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thank Léo for the great discussion about mathematics and speaking french with me. I

also want to truly thank to young researchers Joackim, Kevin, Paul, Josselin and Louis

for encouraging me to present at seminar Landau and accompanying me at IRMAR.

Besides, I have also been happy to meet and make friends with many nice people in

Rennes. Thank you my “mathematics” brothers and sisters Van Trinh, Thi Tuyen,

Manh Khang, Thi Tuyet Trang who helped me many things when I have been living in

France. Thank you my best friends Dinh Duong, Minh Phuong and Hoai Thuong for

standing beside me in every events of my life and please don’t forget to invite me to your

“special” events. Thank you Anh Tuan, Van Hoi, Minh Chau, Tuan Anh, Thanh Huan,

Van Hai, Thu Le for our friendship and caring me. A special thank to gentil brothers

Phuong, Dinh Anh, The Anh, Dat and lovely sisters Thi Diep, Lan Anh, Na, Misa Thao

for giving me a warming second family when I firstly came to Rennes. The events has

gone, but the memory about each of you will stay with me forever.

And finally, last but not least, I would like to acknowledge the unconditional support

and love from my family: my parents, my brothers, my sisters, my nieces and nephews

in order for me to have more moral strength to reach the destination of my thesis (Con

cam on bo me da cho con mot gia dinh that hanh phuc va vui ve). Especially, I would

like to express my love to my wife who gave up everything in Vietnam to start a new

life with me in France. I understand that it is not easy and I just want to say to her

“Anh cam on em”. Love you 3000!



Résumé

Analyse classique et semi-classique des champs magnétiques

en deux dimensions

Ma thèse porte sur l’analyse classique et semi-classique, notamment en présence d’un

champ magnétique. En mécanique classique, nous utilisons la dynamique hamiltonienne

pour décrire le mouvement d’une particule chargée dans un domaine soumis à un champ

magnétique. Nous nous intéressons à deux problèmes classiques de la physique : le

problème de confinement et le problème de scattering. Dans le cas quantique, nous

étudions le problème spectral du Laplacien magnétique au niveau semi-classique, dans

des domaines bidimensionnels : sur une variété Riemannienne compacte à bord et sur

R2.

Le premier chapitre est l’introduction aux problèmes étudiés dans ce manuscrit. Ce cha-

pitre commence par donner un aperçu de la dynamique hamiltonienne ainsi que de la

méthode WKB pour les potentiels électriques. Ensuite, nous soulignons les différences

entre le cas électrique et le cas purement magnétique. Ensuite, nous mentionnons les prin-

cipales motivations de cette thèse. La première est liée à la dynamique classique : nous

considérons une particule chargée dans une région magnétisée Ω, nous nous intéressons

à la question du confinement :

“La particule atteindra-t-elle le bord du domaine en temps fini ?”

Nous apportons une réponse précise à cette question en fonction du comportement du

champ magnétique à la frontière et des conditions initiales. Nos résultats améliorent

ceux, récents, de Martins [42]. En particulier, nous verrons que, même si le champ

magnétique est infini à la frontière, certaines trajectoires peuvent s’échapper de Ω. Ce

type de problèmes (ouverts) est mentionné dans [10, Section 1.4].

Du côté classique également, nous nous intéressons au problème du scattering. Nous

considérons une particule chargée en dehors de la région magnétisée Ω. Avant d’atteindre

la région Ω, sa trajectoire est en ligne droite. Si la particule entre dans la région Ω, s’en

échappe-t-elle en temps fini ? Et si c’est le cas, quel est l’angle de déviation entre les

directions entrantes et sortantes ? Nous répondrons explicitement à ces questions dans le

cas de champs magnétiques radiaux et lorsque Ω est un disque. Dans ce cas, la quantité

de mouvement angulaire commute avec l’hamiltonien et permet une réduction à un

système avec un degré de liberté.

Ces questions ont des motivations physiques intrinsèques. Leurs réponses permettent

une meilleure compréhension de la dynamique classique des particules chargées dans
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les champs magnétiques. La description des trajectoires classiques a également de nom-

breuses applications. En particulier, le confinement de particules chargées a des ap-

plications pratiques dans le fonctionnement d’un tokamak, un dispositif utilisant un

champ magnétique pour piéger un plasma sous une forme torique. Nos résultats peuvent

également s’étendre à la dimension trois. De plus, au niveau quantique, les trajec-

toires piégées peuvent être liées au caractère essentiellement auto-adjoint du Laplacien

magnétique (voir [10, 44, 45, 52]). Nous voulons savoir s’il existe ou non des relations

entre eux. Le confinement d’une particule chargée est également un point clé pour décrire

le spectre/résonances des Laplaciens magnétiques. À notre connaissance, alors que la

description de la dynamique magnétique a permis d’estimer le spectre des Laplaciens

magnétiques (voir [26, 51]), aucun résultat ne semble exister pour estimer leur résonances

près de l’axe réel. Etudier les trajectoires piégées est une étape nécessaire dans cette di-

rection.

La deuxième motivation vient du côté quantique : l’étude du Laplacien magnétique.

L’étude de la théorie spectrale du Laplacien magnétique est attachée à la théorie de la

supraconductivité, voir [17]. En se concentrant sur la théorie spectrale semi-classique du

Laplacien magnétique lorsque le champ magnétique, noté B, a un minimum unique et

non dégénéré, Helffer et Kordyukov ont fourni les développements asymptotiques pour

les valeurs propres

∀` ∈ N, λ`(Lh,A) = B(p0)h+

(
2`

√
detH

B(p0)
+

(TrH
1
2 )2

2B(p0)

)
h2 + o(h2) , (1)

où p0 est le point minimum de B et H = 1
2Hess B(p0). Dans [28], ces auteurs ont

également considéré le cas général d’une surface équipée d’une métrique Riemannienne

et ont également obtenu les développements asymptotiques des valeurs propres. À l’aide

de la géométrie symplectique et des techniques pseudo-différentielles, Raymond et Vũ

Ngo.c ont récupéré les développements asymptotiques des valeurs propres via une forme

normale de Birkhoff et les ont liés à la dynamique magnétique classique dans [51]. Nous

rappelons que la méthode WKB a été appliquée pour résoudre le problème spectral du

Laplacien électrique. Une question naturelle concerne la description des fonctions propres

magnétiques : existe-t-il des constructions WKB proches d’un minimum magnétique,

comme pour le cas électrique ? Cette question apparâıt par exemple dans [24, Section

6.1]. Elle a ensuite été attaquée dans [5] par l’idée de Born-Oppenheimer dans un cadre

multi-échelles. De plus, on pourrait aussi poser la question suivante

“Pouvons-nous récupérer les développements asymptotiques (1)

par la méthode WKB ?”
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Dans [20], Bonthonneau et Raymond ont obtenu une réponse positive lorsque le champ

magnétique est analytique. Dans cette thèse, nous étendrons leur travail en considérant

les surfaces générales et en assouplissant également les hypothèses d’analyticité.

Nous consacrons la dernière section du premier chapitre au résumé de tous les résultats

obtenus dans cette thèse. Comme indiqué dans la partie motivations, nous énonçons

respectivement les principaux théorèmes de l’analyse classique à l’analyse semi-classique.

Dans le cas classique, nous énonçons le théorème de confinement dans le cas général et

sa version quantitative. Nous obtenons de meilleurs résultats lorsque nous limitons le

problème de confinement au cas radial sur un disque unitaire. De nombreux exemples,

remarques et images sont fournis pour comparer les travaux de cette thèse avec les

travaux précédents. Ensuite, nous énonçons le théorème du scattering dans le cas radial

pour donner une formule explicite pour l’angle du scattering. Dans le cas semi-classique,

nous introduisons brièvement le laplacien magnétique sur une variété Riemannienne.

En supposant que le champ magnétique a un minimum unique et non dégénéré, nous

décrivons les valeurs propres et les fonctions propres par la méthode WKB. Ensuite, en

utilisant un argument spectral, nous pouvons estimer les véritables fonctions propres

et leurs approximations WKB. En particulier, lorsque le champ magnétique est radial,

nous développons les résultats obtenus via la méthode WKB en une dimension. La

fonction de phase donnée par la méthode WKB a maintenant une formule précise. Les

résultats les plus intéressants apparaissant dans ce cas sont la décroissance exponentielle

des fonctions propres avec l’exposant lié à la fonction de phase et l’estimation entre les

vraies fonctions propres et leurs approximations WKB dans un espace pondéré de façon

exponentielle.

Le chapitre 2 est consacré à la dynamique d’une particule chargée soumise au champ

magnétique. Dans ce chapitre, nous expliquons brièvement comment écrire la célèbre

équation de Newton en présence de la force de Lorentz sous une forme hamiltonienne.

Pour ce faire, nous rappelons les bases de la géométrie symplectique dans R2n. En

particulier, nous rappelons comment passer d’un changement de variables (d’espace)

à une transformation symplectique. Cela sera nécessaire pour décrire le mouvement

d’une particule chargée s’approchant de la frontière (dont un voisinage est décrit par des

coordonnées tubulaires). À la fin de ce chapitre, nous considérons un exemple de base

lorsque le champ magnétique est constant. Nous étudions le mouvement de la particule

via la mécanique de Newton et la mécanique Hamiltonienne, puis nous comparons les

deux approches.

Le chapitre 3 est consacré à prouver les résultats en mécanique classique. Tout d’abord,
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nous écrivons l’hamiltonien magnétique en coordonnées tubulaires. Ensuite, nous utili-

sons la mécanique hamiltonienne pour attaquer le problème de confinement et du scat-

tering. C’est le travail de l’article [46] en collaboration avec Nicolas Raymond et San Vũ

Ngo.c.

Dans le chapitre 4, nous utilisons la méthode WKB pour étudier le spectre du Laplacien

magnétique sur une variété Riemannienne bidimensionnelle. Nous observerons que les

développements asymptotiques des valeurs propres et des fonctions propres peuvent

être obtenues via une analyse WKB. Premièrement, nous introduisons clairement et

complètement la définition du Laplacien magnétique sur une variété Riemannienne. Il

est défini comme l’extension de Friedrichs de l’opérateurHh,A = (Dh,A)∗Dh,A

Dom(Hh,A) = C∞c (M) ,
(2)

où Dh,A := −(ihd + A) et (Dh,A)∗ est le L2(M)-adjoint opérateur de Dh,A.

Lorsque la variété est compacte, le domaine de l’opérateur est fourni avec précision

et la compacité de ses résolvantes est également prouvée. Ensuite, nous réintroduisons

le Laplacien magnétique sur R2 dont le spectre sera étudié au chapitre 5. La section

suivante est utilisée pour la construction d’une paire de coordonnées isothermes locales

et pour la description du Laplacien magnétique dans ces coordonnées. Ces coordonnées

isothermes jouent un rôle important dans cette partie, car elles nous aident à considérer

le “pull-back” de l’opérateur de la variété au plan R2. Ensuite, nous nous préparons

pour le processus WKB en écrivant le problème propre du Laplacien magnétique dans

l’équation eikonale et les équations de transport. L’analyse WKB qui est effectuée en

détail comprend la résolution de l’équation eikonale et des équations de transport grâce à

des séries formelles. Enfin, nous faisons la comparaison entre les vraies fonctions propres

et leurs quasi-modes dans la dernière section.

Le chapitre 5 se concentre sur l’étude du spectre du Laplacien magnétique

Lh,A = (−ih∇−A)2 .

Nous commençons le chapitre en écrivant le laplacien magnétique dans les coordonnées

radiales. Avec l’hypothèse supplémentaire que le champ magnétique est radialement

symétrique, nous pouvons décomposer en Fourier le Laplacien magnétique en somme

directe d’opérateurs électriques (Lm,h)m∈Z. En étudiant le spectre de chaque opérateur

Lm,h, nous avons trouvé des relations entre ces spectres et le spectre de Lh,A. Pour

plus de détails, nous pouvons montrer que pour m ∈ N, la mième valeur propre de
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Lh,A est exactement la première valeur propre de Lm,h. Ensuite, nous avons appliqué

la méthode WKB pour le problème spectral des opérateurs fibrés (Lm,h)m∈N et obtenu

les valeurs propres du laplacien magnétique Lh,A sous la forme (1). De plus, avec l’aide

des estimations d’Agmon, nous avons obtenu deux résultats importants. Tout d’abord,

nous pouvons montrer que les fonctions propres du laplacien magnétique se désintègrent

de façon exponentielle à l’infini et à une vitesse contrôlée par la fonction de phase créée

dans la procédure WKB. Deuxièmement, les fonctions propres sont très bien approchées

dans un espace à pondération exponentielle.
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Chapter 1

Introduction

The goal isn’t to live forever, the goal

is to create something that will.

Chuck Palahniuk, Diary

Contents

1.1 A long time ago . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Results of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . 27

8



This thesis is devoted to some aspects of classical and quantum mechanics with magnetic

fields. The deep relations between classical and quantum mechanics will only be evoked

in this thesis, and, as written by Isaac Newton in his Philosophiae Naturalis Principia

Mathematica, we will “stand on the shoulders of the Giants”. The reader interested in

the history of modern physics and its relations with mathematics might want to consider

the following books [11, 18, 21].

1.1 A long time ago

In the 17th century, Isaac Newton (1642-1727) was one of those who founded classical

mechanics. The motions of objects were described by means of laws involving the concept

of force. For instance, his second law is expressed as an equation allowing to describe

the movement of objects, from the trajectory of a bullet to the orbits of the planets. It

allowed mathematics to enter many physical fields. Newton’s work was then developed

by Lagrange (1736-1813) and Hamilton (1805-1865). The increasing mathematization of

physics did not only make the description of physical problems easier, but also opened

wide perspectives in mathematics (see [58, 60]).

1.1.1 A question from classical mechanics

We consider a particle moving in a domain Ω in Rn in the presence of the force F :

Rn → Rn (we assume that the force depends only on the position of the particle). With

Newton’s approach, the particle evolves according to the differential equation

m q̈(t) = F (q(t)) , (1.1)

where q represents the position of the particle and m is its mass.

Consider the following natural question

“In the presence of the force F , will the particle reach the boundary ∂Ω in finite time?”

We assume that F is conservative, i.e. F can be written as

F = −∇V ,

for some smooth function V . We can find the answer for some special F , through the

Hamiltonian equations 
q̇ =

∂H

∂p

ṗ = −∂H
∂q

,
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where variable p ∈ Rn is the generalized momentum of the particle. The function H is

called Hamiltonian function and has the form

H(q, p) =
1

2m
‖p‖2 + V (q) , (1.2)

where ‖·‖ is the Euclidean norm on Rn. In the classical sense, the Hamiltonian plays the

role of the energy which is the sum of the kinetic energy 1
2m‖q̇‖

2 and the potential energy

V . It is easy to check that the energy is constant along the Hamiltonian trajectories

1

2m
‖p(t)‖2 + V (q(t)) = H(q(0), p(0)) =: H0 .

Let us come back to the above question. If V (q) → ±∞ as q comes close to the

boundary ∂Ω, then no particle can reach the boundary ∂Ω in finite time. Indeed, if a

particle reaches the boundary, it implies that there is some finite time T for which the

quantity V (q(T )) is very large, even larger than H0. This contradicts the conservation

of the energy. This tells us that if the scalar potential blows up at the boundary, then

the particles never get out of the domain Ω, or even touch the boundary ∂Ω. In other

words, the behaviour of the force in a neighborhood of the boundary can keep the

particles inside the domain. This thesis will tackle the case when the electric field is

replaced by a magnetic field. We will see that the explosion of the magnetic field at the

boundary does not necessarily imply the confinement.

This kind of confinement question has somehow quantum analogs. Let us first recall

that quantum theory was developed in the early 20th century by numerous physicists.

Quantum theory was not created by one individual, but it is the result from experiments

and observations. Planck (1858-1947) is considered one of the first persons to have

opened the door to the quantum universe when he discovered that the energy of an

electromagnetic wave is radiated and absorbed in discrete amounts, in terms of a constant

~, the Planck constant. Einstein (1879-1955) went further by giving the idea that the

electro-magnetic radiation itself consists of particles, which nowadays are called photons.

The quantum mechanics was developed through mathematical models from the matrix

theory of Born (1882-1970) and Heisenberg (1901-1976) to the wave mechanics of de

Broglie (1892-1987) and Schrödinger (1887-1961).

The equation describing a quantum particle, given by Schrödinger in 1925, is

i~
∂ψ

∂t
= Hψ , (1.3)

where

H := − ~2

2m
∆ + V .

10



Here ∆ is the Laplacian operator according to the spatial variable. H is called the

Schrödinger operator. The solution of the Schrödinger equation is called the wave func-

tion. It does not give us the position of the particle like Newton’s equation (1.1).

Instead of that, it tells us the probability to find a particle at some place and at some

time. Therefore, when a solution is given, we can not say where the particle is. Precisely,

for each t, |ψ(q, t)|2 gives the probability law for finding the particle at the point q and

at the time t. Thus, we need the condition that∫
Rn
|ψ(q, t)|2dq = 1 .

It means that the particle must be somewhere in the whole space. In order to find

solutions to the Schrödinger equation (1.3), since H does not depend on t, we can try

to look for solutions in the form

ψ(q, t) = ϕ(q)e−iE/~ t , (1.4)

where E ∈ R represents the energy of the particle. Insert this form into (1.3) and then

remove e−iE/~ t on both sides. We get the eigenvalue equation:

H(ϕ) = Eϕ . (1.5)

Therefore, the more information we know about the Schrödinger operator H, the easier

we can solve the equation. One of the properties of the operator H receiving much

attention of mathematicians is its essentially self-adjointness (see Appendix A). Consider

the domain Ω. Finding a criterium ensuring essentially self-adjointness shares common

features with the classical confinement problem (see [44, 52]). By looking back to the

classical case, we could be tempted to think that the condition V (q)→∞ as q → ∂Ω is

enough to decide the essentially self-adjointness of the Schrödinger operator H, because

no classical particle has the ability to get closed the boundary ∂Ω. Nevertheless, it is

not exactly the case: the quantum particle can leak through the infinite barrier of the

potential V . This effect is called “Tunneling effect” (see [18]). It turns out that the

potential should not only blow up at the boundary, but also blow up at an appropriate

rate to make sure that the probability of finding a particle at the boundary is zero. For

example, in [44], the essentially self-adjointness of H is ensured by the behaviour of V

near the boundary ∂Ω

V (q) ≥ ~2

2m

3

4d(q)2
,

with d(q) = dist(q, ∂Ω), see [8, 52] for the references.
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1.1.2 The WKB method with the electric potential

In this thesis, we will focus on another quantum question. Going back to the Schrödinger

equation, after the restriction of looking for the solution in the form (1.4), we obtain an

equation

− ~2

2m
∆ϕ+ (V − E)ϕ = 0 .

In order to ”solve” this equation, we shall introduce briefly a fundamental method named

after Wentzel (1898-1978), Kramers (1894-1952) and Brillouin (1889-1969) which is often

used to find an approximate solution for a linear differential equation. This tool is called

the WKB method. The reader can consult the books [3, 12, 23] for the following part.

The method starts by setting up the solution in the form

ϕ(q) = eiS(q)/~a(q, ~),

for some real-valued function S known as a phase function. By replacing φ(q) into the

time-independent Schrödinger equation, we get the equation(
‖∇S‖2

2m
+ V − E

)
eiS/~a− i~

2m
(2∇S · ∇a+ (∆S)a) eiS/~ − ~2

2m
(∆a)eiS/~ = 0 .

Removing eiS/~ from this equation, we obtain(
‖∇S‖2

2m
+ V − E

)
a− i~

2m
(2∇S · ∇a+ (∆S)a)− ~2

2m
∆a = 0 .

Since ~ is considered small, the first WKB idea is trying to kill the coefficient associated

with ~0, that is
‖∇S‖2

2m
+ V − E = 0 . (1.6)

This equation is called the Eikonal equation. Assuming that a solution S of (1.6) can

be found, we will have

(H− E)ϕ = O(h) .

This tells us that ϕ satisfies the eigenfunction equation up to order ~. If a smooth

function a solves the equation

2∇S · ∇a+ (∆S)a = 0 , (1.7)
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then we will have a better approximate solution with order ~2. The equation (1.7) is

called the transport equation. This idea leads us to a better approximation by consid-

ering the solution a of the equation

i (2∇S · ∇a+ (∆S)a) + ~∆a = 0 , (1.8)

in the asymptotic form

a(q, h) =
∞∑
k=0

ak(q)h
k . (1.9)

Here (ak)k∈N is a sequence of smooth complex-valued functions and we say that a func-

tion f : Rn×(0, 1)→ C (~ is considered as a parameter ranging in (0, 1)) is an asymptotic

series

∞∑
k=0

ak(q)h
k if for all N ∈ N and for all α ∈ Nn,

∂αq

(
f(q, h)−

N∑
k=0

ak(q)h
k

)
= O(hN+1) locally uniformly in q , (1.10)

i.e. for all K compact contained in Rn, there exists a constant CN,α,K such that∣∣∣∣∣∂αq
(
f(q, h)−

N∑
k=0

ak(q)h
k

)∣∣∣∣∣ ≤ CN,α,KhN+1 for all q ∈ K .

Substitute the series form (1.9) of a(q, h) into (1.8) and assign the condition that every

terms associated with the orders of ~ vanish, we have the transport equations

~0 : 2∇S · ∇a0 + (∆S)a0 = 0 ,

~1 : 2∇S · ∇a1 + (∆S)a1 = i∆a0 ,

~2 : 2∇S · ∇a2 + (∆S)a2 = i∆a1 ,

........................................................

~n : 2∇S · ∇an + (∆S)an = i∆an−1 ,

........................................................

Since all the above equations have the same structure, hence if we can find smooth

solutions a0 and a1 to the equations associated with ~1 and ~2, the other equations will

be easy to solve by induction. After we obtain all the ak, the smooth solution a(q, h)

satisfying (1.10) is given by Borel’s lemma (see [37, Theorem 1.2.6]). Indeed, let N ∈ N,

Borel’s lemma tells us that the polynomial
N∑
k=1

ak(q)h
k coincides with the Taylor series

of the function a(q, h) up to order N according to variable ~.

Looking at the eikonal equation (1.6), the above WKB construction with a real-valued
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phase S is performed in the classically allowed region: E − V (q) ≥ 0. To deal with the

classically forbidden region: E−V (q) < 0, we can approximate the solution by the form

e−Ŝ/ha(q, h) ,

where Ŝ is a real-valued smooth function. Essentially, we just replace S by iŜ in the

above WKB construction and we obtain the eikonal equation

− ‖∇Ŝ‖
2

2m
+ V − E = 0 , (1.11)

and the transport equations

~0 : 2∇Ŝ · ∇a0 + (∆Ŝ)a0 = 0 ,

~1 : 2∇Ŝ · ∇a1 + (∆Ŝ)a1 = ∆a0 ,

~2 : 2∇Ŝ · ∇a2 + (∆Ŝ)a2 = ∆a1 ,

........................................................

~n : 2∇Ŝ · ∇an + (∆Ŝ)an = ∆an−1 ,

........................................................

Later, in the magnetic case, we will see that we consider a phase function which is

neither purely real nor purely imaginary.

Remark 1.1. In [23, Chapter 2] and [12, Chapter 3], the authors explain how to construct

the local WKB approximation for the eigenfunctions of the Schrödinger operator when

the potential V has a zero minimum and this minimum is non-degenerate, it means that

V (0) = 0 , ∇V (0) = 0 , Hess V (0) > 0 .

1.1.3 When the magnetic field appears

Above is the story of classical and quantum particles submitted to an electric field. Let

us now consider the case of a pure magnetic field. A charged particle submitted to

a magnetic field feels the Lorentz force F = eq̇ × B. As we will recall later on, the

corresponding Newton equation may be written in a Hamiltonian form. The associated

Hamiltonian is

H(q, p) =
‖p−A(q)‖2

2
,

where A is such that rot A = B (and B is assumed to be divergence free, according to

the Maxwell equations). The aim of this thesis is to explore pure magnetic effects (in

two dimensions) on the classical and quantum sides: classical confinement properties
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and WKB constructions. In particular, we will see that, contrary to the electric case,

an infinite magnetic field at the boundary does not imply the confinement.

On the quantum side, the magnetic Schrödinger operator has the form

Lh,A = (−ih∇−A)2 . (1.12)

Here the parameter h will play the role of the Plank constant ~ and will be assumed

to be small. One will see that the WKB analysis of the eigenvalue equation is more

subtle than in the electric case. The structure of the system of PDEs will turn out to be

more ”complex”. In particular, the eikonal equation will not be enough to determine the

phase S and the phase will be a complex function partially determined by the transport

equations.

1.2 Motivations

In this section, we explain the main two “magnetic” motivations of this thesis. The

first one is related to classical dynamics. We tackle two well-known physical problems:

confinement and scattering. The second one concerns the quantum side. We exhibit

general magnetic WKB constructions on a 2D Riemannian manifold. In the special case

of radial magnetic fields on the Euclidean plane, we prove that our constructions are

very good approximations of the true eigenfunctions.

1.2.1 On the classical side

Here are the two problems under consideration:

- (Confinement) Consider a charged particle in the magnetized region Ω. We are curious

about the same question which appears in subsection 1.1.1 :

“Will the particle reach the boundary in finite time?”

We will provide a precise answer to this question, depending on the behaviour of the

magnetic field at the boundary and on the initial conditions. Our results will improve

recent results by Martins in [42]. In particular, we will see that, even if the magnetic

field is infinite at the boundary, some trajectories can escape from Ω. This kind of

(open) problems is mentioned in [10, Section 1.4].

- (Scattering) Consider a charged particle outside the magnetized region Ω. Before it

reaches the region Ω, the trajectory is a straight line. If it enters the region Ω, does

the particle escape from it in finite time? And, if it does so, what is the deviation
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angle between the ingoing and outgoing directions? We will explicitly answer these

questions in the case of radial magnetic fields and when Ω is a disc. In this case, the

angular momentum commutes with the Hamiltonian and allows a reduction to a one

degree of freedom system.

These questions have intrinsic physical motivations. Their answers allow a better un-

derstanding of the classical dynamics of charged particles in the magnetic fields. The

description of the classical trajectories has also many applications. In particular, the

confinement of charged particles has practical applications in operation of a tokamak, a

device using a magnetic field to trap a plasma in a toral shape. Our results also have the

potential to expand on three dimensions. In the regime of large magnetic field and small

energy, a special treatment of the confinement problem can be done and takes advantage

of the near-integrable structure of the Hamiltonian dynamics, either via Birkhoff normal

form [51], or KAM theorems [9]. On the contrary, our results here will give more explicit

initial conditions and allow regimes where the guiding center motion is not necessarily

meaningful.

Furthermore, in the quantum level, the trapped trajectories can be related to the es-

sentially self-adjoint character of the magnetic Laplacian (1.12) (see [10, 44, 45, 52]).

We want to know if there are some relations between them or not. The confinement

of a charged particle is also a key point to describe the spectrum/resonances of mag-

netic Laplacians. As far as we know, whereas the description of the magnetic dynamics

has allowed to estimate the spectrum of magnetic Laplacians (see [26, 51]), no result

seems to exist to estimate their resonances near the real axis. Investigating the trapped

trajectories is a necessary step in this direction.

1.2.2 On the quantum side

The investigation of the magnetic Laplacian has now a long story. One of the initial

motivations to study the spectral theory of the magnetic Schrödinger operator was the

mathematical study of superconductivity, see [17]. The ground-energy is indeed related

to the third critical field in the Ginzburg-Landau theory. From this motivation, there are

a series of papers devoted to study the spectrum of the magnetic Schrödinger operator

at the semi-classical level [26–35, 43, 47, 51]. Among them, the case of a magnetic

field having a unique and non-degenerate minimum was investigated. Namely, in [31,

Theorem 1.7], Helffer and Kordyukov provide the following asymptotic expansions

∀` ∈ N, λ`(Lh,A) = B(p0)h+

(
2`

√
detH

B(p0)
+

(TrH
1
2 )2

2B(p0)

)
h2 + o(h2) , (1.13)
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where p0 is the minimum point of B and H = 1
2Hess B(p0) . In [28], these authors also

considered the general case of a surface equipped with a Riemannian metric and also

obtain the eigenvalues expansions. With the help of symplectic geometry and pseudo-

differential techniques, Raymond and Vũ Ngo.c recovered the eigenvalues expansions

through a Birkhoff normal form and related them to the magnetic classical dynamics

in [51]. As we recall, the WKB method was applied to solve the spectral problem of

the electric Laplacian. A natural question concerns the description of the magnetic

eigenfunctions: Are there WKB constructions near a magnetic minimum, as for the

electric case? This question appears for instance in [24, Section 6.1]. It was then

attacked in [5] by Born-Oppenheimer’s idea in a multi-scale framework. Moreover, one

could also ask the following question

“Can we recover the spectrum expansion (1.13) by the WKB method?”

In [20], Bonthonneau and Raymond obtained a positive answer when the magnetic field

is analytic. In this thesis, we will extend their work by considering general surfaces and

also relaxing the analyticity assumptions.

1.3 Results of the thesis

1.3.1 In classical mechanics

We study the dynamics of a charged particle in a smooth bounded domain Ω ⊂ R2 in the

presence of a non homogeneous magnetic field B. We suppose that B is perpendicular

to the plane R2, i.e. B(q) = (0, 0, b(q)) for q ∈ R2. This assumption forces particles

lying in the R2 plane and whose initial velocities are in the plane to stay in this same

plane for all time. Since a vector field in R3 can be identified with a 2-form via the

Euclidean structure, we write the magnetic field as B = b(q)dq1 ∧ dq2. Then, if there

is a 1-form A = A1dq1 + A2dq2 such that dA = B, we can describe the motion of the

charged particle through the magnetic Hamiltonian

H(q, p) =
‖p−A(q)‖2

2
, (1.14)

where ‖.‖ denotes the Euclidean norm on R2. The dynamics is defined by the system q̇ = ∂pH(q, p)

ṗ = −∂qH(q, p) .
(1.15)

17



We shall always assume that q 7→ b(q) is locally Lipschitz-continuous, ensuring that the

system (1.15) has a unique local maximal solution, thanks to Cauchy-Lipschitz theorem.

Then, the vector potential A will always be chosen to be C1-smooth.

We assume that the connected components of ∂Ω are C2-smooth closed curves without

self-intersections. Let C be a connected component of ∂Ω. It can be parametrized by its

arc length γ : R/LZ→ C where L is the length of C.

There exists δ > 0 such that

ψ :

 (0, δ)× R/LZ→ ΩC(δ)

(n, s) 7→ γ(s) + nN(s) = q

is a smooth diffeomorphism. N(s) denotes the inward pointing normal at γ(s) and

ΩC(δ) = {q ∈ Ω : d (x, C) < δ} .

Note that

B = b(q)dq1 ∧ dq2 = b(ψ(n, s))(1− nκ(s))ds ∧ dn , (1.16)

where κ(s) is the signed curvature of C at γ(s).

After denoting

B(n, s) := −b(ψ(n, s))(1− nκ(s)) ,

we can now state our confinement results.

1.3.1.1 General confinement theorems

Our first theorem provides a sufficient condition on B so that no trajectory can escape

from Ω.

Theorem 1.2 (Theorem 2.1 in [46]). For every connected component C of ∂Ω, we

assume that

lim
n→0

∣∣∣∣∫ δC

n

∫ LC

0
B(η, ξ)dξdη

∣∣∣∣ = +∞ , (1.17)

and that there exists MC ≥ 0 such that, for all (n, s) ∈ (0, δC)× R/LCZ,∣∣∣∣B(n, s)− 1

LC

∫ LC

0
B(n, ξ)dξ

∣∣∣∣ ≤MC . (1.18)

Then the magnetic Hamiltonian dynamics is complete (i.e. no solution of (1.15), start-

ing in Ω, reaches ∂Ω in finite time).
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Of course, given a starting point q ∈ Ω, only the components C that bound the connected

component of q in Ω need to be taken into account. Actually, there is a more quantitative

version of the previous theorem.

Theorem 1.3 (Theorem 2.2 in [46]). Consider a connected component C of ∂Ω. Let

K = sup
s∈R/LZ

|κ(s)| , K ′ = sup
s∈R/LZ

|κ′(s)| .

We assume that, for some ε ∈ (0, 1), δ satisfies 0 < δ ≤ ε/K. We assume that there

exists M ≥ 0 such that, for all (n, s) ∈ (0, δ)× R/LZ,∣∣∣∣B(n, s)− 1

L

∫ L

0
B(n, ξ)dξ

∣∣∣∣ ≤M . (1.19)

Consider T > 0 and q(t) = ψ(n(t), s(t)) a trajectory contained in ΩC(δ) for t ∈ [0, T ]

with energy H0. Let

f(n) = − 1

L

∫ δ

n

∫ L

0
B(η, ξ)dξdη , (1.20)

and assume that

lim inf
n→0

|f(n)| > C(T, q(0), q̇(0)) , (1.21)

where

C(T, q(0), q̇(0)) =

∣∣∣∣∣ṡ(0)[1− κ(s(0))n(0)] +

∫ δ

n(0)

∫ L

0
B(η, ξ)dξdη

∣∣∣∣∣
+
√

2H0(1 + ε) +

(
M
√

2H0 +
2H0K

′δ

1− ε

)
T .

Let g1 be a continuous and strictly decreasing function such that

lim
n→0

g(n) = lim inf
n→0

|f(n)| , g ≤ |f | on [0, δ] .

Then, g takes the value C(T, q(0), q̇(0)) and, for all t ∈ [0, T ),

n(t) > g−1(C(T, q(0), q̇(0))) . (1.22)

Remark 1.4. Theorems 1.2 and 1.3 are improvements of [42, Theorems 1&2]. They tell

us that a particle in Ω never reaches the boundary of Ω. In [42], it is assumed that ∂sB

is integrable:

sup
s∈C

∫ N

0
|∂sB(m, s)|dm < +∞ , (1.23)

1such a function g always exists.
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and the question of removing this assumption was explicitly mentioned as important

(op. cit., section 3 ). Our theorems give a partially positive answer to this question,

thus allowing for magnetic fields having wilder tangential behaviors.

- Theorem 1.2 generalizes [42, Theorem 1] by replacing the integrability assumption by

(1.18). This allows in particular to consider a magnetic field (on the unit disc) of the

form

B(n, s) =
1

n
+ sin

(
χ(s)

n

)
,

where χ is a smooth function supported in (−π, π) such that χ′(0) 6= 0 and χ(0) = 0.

For this magnetic field, it is easy to check that (1.23) is not satisfied. In fact, the

C∞ smoothness is actually not required; in order to draw Figure 1.1, we took, for

simplicity, a small perturbation of χ(s) = arcsin(sin(s)).
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Figure 1.1: A trajectory obtained with a magnetic field on the unit disc that is strong
near the boundary with a non-integrable tangential derivative:

B(q) =
1

1−
√
q21 + q22

+ sin

(
arcsin(q2)

1−
√
q21 + q22

)
+ 5q31 − 7q2 .

- An explicit lower bound for the escaping time of a magnetized region is given in [42,

Theorem 2] in the case when

B(n, s) =
M

nα
+ h(n, s) , α ≥ 1 , (1.24)

where M 6= 0 and h is bounded and smooth in ΩC(δ), and so that (1.23) holds. In

Figure 1.3, we provide some examples of magnetic fields under this form. Theorem

1.3 not only release the condition integrability s−partial of the function h used in [42,

Theorem 2], but also provides an explicit lower bound for magnetic fields that are not

in the form (1.24), see Figure 1.2 where the magnetic field changes sign infinitely many

times.
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- Note that, at the quantum level, a magnetic field (on the unit disc D) like

B(n, s) =
2 + sin s

n2
, n = 1−

√
q2

1 + q2
2 , s ∈ R/2πZ (1.25)

is confining (i.e. the magnetic Laplacian acting on C∞0 (D) is essentially self-adjoint),

see [10]. Nevertheless, this magnetic field does not satisfy our assumption (1.18) and

thus we can not establish the classical confinement with our method.
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Figure 1.2: A trajectory obtained with a magnetic field on the unit disc that strongly
oscillates near the boundary:

B(q) =

1
2 − sin

(
1

1−
√

q21+q22

)
(1−

√
q21 + q22)2

+ 10q1 − 2q21 − 10q22 .

1.3.1.2 Confinement results in the radial case

When Ω = D(0, 1) and when B is radial, i.e. B(q) = b(
√
q2

1 + q2
2), the dynamics is

completely integrable, and hence can be entirely described by a one degree of freedom

Hamiltonian; concerning the confinement problem, this of course leads to stronger re-

sults.

