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Résumé
Analyse classique et semi-classique des champs magnétiques

en deux dimensions

Ma these porte sur I'analyse classique et semi-classique, notamment en présence d’un
champ magnétique. En mécanique classique, nous utilisons la dynamique hamiltonienne
pour décrire le mouvement d’une particule chargée dans un domaine soumis a un champ
magnétique. Nous nous intéressons a deux problemes classiques de la physique : le
probleme de confinement et le probleme de scattering. Dans le cas quantique, nous
étudions le probleme spectral du Laplacien magnétique au niveau semi-classique, dans
des domaines bidimensionnels : sur une variété Riemannienne compacte a bord et sur

R2.

Le premier chapitre est I'introduction aux problémes étudiés dans ce manuscrit. Ce cha-
pitre commence par donner un apergu de la dynamique hamiltonienne ainsi que de la
méthode WKB pour les potentiels électriques. Ensuite, nous soulignons les différences
entre le cas électrique et le cas purement magnétique. Ensuite, nous mentionnons les prin-
cipales motivations de cette these. La premiere est liée a la dynamique classique : nous
considérons une particule chargée dans une région magnétisée €2, nous nous intéressons
a la question du confinement :

“La particule atteindra-t-elle le bord du domaine en temps fini ?”

Nous apportons une réponse précise a cette question en fonction du comportement du
champ magnétique a la frontiere et des conditions initiales. Nos résultats améliorent
ceux, récents, de Martins [42]. En particulier, nous verrons que, méme si le champ
magnétique est infini & la frontiere, certaines trajectoires peuvent s’échapper de ). Ce

type de problemes (ouverts) est mentionné dans [10, Section 1.4].

Du coté classique également, nous nous intéressons au probleme du scattering. Nous
considérons une particule chargée en dehors de la région magnétisée 2. Avant d’atteindre
la région (2, sa trajectoire est en ligne droite. Si la particule entre dans la région €2, s’en
échappe-t-elle en temps fini? Et si c’est le cas, quel est ’angle de déviation entre les
directions entrantes et sortantes 7 Nous répondrons explicitement & ces questions dans le
cas de champs magnétiques radiaux et lorsque 2 est un disque. Dans ce cas, la quantité
de mouvement angulaire commute avec ’hamiltonien et permet une réduction a un

systeme avec un degré de liberté.

Ces questions ont des motivations physiques intrinseques. Leurs réponses permettent

une meilleure compréhension de la dynamique classique des particules chargées dans



les champs magnétiques. La description des trajectoires classiques a également de nom-
breuses applications. En particulier, le confinement de particules chargées a des ap-
plications pratiques dans le fonctionnement d’un tokamak, un dispositif utilisant un
champ magnétique pour piéger un plasma sous une forme torique. Nos résultats peuvent
également s’étendre a la dimension trois. De plus, au niveau quantique, les trajec-
toires piégées peuvent étre liées au caractere essentiellement auto-adjoint du Laplacien
magnétique (voir [10, 44, 45, 52]). Nous voulons savoir s’il existe ou non des relations
entre eux. Le confinement d’une particule chargée est également un point clé pour décrire
le spectre/résonances des Laplaciens magnétiques. A notre connaissance, alors que la
description de la dynamique magnétique a permis d’estimer le spectre des Laplaciens
magnétiques (voir [26, 51]), aucun résultat ne semble exister pour estimer leur résonances
pres de I'axe réel. Etudier les trajectoires piégées est une étape nécessaire dans cette di-

rection.

La deuxiéme motivation vient du coté quantique : ’étude du Laplacien magnétique.
L’étude de la théorie spectrale du Laplacien magnétique est attachée a la théorie de la
supraconductivité, voir [17]. En se concentrant sur la théorie spectrale semi-classique du
Laplacien magnétique lorsque le champ magnétique, noté B, a un minimum unique et
non dégénéré, Helffer et Kordyukov ont fourni les développements asymptotiques pour

les valeurs propres

detH (Tr Hz)?
B(po) 2B(po)

VeeN,  N(Zha)=B(po)h+ <2£ ) h?+o(h?), (1)
olt py est le point minimum de B et H = iHessB(pg). Dans [28], ces auteurs ont
également considéré le cas général d’une surface équipée d’une métrique Riemannienne
et ont également obtenu les développements asymptotiques des valeurs propres. A laide
de la géométrie symplectique et des techniques pseudo-différentielles, Raymond et Vu
Ngoc ont récupéré les développements asymptotiques des valeurs propres via une forme
normale de Birkhoff et les ont liés a la dynamique magnétique classique dans [51]. Nous
rappelons que la méthode WKB a été appliquée pour résoudre le probleme spectral du
Laplacien électrique. Une question naturelle concerne la description des fonctions propres
magnétiques : existe-t-il des constructions WKB proches d’un minimum magnétique,
comme pour le cas électrique? Cette question apparait par exemple dans [24, Section
6.1]. Elle a ensuite été attaquée dans [5] par I'idée de Born-Oppenheimer dans un cadre

multi-échelles. De plus, on pourrait aussi poser la question suivante

“Pouvons-nous récupérer les développements asymptotiques (1)
par la méthode WKB ?”



Dans [20], Bonthonneau et Raymond ont obtenu une réponse positive lorsque le champ
magnétique est analytique. Dans cette these, nous étendrons leur travail en considérant

les surfaces générales et en assouplissant également les hypotheses d’analyticité.

Nous consacrons la derniére section du premier chapitre au résumé de tous les résultats
obtenus dans cette thése. Comme indiqué dans la partie motivations, nous énoncgons
respectivement les principaux théoremes de ’analyse classique a ’analyse semi-classique.
Dans le cas classique, nous énoncgons le théoreme de confinement dans le cas général et
sa version quantitative. Nous obtenons de meilleurs résultats lorsque nous limitons le
probleme de confinement au cas radial sur un disque unitaire. De nombreux exemples,
remarques et images sont fournis pour comparer les travaux de cette these avec les
travaux précédents. Ensuite, nous énongons le théoreme du scattering dans le cas radial
pour donner une formule explicite pour 'angle du scattering. Dans le cas semi-classique,
nous introduisons brievement le laplacien magnétique sur une variété Riemannienne.
En supposant que le champ magnétique a un minimum unique et non dégénéré, nous
décrivons les valeurs propres et les fonctions propres par la méthode WKB. Ensuite, en
utilisant un argument spectral, nous pouvons estimer les véritables fonctions propres
et leurs approximations WKB. En particulier, lorsque le champ magnétique est radial,
nous développons les résultats obtenus via la méthode WKB en une dimension. La
fonction de phase donnée par la méthode WKB a maintenant une formule précise. Les
résultats les plus intéressants apparaissant dans ce cas sont la décroissance exponentielle
des fonctions propres avec ’exposant lié a la fonction de phase et ’estimation entre les
vraies fonctions propres et leurs approximations WKB dans un espace pondéré de fagon

exponentielle.

Le chapitre 2 est consacré a la dynamique d’une particule chargée soumise au champ
magnétique. Dans ce chapitre, nous expliquons brievement comment écrire la célebre
équation de Newton en présence de la force de Lorentz sous une forme hamiltonienne.
Pour ce faire, nous rappelons les bases de la géométrie symplectique dans R?". En
particulier, nous rappelons comment passer d’un changement de variables (d’espace)
a une transformation symplectique. Cela sera nécessaire pour décrire le mouvement
d’une particule chargée s’approchant de la frontiére (dont un voisinage est décrit par des
coordonnées tubulaires). A la fin de ce chapitre, nous considérons un exemple de base
lorsque le champ magnétique est constant. Nous étudions le mouvement de la particule
via la mécanique de Newton et la mécanique Hamiltonienne, puis nous comparons les

deux approches.

Le chapitre 3 est consacré a prouver les résultats en mécanique classique. Tout d’abord,



nous écrivons ’hamiltonien magnétique en coordonnées tubulaires. Ensuite, nous utili-
sons la mécanique hamiltonienne pour attaquer le probleme de confinement et du scat-
tering. C’est le travail de I’article [46] en collaboration avec Nicolas Raymond et San Vi

Ngoc.

Dans le chapitre 4, nous utilisons la méthode WKB pour étudier le spectre du Laplacien
magnétique sur une variété Riemannienne bidimensionnelle. Nous observerons que les
développements asymptotiques des valeurs propres et des fonctions propres peuvent
étre obtenues via une analyse WKB. Premiérement, nous introduisons clairement et
completement la définition du Laplacien magnétique sur une variété Riemannienne. Il

est défini comme 'extension de Friedrichs de 'opérateur

Hpa = (Dpa)Dpa
Dom(Hp,a) = C* (M),

ot D A := —(ihd + A) et (Dja)* est le L?(M)-adjoint opérateur de Dy, a.

Lorsque la variété est compacte, le domaine de 'opérateur est fourni avec précision
et la compacité de ses résolvantes est également prouvée. Ensuite, nous réintroduisons
le Laplacien magnétique sur R? dont le spectre sera étudié au chapitre 5. La section
suivante est utilisée pour la construction d’une paire de coordonnées isothermes locales
et pour la description du Laplacien magnétique dans ces coordonnées. Ces coordonnées
isothermes jouent un role important dans cette partie, car elles nous aident a considérer
le “pull-back” de Popérateur de la variété au plan R2. Ensuite, nous nous préparons
pour le processus WKB en écrivant le probleme propre du Laplacien magnétique dans
I’équation eikonale et les équations de transport. L’analyse WKB qui est effectuée en
détail comprend la résolution de I’équation eikonale et des équations de transport grace a
des séries formelles. Enfin, nous faisons la comparaison entre les vraies fonctions propres

et leurs quasi-modes dans la derniere section.

Le chapitre 5 se concentre sur ’étude du spectre du Laplacien magnétique

L = (—ihV — A)?.

Nous commencons le chapitre en écrivant le laplacien magnétique dans les coordonnées
radiales. Avec I'hypothese supplémentaire que le champ magnétique est radialement
symétrique, nous pouvons décomposer en Fourier le Laplacien magnétique en somme
directe d’opérateurs électriques (.i”mh)m ¢z En étudiant le spectre de chaque opérateur
Zm.n, nous avons trouvé des relations entre ces spectres et le spectre de £} ao. Pour
ieme

plus de détails, nous pouvons montrer que pour m € N, la m valeur propre de



2 A est exactement la premiere valeur propre de .%;, . Ensuite, nous avons appliqué
la méthode WKB pour le probleme spectral des opérateurs fibrés (.th)meN et obtenu
les valeurs propres du laplacien magnétique .}, o sous la forme (1). De plus, avec Iaide
des estimations d’Agmon, nous avons obtenu deux résultats importants. Tout d’abord,
nous pouvons montrer que les fonctions propres du laplacien magnétique se désintegrent
de facon exponentielle a ’'infini et a une vitesse contrélée par la fonction de phase créée
dans la procédure WKB. Deuxiemement, les fonctions propres sont trés bien approchées

dans un espace a pondération exponentielle.
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Chapter 1

[ )
Introduction
The goal isn’t to live forever, the goal
is to create something that will.
Chuck Palahniuk, Diary
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This thesis is devoted to some aspects of classical and quantum mechanics with magnetic
fields. The deep relations between classical and quantum mechanics will only be evoked
in this thesis, and, as written by Isaac Newton in his Philosophiae Naturalis Principia
Mathematica, we will “stand on the shoulders of the Giants”. The reader interested in
the history of modern physics and its relations with mathematics might want to consider

the following books [11, 18, 21].

1.1 A long time ago

In the 17th century, Isaac Newton (1642-1727) was one of those who founded classical
mechanics. The motions of objects were described by means of laws involving the concept
of force. For instance, his second law is expressed as an equation allowing to describe
the movement of objects, from the trajectory of a bullet to the orbits of the planets. It
allowed mathematics to enter many physical fields. Newton’s work was then developed
by Lagrange (1736-1813) and Hamilton (1805-1865). The increasing mathematization of
physics did not only make the description of physical problems easier, but also opened

wide perspectives in mathematics (see [58, 60]).

1.1.1 A question from classical mechanics

We consider a particle moving in a domain 2 in R™ in the presence of the force F' :
R™ — R"™ (we assume that the force depends only on the position of the particle). With

Newton’s approach, the particle evolves according to the differential equation

m(t) = F(q(t)), (1.1)

where g represents the position of the particle and m is its mass.
Consider the following natural question
“In the presence of the force F', will the particle reach the boundary 9f2 in finite time?”

We assume that F' is conservative, i.e. I’ can be written as
F=-VV,

for some smooth function V. We can find the answer for some special F', through the

Hamiltonian equations

. OH
q_pr
. OH
p__87q7



where variable p € R" is the generalized momentum of the particle. The function H is

called Hamiltonian function and has the form

Ha,p) = 5l + Via), (1.2

where || -|| is the Euclidean norm on R™. In the classical sense, the Hamiltonian plays the
role of the energy which is the sum of the kinetic energy %quH2 and the potential energy

V. It is easy to check that the energy is constant along the Hamiltonian trajectories

ﬁllp(t)ll2 +Vi(q(t)) = H(q(0), p(0)) =: Ho.

Let us come back to the above question. If V(q) — =+oo as ¢ comes close to the
boundary 92, then no particle can reach the boundary 9€ in finite time. Indeed, if a
particle reaches the boundary, it implies that there is some finite time 1" for which the
quantity V' (q(T)) is very large, even larger than Hy. This contradicts the conservation
of the energy. This tells us that if the scalar potential blows up at the boundary, then
the particles never get out of the domain 2, or even touch the boundary 0€2. In other
words, the behaviour of the force in a neighborhood of the boundary can keep the
particles inside the domain. This thesis will tackle the case when the electric field is
replaced by a magnetic field. We will see that the explosion of the magnetic field at the

boundary does not necessarily imply the confinement.

This kind of confinement question has somehow quantum analogs. Let us first recall
that quantum theory was developed in the early 20th century by numerous physicists.
Quantum theory was not created by one individual, but it is the result from experiments
and observations. Planck (1858-1947) is considered one of the first persons to have
opened the door to the quantum universe when he discovered that the energy of an
electromagnetic wave is radiated and absorbed in discrete amounts, in terms of a constant
h, the Planck constant. Einstein (1879-1955) went further by giving the idea that the
electro-magnetic radiation itself consists of particles, which nowadays are called photons.
The quantum mechanics was developed through mathematical models from the matrix
theory of Born (1882-1970) and Heisenberg (1901-1976) to the wave mechanics of de
Broglie (1892-1987) and Schrodinger (1887-1961).

The equation describing a quantum particle, given by Schrédinger in 1925, is

Loy

where )

H = —h—A—i—V.
2m

10



Here A is the Laplacian operator according to the spatial variable. H is called the
Schrodinger operator. The solution of the Schrédinger equation is called the wave func-
tion. It does not give us the position of the particle like Newton’s equation (1.1).
Instead of that, it tells us the probability to find a particle at some place and at some
time. Therefore, when a solution is given, we can not say where the particle is. Precisely,
for each t, [1(q,t)|? gives the probability law for finding the particle at the point ¢ and
at the time ¢. Thus, we need the condition that

[ 1wta.0fda=1.

It means that the particle must be somewhere in the whole space. In order to find
solutions to the Schrodinger equation (1.3), since H does not depend on ¢, we can try

to look for solutions in the form

b(q,t) = p(q)e E/M, (1.4)

where E € R represents the energy of the particle. Insert this form into (1.3) and then

—iE/ht

remove e on both sides. We get the eigenvalue equation:

H(p) = Egp. (1.5)

Therefore, the more information we know about the Schrodinger operator H, the easier
we can solve the equation. One of the properties of the operator H receiving much
attention of mathematicians is its essentially self-adjointness (see Appendix A). Consider
the domain 2. Finding a criterium ensuring essentially self-adjointness shares common
features with the classical confinement problem (see [44, 52]). By looking back to the
classical case, we could be tempted to think that the condition V' (q) — oo as ¢ — 92 is
enough to decide the essentially self-adjointness of the Schrodinger operator H, because
no classical particle has the ability to get closed the boundary 0f). Nevertheless, it is
not exactly the case: the quantum particle can leak through the infinite barrier of the
potential V. This effect is called “Tunneling effect” (see [18]). It turns out that the
potential should not only blow up at the boundary, but also blow up at an appropriate
rate to make sure that the probability of finding a particle at the boundary is zero. For
example, in [44], the essentially self-adjointness of H is ensured by the behaviour of V'

near the boundary 052
Vi) > Rz 3
V=5, 4d(q)?’

with d(g) = dist(q, 99Q), see [8, 52] for the references.
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1.1.2 The WKB method with the electric potential

In this thesis, we will focus on another quantum question. Going back to the Schrodinger
equation, after the restriction of looking for the solution in the form (1.4), we obtain an

equation
2

—;—mAnp—l— (V-—E)p=0.
In order to ”solve” this equation, we shall introduce briefly a fundamental method named
after Wentzel (1898-1978), Kramers (1894-1952) and Brillouin (1889-1969) which is often
used to find an approximate solution for a linear differential equation. This tool is called
the WKB method. The reader can consult the books [3, 12, 23] for the following part.
The method starts by setting up the solution in the form

o(q) = ¢ D/q(q, h),

for some real-valued function S known as a phase function. By replacing ¢(q) into the
time-independent Schrodinger equation, we get the equation
|VS|2 ih 2

, , I
nve2i _ iS/h, MY . iS/h _
( +V E) e™Ma — o (2VS-Va+ (AS)a)e 5

iS/h _
5 - (Aa)e 0.

Removing e**/" from this equation, we obtain

IVS|? ih R?
— —F)la——(2VS- A ——Aa=0.
< 5 +V a 2m(VS Va+ (AS)a) 5 Aa 0
Since £ is considered small, the first WKB idea is trying to kill the coefficient associated
with 79, that is

IvS|?

—+V -FE=0. 1.6

5+ (1.6)

This equation is called the Eikonal equation. Assuming that a solution S of (1.6) can
be found, we will have

(H—E)p=0(h).

This tells us that ¢ satisfies the eigenfunction equation up to order A. If a smooth

function a solves the equation

2VS - Va + (AS)a =0, (1.7)
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then we will have a better approximate solution with order A2. The equation (1.7) is
called the transport equation. This idea leads us to a better approximation by consid-

ering the solution a of the equation
i(2VS-Va+ (AS)a) + hAa =0, (1.8)

in the asymptotic form

a(g,h) =Y ar(g)h*. (1.9)
k=0

Here (ay)ken is a sequence of smooth complex-valued functions and we say that a func-

tion f : R"x(0,1) — C (his considered as a parameter ranging in (0, 1)) is an asymptotic
oo

series Y _ ag(q)h" if for all N € N and for all a € N",
k=0

N
o (f(q, h) — Z ak(q)hk> = O(RNTY) locally uniformly in ¢, (1.10)
k=0

i.e. for all K compact contained in R", there exists a constant C o, such that

< ONa BV for all ¢ € K .

N
%Q@M—Z%@M>
k=0

Substitute the series form (1.9) of a(g, h) into (1.8) and assign the condition that every

terms associated with the orders of & vanish, we have the transport equations

RO 2V S - Vag + (AS)ag =0,

B 2VS -Vai + (AS)a1 =iAag,
h? 2VS - Vay + (AS)ay = iAay ,
" 2VS - Va, + (AS)a, = ilAap_1,

Since all the above equations have the same structure, hence if we can find smooth
solutions ag and a1 to the equations associated with A! and %2, the other equations will
be easy to solve by induction. After we obtain all the ax, the smooth solution a(q,h)

satisfying (1.10) is given by Borel’s lemma (see [37, Theorem 1.2.6]). Indeed, let N € N,
N

Borel’s lemma tells us that the polynomial Z ak(q)hk coincides with the Taylor series
k=1

of the function a(q, h) up to order N according to variable A.

Looking at the eikonal equation (1.6), the above WKB construction with a real-valued

13



phase S is performed in the classically allowed region: E — V(q) > 0. To deal with the

classically forbidden region: F —V (q) < 0, we can approximate the solution by the form
e=Sa(g, h),

where S is a real-valued smooth function. Essentially, we just replace S by iS in the

above WKB construction and we obtain the eikonal equation

IS
——+V-FE=0 1.11
2m + ’ (1.11)
and the transport equations

RO 2VS - Vag + (AS)ag =0,
't 2VS - Vay 4 (AS)a; = Aag,
K2 2VS - Vag + (AS)ay = Aay,
R 2VS - Va, + (AS’\)an = Aay_1,

Later, in the magnetic case, we will see that we consider a phase function which is

neither purely real nor purely imaginary.

Remark 1.1. In [23, Chapter 2] and [12, Chapter 3], the authors explain how to construct
the local WKB approximation for the eigenfunctions of the Schrodinger operator when

the potential V has a zero minimum and this minimum is non-degenerate, it means that

V(0)=0, VvV (0)=0, Hess V(0) > 0.

1.1.3 When the magnetic field appears

Above is the story of classical and quantum particles submitted to an electric field. Let
us now consider the case of a pure magnetic field. A charged particle submitted to
a magnetic field feels the Lorentz force F' = eq x B. As we will recall later on, the
corresponding Newton equation may be written in a Hamiltonian form. The associated

Hamiltonian is )
b= Al

H(q,p) 5 ,

where A is such that rot A = B (and B is assumed to be divergence free, according to
the Maxwell equations). The aim of this thesis is to explore pure magnetic effects (in

two dimensions) on the classical and quantum sides: classical confinement properties

14



and WKB constructions. In particular, we will see that, contrary to the electric case,

an infinite magnetic field at the boundary does not imply the confinement.

On the quantum side, the magnetic Schrodinger operator has the form
Zna = (—ihV — A)? . (1.12)

Here the parameter h will play the role of the Plank constant A and will be assumed
to be small. One will see that the WKB analysis of the eigenvalue equation is more
subtle than in the electric case. The structure of the system of PDEs will turn out to be
more ”complex”. In particular, the eikonal equation will not be enough to determine the
phase S and the phase will be a complex function partially determined by the transport

equations.

1.2 Motivations

In this section, we explain the main two “magnetic” motivations of this thesis. The
first one is related to classical dynamics. We tackle two well-known physical problems:
confinement and scattering. The second one concerns the quantum side. We exhibit
general magnetic WKB constructions on a 2D Riemannian manifold. In the special case
of radial magnetic fields on the FKuclidean plane, we prove that our constructions are

very good approximations of the true eigenfunctions.

1.2.1 On the classical side

Here are the two problems under consideration:

- (Confinement) Consider a charged particle in the magnetized region 2. We are curious
about the same question which appears in subsection 1.1.1 :
“Will the particle reach the boundary in finite time?”
We will provide a precise answer to this question, depending on the behaviour of the
magnetic field at the boundary and on the initial conditions. Our results will improve
recent results by Martins in [42]. In particular, we will see that, even if the magnetic
field is infinite at the boundary, some trajectories can escape from 2. This kind of

(open) problems is mentioned in [10, Section 1.4].

- (Scattering) Consider a charged particle outside the magnetized region 2. Before it
reaches the region (2, the trajectory is a straight line. If it enters the region €2, does

the particle escape from it in finite time? And, if it does so, what is the deviation
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angle between the ingoing and outgoing directions? We will explicitly answer these
questions in the case of radial magnetic fields and when € is a disc. In this case, the
angular momentum commutes with the Hamiltonian and allows a reduction to a one

degree of freedom system.

These questions have intrinsic physical motivations. Their answers allow a better un-
derstanding of the classical dynamics of charged particles in the magnetic fields. The
description of the classical trajectories has also many applications. In particular, the
confinement of charged particles has practical applications in operation of a tokamak, a
device using a magnetic field to trap a plasma in a toral shape. Our results also have the
potential to expand on three dimensions. In the regime of large magnetic field and small
energy, a special treatment of the confinement problem can be done and takes advantage
of the near-integrable structure of the Hamiltonian dynamics, either via Birkhoff normal
form [51], or KAM theorems [9]. On the contrary, our results here will give more explicit
initial conditions and allow regimes where the guiding center motion is not necessarily

meaningful.

Furthermore, in the quantum level, the trapped trajectories can be related to the es-
sentially self-adjoint character of the magnetic Laplacian (1.12) (see [10, 44, 45, 52]).
We want to know if there are some relations between them or not. The confinement
of a charged particle is also a key point to describe the spectrum/resonances of mag-
netic Laplacians. As far as we know, whereas the description of the magnetic dynamics
has allowed to estimate the spectrum of magnetic Laplacians (see [26, 51]), no result
seems to exist to estimate their resonances near the real axis. Investigating the trapped

trajectories is a necessary step in this direction.

1.2.2 On the quantum side

The investigation of the magnetic Laplacian has now a long story. One of the initial
motivations to study the spectral theory of the magnetic Schrodinger operator was the
mathematical study of superconductivity, see [17]. The ground-energy is indeed related
to the third critical field in the Ginzburg-Landau theory. From this motivation, there are
a series of papers devoted to study the spectrum of the magnetic Schrédinger operator
at the semi-classical level [26-35, 43, 47, 51]. Among them, the case of a magnetic
field having a unique and non-degenerate minimum was investigated. Namely, in [31,

Theorem 1.7], Helffer and Kordyukov provide the following asymptotic expansions

VdetH | (Tr H2)?
B(po) 2B(po)

V¢ e N, /\g(fhyA) = B(po)h + <2€ > h? + O(hQ) , (1.13)
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where py is the minimum point of B and H = 3Hess B(pp) . In [28], these authors also
considered the general case of a surface equipped with a Riemannian metric and also
obtain the eigenvalues expansions. With the help of symplectic geometry and pseudo-
differential techniques, Raymond and Vi Ngoc recovered the eigenvalues expansions
through a Birkhoff normal form and related them to the magnetic classical dynamics
in [51]. As we recall, the WKB method was applied to solve the spectral problem of
the electric Laplacian. A natural question concerns the description of the magnetic
eigenfunctions: Are there WKB constructions near a magnetic minimum, as for the
electric case? This question appears for instance in [24, Section 6.1]. It was then
attacked in [5] by Born-Oppenheimer’s idea in a multi-scale framework. Moreover, one
could also ask the following question

“Can we recover the spectrum expansion (1.13) by the WKB method?”

In [20], Bonthonneau and Raymond obtained a positive answer when the magnetic field
is analytic. In this thesis, we will extend their work by considering general surfaces and

also relaxing the analyticity assumptions.

1.3 Results of the thesis

1.3.1 In classical mechanics

We study the dynamics of a charged particle in a smooth bounded domain  C R? in the
presence of a non homogeneous magnetic field B. We suppose that B is perpendicular
to the plane R? ie. B(q) = (0,0,b(q)) for ¢ € R% This assumption forces particles
lying in the R? plane and whose initial velocities are in the plane to stay in this same
plane for all time. Since a vector field in R? can be identified with a 2-form via the
Euclidean structure, we write the magnetic field as B = b(¢)dg; A dgz. Then, if there
is a 1-form A = A;d¢q; + Asdgse such that dA = B, we can describe the motion of the

charged particle through the magnetic Hamiltonian

p— AP
H(q,p) = ” 2( L , (1.14)
where ||.|| denotes the Euclidean norm on R?. The dynamics is defined by the system
¢ =pH(q,p
pH(.) (1.15)
p=—0.H(g,p) .
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We shall always assume that ¢ — b(q) is locally Lipschitz-continuous, ensuring that the
system (1.15) has a unique local maximal solution, thanks to Cauchy-Lipschitz theorem.

Then, the vector potential A will always be chosen to be C''-smooth.

We assume that the connected components of 9§ are C?-smooth closed curves without
self-intersections. Let C be a connected component of 0€2. It can be parametrized by its
arc length v : R/LZ — C where L is the length of C.

There exists § > 0 such that

" (0,8) x R/LZ — Q¢(d)
' (n,s) = (s) +nN(s) =g

is a smooth diffeomorphism. N(s) denotes the inward pointing normal at v(s) and
Qe(d) ={¢ge:d(z,C) < d}.

Note that
B = b(q)dg1 Adg2 = b(¢(n, s))(1 — nk(s))ds Adn, (1.16)

where k(s) is the signed curvature of C at v(s).

After denoting
B(n, s) := =b(¢(n, s))(1 — nk(s)),

we can now state our confinement results.

1.3.1.1 General confinement theorems

Our first theorem provides a sufficient condition on B so that no trajectory can escape

from €.

Theorem 1.2 (Theorem 2.1 in [46]). For every connected component C of 02, we

assume that

oc Le
lim / / B(n,f)dgdn' = +o0, (1.17)
n—01/, 0
and that there exists M¢ > 0 such that, for all (n,s) € (0,6¢) X R/L¢Z,
1 [le
‘B(n, s) — — B(n,{)d{‘ < M. (1.18)
Le Jo

Then the magnetic Hamiltonian dynamics is complete (i.e. no solution of (1.15), start-

ing in ), reaches 0K in finite time).
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Of course, given a starting point ¢ € €2, only the components C that bound the connected
component of ¢ in 2 need to be taken into account. Actually, there is a more quantitative

version of the previous theorem.

Theorem 1.3 (Theorem 2.2 in [46]). Consider a connected component C of 092. Let

K= sup |n(s)], K'= sup [&(s)].
SER/LZ seR/LZ

We assume that, for some € € (0,1), ¢ satisfies 0 < § < ¢/K. We assume that there
exists M > 0 such that, for all (n,s) € (0,9) x R/LZ,

‘B(n,s) - 2/OLB(n,f)d§‘ <M. (1.19)

Consider T' > 0 and q(t) = ¥(n(t),s(t)) a trajectory contained in Q¢ () for t € [0,T)
with energy Hy. Let

6 pL
sy == [ [ Booaan. (1.20)

and assume that

lim inf | (n)] > C(T, 4(0),d(0)) (1.21)

where

C(T,4(0),4(0)) =

) L
S0)[1 — w(s(0))n(0)] + / ) /0 B(n,€)dedy

2H\K'6
+V2Ho(1+¢) + (M 2H) + = >T.
Let g' be a continuous and strictly decreasing function such that
lim g(n) = liminf [f(m)|, g <|fl on[0,].
n—0 n—0
Then, g takes the value C(T,¢(0),¢(0)) and, for allt € [0,T),
n(t) > g~ (C(T,4(0),4(0))). (1.22)

Remark 1.4. Theorems 1.2 and 1.3 are improvements of [42, Theorems 1&2]. They tell
us that a particle in 2 never reaches the boundary of Q. In [42], it is assumed that 0, B

is integrable:

N
sup/ |0s B(m, s)|dm < 400, (1.23)
s€C JO

lsuch a function g always exists.
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and the question of removing this assumption was explicitly mentioned as important
(op. cit., section 8). Our theorems give a partially positive answer to this question,

thus allowing for magnetic fields having wilder tangential behaviors.

