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Oscillatory processes during the aggregation and the fragmentation of amyloid fibrils.
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Introduction

Generalities on Prion diseases

Prion diseases, also called transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative and incurable disorders which affect both humans and animals. They are characterised by long incubation periods, neuronal loss with a failure to induce inflammatory response. Prion diseases occur when endogenous prion proteins, found on the surface of many cells, change their conformation and aggregate into fibrils in the brain or the central nervous system, causing brain damage.

This abnormal accumulation of protein in the central nervous system causes the following symptoms:

• behavioural symptoms such as rapidly developing dementia, hallucinations, confusions, fatigue,

• communication problems such as difficulty speaking and writing,

• memory and cognitive deficits,

• movement problems such as muscle stiffness, disturbance in balance, difficulty coordinating leading to clumsiness and shakiness.

These disorders are yet incurable and generally fatal.

The risk factors for prion diseases are ingesting blood or meat containing the pathological proteins and infection from contaminated medical equipment. For instance, the bovine spongiform encephalopathy (BSE), a TSE of bovines, is linked to the development of the human disease variant Creutzfeldt-Jakob disease (vCJD). The World Health Organization reported that 152 cases of vCJD have been diagnosed in the United Kingdom (UK), eight in France, two in Ireland and one in Canada, Italy and the United States of America from October 1996 to November 2004. The wide variety of prion diseases are summarized in the Table 1, and more specific details on each disease can be found in [START_REF] Ermias | Transmissible spongiform encephalopathies in humans[END_REF][START_REF] Ermias | The public health impact of prion diseases[END_REF].

Protein aggregation process is a phenomenon of major importance. It is the cause of a class of neurodegenerative diseases also called amyloid diseases which affect significantly cattle but also human population through the prion diseases and also prion-like diseases (Alzheimer, Parkinson, Huntington, etc.). According to the Alzheimer's Association and Parkinson's Foundation, 5.8 million people are living with Alzheimer's dementia and 10 million people with Parkinson's disease. Although the protein aggregation phenomenon is extensively studied, it remains misunderstood, hence fascinating.

Prion diseases history

The first evidence of prion diseases takes place in the 18th century when farmers observed abnormal behaviour of sheep such as excessive licking and intense itching. The sheep would pathologically scrape against fences and hence the Scrapie was the first disease of a new class of neurological disorders known as transmissible spongiform encephalopathies (TSEs).

Several theories have been put forward to determine the responsible agent of TSEs. The researchers first thought that TSEs were caused by "slow viruses" because of the long time of incubation [START_REF] Sigurdsson | Rida, a chronic encephalitis of sheep: with general remarks on infections which develop slowly and some of their special characteristics[END_REF]. However, no virus could be isolated. In the 1960s, experiments designed to disrupt the large molecules using electron beams were used for the study of TSEs. Theses experiments showed that the size of the infectious agent is very small (much smaller than viruses). Moreover, scientists tried unsuccessfully to inactivate the scrapie agent with methods known to inactivate bacteria and viruses (UV irradiation, extreme heat, high pressures, etc.) [START_REF] Pattison | Resistance of the scrapie agent to formalin[END_REF]3]. They reach the conclusion that the scrapie agent is replicating without nucleic acid and could be of protein origin [START_REF] John | Nature of the scrapie agent: Self-replication and scrapie[END_REF].

In 1982, Prusiner gave credits to the hypothesis that the scrapie agent denoted P rP Sc is a proteinonly agent [START_REF] Stanley | Novel proteinaceous infectious particles cause scrapie[END_REF]. He purified the proteinaceous infectious particles (amyloid fibrils), named it prion (which stands for PRoteinaceous Infection ONly) and inactivated the infectious agent with methods that destroyed proteins.

The connection between the prion protein P rP c and the P rP Sc is established in [START_REF] Stanley B Prusiner | Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies[END_REF]. Mice were genetically modified in order to be deficient in the prnp gene encoding the P rP c . After inoculating scrapieinfected brain homogenate, mice developed resistance to experimental prion disease. The experiments demonstrated the requirement of P rP c for prion infection.

A more detailed survey of prion diseases history can be found in [START_REF] Mark | A brief history of prions[END_REF]. All the previous research leads to establish the prion diseases as a growing scientific field of major importance which needs to be theorized in order to completely understand the mechanisms.

remains unknown. Mutations in the prion protein gene imply that the P rP c can spontaneously change its conformation into the P rP Sc and aggregate [START_REF] Stanley | Genetics of prions[END_REF]. The pathological P rP Sc is also able to convert P rP c

and propagate the disease.

The Prion Theory

TSEs are caused by an accumulation of abnormal isoform of proteins (amyloid fibrils) in the central nervous system. The structure, the physiological functions and the reasons behind the formation of the abnormal isoform are still unknown. Though the prion hypothesis is believed to be the most reasonable.

The hypothesis stipulates that P rP Sc is the infectious particle responsible for prion propagation and that it can replicate by inducing the autocatalytic conversion of P rP c into its scrapie isoform [START_REF] Stanley | Novel proteinaceous infectious particles cause scrapie[END_REF]. Hence, two structurally distinct objects emerged from identical protein without any modification of the amino acid sequence.

Biochemical and biophysical measurements reveal that P rP c is composed of two α-helix which represent 42% of its defined structure and a small portion of β-sheets (3%). However, the β-sheets amount to 43%

of the scrapie agent P rP Sc and the α-helix to 30% (cf [START_REF] Pan | Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins[END_REF] and Figure 1). The α-helix and the β-sheets are elements describing the tridimentional structure and the physicochemical properties of a protein.

The α-helix is the arrangement of amino acids in a rotating structure (like an helix) and the β-sheets are made of β strands laterally connected by hydrogen bonds between atoms of the amino acids chain to form a folded plane (like an accordion). The physicochemical properties of the P rP c and the infectious P rP Sc are different. P rP Sc forms an insoluble and protease-resistant aggregate. The P rP c which leads to the formation of abnormal isoform is the result of mutations in the prion protein gene coming from an interaction between P rP c and P rP Sc . However the precise nature of the interaction remains unknown. multidisciplinary analysis (biochemistry, biophysics and mathematical modeling, numerical sciences, etc.) in order to propose convincing models and arguments.

Models of prion replication

In terms of pathogenic mechanisms, the prion paradigm unifies a number of neurodegenerative disorders that are caused by protein misfolding and aggregation [START_REF] Tapan | Protein-misfolding diseases and chaperone-based therapeutic approaches[END_REF]. These disorders include Alzheimer's, Parkinson's, Huntington's and prion diseases. In principle, host-encoded monomeric proteins are converted into misfolded and aggregated assemblies, which serve as templates for further conversion.

Even if the molecular mechanisms of prion replication is still an open problem, the current models are mainly based either on an autocatalytic process (a chemical system where at least one of the products is a reactant) and on nucleation-elongation-fragmentation reactions. Mainly, two processes have been proposed respectively by Griffith [START_REF] John | Nature of the scrapie agent: Self-replication and scrapie[END_REF], Prusiner [START_REF] Stanley | Molecular biology of prion diseases[END_REF] and Jarret, Lansbury [START_REF] Joseph | Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie?[END_REF], Caughey [START_REF] Caughey | Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders[END_REF]. The main difference between these two processes lies in the role played by the P rP Sc aggregates at the beginning of the replication mechanism. In the model proposed by Lansbury [START_REF] Joseph | Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie?[END_REF], both P rP c and P rP Sc are assumed to exist naturally in the human organism. The two forms are in a reversible thermodynamic equilibrium that is perturbed in the presence of P rP Sc aggregates, which provides favorable conditions for the conversion from P rP c to P rP Sc (cf. Figure 2). It should be pointed out that in this model the disease needs some P rP Sc aggregates to start. The second model was presented by Prusiner in 1991 [START_REF] Stanley | Molecular biology of prion diseases[END_REF]. In this second model, an initial slow reaction with high activation energy converts P rP c into P rP Sc . The protein P rP Sc is able to template and it forms a dimer with P rP c (P rP c -P rP Sc ). In the dimeric configuration P rP c converts faster than the initial reaction. The newly created P rP Sc -P rP Sc dimer then dissociates and allows the formation of new P rP Sc -P rP c dimers propagating the disease (cf. Figure 2). In this case, P rP Sc aggregates are not necessarily at the start.

The common ground of these two models of replication is that once the P rP Sc proteins start to aggregate, they form structures called polymers characterised by the number of proteins composing the aggregates.

Typically, P rP Sc aggregates grow along a single axis creating organised filamentous structures called fibrillary filaments or fibrils. The fibrils can interact with each other and form higher order fibrillary aggregates called amyloids (cf [START_REF] Prigent | PrP assemblies: spotting the responsible regions in prion propagation[END_REF] and Figure 3). 

Open questions and problems on Prion mechanisms

The study of prions remains an active research topic. Since the discovery and the purification of the prions pathogenic form P rP Sc in 1982 by Prusiner [START_REF] Stanley | Novel proteinaceous infectious particles cause scrapie[END_REF], no major scientific progress has been made to create a complete therapy of prion diseases. The main reasons lie in the lack of knowledge on prions. The exact reasons of occurrence of prion diseases are still unknown and discussed among specialists.

Some of these questions are partially solved, others remain unknown. Eventually, the response to all these questions would help to develop a rational therapy to prion and prion-like diseases.

Objective and contributions

The main objective of this thesis is seeking understanding on the kinetics of prion aggregation processes, especially on the occurrence of transient phenomena such as oscillations in the size distribution evolution of prion aggregates (see Figure 5).

The starting point of this work is the analysis of experimental results obtained by the VIM team at INRA. In these static light scattering experiments, damped oscillations are observed and distinguished from experimental noise thanks to a numerical procedure and a statistical test. Then, in order to understand the kinetics of these oscillations in depolymerisation experiments, we studied a polymerisation/depolymerisation kinetic model and added more details in order to obtain a (simplified) realistic model capable of displaying transient oscillations. In order to obtain these new dynamics in polymerisation/depolymerisation model, we developed a new hypothesis on the prion aggregation processes. It lead to the design of new experiments to justify the models. Lastly, new replication models on prions were able to corroborate experiments.

Statistical test of presence of oscillations.

In order to understand the aggregation processes for prion fibrils, we focus on experimental data obtained by Static Light Scattering (SLS) experiments. These experiments provide information on the evolution of size distribution of fibrils and display oscillations, however, the data are aggregated and difficult to exploit. The oscillations in SLS signals reveal the presence of transient phenomena and new mechanisms during the protein depolymerisation experiments. In Chapter 1, we define a rigorous procedure to detect and quantify oscillations in a signal. We design a statistical test of presence of oscillations or High

Frequency features (HF features) and implement it on the experimental SLS data. The following results are detailed in Chapter 1.

Static light scattering experiment

When light is sent through a material, several interactions are possible : fluorescence, transmission, absorption, and scattering. In particular, scattering is the deflection of light from a straight trajectory, after encountering some physical object. The intensity of the scattered light is a function of the molecular weight and concentration of the scattering object. To measure such intensity we use a Static Light Scattering (SLS) device (cf Figure 4).

Static light scattering (SLS) is based on the electromagnetic mechanism of light scattering. From this theory it is known that light which interfers with a molecule, with a size inferior to its own wavelength, induces an oscillatory dipole. An oscillatory dipole is itself a source of electromagnetic radiation. Most of the light is elastically scattered. The measured light intensity interpreted as scattered outcoming photons has been described and formalised by Rayleigh [START_REF] Debye | Light scattering in solutions[END_REF][START_REF] Andrew | Rayleigh scattering[END_REF]:

I θ = I 0 α V scat (θ) r 2 CM
where I 0 is the intensity of the incident light, I θ is the intensity of the scattered light, V scat is the scattering volume seen from the detector and θ is the angle between the forward incident light and the scattered light (cf Figure 4). Moreover the scattered light intensity measure depends on the molecular weight M and the concentration C of molecules in the solution. The light received from a small light source decreases with distance r according to the inverse square law. α is a constant which depends on the particle's characteristics and the light's wavelength λ of the laser used. The constant α can be calculated as:

α = 4π 2 n 0 dn dC 2 N A λ 4
where n 0 is the refractive index of the solvent, dn dC is the refractive index increment of the solute/solvent system and N A = 6.022 × 10 23 mol -1 is Avrogado's number.

Hence, if the solution is composed of a mixture of polymers with different sizes, the scattered intensity is:

I θ = K i c i M i ,
where K = I 0 • α • Introduction size i, the weight concentration c i is defined as:

c i = iu i M 0
where M 0 is the weight of a monomer. Moreover the molecular weight of a polymer is proportional to its size, M i = iM 0 . In conclusion, the experimental data recorded by the SLS device are a linear transformation of the second moment of the concentration distribution. Given that monomers correspond to the size i = 1mer, we obtain the SLS signal at time t:

I θ (t) = k         v(t) + i 1 i=i 0 i 2 u i (t)         (1)
where v(t) is the concentration of monomers at time t, i 0 is the minimal size of the polymers and i 1 is the maximal size of the polymers. The parameter k is a constant depending on the experimental conditions.

Remark 1. The SLS data are commonly read as the evolution of the average cluster size over time. In fact, the average molecular weight is defined as :

Mw = i c i M i i c i = i c i M i c tot
where c tot denotes the total concentration of clusters. The average molecular weight is linked to the scattered light as follows:

Mw = I θ kc tot .
Hence, the average cluster size denoted as i is defined as follows:

i = Mw M 0 = I θ M 0 kc tot = 1 ρ        v + i i 2 u i        .
An interesting example of SLS signal is displayed in Figure 5. We observe fast oscillations in experimental measurements of the infectious agent in Prion diseases. A major difficulty to infer such transient oscillations and to evaluate their significance is that they are mixed up with noise. Hence, we propose a rigorous procedure which detects high frequency features (HF features) -amplitude, frequency -in real signals and to distinguish quantitatively these features of the signal from its noise.

Design of the statistical test of presence of oscillations.

The statistical test of presence of oscillations is based on three consecutive steps. We first introduce a parametric characterization of the high frequency features (HF features). Then, we design a parametric test of hypothesis and define a p-value which gives a quantitative indicator on the test results. Finally, we compute the test for the different SLS signals thanks to Python Library made for this study. Model. We denote the SLS measurements as y n i , which corresponds to a noisy signal localized around i/n. Thus i is a location parameter and n a frequency parameter. We obtain

y n i = x n i + σ ξ n i , i = 0, . . . , n -1 (2) 
where (x n i ) 0≤i≤n-1 is the (unknown) signal of interest and the ξ i are independent and identically distributed noise measurement, that we assume here to be standard Gaussian. The quantity σ > 0 is a (fixed) noise level. In order to analyze oscillations in a signal, we look at the projection of the signal in the Fourier basis. The discrete Fourier transform (DFT) DFT n : R n → R n transfers a real-valued discrete signal (x n i ) 0≤i≤n-1 of length n into a frequency domain via

DFT n (x n i ) 0≤i≤n-1 = n-1 i=0
x n i e -j2πki/n 0≤k≤n-1 = ϑ n,k 0≤k≤n-1 .

(

) 3 
The single-sided amplitude spectrum gives all the information needed to visualise the signal (x n i ) 0≤i≤n-1 in the Fourier basis.

Parametric characterization of HF features in the Fourier Domain.For a discrete signal (x n i ) 0≤i≤n-1 given in terms of its Fourier transform ϑ n = (ϑ n,k ) 0≤i≤n-1 via (3), we characterise a HF feature by two nonnegative parameters: a location parameter g(ϑ n ) (in the frequency domain) and an intensity parameter d(ϑ n ) (see Figure 6).

k |ϑ n,k | d(ϑ n ) g(ϑ n )
Figure 6 -Idealized scheme of the parametrization of the HF features of a signal in the Fourier Domain. The parameter g(ϑ n ) is the location parameter in the frequency scale which corresponds to the distance of the HF features from the low-frequency components of the signal. The parameter d(ϑ n ) is the intensity parameter which corresponds to the relative amplitude of the HF features.

A more precise definition of the characterisation of HF features is given in Chapter 1, Section 1.

Construction of the parametric test of hypothesis.Thanks to the characterisation of HF features, we test the null

H 0 n,m,ν,c : g(ϑ n ) < ν, d(ϑ n ) < c
against the local alternatives H 1 n,m,ν,c : g(ϑ n ) ≥ ν and d(ϑ n ) ≥ c

where ν > 0, c > 0 are thresholds to determine significant HF features. The null hypothesis H 0 , is that there is no significant HF feature in the signal tested. On the contrary, the hypothesis H 1 implies that the signal has significant HF feature.

In order to compute the p-value of the test, we design a Monte-Carlo procedure simulating a proxy of the data (y i ) 0≤i≤n-1 under the null H 0 (cf Chapter 1, Section 1.3.2). Using the proxy, we define a reject region of our test for a risk level α and the p-value of the data (y i ) 0≤i≤n-1 . The p-value obtained will be an indicator of the presence of oscillations in the signal tested. 

Results

We first applied the procedure using test signals. This first test allowed us to check the robustness of our procedure. We note that for standard deviations of the noise between a tenth and twice the size of the amplitude of the oscillations, the p-value of the test is small. Hence we are inclined to reject the null hypothesis in favor of the alternative hypothesis. However, when the amplitude of the oscillations is ten times lower than the level noise, we cannot conclude that the signal displays significant oscillations. Moreover, for the test on the SLS signals displayed in Figure 7, we conclude that the signals have oscillations of significant amplitude compared to the noise and we obtain the HF features parameters for each signal. Finally, the numerical procedure to obtain the HF features parameters of a signal and compute its p-value is implemented in Python language and is available online (https://github.com/mmezache/HFFTest).

A review on the kinetic models for polymerisation/depolymerisation process

The second objective of this thesis is to propose and study a new polymerisation-depolymerisation model capable of explaining oscillations, which have been observed experimentally in the prion protein polymerisation experiments. We first recall classical results on polymerisation/depolymerisation models for the discrete size setting and for the continuous size setting.

The Becker-Döring model, an overview.

The most natural departure point in the formulation of a suitable mathematical model is the Becker-Döring model of polymerisation and depolymerisation [START_REF] Becker | Kinetische Behandlung der Keimbildung in übersättigten Dämpfen[END_REF]. The Becker-Döring model is coherent with other biological measurements, and it is viewed in the protein polymerisation literature as the "primary pathway" model [START_REF] Bishop | Kinetics of nucleation-controlled polymerization. A perturbation treatment for use with a secondary pathway[END_REF][START_REF] Prigent | An Efficient Kinetic Model for Assemblies of Amyloid Fibrils and Its Application to Polyglutamine Aggregation[END_REF].

Becker-Döring considers two reverse reactions: polymerisation through monomer addition, and depolymerisation due to monomer loss. Accordingly, the model is characterised by the following system of reactions, where C i denotes polymers containing i monomers -so that C 1 are the monomers -and a i , b i are the polymerisation resp. depolymerisation reaction rate coefficients:

       C 1 + C i a i -→ C i+1 , i ≥ 1, C i b i --→ C i-1 + C 1 , i ≥ 2.
The model was popularized in the mathematical communities by Penrose et al. in [START_REF] Penrose | Growth of clusters in a first-order phase transition[END_REF]. The model is formalised by an infinite-size ordinary differential equations (ODE) system. We let c i (t) ≥ 0 denote the concentration of polymers of size i > 0 at time t. The kinetics of the growth-fragmentation process is the following:

• The concentration of clusters of size i may grow when clusters of size i -1 become polymers of size i acquiring 1 monomer with the positive reaction rate a i-1 or when clusters of size i + 1 depolymerise with rate b i+1 .

• The concentration of clusters of size i may decrease by polymerising with a monomer with the rate a i or by depolymerising with the rate b i .

Hence the rate of increase of the concentration of clusters of size i is

J i-1 (c) = a i-1 c i-1 c 1 -b i c i , i ≥ 2.
The variation of the concentrations of each c i follows the differential equations:

d dt c i (t) = J i-1 (c)(t) -J i (c)(t), i ≥ 2. ( 4 
)
Monomers are involved in all the reactions, thus the evolution of monomers is denoted c 1 and is driven by the following differential equation:

d dt c 1 (t) = -2J 1 (c)(t) - i≥2 J i (c)(t). (5) 
Furthermore, the Becker-Döring model describes the kinetics of aggregation-fragmentation process in a closed environment, there is no addition or depletion of element in the system. Consequently, the total mass is a conserved quantity:

i≥1 ic i (t) = ρ, ∀t ≥ 0,
where ρ is a constant which denotes the total mass of the system.

Well-posedness. The general result on existence and uniqueness on Becker-Döring first appeared in [START_REF] Ball | The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions[END_REF]. Ball et al. rigorously defined the solutions of the system (4)- [START_REF] Armiento | Estimation from Moments Measurements for Amyloid Depolymerisation[END_REF], solutions which belong to the following Banach space:

X + :=        c ∈ R N + : c = i≥1 i|c i | < ∞       
. Definition 1. Let 0 < T ≤ ∞] and c(0) := c 0 ∈ X + . A solution c = (c i ) of (4)-( 5) on [0, T ) is a function c : [0, T ) → X + such that 1. each c i is continuous and sup

t∈[0, T ) c(t) < ∞,

2.

i≥1 a i c i ∈ L 1 (0, t) and i≥1 b i c i ∈ L 1 (0, t) and

c i (t) = c i (0) + t 0 J i-1 (c)(s) -J i (c)(s)ds, i ≥ 2, c 1 (t) = c 1 (0) - t 0 J 1 (c)(s) + i≥2 J i (c)(s)ds
for all t ∈ [0, T ).

Ball et al. proved the following theorem in [START_REF] Ball | The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions[END_REF] extending the results on a truncated system of finite size by using compactness arguments to pass to the limit.

Theorem 1 (Well-posedness, Theorems 2.2 and 3.6 in [START_REF] Ball | The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions[END_REF]). Let c 0 ∈ X + . Assume a i = O(i) and i≥1 i 2 c 0 i < ∞. The Becker-Döring equations (4)-( 5) have a unique solution c on [0, ∞) subject to the initial data c 0 . Moreover Introduction for all t ≥ 0,

i≥1 ic i (t) = i≥1 ic 0 i := ρ.
The well-posedness of the Becker-Döring system has been completed by Laurençot and Mischler in [START_REF] Laurençot | From the Becker-Döring to the Lifshitz-Slyozov-Wagner equations[END_REF],

the uniqueness is proved without extra condition on the initial data c 0 . However, additional assumptions on the reaction rates are assumed:

a i -a i-1 ≤ K, b i -b i-1 ≤ K, i ≥ 2
where K > 0 is a constant. The well-posedness of the Becker-Döring equations for general assumptions on the reaction rate is extensively studied.

Asymptotic behaviour. Equilibrium solutions c = ( ci ) i≥1 of ( 4)-( 5) must satisfy the following condition:

J i ( c) = 0, ∀i ≥ 1.
This condition leads to a recursion relation ci+1 = a i b i+1 ci . Finally, we obtain the equilibrium states parametrized only by the monomers concentration c1 :

ci = Q i ( c1 ) i , Q i := i j=2 a j-1 b j with Q 1 = 1.
Moreover, the equilibrium solutions must satisfy the mass conservation constraint:

i≥1 iQ i ( c1 ) i = ρ. ( 6 
)
The equation [START_REF] Armiento | The mechanism of monomer transfer between two structurally distinct PrP oligomers[END_REF] provides a delicate issue on the equilibrium solutions of the Becker-Döring system. To find the candidates of the equilibrium solutions leads to consider the power series whose coefficients are iQ i . We denote the radius of these series z s . z s is explicitly obtained in terms of rate coefficients by the Cauchy-Hadamard theorem:

z -1 s = lim sup i→∞ Q 1/i i .
Hence, the equilibrium solutions are well defined for 0 ≥ c 1 ≥ z s . Moreover, this leads to meta-stability in the long time behaviour of the Becker-Döring system (cf [START_REF] Penrose | Towards a rigorous molecular theory of metastability[END_REF]) since the initial mass of the system ρ may be considered larger as the critical mass ρ s :

ρ s = i≥1 iQ i z i s .
The solutions of (4)-( 5) are divided into three categories: the sub-critical solution when ρ < ρ s , the critical solution when ρ = ρ s and the super-critical solution when ρ > ρ s .

A first result of convergence towards equilibrium was given by Ball et al. in [START_REF] Ball | The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions[END_REF]. The reaction rates are chosen such that the radius of convergence z s = +∞ and the proof is based on the existence of a Lyapunov functional H which governs the trend to equilibrium:

H(c) = i≥1 c i ln c i Q i , d dt H(c) = -p(c(t),
where the dissipation is

p(c(t)) = i≥1 (a i c 1 c i -b i+1 c i+1 )(ln(a i c 1 c i ) -ln(b i+1 c i+1 )).
The results on the convergence towards equilibrium in ( 4)-( 5) was extended by Slemrod in [START_REF] Slemrod | Trend to equilibrium in the Becker-Doring cluster equations[END_REF], in particular the case where 0 < z s < ∞ is treated and the following theorem is established.

Theorem 2 (Convergence to equilibrium, Theorem 5.11 in [START_REF] Slemrod | Trend to equilibrium in the Becker-Doring cluster equations[END_REF]). Let c 0 ∈ X + with mass i≥1 ic

0 i = ρ such that H(c 0 ) < ∞. Assume a i = O(i), b i = O(i).
Assume moreover there exists z ∈ [0, z s ] such that a i z ≤ b i for sufficiently large i. Let c be the unique solution to the Becker-Döring equations (4)-( 5) on [0, ∞) with initial data c 0 . Then we have:

(i) If 0 ≤ ρ ≤ ρ s , then lim t→∞ i≥1 i|c i (t) -ci | = 0. (ii) If ρ > ρ s , then, for every i ≥ 1, lim t→∞ c i (t) = ci with i≥1 i ci = ρ s .
Remark 2. In Theorem 2 (ii), solutions have a mass ρ for all times, however, as the time goes to infinity, they converge in a weak sense to a steady-state having a strictly inferior mass. The excess ρρ s is describing the formation of particles with infinite sizes and is related to phase transition [START_REF] Slemrod | Trend to equilibrium in the Becker-Doring cluster equations[END_REF][START_REF] Penrose | Metastable states for the Becker-Döring cluster equations[END_REF].

The Becker-Döring model generated lots of interesting and new mathematical problems and significant results have been proved, e.g. the rate of convergence towards equilibrium [START_REF] Jabin | On the rate of convergence to equilibrium in the Becker-Döring equations[END_REF][START_REF] José | Exponential convergence to equilibrium for subcritical solutions of the Becker-Döring equations[END_REF][START_REF] Cañizo | Trend to equilibrium for the Becker-Döring equations: An analogue of Cercignani's conjecture[END_REF]. For more results about the Becker-Döring theory, we recall the studies [START_REF] Hingant | Deterministic and stochastic Becker-Döring equations: Past and recent mathematical developments[END_REF][START_REF] Niethammer | On the Evolution of Large Clusters in the Becker-Döring Model[END_REF][START_REF] Penrose | The Becker-Döring equations for the kinetics of phase transitions[END_REF][START_REF] John | Asymptotic solutions of the Becker-Döring equations with size-dependent rate constants[END_REF][START_REF] José A Canizo | Uniform moment propagation for the Becker-Döring equations[END_REF].

A continuous polymerisation/depolymerisation model: the Lifshitz-Slyozov model.

The Lifshitz-Slyozov model was first introduced in the seminal paper [START_REF] Ilya | The kinetics of precipitation from supersaturated solid solutions[END_REF] and was originally designed to formalize the formation of a new phase in solid solution. It describes the formation of aggregates or polymers by the addition of monomers in a continuous size setting. In the following, we denote v(t) the concentration of monomers at time t and f (t, x) the concentration of polymers of size x > 0 at time t. In our study, the model describes the kinetics happening during SLS experiments, hence we assume a closed and space-homogeneous environment. This translates into the constraint that the total mass needs to be conserved:

v(t) + ∞ 0 xf (t, x)dx = v(0) + ∞ 0 xf (0, x)dx := ρ, ∀t ≥ 0. (7) 

Introduction

We denote by ρ the total mass of monomers and xf (t, x)dx can be interpreted as the concentration of monomers in the polymerised form. Hence, the concentration of polymers satisfies the following equation:

∂f ∂t + ∂ ∂x (a(x)v(t) -b(x))f (t, x) = 0, f (0, x) = f 0 (x) ≥ 0. ( 8 
)
Note that in [START_REF] Bao | Pre-equilibration kinetic size-exclusion chromatography with mass spectrometry detection (peKSEC-MS) for label-free solution-based kinetic analysis of protein-small molecule interactions[END_REF], the depolymerisation rate is denoted by b(x), the polymerisation rate is denoted by a(x) and both rates can be size-dependent. In the original seminal paper [START_REF] Ilya | The kinetics of precipitation from supersaturated solid solutions[END_REF], the authors assume the following reaction coefficients

a(x) = x 1 3 , b(x) = 1.
Using these definitions of the reaction rates, no boundary condition at x = 0 is required since the flux at zero is always going outward. Moreover, one key assumption for the phase transition model is that for larger sizes, the polymerisation rate is bigger than the depolymerisation rate, whereas the reverse is true for smaller sizes. This leads to the phenomenon called "Ostwald ripening" which describes the formation of larger and larger clusters at the expense of smaller ones (see e.g. [START_REF] Ilya | The kinetics of precipitation from supersaturated solid solutions[END_REF][START_REF] Niethammer | Derivation of the LSW-Theory for Ostwald Ripening by Homogenization Methods[END_REF]).

The model containing Equation ( 8) can be completed by the mass conservation equation [START_REF] Ball | The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions[END_REF]. Assuming more assumptions on v(t), it can also be completed by the following equation for the concentration of monomers:

dv dt = ∞ 0 b(x)f (t, x)dx -v(t) ∞ 0 a(x)f (t, x)dx, v(0) = v 0 . ( 9 
)
From Becker-Döring to Lifshitz-Slyozov. In [START_REF] Collet | The Becker-Döring System and Its Lifshitz-Slyozov Limit[END_REF], the authors show that the Lifshitz-Slyozov system can be obtained as an asymptotic limit of the Becker-Döring system. The leading idea to demonstrate the asymptotic equivalence is to consider the functions (c i (t)) i>1 , the solution of the Becker-Döring system, as a discretisation in space of a function f (t, x), that, with a function v for the monomer concentration, solves the Lifshitz-Slyozov system. The authors introduced a scaling parameter ε and showed that the solution of the Becker-Döring system converges to that of the Lifshitz-Slyozov system as ε goes to 0.

In the following, we describe the main steps to get this result. We start by rewriting the system (4)- [START_REF] Armiento | Estimation from Moments Measurements for Amyloid Depolymerisation[END_REF] in a dimensionless form. The reference quantities used to rescale are:

• T : characteristic time,

• C 1 : characteristic value for the monomer concentration,

• C: characteristic value for the polymers concentrations,

• A 1 : characteristic value for the polymerisation coefficient a 1 ,

• A: characteristic value for the polymerisation coefficients a i i ≥ 2,

• B: characteristic value for the depolymerisation coefficients,

• M: characteristic value for the total mass,

• M m : mass of one monomer.

We rescale every variable by its characteristic value:

t = t T , c1 = c 1 ( tT ) C 1 , ci = c i ( tT ) C , ρ = ρ M , āi = a i A , ā1 = a 1 A 1 , bi = b i B , for i ≥ 2.
We define the dimensionless parameters :

γ = C C 1 , µ = M M m C 1 , α = AT C 1 , α 1 = A 1 C 1 AC , β = BT .
The dimensionless form of the system (4)-( 5) is then (omitting the overlines):

                         d dt c i = α(a i-1 c 1 c i-1 -a i c 1 c i ) + β(b i+1 c i+1 -b i c i ) i ≥ 2, d dt c 2 = α 1 αa 1 c 2 1 -αa 2 c 1 c 2 + β(b 3 c 3 -b 2 c 2 ), d dt c 1 = -γ 2(α 1 αc 2 1 -βb 2 c 2 ) + ∞ i=2 (αa i c 1 c i -βb i+1 c i+1 ) , ( 10 
)
and the mass conservation is

c 1 + γ ∞ i=2 ic i = µρ. ( 11 
)
The dimensionless parameters γ, µ, α, α 1 , β appear as coefficients in ( 10)- [START_REF] Ermias | The public health impact of prion diseases[END_REF]. Furthermore, we define the piecewise constant function f ε (t, x) as follows:

           f ε (t, x) = c ε i (t) if x ∈ [iε; (i + 1)ε) for i ≥ 2, t > 0, f ε (t, x) = 0 if x ∈ [0, 2ε),
where c ε i is the solution of the system [START_REF] Ermias | Transmissible spongiform encephalopathies in humans[END_REF] with the suitable choice of the dimensionless parameters [START_REF] Collet | The Becker-Döring System and Its Lifshitz-Slyozov Limit[END_REF]:

With this choice of parameters, the rescaled version of the system (10)-( 11) is:

                         d dt c i = 1 ε (a i-1 c 1 c i-1 -a i c 1 c i ) + 1 ε (b i+1 c i+1 -b i c i ) i ≥ 2, d dt c 2 = 1 ε α 1 a 1 c 2 1 -1 ε a 2 c 1 c 2 + 1 ε (b 3 c 3 -b 2 c 2 ), d dt c 1 = -ε 2(α 1 c 2 1 -b 2 c 2 ) + ∞ i=2 (a i c 1 c i -b i+1 c i+1 ) ,
and the mass conservation equation

c ε 1 + ε 2 ∞ i=2 ic ε i = ρ.
Collet et al. proved in [START_REF] Desvillettes | Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations[END_REF] that for ε close to 0, the couple (c ε 1 , f ε ) is an approximate solution of the Lifshitz-Slyozov system.

Theorem 3 (First-order approximation, Theorem 2.3 in [START_REF] Collet | The Becker-Döring System and Its Lifshitz-Slyozov Limit[END_REF]). Assume that the kinetic coefficients a i , b i satisfy

a i , b i ≤ K, |a i+1 -a i | ≤ K i , |b i+1 -b i | ≤ K i for some constant k > 0. Consider a sequence ε n → 0.
Then there exist a subsequence, still denoted by ε n , and two functions

a, b ∈ W 1,∞ ((0, ∞)) ∩ L ∞ (R + ) such that lim ε n →0 sup r/ε n <i<R/ε n |a i -a(iε n )| + |b i -b(iε n )| = 0, ∀ 0 < r < R < ∞.
Assume, moreover, that there exist constants

0 < s ≤ 1, M 0 < ∞, ρ < ∞, M s < ∞ for which for all ε > 0 ε ∞ i=2 c 0,ε i ≤ M 0 , c 0,ε 1 + ε 2 ∞ i=2 ic 0,ε i = ρ, ε ∞ i=2 (iε) 1+s c 0,ε i ≤ M s .
Then the subsequence ε n may be chosen in such a way that

           f ε n f , xf ε n xf in C 0 ([0, T ]; M 1 (0, ∞) -weak -), c ε n 1 (t) → c 1 (t) uniformly in C 0 ([0, T ]),
where (c, f ) is a solution to (7)- [START_REF] Bao | Pre-equilibration kinetic size-exclusion chromatography with mass spectrometry detection (peKSEC-MS) for label-free solution-based kinetic analysis of protein-small molecule interactions[END_REF].

The space M 1 (0, ∞) denotes the space of bounded measures on (0, ∞), it is the dual of the space of continuous function on (0, ∞) with compact support, namely C 0 0 (0, ∞). The function f is in this context a measure-valued solutions (see [START_REF] Collet | On solutions of the Lifshitz-Slyozov model[END_REF]). The proof of Theorem 3 relies on moment estimates and equicontinuity arguments. More details on the link between the Becker-Döring system and the Lifshitz-Slyozov system with different framework can be found in [START_REF] Laurençot | From the Becker-Döring to the Lifshitz-Slyozov-Wagner equations[END_REF][START_REF] Laurençot | From the discrete to the continuous coagulationfragmentation equations[END_REF][START_REF] Niethammer | On the Evolution of Large Clusters in the Becker-Döring Model[END_REF][START_REF] Schlichting | Macroscopic limit of the Becker-Döring equation via gradient flows[END_REF].

Moreover, second-order approximations shed light on the link between the Becker-Döring and Fokker-Planck like equations. For example, in [START_REF] Collet | The Becker-Döring System and Its Lifshitz-Slyozov Limit[END_REF], the authors introduced the modified Lifshitz-Slyozov equations:

                       ∂ ∂ t g + ∂ ∂ x G(g; t, x) = 0, G(g; t, x) = (a(x)c(t) -b(x))g(t, x) -ε ∂ ∂ x a(x)c(t)+b(x) 2 g(t, x) , (a(0)c(t) + b(0))g(t, 0) = 2a 1 c(t) 2 , ( 12 
)
with the mass-conservation law

c(t) + ∞ 0 xg(t, x)dx = ρ.
The term with second derivative in space corresponds to a diffusion term. This diffusion term comes from the underlying mechanisms of the discrete Becker-Döring system.

Well-posedness. We recall now some results on the Lifshitz-Slyosov model ( 8)-( 7) or ( 8)-( 9). The well-posedness has been established by Collet and Goudon in [START_REF] Collet | On solutions of the Lifshitz-Slyozov model[END_REF]. The autors proved the following theorem, stating the existence and uniqueness of solutions of ( 8)- [START_REF] Ball | The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions[END_REF].

Theorem 4 (Well-posedness of the Lifshitz-Slyozov solutions, Theorem 1 in [START_REF] Collet | On solutions of the Lifshitz-Slyozov model[END_REF]). Let a, b be

C 1 functions on [0, ∞) such that a(x) ≥ 0, b(x)≥ 0, a(0)M -b(0) ≤ 0, |a (x)| + |b (x)| ≤ K.
Let the initial data f 0 be nonnegative and satisfy

∞ 0 f 0 (x)dx < ∞, ∞ 0 xf 0 (x)dx < M.
Then the system (8)-( 7) has a unique solution

(v, f ) where v ∈ C 0 ([0, T ]) , xf ∈ L ∞ [0, T ]; L 1 ([0, ∞)) .
The condition a(0)Mb(0) ≤ 0 ensures the fact that no boundary condition is needed. The proof of the theorem is based on the method of characteristic to obtain an expression of the density function in terms of the monomer concentration and then a fixed-point method.

Asymptotic behaviour. The asymptotic behaviour of the Lifshitz-Slyozov model for general assumptions on the reaction rates is still an open problem. However, Calvo, Doumic and Perthame recently established in [START_REF] Calvo | Long-time asymptotics for polymerization models[END_REF] the exponential convergence towards a dirac mass in the following theorem.

Theorem 5 (Convergence to a critical mass, Theorem 1.1 in [START_REF] Calvo | Long-time asymptotics for polymerization models[END_REF]). Let a(x) = 1 and b(x

) ≥ 0 such that b ∈ C 1 (R + ), ∃ α, β > 0, 0 < α ≤ b (x) ≤ β v 0 > b(0) ≥ 0.
Moreover, we assume that

f 0 ∈ L 1 (R + , (1 + x 2 )dx) with ρ 0 = ∞ 0 f 0 (x)dx > 0.
Then there exists a unique solution x > 0 to the equation

M = ρ 0 x + b( x)
and the solution

(v, f ) ∈ C 1 (R + × C(R + , L 1 ((1 + x 2 )dx)) to the Lifshitz-Slyozov system (8)-(9) is such that f (t, x)
converges to ρ 0 δ x exponentially fast in the sense of the Wasserstein distance: for some constant C > 0 we have

W 2 (f (t, •), ρ 0 δ x) ≤ Ce -αt , |v(t) -b( x)| ≤ Ce -αt .
The proof of Theorem 5 is based on Entropy inequalities. The study of the Lifshitz-Slyozov equations is still an active research field and open problems remain for more general assumptions on the reaction coefficients. Further results can be found in [START_REF] Niethammer | Non-Self-Similar Behavior in the LSW Theory of Ostwald Ripening[END_REF][START_REF] Laurençot | Weak Solutions to the Lifshitz-Slyozov-Wagner Equation[END_REF][START_REF] Niethammer | On the Initial-Value Problem in the Lifshitz-Slyozov-Wagner Theory of Ostwald Ripening[END_REF][START_REF] Thierry Goudon | The Lifschitz-Slyozov equation with space-diffusion of monomers[END_REF][START_REF] José | A numerical study on large-time asymptotics of the Lifshitz-Slyozov system[END_REF] The modified Lifshitz-Slyozov system with a diffusion term seems to be a more realistic continuous setting for the polymerisation/depolymerisation.

However, some interesting questions on this continuous setting with diffusion are still under active research [START_REF] Velázquez | The Becker-Döring equations and the Lifshitz-Slyozov theory of coarsening[END_REF][START_REF] Collet | Some modelling issues in the theory of fragmentation-coagulation systems[END_REF][START_REF] Joseph G Conlon | On Large Time Behavior and Selection Principle for a Diffusive Carr-Penrose Model[END_REF].

Kinetic models capable of displaying oscillations.

A key question of our study is thus the following: What kind of core elements should a model feature in order to explain the appearance of such oscillations? A recent study from Pego and Velazquez [START_REF] Robert | Temporal oscillations in Becker-Döring equations with atomization[END_REF] shows that oscillations occur in a modified Becker To date, very few mathematical models have taken into account the coexistence of multiple prion assemblies or multiple type of fibrils [START_REF] Collinge | A General Model of Prion Strains and Their Pathogenicity[END_REF]. Indeed, most of the aggregation models have been built using the canonical nucleation-elongation-fragmentation process seminally reported by Bishop and Ferrone (see e.g. [START_REF] Bishop | Kinetics of nucleation-controlled polymerization. A perturbation treatment for use with a secondary pathway[END_REF][START_REF] Masel | Quantifying the kinetic parameters of prion replication[END_REF][START_REF] Prigent | An Efficient Kinetic Model for Assemblies of Amyloid Fibrils and Its Application to Polyglutamine Aggregation[END_REF]), which is based on the existence of a structurally unique type of assemblies characterised only by their size distribution. The characterisation of multiple types of PrPSc subassemblies with different rates of polymerisation, depolymerisation requires new mathematical models. The analysis of the dynamics and relation between different subspecies leads to interesting new questions.

Discrete bi-monomeric Becker-Döring type model.

The most natural departure point in the formulation of a suitable mathematical model to describe the kinetics behind the SLS experiments in Figure 5 is the Becker-Döring model of polymerisation and depolymerisation. However damped oscillations, up to the best of our knowledge, have never been observed numerically or evidenced analytically. We thus needed a variant of the Becker-Döring model to explain the experimentally observed oscillations displayed in Figure 5. The model and its study is detailed in Chapter 2. We present here an overview of the results obtained.

Model. In [START_REF] Igel-Egalon | Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick[END_REF], it was recently shown that PrPSc assemblies are in equilibrium with an oligomeric conformer (suPrP) encoding the entire strain information and constituting an elementary building block of PrPSc assemblies. The fact that such an oligomeric building block appears separately from the monomeric PrP points towards models with two different quasi-monomeric species (i.e. one monomer and one oligomeric conformer in contrast to the polymer species C i ), each of which playing a role in a different reaction. A suitable mathematical model should also take into account the constraint that large polymers cannot interact directly, for reasons of size and order of magnitude of their concentrations.

Hence, we assume that polymers can only interact indirectly, through the exchange of monomers or small oligomeric conformers.

We propose the following model system: Let V and W denote the two monomeric species. Let C i be the polymers containing i monomers, where polymerisation signifies the amendment of a monomer W while depolymerisation only occurs when induced via the monomeric species V . More precisely, we consider

             V + W k - → 2W , W + C i a i -→ C i+1 , 1 ≤ i ≤ n, C i + V b i --→ C i-1 + 2V , 2 ≤ i ≤ n. ( 13 
)
with a reaction rate constant k for the monomer/conformer dynamics and polymerisation/depolymerisation coefficients a i and b i .

We emphasize the two main differences of (13) as compared to the classical Becker-Döring system:

First, instead of one monomeric species c 1 , we now consider two interacting species of monomers (or conformers), V and W . Secondly, depolymerisation is modelled as a monomer induced, nonlinear process, which requires the catalytic action of V . Note that this process is reminiscent of the cyclical behaviour of the three-species system:

V + W k - → 2W , W + M a - → 2M, M + V b - → 2V , ( 14 
)
which is known to produce sustained periodic oscillations, see [START_REF] Aizik | Analysis in classes of discontinuous functions and the equations of mathematical physics[END_REF], where it is called the Ivanova system, or [START_REF] Turner | A simple model of the Belousov-Zhabotinsky reaction from first principles[END_REF], where it is referred to as a simplification of the Belousov-Zhabotinsky system.

