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THÉORIE ET SIMULATION DE PHÉNOMÈNES DE TRANSPORT DU
PLASMA À BASSE PRESSION

Application au propulseur PEGASES

Résumé substantiel en Français

Le domaine de la physique des plasmas froids a émergé avec les premières décou-
vertes fondamentales en physique atomique et en physique des plasmas il y a plus
d’un siècle. Toutefois, ce domaine a été rapidement orienté vers les applications.
L’une des applications les plus importantes dans la première moitié du XXeme siè-
cle est le "Calutron" (California University Cyclotron), inventé par E. Lawrence à
Berkeley, qui faisait partie du projet Manhattan, et utilisé comme un spectromètre
de masse pour séparer les isotopes de l’uranium. Dans un rapport du projet Man-
hattan daté de 1949, D. Bohm fait deux observations qui sont fondamentales pour
la physique des plasmas froids : (i) Les ions doivent avoir une énergie cinétique
minimale lorsqu’ils entrent dans la gaine du plasma, estimée à Te∕2 , Te étant la
température électronique en électron-volts. (ii) Le transport du plasma à travers un
champ magnétique est augmenté par des instabilités.

La propulsion électrique par plasma est utilisée pour des satellites militaires
et des sondes spatiales depuis les années 1960 et a suscité un intérêt grandissant
ces vingt dernières années avec le développement des applications commerciales
des technologies spatiales. Néanmoins, les mêmes questions que celles auxquelles
D. Bohm était confronté, c’est-à-dire le transport multidimensionnel, l’interaction
plasma-gaine, et les instabilités, se posent toujours. La théorie et les simulations
sont d’autant plus importantes pour la conception des systèmes de propulsion élec-
trique que les tests en conditions réelles nécessitent le lancement d’un satellite dans
l’espace. Le Laboratoire de Physique des Plasmas (LPP) de l’École polytechnique
(UMR CNRS 7648) a développé une expertise sur les systèmes de propulsion de
satellite par plasma depuis le début des années 2000, avec initialement une forte
composante expérimentale. Le premier concept original développé au LPP est le
propulseur à grilles PEGASES, qui a été breveté en 2005.

Les premières simulations des plasmas de type particulaires ont émergé dès
les années 1970. Dans un premier temps, ces simulations ont permis de résoudre
l’équation de Boltzmann et ainsi valider des hypothèses théoriques. Parmi les sim-
ulations particulaires, les simulations « particule en cellule » (particle-in-cell, PIC)
font interagir une population de macro-particules qui ont chacune un certain poids
statistique, typiquement un million de particules physiques, avec un champ élec-
trique, à chaque pas de temps. Ces simulations permettent d’avoir accès, avec une
très grande résolution temporelle, à toutes les propriétés statistiques du plasma,
à chaque cellule. L’émergence du calcul haute performance permet aujourd’hui
d’utiliser la simulation PIC dans des conditions proches des conditions expérimen-
tales, ce qui permet d’extraire des informations très précises sur les propriétés du
transport dans les plasmas de laboratoire.
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Dans ce travail, nous utilisons le code PIC bi-dimensionnel (2D) parallélisé LP-
Pic qui a été partiellement développé dans le cadre du projet et qui fait suite aux
travaux de V. Croes à l’École polytechnique. Toutes les dérivations théoriques sont
motivées et validées par un grand nombre de simulations PIC qui sont présentées en
détail tout au long du manuscrit.

Dans un premier temps, nous rappelons les définitions de la plupart des quantités
importantes pour la modélisation des plasmas à basse pression. Quelques premiers
résultats de simulation PIC sont présentés. Ensuite, nous établissons les équations
du transport multidimensionnel dans un plasma isotherme, en généralisant la théorie
du transport ambipolaire au régime de basse pression, avec une approche originale.
Le chapitre 3 est dédié à la simulation en 2D d’une colonnemagnétisée. L’instabilité
de dérive résistive qui s’y développe est étudiée en détail. Nous proposons un nou-
veau critère de gaine qui permet de rendre compte de la saturation du champ magné-
tique dans un plasma froid et faiblement ionisé. Au chapitre 4, nous modélisons le
refroidissement des électrons à travers le filtre magnétique du propulseur PEGASES
(Plasma Propulsion with Electronegative Gases), fonctionnant avec l’argon. Enfin,
les cas de simulation sont étendus à une décharge inductive à plasma dans l’iode,
avec un nouvel ensemble de sections efficaces de réaction. Différentes ondes et in-
stabilités sont observées, même en l’absence de champ magnétique. Ces nouvelles
simulations permettent de faire le pont entre certains modèles théoriques développés
ces vingt dernières années et des expériences de laboratoires antérieures.



iv

THEORY AND SIMULATION OF LOW-PRESSURE PLASMA TRANSPORT
PHENOMENA

Application to the PEGASES Thruster

Abstract

The field of low-temperature plasma physics has emerged from the first fundamental
discoveries in atom and plasma physics more than a century ago. However, it has
soon become driven by applications. In the first half of the XXth century, one of
the most important application is the "Calutron" (California University Cyclotron)
invented by E. Lawrence in Berkeley. It was part of the Manhattan project, and
operated as amass spectrometer to separate uranium isotopes. In a 1949 report of the
Manhattan project, D. Bohm makes two observations that are fundamental for low-
temperature plasma physics: (i) The ions must have minimum kinetic energy when
they enter the plasma sheath estimated to Te∕2, Te being the electron temperature
in eV ; (ii) plasma transport across a magnetic field is enhanced by instabilities.

Plasma electric propulsion is used on military satellites and space probes since
the 1960s and has gained more and more interest in the last twenty years as space
commercial applications were developing. However, the same questions as the ones
D. Bohm was faced with, namely multi-dimensional transport, plasma sheath inter-
action, and instabilities, arise. Theory and simulation are even more important for
electric space propulsion systems design since testing in real conditions involves to
launch a satellite into space.

In this work, (i) we derive the equations of the multi-dimensional isothermal
plasma transport, (ii) we establish a sheath criterion that causes the magnetic con-
finement to saturate in low-temperature, weakly ionized plasmas, and (iii) we model
the electron cooling through the magnetic filter of the PEGASES (Plasma Propul-
sion with Electronegative Gases) thruster. All the theories are driven and validated
with extensive two-dimensional particle-in-cell (PIC) simulations, using the LPPic
code that was partially developed in the frame of this project. Finally, (iv) the sim-
ulation cases are extended to an iodine inductively coupled plasma (ICP) discharge
with a new set of reaction cross sections.
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Plasma Physics for Space Propulsion

At the beginning of the XXth century, when airplanes were hardly flying, Rutherford
evidenced the role of electrons and protons as constituents of atoms, opening the
way to a new discipline: Plasma Physics [129] . Plasma Physics deals with the
collective behavior of electric charges carried by electrons, ions or striped atoms.
The neutrality of atoms, that is widely observed at the Earth surface, happens to be
just an exception at the scale of the universe. In most conditions of pressure and
temperature observed outside of our planet, electrons are not bounded enough to
the nuclei, such that matter behaves as a plasma, and not as a standard gas or liquid.
The plasma can be accelerated by electric fields, confined by magnetic fields, and
heated by electromagnetic waves. These phenomena are essential to understand the
structure of astrophysical objects, and in particular, the sun and its interaction with
the planets of the solar system. For example, on Earth, the confinement of ions of
the solar wind around the Earth magnetic field lines can be observed in auroras, and
high electric fields trigger ionization fronts in lightning.

Plasma Physics lies at the crossing of hydrodynamics, statistical physics, par-
ticle physics and quantum chemistry. It inherently tackles physical problems at a
mesoscopic scale. The observation of natural phenomena was very important for
the progress of plasma physics,. But perhaps at an equally important level, the fact
that ionized matter can be accelerated, confined and heated by electric and mag-
netic fields gave birth to many technological applications. The application that has
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drawn the most interest from the scientific community and the governments in the
past seventy years is nuclear fusion. Nuclear energy is the densest source of energy
currently available. The typical energy released in a chemical reaction is 1 eV while
the typical energy released in a nuclear reaction is 1MeV. So the nuclear energy
density per mass unit is typically one million times higher than the chemical energy
density per mass unit. This is of great interest both for civilian energy supply, and
military applications, including propulsion and weapons. While fission reactions
rely on high energy neutron impactors, nuclear fusion of light elements is sustained
by the energy of the elements themselves. The typical fusion reaction between deu-
terium and tritium nuclei can be sustained only under very high temperatures and
very high pressures, where the gas behaves as a fully ionized plasma. Research on
nuclear fusion has been fundamental for the development of the theories of plasma
physics since World War II, both for magnetic confinement fusion (mostly civilian),
and inertial confinement fusion (mostly military) applications.

The motivation of the present work is spacecraft (SC) electric propulsion (EP).
EP is perhaps less fundamental to the future of human kind than nuclear fusion but
is a crucial element for the development of space exploration and the commercial
use of the outer space. It has been successfully tested in the 1960s in Cold War
United States and USSR. The idea of using charged particles to generate thrust in-
stead of hot gases appeared almost at the same time as the discovery of the very
existence of these particles [39]. In 1920, at the very early stage of plasma physics
and soon after the fundamental discoveries of electrons and ions, the first concepts
of electric propulsion were patented by Robert H. Goddard [65]. The original idea
comes from the very high velocity that ions can reach when accelerated through a
moderate electrostatic potential. While the thermal expansion of neutral gases leads
to velocities that are typically

vT g =
(kBTg

mg

)1∕2

, (1)

the velocity reached by an ion accelerated by an electrostatic potential Δ� is

vi =
(

2eΔ�
mi

)1∕2

. (2)

For xenon (131.29 atomic mass unit (amu)), with Tg = 1 000K and � = 100V,
vT g = 0.25 km/s and vi = 12 km/s. The velocity achieved by electrostatic accel-
eration is easily one or two orders of magnitude higher than those reached through
thermal expansion. This difference comes from the ratio between the elementary
charge and the Boltzmann constant e∕kB = 11 605K/V: while it is relatively easy
to generate a 1V electrostatic potential, it is much more challenging to sustain a gas
reactor at 11 605K.

The outer space cannot provide the external forces that could be used for propul-
sion purposes like on the ground, in the air or the sea. On the contrary, the mass
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used for propulsion has to be carried on board the SC. According to Newton’s third
law, the thrust generated by a mass flow at velocity vex is

F = ṁvex (3)
where vex is the exhaust velocity of the propellant and ṁ is the mass flow rate.
This equation can be integrated over time to yield the Tsiolkovsky equation for the
velocity budget Δv of a space mission

Δv = vex ln
(m0 + mp

m0

)

(4)

where m0 is the "dry mass" of the SC (its mass without the propellant) and mp is
the mass of propellant available at the beginning of the mission. The two previous
equations put emphasis on the critical role of the propellant outlet velocity for space
propulsion purposes. At a given mass flow rate, a higher thrust can be achieved
if the exhaust velocity is higher. Conversely, a lower mass flow rate can be used to
achieve the same thrust, whichmeans that less propellant needs to be carried to space
from the ground. Tsiolkovsky equation also shows that a greater velocity budget can
be achieved with a greater exhaust velocity, which makes EP a good candidate for
deep space exploration. In SC propulsion, the exhaust velocity is usually estimated
through the specific impulse

Isp = vex∕g (5)
where g = 9.81 is the gravitational acceleration on the ground. This quantity is
particularly convenient for rocket propulsion: when Ispṁ = mR, mR being the total
mass of the rocket, the rocket can take off.

Of course, like for any propulsion technology, an energy source is needed. For
most scientific and commercial space missions, the electrical energy is provided by
solar panels. The USSR has also flown stationary plasma thruster (SPT) technolo-
gies powered by a nuclear reactor through a thermionic converter, for example on
the Kosmos 1818 surveillance satellite launched in 1987. The development of nu-
clear electric propulsion systems has slowed down since the end of the Cold War
and the consensus on the peaceful use of the outer space and of nuclear energy. The
power budget for most electric propulsion systems today is limited by the size of
the solar panels (typically 1 kW/m2) such that most electric thrusters commercially
available are in the 1-10 kW range. The current trend is to miniaturize satellites to
build constellations of hundreds or thousands of satellites that can provide global
connectivity or Earth imaging with a very short revisit period. In-orbit servicing or
extra-terrestrial resource extractions tend to draw interest from the public and pri-
vate investors since 2016. These applications may require the development of new
high power propulsion systems in a not-too-distant future.

The rough characteristics of a plasma thruster can be estimated through very
simple analytical models. The main parameters are the discharge current Id , the
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acceleration voltageΔ�, the mass flow rate ṁ, and the type of propellant. In an ideal
plasma thruster with only singly-charged ions of mass mi, each atom that enters the
discharge chamber has to be ionized and accelerated, such that

 = Δ� × Id = (ion + eΔ�)
ṁ
mi

(6)
where  is the electrical power and ion is the mean energy required to create one
ion. The exhaust velocity is estimated by Eq. (2). The specific impulse is

Isp =
1
g

(

2eΔ�
mi

)1∕2

, (7)

and the thrust
F = 

ion + eΔ�
(

2eΔ�mi
)1∕2 . (8)

This equation shows that the propellant should have a high ion mass and a low ion-
ization energy to maximize the thrust. The kinetic power of the plasma plume is

kin =
1
2
ṁvi

2 = 
1 + ion∕(eΔ�)

(9)
such that the thruster efficiency is

� = 1
1 + ion∕(eΔ�)

. (10)
In this simple model, the thruster efficiency only depends on the mean energy re-
quired to generate one ion ion, which is typically of the order of magnitude of the
ionization potential iz of the propellant (molecule or atom). Due to its inert na-
ture, its high mass, and low ionization energy, xenon is the most commonly used
propellant in the field of plasma propulsion.

This model is very much simplified and the art of plasma thruster design is to
obtain performances that are close to the ideal situation depicted by Eqs. (7), (8)
and (10).

The original designs of gridded ion thruster (GIT) and Hall thruster (HT) (equiv-
alent to the SPT), which are the twomain families of plasma thrusters, are the results
of decades of research and technological development mainly in the US and the for-
mer Soviet Union. Nowadays, new thruster designs, even when they are not revolu-
tionary, need to be validated through expensive test campaigns where the thrusters
are fired for over 10 000 hours in a vacuum chamber on the ground. One of the first
approaches of plasma thruster design via modeling was established by D. Goebel
and I. Katz at the Jet Propulsion Laboratory (JPL) [68]. Among the main parame-
ters that limit the thruster performances, we can mention
(1) The plume angle. Only the kinetic energy of the beam directed along the

thrust axis is useful for the thrust generation. Designing a thruster where the
ion beam is narrow is quite essential. The GIT technology is typically more
efficient to this respect than the HT.
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(2) The multi-ion generation also deteriorates the thruster efficiency. A signifi-
cant amount of doubly-ionized ions can be generated when the electron tem-
perature is too high.

(3) The most important source of performance losses holds in the discrepancy
between ion and the ionization energy iz. The energy required per ion gen-
erated ion is necessarily greater than the ionization potential energy iz, and
it can eventually be much higher. The power conversion from the power pro-
cessing unit (PPU) to the plasma may not be ideal, which yields what is called
in the literature the electrical efficiency. A significant amount of the energy is
lost in atomic or molecular excitation levels that naturally decay to the funda-
mental state by emitting light at various frequencies, including in the visible
spectrum, or remain in metastable states. Some of the energy is also lost
through elastic collisions with the neutral gas and contributes to gas heating.
Finally, the loss of energetic particles at the inner reactor walls may deteriorate
the thruster performances as well. The same questions of plasma confinement
and transport arise as in problems related to fusion technologies.

An investigation of the phenomena mentioned above requires a deep understanding
of low-temperature plasma (LTP) Physics. In this work, we will focus mainly on
point (3), with great emphasis set on transport and power loss phenomena involved
in GIT technologies, both with and without magnetic fields.

Low-temperature Plasma
LTP Physics is a theoretical framework that covers a quite wide range of experiments
and applications. The pressure can vary between atmospheric pressure or above to
very low pressures of a fraction of milli-Torr (mT). The milli-Torr will be the typical
unit of pressure used throughout this work. In our simulations, the pressure is varied
between 0.3 and 100mTorr. We remind that the Torr unit is defined by

1 Torr = 1∕760 atm ≈ 1mmHg ≈ 133.32 Pa. (11)
The type of power injection in LTP experiments can be radio-frequency (RF), mi-
crowave, helicon, or through a direct current (DC) discharge. The nature and the
applications of LTP vary very widely. However, a few properties are common to
every LTP systems. The most fundamental property is that electrons are not in ther-
mal equilibrium with the gas and with the ions. The electron temperature has to be
high enough to sustain the discharge through electron impact ionization. In practice,
the electron temperature has to be greater than a fraction of the ionization potential,
typically a few electron-volts. The temperature of heavy species (gas and ions) is
typically lower than 1 eV. If there is such a temperature gap between electrons and
ions, it means that electrons and ions cannot be thermalized through Coulomb col-
lisions. This implies that the plasma density cannot be too high. The issue will be
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addressed more carefully in Section 1.2. Transport processes are driven by colli-
sions between charged particles and neutrals, but the residence time of a particle
inside the discharge is not high enough to achieve thermal equilibrium with the gas.
Since interactions between charged particles and neutrals dominate over Coulomb
collisions, the gas is often weakly ionized: the electron density is smaller or com-
parable to the gas density. This also means that the electron temperature cannot be
much higher than the ionization potential.

Many chemical processes are enhanced by temperature. However, only the en-
ergy of the electrons plays a role in the reactivity of a gas because they are responsi-
ble for molecular bounds. In LTP, instead of heating a gas to a high temperature to
enhance reactivity, only electrons are targeted, which potentially yields a much bet-
ter power efficiency for chemical processes, and the generation of metastable species
and ions.

At pressures down to 103 Pa, the collisional processes are so strong that the fluid
velocity of charged species does not exceed the thermal velocity. The properties of
the plasma are considered to be local and they can be parametrized by the reduced
electric field E∕n, where E is the local electric field and n is the gas density. At
lower pressure, the particles are more freely accelerated by the electric field, and
space derivatives become important to predict correctly the plasma properties.

Particle-in-Cell Simulation
As said previously, Plasma Physics consists in investigating the collective behavior
of charged particles. One approach is to treat the plasma as a fluid to derive equations
for the statistical properties of this fluid, for instance its local density, fluid velocity,
and temperature. As computer power increased in the early 1990’s, it became possi-
ble to a certain extent to extract these collective properties by simulating the motion
of charged particles interacting together. The description of 1 cm3 of a plasma of
1011 cm−3 of electron density by pair interactions leads to the computation of 21011
interactions at each time step which is completely out of reach even by today’s most
powerful computing systems. The particle-in-cell (PIC) simulation is based on two
fundamental assumptions that allow reducing massively the computation resources
required.

1. The collective behavior of the plasma can be described by themotion of super-
particles that obey the same physical laws as the particles that they represent
but with a statistical weight factor qf such that themass of a super-particle that
represents qf electrons of mass me and charge −e, is qfme and its charge is
−qfe. In PIC simulations, no real particle is tracked individually, only sets of
hundred thousands of particles are. If the number of super-particles simulated
is too low, numerical noise can appear very quickly.

2. The interaction between charged particles is well represented by computing
an electric field and sometimes also a magnetic field according to Maxwell’s
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Figure 1: Diagram of the PIC time loop.

equations from a density of charge and of current. While this seems an obvi-
ous consequence of Maxwell’s equations, the implementation of this method
necessarily underestimates the role of short-range Coulomb interactions, due
to grid discretization.

The motion of super-particles is directed by the Lorentz force
mdv
dt
= q(E + v × B) (12)

where m and q are respectively the mass and the charge of the super-particle.
As illustrated in Fig. 1, all PIC simulations start with an initialization stage

where super-particles are distributed in a simulation domain, with initial values of
the electric and magnetic fields. Eq. (12) is then integrated over one time step dt.
After this initial time step, some of the particles may be collected on the bound-
aries of the simulation, and subsequently absorbed or re-injected. Depending on
reaction cross sections, a subset of the super-particles can undergo collisions lead-
ing to scattering, energy loss, and new particle generation. The new distribution of
super-particles leads to a new charge density map obtained by weighting the parti-
cle positions with their charges on grid points. The field equations are then solved
(Poisson’s equation in the electrostatic case treated in this work) to obtain new elec-
tric and magnetic fields that are in turn interpolated at each particle’s position to
initialize the next time step. The first PIC algorithms for electrostatic simulation
of plasmas were implemented in the 1960s and a comprehensive monograph was
published by Birdsall and Langdon in 1985 [16].

The present work is the continuation of the doctoral work carried out by V. Croes
[41], and his effort to develop a two-dimensional (2D) PIC code at Laboratoire
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de Physique des Plasmas (LPP) that would be suited for the simulation of plasma
thrusters. This code is called LPPic and has been developed since 2014 under the
supervision of T. Lafleur, P. Chabert and A. Bourdon. Most of the algorithms
implemented in LPPic come from Birdsall and Langdon [16]. Nevertheless, the
Monte-Carlo algorithms used to describe the collisions between charged particles
and the neutral background were developed in the 1990’s by Vahedi [161]. Colli-
sions between super-particles and the background of neutral gas necessarily make
the simulation stochastic. PIC simulation is a remarkably powerful tool because
all the properties of the super-particles and the plasma as a fluid can be extracted.
However, the amount of data processed and generated can be overwhelming, and
it needs to be carefully selected and sorted. Up to the 1990’s PIC simulation was
mostly used to investigate fundamental processes and was often limited to 1D [156].
Only since the 2000’s, 2D and three-dimensional (3D) PIC simulation of real sys-
tems has become more and more accessible [42, 24], but they also demand more
computer engineering to run with massively parallelized codes, and require careful
benchmarking [157], validation [25], and convergence study [83].

The PEGASES Thruster

The work carried out during these three years was motivated mainly by the investi-
gation of the Plasma Propulsion with Electronegative Gases (PEGASES) thruster, a
concept patented at LPP by P. Chabert in 2005 [28]. This thruster is a GIT designed
to operate with strongly electronegative gases.

The space environment itself is a plasma at very low density (109 − 1010m−3).
The surfaces of the satellites form space charge sheaths of several meters with elec-
tric fields that tend to accelerate the ions towards the surfaces of the satellite, affect-
ing the local charging of the satellite, and causing erosion on some surfaces [102],
and contamination.

On classical electric propulsion systems, the beam of ion is neutralized by a
cathode, which is an external electron source that maintains the charge balance with
the ion beam [68]. However, this device does not prevent ions from being collected
on the surfaces, and their lifetime is limited [67]. Most commonly used cathodes
are hollow cathodes, and their Physics require a dedicated treatment [132, 131].
Moreover, they can be expensive and difficult to miniaturize.

The main idea of the PEGASES thruster is to generate thrust with two ion beams
of opposite sign. The design would tackle at the same time the issues of ion recol-
lection, the plume angle, and would allow one to get rid of the cathode subsystem.
As illustrated in Fig. 2(a), the design comprises a planar RF antenna which is lo-
cated on the side of the gas injection. The inner walls of the thruster are made out of
dielectric materials (ceramic and Pyrex). The plasma is generated inductively near
the RF antenna and transported towards the double acceleration grid located on the
right-hand side (RHS) of Fig. 2(a) through the magnetic filter formed by permanent
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magnets. The double grid is polarized alternately positively and negatively in order
to accelerate the positive and negative ions. The ion fluxes were analyzed by a spe-
cially designed magnetized retarding field energy analyzer (MRFEA) [95]. The role
of the magnetic filter is to cool down the electrons through magnetic confinement.
The thruster was made to operate with iodine (I2), which is a promising candidate
for future electric propulsion systems (see Chapter 5), but experiments were also
carried out with argon and SF6. The thruster can be split into three stages:

• The ionization stage where the electron temperature needs to be high enough
to produce ionization;

• The magnetic filter where the electron temperature decreases due to magnetic
confinement, such that they can produce dissociative attachment on the I2
molecule;

• The acceleration stage where the ions are extracted and expelled at high ve-
locity.

The objective is to guarantee that the positive and negative ions can recombine in
the plasma plume to form a neutral beam.
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(a)

(b)
Figure 2: The PEGASES thruster at LPP. (a) Diagram of the system, from Lafleur
et al. (2014) [95]. (b) Picture of the system operated with iodine (Experiment by
T. Courtois in 2017)
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Outline of the Thesis
The first four chapters of the thesis will be dedicated to theory and simulation of
transport phenomena in plasmas of noble gas discharges, with a particular emphasis
set on the case of argon. In Chapter 1 we introduce the basic definitions and concepts
that will be used throughout the thesis. The general equations of the transport are
provided, the PIC simulation method and global models of plasma discharges are
described. First simulation results of a helium inductively-coupled plasma (ICP)
discharge are qualitatively discussed to illustrate fundamental plasma theories.

In Chapter 2, some analytical solutions of the isothermal plasma transport in
1D and 2D are given. The 2D theory is compared to the PIC simulation results, and
generalized to 3D geometries. Parametric studies with respect to the pressure and
the aspect ratio are performed.

Chapter 3 investigates the cross-field transport phenomena with a study of the
effect of resistive drift instabilities in low pressure, weakly ionized plasmas. It is
shown in this chapter that the magnetic confinement of the plasma completely satu-
rates at high magnetic fields.

In Chapter 4, we present simulations of a magnetic filter in both realistic and
reduced geometries and compare it to a 1D quasineutral model. The results are also
compared with experimental results and 2D fluid simulations performed by other
authors.

Chapter 5 is dedicated to the study of an iodine ICP with no magnetic field. The
state-of-the-art regarding low-pressure iodine plasmas is summarized and a CS set
relevant to low-pressure, low temperature plasmas is presented. Relaxation oscil-
lations observed in the transient of the PIC simulation are analyzed, and used to
partially validate the model.
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In this first chapter of the thesis, we introduce the particle motion equations,
the kinetic equations and the fluid conservation equations that will be used
throughout this work. This includes a description of the collision processes
between charged particles and atoms in noble gas plasma discharges. Cross
section sets and reaction rates are provided for helium, argon, krypton and
xenon. The principles underlying low-temperature plasma simulation by the
PIC method are also presented and the first simulation results of a low-density

37
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helium ICP discharge are discussed. The equations of global models (zero-
dimensional (0D)) of low-temperature plasma discharges are derived.

1.1 Particle Approach: Theory and Simulation

The motion of a non-relativistic charged particle is described by the integration of
Newton’s second law with the Lorentz force given by Eq. (12). If there is no electric
field, the trajectory of a charged particle is a circle, and the angular velocity of the
particle is the cyclotron frequency

!c = qB∕m (1.1)

where q and m are the charge and the mass of the charged particle respectively, and
B is the intensity of the magnetic field. The radius of the circular trajectory is called
the Larmor radius �L. If the projection of the particle velocity vector in the plane
perpendicular to the magnetic field is v⟂, then the Larmor radius is

�L = v⟂∕!c =
v⟂m
qB

(1.2)

The magnetic field cannot accelerate a particle in the parallel direction, such that the
trajectory of a charged particle in a magnetic field is a helix. This motion is called
the cyclotron motion. When an electric field is added, one can retrieve the same
type of equation as for the cyclotron motion by noticing that

d
(

v − vE×B
)

dt
=
q
m
(

v − vE×B
)

× B (1.3)

where
vE×B =

E × B
B2

(1.4)
is the E ×B drift. The motion of a charged particle in constant and uniform electric
and magnetic fields is the sum between the cyclotron motion (helix) and a drift in
the direction perpendicular both to E and B. The reader can refer to the monograph
by Chen [37] for more details about the basics of single particle motion.

The electric and magnetic fields are the sum of the fields generated by each
particle, following Coulomb’s law for the electric field and Biot-Savart’s law for the
magnetic field. Computing the binary interactions of each charged particles is very
computationally expensive. In practice, the field generated by a large number of
particles is calculated using Maxwell’s equations using a continuous description of
the charge and current densities � and j.
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∇ ⋅ E = �∕�0 (1.5)
∇ ⋅ B = 0 (1.6)

∇ × E + )tB = 0 (1.7)
∇ × B − 1

c2
)tE = �0j (1.8)

The plasma densities considered throughout this work do not exceed 1017m−3

with electron temperatures that remain below 20 eV. The fluid velocities were always
smaller than the electron thermal velocity

vT e =
(

kBT e
me

)1∕2

∼ 107 m/s (1.9)

The resulting current density is always lower than 1.5 × 104A/m2. For a system
of typically 1 cm of size, the induced magnetic field is about 0.2mT, which corre-
sponds to a Larmor radius of about 3 cm for electrons moving at the electron thermal
velocity (Eq. (1.9)), which is of the same order of magnitude as the systems investi-
gated in this work. The magnetic field induced by the electron motion is weak and
does not affect much the particle trajectory. The effect is even weaker for the ions
due to their lower typical velocity. Most often, the fluid velocity of the electrons is
at least one order of magnitude lower than the thermal velocity, except in the high
magnetic field case that will be discussed in Chapter 3, where the fluid velocity of
the electrons comes close to the electron thermal velocity. Moreover, the frequen-
cies investigated are in the range of 1-100MHz such that the term 1

c2
)tE remains

low and does not influence the magnetic field either. In all the models developed in
this work, we stand in the magnetostatic assumption, and we further assume that the
magnetic field is decoupled from the particle motion equations. The electric field
is coupled to the particle motion equations through Gauss’ law (Eq. (1.5)). In the
magnetostatic limit, Maxwell-Faraday’s equation (1.7) is equivalent to ∇ × E = 0,
which means that an electrostatic potential � exists such that

E = −∇�. (1.10)
PIC simulation codes feature two co-existing data structures: the particles, which

are defined by their charge, position and velocity, and a grid of cells. Each cell con-
tains at least the charge density, the electrostatic potential and the electric field. The
particle and grid types implemented in the LPPic code are given below as an
illustration.
type particle

!-------------------------------------------------------
integer :: numero = 0 !ID number
integer :: charge = 1000 !charge
real(dbleprc), dimension(3) :: V = [0,0,0] !velocity (normalized)
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real(dbleprc) :: X = 8880 !Position along x
real(dbleprc) :: Y = 8880 !Position along y
real(dbleprc) :: Z = 8880 !Position along z

end type particle
!-------------------------------------------------------

type grid
!-------------------------------------------------------

! De-normalized charge density
real(dbleprc) :: Rho = 0
! Normalized electric field
real(dbleprc), dimension(2) :: Ej = [0,0]
! Normalized electrostatic potential
real(dbleprc) :: Phi = 0
! Normalized charge density
real(dbleprc) :: p = 0
! Normalized magnetic field
real(dbleprc), dimension(3) :: B = [0,0,0]
! Normalized electron density
real(dbleprc) :: Nume = 0
! Normalized density of heavy species tracked
real(dbleprc), dimension(:), allocatable :: Numh

end type grid
!-------------------------------------------------------

The particle position is interpolated at the grid cells using a linear weighting
method. The contribution of all the charged particles at all the grid cells provides
values of the charge density at each grid cell. Eq. (1.5) combined with Eq. (1.10)
yields Poisson’s equation:

∇2� = −�∕�0 (1.11)

which is the fundamental law of electrostatics. The Poisson’s equation is solved
using either HYPRE [54] or PETSC [7] numerical solvers in 2D, with either closed
boundary conditions in the x and y directions or periodic boundary conditions in
the x direction and closed boundary conditions in the y direction. The solvers are
interfaced in C programming language and provide a value of the potential at each
grid cell. The electric field is estimated from the electrostatic potential using simple
finite differences. The value of the electric potential at each particle’s position is
interpolated using again a linear interpolation algorithm. The particles are then
displaced by integrating Eq. (12) over one time-step dt. In case of a magnetized
plasma, the classical Boris scheme is used [19, 16, 41], which consists in splitting the
particle motion in two halves, and the rotation due to the magnetic field is performed
at t + dt∕2. In their motion, particles can eventually undergo collisions of various
sorts that will be investigated in the next section. The current version of LPPic uses
a completely explicit scheme [16].
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In general the weight factor qf is defined by

qf =
nVsimu
Npart

(1.12)

where Npart is the number of particles for the considered species, n the initialized
density, and Vsimu is the simulation domain. In 3D, Vsimu is the simulation volume,
and the weight factor represents exactly the ratio between the number of physical
particles and the number of numerical super-particles. However, in lower dimen-
sion, the super-particles are not exactly points but straight lines (in 2D) or planes (in
1D) because the simulation volume is either a surface area (2D) or a line segment
(1D). In the 2D PIC simulations presented here, the weight factor is therefore in
m−1.

1.2 Kinetic Theory and Collisions

1.2.1 Boltzmann Equation

The kinetic theory of plasmas is based on equations that apply on the distribution
function of each species of a given system. In 3D, the velocity distribution function
f takes seven arguments x, y, z, vx, vy, vz, and t, such that f (x, v, t) d3x d3v is the
number of particles inside a six-dimensional phase space volume d3x d3v at (r, v)
at time t, where d3x = dxdydz and d3v = dvxdvydvz [100]. If the distribution
of particles is not affected by any collision, the distribution function f follows a
continuity equation

)tf + v ⋅ ∇f + a ⋅ ∇vf = 0 (1.13)
where a = dv

dt
and v = dx

dt
are the acceleration and the velocity vectors of the flow,

respectively, and ∇v is the gradient operator with respect to the velocity variables:

∇v = ex
)
)vx

+ ey
)
)vy

+ ez
)
)vz

. (1.14)

Assuming that the particles at the position x all undergo a force field F, Newton’s
second law imposes that F = m a. Moreover, collisions can affect the velocity of
some particles, create or destroy particles at very short time scales. These effects
are accounted for by introducing a collision term in Eq. (1.13)

)tf + v ⋅ ∇f +
F
m
⋅ ∇vf = )tf ||c . (1.15)

Eq. (1.15) is called the Boltzmann equation or the Vlasov equation when )tf ||c = 0.While the Vlasov equation can be solved by the method of characteristics, the Boltz-
mann equation (including collisions) is much more challenging to solve, especially
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due to the collision term, which is difficult to estimate. The LPPic code contains
a Monte-Carlo collision (MCC) subroutine that describes the collisions between
charged particles and the neutral gas.

In the following, the density n, and the fluid velocity u are defined for each
species by integrating the distribution functions in the velocity space

n(x, t) =∭ f d3v (1.16)

u(x, t) = 1
n∭

vf d3v . (1.17)

The kinetic definition of the temperature is also used

T (x, t) = m
3kBn ∭ (v − u)2f d3v . (1.18)

These definitions can be naturally used in the PIC code to extract macroscopic infor-
mation (either local or global) from the simulation. Isotropic distribution functions
can be described using the energy distribution function f�(�) or the energy proba-
bility distribution function fP where � = 1

2mv
2 is the kinetic energy of the particle.

These functions are connected to the velocity distribution function by
f�(x, �, t) d� = f (x, v, t) d3v (1.19)
fP (x, �, t) = �−1∕2f�(x, �, t) (1.20)

The energy distribution function

f�(�) =
2N�1∕2

(kBT )3∕2�1∕2
exp

[

−
q� + �
kBT

]

(1.21)

is called the Maxwell-Boltzmann distribution function. The probability distribu-
tion function fP is proportional to exp(− �

kBT
) for aMaxwell-Boltzmann distribution

function, which makes it a convenient variable to estimate if a population extracted
from experimental or simulation data is Maxwellian.

In terms of velocity, Eq. (1.21) is

f (v) = N
(

m
2�kBT

)3∕2

exp
[

−
q� + mv2∕2

kBT

]

. (1.22)

This function is a solution of the (stationary) Vlasov equation (1.13) where the only
force term is the electrostatic force qE = −q∇�. In Eq. (1.21), N is the density at
the position corresponding to � = 0. One can also show (Lieberman and Lichten-
berg 2nd ed. Appendix B [100] ) that this distribution function corresponds to the
solution of the Boltzmann equation (1.15) with only elastic collisions.
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1.2.2 Electron-Neutral Reactions

The elastic scattering of electrons, electron impact-induced excitations and ioniza-
tion were implemented by V. Croes during his thesis [41] for helium and xenon in
two different codes. In this thesis, the code was generalized to read cross section
data files exported from the LXCat database, allowing to explore various cross sec-
tion sets, and with various gases where the chemistry is limited to the same types of
reactions as for noble gases. The cross sections are tabulated against the collision
energy in eV. All the electron-neutral collision cross sections come from the Biagi
database retrieved from LXCat [10]. In 2017, the collision module was used for the
study of the instability-enhanced electron mobility in the direction of the thrust axis
of an HT using PIC simulations in the radial - azimuthal plane, and published in
Croes et al. [44, 43]. Similar investigations were also presented with a simplified
cross section set for iodine, involving only the same reactions as in the case of a
noble gas, in V. Croes’ thesis [41]. More complete cross section sets for the iodine
chemistry will be detailed in Chapter 5.

The momentum transfer from electrons to the gas is neglected. Therefore, when
elastic scattering occurs, the impinging electron keeps the same kinetic energy. The
direction of its velocity vector is randomized following a uniform probability func-
tion over a solid angle of 4� sterad. Ionization and excitation reactions are inelastic
collisions, so a fraction of the kinetic energy of the impinging electron is transferred
to internal energy levels of the target atom in the case of excitation, and used to de-
tach an electron in the case of ionization. After an excitation reaction takes place,
the atoms should release their energy by photon emission or remain in a metastable
state. Ionization or excitation from excited atomic levels is neglected such that we
always make the assumption that the neutral species are in the majority in their
fundamental state. After atom excitation, the electron is scattered with a random
velocity angle and a kinetic energy which is simply � − e,x. Here, � is the kinetic
energy of the impinging particle and e,x is the energy loss corresponding to the
excitation reaction. In the case of an ionization collision, the remaining kinetic en-
ergy � − e,x is divided in half between the two secondary electrons, which are both
scattered with a random velocity angle.

Some cross section sets available on the LXCat database contain many excita-
tion levels that each correspond to real electronic states. However, it is possible to
average some neighboring excitation levels into fewer effective inelastic collisions
that represent the electron transport correctly. Such simplifications were made by
Biagi [10] and all the electron cross section sets used by default in LPPic contain
between 1 and 4 inelastic collisions with various energy thresholds that do not repre-
sent well-identified excitation levels of the atom. As shown in the next section, this
simplification does not affect the local electron temperature and the electron density.
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The cross sections can be integrated over the whole energy space and weighted
against a distribution function to yield the reaction rate or reaction rate factor

K(x, t) = 1
n

( 2
m

)1∕2

∫ f�(�) �(�)�1∕2d� (1.23)

It is also useful to introduce the collision frequency defined for particles colliding
with a gas of density ng.

� = ngK (1.24)
For a Maxwellian distribution function, the reaction rate is

K =
(

2
kBT

)3∕2 1
(m�)1∕2 ∫

�(�)�e−
�

kBT d� (1.25)

TheCS of electron-atom processes selected for LPPic are summarized in Fig. 1.1.
The MCC subroutine uses the "null collision" method as described in the origi-
nal article by V. Vahedi [161] and in V. Croes’ thesis [41]. The reaction rates for
Maxwellian distribution functions are also provided in Fig. 1.2. These reaction rates
are the ones used in the global model of noble gas discharges described in this work.
For the sake of comparison, the set of reaction rates for argon estimated by V. Va-
hedi is provided in Fig. 1.3. It is sometimes convenient to have access to analytical
fits of the reaction rates. Some of the fits available in the literature are summarized
in Fig. 1.4.

1.2.3 Ion-Neutral Reactions

The collisional transport of ions across a neutral background can be modeled by de-
composing the collisions in two categories: isotropic scattering and backscattering
[113]. This decomposition is a projection of the space of differential cross sections
on a two-vector basis. For argon, this projection was found to match very well the
macroscopic transport properties of ions through a neutral gas. The cross sections
for xenon and argon were validated against experimental data [114, 113], but a sim-
ple assumption of Langevin collision cross section using atomic polarizability was
chosen in the paper of Piscitelli et al. [114] for xenon. Helium data was also re-
leased on LXCat by the group of Phelps, but no data was available for krypton.
The Langevin capture cross section corresponds to the polarization of an atom or a
molecule by the close approach of an ion [100]:

�L =
1
vR

(

��P e2

�0�R

)1∕2

(1.26)

where vR is the relative velocity between the two particles, �R = m1m2∕(m1+m2) is
the reduced mass, and �P is the relative polarizability of the atom. The values of po-
larizabilities for noble gases are provided in Table 1.1. Lieberman and Lichtenberg
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Figure 1.1: Electron-neutral collision CSs for noble gases used by default in the
simulations performed in this work [10].



46 CHAPTER 1. MODELING OF WEAKLY IONIZED PLASMAS

10−18

10−17

10−16

10−15

10−14

10−13

Re
ac

tio
n r

ate
 [m

3 .
s

1 ]

(a) He

He + e He + e
 elastic,  momentum transfer.
He + e He + + e + e
 ionization,  25.587 eV
He + e He * + e
 excitation 1,  triplet, 19.82 eV
He + e He * + e
 excitation 2,  singlet, 20.61 eV

10−18

10−17

10−16

10−15

10−14

10−13

Re
ac

tio
n r

ate
 [m

3 .
s

1 ]

(b) Ar

Ar + e Ar + e
 elastic,  momentum transfer
Ar + e Ar + + e + e
 ionization,  15.7 eV
Ar + e Ar * + e
 excitation 1,  s-levels, 11.55 eV
Ar + e Ar * + e
 excitation 2,  p-levels, 13.0 eV
Ar + e Ar * + e
 excitation 3,  d-levels, 14.0 eV

10−18

10−17

10−16

10−15

10−14

10−13

Re
ac

tio
n r

ate
 [m

3 .
s

1 ]

(c) Kr

Kr + e Kr + e
 elastic,  momentum transfer.
Kr + e Kr + + e + e
 ionization,  13.996 eV
Kr + e Kr * + e
 excitation 1,  s-levels,  9.915 eV
Kr + e Kr * + e
 excitation 2,  p-levels, 11.304 eV
Kr + e Kr * + e
 excitation 3,  d+p-levels, 11.998 eV
Kr + e Kr * + e
 excitation 4,  12.75 eV

10−1 100 101 102

Electron temperature [V]

10−18

10−17

10−16

10−15

10−14

10−13

Re
ac

tio
n r

ate
 [m

3 .
s

1 ]

(d) Xe

Xe + e Xe + e
 elastic,  momentum transfer
Xe + e Xe + + e + e
 ionization,  12.13 eV
Xe + e Xe * + e
 excitation 1,  8.315 eV
Xe + e Xe * + e
 excitation 2,  9.447 eV
Xe + e Xe * + e
 excitation 3,  9.917 eV
Xe + e Xe * + e
 excitation 4,  11.7 eV

Figure 1.2: Electron-neutral reaction rates for a Maxwellian EEDF and neutral
atoms at rest. Numerical integration was performed over the data of Fig. 1.1.
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Figure 1.3: Electron-neutral reaction rates for argon [100].
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Figure 1.4: Analytical formulas to estimate the electron-neutral reaction rates for
argon (a) [100] and xenon (b) [30].
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Gas He Ar Kr Xe
Atomic mass [amu] 4.003 39.95 83.8 131.3
Ionization potential [eV] 24.59 15.7 21.75 12.13
Relative polarizability 1.383 11.08 16.74 27.06

Table 1.1: Atomic masses and relative polarizabilities of the noble gases imple-
mented in LPPic . From Radzig and Smirnov (1985) [120].

propose an estimate of the charge exchange cross section based on a semi-classical
quantum tunneling theory

�BS ≈
9
16�

(

e
�0i,z

)2

(1.27)

where i,z is the ionization potential of the atom in electron-volts. This estimate has
the advantage of being independent of the impact energy.

Sakabe et al. [130] (1992) proposed an analytical formula that is an improve-
ment of the earlier work of Rapp and Francis (1962) [124], validated with a large
set of experimental data for quite high relative impact velocities (> 103m/s). The
backscattering cross section is, in cm2:

�BS ≈ (A − B log10 vR)(i,z∕i,z,0)
−3∕2 (1.28)

whereA = 1.81×10−14 cm2,B = 2.12×10−15 cm2, and vR is the relative velocity in
cm/s. i,z = 13.6 eV is the ionization potential of the hydrogen atom. Fig. 1.5 sum-
marizes the various estimates of reaction cross sections for isotropic scattering and
resonant backscattering in noble gas plasmas. Sakabe formula (1.28) provides rea-
sonable estimates of the backscattering cross section for helium, argon, and xenon,
except at low energy where it does not apply well for xenon. Sakabe formula was
used to run the simulations with krypton in Croes et al. [44]. The constant cross sec-
tion estimate (Eq. (1.27)) also provides a reasonable order of magnitude but seems
to systematically underestimate the backscattering cross section.

The cross sections of two-body collisions provided by the LXCat database are
functions of the total energy in the center of mass frame (CMF) of the collision
CM . However, the collision frequency is calculated from the velocity of the charged
species in the reference frame of the neutrals v, by the formula :

� = �ngv (1.29)
where ng is the density of the neutral gas. The aim here is to determine the relation-
ship between CM and v in order to calculate the collision frequency correctly and
in a general case.

Let vCM , mg, and m be respectively the center of mass velocity, the neutral
mass, and the charged particle mass. By definition of the center of mass, and since
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the neutral velocity is zero in the neutral frame (by definition):
(m + mg)vCM = mv⇒ vCM = m

m + mg
v (1.30)

The total kinetic energy in the CMF is the sum of the kinetic energy of the
charged particle and the neutral.

CM = 1
2
m(v − vCM )2 +

1
2
mgv

2
CM (1.31)

= v2

2
(

1 + mg∕m
)2

(

m2g
m
+ mg

)

CM =
mgv2

2
(

1 + mg∕m
) (1.32)

The velocity of the charged particle in the neutral frame hence writes:

v =
[

2CM
(

1
mg

+ 1
m

)]1∕2

(1.33)

And using Eq. (1.29),

� = �ng

[

2CM
(

1
mg

+ 1
m

)]1∕2

. (1.34)

Two limiting cases can be of interest.
• When the impinging particle is an electron, the term 1

mg
in Eq. (1.33) is neg-

ligible, the velocity becomes v =
(

2CM
me

)1∕2 and the collision frequency:

� = �ng

(

2CM
me

)1∕2

. (1.35)

• When the impinging particle has the same mass as the neutral, m = mg, v =
2
(

CM∕mg
)1∕2, and

� = 2�ng

(

CM
mg

)1∕2

. (1.36)
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1.2.4 Momentum Transfer Collision Frequency

In PIC simulations, the cross sections used are the (real) reaction cross sections,
while momentum transfer cross sections are usually implemented in fluid models.
The relevant quantity for the momentum balance equations of fluid models is the
effective momentum transfer cross section that includes both the elastic and the in-
elastic processes. As seen in Figs. 1.1 and 1.2, the elastic collisions dominate over
all inelastic processes at electron temperatures below a few electron-volts.

The ion dynamics is influenced by isotropic and backscattering collision pro-
cesses. In order to better understand these concepts, we propose here a simple ex-
planation for the theoretical framework used in the works of the group of Phelps
[113, 114]. More details about binary collisions can also be found in Lieberman
and Lichtenberg (2005) [100]. In reality, the scattering angle of a particle collid-
ing with a target particle depends on the impact parameter, and every angle does
not have the same probability. This effect is taken into account by introducing a
differential cross section I(v, �). The quantity

I(v, �) d� ng v dt (1.37)
is the probability for a particle to be scattered with an angle between � and � + d�
in the time lapse dt against the particles of the gas of density ng. Only one angu-
lar parameter � is chosen because a binary collision system features a cylindrical
symmetry. The cross section � is the integral over all the scattering angles of the
differential cross section.

