from other views, while most ICC methods train classifiers once for
each view independently and then merge the classification outputs. In the
following sections, the details of these two approaches are given.
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Co-training

Co-training is a semi-supervised principle that strives to maximize the mutual
agreement between pairs of views, by training classifiers on labeled instances
separately in each view, and by exploiting then their feedback on unlabeled
instances. Three assumptions are made for the success of co-training: (1) suf-
ficiency: each view should be informative enough for the classification, (2)
compatibility: the target functions in both views predict the same labels for
co-occurring features with high probability, (3) conditional independence: the
two views of any example are conditionally independent given the class label.

Classifier Classifier
H H®

Prediq

Unlabel
data UM

FIGURE 1.11: Flowchart of co-training.

The initial work of co-training was proposed in [29]. The process of co-training
style algorithms can be found in Figure 1.11: The training set contains two
views with both labelled instances 7 = {71, 7(?} and unlabelled set ¢ =
{U™, U}, Firstly, a small unlabelled set U/’ is created by random sampling
from U. Then, two naive Bayes classifiers H(!) and H(®) are trained on 7(!)
and 7@ respectively. In the second step, H(") and H® are used to label
unlabelled set 2. p most confidently labelled instances by H(Y) and p most
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confidently labelled instances by H(?) are chosen (while keeping the class ra-
tio) to be added to the labelled training set 7. Finally, 2p instances randomly
drawn from U are then added to replenish ¢/". The updated 7 is then used to
re-train H(1) and H(?). This re-training process will stop until a termination
condition (e.g. maximum iteration) is satisfied.

Co-training explores the relation between classifiers built on each view by
maximizing the mutual agreement on two distinct views of the data in a semi-
supervised way. Usually, different views can provide different useful informa-
tion, which indicates the differences between classifiers H") and H(®) during
the first iterations. As the learning process is going on, the two classifiers are
used to predict more and more instances from U, and their disagreement is
expected to be smaller and smaller ([240]). Through information exchange be-
tween views, the final optimized classifier can be obtained ([29]). Nigam and
Ghani [171] showed experimentally that even for single-view data, co-training
on multiple views manually generated by random splits of features can still
improve performance.

The unlabelled instances play an important role in co-training methods, which
enable the information exchange between classifiers. However, as explained
in the first chapter, HDLSS multi-view problems are usually composed of very
few labeled instances and no additional unlabeled instances are available. Sec-
ondly, the co-training method is originally proposed to solve problems with
two views. When there are more views, the solution will be much more com-
plex. Thirdly, it is very hard for real world HDLSS multi-view problem ap-
plications to fulfill the three assumptions, which may lead to the failure of co-
training methods. As a consequence, co-training approaches are not straight-
forwardly applicable to HDLSS multi-view problems.

Independent Classifier Combination

Co-training makes many assumptions on the given multi-view problem and
uses unlabelled instances to exchange information between classifiers, which
limits its use in many real world applications. ICC based methods are more
flexible by training one classifier for each view independently at first and then
combining these classifiers in a proper way. In [111], the authors recall that
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FIGURE 1.12: Flowchart of ICC.

the ICC will have better performance than an individual classifier when there
exists disagreement among classifiers. Such independence and disagreement
is usually referred to as diversity within the ensemble. For multi-view prob-
lem, the information of each view is often very different from other views so
that complementary information can be provided, which makes ICC a good

solution as the diversity may be guaranteed.

Voting based methods are widely used in the field of ICC ([166]), among which
the most popular one is Majority voting. It generally takes the output of each
classifier as a vote and gives the final decision by finding the most voted de-
cision. Majority voting assigns equal weights for every view during the com-
bination. But in real world applications, different views may have different
importance for the problem at hand. In this case, weighted voting can be
used. Each classifier is given a weight according to some confidence evalua-
tion measure, where the sum of weights from all classifiers is one. Apart from
these fusers, support function fusion is also widely used, which uses the like-
lihood of a class such as a posteriori probability provided by each classifier,
the output of neuron network or fuzzy membership function ([8, 27, 132]). A
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posteriori probability produced by the probabilistic models embodied by the
classifiers is the most popular support function fusion method ([247]). Dy-
namic weighting ([45]) can also be used to combine the decisions, but in the
cost of using some validation dataset for most cases.

Aside from the rule based combination, trainable combination is also used
in ICC. The new feature vector is constructed by combining the outputs of
all the base classifiers, then a ‘secondary’ classifier can be built on these new
features to give the final decision. For example, neural networks are used in
[39] to learn the combined matching score based on the classifiers built from
face data and voice data. Other classifiers such as SVM, decision trees, Mul-
tilayer Perceptrons (MLP) and Random Forest are also used in [53, 91, ,

, 197, 232]. Combinations with higher complexity can potentially provide
better classification results. But validation datasets to train the secondary clas-
sifier are always required to guarantee the improvement. The small number
of training instances will limit the choice of combination methods. Hence,
choosing different combination approaches is a trade-off between the classify-
ing capabilities of combination functions and the training sample size ([228]).

Discussion

Compared to co-training, ICC is more suitable for HDLSS multi-view prob-
lems because fewer assumptions are made beforehand and no extra unla-
belled are needed to re-train the classifiers. ICC is usually faster compared
to Co-training as all the classifiers are trained only once. However, in some
cases, validation datasets are needed for a better combination of classifiers.
For both late integration methods, attention should be paid for the choice of
classifiers due to the fact that a lot of classifiers can not deal well with high
dimensional problems. For low sample size problem, Co-training method is
not a good choice due to the need of many unlabelled instances while ICC
may not be a good choice neither when validation datasets are required for
the combination of classifiers.
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1.3.4 Intermediate integration

The two previous sections explained that early integration methods do not
take the multi-view learning specificities into account and that late integra-
tion methods are not well suited for HDLSS learning settings. This section
presents the intermediate integration approach that is — as suggested by its
name — an in-between approach. Intermediate integration methods combine
the information from different views at the feature level and perform learning
in a joint feature space ([149]). The most used intermediate integration meth-
ods include shared representation learning and multi-representation fusion

methods, which will be discussed in the following sections in detail.

Shared representation learning

View T® || ViewT® | ...

Learning

Shared
representation

Classifier

FIGURE 1.13: Flowchart of shared representation learning.
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Shared representation learning aims at finding a latent low dimensional space
shared by all the views (see Figure 1.13): feature transformation functions for
each view are learned with the assumption that all the views are generated
from the latent space. Shared representation learning is an efficient multi-view
dimensionality reduction technique as the dimension of the latent space is
lower than any view, but it is mostly unsupervised and ignores the supervised

information, which may lead to a subspace with weak predictive ability ([56]).