We denote by c i (t), v(t) and w(t) the concentrations at time t of the polymers containing i monomers, the depolymerising and the polymerising monomeric species. As in [START_REF] Penrose | Towards a rigorous molecular theory of metastability[END_REF], we introduce the net rate of an i-polymer being converted to an (i + 1)-polymer by

J i = wa i c i -vb i+1 c i+1 , 1 ≤ i ≤ n -1.
With the convention J 0 = J n = 0, by using the mass-action law, model ( 13) yields the following system of differential equations:

                   dv dt = -kvw + v n i=2 b i c i , v(0) = v 0 , dw dt = -w n-1 i=1 a i c i + kvw, w(0) = w 0 , dc i dt = J i-1 -J i , c i (0) = c 0 i , 1 ≤ i ≤ n. ( 15 
)
We first remark that solutions to System [START_REF] Richard | Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy[END_REF] have two conserved quantities, obtained by weighted sums of the equations:

1. The total concentration of polymerised species, since d dt n i=1 c i = 0. This conservation law is linked to the fact that we neglect nucleation.

2. The total mass, since d dt v + w + n i=1 ic i = 0, which indicates that there is no gain or loss of particles during the chemical reactions: the system is closed.

As a consequence of those two conservation laws, we introduce

P 0 := n i=1 c 0 i , M tot := v 0 + w 0 + n i=1 ic 0 i .
Moreover, we denote as M k (t) the moment of order k of c = (c i ) for k ∈ N * :

M k (t) = i≥1 i k c i (t). ( 16 
)
The signal obtained by the SLS experiments is approximated by the second order moment of the size distribution of c in the model and the numerical simulations.

Well-posedness. We introduce the Banach sequence spaces

1 1 = {y = (y i ) : y < ∞}, y = ∞ i=1 i|y i |. and X = {x = (v, w, c) = (v, w, c 1 , c 2 , . . .) : x X < ∞}, x X = |v| + |w| + c . Definition 2. Let 0 < T ≤ ∞ and c = (c i ). A nonnegative solution x = (v, w, c) of (15) with n = ∞ on [0, T ) is a function x : [0, T ) → X such that 1. x(t) ≥ 0 for all t ∈ [0; T ), i.e. v(t) ≥ 0, w(t) ≥ 0, c i (t) ≥ 0 for each i, 2. v, w : [0, T ) → R and c i : [0, T ) → R for all i ≥ 1 are continuous with sup t∈[0,T ) x(t) X < ∞, 3. t 0 ∞ i=1 a i c i (s)ds < ∞, t 0 ∞ i=2 b i c i (s)ds < ∞ for all t ∈ [0, T ) and 4. v, w and c satisfy for all t ∈ [0, T )                          v(t) = v 0 + t 0 -kv(s)w(s) + v(s) ∞ i=2 b i c i (s) ds, w(t) = w 0 + t 0 -w(s) ∞ i=1 a i c i (s) + kv(s)w(s) ds, c i (t) = c 0 i + t 0 J i-1 (s) -J i (s) ds, i ≥ 1, J 0 = 0.
Theorem 6 (Well-posedness of the infinite dimensional system).

Let T > 0 be arbitrary and consider x 0 = (v 0 , w 0 , c 0 ) satisfy x 0 X < ∞. Assume

a i = O(i), b i+1 = O(i + 1), ∀ i ≥ 1.
Then, System [START_REF] Richard | Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy[END_REF] with n = ∞ has a nonnegative solution for t ∈ [0, T ) with v(t) ≥ 0, w(t) ≥ 0, c i (t) ≥ 0 for t ≥ 0 and all 1 ≤ i satisfying

v(t) + w(t) + ∞ i=1 ic i (t) = v 0 + w 0 + ∞ i=1 ic 0 i , ∞ i=1 c i (t) = ∞ i=1 c 0 i , ∀t ≥ 0. Moreover, if ∞ i=1 i 2 c 0 i < ∞, then the solution is unique and satisfies sup t∈[0,T ) ∞ i=1 i 2 c i (t) < ∞.
The proof of Theorem 6 adapts well-known results of the Becker-Döring system as presented in [START_REF] Ball | The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions[END_REF].

The main novelty lies in the nonlinearity of the depolymerisation terms, which requires the supplementary assumption for the b i .

Asymptotic behaviour. The main issue encountered in the study of the asymptotic behaviour of the solutions of ( 15) is that no Lyapunov functional (Entropy) is known. Hence, in order to have some insights on its behaviour, we study the system when n = 2, n ∈ N with n < ∞ and n = ∞. First, we provide a complete and explicit study of the two-polymer case n = 2, which features a pivotal mechanism of damped periodic oscillations in the case of a large reaction rate k compared to the polymerisation coefficients.Let the reaction rates a 1 = 1, b 2 = 1 (for the sake of clarity). Using the conservation laws, the system ( 15) is reduced to two coupled differential equations:

         dv dt = v [M -(k + 1)w -v] , v(0) = v 0 , dw dt = w [(M -P 0 ) + (k -1)v -w] , w(0) = w 0 , ( 17 
)
where M = M tot -P 0 . The above system is a generalization of the Lotka-Volterra system in its quadratic form. Under the assumption P 0 ∈ kM 1+k , kM , there is a unique positive steady-state for [START_REF] Bett | Enhanced neuroinvasion by smaller, soluble prions[END_REF] which is the intersection of the null-clines. We denote this positive steady-state (v ∞ , w ∞ ).

Theorem 7 (Exponential convergence to positive equilibrium). Let P 0 ∈ kM 1+k , kM and consider v, w the solutions of [START_REF] Bett | Enhanced neuroinvasion by smaller, soluble prions[END_REF] with (v ∞ , w ∞ ) > 0 the positive steady state. Let

H : R * + × R * + → R the differentiable function such that H(v, w) = v -v ∞ log(v) + w -w ∞ log(w).
Then, H is a convex Lyapunov functional.

d dt H(v(t), w(t)) = - 1 k p 2 (v(t), w(t)), with p(v, w) := [(v -v ∞ ) + (w -w ∞ )]. Moreover, for 1 k << 1, every solution (v(t), w(t)) with initial data (v 0 , w 0 ) > 0 converges exponentially to (v ∞ , w ∞ ), i.e. |v -v ∞ | 2 + |w -w ∞ | 2 ≤ C H(v 0 , w 0 ) -H(v ∞ , w ∞ ) e -1 k rt ,
where the positive rate r and constant C depend only on

H 0 := H(v 0 , w 0 ) and (v ∞ , w ∞ ).
Theorem 7 states the existence of a Lyapunov functional and proves exponential convergence to an equilibrium of solutions despite their highly oscillatory behaviour. The proof is based on convex local estimates around the degeneracy line d dt H = 0 and the entropy dissipation method.

Secondly, we focus on the case where the maximal size of polymers n is finite. We study the existence of steady states and their stability. We introduce several parametric regions -graphically illustrated in Figure 8-which will defining the stability or instability regions of the boundary steady states (BSS).

n + b n k ≤ M tot P 0 (region with horizontal green stripes in Fig. 8), ( 18)

n < M tot P 0 < n + b n k
(light blue region in Fig. 8), ( 19)

M tot P 0 ≤ 1 + a 1 k
(grey diagonally hatched region in Fig. 8).

(

) 20 
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a 1 ≤ b n Mtot P0 1 k Mtot P0 = n M to t P 0 = n + b n k M to t P0 = 1 + a1 k Case a 1 > b n Mtot P0 1 k M to t P 0 = 1 + a 1 k Mtot P0 = n M to t P 0 = n + b n k Figure 8
-Stability regions of the SSs of the finite system (15) in the 1 k -M tot P 0 parametric space: (BSSa) are always unstable. Grey diagonally hatched zone ⇐⇒ (20) ⇐⇒ asymptotically stable (BSSb), which is unstable elsewhere. Green horizontal lines ⇐⇒ (18) ⇐⇒ asymptotically stable (BSSc). Light blue zone ⇐⇒ (19) ⇐⇒ unstable (BSSc). Zone with red stars ⇐⇒ existence of at least one PSS (in case a 1 > b n coexisting with a stable (BSSb) in the horizontally hatched region; otherwise coexisting only unstable BSSs.)

Proposition 1 (Nonnegative Steady States). Let a i > 0, b i+1 > 0 for 1 ≤ i ≤ n -1, let v 0 , w 0 > 0 and P 0 > 0, M tot ≥ v 0 + w 0 + P 0 > 0. Then,

there exists three kinds of boundary steady states (BBS):

(BSSa) There exist unstable BSSs: v = w = 0 and ( ci ) 1≤i≤n satisfies

n i=1 ci = P 0 , n i=1 i ci = M tot .
(BSSb) There exists a BSS: v = M tot -P 0 > 0, w = 0, c1 = P 0 , ci = 0 for 2 ≤ i ≤ n. This BSS is locally asymptotically stable under Assumption (20) (grey diagonally hatched in Fig. 8) and unstable elsewhere.

(BSSc) Under the additional assumption M tot P 0 > n, there exists another BSS: v = 0, w = M tot -nP 0 > 0, ( ci ) 1≤i≤n-1 = 0 and c n = P 0 . This BSS is locally asymptotically stable under Assumption [START_REF] Bishop | Kinetics of nucleation-controlled polymerization. A perturbation treatment for use with a secondary pathway[END_REF] (green horizontal lines) and otherwise unstable, which corresponds to Assumption [START_REF] David C Bolton | Identification of a protein that purifies with the scrapie prion[END_REF] (light blue zone).

2. There exists (at least one) positive steady state (PSS) ( v, w, ci ) 1≤i≤n provided that the polynomial P (z) defined as

P (z) := a 1 k + 1 - M tot P 0 + n-1 i=2 a i k + i - M tot P 0 + b i k i-1 j=0 a j b j+1 z i-1 + n - M tot P 0 + b n k n-1 j=0 a j b j+1 z n-1 (21) has a root z > 0. Given z > 0, we have v = c1 n-1 i=1 a i k zi-1 i-1 j=0 a j b j+1 , w = c1 n-1 i=1 a i k zi i-1 j=0 a j b j+1 , c1 = P 0 n i=1 zi-1 i-1 j=0 a j b j+1 , ci = zi-1 i-1 j=0 a j b j+1 c1 , 2 ≤ i ≤ n. ( 22 
)
If all BSSs are unstable, i.e. 1 + a 1 k < M tot P 0

< n + b n k , then there exists at least one positive steady state. Moreover, if the sequences (a i ), (b i ) are nondecreasing, the positive steady state is unique.

Further details are obtained in the case of constant coefficients, where we discuss the various zones of stability or instability with respect to the parameters in Chapter 2, Section 2.4. Moreover, numerical simulations of the system illustrate the oscillatory behaviour of the size distribution of the concentration of polymers, see Figure 9.

Finally, we analyze steady states of the infinite system n = ∞. In the following, we assume that the coefficients satisfy

a i > 0, b i+1 > 0, ∀i ≥ 1 and ∃ K > 0 : max i≥1 a i i , b i i , a i b i+1 ≤ K. ( 23 
)
Proposition 2 (Steady states of the infinite case system and their local stability).

Let v 0 > 0, w 0 > 0, P 0 > 0 and M tot ≥ v 0 + w 0 + P 0 > 0. Let (a i , b i+1 ) i≥1 satisfy (23).
Then, there exist the following steady states ( v, w, ci≥1 ) of System [START_REF] Richard | Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy[END_REF] with n = ∞:

(BSSa) The trivial BSSs v = w = 0 and ci≥1 ∈ 1 1 satisfying ∞ i=1 ci = P 0 , and which are always linearly unstable.

∞ i=1 i ci = M tot ,
(BSSb) The BSS v = M tot -P 0 , w = 0, c1 = P 0 and ci≥2 = 0. This steady state is locally asymptotically stable iff

M tot P 0 ≤ a 1 k + 1. ( 24 
)
(PSS) Under assumption (2.40), there exists no positive steady state (PSS). Conversely, if

M tot P 0 > a 1 k + 1, (25) 
then there exists a unique PSS ( v, w, ci≥1 ). Note that as already noted for the n-polymer model, the stability of the PSS is an open problem.

Proposition 2 proved that there exists a unique positive steady state under assumption [START_REF] Buckheit | Wavelab reference manual[END_REF]. This assumption means that the ratio M tot P 0 needs to be "sufficiently large", else the polymers are unstable in the sense that all the mass goes back to the polymer of minimal size 
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Continuous bi-monomeric Lifshitz-Slyozov type model.

The study of a Becker-Döring type model for large clusters is a challenge, few results exist on non-linear infinite size differential systems and the computational cost for numerical simulations is a limiting obstacle. The maximum size in P rP Sc fibrils is of order 10 4 , hence considering a continuous size setting is beneficial in order to provide more insights on the kinetics of Prion process. The continuous setting is viewed as the "macroscopic" limit of the Becker-Döring type model and the mathematical structure of the resulting PDE-ODE system appears to be simpler. Hence, we introduce the corresponding bi-monomeric Lifshitz Slyozov type system and study its asymptotical behaviour. The following results are detailed in Chapter 3 .

Model. In the previous Section, we detailed the study and results on the bi-monomeric Becker-Döring type system. We may now consider the size of clusters as a continuously varying variable x > 0 which now replace i. The quantity f (t, x) denotes the density of aggregates of size x at time t, and v(t), w(t) denote the concentration of monomers. We then obtain the following equations:

                                                 ∂ t f + ∂ x J= 0, x > 0, t ≥ 0, f (0, x) = f 0 (x), J(t, x) = a(x)w(t) -b(x)v(t) f (t, x), d dt v(t) = -kv(t)w(t) + v(t) ∞ 0 b(x)f (t, x)dx, v(0) = v 0 > 0, d dt w(t) = -w(t) ∞ 0 a(x)f (t, x)dx + kv(t)w(t), w(0) = w 0 > 0, 0 = a(0)w(t) -b(0)v(t) f (t, 0)1 {a(0)w(t)-b(0)v(t)>0} , ∀t > 0. (26) 
The system [START_REF] Büeler | Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein[END_REF] is viewed as the "macroscopic" limit of the system [START_REF] Richard | Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy[END_REF] with n = ∞. Also, the solutions of the system (26) follow a conservation law of the total mass M of the population:

v(t) + w(t) + ∞ 0 xf (t, x)dx = v 0 + w 0 + ∞ 0 xf 0 (x)dx = M. ( 27 
)
We denote the moment of magnitude n by M n :

M n (t) = 1 n ∞ 0 x n f (t, x)dx,
and the total number of polymers by ρ:

ρ(t) = ∞ 0 f (t, x)dx.
The last equation of ( 26) is a boundary condition which can be interpreted as the absence of the nucleation phenomenon. It implies that total concentration of polymerised fibrils remains constant:

ρ(t) = ∞ 0 f (t, x)dx = ∞ 0 f 0 (x)dx = ρ 0 .
We are interested in the steady-state and we denote two kinds of steady-state:

• the trivial steady-states: f (x) = 0 and v ∞ + w ∞ = M. It corresponds to a boundary steady-state and can be interpreted as the non pathological equilibrium. All fibrils are converted into the two species of monomers and the two species of monomers are at equilibrium.

• The nontrivial steady-state which enforce the following: there exists x > 0 such that f (x) 0. It can be interpreted as the pathological steady-state since polymers can be found at equilibrium.

We denote with (v ∞ , w ∞ , f ) the quantities at equilibrium.

Main results on the system [START_REF] Büeler | Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein[END_REF]. We note that the system in ( 26) is a coupled PDE/ODE system. The ODE part of the system is the following:

                 d dt v(t) =-kv(t)w(t) + v(t) ∞ 0 b(x)f (t, x)dx, d dt w(t) =-w(t) ∞ 0 a(x)f (t, x)dx + kv(t)w(t). ( 28 
)
The solution of the PDE in [START_REF] Büeler | Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein[END_REF] has an influence on the solutions of the ODE through an integral term.

However, assuming some rightfully chosen hypothesis on the reaction coefficients a(x) and b(x), the system (26) has 2 conserved quantities:

• ∞ 0 xf (t, x)dx + v(t) + w(t) = M, • ∞ 0 f (t, x)dx = ρ 0 .
In order for the ODE system to be decoupled of the PDE solution in [START_REF] Büeler | Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein[END_REF], the reaction coefficient functions have to be either constant, linear or affine function of the size variable x > 0. This comes from the fact that the integral terms in [START_REF] Cañizo | Trend to equilibrium for the Becker-Döring equations: An analogue of Cercignani's conjecture[END_REF] is replaced by one of the conserved quantities.

An interesting result is obtained if we suppose that the reaction rates are both linear:

∃a, b > 0, a(x) = ax, b(x) = bx.
In this case, the solutions (v, w) of ( 28) are periodic as well as the solution f of [START_REF] Büeler | Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein[END_REF]. We obtain the following result.

1. The solutions v(t), w(t) of (28) are periodic.

2. The solution f of (26) is periodic of the same period as v, w.

The proof of this proposition is detailed in Chapter 3. This result shows that the solution of the bi-monomeric Lifshitz-Slyozov model [START_REF] Büeler | Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein[END_REF] are periodic. Such a result is not observed in the experiments since the continuous model is a first order approximation of the "true" discrete model. The second order correction, a diffusion term, would dominate and change the behaviour of the solutions.

Moreover, even without the second order correction (the diffusion term), we show that the solutions of the system (26) display damped oscillations and f concentrate its mass at a critical size when a

(x) = 1, b(x) = bx with b > 0, ∀x ≥ 0.
Theorem 8 (Concentration at a critical size). Assume that the initial datum verifies v 0 , w 0 > 0 such that v 0 + w 0 < M and f 0 ∈ L 1 (R + , (1 + x 2 )dx) with ρ 0 = ∞ 0 f 0 (x)dx > 0. Moreover let k > 1 with k sufficiently large and 0 < ρ 0 < kM. And finally, assume that a, b [START_REF] Büeler | Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein[END_REF] and [START_REF] Calvo | Long-time asymptotics for polymerization models[END_REF] are such that f (t, x) converges to ρ 0 δ w ∞ bv ∞ exponentially fast in the sense of the Wasserstein distance: for some constant C > 0 we have

∈ C 1 (R + ) + satisfy a(x) = 1, b(x) = bx with b > 0, ∀x ≥ 0. The solution (v, w, f ) ∈ C 1 b (R + ) × C 1 b (R + ) × C R + , L 1 to the system
W 2 f (t, •), ρ 0 δ w ∞ bv ∞ ≤ Ce -βt , |X(t, z) -w ∞ bv ∞ | ≤ Ce -βt .
The proof of Theorem 8 relies on one entropy inequalites, inspired by [START_REF] Calvo | Long-time asymptotics for polymerization models[END_REF], and local convexity estimates for a Lyapunov functional, inspired by [START_REF] Doumic | A bi-monomeric, nonlinear Becker-Döring-type system to capture oscillatory aggregation kinetics in prion dynamics[END_REF]. This result shows that the solution of the bimonomeric Lifshitz-Slyozov system converges to a specific steady-state

(v(t), w(t), f (t, •)) ----→ t→∞ v ∞ , w ∞ , ρ 0 δ w ∞ bv ∞ .
The behaviour of the continuous bi-monomeric model is closely linked to the form of the reaction coefficients. We proved the existence of periodic solution in case of linear reaction coefficients and the convergence towards a positive steady-state (assimilated as the pathological state) for linear depolymerisation and constant polymerisation coefficients. On the contrary, only damped and not sustained oscillatory solutions have been observed for the discrete bi-monomeric model. The solutions either converge to the positive steady-state or the boundary steady-state. This difference between the continuous and the discrete model can be explained by the absence of the diffusion term in the continuous model.

Biochemical evidence of heterogeneity of the structure of amyloid fibrils.

The experiments studied in Chapter 4 provide new hypothesis on the molecular structure of Prion assemblies. In order to ascertain the new mechanisms in Prion assemblies, we model the kinetics and confront the experimental results with numerical simulations. Biochemical experiments and modeling help to gain more insights and knowledge about prion diseases. In Chapter 4, we study the quaternary structure (size distribution and architecture) of prion assemblies. We first describe the experiments. Then we explain how experiments show the heterogeneity of prion assemblies and the existence of at least two sub-assemblies and how models comfort the hypothesis.

Biological experiments.

Protein Misfolded Cyclic Amplification (PMCA) experiments. PMCA (Protein Misfolded Cyclic Amplification) is an amplification protocol that accelerates the conversion of P rP c protein to P rP Sc in vitro. The technique consists of submitting a sample containing a small amount of P rP Sc at an alternation of incubation and sonication phases. The incubation phases are intended to promote the polymerization of aggregates. For this purpose the sample is left to rest in the presence of a large amount of P rP c . The sonication phases have the following objectives to significantly increase polymer fragmentation. The sample is then placed in a sonicator that breaks aggregates with ultrasound (cf Figure 10). The efficiency of the protocol depends in part on the duration of the various phases. PMCA is one of the method to reproduce in vitro the early replication stage of Prion diseases. Size distribution by sedimentation velocity (S.V) experiments. Sedimentation velocity is an analytical ultracentrifugation (AUC) method that measures the rate at which molecules move in response to centrifugal force generated in a centrifuge [START_REF] David | A brief introduction to the analytical ultracentrifugation of proteins for beginners[END_REF][START_REF] James | Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium[END_REF][START_REF] Howard K Schachman | Ultracentrifugation in biochemistry[END_REF]. This sedimentation rate provides information about both the molecular mass and the shape of molecules. This experimental method is used to detect aggregates in protein samples and to quantify the amount of aggregates. The sedimentation coefficient s is defined as the ratio of the linear velocity of sedimentation of a protein v over the the gravitational field ω 2 r (where ω is the angular velocity and r is the distance form the center of rotation):

s = v ω 2 r .
The forces acting on a particle during a sedimentation experiment are the gravitational field which depends on the mass of the particle M p and the friction with the solvent. The friction is a counterforce exerted on the particle by the solvent and is characterized by the frictional coefficient f . The sedimentation coefficient satisfies also the following relationship [START_REF] James | Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium[END_REF]:

s = M p (1 -vρ) f ,
where v is the partial specific volume of the particle and ρ is the density of the solvent. M p (1 -vρ) characterizes the effective mass of the particle during the experiment. The negative term comes from the counterforce exerted by the mass of the solvent which is displaced when the particle sediments. More details on sedimentation velocity can be found in [START_REF] James | Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium[END_REF][START_REF] Demeler | Sedimentation velocity analysis of highly heterogeneous systems[END_REF][START_REF] Richard | Separation of cells by velocity sedimentation[END_REF][START_REF] Howard K Schachman | Ultracentrifugation in biochemistry[END_REF] .

Several different methods using sedimentation velocity have been developed to perform a size distribution analysis of protein polymers [START_REF] Schuck | Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling[END_REF][START_REF] Howlett | Analytical ultracentrifugation for the study of protein association and assembly[END_REF][START_REF] Lebowitz | Modern analytical ultracentrifugation in protein science: a tutorial review[END_REF]. During sedimentation velocity experiments, the particles with the most mass and the best hydrodynamic properties sediment the fastest. In Chapter 4, the method used to obtain information on the size distribution density is sediment velocity experiments combined to a density gradient media. The sample studied is loaded atop highdensity solution of varying concentration (e.g. 10-25% iodixanol gradients [START_REF] Graham | Preparation of preformed iodixanol gradients[END_REF][START_REF] Graham | Formation of self-generated gradients of iodixanol[END_REF]) and a centrifugal force is applied to the test tube containing the sample and the gradient solution. The variation in the density of the solution makes it possible to separate by size the particles in the sample studied. The small particles stagnate and remain at the top and the big particles or polymers sediment. The total solution in the test tube is segregated into equal fraction number and the average concentration of particles in each fraction is determined and renormalized over the total concentration particles in the sample (cf Figure 11). The data obtained by S.V are interpreted as a dilatation of a size distribution density, normalized at 100%, so that if u i denotes the concentration of polymers formed of i monomers, the data represent

iu i k ku k
. In order to obtain the evolution of the size distribution over time, the iteration of S.V experiments with more samples is one the existing methods.

Structural diversification of prion assemblies in early Prion replication stage.

In prion diseases, the prion protein P rP C misfolds into P rP Sc and auto-organizes into conformationally distinct assemblies or strains (polymers). The existence of P rP Sc structural heterogeneity within prion strains suggests the emergence and coevolution of structurally distinct P rP Sc assemblies during prion replication. Such P rP Sc diversification processes remain poorly understood. Here, we characterize the evolution of the P rP Sc quaternary structure during prion replication in vivo and in vitro by PMCA. The protein quaternary structure is the number and arrangement of multiple folded protein subunits (e.g. monomers, dimers or small oligomers). The molecular mechanisms of P rP Sc replication and structural diversification is observed combining PMCA and S.V experiments.

Regardless of the strain studied, the early replication stage (commonly assimilated as an elongation process) results in the formation of small P rP Sc oligomers, thus highlighting a quaternary structural convergence phenomenon. A bimodal behaviour is observed by the formation of two peaks (P 1 , P 2 ) in the representation of the size distribution (Figure [START_REF] Béringue | Prion agent diversity and species barrier[END_REF]). The amount of assemblies in P 1 decreases over time as the amount of assemblies in P 2 increases. We also note the absence of assemblies of intermediate size between these peaks. The experiments analyzed in Chapter 4 rule out the hypothesis of a coagulation between polymers in favor of an autocatalytic process as an explanation for the increase of assemblies in

P 2 .
The kinetic model is the following. We consider two different kinds of oligomers: on the one hand, A i , of size 2i, are formed by the aggregation of i SuPrP formed of two monomers, and denoted A 1 . Due to the fact that i A < 5, as A i assemblies are eluded in the first S.V fractions (cf Figure 12), we neglect here the oligomers A i with i > 1 for the sake of clarity and simplicity. On the second hand, oligomers B i , of size 3i, able to aggregate by B 1addition, where B 1 is another SuPrP formed of three monomers. However, A 1 may react with monomers to give rise to B 1 . A convenient reaction scheme should also be such that without monomers, almost nothing happens (cf Figure 4.5 in Chapter 4).

1. A 1 and B 1 can form a complex C in a reversible way: 2. The complex C can then react with the monomer M to form two B 1 :

A 1 + B 1 k + C k - C C.
M + C k + -→ 2B 1 .
3. The oligomers B i follow a classical polymerisation/depolymerisation chain reaction, by B 1addition:

B 1 + B i k i on k i+1 dep B i+1 , 1 ≤ i ≤ n -1.
To validate the designed mechanism, we performed numerical simulations using the size distribution of the P rP Sc assemblies immediately after cyclic amplification as the initial condition (blue curve in the left graph in Figure 12). Numerical simulations reproduce satisfactorily the results obtained by the experiments (cf Figure 12) and the mathematical model gives more insights about the kinetics and chemical relations between A i and B i . These oligomers undergo structural rearrangements, by a P rP C -dependent, secondary templating pathway. This pathway provides mechanistic insights into prion structural diversification, a key determinant for prion toxicity and interspecies transmission. The uncovered processes are also key for a better understanding of misfolded assemblies propagating by a prion-like process in other neurodegenerative diseases.

General perspectives and future work

Characterisation of oscillations in a wavelet basis. The test to detect HF features detailed in Chapter 1 is based on the projection of the signal in a discrete Fourier basis. The next step would be to define the HF features in a wavelet basis. The definition of "high-frequency" features has to be specified in this framework. We can imagine a new parametric characterisation still taking into account the amplitude and the localization on the frequency-scale (or resolution-scale) but also adding a new parameter to locate these features on the time-scale. The multiresolution signal decomposition from the projection in a wavelet basis provides further information on signals without making a priori strong assumptions.

The benefits are to get rid of the pre-processing step in the computation of the HF features and get a better characterisation of transient oscillatory phenomena (i.e. dumped oscillations only appearing in a fraction of the length of the signal). However, the number of parameters will then be equal to three (one for the resolution, one for the amplitude and one for the localization on the time-scale) and the test of hypothesis has to be extended to this framework.

Further results on the discrete bi-monomeric model. In Chapter 2, we study a bi-monomeric, nonlinear Becker-Döring-type model. A proof of the exponential convergence toward the nonnegative equilibrium is given considering the two-polymers system (cf Theorem 7). The explicit rate of convergence is still unknown.

The next step is to obtain the convergence toward the nonnegative equilibrium for the infinite size system. The main issue lies in the fact that we do not know if a Lyapunov functional exists. A method to obtain results on the asymptotic behaviour would consist of decoupling the ODE system for the monomeric species v, w and the system for the polymers concentrations using the conservation laws.

Once decoupled, the system for the monomeric species can be analysed independently, and the results can be extended to the polymers system using the theory on asymptotically autonomous systems [START_REF] Markus | Ii. asymptotically autonomous differential systems[END_REF][START_REF] Horst R Thieme | Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations[END_REF]. An interesting question remains: what are the possible forms of reaction coefficients which allow the decoupling between the two ODE systems ?

Inverse problem on the SLS signals. Turning back to the experiments as shown in Figure 5, it also appears that much remains to be done before reaching a fully quantitative model. The first step is to integrate the reaction scheme proposed in Chapter 2 in a more complete model, where "usual" reactions (like linear depolymerisation) would be the dominant reactions, governing the slow dynamics of the reactions, and nonlinear depolymerisation would be interpreted as local corrections. Using the same notations as in Chapter 2, an interesting reaction scheme to study is the following:

                     V + W k - → 2W W + C i a i -→ C i+1 i ≥ 1 C i + V b i --→ C i-1 + 2V i ≥ 2 C i+1 β i+1 ---→ C i + W i ≥ 1
This reaction network is translated into the following infinite system of differential equations:

                                 dv dt =-kvw + v ∞ i=2 b i c i , v(0) = v 0 , dw dt =-w ∞ i=1 a i c i + ∞ i=2 β i c i + kvw, w(0) = w 0 , dc i dt =J i-1 -J i , c i (0) = c 0 i , i ≥ 1,
where J i is the net rate at which a i-fibril is converted to a (i + 1)-fibril by : Note that if k = b i = 0 we get the seminal Becker-Döring system. The numerical simulations of the second moment of this hybrid model are close to the SLS signals (cf Figure 13). The next step are experimental evidence and quantitative comparison, for instance through data assimilation strategies in the spirit of [START_REF] Armiento | Estimation from Moments Measurements for Amyloid Depolymerisation[END_REF][START_REF] Armiento | The mechanism of monomer transfer between two structurally distinct PrP oligomers[END_REF].

J i = wa i c i -[vb i+1 + β i+1 ] c i+1 1 ≤ i ≤ n -1.
Further results on the continuous bi-monomeric model. We propose a bi-monomeric, nonlinear Lifshitz-Slyozov-type system in Chapter 3. The results on the asymptotic behaviour of the continuous model differ from those of the discrete model, mainly because an underlying diffusion process takes place in the discrete model. We study the first-order approximation of the continuous model which neglects the diffusion term. An interesting perspective is to derive and study the second order approximation which includes a diffusion term in the continuous size-setting.

The next step is to propose and study numerical scheme to approximate the solutions of this coupled ODE-PDE systems. The numerical analysis, in the spirit of [START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF][START_REF] José | A numerical study on large-time asymptotics of the Lifshitz-Slyozov system[END_REF][START_REF] Filbet | Numerical Approximation of the Lifshitz-Slyozov-Wagner Equation[END_REF], illustrates the results on the asymptotic behaviour and gives more insights and a better understanding of the model. The numerical analysis would also give further results on the convergence rate β (cf Theorem 8) of the ODE-PDE system.

Moreover, the study of the behaviour of the PDE is performed in the case of linear reaction coefficients and in the case of one linear and one constant reaction coefficient:

a(x) = ax, b(x) = bx and a(x) = 1, b(x) = bx forx ≥ 0.
These choices were motivated by experimental data from biologists since the static light scattering (SLS) signals studied show a fall for the second moment of the size distribution of polymers in a closed in vitro environment. An interesting perspective would be to consider more general forms of the reaction coefficients, for instance

m 1 ≤ a (x) ≤ m 2 , m 1 ≤ b (x) ≤ m 2 with m 1 , m 2 > 0.
The main issue arising from this last choice of reaction coefficients is that the ODE-PDE system is coupled. We cannot use the conservation laws to study the behaviour of the ODE system independently. However, an appropriate entropy would probably solve this issue and give the corresponding asymptotic behaviour.

General perspectives. The study of the mechanisms governing the aggregation of proteins is of primary importance in order to understand and cure 

Chapter1

Testing for high frequency features in a noisy signal

Introduction

The aim of this study is to detect high frequency (HF) features in a noisy signal. We propose a parametric characterization in the Fourier domain of the HF features. Then we introduce a procedure to evaluate these parameters and compute a p-value which assesses in a quantitative manner the presence or absence of such features, that we also call "oscillations". The procedure is well adapted for real 1-dimensional signals. If the signal analyzed has singular events in the low frequencies, the first step is a data-driven regularization of its Fourier transform. In the second step, the HF features parameters are estimated. The third step is the computation of the p-value thanks to a Monte Carlo procedure. The test is conducted on sanity-check signals where the ratio amplitude of the oscillations/level of the noise is entirely controlled.

The test detects HF features even when the level of the noise is five times larger than the amplitude of the oscillations. The test is also conducted on signals from Prion disease experiments and confirms the presence of HF features in these signals.

This study has been realised in collaborations with M. Doumic1 , M. Hoffmann2 and H. Rezaei 

Motivation

In a one-dimensional signal, transient oscillations may reveal key features of the underlying processes.

As an example, and original motivation for our study, fast oscillations have been visually observed in experimental measurements of the infectious agent in Prion diseases, see Figure 1.1. A major difficulty to infer such transient oscillations and to evaluate their significance is that they are mixed up with noise. Hence it is of major interest to rely on a rigorous procedure which detects high frequency (HF) features -amplitude, frequency -in real signals and to distinguish quantitatively these features of the signal from its noise.

To our knowledge, there exist only few methods to detect and estimate the HF features in a signal.

The Singular Spectrum Analysis (SSA) introduced by Broomhead and Jones in [START_REF] David | Time-series analysis[END_REF] is one of those and allows one to visualize qualitative dynamics from noisy experimental data. The SSA is based on the decomposition of a time series or signal into several additive components interpreted as trend components, oscillatory components, and noise components. It was then widely used to identify intermittent or modulated oscillations in time series, see e.g. [START_REF] Vautard | Singular-spectrum analysis: A toolkit for short, noisy chaotic signals[END_REF][START_REF] Paluš | Detecting oscillations hidden in noise: Common cycles in atmospheric, geomagnetic and solar data[END_REF][START_REF] Golyandina | Analysis of time series structure: SSA and related techniques[END_REF].

A statistical test of hypothesis to discriminate between potential oscillations and noise has been introduced in [2] and [START_REF] Palus | Detecting modes with nontrivial dynamics embedded in colored noise: Enhanced Monte Carlo SSA and the case of climate oscillations[END_REF]. This test is called the Monte Carlo SSA and has been applied almost exclusively to meteorological data. Since SSA transforms the original data in a complex way, no theoritical

result has yet been proved on the Monte Carlo SSA. Prior knowledge on the signal (such as the trend or assumptions on the noise) are also needed in order to calibrate the procedure and improve the result of the statistical test. The Monte Carlo SSA is by construction a non-parametric procedure and the oscillations detected by this test are not characterized quantitatively but qualitatively.

In this study, we propose another method, based on the Fourier transform of the signal, to infer a parametric characterization of HF features, based on their amplitude and frequency detection. This method is detailed in Section 1.2. We then introduce a statistical test to discriminate HF features from noise in Section 1.4, apply our methodology to a simulated example in Section 1.3, and then to the experimental measurements of PrP protein displayed in Figure 1.12 in Section 1.5.

Model and assumptions

For some (large) n ≥ 1, we have measurements y n i of a noisy signal localized around i/n. Thus i is a location parameter and n a frequency parameter. We may idealise our data via a representation of the form

y n i = x n i + σ ξ n i , i = 0, . . . , n -1 (1.1)
where (x n i ) 0≤i≤n-1 is the true (unknown) signal of interest and the ξ i are independent and identically distributed noise measurement, that we assume here to be standard Gaussian. The quantity σ > 0 is a (fixed) noise level. In this nonparametric regression setting, we aim at detecting from the data (y n i ) 0≤i≤n-1 whether (x n i ) 0≤i≤n-1 exhibits high-frequency features (HF features) such as oscillations, a term that still needs to be defined properly. Since we do not know in advance whether such high-frequency features are present and where they are located, we need to investigate the shape of (x n i ) 0≤i≤n-1 , which requires some smoothing in order to get rid of the noise (ξ n i ) 0≤i≤n-1 . However, any smoothing procedure tends to wipe out high-frequencies in the data, which is adversarial to our goal.

Results and organisation of the study

The statistical test to differentiate HF features from noise in a signal is data-driven and is based on the study of the projection of the signal in the Fourier domain. We propose in Section 1.2 a parametric characterization of the HF features of a signal. This characterization also provides an algorithmic procedure for the computation of the HF features, implemented in the Python language at https://github.com/mmezache/HFFTest (see Appendix 1.6.2). The procedure consists in three steps: in the first step, a regularization procedure is applied to the experimental data in order to smooth the fast variations that may exist in the low frequency range. The second step of the procedure is the detection and localization of significant peaks in the Fourier domain. The third step is the computation of the HF features parameters by selecting one of these peaks. The construction of the statistical test of hypothesis and the computation of the p-value is described in Section 1.3.

The numerical examples are performed in Section 1.4 with sanity-check signals. They are constructed around parameters which control their trend, their transient oscillations and their noise. We vary the ratio of the amplitude of the HF features over the noise level (i.e. its standard deviation), which sheds light on the robustness of the procedure: the transient oscillations are detected by the procedure even if the noise level is significantly high. The procedure is then applied to static light scattering (SLS) experiments of P rP Sc fibrils, in Section 1.5. They are characterised by their singular slow-varying components (non-monotonous trend) and their fast-varying components (isolated discontinuous jumps, transient oscillations, noise). We compute the HF features parameters of SLS signal experiments for different initial concentration of P rP Sc . We conclude that these signals have significant HF features, i.e. the signals display transient oscillations coming from biochemical reactions and not from the experimental noise.

Characterisation of high frequency features

The discrete Fourier transform (DFT) DFT n : R n → R n transfers a real-valued discrete signal (x n i ) 0≤i≤n-1 of length n into a frequency domain via

DFT n (x n i ) 0≤i≤n-1 = n-1 i=0 x n i e -j2πki/n 0≤k≤n-1 = ϑ n,k 0≤k≤n-1 . ( 1.2) 
The single-sided amplitude spectrum gives all the information needed to visualise the signal (x n i ) 0≤i≤n-1 in the Fourier basis. For a discrete signal (x n i ) 0≤i≤n-1 given in terms of its Fourier transform ϑ n = (ϑ n,k ) 0≤i≤n-1 via (1.2), we characterise a HF feature by two nonnegative parameters: a location parameter g(ϑ n ) (in the frequency domain) and an intensity parameter d(ϑ n ) (see Figure 1.3). n,j ) m≤j≤n-m that depends on a certain smoothing parameter m (with 0 ≤ m ≤ n -1) defined as follows:

µ (m) n,m = min k ϑ (m) n,k ≤ µ (m) n,m+1 ≤ . . . ≤ µ (m) n,j ≤ µ (m) n,n-m = max k ϑ (m) n,k where ϑ (m) n,k = 1 2m+1 k+m l=k-m |ϑ n,l | 2 1/2 , m ≤ k ≤ n -m -1.
(1.4)

In other words, the sequence µ

(m)
n is the order statistics of a 2m-regularised version of ϑ n .

Remark 3. The smoothing parameter m is needed as soon as the signal observed displays singularities e.g. a jump discontinuity or a fast transition of monotonicity of the trend. These phenomena are approximated by the harmonic sequence {e j2πk• , k ∈ Z}, and when projected in the Fourier domain, the amplitude spectrum displays a serie of spikes (cf Figure 1.4). These phenomena are related to Gibbs phenomenon ( [169], chapter 2) and give Remark 4. The regularisation of order 2m transforms the sequence ϑ n of n terms into a sequence of n -2m terms in order to avoid boundary effects. We label the indices of the series from m to nm -1 in so that the

k |ϑ n,k | d(ϑ n ) g(ϑ n ) Figure 1.
parameter k in ϑ (m)
n,k is reminiscent of a frequency parameter and we formally have ϑ

(0) n,k = |ϑ n,k |.

Second

Step: Detection and Localization of significant features in the Fourier domain.

Define, for x ≥ 0

a(x) = a (m) n (x) = min k | m ≤ k ≤ n -m -1, ϑ (m) n,k ≤ x (1.5) and b(x) = b (m) n (x) = max arg max ϑ (m) n,k | a(x) ≤ k ≤ n -m -1 . (1.6)
Remark 5. The index a(x) is the minimal frequency at which searching for HF features starts, getting rid of the potentially high energy levels arising from the low frequency part of the signal. The index b(x) is a maximal frequency for which the energy level x is reached in the search zone {a(x), a(x) + 1, . . . , n -m}. 

Define the sets

A (m) n = µ (m) n,j | µ (m) n,j = ϑ (m) n,b(µ (m) n,j ) , m ≤ j ≤ n -m -1 and S (m) n = µ (m) n,j ∈ A (m) n | b(µ (m) n,j ) > a(µ (m) n,j ), m ≤ j ≤ n -m -1 . Remark 6. The set A (m)
n represents potential candidates for maximum energy levels of a HF feature, while S (m) n represents the set of intensities of the spikes of ϑ n .

Third

Step: Definition of the HF features parameters.

To define the HF features, we now select in the set S (m) n the feature with maximum relative amplitude. Let us define

d(x) = d (m) n (x) = x -min ϑ (m) n,k | m ≤ k ≤ b (m) n (x) (1.7)
and we obtain a maximum intensity of HF feature as

ι (m) n (ϑ n,• ) ∈ max arg max x∈S x -min m≤k≤b (m) n (x) ϑ (m) n,k = max arg max x∈S d (m) n (x) if S (m)
n is non empty and ι

(m) n (ϑ n,• ) = 0 otherwise. Moreover if the set arg max x∈S d (m)
n (x) is not reduced to a singleton taking its maximum ensures us to obtain a unique element for ι (m) n (ϑ n,• ) i.e. the feature of maximum relative amplitude and maximum intensity. We are ready to give a quantitative definition of a HF feature: Definition 3. To any discrete signal ϑ n = (ϑ n,k ) 0≤i≤n-1 given in the Fourier domain, we associate a highfrequency feature (HF feature)

G n,m (ϑ n ), D n,m (ϑ n ) at discretisation level n ≥ 1 and smoothing level m ≤ n-1 2
as follows:

G n,m (ϑ n ) = b (m) n ι (m) n (ϑ n ) -a (m) n ι (m) n (ϑ n ) and D n,m (ϑ n ) = d (m) n ι (m) n (ϑ n ) , where b (m) n , a (m) n and d (m)
n are defined in (1.6), (1.5) and (1.7) respectively.

Remark 7. The parameters G n,m (ϑ n ) and D n,m (ϑ n ) are two distances (G n,m (ϑ n ) is a

distance on the frequency axis and D n,m (ϑ) on the intensity axis). This couple of parameters provides a characterization in the discrete

Fourier domain of events defined as HF features. For each signal, the parametric characterization is unique. It describes the peak with the highest distance between its amplitude and the minimum amplitude of the Fourier coefficients of lower frequencies (with D n,m (ϑ n )). The parameter G n,m (ϑ n ) gives the distance in frequency indices between the peak and the components in the low frequencies with the same intensity (see Figure 1.3).

Testing for HF features

We keep-up with the statistical setting introduced in Equation (1.1): we observe

y n i = x n i + σ ξ n i , i = 0, . . . , n -1, (1.8) 
where (x n i ) 0≤i≤n-1 is the signal of interest and the σ ξ n i are independent centred Gaussian random variables with noise variance σ 2 , for some (large) n ≥ 1, interpreted as a maximal discretisation resolution level or equivalently a maximal frequency of observation. Applying the discrete Fourier transform DFT n on both sides of (1.8), we equivalently observe

ϑ n,k = ϑ n,k + σ ξ k,n , k = 0, . . . , n -1,
where the σ ξ k,n are independent centred Gaussian random variables with variance σ 2 as well, thanks to the fact that DFT n is an orthogonal linear mapping. From data (y n i ) 0≤i≤n-1 or rather ( ϑ n,k ) 0≤k≤n-1 , we wish to construct a statistically significant test of the absence of HF feature as the null, against a set of local alternatives where some HF features are present.