�(v) = 2�

�

∫
0

I(v, �) sin � d�. (1.38)

When a process is assumed to be isotropic, the differential cross section does not
depend on the angle � and is

Iisotropic =
�
4�
. (1.39)

For an elastic process, the kinetic energy of the fictitious particle in the CMF is
conserved, and the momentum transfer in the direction of the initial velocity vector
v in the CMF is (1 − cos �)v. The momentum transfer cross section is therefore
defined as

�p = 2�

�

∫
0

(1 − cos �) I(v, �) sin � d� . (1.40)

For an isotropic process
�p = � (1.41)

since
�
∫
0
cos � sin � d� = 0. All the electron-neutral processes are assumed to be

isotropic, such that for all of them, using �p or � is equivalent. Due to charge ex-
change mechanisms that are particularly important at low ion energy, the ion-atom
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(or ion-molecule) elastic interactions cannot be modeled with an isotropic cross sec-
tion. The idea of Phelps [113] is to use a differential cross section

I = Iisotropic + IBS (1.42)
where

IBS =
�BS �(� − �)
2� sin �

(1.43)
where � is the Dirac delta function, and IBS and �BS are the backscattering dif-
ferential cross section and cross section respectively. �BS is just chosen to sat-
isfy Eq. (1.38). At high ion energy, a charge exchange reaction is equivalent to a
backscattering reaction, since the ion produced at very low velocity in the labo-
ratory reference frame has just the velocity −v in the CMF. Direct integration of
Eq. (1.40) leads to the momentum cross section associated with a backscattering
reaction

�p,BS = 2�BS . (1.44)
Therefore, it is important to make a difference between collision cross sections

and momentum transfer cross sections for charge exchange reactions.
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Figure 1.5: Ion-neutral collision cross sections for noble gases. The thick black
lines represent the values implemented in the LPPic simulation code. The solid
lines represent estimations of the elastic scattering, and the dashed lines represent
resonant charge exchange. The cross sections for xenon and argon were validated
against published experimental data [114, 113]. Helium data was also released on
LXCat by the group of Phelps. For krypton, the backscattering cross section is
chosen equal to the Sakabe formula [130]. The choice of Langevin capture cross
section for isotropic scattering is made arbitrarily for argon, helium and krypton.
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1.3 Introduction to ICP Modeling

1.3.1 Heating Mechanism

The main driver of this work is the simulation of the PEGASES thruster. The
PEGASES source used at LPP is an ICP source with a planar antenna. The pla-
nar coil is powered with a sinusoidal RF voltage and produces a magnetic field that
can be estimated through Maxwell-Ampere’s law (Eq. (1.8)). A sinusoidal electric
field is, in turn, generated in the plasma, according to Faraday’s law (Eq. (1.7)). The
induced electric field vector is typically in a plane parallel to the planar coil. It ac-
celerates the electrons that gain enough energy to produce ionization and sustain the
discharge. The amplitude of the oscillatory electric field decreases with the distance
x to the coil due to two factors:

1. Themagnetic field generated by a planar coil typically decreases as 1∕x3when
the distance x becomes larger than the radius of the coil;

2. The electric field penetrates only through a typical distance �s called the skin
depth that depends on the plasma conductivity. This length is also called
London’s length and is a characteristic of the plasma response to an electro-
magnetic perturbation [125]

�s = c∕!pe = c
(

�0me
nee2

)1∕2

(1.45)

where c is the speed of light, and

!pe =
(

nee2

�0me

)1∕2

(1.46)

is the electron plasma frequency. For a homogeneous plasma, the amplitude
of the heating electric field satisfies

E ∝ e−x∕�s . (1.47)

The skin depth is 5.3 cm at 1016m−3 of plasma density, and 5.3mm for a plasma
density of 1018m−3. Therefore, for the simulations of small ICP discharges of 3 cm
at low plasma density, the geometrical decrease of the electromagnetic field is more
important than the skin depth effect, whereas for the real system at high density
and with large dimensions (≈ 10 cm), the skin depth effect is the main cause of the
limitation of the induced electric field amplitude.

These considerations are very important for the electrostatic simulation of ICP
because the shape of the induced electric field cannot be resolved in a self-consistent
manner. The only way to resolve it would be to use a solver for the full set of
Maxwell’s equations (Eqs. (1.5) to (1.8)), and not only a Poisson’s equation solver.
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The coupling between the electric circuit and the plasma is not investigated in
depth here; the reader can refer to the book of P. Chabert and N. Braithwaite [31] for
more details about concepts such as plasma impedance, matchboxes, or power cou-
pling efficiency that are very important experimentally. The method implemented
in LPPic uses an electric Ez field imposed in the z direction perpendicular to the
simulation plane. In order to represent a joint effect of the geometrical decrease of
the electromagnetic field produced by the coil, and the skin effect, the magnitude of
Ez can vary with the distance x from the coil.

Ez = E0max
[

0,
(

1 − �x
xmax

)]

cos(!t) (1.48)

where ! is the RF frequency, set to 2� × 13.56MHz in all simulation conditions.
InEq. (1.48), xmax is the distance at the end of the simulation domain (near the
acceleration grid), and � sets the linear decrease of the heating electric field with
distance. Three different values were tested for �:

• � = 0: This corresponds to the situation where the heating electric field is
uniform.

• � = 1: The electric field reaches 0 right at the end of the simulation domain.
• � = 3: The heating occurs only in one-third of the simulation domain.

The amplitude of the electric field E0 is updated at the end of each RF cycle to keep
the total power absorbed by the plasma equal to a fixed parameterabs. The aim is
to reach

lz!RF
2�

t+ 2�
!RF

∫
t

∬ JzEz dx dy dt =abs (1.49)

at steady state. The simulation starts with a first estimate of E0 provided as an input
parameter, that should be approximately consistent with the initial plasma density
imposed, in order to avoid a too violent behavior of the plasma during the first RF
periods that can cause the simulation to crash. This effect can be particularly visible
at low pressure and when the heating electric field is more localized. Adjusting the
right initial condition can require a little bit of engineering, but once the steady state
is reached, the amplitude of the heating electric field does not vary anymore, and
the state of the system does not depend on the initial condition.

E0 =
2�abs
lz!RF

⎛

⎜

⎜

⎜

⎜

⎝

t+ 2�
!RF

∫
t

∬ Jzmax
[

0,
(

1 − �x
xmax

)]

cos(!t) dx dy dt

⎞

⎟

⎟

⎟

⎟

⎠

−1

(1.50)

While the heating electric field is in the z direction, the x and y components of the
electric field are solved through the solution of Poisson’s equation. The particles are



1.3. INTRODUCTION TO ICP MODELING 55

free to move in the three directions, such that the electrons respond to the heating
electric field and generate a current that can be monitored to keep the power as
imposed by Eq. (1.49).

One should keep in mind that this method to model the inductive plasma does
not accurately represent the local power balance, because the profile of the heating
electric field is fixed a priori, but it does preserve the global power balance. More-
over, the instantaneous heating electric field could also vary along the y coordinate,
and this effect was ignored entirely here.

The configurations simulated in this work are represented in Fig. 1.6 where the
RF antenna is schematically represented on the left. Fig. 1.6(a) and (d) correspond to
the case � = 0, Fig. 1.6(b), (e) and (h) correspond to the case � = 1, and Fig. 1.6(c),
(f), and (i) correspond to the case � = 3.

The scheme can be subject to oscillations during the transient and over-shooting
is observed. This can be fixed by adding a successive under-relaxation coefficient r
to the numerical method, such that the electric field is updated the following way:

En+1 = rEn + (1 − r)E0 (1.51)

where E0 is defined by Eq. (1.50). We found a significantly smoother transient at
low pressure by choosing, for example r = 2∕3, with no significant loss on the
convergence time. When the electrons are well confined, either by a relatively high
gas pressure or by an external magnetic field, r can be equal to 0.

1.3.2 Fluid Equations of the Plasma Transport

Plasma transport covers all the collective phenomena where electrons and ions
move inside a discharge domain, and how they reach the discharge walls. In gen-
eral, these phenomena can be described by a set of conservation equations, field
equations (a subset of Maxwell’s equations), and closure equations. The equations
presented below are the fluid equations of the plasma, that come from the integration
of the various moments of the Boltzmann equation [9]. The continuity equation for
electrons and ions is

)tn + ∇ ⋅ � = S (1.52)
where S represents the local particle source term (or loss term) due to collisions,
and � = nv is the particle flux vector. In this context, v is the fluid velocity vector,
that is, the mean velocity of the particles at a given position. Eq. (1.52) is valid for
both electrons and ions, and can be used with the corresponding density and source
terms. If the only volume mechanism responsible for charged species production or
destruction is electron impact ionization,

)tni + ∇ ⋅ �i = )tne + ∇ ⋅ �e = ne�iz (1.53)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.6: Sketches of the various ICP configurations investigated with the 2D
PIC model.
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where �iz is the electron impact ionization frequency. The momentum conservation
equation contains all the force terms that drive the plasma motion.

m
(

)tv + v ⋅ ∇v
)

= q (E + v × B) − ∇p
n
− mv�tot (1.54)

where �tot is the total momentum transfer collision frequency, and
p = nkBT (1.55)

is the pressure of the considered species. Eq. (1.54) can be used either for the elec-
trons or the ions. The loss of momentum due to collisions can be quite complicated
to take into account. It is assumed that the plasma is weakly ionized, such that the
frequency of charged species is much lower than the density of the neutral gas. Sim-
ilarly to the PIC model, Coulomb collisions are neglected and only collisions with
high-density neutral species are taken into account. In general, the collision fre-
quency depends on the energy, and thus the fluid velocity. Furthermore, viscosity is
neglected. However, for electrons, the thermal velocity is usually much higher than
the fluid velocity, such that the collision frequency becomes a function of the local
electron temperature and the neutral gas density. The situation is more complicated
for ions because the fluid velocity can be higher than the thermal velocity. As de-
scribed in Section 1.2.3, collision cross sections between ions and atoms are quite
poorly characterized. However, Langevin capture cross sections that describe the
isotropic scattering of ions on neutral atoms are proportional to v−1. An approxima-
tion that is often made in analytical models is to assume a constant collision cross
section (typically 10−18m2 for argon) and to assume that the ion thermal velocity is
the reference velocity for the computation of the total momentum transfer collision
frequency.

In the quasistatic approximation, the magnetic field has only a DC component
that is imposed by a coil powered in DC or permanent magnets, as it is the case
in the PEGASES experiment. Combined with Poisson’s equation for the electric
field, this set of equations can already be enough to determine the plasma density
if an assumption is made on the electron temperature. The simplest assumption is
the isothermal assumption where electrons and ions are assumed to be at a constant
temperature, still with T e ≫ T i. Another model that can be used but which is less
spread in the community of LTP technologies is the polytropic model. This model
consists in assuming a relationship between the density and the temperature under
the form

T n1−
 = cst (1.56)
where 
 is called the polytropic coefficient. The polytropic law is associated with
adiabatic processes for ideal monoatomic gases with three degrees of freedom and
has then the value of 5/3 [9]. The polytropic coefficient can also be used as an
empirical coefficient that accounts for first order variations of the temperature inside
a discharge due in particular to non-Maxwellian distribution functions.
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An energy equation may also be added to the system, for instance to account
more precisely for local heating phenomena. It can be written either in terms of
total energy or internal energy only. We provide here the form given by P. Bellan,
integrated from the Boltzmann equation [9]:

3
2
)t(nkBT ) +

3
2
v ⋅ ∇(nkBT ) +

5
2
nkBT∇ ⋅ v = −∇ ⋅Q + �totnv2 − )tw||c (1.57)

where )tw||c is the rate at which the species transfers its energy through collisions,
and

Q = m
2 ∭ (v − u)2 (v − u)f d3v (1.58)

is the heat flux. The electron and ion heat fluxes are neglected in the models devel-
oped in this work but may be of high interest for future investigations.

1.3.3 Numerical Parameters of the PIC Simulation

The Debye length
�D =

(

�0kBT
ne2

)1∕2

(1.59)
represents the typical screening distance between charged particles [37] and can be
defined for each species. The electron Debye length has to be resolved to guarantee
the stability and accuracy of the simulation. For similar reasons, the time step is
constrained by the plasma frequency (Eq. (1.46)). The conditions imposed on the
time step and the cell size in plasma simulations using particles result from extensive
numerical experiments [16, 80] and depend on various numerical choices such as
the particle weighting scheme, or physical parameters, such as the drift velocity. A
bilinear weighting scheme is used in LPPic , and the commonly accepted criteria in
the LTP community are [157]

Δx < �De∕2
Δt < 0.2∕!pe

(1.60)
(1.61)

where �De and !pe are the electron Debye length, and electron plasma frequency
respectively.

Another stability condition that is not exclusive to PIC simulation is the Courant
– Friedrichs – Lewy (CFL) condition that imposes that the typical velocity is not
such that particles would "jump" over one cell in a single time step.

vΔt < Δx (1.62)
Particles have a velocity distribution function that is not bounded in velocity. The
highest typical velocity in LTP is the electron thermal velocity vT e (Eq. (1.9)), such
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that if the CFL condition has to be fulfilled approximately by a fraction � of the
electron population, one can estimate a maximal velocity v� for the CFL condition.
For aMaxwellian distribution function defined by Eq. (1.22), the velocity v� satisfies

v�

∫
0

(

me
2�kBT e

)3∕2

exp
[

mev2

2�kBT e

]

4�v2dv = � (1.63)

which is also

erf

(

v�
√

2vT e

)

−
( 2
�

)1∕2 v�
vT e

exp

[

−1
2

(

v�
vT e

)2
]

= � (1.64)

where erf is the error function defined by

erf(x) = 2
√

� ∫

x

0
exp

(

−x2
)

dx (1.65)

One should typically aim for a ratio v�∕vT e = 2.5 which fulfills the CFL conditions
for � = 90% of the electrons. The CFL condition of interest for the PIC simulation
is therefore

vT eΔt < 0.4Δx (1.66)

1.4 Main Features of a Plasma Discharge

1.4.1 First Run Example

We conclude this section by presenting 2D PIC simulation results of an ICP dis-
charge. The numerical and physical parameters are inspired by the 1D benchmark
of a helium capacitively-coupled plasma (CCP) discharge published by Turner et
al. [157]. The idea of this simulation case is to work towards a series of bench-
marks for the 2D PIC simulation of LTP. The helium cross section set described
in the previous section is the same as in the case of Turner et al. [157]. The nu-
merical parameters of the simulation are summarized in Table 1.2. An excitation
frequency of 13.56MHz is retained because it is the standard frequency delivered
by many experimental power supplies. The aim is not to reach exact experimental
conditions but to have a simulation case that is clearly defined and whose numerical
results can be verified independently by other groups. While some plasma reactors
for industrial processing can be quite well described by 1Dmodels due to their large
aspect ratio, plasma thrusters usually have at least an intrinsically 2D geometry. We
hence present here first results for a square simulation domain of 3× 3 cm size. The
absorbed power is 10 kW/m3, which is relatively low for laboratory plasmas, and
yields a plasma density comprised between 1014 and 1015m−3. This low density
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Physical parameters
Discharge sizes lx = ly 30 mm
Neutral pressure p 30 mTorr
Neutral density ng 9.578 × 1020 m−3

Neutral temperature Tg 300 K
Frequency fRF 13.56 MHz
Power density w 10.0 kW/m3

Physical time of the simulation tsimulation 300∕fRF = 22.12 µs
Averaging time taverage 3∕fRF = 0.2212 µs

Initial conditions
Plasma density ne = ni 1 × 1014 m−3

Electron temperature Te 4.0 eV
Ion temperature Ti [eV] 0.026 eV
Particles per cell Npart.∕cell 100
Heating electric field amplitude E0 1.0 kV/m

Numerical parameters
Cell size Δx 150 µm
Time step Δt (2000fRF )−1 = 3.6873 × 10−11 s
Steps to execute Nsimulation 600 000
Steps to average Naverage 6 000
Weighting factor qf 22 500 m−1

Table 1.2: Main physical and numerical input parameters of the 2D PIC simulation.

allows using a time step and cell sizes that are not too small, which reduces the
computation time.

Gas heating and gas depletion phenomena are neglected, and the neutral gas is
assumed to be of uniform and constant density ng and temperature Tg. We assume
that the gas behaves as an ideal gas, such that the pressure in mTorr is provided as
an input parameter:

ng =
0.133p [mTorr]

kBTg
. (1.67)

The plasma is initializedwith uniform densities of electrons and ions of 1014m−3.
The super-particles representing electrons are distributed with a Maxwellian distri-
bution function at 4.0 eV, while the ions are initialized with a Maxwellian distri-
bution function at temperature 0.026 eV. All the new ions created by ionization are
generated at the same temperature of 0.026 eV, which is approximately equal to the
gas temperature (300K). As illustrated in Fig. 1.7(a), the electrons first leave the
plasma before being regenerated by ionization after approximately 0.5 µs. There are
always slightly more ions than electrons in the discharge. The exceeding ion frac-
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Physical characteristics

nimax × 1014 [m−3] 6.21
nemax × 1014 [m−3] 5.87
Te [eV] 12.81
J e [A/m2] 1.12

Numerical characteristics
!peΔt 0.053
�D∕Δx 7
�eΔt 0.0085
�iΔt 1.4 × 10−5
ND 26 566
NP 19 760 461

Table 1.3: Physical and numerical characteristics extracted from the results of the
simulation.

tion typically depends on the ratio between the Debye length and the system size.
Fig. 1.7(b) shows the mean kinetic energy of the electrons in the three directions.
Since the electrons are accelerated by the heating RF electric field in the z direction,
their kinetic energy is higher in the z direction. The kinetic energy of the electrons
is transferred from the z direction to the x and y directions through collisions. The
system is perfectly symmetrical with respect to x and y, so it can be verified that the
mean kinetic energy has the same value along x and y directions. The discrepancy
in kinetic energy between the heating direction and the others was observed in all
simulation conditions, and the effect was more visible at low pressure. The ampli-
tude of the heating electric field oscillates during the first RF cyles and converges
to 543V/m after 3 µs. The value of the heating electric field amplitude is updated
every 2 000 time steps, while the number of particles and the mean kinetic energy
are extracted every Naverage = 6 000 time steps. The oscillations that are visible in
the curve of E0 should be more visible in the curves showing the number of super
particles if the sampling time was the same.

A few numerical parameters are shown in Table 1.3. The maximum ion density
is 6.21 × 1014m−3 while maximum electron density is 5.87 × 1014m−3. NP repre-
sents the number of super-particles (both ions and electrons) in memory at the end
of the simulation. There are, on average, 494 particles per cell (both ions and elec-
trons) at steady state. The Debye length is 1.1mm and the number of super-particles
in a Debye square isND = 25 566. The nominal simulation runs in 12 hours on 160
central processing unit (CPU), due to the relatively large number of super-particles.
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Figure 1.7: Temporal evolution of (a) the number of super-particles of electrons and
ions (He+), (b) the electron kinetic energy along each axis, and (c) the amplitude of
the heating electric field (Eq. (1.50)).



1.4. MAIN FEATURES OF A PLASMA DISCHARGE 63

1.4.2 Numerical Tests and Influence of the Reaction Scheme

Fig. 1.8 shows that both the electron and the ion densities decrease smoothly from
the center of the discharge to the edges, and the electron density is always below
the ion density. Fig. 1.9(c) shows the plasma potential (the walls are grounded to
� = 0) spatial distribution. The plasma potential � is positive, which means that
the electrons are confined inside the plasma discharge while the ions are accelerated
towards the edge. The plasma potential and the electron temperature (Fig. 1.9) are
almost uniform in the middle of the discharge and decrease strongly near the edge,
in a region that is called the sheath. While the electron and ion densities are almost
equal in the center of the discharge, the electrons are repelled by the strong elec-
tric field in the sheath, and their density becomes much lower than that of the ions.
The electron temperature reaches 12.81 eV at the discharge center and drops to ap-
proximately 6 eV at the wall. Fig. 1.9(d) shows a map of the electron currents. The
background color map represents the norm of the current and the arrows represent
the direction of the current. The electrons flow from the center of the discharge to
the walls, the current points inward due to the negative electron charge. The decel-
eration of the electrons in the sheath is quite visible.

A few tests were performed to assess the sensitivity of this run to several param-
eters:

Case (1) the number of particles per cell;
Case (2) the reaction scheme used for inelastic collisions;
Case (3) the presence of inelastic collisions.

The electron and ion densities, the electron temperature, and the electron energy
probability function (EEPF) for the 4 cases (including the reference Case (0) pre-
sented in the above paragraph) are shown together in Fig. 1.8(a-c). Fig. 1.8(a) and
(b) show cuts at y = 15mm of the plasma density and the electron temperature. For
Case (1), the initial number of particles per cell was divided by 4. This increases
the noise level visible in the ion density and the electron temperature profiles. As
expected, the tail of the EEPF is less well resolved as in the reference Case (0).
More interestingly, the gradient in the electron temperature profile is sharper than
in the reference case: it is higher in the center and lower at the walls. The mean
kinetic energy of the particles and the density profiles are not much affected by the
number of particles, but the local temperature is affected. Since we know that the
local power balance is not necessarily well resolved in the heating scheme used in
the electrostatic PIC simulation as a uniform heating electric field is assumed, this
is not a major problem.

In Case (2), we used a more recent version of the Biagi database for inelastic
collisions between electrons and helium atoms [12], and the number of particles per
cell was fixed to 100 when the simulation is initialized, as in Case (0). This set
of cross sections includes 49 excitation states that are all detailed in Appendix A.
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Figure 1.8: PIC simulation results of an ICP helium discharge with various models:
a refined model with 49 excitation levels, an approximate model with two excitation
levels, and a model with no inelastic collisions except ionization. (a) Electron and
ion densities, (b) electron temperatures, (c) EEPF.
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This set of cross section was designed to model the transport of the helium plasma
correctly. We remind that the excitation states are not tracked in the PIC model used
here, and each excitation reaction is treated as isotropic scattering with an energy
loss for the electron that corresponds to an excitation energy of the atom. Fig. 1.8(a)
shows that the ion and the electron densities are statistically the same in the Cases (0)
and (2). The electron temperature profile is also very similar to the reference case.
Even the EEPF shown in Fig. 1.8 are quite indistinguishable down to 10−6 eV−3∕2.
Comparing the EEPF could be used as a method to validate a cross section set that
is aggregated from multiple sources.

In order to better sense the role of inelastic collisions, we chose to present a sim-
ulation with no excitation reactions at all in Case (3), where the number of particles
per cell was kept to 100 at initialization. This simulation case does not characterize
any possible realistic plasma but aims at pointing out the role of inelastic collisions
in the transport equations. As illustrated in Fig. 1.8(a), the ion and electron density
profiles have the same shape as in Case (0), but the maximum density is approxi-
mately 30% higher. This can be explained by the fact that less energy is dissipated
in internal levels of the atom and a higher fraction of the injected power is con-
verted into ionization of the helium atoms. Nevertheless, Fig. 1.8(b) shows that the
electron temperature has locally almost exactly the same value as in the reference
Case (0). To the first order, one can interpret this observation by saying that the
electron temperature results from a balance between ionization and ion losses to the
walls. This global model approach will be discussed in Section 1.5.2. All the EEPF
presented in Fig. 1.8(c) feature the same shape with a knee at approximately 40 eV.
Even in Case (3), when no excitation levels are present, the knee is still visible. This
indicates that the knee in the EEPF does not come from excitation reactions, but it
should rather come here from wall absorption of electrons whose kinetic energy in
volts is higher than the plasma potential.

1.5 Analytical Models and Their Limitations

In this section, two important analytical models of a single-ion plasma discharge
are presented. The last paragraph stresses the limitations of these approaches for
the modeling of the PEGASES source.

1.5.1 Non-Isothermal Sheath Theory

In Section 1.4, we have mentioned a region called the sheath where the ion density
becomes higher than the electron density. This is a fundamental characteristic of
LTP. The sheath is a region that separates a quasineutral plasma region from the
reactor walls. Quasineutral models are very convenient to handle but break in the
sheath region. It is therefore very important to understand how the sheath behaves
to feed quasineutral models with the right boundary conditions at the sheath edge.
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Due to their low mass and high temperature, the electrons have typical velocities
that are much greater than the ion velocity. If electron and ion densities remained
equal up to the walls, the flux of electrons would be much higher than the ion flux,
and it would not be possible to sustain a discharge steady state. At steady state, in all
the simulation conditions studied in this work, the total current leaving the plasma
has to be zero on average. The primary characteristic of the sheath is therefore to
feature a charge difference between electrons and ions, and subsequently a strong
space charge electric field. We have seen in the previous section, for example, in
Fig. 1.9(b), that the sheath can also be associated with a significant temperature
drop. In the next paragraph, we propose to describe a 1D model of a DC sheath
with a temperature gradient described by a polytropic law.

Polytropic sheath model

In a 1D plasma, a polytropic coefficient can always be locally defined for the elec-
trons by


 = 1 +
nedT e
T edne

(1.68)
In some plasma conditions reached by the PIC simulations, this polytropic coeffi-
cient is notably constant throughout the discharge and the value of this constant can
lead to a much more accurate description of the plasma properties than classically
used isothermal models while keeping the mathematical framework quite simple.
In this case, the electron density and temperature are bounded by the relation

T e∕T0 = (n∕N)
−1 (1.69)
where N and T0 are reference electron density and temperature respectively, for
example, taken at the sheath edge. Note that the isothermal limit is recovered when

 = 1. In this paragraph, the role of the magnetic field is neglected.

In a collisionless plasma, the electronmomentum conservation equation at steady
state is

ene∇� − ∇(kBT ene) = 0 (1.70)
where electron inertia has been neglected and where � is the plasma potential.
Eq. (1.70) can be rearranged as

e∇�
kBT e

=
∇T e
T e

+
∇ne
ne

(1.71)

So
e∇� =


kB∇T e

 − 1

(1.72)
which can be integrated into

e� =




 − 1
kB(T e − T0) (1.73)
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where it was assumed that the plasma potential is zero at the sheath edge.
The electron density is hence:

ne = N
[

1 +
(
 − 1)e�

kBT0

]
1

−1 (1.74)

Eqs. (1.69) and (1.70) provide two equations for the three unknown variables ne,
T e, and �. Additional equations are required in order to solve for the sheath prop-
erties. In the sheath (x > 0), the plasma is not quasineutral, so Poisson’s equation
(Eq. (1.11)) needs to be solved. The simplest way to describe the plasma sheath is
to neglect ion collision and temperature, which reduces the ion momentum conser-
vation equation (Eq. (1.54)) to the energy conservation for one ion:

1
2
mi(vi2 − v20) = −e� (1.75)

where v0 is the ion velocity when they enter the sheath. Moreover, ionization is
neglected in the sheath because the electron density is expected to be very low (the
electrons are repelled by the space charge field). Therefore, the continuity equation
has no source term:

∇ ⋅ (nivi) = 0 (1.76)
which reduces to flux conservation

nivi = Nv0 (1.77)
In Eq. (1.77), it was assumed that the plasma is quasineutral at the sheath edge:

ne(0) = ni(0) = N (1.78)
The set of equations to be solved is then made of Eqs. (1.11), (1.69), (1.70), (1.75)
and (1.77) for the five variables ne, ni, T e, �, and vi.

The ion velocity vi can immediately be eliminated by combining Eqs. (1.75)
and (1.77). This leads to an expresion of ni as a function of the plasma potential

ni = N

(

1 −
2e�
miv20

)−1∕2

(1.79)

Replacing ni, ne, and T e with Eqs. (1.73), (1.74) and (1.79) respectively in Poisson’s
equation leads to the second order differential equation in 1D

d2�
dx2

= N
⎡

⎢

⎢

⎣

{

1 +
(
 − 1)e�

kBT0

}
1

−1
−

(

1 −
2e�
miv20

)−1∕2
⎤

⎥

⎥

⎦

(1.80)

Let us introduce the normalized potential � = − e�
kBT0

, the Mach number  =

v0
(

mi
kBT0

)1∕2, and the normalized position X = x∕�De, where �De is the electron
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Debye length at the sheath edge defined by Eq. (1.59). Eq. (1.80) can then be ex-
pressed in the normalized form:

� ′′ =
(

1 +
2�
2

)−1∕2

−
[

1 −
(
 − 1)�




]
1

−1 (1.81)

where the symbol ′′ represents the second derivative with respect to the normalized
dimension X. After multiplying this equation by the first derivative of the normal-
ized electric field � ′, integration yields

� ′2 − � ′(0)2

2
=2

[

(

1 +
2�
2

)1∕2

− 1

]

+
[

1 −
(
 − 1)�




]



−1
− 1 (1.82)

where � ′(0) is the normalized electric field at the sheath edge. In Eq. (1.82), the sec-
ond term of the right-hand side (RHS) tends towards e−� when 
 tends towards 1+,
which is the classical exponential factor when the EEDF is assumed to beMaxwellian
with a uniform temperature. In the isothermal electrons limit corresponding to

 → 1+ , Eq. (1.82) becomes:

� ′2 − � ′(0)2

2
=2

[

(

1 +
2�
2

)1∕2

− 1

]

+ e−� − 1 (1.83)

which is in agreement with classical isothermal sheath models [128].
We assume that the electric field increases in the sheath, which means that � ′2 >

� ′(0)2 forX > 0, such that the RHS of Eq. (1.82) has to be positive for all � . Hence,
a second order Taylor expansion in � provides the relation

2 > 
 (1.84)
As a result, the ions must enter the polytropic sheath with a speed larger than the
ion acoustic speed

u0 > 

1∕2uB ; (1.85)

where
uB =

(

kBT e
mi

)1∕2

(1.86)
is the Bohm speed. This criterion is the polytropic Bohm sheath criterion.

We find again the more classical isothermal Bohm sheath criterion [128, 46] in
the case where 
 = 1. In the same way as for the isothermal Debye sheath, we will
assume that the sheath criterion is saturated

2 = 
 (1.87)
The potential drop �s in the sheath can then be obtained by equating electron and
ion fluxes at the wall. The electron flux can be found by integrating a Maxwellian
distribution function over half a sphere. This is called the thermal flux

Γe =
1
4
ne,wall

(8kBT e,wall
�me

)1∕2

(1.88)
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where the ne,wall and T e,wall are given by Eqs. (1.73) and (1.74) respectively. In
this steady state model, the ion flux is conserved through the sheath, which can be
obtained by integrating Eq. (1.52) with no source term. Therefore,

Γi = N
(


kBT0
mi

)1∕2

(1.89)

The steady state current equality condition
Γe = Γi (1.90)

yields
[

1 +
(
 − 1)



e�s
kBT0

]
2

−1

[

1 −
(
 − 1)



e�s
kBT0

]

=
4
�me
mi

(1.91)
This equation can be solved numerically to find the sheath drop as a function of
the electron temperature at the sheath edge T0 and the polytropic coefficient. A
numerical fit was proposed by A. Tavant et al. for argon [150]

e�s
kBT0

≈ 0.70 + 4.1 × 
−1.7 (1.92)

In the limit where 
 equals 1, Eq. (1.91) becomes
e�s
kBT0

= 1
2
ln
(

mi
2�me

)

(1.93)

which is approximately 4.8 for argon. PIC simulation results have shown that 
 was
always between 1.2 and 1.8.

In summary, when an ion is created in the plasma bulk, it is accelerated to the
sheath edge where it reaches the speed 
1∕2uB. The potential drop that produces
the ion acceleration is related to a decrease of the electron density. At the sheath
edge, the plasma density is lower than at the discharge center, and the space charge
electric field becomes very strong.

The electron temperature drop in the sheath is often neglected in fluidmodels but
can be crucial to account correctly for electron impact Secondary Electron Emission
(SEE) as shown by the work of Tavant et al. [149]. The temperature drop mainly
comes from an EEDF effect: as the walls absorb high energy electrons, the EEDF is
a concave function of the energy, which implies that mean electron energy decreases
when the plasma potential decreases. This effect was investigated in details in Tavant
et al. using the above polytropic model and 1D-3V PIC simulations [150].
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1.5.2 Global Models of a Plasma Discharge

Global models rely on volume-averaged balance equations for the particle densities
and energy. The variables are typically the electron and ion densities at the dis-
charge center, the electron temperature, the gas density, and in some cases the gas
temperature. All the global models studied here assume two temperatures: one for
the electrons, and one for the heavy species (Tg = T i). The models are always
quasineutral, such that we will assume in this section

ne = ni = n . (1.94)

The set of equations here is applicable for a plasma with only one ion species, fol-
lowing, for instance, the work of P. Chabert et al. [30]. More details about global
models of thrusters operated with molecular gases (e.g. iodine) will be given in
Chapter 5 and can also be found in Grondein et al. [71].

The particle balance equation is obtained by integrating the continuity equation
(Eq. (1.53))

∭V
)tn dV +∯S

�i ⋅ dS =∭V
n�iz dV (1.95)

and illustrated in Fig. 1.10(a). Let N be the plasma density at the discharge center.
The ion flux at the walls is normalized to the Bohm flux SNuB through the ℎ factor
defined by

ℎ =
∯S �i ⋅ dS
SNuB

(1.96)

where S is the surface of the inner reactor walls. We also introduce the normalized
mean plasma density

ñ = 1
V ∭V

n
N
dV (1.97)

such that Eq. (1.95) becomes
dN
dt

= ngKizN −
ℎSuB
V ñ

N (1.98)

where we have substituted the collision frequency by its expressionKizng,Kiz being
the reaction rate factor provided for instance by Fig. 1.2 as a function of the electron
temperature.

Low-pressure global models often assume of a Maxwellian electron velocity
distribution function (EVDF). The equation for the internal energy of the electrons
is an integral form of Eq. (1.58)

)t∭V

3
2
nkBT e dV =abs −loss (1.99)
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where abs stands for the power absorbed by the plasma which can be seen as a
control parameter, and loss aggregates all the volume and surface power losses

loss =∭V
n�izeiz
i + 3

me
mg
kB(T e − Tg)ne�e dV +∯S

ew�i ⋅ dS (1.100)

In Eq. (1.100),

i = 1 +

1
Ki,ziz

∑

Kexex (1.101)

is the ratio between the energy losses of all electron-neutral inelastic collisions and
the energy lost for ionization only, and �iz = ngKiz. The quantity w is the mean
electron energy when they reach the wall. According to Chabert and Braithwaite
[31],

w = 2Te + Δ� (1.102)
for a Maxwellian EVDF, where Δ� represents the potential difference between the
plasma and the wall, and Te is the electron temperature in volts. The potential drop
�s in the sheath is given by Eq. (1.93). The plasma potential drops in the pre-sheath
region to accelerate the ions by approximately Te∕2. One can therefore estimate

�s < Δ� < �s + Te∕2 (1.103)
Since the isothermal model tends to overestimate the sheath drop slightly, it is rea-
sonable to assume

Δ� ≈ �s =
Te
2
ln
(

mi
2�me

)

(1.104)
Hence,

w = Te
[

2 + 1
2
ln
(

mi
2�me

)]

. (1.105)
The second term of the RHS of Eq. (1.100) is the energy transferred from the elec-
tron population to the neutral gas through elastic collisions. Its expression is given,
for instance, by Liard et al. [99]. The ratio me∕mi is very small, but since the
elastic collision rate is much larger than the rate for inelastic collisions, the contri-
bution of this term can be significant. At each collision, the electrons transfer some
momentum to the neutral gas and lose a fraction of their energy. The expression
3me
mg
kB(T e−Tg)ne�e comes from an average over Maxwellian distribution functions.

The power balance equation is represented schematically in Fig. 1.10(b).
In our PIC simulations, the background gas is fixed at a given pressure. Con-

versely, global models allow one to consider a gas balance equation easily. The
discharge chamber is filled at a certain rate Q0 (in standard cubic centimeters per
minute (sccm) or particles per second). The gas leaves the discharge chamber with
a thermal flux through an open surface Sg. The gas population is regenerated by the
ions that reach the inner walls and depleted by electron impact ionization. Moreover,
the gas density is assumed uniform here, which can be a strong assumption if the
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power becomes too high. Following Chabert et al. [30], the gas balance equation is
dng
dt

=
Q0
V
+ ℎnuB

S
V
− nngKiz −

1
4
ng

(8kBTg
�mg

)1∕2 Sg
V

(1.106)
The balance equation for the neutral gas density is illustrated in Fig. 1.10(c).

Figure 1.10: Illustration of the equations of the global models of a plasma discharge
for (a) particles (electron or ion), (b) the electron temperature, and (c) the neutral
gas.

An additional equation for the gas temperature was included in former models
[30, 99]. This last equation is subject to some approximations that are not the main
focus of this work, so the gas heating phenomenon is not included here.
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Global models can be very efficient for the modeling of a discharge because all
the physics is reduced to a system of a few temporal equations. However, it has
several limitations because it depends on parameters that are not necessarily easy to
estimate. First, the reaction rates rely on more or less direct experiments or some
quantum chemistry simulations, for example through the R-matrix method [151] to
compute the reaction cross sections. The cross sections are then integrated over a
certain distribution function to yield the reaction rates. At higher pressure (typi-
cally greater than 100mTorr for laboratory plasmas), the Boltzmann equation can
be solved in the two-term approximation, for example with the Bolsig+ solver [74].
In the range of pressure of interest here, these methods do not apply, mainly because
ion inertia plays a crucial role at low pressure. The easier assumption that was made
in the global models used for this work is taking Maxwellian EEDF, although this
is not the case in general (see Fig. 1.8(c)). A finer approach would be to feed the
global model solver with distribution functions measured experimentally or found
by PIC simulation. This would, however, break the predictive nature of the global
model.

Secondly, some of the mechanisms at the walls are not very well known for
most plasmas and wall materials. Here, it was assumed that the ions that reach the
walls are released in the reactor as neutral atoms. We have neglected SEE from
the surface that can be the consequence of high energy electron or ion impacts. At
the low electron temperatures observed in the simulations, this effect should not be
dominant but may depend on the wall material.

Finally, in the global model presented above, all the plasma transport processes
are contained solely in the ℎ factor that is not easy to estimate in general. More
insights on the ℎ factor can be provided by PIC simulation and fluid theory, as will
be shown in Chapter 2.

1.5.3 Limitations of Simplified Models for the Modeling of PEGASES

The models presented above are examples of analytical models that can apply to
LTP. In some cases, they are effective and can capture the relevant plasma prop-
erties. However, they rely on a number of input parameters, such as the reaction
rate coefficients, and closure equations (isothermal or polytropic). In the case of
global models, the ℎ factor, the mean normalized density ñ, or the mean energy
lost per electron lost w come from somehow ad-hoc estimates, experimental mea-
surements, or numerical simulation. In the case of the polytropic sheath model, the
polytropic coefficient also has to be estimated by external means, and it may not be
constant across the discharge in some cases. Moreover, the assumptions made in
the simplified models may not be verified. For example, collisions were neglected
in the sheath model, the global model assumes a uniform heating power source term
that is uniform and well known, which may not be the case in experiments. Plasma
chemistry and magnetic field effects were also entirely ignored in the previous para-
graphs.
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Figure 1.11: The PEGASES configuration with the simulated electron density maps
in (a) the ionization region (see Chapter 2), and (b) the filter region (see Chapter 4)

Each of the next chapters will tackle one (or a few) of these limitations, with
the ultimate aim of modeling the PEGASES thruster operated with iodine correctly.
The challenges are the following

• The PEGASES ion source depicted in Fig. 2 has inherently a 3D geometry
(lx ∼ ly ∼ lz). Therefore, the parameters that come from 1D models (typi-
cally the ℎ factor) need to be challenged in 2D or 3D. The ionization region,
where the magnetic field is very low, can be modeled on its own in a first ap-
proximation. This approach is represented schematically in Fig. 1.11(a). The
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2D PIC simulation and the derivation of the quasineutral, isothermal theory
are achieved in Chapter 2.

• In the high magnetic field region of the PEGASES filter, the very rich ef-
fects of magnetic fields on low pressure ionized gases need to be investigated.
This is first done with a uniform magnetic field in Chapter 3. The cross-field
plasma transport is studied from a fundamental point of view. Magnetized
plasmas are known for producing instabilities. Most of these instabilities are
electrostatic and can be simulated with the LPPic code.

• The PEGASES configuration couples the ionization region with the magnetic
filter region. Hence, accurate modeling requires to account for both regions
at the same time. This requires to include non-uniform power deposition and
spatial variations of the magnetic field in the model. Fig. 1.11(b) provides
an illustration of the simulation case investigated in Chapter 4. As the main
direction is the thrust axis x, where the heating power, the magnetic field, as
well as the electron temperature and density vary strongly, the simplest model
of the PEGASES thruster should be at least 1D. But the particle and power
losses in the y and z directions need to be modeled correctly.

• Up to Chapter 4, all the simulations are performed assuming an argon dis-
charge. All the work should be performed again to account correctly for the
specific features of an iodine plasma. In particular, an iodine plasma has mul-
tiple positive ion species (at least I+ and I+2 ), and also at least one negative ionspecies I−, that change the discharge behavior entirely. When the negative ion
density is about twice higher than the electron density, which is typically the
case in the high magnetic field region of the PEGASES thruster [20], the pre-
sheath region of the discharge can be unstable, even with no magnetic fields
[27]. It means that in the filter region, these effects combine with the magnetic
drift instabilities, to drive the plasma transport across the filter. The balance
between both neutral species I and I2 can also be a challenge for modeling.
These aspects are partially investigated in Chapter 5.



1.5. ANALYTICAL MODELS AND THEIR LIMITATIONS 77

Summary

This chapter has mainly defined the framework in which the present work
is performed. The concepts of sheath, quasineutrality, reaction rate, global
models, that can vary in the literature, are defined. The general features of
the electrostatic PIC/MCC code LPPic are described, and the cross section
sets used for noble gas modeling are given. The heating algorithm employed
to model the ICP generation is explained, and the various simulation config-
urations that will be used in the next chapters are introduced. The results of
a 2D PIC simulation of a helium ICP at low plasma density are presented
and discussed.

We have shown that the electron temperature decreases in the sheath, and
that the cooling mechanism is affected by the number of super-particles used
in the PIC simulation. We verified that all the excitation reactions can be
modeled with only a few effective inelastic electron-neutral collisions. This
is valid, at least, as long as excited states are not tracked in the simulation.
Furthermore, a 1D model of a polytropic sheath was proposed, which pro-
vides a significant improvement to the more common isothermal model, as it
can account for the drop of electron temperature in the sheath. We generalize
the definition of the ℎ factor (edge-to-center density ratio in 1D) as the ratio
between the mean ion flux collected at the inner walls of the reactor and the
Bohm flux.

Most of the analytical models available in the literature are 0D or 1D, and
apply to a very limited number of experimental situations. The next chapters
will aim at improving the modeling of the ionization and the filtering stages of
the PEGASES thruster, with argon and iodine. This will be mainly achieved
through 2D PIC simulation and fluid theory.
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Following the general picture provided in Chapter 1, the bulk plasma region is
modeled using an isothermal closure. The transport equations of a quasineu-
tral plasma are solved in several conditions. Due to the isothermal assumption,
the plasma transport can generally be reduced to a single scalar equation for
the electron temperature. We first treat the general 1D case for a wide range of
pressures and magnetic fields. We then focus on the non-magnetized 2D case.
The 2D analytical solution is validated by PIC simulations, and the general
2D ℎ factor, that represents the ion losses at the reactor walls is correctly pre-
dicted. The analytical solutions rely on the assumption of a spatially uniform
collision frequency between charged particles and neutrals. This assumption is
also discussed.

79
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2.1 Motivation

The ℎ factor introduced in Chapter 1 is often known in the literature as the pre-
sheath drop or edge-to-center density ratio, and it characterizes the ratio between
the plasma density in the center of a discharge and the density at the sheath edge,
where the quasineutrality becomes violated. In the literature, this factor has been
labeled ℎL for 1D Cartesian geometries or ℎR for 1D cylindrical geometries. In a
1D system, this definition coincides with the more general definition proposed in
Eq. (1.96) for the 1D case. In 2D or 3D, the plasma density at the sheath edge is not
necessarily the same everywhere.

We have proposed a generalization of Eq. (1.96) in a journal article (Lucken
et al., PSST 2018 [105]) and successfully implemented the corrected ℎ factor in a
simplified global model (Lucken et al. IEPC 2017)[104]). The main results of both
articles are reproduced in Section 2.3 of this thesis, without the application to the
simplified global model presented at the IEPC 2017 [104].

Several authors provided theoretical estimates of the ℎ factor in various pressure
regimes, based on asymptotic solutions of the 1D transport equations of a quasineu-
tral, isothermal plasma with no magnetic field [100, 31]. The low-pressure regime
was investigated in the early days of plasma physics, in the 1920s, by Tonks and
Langmuir [155]. Ion and electron collisions are entirely neglected in this case, and
the ℎ factor is independent of pressure. Schottky [134] studied the higher pressure
regime where the ion thermal velocity dominates over the ion fluid velocity and
found that the plasma density profile follows a Helmholtz equation

n′′ = −
�iz
D
n (2.1)

where �iz is the electron impact ionization frequency and D is a diffusion coeffi-
cient that is inversely proportional to the pressure. It can be shown that the ℎ factor
decreases in 1∕p as well in this case. The intermediate pressure regime is of par-
ticular interest because ion collisions cannot be neglected in this regime, but the
typical velocity of the ions is driven by the mean fluid velocity and not by the ther-
mal velocity of the ions. V. Godyak successfully described this transport regime and
found that the ℎ factor should be proportional to p−1∕2 [66]. The effect of neutral
gas depletion in this intermediate transport regime was studied by J.-L. Raimbault
et al. [123]. Lafleur and Chabert [94] confirmed by PIC simulation the validity of
heuristic models over the entire pressure range for weakly-ionized 1D plasmas.

All these theories are some limit cases of the ambipolar 1D transport of the
plasma. In the next paragraph, we introduce the ambipolar transport of an isother-
mal plasma with one ion species, in a quite general context.
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2.2 One-Dimensional Transport Solutions

2.2.1 Differential Equation for the Plasma Velocity

One of the fundamental assumption of ambipolar transport is the plasma neutrality
ne = ni = n (2.2)

It is assumed that the plasma properties only depend on the x direction, and that
the magnetic field B = Bez is uniform and along z. Both electrons and ions can be
magnetized, and can potentially drift in the y direction.

The continuity equation (Eq. (1.53)) is in 1D
(nvix)

′ = (nvex)
′ = n�iz (2.3)

the prime ′ denotes the derivative with respect to x. Eq. (2.3) says that the electric
current en(vi − ve) is constant. We further assume that no current is drawn at the
discharge center. By symmetry, electron and ion fluid velocities are equal to 0 at the
discharge center. It follows then that

nvix = nvex (2.4)
everywhere. The fact that vex = vix = vx is called the ambipolarity condition, and
it is a simple consequence of quasineutrality in 1D.