Canonical correlation analysis (CCA) is the most well-known shared repre-
sentation learning method ([113, 131]). CCA works by seeking for a projection
for each view so that the correlation among the projected views is maximized.
For multi-view problems with two views {X(1),X(2)}, CCA learns two projec-
tions wy € R™ and wy, € R for view 1 and view 2 respectively so that the
following correlation between two projections is maximized:

Tx(1)x(2)T
o= wi XWX wy (1.4)

VW XOXOTwy ) (W] XDXE Twy)

As p is invariant to the scaling of wj and wy, Equation 1.4 can be formulated

as:
max wlTX(l)X(Z) Tw,
Wi w2 (1.5)
st wl XWXDTw, =1, wix@x®Tw, =1

However, CCA can not be applied directly to many real world datasets which
exhibit non-linear characteristics, hence the kernel variant of CCA, namely
KCCA ([112, 140]), was proposed to firstly map each instance to a higher space
in which linear CCA can be applied. With the replacement of kernel matrices
K; = XWTXM and K, = X@TX®), the optimization in Equation 1.5 can be

rewritten as:

max wlTKl K2Tw2
Wi (1.6)
s.t. WlTKlngl = 1,W;K2K5W2 =1

Apart from the basic CCA and KCCA, there are also a lot of other studies
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related to CCA. In [260], the authors propose MKCCA for dimensionality re-
duction by performing PCA followed by CCA to better remove noises and
handle the issue of trivial learning. More recently, more and more deep learn-
ing based CCA such as Deep CCA [12] and its variant [241] have also been
proposed.

Multi-representation fusion

In contrast to shared representation learning methods, multi-representation
fusion provides a more transparent way to take advantage of the complemen-
tary information among different views (see Figure 1.14). Multi-representation
fusion projects each view in a space in which every instance is described by
its (dis)similarities to all the training instances. In that way, each view is sepa-
rately projected in the same description space so that linear or non-linear com-
binations can be applied directly. Multi-representation fusion is very flexible

and efficient, and can be applied to many different types of data.

In [177], the authors proposed an SVM with heterogeneous kernel function,
which firstly computes separate kernels for each view and then sums the re-
sults. Their proposed kernel is an attempt to incorporate prior knowledge into
the task at hand. The kernel function is shown in Equation 1.7, where g and
p stand for two different views (gene expression and phylogenetic profiles),
and K is a local kernel. In the experiments, they compared the performance
of single view data as well as three multi-view integration methods (early, in-
termediate and late integration), and showed that multi-representation fusion
based method is the best performing among all the tested methods.

Kcombined (Xlr XZ) = Kg (ng)r xég)) + KP (Xgp)r xép) ) (1~7)

From the heterogeneous kernel K., pined, it is easy to tell the difference be-
tween shared representation learning and multi-representation fusion. Shared
representation learning methods find the data projection to maximize the view
correlation and the dimension of projected space needs to be predefined. The
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FIGURE 1.14: Flowchart of multi-representation fusion meth-
ods.

heterogeneous kernel proposed in [177] takes advantage of the complemen-
tary information by the sum of two defined kernels. They firstly define a ker-
nel for each view using prior domain knowledge. The kernel matrix can be
seen as a similarity matrix, which projects data into a lower dimension and
the dimension is the same as the training sample size (no need to be prede-
fined). However, the label information is not used for the construction of the

joint kernel in [177].

To take the class information into account, many studies have been done on
combining multiple kernels together linearly or non-linearly to improve the
performance, named Multiple Kernel Learning (MKL) . MKL ([40]) is a well
exploited field and lot of researches have been done, which studies the gener-

ation and combination of different kernels for an optimized performance.
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For multi-view problems, MKL uses one kernel for each view and the final
kernel Kj; is used for SVM:

K (xhzxk fiy({K Xh ,xk } (1.8)

where f; is a linear or non-linear combination function. The most successful
kernels in the literature include linear kernel, polynomial kernel and gaus-
sian kernel. Linear combination is the most popular approach in MKL ([100]),
which contains simple sum or average of kernels as well as weighted combi-

nation (Equation (1.9)).
K (Xhzxk) fr]({K (Xh ,xk Z’?q Xh /X;(<>> (1.9)

Lanckriet et al. [144] show how the kernel matrix can be learned from data
via semidefinite programming (SDP) techniques. Better results are obtained
than SVMs trained with each single kernel in 9 out of 13 experiments. Sim-
pleMKL use the optimization of linear combination with kernel weights on a
simplex ([195]). According to their comparison results, using multiple kernels
is better than using a single one in terms of accuracy. However, trained lin-
ear combination is not always better than averaging for simple linear kernels.
For the combination of complex gaussian kernels, linear combination is better
than nonlinear combinations, but still not better than unweighted combina-
tion. Their results show that simple average of kernels is a strong baseline.
Similar to the conclusion of [195], in [6], they also find out that the mean of
kernels can obtain very good results. Hence they proposed a time and space
efficient MKL method named EasyMKL by maximizing the distance between
positive and negative examples ([255]). Their experimental results are shown
to perform significantly better than the simple kernel averaging.

Apart from the combination of kernels, dissimilarity measures are also used
to merge the information from different views. There are a large quantity of
dissimilarity measures in the literature for all different feature types such as
binary, categorical, ordinal, symbolic or quantitative features. There are no
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restrictions like being symmetric or positive semi-definite (PSD) for dissimi-
larity measures neither. Hence, a lot of studies have also tried to use multiple

dissimilarity fusion.

In [153] for example, the authors propose a method to combine multiple dis-
similarity measures together. They firstly define a distance measure D, based
on Kullback-Leibler (KL) divergence, which measures directly the difference
between a query and a prototype. Then, they define another distance mea-
sure D; which only considers inter-relations between different training in-
stances. Similarly, Heterogeneous Auto-Similarities of Characteristics (HASC)
is proposed to deal with heterogeneous data with a combination of covariance
matrix of features (COV), and Entropy and Mutual Information (EMI) matrix
([202]). Many other similar works of combining multiple dissimilarity matri-
ces with heuristic rules can be also found in [11, 121, 150, 185]. An adaptive bi-
linear mixing of dissimilarities is also proposed in [128]. They claim that if the
data are heterogeneous, a single dissimilarity measure might not be sufficient
to describe the relations between the data. They focus on the prototype based
learning like learning vector quantization dataset. Similar to the idea of MKL,
the combination of dissimilarities most adequate for the classification task is
also learned. Generalized Learning Vector Quantization (GLVQ) is used to
integrate bilinear mixing and weighting of dissimilarities in prototype-based

classification learning.

Discussion

In summary, shared representation learning is an efficient multi-view dimen-
sionality reduction technique. However CCA based methods are unsuper-
vised and ignore the supervised information, which may lead to a joint space
with weak predictive ability. Multi-representation fusion projects each view
in a space in which every instance is described by its similarities (kernel func-
tions) or dissimilarities to all the training instances. In that way, each view is
separately projected in comparable lower description spaces, which provides
a good solution for HDLSS problem ([67]). Then the joint data representa-
tion can be obtained by searching for the best combination of the new data
representations, which provides a good solution for multi-view problems.
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1.4 Conclusion and contributions

In this chapter, we have introduced the HDLSS multi-view problem through
the example of Radiomics. From the perspective of multi-view learning, Ra-
diomic features are always from multiple distinct feature groups or different
imaging modalities to better represent the tumor heterogeneity. From the per-
spective of HDLSS, Radiomic features are easily to be high dimensional (over
1000 features), especially when combined with transfer learning features. But
the sample size of Radiomics is usually very small, normally fewer than 100
instances. Most of the state-of-the-art works in Radiomics concatenate all the
feature groups together as a single feature vector, which often results in a very
high dimension. Hence feature selection is the most used method to reduce
the dimension. However, if only a small subset of the features are chosen, cer-
tainly a lot of useful information is lost and the heterogeneity can not be well
represented. By concatenating all feature groups together, the complementary
information from different feature groups is often ignored.