Construction of a statistical test

Thanks to the characterisation of HF features via

D n,m (ϑ n ), G n,m (ϑ n ) given in Definition 3, we test the null H 0 n,m,ν,c : G n,m (ϑ n ) < ν, D n,m (ϑ n ) < c
against the local alternatives

H 1 n,m,ν,c : G n,m (ϑ n ) ≥ ν and D n,m (ϑ n ) ≥ c
where ν > 0, c > 0 are thresholds to determine significant HF features. The null hypothesis H 0 , is that there is no significant HF feature in the signal tested. On the contrary, the hypothesis H 1 implies that the signal has significant HF feature. For the test to be powerful, the main problem is to define the couple (ν, c): for too small values any signal shall reject H 0 whereas for large values, any signal shall accept H 0 .

We obtain simple test statistics for

G n,m (ϑ n ), D n,m (ϑ n ) by setting G n,m = G n,m ( ϑ n ) = b (m) n ι (m) n ( ϑ n ) -a (m) n ι (m) n ( ϑ n )
and

D n,m = D n,m ( ϑ n ) = d (m) n ι (m) n ( ϑ n ) .
In order to compute the p-value of the test, we design a Monte-Carlo procedure simulating a proxy of the data (y i ) 0≤i≤n-1 under the null H 0 . Using the proxy, we define a reject region of our test for a risk level α and the p-value of the data (y i ) 0≤i≤n-1 .

Rejection zone at risk level α.

We first simulate N times y

(0)
λ,n defined in (1.14) below, which is a simulated proxy of the data (y n i ) 0≤i≤n-1 with HF features removed from the signal (x n i ) 0≤i≤n-1 . Repeating independently N times the procedure, we obtain a Monte-Carlo sequence

y (0),k λ,n k = 1, . . . , N .
In a second step, we denote by E 0 N the cloud of points representing the HF features parameters of these simulated signals (with HF features removed but with Gaussian noise):

E 0 N = G n,m DFT[y (0),k λ,n ] , D n,m DFT[y (0),k λ,n ] | k = 1, . . . , N .
(1.9)

We define the function P : R 2 + → F ⊂ [0; 1]:

P (g, d) = N -1 N k=1 1 G n,m DFT[y (0),k λ,n ] ≥g, D n,m DFT[y (0),k λ,n ] ≥d
.

(1.10)

Hence P (g, d) is the proportion of points in E 0 N located in the North-East quarter of the plane centered on (g, d) (cf Figure 1.5). In order to reduce the computation cost, we only consider the restriction of P to the set E 0 N . Thus if E 0 N is reduced to a singleton, then the image set

P (E 0 N ) is equal to {1}, on the contrary if E 0 N contains N disjoint points then the minimal bound on P (E 0 N ) is 1 N . For a risk level α ∈ P (E 0 N ), the G k D k P ( G k , D k ) = 1 3 P ( G k , D k ) = 2 3 P ( G k , D k ) = 1 3 Figure 1.5 -Cloud of points G k , D k = G n,m DFT[y (0),k λ,n ] , D n,m DFT[y (0),k λ,n ] for k = 1, 2, 3.
rejection zone of our test is defined as

R m,n κ α 1 , κ α 2 = (y i ) 1≤i≤n defined by (1.1) s.t. G n,m ≥ κ α 1 , D n,m ≥ κ α 2 (1.11)
where ( G n,m , D n,m ) is the test statistics and κ α 1 , κ α 2 ∈ E 0 N are such that

P (κ α 1 , κ α 2 ) = α. (1.12) Remark 8. The risk level α is imposed by the Monte-Carlo sequence, α ∈ P (E 0 N ) ⊂ [ 1 N ; 1]. For example, Figure 1.5 represents an arbitrary set E 0 N for N = 3. Consequently, we note that 1 3 ≤ α ≤ 1 in order to obtain candidates κ α 1 , κ α 2 .
For α < 1 3 no candidate can be obtained by this procedure and its associated reject region is not defined. Moreover there can be multiple reject regions defined for the same risk level α (in the example whe have two reject regions for α = 1 3 ).

The main idea behind the computation of the couples G n,m DFT[y

(0),k λ,n ] , D n,m DFT[y (0),k λ,n
] is to generate random outcomes under the null H (0) that enable us to compute risk level by Monte-Carlo.

The couples correspond to the relative amplitude and the frequency gap for a non-oscillating signal with noise. We also get reject region(s) of level α thanks to the threshold(s) κ α 1 , κ α 2 . We do not need uniqueness of the reject region in order to define and compute the p-value, see below.

Definition of the pvalue.

The pvalue of the observations (y n i ) 0≤i≤n-1 is defined as

p -value (y n i ) 0≤i≤n-1 = min α ∈ P (E 0 N ) | G n,m ≥ κ α 1 , D n,m ≥ κ α 2 . (1.13)
An equivalent definition of the p-value of the observations ( On the vertical axis we have the relative amplitude and on the horizontal axis we have the gap in frequency between the oscillations and the trend in the Fourier domain. The red dot illustrates the HF features parameters subject to the test. We use the G k n,m , D k n,m as our grid to compute the p-value. Using (1.12), we compute the level α and obtain consequently the κ α 1 , κ α 2 for each element of the grid. The p-value is 2 3 in this example.

y n i ) 0≤i≤n-1 is obtained via p -value (y n i ) 0≤i≤n-1 = inf α ∈ P (E 0 N )| (y n i ) 0≤i≤n-1 ∈ R m,n κ α 1 , κ α 2 . G k n,m D k n,m κ 1/3 1 , κ 1/3 2 κ 2/3 1 , κ 2/3 2 G n,m , D n,m κ 1/3 1 , κ 1/3 2 Figure 1.6 -Point cloud G k n,m , D k n,m for k = 1,
The pvalue gives a confidence index for non-rejecting the null. This index is meaningful provided the test has a good power, i.e. if the probability of making a type II error is small. Hence the pvalue of (y n i ) 0≤i≤n-1 is our measure of confidence in non-rejection of the null H 0 . The main difficulty however lies in solving (1.11) since ϑ n remains unknown under the null and that there are no reason that G n,m or D n,m are pivotal statistics under the null. We describe below a numerical procedure based on Monte-Carlo simulation that estimates y (0) λ,n a proxy of the data with HF features removed but with noise.

A Monte-Carlo procedure for the simulation of the null

In order to evaluate (1.11) and (1.13), we first build a low-frequency estimator x (0) λ,n from the data (y n i ) 0≤i≤n-1 that removes the potential HF features. The estimator depends on a regularisation parameter λ. We next define

y (0) λ,i,n = x (0) λ,i,n + σ n n i , i = 0, . . . , n -1, (1.14) 
where the n i are independent centred Gaussian random variables that we simulate and σ n is an estimator of the standard deviation of the noise. The simulated signal (y (0) λ,i,n ) 0≤i≤n-1 obtained by estimating a proxy of f with HF features removed with additional simulated noise serves as a proxy of the data (y n i ) 0≤i≤n-1 under the null H 0 .

Numerical computation of f

(0) λ,n
Trend estimation or filtering for mimicking a signal with HF features removed has many applications and hence it has been extensively studied. It has given rise to the smoothing and filtering methods such as the moving average [START_REF] Xu | Quantifying signals with power-law correlations: A comparative study of detrended fluctuation analysis and detrended moving average techniques[END_REF], smoothing splines [START_REF] Christian | Smoothing by spline functions[END_REF], Hodrick-Prescott filtering [START_REF] Morten | On adjusting the Hodrick-Prescott filter for the frequency of observations[END_REF], 1 -trend filtering [START_REF] Kim | 1 Trend Filtering[END_REF] and so on. The trend is considered as the general shape of a signal or a time series. Although the trend is often understood and perceived intuitively, its estimator relies on the definitions given to the trend.

The differences between the various definitions of the trend are a matter of interpretation. Considering the different definitions of the trend, the choice of the method to estimate this component is more likely qualitative. In the following, the trend is considered as the underlying slowly varying component of the signal and we choose the 1 -trend filtering method described in [START_REF] Kim | 1 Trend Filtering[END_REF] to estimate it. The estimator of x (0) λ,n as a n-dimensional vector is then the solution of the following optimisation problem:

x (0) λ,n ∈ arg min x∈R n 1 2 n-1 i=1 (y n i -x n i ) 2 + λ n-2 i=1 |x n i-1 -2x n i + x n i+1 |, (1.15) 
where λ ≥ 0 is a regularisation parameter which controls the trade-off between the smoothness of x

(0) λ,n
and the residual n-1 i=0 x

(0) λ,n,i -y n i 2
. We note that the second term

n-2 i=1 |x n i-1 -2x n i + x n i+1
| is the 1 -norm of the second order variations of the sequence (x n ) (i.e. the discretization of the corresponding L 1 -norm of the second derivative of a function). Moreover, for any sequence (x n ),

|x n i-1 -2x n i + x n i+1 | = 0, ∀i = 0, . . . , n -1 ⇐⇒ x n i = αi + β, with α, β ∈ R, ∀i = 0, . . . , n -1.
Thus only an affine function has its 1 -norm equal to 0. Hence this method gives an estimator of the trend such that:

(i) x (0) λ,n is computed numerically in O(n) operations, (ii) as λ → 0, max 0≤i≤n-1 | x (0)
λ,ny n i | → 0, the estimator converges to the original data, (iii) as λ → ∞, the estimator converges to the best affine fit of the observations. This convergence happens for a finite value of λ [START_REF] Kim | 1 Trend Filtering[END_REF].

(iv) x (0)
λ,n is piecewise linear, i.e. there are indices 0 = j 1 < j 2 < . . . < j K = n -1 for which: 

x (0) λ,n,i = α k i + β k , j k < i < j k+1 , k = 1, . . . , K -1.
λ max ∈ R + [82] such that x (0)
λ max ,n is the trend estimator corresponding to the best affine fit. It implies that the choice of λ is restricted to the bounded open interval (0, λ max ). Since there is no optimal criterium to choose λ, the choice of the parameter is qualitative and motivated empirically (see Section 1.4).

Numerical estimation of the noise level σ n

The estimator of the standard deviation of the noise is the second ingredient needed in order to compute (1.14). The methods to estimate the level of noise are closely linked to the methods of signal denoising and thus have been extensively studied. The method chosen to estimate the noise level is the median absolute deviation and the denoised signal is obtained thanks to the wavelet shrinkage methods [START_REF] David | Threshold selection for wavelet shrinkage of noisy data[END_REF][START_REF] David L Donoho | Minimax estimation via wavelet shrinkage[END_REF][START_REF] David L Donoho | Wavelet shrinkage: asymptopia?[END_REF][START_REF] David | Ideal spatial adaptation by wavelet shrinkage[END_REF].

f (0) λ,n in
We assume that our data y = (y i ) 0≤i≤n-1 are such that n = 2 J+1 for J > 0. We then consider an orthogonal wavelet transform matrix W for a given filter. Choosing wavelets (e.g. Coiflet, Daubechies, Haar) and varying the combinations of parameters M (number of vanishing moments), S (support width) and j 0 (low-resolution cut-off) one may construct various orthogonal matrices W (see for details [START_REF] Mallat | A wavelet tour of signal processing[END_REF], chapter 7).

In this study we use the Symmlet with parameter 8 which has M = 7 vanishing moments and support length S = 15. The wavelet coefficients of y are denoted by w and

w = W x + σ ξ,
where ξ = W ξ is a standard Gaussian random vector by orthogonality of W . For convenience, we index dyadically the vector of the wavelet coefficients w j,k j = 0, . . . , J, k = 0, . . . , 2 j -1.

We make the legitimate assumption that empirical wavelet coefficients at the finest resolution level J are essentially pure noise. Hence the standard deviation estimator σ n is the median absolute deviation

σ n = median(w J,• ) Φ -1 (3/4) , ( 1.16) 
where Φ -1 (•) is the inverse of the cumulative distribution function for the standard normal distribution.

Thus σ n is a consistent estimator of σ . It is interesting to note that further computations give the VisuShrink estimator x n of the signal (x n i ) 0≤i≤n-1

x n = W T • w n,j 0 • W , (1.17)
where j 0 denotes a low resolution cut-off and w n,j 0 is the estimator in the wavelet domain

w n,j 0 =        w j,• j < j 0 sign(w j,• ) |w j,• | -σ n (2 log n) 1/2 + j 0 ≤ j ≤ J .
The first reason that motivated this choice is that the shrinkage methods attempt to remove whatever noise is present and retain whatever signal is present regardless of the frequency [START_REF] David | Ideal spatial adaptation by wavelet shrinkage[END_REF]. The goal of this study is to estimate HF features in noisy signals. However the traditional methods of noise removal such as low-pass filters are based on frequency-dependent estimators, which can also impact and distort the results of the HF feature procedure. The second reason is that these methods are data-driven and no specific assumptions on the signal are required. The wavelet shrinkage is spatially adapted and the method is efficient for a wide variety of signals even when the signals exhibit spatial inhomogeneities [START_REF] David | Ideal spatial adaptation by wavelet shrinkage[END_REF].

Finally these methods are proven to be nearly optimal for the mean squared error criterion when the smoothness of the original signal is unknown [START_REF] David L Donoho | Wavelet shrinkage: asymptopia?[END_REF].

1.4 Simulation example: sanity check of the procedure.

Pre-processing: a data-driven choice of m

We first address the delicate issue of choosing the smoothing parameter m. Define a sequence (m i ) 1≤i≤K

such that

1 = m 1 < m 2 < . . . < m K ≤ n-1 2 .
We can take for instance m i = i for i = 1, . . . , K. Note that K ∈ {1, . . . , n-1 2 } is the parameter defining the length of the finite sequence (m i ) 1≤i≤K . This parameter can be fixed by the user in order to reduce the number of iterations of the procedure to compute the HF features. However, a standard choice of K to obtain a data-driven procedure is K = n-1 2 , since averaging the signal over more than half of the sample size is obviously meaningless. A good rule of thumbs is that K = n 1 2 , since it reduces the number of calculations and remains pertinent compared to the range of the signal. Let 

i ∈ arg max 1≤i≤K G n,m i -G n,m i-1 , then m =        m i if G n,m i > G n,m i -1 m i -1 otherwise. ( 1 

Defining a test signal

To study numerically the validity of the procedure and the statistical test, we first compute a simulated signal where all the parameters are known. To do so, we superimpose three signals: one for the general trend of the curve, one for the HF features, and one for the noise. The signal obtained is the vector (S i ) 0≤i≤n-1 :

S i = T i + O i + σ ξ i , (1.19) 
where σ > 0 is the parameter corresponding to the level of noise and ξ i are realizations of independent and identically normally distributed random variables. Moreover (T i ) 0≤i≤n-1 corresponds to the trend and (O i ) 0≤i≤n-1 to the HF features (cf Figure 1.7).

For the general trend, we choose the Lennard Jones potential [START_REF] Edward | On the determination of molecular fields.-II. From the equation of state of a gas[END_REF], since we notice that its DFT is not monotonously decreasing in the low frequency range (see Figure 1.2) and that it displays a similar shape as the experimental signals presented in Section 1.5. The Lennard Jones potential is defined by P i :

P i = c 1 c 2 i p -c 3 c 2 i q + c 4 .
Since this potential is not defined at 0, we link the potential to an affine function. Hence we introduce the index j (0 < j < n -1) which connects the potential to the affine function. We denote the trend by the vector (T i ) 0≤i≤n-1 :

T i = P j+1 -P j j + 1 i + P j 1 {0≤i≤j} + P i 1 {j+1≤i≤n-1} .
The HF features in the test signal correspond to sine waves and are located at a specific time interval. Hence we introduce the indices 0 < j 0 < j 1 < n -1 which localize the oscillations in the signal, and we define the oscillations by the vector (O i ) 0≤i≤n-1 :

O i = c a (i -j 0 )(j 1 -i) sin(2πc f i) 4 (j 1 -j 0 ) 2 1 {j 0 ≤i≤j 1 } (1.20)
where c a (resp. c f ) is the parameter for the amplitude ( resp. the frequency) of the oscillations.

Numerical computations and robustness of the procedure. We want to understand the robustness of the numerical procedure when the frequencies and the amplitudes of the oscillations are fixed but the level of noise varies. Other said, for which parameters of the oscillations and for which level of noise does the test return that the signal oscillates (or not)?

In order to answer this question, we propose the following sensitivity analysis. First we remind the parameters in our system. From the signal construction, we have three parameters :

• σ the standard deviation of the normal distributed noise,

• c a the parameter corresponding to the amplitude of the oscillations,

• c f the parameter corresponding to the frequency of the oscillations (since the time scale is in hours,

c f /3600 is expressed in Hz).
The smoothing parameter m is chosen thanks to the data-driven procedure described previously (1.18).

The relevant output of our model is the p-value of the signals computed thanks to the numerical procedure. A natural way to study the sensitivity of the p-value to the parameters is to fix all parameters but one and observe the effect on the p-values obtained. In this example the varying parameter is the level of noise σ ∈ 1 10 c a , 1 2 c a , c a , 2c a , 10c a .

First sanity check test

Since we are working with a constructed sanity check signal, we obtained ( G k n, m , D k n, m ) in Figure 1.9 by applying the procedure of detection of the HF feature parameters setting c a = c f = 0 (it corresponds to S i = T i + σ ξ i in (1.19)). Thus the simulation of the null in Section 1.3.2 is performed using the real trend of the signal in (1.14). Then the signal tested (Figure 1.9) are constructed signal with parameters

c a = 0.05, c f = 10 and σ ∈ { 1 10 c a , 1 2 c a , c a , 2c a , 10c a } in (1.19
). The results of the detection of HF features and the statistical test are in Table 1.8. We note that for standard deviations of the noise between a tenth and the double of the amplitude of the oscillations, the p-value of the test is equal to 5e -5. Hence, we are inclined to reject the hypothesis H 0 which corresponds to the event that the signal displays no oscillations. Moreover we note that the signals with standard deviations of the noise between 1 signal with the standard deviation of the noise of 10c a , the p-value is equal to 0.4, hence we are inclined to accept that the signal has not significant enough HF feature.

Second sanity check test

The second step is to test the procedure on the same signals but using the trend estimate given by (1.15) and the noise estimation procedure described in the first step of Section 1.3.2. The method chosen to estimate the trend of the signal is the 1 -trend filtering [START_REF] Kim | 1 Trend Filtering[END_REF]. As displayed in Figure 1.10, the trend estimation is less robust as the standard deviation of the noise rises. However this method is qualitatively the right one to estimate the trend of a signal displaying jumps or spikes.

Hence we compute the procedure to obtain the HF features parameters for the sanity check signals using (1.19) with standard deviation level σ ∈ 1 10 c a , 1 2 c a , c a , 2c a , 10c a . The p-values are computed using the 1 -trend estimators in order to obtain the couples (

G k n, m , D k n, m )
where k = 1, . . . , 20000. The results are in Table 1.11. Similarly to the first sanity check, the p-values for the signals with a level of noise from 1 10 c a to 2c a is equal to 5e -5. Hence the procedure detect significant HF features where G n, m ≈ (2e -3, 2e -4). Also for a standard deviation of the noise of 10c a , the p-value is 5.32e-2, so that HF feature parameters are not significant enough. 

Empirical analysis on biological data

The Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of animal and human brain diseases. The neurodegenerative processes are poorly understood and hence fatal. However the largely accepted hypothesis suggests that the infectious agent (PrPsc) is the misfolded form of the normal Prion protein (PrPc). The PrPsc forms multimeric assemblies (fibrils) which are the prerequisite for the replication and propagation of the diseases [START_REF] Stanley | Prions[END_REF]. To follow the aggregation kinetics of these fibrils, compare it to mathematical models and get a better understanding of these diseases, several experimental and measurement devices are used, among which the Static Light Scattering (SLS). The Static Light Scattering (SLS) signal is an experimental measurement which describes the temporal dynamics of PrP amyloid assemblies formed in vitro [START_REF] Legname | Synthetic mammalian prions[END_REF] see Fig. 1.1 taken from [START_REF] Doumic | A bi-monomeric, nonlinear Becker-Döring-type system to capture oscillatory aggregation kinetics in prion dynamics[END_REF] (see Appendix 1.6.1).These signals correspond to an affine transformation of the second moment of the size distribution of protein polymers or fibrils through time [START_REF] Prigent | An efficient kinetic model for assemblies of amyloid fibrils and its application to polyglutamine aggregation[END_REF]:

i∈I i 2 c i (t) + σ ,
where I denotes the set of the sizes of the fibrils, c i the concentration of fibrils of size i which is varying with the time t and σ > 0 is the experimental noise (σ can be time-dependent). At the beginning of the experiment the fibrils are large, containing in average several hundreds of monomers, which undergo an overall depolymerization process and leads to a decay in the signal. The experiment is carried out with six initial concentrations of fibrils (Figure 1.12) ranging from 0.25µmol to 3µmol; at higher initial concentrations (0.5µmol and higher), a re-polymerisation process can be observed, which may be viewed by the fact that the trend of the signal increases again before reaching a plateau. Moreover the SLS signals differ in terms of variance of noise and amplitude of oscillations (noticed by sight). We thus study each signal independently.

In order to test whether the signals display HF features, we submit the observations to the statistical test described above. The denoised signal and hence the standard deviation of the noise are estimated thanks to the VisuShrink method and the median absolute deviation (cf [START_REF] David | Ideal spatial adaptation by wavelet shrinkage[END_REF], [START_REF] David L Donoho | Minimax estimation via wavelet shrinkage[END_REF]) using the symmlet wavelet with 8 vanishing moments and the library Wavelab [START_REF] Buckheit | Wavelab reference manual[END_REF] (the same results have been obtained with the homemade python library, see Appendix 1.6.2). The trend of the signal is estimated with the 1 -trend filtering method with the parameter λ = 31 (λ is fixed qualitatively in order for the trend to include the discontinuous jumps of the SLS experiments). The results of the statistical test are summarized in Table 1. [START_REF] Béringue | Prominent and persistent extraneural infection in human PrP transgenic mice infected with variant CJD[END_REF].

We note that all signals display oscillations more or less pronounced (cf. However the frequency localization parameters are comparable. In Table 1.13, we note that the parameters G n, m are in the same range of value with a factor of less than 4 between the minimum and maximum G n, m . Finally all the p-value of the tests are equal to 5e -5, the tests confirm that the signals display significant HF features.

Through this study, we demonstrated the existence of oscillatory behavior in the SLS experiments. The immediate biochemical consequences are the coexistence of structurally distinct PrP assemblies within the same media and the unstable behavior, i.e. out of the thermo-dynamical equilibrium, of the chemical system formed by theses assemblies. Indeed the observation of oscillations in these light-scattering experiments has shed light on the existence of a complex chemical reaction network beyond the existing aggregation-fragmentation models. This has paved the way for new mechanistic models, e.g. a system of reactions which possibly involve several conformations of PrP assemblies [START_REF] Doumic | A bi-monomeric, nonlinear Becker-Döring-type system to capture oscillatory aggregation kinetics in prion dynamics[END_REF], capable of explaining such phenomena. Also it has been reported that the existence of multiple conformations of PrP assemblies within an isolate contributes to the adaptation and evolution of Prion as a pathogen to a new environment and a new host [94].

Further biochemical characterizations are required to explore the dynamics of these oscillations and to establish more precise kinetic models. The methodology developed in the present work will lead to analyze and characterize with specific parameters transient oscillations. These parameters will lead to evaluate physico-chemical conditions as well as the dynamic of the present complex system. The file "ExampleHFF.py" is a python program which compute the complete procedure for a test signal.

The users may change at will the following parameters:

• the length of the signal,

• the standard deviation of the noise,

• the amplitude of the oscillations,

• the parameter of the 1 -trend filtering,

• the number of iteration of the Monte-Carlo procedure,

• the choice of the test signal.

The program displays the test signal obtained, the trend estimate, the cloud of points corresponding to the HF features of the null (blue dots) and the point corresponding to the HF features of the tested signal (red dot), and the single-sided amplitude spectrum of the signal which emphasizes the points where the computations of the HF features are computed (cf Figure 1.3).

The time of computations may be significantly long if the number of iteration of the Monte-Carlo procedure is big (over 100). However the Monte-Carlo procedure can be computed in a parallelized framework which reduces drastically the time of computations.

Moreover the automatic choice of the smoothing parameter m is efficient for signals which display oscillations of "high" frequency, i.e. if the spike corresponding to the oscillations in the single sided amplitude spectrum is located away from the low-frequency components (cf Section 1.4 and example 2 in "ExampleHFF.py"). The procedured was designed to identify oscillations "hidden" in the noise, a situation which corresponds to the experimental signals. If the signal tested has oscillations located in the lowfrequencies, the users are advised to fix the smoothing parameters (cf example 1 in "ExampleHFF.py").

Chapter 2

A bi-monomeric system to capture oscillatory aggregation kinetics

Introduction

The aim of this chapter is to propose and study a new polymerisation-depolymerisation model capable of explaining oscillations, which have been observed experimentally in the time-course of prion protein polymerisation experiments. Up to our knowledge, such oscillations have never been observed, either theoretically or numerically, in the family of growth-fragmentation-nucleation equations, which are most often used to model protein polymerisation. In order to understand the appearance of oscillations observed in protein aggregation experiments, we propose, motivate and analyse mathematically the differential system describing the kinetics of the following reactions:

             V + W k - → 2W , W + C i a i -→ C i+1 , 1 ≤ i ≤ n, C i + V b i --→ C i-1 + 2V , 2 ≤ i ≤ n,
with n finite or infinite. This system may be viewed as a variant of the seminal Becker-Döring system, and is capable of displaying sustained though damped oscillations.

This work is the result of a collaboration with M. Doumic 1 , K. 1 Sorbonne Universités, Inria, Université Paris-Diderot, CNRS, Laboratoire Jacques-Louis Lions, F-75005 Paris, France, marie.doumic@inria.fr 2 University of Graz, Austria, Institute of Mathematics and Scientific Computing, 8010 Graz, klemens.fellner@uni-graz.at 3 INRA, UR892, Virologie Immunologie Moléculaires, 78350 Jouy-en-Josas, France, human.rezaei@inra.fr 63

Biological background and motivation

The prion phenomenon (prion being derived from 'proteinaceous infectious only particle') involves the self-propagation of a biological information through structural information transfer from a protein in a prion-state (i.e. misfolded resp. infectious) to the same protein in a non-prion state. Such a concept is key to the regulation of diverse physiological systems and to the pathogenesis of prion diseases [START_REF] Collinge | Prion diseases of humans and animals: their causes and molecular basis[END_REF][START_REF] Joseph B Rayman | Functional prions in the brain[END_REF][START_REF] Peter | Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+][END_REF].

Recently, prion-like mechanisms have been involved in the propagation and gain of toxic functions of proteins or peptides associated with other neurodegenerative disorders such as Alzheimer, Parkinson and Huntington diseases [START_REF] Jucker | Self-propagation of pathogenic protein aggregates in neurodegenerative diseases[END_REF]. Elucidating the mechanisms driving prion-like aggregation is thus of key importance, and, as explained below, still requires new mathematical modelling and analysis.

During the evolution of prion pathology, the host encoded monomeric prion protein (PrPC) is converted into misfolded aggregating conformers (PrPSc) [START_REF] David C Bolton | Identification of a protein that purifies with the scrapie prion[END_REF]. PrPSc assemblies have the ability to self-replicate and self-organise in the brain through a still unresolved molecular mechanism commonly called templating. Differences in disease phenotypes (distinctive symptomologies, incubation times, and infectious characters of PrPSc) are reported within the same host species. These phenotypic differences are assigned to structural differences in PrPSc assemblies, introducing the concept of prion strains based on structural diversity/heterogeneity of PrPSc assemblies [START_REF] Igel-Egalon | Heterogeneity and Architecture of Pathological Prion Protein Assemblies: Time to Revisit the Molecular Basis of the Prion Replication Process?[END_REF]. In the prion literature a plethora of evidences strongly suggest that within a given prion strain a PrPSc structural heterogeneity exists, which suggests that in a given environment structurally different PrPSc subassemblies with different biological and physico-chemical properties coexist [94] even if the mechanism of this diversification remains elusive. To date, very few mathematical models have taken into account the coexistence of multiple prion assemblies or multiple type of fibrils [START_REF] Collinge | A General Model of Prion Strains and Their Pathogenicity[END_REF]. Indeed, most of the aggregation models have been built using the canonical nucleation-elongation-fragmentation process seminally reported by Bishop and Ferrone (see e.g. [START_REF] Bishop | Kinetics of nucleation-controlled polymerization. A perturbation treatment for use with a secondary pathway[END_REF][START_REF] Masel | Quantifying the kinetic parameters of prion replication[END_REF][START_REF] Prigent | An Efficient Kinetic Model for Assemblies of Amyloid Fibrils and Its Application to Polyglutamine Aggregation[END_REF]), which is based on the existence of a structurally unique type of assemblies characterised only by their size distribution. The characterisation of multiple types of PrPSc subassemblies with different rates of aggregation, depolymerisation and exchange requires new mathematical models and analyses to describe the dynamics and relation between different subspecies.

In order to explore the consequence of the coexistence of structurally different PrPSc assemblies within the same environment, the depolymerisation kinetics of recombinant PrP amyloid fibrils have been explored by Static Light Scattering (SLS) [START_REF] Mathieu Mezache | Structural polydispersity of Prion assemblies governs their constitutional dynamics[END_REF]. A detailed study of those experiments revealed a surprising, transient oscillatory phenomenon, as the time evolution of the SLS measurement (see Appendix 2.6.2 for details) shows in Figure 2.1. First note that when denoting by c i (t) the concentrations at time t of the polymers containing i monomers, we can interpret the signal of an experimental SLS measurement, as in [START_REF] Prigent | An Efficient Kinetic Model for Assemblies of Amyloid Fibrils and Its Application to Polyglutamine Aggregation[END_REF], as the time evolution of the second moment of the polymers, i.e.

M 2 (t) := n i=1 i 2 c i (t). (2.1)
Hence, at the beginning of the experiments, after a short lag phase, quick depolymerisation is observed. This is followed by a transient phase ranging from approximately 1h to 11 hours, when slow variations A first key question of our study is thus the following: What kind of core elements should a model feature in order to explain the appearance of such oscillations?

The most natural departure point in the formulation of a suitable mathematical model is the Becker-Döring model of polymerisation and depolymerisation [START_REF] Becker | Kinetische Behandlung der Keimbildung in übersättigten Dämpfen[END_REF]. The Becker-Döring model is coherent with other biological measurements [START_REF] Mathieu Mezache | Structural polydispersity of Prion assemblies governs their constitutional dynamics[END_REF], and it is viewed in the protein polymerisation literature as the "primary pathway" model [START_REF] Bishop | Kinetics of nucleation-controlled polymerization. A perturbation treatment for use with a secondary pathway[END_REF][START_REF] Prigent | An Efficient Kinetic Model for Assemblies of Amyloid Fibrils and Its Application to Polyglutamine Aggregation[END_REF].

Becker-Döring considers two reverse reactions: polymerisation through monomer addition, and depolymerisation due to monomer loss. Accordingly, the model is characterised by the following system of reactions, where C i denotes polymers containing i monomers -so that C 1 are the monomers -and a i , b i are the polymerisation resp. depolymerisation reaction rate coefficients:

       C 1 + C i a i -→ C i+1 , i ≥ 1, C i b i --→ C i-1 + C 1 , i ≥ 2.
The Becker-Döring system, however, satisfies the detailed balance condition [START_REF] Ball | The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions[END_REF], which implies the existence of a Lyapunov functional and no sustained oscillations are possible. Also damped oscillations, up to the best of our knowledge, have never been observed numerically or evidenced analytically. We thus needed a variant of the Becker-Döring model to explain the experimentally observed oscillations displayed in Figure 2.1.

In [START_REF] Igel-Egalon | Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick[END_REF], it was recently shown that PrPSc assemblies are in equilibrium with an oligomeric conformer (suPrP) encoding the entire strain information and constituting an elementary building block of PrPSc assemblies. The fact that such an oligomeric building block appears separately from the monomeric PrP points towards models with two different quasi-monomeric species (i.e. one monomer and one oligomeric conformer in contrast to the polymer species C i ), each of which playing a role in a different reaction.

A suitable mathematical model should also to take into account the constraint that large polymers cannot interact directly, for reasons of size and order of magnitude of their concentrations. Hence, we assume that polymers can only interact indirectly, through the exchange of monomers or small oligomeric conformers.

A third crucial modelling aspect concerns the details of the depolymerisation reaction rates, which are linear in the original Becker-Döring system. However, numerical studies (see below for a more detailed discussion and numerical illustrations) as well as the content of this study strongly suggests that sustained or damped oscillations require a nonlinear (more precisely, a monomer induced) depolymerisation process, which we detail in the following section.

Introduction of the proposed model system

We propose the following model system: Let V and W denote the two monomeric species, where the second, conformer species is taken monomeric for the sake of simplicity (but a slight modification of the model would allow to consider it as oligomeric). Let C i be the polymers containing i monomers, where polymerisation signifies the amendment of a monomer W while depolymerisation only occurs when induced via the monomeric species V . More precisely, we consider

             V + W k - → 2W , W + C i a i -→ C i+1 , 1 ≤ i ≤ n, C i + V b i --→ C i-1 + 2V , 2 ≤ i ≤ n. (2.2)
with a reaction rate constant k for the monomer/conformer dynamics and polymerisation/depolymerisation coefficients a i and b i . Note that large values for k compared to a i , b i introduce a slow-fast behaviour into (2.2) and yields a mechanism of oscillations which is detailed in a fully rigorous way for a two-polymer system (i.e. n = 2) in Section 2.3.

We emphasise the two main differences of (2.2) as compared to the classical Becker-Döring system:

First, instead of one monomeric species C 1 , we now consider two interacting species of monomers (or conformers), V and W . Secondly, depolymerisation is modelled as a monomer induced, nonlinear process, which requires the catalytic action of V . Note that this process is reminiscent of the cyclical behaviour of the three-species system

V + W k - → 2W , W + M a - → 2M, M + V b - → 2V , (2.3)
which is known to produce sustained periodic oscillations, see [START_REF] Aizik | Analysis in classes of discontinuous functions and the equations of mathematical physics[END_REF], where it is called the Ivanova system, or [START_REF] Turner | A simple model of the Belousov-Zhabotinsky reaction from first principles[END_REF], where it is referred to as a simplification of the Belousov-Zhabotinsky system.

To reiterate and further illustrate the reasons which guided us towards model (2.2), let us isolate those two main ingredients. Firstly, let us modify the Becker-Döring system by taking two monomeric species [START_REF] Igel-Egalon | Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick[END_REF], but with a standard linear depolymerisation reaction, i.e. we consider the following system:

             V + W k - → 2W , W + C i a i -→ C i+1 , 1 ≤ i ≤ n, C i b i --→ C i-1 + V , 2 ≤ i ≤ n.
(2.4) Nevertheless, even if the bi-monomeric Becker-Döring system (2.4) shows oscillatory behaviour, those oscillations are far less sustained and cannot serve as an explanation of the experimental observations. Interestingly, nonlinear depolymerisation leads not only to much more sustained oscillations, but also yields faster convergence to its size-distribution equilibrium (data not shown), while the linear bimonomeric Becker-Döring system (2.4) exhibits similar metastability as observed for the Becker-Döring system [START_REF] Penrose | Metastable states for the Becker-Döring cluster equations[END_REF].

Secondly, when considering a monomeric Becker-Döring system with second-order depolymerisation reaction: Finally, the original Becker-Döring system (for n = ∞) allows to model phase transitions where polymers of infinite size are created in finite time depending on the polymerisation coefficients; a phenomenon called gelation or also Ostwald ripening [START_REF] Ball | The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions[END_REF]. In this paper, we shall consider both finite or infinite systems and discuss similarities and differences. However, in view of our application background of understanding amyloid fibrils, we are never interested in the appearance of gelation or Ostwald ripening and only consider polymerisation coefficients, where the average size of polymers, though possibly large, remains finite.

V + C i a i -→ C i+1 , 1 ≤ i ≤ n, C i + V b i --→ C i-1 + 2V , 2 ≤ i ≤ n, ( 2 
The purpose of this study is to provide a first insight into this new, in our opinion highly promising model. In particular, the model system (2.6) in the following section reveals extremely rich behaviour and is capable of displaying various types of dynamics such as sustained and damped periodic oscillations.

A bi-monomeric nonlinear Becker-Döring model: Formal properties

We denote by c i (t), v(t) and w(t) the concentrations at time t of the polymers containing i monomers, the depolymerising and the polymerising monomeric species. We assume the reactant's concentrations to be sufficiently large to neglect stochastic effects and consider a deterministic setting. By using the mass-action law, model (2.2) yields the following system of differential equations: 

                                     dv dt = -kvw + v n i=2 b i c i , v(0) = v 0 , dw dt = -w n-1 i=1 a i c i + kvw, w(0) = w 0 , dc 1 dt = -wa 1 c 1 + vb 2 c 2 , c 1 (0) = c 0 1 , dc i dt = w(-a i c i + a i-1 c i-1 ) + v(b i+1 c i+1 -b i c i ), 2 ≤ i ≤ n -1, c i (0) = c 0 i , dc n dt = wa n-1 c n-1 -vb n c n , c n (0) = c 0 n ,
where the last equation is only to be considered when n is finite.

As in [START_REF] Penrose | Towards a rigorous molecular theory of metastability[END_REF], we introduce the net rate of an i-polymer being converted to an (i + 1)-polymer by

J i = wa i c i -vb i+1 c i+1 , 1 ≤ i ≤ n -1.
With the convention J 0 = J n = 0, we can thus rewrite the above system as

                   dv dt = -kvw + v n i=2 b i c i , v(0) = v 0 , dw dt = -w n-1 i=1 a i c i + kvw, w(0) = w 0 , dc i dt = J i-1 -J i , c i (0) = c 0 i , 1 ≤ i ≤ n.
(2.6)

In this chapter, we shall always assume the initial conditions and reaction rates to be such that there exists a unique solution (v, w, c i ) ∈ C 1 (0, T ) 2 × C 1 (0, T , 1 1 ), where we denote

1 s := (x i ) i≥1 ∈ R N i≥1 i s x i < ∞ , for s ∈ R .
We first remark that solutions to System (2.6) in 1 1 have two conserved quantities, obtained by weighted sums of the equations: As a consequence of those two conservation laws, we introduce

P 0 := n i=1 c 0 i , M tot := v 0 + w 0 + n i=1 ic 0 i .
Overview: The chapter is organised from the simplest to the most complete cases: In Section 2.3, we provide a complete and explicit study of the two-polymer case n = 2, which features a pivotal mechanism of damped periodic oscillations in the case of a large reaction rate k compared to the polymerisation coefficients, see Corollary 1. To understand this mechanism, Theorem 9 states the existence of a Lyapunov functional, which is also the Hamiltonian of an underlying Lotka-Volterra models and proves exponential convergence to an equilibrium of solutions despite their highly oscillatory behaviour, see e.g. the left blue solution in Figure 2.2. The main difficulty lies in the fact that the time derivative of the Lyapunov functional vanishes across some lines in phase-space, which necessitates precise estimates. In Section 2.4, we focus on the case where the maximal size of polymers n is finite. We study the existence of steady states and their stability (Proposition 5). Further details are obtained in the case of constant coefficients, where we discuss the various zones of stability or instability with respect to the parameters.

In the final Section 2.5, we analyse well-posedness and steady states of the infinite system n = ∞. Two specific cases shed light on the damped oscillations: the constant coefficient case (i.e. a i = a, b i = b for two positive constants a and b and for all i) and the linear coefficient case (where a i = ia, b i = (i -1)b, for two positive constants a and b and for all i).

The two-polymer model

In this section, we study the bi-monomeric system (2.2) coupled to only two sizes of polymers in the case of normalised coefficients a 1 = b 2 = 1 for the sake of the clearest possible presentation. We thus investigate the following two-polymer model

       dv dt = v [-kw + c 2 ] , dw dt = w [kv -c 1 ] ,        dc 1 dt = -wc 1 + vc 2 , dc 2 dt = wc 1 -vc 2 ,
(2.7)

subject to the nonnegative initial data v(0) = v 0 , w(0) = w 0 , c 1 (0) = c 0 1 and c 2 (0) = c 0 2 . The purpose of this section is to explicitly exemplify a mechanism of transient oscillatory behaviour of (2.2) under the assumption that the reaction rate constant k is large (compared to the other parameters).

More precisely, for a sufficiently small parameter ε = 1 k , we will prove that under general conditions solutions to (2.7) converge exponentially to a positive equilibrium state while undergoing O(1/ε) many transient oscillations.

This result is a consequence of proving that the two-polymer model (2.7): i) features a convex Lyapunov functional which entails exponential convergence to equilibrium via a generalised entropy method and ii) can be reformulated as a regular perturbation of a classical Hamiltonian-conserving Lotka-Volterra system, for which the perturbative terms are of order ε and cause exponential convergence to equilibrium on a time scale of order 1/ε. First, we recall that System (2.7) conserves the total number of polymers and the total mass. This implies the following two mass conservation laws for all t ≥ 0:

c 1 (t) + c 2 (t) = P 0 = c 0 1 + c 0 2 , and v(t) + w(t) + c 2 = M tot -P 0 =: M.
Expressing c 1 and c 2 in terms of these two conservation laws allows to reduce System (2.7) into

         dv dt = v [M -(k + 1)w -v] , dw dt = w [(M -P 0 ) + (k -1)v -w] , (2.8) 
which constitutes a generalised Lotka-Volterra system of predator-prey type, see e.g. see [START_REF] Bomze | Lotka-Volterra equation and replicator dynamics: A two-dimensional classification[END_REF] or [START_REF] Hofbauer | Evolutionary games and population dynamics[END_REF],

for which possible behaviours have been extensively listed and studied, and for which convergence may either be proved using an appropriate Lyapunov functional or using the Poincaré-Bendixson theorem and the Poincaré-Dulac theorem. However, up to our knowledge, these methods do not provide a rate of convergence, or explicit estimates.

Besides the boundary equilibria ( v, w) = (M, 0) and ( v, w) = (0, M -P 0 ) (in the case M ≥ P 0 ), System

(2.8) has the equilibrium

v ∞ := P 0 k 1 + 1 k - M k , w ∞ := M k - P 0 k 2 ,
and (v ∞ , w ∞ ) > 0 provided that P 0 ∈ kM 1+k , kM , which we shall assume henceforth. We observe that the equilibrium (v ∞ , w ∞ ) takes values of order ε := 1/k. This suggests the rescaling

v → v k = εv, and w → w k = εw,
and yields the rescaled equilibrium values

v ∞ = P 0 (1 + ε) -M, and w ∞ = M -εP 0 , ( 2.9) 
By using (2.9) and v ∞ + w ∞ = P 0 , System (2.8) rescales to the following two-polymer system, which we shall study subsequently:

         dv dt = v [w ∞ -w] -ε v [v -v ∞ + w -w ∞ ] , dw dt = w [v -v ∞ ] -ε w [v -v ∞ + w -w ∞ ] . (P2)
First, we point out that the rescaled two-polymer model (P2) in the limiting case ε = 0 constitutes the classical Lotka-Volterra system, i.e.

         dv 0 dt = v 0 [w ∞ -w 0 ] = v 0 w 0 -∂H ∂w 0 , dw 0 dt = w 0 [v 0 -v ∞ ] = w 0 v 0 ∂H ∂v 0 , ( 2.10) 
which is defined by, and conserves, the Hamiltonian:

H(v, w) = v -v ∞ ln v + w -w ∞ ln w, (2.11) d dt H(v 0 (t), w 0 (t)) = ∂H ∂v dv 0 dt + ∂H ∂w dw 0 dt = 0.
Moreover, for positive equilibria (v ∞ , w ∞ ) > 0, the Hamiltonian H is the sum of the convex functions v -v ∞ ln v and w -w ∞ ln w with minima at v ∞ and w ∞ . Hence, any positive equilibrium (v ∞ , w ∞ ) > 0 is the unique minimiser of the associated Hamiltonian (2.11) and

H(v, w) > H(v ∞ , w ∞ ) for all (v, w) (v ∞ , w ∞ ).

Large-time behaviour and entropy functional

The following theorem proves large-time convergence to the positive equilibrium (v ∞ , w ∞ ) by using the Hamiltonian (2.11) as a Lyapunov functional of the full system (P2).

Theorem 9 (Exponential convergence to positive equilibrium).

Consider P 0 ∈ kM 1+k , kM and hence a positive equilibrium (v ∞ , w ∞ ) > 0. Then, the Hamiltonian (2.11) is a convex Lyapunov functional for System (P2) with a decay rate of order ε.