- Theorem 1.2 generalizes [42, Theorem 1] by replacing the integrability assumption by

(1.18). This allows in particular to consider a magnetic field (on the unit disc) of the

B(n,s) = % + sin <X(S)> ,

n

form

where x is a smooth function supported in (—m, 7) such that x’(0) # 0 and x(0) = 0.
For this magnetic field, it is easy to check that (1.23) is not satisfied. In fact, the
C* smoothness is actually not required; in order to draw Figure 1.1, we took, for

simplicity, a small perturbation of x(s) = arcsin(sin(s)).

FIGURE 1.1: A trajectory obtained with a magnetic field on the unit disc that is strong
near the boundary with a non-integrable tangential derivative:

1 .
B(q) = ————=—=—= +sin (arcsm(qQ)> +5¢2 —Tqo .

1—/ai +a3 1—Vai+a

- An explicit lower bound for the escaping time of a magnetized region is given in [42,

Theorem 2] in the case when
M
B(n,s) = — +h(n,s), a>1, (1.24)
n

where M # 0 and h is bounded and smooth in Q¢(d), and so that (1.23) holds. In
Figure 1.3, we provide some examples of magnetic fields under this form. Theorem
1.3 not only release the condition integrability s—partial of the function h used in [42,
Theorem 2], but also provides an explicit lower bound for magnetic fields that are not
in the form (1.24), see Figure 1.2 where the magnetic field changes sign infinitely many

times.
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- Note that, at the quantum level, a magnetic field (on the unit disc D) like
94«
B(n,s):ﬂ, n=1-\/¢+q¢, seR/21Z (1.25)

n2

is confining (i.e. the magnetic Laplacian acting on C§°(D) is essentially self-adjoint),
see [10]. Nevertheless, this magnetic field does not satisfy our assumption (1.18) and

thus we can not establish the classical confinement with our method.

FIGURE 1.2: A trajectory obtained with a magnetic field on the unit disc that strongly
oscillates near the boundary:

1 1
L sin
2 (1—\/qf+q§>

(1—+/q? +q3)?

B(q) = +10q; — 2¢3 — 1043 .

1.3.1.2 Confinement results in the radial case

When Q = D(0,1) and when B is radial, i.e. B(q) = b(\/¢i + ¢3), the dynamics is
completely integrable, and hence can be entirely described by a one degree of freedom
Hamiltonian; concerning the confinement problem, this of course leads to stronger re-

sults.

Proposition 1.5 (Proposition 2.3 in [46]). Let q(t) = (q1(t),q2(t)) be a solution to
(1.15) starting at t =0 from inside the unit disc. If the initial data (¢(0),q(0)) satisfies
either H1 or H2 below:

Hi:
! . .
lim inf | o— B(q)dg — det(q(0),4(0))| > [l4(0)], (1.26)
r=17 127 Jyjq(0)]|< gl <r

H2:
! . .
lim inf | —— B(q)dq — det(q(0),¢(0))| = [l4(0)]|, (1.27)
r=17 127 Jyjq(0)]|< gl <r
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and

i a7 a1 <)< B(@)da — det(q(0),(0))| — [|4(0)]|
im sup

r—1- r—1

<0, (1.28)

then the solution exists for all t > 0, and there exists n € [0,1) such that

vi>0, lg@®)] <n. (1.29)

02 04 06 08 1

(B) B(q) = # +10q1 + ¢3

et L L L L L L , B ,
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1 - 1

(c) B(q) = ————~ +10q{ + 4¢3 (D) B(q) = ﬁ +10g} + ¢3

(1_Vq%+‘Z§) l—qu?-i-qg)

F1cURE 1.3: Some examples of confined charged particles which start at the point
(0.9,0) in the general case.

Example 1.1. If the given magnetic field satisfies

/ B(q)dq
D(0,r)

then for arbitrary the particle which start to mowve inside the unit disk will be kept inside

lim

= +OO s
r—1

some smaller disk forever, see the Figure 1.4 for magnetic fields whose flur on D(0,1)

is infinite.
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(4) Bla) = = (8) B(a) = =gtvap)

FIGURE 1.4: Some examples of confined charged particles which start at the point
(0.9,0) in the radial case.

One can find situations where none of the hypothesis of Proposition 1.5 hold and the
trajectory can be arbitrarily close to the boundary. (see Figure 1.5: this unusual be-
haviour can be explained by a critical point of the radial Hamiltonian at » = 1, see
(1.33)).

= — ._*’/_/7

1 L L N L L L ,
-1 -08 -06 -04 -02 0 02 04 06 08 1

FIGURE 1.5: B(r)=e " — 2,

If the magnetic field is L!-integrable near the boundary of Q, we can prove that there
exist trajectories escaping from (2 in finite time. In particular, even if the magnetic field

is infinite at the boundary, the confinement is not ensured.

Proposition 1.6 (Proposition 2.4 in [46]). When

/ B(q)dq
D(0,r)

there exists a trajectory starting in ) and reaching the boundary in finite time.

lim sup
r—1-

< 400, (1.30)

Of course, even under assumption (1.30), some trajectory may be confined, depending

on initial conditions (see Figure 1.6 where the simulations are performed with B(r) =
In?(1 —r)).
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FIGURE 1.6: B(r) = In*(1 — 7): the particle is confined or not.
1.3.1.3 Scattering in the radial case

Let us now describe our scattering result in the radial case. We assume that B|n admits

a locally Lipschitz extension in a neighborhood of €.
In polar coordinates, we have

B = B(r)rdr Adf = d (G(r)df) ,

where
G(r):/0 TB(T)dT .

Via the symplectic change of coordinates

R x R/27Z x R? — (D \ {0}) x R?

in @ 0
(7,0, pyspo) (rcose,rsine,cosepr — . sinfp, + — pe) = (¢.p),
T T
(1.31)

the Hamiltonian becomes

(po — G(r))? .

~ p2
H(T, 97p'r7p9) = ?7' + 22

(1.32)

In particular, the angular momentum py is constant along the flow and we consider the

reduced one dimensional Hamiltonian on T*Ri

2 . r 2
Hop) =2 v, v = PG00

(1.33)
where V € C'(R%,R). We notice that (see, for example, Lemma 3.1)

Ur = Pr, Vg = T_l(pg - G(T)) )
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where v, and vg are the classical radial and tangential components of the velocity v.

We consider a charged particle with energy Hy arriving into the disk with velocity v;.
In particular, Hy = §||v1®. If the particle escapes from the disc with velocity vo (see
Figure 1.7), we have ||va|| = ||v1]], and a natural question is to compute the (scattering)

angle between these two vectors. Let w € (—m, 7| be the oriented angle between v; and

V9.

FIGURE 1.7: The scattering arrows.

Theorem 1.7 (Theorem 2.5 in [46]). Consider a trajectory starting on OS2, with velocity
v1 # 0 and entering 2. This means that either v, < 0, or v, =0 and %91) < —1. We

define & as the angle between the inward pointing normal and v1.

We also assume

i. either that the equation V (r) = Hy has a solution for r € (0,1) and that the closest
solution to 1, denoted by r*, satisfies V' (r*) < 0.

ii. or, only when py = 0, that the equation V(r) = Hy has no solution.

Then the trajectory escapes from § in finite time with velocity ve, and we can compute

the scattering angle w mod 27
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i. either the trajectory does not pass through the origin and

w=a—m+20,

where

e py — G(r)
o= 2/7«* 2o = (py = G(r))er, (1.34)

ii. or the trajectory passes through the origin (in this case pg = 0) and
w=a+20,

where

' 6w

0 v/2Hor® — G(r)?

a=2

dr. (1.35)

1.3.2 In semi-classical spectral theory
1.3.2.1 On a compact manifold

Let (M, g) be a two-dimensional compact connected oriented Riemannian manifold with
boundary equipped with a metric g. Let A be a smooth real-valued 1-form defined on

M. Since M is two-dimensional, there exists a smooth real-valued function B such that
dA = Bdy,,

in which dV, is the Riemannian volume form on M. We call B the magnetic field.

The magnetic Laplacian, denoted by %, a, is defined as the Friedrichs extension (the

Dirichlet realization) of the operator

Hpa = (Dpa)Dpa
Dom(Hpa) = CZ (M),

(1.36)

where Dj, o := —(ihd + A) and (Dj, a)* is the L?(M)-adjoint operator of Dj, o. The

reader can find the exact definition of these operators in Chapter 4.
From the compactness of M, we will prove that (in Section 4.1.3):

Theorem 1.8. For each h > 0, the magnetic Laplacian £, o has compact resolvent.

We also give an explicit formula for the operator’s domain (in Section 4.1.4):
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Theorem 1.9. For each h > 0, the domain of the magnetic Laplacian is

Dom( %, a) = Hy(M) N H*(M). (1.37)

Since 7, A is self-adjoint and has compact resolvent, its spectrum is discrete and de-

scribed by an unbounded increasing sequence:
Mo(Zha) S Mi(Zpa) < .

In order to announce our assumption and main results, we need to recall the definition
of the Hessian of a function defined on a manifold at a critical point. In the Riemannian

case, we also define its trace and its determinant.

Definition 1.10 (Hessian of a function at a critical point.). The Hessian, denoted by
d?f, of a smooth function f : M — R at a critical point p € M, i.e. (df)p =0, is defined
via

(@%f), : T,M x T,M — R,

(d2f)p (Xo0,Y0) = X, (Y f) for all Xo,Yy € T,M ,

where X,Y are vector fields on M such that X, = Xy and Y, = Y¥j.

Since (df), = 0, the definition of the Hessian is independent of the choice of the vector
fields X, Y extending Xy, Yp. Furthermore, it directly implies that (d2 f )p is a symmetric

bilinear form on the vector space T}, M.

Definition 1.11. Let p € M be the critical point of f, there exists a unique endormor-
phism H of T, M such that

(d? f)p (U, V) = gp,(HU, V) for all U,V € T,M .

The trace and the determinant of the Hessian of the function f are defined by, respec-
tively,
Tr (dzf)p =TrH and det (de)p =detH. (1.38)

Note that the definition of the trace and the determinant of the Hessian is invariant

under diffeomorphisms preserving the Riemannian metric g.

Remark 1.12. Since the Hessian of a function f at a critical point p € M is symmetric,

the linear map H is also symmetric on 7, M with respect to the inner product g, i.e.

gp(HU, V) = g,(U,HV) for all U,V € T,M .
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If the Hessian of f at p is positive, we can define the unique positive square-root H/2
of H.

Now we state the assumption on the magnetic field B:
Assumption 1.1. Let pg € M, we assume that
(1) The magnetic field B € C*>°(M,R) has a positive minimum at po, i.e.

B(po) = min B(p) > 0.

(2) The Hessian of function B at pg is positive non-degenerate, i.e.

(d*B),, (V,V) >0 for all V € Ty, M\{0} .

Under the same assumptions, in [28, Theorem 1.2], Helffer and Kordyukov provided the

expansion of the eigenvalues

1
Vdet H = (TrH2)?
VEeEN,  MN(Za)=boh+ (2@ be + ( r% ) ) h% 4 o(h?), (1.39)
0 0

where by = B(pg) and H = 3} with H is the endormorphism given by

(dQB)pO (U, V) = gpo(HU, V) for all U,V € Ty, M .

From the expansion (1.39), with the notice that det H > 0, we can state that: for
arbitrary large k € N, there exists hy > 0 such that for all h € (0, ko),

M(Zha) < M(Zha) <o < A(Zha)-

In other words, we can choose h small enough such that (A\;(%5.a))o<j<k are simple
eigenvalues. The expansion (1.39) is a strong improvement of the [33, Theorem 7.2]
because it obtained the result on a manifold and more asymptotic terms were provided.
Our result will show that we can recover this asymptotic expansions by the WKB method
and also provide the approximate eigenfunctions. In order to state our main theorems,

let us introduce the coordinates on which our works is established:

Definition 1.13 (Isothermal coordinates). Let (M, g) be a Riemannian manifold of two
dimensions, a local chart
(6 : Q= ¢(Q) CR?)
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is called an isothermal coordinate if there exist a function n € C*°(4(2)) such that

¢ (e*g0) = g, (1.40)

where g is the Euclidean metric on R? and the pull-back metric ¢* (62’790) is a metric
on M defined by

(¢* (6277g0))p (U7 V) = 627790 (dd)pUa dqbpv) )

forallpe M and U,V € T,,M.

The local existence of the isothermal coordinates is also recalled in this thesis (precisely

in Theorem 4.6). Our first result is an application of the WKB method:

Theorem 1.14. Let p* € M and assume that the magnetic field B has a local positive
minimum at p* and its Hessian at p* is positive non-degenerate. Then, there exists an
isothermal local chart (0, ¢ : Q — U C R?) centered at p* in which the magnetic field
has the form

(Bod N)(g) =bo + agi + g2 + O(||q]®),

where by > 0, 0 < a < v and for all £ € N, there exist

i) a smooth complez-valued function P defined on § satisfying

2n(0) o
Re(Poo ) = 5 (it e YT ) +ollalf). ()

on U, wheren is given in Definition 1.13 associated with the isothermal coordinates

U, 9),
ii) a sequence of smooth complex-valued functions (Uy;)jen defined on €,

iii) a sequence of real numbers (g ;)jen with

VdetH (TrHz)?2
+ :
bo 2bg

te,0 = bo, peq = 20
iv) a sequence of smooth functions (Fy;)jen defined on Q which are flat at p*

)

such that, for all J € N,

J J J+1
"M Loa =0 peghd | [ TN U | =Y W+ O
=0 j=0 =0

locally uniformly on €.
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The flatness of a function f on the manifold in the above theorem is understood in the

meaning

am+nf o
(8q1)m(8q2)”<p )=0, (1-42)

in any particular (and hence all) coordinate system, for all m,n € N.

The road to the proof of this theorem is a long process of applying the WKB method.
For details, this road will has to go through Section 4.2, Section 4.3 and Section 4.4.
Here is the plan to prove this theorem. Firstly, we use the isothermal coordinates to
pull back the magnetic Laplacian to an operator which is defined on a neighborhood of
0 in R?. We use the WKB method to approach the spectral problem of the magnetic
Laplacian by means of the formal series. But it is in contrast to the electric case in which
the real-valued phase is determined completely by the eikonal equation, the magnetic
phase will only be partially determined by the eikonal equation. Up to solving the first
transport equation, it will be completely determined. We also provide some tools to
solve the transport equations in the formal series analysis. The conclusion is given by

Borel’s lemma.

Theorem 1.15. Let p* € M and assume that the magnetic field satisfies the assumptions
of Theorem 1.14. For any £ € N, there exist

i) a non-negative function Pe C(M)
it) a sequence of functions (ﬁf,j)jeN C C(M) ,
and for any (e, J) € (0,1) x N, there exist C > 0 and ho > 0 such that for all h € (0, hy),
||€E]3/h (Lha — Ng) T}{,KHLZ(M) < Ch'*?, (1.43)
where
Mo=h>_ peih’ and  Y§, =Y Uyh’.
7=0 5=0

Hence, it follows that

I (L = Ane) Thellizar < CRTH2. (1.44)

Theorem 1.15 can be used to prove that there is no odd powers of h3 in the expansion
given by [28, Theorem 1.2]. Furthermore, Theorem 1.15 is an extension of [28, Theorem
2.1] in the case k = 0.
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For each ¢ € N, let T}, be the eigenfunction associated with A¢(Z} a). We introduce
the projection into the eigenspace of \o(Z} A) :

I, : L2(M) — Dom(.%,.4)

U +— ng = <u, Th7g> Th’g .

L2(M)

Next theorem will be an application of the Theorem 1.15. We assume that p* = py and
let T;{ ¢, be the functions which are given in Theorem 1.15. Using spectral arguments,

the approximation for the eigenfunctions HgT;{’é are provided by the following theorem:

Theorem 1.16. Assume that the magnetic field satisfies the assumption (1.1). For all
(J,0) € N x N, there exist C > 0 and hg > 0 such that for all h € (0, hy),

HT;{,E - Hﬁ’ri{f“[ﬂ(M) < ChJ+1- (145)

1.3.2.2 On R?

We consider the operator
Hpa = (—ih0y, — A1)? + (—ihdy, — A2)?,

with Dom(Hj o) = C°(R?). Here A = Ajdq; + A2dgs is the magnetic potential asso-
ciated with the magnetic field B through

dA = Bdg; Adgs.

When A € C'(R?), this operator is essentially self-adjoint (see [17, Theorem 1.2.2]).
There exists a unique self-adjoint extension of Hj o. We call this operator the magnetic

Laplacian on R?, and denote it by Zh.a- The magnetic field is assumed radial.

Assumption 1.2. We assume that the magnetic field B has the form

2 2
q; +4q
B(qlv(J2)2ﬁ< 12 2)7

where B : R — RT is a smooth function such that

i)
B(r) > B(0) forallr > 0. (1.46)

8'(0)>0. (1.47)
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The assumption (1.46) makes sure that the magnetic field has a unique minimum on R?
and the condition (1.47) makes sure that the minimum point is non-degenerate, i.e. the
Hessian of B at 0 is a positive definite matrix. Furthermore, we will assume that the

magnetic Laplacian has some discrete spectrum which can be described as a sequence
M(Zha) S Mi(Zpa) < .

This assumption can be assured when the magnetic field goes to infinity or converges to
some number larger than B(0) at infinity (see Theorem 4.3 and 4.4). We now state the
main theorems in this part. The first theorem is devoted to the WKB construction for

the eigenvalues and the eigenfunctions:
Theorem 1.17. Assume that the magnetic field satisfies the assumption 1.2. For all

m € N, there exist

i) a smooth positive function ¢ defined on [0,00) having the formula
1Pt
o) =5 [ [ ler)acar. (1.45)

ii) a sequence of smooth real-valued functions (am;)jen defined on [0,00) in which

Qm,0 1S positive,

iii) a sequence of real numbers (fim ;) jen with

VdetH (TrHz)?
+ ;
bo 2bo

Hm,0 = bo, Mm1 = 2m

where by = B(0) and H = $HessB(0).

We define

P(q) == (HqQHQ) ;

[l
Um,j(Q) = Amj (2 )

0(q) : the argument of the complex number q = q1 + iqs .

Then, for all J € N,

m
2

J
e FIMN " Un 1
j=0

— O(hJ+2) ’

o (LY g n S gt | [ emotar (Nl
2 h, par m,j 2
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locally uniformly in R2.

Let K > 0 be a given number (K is assumed to be large). We define the smooth cut-off

function on [0, c0)

1 on [0, K]
x(p) = (1.49)
0 on [K +1,400).

By multiplying the WKB Ansatz in Theorem 1.17 with this cut-off function, we have

the following estimate:

Theorem 1.18. Assume that the magnetic field satisfies the assumption 1.2. For all
(e,m,J) € (0,1) x N x N, there exist a constant C > 0 and hg > 0 such that for all
h € (0, ho),

e/ (Lha = M) TH mllLzggzy < ChIT2, (1.50)

where
J .
)‘f{,m =h Z ,uth] ’
=0

; 112\ smoc (Nal2\Z _pn & ~
Th,m =X <2> e (@) <2> e / ZUm’jh] .
j=0

Then, it follows that

I (Zha = A ) Thimllr2 ey < CH7F2. (1.51)

By Agmon estimate, the next result shows us that the eigenfunctions of the magnetic
Laplacian decay exponentially as ||g|| — oo at a rate controlled by the function P defined

in the above theorem.

Theorem 1.19. Let Uy, p, be an eigenfunction associated with Ay, (Zh.a). Then, for all
e > 0, there exist C > 0 and hy > 0 such that for all h € (0, hg),

”eap/hUh,m”LQ(RQ) S C||Uh7m||L2(R2) 5
where P is given in Theorem 1.17.

Let Y}, be an eigenfunction associated with X\, (23 a). We introduce the projection

into the eigenspace of A\, (£} A)
I, : L*(R?) — Dom (%, A)
u— Iu = (u, Th,m>L2(R2)Th,m )
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The L?-norm estimation for the true eigenfunctions and their Ansatz is given by the

following theorem:

Theorem 1.20. Assume that the magnetic field satisfies assumption 1.2. For all (J,m) €
N x N, there exist C > 0 and hg > 0 such that for all h € (0, hy),

HT}{,m - Hng7mHL2(R2) < Ch/t, (1.52)

With the Agmon estimate, we even have better approximation in an exponentially

weighted space.

Theorem 1.21. Assume that the magnetic field satisfies assumption 1.2. For all (J,m) €
N x N, there exist C > 0 and hg > 0 such that for all h € (0, hyp),

Let us sketch the plan to obtain the above results. We first write the magnetic Laplacian

< Ch'HL. (1.53)
L?(R2)

eaP/h (TJ HmT}{7m) ’

hym —

2. A in the radial coordinates. It has the form

iy = —h*r72 (r0,)? + 172 (—ihdp + G(r))?,

Glr) = /0 3 (T;) dr .

By the Fourier decomposition, we can write %3, in the direct sum of the fibered operators:

where

=P Chm (1.54)
meZ
where
L = =272 (r0)? +r72(hm — G(r))%. (1.55)

Under the assumption 1.46, we can prove that these fibered operators £ ,, have compact

resolvents (see Theorem 5.5). Therefore, the spectrum of each operator £y, ,,, is discrete.

By changing variable p = g, we obtain the equivalent operator
> (hm — a(p))*
Nign = =220,(p8y) + =00

By considering the rescaled operator of N

(hm — a(ht))?

=2
Mh’m hattat + th )
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and studying its ground-state energy (Subsection 5.2.2), we can show that

— 1
Ao(Mipm) = hbo + h* <2m d;()tH + (TYQZjV) +o(h?),
where H = %HessB(O). This tells us that the m-th eigenvalue of the magnetic Laplacian
is exactly the first eigenvalue of the m-th fibered operator (see Theorem 5.14). At
this stage, we only need to apply WKB method for the operator N, to obtain the
eigenvalue expansion and the WKB Ansatz. Then they are transferred to the original

magnetic Laplacian by the unitary transformations.

1.4 Organization of the thesis

Chapter 2 is devoted to lead the reader into the classical mechanics with magnetic field.
It opens with the introduction to the theory of symplectic geometry and Hamiltonian
dynamics. It allows us to define the magnetic Hamiltonian dynamics and provides us
the tools to solve the classical problems in the Chapter 3. This chapter ends with the
relation between Newton’s mechanics and Hamiltonian’s mechanics in the presence of

the magnetic field.

Chapter 3 is devoted to prove the results in classical mechanics. This is the work of

the article [46] in collaboration with Nicolas Raymond and San Vi Ngoc.

Chapter 4 starts with the introduction of the magnetic Laplacian on a Riemannian
manifold. The domain of the operator and compact resolvent property are studied
on the compact manifold. The picture of the operator and its spectrum on R? are also
considered. The main object of this chapter is performing WKB analysis for investigating
the spectral problem of the magnetic Laplacian. Thanks to the spectral theorem, we
estimated efficiently the true eigenfunctions and the approximate eigenfunctions locally

near the minimum point.

Chapter 5 demonstrates the results in Subsection 1.3.2.2. We start the chapter by writ-
ing the magnetic Laplacian in the radial coordinates. After the Fourier decomposition,
we investigate the spectrum of the fibered operators. In a next step, we describe the
relation between spectrum of the fibered operators and the original magnetic Laplacian.
It allows us to construct the WKB eigenvalues and eigenfunctions of the magnetic Lapla-
cian on R?. Finally, we obtain the approximation of the eigenfunctions in a convenient

non-exponentially and exponentially weighted space.
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Chapter 2

About classical mechanics with

magnetic field

Free curiosity has greater power to

stimulate learning than rigorous

coercion.
St. Augustine, Confessions
Contents
2.1 Reminder of symplectic geometry ... ... ... ...... 29
2.2 Magnetic Hamiltonian mechanics . . . . ... ... ...... 38
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This chapter is devoted to the dynamics of a charged particle submitted to the magnetic
field. This story was first told by Stérmer, who was attracted by the aurora phenomenon
and tried to bring this phenomenon into mathematics (see [14]). With the motivation
for interpreting the trajectory of the charged particles in the earth’s magnetic field, he
was a pioneer person attemped to approach the trapping trajectory problems. His and
other’s understanding of the trapped orbits within the earth’s field played essential role
in application of the Van Allen radiation [7, 13]. In [41], Littlejohn drew the attention
to the importance of Hamiltonian methods in such problems. Symplectic methods (and
normal forms) have shown their power in [51] where the authors study the long time
dynmics at low energy. There is a huge amount of literature using the Hamiltonian

method to investigate the magnetic dynamics, for example [7, 9, 41, 42, 51, 62].

In this chapter, we briefly explain how to write the famous Newton equation in the
presence of the Lorentz under a Hamiltonian form. To do so, we recall the basics
of symplectic geometry in R?". In particular, we recall how to lift a (space) change
of variables to a symplectic transformation. This will be needed when describing the
motion of a charged particle approaching the boundary (a neighborhood of which being

described through tubular coordinates).

The reader can consult the books [16, 36] for the following section and an account of
symplectic techniques can be found in [64, Chapter 2]. After that, we will travel to the
world of magnetic field with Hamiltonian tools in our hands. Therefore, the reader can

skip this section at the first reading.

2.1 Reminder of symplectic geometry

First of all, we introduce the standard symplectic vector space (R?",wq) equipped with

a bilinear form wq defined as
wo(u,v) = (Ju,v) for all u,v € R*™, (2.1)

where the bracket denotes the Euclidean inner product in R??, and J is a 2n x 2n matrix
defined by

with I, is the unit matrix in linear algebra.

Since J~! = JT = —J, it can be seen that the bilinear form wy satisfies the following

properties:
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i) Anti-symmetric : wo(u,v) = —wo(v, u) for all u,v € R*".

ii) Non-degenerate: Let u € R?", if
wo(u,v) =0 for all v € R?",

then u = 0.

Furthermore, wy is usually considered as a 2-form on R?" in practice, see [I, Chapter 7]
for basic knowledge of differential forms. Let us recall that, in the standard coordinates

(21,...,T2y), for i,5 € {1,...,2n} the 1-form dz; is defined on R?" as
dzi(u) = u; for all u € R?",
and the 2-form dx; A dz; is the exterior product of dz; and dx; defined as

da;(u)  dxj(u)
dz;(v) dz;(v)

dz; Adzj(u,v) = = UV — U;v; for all u,v € R?".

By rewriting the standard coordinates as (qi, ..., gn, P1, ..., Pn), We can represent wy as a

2-form wp : R?" x R?2" 5 R :

n
wo = dek A dg -
k=1

Furthermore, we can observe that

n
wo = do for o = Zpkqu .
k=1

Since d? = 0, it implies that
d(.do =0. (2.2)

Thus, we also say that wqg is closed. Since wy is bilinear form, we can naturally define

a linear mapping

T: R™ (R™M)*

u — wolu, ) .

The non-degeneracy of wy is equivalent to the fact that T is an injective. Since R?" and

(R?")* has the same dimensions, 7' must be an isomorphism.
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2.1.1 Hamiltonian vector field on R?*”

Let U be an open set in R?® and H : U — R be a smooth function. Thanks to the
non-degeneracy of wy, for a smooth function, we can define a unique vector field Xz on
U such that, for each z € U

wo(Xg(x),Y) = —dH(2)Y for all Y € R?", (2.3)
where dH (z) : R?™ — R is differential map of H defined by

dH(z)Y = (VH(z),Y) for all Y € R*".

We call Xy is a Hamiltonian vector field associated to the function H on R?", and
we also often call H Hamiltonian. Now, we can define the flow of the Hamiltonian
vector field Xy, we denote it by ¢¢(z), that is the solution of the following ordinary
differential equations (ODE)

d
&@t(x) = Xg (pi(x)) , (2.4)

vo(x) =z, r € R?™,

It means that for each = € R?", the curve c(t) := ¢:(x) solves the Cauchy initial value
problem for the initial condition ¢(0) = x. Since the Hamiltonian H belongs to the class
C>®(R?" R), the below theorem of existence and uniqueness of ¢;(z) is ensured by the

Theorem of Cauchy-Lipschitz.
Theorem 2.1. For all x € R?", the (ODE) (2.4) has a unique smooth solution

or(x) = J(x) — R

where J(z) is the maximal interval containing 0 on which px(t) is defined.

Furthermore, pi(x) possesses following properties

i) wo(x) =z for all z € R?".
i1) pirs(x) = or(ps(x)) whenever both sides are defined.

iii) For each time t € R, the mapping p; : R*™ — R?" is a diffeomorphism.

To see the connection between Hamiltonian defined above on symplectic space and well-

known Hamiltonian equations of a system of n degree, we write condition (2.3) as

(JXp(x),Y)=—(VH(x),Y) .
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Therefore, thanks to the equality J2 = —.J, it results that
Xpy(z) = JVH(z) for all z € R?". (2.5)

If we demonstrate c(t) as (¢(t),p(t)), we can rewrite the equation (2.4) explicitly in the

form
= S0 p(0)
a% fori=1,...,n. (2.6)
pi(t) = — 9 (q(t),p(t))

These are called Hamilton’s equations. They are equations of motion of the sys-
tem expressed as 2n first-order differential equations. Their nice property is that the
derivatives with respect to time are isolated on the left-hand sides of the equation. The
following theorem tells us that H is a conserved quantity on its flows, i.e. H(q(t), p(t))

is independent of ¢ for each solution (g(t),p(t)) of Hamilton’s equations.

Theorem 2.2. Let (q(t),p(t)) be the solution of equations (2.6) with initial condition
(g0, o) = (q(0),p(0)), then

H(q(t),p(t)) = H(qo, po) , (2.7)

for all t € I, where I is some interval around 0.