To make better use of multi-view information, we have reviewed the state-
of-the-art multi-view solutions including early integration, intermediate inte-
gration and late integration with an emphasis on HDLSS problems. We have
shown that early integration ignores the potential complementary informa-
tion that different views may offer, while late integration methods are not very
suitable for low sample size problem since they may require additional train-
ing instances to optimize the combination of classifiers. In our opinion, inter-
mediate integration methods offer a better way to deal with the HDLSS multi-
view problem by studying the relations between views and combining the
views together so that traditional machine learning methods can be applied
in a joint low dimensional space. Among the different intermediate integra-
tion approaches introduced above, we have shown that multi-representation
fusion is the most appropriate solution for the HDLSS multi-view problem
for the following reasons: to deal with the HDLSS problem, features from
each view can be represented by (dis)similarity matrix, which leads to a low-
dimensional description space for HDLSS problems; it also makes the fusion
of each view very straightforward since dissimilarities are always comparable

from one view to another; then, the multi-view problem can be solved in a
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more transparent way by searching for the best combination.

Multi-representation fusion can be divided as a two stage learning process:
the first stage is to learn the new data representation to project data from each
view into a lower common space; the second stage is to learn the combination
of views to better exploit the complementary information among views. Most
multi-representation fusion methods focus on the second step only. For ex-
ample, multiple kernel learning, the richest literature in multi-representation
fusion, focus more on the second step about how to combine different ker-
nels while ignoring the first step about how to learn the appropriate kernel
for each view (most MKL methods just choose the well-known predefined
kernels such as linear polynomial or gaussian kernels without identifying the
nature of the data). In this work, we believe that more attention needs to be
paid on the first step: firstly, data from different views normally have differ-
ent nature, type or complexity. An appropriate (dis)similarity representation
should be learned accordingly. Secondly, learning the proper (dis)similarity
representation for each view makes the data combination more meaningful
because the only information shared by all the views (the class information)
will be included in each (dis)similarity representation.

The main contributions of this thesis are:

e Random Forest Dissimilarity (RFD) is chosen as an intermediate repre-
sentation for multi-representation fusion. To deal better with HDLSS
problem, the parameterization of RFD is also studied. In the experi-
ments in Chapter 2, by comparing with different early, late and interme-
diate integration methods on real world datasets, RFD based intermedi-
ate integration method show the potential of being a good solution for
HDLSS multi-view problem.

e Some limitations and possible modifications of the classic RFD measure
are studied. Two more accurate dissimilarity measures are proposed
based on Random Forest to improve the classification performance of
multi-representation fusion. Instance hardness measure in the subspace
defined by each leaf node is used to weight the dissimilarity values so
that they are no more binary and more accurate. The experimental re-

sults in Chapter 3 show significant improvement over classic RFD based
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multi-representation fusion.

Instead of using simple averaging to form a joint dissimilarity matrix,
static weighting and dynamic weighting methods are explored to take
better advantage of the complementary information. A static weighting
based on OOB accuracy and a dynamic view selection method are pro-
posed. From the experimental results in chapter 4, both methods can
improve the classification performance while the dynamic view selec-
tion is significantly better than averaging.
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2.1 Introduction

The previous chapter introduced the HDLSS multi-view problem. In partic-
ular, we have shown that a key aspect of multi-view learning is to efficiently
exploit the complementarity of the views. To do so, multi-view methods based
on the fusion of multiple intermediate representations are the most relevant
from our point of view, especially for HDLSS problems. Multi-representations
fusion methods deal with HDLSS multi-view problems through two steps : i)
building new low dimensional representations of the data from each view
separately, and ii) merging these view-specific representations into a joint rep-

resentation.

Most multi-representation fusion methods focus on learning a good (paramet-
ric) combination operator rather than learning good view-specific intermedi-
ate representations. Dissimilarity representations are usually chosen as the
intermediate representation because they offer the pairwise information be-
tween instances indicating if these two instances are similar or dissimilar. As
the pairwise information is comparable across the views, it makes the repre-
sentation merging task easier. Another advantage of using dissimilarity rep-
resentation is that the original high dimensional n x m data (n is sample size,
m is feature size) will be presented as a n X n matrix, which offers a natural
solution to HDLSS problem.

There are a lot of different dissimilarity measures in the literature that can
be used for multi-representation fusion. In general, they can be divided into
two groups: learning free measure and learning based measure. Learning free
measures are general purpose measures (e.g., the Euclidean distance and the
cosine similarity for feature vectors). They are mostly defined without specific
context and are problem independent (not learned from data). Learning based
measures learn a specific measure for the data by taking the class information
into account. For example, in the case of classification tasks, the goal would be
to make the distance reflect the best possible the class membership: instances
from the same class should be close to each other while instances from differ-
ent classes should be far from each other [23, ]. For multi-view problems,
the features from different views may be very diverse, and the only informa-
tion shared by all the views is the output information. Using learning based
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dissimilarity measure as the intermediate representation can help to filter the
"noisy" information from each view that is not related to the classification task
and make the fusion task more efficient and transparent. Hence, in this work
we firstly focus on generating the proper intermediate representation with
class information and secondly focus on the combination. The experimental
results of this chapter have been published in [47].

The remainder of this chapter is organized as follows. In section 2.2, differ-
ent dissimilarity learning methods are introduced and compared. Random
Forest dissimilarity, the most appropriate method for the HDLSS problems,
is introduced in details in section 2.3. The parameterization of RFD are stud-
ied in section 2.4. The proposed RFD based intermediate integration methods
are compared to the state-of-the-art Radiomic and multi-view methods on 15
datasets in section 2.5. The conclusion and future works are introduced in

section 2.6.

2.2 Related works

In the literature, methods that learn a similarity or dissimilarity measure from
a dataset can be generally called dissimilarity learning. Dissimilarity is a very
general term which relates to many notions such as distance, kernel, similarity
etc. With different problem formulations or constraints, there exists a consid-
erable number of approaches that aim at learning the dissimilarity, among
which the most useful ones include metric learning, kernel learning and ran-
dom partitions. The details of each of these methods are given in the following

sections.

