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Abstract

The central topic of this thesis is the physics of strongly correlated electronic systems. The study of
such systems is motivated by the prospect of gaining a better understanding of the nature of correlated
materials, which feature some of the most fascinating phenomena of condensed matter physics and
promise a wealth of technological applications. Among these phenomena, we find exotic transport
properties including metal-insulator transitions, superconductivity, charge-, spin-, or orbital ordering,
and many more. From the perspective of theory, these materials are described as interacting quantum
many-body systems. While the basic theory is well established, an exact solution to these problems
is intractable, and in most cases simply impossible to obtain. It is for this reason, that theoretical
progress mainly relies on the study of simplified model systems. In the context of strongly correlated
materials, the most famous of these is probably the Hubbard model, a minimal lattice model that
only considers a single electron orbital per site. Despite its simplicity, it incorporates many of the
effects mentioned before. Most prominently it describes the localization of conduction electrons
when the effective Coulomb repulsion, parametrized by the Hubbard interaction U, dominates over
the kinetic energy of the electrons, thus causing a metal-insulator transition. For the description of
more realistic systems, however, a single orbital description is a crude over-simplification. In this

case, more complex multi-orbital models have to be considered, containing even richer physics.

In this thesis, we investigate the physics of multi-orbital models, especially focusing on two
aspects associated with such systems:

First, we consider the effect of enhanced orbital degeneracy and Hund’s exchange coupling —
which parametrizes the reduction of the effective on-site Coulomb interaction for electrons with
parallel spins. After giving a detailed review of the current state of the research, we focus on some of
the remaining open questions. More specifically, we investigate the influence of Hund’s exchange
coupling on the nature of the doping driven metal-insulator transition. As in the single-orbital
Hubbard model, the transition is found to be of first-order within dynamical mean-field theory, with a
coexistence region where two solutions can be stabilized. We show that in the presence of Hund’s
exchange coupling, the insulating phase is adiabatically connected to a phase of bad metal character.
Furthermore, we examine the fate of spin-spin correlations in the vicinity of the phase transition.

The second emphasis of the thesis is on the effect of inter-shell interactions. The electronic
structure of realistic systems is determined by the interplay of many different electrons of different
orbital characters. In many cases, a faithful modeling requires the consideration of more than only
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one type of orbital. An example would be the famous cuprate superconductors, where oxygen p-
states hybridize — and interact — with copper d-states. The problem is that, as soon as inter-shell
interactions are taken into account, such models become rather challenging to solve. For this reason,
such interactions are mostly neglected, and little is known about their influence on the systems under
consideration. In this thesis, we perform a detailed study of the effects of inter-shell interactions,
by considering a minimal multi-orbital model system. The results are then compared to different
approximation schemes. While common Hartree-Fock approximations perform rather well in the
metallic phase, they are found to break down at the metal-insulator transition. This motivates us to
develop a new, hybrid method, combining quantum Monte Carlo with the analytic slave rotor method,
which allows an improved description in this regime.

In the final chapter of the thesis, we leave the realm of solid-state physics, to study strong
correlations in molecules. More specifically, we construct a minimal model that captures the essence
of the spin-crossover in organometallic molecules, thus providing a better understanding of the
underlying physics. The model is then combined with input from density functional theory, to study
the spin-state switching in Ni-porphyrin molecules. In this context, we demonstrate the importance of
charge-transfer in the determination of the spin-state. Finally, we propose a spin-crossover mechanism
based on mechanical strain, which could find an application in spintronic devices.



Résumé

Le sujet central ce cette these est la physique des systemes électroniques fortement corrélés. L’ étude
de ces systemes est motivée par la perspective d’approfondir notre compréhension des matériaux
corrélés. Ceux-ci présentent certains des phénomenes les plus fascinants de la physique de la matiere
condensée, laissant ainsi entrevoir un large éventail d’applications techniques. Parmi ces phénomenes,
on citera des propriétés de transport exotiques, telles que les transitions métal/isolant, la supraconduc-
tivité, 1’ordre de charge, de spin ou des degrés de liberté orbitalaires... Du point de vue théorique, on
modélise ces matériaux par des systeémes quantiques en interaction. Bien que la théorie fondamentale
de ces systeémes soit bien connue, une solution exacte des problémes quantiques est tres difficile,
voire, la plupart du temps, impossible a obtenir. C’est pour cette raison que le progres théorique
s’appuie sur I’étude de systémes modeles plus simples. Dans le contexte des matériaux fortement
corrélés, c’est probablement le modele de Hubbard qui est le plus connu. Il s’agit d’'un modele
minimal sur réseau discrétisé et constitué d’une seule orbitale électronique. Malgré sa simplicité, ce
modele contient beaucoup des effets cités ci-avant. Il est notamment connu pour rendre compte de
la localisation des électrons de conduction, lorsque la répulsion effective de Coulomb, paramétrisée
par I’interaction de Hubbard “U”, domine 1’énergie cinétique des électrons, entrainant ainsi une
transition métal/isolant. Cependant, pour la plupart des systeémes réels, la description via des modeles
ne contenant qu’une seule orbitale électronique est une simplification trop abrupte. Dans ce cas,
il faut considérer des modeles multi-orbitalaires, qui peuvent rendre compte d’une physique plus riche.

Dans cette these, nous étudions la physique des modeles multi-orbitalaires, en nous concentrant
particulierement sur deux aspects importants associés a ces systémes :

Premiérement, nous considérons I’effet de I’augmentation de la dégénérescence orbitalaire, et
du couplage d’échange de Hund. Ce dernier paramétrise la réduction de 1’interaction de Coulomb
effective entre électrons sur le méme site et de spins parallelles. Apres une revue détaillée de
I’état actuel de la recherche, nous nous concentrons sur quelques questions encore ouvertes. Plus
particulierement, nous étudions I’influence du couplage d’échange de Hund sur la nature de la
transition de métal/isolant stimulée par le dopage du systeéme. Ainsi que pour le modele de Hubbard a
une seule orbitale, nous trouvons que la transition est du premier ordre selon la théorie du champ moyen
dynamique (DMFT), avec une région de coexistence ou deux solutions peuvent étre stabilisées. Nous

démontrons qu’en présence du couplage d’échange de Hund, la phase isolante est adiabatiquement
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connectée a une phase de caractere “mauvais métal”. De plus, nous étudions le sort des corrélations
entre spins a proximité de la transition de phase.

Le deuxieme accent de cette thése est mis sur I’effet des interactions inter-couches. La structure
électronique des systemes réel est déterminée par I’interaction des électrons de couches orbitalaires
différentes. Donc souvent, une description fidele de la physique exige de considérer plus d’une
orbitale. Un exemple serait le cas des célebres supraconducteurs cuprates, ou la physique dépend
crucialement de I’hyrbidisation et interaction entre orbitales de type d des atomes de cuivre et celles
de type p des atomes d’oxygene. Malheureusement, I’inclusion des interactions inter-couches rend
le probleme encore plus difficile & résoudre. C’est pour cette raison que la plupart du temps, ces
interactions sont ignorées, et on sait peu de choses de leur influence sur les systémes physiques. Dans
cette theése, nous étudions I’effet des interactions inter-couches, en considérant un modele multi-orbital
minimaliste. Alors que les approximations de type Hartree-Fock fournissent des résultats satisfaisants
dans le cas d’un remplissage incommensurable, ils donnent des résultats peu fiables dans les autres
régimes, surtout autour de la transition de phase métal/isolant. Cela nous conduit & proposer une
nouvelle méthode hybride, qui est une combinaison entre une approche de Monte-Carlo et la méthode
des “rotateurs esclaves”, cette derniere étant une technique analytique. La nouvelle méthode est
ensuite évaluée dans plusieurs régimes de parametres, et fournit des résultats prometteurs.

Dans le dernier chapitre de cette theése, nous quittons le domaine de la physique des solides pour
étudier I’effet des fortes corrélations dans les molécules. Plus particulierement, nous construisons
un modele minimaliste qui reprend 1’essence de la transition de spin dans des molécules organo-
métalliques, permettant ainsi de mieux comprendre la physique sous-jacente. Ensuite, le modele
est appliqué avec des parametres extraits de la théorie de la fonctionnelle de la densité (DFT), pour
étudier le changement d’état de spin dans des molécules de porphyrine de nickel. Dans ce contexte,
nous démontrons I’'importance du transfert de charge pour déterminer 1’état de spin. Finalement, nous
proposons un mécanisme de “spin-crossover”, induit par la tension mécanique, qui pourrait trouver

une application dans des appareils spintroniques.
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Chapter 1

The Electronic Quantum Many-Body
Problem

1.1 Many-body physics

Traditionally, physics is associated with the quest for the fundamental, microscopic laws of nature.
To this day, this aspect of the subject attracts most of the public attention, and probably remains the
driving motivation for the youth to consider this subject at university. Indeed, the past progress is
impressive. From the demystification of planetary motion, to the understanding of the fundamentals of
chemistry, we are now at a point where we consider only three fundamental theories. The Dirac- and
Yang-Mills theories of fermions and bosons, respectively, interwoven in the framework of quantum
field theories, offer a precise description of (so far) any experimentally accessible microscopic physical
phenomenon. On the other hand, the theory of general relativity successfully describes the fabrics
of space-time on a macroscopic level. Beyond these, countless theories emerged in the pursuit of
unification; experimental confirmation for any of those, however, still seems beyond the horizon.
The philosophy of many body physics is a very different one. Here, we are interested in the
description and understanding of “emerging phenomena”; that means, complex phenomena, that
arise from the interaction of many particles — usually of the order ~ 6 x 1023, In contrast to the
picture outlined above, this approach is rather reductionist. For the description of most of the systems
surrounding us, starting from the most fundamental theories is neither important, nor practical — what
is the value of an equation if you cannot solve it? To obtain a quantitative description of all the
phenomena of condensed matter theory and chemistry, it is in fact sufficient to consider only the
electrostatic interaction between electrons an nuclei, ignoring the inner structure of the latter ones.

More specifically, the physics of most solid-state systems, gases and liquids is well described by the
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Schrodinger equation[140], considering the following Hamiltonian

H = T}’lllC + Te —"_ Ve—e + Ve—nuc —"_ Vnuc—nuc

N, N,
o nuci ) h ’
= Loy, VK iZiZmV (1.1)
i Ne nuc Nnu( i
_|_
47580 lzljzl|rz j 121]21|r1 1:1; Ri— R|

Here, i = h/(27) is the reduced Planck constant, e is the electron charge, & is the vacuum electric
permittivity and r;, R; are the position of the electrons and nuclei, respectively. The two kinetic terms
T and T, correspond to the movement of the atomic cores of mass M; and the electrons of mass m;,
respectively. The potential energy is composed of the repulsive interactions among the electrons (V,—_,)
and between different nuclei of charge Z;/Z; (Vjuc—nuc). as well as the attractive interaction between
electrons and nuclei of charge Z; (V,— ). The one-body part of this Hamiltonian' can be derived by
considering the non-relativistic limit of the Dirac equation[42]; when expanding the equation up to
order 1/c?, one also gets a spin-orbit coupling term (among others), which couples the electron spin
to the magnetic moment induced by the angular momentum of the electron. Throughout this thesis we
will, however, ignore such terms.

Despite its conceptual simplicity, the many body Hamiltonian (1.1) remains a challenge to theorists.
This is the famous many body problem. If the number of atoms in a typical macroscopic systems is
~ 6 x 1073, the number of electrons will usually be even an order of magnitude larger (which, at this
point does not make any difference), so an exact diagonalization of the corresponding Hamiltonian
matrix is out of question. Even small systems are hard to tackle; with some exceptions, such as the
hydrogen atom, no analytic solution can be obtained, and one thus relies on approximations and/or
numerical methods.

A standard approximation that is applied to Hamiltonian (1.1) is the so-called Born-Oppenheimer
approximation [27]. It is based on the significant difference of mass between the electrons and the
nuclei, which implies that the dynamics of the two can be effectively decoupled. From the electron’s
point of view, the much heavier nuclei appear fixed, only contributing a static potential. Applying this
approximation, our Hamiltonian simplifies substantially

H= Te + Ve—e + Ve—nuc

N, h j Ne Nuue (12)
- i:12’”l 471?8 ,Z{jzﬂ’"z rjl ,Z{]_leh

Despite this simplification, the problem is, in general, still too hard to solve. Over the course
of the decades, however, a rich set of techniques was developed to find approximate solutions to
the problem. Most notably are the Hartree-Fock method[68], as well as density functional theory

I'The two-body Coulomb interaction is obtained by considering coupling via photonic exchange.
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(DFT)[76, 89]. The Hartree-Fock method approximates the eigenstates of the many-body system
by an antisymmetrized product of single-particle states — the Slater determinant. DFT, on the other
hand, is based on the fact[76] that the ground-state properties of any system can be described as a
functional of the electron density only. It is not hard to see, that this is a great simplification: For a
mole of carbon atoms with ~ 7.2 x 10** electrons, DFT reduces the dimensionality of the problem
from ~ 2.2 x 10?> down to 3.

Despite their success, both techniques have some drawbacks. While in principle DFT provides the
exact ground state of a system, it does not give any information about the corresponding excitation
spectrum. Furthermore, in order to calculate the exact ground-state from DFT, one would need to know
the exact exchange-correlation potential which is, in general, not known. In practice, approximations
like the local density approximation (LDA)[89] or the generalized gradient approximation (GGA)[100]
have to be considered; however, within these approximations, electronic correlations are taken into
account only to a limited extent. The latter deficiency is even more severe for the Hartree-Fock method,
which completely neglects Coulomb correlations. This is especially problematic when considering
strongly correlated systems.

1.2 Strongly correlated electron systems

Casually speaking, systems with strong electronic correlations are systems, in which the dynamics
of each electron is strongly influenced by those of the other electrons. Considering the form of the
many-body Hamiltonian (1.2) introduced in the last section, one would therefore assume that any
system with a sufficient density of atoms should be strongly correlated, due to the long-range character
of the Coulomb force. It might come as a surprise, however, this is not the case, as we shall elaborate
with two examples.

In compounds, where bonding is of ionic character, such as for instance in NaCl, the electrons are
tightly confined to the proximity of the nuclei. Corresponding solid state systems are typically band
insulators, exhibiting weak electronic correlations.

On the other side of the spectrum, there are metals like for instance aluminum, in which the long-
range Coulomb interaction is effectively screened by the conduction electrons. At low temperatures,
most metals can be effectively described by Landau’s Fermi liquid theory[99, 98]. Fermi liquid
theory is based on the assumption that, upon “slowly turning on” interactions between electrons, the
original, non-interacting ground state adiabatically transforms into the ground state of the interacting
system. Instead of considering the original, bare electrons, one is then working with complex linear
combinations of those — the so-called quasi particles (see Fig. 1.1 for an illustration). They have
the same momentum, charge and spin as the original electrons; their dynamic properties, however,
such as their mass and magnetic moment, are renormalized by the interactions. While quasi-particle
excitations generally decay after a certain time, their lifetime diverges quadratically close to the Fermi
level, such that in this vicinity they behave as long-lived particles. The long quasi particle lifetime goes

along with a well defined energy-momentum relation. In this sense, such a picture is consistent with
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Fig. 1.1 The quasi particle concept, as illustrated by R. D. Mattuck [111].

band-theory — a single-particle theory — which states that the single-particle momentum in a periodic
lattice system is a good quantum number, with the corresponding eigenstates forming extended bands.

Already in the early days of solid-state physics, however, it was realized that for certain classes of
materials, electronic band theory fails to provide an accurate description. The prototypical example
is the case of NiO; a transition metal oxide (TMO) which, according to band theory, should be a
metal due to the partially filled d-shell of the Nickel atoms. Yet experimentally, this compound was
found to be an insulator[37], with an antiferromagnetic ground state. It didn’t take long, until an
explanation was found[118], claiming that it was the large effective Coulomb interaction between
electrons on different atomic sites, that prevents any itinerancy. This is an example of strong electronic
correlations; the behavior of any single electron is strongly influenced by that of all other electrons.

Since the discovery of such “Mott insulating materials”, a wealth of other phenomena associ-
ated with strong correlations were found. Aside from metal insulator transitions and other exotic
transport properties — as for instance corresponding to bad metallic states — they include satellite
features in spectroscopic measurements, charge-, spin -, and orbital ordering and, most prominently,
unconventional superconductivity.

Apart from the fascinating effects emerging in strongly correlated systems, they pose a major
challenge to theory. Since all standard band-theory type approaches fail, the motivation to describe
these systems sparked many new developments, such as simple, effective models to describe the
relevant physics, and new methods to tackle certain many-body Hamiltonians.

1.3 The tight binding approximation and the Hubbard Model

In weakly correlated metals, such as the above-mentioned aluminum, the valence electrons are strongly
delocalized, and the corresponding wave functions rather resemble Bloch waves than atomic orbitals.
On the other hand, a description in terms of free electrons is not well adapted for systems like ionic
crystals or materials with covalent bonds.
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In the latter case, it is often useful to consider a picture, in which the system’s Hamiltonian is
spanned by localized, atomic orbitals, the overlap of which allows “hopping” of electrons. This is the
so-called tight-binding method, a simple, yet useful technique to approach the electronic structure of
solid-state systems (for an extensive and detailed introduction, consider [53]).

The notion of “tight binding model” usually refers to non-interacting lattice models. In this sense,
the electron-electron interaction V,_, in (1.2) is ignored, and the tight binding Hamiltonian might be
conveniently written in second quantization

Hprp=— Z tij,mm’cjmgcjm’c + Z emc;fmccimg , (1.3)
i#j,mm' c imo

where i, j are the site indices and m,m’ those of the local orbitals |),,). The hopping amplitude
corresponds to the matrix element #; = — (Ximo | Te + Ve—nue| X, jm/c) (the sign is a matter of conven-
tion); the second parameter &,, correspond to the bare atomic energy levels (Ximes |To + Ve—nuc|Ximo )-
Using an infinite number of local atomic orbitals, the tight binding Hamiltonian (1.3) is a faithful
representation of the one-body Hamiltonian H = T, + V,_ .. In practice, however, it is necessary to

truncate the Hilbert space in order to perform calculations.
While the tight binding model (1.3) describes a one-body theory, it can be easily extended to
incorporate many-body effects. To this means, we introduce an additional term, that accounts for the

Coulomb interaction

_ t + 1 ikt
H=— Z Lijmm' CimoCim'c + Z EmCiypgCimo + 5 Z me/nn/Cimgcjncfcln’c’ckm’o . (1.4)
i j,mm'c imo ijkl
mm'nn’
oo’

Here, we introduced the Coulomb matrix, defined as

ijkl - _
me’nn’ = <Ximd%jnc’|Ve—e’ka’6Xln/c’>

o (1.5)
— [ a7 Lo 1 = R (= RW (1 = ') 2 (6 = R (1~ Re)

where W (|r —r’|) is the screened Coulomb potential®. Despite its simple form, there is still no hope
for tackling Hamiltonian (1.4) without the application of some major simplifications:

 In most cases, a qualitative - or even quantitative description of the relevant physics can already

be obtained from a drastically reduced set of local basis functions.

2In momentum space, the screened Coulomb potential may be defined as W (q) = V (q)e ! (q), where V(q) and &(q)
are the bare Coulomb interaction and the dielectric function in momentum space; q is the momentum. Note that is a
simplification; more precisely, one would have to consider the partially screened Coulomb potential that does not take
into screening from the electrons in the energy range covered by the model (1.4). In the context of deriving low energy
models for realistic materials calculations, the partially screened Coulomb potential might be calculated using techniques
like cRPA[9].



8 The Electronic Quantum Many-Body Problem

¢ Usually, Coulomb matrix elements connecting more than two different orbitals are small;

therefore only elements of the type V,u/mm OF Vipyimm are considered.

* The Coulomb interaction between electrons from neighboring sites is usually much weaker
than onsite interactions. On one hand, this is due to the rapid decay of orbital wave functions;
on the other hand, it is because of the rapid decay of the Coulomb interaction due to screening’
W(r) ~ e " /r. For these reasons, often only the onsite terms

Unm'nw = 6ij6jk5klvijkl (1.7)

mm'nn’
are kept.

Considering the most simple case of a single orbital per site, these approximations lead us to the
(in)famous Hubbard model [79]

H=- Z tijC:Gng + SOZC,-TGCI'G + UZCITTCLC,'LCL'T . (1.8)
i#jo io i

This is the prototypical model for strongly correlated systems. Despite its simplicity, it incorporates
many of the phenomena that arise from strong electronic correlations. It is able to predict the
localization of electrons in certain systems which, according to band theory, should be metallic, as in
the case of NiO mentioned above. Furthermore, it received increased interest in the context of the
cuprate high-temperature superconductors, following argumentations [4] that this simple model might
already incorporate the relevant physics of these systems.

Beside pure model considerations, multi-orbital versions of the Hubbard model enjoy increasing
popularity in the context of ab-initio calculations. In this sense, the model can be applied together
with first principles methods like DFT: The latter technique is used to obtain an “uncorrelated” band
structure, which is then fitted to an appropriate one- or multi-orbital tight binding model, that captures
the relevant features close to the Fermi level. A Hubbard-like interaction is introduced to account for
the Coulomb interaction®, and the model is then solved within one of the various techniques available
(as discussed in the following). Such approaches involve some subtleties, such as the problem of the
“double counting” of correlations that were already considered by DFT. However, they allow to retain
accurate results and spectral properties even for systems with strong electronic correlations.

3Within the linearized Thomas-Fermi theory (see [62] for a pedagogic introduction), the dielectric function is e(q) =
2
1+ % with the Thomas-Fermi wave vector k. This would result in a screened potential of Yukawa form

2
w e —kg|r|
T — $ B 1.6
(| |) 471'80|I‘|€ (1.6)

with e being the electron charge and &j the vacuum permittivity.
4The evaluation of the effective Hubbard interaction is actually far from trivial, and various techniques — most notably
the cRPA [9, 114, 122, 115] — have been developed to achieve this in a consistent manner.
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Fig. 1.2 Sketch of the Hubbard model.

1.4 Dynamical mean-field theory

Shortly after the introduction of the Hubbard model, is was shown that an exact solution can be
obtained for the one-band case in one dimension[106]. For most applications in solid-state theory,
however, one is interested in higher dimensional cases. Here, no analytic solution can be obtained,
and even numeric approaches prove difficult, as can be anticipated for instance by considering the
option of exact diagonalization. For the 2-dimensional Hubbard model, truncating the (otherwise
infinite) lattice to a grid of 2 x 2 sites yields a Hamiltonian matrix is of rank 256; however, for a 3 x 3
grid this size increases to ~ 2.6 x 10° and for 4 x 4 the rank is ~ 4.3 x 10°. Even though there exist
efficient algorithms to find the dominant eigenvalues (such as the Lanczos algorithm [97]), it is clear
that other routes have to be considered.

Standard perturbation theory might work well in the limiting cases of weak interaction U, as well
as close to the atomic limit. However, such perturbative approaches will fail in the strongly correlated
intermediate regime, relevant for many interesting materials. Various re-summation schemes have
been developed to overcome these shortcomings, but their validity is often limited; usually, they only
become exact in “exotic” limits such as infinite spin degeneracy (the non-crossing approximation
[96]).

A different approach is provided by dynamical mean-field theory[55] (DMFT). The following
discussion is inspired by the review of the inventors of this technique [57], which we recommend for
a more detailed study.
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1.4.1 Weiss mean-field theory

As the name indicates, the basic idea of DMFT is rooted in the well-known Weiss mean-field theory
(MFT). The idea of Weiss MFT is best illustrated by considering the Ising model, a model of classical
spins on a periodic lattice, defined by

H=-JY SiS;—h)_S;. (1.9)
(i) i

Here, the first sum runs only over neighboring spins S; € {—1/2,1/2} and h is an external field. The

mean-field theory is then introduced by applying the approximating S;S; = ((S;) +AS;)((S;) +AS;) ~

(Si) (S;) + (Si) AS; + AS; (S;). where AS; = S; — (S;). This makes the original Hamiltonian split into

identical, independent and local mean-field Hamiltonians of the form

H"E = —h, S, (1.10)

with the Weiss field herp = h+ Y0/ <S j>, and where we dropped any constant terms. Applying this
mean-field approximation, the partition function is approximated by its saddle-point contribution only.
To see this explicitly, one might introduce bosonic fields ¢;; to decouple the Ising spins

H=):(Si+sj)¢ij+%2¢,§—h2_si. (1.11)
(ij) (i) i

The mean-field solution now follows from extremizing the corresponding action with respect to a

constant field ¢;;, which yields 2¢;; = J (S; + ), leading to (1.10).

The interesting thing about mean-field theory is that it becomes exact in the limit of infinite
coordination. This can be seen rather intuitively from the decoupled expression (1.11). Increasing the
lattice coordination Z, which quantifies the number of nearest neighbors around each site. In order to
keep the kinetic energy finite, the coupling J thus has to be rescaled as

==, 1.12
I== (1.12)

where J* is kept constant.
Considering Eq. (1.11), one can then show that the Boltzmann weight of fluctuations around the
mean-field solution A¢;; = ¢;; — @;; is

z 2
Pwexp{—FZA(})ij}, (1.13)
(i)
and thus vanishes as Z — oo.
In its spirit, DMFT is closely related to Weiss mean-field theory. However, it goes beyond its
classical counterpart by taking into account quantum fluctuations. DMFT is designed to provide an
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approximation to general Hubbard-type models (1.4) with local interactions (1.7). For the sake of
simplicity, however, we illustrate its functioning by considering the simple one-orbital Hubbard model

Ztl}czccjo' u Zc,ocw + UZHITIM . (1.14)
(ij)

which is equivalent to (1.8) with & =0, ng = cheo and nearest-neighbor hoppings only. Dynamical
mean-field theory approximates the physics of this Hamiltonian by an effective action which, in
imaginary time formalism, reads

Serf=— // drdt’ Zc (t— 1o (T +U/drn¢ T)n (7). (1.15)

As before, this action is local in space. The crucial difference, however, is that the constant Weiss
field A,y of classical MFT was exchanged by a dynamic quantity %—1, effectively taking into account
quantum fluctuations. Before we proceed to define the equations that determine this dynamic Weiss
field, it is instructive and interesting to consider the approximations necessary to arrive at the effective
action (1.15).

1.4.2 Scaling in infinite dimensions

As classical mean-field theory, DMFT becomes exact in the limit of infinite lattice coordination. In
order to demonstrate this, we first need to establish some basic relations concerning the scaling of the
Hubbard model parameters and Green’s functions in this limit.

The imaginary time lattice Green’s function is defined as

Gy () = = (Te()e}(0) ) - (1.16)

it describes the amplitude of an electron being created at site j at T = 0, and being annihilated at
(1,7). With the above definition, G;;j(t=07) = <CTC1> corresponds to the hopping amplitude of an
electron from site i to site j. Since the Hubbard model (1.14) conserves the total particle number,
electrons cannot be destroyed, but can only “hop” from one place to another. In this sense, summing
the probabilities of an electron to hop from site 0 to any other site should yield unity

Y 1Goj(z=07)P=1. (1.17)
J

This simple argument can be used to evaluate the dimensional scaling of the Green’s function. Even
if we increase the dimension, the cumulative hopping probability (1.17) must remain equal to one.
Thus, since }. ;) = Z = 2d (for a square lattice), we can deduce that

Goj(7) ~ (1.18)

A
A
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In this spirit, one could argue that the electron propagation from site i to any other site j involves at
least ||i — j||; hopping processes (where || - || is the Manhattan metric), and should therefore scale as
~ (1/y/Z)~lli=illi | For a more detailed discussion, see [154, 112].
On the other hand, the kinetic energy of the model is given by

Exn=—1Y (cl¢;) - (1.19)
(i)
When increasing the dimension of the system, the hopping parameter ¢ has to be rescaled, since

otherwise the kinetic energy largely dominates over the interaction energy and the model becomes
trivial. From the scaling of the Green’s function (1.18), it is easy to deduce that ¢ should scale as

VZ'

in order to keep F};, of the same order of magnitude, i.e. finite. Here, t* refers to the bare, unscaled

r—

(1.20)

parameter. An alternative derivation considers the central limit theorem, and can be found in [57, 13].

1.4.3 The cavity construction

To derive the DMFT effective action, it is useful to work with a functional integral formalism. In this
language, the Hubbard model (1.14) can be written as

S= ./ﬁ dt 2 Clo (1) (9:8;; — L — 1)) o (T) + U./dTZniT('r)nii(T) , (1.21)

where we implicitly assume that the operators cz,,c(y are replaced by Grassmann variables.
The goal is now to construct an effective action S, [cg > Coc) for a single lattice site, which we
label by the index 0. Formally, this corresponds to

1 Sl s
R e / Del Deige™ . (1.22)
Zef f L;lé_()[G

Following the derivation in [57], we will split the action S into three contributions
S=S0+5Y +As, (1.23)

where Sy is the part from the impurity only

S()—/ dTZCOG )C()g +U/dTI’l0T )I’l()i( ) (1.24)
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-

Fig. 1.3 Sketch of the cavity construction. The left site represents the Hubbard model without the
impurity and the corresponding hopping terms; the middle and right parts consider hopping to the
impurity and the impurity itself. Nearest neighbors of the impurity are colored in red; note that
propagation from one of these to another includes at least two hopping processes.

SO considers the rest of the lattice, excluding the impurity and any hopping to it

0)—/ dt

and AS contains the hopping parts connecting the impurity with the rest of the lattice

Yl (1) (9 — )& —tij) cjo (7 +U/d7:2n,¢(r)n,¢(f), (1.25)

(ij 7&00' i#0

/ dr ). 630 )toj'cjc(f)+c'}c(f)t,-oco(;(r)) : (1.26)
0]>G

Then, the right side of (1.22) can be expanded in AS

~ /HDC Dcio (1—AS+2(AS) >e—5<‘” :es“¥ <1—<AS>+%<(AS)2>—...> ,

i#00
(1.27)

where the average values are taken with respect to the cavity action $(°). Since we are working with
fermionic systems, only contributions with equal numbers of cj 40 and c; 2o Grassmann variables will
yield non-vanishing expectation values, such that we can discard the first, third, fifth, etc. order terms
in the expansion.

Now let us have a closer look at the second and fourth order terms. The contribution quadratic in
AS reads

p
— || arde’ Lel(@eoa(®) ¥ tsto(cla(e)ejole)
0 o (03).{0J)

B
— [ awa Ejo@ann(v) ¥ G- 7).
0 c

(00),(0j)

N =
T~

(1.28)
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where the prefactor 1/2 is canceled by the two different non-vanishing contributions from squaring
AS. As we increase the dimension of the system, the number of elements in the second sum increases
as ~ d? (since we sum over all nearest neighbors twice). On the other hand, fy;tio ~ 1 /d and
GS.(O)) ~ (1/v/d)lli=illv ~ 1/d, since propagation from one nearest neighbor to another involves at least
two hopping processes, such that || j —i||; > 2 (see Fig. 1.3). This means, that the overall dimensional
scaling of the second order contribution is ~ ¢'(1), and therefore survives the limit d — co.

The fourth order terms consist of two contributions. On one hand, we have the disconnected terms

1 4-3 B
l {(AS)*) = o ///0 dzdt’ dt"dt” ;/cgc(r)c()a(r’)cgc,(’L’”)c(,c,/,,(r”’)
Lt (el (@)eso(®)) (el (Mera(e) 129)

ijkl

2
-3 ( J[ e Lebo@ero(®) T oGy (e~ r/)) ,
(0i),(0,)
where, for simplicity we set #;; = tJ;;;) and the indices i, j, k, run over all nearest neighbors of the
impurity. The prefactor of 4 -3 corresponds to the number of different combinations for combining
two operators. In the last line, it becomes clear that this corresponds just to the second order term to
the power of two; therefore it has the same scaling.

The connected contribution, on the other hand, is characterized by a different dimensional
scaling. This can be seen as the following. As for the disconnected diagrams, the four summations
over the nearest neighbors will scale as ~ d*, and the hopping parameters give t* ~ 1/d>. The
connected two-particle Green’s function GS?,B,(‘L', 7,7, 7"), however, will scale as ~ (1/+v/d)!l=Jlli x
(1/ \/E)Ih_k‘ll x (1/v/d )”i it since additional propagator lines are needed to connect the diagram.
Again, ||i — j||1 > 2 (equally for k,1), such that the net scaling is ~ 1/d.

Likewise, it can be shown, that all connected diagrams of higher order vanish in the limit d — oo.

Re-summing the remaining connected diagrams, one therefore arrives at the effective action

B
Seff:so—// ddt’ Y i (Deoo(t) Y 100G (z— 7). (1.30)
0 ° (00) (0)

This gives us an explicit expression for the DMFT Weiss function, which, transformed to Matsubara
space, reads
Gylio)=iotp— Y, ton,Gy (i) = io+ 1 —Alio) , (131)
(i0),(0)
where we introduced the hybridization function A(i®). This is a remarkable result. It means, that in
the limit of infinite dimensions, all local quantities — such as local propagators, susceptibilities etc. —
are exactly defined by the local action (1.30).
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The effective action (1.30) has a simple interpretation (see [55]) in the form of an Anderson

impurity model [3], defined by

H=-uY chco+Unny+ Y (Vichbio +h.c)+ Y &b bio . (1.32)
o ko ko

where k labels the infinite number of bath sites of energy 8,?; Vi parametrizes the strength of the
hybridization with the impurity. In this sense, the hybridization function emerges from integrating out
the bath sites

A%
. b *
io— gl

Aliw) =Y (1.33)
k

1.4.4 DMFT self consistency equations

Expression (1.30) still includes Green’s functions from the cavity action 5, which are awkward to
handle. Upon expanding the Green’s function in 7;; (see [57]), one can, however, relate it to the full

Green’s function

© _ ~ _ GioGoj
Gy =G~ =G (1.34)
The Green’s function itself can be expressed via the self energy X
e—i(r,-—rj)-k
G.. 'a) — , 1.35
(i) g’i(oqtu—e(k)—z(ia),k) (1.39)
which in the limit d — o becomes local[120]

d—roo

as can be demonstrated with similar arguments as the ones used for the derivation of the Weiss field
(see [57] for more details).
Putting everything together by plugging (1.34) into (1.31), one finally arrives as

1

-1
io+u—ek) —Z(ia))> = X(iw) + Gy (i) . (1.37)

g (io) = X(io) + <¥'

Despite being local, the Weiss field %‘1 (i) takes into account the structure of the lattice, which is
encoded in the lattice dispersion £(k).
This leads to a self-consistency scheme.
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Fig. 1.4 DMFT spectral functions 7DA(®) at zero temperature, for different interaction strengths.
The DMFT equations were solved within the iterated perturbation theory approximation[55].