Proposition 1.5 (Proposition 2.3 in [46]). Let q(t) = (q1(t), q2(t)) be a solution to

(1.15) starting at t = 0 from inside the unit disc. If the initial data (q(0), q̇(0)) satisfies

either H1 or H2 below:

H1:

lim inf
r→1−

∣∣∣∣∣ 1

2π

∫
‖q(0)‖≤‖q‖≤r

B(q)dq − det(q(0), q̇(0))

∣∣∣∣∣ > ‖q̇(0)‖ , (1.26)

H2:

lim inf
r→1−

∣∣∣∣∣ 1

2π

∫
‖q(0)‖≤‖q‖≤r

B(q)dq − det(q(0), q̇(0))

∣∣∣∣∣ = ‖q̇(0)‖ , (1.27)
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and

lim sup
r→1−

∣∣∣ 1
2π

∫
‖q(0)‖≤‖q‖≤r B(q)dq − det(q(0), q̇(0))

∣∣∣− ‖q̇(0)‖

r − 1
< 0 , (1.28)

then the solution exists for all t ≥ 0, and there exists η ∈ [0, 1) such that

∀t ≥ 0 , ‖q(t)‖ < η . (1.29)
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(a) B(q) = 1

1−
√

q21+q22
+ 5x6 + 2xy2
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(b) B(q) = 1

1−
√

q21+q22
+ 10q41 + q22
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(c) B(q) = 1(
1−
√

q21+q22

)3/2 + 10q41 + q22
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(d) B(q) = 1(
1−
√

q21+q22

)2 + 10q41 + q22

Figure 1.3: Some examples of confined charged particles which start at the point
(0.9, 0) in the general case.

Example 1.1. If the given magnetic field satisfies

lim
r→1

∣∣∣∣∣
∫
D(0,r)

B(q)dq

∣∣∣∣∣ = +∞ ,

then for arbitrary the particle which start to move inside the unit disk will be kept inside

some smaller disk forever, see the Figure 1.4 for magnetic fields whose flux on D(0, 1)

is infinite.
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(a) B(q) = 1

1−
√

q21+q22
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(b) B(q) = 1
1−(q21+q22)

Figure 1.4: Some examples of confined charged particles which start at the point
(0.9, 0) in the radial case.

One can find situations where none of the hypothesis of Proposition 1.5 hold and the

trajectory can be arbitrarily close to the boundary. (see Figure 1.5: this unusual be-

haviour can be explained by a critical point of the radial Hamiltonian at r = 1, see

(1.33)).
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Figure 1.5: B(r) = e−r − 2
r .

If the magnetic field is L1-integrable near the boundary of Ω, we can prove that there

exist trajectories escaping from Ω in finite time. In particular, even if the magnetic field

is infinite at the boundary, the confinement is not ensured.

Proposition 1.6 (Proposition 2.4 in [46]). When

lim sup
r→1−

∣∣∣∣∣
∫
D(0,r)

B(q)dq

∣∣∣∣∣ < +∞ , (1.30)

there exists a trajectory starting in Ω and reaching the boundary in finite time.

Of course, even under assumption (1.30), some trajectory may be confined, depending

on initial conditions (see Figure 1.6 where the simulations are performed with B(r) =

ln2(1− r)).
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Figure 1.6: B(r) = ln2(1− r): the particle is confined or not.

1.3.1.3 Scattering in the radial case

Let us now describe our scattering result in the radial case. We assume that B|Ω admits

a locally Lipschitz extension in a neighborhood of Ω.

In polar coordinates, we have

B = B(r)rdr ∧ dθ = d (G(r)dθ) ,

where

G(r) =

∫ r

0
τB(τ)dτ .

Via the symplectic change of coordinates

R∗+ × R/2πZ× R2 → (D \ {0})× R2

(r, θ, pr, pθ) 7→
(
r cos θ, r sin θ, cos θpr −

sin θ

r
pθ, sin θpr +

cos θ

r
pθ

)
= (q, p) ,

(1.31)

the Hamiltonian becomes

H̃(r, θ, pr, pθ) =
p2
r

2
+

(pθ −G(r))2

2r2
. (1.32)

In particular, the angular momentum pθ is constant along the flow and we consider the

reduced one dimensional Hamiltonian on T ∗R∗+

H(r, pr) :=
p2
r

2
+ V (r) , V (r) :=

(pθ −G(r))2

2r2
, (1.33)

where V ∈ C1(R∗+,R). We notice that (see, for example, Lemma 3.1)

vr = pr , vθ = r−1(pθ −G(r)) ,
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where vr and vθ are the classical radial and tangential components of the velocity v.

We consider a charged particle with energy H0 arriving into the disk with velocity v1.

In particular, H0 = 1
2‖v1‖2. If the particle escapes from the disc with velocity v2 (see

Figure 1.7), we have ‖v2‖ = ‖v1‖, and a natural question is to compute the (scattering)

angle between these two vectors. Let ω ∈ (−π, π] be the oriented angle between v1 and

v2.

v1

v2

r∗

θ1

θ2

δ

α

Figure 1.7: The scattering arrows.

Theorem 1.7 (Theorem 2.5 in [46]). Consider a trajectory starting on ∂Ω, with velocity

v1 6= 0 and entering Ω. This means that either vr < 0, or vr = 0 and B(1)
vθ

< −1. We

define δ as the angle between the inward pointing normal and v1.

We also assume

i. either that the equation V (r) = H0 has a solution for r ∈ (0, 1) and that the closest

solution to 1, denoted by r∗, satisfies V ′(r∗) < 0.

ii. or, only when pθ = 0, that the equation V (r) = H0 has no solution.

Then the trajectory escapes from Ω in finite time with velocity v2, and we can compute

the scattering angle ω mod 2π:
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i. either the trajectory does not pass through the origin and

ω = α− π + 2δ ,

where

α = 2

∫ 1

r∗

pθ −G(r)

r
√

2H0r2 − (pθ −G(r))2
dr , (1.34)

ii. or the trajectory passes through the origin (in this case pθ = 0) and

ω = α+ 2δ ,

where

α = 2

∫ 1

0

−G(r)

r
√

2H0r2 −G(r)2
dr . (1.35)

1.3.2 In semi-classical spectral theory

1.3.2.1 On a compact manifold

Let (M, g) be a two-dimensional compact connected oriented Riemannian manifold with

boundary equipped with a metric g. Let A be a smooth real-valued 1-form defined on

M . Since M is two-dimensional, there exists a smooth real-valued function B such that

dA = B dVg ,

in which dVg is the Riemannian volume form on M . We call B the magnetic field.

The magnetic Laplacian, denoted by Lh,A, is defined as the Friedrichs extension (the

Dirichlet realization) of the operatorHh,A = (Dh,A)∗Dh,A

Dom(Hh,A) = C∞c (M) ,
(1.36)

where Dh,A := −(ihd + A) and (Dh,A)∗ is the L2(M)-adjoint operator of Dh,A. The

reader can find the exact definition of these operators in Chapter 4.

From the compactness of M , we will prove that (in Section 4.1.3):

Theorem 1.8. For each h > 0, the magnetic Laplacian Lh,A has compact resolvent.

We also give an explicit formula for the operator’s domain (in Section 4.1.4):
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Theorem 1.9. For each h > 0, the domain of the magnetic Laplacian is

Dom(Lh,A) = H1
0 (M) ∩H2(M) . (1.37)

Since Lh,A is self-adjoint and has compact resolvent, its spectrum is discrete and de-

scribed by an unbounded increasing sequence:

λ0(Lh,A) ≤ λ1(Lh,A) ≤ ...

In order to announce our assumption and main results, we need to recall the definition

of the Hessian of a function defined on a manifold at a critical point. In the Riemannian

case, we also define its trace and its determinant.

Definition 1.10 (Hessian of a function at a critical point.). The Hessian, denoted by

d2f , of a smooth function f : M → R at a critical point p ∈M , i.e. (df)p = 0, is defined

via

(
d2f

)
p

: TpM × TpM → R ,(
d2f

)
p

(X0, Y0) = Xp(Y f) for all X0, Y0 ∈ TpM ,

where X,Y are vector fields on M such that Xp = X0 and Yp = Y0.

Since (df)p = 0, the definition of the Hessian is independent of the choice of the vector

fields X,Y extending X0, Y0. Furthermore, it directly implies that
(
d2f

)
p

is a symmetric

bilinear form on the vector space TpM .

Definition 1.11. Let p ∈M be the critical point of f , there exists a unique endormor-

phism H of TpM such that

(
d2f

)
p

(U, V ) = gp(HU, V ) for all U, V ∈ TpM .

The trace and the determinant of the Hessian of the function f are defined by, respec-

tively,

Tr
(
d2f

)
p

= TrH and det
(
d2f

)
p

= detH . (1.38)

Note that the definition of the trace and the determinant of the Hessian is invariant

under diffeomorphisms preserving the Riemannian metric g.

Remark 1.12. Since the Hessian of a function f at a critical point p ∈M is symmetric,

the linear map H is also symmetric on TpM with respect to the inner product g, i.e.

gp(HU, V ) = gp(U,HV ) for all U, V ∈ TpM .
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If the Hessian of f at p is positive, we can define the unique positive square-root H1/2

of H.

Now we state the assumption on the magnetic field B:

Assumption 1.1. Let p0 ∈M , we assume that

(1) The magnetic field B ∈ C∞(M,R) has a positive minimum at p0, i.e.

B(p0) = min
p∈M

B(p) > 0 .

(2) The Hessian of function B at p0 is positive non-degenerate, i.e.

(d2B)p0(V, V ) > 0 for all V ∈ Tp0M\{0} .

Under the same assumptions, in [28, Theorem 1.2], Helffer and Kordyukov provided the

expansion of the eigenvalues

∀` ∈ N, λ`(Lh,A) = b0h+

(
2`

√
detH

b0
+

(TrH
1
2 )2

2b0

)
h2 + o(h2) , (1.39)

where b0 = B(p0) and H = 1
2H with H is the endormorphism given by

(
d2B

)
p0

(U, V ) = gp0(HU, V ) for all U, V ∈ Tp0M .

From the expansion (1.39), with the notice that detH > 0, we can state that: for

arbitrary large k ∈ N, there exists h0 > 0 such that for all h ∈ (0, h0),

λ0(Lh,A) < λ1(Lh,A) < ... < λk(Lh,A) .

In other words, we can choose h small enough such that (λj(Lh,A))0≤j≤k are simple

eigenvalues. The expansion (1.39) is a strong improvement of the [33, Theorem 7.2]

because it obtained the result on a manifold and more asymptotic terms were provided.

Our result will show that we can recover this asymptotic expansions by the WKB method

and also provide the approximate eigenfunctions. In order to state our main theorems,

let us introduce the coordinates on which our works is established:

Definition 1.13 (Isothermal coordinates). Let (M, g) be a Riemannian manifold of two

dimensions, a local chart

(Ω, φ : Ω→ φ(Ω) ⊂ R2)
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is called an isothermal coordinate if there exist a function η ∈ C∞(φ(Ω)) such that

φ∗
(
e2ηg0

)
= g , (1.40)

where g0 is the Euclidean metric on R2 and the pull-back metric φ∗
(
e2ηg0

)
is a metric

on M defined by (
φ∗
(
e2ηg0

))
p

(U, V ) = e2ηg0 (dφpU,dφpV ) ,

for all p ∈M and U, V ∈ TpM .

The local existence of the isothermal coordinates is also recalled in this thesis (precisely

in Theorem 4.6). Our first result is an application of the WKB method:

Theorem 1.14. Let p∗ ∈ M and assume that the magnetic field B has a local positive

minimum at p∗ and its Hessian at p∗ is positive non-degenerate. Then, there exists an

isothermal local chart (Ω, φ : Ω → U ⊂ R2) centered at p∗ in which the magnetic field

has the form

(B ◦ φ−1)(q) = b0 + αq2
1 + γq2

2 +O(‖q‖3) ,

where b0 > 0, 0 < α ≤ γ and for all ` ∈ N, there exist

i) a smooth complex-valued function P defined on Ω satisfying

Re(P ◦ φ−1)(q) =
e2η(0)b0

2

( √
α√

α+
√
γ
q2

1 +

√
γ

√
α+
√
γ
q2

2

)
+O(‖q‖3) , (1.41)

on U , where η is given in Definition 1.13 associated with the isothermal coordinates

(U, φ),

ii) a sequence of smooth complex-valued functions (U`,j)j∈N defined on Ω,

iii) a sequence of real numbers (µ`,j)j∈N with

µ`,0 = b0, µ`,1 = 2`

√
detH

b0
+

(TrH
1
2 )2

2b0
,

iv) a sequence of smooth functions (F`,j)j∈N defined on Ω which are flat at p∗,

such that, for all J ∈ N,

eP/h

Lh,A − h
J∑
j=0

µ`,jh
j

e−P/h J∑
j=0

U`,jh
j

 =

J+1∑
j=0

hjF`,j +O(hJ+2) ,

locally uniformly on Ω.
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The flatness of a function f on the manifold in the above theorem is understood in the

meaning
∂m+nf

(∂q1)m(∂q2)n
(p∗) = 0 , (1.42)

in any particular (and hence all) coordinate system, for all m,n ∈ N.

The road to the proof of this theorem is a long process of applying the WKB method.

For details, this road will has to go through Section 4.2, Section 4.3 and Section 4.4.

Here is the plan to prove this theorem. Firstly, we use the isothermal coordinates to

pull back the magnetic Laplacian to an operator which is defined on a neighborhood of

0 in R2. We use the WKB method to approach the spectral problem of the magnetic

Laplacian by means of the formal series. But it is in contrast to the electric case in which

the real-valued phase is determined completely by the eikonal equation, the magnetic

phase will only be partially determined by the eikonal equation. Up to solving the first

transport equation, it will be completely determined. We also provide some tools to

solve the transport equations in the formal series analysis. The conclusion is given by

Borel’s lemma.

Theorem 1.15. Let p∗ ∈M and assume that the magnetic field satisfies the assumptions

of Theorem 1.14. For any ` ∈ N, there exist

i) a non-negative function P̂ ∈ C∞c (M) ,

ii) a sequence of functions (Û`,j)j∈N ⊂ C∞c (M) ,

and for any (ε, J) ∈ (0, 1)×N, there exist C > 0 and h0 > 0 such that for all h ∈ (0, h0),

‖eεP̂ /h
(
Lh,A − λJh,`

)
ΥJ
h,`‖L2(M) ≤ Ch

J+2 , (1.43)

where

λJh,` = h
J∑
j=0

µ`,jh
j and ΥJ

h,` =
J∑
j=0

Û`,jh
j .

Hence, it follows that

‖
(
Lh,A − λJh,`

)
ΥJ
h,`‖L2(M) ≤ Ch

J+2 . (1.44)

Theorem 1.15 can be used to prove that there is no odd powers of h
1
2 in the expansion

given by [28, Theorem 1.2]. Furthermore, Theorem 1.15 is an extension of [28, Theorem

2.1] in the case k = 0.
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For each ` ∈ N, let Υh,` be the eigenfunction associated with λ`(Lh,A). We introduce

the projection into the eigenspace of λ`(Lh,A) :

Π` : L2(M)→ Dom(Lh,A)

u 7→ Π`u = 〈u,Υh,`〉L2(M) Υh,` .

Next theorem will be an application of the Theorem 1.15. We assume that p∗ = p0 and

let ΥJ
h,` be the functions which are given in Theorem 1.15. Using spectral arguments,

the approximation for the eigenfunctions Π`Υ
J
h,` are provided by the following theorem:

Theorem 1.16. Assume that the magnetic field satisfies the assumption (1.1). For all

(J, `) ∈ N× N, there exist C > 0 and h0 > 0 such that for all h ∈ (0, h0),

∥∥ΥJ
h,` −Π`Υ

J
h,`

∥∥
L2(M)

≤ ChJ+1. (1.45)

1.3.2.2 On R2

We consider the operator

Hh,A = (−ih∂q1 −A1)2 + (−ih∂q1 −A2)2 ,

with Dom(Hh,A) = C∞c (R2). Here A = A1dq1 + A2dq2 is the magnetic potential asso-

ciated with the magnetic field B through

dA = B dq1 ∧ dq2 .

When A ∈ C1(R2), this operator is essentially self-adjoint (see [17, Theorem 1.2.2]).

There exists a unique self-adjoint extension of Hh,A. We call this operator the magnetic

Laplacian on R2, and denote it by Lh,A. The magnetic field is assumed radial.

Assumption 1.2. We assume that the magnetic field B has the form

B(q1, q2) = β

(
q2

1 + q2
2

2

)
,

where β : R→ R+ is a smooth function such that

i)

β(r) > β(0) for all r > 0 . (1.46)

ii)

β′(0) > 0 . (1.47)
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The assumption (1.46) makes sure that the magnetic field has a unique minimum on R2

and the condition (1.47) makes sure that the minimum point is non-degenerate, i.e. the

Hessian of B at 0 is a positive definite matrix. Furthermore, we will assume that the

magnetic Laplacian has some discrete spectrum which can be described as a sequence

λ0(Lh,A) ≤ λ1(Lh,A) ≤ ...

This assumption can be assured when the magnetic field goes to infinity or converges to

some number larger than B(0) at infinity (see Theorem 4.3 and 4.4). We now state the

main theorems in this part. The first theorem is devoted to the WKB construction for

the eigenvalues and the eigenfunctions:

Theorem 1.17. Assume that the magnetic field satisfies the assumption 1.2. For all

m ∈ N, there exist

i) a smooth positive function ϕ defined on [0,∞) having the formula

ϕ(ρ) :=
1

2

∫ ρ

0

∫ 1

0
β(ξτ) dξdτ , (1.48)

ii) a sequence of smooth real-valued functions (am,j)j∈N defined on [0,∞) in which

am,0 is positive,

iii) a sequence of real numbers (µm,j)j∈N with

µm,0 = b0, µm,1 = 2m

√
detH

b0
+

(TrH
1
2 )2

2b0
,

where b0 = B(0) and H = 1
2HessB(0).

We define

P (q) := ϕ

(
‖q‖2

2

)
,

Um,j(q) := am,j

(
‖q‖2

2

)
,

θ(q) : the argument of the complex number q = q1 + iq2 .

Then, for all J ∈ N,

eP/h
(
‖q‖2

2

)−m
2

Lh,A − h
J∑
j=0

µm,jh
j

eimθ(q)(‖q‖2
2

)m
2

e−P/h
J∑
j=0

Um,jh
j


= O(hJ+2) ,

32



locally uniformly in R2.

Let K > 0 be a given number (K is assumed to be large). We define the smooth cut-off

function on [0,∞)

χ(ρ) =

 1 on [0,K]

0 on [K + 1,+∞) .
(1.49)

By multiplying the WKB Ansatz in Theorem 1.17 with this cut-off function, we have

the following estimate:

Theorem 1.18. Assume that the magnetic field satisfies the assumption 1.2. For all

(ε,m, J) ∈ (0, 1) × N × N, there exist a constant C > 0 and h0 > 0 such that for all

h ∈ (0, h0),

‖eεP/h
(
Lh,A − λJh,m

)
ΥJ
h,m‖L2(R2) ≤ Ch

J+2 , (1.50)

where

λJh,m := h

J∑
j=0

µm,jh
j ,

ΥJ
h,m = χ

(
‖ · ‖2

2

)
eimθ(q)

(
‖q‖2

2

)m
2

e−P/h
J∑
j=0

Um,jh
j .

Then, it follows that

‖
(
Lh,A − λJh,m

)
ΥJ
h,m‖L2(R2) ≤ Ch

J+2 . (1.51)

By Agmon estimate, the next result shows us that the eigenfunctions of the magnetic

Laplacian decay exponentially as ‖q‖ → ∞ at a rate controlled by the function P defined

in the above theorem.

Theorem 1.19. Let Uh,m be an eigenfunction associated with λm(Lh,A). Then, for all

ε > 0, there exist C > 0 and h0 > 0 such that for all h ∈ (0, h0),

‖eεP/hUh,m‖L2(R2) ≤ C‖Uh,m‖L2(R2) ,

where P is given in Theorem 1.17.

Let Υh,m be an eigenfunction associated with λm(Lh,A). We introduce the projection

into the eigenspace of λm(Lh,A)

Πm : L2(R2)→ Dom(Lh,A)

u 7→ Πmu = 〈u,Υh,m〉L2(R2)Υh,m .
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The L2-norm estimation for the true eigenfunctions and their Ansatz is given by the

following theorem:

Theorem 1.20. Assume that the magnetic field satisfies assumption 1.2. For all (J,m) ∈
N× N, there exist C > 0 and h0 > 0 such that for all h ∈ (0, h0),

∥∥ΥJ
h,m −ΠmΥJ

h,m

∥∥
L2(R2)

≤ ChJ+1. (1.52)

With the Agmon estimate, we even have better approximation in an exponentially

weighted space.

Theorem 1.21. Assume that the magnetic field satisfies assumption 1.2. For all (J,m) ∈
N× N, there exist C > 0 and h0 > 0 such that for all h ∈ (0, h0),∥∥∥eεP/h (ΥJ

h,m −ΠmΥJ
h,m

)∥∥∥
L2(R2)

≤ ChJ+1. (1.53)

Let us sketch the plan to obtain the above results. We first write the magnetic Laplacian

Lh,A in the radial coordinates. It has the form

Kh = −h2r−2 (r∂r)
2 + r−2(−ih∂θ +G(r))2 ,

where

G(r) :=

∫ r

0
τβ

(
τ2

2

)
dτ .

By the Fourier decomposition, we can write Kh in the direct sum of the fibered operators:

Kh =
⊕
m∈Z

Lh,m , (1.54)

where

Lh,m := −h2r−2 (r∂r)
2 + r−2(hm−G(r))2 . (1.55)

Under the assumption 1.46, we can prove that these fibered operators Lh,m have compact

resolvents (see Theorem 5.5). Therefore, the spectrum of each operator Lh,m is discrete.

By changing variable ρ = r2

2 , we obtain the equivalent operator

Nh,m = −2h2∂ρ(ρ∂ρ) +
(hm− a(ρ))2

2ρ
.

By considering the rescaled operator of Nh,m:

Mh,m = −2h∂tt∂t +
(hm− a(ht))2

2ht
,
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and studying its ground-state energy (Subsection 5.2.2), we can show that

λ0(Mh,m) = hb0 + h2

(
2m

√
detH

b0
+

(TrH
1
2 )2

2b0

)
+ o(h2) ,

where H = 1
2HessB(0). This tells us that the m-th eigenvalue of the magnetic Laplacian

is exactly the first eigenvalue of the m-th fibered operator (see Theorem 5.14). At

this stage, we only need to apply WKB method for the operator Nh,m to obtain the

eigenvalue expansion and the WKB Ansatz. Then they are transferred to the original

magnetic Laplacian by the unitary transformations.

1.4 Organization of the thesis

Chapter 2 is devoted to lead the reader into the classical mechanics with magnetic field.

It opens with the introduction to the theory of symplectic geometry and Hamiltonian

dynamics. It allows us to define the magnetic Hamiltonian dynamics and provides us

the tools to solve the classical problems in the Chapter 3. This chapter ends with the

relation between Newton’s mechanics and Hamiltonian’s mechanics in the presence of

the magnetic field.

Chapter 3 is devoted to prove the results in classical mechanics. This is the work of

the article [46] in collaboration with Nicolas Raymond and San Vũ Ngo.c.

Chapter 4 starts with the introduction of the magnetic Laplacian on a Riemannian

manifold. The domain of the operator and compact resolvent property are studied

on the compact manifold. The picture of the operator and its spectrum on R2 are also

considered. The main object of this chapter is performing WKB analysis for investigating

the spectral problem of the magnetic Laplacian. Thanks to the spectral theorem, we

estimated efficiently the true eigenfunctions and the approximate eigenfunctions locally

near the minimum point.

Chapter 5 demonstrates the results in Subsection 1.3.2.2. We start the chapter by writ-

ing the magnetic Laplacian in the radial coordinates. After the Fourier decomposition,

we investigate the spectrum of the fibered operators. In a next step, we describe the

relation between spectrum of the fibered operators and the original magnetic Laplacian.

It allows us to construct the WKB eigenvalues and eigenfunctions of the magnetic Lapla-

cian on R2. Finally, we obtain the approximation of the eigenfunctions in a convenient

non-exponentially and exponentially weighted space.
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This chapter is devoted to the dynamics of a charged particle submitted to the magnetic

field. This story was first told by Störmer, who was attracted by the aurora phenomenon

and tried to bring this phenomenon into mathematics (see [14]). With the motivation

for interpreting the trajectory of the charged particles in the earth’s magnetic field, he

was a pioneer person attemped to approach the trapping trajectory problems. His and

other’s understanding of the trapped orbits within the earth’s field played essential role

in application of the Van Allen radiation [7, 13]. In [41], Littlejohn drew the attention

to the importance of Hamiltonian methods in such problems. Symplectic methods (and

normal forms) have shown their power in [51] where the authors study the long time

dynmics at low energy. There is a huge amount of literature using the Hamiltonian

method to investigate the magnetic dynamics, for example [7, 9, 41, 42, 51, 62].

In this chapter, we briefly explain how to write the famous Newton equation in the

presence of the Lorentz under a Hamiltonian form. To do so, we recall the basics

of symplectic geometry in R2n. In particular, we recall how to lift a (space) change

of variables to a symplectic transformation. This will be needed when describing the

motion of a charged particle approaching the boundary (a neighborhood of which being

described through tubular coordinates).

The reader can consult the books [16, 36] for the following section and an account of

symplectic techniques can be found in [64, Chapter 2]. After that, we will travel to the

world of magnetic field with Hamiltonian tools in our hands. Therefore, the reader can

skip this section at the first reading.

2.1 Reminder of symplectic geometry

First of all, we introduce the standard symplectic vector space (R2n, ω0) equipped with

a bilinear form ω0 defined as

ω0(u, v) = 〈Ju, v〉 for all u, v ∈ R2n , (2.1)

where the bracket denotes the Euclidean inner product in R2n, and J is a 2n×2n matrix

defined by

J =

(
0 In

−In 0

)
,

with In is the unit matrix in linear algebra.

Since J−1 = JT = −J , it can be seen that the bilinear form ω0 satisfies the following

properties:

37



i) Anti-symmetric : ω0(u, v) = −ω0(v, u) for all u, v ∈ R2n .

ii) Non-degenerate: Let u ∈ R2n, if

ω0(u, v) = 0 for all v ∈ R2n ,

then u = 0.

Furthermore, ω0 is usually considered as a 2-form on R2n in practice, see [1, Chapter 7]

for basic knowledge of differential forms. Let us recall that, in the standard coordinates

(x1, ..., x2n), for i, j ∈ {1, ..., 2n} the 1-form dxi is defined on R2n as

dxi(u) = ui for all u ∈ R2n ,

and the 2-form dxi ∧ dxj is the exterior product of dxi and dxj defined as

dxi ∧ dxj(u, v) =

∣∣∣∣∣dxi(u) dxj(u)

dxi(v) dxj(v)

∣∣∣∣∣ = uivj − ujvi for all u, v ∈ R2n .

By rewriting the standard coordinates as (q1, ..., qn, p1, ..., pn), we can represent ω0 as a

2-form ω0 : R2n × R2n → R :

ω0 =
n∑
k=1

dpk ∧ dqk .

Furthermore, we can observe that

ω0 = dσ for σ =
n∑
k=1

pkdqk .

Since d2 = 0, it implies that

dω0 = 0 . (2.2)

Thus, we also say that ω0 is closed. Since ω0 is bilinear form, we can naturally define

a linear mapping

T : R2n → (R2n)∗

u 7→ ω0(u, ·) .

The non-degeneracy of ω0 is equivalent to the fact that T is an injective. Since R2n and

(R2n)∗ has the same dimensions, T must be an isomorphism.
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2.1.1 Hamiltonian vector field on R2n

Let U be an open set in R2n and H : U → R be a smooth function. Thanks to the

non-degeneracy of ω0, for a smooth function, we can define a unique vector field XH on

U such that, for each x ∈ U

ω0(XH(x), Y ) = −dH(x)Y for all Y ∈ R2n , (2.3)

where dH(x) : R2n → R is differential map of H defined by

dH(x)Y = 〈∇H(x), Y 〉 for all Y ∈ R2n .

We call XH is a Hamiltonian vector field associated to the function H on R2n, and

we also often call H Hamiltonian . Now, we can define the flow of the Hamiltonian

vector field XH , we denote it by ϕt(x), that is the solution of the following ordinary

differential equations (ODE)
d

dt
ϕt(x) = XH (ϕt(x)) ,

ϕ0(x) = x, x ∈ R2n .

(2.4)

It means that for each x ∈ R2n, the curve c(t) := ϕt(x) solves the Cauchy initial value

problem for the initial condition c(0) = x. Since the Hamiltonian H belongs to the class

C∞(R2n,R), the below theorem of existence and uniqueness of ϕt(x) is ensured by the

Theorem of Cauchy-Lipschitz.

Theorem 2.1. For all x ∈ R2n, the (ODE) (2.4) has a unique smooth solution

ϕt(x) : J(x)→ R2n ,

where J(x) is the maximal interval containing 0 on which ϕx(t) is defined.

Furthermore, ϕt(x) possesses following properties

i) ϕ0(x) = x for all x ∈ R2n.

ii) ϕt+s(x) = ϕt(ϕs(x)) whenever both sides are defined.

iii) For each time t ∈ R, the mapping ϕt : R2n → R2n is a diffeomorphism.

To see the connection between Hamiltonian defined above on symplectic space and well-

known Hamiltonian equations of a system of n degree, we write condition (2.3) as

〈JXH(x), Y 〉 = −〈∇H(x), Y 〉 .
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Therefore, thanks to the equality J2 = −J , it results that

XH(x) = J∇H(x) for all x ∈ R2n . (2.5)

If we demonstrate c(t) as (q(t), p(t)), we can rewrite the equation (2.4) explicitly in the

form 
q̇i(t) =

∂H

∂pi
(q(t), p(t))

ṗi(t) = − ∂H

∂qi
(q(t), p(t))

for i = 1, ..., n. (2.6)

These are called Hamilton’s equations. They are equations of motion of the sys-

tem expressed as 2n first-order differential equations. Their nice property is that the

derivatives with respect to time are isolated on the left-hand sides of the equation. The

following theorem tells us that H is a conserved quantity on its flows, i.e. H(q(t), p(t))

is independent of t for each solution (q(t), p(t)) of Hamilton’s equations.

Theorem 2.2. Let (q(t), p(t)) be the solution of equations (2.6) with initial condition

(q0, p0) = (q(0), p(0)), then

H(q(t), p(t)) = H(q0, p0) , (2.7)

for all t ∈ I, where I is some interval around 0.

Proof. We consider the derivative of H(q(t), p(t)) according to variable t:

dH

dt
(q(t), p(t)) =

n∑
i=1

(
∂H

∂qi
q̇i(t) +

∂H

∂pi
ṗi(t)

)

=
n∑
i=1

(
∂H

∂qi

∂H

∂pi
− ∂H

∂pi

∂H

∂qi

)
= 0 .

Thus, the function H(q(t), p(t)) is constant and satisfies (2.7).

Conserved quantities are very useful in that they keeps the solutions (q(t), p(t)) staying

in the level surfaces of any conserved quantity. For example, suppose that we are working

with a particle moving in R2 and we use Hamilton’s equations to investigate its motion.

We need to consider the problem with four unknowns. But, if we can find one other

conserved quality F instead of H, then rather than looking for the solutions in four

dimensional phase space, we look for them inside the joint level sets of H and F :

H(q, p) = H0, F (q, p) = F0 ,
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for some constant H0 and F0. These joint level sets are two-dimensional instead of

four-dimensional, so using conserved qualities greatly simplifies the problem.

The thing happens here is that if we change the coordinates from (q, p) to (q̃, p̃), we

wonder that the system (2.6) is still true in the new coordinates or not? Next section

will introduce the change of coordinate which preserves the Hamiltonian property.

2.1.2 Symplectic transformation

Let us recall the definition of pull-back of two-form first, and then introduce the definition

of a symplectic transformation. Let U, V be open sets in R2n and ω be the 2-form on

U , the pull-back of ω by a smooth function ϕ : U → V is defined by

(ϕ∗ω)x(u, v) = ωϕ(x)((dϕ)xu, (dϕ)xv) ,

for x ∈ U and for all u, v ∈ R2n, where (dϕ)x : R2n → R2n is the differential of map ϕ

at x represented by the Jacobian matrix of ϕ at x.

Definition 2.3. The diffeomorphism ϕ : U → V is called symplectic if

ϕ∗ω0 = ω0 . (2.8)

In view of the definition of ω0, a symplectic property is equivalent to

〈J(dϕ)xu, (dϕ)xv〉 = 〈Ju, v〉 for all u, v ∈ R2n ,

or in the matrix language, a diffeomorphism ϕ is symplectic if and only if

(dϕ)Tx J(dϕ)x = J for all x ∈ U . (2.9)

Example 2.1. On R2n, the linear map ϕ defined by

ϕ(x) = Jx for x ∈ R2n

is symplectic, because

(dϕ)Tx J(dϕ)x = JTJJ = J .

Example 2.2. On R2, the linear map ϕ defined by

ϕ(x1, x2) =

(
a b

c d

)(
x1

x2

)
,
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with a, b, c, d ∈ R satisfy ad− bc = 1 . Then ϕ is symplectic, because

(dϕ)Tx J(dϕ)x =

(
a c

b d

)(
0 1

−1 0

)(
a b

c d

)
=

(
0 ad− bc

bc− ad 0

)
= J .

The above examples can be generalized by the following theorem

Theorem 2.4 (Linear symplectic mapping). Let ϕ : R2n → R2n be a linear mapping

ϕ(q, p) =

(
A B

C D

)(
q

p

)
for (q, p) ∈ Rn × Rn , (2.10)

where A,B,C,D are n× n matrices.

Then, ϕ is symplectic if and only if ATC and BTD are symmetric and ATD−CTB = In.

Proof. We just need check that ϕ is symplectic if and only if(
AT CT

BT DT

)(
0 In

−In 0

)(
A B

C D

)
=

(
0 In

−In 0

)
. (2.11)

This is equivalent to the equality(
ATC − CTA ATD − CTB
BTC −DTA BTD −DTB

)
=

(
0 In

−In 0

)
.

This is the argument stating in the theorem. Note that the diffeomorphism of mapping

ϕ in the equation (2.11) when compute the determinant of two sides.

In general, to check that a mapping is symplectic, we often use next theorem.

Theorem 2.5. Let U1, V1 be open sets in Rn. Assume that a mapping ϕ defined by

ϕ :U1 × Rn → V1 × Rn

(q, p) 7→ ϕ(q, p) = (Q(q, p), P (q, p)) .

We write the Jacobian matrix of ϕ in the form of block matrices

(dϕ)(q,p) =

(
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)
, (2.12)
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where
∂Q

∂q
,
∂Q

∂p
,
∂P

∂q
,
∂P

∂p
are the n× n matrices.

Then, ϕ is symplectic if and only if(
∂Q

∂q

)T ∂P
∂q

and

(
∂Q

∂p

)T ∂P
∂p

are symmetric , (2.13)

and (
∂Q

∂q

)T ∂P
∂p
−
(
∂P

∂q

)T ∂Q
∂p

= In (2.14)

at every point (q, p) ∈ U1 × Rn.

Proof. The proof is the same as the last Theorem Linear symplectic mapping, we just

replace the matrices A,B,C,D with, respectively,
∂Q

∂q
,
∂Q

∂p
,
∂P

∂q
,
∂P

∂p
. Note that, if we

have

(dϕ)Tx J(dϕ)x = J for x = (q, p) ,

it implies that det((dϕ)x) 6= 0 at every point x ∈ U1 ×Rn, the Inverse Theorem help to

confirm the diffeomorphism of ϕ.

In next theorem, we represent the construction of a symplectic transformation on R2n

from a non-linear diffeomorphism on Rn. We call this technique as symplectic lifting

(see [64, Chapter 2]) and it will be used in the thesis to construct the Hamiltonian in

tubular coordinate and in radial coordinate later.

Theorem 2.6. Let U1, V1 be open subsets in Rn. Assume that

ψ : U1 → V1 ,

be a diffeomorphism.

Then, the mapping Ψ defined by

Ψ :U1 × Rn → V1 × Rn

(q, p) 7→ (ψ(q), η(q, p)) =

ψ(q),

[(
∂ψ

∂q

)−1
]T

p


is symplectic, where

∂ψ

∂q
indicates the Jacobian matrix of ψ.

Proof. Apply the Theorem 2.5, we need to verify that(
∂ψ

∂q

)T ∂η
∂p

= In and

(
∂ψ

∂q

)T ∂η
∂q

=

(
∂η

∂q

)T ∂ψ
∂q

.
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The first of them is easily satisfied by the definition η. To check the other, we need to

look at each element of product matrix of each side.

We denote n × n matrix M = (mij)1≤i,j≤n :=

[(
∂ψ

∂q

)−1
]T

. Notice that matrix M

depends only on q and η(q, p) = Mp. For i, j ∈ {1, ...n}, we have[(
∂ψ

∂q

)T ∂η
∂q

]
ij

=
n∑
k=1

(
∂ψ

∂q

)
ki

(
∂η

∂q

)
kj

=

n∑
k=1

∂ψk
∂qi

(
n∑
`=1

∂mk`

∂qj
p`

)

=

n∑
`=1

(
n∑
k=1

∂ψk
∂qi

∂mk`

∂qj

)
p` .

Since MT ∂ψ

∂q
= In, it implies that

n∑
k=1

mk`
∂ψk
∂qi

= δ`i for all `, i ∈ {1, ...n} .