We first give the definitions of distance, kernel, similarity and dissimilarity. In
terms of classification, instances from the same class should be similar in some
way and instances from different classes should be dissimilar. The notion of
"(dis)similarity" plays a pivotal role in pattern recognition and machine learn-
ing. Similarity measure is a numerical measure of how close two instances are.
The value is bigger when two objects are closer. On the contrary, dissimilarity
measure is a numerical measure of how different two instances are. The value

is smaller when two instances are closer. Normally, it’s possible to transfer a
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similarity value into a dissimilarity value and vice versa. The notion of prox-
imity usually refers to similarity or dissimilarity. A specific dissimilarity form
(distance) and a specific similarity form (kernel) are defined in the following.

Distance function

A distance function over the domain X’ is a pairwise functiond(-,-): X x X —
R which satisfies the following properties:

e Reflexivity: d(x;,x;) =0

Definiteness: d(x;, xj) =0=x =X

Nonnegativity: d(x;, xj) > 0

Symmetry: d(x;, x;) = d(xj,x;)
e Triangle inequality: d(x;, xx) < d(x;, x;) + d(x;j, xx)

When all the previous properties are respected except for the definiteness, the
function is called a pseudo distance.

Kernel function
A symmetric similarity function K(-, -) is a kernel if K(-, ) can be written as

an inner product in Hilbert space H with the mapping function ® : X — H:

K(xi, x;) = (®(x;), P(x;)) 21)

Equivalently, K(, -) is a kernel function if it is positive semi-definite (p.s.d):
n n

Z Z llia]'K(Xi, Xj) >0 (2.2)

i=1j=1

for all finite sequences x1,...,x; € X and ay,...,a, € R ([23]).
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The most popular kernels in the literature are the Linear kernel, the Polyno-
mial kernel and the Gaussian Radial Basis Function (RBF) kernel. :

Linear kernel : Ky, (xi, Xj) = XiTXj
Polynomial kernel : Ky, (xi,xj) = (x] xj +1)P (2.3)
[ — x>
71)

Gaussian kernel : Kgau(x;, Xj) = exp(— 202

where p is the hyperparameter (degree) of polynomial kernels; o is the hyper-
parameter (bandwidth parameter) for gaussian kernel.

Compared to the term of distance or kernel, dissimilarity and similarity are
more general terms, which do not have the constraints to be a metric or posi-
tive semi-definite. A dissimilarity can be asymmetric, non-PSD or can violate
the triangle inequality ([152]).

2.21 Metric learning

The goal of metric learning is to learn a distance metric function d(x;, x;), for
all (x;,x;) € T x T, which mostly consists in estimating some parameters
from the data, in order to make a generic distance function suit the best possi-
ble to some constraints defined by the ground truth. The most popular form
of metric learning methods is based on the Mahalanobis distance due to its
simplicity and nice interpretation in terms of a linear projection ([24]).

Mahalanobis distance

dn(xi, %) =/ (xi = x;) TM(x; — x;) (2.4)

Originally from [161], the Mahalanobis distance is a measure that takes into
account the correlation between features. The Generalized Mahalanobis Dis-
tance (GMD) formula is shown in Equation (2.4): when M = Q! (where O
is the covariance matrix), Equation (2.4) represents the original Mahalanobis
distance. Most metric learning methods strive to estimate the parameter M
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from a training set, and with the goal to make the resulting distance measure
reflect the output, e.g. the class membership for classification tasks. Accord-
ing to the survey of [24], the positive semi-definite matrix M is mostly learned
from pair constraints or triplet constraints, which usually have the following
form:

e Must-link / cannot-link constraints (sometimes called similar set / dis-
similar set):

Sp =1{(xi, x;), x; and x; should be similar}
Dy ={(x;, x;), x; and x; should be dissimilar}

e Relative constraints (sometimes called training triplets):
R = {(xi, xj, x¢), x; should be more similar to x; than to x}

All the methods in metric learning try to optimize at least one of the following
objectives ([148]):

ml\fln Z dpm(xi, ;) (2.5)
(Xl‘,Xj)ESp

max Z dp(xi, ;) (2.6)
(Xl‘,Xj)EDp

The optimization can be written in a more general way:

min 1(M, Sy, Dy, Re) + AR(M) 2.7)

where [() is a loss function to measure the loss when specified constraints are
violated; A is the parameter used to control the regularizer R(M). Generally
speaking, the Mahalanobis metric learning formulations differ by the choice
of constraints, loss function and regularizer ([24]).

One simple example for the illustration of metric learning is shown in Figure
2.1: the original instances in the Euclidean space are shown on the left pane.
With constraints of making instances from the same class closer and instances
from different class farther, the metric learning objective is to get instances on

the right pane with fewer violations of constraints.
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FIGURE 2.1: Illustration of metric learning from a simple toy

example. For simplicity, there are only two classes, orange

squares and blue circles. Pairwise constraints (left pane) are

then to group the orange squares and group the blue circles

while making these two groups far away. We wish to adapt

the metric so that there are fewer constraint violations on the
right pane. This figure is extracted from [148].

There are several surveys about metric learning in the literature [24, 135, 168,
236, 252]. Among various distance metric learning methods, the most used
include Relevant Component Analysis (RCA [19, 208]), Information-Theoretic
Metric Learning (ITML [77]), Large Margin Nearest Neighbors (LMNN [50]),
Multiple Metrics LMNN [243, 244]. RCA uses S, constraints only to minimize
the sum of distances between each point and its corresponding class center.
LMNN uses both S, and R; constraints to optimize the intra-class distance.
In addition to that, Multiple Metrics LMNN learns multiple metrics for each
class ([148]). ITML defines both S, and D, with the use of LogDet divergence
regularization, which is used in several other Mahalanobis distance learning
methods too ([124, 190]).

The Mahalanobis distance based metric learning requires at least O(m?) pa-
rameters, which is not very suitable for instances in high dimensional space.
Data preprocessing techniques such as PCA or random projections are used
when feature dimension approaches several hundreds ([102, 148, 152, 253]).
However, the use of these preprocessing methods will cause an important in-
formation loss and decrease the interpretability of the model and affects the

accuracy.
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2.2.2 Kernel learning

Kernel functions normally have the form of Equation 2.1, representing the in-
ner product of two vectors (see in the beginning of 2.2). If these two vectors
are unit vectors, the inner product also represents the angle between these two
vectors. Therefore, a kernel is also often interpreted as the similarity between
instances and kernel learning is often seen as similarity learning ([1]). Unlike
distance metric learning methods, the biggest constraint of learning a kernel
is the positive semi-definiteness ([129]). According to [1], there are generally
three families of kernel learning: data-dependent, nonparametric and para-

metric.

Data-dependent kernel learning

For using the polynomial and the RBF kernel, both hyperparameters p and
o need to be set a priori and are sometimes quite complicated to be tuned
([239]). In contrast, data-dependent kernels such as Fisher kernel ([123, 230])
or marginalization kernel ([116]) strive to learn the parameters of the kernel
from training instances with generative models. However, the positive semi-
definiteness still needs to be proven mathematically for any data-dependent
kernel, which sometimes constitutes an obstacle for the development of new
kernels of the kind, and which also makes this approach less popular than

using pre-defined kernels.