More precisely,

d dt H(v(t), w(t)) = -ε p 2 (v(t), w(t)), with p(v, w) := [(v -v ∞ ) + (w -w ∞ )] .
(2.12)

Moreover, for ε sufficiently small, every solution (v(t), w(t)) to (P2) subject to positive initial data (v 0 , w 0 ) > 0 converges exponentially to the positive equilibrium

(v ∞ , w ∞ ), i.e. |v -v ∞ | 2 + |w -w ∞ | 2 ≤ C H 0 -H ∞ e -εrt , (2.13)
where the positive rate r and constant C depend only on the initial value of the Hamiltonian

H 0 := H(v 0 , w 0 )
and the values of the positive equilibrium (v ∞ , w ∞ ).

Proof. The decay rate of the Hamiltonian (2.12) follows from direct calculations when evaluating H along the flow of (P2).

In the following, we prove the exponential convergence (2.13) via a modified entropy method.

The standard entropy method consists in proving a functional inequality, which bounds the entropy production functional (i.e. the entropy decay rate) from below by the relative entropy with respect to the equilibrium, see e.g. [START_REF] Desvillettes | Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations[END_REF][START_REF] Desvillettes | Trend to equilibrium for reactiondiffusion systems arising from complex balanced chemical reaction networks[END_REF][START_REF] Fellner | Explicit exponential convergence to equilibrium for nonlinear reaction-diffusion systems with detailed balance condition[END_REF][START_REF] Fellner | Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction-diffusion systems[END_REF] in the context of nonlinear reaction-diffusion system. For the present Hamiltonian decay (2.12), however, this approach would aim for an estimate like

p 2 (v, w) ≥ r(H(v, w)-H ∞ )
for a rate r > 0, which cannot hold since p 2 vanishes at a straight line through the equilibrium point:

p = 0 ⇐⇒ w -w ∞ = -(v -v ∞ ).
In order to prove exponential convergence to the equilibrium in such a case, we shall provide explicit estimates that all solution trajectories only spend a finite amount of time near this line of degeneracy.

We first observe from (P2) that the null-cline v = 0 is also a straight line, which passes through the

equilibrium: v = 0 ⇐⇒ w -w ∞ = -λ ε (v -v ∞ ), λ ε := ε 1 + ε < 1,
Note that since λ ε < 1, the nullcline v = 0 is below p = 0 for v ≤ v ∞ and above p = 0 for v ≥ v ∞ . Next, we introduce a line W λ between v = 0 and p with a slope λ ∈ (λ ε , 1) to be chosen later:

W λ : w -w ∞ = -λ(v -v ∞ ), λ ∈ (λ ε , 1).
Similarly, on the opposite side of p = 0 we define the line W Λ :

W Λ : w -w ∞ = -Λ(v -v ∞ ), Λ := 2 -λ > 1.
In the following, we denote by - λ the open triangle in the phase space (v, w) ∈ R 2 + , which is defined by the interior between the lines W λ , W Λ and v = 0. Note that on - λ we have 0 < v < v ∞ and w ∞ < w < w ∞ + Λv ∞ . Analog, the open triangle + λ is defined as the interior of the lines W λ , W Λ and w = 0, i.e. we consider

v ∞ < v < v ∞ + w ∞ /λ and 0 < w < w ∞ . 0 v ∞ v w ∞ W λ p = 0 W Λ v 1 , W Λ (v 1 ) v 2 , W λ (v 2 )
Figure 2.4 -Phase space for System (P2)

In the following, we shall detail the estimates in the triangle - λ for 0 < v < v ∞ , while the estimates for + λ follow analogously (e.g. by exchanging the variables v and w and the roles of λ and Λ). We first observe that w -

w ∞ ∈ (-λ(v -v ∞ ), -Λ(v -v ∞ )), which implies (1 -λ)(v -v ∞ ) ≤ p ≤ (1 -Λ)(v -v ∞ ).
Moreover, we point out that v < 0 and ẇ < 0 are strictly negative on - λ . Hence, whenever a solution trajectory enters - λ at some time t 1 at a point (v(t 1 ),

w(t 1 )) = (v 1 , W Λ (v 1 )) with v 1 < v ∞ , then it must leave - λ again at a time t 2 at a point (v(t 2 ), w(t 2 )) = (v 2 , W λ (v 2 )
), for which holds that 0 < v 2 < v 1 . For later use, we shall refer to the duration of crossing - λ as the sojourn time t 2t 1 . In Lemma 3 of Appendix 2.6.1, we show that the sojourn time is bounded from below and above independently of the trajectories.

In order to ensure that all solution trajectories which pass through the line of degeneracy p = 0 where Ḣ = 0 are crossing the line of degeneracy, we shall prove that p 2 (t) is a strictly convex function near p = 0 with a positive lower bound for p within the triangle - λ (and + λ ) for λ chosen sufficiently close to one, i.e. that p(t) = 0 can only occur at discrete points in time.

We begin by calculating

ṗ = v + ẇ = d -ε(v + w)p, with d := vw ∞ -wv ∞ . Note that d = (v -v ∞ )w ∞ -(w -w ∞ )v ∞ and in the triangle - λ , we have in - λ : d < 0 with -(v -v ∞ )[w ∞ + λv ∞ ] ≤ |d| ≤ -(v -v ∞ )[w ∞ + Λv ∞ ]. (2.14) Next, ḋ = -[(v -v ∞ )v ∞ w + (w -w ∞ )vw ∞ ] -εdp, and p = -[(v -v ∞ )v ∞ w + (w -w ∞ )vw ∞ ] -2εdp -ε(v + w)d + ε 2 (v + w)p 2 + ε 2 (v + w) 2 p.
If p(t 0 ) = 0, then

p 2 (t) = p 2 (t 0 ) =0 +2 p 2 (t 0 ) =0 ṗ(t 0 )(t -t 0 ) + 2 ( ṗ) 2 + p p (θ) (t -t 0 ) 2 2 = ( ṗ) 2 + p p (θ) (t -t 0 ) 2 ,
for some θ ∈ (t, t 0 ) ⊂ (t 1 , t 2 ). Hence, by using Lemma 2 (see Appendix 2.6.1) and for ε sufficiently small

( ṗ) 2 + p p = d 2 -[(v -v ∞ )v ∞ w + (w -w ∞ )vw ∞ ] p + O(ε) ≥ κ(v(θ) -v ∞ ) 2 ≥ κ(v 1 -v ∞ ) 2
for a constant κ > 0. Now, for any solution trajectory, we estimate

t 2 t 1 Ḣdt = -ε t 2 t 1 p 2 (t) dt = -ε t 2 t 1 ( ṗ) 2 + p p (θ)(t -t 0 ) 2 dt ≤ -εκ(v 1 -v ∞ ) 2 t 2 t 1 (t -t 0 ) 2 dt ≤ -εκ t 2 t 1 C 1 (v(t) -v ∞ ) 2 dt t 2 t 1 (t -t 0 ) 2 dt t 2 -t 1 ≤ -εκ C 1 K t 2 t 1 (v(t) -v ∞ ) 2 dt,
where

C 1 = (v 1 -v ∞ ) 2 (v 2 -v ∞ ) 2 < 1 since v 2 < v(t) < v 1 for all t ∈ (t 2 , t 1 )
and K is a constant only depending on the lower bound of the sojourn time t 2t 1 provided in Lemma 3.

Next, we observe that the convexity of the Hamiltonian H together with the decay of the Hamiltonian H(v(t), w(t)) ≤ H 0 for all t ≥ 0 imply uniform-in-time positive lower and upper bounds on v and w subject to initial data with finite H 0 = H(v 0 , w 0 ) < +∞. By using this lower and upper bounds, we estimate

H(v, w) -H(v ∞ , w ∞ ) = v ∞ h v v ∞ + w ∞ h w w ∞ ≤ C 2 (v ∞ , w ∞ , H 0 ) (v -v ∞ ) 2 + (w -w ∞ ) 2 , ( 2.15) 
where h(z) = (z -1)ln z ≥ 0 is non-negative and convex and h(z

) ≤ C 2 (z * , z * )(z -1) 2 for z ∈ (z * , z * ). Hence, on - λ , we have H(v, w) -H(v ∞ , w ∞ ) ≤ C 3 (v -v ∞ ) 2 with a constant C 3 = C 3 (C 2 , λ) and conclude that t 2 t 1 Ḣdt ≤ -εκC 1 KC -1 3 t 2 t 1 H(v, w) -H(v ∞ , w ∞ ) dt (2.16)
Note that an analogous estimate to (2.16) holds also in + λ .

Outside λ = - λ ∪ + λ , there exists a constant C λ > 0 such that the estimate 2 holds. Moreover, the uniform lower and upper bounds on v(t), w(t) imply that there exists a positive constant

|p| 2 ≥ C λ (v -v ∞ ) 2 + (w -w ∞ )
C 4 = C 4 (v ∞ , w ∞ , H 0 ) 0 < C 4 := min {(v,w):H(v,w)≤H 0 }\ λ        [(v -v ∞ ) + (w -w ∞ )] 2 v ∞ h v v ∞ + w ∞ h w w ∞        , which implies p 2 ≥ C 4 (H(v, w) -H(v ∞ , w ∞ ) and Ḣ ≤ -ε C 4 (H(v, w) -H(v ∞ , w ∞ )) outside of λ .
(2.17) Estimate (2.17) proves exponential convergence (of order ε) towards equilibrium first in the relative

Hamiltonian distance (H(v, w) -H(v ∞ , w ∞ ))
as long as a solution trajectory is outside the critical area λ .

Consequently, the reversed estimate (2.15) (which holds equally true on all points with H(v, w) ≤ H 0 ) implies exponential convergence to the equilibrium in the Euclidian distance.

Within the critical area λ , this exponential convergence is hampered by the line of degeneracy where p = 0. However, (2.16) and the lower crossing time estimates in Lemma 3 of Appendix 2.6.1 show that solutions trajectories do not get stuck (or significantly slowed down) within λ . More precisely, since the speed of trajectories outside λ is bounded above, for any fixed λ < 1 (sufficiently close to one), all solution trajectories will remain within λ for only a small fraction (let say 10%) of the time spent on one rotation around (v ∞ , w ∞ ). Moreover, recall that trajectories can only reach (v ∞ , w ∞ ) outside of λ due to the sign conditions on v and ẇ.

Finally, this small fraction of time spent within λ per rotation can not degenerate near (v ∞ , w ∞ ), since classical linearisation techniques shows eigenvalues of the form

µ = -ε P 0 2 ± i (P 0 -M)M + εP 0 (2M -P 0 ) - 5 4 ε 2 P 2 0 ε→0 ----→ ±i √ v ∞ w ∞ , ( 2.18) 
where the right hand side values corresponds to the eigenvalues (and thus finite oscillation period) of the zero order Lotka-Volterra system (2.10).

Altogether, we obtain the exponential convergence to equilibrium with a rate εr as in (2.13), where r can be estimated explicitly in terms of the constants in (2.17 

Asymptotic expansion for fast monomer-conformer exchange

In the following, we show that System (P2), i.e.

         dv dt = v [w ∞ -w] -ε v [v -v ∞ + w -w ∞ ] , dw dt = w [v -v ∞ ] -ε w [v -v ∞ + w -w ∞ ] .
constitutes a regular perturbation in terms of ε of the zero order Lotka-Volterra system (2.10). This is summarised in the following corollary.

Corollary 1 (Fast transient oscillations).

Assume ε sufficiently small as in the second part of Proposition 9.

Then, by applying the ansatz

v = v 0 + εv 1 + O(ε 2 ), and 
w = w 0 + εw 1 + O(ε 2 ), (2.19) 
solutions to System (P2) can be approximated in a regular asymptotic expansion in ε which features the Lotka-Volterra system (2.10) as zero order approximation. Hence, the zero order terms (v 0 (t), w 0 (t)) are periodic solutions with period T > 0 to the Lotka-Volterra system (2.10) while the first order terms (v 1 (t), w 1 (t)) are solutions to the following non-autonomous linear inhomogeneous system with the same non-autonomous system matrix A(t) and similar inhomogeneities g n (t) only depending on the previously determined asymptotic expansion terms (v 0 , w 0 ), . . . , (v n-1 , w n-1 ).

      v1 ẇ1       =       w ∞ -w 0 -v 0 w 0 v 0 -v ∞       =:A(t) •       v 1 w 1       -       v 0 (v ∞ -v 0 + w ∞ -w 0 ) w 0 (v ∞ -v 0 + w ∞ -w 0 )       =:g 1 (t) . ( 2 
Hence, (2.19) constitutes a regular asymptotic expansion of the solution (v, w) up to arbitrarily high order. In particular, this implies that the change of the full solution (v, w) compared to the zero order approximation (v 0 , w 0 ) over one period is of order ε and that (v, w) will undergo order 1/ε many oscillations before finally converging to the equilibrium (v ∞ , w ∞ ). 

The n-polymer model

Let us now turn to System (2.6) in the case where 3 ≤ n < ∞. Let us begin by recalling a well-posedness result.

Proposition 4 (Well-posedness of the finite dimensional system).

Let n ∈ N, and v 0 , w 0 , c 

0 i ≥ 0 for 1 ≤ i ≤ n. Then System (2.6) has a unique time-continuous nonnegative solution v(t) ≥ 0, w(t) ≥ 0, c i (t) ≥ 0 for t ≥ 0 and all 1 ≤ i ≤ n satisfying v(t) + w(t) + n i=1 ic i (t) = v 0 + w 0 + n i=1 ic 0 i , n i=1 c i (t) = n i=1 c 0 i , ∀t ≥ 0.
1 k Mtot P0 = n M to t P 0 = n + b n k M to t P0 = 1 + a1 k Case a 1 > b n Mtot P0 1 k M to t P 0 = 1 + a 1 k Mtot P0 = n M to t P 0 = n + b n k Figure 2.
Let a i > 0, b i+1 > 0 for 1 ≤ i ≤ n -1, let v 0 , w 0 > 0 and P 0 > 0, M tot ≥ v 0 + w 0 + P 0 > 0. Then,

there exists three kinds of boundary steady states (BBS):

(BSSa) There exist unstable BSSs: v = w = 0 and ( ci ) 1≤i≤n satisfies

n i=1 ci = P 0 , n i=1 i ci = M tot .
(BSSb) There exists a BSS: v = M tot -P 0 > 0, w = 0, c1 = P 0 , ci = 0 for 2 ≤ i ≤ n. This BSS is locally asymptotically stable under Assumption (2.23) (grey diagonally hatched in Fig. 2.8) and unstable elsewhere.

(BSSc) Under the additional assumption M tot P 0 > n, there exists another BSS: v = 0, w = M tot -nP 0 > 0, ( ci ) 1≤i≤n-1 = 0 and c n = P 0 . This BSS is locally asymptotically stable under Assumption (2.21) (green horizontal lines) and otherwise unstable, which corresponds to Assumption (2.22) (light blue zone).

2. There exists (at least one) positive steady state (PSS) ( v, w, ci ) 1≤i≤n provided that the polynomial P (z) defined as

P (z) := a 1 k + 1 - M tot P 0 + n-1 i=2 a i k + i - M tot P 0 + b i k i-1 j=0 a j b j+1 z i-1 + n - M tot P 0 + b n k n-1 j=0 a j b j+1 z n-1 (2.24) has a root z > 0. Given z > 0, we have v = c1 n-1 i=1 a i k zi-1 i-1 j=0 a j b j+1 , w = c1 n-1 i=1 a i k zi i-1 j=0 a j b j+1 , c1 = P 0 n i=1 zi-1 i-1 j=0 a j b j+1 , ci = zi-1 i-1 j=0 a j b j+1 c1 , 2 ≤ i ≤ n.
(2.25)

If all BSSs are unstable, i.e. 1 + a 1 k < M tot P 0

< n + b n k , then there exists at least one positive steady state. Moreover, if the sequences (a i ), (b i ) are nondecreasing, the positive steady state is unique.

Remark 10. The existence of positive roots of the polynomial P can be analysed in more detail in the case of constant polymerisation coefficients, see Proposition 6 below. Also, the computation of those roots can be done numerically. While the linear stability of the BSSs can be calculated explicitly, the stability of the PSS constitutes a difficult problem, which can be explicitly confirmed in the two-polymer model, see (2.18), but seems otherwise only possible by numerical calculations.

Proof. For simplicity of notations, we drop the • in what follows, and postpone the proofs of stability to Appendix 2.6.2. The steady states of System (2.6) satisfy the following relations:

         -kvw + v n i=2 b i c i = 0, -w n-1 i=1 a i c i + kvw = 0, J 1 = . . . = J n-1 = 0, n i=1 c i = P 0 , v + w + n i=1 ic i = M tot .
(2.26)

1. First, we discuss the existence of BSSs, where at least one of the two monomeric species vanishes:

(a) If w = v = 0, then any distribution (c i ) such that n i=1 c i = P 0 and n i=1 ic i = M tot is a steady state solution.

(b) If w = 0 and v 0, then by the first equation we have v n i=2 bc i = 0, hence c i = 0 for i ≥ 2, so that c 1 = P 0 and v is such that v + c 1 = M tot .

(c) If v = 0 and w 0, then by the second equation we have w n-1 i=1 ac i = 0, hence c i = 0 for i ≤ n -1, so that c n = P 0 and w is such that w + nc n = M tot .

2. Let us now consider v > 0 and w > 0. Since J i = 0, we have by immediate recursion

c i = a i-1 w b i v c i-1 = • • • =       i-1 j=0 α j       z i-1 c 1 , ∀ 2 ≤ i ≤ n, where α i = a i b i+1
, α 0 = 1 and z = w v . Inserting this identity into (2.26), yields

kv = c 1 n-1 i=1 a i z i-1 i-1 j=0 α j , P 0 = c 1 n i=1 z i-1 i-1 j=0 α j ,
and

M tot = v(1 + z) + c 1 n i=1 iz i-1 i-1 j=0 α j = c 1 n-1 i=1 a i k z i-1 (1 + z) i-1 j=0 α j + n i=1 iz i-1 i-1 j=0 α j = c 1 n-1 i=1 a i k z i-1 i-1 j=0 α j + n i=2 a i-1 k z i-1 i-2 j=0 α j + n i=1 iz i-1 i-1 j=0 α j = c 1 a 1 k + 1 + n-1 i=2 a i k + i α i-1 + a i-1 k i-2 j=0 α j z i-1 + a n-1 k + nα n-1 n-2 j=0 α j z n-1 .
We deduce

M tot c 1 = M tot P 0 n i=1 z i-1 i-1 j=0 α j = a 1 k + 1 + n-1 i=2 a i k + i α i-1 + a i-1 k i-2 j=0 α j z i-1 + a n-1 k + nα n-1 n-2 j=0 α j z n-1 ,
and finally

P (z) = a 1 k + 1 - M tot P 0 + n-1 i=2 a i k + i - M tot P 0 α i-1 + a i-1 k i-2 j=0 α j z i-1 + n - M tot P 0 α n-1 + a n-1 k n-2 j=0 α j z n-1 = 0. If 1 + a 1 k < M tot P 0
< n + b n k , we have P (0) < 0 and P (+∞) = +∞, so that P admits at least one positive root. Moreover if the sequences (a i ) and (b i ) are nondecreasing, it implies that there is exactly one change of sign of the coefficients of the polynomial P and hence there is exactly one positive real root for P thanks to Descartes' rule of signs.

Discussion and biological interpretation:

The steady state analysis of Proposition 5 revealed different parametric regions. A key quantity appears to be the ratio M tot P 0 , which is easily interpreted as the sum of the average size of polymers plus the ratio representing the relative numbers of monomers to polymers, i.e.

M tot P 0 = ic i P 0 + v + w P 0 . = n is equivalent to c n = P 0 . Therefore, the zones

M tot P 0
> n (green horizontal lines and light blue zone) can be interpreted either as situations with a high amount of very large polymers close to the maximal size n or as situations with a large amount of the monomeric species v and w (compared to P 0 ). From a biological view, both those situations seem very unlikely. Hence (BSSc) and its stability is conjectured to have little biological relevance. Moreover, (BSSc) will disappear in the limit n → ∞, see Section 2.5.

The biologically more realistic zone M tot P 0 < n is divided into only two parts: either Assumption (2.23) is fulfilled, and (BSSb) is locally asymptotically stable (grey diagonally hatched region), or all BSSs are unstable whereas there exists a PSS (red stars zone). Assumption (2.23) has a direct interpretation that there is not enough initial mass to ignite the polymerisation hierarchy in the sense that all polymers depolymerise into the species C 1 . Indeed (BSSb), which is stable under Assumption (2.23), features c1 = P 0 while ci = 0 for 2 ≤ i ≤ n. Conversely, in the red star region, the system features a PSS (which is conjectured to be stable). In the dichotomy of stable (BSSb) versus existence of a PSS, the convergence to (BSSb) could be considered as non-proliferation of a disease in a more specific prionic model while otherwise a prionic assembly gets established in terms of the PSS.

From a more conceptional modelling viewpoint, the n-polymer model couples the bi-monomeric equations for v and w to a finite range of polymers of sizes 1 to n, which are considered as biologically "active", i.e. they interact with the monomeric species. More than the two-polymer model, the n-polymer model with increasing n describes the interaction of the bi-monomeric dynamics for v and w with a larger and larger hierarchy of polymerising and depolymerising polymers. The nonlinear feedback from the polymer-hierarchy is sufficient to introduce sustained oscillatory behaviour already in the two-polymer model, but it can be hypothesised that with larger n the dynamical interplay between monomer species and polymer hierarchy becomes more intricate, cf. Figure 2.12 below.

In any case, the model system (2.6) should be understood as a prototypical building block of more realistic and prion specific models. In the experiment illustrated in Figure 2.1, for instance, oscillations appear only during a specific time range; other reactions may have occured before, giving progressively rise to polymers belonging to the "active" range of the n-polymer model. Moreover, from a mathematical perspective, the n-polymer model is an interesting intermediate before turning to the infinite system.

Case of constant polymerisation coefficients

If the reaction coefficients are constant, i.e. the polymerisation/depolymerisation speed is the same for all polymers regardless of their size, the polynomial P defined in (2.24) (characterising PSSs) takes a simpler expression, which is stated in the following corollary.

Corollary 2 (Positive steady states in the constant coefficients case). Let k, b, a, P 0 and M tot be positive real constants. Let a i = a and b i+1 = b for

1 ≤ i ≤ n in System (2.6). Let n ≥ 3. Then,

if the initial conditions and parameters satisfy the condition

M tot P 0 = a k + b k n -1 n + n + 1 2 , ( 2.27) 
there exists a unique positive steady state (PSS) to System (2.6), which is defined by

ci := P 0 n ∀ 1 ≤ i ≤ n, v = a k P 0 , w = b k P 0 .
2. If (2.27) is not satisfied, then the PSSs of System (2.6) are given by (γ, v, w, c1 ) where γ 1 is a root of the following polynomial

Q(γ) := P ( b a γ) = a k - M tot P 0 + 1 + n-2 i=1 a k + b k - M tot P 0 + i + 1 γ i + b k - M tot P 0 + n γ n-1 , (2.28)
and ( c1 , v, w) are defined from γ by

c1 := P 0 1 -γ 1 -γ n , v := a k P 0 1 -γ n-1 1 -γ n , w := b k P 0 γ -γ n 1 -γ n . (2.29)
Remark 11. The relation (2.27) shall never be satisfied in practice, but it may be roughly satisfied in the sense that if n is large, it corresponds to the case where the average size of the polymers is initially taken around n 2 . We shall see later (Proposition 3) how this average size is related to the cases γ < 1 or γ > 1.

Proof. We apply Proposition 5 and notice that P (z) = Q(γ) with γ = a b z and Q defined by (2.28). We then distinguish according to γ = 1 or γ 1.

1. For γ = 1, we have For the existence of PSS, we study roots of the polynomial Q by applying Descartes' rule.

Q(1) = a k - M tot P 0 + 1 + (n -2) a k + b k - M tot P 0 + 1 + (n -1)(n -2) 2 - M tot P 0 + b k + n = (n -1) a k + b k + n -2 2 + 1 -n M tot P 0 + n, ( 2 
Lemma 1 (Descartes' rule of signs [START_REF] Haukkanen | A generalization of Descartes' rule of signs and fundamental theorem of algebra[END_REF]).

Given a univariate real polynomial P, the number of positive real roots of P is bounded by the number of sign variations of the ordered (by exponent) sequence of the coefficients of P.

The following proposition characterises different cases, leading to zero, one or two positive steady states.

Proposition 6 (Existence and number of PSSs of System (2.6) with constant coefficients).

Consider System (2.6) with constant polymerisation/depolymerisation coefficients a and b under the assumptions of Corollary 2. Assume that (2.27) is not satisfied. Then, we have the following cases.

1. If one of the following assumptions is satisfied:

M tot P 0 < min 1 + a k , n + b k , ( 2.31) 
M tot P 0 > max n + b k , n + b k + a k -1 , (2.32)
then, System (2.6) with constant coefficients has no PSS.

If either

1 + a k < M tot P 0 < n + b k , (2.33) or n + b k < M tot P 0 < 1 + a k , (2.34)
holds, then System (2.6) with constant coefficients has a unique PSS.

If

max b k + n, a k + 1 < M tot P 0 < n + b k + a k -1, (2.35)
holds, then System (2.6) with constant coefficients has at most two PSSs.

Case a < b

Mtot P0

1 k M to t P 0 = 1 + a k M to t P 0 = n -1 + a+ b k M to t P0 = n + b k γ = 1 : M to t P 0 = a+ b k (1 -1 n ) + n+ 1 2 Case a > b Mtot P0 1 k Mt ot P0 = 1 + a k M to t P 0 = n - 1 + a + b k M to t P 0 = n + b k γ = 1 : M to t P 0 = a + b k ( 1 - 1 n ) + n + 1 2
Figure 2.9 -Zones with zero (white), one (light grey) or two (dotted domain) PSSs. In red is the line of assumption (2.27): above we have γ > 1, below γ < 1.

Proof. Using the results of Corollary 2, we look for roots of the polynomial Q(γ) = n-1 i=0 u i γ i , where

u 0 = a k - M tot P 0 + 1, u i = a k + b k - M tot P 0 + i + 1 = u 0 + b k + i, u n-1 = b k - M tot P 0 + n.
and we apply the Descartes' rule. We notice that (u i ) is strictly increasing in i for 0 ≤ i ≤ n -2, and

u n-1 = u n-2 -a k + 1.
1. If u 0 > 0 and u n-1 > 0, i.e. if assumption (2.31) is satisfied, then, all coefficients are positive. If u n-2 < 0 and u n-1 < 0, i.e. if assumption (2.32) is satisfied, then, all coefficients are negative. In both cases, there exists no PSS.

2. If u 0 < 0 and u n-1 > 0, i.e. under assumption (2.33), or if u 0 > 0 and u n-1 < 0, i.e. assumption (2.34), there is exactly one change of sign in the coefficients. In these cases, there exists at most one PSS. In fact, there exists exactly one PSS, because P (0) = u 0 and P (z) ∼ u n-1 z n-1 as z → ∞ are of opposite sign.

3. If u 0 < 0, u n-2 > 0 and u n-1 < 0, i.e. under assumption (2.35), there are two changes of signs in the coefficients, so that there exist at most two PSSs. > n.

In the case of a unique PSS, let us now study the respective values of γ 1. This is of key importance, since if γ ≥ 1, then the corresponding PSS has no finite limit as n → ∞.

Corollary 3 (Values of the root γ).

Let the assumptions of Proposition 6 be satisfied and assume moreover inequality (2.33). Let γ be the unique positive root of the polynomial Q. Then,

• if M tot P 0 = a k + b k n-1 n + n+1 2 , we have γ = 1, • if M tot P 0 > a k + b k n-1 n + n+1 2 , we have γ > 1, • if M tot P 0 < a k + b k n-1 n + n+1 2 , we have γ < 1.
Proof. Under Assumption (2.33), Q(0) < 0 and Q(∞) > 0, so that γ > 1 iff Q(1) < 0. We have already calculated Q( 1) in (2.30), from which the result follows immediately.

Remark 12. Letting n tend to infinity while keeping M tot and P 0 finite ensures γ < 1: Hence, the steady state (c i ) 1≤i≤n-1 = (c 1 γ i-1 ) 1≤i≤n-1 defines a converging series and thus a possible steady state for the infinite system. Note that that the assumption of constant polymerisation coefficients prevents gelation (as for the classical Becker-Döring system).

Simulation results and discussion

Experiments can either measure the total polymerised mass M 1 (t) (by Thioflavine T, see e.g. [START_REF] Xue | Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly[END_REF]) or the second moment M 2 (t) (by Static Light Scattering, see e.g. [START_REF] Prigent | An Efficient Kinetic Model for Assemblies of Amyloid Fibrils and Its Application to Polyglutamine Aggregation[END_REF]) defined by

M 1 := n i=1 ic i = M tot -v -w, M 2 := n i=1 i 2 c i (t).
(2.36)

The following numerical simulations exemplify the dynamical behaviour of System (2.6) in two biologically plausible cases: Figures 2.10 

The infinite system

Let us now turn to the infinite system (2.6) with n = ∞, where no restriction is imposed on the maximal size of a fibril. Infinite size systems like the classical Becker-Döring model or a prion model [START_REF] Masel | Quantifying the kinetic parameters of prion replication[END_REF][START_REF] Prigent | An Efficient Kinetic Model for Assemblies of Amyloid Fibrils and Its Application to Polyglutamine Aggregation[END_REF] are considered the most natural way to model such aggregation processes [START_REF] Bishop | Kinetics of nucleation-controlled polymerization. A perturbation treatment for use with a secondary pathway[END_REF]. In this section, we first present a well-posedness result and, second, a study of all steady states. Finally, we point out the link between the infinite model and Lotka-Volterra systems in two specific cases: constant coefficients and linear coefficients. 

Well-posedness

We introduce the Banach sequence spaces 

1 1 = {y = (y i ) : y < ∞}, y = ∞ i=1 i|y i |. and X = {x = (v, w, c) = (v, w, c 1 , c 2 , . . .) : x X < ∞}, x X = |v| + |w| + c . Definition 4. Let 0 < T ≤ ∞ and c = (c i ). A nonnegative solution x = (v, w, c) of (2.6) with n = ∞ on [0, T ) is a function x : [0, T ) → X such that 1. x(t) ≥ 0 for all t ∈ [0; T ), i.e. v(t) ≥ 0, w(t) ≥ 0, c i (t) ≥ 0 for each i, 2. v, w : [0, T ) → R and c i : [0, T ) → R for all i ≥ 1 are continuous with sup t∈[0,T ) x(t) X < ∞, 3. t 0 ∞ i=1 a i c i (s)ds < ∞, t 0 ∞ i=2 b i c i (s)ds < ∞ for all t ∈ [0, T ) and

v, w and c satisfy for all

t ∈ [0, T )                          v(t) = v 0 + t 0 -kv(s)w(s) + v(s) ∞ i=2 b i c i (s) ds, w(t) = w 0 + t 0 -w(s) ∞ i=1 a i c i (s) + kv(s)w(s) ds, c i (t) = c 0 i + t 0 J i-1 (s) -J i (s) ds, i ≥ 1, J 0 = 0.
(2.37)

Theorem 10 (Well-posedness of the infinite dimensional system).

Let T > 0 be arbitrary and consider x 0 = (v 0 , w 0 , c 0 ) satisfy x 0 X < ∞. Assume

a i = O(i), b i+1 = O(i + 1), ∀ i ≥ 1.
Then, System (2.6) with n = ∞ has a nonnegative solution for t ∈ [0, T ) with v(t) ≥ 0, w(t) ≥ 0, c i (t) ≥ 0 for 

v(t) + w(t) + ∞ i=1 ic i (t) = v 0 + w 0 + ∞ i=1 ic 0 i , ∞ i=1 c i (t) = ∞ i=1 c 0 i , ∀t ≥ 0. Moreover, if ∞ i=1 i 2 c 0 i < ∞, then the solution is unique and satisfies sup t∈[0,T ) ∞ i=1 i 2 c i (t) < ∞. (2.38)
The proof of Theorem 10 adapts well-known results of the Becker-Döring system as presented in [START_REF] Ball | The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions[END_REF] and is postponed to Appendix 2.6.2. The main novelty lies in the nonlinearity of the depolymerisation terms, which requires the supplementary assumption for the b i .

Steady states and their local stability

In the following, we assume that the coefficients satisfy

a i > 0, b i+1 > 0, ∀i ≥ 1 and ∃ K > 0 : max i≥1 a i i , b i i , a i b i+1 ≤ K. (2.39)
The following result can be seen as the limit as n → ∞ of Proposition 5.

Proposition 7 (Steady states of the infinite case system and their local stability).

Let v 0 > 0, w 0 > 0, P 0 > 0 and M tot ≥ v 0 + w 0 + P 0 > 0. Let (a i , b i+1 ) i≥1 satisfy (2.39).

Then, there exist the following steady states ( v, w, ci≥1 ) of System (2.6) with n = ∞:

(BSSa) The trivial BSSs v = w = 0 and ci≥1 ∈ 1 1 satisfying ∞ i=1 ci = P 0 , and

∞ i=1 i ci = M tot ,
which are always linearly unstable.

(BSSb) The BSS v = M tot -P 0 , w = 0, c1 = P 0 and ci≥2 = 0. This steady state is locally asymptotically stable iff Proof.

M tot P 0 ≤ a 1 k + 1. ( 2 
First step: Existence of the steady states. After dropping the notation • for simplicity, any steady state satisfy

kvw = v ∞ i=2 b i c i , w ∞ i=1 a i c i = kvw, J i = J i-1 =⇒ vb i+1 c i+1 = wa i c i , ∀ i ≥ 1.
Let us first suppose v = 0. Then, the equation for w implies either w = 0 or c i = 0 for all i. The first case yields (BSSa) by taking into account the conservation of mass and of the number of polymers. The second case is not possible under the assumption P 0 > 0. Hence, (BSSa) gathers all BSSs with v = 0.

Next, suppose v 0 and w = 0. By the equalities vb i+1 c i+1 = 0, we deduce c i≥2 = 0. Consequentially,

c 1 = ∞ i=1 c i = P 0 and v = M tot -w -∞ i=1 ic i = M tot -P 0 , which is (BSSb).
Let us finally assume both v 0, w 0. We can divide the equations for c i by v. By denoting z = w v ,

α i = a i b i+1 for i ≥ 1, α 0 = 1, we calculate c i+1 = w v a i b i+1 c i-1 = zα i c i = • • • = z i c 1 i j=0 α j .
Under assumption (2.39), this series with coefficients i j=1 α j has a strictly positive convergence radius R and since we are looking for steady states in 1 1 , we consider here only z < R. Moreover, the equations for v and w as well as the mass and polymer conservation laws yield the relations:

kv = c 1 ∞ i=1 a i z i-1 i-1 j=0 α j , P 0 = c 1 ∞ i=1 z i-1 i-1 j=0 α j , M tot = v(1 + z) + c 1 ∞ i=1 iz i-1 i-1 j=0 α j = c 1       ∞ i=1 a i k z i-1 (1 + z) i-1 j=0 α j + ∞ i=1 iz i-1 i-1 j=0 α j       .
We deduce

M tot c 1 = M tot P 0 ∞ i=1 z i-1 i-1 j=0 α j = ∞ i=1 z i-1 a i k + i i-1 j=0 α j + 1 i≥2 a i-1 k i-2 j=0 α j .
We recognise a relation of the form M P 0 F 1 (z) = F 2 (z) and notice that F 1 and F 2 are two increasing functions in z, which are both defined by series with convergence radii R > 0. Moreover F 2 increases faster than F 1 since all its coefficients are strictly larger. Hence, there exists no solution iff M tot P 0 F 1 (0) < F 2 (0), which is exactly assumption (2.40). Conversely, if M tot P 0 F 1 (0) ≥ F 2 (0), there exists a unique solution z < R, which ensures a posteriori the validity of our assumption to only consider z < R. Given the solution z, the explicit expressions for c 1 , v and w follow. Note that z = 0 in the limit case where M tot P 0 F 1 (0) = F 2 (0) and we are back to (BSSb).

Second step: Linear stability or instability of the steady states. Linearisation of System (2.6) around the steady states yields the following cases:

1. Linearisation around a state (0, 0, ci ): The equation for v gives d v dt = v ∞ i=2 b i ci , which has the positive eigenvector (1, 0, c i = 0) for the positive eigenvalue λ = ∞ i=2 b i ci . Hence, these steady states are linearly unstable.

2. Linearisation around the state (M tot -P 0 , 0, P 0 , c i≥2 = 0). As for the asymptotic stability result, we may pass to the limit n → ∞ in the corresponding part of the proof of Proposition (1).

Link with oscillatory models

We proved in the previous section the well-posedness of the infinite model and that there exists a unique positive steady state under assumption (2.41). This assumption means that the ratio M tot P 0 needs to be "sufficiently large", else the polymers are unstable in the sense that all the mass goes back to the polymer of minimal size c 1 . There are two ways for this ratio to be "sufficiently large": either the monomeric species are in large excess, so that v 0 +w 0 P 0 is large, and/or the average polymer size, namely M tot -v 0 -w 0 P 0 is large, i.e. far enough from the BSS c1 = P 0 for which M tot P 0 = 1 has its minimum. Proposition 7 leaves the question open if the unique positive steady state is asymptotically stable under this assumption, but we expect this to be true.

In this subsection, in order to give some insights into the question of damped oscillations towards the positive equilibrium, we focus on two specific cases for the parameters of the model: the constant coefficient case and the linear coefficient case. Results for general reaction rate coefficients are difficult and open questions, beyond the scope of this study.

The constant coefficient case and its link to a predator-prey Lotka-Volterra system

As for the finite system, assuming constant coefficients permits to derive an explicit formula for the positive steady state.

Corollary 4 (Non-trivial steady state for constant reaction coefficients).

Under the assumptions of Proposition 7 with a i = a, b i = b and under assumption (2.41), the strictly positive

steady state ( v, w, ci≥1 ) of (2.6) is explicitly given by v = a k P 0 , w = γ b k P 0 , c1 = (1 -γ)P 0 , ci = γ i-1 (1 -γ)P 0 , ∀i ≥ 2,
where

γ = 1 2 - a b + kM tot bP 0 + 1 - a b - kM tot bP 0 + 1 2 + 4k b .
Proof. The straightforward computations proving Corollary 4 are postponed to Appendix 2.6.2.

Discussion and biological interpretation: Corollary 4 supposes assumption (2.41), which constitutes the biologically most relevant case since from a modelling point of view we are interested in M tot P 0 1, which means that the average size of polymers is initially large, and/or that there are enough monomeric species v and w. Accordingly, Corollary 4 states the existence of a PSS, which is conjectured to be stable. The opposite condition (2.40) concerns cases where the disease cannot spread due to a too small amount of large polymers and monomeric species compared to small polymers (see the discussion for n finite after Proposition 5).

In the case of constant polymerisation coefficients, we obtain the following system

dv dt = -kvw + bv(P 0 -c 1 ), dw dt = -awP 0 + kvw, dc i dt = J i-1 -J i , 1 ≤ i. (2.42)
and observe that if c 1 is negligible compared to P 0 , i.e. P 0c 1 P 0 , with P 0 being a constant, then the equations for (v, w) in (2.42) constitute a Lotka-Volterra system with v taking the role of the prey and w being the predator. Hence, System (2.42) can be interpreted as a perturbation of the Lotka-Volterra system by the concentration of the polymer of minimal size c 1 . Note that this observation is in accordance with the numerically observed oscillations, which are progressively damped towards the steady state and are more pronounced for smaller c 1 -the oscillatory behaviour of System (2.42) is also reflected in oscillations of M 1 and M 2 defined by (2.36).

The linear coefficient case and its link to a cyclic reaction system

As in the constant coefficients case, an explicit formula for the positive steady state is easily computed in the case of linear polymerisation coefficients.

Corollary 5 (Non-trivial steady state for linear reaction coefficients).

Under the assumptions of Proposition 7 with a i = ia, and b i+1 = ib for i ≥ 1, and under assumption (2.41), the strictly positive steady state ( v, w, ci≥1 ) of (2.6) is given by

v = a k(1 -γ) P 0 , w = bγ k(1 -γ) P 0 , c1 = (1 -γ)P 0 , ci = γ i-1 (1 -γ)P 0 , ∀i ≥ 2 and γ = M tot k -P 0 (a + k) M tot k + P 0 b ∈ (0, 1).
Proof. Again, we postpone the straightforward calculations of the proof of the corollary to Appendix 2.6.2.

Discussion and biological interpretation: Keeping the same notation of the total polymer mass M 1 (t) = M totvw as in the previous section, assuming linear polymerisation coefficients yields the simplified system:

dv dt = -kvw + vb(M 1 -P 0 ), dw dt = -waM 1 + kvw, dM 1 dt = waM 1 -vb(M 1 -P 0 ). (2.43)
System (2.43) differs from (2.42) by featuring an interplay between the two monomer species and the total polymer mass M 1 (t), which varies in time as a kind of quasi-variable (and in contrast to total number of polymers P 0 being constant).

In situations when P 0 M 1 (i.e. when the average polymer size remains sufficiently large), we recover the already cited Ivanova differential system (2.3). The Ivanova system displays sustained oscillations [START_REF] Aizik | Analysis in classes of discontinuous functions and the equations of mathematical physics[END_REF]. In our specific case, the total number of polymers P 0 is a perturbation which has an impact on the behaviour of the solutions of (2.43). The mass conservation of System (2.43) implies M 1 (t) = M totv(t)w(t). Hence, we can further reduce (2.43):

         dv dt = -kvw + vb ((M tot -P 0 ) -v -w) , dw dt = -wa(M tot -v -w) + kvw.
(2.44) System (2.44) is a well known quadratic Lotka-Volterra system, see [START_REF] Bomze | Lotka-Volterra equation and replicator dynamics: A two-dimensional classification[END_REF] or [START_REF] Hofbauer | Evolutionary games and population dynamics[END_REF]. By using Poincaré-Bendixson theorem and the Poincaré-Dulac theorem, it follows that solutions of (2.44) converge to a steady state. Also, the oscillatory behaviour near the steady states follows from the (well-known) eigenvalues of the linearised system. We expect that global oscillatory behaviour of the solutions can be shown by similar arguments as in the two-polymer case, see Corollary 1. Moreover, exponential convergence to the steady state can probably be proven by developing an analog proof as for Theorem 9.

These results, however, are beyond the scope of this study.

Summary and Perspectives

In this chapter, we propose a bi-monomeric, nonlinear Becker-Döring-type system, where one monomer species is involved in the polymerisation process while the other monomeric species is able to induce depolymerisation (with an accordingly nonlinear depolymerisation rate). Moreover, the polymerising/depolymerising hierarchy of polymers provides a nonlinear feedback to the evolution of the monomeric species.

A key observation of this paper highlights that the nonlinear coupling between monomeric species and polymer hierarchy leads to generic oscillatory behaviours of solutions, which is in special parametric cases linked to Lotka-Volterra models. A key concept of this paper is that the proposed mathematical model may play a pivotal role in explaining oscillatory behaviour in prion assemblies depolymerisation experiments, and thus become a building block for more specific models for the development of prion diseases.

Furthermore, we performed a full study of the model in the case of only two polymers. We have proven exponential convergence to equilibrium as well as provided an explanation for the damped oscillations, which occur when the monomer dynamics is fast compared to polymerisation/depolymerisation. For the finite and infinite models, we have analysed the existence, uniqueness and stability of the boundary steady states (BSSs) and characterised the existence of positive steady states (PSSs).

Several questions remain open, especially interesting ones for the infinite system: What is the stability of the positive steady state? What is the (nonlinear) rate of convergence to equilibrium? Does a Lyapunov functional exist (at least in a suitable neighbourhood of the PSSs)? How to rigorously prove the existence of damped oscillations? Turning back to the experiments as shown in Figure 2.1, it also appears that much remains to be done before reaching a fully quantitative model: integrating the proposed reaction scheme in a more complete model, where "usual" reactions (like linear depolymerisation) would be the dominant reactions, governing the slow dynamics of the reactions, and these ones local corrections; experimental evidence and quantitative comparison, for instance through data assimilation strategies in the spirit of [START_REF] Armiento | Estimation from Moments Measurements for Amyloid Depolymerisation[END_REF][START_REF] Armiento | The mechanism of monomer transfer between two structurally distinct PrP oligomers[END_REF].