Proof. We consider the derivative of H(q(t),p(t)) according to variable ¢:

o a0.00) =3 (G0 + 5o

P Ip;
B z”: OHOH OHOH
<\ q; Opi 9p; Dy
=0.
Thus, the function H(q(t),p(t)) is constant and satisfies (2.7). O

Conserved quantities are very useful in that they keeps the solutions (¢(t), p(t)) staying
in the level surfaces of any conserved quantity. For example, suppose that we are working
with a particle moving in R? and we use Hamilton’s equations to investigate its motion.
We need to consider the problem with four unknowns. But, if we can find one other
conserved quality F' instead of H, then rather than looking for the solutions in four

dimensional phase space, we look for them inside the joint level sets of H and F':
H(q,p) = Ho,  F(q,p) = Fo,
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for some constant Hy and Fy. These joint level sets are two-dimensional instead of

four-dimensional, so using conserved qualities greatly simplifies the problem.

The thing happens here is that if we change the coordinates from (q,p) to (g,p), we
wonder that the system (2.6) is still true in the new coordinates or not? Next section

will introduce the change of coordinate which preserves the Hamiltonian property.

2.1.2 Symplectic transformation

Let us recall the definition of pull-back of two-form first, and then introduce the definition
of a symplectic transformation. Let U,V be open sets in R?" and w be the 2-form on

U, the pull-back of w by a smooth function ¢ : U — V is defined by

(w*w)w(uv U) = ww(x)((dgp)zuv (d@)wv) )

for x € U and for all u,v € R*", where (dp), : R?" — R?" is the differential of map ¢

at x represented by the Jacobian matrix of ¢ at x.

Definition 2.3. The diffeomorphism ¢ : U — V is called symplectic if

¢ wo = wo - (2.8)

In view of the definition of wy, a symplectic property is equivalent to
(J(dp)zu, (dp)v) = (Ju,v) for all u,v € R*",
or in the matrix language, a diffeomorphism ¢ is symplectic if and only if
(dp)LJ(dp), = J for all z € U . (2.9)
Example 2.1. On R?", the linear map ¢ defined by
o(z) =Jx for x € R*™®

18 symplectic, because
(dp)TI(dp), = JTTT = J.

Example 2.2. On R?, the linear map ¢ defined by
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with a,b,c,d € R satisfy ad —bc =1 . Then ¢ is symplectic, because

(dga)gj(d@)x = <Z ;) <_01 ;) (CCL Z) - (bc—oad ad;bc) =.J

The above examples can be generalized by the following theorem

Theorem 2.4 (Linear symplectic mapping). Let o : R?® — R?" be a linear mapping

©(q,p) = (é ﬁ) (Z) for (¢,p) € R" xR"™, (2.10)

where A, B,C, D are n X n matrices.

Then, @ is symplectic if and only if ATC and BT D are symmetric and ATD—CTB = 1I,,.

Proof. We just need check that ¢ is symplectic if and only if

AT CT 0 L\ (A B 0 I,
= . (2.11)
Bt pt)\-1, o0)\C D -I, 0
This is equivalent to the equality
ATC-CcT™A  A™D-C"™B\ [0 I,
BTC-DTA BTD-DTB I, 0]
This is the argument stating in the theorem. Note that the diffeomorphism of mapping

¢ in the equation (2.11) when compute the determinant of two sides. O

In general, to check that a mapping is symplectic, we often use next theorem.

Theorem 2.5. Let Uy, Vi be open sets in R™. Assume that a mapping ¢ defined by

QDZU1><RTL—>V1XR”

(a,p) = ©(g,p) = (Q(g,p), P(q;p)) -

We write the Jacobian matriz of ¢ in the form of block matrices

9Q 9Q
(dcp)(q,p) = (gg gg) ) (2'12)
dq dp
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0Q 0Q OP 0P

where —, —, —, — are the n X n matrices.
dq’ dp’ O0q’ Op
Then, ¢ is symplectic if and only if
aQ\" opP aQ\" oP .
<8q> Er and <8p> o are symmetric, (2.13)

and . -

09\ o _ (ory' 09 _ -

dq op dq Op

at every point (q,p) € Uy x R™.

Proof. The proof is the same as the last Theorem Linear symplectic mapping, we just
: : : 0Q 0Q oP oP :
replace the matrices A, B, C, D with, respectively, —, —, —, —. Note that, if we
dq Op 0Oq Op
have
(dp)z J(dp)e =J  forz=(q,p),

it implies that det((dy)s) # 0 at every point x € U; x R™, the Inverse Theorem help to
confirm the diffeomorphism of . O

In next theorem, we represent the construction of a symplectic transformation on R2"
from a non-linear diffeomorphism on R™. We call this technique as symplectic lifting
(see [64, Chapter 2]) and it will be used in the thesis to construct the Hamiltonian in

tubular coordinate and in radial coordinate later.

Theorem 2.6. Let Uy, Vi be open subsets in R™. Assume that
YUy — W,

be a diffeomorphism.

Then, the mapping ¥ defined by
\IJZU1XRH—>V1XRTL

AT
(@)~ @@ (@) = | (), [(‘?{f) ]

0
1s symplectic, where 871# indicates the Jacobian matriz of 1.
q

Proof. Apply the Theorem 2.5, we need to verify that
ow\" o ov\"on _ (on\" oy
— | ==1, and — | ===) =
dq ) Op dq) 9q dq) 9q
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The first of them is easily satisfied by the definition 5. To check the other, we need to

look at each element of product matrix of each side.

0
We denote n x n matrix M = (myj)i<ij<n = <8w> . Notice that matrix M
o q

depends only on ¢ and n(q,p) = Mp. For i,j € {1,...n}, we have

(5 % -G, (&)
dq) 9q l.j_, 99 ) 1 \ 04 ) 1;
gi

> (%) (5
o (5 )

0
k=1 _
_ — [~ Ok 3mkze> e
= \imy 94 94
Since MTE;/} = I,, it implies that
q
kag _5m for all £,i € {1,..n}.

Take 5-- two sides, we get

— Oy Ome i 0%y,
dq; 0q;

=
Il
—

Thus,

)] =5 (S

With the same steps, we also have

(%) 5,2
0q) dq S = aqzaqj e

o\ T an . :
Then clearly <%> 1 is symmetric. O

0q

2.1.3 Hamiltonian and symplectic transformation

After travelling through procedures for creating symplectomorphism linear and non-
linear, we explain the relation between Hamiltonian and symplectic transformation in
the following lines. Next theorem again provides us a way to get a symplectic mapping

from the flow of Hamiltonian vector field:
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Theorem 2.7. A flow of the Hamiltonian vector field Xg generated by H, we call py,

preserves the symplectic structure:

(1) wo = wo ,

and is, therefore, a symplectic transformation.

Proof. From the Theorem 2.1, ¢! is a diffeomorphism for each t. We only need to check

the symplectic formula. Since

d, ., d

@(@t) wo = £(¢t+s)*|5:0 wo
d *( S\*
ZZaE(wt)(¢’)!s:OWO
= (got)*SXH wp -

Here £x,, wo is the Lie derivative of wy. From the Cartan’s formula and (2.2), we have

SXH wo = (’iXHd + diXH)WQ
= ix,dwo + dix,wo

=—d(dH)=0.
It tells us that (¢¢)*wy does not depends on ¢, thus

(SOt)*wo = (Sot)*|t:0W0 = wo -

O]

As discussing above, with a smooth function H on an open set U of R?"”, we can define

naturally the Hamiltonian vector field X on U and then establish its flow through the

ODE
U = JVH (ut) onU.

Let V C R?" be an open set and U : U — V be a symplectic transformation. We

perform a change of variable

K=HoU ':V—R",
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and define the curve v; := ¥(uy) in V. By computation, we will see that symplectic

transformations can keep the Hamilton form. Indeed, we reckon
VH (up) = (d¥),, VK (vy),
thus, since ¥ is symplectic and (2.9), we have
Oy = (dW)y, 4 = (dV)y, JVH (uy) = (d‘ll)utJ(d\I/)ftVK(vt) = JVK(v).

Therefore, we have the following result:

Theorem 2.8. Any symplectic transformation preserves Hamilton’s equations.

2.2 Magnetic Hamiltonian mechanics

2.2.1 Newton’s law with magnetic field
2.2.1.1 What is the magnetic field?

It seems that the word ”magnetic” comes to our mind through the image of a magnet.
In our real life, we can see magnets everywhere such as in a compass, in a refrigerator
door with magnetic stickers and our earth is also a huge magnet. While at school, we
use iron chips to make magnetic field lines emerge for observation. In mathematics, we
describe these quantities by the vectors. The length of a vector at one point tells us the
magnitude of the magnetic field at that point, and the direction of this vector tells us
the direction of the magnetic field at that point. Similarly, the magnetic field around
the magnet will be represented by a vector field. We will denote this vector field as ﬁ

2.2.1.2 Magnetic Newton’s equation

Now, we consider a particle of charge e and mass m put in the domain affected by the
magnetic field ﬁ We want to know the motion of this particle in the space. The second

Newton’s law gives us the equation of motion.

Let q(t) := (q1(t), q2(t), g3(t)) € R? denote the particle’s position at time ¢. The particle’s

velocity and acceleration are, respectively,
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We assume that the net force applied on the particle is only the magnetic force, called

Lorentz force, and it has form
F =evx ﬁ

Here e is a constant which indicates the electric charge of the partice. This Lorentz force
depends on the velocity of the particle and perpendicular to v and B. Under the action

of the Lorentz force, the Newton’s second law (F' = ma) becomes
mg = eq X B. (2.15)

%
To simplify our discussion, we assume that e = 1 and m = 1. Assume that B =

z

A

FIGURE 2.1: A charged particle moving in a magnetic field that points in the z direction.

(B1, B2, B3), we can rewrite (2.15) as

G1 = B3(q)d2 — B2(q)d3
G2 = B1(q)d3 — B3(q)q1 - (2.16)

43 = Ba(q)q1 — B1(q)d2

Suppose that ﬁ is a C! vector field, the Cauchy-Lipschitz theorem tells us that the
system (2.16) has a unique local maximal solution for each pair of initial conditions at

t=20:



Definition 2.9. A solution ¢(¢) of Newton’s equation (2.15) is called a trajectory.

From the Newton’s equation (2.15), we get a result that: the energy function
E(q,v) = *Hsz (2.17)

where |.|| denotes the Euclidean norm on R3, is conserved. It means that the value of
the energy function along any trajectory is constant. Indeed, veryfying this by differen-

tiation:

GEa.0) = 3 (G101R)
i(t) - (1)
= (D) (B x i(t)

I
o

Thus, E(q(t),v(t)) is independent of the time ¢.

In particular, it tells us that when the charged particle travels in the pure magnetic field
(means that there is no electric field), it always moves with constant speed (the speed is
the magnitude of the velocity). No matter how large the magnetic field is and no matter
which direction the particle goes, its speed never changes. Its speed only depends on
the initial condition. Later, we will see that this energy function is our Hamiltonian.
Before going to define the Hamiltonian formulation in this chapter, we need to define an
important ingredient which connects the magnetic field and the Hamiltonian function:

the magnetic potential.

2.2.1.3 A magnetic potential

So, what is a magnetic potential? Before we go to the definition, we need to pay our
attention to one observation in the real life. Imagine that we are holding a bar magnet
in our hand, we divide it into two pieces. Then, two small magnets are automatically
created with their own south and north poles. If we continue this splitting process down
to the atomic level, we find that even elementary particles behave as magnetic dipoles,
each with a North and South pole. It appears that nature does not allow us to create
magnetic monopoles in this way. This watching is explained by the Gauss’ Law for

Magnetism, it states that the magnetic field ﬁ has free divergence, i.e.

vV.B =0. (2.18)
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By the divergence theorem, this Law implies that for a magnetic dipole, any closed
surface the magnetic flux directed inward toward the south pole will equal the flux
outward from the north pole. Thus, if there was a magnetic monopole source, the net
flux of magnetic field B out of some closed surface is non-zero, and this breaks the Law.

We can see [15, Chapter 7] for details.

But the Law does not stop here, it also produces one vector field which is a bridge

between Newton’s mechanic and Hamiltonian formulation by Poincaré lemma below.

Theorem 2.10 (Poincaré’s Lemma). Let S be open star-shaped subset of R™ and let

k € N*. Assume that o is a k-form defined on S and if o is closed, i.e.
do =0, (2.19)
then there exists a (k — 1)-form w on S such that

dw=0. (2.20)

Proof. The proof can be easily found in textbooks, for example [49, Chapter 1], [64,
Appendix B]. O

Now, let ﬁ = (B, B2, B3) in R3, we set up the compatible 2-form in R?
o = B1dga A dgs — Badgr A dgs + Bsdgr Adgs.

We check that op is closed,

0B 0B 0B
dO’B:< l+ 2+ 3>dql/\dqg/\dqu(V‘g)dql/\dqg/\dqu().
O Og2  Ogs

Applying Poincaré’s Lemma, there exists a 1-form w = Aidg; + Asdge + Asdgs such
that

0Ay  0A4 0A3 0A; 0A3 0As
do=|——-—)dg Ad — — —— )dqpy Ad — — —= )dg2 Ad
w ( o0 o0 ) qu1 Adgz + ( o 943 q1 Adgs + o0 943 g2 A dgs3
=0B.
So, if we let A = (A1, Ag, A3), then it implies that
B=VxA. (2.21)
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We will call o the magnetic 2-form and its primitives w the magnetic potential 1-form.

%
We call any vector field A satisfied (2.21) the magnetic potential of magnetic field

B.

_>
We can see that there are many possible choices of vector potential A satisfying (2.21),
_>
we just add A with some free-curl vector field V, i.e. V x V = 0, we obtain a new
vector field which satisfies (2.21) too. How can we relate two choices of vector potential?

Poincaré Lemma gives the answer.

%
Lemma 2.11. Let X and A’ be two magnetic potential vector fields of § Then, there
exists a function ¥ € CY(R3,R) such that

é
A=A 1vu. (2.22)

_>
Conversely, if X and A’ satisfied (2.22), then they are the magnetic potential of the

same magnetic field.

— = — —
Proof. Let ﬁ = (Uy,Us,U3) := A’ — A be the difference vector field of A and A’. Since
H
V x ﬁ =V x (A" - X) = 0, it deduces that the 1-form op = Urdq1 + Uzdge + Usdgs

satisfies

daﬁ:O.

By applying Poincaré’s Lemma, there exists a differentiable function ¥ such that
U=VU.

The final conclusion of the Lemma is easy to check by noting that the curl of the gradient

of a function is zero. O

In this section, we have used a vector field to define the magnetic field in dimension
3. For higher dimension, it is more convenient to use differential forms to define these
objects. Namely, on the domain €2 in R", the magnetic potential is a smooth real 1-form

A on Q, given by
n
A=) Ad;.
i=1
The associated magnetic field is the 2-form B = dA, more explicitly, we have
B = Z Bjk(z)dl‘j ANdxy,
1<j<k<n

i L 0Ap _ 04
with B]k— 2, Ok -
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Since d? = 0, we have dB = 0 and this is equivalent to the condition (2.18) in R3. The

- =
relation dA = B is similar to the equation V x A = B in R3.

2.2.2 From magnetic Newton’s mechanics to magnetic Hamiltonian

Let us get back to our journey by considering a charged particle that is submitted to a
pure magnetic field B in a domain Q in R3. Let A = A;dg; + Asdge + Azdgs be the

associated magnetic potential of B .

The matrix representing the right cross product with B in the canonical basis is
Mg =Ji —Ja,
where Ja is the Jacobian matrix of A. Hence Newton’s equation (2.16) becomes
4= Msgq,
so that

&0+ AW@) = T

By introducing the generalized momentum variable p = ¢+ A(q), and define the Hamil-

tonian function

»— A
H@m%=”2(”’, (2.23)
where ||.|| denotes the Euclidean norm on R3. We obtain the system of Hamiltonian’s
equations
q = OpH(q;p
pH(.P) (2.24)
p=—04H(q,p) .

Conversely, if we start from Hamiltonian equations (2.24) of Hamiltonian H, we get

q¢=p—Alq)

(2.25)
p=Ji(p—Aq)).

By reversing the above process, we take the derivative of ¢, we also obtain the New-
ton’s equation (2.15). Therefore, Newton’s equation (2.15) and Hamiltonian’s equation
system (2.24) are equivalent to describe the dynamic motion of the charged particle.
Furthermore, from the equation of ¢, we can express the Hamiltonian as the energy

function F(q,q) mentioned at the end of Subsection 2.2.1.2,

1, .
H@m%=jMW-
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2.2.2.1 Gauge invariance

As discussed earlier, we see that the magnetic potential is not defined in the unique
way, but up to a gradient of a smooth function. That is, if A and A produce the same

magnetic field, then there exists a function ¥ € C*°(Q2) such that

A=A+VVU.

We obtain two Hamiltonians

_lp— A9l
2

_li-A@P

H(q,p) 5

and  H(q,p)

It leads to two corresponding Hamiltonian dynamics. The natural question is if these
Hamiltonian systems describe a same movement of the particle. To have the answer for
this question, we need to find the link between two Hamiltonian systems associated with

two arbitrary magnetic potentials A and A. We consider the mapping ¢ defined by

0: QxR QxR? (2.26)

(¢,p) = #(a,p) = (a,p+ V¥(q)). (2.27)
We can easily verify that ¢ is a diffeomorphism from © x R3 to itself, and its inverse is

v (q,p) = (¢, — VI(q)).

Furthermore, the Jacobian matrix of ¢ at the point (g, p) has the form

1 0
(d@)(%p) = <(d2;)q Ig) )

where (dQ\Il)q is the Hessian matrix of ¥ at the point ¢. By applying the Theorem 2.5,

we can confirm that ¢ is symplectic. From the definition of H and H, we see that
H=Hop L.

Therefore, the dynamics defined by H and H are equivalent via a symplectic transfor-
mation and does not depends on A, we call this property Gauge invariance of magnetic

Hamiltonian.
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2.2.2.2 With a constant magnetic field

Let (e_f, e, e_3>) be the standard basis of R3. We restrict ourselves to the case the magnetic
field pointing in the direction perpendicular to the plane R? := {qle_l> +qoes | q1,q2 € R}

and does not depend on time, that is

ﬁ
B(Q) = B(Q17Q2)e_3>-

We assume that B = B, where By € R, is the constant magnetic field. We will use
Newton’s mechanics and Hamiltonian’s system to investigate the motion of the particle.

Newton’s approach: We rewrite the system (2.16) as

G = Boge,
g2 =— Boaqi, (2.28)
g3 = 0.
The last of these is easy to solve
a3(t) = q3(0) + g3(0)t. (2.29)

It results that we just need to focus on the system of ¢; and gs:

Gi= Boge, (2.30)
G2 =— Bogi.
Let v = ¢1 + iga, use (2.30), we find that
v = —1Bgv.
It follows that v(t) = v(0)e ™o, Then we have the trajectory
alt) = an(®) +iaa(t) = a(0) ~ "0 4 U0 oima, (2.31)

Bo Bo

This formula describes that the charged particle moves along the path whose projection
on the plane R? is a circle whose center is q(0) — % with radius %. Meanwhile
g3 given by (2.29) increases steadily, so the particle actually describes a uniform helix
curve whose axis is parallel to the magnetic field. When the particle starts from R? with
initial velocity lines in R?, it means that ¢3(0) = 0 and ¢3(0) = 0, then the spiral reduces
to a circle (see Figure 2.2). It results that the particle is trapped in a cyclotron motion

forever in a constant magnetic field.
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(A) A Helix path. (B) A Cyclotron path.

FIGURE 2.2: The movement of the particle when B is constant.

Hamiltonian’s approach: To deal with magnetic Hamiltonian, first of all we find a

magnetic potential A associated with magnetic field
B = Bgdg; A dge + 0dgy A dgs + 0dge A dgs = Bodgy A dgo .
We choose A = (—B2¢s) dg1 + (B2q1) dgo + 0dgs = (—B2¢2) dg1 + (B2q1) dgo, thus
dA = B.
Then, the Hamiltonian is

(101 + %@)2 n (p - %th)2 p%

We look at the third variable first, we obtain

43 =1ps3,
(2.32)
p3=0.
It implies that g3(t) satisfies (2.29). Also from Hamiltonian’s equation, we have
( . B0
@ =p1+ 5 %2
. By
42 = p2 — 7(11 )
b1 = 9 P2 9 q1),
. _Bo By
\p2 =5 <p1~|—2qQ> .
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A solution of this linear system has the form

2 2 2
N By 0 B ~B,
0 0 _2 27 ) _2i )
= + Cy Bo + C3 Bo ¢~ Bot + Cy Bo | ¢iBot , (2.34)
P1 0 1 7 —1
p2 1 0 1 1

where Cy, Cs, C3, Cy are constant depending on the initial data (g(0),p(0)). To compare
the solutions given by the two approaches, we just need to write ¢ and ¢ in complex
form as above. We have

2 21 4

= ) —_ _ o —iBot
q(t) = qu(t) +iga(t) BOCI By Cs B, Cse ;

and thus
G(t) = qu(t) + iga(t) = 4iCze~Bot

Then, we get the constant C3 = £¢(0).
Let t = 0 in the equation of ¢(t), we obtain

2

i4(0)
By '

By

2
C1 — =C2 =¢q(0) —
1 B, 2 = q(0)
Replace this term in ¢(t), we recover the solution same as (2.31)

ot) = q(0) — ig(0) L iLj(O)e—iBot.

By Bo
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Chapter 3

Study of the magnetic

Hamiltonian dynamics

Not all of us can do great things. But

we can do small things with great

love.
Mother Teresa
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The present chapter is devoted to produce the proof for the results obtained in classical
mechanics. The chapter is organized as follow. In Section 3.1, we write the magnetic
Hamiltonian in tubular coordinates. In Section 3.2, we provide the proofs for results in

confinement. Section 3.3 is devoted for the proof of scattering Theorem 1.7.

3.1 The magnetic Hamiltonian in tubular coordinates

In Chapter 2, we considered the magnetic domain in three dimensions which appears
naturally in physics. We also saw that the Hamiltonian is a function of 6 variables

defined by
_lp— A
2

with A = A1dg + Aadgs + Asdgs is a 1-form satisfies

H(q,p) for (q,p) € R® x R?,

dA =B.

In our problem, we study the motion of a charged particle in €2 C R%ql @) submitted to
the magnetic field B = b(q1, ¢2)dg1 A dga. We can set up the magnetic potential in the
form A = Ai(q1,q2)dg1 + A2(q1, q2)dge with A;, Ay satisfies

0As 0A;

9% 94y
dgi O

Since the charged particles which we are studying have their initial positions and veloci-
ties in the domain €2 C R(qu )’ via Hamiltonian’s equations of g3 and ps, we see that g3
and ps3 are always zero. For that reason, we can ignore the variable g3 and p3 in energy

function and we get

_lp—A@@)I?

H(q,p) 5

for (q,p) € R? x R%.

Let us recall again the definition of the tubular coordinate which we mentioned briefly

in the statement of results in Chapter 1.

We are working on the bounded domain Q in R?. We assume that any connected
components of 9 are C%-smooth closed curves without self-intersections. Let C be a
connected component of 9, since C is regular, we may parametrize it by arc length

v :R/LZ — C where L is the length of C.
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FIGURE 3.1: Tubular Coordinates.

There exists § > 0 such that

v (0,8) x R/LZ — Qc(5) -
(n,s) = (s)+nN(s)=q

is a smooth diffeomorphism. N(s) denotes the inward pointing normal at y(s) and
Qe(d) ={¢ge:d(q,C) < d}.
Via the Theorem 2.6, we can lift ¢ to a symplectic change of coordinates ¥ defined by

(0,6) x R/LZ x R? = Qc(d) x R?,
(n, 8, pnsps) = ((n, ), ((dw)(_nl,s))T(pnaps)) =(¢,p),

where we have explicitly p = (1 — nx(s)) " 'psy'(s) + pnN(s) with x(s) is the signed

curvature of C at y(s).

Note that 2-form dg; A dgs in tubular coordinates has the form
dgi Adge = (1 — nk(s))ds Adn.
Therefore, we can write magnetic field B as

B = b(q)dg1 A dga = b(¢(n, s))(1 — nk(s))ds Adn,
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and write the magnetic potential as
A = A,(n,s)dn + As(n, s)ds,

with Ay, As defined on (0,d) x R/LZ such that

DA, 0A, B
o~ 5s = Bns) = =b(i(n,))(1 = nr(s)).

The lemma below shows us that the Hamiltonian takes the form

(ps — As(n, 5))*
2(1 —k(s)n)? -~

1
H(na S,pnaps) = §(pn - An(nv S))2 +
Lemma 3.1. We write A = A1dq; + Aadge. With (3.1), we have
A=Aydn+ Ads, A= (A, A)T = (dy)T (A4, AT,

We have

(pn - An(”y S))2 (ps - As(n7 S))2
5

2 * 2(1 — k(s)n) (32)

H(?’L, sapnaps) =Ho ‘;[l(n’ Sapn7ps) =

Moreover, v, = p, — An(n,s) and vs = (1 — nk(s)) 1 (ps — As) are the normal and

tangential component of v.

Proof. We write
2H(q,p) = llp — Al = |(dp™ ") (B = AP = (A )(dy ™) (5~ A), 5 — 4),
with p = (pn,ps)’. Note that
(dy™")" = [N(s) . (1 = nr(s))7/(s)] - (3.3)
We get

mwﬂmwﬂT—<1 0 ).

0 (1—nr(s)) ™2

Concerning the velocity v, since ¢ = 7(s) + n/N(s) and thanks to the Frenet-Serret

formula N'(s) = —k(s)7'(s), we have
v=5(1—-nk(s))Y(s) +nN(s) =: vsy + v, N,

and thus we get the result by using the Hamilton equations § = (1 — s(s)n)~2(ps — As)
and n = p, — An. O
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3.2 On the confinement problem

3.2.1 1In the general case

We will prove Theorems 1.2 and 1.3 in this subsection. To reach the boundary, the
particle has to be close to a connected component C of 992 (see Figure 3.1). Thus, we

can assume that, for all ¢t € [0,T),
q(t) € Qe(6).-

Modifying the vector potential corresponds to a symplectic transformation of the form
(¢,p) — (¢,p + dS(q)), for some smooth function S, and hence does not modify the

trajectory of the particle. Thus, we consider the function

S

L s
a(n,s) = L/o B(n,ﬁ)d§—/0 B(n,&)d¢.

Notice that a(n,-) is L-periodic. Recalling (1.20) and letting A = a(n, s)dn + f(n)ds,
we have B = dA.

By (3.2), the corresponding Hamiltonian is

(o= aln5))? | (po— S()°
2 2(1 — k(s)n)?"

H(n,s,pn,ps) =
Concerning Hamilton’s equations, we have in particular
n=np, —an,s), ps = B(n, s)n —

where

1a] < /2Ho
lps — f(n)] < V/2Ho(1 +¢) (3.4)
(ps — f(n))? , 2HyK'6
‘(1—m<s>n>3“(3) ‘ e

where in the last estimates we have used the notation of Theorem 1.3 and in particular

|k|n < K& < e. With our assumption (1.19) on B(n, s), we find, for all t € [0,T),

2HK'S
\ps<t>rs1ps<0>r+(M oHg + 2Ho )T,
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and thus

[F(r@E)] < Ips(D)] + [ps(t) = f(n()] < C(T', 4(0), 4(0)), (3.5)

with

C(T Q(O) ( ) |ps | + \/ﬁ +€ ( 2Hy + 2H0K/6> T.

If the trajectory reaches the boundary at ¢t =T, then

li t)=0.
e =0

This, with (3.5) and (1.17), gives a contradiction. This proves Theorem 1.2.

Now, consider a function g as in Theorem 1.3. We have, for all ¢t € [0,T),

g(n(t)) < [f(n(t))| < C(T,4(0),4(0)).

From (1.21), we have lin%)g( n) > C(T, q(0),4(0)); hence g must take the value C(T', ¢(0), ¢(0))
n—

and the conclusion follows.

3.2.2 In the radial case

Let us recall (1.33). When  is the unit disc and when B is radial, we can use radial
coordinates to approach the confinement problem. As in the tubular coordinates, from

the diffeomorphism

R* x R/27Z — Q\ {0}

(r,0) — (rcosf,rsinf) = q,
we can lift up to a symplectic transformation

R* x R/27Z x R? — (D \ {0}) x R?
(r,6,pr,po) = (¢(r,0), ((d¢)@}9))T(pr,pa)) =(¢,p)-

The explicit formula of ® is given in (1.31). Combining this with the form of magnetic

potential

A =G(r)do where G(r) = / TB(7)dT,
0
the Hamiltonian in this coordinate becomes

_ 2
) = 2 2 GO
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From the formula of the Hamiltonian, we can immediately see that the angular momen-
tum py is constant. Therefore, there are two constants of motion- the total energy and

the component py, this fact is used to reduce the Hamiltonian to a function of r and p,

2 Q)2
H(r,p,) = % +V(r), where V (r) = 7@9 Qg( ) .

3.2.2.1 Proof of Proposition 1.5

The assumptions of Proposition 1.5 can be written in terms of V.

(H1) If
lim inf V(r) > Hy, (3.6)

r—1-
we consider n = sup{z € (0,1) : V(z) = Ho} € (0,1). Consider a trajectory
(q(t),p(t)) with ¢(0) € D(0,1). We can assume that ¢(0) # 0. Let T be the
maximal time of existence in D(0,1). By energy conservation, we have, for all
tel0,7),
V(r(t)) < Hy,
so that r(t) <n.

Note that (3.6) means
liminf |G(r) — pg| > /2Hy .
r—1-

Using the usual complex coordinate in the plane R?, we can write ¢ = (7” + 297’) et

and thus
det(q(t), 4(t)) = r*(1)8(t) = pp — G(r (1))

Finally, we notice that ||¢(0)|| = v2Ho and write

G(r) —po = G(r) = G(r(0)) — [ps — G(r(0))],

which gives (1.26).

(H2) If
lirg%{lfV(r) = Hp, (3.7)
and
lim sup Vir) - Ho <0,
r—1- r—1
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then we must again have
sup{z € (0,1) : V(z) = Ho} < 1,

and we can proceed as above.