The projections of Eq. (1.54) on the x and y axis with constant electron and ion
temperatures are respectively

−kBT e
n′

n
− eE − eveyB − me�evx = 0 (2.5)

evxB − me�evey = 0 (2.6)
for the electrons, and

−kBT i
n′

n
+ eE + eviyB − mi�i, tot vx = mivxv

′
x (2.7)

−evxB − mi�i, tot viy = 0 (2.8)
for the ions. Again, electron inertia has been neglected in Eq. (2.5). In Eqs. (2.7)
and (2.8), �i, tot is the total momentum loss term for the ion population. This term
includes momentum transfer due to elastic collisions (both isotropic and backscat-
tering) with the neutral atoms, and the inertia of newly created ions, produced by
electron impact ionization [31]:

�i, tot = �i + �iz (2.9)
The y component of electron and ion velocities can be eliminated to yield

−kBT e
n′

n
− eE − me�e(1 + �e2)v = 0 (2.10)
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and
−kBT i

n′

n
+ eE − mi�i, tot(1 + �i

2)v = mivv′ (2.11)
where we have replaced vx by v since it is now the only velocity variable, and where

�e =
!ce
�e

= eB
me�e

(2.12)
and

�i =
!c i
�i, tot

= eB
mi�i, tot

(2.13)

are the Hall parameters of electrons and ions, respectively. By introducing the Bohm
speed

uB =
[

kB(T e + T i)
mi

]1∕2

(2.14)
Eqs. (2.10) and (2.11) can be summed up to eliminate the electric field,

−n
′

n
− v
Da

= vv′

uB2
(2.15)

where
Da =

kB(T e + T i)
me�e(1 + �e2) + mi�i, tot(1 + �i2)

(2.16)

is a general ambipolar diffusion coefficient. This equation is combined with the
continuity equation (nv)′ = n�iz to yield

(

1 − v2

uB2

)

v′ = �iz +
v2

Da
(2.17)

2.2.2 The Problem of Ion-Neutral Momentum Transfer Collision Fre-
quency

The integration of Eq. (2.17) is possible when the ambipolar diffusion coefficient
is constant. If the magnetic field is uniform, the only question is on the collision
frequencies which are given by Eq. (1.24). We will assume that the gas density is
uniform, which is a reasonable approximation for weakly ionized plasmas. The rate
for momentum transfer between electrons and neutrals is a function of the electron
temperature, which is assumed uniform. For the momentum transfer between ions
and neutral atoms, the rate depends on the CS, which is almost constant within the
range of energy considered (typically 0.03 - 0.3 eV), and on the typical velocity of
the ions. The latter quantity should, in general, depend on the plasma fluid velocity
v. By assuming that the neutral atoms are at rest,

�i ≈ ng�i⟨‖‖vi‖‖⟩ (2.18)
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Computing the mean velocity for a Maxwellian distribution function shifted by
a drift velocity v0

f (v) = n
(

m
2�kBT

)3∕2

exp
[

−
m(v − v0)2

2kBT

]

(2.19)

is thus useful for the accurate modeling of ion collisions in fluid simulations. The
integral is

⟨‖v‖⟩ =
(

m
2�kBT

)3∕2

∭ ‖v‖ exp
[

−
m(v − v0)2

2kBT

]

d3v . (2.20)

Assuming that v0 is along the z axis of spherical coordinates,

⟨‖v‖⟩ = 1

vT 3
√

2�

+∞

∫
0

�

∫
0

v3 exp

[

−
v2 + v20 − 2vv0 cos �

2vT 2

]

sin � d� dv . (2.21)

where v0 = ‖

‖

v0‖‖ and v = ‖v‖. By introducing the normalized velocities u = v∕vT
and u0 = v0∕vT ,

⟨‖v‖⟩ =
vT
√

2�

+∞

∫
0

�

∫
0

u3 exp

[

−
u2 + u20 − 2uu0 cos �

2

]

sin � d� du . (2.22)

Since
�

∫
0

euu0 cos � sin � d� = euu0 − e−uu0
uu0

, (2.23)

⟨‖v‖⟩ =
vT e

−u20∕2

u0
√

2�

+∞

∫
0

u2e−u
2∕2 (euu0 − e−uu0) du . (2.24)

We find
⟨‖v‖⟩ = vT

[

1 + u20
u0

erf

(

u0
√

2

)

+
( 2
�

)1∕2
e−u

2
0∕2

]

(2.25)

which satisfies the limits

⟨‖v‖⟩ ≈
( 8
�

)1∕2
vT when u0 ≪ 1, (2.26)

⟨‖v‖⟩ ≈ v0 when u0 ≫ 1. (2.27)
The gas velocity was neglected here. The derivation could also be done by in-

tegrating over a given gas velocity distribution function, for example a Maxwellian
distribution function at temperature Tg.
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2.2.3 Boundary Conditions and Mathematical Solution

In order to make analytical derivations, we now assume a constant ambipolar diffu-
sion coefficient Da and that �i is uniform. Eq. (2.17) has separate variables

(1 − v2∕uB2)dv
�iz + v2∕Da

= dx (2.28)

and can be integrated into
(

1 +
�izDa

uB2

)

arctan
[

v
(�izDa)1∕2

]

−
(�izDa)1∕2

uB2
v =

(

�iz
Da

)1∕2

x (2.29)

This equation can be inverted numerically to yield a plasma velocity profile v(x).
The plasma density is also retrieved by arranging Eqs. (2.15) and (2.17):

n′

n
= − v

uB2 − v2

(

uB2

Da
+ �iz

)

(2.30)

Under integral form

n(x) = N exp
⎡

⎢

⎢

⎣

−

x

∫
0

v(X)
uB2 − v(X)2

(

uB2

Da
+ �iz

)

dX
⎤

⎥

⎥

⎦

(2.31)

= N exp
⎡

⎢

⎢

⎣

−
(

1 +
�izDa

uB2

)

v(x)

∫
0

�d�
�izDa + �2

d�
⎤

⎥

⎥

⎦

(2.32)

This integral is

n(x) = N
(

1 +
v(x)2

�izDa

)− 1
2

(

1+ �izDa
uB2

)

(2.33)

To be consistent with the isothermal approximation, the polytropic coefficient has
to be equal to 1, such that the sheath criterion applicable here is the simple Bohm
criterion v = uB. If the sheath thickness is neglected, Eq. (2.29) becomes at the
sheath edge defined by x = l∕2

f
(

uB
(�izDa)1∕2

)

=
uBl
2Da

(2.34)

where the function f is defined by

f (x) =
(

x + 1
x

)

arctan(x) − 1 (2.35)
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The graph of f is provided in Appendix D. Eq. (2.34) can be seen as the equation for
the electron temperature, which will play the role of an eigen value of the system.
f has the following asymptotes

f (x) ∼
x→0

2
3
x2 + 

(

x4
) (2.36)

f (x) ∼
x→+∞

�
2
x − 2 + 

(

x−1
) (2.37)

The inverse function f−1, therefore, has the following asymptotic expansions

f−1(x) ∼
x→0

(3
2
x
)1∕2

+ 
(

x3∕2
) (2.38)

f−1(x) ∼
x→+∞

2
�
(x + 2) + 

(

x−1
) (2.39)

and is plotted in Fig. 2.1(a) in logarithmic scales. The two asymptotic limits can
provide the following approximate equation

f−1(x) ≈
[ 4
�2
x2 + 3

2
x
]1∕2

(2.40)

that preserves the first term of each asymptotic expansion. The formula provided by
Eq. (2.40) approximates the numerical solution shown in Fig. 2.1(a) with a relative
mean square error of only 0.77% in the interval [10−3, 104]. Similarly, estimating
Eq. (2.33) at the sheath edge provides an estimate of the ℎ factor in 1D

ℎ =
(

1 +
uB2

�izDa

)− 1
2

(

1+ �izDa
uB2

)

(2.41)

where uB2

�izDa
is given by Eq. (2.34). The function

g(x) =
(

1 + 1
x

)− 1
2 (1+x) (2.42)

has the following asymptotes
g(x) ∼

x→0
x1∕2 + (x3∕2 ln(x)) (2.43)

g(x) ∼
x→+∞

e−1∕2 + (x−1) (2.44)

Using the function
F ∶ x ←→ g

(

[

f−1 (x)
]−2) (2.45)

the ℎ parameter is
ℎ = F

(

uBl
2Da

)

(2.46)
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Figure 2.1: Graphs of the mathematical solutions of the quasineutral transport
model with the asymptotes and the approximate formulas.

The function F has the limits
F (x) ∼

x→0
e−1∕2 (2.47)

F (x) ∼
x→+∞

�
2x

(2.48)

F is very well approximated by

F (x) ≈
[

exp(1) + 2x +
(2x
�

)2]−1∕2

(2.49)

with a relative error of less than 1.3% in the interval [10−3, 104]. The function F is
plotted in Fig. 2.1(b) together with its asymptotes.

This implies for the ℎ factor that

ℎ ≈ e−1∕2 when uBl
2Da

≪ 1 (2.50)

ℎ ≈
�Da

uBl
when uBl

2Da
≫ 1 (2.51)

and

ℎ ≈

[

exp(1) +
uBl
Da

+
(

uBl
�Da

)2
]−1∕2

(2.52)
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Figure 2.2: Graphs of the numerical solution for the ℎ factor as a function of
uBl∕Da.

The mean normalized density profile

ñ = 2
l

l∕2

∫
0

n(x) dx (2.53)

also has a simple general expression. Integrating the 1D continuity equation (nv)′ =
n�iz between the center and the edge gives

ℎuB = �izñl∕2 (2.54)
which is, of course, equivalent to the particle balance used in global models (see
Eq. (1.98)) and yields

ñ =
2ℎuB
l�iz

. (2.55)

The numerical solution of ℎ is shown in Fig. 2.2. We want to emphasize the
fact that Eq. (2.52) includes the electron and ion collisions, ion temperature, and
the magnetic field effects through the general ambipolar diffusion coefficient Da,
given by Eq. (2.16). Since the ℎ factor is sometimes difficult to measure directly,
knowing a general expression between the ambipolar diffusion coefficient and the ℎ
factor can be very useful. This expression can also be applied to turbulent transport
regimes, provided that we assume an instability-enhanced diffusion coefficient, as
will be seen in Chapter 3. This expression is consistent with more classical heuristic
formulas as the ones given by Chabert at al. [31] that incorporates, in particular, the
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intermediate pressure regime studied by Godyak [66]

ℎ = ℎ0 = 0.86

[

3 + 0.5 l
�i
+ 0.2

T i
T e

(

l
�i

)2
]−1∕2

. (2.56)

where �i is the ion mean free path. The second term of Eq. (2.56) accounts for an
ion collision frequency that incorporates the ion fluid velocity, as it was suggested
with Eq. (2.25). Few direct measurements of the ℎ factor exist. To the knowledge of
the author, only Kim et al. [85] provided some experimental values of the ℎ factor
in argon ICP discharges for pressures between 3 and 30mTorr. The experimental
values were in good agreement with the classical models. Eq. (2.56) was also val-
idated using 1D PIC simulations of ICP and CCP discharges by T. Lafleur. [94].
The main difference between the models described above and the classical models
is that no assumption was made on any particular form of the ambipolar diffusion
coefficient. All the terms of Eq. (2.16) were retained. In particular, Da depends
on the ionization frequency at low pressure, which makes comparison with other
models not so straightforward.

We now investigate two limit cases, the low pressure case and the high pressure
case, where Da∕(uBl)≪ 1

2.2.4 Asymptotic Regimes

The High Da Limit (Low Pressure and Low Magnetic Field)

The low pressure non-magnetized limit is slightly intricate because the ambipolar
diffusion coefficient depends on the electron impact ionization frequency through
�i, tot (Eq. (2.9)). By neglecting ion magnetization, the ambipolar coefficient is writ-
ten

Da =
uB2

�m + �iz
(2.57)

where �m accounts for both ion and electron transport processes
�m = �i +

me
mi
�e(1 + �e2) (2.58)

Instead of treating Da as a parameter, Eqs. (2.34) and (2.57) can be seen as two
equations for the two variables �iz and Da, that can be re-arranged into

�mDa

uB2
f

(

[

1 −
�mDa

uB2

]−1∕2
)

=
l�m
2uB

(2.59)

At very low pressure, the collisionless ambipolar diffusion coefficient involves f (1) =
�∕2 − 1 and is

Da =
luB
� − 2

. (2.60)
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This expression is quite interesting because it gives a diffusion coefficient that rep-
resents only the inertia of the newly created ions that are instantly coupled to the
electrons through the ambipolar electric field. The diffusion coefficient is quite large
at low pressure such that the second term of the left-hand side (LHS) in Eq. (2.15)
is rather small, but not negligible. Since we also have Da = uB2∕�iz in this low
pressure regime, we find a straightforward equation for the electron temperature

�iz = (� − 2)uB∕l (2.61)
In this regime, Eq. (2.41) yields

ℎ = 0.5 (2.62)
which is consistent with the low-pressure limit of Eq. (2.56).

As a consequence, the left-hand side of the curve of Fig. 2.2, where uBl∕Da is
smaller than � − 2, is not physical.

The Low Da Limit (High Pressure or High Magnetic Field)

At high pressure (l�m∕uB ≫ 1), Eq. (2.59) yields
Da = uB2∕�m (2.63)

This is consistent with classical non-magnetized diffusion coefficients in the
high pressure case [100], where T i ≪ T e and �i = (8∕�)1∕2vT i∕�i

Da = (�∕8)
1∕2 uB�i(T e∕T i)1∕2 (2.64)

Finally, the low Da limit provides an interesting behavior at the sheath edge
because the electric field has a finite value in 1∕Da. If �izDa∕uB2 ≪ 1 , Eq. (2.29)
yields

v = (�izDa)1∕2 tan

(

�1∕2iz

D1∕2
a

x

)

= −Da
n′

n
(2.65)

Therefore,
n = N cos

(

�1∕2iz

D1∕2
a

x

)

(2.66)

so the density n is the solution of a Helmholtz equation. Moreover, the electron
temperature equation Eq. (2.34) provides the boundary condition

�iz = �2Da∕l2 . (2.67)
which is equivalent to the so-called Schottky boundary condition that states that the
plasma density drops to zero at the wall. In this case,

v′ =
�iz

cos2
(

�1∕2iz x∕D1∕2
a

) =
v2∕Da

sin2
(

�1∕2iz x∕D1∕2
a

) (2.68)
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So at the sheath edge (v = uB), the plasma acceleration is
v′s = uB

2∕Da (2.69)
Hence, Eqs. (2.10) and (2.11) taken at the sheath edge provide a system of equations
for the electric field Es and the density gradient length Λs = −n∕n′|s at the sheath
edge

kBT eΛ−1s − eEs − me�e(1 + �e2)uB = 0 (2.70)
kBT iΛ−1s + eEs − mi�i, tot(1 + �i

2)uB = miuB3∕Da (2.71)
This system leads to

Λs =
Da

2uB
(2.72)

and
Es =

miuB3

eDa

(

1 +
[

1 +
me�e(1 + �e2)
mi�i(1 + �i2)

]−1

−
2T i

T e + T i

)

(2.73)

The second term of this expression is equal to 1 when the transport is limited by
the ions, as it is usually the case in non-magnetized plasmas, and is small when the
transport is limited by the electrons, as in a strongly magnetized plasma for example.
The third term is just a correction related to the ion temperature and can be neglected
in most cases.

Es =
{

2miuB3∕(eDa) at high pressure
miuB3∕(eDa) at high magnetic field (2.74)

2.3 Two-Dimensional Transport Model with no Magnetic
Field

In this section, we first go on with the analytical description of the quasineutral
isothermal plasma transport, but now in a 2D Cartesian geometry with no magnetic
field. The electron collisions are usually negligible in this case so they will be ne-
glected. The plasma is bounded by walls located at x = ±lx∕2 and y = ±ly∕2. The
analysis is quite analogous to the work performed by Sternberg and Godyak [145]
in cylindrical coordinates but with several validations and improvements enabled by
the use of the LPPic code.
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2.3.1 Equations of Ion Transport

The electron momentum conservation is just the Boltzmann equation
−kBT e∇n∕n − eE = 0 (2.75)

It is important to note that the electron fluid velocity does not appear in this equation.
The ion momentum conservation equation is projected along both x and y axis

mi(vx)x + vy)y)vx = eEx − kBT i)xn∕n − mi(�i + �iz)vx (2.76)
mi(vx)x + vy)y)vy = eEy − kBT i)yn∕n − mi(�i + �iz)vy (2.77)

where v is now the fluid velocity of the ions. Combined with the electron momentum
equation, this leads to

(vx)x + vy)y)vx∕uB2 = −)xn∕n − vx∕Da (2.78)
(vx)x + vy)y)vy∕uB2 = −)yn∕n − vy∕Da (2.79)

where the ambipolar diffusion coefficient Da is here uB2∕(�i + �iz). Moreover, the
2D ion continuity equation is

)x(nvx) + )y(nvy) = �izn (2.80)
The plasma is not ambipolar in this case and we do not need to use the electron
continuity equation. Eqs. (2.78) to (2.80) form a set of 3 first order partial differential
equation (PDE) for the 3 unknown variables vx, vy, and n. The boundary condition
is fixed by the Bohm criterion. By neglecting the sheath thickness, we also assume
that the ions are always accelerated perpendicularly to the walls, such that

v
(

x = ±
lx
2
, y = 0

)

=
(

±uB
0

)

(2.81)

v
(

x = 0, y = ±
ly
2

)

=
(

0
±uB

)

(2.82)

The plasma density cannot be calculated without the power balance equation. So the
solution of the model will be a density profile that can be multiplied by any constant,
depending on the heating power conditions. We look for solutions by separation of
variables

n = Nnx(x)ny(y) (2.83)
v =

[

vx(x)
vy(y)

]

(2.84)

where nx and ny are arbitrary dimensionless functions of x and y respectively, and
N is the plasma density at the discharge center (x = y = 0). The normalization
implies that nx(0) = ny(0) = 1. Due to the symmetry of the system, nx and ny are
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even functions, and vx and vy are odd functions, with vx(0) = vy(0) = 0. Eq. (2.80)
becomes

vx
n′x
nx
+ v′x + vy

n′y
ny
+ v′y = �iz (2.85)

All the functions have only one variable, so the prime ′ denotes here the derivative
with respect to x for the functions that depend on x and y for the functions that
depend on y. By taking the derivatives of Eq. (2.85) with respect to x and y:

(

vx
n′x
nx
+ v′x

)′

= 0 (2.86)
(

vy
n′y
ny
+ v′y

)′

= 0 (2.87)

We can, therefore, introduce the constants �x and �y such that

vx
n′x
nx
+ v′x = �x (2.88)

vy
n′y
ny
+ v′y = �y (2.89)

and
�x + �y = �iz (2.90)

With the assumption of Eq. (2.84), the second term of the LHS drops for Eq. (2.78)
and the first term of the LHS drops for Eq. (2.79). Combined with Eqs. (2.88)
and (2.89), Eqs. (2.78) and (2.79) yield two first order differential equations for vx
and vy

(1 − vx∕uB2)v′x = �x + v
2
x∕Da (2.91)

(1 − vy∕uB2)v′y = �y + v
2
y∕Da (2.92)

which have the same form as the equation that describes the 1D case (Eq. (2.17))
and can be solved the same way, for uniform Da, �x and �y:

(

1 +
�xDa

uB2

)

arctan
[

vx
(�xDa)1∕2

]

−
(�xDa)1∕2

uB2
vx =

(

�x
Da

)1∕2

x (2.93)
(

1 +
�yDa

uB2

)

arctan

[

vy
(�yDa)1∕2

]

−
(�yDa)1∕2

uB2
vy =

( �y
Da

)1∕2

y (2.94)
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2.3.2 The Temperature Equation

As in the 1D case that is summarized in Eqs. (2.34) and (2.35), the boundary con-
ditions (Bohm criterion) impose that

f
(

uB
(�xDa)1∕2

)

=
uBlx
2Da

(2.95)

f

(

uB
(�yDa)1∕2

)

=
uBly
2Da

(2.96)

and the electron temperature equation is given by Eq. (2.90):
[

f−1
(

uBlx
2Da

)]−2

+
[

f−1
(uBly
2Da

)]−2

=
�izDa

uB2
(2.97)

The density profiles can also be integrated

nx(x) =

(

1 +
v2x
�xDa

)− 1
2

(

1+ �xDa
uB2

)

(2.98)

ny(x) =

(

1 +
v2y
�yDa

)− 1
2

(

1+
�yDa
uB2

)

(2.99)

As discussed before, Da may also depend on the ionization frequency at low
pressure, which makes Eq. (2.97) harder to solve, especially since it depends here
on two parameters lx and ly.

In the low-pressure limit, the only important collision type is ionization, so
�izDa
uB2

= 1. Let us introduce the angle � such that

tan2 � = ly∕lx (2.100)
and the variable

� =
2Da

uB(lx + ly)
(2.101)

such that Eq. (2.97) becomes at low pressure
[

f−1
(

cos2 �∕�
)]−2 +

[

f−1
(

sin2 �∕�
)]−2 = 1 (2.102)

This equation can be inverted to give � as a function of �. As shown in Fig. 2.3, the
solution is very well approximated by

� =
sin2(2�)

2f (
√

2)
(2.103)
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Figure 2.3: Graph of the geometrical dependence of the collisionless ambipolar
diffusion coefficient. See Eqs. (2.100) and (2.101) for the definitions of the dimen-
sionless axis.

where f
(
√

2
)

≈ 1.027.
So for Da:

Da =
uB(lx + ly)

�xy
(2.104)

where

�xy =
4f (

√

2)
sin2

[

2 arctan
(√

ly∕lx
)]
≈ 4.11
sin2

[

2 arctan
(√

ly∕lx
)]
. (2.105)

contains the role of the aspect ratio at low pressure. The properties of the sin and
arctan functions imply that �xy = �yx. Moreover, �xy becomes large for large aspect
ratios.

At higher pressure, the dimensions lx and ly do not affect the ambipolar diffusion
coefficient. We hence propose the following heuristic formula

Da =
uB2

�i

[

1 +
uB�xy

�i(lx + ly)

]−1

(2.106)
that matches very well the numerical solution of the model for all pressure and as-
pect ratios (see Fig. 2.11). This general formula is injected in Eq. (2.97), that gives
directly �iz as a function of the discharge parameters, and the Bohm speed. For
convenience, this solution is also approximated by

�iz = �i

[

�i(lx + ly)
�xyuB

+
�i2

�2uB2(1∕l2x + 1∕l2y)

]−1

(2.107)

This heuristic formula is shown in Fig. 2.11 and compared with the numerical so-
lution. This expression is a quite simple electron temperature equation for the 2D
Cartesian system with no magnetic field.
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Figure 2.4: Comparison between the numerical solution, the heuristic formula, and
the simple high-pressure model for the ambipolar diffusion coefficient. (a) The nor-
malized ambipolar diffusion coefficient, (b) The normalized ionization frequency.

2.3.3 The ℎ factor in 2D

Now that the interdependence between the x and y directions is solved thanks to the
low-pressure limit of the ambipolar diffusion coefficient, we can give some useful
estimates of the ℎ factor as a function of the ion collision frequency.

First, we should notice that the ion flux collected at a wall, for example at x =
lx∕2, is not uniform

Γi(lx∕2, y) = Nnxsny(y)uB (2.108)
where nxs = nx(lx∕2) (similarly nys = ny(ly∕2)) is the edge-to-center density ratio
in the x direction. Therefore,

ly∕2

∫
−ly∕2

Γi(lx∕2, y) dy = NnxsuB

ly∕2

∫
−ly∕2

ny(y) dy (2.109)

Integrating Eq. (2.89), as it was made to obtain Eq. (2.55), leads to
ly∕2

∫
−ly∕2

Γi(lx∕2, y) dy = 2NuB2nxsnys∕�y (2.110)
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According to the definition of Eq. (1.96), in 2D Cartesian coordinates, the ℎ factor
is

ℎ2D =
2uBnxsnys
lx + ly

(

1
�x
+ 1
�y

)

(2.111)

Using Eqs. (2.95) and (2.96) and the approximate formula of f−1,
1
�x
=

l2x
�2Da

+ 3
4
lx
uB

(2.112)

1
�y
=

l2y
�2Da

+ 3
4
ly
uB

(2.113)

Replacing Da from Eq. (2.106),
1
�x
=

l2x�i
�2uB2

+
lx
uB

(

3
4
+
�xy
�2

)

(2.114)

1
�y
=

l2y�i
�2uB2

+
ly
uB

(

3
4
+
�xy
�2

)

(2.115)

The solutions of the 1D model can be rigorously applied to each direction x and y,
provided that the ambipolar diffusion coefficient Da is taken from the solution of
the 2D electron temperature equation. Therefore,

nxs =

[

exp(1) +
uBlx
Da

+
(

uBlx
�Da

)2
]−1∕2

(2.116)

nys =

[

exp(1) +
uBly
Da

+
(uBly
�Da

)2]−1∕2

(2.117)

Replacing again Da,

nxs =

[

exp(1) +
�xyl2x

(lx + ly)2

(

1 + �xy +
ly
lx

)

+
�il2x

uB(lx + ly)

(

1 +
2�xy
�2

+
ly
lx

)

+
�i2l2x
�2uB2

]−1∕2

(2.118)

nys =

[

exp(1) +
�xyl2y

(lx + ly)2

(

1 + �xy +
lx
ly

)

+
�il2y

uB(lx + ly)

(

1 +
2�xy
�2

+
lx
ly

)

+
�i2l2y
�2uB2

]−1∕2

(2.119)
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2.3.4 Comparison with 2D PIC Simulation

Input Parameters

In order to validate this new 2D model, we run several PIC simulations for a rectan-
gular argon discharge of an ICP with a uniform heating electric field, corresponding
to the configuration of Fig. 1.6(a). In order to satisfy quasineutrality over most of the
simulation domain, the Debye length, that is supposed to be a fraction of the sheath
thickness [100], should be much smaller than the size of the discharge. Hence,
the aim is to simulate a plasma at reasonably high density, typically higher than
1016m−3. As explained in the discussion relative to global models, the density in
a weakly ionized plasma is typically controlled by the absorbed power, which is an
input of the simulation. It is here fixed to 19.1 kW/m−3. Since we are not focusing
on the heating process but more on the transport, this parameter is kept constant.
The mesh has between 4×104 and 4×105 cells. The most relevant input parameters
are provided in Table 2.1.
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Physical parameters
Gas type Ar
Discharge size in x direction lx 7.5 – 75 mm
Discharge size in y direction ly 30 mm
Neutral pressure p 0.3 – 100 mTorr
Neutral density ng 9.6 × 1018 – 3.2 × 1021 m−3

Neutral temperature Tg 0.026 eV
Frequency fRF 13.56 MHz
Power density w 19.1 kW/m3

Physical time of the simulation tsimulation 12 – 48 µs
Averaging time taverage 0.03 – 0.09 µs

Initial conditions
Plasma density ne = ni 1 × 1015 m−3

Electron temperature Te 4.0 eV
Ion temperature Ti [eV] 0.026 eV
Particles per cell Npart.∕cell 100
Heating electric field amplitude E0 1.0 kV/m

Numerical parameters
Cell size Δx 75 µm
Time step Δt 1 × 10−11 – 3 × 10−11 s
Steps to execute Nsimulation > 450 000
Steps to average Naverage 3 000
Weighting factor qf 1.5 × 106 – 3.75 × 106 m−1

Number of CPU NCPU 200 – 400
Initial number of super-particles Npart,0 1.5 × 105 – 1.2 × 106

Table 2.1: Main physical and numerical input parameters of the 2D PIC simulation.
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Verification of the Assumptions of the Model

We summarize here the assumptions made in the model and verify it against the PIC
simulation results.

1. The sum of the electron temperature and the ion temperature is the same ev-
erywhere in the plasma bulk.

2. The plasma is quasineutral in the region where the ion speed is lower than the
Bohm speed.

3. The plasma density and the velocity profiles can be described by separation
of variables (see Eqs. (2.83) and (2.84))

4. The sheath thickness is small.
5. Electron and ion collision frequencies are uniform in the bulk plasma.
First, the pressure is varied from 0.3 to 100mTorr for a square geometry where

lx = ly = 3 cm. The electron and ion density profiles are plotted in Fig. 2.5(a). The
electrons and the ions have almost the same densities, except in the sheath region
which is localized very close to the walls. In this region, the electron density be-
comes lower than the ion density, as predicted by the classical sheath theory (see
Section 1.5.1). The quasineutral assumption seems reasonable for the bulk plasma
region. As shown in Fig. 2.5(b), the plasma potential, which is set to zero at the
walls, decreases from the center to the edge, and it accelerates the ions.

Fig. 2.6 shows the region of the discharge close to the wall for y = ly∕2. The
plasma is quasineutral with a good approximation up to the location were the ions
reach the Bohm speed. The Bohm speed is computed at each cell using the local
electron temperature. The electron fluid velocity is more sensitive to the numerical
noise and was here averaged over 10 cells around y = ly∕2. The quantities shown
in this figure are averaged over 8 µs at steady state. The sheath thickness is approxi-
mately s = 2mm in this case. When the model equations are applied, the dimension
of the plasma should not be lx × ly but (lx − 2s) × (ly − 2s). In Fig. 2.7 we aim at
justifying the assumption made in the model that the plasma density could be de-
scribed by variable separation. Here, we compute the ion density along both slices
x = lx∕2 and y = ly∕2 and reconstruct a 2D map as a convoluted solution

nconv =
n
(

x, ly2
)

n
(

lx
2 , y

)

n
(

lx
2
, ly
2

) (2.120)

The convoluted solution and the real solution should, of course, be equal in the slices
x = lx∕2 and y = ly∕2. In Fig. 2.7, the convoluted solution is compared with the
real solution at 1.5mm from the wall, near the sheath edge, where the discrepancy
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Figure 2.5: Properties of the plasma at steady state for a square box (3 × 3 cm), at
y = ly∕2, and 19.1 kW/m3 of absorbed power density. The pressure is varied from
0.3 to 100mTorr. (a) Electron and ion densities, (b) plasma potential.

is the largest (we are not interested in the sheath behavior as the model is quasineu-
tral). The convoluted solution tends to underestimate the density at the sheath edge
slightly but in general, shows a very good agreement with the real solution.

The temperature profiles are analyzed in Fig. 2.8 at low pressure (0.3mTorr)
and relatively high pressure (100mTor). The ion temperature was multiplied by
ten to scale with the electron temperature – it always remains below the electron
temperature. The sum of the two temperatures is approximately constant in the
plasma bulk, and the isothermal assumption seems reasonable. The model could
perhaps be improved by adding a polytropic coefficient 
 , as it was done in the
description of the sheath in Section 1.5.1, but the isothermal assumption is much
more accurate in the bulk than in the sheath. At high pressure, the ion temperature
reaches 0.6 eV near the wall because a large part of the directional kinetic energy of
the ions gained by the sheath electric field is transfered to thermal energy through
collisions. This effect is also visible at low pressure, but less acute.
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Figure 2.6: Sheath profiles at y = ly∕2 for a square (3×3 cm) discharge at 3mTorr.
In this case, the power is 9.6 kW/m3.
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A Parametric Study with Pressure

We now investigate the role of pressure on the discharge properties in order to ver-
ify the solutions of the model. The ions have more difficulty to reach the walls
at higher pressure due to collisions with neutrals. The losses are hence reduced,
and the electron temperature needed to sustain the discharge through ionization de-
creases, as predicted by the theory. The quantity measured in the PIC simulation
is based on the mean energy of the electrons inside the simulation domain, includ-
ing the flow energy, multiplied by 2/3. This effective electron temperature is hence
slightly higher than the kinetic temperature of Eq. (1.18). Since the electron fluid
velocity is neglected in the fluid model, we will compare the electron temperature of
the fluid model with this effective electron temperature measured in the PIC simula-
tion. The effective electron temperature drops from 18.7 eV at 0.3mTorr to 3.21 eV
at 100mTorr. Below 0.3mTorr, the discharge was very hard to sustain and would
require a smaller time step to preserve the CFL condition for the energetic electrons.
Since the plasma is better confined at high pressure for the same injected power, the
plasma density rises at high pressure. This result matches the general picture that
was established in the section on global models.

To allow comparison with theory, we need to choose the ion-neutral collision
frequency. The easiest way the evaluate the typical ion-neutral momentum transfer
collision frequency is to assume a constant CS (10−18m2 for argon) and multiply it
by the mean thermal velocity:

�i = ng�ivi (2.121)
where

vi =
(8kBT i0

�mi

)1∕2

(2.122)
Here, T i0 = 300K is the injection ion temperature in the PIC simulation, which is
also the ion temperature measured at the discharge center. However, Fig. 2.8 shows
that the ion temperature increases away from the discharge center. Moreover, the
ions are accelerated, such that their fluid velocity also has an important role in the
mean velocity (see Eq. (2.25)). The typical ion velocity is therefore significantly
affected by the electric field, as they have to reach the Bohm speed at the sheath
edge. At high pressure, the acceleration is very localized at the sheath edge, but at
low pressures, it is much smoother, such that the typical ion fluid velocity in the
bulk is a fraction of the Bohm speed at low pressure. We have proposed [105] to
correct this effect by introducing a dependence of the typical ion velocity vi,ref on
the Bohm speed

�i = ng�ivi,ref (2.123)
The reference velocity should be typically vi at high pressure where the ion energy
is dominated by the thermal motion, and of the order of uB∕2 at low pressures where
most of the ion energy is directional (towards the wall). We chose

vi,ref = vi + b(�)uB∕2 (2.124)
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Figure 2.9: Parametric study with pressure varying from 0.3 to 100mTorr for a
3 × 3 cm argon discharge. (a) Electron temperature. (b) ℎ factor. The PIC simula-
tion results (black circles) are compared with the solutions of the fluid model, with
Eq. (2.121) (red dashed line) and Eq. (2.124) (solid green line), and the heuristic
formula given by Eq. (2.130).

where � = 4�i2∕(lxly) is inversely proportional to the pressure squared, and
b(�) = tanh0.2(�) (2.125)

satisfies the conditions b(0) = 0 and lim
�→∞

b(�) = 1. By this means, do not need to
solve the non-linear equation where Eq. (2.25) is taken into account, while keeping
a good prediction capability. The model equations can also be used with PIC simu-
lation or experimental data of the mean ion energy, but the solution would have to
be numerical in this case.

In Fig. 2.9, the electron temperature and the ℎ factor are plotted against the in-
verse Knudsen number in the x direction lx∕�i, which is proportional to the pressure.
Here, lx is fixed to 3 cm, and the ion mean free path is

�i = (�ing)−1 (2.126)
As shown in Fig. 2.9(a) the electron temperature is very well predicted by the model
and the choice for the ion collision frequency does not play a major role. There is
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Figure 2.10: Electron (bottom, negative) and ion (top positive) currents collected
at the bottom wall (y = 0) of the simulation domain for simulation cases between 1
and 100mTorr.
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however a significant discrepancy at high pressure, probably because the isother-
mal assumption is less valid at pressures of the order of 100mTorr, see Fig. 2.8.
The ℎ factor is not very well predicted by the model with vi,ref = vi for pressures
higher than 10mTorr because the ion collision frequency is predicted poorly. The
low-pressure regime is correctly described because it corresponds to a collisionless
model where the only momentum loss in the ion momentum conservation equa-
tion comes from the newly created ions, and is hence proportional to �iz and not �i
anymore. Using Eq. (2.124) yields good prediction of the ℎ factor.

The heuristic formula proposed by Chabert and Braithwaite [31] (Eq. (2.56))
can be corrected to take into account the first order corrections induced by the 2D
geometry. The correction factor essentially depends on the mean density profile in
the direction perpendicular to the ion velocity vector. At high pressure, as in the 1D
case, the density profile has a cosine shape in both directions, such that the mean
normalized density profile is 2∕�. The corrected heuristic formulas hence become

ℎL,ℎeur,x = 0.55

[

3 + 0.5
ly
�i
+ 0.2

T i
T e

( ly
�i

)2]−1∕2

(2.127)

ℎL,ℎeur,y = 0.55

[

3 + 0.5
lx
�i
+ 0.2

T i
T e

(

lx
�i

)2
]−1∕2

(2.128)

where 0.55 ≈ (2∕�) × 0.86. It should be noted that ℎL,ℎeur,x – which is the ℎ factor
relative to the flux of ions collected on y = ±ly∕2 – depends on ly, and not lx. The
global heuristic ℎ factor is then

ℎ2D,ℎeur =
lxℎL,ℎeur,x + lyℎL,ℎeur,y

lx + ly
(2.129)

For a square, (lx = ly = l)

ℎ2D,ℎeur = 0.55

[

3 + 0.5 l
�i
+ 0.2

T i
T e

(

l
�i

)2
]−1∕2

. (2.130)

This formula was also compared with the PIC simulation results and the solutions
of the model in Fig. 2.9. It shows a good agreement for the whole range of pressures
investigated. In Eqs. (2.127) and (2.128), the electron temperature is the solution of
Eq. (2.107).

The local currents collected at the walls of the PIC simulation domain are plot-
ted in Fig. 2.10. The discharge is clearly not ambipolar as the electron and ion fluxes
differ very significantly. The electrons tend to move towards low electrostatic poten-
tial regions, while the ions are accelerated straight to the walls. The profile for the
ion flux resembles the density profile in the center of the discharge. On the contrary,
the electron current profile is flatter at high pressure, where it reminds of the plasma
potential profile, and features a minimum at the center for pressures below 18mTorr.
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Figure 2.11: Comparison between the simulation results and the theoretical solution
with predicted electron temperature and profiles. The electron density is plotted at
y = ly∕2 of a square discharge with pressure varying between 0.3 and 100mTorr.

At low pressures, the electron current has very sharp peaks near the corner of the
simulation domain. However, the spatially integrated electron and ion currents are
equal, which is a necessary condition for the steady state.

We noted that the ℎ factor determined by PIC simulation slightly decreases from
1mTorr to 0.3mTorr. At low pressure, the EEDF is strongly anisotropic, which
might affect the sheath formation and hence the ion flux.

A Parametric Study with Dimension lx
We now perform a parametric study with the aspect ratio while keeping the pressure
fixed to 10mTorr. The size ly is set to 3 cm and the size lx is varied from 0.75 to
7.5 cm. The density profiles are plotted in Fig. 2.13. The density generally increases
with the size of the discharge. In the case where lx = 0.75 cm, the plasma potential
is not uniform across y such that quasineutrality is not satisfied anymore in most of
the simulation domain. The sheath dimension becomes of the same order of mag-
nitude as the discharge size, which gives the concave shape to the electron density
profile at lx = 0.75 cm in Fig. 2.13(a). The quasineutral model does not seem to
strictly apply for aspect ratios greater than 4. However, as the aspect ratio increases,



108 CHAPTER 2. ISOTHERMAL TRANSPORT MODELS

0

10

20

30

El
ec

tro
n t

em
pe

ra
tu

re
 [e

V]

(a)

10−1 100 101 102 103

lx/ i

0.0

0.1

0.2

0.3

0.4

h f
ac

to
r

(b)

vi, ref = vi

vi, ref = vi + b( )uB/2
Corrected heuristic formula
PIC simulation

Figure 2.12: Electron temperature (a) and ℎ factor (b) investigated for different
discharge geometries. ly is fixed to 3 cm ,and lx varied from 0.75 to 7.5 cm. The
pressure is 10mTorr. The PIC simulation results (black circles) are compared with
the solutions of the fluid model, with Eq. (2.121) (red dashed line) and Eq. (2.124)
(solid green line), and the heuristic formula given by Eq. (2.129).

the 2D effects become minor and the plasma can essentially be described with the
single x direction. As confirmed by the good agreements found in Fig. 2.9, the 2D
quasineutral model derived above accounts for the large aspect ratio limit correctly.

As emphasized by the ratio l∕�i that characterizes the properties of a non-magnetized
1D discharge, increasing the size of the system should play approximately the same
role as increasing the pressure, such that the electron temperature should decrease
for larger systems. Fig. 2.12(a) shows that this is also generally true for a 2D sys-
tem. The ℎ factor measured from the PIC simulation is compared with the solu-
tions of the model and the corrected heuristic formula described in the previous
paragraph in Fig. 2.12(b). For lx∕�i higher than 4, the ℎ factor decreases with the
system size and the three formulas are reasonably accurate. However, below typi-
cally lx∕�i = 4, and for an aspect ratio higher than 2, the effect of the coupling of x
and y direction through the �xy factor becomes important and the ℎ factor decreases
again. This effect seems to be well captured by the model, both with vi,ref = vi and
vi,ref = vi+b(�)uB∕2, but the corrected heuristic formula does not show this trend,
although the order of magnitude seems correct for all the conditions investigated.
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Figure 2.13: Properties of a 10mTorr plasma at steady state at x = lx∕2, and
19.1 kW of absorbed power. ly is fixed to 3 cm and lx is varied between 0.75 and
7.5 cm. (a) Electron and ion densities, (b) plasma potential.

2.3.5 Discussion

The ambipolar assumption is not necessary to derive the equation of the plasma
transport as long as electron inertia and collisions are neglected. A posteriori, we
can verify if the ion and the electron fluxes are equal. Fig. 2.10 has already shown
that this is not the case for the particles collected at the wall. We now examine the
ambipolar nature of the plasma outside of the sheath. Therefore, Fig. 2.14 presents
the electron and ion currents in the bulk plasma. We can observe the same patterns
as in the curve of the currents collected at the walls of the discharge: while the
ions are going straight to the walls with short streamlines, the electrons tend to first
escape towards the corners where the potential is higher. They still enter the sheath
with a velocity vector that is almost everywhere perpendicular to the sheath surface.

The assumption of variable separation can also be questioned for large aspect ra-
tio discharges. Fig. 2.15(a) and (b) show the profiles of the electron and ion density
along the x and y axis respectively for a 10mTorr argon discharge with lx = 0.75 cm
and ly = 3 cm. While the plasma is quasineutral in the main direction (y), the space
charge sheaths are quite large in the x direction. It seems that the larger the dimen-
sion, in a given axis, the smaller the sheath. The space charge sheaths are relatively
large and cover almost half of the discharge. This observation affects very much
the reconstructed plasma density profiles shown in Fig. 2.15(c) and (d). The recon-
structed profiles seem to match the electron density (in red) quite accurately, but the
assumption of variable separation seems to break up for the ions. A more accurate
model of this type of plasma would require to solve the Poisson’s equation in 2D, as
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ion (b) motion, for a pressure of 3mTorr. The arrows represent the streamlines.

it is done in the PIC simulation.

The limitation of the model being acknowledged, it is probably of some interest
to mention the 3D generalization of the method developed in this section. If one
assumes that the variable separation method is applicable in 3D, the model equa-
tions can be solved exactly the same way and provide a 3D electron temperature
equation for an isothermal, quasineutral, electropositive plasma bounded by space
charge sheaths with no magnetic field:

[

f−1
(

uBlx
2Da

)]−2

+
[

f−1
(uBly
2Da

)]−2

+
[

f−1
(

uBlz
2Da

)]−2

=
�izDa

uB2
(2.131)

which is a generalization of Eq. (2.97). Again, this equation can be solved if some
assumptions are made about the ambipolar diffusion coefficient Da. For inverse
Knudsen number lx∕�i higher than 1, and if the aspect ratio is not too large. The 2D
analysis suggests that Da = uB2∕�i is a good approximation. It would be however
useful to perform some probe measurements to check these predictions experimen-
tally.
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Summary

In this chapter, we have presented a set of isothermal models for quasineutral,
weakly ionized plasmas. In 1D, the discharge is ambipolar and analytical
solutions can always be found to these models, under the assumption of con-
stant ion mobility. The discharge behavior is parametrized by the ambipolar
diffusion coefficient, the electron impact ionization frequency, and the Bohm
sheath criterion. Analytical formulas of the electric field at the sheath edge
are provided.

In 2D, the discharge is non-ambipolar and no general solution exists.
However, assuming a Boltzmann electron distribution, a solution can be found
by variable separation when no magnetic field is applied. In particular, the
effect of geometry on the ambipolar diffusion coefficient at low pressures is
estimated correctly. Multiple 2D PIC simulations of a non-magnetized ar-
gon discharge were performed for pressures between 0.3 and 100mTorr and
lx∕ly ratios between 0.25 and 2.5. The PIC simulation results are compared
with the theory using two different models for the ion-neutral collision fre-
quency. (i) If the ion-neutral collision frequency is driven by the thermal ion
speed, then the electron temperature of the discharge is correctly predicted
but the ℎ factor is overestimated by a factor two in the intermediate pressure
range. (ii) If the ion-neutral frequency also accounts for the ion acceleration,
the correct discharge ℎ factor can be recovered. We proposed an empirical
formula for the ion-neutral collision frequency based on the assumptions that
the typical ion velocity should be close to the thermal speed at high pressure,
and of the order of uB∕2 in the free fall regime at low pressure.

For large aspect ratios, the sheaths become relatively larger along the
smaller dimension, which is one of the main limitations of the model because
the quasineutral assumption becomes no longer valid. Finally, the effects of
the magnetic fields on the 2D plasma transport involves other phenomena
that will be explained in the next chapter.
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This chapter contains the core of the theoretical results of this work. When a
magnetic field perpendicular to the simulation plane is added to the simulation
setup, plasma drifts and instabilities are observed. Dispersion relations coming
from uniform and non-uniform fluid plasma theories of linear perturbations
are compared with the PIC simulation data. We investigate the onset of the

113
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instability with pressure and magnetic field and propose a theory of instability-
enhanced plasma transport.

3.1 Two-dimensional PICSimulation of aMagnetized Plasma
Column

3.1.1 Context

The magnetized plasma column is a classic of plasma physics. Experimentally,
several methods exist to sustain a magnetized plasma column. Among them, one
can cite the Penning discharge that features an external electron source, or inductive
discharges. An experimental study on the combination of both plasma generation
techniques was recently performed by V. Desangles [51]. Our work focuses on ICP
generation. In a magnetized plasma column, the length of the axis is typically larger
than the radial dimensions, such that 2D simulations in the plane perpendicular to
the main axis are well-suited to the geometry. The magnetic field is along the main
axis of the magnetized plasma column (z).

Several theoretical and experimental studies have investigated the magnetized
LTP column. Fruchtman et al. [59] performed an experimental study of the 2D
(radial-axial) transport in a cylindrical discharge. In the configuration of this arti-
cle, the ion losses along the axis (and along the magnetic field lines) are thought to
be dominant. The classical fluid model developed does not show a good agreement
with the experiments. When an empirical Bohm mobility is included, the model
predictions yield a correct order of magnitude for the plasma density, but still with
up to 100% discrepancy with the experimental results at magnetic fields between
10 and 20mT. Curreli and Chen [45] provided a comprehensive review of the his-
torical studies on cross-field diffusion. The classical theories are presented together
with their limits, and the qualitative effects of the resistive drift wave instability are
described. The resistive drift instability can be triggered by collisions in systems
where the axial dimension is extremely long or where the magnetic surfaces are
closed, as shown already by Birdsall in 1953 [15]. However,

• the conditions needed for collisions to trigger an instability are not identified
in the literature.

• Moreover, few theories were able to quantify the corresponding instability-
enhanced transport.

The main results of this chapter concerning the resistive drift instability were
published in Lucken et al. (Physics of Plasmas, 2019) [103], and the results concern-
ing the new instability-enhanced transport model were submitted to Plasma Sources
Science and Technology Journal (PSST) journal [108].
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3.1.2 Simulation Parameters

In our configuration, the CS of the magnetized plasma column is a square that has
the same dimensions as the system that was described in the previous chapter. The
walls remain conductive, and we keep the same CS set for argon as previously. The
simulation parameters used for the results presented in this chapter are reported in
Table 3.1. Most of the runs were performed on 220CPU and lasted between 12 and
24 hours on the OCCIGEN machine (CINES, Montpellier, France) so the parallel
capability of the LPPic code is fully utilized.

The typical lengths and frequencies that characterize the simulation conditions
are summarized in Tables 3.2 and 3.3. The ion mean free path is a fraction of the
size of the discharge, which is a characteristic of intermediate pressure regimes. The
Larmor radius for the ions thermalized at 300K can be as low as 5mm at 40mT. The
typical ion speed, however, increases away from the discharge center, both due to
ion collisional heating, and ion flow acceleration, in a similar fashion as in the non-
magnetized case. These effects cause the typical ion Larmor radius to increase as
well. In general, the ion mean free path is not smaller than the size of the discharge
and can often be neglected. In most of the simulation runs, the Lorentz force on the
ions is neglected. Some tests were performed with magnetized ions as well, with
minor effects on the discharge properties.

3.1.3 Description of the Steady State

We have seen in the 1D model described in Chapter 2 that a permanent magnetic
field perpendicular to the direction of the transport can considerably confine the
plasma, and hence reduce the wall losses. The magnetic field is, however, known
for generating plasma instabilities that can, in turn, influence the plasma transport.
There are hence two time-scales to be considered. The larger time-scale is the one
that corresponds to the equilibrium observed in experiments. At this time-scale,
for each value of the magnetic field, one can define the mean values of the plasma
properties, for example, �, ne, ni, �e, �i, T e and T i, at each position in space. On the
shorter time-scale, these properties may fluctuate with a wide range of frequencies,
and with more or less well defined spatial structures. When only the longer time-
scale is considered, and for reasonable values of the magnetic field (this will be
specified later), some of the discharge characteristics have qualitatively the same
aspect as the non-magnetized equilibrium. For example, the discharge domain can
still be split into a quasineutral region near the center, and a sheath region near the
wall where the electron density becomes lower than the ion density. As in the non-
magnetized case, the ion and electron densities decrease from the center to the walls,
and the electron temperature is almost uniform in the plasma bulk and decreases
significantly in the sheath. The mean plasma potential also decreases smoothly from
the center to the walls, which indicates that the space charge always remains positive
(on average).
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Physical parameters
Gas type Ar
Discharge size in x direction lx 30 mm
Discharge size in y direction ly 30 mm
Neutral pressure p 3.0, 6.0, 12.0 mTorr
Transverse magnetic field B 0 – 40 mT
Neutral density ng 0.96 × 1020 – 3.83 × 1020 m−3

Neutral temperature Tg 0.026 eV
Frequency fRF 13.56 MHz
Power density w 9.6 kW/m3

Physical time of the simulation tsimulation 27 – 98 µs
Averaging time taverage 0.033 – 0.099 µs

Initial conditions
Plasma density ne = ni 1 × 1015 m−3

Electron temperature Te 4.0 eV
Ion temperature Ti [eV] 0.026 eV
Particles per cell Npart.∕cell 7 – 400
Heating electric field amplitude E0 0.1 – 1 kV/m

Numerical parameters
Cell size Δx 75 µm
Time step Δt 3.3 × 10−11 s
Steps to execute Nsimulation > 818 000
Steps to average Naverage 1 000 – 3 000
Weighting factor qf 2.53 × 106 – 1.05 × 107 m−1

Number of CPU NCPU 220
Initial number of super-particles Npart,0 8 × 106 – 3.2 × 107

Table 3.1: Main physical and numerical input parameters for the parametric study
in pressure and magnetic field of the magnetized plasma column.
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Lengths [mm]
Typical wavelength � 0.6 − 3
Ion Debye length �Di 7 − 14 × 10−3
Ion mean free path �i 2.6 − 10
Thermal ion Larmor radius �Li 5 −∞
Electron Debye length �De 0.08 − 0.2
Electron mean free path (elastic) �e 30 − 120
Thermal electron Larmor radius �Le 0.4 −∞
Discharge sizes lx = ly 30
Cell size dX 0.075
Table 3.2: Characteristic lengths of the system, in mm.