Finally, in a similar fashion as the Lifshitz-Slyozov system for Becker-Döring, a continuous approximation of our system could provide interesting insights into the interplay between the different scales, in particular the role of the average size of the polymers, and lead us to new mathematical problems.
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Supplementary and appendix

Consider as above -

λ to be the interior of the triangle between v = 0 and the lines

W λ : w -w ∞ = -λ(v -v ∞ ) and W Λ : w -w ∞ = -Λ(v -v ∞ ).
Then, for all λ ε < λ < 1 sufficiently close to one, we have

d 2 -[(v -v ∞ )v ∞ w + (w -w ∞ )vw ∞ ] p ≥ κ(v -v ∞ ) 2 ,
(2.45)

for a positive constant κ = κ(λ, v ∞ , w ∞ ) > 0.
Proof. We set

q := [(v -v ∞ )v ∞ w + (w -w ∞ )vw ∞ ]
and observe that q > 0 is equivalent to

w -w ∞ > -(v -v ∞ ) v ∞ v w w ∞ , where on - λ both v ∞ v > 1 and w w ∞ > 1.
It is easily checked that the line q = 0 as a function of v is a curve through the equilibrium (v ∞ , w ∞ ), where it has the line p = 0 as tangent. Moreover, on - λ the line q = 0 is strictly convex and intersects the line W Λ (and thus enters - λ ) at the point

v = v ∞ (w ∞ + Λv ∞ ) Λ(v ∞ + w ∞ ) < v ∞ .
In order to prove (2.45), we need to estimate d 2qp below. Note that qp > 0 holds on two subdomains of λ : I) the intersection of the domains q > 0 and p > 0 up to the line W Λ , which we shall denote as - λ,I and II) the domain - λ,II between the lines W λ , p = 0 and the domain q < 0, where thus both q < 0 and p < 0. On - λ,I , we estimate 0

≤ q ≤ v ∞ w ∞ p with 0 ≤ p ≤ (1 -Λ)(v -v ∞ ).
Together with (2.14), this implies on - λ,I :

d 2 -qp ≥ (v -v ∞ ) 2 (w ∞ + λv ∞ ) 2 -(1 -Λ) 2 v ∞ w ∞ By observing that (1 -Λ) 2 = (λ -1) 2 , we obtain κ = (w ∞ + λv ∞ ) 2 -(λ -1) 2 v ∞ w ∞ > 0
for λ close enough to one.

On - λ,II , where q < 0, we estimate 2 , we obtain

|q| = -(v -v ∞ )v ∞ (w -w ∞ ) -(w -w ∞ )(v -v ∞ )w ∞ -v ∞ w ∞ p ≤ (v -v ∞ ) 2 (v ∞ + w ∞ )Λ -v ∞ w ∞ p. Since (1 -λ)(v -v ∞ ) ≤ p ≤ 0 and (1 -Λ) 2 = (λ -1)
d 2 -qp ≥ (v -v ∞ ) 2 (w ∞ + λv ∞ ) 2 + (v ∞ + w ∞ )Λ(1 -λ)(v -v ∞ ) -v ∞ w ∞ (λ -1) 2 ≥ κ(v -v ∞ ) 2
for λ close enough to one.

Lemma 3 (Sojourn time estimates).

Consider - λ as above. Let t 1 be the time when a solution trajectory enters - λ at a point (v 1 , W Λ (v 1 ) and t 2 the time when the same trajectory leaves - λ at a point

(v 2 , W λ (v 2 )) with v 2 < v 1 and W λ (v 2 ) < W Λ (v 1 )
. Then, for ε sufficiently small and all v 1 ∈ (0, v ∞ ), we have that the sojourn time t 2t 1 is bounded below and above, i.e. Proof. We estimate the second equation of (P2) by using that p

c 1 c 2 1 2Λ[v ∞ + w ∞ ] ≤ t 2 -t 1 ≤ 2(Λ -λ) w ∞ , ( 2 
≥ (1 -λ)(v -v ∞ ), w ∞ ≤ w ≤ w ∞ + Λv ∞ and v -v ∞ = -|v -v ∞ | holds on - λ : -ẇ = -w(v -v ∞ ) + εwp ≥ w ∞ |v -v ∞ | -ε(1 -λ)w|v -v ∞ | ≥ |v -v ∞ | [w ∞ -ε(1 -λ)(w ∞ + Λv ∞ )] ≥ w ∞ 2 |v -v ∞ | ≥ w ∞ 2 |v 1 -v ∞ |,
where the second last inequality holds for sufficiently small ε, e.g. ε ≤

w ∞ 2(1-λ)(Λv ∞ +w ∞ ) . Hence, w(t 1 ) -w(t 2 ) = t 2 t 1 -ẇ dt ≥ w ∞ 2 |v 1 -v ∞ |(t 2 -t 1 ).
On the other hand, since w(t 1 ) -

w(t 2 ) ≤ W Λ (v 1 ) -W λ (v 1 ) as v 2 = v(t 2 ) < v 1 = v(t 1 ), we have w(t 1 ) -w(t 2 ) ≤ w ∞ -Λ(v 1 -v ∞ ) -w ∞ + λ(v 1 -v ∞ ) = (Λ -λ)|v 1 -v ∞ |
which yields the upper bound (2.46). For the lower bound, we estimate with

w ≤ w ∞ + Λv ∞ -ẇ = -w(v -v ∞ ) + εwp ≤ |v -v ∞ | [w ∞ + Λv ∞ ] (1 + ε(Λ -1)) ≤ 2Λ[v ∞ + w ∞ ]|v -v ∞ | ≤ 2Λ[v ∞ + w ∞ ]|v 2 -v ∞ |,
for ε sufficiently small, e.g. ε(Λ -1) ≤ 1. Hence

w(t 1 ) -w(t 2 ) = t 2 t 1 -ẇ dt ≤ 2Λ[v ∞ + w ∞ ]|v 2 -v ∞ |(t 2 -t 1 ) (2.47)
and we require a lower bound for w(t 1 )w(t 2 ), which we derive as follows. From

-v = v[w -w ∞ ] + εvp ≤ v ∞ Λ|v -v ∞ | + εv ∞ (Λ -1)|v -v ∞ | ≤ |v -v ∞ |Λv ∞
for ε sufficiently small, e.g. ε(Λ -1) ≤ Λ and by recalling -ẇ ≥ w ∞ 2 |vv ∞ | from above, we estimate

dw dv = - ẇ - v ≥ w ∞ 2Λv ∞ .
The lower bound on dw dv implies that the solution trajectory starting at (v 1 , w 1 = W Λ (v 1 )) and leaving -

λ at (v 2 , w 2 = W λ (v 2 )) lies below the straight line W through (v 1 , w 1 ) with slope w ∞ 2Λv ∞
. By denoting v1 , ŵ1 the crossing between W and W λ , we have that v1 < v 2 < v 1 and ŵ1 > w 2 . Moreover, the length l of W

within - λ is proportional both to v 1 -v ∞ and v1 -v ∞ by trigonometric constants. Since v1 < v 2 < v 1 , l is therefore also proportional to v 2 -v ∞ , i.e. there exist a trigonometric constant c 1 such that l = c 1 |v 2 -v ∞ |.
Finally, l is also proportional to w 1 -ŵ1 , i.e. l = c 2 (w 1 -ŵ1 ). Altogether, that implies that

w(t 1 ) -w(t 2 ) = w 1 -w 2 ≥ w 1 -ŵ1 = l c 2 = |v 2 -v ∞ | c 1 c 2 ,
which yields together with (2.47) the lower bound (2.46). This finishes the proof.

Stability of the steady states for the finite system

Proof of stability of the boundary steady states (Proposition 5)

(BSSa) v = w = 0.
To analyse linear stability, we linearise system (2.6) around those equilibria and obtain the

      0 -kv 0 b 2 v • • • b i v b i+1 v • • • b n v 0 kv -a 1 P 0 0 0 • • • 0 0 • • • 0 0 -a 1 P 0 0 b 2 v • • • 0 0 • • • 0 0 a 1 P 0 0 -b 2 v b 3 v 0 0 • • • 0 0 0 0 0 • • • -b i v b i+1 v 0 0 0 0 • • • 0 0 0 0 • • • 0 0 0 • • • 0 0 0 0 0 -b n v                                 
. This is exactly symmetric to the case of A (0,w) : Zero is an eigenvalue of order two, and the other eigenvalues are λ i = -b i v for 2 ≤ i ≤ n and λ 1 = kv -a 1 P 0 = kM tot -P 0 (k +a 1 ), so that it is unstable iff M tot > P 0 (1 + a 1 k ).

(BSSc) v = 0 and c 1 = c 2 = . . . = c n-1 = 0.

The linearised system is given by dX dt = AX with w = M tot -nP 0 :

A (0,w) =                                       -kw + b n P 0 0 0 • • • • • • • • • 0 0 kw 0 -a 1 w • • • -a i w • • • -a n-1 w 0 0 0 -a 1 w 0 0 • • • 0 0 • • • • • • • • • • • • • • • • • • • • • • • • 0 0 • • • a i-1 w -a i w 0 • • • 0 • • • • • • • • • • • • • • • • • • 0 0 b n P 0 0 0 • • • 0 a n-2 w -a n-1 w 0 -b n P 0 0 0 • • • 0 0 a n-1 w 0
The eigenvalues are thus 0 (twofold), λ 0 = -kw + b n P 0 and λ i = -a i w < 0 for 1 ≤ i ≤ n -1. This steady state is thus unstable iff λ 0 > 0, i.e. b n P 0 > k(M tot -nP 0 ). Note that such a steady state is physically relevant only if it is nonnegative, i.e. M tot ≥ nP 0 .

The infinite system.

Well-posedness

Proof.[Theorem 10] First step: Existence. Let x n 0 = (v 0 , w 0 , c 0 1 , . . . , c 0 n ). By Proposition 4, System (2.6) has a unique solution

x n on [0, ∞) with v n (t) ≥ 0, w n (t) ≥ 0,c n i (t) ≥ 0, for 1 ≤ i ≤ n and v n (t) + w n (t) + n i=1 ic n i (t) = v 0 + w 0 + n i=1 ic 0 i , n i=1 c i (t) = n i=1 c 0 i .
We construct a sequence (x n ) n≥1 in X such that

x 1 = v, x 2 = w, x i = c n i-2 , 1 ≤ i -2 ≤ n and x i = 0, ∀i ≥ n + 2. Thus, x n X ≤ x 0 X and 0 ≤ v n (t) ≤ x 0 X , 0 ≤ w n (t) ≤ x 0 X , 0 ≤ c n i (t) ≤ i -1
x 0 X , ∀ t ≥ 0 and all i and n. Therefore, using the assumptions on a i , b i , we obtain the bounds

| ċn 1 | ≤ a 1 + b 2 2 x 0 2 X , | ċn i | ≤ a i-1 i -1 + a i i + b i+1 i + 1 + b i i x 0 2 X ≤ K 2 < ∞, i ≥ 2.
Therefore, for all i the function c n i (.) are equicontinuous on [0, ∞). Thanks to the Arzelá-Ascoli theorem, we can extract a subsequence n k → ∞ such that there exists a continuous function

c i : [0, ∞) → R such that c n k i → c i uniformly on compact subsets of [0, ∞) as k → ∞. Note that c i ≥ 0 and N i=1 ic i (t) = lim k→∞ N i=1 ic n k i (t) ≤ x 0 X . Hence, we obtain ∞ i=1 ic i (t) ≤ x 0 X , ∀t ≥ 0. (2.48)
Using the assumptions on a i , b i and (2.48), we get

∞ i=1 a i c i (t) ≤ K 1 x 0 X < ∞, ∞ i=2 b i c i (t) ≤ K 2 x 0 X < ∞, ∀t ≥ 0. (2.49)
Therefore, we also obtain

| vn (t)| ≤ (k + K 3 ) x 0 X and | ẇn (t)| ≤ (k + K 4 ) x 0 X .
Using the same reasoning and thanks to the the Arzelá-Ascoli theorem, there exist continuous functions

v : [0, ∞) → R and w : [0, ∞) → R), respectively, such that v n k → v, (resp. w n k → w) uniformly on compact subsets of [0, ∞) as k → ∞ and v ≥ 0, w ≥ 0.
Finally we pass to the limit as k → ∞ in

v n k (t) = v 0 + t 0 -kv n k (s)w n k (s) + v n k (s) ∞ i=2 b i c n k i (s) ds, w n k (t) = w 0 + t 0 -w n k (s) ∞ i=1 a i c n k i (s) + kv n k (s)w n k (s) ds, c n k 1 (t) = c 0 i + t 0 -a 1 c n k 1 (s)w n k (s) + b 2 c n k 2 (s)v n k (s) ds, c n k i (t) = c 0 i + t 0 (a i-1 c n k i-1 (s) -a i c n k i (s))w n k (s) + (b i+1 c n k i+1 (s) -b i c n k i (s))v n k (s) ds, i ≥ 2.
We get (2.37) at the limit thanks to the uniform convergence and the bounds obtained in (2.49).

Moreover, in order to obtain a priori estimates (2.38), we compute:

d dt n k i=1 i 2 c n k i = n k -1 i=1 (2i + 1)(a i w n k c n k i -b i+1 v n k c n k i+1 ).
Using the bounds on w n k , v n k and the assumptions on a i , b i+1 , we get

n k i=1 i 2 c n k i ≤ ∞ i=1 i 2 c 0 i + K        t 0 n k i=1 i 2 c n k i        ,
where the constant K is independent of k. Since ∞ i=1 i 2 c 0 i < ∞ and using Gronwall's inequality we get:

l i=1 i 2 c n k i + n k i=l+1 i 2 c n k i ≤ Me Kt , for all t ≥ 0 where M is a constant independent of k. Letting k → ∞ then l → ∞, we deduce ∞ i=1 i 2 c i ≤ Me Kt

and (2.38).

We can also obtain the following conserved quantities for the solution of System (2.6) with n = ∞.

Since (2.37) holds, we get for n > 1, t ≥ 0

n i=1 c i (t) - n i=1 c 0 i = - t 0 J n (s)ds.
Since v, w are bounded and (2.49), we have lim

n→∞ - t 0 J n (s)ds = 0 and ∞ i=1 c i (t) = ∞ i=1 c 0 i .
We also have

n i=1 ic i (t) - n i=1 ic 0 i = t 0 n i=1 i (J i-1 (s) -J i (s)) ds = - t 0 nJ n (s)ds + t 0 n-1 i=1 J i (s)ds, (2.50)
and

∞ i=n+1 c i (t) - ∞ i=n+1 c 0 i = t 0 J n (s)ds.
We obtain the following result from (2.48)

lim n→∞ (n + 1) ∞ i=n+1 c i (t) ≤ lim n→∞ ∞ i=n+1 ic i (t) = 0,
whence lim n→∞ t 0 nJ n (s)ds = 0. Then, by passing to the limits and adding v and w to (2.50) we obtain

v(t) + w(t) + ∞ i=1 ic i (t) = v 0 + w 0 + ∞ i=1 ic 0 i . (2.

51)

Second step: Uniqueness. Let x 1 = (v 1 , w 1 , c) and x 2 = (v 2 , w 2 , d) be absolutely continuous in time solutions of System (2.6) with n = ∞ and the same initial condition x 0 = (v 0 , w 0 , c 0 ). Then, we note

J (1) i = a i w 1 c i -b i+1 v 1 c i+1 , J (2) i = a i w 2 d i -b i+1 v 2 d i+1 , ∀i ≥ 1,
and J

(1)

0 = J (2) 0 = 0. Let V (t) = v 1 (t)-v 2 (t), W (t) = w 1 (t)-w 2 (t) and y i (t) = c i (t)-d i (t).
Then, for a.e. t ∈ [0, T ) we have

d dt |V | + |W | = sign(V ) -kV w 1 -kv 2 W + V ∞ i=2 b i c i + v 2 ∞ i=2 b i y i + sign(W ) kv 1 W + kV w 2 -W ∞ i=1 a i c i -w 2 ∞ i=1 a i y i , = |V | -kw 1 + sign(V W )kw 2 + ∞ i=2 b i c i + |W | kv 1 -sign(V W )kv 2 - ∞ i=1 a i c i + sign(V )v 2 ∞ i=2 b i y i -sign(W )w 2 ∞ i=1 a i y i .
We have by (2.49) and (2.51) that

d dt |V | + |W | ≤ K 1        |V | + |W | + ∞ i=1 i|y i |        .
(2.52) Integrating (2.52) we obtain for t ∈ [0, T )

|V (t)| + |W (t)| ≤ K 1 t 0 |V | + |W | + ∞ i=1 i|y i | ds. (2.53)
We also have for a.e. t ∈ [0, T ) 

d dt n i=1 i|y i | = n i=1 (J (1) i -J (2) i )[(i + 1) sign(y i+1 ) -i sign(y i )] -(n + 1) sign(y n+1 )(J (1) n+1 -J (2) n+1 ). (2.54) Now (J (1) i -J (2) i )[(i + 1) sign(y i+1 ) -i sign(y i )] = (a i y i w 1 + a i d i W -b i+1 y i+1 v 1 -b i+1 d i+1 V ) ×[(i + 1) sign(y i+1 ) -i sign(y i )], = a i w 1 |y i |[(i + 1) sign(y i+1 y i ) -i] -b i+1 |y i+1 |v 1 [(i + 1) -i sign(y i+1 y i )] +(a i d i W -b i+1 d i+1 V )[(i + 1) sign(y i+1 ) -i sign(y i )], hence (J (1) i -J (2) i )[(i + 1) sign(y i+1 ) -i sign(y i )] ≤ a i w 1 |y i | + (2i + 1)(a i d i |W | + b i+1 d i+1 |V |). ( 2 
t∈[0,T ) ∞ i=1 (2i + 1)a i d i (t) < ∞, sup t∈[0,T ) ∞ i=1 (2i + 1)b i+1 d i+1 (t) < ∞. ( 2 
|V (t)| + |W (t)| + ∞ i=1 i|y i (t)| = 0, t ∈ [0, T )
and thus (v 1 , w 1 , c) = (v 2 , w 2 , d) and uniqueness.

Explicit formula for the positive steady state.

Proof.[Corollary 4]

We define γ = a b z = αz and use the expressions obtained in the Proposition 7,

ci = γ i-1 c1 , c1 1-γ = P 0 , k v = a c1 1-γ = aP 0 , v + w + c1 (1-γ) 2 = a k P 0 + b vγ a + P 0 1-γ = P 0 a k + bγ k + 1 1-γ = M tot ,
which gives us immediately a second-order equation for γ. We define

β 1 = b k , β 2 = a k , µ = M tot P 0 , hence a k (1 -γ) + b k γ(1 -γ) + 1 = M tot P 0 (1 -γ), β 2 (1 -γ) + β 1 γ(1 -γ) + 1 = µ(1 -γ), β 1 γ 2 + γ(β 2 -µ -β 1 ) + µ -1 -β 2 = 0.
We calculate the discriminant

∆ = (β 2 -µ -β 1 ) 2 -4β 1 (µ -1 -β 2 ) = (β 2 -µ + β 1 ) 2 + 4β 1 , γ ± = 1 2 - β 2 β 1 + µ β 1 + 1 ± ( β 2 β 1 - µ β 1 + 1) 2 + 4 β 1 .
We see easily that for any value of the parameters we have γ + > 1: Indeed, we have

γ + > 1 2 - β 2 β 1 + µ β 1 + 1 + | β 2 β 1 - µ β 1 + 1| ≥ 1.
Thus, the only admissible solution is γ -. We see similarly that it is always smaller than 1

γ -< 1 2 - β 2 β 1 + µ β 1 + 1 -| β 2 β 1 - µ β 1 + 1| ≤ 1.
And we have γ -> 0 under the assumption (2.41).

Proof.[Corollary 5] Using the same notations as previously, we have

γ = a w b v , ci = γ i-1 c1 , c1 1 -γ = P 0 ,
and denoting

f (γ) = 1 1-γ = ∞ i=0 γ i k v = a c1 ∞ i=1 iγ i-1 = aP 0 (1 -γ)f (γ) = aP 0 (1 -γ) , k w = bc 1 ∞ i=1 iγ i = bP 0 γ (1 -γ) v + w + c 1 (1 -γ) 2 = aP 0 k(1 -γ) + bP 0 γ k(1 -γ) + P 0 (1 -γ) = M tot ,
and thus

M tot k(1 -γ) = P 0 (a + bγ + k), γ = M tot k -P 0 (a + k) M tot k + P 0 b < 1.
We have γ > 0 iff the assumption (2.41) is fulfilled.

Materials and methods of the depolymerisation experiment shown in Figure 2.1

Formation of amyloid fibrils: PrP amyloid fibrils were formed using the manual setup protocol described previously in [START_REF] Breydo | Methods for conversion of prion protein into amyloid fibrils[END_REF]. Fibril formation was monitored using a ThT binding assay [START_REF] Breydo | Methods for conversion of prion protein into amyloid fibrils[END_REF]. Samples were dialysed Chapter 3

A continuous bi-monomeric

Lifshitz-Slyozov type model.

Introduction

We study the following system of reactions in a continuous size-setting where the depolymerisation is catalysed by a monomeric species. Let us recall the discrete-size chemical model where we denote V and W respectively the monomeric depolymerising and polymerising species, and C i the polymers containing

i monomers.              V + W k - → 2W W + C i a i -→ C i+1 i ≥ 1 C i + V b i --→ C i-1 + 2V i ≥ 2 (3.1)
C 1 represents the minimal size of the polymers however it could as well represent already large fibrils, of any given size n 0 ∈ N * . The infinite size-structured ordinary differential equations (ODE) systems corresponding to (3.1) has previously been studied (cf Chapter 2, [START_REF] Doumic | A bi-monomeric, nonlinear Becker-Döring-type system to capture oscillatory aggregation kinetics in prion dynamics[END_REF]). The new framework model the phenomenon of protein aggregation process by three coupled equations: a transport equation representing the evolution in time of the concentration of clusters of specific sizes and two differential equations representing the evolution in time of the concentration of the two monomeric species. The infinite ODE systems leads to high computational costs whereas the partial derivative equations (PDE) coupled with two ODE seems easier to handle both theoretically and numerically.

In this study, we are interested in the long-term behaviour of a polymerisation/depolymerisation equations modeling the kinetics of large polymers in a spatially and closed environment. We prove that depending on the assumptions on the reaction coefficients the existence of either sustained oscillations or damped oscillations and the convergence towards a steady-state. We first recall some results on the seminal Lifshitz-Slyozov equations. The Lifshitz-Slyozov model was first introuced in the seminal paper [START_REF] Ilya | The kinetics of precipitation from supersaturated solid solutions[END_REF], was originally designed to model the formation of a new phase in solid solution. It describes the formation of aggregates or polymers by the continuous addition of monomers. In the following, we denote v(t) the concentration of monomers at time t and f (t, x) the concentration of polymers of size x > 0 at time t. The model is an attempt to describe the kinetics happening during SLS experiments, hence we assume a closed and space-homogeneous environment. This translates into the constraint that the total mass needs to be conserved:

v(t) + ∞ 0 xf (t, x)dx = v(0) + ∞ 0 xf (0, x)dx := ρ, ∀t ≥ 0. (3.2)
We denote by ρ the total mass of monomers and xf (t, x)dx can be interpreted as the concentration of monomers in the polymerised form. Hence, the concentration of polymers satisfies the following equation:

∂f ∂t + ∂ ∂x (a(x)v(t) -b(x))f (t, x) = 0, f (0, x) = f 0 (x) ≥ 0. (3.3)
Note that in (3.3), the depolymerisation rate is denoted by b(x), the polymerisation rate is denoted by a(x) and both rates can be size-dependent. In the original seminal paper [START_REF] Ilya | The kinetics of precipitation from supersaturated solid solutions[END_REF], the authors assume the following reaction coefficients

a(x) = x 1 3 , b(x) = 1.
Using these definitions of the reaction rates, no boundary condition at x = 0 is required since the flux at zero is always going outward. Moreover, one key assumption for the phase transition model is that for larger sizes, the polymerisation rate is bigger than the depolymerisation rate, whereas the reverse is true for smaller size. This lead to the phenomenon called "Ostwald ripening" which describes the formation of larger and larger clusters at the expense of smaller ones (see e.g. [START_REF] Ilya | The kinetics of precipitation from supersaturated solid solutions[END_REF][START_REF] Niethammer | Derivation of the LSW-Theory for Ostwald Ripening by Homogenization Methods[END_REF]).

The model containing equation (3.3) can either be completed by the mass conservation equation (3.2) or equivalently by the following equation for the concentration of monomers: Theorem 11 (Well-posedness [START_REF] Collet | On solutions of the Lifshitz-Slyozov model[END_REF].). Let a, b be

dv dt = ∞ 0 b(x)f (t, x)dx -v(t) ∞ 0 a(x)f (t, x)dx, v(0) = v 0 . ( 3 
C 1 functions on [0, ∞) such that a(x) ≥ 0, b(x)≥ 0, a(0)M -b(0) ≤ 0, |a (x)| + |b (x)| ≤ K.
Let the initial data f 0 be nonnegative and satisfy

∞ 0 f 0 (x)dx < ∞, ∞ 0 xf 0 (x)dx < M.
Then the system (3.3)-( 3.2) has a unique solution

(v, f ) where v ∈ C 0 ([0, T ]) , xf ∈ L ∞ [0, T ]; L 1 ([0, ∞)) .
The condition a(0)Mb(0) ≤ 0 ensures the fact that no boundary condition is needed. The proof of the theorem is based on the method of characteristic to obtain an expression of the density function in terms of the monomer concentration and then a fixed-point method.

The asymptotic behaviour of the Lifshitz-Slyozov model for general assumptions on the reaction rates is still an open problem. However, Calvo, Doumic and Perthame recently established in [START_REF] Calvo | Long-time asymptotics for polymerization models[END_REF] the exponential convergence towards a dirac mass in the following theorem.

Theorem 12 (Exponential convergence to a critical mass [START_REF] Calvo | Long-time asymptotics for polymerization models[END_REF]). Let a(x) = 1 and b(x

) ≥ 0 such that b ∈ C 1 (R + ), ∃ α, β > 0, 0 < α ≤ b (x) ≤ β v 0 > b(0) ≥ 0.
Moreover, let

f 0 ∈ L 1 (R + , (1 + x 2 )dx) with ρ 0 = ∞ 0 f 0 (x)dx > 0.
Then there exists a unique solution x > 0 to the equation

M = ρ 0 x + b( x)
and the solution

(v, f ) ∈ C 1 (R + × C(R + , L 1 ((1 + x 2 )dx)) to the Lifshitz-Slyozov system (3.3)-(3.4) is such that f (t,
x) converges to ρ 0 δ x exponentially fast in the sense of the Wasserstein distance: for some constant C > 0 we have

W 2 (f (t, •), ρ 0 δ x) ≤ Ce -αt , |v(t) -b( x)| ≤ Ce -αt .
The proof of Theorem 12 is based on Entropy inequalities. The study on the Lifshitz-Slyozov equations is still an active research field and open problems remain for more general assumptions on the reaction coefficients. Further results can be found in [START_REF] Niethammer | Non-Self-Similar Behavior in the LSW Theory of Ostwald Ripening[END_REF][START_REF] Laurençot | Weak Solutions to the Lifshitz-Slyozov-Wagner Equation[END_REF][START_REF] Niethammer | On the Initial-Value Problem in the Lifshitz-Slyozov-Wagner Theory of Ostwald Ripening[END_REF][START_REF] Thierry Goudon | The Lifschitz-Slyozov equation with space-diffusion of monomers[END_REF][START_REF] José | A numerical study on large-time asymptotics of the Lifshitz-Slyozov system[END_REF] 3.1.2 From Becker-Döring to Lifshitz-Slyozov system.

In [START_REF] Collet | The Becker-Döring System and Its Lifshitz-Slyozov Limit[END_REF], the authors show that the Lifshitz-Slyozov system can be obtained as an asymptotic limit of the Becker-Döring system. The leading idea to demonstrate the asymptotic equivalence is to consider the functions (c i (t)) i>1 , the solution of the Becker-Döring system, as a discretisation in space of a function f (t, x), that, with a function v for the monomer concentration, solves the Lifshitz-Slyozov system. Collet et al in [START_REF] Collet | The Becker-Döring System and Its Lifshitz-Slyozov Limit[END_REF] introduced a scaling parameter ε and showed that the solution of the Becker-Döring system converges to that of the Lifshitz-Slyozov system as ε goes to 0.

In the following, we describe the main steps to get this result. We start by rewriting the Becker-Döring system in a dimensionless form. The reference quantities used to rescale are:

• T : characteristic time,

• C 1 : characteristic value for the monomer concentration,

• C: characteristic value for the polymers concentrations,

• A 1 : characteristic value for the polymerisation coefficient a 1 ,

• A: characteristic value for the polymerisation coefficients a i i ≥ 2,

• B: characteristic value for the depolymerisation coefficients,

• M: characteristic value for the total mass,

• M m : mass of one monomer.

We rescale every variable by its characteristic value:

t = t T , c1 = c 1 ( tT ) C 1 , ci = c i ( tT ) C , ρ = ρ M , āi = a i A , ā1 = a 1 A 1 , bi = b i B , for i ≥ 2.
We define the dimensionless parameters :

γ = C C 1 , µ = M M m C 1 , α = AT C 1 , α 1 = A 1 C 1 AC , β = BT .
The dimensionless form of the Becker-Döring system is then (omitting the overlines):

                         d dt c i = α(a i-1 c 1 c i-1 -a i c 1 c i ) + β(b i+1 c i+1 -b i c i ) i ≥ 2, d dt c 2 = α 1 αa 1 c 2 1 -αa 2 c 1 c 2 + β(b 3 c 3 -b 2 c 2 ), d dt c 1 = -γ 2(α 1 αc 2 1 -βb 2 c 2 ) + ∞ i=2 (αa i c 1 c i -βb i+1 c i+1 ) , (3.5)
and the mass conservation is

c 1 + γ ∞ i=2 ic i = µρ. (3.6)
The dimensionless parameters γ, µ, α, α 1 , β appear as coefficients in (3.5)- (3.6). Furthermore, we define the piecewise constant function f ε (t, x) as follows:

           f ε (t, x) = c ε i (t) if x ∈ [iε; (i + 1)ε) for i ≥ 2, t > 0, f ε (t, x) = 0 if x ∈ [0, 2ε),
where c ε i is the solution of the system (3.5) with the suitable choice of the dimensionless parameters [START_REF] Collet | The Becker-Döring System and Its Lifshitz-Slyozov Limit[END_REF]:

γ = ε 2 , µ = 1, α = β = 1 ε , α 1 ≤ 1.
With this choice of parameters, the rescaled version of the system (3.5)-(3.6) is:

                         d dt c i = 1 ε (a i-1 c 1 c i-1 -a i c 1 c i ) + 1 ε (b i+1 c i+1 -b i c i ) i ≥ 2, d dt c 2 = 1 ε α 1 a 1 c 2 1 -1 ε a 2 c 1 c 2 + 1 ε (b 3 c 3 -b 2 c 2 ), d dt c 1 = -ε 2(α 1 c 2 1 -b 2 c 2 ) + ∞ i=2 (a i c 1 c i -b i+1 c i+1 ) ,
and the mass conservation equation

c ε 1 + ε 2 ∞ i=2 ic ε i = ρ.
Collet et al proved in [START_REF] Desvillettes | Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations[END_REF] that for ε close to 0, the couple (c ε 1 , f ε ) is an approximate solution of the Lifshitz-Slyozov system.

Theorem 13 (First-order approximation [START_REF] Collet | The Becker-Döring System and Its Lifshitz-Slyozov Limit[END_REF]). Assume the kinetic coefficients a i , b i satisfy

a i , b i ≤ K, |a i+1 -a i | ≤ K i , |b i+1 -b i | ≤ K i for some constant k > 0. Consider a sequence ε n → 0.
Then there exist a subsequence, still denoted by ε n , and two functions

a, b ∈ W 1,∞ ((0, ∞)) ∩ L ∞ (R + ) such that lim ε n →0 sup r/ε n <i<R/ε n |a i -a(iε n )| + |b i -b(iε n )| = 0, ∀ 0 < r < R < ∞.
Assume, moreover, that there exist constants

0 < s ≤ 1, M 0 < ∞, ρ < ∞, M s < ∞ for which for all ε > 0 ε ∞ i=2 c 0,ε i ≤ M 0 , c 0,ε 1 + ε 2 ∞ i=2 ic 0,ε i = ρ, ε ∞ i=2 (iε) 1+s c 0,ε i ≤ M s .
Then the subsequence ε n may be chosen in such a way that

           f ε n f , xf ε n xf in C 0 ([0, T ]; M 1 (0, ∞) -weak -), c ε n 1 (t) → c 1 (t) uniformly in C 0 ([0, T ]), where (c, f ) is a solution to (3.2)-(3.3).
The space M 1 (0, ∞) denotes the space of bounded measures on (0, ∞), it is the dual of the space of continuous function on (0, ∞) with compact support, namely C 0 0 (0, ∞). The function f is in this context a measure -valued solutions (see [START_REF] Collet | On solutions of the Lifshitz-Slyozov model[END_REF]). The proof of Theorem 13 relies on moment estimates and equicontinuity arguments. More details on the link between the Becker-Döring system and the Lifshitz-Slyozov system with different framework can be found in [START_REF] Laurençot | From the Becker-Döring to the Lifshitz-Slyozov-Wagner equations[END_REF][START_REF] Laurençot | From the discrete to the continuous coagulationfragmentation equations[END_REF][START_REF] Niethammer | On the Evolution of Large Clusters in the Becker-Döring Model[END_REF][START_REF] Schlichting | Macroscopic limit of the Becker-Döring equation via gradient flows[END_REF].

Moreover, second-order approximations shed light on the link between the Becker-Döring and Fokker-Planck like equations. For example, in [START_REF] Collet | The Becker-Döring System and Its Lifshitz-Slyozov Limit[END_REF], the authors introduced the modified Lifshitz-Slyozov equations:

                       ∂ ∂ t g + ∂ ∂ x G(g; t, x) = 0, G(g; t, x) = (a(x)c(t) -b(x))g(t, x) -ε ∂ ∂ x a(x)c(t)+b(x) 2 g(t, x) , (a(0)c(t) + b(0))g(t, 0) = 2a 1 c(t) 2 , ( 3.7) 
with the mass-conservation law

c(t) + ∞ 0 xg(t, x)dx = ρ.
The term with second derivative in space can be assimilated as a diffusion term. This diffusion term is coming from the underlying mechanisms of the discrete Becker-Döring system. The modified Lifshitz-Slyozov system with a diffusion term seems to be a more realistic continuous setting for the polymerisation/depolymerisation. Further details on the growth/fragmentation model with diffusion can be found in [START_REF] Velázquez | The Becker-Döring equations and the Lifshitz-Slyozov theory of coarsening[END_REF][START_REF] Collet | Some modelling issues in the theory of fragmentation-coagulation systems[END_REF][START_REF] Joseph G Conlon | On Large Time Behavior and Selection Principle for a Diffusive Carr-Penrose Model[END_REF].

Long-time behaviour of the bi-monomeric

Lifshitz-Slyozov type model.

Notations and framework assumptions

The model subsequently studied corresponds to the reaction network in (3.1). The chemical system is neither detailed nor complex balanced. The chemical reactions in (3.1) are not at equilibrium (not detailed balanced) and neither the complex of the chemical reactions (cf [START_REF] Horn | Necessary and sufficient conditions for complex balancing in chemical kinetics[END_REF]).

Discrete setting. It is translated in a discrete size setting into the following infinite system of differential equations, where we denote respectively c i (t), v(t) and w(t) the concentrations at time t of the polymers containing i monomers, the depolymerising and the polymerising monomeric species. Without loss of generality, we assume that the smallest size of polymers n 0 is equal to 1.

                                             dv dt = -kvw + v ∞ i=2 b i c i , v(0) = v 0 , dw dt =-w ∞ i=1 a i c i + kvw, w(0) = w 0 , dc 1 dt =-wa 1 c 1 + vb 2 c 2 , c 1 (0) = c 0 1 dc i dt =w(-a i c i + a i-1 c i-1 ) + v(b i+1 c i+1 -b i c i ), c i (0) = c 0 i , i ≥ 2. (3.8) 
As classically done for the Becker-Döring systems (e.g. [START_REF] Collet | The Becker-Döring System and Its Lifshitz-Slyozov Limit[END_REF][START_REF] Ball | The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions[END_REF][START_REF] Doumic | Scaling limit of a discrete prion dynamics model[END_REF]), we define the net rate at which a i-fibril is converted to a (i + 1)-fibril by :

J i = wa i c i -vb i+1 c i+1 1 ≤ i ≤ n -1.
With the convention J 0 = 0 we can rewrite the system (3.8) as :

                                 dv dt =-kvw + v ∞ i=2 b i c i , v(0) = v 0 , dw dt =-w ∞ i=1 a i c i + kvw, w(0) = w 0 , dc i dt =J i-1 -J i , c i (0) = c 0 i , i ≥ 1.
(3.9)

Remarks and notations : This system has two conserved quantities :

• the total concentration of polymerised fibrils d dt ∞ i=1 c i = 0, due to the fact that the smallest and largest fibrils do not polymerise,

• the conservation of mass

d dt v + w + ∞ i=1
ic i = 0 which indicates that there is no gain or loss of particles during the chemical reaction.

We denote the total concentration of polymerised fibrils and the total mass of the system by P 0 and M tot :

P 0 = ∞ i=1 c 0 i , M tot = v 0 + w 0 + ∞ i=1 ic 0 i .
The bi-monomeric Becker-Döring type system has been extensively studied in [START_REF] Doumic | A bi-monomeric, nonlinear Becker-Döring-type system to capture oscillatory aggregation kinetics in prion dynamics[END_REF]. The well-posedness has been established and the solutions of (3.9) admit a locally attractive nonnegative steady-state under some conditions on the reaction rate and the initial conditions (see [START_REF] Doumic | A bi-monomeric, nonlinear Becker-Döring-type system to capture oscillatory aggregation kinetics in prion dynamics[END_REF]).

Continuous setting. We may now consider the size of clusters as a continuously varying variable x > 0 which now replace i. The quantity f (t, x) denotes the density of aggregates of size x at time t, and v(t), w(t) denote the concentration of monomers. We then obtain the following equations:

                                                 ∂ t f + ∂ x J= 0, x > 0, t ≥ 0, f (0, x) = f 0 (x), J(t, x) = a(x)w(t) -b(x)v(t) f (t, x), d dt v(t) = -kv(t)w(t) + v(t) ∞ 0 b(x)f (t, x)dx, v(0) = v 0 > 0, d dt w(t) = -w(t) ∞ 0 a(x)f (t, x)dx + kv(t)w(t), w(0) = w 0 > 0, 0 = a(0)w(t) -b(0)v(t) f (t, 0)1 {a(0)w(t)-b(0)v(t)>0} , ∀t > 0.
(3.10)

The system (3.10) is viewed as the "macroscopic" limit of the system (3.9). The connection between these two models is similar to the link between the Becker-Döring system and its Lifshitz-Slyozov limit which has been investigated in [START_REF] Collet | The Becker-Döring System and Its Lifshitz-Slyozov Limit[END_REF][START_REF] Doumic | Scaling limit of a discrete prion dynamics model[END_REF][START_REF] Laurençot | From the discrete to the continuous coagulationfragmentation equations[END_REF].

Moreover the solutions of the system (3.10) follows a conservation law of the total mass M of the population:

v(t) + w(t) + ∞ 0 xf (t, x)dx = v 0 + w 0 + ∞ 0 xf 0 (x)dx = M. ( 3.11) 
system (3.10) has 2 conserved quantities:

• v(t) + w(t) + ∞ 0 xf (t, x)dx = M, • ∞ 0 f (t, x)dx = ρ 0 .
In order for the ODE system to be decoupled of the PDE solution in (3.10), the reaction coefficient functions have to be either constant, linear or affine function of the size variable x > 0. This comes from the fact that the integral terms in (3.13) are replaced by one of the conserved quantities.

In the following we restrict ourselves to the following assumptions on the reaction coefficients:

• the reaction coefficients are linear, a(x) = ax and b(x) = bx with a, b > 0,

• the reaction coefficients are constant, a(x) = a and b(x) = b with a, b > 0,

• one of the coefficient is linear and the other is constant.

An interesting result can be obtained if we suppose that the reaction rates are both linear:

∃a, b > 0, a(x) = ax, b(x) = bx.
In this case, the solutions (v, w) of (3.13) are periodic as well as the solution f of (3.10). We obtain the following result. 1 be any nonnegative solution of (3.10) and (3.11) such that the initial datum verifies v 0 , w 0 > 0 and w 0 + w 0 < M. Assume that a, b ∈ C 1 (R + ) + satisfy (3.16). Then the following statements hold true:

Proposition 1. Let (v, w, f ) ∈ C 1 b (R + ) × C 1 b (R + ) × C R + , L
1. The solutions v(t), w(t) of (3.17) are periodic of the same period.

The solution f of (3.10) is periodic of the same period as v(t), w(t).

The proof of this proposition is detailed in Section 3.3. This result shows that the solution of the bi-monomeric Lifshitz-Slyozov model (3.10) are periodic when the size-dependency ratio is constant.

The size-dependency ratio is formalised as polymerisation rate depolymerisation rate (x).

We obtain periodic solutions v(t) and w(t) of the same period. Hence the transport term of the PDE of (3.10) is a periodic function and its integral in time over one period is null. Such a result is not observed in the experiment since the continuous model is a first order approximation of the "true" discrete model.

The second order correction, a diffusion term, would dominate and change the behaviour of the solutions.

Moreover, even without the second order correction (the diffusion term), we show that the solutions of System (3.10) display damped oscillations and f concentrates its mass at a critical size when the size-dependency ratio is decreasing. The equation for f in (3.10) is a non-linear transport equation. The characteristic curves defined below are closely related to the asymptotic behaviour of f .

Definition 5. (Characteristic curves). Given z ∈ [0, ∞), let X : [0, ∞) 2 → [0, ∞) be the C 1 solution of d dt X(t, z) = a(X(t, z))w(t) -b(X(t, z))v(t), X(0, z) = z. ( 3.14) 
We also recall some classical formulae on the characteristic curves:

• The expression of the solution in terms of the characteristic curves:

f (t, X(t, z)) = f 0 (z) exp t 0 b (X(s, z))v(s) -a (X(s, z))w(s)ds .
• The derivation in size of the characteristic curve:

∂X(t, z) ∂ z = exp t 0 a (X(s, z))w(s) -b (X(s, z))v(s)ds . Let b > 0 a(x) = 1, b(x) = bx, ∀x > 0. (3.15) 
Using the characteristic curves, we obtain the following asymptotic result.

Theorem 14 (Concentration at a critical size). Let the initial data satisfies v 0 , w 0 > 0 and v 0 + w 0 < M and

f 0 ∈ L 1 (R + , (1 + x 2 )dx) with ρ 0 = ∞ 0 f 0 (x)dx > 0.
Moreover let k > 1 with k large and 0 < ρ 0 < kM. And finally, assume that a, b ∈ C 1 (R + ) + satisfy (3.15).

The solution (v, w, f ) ∈ C 1 b (R + ) × C 1 b (R + ) × C R + , L 1 to the system (3.10) and (3.11) satisfies 1. for all z ≥ 0, ∞ 0 |X(t, z) -x| 2 f (t, x)dx ≤ e -2bC 0 t ∞ 0 |z -x| 2 f 0 (x)dx, 2. lim t→∞ v(t) = v ∞ = ρ 0 k , lim t→∞ w(t) = w ∞ = b k+b M - ρ 0 k and lim t→∞ X(t, z) = w ∞ bv ∞ , with |X(t, z) -w ∞ bv ∞ | 2 ≤ Ce -γt ,
where γ > 0 is a nonnegative rate of convergence depending on the initial conditions (v 0 , w 0 , ρ 0 ), the

reaction coefficients k, b and C > 0 is a constant, 3. f (t, x) converges to ρ 0 δ w ∞ bv ∞
exponentially fast in the sense of the Wasserstein distance: for z ≥ 0 and some constant C > 0 we have

W 2 f (t, •), ρ 0 δ w ∞ bv ∞ ≤ Ce -βt ,
where β > 0 is a nonnegative rate depending on the rate γ, the initial conditions (v 0 , w 0 , ρ 0 ), the reaction coefficients k, b and C > 0 is a constant.

The proof of Theorem 14 is detailed in Section 3.4. It relies on an entropy inequalites, inspired by [START_REF] Calvo | Long-time asymptotics for polymerization models[END_REF], and local convexity estimates for a Lyapunov functional, inspired by [START_REF] Doumic | A bi-monomeric, nonlinear Becker-Döring-type system to capture oscillatory aggregation kinetics in prion dynamics[END_REF]. This result shows that the solution of the bi-monomeric Lifshitz-Slyozov system converges to a specific steady-state

(v(t), w(t), f (t, •)) ----→ t→∞ v ∞ , w ∞ , ρ 0 δ w ∞ bv ∞ .
3.3 Sustained oscillations for the bi-monomeric Lifshitz-Slyozov system.

In this section we show that solutions of (3.10) are oscillating for linear reaction coefficients, hence the solutions are not converging toward a steady state.