Take ∂
∂qj

two sides, we get

n∑
k=1

∂ψk
∂qi

∂mk`

∂qj
= −

n∑
k=1

∂2ψk
∂qj∂qi

mk` .

Thus, [(
∂ψ

∂q

)T ∂η
∂q

]
ij

= −
n∑
`=1

(
n∑
k=1

∂2ψk
∂qj∂qi

mk`

)
p` .

With the same steps, we also have[(
∂η

∂q

)T ∂ψ
∂q

]
ij

= −
n∑
`=1

(
n∑
k=1

∂2ψk
∂qi∂qj

mk`

)
p` .

Then clearly
(
∂ψ
∂q

)T
∂η
∂q is symmetric.

2.1.3 Hamiltonian and symplectic transformation

After travelling through procedures for creating symplectomorphism linear and non-

linear, we explain the relation between Hamiltonian and symplectic transformation in

the following lines. Next theorem again provides us a way to get a symplectic mapping

from the flow of Hamiltonian vector field:
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Theorem 2.7. A flow of the Hamiltonian vector field XH generated by H, we call ϕt,

preserves the symplectic structure:

(ϕt)
∗ω0 = ω0 ,

and is, therefore, a symplectic transformation.

Proof. From the Theorem 2.1, ϕt is a diffeomorphism for each t. We only need to check

the symplectic formula. Since

d

dt
(ϕt)

∗ω0 =
d

ds
(ϕt+s)∗|s=0 ω0

=
d

ds
(ϕt)∗(ϕs)∗|s=0 ω0

= (ϕt)∗LXH ω0 .

Here LXH ω0 is the Lie derivative of ω0. From the Cartan’s formula and (2.2), we have

LXH ω0 = (iXHd + diXH )ω0

= iXHdω0 + diXHω0

= −d(dH) = 0 .

It tells us that (ϕt)
∗ω0 does not depends on t, thus

(ϕt)
∗ω0 = (ϕt)

∗|t=0ω0 = ω0 .

As discussing above, with a smooth function H on an open set U of R2n, we can define

naturally the Hamiltonian vector field XH on U and then establish its flow through the

ODE

u̇t = J∇H (ut) on U .

Let V ⊂ R2n be an open set and Ψ : U → V be a symplectic transformation. We

perform a change of variable

K = H ◦Ψ−1 : V → R2n ,
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and define the curve vt := Ψ(ut) in V . By computation, we will see that symplectic

transformations can keep the Hamilton form. Indeed, we reckon

∇H(ut) = (dΨ)Tut∇K(vt) ,

thus, since Ψ is symplectic and (2.9), we have

v̇t = (dΨ)ut u̇t = (dΨ)utJ∇H (ut) = (dΨ)utJ(dΨ)Tut∇K(vt) = J∇K(vt) .

Therefore, we have the following result:

Theorem 2.8. Any symplectic transformation preserves Hamilton’s equations.

2.2 Magnetic Hamiltonian mechanics

2.2.1 Newton’s law with magnetic field

2.2.1.1 What is the magnetic field?

It seems that the word ”magnetic” comes to our mind through the image of a magnet.

In our real life, we can see magnets everywhere such as in a compass, in a refrigerator

door with magnetic stickers and our earth is also a huge magnet. While at school, we

use iron chips to make magnetic field lines emerge for observation. In mathematics, we

describe these quantities by the vectors. The length of a vector at one point tells us the

magnitude of the magnetic field at that point, and the direction of this vector tells us

the direction of the magnetic field at that point. Similarly, the magnetic field around

the magnet will be represented by a vector field. We will denote this vector field as
−→
B .

2.2.1.2 Magnetic Newton’s equation

Now, we consider a particle of charge e and mass m put in the domain affected by the

magnetic field
−→
B . We want to know the motion of this particle in the space. The second

Newton’s law gives us the equation of motion.

Let q(t) := (q1(t), q2(t), q3(t)) ∈ R3 denote the particle’s position at time t. The particle’s

velocity and acceleration are, respectively,

v(t) := q̇(t), a(t) := q̈(t) = v̇(t) .

46



We assume that the net force applied on the particle is only the magnetic force, called

Lorentz force, and it has form

F = ev ×
−→
B .

Here e is a constant which indicates the electric charge of the partice. This Lorentz force

depends on the velocity of the particle and perpendicular to v and B. Under the action

of the Lorentz force, the Newton’s second law (F = ma) becomes

mq̈ = eq̇ ×
−→
B . (2.15)

To simplify our discussion, we assume that e = 1 and m = 1. Assume that
−→
B =

q

v

F

x

y

z

−→
B

Figure 2.1: A charged particle moving in a magnetic field that points in the z direction.

(B1, B2, B3), we can rewrite (2.15) as
q̈1 = B3(q)q̇2 −B2(q)q̇3

q̈2 = B1(q)q̇3 −B3(q)q̇1

q̈3 = B2(q)q̇1 −B1(q)q̇2

. (2.16)

Suppose that
−→
B is a C1 vector field, the Cauchy-Lipschitz theorem tells us that the

system (2.16) has a unique local maximal solution for each pair of initial conditions at

t = 0:  q(0) = q0

q̇(0) = v0

.
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Definition 2.9. A solution q(t) of Newton’s equation (2.15) is called a trajectory.

From the Newton’s equation (2.15), we get a result that: the energy function

E(q, v) :=
1

2
‖v‖2, (2.17)

where ‖.‖ denotes the Euclidean norm on R3, is conserved. It means that the value of

the energy function along any trajectory is constant. Indeed, veryfying this by differen-

tiation:

d

dt
E(q(t), v(t)) =

d

dt

(
1

2
‖q̇(t)‖2

)
= q̇(t) · q̈(t)

= q̇(t) · (B× q̇(t))

= 0 .

Thus, E(q(t), v(t)) is independent of the time t.

In particular, it tells us that when the charged particle travels in the pure magnetic field

(means that there is no electric field), it always moves with constant speed (the speed is

the magnitude of the velocity). No matter how large the magnetic field is and no matter

which direction the particle goes, its speed never changes. Its speed only depends on

the initial condition. Later, we will see that this energy function is our Hamiltonian.

Before going to define the Hamiltonian formulation in this chapter, we need to define an

important ingredient which connects the magnetic field and the Hamiltonian function:

the magnetic potential.

2.2.1.3 A magnetic potential

So, what is a magnetic potential? Before we go to the definition, we need to pay our

attention to one observation in the real life. Imagine that we are holding a bar magnet

in our hand, we divide it into two pieces. Then, two small magnets are automatically

created with their own south and north poles. If we continue this splitting process down

to the atomic level, we find that even elementary particles behave as magnetic dipoles,

each with a North and South pole. It appears that nature does not allow us to create

magnetic monopoles in this way. This watching is explained by the Gauss’ Law for

Magnetism, it states that the magnetic field
−→
B has free divergence, i.e.

∇ ·
−→
B = 0 . (2.18)
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By the divergence theorem, this Law implies that for a magnetic dipole, any closed

surface the magnetic flux directed inward toward the south pole will equal the flux

outward from the north pole. Thus, if there was a magnetic monopole source, the net

flux of magnetic field B out of some closed surface is non-zero, and this breaks the Law.

We can see [15, Chapter 7] for details.

But the Law does not stop here, it also produces one vector field which is a bridge

between Newton’s mechanic and Hamiltonian formulation by Poincaré lemma below.

Theorem 2.10 (Poincaré’s Lemma). Let S be open star-shaped subset of Rn and let

k ∈ N∗. Assume that σ is a k-form defined on S and if σ is closed, i.e.

dσ = 0 , (2.19)

then there exists a (k − 1)-form ω on S such that

dω = σ . (2.20)

Proof. The proof can be easily found in textbooks, for example [49, Chapter 1], [64,

Appendix B].

Now, let
−→
B = (B1,B2,B3) in R3, we set up the compatible 2-form in R3

σB = B1dq2 ∧ dq3 −B2dq1 ∧ dq3 + B3dq1 ∧ dq2 .

We check that σB is closed,

dσB =

(
∂B1

∂q1
+
∂B2

∂q2
+
∂B3

∂q3

)
dq1 ∧ dq2 ∧ dq3 = (∇ ·

−→
B)dq1 ∧ dq2 ∧ dq3 = 0 .

Applying Poincaré’s Lemma, there exists a 1-form ω = A1dq1 + A2dq2 + A3dq3 such

that

dω =

(
∂A2

∂q1
− ∂A1

∂q2

)
dq1 ∧ dq2 +

(
∂A3

∂q1
− ∂A1

∂q3

)
dq1 ∧ dq3 +

(
∂A3

∂q2
− ∂A2

∂q3

)
dq2 ∧ dq3

= σB .

So, if we let
−→
A = (A1,A2,A3), then it implies that

−→
B = ∇×

−→
A . (2.21)
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We will call σ−→
B

the magnetic 2-form and its primitives ω the magnetic potential 1-form.

We call any vector field
−→
A satisfied (2.21) the magnetic potential of magnetic field

−→
B .

We can see that there are many possible choices of vector potential
−→
A satisfying (2.21),

we just add
−→
A with some free-curl vector field V , i.e. ∇ × V = 0, we obtain a new

vector field which satisfies (2.21) too. How can we relate two choices of vector potential?

Poincaré Lemma gives the answer.

Lemma 2.11. Let
−→
A and

−→
A′ be two magnetic potential vector fields of

−→
B. Then, there

exists a function Ψ ∈ C1(R3,R) such that

−→
A′ =

−→
A +∇Ψ . (2.22)

Conversely, if
−→
A and

−→
A′ satisfied (2.22), then they are the magnetic potential of the

same magnetic field.

Proof. Let
−→
U = (U1, U2, U3) :=

−→
A′−

−→
A be the difference vector field of

−→
A and

−→
A′. Since

∇×
−→
U = ∇× (

−→
A′ −

−→
A) = 0, it deduces that the 1-form σ−→

U
= U1dq1 + U2dq2 + U3dq3

satisfies

dσ−→
U

= 0 .

By applying Poincaré’s Lemma, there exists a differentiable function Ψ such that

U = ∇Ψ.

The final conclusion of the Lemma is easy to check by noting that the curl of the gradient

of a function is zero.

In this section, we have used a vector field to define the magnetic field in dimension

3. For higher dimension, it is more convenient to use differential forms to define these

objects. Namely, on the domain Ω in Rn, the magnetic potential is a smooth real 1-form

A on Ω, given by

A =

n∑
i=1

Ai dxi .

The associated magnetic field is the 2-form B = dA, more explicitly, we have

B =
∑

1≤j<k≤n
Bjk(x)dxj ∧ dxk ,

with Bjk = ∂Ak
∂j −

∂Aj
∂k .
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Since d2 = 0, we have dB = 0 and this is equivalent to the condition (2.18) in R3. The

relation dA = B is similar to the equation ∇×
−→
A =

−→
B in R3.

2.2.2 From magnetic Newton’s mechanics to magnetic Hamiltonian

Let us get back to our journey by considering a charged particle that is submitted to a

pure magnetic field B in a domain Ω in R3. Let A = A1dq1 + A2dq2 + A3dq3 be the

associated magnetic potential of B .

The matrix representing the right cross product with B in the canonical basis is

MB = JTA − JA ,

where JA is the Jacobian matrix of A. Hence Newton’s equation (2.16) becomes

q̈ = MBq̇ ,

so that
d

dt
(q̇ + A(q)) = JTAq̇ .

By introducing the generalized momentum variable p = q̇+ A(q), and define the Hamil-

tonian function

H(q, p) =
‖p−A(q)‖2

2
, (2.23)

where ‖.‖ denotes the Euclidean norm on R3. We obtain the system of Hamiltonian’s

equations  q̇ = ∂pH(q, p)

ṗ = −∂qH(q, p) .
(2.24)

Conversely, if we start from Hamiltonian equations (2.24) of Hamiltonian H, we get q̇ = p−A(q)

ṗ = JTA (p−A(q)) .
(2.25)

By reversing the above process, we take the derivative of q̇, we also obtain the New-

ton’s equation (2.15). Therefore, Newton’s equation (2.15) and Hamiltonian’s equation

system (2.24) are equivalent to describe the dynamic motion of the charged particle.

Furthermore, from the equation of q̇, we can express the Hamiltonian as the energy

function E(q, q̇) mentioned at the end of Subsection 2.2.1.2,

H(q, p) =
1

2
‖q̇‖2 .
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2.2.2.1 Gauge invariance

As discussed earlier, we see that the magnetic potential is not defined in the unique

way, but up to a gradient of a smooth function. That is, if A and Ã produce the same

magnetic field, then there exists a function Ψ ∈ C∞(Ω) such that

Ã = A +∇Ψ .

We obtain two Hamiltonians

H(q, p) =
‖p−A(q)‖2

2
and H̃(q̃, p̃) =

‖p̃− Ã(q̃)‖2

2
.

It leads to two corresponding Hamiltonian dynamics. The natural question is if these

Hamiltonian systems describe a same movement of the particle. To have the answer for

this question, we need to find the link between two Hamiltonian systems associated with

two arbitrary magnetic potentials A and Ã. We consider the mapping ϕ defined by

ϕ : Ω× R3 → Ω× R3 (2.26)

(q, p) 7→ ϕ(q, p) = (q, p+∇Ψ(q)) . (2.27)

We can easily verify that ϕ is a diffeomorphism from Ω× R3 to itself, and its inverse is

ϕ−1(q, p) = (q, p−∇Ψ(q)) .

Furthermore, the Jacobian matrix of ϕ at the point (q, p) has the form

(dϕ)(q,p) =

(
I3 0

(d2Ψ)q I3

)
,

where (d2Ψ)q is the Hessian matrix of Ψ at the point q. By applying the Theorem 2.5,

we can confirm that ϕ is symplectic. From the definition of H and H̃, we see that

H̃ = H ◦ ϕ−1 .

Therefore, the dynamics defined by H and H̃ are equivalent via a symplectic transfor-

mation and does not depends on A, we call this property Gauge invariance of magnetic

Hamiltonian.

52



2.2.2.2 With a constant magnetic field

Let (−→e1 ,
−→e2 ,
−→e3) be the standard basis of R3. We restrict ourselves to the case the magnetic

field pointing in the direction perpendicular to the plane R2 := {q1
−→e1 +q2

−→e2 | q1, q2 ∈ R}
and does not depend on time, that is

−→
B(q) = B(q1, q2)−→e3 .

We assume that B = B0, where B0 ∈ R, is the constant magnetic field. We will use

Newton’s mechanics and Hamiltonian’s system to investigate the motion of the particle.

Newton’s approach: We rewrite the system (2.16) as
q̈1 = B0q̇2 ,

q̈2 = − B0q̇1 ,

q̈3 = 0 .

(2.28)

The last of these is easy to solve

q3(t) = q3(0) + q̇3(0)t . (2.29)

It results that we just need to focus on the system of q1 and q2: q̈1 = B0q̇2 ,

q̈2 = − B0q̇1 .
(2.30)

Let v = q̇1 + iq̇2, use (2.30), we find that

v̇ = −iB0v .

It follows that v(t) = v(0)e−iB0t. Then we have the trajectory

q(t) := q1(t) + iq2(t) = q(0)− iv(0)

B0
+
iv(0)

B0
e−iB0t . (2.31)

This formula describes that the charged particle moves along the path whose projection

on the plane R2 is a circle whose center is q(0) − iv(0)
B0

with radius ‖v(0)‖
|B0| . Meanwhile

q3 given by (2.29) increases steadily, so the particle actually describes a uniform helix

curve whose axis is parallel to the magnetic field. When the particle starts from R2 with

initial velocity lines in R2, it means that q3(0) = 0 and q̇3(0) = 0, then the spiral reduces

to a circle (see Figure 2.2). It results that the particle is trapped in a cyclotron motion

forever in a constant magnetic field.
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Figure 2.2: The movement of the particle when B is constant.

Hamiltonian’s approach: To deal with magnetic Hamiltonian, first of all we find a

magnetic potential A associated with magnetic field

B = B0dq1 ∧ dq2 + 0dq1 ∧ dq3 + 0dq2 ∧ dq3 = B0dq1 ∧ dq2 .

We choose A =
(
−B0

2 q2

)
dq1 +

(
B0
2 q1

)
dq2 + 0dq3 =

(
−B0

2 q2

)
dq1 +

(
B0
2 q1

)
dq2, thus

dA = B.

Then, the Hamiltonian is

H(q, p) =

(
p1 + B0

2 q2

)2
2

+

(
p2 − B0

2 q1

)2
2

+
p2

3

2
.

We look at the third variable first, we obtain q̇3 = p3 ,

ṗ3 = 0 .
(2.32)

It implies that q3(t) satisfies (2.29). Also from Hamiltonian’s equation, we have

q̇1 = p1 +
B0

2
q2 ,

q̇2 = p2 −
B0

2
q1 ,

ṗ1 =
B0

2
(p2 −

B0

2
q1) ,

ṗ2 =
B0

2

(
p1 +

B0

2
q2

)
.

(2.33)
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A solution of this linear system has the form
q1

q2

p1

p2

 = C1


2
B0

0

0

1

+ C2


0

− 2
B0

1

0

+ C3


− 2

B0

2i
B0

i

1

 e−iB0t + C4


− 2

B0

− 2i
B0

−i
1

 eiB0t , (2.34)

where C1, C2, C3, C4 are constant depending on the initial data (q(0), p(0)). To compare

the solutions given by the two approaches, we just need to write q and q̇ in complex

form as above. We have

q(t) = q1(t) + iq2(t) =
2

B0
C1 −

2i

B0
C2 −

4

B0
C3e

−iB0t ,

and thus

q̇(t) = q̇1(t) + iq̇2(t) = 4iC3e
−iB0t .

Then, we get the constant C3 = −i
4 q̇(0).

Let t = 0 in the equation of q(t), we obtain

2

B0
C1 −

2i

B0
C2 = q(0)− iq̇(0)

B0
.

Replace this term in q(t), we recover the solution same as (2.31)

q(t) = q(0)− iq̇(0)

B0
+
iq̇(0)

B0
e−iB0t .
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Chapter 3

Study of the magnetic

Hamiltonian dynamics

Not all of us can do great things. But

we can do small things with great

love.

Mother Teresa

Contents

3.1 The magnetic Hamiltonian in tubular coordinates . . . . . . 49

3.2 On the confinement problem . . . . . . . . . . . . . . . . . . . 52

3.3 On the scattering problem . . . . . . . . . . . . . . . . . . . . 55

56



The present chapter is devoted to produce the proof for the results obtained in classical

mechanics. The chapter is organized as follow. In Section 3.1, we write the magnetic

Hamiltonian in tubular coordinates. In Section 3.2, we provide the proofs for results in

confinement. Section 3.3 is devoted for the proof of scattering Theorem 1.7.

3.1 The magnetic Hamiltonian in tubular coordinates

In Chapter 2, we considered the magnetic domain in three dimensions which appears

naturally in physics. We also saw that the Hamiltonian is a function of 6 variables

defined by

H(q, p) =
‖p−A(q)‖2

2
for (q, p) ∈ R3 × R3 ,

with A = A1dq1 +A2dq2 +A3dq3 is a 1-form satisfies

dA = B .

In our problem, we study the motion of a charged particle in Ω ⊂ R2
(q1,q2) submitted to

the magnetic field B = b(q1, q2)dq1 ∧ dq2. We can set up the magnetic potential in the

form A = A1(q1, q2)dq1 +A2(q1, q2)dq2 with A1, A2 satisfies

∂A2

∂q1
− ∂A1

∂q2
= b .

Since the charged particles which we are studying have their initial positions and veloci-

ties in the domain Ω ⊂ R2
(q1,q2), via Hamiltonian’s equations of q3 and p3, we see that q3

and p3 are always zero. For that reason, we can ignore the variable q3 and p3 in energy

function and we get

H(q, p) =
‖p−A(q)‖2

2
for (q, p) ∈ R2 × R2 .

Let us recall again the definition of the tubular coordinate which we mentioned briefly

in the statement of results in Chapter 1.

We are working on the bounded domain Ω in R2. We assume that any connected

components of ∂Ω are C2-smooth closed curves without self-intersections. Let C be a

connected component of ∂Ω, since C is regular, we may parametrize it by arc length

γ : R/LZ→ C where L is the length of C.
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γ(s)

Figure 3.1: Tubular Coordinates.

There exists δ > 0 such that

ψ :

 (0, δ)× R/LZ→ ΩC(δ)

(n, s) 7→ γ(s) + nN(s) = q
(3.1)

is a smooth diffeomorphism. N(s) denotes the inward pointing normal at γ(s) and

ΩC(δ) = {q ∈ Ω : d (q, C) < δ} .

Via the Theorem 2.6, we can lift ψ to a symplectic change of coordinates Ψ defined by

Ψ :

 (0, δ)× R/LZ× R2 → ΩC(δ)× R2 ,

(n, s, pn, ps) 7→ (ψ(n, s), ((dψ)−1
(n,s))

T(pn, ps)) = (q, p) ,

where we have explicitly p = (1 − nκ(s))−1psγ
′(s) + pnN(s) with κ(s) is the signed

curvature of C at γ(s).

Note that 2-form dq1 ∧ dq2 in tubular coordinates has the form

dq1 ∧ dq2 = (1− nκ(s))ds ∧ dn .

Therefore, we can write magnetic field B as

B = b(q)dq1 ∧ dq2 = b(ψ(n, s))(1− nκ(s))ds ∧ dn ,
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and write the magnetic potential as

A = An(n, s)dn+As(n, s)ds ,

with An, As defined on (0, δ)× R/LZ such that

∂As
∂n
− ∂An

∂s
= B(n, s) := −b(ψ(n, s))(1− nκ(s)) .

The lemma below shows us that the Hamiltonian takes the form

H(n, s, pn, ps) =
1

2
(pn −An(n, s))2 +

(ps −As(n, s))2

2(1− κ(s)n)2
.

Lemma 3.1. We write A = A1dq1 +A2dq2. With (3.1), we have

A = Andn+Asds , Ã = (An, As)
T = (dψ)T(A1, A2)T .

We have

H(n, s, pn, ps) = H ◦Ψ(n, s, pn, ps) =
(pn −An(n, s))2

2
+

(ps −As(n, s))2

2(1− κ(s)n)2
. (3.2)

Moreover, vn = pn − An(n, s) and vs = (1 − nκ(s))−1(ps − As) are the normal and

tangential component of v.

Proof. We write

2H(q, p) = ‖p−A‖2 = ‖(dψ−1)T(p̃− Ã)‖2 = 〈(dψ−1)(dψ−1)T(p̃− Ã), p̃− Ã〉 ,

with p̃ = (pn, ps)
T. Note that

(dψ−1)T = [N(s) , (1− nκ(s))γ′(s)] . (3.3)

We get

(dψ−1)(dψ−1)T =

(
1 0

0 (1− nκ(s))−2

)
.

Concerning the velocity v, since q = γ(s) + nN(s) and thanks to the Frenet-Serret

formula N ′(s) = −κ(s)γ′(s), we have

v = ṡ(1− nκ(s))γ′(s) + ṅN(s) =: vsγ
′ + vnN ,

and thus we get the result by using the Hamilton equations ṡ = (1− κ(s)n)−2(ps −As)
and ṅ = pn −An.
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3.2 On the confinement problem

3.2.1 In the general case

We will prove Theorems 1.2 and 1.3 in this subsection. To reach the boundary, the

particle has to be close to a connected component C of ∂Ω (see Figure 3.1). Thus, we

can assume that, for all t ∈ [0, T ),

q(t) ∈ ΩC(δ) .

Modifying the vector potential corresponds to a symplectic transformation of the form

(q, p) 7→ (q, p + dS(q)), for some smooth function S, and hence does not modify the

trajectory of the particle. Thus, we consider the function

α(n, s) =
s

L

∫ L

0
B(n, ξ)dξ −

∫ s

0
B(n, ξ)dξ .

Notice that α(n, ·) is L-periodic. Recalling (1.20) and letting A = α(n, s)dn + f(n)ds,

we have B = dA.

By (3.2), the corresponding Hamiltonian is

H(n, s, pn, ps) =
(pn − α(n, s))2

2
+

(ps − f(n))2

2(1− κ(s)n)2
.

Concerning Hamilton’s equations, we have in particular

ṅ = pn − α(n, s) , ṗs = B̃(n, s)ṅ− (ps − f(n))2

(1− κ(s)n)3
κ′(s)n ,

where

B̃(n, s) =
1

L

∫ L

0
B(n, ξ)dξ −B(n, s) .

We recall that, for all t ∈ [0, T ), H(n(t), s(t), pn(t), ps(t)) = H0. We get

|ṅ| ≤
√

2H0

|ps − f(n)| ≤
√

2H0(1 + ε)∣∣∣∣ (ps − f(n))2

(1− κ(s)n)3
κ′(s)n

∣∣∣∣ ≤ 2H0K
′δ

1− ε
,

(3.4)

where in the last estimates we have used the notation of Theorem 1.3 and in particular

|κ|n ≤ Kδ ≤ ε. With our assumption (1.19) on B̃(n, s), we find, for all t ∈ [0, T ),

|ps(t)| ≤ |ps(0)|+
(
M
√

2H0 +
2H0K

′δ

1− ε

)
T ,
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and thus

|f(n(t))| ≤ |ps(t)|+ |ps(t)− f(n(t))| ≤ C(T, q(0), q̇(0)) , (3.5)

with

C(T, q(0), q̇(0)) = |ps(0)|+
√

2H0(1 + ε) +

(
M
√

2H0 +
2H0K

′δ

1− ε

)
T .

If the trajectory reaches the boundary at t = T , then

lim
t→T

n(t) = 0 .

This, with (3.5) and (1.17), gives a contradiction. This proves Theorem 1.2.

Now, consider a function g as in Theorem 1.3. We have, for all t ∈ [0, T ),

g(n(t)) ≤ |f(n(t))| ≤ C(T, q(0), q̇(0)) .

From (1.21), we have lim
n→0

g(n) > C(T, q(0), q̇(0)); hence g must take the value C(T, q(0), q̇(0))

and the conclusion follows.

3.2.2 In the radial case

Let us recall (1.33). When Ω is the unit disc and when B is radial, we can use radial

coordinates to approach the confinement problem. As in the tubular coordinates, from

the diffeomorphism

φ :

R∗+ × R/2πZ→ Ω \ {0}

(r, θ) 7→ (r cos θ, r sin θ) = q ,

we can lift up to a symplectic transformation

Φ :

R∗+ × R/2πZ× R2 → (D \ {0})× R2

(r, θ, pr, pθ) 7→ (φ(r, θ), ((dφ)−1
(r,θ))

T(pr, pθ)) = (q, p) .

The explicit formula of Φ is given in (1.31). Combining this with the form of magnetic

potential

A = G(r)dθ where G(r) =

∫ r

0
τB(τ)dτ ,

the Hamiltonian in this coordinate becomes

H̃(r, θ, pr, pθ) =
p2
r

2
+

(pθ −G(r))2

2r2
.
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From the formula of the Hamiltonian, we can immediately see that the angular momen-

tum pθ is constant. Therefore, there are two constants of motion- the total energy and

the component pθ, this fact is used to reduce the Hamiltonian to a function of r and pr

H(r, pr) =
p2
r

2
+ V (r), where V (r) =

(pθ −G(r))2

2r2
.

3.2.2.1 Proof of Proposition 1.5

The assumptions of Proposition 1.5 can be written in terms of V .

(H1) If

lim inf
r→1−

V (r) > H0 , (3.6)

we consider η = sup{x ∈ (0, 1) : V (x) = H0} ∈ (0, 1). Consider a trajectory

(q(t), p(t)) with q(0) ∈ D(0, 1). We can assume that q(0) 6= 0. Let T be the

maximal time of existence in D(0, 1). By energy conservation, we have, for all

t ∈ [0, T ),

V (r(t)) ≤ H0 ,

so that r(t) ≤ η.

Note that (3.6) means

lim inf
r→1−

|G(r)− pθ| >
√

2H0 .

Using the usual complex coordinate in the plane R2, we can write q̇ =
(
ṙ + iθ̇r

)
eiθ

and thus

det(q(t), q̇(t)) = r2(t)θ̇(t) = pθ −G(r(t)) .

Finally, we notice that ‖q̇(0)‖ =
√

2H0 and write

G(r)− pθ = G(r)−G(r(0))− [pθ −G(r(0))] ,

which gives (1.26).

(H2) If

lim inf
r→1−

V (r) = H0 , (3.7)

and

lim sup
r→1−

V (r)−H0

r − 1
< 0 ,

62



then we must again have

sup{x ∈ (0, 1) : V (x) = H0} < 1 ,

and we can proceed as above.

3.2.2.2 Proof of Proposition 1.6

Consider pθ = 0. Let |V |∞ := supr∈(0,1) |V (r)|. By assumption, |V |∞ < +∞.

Let r(0) ∈ (0, 1) and choose pr(0) > 0 such that p2
r(0) = 2 (|V |∞ − V (r(0))) + v2, with

v > 0. Since, for all t ∈ [0, T ),

p2
r(t)

2
+ V (r(t)) =

p2
r(0)

2
+ V (r(0)) ,

we get ṙ(t) = pr(t) ≥ v so that

r(t) ≥ vt+ r(0) .

The escape time is at most t = 1−r(0)
v .

3.3 On the scattering problem

We distinguish between the cases pθ = 0 and pθ 6= 0.

3.3.1 Case when pθ 6= 0

In this case, limr→0 V (r) = +∞; hence, due to energy conservation, the trajectory does

not approach the origin.

i. Assume that pr(0) < 0. We have V (1) < H0 and we can consider the right most

turning point r∗ ∈ (0, 1). By definition V (r∗) = H0, and necessarily V ′(r∗) ≤ 0.

If V ′(r∗) < 0, it is easy to check that r reaches r∗ in finite time, say t = t∗. This

time is given by

t∗ =

∫ 1

r∗

dr√
2(H0 − V (r))

.

By symmetry, the escape time is 2t∗. Since θ̇ = pθ−G(r)
r2

, we have

θ(t∗)−θ(0) =

∫ t∗

0

pθ −G(r)

r2
dt =

∫ t∗

0

(pθ −G(r))ṙ

r2pr
dt =

∫ t∗

0
− (pθ −G(r))ṙ

r2
√

2(H0 − V (r))
dt ,
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so that

θ(t∗)− θ(0) =

∫ 1

r∗

pθ −G(r)

r2
√

2(H0 − V (r))
dr .

By symmetry, we have

θ(2t∗)− θ(0) = 2

∫ 1

r∗

pθ −G(r)

r2
√

2(H0 − V (r))
dr .

If V ′(r∗) = 0, (r∗, 0) is a critical point of the Hamiltonian and we get that r reaches

r∗ in infinite time (see Figure 3.2).

ii. Assume that pr(0) = 0. Then V (1) = H0. By assumption (the trajectory enters

D(0, 1)), we have V ′(1) ≥ 0, i.e., (pθ −G(1))B(1) + (pθ −G(1))2 ≤ 0 . If V ′(1) = 0,

the particle sits at a fixed point of the Hamiltonian system, and hence r(t) ≡ 1 is

constant. If V ′(1) > 0, it enters D(0, 1) and the discussion is the same as previously.
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Figure 3.2: B(r) = e−r − 2
r .

3.3.2 Case when pθ = 0

In this case, since G(0) = 0, V (r) = 1
2r2
G(r)2 admits a continuous extension at r = 0.

i. Assume that pr(0) < 0. We have V (1) < H0. The existence of r∗ such that

V (r∗) = H0 is not ensured. If V (r) < H0 on [0, 1], the particle reaches r = 0 in

finite time t = t∗:

t∗ =

∫ 1

0

dr√
2(H0 − V (r))

.

We get, by symmetry,

θ(2t∗)− θ(0) = 2

∫ 1

0

−G(r)

r2
√

2(H0 − V (r))
dr + π .
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If there exists r∗ ∈ (0, 1) such that V (r∗) = H0, the trajectory does not reach the

origin and the discussion is the same as in the case pθ 6= 0.

ii. Assume that pr(0) = 0. The discussion is the same as when pθ 6= 0.

3.3.3 Scattering angle

We can now end the proof of Theorem 1.7. In terms of complex numbers, we can write

v1 = (vr(0) + ivθ(0))eiθ1 , v2 = (−vr(0) + ivθ(0))eiθ2 .

The scattering angle is

θ2 − θ1 + Arg

(
−vr(0) + ivθ(0)

vr(0) + ivθ(0)

)
.

Since δ is the argument of −vr(0) + ivθ(0), the scattering angle is

θ2 − θ1 − π + 2δ .
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Chapter 4

Semi-classical magnetic Laplacian

on a two-dimensional Riemannian

manifold

I am not sure exactly what heaven

will be like, but I know that when we

die and it comes time for God to

judge us, he will not ask, ‘How many

good things have you done in your

life?’ rather he will ask, ‘How much

love did you put into what you did?’

Mother Teresa
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In this chapter, we use the WKB method to investigate the spectrum of the magnetic

Laplacian on a two-dimensional Riemannian manifold. We will observe that the asymp-

totic expansions of the eigenvalues and the eigenfunctions can be obtained via a WKB

analysis. Firstly, we introduce the definition of the magnetic Laplacian on a Rieman-

nian manifold in Section 4.1. Section 4.2 is utilized for the construction of a pair of

local isothermal coordinates and for the description of the magnetic Laplacian in these

coordinates. Then, we prepare for the WKB process by writing the eigen-problem of

the magnetic Laplacian into the eikonal equation and the transport equations in Section

4.3. The WKB analysis which is performed in Section 4.4 includes solving the eikonal

equation and the transport equations thanks to formal series. Finally, we make the

comparison between the true eigenfunctions and their quasi-modes in Section 4.5.

4.1 The magnetic Laplacian on a Riemannian manifold

The aim of this section is giving the basic definition of the magnetic Laplacian. We will

show that upon assuming the compactness of the manifold (with or without boundary),

the operator will has compact resolvent, then its spectrum will be described by a real,

discrete sequence tending to +∞. The special case when the manifold is R2 is also

considered.

4.1.1 Some facts about Riemannian manifolds

Let us recall some properties of Riemannian manifolds which can be found in Riemannian

textbooks such as [38, 39].

Let (M, g) be an oriented Riemannian manifold of dimension n ≥ 2, i.e. M is a smooth

oriented manifold equipped with a Riemannian metric g. This metric g is defined on M

such that, for each p ∈M ,

gp : TpM × TpM → R

is a symmetric inner product on the tangent space TpM which varies smoothly from

point to point in the sense that if X and Y are differentiable vector fields on M , then

p 7→ gp(X(p), Y (p)) is a smooth function on M .

Notation 4.1. Let (U , ϕ : U → ϕ(U) ⊂ Rn) be a local chart with coordinates denoted

by (x1, ..., xn). At each point p ∈ U , we denote
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1. [V ]p, [ω]p, respectively, the coordinates of a tangent vector V =
∑n

i=1 v
i ∂
∂xi

∣∣
p

and

a covector ω =
∑n

i=1 ω
i dxi

∣∣
p
, i.e.

[V ]p = (v1, ..., vn)T and [ω]p = (ω1, ..., ωn)T .

2. Gp the matrix whose components are

Gij(p) = gp

(
∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

)
for all 1 ≤ i, j ≤ n .

Thus, Gp is symmetric and

gp(V,W ) = [V ]TpGp[W ]p for all V,W ∈ TpM .

3. Gij(p) the components of the matrix G−1
p and |Gp| the determinant of the matrix

Gp.

4. dVg the classical Riemannian volume form on M , which is the unique smooth

orientation form that satisfies

dVg(E1, ..., En) = 1,

for every local oriented orthonormal frame (E1, ..., En) on M , c.f. [39, Chapter

15]. In local coordinates,

dVg =
√
|G|dx1 ∧ dx2 ∧ ... ∧ dxn.

In terms of the Riemannian metric g, we can define a canonical isomorphism ĝ between

the tangent bundle TM and the cotangent bundle T ∗M point-wise as follows. For each

p ∈M and V ∈ TpM , ĝp(V ) is a co-vector which is defined by

ĝp(V )(W ) = gp(V,W ) for all W ∈ TpM . (4.1)

Furthermore, it also induces a dual metric g∗ on the set of 1-forms on M by setting

g∗p(w1, w2) = gp(ĝ
−1
p (w1), ĝ−1

p (w2)) for all w1, w2 ∈ T ∗pM .

In local coordinates, the mapping ĝp is considered as multiplication with the matrix Gp,

i.e.

[ĝp(V )] = Gp[V ] .
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The integration of a measurable function f on M is defined as follows. If f has a compact

support contained in a local chart (U , ϕ), then∫
M
f dVg =

∫
ϕ(U)

(
ϕ−1

)∗
(f dVg) =

∫
ϕ(U)

(f ◦ ϕ−1)
√
|G| ◦ ϕ−1 dx.

The definition is independent of choosing the local charts. We use a partition of unity

on M to define the integration in the general case. Let (Ui, ϕi) be a finite family of local

charts which covers M and satisfies

0 ≤ ϕi ≤ 1, supp(ϕi) ⊂ Ui ,

and ∑
i

ϕi = 1 .