Frequencies [Hz]
Drift wave !∕2� 1 − 10 × 106
Electron impact ionization �iz 1 − 7 × 104
Ion collision �i 1 − 4 × 104
Ion cyclotron !c i∕2� 0 − 8 × 103
Ion plasma !pi∕2� 0.5 − 1 × 107
Electron elastic collision �e 0.5 − 2 × 107
Electron cyclotron !ce∕2� 0 − 1 × 109
Electron plasma !pe∕2� 1 − 2 × 109
RF heating antenna fRF 1.356 × 107
Sampling frequency 1∕(NAdT ) 0.3 − 1 × 107
Time resolution 1∕dT 3 × 1010

Table 3.3: Characteristic frequencies of the system, in Hz.
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In the simulations performed in this chapter, instabilities in the range of 1 to
5MHz were observed. The two time-scales that are investigated are hence typically
50 ns for the shorter one and 10 µs for the longer one. Fig. 3.1 shows the maps of the
electron density and the electron current for a run at 3mTorr of pressure and 20mT
of magnetic field. We can see in Fig. 3.1(a) that the time-averaged electron density
looks qualitatively similar to the non-magnetized case, in spite of the strong electron
magnetization. On the shorter time-scale, the map of the electron density features
a very distinct instability pattern that rotates in the anti-clockwise direction, with a
motion that is close to solid body motion. The typical wavelength seems to be about
2mm. As shown in Fig. 3.1(c), the electron fluid rotates in the same direction as
the instability. This drift motion is typical from magnetized plasma, and it is here
opposed to the E × B drift.

3.1.4 Magnetic Drifts

Similarly to what was done to obtain Eq. (1.4) for the E × B drift, the collisionless
momentum conservation equation

me
dve
dt

= −e(E + v × B) −
∇pe
ne

(3.1)
can be written

d(ve − vE×B − v∗)
dt

= − e
me
(ve − vE×B − v∗) × B (3.2)

where
v∗ =

∇pe × B
eneB2

(3.3)
is the diamagnetic drift. Eq. (3.2) implies that the electron fluid velocity can be split
into a translation by vE×B + v∗ and a cyclotron motion at frequency !ce = eB∕me.
The diamagnetic drift v∗ is only present in the fluid momentum conservation equa-
tions and not in the equation of motion of a single particle. This term cannot be
interpreted as particle transport, but it can be captured in the PIC simulation with-
out difficulty due to grid discretization. The reader can refer to the monograph by
Chen [37] for more details about the diamagnetic drift interpretation and the mea-
surement. The electron flux found in Fig. 3.1(c) is in the same direction as the
diamagnetic drift and has the same order of magnitude.

To validate the idea that the electron fluid motion is driven by the diamag-
netic drift, the electron fluid velocity along y measured from the PIC simulation
at y = ly∕2 is plotted as a function of x together with the E × B drift and the dia-
magnetic drift in Fig. 3.2. The E × B and the diamagnetic drifts were computed
using Eqs. (1.4) and (3.3) respectively. The gas pressure is 3mTorr, and the power
is 9.6 kW/m3. The velocity terms are averaged over more than 4 µs since we are
interested in the properties of the plasma equilibrium here. Two cases are investi-
gated:



3.1. 2D PIC SIMULATION OF A MAGNETIZED PLASMA COLUMN 119

−1

0

1

y [
cm

]

(a)

B

< ne >  
 ×1016 m 3

(b)

ne   
 ×1016 m 3

−1 0 1
x [cm]

−1

0

1

y [
cm

]

(c)

< e >  
 ×1021 s 1m 2

−1 0 1
x [cm]

(d)

e   
 ×1021 s 1m 2

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

Figure 3.1: Electron density and norm of the electron flux at 91 µs (b, d), and av-
eraged over the last 27 µs of the simulation (a, c). In (c), the spiral streamlines
represent the electron flux. The data come from a 3mTorr, 20mT LPPic simula-
tion.
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Figure 3.2: The electron fluid velocity along y extracted from the PIC simulation
(solid black line) is compared to the diamagnetic drift (green dashed line) and the
E ×B drift (solid red line). The sum of the diamagnetic drift and the E ×B drift is
represented in cyan dotted line. The simulation data are averaged over a time greater
than 4 µs. The pressure is 3mTorr, and the magnetic field is 2.5mT (a) and 20mT
(b).

(a) 2.5mT. At low magnetic field, both the E × B and the diamagnetic drifts are
very large because of the 1∕B dependency but cancel each other to produce a
total drift that is typically one order of magnitude lower.

(b) 20mT. At higher magnetic field, the E × B drift becomes negligible and the
electron drift velocity is almost equal to the diamagnetic drift velocity every-
where in the bulk plasma.

Both in Fig. 3.2(a) and (b), the sum of the diamagnetic drift and the E × B drift
representedwith a cyan dotted linematches themeasured fluid velocity in the plasma
bulk. In the sheath, this condition breaks because the electron fluid velocity becomes
very high, so the electron inertia can no longer be neglected.

On the shorter time-scale, the electron fluid velocity is also perturbed by the
instability, as illustrated in Fig. 3.1(d). The amplitude of the instability seems lower
in the central region of the discharge and increases closer to the walls.



3.1. 2D PIC SIMULATION OF A MAGNETIZED PLASMA COLUMN 121

3.1.5 Magnetized Sheath

Before further development, it may be useful to focus on the sheath that character-
izes the plasma equilibrium. Fig. 3.3 is analog to Fig. 2.6 with a magnetic field of
20mT. Again, all the quantities are averaged over more than 5µs. One can first notice
that the plasma density is generally higher for the same injected power, so the mag-
netic field does have a significant confining effect. The plasma density is typically
3 to 4 times higher at 20mT than at 0mT. This discrepancy translates into a smaller
sheath region near the wall. The qualitative descriptions of section Section 3.1.3
are generally validated. The electron velocity along x is very much perturbed by
the instability such that a smooth electron velocity profile could not be obtained at
20mT, even when large temporal averages are considered. It is suspected that these
patterns partially remain at steady state, as will be indicated later when the wall cur-
rents will be studied. The plasma potential is quite flat far away from the walls, and
the ions accelerate smoothly towards the walls.
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Figure 3.3: Magnetized sheath profiles at y = ly∕2 for a square (3×3 cm) discharge
at 3mTorr, 9.6 kW/m3 and with a uniform magnetic field of 20mT along z.

We have seen in Chapter 2 that the Bohm criterion that states that the ion velocity
should be equal to the Bohm speed at the sheath edge is a necessary condition that
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appears naturally in the 1D quasineutral fluid model. This can be seen, for exam-
ple, in Eq. (2.30) which is entirely valid in the magnetized case. The Bohm sheath
criterion was observed experimentally in magnetized plasma already in the original
studies of Bohm [46]. Several authors have investigated the validity of the Bohm
sheath criterion in magnetized plasmas. Allen and Holgate (2016) have investigated
the 1D cylindrical case with a fluid model and has retrieved the usual Bohm crite-
rion from a Boltzmann gradient condition for the electrons [4]. The effect of the
angle between the magnetic field vector and the wall was also studied separately by
Chodura [38], Stangeby [142], and Yankun et al. [163]. The situation investigated
in the present work is restricted to the case where the magnetic field is parallel to
the wall, but the plasma’s unstable behavior is taken into account here, which was
not possible with the equilibrium fluid models employed in previous studies.

The Bohm criterion is supposed to define the boundary between the quasineu-
tral plasma region and the sheath region. Fig. 3.3 shows that the electron density
is already about 30% lower than the ion density when the ion velocity reaches the
Bohm speed. This is in contrast with the non-magnetized case where the electron
density is only about 6% lower than the ion density at the sheath edge (see Fig. 2.6).
It reveals that the Bohm criterion is somewhat arbitrary and it suggests that the accu-
racy of quasineutral models could be improved by selecting as a boundary condition
a pre-sheath velocity that would be slightly lower than the Bohm speed. However,
changing the Bohm criterion also affects the sheath size with two consequences: (i)
the sheath size might become of the same order of magnitude as the system size,
and (ii) the ionization in the sheath region might not be negligible anymore.

3.1.6 Parametric Studies with the Magnetic Field and the Pressure

Already earlier than Bohm, it was found that collisions were not the right mecha-
nism to describe the transport of the electrons away from the magnetic field lines
where they are trapped. The high-frequency oscillations in more or less random di-
rections were suspected to be responsible for local electric fields that generate drifts
pushing the electrons to the discharge walls. This effect was first described quali-
tatively by experimentalists [46]. In an article by Yoshikawa and Rose [165] it is
assumed that the direction of plasma oscillations is completely random and that the
relative density fluctuations do not depend on the magnetic field at strong magnetic
field. Under these conditions, the diffusion coefficient is inversely proportional to
the magnetic field, which seemed in reasonable agreement with experimental ob-
servations. These previous works conclude that the effective Hall parameter for the
electrons should saturate at a value that is of the order of 10 to 100. The value of 16
is often used in the literature [165, 100].

In Fig. 3.4(a, b, c), the time-averaged electron density is plotted as a function of
x, at the discharge center (y = ly∕2 = 1.5 cm) for many values of the magnetic field
and three values of the pressure. The electron density increases with the magnetic
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Figure 3.4: Curves of the time-averaged electron density (a, b, c) and the electron
temperature (d, e, f) at y = 1.5 cm. The density is averaged over at least 5 µs of sim-
ulation while the electron temperature is only averaged overNaveragedT ≈ 0.1 µs.

field, and then seems to saturate when the magnetic field becomes large enough.
Moreover, the shape of the profile is not much affected, and the typical cosine profile
appears to be a reasonable solution. The electron temperature profiles are shown in
Fig. 3.4(d, e, f). The assumption that the electron temperature is uniform in the bulk
plasma seems to be satisfied as well. The electron temperature first decreases with
themagnetic field, which is in agreement with the classical theory, and then saturates
to a specific value that weakly depends on the pressure. When the magnetic field
is above 30mT, fluctuations are visible in the electron temperature. According to
the global particle balance equation taken at steady state (Eq. (1.98)), the fact that
the plasma density saturates at high magnetic field is a hint that the ℎ factor and the
diffusion coefficient should reach minimum values, whatever the magnetic field.

Fig. 3.5 shows the electric currents collected along the bottom wall of the sim-
ulation domain due to electrons (negative currents) and ions (positive currents) for
various simulation runs at 6mTorr. The ion current features a cosine shape that re-
sembles the density profiles of Fig. 3.4. The ion current is remarkably constant with
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the magnetic field. The magnetic confinement tends both to increase the plasma
density and to reduce the ion speed at the sheath edge because the electron tempera-
ture decreases. These two effects seem to cancel out in the ion flux. This unexpected
feature could be subject to further investigations. The profiles of electron currents
are much more complex. First, the mean electron current over all the walls of the
discharge is always exactly opposite to the mean ion current, which ensures that the
plasma has reached a steady state. This observation is a consequence of the global
charge balance of the discharge at steady state. At lowmagnetic fields, we could find
the same patterns as in previous works [93, 105]. In the high pressure limit with no
magnetic field, one could show that the electron flux should be uniform along the
wall, except near the corner where the sheath is distorted. At high magnetic field,
the electrons rotate in the azimuthal direction. The mean motion of the particles is
in the E × B direction, while the electron fluid current is always in the direction
of the diamagnetic drift. The simulations showed that at high magnetic field, the
electron flux at the wall is locally equal to the ion flux, which is equivalent to the
ambipolar condition found in previous publications [93, 89]. In between these two
asymptotic regimes, the electrons are magnetized but they do not yet dominate the
transport process, such that the electron flux is distorted with surprising patterns that
look like stationary waves. As shown in Fig. 3.3 (center), these patterns can also be
detected with the electron current diagnostics in volume, but the noise is quite large
due to both the large drift velocity in the azimuthal direction, and the instability.

The 2D maps of the normalized density are plotted in Fig. 3.6 for various values
of the pressure and the magnetic field. The instability seems to play an essential
role in the discharge aspect only when the magnetic field is higher than a certain
threshold that depends on the pressure. Once the threshold is passed, the 2D density
profiles are more and more distorted by the magnetic field. The instability develops
first mainly in the azimuthal direction. When the magnetic field further increases,
more complex structures with smaller wavelengths appear.
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3.2 The Collisional Resistive Drift Instability

This section aims to describe the linear propagation of oscillatory modes in the di-
rection of the electron drift using isothermal fluid theory.

3.2.1 Model Introduction

The effect of curvature is neglected, and it is assumed that the wave propagation is
purely 1D. The electron temperature is assumed uniform and the ion temperature is
neglected. It is further assumed that the ions are not magnetized.

All the frequencies are normalized to the electron cyclotron frequency, and the
distances are normalized to the thermal electron Larmor radius. The plasma po-
tential is normalized to the electron temperature in volts. The plasma density is
normalized to the plasma density in the discharge center n0. The whole set of nor-
malized quantities is listed below.

ñ = n∕n0
l̃ = l∕�Le
�̃e = �e∕!ce
�̃i = �i∕!ce

!̃ce = 1
!̃ = !∕!ce!̃c i = me∕mi
t̃ = !cet

!̃pe = !pe∕!ce
k̃ = �Lek
x̃ = x∕�Le
ṽ = v∕vT e
∇̃ = �Le∇ (3.4)

Poisson’s equation in normalized units is
∇̃2�̃
!̃pe

= ñe − ñi (3.5)

We consider small perturbations of the plasma potential and the electron and ion
densities:

ñe = ñe0(x̃) + ñe1(ỹ, t̃) ; ñi = ñi0(x̃) + ñi1(ỹ, t̃) ; �̃ = �̃0(x̃) + �̃1(ỹ, t̃) (3.6)
with ne1 ≪ ne0, ni1 ≪ ni0 and �̃1 ≪ �̃0. The perturbations n1 and �̃1 are assumed
proportional to exp(−i!̃t̃ + ik̃ỹ).
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To the first order, Eq. (3.5) implies

− k̃2

!̃pe2
�̃1 = ñe1 − ñi1 (3.7)

which can be written under the form
1 + �e + � i = 0 (3.8)

where
�e =

!̃pe2ñe1
k̃2�̃1

and � i = −
!̃pe2ñi1
k̃2�̃1

(3.9)
are the electron and ion susceptibilities.

3.2.2 Dispersion Relation in a Homogeneous Plasma

In this paragraph, it is assumed that the equilibrium quantities ñe0, ñi0 and �̃1 haveslow variations with respect to x̃.
The ion momentum conservation equation is

dṽi
dt̃

= −�∇̃�̃ − �̃iṽi. (3.10)

where d
dt̃

is the total time derivative. The ỹ axis projection of Eq. (3.10) yields to
the first order, in the referential of the drift motion of the ions (ṽi = 0)

−i!̃ṽiy1 = −i�k̃�̃1 − �̃iṽiy1 (3.11)
We assume that the frequency of the perturbations is much greater than the electron
impact ionization frequency, such that the ion continuity equation is

)t̃ñi + ∇̃ ⋅ (ñiṽi) = 0 (3.12)
which becomes to the first order

−i!̃ñi1 + ik̃ñi0ṽiy1 = 0 (3.13)
Eqs. (3.11) and (3.13) are combined and lead to

� i = −
�!̃pe2

!̃(!̃ + i�̃i)
(3.14)

The picture is similar for the electrons, but the resolution is slightly more com-
plicated due to the magnetic field and the pressure term. In normalized quantities,
the electron momentum conservation equation is

dṽe
dt̃

= ∇̃�̃ − ṽe × b −
∇̃ñe
ñe

− �̃eṽe. (3.15)



3.2. THE COLLISIONAL RESISTIVE DRIFT INSTABILITY 129

where b is a unit vector in the direction of the magnetic field. The analysis is first
performed in the electron reference frame where ṽe = 0. The two components of
Eq. (3.15) are to the first order

−i!̃ṽex1 = −ṽey1 − �̃eṽex1 (3.16)
−i!̃ṽey1 = ik̃�̃1 + ṽex1 −

ik̃ñe1
ñe0

− �̃eṽey1 (3.17)

Eliminating ṽex1,

(i!̃ − �̃e)ṽey1 + ik̃�̃1 +
ṽey1
i!̃ − �̃e

−
ik̃ñe1
ñe0

= 0 (3.18)

The continuity equation writes exactly the same way as for the ions (Eq. (3.13)) and
leads to

�e = −
!̃pe2(!̃ + i�̃e)

(!̃ + i�̃e)2!̃ − k̃2(!̃ + i�̃e) − !̃
(3.19)

Let us now assume that the wave frequency and the collision frequency are both
smaller than the electron cyclotron frequency

|!̃ + i�̃|≪ 1 (3.20)
The computation will be performed to the first order in |!̃+ i�̃|. In this approxima-
tion

�e =
!̃pe2(!̃ + i�̃e)

k̃2(!̃ + i�̃e) + !̃
(3.21)

Let us now assume that the electrons are drifting with respect to the ions with a
velocity ṽd . If !̃ is the wave frequency in the ion referential, it has to be shifted to
!̃− !̃d in the referential of the ions, where !̃d = k̃ṽd , such that the electron suscep-
tibility is �e = !̃pe2(!̃−!̃d+i�̃e)

k̃2(!̃−!̃d+i�̃e)+!̃−!̃d
In this case, the perturbed Poisson’s equation (3.8)

is
P (!̃) = P0(!̃) + i�̃eQ(!̃) + i�̃iQi(!̃) − �̃e�̃iR(!̃) = 0 (3.22)

where
P0(!̃) = (!̃ − !̃d)

[

(1 + k̃2 + !̃pe2)!̃2 − �!̃pe2(1 + k̃2)
]

; (3.23)
Q(!̃) = (k̃2 + !̃pe2)!̃2 − �!̃pe2k̃2 ; (3.24)
Qi(!̃) = !̃(!̃ − !̃d)(1 + k̃2 + !̃pe2) ; (3.25)
R(!̃) = (k̃2 + !̃pe2)!̃ . (3.26)

If there are no collisions, the modes that can exist in the plasma are the roots of P0:

!̃0 = !̃d and !̃± = ±!̃pe
[

�(1 + k̃2)
1 + k̃2 + !̃pe2

]1∕2

(3.27)
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which are purely stable modes, with with no damping nor growth. Since the phase
velocity of the !̃ = !̃d mode is the electron drift velocity, it is called an electron
beam mode. Three asymptotic regimes are of interest for the !̃± mode:

• If k̃ ≪ 1, !̃± = ± �1∕2

(1+!̃pe−2)1∕2
, which corresponds to the lower hybrid modes.

• If 1≪ k̃ ≪ !̃pe, !̃± = ±k̃�1∕2, which corresponds to the ion acoustic modes.
• If k̃ ≫ !̃pe, !̃± = ±!̃pe�1∕2, which corresponds to the ion plasma frequency.
We are now interested in the perturbation of these modes by collisions, under

the assumption �̃, �̃i ≪ !̃. Except in exceptional cases, Q(!̃) and Qi(!̃) are of the
same order of magnitude. Moreover, since the electron collision frequency is, in
general, higher than the ion collision frequency, due to the higher electron speed,
the contribution of Qi can be neglected. Since �̃i < �̃, the contribution of R(!̃) is
of order 2. The only perturbation of P0 taken into account comes therefore from the
electron collisions. Let !̃r be a root of P0, and !̃r+ i�̃� the corresponding perturbed
root of P (when there are no collisions P = P0 and the roots are equal).

0 = P (!̃r + i�̃�) (3.28)
= P0(!̃r) + i�̃�P ′0(!̃r) + i�̃Q(!̃r) + 

(

�̃2
) (3.29)

To the 0-th order in �̃,
� = −

Q(!̃r)
P ′0(!̃r)

(3.30)
And the normalized growth rate of the wave is

�̃ = ℜ(�̃�) . (3.31)
where ℜ(⋅) is the real part. The stability of the perturbed mode !̃r is hence deter-
mined by the sign of �. If � > 0, the mode is unstable, and if � < 0, the mode is
stable.

P ′0(!̃d) = (1 + k̃
2 + !̃pe2)!̃2d − �!̃pe

2(1 + k̃2)

= (1 + k̃2 + !̃pe2)(!̃2d − !̃
2
+) (3.32)

P ′0(!̃±) = 2!̃+(1 + k̃
2 + !̃pe2)(!̃± − !̃d) (3.33)

Moreover,
Q(!̃d) = (k̃2 + !̃pe2)!̃2d − �!̃pe

2k̃2 (3.34)

Q(!̃±) =
�!̃pe4

1 + k̃2 + !̃pe2
> 0 (3.35)

We define
�0 = −

Q(!̃d)
P ′0(!̃d)

and �± = −
Q(!̃±)
P ′0(!̃±)

(3.36)
�+ has the sign of !̃d − !̃+ and �− has the sign of −!̃d − !̃+. Hence:
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• If !̃2d > !̃2+, either the !̃+ mode or the !̃− mode is unstable.
• If !̃2d < !̃2+, then !̃+ and !̃− modes are both stable. Furthermore,

�0 =
�!̃pe2k̃2 − (k̃2 + !̃pe2)!̃2d
(1 + k̃2 + !̃pe2)(!̃2d − !̃

2
+)

(3.37)

has the same sign as (k̃2+ !̃pe2)!̃2d −�!̃pe2k̃2. Hence, !̃ = !̃d mode is stable
if

!̃2d <
�!̃pe2k̃2

k̃2 + !̃pe2
(3.38)

In summary, since the inequality �!̃pe2k̃2

k̃2+!̃pe2
< !̃2+ is always true, the plasma is stable

if and only if condition (3.38) is satisfied. The stability criterion is:

!̃d <
�1∕2k̃

(

1 + k̃2∕!̃pe2
)1∕2

(3.39)

where the sign of k̃ is chosen to match ṽd’s sign. In the case where the drift velocity
is higher than the Bohm speed (ṽ2d > �), this condition is never satisfied, and the
plasma is unstable for all wavenumbers. This instability is not an ion acoustic wave,
in the sense that its phase velocity is not constant and is not equal to the Bohm
speed. If the drift velocity is lower than the Bohm speed, stability occurs for low
wavenumbers

k̃2 < !̃pe
2

(

�
ṽ2d
− 1

)

(3.40)

In the limit of low collisionality, the most unstable modes are when �0 or �±
becomes infinite, that is when P ′0(!̃d) = 0 or P ′0(!̃±) = 0 according to Eq. (3.36).
This occurs when !̃d or !̃± becomemultiple roots ofP0. Since the !̃+ and !̃−modes
do not intersect, the most unstable mode has to satisfy !̃d = !̃±. Consequently,
the instability comes from the coupling between the beam mode !̃d and one of
the modes !̃±, by collisions. For !̃d = !̃±, the maximum growth rate cannot be
estimated by Eq. (3.30) because P ′0(!̃d) = P ′0(!̃+) = 0 at k̃ = k̃max. For positive
!̃d , the maximum growth rate can hence be estimated by taking the second order
perturbation of the dispersion relation P (!̃) = 0:

(!̃ − !̃d)(!̃ − !̃+)(!̃ + !̃+) = −
i�̃
[(

k̃2max + !̃pe
2) !̃2 − �!̃pe2k̃2max

]

1 + k̃2max + !̃pe2
(3.41)

k̃max is here the wavenumber where !̃d = !̃±. The perturbation of the mode inter-
section writes !̃ = !̃+ + i�̃�max = !̃d + i�̃�max, which yields

2!̃+�̃2�2max =
i�̃
[(

k̃2max + !̃pe
2) !̃2 − �!̃pe2k̃2max

]

1 + k̃2max + !̃pe2
(3.42)
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Hence, by replacing !̃ by

�max =
ei�∕4

2�̃1∕2

[

�!̃pe6

(1 + k̃2max)(1 + k̃2max + !̃pe2)3

]1∕4

, (3.43)

and the growth rate (Eq. (3.31))

�̃ = �̃1∕2

23∕2

[

�!̃pe6

(1 + k̃2max)(1 + k̃2max + !̃pe2)3

]1∕4

(3.44)

is proportional to �̃1∕2 and not �̃ as for the other perturbed solutions.
The most unstable mode k̃max that corresponds to !̃d = !̃+ is obtained from the

root of a second order polynomial

k̃max =
1
√

2

⎡

⎢

⎢

⎢

⎣

−1 − !̃pe2 +
!̃pe2�

ṽ2d
+
⎛

⎜

⎜

⎝

[

1 + !̃pe2 −
!̃pe2�

ṽ2d

]2

+
4!̃pe2�

ṽ2d

⎞

⎟

⎟

⎠

1
2 ⎤

⎥

⎥

⎥

⎦

1
2

(3.45)
For large ṽd (ṽ2d∕(�!̃pe2)≫ 1), this expression is

k̃max ≈
!̃pe�1∕2

ṽd(1 + !̃pe2)1∕2
. (3.46)

which tends towards 0 for large ṽd .

3.2.3 Dispersion Relation in an Inhomogeneous Plasma

The situation derived above corresponds to the ideal situation of a uniform plasma.
When plasma inhomogeneities are to be taken into account, one cannot decouple
the perturbed motion to the 0-th order drift motion.

It is now assumed that
�̃, d∕dt̃ = (�) (3.47)
�̃, ñ, |∇̃| = (1) (3.48)

where � is a small parameter. We can expand ṽ with respect to �. To the 0-th order,
Eq. (3.15) is

∇̃�̃ − ṽ × b − ∇̃ñ∕ñ = 0 (3.49)
which yields the E × B and diamagnetic drifts, respectively

ṽE×B = b × ∇̃�̃ and ṽ∗ =
∇̃ñ
ñ
× b , (3.50)
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such that to the 0-th order
ṽ(0) = ṽE×B + ṽ∗ . (3.51)

Eq. (3.15) is then to the first order
d
dt̃
(ṽE×B + ṽ∗) = −ṽ(1) × b − �̃(ṽE×B + ṽ∗) (3.52)

where ṽ(1) = ṽ − ṽE×B − ṽ∗ + (�2) is the first order term of the electron velocity.
Hence,

ṽ(1) = ṽp + ṽdp (3.53)
where

ṽp =
( d
dt̃
+ �̃

)

ṽE×B × b =
( d
dt̃
+ �̃

)

∇̃�̃ (3.54)
and

ṽdp =
( d
dt̃
+ �̃

)

ṽ∗ × b = −
( d
dt̃
+ �̃

) ∇̃ñ
ñ

(3.55)
are the polarization drift terms due to the E ×B and the diamagnetic drifts, respec-
tively (including the friction force). It is useful to derive the divergence of the fluxes
corresponding to each of the drift terms.

∇̃ ⋅ (ñṽE×B) = (b × ∇̃�̃) ⋅ ∇̃ñ + ñ∇̃ ⋅ (b × ∇̃�̃) (3.56)
The second term is zero since for any vectors u and v

∇ ⋅ (u × v) = −u ⋅ (∇ × v) + v ⋅ (∇ × u) . (3.57)
Thus,

∇̃ ⋅ (ñṽE×B) = (b × ∇̃�̃) ⋅ ∇̃ñ (3.58)
Using again Eq. (3.57),

∇̃ ⋅ (ñṽ∗) = 0. (3.59)
Eq. (3.59) is sometimes known as the gyroviscous cancellation.

As previously, all the particle source and loss terms are neglected (�̃iz ≪ !̃),
such that the electron continuity equation is

)t̃ñ + ∇̃ ⋅ (ñṽ) = 0. (3.60)
So to the first order in �,

)t̃ñ + ∇̃ ⋅ [ñ(ṽE×B + ṽ∗ + ṽp + ṽdp)] = 0, (3.61)
or

)t̃ñ + (b × ∇̃�̃) ⋅ ∇̃n + ∇̃ ⋅
[

ñ
( d
dt̃
+ �̃

)

(

∇̃�̃ − ∇̃ñ
ñ

)]

= 0 (3.62)
The only term contributing to the motion of the electron guiding centers is the

E × B drift [162]
d
dt̃
= )t̃ + ṽE×B ⋅ ∇̃ (3.63)
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Using the property
∇̃ ⋅ [(ṽE×B ⋅ ∇̃)∇̃�̃] = (ṽE×B ⋅ ∇̃)∇̃2�̃, (3.64)

∇̃ ⋅ (ñṽp) = ñ
(

)t̃ + ṽE×B ⋅ ∇̃ + �̃
)

∇2�̃
+ ∇̃ñ ⋅

(

)t̃ + vE×B ⋅ ∇̃ + �̃
)

∇̃�̃. (3.65)
For the density gradient polarization drift,

∇̃ ⋅ (ñṽdp) =∇̃ ⋅
[

∇̃ñ
ñ

(

)t̃ + ṽE×B ⋅ ∇̃
)

ñ
]

(3.66)
−
(

)t̃ + �̃
)

∇̃2ñ − ∇̃ ⋅ [(ṽE×B ⋅ ∇̃)∇̃ñ].

It is now assumed that
ñ = ñ0(x̃) + ñ1(ỹ, t̃) ; �̃ = �̃0(x̃) + �̃1(ỹ, t̃) (3.67)

with n1 ≪ n0 and �̃1 ≪ �̃0, and ñ1 and �̃1 proportional to exp(−i!̃t̃ + ik̃ỹ). To the
first order in �̃1 and ñ1:

∇̃ ⋅ (ñṽp) = ñ0
[

)t̃ + (b × ∇̃�̃0 ⋅ ∇̃) + �̃
]

∇̃2�̃1
+ �̃ñ1∇̃2�̃0 + n0(b × ∇̃�̃1 ⋅ ∇̃)∇̃2�̃0
+ ∇̃n0 ⋅ (b × ∇̃�̃1 ⋅ ∇̃)∇̃�̃0 (3.68)

∇̃ ⋅ (ñṽp) = iñ0k̃2(!̃ + !̃0 + i�̃)�̃1 + �̃ñ1�̃′′0
− ik̃ñ0�̃′′′0 �̃1 + i!̃∗ñ0�̃

′′
0 �̃1 (3.69)

where !̃∗ = −k̃ñ′0∕n0 and !̃E×B = −k̃�̃′0. Similarly,

∇̃ ⋅ (ñṽdp) = ∇̃ ⋅
{

∇̃ñ0
ñ0

[

)t̃ + (b × ∇̃�̃0 ⋅ ∇̃)
]

ñ1

}

+ ∇̃ ⋅
[

∇̃ñ0
ñ0
(b × ∇̃�̃1 ⋅ ∇̃)ñ0

]

−
(

)t̃ + �̃
)

∇̃2ñ1 − ∇̃ ⋅
[

(b × ∇̃�̃0 ⋅ ∇̃)∇̃ñ1
]

− ∇̃ ⋅
[

(b × ∇̃�̃1 ⋅ ∇̃)∇̃ñ0
] (3.70)

= − iñ1(!̃ + !̃E×B)

(

ñ′′0
ñ0
−
!̃2∗
k̃2

)

− iñ1!̃∗�̃′′0

+ i!̃∗ñ0�̃1

(

2
ñ′′0
ñ0
−
!̃2∗
k̃2

)

− ik̃2(!̃ + !̃E×B + i�̃)ñ1 + ik̃�̃1ñ′′′0 . (3.71)
Finally, Eq. (3.58) yields

∇̃ ⋅ (ñṽE×B) = −i!̃E×B ñ1 + i!̃∗ñ0�̃1 (3.72)
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To the first order in !̃∗, and neglecting second and third order derivatives of ñ0 and
�̃0 (no shear),

∇̃ ⋅ (ñṽp) = iñ0k̃2(!̃ + !̃E×B + i�̃)�̃1 (3.73)
∇̃ ⋅ (ñṽdp) = −ik̃2(!̃ + !̃E×B + i�̃)ñ1 (3.74)

Eq. (3.60) is therefore:
− i!̃ñ1 − i!̃E×B ñ1 + i!̃∗ñ0�̃1 + iñ0k̃2(!̃ + !̃E×B + i�̃)�̃1
− ik̃2(!̃ + !̃E×B + i�̃)ñ1 = 0 (3.75)

Hence,
ñ1
ñ0
=

!̃∗ + k̃2(!̃ + !̃E×B + i�̃)
!̃ + !̃E×B + k̃2(!̃ + !̃E×B + i�̃)

�̃1 . (3.76)
It follows then that the electron susceptibility is

�e ≡
!̃pe2

k̃2
ñe1
�̃1

=
!̃pe2

k̃2
!̃∗ + k̃2(!̃ + !̃E×B + i�̃)

(!̃ + !̃E×B) + k̃2(!̃ + !̃E×B + i�̃)
(3.77)

where
!̃E×B = −k̃�̃′ , !̃∗ = −k̃ñ′∕ñ . (3.78)

The formula for the electron susceptibility should be compared with Eq. (3.21).
The E ×B drift plays a role that is similar to the fluid drift velocity of the homoge-
neous plasma approach. However, the diamagnetic drift plays a role that is entirely
different because of the contribution of the density gradient. Eq. (3.77) was also
introduced by the gyroviscosity formalism in Smolyakov et al. [139].

Since the ions are not magnetized, the derivation of their susceptibility does not
require special treatment and Eq. (3.14) is retained [9]. The assumption that �̃i ≪ �̃
is made again.

The first order Poisson’s equation Eq. (3.8) provides a new dispersion relation.
Introducing the polynomial
P0,I (!̃) = (!̃ + !̃E×B)

[

(1 + k̃2 + !̃pe2)!̃2 − �!̃pe2(1 + k̃2)
]

+ !̃2!̃pe2!̃∗∕k̃2
(3.79)

the dispersion relation is
PI (!̃) = P0,I (!̃) + i�̃Q(!̃) = 0. (3.80)

where the Q polynomial is the same as in Section 3.2.2 (Eq. (3.24)). Interestingly,
P0,I (!̃) = P0(!̃) + !̃2!̃pe2!̃∗∕k̃2 (3.81)

under the assumption that !̃E×B = !̃d . Eq. (3.80)) is valid as long as the frequency
of the instability is smaller than the electron cyclotron harmonics, where a kinetic
description of the Bernstein modes is required [5, 133, 9, 92]. Inspecting the fol-
lowing table, P0,I has always two negative roots and one positive root:
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!̃ −∞ −!̃E×B 0 +∞
P0,I (!̃) < 0 > 0 < 0 > 0

Let !̃r be the positive root. Since �̃ ≪ 1, collisions can be treated as a perturbation
term. Once again, the perturbed solution being !̃r + i�̃�, to the first order in �̃,

PI (!̃r + i�̃�) = 0⇔ � = −Q(!̃r)∕P ′0,I (!̃r) (3.82)
The growth rate of the wave is hence

�̃ = −
�̃Q(!̃r)
P ′0,I (!̃r)

(3.83)

Since P ′0,I (!̃r) > 0, the mode stability is determined by the sign of Q(!̃r). If !̃∗ =
!̃E×B = 0, the positive root is

!̃r = �1∕2
(

1
!̃pe2

+ 1
1 + k̃2

)−1∕2

, (3.84)

a mode transiting from the lower hybrid frequency at low k̃’s to the ion plasma
frequency at high k̃’s, and damped by collisions. If !̃E×B = 0, but !̃∗ ≠ 0, the
solution is

!̃r =

!̃∗!̃pe2
{

[

1 + 4�k̃4(1+k̃2)(1+k̃2+!̃pe2)
!̃pe2!̃2∗

]

1
2 − 1

}

2k̃2(1 + k̃2 + !̃pe2)
(3.85)

The general instability criterion is found by solving jointly P0(!̃) = 0 (the mode
exists) with Q(!̃) = 0 (the mode is at stability limit):

!̃∗ − !̃E×B = !̃ =
�1∕2k̃

(1 + k̃2∕!̃pe2)1∕2
. (3.86)

This criterion is exactly the same one as in the homogeneous fluidmodel (see Eq. (3.38))
when !̃d = !̃∗ − !̃E×B. This confirms that the plasma is unstable when the total
fluid electron drift is higher than the ion sound speed. The numerical resolution of
the two other roots of PI shows that they are all stable in the regime of interest here.

The most unstable mode k̃max can be solved numerically for all the plasma con-
ditions. Under the assumption

!̃E×B = 0 , !̃pe →∞ , and �̃ → 0 , (3.87)
the following power law was found to be in very good agreement with the numerical
determination of the most unstable mode

k̃max = 0.709
(

ṽ∗
�1∕2

)0.362

. (3.88)
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Moreover, the equilibrium electronmomentum conservation equation (Eq. (2.10))
in normalized quantities is

−�̃′ = − ñ
′

ñ
− ṽx

(1
�̃
+ �

)

. (3.89)
Using Eqs. (3.78) and (3.89) for low wavenumbers, the plasma is unstable if:

ṽx (1∕�̃ + �̃) > �1∕2. (3.90)
At the sheath edge, ṽx = �1∕2, and 1∕�̃ + �̃ is greater than 1 for all �̃ > 0.

Therefore, the plasma is always unstable, at least at the sheath edge, as long as the
electrons are magnetized (l̃ ≫ 1). The destabilization of similar modes by collisions
was first found experimentally [15, 78] and explained theoretically by Chen [36] as
a particular type of resistive drift mode [35].

3.2.4 Comparison of the Two Models

Figs. 3.7 and 3.8 show the solutions of the dispersion relations for !̃pe = 2 and
ṽE×B = 0.2�1∕2. The E × B drift ṽE×B is here equal to !̃E×B∕k̃, such that ṽE×B =
−ṽE×Bey. We remind that all the dispersion relations investigated here correspond to
the high magnetic field approximation (!̃ ≪ 1). In every case, at high wavenumbers
k̃, two modes represent the ion plasma oscillations !̃ = ±�1∕2!̃pe and the third
mode represents the electron beam mode !̃ = !̃d . At low wavenumbers, the ion
plasma oscillations become lower hybrid modes !̃ = �1∕2. The collisionless case
is illustrated in Fig. 3.8(b) in the case where ṽ∗ = 1.3�1∕2. In the collisionless
case, only the inhomogeneous plasma theory can predict the anti-drift mode [139]
at low wavenumber, where the frequency is proportional to −k̃−1. In the present
models, the growth rate is always zero without collisions, but we are aware that
other mechanisms can cause instabilities to form in experimental plasmas, such as a
non-zero component of the wavevector in the direction parallel to the magnetic field
for example. The latter mechanism triggers the well-known flute mode [37].

Adding collisions to the models leads to non-zero imaginary parts of the solu-
tions of the dispersion relations. In most cases, collisions result in a damping of
plasma oscillations (negative imaginary part), but the plasma can also become un-
stable in some cases. We first notice that the homogeneous plasma model where the
drift velocity is equal to the E × B drift predicts that the plasma is always stable
for E × B drifts lower than the Bohm speed, while PIC simulations showed that
the plasma’s unstable behavior appeared even at relatively low electric fields. In
the homogeneous plasma model, the instability can be interpreted as a wave mix-
ing between the electron beam mode and the lower hybrid / ion plasma mode. In
the frame of the inhomogeneous plasma theory, the potentially unstable mode is the
only mode that propagates in the drift direction (positive real part).

Stability criteria were established in Sections 3.2.2 and 3.2.3 in the frameworks
of homogeneous and inhomogeneous plasma theories. It was found that the ho-
mogeneous plasma theory yields the same stability criterion as the inhomogeneous
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plasma theory, provided that the electron drift velocity is the sum of the E ×B and
the diamagnetic drift. However, in a homogeneous plasma, the diamagnetic drift
should be zero, and the electron beam mode should be defined by !̃ = −!̃E×B,
which is in agreement with the predictions of the inhomogeneous plasma theory.
The diamagnetic drift can be added to the electron drift of the homogeneous plasma
theory, but this would completely neglect finite Larmor radius effects, which seem to
play an essential role in our case. The models are compared to each other in Fig. 3.7.
For a diamagnetic drift velocity equal to 1.1uB (ṽ∗∕�1∕2 = 1.1), the electron beam
mode is correctly predicted by the homogeneous theory with ṽd = −ṽE×B but with
no unstable mode. The instability criterion corresponds better to ṽd = ṽ∗ − ṽE×B.
Nevertheless, the growth rate is overestimated in the latter case.

Fig. 3.8(b) shows the harmonic solutions for the different dispersion relations in
the collisionless case. Although the inhomogeneous plasma theory yields a growth
rate proportional to �̃ for the resistive drift wave instability (Eq. (3.83)), the ho-
mogeneous plasma theory predicts a growth rate proportional to �̃1∕2 for the most
unstable mode Eq. (3.44). As it is shown in Fig. 3.9(a), the homogeneous plasma
theory tends to overestimate the growth rate of the instability. In the framework of
homogeneous plasma theory, the discrepancy between the growth rate predicted by
the mode intersection and the numerical solution of the dispersion relation comes
from the approximation �̃1∕2 ≪ !̃ which is necessary in order to apply the pertur-
bation theory on the solution of the homogeneous plasma dispersion relation, but
can be difficult to satisfy. Fig. 3.9(b) shows the most unstable modes predicted by
the various models as a function of the diamagnetic drift normalized to the Bohm
speed. The homogeneous plasma theory predicts that the normalized wavenumber
of the most unstable mode goes to zero for very high diamagnetic drifts, which is in
disagreement with the inhomogeneous plasma theory that predicts that a minimum
k̃max should exist.

The predictions of the linear perturbation theory in the framework of homoge-
neous plasma and inhomogeneous plasma are summarized in Table 3.4.
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Figure 3.7: Phase diagrams for the three solutions (in blue, green, and red) of
the polynomial dispersion relations (k̃, !̃) in normalized units plotted using vari-
ous theories. The real part is represented in solid line and the reduced growth rate
� = �̃∕�̃ in dashed line. The top diagrams correspond to the homogeneous plasma
theory, where the E × B drift is taken as the drift velocity. The diagrams in the
middle present the homogeneous plasma theory with a drift velocity equal to the
sum between the E × B and the diamagnetic drifts. The diagrams in the bottom
represent the more accurate inhomogeneous plasma theory. (a) Stable configura-
tion (ṽ∗− ṽE×B < �1∕2) ; (b) Transition to unstable plasma. The vertical dotted line
represents the transition to unstable wavenumbers.
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Figure 3.8: Phase diagrams for the three solutions (in blue, green, and red) of
the polynomial dispersion relations (k̃, !̃) in normalized units plotted using var-
ious theories. The real part is represented in solid line and the reduced growth
rate � = �̃∕�̃ in dashed line. The top diagrams correspond to the homogeneous
plasma theory, where the E × B drift is taken as the drift velocity. The diagrams
in the middle present the homogeneous plasma theory with a drift velocity equal to
the sum between the E × B and the diamagnetic drifts. (a) Unstable configuration
(ṽ∗ − ṽE×B > �1∕2). (b) Collisionless case (harmonic waves).
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Figure 3.9: The most unstable modes are computed numerically using the homo-
geneous plasma theory where ṽd = ṽ∗ − ṽE×B (solid black lines) and the inhomo-
geneous plasma theory (red dashed lines). (a) Maximum growth rate divided by the
collision frequencyℜ(�max). (b) Corresponding wavenumber k̃max. The black dot-
ted lines correspond to the intersection between the harmonic modes !̃ = !̃d and
!̃ = !̃+ in the homogeneous plasma case ("wave mixing").
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Homogeneous plasma Inhomogeneous plasma

Frequency !̃r min
{

!̃∗, !̃pe
[

�(1+k̃2)
1+k̃2+!̃pe

]1∕2}
!̃∗!̃pe2

⎧

⎪

⎨

⎪

⎩

[

1+
4�k̃4(1+k̃2)(1+k̃2+!̃pe2)

!̃pe2!̃2∗

]
1
2
−1

⎫

⎪

⎬

⎪

⎭

2k̃2(1+k̃2+!̃pe2)

Maximum growth �̃1∕2

23∕2

[

�!̃pe6

(1+k̃2)(1+k̃2+!̃pe2)3

]1∕4
− �̃Q(!̃r)
P ′0,I (!̃r)rate �̃max

Most unstable ≈ !̃pe�1∕2

ṽd
0.709

(

ṽ∗
�1∕2

)0.362

mode k̃max

Instability criterion !̃d >
�1∕2k̃

(1+k̃2∕!̃pe2)1∕2
!̃∗ − !̃E×B >

�1∕2k̃
(1+k̃2∕!̃pe2)1∕2

Electron beam ṽd ṽE×B
mode

Anti-drift mode No Yes, in −k̃−1

Table 3.4: Comparison between the analytical results of the homogeneous and the
inhomogeneous plasma theories of linear perturbations for low collision frequen-
cies. On the RHS column, the assumption ṽd ≈ ṽ∗ ≫ ṽE×B was made.
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3.2.5 Comparison with the PIC Simulations

Until Section 3.3.4, the de-normalized physical quantities are used again.
On the shorter time-scale, the spectrum of the grid data extracted from the PIC

simulation can be computed and compared with the simple 1D models described
above. The variable that is selected is the azimuthal electric field

E� = cos �Ey − sin �Ex (3.91)
where the polar angle � is defined from the center of the discharge

tan � =
y − l̃y∕2

x − l̃x∕2
(3.92)

The advantage of this variable is that it should be approximately 0 in a stable plasma,
away from the corners, even if the electrons are drifting. Therefore, the measured
signal is either noise or an instability pattern. The distance from the center

r = (x − l̃x∕2)2 + (y − l̃y∕2)2 (3.93)
is also introduced. The azimuthal electric field E(r, �, t) contains the temporal and
spatial spectra in t and � respectively, at a given radial position r. The analogy
with the 1D model is performed by assuming that the direction called y in the pre-
vious section is now represented by the distance along a circle of radius r, namely
r�. Fig. 3.10 shows the map of the azimuthal electric field at 3 Torr and 20mT. Of
course, the 1D pseudo-cylindrical model cannot apply near the corners where the
equilibrium azimuthal electric field is not zero anymore. In particular, one can ob-
serve that the azimuthal electric field becomes very high in the sheaths. This is, of
course, a feature of the plasma equilibrium and does not come from the instability.
At the center of the discharge, the amplitude of the instability is significantly lower.
Since we have seen that the drift velocity was much lower at the discharge center,
this is in agreement with the fact that the instability can develop only when the drift
velocity is high enough. At low magnetic field, the drift velocity is higher than the
Bohm speed only near the sheath edge. When the magnetic field increases, the in-
stability penetrates inside the discharge until a certain penetration length. However,
since the instability pattern is not purely azimuthal, the waves tend to travel radially,
such that measuring a penetration length of the instability is not so easy.

In Fig. 3.11, the 2D maps of the azimuthal electric field are represented for
a discharge at 3mTorr in the non-magnetized case (a), and with magnetic fields
of 10mT (b) and 20mT (c). The color scale is saturated in Fig. 3.11(c) to allow
qualitative comparison with the noise detected in the non-magnetized case.

For a given radial position equal to 9mm, the signal E� is plotted as a function
of � and t in Fig. 3.12(a) when the discharge has reached a steady state (for t > 35 µs
in this case). The instability pattern has a quite distinct structure with several modes
that can be appreciated by eye. The angular phase velocity can here be estimated
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Figure 3.10: Map of the azimuthal electric field for a run at 3mTorr and 20mT.
The Fourier transforms are performed in the azimuthal direction using E�(�).

to about 4.7 × 105 rad/s which corresponds to 4.2 km/s at a distance of 9mm from
the center. This is significantly higher than the Bohm speed (typically 2.7 km/s at
T e = 3 eV).