Linear coefficients. We first assume the reaction coefficients to be linear:

a, b > 0 a(x) = ax, b(x) = bx, ∀x > 0. ( 3.16) 
Using the mass conservation (3.11) and the hypothesis on the reaction coefficients (3.16), the variables (v, w) are solutions of the following closed system:

           dv dt = v bM -bv -(k + b)w , v(0) = v 0 > 0, dw dt =w -aM + (k + a)v + aw , w(0) = w 0 > 0 (3.17) 
Remark 13. We note that the system obtained in (3.17) is a quadratic Lotka-Volterra system for two species v, w (cf [START_REF] Hofbauer | Evolutionary games and population dynamics[END_REF]). The system (3.17), in its rewritten form, is actually known under other names such as the Ivanova system [START_REF] Aizik | Analysis in classes of discontinuous functions and the equations of mathematical physics[END_REF] or the reduced Belousov-Zhabothinsky system [START_REF] Perthame | Parabolic equations in biology[END_REF]:

V + W → 2W , W + M 1 → 2M 1 , M 1 + V → 2V .
These chemical reactions lead to a differential system of size three where the species have a circular cooperative/competitive connections as in the classical Lotka-Volterra system. We recover System 3.17 using the mass conservation laws v(t) + w(t) + M 1 (t) = M and rewriting M 1 (t) = Mv(t)w(t). We also note that the trivial steady-state of the system are (0, 0), (0, M), (M, 0) and the non-trivial steady state is the unique solution

(v ∞ , w ∞ ) of the isoclines :            M= v + k+b b w, M= k+a a v + w,
and therefore

(v ∞ , w ∞ ) = a k+b+a M, b k+b+a M .
We can now prove the existence of oscillatory solutions for the system (3.10).

Proof.[Proposition 1.] The proof of the periodic solution of System (3.17) is classical and can be found in Chapter 12 [START_REF] Aizik | Analysis in classes of discontinuous functions and the equations of mathematical physics[END_REF]. It uses the fact that the trajectories are included in closed curves. We recall the proof.

We denote by S the convex open set

S = {(x, y) ∈ R 2 | x > 0, y > 0, M > x + y}.
The set S is the set of admissible solutions of (3.17). Some computations give us the relation:

Φ(v(t), w(t)) = (M -v(t) -w(t)) k v(t) a w(t) b = (M -v 0 -w 0 ) k v a 0 w b 0 = c 0 > 0. ( 3.18) 
The function Φ vanishes on the boundary of S and take its maximal value at an interior point Φ 0 of S.

Therefore the trajectories of the form (3.18) are closed curves in the (v, w)-plane for 0 < c 0 < Φ 0 and one readily check that the velocity cannot vanish. Then the solution of (3.17) are periodic and we denote their period by T ≥ 0.

To prove the second item, we use the method of characteristics to express f as a function of v and w:

f (t, X(t, x)) = f 0 (x) exp t 0 bv(s) -aw(s)ds .
Moreover using the fact that v and w are periodic of period T , we get:

T 0 1 v(s) d dt v(s)ds = bMT -b T 0 v(s)ds -(k + b) T 0 w(s)ds, ln(v(T )) -ln(v(0)) = bMT -b T 0 v(s)ds -(k + b) T 0 w(s)ds, 0 = bM -b 1 T T 0 v(s)ds -(k + b) 1 T T 0 w(s)ds.
We denote ṽ = 1 T T 0 v(s)ds and w = 1 T T 0 w(s)ds, using the same argument for w, we obtain the following system:

           bM = b ṽ + (k + b) w, aM = (k + a) ṽ + a w.
Then ( ṽ, w) = Since (3.19) is verified, f is a periodic function of the same period T as v an w.

3.4 Damped oscillations and concentration at a critical size.

In this section, we consider that the depolymerization dominates i.e. the depolymerization coefficient is linear with respect to the size whereas the polymerization coefficient is constant:

a(x) = 1 b(x) = bx, b > 0, x ≥ 0.
The size-dependency-ratio is then decreasing.

Asymptotic behaviour of the decoupled dynamical system

Using the lemma 4 and the hypothesis on the reaction coefficients (3.15), the variables (v, w) are solutions of the following quadratic Lotka-Volterra system:

           dv dt =v(bM -bv -(k + b)w), v(0) = v 0 > 0, dw dt =w(kv -ρ 0 ), w(0) = w 0 > 0.
(3.20) 1 be any nonnegative solution of (3.10) and (3.11) such that the initial datum verifies v 0 , w 0 > 0 and v 0 + w 0 < M. Assume that a, b ∈ C 1 (R + ) + satisfy (3.15). Let k > 1 with k large enough and 0 < ρ 0 < kM. Then the following statements hold true: 1. 0 < v(t) < M and 0 < w(t) < M for any t.

Theorem 15. Let (v, w, f ) ∈ C 1 b (R + ) × C 1 b (R + ) × C R + , L

The function

F : (0, ∞) 2 → R such that F(v, w) = k(v -v ∞ ln(v)) + (k + b)(w -w ∞ ln(w)) is a Lyaponuv function and for all k ≥ 1 (v(t), w(t)) is converging towards the steady-state (v ∞ , w ∞ ) = ρ 0 k , b k+b (M - ρ 0 k ) .
3. For k 1 , every solutions (v(t), w(t)) to (3.20) converge exponentially fast toward the positive equilibrium

(v ∞ , w ∞ ), i.e. |v -v ∞ | 2 + |w -w ∞ | 2 ≤ Ce -αt , ( 3.21) 
where α > 0 is a nonnegative rate only depending on the initial conditions (v 0 , w 0 ), the reaction coefficients k, b and C > 0 is a constant.

Remark 14. Note that the condition 0 < ρ 0 < kM is necessary to establish the existence of a positive steadystate. We recall that the positive steady-state is assimilated to the pathological cases with the existence of prion fibrils at equilibrium. Moreover, if ρ 0 ≥ kM then the solutions of System 3.20 admit a locally linearly attractive boundary steady-state (v ∞ , w ∞ ) = (M, 0). Hence, the last inequality translates the fact that if only small assemblies and monomers are present initially, the solutions are locally attracted towards a healthy case where the fibrils depolymerise and only monomers remain at equilibrium.

Proof. [Theorem 15.] We first focus on the proof of the first item. The positivity of the solutions v(t), w(t) follows from the computations:

dv dt = v (bM 1 (t) -kw) , v(t) ≥ v 0 exp t 0 bM 1 (s) -kw(s)ds > 0,
and similarly

w(t) ≥ w 0 exp t 0 kv(s) -ρ 0 ds > 0.
The positivity of the solutions v(t), w(t) and the mass conservation equation (3.11) imply that the upper bound is verified for v(t) and w(t).

Proof of 2. We note that the following function F : (0, ∞) 2 → R is a Lyapunov functional for the solution of (3.20):

F(v, w) = k(v -v ∞ ln(v)) + (k + b)(w -w ∞ ln(w)), since we have d dt F(v, w) = -kb(v -v ∞ ) 2 .
Hence the solution (v, w) converges to the invariant subset of K:

K = { d dt F = 0} = {(x, y) ∈ R 2 | x = v ∞ , y > 0}.
Though the ω-limit set reduces to the only positive steady-state (v ∞ , w ∞ ). This conclude the proof of the second item.

Proof of 3. The proof of exponential convergence towards the positive steady-state is based on the dissipation of the Lyapunov functional F(v(t), w(t)) and local convexity estimates when the time derivative of the Lyapunov functional is null as it was used in [START_REF] Doumic | A bi-monomeric, nonlinear Becker-Döring-type system to capture oscillatory aggregation kinetics in prion dynamics[END_REF]. The proof is postponed in the Appendix 3.5.1.

Let us briefly summarize the main step of the proof. For the sake of clarity, we suppose that the parameter b of the depolymerisation rate is equal to 1 in the proof. We first rescale our system with the parameter ε = 1 k . The main issue, for both the system and its rescaled form, is coming from the fact that the time derivative of the Lyapunov is equal to 0 on a straight line of the phase portrait:

v(t) = v ∞ =⇒ d dt F(v(t), w(t)) = 0.
In order to prove that the solutions do not get stuck on this degeneracy line, we establish local estimates which prove that the trajectory of the solutions does not get stuck on the line but crosses it. The condition to prove the existence of such estimates is based on the assumptions 0 < ρ 0 < kM and k > 1 with k large enough. ρ 0 < kM can be interpreted as the following: either there is enough polymerised assemblies to ignite the chemical reactions or few polymers assemblies are initially present and the reaction rate which governs the exchange between the two monomeric species is large. The last interpretation implies a strong competition between the monomeric species.

Finally, we obtain an exponential convergence towards the positive steady-state with rate r for the rescaled system (r is of order 1 k ). Since the solution of the rescaled system converges exponentially fast, we deduce that the solution of the original system (3.20) also converges towards its equilibrium exponentially fast.

We denote α its exponential rate of convergence, hence α depends on the scale parameter 1 k , the initial conditions.

We obtain the convergence of the trajectory (w, v) towards a positive steady-state (w ∞ , v ∞ ).

Asymptotic behaviour for the PDE

The study of the asymptotic behaviour and the techniques used are inspired by [START_REF] Calvo | Long-time asymptotics for polymerization models[END_REF]. We recall the characteristics for the specific reaction coefficients (3.15):

d dt X(t, z) = w(t) -bv(t)X(t, z), X(0, z) = z for z ≥ 0,
and we have the implicit formula

X(t, z) = z + t 0 w(s) exp s 0 bv(σ )dσ ds exp t 0 -bv(s)ds . Lemma 5. Under the assumptions of Theorem 15, let (v, w, f ) ∈ C 1 b (R + )×C 1 b (R + )×C R + , L 1 be
any nonnegative solution of (3.10) and (3.11) such that 0 < f (0, x)dx < kM. Then the following statements hold true: 

1. there is a constant C 0 > 0 depending only on the initial conditions (v 0 , w 0 ) such that C 0 < v(t), C 0 < w(t) for t > 0,

the characteristics always remain bounded:

X(t, z) ≤ z + M

let

∞ 0 x s f 0 (x)dx < ∞ for s > 0 then ∞ 0 x s f (t, x)dx < ∞.
Proof.[Lemma 5] Proof of item 1: Since v and w are continuous functions such that v(t) > 0, w(t) > 0 with t ∈ [0, T ] for any finite time T and since

(v(t), w(t)) ----→ t→∞ (v ∞ , w ∞ ) ∈ (R * + ) 2 then it exists a constant C 0 > 0 such that C 0 < v(t), C 0 < w(t) for t > 0.
Proof of item 2: thanks to (3.15) and the first item, we have

dX(t,z) dt ≤ w(t) -bC 0 X(t, z).
Hence

X(t, z) ≤ e -bC 0 t z + t 0 w(s)e bC 0 s ds ≤ z + M bC 0 .
Proof of item 3. We use the characteristics to represent the solutions as

f (t, X(t, z)) = f 0 (z) exp t 0 bv(τ)dτ . ( 3.22) 
We also note that

∂X(t, z) ∂z = exp - t 0 bv(τ)dτ . ( 3.23) 
We define the characteristics in R -then we define z(t), the value such that X(t, z) = 0. Then we proceed to a change of variables using (3.22) and (3.23),

∞ 0 x s f (t, x)dx = ∞ z(t) X(t, z) s f (t, X(t, z)) ∂X(t, z) ∂z dz = ∞ z(t) X(t, z) s f (t, X(t, z)) exp - t 0 bv(τ)dτ dz = ∞ z(t) X(t, z) s f 0 (z)dz ≤ ∞ 0 z + M bC 0 s f 0 (z)dz
where we used the second item for the last step.

Lemma 6 (Concentration of the mass along the characteristic curves). Under the assumptions of Lemma 5, let us define, for any z ≥ 0

g(t, z) = ∞ 0 f (t, x)|X(t, z) -x| 2 dx.
We have g(t, z) ≤ g(0, z)e -2bC 0 t .

Proof.[Proof of Lemma 6] An immediate calculation gives

d dt g(t, z) = ∞ 0 ∂ ∂ t (f (t, x))|X(t, z) -x| 2 + 2f (t, x) d dt (X(t, z))(X(t, z) -x)dx = ∞ 0 ∂ ∂ x [(bv(t)x -w(t))f (t, x)]|X(t, z) -x| 2 + 2f (t, x)(w(t) -bv(t)X(t, z))(X(t, z) -x) dx.
Then after integrating by part, we obtain:

d dt g(t, z) = ∞ 0 2f (t, x) (bv(t)x -w(t))(X(t, z) -x) + 2f (t, x)(w(t) -bv(t)X(t, z))(X(t, z) -x) dx = -2bv(t)g(t, z) ≤ -2bC 0 g(t, z).
Then g(•, z) ∈ L 1 t (0, ∞)with the announced decay.

Proof.[Theorem 14.] Proof of 1. The first point of the theorem is proved by Lemma 6 and shows that the mass concentrates along any characteristic curve.

Proof of 2. Theorem 15 gives the convergence of the monomeric species (v(t), w(t)) towards the steady-state (v ∞ , w ∞ ). We now prove the convergence of the characteristic curves using theorems on asymptotically autonomous system [START_REF] Markus | Ii. asymptotically autonomous differential systems[END_REF][START_REF] Horst R Thieme | Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations[END_REF]. We denote by X(t, z) a characteristic curve of (3.10) with initial data z at time 0:

d dt X(t, z) = w(t) -bv(t)X(t, z) = h(t, X(t, z)), X(0, z) = z ≥ 0. ( 3.24) 
We note that the characteristic curves are defined by an asymptotically autonomous differential equation (see Appendix 3.5.2). Then we get the limit differential equation:

d dt y(t) = w ∞ -bv ∞ y(t). ( 3.25) 
Hence for any positive initial data y 0 > 0, the solution y(t) of (3.25) converges exponentially fast toward

w ∞ bv ∞ : lim t→∞ y(t) = w ∞ bv ∞ , |y(t) -w ∞ bv ∞ | 2 ≤ Ce -2bv ∞ t for t ≥ 0, where C = C(b, v ∞ , w ∞ , y 0 ) > 0. Moreover, thanks to Theorem 1.2 in [156], we get lim t→∞ X(t, z) = w ∞ bv ∞ .
Using the exponential convergence in the euclidian distance of (v(t), w(t)) toward the positive steady-state (cf Theorem 15) and the exponential convergence for the limit differential equation of the characteristics, we deduce that the characteristics converge exponentially fast toward w ∞ bv ∞ , i.e.

|X(t, z) -w ∞ bv ∞ | 2 ≤ Ce -γt .
We denote γ > 0 the positive rate of convergence which depends on the rate α, the reaction coefficients k, b and the initial conditions. C > 0 is a constant. (Further details and results on the convergence rate β is currently under study.)

Proof of 3. We recall the Wasserstein distance, let g 1 , g 2 ∈ L 1 (0, ∞). The Wasserstein distance W 2 between g 1 and g 2 is defined as follows:

W 2 (g 1 , g 2 ) := ∞ 0 ∞ 0 |x -y| 2 g 1 (x)g 2 (y)dxdy 1 2 .
We write,

W 2 f (t, •), ρ 0 δ w ∞ bv ∞ ≤ |x -y| 2 ρ 0 δ w ∞ bv ∞ (y)f (t, x)dydx 1/2 , ≤ |x -w ∞ bv ∞ | 2 ρ 0 f (t, x)dx 1/2 , ≤ 2|X(t, z) -w ∞ bv ∞ | 2 ρ 2 0 + 2 |X(t, z) -x| 2 ρ 0 f (t, x)dx 1/2 .
Using Lemma 6 and the exponential convergence of the characteristics in item 2 of this proof, we get

W 2 f (t, •), ρ 0 δ w ∞ bv ∞ ≤ Ce -βt ,
where β > 0 is the rate of convergence such that β = min(γ/2, bC 0 ) and C > 0 is a constant. This conclude the proof of Theorem 14.

presentation. We obtain the following system:

           dv dt =v(M -v -(k + 1)w), dw dt =w(kv -ρ 0 ). (3.26) 
This system has the equilibrium:

v ∞ = ρ 0 k , w ∞ = 1 k+1 M - ρ 0 k , and (v ∞ , w ∞ ) > 0 provided that 0 < ρ 0 < kM. If ρ 0 ≥ kM, one checks that the boundary steady-state (M, O)
is linearly locally stable. We observe that the equilibrium (v ∞ , w ∞ ) takes values of order ε := 1 k . This suggests the rescaling

v → v k = εv, and w → w k = εw
and yields the rescaled equilibrium values

v ∞ = ρ 0 , w ∞ = 1 1+ε (M -ερ 0 ). (3.27) 
By using (3.27), System (3.26) rescales to the following system, which we shall study subsequently:

           dv dt =v(w ∞ -w) -εv(v -v ∞ + w -w ∞ ), dw dt =w(v -v ∞ ). (3.28) 
We point out that the rescaled system (3.28) in the limiting case ε = 0 constitutes the classical Lotka-Volterra system.

The following theorem proves large-time convergence to the positive equilibrium (v ∞ , w ∞ ) by using a

Lyapunov functional of System (3.28).

Theorem 16. (Exponential convergence to positive equilibrium)

Consider ρ 0 ∈ (0, kM) and hence a positive equilibrium (v ∞ , w ∞ ) > 0.

Then the functional H

H(v, w) = v -v ∞ log v + (1 + ε)(w -w ∞ log w)
is a Lyapunov functional for the system (3.28) with a decay rate of order ε. More precisely,

d dt H(v(t), w(t)) = -ε(v(t) -v ∞ ) 2 . (3.29)
Moreover, for ε sufficiently small, every solution (v(t), w(t)) to (3.28) subject to positive initial data (v 0 , w 0 ) > 0 converges exponentially to the positive equilibrium

(v ∞ , w ∞ ), i.e. |v -v ∞ | 2 + |w -w ∞ | 2 ≤ C(H 0 -H)e -εrt , (3.30) 
where the positive rate r and constant C depend only on the initial value of the Lyapunov H 0 := H(v 0 , w 0 ) and the values of the positive equilibrium (v ∞ , w ∞ ).

Proof. The decay of the functional (3.29) follows from direct calculations when evaluating H along the flow of (3.28).

In the following, we proved the exponential convergence (3.30) via a modified entropy method introduced in [START_REF] Doumic | A bi-monomeric, nonlinear Becker-Döring-type system to capture oscillatory aggregation kinetics in prion dynamics[END_REF]. We note that the Lyapunov functional H has a line of degeneracy, i.e. a straight line through the equilibrium where the time derivative of the Lyapunov functional vanishes:

d dt H(v, w) = 0 ⇐⇒ v = v ∞ , w ∈ (0, M). (3.31)
In order to prove the exponential convergence to the equilibrium in such a case, we shall provide estimates which show that all solution trajectories pass through this line of degeneracy with positive speed.

We first observe from (3.28) that the null-cline v = 0 is also a straight line, which passes through the

equilibrium: v = 0 ⇐⇒ w -w ∞ = -λ ε (v -v ∞ ), λ ε := ε 1+ε < 1.
Next, we introduce a line W λ-between v = 0 and v = v ∞ with a slope -λ with λ > λ ε to be chosen later:

W λ-: w -w ∞ = -λ(v -v ∞ ), λ > λ ε .
Similarly, on the opposite side of v = v ∞ we define the line W λ+ :

W λ+ : w -w ∞ = λ(v -v ∞ ), λ > λ ε . Moreover, we denote W λ-(v) (respectively W λ+ (v)) the coordinate w such that w = w ∞ -λ(v -v ∞ ) (resp.w = w ∞ +λ(v -v ∞ )).
In the following, we denote by + λ the convex cone in the phase space (v, w) ∈ R 2 + , which is defined by the interior between the lines W λ-, W λ+ and above the line w = w ∞ . Note that on + λ we have w ∞ < w and v < 0. Analogously, the open triangle - λ is defined as the interior of the lines W λ+ , W λ-and under the line w = w ∞ , i.e. we consider 0 < w < w ∞ and v > 0.

Hence, we shall detail the estimates on the convex cone + λ for w ∞ < w, while the estimates for - λ follow analogously (e.g. by exchanging the variables v and w). We denote We first observe that

p(t) := v(t) -v ∞ and d dt H(v(t), w(t)) = -εp 2 (t). 0 v ∞ v w ∞ v = 0 w W λ+ W λ-
-1 λ (w -w ∞ ) ≤ p ≤ 1 λ (w -w ∞ ).
Moreover, we point out that + λ is the closed union of two convex subcones:

{v > v ∞ } ∩ + λ and {v < v ∞ } ∩ + λ .
The sign of ẇ is constant on the two subcones but changes in their common boundary ( ẇ > 0 in {v > v ∞ } ∩ + λ and ẇ < 0 in {v < v ∞ } ∩ + λ ). Hence, whenever a solution trajectory enters - λ at some time t 1 at a point (v(t 1 ), w(t 1 )) = (v 1 , W λ+ (v 1 )) with v 1 > v ∞ and W λ+ (v 1 ) > w ∞ then it crosses the line v = v ∞ at a time t > t 1 with w( t) > W λ+ (v 1 ) > w ∞ and it must leave + λ again (after a finite timespan, cf. Lemma 8) at a time t 2 at a point (v(t 2 ), w(t 2 )) = (v 2 , W λ-(v 2 )), for which holds that 0 < v 2 < v 1 .

In order to quantify that all solution trajectories pass through the line of degeneracy p = 0 where Ḣ = 0, we prove that p 2 (t) is a strictly convex function near p = 0 with a positive lower bound for p within the triangle + λ (and - λ ) for λ chosen sufficiently large λ 1, i.e. that p(t) = 0 can only occur at discrete points in time.

We begin by calculating

ṗ = v = v(w ∞ -w) -εvd, with d := v -v ∞ + w -w ∞ . Next, ḋ =vw ∞ -v ∞ w -εvd, and p = v(w -w ∞ ) 2 -vw(v -v ∞ ) -εv 2d(w ∞ -w) + vw ∞ -v ∞ w + ε 2 v 2 d + d 2 v .
If p(t 0 ) = 0, then

p 2 (t) = p 2 (t 0 ) =0 +2 p(t 0 ) =0 ṗ(t 0 )(t -t 0 ) + 2 ( ṗ) 2 + p p (θ) (t -t 0 ) 2 2 = ( ṗ) 2 + p p (θ) (t -t 0 ) 2 ,
for some θ ∈ (t, t 0 ) ⊂ (t 1 , t 2 ).

Hence, by using Lemma 7 and for ε sufficiently small

( ṗ) 2 + p p = (v(w -w ∞ )) 2 + vp (w -w ∞ ) 2 -w(v -v ∞ ) + O(ε), ≥ C(w(θ) -w ∞ ) 2 ≥ C(w 1 -w ∞ ) 2 ,
for a constant k > 0. Now, for any solution trajectory crossing + λ in a time interval (t 1 , t 2 ), we estimate

t 2 t 1 Ḣdt = -ε t 2 t 1 p 2 (t) dt = -ε t 2 t 1 ( ṗ) 2 + p p (θ)(t -t 0 ) 2 dt ≤ -εC(w 1 -w ∞ ) 2 t 2 t 1 (t -t 0 ) 2 dt ≤ -εC t 2 t 1 C 1 (w(t) -w ∞ ) 2 dt t 2 t 1 (t -t 0 ) 2 dt t 2 -t 1 ≤ -εC C 1 K t 2 t 1 (w(t) -w ∞ ) 2 dt,
where

C 1 = (w 1 -w ∞ ) 2
(w(t 0 )-w ∞ ) 2 ≤ 1 since w(t) ≤ w(t 0 ) for all t ∈ (t 1 , t 2 ) and K is a constant only depending on (the bounds of) the sojourn time t 2t 1 of all solution trajectory through + λ as estimated in Lemma [START_REF] Bao | Pre-equilibration kinetic size-exclusion chromatography with mass spectrometry detection (peKSEC-MS) for label-free solution-based kinetic analysis of protein-small molecule interactions[END_REF].

Next, we observe that the convexity of the Lyapunov H together with the decay of the Lyapunov H(v(t), w(t)) ≤ H 0 for all t ≥ 0 imply uniform-in-time positive lower and upper bounds on v and w subject to initial data with finite H 0 = H(v 0 , w 0 ) < +∞. By using this lower and upper bounds, we estimate

H(v, w) -H(v ∞ , w ∞ ) = v ∞ h v v ∞ + (1 + ε)w ∞ h w w ∞ ≤ C 2 (v ∞ , w ∞ , H 0 ) (v -v ∞ ) 2 + (w -w ∞ ) 2 , ( 3.32) 
where h(z) = (z -1)ln z ≥ 0 is non-negative and convex and h(z

) ≤ C 2 (z * , z * )(z -1) 2 for z ∈ (z * , z * ). Hence, on + λ , we have H(v, w) -H(v ∞ , w ∞ ) ≤ C 3 (w -w ∞ ) 2 with a constant C 3 = C 3 (C 2 , λ) and conclude that t 2 t 1 Ḣ ≤ -εκC 1 KC -1 3 t 2 t 1 H(v, w) -H(v ∞ , w ∞ ) dt (3.33)
Note that an analog estimate to (3.33) holds also on - λ .

Outside of λ = - λ ∪ + λ , there exists a constant C λ > 0 such that the estimate |p| 2 ≥ C λ (vv ∞ ) 2 + (ww ∞ ) 2 holds. Moreover, the uniform lower and upper bounds on v(t), w(t) imply that there exists a positive constant Within the critical area λ , this exponential convergence is hampered by the line of degeneracy where p = 0. However, (3.33) and the lower crossing time estimates in Lemma 8 show that solutions trajectories do not get stuck (or significantly slowed down) within λ . More precisely, since the speed of trajectories outside λ is bounded from above, for any fixed λ > 1 (λ large enough), all solution trajectories will remain within λ only a small fraction of the time spent on one rotation around (v ∞ , w ∞ ).

C 4 = C 4 (v ∞ , w ∞ , H 0 ) 0 < C 4 := min {(v,w):H(v,w)≤H 0 }\ λ        (v -v ∞ ) 2 v ∞ h v v ∞ + (1 + ε)w ∞ h w w ∞        , which implies p 2 ≥ C 4 (H(v, w) -H(v ∞ , w ∞ ) and Ḣ ≤ -ε C 4 (H(v, w) -H(v ∞ , w ∞ )) outside of λ . ( 3 
Finally, this small fraction spent within λ per rotation can not degenerate near (v ∞ , w ∞ ), since classical linearisation techniques shows eigenvalues of the form

µ = -ε ρ 0 2 ± i (ρ 0 (M -ερ 0 ) - ε 2 ρ 2 0 4 ε→0 ----→ ±i √ v ∞ w ∞ , ( 3.35) 
where the right hand side values corresponds to the eigenvalues (und thus finite oscillation period) of the classical Lotka-Volterra system.

Altogether, we obtain exponential convergence to equilibrium with a rate εr as in (3.30), where r can be estimated explicitly in terms of the constants in (3.33) and (3.34) as well as the sojourn times in Lemma 8.

Lemma 7. (Local convexity estimates of the Lyapunov decay)

Consider + λ to be the interior of the convex subcone above w = w ∞ and between the lines

W λ-: w -w ∞ = -λ(v -v ∞ ) and W λ+ : w -w ∞ = λ(v -v ∞ ).
Then for λ > 1 and λ large enough, we have

v 2 (w -w ∞ ) 2 + vp (w -w ∞ ) 2 -w(v -v ∞ ) ≥ C(w -w ∞ ) 2 (3.36) for C = C(λ, v ∞ , w ∞ , M) > 0.
Proof. We set

q = (w -w ∞ ) 2 -w(v -v ∞ )
and observe that q < 0 is equivalent to

(w -w ∞ ) 2 w < (v -v ∞ ),
and q = 0 is a curve denoted as C which crosses the line W λ+ at the unique point

v ∞ + w ∞ λ(λ-1) , λ λ-1 w ∞ . Moreover the line v = v ∞ is the tangent line of C at (v ∞ , w ∞ ).
In order to prove (3.36), we need to bound v 2 (ww ∞ ) 2 + vpq from below. Note that pq < 0 holds on two subdomains of + λ :

1. the domain between C and the line W λ+ where p > 0 and q < 0. We denote this domain E 1 , 2. the domain between the lines v = v ∞ and W λ-where p < 0 and q > 0. We denote this domain E 2 .

On E 1 , we estimate 0 < p < w-w ∞ λ . Also, we have 0 < v < M and 0 < w < M thanks to Theorem 15. This implies that

0 > q ≥ (w -w ∞ ) 2 - w(w -w ∞ ) λ and v 2 (w -w ∞ ) 2 + vpq ≥ v 2 (w -w ∞ ) 2 + v w -w ∞ λ (w -w ∞ ) 2 - vw(w -w ∞ ) λ , ≥ v 2 (w -w ∞ ) 2 - w(w -w ∞ ) 2 λ 2 , ≥ v 2 ∞ -M 2 λ 2 (w -w ∞ ) 2 .
By choosing a λ large enough, we have

C 1 = v 2 ∞ -M 2 λ 2 > 0.
On E 2 , we estimate 0 > p > -w-w ∞ λ . It implies that

v 2 (w -w ∞ ) 2 + vpq ≥ v 2 (w -w ∞ ) 2 -v w -w ∞ λ (w -w ∞ ) 2 -wp , ≥ v 2 (w -w ∞ ) 2 -v (w -w ∞ ) 3 λ -vw (w -w ∞ ) 2 λ 2 , ≥ v 2 ∞ + 2v ∞ (v -v ∞ ) - v(w -w ∞ ) λ - vw λ 2 (w -w ∞ ) 2 , ≥ v 2 ∞ - (M + 2v ∞ )(M -w ∞ ) λ - M 2 λ 2 (w -w ∞ ) 2 .
By choosing a λ large enough, we have

C 2 = v 2 ∞ - (M + 2v ∞ )(M -w ∞ ) λ - M 2 λ 2 > 0.
Altogether, by choosing C = min(C 1 , C 2 ), we obtain the estimate (3.36) on + λ .

Lemma 8. (Sojourn time estimates)

Consider + λ as above. Let t 1 be the time when the trajectory enters + λ at a point v 1 , W λ+ (v 1 ) and t 2 the time when the same trajectory leaves

+ λ at a point v 2 , W λ-(v 2 ) with v 2 < v 1 .
Then for ε > 0 small enough and for λ > 1 large enough and all v 1 ∈ (v ∞ , M), we have that the crossing time is bounded below and above, i.e.

c 2 2v ∞ ≤ t 2 -t 1 ≤ 2(c 1 + 1) λv ∞ , ( 3.37 
)

where c 1 is a constant such that 1 ≤ c 1 ≤ M-w ∞ min(w 1 -w ∞ ,w 2 -w ∞ ) and c 2 is a constant such that 0 < c 2 < v 1 -v ∞ M-w ∞ .
Proof. In the following we use the notations W λ+ (v 1 ) := w 1 and W λ-(v 2 ) := w 2 . On + λ , we have that ww ∞ > min(w 1w ∞ , w 2w ∞ ) and there exists a constant c 1 with 1

≤ c 1 ≤ M-w ∞ min(w 1 -w ∞ ,w 2 -w ∞ ) such that c 1 min(w 1 -w ∞ , w 2 -w ∞ ) = max(w 1 -w ∞ , w 2 -w ∞ ).
We get the lower bound on ww ∞ :

w -w ∞ ≥ min(w 1 -w ∞ , w 2 -w ∞ ) + max(w 1 -w ∞ , w 2 -w ∞ )c -1 1 2 .
We estimate the first equation of (3.28) by using that

-w-w ∞ λ ≤ v -v ∞ ≤ w-w ∞ λ , w ∞ < w < M and the lower bound on w -w ∞ : -v = v(w -w ∞ ) + εv [v -v ∞ + w -w ∞ ] , ≥ (v -v ∞ )(w -w ∞ ) + ε(v -v ∞ )(w -w ∞ ) + v ∞ (w -w ∞ ) + εv ∞ (v -v ∞ ) + εv ∞ (w -w ∞ ), ≥ (w -w ∞ ) 1 + ε λ-1 λ v ∞ -1+ε λ (w -w ∞ ) ≥ (w -w ∞ ) 1 + ε λ-1 λ v ∞ -1+ε λ (M -w ∞ ) , ≥ (w -w ∞ ) v ∞ 2 ≥ min(w 1 -w ∞ , w 2 -w ∞ ) + max(w 1 -w ∞ , w 2 -w ∞ )c -1 1 2 v ∞ 2 ,
where the second last inequality holds for ε > 0 small enough and for sufficiently large λ, e.g. λ ≥

2(1+ε)(M-w ∞ ) v ∞
. Hence,

v(t 1 ) -v(t 2 ) = t 2 t 1 -vdt ≥ |w 1 -w ∞ | + |w 2 -w ∞ | 2 v ∞ 2 (t 2 -t 1 ).
On the other hand, we have

v(t 1 ) -v(t 2 ) = (w 1 -w ∞ ) + (w 2 -w ∞ ) λ = min(w 1 -w ∞ , w 2 -w ∞ ) + max(w 1 -w ∞ , w 2 -w ∞ ) λ
which yields the upper bound (3.37), i.e.

t 2 -t 1 ≤ 2(c 1 + 1) λv ∞ .
For the lower bound, we estimate with vv ∞ ≤ w-w ∞ λ and w ∞ < w < M

-v = v(w -w ∞ ) + εv [v -v ∞ + w -w ∞ ] , ≤ (w -w ∞ ) 2 λ + v ∞ (w -w ∞ ) + ε λ + 1 λ (w -w ∞ ) v ∞ + (w -w ∞ ) λ , ≤ 1 + ε λ + 1 λ v ∞ + 1 + ε(λ + 1) λ 2 (w -w ∞ ) , ≤ (w -w ∞ ) 1 + ε λ + 1 λ v ∞ + 1 + ε(λ + 1) λ 2 (M -w ∞ ) ≤ (M -w ∞ )2v ∞ ,
where the last inequality holds for sufficiently large λ and ε sufficiently small.

Hence

v(t 1 ) -v(t 2 ) = t 2 t 1 -vdt ≤ (M -w ∞ )2v ∞ (t 2 -t 1 )
and we require a lower bound for v(t 1 )v(t 2 ), which we dervie as follows. Since v ∞ < v 1 < M and w ∞ < w < M, we estimate

v 1 -v 2 ≥ v 1 -v ∞ ≥ c 2 (M -w ∞ )
where c 2 is a constant such that 0

< c 2 < v 1 -v ∞ M-w ∞
. We finally get the lower bound (3.37).

Results on asymptotically autonomous differential systems

In this section, we recall some results on asymptotically autonomous differential equations. The proofs of the results and further details can be found in [START_REF] Markus | Ii. asymptotically autonomous differential systems[END_REF][START_REF] Horst R Thieme | Asymptotically autonomous differential equations in the plane[END_REF][START_REF] Horst R Thieme | Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations[END_REF]. 

Definition 6. Let f : R × R n →
if f (t, x) ----→ t→∞ g(x), locally uniformly in x ∈ R n .
We denote the ω-limit set of ω of a forward bounded solution x to (3.38) satisfying x(t 0 ) = x 0 by ω(t 0 , x 0 ):

ω(t 0 , x 0 ) = s>t 0 {x(t); t ≥ s}.
We recall the main theorems established by Markus in [START_REF] Markus | Ii. asymptotically autonomous differential systems[END_REF].

Theorem 17. The ω-limit set ω of a forward bounded solution x to (3.38) is nonempty, compact, and connected. Moreover

dist(x(t), ω) ----→ t→∞ 0.
Finally ω is invariant under (3.39), i.e. if y(t 0 ) = y 0 ∈ ω and y(t, y 0 ) its trajectory with initial point y 0 then y(t, y 0 ) ∈ ω. In particular any point in ω lies on a full orbit of (3.39) that is contained in ω.

Theorem 18. Let y ∞ be a locally asymptotically stable equilibrium of (3.39) and ω the ω-limit set of a forward bounded solution x to (3.38). If ω contains a point y 0 such that the solution of (3.39) though (0, y 0 ) converges to y ∞ for t → ∞, then ω = {y ∞ }, i.e.

x(t) ----→ t→∞ y ∞ .
Furthermore, the Poincaré-Bendixson theorem is also extended to asymptotically autonomous planar systems.

Theorem 19. Let n = 2 and ω the ω-limit set of a forward bounded solution x of (3.38). Then ω either contains equilibria of (3.39) or is the union of periodic orbits of (3.39).

These theorems have been used in population dynamics in order to prove that asymptotically autonomous ODEs arising from the models converge to equilibrium (e.g. [START_REF] Castillo-Chavez | Asymptotically autonomous epidemic models[END_REF]). If n = 2 and the possible equilibria of (3.39) are restricted a unique equilibrium which is locally stable, then any solution of (3.38) converges to the the equilibrium of (3.39). Moreover, these theorems have been generalized in [START_REF] Horst R Thieme | Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations[END_REF] to be applied for specific PDEs.

Chapter 4

Quaternary structural convergence and structural diversification of prion assemblies.

4.1 Summary and mathematical modeling.

In this chapter, we detail and explain the evidence coming from biochemical experiments which enforce the hypothesis of heterogeneity in architecture and structure of the P rP assemblies. The article containing this result is in Section 4.2. It has been accepted Communications Biology and is soon to appear under the title "Quaternary structural convergence and structural diversification of prion assemblies at the early replication stage". The following section contains a summary of the article and the complementary details on the mathematical model of a polymerisation/depolymerisation process with two distinct polymer assemblies.

Structural diversification of prion assemblies in early Prion replication stage.

In prion diseases, the prion protein P rP C misfolds into P rP Sc and auto-organizes into conformationally distinct assemblies or strains (polymers). The existence of P rP Sc structural heterogeneity within prion strains is suggesting the emergence and coevolution of structurally distinct P rP Sc assemblies during prion replication. Such P rP Sc diversification processes remain poorly understood. Here, we characterize the evolution of the P rP Sc quaternary structure during prion replication in vivo and in vitro in a cell-free system generated by PMCA. The protein quaternary structure is the number and arrangement of multiple folded protein subunits (e.g. monomers, dimers or small oligomers). The molecular mechanisms of P rP Sc replication and structural diversification is observed combining Protein Misfolding Cyclic Amplification (PMCA) and Sedimentation Velocity experiments (cf Figures 10 and11).

Regardless of the strain studied, the early replication stage (commonly assimilated as an elongation process) results in the formation of small P rP Sc oligomers, thus highlighting a quaternary structural convergence phenomenon. A bimodal behavior is observed by the formation of two peaks (P 1 , P 2 ) in the representation of the size distribution (Figure (4.1)). The amount of assemblies in P 1 decreases over time as the amount of assemblies in P 2 increases. We also note the absence of assemblies of intermediate size between these peaks. The experiments described in Section 4.2.2 rule out the hypothesis of a condensation phenomenon in favor of an autocatalytic process as an explanation for the increase of assemblies in P 2 . P 1 and P 2 contain structurally distinct subsets of assemblies, denoted respectively A i and B i . These subsets differ in proportion, size and architecture of their elementary bricks. Experiments suggests that B i assemblies results from a cooperative process by the integration/conversion of P rP C elementary bricks (monomers) and A i assemblies. The kinetic model is detailed in the section 4.1.2. To validate the designed mechanism, we translated these chemical reactions into time-dependent differential equations and performed kinetic simulations using the size distribution of the P rP Sc assemblies immediately after cyclic amplification as the initial condition (blue curve in Figure 4.1). The mathematical modeling and the numerical simulation give more insights about the kinetics between A i and B i . These oligomers undergo structural rearrangements, by a P rP C -dependent, secondary templating pathway. This pathway provides mechanistic insights into prion structural diversification, a key determinant for prion toxicity and inter-species transmission. The uncovered processes are also key for a better understanding of misfolded assemblies propagating by a prion-like process in other neurodegenerative diseases.

Mathematical modeling of the kinetics and numerical simulations

As explained in the previous section, we consider two different kinds of oligomers: on the one hand, A i , of size 2i, are formed by the aggregation of i SuPrP formed of two monomers, and denoted A 1 . Due to the fact that i A < 5, as A i assemblies are eluded in the first Sedimentation Velocity (S.V) fractions, we neglect here the oligomers A i with i > 1 for the sake of clarity and simplicity. On the second hand, oligomers B i , of size 3i, able to aggregate by B 1addition, where B 1 is another SuPrP formed of three monomers. However, A 1 may react with monomers to give rise to B 1 . Let us also note that the size of A 1 and B 1 , respectively formed of two and three monomers, is somewhat arbitrary: all we know is that this is their order of magnitude, in coherence with [START_REF] Igel-Egalon | Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick[END_REF]. As explained in the following article, a convenient reaction scheme should also be such that without monomers, almost nothing happens (Figure 4.4).

1. A 1 and B 1 can form a complex C in a reversible way:

A 1 + B 1 k + C k - C C.
2. The complex C can then react with the monomer M to form two B 1 :

M + C k + -→ 2B 1 .
3. The oligomers B i follow a classical polymerisation/depolymerisation chain reaction, by B 1addition:

B 1 + B i k i on k i+1 dep B i+1 , 1 ≤ i ≤ n -1.

Ordinary differential equations

The data obtained by S.V are interpreted as a dilatation of a size distribution density, normalized at 100%, so that if u i denotes the concentration of polymers formed of i monomers, the data represent iu i k ku k .

We translate this reaction scheme into the following system of differential equations, denoting a 1 , b 1 , c and b i respectively the concentrations of A 1 , B 1 , C and B i :

                                                           dm dt = -k + m(t)c(t), m(0) = m 0 , dc dt = k + C a 1 (t)b 1 (t) -k - C c(t) -k + m(t)c(t), c(0) = c 0 , da 1 dt = -k + C a 1 (t)b 1 (t) + k - C c(t), a 1 (0) = a 0 1 , db 1 dt = -k + C a 1 (t)b 1 (t) + k - C c(t) + 2k + m(t)c(t) -J 1 - n-1 i=1 J i , db i dt = J i-1 -J i , 2 ≤ i ≤ n -1, db n dt = J n-1 , b i (0) = b 0 i 1 ≤ i ≤ n, ( 4.1) 
where J i is the net rate at which a polymer of size 3i grows into a polymer of size 3(i + 1), hence:

J i = k i on b 1 b i -k i+1 dep b i+1 .
The parameters to estimate are:

m 0 , c 0 , a 0 1 , b 0 i , k + , k + C , k - C , k i
on and k i+1 dep -total of 2(n -1) + n + 6 = 3n + 4 parameters if there are n different sizes of polymers.

We can however use the properties of the model to determine part of the parameters.

Interpretation of the S.V data

In the absence of an exactly reliable relation between the fraction number and the sizes of the oligomers, we assume (a choice which is qualitatively acceptable rather than exactly quantitative) that if O j (t) denotes the measured proportion of the fraction number j at time t, it measures the proportion of polymerised mass present in oligomers containing roughly j-monomers.

In the following, we denote the total polymerised mass as

M(t) := 2a 1 (t) + 3b 1 (t) + 5c(t) + 3 n i=2 ib i (t).
We thus interpret the fraction number measured as follows:

2a 1 (t) + 3b 1 (t) + 5c(t) M(t) ≈ 5 j=1 O j (t) := O 1 (t), 3ib i (t) M(t) ≈ 3i+2 j=3i O j (t) := O i (t), i ≥ 2,
and we use the quantities O i (t), measured at several time points, to compare the model with the experimental data. We have a maximal fraction number equal to 30, so that we define O j for j ≤ 9 and add the value of O 30 to compute O 9 in the above definition.

Let us recall here that the size of three monomers for suPrP-B constitutes itself an approximation, so that the fit of our model to the experimental data is meant as a qualitative rather than quantitative insight.

Analysis and calibration of the model Conserved quantities The system has two conserved quantities: first, the total mass:

d dt m + 2a 1 + 5c + 3 n i=1 ib i = 0 = d dt m(t) + M(t) ,
and second, what can be viewed as the excess of monomers which will not be consumed to form suPrP-B:

d dt m -a 1 -c = 0.
We denote these conserved quantities respectively M tot = m 0 + 2a 0 1 + 5c 0 + 3 n i=1 ib 0 i and ρ 0 = m 0a 0 1c 0 . These two quantities depend on the parameters to be estimated.

A quantity directly measured experimentally is the so-called centroid, defined as the average size:

centroid(t) := M 2 (t) M(t) = 4a 1 (t) + 9b 1 (t) + 9 9 i=1 i 2 b i (t)
2a 1 (t) + 3b 1 (t) + 3 .