Nonparametric kernel learning

In contrast to metric learning methods, nonparametric kernel learning does
not use any prior model. The kernel matrix is learned without a pre-defined
kernel form that implicitly generates it ([117, 118, 194]). The objective func-
tion of the nonparametric kernel learning is usually expressed as a set of user-
defined criteria that aim at finding the best kernel. The downside of these
methods is that during testing, the best kernel must be built from the train-
ing and test examples, which makes them impossible to be applied to new

instances.
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Parametric kernel learning

Most of the available approaches in the literature of kernel learning lie in this
family. Parametric kernel learning is usually formed as an optimization prob-
lem to find the parameters of a predefined model with respect to the user-
defined criteria ([1]). Methods in this family can be divided into two catego-

rizes based on the number of predefined kernels used:

o Single kernel: With a single predefined kernel, the objective of paramet-
ric learning is to improve the base kernel and make it optimal for the
learning task ([2, 10, 55]). There are generally two ways to realize this
objective: the first one is to find the appropriate hyperparameters for the
kernel and the second one is to find the transformation from the base
kernel to the optimal kernel. Kernel alignment ([66, 239]) methods are
very often used in this category.

e Multiple kernels: With a set of available kernels, the objective of multiple
kernel learning is to find the best combination of these kernels linearly
or non-linearly ([15, 17]). Multiple kernel learning methods are the most
popular solutions in this category, which have been introduced in the
previous chapter.

2.2.3 Random partitions

Most of the methods presented so far in this chapter follow the same core
principle: optimizing some parameters of a predefined generic model, with
respect to some constraints. Random partitions adopt a different approach
in the sense that the method strives to infer the model from the training in-
stances only, without any prior formulation of the measure. The key idea of
Random Partitions is to define multiple randomized partitions of the input
space that group the instances according to their class membership. It has
been proven that such random partitions can be used to define kernels, and as
a consequence to define dissimilarity measures.
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Given a dataset 7, a cluster C is a non-empty subset of 7. The partitions of
T divide 7 into multiple non-overlapping clusters ¢ = {Cy,...,Cx} with
respect to:

2.8)

A random partition of 7 is a sample from the partition distribution P, where
P is a discrete probability density function (pdf) that represents how likely a
given clustering is ([76]). For any instance x, o(x) gives the cluster x belongs
to.

A lot of works have been done on random partitions especially in the field of
non-parametric Bayesian statistics [7, , , ]. In recent years, the re-
lation between random partitions and dissimilarity measures has been high-
lighted. In [76], the authors find out that kernels can be generated from ran-
dom partitions. Given a random partition distribution P, a kernel can be de-
fined as:

Kp =E[I[o(x;) = o(x))]]o~P (29)

Random partitions can be easily constructed from existing machine learning
methods. For example, any clustering algorithm such as K-means ([160])
or DBSCAN ([86]) can be transformed to stochastic clustering algorithm by
adding the randomness (different initializations, number of clusters, feature
projections, etc.). The output of stochastic clustering algorithm is a random
partition. Another example is decision tree based ensemble methods. The
nodes of a decision tree divide instances into different non-overlapping parti-
tions, which makes the ensemble of trees such as Random Forest ([35]), boosted
decision trees ([94]) or bayesian additive regression trees ([58]) a natural solu-
tion to construct random partitions. A simple kernel generated from the ran-
dom partitions of Random Forest is given in [76] by generating the random

partition from the tree depth sampled randomly of the trained decision tree.
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The similarity measure generated from random partitions can be easily trans-
formed to the dissimilarity measure. In [81], the authors proposed a partition-
ing clustering procedure with bootstrap learning sets to improve the accuracy
of a given clustering procedure. M bootstrap sets are used to create a dissim-
ilarity matrix: for each bootstrap dataset, if object i and object j belong to the
same cluster, the similarity between them S;; adds 1. At last the dissimilarity

matrix is obtained by:

<l (2.10)

2.2.4 Discussion

In this section, different dissimilarity learning methods have been introduced.
Generally speaking, most distance metric learning methods are based on Ma-
halanobis distance learning due to its simplicity and nice interpretation, but
these methods require some pre-specified free parameters, and most of them
involve some expensive computational procedures such as eigenvalue decom-
position or semi-definite programming. Although a lot of metric learning
methods have been proposed and shown to perform well in many different
applications, few of them try to deal with HDLSS problem ([24, 148, 252]).
Since most methods learn O(m?) parameters , metric learning methods are in-
tractable for real-world high dimensional applications. Kernel learning learns
the dissimilarity measure in the form of a kernel which can be seen as a sim-
ilarity function. However, kernel learning methods usually require a large
labelled dataset either for defining an ideal kernel or for cross validation ([1]).
Compared to these two methods, dissimilarity learning based on random par-
titions is more flexible in the way that it can learn both a dissimilarity measure
and a similarity (kernel) measure.

To deal with HDLSS problem, Random Forest Dissimilarity (RFD) is intro-
duced in the next section. RFD allows to overcome the aforementioned draw-
backs as it is proved to be particularly robust to high dimensions and as it
does not require an exponential amount of training instances.
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2.3 Random Forest dissimilarity measure

2.3.1 Random Forest

Random Forest (RF) has been a very popular data mining and statistical tool
for years due to its transparency and great success in classification and re-
gression tasks as well as in unsupervised learning ([4, 209]) or active learning
tasks ([101, 162]). In the past 15 years, it has shown to be among the most
accurate general purpose machine learning methods on a wide variety of real-
world problems as illustrated by the consequent experimental comparison in
[90]. One other important property of RF is that it does not overfit if there
are enough trees in the ensemble according to Breiman’s work ([35]). We now

recall the RF principle.

The name "Random Forest" in this chapter refers to Breiman’s work in [35].
The algorithm works by growing M different (randomized) trees with the fol-
lowing rules ([26]). Firstly, a bootstrap sample is generated for each tree by
randomly selecting n instances, with replacement, from the initial training set
made up of n different instances. Each of these bootstrap samples is then
used to build one tree. During this induction phase, at each node of the tree,
a splitting rule is designed by selecting a feature over mtry features chosen
uniformly at random among the m initial features. This selection can be per-
formed by maximizing the well-known Gini impurity criterion. At last, while
the induction of a single tree is usually prematurely stopped by a stopping
criterion, e.g. a minimum number of training instances in the node, Random
Trees in Random Forest classifier are grown to their maximum depth. As for
the final prediction of the RE, it is obtained via majority voting over the com-
ponent trees ([26]). The resulting Random Forest classifier with M decision

trees is typically noted as:
H(x) = {lx(x),k=1,..., M} (2.11)

where i (x) is a random tree grown using the process discussed above. We
refer the reader to [26, 35] for more details about this procedure. Note how-
ever that there exist many different RF learning methods that differ from the
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one in [35] by the use of different randomization techniques for growing the
trees. We choose to use this reference method since it is the most commonly
used in the literature and since each RF learned is mainly used to compute the
dissimilarities and not only to exhibit the best accuracies.