In order to be more accurate and to capture the different modes that develop in
the plasma, Fourier transforms of E� for a given value of r can be performed, us-
ing the scipy fast Fourier transform algorithm. The 2D Fourier transform (FT) of
E�(r�, t) for the typical run at 3mTorr and 20mT is plotted in Fig. 3.12(b). The
original data were extracted with a rate of 30 ns to achieve the 2D FT but the re-
sult remains quite noisy. To allow for comparisons with the theoretical spectra, a
2D Gaussian filter was applied to the signal with a standard deviation � = 12.5 (in
both directions). The time-averaged and �-averaged steady state plasma properties a
r = 9mm are summarized in Table 3.5. These numerical values can be inserted into
the dispersion relation found with the inhomogeneous plasma theory (Eq. (3.80)) to
provide a theoretical spectrum. This theoretical spectrum is plotted in solid cyan line
in Fig. 3.12(b) and matches well the transformed PIC data. The approximate formu-
lae of Eqs. (3.80) and (3.84) show good agreements with the simulated spectrum as
well. Although it is not shown directly here, the solution of the dispersion relation
coming from the homogeneous plasma theory with a drift velocity ṽd = ṽ∗ − ṽE×B
also shows a good agreement at least for the real part. The transition from the lower
hybrid mode to the ion plasma mode is also clearly visible in the transformed PIC
data.

The 1D Fourier transforms are also presented in Fig. 3.13 in time (a) and space
(b) for magnetic fields of 5, 10, 20 and 40mT. Both series of curves feature clear
maxima at the typical frequency and wavenumber of the instability. Once the in-
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Figure 3.11: Snapshots of the azimuthal electric field in polar. Simulations were
run at 3 mTorr of gas pressure, for magnetic fields of 0, 10, and 20mT.

stability is triggered, the typical frequency and the wavenumber remain of the same
order of magnitude. The temporal Fourier transform is averaged in � and the spatial
Fourier transform is averaged in time, such that the original curves are not so noisy
even for sampling rates up to 100 ns. Gaussian filters (with � = 2 and 3) were still
employed to yield better estimates of the maxima of the curves.

The advantage of the inhomogeneous plasma theory compared to the homoge-
neous plasma approximation is revealed when looking at the growth rates of the
various modes. As explained above (see, for example, Fig. 3.9), the growth rates
and the most unstable wavenumbers predicted by both approaches are very differ-
ent. The instability growth rate was also estimated in the PIC simulation. This
requires particular care because the plasma equilibrium builds up at the same time
as the instability develops. At every sampling time, the spatial Fourier transform
was computed for a given mode whose amplitude can hence be tracked over time.
The result is shown in Fig. 3.14 for wavenumbers corresponding to �Le, �Le∕2, and
3�Le∕4. The data was initially very noisy and had to be smoothed with a quite broad
Gaussian filter (� = 30). The mode amplitude is very small during the first few mi-
croseconds of the simulation. This onset time, which corresponds to the time needed
for the discharge to build up, from the initial uniform situation was fitted manually
and estimated to be about 4.2 µs. The mode amplitudes then seem to saturate. The
exponential growths predicted by the linear perturbation theory are plotted in dotted
lines in Fig. 3.14 (the y axis is in log scale so the exponential growth appears as a
straight line). The growth rates are reasonably well predicted by the linear theories
when the instability develops. Of course, the linear theory cannot capture the satu-
ration of the instability. We are aware that the latter data analysis is at the limit of
what can be extracted from the PIC simulations performed here. A more detailed
investigation of the instability growth could be performed for example by starting a
simulation with specially prepared initial electron and ion distributions that would
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Magnetic field 20 mT
Pressure 3 mTorr
Plasma density 1.8 × 1016 m−3

Electron temperature 3.84 eV
Diamagnetic drift 17.3 km/s
E × B drift -4.3 km/s

Table 3.5: Numerical quantities of the simulation used to solve the dispersion re-
lation in Fig. 3.12. The plasma density and the diamagnetic drift are measured at
steady state for the run at 20mT and 3mTorr, at r = 9mm from the discharge center,
and averaged over time and over �.

correspond to a time-averaged plasma equilibrium under the same conditions. The
number of particles should also be increased to reduce the noise level. Finally, a
purely cylindrical simulation code could be used to remove the effects of the cor-
ners.

Using a series of data generated in the same way as for Fig. 3.13(b) we could
identify the dominant mode in the PIC data and compare it with the most unstable
mode predicted by the fluid theory for a wide range of conditions of pressure and
magnetic field. The comparison is presented in Fig. 3.15, which is analogous to
Fig. 3.9 but with assumptions (3.87). These assumptions of weak E × B drift and
low collision frequency are only approximately valid in the PIC simulations but they
do not have a major contribution to the solution and allow to plot all the data on the
same graph. The drift velocity is measured directly from the simulation at a distance
of 9mm from the discharge center. The drift velocity decreases with the magnetic
field, so the runs at higher magnetic field are on the LHS of the curve. Considering
the data quality and the methods employed to treat it, a typical error of 15 to 20%
should be assumed on the estimates of the dominant modes. At high magnetic field,
the agreement between the dominant mode in the simulation and the most unstable
mode predicted by the inhomogeneous plasma theory of linear perturbations is sat-
isfactory. In our LTP conditions, when the ratio between the diamagnetic drift and
the Bohm speed is larger than about 10, the instability is not seen in the simulation,
and the dominant mode departs from the prediction of the linear perturbation theory.
The homogeneous plasma theory predicts that the wavenumber of the most unstable
mode should decrease with the diamagnetic drift, which does not seem to match the
simulation data.

As will be seen in the next Section, the E × B drift becomes negligible at high
magnetic fields, such that the part of the graph that corresponds to ṽ∗∕�1∕2 <
1 would correspond to a stable configuration. This could define a condition of
marginal stability that may be of interest to describe the plasma for magnetic fields
higher than those investigated in the present work. This condition will be partially
discussed in Section 3.3.4.
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Figure 3.12: (a) The azimuthal electric field obtained at 3mTorr, and 20mT, at a
distance of 9mm from the center of the simulation domain. (b) The corresponding
spatio-temporal FT (color plot) with a numerical solution of Eq. (3.80) in cyan, ap-
proximate solutions in dashed (Eq. (3.84)) and solid black lines (Eq. (3.85)), with the
parameters of Table 3.5. All the theoretical curves come from the inhomogeneous
plasma theory.
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Figure 3.13: Fourier spectra of the azimuthal electric fieldE�(�, t) at a distance r =
9mm from the discharge center for several values of the magnetic field, at 3mTorr
of gas pressure. (a) Temporal Fourier transform averaged in � with a Gaussian filter
(� = 2). (b) Spatial Fourier transform averaged in time with a Gaussian filter (� =
3). The spatial coordinate is r�.
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from the discharge center for various wavenumbers. The data extracted from the
PIC simulation (solid lines) is compared with the predictions of the inhomogeneous
plasma theory (dotted lines).
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(green dotted line) is given by Eq. (3.88)
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3.3 Transport Theory at High Magnetic Fields

The general 1D model of the plasma transport described in Chapter 2 was based
on the ambipolar assumption in the transport direction. While this assumption
is perfectly justified in 1D, it cannot be made in 2D. The non-magnetized 2D
case could be treated by assuming Boltzmann electrons in Section 2.3, but this
assumption does not hold either at high magnetic fields. The general two-fluid
magnetohydrodynamics (MHD) equations do not seem to have analytical solutions,
even in a quasineutral isothermal plasma. In this section, we will show that the elec-
tric field becomes weak at high magnetic fields and that, under these conditions, the
properties of the plasma equilibrium can be estimated with very simple formulae.

3.3.1 Two-dimensional Isothermal Model

The Weak Electric Field Assumption

The approximation where the electric field is neglected was already used by Stern-
berg et al. [146] to model the radial profile of a magnetized plasma column. The
behavior of the electric field can be explained by observing that the electric field
always accelerates the ions to the walls, and does not change sign at high magnetic
field. Then, looking at the steady state electron momentum balance equation along
x as it was done to obtain Eq. (2.10)

−kBT e
n′

n
− eE − me�e(1 + �e2)v = 0

where x is here defined from the discharge center, and v is the ambipolar plasma
velocity along the x axis. We found in the simulations that E > 0, n′∕n < 0 and
v > 0 in the region x ∈ [0, lx∕2] . We also observed that the density profiles keep a
familiar shape (approximately a cosine shape) such that

n′∕n = 1∕L (3.94)
whereL is a gradient length that remains of the order of the system size (except near
the center). As the Hall parameter increases with themagnetic field, the electric field
term does no have the right sign to balance the velocity term. Only the pressure term
can balance the increase of the velocity term. Since the electron temperature and
the gradient length remain bounded, the velocity also has to go to zero.

The ratio between the electric field term and the velocity term in the electronmo-
mentum conservation equation can be calculated by replacing n′∕n with Eq. (2.30)
in Eq. (2.10). This yields to the first order in T i∕T e

eE
me�ev(1 + �e2)

=
mi

me�e(1 + �e2)

⎡

⎢

⎢

⎢

⎣

�iz +
v2

Da
− T i

T e

(

uB2

Da
+ �iz

)

1 − v2∕uB2
+ �i, tot(1 + �i

2)

⎤

⎥

⎥

⎥

⎦

(3.95)
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At high magnetic field, the ionization frequency can be estimated by Eq. (2.67) such
that �iz goes to zero. Moreover, the ratio mi�i, tot(1+�i2)

me�e(1+�e2)
is equal to (me�e)∕(mi�i, tot) at

high magnetic field, which is very small. Finally,

Da ≈
miuB2

me�e(1 + �e2)
(3.96)

at high magnetic field. Therefore,

eE
me�ev(1 + �e2)

=

(

v
uB

)2
− T i

T e

1 −
(

v
uB

)2
(3.97)

We can see here that the electric field might reverse because of the ion tempera-
ture. This was however not observed in the simulations. At high magnetic fields,
the tangent velocity profile found in Chapter 2 is retained and the velocity is much
lower than the Bohm speed everywhere except at the sheath edge. Everywhere in
the plasma bulk, the ratio between the electric field term and the velocity term is
hence of the order of −T i∕T e whose absolute value is much smaller than 1 in LTP
conditions. The electric field term can thus be neglected in the transport equations
of magnetized LTP, when the electron mobility becomes lower than the ion mobility
(equivalent to Eq. (3.96)).

The model above is 1D and the assumption of low electric fields has to be val-
idated in 2D. This can be done using the PIC simulation data. Fig. 3.16 shows the
ratio between the electric field term and the electron pressure term inmany simulated
conditions, for y = ly∕2. When there is no magnetic field, the ratio is approximately
1 (or -1) everywhere in the plasma bulk , which corresponds to the Boltzmann equi-
librium. When the magnetic field increases, both terms tend to decrease but the
electric field term decreases much faster than the pressure term. For gas pressures
of 3 and 6mTorr, the electric field term is less than 15% of the pressure term when
the magnetic field is higher than 15mT. The effect is less visible at 12mTorr as a
higher magnetic field is required to reach the strongly magnetized regime.

Although 2D effects and the instability onset make the interpretation of the PIC
data more complicated than with the simple 1D model described above, the low
electric field assumption seems legitimate to describe the highmagnetic field regime
of the plasma column studied here.

Introduction of the Effective Collision Frequency

The effect of the instability on the time-averaged transport is difficult to predict.
However, the momentum conservation equations can be written at a shorter time-
scale and then averaged in time to evidence the formal contribution of the instability.
This was done, for example, by T. Lafleur for the study of the electron drift insta-
bility in Hall thrusters [91]. The electric field, the electron density and the electron
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velocity can be split into a time-averaged (⟨⋅⟩) term and a fluctuating term:
ne = ⟨ne⟩ + ne1 ; ve = ⟨ve⟩ + ve1 ; E = ⟨E⟩ + E1 (3.98)

By neglecting the electron inertia, the electron momentum conservation equation is
me

(

⟨ne⟩)tve1 + ne1)tve1
)

+ kBT e
(

∇⟨ne⟩ + ∇ne1
)

+ e
(

⟨ne⟩⟨E⟩ + ⟨ne⟩E1 + ne1⟨E⟩ + ne1E1
)

+ e
[(

⟨ne⟩⟨ve⟩ + ⟨ne⟩ve1 + ne1⟨ve⟩ + ne1ve1
)

× B
]

+ me�e
(

⟨ne⟩⟨ve⟩ + ne1⟨ve⟩ + ⟨ne⟩ve1 + ne1ve1
)

= 0 . (3.99)
Since the time average of the fluctuating quantities is 0, the average of the equation
above yields

kBT e∇⟨ne⟩ + e
(

⟨ne⟩⟨E⟩ + ⟨ne⟩⟨ve⟩ × B
)

+ me�e⟨ne⟩⟨ve⟩
+ me⟨ne1)tve1⟩ + e⟨ne1E1⟩ + e⟨ne1ve1⟩ × B + me�e⟨ne1ve1⟩ = 0 . (3.100)

The four last terms of Eq. (3.100) are of second order with respect to the perturbation
and account for the effects of the instability on the time-averaged plasma transport.

The same process can be applied to the electron continuity equation
)tne1 + ∇ ⋅

(

⟨ne⟩⟨ve⟩ + ne1⟨ve⟩ + ⟨ne⟩ve1 + ne1ve1
)

=
(

⟨ne⟩ + ne1
)

�iz (3.101)
The average yields

∇ ⋅
(

⟨ne⟩⟨ve⟩ + ⟨ne1ve1⟩
)

= ⟨ne⟩�iz (3.102)
For wave perturbations along y

ne1 = ne10 cos(!t − ky) and ve10 = ve10 cos(!t − ky − ') ey (3.103)
where ' is the phase angle between the density and velocity perturbations, and for
an equilibrium profile that depends only on x,

)x
(

⟨ne⟩⟨vex⟩
)

+
ve10ne10

2
)y cos' = ⟨ne⟩�iz (3.104)

Hence
)x

(

⟨ne⟩⟨vex⟩
)

= ⟨ne⟩�iz (3.105)
Thus, the fluctuations do not affect the equilibrium electron continuity equation.
In the work of T. Lafleur on Hall thrusters [91, 92], it is claimed that the main
perturbation term in the electronmomentum balance equation is the correlation term
between the density and the electric field, and it is shown that the saturation comes
from ion trapping, such that an estimate of the term ⟨ne1E1⟩ is provided. Here, weassume that the main equilibrium perturbation also comes from the ⟨ne1E1⟩ quantityand the only term with fluctuations that remains in Eq. (3.100) is ⟨ne1E1⟩.
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According to Eq. (3.77), the phase shift between the fluctuations of density and
electric field is �∕2 without collisions, in which case ⟨ne1E1⟩ = 0. So only col-
lisions can introduce a term coming from fluctuating quantities in the equilibrium
momentum conservation equation. The equilibrium continuity and momentum con-
servation equations are therefore

∇ ⋅
(

⟨ne⟩⟨ve⟩
)

= ⟨ne⟩�iz (3.106)
and
0 = −kBT e∇⟨ne⟩−e

(

⟨ne⟩⟨E⟩ + ⟨ne⟩⟨ve⟩ × B
)

−me�e⟨ne⟩⟨ve⟩−e⟨ne1E1⟩ (3.107)
The last term of Eq. (3.107) cannot be estimated without investigating the satura-
tion mechanism of the instability. A slightly different approach is proposed here
compared to T. Lafleur et al. [91]. It is assumed that the two last terms of the RHS
of Eq. (3.107) can be represented in the form of a collision term, with different ef-
fective collision frequencies in each direction. In the following, we get rid of the
brackets ⟨⋅⟩ for the time averaged quantities, and write

me�eneve + e⟨ne1E1⟩ = mene�effve (3.108)
where

�eff = �xex ⊗ ex + �yey ⊗ ey + �zez ⊗ ez (3.109)
is a diagonal effective collision tensor. It accounts both for the collisional processes
and for the effects of temporal fluctuations on the mean plasma transport.

The Solution of the Model

At high magnetic fields, the equilibrium electric field is neglected, such that the
stationary momentum conservation equation is

0 = −kBT e∇ne − eneve × B − mene�effve (3.110)
It is assumed that the plasma is quasineutral, hence ne = ni = n. The projections in
the plane perpendicular to the magnetic field are therefore

−!ceΓey − vT e
2)xn − �xΓex = 0 (3.111)

!ceΓex − vT e
2)yn − �yΓey = 0 (3.112)

where Γex and Γey are the components of the equilibrium electron flux �e = nve.
The electron flux is then

Γex = −
vT e2

!ce2 + �x�y
(�y)xn − !ce)yn) (3.113)

Γey = −
vT e2

!ce2 + �x�y
(�x)yn + !ce)xn) (3.114)
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We now assume that �x and �y are independent of space. Although this is not strictly
true, but it allows to solve the set of equations and will later be justified by the PIC
simulations. Injecting these expressions in the steady state continuity equation,

�y)
2
xn + �x)

2
yn = −

(

!ce
2 + �x�y

) �iz
vT e2

n . (3.115)

Eq. (3.115) is a generalized Helmholtz equation that has solutions under the form

n = n0 cos

[

(

!ce
2 + �x�y

)

1
2

(

�iz
�y

)
1
2 x
vT e

+ 'x

]

× cos

[

(

!ce
2 + �x�y

)

1
2

(

�iz
�x

)
1
2 y
vT e

+ 'y

]

(3.116)

where n0 is the maximum density, and 'x and 'y are integration constants that
depend on the initial conditions. Since the maximum density is reached at the center
of the domain, 'x = 'x = 0. We have already seen in Section 2.2.4 that the Bohm
criterion at high magnetic fields is equivalent to Schottky’s boundary conditions:
n = 0 at the walls. Using the latter condition:

n = n0 cos
(

�x
lx

)

cos
(

�y
ly

)

(3.117)

where
�2vT e

2

(

�y
l2x
+
�x
l2y

)

= �iz(!ce2 + �x�y). (3.118)

is the electron temperature equation.
When the electric field is neglected, the electron and ion equations are entirely

decoupled, such that the plasma density is found using only the fluid equations for
the electrons: the transport is limited by electron magnetic confinement. At the
walls, the electron flux is

Γex

(

x = ±
lx
2
, y
)

=
�n0vT e2�y

(!ce2 + �x�y)lx
cos

(

�y
ly

)

(3.119)

Γey

(

x, y = ±
ly
2

)

=
�n0vT e2�x

(!ce2 + �x�y)ly
cos

(

�x
lx

)

. (3.120)

It is not clear which collision frequency should be taken for each direction, since
the instability is rotating, with a wavevector that is mainly azimuthal but with a
significant radial contribution as well. However, we have seen that the instability
develops mainly in the azimuthal direction, and the local electric field fluctuations
are expected to push the electrons in the E × B direction [46]. To estimate �x and
�y, the simulation domain is split into 4 regions as illustrated in Fig. 3.17. For
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Figure 3.17: Sketch of the model where the domain is split into 4 sub-domains.
The instability is always either parallel to the wall, or perpendicular to it.

each section of the wall, the anisotropic collision frequency is either �e when the
instability is perpendicular to the wall, or equal to a scalar �eff when it is parallel to
it. Since at steady state, the total current leaving the plasma is zero (∯S �i ⋅ dS =
∯S �e ⋅ dS), the ℎ factor of the discharge defined by Eq. (1.96) can directly be
estimated through the electron flux

ℎB =
(mi∕me)1∕2vT e(�e + �eff )
(!ce2 + �e�eff )(lx + ly)

( ly
lx
+
ly
lx

)

(3.121)

which reduces to
ℎB =

vT e(�e + �eff )
(!ce2 + �e�eff )l

(

mi
me

)1∕2

(3.122)
for a square (lx = ly = l). Index B indicates that this equation is valid at high
magnetic field only, otherwise the assumption of low electric field cannot be made.

If the instability does not affect the transport, then �eff = �e and the ℎ factor
decreases as B−2 with the magnetic field, which corresponds to the classical regime
found by Sternberg et al. [146]. However, as will be shown in the next paragraph,
the Hall parameter cannot be arbitrarily large, which sets boundaries for the possible
values of ℎ and �eff .
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3.3.2 Saturation of the Magnetic Confinement

Upper bound for the Hall parameter

At y = 0, )yn = 0, such that Eq. (3.112) becomes

Γey =
!ce
�y
Γex (3.123)

If the instability propagates approximately in the y direction, then �y = �eff such
that the Hall parameter for the electrons is

�e =
Γy
Γx

≈
!ce
�eff

(3.124)

which also writes
vey = �evex (3.125)

Fig. 3.18 shows the profiles of vy∕vT e at y = 0, where vT e is computed from the
volume-averaged electron energy at 3mTorr and 12mTorr, for several values of the
magnetic field. Of course, these profiles are averaged over the larger time-scale. The
electron drift velocity vy always remains lower than the electron thermal velocity,
and becomes very close to it at the wall (which is consistent with the thermal electron
flux at the wall) at high magnetic field. In the plasma bulk, vy is always only a
fraction of the thermal velocity. This seems consistent with the fact that the electron
drift velocity is dominated by the diamagnetic drift at high magnetic fields. The
diamagnetic drift is purely a fluid drift, it is not related to the motion of the electron
guiding centers,1 and should in principle remain lower than the electron thermal
velocity.

v∗ < vT e (3.126)
The paragraph below is an attempt to provide a qualitative interpretation of this ob-
servation.

In Fig. 3.19, the electron density gradient is in the vertical direction. The elec-
tron density decreases from the top to the bottom. We assume that all the electrons
have a gyration velocity of �v0∕2 such that the mean velocity over half a gyration
is v0. The Larmor radius is

�Le =
�v0me
2eB

(3.127)
Let us consider a slice of thickness 2�Le.

1A diamagnetic drift higher than the thermal velocity would not necessarily break the PIC CFL
conditions since it comes from a strong density gradient and not necessarily from a high gyration
velocity or a high guiding center velocity. However, we must ensure that the Larmor radius is well
resolved by the grid.
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Figure 3.18: Profiles of electron fluid velocity along y as a function of x, measured
at y = ly∕2, and normalized to the electron thermal velocity for various values of
the magnetic field at 3mTorr (a) and 12mTorr (b).

• If the density gradient is 0, there are as many electrons whose velocity contri-
bution along x is v0 as electrons whose velocity contribution along x is −v0.
The diamagnetic drift is therefore 0, which is in agreement with Eq. (3.3)
when there is no pressure gradient.

• If the density gradient is n∕(4�Le), there are half fewer electrons after a dis-
tance of 2�Le. In Fig. 3.19, the resulting fluid velocity is 4v0−2v06

= v0
3
.

• If the density gradient is greater than n∕(2�Le), it means that all the electrons
have disappeared after a distance of 2�Le. The mean velocity is therefore v0.

This means that the diamagnetic drift velocity should be limited by the electron
gyration velocity, that is of the order of vT e in an isotropic plasma. More precisely,
since for an isotropic Maxwellian electron distribution function the mean absolute
velocity is

⟨

‖

‖

ve‖‖⟩ =
( 8
�

)1∕2
vT e (3.128)

where vT e = (kBT e∕me)1∕2. The mean v0 is

⟨v0⟩ =
2
�
⟨‖v‖⟩ ≈ 1.016 vT e (3.129)
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Figure 3.19: Sketch of the electron gyration motion for several values of the density
gradient.

The diamagnetic drift velocity should typically be lower than 1.016 vT e. How-
ever, the single particle approach should be generalized to a population of electrons
using the kinetic theory, which could be the focus of a future study.

It is assumed in the following that the drift velocity is limited by the electron
thermal velocity, such that

vx�e < vT e (3.130)
In the sheath, the ion flux remains equal to the electron flux on average (global
ambipolarity condition), and the electron density drops more rapidly than the ion
density. The electron fluid velocity is therefore typically higher than the ion velocity
in the sheath.

vix < vex (3.131)
Hence,

�e <
vT e
vix

(3.132)
For reasonable magnetic fields, the density gradient and the space charge electric
field terms are so strong in the sheath that electrons can be described with a Boltz-
mann factor. Using an isothermal sheath model, the ions are accelerated by the
sheath potential �s defined by Eq. (1.93). Provided that they enter the sheath at the
Bohm speed, their velocity at the wall is

vix,w = uB

[

1 + ln
(

mi
2�me

)]1∕2

(3.133)
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This yields an upper bound for the Hall parameter

�e < �c1 =

⎧

⎪

⎨

⎪

⎩

mi

me
[

1 + ln
(

mi
2�me

)]

⎫

⎪

⎬

⎪

⎭

1∕2

. (3.134)

For argon,
�c1 ≈ 84 (3.135)

On the y = ly∕2 axis, the Hall parameter can be measured from the PIC simulation
data using

�e =
Γey
Γex

. (3.136)
In order to reduce the noise level, an azimuthal average is performed, such that

�e =
⟨Γe�⟩
⟨Γer⟩

(3.137)

where Γe� and Γer are respectively the azimuthal and radial components of the elec-
tron flux, and ⟨⋅⟩ denotes the average in time and along the � coordinate.

Consequently, Eq. (3.134) can be validated against the PIC simulation data.
Fig. 3.20 shows the Hall parameter measured in polar coordinates in the PIC simu-
lations at 3 and 12mTorr for various magnetic field strengths. The error bars corre-
spond to the minimum and maximum values found when varying the radial position
where the fluxes are estimated from 3mm to 12mm. Given the relatively small size
of the error bars, the approximation of a uniform Hall parameter seems reasonable.
The Hall parameter reaches a maximum �c of approximately 0.72 �c1 in the 3mTorr
case and 0.37 �c1 in the 12mTorr case and decreases at high magnetic fields. The
x axis is the electron drift velocity at the wall divided by the electron thermal ve-
locity. In order to determine �c1, it was assumed that the drift velocity was equal to
vT e at the wall. If this rough estimate is corrected by using the value found in the
PIC simulation, the predicted Hall parameter would be the one given by the black
dashed line in Fig. 3.20.

A minimum ℎ factor?

Let us introduce an instability-enhanced collision frequency �B such that
�2B = �

2
eff − �e

2 (3.138)
Since �e = !ce∕�eff decreases at high magnetic fields, it means that �B and �eff
increase with the magnetic field and �B ≈ �eff at high magnetic field. Further-
more, we can reasonably assume that !ce2 ≫ �e�eff at high magnetic fields. Using
Eq. (3.122), the ℎ factor of the discharge is in the high magnetic field limit

ℎm =
vT e�B
!ce2l

(

mi
me

)1∕2

(3.139)
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Figure 3.20: Effective Hall parameters plotted as a function of vey∕vT e for simu-
lation runs at 3 and 12mTorr, measured with Eq. (3.137). The error bars represent
values extracted between 3 and 12mm from the discharge center.

Hence, the ℎ factor has a lower bound if and only if �B ∼
B→∞

!ce2. If this is the case,
then ℎm is strictly positive. Otherwise, since the ℎ factor cannot be higher than 1,
ℎm = 0.

Classical Ion-Electron Transport Transition at ℎ0 = ℎB
We now investigate the transition between the low magnetic field regime where the
ions dominate the transport, and the high magnetic field regime where the model
described above applies.

At high magnetic fields, the density profiles have cosine shapes and the global
particle balance equation is

ñ�iz = 4ℎBuB∕l (3.140)
where ñ = (2∕�)2 is the 2D mean normalized electron density. Replacing �iz in the
electron temperature equation (3.118)

l!ce
2ℎB

(

me
mi

)1∕2

= vT e(�e + �eff ) > 2vT e�e (3.141)

Hence;
!ce

2 >
2�evT e
lℎ0

(

mi
me

)1∕2

(3.142)
where ℎ0 is the non-magnetized ℎ factor given for instance by Eq. (2.130), and
where it has been assumed that ℎ0 > ℎB (the magnetic field does not enhance the
transport in any case). Inequality (3.142) represents the transition between the low
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magnetic field regime where the transport is limited by the ion drift-diffusion, and
the high magnetic field regime where the electrons drive the transport, whatever the
role of the instability. Inequality (3.142) does not depend on any quantity related
to the plasma unstable behavior, such as �B or ℎm, for example. Hence, it does not
depend on any instability-enhanced transport model. In terms of Larmor radius, this
transition defined by inequality (3.142) translates into

�Le
2
,ion∕elec =

ℎ0l�e
2

(

me
mi

)1∕2

(3.143)

where �e is the electron mean free path.

Classical / Instability-Enhanced Transport Transition at �e = �B.

In this small paragraph, the Larmor radius that corresponds to the transition to the
regime where the instability dominates the plasma transport is established. We as-
sume that this transition occurs when the maximum of the Hall parameter is reached.

The effective Hall parameter �e satisfies

1
�e2

=
�e2

!ce2
+

�2B
!ce2

(3.144)

Using Eq. (3.139),
1
�e2

=
�e2

!ce2
+
ℎ2ml

2me!ce2

mivT e2
(3.145)

We have seen in the simulation that the electron temperature does not vary much
with the magnetic field, especially when the transport is dominated by the insta-
bility. Since 1∕�e has a lower bound that is strictly positive, ℎm cannot be zero.
Consequently, the derivative of Eq. (3.144) with respect to the cyclotron frequency,
with constant vT e and �e is

d
d!ce

(

1
�e2

)

= −
2�e2

!ce3
+
2ℎ2ml

2me!ce
mivT e2

(3.146)

The maximum Hall parameter is hence reached for a magnetic field corresponding
to

!ce
2
0 =

�evT e
ℎml

(

mi
me

)1∕2

(3.147)

which yields a critical Larmor radius

�Le
2
,stable∕unstable = ℎml�e

(

me
mi

)1∕2

(3.148)
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and corresponds to the transition between the classical regime and the instability-
enhanced regime for the electrons. A heuristic branching under the form

�eff = (�e2 + �2B)
1∕2 (3.149)

wwas chosen tomanage the transition between the classical regime and the instability-
enhanced regime. As the critical magnetic field corresponds to evaluating �B = �e,
we can be confident that the transition criterion does not depend on the type of
heuristic branching2.

3.3.3 Instability-Enhanced Transport

The previous paragraph has shown that the Hall parameter was uniform in space
as a first approximation and that it had an upper bound that was lower than 84 for
argon. This upper bound leads to the existence of a minimum ℎ factor ℎm > 0, what-
ever the value of the magnetic field, and an instability-enhanced collision frequency
proportional to !ce2. Since

�c =
!ce0
�e

< �c1 (3.150)
Eq. (3.134) yields

ℎm >
�e
l

(

me
mi

)1∕2 [

1 + ln
(

mi
2�me

)]

(3.151)

At low magnetic fields, we have seen that a significant fraction of the plasma can be
unstable near the sheath, but the transport is still driven by the ions. The existence
of a lower bound for ℎ is fundamental: it means that the magnetic confinement of
the electrons completely saturates due to the instability at high magnetic fields.

Increasing the magnetic field strength, soon after the electrons start driving the
transport, the unstable nature of the plasma becomes important, and the Hall param-
eter starts decreasing. Conversely, the instability affects mainly the electron motion,
so the transport cannot be instability-driven without being electron-driven. Hence

�Le
2
,stable∕unstable < �Le

2
,ion∕elec (3.152)

which implies that
ℎm < ℎ0∕2 (3.153)

In summary, it was demonstrated that

�e
lℎ0

(

me
mi

)1∕2 [

1 + ln
(

mi
2�me

)]

<
ℎm
ℎ0

< 1
2

(3.154)

2The critical Larmor radius would be the same for any heuristic formula under the form �eff =
(�e� + ��B)

1∕� for � > 1
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It was found in the PIC simulations that
0.32 <

ℎm
ℎ0

< 0.42 (3.155)
for the range of pressure investigated, from 3 to 12mTorr, such that the predictions
from the theory are always satisfied. Moreover, the ratio ℎm∕ℎ0 is quite close to
0.5 and depends weakly on the pressure, which indicates that the instability starts
playing an important role soon after the electrons start driving the transport. How-
ever, as shown in Appendix B, the simulation results are subject to numerical noise,
such that the value of 0.32 and 0.42 may be overestimated. In the following, it
will be assumed that instability-dominated transport leads to a minimum ℎ factor
ℎm ≈ 0.32ℎ0. According to Eq. (3.139),

�B =
lℎm!ce2

vT e

(

me
mi

)1∕2

. (3.156)
The instability criterion that comes from the linear theory of perturbations has

shown that the plasma was unstable as soon as the total fluid electron drift is larger
than the Bohm speed. This is always true at the sheath edge such that any plasma
where the electrons are magnetized is subject to the resistive drift instability, in a
region that is close to the sheath edge. However, the instability starts playing a
significant role in the global plasma transport only when �Le < �Le2,stable∕unstable.The transition magnetic field depends on the pressure, the system size, the type
of gas, and the electron temperature, as expressed by Eq. (3.148). The curve of
the magnetic field that sets the transition from globally stable to globally unstable
plasma transport in the conditions of the PIC simulations, and with a typical electron
temperature of 4 eV, is shown in Fig. 3.21 as a function of the pressure.

Fig. 3.22 shows the effective collision frequency measured from the PIC simu-
lation

�eff =
⟨Γer⟩
⟨Γe�⟩

!ce . (3.157)
The �B asymptote is verified and the heuristic formula of Eq. (3.149) shows a satis-
factory agreement with the PIC data. Eq. (3.149) is equivalent to

�eff = �e

[

1 + 0.1
(

ℎ0l
�evT e

)2 me
mi
!ce

4

]1∕2

(3.158)

This equation can be used for electron transport in the direction mutually perpendic-
ular to the magnetic field and the instability. The "0.1" factor in Eq. (3.158) comes
from 0.322, so it may depend on the pressure and the discharge geometry as well.

As it was done for the effective electron collision frequency, the regime where
the electrons are stronglymagnetized can be bridged heuristically to the non-magnetized
case where the ions dominate the transport by writing

ℎ = ℎ0
(

1 + G + G2
)−1∕2 (3.159)
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Figure 3.21: Transition from stable to unstable transport for a square argon dis-
charge of 3 cm, with a typical electron temperature of 3 eV.

where
G = ℎ0∕ℎB (3.160)

This heuristic formula was first proposed by Sternberg et al. [146] as a fit to 1D
fluid simulation results. This formulation is compared to the 2D PIC simulation
data in Fig. 3.23. As simulations were performed both with and without electron
subcycling, with some influence on the results (see Appendix B), both data series
were presented together: the runs with no electron subcycling are displayed with
solid markers, and the runs were an electron subcycling of 10 was used are displayed
with emptymarkers. The classical theory where �eff = �e is depicted in Fig. 3.23(a).
In the classical approximation, Eq. (3.159) correctly predicts the plasma transport
properties up to the regime where the instability strongly develops. In Fig. 3.23(b),
the effective collision frequency includes the effects of the instability, and the ℎ
factor is correctly predicted by Eq. (3.159) for all ranges of pressure and magnetic
field.
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3.3.4 Discussion on the Marginal Stability

Marginal stability is satisfied when the plasma properties are such that it is at stabil-
ity limit, which means that it is unstable but with a growth rate equal to zero. This
is the case, for example, when Eq. (3.90) becomes an equality. The fundamental as-
sumption made in this paragraph is that when the instability develops and saturates,
it affects the time-averaged plasma properties in such a way that the plasma tends
towards marginal stability. If this is not the case, the system should always tend to
develop structures at lower frequencies, which is not the case since an oscillatory
steady state is reached. In other words, the instability should have negative feedback
on its cause.

A model using a local marginal stability condition can be developed the same
way as for the classical model described in Section 2.2. The model has one more
equation corresponding to the marginal stability (equality form of Eq. (3.90)), and
one more variable being the effective electron collision frequency, which is not a
parameter anymore. According to Eq. (3.90), at marginal stability, the total electron
drift should be equal to the Bohm speed. This idea was suggested in an article by
Lakhin et al. [96], but the derivation is entirely new.

In this section, as the regime of interest is at highmagnetic fields, the normalized
quantities defined in Section 3.2.1 are used again.

The behavior of the drift velocity in the PIC simulations is summarized in Fig. 3.24.
In this graph, the colored dashed lines were plotted using a simplified formula for
the electron drift velocity

ṽ� = ṽr∕�̃e (3.161)
ṽr being the radial velocity predicted by a simple 1D, non-magnetized model:

ṽr = �1∕2ℎ tan
(

�x̃
l̃

)

(3.162)

At high magnetic fields, the solid black line represents a diamagnetic drift estimated
by

ṽ� ≈ ṽ∗ =
�
l̃
tan

(

�r̃
l̃

)

(3.163)
where r̃ is the normalized distance from the discharge center.

We observe in Fig. 3.24 that the electron drift first becomes much higher than
the Bohm speed at intermediate magnetic fields, and then decreases to some value
that becomes close to the Bohm speed. At very high magnetic fields, the intuition
is that the time-averaged drift velocity should become equal to the Bohm speed and
that the electric field cannot be neglected anymore.

The transition to this "very high magnetic field regime" occurs when the dia-
magnetic drift velocity is equal to the Bohm speed. If L is the pressure gradient
length,

1
L̃
= �1∕2 (3.164)
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It is hard to reach this regime by 2D PIC simulations because if we make the ap-
proximationL ≈ l̃∕� which is valid near the sheath edge, the number of cells in one
direction needed to resolve the Larmor radius in one direction is at least �∕�1∕2,
which is equal to 850 for argon. The modeling of this regime is, therefore, slightly
beyond the range of parameters investigated with our simulations. For example, for
an argon discharge at 3 eV, with L̃ = l̃∕� ≈ 0.96 cm, the transition magnetic field is
117mT. At this regime, the stability criterion of Eq. (3.90) might not hold because
the plasma response to electrostatic perturbations may not be isothermal anymore.
Interestingly, this transition is almost equivalent to the magnetic field where the ions
that travel with the Bohm velocity becomemagnetized. Although ion magnetization
does not have a large influence in the equilibrium transport equations, it may modify
the stability criterion.

The 1D differential equation of the transport is still given by Eq. (2.17). At high
magnetic fields, the ambipolar diffusion is driven by the electron confinement, such
that in normalized units

(

1 − ṽ2

�

)

v′ = �̃iz +
(

�̃ + 1
�̃

)

ṽ2 (3.165)

where �̃ is the effective electron collision frequency, ṽ is the velocity along the x
axis, and x̃ varies from 0 to l̃∕2. Using Eq. (3.161),

ṽ =
�1∕2

�̃ + 1∕�̃
<
�1∕2

2
(3.166)

which gives a corrected Bohm sheath criterion applicable to our model. Now that
the variable �̃ can be eliminated, the differential equation of the transport is

(

1 − ṽ2

�

)

ṽ′ = �̃iz + �1∕2ṽ (3.167)

which integrates into

x̃ = − ṽ2

2�3∕2
+
�̃izṽ
�2

+
1 −

(

�̃iz∕�
)2

�1∕2
ln
(

1 +
�1∕2ṽ
�̃iz

)

(3.168)

Using the boundary condition ṽ = �1∕2∕2 at x̃ = l̃∕2, the electron temperature
equation is

l̃�1∕2

2
= 

(

�̃iz
�

)

(3.169)
where the  function is defined by

 (x) = −1
8
+ x
2
+
(

1 − x2
)

ln
(

1 + 1
2x

)

(3.170)

The curve corresponding to Eq. (3.169) is provided in Fig. 3.25(a).
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Figure 3.24: Azimuthal drift velocities measured for various values of the pressure
and magnetic field, measured at r = 9mm from the discharge center. The various
dashed lines correspond to the classical regime (Eq. (3.161)), and the solid black
line corresponds to the instability dominated regime described by Eq. (3.163).

We can study the case where the magnetic field is not too high, �̃iz ≫ �, for
which a third order Taylor expansion gives

�̃iz =
11
12
�1∕2∕l̃ (3.171)

which is to be compared with the temperature equation in the low pressure, non-
magnetized case of Eq. (2.61). The confinement has the same properties as in the
low-pressure regime, but with a factor 11∕12 instead of � − 2, which indicates
slightly better confinement. The very high magnetic field limit yields

�̃iz =
�
2
exp

(

−
l̃�1∕2

2

)

(3.172)

The density profile can also be derived analytically

ñ = ñ0

(

1 +
�1∕2ṽ
�̃iz

)−1+(�̃iz∕�)2

exp
(

−
�̃izṽ
�3∕2

)

(3.173)

To be consistent with the general definition of Eq. (1.96), the ℎ factor is here

ℎ =
ñ|ṽ=�1∕2∕2
2ñ0

(3.174)
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which yields
ℎ = 1

2

(

1 +
�
2�̃iz

)−1+(�̃iz∕�)2
exp

(

−
�̃iz
2�

)

(3.175)
The ℎ factor depends only on the ratio �̃iz∕�.

• If �̃iz ≫ �, ℎ = e−1∕8

2
≈ 0.44;

• If �̃iz ≪ �, ℎ = �̃iz∕�.
For �̃iz ≪ �, the density profile becomes convex and peaks in the center. Moreover,
the mean normalized density starts decreasing significantly. Normalized plasma
density profiles are given in Fig. 3.25(b) for various values of the normalized ion-
ization frequency �̃iz (the lower �̃iz the higher the magnetic field).

If the density profile had remained approximately the same, the exponential de-
crease found in Eq. (3.172) would have been particularly surprising as it would have
meant that the confinement is better than in the classical model where it is propor-
tional to 1∕B2. The distortion of the plasma density profile with the magnetic field
is in contrast with the uniform effective collision frequency model that predicts a
cosine shape.

This model is not difficult to derive and yields some reasonable estimates of the
plasma properties. However:

• We are not sure that local marginal stability is a reasonable assumption since
very few studies were found on the subject for low-temperature plasmas;
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• The non-isothermal response of the plasma and ionmagnetization will change
the dispersion relation and affect the stability criterion in a way that we do not
know.

The validity of the results is therefore arguable, but the method has some interest
and may give rise to more simulations and experiments.
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Summary

Many 2D PIC simulations of a magnetized plasma column were performed
for several values of the pressure and awide range of magnetic field strengths.
Although the size of the system is rather small (3 × 3 cm), the discharge pa-
rameters are typical for magnetized plasma processing reactors. A resistive
drift wave instability rotating in the azimuthal direction was observed and
characterized. The instability propagates in the electron fluid drift direction,
which is dominated by the diamagnetic drift.

Linear fluid theories of perturbations were investigated both in the ho-
mogeneous plasma approximation, and in an inhomogeneous plasma frame-
work. Dispersion relations were derived and solved in both cases. The
spatio-temporal FT of the azimuthal electric field found in the PIC simula-
tions is compared with the predictions of the linear theories. In a collisionless
plasma, the solutions of the dispersion relations are purely real (no instabil-
ity nor damping), and one of the modes matches the (k, !) spectrum found in
the PIC simulations at saturated state. When collisions are added, the linear
theories show that this mode becomes unstable if the total electron fluid drift
is larger than the Bohm speed. The most unstable wavenumber and the in-
stability growth rate are well predicted by the inhomogeneous plasma theory,
while this is not the case when the plasma is assumed homogeneous.

When the electron mobility becomes lower than the ion mobility due to
magnetic confinement, the instability starts playing an important role in plasma
transport. At high magnetic fields (from typically 10mT) and at a given pres-
sure, the plasma magnetic confinement is completely destroyed by the insta-
bility. This de-confinement can be justified by the fact that the electron drift
velocity should remain lower than the electron thermal velocity. This effect is
well captured by an effective electron collision frequency that scales as B2,
and a constant ℎ factor. We found that the minimum ℎ factor at high mag-
netic fields is about 32% of the discharge ℎ factor with no magnetic field.
Another more self-consistent approach consists in using a local marginal
stability condition. This condition has been implemented in a 1D isother-
mal model that is solved analytically and yields reasonable predictions of
the equilibrium plasma properties.

Studying the instability-enhanced transport in a magnetized plasma col-
umn, as we did, is a prerequisite for understanding the more complicated
situation of a magnetic filter such as PEGASES, where the heating is local-
ized, and where magnetic field and electron temperature gradients become
important.



Chapter 4

MAGNETIC FILTER THEORY AND
MODELING

Contents
4.1 Why studying magnetic filters? . . . . . . . . . . . . . . . . 174

4.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . 175
4.1.2 Literature Review on Magnetic Filter Studies . . . . . 177
4.1.3 The PEGASES Experiment . . . . . . . . . . . . . . 178

4.2 2D PIC Simulations of a Magnetic Filter with Argon . . . . 179
4.2.1 Simulation in Real Conditions . . . . . . . . . . . . . 179
4.2.2 Simulation with Reduced Size and Plasma Density . . 186
4.2.3 Comparison with Previous Fluid Simulations . . . . . 187
4.2.4 Instabilities in a Magnetic Filter . . . . . . . . . . . . 189

4.3 Identifying the Main Drivers of a Magnetic Filter . . . . . 193
4.3.1 Intensity and Localization of the Heating Source . . . 193
4.3.2 Influence of Dielectric Boundaries . . . . . . . . . . . 198
4.3.3 Effects of the Gas Pressure . . . . . . . . . . . . . . . 202
4.3.4 Magnetic Field Characteristics . . . . . . . . . . . . . 204

4.4 One-dimensional Fluid Model of a Magnetic Filter . . . . . 206
4.4.1 Model Assumptions . . . . . . . . . . . . . . . . . . 207
4.4.2 Model Equations . . . . . . . . . . . . . . . . . . . . 208
4.4.3 Numerical Solution . . . . . . . . . . . . . . . . . . . 210
4.4.4 First Results . . . . . . . . . . . . . . . . . . . . . . 213
4.4.5 The Role of the Heat Flux . . . . . . . . . . . . . . . 215

The simulation of the magnetized column is generalized to a magnetic filter
configuration where the heating electric field is localized in the upstream re-
gion, while the magnetic strength has a Gaussian shape with a maximum at
the vicinity of x = lx∕2. As can be expected from the results on the magnetized
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plasma column, instabilities develop in the high magnetic field region. The sen-
sitivity to many simulation parameters is investigated, such as the pressure, the
magnetic field strength and the wall properties, among others. The simulation
results are also compared with former experimental measurements performed
on the PEGASES thruster. A new 1D Euler fluid model is presented and first
results are presented. The agreement with the PIC simulations becomes satis-
factory when the instability-enhanced transport parameters found in Chapter 3
are implemented.

4.1 Why studying magnetic filters?

Magnetic filters feature an upstream region and a downstream region separated by an
area where the magnetic field increases considerably, such that the thermal electron
Larmor radius becomes much smaller than the system size. The plasma is usually
generated or injected in the upstream region and then flows through the magnetic
filter towards the downstream region. When the kinetic energy of an electron that
reaches the high magnetic field region is such that the Larmor radius is larger than
thewidth of the highmagnetic field region, it can typically pass through themagnetic
filter. On the contrary, when the electron kinetic energy is too low and its Larmor
radius is smaller than the width of the magnetic filter, it may remain trapped in the
high magnetic field region, until collisions or instabilities transport it elsewhere, for
example to the walls. Due, to their large mass, the ion Larmor radius is generally
larger than the size of the magnetic filter, such that the ions can pass through it.

The first simulations performed by the author irein the magnetic filter configu-
ration revealed strong instability in the frequency range of a few MHz. These in-
stabilities look quite similar to the ones that form in the magnetized plasma column
simulated in Chapter 3. Fluid models are not able to capture the influence of the in-
stability on the transport correctly, and only PIC simulation can give some insight.
In this chapter, we will mainly discuss the properties of the classical equilibrium
transport, but also the characteristics of the instability and its possible influence on
the magnetic filter properties.

The electrons that remain in the high magnetic field region are those with lower
kinetic energy, thus a decreasing electron temperature through the filter. Down-
stream, only the high energy electrons with a velocity directed along the main di-
rection (x) may be able to go through the filter. Collectively, this could translate
into higher kinetic energy of the electron flow but not higher thermal energy. This
mechanism could possibly explain the operating principle of a magnetic filter, which
would in this case filter out low energy electrons. This assumptions can be chal-
lenged with the results presented below, but it is not the main focus of the present
work.

Former experimental results on the PEGASES device will be summarized in
Section 4.1.3, but we first describe some applications of magnetic filters.
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4.1.1 Applications

Neutral beam Injectors

The operation of efficient neutral beam injector (NBI)s remains one of the main
challenges of the International Thermonuclear Experimental Reactor (ITER) exper-
imental fusion reactor [23]. The aim of NBIs is to inject power in the discharge
but also to yield better control over plasma instabilities. The requirement for the
two ITER NBIs is to deliver a 40A current of high energy deuterium negative ions
(1MeV) [135]. The total power for these subsystems can be up to 50MW, so design
optimization with respect to power efficiency is crucial. A variety of reduced scale
experimental negative ion sources were developed as a joint effort among partners
of the ITER project.

