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Propriétés asymptotiques des solutions à données petites du système de Vlasov-Maxwell Résumé. L'objectif de cette thèse est de décrire le comportement asymptotique des solutions à données petites du système de Vlasov-Maxwell. En particulier, on s'attachera à étudier tant le champ électromagnétique que le champ de Vlasov par des méthodes de champs de vecteurs, nous permettant ainsi d'éviter toute contrainte de support sur les données initiales. La structure isotrope du système de Vlasov-Maxwell est d'une importance capitale pour compenser le phénomène de résonance causé par les particules approchant la vitesse de propagation du champ électromagnétique. De ce fait, plusieurs parties de ce manuscrit sont dédiées à sa description. Ajoutons également que les méthodes de champs de vecteurs sont connues pour être robustes et s'adapter relativement bien à d'autres situations telles que l'étude des solutions de l'équation des ondes sur un espace-temps courbé. Cette souplesse nous a notamment permis, contrairement aux travaux précédents sur ce sujet, de considérer des plasmas avec des particules sans masse.

Notre étude débute par le cas des grandes dimensions d ≥ 4 où les eets dispersifs sont plus importants et permettent ainsi d'obtenir de meilleurs taux de décroissance sur les solutions du système et leurs dérivées.

Une nouvelle inégalité de décroissance pour les solutions d'une équation de transport relativiste constitue d'ailleurs un élément central de la démonstration. An d'établir un résultat analogue dans le cas où les particules sont sans masse, nous avons dû imposer que le champ de Vlasov s'annule initialement pour les petites vitesses puis nous avons ensuite montré que cette hypothèse était nécessaire. Dans un second temps, nous nous intéressons au cas tridimensionnel avec des particules sans masse, où une étude plus poussée de la structure des équations sera nécessaire an d'obtenir les taux de décroissance optimaux pour les composantes isotropes du champ électromagnétique, les moyennes en vitesse de la fonction de distribution et leurs dérivées.

Nous nous concentrons ensuite sur l'étude du comportement asymptotique des solutions à données petites du système de Vlasov-Maxwell massif en dimension 3. Des dicultés spéciques nous forcent à modier les champs de vecteurs utilisés précédemment pour l'équation de transport dans le but de compenser les pires termes d'erreurs des équations commutées. Enn, on considère le même problème en se restreignant à l'étude des solutions à l'extérieur d'un cône de lumière. Les fortes propriétés de décroissance vériées par la moyenne en vitesse de la densité de particules dans cette région nous permettent d'aaiblir les hypothèses sur les données initiales et d'avoir une démonstration considérablement plus simple.

Mots-clés. EDP hyperboliques,

∂ t f k + 3 i=1 v i m 2 k + |v| 2 ∂ i f k + e k E + v m 2 k + |v| 2 × B • ∇ v f k = 0, 1 ≤ k ≤ K.
Le champ électromagnétique satisfait pour sa part les équations de Maxwell avec un terme source dépendant des fonctions de distribution f k ,

∇ • E = K k=1 e k v∈R 3 f k dv, ∇ × E = -∂ t B ∇ • B = 0, ∇ × B = ∂ t E + K k=1 v∈R 3 v m 2 k + |v| 2 f k dv.
La densité de charge ρ et le vecteur densité de courant j sont donc donnés par

ρ = K k=1 e k v∈R 3 f k dv et j = K k=1 v∈R 3 v m 2 k + |v| 2 f k dv.
Une des questions naturelles que l'on peut se poser est celle de l'existence globale en temps des solutions. Étant donné des données initiales (f 0 1 , ..., f 0 K , E 0 , E 1 , B 0 , B 1 ) régulières, satisfaisant les équations de contraintes

∇ • E 0 = K k=1 e k v∈R 3 f 0 k dv et ∇ • B 0 = 0,
existe-t-il une solution classique (f 1 , ..., f K , E, B) du système de Vlasov-Maxwell vériant

f k (t = 0) = f 0 k , E(t = 0) = E 0 , ∂ t E(t = 0) = E 1 , B(t = 0) = B 0 , ∂ t B(t = 0) = B 1
et qui soit dénie sur R + × R 3 ? Cela constitue encore aujourd'hui un problème ouvert et on ne sait y répondre que sous des hypothèses de symétries ou dans des régimes pertubatifs 1 . 1 Le problème de l'existence globale dans le cadre des solutions faibles a par contre été résolu dans [START_REF] Diperna | Global weak solutions of Vlasov-Maxwell systems[END_REF] puis revisité dans [START_REF] Rein | Global weak solutions to the relativistic Vlasov-Maxwell system revisited[END_REF].