3.2.2.2 Proof of Proposition 1.6

Consider pg = 0. Let |V 1= sup,¢(o1) [V (r)|. By assumption, Ve < +o00.

Let 7(0) € (0,1) and choose p,(0) > 0 such that p2(0) = 2 (|V | — V(r(0))) + v2, with
v > 0. Since, for all t € [0,T),

B |y - 2O

we get 7(t) = pr(t) > v so that

The escape time is at most ¢t =

3.3 On the scattering problem

We distinguish between the cases pg = 0 and pg # 0.

3.3.1 Case when py # 0

In this case, lim,_,o V(1) = +00; hence, due to energy conservation, the trajectory does

not, approach the origin.

i. Assume that p,(0) < 0. We have V(1) < Hy and we can consider the right most
turning point r* € (0,1). By definition V (r*) = Hp, and necessarily V'(r*) < 0.

If V/(r*) < 0, it is easy to check that r reaches r* in finite time, say ¢ = t*. This

time is given by

. ! dr
o= V2l V()

By symmetry, the escape time is 2¢*. Since 6 = p@‘rif(”, we have

o= Gr) /t* (po =GPy [ o -G,
0

0(t)-6(0) :/0 r2 r2p, o 12 2(Hy — V(r))
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so that * . po — Glr)
0(t*) — 6(0) = / s

By symmetry, we have

Y pe—G(r)

r 12y/2(Hy — V(1))

If V'(r*) =0, (r*,0) is a critical point of the Hamiltonian and we get that r reaches

0(2t*) — 6(0) = 2 dr.

7* in infinite time (see Figure 3.2).

ii. Assume that p,(0) = 0. Then V(1) = Hy. By assumption (the trajectory enters
D(0,1)), we have V(1) > 0, i.e., (pg — G(1))B(1) + (pg — G(1))2 <0 . If V/(1) =0
the particle sits at a fixed point of the Hamiltonian system, and hence r(t) = 1 is

constant. If V/(1) > 0, it enters D(0, 1) and the discussion is the same as previously.

FIGURE 3.2: B(r)=e " — 2,
3.3.2 Case when py =0
In this case, since G(0) =0, V(r) = #G(r)2 admits a continuous extension at r = 0.

i. Assume that p,(0) < 0. We have V(1) < Hp. The existence of r* such that
V(r*) = Hp is not ensured. If V(r) < Hy on [0, 1], the particle reaches r = 0 in

finite time ¢ = ¢*:

o /1 dr
0 V2(Ho -V (r))
We get, by symmetry,

—G(r)

o — V(r))dr + .

1
0(2t*)—9(0):2/0 —
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If there exists 7* € (0,1) such that V(r*) = Hy, the trajectory does not reach the

origin and the discussion is the same as in the case py # 0.
ii. Assume that p,(0) = 0. The discussion is the same as when py # 0.
3.3.3 Scattering angle

We can now end the proof of Theorem 1.7. In terms of complex numbers, we can write
v1 = (vr(0) +7vg(0))e | vy = (—v,(0) + ivg(0))e .

The scattering angle is

92_91+Arg<—v (0)+w9(0)> |

Uy (0) + 7;1}9(0)

Since 6 is the argument of —v,(0) + ivg(0), the scattering angle is

92—(91—7T+2(5.
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Chapter 4

Semi-classical magnetic Laplacian

on a two-dimensional Riemannian

manifold

I am not sure exactly what heaven

will be like, but I know that when we

die and it comes time for God to

judge us, he will not ask, ‘How many

good things have you done in your

life?” rather he will ask, ‘How much

love did you put into what you did?’

Mother Teresa
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In this chapter, we use the WKB method to investigate the spectrum of the magnetic
Laplacian on a two-dimensional Riemannian manifold. We will observe that the asymp-
totic expansions of the eigenvalues and the eigenfunctions can be obtained via a WKB
analysis. Firstly, we introduce the definition of the magnetic Laplacian on a Rieman-
nian manifold in Section 4.1. Section 4.2 is utilized for the construction of a pair of
local isothermal coordinates and for the description of the magnetic Laplacian in these
coordinates. Then, we prepare for the WKB process by writing the eigen-problem of
the magnetic Laplacian into the eikonal equation and the transport equations in Section
4.3. The WKB analysis which is performed in Section 4.4 includes solving the eikonal
equation and the transport equations thanks to formal series. Finally, we make the

comparison between the true eigenfunctions and their quasi-modes in Section 4.5.

4.1 The magnetic Laplacian on a Riemannian manifold

The aim of this section is giving the basic definition of the magnetic Laplacian. We will
show that upon assuming the compactness of the manifold (with or without boundary),
the operator will has compact resolvent, then its spectrum will be described by a real,
discrete sequence tending to 4+o0o. The special case when the manifold is R? is also

considered.

4.1.1 Some facts about Riemannian manifolds

Let us recall some properties of Riemannian manifolds which can be found in Riemannian

textbooks such as [38, 39].

Let (M, g) be an oriented Riemannian manifold of dimension n > 2, i.e. M is a smooth
oriented manifold equipped with a Riemannian metric g. This metric g is defined on M
such that, for each p € M,

gp : TpyM x T,M — R

is a symmetric inner product on the tangent space T,,M which varies smoothly from
point to point in the sense that if X and Y are differentiable vector fields on M, then
p — gp(X(p), Y (p)) is a smooth function on M.

Notation 4.1. Let (U, : U — p(U) C R™) be a local chart with coordinates denoted
by (z,...,z™). At each point p € U, we denote
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0

927 | and

1. [V]p, [wlp, respectively, the coordinates of a tangent vector V.= """ v

a covector w =y 1 | w' dx"p, i.e.

V], = (v, .., o™t and Wy = (W, ., w™T.

2. Gy the matriz whose components are

0
Gz‘j(p) =9p <83:Z

Thus, G, is symmetric and

0

, —
J
» ox

) forall1<i,7<n.
P

gp(V.W) = [VILG,[W], for all V,W € T,M .

3. GY(p) the components of the matriz G;l and |Gp| the determinant of the matriz
Gp.

4. dV, the classical Riemannian volume form on M, which is the unique smooth

orientation form that satisfies
dVy(Er, .., Ey) =1,

for every local oriented orthonormal frame (En,...,Ey,) on M, c.f. [39, Chapter

15]. In local coordinates,

AV, = V/|G|dz! Ada? A ... Ada™

In terms of the Riemannian metric g, we can define a canonical isomorphism § between
the tangent bundle T'M and the cotangent bundle T*M point-wise as follows. For each
peMand V € T,M, G,(V) is a co-vector which is defined by

Gp(V)Y(W) = gp(V, W) for all W € T,M . (4.1)
Furthermore, it also induces a dual metric g* on the set of 1-forms on M by setting
g;(wl,wg) = gp(ggl(wl),ggl(wg)) for all wy,wy € T;M.

In local coordinates, the mapping g, is considered as multiplication with the matrix G,

i.e.
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The integration of a measurable function f on M is defined as follows. If f has a compact

support contained in a local chart (U, ¢), then

_ —1\* _ o —1 o —1 T
/Mde—[a(u)(w )(deg)—/ (foe HVIGlop td

w(U)

The definition is independent of choosing the local charts. We use a partition of unity
on M to define the integration in the general case. Let (U, ¢;) be a finite family of local

charts which covers M and satisfies
0<¢; <1, supp(pi) C U;

and

Z%Zl-
i

The integration of f on M is defined by

/Mfdv = Z/Mfgoidvg.

Note that this definition does not depend on the choice of partitions.

Next, we define L2(M) to be the completion of CS°(M), the space of smooth functions

having compact supports on M, with the inner product
(w, v)r2(ar) = /M wodV, for u,v € C°(M),

where the bar is the complex conjugation. The explicit expression of the Hilbert space
L%(M) is given by

L2(M) = {f : M — C is measurable and /M |f|?dV, < oo} .

Notation 4.2. We make the notation that C™ (A*(M)) is a space of all C™-smooth
complez-valued k-form on M, with m € NU {oco} and k € N.

We define L2(A'(M)) to be the completion of the space of smooth 1-forms having com-
pact supports in C*° (Al(M )) with the inner product

(o, 5>L2(A1(M)) = /M g (o, B)dVy,

n n
where «, 3 are 1-forms with compact supports and 3 := Zﬁzdx’ if 8= Z B;dat.

=1 =1
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4.1.2 Definition of the magnetic Laplacian

Since the main subject of this chapter is studying the spectrum of the magnetic Laplacian
on a two-dimensional Riemannian manifold, we will restrict ourselves to the case n = 2.

The definition of this operator can be found in the introduction parts of [28, 32, 57].

Let A be a real-valued 1-form in C' (A'(M)). Since M is the two-dimensional manifold,
there exists a real-valued function B € C(M) such that

dA = BdV,.

We call B the magnetic field and A the magnetic potential. In the sequel, we define
the magnetic Laplacian on a manifold through A as follows. Firstly, associated to the

1-form A, we introduce a natural differential

Dy a : C(M) — C' (AY(M))
U — Dh7A(u) = —(ihd + A)u,

where h > 0 is a semi-classical parameter which is assumed to be small.

Both L?(M) and L?(A'(M)) are Hilbert spaces with their corresponding inner products,

that allows to determine the formal adjoint of Dy A as
(Dpa)*: CH (AN (M) — C(M)
which is defined by the identity
(Dn,aw,w)rzarary) = (ws (Do) (@) 2y » for all u € C°(M), w € C* (AY(M)).
We consider the operator
Dom(Hpa)=CX(M),  Hpa=Dpa)Dna,

which has the following properties:

1. Hy, 4 is symmetric because

(Hp,auv)12(0r) = (Dn,at, D av) 1201 (ary) = (U, Hp,Av)

for all u,v € C°(M).
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2. Hy A is positive since

(Hp,au, )1 200 = / g* ((—ihd — A)u, (—thd — A)u) dV,; > 0.
M

Thus, Hp, A has a Friedrichs extension which is self-adjoint, see [25, Theorem 4.4]. We

denote this extension as £} a, and we call it the magnetic Laplacian.

4.1.3 Compact resolvent property

From now, M is assumed to be a compact manifold (possibly with boundary). In the
next lines, we will explain the way to get the magnetic Laplacian through Friedrichs
procedure. Through that, we obtain the form domain of the operator naturally and
then we prove the resolvent compactness thanks to this form domain. In orther words,
we are on the way proving Theorem 1.8 which is stated in Chapter 1. Recall that the

Sobolev space HY(M) on a Riemannian manifold is the Hilbert space
HY(M) = {u € L*(M) : du € L2(AY(M))},
with the inner product
(s V) (ary = (W, V)12 + (du, dv) p2(arany) -

H{(M) is defined as the closure of C°(M) in H'(M) with respect to the associated

norm

lullgrary = \/HUH%Z’(M) + I dulla a1 ary) -

We denote by Qp 4 the sesquilinear form induced by the operator Hj, 4,
Qh7A(U/, U) == <Hh7Au, U>L2(M) == <(_Zhd — A)u, (—Zhd — A)U>L2(A1(M)) 5

for all u,v € C°(M).

Let h > 0 and u € C2°(M). Notice that A € C1(A}(M)), then for every ¢ > 0

Qh,A ('LL, U) = h2 <du, du>L2(A1(M)) —+ 2hIm <AU, du>L2(A1(M)) + <AU, AU>L2 (Al(M))

2h
2 2
>h ||du||L2( N T o

2 2
AL(M)) _2h5||du||L2(A1(M ||Au||L2(A1(M))

2h
= (h2 - 2h5) ||du||i2(A1(M)) - ?HAHgoHUH%?(M)»

where [[All = max 95 (A(p), A(p)).
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By choosing ¢ small enough, we proved that there exist ¢y > 0 and C; > 0 (depending
on h and A) such that

Qna(u,u) + co||u||ig(M) > ClﬂuH%p(M) for every u € C°(M). (4.2)

From the boundedness of A on M, it is easy to see that there exists Co > 0 (depending
on h and A) such that

Qna(u,u) + co||u||ig(M) < CgHuH%p(M) for every u € C°(M). (4.3)

Following the procedure of constructing Friedrichs extension, we define V' as a completion
in L2(M) for the norm

Po() = \/Qn.a (. w) +col[ulZ2
Precisely, we have

u € L2(M) : there exists (u,)nen C C°(M) such that u, — u in L*(M)

and(uy, )nen is a Cauchy sequence for the norm py
(4.4)
From (4.2) and (4.3), it implies that
V =H}M).
By the density of C2°(M) in H} (M), we can define a sesquilinear form on Hg(M):

PB(u,v) = Qn,a(u,v) + co(u, v)2(py) -

This sesquilinear form satisfies all the conditions of Lax-Milgram Theorem A.6: the

coercivity of % deduced from the extension of (4.2) on H} (M),
Bu,u) > Crllul|Fppy  for allu e Hy(M), (4.5)
and the continuity of % comes from

|2 (u,v)|
= h2 <du, d'l)>L2(A1(M)) — 'lh <AU, d'U>L2(A1 (M)) + Zh <d.'U/7 A'U>L2(A1(M)) + C0<U, 'U>L2(M)

< B2l any 10l ary + 2RI Alloollull . any [0 vy + collull oy ol ay

< (A% + 20| Alle + o) lull a1Vl a2 oy -
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It leads to the existence of a self-adjoint operator Jj, 4 that satisfies
(Hh,au,v) 120y = Bna(u,v) Yu € Dom(s%, A), Vv € H (M), (4.6)
and its domain is defined as a subspace of H} (M)

u € HY (M) : The linear mapping v — %(u,v) is continous
Dom (4, A) = ) . (4.7)
on Hy (M) with the norm [| - |25y

The magnetic Laplacian is then defined by
Dom(Z}, A) = Dom(.54, a), LA =G4 —cold.

The domain of the magnetic Laplacian will be discussed in the next section. At this
stage, we aim at showing that the magnetic Laplacian has compact resolvent. To do
that, we will prove this property for the self-adjoint operator J#, 5. Indeed, following

Proposition A.9, we set the norm induced by the sesquilinear 4:
|- llz=V%(,).

Notice that the injection (H§(M), ||« |%) < L*(M) can be seen as a composition of

two injections:
(Ho (M), |- ll2) <= (Ho (M), || - Il (ary) <= L*(M) .

From the coercivity (4.5), it implies directly that the first injection 4; is continuous. By
the Rellich theorem (see for example [22]), the compactness of the manifold M implies
that the embedding (Hg (M), | - ||z (ar)) <2, [2(M) is compact. Thus, the injection
(H}(M), | - 1l#) < L*(M) is compact too. Therefore, the operator ., o has compact

resolvent.

Since %, A is self-adjoint, the number (co + ) belongs to the resolvent set of 7, A.

Then, the resolvent
(Lha —ild) " = (A — (co+3)1d) "

is compact.

Finally, we can conclude that £, o has compact resolvent. From this property, -2 a
only has discrete spectrum and its spectrum is described by an unbounded increasing

sequence.

73



4.1.4 Domain of the magnetic Laplacian

This subsection is devoted to the proof of Theorem 1.9 which is stated in Chapter 1.
When we use the Friedrichs method to construct a self-adjoint extension from an initial
operator, it seems that it is not easy to provide an explicit formula for the domain
of that self-adjoint operator. In our case, when A belongs to C1(A'(M)) we can give
an expression for this abstract domain clearly. Namely, we will see that the initial
operator H, A = (Dp, A)*(Dp,a) is actually a differential operator. Then, the theory of
distributions give an explicit description for the Magnetic Laplacian operator. Finally,

it ends by regularity arguments.

Let us recall some elementary operators defined on a Riemannian manifold. First, we

consider the Hodge operator
d*: CYA'M) - C(M),
which is a formal adjoint to d,
(du,w)p2aiary = (u, w2 for all u € C' (M), w € CH(A*M).

In local coordinates, we have

2

2
Z \/ﬁaaﬂ (\/76”%01) , for w = ;widx’. (4.8)

d*w = —
i,7=1

Indeed, let ¢ : M — R be a smooth function that has a compact support, then
/ (d*w)pdV, = / 9" (w,dp)dVy
M M

= / 9" (w,dp)dV,
M
/ ZG” a@\/\cd Lz

1,j=1
/ Z \/‘?0 ] ( |G‘szwl) SDdVga

and since it is true for all p € C5°(M,R), (4.8) is established. Note that d* satisfies the

following Leibniz rule

d*(fw) = fd*w — g*(df,w)  forall f e CY{(M), we CHA'M).

74



From d and d*, we define the Laplacian (acting on functions) as
A =—d*d.
Besides, we identify the magnetic potential A with the multiplication operator

A CY(M) — (A M)

u— uA.
We also define the formal adjoint of A by

A*: CHA'M) — C(M)
Aw=g"(Aw).

In local coordinates, A* is computed by

2 2 2
Afw = Z GijwiAj, for w = ;widxi, A= ZlAjdmj )
1= j=

,j=1

It is easy to see that
(Dpa)* =ihd® — A",

(4.9)

Here the explicit formula for the magnetic Laplacian (Dj a)*Dj A can be written as

follows,

(Dh.a) Dpau = (ihd* — A*) (—ihd — A)u
= h3d*du + ihA*du — ihd*(Au) + A*(Au)

= —h*Au +ihg* (A, du) — ih (d*A) u + ihg*(du, A) + g* (A, A)u

= —h%Au + 2ihg* (A, du) + (—ihd*A + g* (A, A)) u

Moreover, using (4.8) and (4.9), the operator can be expressed as

2
(Dha)Dpa = —— Z (hDy — Ax) [VIGIGH (D — Ag)| |
k=1

o)

where D; := —zam]
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It tells us that the operator (Dp a)*Dp A is a differential operator. From (4.7), let us

call to mind the definition of the domain of the magnetic operator

u € Hi(M) : there exists f € L%(M) such that

Dom(,ﬁfh,A) =
Qn.a(u,v) = (f,v)r20  forall v e Hy(M)

Using the arguments from distribution theory, it implies that
Dom(%,a) = {u € H} (M) : (Dpa)Dpau € L*(M)}.
Let u € Dom(%, a), thus u € H} (M) and

—h?Au+ 2ihg* (A, du) + (—ihd* A + g* (A, A))u € L*(M) .

Since A € CY(A'M), we have
(—ihd*A + g* (A, A))u € L*(M),

and
g (A, du) e HY(M).

By applying the elliptic regularity theorem [61, Chapter 5, Theorem 1.3] for —Au, we
have u € H'(M). Tt follows that g*(A, du) € L?(M). Once again, we obtain u € H?(M)
by the elliptic regularity theorem. That yields

Dom (%, a) = Hy(M) N H*(M).

Remark 4.1. When M has no boundary, it is geodesically complete. We apply [57,
Theorem 1.1] which tells that Hj, o is essentially self-adjoint, i.e. there exists a unique
self-adjoint extention of Hj, A, that is the magnetic Laplacian which is defined above.
Moreover, since Hi (M) = H*(M), it follows that

Dom(%,a) = H*(M). (4.10)

4.1.5 In the case of R?

On the manifold, we defined the magnetic Laplacian which depends on A and thus its
spectrum also depends on A. When the Riemannian manifold is now R? with the Eu-
clidean metric g = (dq1)? + (dge)?, we can observe that although the magnetic Laplacian

is defined by a formula of A, its spectrum depends only on the magnetic field B.
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4.1.5.1 Redefinition of the magnetic Laplacian

Let us reintroduce the magnetic Laplacian on R? whose spectrum investigation will be
mentioned in Chapter 5. Let A = A;dg; + A2 dgo be the magnetic potential and B be

the associated magnetic field which is given by the exterior derivative of A:
dA = Bdg; Adge,

or B is given by the formula

04y 0A

O Og

Let us consider the space
Hj, A (R?) = {u € L*(R?) : (—ihV — A)u € L*(R?)},
which is equipped with a sesquilinear form

(u,v)ip = / (=ihV — A)u - (—ihV — A)v dg +/ uvdg, Vu,v € H} 5 (R?).
h,A R2 R2 ’
(4.11)
The above expression (—ihV — A)u € L*(R?) is understood in the sense that

N(=ihdg,u - Au))? + [(—ihdgu — Aqu)|* dg < oo .
R

The dot product in the integral which involves with the 1-form A in the sesquilinear

(4.11) is understood in the sense that

(—ihV — A)u - (—ihV — A)v = (—ihdq1 — A1)u (—ihdy, — Ar)v
+ (—ihaqg — AQ)’U, (—ihacp — AQ)’U .

We call H} , (R?) the magnetic Sobolev space, this space has the two following useful

properties:

i) The space (H}Z’A(R2), (u,v>H}L7A) is a Hilbert space.

It is easy to see that the sesquilinear (u, U>H}L R define an inner product. We just
need to show that every Cauchy sequence in H} , (R?) converges in H}, , (R?) with

the norm

lully , = /(=AY — A)ull? 2 oy + [lullf2 ge) - for u € Hj, 5 (R?).
h,A (R?) (R?)
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Let (un)nen be a Cauchy sequence with the norm || - ||H}11A' Since L2(R?) is a

Banach space, there exist u, v1,vs in L?(R?) such that

Uy — U,
(—’ihaql — Al)un — U1, (4.12)

(—ihan — Ag)un — Vg,
in L2(R?). We obtain, by distribution theory, the result that

(—ih8y — Ar)u = v € L2(R?),

(ihon, — Agyu = 5o (4.13)
q2 2)u = vy € L(R),

In other words, u, converges to u in H} , (R?).

ii) C2°(R?) is dense in H} , (R?).
A smooth compact support function after being applied the operation (—ihV — A)
is also smooth and has compact support, thus C3°(R?) is obvious contained in

H,ll A(R?). To prove the density of C°(R?), we first consider its density in a

smaller subspace of H}l AR?):
Hc{h’A(]Rz) ={fe H}MA(RQ) : f has compact support} .

Let f € H§7h’A(R2), since A;f € L*(R?), thus d,, f € L*(R?) for i = 1,2. Using
the mollifiers p,, and setting up f, = pn * f, we have (fn)neny C C(R?). By the

property of the convolution, we obtain that

Jn = f
Vin—=V/f,

(4.14)

in L?(R?). Furthermore, since the supports of (f,, — f) are contained in a fixed
compact set, we have [|A(fn — f)|l 2@z — 0. We conclude that C>(R?) is dense
in H g A(RQ). Therefore, the proof is complete when we can demonstrate that
H(},h, A(R?) is dense in the Hilbert space H}L A(R?). To do that, we consider a
function u € H}L A (R?) satisfying

/ (—thV — A)u - (—ihV—A)gpdq—l—/ updg=0 VgDEHéA(RQ),
R2 R2

and we will show that u = 0.
Consider a smooth function y with compact support and 0 < x < 1 which is
equal to 1 in the neighborhood of 0. We define x,(-) = X( ) Then we have

n
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Xnl € Hi,h,A(R2) and

1 —

/ (—ihV—A)u-(—ihuVx (f) dq+/ xn](—ihV—A)u]quJr/ Xulul?dg =0,
n Jr2 n R2 R2

for all n € N.

Since u € H}L’A(RQ) and |Vy| is bounded above by a constant on R?, with the

application of Holder inequality, we obtain

n

Applying Fatou’s lemma, it results that

\(—z‘hV—A)uquJr/ lu|?dg < lim inf (/ Xn\(—q;hV—A)uquJr/ Xnmy%m)
R2 R2 n—+oo R2 R2

1
< liminf —
n—+oo N

/RQ(—ihV — A)u - (—ithuVy (5> dq’

=0.

Therefore, u = 0 and the statement of the density of C3°(R?) is proved.

Applying Theorem A.6 , we replace H = L?(R?) and V = H} , (R?) and the sesquilinear
Q(,) = (, '>H’11 K Obviously, @ is continuous, V-elliptic and Hermitian on V. Thus,

Theorem A.6 provides the existence of a self-adjoint operator Sy o which has the domain

Dom (Spa) = {ue H}MA(RQ) :Fw € LA(R?), Q(u,v) = (w,v)p2 Y e H}L,A(RQ)}
= {ue H}%A(RQ) 3w € LA(R?), Q(u,v) = (w,v)p2 Vv € C°(R?)}
= {u€Hj A (R : (—ihV — A)’u € L*(R?)}.

The second equality is given by the density of C2°(R?) in H} , (R?) and we understand
the term (—ihV + A)%u in the sense of distribution. The self-adjoint operator Sy a
satisfies, for all u € Dom (Sp.a), v € H 4 (R?),

(S;hAu, 'U>L2(]R{2) = ((=thV — A)u, (—ihV — A)'U>L2(R2) + (u, 7)>L2(R2) .
We define £, o the magnetic Laplacian on R? by

ZhA =Spa—1d,
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where Id is the identity operator on Dom (Sp a). Therefore, the magnetic Laplacian

), A has the domain
Dom (Zh.a) = {u € Hj 5 (R?) : (—ihV — A)*u € L*(R?)},
and for all u € Dom (£} a), v € H,ILA(RQ)
(Lh,au, v)12m®2) = ((—ihV — A)u, (—ihV — A)v)12R2) - (4.15)
Furthermore, we can make the domain of %, o simpler by considering the operator
Hy a = (—ihV — A)? with D(Hj,a) = C°(R?). (4.16)

This operator is symmetric, hence it is closable. Let H n,A denote the closure operator

of Hj A, we have
Dom(Hj, o) = {u € L2(R?) : (—ihV — A)?u € LA(R?)} and Hj, o = (—ihV — A)%.
(4.17)
The equality (4.15) leads to

(Zh,au,v)12r2) = ((—ihV = A)u, (—ihV — A)v)pa(re) = (Hp,au, 0)12Re2)

for all u,v € CX(R?). It implies that %), a is a self-adjoint extension of Hp a. Since
A € C'(R?), the operator Hj a is essentially self-adjoint (see [17]), then its closure
fAIh’ A is self-adjoint. By the uniqueness of the self-adjoint extension of an essentially

self-adjoint operator, we conclude that
S =Hya.
Therefore, we can rewrite the domain of the magnetic Laplacian %}, s in an easier way
Dom (%, a) = {u € LA (R?) : (—=ihV — A)?u € L*(R?)}, (4.18)
and the explicit formula for £}, a

LhA = (—ihV — A)2 .
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4.1.5.2 Spectrum of the magnetic Laplacian

First of all, let us say a few words about the gauge invariance of the spectrum of the

magnetic Laplacian. Let A and A be the magnetic potentials associated with B,
dA = dA = Bdg; Adgs .
By Lemma 2.10, there exists a smooth function ¢ on R? such that
A=A+do.
Notice that
M (—ih T — A)2e /M = (—ihV — A — d¢)? = (—ihV — A)?.

Thus, two operators £ o and £} z are unitary equivalent. In other words, we showed
that the spectrum of magnetic Laplacian is independent from the choice of magnetic

potential:
Sp(Zha) = Sp(th) . (4.19)

From (4.15), for every u € Dom (%} 4 ), we have the inequality
<$h7Au,u>L2(R2) >0.

It shows that £, o is positive, thus Sp(%, A) is contained in [0, 4+00) (see [25, Propo-
sition 11.2]). According to Lax-Milgram (see Theorem A.6), the magnetic Laplacian is
bijective from its domain onto L?(R?), it tells us that 0 € p(-Z), a). Therefore, we have:

Sp(Zh,a) C (0,400) .

Recall that B = B(q)dq; A dga, when B is non-negative, we have the following result:

Theorem 4.2. For all u € H}iA(RQ),
@wmy:/\pwV—AWQ@Zh/imqu (4.20)
R2 R2

Proof. Since B is non-negative, the integral in the right-hand side of (4.20) is well
defined. We will start the proof with the function u in C3°(R?) first and then we use
the density of C2°(R?) in Hj, , (R?) to finish the proof. Notice that

[—ihdy, — A1, —ihdy, — Ag] = —ihB
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Here, the bracket [-,-] is the commutator of two operators which is defined by, for two
operators 11, Ts,
(11, To] = T'Ts — ToT; .

Thus, we have
([—ih0g, — A1, —ihdg, — As]u,u) = —ih/ Blu|?dq.
R2
Integrating by part and applying the Cauchy-Schwarz inequality, it leads to

([ ~ihdg, — Av, —ihdy, — AzJu,w)| < 2(~ihdy, — Av)ullga s | (~ihdy, — Az)ullizges)
< [[(=ihdg, — Av)ulZagay + | (ks — Ag)ull?aga, -

Therefore, we can conclude that

|(—ihV — A)ul|* dgq > h/ Blul*dq for all u € CS°(R?).
R2 R2
Now, let u € H}L’A(RQ). Since C°(R?) is dense in Hp a(R?), there exists a sequence

(tun)nen in C°(R?) such that u,, converges to u. We have
|(=ihV — A)u, > dz > h/ Bluy|? dz. (4.21)
R2 R2

Let n go to +00 and apply Fatou’s lemma, we get

/ |(—ihV — A)u|? dz = lim inf —ihV — A)uy,|? dz
R2

n—oo R2 |(

> hliminf [ Blu,|*dz

n—o0 R2

>h | Blu*dz.
R2

O

Let us discuss two applications of Theorem 4.2. Its first application is to prove the
compact resolvent property of the magnetic Laplacian when B blows up at infinity.
The second one is to allow us to estimate the lowest spectrum. In details, we have the

following theorem:

Theorem 4.3. The magnetic Laplacian £y o has compact resolvent if

lim B(q) = +o0.

llgll—o0
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Proof. Applying Proposition A.9, the plan is to show that the injection

is compact. Let B(0;1) = {u € H} ,(R?): HuHH}llA < 1} be the unit ball in H}! , (R?).

We use Riesz-Fréchet-Kolmogorov criterion (see [49, Page 34]|) to demonstrate that

(Hp, AR, |- gy ) = (LR, ] l2)

B(0;1) is relatively compact in L?(R?):

i)

i)

iii)

B(0;1) is a bounded subset of L(R?) since
Jullrz < HUHH,;A <1,
for all u € B(0;1).
Let € > 0. For all u € B(0;1), using Theorem 4.2, we obtain
h/ Blul*dg < 1.
RQ
Under the condition of the magnetic field B at infinity, there exists a ball
Qp = {geR*: [lg < R}

in R? such that
1
B(q) > — for all ¢ € R*\ Qg.