Several test-beds were developed at theMax-Planck Institute for Plasma Physics
inGarching, Germany, where theAxially Symmetric Divertor Experiment (ASDEX)
is also operated, for example the former RADIal injector of Wendelstein 7 Ad-
vanced Stellarator (RADI), Bavarian Test Machine for Negative Ions (BATMAN)
and Multi Ampere Negative Ion Test Unit (MANITU) ion sources [140, 55]. The
same group also designed the source test facility Extraction from a Large Ion Source
Experiment (ELISE) which is about half the size of the ITER configuration and
whose operation has started since early 2010’s [77]. In Padua, Italy, an upgraded
test-bed facility Source for the Production of Ions of Deuterium Extracted from a
Radio-frequency plasma (SPIDER) has recently been assembled, and the construc-
tion of a real-size ITER NBI called Megavolt ITER Injector and Concept Advance-
ment (MITICA) has just started as of mid-2019 [135, 154].

In the NBI technology, the magnetic filter is used to enhance plasma electroneg-
ativity

� = n−∕ne (4.1)
where n− is the negative ion density, and a high flux ratio between negative ions and
electrons. Negative ion production mainly relies on surface production by positive
ion impact on the inner grid surface that is activated with cesium [112, 49]. The
beam of negative ions then has to be recombined with positive ions to form a neutral
beam that is not perturbed by the strong magnetic field inside the tokamak. As
electron-ion recombination CSs are very low, achieving high electronegativity is
essential for efficient operation.

Electric propulsion concepts and applications

Electric propulsionwith negative and positive ions is the initial goal of the PEGASES
concept described in the introduction. The original 3D computer aided design (CAD)
model of the PEGASES thruster prototype is shown in Fig. 4.1. The gas is injected
on the side walls near the RF antenna. The permanent magnets are localized near
the center of the plasma chamber. The thrust is generated by both positive and nega-
tive ion extraction. Ideally, negative ions should recombine with positive ions in the
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Figure 4.1: The PEGASES thruster prototype designed and assembled at LPP [119].

plume region, downstream from the thruster outlet. In operating conditions, high
electronegativity is required for the PEGASES thruster, which is possible only if
the electron temperature decreases in the filter. Studies were first performed in ar-
gon to focus on the cooling mechanism, with no negative ion production. No flight
model of PEGASES is currently being investigated at LPP but the concept gave
birth to another type of plasma thruster called Neptune, that does not rely on neg-
ative ion generation, but also involves alternate extraction of positive and negative
charge carriers (electrons) through the grid. This technology is at the origin of the
flagship product of the ThrustMe company that designs and manufactures electric
propulsion systems for small satellites [121].

In a sense, HT also feature a magnetic filter, whose role is also to slow down
the electrons, but with the main difference with the PEGASES concept is that the
high magnetic field region overlaps with the ionization and the acceleration stages.
Moreover, the electron drift is closed in the annular channel of a HT whereas it hits
the wall sheath in the Cartesian geometry of PEGASES. The concept of double
stage Hall thruster (DSHT) is a magnetic barrier configuration as this prospective
thruster design relies on the de-coupling between the ionization stage and the accel-
eration stage. In particular, the ID-HALL DSHT developed at Laplace in Toulouse
is based on an RF ICP generation, which makes it quite similar to the PEGASES
configuration [50]. Again the annular geometry of DSHT design involves a closed
electron drift in the azimuthal direction, as opposed to the Cartesian geometry, and
the electrons are still mainly produced downstream by an external cathode system.
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4.1.2 Literature Review on Magnetic Filter Studies

Experimental studies onmagnetic filters were of course supported by theoretical and
numerical studies. Kolev et al. [87] developed 1D, 2D, and 3DCartesian fluid codes
for the simulation of magnetic filters in hydrogen plasmas. These models rely on the
drift-diffusion approximation that is not valid for gas pressures of 1mTorr, which
is the range of pressure contemplated for the operation of experimental NBI. The
effects of the magnetic field strength and multidimensional geometry were assessed.
Positive ion inertia was added by Hagelaar et al. [72] in a 2D fluid code that could
allow for a more realistic description of the geometry of an experimental NBI for
the ITER fusion reactor. The value of the magnetic field in this article is limited
to 0.5mT which is about 20 times less than the real magnetic field contemplated
for the real device. The 2D plasma was found stable, which appears not to be the
case at higher magnetic field, as shown in Chapter 3. In 2012, Kolev revisited the
Physics of the magnetic barrier in low-temperature plasmas by 2D PIC simulations
[86]. The general behavior of the plasma was correctly predicted, though with two
main limitations:

1. The plasma density was scaled down to a few 1× 1013m−3, which reverts the
ratio !pe∕!ce with respect to the real system and artificially reduces the ion
plasma frequency. As described in Chapter 3, this is expected to influence the
observed instabilities;

2. The electrons are produced by an artificial source term, which means that the
electron temperature is not consistent with the particle balance.

A more detailed analysis of 2D PIC simulation results was also performed by J.-
P. Boeuf et al., [17]. In particular, it was identified in this work that electron transport
is very much driven by the large E × B drift in the near sheath region.

Full size "2.5D" PIC simulation of the entire BATMAN source was performed
by Taccogna andMinelli [148]. A transition from stable to unstable plasma behavior
was identified by observing the electron current streamlines. However, the vacuum
permittivity �0 was scaled by a factor 25 (�′0 = 25�0) to allow for larger cell size and
time step. This of course affects the sheath dimension, but also the onset of instabil-
ities. G. Fubiani was probably the first author to propose a full 3D PIC modeling of
ITER NBI [60, 61]. At high dimensionality, the scaling factor for permittivity needs
to be used. In 3D PIC simulations, multiplying the vacuum permittivity artificially
by a factor 2 allows for 23 times fewer cells to resolve and a twice bigger time step.
The simulation time is hence, generally reduced by a factor 16. However, the plasma
instabilities may not be captured correctly when such scaling is used.

More than ten years of research were dedicated to the simulation of NBI in sev-
eral research groups across Europe, mostly on hydrogen and hydrogen/deuterium
plasmas. The aim of the present work is not to compete with the level of refinement,
but rather to assess how the plasma characteristics depend on the various parameters,
e.g.
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• gas pressure
• magnetic field strength
• width of the magnetic filter
• power deposition
• dielectric coating

The corresponding simulation results will be presented in Section 4.3. The general
aim is to assess fundamental plasma characteristics, in argon first, and ultimately
iodine in Chapter 5.

4.1.3 The PEGASES Experiment

The PEGASES ion source has not been used as a real prototype of plasma thruster
or NBI but rather like a model system that can help the community understanding
the physics of magnetic filters.

The PEGASES experiment was first used with argon gas and allowed for some
detailed analysis of the fundamental plasma properties. For example, Bredin et al.
[21, 20] measured electron distribution functions at various locations of the plasma
chamber, and found that the EEDF was Maxwellian, as opposed to the case where
no magnetic field is applied. It was also confirmed experimentally by Thomas et
al. [153] that a significant part of the electron transport across a magnetic filter was
made by E × B drift in the sheath. Optical measurement techniques that are not
necessarily possible in larger test beds could also perfomed in PEGASES to yield
for example measured profiles of negative ion density [127, 126].

Experimental results obtained previously with and without the permanent mag-
nets are presented in Fig. 4.2. In the experimental device, lx = 12 cm, ly = 10 cm,
and lz = 8 cm, and the magnetic field is in the z direction. The magnetic field profile
was measured and is shown in solid line in Fig. 4.2(a) and (b). The magnetic field
maximum is at 24.5mT. The measurements were performed in a 10mTorr argon
discharge with a coil RF power of 130W. The plasma density in the upstream re-
gion becomes higher when permanent magnets are added, and drops more sharply
in the downstream region of the filter. The electron temperature decreases from 4 to
3 eV when no magnets are present, but the downstream electron temperature drops
to less than 1 eV in the downstream region under the influence of the magnetic field.
The upstream electron temperature remains unchanged, at 4 eV approximately.
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Figure 4.2: Experimentalmeasurements obtained in PEGASES operatedwith argon
at 10mTorr by A. Aanesland et al. in 2012 [1]. "The electron temperature (a) and
the plasma density (b) along the x direction. Triangles and circles are obtained
without and with the magnetic filter, respectively. The solid line is the calculated
magnetic field strength on axis."

4.2 Two-dimensional PIC Simulations of a Magnetic Filter
with Argon

4.2.1 Simulation in Real Conditions

In this subsection, an attempt to simulate the entire PEGASES thruster with a 2D
PIC simulation is presented. The simulation parameters are adjusted to match the
experimental conditions described above. The simulation domain corresponds to
the plane perpendicular to the magnetic field lines with lx = 12 cm and ly = 10 cm,
and we focus on the cross-field transport phenomena. No permittivity scaling is
used. The PEGASES thruster is typically 20 times smaller than an industrial NBI in
each direction, which may allow for direct experimental validation. However, direct
PIC simulation remains quite challenging.

Simulation Parameters

The simulation parameters are close to the experimental conditions described in a
study on the properties of the EEDF in the PEGASES device operated with argon
[1]. The gas pressure is 10mTorr, and the absorbed power density is 124 kW/m3

such that the plasma density reaches almost 4 × 1017m−3 in the upstream region.
The mesh is made of a uniform grid of 6 000 × 5 000 cells and the time step is
4.24 ps. Due to to the very large grid size the simulation is expected to scale much
better than the case with a reduced geometry. The run was performed on 3 800CPU
on the CINES OCCIGEN computational facility. Each node has 64GB of memory
and when less than typically 3 000CPU are used, memory issues arise rapidly. The
run lasts for 3 days to simulate 3.1 µs of physical time. A steady state is not reached
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within this time, which corresponds to a fraction of the ion transit time. By the time
of the simulation, the sheaths are formed and the discharge general aspect is recov-
ered. There are 2.1 × 108 super-particles (both electron and ion) and this number
rises to about 4 × 108 super-particles in about 3 µs, because of ionization reactions.
All the walls are conducting and grounded to a 0V potential, so no bias voltage at
the grid location is considered. The sampling rate is 10 000 time-steps, or 42.4 ns
which is good enough to resolve the unstable phenomena described in the previ-
ous chapter. The wall model used here is straightforward as no SEE is taken into
account either from electron or ion bombardment, and all the charged particles are
simply absorbed when they hit the walls. The heating electric field profile features
a linear decrease from 0 to lx, as shown in Fig. 1.6(e). Moreover, an ion subcy-
cling of 10 is used, which means that the ions are moved only every 10 time steps,
to decrease computation time. The shape of the magnetic filter is also taken from
the published experimental data [1], and the maximum magnetic field is 24.5mT
located at x = 7.5 cm. As in previous simulation cases, the gas is treated as a steady
homogeneous background at a constant temperature of 300K.

Most of the physical and numerical parameters used for this (not-converged)
simulation are summarized in Section 4.2.1.

Simulation Results

The maps of the main plasma properties at the end of the simulation are shown
in Fig. 4.3. The plasma features a clear asymmetry such that the 2D description
seems essential. The peak of electron current visible at the left bottom corner of
Fig. 4.3(c) validates the former observations made by other authors with reduced
geometry and enhanced permittivity [86, 148, 17]. The maps of electron and ion
currents presented in Fig. 4.3(c,d) were made with data averaged over 1.3 µs of phys-
ical simulation time, which enables to draw distinct current lines. The currents are
fluid currents, which means that they account for the diamagnetic drift, that domi-
nates in the plasma bulk in the high magnetic field region. Although a steady state
is not reached, one can still observe that the electron and ion currents are not equal,
which shows that the plasma is not ambipolar, as it was already observed experi-
mentally [89]. The electron temperature also features some asymmetry with gra-
dients that are significantly different from the uniform magnetic field situations in
both directions (see Fig. 4.3(e)). The ion temperature given by the simulation is
displayed in Fig. 4.3(f) but the validity of these predictions is questionable since no
power conservation balance for the gas is taken into account. In the simulations, ion
heating comes from the electric field acceleration combined with ion-neutral colli-
sions that transfer directional kinetic energy to thermal energy. When an ion-neutral
backscattering collision occurs, some ion energy is lost. This energy should then be
transferred to the gas such that the ion temperature and the gas temperature become
coupled. The simulation hence tends to underestimate the ion temperature and the
gas temperature.
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Physical parameters
Gas type Ar
Discharge size in x direction lx 120 mm
Discharge size in y direction ly 100 mm
Neutral pressure p 10 mTorr
Transverse magnetic field B 24.5 mT
Neutral density ng 3.20 × 1020 m−3

Neutral temperature Tg 0.026 eV
Frequency fRF 13.56 MHz
Power density w 208 kW/m3

Absorbed power abs = wlxly2Δx 0.1 W
Physical time of the simulation tsimulation 3.01 µs
Averaging time taverage 0.042 µs
Particle source Ionization
Heating profile Linear, Fig. 1.6(e)
Walls Conducting (0V), absorbing
SEE model No SEE

Initial conditions
Plasma density ne = ni 1 × 1015 m−3

Electron temperature Te [eV] 4.0 eV
Ion temperature Ti [eV] 0.026 eV
Particles per cell Npart.∕cell 7 – 50
Heating electric field amplitude E0 1.0 kV/m

Numerical parameters
Cell size Δx 20 µm
Time step Δt 4.24 × 10−12 s
CFL factor Δx∕Δt 4.72 × 106 [m/s]
Number of gridpoints along y ymax 5 000
Number of gridpoints along x xmax 6 000
Executed time steps Nsimulation 710 000
Steps to average Naverage 10 000
Weighting factor qf 5 714 290 m−1

Initial number of super-particles Npart,0 210 000 000
Final # of elec. super-particles Nelec,end 369 159 794
Final # of ion super-particles Nion,end 369 519 201
Number of CPU NCPU 3 800
Run data volume Vstorage 259.1 GB
Data volume per grid snapshot Vgrid,snap 2.9 GB
Total runtime 72 h
Computing resource 273 000 CPU.h
Computing facility OCCIGEN

Table 4.1: LPPic simulation characteristics for the full scale 2D PIC simulation of
the PEGASES thruster.
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The electron density and electron temperature profiles are given in Fig. 4.5 as
a function of x and for various values of y. As the electron and ion densities are
statistically equal everywhere and considering the small size of the sheath, a 1D
quasineutral description seems correct except close to the lower wall y = 0. The
electron temperature decreases almost linearly from the upstream to the downstream
region of the magnetic filter. The electron temperature profiles are much faster to
converge in PIC simulations, and this profile is expected to be close to the con-
verged solution. It is not in qualitative agreement with experimental results [20].
We believe that this discrepancy is due to the heating localization that can play an
important role in magnetized plasmas. The choice was made for this simulation to
use an electric field amplitude that decreases linearly from 0 to lx with no y depen-
dency. Due to the relatively high plasma density, the skin depth does not exceed
1 cm, so the heating is much more localized. Better modeling would involve very
high heating electric fields in the transient that would make the simulation quite
challenging to run. Without experimental data about the local power deposition
or self-consistent solution of Maxwell’s equation, the heating source term remains
artificial. Furthermore, some distinct instability patterns that resemble the ones de-
scribed in Chapter 3 are visible in Fig. 4.3(a). The understanding of the instabilities
in a magnetic filter requires more fundamental investigations. Instead of pursuing
the most accurate PIC model of PEGASES, we focus on a simulation case with a
reduced geometry that allowed for some testing of the main driving parameters.

Comparison with Experiments

As said previously, the steady state experimental conditions are difficult to reach
with (realistic) PIC simulation, and the heating profile remains arbitrary in an elec-
trostatic code. Every code described in the literature makes assumptions that make
simulations easier to run. No benchmark case currently exists for these simulations
and it might be of interest to develop one. However, code benchmarking is a difficult
task that requires many resources in the various teams inclined to join the bench-
mark. It can sometimes distract from physical understanding and experimental val-
idation. The LPPic code was validated with the 1D CCP benchmark developed by
Turner et al. [157] and a large effort was sustained by T. Charoy at LPP to develop
an international benchmark case for the simulation of a HT model in the z−� plane.

We propose in the following paragraph qualitative comparisons with historical
experimental data. Qualitative comparison with previous 2D fluid simulations will
also be shown in Section 4.2.3.

In non-magnetized ICP discharges, the EEDF is usually not Maxwellian, as was
shown, for example, in Fig. 1.8(c) where two distinct slopes are visible in the EEPF.
However, Langmuir probe measurements have shown that the Maxwellian character
of the electrons was recovered in themagnetic filter configuration, everywhere along
the thrust axis [1]. In Fig. 4.4, we have plotted the EEPF at various positions along
the x axis of the realistic simulation. In order to generate this graph, the list of all
the super-particles at the end of the simulation is parsed and all the particles whose
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Figure 4.3: Properties of the discharge with magnetic filter after 3.1 µs of simula-
tion. The electron and ion currents are averaged over the last 1.3µs of the simulation.
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position is x±3mm, whatever their position in y, are selected to generate the velocity
histogram that can easily be converted into a numerical EEPF, taking the weight
factor of the particles into account. The procedure was repeated for x = 1, 4, 6, 7.5
and 11.5 cm to generate the plots of Fig. 4.4(a) that could be compared with the
experimental data in Fig. 4.4(b) [1]. One of the main results of the experiments
performed on the PEGASES ion source operated with argon could was retrieved
with the 2D PIC simulation: the electrons remain Maxwellian from the upstream
region to the downstream region, with a decreasing temperature through the filter.

Comparison between Fig. 4.5 and Fig. 4.2 shows that the orders of magnitude of
electron density and electron temperature found in the simulation agree with the ex-
perimental results. The maximum plasma density found in the experiment is twice
larger as in the PIC simulation, which could be due to the fact that the simulation
is not converged in the realistic simulation case. However, the order of magnitude
of the EEPF density (nfP ) for low energy electrons and the integrals of the curves
are of the same order of magnitude. The electron temperature converges faster than
the plasma density in the PIC simulation, so the electron profile found in Fig. 4.5(b)
is likely to be close to the converged solution. Nevertheless, the downstream elec-
tron temperature found in the simulation is higher than the experimental values.
Moreover, Fig. 4.5(b) does not feature the same plateau in the downstream region
as Fig. 4.2(b), for the electron temperature. These discrepancies could be related to
the heating power deposition, which is not self-consistently modeled.

As explained above, this simulation is very computationally expensive and does
not account self-consistently for the local power deposition. Since the experimental
power deposition profile is not known, the choice was made to investigate the role of
many control parameters of the simulation rather than seeking a perfect agreement
with the experimental data with a real size converged simulation. In order to be able
to investigate this multi-parameter problem, the geometry and the plasma density
were downscaled. The reduced simulation setup is described in the next section.



4.2. 2D PIC SIMULATIONS OF A MAGNETIC FILTER WITH ARGON 185

(a) (b)

0 10 20 30
 [eV]

106

107

108

109

1010

1011

nf
P
(

) [
cm

3 e
V

3/
2 ]

1 cm
4 cm
6 cm
7.5 cm
11.5 cm

Figure 4.4: (a) EEPF measured from the PIC simulation. The distribution function
is estimated by including the electrons at the given x position ±3mm. (b) Experi-
mental data collected by A. Aanesland and J. Bredin in 2012 [1].

0 2 4 6 8 10 12
x [cm]

0

5

10

15

20

25

30

35

El
ec

tro
n d

en
sit

y ×
10

16
 [m

3 ]

(a)

0 2 4 6 8 10 12
x [cm]

0

1

2

3

4

El
ec

tro
n t

em
pe

ra
tu

re
 [e

V]

(b)

y =
1.0 cm
2.0 cm
3.0 cm
4.0 cm
5.0 cm
6.0 cm
7.0 cm
8.0 cm
9.0 cm

Figure 4.5: (a) Electron density and (b) electron temperature profiles along the
x axis for different values of y. In (a), the dotted lines represent the ion density,
and the solid lines represent the electron density. The ion density profiles were
smoothed with a Gaussian filter (� = 4). The gray dotted line is the experimental
magnetic field [1] profile used in the simulation. The maximum of the magnetic
field is 24.5mT. The ion density profiles overlap the electron density profiles within
the noise, and the sheaths are extremely small.
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4.2.2 Simulation with Reduced Size and Plasma Density

General Parameters

For most of the simulations presented in this chapter, the general parameters are
those of Table 3.1 that were used for the simulation of the magnetized plasma col-
umn. The simulation domain is a 3 × 3 cm square domain with a cell size of 75 µm
and a time step of 33 ps. Pressures of 3, 6 and 12mTorr and magnetic field strengths
of 20, 40 and 80mT are investigated. The location of the maximummagnetic field is
always kept at the discharge center and ion magnetization is neglected. The heating
power density is also varied between 9.6 and 38.2 kW/m3. The influence of the heat-
ing electric field profile and the shape of the magnetic filter, and the role of dielectric
boundaries on the lower and upper ends of the discharge are also investigated. All
the varied parameters will be specified in each paragraph and figure. The simulation
converges to steady state in about 15 to 30 µs depending on the simulation condition
(mainly the pressure and the magnetic field). Three different values for the standard
deviation & of the Gaussian magnetic filter are tested: 0.2lx, 0.23lx, and 0.5lx, while
lx is always equal to 3 cm. Unless otherwise stated, the standard deviation for the
"reduced simulations" is 0.2lx. The analytical expression of the imposed magnetic
field is

Bz = B0 exp

[

1
2

(

x − lx∕2
&

)2
]

. (4.2)

First Simulation Results in Reduced Geometry

In Fig. 4.6, the maps of electron density and temperature are presented for a simula-
tion case at 3mTorr and a peakmagnetic field of 20mT.All thewalls are conducting,
and the heating electric field is localized in the first third of the discharge, near the
antenna, as depicted in Fig. 1.6(f). In Fig. 4.6, the maximum of plasma density is
shifted towards the top left corner of the simulation domain and instabilities arise in
the high magnetic field region. The electron temperature map presented in Fig. 4.6
shows a 2D dependency of the electron temperature. The electron temperature is
higher at the top left corner of the simulation domain where it reaches almost 7 eV
and tends to decrease as x increases or y decreases, down to less than 4 eV.

Many parameters were varied at the same time when shifting from the realistic
simulation to the reduced simulation case, such that quantitative comparison is not
relevant. A few comments can, however, be made:

• The 2D effects are more visible in the (converged) reduced simulation com-
pared with the realistic one. Measurements performed at LPP [20] showed
that the electron temperature mainly depends on the main x coordinate, while
most of the former theoretical and computational works have shown a signifi-
cant electron temperature gradient in the y direction. The two simulation cases
investigated in this work, in real conditions and reduced conditions were able
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Figure 4.6: (a) Plasma density and (b) electron temperature maps at 3mTorr along
the x axis for different values of y. The gray dotted line is the Gaussian magnetic
field profile used in the simulation. The maximum magnetic field is 20mT here, the
mean heating power density is 9.6 kW/m3, and the heating electric field is localized
in the first third of the discharge.

to capture both trends. The difference may come from the different Knudsen
numbers, as will be shown later.

• The profile of plasma density is more peaked on the LHS of the discharge in
the real case.

• The electron temperature features a plateau in the downstream region in re-
duced conditions while it seems to decrease linearly with x in the more real-
istic simulation conditions.

4.2.3 Comparison with Previous Fluid Simulations

We propose here some qualitative comparison with a 2D quasineutral fluid code
developed by R. Futtersack at LAPLACE and published in his thesis [62]. The
injected power used in the fluid simulation is 217 kW/m3, and the gas pressure is
1mTorr. This simulation parameters are quite close to the realistic simulation case
presented above but with a gas pressure that is 10 times lower. Themaximumplasma
density is about 1017m−3 in the fluid simulation. The results obtained with the
LPPic code in the reduced simulation case and with the fluid simulation are shown
in Fig. 4.7(a) and (b). On a short time-scale, the electron current streamlines are very
much impacted by the growth of instabilities as will be shown in Section 4.2.4. Thus,
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Figure 4.7: (a) Electron current measured in the PIC simulation with a maximum
magnetic field of 20mT at 3mTorr. (b) 2D fluid simulation results by R. Futtersack
[62].

the electron current densities shown in Fig. 4.7 are averaged over 4 µs. The current
streamlines found by other authors for hydrogen negative ion source modeling were
found again with argon. 1

The characteristic of these time-averaged current maps is a very distinct elec-
tron fluid stream that flows from the top left corner of the discharge to the bottom
left corner and then upwards through the high magnetic field region. In Fig. 4.7(b),
the high current region in the LHS of the discharge is not as well resolved as in the
PIC simulation probably because the fluid model [62] is limited to the quasineutral
region. The characteristic "v" shape that can be seen in Fig. 4.7 produces closed
streamlines. A symmetric picture was observed when inverting the sign of the mag-
netic field. On a shorter time scale, many small scale structures appear that reveal
the unstable discharge behavior.

1 The color scale is not very clear in Fig. 4.7(b) [62] and indicates that the electron current reaches
104 A/m2 at the bottom left corner of the simulation domain. The plasma density in this region is lower
than 1017m3, which suggests that the electron fluid velocity is about half of the thermal velocity, which
might be overestimated.
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4.2.4 Instabilities in a Magnetic Filter

In the high magnetic field region of a magnetic filter, the density gradients may
produce a resistive drift instability in the same way as in the magnetized plasma
column. In the 2D simulation, the magnetic field has no gradient along the field
lines, and the field lines are not curved either. Therefore, the classical ∇B and
curvature drifts [9] do not need to be taken into account. The derivation of the
unstable modes with a non-uniform magnetic field in the inhomogeneous plasma
framework is not provided here. The derivation made in the Padé approximation in
Section 3.2.3 should be done again with temperature gradients and a variation of
Bz along x. The same normalization cannot be used anymore as !ce and vT e vary
and the dispersion relation is expected to be significantly different. Furthermore,
capturing the electron temperature response to the perturbed electric field requires
to account for the electron energy equation. A similar derivation was made in an
article by Frias et al. (2012) [58] on Hall thrusters. The instabilities considered in
this work do not require collisions to grow. A more general derivation relevant to
the problem of the PEGASES thruster would include collisions.

In this paragraph, we provide some qualitative descriptions of the instabilities
observed in the reduced simulation case. We chose to focus here on the 12mTorr
case at 9.6 kW/m3 of mean absorbed power density. The amplitude of the heating
electric field decays linearly in the first third of the discharge.

As opposed to the mean quantities shown in the previous paragraph, Fig. 4.8
displays snapshots (averaged quantities over only 132 ns) of the electron density and
the electron current. Instabilities of several different lengths are visible both in the
density and the current snapshots. The geometrical distribution of these instabilities,
their wavelengths and their propagation direction vary strongly when the magnetic
field is changed. In the high-density region, a quite well-resolved wave with a 2-
3mmwavelength propagates in the x direction from the downstream region towards
the upstream region. The wavelength seems to slightly decrease with the magnetic
field. The phase velocity is of the same order of magnitude as the Bohm speed and
seems to slightly decrease with the magnetic field. These waves are best resolved at
40mT, in which case the frequency is estimated to be 1.34MHz, and the wavelength
2.34mm, which yields a phase velocity of 3.14 km/s. In order to better visualize
these waves, the x profiles of the electron density near the maximum y = 1.75 cm
are given in Fig. 4.9 at various times. The profiles are given in the form of a color
plot that allows to quickly estimate the phase velocity and the direction of the wave
propagation (−ex). The phase velocity is of the order of the ion acoustic speed. This
axial backward propagating mode also affects the electron current maps.

At higher magnetic fields, the electron current that flows near the sheath in the
upstream region becomes much higher, and a larger fraction of the electron fluid
stream circulates inside the upstream region without crossing the filter. This may
not be in favor of better confinement as the maximum electron density found in the
upstream region at 80mT is only about 10% higher than at 20mT. This can partially
be interpreted by the de-confining effect of the instability and also by the structure of
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Figure 4.8: (a,c,e) Plasma density and (b,d,f) electron current maps at the end of the
simulation (t > 16 µs) for an argon discharge at 12mTorr, and for multiple values of the
magnetic field: 1st row 20mT, 2nd row 40mT, 3rd row 80mT. The gray dotted lines represent
the Gaussian magnetic field and the heating electric field profiles used in the simulation. The
mean absorbed power density is set to 9.6 kW/m3. In the electron density maps (a,c,e), the
color scale is saturated between 5 × 1015 and 1.6 × 1016m−3.
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Figure 4.9: Temporal maps of the electron density at 20mT (a), 40mT (b) and
80mT (c) for a gas pressure of 12mTorr. The density is evaluated at different times
and locations x for y = 1.75 cm (corresponding approximately to the density maxi-
mum along y). The mean absorbed power density is set to 9.6 kW/m3 and the mag-
netic field and electric field amplitude profiles are the same as in Fig. 4.8.
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Figure 4.10: (a) Plasma density and (b) electron current maps at 12mTorr for a
maximum magnetic field of 40mT. The gray dotted line is the Gaussian magnetic
field profile used in the simulation; the standard deviation of the magnetic filter is
& = 0.5lx. The mean absorbed power density is 9.6 kW/m3, and the heating electric
field is localized in the first third of the discharge. Comparison with Fig. 4.8(c) and
(d) is useful.

the electron stream lines. At 80mT, the electron current in the downstream region
features quite chaotic structures. An analysis of the turbulence may be of interest
but is far beyond the scope of the present work. At higher magnetic fields, another
distinct mode appears that propagates in the −ey direction. This mode is visible in
Fig. 4.8(e) and has a wavelength of the order of 1mm and about the same velocity
as the other mode.

The maps of electron density and electron currents are also provided in Fig. 4.10
in the case of a broader magnetic filter, with a standard deviation of 0.5lx, instead
of 0.2lx as was the case for the simulations presented in Figs. 4.8 and 4.9. All the
other parameters remain the same as in Fig. 4.8 (B = 40mT). The drift wave that
propagates along −ex has completely disappeared and instead, an instability pattern
that looks very similar to the resistive drift instability found in the simulations of the
magnetized plasma column (Chapter 3) grows. This instability propagates mainly
in the+ey direction but also seems to feature a rotational motion that is discontinued
by the sheath. Therefore, the spatial variation of the magnetic field seems to play a
major role in the types of instabilities that develop in a magnetic filter, and hence on
the transport characteristics.
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4.3 Identifying the Main Drivers of a Magnetic Filter

4.3.1 Intensity and Localization of the Heating Source

Heating Localization without Magnetic Fields

Before investigating the role of localized heating in a proper magnetic filter, it is
important to sense these effects in the non-magnetized case. We have plotted the
PIC simulation results for a square discharge of 3 cm with various configurations
for the heating electric field in Fig. 4.11. In every case, the mean heating power
density is 9.6 kW/m3. In other words, the integrated power absorbed by the plasma
remains the same. Configuration (A) corresponds to the case of a uniform heating
electric field, as illustrated by Fig. 1.6(a). The electron density and temperature
profiles are perfectly symmetrical in this case, at pressures of 3, 6 and 12mTorr.
The case where the amplitude of the heating electric field decreases linearly from
x = 0 to x = lx is represented by the label (B) and corresponds to Fig. 1.6(b). In this
case, the density profile is slightly shifted to the left and the electron temperature
increases by about 10% inside the discharge. In case (C) (Fig. 1.6(c)), the heating
is localized in the first third of the discharge. The plasma density profile is again
more shifted to the left and the electron temperature increases from the center to the
wall, before decreasing again in the sheath. The maxima of the electron temperature
in the pre-sheath region, at x ≈ 0.5 and 2.5 cm here, is more visible at lower gas
pressure.

The heating geometry has a significant influence on the mean electron energy,
both locally and in average, and the coil configuration can induce discrepancies of
about 10% for the same total power absorbed by the plasma. However, the plasma
density profile remains quite robust. The maximum plasma density has relative
variations of only about 3%. At 12mTorr, the profile leans towards the side where
the heating is higher. At 6mTorr and 12mTorr, the profile is also distorted but the
trend is not so clear.

These observations consolidate the results of Chapter 2 as we confirmed that
the power deposition process and localization do not play a major role in a non-
magnetized plasma at low pressure.
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Figure 4.11: Mean electron density (a) and temperature (b) profiles at y = ly∕2
for non-magnetized argon discharges for 3, 6 and 12mTorr of gas pressure. Three
different heating configurations are tested: (A) Uniform heating electric field
(Fig. 1.6(a)). (B) corresponds to a linearly decreasing heating electric field with
� = 1 (Fig. 1.6(b)), and (C) corresponds to heating localized only in the first third
of the discharge (Fig. 1.6(c)).

Heating Localization with Magnetic Fields

The picture becomes quite different when a magnetic filter is added. Two runs at
3mTorr of gas pressure and with a Gaussian magnetic field profile reaching 20mT
at the discharge center (x = lx∕2) were performed. In the first simulation, the
heating electric field decreases in a linear fashion with x from 0 to lx (case (B),
Fig. 1.6(e)), and in the second one, it is localized in the first third of the discharge
(case C, Fig. 1.6(f)). Fig. 4.12 shows the electron and ion density profiles (a), and
the electron temperature (b), as a function of x evaluated at the discharge center
(y = ly∕2). The mean power density remains equal to 9.6 kW/m3 in both cases.

When the heating electric field is more localized (in green in Fig. 4.12), the max-
imum of the plasma density is shifted towards the left with a lower maximum plasma
density. This gives a hint that the losses are larger when the heating is more localized
close to the heating RF coil, which can be interpreted by the fact that more electrons
are produced (by electron impact ionization) closer to the wall. The electron tem-
perature features a sharper maximum close to x = 0 when the heating is localized.
Indeed, the electron temperature needs to rise to balance wall losses by ionization.
When the heating is more localized, the electron temperature reaches a minimum at
the location corresponding to the maximum of the magnetic field and then remains
approximately constant in the downstream region. When the heating electric field
is spread over the whole discharge, the electron temperature decreases less in the
upstream region but then keeps decreasing in the downstream of the magnetic fil-
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Figure 4.12: Electron density (a) and electron temperature (b) profiles at y = ly∕2
for magnetic filter configurations at 3mTorr of gas pressure. Two different heating
configurations are tested: linear decrease of the heating electric field from 0 to lx (in
blue (B), see Fig. 1.6(b)), and linear decrease localized between x = 0 and x = lx∕3
(in green (G), see Fig. 1.6(c)). The Gaussian magnetic field profile is indicated with
the gray dotted lines with a maximum of 20mT. The mean absorbed power density
is 9.6 kW/m3.

ter. The localized heating configuration corresponds well to the observations made
by J. Bredin in his experimental works [20]. The way the heating region overlaps
with the magnetic filter itself can have a large influence over the plasma properties.
However, in a simple model where the heating region is mainly decoupled from the
magnetic filter region, the qualitative agreement with the experimental results seems
reasonable. Interestingly, the electron temperature in the downstream region does
not seem to depend on the heating power deposition, as shown by the very good
similarity of the electron temperature profiles in both situations when y > 2.5 cm.

Influence of the Mean Absorbed Power Density

In general, in LTP, the power absorbed drives the plasma density. According to
global models, when the following two conditions are fulfilled, the absorbed power
should not affect the electron temperature:

1. The plasma is weakly ionized such that the effect of ionization processes on
the population of neutrals can be neglected;

2. The plasma density (and hence the power) is high enough such that the sheath
size is much smaller than the system size;

3. No non-linear processes, such as recombination, occur.
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Both conditions are satisfied in the PIC simulation.2 We could verify that this gen-
eral picture is valid for the magnetic filter configuration.

In Fig. 4.13, the plasma density and the electron temperature are represented
for a magnetic filter configuration where the heating electric field decays from 0
to lx (Fig. 1.6(e)) with a slightly broader magnetic field compared to the previous
configuration. The standard deviation for the magnetic filter is here & = 0.23lx.
The electron temperature curves at 19.1 and 38.2 kW/m3 of mean absorbed power
density displayed in Fig. 4.13(b) almost overlap. In Fig. 4.13(a), both electron and
ion densities are represented, in solid and dotted line respectively. As observed
previously, the quasineutral approximation seems reasonable for both values of the
absorbed power, such that the assumption of small plasma sheath is satisfied even
at relatively low power density. The curve of the high power electron density pro-
file divided by 38.2∕19.1 = 2 (thick light blue line) almost overlaps the density
profile found at low power. Therefore, the local plasma density scales linearly with
the heating power. The observations that the electron temperature is not affected by
the power and that the plasma density scales linearly with the absorbed power is in
agreement with typical weakly ionized LTP models [100].

The injected power increases ionization and hence, the plasma density. In turn,
the plasma density should affect the characteristics of the instability and thus the
instability-enhanced transport. This could affect the shape of the plasma density
profile. However, we have seen here that the power absorbed does not affect the
density profile (it is just scaled with the mean power). Therefore, the mean injected
power has only a minor influence on the quasineutral plasma transport. The main
drivers for the instability onset are rather the magnetic field, the gas pressure, and
the power localization.

2Condition 1 is always an assumption of the PIC model where neutral depletion is neglected.
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Figure 4.13: (a) Plasma density and (b) electron temperature profiles at y =
ly∕2 = 1.5 cm. The two runs are performed at 6mTorr and 19.1 kW/m3 (blue)
and 38.2 kW/m3 (green). The Gaussian magnetic field profile is indicated in gray
dotted lines, and the maximum value is 20mT. In (a), the dotted lines represent the
ion density, and the solid lines represent the electron density, and the thick cyan line
is the high power electron density curve divided by 2. The heating electric field
decreases linearly with x from 0 to lx. The plasma density data are averaged over
more than 5 µs at steady state.
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4.3.2 Influence of Dielectric Boundaries

The modeling of a dielectric boundary was made possible by the work of A. Tavant
at LPP in 2016 and 2017. The method has been partially explained in V. Croes’
PhD thesis [41] and has been used for a journal article of the group on alternative
propellants in HT [44]. The algorithm will be described in more details in A. Ta-
vant’s PhD thesis which will be released in early 2020. The algorithm will not be
explained here and only the physical principle will be given.

This model aims to represent a dielectric layer with a finite relative permittivity,
which allows for a more realistic physical modeling than infinite permittivity models
that impose Neumann boundary conditions instead of Dirichlet boundary conditions
at the wall. When electrons and ions are collected at a plasma wall boundary, they
build up a surface charge that can be spread in one cell to yield an equivalent volume
charge density. This charge density is added into the RHS of Poisson’s equation.
The domain for the Poisson’s equation is then composed of the discharge volume
and the physical dielectric layer that is 1mm thick. At the end of the dielectric
layer, we assume that a grounded metallic surface is present such that the boundary
conditions are simple Dirichlet boundary conditions with a 0V boundary potential.
The charge density is composed of the plasma space charge in the discharge volume,
and the wall charge at the plasma dielectric interface. The relative permittivity of
the dielectric material is set to �r = 5. The Poisson’s equation is then solved for the
whole domain at each time step. Fig. 4.14 illustrates the simulation setup.

The general aspect of the plasma at the discharge center y = ly∕2 is visible in
Fig. 4.15. The plasma density and the electron temperature in the bulk are generally
not affected by the dielectric, as stressed out in Fig. 4.15(a) and (b). The plasma
potential is however shifted by 2.8V everywhere in the plasma bulk Fig. 4.15(c).
Similar features were observed experimentally on PEGASES [89]. The difference
between the plasma potential with and without a dielectric can be interpreted by a
difference in collected currents on the RHS electrode. The collected currents on all
the discharge boundaries for the two cases are presented in Fig. 4.16. The ion current

Figure 4.14: Sketch of the simulation setup with dielectric coatings at y = 0 and
y = ly. The gray area represents the dielectric region.
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always follows approximately the shape of the plasma density at the center of the
discharge and is not affected by the dielectric. On the dielectric surface, the electron
flux is locally equal to the ion flux, which means that the current is ambipolar in the
direction perpendicular to the wall. With conducting walls everywhere, the electron
current at the top and bottom surfaces (y = 0 and y = ly) are slightly lower than
the ion current on average. When a dielectric layer is added, the electron current
increases at the top and bottom surfaces because of the ambipolar condition, such
that the electron current decreases on the left and right surfaces. The decrease of
electron current in these poorly magnetized regions where the electrons are almost
Boltzmann is related to an increase of the sheath potential, and thus the plasma po-
tential as a whole. The potential difference between both cases (≈ 2.8 eV) is almost
equal to the downstream electron temperature. In the following paragraphs, we will
compare a simulation case with dielectric layers on surfaces at y = 0 and y = ly and
metallic walls on the other electrodes, with a case where all the walls are metallic.

In Fig. 4.17(a), the wall potential is plotted as a function of x at the top and
bottom boundaries of the simulation domain. When comparing these curves with
the collected currents shown in Fig. 4.16, it appears that the local wall potential
adjusts to balance the difference between electron and ion currents found when the
walls are conducting. However, the electrons do not follow a Boltzmann relation in
the filter, and the local electron flux cannot be predicted from the wall potential and
the plasma potential only.

Moreover, the presence of dielectric boundaries does affect the sheath proper-
ties, and in particular, the electron E × B drift in the sheath that was observed and
described by several authors [17, 86]. These currents do not seem to play a very large
role in the electron transport across the filter. Otherwise the electron temperature
and plasma density profiles would have changed significantly in Fig. 4.15(a) and (b).

In summary, (i) we could confirm that local ambipolarity was retrieved in the
case of dielectric walls ; (ii) we found that the ion current was not affected by the con-
ductive nature of the boundary ; and (iii) that while the electron density and temper-
ature remain almost unchanged, the plasma potential rises by about the downstream
electron temperature when a dielectric is added. The latter observation is impor-
tant for ion acceleration through the grid of a GIT, as higher kinetic energy can be
reached without changing the grid polarization.
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Figure 4.15: Properties along the x axis of a magnetic filter with conducting walls
everywhere (blue lines), and with dielectric boundaries at the walls located at y = 0
and y = ly (green lines). The runs are performed at 6mTorr of gas pressure, with a
peak magnetic field of 20mT. The Gaussian magnetic field profile is indicated with
the gray dotted lines. (a) Electron and ion densities. (b) Electron temperature. (c)
Plasma potential. All the quantities are averaged over 5 µs.
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Figure 4.17: (a) Plasma potential averaged over the last 5 µs of the simulation at the
inner walls of the discharge at y = 0 (green) and y = ly (blue). (b) Sketch of the
simulation setup, including the dielectric layer.
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4.3.3 Effects of the Gas Pressure

As already shown experimentally [20], the electron temperature decreases signif-
icantly with pressure, both upstream and downstream. The simulation presented
here were run with a heating electric field localized in the first third of the discharge
only. In this case, we found a minimum of the electron temperature close to the
position of the maximum of the magnetic field, close to x = lx∕2. Among the vari-
ous heating conditions investigated, this heating configuration seems to better match
experimental results. Only conducting walls are studied in this paragraph.

As shown in Fig. 4.18(a), the plasma density increases when the gas pressure in-
creases everywhere in the discharge, the location of the density maximum remains
almost unchanged. In Fig. 4.18(c), we could observe that the upstream electron
temperature decreases with the pressure, similarly to the non magnetized ICP dis-
charge. The electron temperature decreases down to about 4 eV until the location
of the maximum of the magnetic field. The electron temperature at low pressure
remains higher, but the discrepancy has been reduced with respect to the upstream
region. Fig. 4.18(b) and (d) show the plasma density and electron temperature pro-
files in the y direction and emphasize the plasma asymmetry. The plasma density
profiles are approximately self-similar such that no real conclusion can be drawn
from Fig. 4.18(b). On the contrary, Fig. 4.18(d) shows that the electron temperature
has a much stronger asymmetry at low pressure. This result may explain why some
theoretical and numerical studies found very strong plasma asymmetry [62, 86],
while experimental studies showed that the plasma was essentially 1D [89].
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Figure 4.18: (a,b) Plasma density and (c,d) electron temperature profiles at y =
ly∕2 = 1.5 (LHS column) and x = lx∕2 = 1.5 cm (RHS column) for a magnetic
filter at 3mTorr (blue), 6mTorr (green), and 12mTorr (red) of gas pressure. The
heating power is 9.6 kW/m3 and the heating electric field decreases linearly with
x from 0 to lx∕3. The Gaussian magnetic field profile is indicated in gray dotted
lines and the maximum value is 20mT. In (a), the dotted lines represent the ion
density and the solid lines represent the electron density. Both the density and the
temperature data are averaged over more than 4 µs.
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4.3.4 Magnetic Field Characteristics

Effects of the Magnetic Field Strength

The value of the maximum magnetic field affects mainly the downstream electron
temperature but almost does not change the upstream electron temperature. In the
simulations presented in this section, the magnetic field at the coil location (x = 0)
is 5% of the peak magnetic field. At 80mT in the center, the magnetic field is
4mT near the coil, which already has a significant influence on plasma transport. In
Fig. 4.19 we can see that the value of the peak magnetic field has a minor influence
on the upstream plasma properties. The value of the magnetic field seems to drive
the slope of the decreasing electron temperature, such that the higher the magnetic
field, the lower the downstream electron temperature. The saturation of the electron
temperature at a minimum value near the location of the maximum magnetic field
is generally observed. However, at 80mT, the shape of the electron temperature
profile is slightly more complicated. The plasma is very unstable in this case, which
may explain why the magnetic confinement is destroyed and why the electron tem-
perature does not decrease as much as could be expected from the analysis of the
electron temperature profiles at 20 and 40mT.

In Fig. 4.19(a), the plasma density is not much enhanced by an increase of the
magnetic field because the ionization mainly occurs in the upstream region where
the magnetic field is very weak anyway. The peak of the electron density slightly
increases and is shifted closer to the RF coil (to the LHS) when the magnetic field
increases.

Width of the Magnetic Filter

When the magnetic filter region is broader, it may overlap more with the ionization
region. In this case, we have already seen in Section 4.3.1 that was more focused
on the heating localization, that the minimum of the electron temperature is not pre-
cisely reached at the position of the maximummagnetic field. Two different runs are
investigated in this paragraph for a power absorbed by the plasma of 9.6 kW/m3 and
12mTorr of gas pressure. The magnetic field peaks at 40mT when x = lx∕2. The
"narrow" magnetic filter simulation is the same as the one presented in the previous
paragraph at 40mT. In that case, the standard deviation of the Gaussian magnetic
filter is 0.2lx. In the "broad" magnetic filter configuration, all the parameters remain
unchanged except the standard deviation of the Gaussian magnetic filter that is in-
creased to 0.5lx. The plasma density and electron temperature profiles are displayed
in Fig. 4.20. The confinement is much better in the upstream region, such that the
maximum plasma density in the upstream region is enhanced by about 60%. The
location of the maximum plasma density is also shifted towards left and becomes
closer to the planar coil. The upstream temperature does not change much, which
confirms the fact that the upstream electron temperature is mainly driven by the
gas pressure. However, the filtering effect seems significantly more efficient when
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Figure 4.19: (a) Plasma density and (b) electron temperature profiles at y = ly∕2 =
1.5 cm for a magnetic filter at 12mTorr. The heating power is 9.6 kW/m3, and the
heating electric field decreases linearly with x from 0 to lx∕3. The Gaussian mag-
netic field profile is indicated in gray dotted lines, and the maximum value varies
between 20 and 80mT. In (a), the dotted lines represent the ion density, and the solid
lines represent the electron density. Both the density and the temperature data are
averaged over more than 4 µs.

the width of the magnetic filter is increased. The downstream electron tempera-
ture drops from 2.9 eV with a narrow magnetic filter, down to 2.37 eV with a broad
magnetic filter. This observation may partially explain why the downstream elec-
tron temperatures found in the simulations were always higher than the experimental
values that can be as low as 1 eV [20].
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Figure 4.20: (a) Plasma density and (b) electron temperature profiles at y = ly∕2 =
1.5 cm for a magnetic filter at 12mTorr. The heating power is 9.6 kW/m3, and the
heating electric field decreases linearly with x from 0 to lx∕3. The magnetic fil-
ters are modeled by Gaussian functions with a standard deviation of 0.2lx (blue)
and 0.5lx (green), and the maximum magnetic field is 40mT in both cases. In (a),
the dotted lines represent the ion density, and the solid lines represent the electron
density. Both the density and the temperature data are averaged over 7 µs.