1. Starting from an initial guess for the Weiss function %foll 4(i®), we can calculate the local
Green’s function
Groc (i®) = Goo (i) (1.38)
from the effective action (1.30).

2. Using the Dyson equation (1.37), we can calculate the self energy

r(io) =9, . (i0) -G, Lio) . (1.39)

3. This self energy is then used to create a new Weiss field

-1
Gy (i0) = E(iw) + (% P e:k) — (iw)> : (1.40)

which takes into account the structure of the lattice via £(k). This Weiss field is then used to

construct a new effective action, and the process starts over again, until convergence.

In the limit of infinite dimensions, the effective action (1.30) yields the exact local Green’s function,
and the scheme will, therefore, converge to the exact solution.

All the considerations that flow into to the derivation of dynamical mean-field theory are non-
perturbative. The scheme, therefore, remains valid independently of the interaction strength U. This
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non-perturbative character makes it possible to study phenomena in all regimes of the phase diagram.
Most prominently, it is able to capture the Mott metal insulator transition. This can be seen in Fig.
1.4, which shows the spectral function of the infinite dimensional single-orbital Hubbard model on
the Bethe lattice with half bandwidth D at zero temperature. The DMFT equations were solved
within the iterated perturbation theory approximation. As it can be seen from the upper panels with
U/D=1,2,2.5,3, it gives the expected results in the weakly- and strongly-correlated metallic phase,
describing the formation of a Kondo peak (U /D = 3), which finally disappears in the insulating phase
(U/D = 4). In Hubbard-like systems with finite connectivity Z, the DMFT results will deviate from
the exact solution of the corresponding model. Independently of the connectivity (or dimension),
however, we retain the correct results in the non-interacting, as well as in the atomic limit, as can be
easily checked.

The formalism, as presented above, was derived for paramagnetic systems. However, the theory
can be extended to systems with long-range order [58, 57] or superconductivity [56, 57].

Finally, the success of dynamical mean-field theory is strongly related to the availability of
efficient solvers for the corresponding effective many-body problem. The action (1.30) still describes
an interacting, highly non-trivial problem. However, lots of analytic and numeric techniques have
been developed to treat the Anderson impurity model[55, 64, 50, 166].






Chapter 2

Slave Particle Techniques

2.1 The need for light-weight techniques

The last decades have seen enormous progress in the theoretical treatment of strongly correlated
electron systems. On one hand, these advances can be attributed to the development of methods
like the dynamical mean-field theory[57] (which we already discussed in a previous chapter) and
its numerous extensions[75, 24, 150, 12], density-matrix renormalization group methods[164, 138],
quantum Monte Carlo methods[149, 151, 165], self-energy functional theory[134], etc. On the other
hand there has been a major improvement on the computational side, with the development of powerful
impurity solvers and effective algorithms.

However impressive these new methods are, they come along with an ever increasing demand for
computational resources and a surplus of complexity rendering calculations rather costly.

It is for this reason, that light-weight analytic methods are of special interest: First of all, they provide
an effective way to scan the high dimensional phase space spanned by the multiple parameters of
various models. Apart from that, and maybe even more importantly, they often allow for a more
intuitive way of understanding the underlying physics . Finally, they can be used in combination with
other methods, like quantum Monte Carlo, either as an approximation to decrease the computational
cost, or to consider effects that are, otherwise, hard to tackle numerically.

2.2 Auxiliary particle techniques - an overview

This section is supposed to provide a short overview over the most important auxiliary particle
techniques, with the aim of allowing for a direct comparison.
2.2.1 Schwinger bosons

Historically, the idea of replacing fermionic operators with auxiliary variables comes from the study

of spin systems[23]. Indeed, it is straight forward to show that one can recover the original spectrum
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of a SU(2) spin Hamiltonian by replacing the components of the spin operator S by combinations

of two bosonic operators [a,a’] = 1 and [b,b"] = 1 that respect the spin algebra. This is done by
replacing
St=d'b 2.1)
S =b'a (2.2)
1
§° = 5(aﬁa —b'b), (2.3)

with the constraint
ala+b'h=2S, (2.4

which is commonly treated by using Lagrange multipliers. The ladder operators are constructed
according to the standard definition S* = §* £iS”.

An introduction to the subject considering an application to the Heisenberg model can be found in
[10].

2.2.2 Slave bosons I - The infinite U Anderson model

In the context of strongly correlated electron systems, auxiliary-boson or “slave-boson” methods were
originally proposed for the infinite-U Anderson model[16, 32]. Such a model can e.g. be motivated by
considering the mixed-valence problem. In a mixed-valence crystal, the rare-earth ions on each lattice
site can exist in two or more valence states, and the f-electrons hybridize with an extended band of

free conduction (bath) electrons. Considering only a single correlated lattice site, this leads us to

H = Hy + Hpaqp + Hpyp (2.5)
where
Hy = ; erfofo 2.6)
describes the valence f electrons,
Hparn = Y &} ko 2.7)

ko
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f’4’
7/

7/

Fig. 2.1 Diagrammatic representation of the slave boson method in the infinite U Anderson model.
Graphic inspired by [33].

describes the free conduction electrons' and

Hipy = ¥ (VecloPofo + ec.) (2.8)
ko
describes the hybridization term. The purpose of the operator P is to project onto states with no
f-electrons, reminiscent of the U — oo limit, in which no double occupancy survives. The physical
signification becomes even clearer when explicitly writing the combination Py fs = |0)(c| = X5,
where we introduced the Hubbard operator X;. When attempting to solve Hamiltonian (2.5), one is
confronted with the problem that there is no Wick’s theorem for the Hubbard operators Xo/XE, s0
conventional quantum-field theory techniques will not be applicable.
A solution to this problem has been proposed by Coleman [32], who suggested that the unoccupied
f-level state £ could be reinterpreted as a bosonic state with the corresponding energy. In this sense,
the model would be re-formulated as

H = Y eicfgcio+ ¥ (Veclofob +hc.) + & Y 11+ 2 (): fife+b'b— Q) .9
ko ko o o

The last term includes a Lagrange multiplier A and was introduced to ensure that the overall occupation
of f-electrons plus bosons is one. Setting Q = 1, it ensures that there is no boson as long as the f-level
occupation is one, and exactly one boson when the f-level is empty. Hence, such approaches are
known as slave boson techniques, since the behavior of the auxiliary boson is dictated by its electronic
“master”.

Note that

0=Y fifs+b'b (2.10)

is a conserved quantity [H,Q] = 0; for this reason, it is sufficient to consider a static Lagrange
multiplier A(7) = A. This is a feature of all slave-particle theories, and will be discussed in more

INote that throughout most of this thesis, conduction/bath electrons will be denoted with the letter “b”. Here, we use the
label “c”, in order to avoid confusion with the slave boson fields, for which the name “b”” seems more appropriate.
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detail in the context of the slave rotor method. Furthermore, the existence of a conserved, local charge
leads to a gauge theory.

Re-writing the Hamiltonian in such a way leads to a new many-body model, which is not less
complex then the previous one. However, re-expressing the original infinite-U model in terms with
bosonic operators results in a theory, that can be treated with standard field-theoretical methods. Quite
often, valuable insights can already be gained by considering a simple mean-field approximation
— decoupling the bosonic and fermionic degrees of freedom. In this sense, the hybridization is
renormalized by the bosonic condensate V;, — V; (b), consistent with the narrowing of the f-level
resonance from the Kondo effect.

2.2.3 Slave bosons II - Kotliar Ruckenstein

The slave boson approach to the mixed valence problem, as it formulated by Coleman in 1984[32],
gave a first glimpse of the potential of such techniques. In its original version, however, the approach
is limited to infinite interaction strengths U. This drawback was overcome with a new technique,
developed by Kotliar and Ruckenstein [93] only two years later, in 1986.

The goal of this method is to provide analytic approximations to the Hubbard model

H= _Zfit;fjc‘FUZniT”iJ,‘ (2.11)
ijo i
The basic idea of Kotliar and Ruckenstein was to introduce four auxiliary bosons, corresponding to
the four basis states of the local Hilbert space

le);=10); ., |ps);=|0); and |d);=[1l);. (2.12)

These states are created (destroyed) by the bosonic operators el-T (e), pl-Tcy (pic) and dl-T (d;), which must
obey the constraints

Los
1=e¢je;+Y plopic+dd; . (2.13)
(e}

, !
fiolic = Pigpic +didi o € {1,1} . (2.14)
These constraints are easily understood. The first one ensures proper normalization of the local states,
and can be seen as a completeness-relation: The local site can be either empty (e;el- = 1), with one
electron of spin o (p;rc pic = 1), doubly occupied (d; d; = 1), or in any linear combination of those;

however, the normalization must be ensured. The second constrained ensures that the dynamics of the

bosonic operators corresponds to the original fermions.
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The Hubbard model can then be re-written as

H==Y fl fistigzjoc+UY digdic

ijo i

(2.15)
+Y A (e?e,- +Y pigpic+d]di— 1) +Y 27 (f,-Lfl-o — pigPic—d] di) :
i c

i,0

with zjg = e Pic + p;—,di. Lagrange multipliers were introduced to enforce the constraints (2.13). The
meaning of the operators z; can be easily understood. If the bosonic state, on which it is acting is
|6); = |Pos);» it destroys the state, replacing it with |0); = |e),. If, however the initial state is doubly
occupied [1]); = |d),, it is replaced by |G); = |ps);-

Despite the formulation with this choice of operator z;s being faithful, it suffers from a drawback.
In the simplest mean-field approximation, the bosonic part of the Hamiltonian is first decoupled
from the fermionic degrees of freedom. The bosonic lattice problem is then further simplified and
treated in local mean-field theory. Within such an approximation, the bosonic operators “condense”
to complex numbers, and the conduction band is renormalized by <sz> (zjo) = 2*. Employing this
approximation, one might check if one recovers the correct results in the non-interacting limit U = 0,
where this renormalization should become unity z> = 1. Considering the case of half filling, it is easy
to show (see [93]), that the condensed amplitudes are e = p%, =d’=1 /4, in accordance with (2.13).
This, however, leads to

1
<Z§o> (2jo) = €*pg+d’pg +2edpops = 7 - (2.16)
In order to resolve this problem, one can consider the improved expressions

Zio = (1= d}di = plgpic) ™ zic (1 —efei—pigpis) '/* . 2.17)
Within the physical subspace, defined by the constraints (2.13), these operators have the same
eigenvalues and eigenvectors as z;j. Indeed, if this operator is applied on the states |o); or |d);,
the additional terms are unity, while for |G); or |e);, they yield zero. Substituting these improved
expressions into Hamiltonian (2.15), we get a model which, within mean-field approximation, gives
the correct results in the non-interacting limit.

One of the successes of the Kotliar Ruckenstein slave boson formulation was that its mean-field
solution reproduce the results from the Gutzwiller approximation, therefore establishing a basis for
systematic further corrections. However, it does not explicitly incorporate spin-rotation invariance; an
issue that has been adressed in [104, 54]). Furthermore, more recent developments consider rotational

invariant multi-orbital extensions, such as [102].



24 Slave Particle Techniques

2.3 The slave rotor technique

2.3.1 The orbitally degenerate Hubbard Model

The basic principle of methods like the slave-boson technique by Kotliar and Ruckenstein is to
introduce an auxiliary boson for each state in the local Hamiltonian. In case of the single-orbital
Hubbard model, the local Hilbert space consists of only 4 states and such a method can be applied
easily. In the case of multi-orbital models, however, it is clear that this might not be the most economic
approach.

To be more specific, let us consider the N-fold orbitally degenerate Hubbard model

2
N
H =Hy+Hpy,; = Z tlj ,mg ]mc + = Z (Zd,mg imo — ) P (2-18)

ij,mo i mo

withm =1...(N/2) and o =1,. The crucial observation is, that the interacting part of this Hamilto-
nian does not depend on the local electronic configuration. It only depends on the total number of
electrons Q per site, with an interaction energy

U N2
= (Q— 5) . (2.19)

For this reason, it is tempting to replace this rather complicated combination of fermionic operators
by some sort of auxiliary “number operator”, counting the overall local occupation. One could think
of achieving this by introducing a single bosonic variable for each lattice site, replacing d; e fJﬂ ij

and djue — fimsbi, such that the Hamiltonian transforms to

2
— Y tiifinefimobibi+ = Z (bT ol ) : (2.20)

ijmo

This naive approach, however, leads to a couple of problems: First of all, the new composite
operators cannot obey the canonical anti- commutatlon relations { flmo N flmc,b} flmo f,mgb b; +
fimofio(bibi41) = b b; f,mgfzmg + 1 =1 for all fillings, since the resulting constraint bTb
f;n oJima 18 in contradiction with bl- bi=Y o flm oJimo. Furthermore, after performing a mean-field
decoupling, one is confronted with the more practical problem: The bosonic part of the Hamiltonian
itself contains terms of quartic order and can not be solved easily.

A more successful approach to tackle the Hubbard Model with large degeneracy has been derived
by S. Florens et al.[50, 51]. Instead of bosons, they suggested to use a U (1) quantum rotor to describe
the total electronic charge?.

In this representation, the physical electron fields d),s are expressed in terms of auxiliary fermions

2A similar idea has been applied in the context of the Coulomb blockade[47].
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frio and an U (1) quantum rotor, represented by an angular variable 6 € [0,27]
dho = fno€® . dno = fuoe ™ 2.21)

where the objects ¢/%/¢~ have the function of ladder operators, raising/lowering the angular momen-
tum by one unit. As in any slave particle theory, the new operators act on an enlarged Hilbert space,
in which any physical state is uniquely represented by an auxiliary state

|01...00) ;= [01...00) , ® QO —N/2)4 . (2.22)
with
|0—N/2)g=¢"-¢|=N/2)g = (¢°)°|-N/2)s . (2.23)
where the state |Q — N/2), is an eigenstate of the angular momentum operator L = —idg
LIo—=N/2)g=(Q—N/2)|0=N/2), . (2.24)

Rewriting the physical states in this way, we identify the total electron number Q as corresponding to
the angular momentum of the quantum rotor. It is, therefore, possible to rewrite the interacting part of
(2.18) in terms of our new variables, by replacing the sum of the electron density operators

N
Y e —= —L. (2.25)
mo 2
Applying this substitution to the Hamiltonian (2.18)

H=— Y tijfyofimae®e % + %iz , (2.26)
ijmo

we can replace a complicated two-body operator, quartic in the electron fields, by a much simpler
kinetic term, acting on the rotors. Replacing the electron density by the rotor angular momentum
works fine, as long as we are dealing with physical states of the form (2.22). However, the enlarged
Hilbert space will also accommodate unphysical states where the number of auxiliary fermions Q
does not match the rotor angular momentum ¢ and the substitution (2.25) cannot be applied. In order
to retrieve the physics of the original system, we therefore have to find a way to exclude unphysical
states with Q # £. This is a problem, that concerns all slave-particle methods. The standard way to
solve it is by defining an operator

N[ =2

0= (Zn{;m— —L—) : 2.27)
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that measures the difference of the number of electrons and the angular momentum Q — ¢ on the
lattice site i. This operator commutes with the Hamiltonian (2.26)

[H,0] =~ ) 1 (_Sikfijnofjmﬁ +8jk ;ncf.im(’) et 10

ij,mo

+ Z tljfzmcfjmo ( Sie'®e 0 +§ ke'e’e lef) =0,

ij,mo

(2.28)

making it a time independent quantity. Since the expectation value of (; is non-zero only for
unphysical states, we can use it to construct a projection operator that eliminates unphysical states.
Not caring about normalization, this operator reads

P=T] ( / dxie—“@) : (2.29)

Thanks to the property (2.28), it is sufficient to define one Lagrange multiplier A; for every lattice site,
independent of time.

We are now ready to calculate any expectation value as

A Tr{e_ﬁHp(j} TT{H,' (fdli)e_ﬁH—iZzliQiO}
(0) = —r—papr = i
Tr{e P} Tr{]'[,- ([dA;) e=PH lzl)l,,Q,}

(2.30)

In practice, however, integrating over all Lagrange multipliers would only lead us back to a problem
that is as complex as the original one, and nothing is won. Instead, we restrict ourselves to the saddle
point values £; of A;

H (/d?tl) e—ﬁH—iZfliQi N e—ﬁH+ﬁ):i/11Qi X (2.31)
i

where he have set i; = —iA; /B (allowing complex values for the saddle-point value is a common
strategy to access a larger class of saddle-point solutions). The specific value of / is evaluated by
minimizing the free energy corresponding to the Hamiltonian

N
= Y tijfimofmee®e % + L2 Zh an -5 -1 (2.32)
ij,mo
leading to the intuitive saddle-point condition
N 1 .
;<nlfmc>H—§ = (Li), - (2.33)

Finally, if there is no additional, inhomogeneous potential, the saddle point values will be site-
independent h; = h.
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Physical observables as the single particle Greeens’ function can then be calculated, by replacing the
electronic operators by their composite substitutes (2.21) and calculating the expectation value with
respect to the slave rotor Hamiltonian (2.32)

G (%) = = (Tdna(D)d}5(0)) = — (T o (D) fo(0)eOOEON) . (2.39)

2.3.2 Mean-field solution to the Hubbard model

Applying the slave-rotor formalism allowed us to the eliminate the electron interaction term. Unfortu-
nately however, we had to trade it for a hopping term that explicitly couples the fermionic to the slave
rotor ladder operators.

Here, we have to make a second approximation. Assuming that the fluctuations of the charge (repre-
sented by the rotor variable) “live” on a different energy scale than fluctuations of the spin, we can
decouple the Hamiltonian (2.32) in a mean-field fashion

H~Hjs+Hyp, (2.35)
with
Hp=— Y tijfyofimo <€i(9’_9f)> ,~(h) Y g (2.36)
ijmo imo
+ (60— ~ U
Ho=— Y 1; <fimcr jmc>f€’(6’ Wty Lit S YL (2.37)
i i

ijmo

This implies, that the original partition function splits into two parts
Z=Te{e PH} = Te{e PHI ) Te{e PHoYy = 7,74 , (2.38)
and that physical observables, as the Greens’ function (2.34), will factorize

Gha(7) = — (T o (D) £ (0)) (OO = Glo(0)Goe().  (239)

Self-consistently evaluating the expectation values in (2.36) and (2.37) corresponds to solving a set of
mean-field equations. After a solution is obtained (ensuring that the saddle point constraint (2.33) is
fulfilled) we can calculate any physical observable as an expectation value taken with the mean-field

Hamiltonian(2.35). Evaluating the expectation value < fi;m, f ,-mg>f is done most easily, since the
Hamiltonian H can be diagonalized trivially by transforming it into momentum space. Unfortunately,
there is no simple way to diagonalize Hg, so we have to consider a different approach.

We follow the strategy in [51] and tackle the problem by applying a second mean-field decoupling to
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the rotor Hamiltonian Hy
HYT =~ ¥ 1 <fmf,mc> ( i0 <e—"91> n <ei"f>e—"9f) hZL+ ZL (2.40)
ijmo

This last approximation drastically reduces the complexity of the problem and leaves us with the task
of solving an effective single-site problem. We can, therefore, eliminate the site indices and write

U

HYF — _Kcos@ + hi+ Eﬁ , (2.41)

with

K=2 Y tij{finafimo) (c080)g=2N Tt (f;) (cosb)y . (242)
J

jmo

where, in the last step, we assumed all auxiliary fermions of index mo to be identical. In addition, the
expectation value in (2.36) factorizes to

which we recognize as the quasi-particle renormalization 2 (not to be confused with the partition
function Z).
In summary, we are left to solve the following mean-field equations

e(k)
=2N(cosB), ) -
~io+u+h—Ze(k) (2.44)
— 2N (c0s 0) / deD(e)enp|Ze — 1+ h] = 2N (cos 8)  Ein »
2
% = (cos0)g = (ZLTr{cos Ge_ﬁH"}> (2.45)
0
N 1
L)6 Z<fmgfmo' fT N/deD(e) <np[ffe —U+h]— 5) , (2.46)

with D(¢€) being the density of states and ng[€] the Fermi function.
The problem simplifies even further when solving (2.44)-(2.46) for a fixed electronic occupation
= <fo>. Since the kinetic energy &, is independent of 2" i.e. only a function of the filling 72

/dsD(e)enp[Q*’s — U+ h] = En(R) . (2.47)

the mean-field equations reduce to the problem of self-consistently evaluating (cos 0),, with the
constraint (L), = N(i—1/2).

Fig. 2.2 shows the quasi-particle renormalizations which we obtained from applying the slave
rotor method in its mean-field approximation to the Hubbard model at half filling. The blue, solid
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Fig. 2.2 Quasi-particle renormalization Z from the slave-rotor mean-field formalism, compared to
the result from dynamical mean-field theory (DMFT)[51]. For the blue line, the full rotor spectrum
with Q € (—oo,+00) was taken into account, while for the green and the red lines, the spectrum was
truncated at Q < 2 and Q < 4, respectively.

line corresponds to the result considering the full spectrum of the local rotor Hamiltonian, while the
red and green lines were obtained from truncating the spectrum at Q <4 and Q < 2, respectively
(for detailed informations see Appendix A.1). Of course, the formalism can also be applied away
from half filling. Fig. 2.3 shows a finite temperature phase diagram for the 2-orbital Hubbard model,
which we obtained by using the slave rotor method, with the angular momentum spectrum truncated
to Q < 4. The phase diagram faithfully captures the Mott metal-insulator transition at commensurate
fillings, with the insulating lobes expanding to lower values of U away from half filling.
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Fig. 2.3 Quasiparticle renormalization 2 for the 2-orbital Hubbard model with semicircular DOS,
calculated with the slave-rotor mean-field method, with a truncated rotor spectrum Q < 4 at Bt = 40.
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Chapter 3

The Physics of Multi-Orbital Systems

3.1 Motivation

The concept of strongly correlated systems was already discussed in the introductory chapter. In this
context, we introduced the Hubbard model[79] as a minimal system to describe strong correlations.
The Hubbard model, although comprising only one orbital per site and parametrized, besides temper-
ature, by merely three scalars (the hopping amplitude ¢, the on-site Coulomb interaction U and the
chemical potential 1), incorporates many of the physical phenomena observed in strongly correlated
materials. Most prominently, it allows to describe the interaction-driven localization of electrons, the
so-called Mott transition[118].

The Mott phenomenon received ever more attention after the discovery of the cuprate high
temperature superconductors[ 18], when it was clear that the parent compounds of these unconventional
superconductors were Mott insulators. Early theoretical works suggested that the essence of the
underlying physics may already be contained in the single-orbital Hubbard model[4] (although this
was quickly disputed, as we shall see in the following chapter). In such a single band picture, strong
correlations of the doped systems are understood to emerge from the proximity to the Mott insulator.

Unlike the cuprate systems, most materials possess more than a single active band at the Fermi
level, and a single orbital description would lead to fundamentally wrong results. This is true for
many of the early transition metal oxides (TMOs); an interesting example being the case of the
3d! perovskites SrVO3, CaVOs3, LaTiO3 and YTiOs. All four compounds possess a single valence
electron, and modeling the compounds with a one orbital Hubbard model (with the corresponding
interaction parameter and dispersion) would predict all of them to be insulators. In reality, however,
only the latter two materials show a spectral gap at the Fermi level [127], while SrVO3 and CaVO3
are correlated metals [110]. In order to resolve this puzzle, we have to take into account the different
effective orbital degeneracies of the systems. In SrVO3; and CaVOs;, the valence electron occupies
the 3-fold degenerate tp, manifold, leading to a gain in kinetic energy and a higher critical Coulomb
interaction, while in LaTiO3 and YTiOj; this degeneracy is lifted.

Other examples include the families of ruthenates, chalcogenides and, most prominently, the iron
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Fig. 3.1 Density of states of LaOFeAs within the generalized gradient approximation, from[72].

pnictide superconductors, that attracted much attention after their discovery in 2006[83, 84]. In these
compounds, several bands, formed of the d-shell orbitals, cross the Fermi level (an example can be
seen in Fig. 3.1, showing the density of states of LaOFeAs withing density functional theory) and
hybridize with the ligands.

Considering multi-orbital many body models is thus a necessary step towards a more realistic
description of many materials. Such models exhibit a wealth of new physical phenomena, emerging
from the nature of multi-orbital interactions, or simply the increase in degeneracy, as in the example
mentioned before. Most importantly, deriving the effective on-site Coulomb interaction in the case
of multiple orbitals gives rise to a new energy scale, the so-called Hund’s exchange coupling J. It
quantifies the energy gain of putting electrons in a configuration with parallel spin, as compared to a
configuration with anti-parallel spins.

This Hund’s coupling J was found to be at the origin of various high-[39] and low-energy[148]
effects, and is now generally accepted to be a central quantity in the theoretical description of many
transition metal oxides of the 3d and 4d series. Systems with Hund’s coupling can exhibit strong
correlations while not being close to a Mott insulator. This led to the emergence of the notion of
Hund’s metals| Yin et al.], to designate materials in which correlations are due to Hund’s coupling,
rather than “Mottness” (i.e. the proximity to the Mott insulator).

The outline of this chapter is as follows. In the beginning, we shall discuss the on-site Coulomb
matrix, that emerges in the multi-orbital case. In this context, we will introduce the concept of the
Hund’s exchange coupling, which, throughout the chapter, will remain at the center of our interest.
In the following, we shall give a brief review of the physics that emerges from multi-band impurity
models with Hund’s interaction, and discuss the similarities and differences to the results from lattice
models. Finally, we shall present results from calculations, investigating the effect of Hund’s exchange
coupling onto the metal to insulator transition.
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Fig. 3.2 “Map” of perovskite-type oxides (from [1], Fig. 1). The horizontal axis shows the d-band
filling, marking the d-orbital configuration of the stochiometric compounds. According to the original
description “Band-gap closure occurs along vertical lines: valence control is realized along oblique
directions and atomic-number control along the horizontal direction.” Despite what the figure suggests,
it is known today that U /W alone does not describe the physical properties of most of the compounds
displayed; in particular, one has to take into account Hund’s exchange coupling and the effective orbital
degenery. The decrease of the critical interaction U /W when going from d' to the d* compounds can
be explained as a consequence of Hund’s coupling.

3.2 The Coulomb matrix

In this section, we shall discuss the form of the Coulomb interaction for multi-orbital tight binding
models.

Considering only local Coulomb interactions, such a Hamiltonian can be cast in the general form

H =Ho + Hin

B + 1 v vt (3.1)
=— Z Tijmm' Cima Cjm'c T 2 Z Z mm'm’’ m" €y Cinyt o' Cim’ o' Cim" & -
ijmm'c i mm'm"m" oo’

Here, Vi m m describes the matrix elements of the Coulomb interaction in the single particle basis,
with
1 i n
Vit m"mm = <m,m ‘VCOLII(me ‘ m-,m >

/ / / / ’ (3.2)
— [ ardr g7 (0005000 W (1 = ¥ Do () o (1)

with the screened Coulomb potential W (|r —r’|). Note that the interaction matrix does not depend on
spin. This is due to the spin-conserving character of the Coulomb interaction.
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Considering the 1-orbital system that we introduced in the previous chapter, the interaction matrix
only has a single element
1

Hiy = )

Z Vci,cg,cc,/cc = VC;CTCIQ , 3.3)
oo’
where we omitted the site-index i.
In general, however, the interaction matrix V is a rank-4 tensor. In case of a M-orbital system, we
are thus confronted with a matrix of M* elements. This means, that for a p-orbital system with £ = 1
and m € {—1,0, 1}, the tensor has 3* = 81 elements; for a d-electron system with £ = 3 it is 5* = 625
elements, etc. Clearly, working with such objects would cause major complications. Luckily, however,
the number of independent elements of the Coulomb tensor is much smaller, due to symmetries of the
interaction.

We can illustrate this by considering a p-orbital system with ¢ = 1. Exploiting the rotational
symmetry of the Coulomb interaction, it can be shown that the interaction tensor of the p-orbital

system has only two independent parameters and can be written as
me/m//m/// — U/Smm// Sm/m/// =+ ](6mm/// 6m/m// =+ Smml 6m//m///) s (34)

(for a detailed derivation see [53]).
Evaluating the matrix element for m = m' = m"” = m"’ yields the well-known relation

{m,m|Veouomp |mym) =U =U"+2J (3.5)

while the values of U’ and J can be retained by comparing expressions (3.2) and (3.4).

In the context of transition metal oxides, we will mainly be interested in correlations of the d
shell (inter-shell interactions will be the topic of the following chapter). Even though the full d-shell
is composed of five orbitals, crystal fields in the solid generally lift the rotational symmetry. In an
octahedral crystal field, this results in two sub-manifolds — known as ty, and e, — comprised of three
and two-orbitals, respectively. In both cases, the Coulomb interaction can be parametrized by only 3
independent integrals, which read

U= <m»m | VCoulomb | m,m> = // dl‘dl‘l|¢mc(l‘) |2V(|l' - r/|)|¢m& (l‘/) |2 (3.6)
U’ = (m,m' [ Veoutomy | mm'y = / / drdr | Gmo () PV (1 = F' )| wor (1) 3.7)
3= (ol [ Detons |l .m) = [[ arat' )05V (=g (¥ o). B

Note that here we used the unscreened potential V(|r —r’|). This is because the parametrization
Eq. (3.4) depends on the rotational symmetry of the interaction. While in solid state systems, the
effective interaction will be screened, one often keeps the form Eq. (3.4), assuming that the screening
is sufficiently isotropic.
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With these interaction parameters, the tp, interaction Hamiltonian takes the well-known Kanamori
form [85]

Hip = UZ”anmi +U' Z Mo 5 + (U —J) Z Mo lm' o

m>m',c m>m'c

39

—J Z Cmgcj,,/&Cm’cha +J Z c,;wc:nc-,cm/acmro , G2
m>m'c m>m'c

where the last two terms describe spin-flipping and pair-hopping, respectively.

Note that expressions (3.6)-(3.8) correspond to the general form derived for the interaction for a

p-orbital system (3.4). Indeed, by requiring the system to be rotationally symmetric, we reproduce

(3.5),i.e. U' = U —2J . Relating the parameters in such a way, we can re-write (3.9) in a form that

explicitly reveals its rotational symmetry (for a more detailed discussion, consider reference [59])

U—3J . . Ja, 5
Hiy = ——N(N —1) - 25 — 2ﬁ+2mz (3.10)

where we introduced the total number operator

N=Y c}sCmo . (3.11)

mo
and the total spin and angular momentum

1 } . .
-5 Z CZnGGGO"CmO'/ s Ln =1 Z Emm'm Cpp €' - (3.12)

2 m,o0’ mm' G

Al

If we consider the full d-orbital manifold, things get a bit more complicated. The following
presentation follows Ref. [13], for a more detailed discussion, consider e.g. Ref. [143]); the case
with crystal fields is discussed in [52]. To keep the discussion simple, we again consider the bare
Coulomb interaction. In order to systematically derive the on-site interaction in this case, we re-write
the Coulomb potential as

: Z re_4n ZY (6,0)Y, (0,9, (3.13)
r—v| AT n\©, @)1\ &, @ '

m=—/{

where we introduced the spherical harmonics Yy, and r-/r~ designates the norm of the smaller/bigger
of the vectors r and r’. Likewise, we can write the hydrogen-like orbital of quantum numbers n, £, m
as

(r,0,9|n,6,m) = Ry (r)Y™(6,9), (3.14)
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where we introduced the radial function

3 ¢
Roo(r) = 1| (22) b DY oz (220 o1 (220 (3.15)
n ) 2n[(n+0)1 n) " n

with the atomic number Z and Lzz_zl_ , being the Laguerre polynomials of degree n — £ — 1.

This notation simplifies the calculation of the matrix element (3.2), since the integrals factorize into a

radial and an angular component. Eventually, we get

20
<mm, ‘ VCoulomb ‘ m//m///> = Z ak(ma ml:m,/7m//,)Fk > (3.16)
k=0

with

ak(m,m',m”,mm)

ko ag . i} . , 3.17)
=Y 11 /dQlYZm(Ql)qu(Ql)Yfm”(Ql)/dQZYEm’(Qz)YklI(Q2)Yfm/"(QZ)
q=—k
and the radial Slater integrals
2.2p2 g o
F. = //drldrz rlrané(rl)FRne(rz) . (3.18)
>

Even though the number of independent interaction parameters is bigger than in the three orbital case,

we can organize the entries in a similar manner as before, by generalizing (3.7) and (3.8) to

Unmw = <m7m, ‘ VCoulomb ‘ m,m'> (3.19)
Jmm = <m7ml ‘ VCoulomb ‘ m/7m> . (3.20)

2

Here, these quantities are matrices. Writing them in the basis (z%,x% — y?,xy,xz,yz) yields

0 h h Jy Iy
H 0 S J
Jw=\h 5 0 I Ji| . (3.21)
L 4 L0 g
L oL LT 0
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while U,,,, takes the familiar form

U Uy—2J Uy—2Jr Uy—2Jy Uy—2J4]
Uy—2h Uy Uy—25 Uy—2Ji Uy—2J,
Upw =Ug — 20w = |Ug =20 Up—2J5 Uy  Ug—2J, Uy—2J;| . (3.22)
U()—2J3 U0—2J1 U()—2J1 U() U()—211
_U()—ZJ4 U()—z.ll U0—211 U0—2J1 U()

In order to define these new parameters, it is useful to introduce the averaged values

1
Upwe=———=)) Uuw =5 (3.23)
v = iy U
1 K+ Fy
Jowe =Uppo — ———— Ui — It ) = R 3.24
avg avg 20020+ 1) m;ﬂ/( mm ') 14 ( )

which are related to the Slater integrals Fy, F>, Fy. The averaged interaction parameters are defined in

such a way that they yield simple expressions for the mean-field part of the interaction Hamiltonian'.