For predicting the class of a given test instance x; with a random tree, x; goes
down the tree structure, from its root till its terminal node. The descending
path is decided by successive tests on the values of the features of x;, one per
node. The prediction is given by the terminal node (or leaf node) in which
x; has landed. We refer the reader to [26] for more information about this

process.

Hence if two test instances land in the same terminal node, they are likely to
belong to the same class and they are also likely to share similarities in their
feature vectors, since they have followed the same descending path. This is
the main motivation behind using Random Forest for measuring dissimilari-

ties between instances, by using the procedure explained in the following.

2.3.2 Random Forest Dissimilarity (RFD)

The RFD measure is inferred from a RF classifier H, learned from 7. Let us
firstly define a dissimilarity measure inferred by a decision tree d(*): let L;
denote the set of leaves of the k! tree, and let i (x) denote a function from X
to Ly that returns the leaf node of the k" tree where a given instance x; lands
when one wants to predict its class. The dissimilarity measure d¥), inferred
by the k' tree in the forest is defined as in Equation (2.12): if two training
instances x; and X; land in the same leaf of the k" tree, then the dissimilarity

between both instances is set to 0, else set to 1.

0, iflk(x;) = l(x))

1, otherwise

a0 (x;, x;) = (2.12)

The RFD measure d(®) (x;, xj) between x; and x; consists in calculating d (k) for

each tree in the forest, and in averaging the resulting dissimilarity values over
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the M trees, as in Equation (2.13):

1 M
d(H) (Xl',x]') = M Z d(k)(xi,x-) (213)
k=1
Tree1 Tree2 Tree 3

X1, X3 || X6, X7 || X2, X5 || X4, X8 X1, X4 | X6, X7 || X2, X5 || X3, Xa X1, X3 || X5, X7 || X2, X6 || X4, Xs

FIGURE 2.2: A simple example to calculate the Random For-
est dissimilarity

Let us take a simple example shown in Figure 2.2: Assume we have built a
forest with M=3 trees, each tree has 4 terminal nodes; given 8 instances {x1, x2,
...xg} as input to the forest, they will finally land into the terminal nodes of each
tree. Here 7 is 8, so the dimension of dissimilarity matrix is 8x8. Take samples
x; and x3 as an example, to calculate the dissimilarity, firstly use Equation
(2.12) to calculate the similarity between x; and x3 for each tree:

1. Treel: x; and x3 both land in terminal node 1, so d (x1,x3) =0

2. Tree2: xq lands in terminal node 1, and x3 lands in terminal node 4, so
d(z)(xl, X3) =0

3. Tree3: x; and x3 both land in terminal node 1, so d(3) (x1,x3) =0

Then with Equation (2.13), we can calculate the average dissimilarity between
x1 and x3:

A (xq, %) == TG+ 0ax) 1 dP0a) _ 3333
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2.3.3 RFD matrix

Let D denote a n X n matrix, called a dissimilarity matrix, built from a given

RFD measure 4 and from a training set 7, and defined as in Equation (2.14):

din dip diz ... diy
dy; dyp dpz ... dyy

D= . . . ) (2.14)
dn dp dpa ... du

where d;; denotes d(x;, x;), for all (x;,x;) € T x T.

D is non-negative and respects the reflexivity condition. Such a dissimilarity
matrix can be viewed as a new training set, where each training instance x;
is described by a vector {d;,dp, ..., d;, }. In the same way, using the dissim-
ilarity to each of the training instances, any new instance x; can be mapped
into a n dimensional dissimilarity space DS. For HDLSS problem, the dimen-
sion of this dissimilarity space is necessarily smaller than the dimension of the

original feature space.

Properties of RFD matrix

In the following, we give the proof that the RF similarity matrix is symmetric
and positive semi-definite. These two properties are essential since they en-
sure that such a matrix can be used as a kernel matrix in kernel methods like
non-linear SVM ([161]). Note that RF similarity matrices are easily obtained
from the RFD matrices defined in the previous section, by Sy = 1 — Dy. RF

similarity is also called the RF proximity in the literature.

Let us firstly recall the two following theorems from [147], that gives the basic
conditions for determining whether a matrix is p.s.d. or not

Theorem 2.3.1 Ifboth A and B are two p.s.d. matrices then so is A + B. This follows
immediately from the equation x” (A + B)x = xT Ax + x” Bx > 0. Consequently any

sum of p.s.d. matrices is p.s.d.



60 Chapter 2. Random Forest Dissimilarity for intermediate integration

Theorem 2.3.2 A symmetric binary matrix MA € (0,1)"*", with n > 3, is p.s.d.
if and only if it satisfies the following inequalities:

MA;; <MA;,(1<i<j<n) (2.15)

MA;; +MAj; <MA; +MA;;, 1 <i<j<nl#ij) (2.16)

Using these theorems, let us demonstrate that the similarity matrix inferred
by a single tree k, noted s i p-s.d. From Equation (2.12), one can see that
S*) has the following properties:

e SMisa symmetric matrix with principal diagonal values equal to 1.
o The off diagonal entries in S™®) are either 0 or 1.

One can reasonably consider that the number of training instances available
is greater than 3, and as a consequence, that S® isa symmetric binary matrix
€ (0,1)"™", with n > 3. According to Theorem 2.3.2, for this matrix to be
p-s.d., it needs to satisfy both Equation (2.15) and Equation (2.16):

(k)

1. As (¥ is a symmetric binary matrix with principal diagonal values S iik

equal to 1, hence Sg{) < Sl(lk ), which satisfies Equation (2.15).

2. To prove S satisfies Equation (2.16), two situations need to be consid-
ered:

(a) 1S =1, then [’ + 81 = 2. Since S’ < 1and §{{) <1, then

(k) (k) (k) | gk)
Sy’ +S;;7 =S, +S;;".

(b) If Sg() = 0, then Sl(lk ) + Si(;() = 1. At the same time, Sg{) = 0 means
that the i*" and j** instances fall in different terminal nodes, which
implies that Sl(lk ) and Sl(]l.c) can not be both equal to 1. Thus Sl(lk )+
Sl(]].() is necessarily less or equal to 1 and as a consequence, S®) also
satisfies Equation (2.16).

This proves that S meets the requirements of Theorem 2.3.2, and is a p.s.d.
matrix. It follows from Theorem 2.3.1 that the sum of all S(k),‘v’k =1.M, is
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also p.s.d., meaning the RF similarity matrix Sy or any linear combination of
Sy is also p.s.d.

Multi-view learning with RFD matrix

For multi-view learning, one needs now to fuse the dissimilarity matrices built
on each view and to learn a classifier from the resulting joint dissimilarity

matrix.

A natural way to fuse the dissimilarity matrices is to compute the unweighted
average matrix. For multi-view learning tasks, the training set 7 is com-
posed of Q views: T = {(xgq),yl),...,(xg\(p,yN)}, g = 1..Q. From these
views, Q RFD matrices are computed following Equation (2.14) and noted
{Dg), g = 1..Q}. For multi-view learning, the joint dissimilarity matrix Dy

can be computed as in Equation (2.17).