4.4 One-dimensional Fluid Model of a Magnetic Filter

Previous fluid models of a magnetic filter [87, 73, 62] were quite successful in de-
scribing the main trends of a magnetic filter. However, there are still strong incen-
tives to develop new fluid models of a magnetic filter

1. No systematic experimental validation was performed.
2. The instability-enhanced transport was notmodeled correctly in previous fluid

simulations.
Here, we propose a 1D model of a magnetic filter that is compared with PIC simu-
lation and the ultimate aim of this code, which is slightly beyond the scope of the
present work, is to bridge the PIC simulation data with experiments using a rela-
tively simple fluid simulation tool. Similarly to global models in the case of non-
magnetized discharges, this fluid model could help quick surveys and experimental
design of magnetic filters.
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4.4.1 Model Assumptions

The model is inspired both from global models of GIT using an ICP source, such
as in the work of Chabert et al. [30], and 1D fluid models used for HT modeling,
such as in Martorelli et al. [110]. The simulated direction is x and the magnetic
field is along z. Energy and particle losses in the directions that are not simulated
are represented with an ℎ factor ℎ(x) that may depend on the local temperature and
magnetic field. We consider an argon plasma with a power density source term w
that is given as model input. The model assumptions are generally the same as in
the isothermal models derived in Chapter 2:

• The plasma has only one, singly charged ion species, typically Ar+.
• The neutral gas has uniform density and temperature. Gas heating and neu-

tral depletion are neglected, such that the model applies for weakly ionized
plasmas. The gas temperature is 300K.

• The ionization frequency is smaller than the electron-neutral and the ion-
neutral elastic collision frequencies.

• The ions are in thermal equilibrium with the gas, so their temperature is also
fixed to 300K.

• The plasma is quasineutral ni = ne = n.
• No current is drawn through the discharge such that the continuity equation

implies that vix = vex = v.
• The parameters of the model are the local plasma density n(x), the local

plasma velocity v(x) and the local electron temperature T e(x).
• Electron heat flux is neglected in the electron energy conservation equation.
• The ions are not magnetized but the electrons are.
• The plasma velocity in the quasineutral domain should remain lower than

the Bohm speed, which is much smaller than the electron thermal velocity.
Electron inertia and gyroviscosity are hence neglected.
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4.4.2 Model Equations

For each value of x, the fluid equations are integrated in the (yz) plane. The particle
losses perpendicularly to the x axis are accounted for using a 2D ℎ factor.

The particle balance equation derived from Eq. (1.53) is
)tn + )x(nv) = n�iz −

ℎuBn
S

(4.3)
where  is the contour of the CS at x = cst and S is the CS surface area. The
projections of the momentum conservation equations along the x axis are

0 = −
kB)x(nT e)

n
+ e)x� − mev

(

!ce2

�e
+ �e

)

(4.4)
for the electrons and

mi)tv + miv)xv = −
kB)x(nT i)

n
− e)x� − mi�iv (4.5)

for the ions, where the ion temperature is assumed constant in time and space, and
the electron inertia is neglected. Summing up Eqs. (4.4) and (4.5),

mi)tv + miv)xv = −
kB)x[n(T e + T i)]

n
−
[

mi�i + me

(

!ce2

�e
+ �e

)]

v (4.6)
As electron temperature gradients are inherent to the functioning of a magnetic

filter, the electron energy equation has now to be taken into account. Neglecting the
electron heat flux, the electron internal energy equation is [110, 9]:
3
2
)t(nkBT e)+

3
2
∇⋅(nT eve)+nkBT e∇⋅ve = men�eve2−n�izeiz
i−3�kB(T e−Tg)n�e

(4.7)
where

iz
i = iz +
∑

Kexex∕Kiz (4.8)
is the mean energy lost per electron created. The summation is performed over
all the excitation levels included in the model. The previous expressions for the
volume energy losses come from global models of gas discharges [100, 31] and can
be retrieved from kinetic theory. Eq. (4.7) becomes in 1D
3
2
)t(nkBT e) +

3
2
)x(nkBT ev) + nkBT e)xv = w + nme

(

�e +
!ce2

�e

)

v2 − n�izeiz
i

− 3�kB(T e − Tg)n�e −
ℎuBnew

S (4.9)
wherew is the volume density of power absorbed by the plasma. The heating source
comes from an RF induced electric field in the y and z directions and writes

w =
ne2E2max
2me�e

. (4.10)
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where Emax is the amplitude of the heating electric field. In Eq. (4.9), w is the
mean energy carried by each electron lost at the wall. Typically, w is proportional
to the electron temperature.

ew = �kBT e (4.11)

The total power absorbed by the plasma is

 = S

lx

∫
0

wdx (4.12)

We introduce the normalized quantities

N = n∕n ref
T = T e∕T  ref

V = v∕v ref
� = �e∕� ref
�I = �i∕� ref
�IZ = �iz∕� ref
!CE = !ce∕� ref
W = w∕w ref

X = x∕l ref
� = t� ref

LX = lx∕l ref (4.13)

where the reference quantities are

l ref = S∕

w ref = �eeiz
(
S

)3

n ref =
S

v refeiz
T  ref = eiz∕kB

v ref =
(

eiz
mi

)1∕2

� ref =

S

(

eiz
mi

)1∕2

(4.14)
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The set of normalized equations to be solved is (Eqs. (4.3), (4.6) and (4.9))
)�N + )X(NV ) = N�IZ − ℎNT 1∕2 (4.15)
)�V + V )XV = −)XT − (T + TI )

)XN
N

−
[

�I + �
(

!CE2

�
+ �

)]

V (4.16)
3
2
)�(NT ) +

3
2
)X(NV T ) +NT)XV = W + �N

(

� +
!CE2

�

)

v2

−N�IZ
i − 3�(T − Tg)�N − ℎT 3∕2N� (4.17)
The unknown variable vector of this system of equations is

U =
⎛

⎜

⎜

⎝

N
V
T

⎞

⎟

⎟

⎠

(4.18)

and the system takes the matrix form
)�U + A)XU = B (4.19)

where

A =

⎛

⎜

⎜

⎜

⎝

V N 0
T+TI
N

V 1
0 2

3T V

⎞

⎟

⎟
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⎠

(4.20)

and

B =

⎛

⎜

⎜

⎜

⎝

N�IZ − ℎNT 1∕2

−�IV − �
(

!CE2

�
+ �
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V
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1 − 2�
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ℎT 3∕2 − �IZ
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T + 2
3
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+ 2�V 2

3
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� + !CE2

�
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− 2�(T − Tg)�
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⎟
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⎠

(4.21)

4.4.3 Numerical Solution

Numerical Scheme

Eq. (4.19) is a Euler equation for our system. It has a steady state non-trivial solution
if and only if

det A ≠ 0 . (4.22)

det A = V
[

V 2 −
(5
3
T + TI

)]

(4.23)
If V = 0, any (N, T ) can be a solution, but this is not compatible with the Bohm
criterion

V = T 1∕2 (4.24)
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at the sheath edge. If we assume that the velocity is much smaller than the Bohm
speed in the discharge center, Eq. (4.22) becomes

|V | <
(5
3
T + TI

)1∕2
= Vc (4.25)

which is an alternative to the usual Bohm criterion that resembles the sheath cri-
terion found for polytropic electrons and with a correction coming from the ion
temperature. The polytropic coefficient would be here 5∕3, which is consistent with
the adiabatic hypothesis (no heat flux).

The system is solved using the Steger-warming scheme [98] that requires to
compute the eigen-values and the eigen-vectors of the A matrix. The eigen-values
are

V , V − Vc < 0 , and V + Vc > 0 , (4.26)
and the corresponding eigen-vectors are the columns of the matrix

R =

⎛

⎜

⎜

⎜

⎝

− N
T+TI

3
2
N
T

3
2
N
T

0 −32
Vc
T

3
2
Vc
T

1 1 1

⎞

⎟

⎟

⎟

⎠

(4.27)

such that
R−1AR =

⎛

⎜

⎜

⎝

V 0 0
0 V − Vc 0
0 0 V + Vc

⎞

⎟

⎟

⎠

(4.28)

Let

Λ+ =
⎛

⎜

⎜

⎝

(V )V 0 0
0 0 0
0 0 V + Vc

⎞

⎟

⎟

⎠

and Λ− =
⎛

⎜

⎜

⎝

(−V )V 0 0
0 V − Vc 0
0 0 0

⎞

⎟

⎟

⎠

(4.29)

be the diagonal matrices containing the positive and negative eigen-values of A,
respectively, where  is the Heaviside function.

A = A+ + A− (4.30)
where

A+ = RΛ+R−1 and A− = RΛ−R−1 (4.31)
Splitting the A matrix between A+ and A−

ΔxA)XU ≈ A+i−1∕2(Ui − Ui−1) + A
−
i+1∕2(Ui+1 − Ui) (4.32)

allows using upwind numerical schemes for both terms. The temporal Eq. (4.19) can
be integrated explicitly using the 4th order Runge-Kutta solver odeint of the scipy
Python package. In Eq. (4.32),A+i−1∕2 = (A+i−1+A+i )∕2 andA−i+1∕2 = (A−i+1+A−i )∕2,where i is the cell index.

The numerical scheme is of the first order in Δx. The vector splitting method
ensures that the numerical scheme is conservative and stable.
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Source Terms B

All the source and loss terms are contained in the B vector. The reaction rates for
electron-neutral reactions were computed using the fits given in Fig. 1.4(a) [100].
Only one effective excitation reaction is taken into account. The rates allow in par-
ticular to compute the 
i factor. For simplicity, an ℎ factor corresponding a non-
magnetized plasma was used. If the three directions are taken into account, then
the losses are expected to be mainly in the z direction, which is the direction of the
magnetic field, and a non-magnetized ℎ factor can be used in this direction, for ex-
ample Eq. (2.130). In order, to allow for comparison with the PIC simulation, the
z direction has to be infinite, such that the particles are lost along the y direction
only. Since the y direction is perpendicular to the magnetic field, a magnetized ℎ
factor has to be used. In the fluid simulation results presented below, Eq. (3.159) is
employed, either with a classical electron collision frequency, or with an effective
collision frequency that accounts for the role of the instability using Eq. (3.158).
Ion collisions are computed using a constant and single momentum transfer colli-
sion frequency �I = 1.0 × 10−18m2 and the mean ion velocity is computed using
Eq. (2.25). It is often assumed that the mean energy lost per ion collected at the wall
is such that [100]

� = 2 + 1
2
ln
(

1
2��

)

≈ 6.68 for argon. (4.33)

This expression comes from the integration of the heat flux over aMaxwellian distri-
bution function for particles whose kinetic energy towards the wall in volts is higher
than the plasma potential. Since the heat flux is neglected in the model, assuming
� = 0 seems reasonable. A much better agreement with the PIC simulation was
found when taking � = 0. When � is taken equal to 6.68, the electron temperature
drops to almost 0 in the downstream region.

The source termW controls the power density injected in the plasma. To enable
comparison with PIC simulation, it is assumed that the amplitude of the heating
electric field decreases linearly with x from 0 to lx∕3 in Eq. (4.10).

Boundary Conditions and Initial Conditions

The only boundary condition that is used here is a Bohm criterion. We used a very
simple form of the Bohm sheath criterion |V | = T 1∕2 instead of the equality form of
Eq. (4.25) to avoid singularities near the edge of the domain. Of course, when |V | <
T 1∕2, inequality (4.25) is always fulfilled. Numerically, the boundary condition is
applied to the gradient of the velocity at the last cell and the first cell, such that the
Bohm equality is strictly valid at two ghost cells:

V−1 = −T 3∕2 and VN = T 3∕2 (4.34)
whereN is here the number of cells, indexed from 0 toN − 1.
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The simulation is started with a uniform normalized density equal to 0.1, a nor-
malized velocity increasing linearly from −1∕2 to 1∕2, and a uniform normalized
electron temperature equal to 0.63.

4.4.4 First Results

With N = 180 and a normalized time step equal to 0.02, the simulation converges
in about 25 000 iterations. The first results are shown in Fig. 4.21 for the density (a)
and the electron temperature (b) and compared with the PIC simulation results. The
total length of the magnetic filter is lx = 3 cm and the transverse direction is also
3 cm long. The direction of the magnetic field z is infinite. The Gaussian magnetic
filter is centered at x = lx∕2 with a maximum of 20mT and a standard deviation of
0.2lx. The gas pressure is set to 12mTorr.

In Fig. 4.21, the results are presented for two different models. The classical
model assumes a classical electron-neutral collision frequency while the instability-
enhanced model accounts for the effect of the instability on global transport with an
effective collision frequency given by Eqs. (3.149) and (3.156). The fluid model is
able to capture the drop in the electron temperature through the magnetic filter and
predicts an approximately constant electron temperature in the downstream region.
The value of the downstream electron temperature depends on the model taken for
the wall losses – i.e. the ℎ factor – and the type of collisionality – classical or
instability-enhanced. The present model provides the correct orders of magnitude
and the correct trends, but still has two main limitations:

1. The instability-enhanced collision frequency is taken from the study on the
magnetized plasma columnwhere themagnetic field and electron temperature
gradients were neglected. Moreover, the direction of the instability changes
with the magnetic field which is not accounted for in the present model;

2. Perhaps more importantly, the conductive heat flux Q is taken into account
neither in the x direction, nor in the plane perpendicular to the simulation
axis. We found that naive estimates of the radial heat flux as the ones used in
global models yielded non-consistent results (the electron temperature drops
to almost 0);

3. Finally, the 1D model does not allow one to account for the Hall effect, espe-
cially near the sheaths that develop in the (y, z) plane.

Some tests were also performed in the broader magnetic filter configuration for a
maximum magnetic field of 40mT. The predictions of the fluid model using classi-
cal and instability-enhanced transport theories are compared with the corresponding
PIC simulation. The classical collision model grossly overestimates the upstream
plasma density, while the yields a maximum plasma density only 10% higher than
the PIC simulation. The predicted electron temperature is also significantly closer to
the PIC simulation results when an instability-enhanced collision frequency is used.
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Figure 4.21: (a) Electron and ion densities and (b) electron temperature found by
PIC simulation (thick lines) and with the 1D fluid model (thin line). The Gaussian
magnetic field profile has a standard deviation & = 0.2lx, and the peak magnetic
field is 20mT. The gas pressure is 12mTorr.
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Figure 4.22: (a) Electron and ion densities and (b) electron temperature found by
PIC simulation (thick lines) and with the 1D fluid model (thin line). The Gaus-
sian magnetic field profile has a larger standard deviation & = 0.5lx, and the peak
magnetic field is 40mT. The gas pressure is 12mTorr.
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Figure 4.23: Mean electron heat fluxes found in the PIC simulations at 12mTorr, at
steady state. The absorbed power is 9.6 kW/m3 and the amplitude of heating electric
field decreases linearly with x from 0 to lx∕3. The arrows represent the streamlines.
(a) No magnetic field. (b) Broad magnetic filter (& = 0.5lx) with a maximum at
40mT.

Interestingly, the predicted plasma density is, in this case, closer to the PIC simula-
tion than in the previous case at 20mT with a narrower magnetic filter. This may be
due to the fact that the instability is very similar to the resistive drift instability from
which the instability enhanced collision frequency is derived, while in the narrow
20mT filter configuration, the instability has a different aspect (see Fig. 4.8).

Nevertheless, as already observed in Fig. 4.21 the predicted electron temperature
is lower than that found in the PIC simulation, and the location of the maximum
plasma density is more on the RHS. Again, this suggests that the heat flux should
be taken into account.

4.4.5 The Role of the Heat Flux

Heat Flux in the PIC Simulations

The heat flux was completely neglected in the previous paragraph. Fig. 4.23 shows
the heat flux streamlines in the LPPic simulations, with no magnetic field, and in
the broad magnetic filter configuration at 40mT of maximum magnetic field. The
heat flux should typically be compared to

nemevT e
3. (4.35)
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For an electron temperature of 3 eV and a plasma density of 1016m−3, this is 3 kW/m2

which is of the same order of magnitude as the typical values found in the PIC sim-
ulation. As a conclusion, the electron heat flux should not be neglected in fluid
models, even at relatively low collisionality. Some work is on-going at LPP to add
the heat flux in the 1D fluid simulation presented here. 3

3The reader can refer to the master thesis of B. Estèves to be expected by October 2019 for more
consistent estimates of the heat flux in the magnetic filter configuration.
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Summary

This chapter was dedicated to the 2D PIC and 1D fluid simulations of the
ionization and filtering stages of the PEGASES ion source operated with ar-
gon. A simulation in full geometry is performed and compared with former
experimental results. Some of the characteristics of the filter are retrieved.
The main characteristics of the PEGASES magnetic filter are retrieved: (i)
The electron temperature decreases from 4 eV in the upstream region to less
than 2 eV in the downstream region; (ii) the plasma is more localized in the
upstream region; (iii) the plasma has a weak asymmetry in the y direction;
and (iv) the EEDF is Maxwellian.

However, the downstream electron temperature found in the simulation is
higher than in the experiments and it does not reach a plateau. Most likely,
this is observed because the local heating power distribution, which is an
input of the PIC simulation, does not match the experimental conditions.
Furthermore, the simulation is very computationally expensive and is not
converged. Multiple simulations were performed with reduced geometry and
power to assess the influence of the control parameters on the performance of
the filter. The filter efficiency is characterized by the electron cooling between
the upstream and the downstream regions. Again, most of the trends found in
the experiments were also found in the PIC simulation. The electron temper-
ature gradient typically decreases with pressure and increases with the peak
magnetic field strength and the width of the magnetic filter. Adding dielec-
tric boundaries yields a higher plasma potential that may contribute to faster
ion acceleration downstream. In general, the electron cooling found with the
PIC simulation with reduced geometry and density is less pronounced than
in experimental conditions.

Quantitative agreement with the experimental data is mainly limited by
the uncertainty on the local power deposition. A 1D fluid model that was
derived and implemented with the goal of reproducing both the experiments
and the PIC simulation. Convergence is reached in about one minute using
the explicit Steger-Warming flux vector splitting scheme, and the main trends
of the plasma behavior through the filter are captured. The agreement with
the PIC simulation results is improved when an instability-enhanced collision
frequency is taken into account. Future work would involve a more thorough
study of the heat flux, and a coupling to the downstream acceleration stage.
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The PEGASES thruster is ultimately made to operate with electronegative gases
and not only with argon. Iodine has been identified in the past as a poten-
tial successor to xenon for space electric propulsion due to its high mass, and
low ionization potential. Additionally, iodine can be stored in solid state which
makes pressurized vessel unnecessary in iodine plasma thruster designs. Iodine
is a halogen whose mass is 126.905 amu. It can, however, deposit on satellite
surfaces, which can cause contamination. In this chapter, we first present a
comprehensive CS set for the modeling and simulation of an ICP. Results of a
global model, as well as PIC simulations of weakly ionized plasmas in 2D, are
then presented.
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Iodine is mostly available under the form of the I2 molecule. In the PEGASES
experiment carried out at LPP, the solid sample is heated up to approximately 70°C
in order to be sublimated. A molecular gas of I2 is injected in the discharge cham-
ber, close to the antenna. The pressure inside the discharge chamber is controlled
by a vacuum pump and measured by a gauge. More information on the experimen-
tal setup is available in the PhD thesis of the former students that worked on the
PEGASES thruster in the past years. In particular, the experimental device oper-
ated with iodine is described in details in P. Grondein’s PhD thesis (2016) [70]. P.
Grondein has carried out probe experiments inside the PEGASES device and devel-
oped a global model of the discharge without the magnetic filter. More reactions are
added to the model, and a minimal set of reactions was implemented in the LPPic
code, to allow for 2D PIC simulations of iodine ICPs.

5.1 Iodine for Electric Space Propulsion

Iodine has been contemplated for space electric propulsion since the end of the
1990s as a possible alternative to xenon. The advantage of electric space propul-
sion, in general, is to feature a very good mass consumption efficiency, with high
specific impulse designs. The mass of the full pressurized xenon tank on a typical
geostationary Earth Orbit (GEO) spacecraft represents about 0.1% of the cost of
the full system [160]. However, this may be significant for satellites that cost sev-
eral hundred million euros. Pressurized vessels may not be optimal for simpler and
more compact designs required for small satellites in low Earth orbit (LEO). Iodine
is stored in solid state, so the storage tank of iodine EP systems can be lighter and
does not need to be pressurized. This could be a great advantage for small satel-
lites where the pressurized tanks have higher mass to volume ratios. Moreover, the
xenon is quite expensive, and the supply is quite scarce, such that the price tends
to fluctuate in time. One of the first studies on the potential of iodine for EP was
performed by Dressler et al. [48]. In their study, the authors suggest that the per-
formances of GIT or HT operated with iodine may be as good as equivalent designs
with xenon. The authors propose a propellant handling system composed of a heat-
ing tank where iodine crystals are stored and vaporized, and a porous frit that filters
out crystal particles. The gas enters the discharge chamber through a heated pipe to
avoid deposition and a mass flow controller. The power consumption for the heat-
ing system is found to be negligible compared to the discharge power. Barnes and
Kushner [8] performed optical measurements on low-pressure discharges in a mix-
ture of xenon and iodine. More recently, Steinberger and Scime developed optical
diagnostics to measure the proportions of various species inside an iodine plasma
[144, 143].

At LPP, where the expertise on electronegative plasmas comes from the tech-
niques developed for plasma etching and deposition with gases such as CF4 / O2
mixtures [18], chlorine [47] or sulfur hexafluoride (SF6) [21, 22], the interest for



5.2. IODINE CS SET 221

iodine electric propulsion systems is not only economical. The ultimate aim is to
achieve new thruster designs where both positive and negative ions are extracted.
This could allow for cathode-less thruster designs, and mutual recombination in the
plume could generate a neutral beam that would be very focused (low plume an-
gle), and that would not be deflected towards the charged surfaces of the satellite.
The latter aspect is particularly important since surface reactivity is a potential is-
sue for plasma thrusters operated with iodine. The first concepts and prototypes are
described in details in G. Leray’s thesis [97], as well as in the work of L. Popelier
[119]. The extraction was investigated experimentally by Lafleur et al. [90, 95], and
the acceleration by Rafalskyi et al. [122]. In 2016, P. Grondein [71] developed a
global model of an iodine GIT. There was no magnetic field in the model, so the
electronegativity derived from the model was quite low. The performances were
comparable with those of the xenon model. Thanks to its affordable price and its
compatibility with high specific impulse GIT designs, iodine is suitable for high Δv
space missions, such as systematic space debris removal, for instance [107]. Future
EP systems will also have to be compatible with space debris collision avoidance
maneuvers [63, 106].

The extraction, the acceleration, and the plume recombination are not investi-
gated here. We focus on the extension of the previous simulation cases of an argon
plasma to the simulation of a realistic iodine discharge. The ultimate goal, that is
only partially achieved here, is to simulate the formation of negative ions in the high
magnetic field region of PEGASES. In the next sections, methods to simulate the
inner part of a GIT operated with iodine are described.

5.2 A Collision Cross Section Set for the Simulation of Io-
dine Plasmas
Some of the fundamental data are missing for iodine and we do not pretend to de-
scribe the complete chemistry of an iodine plasma. All the assumptions made to
gather the reaction set of Table 5.2 are made explicit in the text. Some of the as-
sumptions come from comparisons with chlorine plasmas, but all the data are taken
from the literature or dedicated computations made by Quantemol Ltd. The CSs
and the reaction rates are shown in Figs. 5.1 to 5.3. The reactions that were not
considered here are also presented in Table 5.3.

Compared to the global model developed by P. Grondein et al. [70], three new
reactions are added:

Electron impact dissociation of I+2 I+2 + e
− ←→ I+ + I + e− (5.1)

Electron detachment from I− I− + e− ←→ I + 2e− (5.2)
I2 − I+ charge exchange I2 + I+ ←→ I+2 + I (5.3)

The main interest of this work is the implementation in the LPPic code.
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I atom
Mass 126.905 amu [136]
Ionization potential 11.64 eV [75]
Relative polarizability 27.0 [120]

I2 molecule
Mass 253.81 amu [136]
Ionization potential 9.31 eV [75]
Inter-atomic bond 2.7128 × 10−10 m [75]
Relative polarizability 69.7 [109]

Table 5.1: Physical properties of iodine

5.2.1 Plasma Species

Iodine is very reactive and can form a variety of species depending on electron tem-
perature conditions. We follow here the work of P. Grondein [70] and we assume
that there are only six species in the plasma

I2, I, I+2 , I
+, I−, e−

In general, the gas is injected under the form of molecular iodine I2. The disso-
ciation energy of I2 is quite low (1.567 eV) such that I atoms will soon be present
in the plasma. Moreover, dissociative attachment does not have a very large CS
(< 2 × 10−21m2) but no threshold, so I− ions are also present in the mixture. Fi-
nally, electron impacts on I and I2 cause I+ and I+2 ions to form. All the processes
considered will be described in the next paragraph with more details.

We are aware that other species may appear in the plasma. Henri (1972) [79]
performed a study on mass spectrometers using electronegative plasmas, with rel-
evant experimental results on iodine. The presence of I+3 and I−3 ions was hence
detected. Spencer and Smith found I−2 ions as well [52]. Moreover, one can ex-
pect doubly-charged ions I2+ to form for high electron energies, as it is observed
in Hall thrusters operated with xenon. The energy needed to form I2+ from the I+
ion is 19.13 eV, which is slightly below the energy required to form Xe2+ from Xe+
(20.98 eV) [136]. However, I2+ ions were not particularly observed in HTs operated
with iodine [147]. In GITs, where the electron energy is lower, we do not expect
any doubly-charged ions to form.
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5.2.2 Electron-Neutral Reactions

Themechanisms that drive the balance of species in an iodine plasma aremuchmore
complex than in the case of a noble gas due to the species reactivity. The fundamen-
tal data are available on the NIST database [136] and the references therein. Iodine
is an electronegative gas, and Biondi and Fox showed that dissociative attachment

I2 + e− → I + I− (5.4)
was the main mechanism for electron losses in their experimental conditions [13].
They estimated the reaction CS in a microwave plasma afterglow at low electron
temperature [56, 14]. Positive ions I+ and I+2 are formed from I atoms and I2molecules
with ionization energies of 11.64 eV and 9.31 eV respectively [3]. Some of the CSs
for electron impact mechanisms were calculated by J. Hamilton [75] using the R-
matrix method developed by J. Tennyson [151, 152]. This is the case for dissociative
ionization

I2 + e− ←→ I + I+ + 2e−

that has a threshold energy of 10.75 eV, but the branching between electron impact
ionization and dissociative ionization of the I2 molecule was extrapolated from the
mass spectra of Cl2 and Br2. The results of the R-matrix method were in agreement
with experimental results [166] for elastic scattering of electrons on the I atom. The
excitation states of the I atom are potentially very numerous, but all the excitation
reactions are modeled with only one "superelastic" reaction, with a typical energy
loss lower than 1 eV (0.953 eV). No excitations states of I2 were found in the R-
matrix calculation, due to the fact that the dissociation energy of the I2 molecule is
quite low (1.567 eV). As shown in Chapter 1, this reduction does not have a large
influence on the EEDF. Finally, electron impact I2 dissociation has a quite large CS
(3.6 × 10−20m2 at 3.4 eV) and is generally as important as dissociative attachment
for the equilibrium between I2 and I.

5.2.3 Ion-Neutral Reactions

As for argon, the elastic collisions between ions and neutrals are split in two cat-
egories: isotropic scattering and backscattering. The fundamental data are sparse
for noble gases and almost non-existent for iodine. The isotropic scattering was
assumed to follow a Langevin capture CS, that can be computed from atomic and
molecular polarizability [100]. The data is found in the book by Radzig and Smirnov
[120] for I and in an article by Maroulis et al. for I2 [109]. The numerical values
are indicated in Table 5.1.

The resonant backscattering reaction between I and I+ should follow the formula
given by Sakabe et al. [130] (Eq. (1.28)), as it was done for krypton. The predic-
tion of the Sakabe formula was compared to computations performed by Dressler
et al. [48] based on a linear combination of atomic orbitals in Fig. 5.4. The lat-
ter computations were successfully compared to experimental data in the original
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article. The Sakabe formula shows an agreement better than 6% with these compu-
tations in the range 10-1000 eV. However, the disagreement is higher at low energy,
which suggests that one should not be too confident about the application of the
Sakabe formula in the 0.026-10 eV energy range. Furthermore, it is assumed that
the resonant charge exchange between I and I− has the same CS, which is somewhat
arbitrary and results mainly from a lack of fundamental data. However, Karmohap-
atro (1965) showed that the resonant charge exchange reaction between Cl and Cl−
had a CS only a few times higher than the resonant CS between Cl and Cl+. We can,
therefore, anticipate that the order of magnitude should be correct for iodine. The
resonant charge exchange reactions between diatomic molecules and their positive
ion counterpart were the focus of a theoretical article by Evseev et al. (1979), from
which the CS for the reaction

I2 + I+2 ←→ I+2 + I2

could be estimated.
The non-resonant charge exchange reaction

I2 + I+ ←→ I+2 + I (5.5)
should play a significant role in the equilibrium between I+2 and I+ ions. Experimen-
tally, it was suspected to cause a significant depletion of the I+ population [79]. In
a chlorine plasma, this reaction CS is twice lower than that of the resonant charge
exchange reaction between Cl2 and Cl+2 . We made this assumption for iodine, and
estimated that the CS for reaction (5.5) was half of the CS for resonant charge ex-
change between I2 and I+2 .If the behavior is the same as for chlorine, the (non-resonant) charge exchange
reaction between I and I+2 , and the fragmentation reaction I+2 + I2 → I2 + I + I+
should both have thresholds higher than 1 eV and their influence can be neglected
in a first approximation. Collisional detachment of electrons can also be important
in some electronegative gases such as oxygen, but it is assumed to have a quite
high threshold for iodine. Typically, the thresholds were estimated for chlorine by
Huang and Gudmundsson [82] to 3.61 eV for Cl− + Cl2 → Cl + Cl2 + e− and
1.13 eV for Cl− + Cl → Cl2 + e−. The ion energies observed were mostly below
1 eV such that these reactions are neglected for iodine. Collisional detachment is an
important mechanism for neutral beam generation in high energy ion sources. While
it seems reasonable to neglect the four reactions mentioned above for the ionization
and magnetic filtering stages of the PEGASES thruster, this assumption may not be
valid for the acceleration stage, where the ions reach much higher energies. More
insights about these reactions in a chlorine discharge can be found in an article by
Huang and Gudmundsson [82], with relevant 1D PIC simulations of a chlorine CCP.
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5.2.4 Ion Loss Mechanisms

At low ion energies, two mechanisms are mainly responsible for negative ion loss,
that are two kinds of mutual neutralization. The recombination with I+

I− + I+ → 2I (5.6)
was investigated in a article by Yeung (1957) [164], from which a recombination
rate equal to 9.311 × 10−15m3/s could be found [71]. The recombination with I+2

I− + I+2 → I + I2 (5.7)
was studied by Greaves in the 1960s [69] and the author obtained a value of 1.22 ×
10−13m3/s experimentally.

These reaction rates were shown to depend on the ion temperature in the articles
cited above [164, 69] but these variations were neglected both in the global model
and in the PIC simulation.

The electron detachment from I−
I− + e− ←→ I + 2e− (5.8)

is also investigated. The CS was computed by J. Hamilton [76] and a threshold at
2.18 eV of electron energy was found. For weakly ionized plasmas, this reaction is
not dominant, and it was not implemented in the PIC simulation code. The electron
impact dissociation of the I+2 molecular ion is also considered [76], with a threshold
at 2.17 eV. Reactions (5.6), (5.7) and (5.8) are essential to balance negative ion pro-
duction through dissociative attachment. Indeed, if no magnetic field is applied on
the discharge, the negative ions are confined by the electric field of the sheath and
cannot escape because kBT n ≪ e�s, T n being I− temperature. While the presence
of the I− ion recombination reactions are important, F. Marmuse has shown by un-
certainty quantification methods that the value retained for the reaction rate was not
critical, because it does not play a major role in the determination of the electron
temperature.

Positive ions are destroyed by mutual neutralization with I− but they are also
lost at the walls, with a Bohm flux that needs to be corrected due to the presence of
negative ions. The review article by Riemann (1991) [128] provides a quite general
framework to apprehend the Bohm sheath criterion. The kinetic approach that is
provided allows deriving a Bohm sheath criterion with potentially several positive
ion species, both positive and negative. The condition for a collisionless sheath is
always that the ion kinetic energy is of the order of kBT e∕2 for a plasma where
all the positive ions are singly charged, except when the electronegativity becomes
high at the sheath edge. This was first shown experimentally by Braithwaite and
Allen (1988) and explained in details by Sheridan et al. [137], and Franklin and
Snell (1999) [57]. At high electronegativity, the kinetic energy of the ions becomes
of the order of kBT n∕2, and the flux of negative ions leaving the plasma cannot be
neglected anymore.
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Reaction Process Threshold Model Reference
[eV]

Electron impact I
I + e− ←→ I + e− Elastic 0 0D+PIC [75]
I + e− ←→ I + 2e− Ionization 11.64 0D+PIC [75]
I + e− ←→ I∗ + e− Excitation 0.9529 0D+PIC [75]
Electron impact I2
I2 + e− ←→ I2 + e− Elastic 0 0D+PIC [75]
I2 + e− ←→ I+2 + 2e

− Ionization 9.31 0D+PIC [75]
I2 + e− ←→ I+ + I + 2e− Dissociative ionization 10.75 0D+PIC [75]
I2 + e− ←→ I− + I Dissociative attachment 0 0D+PIC [75]
I2 + e− ←→ 2I + e− Dissociation 1.567 0D+PIC [75]
Electron impact dissociation of I+2
I+2 + e

− ←→ I+ + I + e− Dissociation 2.17 0D [76]
Electron detachment from I−
I− + e− ←→ I + 2e− Detachment 2.1768 0D [76]
Recombination
I− + I+2 ←→ I + I2 Mutual neutralization 0 0D+PIC [69]
I− + I+ ←→ 2I Mutual neutralization 0 0D+PIC [164]
Isotropic scattering of ions
I + I+ ←→ I + I+ Elastic 0 PIC Langevin
I + I+2 ←→ I + I+2 Elastic 0 PIC Langevin
I + I− ←→ I + I− Elastic 0 PIC Langevin
I2 + I+ ←→ I2 + I+ Elastic 0 PIC Langevin
I2 + I+2 ←→ I2 + I+2 Elastic 0 PIC Langevin
I2 + I− ←→ I2 + I− Elastic 0 PIC Langevin
Backscattering of ions
I + I+ ←→ I+ + I Charge exchange 0 PIC [130]
I + I− ←→ I− + I Charge exchange 0 PIC [130]
I2 + I+2 ←→ I+2 + I2 Charge exchange 0 PIC [53]
I2 + I+ ←→ I+2 + I Charge exchange 0 0D+PIC [130]+[82]
Surface recombination
I ←→ 1

2 I2 Wall process 0 0D+PIC [47]

Table 5.2: Reactions of a low temperature iodine plasma investigated in this work.
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Figure 5.1: Electron-neutral collision CSs for iodine species I, I2, I+2 , and I− com-
puted by Quantemol. The dotted lines represents linear extrapolation in logarithmic
scale.
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Figure 5.2: Electron-neutral reaction rates for a Maxwellian EEDF and neutral
atoms at rest. Numerical integration was performed over the data of Fig. 5.1.
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Reaction Process Reason Reference
Electron impact
I2 + e− ←→ I∗2 + e

− Excitation Threshold > diss [75]
I2 + e− ←→ I+ + I− + e− Polar dissociation High threshold and low CS [82, 79]
I− + e− ←→ I+ + 3e− Electron impact Threshold > 20 eV [82]

detachment
I+2 + e

− ←→ 2I Dissociative Weakly ionized [82]
recombination

I2 + e− ←→ 2I+ + 3e− Dissociative double High threshold (22.5 eV) [48]
ionization

Ion impact
I + I+2 ←→ I+ + I2 Charge exchange Threshold > 1 eV [82]
I+2 + I2 ←→ I2 + I + I+ Fragmentation Threshold > 1 eV [82]
I− + I2 ←→ I + I2 + e− Detachment by I2 Threshold > 1 eV [82]
I− + I ←→ I2 + e− Detachment by I Threshold > 1 eV [82]

Table 5.3: Identified reactions that were neglected in the frame of this work.
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Figure 5.3: Ion-neutral collision CSs for iodine species. The Langevin capture CSs
depend on the target only.
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5.3 Electronegative Plasma Modeling

5.3.1 Main Modifications of the LPPic Code

Most of the reactions that were discussed above are necessary to model an iodine
discharge via PIC simulation correctly. Only electron impact dissociation of I+2 and
electron detachment from I− were neglected because the results of the global model
of P. Grondein et al. [71] did not show significant discrepancies when these reac-
tions were added, for the range of parameters we are interested in. Some of these
reactions can be easily adapted from the procedures used to model noble gas dis-
charge, as described in V. Croes’ thesis [41]. This is the case for elastic collisions,
excitations, ionization and dissociative ionization reactions. The dissociative at-
tachment is numerically treated as an ionization reaction, except that the electron is
absorbed instead of producing two secondary electrons. Dissociation is treated as an
excitation reaction from the point of view of the electron, with a threshold energy of
1.567 eV. However, the data structure of the LPPic code had to be changed in depth.
Two main Fortran90 types were created, one for the population, and one for the gas.
Since Fortran is not per say an object-oriented language, choices had to be made for
the data structure of the various populations of super-particles. We chose to declare
an array of fixed size HSpecies that contains all the populations of heavy particles
tracked by the PIC algorithm:
integer, parameter :: N_HSpecies_max = 10
type(population), dimension(N_HSpecies_max) :: HSpecies

Themaximum number of heavy species is hardcoded to 10 but can easily be changed
if needed in a future version of the code. The population type contains mainly an
allocatable array of particle objects. Its definition is:
type population

real(dbleprc) :: mass = 1 ! mass of
the particles (1 for elecs)

integer :: charge = 0 ! charge
of the particles

real(dbleprc) :: T_inj = -1 !
injection temperature

type(particle), dimension(:), allocatable :: part_tab
end type population

The particle type was not modified significantly from the previous versions of the
code. Therefore, the number of allocatable arrays of particles corresponds only to
the number of heavy species that are simulated, and wasted memory is limited.

The gas type is defined in a similar way, but it also contains all the grid diagnos-
tics relative to the reactions, as well as the collision frequencies used for the Vahedi
method of null reaction [161]. Its specification is given in Appendix E.
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The implementation of these two Fortran types required to modify almost the
entire code and makes it more suitable for the simulation of real noble gas plas-
mas, where multiple ions are generated, metastable species and fast neutrals may be
important to take into account, as well as mixtures and molecular plasmas.

5.3.2 Discussion on the I∕I2 Gas Balance

The simulations that were performed still rely on the assumption of a weakly ion-
ized plasma, because each gas is still treated as a uniform background, and local
gas depletion is neglected. In particular, the neutral dynamics module developed
by T. Charoy and D. Tordeux in 2018 was not coupled to the chemistry module.
However, a gas balance equation is written globally to yield the correct fraction of
I and I2 in the gas. An effective dissociation rate was introduced such that the gas
dynamics is decoupled from the ion dynamics. This dissociation rate Kdiss, eff (T e)
should represent all the processes that may turn the I2 molecule into two I atoms,
directly or indirectly. The effective reaction writes

I2 + e− ←→
Kdiss, eff (T e)

2I + e− (5.9)

The I atoms are repopulated by wall recombination. Indeed, wall recombination
of atomic species has been identified as one of themain driver of the balance between
gas species in electronegative plasmas [64]. Although the full derivation is made
in an article by Chantry (1987) on diffusion theory involving wall reflection [34],
we propose a slightly different approach of the phenomenon that might be more
understandable in our specific context.

Wall recombination process is described by using a wall sticking coefficient 
s
for atomic iodine, that represents the probability for an iodine atom to be stuck at the
wall after a wall collision. When two atoms are collected at the same place, which
certainly happens after a long time, iodine is released under the form of a molecule
I2. Therefore, the flux of I2 released in the discharge due to wall recombination
ΓI2,rec is related to the flux of iodine atoms stuck at the wall surface ΓI,s by

ΓI2,rec =
ΓI,s
2

(5.10)
The aim is now to determine ΓI,s. The 
s coefficient is the probability for an indi-
vidual atom to be attached to the wall when a single collision occurs, but may not
necessarily be the probability for a full population of particles, provided that some of
them may perform several wall collisions before being absorbed. We will calculate
a wall absorption frequency

�s = vI∕⟨�⟩s (5.11)
where ⟨�⟩s is the average distance that an atom can go through before being attached
to the wall, and vI is the mean velocity of the iodine atoms. Let �0 be themean travel
distance between two wall reflections. In the low-pressure limit, the mean travel
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distance to the wall is �0∕2 [34]. After it is created, an atom, which is absorbed at
the nth wall collision, has traveled a distance

�n = �0∕2 + (n − 1)�0 (5.12)
Moreover, the probability of being absorbed at the nth wall collision is (1−
s)n−1
s.
Therefore,

⟨�⟩s =
+∞
∑

n=1
(1 − 
s)n−1
s�n (5.13)

Series integration yields
⟨�⟩s = �0

2 − 
s
2
s

(5.14)
The wall absorption frequency is hence

�s =
vI
�0

2
s
2 − 
s

(5.15)

This collision frequency comes from the perspective of a single atom. If NI atoms
are present in the domain, the flow of atoms collected at the walls is

ΓI,sS = NI�s (5.16)
and NI = nIV in a uniform gas density model, where S and V are respectively the
surface area and the volume of the domain. It follows then that

ΓI,s =
V
S�0

nIvI
2
s
2 − 
s

(5.17)

At very low pressure, �0 is the mean geometrical distance between two points of
the walls. In the case of a cosine angular distribution function, Case et al. (1953)
showed that �0 = 4V ∕S [26]. Therefore,

ΓI,s =
1
4
nIvI

2
s
2 − 
s

. (5.18)

The thermal flux
ΓI,tℎermal =

1
4
nIvI (5.19)

appears in this equation.
At low 
s,

ΓI,s = 
s
1
4
nIvI. (5.20)

In this case, the particles may come from all the directions after potentially multiple
reflections. The mean velocity is hence the 3D thermal velocity

vI =
(

8kBTI
�mI

)1∕2

(5.21)
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For chlorine, extensive measurements were performed to determine the recom-
bination coefficient 
s [88]. Values between 0.01 (silicon at room temperature) to
0.85 (stainless steel) were found, and dependence to the wall temperature was iden-
tified. Since the surface aspect is often unknown and subject to gas deposition,
comparisons between ICP experiments and simulations are required. It was shown
[81, 40] that a value of 
s ≈ 0.02 yielded better predictions of the discharge proper-
ties. No fundamental values were found for iodine. In the global model developed
by Grondein et al. [71], the value of 
s ≈ 0.04 was retained.

Considering the uncertainty over the fundamental value of the sticking coeffi-
cient 
s and the limitation of Chantry’s model in the intermediate to high-pressure
regimes, we used the simplified form of Eq. (5.20) for the flux of iodine atoms in the
global model and the PIC code implementation. For both the global model and the
PIC simulation, the default value is 
s = 0.04. However, the PIC simulation results
presented below were obtained for fixed I and I2 densities. The values of I and I2
densities used here come from the independent global model computation.

5.3.3 Results of a Global Model of an Iodine ICP

In this section, we model a 2D ICP of 3 × 3 cm of size based on the global model
of Grondein et al. [71]. The gas pressure is controlled by a gas flow of I2 of 2.93 ×
1018 s−1 = 6.53 sccm and by a gas exhaust surface corresponding to 1.75% of the
total discharge surface. The temperature of the gas and the ions is constant and kept
to 300K.

TI = TI2 = TI+ = TI+2 = TI− = Tg = 300 K (5.22)
As this will be shown with the PIC simulations and as observed in experiments,
this is not strictly the case, and gas heating may have some influence on the other
discharge properties. In all the simulated conditions, the total gas pressure

pg = kBTg(nI + nI2) (5.23)
is between 2.9 and 4.1mTorr. The I atom and the I2 molecule leave the discharge
volume through the gas exhaust surface area with thermal fluxes nI∕I2vI∕I24 . The equi-
librium between I and I2 is mainly determined by the processes described in Sec-
tion 5.3.2 but also account for all the electron processes summarized in Table 5.2.

The ions and electrons are generated in the discharge volume with the reaction
rates given in Fig. 5.2 for Maxwellian EEDF. The positive ions are absorbed across
the entire discharge boundary surface with the same Bohm flux

ΓI∕I2 = ℎnI∕I2

(

kBT e
mI

)1∕2

. (5.24)

The effect of electronegativity is not included in the ℎ coefficient and Eq. (2.130) is
used. The negative ions are repelled by the positive space charge sheath such that
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their flux to the walls is neglected. To preserve the global charge balance, the flux
of electrons leaving the plasma is

Γe = ΓI + ΓI2 = ℎ(nI + nI2)
(

kBT e
mI

)1∕2

. (5.25)

The power balance equation for the electrons is given by Eqs. (1.99) and (1.100)
with uniform densities and temperatures across the volume. The power densitywabs
is an input parameter that controls the power source termabs = wabsV . The main
difference with the article by Grondein et al. [71] is that no ion acceleration is con-
sidered through the grid. Moreover, gas heating is neglected here. We also include
three new reactions that can play a significant role on the plasma properties bal-
ance in some discharge conditions: electron impact dissociation of I+2 (Section 5.2),
electron impact electron detachment from I− (Section 5.2), and non-resonant charge
exchange between I2 and I+ (Section 5.2).

The influence of these reactions in the model was assessed over the power range
0.4 – 100 kW/m3 and the results are plotted in Fig. 5.6. The set of temporal dif-
ferential equations for the variables nI, nI2 , nI+ , nI+2 , nI− , ne and T e is integratedexplicitly using the same 4th order Runge-Kutta solver odeint from scipy as for
the 1D model of the magnetic filter presented in Chapter 4. When the electron im-
pact detachment of I− is not included, the density of I− remains almost constant
with power for injected power densities higher than approximately 30 kW/m3. Con-
versely, when this reaction is taken into account, the increase of electron density with
power causes the density of I− to decrease by a factor 2 between 30 and 100 kW/m3.
The non-resonant charge exchange reaction Section 5.2 tends to slightly increase
the I+2 density and slightly decrease the I+ density but has a minor role on the other
characteristics of the discharge. The role is expected to be larger when the ioniza-
tion fraction becomes equal to 1 or greater than 1, as the I+∕I+2 balance may become
strongly coupled to the I∕I2 gas balance. The resonant charge exchange reactions
were not taken into account in the global model as they do not affect the particle
balance, but they should be included in the gas balance equation in the future.

Given the high uncertainty on the sticking coefficient 
s, we found it useful to
perform a parametric study where it is varied from 0 to 1. In Fig. 5.7(a), the ab-
sorbed power density is set to 10 kW/m3. In this case the electron temperature in-
creases from 2.5 eV when 
s = 0 to 2.7 eV when 
s = 1. The electron and negative
ion densities, and hence the plasma electronegativity, are only weakly impacted by
a variation of the sticking coefficient. At 10 kW/m3, the discharge electronegativity
is enhanced by less than a factor 2 when 
s varies from 0 to 1. The variation is more
significant at 100 kW/m3 since the I2 density, and thus the I− density, drop to almost
0 when 
s is very small. As expected, the density of I2 increases with the sticking
coefficient and the density of I decreases. At 10 kW/m3, the ratio between I and I2
densities is inverted when 
s equals approximately 0.1. The densities of I+2 and I+
follow the trends observed for I and I2 at about three orders of magnitude below. As
illustrated in Fig. 5.7(b) where the absorbed power density is set to 100 kW/m3, the
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Figure 5.6: Equilibrium species densities predicted by the global model as a func-
tion of the power density absorbed for various chemical schemes. (a) legacy chem-
istry set (Grondein et al. [71]). The electron impact dissociation of I+2 and the
detachment of I− were added in (b), and the non-resonant charge exchange between
I2 and I+ was added in (c). In (d), the full reaction set was used.