With these definitions, the other parameters in (3.21) and (3.22) read

Uo = Uang + 2o (3.26)
Ji = %Fz + %Fﬁ (3.27)
)= —?Javg 130 = —210%, + %Fz + %m (3.28)
Iy = g~ 55 = g~ B 11 Fy (3.29)
Ty = ?Jm,g 3, = ?Javg - 4%172 - 127071?4 . (3.30)

Using these expressions, together with (3.21) and (3.22), we can finally write down the interaction

Hamiltonian

Hiy = Z Umm’annm’i + Z (Umm’ - Jmm’)nmcnm’d
mm’ m>m',c
- o (3.31)
T _ _
- Z Jmm’cmocmfa-cm’ccmc + Z Jmm’cmccmacm’ccm’c s
m>m'c m>m'c

which is a direct generalization of the three-orbital Kanamori Hamiltonian (3.9).
Note that interactions within the t;, and e, manifolds are defined by only two parameters each; Uy, J;

Following [35], the mean-field part of the interaction Hamiltonian can be written as
1 2¢ )
(Hin) = UasgNiN, + 5 Uavg —Jave) 3777 LNG - (3.25)
g o

with Ng = Y, (nmo). This expression is known as the around mean-field (AMF) approximation to the double counting
functional, and was originally derived in the context of the LDA+U schemel[6].
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Fig. 3.3 Schematic representation for the electronic configuration of oxygen, obeying Hund’s rules.

and Uy, J», respectively. This is consistent with the Kanamori interaction (3.9), note however, that
these values are quite different from the averaged interaction parameters U,y and Jyy,.

Already when restricting ourselves to on-site interactions only, we implicitly made the assumption
that the electrostatic field generated by the ions is effectively screened by the surrounding electrons.
Screening effects also have to be taken into account in ab-initio calculations of the interaction
parameters. Here, much progress has been made with the development of the constrained random
phase approximation (cCRPA)[9, 114, 122, 115], which allows to take into account screening from
electron bands outside a certain energy window, for which the interacting low energy model shall be
defined.

Most interestingly, screening effects increase the importance of the exchange interaction parametrized
by Jaye, as it has been shown in [153]. For 3d systems, the theoretical bare value of the exchange term
Javg = 0.8140.080(Z — 21) eV is only a small fraction of the bare value of U, = 15.3141.50(Z —
21) eV. In the solid state context, however, Fj is screened much more strongly than F, and Fj, such
that empirically the interaction parameters are found [153] to be

Jave = 0.59+0.075(Z —21) eV (3.32)
Upg =1.5+0.21(Z—21) eV . (3.33)

3.3 Atomic limit and Mott gap

Before considering the case of a solid state system, it is interesting and insightful to consider the
physics that one obtains in the atomic limit.

Looking at the interaction Hamiltonian for the three orbital system (3.9), one can directly deduce the
first and second Hund’s rule of atomic physics:

1. First, maximize the total spin 52
2. Then, maximize the angular momentum 12

Fig. 3.3 shows the application of Hund’s first and second rules to evaluate the electronic configuration
of atomic oxygen: The four electrons of the p-shell arrange themselves in such a way that they
maximize the total spin to S = 1 and the total angular momentum to L = 1.
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In the context of a lattice system, the lowering of the atomic ground state configuration proportional
to §2 (and 22) will have some significant consequences. To understand this, let us consider the example
of a thg system with three orbitals. At half filling, the ground state configuration is defined by N = 3,
S =3/2, L =0, and the corresponding interaction energy (H;, ) can be obtained from (3.9), by using
£ =§(S+1)and [2 = L(L+1).

N| s|L| Ein[N]

3132|0 —7.5J

2 1| 1| 05U—-6.5J

1112]1 2U —8.5J

0 0] 0|45U—-13.5J
Table 3.1 Ground state configurations for the interaction part of the three orbital Kanamori model
(3.9) (ignoring the non interacting, last term), labeled by the electron occupation N, the spin moment

S and the orbital moment L. A chemical potential shift was added to enforce particle-hole symmetry

If we start from a system at half filling, taking one electron from one site to another will create
two new atomic configurations with ) N=2,S=1,L=1and2) N=4,5=1, L= 1. Using Tab.
3.1, we can compare the energy of the initial state with the final one

which tells us, that the energy difference is raised by the Hund’s exchange coupling. Considering
(3.31), one can deduce that the energy gap at half filling is Ay [N = M| = U + (M — 1)J for a M orbital
system.

If, on the other hand, we start out with a system at N =2 or N = 1 (or the corresponding particle-hole
symmetric fillings), we get

Au[N #3]=U-3J, (3.35)

(this result is independent of the number of orbitals M). While J increases the energy cost correspond-
ing to the charge transfer for systems at half filling, it decreases the energy difference at other fillings.
These simple considerations turn out to be rather powerful to predict the influence of Hund’s coupling
on systems at different fillings.

Fig. 3.4 shows the influence of Hund’s coupling on the quasiparticle weight Z for a three-orbital
system with Kanamori-type interaction (3.9) for different commensurate fillings within dynamical
mean-field theory, by de’ Medici et al. . For large values of J, the results agree with the atomic limit
considerations outlined before. At half filling N = 3, the critical value of U decreases upon increasing
J; while increasing J at other commensurate fillings causes an increase in the critical interaction. This
result on its own is rather interesting, since it provides a qualitative explanation of what is seen in

the “map of perovskites” by Fujimori[l], Fig. 3.2. The “map” shows a decrease in the critical U
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(a) N=1 by N=2 (c) N=3

Fig. 3.4 Influence of Hund’s exchange coupling on the quasiparticle renormalization Z as a function
of U, by de’ Medici et al. [39]. Panels (a), (b) and (c) show the results for N =1, N=2and N =3,
respectively. The arrows indicate the influence of increasing J.

upon increasing the atomic number when going from d! (SrVO3) to d*> compounds (StMnQ3). Such a
behavior would be in contradiction with the predictions from a ty, model with J = 0, where the critical
U is supposed to be highest in the half filled case N = 3. Considering however the significant value of
Javg/Uavg = 0.38 (which follows from Egs. (3.32), (3.33)), these findings are in perfect agreement
with the theoretical expectations.

So far, we ignored the peculiar behavior the quasiparticle renormalization in the middle panel
(b) for N = 2. Here, Hund’s coupling seems to have two effects that oppose each other. For small to
moderate values of the Hubbard interaction U (as compared to the critical value for J = 0), increasing
J causes a significant increase in correlations, seen as a decrease in Z. On the other hand, increasing
J above a certain value strongly enhances the critical U, as compared to the case without Hund’s
coupling. This can be explained by the fact that for a M-orbital system with filling 2M —1 > N > 1,
Hund’s coupling generally lowers the degeneracy of the atomic ground state. A lower degeneracy
causes a decrease of the kinetic energy and a suppression of the coherence scale to lower energies.

The last point proved the obvious fact that a mere consideration of the multiplet structure is not
sufficient to explain all the effects induced by Hund’s exchange coupling. Indeed, “turning on” Hund’s
coupling has some major influences on the low energy physics of the systems under consideration.

Even though our final interest lies in the description of lattice systems, many of these effects can
already be found in the corresponding quantum impurity models. For this reason, the next section will
be dedicated to a brief discussion of these models in the multi-orbital case.

3.4 Physics of the impurity model

The main focus of this section considers the influence of enhanced degeneracy and Hund’s coupling
on the coherence of quantum impurity models. Before we discuss the case of multi-orbital models, let
us start with a brief reminder on the one orbital Kondo problem.
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3.4.1 One orbital Kondo physics

We already introduced the one orbital quantum impurity model in the previous chapter, in the context
of DMFT. Historically, the model was proposed by Philip W. Anderson[3] to describe the formation
of local moments in metals, a problem that had been studied by Friedel and Blandin[26]. These
theoretical developments were motivated by experimental findings[31, 137], suggesting that it is the
presence of magnetic moments, that causes the mysterious resistance minimum that was found when
cooling gold, copper and other metals to low temperatures[38] (for an introduction with detailed
historical information, see [33]).

The spin degenerate one orbital Anderson model describes an interacting quantum impurity in a
sea of non-interacting bath sites

1 1
H=Y &b b Vidg c)+eln’ f——)(n{—<). .
;sk to kc+kzc‘,( kgbro +hc.)+ &’ +U (nf =5 ) (] =3 (3.36)

At first sight, there is no apparent connection to the physics of magnetic impurities. However, this
changes when considering the case where n? = 1 is the energetically favored occupation. In this
case, we can apply a Schrieffer-Wolff[139] (for a detailed derivation, see Appendix B.1.1 and B.1.2)
transformation to derive a low-energy Hamiltonian, in which fluctuations to the n? € {0,2} high-
energy states are considered in second order perturbation theory. This leads us to the famous Kondo
model

H= ngbiabkg + ZJk’k’bzaa-GG/bk/G/ . §d , (3.37)
o Ik

with S’d = %dé Oso'ds (using the Einstein summation convention, G being the vector of Pauli

matrices, and

Jk,k’ = Vka*; <ﬁ — 81_d> ~ JK , (3.38)
where in the last step, we assumed that Vi, V); are roughly constant. Historically, this model was
first proposed by J. Kondo [90], and later rederived from the Anderson model by Schrieffer and
Wolff[139].

The Kondo coupling Jx is an effective interaction scale, that is defined by the energy differences
to the high energy states that were “integrated out”. However, there’s no reason to stop there. Upon
lowering the temperature, thermal fluctuation will mainly occur in an ever smaller energy window
around the Fermi surface. This means, that particle/hole excitations at the edges of the conduction
band will become increasingly unlikely. For this reason, we may consider integrating out the states at
the edges of the conduction band to derive a new, effective Hamiltonian. This Hamiltonian will be
of the same form as (3.37), however with a renormalized coupling Jx (D'), which will depend on the



44 The Physics of Multi-Orbital Systems

D'ID

Fig. 3.5 Left panel: Second order diagrams contributing to the renormalization of the Kondo coupling.
Right panel: Running coupling g(D’/D) as function of the reduced bandwidth for different number
M of orbitals, at half filling. The horizontal, dashed line marks the unrenormalized coupling g¢, while
horizontal dashed lines mark the corresponding Kondo scales Tx /D = exp{—1/2Mgy }.

new, effective bandwidth D’

H= Y &bbc+ Y. Jk(D)b,8scbro Sq. (3.39)
|&|<D' .o |&|,|g <D’

In the simplest case, known as the poor man’s scaling approach[5, 169], the bandwidth is not
renormalized back to its original width. Nevertheless, it gives valuable qualitative insights. The
evolution of the renormalized coupling can be evaluated by calculating dJg (D) /dD’ upon reducing
the bandwidth by an infinitesimal energy D' = D — 8D. This leads to a differential equation for the
coupling, which, up to second order in perturbation theory (the corresponding diagrams are shown in
the left panel of Fig. 3.5), reads

dg

Ty P =-2"+0(). (3.40)

Here, we introduced the beta function B(g), depending on g = pJk, with the density of states p
(which, for the sake of simplicity, is set constant).
Solving this differential equation results in

g(D) = —

- 3.41
2In (2) + ;! G4

with go = pJx(D' = D) . Now this equation is rather interesting. Apparently, the flow of the
renormalized coupling depends on its initial sign. For ferromagnetic coupling go < 0, reducing the
bandwidth results in a reduction of the absolute value of g(D') (as shown in the lower left panel (b) of
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Fig. 3.5), such that in the limit D’/D — 0, the impurity spin is decoupled from the bath.
For anti-ferromagnetic go > 0, however, reducing the bandwidth increases the strength of the coupling,
which eventually diverges (upper left panel (a) of Fig. 3.5) The scale at which the perturbative
approximation is supposed to break down is known as the Kondo temperature; in case of the one
orbital system it is

Tx 1 1

e = W (3.42)

Even though these results are only obtained from second order perturbation theory, it has been shown
— using the numerical renormalization group (NRG) technique[166] — that the coupling constant
indeed diverges at low energy scales. The magnetic moment of the impurity is then screened by the
conduction electrons, forming a non magnetic singlet. This means, that scattering of quasi-particles
with energies around the Fermi level is suppressed, and the system undergoes a transition from
incoherent to coherent.

The Kondo effect is an example of asymptotic freedom[61, 133]; a term that has been coined in
the context of quantum chromodynamics. There, it is responsible for the reduction of the coupling
between quarks and gluons at high energy scales, rendering perturbative approximations possible.

3.4.2 Multi-orbital Kondo physics

We now turn to the Kondo physics of multi-orbital systems. For this purpose, we consider a model
with an interaction of the form (3.31), such that we can tune the Hund’s coupling by changing J,,,,,,".
Such models have been extensively studied in the literature[34, 126, 167, 123, 125, 124, 77]; the

following discussion is supposed to give an overview over the most important results.

No Hund’s Coupling, / =0

In the case J,,,,y = 0, we are dealing with the SU(2M) symmetric M-orbital Hubbard model. The
Kondo physics of this model was first studied by Cogblin and Schrieffer[34], in the context of
investigating exchange interactions in alloys with cerium impurities. Performing a Schrieffer-Wolff

transformation on the M-orbital system leads to the Cogblin-Schrieffer model

H=Y eabiobra+Ix Y. Y biobipSas - (3.43)
ko kk" af

As in [59], we used composite indices o = {m, 6} to improve readability, and So5 ~ |@)(B]. The
interaction part of the Cogblin-Schrieffer model considers processes changing the spin- and orbital
configuration of the impurity, leaving the overall occupation constant.

When calculating the beta function for a scaling analysis of the Kondo coupling, one can use the same
diagrams as in the one-orbital case. In the M-orbital case, however, one has to consider additional
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scattering channels. Considering the case of a half-filled system, the beta function reads

Jg

_ g2 3
m—ﬁ(é’)— 2Mg=+0(g7), (3.44)

which leads to an enhancement of the Kondo temperature

Ik _ oot = v (3.45)
D

This scenario is shown in the right panel of Fig. 3.5, which compares the flow of the couplings for
three different numbers of orbitals M € {1,2,3}. In case of anti-ferromagnetic go, the position of
the critical D’ = Tx is clearly shifted to higher energies, as M is increased (upper right panel (a) of
Fig. 3.5). This implies that in multi-orbital models, magnetic moments are already screened at higher
temperatures, which means that coherence is generally increased, as compared to the one-orbital
model.

With Hund’s coupling, J > 0

We now turn to the case with finite, positive Hund’s coupling (the case of negative J will not be
considered here). This case was first investigated in detail by Okada and Yosida [126], who found that
a positive Hund’s exchange coupling generally decreases the coherence scale. This can be understood
as follows by considering the following model

2
H =Y &mobymebins —7 <Z §m> +Jx Y bpro B bima’ * S (3.46)
kmo m m

which is an adaption of the Cogblin-Schrieffer model, incorporating Hund’s coupling (note that, in
contrast to (3.43), the interaction part of this Hamiltonian conserves the individual orbital occupations;
detailed investigations on this model can be found in [123]). Considering the case J — oo, the second
term in (3.46) acts like a projector, eliminating all configurations that do not maximize the spin,
characterized by S = M /2 for a M-orbital system. For infinite J the individual spins will be “locked”
in the same direction[125], and we can replace

. 1 - 1 -
Sm — M ;Sm = MSIOI s (3-47)
such that
t U oI g
Hjy oo = Z 8kmcrbkmabkmc —+ M Zbkmooco/bk/mc’ “Sor - (3.48)
kmo m
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Fig. 3.6 Left panel: Kondo temperature as a function of Hund’s exchange coupling for a two-
orbital model (data extracted from Ref. [167], Fig. 3). Right panel: (a) Schematics showing the
running coupling g.r¢(A) = J(A)pM, s (in our notation, this corresponds to g(A") = J(A)pM,y) as
a function of the energy scale. In the region I, M,;; = 1 and the system is paramagnetic. In region
I1, the impurity spins align due to Hund’s coupling, forming a large effective spin moment S. The
boundary between region I and II is defined by the Hund’s coupling times the effective spin. Finally in
region III, the big, composite spin is screened by the conduction elections. (b) Depicts the evolution
of the magnetic susceptibility, showing an enhancement in region II and screening in region III. The
figure was taken from [124].

This means, that we are dealing with an effective Kondo system with a large local spin, and a reduced
Kondo coupling Jx /M. Consequently, the Kondo Temperature is suppressed

M M

Ty =e¢ %0 =¢ 2Kk (3.49)

It is interesting to compare the values of Kondo temperatures of the multi-orbital models with and
without Hund’s coupling to 7Y~ of the one-band model
TM,J:oo M=1 . M. J=0 .

K — ok < K _ ywg o 2K — ¢ Mg 3.50
D e D e D e ( )

The left panel of Fig. 3.6 shows the evolution of the Kondo temperature of a two-orbital model
within the poor man’s coupling approach, as a function of Hund’s coupling (the data has been extracted
from Ref. [167], Fig. 3). The ratio of the limiting values is In TIQMZZ‘J:O /1In T;{W A .}
confirming the prediction T,?d =< /p = (TI?/[ =0 pym * from the considerations presented before.
The right panel of Fig. 3.6 shows (a) the running coupling and (b) the magnetic susceptibility of
the M-orbital model (3.46) as obtained from a two-loop renormalization group (RG) calculation.
The calculation was performed in two different regimes. In the first one, labeled as “I”, the bare
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couplings J, Jx were taken according to (3.46), while in region II and III, the reduced bare coupling
Ji = Jx/M was considered in the renormalization group RG equations. The locked spin scenario
has some interesting consequences on the magnetic susceptibility, as can be seen in the lower right
panel (b) of Fig. 3.6. When changing from the paramagnetic to the “locked large spins” phase, the
susceptibility is significantly increased, before it is finally screened by the conduction electrons at low

temperatures.

3.4.3 Spin-orbit separation

While the “extended Kondo model” considered in the previous section 3.4.2 takes into account
the effect of Hund’s coupling, it does not correspond to the Hamiltonian that one would get upon
performing a Schrieffer-Wolff transformation on a Kanamori-type model (3.9). As the Cogblin-
Schrieffer model (3.43), such a model must contain orbital-changing terms bjn, G,cm/(,/c,TnGme with
m # m', and will thus be more complex then (3.46).

Such a model was derived by Horvat et al. (see [77]), who performed a Schrieffer-Wollff transfor-
mation on a Hamiltonian with Kanamori interaction (3.9) (with and without the angular momentum
term ~ 22). For a M-orbital system with the full interaction (3.9), their resulting model can be cast in
the form

H=J,N+JS-5+JL-14+J,0%"

A oA A A R (3.51)
+Jjg <Z®§) : (7@?) + s (Q“ ®§> : (é“ ®§) ,
where we used capital letters for the impurity and lower letters for the bath degrees of freedom. Fur-
thermore, we employed the notation N = ¥, c,TnGcmG, § = % Yo c,T,,G Gs6'Cma’s i =Y c,TnGme/cm/G
and Q%= = % (Lf’mLf,, j —|—L§mL£1 j) — %617(;& j» with & the vector of the Pauli matrices and Ly the
angular momentum matrices®. As before, the bare Kondo couplings J,, Jy, J;, Jy, Jis, J4s are defined
by the energy differences between the states with N and N £ 1 electrons; for an explicit form, we refer
to [77].
Analyzing the flow of the model parameters (3.51) with the poor man’s scaling approach, reveals
that the spin- and orbital couplings change differently upon decreasing the bandwidth. At lowest

ZFor M=3, they are spin-1 matrices and read

1

01 0 o -1 o0 1 0 0
r'——1J1 0 1|, -—1|1 0o -1, -0 0 0. (3.52)
V2 1 0 V2 0 0



3.4 Physics of the impurity model 49

0.0 0.2 0.4 0.6 0.8

log,(T'/Tx) ‘ ‘ ‘ ‘ ‘ ‘
—_— g = Jp — Jls -8 —6 —4 -2 0.5 1.0 1.5 2.0 2.5 3.0 3.5
log(J) Na

Fig. 3.7 Kondo physics of the 3-orbital Kanamori model, figures adopted from [77]. Panel (a): Results
from poor man’s scaling analysis, showing the flow of the spin-, orbit-, and “spin-orbit” couplings
Js. J1. Jis. The bare couplings were chosen as J; = J; = J, = 1 and Jj; = Jy5 = Jg /100. Panels (b) and
(c): Results from an numerical renormalization group analysis. (b) shows the Kondo temperatures
of the spin- and orbital d.o.f. as a function of the Hund’s coupling J, for two different impurity-bath
hybridization strengths I'. (c) shows the evolution of the spin- and orbitals Kondo temperatures as a
function of the impurity filling Ny, for two different values of J.

order, the scaling functions dJ;/d In(D") = B; for J; and J; read [77]

1

Bi=—5 (3J%+ 57, +977) (3.53)
1

Br=—7 (JF +205+5(J; +277)) (3.54)
3

By=—5 Uilg+2015Jys) - (3.55)

When setting J, = J; and the cross-terms to zero Ji; = J,s = 0, the flow equations decouple and one
can simply read off the different Kondo scales. In this case, B;/B; = (3/2)J?/J2, which displays the
fact that J; scales faster to high couplings (without even considering that J; > Jy).

Considering the corresponding prefactors, this also holds true for finite J, J; as can be seen
in panel (a) of Fig. 3.7, which shows the scaling of J;, J; and Jj starting from the bare couplings
Jy=Jy;=J,=1and Jj; = Jys = 1/100. The results illustrate the slower running of the spin coupling
Js.

The results from the poor man’s scaling analysis were confirmed by calculations using the
numerical renormalization group (NRG) method[77]. Panel (b) and (c) show results, confirming the
decoupling of the Kondo temperatures for the spin and orbital degrees of freedom for finite Hund’s
exchange coupling J. Most interestingly, the effect gets stronger upon approaching half filling, as can
be seen in panel (c¢) in Fig. 3.7.
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Fig. 3.8 Facettes of spin-freezing. (a) Occurence of the spin freezing phenomenon in the interaction-
filling plane from [160]; for the three orbital model with spin rotational SU(2) symmetry (o = 1).
Black bars mark the Mott-insulating phase. (b) Interaction-filling phase diagram of the ferromagnetic
(FM), anti-ferromagnetic (AFM) and superconducting phases from [78]; for the three orbital model
with Ising spin anisotropy (¢ = 0), marking the position of the spin-freezing crossover. Interaction
in units of W = 4¢, the inverse temperature is 8 = 100. (c) Long time spin-spin ($(7)S(0)) (solid
lines) and orbital-orbital (7(7)7(0)) (dashed lines) correlations from [147]; demonstrating that the
spin-spin correlations do eventually decay. U =5,J=1and T =0.

3.5 Physics on the lattice

Beyond quantum impurity models, Hund’s exchange coupling was found to have important conse-
quences on the physics of multi-orbital lattice systems. Here, the method of choice is dynamical
mean-field theory (DMFT) [57] (see Chapter 1.4), which treats the low-energy Kondo physics (de-
scribed in the previous sections) and high-energy charge fluctuations on an equal footing. Some
results from DMFT were already presented in Fig. 3.4, which demonstrates the ambivalent effect of
Hund’s exchange coupling on the quasiparticle renormalization. Even earlier, Werner et al. [160]
discovered that Hund’s coupling induces a range of interesting phenomena, like increased decoherence
and non-Fermi liquid power-law behavior of the self-energies. In particular, they discovered a regime
where spin-spin correlations do not decay — the “spin-freezing phenomenon”, which we shall review

in the following.

3.5.1 The spin-freezing phenomenon

Non-Fermi liquid power-law behavior of the self-energies, induced by Hund’s coupling, was originally
discussed in the context of the three-orbital Kanamori model [160] (ref. [159] then identified such
behavior in realistic five-orbital calculations for iron pnictide compounds). There, it was observed
to appear in a regime where spin-spin correlations (S,(0)S,(t)), with S, = 1 ¥, (it — 1y ), do not
decay at long times, a phenomenon, for which the notion of spin-freezing was coined.

The spin-freezing regime is particularly interesting, since it has been argued that it might explain
the peculiar o7 ~ @~ 1/2 behavior of the optical conductivity in SrRuO3 and CaRuO3 [91, 43, 103]. In
models with spin anisotropy (Hamiltonian (4.2) with @ < 1), the spin-freezing phenomenon was found
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to be related to emerging superconductivity [78] and furthermore suggested in [161] as a “universal
mechanism underlying the physics of”” various unconventional superconductors, such as cuprates,
pnictates, ruthenates etc. Specifically, it is the strongly and slowly fluctuating magnetic moments at
the spin-freezing crossover that could provide a pairing mechanism in these compounds.

Fig. 3.8 (a) shows the spin-freezing regime in the interaction-filling plane for the three-band model
with spin-rotational symmetry & = 1. The occurrence of a spin-triplet superconducting phase is
closely related to the spin-freezing crossover, as can be seen in Fig. 3.8 (b). However, the spin-triplet
pairing relies on an Ising spin anisotropy o < 1.

More recently the spin-freezing effect was reexamined with the numerical renormalization group
(NRG) method [148, 147], revealing that the spin-spin correlations are not actually frozen, but rather
decay at exponentially long times, as is shown in Fig. 3.8 (c). Moreover, it was argued that the
spin-freezing phenomenon, as the whole non Fermi liquid regime, are just different aspects of the
spin-orbit separation, which we already discussed in the context of quantum impurity models (see
Sec. 3.4.3). In this sense, spin-freezing appears in the intermediate regime Tg"" < T, || < TZ'?,
where orbital degrees of freedom are screened to form a large local spin moment, that is only poorly
screened by the conduction electrons.






Chapter 4

The Metal-Insulator Transition with
Hund’s Coupling

In this chapter, we present new insights on the effect of Hund’s exchange coupling in the vicinity of
the doping-driven metal-insulator transition, using dynamical mean-field theory (DMFT)[57], that we
have obtained in this thesis. This project was done in collaboration with Luca de’ Medici.

4.1 The model

We consider the M-orbital Hubbard model of the form

H = Hy+ Hiy (4.1)
with
Hy = — Z tijc;;mcycjmd + Z (gm - ‘LL)CITmGCimG +Hpy 4.2)
ij,mo imo
Hiy = UZ”m,T”m,J, +U’ Z NmeNm's + (U, - J) Z Mo Ny’ ¢
m m>m'c m>m'c
4.3)

+a|J Z C;TC;ucm’iCm/T —J Z CLTCMC;anCm’T
m#m' m#m'
where m € {1...M}. We introduced a parameter o, which allows us to choose whether to consider
(o =1) or discard (o = 0) the effect of the spin-flip and pair-hopping terms.

Such models have been the subject of numerous studies, both on the model level[39, 49, 135, 148,
147, 160] and considering realistic materials[159, 71, Yin et al.]. In Sec. 3.3, we already discussed
the influence of Hund’s coupling on the Mott transition at commensurate fillings, by reviewing the
results from [39]. In the following, we shall consider a different path in parameters space by doping

such systems away from commensurate fillings.
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For finite two-body interactions, Hamiltonian (4.2) cannot be diagonalized exactly and approxima-
tions have to be considered. Our method of choice is the DMFT (introduced Chapter 1.4), which keeps
the information on the lattice and, locally, on the high-energy multiplet structure. This permits us to
study the electronic properties from the itinerant to the localized regime, including the metal-insulator
transition and correponding coexistence regions.

Some technical remarks. The single site quantum impurity model corresponding to the DMFT
treatment is solved using continuous time quantum Monte Carlo (QMC) methods[64]. More specifi-
cally, we considered a hybridization expansion algorithm[162, 64], expanding the impurity action
around the atomic limit. The calculations were performed using the TRIQS library[129], as well as an
adaption of a code provided by Yusuke Nomura from University of Tokyo. Observables were usually
obtained from 1.6 x 108 QMC measurements distributed on 40 cores.

In the following, we will focus on the physics of three- and two-orbital models, considering their
relevance for ty and e, systems. We are interested in the case of finite, positive Hund’s couplings
J > 0. Assuming rotational symmetry, we set U’ = U — 2J. Throughout this chapter, the chemical
potential will defined relative to the particle-hole point, such that y = 0 corresponds to the system at
half filling.

The models are studied on the Bethe lattice with infinite coordination number, corresponding to a
semi-circular density of states

4 — w?

P 4.4)

2(w) =0(2t — o))
For all calculations presented in the following discussion, the hopping was set to t = 1; all other

parameters are expressed in units of 7.

4.2 Results

4.2.1 The phase diagram

We start by considering the most simple case of a two-orbital Hubbard model with density-density
interactions only (o = 0). The exhaustive studies that we performed on this system allow us to draw
a phase diagram, which later on can be used for guidance in parameter space. Furthermore, it is
insightful to compare such a phase diagram to the one obtained for the one-orbital model, which can
be found in the literature[163].

Using the hopping amplitude ¢ as the unit of energy, the one orbital Hubbard model can be
parametrized by only two scalar variables U /r and p/t. Including temperature, this results in a three
dimensional phase diagram, as it is sketched in Fig. 4.1 (a). For particle-hole symmetry u = p; =U /2
and at constant temperature, the figure shows a metallic phase (marked as “M”), undergoing a first
order phase transition to an insulator upon increasing the interaction strength U. The position of the
first-order phase transition is marked by a red line; however if we were to increase U starting from a
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Fig. 4.1 (a) Sketch of the phase diagram of the one-orbital Hubbard model within single-site DMFT,
from [163]. Thick, red, lines indicate the surface spanned by the first order phase transition; thin,
black lines delimit the coexistence region.(b) Phase diagram of the two-orbital Hubbard model with
density-density interactins & = 0 and J = 0.25U. Black dots correspond to results from calculations,
light-blue triangles schematically illustrate cuts through the coexistence region. (c) Coexistence region
of the one-orbital Hubbard model in the (7', it)-plane, at constant U = 3.2, from [156] (supplementary
materials). Colored dots mark the calculated positions of the spinoidals. (d) Coexistence region of the
two-orbital Hubbard model in the (7', u)-plane, at constant U = 3.06. Black dots mark the calculated
positions of the spinoidals.

metallic system, we would be able to stabilize a metallic solution up to the spinoidal U,,. Conversely,
if we started in the insulating phase (marked as “I”’), such a solution could be stabilized down to the
spinoidal U.;. These spinoidals U, and U, span a coexistence region, in which both metallic and
insulating solutions can be stabilized. As we shall see in the case of multi-orbital models, this causes
many observables to undergo a hysteresis upon successively crossing the coexistence region from
one side and then back from the other side. The coexistence region gets narrower upon increasing
the temperature, until it vanishes at the critical temperature 7. Away from particle-hole symmetric
chemical potential pt = 0 (note that the convention for i in Fig. 4.1 (a) is different from the one used

here), the spinoidals are shifted to stronger interactions and the coexistence region is narrowed.
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Fig. 4.2 Coexistence regions of the two-orbital Hubbard models with J = 0 (from [88]) and J = 0.25U.

The phase-diagram Fig. 4.1 (a) of the one-band model can be compared to panel (b) of the
same figure, showing the results for the two-band Hubbard model with density-density interactions
o = 0 and Hund’s exchange coupling J = 0.25U. As for the one-orbital model, we find a first-order
metal-insulator transition with an extended coexistence region. The shape of the coexistence region
in the particle-hole symmetric plane is different from the one-band case, however consistent with
similar calculations including Hund’s coupling[88] (and slightly reminiscent of the result obtained
from cluster DMFT calculations for the 1-orbital Hubbard model; see [130]). Comparing however the
cuts in the (7', u)-planes Fig. 4.1 (c) and (d), the coexistence regions look rather similar.

A difference between panels (a) and (b) is the interaction strength, at which the phase transition
occurs. For the model with Hund’s coupling, the transition occurs at much lower values of U, a
consequence of the effect that the exchange coupling has on the multiplet structure (see Sec. 3.3).
This difference becomes even more pronounced when comparing the results to the two-orbital model
with J = 0, as presented in Fig. 4.2. The model without Hund’s coupling has SU (4) symmetry, and
enhanced-orbital fluctuations cause the Mott transition to occur at stronger Hubbard interaction, as
compared to the model with Hund’s coupling (as well as the one-band model). Hund’s coupling
quenches these orbital fluctuations, shifting the phase boundary in the opposite direction. Another
remarkable difference considers the critical temperatures 7,(J = 0) > T.(J > 0), which is related to

the different coherence scales for models with and without Hund’s coupling (see Sec. 3.4.2).

4.2.2 The doping-driven metal-insulator transition

We shall now focus on the doping-driven Mott transition. Fig. 4.3 shows the particle number as
a function of the chemical potential, comparing the results obtained from the two-orbital Hubbard
model with (a) and without (b) Hund’s coupling. In both cases, n(u) is plotted for several values
of the interaction strength U, while the temperatures are fixed to § = 100 (a) and 8 = 25 (b). The
initial hybridization functions A(7) for the DMFT cycles were taken from previous calculations. Dots
connected by solid lines correspond to solutions obtained by following the solutions of the metallic
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Fig. 4.3 Filling n per spin as a function of the chemical potential u for the two-orbital model
with J = 0.25U (a) and without Hund’s coupling J = 0 (b), for various Hubbard interactions U and
B =100 (a) and B = 25 (b). Solid(dashed) lines denote results starting from a metallic(insulating)

initial configuration.

branch, starting in the highly doped regime and continuously reducing the chemical potential. Hollow
dots connected by dashed lines, however, were obtained following the insulation branch upon doping
away from the particle-hole symmetric point.

Comparing the results with and without J, reveals several differences. First of all, as for the results
at constant i = 0, the energy range of the coexistence region is significantly reduced by Hund’s
coupling.

Much more remarkable, however, is the difference of the shape of the insulating branch. For
J =0, the insulating branch remains practically undoped in the entire range of chemical potentials up
to Uci. Minor dopings close the spinoidal are also observed in the one-band model (see e.g. [92]) and
are generally considered as a finite temperature effect. In the case of finite Hund’s coupling, however,
the insulating branches acquire notable dopings before the solutions become unstable. Results for the
three-orbital case, exhibiting an even more remarkable extension of the insulating branches, can be
found in the Appendix B.2.

In Fig. 4.4, we examine the nature of the two branches for J = 0.25U, by looking at the imaginary
part of the self-energy and the Green’s function at various values of u, with U = 3.06, 8 = 100. For
the insulating solutions obtained in the coexistence region (8 = 0.38 and 8 = 0.46), one sees that the
imaginary part of the Green’s functions at the smallest Matsubara frequency Im[G(iay)] acquire rather
large (negative) values. This implies a significant spectral weight at the Fermi level and suggests,
that the “insulating” states are not insulating at all, but should rather be characterized as bad metals

(however, we shall keep the notions “metallic” and “insulating” to differentiate between the two

branches).