1

3 Y DY 2.17)

q=1

Dy =

According to the work in [83], learning from a dissimilarity matrix Dy can be
done in two different ways: (i) by using the corresponding similarity matrix
Su = 1 — Dy as a kernel matrix in a kernel-based learning method, e.g. a
SVM classifier (named RFSVM in the following and illustrated in Figure 2.3a)
and (ii) by using the dissimilarity matrix Dy as a new training set (named
RFDis in the following and illustrated in Figure 2.3b).

Multi-view Random Forest kernel SVM (RFSVM): Instead of using tradi-
tional kernels, such as the Gaussian Radial Basis Function kernel, SVM classi-
fiers can be efficiently trained on user-defined kernels. For example, in [108],
the authors proposed a problem dependent distance measure to construct a
substitution Gaussian kernel. Such a user-defined kernel can be supplied to
SVM classifiers as a kernel matrix as long as it is positive semi-definite (p.s.d).
For RFSVM, the joint similarity matrix Sy is used as a kernel matrix. The
proof that it is p.s.d. has been given in the previous section. Then, given a test
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FIGURE 2.3: Flowchart of (a) the RFSVM method and (b) the
RFDis method

instance x;, the joint RF similarity vector s;, which contains the average sim-
ilarities between the test instance and each training instance among different

views, is given to the trained SVM for prediction.

Multi-view Random Forest dissimilarity (RFDis): RFDis consists in learn-
ing an RF classifier H as if Dy was a new training set. The joint dissimilarity
vector is seen as a feature vector, and an RF classifier is built on these new fea-
tures. In other words, the original data are projected from the feature space to
the dissimilarity space. In this case, the dimension of the dissimilarity space is
the number of instances in the training set. For HDLSS problem, it will neces-
sarily reduce the feature dimension without feature decimation. Given a test
instance x;, the joint RF similarity vector s;, which contains the average sim-
ilarities between the test instance and each training instance among different
views, are given to the RF classifier for prediction.

24 The parametrization of RFD

The RF learning algorithm, whether it is used for computing a dissimilarity or
not, is controlled by important hyperparameters. While most of these hyper-
parameters have been extensively studied when RF is used as a classifier, their
influence on the quality of the RFD measure is not that clear. In particular, the
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following hyperparameters are assumed to be crucial for having a "good" RFD

measure:

o Forest size M: As explained in [25, 35], it is now known that the RF ac-
curacy converges for an increasing number of trees in the forest. One
can naturally wonder if the same goes for the quality of the correspond-
ing RFD measure. As explained in the previous section, RFD between
two instances is computed by averaging over the dissimilarity values
inferred by each tree. If the number of trees is very small, say 5 trees
for example, the RFD estimate would always be one of the 5 following
values: 0, 0.2, 0.4, 0.6, 0.8 or 1. Obviously, this is not accurate enough
for describing (dis)similarities between instances. When the number of
trees increases, the RFD value is expected to be more accurate and reli-
able.

o Tree depth ¢: The rationale behind studying the influence of the tree
depth on the RFD quality is less obvious. When the node is deeper down
the tree structure, it is usually more "pure", that is to say it gathers train-
ing instances from the same class mostly. This is desirable since it means
the RFD values will reflect the class membership: two instances from
the same class will be considered quite similar. However, at the same
time, the deeper the node, the smaller it will be, that is to say the fewer
instances it will gather. As a consequence, the resulting RFD matrix is
likely to be sparse, and the dissimilarity measure too loose.

To illustrate the influence of these hyperparameters, an RF classifier is built
on the dissimilarity matrix induced from different combinations of numbers
of trees and tree depths on three toy datasets. The three toy datasets, com-
posed of 100 instances, two features and two classes, have different shapes
and complexities, as shown in the first column of Figures 2.4a and 2.4b: (i) the
first row is a dataset with two isotropic Gaussian classes to show how the RFD
measure behaves differently from a traditional Euclidean distance measure;
(ii) the second row is a donut-shaped dataset, more complex with regards to
similarity measures because, contrary to the RFD measure, a distance-based
dissimilarity would fail to represent the class membership; and (iii) the third
row is a banana-shaped dataset used to confirm that the RFD measure can
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properly take into account the class membership to estimate dissimilarities.
The decision frontiers given by these RF are shown in the last three columns
of Figure 2.4a and Figure 2.4b.

Input data 8 Trees with max depth 256 Trees with max depth 1024 Trees with max depth
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(b) Influence of tree depth on decision boundaries with 1024 trees.

FIGURE 2.4: Influence of the hyperparameters on the deci-

sion frontiers for 3 toy datasets. The transparent points are

the training instances and the opaque points are the test in-

stances. Note that in the sub-figure (b), the decision bound-

aries do not change in the first row because the maximum
depthis 1.
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Figure 2.4a shows the influence of the number of trees when their depth is set
to the maximum. For the dataset (i) (first row), 8 trees are enough to achieve
good performance. But for the two other datasets, the influence of the num-
ber of trees can be better highlighted. For an increasing number of trees in the
forest, the quality of RFD gets better as shown in Figure 2.4a, and it is also
reflected on the decision frontier. It can be seen that for both datasets, the de-
cision frontiers better suit to the classes (i.e. describe more and more correctly
the data structure) when the number of trees increases. Therefore if we want
the RFD measure to be accurate for each of the cases, it is necessary to have as
many trees as possible.

Figure 2.4b shows the influence of the tree depth for a forest of 1024 trees.
For the dataset (i), there is no difference in the three scatter plots because the
maximum depth is equal to 1. For the two other toy datasets, it can be seen
that the decision frontiers are sharper and better fit the training set when the
tree is deeper. In particular, when the tree depth is not maximum, the decision
boundaries are not sharp enough: this is because, in this case, the trees fail to
capture the class membership of similar instances.

In summary, these results show that if we want the RFD measure to be accu-
rate, it is necessary to have the maximum tree depth, with a large number of
trees in the forest.

2.4.1 Experiments on real-world datasets

To confirm the trends observed on the toy datasets, the hyperparameters are
further studied on real-world multi-view datasets. A general description of
these datasets can be found in Table 2.1. The first four datasets are Radiomics
problems. The others 11 datasets are non-Radiomic datasets but relate to sim-
ilar HDLSS multi-view applications. For Radiomic datasets, there are 5 views
for each of these 4 datasets: 4 texture feature groups from axial T1-weighted
MR images before and after gadolinium-based CE material administration
as well as axial T2-weighted and axial T2-weighted fluid attenuated inver-
sion recovery (FLAIR) images. The fifth view are Visually AcceSAble Rem-
brandt Images (VASARI) features ([104]). More details about the Radiomic



66 Chapter 2. Random Forest Dissimilarity for intermediate integration

datasets can be found in [258]. As for the non-Radiomic datasets: LSVT is
a dataset on vocal performance degradation of Parkinson’s disease subjects
([226]); Metabolomic contains biomarkers (CEA and TIMP), fluorescence con-
centration (PF) and NMR profiles for early detection of colorectal cancer ([37]);
BBC and BBCSport are text classification problems constructed from the news
article corpora by splitting articles into related segments of text ([249]); the
remaining datasets (Cal7 and 20, Mfeat, NUS-WIDE2 and 3, and AWAS8 and
15) are classical image classification datasets obtained using different feature
extractors. Similar to [151], these latter datasets have been randomly down-
sampled to simulate the HDLSS setting.