5.3. ELECTRONEGATIVE PLASMA MODELING 237

0.0

0.5

1.0

De
ns

iti
es

 ×
10

20
 [m

3 ]

nI

nI2

(a) 10 kW/m3

0.0

0.5

1.0 nI

nI2

(b) 100 kW/m3

0

2

4

De
ns

iti
es

 ×
10

16
 [m

3 ]

ne

nI

nI +
2

nI +

0

10

20

30

ne

nI

nI +
2

nI +

0.0 0.2 0.4 0.6 0.8 1.0
Recombination coefficient s

2.5

2.6

2.7

El
ec

tro
n t

em
pe

ra
tu

re
 [e

V]

0.0 0.2 0.4 0.6 0.8 1.0
Recombination coefficient s

2.1

2.2

2.3

Figure 5.7: Equilibrium species densities and the electron temperature predicted by
the global model as a function of the surface recombination coefficient between I
and I2 for (a) 10 kW/m3 and (b) 100 kW/m3 of power absorbed by the plasma. The
full chemistry set is used here.

density of negative ions is much more sensitive to the value of the sticking coeffi-
cient at higher power. The electron temperature is slightly lower at higher power
100 kW/m3 compared to the 10 kW/m3 case, at about 2.2 eV.
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(a)
Used for PIC simulation inputs

p [mTorr] nI2 [m−3] nI [m−3]
3.609 4.128 × 1019 7.397 × 1019

(b)
To be compared with the PIC simulation outputs

ne [m−3] nI− [m−3] nI+ [m−3] nI+2 [m−3] Te [eV]
1.864 × 1016 3.583 × 1016 2.656 × 1016 2.792 × 1016 2.603

Table 5.4: Outputs of the global models used to run the PIC simulation (top), and to
be compared with the PIC simulation outputs (bottom). The absorbed power density
is 10 kW/m3. The discharge dimensions are 3 × 3 cm, and the third dimension is
infinite.

5.4 Two-Dimensional PICSimulation of an IodineDischarge

5.4.1 Model Assumptions and Simulation Parameters

Since the gas balance is not so well determined because of the uncertainty on the
sticking coefficient, we chose not to include it in the simulations presented in the
following. The gas densities are computed from the global model with the same
input parameters as in the PIC simulation and a sticking coefficient 
s = 0.04 [47].
Again, the gas flow is 6.53 sccm, and the gas exhaust is 1.75% of the discharge
surface area.

The PICmodel is valid for weakly ionized plasmas in the sense that the processes
that involve charged species do not affect the densities of the neutral species that
remain constant in time and space. The outputs of the global model are provided in
Table 5.4. The densities found for I and I2 are used as inputs and fixed throughout
the PIC simulation.

The PIC simulation is started with a quite high density of 2.0 × 1016m−3 for
each charged species, such that the plasma is statistically quasineutral everywhere.
This is of the same order of magnitude as the equilibrium values found by the global
model. A large electron subcycling of 20 is used to reduce computational time. For
comparison, a subcycling factor of 16 was used by Huang et al. [82] in the 1D
PIC simulation of a chlorine CCP. Since the mass ratio between heavy species and
electrons is larger for iodine, this should not cause a bigger error than in the former
works on chlorine that were validated against experimental data [2]. All the grid data
extracted from the PIC simulations are always averaged over 200 ns, which prevents
to resolve fluctuations at frequencies higher than about 5MHz. The numerical grid
is the same as in the 2D simulations presented in Chapters 2 and 3. It is composed
of a 400× 400 uniform structured mesh, and each cell is 75 µm large. The time step
is 25 ps and was chosen to resolve the electron plasma frequency safely, according



5.4. 2D PIC SIMULATION OF AN IODINE DISCHARGE 239

to Eq. (1.61). The heating electric field along the z direction has a frequency of
13.56MHz, and its amplitude is uniform across the discharge. The absorbed power
is 10 kW/m3 which yields low ionization fraction and reasonable electronegativity.
At initialization, the particles are loaded uniformly across the discharge. All the
heavy species are loaded according to a 300K Maxwellian distribution function,
and the electrons are loaded with a Maxwellian distribution function at 4 eV.

The Poisson’s equation is solved at each time step accounting for the updated dis-
tributions of electron super-particles (every time step) and ion super-particles (every
20 time steps) with Dirichlet boundary conditions (� = 0 at the boundaries). When
an electron impact ionization occurs, the kinetic energy of each secondary electron is
equal to half the kinetic energy of the primary electron minus the ionization energy.
The procedure is the same for I and I2 ionizations, and the dissociative ionization of
I2. The produced ions are released according to the assumed gas distribution func-
tion: a Maxwellian distribution function at 300K. The same procedure is applied
to negative ions produced by dissociative attachment. The energy transferred from
the electron to the negative ion during the dissociative attachment process is hence
neglected, which may be arguable.

As of July 2019, no algorithm has been implemented in the LPPic code to ac-
count rigorously for the reactions between super-particles. The only reactions in-
volving multiple charged reactants are the ion recombination of I− with I+ and I+2 .The reaction CSs are poorly known due to the lack of fundamental experimental data
and calculations. A simplified algorithm was implemented to account globally for
the ion losses through ion-ion-recombination: Every Naverage = 8 000 time steps,
the number of positive and negative ions to be discarded is estimated through

Δ1NI+ = Δ1NI− = Krec, I+−I−qfNaverageΔtNI+NI−∕(lxly) (5.26)
Δ2NI+2

= Δ2NI− = Krec, I+2−I−qfNaverageΔtNI+2
NI−∕(lxly) (5.27)

(5.28)
whereNX represents here the number of super-particles of speciesX andΔiNX the
number of super-particles of species X to be discarded due to the process indexed
by i, and where

Krec, I+−I− = 9.311 × 10−15m3∕s (5.29)
Krec, I+2−I− = 1.22 × 10

−13m3∕s (5.30)
as said previously. The discarded super-particles are chosen randomly in the main
table of the population data structure.

Kawamura et al. (2010) [84] have already performed 2D PIC simulations of
an electronegative oxygen plasma with a transverse magnetic field. However, the
chemistry set was simplified and rescaled to allow comparison with experimental
plasmas with higher densities. In these simulations, the electronegativity � was of
the order of 5 and the cross-field transport was found to be nearly classical. Never-
theless, the direction of a possible resistive drift wave instability was not simulated.
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Physical parameters
Gas type I2∕ I
Discharge size in x direction lx 30 mm
Discharge size in y direction ly 30 mm
Neutral total pressure p 3.61 mTorr
Transverse magnetic field B 0 mT
Neutral density nI 7.397 × 1019 m−3

nI2 4.128 × 1019 m−3

Neutral temperature Tg 0.026 eV
Frequency fRF 13.56 MHz
Power density w 10.0 kW/m3

Physical time of the simulation tsimulation > 100 µs
Averaging time taverage 0.20 µs

Initial conditions
Plasma density ne = nI+ = nI+2 = nI− 2 × 1016 m−3

Electron temperature Te [eV] 4.0 eV
Ion temperature Ti [eV] 0.026 eV
Particles per cell (1 species) Npart.∕cell 100
Heating electric field amplitude E0 92.6 V/m

Numerical parameters
Cell size Δx 75 µm
Time step Δt 2.5 × 10−11 s
Steps to execute Nsimulation > 4 × 106
Steps to average Naverage 8 000
Weighting factor qf 1 125 000 m−1

Number of CPU NCPU 240
Initial number of super-particles Npart,0 6.4 × 106
Electron subcycling Nsubcycling 20

Table 5.5: Main physical and numerical input parameters for iodine ICP 2D PIC
simulation.
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In this article, an iodine-like discharge was also simulated with CSs coming essen-
tially from the data available for oxygen [84].

5.4.2 Relaxation Oscillations in an Iodine Plasma

Due to the quite high plasma density in the initial state, a density front develops
and excites some modes of the discharge. In particular, we could observe mode
propagation with quite clearly defined phase velocities propagating in both the x
and y directions. Similar modes were observed experimentally in electronegative
plasmas and are known as the fast modes and slow modes [158]. They were used
to determine the electronegativity of plasma discharges experimentally [141, 138].
The method developed by Tuszevski and Gary [158] to predict the phase velocity of
these waves was generalized to the case of plasmas with two positive ion species.

According to the analysis performed in Section 3.2, the susceptibility of each
ion i = I+, I+2 , I− is

�i =
!2pi

k2vT i2 − (! − kvi)(! − kvi + i�i)
(5.31)

where ion temperature mivT i2 and ion drift vi were taken into account, and where
!pi =

(

nie2

mi�0

)1∕2 is the ion plasma frequency of each species. Using a Boltzmann
electron response to the electric field, the susceptibility of the electrons is

�e =
!pe2

k2vT e2
. (5.32)

The assumption of a Boltzmann electron response implies in particular that ! ≪
kvT . Thanks to the parameters � = nI−∕ne (electronegativity) and � = nI+2 ∕nI+ , allthe ion susceptibilities are expressed as functions of the electron density.

�I+ = !pe2
me
mI+

1 + �
1 + �

[

k2vT
2
I+ − (! − kvI+)(! − kvI+ + i�I+)

]−1

�I+ = !pe2
me
mI+2

1 + �
1 + 1∕�

[

k2vT
2
I+2
− (! − kvI+2 )(! − kvI+2 + i�I+2 )

]−1

�I− = !pe2
me
mI−

�
[

k2vT
2
I− − (! − kvI−)(! − kvI− + i�I−)

]−1 (5.33)

The full dispersion relation is
1 + �e + �I+ + �I+2 + �I− = 0 (5.34)

but for electrostatic modes where k�D ≪ 1, this becomes
�e + �I+ + �I+2 + �I− = 0 (5.35)
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which is equivalent to
1 + V 2

I+
[

k2vT
2
I+ − (! − kvI+)(! − kvI+ + i�I+)

]−1

+ V 2
I+2

[

k2vT
2
I+2
− (! − kvI+2 )(! − kvI+2 + i�I+2 )

]−1

+ V 2
I−
[

k2vT
2
I− − (! − kvI−)(! − kvI− + i�I−)

]−1 = 0 (5.36)
where the ion acoustic velocities VI+ , VI+2 and VI− are defined by

V 2
I+ =

1 + �
1 + �

⋅
kBT e
mI+

(5.37)

V 2
I+2
= 1 + �
1 + 1∕�

⋅
kBT e
mI+2

(5.38)

V 2
I− = � ⋅

kBT e
mI−

(5.39)
(5.40)

In general, this gives a six order polynomial in ! whose roots can be found numer-
ically. If the ion temperatures are neglected vT I+ = vT I+2 = vT I− = 0, if the drift
velocities are assumed low, which is true near the discharge center, and collisions
are neglected, then the dispersion relation yields a single phase velocity, in both
directions

v' = !∕k = ±
(

V 2
I+ + V

2
I+2
+ V 2

I−

)1∕2 (5.41)
Provided that mI+ = mI+2 ∕2 = mI− = mI, this is also

v' = ±
uB

√

1 + �

[

1 + 2� + (1 + �)
�
2

]1∕2

(5.42)

where the Bohm speed is here defined by uB =
(

kBT e∕mI
)1∕2. This mode is called

the fast mode [158] and was observed in the PIC simulation.
Simulating electronegative plasmas with a PIC method requires a very large

number of integration time-steps. Huang and Gudmundsson [82] needed to simulate
1.1 × 107 time-steps or 405 µs of physical time in their 1D PIC simulation of a
chlorine CCP. After 7.8 × 106 time-steps executed on 240CPU over four weeks,
and a physical time of about 200 µs, the simulation has not yet converged.

However, several oscillation patterns were observed in the transient state, which
allows validating the model partially. The typical density profiles observed along x
for y = ly∕2 are plotted in Fig. 5.8. At the beginning of the simulation, many dif-
ferent modes appear and high wavenumber structures are damped faster than lower
wavenumbers. These oscillatory structures are present both in x and y directions and
travel back and forth from the center of the discharge to the walls. In a fewmicrosec-
onds, we could retrieve the typical density profile of an electronegative plasma at
moderate electronegativity [31]. From the center to the wall:
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Figure 5.8: Density profiles at y = ly∕2 for the iodine ICP discharge in the transient
regime.

1. A quasineutral core, with a relatively high electronegativity (� ≈ 3 here);
2. A quasineutral electropositive layer where the negative ion density drops to 0

very rapidly;
3. A positive space charge sheath where the electron density drops very fast.
The 2D structure of the discharge is illustrated in Fig. 5.9. The short wavelength

structures are clearly visible in the map of electron density and I+2 density. The den-
sity maps of I+2 , I+ and I− feature a cross shape suggesting that the 2D profile could
be described by a convolution of 1D profiles. Due to this property, it seems relevant
to investigate the oscillations along one of the symmetry axes of the discharge, for
example, y = ly∕2.
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Figure 5.9: 2D maps of the densities of the various species present in the iodine
plasma simulation. The snapshot performed at t = 16.2 µs corresponds to the tran-
sient and illustrates the wave perturbation.
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The 2D FT of the electric field along x, Ex, is therefore performed in time and
space, along the x direction, as shown in Fig. 5.10. The sheath effects were removed
by taking into account only the region x ∈ [2.5mm, 27.5mm]. In order to obtain the
temporal evolution of the spectrum, the signal was multiplied by Gaussian functions
centered at different times, as in the wavelet transform algorithm. The standard
deviation of the Gaussian is set to 3.53 µs. This standard deviation allows one to
capture multiple oscillations, and to track the evolution of the phase velocity as the
electronegativity evolves in time. The 2D FT reveals a quite clear phase velocity
of the order of magnitude of the Bohm speed. This phase velocity tends to slightly
increase in time, as the plasma electronegativity also increases. It is measured by
estimating visually lower and upper bounds of the slope that relates ! with k. The
estimated mean phase velocity is the average between the upper and lower bounds.
The upper and lower values are used to generate the error bars plotted in Fig. 5.11.
Between 13 and 25 µs, another mode is also visible with a phase velocity of the order
of the ion thermal speed. This mode may be the slow mode formerly observed in
experiments [158].

We could verify that the high phase velocity observed in Fig. 5.10 corresponds
to the fast mode predicted by the theory. In Fig. 5.11, the phase velocity measured
with the upper and lower bounds method is displayed with red triangles in Fig. 5.11
and compared with the predictions of the linear perturbation of fast waves. The blue
circles correspond to the simplified model depicted by Eq. (5.42). It should match
quite well the phase velocity of the wave at the discharge center where the ions do
not drift. The electronegativity � and the � = nI+2 ∕nI+ are assessed by performing
averages along the x axis, again for x ∈ [2.5mm, 27.5mm]. The measured phase
velocity matches the simple fast wave theory with a 25% error, and both curves
show that the phase velocity should increase with electronegativity.

The first correction to the simple fast wave model consists in including finite
drift velocity for both positive ion species. Indeed, the ion drift velocity of the pos-
itive ions may become quite large, especially near the sheath region where it should
be approximately equal to the Bohm speed of each species. In red, the numeri-
cal solutions of the dispersion relation were computed for drift velocities equal to
(

kBT e∕mI+
)1∕2,

(

kBT e∕mI+2

)1∕2 and 0 for I+, I+2 , and I− respectively. The ion drift
velocities are not uniform throughout the discharge, and the dispersion is applicable
locally. However, the Fourier transform of the simulation data has to be performed
over several spatial periods, over which the ion speeds vary. The velocties that were
used in the dispersion relation should be seen as typical velocities. These values
do not change the theoretical phase speed drastically, as illustrated by the blue and
green curves in Fig. 5.11 The ion temperatures are also taken into account, again
by performing a spatial average along x. This improved theoretical curve shows a
quite good agreement with the phase velocity found in the PIC simulation. The high
electronegativity measurements (� > 2.3) where performed for t > 20 µs when the
oscillations are already partially damped, so the estimate of the phase velocity is not
so accurate anymore, as it is visible in Fig. 5.10(e) and (f). Moreover, the electroneg-
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Figure 5.10: FT of the x component of the electric field in time and space, along x
and for y = ly∕2, at several times. The fast mode (green dashed line) and the slow
mode in (d) (cyan dashed-dotted line) are fitted manually to the 2D plot.

ative center tends to shrink when � increases so that the x ∈ [2.5mm, 27.5mm]
region might not be relevant to perform the analysis. Finally, spatial variations are
neglected in the model, so a perfect agreement can not be reached with the PIC
simulation anyway.
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Figure 5.11: Comparison between the phase velocity measured in the PIC simula-
tion (red triangles with error bars) with the fast modes predicted by the linear fluid
theory, with no ion drift (green triangles), and with a Bohm speed for both positive
ion species (blue circles).

5.5 Quasi-equilibrium

All the fast oscillations are eventually damped at t = 65 µs. The plasma seems to
converge towards some equilibrium, but the ion densities keep increasing slowly,
while the number of electrons in the discharge seems stabilized. The density and
temperature profiles at t = 68.4 µs are given in Fig. 5.12. The density profiles look
similar to the typical solutions of 1D fluid simulations [29]. One of the advantages
of the PIC method is that the kinetic temperatures of the charged species are com-
puted at each grid point. We could observe that the temperature of the positive ions
remains close to 300K (0.026 eV) in the central region. Closer to the walls, the
ion temperatures start increasing significantly from the region where the negative
ion density is nearly 0. The ion temperature at the walls is about 690K for I+ and
830K for I+2 . On the contrary, the negative ions are significantly heated in the bulk
plasma region and reach 460K (0.04 eV) in the center. From the center to the walls,
the negative ion temperature first decreases slightly and then increases violently in
the pre-sheath region. This observation may come from the fact that the negative
ions generated in the pre-sheath are strongly accelerated by the space charge electric
field, and gain a large directional kinetic energy that is transferred to the thermal en-
ergy through collisions. However, the statistics are very poor in this region because
almost no negative ions are present. The ion heating only comes from the electric
field interaction and not from the chemistry, since the newly created ions are ther-
malized at 300K, which may be a strong assumption for negative ions. Moreover,
gas heating is neglected, which also causes the ion temperature to be underestimated
with respect to experimental conditions. This discharge state looks quite realistic,
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but the density of negative ions is higher than the global model predictions (see
Table 5.4). However, equilibrium is not yet reached:

• As can be seen in Fig. 5.13(b), the negative ion density has not converged and
keeps increasing slowly. This might be a clue that the recombination rate is
too small. This needs to be checked.

• Soon after the high-frequency oscillations are damped, another oscillation de-
velops at a lower frequency. This instability will be described in the following
paragraph.

The first oscillation appears in the simulation at about 75 µs, when the elec-
tronegativity at the center is equal to 6 approximately. It seems to trigger from the
center, and it affects the electron density the most. A soliton-like wave travels ra-
dially from the center to the walls. The wavelength is of the order of magnitude of
the discharge size when it forms in the center, and the wavelength shrinks to about
2mm at the sheath edge (see Fig. 5.13(a)). The electron density at the center varies
from 6 × 1015m−3 to 2.4 × 1016m−3 within the instability cycle. The densities of
the other charged species are also affected but the shapes of the profiles of nI+ , nI+2 ,and nI− do not vary significantly from what is shown in Fig. 5.12(a). The ampli-
tude of the temporal fluctuations of nI+ , nI+2 , and nI− at the center represents about
10% of the time-averaged value. The measured frequency is 244 kHz. As shown
in Fig. 5.13(c), the instability also affects to electron temperature by about 17% in
the center. The plasma potential is significantly affected as well, as illustrated in
Fig. 5.13(e) and (f). The instability saturates in just a few cycles, and its amplitude
and frequency do not seem to vary in time.

The observed instability looks similar to experimental measurements performed
by Chabert et al. (2001) [32] in Ar/SF6 mixtures. Experimentally, strong relaxation
oscillations were observed in electronegative plasmaswith frequencies ranging from
1Hz to 900 kHz [101]. Similarly to the experiments performed in Ar/SF6 mixtures,
the discharge spends most of its time in the high electron density region. However,
the instability amplitude is lower in the simulation than in the experiments, and the
frequency is higher, for equivalent pressures.

In previous publications [101, 32, 33], it is shown that this type of oscillations
can come from a hysteresis effect between the curve that relates the electron density
with the power absorbed by the electrons. In these journal articles, the instability
was related to a mode transition between inductive (H) and capacitive (E) modes
in the experimental ICP reactor. However, Tuszewski and White (2003) [159] have
shown that macroscopic instabilities in electronegative gases can as well come from
the downstream instabilities, i.e., the slow modes that can be captured by the dis-
persion relation (5.36). These instabilities may form when the relative velocity be-
tween positive and negative ions becomes large. In our simulation, the instability
triggers from an electrostatic potential drop in the central region of the discharge. It
then travels towards the sheath and affects all the plasma properties locally. Smaller
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Figure 5.12: (a) Densities and (b) temperatures of charged species in the PIC simu-
lation. The quantities are averaged over 18 cells at the vicinity of y = ly∕2 = 1.5 cm.
On the LHS, the sum of the positive ion densities is plotted in gray dotted line. On
the RHS, the ion temperatures are multiplied by a factor 50 to scale with the electron
temperature.

wavelength structures appear closer to the sheath. The instability is not triggered
downstream from the perspective of the ions.

Discussion on double layer formation and propagation

Several previous publications [117, 115, 116, 118] investigated similar oscillations
in electronegative plasma discharges through the prism of double layer. A double
layer is a region of the plasma where the sign of the charge density changes. Due to
Maxwell-Gauss equation in 1D, at a double layer location, the electric field reaches
an extremum. The oscillations that were observed in the PIC simulation described
above affect all the plasma quantities, including the electric field, such that they can
be interpreted as double layers. Interestingly, the criterion found for double layer
formation in Meige et al. [111] is comparable to the slow mode instability criterion
in Tuszewski and Gary [158], namely, the drift difference between positive and neg-
ative ions has to be of the order of the ion acoustic speed. Stationary double layers
were even found by Sheridan et al. [137] with a fluid model where ion temperature
is neglected. These are different specific interpretations of a family of plasma so-
lutions that all emphasize the fact that low pressure electronegative discharges are
usually unstable at moderate electronegativity.
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Figure 5.13: Low-frequency oscillations observed in the PIC simulations. (a) Elec-
tron density profiles along x at y = ly∕2 = 1.5 cm, at two times t1 = 156.4 µs
and t2 = 159.0 µs (indicated in dotted lines in (b)) corresponding to a minimum
(solid blue line) and a maximum (green dashed line) of the value at the center, re-
spectively. (b) Temporal profiles of the densities of charged particles at the center
between t = 150 µs and t = 194 µs. The electron temperature and plasma potential
profiles at t1 and t2 (for y = ly∕2) are shown in (c) and (e), and the corresponding
temporal fluctuations in (d) and (e).
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Summary

The physical properties of iodine make it a good candidate for future electric
propulsion systems. Here, we have proposed a comprehensive CS set for
iodine simulation, and we have performed the first 2D PIC simulations of an
iodine discharge that include electron dynamics and that match experimental
plasma densities. The model is limited to weakly ionized plasmas, and the gas
balance is computed separately by an updated global model.

Using the global model, the influence of three reactions that were not
considered previously was assessed: electron impact I+2 dissociation and I−
detachment, as well as non-resonant charge exchange between I and I+2 . In
the low power regime investigated with the PIC simulation (10 kW/m3), these
reactions play a minor role. However, they may be important at higher power
densities, as electron detachment causes negative ion density to decrease with
power. The balance between I and I2 is greatly influenced by the wall re-
combination coefficient 
s, which has not been measured experimentally, and
which is expected to depend on the wall surface properties. The global model
was run for the entire range of 
s, between 0 and 1. At 10 kW/m3, the I2 den-
sity is of the same order of magnitude as the I density, even when there is no
wall recombination because molecule dissociation is moderate. Therefore,
although the value of 
s has a significant influence on the predicted electron
temperature and densities of charged particles, it is not as critical as it is at
100 kW/m3.

The development of a PIC model for the simulation of a realistic iodine
discharge in 2D is a challenge both from a scientific and a computer engi-
neering point of view. The model that we developed paves the way to more
specific simulations of the PEGASES thruster. Several well-known features of
electronegative discharges, such as fast and slowwaves, and relaxation insta-
bilities, were already observed in the 2D PIC simulation. These first observa-
tions match previous experimental results qualitatively. The PIC simulation
of an iodine discharge has provided valuable insights into these phenomena,
and it could lead to a deeper understanding in the future. The oscillations that
were observed with no magnetic field may also be present in the PEGASES
thruster, and may affect particle transport and electron cooling. The full 2D
kinetic simulation of the PEGASES thruster operated with iodine requires to
combine the simulation cases of Chapter 4 with the chemistry set presented
in this chapter, and has now been made possible.
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CONCLUSION

Summary of the Thesis

The original name of the PhD project was Simulation andModeling of the PEGASES
thruster operated with Iodine. On our way to pursuing this goal, we found that a
number of fundamental questions that needed to be addressed before producing any
valuable model, even in the case of an apparently simple argon ICP discharge. The
fundamentally 2D (if not 3D) geometry of the PEGASES experiment made us eager
to understand the transport phenomena in multi-dimensional systems, starting with
the non-magnetized configuration. The role of instabilities in the cross-field trans-
port in magnetized plasmas was investigated with particular care. We have observed
in 2D PIC simulations a variety of instabilities that can develop in a magnetic fil-
ter. One of them, the resistive instability related to the diamagnetic drift, is also the
main driver of electron de-confinement in magnetized columns of weakly ionized
plasma. A relevant dispersion relation is given and the solutions are successfully
compared with the PIC simulations at saturated state. A formula was provided for
the instability-enhanced collision frequency that can be used in simple fluid models.

Unlike non-magnetized plasmas, the localization of the power deposition plays
an important role in the magnetized plasma properties. Therefore, self-consistent
heating power source modeling or experimental data for the deposited power are
vital to reach good quantitative agreement between simulations and experiments.
Classical fluid models are unable to reproduce the PIC simulation data but the agree-
ment becomes quite good when the instability-enhanced collision frequency is used.

The models that were developed and used within the project are summarized in
Table 6. In this table, the models that were successfully investigated but for which
no results were shown in the thesis are indicated in parenthesis. Modeling goes
in pair with theory and physical understanding. The diagonal that goes from the
top left corner to the bottom right corner in Table 6 is the natural path to gain a
true physical understanding of the low-pressure plasma transport phenomena. In
the table, the analytical models refer to Chapter 2, where the heating source term
is uniform. In this case, and when the gas pressure is below typically 50mTorr,
even with a magnetic field, the electron temperature is uniform, and the problem of
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Fluid quasineutral Kinetic
Analytical Numerical PIC(uniform power source)

Ar
No B 0D, 1D, 2D, (3D) (0D), (1D) (1D), 2D
Uniform B 0D, 1D, 2D-no E (0D), (1D) 2D
B gradients 1D 2D

I2/I No B 0D 2D

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
Physicalunderstanding

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
Physical understanding

Table 6: Summary of the ICP models developed and used within the frame of the
project. The models that were investigated but not fully explained in this thesis are
indicated in parenthesis.

plasma transport is reduced to only one equation for the electron temperature. This
single variable scalar equation can easily be solved numerically, provided that the
ionization rate is a known function of the electron temperature. In 2D, the resolution
requires the assumption that the x and y variables can be separated. This assumption
was verified with the PIC simulation. In 1D, analytical solutions exist for arbitrary
values of themagnetic field, but in 2D, the assumption of a weak electric field, which
is verified at high magnetic fields, is needed.

When the heating source term is not uniform, the electron heat equation has to
be taken into account. In low-pressure non-magnetized plasmas, this is not a major
problem as the plasma is still isothermal, and the analytical solutions are in good
agreement with the PIC data. However, when a magnetic field is applied, the full set
of Euler equations (continuity equation, momentum balance equation, and electron
energy equation) has to be solved numerically. This was successfully implemented
in a 1D model where the radial particle losses are accounted for using the ℎ factor,
and where the heat flux is neglected.

The PIC simulation tool LPPic is very powerful but is computationally expen-
sive. All the simpler models mentioned above were always driven by and validated
against the PIC simulations. Besides the simplified geometry, the current version
of the code is electrostatic and cannot account for the inductive heating in a com-
pletely self-consistent and straight-forward fashion. Moreover, the PIC simulation
is subject to numerical noise and numerical heating that can induce significant er-
rors, especially when the plasma is unstable. Simulations of ICP with helium (see
Section 1.4), xenon, and krypton gases were also performed, but most of them were
not shown in the manuscript.

Preliminary results have shown that a bettermodeling of the heat fluxwas critical
for a correct fluid simulation of the magnetic filter. In particular, the heat diffusion
coefficient needs to be estimated with much care. Realistic PIC simulation of io-
dine discharges remains a challenge as consistent ion-ion recombination modeling
has not been achieved, and discharge steady-state was not reached. Moreover, as
gas depletion was not taken into account, the model is limited to weakly-ionized
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plasmas. The balance between I and I2 species depends on the wall recombination
coefficient, which is provided as an input of the current models. Although wall re-
combination was identified among the key processes in more detailed studies on
chlorine plasmas, its value remains essentially unknown for iodine.

Prospects

The chapters of the thesis are connected to one another, but each also contains re-
sults that could lead to further validations and improvements. In Chapter 2, the
formula of the collisionless ambipolar diffusion coefficient, and its dependence on
system geometry, could be verified experimentally. In Chapter 3, systematic numer-
ical convergence with respect to the grid size should be done to improve the estimate
of the ratio between the ℎ factor at high magnetic fields and the non-magnetized ℎ
factor. Comparison between experimental data of a magnetized plasma column and
predictions from a 0D or 1D model is on-going. The model would incorporate the
instability-enhanced transport coefficients proposed in Chapter 3. The main diffi-
culty lies in the correct modeling of local power deposition in magnetized plasmas,
as was suggested in Chapter 4. We have seen that several types of instabilities form
in the high magnetic field region of PEGASES. The influence of the spatial vari-
ations of the magnetic field on the dispersion relation could be investigated from a
theoretical point of view, as it has been done in recent studies on HT. The EEDF
found in the experiments and in our PIC simulations of the PEGASES thruster are
Maxwellian with a very good approximation. This observation is only partially ex-
plained and could benefit frommore theoretical investigations using kinetic or gyro-
kinetic theory.

The model of the PEGASES thruster operated with iodine contains a large num-
ber of parameters and assumptions. The chemistry set is not exhaustive and the ac-
curacy of the reaction cross sections data used in this work was sometimes limited.
Reactions between heavy species would require further investigations. In particular,
isotropic scattering rely on Langevin capture cross sections while the backscatter-
ing cross sections are based on estimates made for resonant charge-exchange reac-
tions at relatively high ion energies. These estimates could be challenged with more
fundamental experiments and computations. Finally, ion-ion recombination cross
sections are still poorly known and the implementation of such reactions should be
improved in the PIC model.

Gas heating and neutral depletion are two important phenomena for experimen-
tal plasmas that were ignored here. Fluid models exist, but the dynamics of reac-
tive gases may be challenging to couple to plasma chemistry. From a more general
perspective, uncertainty quantification could help to identify the main variables of
interest to focus on in order to improve the model. As the wall recombination co-
efficient depends on the wall surface properties and seems difficult to measure, a
good approach is to measure directly the gas density, as it is currently being done
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by F. Marmuse at LPP. In weakly ionized plasma conditions (at low power), the
gas background can be frozen in the simulation, either PIC or multi-fluid, while the
other parameters are varied. This type of techniques could be of great help for de-
sign optimization of NBI for fusion reactors (with hydrogen-deuterium mixtures),
or future electric propulsion systems. Industrial systems of GIT or NBI are larger
than what current PIC codes allow to simulate in 3D. However, the full simulation
of the PEGASES thruster in 2D operated with iodine would allow validating sim-
pler fluid models that could be of great assistance for industrial design and system
optimization.



Appendix A

REFINED CROSS SECTION SETS FOR NOBLE GASES

The cross section set for electron-He reactions used for the run illustrated by the
refined gas model in Fig. 1.8 is presented below. It comes from the Biagi Magboltz
database on LXCat [11]. In Fig. A.1, analogous cross section sets also coming from
the LXCat database for argon, krypton and xenon that can run in LPPic or in the
global model are presented.

He
(1) He + e− → He + e− elastic, From Biagi’s elastic momentum transfer.
(2) He + e− → He+ + e− + e− ionization,
(3) He + e− → He∗ + e− excitation 1, EX 23S J=1 M ELVL=19.81961 eV.
(4) He + e− → He∗ + e− excitation 2, EX 21S J=0 M ELVL=20.61577 eV.
(5) He + e− → He∗ + e− excitation 3, EX 23P J= 1,0 ELVL=20.96409 eV.
(6) He + e− → He∗ + e− excitation 4, EX 21P J=1 R ELVL=21.21802 eV.
(7) He + e− → He∗ + e− excitation 5, EX 33S J=1 ELVL=22.71847 eV.
(8) He + e− → He∗ + e− excitation 6, EX 31S J=0 ELVL=22.92032 eV.
(9) He + e− → He∗ + e− excitation 7, EX 33P J= 1,0 ELVL=23.00707 eV.
(10) He + e− → He∗ + e− excitation 8, EX 33D J=3, 1 ELVL=23.07365 eV.
(11) He + e− → He∗ + e− excitation 9, EX 31D J=2 ELVL=23.07407 eV.
(12) He + e− → He∗ + e− excitation 10, EX 31P J=1 R ELVL=23.08702 eV.
(13) He + e− → He∗ + e− excitation 11, EX 43S J=1 ELVL=23.59396 eV.
(14) He + e− → He∗ + e− excitation 12, EX 41S J=0 ELVL=23.67357 eV.
(15) He + e− → He∗ + e− excitation 13, EX 43P J= 1,0 ELVL=23.70789 eV.
(16) He + e− → He∗ + e− excitation 14, EX 41D J=2 ELVL=23.73633 eV.
(17) He + e− → He∗ + e− excitation 15, EX 43D J=3, 1 ELVL=23.73609 eV.
(18) He + e− → He∗ + e− excitation 16, EX 41F J=3 ELVL=23.73701 eV.
(19) He + e− → He∗ + e− excitation 17, EX 43F J=3,4,2 ELVL=23.73701 eV.
(20) He + e− → He∗ + e− excitation 18, EX 41P J=1 R ELVL=23.74207 eV.
(21) He + e− → He∗ + e− excitation 19, EX 53S J=1 ELVL=23.97197 eV.
(22) He + e− → He∗ + e− excitation 20, EX 51S J=0 ELVL=24.01121 eV.
(23) He + e− → He∗ + e− excitation 21, EX 53P J= 1,0 ELVL=24.02822 eV.
(24) He + e− → He∗ + e− excitation 22, EX 51D J=2 ELVL=24.04280 eV.
(25) He + e− → He∗ + e− excitation 23, EX 53D J=3, 1 ELVL=24.04266 eV.
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(26) He + e− → He∗ + e− excitation 24, EX 513 J=3 ELVL=24.04315 eV.
(27) He + e− → He∗ + e− excitation 25, EX 53F J=3,4,2 ELVL=24.04315 eV.
(28) He + e− → He∗ + e− excitation 26, EX 51P J=1 R ELVL=24.04580 eV.
(29) He + e− → He∗ + e− excitation 27, EX 63S J=1 ELVL=24.16900 eV.
(30) He + e− → He∗ + e− excitation 28, EX 61S J=0 ELVL=24.19116 eV.
(31) He + e− → He∗ + e− excitation 29, EX 63P J= 1,0 ELVL=24.20081 eV.
(32) He + e− → He∗ + e− excitation 30, EX 63D J=3, 1 ELVL=24.20916 eV.
(33) He + e− → He∗ + e− excitation 31, EX 61D J=2 ELVL=24.20925 eV.
(34) He + e− → He∗ + e− excitation 32, EX 61P J=1 R ELVL=24.21100 eV.
(35) He + e− → He∗ + e− excitation 33, EX 73S J=1 ELVL=24.28456 eV.
(36) He + e− → He∗ + e− excitation 34, EX 71S J=0 ELVL=24.29828 eV.
(37) He + e− → He∗ + e− excitation 35, EX 73P J= 1,0 ELVL=24.30429 eV.
(38) He + e− → He∗ + e− excitation 36, EX 73D J=3, 1 ELVL=24.30954 eV.
(39) He + e− → He∗ + e− excitation 37, EX 71D J=2 ELVL=24.30960 eV.
(40) He + e− → He∗ + e− excitation 38, EX 71P J=1 R ELVL=24.31071 eV.
(41) He+ e− → He∗ + e− excitation 39, EX N3S SUM HIGH ELVL=24.35810 eV.
(42) He+ e− → He∗ + e− excitation 40, EX N1S SUM HIGH ELVL=24.36718 eV.
(43) He+ e− → He∗ + e− excitation 41, EX N3P SUM HIGH ELVL=24.37116 eV.
(44) He+ e− → He∗+ e− excitation 42, EX N1D SUMHIGH ELVL=24.37472 eV.
(45) He+ e− → He∗+ e− excitation 43, EX N3D SUMHIGH ELVL=24.37468 eV.
(46) He + e− → He∗ + e− excitation 44, EX 81P J=1 R ELVL=24.37547 eV.
(47) He + e− → He∗ + e− excitation 45, EX 91P J=1 R ELVL=24.41989 eV.
(48) He + e− → He∗ + e− excitation 46, EX 101P J=1 R ELVL=24.45168 eV.
(49) He + e− → He∗ + e− excitation 47, EX 111P J=1 R ELVL=24.47518 eV.
(50) He + e− → He∗ + e− excitation 48, EX 121P J=1 R ELVL=24.49308 eV.
(51) He + e− → He∗ + e− excitation 49, EX N1P SUM HI R ELVL=24.50708 eV.
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Figure A.1: Electron-neutral collision cross sections for helium, argon and xenon.
[12, 6].



Appendix B

CONVERGENCE STUDY FOR THE MAGNETIZED
COLUMN SIMULATION CASE

The PIC simulation relies on a number of numerical parameters that may affect
the physical result. Here, we investigate the magnetized column simulation case at
3mTorr for a domain of 3 × 3 cm. The magnetic field is uniformly equal to 20mT
and the mean absorbed power density is 9.6 kW/m3. The influence of the number
of particles, the ion subcycling and ion magnetization is investigated. The various
simulation cases are summarized in Table B.1 and the electron density and electron
temperature profiles are shown in Fig. B.1. We can see that the ion magnetization
has only a minor influence on the discharge properties. The ion subcycling how-
ever seems to have a significant influence on the plasma density profile. The power
losses seem lower when no ion subcycling is used which is quite unexpected. Ac-
cording to Fig. 3.23, this is always the case but the effect is more visible at higher
magnetic field. The number of particles does not seem to play a critical role as the
density profiles are statistically the same in cases 3, 4 and 5. However, the electron
temperature seems to decrease slightly, and does not seem to be converged when the
number of particles per cell at initialization is equal to 400.

The most critical effect that was observed is the influence of the discretization
mesh. In case 6, the number of grid points in each direction is doubled (the number
of cells is multiplied by four) and the time-step is multiplied by 2 as well to match
the CFL criterion. The initial number of particles per cell is kept equal to 25. The
electron temperature is found to be significantly lower than in the other cases and
the plasma density is about 50% higher in the center with a more peaked profile.
This shows that the mesh discretization has a significant influence on the saturation
mechanism and instability-enhanced transport. So most of the simulation results
presented throughout where instabilities are present probably tend to underestimate
the magnetic confinement.
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Initial # of part. Ion Electron Cell size Time step
per cell (1 species) magnetization subcycling [µm] [ps]

Case 1 24 No 1 75 33
Case 1 bis 24 No 1 75 33
Case 2 24 Yes 10 75 33
Case 2 bis 24 Yes 10 75 33
Case 3 25 No 10 75 33
Case 4 100 No 10 75 33
Case 5 400 No 10 75 33
Case 6 25 No 10 37.5 16.5

Table B.1: Investigated numerical parameters for the study of the magnetized col-
umn at 3mTorr and 20mT.
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Figure B.1: Profiles of electron density (a) and temperature (b) found in the simu-
lations of the magnetized plasma column at 3mTorr and 20mT with the numerical
parameters described in Table B.1 .



Appendix C

SIMULATIONS AT HIGHER MAGNETIC FIELDS

Nothing should stop us from simulating argon plasmas at higher magnetic fields.
The cell size is constrained by the Larmor radius, so the computation time is larger.
As shown in Fig. C.1 (also used as a front picture), the structure of the plasma insta-
bility becomes different. The instability does not look like awave that propagates but
features smaller structures that spin and rotate with the diamagnetic drift. Fig. C.1
corresponds to a run at 3mTorr with a uniform magnetic field of 100mT. The sim-
ulation is not converged here, and the Larmor radius is poorly resolved (�Le ≈ dX).
The spin motion of the small scale structure is very fast and would require finer time
sampling, which would also require more particles to reduce the statistical noise.
Overall, providing consistent and converged simulations in this range of magnetic
fields would require special care for convergence studies and timely runs.
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Figure C.1: Example of 2D PIC simulation at higher magnetic fields: Bz is here
uniform and equal to 100mT. The pressure is 3mT. The electron current is extracted
at t = 5.7 µs when the simulation is not converged.



Appendix D

MATHEMATICAL FUNCTIONS
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Figure D.1: Graph of the function f ∶ x →
(

x + 1
x

)

arctan(x) − 1 essential to
solve the electron temperature equation for isothermal quasineutral plasma transport
in Cartesian coordinates. See Chapter 2.
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Appendix E

FORTRAN GAS TYPE DEFINTION

type gas
character (LEN=9) :: formula ! gas

formula
real(dbleprc) :: mass
character (LEN=256) :: lxcat_input_e !

cross section file for elec
character (LEN=256) :: lxcat_input_i !

cross section file for ions
real(dbleprc) :: density=0.0d0

! density

! Number of reactions for each type of process
!-----------------------------------------------------------------
! Electrons
integer :: ela_elec_nb=0 ! Elastic
integer :: exc_elec_nb=0 !

Excitation
integer :: iz_elec_nb=0 !

ionization
! Ions
integer :: i_n_nb=0 ! Elastic

integer :: e_react_nb=0 ! number
of electron processes

integer :: i_react_nb=0 ! number
of ion processes

! Data size for each process
integer, allocatable, dimension(:) :: len_ela_elec
integer, allocatable, dimension(:) :: len_exc_elec
integer, allocatable, dimension(:) :: len_iz_elec
integer, allocatable, dimension(:) :: len_i_n

! Cross section (cs) tables
! dim 1: number of reactions of the given type
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! dim 2: size of the energy table
! dim 3: (1) energy [eV] / (2) cs [m^2]
real(dbleprc), ALLOCATABLE, dimension(:,:,:) :: ela_elec !

electron elastic
real(dbleprc), ALLOCATABLE, dimension(:,:,:) :: exc_elec !

electron excitation
real(dbleprc), ALLOCATABLE, dimension(:,:,:) :: iz_elec !

electron impact ionization
real(dbleprc), ALLOCATABLE, dimension(:,:,:) :: i_n !

ion-neutral

! grid values
!

------------------------------------------------------------------
! Electron-gas reactions
real(dbleprc), dimension(:,:), allocatable :: nu_ela_elec_temp !

Elastic scattering
real(dbleprc), dimension(:,:), allocatable :: nu_ela_elec
real(dbleprc), dimension(:,:), allocatable :: nu_exc_elec_temp !

Excitation
real(dbleprc), dimension(:,:), allocatable :: nu_exc_elec
real(dbleprc), dimension(:,:), allocatable :: nu_iz_elec_temp !

Ionization
real(dbleprc), dimension(:,:), allocatable :: nu_iz_elec
real(dbleprc), dimension(:,:), allocatable :: nu_dat_elec_temp !

Dissociative attachment
real(dbleprc), dimension(:,:), allocatable :: nu_dat_elec
real(dbleprc), dimension(:,:), allocatable :: nu_diz_elec_temp !

Dissociative attachment
real(dbleprc), dimension(:,:), allocatable :: nu_diz_elec
! Ion-gas reactions
real(dbleprc), dimension(:,:), allocatable :: nu_iso_ion_temp !

Isotropic scattering
real(dbleprc), dimension(:,:), allocatable :: nu_iso_ion
real(dbleprc), dimension(:,:), allocatable :: nu_bsc_ion_temp !

Backscattering
real(dbleprc), dimension(:,:), allocatable :: nu_bsc_ion

! Collision probability level for each reaction
real(dbleprc), allocatable, dimension(:) :: nu_e ! electrons
real(dbleprc), allocatable, dimension(:) :: nu_i ! ions

! Maximum collision probability including null collision
real(dbleprc) :: nu_prime ! electrons
real(dbleprc) :: nu_primi ! ions

end type gas
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Titre: THÉORIE ET SIMULATION DE PHÉNOMÈNES DE TRANSPORT DU PLASMA À BASSE PRESSION
Application au propulseur PEGASES
Mots clés: plasma basse pression, transport du plasma, instabilités, simulation PIC, propulsion électrique de satellite, iode
Résumé: Le domaine de la physique des plasmas froids
a émergé avec les premières découvertes fondamentales en
physique atomique et en physique des plasmas il y a plus d’un
siècle. Toutefois, ce domaine a été rapidement orienté vers
les applications. L’une des applications les plus importantes
dans la première moitié du XXeme siècle est le "Calutron"
(California University Cyclotron), inventé par E. Lawrence
à Berkeley, qui faisait partie du projet Manhattan, et utilisé
comme un spectromètre de masse pour séparer les isotopes
de l’uranium. Dans un rapport du projet Manhattan daté de
1949, D. Bohm fait deux observations qui sont fondamentales
pour la physique des plasmas froids : (i) Les ions doivent avoir
une énergie cinétiqueminimale lorsqu’ils entrent dans la gaine
du plasma, estimée à Te∕2 , Te étant la température électron-
ique en électron-volts. (ii) Le transport du plasma à travers un
champ magnétique est augmenté par des instabilités.
La propulsion électrique par plasma est utilisée pour des satel-
lites militaires et des sondes spatiales depuis les années 1960
et a suscité un intérêt grandissant ces vingt dernières an-
nées avec le développement des applications commerciales

des technologies spatiales. Néanmoins, les mêmes questions
que celles auxquelles D. Bohm était confronté, c’est-à-dire
le transport multidimensionnel, l’interaction plasma-gaine, et
les instabilités, se posent toujours. La théorie et les simula-
tions sont d’autant plus importantes pour la conception des
systèmes de propulsion électrique que les tests en conditions
réelles nécessitent le lancement d’un satellite dans l’espace.
Dans ce travail, nous établissons les équations du trans-
port multidimensionnel dans un plasma isotherme, nous pro-
posons un critère de gaine qui permet de rendre compte de
la saturation du champ magnétique dans un plasma froid
et faiblement ionisé, et nous modélisons le refroidissement
des électrons à travers le filtre magnétique du propulseur
PEGASES (Plasma Propulsion with Electronegative Gases).
Toutes les théories sont motivées et validées par un grand
nombre de simulations particulaires PIC bi-dimensionnelles,
en utilisant le code LPPic qui a été partiellement développé
dans le cadre du projet. Enfin, les cas de simulation sont éten-
dus à une décharge inductive à plasma dans l’iode, avec un
nouvel ensemble de sections efficaces de réaction.

Title: THEORY AND SIMULATION OF LOW-PRESSURE PLASMA TRANSPORT PHENOMENA
Application to the PEGASES Thruster
Keywords: low-pressure plasma, plasma transport, instabilities, PIC simulation, satellite electric propulsion, iodine
Abstract: The field of low-temperature plasma physics
has emerged from the first fundamental discoveries in atom
and plasma physics more than a century ago. However, it
has soon become driven by applications. In the first half
of the XXth century, one of the most important application
is the "Calutron" (California University Cyclotron) invented
by E. Lawrence in Berkeley. It was part of the Manhattan
project, and operated as a mass spectrometer to separate ura-
nium isotopes. In a 1949 report of the Manhattan project,
D. Bohm makes two observations that are fundamental for
low-temperature plasma physics: (i) The ions must have min-
imum kinetic energy when they enter the plasma sheath esti-
mated to Te∕2, Te being the electron temperature in eV ; (ii)
plasma transport across a magnetic field is enhanced by insta-
bilities.
Plasma electric propulsion is used on military satellites and
space probes since the 1960s and has gained more and more
interest in the last twenty years as space commercial appli-

cations were developing. However, the same questions as
the ones D. Bohm was faced with, namely multi-dimensional
transport, plasma sheath interaction, and instabilities, arise.
Theory and simulation are even more important for electric
space propulsion systems design since testing in real condi-
tions involves to launch a satellite into space.
In this work, (i) we derive the equations of the multi-
dimensional isothermal plasma transport, (ii) we establish a
sheath criterion that causes the magnetic confinement to satu-
rate in low-temperature, weakly ionized plasmas, and (iii) we
model the electron cooling through the magnetic filter of the
PEGASES (Plasma Propulsion with Electronegative Gases)
thruster. All the theories are driven and validated with exten-
sive two-dimensional particle-in-cell (PIC) simulations, using
the LPPic code that was partially developed in the frame of
this project. Finally, (iv) the simulation cases are extended to
an iodine inductively coupled plasma (ICP) discharge with a
new set of reaction cross sections.
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