Thus, it is easy to see that

lullL2@e\op) <€

Let ¢ > 0 and w CC R2. Since C2°(R?) is dense in H}L7A(R2), for each u € B(0;1),

there exists w,, € C>°(R?) such that

13
o —wlly , <5

It implies directly that ||wu||H’1L L S2forallue B(0;1). Let Q D w is a compact
set such that dist(w,9§2) > 1. Because of the continuity of A on €2, there exists a

constant C (independent of ) such that
| w2y < C1.

As a consequence, there exists a constant Cy (independent of u) such that
||ku||L2(Q) < Csy.
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Let k € R? such that ||k| < 1, we have
[Thwy — wullp2) < [Vwullizg)llkl < CollK]],
where 1,v(q) := v(q + k). It deduces that
2e
17 = ullp2) < 5 + C2lk]].
Therefore, there exists 6 > 0 (independent of u) such that

| Teu — UHL2(w) <e for all k € R? such that k|| < 0.
O

Combine (4.20) with the min-max principle for the self-adjoint operator .2}, a, we obtain

the estimation for the infimum of the spectrum

infSp(Lha) =  inf Qnaw) hby
ueH} 5 (®?) [ulr2(re)
u#£0
where by := inf cg2 B(q). Thus,
Sp(Zh.a) C [hby,+00) . (4.22)

Now, we study the essence of spectrum of the magnetic Laplacian, is it discrete or
continuous? The answer will depend on the behaviour of the magnetic field at infinity.

Explicitly, we have the below result which appears in [31, 51]:

Theorem 4.4. Assume that bg > 0 and

liminf B(q) = by + 1o, (4.23)
llgll—+o00

with some ny > 0.

Then, for any m1 € (0,19), the spectrum lying in the interval [hbg, h(by + n1)), if exists,

1s discrete.
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Proof. This theorem is a direct consequence of the characterization of the bottom of the

essential spectrum of the magnetic Laplacian (see [17, Appendix B]):

inf Spegs(Zh,a) = sup inf (Lhau,u) |,
KCR? | u€CE(R*\K)
||u||L2(R2)§1

where the supremum is taken over all compact subsets K C R2. From (4.23), there

exists M > 0 such that
B(g)=bo+m  forallg€ B(0;M):={g € R*: |q| < M}.
Combining with 4.2, we deduce that
(Lh,au,u) > h(bo +m),
for all u € C°(R?\ B(0; M)) such that [ullp2(r2) < 1. Therefore, we must have
inf Spegs(ZLh,a) = h(bo +m)

and the conclusion follows. O

4.2 Isothermal coordinates

4.2.1 Construction of the isothermal coordinates

In this section, we would like to show that the isothermal coordinates always exist locally
in the two-dimensional Riemannian manifolds. To do that, let us start by recalling the

definition of a gradient of a smooth function on a Riemannian manifold.

Definition 4.5. Let f : M — R be a smooth function, we define the gradient of f as
VIf := g1(df), where § is defined in (4.1). In other words, it is a unique vector field
such that, for all p € Q and for all X, € T),(2,

9(V9 fp, Xp) = dfp(Xp) = Xpf .
Theorem 4.6. Let p € M, local isothermal coordinates exist around p.

Remark 4.7. The reader is invited to compare this following proof with the proof in [61,

Page 438] which used the Hodge star operator to show the existence of the coordinates.
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Proof. Let us fix a local chart (W, ¥ : W — ¥(W) C R?) around p with coordinates

z!, 2. We need to look for a diffeomorphism ¢ created from two real-valued smooth

functions defined on some small neighborhood of p:

such that there exists a smooth function 1 defined on ¢(Q) C R? satisfying
g(V, V) = *go (dop,V, dp, V) for all V € T, M. (4.24)

Let us sketch the proof. The proof is divided into two main steps: first, we assume that
there exists a small neighborhood 2 centered at p such that if we have u and v satisfying

the equation (with a condition):

(ngv)y = (V9u), ,

(V0), #0,

(4.25)

for all y € €2, then (4.24) is established. Here R is the rotation for the angle 7 represented

0 -1
R= ,

and V190 is a vector field which has the coordinates

by the matrix

[Vlgv} .= G 2RG2 [VIv] .
Second, the existence of 2 and u,v which satisfy (4.25) is showed by the theory of the

linear elliptic equations. We start with the first step:

Step 1: We assume that u, v satisfy (4.25) on .

ow

9z2

[V4iou] = |G|*% (Vev)t. Two vector fields V9v, V49v satisfy

Ow.
In this theorem, we denote Vew := <8x1> . Since [V9v] = G~1V*, we can rewrite

g(VI0, V) = [V%}TG[VL%}
= |G 2 (Vo) T (@ H TGVt
= |G]72 (Vo) (Veu) -
= 0,
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and

g(V190, V) = {VLQU}TG [VL%]
= (G #rat [vgv])T G (GTERGE V7))
= [V G V9]
= g(Vv,VI0).

Since V9v # 0, the set {ng,ng’U} become the orthogonal frame on 2. Let V be a
tangent vector in T, M. We can represent V = a(V9v), + B(V19),v and compute the

push-forward tangent vector d¢, V" in R? as

do,V = (a(ng)yu + /B(VLgv)yu> 86:1:1 + (a(ng)yv + B(VLgv)yv> Pl

Now we use the equalities

dvy(-) = g((VI0)y, ),
duy(-) = g((V*+90)y, ),

to calculate two sides of (4.24). That is

go (d¢,V,do, V) = (a(ng)yu + ﬁ(VLgv)yu)Q + (a(ng)yv + ﬁ(VJ‘gv)yv)2
2 2

= (a duy, (VI9v), + Bduy(vlgv)y) + (a dvy (VIv), + dey(VLgv)y)
= (a®+ B g((VI0)y, (VI0),)*.

The left hand side of (4.24) is

gV, V) = g(a(V9), + BV90),, a(VIv), + SV90),)
= (a4 8% g((VIv)y, (VI0)y).
Therefore, we get the result (4.24) by setting up n = %log [9(V90, V90)] 7!, which is a

smooth function defined on ¢(2) C R2. The diffeomorphism property of ¢ follows from

the linear independence of two non-zero gradient vectors Véu and Vv .

Step 2: Let us now consider the equation (4.25). Since we are looking for local coordi-

nates, (4.25) can be reformulated as

(Veu)* = |GG Veu,
(4.26)

(V90), £ 0.,
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Here p is the point under consideration in the statement of the theorem. By the classical
Poincaré lemma, the existence of v such that (V9v), # 0 is given if there exists u such
that Lyu = 0 and (V9u),, # 0 where

Ly =V (l6F6™) ve,
Let us clarify this clause. Indeed, we assume that there exists u such that
e 1 ~—1 e
v -(]G|2G )v w=0

(VIu), #0.

(4.27)

U
Let us denote ( 1) = <\G]%G*1> Véu and « := Updz! — Uydaz? be a 1-form on W, we

2
have

da = <8x1+8332>dx Adz®=0.

By Poincaré lemma, there exists a smooth function v such that o = dv (here we assume

that the local chart allows the exactness of a closed form, see [39, Corollary 17.15]). In

U\ (2%
Uy 2

Therefore, v satisfies the equation (4.26) and Vv # 0 (from the relation of u and v in
(4.26)).

other words, we have

Now, we focus on finding a function w which satisfies (4.27). This equation and the

condition of the solution are rewritten as
2 1 ..
3 0, (|G\§ G”&Eju) —0
(Veu)p #0.
Without loss of generality, we can assume that WU(p) = 0 and that the preimage of the

ball B(0;1) = {g € R? : ||¢|| < 1} contained in W. Let (¢*, ¢?) be the coordinates in R?
and let

A = |GUH2GY (T,

for all 4,5 € {1,2}.
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Let € > 0, we consider a problem on R? : Finding a smooth solution @ : B(0;e) — R

satisfying
2
D 04 (A (q)0tic) =0 on B(0;e),
ij=1 (4.29)
te(q) = % on 0B(0;¢) .

We will show that for € > small enough, 9,17%(0) # 0 and the proof is complete as we put
u = ao V. To do that, let us consider the Dirichlet problem on the B(0;¢), by setting
we(q) = t:(q) — L. We have a PDE:

2
ij oy L :
JZ::I By (A (q)Dyi0c) = _f on B(0;¢), w0
we(q) =0 on 0B(0;¢),

11 21
where f(q) = — (8521 + 8521 >

By changing variable ¢ = et and setting up w.(t) = w.(q), we obtain an equivalent PDE:

2
Oyi A (et Opwe) = t on B(0;1),
Z:l (A7 (et)ywe) = ef (et) (051) wan
we(t) =0 on 0B(0;1).

Since G(y)~! is a positive definite matrix at each point y € W and its minimum eigen-
value Amin(y) is a positive continuous function on W according to variable y. Then,

there exists a constant ¢y such that

2
S GI)EE = (G) €)= Amin WP = coll€]?. (4.32)
i,7=1

for all ¢ € R2.

Therefore, our PDE (according to variable t¢) is also uniformly elliptic:

2
S AU > l¢]? forall t € B(0:1), € € B2

1,7=1

By Lax-Milgram theorem, there exists a unique weak solution w. € HJ(B(0;1)) satisfy-
ing the PDE (4.31), i.e.

Q(we,b) = e(f(et), b2 (poy  for all be Hy(B(0;1)),
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where @) is the bilinear form defined by

2

Q(a,b) = /B o D AU (et)(0y1a)(0,b) dg

1,j=1

By Poincaré inequality, we have
||ws”i2(3(0;1)) < C‘|sz||i2(3(0;1)) < CQ(we,we) < 06“f(5t)‘|L2(B(0;1))”wEHLQ(B(O;l))
From the boundedness of f, there exists M > 0 (not depending on € ) such that
”wEHLQ(B(O;l)) < Me.
From the regularity arguments, we obtain, for all m € N,
lwe [l rm+2(Bo;1)) < ellf(E€)zm(B0:1)) + lwellLe(ony) < Ce-

By choosing m large enough such that H™(B(0,1)) — C'(B(0;1)), then we have

Owe
ot!

<o>] < Jwsllen < Ce.

Since %Tf (0) = E%Z)f (0), it implies that ‘gg’f (0)‘ is bounded above. By choosing ¢ small

enough we have the conclusion.

4.2.2 The magnetic Laplacian in isothermal coordinates.

We can start the journey to prove Theorem 1.14 now. Let p* € M be the point in
Theorem 1.14. By Theorem 4.6, there exists an isothermal local chart (2, ¢ : Q — ¢(Q2))
centered at p*. Regarding Definition 1.13, we set up U := ¢(§2) which is an open set in

R? and § := e*"gy be the metric on U in R?. We use the conformal map
=0 1:U—=Q,

to pull-back the sesquilinear from manifold to R2.

Then, for all u,v € C°(12), we have

/Qg*((—ihd — A)u, (—ihd — A)v)dV, ©* (¢"((—ihd — A)u, (—ihd — A)v)dV,)

7" ((—ihd — p* A, (—ihd — p* A)7)|G|2dg,

J
J
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where @ := ¢*u and v := *v.

Let M = ¢*A be the pull-back of 1-form A. By considering M as a function vector

. 2 0
(M1, M2)T and note that G = <e 0 _277), we have
e

/ g ((—ihd — A)u, (—ihd — A)v)dV,

Q

- / (G (=i, — My, (~ihV, — M)D) |G} dg
U c2

_ / 2 ((—ihVy — M)ii, (—ihVy — M)3)e 1 dg
U

_/ [(=ihy, — My)? + (=ihdy, — Ma)?] i dg.
U

where the last equality is obtained by the integration by part.
We label £, p be an operator acting on L(U, e*dq) defined by

Dom(Ly m) = CZ(U),
L =e 2 [(—maql — M1)? + (—ihd,, — Mz)ﬂ .

We deduce that, for all u,v € C2°(Q),
(Lh,att, V) 120y = (Lrm@™ w002y onag) = (P71 Lam@* W, v) 2y - (4:33)
Therefore, the relation between .2 o and L a¢ is shown through
Dhna = (@) Lmle)” on CE(Q). (4.34)

Take the exterior derivative of both sides of M = p*A, we have

oq1 g2

OMy  OM ) ; . B
( 2 1>dq1/\dq2:dg0A:g0dA:<p(BdVg):(Bogo) |Gldqy A dgs .

Thus, the formula dA = B dV, on 2 is equivalent to the formula

oMy OM;

oqn 0q2

= (Bop)e* onU. (4.35)
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4.3 Spectral analysis with the WKB method

Notation 4.3. In Section 4.3 and Section 4.4, we will denote f be the Taylor formal
series of function f € C°(R% R) at zero. It means that

R m-+n
fana) = 3 L0

1! m n
o min! 0q7"0qs

We denote the f be the formal series after changing variable (q1,92) = (z‘gw, Zgzw) with
(z,w) € C2. We designate C[[z]] for the ring of formal series in the variable z with
coefficients in C and C[[(z,w)]] for the ring of formal series in the variable (z,w) with

coefficients in C.

4.3.1 A choice of the magnetic potential

We continue on the way to prove Theorem 1.14. We recall that p* is the local minimum
point of the magnetic field B on ) and the Hessian of B at p* is positive non-degenerate.
We assume that ¢(0) = p* and denote B(q) = B(y(q)) as the magnetic field on U in
R2. The relation between the Hessian of B on manifold and the Hessian matrix of B is

given by

(°B),- (U, V) = (Hess B(0)(dp™ )< U, (dp™1)pe V)2 for all U,V € Tp:U .
If the Hessian of the function B at p* is positive non-degenerate, then the Hessian of B
at 0 is also positive non-degenerate. Therefore, we deduce that B has local minimum at
0 and the Hessian matrix of B at 0 is positive definite. Furthermore, Taylor expansion

of Bat0is
1
B(g) = B(0) + 5 (Hess B(0)q, g)r> + O(llqll?) -

Since Hess B(0) is positive definite, there exists an orthogonal matrix P and two positive

numbers «,~ such that

2 0
P~ Hess B(0)P = “ .
0 2y

Thus, through a linear change of variable in R?, without loss of generality, we can write
Blai,a2) = bo + agi + 743 +O([lg]*)  with by >0and 0 < a <.

The following lemma will be useful to define a special vector potential.
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Lemma 4.8. There exists a smooth solution of equation
AV = ¥, (4.36)

in a neighborhood of U such that

e219) 3(0)

1 (¢; +a3) + O(lql*) -

\I’(QL Q2) =

Proof. 1t is well-known that the Poisson equation (4.36) always has smooth solutions
modulo by some Harmonic function. It means that if u is a particular solution of (4.36),

then so is ¥ = u + ¢, where ¢ is the solution of the equation
Ap=0.

In our case, by Taylor’s theorem, we have

ou(0) ou(0) 10%u(0) 5 0%u(0) 1 0%u(0)

7 — 0 - - 2 O 3 )
u(q1,q2) = u(0)+ o q+ o5 213 9 Nt S a2+ 0 a +O(||z[]”)

We choose Harmonic polynomial ¢ as

ou(0) +8u(0) +82u(0)
o0 T e T g

2'1,6 2'1,6
o(@) = — [u(0) + 1(‘9 ©_3 “”)(2 2)

N2+ @ —q3)-
} 4\ 0g} g

Then the solution ¥ = u + ¢ has the form

U(q) = alg; + @) + Ollal*) -

The Taylor expansion implies that

_0°%(0) _ 9°¥(0)

a =
oq:1? 0g2?

Therefore, from equation (4.36) at 0, we see that

O]

Let ¥ be the function given by Lemma 4.8, we choose A = (=04, V¥, 0, V). Then A will

satisfy (4.35) and
8M2 a./\/ll 8A2 8A1

oqn 0qo opn Ig2
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By setting 1-form w = (41 — Mj)dq; + (A2 — M2)dge on U, w will be closed. We can
assume that the local neigborhood U allows the exactness of a closed form (see [39,

Corollary 17.15]), it leads to the existence of a function § € C*(U) such that w = df or
A=M+V0.
We notice that
M (—ihV — M) /M = (—ihV — M — V0)? = (—ihV — A)* |

so that
['h,A = eie/h[,h’/\,(e_w/h . (4.37)

Furthermore, with the choice of the magnetic potential A = (—0,, ¥, g, V), we have the
divergence of A is zero:
V-A=0. (4.38)

We will focus on performing WKB method for the eigen-problem for the operator £ 4

in the next subsection.

4.3.2 Asymptotic expansion of the eigen-problem of the magnetic Lapla-

cian
Let us consider the eigen-problem of the magnetic Laplacian
Ly, au(g, h) = A(h)u(g, h). (4.39)
We start the WKB method by looking for solution u(q, k) in the form
u(g, h) = e "a(q, h),

where a and S are complex-valued functions. We emphasize that we will search for
a complex phase S which is neither purely real nor purely imaginary as working in
subsection 1.1.2 for the electric potential. Now, we focus on constructing an approximate

solution of the equation

e (Lo — Mh)) e M a(q,h) =0, (4.40)
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in the semi-classical limit: h — 0.

Let denote EiA = eS/hEh,Ae_S/h, we calculate it as

EiA = 6_27765/h(—ihv — A)2e_s/h
= 2 |(=Ay +1i0,,5)% + (— Az +i0,,5)°

+ihV - A+ hAS + 2h(VS +iA) - V — h*A] .
Since V - A = 0, gathering the terms according to order of h, we can write Ei 4 s
L} 4 =Ef§ +hE] — h*A, (4.41)
where E@g is the multiplication operator
Eja=e 2 |(=Ay 10y, S)* + (—Ag +1i9,,5)°| a,
and E7 is the differential operator
Efa=e "2 (AS +2(VS +iA) V)a.

We now look for a(q, h) in the form
a(g.h) =Y _a;(@)h’, (4.42)
j=0
where (a;);>0 are smooth complex-valued functions, and
Ah) =Ny phi . (4.43)
j=0

The equalities in (4.42) and (4.43) are in the sense of (1.10). Let us substitute (4.42)
and (4.43) into (4.40), and require that each term associate with b’/ for j € N vanishes,
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we get the sequence of equations

ho - ESap=0
h' E@gal—i—(Ef—uo)ao:O,
h? E@qag + (Ei9 - ,uo) a1 = (,ul + 6_277A) ao ,
n—1
W'(n>3):  Egan+ (BEY —po) a1 = (1 + e *A) an2+ Y pjan1-j,
j=2

These equations will be solved in formal series. As a starting point, we determine

partially phase function S through the eikonal equation.

4.4 WKB construction

4.4.1 The eikonal equation

Let us find S in C[[(qy, ¢2)]] such that
L2 N2
(—A1+i0,8) " + (—Ao +i0,5) =0,
and thus
(—Al +i0y, S +i(— Ay + zaQQS)) (—A1 40,8 —i(—Ag + z‘a%ﬁ)) = 0.
Let us consider an S such that
—Ay 10,5 +i(—Ay +1i,,5) = 0.

It satisfies
R . N 1
2823 = —ZAI + AQ, with 85 = 5(6(11 + Z.aq2).

Notice that we also have 9;¥ = —iA; + A, (by choosing the magnetic potential A which

is mentioned in the above section). It implies that
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After changing the variable ¢ = ZJ;“’ and gz = %5 in the formal series S and U, we

have 8, = ;. Thus, S satisfies the equation (4.44) if and only if S satisfies

OwS(z,w) = 0, ¥(z,w),

or S has the form
S(z,w) = U(z,w) + f(2), (4.45)

where f(z) = Z fmz™ be a formal series in C[[z]] which is determined later.
m>0
Next, we will write the transport equations (the equations associated with k¥ for k& > 1)

in the formal series form. In order to simplify the notation, we denote £& = e~2"7. Under

the linear transformation variables in C[[(z, w)]],

Z+w
q1 = 5
2w (4.46)
L=

the relation between the derivatives in C[[(¢1, ¢2)]] and in C[[(z,w)]] are shown through

1

0, =3 (atn - iaqz)
2 , (4.47)
O = 5 (8111 + Z'aqz)

Let us represent the operator E‘lg and A in the formal series form. It is obvious that
_ 92 2 _
A =0 + 0, =40.0, .
With the choice of S in (4.45), we have
AS =AU =E'B. (4.48)

Looking at the term (V.S 44A) -V in the operator Ef, we write it, in the formal series,
as
(0 S +iA1)0yy + (D4, S + 1A2)0y,
—=(0gy S — 10, W)y + (0o S + 10y )y
- [(az +0u)S + (0, — aw)\if] (0. + 0y) +i [z’(az — 0,)S +i(0: + aw)\if} (0. — D)
- (2@@ + f’(z)) (9, + ) — (2@@ + f/(z)) (9. — )
—9 (282\11 + f’(z)) e -
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The operator E7 will becomes

BS=¢ (5*18 +4 (282@ + f’(z)>)
— 4 (2@@ + f’(z)) O + B.

Finally, we obtain the system of the transport equations in the formal series form:

S VY (28Z\if + f’(z)> B + B — o] A® =0,
W2: o [4€ (200 4 1(2)) 0w + B — o] AD) = (ju +480.0,) A©),

- _ n—1
Rt |4 (202\11 + f’(z)) O + B — | A1 = (m i 4£‘azaw) AP L §7 A1),
I ] <

4.4.2 Some tools to solve the transport equations

In this subsection, we prove some useful lemma for solving the transport equations.

Lemma 4.9. There exists a formal series w(z) =~ w2 in C[[2]] satisfying

Blz, w(z)) = by, (4.49)

3

VI—Va
VItVe!

and such that wy =

Proof. We have

2 72
(z+w)? (z — w)?
— —
0+ « 1 1 +
1 , 1 1 )
= by + Z(a —7)z“ + §(a+'y)zw + Z(Q —Y)w* + ...

If we write B(z, w) = Zm,nZO bmnz™w", notice that by = 0, it helps us to find the term

wy, by recursion. Namely, write out the equation (4.49), we have

n

Z L Z wpZf | =0

m,n>0 k>1

We will look for wy, for £ > 1 by induction. Collect term by term, we have
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e Term 2° : byy = by (it is true).

e Term 2! : byy + bojwy = 0 (it is true).

e Term z? : To create order 2 of z, m,n has to be smaller or equal to 2, we have

some cases (m,n) = (0,2), (m,n) = (1,1), (m,n) = (2,0). Then we have the

equation to find wi:
Bogw% + Bllwl + 620 =0.

There are two solutions for w; which are

7\ﬁ+\/a and 7\ﬁ—\/&
Vi-va VitVa

Nl
VItV

In order to adapt to even the case v = «, we choose w; =

3

Term z°: notice that the equation obtained by collecting the coefficients of the

term 2z® does not contain wy for k > 3 because by = 0. So, we got the equation
containing wo and w1, l;mn for 0 < m,n < 3. Furthermore, this equation is linear
according to ws, if otherwise, the order of z is larger than 3. We just need to care

about the coefficients attached to wo, they are

1 V- Va

i(a_f)/)ﬁ+\/a:\/a77

S 1
b11 + 2bpow; = 5(04 +7) +

which is non-zero, then wy is easy to computed.

By induction, let p € N\{0}, we assume that (wy)i<r<p—1 are determined and we need

to look for w,. We collect all coefficients of 2P*1 and since bg; = 0 , we get an equation

containing only finite (wg)i1<r<p and (bmn)o<m,n<p+1. The equation is linear according

to variable w, which has attached coefficient ((m,n) = (1,1) and (m,n) = (0,2)):

b1y + 2boowy = Vvay # 0.

So, wp, is determined. O

Lemma 4.10. Let V(s,t) and F(s,t) be formal series in C[[s,t]]. We write V(s,t) and
F(s,t) in the form

and

V(s,t):= Z U (8)t™

m>0

F(s,t) =Y fm(s)t™,

m>0
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where (Vn(S))nen and (fn(s))nen are the sequences in C[[s]]. We assume that vo(s) =0,
v1(s) = w1, fo(s) = fo with vy € R\ {0} and fo € R. Let £ € N, then

i. the homogeneous equation
(V(s,t)0 + F(s,t))u(s,t) =0, (4.50)
has solutions in the set

W) = {Z Wi ()™ € Cl[s, t]] : wi(s) =0 for k €{0,...,(¢—1)} and wy(s) # 0}

m>0
if and only if fo + vy = 0.
it. Under the previous condition fo+0lvy = 0, there exist a family (ck(s))k=0.... C C|[s]]
such that the inhomogeneous equation

(V(s,8)0, + F(s,t))u(s,t) = G(s,t), (4.51)

for G(s,t) = Z gm (8)t™, has formal series solutions in the form
m>0

u(s,t) = Z U ($)E" (4.52)

m>0

if and only if
ce(8)go(s) + co—1(8)g1(8) + ... + co(s)ge(s) = 0. (4.53)

Here, the coefficients (c(s))r=0... C Cl[s]] are determined by (vj(s))1<j<(e+1) and
(fi(8)i<j<e, and co(s) = 1. Furthermore, assume that the condition (4.53) is
satisfied, if ug(s) is given, the formal series solution u will be determined uniquely
by the recursion formula

g () = 270" (G0m—+1.(5) + Fny(5))15(5)

um(s) = (m — E)Ul )

for allm € N\ {¢}.

Proof. Let us start with the homogeneous case, we look for a solution u(s,t) in the form

u(s,t) = Z Um ()L

m>0
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of the equation

Z V() Z My, (8) ™1 | + Z fm(s)t™ Z U ($)E

m>1 m>1 m>0 m>0

For arbitrary k € N, we get the equations corresponding to t*

Zjvk —jt1(s)u;(s +kaj s)uj(s) =0
k—1

& (kv + fo)uk(s +Z Jvk—j+1(8) + fr—j(s))u;(s) = 0.
7=0

For the sake of convenience, we write here some equations

to : foU()(S) = 0,
th [v1 + folui(s) + fi(s)uo(s) =0,
2 [2v1 + fo] ua(s) + fa(s)uo(s) + (va(s) + fi(s))ui(s) =0.

For ¢ € N, consider a non-zero solution u in W (¢). Then ug(s) =0for 0 < k < /¢ —1
and wuy(s) # 0. It implies directly that fv; + fo = 0. Now, if fv; + fo = 0, then for all

k # £, we get the recursion formula

Y (vr—js1(s) + faj(s))u (s)
(/{? — 6)1}1 '

u(s) = —

We consider two cases:

e Case 1: ¢ =0. It leads to fo = 0. Since the first equation is

fouo(s) =0,

we can choose any ug(s) # 0, and compute next coefficients by the following

recursion formula

S (on—jr1(8) + frej(s))u;(s)

k'Ul

ug(s) = — )

for all £ > 1.

e Case 2: ¢/ # 0. Then fy has to be non-zero. From the first equation, it

up(s) = 0. From the recursion formula, it implies that ux(s) = 0 for all k
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k = ¢, we get the equation

(k — Ovi(s)ue(s) =0,

we can choose any uy(s) # 0 and keep going with other uy by the recursion formula.

In any case, we always get non-trivial solutions u in the set W ().

Now we consider the inhomogeneous case with solution u in the form (4.52):

Z U (8)t™ Z MUy, (8)E™ |+ Z fm(s)t™ Z U ()™ | = Z Im(s)t™

m>1 m>1 m>0 m>0 m>0

Like the homogeneous case, for arbitrary k € N, the equations corresponding to t* are
k—1
(kv1 + fo)ur(s) + Y (jvk—ja1(8) + frej(5))u;(s) = gu(s).
7=0

Assume that there exists £ € N such that fv; 4+ fo = 0, these equations becomes

T
L

(k — Oviug(s) + > (Jok—jt1(5) + fu—j(s))u;(s) = gr(s). (4.54)

<.
Il
o

The equation corresponding to t¢ is
/-1
(€= Oue(s) + > (Gvejur(s) + foj()uj(s) = gels)

=0

The inhomogeneous equation has solutions in the form (4.52) if and only if

~

-1

ge(s) — ' (Jve—j1(s) + fr—j(s))u;(s) = 0.

Il
=)

This relation is in the form (4.53) after computing (ug(s)) according to gx(s), fr(s) and
vg(s) for k = 0...(¢ —1). For example, we can compute c;(s) by collecting all coefficients
connecting with gg_l(s). Notice that gy_1(s) only appears in the formula of uy,_; and

its coefficient in uy_1 is =, then we can compute

1 (= Duals) + fils)

U1 U1

ci(s) = = [(£ = Dva(s) + fr(s)] —

The statement at the end of the lemma is easy obtained from (4.54). O
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4.4.3 The first transport equation

We consider the first transport equation

v(z, W) AV (2, w) + (B(z, w) — /m) A9z w) =0, (4.55)

where v(z,w) = 4£(z, w) (f’(z) + 283@(2,10)) .
Let w(z) be the formal series defined in Lemma 4.9. Applying the change of variables

(z,w) = (2,y + w(z)), which is licit in C[[(z,w)]] because wy = 0, we get the equation
V(z,9)0, A (z,y +w(2)) + F(2,9) A (z,y + w(2) = 0, (4.56)

where

V() = v(zy +w(z) = 4E(zy +w() (F/(2) + 20,02,y + w(2)) )

and

F(z,y) = B(z,y + w(2)) — po-

4.4.3.1 Choosing formal series f and determining S completely

We recall that S given in (4.45) is expressed by the sum of the formal series ¥(z, w)
and f(z). The formal series W(z,w) is known by Lemma 4.8 and the formal series
f(z) € CJ[z]] is waiting to be determined. We will choose f(z) such that we can apply
Lemma 4.10 to solve the first transport equation (4.55). To do that, the formal series
f(2) will be chosen such that

f(2) + 20,9 (z,w(z)) = 0. (4.57)

This statement will be clearer in the next subsection. At this stage, we focus on finding
the formal series f(z) satisfying (4.57). Since w(z) is a formal series which has wy =
0, then the composition 9,V (z,w(z)) is well-defined, it means that each coefficient of
9.%(z,w(z)) can be computed by a finite number of coefficients of w(z) and 8,V (z, w).
According to Lemma 4.8, the Taylor series \il(z, w) has the expression

- 2n(0)y,
U(z,w) = ¢ 0

zw + Z Ymnz " w" .

m+n>3
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We denote the formal series 9,¥(z, w(z)) by Z vp2®, we have

k>0
2n(0)y,
e _
>yt = i Sw(z) + Y mipne™ (w(2)"
k>0 m+n>3
m>1

Let f(2) = Z frz", and we can solve (4.57)
k>0

Z kfez"1 = —2 Z V12771,

k>1 k>1
to get
. 2uy_
fr=— Zl forall k> 1.
Since there is no restriction for f(0), we can choose fo = 0. Furthermore, we can

?
compute some initial coefficients of f(z)

N . e2n(0)p, -
fi=-21p=0, fo=—-1= 0V ﬁ'
4 Va+

Now, S(z,w) is totally determined and

. e210)p, e2n(0)bo\f_\ﬁ ) - o
S(z,w) = 1 2w + 1 \/a—i-ﬂz —f—m;;g[S]mnz w" . (4.58)

4.4.3.2 Solving the first transport equation

Let us come back to the transport equation (4.55). We write V' (z,y) and F'(z,y) in the

form

V(z,y) = Z vm(2)y™ and F(z,y) = Z fm(2)y™.

m>0 m>0
We now check the assumptions of the Lemma 4.10. Firstly, from choosing the formal

series f(z) satisfying (4.57), we have

w(2) = V(2,0) = 4€(z, w(z)) (f’(z) + Qazxif(z,w(z))) ~0.
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Secondly, from (4.57) and Lemma 4.8, we obtain

vi(z) = 9,V(2,0)

= 40uE(zy +w(2) (f1(2) + 208 (2, y + w(2)))

y=0

+8E (2, y + w(2))0w0- ¥ (2, y + w(z))

y=0

= 8&(z,w(2))00. Y (2, w(2))

()€™ (2, w(2)B(z, w(%))

Il
[\
/(:')\z
\_N
S

Finally, from (4.9), we get
fO(Z) = F(Z,O) = [;’(Z,’UJ(Z)) — Mo = bO — MO -

Thanks to Lemma 4.10 for the homogeneous case, the equation (4.56) has solutions in
the form Z A (2)y™ such that A(()O)(z) # 0 if and only if

m>0

fo(z):0<=>u0:b0.