Asymptotic and initial behaviour of the model We consider that at the final time measurement, an equilibrium has been reached, that we denote with ∞ superscripts. The equilibrium fulfills the following equations:

           -k + m ∞ c ∞ = 0, k + C a ∞ 1 b ∞ 1 -k - C c ∞ = 0, J ∞ 1 = . . . = J ∞ 9 = 0. (4.2)
Asymptotically, if the monomers are in excess, the system converges towards the following state:

c ∞ = a ∞ 1 = 0, m ∞ = ρ 0 , b ∞ i = k i-1 on k i dep b ∞ 1 b ∞ i-1 , i ≥ 2.
The last equality allows us to define recursively b i from b 1 , and b 1 is given by the following mass equality:

M ∞ = 3 9 i=1 ib ∞ i .
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Since O ∞ 1 = 3b ∞ 1 M ∞ , we have k i-1 on k i dep M ∞ = 3b ∞ i b ∞ i-1 O ∞ 1 = 3 O ∞ i O ∞ i-1 O ∞ 1 i -1 i
which can be experimentally measured: this gives us n -1 relations, thus we now have 2n + 5 parameters to estimate (here n = 9).

We also assume that initially, before adding monomers, the system was in equilibrium, which means:

k - C c 0 = k + C a 0 1 b 0 1 , b 0 i b 0 i-1 b 0 1 = k i-1 on k i dep = O 0 i b 0 1 O 0 i-1 i -1 i , i ≥ 3,
so that we have n -1 new relations, and the number of parameters to estimate is reduced to n + 6.

Numerical simulations

We run the simulations with Matlab, and used the ode solver ode45 (cf Figure 4.1). The parameters which were not given by the analysis have been adjusted qualitatively. The time scale is in hours, the concentrations are in arbitrary units. 
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Introduction

In terms of pathogenic mechanisms, the prion paradigm unifies a number of neurodegenerative disorders that are caused by protein misfolding and aggregation [START_REF] Condello | Aβ propagation and strains: implications for the phenotypic diversity in Alzheimer's disease[END_REF][START_REF] Jucker | Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders[END_REF][START_REF] Jucker | Self-propagation of pathogenic protein aggregates in neurodegenerative diseases[END_REF][START_REF] Brundin | Prion-like transmission of protein aggregates in neurodegenerative diseases[END_REF]. These disorders include prion diseases, Alzheimer's disease, Parkinson's disease and Huntington's disease. In principle, host-encoded monomeric proteins are converted into misfolded and aggregated assemblies, which serve as templates for further autocatalytic conversion. In prion diseases, the prion protein P rP C is converted into a misfolded, β-sheet-rich conformer termed P rP Sc [START_REF] Stanley | Novel proteinaceous infectious particles cause scrapie[END_REF]. In susceptible host species and in laboratory rodents, P rP Sc assemblies form stable, structurally distinct P rP Sc conformers [START_REF] Béringue | Prion agent diversity and species barrier[END_REF][START_REF] Bruce | TSE strain variation: An investigation into prion disease diversity[END_REF][START_REF] Collinge | A general model of prion strains and their pathogenicity[END_REF], known as prion strains, which encode stereotypical biological phenotypes [START_REF] Valerie | Ultrastructures and strain comparison of under-glycosylated scrapie prion fibrils[END_REF][START_REF] Spassov | Structural differences between TSEs strains investigated by FT-IR spectroscopy[END_REF][START_REF] Glenn | Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity[END_REF][START_REF] Richard | Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy[END_REF]. The strain-specific structural differences can be observed at the secondary and tertiary structural level in terms of local structural variation but also at the quaternary level with strain-specific size distribution signature [START_REF] Spassov | Structural differences between TSEs strains investigated by FT-IR spectroscopy[END_REF][START_REF] Jay R Silveira | The most infectious prion protein particles[END_REF][START_REF] Tixador | The physical relationship between infectivity and prion protein aggregates is strain-dependent[END_REF]. A large body of evidence supports the view for structural diversity within specific prion populations and strains:

(i) prion substrains can be preferentially selected during prion transmission [START_REF] Chapuis | Emergence of two prion subtypes in ovine PrP transgenic mice infected with human MM2-cortical Creutzfeldt-Jakob disease prions[END_REF][START_REF] Le | A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes[END_REF]4,94] with a species/transmission barrier, (ii) size-or density-fractionation studies support the existence of a heterogeneous spectrum of P rP Sc assemblies with distinct tertiary/quaternary structures [START_REF] Jay R Silveira | The most infectious prion protein particles[END_REF][START_REF] Tixador | The physical relationship between infectivity and prion protein aggregates is strain-dependent[END_REF][START_REF] Laferrière | Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics[END_REF][START_REF] Kim | Small protease sensitive oligomers of PrPSc in distinct human prions determine conversion rate of PrPC[END_REF][START_REF] Tzaban | Protease-sensitive scrapie prion protein in aggregates of heterogeneous sizes[END_REF][START_REF] Bett | Biochemical properties of highly neuroinvasive prion strains[END_REF][START_REF] Bett | Enhanced neuroinvasion by smaller, soluble prions[END_REF][START_REF] Sajnani | PK-sensitive PrPSc is infectious and shares basic structural features with PK-resistant PrPSc[END_REF] and biological activity (templating activity and infectivity), (iii) kinetic studies of prion pathogenesis suggest that the formation of neurotoxic P rP Sc species [START_REF] Simoneau | In vitro and in vivo neurotoxicity of prion protein oligomers[END_REF] occurs at the late stage of prion infection when replicative P rP Sc assemblies are formed at earlier stages [START_REF] Malin | Prion propagation and toxicity in vivo occur in two distinct mechanistic phases[END_REF][START_REF] Malin | Prion neuropathology follows the accumulation of alternate prion protein isoforms after infective titre has peaked[END_REF].

The prion replication process thus intrinsically allows the structural diversification of P rP Sc assemblies.

While the kinetic aspects of prion replication 'as a whole' have been comprehensively described by measuring infectivity or P rP Sc levels in the brain (see [START_REF] Langevin | Marked influence of the route of infection on prion strain apparent phenotype in a scrapie transgenic mouse model[END_REF][START_REF] Nakaoke | Early appearance but lagged accumulation of detergent-insoluble prion protein in the brains of mice inoculated with a mouse-adapted Creutzfeldt-Jakob disease agent[END_REF] as examples), the processes by which P rP Sc structural diversification and the formation of different subpopulations occur within a given strain remain unknown and are not mechanistically supported in the actual framework of the prion paradigm.

The autocatalytic conversion model proposed by Griffith in 1967 [START_REF] John | Nature of the scrapie agent: Self-replication and scrapie[END_REF], the nucleated-polymerization model described by Lansbury and Caughey in 1995 [START_REF] Jr | The chemistry of scrapie infection: implications of the 'ice 9'metaphor[END_REF] and other derived models (e.g. [99]) merely assume the existence of structurally homogeneous assemblies that have absolutely identical propensity to replicate throughout disease progression. These mechanisms intrinsically reduce P rP Sc heterogeneity due to the best replicator selection process [START_REF] Moulin | Dynamic combinatorial self-replicating systems[END_REF][START_REF] Ojosnegros | Quasispecies as a matter of fact: viruses and beyond[END_REF]. A recent high-resolution structural analysis of the N-terminal domain of the yeast prion SuP35 suggests that conformational fluctuations in natively disordered monomeric Sup35 are responsible for the stochastic, structural diversification of Sup35 144CHAPTER 4. Quaternary structural convergence and structural diversification of prion assemblies.

aggregates [START_REF] Ohhashi | Molecular basis for diversification of yeast prion strain conformation[END_REF]. This idea can be extrapolated to mammalian prion PrP to explain intrastrain structural diversification and strain mutation [START_REF] Collinge | A general model of prion strains and their pathogenicity[END_REF]. However, based on the best replicator selection concept [START_REF] Moulin | Dynamic combinatorial self-replicating systems[END_REF][START_REF] Ojosnegros | Quasispecies as a matter of fact: viruses and beyond[END_REF][START_REF] Nee | The evolutionary ecology of molecular replicators[END_REF], the aforementioned idea does not explain the coevolution of at least two structurally distinct P rP Sc subassemblies within the same environment [START_REF] Chapuis | Emergence of two prion subtypes in ovine PrP transgenic mice infected with human MM2-cortical Creutzfeldt-Jakob disease prions[END_REF][START_REF] Le | Divergent prion strain evolution driven by PrP C expression level in transgenic mice[END_REF].

To examine the molecular mechanisms of P rP Sc replication and structural diversification in depth, we explore, by sedimentation velocity (SV)-based methods, the quaternary structure evolution of P rP Sc assemblies during the early stage of prion conversion in vivo and in a cell-free system by protein misfolding cyclic amplification [START_REF] Gabriela P Saborio | Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding[END_REF] (PMCA). By using several prion strains as templates, we demonstrate that the early stage of prion replication invariably generates two subsets of assemblies, termed A i and B i , which differ in proportion, size, the architecture of their elementary bricks and structure. The analysis of their kinetics of formation during PMCA combined with kinetic data assimilation reveals the existence of two sequential processes of formation. The first process corresponds to a quaternary structural convergence, as it tends to reduce the parental quaternary structure polydispersity to generate mostly small-sized assemblies, namely A i . The second process transforms the A i into structurally different assemblies, namely, B i , according to a secondary auto-catalytic pathway requiring P rP C , whereby B i facilitates its own formation. Our findings provide, for the first time, mechanistic insights into prion structural diversification.

Results

Small P rP Sc oligomers are formed at early replication stage

The early phases of prion replication are commonly thought to consist of an elongation process [START_REF] Gaspar | Secondary nucleation of monomers on fibril surface dominates α-synuclein aggregation and provides autocatalytic amyloid amplification[END_REF],

with the P rP Sc template serving as a base. We studied the size distribution of proteinase K (PK)-resistant P rP Sc (P rP res ) assemblies at the early step of prion replication in the brain by SV in an iodixanol gradient using a previously published methodology [START_REF] Tixador | The physical relationship between infectivity and prion protein aggregates is strain-dependent[END_REF][START_REF] Laferrière | Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics[END_REF][START_REF] Igel-Egalon | Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick[END_REF]. The P rP res size distribution at the disease end-stage served as control. Three different host-PrP/strain combinations were studied:

• the 127S cloned scrapie prion strain in ovine PrP tg338 transgenic mice [START_REF] Langevin | Marked influence of the route of infection on prion strain apparent phenotype in a scrapie transgenic mouse model[END_REF],

• the 139A cloned mouse prion strain in mouse PrP tga20 mice [START_REF] Fischer | Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie[END_REF],

• the vCJD cloned human prion strain in human PrP tg650 mice [START_REF] Béringue | Prominent and persistent extraneural infection in human PrP transgenic mice infected with variant CJD[END_REF][START_REF] Halliez | Accelerated, spleen-based titration of variant Creutzfeldt-Jakob disease infectivity in transgenic mice expressing human prion protein with sensitivity comparable to that of survival time bioassay[END_REF].

Details on Figure 4.2. The size distribution of proteinase K (PK)-resistant P rP Sc assemblies present in the brain in vivo (a-c) and in PMCA products (d-e) was examined by sedimentation velocity (SV). (a-c)

For the in vivo sedimentograms, brains from ovine (tg338), murine (tga20) and human (tg650) transgenic the same prion strains were subjected to a single round of mb-PMCA by using 10-5 (139A) or 10-6 (vCJD, 127S) diluted brain homogenates as seed for the reaction. Thirty minutes after the last sonication, the amplified products were solubilized and SV-fractionated. The mean ± SEM levels of PK-resistant PrPSc per fraction were 146CHAPTER 4. Quaternary structural convergence and structural diversification of prion assemblies. obtained from the immunoblot analysis of n=4 independent fractionations of PMCA reactions. The peaks containing P rP Sc assemblies sedimentating in the top and middle fractions are denoted P 1 and P 2 , respectively.

For the sedimentograms from the PMCA products without PrPC substrate (e), undiluted 127S-infected tg338 brain (20% w/v, red curve) or a 1:32 dilution in PMCA buffer (blue curve) was used as seed, mixed with equal volume of brain homogenate from P rP 0/0 mice as substrate and subjected to a single round of mb-PMCA before SV fractionation.

As shown in Figure 4.2 a-c, small oligomers sedimenting between fractions 1 and 4 were preferentially detected at the early stage of pathogenesis, regardless of the strain considered. A second population of oligomers with a larger size distribution and peaking in fractions 8-10 and 18 was observed for the 127S prion strain. The contribution of incompletely digested P rP C or remnant input P rP Sc inoculum to the PrP signal detected in the top fractions was discarded. Indeed, no P rP C signal was detected after PK treatment of uninfected tg338 brain and no P rP res was detected in the brain of PrP knock-out mice (PrP-/-) inoculated with vCJD prions and analyzed for P rP Sc content at early time points.

At the disease end stage and for the 3 strains, larger assemblies were observed (Figure 4.2 a-c). These observations suggest that prion replication in the brain proceeds through distinct mechanistic phases that are common to the three prion strains studied here:

• a phase that generates mainly small and similar oligomers with respect to quaternary structure (at the SV resolution) at the early stage of the replication process;

• a phase that generates a quaternary structural diversification of PrP assemblies during the disease evolution.

We next determined whether these phases can be reproduced by an in vitro bona fide amplification method. We used a high-throughput variant of PMCA (termed mb-PMCA [START_REF] Igel-Egalon | Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick[END_REF][START_REF] Moudjou | Glycoform-independent prion conversion by highly efficient, cellbased, protein misfolding cyclic amplification[END_REF][START_REF] Moudjou | Highly infectious prions generated by a single round of microplatebased protein misfolding cyclic amplification[END_REF]), which generates in one unique round of 48 h as much infectivity as in the brain at the terminal stage of the disease, with high reproducibility in terms of limiting dilution and the amplification yield [START_REF] Moudjou | Glycoform-independent prion conversion by highly efficient, cellbased, protein misfolding cyclic amplification[END_REF][START_REF] Moudjou | Highly infectious prions generated by a single round of microplatebased protein misfolding cyclic amplification[END_REF]. When the size distribution of the amplified products was analyzed by SV after one mb-PMCA round, two discrete distributions were observed for the three strains (Figure 4.2 d), a major set of small P rP res assemblies sedimenting between fractions 1 and 3 (named peak P 1 ) and a minor set of larger assemblies with a well-defined Gaussian distribution centered on fraction 15 (named peak P 2 ). The relative proportions of P 1 and P 2 varied among the three strains; P 2 was barely detected in the 139A amplicons. When the mb-PMCA reaction was seeded with healthy brain homogenate, there was no evidence of spontaneously formed P 1 and P 2 P rP res in the amplified products. These data indicate that during mb-PMCA amplification, two populations of P rP Sc assemblies are generated that differ according to their quaternary structures, with a predominance of small assemblies.

The bimodal (i.e., generation of two peaks) and discrete behavior of the size distribution as well as the formation of predominantly small assemblies in P 1 may originate from the mb-PMCA conditions (i.e. shearing forces during the sonication step [START_REF] Adachi | Supersaturation-limited and unlimited phase transitions compete to produce the pathway complexity in amyloid fibrillation[END_REF][START_REF] Okumura | Amyloid fibril disruption by ultrasonic cavitation: nonequilibrium molecular dynamics simulations[END_REF][START_REF] Grant | Detecting the early onset of shear-induced fibril formation of insulin in situ[END_REF]) rather than from the replication process itself. To discriminate between these two possibilities, undiluted 127S seeds (i.e., 20% brain homogenate) were incubated and sonicated in identical mb-PMCA conditions but without the P rP C substrate (i.e., 1:1 dilution in P rP 0/0 brain lysate). The samples were then SV-fractionated and analyzed for P rP res content by western blot. For comparison, the same brain was diluted in the PMCA buffer before the mb-PMCA reaction, as we reported previously that a simple dilution affects the size distribution of P rP Sc assemblies, by displacing the equilibrium between P rP Sc assemblies and their suPrP elementary subunit (P rP Sc i P rP Sc i-1 + suP rP ) [START_REF] Igel-Egalon | Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick[END_REF][START_REF] Igel-Egalon | Heterogeneity and Architecture of Pathological Prion Protein Assemblies: Time to Revisit the Molecular Basis of the Prion Replication Process?[END_REF]. While the dilution of 127S seed indeed drastically affected the size distribution of 127S P rP Sc assemblies, sonication of concentrated 127S seeds in the P rP 0/0 substrate revealed mostly the presence of large-sized assemblies (Figure 4.2 e), peaking in fraction 12-16, as for 127S fractionated brain material solubilized at 37 • C [START_REF] Laferrière | Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics[END_REF]. The absence of sonication effect on P rP Sc assemblies size distribution rules out a fragmentation process during the mb-PMCA being at the origin of the formation of small-size assemblies.

Altogether, these observations suggest that:

• in vivo, the early phase of replication generates mainly small-sized assemblies, which diversify with respect to quaternary structure during the disease pathogenesis.

• Similar to in vivo replication, the mb-PMCA amplification condition generates two sets of PrP assemblies that differ in their quaternary structures.

The formation of these two groups of assemblies is common to the 127S, 139A and vCJD prion strains used here.

Bimodal and autocatalytic evolution of P rP res from P 1 to P 2

We next asked whether P 2 formation resulted from a simple condensation of P 1 peak assemblies (coagulation process [START_REF] Munoz | Folding and aggregation kinetics of a β-hairpin[END_REF][START_REF] John | A kinetic study of amyloid formation: fibril growth and length distributions[END_REF]) or from an alternative templating pathway. We first examined the influence of the amplification rate on the formation of these two species by varying the concentration of the seed used as the template for the mb-PMCA reaction. We generated mb-PMCA products seeded with 10-3 to 10-10 diluted 127S brain homogenate. The amounts of P rP res amongst the amplified products were similar, whatever the seed dilution, as previously observed [START_REF] Moudjou | Highly infectious prions generated by a single round of microplatebased protein misfolding cyclic amplification[END_REF]. The SV-sedimentograms of the mb-PMCA products are shown in Figure 4.3 a. The relative amounts of assemblies in P 1 decreased as the amounts of those from P 2 increased as a function of the seed concentration. The variation in the P 1 and P 2 peak maximum as a function of the logarithm of the dilution factor revealed a quasi-linear decrease in P 1 when the P 2 peak maximum followed a sigmoidal increase (Figure 4.3 b). Such uncorrelated variations in P 1 and P 2 indicate that:

• P 2 peak formation does not result from the simple condensation of assemblies present in P 1 ,

• the formation of P rP res assemblies in P 2 follows a seed concentration-dependent cooperative process. This observation strongly suggests that the assemblies forming the P 1 and P 2 peaks result from distinct polymerization pathways and should therefore be structurally distinct. To further explore the entanglement between the assemblies forming P 1 and P 2 , we set the mb-PMCA regime to favor the formation of the P 1 peak by using high dilutions of the inoculum seed, followed by quiescent incubations (i.e., without sonication) at 37 • C for increasing periods. As shown with 127S prions, the SV analysis at defined incubation time points post-PMCA reaction revealed a decrease in the population of P 1 in favor of P 2 (Figure 4.3 c). At 3 h post-incubation, there were equal proportions of assemblies forming P 1 and P 2 . At 24 h, most of the P rP res assemblies were located in the P 2 peak.

Details on

Comparing the distribution in isopycnic gradients [START_REF] Laferrière | Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics[END_REF] of the P rP res populations at 0h and 24h of quiescent incubation revealed a quasi-similar density for P rP res assemblies composing the P 1 and the P 2 peaks (Figure 4.3 d). This observation implies that the low sedimentation velocity of the assemblies forming P 1 does not result from an interaction with lipids or other low-density molecules and that the sedimentation velocity increase of P 2 compared to P 1 results strictly from a quaternary structure rearrangement through size increase. As shown in Figure 4.3 c, the formation of assemblies sedimenting in P 2 exhibited a bimodal behavior (i.e., absence of assemblies of intermediate size), without any significant shift in the P 2 peak position. This suggests that the formation of these assemblies resulted from the association with a specific number of assemblies present in P 1 . Drawing the time-dependent surface variation in P 1 and P 2 showed that the formation of P 2 assemblies proceeded slowly at the start, increased steadily from 2-3h up to 7h where it slowed down again. This sigmoidal variation is typical of an autocatalytic reaction [START_REF] Pearson | Kinetics and mechanism[END_REF]. This indicates that the assemblies present in P 2 enhance their own formation according to an autocatalytic process.

Similarly, the 139A and vCJD prions showed a bimodal evolution of P 1 to P 2 during a 24-h quiescent phase (Figure 4.3 f), arguing in favor of a generic process of transformation.

To determine whether the P 2 peak assemblies could further evolve, we extended the quiescent phase up to 30 days. For the 127S, 139A and vCJD prion strains, the sedimentogram curves at 7 and 30 days showed a translational shift in the P 2 peak to higher fractions, indicative of an isokinetic increase in their mean average sizes (Figure 4.4 a, left curves). This size translation deeply contrasts with the bimodal phase (transformation of P 1 to P 2 ) observed during the 0 to 7-day quiescent incubation and highlights a change in the kinetic regime. This new regime would be compatible with a coalescence process [START_REF] Zhang | Simulations of nucleation and elongation of amyloid fibrils[END_REF][START_REF] Munoz | Folding and aggregation kinetics of a β-hairpin[END_REF][START_REF] John | A kinetic study of amyloid formation: fibril growth and length distributions[END_REF], whereby assemblies would grow by end-to-end or lateral association of assemblies rather than by incorporation of monomers. Altogether, the quaternary structure variation of P rP res assemblies as a function of seed-concentration or time followed two distinct kinetic regimes. The first regime, occurring during the early steps of the conversion process, leads to a bimodal and cooperative size increase, which indicates the existence of an autocatalytic transformation of P rP res assemblies present in P 1 to P 2 . The bimodal aspect of the size distribution tends to indicate that the P rP res assemblies forming P 1 structurally differ from those forming P 2 . The second regime, occurring on long-term quiescence is more compatible with a coalescence process.

Details on

Quasi-irreversible transformation of P rP res from P 1 to P 2

The bimodal and cooperative transformation of P 1 to P 2 reported in Figure 4.3 c-e is incompatible with the existence of an equilibrium between the assemblies populating these peaks and a coalescence or coagulation process. To further disprove the existence of an equilibrium process (or detailed-balance) governing the P 1 to P 2 transformation, we first set the mb-PMCA regime favoring the formation of the P 1 peak together with the P 2 peak (low dilution of the inoculum seed, Figure 4.5 a, isolated by SV the assemblies forming P 1 (fraction 1 to 3) and P 2 (fraction 14 to 18) and studied their quaternary structural evolution on isolation during quiescent incubation for 7 days at 37 • C. As shown in Figure 4.5 b, almost all P 1 was transformed into P 2 , which reflects an irreversible transformation process rather than an equilibrium displacement or a simple condensation or coagulation. In sharp 152CHAPTER 4. Quaternary structural convergence and structural diversification of prion assemblies. contrast, the P 2 peak in isolation did not lead to the retro-formation of the P 1 peak by depolymerization (Figure 4.5 c), underlying the absence of an equilibrium or detailed-balance between P 2 and P 1 as expected for a simple condensation or coagulation process. The irreversible nature of the transformation of P 1 to P 2 argues in favour of the existence of a thermodynamically-driven "locking" process. This implies structural rearrangements of P 1 assemblies and formation of higher stable P 2 objects. and P 2 assemblies (as in Figure 4.3 a). The fractions corresponding to P 1 and P 2 peaks were pooled as indicated, and further incubated for 7 days at 37 • C in quiescent conditions, prior SV analysis. (b) On quiescent incubation, most of the assemblies present in the pooled P 1 fractions evolved and formed P 2 . (c) On quiescent incubation, the pool of P 2 fractions did not evolve, underlying the irreversible character of the P 1 to P 2 transformation and the absence of an equilibrium between P 1 and P 2 . The results shown are the mean ± SEM values from n = 3 independent fractionations. P 1 and P 2 contain structurally distinct P rP res assemblies To further confirm the structural rearrangement in the P rP Sc assemblies accompanying the transformation of P 1 to P 2 , we determined the specific infectivity of the P 1 and P 2 assemblies. A 127S-PMCA product was fractionated at the end of the reaction or after 48 h of quiescent incubation. Pools of fractions corresponding to the P 1 and P 2 peaks were inoculated into reporter tg338 mice. The specific infectivity (infectivity per PrP molecule), which is mostly associated to P rP res assemblies (i.e. negligible contribution of PK-sensitive P rP Sc species to 127S infectivity [START_REF] Tixador | The physical relationship between infectivity and prion protein aggregates is strain-dependent[END_REF][START_REF] Laferrière | Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics[END_REF]), was calculated from the mean survival time using 127S dose-response curves [START_REF] Tixador | The physical relationship between infectivity and prion protein aggregates is strain-dependent[END_REF]. As shown in Figure 4.6, the specific infectivity of the P 1 peak assemblies was 50-100-fold higher than that of the P 2 peak assemblies. These observations indicate that the P 1 and P 2 peaks contain structurally distinct sets of P rP res assemblies, named A i and B i (the i index referring to the number of monomer/subunit in the assembly). The specific infectivity of P 2 did not change over a longer period of quiescent incubation (7 days), suggesting that the transformation of the assemblies present in the P 2 peak into larger assemblies was not associated with a structural change measurable by their specific activity. Figure 4.6 -Specific infectivity of the P 1 and P 2 peaks post-PMCA reaction and after quiescent incubation. Fractions corresponding to P 1 (fractions 1-3) and P 2 (fractions 14-16 (days 0 and 2) or 16-18 (day 7)) from PMCA products seeded with 106-diluted 127S brain homogenate were pooled and inoculated into groups of reporter tg338 mice at two different dilutions (1:10 and 1:1000) for better accuracy. The specific infectivity of the assemblies was calculated from the mean survival time of the mice using a 127S dose-response curve.

Architectural characterization of A i and B i assemblies

To characterize the structural difference between A i and B i assemblies at the level of their elementary subunit [START_REF] Igel-Egalon | Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick[END_REF], we used a size exclusion chromatography (SEC) method in native condition, allowing hydrodynamic radius-based analyses. To determine if the hydrodynamic radius from B i elementary subunit (suPrPB) differ from that of A i (suPrPA), 127S-PMCA products generated at high-seed dilution were analysed by SEC immediately at the end of the reaction (defined at t0) or after a 7-day quiescent incubation. At t0, the SEC profile showed the existence of a unique peak eluting at 14.7ml Collectively, the SEC analysis of the P 1 to P 2 transformation demonstrates that the formation of B i species is concerted with the emergence of a new elementary subunit (suPrPB). suPrPB differs from suPrPA by its hydrodynamic radius and therefore its structure. The structural difference between suPrPA and suPrPB is at the origin of their physicochemical properties and their aggregation propensity. The existence of conformationally distinct suPrP further demonstrates that A i and B i are fundamentally different in terms of ultrastructure and further exclude a simple coalescence or coagulation process at the origin of the A i to B i transformation.

The formation of B i from A i assemblies requires P rP C

Our previous studies revealed that only ∼ 30% of the P rP C substrate was converted into P rP Sc after a complete round of mb-PMCA [START_REF] Moudjou | Glycoform-independent prion conversion by highly efficient, cellbased, protein misfolding cyclic amplification[END_REF][START_REF] Moudjou | Highly infectious prions generated by a single round of microplatebased protein misfolding cyclic amplification[END_REF]. To determine whether the remaining 70% still participated in the transformation of A i to B i assemblies during the quiescent phase, PMCA products from the 139A, 127S and vCJD prions were treated with PK to eliminate P rP C before quiescent incubation at 37 • C. As shown in Figure 4.4 a, the amount of B i assemblies generated during the 48-h quiescent incubation was drastically decreased for the three prion strains. Further quiescent incubation for 7 and 30 days in the absence of P rP C allowed the formation of comparatively low amounts of B i assemblies for the 127S and 139A prion strains.

To determine if the drastic decrease of A i to B i transformation after PK treatment was specific to depletion of P rP C or of cofactors, we performed reconstitution experiments of ± PK-treated 127S-PMCA products (e.g. without potential, PK-susceptible co-factors) with either P rP 0/0 brain homogenate (e.g. media containing all brain cofactors except P rP C ) or tg338 brain homogenate (e.g. media containing all cofactors and P rP C ) before 48 h or 7 days of quiescent incubation (Figure 4.4 b). The quiescent products were then SV-fractionated and the amount of P rP Sc in the fractions corresponding to P 1 and P 2 peaks was quantified. As shown in Figure 4.4 c, reconstitution of the PK-treated PMCA amplicons with P rP 0/0 brain homogenate did not allow B i neoformation as compared with reconstitution in tg338 media. A depolymerization of B i assemblies was even observed when the reconstitution was done in P rP 0/0 brain homogenate. Thus, at the resolution of this experiment, the contribution of PK-sensitive PrP conformers and protein cofactors appeared negligible. The formation of B i assemblies upon reconstitution of PK-treated mb-PMCA product with tg338 brain homogenate also indicated that the N-terminal segment of A i had a low contribution to the process.

Finally, the importance of P rP C in the A i to B i transformation was further strengthened when comparing the quiescent evolution of non-PK-treated mb-PMCA products freshly reconstituted with tg338 brain homogenate with that of mb-PMCA products alone. As can be seen, the amount B i assemblies formed was 1.4-fold increased upon fresh reconstitution (Figure 4.4 c).

Collectively, this set of reconstitution experiments indicates that the A i to B i transformation can be qualified as a pure P rP C -dependent process without significant contribution of PK-susceptible cofactors.

P rP C requirement suggests that B i assemblies result from the integration/conversion of P rP C into A i assemblies during the quiescent phase. The appearance of a low amount of B i after a long incubation period without P rP C may result from the leakage of monomers from a conformer cosedimenting with A i .

Kinetic scheme describing the transformation of A i to B i

To establish a kinetic mechanism and provide a molecular interpretation of the assemblies dynamics during the quiescent phase, a number of elementary steps were identified based on experimental observations and were used as unavoidable constraints [START_REF] Irving R Epstein | An introduction to nonlinear chemical dynamics: oscillations, waves, patterns, and chaos[END_REF].

The first constraint was the existence of two structurally distinct P rP Sc subassemblies, namely, A i and B i , with distinct dynamics. Indeed, structurally equivalent assemblies would fail to present a bimodal size distribution, cooperative seed concentration and kinetic evolution or distinct specific infectivity.

The second constraint was the existence of a detailed balance relation between the P rP Sc assemblies and their elementary subunit (suPrP), as previously shown [START_REF] Igel-Egalon | Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick[END_REF], making the size distribution of the P rP Sc assemblies highly dynamic and dependent on the assembly concentration, as shown in Figure 4.2 e. Indeed, SV analysis of the P rP 0/0 brain lysates seeded with 30-fold-diluted 127S-infected brains and submitted to PMCA revealed a quaternary structure rearrangement with a shift in lower molecular where P rP Sc i and P rP Sc i-1 are the sizes i and i-1 of suP rP Sc , respectively.

The 3rd constraint is that the A i and B i assemblies are in detailed balance with their respective suPrPs (Figure 4.7, denoted suP rP A and suP rP B ) but with distinct equilibrium constants K A eq and K B eq . Thus, at any moment of the process of assembly transformation of A i to B i , the following equilibrium should be respected:

A i A i-1 + suP rP A , B i B i-1 + suP rP B . (4.
3)

The equilibrium constant K A i eq and K B i eq governs the respective size distribution of the A i and B i assemblies and, thus, the bimodal aspect of the curve. According to our previous SV calibrations with PrP oligomers and globular mass markers [START_REF] Tixador | The physical relationship between infectivity and prion protein aggregates is strain-dependent[END_REF], the size distribution of the A i and B i subassemblies were fixed: i A < 5 and i B centered around 20 PrP-mers. Due to the limited resolution of SV fractionation for small assemblies, we assumed that A i and suPrPB cosedimented. The fourth constraint relies on the fact that the transformation of A to B requires P rP C and that the kinetic is cooperative, as shown in Figures to P rP Sc conversion rate is directly proportional to the amount of A i assemblies (Figure 4.8 c).

Discussion

The mechanisms of prion replication and the dynamics responsible for prion structural diversification in the infected host remain unclear and rarely addressed. In the actual framework of the prion paradigm, the templating process is admitted to occur at the prion assembly interface, leading to an increased size of the complex formed by the template: substrate, out of the fragmentation/depolymerization context. The atypical size distribution observed here at the early stage of the replication process for three distinct prion strains, where accumulation of small-size assemblies dominates, contrasts with this canonical templating model and requires an additional process that considers the dynamics of replication.

As shown in vivo for the vCJD, 127S and 139A prion strains, the early stage of the replication process in the brain is dominated by the accumulation of small assemblies, whereas higher-size subsets are detected at the terminal stage of pathogenesis. Such quaternary structural diversity, -and beyond the existence of structurally distinct types of assemblies, as defined by their specific infectivity ( [START_REF] Tixador | The physical relationship between infectivity and prion protein aggregates is strain-dependent[END_REF][START_REF] Laferrière | Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics[END_REF]), can be exclusively explained by the existence of a balance between at least two kinetic modes taking place at different stage of the pathogenesis. Both can be governed by evolution or a fluctuation in the replication micro-environment due to the physio-pathological state of the infected animal and/or to the sequential involvement of specific prion-replicating cell types.

However, another possibility can lie in the intrinsic and deterministic properties of the PrP replication process to generate structurally distinct types of assemblies. Discriminating between these two non-mutually exclusive hypotheses is technically difficult in vivo. The mb-PMCA as a bona fide amplification method in a more simplified and kinetically controlled context constitutes a relevant method for investigating the intrinsic propensity of the replication process to generate structurally distinct assemblies. Interestingly, and against common belief, the size distribution of the P rP Sc assemblies used as seeds was relatively insensitive to mb-PMCA sonication cycles when a simple dilution displaced the assemblies towards a smaller size (Figure 4.3 e), as previously reported [START_REF] Igel-Egalon | Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick[END_REF].

These two observations exclude the contribution of the fragmentation process during the mb-PMCA sonication cycles to the size distribution pattern of P rP Sc assemblies and emphasize the existence of a constitutional dynamic between the P rP Sc subpopulation [START_REF] Igel-Egalon | Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick[END_REF], which should be considered during the replication process. We showed that two sets of P rP Sc assemblies, A i and B i , were generated during the mb-PMCA reaction. The A i and B i assemblies constitute two structurally distinct P rP Sc subpopulations. Beside the fact that the bimodal size distribution instead of a continuum constitutes an indirect but solid argument for structural differences in the PrP assemblies populating the P 1 and P 2 peaks, the best arguments are undoubtedly their distinct specific infectivity and the existence of two distinct elementary subunits as shown by SEC. The irreversibility of the P 1 to P 2 transformation (Figure ??) physically demonstrates a PrP structural rearrangement associated to the A i → B i transformation process. Indeed, as evocated in the results section, the irreversible transformation of A i → B i can only be explained if the process is thermodynamically favored through a structural rearrangement and the formation of higher stable object rendering the process irreversible. Therefore, the prion replication process per se intrinsically generates structurally diverse P rP Sc subassemblies in a deterministic process.

According to our SV experiments, small-sized P rP Sc assemblies were mainly formed at the early stage of prion replication in the brain and during the mb-PMCA reaction. This was observed with three distinct prion strains (127S, 139A, vCJD) on 3 different PrP genetic backgrounds. Considering that the P rP Sc assemblies that constitute each strain are structurally distinct, one can ask how distinct P rP Sc assemblies all can generate A i assemblies that harbor strain structural information while showing the same quaternary structure (at the SV resolution). The first explanation can be the existence of a common narrow subpopulation of P rP Sc (with respect to their quaternary structure) within the three strains that serves as the best replicator and participates in the formation of A i assemblies.

However, the P rP Sc quaternary structure subset that exhibits the highest specific infectivity in vivo (i.e., the best replicator) can be associated with either small-size assemblies (i.e., 127S and 139A in [START_REF] Tixador | The physical relationship between infectivity and prion protein aggregates is strain-dependent[END_REF][START_REF] Laferrière | Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics[END_REF]) or high-molecular-weight assemblies (i.e., vCJD) and is therefore strain-dependent. The existence of a structurally common P rP Sc subpopulation is thus unlikely to be at the origin of the generic formation of a small-size subset in the brain or A i assemblies in the mb-PMCA condition. Intrinsically, the early steps of the replication process favor the emergence of mainly one subspecies A i with a highly narrowed size distribution, arguing in favor of a quaternary structural convergence phenomenon during these steps. This structural convergence concerns the PrP domain that governs polymerization (the size of assemblies). However, as the A assemblies harbor the strain structural determinant, one can conclude that A i assemblies present a certain degree of structural variability, allowing strain structural information encoding.

All along the quiescent phase and for the three prion strains studied, the A i assemblies constitute the precursor species in the formation of B i assemblies. Furthermore, there is compelling evidence that the presence of P rP C is required for the evolution of A i into B i assemblies. The set of reconstituted media experiments (Figure 4.4) led us to firmly exclude the contribution of PK-susceptible cofactors and highlighted the existence of a secondary templating pathway. In addition, the N-terminal part of P rP Sc (at least for 127S seeds) is dispensable for A i → B i transformation, even if the yield of the process is significantly decreased when 127S PMCA products were PK-treated (i.e. removal of their N-terminal domain) before reconstitution and quiescent incubation with tg338 normal brain homogenate. This decrease could clearly be attributed to the kinetic effect of 2-fold dilution factor of both P rP C and PMCA product occurring during the reconstitution process.

According to the kinetic model describing the autocatalytic formation of B i during the quiescent phase, A i is the limiting species for conversion when large amounts of P rP C are present (Figure 4.8 c).

Even if the first event conducing to the formation of B i assemblies remains undetermined, we can assume that A i can have the intrinsic propensity to spontaneously evolve into B i assemblies in the presence of secondary autocatalytic process, undescribed until now, in the canonical prion replication process [START_REF] Jr | The chemistry of scrapie infection: implications of the 'ice 9'metaphor[END_REF].

It can be reasonably envisaged that A i have the intrinsic propensity to generate B i assemblies in the presence of P rP C assemblies with a very low efficiency. This parallel pathway to the autocatalytic process can then explain how the first set of B i assemblies is generated (Figure 4.9).

The existence of a secondary autocatalytic process can be a way to maintain P rP Sc structural diversity throughout the evolution of the pathology. In the absence of this secondary autocatalytic process, the system only selects the best replicator assembly. In the present case, the best replicator is A i assembly according to its specific infectivity (Figure 4.6). The secondary templating pathway allows the system to escape this rule, leading the accumulation of the autocatalytic pathway product (here, the B i assemblies).

This phenomenon can explain why, for certain prion strains, the most infectious assemblies represent a minor population, while those with the lowest specific infectivity mostly accumulate [START_REF] Tixador | The physical relationship between infectivity and prion protein aggregates is strain-dependent[END_REF][START_REF] Laferrière | Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics[END_REF].

Conclusion

The early step of prion replication for at least three distinct prion strains leads to the formation of small assemblies. The mb-PMCA approach clearly demonstrates the intrinsic properties of the bona fide replication process to generate at least two structurally distinct P rP Sc subassemblies. The deterministic aspect of the replication process to generate a structurally diverse set of assemblies contrasts with the widespread idea that considers the prion diversification process within a given strain (often referred to as the creation of prion quasi-species) as a stochastic event and as a process that is governed by environmental fluctuations9. The secondary autocatalytic pathway leading to the formation of B i subassemblies can participate in prion adaptation during transmission events with species barriers. Considering that the transmitted inoculum initially contains A i and B i assemblies, the autocatalytic conversion process of B i can kinetically drive the adjustment and integration of the new-host P rP C to generate host-adapted B i assemblies. This hypothesis is supported by our recent observations in which complementation between A i and B i subassemblies is required to cross existing species barriers.

Methods

Ethics

Animal experiments were conducted in strict accordance with ECC and EU directives 86/009 and 2010/63 and were approved by the local ethics committee of the author's institution (Comethea; permit numbers 12/034 and 15/045).

Transgenic mouse lines and prion strains

The ovine (tg338 line; Val136-Arg154-Gln171 VRQ allele), human (tg650 line; Met129 allele) and mouse (tga20) PrP transgenic lines have been described previously [START_REF] Langevin | Marked influence of the route of infection on prion strain apparent phenotype in a scrapie transgenic mouse model[END_REF][START_REF] Fischer | Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie[END_REF][START_REF] Béringue | Prominent and persistent extraneural infection in human PrP transgenic mice infected with variant CJD[END_REF]. The mouse lines were homozygous and overexpressed approximately 8-, 6-, and 10-fold amounts of heterologous P rP C on a mouse PrP-null background. P rP 0/0 mice were Zürich-I mice [START_REF] Büeler | Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein[END_REF]. Cloned 127S scrapie, human vCJD and 162CHAPTER 4. Quaternary structural convergence and structural diversification of prion assemblies.

mouse 139A prion strains were serially passaged in tg338, tg650 and tga20 mice, respectively [START_REF] Moudjou | Glycoform-independent prion conversion by highly efficient, cellbased, protein misfolding cyclic amplification[END_REF][START_REF] Moudjou | Highly infectious prions generated by a single round of microplatebased protein misfolding cyclic amplification[END_REF].

These strains were used as pools of mouse-infected brains and prepared as 20% wt/vol homogenates in 5% glucose by use of a tissue homogenizer (Precellys 24 Ribolyzer; Ozyme, France).

Time course analysis of prion accumulation

Eight-week-old female tg338, tg650 and tga20 mice were inoculated intracerebrally in the right cerebral hemisphere with 127S, vCJD or 139A prions (20µl of a 10% brain homogenate dose). Infected animals were euthanized by cervical column disruption in triplicate at regular time points and at the terminal stage of disease. Brains were removed and kept for P rP Sc size fractionation.

Miniaturized bead-PMCA assay

The miniaturized bead-PMCA (mb-PMCA) assay [START_REF] Chapuis | Emergence of two prion subtypes in ovine PrP transgenic mice infected with human MM2-cortical Creutzfeldt-Jakob disease prions[END_REF][START_REF] Igel-Egalon | Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick[END_REF][START_REF] Moudjou | Highly infectious prions generated by a single round of microplatebased protein misfolding cyclic amplification[END_REF] was used to amplify prions. Briefly, serial ten-fold dilutions of 127S, vCJD and 139A prions (mouse brain homogenates diluted in PMCA buffer)

were mixed with brain lysates (10% wt/vol) from healthy tg338, tg650 and tga20 mice as respective substrates and subjected to one round of 96 cycles of 30-s sonications (220-240 Watts) followed by 29.5 min of incubation at 37 • C. With a > 104 dilution of the seeds, input P rP Sc is not detected in the mb-PMCA products. PMCA was performed in a 96-well microplate format using a Q700 sonicator (QSonica, USA, Delta Labo, Colombelles, France). For quiescent incubation, the samples were left in the incubator at 37 • C for the indicated period of time, without any sonication. To eliminate residual P rP C present in the PMCA products before quiescent incubation, the samples were treated with PK (80 µg/ml final concentration). The treatment was stopped by adding 2 mM Pefabloc and 1x EDTA-free protease inhibitor cocktail. All final products were kept for P rP Sc size fractionation, and aliquots were PK-digested (115 µg/ml final concentration, 0.6% SDS, 1 h, 37 • C) prior to immunoblot analyses, as described below.

For reconstitution experiments, mb-PMCA products were generated with a 105-diluted 127S prion seed.

At the end of the mb-PMCA reaction, the products were mixed, eventually treated with PK (150 µg/ml final concentration, 1h, 37 • C). PK activity was inactivated by the combined addition of 4mM Pefabloc and 2x EDTA-free protease inhibitor cocktail. The products were then diluted 1:1 in either P rP 0/0 or in tg338 brain homogenate and incubated for 48h or 7 days at 37 • C in quiescent conditions. The PMCA products were then fractionated by sedimentation velocity and analyzed for P rP Sc content by immunoblot.

Sedimentation velocity (SV) fractionation

SV experiments were performed as described previously [START_REF] Tixador | The physical relationship between infectivity and prion protein aggregates is strain-dependent[END_REF][START_REF] Laferrière | Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics[END_REF][START_REF] Igel-Egalon | Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick[END_REF]. Mouse brain homogenates or PMCA products were solubilized by adding an equal volume of solubilization buffer (50 mM HEPES pH 7.4, 300 mM NaCl, 10 mM EDTA, 4% wt/vol dodecyl-β-D-maltoside (Sigma)) and incubated for 45 min on ice. Sarkosyl (N-lauryl sarcosine; Fluka) was added to a final concentration of 2% wt/vol, and the incubation continued for an additional 30 min on ice. A total of 150 µl of solubilized samples was loaded atop a 4.8-ml continuous 10-25% iodixanol gradient (Optiprep, Axys-Shield), with a final concentration of 25 mM HEPES pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.5% Sarkosyl. The gradients were centrifuged at 285,000 g for 45 min in a swinging-bucket SW-55 rotor using an Optima LE-80K ultracentrifuge (Beckman Coulter). Gradients were then manually segregated into 30 equal fractions of 165 µl from the bottom using a peristaltic pump and analyzed by immunoblotting or bioassay for P rP Sc or infectivity, respectively. To avoid any cross-contamination, each piece of equipment was thoroughly decontaminated with 5 N NaOH followed by several rinses in deionized water after each gradient collection [START_REF] Laferrière | Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics[END_REF].