• Lorsque la solution est invariante par translation dans une variable spatiale (il est commun de dire que l'on travaille avec deux dimensions et demie). Dans ce cadre et sous une hypothèse de support compact en vitesse sur les données initiales, Glassey et Schaeer ont démontré dans [START_REF] Glassey | The two and one-half-dimensional relativistic Vlasov Maxwell system[END_REF] que les solutions étaient globales. Plus récemment, Luk et Strain sont parvenus à généraliser le résultat aux plasmas composés de particules pouvant avoir des vitesses arbitrairement proches de la vitesse de la lumière (voir [START_REF] Luk | Strichartz estimates and moment bounds for the relativistic Vlasov-Maxwell system[END_REF]).

• Rein a prouvé un résultat d'existence globale dans [START_REF] Rein | Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics[END_REF] pour des perturbations de certaines solutions du système de Vlasov-Maxwell à symétrie sphérique. Ces dernières peuvent être étudiées plus facilement car elles sont aussi solutions du système de Vlasov-Poisson relativiste.

• L'existence globale pour les solutions à données petites fut d'abord obtenue par Glassey-Strauss dans [START_REF] Glassey | Absence of shocks in an initially dilute collisionless plasma[END_REF] sous une hypothèse de support compact (en espace et en vitesse). Un résultat similaire fut ensuite prouvé par [START_REF] Glassey | Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data[END_REF] pour des plasmas presque électriquement neutres, i.e.

k e k m 3 k f 0k (x, m k v) est petit (indiviuellement, les densités de particules ne sont pas nécéssairement petites). Schaeer est ensuite parvenu à montrer un résultat analogue sans restriction sur le support en vitesse des données intiales (voir [START_REF] Schaeer | A small data theorem for collisionless plasma that includes high velocity particles[END_REF]). Enn, mentionnons également que les récents résultats [START_REF] Wang | Propagation of regularity and long time behavior of the 3D massive relativistic transport equation II: Vlasov-Maxwell system[END_REF] de Wang prouvent en particulier que les solutions à données petites du système de Vlasov-Maxwell sont globales sans aucune restriction sur le support des données initiales 2 .

Pour le cas général, à défaut d'être en mesure de prouver des résultats d'existence globable, plusieurs critères de prolongement sont connus. Le premier, obtenu par Glassey-Strauss dans [START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF] puis retrouvé par d'autres méthodes dans [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF] et [START_REF] Klainerman | A new approach to study the Vlasov-Maxwell system[END_REF], nous dit que les solutions à régularité C 1 du système de Vlasov-Maxwell, dont les données initiales sont à supports compacts, ne développent pas de singularités tant que les supports en vitesse des fonctions f k restent bornés. D'autres critères permettant de prolonger la solution au-delà d'un temps T * > 0 existent et requièrent que

1 + |v| 2 θ f k L ∞ ([0,T * [,L q x L 1 v ) < +∞, (1.1) 
pour un certain q et un certain θ. Les cas 6 ≤ q ≤ ∞ et θ > 4

q furent couverts par Pallard dans [38].

Les cas q = +∞ et θ = 0 ainsi que q = 6 et θ = 0 furent traités respectivement par [START_REF] Sospedra-Alfonso | Classical solvability of the relativistic Vlasov-Maxwell system with bounded spatial density[END_REF] et [START_REF] Pallard | A rened existence criterion for the relativistic Vlasov-Maxwell system[END_REF]. Citons également les récents travaux de Kunze [START_REF] Kunze | Yet another criterion for global existence in the 3d relativistic vlasov-maxwell system[END_REF] et Patel [START_REF] Patel | Three new results on continuation criteria for the 3d relativistic vlasov-maxwell system[END_REF], permettant de couvrir q ≥ 1 et θ > 4 q -1 ainsi que 1 ≤ q ≤ 2 et θ > 18 5q -1. De plus anciens résultats de Glassey-Strauss traitent le cas q = ∞ et θ = 1 pour des données initiales non nécéssairement à support compact en v (voir [START_REF] Glassey | Large velocities in the relativistic Vlasov-Maxwell equations[END_REF]). Récemment, Luk et Strain dans [START_REF] Luk | Strichartz estimates and moment bounds for the relativistic Vlasov-Maxwell system[END_REF] (respectivement Patel dans [START_REF] Patel | Three new results on continuation criteria for the 3d relativistic vlasov-maxwell system[END_REF]) ont étendu ce critère pour tout 2 < q ≤ +∞ et θ > 2 q (respectivement q = 1 et θ > 3). Notons en particulier que ces derniers résultats ne requièrent aucune restriction sur les supports des données initiales, tant en espace qu'en vitesse.