In this case, the solution of the first transport equation (4.55) which obtained by the
change of variables (z,y) = (2,2 — w(z)) in the solution of the equation (4.56) has the

form

AO(z,w) = 37 AD () (w — w(=2))™,

m>0
where Agg) (z) can be computed by the recursion formula

S (Gomeg1(2) + g (2) AL (2) |

A( )(Z) - meo

0
m

The series A(()O) (z) will be determined later in the process of solving the second transport

equation.

4.4.4 The second transport equation

We consider the second transport equation
(v(z,w)@w + B(z,w) — u0> AW = (g + 4E(2,w)D,0,) AV . (4.59)
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We deal with this equation as same as we did for the first transport equation (4.55).
By changing variables (z,w) = (z,y +w(z)) in the second transport equation (4.59), we

obtain
V(z,9)0, A (z,y + w(2)) + F(2,y) AV (2, y + w(2)) = GW(z,y), (4.60)

where G (z,y) = (,ul +4E(z,y + w(z))az(?w) AO) (2, y 4+ w(z2)).
We write G (z,7) in the form GM(z,y) = > om0 gﬁ,}b)(z)ym. Since vg(2) = 0, v1(2) =

2by # 0 and fy(z) = 0, applying Lemma 4.10 in the inhomogeneous case (¢ = 0 in this

case), the equation (4.60) has solutions if and only if g(l) z) =0 or
0

GW(2,0) = (1 + 4E(z, w(2))0:.04) AP (z,w(2)) = 0.
This is equivalent to
1AV (2) + 4E (2, w(2)) (8ZA§0) (z) — 24 (z)w'(z)) —0.

Since

AP = -1 A0,

and

47(z) = - (v2(2) + AN AL () + Fo(2) AL (2)

4bg
1 0) 1 (0)
= ;b%fl(z)(W(z) + f1(2)) A7 (2) — %fz(z)Ao (2),
the equation related to p; can be rewritten as
V(2)0,A"(2) + F(2)A”(z) = 0, (4.61)
where
2
V(z) := %5(2710(»2))101(2),

and

F(2) = &z u(2)) (f()f{(z) n bl%fl(Z) (fi(2) + val2)) /(=) + If@ﬁ(z)w’(z)) .

Notation 4.4. Below, with a given formal series X(z) = 3}~ rp2k € C[[2]], we use
the notation [X (2)|x to extract the coefficient of 2*, so that

(X (2)]k = @ -
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We have

fl(Z) = 823(2,10(2’)) = Z nl;mnzm (w(z))n—l ,
m>0
n>1

fal2) = 5 3Bz w(=)) = 3

m>0

n>2

TL(TL B 1>~ m n—
Tbmnz (w(2)) 2,

It is easy to check that

g(z,w(z))]o [fi(2)]p=0 (since bor = 0),

and

V(o = o e w)o LA +

0

[€ (2, w2 Lf1(2)]g

S

26_277(0) ~ ~
= bo (2502101 + bn)
2¢2100) 1 VA —Va

S (G e S

; (511 + 802“’1) — M1

e 2107 + va)?
prnd — /-1/1
2bo

Applying Lemma 4.10, the equation (4.61) has solutions if and only if there exists £ € N
such that

2
g = e~210) (VAT (V7 + VT
bo 200

Then, A((JO) can be determined by the formal series which has /¢ first terms vanishing and
the other coefficients gained by the recursion formula starting from certain [A(()O) (2)]e # 0.

In detail, [A(()O)(z)]k (for k > ¢) is determined by the recursion formula

0 S GV (D hmgt + [Fe— ) [AS (2)];
N k- OV ()

boe21(0) o (0)
= _W Z(:)(J[V(Z)]k—jﬂ + [F(Z)]k:—j)[Ao (Z)]j .
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and we choose [A(()O)(Z)]g =1.
After the right-hand side formal series of equation (4.59) is known, we can find a par-

ticular solution of equation (4.59). That is

oy (2)(w —w(z))™.
m>0

(1)

The formal series ay,’(z) is determined by recursion formula

(1) (5) — g’ (2) = T75 Gvm—y11(2) + fng(2))a) (2)
’ (Z) - meo )

starting with a((]l)(z) =0.

The formal series solutions of equation (4.59) take the form

AWz w) =) ol (2)(w —w(2)™ + Y AR (2)(w —w(z)™, (4.62)

m>0 m>0

where Z AW (2)(w —w(z))™ is the solution of the first transport equation (4.55), that
m>0

is, A (z) is determined by

S (01 (2) + i (2) A (2)

A () = - 2mbg

m

Y

and Aél)(z) remains to be determined.

4.4.5 Induction

Let p € N\ {0}. We assume that the sequences (11j)o<j<p and (AU))o<j<, 1 are deter-

mined from the first (p + 1) transport equations:

(v(z, w)dy + B(z,w) — ,u0> A0 =
(v(z, w)dy + B(z,w) — ,uo) AW = (g + 4E (2, w)D.0,,) AV

Jj=2

Let us also assume that the AU)’s, for j €41,...,p}, are in the form

AV (z,w) = Y~ e (2)(w — w(2)™ + Y AP () (w — w(=)™,

m>0 m2>0
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where

i) Z o) (2)(w—w(z))™, which is a particular solution for the j-th transport equation,
m>0
is a determined formal series with oz(()j)(z) =0 in C[[#]] for j € {1, ..., p}.
ii) Z AU (2)(w — w(z))™, which is a solution of the first transport equation (4.55), is
m>0
also determined and satisfies [Aéj)(z)]z =0inCforje{l,...,p—1}.

Only Z AP (2)(w—w(z))™ is waiting for being determined. We just need to determine
m2>0

A(()p )(z), because other terms can be computed by the recursion formula

S (01 (2) + e (2)) AP (2)
2mb0

AP = -

)

for m > 1.

Let us now consider the equation satisfied by A®*1):
~ ~ p .
<v B+ B — bo) AP = (1 4 40,0,)AP) 4 1y A £ 37 1 AP (4.63)
j=2

As before, the fact that this equation has solutions will fix value of y,+1 and determine

Agp)(z). Indeed, by Lemma 4.10, the existence of solutions to (4.63) is equivalent to
~ p .
(1 +4€0.0,)AP) (z,w(2)) = —pp1 AV (z,w(2)) = Y AP (2,0(2)).
=2

This can be rewritten as
V(2)0:AP (2) + F(2) AP (2) = g(2) , (4.64)

where

p .
9(2) = =AY (2) = D AT (2) — 40,007 (2) + 80 (2).
j=2

We are in the inhomogeneous case of Equation (4.61). Lemma 4.10 is applied here. There
are coefficients ¢y, ..., ¢y in C, with ¢y = 1 such that the equation (4.64) has solutions in
C[[z]] if and only if

colg(2)]e + .+ co1[g(2)]1 + celg(2)]o = 0. (4.65)

Under the inductive assumption, every term appearing in the formula of g(z) is known

except pp+1. Because [A(()O)(z)]k =0 for k € {0,...,£ — 1} and [A(()O)(z)]g = 1, this helps
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us to determine pu,11 because the coefficient associated to pp+1 appearing in (4.65) is
finally 1. Furthermore, there exists unique solution A(()p )(z) such that [Aép )(Z)]e =0 and
we pick this solution.

Coming back to the equation (4.63) of AP+ with this choice of y1,41 and Aép) (2), there

are solutions and they can be written as

AP (2 w) = 3" al D (2)(w —w(2)™ + D AP (2)(w — w(2)™,

m>0 m>0

where

i) the first formal series Z Pt () (w — w(2))™ is defined by the formula
m>0

(p+1) m—1. (p+1)
s = S5 = T o () + s GNP

meo
(4.66)

with gh™ = (11 + 40,00)A®) + 11, 1 AO + 3P 1 A=),

ii) the second formal series Z AP (2)(w—w(z))™ is the solution of the first transport
m>0
equation (4.55), that is, A(mp+1)(z) determined by

S (041 (2) + e (2) APV (2)

A(mp+1)(z) T 2mb
0

)

and A((]p H)(z) is specified by the next transport equation.

4.4.6 Conclusion

We use Borel’s Lemma to finish the WKB process.

Lemma 4.11 (Borel’s Lemma). Let (Wmn)mnen be the sequence in R . There exists a
function f € C3°(R?) such that

8m+nf
9q1" gy

(0) = upmp, -

Proof. Let x be a cut-off function equal 1 near 0 and have a support compact in B(0,1) C
R2. We set up ‘
x? T
@) = (2]
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where j 1= (j1,j2) € N2, 27 := ¢]'¢3? and j! := ji!ja!.

Then f; € C§°(R?). We can choose ¢; small enough such that, for all z € R?,

914l

1D )| < Ty

for all |a] < |j]. (4.67)

Indeed, for |z| < ¢j,

For small ¢, we get the estimate (4.67) since || < |j|. As a result, the function series

fla ) =) fi),

l71>0

is uniformly convergent. The series obtained by differentiation is uniformly convergent
too. Therefore, f € C§°(R?) and satisfies

Djf(()) = Uj .
O

Let us recall that U is the neighborhood of 0 in R?, which is defined by U = ¢(Q).
Here, 2 is the neigborhood of p* in which the isothermal local chart (£2,¢ : Q — ¢(2)
is defined. We have the following theorem:

Theorem 4.12. For all ¢ € N, there exist

i) a smooth complez-valued function T on U satisfying

O [ a
Re(r)(g) = 50 (2t + ) 0l o

i) a sequence of smooth complez-valued function (as;)jen on U,

iii) a sequence of real numbers (e ;)jen with

Y mwa)?) |

—b — o—2n(0)
He.0 0, He1 = € bo 20

iv) a sequence of flat functions (fj)jen on U,

such that, for all J € N,

J J J+1
e L =Y pegh? | | TN gl | =D Bf + 00T,
j=0 j=0 j=0
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locally uniformly in U.

Proof. After solving the Eikonal equation and the transport equations, we collect a set
of formal series : S(z,w), (AU) (2, w))jey in C[[(z,w)]] and a series y; depending on
¢. By applying the change of variable (z,w) into (q1,¢2), we obtain the formal series in
Cllg1, ¢2)]]- Applying Borel’s Lemma for real part and imaginary part of each sequence,
we get a smooth complex-valued functions S and (a;);en so that for each J € N, there
exists flat functions fy, fi,...,fr+1 and a smooth function F on R? (precisely F is a
polynomial according to variable h whose coefficients are smooth functions depending

on aj and ;) such that

J J J+1
Jj=0 §=0 =0

Note that ﬁS,A = eS/hﬁ;hAe*S/h, we have the expression

J J J+1
M Lna—=hY pegh? | | e3> agihd | =Y Wfi+ hITPF. (4.69)
7=0 j=0 =0

We recall that we applied WKB method for the eigen-problem of the magnetic Laplacian
Ly, 4 with the special magnetic potential A which is mentioned in Subsection 4.3.1. The
operator L 4 and operator Ly rq related to each other through the smooth real valued

function 6:
L =€y pe™ M (4.70)

Therefore, we set up the function T'= S + 6 to have

J J J+1
el/h Ly —h Z u&jhj e~ T/h Z a&jhj = Z hjfj + K/ T2F (4.71)
j=0 j=0 §=0

Restricting these functions on U, we get the conclusion. Since Re(7') = Re(S), the
formula of Re(T") is implied directly from (4.58) after the change of variable:

N 62’7(0)50 ) ) eQn(O)bo\f—\ﬁ ) ) , 5
Slava) = (et + ) + 0 ol — dd + 2mai) + O(lal)

(e ) i VE
2 \Va+7' Vat+q" 2 Ja+.,7

qi + q1q2 + O(llq|l”) -

O]

Proof of Theorem 1.14. Let us recall (4.34) for the relation of the magnetic Laplacian

on manifold and the magnetic Laplacian on R?. To bring the results in Theorem 4.12 to
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manifold, we first multiply all functions appeared in (4.71) with a fixed cut-off function
which is equal to 1 in the neighborhood of 0 and has compact support contained in U,
we call temporarily y this cut-off function. This process provides us the functions in
C°(U). Next, we apply the operator (p~1)* = ¢* for two sides of (4.71), we obtain the

statement of Theorem 1.14 with

i) P=¢"(xaT).

ii) Upj = ¢*(xa1ae ) for all (¢£,5) € N2.

The formula of p; is given by the following matrix argument. From the definition of

isothermal coordinates, we have
g (V1, Va) = 210 go (A Vi, Ay V), for all Vi, Vs € T M .
In the matrix expression, we have
Gy = 1O(DG)]. (D), (4.72)

where (D¢),+ is the representative matrix of the linear differential of d¢,«. From Defi-
nition 1.10, the relation of the Hessian of B on manifold and the Hessian of B = Bog¢~!
is given by

d?By-(V1, Vo) = (HessB(0)dgp: Vi, ddp Vo) e - (4.73)

In order to compute the trace and determinant of the Hessian at p*, we need to connect
with the endomorphism H of T}« M defined by

(A2B)p- (V1,Va) = gpr (HV1, V)  WVi, Vo € Tpe M. (4.74)
Additionally, (4.73) and (4.74) imply that
(Hess B(0)d¢p+ Vi, dop Va)gz = gp=(HVA, Va) vVi,Va € T« M, (4.75)
or in the matrix expression
(ng)g* Hess B(0) (D¢)p = HG, .
Combined with (4.72), we get

(D)~ Hess B(0) [(Dg)%] ™" = 2103y,
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Notice that

2
Hess B(0) = “ 0 .
0 2y

Let H = %7—[, then we can easily compute the determinant of H and trace of H 3

dot () = " ot (Hess B(0)) = e~ 10y
and
TrHY? =T 6\/”(;) (D)2 (Hess B(0))"/2 [(Dcﬁ)f*]_l]
- e\/n(;)”[&" [(Hess B(o))l/Q]

= "OVa+ ).

We can see that

1
VdetH = (TrHz)?
p1 =20 Lo (r i2) ,
bo 2bg
which is consistent with the formula of Helffer and Kordyukov in (1.39). O

4.5 Comparison of the eigenfunctions and their WKB ap-

proximations

Next, in order to prove Theorem 1.15, we need to restrict the supports of functions
in Theorem 1.14 in a smaller domain. We will perform this restriction for functions
defined on R? first, and then we pull-back these functions to manifold as the above
proof. From the formula of Re(7T) in (4.68), there exist K > 0 and § > 0 such that
D(0;K):={qeR?:|q|| <K} CU and

Re(T)(q) > §||q||* for all ¢ € D(0; K). (4.76)

Let x2 : U — R be the cut-off function which is equal to 1 near 0 and has the support
compact contained in D(0; K). For brevity, we denote R is the real part of T

R :=Re(T).

Theorem 4.13. For all (e, J,¢) € (0,1) x N x N, there exist a constant C > 0 and
ho > 0 such that, for all h € (0, hy),

e (Laat = i) Wiz @ ezmaq) < CRF2, (4.77)
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with

J
hg = hz h],UgJ and \Il;{’ﬁ = yoe T/h Z hay

In particular,

1 (Chnt = Aie) Uil olliz(e2naq) < Ch7H2. (4.78)

Proof. Let (e,J,¢) € (0,1) x N x N, we check that
eI (L= M) W7

:eaT/h (ﬁh,M — )‘h 0 X2€ Z h]am

J
=T/ (L, xo] e T/ Z Wagj | +x2e " (Lppa = M) | 77" Z hag
=0 =

(4.79)

We compute

(Lo, X2] = €72 [(—ihd — M1)? + (—ihdy — M2)?, x2]
= e 2 [~h?A + 26hM - V, x2]
= e 2 (=h*Axs — 2h*Vx2 - V + 2ihM - V2) .

Notice that supports of Axy and Vg are contained in D(0; R) and stay away from zero.
On these supports, we have the estimation, for all N € N,

N!
(e=DR@)/h < (e=1)dlal?/h < BN
‘ = = (1= 2)NoN|[g| 2N

T

Here, we use the simple inequality e* > %,L for x > 0. Notice that T, M, a;,,n are
smooth functions on U. Therefore, for all N € N, there exists a constant C' (depending

on the triple (e, J,¢)) such that

eI Ly, xa) € Zh]ajg < ChV.

L2(U,e2ndq)

Or we can write

T (L as xal € Z hay = O(h™). (4.80)
L2(U,e2ndq)
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We look at the second term of (4.79), from (4.71), we have
J JHl
XQCET/h ([’]‘L,M _ )‘}{76) e*T/h Z h]a&j — X26(671)T/h Z h]f] + hJ+2F )
j=0 j=0
In the following lines, we will prove that

J+1
xoeE~VT/h (Z hjfj) = O(h™). (4.81)
(Ue2ndq)

Indeed, let N € N. Since Z hJ fj is a flat function, we consider a small disc D(0;7) C

D(0; K) such that
J+1

IZWJ )| < Cllal*™ Vg€ D(0;r).

On D(0;7), we have the estimation

J+1 J+1
X2(q)e(s—1)T(q)/h (Z hjfj(q)) — XQ(q)e(s—l)R(q)/h (Z hjfj(q)>

=0 =0
J+1

< D3/ S pig ()
j=0

hN
< ————,
~ NI(1—¢g)NgN

On D(0; K) \ D(0;7), we have ||q|| > r, then

J+1 J+1
x2(g)el= DT @/ (Z hjfj(q)) = |x2(q)el VR (Z W fi(q )

Jj=0
BN J+1

< S 3 A0
=0

< ChV.
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Thus, (4.81) is proved. From (4.79), (4.80) and (4.81), we obtain the following estimate

e T/h (/Jh,M - /\i,z) ‘Pge)

L2(Ue2ndq)
< e M (L, xo] € Z hay
L2(U,e2ndq)
J
+ XgeET/h (Eh,M — )\i!) e~ T/h Zhjag’j
/ L2(U,e27dq)
J+1
< e [Ln, xa) € Zhﬂae,g + | x2e= VT S b
L?(U,e?1dq) =0 L2(U,e2ndq)
1 pT2 HX ole— 1)T/hF’ B
< ORI+2

O

Proof of Theorem 1.15. This theorem is just the version of Theorem 4.13 on a manifold.
Notice that R is not non-negative, we multiply R with x5 to get a non-negative function

defined on U. From Theorem 4.13, we have
X287 (L it = M) O oll2eznag) < 1€ (Lt = Me) U7 il eznag) < Ch7H2

We define, for (¢,5) € N2,

i)
- ¢*(x2R)(z if z € Q,
Py = | 0B
0 ifee M\Q.
ii)
~ ¢* (xae T May ;) (x) ifzeQ,
Upj(z) =
0 ifee M\Q.
These functions are smooth functions on M and ﬁ(w) > 0. n

Proof of Theorem 1.16. We fix the couple (J,¢) € N x N. From the estimation (4.78),
we apply the spectral theorem to get

i el ary dist (AflesSP(Lha)) < Ch7H2.
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Recall that, from the WKB construction, the expansion of )\;{ ¢ is given in the form

1
Vdet H (TrHz)?
)\i,e = boh + (25 dbet + ( r2b a2 ) h? + 4 gk
0 0

Comparing this with the eigenvalues (A; (%} A))ken of the magnetic Laplacian given by
Helffer and Kordyukov in (1.39), the nearest eigenvalue with \; , has to be A\¢(-%, 4). For
convenience, we denote A¢(h) instead of A\;(Z}, a) for the ¢-th eigenvalue of the magnetic

Laplacian. Therefore,
HTF{,ZHLQ(M) ‘)‘f(h) - )‘}{,Z‘ < Ch'*2. (4.82)

Combine this with (1.44) and notice that HOTig belongs to the kernel of £, o — A¢(h),

we obtain

| (Zha = 2e(m) (Tie = 0T 0) hzary < [1(Lha = Ae) Tiellzgan
+[Ae(h) = Al HTZ,EHL%M)
< ChJ+2 ]

By definition, Yj , — Iy Y} , € [ker (LA — Xo(h))]*- and, since the gap between Ag(h)
and other eigenvalues is of order h2, the spectral theorem proves that there exists ¢ > 0

such that

ch?|I T3 = Mo Ti llrzary < (Lo = Ae(h)) (Ti e — To i) llpzcan
< ChJ+2 )
It implies the statement of the theorem. O
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Chapter 5

WKB analysis on R? with a radial

magnetic field

Nothing is impossible. The word itself

says “I'm possible!”

Audrey Hepburn
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In this chapter, we are interested in the magnetic Laplacian
Zha = (—ihV — A)? | (5.1)

which was carefully introduced in Subsection 4.1.5 of Chapter 4. We consider the semi-
classical spectral problem of the magnetic Laplacian in R%2. With the assumption that
the magnetic field B is in the radial form and has a unique non-degenerate minimum,
we can use the WKB method to describe its spectrum through a family of electric
operators which are created by the Fourier decomposition. Moreover, an approximation
of the eigenfunction in an exponentially weighted space is also obtained. In other words,

the present chapter is devoted to proving all the results in Subsection 1.3.2.2.

5.1 Magnetic Laplacian in the radial coordinates

5.1.1 The magnetic potential

Let A be the magnetic potential associate with a magnetic field B, we write it as
A = Ajdg; + Aadge. Because of the gauge of invariance (see Chapter 4), we can choose
a magnetic potential compatible with the radial symmetry such that our problem can

be solved in the convenient way. In our case, we choose

A1(q) = —qalq),  Aa(q) = q1a(q), (5.2)

where .
a(q) ::/ tB(tq) dt.
0

This potential is indeed associated with B because

0A2 0A;

1 1
Oy~ 9y = / tB(tq) dt + / 2 (o0 B(tq) + 4205 B(tq)) dt
oq 0q2 0 0

td
:/O a(tQB(tq)) dt
).

= B(q
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5.1.2 Expression of the operator

Since the magnetic field only depends on r := \/q% + q%, we will borrow the polar

coordinates to perform our analysis. Let us introduce the change of variable

+ 5 - 2
v R* x R/20Z — R2\ {0} | 59
(r,0) — (rcos@,rsinf) = (q1,q2) .

The magnetic Laplacian in this radial coordinate is characterized by the following the-

orem

Theorem 5.1. Under the transformation (5.3), the magnetic potential A has the form
A = A.dr + Apdb,

where A = (Ay, Ag)T = ()T (A, A2)T, with dy denotes the Jacobian matriz of 1.

The magnetic Laplacian £, A in (5.1) is unitary equivalent to the operator
Hy, & =12 (r(—ihd, + Ay))? +r72(—ihdp + Ag)?, (5.4)
whose domain is

Dom(.%, 3) = {w € LA(R" x R/21Z,rdrd0) : H#, 5 (w) € LY (R x R/27rZ,rdrd9)} .

Proof. We introduce the unitary operator

T :L2(R?%, dgidgz) — L*(RY x R/27Z, rdrd6) (5.5)

u(qr,q2) — a(r,0) =uo(r,0).

v (n) v ()

Via(r,0) = (dy)" Vu(y(r,0)).

We also denote

Notice that

We just need to prove the statement in the restriction domain of the operator, precisely
u,v € C$°(R?) and the rest is obtained by the density of C§°(R?) in L?(R?). Now, let
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u,v € C°(R?),
(Chau,v)2@ey = ((=1hV — A)u, (=ihV — A)v)y2(ge)
= / —ihV — A)u - (—ihV — A)v dg
R2
21 R
- / (DT (—ih¥ — A)ii - (dy=))T (—ihV — A)rdrdf
0 R+
21 _
= / / (dp~) (dyp YT (=ihV — A)ii - (—ihV — A)ordrdd .
0 R+

Note that

Then, thanks to integrating by parts according to variable r,

2m
(ZhAau,v)2pe)y = / / —ihdy — Ap))? @ + 17 2(—ihdp — Ag)*a) T rdr db
R+

= ’LL) T( )>L2(rdrd6) :

Thus,
fh’A :T_IOJi/hAO

We recall from Chapter 4 that
Dom(%,a) = {u € L*(R?) : &, au € L*(R?)} .
It gives us the %, ;’s domain

Dom(%, 3) =T (Dom(Zp,a)) = {Tw : w € Dom(Zp )} -

With the choice of the magnetic potential A in (5.2), we get immediately

A(r,0) =0,  Ap(r,0) = G(r) := /0 B (f) dr

The magnetic Laplacian becomes
Ay, 5= =W (r0,)? 47 (—ihds — G(r))* .

For the sake of simplification, %}, is replaced for %, ; hereafter.
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5.1.3 Fourier decomposition

Next, Fourier series is used in order to decompose the radial magnetic Laplacian into a di-
rect sum of self-adjoint operators. Notice that for each u(r, ) € L*(R* x R/27Z, rdrdf),

we can express u as a Fourier series

where

2 imb
U () :/O u(r, 0) 6277 o € LA(R*, rdr),

and Z ”um|’%42(R+,rdr) < +o0.
meZ

This allows us to write the Hilbert space L?(R* x R/2nZ, rdrd#) as a Hilbert direct sum
of Hilbert spaces L2(R*, rdr),

L2(RY x R/2xZ,rdrd0) = @ LR, rdr) . (5.6)

meZ
Here, we use the isomorphism to associate each function u € L2(RT x R/27Z, rdrdf)
with the sequence of functions (wm(7))mez C L?(R*, rdr). Through that, we write the

operator %, corresponding to this decomposition as

S = [—h2r_2 (r9,)? + 12 (—ihdy —G(r))ﬂ Z <um(r)€zm9>

27
meZ
_ Z [—h27“_2 (Tar)Q + r_2(—ih59 - G(T))Q] <um(7”) 6;?)
meZ
imo
_ Z [~ h2r2 (T3T)2 +r72(hm — G(1))?] <um(7") 627T > :
meZ

Therefore, the magnetic Laplacian J7, is described as the direct sum of the radial electric

Schrodinger operator

f%/h = @ 2h,m 3 (57)

meZ

where
Lhm = —h?r2 (7”(7,,)2 + 7‘_2(hm — G’(r))2

Dom(Ly) = {u € L* (R, rdr) : £, pu € L* (R, rdr)}

are the self-adjoint operators.

Because of that, we will study the spectrum of the magnetic Laplacian through analysing

the spectrum of these electric Schrédinger operators. Namely, we find the asymptotic
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expansion for the ground state energy of each £, ,,, m € N. After that, we figure out
the relation between the first eigenpair of £y, ,,, and the m-th eigenpair of .%},. Next, the
WXKB method is then used to describe the first eigenfunction for each £, ,,. Finally, we
show that these WKB quasi-modes are very good approximations, in L? sense, of the

corresponding eigenfunctions.

5.2 Spectral analysis of the radial electric Schrodinger op-

erators

5.2.1 Compact resolvent property

Before proving the compact resolvent property, let us prove two basic results:

Lemma 5.2. L}(R*,rdr) is a Banach space.

Proof. Take a Cauchy sequence u,, in L2(R*, rdr), so v, (q1, q2) = un(1/q} + ¢3) is also
a Cauchy sequence in L?(R?, dg) since

2 2
anHLQ(R27dq) = /2 |Un(Q)‘ dq

R
27 “+o00
= / [t (1) |2 rdrdf
o Jo

= 2 unl 2oz rqr) -

Since L2(R?,dq) is a Banach space, v, converges to some v in L?(R?,dq). Let ¢ be an

arbitrary f-rotation transformation
¢:R* - R?
s @1\ [cosb —sinf T
Q2 sin 6 cos 0 Q2 '
Since vy, 0 ¢(q) = v, (q) and | det ¢| = 1, it implies that

[v—vo ¢||L2(R2,dq) < flv—wvno ¢||L2(R2,dq) + lvnog—wvo ¢||L2(R2,dq)
= 2||'U _Un||i2(]R2,dq)

— 0.

It yields that v is independent of # and if u(r) is chosen as v(rcos6,rsin@) then wu,

converges to u in L2(RT, rdr). O
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Lemma 5.3. Let R be an arbitrary positive number, then the injection H' ((0, R),rdr)
is compact embedded in L? ((0, R),rdr) .