The integration of f on M is defined by∫
M
f dVg =

∑
i

∫
M
fϕi dVg .

Note that this definition does not depend on the choice of partitions.

Next, we define L2(M) to be the completion of C∞c (M), the space of smooth functions

having compact supports on M , with the inner product

〈u, v〉L2(M) =

∫
M
uv dVg for u, v ∈ C∞c (M) ,

where the bar is the complex conjugation. The explicit expression of the Hilbert space

L2(M) is given by

L2(M) =

{
f : M → C is measurable and

∫
M
|f |2 dVg <∞

}
.

Notation 4.2. We make the notation that Cm
(
Λk(M)

)
is a space of all Cm-smooth

complex-valued k-form on M , with m ∈ N ∪ {∞} and k ∈ N.

We define L2(Λ1(M)) to be the completion of the space of smooth 1-forms having com-

pact supports in C∞
(
Λ1(M)

)
with the inner product

〈α, β〉L2(Λ1(M)) =

∫
M
g∗(α, β) dVg ,

where α, β are 1-forms with compact supports and β :=
n∑
i=1

βidx
i if β =

n∑
i=1

βidx
i.
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4.1.2 Definition of the magnetic Laplacian

Since the main subject of this chapter is studying the spectrum of the magnetic Laplacian

on a two-dimensional Riemannian manifold, we will restrict ourselves to the case n = 2.

The definition of this operator can be found in the introduction parts of [28, 32, 57].

Let A be a real-valued 1-form in C1
(
Λ1(M)

)
. Since M is the two-dimensional manifold,

there exists a real-valued function B ∈ C(M) such that

dA = B dVg .

We call B the magnetic field and A the magnetic potential . In the sequel, we define

the magnetic Laplacian on a manifold through A as follows. Firstly, associated to the

1-form A, we introduce a natural differential

Dh,A : C∞c (M)→ C1
(
Λ1(M)

)
u 7→ Dh,A(u) := −(ihd + A)u ,

where h > 0 is a semi-classical parameter which is assumed to be small.

Both L2(M) and L2(Λ1(M)) are Hilbert spaces with their corresponding inner products,

that allows to determine the formal adjoint of Dh,A as

(Dh,A)∗ : C1
(
Λ1(M)

)
→ C(M)

which is defined by the identity

〈Dh,Au, ω〉L2(Λ1(M)) = 〈u, (Dh,A)∗(ω)〉L2(M) , for all u ∈ C∞c (M), ω ∈ C1
(
Λ1(M)

)
.

We consider the operator

Dom(Hh,A) = C∞c (M), Hh,A = (Dh,A)∗Dh,A ,

which has the following properties:

1. Hh,A is symmetric because

〈Hh,Au, v〉L2(M) = 〈Dh,Au,Dh,Av〉L2(Λ1(M)) = 〈u,Hh,Av〉 ,

for all u, v ∈ C∞c (M).
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2. Hh,A is positive since

〈Hh,Au, u〉L2(M) =

∫
M
g∗ ((−ihd−A)u, (−ihd−A)u) dVg ≥ 0 .

Thus, Hh,A has a Friedrichs extension which is self-adjoint, see [25, Theorem 4.4]. We

denote this extension as Lh,A, and we call it the magnetic Laplacian .

4.1.3 Compact resolvent property

From now, M is assumed to be a compact manifold (possibly with boundary). In the

next lines, we will explain the way to get the magnetic Laplacian through Friedrichs

procedure. Through that, we obtain the form domain of the operator naturally and

then we prove the resolvent compactness thanks to this form domain. In orther words,

we are on the way proving Theorem 1.8 which is stated in Chapter 1. Recall that the

Sobolev space H1(M) on a Riemannian manifold is the Hilbert space

H1(M) = {u ∈ L2(M) : du ∈ L2(Λ1(M))} ,

with the inner product

〈u, v〉H1(M) = 〈u, v〉L2(M) + 〈du,dv〉L2(Λ1(M)) .

H1
0(M) is defined as the closure of C∞c (M) in H1(M) with respect to the associated

norm

‖u‖H1(M) =
√
‖u‖2

L2(M)
+ ‖du‖2

L2(Λ1(M))
.

We denote by Qh,A the sesquilinear form induced by the operator Hh,A,

Qh,A(u, v) = 〈Hh,Au, v〉L2(M) = 〈(−ihd−A)u, (−ihd−A)v〉L2(Λ1(M)) ,

for all u, v ∈ C∞c (M).

Let h > 0 and u ∈ C∞c (M). Notice that A ∈ C1(Λ1(M)), then for every ε > 0

Qh,A(u, u) = h2 〈du,du〉L2(Λ1(M)) + 2hIm 〈Au,du〉L2(Λ1(M)) + 〈Au,Au〉L2(Λ1(M))

≥ h2‖du‖2
L2(Λ1(M))

− 2hε‖du‖2
L2(Λ1(M))

− 2h

ε
‖Au‖2

L2(Λ1(M))

=
(
h2 − 2hε

)
‖du‖2

L2(Λ1(M))
− 2h

ε
‖A‖2∞‖u‖2L2(M) ,

where ‖A‖∞ = max
p∈M

√
g∗p(A(p), A(p)).
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By choosing ε small enough, we proved that there exist c0 > 0 and C1 > 0 (depending

on h and A) such that

Qh,A(u, u) + c0‖u‖2L2(M)
≥ C1‖u‖2H1(M) for every u ∈ C∞c (M) . (4.2)

From the boundedness of A on M , it is easy to see that there exists C2 > 0 (depending

on h and A) such that

Qh,A(u, u) + c0‖u‖2L2(M)
≤ C2‖u‖2H1(M) for every u ∈ C∞c (M) . (4.3)

Following the procedure of constructing Friedrichs extension, we define V as a completion

in L2(M) for the norm

p0(u) =
√
Qh,A(u, u) + c0‖u‖2L2(M)

.

Precisely, we have

V =

u ∈ L2(M) : there exists (un)n∈N ⊂ C∞c (M) such that un → u in L2(M)

and(un)n∈N is a Cauchy sequence for the norm p0

 .

(4.4)

From (4.2) and (4.3), it implies that

V = H1
0 (M) .

By the density of C∞c (M) in H1
0 (M), we can define a sesquilinear form on H1

0 (M):

B(u, v) = Qh,A(u, v) + c0〈u, v〉L2(M) .

This sesquilinear form satisfies all the conditions of Lax-Milgram Theorem A.6: the

coercivity of B deduced from the extension of (4.2) on H1
0 (M),

B(u, u) ≥ C1‖u‖2H1(M) for all u ∈ H1
0 (M) , (4.5)

and the continuity of B comes from

|B(u, v)|

=
∣∣∣h2 〈du,dv〉L2(Λ1(M)) − ih 〈Au,dv〉L2(Λ1(M)) + ih 〈du,Av〉L2(Λ1(M)) + c0〈u, v〉L2(M)

∣∣∣
≤ h2‖u‖H1(M)‖v‖H1(M) + 2h‖A‖∞‖u‖H1(M)‖v‖H1(M) + c0‖u‖H1(M)‖v‖H1(M)

≤ (h2 + 2h‖A‖∞ + c0)‖u‖H1(M)‖v‖H1(M) .
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It leads to the existence of a self-adjoint operator Hh,A that satisfies

〈Hh,Au, v〉L2(M) = Bh,A(u, v) ∀u ∈ Dom(Hh,A), ∀v ∈ H1
0 (M) , (4.6)

and its domain is defined as a subspace of H1
0 (M)

Dom(Hh,A) =

u ∈ H1
0 (M) : The linear mapping v 7→ B(u, v) is continous

on H1
0 (M) with the norm ‖ · ‖L2(M)

 . (4.7)

The magnetic Laplacian is then defined by

Dom(Lh,A) = Dom(Hh,A), Lh,A = Hh,A − c0 Id .

The domain of the magnetic Laplacian will be discussed in the next section. At this

stage, we aim at showing that the magnetic Laplacian has compact resolvent. To do

that, we will prove this property for the self-adjoint operator Hh,A. Indeed, following

Proposition A.9, we set the norm induced by the sesquilinear B:

‖ · ‖B =
√

B(·, ·) .

Notice that the injection
(
H1

0 (M), ‖ · ‖B
)
↪→ L2(M) can be seen as a composition of

two injections:

(
H1

0 (M), ‖ · ‖B
)
↪
i1−→
(
H1

0 (M), ‖ · ‖H1(M)

)
↪
i2−→ L2(M) .

From the coercivity (4.5), it implies directly that the first injection i1 is continuous. By

the Rellich theorem (see for example [22]), the compactness of the manifold M implies

that the embedding
(
H1

0 (M), ‖ · ‖H1(M)

)
↪
i2−→ L2(M) is compact. Thus, the injection(

H1
0 (M), ‖ · ‖B

)
↪→ L2(M) is compact too. Therefore, the operator Hh,A has compact

resolvent.

Since Hh,A is self-adjoint, the number (c0 + i) belongs to the resolvent set of Hh,A.

Then, the resolvent

(Lh,A − i Id)−1 = (Hh,A − (c0 + i) Id)−1

is compact.

Finally, we can conclude that Lh,A has compact resolvent. From this property, Lh,A

only has discrete spectrum and its spectrum is described by an unbounded increasing

sequence.
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4.1.4 Domain of the magnetic Laplacian

This subsection is devoted to the proof of Theorem 1.9 which is stated in Chapter 1.

When we use the Friedrichs method to construct a self-adjoint extension from an initial

operator, it seems that it is not easy to provide an explicit formula for the domain

of that self-adjoint operator. In our case, when A belongs to C1(Λ1(M)) we can give

an expression for this abstract domain clearly. Namely, we will see that the initial

operator Hh,A = (Dh,A)∗(Dh,A) is actually a differential operator. Then, the theory of

distributions give an explicit description for the Magnetic Laplacian operator. Finally,

it ends by regularity arguments.

Let us recall some elementary operators defined on a Riemannian manifold. First, we

consider the Hodge operator

d∗ : C1(Λ1M)→ C(M) ,

which is a formal adjoint to d,

〈du, ω〉L2(Λ1M) = 〈u,d∗ω〉L2(M) for all u ∈ C1(M), ω ∈ C1(Λ1M) .

In local coordinates, we have

d∗ω = −
2∑

i,j=1

1√
|G|

∂

∂xj

(√
|G|Gijωi

)
, for ω =

2∑
i=1

ωidx
i . (4.8)

Indeed, let ϕ : M → R be a smooth function that has a compact support, then∫
M

(d∗ω)ϕdVg =

∫
M
g∗(ω,dϕ)dVg

=

∫
M
g∗(ω,dϕ)dVg

=

∫
M

2∑
i,j=1

Gijωi
∂ϕ

∂xj

√
|G|dx1dx2

= −
∫
M

2∑
i,j=1

1√
|G|

∂

∂xj

(√
|G|Gijωi

)
ϕdVg ,

and since it is true for all ϕ ∈ C∞0 (M,R), (4.8) is established. Note that d∗ satisfies the

following Leibniz rule

d∗(fω) = fd∗ω − g∗(df, ω) for all f ∈ C1(M), ω ∈ C1(Λ1M) .
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From d and d∗, we define the Laplacian (acting on functions) as

∆ = −d∗d .

Besides, we identify the magnetic potential A with the multiplication operator

A : C1(M)→ C1(Λ1M)

u 7→ uA .

We also define the formal adjoint of A by

A∗ : C1(Λ1M)→ C(M)

A∗ω = g∗(A, ω) .

In local coordinates, A∗ is computed by

A∗ω =
2∑

i,j=1

GijωiAj , for ω =
2∑
i=1

ωidx
i, A =

2∑
j=1

Ajdx
j . (4.9)

It is easy to see that

(Dh,A)∗ = ihd∗ −A∗ .

Here the explicit formula for the magnetic Laplacian (Dh,A)∗Dh,A can be written as

follows,

(Dh,A)∗Dh,Au = (ihd∗ −A∗) (−ihd−A)u

= h2d∗du+ ihA∗du− ihd∗(Au) + A∗(Au)

= −h2∆u+ ihg∗(A,du)− ih (d∗A)u+ ihg∗(du,A) + g∗(A,A)u

= −h2∆u+ 2ihg∗(A, du) + (−ihd∗A + g∗(A,A))u .

Moreover, using (4.8) and (4.9), the operator can be expressed as

(Dh,A)∗Dh,A =
1√
|G|

2∑
k,`=1

(hDk −Ak)
[√
|G|Gk` (hD` −A`)

]
,

where Dj := −i ∂
∂xj

.
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It tells us that the operator (Dh,A)∗Dh,A is a differential operator. From (4.7), let us

call to mind the definition of the domain of the magnetic operator

Dom(Lh,A) =

u ∈ H1
0 (M) : there exists f ∈ L2(M) such that

Qh,A(u, v) = 〈f, v〉L2(M) for all v ∈ H1
0 (M)

 .

Using the arguments from distribution theory, it implies that

Dom(Lh,A) = {u ∈ H1
0 (M) : (Dh,A)∗Dh,Au ∈ L2(M)} .

Let u ∈ Dom(Lh,A), thus u ∈ H1
0 (M) and

−h2∆u+ 2ihg∗(A, du) + (−ihd∗A + g∗(A,A))u ∈ L2(M) .

Since A ∈ C1(Λ1M), we have

(−ihd∗A + g∗(A,A))u ∈ L2(M) ,

and

g∗(A, du) ∈ H−1(M) .

By applying the elliptic regularity theorem [61, Chapter 5, Theorem 1.3] for −∆u, we

have u ∈ H1(M). It follows that g∗(A, du) ∈ L2(M). Once again, we obtain u ∈ H2(M)

by the elliptic regularity theorem. That yields

Dom(Lh,A) = H1
0 (M) ∩H2(M) .

Remark 4.1. When M has no boundary, it is geodesically complete. We apply [57,

Theorem 1.1] which tells that Hh,A is essentially self-adjoint, i.e. there exists a unique

self-adjoint extention of Hh,A, that is the magnetic Laplacian which is defined above.

Moreover, since H1
0 (M) = H1(M), it follows that

Dom(Lh,A) = H2(M) . (4.10)

4.1.5 In the case of R2

On the manifold, we defined the magnetic Laplacian which depends on A and thus its

spectrum also depends on A. When the Riemannian manifold is now R2 with the Eu-

clidean metric g = (dq1)2 +(dq2)2, we can observe that although the magnetic Laplacian

is defined by a formula of A, its spectrum depends only on the magnetic field B.
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4.1.5.1 Redefinition of the magnetic Laplacian

Let us reintroduce the magnetic Laplacian on R2 whose spectrum investigation will be

mentioned in Chapter 5. Let A = A1 dq1 + A2 dq2 be the magnetic potential and B be

the associated magnetic field which is given by the exterior derivative of A:

dA = B dq1 ∧ dq2 ,

or B is given by the formula

B =
∂A2

∂q1
− ∂A1

∂q2
.

Let us consider the space

H1
h,A(R2) = {u ∈ L2(R2) : (−ih∇−A)u ∈ L2(R2)} ,

which is equipped with a sesquilinear form

〈u, v〉H1
h,A

:=

∫
R2

(−ih∇−A)u · (−ih∇−A)v dq +

∫
R2

u v dq, ∀u, v ∈ H1
h,A(R2) .

(4.11)

The above expression (−ih∇−A)u ∈ L2(R2) is understood in the sense that∫
R2

|(−ih∂q1u−A1u)|2 + |(−ih∂q2u−A2u)|2 dq <∞ .

The dot product in the integral which involves with the 1-form A in the sesquilinear

(4.11) is understood in the sense that

(−ih∇−A)u · (−ih∇−A)v = (−ih∂q1 −A1)u (−ih∂q1 −A1)v

+ (−ih∂q2 −A2)u (−ih∂q2 −A2)v .

We call H1
h,A(R2) the magnetic Sobolev space , this space has the two following useful

properties:

i) The space
(

H1
h,A(R2), 〈u, v〉H1

h,A

)
is a Hilbert space.

It is easy to see that the sesquilinear 〈u, v〉H1
h,A

define an inner product. We just

need to show that every Cauchy sequence in H1
h,A(R2) converges in H1

h,A(R2) with

the norm

‖u‖H1
h,A

=
√
‖(−ih∇−A)u‖2

L2(R2)
+ ‖u‖2

L2(R2)
, for u ∈ H1

h,A(R2) .
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Let (un)n∈N be a Cauchy sequence with the norm ‖ · ‖H1
h,A

. Since L2(R2) is a

Banach space, there exist u, v1, v2 in L2(R2) such that
un → u ,

(−ih∂q1 −A1)un → v1 ,

(−ih∂q2 −A2)un → v2 ,

(4.12)

in L2(R2). We obtain, by distribution theory, the result that (−ih∂q1 −A1)u = v1 ∈ L2(R2) ,

(−ih∂q2 −A2)u = v2 ∈ L2(R2) ,
(4.13)

In other words, un converges to u in H1
h,A(R2).

ii) C∞c (R2) is dense in H1
h,A(R2).

A smooth compact support function after being applied the operation (−ih∇−A)

is also smooth and has compact support, thus C∞c (R2) is obvious contained in

H1
h,A(R2). To prove the density of C∞c (R2), we first consider its density in a

smaller subspace of H1
h,A(R2):

H1
c,h,A(R2) =

{
f ∈ H1

h,A(R2) : f has compact support
}
.

Let f ∈ H1
c,h,A(R2), since Aif ∈ L2(R2), thus ∂qif ∈ L2(R2) for i = 1, 2. Using

the mollifiers ρn and setting up fn = ρn ∗ f , we have (fn)n∈N ⊂ C∞c (R2). By the

property of the convolution, we obtain that fn → f

∇fn → ∇f ,
(4.14)

in L2(R2). Furthermore, since the supports of (fn − f) are contained in a fixed

compact set, we have ‖A(fn − f)‖L2(R2) → 0. We conclude that C∞c (R2) is dense

in H1
c,A(R2). Therefore, the proof is complete when we can demonstrate that

H1
c,h,A(R2) is dense in the Hilbert space H1

h,A(R2). To do that, we consider a

function u ∈ H1
h,A(R2) satisfying∫

R2

(−ih∇−A)u · (−ih∇−A)ϕ dq +

∫
R2

uϕ dq = 0 ∀ϕ ∈ H1
c,A(R2) ,

and we will show that u = 0.

Consider a smooth function χ with compact support and 0 ≤ χ ≤ 1 which is

equal to 1 in the neighborhood of 0. We define χn(·) = χ
( ·
n

)
. Then we have
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χnu ∈ H1
c,h,A(R2) and

1

n

∫
R2

(−ih∇−A)u·(−ihu∇χ
( ·
n

)
dq+

∫
R2

χn|(−ih∇−A)u|2 dq+

∫
R2

χn|u|2dq = 0 ,

for all n ∈ N.

Since u ∈ H1
h,A(R2) and |∇χ| is bounded above by a constant on R2, with the

application of Hölder inequality, we obtain∣∣∣∣∫
R2

(−ih∇−A)u · (−ihu∇χ
( ·
n

)
dq

∣∣∣∣ ≤ C‖(−ih∇−A)u‖L2(R2)‖u‖L2(R2) .

Applying Fatou’s lemma, it results that∫
R2

|(−ih∇−A)u|2 dq +

∫
R2

|u|2dq ≤ lim inf
n→+∞

(∫
R2

χn|(−ih∇−A)u|2 dq +

∫
R2

χn|u|2dq

)
≤ lim inf

n→+∞

1

n

∣∣∣∣∫
R2

(−ih∇−A)u · (−ihu∇χ
( ·
n

)
dq

∣∣∣∣
= 0 .

Therefore, u = 0 and the statement of the density of C∞c (R2) is proved.

Applying Theorem A.6 , we replace H = L2(R2) and V = H1
h,A(R2) and the sesquilinear

Q(·, ·) = 〈·, ·〉H1
h,A

. Obviously, Q is continuous, V -elliptic and Hermitian on V . Thus,

Theorem A.6 provides the existence of a self-adjoint operator Sh,A which has the domain

Dom (Sh,A) = {u ∈ H1
h,A(R2) : ∃w ∈ L2(R2) ,Q(u, v) = 〈w, v〉L2 ∀v ∈ H1

h,A(R2)}

= {u ∈ H1
h,A(R2) : ∃w ∈ L2(R2) ,Q(u, v) = 〈w, v〉L2 ∀v ∈ C∞c (R2)}

= {u ∈ H1
h,A(R2) : (−ih∇−A)2u ∈ L2(R2)} .

The second equality is given by the density of C∞c (R2) in H1
h,A(R2) and we understand

the term (−ih∇ + A)2u in the sense of distribution. The self-adjoint operator Sh,A
satisfies, for all u ∈ Dom (Sh,A), v ∈ H1

h,A(R2),

〈Sh,Au, v〉L2(R2) = 〈(−ih∇−A)u, (−ih∇−A)v〉L2(R2) + 〈u, v〉L2(R2) .

We define Lh,A the magnetic Laplacian on R2 by

Lh,A = Sh,A − Id ,
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where Id is the identity operator on Dom (Sh,A). Therefore, the magnetic Laplacian

Lh,A has the domain

Dom (Lh,A) = {u ∈ H1
h,A(R2) : (−ih∇−A)2u ∈ L2(R2)} ,

and for all u ∈ Dom (Lh,A), v ∈ H1
h,A(R2)

〈Lh,Au, v〉L2(R2) = 〈(−ih∇−A)u, (−ih∇−A)v〉L2(R2) . (4.15)

Furthermore, we can make the domain of Lh,A simpler by considering the operator

Hh,A = (−ih∇−A)2 with D(Hh,A) = C∞c (R2) . (4.16)

This operator is symmetric, hence it is closable. Let Ĥh,A denote the closure operator

of Hh,A, we have

Dom(Ĥh,A) = {u ∈ L2(R2) : (−ih∇−A)2u ∈ L2(R2)} and Ĥh,A = (−ih∇−A)2 .

(4.17)

The equality (4.15) leads to

〈Lh,Au, v〉L2(R2) = 〈(−ih∇−A)u, (−ih∇−A)v〉L2(R2) = 〈Hh,Au, v〉L2(R2) ,

for all u, v ∈ C∞c (R2). It implies that Lh,A is a self-adjoint extension of Hh,A. Since

A ∈ C1(R2), the operator Hh,A is essentially self-adjoint (see [17]), then its closure

Ĥh,A is self-adjoint. By the uniqueness of the self-adjoint extension of an essentially

self-adjoint operator, we conclude that

Lh,A = Ĥh,A .

Therefore, we can rewrite the domain of the magnetic Laplacian Lh,A in an easier way

Dom (Lh,A) = {u ∈ L2(R2) : (−ih∇−A)2u ∈ L2(R2)} , (4.18)

and the explicit formula for Lh,A

Lh,A = (−ih∇−A)2 .
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4.1.5.2 Spectrum of the magnetic Laplacian

First of all, let us say a few words about the gauge invariance of the spectrum of the

magnetic Laplacian. Let A and Ã be the magnetic potentials associated with B,

dA = dÃ = Bdq1 ∧ dq2 .

By Lemma 2.10, there exists a smooth function φ on R2 such that

Ã = A + dφ .

Notice that

eiφ/h(−ih∇−A)2e−iφ/h = (−ih∇−A− dφ)2 = (−ih∇− Ã)2 .

Thus, two operators Lh,A and Lh,Ã are unitary equivalent. In other words, we showed

that the spectrum of magnetic Laplacian is independent from the choice of magnetic

potential:

Sp(Lh,A) = Sp(Lh,Ã) . (4.19)

From (4.15), for every u ∈ Dom (Lh,A), we have the inequality

〈Lh,Au, u〉L2(R2) ≥ 0 .

It shows that Lh,A is positive, thus Sp(Lh,A) is contained in [0,+∞) (see [25, Propo-

sition 11.2]). According to Lax-Milgram (see Theorem A.6), the magnetic Laplacian is

bijective from its domain onto L2(R2), it tells us that 0 ∈ ρ(Lh,A). Therefore, we have:

Sp(Lh,A) ⊂ (0,+∞) .

Recall that B = B(q)dq1 ∧ dq2, when B is non-negative, we have the following result:

Theorem 4.2. For all u ∈ H1
h,A(R2),

Qh,A(u) :=

∫
R2

|(−ih∇−A)u|2 dq ≥ h
∫
R2

B|u|2 dq . (4.20)

Proof. Since B is non-negative, the integral in the right-hand side of (4.20) is well

defined. We will start the proof with the function u in C∞c (R2) first and then we use

the density of C∞c (R2) in H1
h,A(R2) to finish the proof. Notice that

[−ih∂q1 −A1,−ih∂q2 −A2] = −ihB .
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Here, the bracket [·, ·] is the commutator of two operators which is defined by, for two

operators T1, T2,

[T1, T2] = T1T2 − T2T1 .

Thus, we have

〈[−ih∂q1 −A1,−ih∂q2 −A2]u, u〉 = −ih
∫
R2

B|u|2 dq .

Integrating by part and applying the Cauchy-Schwarz inequality, it leads to

|〈[−ih∂q1 −A1,−ih∂q2 −A2]u, u〉| ≤ 2‖(−ih∂q1 −A1)u‖L2(R2)‖(−ih∂q2 −A2)u‖L2(R2)

≤ ‖(−ih∂q1 −A1)u‖2
L2(R2)

+ ‖(−ih∂q2 −A2)u‖2
L2(R2)

.

Therefore, we can conclude that∫
R2

|(−ih∇−A)u|2 dq ≥ h
∫
R2

B|u|2 dq for all u ∈ C∞c (R2) .

Now, let u ∈ H1
h,A(R2). Since C∞c (R2) is dense in Hh,A(R2), there exists a sequence

(un)n∈N in C∞c (R2) such that un converges to u. We have∫
R2

|(−ih∇−A)un|2 dx ≥ h
∫
R2

B|un|2 dx . (4.21)

Let n go to +∞ and apply Fatou’s lemma, we get∫
R2

|(−ih∇−A)u|2 dx = lim inf
n→∞

∫
R2

|(−ih∇−A)un|2 dx

≥ h lim inf
n→∞

∫
R2

B|un|2 dx

≥ h
∫
R2

B|u|2 dx .

Let us discuss two applications of Theorem 4.2. Its first application is to prove the

compact resolvent property of the magnetic Laplacian when B blows up at infinity.

The second one is to allow us to estimate the lowest spectrum. In details, we have the

following theorem:

Theorem 4.3. The magnetic Laplacian Lh,A has compact resolvent if

lim
‖q‖→∞

B(q) = +∞ .
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Proof. Applying Proposition A.9, the plan is to show that the injection

(H1
h,A(R2), ‖ · ‖H1

h,A
) ↪→ (L2(R2), ‖ · ‖L2)

is compact. Let B(0; 1) =
{
u ∈ H1

h,A(R2) : ‖u‖H1
h,A

< 1
}

be the unit ball in H1
h,A(R2).

We use Riesz-Fréchet-Kolmogorov criterion (see [49, Page 34]) to demonstrate that

B(0; 1) is relatively compact in L2(R2):

i) B(0; 1) is a bounded subset of L2(R2) since

‖u‖L2 ≤ ‖u‖H1
h,A

< 1 ,

for all u ∈ B(0; 1).

ii) Let ε > 0. For all u ∈ B(0; 1), using Theorem 4.2, we obtain

h

∫
R2

B|u|2 dq ≤ 1 .

Under the condition of the magnetic field B at infinity, there exists a ball

ΩR := {q ∈ R2 : ‖q‖ < R}

in R2 such that

B(q) ≥ 1

hε2
for all q ∈ R2 \ ΩR .

Thus, it is easy to see that

‖u‖L2(R2\ΩR) ≤ ε .

iii) Let ε > 0 and ω ⊂⊂ R2. Since C∞c (R2) is dense in H1
h,A(R2), for each u ∈ B(0; 1),

there exists wu ∈ C∞c (R2) such that

‖u− wu‖H1
h,A
≤ ε

3
.

It implies directly that ‖wu‖H1
h,A
≤ 2 for all u ∈ B(0; 1). Let Ω ⊃ ω is a compact

set such that dist(ω, ∂Ω) ≥ 1. Because of the continuity of A on Ω, there exists a

constant C1 (independent of u) such that

‖Awu‖L2(Ω) ≤ C1 .

As a consequence, there exists a constant C2 (independent of u) such that

‖∇wu‖L2(Ω) ≤ C2 .
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Let k ∈ R2 such that ‖k‖ ≤ 1, we have

‖τkwu − wu‖L2(ω) ≤ ‖∇wu‖L2(Ω)‖k‖ ≤ C2‖k‖ ,

where τkv(q) := v(q + k). It deduces that

‖τku− u‖L2(ω) ≤
2ε

3
+ C2‖k‖ .

Therefore, there exists δ > 0 (independent of u) such that

‖τku− u‖L2(ω) ≤ ε for all k ∈ R2 such that ‖k‖ ≤ δ .

Combine (4.20) with the min-max principle for the self-adjoint operator Lh,A, we obtain

the estimation for the infimum of the spectrum

inf Sp(Lh,A) = inf
u∈H1

h,A(R2)

u6=0

Qh,A(u)

‖u‖L2(R2)
≥ hb0 ,

where b0 := infq∈R2 B(q). Thus,

Sp(Lh,A) ⊂ [hb0,+∞) . (4.22)

Now, we study the essence of spectrum of the magnetic Laplacian, is it discrete or

continuous? The answer will depend on the behaviour of the magnetic field at infinity.

Explicitly, we have the below result which appears in [31, 51]:

Theorem 4.4. Assume that b0 > 0 and

lim inf
‖q‖→+∞

B(q) = b0 + η0 , (4.23)

with some η0 > 0.

Then, for any η1 ∈ (0, η0), the spectrum lying in the interval [hb0, h(b0 + η1)), if exists,

is discrete.
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Proof. This theorem is a direct consequence of the characterization of the bottom of the

essential spectrum of the magnetic Laplacian (see [17, Appendix B]):

inf Spess(Lh,A) = sup
K⊂R2

 inf
u∈C∞c (R2\K)
‖u‖L2(R2)≤1

〈Lh,Au, u〉

 ,

where the supremum is taken over all compact subsets K ⊂ R2. From (4.23), there

exists M > 0 such that

B(q) ≥ b0 + η1 for all q ∈ B(0;M) := {q ∈ R2 : ‖q‖ ≤M} .

Combining with 4.2, we deduce that

〈Lh,Au, u〉 ≥ h(b0 + η1) ,

for all u ∈ C∞c (R2 \B(0;M)) such that ‖u‖L2(R2) ≤ 1. Therefore, we must have

inf Spess(Lh,A) ≥ h(b0 + η1) ,

and the conclusion follows.

4.2 Isothermal coordinates

4.2.1 Construction of the isothermal coordinates

In this section, we would like to show that the isothermal coordinates always exist locally

in the two-dimensional Riemannian manifolds. To do that, let us start by recalling the

definition of a gradient of a smooth function on a Riemannian manifold.

Definition 4.5. Let f : M → R be a smooth function, we define the gradient of f as

∇gf := ĝ−1(df), where ĝ is defined in (4.1). In other words, it is a unique vector field

such that, for all p ∈ Ω and for all Xp ∈ TpΩ,

g((∇gf)p, Xp) = dfp(Xp) = Xpf .

Theorem 4.6. Let p ∈M , local isothermal coordinates exist around p.

Remark 4.7. The reader is invited to compare this following proof with the proof in [61,

Page 438] which used the Hodge star operator to show the existence of the coordinates.
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Proof. Let us fix a local chart (W,Ψ : W → Ψ(W ) ⊂ R2) around p with coordinates

x1, x2. We need to look for a diffeomorphism φ created from two real-valued smooth

functions defined on some small neighborhood of p:

φ(y) = (u(y), v(y)) ,

such that there exists a smooth function η defined on φ(Ω) ⊂ R2 satisfying

g(V, V ) = e2ηg0 (dφyV, dφyV ) for all V ∈ TyM. (4.24)

Let us sketch the proof. The proof is divided into two main steps: first, we assume that

there exists a small neighborhood Ω centered at p such that if we have u and v satisfying

the equation (with a condition):
(
∇⊥gv

)
y

= (∇gu)y ,

(∇gv)y 6= 0 ,
(4.25)

for all y ∈ Ω, then (4.24) is established. Here R is the rotation for the angle π
2 represented

by the matrix

R =

(
0 −1

1 0

)
,

and ∇⊥gv is a vector field which has the coordinates[
∇⊥gv

]
:= G−

1
2RG

1
2 [∇gv] .

Second, the existence of Ω and u, v which satisfy (4.25) is showed by the theory of the

linear elliptic equations. We start with the first step:

Step 1: We assume that u, v satisfy (4.25) on Ω.

In this theorem, we denote ∇ew :=

(
∂w
∂x1

∂w
∂x2

)
. Since [∇gv] = G−1∇ev, we can rewrite[

∇⊥gv
]

= |G|−
1
2 (∇ev)⊥. Two vector fields ∇gv,∇⊥gv satisfy

g(∇gv,∇⊥gv) = [∇gv]T G
[
∇⊥gv

]
= |G|−

1
2 (∇ev)T (G−1)TG(∇ev)⊥

= |G|−
1
2 (∇ev)T (∇ev)⊥

= 0 ,
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and

g(∇⊥gv,∇⊥gv) =
[
∇⊥gv

]T
G
[
∇⊥gv

]
=

(
G−

1
2 RG

1
2 [∇gv]

)T
G
(
G−

1
2 RG

1
2 [∇gv]

)
= [∇gv]T G [∇gv]

= g(∇gv,∇gv) .

Since ∇gv 6= 0, the set
{
∇gv,∇⊥gv

}
become the orthogonal frame on Ω. Let V be a

tangent vector in TyM . We can represent V = α(∇gv)y + β(∇⊥g)yv and compute the

push-forward tangent vector dφyV in R2 as

dφyV =
(
α(∇gv)yu+ β(∇⊥gv)yu

) ∂

∂x1
+
(
α(∇gv)yv + β(∇⊥gv)yv

) ∂

∂x2
.

Now we use the equalities

dvy(·) = g((∇gv)y, ·) ,

duy(·) = g((∇⊥gv)y, ·) ,

to calculate two sides of (4.24). That is

g0 (dφyV,dφyV ) =
(
α(∇gv)yu+ β(∇⊥gv)yu

)2
+
(
α(∇gv)yv + β(∇⊥gv)yv

)2

=
(
α duy(∇gv)y + β duy(∇⊥gv)y

)2
+
(
α dvy(∇gv)y + β dvy(∇⊥gv)y

)2

= (α2 + β2)g((∇gv)y, (∇gv)y)
2 .

The left hand side of (4.24) is

g(V, V ) = g(α(∇gv)y + β∇⊥gv)y, α(∇gv)y + β∇⊥gv)y)

= (α2 + β2)g((∇gv)y, (∇gv)y) .

Therefore, we get the result (4.24) by setting up η = 1
2 log [g(∇gv,∇gv)]−1, which is a

smooth function defined on φ(Ω) ⊂ R2. The diffeomorphism property of φ follows from

the linear independence of two non-zero gradient vectors ∇eu and ∇ev .

Step 2: Let us now consider the equation (4.25). Since we are looking for local coordi-

nates, (4.25) can be reformulated as (∇ev)⊥ = |G|
1
2G−1∇eu ,

(∇gv)p 6= 0 ,
(4.26)
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Here p is the point under consideration in the statement of the theorem. By the classical

Poincaré lemma, the existence of v such that (∇gv)p 6= 0 is given if there exists u such

that Lgu = 0 and (∇gu)p 6= 0 where

Lg := ∇e ·
(
|G|

1
2G−1

)
∇e.

Let us clarify this clause. Indeed, we assume that there exists u such that∇
e ·
(
|G|

1
2G−1

)
∇eu = 0

(∇gu)p 6= 0 .
(4.27)

Let us denote

(
U1

U2

)
:=
(
|G|

1
2G−1

)
∇eu and α := U2dx1−U1dx2 be a 1-form on W , we

have

dα = −
(
∂U1

∂x1
+
∂U2

∂x2

)
dx1 ∧ dx2 = 0 .

By Poincaré lemma, there exists a smooth function v such that α = dv (here we assume

that the local chart allows the exactness of a closed form, see [39, Corollary 17.15]). In

other words, we have (
U1

U2

)
=

(
− ∂v
∂x2

∂v
∂x1

)
.

Therefore, v satisfies the equation (4.26) and ∇ev 6= 0 (from the relation of u and v in

(4.26)).

Now, we focus on finding a function u which satisfies (4.27). This equation and the

condition of the solution are rewritten as
2∑

i,j=1

∂xi
(
|G|

1
2 Gij∂xju

)
= 0

(∇eu)p 6= 0 .

(4.28)

Without loss of generality, we can assume that Ψ(p) = 0 and that the preimage of the

ball B(0; 1) = {q ∈ R2 : ‖q‖ ≤ 1} contained in W . Let (q1, q2) be the coordinates in R2

and let

Aij := |G(Ψ−1)|
1
2Gij(Ψ−1) ,

for all i, j ∈ {1, 2}.
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Let ε > 0, we consider a problem on R2 : Finding a smooth solution ũ : B(0; ε) → R
satisfying 

2∑
i,j=1

∂qi
(
Aij(q)∂qj ũε

)
= 0 on B(0; ε) ,

ũε(q) =
q1

ε
on ∂B(0; ε) .