58 The Metal-Insulator Transition with Hund’s Coupling

0.0
-0.1
o -0.2
vl _T03leren T
°--0-® o -4 3—04 .__.__.__.__._..--0-4
A = o /
©n=0.2 -0.6 o o |e—e ;=0.2
u=0.29 o —eo ;—=0.29
1=0.31 -0.7 ) o—o ;=0.31
7n=0.48 o—o ;=0.48
e ;=0.38 —-0.8 o-0 ;=0.38
® ;1=0.46 © ®-e ;=0.46
~480010203040506 280010203040506
W W

Fig. 4.4 Imaginary part of the self-energies (left panel) and Green’s functions (right panel) for the
two-orbital model with U = 3.06, J = 0.25U and = 100. Solid (dashed) lines denote simulations
starting from a metallic (insulating) initial configuration.
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Fig. 4.5 Left panel: Filling n per spin as a function of u in the two-orbital model, with U = 3.06 and
J =0.25U, for different temperatures 7 = 1 /. The curve for B = 25 has been fitted to n =A(u — o),
yielding A = 0.27, tg = 0.19. Right panel: Filling n per spin as a function of u in the two-orbital
model with U = 7.35, J = 0 for different temperatures 7 = 1/. Solid (dashed) lines designate
solutions starting from a metallic (insulating) configuration.
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Table 4.1 Parameters obtained from fitting the filling to n(u) = A( — Lo )?. The last values for 8 = oo
are extrapolated from a linear fit of 1 (7") and A(T).

B | mo | A

25 0.194 | 0.270
50 0.351 | 0.231
100 | 0.414 | 0.247
200 | 0.441 | 0.253

oo | 0.460, | 0.263

A similar behavior has been observed in[145, 146] for cluster models in two dimensions; however
there, the reason for this was attributed to the effect of short-range spin correlations - considering that
no similar behavior was observed in the single-site approximation[92, 163]

One question of immediate interest is how the insulating branch is affected by changes of the
temperature. This question is being addressed in Fig. 4.5, which shows the filling as a function of the
chemical potential for various temperatures, with (a) and without (b) Hund’s coupling. Comparing the
insulating branches for J = 0 with f = 18 and 8 = 25 in Fig. 4.5 (b), one indeed encounters a minor
enhancement in doping at the higher temperature, when looking close to the spinoidals. On the other
hand, looking at the case of finite J, the change in temperature does not seem to have any significant
effect on the nature of the highly doped insulating branch. The position of the spinoidal pic; remains
almost constant for € {50, 100,200}, until the first order transition vanishes at § =25 < 1/T..

It is interesting to compare the electronic compressibilities kK = dn/d on the metallic and
the insulating branch. In the regime under investigation, the metallic branch for J = 0.25U is
characterized by an almost perfect linear relation of n(u), corresponding to a constant compressibility.
In the one-orbital Hubbard model, the compressibility is known to diverge when approaching the
critical temperature 7, [92]. Indeed, fitting the slope of n(u) in the vicinity of ¢, reveals a slight
increase in the compressibility; in order to investigate if this phenomenon can be reproduced in the
two-band model, more temperatures between g = 25 and y = 50 would have to be examined.

On the insulating branch, the behavior is quite different. Here, as well as for the data points
acquired at 8 = 25 (above T.), n(it) can be very well fitted to a quadratic function n(u) ~ A(u — uo)?.
indicating a linear k(). Such a property has also been observed in one-orbital models [163]. The
fitted parameters are listed in Tab. 4.1 and presented in Fig. 4.6. They are well described by a linear
fit in temperature, which in turn corresponds to a linear temperature dependence of the filling close
to T = 0, different from the Fermi liquid relation n(T) = n(T = 0) + «T>. The non-Fermi liquid
character of the solution in this regime could already be anticipated from the strong decoherence
displayed by the self-energies in Fig. 4.4. However, the resolution of the Matsubara frequencies at
B = 100 in this case was not high enough to allow for a more detailed analysis.

In the following, we discuss results obtained at 8 = 200, the lowest temperature under considera-
tion.

The left panel of Fig. 4.7 shows the self-energies on the branch which is adiabatically connected to
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Fig. 4.6 Fit parameters, corresponding to n(u) = A(i — )2, extrapolated to 7 = 0.

0.0

-0.5}

w=0.30
n=0.34
n=0.38

0.0¢

*—e
*—e

1=0.30
pn=0.34

=380 01 02 03 04 180 01 02 03 04
w w

Fig. 4.7 Self-energies of the two-orbital model for several chemical potentials u, with U = 3.06,
J =0.25U and inverse temperature 3 = 200. Dashed lines indicate least-square fits to the function
c+ b|i(o\5. Left panel: Imaginary part of the self-energy on the Matsubara axis on the insulating
branch of the coexistence region, § = 0.72,0.75,0.66,0.50 (for u = 0.30,0.34,0.38,0.42). Right
panel: Same quantity on the metallic branch, 6 = 0.45,0.46,0.48,0.50 (for u = 0.30,0.34,0.38,0.42).

the insulator. For small |iw|, we find the imaginary part of the self-energies to be characterized by

a fractional power-law behavior —Im[Z(i®)] ~ ¢+ b|i®|®, with an exponent § that decreases upon

approaching u — p.;. On this branch, we also find a large finite intercept ¢ # 0, indicating strong
decoherence. This decrease in coherence was already visible in the results shown in Fig. 4.4 for
B = 100: Most interestingly, decoherence gets stronger upon further doping the system, signifying
enhanced scattering, while at the same time there is an increase in |[Im[G(iwy)]

, testifying a growth in
spectral weight at the Fermi level.
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Fig. 4.8 Left panel (a) Filling n per spin as a function of the chemical potential u for the two-orbital
model with spin-flip and pair-hopping terms in the interaction Hamiltonian, i.e. @ =1, U = 3.4 and
J=0.25U. Solid (dashed) lines denote results starting from a metallic (insulating) initial configuration.
Imaginary part of the self-energies for the two-orbital model with spin-flip and pair-hopping terms,
U =3.4,J=0.25U and B = 100. Solid (dashed) lines denote results starting from a metallic
(insulating) initial configuration.

The right panel of Fig. 4.7 shows the same quantities on the metallic branch. While the finite intercept
of Im[X(iw)] disappeared, we still find power-law behavior with exponents & ~ 0.5.

Similar calculations were also performed for the model (4.2) with spin-flip and pair-hopping terms
o = 1; some of the results are presented in Fig. 4.8.

Panel (a) shows the filling as a function of the chemical potential for the rotationally symmetric
model. Compared to the case without Hund’s coupling, the insulating branches still extend to
significant dopings; the effect is, however, less striking than in the case with Ising spin anisotropy
o = 0. Another difference is the temperature dependence of the branches. While in the previous
case, the insulating branch remained rather stable upon changes of the temperature, we now witness a
significant decrease in the extent to finite dopings upon decreasing the temperature. This is rather
interesting: If the stability of the peculiar insulating branches in Fig. 4.5 were related to the reduced
coherence scale of models with Hund’s coupling, one would expect this effect to be even stronger in
the rotationally symmetric case, since Tx should be even lower here. A direct comparison is difficult
since the presence of spin-flip and pair-hopping terms changes values of the critical interactions. Panel
(b) shows the imaginary parts for four self-energies; two of which are on the insulating and two of
which are on the metallic branch. Here, the picture is quite similar to the case with density-density
interactions. On the metallic branch, the self-energies show coherent, yet non Fermi liquid behavior
corresponding to a fractional power law behavior (even though the resolution of the Matsubara-
frequencies is too low to appreciate the details). On the insulating branch, the self-energies are
increasingly incoherent for bigger chemical potentials.

Now let us go back to the results for the two-orbital model with density-density interactions ¢ = 0.
The temperature corresponding to B = 200 is low enough to find a range of dopings n~0.512—0.519,
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Fig. 4.9 (a) Real and imaginary part of the self-energies on the real-frequency axis for the two-
orbital model with U = 3.06, J = 0.25U and B = 200 for doping n = 0.515/spin on the metallic
(blue) and insulating (red) branch. The inset shows a zoom to the metallic branch around the Fermi
level. (b) Spectral functions on the metallic and insulating branch for fixed filling n = 0.515/spin,
U =3.06,J =0.25 and B = 200. (c) Spectral functions A(®, €) = —Im[G(®, €)]/m on the metallic
and insulating branch for fixed filling n = 0.515/spin, U = 3.06, J = 0.25 and 8 = 200. The Green’s
functions were calculated as G(®,€) = (® + i — € — X()) ! after analytic continuation of the
self-energies X(i®).

for which both a metallic and an insulating solution can be stabilized. This allows to perform a direct
comparison of the two solutions at constant doping; the results are presented in Fig.4.9 for a filling
of n =0.515 per spin. Panel (a) allows to compare the self-energies of the two solutions on the
real-frequency axis; panel (b) shows the corresponding spectral functions. The most distinctive feature
characterizing the metallic solution in contrast to the insulating one is a sharp resonance at the Fermi
level. Such features are commonly found in the Fermi liquid regime, due to the low-energy form of the
self-energy in the Fermi liquid: £(@) ~ £y — (1 — Z~ Yo +i(y®? + {T?) (with real £, Z,7,{). On
the Matsubara axis, this behavior translates to a linear regime of the imaginary part of the self-energy.
Here, the situation is different. Indeed, for the given parameters, the system is not in the Fermi liquid
regime, as can be witnessed from the self-energies Fig. 4.7 which do not show Fermi liquid behavior.
As in the case of a Fermi liquid, the imaginary parts of the self-energy approach zero up to some finite
temperature corrections, leading to long-lived low-energy excitations. Due to the non-linear behavior
of Im[X(iw)] close to the Fermi level, however, no well-defined quasi-particles exist, and a formal
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Fig. 4.10 Spin-spin correlations Cys(7) = (S,(7)S;(0)) for the two-band model at U = 3.06, with
J =0.25U. (a) The solid(dashed) lines show the spin-spin correlation functions at fillings n =
0.53(n = 0.51) for different temperatures. (b) Blue dots (red triangles) mark the correlations at
7= /2 forn=0.53(n = 0.51) as a function of the temperature 7 = 3~!. The dashed line is a linear
fit for n = 0.53.

expansion in terms of a quasi-particle residue Z would result in an energy-dependent quantity that
vanishes on the Fermi surface.

The pronounced peak of the spectral function of the metallic solution, shown in Fig. 4.9 (b), is due to
the vanishing imaginary part of the self-energy at @ = 0, as explained above. The insulating branch
is characterized by a pseudo-gap structure, that emerges from the gapped insulator upon doping the

system.

4.2.3 Spin-freezing in the vicinity of the Mott transition

We shall now investigate the fate of the spin-spin correlations in the vicinity of the first-order phase
transition. Fig. 4.10 (a) shows the spin-spin correlations

Css(r) = (SZ(T)SZ(O)> 4.5)

on the metallic and the insulating branch for different temperatures, keeping the particle numbers
fixed at n = 0.53 and n = 0.51, respectively. Fig. 4.10 (b) shows the values of the spin-spin correlations
at T = f3/2, as a function of temperature T = 3!, In the Fermi liquid regime, the correlation function
takes the form Cy(7) ~ (Bsin(w7/B)) % (note that this expression looses its validity as T — 0 and
T — oo, since it would predict diverging correlations). For a Fermi liquid, Cys(7 = $/2) ~ B2 = T
should thus scale quadratically with temperature.

Such Fermi liquid behavior is, in fact, seen on neither of the branches. On the insulating branch,
the spin-spin correlations are found to be constant within the error bars, while on the metallic branch,
they decay linearly as a function of temperature. According to the definitions of the spin-freezing

crossover considered in [160] (onset of incoherence, linear temperature scaling of the correlation
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Fig. 4.11 Sketch of the U — u phase diagram. The areas of insulating and metallic solutions are
marked by lines in different directions; they overlap in the coexistence region, delimited by the
critical interaction Uc () and Uca(u). Blue areas mark the spin freezing regime, the crossover is
adumbrated by red, dashed lines.

function at T = 3/2), only the insulating branch would qualify to belong to the spin-frozen regime.
This is interesting, since it is clear from Fig. 3.8 (a), that the phenomenon is observed in a broader
region of the phase space. If, as our findings suggest, in the vicinity of the critical interaction at half
filling, frozen moments appear only on the insulating branch, this would mean that there are two
spin-freezing crossover lines, as sketched in Fig. 4.11. The first one corresponding to the critical
interaction U (1), the other one to the one described in [160], delimiting the Fermi liquid phase

from the one of frozen moments.

4.3 Conclusions

Recent years have seen tremendous progress in the understanding of the effect of Hund’s coupling on
the model level, as well as in realistic systems. This is especially true for the low energy properties of
such systems, where it could be demonstrated for the impurity model [77], as within single-site DMFT
[148], that the ground state is described by a Fermi liquid. Furthermore,various NRG investigations
shed light on the principles underlying the so-called spin-freezing regime.

However, there are still many open questions. Our investigations of the doping-driven Mott
insulator revealed the appearance of a novel regime, that is adiabatically connected to the insulator,
but yet acquires finite dopings and would be characterized as a “bad metal”. This phase was found to
exist in all systems with finite Hund’s coupling under consideration, i.e. the two-orbital model with
and without spin-flip and pair hopping, and the three orbital model with density-density interactions
(where the effect is particularly impressive, see Appendix B.2).

We investigated the spin-spin correlations on the metallic and the insulating branches, showing that
only the latter one exhibits the spin-freezing phenomenon. This might lead to interesting consequences
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in the vicinity of the critical temperature 7, which constitutes the endpoint of the first order phase
transition. Apart from that, it suggests that the spin-freezing boundary is composed of two lines (see
the discussion above, as well as Fig. 4.11), that eventually cross.

In a recently conducted slave-spin study [41] a compressibility enhancement and divergence on
the metallic branch at low doping due to Hund’s coupling was found at T=0 for U > U (T = 0),
suggesting a tendency of the system towards phase separation in that regime. This effect is not
observed in the present study (which is, therefore, consistent with [147]), which however reports
mainly results for U < U, (T = 0) (to the extent we could exactly locate U, (T = 0), which is very
computationally expensive with the present finite-T method). In selected cases, however, as e.g.
that of Fig. 4.3, upper panel, we observed a range of densities that could not be stabilized for any
of the two branches. This indicates indeed a phase separation, and might be the finite-temperature
signature of the physics reported in Ref. [41]. Therefore, chances remain that an effectively diverging
compressibility might become visible at lower temperatures, especially if one considers the strong
reduction of the effective Fermi-liquid temperature scale upon finite Hund’s coupling. Future works
might investigate this effect, probing different regimes (U > U (T = 0)), potentially using methods
specifically tailored to treat low-energy regimes.
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Chapter 5

The d-p Problem

5.1 Motivation

In the previous chapter, we investigated the physics of multi-orbital systems with Hund’s exchange
coupling. So far, the discussion was simplified in the sense that we only considered-orbitals from
a single electronic shell in our models. Considering calculations for realistic compounds, however,
one often finds such a description to be insufficient. This is especially true for materials like the late
transition metal oxides (TMOs), such as NiO and the cuprate (materials containing anionic copper
complexes) family, where there is considerable charge-transfer from the oxygen ligand-orbitals to the
transition metal orbitals.

In the context of DFT+DMFT calculations, the standard approach to this problem is to include the
ligand-orbitals in the construction of the low-energy model, but to consider them as uncorrelated. The
additional, non-interacting orbitals only slightly increase the complexity of the many-body problem,
such that numerical calculations remain feasible.

The description of inter-shell Coulomb interactions, on the other hand, poses a major challenge to
theory. In the following, we shall refer to this problem as the “d-p problem”, independently of the
specific character of the orbitals of interest.

The outline of this chapter is a follows: In the first part, we shall motivate our investigations with
a short review on the physics of transition metal oxides. We then continue with a discussion on how to
construct d-p low energy models, specifically considering the example of (late) TMOs. In the context
of DMFT, emphasis will be put on the nontrivial question of how to derive appropriate single-site
impurity models. We then proceed by discussing the physics emerging in systems without inter-shell
interactions, focusing on the role of the charge-transfer energy. Finally, we investigate the effect of
inter-shell interactions and discuss different schemes of how to take them into account approximately.
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Fig. 5.1 Phase diagram of tranisition metal compounds by Zaanen, Sawatzky and Allen [170]. The
phase space is split into four different regimes A,B,C and D; the effective transition metal Coulomb
interaction U = U% and the charge-transfer energy A = £ — e” are expressed in terms of the d-p
hybridization T. A corresponds to the Mott insulator, while B is commonly referred to as the “charge-
transfer insulating phase”. C and D label the metallic phases, with C known as the “d-metal phase”
while D being the “p-metal phase”

5.1.1 Transition metal oxides

Historically, transition metal oxides (TMOs) were the first systems for which standard band theory
was found to break down. According to band theory, oxides like NiO and a variety of other TMOs
should be metallic, due to the partially occupied bands. Experimentally, however, these compounds
were well known to be insulating; a fact that was first pointed out in an article published 1937 by J. H.
Boer and E. J. W. Verwey[37]. A first explanation for this observation was proposed in the same year
in a comment by N. Mott and R. Peierls[118], who argued that the wrong theoretical prediction might
be rooted in the neglect of Coulomb interactions. This implies, that correlations between the electrons
cannot be neglected anymore.

Since then, the interest in TMOs has hardly declined. On the contrary: Despite the discovery of
many other strongly correlated compounds, TMOs still constitute one of the most fascinating classes
of solids. Some oxides, such as NiO or BaTiOj3, are found to be insulators, while others, like RuO, or
LaNiOs, are metallic. Other compounds show metal-insulator transitions; as a function of temperature
(historically first observed in V,03), pressure or chemical composition (e.g. (V1_,Cry)>03). Strong
correlations also give rise to different types of ordering, like charge density waves and charge ordering,
or different types of magnetic states. While materials like CrO; or Lag 5Srg sMnO3 are ferromagnetic,
others, like NiO or LaCrO3, are anti-ferromagnetic. The most prominent phenomenon, however, is
probably the emergence of high temperature superconductivity within a class of copper based TMOs.
While the parent compounds of these “cuprates” are anti-ferromagnetic Mott insulators, they become
superconducting upon doping, with critical temperatures of up to 7. > 130 for HgBa,CuOy 5 (the
previous record was T, ~ 23K).
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It is evident that this wealth of physical phenomena also constitutes an ideal playground for
theory. In particular it raises the question of whether one can find a unified framework in which the
physics of these systems can be explained. The Hubbard model[79], was an early success in this
respect, since a major part of the physics observed in TMOs is already contained in this simple model.
In a famous article[4], Anderson even claimed, that the Hubbard model contains all the relevant
physics to explain the remarkable high temperature superconductivity found in the cuprates; this
statement, however, was contested in the very same year[48] with proposals to rather use a more
refined model. Even earlier, Zaanen, Sawatzky and Allen[170] argued, that especially in the late
transition metal oxides (which include copper based oxides), the physics crucially depends on the
interplay of the transition metal d-orbitals with the neighboring oxygen p-orbitals. In particular, they
identified the effective transition metal Coulomb interaction % and the energy difference between
the bare transition metal- and ligand states — the charge-transfer energy A — as the central quantities
to understand the properties of many TMOs. Their corresponding phase diagram, presented in Fig.
5.1, differentiates four different regimes (together with the corresponding intermediate regions). In
the insulating phase, they distinguish between Mott-Hubbard insulators (A), in which the size of the
spectral gap is determined by the effective Coulomb interaction Egg), o< U dd of the TM d-orbitals,
and charge-transfer insulators (B) in which U > A and the gap is about the charge-transfer energy
Eqqp o< A. In the metallic phase, the differentiation is between “d-metals” (C), in which electrons and
holes are heavy due to correlations, and “p-metals” (D), in which carriers are (light) holes in ligand
bands.

Apart from transition metal oxides, there are other classes of solids, where inter-shell couplings
are of importance. An example are the f-electron systems, such as the lanthanides/actinides and their
oxides. Here, it can be the coupling of f- and d-type orbitals (e.g. in Cerium), or the one of f- and
p-type orbitals (e.g. UO») that is of importance.

5.2 Modeling transition metal oxides

As outlined above, TMOs are commonly modeled by a low energy Hamiltonian that is reduced to the
subspace spanned by the transition metal d-orbitals and the oxygen ligand p-orbitals[170]. In general,

such a Hamiltonian can be written as
Hy, = Ho + Hpin + Hipy (5.1)
where Hy considers the atomic energy levels of the d and p-orbitals

Hy =Y &8}, odime + Y, €D moPino - (5.2)

imo jno

with m € {xy,xz,yz,x> —y?,3z> — r*} and n € {x,y,z}. For the sake of clarity we use different indices

1334

1” and “j” to label the sites of the d and p-orbitals respectively. Furthermore, the chemical potential is
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set to zero and we assume that there are no magnetic fields or spatial inhomogeneities in the potential,

d/p

that would render the energies &,'" spin or site dependent.

Hy;, describes the kinetic part of the Hamiltonian

Hiin == Y, (fhudiaPino+he) = Y 150 pLopime (53)
ijmnc jj'nn'c
We neglect any direct hopping between d-type orbitals, assuming the corresponding overlap to be
small. In realistic materials calculations, the hopping matrices can for instance be obtained from DFT
calculations, by constructing Wannier functions from states within some energy window.
Finally, we have the interaction term

ydd o Urp o P
Hip = —— Y Ni(Nj—1)+ - Y NINS 1)+ U Y NINT + Hygna (5.4)

imm’ jnn' <ij>

with N fi =Y o nfmc and N = Yo n?n - » Where we restrict ourselves to on-site interactions of the d
and p-orbitals, as well as nearest neighbor d-p interactions (the factor 1/2 in the last term comes from
the double counting implied by the sum over < ij >). H; considers additional “Hund’s” interactions,
lowering the cost for aligned spins.

Due to the large number of correlated-orbitals, there is little hope to solve Hamiltonian (5.1), even
when applying approximate schemes as the dynamical mean-field theory. However, our model is
rather general, and simplifications arise when considering more specific systems.

* In realistic materials, the fivefold degeneracy of the 3d-orbitals is lifted by ligand fields. This
results in different occupations, with some of the orbitals being (almost) completely filled, while
others remain only partly occupied. The filled-orbitals are effectively uncorrelated! and will
only contribute a static potential shift to the other electrons, while not affecting their dynamics.

An example would be case of NiO, where the octahedral crystal field splits the 3d-orbitals into
two manifolds of smaller degeneracy; referred to as e, (x> —y? and 377 — r?) and tag (Xy,X2,y2).
Due to symmetry reasons, the tg orbitals do not hybridize with the surrounding oxygen ligands.
Since they are lower in energy than the e, orbitals, they will be (almost) completely filled and,
therefore, effectively uncorrelated. This leaves us with a simplified, effective model, comprised

of two (eg) d-orbitals, interacting with 3 p-orbitals.

* Usually, the p-orbitals are regarded as non interacting. This constitutes one of the basic
assumptions for many studies on realistic systems[65, 70, 157], as well as on the model level[2].

I'This can be explained due to the fact that the change of filling of orbital m upon varying the bare energy of orbital m’ is
directly proportional to their mutual correlation. Now if orbital m is almost completely filled, any further change in its bare
energy - or that of any other electron - will only cause a small change in its occupation

9 (nmo)
aEm’a’

= —B({nmenwo') — (tma) (Mpro')) ~ small . (5.5)

The orbital is, therefore, only weakly correlated.
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In practice, when deriving a low energy Hamiltonian from the results techniques like DFT, this
approximation can, however, lead to ambiguities in the evaluation of the effective, screened
Coulomb parameters. We shall come back to this problem later.

Making use of these approximations can lead to drastically simplified models. In the case of the
cuprate high temperature superconductors, for instance, the relevant physics is believed to be captured
by a three-band d-p model comprised of correlated d,» > orbitals, which hybridize with p, and py
orbitals in a quasi two dimensional plane [48].

Of course, we are still dealing with interacting lattice models for which, in general, we cannot
find an exact solution. There is a multitude of different approximate approaches to tackle such
problems (cluster approximations, auxiliary particle techniques, etc.); here we want to focus on a
treatment within dynamical mean-field theory. In this context, one is confronted with the question of
how to construct an impurity model for system, in which two species of orbitals “live” on different
lattice sites. One possibility would be to use some cluster extension of DMFT. The corresponding
cluster impurity models, however, would be a challenge for any of the currently available impurity
solvers, and only tractable in the most simple cases (depending on the cluster size and the number
of correlated-orbitals). The second strategy is to construct new orbitals, centered on the transition
metal sites, as linear combinations of the ligands. In this way, it is possible to construct a single-site
impurity that accommodates the transition metal d-orbitals as well as the oxygen p-orbitals.

5.2.1 Zhang-Rice construction

We will follow the latter route. To this means, we shall use a method that goes back to Zhang and
Rice[172]. Originally, they applied their construction to transform the three-band Hamiltonian, used
to model the CuO; planes in La;CuOy4 high-T¢ superconductors, in order to obtain a better starting
point for a perturbative expansion. The principles underlying their procedure are rather general and
can be applied to a wider class of models (see for instance [141]). Here however, we will demonstrate
it on the original system, following the presentation in the lecture notes by Miiller-Hartmann[119].
The electronic structure of Lay;CuQOy4 (and other cuprates) is mainly defined by the physics of the
CuO; planes. In the undoped case, the copper d-shells are filled with 9 electrons. Six of them inhabit
the tp, manifold, the orbitals of which do not hybridize with the surrounding oxygen p-orbitals due
to symmetry reasons. Also the Cu d orbital is fully filled and does not hybridize with the oxygen
p-orbitals in the CuO; planes. This means, that the relevant physics emerges from the interaction of
the Cu d,»_,» orbital with the p, and py orbitals in the plane, as illustrated in Fig. 5.2. The Hamiltonian
of this system is a special case of the model (5.1) introduced before. In the following, we are interested
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Fig. 5.2 Schematic representation of the CuO; plane in La;CuOj4. The dashed square marks the unit
cell composed of the Nickel 3d,2_,» and the Oxygen 2p, and 2py orbitals; the signs “+7/“-” represent
the phase of the wave functions. [llustration inspired by [172], FIG. 1.

in its kinetic term, which can be written as

d .
Hyjn = —t pz (d;2,y27ri6px,ri+Ax/2,c - d;(z,yz’rl,opx,ri—Ax/z,o
ic (5.6)

F s
+dxz_y27ricpy,r,»+Ay/2,c dxz_sziGPy,r,«—Ay/z,c —f—h.c.) ,

where we assumed nearest-neighbor interactions only. Using

1 ke
di = ﬁge krigl (5.7)
we can transform (5.6) into momentum space
dp .. kx T .. ky T
Hyip = —t Z 2isin dez_yzﬂkcp)@kc + 2isin dez_yzﬂkcpy’ko' +hc. ), (5.8)
ko ) '

where we have set |Ax| = |Ay| = 1, such that ky,k, € [—7, 7).
We proceed by defining our new operators as linear combinations of the p, and py

.k Ck
Wke = 2i (Sm Expx.ko + sin Eypy,ko) /f(k) (5.9

. ke .k
Vko = 2i <s1n pr,kc —sin %pnkc) /f(k), (5.10)



5.2 Modeling transition metal oxides 75

which are normalized by the momentum dependent function

k ky 1
f(k) = 2\/sin2 3’“ + sin? Ey = 2\/1 — 5 (cosky +cosky) (5.11)

The linear combinations were chosen in a way that the hopping Hamiltonian takes the simple form
Hygw = —17 Y f(K) (d;_yzchwkg + h.c.) : (5.12)
ko '

while the vk orbital does not hybridize with the d,>_ 2 electrons anymore. The new orbitals, diagonal
in momentum space, can then be transformed back into real space

] lkr . ] k . k . ] . kx . kV
o — i — 2 _ IKT; 1 l'] ) 2 .
e = UL e S AL LR g (g Pene T Pooe

(5.13)
= Z (Wx,r,-—rjpx,rjo + Wy,r,-—r,-py,rjo) .
J

The absolute value of the weight function depends only on the distance to r;, thus our new orbitals are
centered around the copper site.

Apart from providing a set of transition metal centered-orbitals, the Zhang-Rice transformation
comes with a neat “side effect”. Transforming the Hamiltonian (5.12) back to real space

Hiin = ~1" Y fivd), o Wio+hec.. (5.14)
ii’

one realizes that the transformed model includes hoppings to sites at arbitrary distances. The
hopping amplitudes, however, reduce drastically when moving away from the central d-orbital:
While for the on-site hopping i = i’ the effective amplitude is enhanced by almost a factor of 2
197 =197 o 7 1.916 x 19P, the nearest-neighbor amplitude is reduced to 192 ~ —0.280 x 17, and
reduces even further for orbitals farther away t]‘f,f\,N ~ —0.047 x 197 (see also [172, 119]).

With this construction, we have achieved two things: First of all, we have derived a Hamiltonian,
in which the d- and p-type orbitals are centered on the same site, thus allowing the construction
of a single-site impurity model. Secondly, this procedure provides a splendid starting point for a
perturbative expansion, since inter-site hopping amplitudes are strongly reduced.

As a side remark it shall be noted that, throughout this derivation, we assumed the p-orbitals to be
uncorrelated, i.e. that there was no pp-interaction UPP. In case of such an interaction, transforming
the one-body basis as presented would lead to non-local interactions of the w-orbitals. Since handling
such interaction can be difficult, one could then either treat them as a perturbation, or, in the context
of DMFT, map the problem onto an impurity model with dynamic interactions and apply extended
DMFT (EDMFT).

In the following, we shall try to get an intuition for the physics expected to emerge from d-p
models. We do this, by considering the most simple realization - a two-band model with one d-type
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and one p-type orbital - in the limiting cases of 1) no inter-site hopping (using the Zhang-Rice

construction described before) and 2) no interactions.

5.2.2 Limiting cases
Atomic limit

We shall start by considering an atomic two-orbital model, that is a single-site on with both the d- and
the p-orbitals are located. From here on, whenever we speak of “p”-orbitals, located on the same site
as the d-orbitals, we actually mean linear combinations of the original p-orbitals, like wg in (5.13).

This being said, we consider the Hamiltonian

Hap = Y (e" — )} dc+): pcpa+Z (Vdips+h.c.)
¢ (5.15)

—l—UddnTni +UPnin] —i—Udp(nT —|—n¢)(nT +n?).

This model spans a Hilbert space of dimension 16, and has a number of conserved quantities, namely
the 1) the total particle number N 2) the spin moment S and 3) the projection of the spin onto its
z-component m. In the context of cuprate systems, we would consider copper with a 3d° electronic
configuration and filled oxygen orbitals; for our model, this would correspond to the sector with
particle number N = 3.

For N = 3, (5.15) reduces to two Hamiltonians (one for m = —1 and one for m = +1) each of
dimension 2, which act on the basis states

|\L/N/> ’ ) ) (m:'l) and |T7T*L> ’ |T\l/7T> (Ill:+ 1) ’ (516)

where the first entry is supposed to denote the d- and the second one the p-orbital. In the spin-

degenerate case, both of them can be expressed by the same 2 X 2 matrix

UPP +2U9P +2¢, — 31 —V*
Hy 35 1m+1= 5.17
where we set €; = 0. The eigenvalues of this matrix are
1
Ae = 3 (Udd +UPP+4U% — 6+ 3¢, + \/(Udd —UPP —¢,)? +4yV|2) . (5.18)
with the ground state
|=) =coset|], 1)) +sinac|1], 1) (5.19)
.. sina Ay —A_— (U —yrr —¢g,)
th =— . 5.20
W s a \/l+—7t_+(Udd—Ul’P—8p) (>-20)
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Fig. 5.3 Potential energy diffence AE,,;, of the ground states with N = 4 & N = 2 and two times the
ground state with N = 3. The left panel (a) shows AE,,;, as a function of the bare energy difference
&, — €, for different values of U4 with U4P = UPP = 0. Solid, dashed and dashed-dotted lines are
calculated with V = 1,V = 0.5 and V = 2, respectively. The right panel (b) shows the same quantity
as a function of the inter-shell interaction U??, which is set equal to the ligand interaction U??, for
U494 = 4 (marked with a red, dashed line).

For finite hybridization V, this ground state, also known as the Zhang-Rice singlet[172], has a
considerable contribution from the state with fully filled d-orbitals |1, ).

As soon as we go beyond the atomic limit to consider inter-site hoppings, there will necessarily
be a mixing of different atomic states. In order to better understand the dynamics of the lattice
system, it is therefore instructive to study the atomic multiplet structure, e.g. the energy differences
and degeneracies of the different eigenstates. For the sake of compactness, we will not write down
the Hamiltonians, eigenvalues and eigenstates for the various electron number and spin sectors; a
complete description can be found in Appendix C.1. We shall, however, discuss some illustrative
results.

One central phenomenon in the field of correlated electron systems is the appearance of an
interaction driven metal-insulator (Mott) transition. In the case of the one orbital Hubbard model (1.8),
the energy scale to determine the transition is given by the ratio of the Hubbard U and the bandwidth
W. In other words, one has to consider the energy cost U of putting an electron from the half-filled
ground state to another site versus the bandwidth of the kinetic energy.

Considering the two orbital d-p model one could imagine that, in the case of UP? = U dp — ),
the metal-insulator transition is again mainly determined by the relative strength of the Coulomb
interaction U% /W, since it is the only interaction parameter in the model system. This would be true,
if the transition to the insulator would be due to the localization of the correlated d-orbitals. However,
it has been shown[2] that it is rather the localization of singlet states, mixing d- with p-holes, that

drives the transition.
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Fig. 5.4 Energy-momentum dispersion 8(75) in the non-interacting limit, with ¢/ = ? =0, t;sz =0
and tg.p = O<ij>. In panel (a), the on-site d-p hybridizition is zero V = 0; in panel (b), it is set to

V = 1.4, causing the opening of a gap.

This can be explained with an intuitive argument: Starting from the atomic limit with N = 3,
the electrons will arrange themselves in ground state (5.19). Adiabatically turning on the inter-site
hoppings, the electrons will remain localized until the energetic gain from the hopping exceeds the
potential cost from moving an electron from one site to another. This potential cost is the energy
difference between the N = 4 plus N = 2 ground states and two N = 3 singlets

AE,o; = Epin[N = 4] + Epin[N = 2] = 2E;uin[N = 3] . (5.21)

Fig. 5.3 shows this quantity as a function of the bare energy difference €; — €, and the inter-shell
interaction UP for various values of U% and V..
Some observations: As expected, the potential energy difference grows almost linearly with the
interaction U9, as can be seen by comparing three lines of the same line type in panel (a). At the
same time, the gap increases significantly upon increasing €; — €, until it reaches a plateau, defined
by the bare value U?%. From panel (b), one expects the inter-shell interaction U, which we set to the
same value as UF?, to only have a minor influence on the electron localization,; at least for &, — €, > 0
and realistic values of the interaction (U9P < U%).