Proof. Take a bounded sequence u,, in H' ((0, R), rdr)
R R
/ |t | rdr +/ |0t |* rdr < 1.
0 0

As above lemma, we set v,(q1,2) := un(1/q} + ¢3) defined on the disc D(0; R). Hence,

v, satisfies

2

dvnl* |0

9 - 2
||UnHH1(D(0;R),dq) - /11&2 [on]” + ox * oy

2 R ou
_ 2 -n
— /0 /0 |un (1)]° + ‘ 5 cosf

2t rR
_ / /\un\g—i—\@Tun\QrdrdG
0 0

2
= 27 |[unllzo,r)rdr) -

2 ou 2
+ ’n sinf| rdrdf
or

Because the injection H'(D(0;R),dq) — L2(D(0;R),dq) is compact, there exists a
subsequence v,, converging to some v in L2(D(O; R),dq). Next, reasoning in the end
of the proof of Lemma 5.2, we can prove that v is independent of 6 and we obtain the

result. O

Let us now give a criterion to get a compact resolvent.

Theorem 5.4. Let v > 0 and V € C®°(RT,R™") satisfy
lim V(r) = +o00.

T—00

We set up a sesquilinear form

+oo _ +o00o +o0
Qu,v) = ’y/ Or uOpvrdr + / Vutrdr+ / wordr,
0 0 0
defined on the domain
Dom(Q) = {u e L2(R*, rdr) : d,u € LART,rdr), VVu € L2(R+,rdr)} .

Then Dom(Q) is a Hilbert space with the inner product Q(-,-). Furthermore, the self-

adgjoint operator generated from Lax-Milgram (see Theorem A.6) has compact resolvent.

Proof. All properties of the inner product are easy to check. We will check that all the

Cauchy sequences in Dom(Q) converge. Assume that (u,)peny € Dom(Q) is a Cauchy
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sequence with the norm

HUHQQ = 7‘|8Tu|’i2(R+7rdr) + H\/Vu”i2(]g+7rd7») + HuHiQ(Rtrdr) .

Hence, u,, Oyu, and v/Vu, are Cauchy sequences in L?(RT,rdr). Since L2(R*,rdr)
is a Banach space, with the distribution technique, we imply that there exists u €
L?(R*, rdr) such that

Up — U

Ortty, — Opu ,
VVu, = VVu

or ||un, — ullg — 0. Thus, (Dom(Q), Q(-,-)) is a Hilbert space. In order to examine the
compact resolvent of the self-adjoint induced from Lax-Milgram Theorem, we just need
to check that the injection (Dom(Q), || - ||g) < L*(R*, rdr) is compact (see Proposition
AL9).

Take a sequence (u,) in Dom(Q) such that

+oo +o0 +oo
7/ |0y tup|? rdr +/ V(r)|up|* rdr +/ |y, |Prdr < 1. (5.9)
0 0 0

Since V' go to infinity when r — 400, then for any € > 0, there exists a number R, > 0

such that
“+oc0
/ |un|2 rdr <

Furthermore, since H' ((0, R.), rdr) is compact embedded in L2 ((0, R.), rdr) , we have

Z foralln>0.

a subsequence (v = Unq, . ,) is Cauchy in L2 ((0, R.),rdr). For n,k large enough, we

get
2 fie 2 e 2
||’U,k _unHLQ(R"F,Tdr) = /0 ‘Uk —Un‘ ’I”d’l"—F/R "U,k —’U,n’ rdr
R, 400 400

< / lvg — vn |2 rdr + 2 </ |uk|2rdr+/ |un2rdr>
0 R Re
£ £

< S40°

- 2+ 4

= e

Since L2(R*, rdr) is a Banach space (see Lemma 5.2), we get the convergence of u, in

L2(R*,rdr). We finish the proof. O

Applying the above theorem, we have the result:

Theorem 5.5. For any m € Z and h > 0, the operator £, ,, has compact resolvent.
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Proof. We fix m € Z and h > 0, we take v = 2h? and consider the sesquilinear

oo (hm — G(r))2

+o0
5 uvrdr + / wordr,
0

400 -
Qpm(u,v) = 2h? / Or uwOpvrdr + /
0 0

r

defined on the domain
Dom(Qp m) = {u € LA R, rdr) : pu € LARY, rdr), \/Vimu € L2(R+,rdr)} ,

with
(hm — G(r))*

r2

Vh,m (7‘) =

We have Dom (Qp, ) is a Hilbert space equipped with the inner product Qp ,,. From
Lax-Milgram (see Theorem A.6), the sesquilinear form Qj ,, produces a self-adjoint
operator S, ,. We know that u € Dom(Sy, ,,) if there exists an element w € L2(R*, rdr)
such that

Qhm(u,v) = <w,v>L2(R+7rdr) for all v € Dom(Qp ).

Considering v € C2°(R™1) and using the distribution definition, we deduce that
[—h2r_2 (rd,)* + Vi | u+u € LA(RY, rdr).

Thus, v € Dom(£,,) and £p,, + Id becomes an extension of Sp,,. By the self-

adjointness of £, ,, and Sy, ,,, we can conclude that
Sh,m = Sh,m + Id.

Note that £, ,,, has compact resolvent if and only if &j, ,,, has compact resolvent.

From the condition (1.46) of magnetic field, we imply that

_ 2
T i) I (5.10)
T—+00 r
The conclusion of the theorem is obtained by applying again Theorem 5.4. O

5.2.2 Spectrum of rescaled radial electric Schrodinger operators.

By the change of variable p = g in integral, we have

G(r) :/OTT/a (f) dT:/Op,B(s)ds.

127



We define )
a(p) = /0 B(s) ds.

Using the unitary transformation

Ty 2R, dp) — LA(R™, rdr), (5.11)

v(p) = (Thv)(r) = v(r*/2),
we get a new operator which is unitary equivalent to £y, ,, and acting on L2(RT,dp) :

Dom(Nj,m) = {u € L*(R,dp) : NV mu € L2 (R, dp) }
(hm—a(p)? (5.12)

Nh’m = Tl_l,Sh’mTl = —2h28pp0p + 2/)

Later, we will use the WKB method to find an asymptotic expansion of eigenfunction
corresponding to the first eigenvalue of A, ,,. Now, we just want to discover the asymp-

totic expansion N, ,,’s first eigenvalue by means of a rescaled operator.

5.2.2.1 Rescaling

In order to find the quasi-modes and quasi-eigenvalues in terms of formal power se-
ries of h, we use the scaling p = ht and expand the resulting operator, called My, 1,
into a formal series of h. Precisely, we obtain the operator My, ,,, through the unitary

transformation

Ty :L}(R*,dt) — L2(R*, dp), (5.13)
v(t) = (Tyv)(p) = K= 2u(h™"p).

and
Dom(Mp,,) = {u € L* (R, dt) : My u € L*(RT, dt)}

(hm — a(ht))?
2ht
Since 5 € C*(R), so is a. By applying the Taylor’s Theorem for the function a at 0, we

Mh,m = T2_1./\/’h,mT2 = —2h0t0s +

have

a(ht) = B(0)ht + ﬁ/g))h?t? + O(h3t3).
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We compute directly the operator My, ,,

a’(ht)  ma(ht) m?
m = —2hot - h
My, Oitoy + oht ; + 2%

’ 2
(B(O)ht + 2Oy 0(h3t3))
2ht
m (ﬁ(o)ht +80p22 O(h3t3)) >

m
— h—
t + 2t

pO)*t | m?

= h (—20tt6t + 5 + ?t — mﬂ(O))

(10 SOTO)) o)

= —2h0ito, +

2 2 t

By setting up

B(0)2t  m?
5 + o m3(0)

B(0)5'(0)
2

,SLQL] = —204t0; +

SLIJ = mﬂ2’(0)t +

t2

we can rewrite My, ,, as

Mpn = hell) + n2elll + —— R(ht)
where R is the reminder satisfying that there exist a constant C' > 0 and § > 0 such

that
|R(s)| < C's for all s € ]0,9). (5.14)

We consider ,QR] as a self-adjoint operator given by Lax-Milgram Theorem through the

sesquilinear

+oo +00 2 2
QY (u,v) = / 2t0pu Opvdt —|—/ <ﬂ(g) ! + % — mB(O)) uodt (5.15)
0 0

with the form domain

u € L2(RY,dt) :vtdu € LQ(R+ dt),
Dom(Q,Lg]) = \/ﬁ

—mpB(0)u € L*(RT,dt)
Therefore, we have

QW (u, v) = <£L(¥u,v>L2(R+7dt) for all u € Dom(&£%), v € Dom(Q). (5.16)
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5.2.2.2 Investigating spectrum of the operator SL?L}

This subsection is devoted to the spectrum of the operators £[ | for all m € Z.

Theorem 5.6. Let m € Z, the operator ££2] has discrete spectrum and its spectrum is
given by
Sp(£l9) = {(2k + 1+ |m| —m)B(0) : k € N} .

To prove this theorem, we will follow two steps: first, we show that the self-adjoint

[0

operator Em] has compact resolvent. Second, we relate SLUI] to the Laguerre operator

and then deduce its spectrum. We start with their compact resolvent properties.

[0

Theorem 5.7. For each m € Z, the operator £y, ! has compact resolvent.

Proof. Let m € Z. By changing variable t = %, the plan is to show that the operator
SL(,]L} is unitarily equivalent to an operator which has compact resolvent. Let us introduce

an unitary operator

U:L*R",dt) — L3R, rdr),
v(t) = (Uv)(r) = v(r?/2).

We organize a quadratic form as following:

Dom(Q[O )= U(Dom(Q[O ),

Al(a,b) = QI (U a, U 'b) + / abrdr.
R+

From the definition of U, we have (U~'a)(t) = a(v/2t). By computing straightforwardly
and upon observing that 0, = V/2t0,, it turns out that

a € LART,rdr) : 0,a € LR, rdr),

Dom(Q}f)) = 2 2 ;
\/ﬁ o ﬁ—mﬁ( 0)a € LA(R*, rdr)
and
- _ 2,2 2 B ~
Q% (a,b) = dya 0, brdr + / (B(O)r + mT - mﬁ(O)) abrdr —i—/ abrdr.
R+ R+ 4 T R+

Applying Theorem 5.4 and noticing that

lim <5(0)2r2 + T:; - m[J’(O)) = 400,

r—-+00 4
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the operator 57[2], which is defined from Lax-Milgram (see Theorem A.6) through the
sesquilinear QL%], has compact resolvent. As a consequence, the operator ER] = 57[2] —1Id

also has compact resolvent. According to (5.16), it implies that

el — peldy-1,
Thus, SL(,)J is unitary equivalent to E,[qol] and also has compact resolvent. O
In the next step, we bring the operator SL?L} to the Laguerre form. By letting ¢ = ﬁo) ,
the operator ,S[r%] becomes
s m?
Consider the self-adjoint operator
_Iml s S 7712 Iml s
Tm =8 2 e2 —285585+§+2——m sz e 2, (5.18)
s

acting in the Hilbert space L?(R™, s_‘m‘esds) and equivalent to the operator —20550; +

5+ %2 — m by the unitary

A L2(RY, sMe™ds) — L2(RT, ds)

lm| 1 m| 1 s m?
ST (F° YOI L B Y YOI L I A
Tm <5+23 )\ %ty Tg) gty ™
lm| 1 Im|  1\? s m?
= oo+ ™ 1) Cogfa, e 2} L2
<5+2s p) T\t g, Ty) tat g

m| 1 2 Im| 1 Im| 1
(as+ 25 2) 2|05 m3) Tl T2) %

= 2502+ (25 —2—2|m|)0s + |m| —m +1.
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It is well-known that the generalized Laguerre polynomials L&Z”) are solutions of the

differential equation

802y 4 (Im| +1—s) Oy +ny =0, (5.19)

with n € Z , see [59]. Furthermore, these polynomials are orthogonal with the inner

product of space L2 (RT, s‘m‘e_sds) and satisfies

+oo r 1
/ Ll(gm)(S)lem)(s) smle=sds — wék,m (5.20)
0 n!

where dy, ,, denotes Kronecker delta notation.
Then for each m € Z, we have

Ton (L) = (20 + 1 4 |m| — m)LI™. (5.21)
In particular,

{2n+|m|—m+1:n e N} Csp(Tm) - (5.22)

Theorem 5.8. For each m € Z, the family (L%m))neN is total in L2(R*, sI™le=sds).
Proof. Take f € L2(R*, sI™le=%ds) such that
+oo
/ F(8)LI™) (s)smle=3ds = 0 for all n € N.
0
It follows that, for all n € N,
+o00
/ s"f(s)s™le™ds = 0.
0
Let f be the extension of f on R by setting that f is zero on the negative axis. We put

F(f):/Re_isgf(s)slmle_sds.

This function is well defined thanks to the Cauchy-Schwarz inequality
Foo
ds = / ‘f(s)s"n'e_S
0

<( T Fs) shmles ) ([ T il is)

< +00.

ds

/R (e—“ﬁ?(s)slmle—s

Using power series for an exponential function, we can rewrite

+o00 _is E
F(f):/RZ( kf) F(s)s™le2ds.



We can apply the Fubini theorem to get

(—is

F() = +f§k/ Jf(s)s“”'e*sds =0.
=0 R k!

Therefore the Fourier transform of fs™e=* is 0 and of course f = 0. O

Theorem 5.9. Spectrum of the operator Tp, is

Sp(Tm) ={2k+1+|m|—m: ke N} .

Proof. From (5.22), we just need to prove the remaining direction.

If we denote by (fy)nen the L?-normalization of the family Lglm), then (fn)nen is a
Hilbert basis of L2(R*, s/™le=*ds) such that 7,,,(f,) = (2n + 1 + |m| — m) f,,. Finally,
since T, is self-adjoint with compact resolvent then 7, has a real, discrete spectrum.
For this reason, we search for the eigenvalue A € R such that there exists a non-zero
U € Dom(7,,) which satisfies

Ton(U) = AU |

We write the following decomposition, converging in L?(R*, s‘m‘e_sds),

U= (T, fo)2fn-

neN

Here we denote (-, -);2 as an inner product on L2(R™, s/™le=%ds). For all ¢ € Dom(T,),

we have

<\Il7 (Tm - A)¢>L2 = <(Tm - )‘)\Il7 ¢>L2 = 0.

Then by convergence in L2(Rt, s™le=3ds),

Z<\I}’ fn>L2 <fna (Tm - A)¢>L2 =0.
neN
Let k£ € N and choose ¢ = f}, we obtain
D (W, e (fo (T = N fedre = (U, fr) 22k + [m] —m +1—X) =0.

neN

If W is orthogonal to all members of family (fx)ren then ¥ = 0 . Therefore, there exists
k € N such that
A=2k+1+|m|—m.

In conclusion,
Sp(Tm) = {2k +1+|m|—m: ke N} .
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Proof of Theorem 5.6. According to the unitary equivalence arguments, the spectrum

of SL?L} is easily obtained as stated in the theorem. O

Example 5.1. When m > 0, the first and the second eigenpairs of SLQL] are respectively

—B(0)t

(,8(0), t%e*%”)t) and (3/3(0), (B(0)t —m — 1) t%eT) .

5.2.2.3 A quasimode for the rescaled operator

Back to the rescaled operator My, ,,, and we restrict ourselves to the case m > 0. In this

part, we aim to show that the first eigenvalue of My, ;,, has the expansion

(m +1)5(0)

2 2
50) h* 4+ o(h®) .

)\O(Mh,m) = 5(0)]1 +
To do that, we prove the accurate upper bound for the eigenvalue in Theorem 5.10.
Then, the lower bound of the eigenvalue will be showed in Theorem 5.13 with the help

of Agmon estimate.

Theorem 5.10. For all m € N, there exist C > 0 and hg > 0 such that, for all
h e (0, ho),
dist (pm,0h + pm,1 1%, Sp (Mpm)) < CH?,

where pimg = B(0) and pmy = IO,

Proof. For each m € N, we need to find a non-trivial function ¥; € Dom(My,,,) such
that
[(Mpm — )‘h)\I’hHL2(R+7dt) < Ch3.

where A\, = pmoh + um71h2. Then the conclusion of this theorem follows from the
spectral theorem. Although ¥, depends on m, whenever there is no confusion, we write

Uy, instead of Wy, ,,. Recall that
3,3
My = helld + p2elll 4 om’t”) )
3 m m t

This suggests an idea that we need to look for a quasimode ¥y in form of

Yo+ Ay .
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In details,

(Mhpn = A) (Po + h¥1)  ~ [h <£L9J — Mm,o> +h? (SL{} - Nm,l)} (Wo + h¥y)
= h ('QLQL] - :um,O) Uy + h? [(,QL?L] - :Ltm,O) vy + <£gj - Nm,l) ‘1’0}

+h3 (QL{} - MmJ) U, .

Obviously, we need to solve the following equations to find A and V:

Equation according to order h:

(’Qﬂ - ,Um,()) Uy =0.

We choose iy, 0 = £(0) and ¥g = t%676§0)t the first eigenpair of £[T(,)L}.

Equation according to order h?:

(PJ?J - Hm,o) U = (Mm,l — 2%) Uy . (5.23)

Since SL?L} is a self-adjoint operator and pg is a discrete eigenvalue then SLQJ — o is a

Fredholm operator. Therefore, the equation (5.23) has solution ¥ if and only if

(37[713 - Mm,l) U € span(Wo)™.

This is equivalent to
MmylH\IIOHQ = <£'£711]\P(]7 \IJ0>L2 )

or

+o0 400
0 0

2 2
~ (m4+1)p'0) [T m—B(0)t since
e 2 /0 ¢ At (since B(0) > 0).

Thus,
4y _ A D)
po)

Inserting this value into equation (5.23), we have a differential equation

B(0)2t  m?

<—26tt8t + 9 + 7t - (m + 1)5(0)) \Ijl

_ m+1 m 5(0)2 / % _@
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We look for Wy in the form W1 = 3/(0)y(t)t 2 6_@, and we only need to find a function

y(t) satisfies

m+1 m B(0) o

—2ty” —2(1+m — B(0)t)y = 3(0) 2 2

By finding y(#) in the polynomial form ast? + a1t + ag, we obtain

_ 1, 1
y(t) = —t TR
Therefore . .
Ty oy 0
w(0) = (38— gt ) PO

satisfies (5.23). To make sure that ¥ belongs to the domain of My, ,,, we multiply
Wy + h¥y with a smooth cut-off function, that is

Wi (t) = x(ht)(Wo + h¥y),

where

1 for t € [0, é]

x(t) = 2, (5.24)
0 for t € [6, 00)

where ¢ is given by the estimate of Taylor’s remainder of the function a, namely in
(5.14).

Before estimating the L2-norm, we want to analyse the quasimode near ¢t = 0. Remind

that the operator My, ,,, has the term

(hm — a(ht))?
2ht '

which goes to infinity as ¢ — 0 and m # 0. When we apply My, to ¥y in the
neighborhood of 0,

-m?  B(0)%t (hm — a(ht))?
Uy = h — v ——
Mhnm¥o < 2 > mﬁ(o)) 0t 2Nt 0
B(0)t a(ht)?  ma(ht)
=(- - o
( h=5— 4+ mhB3(0) + =~ , 0
. o a(ht)? ma(ht)
Since a(0) = 0, =5;;— and ——* are smooth at 0. Thus, M}, ,;, ¥ does not blow up at

0.
For simplicity of notation, we denote S(t) = ¥y + h¥;. By using Taylor formula and
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the definitions of u; and ¥;, we have

(Mh,m — )\h)\ph = (Mh,m — )\h)X(ht>S
= —2h [0t0;, x(ht)] S + X (ht)(Mpm — An)S
= —2h3tx" (ht)S — 2h%x/ (ht)(S + 2tS")
(1) [ () — gy + T g

With support consideration and changing variable s = th in integral with a notice that S
—B(0)

contains the exponential term e+, the L%-norm of the term [9;td;, x(ht)] S is O(h™).

We only need to care about estimating the term X(ht)@S . We have

/+OO *(ht )|R(ht)| S*dt = /a/hXQ(ht)m(ht)‘ S%dt
0 0

+oo
ChS / 482 dt
0

< CHS.

IN

O]

The above theorem states that, for each m € N, one can find an eigenvalue of My, p,
near 3(0)h+ Wh? We will use the Agmon estimate to assert that this eigenvalue

is in fact the first one A\g(Myp, ,,,). In this section, let us denote

m —a 2
Vh,m(t) = (hzht(ht)) )

and the quadratic form associated with My, ,,, as
Qnm(u) = 2h/ Hopul? dt +/ Vim(Olu(®)]2 dt
0 0

Moreover, since we only deal with the Hilbert space L2(R+, dt) in this section, we denote

| - ly2 instead of || - [ 2(g+ qz) and so is the inner product.

Let us recall that a(p) = [ B(s)ds. Under the condition (1.46), we imply

a(ht) > B(0)ht

For t > 0 large enough, we have the inequality

(hm — a(ht)? _, (BO)t = m)?*

Vim(t) = oht = 2

(5.25)
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Theorem 5.11. Let m € N and let ® € WL (RT R), then for all u € Dom(My, ),

we have
“+oo
Qum () = mwmwéum+%/ HY ()2 Olu(t)?dt.  (5.26)
0
Proof. By Lax-Milgram theorem, we have
+o0o
2h(V/t0yu, V18, (€*Pu)) 2 + / Vi ()22 Ou@) 2 dt = (Mpmu, e2Pu);2. (5.27)
0
To simplify the notation, we set up P := v/t9;. Notice that the commutator
[P, e®] = Vitd' (t)e?®

is a multiplication operator. We perform the following computation

(Pu, Pe**u) 2 = (Pu,[P,e®]e®u)r2 + (Pu,e® Pe®u); 2
= (e®Pu, [P, e®u) 2 + (e® Pu, Pe®u); 2
= (e®Pu, [P, e u)2 + (Pe®u, Pe®u) 2 + ([e®, Plu, Pe®u); 2
= Pl — ([P, e®ul%: + (2 Pu, [P, e®udya — ([P, e®u, ¢® Pujys

Take the real part of (5.27), we get
+o0
|| Pe®ul % — 2h| [P, c®ul% +/ Vi (02|l dt = Re(Mp s, €2P0) 2
0

This implies the statement of the theorem. ]

Theorem 5.12. Under the assumption (1.46), for all m € N, and for all ¢ € (0, @),
there exists M > 0 such that

le= Iz < M| PF and QW) < M |V,

for all eigenfunctions ¥ with eigenvalue of order h of the operator My, .

Proof. Let us consider a sequence of functions (x),~; defined as follows

t for 0 <t <k,
Xk(t) = 2k —t for k <t < 2k, (5.28)
0 for t > 2k.
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Notice that x; € W1 (RT) and |} (t)] <1 for all t € RT.
Let us consider an eigenvalue A(= O(h)) of the operator My, ,,, associated with eigen-

function W. This means that there exists C' > 0 such that
Mp ¥ =AU and M\N<Ch. (5.29)

Take ® = ex () in equation (5.26), we have

o0

Qnm (e DT) < Nt O g2, + 2’152/0 Xk (1) O w (1) | dt
“+o00
< Chllex-Ow|?, +2h52/ 1220 | ()2 it
0

It implies that

“+o00 +oo
/ Vi (D)X O W2 dt < Chlje+ D02, + 2he? / 125X [ (1) 2 d
0 0

Bring every terms from the right to the left, we have
+00
/ (Vim(t) — Ch — 2het) 60| @|2 gt < 0.
0

From the estimate (5.25), there exist a number R > 0 and a constant Ci(R,e) > 0
(depending on R and ¢) such that for all ¢ > R, we have

Y
Vim(t) — Ch — 2%h > h [(b‘)t%m) _ 92 C}

b2 2
:h[<20—2€2>t—|—75t—b0m—0]

> C1(R, e)h. (5.30)

We deduce the existence of Cy(R,e) > 0 such that, for all £ > 1,

Oy (R,2)h / 202 gt < / (Vam(t) — Ch — 2het) X0 w2 dt
R R
R
< / (2he?t + Ch — Vi (1)) 20|02 gt
0
< Cy(R,e)h|¥f3, .
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Then, there exists a constant C (R, ¢) such that, for all k£ > 1,

o) R 00
/ w2 dt = / e2€Xk(t)|\If|2dt+/ kM| w2 dt
0 0 R

IA

R 00
/ e2€R|fo|2dt+/ Xk p|? g
0 R

C(R, )| %[z

N

Let k — 400 and use Fatou’s lemma, we obtain

/ W% dt < C(R,2) |02
0

To estimate the quadratic form Q}, ,,, we evaluate more strictly the estimate (5.30)
Vim(t) — Ch — 2¢%th > C1(R, )ht .
Follow the same steps as above, we get the control

+00
/ teQSXk(t)’\Il(t)‘th < CH‘I’Hi?
0

Then, it leads to
Qnm (¢ OW) < ChIF,

and we get the result. O

Theorem 5.13. For all m € N,

(m +1)5(0)

h% 4 o(h?). (5.31)

Proof. Let us fix m € N. We can choose the first eigenpairs (A\j(Mp, ), Wi p)i=1,2 such
that Wgj, and Wy 5, are orthogonal. We let

E(h) = span(¥op, Y1) - (5.32)

Thus, E(h) has dimension 2. From Theorem 5.10, we can deduce that (V;)i—12 are

eigenfunctions having eigenvalues of order h and so are the elements of E(h). Let

140



U € E(h), we have

+o0 +o00o
Qnm(¥) = 2h / 10, () P di + / Vo (D92 dt
0 0

L s (BOP, mE N
- h/o 2410, (1) | +< - 5(0))|\1/| dt

2 2%
+/O+OO [vh,m(t) —h <B(§)2t + 7;; - mB(O))] 0|2 dt
> 10— [ Pt -1 (B e+ o)) e

where Q[f)} is the quadratic form associated with the operator 2?}. By the Taylor’s

theorem, we have

B2,  m?

B t+2t—mﬁ(0)> =

O((ht)?)
.

Vh,m(t) —h <
There exists C; > 0 and 0 > 0 such that, for all (h,t) which satisfies ht <9,

Vim(t) — h (5(3)2t Lm mﬂ(()))' < Cyth?.

2t

Using the Agmon estimate, we have

8/h
/

B(0)? ~ m? >' 2 2 [ 2
Vim(t) —h| ——t+ — —mpg(0 Ul*dt < Cih t|W|“ dt

—+o00
gcgh?/ X W% dt
0

< Ch?|| 9|2,

Consider on the interval [%, +00),

—+o00 “+o00
[P = [ e 0] o
5/h 5/h
400
< max e / Vi ()] 2192 dit
t>0/h 0

< Ch*||9|2,.

Similarly, we also have

/C([) ! 2 2
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Thus, we have the estimate
Qun () > hQRN(¥) — CR| V|7, .

Since ¥ € E(h), there exists (a1, a2) € C? such that ¥ = a3Pgp, + aoWy . Since ¥y,
and Uy j, are orthogonal, it leads to H\I/Hi2 = a%H\IIO,hHiQ + a%H\I/LhHiQ. Therefore, we

obtain

Qnm(¥) = Ao(Mpm)lon*[[Po

2, 4 M (M) a2l W1

2y < M Mu) 1972,
By the min-max principle for the quadratic form Q[r(,)z} , we have
M (Mpm) > 38(0)h — Ch2. (5.33)

From Theorem 5.10, we see that there exists an eigenvalue of My, ;,, which is near the

quantity 5(0)h+ %fﬂ in order o(h?). This eigenvalue can not be Ag(Myp, ,,) with

k > 1, because if it were, from the estimate

(m +1)5'(0)

3B8(0)h — Ch? < A\g(Mpm) = B(0)h + 50)

h? + o(h?),

we divide both sides by h and let h come to zero, this gives us $(0) = 0. This can not

happen. The conclusion follows. O

5.3 The relation between eigenfunctions of the magnetic

Laplacian and eigenfunctions of the fibered operator

We recall the expression of the magnetic Laplacian operator 7
Hp, = —h*r2 (r0,)? + 172 (—ihdy — G(r))?. (5.34)

For each m € N, let Ao(Np,m) be the first eigenvalue of the operator N, ,, and ¥p,
be the associated eigenfunction. Since My, ,,, and Nh,m are unitary equivalent, from

Theorem 5.13, we obtain

(m+1)8'(0)

A Nim) = Xo(Mipm) = BO)h + 3(0)

h? 4 o(h?). (5.35)
On the other hand, £, ,,, and N}, ,,, also are equivalent by

Lhm = TiNw T,
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where T} are unitary operators defined at (5.11). Therefore, A\o(Np ) is also the first

eigenvalue of £, and T1(Vj, ) is the associated eigenfunction. It results that
0 — 20Ni)] €™ (T1%51) = (€1 — Ao(M )] Ty (T )™ = 0.

Thus A\o(N; h,m) belongs to the spectrum of J#,. Now, the result by Helffer and Kordyukov
(see (1.13)) tells us that, for all k¥ € N, the k—th eigenvalue of %, denoted by (%)

satisfies

Me( ) = BOYh + (% v g‘EB)H + (T;g(lo/j)2> B2 + o(h?), (5.36)

where H = 1HessB(0).

We recall the definition of the magnetic field B(q1,q2) = (@), we have

H-(ﬁléo) 0)
- o | -
o 2

By computation and recall that 4'(0) > 0, we have

()2
det 1 = 5 f) and  Tr(HY?) =+v/2/5(0).
Thus, A;(h) has the form

(k+1)5'(0)
B(0)

Since A\g(Np,m) is the eigenvalue of %, thus there exists & € N such that

Ne(3) = B(0)h + h% 4 o(h?). (5.37)
Ao (M) = Mg (Hh) -

Comparing with (5.35) and taking h small enough, we immediately obtain £ = m and
)\m(c%/h) = )\O(Mh,m) .

Since A, (#) is a simple eigenvalue, we have the following statement

Theorem 5.14. The m-th eigenvalue of the magnetic Laplacian %}, is exactly the first

eigenvalue of the operator Ny, :

Aa(Hn) = Ao (Npym) -
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The m-th eigenfunction of J&, is in the form

2

™0y, <T2> , (5.38)

where W, , is a ground-state eigenfunction of the operator Ny, and ¢ € C\ {0}.