(4.29)

We will show that for ε > small enough, ∂q1 ũ(0) 6= 0 and the proof is complete as we put

u = ũ ◦ Ψ. To do that, let us consider the Dirichlet problem on the B(0; ε), by setting

w̃ε(q) = ũε(q)− q1
ε . We have a PDE:


2∑

i,j=1

∂qi
(
Aij(q)∂qj w̃ε

)
=

1

ε
f on B(0; ε) ,

w̃ε(q) = 0 on ∂B(0; ε) ,

(4.30)

where f(q) = −
(
∂A11

∂q1
+ ∂A21

∂q1

)
.

By changing variable q = εt and setting up wε(t) = w̃ε(q), we obtain an equivalent PDE:


2∑

i,j=1

∂ti
(
Aij(εt)∂tjwε

)
= εf(εt) on B(0; 1) ,

wε(t) = 0 on ∂B(0; 1) .

(4.31)

Since G(y)−1 is a positive definite matrix at each point y ∈ W and its minimum eigen-

value λmin(y) is a positive continuous function on W according to variable y. Then,

there exists a constant c0 such that

2∑
i,j=1

Gij(y)ξiξj = 〈G(y)−1ξ, ξ〉 ≥ λmin(y)‖ξ‖2 ≥ c0‖ξ‖2 . (4.32)

for all ξ ∈ R2.

Therefore, our PDE (according to variable t) is also uniformly elliptic:

2∑
i,j=1

Aij(εt)ξiξj ≥ c0‖ξ‖2 for all t ∈ B(0; 1), ξ ∈ R2 .

By Lax-Milgram theorem, there exists a unique weak solution wε ∈ H1
0 (B(0; 1)) satisfy-

ing the PDE (4.31), i.e.

Q(wε, b) = ε〈f(εt), b〉L2(B(0;1)) for all b ∈ H1
0 (B(0; 1)) ,
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where Q is the bilinear form defined by

Q(a, b) =

∫
B(0;1)

2∑
i,j=1

Aij(εt)(∂tia)(∂tjb) dq .

By Poincaré inequality, we have

‖wε‖2L2(B(0;1))
≤ C‖∇wε‖2L2(B(0;1))

≤ CQ(wε, wε) ≤ Cε‖f(εt)‖L2(B(0;1))‖wε‖L2(B(0;1))

From the boundedness of f , there exists M > 0 (not depending on ε ) such that

‖wε‖L2(B(0;1)) ≤Mε .

From the regularity arguments, we obtain, for all m ∈ N,

‖wε‖Hm+2(B(0;1)) ≤ ε‖f(εt)‖Hm(B(0;1)) + ‖wε‖L2(B(0;1)) ≤ Cε .

By choosing m large enough such that Hm(B(0, 1)) ↪→ C1(B(0; 1)), then we have∣∣∣∣∂wε∂t1
(0)

∣∣∣∣ ≤ ‖wε‖C1 ≤ Cε .

Since ∂wε
∂t1

(0) = ε∂w̃ε
∂q1

(0), it implies that
∣∣∣∂w̃ε∂q1

(0)
∣∣∣ is bounded above. By choosing ε small

enough we have the conclusion.

4.2.2 The magnetic Laplacian in isothermal coordinates.

We can start the journey to prove Theorem 1.14 now. Let p∗ ∈ M be the point in

Theorem 1.14. By Theorem 4.6, there exists an isothermal local chart (Ω, φ : Ω→ φ(Ω))

centered at p∗. Regarding Definition 1.13, we set up U := φ(Ω) which is an open set in

R2 and g̃ := e2ηg0 be the metric on U in R2. We use the conformal map

ϕ := φ−1 : U → Ω ,

to pull-back the sesquilinear from manifold to R2.

Then, for all u, v ∈ C∞c (Ω), we have∫
Ω
g∗((−ihd−A)u, (−ihd−A)v)dVg =

∫
U
ϕ∗ (g∗((−ihd−A)u, (−ihd−A)v)dVg)

=

∫
U
g̃∗((−ihd− ϕ∗A)ũ, (−ihd− ϕ∗A)ṽ)|G̃|

1
2 dq ,
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where ũ := ϕ∗u and ṽ := ϕ∗v.

Let M = ϕ∗A be the pull-back of 1-form A. By considering M as a function vector

(M1,M2)T and note that G̃ =

(
e−2η 0

0 e−2η

)
, we have

∫
Ω
g∗((−ihd−A)u, (−ihd−A)v) dVg

=

∫
U

〈
G̃−1(−ih∇q −M)ũ, (−ih∇q −M)ṽ

〉
C2
|G̃|

1
2 dq

=

∫
U
e−2η 〈(−ih∇q −M)ũ, (−ih∇q −M)ṽ〉C2 e

2η dq

=

∫
U

[
(−ih∂q1 −M1)2 + (−ih∂q2 −M2)2

]
ũṽ dq ,

where the last equality is obtained by the integration by part.

We label Lh,M be an operator acting on L2(U, e2ηdq) defined byDom(Lh,M) = C∞c (U) ,

Lh,M = e−2η
[
(−ih∂q1 −M1)2 + (−ih∂q2 −M2)2

]
.

We deduce that, for all u, v ∈ C∞c (Ω),

〈Lh,Au, v〉L2(Ω) = 〈Lh,Mϕ∗u, ϕ∗v〉L2(U,e2ηdq) =
〈
(ϕ−1)∗Lh,Mϕ∗u, v

〉
L2(Ω)

. (4.33)

Therefore, the relation between Lh,A and Lh,M is shown through

Lh,A = (ϕ−1)∗Lh,M(ϕ)∗ on C∞c (Ω) . (4.34)

Take the exterior derivative of both sides of M = ϕ∗A, we have(
∂M2

∂q1
− ∂M1

∂q2

)
dq1 ∧ dq2 = dϕ∗A = ϕ∗dA = ϕ∗ (BdVg) = (B ◦ ϕ)

√
|G̃|dq1 ∧ dq2 .

Thus, the formula dA = B dVg on Ω is equivalent to the formula

∂M2

∂q1
− ∂M1

∂q2
= (B ◦ ϕ)e2η on U . (4.35)
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4.3 Spectral analysis with the WKB method

Notation 4.3. In Section 4.3 and Section 4.4, we will denote f̂ be the Taylor formal

series of function f ∈ C∞(R2,R) at zero. It means that

f̂(q1, q2) =
∑
m,n≥0

1

m!n!

∂m+nf(0)

∂qm1 ∂q
n
2

qm1 q
n
2 .

We denote the f̃ be the formal series after changing variable (q1, q2) =
(
z+w

2 , z−w2i

)
with

(z, w) ∈ C2. We designate C[[z]] for the ring of formal series in the variable z with

coefficients in C and C[[(z, w)]] for the ring of formal series in the variable (z, w) with

coefficients in C.

4.3.1 A choice of the magnetic potential

We continue on the way to prove Theorem 1.14. We recall that p∗ is the local minimum

point of the magnetic field B on Ω and the Hessian of B at p∗ is positive non-degenerate.

We assume that ϕ(0) = p∗ and denote B(q) = B(ϕ(q)) as the magnetic field on U in

R2. The relation between the Hessian of B on manifold and the Hessian matrix of B is

given by

(d2B)p∗(U, V ) = 〈HessB(0)(dϕ−1)p∗U, (dϕ
−1)p∗V 〉R2 for all U, V ∈ Tp∗U .

If the Hessian of the function B at p∗ is positive non-degenerate, then the Hessian of B
at 0 is also positive non-degenerate. Therefore, we deduce that B has local minimum at

0 and the Hessian matrix of B at 0 is positive definite. Furthermore, Taylor expansion

of B at 0 is

B(q) = B(0) +
1

2
〈HessB(0)q, q〉R2 +O(‖q‖3) .

Since HessB(0) is positive definite, there exists an orthogonal matrix P and two positive

numbers α, γ such that

P−1HessB(0)P =

(
2α 0

0 2γ

)
.

Thus, through a linear change of variable in R2, without loss of generality, we can write

B(q1, q2) = b0 + αq2
1 + γq2

2 +O(‖q‖3) with b0 > 0 and 0 < α ≤ γ .

The following lemma will be useful to define a special vector potential.

92



Lemma 4.8. There exists a smooth solution of equation

∆Ψ = e2ηB , (4.36)

in a neighborhood of U such that

Ψ(q1, q2) =
e2η(0)B(0)

4
(q2

1 + q2
2) +O(‖q‖3) .

Proof. It is well-known that the Poisson equation (4.36) always has smooth solutions

modulo by some Harmonic function. It means that if u is a particular solution of (4.36),

then so is Ψ = u+ ϕ, where ϕ is the solution of the equation

∆ϕ = 0 .

In our case, by Taylor’s theorem, we have

u(q1, q2) = u(0)+
∂u(0)

∂q1
q1 +

∂u(0)

∂q2
q2 +

1

2

∂2u(0)

∂q2
1

q2
1 +

∂2u(0)

∂q1q2
q1q2 +

1

2

∂2u(0)

∂q2
2

q2
2 +O(‖x‖3) .

We choose Harmonic polynomial ϕ as

ϕ(q) = −
[
u(0) +

∂u(0)

∂q1
q1 +

∂u(0)

∂q2
q2 +

∂2u(0)

∂q1q2
q1q2

]
+

1

4

(
∂2u(0)

∂q2
2

− ∂2u(0)

∂q2
1

)
(q2

1 − q2
2) .

Then the solution Ψ = u+ ϕ has the form

Ψ(q) = a(q2
1 + q2

2) +O(‖q‖3) .

The Taylor expansion implies that

a =
∂2Ψ(0)

∂q1
2

=
∂2Ψ(0)

∂q2
2
.

Therefore, from equation (4.36) at 0, we see that

a =
e2η(0)B(0)

4
.

Let Ψ be the function given by Lemma 4.8, we choose A = (−∂q2Ψ, ∂q1Ψ). Then A will

satisfy (4.35) and
∂M2

∂q1
− ∂M1

∂q2
=
∂A2

∂q1
− ∂A1

∂q2
.
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By setting 1-form ω = (A1 −M1)dq1 + (A2 −M2)dq2 on U , ω will be closed. We can

assume that the local neigborhood U allows the exactness of a closed form (see [39,

Corollary 17.15]), it leads to the existence of a function θ ∈ C∞(U) such that ω = dθ or

A =M+∇θ .

We notice that

eiθ/h(−ih∇−M)2e−iθ/h = (−ih∇−M−∇θ)2 = (−ih∇−A)2 ,

so that

Lh,A = eiθ/hLh,Me−iθ/h . (4.37)

Furthermore, with the choice of the magnetic potential A = (−∂q2Ψ, ∂q1Ψ), we have the

divergence of A is zero:

∇ ·A = 0 . (4.38)

We will focus on performing WKB method for the eigen-problem for the operator Lh,A
in the next subsection.

4.3.2 Asymptotic expansion of the eigen-problem of the magnetic Lapla-

cian

Let us consider the eigen-problem of the magnetic Laplacian

Lh,Au(q, h) = λ(h)u(q, h) . (4.39)

We start the WKB method by looking for solution u(q, h) in the form

u(q, h) = e−S(q)/ha(q, h) ,

where a and S are complex-valued functions. We emphasize that we will search for

a complex phase S which is neither purely real nor purely imaginary as working in

subsection 1.1.2 for the electric potential. Now, we focus on constructing an approximate

solution of the equation

eS/h (Lh,A − λ(h)) e−S/h a(q, h) = 0 , (4.40)
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in the semi-classical limit: h→ 0.

Let denote LSh,A = eS/hLh,Ae−S/h, we calculate it as

LSh,A = e−2ηeS/h(−ih∇−A)2e−S/h

= e−2η
[
(−A1 + i∂q1S)2 + (−A2 + i∂q2S)2

+ih∇ ·A+ h∆S + 2h(∇S + iA) · ∇ − h2∆
]
.

Since ∇ ·A = 0, gathering the terms according to order of h, we can write LSh,A as

LSh,A = ES0 + hES1 − h2∆, (4.41)

where ES0 is the multiplication operator

ES0 a = e−2η
[
(−A1 + i∂q1S)2 + (−A2 + i∂q2S)2

]
a ,

and ES1 is the differential operator

ES1 a = e−2η (∆S + 2(∇S + iA) · ∇) a .

We now look for a(q, h) in the form

a(q, h) =
∞∑
j=0

aj(q)h
j , (4.42)

where (aj)j≥0 are smooth complex-valued functions, and

λ(h) = h
∞∑
j=0

µjh
j . (4.43)

The equalities in (4.42) and (4.43) are in the sense of (1.10). Let us substitute (4.42)

and (4.43) into (4.40), and require that each term associate with hj for j ∈ N vanishes,
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we get the sequence of equations

h0 : ES0 a0 = 0

h1 : ES0 a1 +
(
ES1 − µ0

)
a0 = 0 ,

h2 : ES0 a2 +
(
ES1 − µ0

)
a1 =

(
µ1 + e−2η∆

)
a0 ,

.............................................

hn(n ≥ 3) : ES0 an +
(
ES1 − µ0

)
an−1 =

(
µ1 + e−2η∆

)
an−2 +

n−1∑
j=2

µjan−1−j ,

.............................................

These equations will be solved in formal series. As a starting point, we determine

partially phase function S through the eikonal equation.

4.4 WKB construction

4.4.1 The eikonal equation

Let us find Ŝ in C[[(q1, q2)]] such that(
−Â1 + i∂q1Ŝ

)2
+
(
−Â2 + i∂q2Ŝ

)2
= 0,

and thus(
−Â1 + i∂q1Ŝ + i(−Â2 + i∂q2Ŝ)

)(
−Â1 + i∂q1Ŝ − i(−Â2 + i∂q2Ŝ)

)
= 0.

Let us consider an Ŝ such that

−Â1 + i∂q1Ŝ + i(−Â2 + i∂q2Ŝ) = 0.

It satisfies

2∂z̄Ŝ = −iÂ1 + Â2, with ∂z̄ :=
1

2
(∂q1 + i∂q2).

Notice that we also have ∂z̄Ψ̂ = −iÂ1 + Â2 (by choosing the magnetic potential A which

is mentioned in the above section). It implies that

∂z̄Ŝ = ∂z̄Ψ̂ . (4.44)
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After changing the variable q1 = z+w
2 and q2 = z−w

2i in the formal series Ŝ and Ψ̂, we

have ∂w = ∂z̄. Thus, Ŝ satisfies the equation (4.44) if and only if S̃ satisfies

∂wS̃(z, w) = ∂wΨ̃(z, w) ,

or S̃ has the form

S̃(z, w) = Ψ̃(z, w) + f(z) , (4.45)

where f(z) =
∑
m≥0

fmz
m be a formal series in C[[z]] which is determined later.

Next, we will write the transport equations (the equations associated with hk for k ≥ 1)

in the formal series form. In order to simplify the notation, we denote E = e−2η. Under

the linear transformation variables in C[[(z, w)]],
q1 =

z + w

2

q2 =
z − w

2i

, (4.46)

the relation between the derivatives in C[[(q1, q2)]] and in C[[(z, w)]] are shown through
∂z =

1

2
(∂q1 − i∂q2)

∂w =
1

2
(∂q1 + i∂q2)

, (4.47)

Let us represent the operator ES1 and ∆ in the formal series form. It is obvious that

∆ = ∂2
q1 + ∂2

q2 = 4∂z∂w .

With the choice of S̃ in (4.45), we have

∆S̃ = ∆Ψ̃ = Ẽ−1B̃. (4.48)

Looking at the term (∇S + iA) · ∇ in the operator ES1 , we write it, in the formal series,

as

(∂q1Ŝ + iA1)∂q1 + (∂q2Ŝ + iA2)∂q2

=(∂q1Ŝ − i∂q2Ψ̂)∂q1 + (∂q2Ŝ + i∂q1Ψ̂)∂q2

=
[
(∂z + ∂w)S̃ + (∂z − ∂w)Ψ̃

]
(∂z + ∂w) + i

[
i(∂z − ∂w)S̃ + i(∂z + ∂w)Ψ̃

]
(∂z − ∂w)

=
(

2∂zΨ̃ + f ′(z)
)

(∂z + ∂w)−
(

2∂zΨ̃ + f ′(z)
)

(∂z − ∂w)

=2
(

2∂zΨ̃ + f ′(z)
)
∂w .
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The operator ES1 will becomes

ES̃1 = Ẽ
(
Ẽ−1B̃ + 4

(
2∂zΨ̃ + f ′(z)

))
= 4Ẽ

(
2∂zΨ̃ + f ′(z)

)
∂w + B̃ .

Finally, we obtain the system of the transport equations in the formal series form:

h1 :
[
4Ẽ
(

2∂zΨ̃ + f ′(z)
)
∂w + B̃ − µ0

]
A(0) = 0 ,

h2 :
[
4Ẽ
(

2∂zΨ̃ + f ′(z)
)
∂w + B̃ − µ0

]
A(1) =

(
µ1 + 4Ẽ∂z∂w

)
A(0) ,

.............................................

hn :
[
4Ẽ
(

2∂zΨ̃ + f ′(z)
)
∂w + B̃ − µ0

]
A(n−1) =

(
µ1 + 4Ẽ∂z∂w

)
A(n−1) +

n−1∑
j=2

µjA
(n−1−j) ,

.............................................

4.4.2 Some tools to solve the transport equations

In this subsection, we prove some useful lemma for solving the transport equations.

Lemma 4.9. There exists a formal series w(z) =
∑

k≥1wkz
k in C[[z]] satisfying

B̃(z, w(z)) = b0 , (4.49)

and such that w1 =
√
γ−
√
α√

γ+
√
α

.

Proof. We have

B̃(z, w) = B̂
(
z + w

2
,
z − w

2i

)
= b0 + α

(z + w)2

4
− γ (z − w)2

4
+ ...

= b0 +
1

4
(α− γ)z2 +

1

2
(α+ γ)zw +

1

4
(α− γ)w2 + ...

If we write B̃(z, w) =
∑

m,n≥0 b̃mnz
mwn, notice that b̃01 = 0, it helps us to find the term

wk by recursion. Namely, write out the equation (4.49), we have

∑
m,n≥0

b̃mnz
m

∑
k≥1

wkz
k

n

= b0 .

We will look for wk for k ≥ 1 by induction. Collect term by term, we have

98



• Term z0 : b̃00 = b0 (it is true).

• Term z1 : b̃10 + b̃01w1 = 0 (it is true).

• Term z2 : To create order 2 of z, m,n has to be smaller or equal to 2, we have

some cases (m,n) = (0, 2), (m,n) = (1, 1), (m,n) = (2, 0). Then we have the

equation to find w1:

b̃02w
2
1 + b̃11w1 + b̃20 = 0 .

There are two solutions for w1 which are

√
γ +
√
α

√
γ −
√
α
, and

√
γ −
√
α

√
γ +
√
α
.

In order to adapt to even the case γ = α, we choose w1 =
√
γ−
√
α√

γ+
√
α

.

• Term z3: notice that the equation obtained by collecting the coefficients of the

term z3 does not contain wk for k ≥ 3 because b̃01 = 0. So, we got the equation

containing w2 and w1, b̃mn for 0 ≤ m,n ≤ 3. Furthermore, this equation is linear

according to w2, if otherwise, the order of z is larger than 3. We just need to care

about the coefficients attached to w2, they are

b̃11 + 2b̃02w1 =
1

2
(α+ γ) +

1

2
(α− γ)

√
γ −
√
α

√
γ +
√
α

=
√
αγ ,

which is non-zero, then w2 is easy to computed.

By induction, let p ∈ N\{0}, we assume that (wk)1≤k≤p−1 are determined and we need

to look for wp. We collect all coefficients of zp+1, and since b01 = 0 , we get an equation

containing only finite (wk)1≤k≤p and (b̃mn)0≤m,n≤p+1. The equation is linear according

to variable wp which has attached coefficient ((m,n) = (1, 1) and (m,n) = (0, 2)):

b̃11 + 2b̃02w1 =
√
αγ 6= 0.

So, wp is determined.

Lemma 4.10. Let V (s, t) and F (s, t) be formal series in C[[s, t]]. We write V (s, t) and

F (s, t) in the form

V (s, t) :=
∑
m≥0

vm(s)tm ,

and

F (s, t) :=
∑
m≥0

fm(s)tm ,
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where (vn(s))n∈N and (fn(s))n∈N are the sequences in C[[s]]. We assume that v0(s) = 0,

v1(s) = v1, f0(s) = f0 with v1 ∈ R \ {0} and f0 ∈ R. Let ` ∈ N, then

i. the homogeneous equation

(V (s, t)∂t + F (s, t))u(s, t) = 0 , (4.50)

has solutions in the set

W (`) = {
∑
m≥0

wm(s)tm ∈ C[[s, t]] : wk(s) = 0 for k ∈ {0, ..., (`−1)} and w`(s) 6= 0}

if and only if f0 + `v1 = 0.

ii. Under the previous condition f0+`v1 = 0, there exist a family (ck(s))k=0...` ⊂ C[[s]]

such that the inhomogeneous equation

(V (s, t)∂z + F (s, t))u(s, t) = G(s, t) , (4.51)

for G(s, t) =
∑
m≥0

gm(s)tm, has formal series solutions in the form

u(s, t) =
∑
m≥0

um(s)tm , (4.52)

if and only if

c`(s)g0(s) + c`−1(s)g1(s) + ...+ c0(s)g`(s) = 0. (4.53)

Here, the coefficients (ck(s))k=0...` ⊂ C[[s]] are determined by (vj(s))1≤j≤(`+1) and

(fj(s))1≤j≤`, and c0(s) = 1. Furthermore, assume that the condition (4.53) is

satisfied, if u`(s) is given, the formal series solution u will be determined uniquely

by the recursion formula

um(s) =
gm(s)−

∑m−1
j=0 (jvm−j+1(s) + fm−j(s))uj(s)

(m− `)v1
,

for all m ∈ N \ {`}.

Proof. Let us start with the homogeneous case, we look for a solution u(s, t) in the form

u(s, t) =
∑
m≥0

um(s)tm ,
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of the equation∑
m≥1

vm(s)tm

∑
m≥1

mum(s)tm−1

+

∑
m≥0

fm(s)tm

∑
m≥0

um(s)tm

 = 0 .

For arbitrary k ∈ N, we get the equations corresponding to tk

k∑
j=1

jvk−j+1(s)uj(s) +
k∑
j=0

fk−j(s)uj(s) = 0

⇔(kv1 + f0)uk(s) +
k−1∑
j=0

(jvk−j+1(s) + fk−j(s))uj(s) = 0 .

For the sake of convenience, we write here some equations

t0 : f0u0(s) = 0 ,

t1 : [v1 + f0]u1(s) + f1(s)u0(s) = 0 ,

t2 : [2v1 + f0]u2(s) + f2(s)u0(s) + (v2(s) + f1(s))u1(s) = 0 .

For ` ∈ N, consider a non-zero solution u in W (`). Then uk(s) = 0 for 0 ≤ k ≤ ` − 1

and u`(s) 6= 0. It implies directly that `v1 + f0 = 0. Now, if `v1 + f0 = 0 , then for all

k 6= `, we get the recursion formula

uk(s) = −
∑k−1

j=0(jvk−j+1(s) + fk−j(s))uj(s)

(k − `)v1
.

We consider two cases:

• Case 1 : ` = 0. It leads to f0 = 0. Since the first equation is

f0u0(s) = 0 ,

we can choose any u0(s) 6= 0, and compute next coefficients by the following

recursion formula

uk(s) = −
∑k−1

j=0(jvk−j+1(s) + fk−j(s))uj(s)

kv1
,

for all k ≥ 1.

• Case 2: ` 6= 0. Then f0 has to be non-zero. From the first equation, it leads to

u0(s) = 0. From the recursion formula, it implies that uk(s) = 0 for all k < `. For
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k = `, we get the equation

(k − `)v1(s)u`(s) = 0,

we can choose any u`(s) 6= 0 and keep going with other uk by the recursion formula.

In any case, we always get non-trivial solutions u in the set W (`).

Now we consider the inhomogeneous case with solution u in the form (4.52):∑
m≥1

vm(s)tm

∑
m≥1

mum(s)tm−1

+

∑
m≥0

fm(s)tm

∑
m≥0

um(s)tm

 =
∑
m≥0

gm(s)tm .

Like the homogeneous case, for arbitrary k ∈ N, the equations corresponding to tk are

(kv1 + f0)uk(s) +
k−1∑
j=0

(jvk−j+1(s) + fk−j(s))uj(s) = gk(s) .

Assume that there exists ` ∈ N such that `v1 + f0 = 0, these equations becomes

(k − `)v1uk(s) +

k−1∑
j=0

(jvk−j+1(s) + fk−j(s))uj(s) = gk(s) . (4.54)

The equation corresponding to t` is

(`− `)u`(s) +
`−1∑
j=0

(jv`−j+1(s) + f`−j(s))uj(s) = g`(s) .

The inhomogeneous equation has solutions in the form (4.52) if and only if

g`(s)−
`−1∑
j=0

(jv`−j+1(s) + f`−j(s))uj(s) = 0.

This relation is in the form (4.53) after computing (uk(s)) according to gk(s), fk(s) and

vk(s) for k = 0...(`− 1). For example, we can compute c1(s) by collecting all coefficients

connecting with g`−1(s). Notice that g`−1(s) only appears in the formula of u`−1 and

its coefficient in u`−1 is −1
v1

, then we can compute

c1(s) = − [(`− 1)v2(s) + f1(s)]
−1

v1
=

(`− 1)v2(s) + f1(s)

v1
.

The statement at the end of the lemma is easy obtained from (4.54).
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4.4.3 The first transport equation

We consider the first transport equation

v(z, w)∂wA
(0)(z, w) +

(
B̃(z, w)− µ0

)
A(0)(z, w) = 0 , (4.55)

where v(z, w) = 4Ẽ(z, w)
(
f ′(z) + 2∂zΨ̃(z, w)

)
.

Let w(z) be the formal series defined in Lemma 4.9. Applying the change of variables

(z, w) = (z, y + w(z)), which is licit in C[[(z, w)]] because w0 = 0, we get the equation

V (z, y)∂yA
(0)(z, y + w(z)) + F (z, y)A(0)(z, y + w(z)) = 0 , (4.56)

where

V (z, y) = v(z, y + w(z)) = 4Ẽ(z, y + w(z))
(
f ′(z) + 2∂zΨ̃(z, y + w(z))

)
,

and

F (z, y) = B̃(z, y + w(z))− µ0 .

4.4.3.1 Choosing formal series f and determining S̃ completely

We recall that S̃ given in (4.45) is expressed by the sum of the formal series Ψ̃(z, w)

and f(z). The formal series Ψ̃(z, w) is known by Lemma 4.8 and the formal series

f(z) ∈ C[[z]] is waiting to be determined. We will choose f(z) such that we can apply

Lemma 4.10 to solve the first transport equation (4.55). To do that, the formal series

f(z) will be chosen such that

f ′(z) + 2∂zΨ̃(z, w(z)) = 0 . (4.57)

This statement will be clearer in the next subsection. At this stage, we focus on finding

the formal series f(z) satisfying (4.57). Since w(z) is a formal series which has w0 =

0, then the composition ∂zΨ̃(z, w(z)) is well-defined, it means that each coefficient of

∂zΨ̃(z, w(z)) can be computed by a finite number of coefficients of w(z) and ∂zΨ̃(z, w).

According to Lemma 4.8, the Taylor series Ψ̃(z, w) has the expression

Ψ̃(z, w) =
e2η(0)b0

4
zw +

∑
m+n≥3

ψmnz
mwn .
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We denote the formal series ∂zΨ̃(z, w(z)) by
∑
k≥0

νkz
k, we have

∑
k≥0

νkz
k =

e2η(0)b0
4

w(z) +
∑

m+n≥3
m≥1

mψmnz
m−1(w(z))n .

Let f(z) =
∑
k≥0

f̂kz
k, and we can solve (4.57)

∑
k≥1

kf̂kz
k−1 = −2

∑
k≥1

νk−1z
k−1,

to get

f̂k = −2νk−1

k
for all k ≥ 1 .

Since there is no restriction for f(0), we can choose f̂0 = 0. Furthermore, we can

compute some initial coefficients of f(z)

f̂1 = −2ν0 = 0 , f̂2 = −ν1 =
e2η(0)b0

4

√
α−√γ
√
α+
√
γ
.

Now, S̃(z, w) is totally determined and

S̃(z, w) =
e2η(0)b0

4
zw +

e2η(0)b0
4

√
α−√γ
√
α+
√
γ
z2 +

∑
m+n≥3

[S̃]mnz
mwn . (4.58)

4.4.3.2 Solving the first transport equation

Let us come back to the transport equation (4.55). We write V (z, y) and F (z, y) in the

form

V (z, y) =
∑
m≥0

vm(z)ym and F (z, y) =
∑
m≥0

fm(z)ym .

We now check the assumptions of the Lemma 4.10. Firstly, from choosing the formal

series f(z) satisfying (4.57), we have

v0(z) = V (z, 0) = 4Ẽ(z, w(z))
(
f ′(z) + 2∂zΨ̃(z, w(z))

)
= 0 .
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Secondly, from (4.57) and Lemma 4.8, we obtain

v1(z) = ∂yV (z, 0)

= 4∂wẼ(z, y + w(z))
(
f ′(z) + 2∂zΨ̃(z, y + w(z))

) ∣∣∣∣
y=0

+8Ẽ(z, y + w(z))∂w∂zΨ̃(z, y + w(z))

∣∣∣∣
y=0

= 8Ẽ(z, w(z))∂w∂zΨ̃(z, w(z))

= 2Ẽ(z, w(z))Ẽ−1(z, w(z))B̃(z, w(z))

= 2B̃(z, w(z))

= 2b0 .

Finally, from (4.9), we get

f0(z) = F (z, 0) = B̃(z, w(z))− µ0 = b0 − µ0 .

Thanks to Lemma 4.10 for the homogeneous case, the equation (4.56) has solutions in

the form
∑
m≥0

A(0)
m (z)ym such that A

(0)
0 (z) 6= 0 if and only if

f0(z) = 0⇔ µ0 = b0 .

In this case, the solution of the first transport equation (4.55) which obtained by the

change of variables (z, y) = (z, z − w(z)) in the solution of the equation (4.56) has the

form

A(0)(z, w) =
∑
m≥0

A(0)
m (z)(w − w(z))m,

where A
(0)
m (z) can be computed by the recursion formula

A(0)
m (z) = −

∑m−1
j=0 (jvm−j+1(z) + fm−j(z))A

(0)
j (z)

2mb0
.

The series A
(0)
0 (z) will be determined later in the process of solving the second transport

equation.

4.4.4 The second transport equation

We consider the second transport equation(
v(z, w)∂w + B̃(z, w)− µ0

)
A(1) = (µ1 + 4Ẽ(z, w)∂z∂w)A(0) . (4.59)
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We deal with this equation as same as we did for the first transport equation (4.55).

By changing variables (z, w) = (z, y+w(z)) in the second transport equation (4.59), we

obtain

V (z, y)∂yA
(1)(z, y + w(z)) + F (z, y)A(1)(z, y + w(z)) = G(1)(z, y) , (4.60)

where G(1)(z, y) =
(
µ1 + 4Ẽ(z, y + w(z))∂z∂w

)
A(0)(z, y + w(z)).

We write G(1)(z, y) in the form G(1)(z, y) =
∑

m≥0 g
(1)
m (z)ym. Since v0(z) = 0, v1(z) =

2b0 6= 0 and f0(z) = 0, applying Lemma 4.10 in the inhomogeneous case (` = 0 in this

case), the equation (4.60) has solutions if and only if g
(1)
0 (z) = 0 or

G(1)(z, 0) = (µ1 + 4Ẽ(z, w(z))∂z∂w)A(0)(z, w(z)) = 0 .

This is equivalent to

µ1A
(0)
0 (z) + 4Ẽ(z, w(z))

(
∂zA

(0)
1 (z)− 2A

(0)
2 (z)w′(z)

)
= 0.

Since

A
(0)
1 (z) = −f1(z)

2b0
A

(0)
0 (z) ,

and

A
(0)
2 (z) = −(v2(z) + f1(z))A

(0)
1 (z) + f2(z)A

(0)
0 (z)

4b0

=
1

8b20
f1(z)(v2(z) + f1(z))A

(0)
0 (z)− 1

4b0
f2(z)A

(0)
0 (z) ,

the equation related to µ1 can be rewritten as

V (z)∂zA
(0)
0 (z) + F (z)A

(0)
0 (z) = 0 , (4.61)

where

V (z) :=
2

b0
Ẽ(z, w(z))f1(z) ,

and

F (z) := Ẽ(z, w(z))

(
2

b0
f ′1(z) +

1

b20
f1(z) (f1(z) + v2(z))w′(z) +

2

b0
f2(z)w′(z)

)
− µ1 .

Notation 4.4. Below, with a given formal series X(z) =
∑

k≥0 xkz
k ∈ C[[z]], we use

the notation [X(z)]k to extract the coefficient of zk, so that

[X(z)]k = xk .
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We have

f1(z) = ∂2B̃(z, w(z)) =
∑
m≥0
n≥1

nb̃mnz
m (w(z))n−1 ,

f2(z) =
1

2
∂2

2 B̃(z, w(z)) =
∑
m≥0
n≥2

n(n− 1)

2
b̃mnz

m (w(z))n−2 .

It is easy to check that

[V (z)]0 =
2

b0
[Ẽ(z, w(z))]0 [f1(z)]0 = 0 (since b̃01 = 0) ,

and

[V (z)]1 =
2

b0
[Ẽ(z, w(z))]0 [f1(z)]1 +

2

b0
[Ẽ(z, w(z))]1 [f1(z)]0

=
2e−2η(0)

b0

(
2b̃02w1 + b̃11

)
=

2e−2η(0)

b0

(
1

2
(α− γ)

√
γ −
√
α

√
γ +
√
α

+
1

2
(α+ γ)

)
=

2e−2η(0)√αγ
b0

.

Furthermore, we can compute

[F (z)]0 =
2e−2η(0)

b0

(
b̃11 + b̃02w1

)
− µ1

=
e−2η(0)(

√
γ +
√
α)2

2b0
− µ1 .

Applying Lemma 4.10, the equation (4.61) has solutions if and only if there exists ` ∈ N
such that

µ1 = e−2η(0)

(
2`

√
αγ

b0
+

(
√
γ +
√
α)2

2b0

)
.

Then, A
(0)
0 can be determined by the formal series which has ` first terms vanishing and

the other coefficients gained by the recursion formula starting from certain [A
(0)
0 (z)]` 6= 0.

In detail, [A
(0)
0 (z)]k (for k > `) is determined by the recursion formula

[A
(0)
0 (z)]k = −

∑k−1
j=0(j[V (z)]k−j+1 + [F (z)]k−j)[A

(0)
0 (z)]j

(k − `)[V (z)]1

= − b0e
2η(0)

2
√
αγ(k − `)

k−1∑
j=0

(j[V (z)]k−j+1 + [F (z)]k−j)[A
(0)
0 (z)]j

 .
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and we choose [A
(0)
0 (z)]` = 1.

After the right-hand side formal series of equation (4.59) is known, we can find a par-

ticular solution of equation (4.59). That is

∑
m≥0

α(1)
m (z)(w − w(z))m.

The formal series α
(1)
m (z) is determined by recursion formula

α(1)
m (z) =

g
(1)
m (z)−

∑m−1
j=0 (jvm−j+1(z) + fm−j(z))α

(1)
j (z)

2mb0
,

starting with α
(1)
0 (z) = 0.

The formal series solutions of equation (4.59) take the form

A(1)(z, w) =
∑
m≥0

α(1)
m (z)(w − w(z))m +

∑
m≥0

A(1)
m (z)(w − w(z))m , (4.62)

where
∑
m≥0

A(1)
m (z)(w−w(z))m is the solution of the first transport equation (4.55), that

is, A
(1)
m (z) is determined by

A(1)
m (z) = −

∑m−1
j=0 (jvm−j+1(z) + fm−j(z))A

(1)
j (z)

2mb0
,

and A
(1)
0 (z) remains to be determined.

4.4.5 Induction

Let p ∈ N \ {0}. We assume that the sequences (µj)0≤j≤p and (A(j))0≤j≤p−1 are deter-

mined from the first (p+ 1) transport equations:(
v(z, w)∂w + B̃(z, w)− µ0

)
A(0) = 0(

v(z, w)∂w + B̃(z, w)− µ0

)
A(1) = (µ1 + 4Ẽ(z, w)∂z∂w)A(0)

.........................................................(
v(z, w)∂w + B̃(z, w)− µ0

)
A(p) = (µ1 + 4Ẽ(z, w)∂z∂w)A(p−1) +

p∑
j=2

µjA
(p−j)

Let us also assume that the A(j)’s, for j ∈ {1, ..., p}, are in the form

A(j)(z, w) =
∑
m≥0

α(j)
m (z)(w − w(z))m +

∑
m≥0

A(j)
m (z)(w − w(z))m ,
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where

i)
∑
m≥0

α(j)
m (z)(w−w(z))m, which is a particular solution for the j-th transport equation,

is a determined formal series with α
(j)
0 (z) = 0 in C[[z]] for j ∈ {1, ..., p}.

ii)
∑
m≥0

A(j)
m (z)(w−w(z))m, which is a solution of the first transport equation (4.55), is

also determined and satisfies [A
(j)
0 (z)]` = 0 in C for j ∈ {1, ..., p− 1} .