All these datasets are multi-view datasets, that is to say they are supplied with
several views of the same instances. However, as the goal of this first experi-
ment is to study the effect of hyperparameters on the quality of the RFD mea-
sure, we considered the 71 views (coming from the 15 datasets) separately, as
independent datasets. The reason we decided to use multi-view dataset for
this experiment is to be able to re-use the same datasets in our next experi-

ments.
Both hyperparameters M and J have been tested with the following values:

e Forest size M € {8,16,32,64,128,256,512,1024}: first, an RF with 1024
trees is built; the performance is then monitored with the first 8 trees, the
first 16 trees, and so on, until all the 1024 trees are used in the RF. Recall
that for training a Random Forest, trees are grown independently from
each other. Therefore, retaining a subset of trees in a forest already built
is just a mean to save computation time.

e Tree depth § : an RF is firstly built with fully grown trees. For each RF,
the maximum tree depth d;,4x is computed. Then, the quality of the RFD
is measured by only considering nodes above depthi € {1,2,3,..., dmax },
that is to say by considering that each branch of each tree has not been
grown beyond depth i.

Following the conclusion of [83], the quality of the RFD measure obtained
with different combinations of these hyperparameters is now assessed with
a 1-Nearest Neighbor classifier (INN): 1NN selects the nearest neighbor for
a test instance according to the dissimilarity values and assign the label of
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TABLE 2.1: Overview of the real-world datasets used in our

experiments. IR (imbalanced ratio) is the number of instances

of the majority class over the number of instances of the mi-
nority class.

#features #instances #views #classes IR

nonIDH1[258] 6746 84 5 2 3
IDHcodel[258] 6746 67 5 2 2.94
lowGrade[258] 6746 75 5 2 1.4
progression[258] 6746 84 5 2 1.68
LSVT[226] 309 126 4 2 2
Metabolomic[37] 476 94 3 2 1
Cal7[151] 3766 1474 6 7 25.74
Cal20[151] 3766 2386 6 20 24.18
Mfeat[93] 649 600 6 10 1
BBC[249] 13628 2012 2 5 1.34
BBCSport[249] 6386 544 2 5 3.16
NUS-WIDE2[60] 639 442 5 2 1.12
NUS-WIDE3[60] 639 546 5 3 1.43
AWAS[143] 10940 640 6 8 1
AWA15[143] 10940 1200 6 15 1

the nearest neighbor to the test instance. This method can well reflect the
quality of the dissimilarity matrix, because the idea behind 1NN is that the
most similar instances should belong to the same class. A stratified random
splitting strategy has been used to obtain a robust estimate of the performance
of these 1NN classifiers. Each dataset has been randomly split 50 times, with
50% of the instances for training and 50% for test. A grid search has been
performed on M and § over the 50 random splits.

2.4.2 Results on real-world datasets

The results on the 71 views are presented in this section as mean and standard
deviations of the classification rates over the 50 runs. To better illustrate the
results, a 2D color-map is drawn for each dataset, as in Figure 2.5. The warm
color (yellow) stands for a relatively high quality of the RFD as measured by
the 1NN accuracy while the cold color (blue) stands for relatively low qual-
ity. The y-axis corresponds to the number of trees, and the x-axis corresponds
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to the tree depth. For clarity concerns, only four examples are shown in Fig-
ure 2.5. However, these four color-maps have been chosen as they are good
representatives of all the results we have obtained in this experiment.
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FIGURE 2.5: Color-maps of 4 of the 71 views.

Additionally, a statistical test of significance has been performed over the 71
views to state whether or not the differences observed on these color-maps are
statistically significant. However, also for clarity concerns, only nine combi-
nations of M and ¢ have been considered among all the possible combinations
shown on the color-maps. Table 2.2 sums up these nine parameterization set-
tings, that have been chosen according to the conclusions drawn on the toy
datasets in the previous section. The statistical test used in this experiment is
the Nemenyi post-hoc test with Critical Differences (CD), as recommended in
[79].

TABLE 2.2: The 9 combinations chosen for the statistical test

Name Tree depth Number of trees

minmin 1 8
minhalf 1 128
minmax 1 1024
halfmin 0, /2 8
halfhalf 00y /2 128
halfmax  J;01/2 1024
maxmin  Jdyuy 8
maxhalf .,y 128

maxmax  Jugx 1024
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The results of the statistical test are shown in Figure 2.6. Over all the 71 views,
the best rank is achieved by the maxmax setting, followed by halfmax, max-
half and halfhalf. The performance of maxmax, halfmax, maxhalf and halfhalf are
significantly better than the performance of minmin, minhalf, minmax, halfmin
and maxmin, which confirms the observations made from the color-maps in
Figure 2.5: the bottom-right corner (maximum trees, maximum depth) glob-
ally corresponds to better accuracies than the top-left corner (minimum trees,
minimum depth). One can conclude that with a large number of trees, all fully
grown to their maximum depth, the quality of the resulting RFD measure is
guaranteed to be close to the best possible.

CD
N
1 2 3 4 5 6 7 8 9
[ | | | | | | | |
maxmax minmax
halfmax ——— maxmin
maxhalf minhalf
halfhalf halfmin

——— minmin

FIGURE 2.6: The CD diagram according to the Nemenyi post
hoc test result when « = 0.05.

Note however that one can see small differences in some of the views tested,
as illustrated in Figure 2.5: from Figures 2.5 (c) and (d), it is clear that the worst
RFD measure is obtained from forests with very few trees and minimum tree
depth, while the best RFD measure is obtained with very large forests and
maximum tree depth. In contrast, this trend is not as clear in Figures 2.5 (a)
and (b); the worst results are not clearly located at top-left corner of the color-
map, and the best results are neither located exactly at bottom-right corner.
This may be due to the fact that the views on the left (Figure (a) and (b)) have a
very small number of instances (67 and 75 instances respectively) and that the

resulting learning phase is inherently less reliable for these cases. However,
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even with very few instances for learning, the trend is still observable on these

figures.

2.4.3 Discussion

From this study on the parametrization, one can see that the general trend for
all datasets is similar: the RFD measure is more reliable when the RF contains
more trees and when these trees are fully grown. From the overall compari-
son on the real-world datasets, the maxmax setting (1024 trees with maximum
depth) appeared to be better than the maxhalf setting (128 trees with maximum
depth) but not statistically significantly, which means that 128 trees already
allow to obtain a quite good RFD measure for most of the views. For a bet-
ter insight into this, Figure 2.7 shows the result of the Nemenyi post-hoc test
when focusing on the number of fully grown trees. It shows that the perfor-
mance gaps for forests from 256 to 1024 trees are not statistically significant.
However, these differences in terms of average ranks, observable on this fig-
ure, are still important enough from our point of view to consider using more
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