5.4 Magnetic WKB construction in the radial coordinates

In this section, we focus on constructing the WKB Ansatz for the eigenfunction of the
magnetic Laplacian. As Theorem 5.14 indicates the relation between this eigenfunction
with the eigenfunction of the operator Ny, we just need to do the WKB analysis for
the operator N . Since N,y is a real electric Schrédinger operator in dimension 1,

one can easily find a WKB approximation for ¥y ,,. We recall the unscaled operator

(hm — a(p))?

Nign = =2h20,(p0p) + 2

: (5.39)

where
o) = [ 8(s)ds.

To start the WKB method, we consider its conjugated operator with real-valued smooth

function ¢:
Mo = €50 p7" Ny pe 1"
We have
N = —on2e%2 7 [0,(p0,) pRe—52 4 (hm 2;(/)))2
= _9p? (ap 4 % _ 90/}(Lp)> o0, + 72% 3 @’20)) 4 (hm —25(,0))2
— _9p? (1 4 (ap n % 3 90’}(1/))) (ap N 2% B w’}(;)) 4 (hm —2;(0))2
= —2n° (ap + % - @/}(Lp) —2m2p (33 _ % n %@, B w”}gp) B 2@%(/)) a,,)
_op? <;n <;9’}(L/>)>2 L (hm —2;1(/)))2
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So, the expression of the conjugated operator /\/fhjn can be written in order of h as follows

— a 2
Nivm = <((2’;)) — 2p(s0’(p))2>

+h <4<P/(p)p6p +2¢'(p) + 2p¢" (p) + 2m¢' (p) — mca(pp))

+ h* (—2p0% — (2m +2)0,) .

5.4.1 The eikonal equation

We find function ¢ on [0, +00) such that the term of order h° is zero, that is

(a(p))*

2 2p(¢'(p))* =0, (5.40)
a 2
s wer="g.

We choose a positive solution

o) = [ 5 ar

which is a smooth function on [0, 4+00) because it can be rewritten in the form

o) = [ Dar= [ ["s@aear=1 [ [ sieracar

Then the operator N, ,, becomes
Nom = hNT+B2AZ,

where

N =49 (p)pd, + 2¢' (p) + 209" (p) = 2a(p)d, + B(p) ,

and
NE = —2p8[2, - (2m+2)0,.

We now look for a WKB Ansatz and a quasi-eigenvalue, respectively, in the form

a(p, h) ~ ag(p) + hai(p) + h*az(p) + ...,
A(h) ~ h(po + hpt + h2ug + ...) .

We substitute these formal series into the equation

(/\7,; - )\(h)) a(p,h) = 0.
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Collect all terms according to h?, we have an infinite system

h: (Nl—,uo)agzo,

h?: (/\/1—#0)@1—(#1—/\/%)@0,

h? (N = o) a2 = (1 — N2) by + poby

ht (N — o) az = (1 — N2) b + poar + pisag

We will solve these transport equations by elementary ODEs arguments and by induc-

tion.

5.4.2 The first transport equation

Collecting all terms of order h', we have the first transport equation

(2a(p)3, + B(p) — po)ao = 0. (5.41)

The equation (5.41) has smooth solutions which do not vanish at 0 if and only if
1o = B(0).

P 1
Indeed, since a(p) = / B(s)ds = p/ B(ps)ds and (0) > 0, we can extend the
0 0

quotient
B(0) — B(p)
2a(p)

into a smooth function on [0, +00). We still denote this extension as F', and the differ-

F(p) :=

ential equation

8,,@0 = Fao N

has smooth solutions

aalp) =anOexp [P0 as)

with ag(0) # 0. We make a choice a(0) = 1 and we obtain a solution

calp) = oo ([ Fs)as)
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5.4.3 The second transport equation

Let us gather all terms of order h? to get the second transport equation
(2a(p)0, + B(p) — po)ar = (p1 + (2m +2)0, + 2,0(93)@0 , (5.42)

we deduce that the necessary condition such that the equation (5.42) has solution which
is smooth at 0 is
(p1+ (2m +2)9,)ap(0) =0,
or
(2m + 2)0,a0(0)
ao(0) '

From the equation (5.41), let p go to 0, we get

==

0y0(0) _ | 5(0) = Bp) _ ~B(0)
aw(0) oS0 2a(p) | 26(0)
Thus, we find that 0
—(m PO
n1 = ( + 1) B(O) . (5.43)

we recover the coeflficient found in the first part of the analysis. If we take this value of

1, our second transport equation (5.42) can be rewritten as

(11 + (2m + 2)9, + 2p0 )ag

) (5.44)

dpar — F(p)ar = g1(p) :=

This equation has solutions in the form

a1(p) = exp < /O " P(s) ds) /0 ’ <exp (- /0 " F(s) ds> g1(7)> dr
+ a1(0) exp < /0 " Fls) ds) .

We prescribe the restriction at p = 0 that a;(0) = 0 so that the equation (5.42) has the

unique solution

a1(p) = exp (/OPF(S) ds) /Op (eXp (— /OTF(S) ds) gl(T)> dr.

5.4.4 Induction

Let n € N and n > 2. We assume that (1;)o<j<n and (a;)o<j<n are determined and

(a;)1<j<n are smooth function on [0,+00) and vanish at p = 0. Let us show that we
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can determine fi,11 and a,4+1 by the (n + 1)-th transport equation

n+1

(2a(p)0y + B(p) — 1o) ans1 = ((2m + 2)0, + 2p0) an + Y fjans1—j -

Jj=1

The equation has a smooth solution at 0 if and only if
n
(2m +2)8pan(0) + Y _ pjant1-§(0) + pin1a0(0) = 0.
j=1

Since ap(0) = 1, pp41 is completely determined by
finst = —(2m + 2)050(0)
With this value of fi,41, we can rewrite the equation (5.45) as
Opant1 — F(p)ant1 = gn(p),

where g, is the smooth extension of the function

o) = ((2m +2)8, + 2003) an + 74 pjant1—j
n p - 2@(/)) Y

on [0, 4+00).

There is only one solution a,1 such that a,1(0) = 0, that is

ant1(p) = exp </OPF(S) ds) /Op (exp <— /OTF(S) ds) gn(T)) dr.

(5.45)

(5.46)

Proof of Theorem 1.17. We fix m € N. The process of performing WKB for the spectral

problem of the operator /\//hjn provides us the required functions and sequences as follows:

i) The function ¢(p) is given by the Eikonal equation (5.40):

o=y [ [ senacar.

(5.47)

ii) The transport equations give us the existence of a sequence of smooth functions

(amj)jen defined on [0,+00) and the sequence (fm j)jen which depends on m.

Notice that a,, is positive because

amo(p) = exp ( /0 pF(s)ds) |
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For each J € N, from the WKB construction, there exists a smooth function f, 7(p)
defined on [0, +00) such that

J
—-_m ; m o( 1
ehpz | Nym—h g Y, P pze G0 | = fm,J(p)h‘]“'Q.

=0

After changing of variable p = % we obtain

“’<§> P2\ 72 J : 2
D (snonn) (2 (5
=

7"2
— fm,J <2> hJ+2 )

Z Am,j ( ) h? with ¢ and using the fact that

m 72
2 7

>

ﬂ 7‘2
- 7

1"2
By multiplying (2)

%(eimGU) — £hm(6im9u) ,

)

the result of Theorem 1.17 is deduced after changing variables from the radial coordinates

to Cartesian coordinates. O

5.5 The WKB approximation

Let us recall the definition of the cut-off function x defined at (1.49) associated with the
large number K > 0. From now, for shortness, we will denote L(R*) instead L2(R*, dp)

for the Hilbert space of the operator N, ,.

Theorem 5.15. For all (e,m,J) € (0,1) x N x N, there exist a constant C > 0 and
ho > 0 such that, for all h € (0, hy),

ep(p)/h )\ I+2,
Wi = M) Ul ., < O (5.48)
where
J ' J |
)\,{’m = hz,um,jhj and \I/im(p) = ye ?W/hpT Zam,jhj . (5.49)
Jj=0 3=0

In particular,

[(Nim = Ain) il 2y < OB (5.50)
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Proof. Using the definition of the operator m, we check that

esr(p)/h (Nh = )\i m) q;;{m
==/ [N x| e PP pE S+ xeE=De)/h % (/\7;171 _ A;{,m) S5 (5.51)

where Sy := (ijo amdhj) is a smooth function on [0, +00).

Notice that

Wi X = =207 [8,p0,, X]
= —2h* (X' + pX") — 4B°Xp0, ,

and with the support considerations, the first term in the right hand side of (5.51) is
O(h*>) with the norm || - [[;2(g+)-

From the WKB construction of A\; and ¥y, ,, j(p), we get

(N = M) Ss(0) = h7% s ()

where fy, 7(p) is a smooth function on [0, 4+00), then the second term in the right hand

side of (5.51) is estimated by

er(a—n@(p)/hp% (/\//Jn _ A;{,m) SJ‘

= I+ He(e—mo(p)/h p% frs( p)‘

L2(R+) L2([0,K+1))

< Cth+2.

This leads to

< Chj+2,
L2(R+)

and get (5.48). O

eee(p)/h (th _ )\}{m) q,}{m‘

Proof of Theorem 1.18. Theorem 1.18 is a direct consequence of Theorem 5.15 by

unitary equivalence.

< Ch’*2.

HeaP/h (Dg/ﬂh,A - Al{,m) Ti,m”LQ(RQ) =

ece(p)/h (Nh,m _ )\}{m) q,}{m‘

L2(R+)

O

We may now provide an approximation of the ground-state eigenfunction of the operator
Ni,m by the WKB construction \I/gm defined in (5.49). Let ¥}, be an eigenfunction
according to A\g(N, ), we introduce the orthogonal projection of \Il;{m onto eigenspace
of \o(Nn,m)

Con @ = (7 s i) U -
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Theorem 5.16. For all (m,J) € Nx N, there exist C > 0 and hg > 0 such that, for all
h e (Oa hO);

[RZAE . < Ch7t, (5.52)

,mHLQ(Rﬂ
Proof. From the estimate (5.50), we use the spectral theorem to get

k%4 dist (A7, SPWNim)) < Ch7H2.

g HL2(R+)

Recall that, from the WKB construction,

J
Mo =h>_ ph?
k=0

with po = B(0). Note that A, and My, ,, are unitary. We apply Theorem 5.13 and
one part of its proof (5.33), we get

(m+1)8'(0)

2 2
50) h* + o(h*),

)\O(Nh,m) = AO(Mh,m) = ﬁ(())h +

and

3B8(0)h — Ch? < A\ (Nhm) < AaWNjm) < ..

Since the spectrum of N}, ,, is discrete, we can conclude that
dist (A SP(NGum)) = A7 (h) = Ao(Whm)!

Thus, we obtain
H\Pf{,mHLZ(Rﬂ ‘)\f{,m — AoWNam)| < Ch'*2. (5.53)

Combine this with (5.50), and notice that I';, 3 belongs to the kernel of N}, ,,, we get

I N = AoWNam)) (U3 = T i) 2

[[Naam = 20N Wi |2 e

H (Nh,m - )‘l{,m) qji,mH]}(RJr) + ‘)‘f{,m - /\O(Nh,m)’ “qjg,m‘}Lz(R+)
ChJ-‘rQ )

IA

IN

By definition, ¥, — [, W7 € [ker (Njm — Ao(Npm))] " and, since the gap between
the first and the second eigenvalues of N}, ,, is larger than 26(0)h + O(h?), the Spectral
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Theorem proves that

(28(0)h = ch) |9}, 1y = T U7, 2

< (A WNiam) = A WNwam)) 17 = T W7l 2 sy
< Nam = AoWNam)) (7 = T W5 ) L2 e
< ChJ—I—Q )
Dividing by h and take h small enough, the conclusion follows. O

Moreover, we can show that the eigenfunctions of N}, ,, can be approximated better in
an exponentially weighted space. In order to do that, we establish the following Agmon

estimate and we refer to the reference [6]. Let us recall the expression of the operator

th

)

Nh,m = _2h28ppap + Vh,m (p),
where )
(hm — a(p))
2p '
Proposition 5.17. Let m € N and let (®g)reny € WH(RT,R). Assume that there
exist M > 0, K1 > 0, Ko > 0 and Ry > 0 such that for all h € (0,1), k € N

vh,m(p) =

Vi (p) — 20|} (p)[> > Mh for all p € [Roh,+00),  (5.54)
|®.(p)] < K, [P (p)| < Kah for all p € [0, Roh) . (5.55)

Then, for all co € (0,M), there exists a positive constant C' > 0 such that, for all
he(0,1), k€N, z € [0,c0h], and u € Dom(Np ),

C
||e¢’k/hu|]L2(R+) < EHeqh’“/h (Nnym — 2) UHLQ(R+) + CHUHLQ(RﬂL) : (5.56)

Proof. From Lax-Milgram theorem, we have

284, /h _9p2 2% /h
<Nh’mu, e u> 2h <\/f)8pu, Vpo,(e u)>L2(R+) (5.57)

b [ ) M ap.
0

L2(R+)

Setting P = /p0d, and following the same steps as in the proof of Theorem 5.11, then

20, /h — | Pe®r/Py2 _ Pi/hg|12
e <<P“7P€ ’“ “>LQ(R+>>—HP6 rulLagey = 1P €™ Ml gy -
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Noticing that [P, e®*/"] = pr%eq’k/h and take the real part of (5.57), we obtain

+oo
Re <Nh7mu, emk/hu> = 2h2/0 p|8,(e® /M) 2 dp

+oo ,
[ (Vo = 20100 /M uf? dp.
0

Since \N/hm(p) >0, we get

+oo
| (o = 2010 ) €% dp < Nl ™ Pl s
0

Roh
[ 2t Pl dp.
0
Using (5.54), we deduce that

“+o0
Mh / e/ a2 dp < [|e®/ANG, 2 €% Ml 2 gt
Roh

Roh
[ 2ol o) dp.
0

Thanks to (5.55), ®,/h and @} are uniformly bounded with respect to h and to k on
[0, Roh). Therefore, we deduce that there exists a constant L > 0 (independent of h and
k) such that

400 Roh
Mh/ e/ u)? dp < ||/ M Ny me]| 2 gy € Ml 2 g vy + Lh/ ul>dp.
0 0

For z € [0, coh), we get

(M — co)hle®/ Ml gy < €%/ Wi — 2) ullg e ™ ull 2y + Lhlful Z2ges, -

Since M > cg, this gives (5.56) . O
The first application of the above Agmon estimate is to prove the decay of the eigen-
function of the operator.

Theorem 5.18. For all ¢ € (0,1), there exist C > 0 and hy > 0 such that, for all
h € (0, ho) and all eigenfunctions U with eigenvalue of order h of the operator Nj, m,

e/ MUl 2gey < Clll2gge (5.58)

p
where (p) = /0 a2(77:)d7' is given by (5.47).
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Proof. Let (xx)ren be a sequence of functions that is defined in the proof of Theorem

(5.12). We recall here two remarkable properties of (xx)ken-

i) (xx) converges pointwise to the function y(t) = ¢ on [0, +00), i.e.

lm xg(t) =t for all ¢t € [0, +00) .

k——+o0

ii) Related to the derivatives of xy:

Ix%(t)| =1 a.e. on [0, 2k] and Ix%(t)| =0 for s > 2k .

In order to apply Proposition 5.17, we set up the sequence (®y)ren as follows:

Dr(p) = exr(e(p)) -

For each k € N, we need to check that ®, € W (R* R). Obviously, yx o ¢ €
L®(RT,R) and for all u € C}(RT),

/ Xk(p)u'dp = / pu’ dp + / (2k —p)u'dp
R+ [0<p<k] [k<p<2k|

() e~ (2k)
= / ou' dp + / (2k — @)u' dp
©~1(0) =1 (k)

(k) 1 (2k)
:—/ cp’udp—i—/ Yudp
»~1(0) e=1(k)

= —/ Xk (p)¢'udp,
R+

where [a < ¢ < b] := {p € RT : a < ¢(p) < b}, and since ¢ is strictly increasing
[a < ¢ < b =[p~ta),p71(b)] for all a,b € [0,+0c). Since x}(p)¢’ € LR, R), we
deduce that ®;, € W1H°(R* R). Furthermore, one has

ea(p)

% a.e. on RT.

|.(p)| < el (p)| =

Let us consider an eigenvalue A = (O(h)) and an associated eigenfunction ¥ of the

operator Nhﬂn' Then, there exist ¢g > 0 and hg > 0 such that

Al < eoh for all h € (0, ho) .
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Let M and Ry be numbers such that

M > cq,
28(0)m + 2M
= Bopt e

Using the assumption (1.46), we have a(p) > bop for all p € RT. From the definition of
Ry, we have the estimate, for all h € (0, hg), k € N and p > Roh,

Vim(p) = 20/@5,(p)|* = Viym(p) — €7 a22(5)
2 2,,2
- (1—¢2) (5(0);)— 1@7;2) Sy
> 5
_ g2 2
= OQ)B(O)P — hmB(0)
> <(1 —52)25(0)21%0 _80) ) ,

On the other hand, there exist K1 > 0 and Ko > 0 such that, for all h € (0,hg), k € N
and p € [0, Roh),

ga

P <
AR

1
Sop) = ;/0 B(ps)ds < K,

and

1
B4 (p)] < £6(p) = e/op/o B(rs)dsdr < Koh.

Now, we can apply Proposition 5.17 for z = A, there exists a constant C' > 0 such that,

for all eigenfunction ¥ associated with A,

/62€Xk(<ﬂ/h)|q;|2dp§0/ |W|2dp.
R+ R+

By letting £k — oo and using Fatou’s lemma, we get the result

/eZE‘P/h|\IJ|2dp§C’/ w2 dp.
R+ R+

O]

Proof of Theorem 1.19. Let T : L*(R?,dq) — L?(R* x R/2nZ,rdrd#d) be the unitary
operator introduced in (5.5). Then, T'(Uy, ) is the eigenfunction associated with the
eigenvalue A\, () = A (Zh,a) of the operator J#;,. From Theorem 5.14, T'(Up,,,) has

the form

1 —imb 72
T(Uhﬁm) = \/%6 \Ijh,m E 9
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where ¥y, ,, is a eigenfunction associated with the first eigenvalue Ag (th) of the oper-

ator Nh,m~ By computation, we have
21 5
/ 62€P/h|Uh7m|2 dg = / / 62850(7‘ /2)/h|T(Uh,m)’27’d7’d9
R2 0 JR+

2\ |2
_ / (250 /2)/h \I,hm<”>
R+ 7 2

rdr
= / AP dp.
R+

Applying Theorem 5.18, there exists C' > 0 and hy > 0 such that, for all h € (0, hg),

/ 62850(P)/h|\11h7m‘2dp§0/ |\Ilh,m2dp=C/ Unm|* dg
R+ R+ k2
]

Theorem 5.19. For all (¢,m,J) € (0,1) x N x N, there exist C > 0 and hg > 0 such
that, for all h € (0, hg),

€% (0], = T ) ey < C7H, (559

where (p) = /OP a2(:'-) dr is given by (5.47).
Proof. Let us fix (e,m,J) € (0,1) x N x N. We recall that kall;{m is the eigenfunction
with the eigenvalue \g(Nj ) that has order h. From Theorem 5.18, Fm\II,{’m belongs
to L2(R+). In order to prove the estimate in this theorem, we consider the sequence
(Pr)ren that is defined in the proof of Theorem 5.18. As well as in that proof, we
obtained the positive numbers M, K1, Ko and Ry such that all conditions of Proposition
5.17 are satisfied. Let us apply Proposition 5.17 for the function \Il;{m € Dom(Np ) to

get the estimate

C
e/ "] 2@y < ﬁ”eqbk/h (Nam = M) Ui 2y + CIG ol ey
< Ch/t 4+ CH\IJl{,m”LQ(R-‘r) ;
where the last inequality is obtained by (5.48).
Applying again Proposition 5.17 for the function u = \I/im — Fm\If}{’m which belongs to

Dom(Np,m), we have

C
™/ ull < (1€ (Mam — Ao(Wam)) ull + Cllul (5.60)
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Thanks to (5.48) and the inequality (5.53), we have

He%/h (Nam — 2oNim)) u‘

L2(R+)
- J J J P /hqJ
S He k/ (Nh,m — Ah,m) ‘Ilh,m’ LQ(R+) + ‘)\O(Nh,m) - Ah,m‘ He k/ \I/h,m’ L2(R+)
< CRT2 4 OB PoWam) = A + ClA0WNhm) = N (197l 2
< ChJ+2 )

Combining with Theorem 5.16 and 5.60, we get

||65Xk(§0(/’))/hu”L2(R+ < ORI+,

)
forall kK > 1. Then we let kK — +00 and use the Fatou’s lemma, we get the conclusion. [
Proof of Theorem 1.20 and Theorem 1.21. These two theorems are consequences

of Theorem 5.16 and Theorem 5.19. We fix the couple (J,m) € N x N. Let us recall
that Y, ,,, be the eigenfunction associated with Ay, (% a) and

Hmri,m = <Ti,m’ Th,m>L2(]R27dq)Th,m

is the projection of the WKB Ansatz Ti ., into the eigenspace of A\, (%} A)-

Through the unitary operator T : L?(R2?,dq) — L?(RT x R/27Z, rdrdf) introduced in
(5.5), T(Yh,m) is the eigenfunction of the operator .#;,. From Theorem 5.14, T'(Y4, )

1 —im0 T2
T(Th,m) = ﬁe \Ijh,m 5 )

in which ¥y, ,, is an eigenfunction associated with the first eigenvalue Ao(Npm) of the

has the form

operator th' By computation, we have

<Ti{,m7 Th,m>L2(R2) = <T’ri,m7 TTh,m>L2(rdrdG)

r2 r2
=k () (3))
2 2 L2(R+,rdr)

J
= \/ﬂﬁfh,rm ‘I’hvm>L2(R+,dp) '

It yields that

2 .
T (Y7 ,) = (¥ 0, \Ijhvm>L2(R+,dp) Uhom <> im0

Notice that

2
Tt ) = W () €
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By applying the result (5.52), it follows that

HTi,m - Hng,mHLZ(R{dq)
= HT(TF{,m) - T(HmTf{,m)|’L2(rdrd9)
J ,r.2 J 7"2
= V2m |V <2> - <\Ilh,m7 ‘l’h,m>L2(R+) Wh,m <2>

VT [ = (P ) ) V|

L2(R+,rdr)

L2(R+,dp)
= Vor H\Pim — quji,mHLQ(RJﬁdﬁ)
< ChJ-‘rl )

In a similar way, by applying the estimate (5.59), we have

1e=F/ ™ (X7 =TT 07 10) 2 e2.ag)
= V2 [ (W (B ) 2y ) \
= Vor
ChJ—H )

L2(RY)

ee‘ﬂ/h (\I/}{’m o Fm\:[l}{’m) ’

L2(R+)

IA
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Appendix A

Spectral Theory

In the following, we recall some elementary knowledges about spectral theory which is
often used in this thesis. The proofs of the statements in this appendix can be found
in the lecture note [50] or in [25]. Below, (H, (-, )x) denotes the Hilbert space on C
equipped with the inner product (-,-)z. We also denote by Dom(7') the domain of an

operator 1" which is a linear subspace in H.

Definition A.1 (Closed operator). Let (Dom(T"),T') be an operator on H. T is said to
be closed if its graph

is closed in H x H, where the norm on H x H is defined by

1
Iz, )l = (2l + lyl7)* -

Definition A.2 (Closure of an operator). The smallest closed extension of T is called

the closure of T, and denoted by 7.

Definition A.3 (Adjoint of an unbounded operator). Let 7' : Dom(7) — H be a

densely defined linear operator on H (i.e. Dom(T') is dense in H), we let
Dom(T*) = {u € H : Dom(T) > w — (T'w,u)y is continuous for the topology of H} .
Thus, for all u € Dom(7™), there exists unique 7*u € H such that
(Tw,u)yg = (w, T"u) g for all u € Dom(T).

We call T* the adjoint operator of T

Definition A.4. Let (Dom(7"),T) be a densely defined operator.
159



1. (Dom(T'),T) is called symmetric if T C T™.
2. (Dom(T),T) is called self-adjoint if 7" = T™*.

3. A symmetric operator is essentially self-adjoint if its closure is self-adjoint.

In the above definition, we used the relation A C B between two operators A and B. It
means that Dom(A) C Dom(B) and Au = Bu for all u € Dom(A).

Proposition A.5. If (Dom(T),T) is essentially self-adjoint operator, it has unique

self-adjoint extension.

We often use the following theorem to produce a self-adjoint operator from a continuous

and coercive sesquilinear.

Theorem A.6 (Lax-Milgram). Let (V,(-,-)v) be a Hilbert space such that V is con-
tinuously embedded and dense in H. Let Q be a sesquilinear form define on V which

18
1. Continuous : There exists a constant C > such that

|Q(u,v)| < Cllullyv||v|v for allu,v e V.

2. V-elliptic (or Coercive): There exists a constant « > such that

1Q(u,u) > al|ul|? for all u,v € V.
3. Hermitian : Q(u,v) = Q(v,u) for allu,v € V.

Then, there exists a self-adjoint operator S whose domain is
Dom(S) ={u €V : v — Q(u,v) is continuous on V for the norm of H} .

and defined by the way : for each u € Dom(S), there exists a unique element in H, we
denote it Su such that
Q(u,v) = (Su,v) g YveV.

Furthermore, L is bijective from Dom(S) onto H and Dom(S) is dense in V and in H.

Definition A.7 (Resolvent and spectrum set). Let (Dom(7),T’) be a self-adjoint oper-
ator on H. The resolvent set of T' is define by

p(T) ={z € C: (T — zI) is a bijective from Dom(7T) onto H} .
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and the complement of the resolvent set in C is called the spectrum of the operator,
denoted by Sp(T) ,

Sp(T) = C\ p(T).

And if X € p(T), the operator (T — \)~! is called a resolvent of T

When (Dom(T"),T) is a self-adjoint operator, its spectrum is classified into discrete

spectrum and essential spectrum:

Definition A.8. Let (Dom(7T),T) be a self-adjoint operator.

i) The discrete spectrum of T', denoted by Spg;s, containing elements which are iso-

lated finite multiplicity values in Sp(T’).

ii) The essential spectrum of T', denoted by Sp(T), is the complement of discrete

spectrum of T
Spess(T) = Sp(T) \ Spdis(T) :

The operator 1" will have a purely discrete spectrum if it has a compact resolvent.
There is one useful criterion to check the compactness of the resolvent through the form

domain:

Proposition A.9. Consider two Hilbert spaces (V,{-,-)y) and (H,(-,-)m) such that V
is continuously embedded and dense in H. Assume that Q is a continuous, coercive and
Hermitian sesquilinear form on V' and let S be the self-adjoint operator given by the
Theorem A.6. Let us denote by || - || the norm induced by Q, i.e. |ullg = /Q(u,u). If
Vol - llg) = (H,|| - |la) is compact, then S has compact resolvent.

Proof. Choose one element z € p(S). We need to show that
(S=2)"(H | Nlw) = (H, |- 1)

is a compact operator. To do that, we consider (S — 2)~1: (H, | - ||lg) — (H,| - ||z) as

the composition of the following operators:

- 1) 22 (Dom(S), - 11s) <2 (Vil- @) <2 (A, |- 1a1)

where ||u||s := ||ul| g +||Su| i is the graph norm equipped on Dom(S). Since S is closed,
(Dom(S), || - |ls) is a Banach space. Applying the closed graph theorem, the mapping
(S—2)7t: (H |- |lg) = (Dom(S),| - |ls) is bounded. By the definition of the norm
| - llo, we get the estimation, for all u € Dom(S)

1/2 1/2
lullo = V(8w uyr < |[Sull ) |lully)? <
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It means that the injection ¢; is bounded too. Since s is compact, the conclusion of the
proposition comes from the fact that the set of compact operators is an ideal of the set

of bounded operators. ]

Proposition A.10. Let (Dom(T),T) be a self-adjoint operator on H. For all X € p(T),

we have

~ T—XN""ullg 1
TN := sup I€ < — :
II¢ )l ety [l dist(\, Sp(T))

The above proposition leads to the useful result which is usually used to approximate

the eigenvalues of the self-adjoint operator.

Corollary A.11. Let (Dom(T),T) be a self-adjoint operator on H. For all A € C and
for all ¢ € Dom(T), we have

dist(A, Sp(T)[[¢ [l < (T = Al -
Lemma A.12. Let (Dom(T'),T) be a self-adjoint operator on H. Then
Spais(T) ={A € Sp(T) : (T — \) is a Fredholm operator} .

Theorem A.13 (Min-max principle). Let T be a self-adjoint operator was born from
Laz-Milgram theorem A.6 by a sesquilinear @ and Dom(Q) is the form domain of Q.
We define the Rayleigh quotients of the operator T

pn(T) = sup inf Q(u,2u)
Ut yestin—1 €Dom(Q) | u€span{us,..un—1}+ [[ullF
u€Dom(T)\{0}

Then the Rayleigh quotients pu,(T') is a non-decreasing sequence and one of the following
holds

i) un(T) is the n-th eigenvalue counted with multiplicity of T and the spectrum of T

in (—oo, un(T)] is discrete.

ii) pn(T) is the bottom of the essential spectrum and, for all j > n, p;(T) = pn(T).

And the consequence of the Min-Max principle which is often used is the following

Corollary A.14. Assume that there exists a € R with a < infSp.(T") and an n-

dimensional linear space V. C Dom(T') such that

(T, V)i < ally|?, for all € V.

162



Then, the n-eigenvalue \,(T) exists and satisfies

M(T)<a.

Proof. Given arbitrary ui,...,u,—1 in H. Since V is a vector space has dimension n, we

can find a non-trivial element ¢ € V Nspan{uy, ..., un_1}7. It implies that

inf Q(u72u) < Q(¢’2¢) _ <T¢7 (Z?H <a.
uespan{ui,...un—1}7  [ullF 9113 9%
u€Dom(T)\{0}

Take supremum on all class containing (n — 1) elements in H, we have
Hn < a.

Note that a < inf Sp.(7T'), apply the Min-Max principle (see Theorem A.13), it results
that p, is the n-th eigenvalue. O
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fonctions propres et les fonctions propres ap-
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namics to describe the motion of a charged
particle in a domain affected by the magnetic
field. We are interested in two classical phys-
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