Only
∑
m≥0

A(p)
m (z)(w−w(z))m is waiting for being determined. We just need to determine

A
(p)
0 (z), because other terms can be computed by the recursion formula

A(p)
m (z) = −

∑m−1
j=0 (jvm−j+1(z) + fm−j(z))A

(p)
j (z)

2mb0
,

for m ≥ 1.

Let us now consider the equation satisfied by A(p+1):

(
v ∂w + B̃ − b0

)
A(p+1) = (µ1 + 4Ẽ∂z∂w)A(p) + µp+1A

(0) +

p∑
j=2

µjA
(p+1−j). (4.63)

As before, the fact that this equation has solutions will fix value of µp+1 and determine

A
(p)
0 (z). Indeed, by Lemma 4.10, the existence of solutions to (4.63) is equivalent to

(µ1 + 4Ẽ∂z∂w)A(p)(z, w(z)) = −µp+1A
(0)(z, w(z))−

p∑
j=2

µjA
(p+1−j)(z, w(z)).

This can be rewritten as

V (z)∂zA
(p)
0 (z) + F (z)A

(p)
0 (z) = g(z) , (4.64)

where

g(z) = −µp+1A
(0)
0 (z)−

p∑
j=2

µjA
(p+1−j)
0 (z)− 4∂zα

(p)
1 (z) + 8α

(p)
2 (z).

We are in the inhomogeneous case of Equation (4.61). Lemma 4.10 is applied here. There

are coefficients c0, ..., c` in C, with c0 = 1 such that the equation (4.64) has solutions in

C[[z]] if and only if

c0[g(z)]` + ...+ c`−1[g(z)]1 + c`[g(z)]0 = 0 . (4.65)

Under the inductive assumption, every term appearing in the formula of g(z) is known

except µp+1. Because [A
(0)
0 (z)]k = 0 for k ∈ {0, ..., ` − 1} and [A

(0)
0 (z)]` = 1, this helps
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us to determine µp+1 because the coefficient associated to µp+1 appearing in (4.65) is

finally 1. Furthermore, there exists unique solution A
(p)
0 (z) such that [A

(p)
0 (z)]` = 0 and

we pick this solution.

Coming back to the equation (4.63) of A(p+1), with this choice of µp+1 and A
(p)
0 (z), there

are solutions and they can be written as

A(p+1)(z, w) =
∑
m≥0

α(p+1)
m (z)(w − w(z))m +

∑
m≥0

A(p+1)
m (z)(w − w(z))m,

where

i) the first formal series
∑
m≥0

α(p+1)
m (z)(w − w(z))m is defined by the formula


α

(p+1)
0 (z) = 0

α(p+1)
m (z) =

g
(p+1)
m (z)−

∑m−1
j=0 (jvm−j+1(z) + fm−j(z))α

(p+1)
j (z)

2mb0
∀m ≥ 1 ,

(4.66)

with gp+1
m = (µ1 + 4∂z∂w)A(p) + µp+1A

(0) +
∑p

j=2 µjA
(p+1−j),

ii) the second formal series
∑
m≥0

A(p+1)
m (z)(w−w(z))m is the solution of the first transport

equation (4.55), that is, A
(p+1)
m (z) determined by

A(p+1)
m (z) = −

∑m−1
j=0 (jvm−j+1(z) + fm−j(z))A

(p+1)
j (z)

2mb0
,

and A
(p+1)
0 (z) is specified by the next transport equation.

4.4.6 Conclusion

We use Borel’s Lemma to finish the WKB process.

Lemma 4.11 (Borel’s Lemma). Let (umn)m,n∈N be the sequence in R . There exists a

function f ∈ C∞0 (R2) such that

∂m+nf

∂qm1 ∂q
n
2

(0) = umn .

Proof. Let χ be a cut-off function equal 1 near 0 and have a support compact in B(0, 1) ⊂
R2. We set up

fj(x) = uj
xj

j!
χ

(
x

εj

)
,
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where j := (j1, j2) ∈ N2, xj := qj11 q
j2
2 and j! := j1!j2!.

Then fj ∈ C∞0 (R2). We can choose εj small enough such that, for all x ∈ R2,

|Dαfj(x)| ≤ 2−|j|

|j|+ 1
for all |α| < |j| . (4.67)

Indeed, for |x| ≤ εj ,
|Dαfj(x)| ≤ ujε|j|−|α|j .

For small εj , we get the estimate (4.67) since |α| < |j|. As a result, the function series

f(q1, q2) =
∑
|j|≥0

fj(x) ,

is uniformly convergent. The series obtained by differentiation is uniformly convergent

too. Therefore, f ∈ C∞0 (R2) and satisfies

Djf(0) = uj .

Let us recall that U is the neighborhood of 0 in R2, which is defined by U = φ(Ω).

Here, Ω is the neigborhood of p∗ in which the isothermal local chart (Ω, φ : Ω → φ(Ω)

is defined. We have the following theorem:

Theorem 4.12. For all ` ∈ N, there exist

i) a smooth complex-valued function T on U satisfying

Re(T )(q) =
e2η(0)b0

2

( √
α√

α+
√
γ
q2

1 +

√
γ

√
α+
√
γ
q2

2

)
+O(‖q‖3) , (4.68)

ii) a sequence of smooth complex-valued function (a`,j)j∈N on U ,

iii) a sequence of real numbers (µ`,j)j∈N with

µ`,0 = b0, µ`,1 = e−2η(0)

(
2`

√
αγ

b0
+

(
√
γ +
√
α)2

2b0

)
,

iv) a sequence of flat functions (fj)j∈N on U ,

such that, for all J ∈ N,

eT/h

Lh,M − h J∑
j=0

µ`,jh
j

e−T/h J∑
j=0

a`,jh
j

 =

J+1∑
j=0

hjfj +O(hJ+2) ,
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locally uniformly in U .

Proof. After solving the Eikonal equation and the transport equations, we collect a set

of formal series : S̃(z, w), (A(j)(z, w))j∈N in C[[(z, w)]] and a series µ`,j depending on

`. By applying the change of variable (z, w) into (q1, q2), we obtain the formal series in

C[[q1, q2)]]. Applying Borel’s Lemma for real part and imaginary part of each sequence,

we get a smooth complex-valued functions S and (aj)j∈N so that for each J ∈ N, there

exists flat functions f0, f1, ..., fJ+1 and a smooth function F on R2 (precisely F is a

polynomial according to variable h whose coefficients are smooth functions depending

on aj and µ`,j) such thatLSh,A − h J∑
j=0

µ`,jh
j

 J∑
j=0

a`,jh
j

 =
J+1∑
j=0

hjfj + hJ+2F.

Note that LSh,A = eS/hLh,Ae−S/h, we have the expression

eS/h

Lh,A − h J∑
j=0

µ`,jh
j

e−S/h J∑
j=0

a`,jh
j

 =

J+1∑
j=0

hjfj + hJ+2F . (4.69)

We recall that we applied WKB method for the eigen-problem of the magnetic Laplacian

Lh,A with the special magnetic potential A which is mentioned in Subsection 4.3.1. The

operator Lh,A and operator Lh,M related to each other through the smooth real valued

function θ:

Lh,A = eiθ/hLh,Me−iθ/h . (4.70)

Therefore, we set up the function T = S + iθ to have

eT/h

Lh,M − h J∑
j=0

µ`,jh
j

e−T/h J∑
j=0

a`,jh
j

 =
J+1∑
j=0

hjfj + hJ+2F (4.71)

Restricting these functions on U , we get the conclusion. Since Re(T ) = Re(S), the

formula of Re(T ) is implied directly from (4.58) after the change of variable:

Ŝ(q1, q2) =
e2η(0)b0

4
(q2

1 + q2
2) +

e2η(0)b0
4

√
α−√γ
√
α+
√
γ

(q2
1 − q2

2 + 2q1q2i) +O(‖q‖3)

=
e2η(0)b0

2

( √
α√

α+
√
γ
q2

1 +

√
γ

√
α+
√
γ
q2

2

)
+ i

e2η(0)b0
2

√
α−√γ
√
α+
√
γ
q1q2 +O(‖q‖3) .

Proof of Theorem 1.14. Let us recall (4.34) for the relation of the magnetic Laplacian

on manifold and the magnetic Laplacian on R2. To bring the results in Theorem 4.12 to
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manifold, we first multiply all functions appeared in (4.71) with a fixed cut-off function

which is equal to 1 in the neighborhood of 0 and has compact support contained in U ,

we call temporarily χ1 this cut-off function. This process provides us the functions in

C∞c (U). Next, we apply the operator (ϕ−1)∗ = φ∗ for two sides of (4.71), we obtain the

statement of Theorem 1.14 with

i) P = φ∗(χ1T ).

ii) U`,j = φ∗(χ1a`,j) for all (`, j) ∈ N2.

The formula of µ`,1 is given by the following matrix argument. From the definition of

isothermal coordinates, we have

gp∗(V1, V2) = e2η(0)g0(dφp∗V1, dφp∗V2), for all V1, V2 ∈ Tp∗M .

In the matrix expression, we have

Gp∗ = e2η(0)(Dφ)Tp∗(Dφ)p∗ , (4.72)

where (Dφ)p∗ is the representative matrix of the linear differential of dφp∗ . From Defi-

nition 1.10, the relation of the Hessian of B on manifold and the Hessian of B = B ◦φ−1

is given by

d2Bp∗(V1, V2) = 〈HessB(0)dφp∗V1,dφp∗V2〉R2 . (4.73)

In order to compute the trace and determinant of the Hessian at p∗, we need to connect

with the endomorphism H of Tp∗M defined by

(d2B)p∗(V1, V2) = gp∗(HV1, V2) ∀V1, V2 ∈ Tp∗M . (4.74)

Additionally, (4.73) and (4.74) imply that

〈HessB(0)dφp∗V1, dφp∗V2〉R2 = gp∗(HV1, V2) ∀V1, V2 ∈ Tp∗M , (4.75)

or in the matrix expression

(Dφ)Tp∗ HessB(0) (Dφ)p∗ = HGp .

Combined with (4.72), we get

(Dφ)Tp∗ HessB(0)
[
(Dφ)Tp∗

]−1
= e2η(0)H .
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Notice that

HessB(0) =

(
2α 0

0 2γ

)
.

Let H = 1
2H, then we can easily compute the determinant of H and trace of H

1
2 :

det (H) =
e−4η(0)

4
det (HessB(0)) = e−4η(0)αγ ,

and

TrH1/2 = Tr

[
e−η(0)

√
2

(Dφ)Tp∗ (HessB(0))1/2
[
(Dφ)Tp∗

]−1

]

=
e−η(0)

√
2

Tr
[
(HessB(0))1/2

]
= e−η(0)(

√
α+
√
γ) .

We can see that

µ1 = 2`

√
detH

b0
+

(TrH
1
2 )2

2b0
,

which is consistent with the formula of Helffer and Kordyukov in (1.39).

4.5 Comparison of the eigenfunctions and their WKB ap-

proximations

Next, in order to prove Theorem 1.15, we need to restrict the supports of functions

in Theorem 1.14 in a smaller domain. We will perform this restriction for functions

defined on R2 first, and then we pull-back these functions to manifold as the above

proof. From the formula of Re(T ) in (4.68), there exist K > 0 and δ > 0 such that

D(0;K) := {q ∈ R2 : ‖q‖ ≤ K} ⊂ U and

Re(T )(q) ≥ δ‖q‖2 for all q ∈ D(0;K) . (4.76)

Let χ2 : U → R be the cut-off function which is equal to 1 near 0 and has the support

compact contained in D(0;K). For brevity, we denote R is the real part of T

R := Re(T ) .

Theorem 4.13. For all (ε, J, `) ∈ (0, 1) × N × N, there exist a constant C > 0 and

h0 > 0 such that, for all h ∈ (0, h0),

‖eεT/h
(
Lh,M − λJh,`

)
ΨJ
h,`‖L2(U,e2ηdq) ≤ Ch

J+2 , (4.77)
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with

λJh,` = h

J∑
j=0

hjµ`,j and ΨJ
h,` = χ2e

−T/h

 J∑
j=0

hja`,j

 .

In particular,

‖
(
Lh,M − λJh,`

)
ΨJ
h,`‖L2(U,e2ηdq) ≤ Ch

J+2 . (4.78)

Proof. Let (ε, J, `) ∈ (0, 1)× N× N, we check that

eεT/h
(
Lh,M − λJh,`

)
ΨJ
h,`

=eεT/h
(
Lh,M − λJh,`

)χ2e
−T/h

 J∑
j=0

hja`,j


=eεT/h [Lh,M, χ2] e−T/h

 J∑
j=0

hja`,j

+ χ2e
εT/h

(
Lh,M − λJh,`

)e−T/h
 J∑
j=0

hja`,j

 .

(4.79)

We compute

[Lh,M, χ2] = e−2η
[
(−ih∂1 −M1)2 + (−ih∂2 −M2)2, χ2

]
= e−2η

[
−h2∆ + 2ihM ·∇, χ2

]
= e−2η

(
−h2∆χ2 − 2h2∇χ2 · ∇+ 2ihM ·∇χ2

)
.

Notice that supports of ∆χ2 and ∇χ2 are contained in D(0;R) and stay away from zero.

On these supports, we have the estimation, for all N ∈ N,

e(ε−1)R(q)/h ≤ e(ε−1)δ‖q‖2/h ≤ N !

(1− ε)NδN‖q‖2N
hN .

Here, we use the simple inequality ex ≥ xn

n! for x ≥ 0. Notice that T,M, aj,`, η are

smooth functions on Ū . Therefore, for all N ∈ N, there exists a constant C (depending

on the triple (ε, J, `)) such that∥∥∥∥∥∥eεT/h [Lh,M, χ2] e−T/h

 J∑
j=0

hjaj,`

∥∥∥∥∥∥
L2(U,e2ηdq)

≤ ChN .

Or we can write∥∥∥∥∥∥eεT/h [Lh,M, χ2] e−T/h

 J∑
j=0

hja`,j

∥∥∥∥∥∥
L2(U,e2ηdq)

= O(h∞) . (4.80)
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We look at the second term of (4.79), from (4.71), we have

χ2e
εT/h

(
Lh,M − λJh,`

)e−T/h
 J∑
j=0

hja`,j

 = χ2e
(ε−1)T/h

J+1∑
j=0

hjfj + hJ+2F

 .

In the following lines, we will prove that∥∥∥∥∥∥χ2e
(ε−1)T/h

J+1∑
j=0

hjfj

∥∥∥∥∥∥
L2(U,e2ηdq)

= O(h∞) . (4.81)

Indeed, let N ∈ N. Since
∑J+1

j=0 h
jfj is a flat function, we consider a small disc D(0; r) ⊂

D(0;K) such that

|
J+1∑
j=0

hjfj(q)| ≤ C‖q‖2N ∀q ∈ D(0; r) .

On D(0; r), we have the estimation∣∣∣∣∣∣χ2(q)e(ε−1)T (q)/h

J+1∑
j=0

hjfj(q)

∣∣∣∣∣∣ =

∣∣∣∣∣∣χ2(q)e(ε−1)R(q)/h

J+1∑
j=0

hjfj(q)

∣∣∣∣∣∣
≤ e(ε−1)δ‖q‖2/h

∣∣∣∣∣∣
J+1∑
j=0

hjfj(q)

∣∣∣∣∣∣
≤ hN

N !(1− ε)NδN
.

On D(0;K) \D(0; r), we have ‖q‖ > r, then∣∣∣∣∣∣χ2(q)e(ε−1)T (q)/h

J+1∑
j=0

hjfj(q)

∣∣∣∣∣∣ =

∣∣∣∣∣∣χ2(q)e(ε−1)R(q)/h

J+1∑
j=0

hjfj(q)

∣∣∣∣∣∣
≤ hN

N !(1− ε)NδNr2N

∣∣∣∣∣∣
J+1∑
j=0

hjfj(q)

∣∣∣∣∣∣
≤ ChN .
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Thus, (4.81) is proved. From (4.79), (4.80) and (4.81), we obtain the following estimate∥∥∥eεT/h (Lh,M − λJh,`)ΨJ
h,`

∥∥∥
L2(U,e2ηdq)

≤

∥∥∥∥∥∥eεT/h [Lh,M, χ2] e−T/h

 J∑
j=0

hja`,j

∥∥∥∥∥∥
L2(U,e2ηdq)

+

∥∥∥∥∥∥χ2e
εT/h

(
Lh,M − λJh,`

)e−T/h
 J∑
j=0

hja`,j

∥∥∥∥∥∥
L2(U,e2ηdq)

≤

∥∥∥∥∥∥eεT/h [Lh,M, χ2] e−T/h

 J∑
j=0

hja`,j

∥∥∥∥∥∥
L2(U,e2ηdq)

+

∥∥∥∥∥∥χ2e
(ε−1)T/h

J+1∑
j=0

hjfj

∥∥∥∥∥∥
L2(U,e2ηdq)

+ hJ+2
∥∥∥χ2e

(ε−1)T/hF
∥∥∥

L2(U,e2ηdq)

≤ ChJ+2 .

Proof of Theorem 1.15. This theorem is just the version of Theorem 4.13 on a manifold.

Notice that R is not non-negative, we multiply R with χ2 to get a non-negative function

defined on U . From Theorem 4.13, we have

‖eεχ2R/h
(
Lh,M − λJh,`

)
ΨJ
h,`‖L2(U,e2ηdq) ≤ ‖e

εT/h
(
Lh,M − λJh,`

)
ΨJ
h,`‖L2(U,e2ηdq) ≤ Ch

J+2 .

We define, for (`, j) ∈ N2,

i)

P̂ (x) =

φ∗(χ2R)(x) if x ∈ Ω ,

0 if x ∈M \ Ω .

ii)

Û`,j(x) =

φ∗(χ2e
−T/ha`,j)(x) if x ∈ Ω ,

0 if x ∈M \ Ω .

These functions are smooth functions on M and P̂ (x) ≥ 0.

Proof of Theorem 1.16. We fix the couple (J, `) ∈ N × N. From the estimation (4.78),

we apply the spectral theorem to get

∥∥ΥJ
h,`

∥∥
L2(M)

dist
(
λJh,`, Sp(Lh,A)

)
≤ ChJ+2 .

117



Recall that, from the WKB construction, the expansion of λJh,` is given in the form

λJh,` = b0h+

(
2`

√
detH

b0
+

(TrH
1
2 )2

2b0

)
h2 + ...+ µJh

J+1 .

Comparing this with the eigenvalues (λk(Lh,A))k∈N of the magnetic Laplacian given by

Helffer and Kordyukov in (1.39), the nearest eigenvalue with λJh,` has to be λ`(Lh,A). For

convenience, we denote λ`(h) instead of λ`(Lh,A) for the `-th eigenvalue of the magnetic

Laplacian. Therefore,

∥∥ΥJ
h,`

∥∥
L2(M)

|λ`(h)− λJh,`| ≤ ChJ+2 . (4.82)

Combine this with (1.44) and notice that Π0ΥJ
h,` belongs to the kernel of Lh,A − λ`(h),

we obtain

‖ (Lh,A − λ`(h))
(
ΥJ
h,` −Π0ΥJ

h,`

)
‖L2(M) ≤

∥∥(Lh,A − λJh,`
)

ΥJ
h,`

∥∥
L2(M)

+|λ`(h)− λJh,`|
∥∥ΥJ

h,`

∥∥
L2(M)

≤ ChJ+2 .

By definition, ΥJ
h,` − Π0ΥJ

h,` ∈ [ker (Lh,A − λ0(h))]⊥ and, since the gap between λ`(h)

and other eigenvalues is of order h2, the spectral theorem proves that there exists c > 0

such that

ch2‖ΥJ
h,` −Π0ΥJ

h,`‖L2(M) ≤ ‖ (Lh,A − λ`(h))
(
ΥJ
h,` −Π0ΥJ

h,`

)
‖L2(M)

≤ ChJ+2 .

It implies the statement of the theorem.
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Chapter 5

WKB analysis on R2 with a radial

magnetic field

Nothing is impossible. The word itself

says “I’m possible!”

Audrey Hepburn
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In this chapter, we are interested in the magnetic Laplacian

Lh,A = (−ih∇−A)2 , (5.1)

which was carefully introduced in Subsection 4.1.5 of Chapter 4. We consider the semi-

classical spectral problem of the magnetic Laplacian in R2. With the assumption that

the magnetic field B is in the radial form and has a unique non-degenerate minimum,

we can use the WKB method to describe its spectrum through a family of electric

operators which are created by the Fourier decomposition. Moreover, an approximation

of the eigenfunction in an exponentially weighted space is also obtained. In other words,

the present chapter is devoted to proving all the results in Subsection 1.3.2.2.

5.1 Magnetic Laplacian in the radial coordinates

5.1.1 The magnetic potential

Let A be the magnetic potential associate with a magnetic field B, we write it as

A = A1dq1 +A2dq2. Because of the gauge of invariance (see Chapter 4), we can choose

a magnetic potential compatible with the radial symmetry such that our problem can

be solved in the convenient way. In our case, we choose

A1(q) = −q2α(q), A2(q) = q1α(q) , (5.2)

where

α(q) :=

∫ 1

0
tB(tq) dt .

This potential is indeed associated with B because

∂A2

∂q1
(q)− ∂A1

∂q2
(q) = 2

∫ 1

0
tB(tq) dt+

∫ 1

0
t2 (q1∂1B(tq) + q2∂2B(tq)) dt

=

∫ 1

0

d

dt

(
t2B(tq)

)
dt

= B(q) .
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5.1.2 Expression of the operator

Since the magnetic field only depends on r :=
√
q2

1 + q2
2, we will borrow the polar

coordinates to perform our analysis. Let us introduce the change of variable

ψ :

R+ × R/2πZ→ R2 \ {0}

(r, θ) 7→ (r cos θ, r sin θ) = (q1, q2) .
(5.3)

The magnetic Laplacian in this radial coordinate is characterized by the following the-

orem

Theorem 5.1. Under the transformation (5.3), the magnetic potential A has the form

A = Ardr +Aθdθ ,

where Ã = (Ar, Aθ)
T := (dψ)T (A1, A2)T, with dψ denotes the Jacobian matrix of ψ.

The magnetic Laplacian Lh,A in (5.1) is unitary equivalent to the operator

Kh,Ã = r−2 (r(−ih∂r +Ar))
2 + r−2(−ih∂θ +Aθ)

2 , (5.4)

whose domain is

Dom(Kh,Ã) =
{
w ∈ L2(R+ × R/2πZ, rdrdθ) : Kh,Ã(w) ∈ L2(R+ × R/2πZ, rdrdθ)

}
.

Proof. We introduce the unitary operator

T : L2(R2, dq1dq2) → L2(R+ × R/2πZ, rdrdθ) (5.5)

u(q1, q2) 7→ ũ(r, θ) = u ◦ ψ(r, θ) .

We also denote

∇̃ :=

(
∂r

∂θ

)
, ∇ :=

(
∂1

∂2

)
.

Notice that

∇̃ũ(r, θ) = (dψ)T∇u(ψ(r, θ)).

We just need to prove the statement in the restriction domain of the operator, precisely

u, v ∈ C∞0 (R2) and the rest is obtained by the density of C∞0 (R2) in L2(R2). Now, let
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u, v ∈ C∞0 (R2),

〈Lh,Au, v〉L2(R2) = 〈(−ih∇−A)u, (−ih∇−A)v〉L2(R2)

=

∫
R2

(−ih∇−A)u · (−ih∇−A)v dq

=

∫ 2π

0

∫
R+

(dψ−1)T (−ih∇̃ − Ã)ũ · (dψ−1)T (−ih∇̃ − Ã)ṽ rdrdθ

=

∫ 2π

0

∫
R+

(dψ−1)(dψ−1)T (−ih∇̃ − Ã)ũ · (−ih∇̃ − Ã)ṽ rdrdθ .

Note that

(dψ−1)(dψ−1)T =

(
1 0

0 r−2

)
.

Then, thanks to integrating by parts according to variable r,

〈Lh,Au, v〉L2(R2) =

∫ 2π

0

∫
R+

[r−2 (r(−ih∂r −Ar))2 ũ + r−2(−ih∂θ −Aθ)2ũ] ṽ rdr dθ

= 〈Kh,Ã ◦ T (u), T (v)〉L2(rdrdθ) .

Thus,

Lh,A = T−1 ◦Kh,Ã ◦ T .

We recall from Chapter 4 that

Dom(Lh,A) =
{
u ∈ L2(R2) : Lh,Au ∈ L2(R2)

}
.

It gives us the Kh,Ã’s domain

Dom(Kh,Ã) = T (Dom(Lh,A)) = {Tw : w ∈ Dom(Lh,A)} .

With the choice of the magnetic potential A in (5.2), we get immediately

Ar(r, θ) = 0, Aθ(r, θ) = G(r) :=

∫ r

0
τβ

(
τ2

2

)
dτ .

The magnetic Laplacian becomes

Kh,Ã = −h2r−2 (r∂r)
2 + r−2(−ih∂θ −G(r))2 .

For the sake of simplification, Kh is replaced for Kh,Ã hereafter.
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5.1.3 Fourier decomposition

Next, Fourier series is used in order to decompose the radial magnetic Laplacian into a di-

rect sum of self-adjoint operators. Notice that for each u(r, θ) ∈ L2(R+×R/2πZ, rdrdθ),
we can express u as a Fourier series

u(r, θ) =
∑
m∈Z

um(r)
eimθ

2π
,

where

um(r) =

∫ 2π

0
u(r, θ)

eimθ

2π
dθ ∈ L2(R+, rdr) ,

and
∑
m∈Z
‖um‖2L2(R+,rdr)

< +∞.

This allows us to write the Hilbert space L2(R+×R/2πZ, rdrdθ) as a Hilbert direct sum

of Hilbert spaces L2(R+, rdr),

L2(R+ × R/2πZ, rdrdθ) ∼=
⊕
m∈Z

L2(R+, rdr) . (5.6)

Here, we use the isomorphism to associate each function u ∈ L2(R+ × R/2πZ, rdrdθ)
with the sequence of functions (um(r))m∈Z ⊂ L2(R+, rdr). Through that, we write the

operator Kh corresponding to this decomposition as

Khu =
[
−h2r−2 (r∂r)

2 + r−2(−ih∂θ −G(r))2
] ∑
m∈Z

(
um(r)

eimθ

2π

)

=
∑
m∈Z

[
−h2r−2 (r∂r)

2 + r−2(−ih∂θ −G(r))2
](

um(r)
eimθ

2π

)

=
∑
m∈Z

[−h2r−2 (r∂r)
2 + r−2(hm−G(r))2]

(
um(r)

eimθ

2π

)
.

Therefore, the magnetic Laplacian Kh is described as the direct sum of the radial electric

Schrödinger operator

Kh =
⊕
m∈Z

Lh,m , (5.7)

where Lh,m := −h2r−2 (r∂r)
2 + r−2(hm−G(r))2

Dom(Lh,m) =
{
u ∈ L2(R+, rdr) : Lh,mu ∈ L2(R+, rdr)

} (5.8)

are the self-adjoint operators.

Because of that, we will study the spectrum of the magnetic Laplacian through analysing

the spectrum of these electric Schrödinger operators. Namely, we find the asymptotic
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expansion for the ground state energy of each Lh,m, m ∈ N. After that, we figure out

the relation between the first eigenpair of Lh,m and the m-th eigenpair of Kh. Next, the

WKB method is then used to describe the first eigenfunction for each Lh,m. Finally, we

show that these WKB quasi-modes are very good approximations, in L2 sense, of the

corresponding eigenfunctions.

5.2 Spectral analysis of the radial electric Schrödinger op-

erators

5.2.1 Compact resolvent property

Before proving the compact resolvent property, let us prove two basic results:

Lemma 5.2. L2(R+, rdr) is a Banach space.

Proof. Take a Cauchy sequence un in L2(R+, rdr), so vn(q1, q2) := un(
√
q2

1 + q2
2) is also

a Cauchy sequence in L2(R2, dq) since

‖vn‖2L2(R2,dq)
=

∫
R2

|vn(q)|2dq

=

∫ 2π

0

∫ +∞

0
|un(r)|2 rdrdθ

= 2π‖un‖2L2(R+,rdr)
.

Since L2(R2,dq) is a Banach space, vn converges to some v in L2(R2, dq). Let φ be an

arbitrary θ-rotation transformation

φ : R2 → R2

φ

(
q1

q2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
q1

q2

)
.

Since vn ◦ φ(q) = vn(q) and |detφ| = 1, it implies that

‖v − v ◦ φ‖L2(R2,dq) ≤ ‖v − vn ◦ φ‖L2(R2,dq) + ‖vn ◦ φ− v ◦ φ‖L2(R2,dq)

= 2‖v − vn‖2L2(R2,dq)

→ 0.

It yields that v is independent of θ and if u(r) is chosen as v(r cos θ, r sin θ) then un

converges to u in L2(R+, rdr).
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Lemma 5.3. Let R be an arbitrary positive number, then the injection H1 ((0, R), rdr)

is compact embedded in L2 ((0, R), rdr) .

Proof. Take a bounded sequence un in H1 ((0, R), rdr)∫ R

0
|un|2 rdr +

∫ R

0
|∂run|2 rdr ≤ 1.

As above lemma, we set vn(q1, q2) := un(
√
q2

1 + q2
2) defined on the disc D(0;R). Hence,

vn satisfies

‖vn‖2H1(D(0;R),dq) =

∫
R2

|vn|2 +

∣∣∣∣∂vn∂x
∣∣∣∣2 +

∣∣∣∣∂vn∂y
∣∣∣∣2 dq

=

∫ 2π

0

∫ R

0
|un(r)|2 +

∣∣∣∣∂un∂r cos θ

∣∣∣∣2 +

∣∣∣∣∂un∂r sin θ

∣∣∣∣2 rdrdθ
=

∫ 2π

0

∫ R

0
|un|2 + |∂run|2 rdrdθ

= 2π‖un‖2H1((0,R),rdr) .

Because the injection H1(D(0;R),dq) ↪→ L2(D(0;R),dq) is compact, there exists a

subsequence vnk converging to some v in L2(D(0;R),dq). Next, reasoning in the end

of the proof of Lemma 5.2, we can prove that v is independent of θ and we obtain the

result.

Let us now give a criterion to get a compact resolvent.

Theorem 5.4. Let γ > 0 and V ∈ C∞(R+,R+) satisfy

lim
r→∞

V (r) = +∞ .

We set up a sesquilinear form

Q(u, v) = γ

∫ +∞

0
∂r u ∂rv rdr +

∫ +∞

0
V u v rdr +

∫ +∞

0
uvrdr ,

defined on the domain

Dom(Q) =
{
u ∈ L2(R+, rdr) : ∂ru ∈ L2(R+, rdr),

√
V u ∈ L2(R+, rdr)

}
.

Then Dom(Q) is a Hilbert space with the inner product Q(·, ·). Furthermore, the self-

adjoint operator generated from Lax-Milgram (see Theorem A.6) has compact resolvent.

Proof. All properties of the inner product are easy to check. We will check that all the

Cauchy sequences in Dom(Q) converge. Assume that (un)n∈N ⊂ Dom(Q) is a Cauchy
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sequence with the norm

‖u‖2Q = γ‖∂ru‖2L2(R+,rdr)
+ ‖
√
V u‖2

L2(R+,rdr)
+ ‖u‖2

L2(R+,rdr)
.

Hence, un, ∂run and
√
V un are Cauchy sequences in L2(R+, rdr). Since L2(R+, rdr)

is a Banach space, with the distribution technique, we imply that there exists u ∈
L2(R+, rdr) such that 

un → u

∂run → ∂ru
√
V un →

√
V u

,

or ‖un − u‖Q → 0. Thus, (Dom(Q),Q(·, ·)) is a Hilbert space. In order to examine the

compact resolvent of the self-adjoint induced from Lax-Milgram Theorem, we just need

to check that the injection (Dom(Q), ‖ · ‖Q) ↪→ L2(R+, rdr) is compact (see Proposition

A.9).

Take a sequence (un) in Dom(Q) such that

γ

∫ +∞

0
|∂run|2 rdr +

∫ +∞

0
V (r)|un|2 rdr +

∫ +∞

0
|un|2rdr ≤ 1. (5.9)

Since V go to infinity when r → +∞, then for any ε > 0 , there exists a number Rε > 0

such that ∫ +∞

Rε

|un|2 rdr ≤
ε

4
for all n ≥ 0 .

Furthermore, since H1 ((0, Rε), rdr) is compact embedded in L2 ((0, Rε), rdr) , we have

a subsequence (vn := un|(0,Rε)) is Cauchy in L2 ((0, Rε), rdr). For n, k large enough, we

get

‖uk − un‖2L2(R+,rdr)
=

∫ Rε

0
|uk − un|2 rdr +

∫ +∞

Rε

|uk − un|2 rdr

≤
∫ Rε

0
|vk − vn|2 rdr + 2

(∫ +∞

Rε

|uk|2 rdr +

∫ +∞

Rε

|un|2 rdr
)

≤ ε

2
+ 2

ε

4
= ε.

Since L2(R+, rdr) is a Banach space (see Lemma 5.2), we get the convergence of un in

L2(R+, rdr). We finish the proof.

Applying the above theorem, we have the result:

Theorem 5.5. For any m ∈ Z and h > 0, the operator Lh,m has compact resolvent.
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Proof. We fix m ∈ Z and h > 0, we take γ = 2h2 and consider the sesquilinear

Qh,m(u, v) = 2h2

∫ +∞

0
∂r u ∂rv rdr +

∫ +∞

0

(hm−G(r))2

r2
u v rdr +

∫ +∞

0
uvrdr ,

defined on the domain

Dom(Qh,m) =
{
u ∈ L2(R+, rdr) : ∂ru ∈ L2(R+, rdr),

√
Vh,mu ∈ L2(R+, rdr)

}
,

with

Vh,m(r) :=
(hm−G(r))2

r2
.

We have Dom (Qh,m) is a Hilbert space equipped with the inner product Qh,m. From

Lax-Milgram (see Theorem A.6), the sesquilinear form Qh,m produces a self-adjoint

operator Sh,m. We know that u ∈ Dom(Sh,m) if there exists an element w ∈ L2(R+, rdr)

such that

Qh,m(u, v) = 〈w, v〉L2(R+,rdr) for all v ∈ Dom(Qh,m).

Considering v ∈ C∞c (R+) and using the distribution definition, we deduce that[
−h2r−2 (r∂r)

2 + Vh,m

]
u+ u ∈ L2(R+, rdr) .

Thus, u ∈ Dom(Lh,m) and Lh,m + Id becomes an extension of Sh,m. By the self-

adjointness of Lh,m and Sh,m, we can conclude that

Sh,m = Lh,m + Id.

Note that Lh,m has compact resolvent if and only if Sh,m has compact resolvent.

From the condition (1.46) of magnetic field, we imply that

lim
r→+∞

(hm−G(r))2

r2
= +∞ . (5.10)

The conclusion of the theorem is obtained by applying again Theorem 5.4.

5.2.2 Spectrum of rescaled radial electric Schrödinger operators.

By the change of variable ρ = r2

2 in integral, we have

G(r) =

∫ r

0
τβ

(
τ2

2

)
dτ =

∫ ρ

0
β(s) ds .
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We define

a(ρ) =

∫ ρ

0
β(s) ds .

Using the unitary transformation

T1 :L2(R+, dρ)→ L2(R+, rdr), (5.11)

v(ρ) 7→ (T1v)(r) = v(r2/2) ,

we get a new operator which is unitary equivalent to Lh,m and acting on L2(R+, dρ) :
Dom(Nh,m) =

{
u ∈ L2(R+,dρ) : Nh,mu ∈ L2(R+, dρ)

}
Nh,m := T−1

1 Lh,mT1 = −2h2∂ρρ∂ρ +
(hm− a(ρ))2

2ρ

. (5.12)

Later, we will use the WKB method to find an asymptotic expansion of eigenfunction

corresponding to the first eigenvalue of Nh,m. Now, we just want to discover the asymp-

totic expansion Nh,m’s first eigenvalue by means of a rescaled operator.

5.2.2.1 Rescaling

In order to find the quasi-modes and quasi-eigenvalues in terms of formal power se-

ries of h, we use the scaling ρ = ht and expand the resulting operator, called Mh,m,

into a formal series of h. Precisely, we obtain the operator Mh,m through the unitary

transformation

T2 :L2(R+,dt)→ L2(R+,dρ), (5.13)

v(t) 7→ (T2v)(ρ) = h−1/2v(h−1ρ).

and 
Dom(Mh,m) =

{
u ∈ L2(R+, dt) :Mh,mu ∈ L2(R+, dt)

}
Mh,m := T−1

2 Nh,mT2 = −2h∂tt∂t +
(hm− a(ht))2

2ht

.