Non-interacting limit

The other limiting case is a lattice model, with all interactions set to zero. Again, such a model can
take various forms, but for the sake of simplicity we will restrict the discussion to the most simple
case of a two-orbital d-p model.
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Fig. 5.5 Energy-momentum dispersion 8(75) in the non-interacting limit, with ¢/ = 0, &? = —1,
tlfijp = 6.;j> and t;'}p = 0. In panel (a), the on-site d-p hybridizition is zero V = 0; in panel (b), it is set
to V = 1.4, causing the opening of a gap.

Considering a square lattice with d- and p-orbitals labeled by the same site index, our model takes
the form
Hap =Y &'d}gdic + ) € pigpio — Y (Vdigpia +h.c.)
iy 0 © (5.22)
— Z(fijpdjgpjg +h.c.)— Ztgppi‘cpjo ,
ijo ijo
where we neglected any direct d-d hopping.
This Hamiltonian can be diagonalized trivially by transforming it into momentum space. For a specific
choice of parameters it could, for instance, describe a model of localized d electrons which locally
hybridize with p-type valence electrons. Fig. 5.4 shows the energy-momentum dispersion resulting
in this case, with t;_iip =0, tg-p = 6_;j~ and €7 = €” = 0. In panel (a), the local hybridization is put
to zero V = 0, and the p-band crosses the Fermi level. Turning on the hybridization, one sees the
opening of a gap in panel (b) (for V = 1.4); the system becomes insulating.

Fig. 5.5 shows the dispersion for ¢ = 0, ” = —1, with tidjp = 0<j> and ti’}p = 0. This means, that
the d-electrons can only propagate “throught” the p-states, similar to the model (5.14) derived from
the Zhang-Rice transformation (there, however, the ratio V /1% = tg,f_ site/ tl‘\%’v = —6.843 is fixed, and

hopping is not restricted to the nearest neighbors). As before, introducing a non-vanishing on-site
hybridization V = 1.4 results in the opening of a gap.

5.2.3 Realistic low energy models & shell-folding

Throughout most of this chapter, we discuss the d-p problem on a model level, with a focus on the
emerging physics and how to effectively tackle such many body systems. Considering the calculation
of realistic materials, however, the first challenge lies in how to derive appropriate model parameters,
that provide a faithful description of the system’s low energy physics.
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Nowadays, density functional theory has established itself as an indispensable tool for the calculation
of realistic structures. It provides a straightforward way to derive the non-interacting part of a low-
energy Hamiltonian, by mapping the original problem onto an effective one-body system which can be
fitted by localized Wannier orbitals. In this way, we can derive the parameters of the non-interacting
part Hy + Hy;y, of (5.1).

Constructing the interacting part of a low-energy Hamiltonian is a more delicate issue. Here, immense
progress has been made with the development of the constrained random phase approximation (CRPA)
method[8]. Within cRPA, the partially screened effective Coulomb interactions are calculated by
considering screening from degrees of freedom that lie outside the low-energy window of interest.
Despite its success|9, 114, 122, 115] however, cRPA leads to ambiguities when considering problems
where the original system is down-folded to a correlated subspace that is entangled with bands that lie
outside the low-energy window. This is the case, as soon as we consider a model with d-p hybridiza-
tion, in which only the d-orbitals are regarded as interacting. In order to avoid such ambiguities,
interactions of the p-orbitals, as well as inter-shell interactions should, therefore, be treated on the
same footing when deriving the low energy model parameters.

This raises the practical issue that, as we shall see, models with inter-shell interactions are computa-
tionally much more demanding then those with mere d-interactions.

Recently, an elegant solution to this problem was suggested in the form of an approximate scheme,
called shell-folding[141]. The scheme is based on the observation that, if both the d- and the p-type
orbitals are centered on the same sites (e.g. by a Zhang-Rice transformation, as discussed above), the
interaction part (5.4) of the d-p can be re-written as

Upp_U p ZNJ Uzdp Z(N§+N;;)2+Hﬂund,

imm! inn' i

Udd_Udp N )
Hiy = s Z Ny(Ny—1)+

(5.23)

where additional one-body terms were absorbed in the bare on-site energies in Hy.

So far, we merely performed an algebraic manipulation. The main idea now is based on the assumption,
that the dominant screening process for charge fluctuations of the d-orbitals only involves electrons
from the surrounding ligands (which we transformed to be centered on the same site as the d orbital).
Reminiscent of the perfect screening [74] approach by Herring, shell-folding approximates this
screening process to be perfect, meaning that any charge fluctuation of the d- orbitals is exactly
compensated by fluctuations of the p-type Wannier orbitals on the same site. This implies, that the
total charge on each site is a conserved quantity, and the third term in (5.23) is a constant. The
shell-folding approximation, therefore, yields the following interaction Hamiltonian

e UPP_ ydr
Y Ni(Nj—1)+ ZNf J— 1)+ Hpuna - (5.24)

imm' inn'

HSF _ Udd _ Udp
int 2

The validity of this approximation shall be tested for various model parameters.
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Fig. 5.6 Schematic representation of the two-orbital d-p model under consideration.

5.3 Insights from quantum Monte Carlo

In this section, we present results from numeric calculations performed for the two-orbital d-p model.
In order to allow a treatment within single-site DMFT[57], the p-orbitals have been transformed to be
centered on the same sites as the d-orbitals (see section 5.2.1), such that the Hamiltonian is of the

form
Hap =Y (67 — W) djgdio + Z W)PigPio + Z (Viypio +hec.)
ic
+Udd2ndnd —FUf”I’anT i +Ude T+”z¢)(”n+”w> (5.25)
— Z (dlcpjg—i-h.c.) ,
<ij>

with on-site hybridization V of the d- and p-orbitals and nearest neighbor hopping 7. Such a
Hamiltonian could, for instance, be derived by applying a Zhang-Rice-type transformation (5.9) and
truncating the long-range hopping matrix after nearest neighbor hoppings (which, due the arguments
given in section 5.2.2, is a reasonable approximation). For matters of concreteness, we consider a 2-D
square lattice; a schematic representation of our model is shown in Fig. 5.6.

As required by the DMFT approximation, the Hamiltonian is then mapped onto a single-site
impurity of the form

th;zp Hatom +Hh)b > (5-26)
with
Huiom :Z(E —H deG'i'Z pg-Pc"‘Z Vdo-pc'i'hc)

5 (5.27)
+ U ndnf +Uppnpnf+Udp(nT +"i)(”T +nl)
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and
7 vdd v Lo dpdi 1d T opt
Hpyp =Y [déy pé} ba ol [T Fhe y + Y LD bl + Y EfDP P (5.28)
ko Vk Vk bkc ko ko

Corresponding to the two orbitals, we introduced two species of bath electrons bz and bf . However,
contrary to the cases discussed in the previous chapters, both kinds of bath electrons couple to both
impurity orbitals. This is due to the fact that we started out with a lattice model that accommodates
inter-shell hoppings and on-site hybridization; an electron has the possibility to start from orbital 1)
hop to the bath and then hop back to orbital 2), as it could on the lattice. It can be easily seen from
the DMFT equations, that such terms are not only optional, but necessary for the convergence of the
self-consistency cycles.

We now switch to a finite temperature Matsubara formulation, in which the model (5.26) corresponds

to the following action
Sap = Satom + Shyb » (5.29)
with
b T T
Satom = /0 dr Z (dcardc +pcarp6) + Harom (5.30)
(o2

and

Shyb://()ﬁdeT/ Z[d;(’v) pL(T)} [Add(r—r/) Adp(‘t—r’)] [dG(T:)] ' (5.31)

= AP (t—1) APP(t—7)| |po(T)

In this form, the hybridization with the bath states is taken into account implicitly via the hybridization
function A% (t —1’). This function can be derived in the standard way, yielding its definition

1 .
A% (1) = E):Afge—’m (5.32)
i®

. d -1
i0—E] 0 (5.33)
0 io—E}

dd d
AP — Z Vit Vi ?
0] - Vkpd Vkpp

ddx pdx
V,} v ]

px  y,DD*
Vi Vi

Due to the d-p hybridization, the action (5.29) will yield a matrix Greens’ function

——— <T [dw)rﬂ(m d(r)p*<o>]> (5.34)
p(D)d'(0) p()p'(0)

with non-zeros off-diagonal elements. Within the DMFT self-consistency cycles (see section 1.4.4),
this impurity Green’s function is then used to generate an update for the hybridization function.
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Fig. 5.7 Quasi particle renormalization Z as a function of the d-orbital Coulomb interaction U%? for
various values of the charge-transfer energy A = ¢ — &P, with V = 3.5 and B = 32 (unless stated
otherwise). Left panel (a) shows Z(U9) for an total filling of N = 3, while in the right panel, the total
filling is N = 2.8.

5.3.1 Results without inter-shell interactions (U = UPP = ()

We shall start this section by considering results for the model (5.25), with non-interacting p-orbitals
and no inter-shell interaction. For U = UPP = 0, the model is parametrized by the bare atomic
energies €7 and €”, the chemical potential y, the on-site hybridization V, the intra-shell interaction
U%, as well as the off-diagonal hopping 7. In the calculations presented in the following, we set
1% = 1, such that the bandwidth W = 8; all other parameters are given in units of %, The on-site
hybridization is set to V = 3.5¢%7, except for if explicitly stated otherwise. Here, we are interested
in cases where the energy levels of the ligand-orbitals are close enough to the Fermi level, such that
charge-transfer will be important. Together with the Coulomb interaction U9¢ we will, therefore,
consider the charge-transfer energy A = £ — &” (as well as A = A+ U% /2 including the Hartree shift
from a half-filled d-orbital) as a parameter of major importance.

Fig. 5.7 shows the quasi particle renormalization Z = (1 —ImdX/dw)~! for two different overall
fillings N = 3 and N = 2.8 and various values of the charge-transfer energy. Comparing the different
panels (a) and (b), one immediately remarks a striking difference: For (n'”) = 3 the value of Z
goes to zero, indicating a metal-insulator transition. For (n'”) = 2.8, however, the quasi particle
renormalization remains finite, even though correlations increase steadily upon increasing U4, This
is not surprising; although we did not fix the individual occupations of the d- and p- orbitals to an
integer value, the metal-insulator transition takes place by localization of Zhang-Rice-type singlets,
that constitute the atomic ground state at (n’") = 3. This observation is consistent with previous
investigations on two-orbital d-p models [2].

Another observation is the general increase of correlations upon increasing the charge-transfer
energy A. Considering the case of (n'”") = 3, this can be explained by considering the atomic limit.
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Fig. 5.8 Phase diagram of the two-orbital d-p model (5.25) without inter-shell interactions U =
UPP = 0, showing the critical Coulomb interaction Uc;, at which the insulating solution ceases to
exist. The red, dashed-dotted line is a fit to the function f(x) = a/(x+ b) + c. The dashed, grey line is
defined as U% = A. In the insulating phase, it indicates the transition from a Mott- to a charge-transfer
insulator. Red and blue crosses mark the parameters corresponding to the spectral functions presented
in Fig. 5.9 (a) and (b), respectively.
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Fig. 5.9 Spectral functions A(®) = —ImG(w) /7 of the d- and the p-orbitals in the insulating regime.
In the left panel (a), the interaction parameter U’ is considerably larger than A and charge-transfer
between orbitals of p- and d-type will thus be important. In the right panel (b), however, the effective
charge-transfer energy A = U% /2+A = 13.75 is much bigger than U9, The bulk of the spectral
weight of the p-orbitals is thus far below the Fermi level, and the size of the gap is mainly determined
by U4,
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As can be seen on the right panel of Fig. 5.3, the effective energy difference of the atomic ground
state configurations for different electron numbers increases upon increasing &9 — €”.

Fig. 5.8 shows the metal-insulator phase diagram in the (U%, A) plane, and can be compared
to Fig. 5.1, as well as the phase diagram given in [2]. As it could already be anticipated from the
previous discussion, the critical interaction strength decreases for increasing charge-transfer energy,
which is consistent with the atomic limit considerations. In the insulating regime, the grey, dashed
line indicates the crossover from the charge-transfer-insulator to the Mott insulator. Fig. 5.9 shows
spectral functions of the d- and p- orbitals for two different sets of parameters, which are marked by
crosses in Fig. 5.8. In panel (a), the interaction parameter U% = 15 is much larger than the effective
charge-transfer energy A = 2.5; the width of spectral gap is close to the latter one. In panel (b), the
situation is reversed, with A = 13.75 being considerably larger than U9¢ = 7.5. Here, the bulk of the
spectral weight corresponding to the p-orbitals is far below the Fermi level, around which we see two
Hubbard bands, separated by distance of about U,

One technical remark on the calculation of Z. Except for one curve in Fig. 5.7 (b), all calculations
were performed at B = 32t%P~!i.e. B =256W~!. At this temperature, the resolution of the Matsubara
frequencies is not fine enough to fit the linear Fermi liquid behavior as i@ approaches zero, and the
renormalization was calculated as Z ~ (1 —ImE[iay]B/7)"". Calculations at lower temperatures
become increasingly costly; for a total filling N = 2.8 and A = 5, however, we repeated the calculation
at B = 64t%7~1 = 512W !, to check the convergence of the evaluated Z values. The agreement is at
least within ~ 3% (for U4? > 7), with a random sign of the deviation (which means, that statistic
fluctuations predominate over the expected systematic trend from this method, namely a decrease of
Z upon decreasing temperature).

5.3.2 Results with inter-shell interactions (U # 0 & U = 0)

In Sec. 5.2.3, we already briefly discussed the issue of constructing low energy models from ab-initio
calculations, i.e. the subtleties one has to consider when deriving the effective interaction parameters.
More specifically, we evoked the problematics of deriving a low energy model, the correlated subspace
of which does not include all the orbitals under consideration. Exactly this was, however, the case
that we studied in the last section (and which is most commonly considered in the literature).

In this section, we shall investigate the effect of non-zero inter-shell interactions. The model under
consideration is again (5.25), but now we set U dp # 0 and UPP = 0. As in the previous calculations,
we chose 1?7 = 1 (corresponding to a bandwidth of W = 8) as our unit of energy, and set V = 3.5.
The other parameters will be defined specifically for each calculation.

The very first thing we would like to investigate is the effect that the inter-shell interactions have on
the correlation of the d electrons.
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Fig. 5.10 Quasi particle renormalization Z as a function of the d-orbital Coulomb interaction U4“ for
various values of the charge-transfer energy A = ¢ — €P, with V = 3.5 and B = 32. Solid lines denote

results with U% = UPP = 0, dashed-dotted lines correspond to U7 = UPP = 0.5U% . The left panel
(a) again shows Z(U“?) for a total filling of N = 3, while in the right panel, the total filling is N = 2.8.

Fig. 5.10 corresponds to Fig. 5.7 presented in the previous section, and compares the d-orbital
quasi-particle renormalization for calculations with U = UPP = 0.5U9 to those without inter-shell
and p-orbital interaction.

The results reveal that the additional interactions consistently lower the correlations of the d
electrons (except for some calculations at A = —5 in the weakly correlated regime, which would
require a more careful investigation). At a first glance, this might seem counter-intuitive, since
interactions are supposed to enhance correlations. However, one can give some simple arguments,
why this is to be expected.

1. The Hartree contribution of the inter-shell and p orbital interaction to the self-energy constitutes
a constant, real shift, that can be absorbed in the on-site energies

gl =g yir <n$ +nl > (5.35)
80 = &b+ U (w1 )+ UP (n3) . (5.36)

This means, that the bare charge-transfer energy will be changed by
SA = Udr (<n§’+nj’>—<n‘{+nj’>) —Urr(nd) (5.37)

which, for U9 = UPP, as well as N > 1 and N” < 2 will necessarily be negative §A < 0.
Considering the arguments put forward in the previous section on the results with d interactions
only (i.e. the considerations from the atomic limit) we know that this leads to a decrease in

correlations.
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Fig. 5.11 Quasiparticle renormalization Z as a function of U = UPP. The solid lines in panel (a)
show Z at average total filling N = 2.8 for two different values of the charge-transfer energy and
U9 = 4. The dashed, red line shows Z from fixing the indivual fillings Ny = Ny (U%? = 0,A = 5),
keeping N = 2.8 and U% = 10. Panel (b) shows the same quantity for total filling N = 3 and
U% = 6.25; the red, solid line for fixed A, and the red, dashed line for fixing individual fillings
Ny = Ny (U% =0,A =5). In all calculations, we set V = 3.5 and 8 = 32.

2. The decrease in correlations can also be explained by considering the shell-folding approxi-
mation, explained in Sec. 5.2.3. According to this approximation, the inter-shell interaction
renormalizes the intra-shell interactions as U% = U494 — 9P and UPP = UPP — U“P. For the
parameters under consideration, i.e. U%? = UPP = 0.5U%, this means that the effective p inter-
actions cancels exactly to zero, while the d interaction is diminished to half its original value.
Looking at Fig. 5.10, it is clear that this approximation strongly overestimates the reduction of
correlations due to the inter-shell interaction, since if it was exact, the dashed-dotted curves
should be equivalent to the solid lines, at double the value of U4,

Let us reconsider these two points more carefully. If the decrease in correlation was due to the Hartree
contribution of the self-energy, this would mean that this effect should become ever stronger upon
decreasing the charge-transfer energy A. This is because 6A in Eq. (5.37) decreases for increasing
filling of the d-orbitals; which is exactly the effect of decreasing A.

That this is indeed the case can already be seen in Fig. 5.10 (b), and becomes even clearer when
contemplating Fig. 5.11 (a), which shows the evolution of the quasi particle renormalization upon
increasing U?P = UPP. Indeed, comparing the solid lines in panel (a), we see that the slope of Z(U?P)
is strongly enhanced for the blue curve, calculated with a smaller charge-transfer energy of A = 0.
This raises the question of whether the decrease of correlations is only due to the Hartree shift. To
investigate this issue, we added the dashed, red line, which shows the evolution of Z for constant
individual occupations, such that Ny = Ny (U = 0,A = 5) is fixed to the value it takes for the red,
solid curve at U4? = 0. Most interestingly, even though the slope of the dashed curve is smaller than
the one of the solid curve, it is still positive, indicating a decrease in correlations.
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Fig. 5.12 Charge correlations in the metallic regime for (a) N =2.8,A=5,(b) N=2.8, A=0, (¢)
N=3,A=5,(d) N =3, A=0, as a function of the d orbital interaction U with U = UPP = 0.5U7,
V =3.5and 8 = 32. Black, solid lines denote fluctuations of total charge (AN?) = ((AN; +AN,)*) =
<AN§> + <AN§> +2 (AN4AN,), dashed lines its different components.

That this behavior is, however, not universal, can be seen in the right panel (b) of Fig. 5.11. It shows
the quasi-particle renormalization for total filling N = 3; once for fixed charge-transfer energy A =5,
and once for fixed individual fillings Ny = Ny (U = 0,A = 5) at U9 = 6.25 (which is supposed to
be close to the critical value of the metal-insulator transition at Ugd ~ 7.25) . While for fixed A the
correlations decrease as before, they increase when keeping the individual fillings fixed.

The second argument to explain the decrease in correlations followed the reasoning of the shell-
folding approximation. Here, we can use the results from the numerous calculations performed to
generate Fig. 5.10 to actually test the assumption on which this approximation is based. As it has
already been mentioned in Sec. 5.2.3, shell-folding can be thought of as a generalization of the
perfect screening approximation [74], assuming that charge fluctuations of the correlated d-electrons
would be perfectly compensated by fluctuations of the surrounding ligands (which, by means of
Zhang-Rice-type transformation, we centered on the same site).

Fig. 5.12 shows the charge fluctuations of and between different orbitals. According to the
shell-folding approximation, N = Ny + N, should be approximately constant, and thus <AN2> =
<(Nd +Np— (Ng+ Np>)2> should be close to zero. Indeed, for all panels (a) - (d), fluctuations of the
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Fig. 5.13 Imaginary part of the Green’s function (a) and self energy (b) for total filling N = 2.8,
U = yrP = 0.5U% and two different values of U?. Solid lines denote results from the full
two orbital calculation, while dashed lines consider results using the Hartree approximation. In all
calculations we set V = 3.5 and f8 = 32.

total charge are smaller than the fluctuations of the d electrons alone. However it is only in graphs
(c) and (d) with N = 3, and considerably large U dd | that <AN2> actually comes close to zero. This
might seem in contradiction with the results from Fig. 5.11, where for fixed individual fillings (thus
eliminating the effect from the Hartree correction) an increase in correlations can only be seen for the
calculations performed at an overall filling N = 2.8.

So how can we make sense of these different observations? Fig. 5.11 suggests, that for in-
commensurate fillings, a shell-folding like renormalization of U4? and UPP explains the decrease
of correlations upon increasing the inter-shell interaction U%. While this effect should persist for
the commensurate filling N = 3, the physics in the strongly correlated regime is dominated by the
formation of Zhang-Rice like singlets (which finally cause the metal-insulator transition), for which
the atomic energy gap increases with increasing U“? (see Sec. 5.2.2, Fig. 5.3 (b)).

This also results in different descriptions of how to approximately treat the effect of inter-shell

interactions in the calculations.

» For incommensurate fillings (and also for commensurate fillings at sufficiently weak correla-
tions), and significantly large and positive charge-transfer energy A, the effect of the inter-shell
interaction U9P < U9 is, to a substantial degree, due to the Hartree correction to the self-energy,
which can be used as a starting point for further approximations, as can be seen in Fig. 5.13.

* For commensurate fillings in the strongly correlated regime, the influence of inter-shell inter-
actions can be rather strong, with significant effects beyond the Hartree correction. This can
be witnessed in Fig. 5.14, which shows the imaginary part of the d-orbital Green’s functions
and self-energies for various values of the inter-shell interaction, that is set to be equal to the p
orbital interaction U4? = UPP. Upon increasing U“?, the system undergoes a metal-insulator
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Fig. 5.14 Imaginary part of the Green’s function (a) and self energy (b) for total filling N = 3, fixed
individual fillings Ny = 1.1, U% = 6.5 and various strengths of the inter-shell interaction U4P = UPP,
In all calculations we used V = 3.5 and § = 16.

transition, as can be seen from the behavior of the Green’s function around the Fermi level:
For the biggest inter-shell interaction under consideration U% = UPP = 0.5U% = 3.25, the
imaginary part of the Green’s function extrapolates to zero, indicating vanishing spectral weight
i.e. a gap at the Fermi level. Note that this effect is strictly beyond the Hartree correction, since

the individual fillings have been kept constant.

One simple way to improve upon the Hartree approximation discussed in the first point, is to
reconsider the mean-field decoupling of the interaction terms on which the self-energy correction is
based. Considering the Hamiltonian (5.25), we can decouple the terms depending on U4” and UPP as

U”Pnﬁnf-l-Udp(n‘Ti+n‘f)(n¥+n¢) Upp{nT<n¢>+<n¥>ni’+<n¥><nf>}
—I—Udp{(n%]—i-ni]) <n$—|—nf>+<n¢+n¢> <nT+n¢><n$+nf>}
~u{dip (plds) +(dipr) pld: + {dlpr) <PTdT>}

v () + (i ol () ()

where we neglected any spin-flipping terms. Fixing the individual occupations of the orbitals also
fixes the energy corrections, due to the Hartree contributions in the first two lines of (5.38). However,

(5.38)

we have not yet exploited the corrections from the Fock contributions in the 3" and 4 line.

Fig. 5.15 compares the results from applying the Hartree and Hartree-Fock approximations to the
system with total filling N = 2.8. Indeed, a major improvement is achieved by adding the additional
off-diagonal terms. The rather small deviation of the Hartree-Fock Z from the reference results

suggests that the contribution from higher-order corrections are merely small in this parameter range.
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Fig. 5.15 Comparison of different approximation schemes for total filling N = 2.8. Panel (a) shows the
d orbital quasi-particle renormalization Z as a function of U%?. Solid lines show the exact results from
quantum Monte Carlo; the black lines for U7 = UPP = 0.5U% and the blue lines for U = UPP = 0.
The red and green, dashed lines show the results from applying the Hartree and the Hartree-Fock
approximation, respectively. Panel (b) and (c) show the imaginary part of the d orbital self-energies,
comparing the results with and without inter-shell interaction, as well as with different approximation
schemes (with “H” standing Hartree, “H-F” for Hartree-Fock). The d orbital interaction strength is
U9 =5 (b) and U = 10 (c). In all calculations, we set V = 3.5 and B =32.

In the scenario discussed in the second point, effects from the inter-shell interaction are significant,
and cannot be captured by simply adding a constant Hartree shift to the self-energy. On the other
hand, the increasing difficulty of performing calculations for a growing number of orbitals motivates
us to seek different ways to treat the effect of U on an approximative level. This will be the topic of
the next chapter.

5.4 Conclusions

In this chapter, we have discussed the physics of models with two different, interacting shells — the d-p
problem. To this end, we focused on the most simple model realization for such a system — the two
orbital Hubbard model with off-diagonal (in orbital space) intra- and inter-site hopping. The specific
form of the model under consideration corresponds to the model emerging from the Zhang-Rice
construction, truncated to nearest-neighbor hoppings.

In the case without inter-shell interactions, we studied the different solutions realized in the phase
space spanned by the Hubbard interaction and the charge-transfer energy (U9, A), reproducing a
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phase diagram of Zaanen-Sawatzky-Allen type in the case for 3/4 filling N = N; + N, = 3. In the
metallic phase, we discussed how the charge-transfer energy A = £? = ¢” influences correlations. In
the insulating phase, we demonstrated how this parameter changes the character of the spectral gap,
resulting in a transition from a charge-transfer insulator at small A to a Mott insulator at large A.

We then proceeded to discussing how inter-shell interactions influence the correlations of the
model system. Our results, obtained for different parameter-sets, suggest that inter-shell interactions
generally decrease the correlations of the system. We explain this observation with the decrease of
the effective charge-transfer energy, as well as a reduction of the effective interaction due to screening
(see Sec. 5.2.3).

Our results for fixed individual fillings N; and N, demonstrate that the effect of inter-shell
interactions, after compensating for interaction-induced charge-transfer, is more subtle. In particular,
we still find a decrease in correlations in the metallic regime away from commensurate filling. On
the other hand, at N = 3 and fixed Ny, N,, we find that U dp_ PP make the system more strongly
correlated, even inducing a phase transition.

Since inter-shell interactions are notoriously hard to handle in calculations, we investigated the
efficiency of simple mean-field approximations to treat these interactions in an effective manner.
We find that in the metallic regime, Hartree-Fock-type approximations provide reasonable results,
at negligible computational cost. However, in the strongly correlated regime, where the additional
interactions can lead to a phase transition, they fail, emphasizing the necessity of more sophisticated

approximations.



Chapter 6

Slave Rotor Approach to the d-p
Problem

6.1 Motivation & outline

In the previous section 2.3, we introduced the slave rotor technique. The reason for this is, that we
would like to apply it to the d-p model. In section 5.3 we discussed some of the physics emerging
from models with inter-shell coupling, by considering the most simple case of a “1+1”-orbital system.
While the two orbital model constitutes a special case of the systems of interest, it is clear that the
difficulties encountered in the corresponding Monte Carlo simulations (especially due to the negative
sign problem) would increase drastically with every additional orbital.

In section 5.2.3, we already discussed the shell-folding approximation[141] as a simple scheme
to derive an effective Hamiltonian in which the inter-shell interaction is eliminated and only serves
to re-normalize the other interactions. The shell-folding approximation is based on the physical
assumption, that the dominant screening process for charge fluctuations of the d-electrons is mediated
by the surrounding ligands. This means, that shell-folding would become exact in the limit of “perfect-
screening”, in which every d-charge fluctuation is perfectly canceled by a compensating fluctuation of
a p-charge, making the sum of the local charges N/ =Y, & nfmc + Y6 114 @ constant on each cell.

We have seen that in most parameter regimes, the inter-shell interaction U“? effectively reduces
correlations, as predicted by shell-folding. However, it is also clear that the efficiency of the screening
by the electrons on the same site is, in general, far from perfect. It is for this reason, that we would
like to incorporate charge fluctuations into our theory. As announced, this shall be done making use
of the slave rotor formalism introduced in the previous section; this time, however, we shall work in a
functional integral formalism (a corresponding derivation of the slave rotor technique can be found in
[50]).
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6.2 Rotorization of the action

To keep the discussion as simple as possible, we shall again consider the minimal two-orbital impurity
model, which serves us as a test case for the general d-p problem (we emphasize, however, that the

following derivation is general and not restricted to two-orbital models). The action reads

Sdp = Satom +Shyh s (6.1)
with
A T i
Satom:/o dr Z(dgardo-+poafpg)
+Z —u deoJrZ pcpa+2 (Vd}ps+h.c.) (6.2)
dd dp pp dpy PP Udp 2
+ (U -U )nn +(UPP-U )nTni+T(Nd+NP_2)
and
ds (7'
Shyb—// dzdt Z dy(t) ph(t }Adp(r ) [ “ET%] , (6.3)
(e}

where the matrix quantity Adp(r — ') is defined by (5.32). Note that in (6.2), we used the shell-
folding rewriting in which U4? renormalizes the other interactions, but we kept the interaction of the
total charge (the additional —2 corresponds to the number of orbitals and was introduced for later
convenience; the energy shift it induces is supposed to be absorbed in the chemical potential ).

The goal is to incorporate fluctuations of the term (N4 + N, — 2)2. To achieve this, we proceed by
decoupling it using a Hubbard-Stratonovich (HS) transformation

UdP

Ng+N,— 22— Ng+N,—2 6.4
After this transformation, the atomic action becomes
P i T
Satom = /0 dr Z (dcardc "‘Po-arpo)
(e}
+ Y (e"+ip—p)dods + Y (€7 +ip — 1) plps + Z (Vdgps+h.c.) (6.5)
(e2 (e2

dd d d_ d d 2 .
+ (U = UP)nsn| + (UPP - U‘”)nTn¢ 2Ud1’¢ (j)}
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The price for eliminating the interaction term is the emergence of a HS field ¢ that couples directly to
the electron density. We will, therefore, apply a gauge transformation to the electronic fields'

d(t) =d(t)e 0 (6.6)
p(t)=p )‘“’() 6.7)
() / dT'o(t (6.8)

with ¢y = foﬁ dt ¢(7)[2x]. With this transformation, the coupling to the dynamic part of the HS field
is encoded in a U(1) variable ¢/, leaving only an explicit coupling to the static component ¢y. The
atomic part of the action then reads

B B
Satom = /0 dr {Z(d?,(af+i¢o//3)do+ﬁ2(8f+i¢o/ﬁ)pa)

(o)

+ Z (e — w)didy + Z 1) psps + Z (Vafi,ﬁcy +he) (6.9)

+ (UM = Uil + (UPP - Uil al + T dp 0% — 21(}5}
where the coupling i¢(N; + N ») was canceled by the terms emerging from the time derivatives acting
on the transformed electron fields d;d(7) = —i(¢ — ¢o/B)d(7)e 0D + (3;d(7))e~®("). While we
could almost entirely decouple the electrons from the HS field in the atomic action, we introduced an
explicit coupling in the hybridization term

B ds ()| . o
Shp = / [ arar Y |db(r) ph(r)]| A% (-7 [ﬁcf&:’;] JOE-0)  (6.10)

The form of the transformed action is reminiscent of the slave rotor formulation of Ref. [50] introduced
in 2.3 and indeed, we can retrieve the original formulation by performing a second transformation
1/(2UP)¢* — (U /2)L* —iLd = (U /2)L> —iL(d:0 + ¢y/B). While this doesn’t change the
form of the hybridization part(6.11), the atomic action becomes

B ~ ~ +
Satom :/0 dr {Z(d;(ar‘i‘i%/ﬁ)dc + Po(9c+i90/B)po)

(o

+Y (" —p)dodo+Y (" — ) popo+ Y. (Vdspo+h.c.) (6.11)
o (e} (o)

ydr 20  ¢o .%o
dd dp ~d~d pp __y7dp\ 5P P 2 _ R
+(U -U )T +(U U )nTn¢+ 2L L(a +ﬁ) Zﬁ}

I'This transformation leaves the measure invariant, so we will not encounter any additional difficulties when calculating
the path integral.
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We recognize the angular momentum variable L, corresponding to the operator L, as well as the phase
variable 0, which is conjugate to L. The static field component ¢,/ corresponds to the Lagrange
multiplier. We will restrict ourselves to its saddle-point value of 7 = —i¢y/B (which again, we allow
to be complex), defined by

(L) =Y (dids) +Y (popo) 2. 6.12)

or, equivalently

1 20 ! -
: 2\ Ly /gt s s
Wl(<%>+lh> —;<d0d0>+;<pcpg>—2, (6.13)
(the second expression can be derived by considering the saddle-point corresponding to action (6.2)).
To make the problem tractable, we then perform a mean-field decoupling of the action. Since in the
atomic action (6.11), fermionic and rotor variables are only coupled via ¢, the mean-field decoupling
only affects the hybridization term (6.10) and we get

S%?F = Satom + S/];yb + Sgyb > (6.14)
with
' P *: . d ds(7)
Sty = //O du? ¥ dy(t) ()| AP (T-7) [ﬁ‘; o (6.15)
B | ,
Shyp = //0 drdt’ AP (7 — 7')el0(F)=6(7) (6.16)

By using the Feynman-Peierls variational principle, we define the functions A;{p () and A‘;p to

optimize the functional
e[AY (1), A7) = (Say —S{}%SyF —InZMF 4 1nZ. 6.17)
X p

ZM F

Furthermore, we introduced and Z as the partition functions corresponding to S%JF and S,

respectively. Not surprisingly, the functional is optimized by

Aj.l’ (t—7)= <ei(e(r>—e(r’)) >SMF A (z— 7)) (6.18)
A‘é”(r—r’)=z<{d1<r> Fh(e)] A% (- ) F"“?D . (6.19)
= Bo(®)| [

After these functions have been evaluated self-consistently, any physical observable can be evaluated
as an expectation value with respect to the mean-field action S%,F . Analogously to (2.39), the impurity
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Green’s function factorizes to
: ' d(r)d'(v)) d(7)p(7") —i(0(0)—0()\ _ @i g /
G"(t—t=—(T i ! =G"P(t—1)G"(v—1) .
r=) < [ﬁ(f)a”(f’) PO)p(e >]><e )= G-I =)
(6.20)

6.2.1 DMFT self-consistency

Assuming that we have a way to calculate G (7 — 7’) and G®(t — 7’), we can use the DMFT
approximation to incorporate the effect of the lattice. In practice, the self-consistency conditions
(6.18) and (6.19) will be updated during the DMFT cycles, such that the overall scheme becomes the
following.