Isopycnic sedimentation

The entire procedure was performed as described previously [START_REF] Laferrière | Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics[END_REF]. Mouse brain homogenates or PMCA products were solubilized as described above. For mouse brain homogenates, solubilization was performed at 37 Marnes-la-Coquette, France). For all SDS-PAGE analyses, a fixed quantity of human recombinant PrP was employed for consistent calibration of the PrP signals in different gels.

To improve the sensitivity of the western blot detection method for the samples containing low levels of P rP res (e.g., early samples and SEC fractions) a double-deposit was made to electro-concentrate the sample. Typically, after a first round of sample loading in SDS-PAGE wells, a short migration time was performed to allow running within the acrylamide gel for 2mm. Then, a second round of sample loading was done identically to the first one and the migration was continued until the front reached 3cm within the gel. The electrotransfer and detection was then identical as above.

Bioassays

The pool of fractions of interest was extemporarily diluted ten-fold in 5% glucose and immediately inoculated via the intracerebral route into reporter tg338 mice (20 µl per pool of fraction, n = 5 mice per pool). Mice showing prion-specific neurological signs were euthanized at the end stage. To confirm prion disease, brains were removed and analyzed for P rP Sc content using the Bio-Rad TsSeE detection kit [START_REF] Le | A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes[END_REF] prior to immunoblotting, as described above. The survival time was defined as the number of days from inoculation to euthanasia. To estimate what the difference in mean survival times means in terms of infectivity, strain-specific curves correlating the relative infectious dose to survival times were used, as previously described [START_REF] Tixador | The physical relationship between infectivity and prion protein aggregates is strain-dependent[END_REF].
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 1 Figure 1 -Secondary structure of prion proteins (source [35]). A. Conformation of the P rP c protein composed mainly of α-helices. B. Misfolding which causes the conversion of the structure. C. Final misfolded secondary structure of the P rP Sc protein.
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 2 Figure 2 -Model of prion replication by Lansbury (left) and by Prusiner (Right)
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 3 Figure 3 -Atomic Force Microscope image of a P rP Sc aggregate (source VIM Inra 2017).
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 4 Figure 4 -Light scattering device from the unit VIM at Inra (left) and explanatory sheme (right).
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 5 Figure 5 -Human PrP amyloid fibrils (Hu fibrils) depolymerisation monitored by Static Light Scattering . A: The overall view of the ρ = 0.35µM Hu-fibrils depolymerisation at 55 0 C. B-E corresponds to a zoom-in on different time-segments of the depolymerisation curve A. As shown in B and C, from time 4h to time 5h oscillations have been observed and for the time segment corresponding to time 15.3 to 15.5h only noise has been detected (D and E). (Figure taken from [55])
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 7 Figure 7 -SLS experiments and trend estimates. The x-axis is the time in hours. (Top left) Plot of n = 32768 samples of SLS outputs with initial concentration (ρ) of 0.25µmol of P rP Sc fibrils.The dashed line is the trend estimate. (Middle left) ρ = 0.35µmol (Bottom left) ρ = 0.5µmol. (Top right) ρ = 1µmol. (Middle right) ρ = 2µmol. (Bottom right) ρ = 3µmol.

  -Döring-type model. The model considered is of finite size and the clusters of maximal size are subject to atomization, a chemical reaction which converts clusters into monomers. Pego and Velazquez proved the existence of Hopf bifurcations when the parameter corresponding to the atomization coefficient is varying. They introduced a Becker-Döring model with atomization in order to explain gas evolution oscillators in physical chemistry and its oscillatory behaviour is closely linked to atomization. However, in the experiments leading to Figure 5, no evidence of atomization have been found. Moreover, the oscillations in the SLS signals are always damped, i.e. located on a specific time interval. Hence, growth-fragmentation models with atomization do not seem appropriate to explain transient oscillations in the prion fibrils experiments.
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 9 Figure 9 -Numerical simulation of convergence to (PSS):SLS simulation (left image) and evolution of the size distribution (right images). The reaction rates are constants. The parameters are n = 100, k = 1.1, a = 1.5, b = 2 and the assumption 1 + a k < M tot P 0 < n + b k is fulfilled (all BSSs are unstable).
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 1 Moreover, two specific cases shed light on the damped oscillations: the constant coefficient case (i.e. a i = a, b i = b for two positive constants a and b and for all i) and the linear coefficient case (where a i = ia, b i = (i -1)b, for two positive constants a and b and for all i).
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 10 Figure 10 -Scheme of the Protein Misfolded Cyclic Amplification (PMCA) experimental process.
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 11 Figure 11 -Scheme of the Sedimentation Velocity (S.V) experiments in order to obtain the size distribution of the particles.
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 12 Figure 12 -Size distribution evolution PrP assemblies at the early replication phase. (Left) S.V profile describing, in vitro, the size distribution evolution of PrP assemblies obtained by PMCA from 127Sinfected brain homogenates. (Right) Numerical simulation of the size distribution. The initial condition corresponds to the measures at the begining of the S.V experiments (blue curve of the graph on the left).
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 13 Figure 13 -Simulation of the second moment of the size distributions. The parameters are k = 0.3, a i = 2, b i = 0.1, β i = 1.9 and the maximal size of polymers is 50. The initial size distribution is centered on the size 25, and v 0 = 0.1, w 0 = 0.2, P 0 = 100.265.

  3 and has been submitted to IMS Annals of Applied Statistics on August 2, 2019.
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 11 Figure 1.1 -Human PrP amyloid fibrils (Hu fibrils) depolymerisation monitored by Static Light Scattering (see Appendix for details). A: The overall view of the 0.35µM Hu-fibrils depolymerisation at 55 0 C. B-E correspond to a zoom-in on different time-segments of the depolymerisation curve A. As shown in B, from time 4h to time 5h oscillations have been observed when for time segment corresponding to time 15.3 to 15.5h only noise has been detected (D). (Figure taken from [55])

  Figure 1.3).
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 12 Figure 1.2 -Graph of a test signal with HF features and its single-sided amplitude spectrum. Top: Plot of z i = f (0.4i) for i = 0, . . . , 300 where f (x) = 1 √ x+1 + 0.3 sin 2πx 5 1 [40,80] (x). Bottom: Plot of the amplitude spectrum of (z i ) 0≤i≤300 (logarithmic scale for the y-axis).

First

  step: Pre-processing the signal Replacing x n i by x n i + C for some arbitrary constant C, with no loss of generality, we may (and will) assume that |ϑ n,0 | > max 0≤k≤n-1 |ϑ n,k |. (1.3) Condition (1.3) is in force from now on. We transform ϑ n = (ϑ n,k ) 0≤i≤n-1 into a non-decreasing sequence µ

3 -

 3 Figure 1.3 -Idealized scheme of the parametrization of the HF features of a signal in the Fourier Domain. The parameter g(f ) is the location parameter in the frequency scale which corresponds to the distance of the HF features from the low-frequency components of the signal. The parameter d(f ) is the intensity parameter which corresponds to the relative amplitude of the HF features.
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 14 Figure 1.4 -Graph of a test signal with a jump and a change of monotonicity and its single-sided amplitude spectrum. Top: Graph of the signal with a decreasing, increasing and stationary part. Middle: Zoom on the low frequency of the amplitude spectrum for n = 10000 samples of the signal. The blue dot markers emphasize one over ten samples of the signal. Bottom: Plot of the amplitude spectrum of the test signal (plain line). The dash line corresponds to the plot of (ϑ (3) n,k ) 3≤k≤n-4 defined by (1.4) with m = 3.
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 23 Figure 1.6 -Point cloud G k n,m , D k n,m for k = 1, 2, 3 (black dots) and HF feature parameters G n,m , D n,m (red dot).
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 1 trend filtering method is well suited to extract the trend components of the signals studied in Section 1.4. Since the signals display singularities such as discontinuous jumps, the trend extracted is well approximated by a piecewise linear function. Moreover the HF features in the signals are components looking like sine waves and varying at an intermediate pace. However interpolating a sine wave by a piecewise linear function requires a fine scale and thus the parameter λ has to be close to 0. Rising slightly the value of λ allows us to capture the trend without the HF features. Moreover there exists a threshold

. 18 )

 18 As previously stated in Remark 3, the empirical signals observed are non-monotonous, contain singularities and transient oscillations. Their amplitude spectra display a series of spikes in the low-frequencies and in the mid or high frequencies. Hence without a pre-processing step, the HF feature parameters (Definition (3)) characterize the low frequencies features (i.e. the trend represented in the amplitude spectrum by spikes in the low frequencies, see Figure1.4).In order to solve this problem, we regularize the Fourier coefficients as defined in(1.4). The sequence (m k ) 1≤k≤K gradually smoothes the Fourier amplitude spectrum: the spikes in the low frequencies merge together whereas the isolated spikes in the mid or high frequencies (corresponding to transient oscillations) slightly decrease in amplitude but remain significant. The data-driven choice of m is well adapted to regularize the empirical signals since it chooses the parameter m from the sequence (m k ) 1≤k≤K which maximizes the difference between the localisation parameters G for two consecutive smoothing parameters. Thus the spikes located in a close frequency range have been smoothed and the remaining spikes of significant amplitude for the regularization parameter m are isolated in the Fourier amplitude spectrum.
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 17 Figure 1.7 -Simulation of the test signal defined by (1.19).The x-axis is the time in hours. (Up) Plot of (T i ) 0≤i≤10 5 with parameters c 1 = 0.4, c 2 = c 3 = c 4 = 2, p 2 = q = 3, j 0 = 1700, j 1 = 3400. (Middle) Plot of (T i + O i ) 0≤i≤10 5 with the same parameters and c a = 0.05, c f = 10. (Down) Plot of (S i ) 0≤i≤10 5 with the same parameters and σ = 0.025.
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 118 Figure 1.8 -Table of estimators and p-values of the sanity-check signals. The simulation of the null is performed with the real trend of the signals.
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 19 Figure 1.9 -Numerical results of the procedure on the sanity-check signal when the simulation of the null is performed with the real trend. (Left column) Plot of (S i ) 1≤i≤10 5 (1.19) with the parameters c 1 = 0.4, c 2 = c 3 = c 4 = 2, p 2 = q = 3, j 0 = 1700, j 1 = 3400, c a = 0.05, c f = 10 and σ ∈ 1 10 c a , 1 2 c a , c a , 2c a , 10c a from top to bottom. The x-axis is the time in hours. (Right column) The black dots are the cloud of points of the simulation of the null, for N = 20000. The red diamond corresponds to the HF features parameters of the corresponding signal on the left column. The x-axis is the localization parameters G n, m and the y-axis is the relative amplitude D n, m .
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 110 Figure 1.10 -Numerical estimation of the trend on the sanity check signals. The x-axis is the time in hours.The parameter in the 1 -trend filtering is λ = 301. (Up) Plot of (P i + O i ) 0≤i≤10 5 in (1.19) with parameters c 1 = 0.4, c 2 = c 3 = c 4 = 2, p 2 = q = 3, j 0 = 1700, j 1 = 3400 c a = 0.05, c f = 10. The dashed line is the 1 -trend estimator when σ = 1 10 c a . (Middle) The dashed line is the 1 -trend estimator when σ = c a . (Down )The dashed line is the 1 -trend estimator when σ = 10c a .

G 2 Figure 1 . 11 -

 2111 Figure 1.11 -Table of estimators and p-values of the sanity-check signals. The simulation of the null is performed with the 1 -estimate of the trend (1.15) of the signals.

Figure 1 .

 1 [START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF]. The relative amplitude of the oscillations D n, m differs from one signal to another for three reasons. First of all, each signal corresponds to an experiment with a specific initial concentration. The calibration of the experiments is not identical for experiments with different initial concentrations. Secondly, the signals are not on the same scale. The signal with initial concentration of 0.25µmol goes from 0.5 to 2.2 in amplitude, and the signal of initial concentration of 3µmol goes from 16 to 28 in amplitude. Finally, they do not have the same regularization coefficient m.

Figure 1 . 12 -GFigure 1 . 13 -Figure 1 . 14 -

 112113114 Figure 1.12 -SLS experiments and trend estimates. The x-axis is the time in hours. The parameter in the 1 -trend filtering is λ = 31. (Top left) Plot of n = 32768 samples of SLS outputs with initial concentration (I 0 ) of 0.25µmol of P rP Sc fibrils.The dashed line is the 1 -trend estimator. (Middle left) I 0 = 0.35µmol (Bottom left) I 0 = 0.5µmol. (Top right) I 0 = 1µmol. (Middle right) I 0 = 2µmol. (Bottom right) I 0 = 3µmol. Concentration (µmol) 0.25 0.35 0.5 1 2 3 σ 3.553e -3 4.72e -2 1.11e -2 3.09e -2 8.44e -2 1.287e -1 m 4 3 5 7 9 7

1. 5 .

 5 Summary 2. the procedure to simulate the null hypothesis, 3. the Monte-Carlo procedure to compute the p-value, 4. the procedure to compute test signals such as the ones displayed in Figures 1.2, 1.4, 1.7.

  Fellner 

  2 and H. Rezaei 3 and has been published in the Journal of Theoritical Biology[START_REF] Doumic | A bi-monomeric, nonlinear Becker-Döring-type system to capture oscillatory aggregation kinetics in prion dynamics[END_REF].
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 21 Figure 2.1 -Human PrP amyloid fibrils (Hu fibrils) depolymerisation monitored by Static Light Scattering (see Appendix 2.6.2 for details). A: The overall view of the 0.35µM Hu-fibrils depolymerisation at 55 0 C. B-E correspond to a zoom-in on different time-segments of the depolymerisation curve A. As shown in B, from time 4 to time 5h oscillations have been observed when for time segment corresponding to time 15.3 to 15.5h only noise has been detected (D).

and 2 .

 2 1C. Both the variations and the oscillations progressively disappear, and a constant signal with noise is observed at the end of the experiments (Figure2.1, D and E). This specific phenomenon may be used to gain new insight into the underlying biological mechanism.

Figure 2 .

 2 Figure 2.2 compares the behaviours of the bi-monomeric Becker-Döring system (2.4) to model (2.2)under conditions when both feature oscillations (which is systematic in the nonlinear depolymerisation model (2.2), yet only occurs for some parameters in the bi-monomeric Becker-Döring system (2.4)).

Figure 2 . 2 -

 22 Figure 2.2 -Left images: Comparison of the oscillatory behaviour of the monomer concentration v of the proposed model (2.2) (blue) with the bi-monomeric Becker-Döring system (2.4) with linear depolymerisation (red) subject to the same initial distribution (Right image).
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 23 Figure 2.3 -Numerical results corresponding to SLS measurement, i.e. the quantity M 2 defined by (2.1) (Left Column) and the evolution of the size distribution of polymers (Right Column). First Row: The here proposed model (2.2) with parameters n = 50, k = 9.5, a i = 4.8, b i = 8. Second Row: The model (2.5) with c 1 multiplied by 10 in order to ignite the reactions in the system. Third row: The model (2.4) with parameters n = 50, k = 0.95, a i = 0.48, b i = 0.8.

1 .

 1 The total number of polymers, since d dt n i=1 c i = 0. This conservation law is linked to the fact that we neglect nucleation. 2. The total mass, since d dt v + w + n i=1 ic i = 0, which indicates that there is no gain or loss of particles during the chemical reactions: the system is closed.

  ) and (2.16) as well as the crossing times in Lemma 3.
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 25 Figure 2.5 -Trajectories of the monomeric concentrations v and w for the two-polymer model for k = 10, a = b = 1 and kM 1+k < P 0 < kM.
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 26 Figure 2.6 -Monotone decay of the Lyapunov functional (2.12) for the two-polymer model for k = 10, a = b = 1 and kM 1+k < P 0 < kM.

Figure 2 . 7 -

 27 Figure 2.7 -Trajectories of the monomeric concentrations v and w for the two-polymer model for k = 35, a = b = 1 and kM 1+k < P 0 < kM.

Figures 2 .

 2 Figures 2.5, 2.6 and 2.7 illustrate Corollary 1 for values k = 10 and k = 35. Clearly, the number of oscillations increases with k, while all other parameters being left unchanged. Moreover, Figure 2.6 shows the monotone decay of the Lyapunov functional in the case k = 10: we observe a general exponential decay despite the successive plateaux, which occur when solutions cross the lines of degeneracy p = 0.

Figure 2 . 8 illustrates

 28 Figure 2.8 illustrates Proposition 5. The extrem case ic i P 0

, 2 .

 2 11 and 2.12 illustrate damped oscillations converging to a positive steady state (PSS) under Assumption (2.33) while Figure2.13 shows convergence to (BSSb) (recall w = 0 and c1 = P 0 ) under Assumption (2.23).

Figure 2 . 10 :

 210 Figure 2.10: The size distribution of the polymers (right image), initially taken as a sharp Gaussian, oscillates in the sense that the Gaussian moves from left to right and right to left periodically in its

Figure 2 . 10 -

 210 Figure 2.10 -Numerical simulation of convergence to (PSS) as in Proposition 5: M 2 (t) defined by (2.1) (left image) and evolution of the size distribution (right images). The parameters are n = 100, k = 1.1, a = 1.5, b = 2 and Assumption (2.33): 1 + a k < M tot P 0 < n + b k .
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 211 Figure 2.11 -Numerical simulation of convergence to (PSS) as in Proposition 5: M 2 defined by (2.1) (left images) and time evolution of the size distribution (right image). The initial condition is the (numerical) PSS, but v and w are perturbed by a constant of order 10 -1 away of their equilibrium values. The parameters are n = 100, k = 1.1, a = 1.5, b = 2 and Assumption (2.33): 1 + a k < M tot P 0 < n + b k .

Figure 2 . 12 -

 212 Figure 2.12 -Numerical simulation of convergence to (PSS) as in Proposition 5: M 2 defined by (2.1) and its sensitivity to the number of polymers. The number of polymers are 100 (up), 50 (middle) and 20 (bottom). The initial size distributions are centered on n 2 . The parameters are k = 10, a = 1.5, b = 2 and Assumption (2.33): 1 + a k < M tot P 0 < n + b k .

Figure 2 . 13 -

 213 Figure 2.13 -Numerical simulation of convergence to (BSSb) as in Proposition 5: M 2 defined by (2.1) (left images) and time evolution of the size distribution (right image). The initial size distribution is centred around the size 40. The parameters are n = 100, k = 2, a = 80, b = 1 and M tot P 0 < 1 + a k (Assumption (2.23), lower white zone in Figure 2.9, diagonally hatched zone in Figure 2.8).
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 61 The two-polymer model continued Lemma 2 (Local convexity estimate of the Hamiltonian decay).

. 46 )

 46 where c 1 , c 2 > 0 are trigonometric constants. Note that c 1 = O(λ -1) while c 2 = O(1).

  in 10 mM sodium acetate, pH 5.0. Then fibrils were collected by ultracentrifugation and resuspended in 10 mM sodium acetate, pH 5.0. A washing step was performed by repeating the ultracentrifugation and resuspension steps in 10 mM sodium acetate, pH 5.0. Static light scattering: Static light scattering kinetic experiments were performed with a thermostatic homemade device using a 407-nm laser beam. Light-scattered signals were recorded at a 112 0 angle. Signals were processed with a homemade MatLab program. All experiments have been performed at 55 0 C in a 2mmX10mm cuve.

107 3. 1 . 1 A

 10711 continuous polymerisation/depolymerisation model: the Lifshitz-Slyozov model.

. 4 )

 4 We recall now some results on the Lifshitz-Slyosov model (3.3)-(3.2) or (3.3)-(3.4). The well-posedness has been established by Collet and Goudon in [37]. The autors proved the following theorem, stating the existence and uniqueness of solutions of (3.3)-(3.2).

bC 0 , 3 . 4 .

 034 Damped oscillations and concentration at a critical size.
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 123 
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 31 Figure 3.1 -Phase space for the system (3.28)

Figure 4 . 1 -

 41 Figure 4.1 -Size distribution evolution PrP assemblies at the early replication phase. (Left) S.V profile describing, in vitro, the size distribution evolution of PrP assemblies obtained by PMCA from 127S-infected brain homogenates. (Right) Simulation of the size distribution of the system (4.1). The initial condition corresponds to the measures at the begining of the S.V experiments (blue curve of the graph on the left).

  b 3 (0) b 4 (0) b 5 (0) b 6 (0) b 7 (0) b 8 (0) b 9

  mice inoculated with 127S scrapie prions (a), 139A mouse prions (b) and vCJD human prions (c) were collected (in triplicate) at the early stage (15 days postinfection (127S), 11 days postinfection (139A) and 120 days postinfection (vCJD), blue curves) and at the end stage of the disease (60 days postinfection (127S), 55 days postinfection (139A), 495 days postinfection (vCJD), red curves). The brains were solubilized and

Figure 4 . 2 -

 42 Figure 4.2 -Size distribution of P rP Sc assemblies from different prion strains at the early and late stages of pathogenesis in vivo and after the PMCA reaction.

Figure 4 . 3 -

 43 Figure 4.3 -Seed concentration-and time-dependent dynamic evolution of the PMCA-generated P rP Sc assemblies.

Figure 4 . 3

 43 (a-b) SV profiles of mb-PMCA products seeded with serial ten-fold dilutions from 127S-infected brain homogenates. Thirty minutes after the last sonication, the amplified products were solubilized and SV-fractionated. The mean relative levels of PK-resistant P rP Sc per fraction (a) were obtained from the immunoblot analysis of n = 4 independent fractionations of PMCA reactions (representative dot-blot shown). Variation in the P 1 and P 2 peak maximum (mean ± SEM values) as a function of the logarithm of the seed dilution factor (b). (c) PK-resistant P rP Sc sedimentograms from the PMCA products generated with 127S prions(10-5 dilution) and further incubated at 37 • C during the indicated quiescent phase (t), i.e., without sonication. At each time point, the collected products were frozen prior SV analysis. All collected samples were then thawed, fractionated in parallel by SV and analyzed by immunoblot (c, n = 3 independent experiments, representative dot-blot shown). (d) PK-resistant P rP Sc isopycnic sedimentograms from PMCA products generated with 127S prions(10-5 dilution) and immediately fractionated at the end of the PMCA reaction (blue line and symbol) or after a 24h-quiecent incubation at 37 • C (red line and symbol). At each time point, the collected samples were frozen. All collected samples were then thawed, fractionated in parallel by sedimentation at the equilibrium[START_REF] Laferrière | Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics[END_REF] and analyzed by immunoblot (the mean ± SEM levels of PK-resistant P rP Sc per fraction were obtained from the immunoblot analysis of n = 3 independent fractionations of PMCA reactions). As control, the density profile of PK-resistant P rPSc assemblies from the brain of terminally sick tg338 mice infected with 127S prions (solubilization at 37 • C to mimic the PMCA conditions) is shown (gray line and symbol). (e) Evolution of the percentage of P 1 and P 2 peak surface areas (under the curve) as a function of the quiescent phase post-PMCA reaction (C). (f) PK-resistant P rP Sc sedimentograms from the PMCA products generated with 139A and vCJD prion seeds (10-5 dilution) and further incubated for a quiescent period of 48 h at 37 • C (mean ± SEM values from n = 3 independent experiments).

Figure 4 . 4 .

 44 (a) PMCA products from 127S, 139A and vCJD prions[START_REF] Moulin | Dynamic combinatorial self-replicating systems[END_REF][START_REF] Moudjou | Highly infectious prions generated by a single round of microplatebased protein misfolding cyclic amplification[END_REF] and 104 diluted seeds, respectively) were treated with or without PK to eliminate P rP C before quiescent incubation at 37 • C for 2 days, 7 days or 30 days, as indicated. At each time point, the collected products were frozen. All collected samples were then thawed, SV-fractionated in parallel and analyzed by immunoblotting (mean ± SEM values from n = 3 independent experiments). (b-c) Relative percentage of P 1 versus P 2 peaks in SV-sedimentograms from ± PK-treated PMCA products reconstituted in P rP 0/0 or P rP C containing tg338 mouse brain homogenates, and incubated in quiescent conditions for 2 or 7 days. (b) PMCA products were generated with a 105-diluted 127S prion seed. At the end of the PMCA reaction (t0), the products were mixed, and eventually treated with high concentration of PK to remove residual P rP C . After PK inhibition, the products were then diluted 1:1 in either P rP 0/0 brain homogenate or in tg338 brain homogenate and incubated for 2 days or 7 days at 37 • C in quiescent conditions. (c) The PMCA products were then fractionated by sedimentation velocity and analysed for P rP Sc content by immunoblot. The amount of P rP Sc in the fractions corresponding to P 1 and P 2 populations was quantified. The results shown are the mean ± SEM values of three independent experiments.
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 44 Figure 4.4 -PrP-dependent generation of Bi assemblies from Ai assemblies.
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 45 Figure 4.5 -Quaternary structural evolution of isolated P rP Sc assemblies in P 1 and P 2 peaks on quiescent incubation. (a) SV profile of PMCA products seeded with 106-diluted 127S brain homogenate, leading to the formation of P 1

(Figure 4 .

 4 7 a). As PMCA products generated at 10-8 seed dilution mostly contain A i assemblies in the P 1 peak (Figure 4.7 b), one can attribute the SEC peak at t0 to suPrPA. After the 7-day quiescence, the chromatogram revealed the emergence of an additional peak eluting at 15.5ml (Figure 4.7 a), which correlates with the transformation of A i to B i observed by SV (Figure 4.7 b). This new peak was thus attributed to suPrPB. The low difference observed in the elution volume between suPrPA and suPrPB suggests a difference in their hydrodynamic radius (suPrPB assemblies being more compact than suPrPA assemblies), and therefore a difference in their structure. To gain further insight into the mechanism of suPrPB formation, 127S-PMCA products generated with different seed concentrations ,as in Figure 4.3 a, were analysed by SEC. At high seed dilution (10-8 dilution factor), the chromatogram revealed the existence of suPrPA (Figure 4.7 c). Lower seed dilutions led to the emergence of a new peak with an elution volume of 15.50ml corresponding to the emergence of suPrPB, and a shift toward lower elution volume of suPrPA (Figure 4.7 c). This last phenomenon could be the consequence of dissociation /association equilibrium displacement between different species during the separation on the SEC column[START_REF] Bao | Pre-equilibration kinetic size-exclusion chromatography with mass spectrometry detection (peKSEC-MS) for label-free solution-based kinetic analysis of protein-small molecule interactions[END_REF][START_REF] Jonker | Recent developments in protein-ligand affinity mass spectrometry[END_REF].
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 4 Quaternary structural convergence and structural diversification of prion assemblies.

Figure 4 . 7 -

 47 Figure 4.7 -Characterization of the elementary subunit of PMCA-generated P rP Sc assemblies by size exclusion chromatography (SEC) under native conditions. (a) SEC analysis (n ≥ 3) of mb-PMCA products generated with127S prions (10-8 dilution) immediately after the PMCA phase (day 0) or after 7 days of quiescent incubation (day 7). A representative immunoblot corresponding to elution volumes 12ml to 18ml is shown. The column calibration was performed using standard MW calibrants under identical conditions as for PMCA products analysis. (b) Representative sedimentogram of mb-PMCA products generated with 127S prions (10-8 dilution) post-PMCA reaction (day 0) and after a 7-day quiescent incubation, highlighting the P 1 to P 2 evolution of P rP Sc assemblies.(c) SEC profiles of mb-PMCA products generated with 127S seeds at different dilution factors, as indicated. Thirty minutes after the last sonication, the amplified products were solubilized and SEC-fractionated. The mean relative levels of PK-resistant P rP Sc per fraction were obtained from the immunoblot analysis of n = 3 independent fractionations of PMCA reactions. Note the formation of at least two distinct set of assemblies as function of seed concentration.
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 4 Quaternary structural convergence and structural diversification of prion assemblies. weight assemblies according to the detailed balance:

4. 2

 2 e and ??. This cooperativity implies that B subassemblies facilitate their own formation according to an autocatalytic process. This can be resumed by the following minimalistic autocatalytic process:C suP rP B + suP rP A , C + P rP C → 2suP rP B ,(4.4)where C is an active complex reacting with P rP C that generates B assemblies. Considering that suP rP B can condense into B 2[START_REF] Igel-Egalon | Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick[END_REF] and according to detailed balance (2), one can establish the reaction model describing the formation of B i assemblies from the neo-formed suP rP B :2suP rP B B 2 . (4.5)Altogether, these five elementary steps constitute the reaction mechanism that describes the transformation of A i into B i subassembly species. To validate the designed mechanism, we translated these elementary reactions into time-dependent differential equations and performed kinetic simulations using the size distribution of the P rP Sc assemblies immediately after cyclic amplification as the initial condition (blue curve in Figure4.3 a). According to the model, the simulated size distribution variation as a function of time showed bimodal behavior, as was experimentally observed (Figure 4.8 a). Furthermore, the theoretical size distribution centroid presented similar sigmoidal patterns to those of the experimental data (Figure 4.8 b), arguing in favour of an autocatalytic kinetic model describing the overall quaternary structure evolution of P rP Sc assemblies during the quiescent phase. The numerical analysis of the model revealed that the autocatalytic formation of B i species occurs at the expense of A i species and with P rP C

Figure 4 . 8 -158CHAPTER 4 .

 484 Figure 4.8 -Mathematical modeling of the time-dependent dynamic evolution of the PMCAgenerated P rP Sc assemblies. (a) The size distribution evolution of a structurally distinct set of assemblies A i and B i dimensioned on gradient fraction numbers was simulated based on the kinetic scheme described in the results section (equations (4.3) to (4.5)). (b) The time dependency evolution of the simulated centroid (black line) and centroid calculated from experimental sedimentograms of Figure 4.3 d (red circle)show a similar shape, supporting the cooperativity hypothesis of the transformation of A i into B i . (c) The simulation of time dependency evolution of the total amount of A i assemblies ( iA i in black), B i assemblies ( iB i in blue) and the monomer (in red) revealed that A i assemblies constitute the limiting species for the conversion of P rP C during the quiescent phase. In the present simulation framework, only 14% of P rP C is consumed.
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 4 Size exclusion chromatographySEC analysis was performed using an ÄKTA-100 purifier FPLC. 200 µl of the PMCA products were mixed with an equal volume of 2X-buffer to reach 25 mM HEPES pH 7.4, 150 mM NaCl, 10 mM EDTA, 35 mM n-Dodecyl β-D-Maltoside, 2 % w/w Sarkosyl and 0.5% Triton-X100 final concentration. After centrifugation at 10 000g for 3 min (no visible pellet), the solution was loaded on Superdex 200 10/300 GL column (24 ml, GE healthcare). The chromatography running buffer was HEPES 25 mM pH7.2, 200 mM NaCl, without detergents to avoid the formation of micellar structure. The flow rate was fixed at 0.35ml/min. After sample injection, the flow-through of the column was fractionated every 250 µl. The PrP levels per fraction were estimated by western blotting, as for SV. For molecular weight estimation, the Superdex 200 was calibrated with blue dextran molecules with varying molecular weight.Analysis of P rP Sc content by immunoblottingAliquots of the SV-fractionated PMCA samples were treated with PK (50 µg/ml final concentration, 1 h, 37 • C) before mixing in Laemmli buffer and denaturation at 100 • C for 5 min. The samples were run on 12% Bis-Tris Criterion gels (Bio-Rad, Marne la Vallée, France) and electrotransferred onto nitrocellulose membranes. In some instances, denatured samples were spotted onto nitrocellulose membranes using a dot-blot apparatus (Schleicher and Schuell BioScience (Whatman)). Nitrocellulose membranes were probed for PrP with 0.1 µg/ml biotinylated anti-PrP monoclonal antibody Sha31. Immunoreactivity was visualized by chemiluminescence (GE Healthcare). The protein levels were quantified with ImageLab software after acquisition of chemiluminescent signals with a Chemidoc digital imager (Bio-Rad, Quaternary structural convergence and structural diversification of prion assemblies.

  

  

  .5) numerical simulations do not display any kind of oscillations, see second row in Figure 2.3.Let us also remark that in model (2.2), the first polymer species C 1 could also denote a smallest polymer of size n 0 > 1, i.e. it represents the smallest "active" polymer size. This means that no nucleation, as modelled by C 1 + C 1 → C 2 in the Becker-Döring system, is considered. This is in line with the time-scale of the considered experiment where nucleation is negligible compared with other reactions.

  .[START_REF] Bomze | Lotka-Volterra equation and replicator dynamics: A two-dimensional classification[END_REF] Proof. Global existence of the first order terms (v 1 (t), w 1 (t)) follows from classical ODE theory. In fact, since (v 0 (t), w 0 (t)) is periodic with period T , also A(t) and g 1 (t) are T -periodic and Floquet theory implies that solutions to (2.20) are T -periodic if and only if one is not a Floquet multiplier, i.e. an eigenvalue of the associated monodromy matrix, see e.g.[START_REF] Teschl | Ordinary Differential Equations and Dynamical Systems[END_REF] Chapter 3.6]. However, the Lyapunov structure and the exponential decay of Proposition 9 imply that System (2.20) has to be entirely unstable and that both Floquet multipliers have to be larger than one.

	Hence, the solutions (v(t), w(t)) of System (P2) are perturbed from the zero order solutions (v 0 (t), w 0 (t)) not more
	than O(ε) far on a time interval of size O(T ) and hence undergo O(1/ε) many oscillations before converging to
	(v ∞ , w ∞ ) as proven in Theorem 9.

Moreover, all higher order expansion terms (v n (t), w n (t)) for n ≥ 2 satisfy systems analogous to

(2.20) 

  2.4.1 Steady states analysisSystem (2.6) with finite n features both boundary steady states (BSS), where at least one concentration is zero, and positive steady state (PSS), where all concentrations are strictly positive.Let us first introduce several parametric regions -graphically illustrated in Figure2.8-which will defining the stability or instability regions of the boundary steady states (BSS).

		n +	b n k	≤	M tot P 0	(region with horizontal green stripes in Fig. 2.8),	(2.21)
	n <	M tot P 0	< n +	b n k	(light blue region in Fig. 2.8),	(2.22)
		M tot P 0	≤ 1 +	a 1 k	(grey diagonally hatched region in Fig. 2.8).	(2.23)
	Mtot P0	Case a 1 ≤ b n

  8 -Stability regions of the SSs of the finite system (2.6) in the 1 k -M tot Grey diagonally hatched zone ⇐⇒ (2.23) ⇐⇒ asymptotically stable (BSSb), which is unstable elsewhere. Green horizontal lines ⇐⇒ (2.21) ⇐⇒ asymptotically stable (BSSc). Light blue zone ⇐⇒ (2.22) ⇐⇒ unstable (BSSc). Zone with red stars ⇐⇒ existence of at least one PSS (in case a 1 > b n coexisting with a stable (BSSb) in the horizontally hatched region; otherwise coexisting only unstable BSSs.)

	P 0	parametric space: (BSSa)
	are always unstable. Proposition 5 (Nonnegative Steady States).	

  Discussion and biological interpretation: The conditions (2.31)-(2.35) are summarised in Figure2.9: The grey region is the region, where assumptions (2.33) and (2.34) are satisfied, i.e. there is a unique PSS. The region with dots corresponds to assumption(2.35), where there exist at most two PSSs. The white region in the figure corresponds to assumptions (2.31) and (2.32) with no PSS. As in the general coefficient case, we see that the zone where there is at least one steady state corresponds to the intermediate zone, where

	M tot P 0 can only occur in the biologically unrealistic region where M tot is neither "small" nor "large" as compared to the reaction parameters. Moreover, more than one PSS P 0

  .[START_REF] Chapuis | Emergence of two prion subtypes in ovine PrP transgenic mice infected with human MM2-cortical Creutzfeldt-Jakob disease prions[END_REF] Estimate(3.34) proves exponential convergence (of order ε) towards equilibrium first in the relative Hamiltonian distance (H(v, w) -H(v ∞ , w ∞ )) as long as a solution trajectory is outside the critical area λ . Consequently, the estimate (3.32) (which holds equally true on all points with H(v, w) ≤ H 0 ) implies exponential convergence to equilibrium in the Euclidian distance.

  R n and g : R n → R n be continuous and locally Lipschitz on R n .

		An ordinary
	differential equation in R n	
	ẋ = f (t, x),	(3.38)
	is called asymptotically autonomous with limit equation	
	ẏ = g(y),	(3.39)
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  • C to mimic PMCA conditions. A total of 220 µl of solubilized material was mixed to reach 40% iodixanol, 25 mM HEPES pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.5% Sarkosyl final concentration and loaded within a 4.8 ml of 10-60% discontinuous iodixanol gradient with a final concentration of 25 mM HEPES pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.5% Sarkosyl. The gradients were centrifuged at 115 000 g for 17 hours in a swinging-bucket SW-55 rotor using an Optima LE-80K ultracentrifuge (Beckman Coulter). Gradients were then manually segregated into 30 equal fractions of 165 µl from the bottom using a peristaltic pump and analyzed for P rP Sc content by immunoblotting.
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Summary

In this study, we have introduced a method, based on the discrete Fourier transform, to quantify the high frequency features of a given non stationary discrete signal, and then test whether the parameters characterizing these features may be considered as significant or not. We then tested our method on simulated and experimental data, which shed light on its efficiency, since HF features may be detected even with a noise of the same amplitude. Moreover, the two parameters estimated from the data to characterize the HF are informative per se: they could be used by the experimentalists to compare different experimental conditions and their influence on such transient phenomena in the signals. They may also reveal useful in the search for quantitative comparison between mechanistic models, such as the one proposed in [START_REF] Doumic | A bi-monomeric, nonlinear Becker-Döring-type system to capture oscillatory aggregation kinetics in prion dynamics[END_REF], and experimental data.

The test to detect HF feature is based on the projection of the signal in a discrete Fourier basis.

A further step, in order to localize them, would be to define them in a wavelet basis. The number of parameters will then be equal to three (one for the resolution, one for the amplitude and one for the localisation on the time-scale), and the test of hypothesis has to be extended to this framework. This is a direction for future work. Formation of amyloid fibrils: PrP amyloid fibrils were formed using the manual setup protocol described previously in [START_REF] Breydo | Methods for conversion of prion protein into amyloid fibrils[END_REF]. Fibril formation was monitored using a ThT binding assay [START_REF] Breydo | Methods for conversion of prion protein into amyloid fibrils[END_REF]. Samples were dialysed in 10 mM sodium acetate, pH 5.0. Then fibrils were collected by ultracentrifugation and resuspended in 10 mM sodium acetate, pH 5.0. A washing step was performed by repeating the ultracentrifugation and resuspension steps in 10 mM sodium acetate, pH 5.0. Static light scattering: Static light scattering kinetic experiments were performed with a thermostatic homemade device using a 407-nm laser beam.
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Light-scattered signals were recorded at a 112 0 angle. Signals were processed with a homemade MatLab program. All experiments have been performed at 55 0 C in a 2mmX10mm cuve.

Library in python to implement the numerical simulation

The numerical simulations have been made with the library python accessible at https://github.com/mmezache/HFFTest. The functions of the library are explicitely commented in the file "README.md". The functions are organized in four categories in the library:

1. the procedure to compute the HF features parameters,

We denote the moment of magnitude n by M n :

x n f (t, x)dx, (3.12) and the total number of polymers by ρ:

The last equation of (3.10) is a boundary condition depending on the assumptions on the reaction coefficients a(x), b(x). This condition can be interpreted as the absence of the nucleation phenomenon and implies that total concentration of polymerised fibrils remain constant.

Then the total number of polymers is constant:

The Lemma 4 is proved by a simple integration. We note that the boundary condition is needed for (3.10) to be well-posed only when a( 0

)w(t) > b(0)v(t).

We are interested in the steady-state. We denote with (v ∞ , w ∞ , f ∞ ) the quantities at equilibrium.

In the discrete size-setting, the solutions admits damped oscillations and converge locally towards a nonnegative steady-state under the correct assumptions. In the continuous size-setting, we denote two kinds of steady-state:

• the trivial steady-states: f ∞ (x) = 0 and v ∞ + w ∞ = M. It corresponds to a boundary steady-state and can be interpreted as the non pathological equilibrium. All fibrils are converted into the two species of monomers and the two species of monomers are at equilibrium.

• The nontrivial steady-state which enforces the following: there exists x > 0 such that f ∞ (x) 0. It can be interpreted as the pathological steady-state since polymers can be found at equilibrium.

Main results

We note that the system in (3.10) is a coupled PDE/ODE system. The ODE part of the system is the following:

The solution of the PDE in (3.10) has an influence on the solutions of the ODE through an integral term.

However, assuming some rightfully chosen hypothesis on the reaction coefficients a(x) and b(x), the

Discussions and perspectives

In this Chapter, we propose a bi-monomeric, nonlinear Lifshitz-Slyozov-type system. It extends the previous work in [START_REF] Doumic | A bi-monomeric, nonlinear Becker-Döring-type system to capture oscillatory aggregation kinetics in prion dynamics[END_REF] in a continuous size setting. The results on the asymptotic behaviour of the continuous model differ from those of the discrete model, mainly because an underlying diffusion process takes place in the discrete model. We study the first-order approximation of the continuous model which neglects the diffusion term. An interesting perspective is to work on the second order approximation which includes a diffusion term in the continuous size-setting.

Furthermore, the study of the behaviour of the PDE is performed in the case of linear reaction coefficients and in the case of one linear and one constant reaction coefficient. These choices were motivated by experimental data from biologists. The static light scattering (SLS) signals studied show a fall for the second moment of the size distribution of polymers in a closed in vitro environment. This observation strongly suggests the size-dependency ratio is decreasing, i.e. the depolymerisation dominates the polymerisation.

However, considering more general forms of reaction coefficients leads to interesting new mathematical problems .

Several questions remain open: What is the convergence rate to equilibrium ? How to rigorously prove the existence of damped oscillations when the concentration converges to a critical mass ? What is the correct framework (assumptions on the reaction coefficients, on the initial data, etc) to establish well-posedness of the system ?

The next step is to propose and study numerical scheme to approximate the solutions of this coupled ODE-PDE systems. The numerical analysis, in the spirit of [START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF][START_REF] José | A numerical study on large-time asymptotics of the Lifshitz-Slyozov system[END_REF][START_REF] Filbet | Numerical Approximation of the Lifshitz-Slyozov-Wagner Equation[END_REF]], illustrates the results on the asymptotic behaviour and gives more insights and a better understanding of the model.

Finally, much remains to be done before reaching a fully quantitative model of the polymerisation/depolymerisation process of prion fibrils: integrating the proposed reaction scheme in a more complete model (e.g. where linear depolymerisation is added), considering other structure of fibrils (where the elementary block unit is a dimer or a trimer) and other forms of reaction coefficients (power functions of size, etc), experimental evidence and quantitative comparison through data assimilation strategies.
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In this section, we study the system of differential equations (3.20) assuming the reaction coefficients follow (3.15). We prove that the solutions of (3.20) converge exponentially to the positive equilibrium for a sufficiently small parameter ε = 1 k . The parameter b is set to b = 1 for the sake of the clearest possible termed A i , with a narrowed size distribution during mb-PMCA reactions. This common quaternary structural convergence at the early stage of the replication process suggests the existence of a common conversion pathway and a common oligomerization domain that is independent of the strain structural determinant (SSD, i.e., the PrP domain(s) harboring the replicative and strain information [START_REF] Igel-Egalon | Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick[END_REF][START_REF] Igel-Egalon | Heterogeneity and Architecture of Pathological Prion Protein Assemblies: Time to Revisit the Molecular Basis of the Prion Replication Process?[END_REF], represented in red). (b) A i and B i assemblies are in an equilibrium/detailed balanced with their respective suPrP (step I and II) as was previously showed [START_REF] Igel-Egalon | Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick[END_REF] and also demonstrated by the dilution experiment (see Figure 4.3 e). Based on the constraints imposed by the experimental observations, the best model to account for the cooperative and P rP C dependency transformation of A i into B i assemblies implicates the formation of complex between suP rP A and suP rP B (step III). The formation of this complex is at the origin of a secondary templating pathway where the transformation of suP rP A (A 1 ) to suP rP B (B 1 ) is assisted by suP rP B , making the process autocatalytic.

P rP C (Figure 4.9). The cooperative disappearance of P 1 in favor of P 2 strongly suggests an autocatalytic process for the transformation of A i to B i (4.4)-(??). This last phenomenon shows the existence of a