Since β ∈ C∞(R), so is a. By applying the Taylor’s Theorem for the function a at 0, we

have

a(ht) = β(0)ht+
β′(0)

2
h2t2 +O(h3t3) .
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We compute directly the operator Mh,m

Mh,m = −2h∂tt∂t +
a2(ht)

2ht
− ma(ht)

t
+ h

m2

2t

= −2h∂tt∂t +

(
β(0)ht+ β′(0)

2 h2t2 +O(h3t3)
)2

2ht

−
m
(
β(0)ht+ β′(0)

2 h2t2 +O(h3t3)
)

t
+ h

m2

2t

= h

(
−2∂tt∂t +

β(0)2t

2
+
m2

2t
−mβ(0)

)
+h2

(
−mβ

′(0)

2
t+

β(0)β′(0)

2
t2
)

+
O(h3t3)

t
.

By setting up

L[0]
m := −2∂tt∂t +

β(0)2t

2
+
m2

2t
−mβ(0)

L[1]
m := −mβ

′(0)

2
t+

β(0)β′(0)

2
t2 ,

we can rewrite Mh,m as

Mh,m = hL[0]
m + h2L[1]

m +
R(ht)

t
,

where R is the reminder satisfying that there exist a constant C > 0 and δ > 0 such

that

|R(s)| ≤ Cs3 for all s ∈ [0, δ) . (5.14)

We consider L
[0]
m as a self-adjoint operator given by Lax-Milgram Theorem through the

sesquilinear

Q[0]
m (u, v) =

∫ +∞

0
2t∂tu ∂tvdt+

∫ +∞

0

(
β(0)2t

2
+
m2

2t
−mβ(0)

)
u vdt (5.15)

with the form domain

Dom(Q[0]
m ) =


u ∈ L2(R+,dt) :

√
t∂tu ∈ L2(R+, dt) ,√
β(0)2t

2
+
m2

2t
−mβ(0)u ∈ L2(R+,dt)

 .

Therefore, we have

Q[0]
m (u, v) = 〈L[0]

m u, v〉L2(R+,dt) for all u ∈ Dom(L[0]
m ), v ∈ Dom(Q[0]

m ) . (5.16)
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5.2.2.2 Investigating spectrum of the operator L
[0]
m

This subsection is devoted to the spectrum of the operators L
[0]
m for all m ∈ Z.

Theorem 5.6. Let m ∈ Z, the operator L
[0]
m has discrete spectrum and its spectrum is

given by

Sp(L[0]
m ) = {(2k + 1 + |m| −m)β(0) : k ∈ N} .

To prove this theorem, we will follow two steps: first, we show that the self-adjoint

operator L
[0]
m has compact resolvent. Second, we relate L

[0]
m to the Laguerre operator

and then deduce its spectrum. We start with their compact resolvent properties.

Theorem 5.7. For each m ∈ Z, the operator L
[0]
m has compact resolvent.

Proof. Let m ∈ Z. By changing variable t = r2

2 , the plan is to show that the operator

L
[0]
m is unitarily equivalent to an operator which has compact resolvent. Let us introduce

an unitary operator

U : L2(R+,dt)→ L2(R+, rdr) ,

v(t) 7→ (Uv)(r) = v(r2/2) .

We organize a quadratic form as following:
Dom(Q̃[0]

m ) := U(Dom(Q[0]
m )) ,

Q̃[0]
m (a, b) = Q[0]

m (U−1a, U−1b) +

∫
R+

ab rdr .

From the definition of U , we have (U−1a)(t) = a(
√

2t). By computing straightforwardly

and upon observing that ∂r =
√

2t∂t, it turns out that

Dom(Q̃[0]
m ) =


a ∈ L2(R+, rdr) : ∂ra ∈ L2(R+, rdr),√

β(0)2r2

4
+
m2

r2
−mβ(0)a ∈ L2(R+, rdr)

 ,

and

Q̃[0]
m (a, b) =

∫
R+

∂ra ∂rb rdr +

∫
R+

(
β(0)2r2

4
+
m2

r2
−mβ(0)

)
a brdr +

∫
R+

a b rdr .

Applying Theorem 5.4 and noticing that

lim
r→+∞

(
β(0)2r2

4
+
m2

r2
−mβ(0)

)
= +∞ ,
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the operator S
[0]
m , which is defined from Lax-Milgram (see Theorem A.6) through the

sesquilinear Q̃[0]
m , has compact resolvent. As a consequence, the operator L̃

[0]
m := S

[0]
m −Id

also has compact resolvent. According to (5.16), it implies that

L̃[0]
m = UL[0]

mU
−1 .

Thus, L
[0]
m is unitary equivalent to L̃

[0]
m and also has compact resolvent.

In the next step, we bring the operator L
[0]
m to the Laguerre form. By letting t = s

β(0) ,

the operator L
[0]
m becomes

β(0)

(
−2∂ss∂s +

s

2
+
m2

2s
−m

)
. (5.17)

Consider the self-adjoint operator

Tm = s−
|m|
2 e

s
2

(
−2∂ss∂s +

s

2
+
m2

2s
−m

)
s
|m|
2 e−

s
2 , (5.18)

acting in the Hilbert space L2(R+, s−|m|esds) and equivalent to the operator −2∂ss∂s +
s
2 + m2

2s −m by the unitary

Λ : L2(R+, s|m|e−sds)→ L2(R+, ds)

v(s) 7→ (Λv)(s) = s
|m|
2 e−

s
2 v(s) .

A straightforward computation gives

Tm = −2

(
∂s +

|m|
2s
− 1

2

)
s

(
∂s +

|m|
2s
− 1

2

)
+
s

2
+
m2

2s
−m

= −2

(
∂s +

|m|
2s
− 1

2

)
− 2s

(
∂s +

|m|
2s
− 1

2

)2

+
s

2
+
m2

2s
−m

= −2

(
∂s +

|m|
2s
− 1

2

)
− 2s

[
∂2
s + ∂s

(
|m|
2s
− 1

2

)
+

(
|m|
2s
− 1

2

)
∂s

]
−2s

(
|m|
2s
− 1

2

)2

+
s

2
+
m2

2s
−m

= −2

(
∂s +

|m|
2s
− 1

2

)
− 2s

[
∂2
s −
|m|
2s2

+

(
|m|
s
− 1

)
∂s

]
−2s

(
m2

4s2
− |m|

2s
+

1

4

)
+
s

2
+
m2

2s
−m

= −2s∂2
s + (2s− 2− 2|m|) ∂s + |m| −m+ 1 .
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It is well-known that the generalized Laguerre polynomials L
(m)
n are solutions of the

differential equation

s∂2
sy + (|m|+ 1− s) ∂sy + ny = 0 , (5.19)

with n ∈ Z , see [59]. Furthermore, these polynomials are orthogonal with the inner

product of space L2(R+, s|m|e−sds) and satisfies∫ +∞

0
L

(m)
k (s)L(m)

n (s) s|m|e−sds =
Γ(n+ |m|+ 1)

n!
δk,n , (5.20)

where δk,n denotes Kronecker delta notation.

Then for each m ∈ Z, we have

Tm(L(m)
n ) = (2n+ 1 + |m| −m)L(m)

n . (5.21)

In particular,

{2n+ |m| −m+ 1 : n ∈ N} ⊂ sp(Tm) . (5.22)

Theorem 5.8. For each m ∈ Z, the family (L
(m)
n )n∈N is total in L2(R+, s|m|e−sds).

Proof. Take f ∈ L2(R+, s|m|e−sds) such that∫ +∞

0
f(s)L(m)

n (s)s|m|e−sds = 0 for all n ∈ N .

It follows that, for all n ∈ N, ∫ +∞

0
snf(s)s|m|e−sds = 0.

Let f̄ be the extension of f on R by setting that f̄ is zero on the negative axis. We put

F (ξ) =

∫
R
e−isξ f̄(s)s|m|e−sds.

This function is well defined thanks to the Cauchy-Schwarz inequality∫
R

∣∣∣e−isξf(s)s|m|e−s
∣∣∣ ds =

∫ +∞

0

∣∣∣f(s)s|m|e−s
∣∣∣ ds

≤
(∫ +∞

0

∣∣f(s)
∣∣2 s|m|e−s ds)(∫ +∞

0
s|m|e−s ds

)
< +∞.

Using power series for an exponential function, we can rewrite

F (ξ) =

∫
R

+∞∑
k=0

(−isξ)k

k!
f̄(s)s|m|e−sds.
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We can apply the Fubini theorem to get

F (ξ) =
+∞∑
k=0

ξk
∫
R

(−is)k

k!
f̄(s)s|m|e−sds = 0.

Therefore the Fourier transform of f̄ s|m|e−s is 0 and of course f = 0.

Theorem 5.9. Spectrum of the operator Tm is

Sp(Tm) = {2k + 1 + |m| −m : k ∈ N} .

Proof. From (5.22), we just need to prove the remaining direction.

If we denote by (fn)n∈N the L2-normalization of the family L
(m)
n , then (fn)n∈N is a

Hilbert basis of L2(R+, s|m|e−sds) such that Tm(fn) = (2n + 1 + |m| −m)fn. Finally,

since Tm is self-adjoint with compact resolvent then Tm has a real, discrete spectrum.

For this reason, we search for the eigenvalue λ ∈ R such that there exists a non-zero

Ψ ∈ Dom(Tm) which satisfies

Tm(Ψ) = λΨ .

We write the following decomposition, converging in L2(R+, s|m|e−sds),

Ψ =
∑
n∈N
〈Ψ, fn〉L2fn .

Here we denote 〈·, ·〉L2 as an inner product on L2(R+, s|m|e−sds). For all φ ∈ Dom(Tm),

we have

〈Ψ, (Tm − λ)φ〉L2 = 〈(Tm − λ)Ψ, φ〉L2 = 0.

Then by convergence in L2(R+, s|m|e−sds),

∑
n∈N
〈Ψ, fn〉L2〈fn, (Tm − λ)φ〉L2 = 0 .

Let k ∈ N and choose φ = fk, we obtain

∑
n∈N
〈Ψ, fn〉L2〈fn, (Tm − λ)fk〉L2 = 〈Ψ, fk〉L2(2k + |m| −m+ 1− λ) = 0 .

If Ψ is orthogonal to all members of family (fk)k∈N then Ψ = 0 . Therefore, there exists

k ∈ N such that

λ = 2k + 1 + |m| −m.

In conclusion,

Sp(Tm) = {2k + 1 + |m| −m : k ∈ N} .
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Proof of Theorem 5.6. According to the unitary equivalence arguments, the spectrum

of L
[0]
m is easily obtained as stated in the theorem.

Example 5.1. When m ≥ 0, the first and the second eigenpairs of L
[0]
m are respectively(

β(0), t
m
2 e
−β(0)t

2

)
and

(
3β(0), (β(0)t−m− 1) t

m
2 e
−β(0)t

2

)
.

5.2.2.3 A quasimode for the rescaled operator

Back to the rescaled operatorMh,m and we restrict ourselves to the case m ≥ 0. In this

part, we aim to show that the first eigenvalue of Mh,m has the expansion

λ0(Mh,m) = β(0)h+
(m+ 1)β′(0)

β(0)
h2 + o(h2) .

To do that, we prove the accurate upper bound for the eigenvalue in Theorem 5.10.

Then, the lower bound of the eigenvalue will be showed in Theorem 5.13 with the help

of Agmon estimate.

Theorem 5.10. For all m ∈ N, there exist C > 0 and h0 > 0 such that, for all

h ∈ (0, h0),

dist
(
µm,0h+ µm,1h

2,Sp (Mh,m)
)
≤ Ch3 ,

where µm,0 = β(0) and µm,1 = (m+1)β′(0)
β(0) .

Proof. For each m ∈ N, we need to find a non-trivial function Ψh ∈ Dom(Mh,m) such

that

‖(Mh,m − λh)Ψh‖L2(R+,dt) ≤ Ch
3 .

where λh = µm,0h + µm,1h
2. Then the conclusion of this theorem follows from the

spectral theorem. Although Ψh depends on m, whenever there is no confusion, we write

Ψh instead of Ψh,m. Recall that

Mh,m = hL[0]
m + h2L[1]

m +
O(h3t3)

t
.

This suggests an idea that we need to look for a quasimode Ψh in form of

Ψ0 + hΨ1 .
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In details,

(Mh,m − λ) (Ψ0 + hΨ1) ∼
[
h
(
L[0]
m − µm,0

)
+ h2

(
L[1]
m − µm,1

)]
(Ψ0 + hΨ1)

= h
(
L[0]
m − µm,0

)
Ψ0 + h2

[(
L[0]
m − µm,0

)
Ψ1 +

(
L[1]
m − µm,1

)
Ψ0

]
+h3

(
L[1]
m − µm,1

)
Ψ1 .

Obviously, we need to solve the following equations to find λ and Ψ:

Equation according to order h:(
L[0]
m − µm,0

)
Ψ0 = 0 .

We choose µm,0 = β(0) and Ψ0 = t
m
2 e
−β(0)t

2 the first eigenpair of L
[0]
m .

Equation according to order h2:(
L[0]
m − µm,0

)
Ψ1 =

(
µm,1 − L[1]

m

)
Ψ0 . (5.23)

Since L
[0]
m is a self-adjoint operator and µ0 is a discrete eigenvalue then L

[0]
m − µ0 is a

Fredholm operator. Therefore, the equation (5.23) has solution Ψ1 if and only if(
L[1]
m − µm,1

)
Ψ0 ∈ span(Ψ0)⊥.

This is equivalent to

µm,1‖Ψ0‖2 = 〈L[1]
mΨ0,Ψ0〉L2 ,

or

µ1

∫ +∞

0
tme−β(0)t dt = β′(0)

∫ +∞

0

(
−m

2
t+

β(0)

2
t2
)
tme−β(0)t dt

=
(m+ 1)β′(0)

β(0)

∫ +∞

0
tme−β(0)t dt (since β(0) > 0) .

Thus,

µ1 =
(m+ 1)β′(0)

β(0)
.

Inserting this value into equation (5.23), we have a differential equation(
−2∂tt∂t +

β(0)2t

2
+
m2

2t
− (m+ 1)β(0)

)
Ψ1

=

(
m+ 1

β(0)
+
m

2
t− β(0)

2
t2
)
β′(0)t

m
2 e−

β(0)t
2 .
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We look for Ψ1 in the form Ψ1 = β′(0)y(t)t
m
2 e−

β(0)t
2 , and we only need to find a function

y(t) satisfies

−2ty”− 2(1 +m− β(0)t)y′ =
m+ 1

β(0)
+
m

2
t− β(0)

2
t2 .

By finding y(t) in the polynomial form a2t
2 + a1t+ a0, we obtain

y(t) = −1

8
t2 − 1

2β(0)
t .

Therefore

Ψ1(t) =

(
−1

8
t2 − 1

2β(0)
t

)
β′(0)t

m
2 e−

β(0)t
2 ,

satisfies (5.23). To make sure that Ψ belongs to the domain of Mh,m, we multiply

Ψ0 + hΨ1 with a smooth cut-off function, that is

Ψh(t) = χ(ht)(Ψ0 + hΨ1) ,

where

χ(t) :=

 1 for t ∈ [0,
δ

2
]

0 for t ∈ [δ,∞)

, (5.24)

where δ is given by the estimate of Taylor’s remainder of the function a, namely in

(5.14).

Before estimating the L2-norm, we want to analyse the quasimode near t = 0. Remind

that the operator Mh,m has the term

(hm− a(ht))2

2ht
,

which goes to infinity as t → 0 and m 6= 0. When we apply Mh,m to Ψ0 in the

neighborhood of 0,

Mh,mΨ0 = h

(
−m2

2t
− β(0)2t

2
+mβ(0)

)
Ψ0 +

(hm− a(ht))2

2ht
Ψ0

=

(
−hβ(0)2t

2
+mhβ(0) +

a(ht)2

2ht
− ma(ht)

t

)
Ψ0 ,

Since a(0) = 0, a(ht)2

2ht and ma(ht)
t are smooth at 0. Thus, Mh,mΨ0 does not blow up at

0.

For simplicity of notation, we denote S(t) = Ψ0 + hΨ1. By using Taylor formula and
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the definitions of µi and Ψi, we have

(Mh,m − λh)Ψh = (Mh,m − λh)χ(ht)S

= −2h [∂tt∂t, χ(ht)]S + χ(ht)(Mh,m − λh)S

= −2h3tχ′′(ht)S − 2h2χ′(ht)(S + 2tS′)

+ χ(ht)

[
h3(L[1]

m − µm,1)Ψ1 +
R(ht)

t
S

]
.

With support consideration and changing variable s = th in integral with a notice that S

contains the exponential term e
−β(0)
t , the L2-norm of the term [∂tt∂t, χ(ht)]S is O(h∞).

We only need to care about estimating the term χ(ht)R(ht)
t S. We have

∫ +∞

0
χ2(ht)

|R(ht)|2

t2
S2 dt =

∫ δ/h

0
χ2(ht)

|R(ht)|2

t2
S2 dt

≤ Ch6

∫ +∞

0
t4S2 dt

≤ C̃h6 .

The above theorem states that, for each m ∈ N, one can find an eigenvalue of Mh,m

near β(0)h+ (m+1)β′(0)
β(0) h2. We will use the Agmon estimate to assert that this eigenvalue

is in fact the first one λ0(Mh,m). In this section, let us denote

Vh,m(t) =
(hm− a(ht))2

2ht
,

and the quadratic form associated with Mh,m as

Qh,m(u) = 2h

∫ ∞
0

t|∂tu|2 dt+

∫ ∞
0
Vh,m(t)|u(t)|2 dt .

Moreover, since we only deal with the Hilbert space L2(R+,dt) in this section, we denote

‖ · ‖L2 instead of ‖ · ‖L2(R+,dt) and so is the inner product.

Let us recall that a(ρ) =
∫ ρ

0 β(s)ds. Under the condition (1.46), we imply

a(ht) ≥ β(0)ht .

For t > 0 large enough, we have the inequality

Vh,m(t) =
(hm− a(ht))2

2ht
≥ h(β(0)t−m)2

2t
. (5.25)
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Theorem 5.11. Let m ∈ N and let Φ ∈ W 1,∞(R+,R), then for all u ∈ Dom(Mh,m),

we have

Qh,m(eΦu) = Re〈Mh,mu, e
2Φu〉L2 + 2h

∫ +∞

0
t(Φ′(t))2e2Φ(t)|u(t)|2 dt . (5.26)

Proof. By Lax-Milgram theorem, we have

2h〈
√
t∂tu,

√
t∂t(e

2Φu)〉L2 +

∫ +∞

0
Vh,m(t)e2Φ(t)|u(t)|2 dt = 〈Mh,mu, e

2Φu〉L2 . (5.27)

To simplify the notation, we set up P :=
√
t∂t. Notice that the commutator

[P, eΦ] =
√
tΦ′(t)eΦ

is a multiplication operator. We perform the following computation

〈Pu, Pe2Φu〉L2 = 〈Pu, [P, eΦ]eΦu〉L2 + 〈Pu, eΦPeΦu〉L2

= 〈eΦPu, [P, eΦ]u〉L2 + 〈eΦPu, PeΦu〉L2

= 〈eΦPu, [P, eΦ]u〉L2 + 〈PeΦu, PeΦu〉L2 + 〈[eΦ, P ]u, PeΦu〉L2

= ‖PeΦu‖2
L2 − ‖[P, eΦ]u‖2

L2 + 〈eΦPu, [P, eΦ]u〉L2 − 〈[P, eΦ]u, eΦPu〉L2 .

Take the real part of (5.27), we get

2h‖PeΦu‖2
L2 − 2h‖[P, eΦ]u‖2

L2 +

∫ +∞

0
Vh,m(t)e2Φ|u|2 dt = Re〈Mh,mu, e

2Φu〉L2 .

This implies the statement of the theorem.

Theorem 5.12. Under the assumption (1.46), for all m ∈ N, and for all ε ∈ (0, β(0)
2 ),

there exists M > 0 such that

‖eεtΨ‖2
L2 ≤M‖Ψ‖2L2 and Qh,m(eεtΨ) ≤M h‖Ψ‖2

L2 ,

for all eigenfunctions Ψ with eigenvalue of order h of the operator Mh,m.

Proof. Let us consider a sequence of functions (χk)k≥1 defined as follows

χk(t) =


t for 0 ≤ t ≤ k,

2k − t for k ≤ t ≤ 2k,

0 for t ≥ 2k.

(5.28)
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Notice that χk ∈W 1,∞(R+) and |χ′k(t)| ≤ 1 for all t ∈ R+.

Let us consider an eigenvalue λ(= O(h)) of the operator Mh,m associated with eigen-

function Ψ. This means that there exists C > 0 such that

Mh,mΨ = λΨ and λ < Ch . (5.29)

Take Φ = εχk(t) in equation (5.26), we have

Qh,m(eεχk(t)Ψ) ≤ λ‖eεχk(t)Ψ‖2
L2 + 2hε2

∫ +∞

0
t|χ′k(t)|2e2εχk(t)|Ψ(t)|2 dt

≤ Ch‖eεχk(t)Ψ‖2
L2 + 2hε2

∫ +∞

0
te2εχk(t)|Ψ(t)|2 dt .

It implies that∫ +∞

0
Vh,m(t)e2εχk(t)|Ψ|2 dt ≤ Ch‖eεχk(t)Ψ‖2

L2 + 2hε2

∫ +∞

0
te2εχk(t)|Ψ(t)|2 dt .

Bring every terms from the right to the left, we have∫ +∞

0

(
Vh,m(t)− Ch− 2hε2t

)
e2εχk(t)|Ψ|2 dt ≤ 0 .

From the estimate (5.25), there exist a number R > 0 and a constant C1(R, ε) > 0

(depending on R and ε) such that for all t ≥ R, we have

Vh,m(t)− Ch− 2ε2th ≥ h
[

(b0t−m)2

2t
− 2ε2t− C

]
= h

[(
b20
2
− 2ε2

)
t+

m2

2t
− b0m− C

]
≥ C1(R, ε)h . (5.30)

We deduce the existence of C2(R, ε) > 0 such that, for all k ≥ 1,

C1(R, ε)h

∫ ∞
R

e2εχk(t)|Ψ|2 dt ≤
∫ ∞
R

(
Vh,m(t)− Ch− 2hε2t

)
e2εχk(t)|Ψ|2 dt

≤
∫ R

0

(
2hε2t+ Ch− Vh,m(t)

)
e2εχk(t)|Ψ|2 dt

≤ C2(R, ε)h‖Ψ‖2
L2 .
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Then, there exists a constant C(R, ε) such that, for all k ≥ 1,∫ ∞
0

e2εχk(t)|Ψ|2 dt =

∫ R

0
e2εχk(t)|Ψ|2 dt+

∫ ∞
R

e2εχk(t)|Ψ|2 dt

≤
∫ R

0
e2εR|Ψ|2 dt+

∫ ∞
R

e2εχk(t)|Ψ|2 dt

≤ C(R, ε)‖Ψ‖2
L2 .

Let k → +∞ and use Fatou’s lemma, we obtain∫ ∞
0

e2εt|Ψ|2 dt ≤ C(R, ε)‖Ψ‖2
L2 .

To estimate the quadratic form Qh,m, we evaluate more strictly the estimate (5.30)

Vh,m(t)− Ch− 2ε2th ≥ C1(R, ε)ht .

Follow the same steps as above, we get the control∫ +∞

0
te2εχk(t)|Ψ(t)|2 dt ≤ C‖Ψ‖2

L2 .

Then, it leads to

Qh,m(eεχk(t)Ψ) ≤ Ch‖Ψ‖2
L2 ,

and we get the result.

Theorem 5.13. For all m ∈ N,

λ0(Mh,m) = β(0)h+
(m+ 1)β′(0)

β(0)
h2 + o(h2) . (5.31)

Proof. Let us fix m ∈ N. We can choose the first eigenpairs (λi(Mh,m),Ψi,h)i=1,2 such

that Ψ0,h and Ψ1,h are orthogonal. We let

E(h) = span(Ψ0,h,Ψ1,h) . (5.32)

Thus, E(h) has dimension 2. From Theorem 5.10, we can deduce that (Ψi,h)i=1,2 are

eigenfunctions having eigenvalues of order h and so are the elements of E(h). Let
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Ψ ∈ E(h), we have

Qh,m(Ψ) = 2h

∫ +∞

0
t|∂t (Ψ) |2 dt+

∫ +∞

0
Vh,m(t)|Ψ|2 dt

= h

∫ +∞

0
2t|∂t (Ψ) |2 +

(
β(0)2

2
t+

m2

2t
−mβ(0)

)
|Ψ|2dt

+

∫ +∞

0

[
Vh,m(t)− h

(
β(0)2

2
t+

m2

2t
−mβ(0)

)]
|Ψ|2 dt

≥ hQ[0]
m (Ψ)−

∫ +∞

0

∣∣∣∣Vh,m(t)− h
(
β(0)2

2
t+

m2

2t
−mβ(0)

)∣∣∣∣ |Ψ|2 dt ,

where Q[0]
m is the quadratic form associated with the operator L

[0]
m . By the Taylor’s

theorem, we have

Vh,m(t)− h
(
β(0)2

2
t+

m2

2t
−mβ(0)

)
=
O((ht)2)

t
.

There exists C1 > 0 and δ > 0 such that, for all (h, t) which satisfies ht ≤ δ,∣∣∣∣Vh,m(t)− h
(
β(0)2

2
t+

m2

2t
−mβ(0)

)∣∣∣∣ ≤ C1th
2 .

Using the Agmon estimate, we have∫ δ/h

0

∣∣∣∣Vh,m(t)− h
(
β(0)2

2
t+

m2

2t
−mβ(0)

)∣∣∣∣ |Ψ|2 dt ≤ C1h
2

∫ δ/h

0
t|Ψ|2 dt

≤ C2h
2

∫ +∞

0
e2εt|Ψ|2 dt

≤ Ch2‖Ψ‖2
L2 .

Consider on the interval [ δh ,+∞),

∫ +∞

δ/h
|Vh,m(t)| |Ψ|2 dt =

∫ +∞

δ/h
e−2εt |Vh,m(t)| e2εt|Ψ|2 dt

≤ max
t≥δ/h

e−2εt

∫ +∞

0
|Vh,m(t)| e2εt|Ψ|2 dt

≤ Ch2‖Ψ‖2
L2 .

Similarly, we also have∫ +∞

δ/h
h

(
β(0)2

2
t+

m2

2t
−mβ(0)

)
dt ≤ Ch2‖Ψ‖2

L2 .
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Thus, we have the estimate

Qh,m(Ψ) ≥ hQ[0]
m (Ψ)− Ch2‖Ψ‖2

L2 .

Since Ψ ∈ E(h), there exists (α1, α2) ∈ C2 such that Ψ = α1Ψ0,h + α2Ψ1,h. Since Ψ0,h

and Ψ1,h are orthogonal, it leads to ‖Ψ‖2
L2 = α2

1‖Ψ0,h‖2L2 + α2
2‖Ψ1,h‖2L2 . Therefore, we

obtain

Qh,m(Ψ) = λ0(Mh,m)|α1|2‖Ψ0,h‖2L2 + λ1(Mh,m)|α2|2‖Ψ1,h‖2L2 ≤ λ1(Mh,m)‖Ψ‖2
L2 ,

By the min-max principle for the quadratic form Q[0]
m , we have

λ1(Mh,m) ≥ 3β(0)h− Ch2 . (5.33)

From Theorem 5.10, we see that there exists an eigenvalue of Mh,m which is near the

quantity β(0)h+ (m+1)β′(0)
β(0) h2 in order o(h2). This eigenvalue can not be λk(Mh,m) with

k ≥ 1, because if it were, from the estimate

3β(0)h− Ch2 ≤ λk(Mh,m) = β(0)h+
(m+ 1)β′(0)

β(0)
h2 + o(h2) ,

we divide both sides by h and let h come to zero, this gives us β(0) = 0. This can not

happen. The conclusion follows.

5.3 The relation between eigenfunctions of the magnetic

Laplacian and eigenfunctions of the fibered operator

We recall the expression of the magnetic Laplacian operator Kh

Kh = −h2r−2 (r∂r)
2 + r−2(−ih∂θ −G(r))2 . (5.34)

For each m ∈ N, let λ0(Nh,m) be the first eigenvalue of the operator Nh,m and Ψh,m

be the associated eigenfunction. Since Mh,m and Nh,m are unitary equivalent, from

Theorem 5.13, we obtain

λ0(Nh,m) = λ0(Mh,m) = β(0)h+
(m+ 1)β′(0)

β(0)
h2 + o(h2) . (5.35)

On the other hand, Lh,m and Nh,m also are equivalent by

Lh,m = T1Nh,mT−1
1 ,
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where T1 are unitary operators defined at (5.11). Therefore, λ0(Nh,m) is also the first

eigenvalue of Lh,m and T1(Ψh,m) is the associated eigenfunction. It results that

[Kh − λ0(Nh,m)] eimθ(T1Ψh,m) = [Lh,m − λ0(Mh,m)]T1(Ψh,m)eimθ = 0 .

Thus λ0(Nh,m) belongs to the spectrum of Kh. Now, the result by Helffer and Kordyukov

(see (1.13)) tells us that, for all k ∈ N, the k−th eigenvalue of Kh, denoted by λk(Kh)

satisfies

λk(Kh) = B(0)h+

(
2k

√
detH

B(0)
+

(TrH1/2)2

2B(0)

)
h2 + o(h2), (5.36)

where H = 1
2HessB(0).

We recall the definition of the magnetic field B(q1, q2) = β
(
q21+q22

2

)
, we have

H =

(
β′(0)

2 0

0 β′(0)
2

)
.

By computation and recall that β′(0) > 0, we have

detH =
β′(0)2

4
and Tr(H1/2) =

√
2
√
β′(0) .

Thus, λk(h) has the form

λk(Kh) = β(0)h+
(k + 1)β′(0)

β(0)
h2 + o(h2). (5.37)

Since λ0(Nh,m) is the eigenvalue of Kh, thus there exists k ∈ N such that

λ0(Mh,m) = λk(Kh) .

Comparing with (5.35) and taking h small enough, we immediately obtain k = m and

λm(Kh) = λ0(Mh,m) .

Since λm(Kh) is a simple eigenvalue, we have the following statement

Theorem 5.14. The m-th eigenvalue of the magnetic Laplacian Kh is exactly the first

eigenvalue of the operator Nh,m:

λm(Kh) = λ0(Nh,m) .

143



The m-th eigenfunction of Kh is in the form

ceimθΨh,m

(
r2

2

)
, (5.38)

where Ψh,m is a ground-state eigenfunction of the operator Nh,m and c ∈ C \ {0}.

5.4 Magnetic WKB construction in the radial coordinates

In this section, we focus on constructing the WKB Ansatz for the eigenfunction of the

magnetic Laplacian. As Theorem 5.14 indicates the relation between this eigenfunction

with the eigenfunction of the operator Nh,m, we just need to do the WKB analysis for

the operator Nh,m. Since Nh,m is a real electric Schrödinger operator in dimension 1,

one can easily find a WKB approximation for Ψh,m. We recall the unscaled operator

Nh,m = −2h2∂ρ(ρ∂ρ) +
(hm− a(ρ))2

2ρ
, (5.39)

where

a(ρ) =

∫ ρ

0
β(s) ds.

To start the WKB method, we consider its conjugated operator with real-valued smooth

function ϕ:

N̂h,m = e
ϕ(ρ)
h ρ

−m
2 Nh,m ρ

m
2 e
−ϕ(ρ)
h .

We have

N̂h,m = −2h2e
ϕ(ρ)
h ρ

−m
2 [∂ρ(ρ∂ρ)] ρ

m
2 e
−ϕ(ρ)
h +

(hm− a(ρ))2

2ρ

= −2h2

(
∂ρ +

m

2ρ
− ϕ′(ρ)

h

)
ρ

(
∂ρ +

m

2ρ
− ϕ′(ρ)

h

)
+

(hm− a(ρ))2

2ρ

= −2h2

(
1 + ρ

(
∂ρ +

m

2ρ
− ϕ′(ρ)

h

))(
∂ρ +

m

2ρ
− ϕ′(ρ)

h

)
+

(hm− a(ρ))2

2ρ

= −2h2

(
∂ρ +

m

2ρ
− ϕ′(ρ)

h

)
− 2h2ρ

(
∂ρ +

m

2ρ
− ϕ′(ρ)

h

)2

+
(hm− a(ρ))2

2ρ

= −2h2

(
∂ρ +

m

2ρ
− ϕ′(ρ)

h

)
− 2h2ρ

(
∂2
ρ −

m

2ρ2
+
m

ρ
∂ρ −

ϕ′′(ρ)

h
− 2ϕ′(ρ)

h
∂ρ

)
−2h2ρ

(
m

2ρ
− ϕ′(ρ)

h

)2

+
(hm− a(ρ))2

2ρ
.
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So, the expression of the conjugated operator N̂h,m can be written in order of h as follows

N̂h,m =

(
(a(ρ))2

2ρ
− 2ρ(ϕ′(ρ))2

)
+ h

(
4ϕ′(ρ)ρ∂ρ + 2ϕ′(ρ) + 2ρϕ′′(ρ) + 2mϕ′(ρ)−ma(ρ)

ρ

)
+ h2

(
−2ρ∂2

ρ − (2m+ 2)∂ρ
)
.

5.4.1 The eikonal equation

We find function ϕ on [0,+∞) such that the term of order h0 is zero, that is

(a(ρ))2

2ρ
− 2ρ(ϕ′(ρ))2 = 0 , (5.40)

⇔ (ϕ′(ρ))2 =
(a(ρ))2

4ρ2
.

We choose a positive solution

ϕ(ρ) =

∫ ρ

0

a(τ)

2τ
dτ,

which is a smooth function on [0,+∞) because it can be rewritten in the form

ϕ(ρ) =

∫ ρ

0

a(τ)

2τ
dτ =

∫ ρ

0

1

2τ

∫ τ

0
β(ξ)dξ dτ =

1

2

∫ ρ

0

∫ 1

0
β(ξτ) dξdτ .

Then the operator Nh,m becomes

N̂h,m = hN 1 + h2N 2
m ,

where

N 1 = 4ϕ′(ρ)ρ∂ρ + 2ϕ′(ρ) + 2ρϕ′′(ρ) = 2a(ρ)∂ρ + β(ρ) ,

and

N 2
m = −2ρ∂2

ρ − (2m+ 2)∂ρ .

We now look for a WKB Ansatz and a quasi-eigenvalue, respectively, in the form

a(ρ, h) ∼ a0(ρ) + ha1(ρ) + h2a2(ρ) + ... ,

λ(h) ∼ h(µ0 + hµ1 + h2µ2 + ...) .

We substitute these formal series into the equation(
N̂h,m − λ(h)

)
a(ρ, h) = 0 .
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Collect all terms according to hj , we have an infinite system

h :
(
N 1 − µ0

)
a0 = 0 ,

h2 :
(
N 1 − µ0

)
a1 =

(
µ1 −N 2

m

)
a0 ,

h3 :
(
N 1 − µ0

)
a2 =

(
µ1 −N 2

m

)
b1 + µ2b0 ,

h4 :
(
N 1 − µ0

)
a3 =

(
µ1 −N 2

m

)
b2 + µ2a1 + µ3a0 ,

...

We will solve these transport equations by elementary ODEs arguments and by induc-

tion.

5.4.2 The first transport equation

Collecting all terms of order h1, we have the first transport equation

(2a(ρ)∂ρ + β(ρ)− µ0)a0 = 0 . (5.41)

The equation (5.41) has smooth solutions which do not vanish at 0 if and only if

µ0 = β(0) .

Indeed, since a(ρ) =

∫ ρ

0
β(s) ds = ρ

∫ 1

0
β(ρs) ds and β(0) > 0, we can extend the

quotient

F (ρ) :=
β(0)− β(ρ)

2a(ρ)
,

into a smooth function on [0,+∞). We still denote this extension as F , and the differ-

ential equation

∂ρa0 = Fa0 ,

has smooth solutions

a0(ρ) = a0(0) exp

(∫ ρ

0
F (s) ds

)
,

with a0(0) 6= 0. We make a choice a(0) = 1 and we obtain a solution

a0(ρ) = exp

(∫ ρ

0
F (s) ds

)
.
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5.4.3 The second transport equation

Let us gather all terms of order h2 to get the second transport equation

(2a(ρ)∂ρ + β(ρ)− µ0)a1 = (µ1 + (2m+ 2)∂ρ + 2ρ∂2
ρ)a0 , (5.42)

we deduce that the necessary condition such that the equation (5.42) has solution which

is smooth at 0 is

(µ1 + (2m+ 2)∂ρ)a0(0) = 0 ,

or

µ1 = −(2m+ 2)∂ρa0(0)

a0(0)
.

From the equation (5.41), let ρ go to 0, we get

∂ρa0(0)

a0(0)
= lim

ρ→0

β(0)− β(ρ)

2a(ρ)
=
−β′(0)

2β(0)
.