Starting from an initial guess for Afifp and A‘ép (or, equivalently, AP s GimP and Ge),

. solve the impurity model S¥!f" to obtain G™ (7 — 7') and G® (1 — 7).

_ 1l
2. Use the Dyson equation to calculate the local self energy Zi = [GY,)] - [G;gp } . Here

G, is the non-interacting Green’s function corresponding to the non-interacting part of (6.1).

3. Calculate the local Green’s function

Glot = — Y (L(iw+p) — e(k) — Ziy) " (6.21)
k

2=

and use the result to calculate the new Weiss field, i.e. free Green’s function
_ —1
ARSI IES (6.22)

4. Derive the hybridization function

dp . gd \% 0 —1
AP =1(io+u)— Ve e - [Gh] . (6.23)

and calculate A?p and A‘;” (using G and G?) to construct the new action S%,F )
5. Iterate until GEZ')” = Gfgf and the self-consistency equations (6.18) & (6.19) are fulfilled.

Even though we eliminated the inter-shell interactions in the fermionic part of the action, we still
have to deal with interactions within the d- and the p- shells. In case of the p-orbitals, this interaction
is supposed to be rather weak and will be even further decreased upon subtracting U%”. Thus, we can
hope that the effect of the p-p Coulomb interaction can be well described by a Hatree approximation.
The d-orbitals, however, will remain correlated, and we will have to apply numerical methods (see
section C.2) in order to solve the impurity model.
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On the other hand, we have to evaluate G% (7 — 7’), which poses a non-trivial problem by itself. We

shall discuss several approaches in the following.

6.3 Evaluating the rotor Green’s function

Our goal is to calculate the Green’s function

G (v — ) = (TO@=0EN) (6.24)
SG
dp
corresponding to the mean-field decoupled rotor action
B 20 udr B : /
Sop = /0 dt {—iLﬁ +hL+ TLZ} + //O dedt’ A% (v — 7')el0()=0(7) (6.25)

6.3.1 The atomic limit

In the atomic limit, the rotor hybridization function A‘;” (t—1') (which can be shown to correspond
to the kinetic energy of the fermions, see Appendix D.2) approaches zero, and we can find an analytic
expression (see Appendix D.1) for the Green’s function

22 a2

_ho e U
Gl (1) = Ly cos {2n gy 2 +7/P)} ' exp{Z{U—dp (cos(vT)— 1)}} , (6.26)

_ 2252 V2
Y, cos {ZnR(% —2}e Urh P

where v, = mzﬁ—” and the sum Y, runs over all v,, with m being an integer m € (—oo, o).

Using a Green’s function formalism, the saddle-point constraint (6.12) e.g. (6.13), translates into

1 <_aTG"(r=0—)+arGe(r=o+) _h) %Z

ZE 2 (dyds)+Y (Phpo) —2, 6.27)
o

(e

which can be derived from (6.13) and by considering that

26 1/0 T0(1—0+ 0 (-
i( 22N = 2 [ pmile(e=0T)=6(0)]\ . “ [/ ,—i[6(z=0")—6(0)]
l<8‘c>_ 2 (81‘ <e >+8r <e >> : (6.28)

where one has to care about the discontinuity of the first derivative.
Comparing expressions (6.27) and (6.26), this means that

e For h =0, G§ is symmetric around 7 = 0, therefore 9;G%(t=07) = —9:G?(t=0") and the
left side of (6.27) vanishes: The system is at half filling N = 2.

» For h # 0, the system departs from half filling. Note that a finite rotor filling can only be
achieved due to the summation over the integer winding number n in (6.26): If one only

considered the n = O contribution, the rotor system would be stuck at half filling.
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Fig. 6.1 Rotor Green’s function in the atomic limit for (a) different fillings and (b) different values of
the interaction U7 .

Fig. 6.1 shows the rotor Green’s function in the atomic limit for various fillings N (left panel (a)) and
various interaction strengths U?” (right panel (b)). Yet another important point has to be clarified.
When deriving the mean-field formalism in Sec. 2.3.2, we identified the expectation value

(cos )} = lim {cos (B(8/2))cos (6(0))) = Jim GF(B/2) (6.29)

as the quasi-particle renormalization Z of the auxiliary fermions. In the atomic limit, this value
will always be zero, as it is already adumbrated by Fig. 6.1 (b). This means, that the atomic limit
approximation can only be expected to be of relevance in the insulating phase, which is in contrast
with similar implementations, e.g. to describe models with dynamic interactions [95]. A more detailed

derivation can be found in Appendix D.1.2.

6.3.2 Beyond the atomic limit

In principle, one could perform a perturbative expansion of the Green’s function in the hybridization
term (the resulting analytic expressions can be found in Appendix D.1.3). In practice, however, it is
more convenient to consider non-perturbative methods to calculate the rotor Green’s function.

The only reason why the rotor action (6.25) is hard to tackle is because of the hybridization term, which
is non-local in imaginary time. One way to circumvent this proxblem is to consider a Hamiltonian
formalism, and apply the slave rotor transformation to Hamiltonian (5.26)

Hyt = HyR 4+ Hp (6.30)

mp atom
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such that

How =Y (&9 —p—h)dido+ Y (6" —u—h)pspo+ ), (Vdspo+h.c.)

° ° ° 6.31)
dd _ pydpyxd=d d uer .,

+ (U U AG] + (UPP = UP)iA] + —— L7 + L,

where we used the shell-folding (see Sec. 5.2.3) form, and

dd dp d
m-xfla o] (i 5]
ko Vk Vk bkc

e+ h.c.} + Y Elb?, b+ Y ELbPL b (632)
ko ko

A mean-field decoupling of (6.30) leads to

HR =H] +HS, . (6.33)

imp imp
with

H,, =Y (e —u—h)dyds+ Y (6" — p—h)popo+ Y. (Vdypo+huc.)
o (e}

[}
dd dp\~d ~d dp\ 5P =P
+ (U = Uil + (UPP = Ul i (6.34)
N dep b 0 dpdi gd pppt ppt
~ c i '
+Y [dc pc} yrd yee | | e <e >+h'c' +kZEkb tolho = LE it
ko k k ko o ko

and

U, véd virl e |\
6 _ 2 A k k ki 0
Hipy= o1 +hL+Z{<[dG ] [V,g’d v bif’ ¢ + h.c.
o

ko

yir . 1 . .
= D +hl+SEf, (0 +e)

(6.35)

where E]{m is the kinetic energy of the auxiliary fermions (for a derivation see Appendix D.2). After
this decoupling, we can proceed as in Sec. 6.2.1, using the DMFT self-consistency. For the auxiliary
fermions, we can integrate out the bath states, such that one retrieves (6.15), with the only difference
that now the rotor expectation value in (6.18) factorizes

Aff’(r— ) = <ei9>2Ad1’(r— 7). (6.36)

Otherwise, nothing changes and G™7 still has to be calculated using numerical methods.

On the other hand, the calculation of G® simplifies drastically, since Hamiltonian (6.35) can be
diagonalized by truncating its spectrum and mapping it onto a matrix, as explained in Appendix A.1.
The Green’s function G® can then simply be calculated by evolving the operator ¢(?) in time.
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Fig. 6.2 Rotor Green’s functions for various values of the kinetic energy E,{l.n corresponding to the
auxiliary fermions. The black lines mark the Green’s function in the atomic limit, i.e. Ey;, = 0. Panel
(a) shows the Green’s functions at half filling N = 2, while panel (b) shows the same quantities for
N=138.

Fig. 6.2 shows the rotor Green’s function for different values of the auxiliary fermion kinetic

energy E/ . For kinetic energy Ekfm > 0, the imaginary time Green’s functions form a plateau

kin®

characterized by G%(/2) ~ <ei9>2. Upon increasing the magnitude of E/ , this value approaches

one <ei9> W 1, and the physical Green’s function (6.20) approaches the auxiliary fermionic one
kin|—>°°

G (1) —— G"P(1).
|Exin| o0

Looking at the right panel 6.2 (b), it is remarkable to see how even small values of |E,{m| counteract
the asymmetry that characterizes the rotor Green’s function away from half filling.

6.4 Numerical results for the d-p problem

In the following, we present some results obtained by the slave-rotor technique, as derived in the
previous section, applied to the d-p problem.

6.4.1 The insulating phase

We start by considering the insulating regime, where we expect reasonable results from the atomic limit
approximation to the rotor problem. Fig. 6.3 shows the imaginary part of the d orbital Green’s function
and self-energy, comparing results obtained from the slave rotor and shell-folding approximations to
those from the full numerical two orbital calculations. Looking at the Green’s functions in panels
(a), (c) and (e), we see that the results from the slave rotor scheme stay rather close to the reference
calculations, while those obtained from shell-folding deviate more strongly upon increasing the
inter-shell interaction. This goes up to the point where the strong shell-folding renormalization of the
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Fig. 6.3 Imaginary part of the d orbital Green’s function and self energy for total filling N = 3,
U% =10, V =3.5, B = 16 and various values of U4? = UPP. Solid, black lines denote results
from the full model; blue and red dashed lines correspond to the solutions from the slave rotor and
shell-folding approximation, respectively.

bare interaction U4 = U4 — 7 turns the system metallic (as can be seen from the behavior of the
red curve in panels (e) and (f)).

The breakdown of the shell-folding approximation is also apparent from looking at the self-
energies in panels (b), (d) and (f). For increasing U, the curves deviate more and more from the
reference calculation, even recovering the typical Fermi-liquid behavior for the biggest inter-shell
interaction under consideration.

The self-energies also reveal a significant deviation between the slave rotor approximation and the
reference calculations. This difference is particularly pronounced for small Matsubara frequencies;
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contrary to the shell-folding approximation, however, the slave rotor solution follows the general
trend of the reference calculation.

Another striking difference concerns the behavior of the high-frequency tails of the self energies.
While the high-frequency behavior of the shell-folding solution is completely off the reference of
high inter-shell interactions, the tail from the slave rotor solution remains rather close to the correct
result. That such a behavior is indeed expected, can be confirmed by analytical considerations (see
Sec. D.4.2).
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Fig. 6.4 Imaginary part of the d orbital Green’s function and self energy for total filling N,,; = 2.8,
d-d interaction U9¢ = 10, charge-transfer energy A =0, V = 3.5, B = 16 and various values of
U = UPP. Solid, black lines denote results from the full model; red, blue and magenta-colored
dashed lines correspond to the solutions from the shell-folding, slave rotor and the improved slave
rotor approximations, respectively. The results may be compared to the solution for U = UPP = (),
which is marked by black, dashed lines.
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6.4.2 The metallic phase

We now turn to the metallic phase. Fig. 6.4 shows the results for Green’s functions and self-energies
for different values of inter-shell interactions, for a total filling of N,,, = 2.8, and parameters U dd — 10,
V =3.5, B =16 (all in units of ¢). In this regime, the slave rotor approximation (blue) yields only
slightly better results than the shell-folding scheme (red), mainly at strong values of U4? = UPP.

Again, the slave rotor method is clearly superior in the high-frequency regime; however, close to
i® = 0, the simple shell-folding is mostly closer to the reference solution. This might be explained by
the following considerations. First, it is known that the slave rotor method overestimates correlations
in the weak to intermediate interaction range (as can be seen from Fig. 2.2). This leads to a stronger
depletion of the reconstructed, physical Green’s function (6.20) — which, close to /2 is approximately
G (B/2) = G™P(B/2)G(B/2) ~ G™P(B/2)Z%, — therefore reducing the absolute value of the
Green’s function for small Matsubara frequencies. On the other hand, it is well known [50, 29], that
the slave rotor solution in the low temperature limit is characterized by limz_,o Im[Z 4y (® = 0)] # 0,
and therefore does not describe a Fermi liquid.

In [29], this issue motivated the authors to consider a hybrid approach, combining their slave
rotor based method (used to treat dynamic interactions) with results for InG(® = 0) from analytic
considerations, such that the resulting Green’s functions displayed the correct low-energy behavior.

In the single-site DMFT description of the one-orbital or orbitally degenerate Hubbard models,
the Fermi-liquid condition limz_,o Im[X(® = 0)] = 0 pins the Green’s function at the Fermi-level to

D(e)

Im[G( = 0)] = Im/dsu e Ren(o) -~ P Rez0) (6.37)

since the value of u —ReX(0) is uniquely defined for a fixed filling. Unfortunately, this is not the case
anymore for non-degenerate multi-orbital systems — fixing the filling N,,, does not fix u1 — ReX(0)
(which is now a matrix), and therefore we cannot evaluate the spectral weight at @ = 0.

In lack of a simple, exact method to evaluate the spectral weight at the Fermi-level, we considered a
more pragmatic approach to improve upon the original method. Acknowledging, that for intermediate
inter-shell interaction strengths, the shell-folding approach gives better results close to the Fermi-level,
we use this information for a minimal modification of the rotor Green’s function G®. Analogously to

[29], we consider the improved expression

ifiv=0
GOSF (iv) = { a if iv (6.38)

(1—be™v/¢)GO(iv) ifiv#0.

Two of the three parameters — a and b — are fixed by the conditions that 1) the (physical) Green’s
function G (t) = G7 (7) GO+5F (1) yields the same spectral weight as the shell-folding Green’s
function at the Fermi level ImGi,";p(a) =0) = ImG¥ (® = 0) and 2) that G¥™5F (0) = G# 57 (B) = 1,

which ensures that the expectation number of the pseudo-fermions matches the one of the physical
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electrons. The third parameter c is a crossover frequency between the shell-folding and the slave rotor
behavior. Its optimal value was found to be about the bandwidth ~ W = 2D of the system.

Results from this hybrid method can also be seen in Fig. 6.4, where they are labeled as “improved
SR”. Indeed, the Green’s functions and self-energies obtained from this method are much closer to

the reference solution, for all parameters under consideration.
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Fig. 6.5 Imaginary part of the d orbital Green’s function and self energy for total filling N;,, = 3, fixed
Ny = 1.1, interactions U% = 6.5, V = 3.5, B = 16 and various values of U = UPP. Solid, black
lines denote results from the full model; blue, green and red dashed lines correspond to the solutions
from the slave rotor, Hartree-Fock and shell-folding approximations, respectively.

The hybrid method is expected to work fine, as long as both the physical- and the shell-folding
solution belong to the same (weakly to moderately correlated, metallic) regime. Unfortunately, this
must not necessarily be the case, as it became clear by our investigations in the insulating phase,
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where strong inter-shell interactions caused the shell-folding solution to undergo a phase-transition to
the metallic regime.

6.4.3 The metal-insulator transition

Finally, we shall consider a regime where inter-shell interactions can trigger a phase transition. As
discussed in the previous chapter 5.3.2, inter-shell interactions usually decrease the correlations on the
transition metal ions. A major reason for this was found in the lowering of the effective charge-transfer
energy, facilitating d-p hopping.

020 Udp:Uppzo.lUdd 020 Udp:Upp:O.25Udd 020 Udszpp:O.E)Udd
a) (c)
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Fig. 6.6 Spectral functions of the d orbital for total filling N,,, = 3, fixed N; = 1.1, interactions
U% =6.5,V = 3.5, B = 16 and various values of U% = UPP. Solid, black lines denote results from
the full model; blue, green and red dashed lines correspond to the solutions from the slave rotor,
Hartree-Fock and shell-folding approximations, respectively.

In the following calculations, we eliminate any form of charge-transfer, by fixing the fillings of
the individual orbitals to Ny = 1.1 and N, = 1.9, respectively. As before, we consider three different
values of the inter-shell interaction (which we set equal to the ligand interaction U dp — ypp), at
constant U% = 6.5 and inverse temperature 3 = 16.

As in the previous section on the metallic phase, we consider three different approximate methods
and compare them to the exact solution of the model. These methods include the slave rotor approxi-
mation and the shell-folding scheme. The hybrid method Eq. (6.38) derived before is not expected to
work at a phase transition; therefore, we rather consider the Hartree Fock (HF) approximation (5.38),
which we showed to provide a good approximation in the metallic phase (see Fig. 5.15).

Our results are presented in Fig. 6.5 and Fig. 6.6. At small U4? = UPP = 0.1U%, the Green’s
functions and self energies of both the slave rotor and the HF results are rather close to the reference
solution, in contrast to the result obtained from the shell-folding scheme, which already shows a
significant deviation. The HF method gives a slightly better result at small Matsubara frequencies,
while the slave rotor approach gives a better description of the high-frequency tail. The latter point
is due to the fact that the HF approximation treats the many-body inter-shell interactions merely
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as shifts of the bare one-body energies, which are not taken into account in the calculation of the
high-frequency tail of the self energies.

Upon increasing the inter-shell interactions, the curves corresponding to the shell-folding method
deviate increasingly from the reference solutions; describing a weakly correlated metal where the
solution of the full two-orbital system is an insulator (panels (e) and (f), for UP = UPP = 0.5U4%).
Nevertheless, this is to be expected, since the basic assumption of this scheme is perfect screening
of the U interaction by charge-transfer from the ligands, thus decreasing the effective d-orbital
interaction proportional to U?. Here, also the Hartree Fock methods fails to follow the correct trend,
also predicting a decrease in correlations and increasing coherence. In the case of fixed fillings, the
metal-insulator transition is due to interaction-induced correlations, which are not captured by the
Hartree-Fock approximation. The solution from the slave rotor method, on the other hand remains
close to the reference one, reproducing the correct behavior.

This is further emphasized by Fig. 6.6, which shows the spectral functions A(®) = —2ImG()
corresponding to the d-orbitals. Within the slave rotor method, increasing correlations caused by
inter-shell interactions induce the opening of a spectral gap, thus following the trend of the reference
calculations. The middle panel (b) shows a slight difference in the critical interaction values — the

qualitative trend, however is preserved.

6.5 Summary & Outlook

Motivated by the difficulty of performing simulations on quantum impurity models with inter-shell
interactions, we derived a computationally light-weight technique which treats such interactions on an
effective level. The method can be seen as an extension of the shell-folding (introduced in [141] and
described in chapter 5.2.3) and is designed to be applied in the framework of dynamical mean-field
theory.

Our method is based on the slave rotor technique (see 2.3) using an exact reformulation of the
original model in terms of auxiliary variables. After deriving the general formalism, we discussed
different approximation schemes and provided a detailed description of how to embed the method
into DMFT self-consistency cycles.

After discussing the details of the derivation, we give a proof-of-concept, by testing our method in
different parameter regimes. In the insulating phase, we find the slave rotor technique to be superior to
the shell-folding scheme. In the metallic regime, however, the quality of both approximations is found
to be similar at small to intermediate inter-shell interactions; the slave rotor method only trumps at
higher values of U?". To improve upon these results, we proposed a modification of the rotor Green’s
function, which takes into account information from the shell-folding solution. While this hybrid
scheme gives much better results than the other methods, it has the drawback, that it can only work if
the expected solution is in the metallic regime. Finally, we test our method in the description of the
metal-insulator transition, driven by correlations due to inter-shell interactions. Here, the slave rotor
technique is compared to the shell-folding and Hartree Fock approximations. While both of the latter
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methods fail to give an accurate description of the transition, the results from the slave rotor technique
remain close to the reference solutions.

Our calculations considered only the most simple case of a two-orbital d-p model. However, the
considerations that flew into the derivation our method were general and not restricted to any specific
number of orbitals. Finally, the purpose of our work is to provide a light-weight tool that allows to
treat inter-shell interactions in the context of realistic systems. A potential application would be the
three-band Emery model, for which the importance of d-p interaction was already investigated on the
level of a Hartree approximation[66]. Finally, one could also consider more complex systems, like a
full five-orbital d-shell, interacting with three p-orbitals. Such models are relevant for a variety of
realistic systems (e.g. many iron based superconductors); due to the enormous computational cost,
inter-shell interactions are commonly neglected in such calculations. Our new method provides a path

to include them in the future.
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Molecular Spintronics Modeling






Chapter 7

The Hybridization-Induced Spin
Transition in Metal-Organic Molecules

7.1 Motivation and Introduction

In this final chapter we shall leave the realm of solid-state physics and focus on some aspects of
molecular spintronics. Work presented in this chapter was done in collaboration with Sumanta
Bhandary, who contributed all density functional theory calculations.

Before we consider the specifics of our project, we shall start with a short motivation in the form
of a brief overview over the subject. For more detailed reviews, we refer to [80] (fundamentals and
applications of spintronics) and [136] (molecular spintronics).

7.1.1 Spintronics

Molecular spintronics was preceded by “conventional spintronics”, which emerged in the 1980’s
with the development of methods allowing the injection and detection of spin magnetization in
metals[81] and, most prominently, the discovery of the giant magnetoresitance (GMR)[14, 25], which
was honored with the Nobel Prize in physics in 2007. The general principle underlying the GMR
is the spin dependence of the resistivity in ferromagnetic materials; an effect which — as the “two
current” model[117] — had already been suggest in 1936 by N.F. Mott. Apart from numerous technical
applications — most notably the application of GMR materials as magnetic field sensors in hard-disc
drives — these advances paved the way for the genesis of a new discipline. The main principle of
spintronics is the manipulation of the electron spin degree of freedom in solid-state systems[80]. In
this sense, the aim is to exploit the electron spin for applications in information storage, transport and
processing.

Spin-related effects were first studied in the context of transition metal compounds; the system
under consideration in the original paper on the GMR[14] comprised stacked layers of iron and
chromium. Since, however, most of our current electronics technology is based on semiconductors,
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the exploration of semiconductor spintronics[86, 11] promised a better integration within existing
solid-state devices. In the framework of semiconductor spintronics, information storage, transport and
processing is accomplished within a single materials platform. Furthermore, the electronic properties
of semiconductors can be easily modified (e.g. by doping to introduce additional charge carriers), and
the characteristic spin-relaxation time in such compounds is usually longer than in metals.

Recent efforts in experiment and theory were focused on the exploration of yet another route to
creating spin-devices, considering organic materials. As compared to their inorganic counterparts,
organic compounds offer a practically infinite number of different variations and structures, allowing
for very specific applications. Moreover, low atomic numbers Z of the atomic constituents result in a
weak spin-orbit coupling, enhancing the lifetime of excited spin-states.

7.1.2 Molecular spintronics and the spin crossover

Molecular spintronics, based on single molecular structures offer various advantages over their bulk
counterparts. In the context of solid-state systems, one usually talks about magnetism as a collective
phenomenon, which includes a large number of atoms. In molecular spintronics, on the other hand,
magnetism is considered on the level of individual molecules. This leads to an enormous potential in
miniaturization and efficiency, surpassing the limits of bulk devices. As in organic spintronics, there
is an enormous variety of molecules that can be considered for usage in spin devices.

These prospects spurred the efforts that led to the rapid advances the field has seen over the last
two decades; from the realization of stable single ion magnets[109], to spin valves[152], switches and
storage devices.

One of the key ingredients for many applications is magnetic bi-stability. This term denotes the
possibility of realizing two stable states characterized by different spin configurations. In bulk systems,
magnetic bistability can, for instance, manifest itself as the magnetization in ferromagnets. In the con-
text of molecules, different spin-states can correspond to different eigenstates (light-induced excited
spin-state trapping (LIESST)[40]), to modifications of the molecular structure/coordination[155], or
— for molecules on surfaces — correspond to changes of the molecule/surface interface[128]. One is
usually interested in systems with a high- (HS) and a low-spin (LS) state, the transition between
which is referred to as the spin crossover (SCO). Changes in the spin-state can be hinged naturally
by external stimuli, such as temperature, light, pressure, electric fields etc. Considering technical
applications in devices, it is crucial to gain control over the spin crossover (SCO).

Many organometallic complexes, hosting transition metal ions such as Fe?t, Fe>*, Co?*, Ni**,
Mn?* or Mn** are well suited for spin-state switching, due to a subtle balance of ligand field and
spin-pairing energy. The latter is fundamentally caused by Hund’s exchange coupling, which was
discussed in detail in Chapter 3. An effective way to control the SCO is to manipulate the ligand fields
of the molecules. This can be achieved in several ways, e.g. a SCO can be induced by temperature,
light or by imparting strain on the metal-molecule nano-junctions.
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In [121], a light-induced spin change was for the first time observed in thin films of iron based
SCO complexes. To this day, this remains one of the most effective ways to trigger a SCO [15].
Recent efforts were put into investigating the SCO in molecules on surfaces. Here, Warner et al.
achieved a spin-state switching in molecules on Au[158] and graphite surfaces[19, 87] both using
temperature and light as stimulators. While these observations were made at low temperatures, room
temperature spin-state switching has recently been observed in iron molecular complexes[113].

An efficient way to switch spin-states is to alter the isomeric structure of molecules by ligand
association or dissociation. Coordination-induced spin-state switching was investigated by Herges et
al. [73], who proposed a light-driven modification in the coordination of Ni-porphyrin molecules[44].

Yet another way to induce a SCO considers the usage of scanning tunnel microscopy (STM),
which allows for a manipulation of atoms/molecules with unprecedented precision. The feasibility
of this approach has been demonstrated by Miyamachi et al.[116], who achieved a spin-crossover in
Fe-complexes, adsorbed on a metallic surface. Furthermore, an STM tip can be used to induce voltage
pulses which can trigger a SCO[69].

Describing spin-crossover phenomena theoretically is a challenging task. Different approaches,
such as density functional theory (DFT) with several forms of exchange-correlation functionals[171,
63], DFT+U][21, 101, 20], DFT+many-body theory[30, 22], full configuration interaction quantum
Monte Carlo[105] methods, etc. have been used in the literature. On the specific example of nickel
porphyrin[131], time-dependent density functional theory techniques have been used to explicitly
characterize the singlet and triplet excited states.

7.2 The hybridization-induced spin crossover

In this project, we have focused on the spin crossover in organometallics, and, more specifically in
Ni-porphyrin (Ni-TPP) molecules. As outlined above, the spin-state of such molecules depends on the
hybridization of the transition-metal (TM) ion with the surrounding ligands. Thus a SCO mechanism
requires a controlled manipulation thereof. The aim of the following investigations is to explore the

scenario of a hybridization induced SCO.

7.2.1 Structure of the molecules

Ni-porphyrin molecules contain a Ni>* ion that is located at the center of a porphyrin macrocycle.
The porphyrin complex itself is often connected to various peripheral substituents, such as phenyl
groups. Fig. 7.1 shows two different Ni-porphyrin molecules, of which the structures were obtained
by relaxing the atomic positions within density functional theory + “U”[107, 45]. Panel (a) shows
the “planar” Ni-TPP molecule, in which the central nickel atom is surrounded by 4 nitrogen ligands,
resulting in a quasi-square planar ligand field (“quasi”, since this neglects the rest of the molecular
structure, which is supposed to have only a weak influence on the central transition metal ion). The
Ni-TPP (Imy) structure shown in panel (b) is characterized by two additional pyridine structures, that
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Fig. 7.1 Relaxed structures of the Ni-TPP (a) and the Ni-TPP(Im,) (b) molecules, from two different
perspectives.

>

attach to the nickel atom along the vertical axis. This changes the central ligand field to be “quasi’
octahedral.

These are only two out of a multitude of stable structures that could be conceived; another
possibility would be a Ni-TPP molecule with only one additional pyridine structure (a similar
structure is considered in [44]). Experimentally, it is well-known[46], that the “planar”, four-fold
coordinate structure (a) exhibits a S = 0 low-spin (LS) configuration, while the “octahedral”, six-fold
coordinate structure (b) is characterized by a S = 1 high-spin (HS) state.

A naive explanation for this can be given by considering a crystal-field picture, as presented in
Fig. 7.2. The magnetic moment is mainly determined by the central TM ion. In the square-planar case
the bare energy levels of the nickel d-orbitals are split as shown in panel (a). In this configuration,
one could think that the 8 valence electrons of the nickel ion fill the d-shell, except for the d,»_,»
orbital, resulting in a low-spin-state S = 0. In an octahedral crystal field, however, the orbitals
of the e, manifold would be degenerate, and therefore be occupied by two parallel spins, due to
Hund’s coupling. While these simple considerations give an intuitive explanation for the formation
of two different spin-states, we shall see in the following that the expected physics is a bit more
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Fig. 7.2 Crystal field splitting of the d-orbital manifold. (a) Shows the splitting of the bare energy
levels in a square-planar crystal field. (b) Shows the bare levels in a octahedral crystal field, splitting
the d-orbitals into the three-fold degenerate tg- and the two-fold degenerate e, manifolds. Arrows
indicate the distribution of 8 electron spins, considering the influence of Hund’s exchange coupling.

complicated. Most importantly, this simplistic picture does not consider the effect of hybridization

with the surrounding nitrogen ligands, which plays an important role.

7.2.2 A minimal model to capture the spin-crossover

Our goal is to describe the changes in the spin-state of a transition metal ion brought about by a
modification of the ligand-to-transition metal hybridization strength. To this effect, we construct a
model, in which the transition metal ion and the ligands are represented by two orbitals each. A
minimal number of two orbitals is necessary to incorporate the effect of Hund’s exchange coupling,
which is at the heart of any high-spin configuration.

Our generic model for the description of the SCO, illustrated in Fig. 7.3, is defined by the

following Hamiltonian

H= Z (&m — €1 )Mo + Z Efl;zznzlc

m=1,2,0 m=1,2 o
T
+ ¥ X (Vidobuo +hec.)
m=12 © (7‘1)
+U Z N + Z(U’ — 866 )N16M26
m=1,2 oo’
—u Z Z(”mc +ng16) ,
m=12 ©

where d:,,,c(dmc) create (annihilate) an electron at the correlated orbital m (of energy &,,) with spin o,
while b;,o(bmc) denote the creation (annihilation) operators of the electrons at the ligand orbitals m
(of energy Ef;). The number operators are defined as n,,c = d:,l(,dmcy and nf’w = b:,,obmg. Viu 1s the
hybridization between correlated and bath orbitals, U and J represent on-site Coulomb- and exchange
interactions, respectively, with U’ = U — 2J. The chemical potential, i fixes the overall occupation
(correlated orbitals+ligands); Throughout this chapter, it will be fixed to 6. The parameter &g shifts
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Fig. 7.3 Schematic illustration of our model. The system consists of two correlated orbitals with bare
energies €1/& (minus a shift €y, that compensates for the Hartree contribution from the interaction),
interacting via Coulomb repulsion and Hund’s exchange coupling. The difference of the impurity
energy levels is denoted by A, = & — €. Each impurity orbital couples to an uncorrelated bath
site with a hybridization strength V,/V;; the energy levels of the bath sites are E {’/Eé’ . All bare energy
levels will be shifted by a chemical potential defined by fixing the overall filling.

the energy levels g, and is explicitly added to cancel the Hartree contribution from the interaction.
In the context of our model, we shall define the crystal field splitting as the difference of the energy
levels of the correlated orbitals Ay = & — €.

In realistic systems, external stimuli such as strain would typically change several model param-
eters at the same time. Nevertheless, with the present model, we can explore the whole parameter
space spanned by crystal field strength and hybridization. A spin-crossover can then be realized in
two ways — either by crystal field modification, i.e. changing the relative energies of the correlated
orbitals or by tuning the metal-ligand hybridization.

The quantity of central interest is the spin moment <§2> defined as

- 1 o to
Stot = 5 Z Z (dmoGGG’de’ + bmcGGG’me’) (7~2)
m=1,2c0'
- 1 oo
Scorr = E Z Z dmoGO'G’dmo" s (7.3)
m=120c0’

where G4 is the vector of Pauli matrices. Here, §,o, and §Corr describe the spin moment of the total
molecule and the correlated subspace only, respectively. The occupations of the correlated orbitals
N = Y. Nmoe Will provide information about the charge transfer from the bath sites to the correlated
orbitals. Furthermore, we consider the free energy F = (H) — ST, to analyze the energetics of the

different spin configurations.
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These quantities will be calculated as a function of the crystal field A,y and the ratio of the
hybridization strengths V; /V5, for fixed V5 = 1/8¢V. Throughout the following model study, we take
U = 5.14eV and J = 0.89¢V!. Furthermore, we consider the parameters E{’ = Eé’ = —2¢V, while
the bare e, levels will be set to & = —Acyy — €y and & = +A.ryy — €g. The Hartree potential,
corresponding to a homogeneous charge distribution, reads €y = %’(3U —5J). In principle, N should
be the total occupation of the correlated orbitals. However, inspired by the fully localized limit
double-counting of electronic structure theory[108], we rather choose the integer values N = 2 or
N =3.

In the case without hybridization, the correlated orbitals would have an occupation of N = 2,
while for the above parameters, the ligands would be completely filled. The high-spin-state would
then be associated with having one electron per correlated orbital, while the low-spin-state would
correspond to the orbitally-polarized configuration. In this case, <§,2OZ> = <§30r,>, with <§Zor,> =2

and 0, respectively in the high-spin and low-spin configurations.

Model results

Fig. 7.4 shows the spin moment <§2> as a function of A,y and V; for &g (N = 2) (panel (a)) and
ey (N = 3) (panel (b)). Both figures exhibit two low-spin regions (blue), separated by a band-like
high-spin region (yellow) with a width that decreases from about ~ 5.5J to ~ 4.5J upon increasing
Vi /V,. Qualitatively, the shape of the high-spin region is easily explained: In the atomic limit, in
which both hybridizations vanish V| =V, = 0, the energy levels of the eigenstates would have a linear
dependence on the crystal field and a high-spin to low-spin transition would be induced as soon as
|€& — &1| = |A¢ryst| > 3J, therefore resulting in a width of 6J. While in the absence of hybridizations
this region should be symmetric around A, = 0, a finite V> > 0 will lead to two molecular orbitals;
a bonding orbital with an energy below Eé’ and an anti-bonding one with an energy above &,. Within
our convention, we therefore need a negative crystal field to move the energy of the anti-bonding
state down to &;, and thus move back to the center of the high-spin region where the energy levels are
degenerate. The bend of the high-spin region is simply due to the fact that, upon increasing V|, the
energy level of the anti-bonding m = 1 orbital-bath state is pushed up, therefore reducing the energy
difference to the corresponding m = 2 orbital-bath state.