Thus, we find that

µ1 = (m+ 1)
β′(0)

β(0)
. (5.43)

we recover the coefficient found in the first part of the analysis. If we take this value of

µ1, our second transport equation (5.42) can be rewritten as

∂ρa1 − F (ρ)a1 = g1(ρ) :=
(µ1 + (2m+ 2)∂ρ + 2ρ∂2

ρ)a0

2a(ρ)
. (5.44)

This equation has solutions in the form

a1(ρ) = exp

(∫ ρ

0
F (s) ds

)∫ ρ

0

(
exp

(
−
∫ τ

0
F (s) ds

)
g1(τ)

)
dτ

+ a1(0) exp

(∫ ρ

0
F (s) ds

)
.

We prescribe the restriction at ρ = 0 that a1(0) = 0 so that the equation (5.42) has the

unique solution

a1(ρ) = exp

(∫ ρ

0
F (s) ds

)∫ ρ

0

(
exp

(
−
∫ τ

0
F (s) ds

)
g1(τ)

)
dτ .

5.4.4 Induction

Let n ∈ N and n ≥ 2. We assume that (µj)0≤j≤n and (aj)0≤j≤n are determined and

(aj)1≤j≤n are smooth function on [0,+∞) and vanish at ρ = 0. Let us show that we
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can determine µn+1 and an+1 by the (n+ 1)-th transport equation

(2a(ρ)∂ρ + β(ρ)− µ0) an+1 =
(
(2m+ 2)∂ρ + 2ρ∂2

ρ

)
an +

n+1∑
j=1

µjan+1−j . (5.45)

The equation has a smooth solution at 0 if and only if

(2m+ 2)∂ρan(0) +

n∑
j=1

µjan+1−j(0) + µn+1a0(0) = 0.

Since a0(0) = 1, µn+1 is completely determined by

µn+1 = −(2m+ 2)∂ρan(0) .

With this value of µn+1, we can rewrite the equation (5.45) as

∂ρan+1 − F (ρ)an+1 = gn(ρ) , (5.46)

where gn is the smooth extension of the function

Gn(ρ) =

(
(2m+ 2)∂ρ + 2ρ∂2

ρ

)
an +

∑n+1
j=1 µjan+1−j

2a(ρ)
,

on [0,+∞).

There is only one solution an+1 such that an+1(0) = 0, that is

an+1(ρ) = exp

(∫ ρ

0
F (s) ds

)∫ ρ

0

(
exp

(
−
∫ τ

0
F (s) ds

)
gn(τ)

)
dτ .

Proof of Theorem 1.17. We fix m ∈ N. The process of performing WKB for the spectral

problem of the operator N̂h,m provides us the required functions and sequences as follows:

i) The function ϕ(ρ) is given by the Eikonal equation (5.40):

ϕ(ρ) =
1

2

∫ ρ

0

∫ 1

0
β(ξτ) dξdτ . (5.47)

ii) The transport equations give us the existence of a sequence of smooth functions

(am,j)j∈N defined on [0,+∞) and the sequence (µm,j)j∈N which depends on m.

Notice that am,0 is positive because

am,0(ρ) = exp

(∫ ρ

0
F (s)ds

)
.
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For each J ∈ N, from the WKB construction, there exists a smooth function fm,J(ρ)

defined on [0,+∞) such that

e
ϕ(ρ)
h ρ

−m
2

Nh,m − h J∑
j=0

µm,jh
j

 ρm2 e−ϕ(ρ)h

J∑
j=0

am,jh
j

 = fm,J(ρ)hJ+2 .

After changing of variable ρ = r2

2 , we obtain

e
ϕ

(
r2

2

)
h

(
r2

2

)−m
2

Lh,m − h
J∑
j=0

µm,jh
j

 (r2

2

)m
2

e
−ϕ

(
r2

2

)
h

J∑
j=0

am,j

(
r2

2

)
hj


= fm,J

(
r2

2

)
hJ+2 .

By multiplying

(
r2

2

)m
2

e
−ϕ

(
r2

2

)
h

J∑
j=0

am,j

(
r2

2

)
hj with eimθ and using the fact that

Kh(eimθu) = Lh,m(eimθu) ,

the result of Theorem 1.17 is deduced after changing variables from the radial coordinates

to Cartesian coordinates.

5.5 The WKB approximation

Let us recall the definition of the cut-off function χ defined at (1.49) associated with the

large number K > 0. From now, for shortness, we will denote L2(R+) instead L2(R+,dρ)

for the Hilbert space of the operator Nh,m.

Theorem 5.15. For all (ε,m, J) ∈ (0, 1) × N × N, there exist a constant C > 0 and

h0 > 0 such that, for all h ∈ (0, h0),∥∥∥eεϕ(ρ)/h
(
Nh,m − λJh,m

)
ΨJ
h,m

∥∥∥
L2(R+)

≤ ChJ+2, (5.48)

where

λJh,m := h
J∑
j=0

µm,jh
j and ΨJ

h,m(ρ) := χe−ϕ(ρ)/hρ
m
2

 J∑
j=0

am,jh
j

 . (5.49)

In particular, ∥∥(Nh,m − λJh,m)ΨJ
h,m

∥∥
L2(R+)

≤ ChJ+2 . (5.50)
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Proof. Using the definition of the operator N̂h,m, we check that

eεϕ(ρ)/h
(
Nh,m − λJh,m

)
ΨJ
h,m

=eεϕ(ρ)/h [Nh,m, χ] e−ϕ(ρ)/hρ
m
2 SJ + χe(ε−1)ϕ(ρ)/hρ

m
2

(
N̂h,m − λJh,m

)
SJ . (5.51)

where SJ :=
(∑J

j=0 am,jh
j
)

is a smooth function on [0,+∞).

Notice that

[Nh,m, χ] = −2h2 [∂ρρ∂ρ, χ]

= −2h2
(
χ′ + ρχ′′

)
− 4h2χ′ρ∂ρ ,

and with the support considerations, the first term in the right hand side of (5.51) is

O(h∞) with the norm ‖ · ‖L2(R+).

From the WKB construction of λJ and Ψh,η,J(ρ), we get(
N̂h,m − λJh,m

)
SJ(ρ) = hJ+2fm,J(ρ) ,

where fm,J(ρ) is a smooth function on [0,+∞), then the second term in the right hand

side of (5.51) is estimated by∥∥∥χe(ε−1)ϕ(ρ)/hρ
m
2

(
N̂h,m − λJh,m

)
SJ

∥∥∥
L2(R+)

= hJ+2
∥∥∥e(ε−1)ϕ(ρ)/hρ

m
2 fm,J(ρ)

∥∥∥
L2([0,K+1))

≤ C1h
J+2.

This leads to ∥∥∥eεϕ(ρ)/h
(
Nh,m − λJh,m

)
ΨJ
h,m

∥∥∥
L2(R+)

≤ ChJ+2,

and get (5.48).

Proof of Theorem 1.18. Theorem 1.18 is a direct consequence of Theorem 5.15 by

unitary equivalence.

‖eεP/h
(
Lh,A − λJh,m

)
ΥJ
h,m‖L2(R2) =

∥∥∥eεϕ(ρ)/h
(
Nh,m − λJh,m

)
ΨJ
h,m

∥∥∥
L2(R+)

≤ ChJ+2 .

We may now provide an approximation of the ground-state eigenfunction of the operator

Nh,m by the WKB construction ΨJ
h,m defined in (5.49). Let Ψh,m be an eigenfunction

according to λ0(Nh,m), we introduce the orthogonal projection of ΨJ
h,m onto eigenspace

of λ0(Nh,m)

ΓmΨJ
h,m = 〈ΨJ

h,m,Ψh,m〉Ψh,m .
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Theorem 5.16. For all (m,J) ∈ N×N, there exist C > 0 and h0 > 0 such that, for all

h ∈ (0, h0), ∥∥ΨJ
h,m − ΓmΨJ

h,m

∥∥
L2(R+)

≤ ChJ+1. (5.52)

Proof. From the estimate (5.50), we use the spectral theorem to get

∥∥ΨJ
h,m

∥∥
L2(R+)

dist
(
λJh,m, Sp(Nh,m)

)
≤ ChJ+2 .

Recall that, from the WKB construction,

λJh,m = h
J∑
k=0

µkh
k

with µ0 = β(0). Note that Nh,m and Mh,m are unitary. We apply Theorem 5.13 and

one part of its proof (5.33), we get

λ0(Nh,m) = λ0(Mh,m) = β(0)h+
(m+ 1)β′(0)

β(0)
h2 + o(h2) ,

and

3β(0)h− Ch2 ≤ λ1(Nh,m) ≤ λ2(Nh,m) ≤ ...

Since the spectrum of Nh,m is discrete, we can conclude that

dist
(
λJh,m,Sp(Nh,m)

)
= |λJ(h)− λ0(Nh,m)| .

Thus, we obtain ∥∥ΨJ
h,m

∥∥
L2(R+)

∣∣λJh,m − λ0(Nh,m)
∣∣ ≤ ChJ+2 . (5.53)

Combine this with (5.50), and notice that ΓmΨJ
h,m belongs to the kernel of Nh,m, we get

‖ (Nh,m − λ0(Nh,m))
(
ΨJ
h,m − ΓmΨJ

h,m

)
‖L2(R+)

=
∥∥(Nh,m − λ0(Nh,m)) ΨJ

h,m

∥∥
L2(R+)

≤
∥∥(Nh,m − λJh,m)ΨJ

h,m

∥∥
L2(R+)

+ |λJh,m − λ0(Nh,m)|
∥∥ΨJ

h,m

∥∥
L2(R+)

≤ ChJ+2 .

By definition, ΨJ
h,m − ΓmΨJ

h,m ∈ [ker (Nh,m − λ0(Nh,m))]⊥ and, since the gap between

the first and the second eigenvalues of Nh,m is larger than 2β(0)h+O(h2), the Spectral
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Theorem proves that

(2β(0)h− ch2)‖ΨJ
h,m − ΓmΨJ

h,m‖L2(R+)

≤ (λ1(Nh,m)− λ0(Nh,m))‖ΨJ
h,m − ΓmΨJ

h,m‖L2(R+)

≤ ‖ (Nh,m − λ0(Nh,m))
(
ΨJ
h,m − ΓmΨJ

h,m

)
‖L2(R+)

≤ ChJ+2 .

Dividing by h and take h small enough, the conclusion follows.

Moreover, we can show that the eigenfunctions of Nh,m can be approximated better in

an exponentially weighted space. In order to do that, we establish the following Agmon

estimate and we refer to the reference [6]. Let us recall the expression of the operator

Nh,m
Nh,m = −2h2∂ρρ∂ρ + Ṽh,m(ρ) ,

where

Ṽh,m(ρ) :=
(hm− a(ρ))2

2ρ
.

Proposition 5.17. Let m ∈ N and let (Φk)k∈N ⊂ W 1,∞(R+,R). Assume that there

exist M > 0, K1 > 0, K2 > 0 and R0 > 0 such that for all h ∈ (0, 1), k ∈ N

Ṽh,m(ρ)− 2ρ|Φ′k(ρ)|2 ≥Mh for all ρ ∈ [R0h,+∞) , (5.54)

|Φ′k(ρ)| ≤ K1, |Φk(ρ)| ≤ K2h for all ρ ∈ [0, R0h) . (5.55)

Then, for all c0 ∈ (0,M), there exists a positive constant C > 0 such that, for all

h ∈ (0, 1), k ∈ N, z ∈ [0, c0h], and u ∈ Dom(Nh,m),

‖eΦk/hu‖L2(R+) ≤
C

h
‖eΦk/h (Nh,m − z)u‖L2(R+) + C‖u‖L2(R+) . (5.56)

Proof. From Lax-Milgram theorem, we have〈
Nh,mu, e2Φk/hu

〉
L2(R+)

= 2h2
〈√

ρ∂ρu,
√
ρ∂ρ(e

2Φk/hu)
〉

L2(R+)
(5.57)

+

∫ ∞
0

Ṽh,m(ρ)e2Φk/h|u|2 dρ .

Setting P =
√
ρ∂ρ and following the same steps as in the proof of Theorem 5.11, then

Re

(〈
Pu, Pe2Φk/hu

〉
L2(R+)

)
= ‖PeΦk/hu‖2

L2(R+)
− ‖[P, eΦk/h]u‖2

L2(R+)
.
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Noticing that [P, eΦk/h] =
√
ρΦ′k
h eΦk/h and take the real part of (5.57), we obtain

Re
〈
Nh,mu, e2Φk/hu

〉
= 2h2

∫ +∞

0
ρ|∂ρ(eΦk/hu)|2 dρ

+

∫ +∞

0

(
Ṽh,m − 2ρ|Φ′k(ρ)|2

)
e2Φk/h|u|2 dρ .

Since Ṽh,m(ρ) ≥ 0, we get∫ +∞

R0h

(
Ṽh,m − 2ρ|Φ′k(ρ)|2

)
|eΦk/hu|2 dρ ≤‖eΦk/hNh,mu‖L2(R+)‖e

Φk/hu‖L2(R+)

+

∫ R0h

0
2ρ|Φ′k(ρ)|2e2Φk/h|u|2 dρ .

Using (5.54), we deduce that

Mh

∫ +∞

R0h
|eΦk/hu|2 dρ ≤ ‖eΦk/hNh,mu‖L2(R+)‖e

Φk/hu‖L2(R+)

+

∫ R0h

0
2ρ|Φ′k(ρ)|2e2Φk/h|u|2 dρ .

Thanks to (5.55), Φk/h and Φ′k are uniformly bounded with respect to h and to k on

[0, R0h). Therefore, we deduce that there exists a constant L > 0 (independent of h and

k) such that

Mh

∫ +∞

0
|eΦk/hu|2 dρ ≤ ‖eΦk/hNh,mu‖L2(R+)‖e

Φk/hu‖L2(R+) + Lh

∫ R0h

0
|u|2 dρ .

For z ∈ [0, c0h), we get

(M − c0)h‖eΦk/hu‖2
L2(R+)

≤ ‖eΦk/h (Nh,m − z)u‖L2(R+)‖e
Φk/hu‖L2(R+) + Lh‖u‖2

L2(R+)
.

Since M > c0, this gives (5.56) .

The first application of the above Agmon estimate is to prove the decay of the eigen-

function of the operator.

Theorem 5.18. For all ε ∈ (0, 1), there exist C > 0 and h0 > 0 such that, for all

h ∈ (0, h0) and all eigenfunctions Ψ with eigenvalue of order h of the operator Nh,m,

‖eεϕ/hΨ‖L2(R+) ≤ C‖Ψ‖L2(R+) , (5.58)

where ϕ(ρ) =

∫ ρ

0

a(τ)

2τ
dτ is given by (5.47).
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Proof. Let (χk)k∈N be a sequence of functions that is defined in the proof of Theorem

(5.12). We recall here two remarkable properties of (χk)k∈N.

i) (χk) converges pointwise to the function y(t) = t on [0,+∞), i.e.

lim
k→+∞

χk(t) = t for all t ∈ [0,+∞) .

ii) Related to the derivatives of χk:

|χ′k(t)| = 1 a.e. on [0, 2k] and |χ′k(t)| = 0 for s > 2k .

In order to apply Proposition 5.17, we set up the sequence (Φk)k∈N as follows:

Φk(ρ) = εχk(ϕ(ρ)) .

For each k ∈ N, we need to check that Φk ∈ W 1,∞(R+,R). Obviously, χk ◦ ϕ ∈
L∞(R+,R) and for all u ∈ C1

c (R+),∫
R+

χk(ϕ)u′dρ =

∫
[0≤ϕ≤k]

ϕu′ dρ+

∫
[k≤ϕ≤2k]

(2k − ϕ)u′ dρ

=

∫ ϕ−1(k)

ϕ−1(0)
ϕu′ dρ+

∫ ϕ−1(2k)

ϕ−1(k)
(2k − ϕ)u′ dρ

= −
∫ ϕ−1(k)

ϕ−1(0)
ϕ′udρ+

∫ ϕ−1(2k)

ϕ−1(k)
ϕ′udρ

= −
∫
R+

χ′k(ϕ)ϕ′udρ ,

where [a ≤ ϕ ≤ b] := {ρ ∈ R+ : a ≤ ϕ(ρ) ≤ b}, and since ϕ is strictly increasing

[a ≤ ϕ ≤ b] = [ϕ−1(a), ϕ−1(b)] for all a, b ∈ [0,+∞). Since χ′k(ϕ)ϕ′ ∈ L∞(R+,R), we

deduce that Φk ∈W 1,∞(R+,R). Furthermore, one has

|Φ′k(ρ)| ≤ ε|ϕ′(ρ)| = εa(ρ)

2ρ
a.e. on R+ .

Let us consider an eigenvalue λ = (O(h)) and an associated eigenfunction Ψ of the

operator Nh,m. Then, there exist c0 > 0 and h0 > 0 such that

|λ| ≤ c0h for all h ∈ (0, h0) .
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Let M and R0 be numbers such that
M > c0 ,

R0 ≥
2β(0)m+ 2M

β(0)2(1− ε2)
.

Using the assumption (1.46), we have a(ρ) ≥ b0ρ for all ρ ∈ R+. From the definition of

R0, we have the estimate, for all h ∈ (0, h0), k ∈ N and ρ ≥ R0h,

Ṽh,m(ρ)− 2ρ|Φ′k(ρ)|2 ≥ Ṽh,m(ρ)− ε2a
2(ρ)

2ρ

≥
(1− ε2)

(
β(0)ρ− hm

1−ε2

)2
− h2m2

1−ε2

2ρ

=
(1− ε2)β(0)2

2
ρ− hmβ(0)

≥
(

(1− ε2)β(0)2R0

2
− β(0)m

)
h

≥Mh.

On the other hand, there exist K1 > 0 and K2 > 0 such that, for all h ∈ (0, h0), k ∈ N
and ρ ∈ [0, R0h),

|Φ′k(ρ)| ≤ εa(ρ)

2ρ
=
ε

2

∫ 1

0
β(ρs)ds ≤ K1

and

|Φk(ρ)| ≤ εφ(ρ) = ε

∫ ρ

0

∫ 1

0
β(τs) ds dτ ≤ K2h .

Now, we can apply Proposition 5.17 for z = λ, there exists a constant C > 0 such that,

for all eigenfunction Ψ associated with λ,∫
R+

e2εχk(ϕ/h)|Ψ|2 dρ ≤ C
∫
R+

|Ψ|2 dρ .

By letting k →∞ and using Fatou’s lemma, we get the result∫
R+

e2εϕ/h|Ψ|2 dρ ≤ C
∫
R+

|Ψ|2 dρ .

Proof of Theorem 1.19. Let T : L2(R2,dq) → L2(R+ × R/2πZ, rdrdθ) be the unitary

operator introduced in (5.5). Then, T (Uh,m) is the eigenfunction associated with the

eigenvalue λm(Kh) = λm(Lh,A) of the operator Kh. From Theorem 5.14, T (Uh,m) has

the form

T (Uh,m) =
1√
2π
e−imθΨh,m

(
r2

2

)
,
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where Ψh,m is a eigenfunction associated with the first eigenvalue λ0(Nh,m) of the oper-

ator Nh,m. By computation, we have

∫
R2

e2εP/h|Uh,m|2 dq =

∫ 2π

0

∫
R+

e2εϕ(r2/2)/h|T (Uh,m)|2 rdrdθ

=

∫
R+

e2εϕ(r2/2)/h

∣∣∣∣Ψh,m

(
r2

2

)∣∣∣∣2 rdr
=

∫
R+

e2εϕ(ρ)/h|Ψh,m|2 dρ .

Applying Theorem 5.18, there exists C > 0 and h0 > 0 such that, for all h ∈ (0, h0),∫
R+

e2εϕ(ρ)/h|Ψh,m|2 dρ ≤ C
∫
R+

|Ψh,m|2 dρ = C

∫
R2

|Uh,m|2 dq .

Theorem 5.19. For all (ε,m, J) ∈ (0, 1) × N × N, there exist C > 0 and h0 > 0 such

that, for all h ∈ (0, h0),

‖eεϕ(ρ)/h
(
ΨJ
h,m − ΓmΨJ

h,m

)
‖L2(R+) ≤ Ch

J+1, (5.59)

where ϕ(ρ) =

∫ ρ

0

a(τ)

2τ
dτ is given by (5.47).

Proof. Let us fix (ε,m, J) ∈ (0, 1)×N×N. We recall that ΓmΨJ
h,m is the eigenfunction

with the eigenvalue λ0(Nh,m) that has order h. From Theorem 5.18, ΓmΨJ
h,m belongs

to L2(R+). In order to prove the estimate in this theorem, we consider the sequence

(Φk)k∈N that is defined in the proof of Theorem 5.18. As well as in that proof, we

obtained the positive numbers M,K1,K2 and R0 such that all conditions of Proposition

5.17 are satisfied. Let us apply Proposition 5.17 for the function ΨJ
h,m ∈ Dom(Nh,m) to

get the estimate

‖eΦk/hΨJ
h,m‖L2(R+) ≤

C

h
‖eΦk/h

(
Nh,m − λJh,m

)
ΨJ
h,m‖L2(R+) + C‖ΨJ

h,m‖L2(R+)

≤ ChJ+1 + C‖ΨJ
h,m‖L2(R+) ,

where the last inequality is obtained by (5.48).

Applying again Proposition 5.17 for the function u = ΨJ
h,m − ΓmΨJ

h,m which belongs to

Dom(Nh,m), we have

‖eΦk/hu‖ ≤ C

h
‖eΦk/h (Nh,m − λ0(Nh,m))u‖+ C‖u‖ . (5.60)
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Thanks to (5.48) and the inequality (5.53), we have∥∥∥eΦk/h (Nh,m − λ0(Nh,m))u
∥∥∥

L2(R+)

≤
∥∥∥eΦk/h

(
Nh,m − λJh,m

)
ΨJ
h,m

∥∥∥
L2(R+)

+
∣∣λ0(Nh,m)− λJh,m

∣∣ ∥∥∥eΦk/hΨJ
h,m

∥∥∥
L2(R+)

≤ ChJ+2 + ChJ+1
∣∣λ0(Nh,m)− λJh,m

∣∣+ C|λ0(Nh,m)− λJh,m|
∥∥ΨJ

h,m

∥∥
L2(R+)

≤ ChJ+2 .

Combining with Theorem 5.16 and 5.60, we get

‖eεχk(ϕ(ρ))/hu‖L2(R+) ≤ Ch
J+1 ,

for all k ≥ 1. Then we let k → +∞ and use the Fatou’s lemma, we get the conclusion.

Proof of Theorem 1.20 and Theorem 1.21. These two theorems are consequences

of Theorem 5.16 and Theorem 5.19. We fix the couple (J,m) ∈ N × N. Let us recall

that Υh,m be the eigenfunction associated with λm(Lh,A) and

ΠmΥJ
h,m = 〈ΥJ

h,m,Υh,m〉L2(R2,dq)Υh,m

is the projection of the WKB Ansatz ΥJ
h,m into the eigenspace of λm(Lh,A).

Through the unitary operator T : L2(R2,dq) → L2(R+ × R/2πZ, rdrdθ) introduced in

(5.5), T (Υh,m) is the eigenfunction of the operator Kh. From Theorem 5.14, T (Υh,m)

has the form

T (Υh,m) =
1√
2π
e−imθΨh,m

(
r2

2

)
,

in which Ψh,m is an eigenfunction associated with the first eigenvalue λ0(Nh,m) of the

operator Nh,m. By computation, we have

〈
ΥJ
h,m,Υh,m

〉
L2(R2)

= 〈TΥJ
h,m, TΥh,m〉L2(rdrdθ)

=
√

2π

〈
ΨJ
h,m

(
r2

2

)
,Ψh,m

(
r2

2

)〉
L2(R+,rdr)

=
√

2π
〈
ΨJ
h,m,Ψh,m

〉
L2(R+,dρ)

.

It yields that

T
(
ΠmΥJ

h,m

)
=
〈
ΨJ
h,m,Ψh,m

〉
L2(R+,dρ)

Ψh,m

(
r2

2

)
e−imθ .

Notice that

T (ΥJ
h,m) = ΨJ

h,m

(
r2

2

)
e−imθ .
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By applying the result (5.52), it follows that

‖ΥJ
h,m −ΠmΥJ

h,m‖L2(R2,dq)

= ‖T (ΥJ
h,m)− T (ΠmΥJ

h,m)‖L2(rdrdθ)

=
√

2π

∥∥∥∥ΨJ
h,m

(
r2

2

)
−
〈
ΨJ
h,m,Ψh,m

〉
L2(R+)

Ψh,m

(
r2

2

)∥∥∥∥
L2(R+,rdr)

=
√

2π
∥∥∥ΨJ

h,m −
〈
ΨJ
h,m,Ψh,m

〉
L2(R+,dρ)

Ψh,m

∥∥∥
L2(R+,dρ)

=
√

2π
∥∥ΨJ

h,m − ΓmΨJ
h,m

∥∥
L2(R+,dρ)

≤ ChJ+1 .

In a similar way, by applying the estimate (5.59), we have

‖eεP/h
(
ΥJ
h,m −ΠmΥJ

h,m

)
‖L2(R2,dq)

=
√

2π
∥∥∥eεϕ/h (ΨJ

h,m −
〈
ΨJ
h,m,Ψh,m

〉
L2(R+)

Ψh,m

)∥∥∥
L2(R+)

=
√

2π
∥∥∥eεϕ/h (ΨJ

h,m − ΓmΨJ
h,m

)∥∥∥
L2(R+)

≤ ChJ+1 .
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Appendix A

Spectral Theory

In the following, we recall some elementary knowledges about spectral theory which is

often used in this thesis. The proofs of the statements in this appendix can be found

in the lecture note [50] or in [25]. Below, (H, 〈·, ·〉H) denotes the Hilbert space on C
equipped with the inner product 〈·, ·〉H . We also denote by Dom(T ) the domain of an

operator T which is a linear subspace in H.

Definition A.1 (Closed operator). Let (Dom(T ), T ) be an operator on H. T is said to

be closed if its graph

G(T ) = {(x, y) | x ∈ Dom(T ), y = Tx} ,

is closed in H ×H, where the norm on H ×H is defined by

‖(x, y)‖ =
(
‖x‖2H + ‖y‖2H

) 1
2 .

Definition A.2 (Closure of an operator). The smallest closed extension of T is called

the closure of T , and denoted by T .

Definition A.3 (Adjoint of an unbounded operator). Let T : Dom(T ) → H be a

densely defined linear operator on H (i.e. Dom(T ) is dense in H), we let

Dom(T ∗) = {u ∈ H : Dom(T ) 3 w 7→ 〈Tw, u〉H is continuous for the topology of H} .

Thus, for all u ∈ Dom(T ∗), there exists unique T ∗u ∈ H such that

〈Tw, u〉H = 〈w, T ∗u〉H for all u ∈ Dom(T ) .

We call T ∗ the adjoint operator of T .

Definition A.4. Let (Dom(T ), T ) be a densely defined operator.
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1. (Dom(T ), T ) is called symmetric if T ⊂ T ∗.

2. (Dom(T ), T ) is called self-adjoint if T = T ∗.

3. A symmetric operator is essentially self-adjoint if its closure is self-adjoint.

In the above definition, we used the relation A ⊂ B between two operators A and B. It

means that Dom(A) ⊂ Dom(B) and Au = Bu for all u ∈ Dom(A).

Proposition A.5. If (Dom(T ), T ) is essentially self-adjoint operator, it has unique

self-adjoint extension.

We often use the following theorem to produce a self-adjoint operator from a continuous

and coercive sesquilinear.

Theorem A.6 (Lax-Milgram). Let (V, 〈·, ·〉V ) be a Hilbert space such that V is con-

tinuously embedded and dense in H. Let Q be a sesquilinear form define on V which

is

1. Continuous : There exists a constant C > such that

|Q(u, v)| ≤ C‖u‖V ‖v‖V for all u, v ∈ V .

2. V -elliptic (or Coercive): There exists a constant α > such that

|Q(u, u) ≥ α‖u‖2V for all u, v ∈ V .

3. Hermitian : Q(u, v) = Q(v, u) for all u, v ∈ V .

Then, there exists a self-adjoint operator S whose domain is

Dom(S) = {u ∈ V : v 7→ Q(u, v) is continuous on V for the norm of H} .

and defined by the way : for each u ∈ Dom(S), there exists a unique element in H, we

denote it Su such that

Q(u, v) = 〈Su, v〉H ∀v ∈ V .

Furthermore, L is bijective from Dom(S) onto H and Dom(S) is dense in V and in H.

Definition A.7 (Resolvent and spectrum set). Let (Dom(T ), T ) be a self-adjoint oper-

ator on H. The resolvent set of T is define by

ρ(T ) = {z ∈ C : (T − zI) is a bijective from Dom(T ) onto H} .
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and the complement of the resolvent set in C is called the spectrum of the operator,

denoted by Sp(T ) ,

Sp(T ) = C \ ρ(T ) .

And if λ ∈ ρ(T ), the operator (T − λ)−1 is called a resolvent of T .

When (Dom(T ), T ) is a self-adjoint operator, its spectrum is classified into discrete

spectrum and essential spectrum:

Definition A.8. Let (Dom(T ), T ) be a self-adjoint operator.

i) The discrete spectrum of T , denoted by Spdis, containing elements which are iso-

lated finite multiplicity values in Sp(T ).

ii) The essential spectrum of T , denoted by Spess(T ), is the complement of discrete

spectrum of T

Spess(T ) = Sp(T ) \ Spdis(T ) .

The operator T will have a purely discrete spectrum if it has a compact resolvent.

There is one useful criterion to check the compactness of the resolvent through the form

domain:

Proposition A.9. Consider two Hilbert spaces (V, 〈·, ·〉V ) and (H, 〈·, ·〉H) such that V

is continuously embedded and dense in H. Assume that Q is a continuous, coercive and

Hermitian sesquilinear form on V and let S be the self-adjoint operator given by the

Theorem A.6. Let us denote by ‖ · ‖Q the norm induced by Q, i.e. ‖u‖Q =
√
Q(u, u). If

(V, ‖ · ‖Q) ↪→ (H, ‖ · ‖H) is compact, then S has compact resolvent.

Proof. Choose one element z ∈ ρ(S). We need to show that

(S − z)−1 : (H, ‖ · ‖H)→ (H, ‖ · ‖H)

is a compact operator. To do that, we consider (S − z)−1 : (H, ‖ · ‖H)→ (H, ‖ · ‖H) as

the composition of the following operators:

(H, ‖ · ‖H)
(S−z)−1

−−−−−→ (Dom(S), ‖ · ‖S) ↪
i1−→ (V, ‖ · ‖Q) ↪

i2−→ (H, ‖ · ‖H) ,

where ‖u‖S := ‖u‖H+‖Su‖H is the graph norm equipped on Dom(S). Since S is closed,

(Dom(S), ‖ · ‖S) is a Banach space. Applying the closed graph theorem, the mapping

(S − z)−1 : (H, ‖ · ‖H) → (Dom(S), ‖ · ‖S) is bounded. By the definition of the norm

‖ · ‖Q, we get the estimation, for all u ∈ Dom(S)

‖u‖Q =
√
〈Su, u〉H ≤ ‖Su‖1/2H ‖u‖

1/2
H ≤ 1

2
(‖Su‖H + ‖u‖H) =

1

2
‖u‖S .
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It means that the injection i1 is bounded too. Since i2 is compact, the conclusion of the

proposition comes from the fact that the set of compact operators is an ideal of the set

of bounded operators.

Proposition A.10. Let (Dom(T ), T ) be a self-adjoint operator on H. For all λ ∈ ρ(T ),

we have

‖(T − λ)−1‖ := sup
u∈H\{0}

‖(T − λ)−1u‖H
‖u‖H

≤ 1

dist(λ,Sp(T ))
.

The above proposition leads to the useful result which is usually used to approximate

the eigenvalues of the self-adjoint operator.

Corollary A.11. Let (Dom(T ), T ) be a self-adjoint operator on H. For all λ ∈ C and

for all ψ ∈ Dom(T ), we have

dist(λ,Sp(T ))‖ψ‖H ≤ ‖(T − λ)ψ‖H .

Lemma A.12. Let (Dom(T ), T ) be a self-adjoint operator on H. Then

Spdis(T ) = {λ ∈ Sp(T ) : (T − λ) is a Fredholm operator} .

Theorem A.13 (Min-max principle). Let T be a self-adjoint operator was born from

Lax-Milgram theorem A.6 by a sesquilinear Q and Dom(Q) is the form domain of Q.

We define the Rayleigh quotients of the operator T

µn(T ) = sup
u1,...,un−1∈Dom(Q)

 inf
u∈span{u1,...,un−1}⊥

u∈Dom(T )\{0}

Q(u, u)

‖u‖2H

 .

Then the Rayleigh quotients µn(T ) is a non-decreasing sequence and one of the following

holds

i) µn(T ) is the n-th eigenvalue counted with multiplicity of T and the spectrum of T

in (−∞, µn(T )] is discrete.

ii) µn(T ) is the bottom of the essential spectrum and, for all j ≥ n, µj(T ) = µn(T ).

And the consequence of the Min-Max principle which is often used is the following

Corollary A.14. Assume that there exists a ∈ R with a < inf Spess(T ) and an n-

dimensional linear space V ⊂ Dom(T ) such that

〈Tψ, ψ〉H ≤ a‖ψ‖2H , for all ψ ∈ V .
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Then, the n-eigenvalue λn(T ) exists and satisfies

λn(T ) ≤ a .

Proof. Given arbitrary u1, ..., un−1 in H. Since V is a vector space has dimension n, we

can find a non-trivial element φ ∈ V ∩ span{u1, ..., un−1}T . It implies that

inf
u∈span{u1,...,un−1}T

u∈Dom(T )\{0}

Q(u, u)

‖u‖2H
≤ Q(φ, φ)

‖φ‖2H
=
〈Tφ, φ〉H
‖φ‖2H

≤ a .

Take supremum on all class containing (n− 1) elements in H, we have

µn ≤ a .

Note that a < inf Spess(T ), apply the Min-Max principle (see Theorem A.13), it results

that µn is the n-th eigenvalue.
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[48] N. Raymond. Breaking a magnetic zero locus: asymptotic analysis. Math. Models

Methods Appl. Sci., 24(14):2785–2817, 2014.

[49] N. Raymond. Bound states of the magnetic Schrödinger operator, volume 27 of EMS

Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2017.
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Titre : Analyse classique et semi-classique des champs magnétiques en deux dimensions

Mot clés : Hamiltonien magnétique ; Confinement ; Scattering ; Méthodes WKB ; Analyse semi-

classique ; Théorie spectrale

Résumé : Ce manuscrit est consacré à l’étude
de la mécanique classique et la mécanique
quantique en présence d’un champ magné-
tique. En mécanique classique, nous utili-
sons un Hamiltonien pour décrire la dyna-
mique d’une particule chargée dans un do-
maine soumis à un champ magnétique. Nous
nous intéressons ici à deux problèmes clas-
siques de physique : le problème de confi-
nement et le problème de scattering. Dans
le cas quantique, nous étudions le problème
spectral du Laplacien magnétique au niveau
semi-classique dans des domaines de dimen-
sion deux : sur une variété Riemannienne
compacte à bord et dans R2. En supposant
que le champ magnétique ait un unique mini-

mum strictement positif et non-dégénéré, nous
pouvons décrire les fonctions propres par les
méthodes WKB. Grâce au théorème spectral,
nous pouvons estimer efficacement les vraies
fonctions propres et les fonctions propres ap-
prochées localement proche du minimum du
champ magnétique. Dans R2, sous l’hypo-
thèse additionnelle d’une symmétrie radiale
du champ magnétique, nous pouvons mon-
trer que les fonctions propres du Laplacien
magnétique décroissent de manière exponen-
tielle à l’infini avec une vitesse contrôlée par
la fonction phase de la procedure WKB. De
plus, les fonctions propres sont très bien ap-
prochées dans un espace à poids exponentiel.
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Abstract: This manuscript is devoted to clas-
sical mechanics and quantum mechanics, es-
pecially in the presence of magnetic field. In
classical mechanics, we use Hamiltonian dy-
namics to describe the motion of a charged
particle in a domain affected by the magnetic
field. We are interested in two classical phys-
ical problems: the confinement and the scat-
tering problem. In the quantum case, we study
the spectral problem of the magnetic Laplacian
at the semi-classical level, in two-dimensional
domains: on a compact Riemannian manifold
with boundary and on R2. Under the assump-
tion that the magnetic field has a unique posi-

tive and non-degenerate minimum, we can de-
scribe the eigenfunctions by WKB methods.
Thanks to the spectral theorem, we estimated
efficiently the true eigenfunctions and the ap-
proximate eigenfunctions locally near the min-
imum point of the magnetic field. On R2, with
the additional assumption that the magnetic
field is radially symmetric, we can show that
the eigenfunctions of the magnetic Laplacian
decay exponentially at infinity and at a rate
controlled by the phase function created in
WKB procedure. Furthermore, the eigenfunc-
tions are very well approximated in an expo-
nentially weighted space.