In order to get a better insight in the physics of the SCO, we can take a look at the transition along
two different paths in parameter space, marked as horizontal and vertical dashed lines in Fig. 7.4,
respectively. The results are presented in Fig. 7.5. Panels (a)-(c) show the results for the hybridization
driven SCO, with vanishing crystal field A.,y; = 0; panels (d)-(f) explore the crystal-field driven SCO,
with constant V; = V, /2. Furthermore, we differentiate between results obtained for &5 (N = 3) (solid
lines) and those for € (N = 2) (dashed lines).

The upper panels (a) and (d) show the spin moment along the cuts marked as dashed lines in Fig. 7.4.

IThese values correspond to the interaction parameters for the e, manifold (see Egs. (3.22) and (3.21)), for Ugy, — 4
and Jg,, = 1. Even though the model depends only on the ratio of the parameters e.g. with respect to V», we prefer here to
introduce electron Volts as a unit, to enable an easier comparison with the following chapters.
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Fig. 7.4 Spin moment <§2> of the correlated orbitals as a function of the crystal field Acyy = (&2 — €1)

and the d_» hybridization for & (N = 2) (a) and &5 (N = 3) (b). Fig. 7.5 shows different quantities for
constant V; along the dashed line.

Red lines mark the spin moment of the full system <§,20t>, black lines correspond to the correlated

orbitals <§§0r,> only. Panel (d) shows that a crystal-field driven SCO can be achieved for both values
of &y under consideration; changing its numerical value merely leads to shift of the transition points
and a change of the absolute values of the spin moment, due to the change in the hybridization with
the ligands. Panel (a), however, makes clear that a hybridization driven SCO cannot be realized for
ey (N = 2) — for which we remain in the high-spin regime for all V; under consideration — but rather
requires a bigger energy shift, as given by &g (N = 3).

In general, a comparison between the black and red lines reveals that only the spin moment of
the full system <§t2m> exhibits a clear low-spin to high-spin transition. It is also the molecular spin
moment, that is of experimental interest.

In the high-spin regime, one would expect the electrons to be (more or less) equally distributed
among the two orbitals, while the low-spin regimes should be characterized by strong orbital po-
larization. Such behavior is indeed reflected in the middle panels (b) and (e) of Fig. 7.5, which
show the occupations of the different orbitals along the dashed lines drawn in Fig. 7.4. The roughly
constant dashed lines in panel (b) again witness the fact that no hybridization driven SCO is found
for gy (N = 2). Looking at the overall occupation (n| + ny) in panel (e), one sees a “staircase” like
behavior when changing the configuration from low- to high-spin and back to low-spin. This can be
understood as a consequence of the different hybridization strengths V;/V,, resulting in a different
charge transfer to the correlated orbitals.

In the lower panels (c) and (f) of Fig. 7.5 we see the difference in free energy ¥ = E — T'S between
the lowest lying (in terms of their energy) high/low-spin eigenstates AF = F[low| — F [high], as they
are calculated along the cuts in Fig. 7.4. The point where this difference is zero marks the phase
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Fig. 7.5 Spin moment <§2> (panels (a) and (d)), occupations n of the correlated orbitals (panels

(b) and (e)) and the difference in free energy between high and low-spin-states (panels (c¢) and (f))
along the cuts indicated in Fig 7.4 for &y (N = 3) (solid lines) and €y (N = 2) (dashed lines). Left
side: Results along the cut with constant A, = 0. Right side: Results along the cut with constant
Vi=V,/2=1/2eV.

transition. The entropy is calculated from the degeneracy of the eigenstate; while the high-spin-state
is two-fold degenerate with S = In(2), the low-spin-state is non degenerate with S = In(1) = 0. Since
B =40, this yields 7'S = 0.017¢V, which means that in our case the difference between energy and
free energy is rather small. Comparing the solid and dashed lines in panel (c) and (f) illustrates how
€p shifts the energy difference between the high-spin and low-spin-states, therefore underlining the
different electron occupations of the correlated orbitals in the two regimes. Finally, we shall clarify
the peculiar shape of the curves in panel (f): If again we restricted ourselves to a simple two-electron
system without any hybridization, this difference would read AF = (U — |A¢pyg|) — (U' —J —T'In(2)).
explaining the almost linear slopes as found in the low-spin regions in the panel (f) of Fig. 7.5.
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Conclusions

This leads us to the following conclusions. The results of this model study indicate, that a purely
hybridization-induced (A¢ys; = 0) SCO cannot be accomplished in the naive scenario considering
a static Hartree shift &4 (N = 2), corresponding to a half-filled e, manifold. However, as it can be
seen from panels (b) and (e) of Fig. 7.5, this assumption underestimates the actual average filling
of the correlated orbitals. On the other hand, a SCO is found when considering a larger energy
shift & (N = 3). This leads to the conclusion that the hybridization driven SCO, in the molecular
setup under consideration, is intimately related to a charge-transfer from the ligands to the correlated
orbitals. However, from Fig. 7.5 (b) and (e), it is clear that an energy correction corresponding to
fixed electron numbers is at odds with the changing average occupations presented in these plots. In
the following, when using parameters from realistic molecular structures, we shall improve on this

inconsistency by applying a self-consistent double-counting scheme.

7.3 Ab initio description of the spin crossover

7.3.1 Density functional theory and the double counting problem

The following pages will be used to give a “micro-introduction” into density functional theory. For
the sake of compactness, we shall not go into details about this very rich topic, but only focus on
informations needed for the following discussion. Detailed introductions can be found in[28, 7, 67];
for a general overview consider[82].

Density functional theory is based on the Hohenberg-Kohn[76] theorems, that state that the ground
state energy of a system can be uniquely expressed as a functional of the electronic density only. This
functional consists of several terms: The form of the kinetic and potential energy is well-known, and
it can be easily written in terms of the electron density. On the other hand, the exact functionals for
the exchange- and correlation terms are, in general, not known. In practice, the validity of any DFT
calculation is limited by the quality of the approximations employed to describe these terms.

In the often used local density approximation (LDA), the exchange-correlation energy functional

s written as
EEPA[n) = / d&*r exc(n)n(?) , (7.4)

where the exchange-correlation potential €xc(n) only takes in to account the local electron density.
In the context of this project, we applied the more sophisticated general gradiant approximation
(GGA)[100, 17, 132]. GGA is a direct generalization of LDA, in which the approximated exchange
correlation functional also considers the local gradient of the electron density

ESGAn) = / &r exe(n, Va)n(F) . (7.5)



7.3 Ab initio description of the spin crossover 121

Both of these functionals can be easily generalized to account for spin polarization, by substituting
exc(n) = &xc(ny,ny) in (7.4) and exc(n,Vn) — exc(ny,ny,Vny, Vny) in (7.5).

Since these DFT approximations do not properly take into account the exchange-correlation, it
is poorly suited for the description of strongly correlated electron systems. Furthermore, it does not
provide any information about the spectrum of excited states (even though the energy spectrum of the
Kohn-Sham equations[89] is often “abused” to this means).

It is for this reasons, that nowadays DFT is often used in combination with many-body techniques.
In this spirit, DFT can be used to extract bare energy levels € (k) for the many-body Hamiltonian, by

assuming
e(k) ~ P (k) . (7.6)

The many-body Hamiltonian is then solved with appropriate techniques.

This leads to the following problem: Even though the DFT result deviates from the true ground
state solution, it still contains contributions of electronic correlations from the Coulomb interaction. On
the other hand, this two-body interaction is explicitly treated by solving the many-body Hamiltonian.
This leads to a double counting (DC) of the same effect, which we have to compensate for in order to
ensure a faithful description of the physics.

Several schemes have been suggested to compensate for this double counting. The “around
mean-field” (AMF) approximation was originally derived in the context of the “LDA+U” scheme. It is
based on the assumption that the LDA solution corresponds to some kind of mean-field approximation
to the fully interacting quantum problem. In this spirit, the LDA energy functional can be extended
“around the mean-field” by considering

ELDAAMF _ pLDA | f. < Hinz> , (7.7)

where we consider H;, for a d-orbital system (see Eq. (3.31), without spin-flip and pair-hopping

interactions

I:Iint = Z Umm’ﬁmTﬁm’L + Z (Umm’ _Jmm’)ﬁmcﬁm’c . (78)

mm’ m>m',c
It is then easily shown (see [36]), that averaging over the occupation numbers ({Ai;,5) = ng) leads to

1 20

Ept™" = (Hin) = UnygN:N| + 22041

(Uavg _Javg)ZN(Z; ’ (79)
(o2
with Ugye and J,,, defined as in Eq. (3.23) and (3.24), and N; = (20 + 1)n%. For a d-orbital system,
the angular momentum variable is £ = 2.
Another approach to correct for double counting is the “fully localized limit” (FLL)[36, 108]
approximation. It was proposed in the context of correcting the LDA in the description of localized d-
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or f-electrons, where it was argued that one should rather subtract the energy from the N-degenerate

atomic limit

1 1
ESCL?L = EUanN(N_ 1) — EJavg ZNG(NO' —1), (7.10)
c

with N =Y 5 Ng.
Upon differentiating these energy functionals with respect to the electron density, one obtains the
double counting potentials

aE?)IélF AMF NG NG
_ypr g (N Do N g (N — Do 7.11
ong ~ Peo T 2041) " ° 2€+1> 7D
JEFLL 1 1
arll)C = 564% = Upvg <N_ 5) —Javg (NG - 5) s (7.12)
o

which are used to shift the bare energy levels of the electrons to account for the double counting.
More explicitly, this is done by adding an additional term to the Hamiltonian

I A AMF |FFL .
Hine — Hins — ZVDC,O'/ Nmo - (7.13)
mo

In the molecular spintronic system under consideration, electrons are supposed to be strongly localized.

For this reason, we will in the following consider the FLL approach to correct for double counting.

7.3.2 Results from density functional theory

The goal of this section is to study the SCO in nickel porphyrin molecules, by employing our model
(7.1) with parameters obtained from realistic ab initio caluculations. To calculate the non-interacting
electronic structure of the systems, we perform DFT calculations using the Vienna ab initio simulation
package (VASP)[94]. We use a plane wave projector augmented wave basis with the Perdew-Burke-
Ernzerhof (PBE) -generalised gradient approximation[132] of the exchange correlation potential. To
treat the isolated molecule, we consider a 30x30x30 A3 simulation cell which yields a minimum
separation of 17.58A between the molecule and its periodic image. The plane-wave energy cut-off is
400 eV, which is used for all the calculations. In order to obtain the molecular structures (see Fig.
7.1), the internal atomic positions are relaxed until the Hellman Feynman forces were minimized
up to 0.01 eV/A. To account for the narrow Ni-3d states, the relaxation of the molecules are done
within DFT+U formalism with the Coulomb parameter U,,, = 4 ¢V and exchange parameter J,,, =
1 eV (corresponding to the parameters chosen in the model investigation presented in the previous
sections).

In contrast to the DFT calculations for the relaxation of the structures, input for the model (7.1)
was obtained from DFT calculations “sans U”. Specifically, we are interested in the extraction of the
bare energies of the correlated orbitals e,,, the energies of the bath orbitals E” and the hybridization
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Fig. 7.6 Orbital energies of Ni-3d orbitals in Ni-TPP (left) and Ni-TPP(Im,) (right). The to, orbitals
are completely filled in both conformations, hence the magnetism is governed by the partially filled
eg orbitals.

strengths V},,. The latter two are interconnected by the hybridization function

ViV

mim 7.14
®+i6—Eb (7.14)

Alio) =)

m

which we assume (due to the geometry of the molecule) to be diagonal to a good approximation. In

order to calculate the hybridization function, we first consider the Kohn-Sham Green’s function Ggsg,
which is calculated from the Lehmann representation using

oy W) (Wi
GKs(m—%wHS_gnk, (7.15)

where y,;’s and €,;’s are the Kohn-Sham eigenstates and eigenvalues for band » and reciprocal space
point k. The full Green’s function then needs to be projected onto an atom-centered local Green’s

!
function Gj}7 ;
we write

in our case, the localized orbitals are chosen as cubic harmonics (). To this means,

*

/ prpm
G;%T;) ( (O) — Z nk” nk

_nknk (7.16)
= 0+i0 — &

1%
where P} = (¥m | Wnk) and P} = (W | X ). Finally, the hybridization function is calculated from
the local impurity Green’s function using the expression

G—l

imp

(®) = O+ i8 — Vepysy — A(@). (7.17)

In the above expression, G, is the projected Green’s function on local orbitals and A, V., are the

hybridization function and static crystal field, respectively.
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Fig. 7.7 The real and imaginary parts of the energy-dependent hybridization functions of Ni in Ni-TPP
(a) and in Ni-TPP (Imy) (b). A smearing parameter of 0.1 eV has been used for these plots for the
sake of visualization. In the inset, the corresponding co-ordination geometries of Ni atoms in Ni-TPP
and Ni-TPP(Im2) are shown, with axial Ni-N bond lengths.

Fig. 7.6, shows the relative energies of the molecular orbitals (formed by the Ni-3d orbitals,
hybridizing with the ligands), for Ni-TPP (left) and Ni-TPP(Im;) (right) isomers. In Ni-TPP, the
highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)
are of d,»_» and d» character, with an energy separation of 1.79 eV. The degenerate dy; and dy,
orbitals are close to d» (the energy difference being 0.04 €V), which itself is separated from the
lowest-lying d,, orbital by about 1 eV. These energies are in qualitative agreement with those from
previous theoretical studies[131]. A small quantitative difference is expected due to the different
descriptions of the DFT exchange-correlation potentials. In Ni-TPP (Im;), the Ni-N bond length is

extended by ~6%. Due to this core expansion, the energy of the d »_,» orbital is reduced, while the

2
axial ligand bonding raises the orbital energy of d_2, reducing the co;responding energy separation
to 0.12 eV. In accordance with the literature, this results in both orbitals being half filled, such that
a high-spin triplet state is formed. The change of coordination has a crucial impact on the charge
transfer between the porphyrin ring and the Ni ion. Within the DFT+U formalism (used to relax the
molecular structures), the projected total charge on the Ni 3d orbitals is 8.16 in the Ni-TPP (Imy)
molecule, while it is 8.4 in Ni-TPP. This charge transfer is enhanced in the many-body calculations,
as will be described below.

Fig. 7.7 (a), (b) show the real and imaginary parts of the hybridization functions of the five
d-orbitals for Ni-TPP and Ni-TPP (Imj), respectively. The peaks of the functions are smoothed out by
a smearing parameter of 0.1 eV, which has been added for the sake of visualization. Every feature
of the hybridization function indicates the position of a bath-state eigen energy E}". The intensity of
these features are dictated by the hybridization strength |V, |>.

There are several things to remark. In both cases — with and without the pyridine structures — the
hybridization of the tp, orbitals is rather weak. This a posteriori justifies the choice of our minimal
model, in which we neglected the t;; manifold completely: Indeed, Fig. 7.6 shows that in both cases
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under consideration, the ty, orbitals remain energetically below the e, orbitals and are completely
filled. The major qualitative difference between the two configurations concerns the hybridization of
the d» orbital. While for Ni-TPP(Imy), d,» and d,>_ |, hybridize almost equally strong, for Ni-TPP the
hybridization of the d,» orbital is negligible. This is due to the geometry of the orbitals. The d,>_»
orbital overlaps with the p-type ligands in the x-y plane, while the hybridization with the out-of-plane
ligands is negligible. On the other hand, the d> orbital hybridizes strongly with the out-of-plane
ligands, while there is basically no hybridization with in-plane ligands.

Putting together all of these results, we end up with the following table of parameters for our

minimal model.

Table 7.1 Parameters as calculated from DFT calculations (using VASP) by projection onto Wannier
orbitals.

4-coordinated | 6-coordinated

Ni-TPP Ni-TPP(Imy)
€ (dp) -0.90 -1.44
& (d2_)2) -1.69 -2.10
. 0 4.39
V2 |? 8.85 5.92
EY - 3.5
E} 2.1 -3.1

It shall be noted that in both molecules, the porphyrin structures were found to be slightly non-
planar. This “ruffling” is stronger for the four-fold co-ordinated Ni-TPP, and was found in [144]
to decrease the affinity of additional pyridine structures to attach to the Ni center. This provides
an interesting outlook on potential applications in which Ni-porphyrin molecules are deposited on
surfaces. The contact with a surface is supposed to decrease the ruffling, therefore enhancing the
affinity of the molecule to bind with pyridine structures. This effect might increase the suitability of
these molecules to be applied as spin-switches in spintronics applications.

7.3.3 Combining DFT and many-body theory

We now proceed by incorporating the parameters obtained from the DFT calculations and listed in
Tab. 7.1 into our Hamiltonian (7.1). In contrast to the pure model study presented before, the energy
shift €5 will now be used to correct for double counting. For the reason mentioned before, the fully
localized limit approach is most suited for the application molecular systems. We, therefore, set €y to
the double counting potential (7.12)

1 N 1
en[N] = Uss, <N—§> — Jatg <3—§> : (7.18)

where we assumed the absence of spin-polarization, implying Ns = N /2. Since we are not dealing

with the fully degenerate d-manifold, we use the averaged interaction parameters corresponding to the
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e, manifold only. The averaged Hubbard interaction reads

) 1
U;‘;g = Z Z U = U — 2, (7.19)

m,m’€eg
from which we further deduce the averaged Hund’s coupling

1
Jsﬁg = Usgg - z Z (Umm/ _Jmm/) = 2]2 . (7-20)

m#m'ce,

For the form of the interaction matrix, consider Egs. (3.22), (3.21).
By using €y as our double counting potential, it becomes a function of the filling of the correlated
orbitals €5 = €y (ncorr). Since this energy-shift has itself an influence on the electron occupation

Neorr = Neorr(€l ), We evaluate it self-consistently, such that

ncorr(gH(n)) =n. (7.21)

After these technicalities, let us proceed to the results. We will start by discussing the outcomes
for the two set of parameters listed in Tab. 7.1, before we consider the scenario of a strain-induced

spin crossover.

Four-fold coordinated Ni-TPP

The model Hamiltonian (7.1), provides a description of the physics of the four-fold coordinated
Ni-TPP molecule, provided the parameters in the left column of Tab. 7.1 are used. In this case, we find
the ground state to be characterized by a low-spin moment, with <S2> . = 0.45 for the correlated

Cco.
subspace and (%) = 0.0. Keeping only Fock states with a weight > 1077, the ground state is
spanned by only 4 Fock states, and can be written as

IGS), = 0.55[14, 1) [T 1) +0.55[14, DT 1)y

(7.22)
+0.45[11,0), [11, 1), +0.44[tL, 1) |11, 0), -

In this notation, the subscript ¢ corresponds to the correlated orbitals, while b designates the bath
states; the order for the two orbital indices m = 1,2 is |1,2). Clearly, this ground state is characterized
by a major charge transfer from the ligands to the correlated orbitals, such that the effective filling of
the latter ones is close to three. The left panel of Fig. 7.8 shows the energies of the ten lowest lying,
non-degenerate eigenstates, relative to the ground state, together with their spin-moment <§120t> and
their degeneracy.

It shall be mentioned, that the states corresponding to the two lowest lying eigenenergies can be
faithfully reproduced by a simplified Hamiltonian that considers only the Fock basis states that make
up the ground state (7.22). A detailed discussion is found in Appendix E.1, together with an explicit
matrix representation of the corresponding Hamiltonian.
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Fig. 7.8 Energy diagram of the infinitely stretched (Ni-TPP) molecule (left panel) and of the un-
stretched (Ni-TPP(Im;)) molecule (right panel). All energy values are given relative to their ground-
state; they are labeled according to their degeneracy and the corresponding spin value of the full system,
e.g. 2x < 52 >=2.0 means that the energy is 2x degenerate with a spin moment < S? >=2.0.

Six-fold coordinated Ni-TPP(Im,)

Using the parameters of the right column of Tab. 7.1, we describe the physics of the molecule with
Ni-TPP(Im;) configuration. Here, the ground state is a two-fold degenerate high-spin state with
<§(2wr> =1.54 and <§t20t> = 2.0. The two states are spanned by 4 Fock states each, and are related
by spin-flip symmetry

1GS)YY) = 0.81 1, 1), [14, 14, +0.34 11, 1), 11,14, .
H0.A46 |1, 1), [14. 1), + 016 [1L L) [1,1), -

1GS) = 0.81 [, 1), [, 140, +0.34 14,1 11, 1), 720
+0.46 |1, 1), [14. 1), +0.16 1 1LY [, 1), -

The filling of the correlated orbitals is (n; +n;) = 2.38; much closer to half filling then in the low-spin
configuration. However, the charge transfer from the ligands is still considerable. The energies of the
eigenstates, relative to the ground state, as well as the corresponding degeneracies and spin-states can
be found in the right panel of Fig. 7.8.

Again, the two lowest lying, non-degenerate energy levels are faithfully described by a simplified
Hamiltonian, that acts on a truncated Hilbert space, spanned by the Fock basis states that make up the
ground states (7.23). As before, we refer to Appendix E.1 for a more detailed discussion.

Spin-crossover: Strain on the axial ligands

In order to mimic the effect on the electronic structure introduced by strain, we linearly interpolate
between the two structural configurations corresponding to Ni-TPP and Ni-TPP(Imj;). To this effect,
we introduce a parameter x, that linearly blends the parameters of the Ni-TPP configuration (x = 0)
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Fig. 7.9 Spin moment <Sz> (left panel) , impurity occupations n (middle panel) and the difference in
free energy and energy between the lowest lying low and high-spin-states (right panel), obtained from
linearly changing the parameter set of the infinitely stretched P[Ni-TPP] to the one of the unstretched
Plunstretched|] configuration P[x] = (1 —x) - P[Ni-TPP] 4 x - P[Ni-TPP(Im;)]. Black dots indicate the
values at P[x = 0] = P|Ni-TPP] and P[x = 1] = P[Ni-TPP(Im;)|. Grey lines correspond to results
obtained from simplified models valid in the asymtotic regimes (Appendix E.1).

into those of the Ni-TPP(Im;) (x = 1) one, and therefore simulates “stretching” of the axial ligand.
The Hamiltonian is then diagonalized at each point of x.

The results are shown in Fig. 7.9, which presents the variation of the spin moment <§2> (left
panel), individual occupations of the correlated orbitals (middle panel), and the free energy of the
spin configurations as a function of x. In the left panel of Fig. 7.9, solid and dashed lines correspond

—

to the spin moment for the correlated orbitals <82

Corr> and the whole molecule <§,20,>, respectively.

Our calculations predict a spin moment transition appearing at x ~ 0.4. The exact position of the
transition is sensitive to the parameters from the ab initio calculations, as well as the way one corrects
for double-counting. It must, however, be stressed that the values in between x =0 and x = 1 are
not based on actual DFT calculations, and merely serve to illustrate the mechanism that mimics the
stretching of the molecule.

As the spin-state changes, a jump is observed in the occupations (middle panel). In the low-spin
state, the total occupation of the correlated orbitals is (n) ~ 3 with the d_> orbital completely filled
and the d,2_,,
high-spin state, both orbitals hybridize strongly with the N ligands, such that the occupation of the

» orbital carrying ~ 1 electron, owing to a strong hybridization with N ligand. In the

individual orbitals is ~1.2, reducing the total occupation to (n) ~ 2.4.

The grey lines in Fig. 7.9 (Ieft and middle panels) were obtained from simplified models described
before (see Appendix E.1), describing the physics in the two limiting cases. The spin-moment, as
well as the occupations are almost perfectly reproduced within these models; they fail, however, to
predict the spin-moment transition, since the low-spin-state remains energetically favored within the
whole parameter range under consideration.

The right panel of Fig. 7.9 shows the difference in free energy and energy (both as defined above)
between the lowest lying low and high-spin-states as a function of x. Compared to Fig. 7.5 (c), one
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notes an additional feature in the region of the SCO, i.e. where the lines cross zero. This jump is due
to the different occupations of the correlated orbitals corresponding to the different spin-states, and
can be attributed to subtleties in the application of the double counting correction (see Appendix E.2).

7.4 Conclusion

In summary, we have presented a minimal two-orbital model, that is able to capture the relevant
physics of the spin-state transition in a generic parameter space. We deduced a spin phase diagram
which depicts the inter-dependence of hybridization and crystal field in order to bring in a spin-
crossover. The model is complemented with the parameters derived from DFT calculations in order to
study the realistic scenario of a spin crossover in Ni-TPP isomers. Our calculations show a robust
low-spin-state in Ni-TPP and a high-spin-state in six-fold coordinated Ni-TPP(Im;). As indicated
in the results of the model study, we modified the hybridization between axial ligands and Ni-ion in
Ni-TPP(Im;) by imparting a mechanical strain of the imidazole ligands. The situation is mimicked
by an interpolation between the parameters sets corresponding to six-fold coordinated Ni-TPP(Imj)
and four-fold coordinated Ni-TPP molecules. The spin-state transition appears at an intermediate
strain, corresponding to the interpolating parameter x < 0.4. The ligand to metal charge transfer is
significantly enhanced as the molecular spin-state changes from the high- to the low-spin state. In this
respect, we have discussed the importance of a charge self-consistent double counting scheme in order
to properly account for the metal-ligand charge transfer. Finally, our results suggest that a mechanical
strain-induced SCO can be achieved in hexacoordinated Ni-TPP(Im;), which would potentially
pave the way for its integration in mechanically controlled or scanning tunneling microscopy break

junctions.






Conclusion and Outlook

In this thesis, we have treated several topics belonging to the field of correlated electron systems.

In the first part, have presented results for the two- and three orbital Hubbard model obtained
from finite-temperature DMFT calculations, comparing the case with and without Hund’s exchange
coupling. In particular, we focused on the doping-driven metal-insulator transition around half filling,
where we found Hund’s coupling to give rise to a regime of bad-metallic character that reaches to
large dopings, while being adiabatically connected to the insulator. This regime was also found to be
related to the emergence of the spin-freezing phenomenon, which recently received attention due to
its potential significance for superconductivity.

The findings presented in this chapter pose many new questions, for instance concerning the
implications of the bad-metallic phase in the context of realistic systems, its fate at lower temperatures
and the underlying connection to spin-freezing.

In the second part of the thesis, we discussed the importance and implications of metal-ligand
interactions — the d-p problem. We have presented results for a minimal two-orbital d-p system,
obtained from DMFT. In the case of vanishing inter-shell interaction, we presented a phase-diagram 4
la Zaanen-Sawatzky-Allen, and discussed the different insulating regimes. We then introduced inter-
shell metal-ligand— as well as ligand-ligand interactions, studying their effect in various parameter
regimes. We show that these additional interactions generally decrease correlations on the transition
metal ions due to an induced shift of the charge transfer energies. Finally, we demonstrate that Hartree
and Hartree-Fock schemes can be an effective tool to approximately take into account inter-shell
interactions.

We derived and tested a novel method for an effective treatment of inter-shell interactions in
the context of d-p models. The method is an extension of the shell-folding scheme and based on a
slave-rotor description of charge fluctuations. The first sections of this chapter were spent on the
derivation of the formalism, followed by a description of how to embed it the framework of DMFT, as
well as various approximation schemes.

This part was closed with a proof-of-principle, applying our method in the insulating and metallic
regimes, where it compared to results from reference calculations and other approximation schemes.
Here, an exciting outlook is to apply our slave-rotor method to realistic systems, where an exact
consideration of the metal-ligand interactions is rarely feasible.
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In the last part of the thesis, we left the realm of lattice models to study problems related
to molecular systems. We considered a minimal many-body model that is able to capture the
relevant physics of the spin-crossover (SCO) in organometallic molecules. We then demonstrated
the hybridization driven SCO by incorporating parameters from the DFT calculations into our model.
To this means, we mimicked the effect of strain on the axial ligands by interpolating between the
parameter sets corresponding to the two different molecular structures.

Our results suggest Ni-porphyrin as a promising candidate for a molecular spin-state switch, that
could for instance be applied in the context of a mechanically controlled break junction.
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Appendix A

A.1 Solving the rotor Hamiltonian & “slave-matrix” techniques

In order to solve the slave rotor mean-field equations, we still have to find a way to calculate expectation

values with respect to the rotor Hamiltonian. In case of (2.41), the corresponding Schrodinger equation

constitutes a simple ordinary differential equation of second order, and a solution is obtained most

easily, for instance by employing standard numerical approaches such as the shooting method.

The most simple and practical approach probably consists in writing the rotor Hamiltonian as a matrix

in the basis of the angular momentum eigenstates (2.24). In this basis, we can write the rotor operators

as

[Qeu/2 O
.
0
0 0

0

0

- cht / 2_

(A.1)
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and
0 1 0 0
0 0
0 1
e | 0 1 - (A2)
0 0 1
_C () e ()_

Since the original Hilbert space is of infinite size, we had to introduce a cut-off Q. for the angular
momentum, leaving us with matrices of the size (Quy + 1) X (Qeur + 1). It is clear, that we retrieve a
faithful representation of the slave rotor operators as we let Q,; — oo. The number C was introduced
as some gauge degree of freedom, the meaning of which will be explained in the following.

The possibility to write the rotor operators as (A.1) and (A.2) raises the following question:
Considering that the physical Hilbert space is restricted to a maximum total electron number 2N per
site, such that Q € —N ...N, why did we have to introduce an infinite number of auxiliary states that
are, a priori, unphysical?

This question was the main motivation for the development of a “Generalized slave-particle” method[60].
The principle of this technique is identical to the slave rotor method; but the operators L and e/®/¢~°
are replaced by matrices of the form (A.1) and (A.2) with a cut-off angular momentum equal to the
number of electron states Q.,;, = 2N.

Applying this method allows to reduce the error made by using the saddle point approximation (2.31)
for the Lagrange multiplier, since a large (actually infinite) number of unphysical states is excluded
right away. However, this advantage comes along with a couple of problems, that can not all be solved

simultaneously

1. When considering the non-interacting limit U = 0, the slave rotor mean-field method reproduces
the correct result with quasi-particle renormalization 2 = 1. In the truncated matrix formulation,
we can achieve this by adjusting the parameter C in (A.2). At half filling, for instance, C =1
gives the desired result.

2. The two rotor ladder operators cancel each other to unity ¢/®e~*® = 1, which implies that
the auxiliary fermionic density equals the one of the physical electrons dd = f¥ fel%e 10 =
f7f. This is an important detail of the theory and leads to complications (for instance in the
calculation of the Greens’ function (2.39)) if it is violated. In the truncated matrix formulation,
this property is only preserved case for C = 1.

3. The truncated matrix formulation lacks the canonical commutation relation [ﬁ,eie] =Y,

except for C = 0.
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Depending on the parameter regime, these issues might be outweighed by the benefits from reducing
the number of unphysical states (at half filling, for instance, we avoid the first two problems of the
list). It is clear, however, that one should only use such a method with care.
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B.1 Schrieffer-Wolff transformation of the Anderson impurity model

B.1.1 The Transformation

The following derivation closely follows the presentation given in [33], for the original reference
consider [139]. We’re starting with a Hamiltonian of the form

(B.1)

H=Hy+ AHyy = | AV?
= Hj b=y Hy |

with designated low and high energy subspaces, that are connected by an off-diagonal hybridization
Hpyp. The parameter A is used to emphasize that this hybridization will be treated as a perturbation.
The goal of the Schrieffer-Wolf transformation[139] is to derive an effective low energy Hamiltonian

by eliminating the off-diagonal elements of (B.1) with a unitary transformation U = ¢%

, , H AV 2 SEA
H,;r= e (Hy+Hppe s =é° eS=|"F B.2
eff (Ho h}b) AV Hy 0 H;Iff (B.2)

Due to the unitarity of U, the operator S = —S must be anti-hermitian. It is implicitly defined by the
hybridization Hj,y;, and can therefore be expanded in A as

S=AS1+A2S,+O(A3). (B.3)
We will now use the identity

e*Be ™ :B+[A,B]+%[A,[A,B]]+... : (B.4)
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to expand (B.2) as
1
eS(H() +thb)e—5 =Hy+ A (Hh)-], + [SI,H()]) -1-2,2 (E [Sl, [Sl,H]] + [Shthb] + [Sz,Ho]) +....
(B.5)
By setting
[S1,Ho)] = —Hpyp, (B.6)

off-diagonal terms can be eliminated up to first order. Plugging this into the second term in (B.5), we
get

1
ES(H()-i-thb)e—S = Ho-i-kz <§[S1»thh] + [SQ,H()]) +.... (B.7)

The last term [S», Hy] would contain off-diagonal elements, but it can be eliminated by chosing S, = 0.
We therefore arrive at

1
HYT = Hyp + A2AH, :HL+12§PL[81,H;,),;,]PL (B.8)
HT = Hy + A2AHy = Hy + A%

1 =Hyg+ w = Hy + 2PH[SI7thb]PHa (B.9)

where P, Py are projectors on the low/high energy subspace.
The term we’re interested in is AH;, which can be shown to be

1 ! !
AHp = =Y |L'Y (L' | Hyyp |H) (H| Hpyp |L) (L : B.1
. 2;; ) (L'| Huys |H) (H| Hyyp |L) { ’(EL/—EH+EL—EH) (B.10)

B.1.2 Deriving the Kondo model

We can now apply the Schrieffer-Wolff transformation to the Anderson impurity model (3.36)
1 1
_ ¥ i d d d d
H= kEG &by sbiks + kzc(deGka +h.c.)+€n"+U (”T — 5) <”¢ - 5) . (B.11)

In this case, the low energy subspace is spanned by the states in which the correlated orbital is
inhabited by a single electron of spin up or down.

We can then think of two different processes that take us from the low energy to high energy subspace
and then back to the low energy one.

1. In the first one, a bath electron of energy &, jumps onto the impurity, forming an intermediate
state with two electrons. The energy difference of the two states is thus E; — Epy = & — (Sd +U).
Eventually, one of the electrons jumps back to inhibit a bath state of energy &, resulting in the
energy difference Epy — Ey = & — (¢7 +U).
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2. In the second process, the electron on the impurity “jumps” into the sea of conduction states,
such that the difference of energies is £, — Ey = e? — g.. Afterwards, a conduction electron
jumps back to the impurity; the energy difference being Ey — Efy = €7 — gp.

Considering these processes in (B.10) leads us to

1 . 1 1
AHL = = Y ViV (b}, odor ) (dib
r 2,;;1 Wi (byordor)(do kc)<8k—(£d+U)+ek,—(£d+U))
. | | (B.12)
*( g7 T
+3 ’gvkvk, (d bror) (bl o do) (6 e T £k>
Now using the identity 04p 6y = 3 (8an 8gy -+ Gun - Oyp ), We can re-write
(Bpordo) (dsbro) = (b dp) (dybin) S Sy
L R L + O
= Ebkabk'adﬁdﬁ _bkaaaﬁbk/ﬁ -dden > (B13)
S~~~ N——
=1 :gd
b (B o) = — 257, b — b Gugbeg i Ol B.14
( o' ko',)( K o 0')__5 o ko — k/aoaﬁ kﬁ YT n - ( . )
H:—/
=5,

To simplify the expressions, we will assume that ||, |ep| << |€7],|e? +U

, such that we can ignore
these energies in the denominators. We then end up with

o 1 1
AH; = Y Vi Vib!, Gugbig Sy | —— — —
L ];(; KV Op o QaBkB d(8d+U gd)

i 1 1 (B.15)
- = ZVkaﬁbg, bkg (d— - _d) .
25 ° e4+U ¢
The first term corresponds to the famous Kondo spin-spin interaction, while the second term represents
an additional potential for the conduction electrons.

B.2 Three-orbital case

Fig. B.1 shows the equivalent to Fig. 4.3 for the three-band model. In contrast to models without
Hund’s coupling (where Tx /D ~ (TY~'/D)'/N, with D = 2t being the half bandwidth), Tk is rather
decreased for more orbitals in the case of J > 0. However, the increased cost of performing numerical
simulations yet prevented us from exploring very low temperatures. While the coexistence region
is smaller than in the two-band case, the metal-insulator transition is characterized by an insulating
branch that can be stabilized to even higher dopings. In general, the phenomenology seems to be the
same, more extensive research would, however, be of interest.
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Fig. B.1 Filling n per spin as a function of the chemical potential i for a three-band model with
U =2.3,J=0.25U and B = 50. Solid (dashed) lines denote results starting from a metallic (insulating)
initial configuration. Inset: n(u) per spin for U = 2.25,2.3,2.6 (blue, black, green) for J = 0.25,
starting from a metallic configuration.
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C.1 Diagonalization of the two orbital d-p atomic model

We start out with the Hamiltonian

H=U%n? Y (n +n?)+ Y. (vd' p+v*p'a)+€,Y p'p.

which can be cast in the matrix form

[Hy 05, 0 0 0 0 0 0
0 Hy_15.——12 0 0 0 0
0 0 Hy—15.— 112 0 0 0
0 0 0 Hy-25— 1 0 0
0 0 0 0 Hy 250 0
0 0 0 0 0 Hy-25.—+1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

S O O o O

0
Hy_35-—1)2
0
0

S O O O o O

0

Hy 35112
0

0
0
0
0
0
0
0
0
-4,

5.0

(C.1)

(C2)

where the Block Matrices are categorized by total total number of particles N and spin S.. We will

now proceed by diagonalizing each block-matrix individually.

Particle number N =0

Here, we have only one matrix

Hy—o,5.—0 = 0/0,0)(0,0] acts on the state |0,0)

with eigenvalue

(C.3)

(C.4)
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Particle number N = 1

The two matrices are

Hy_ig—_1p= t C5
N=1.5.=—1/2 [V* gp_“] acting on [’07“ (C.5)
and
— Vv i ,0
Hy 15, y1)2= [V‘: . —lJ] acting on [:g T;] , (C.6)
P 5

both having the same eigenvalues
1
e=3 ((e,, —op)+ /€2 +4v2) , (C.7)

Here, we have three matrices, the first one being

Particle number N =2

HN:2,SZZ—1 = (_z:u + 8[’)“/7 J/> <~I/7\l/| acting on |\L>~L> (C8)
with the eigenvalue

The second one is the 4 x 4 matrix

(—2u+¢p) 0 -V -V 1, 1)
-2 \%
Hy-25.—0 = 0 (F2n+e) v acting on T4) (C.10)
& _y Ve 2e,—2u 0 10,14)
-V 14 0 Ut —2u 114,0)

In case that the hoppings are real V = V*, this matrix can be split up further by rotating the basis

L0 0] [ LT +14)
1 1 1
R, — 5 5 00 ) _ \_[2(|~L7T>_|T7i>) (C.11)
o o0 1 of]|lo1) 0,14)
0 0 0 1|][N0) [11,0)
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Applying this unitary transformation to the Hamiltonian matrix yields
(—2u+¢p) 0 0 0
0 —2Uu+¢€ -2V -2V
R’ Hy 25 _oR = (F2ute) —V2 V2 (C.12)
: 0 —V2V  2¢,-2u 0
0 —\2V 0 U —2p
This means, that the N = 2, S, = 0 manifold splits into a singlet state
1
with energy
€=-2U+E¢y, (C.14)
and a triplet, corresponding to the eigenstates of the 3 x 3 matrix
(—2u+e) —VIV VAV (LD~ 11 4)
—V2V  2g,—2u 0 acting on 10,14 (C.15)
—\V2v 0 UM-2u 114,0)
The eigenvalues and eigenstates can be easily obtained by diagonalization of this matrix.
Finally, we have the matrix corresponding to N =2, S, = +1
HN:2,SZZ+1 = (_z.u + 8P)|T7T> <T7T| acting on |T7T> (C.16)
with the eigenvalue
—2U+¢€,. (C.17)
Particle number N =3
The Hamiltonians are
—3u+2¢ -V ,
Hy 35 1= H b ad acting on 1 (C.18)
' VUM 3pte, t4)
and
—3u+2¢ -V : (e
Hy 35 1= P i acting on 1) (C.19)
—V UM -3u+te, 14,71)
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both having the same eigenvalues

£= % <(Udd —6u+3¢,) £ \/(Udd —&p)? +4V2> : (C.20)

Particle number N = 4
The Hamiltonian is

Hy- 15,0 = (U —4p+26,) 1], 1) (14, 1] (C21)

with eigenvalues

e=UM—4pu+2g,. (C.22)

C.2 Solving the two-orbital d-p impurity model — remarks and approx-

imations

To solve the quantum impurity model, we applied a hybridization expansion continuous time quantum
Monte Carlo (CT-hyb) algorithm, using the implementation provided by the TRIQS[129] toolbox.
The algorithm works by sampling the partition function Z, which is expanded in the hybridization part
of the action Sy, (5.31). In principle, this algorithm can be applied to solve impurity model (5.29) for
arbitrary interactions U%, U4P and UPP. We distinguish two cases:

C.2.1 First case: U = UPP —

If the p-orbitals do not interact with themselves or with the other orbitals, we can integrate them out,
reducing the effective degrees of freedom to the d-manifold only. We shall demonstrate this explicitly
for model (5.29).

In the following, it will be more practical to re-write the action in Matsubara frequency space.
This gives us

- —1|d;
Sdp - _Z [diTwcr pzjwﬁ} [G?w] : [ oe +Sinz s (C'23)

io Pioc

o . . : .
where [G, ] is the inverse of the non-interacting Greens’ function

[GY] " = (C.24)

io+pu—ed —Add —V—AP
—Vr— A io+u—el—AP’

and S, accounts for the interacting parts of the action. From (C.23), we can retrieve the interacting

Greens’ function by deriving the partition function Z with respect to the hybridization function. For
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G e.g. we get
- 1 0z
G?(gcr:< 0o ,wc - /D[d do'vpc pG] 0o dinse Sp = —— — dd (C.25)
ZIAS

(we explicitly added a spin label to the hybridization function, to avoid ambiguities concerning the

derivative) with

Z:/D[d;9d67pj77p6]€_5dp' (C26)

Likewise, the other elements of the matrix Greens’s function (5.34) can be calculated by deriving Z
with respect to A%?, AP? and APP.

In order to “get rid” of the p-orbitals, we start by re-arranging the action as

o (G, - (Gl 0
Sap = Z ioc Gza) divc — | Pips + 0 1d1(1)6 [Giw]pp Pioc + 0 1-1 divo
0o [GI ]pp [Giw] pp
CAMEAN
d d
+diTw6 - I; 711(0 b dia)cr+Sint .
Gl(l)] pp
(C.27)
If U% = UPP = 0, the action is quadratic in the p-fields and factorizes to
Z= / D(d},dsle 472, = 7,7, , (C.28)
with
0 [Gholay [GRa]
Sdd = Z dl(,)(y [le]dd iwo +dlw0 0 1—-1 diwc + Sint - (C.29)
iwo |: i(D] pp
For Z,,, we can get a simple, analytic expression, which depends only on [GY, ] op
- (Gl (6] 0
d -1 d
Zp= /D[Pgapc] €xp Z pszo + O—Iid;ra)c [ ?w]pp Pios + pl 0o
’ i0o [Gia)] pp [Gia)] pp (C30)

=11[6%],, -

[{0]e

Due to (C.25), the d-d Greens’ function G2

‘oo 18 independent of Z,,, and can therefore be calculated by

solving a one-orbital impurity model corresponding to the action (C.29).
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Fig. C.1 Imaginary part of the Green’s functions, comparing the results from Monte Carlo calculations
for the full two-orbital impurity model (black dashed lines) and from using the projection to the
one-orbital model (green solid lines), as described in the main text.

The other components of G'? can be evaluated by deriving the partition function

0
1101 ZaA;]al))o- [10]e) [G?w];; ’ ( e )
0 1-1
pd 1 QZ i Gdd [Giﬁ)] dp
pd _ 1 —Gdd_10dp (C.32)
[10]e} Z aA‘;ZfO_ (O]eg [G?w] p;
-1 -1
1 9z ! G, [G)
G;chc T T Z oA~ <[G?w]p;) +G?£G [ ,w]dp [_lw]zpd ) (C.33)
0o ([G?(D]pp>

where the first term in (C.25) comes from the [G?w] ;; dependence of Z,,.
Using the Dyson equation to calculate the self energy confirms the obvious fact that only the dd-

element is non zero

(C.34)

ydd
0 0]

)" -cr =z |

It is not hard to see, that projecting the problem onto an effective one-band calculation is way more
effective than solving the original two-band model with off-diagonal hybridization. A comparison
of the efficiency is presented in Fig. C.1, which shows the results from a “single-shot” (i.e. no
DMEFT self-consistency) Monte Carlo calculations with the two methods, using the same number of
measurements (8 x 10°%). The drastic difference in quality is mainly due to the sign problem, that
emerges in the two-band calculation: Here, the average sign (sign),,~ = 0.244, which means that the

error is increased by a factor of 1/ <sign>12uc ~ 16.
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C.2.2 Second case: U UPP £ 0

If the U7 and/or UPP are non zero, the p-orbitals are correlated and cannot simply be integrated out
as before. If interactions (or hybridizations) are small, one can use a Hartree approach - treating
the additional interactions in a mean-field fashion - and then apply the method presented for the
U = UPP =0 case.

If neither of these approximations works, the full multi-orbital model has to be solved numerically.
We already dealt with 2- and 3-band models in the previous chapter; in these cases, however, the
hybridization function was diagonal in the single-particle basis. Here, the hybridization function
(5.31) has off-diagonal elements, which gives rise to a negative sign problem.

The negative sign problem arises in Monte Carlo simulations of fermionic systems, as a consequence
of the fermionic anti-commutation relations. More specifically, it appears since the weight w, of the
sampled configurations {c} can have a negative sign.

The appearance of a sign problem is problematic, since it drastically reduces the efficiency of the
algorithm. For constant precision of the result, the number of Monte Carlo measurements has to be
increased by 1/ (sign)c-

However, the sign problem is not a gauge invariant quantity and can thus be improved by optimizing
the single-particle basis [142]. This is achieved by means of an unitary transformation to the electron

ds
Po

(note that applying such a transformation will inevitably lead to rather complicated interaction terms;

operators

dg
Po

=U (C.35)

depending on the implementation of the hybridization expansion solver, however, this is not a cause
of further problems).
In our calculations, we have chosen the basis that diagonalizes the local Hamiltonian of the system

g Vv
) C.36
[V* ep] ( )

which significantly reduced the severity of the sign problem.

Since the negative sign problem gets exponentially worse upon decreasing the temperature
(sign) e ~ e %P, (C.37)

it also prohibited us from reaching very low temperatures. In practice, the lowest temperatures for
which we could obtain reasonable results were BW = 256, with W being the bandwidth of the system.

In section 5.3, we discuss results from Monte Carlo calculations considering both the cases
U =yprP =0 and UP,UPP + 0.
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D.1 Slave rotor propagator: Atomic limit and perturbative expansion

In this section, we shall derive the rotor Green’s function in the atomic limit and describe how a
perturbative expansion in the hybridization term can be performed. We consider the rotor part of the
atomic action (6.2), together with the mean-field hybridization (6.16)

1 B /J6 S : /
5% = W/o dr (E—F%) +//0 drdt’ AP (7 — 7')e/00-0() (D.1)

where we substituted ¢ = d:60 + ¢y /.

The rotor Green’s function is defined as
1 A
G (1) = =5 / P[] (0(1=000) =5 (D.2)
with Z8 = [D[6]e™S".

D.1.1 Atomic limit

In the atomic limit, A‘;P vanishes, so apart from the normalization, calculating the G®(7) requires a
functional integration over an exponential with the following argument A

B 2 2
A=—i(9(r)—9(0))—%/0 dr {(‘;—i) +2%‘;—Z+%} . (D.3)
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By parametrizing the rotor fields 6 as!

2 | Q. <
0(t) = 4 = Y B(v)e ™7, (D.4)
B BS
we can re-write the exponent A as
A=A1+A,, (D.5)
with
1 2n’n® 1 2nm
Al = Udr [3 lznﬂ:(l”lm N/Z) ZTT
1 11 .\ x - ive 11T oo
=6(v)0"(v)  =L4[B(v)(e VT —1)+6"(v)(eVT-1)]
(D.6)

The path integral is now evaluated by integrating over the §(v) as well as summing over n. These
operations can be factorized and evaluated independently: The contribution corresponding to A; reads

w272

h _ 2nim
;eA‘ :;cos{Znn'(W—N/Z-i—r/B)}e virp (D.7)
(since imaginary contributions cancel each other under the summation) and must be normalized by
the corresponding contribution to the partition function

h 20272

z8 =Y cos {2n7(;a —~N/2)}e v¥5 (D.8)

The evaluation of the second contribution requires integration over all 8(v). Since A, is only of
quadratic order in 6(v), we can proceed by completing the square

d d
Ay = —Z{%U"P—IW [é(v) +iUV—2p (e — 1)] [é*(v) +iUv—2p (7T —1)
' (D.9)

1 Udp ivVT —ivT 1 —
tapr (@D o) Lo pru (.

INote that the coefficients are restricted by two constrants: 1) The field 6(7) must be real, therefore 0(w) = 6(—w)*
and 2) 6(0) = 6(B) [27], from which we can deduce R[6] =0 .
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The terms in first line, as well as the last term in the second line will be canceled by the corresponding
terms in the partition function, such that finally, we arrive at

ity a
Go(r)= L0 €08 {2n7r(U,,p N/2+7:/[3)}2::2n2 ' exp{Z{U I; (cos(vT)— 1)}} . (D.10)
Y, cos {ZnE(Udp N/2)}e vire B

D.1.2 Quasi particle renormalization

Analogously to the definition used in the mean-field formalism in Sec. 2.3.2, we can derive a auxiliary
fermion renormalization 2y, as

Zip = {c0s ) = lim (cos (6(B/2))cos (6(0)))g = lim GF(B/2). (D.11)

It must be emphasized, that in the context of our slave-rotor method for the d-p model %y, does
not correspond to the full quasi-particle renormalization %, but only to the contribution from the
inter-shell interaction U“P.

To evaluate this expression for (D.10), it is sufficient to consider the exponential part at T = /2

Z{ﬁ 2(c:os(v/3/2)—1)} (D.12)
Considering that v = 2mtm/f, and that the summation of m runs over all integers except 0, this gives
Byt &1 pu
—1- 1)} = , (D.13)
Avﬁ VZ;’O{ n? nZl 26

which diverges to —oo, as B — oo . For this reason, Gg , as defined in (D.10) always yields a vanishing

fg;i p-

This is in contrast to similar implementation by Krivenko et al. [95], where the atomic limit Green’s

function results in a non vanishing Z. The reason for this difference, is the form of the interaction.

While here, we consider an instantaneous interaction U9 (1) = §(t)U“?, corresponding to a constant

interaction in Matsubara space U (iv) = U?, the interaction considered in [95] is of form U (iv) =
1

— Yo 2A2 (v2 Yol e ) For an interaction of this form, the parts diverging under the infinite

summation will cancel each other, such that limg_,.. G§ (B/2) . and therefore Z, remains finite.
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D.1.3 Hybridization expansion

If we expand the action (D.1) around A’Z)p (Tt —1’), we can write the rotor propagator as

] ot
Ge(r):ﬁ / 2[0]e~ 160 eum(l
dryd [ dn,de TTAY (7, - ©)e @6
n: ) // T 71 // T,dT, H ‘L' ‘L'
1 = . :
:ﬁ{Gg(T Z( )/ drdry - //0 drndr,’,Gg’(r,o,n,r;,...,f,,,r,;)HlAgP(fj_f]/.)
j:

1 i ) ' [ Tn—1 n
=78 {Gg(f)'i' Z( l)n(n!)// drdt // dr,,dr,’q Gg(T’O’ThT;v---aTn»Ty/,)HAgp(‘Cj _ ‘E}) ,
n=1 0 0 e
(D.14)

with
- p / Tt ! 0 / T Ad /
—i—Z(—l)”(n!)// drldrl---// d5,dt, Go(T1, 71, ., T, T,) [ [ A9 (1, — 7)) (D.15)
n=1 0 0 j=1

where Gg (7,0,71,7, ..., Tn, T,,) can be calculated analogously to Ge( 7), and has the simple analytic

expression
20272
GO (7,0,71, 7], o0 T, Ty Zcos{Zmr(h /B Y (5 1) /B) e VP
n
XeXpZ p{ 2cos(vVT) —2)
(D.16)
- 22 [cos(V(T, — 7)) —cos(v(T, — T)) —cos(VT,) +cos(VTy,)]

_ (Zcos(vr,,)—cos(vr,’,)>2— (Z(vrn)—(vr,’l)f} ,

n n

D.2 Kinetic energy of the impurity model

In this section, we shall proof that

Z g 7 ded dep bgo. . lZT Gmop, lE ' (D.17)
o Po Vkpd Vkpp b/lzo- _ﬁiw 194G, Aiw = o kin - .

ko
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The expectation value, as well as the impurity Green’s function are calculated with respect to the

impurity action
S = Satom + Shyb s (D.18)

with the hybridization part

B Vdd Vdp bd
Sy = / dry [di, pc] Lok ; Fhee.
0 o Vi V¢ by D.19)
—io+E 0 b '
+ [de bPT} k ko |
; ko Tko 0 —io+E}| |}
which is equivalent to
. Add AP g
Shyb :ZZ [d&iw pTcia)] L;“:i A;’a;’] [ Gt-co , (D.20)
io o io Bio| [Poio
with
Add - AP v vl lio—E{ 0 Vi
i i® ZZ k k k k k (D.21)
N B N R 7 0 io—E’| |vir oy

Since S0 does not depend on the bath states, we can express the expectation value in (D.17) as

ydd ydr] [pd 0Z ap, 9Z _pa  9Z
ds ps| | ha ol [ dy 92 ydpy O ypdy 97 yop
§<|: c Po Vkpd Vkpp b‘;;c; Z Vdd k adep k oV Pd anp
dd dp
SXY( [dhio o] [y 2
iw O A‘zpa) Af)al)) DPoio

(D.22)

which follows from the definition of the partition function Z = [ Z[d, p|exp{—(Saiom + Shy») }. This
proves the first equivalence of (D.17).

D.3 Truncated Matsubara sums

If we want to calculate the Fourier transform of some bosonic quantity, we have to evaluate

): eV (D.23)

'@I



168

In practice this sum has to be truncated at some finite frequency vy, which is problematic if G () is
not a differentiable function. Therefore, it is useful to consider the high-frequency behaviour of Giev

A
GS ..~ v (D.24)
and rewrite
0 Glevo 1 Al ] A —zv . —zv
G% (1)~ 5 +3 ) Givy, =75 e ™ Z "t (D.25)
n=—N,n#0 n =oo,n

Making use of the identity Y, <= "X) = %2 — % + 5 4., we get

Glev A 1 2 2 242
G (1)~ —i ﬁ Z (G?Vn_ﬁ> iyt AF% (F—”ﬁmﬁtﬁ—Z) . (D26)

n=N.n#0 n

Evaluating the Green’s function at T = 0, we therefore get

-1 -1
U
dp 1 dp B
G = — — D.27
B Z ( 2 v2> + 2 12 ( )
while for the derivative, relevant for constraint (6.13), the summation is straight forward
-1
1 ( i U, 1
9:G° (1 +8G9‘c:0+>:— vGe — 24 ") Lo = e
2Udp T ( ) T ( ) ﬁUdp ; \4 2 v ﬁUdp ;

(D.28)

D.4 High-frequency tails

While lots of the physical properties of the many body system are encoded in the self-energy.
Nevertheless, most Monte Carlo algorithms only sample the Green’s function, such that the self-
energy has to be obtained from solving the Dyson equation

Yio=(90) " = (Gip) ™", (D.29)

which, for multi orbital systems will be a matrix equation.

Since both %2, and Gjp decay as ~ 1/(iw) for large Matsubara frequencies, it is clear that this
inversion is numerically unstable. It is for this reason, that is can be useful to have an analytic
expression for the tail of the self-energy, which we shall derive in the following (for a detailed
discussion see also [64]). We start by formally expanding the Green’s function in the high-frequency
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regime

1 1 1 1
Gip =—G G G+ —=), D.30
where the first coefficient is already defined by a sum-rule to be equal to unity Gy = 1. The expansion
of 49 is analogous to the one of Gy

For the self-energy, we can proceed likewise, giving

1 1
Yip=(Ylut+Zi—+0|— ) ; D.31
i + lia) + <(l(0)2> ( )
contrary to the Green’s function, however, the coefficients X, and X; can take arbitrary values.

Due to the Dyson equation (D.29), the coefficients of the self-energy can be related to those of the
free and the dressed Green’s function. Inverting the Green’s function (D.30), dropping the terms

o <W> we get

R Sl P -1 _ 2 L 1 -3 1 2
and likewise
1 1 1
(6 i (6871 (682 (6t 06 + 697 (op(@t?)) . @3

These expressions simplify considerably when we consider that Go = G8 = 1. Plugging them back
into the Dyson equation we get

1
Yip = (G —GY) + ((GY)* = (G1)* - (G- Gy)) , (D.34)
which can be compared with (D.31) to retrieve the parameters of interest

Yo = (G —GY) (D.35)
L = ((G))* = (G1)* = (G} —G)) . (D.36)

But how can we calculate the coefficients for the Green’s functions? It can be shown that the high-
frequency coefficients are related to the discontinuity of the n””* derivative of the Green’s function at
T=0

G, =d"G(t=0")-d"G(r=07). (D.37)
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These derivatives can be simply calculated from the definition of the Green’s function
G(t) = —(Td()d"(0)) , (D.38)

which, for matter of convenience, we wrote in scalar notation. The time derivative of the Greens

function depends on the time derivative of the electron operators

d:d(7) = [H,d(7)] . (D.39)

such that finally, we get
G =-({[A.d],d"}), (D.40)
G,=({[H,[A.d]].d"}) . (D.A1)

In case of a matrix Green’s function, these expressions have to be evaluated for each matrix component.

D.4.1 High-frequency tail of the d-p problem

We can now use the expressions derived in the previous section to calculate the self-energy high-
frequency tail for the d-p problem.

For models with density-density interaction, evaluating expressions (D.35), (D.36), (D.40) and (D.41)
yields

£ = §,, Y U™ <n’> (D.42)
/
= lzk:UmlU"k <<nlnk> - <nl> <nk>) , (D.43)

where the indices m, n, k, [ label spin and orbital degrees of freedom at the same time.
Considering the d-p Hamiltonian (5.25), this translates into the following expressions for the moments
of the d orbital self-energy

T = g4 (n )+ U (i 1] ) (D.44)
B = 4 (o) (1= () #2000 (ol ) = (o) (o 1))

PR ({02 = () (i nt)) (D.45)
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(and likewise for the opposite spin). The high-frequency tail corresponding to the shell-folding method

(see Sec. 5.2.3), on contrast, are given by
sddtt — (ydd _ ypy <nfj > (D.46)

S _ (g any? <n11> <1 _ <”ii>) _ (D.47)

D.4.2 High-frequency tail using the slave rotor method

Of course, the methodology derived above can also be used to evaluate the high-frequency tail when
using the slave rotor method, derived in Sec. 6.
As before, the high-frequency moments are determined by the discontinuity of the n’”* time derivative

of the Green’s function, with the difference, that now
G =~ (Td(r)d' (0)e *@=0O)) . (D.48)

We shall now consider the slave rotor mean-field Hamiltonian (6.33), to derive the high frequency
moments. To keep a better overview, let us evoke the Hamiltonian, which writes

ok =a) +A) . (D.49)
with
ﬂlilp = Z(Ed —H —l’l)dj;dl; +Z(8P —H _h)ﬁzfﬁa +Z (VJ(TTﬁG +hC)
o (e o2
dd _ yydpyxd =d dp\ P 5P
+ (U =UP)gh] + (UPP — Ui (D.50)
S (Vb e dpdi id Pyt P
+y [d(, ﬁc] st o] |5 <e’ >+h.c. + Y O b+ Y EPBP] b
ko Vo Y% ko ko ko
and
. Udp,\ . Vdd VdP bd )
H,.‘,’,,p=TL2+hL+Z{<[dI§ ﬁi,} [vkl"’ Vkpp bf;’ ¢+ hc.
ko k k ko (D.51)

Ur 1 ) .
= TLZ +hL+ EE]{m (e’e +€_le) .
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To calculate G (D.40) and G, (D.41) in this case, we need the commutators [ ,mp,dge 0 } and
[Hlffp dNT ’6] The first one reads
[y 18y doe ™ = ((s =)o +V o+ (UM U diil ) 1
dpyp o\ i (UY d 0
( +V bko) <e’ >e — | — +h+UL ) dse ™ (D.52)
ko 2
—A+B,
which we split into two parts
: d dd_rdpad L U s\ 7 i
A:—(e —u+ U —U”)ﬁ6+T+UpL>dGe" (D.53)
B=- (Vpc + ¥ (Vb + V) (o >) e (D.54)
ko

for a more systematic evaluation of the second one. We then get

. uar .
Al +A? A} = (sd —u+ (U — Uil + -+ UdPL>

imp imp>

(€% — = h)ds+V o+ (UM U)ol + Y (dedbgc + V,ff’bfjc> <e“">> e
ko

udr udr 0
+ (ed p+ (U Uyl + —) X <T+h+Ud1’L> dge ®

2
+ (L4202 -l-hUdpL) dye + ;E,{mUd” (1-e2%)do
(D.55)
and
Al + A, } VPds+Y ( AV dy + VI po) + VP (VP dg + VI 1,)) <e"9>2e*"9

ko

+Y <V,§de,§’b +VIPEPY ) (e > 10
ko

, udr 5
- (Vﬁo HL (Vo + V") <ele>> ” (T e UdpL) o

ko

(D.56)
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Here, we made use of the relations

[d'd,d] = —d (D.57)
[d'd,d"] = +d" (D.58)
[i,e“’_ S (D.59)
[I:,e_ie- — (D.60)
[122,&9' — 0 20 (D.61)
[ﬁz,e_ie_ = —¢ 0 _2[ 0, (D.62)

We can now calculate the anti-commutators for (D.40) and (D.41). For the one corresponding to Gy,
we get

{38 doe] d5e®} = — (e~ — ) + (W U0yt

D.63
—(UT@MJFU"PIZ) . 63

The expressions for G, are slightly more complicated, since we have to evaluate the anti-commutator
for A and B. Fortunately, however, all the terms which are not ~ dy, cancel, thus simplifying the

(otherwise even more complicated) expressions to
SR A1 5t 6 d dd dpyd ) U dpj d dd dpy ~d
{[H,.mp,A] dte }: (e —pu+ U —U P)n(-,> (UL (s —u+ (U —U P)nc-,)

p ~
—(ed—u dd _ )ﬁ‘é+T+M>h

+ (e —p+(u g +— | h
ydr . ydr
() eop s
Ut o, 552 o Lor dp (e i
+ 5 (L+20) + ROl S B U™ (0 — )

(D.64)

and

g A ~L H . 2
{183 B] doe® = VE+ X (VP +v712) (7). (D.65)
ko
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Using these expressions, we can evaluate

Gddoo _ (Gddooy2 — <{[HSR A+B).d; 16}>

imp>

([t doee) e}y
= v (i) (1= (i) + WP ((2)= (L) (.o
+|V|2+Z( VP v R) (e,

where we assumed that (¢®) = (¢~®). Remarkably, most terms cancel, leading to a rather simple
form. However, we still have to subtract the terms corresponding to the non-interacting Green’s
function.

The equivalent expressions for the non-interacting Hamiltonian follow trivially by setting U4,
UPP and U to zero and <ei9> to one. However, care must be taken when comparing the bare
energies £7/¢” in the interacting and non-interacting limit: When bringing the Hamiltonian to its
shell folding form, the bare energy levels obtained a shift of 4/? — £4/P + U (N /2) — U /2 =
g4/P 4-U4P(N —1)/2, which is absent in the non-interacting case. Taking this shift into account, and
using (D.35) and (D.36), as well as (D.40) and (D.41), we can then calculate the coefficients of the
high-energy tail. Eventually, this leads us to

$dioo — Gi1o0 — Gtoot — (M —y ) (7l ) + U (L) +1/2+(N=1)/2) . (D6D)
which, using the constraint (2.33) reads
yddoo _ Gddco GddGGO ydd <~d > L ydr (<ﬁzci>_ +’7‘1T) +ﬁf>) , (D.68)

and should be compared to the exact expression (D.42).
For the 1/(iw) term, we get

Eddco (Gddcrc()) _ (thidco)z + (Gzzidoc _ Gddccr())

= o —vtrp (i) (1= () + w2 ((2) - (L) (D.69)
ex () (e )

In contrast to the high-frequency tails from the shell-folding approximation Eq. (D.46), these
expressions take into account the effect of the inter-shell interactions, explaining the improved results.
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Appendix E

E.1 Simplified asymptotic models

In the limiting cases of the bi-pyramidal and (infinitely stretched) square planar configurations,
corresponding to the parameter set (Tab. 7.1) obtained from our DFT calculations, the results obtained
from Hamiltonian (7.1) correspond to those obtained from two very simple models, which shall be
described in the following.

Low spin model. In the infinitely stretched case, the orbital does not hybridize any more with
its ligand, therefore making the filling a good quantum number. The Coulomb repulsion acting
on the orbital will therefore manifest itself as a mere shift of the bare energy. Due to the strong
hybridization of the orbital with the ligand, the effective energy will lie above the one of the , justifying
the assumption that the orbital (and it’s ligand) are completely filled. Since our system contains 6
electrons, this leaves us with a strongly reduced Hilbert space, spanned by the 4 states

D N P A P L P D PO

(E.1)
11,00 1T+ [T 1) [14,0),
Using these as our basis states, we can write the corresponding Hamiltonian as a matrix
2U—5]+A/2—pn+E} 0 —Vs ~Vs
oo 0 2U—-5]+A/2—u+EY W, 12
o -V Vs 2E! 0 ’
-V % 0 SU—-10J4+A—-2u
(E.2)

which can be easily diagonalized.



176

High spin model. In the bi-pyramidal configuration, Hund’s coupling will strongly favour the

states

’T7T>c|/Nfa/Nf>b ’ |\J/7J/>L|T\L7T\l/>b . (E3)

Since the second state can be generated from the first one by applying a global spin-flip transformation
(which, without any external magnetic field leaves the system invariant), it suffices to consider only
the first one in the following. Due to the considerable hybridization V;, V, with the ligands, we also

have to consider the states

151 110

e MLy

A (E.4)

Thus, our Hilbert space is again of dimension 4, and we can write down the Hamiltonian as a matrix

U—3J—2u+2(EV + E}) -V —Vs 0
e — -V 3U—5J—A/2-3u+EY 1 2EL 0 -V,
-V 0 3U—5]+A/2—=3u+2EL +EY -V

0 -V -V 6U — 10/ — 4+ (E? + ED)

(E.5)

which can be diagonalized without effort.

E.2 Subtleties of the Double Counting self-consistency

As we already mentioned before, evaluating the double counting potential (7.18) in a self-consistent
way corresponds to solving an equation ng.(€gr(n)) = n. This equation can have multiple solutions,
among which we chose the one with the lowest energy as the physical solution. For a continuously
changing set of model parameters P[x], however, we find that some solutions only exist within a
certain range of parameters Plx < x.| and then disappear in the vicinity of the spin crossover. This is
visualized in Fig. E.1, which shows the occupation of the correlated subspace as a function of the bare
energy shift from the double counting. This energy shift itself depends on the filling (black line), such
that self-consistent solutions correspond to the positions, where the black line crosses the n.q,(€gr)
lines. We see that for x = 0.1,0.2,0.3,0.4, we have three crossings, corresponding to three solutions.
For x = 0.5 > x,, however, only one crossing persists, meaning that there is only one solution left.
This is what we mean by “disappearing solutions”. Since the solution that is lost is precisely the one

previously minimizing the energy, this leads to a “jump” of the energies.
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3.0

2.8

Neorr

244 === Neorr(€np)[x =0.1]
=== Neorr(€nF)[X = 0.2]
--%== Neorr(€nF)[x = 0.3]
=== Neorr(€nF)[X = 0.4]
22 Neorr(€xF)[X = 0.5]
— n=(gur— U§€g/2 +f§3g/2)/(—U§€g +j§5g/2)

-9.0 -8.5 -8.0 =75 =7.0 -6.5 -6.0

Fig. E.1 Visual representation of the double counting self-consistency equations, for different set of
parameters P[x] = (1 —x) - P[Ni-TPP] 4 x - P[Ni-TPP(Im;)]. Colored lines mark the occupations of
the correlated orbitals as a function of the energy shift €y, while the black line is the inversion of the
double-counting potential as a function of the filling. Crossings of the black- with the colored lines
correspond to solutions of the self-consistency equation.
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