Remark 1.1.1. Pour l'ensemble des travaux cités ici, il est essentiel que les masses des particules constituant le plasma soient strictement positives, i.e. m k > 0 pour tout 1 ≤ k ≤ K.

Une autre question que l'on peut se poser est celle du comportement asymptotique des solutions du système de Vlasov-Maxwell. Une solution susamment régulière de l'équation de transport relativiste

∂ t f + 3 i=1 v i 1 + |v| 2 ∂ i f = 0
vérie les estimées suivantes :

∀ (t, x) ∈ R + × R 3 , ∂ β t,x v∈R 3 f (t, x, v)dv ≤ C β f (1 + t + |x|) 3+|β| ,
où C β f est une constante positive dépendant de l'ordre de dérivation |β| ainsi que de f (t = 0). On peut donc se demander si l'on peut retrouver de tels taux de décroissance pour les solutions du système de Vlasov-Maxwell.

• Dans leurs travaux sur les solutions à données petites [START_REF] Glassey | Absence of shocks in an initially dilute collisionless plasma[END_REF], Glassey-Strauss ont obtenu la décroissance optimale sur les moyennes en vitesses des densités de particules, i.e. 3

v∈R 3 f k dv (1 + t) 3 .
2 Les résultats de Wang apportent également de nouvelles informations sur le comportement asymptotique des solutions. Nous reviendrons sur cela ci-dessous. 3 On utilise ici la notation A B pour désigner une inégalité de la forme A ≤ CB, où C est une constante absolue. • La méthode utilisée par Schaeer an de traiter les grandes vitesses ne lui a pas permis d'obtenir la décroissance optimale sur v f k dv.

• De son côté, Wang est parvenu à retrouver les taux de décroissance du cas linéaire 4 

F 0i = E i et F jk = -ε ijk B i ,
où ε ijk est le symbole de Levi-Cevita. An d'alléger les notations et puisque le nombre de familles de particules ne complique pas les démonstrations des résultats que nous allons établir, on va supposer que K = 1. Pour les mêmes raisons, on suppose également que la charge des particules est égale à 1 et que leur masse est égale à 1 ou 0. Enn, dans le but de pouvoir supposer, si besoin, que le plasma est électriquement neutre, nous ne conservons pas la restriction sur la positivité de la densité de particules f . Le système de Vlasov-Maxwell peut alors se récrire sous la forme 5

v 0 ∂ t f + v i ∂ i f + v µ F µ j ∂ v j f = 0, (1.2) 
∇ µ F µν = J(f ) ν :=

v∈R 3 v ν v 0 f dv, (1.3) 
∇ µ * F µν = 0,

• * F (t, x) est le dual de Hodge de F . Il est déni par6 * F µν = 1 2 F λσ ε λσµν .

• v 0 = 1 + |v| 2 si les particules sont massives et v 0 = |v| si elles sont sans masse.

Bien que les résultats que nous allons prouver sur ces deux systèmes (massif et sans masse) soient analogues, nous verrons que leurs démonstrations présentent des dicultés spéciques à chaque cas. Le but de cette thèse est de généraliser les résultats de Glassey-Strauss sur les solutions à données petites de (1.2) -(1.4) an de

1. supprimer toutes les hypothèses de supports compacts sur les données initiales.

2. Obtenir les taux de décroissance optimaux sur v f dv et ses dérivées.

3. Obtenir le comportement précis de F et de ses dérivées.

4. Utiliser des méthodes dites "robustes".

Concernant le premier objectif, ajoutons que nous nous attacherons à aaiblir, et ce de manière optimale, les hypothèses de décroissance sur la variable v. Plus précisément, nous supposerons seulement que f (0, x, •) est intégrable en v, ce qui est une condition nécessaire pour que le terme source des équations de Maxwell soit bien déni. En particulier, aucune contrainte du type • Les démonstrations des résultats de Glassey-Strauss et Schaeer sont basées sur des formules de représentations pour l'équation des ondes ainsi qu'un contrôle précis des caractéristiques de l'équation de Vlasov.

R 3 v (1 + |v|) δ f (0, x, v)dv < +∞, δ > 0,
• Wang a quant à lui utilisé une méthode de champs de vecteurs ainsi que de l'analyse de Fourier.

Notre objectif est d'utiliser uniquement des méthodes qui s'adaptent bien à des problèmes de relativité générale, où l'espace-temps ambiant est courbé, tel que l'étude de plasmas en astrophysique. Il serait notamment intéressant d'étudier les propriétés de décroissance ponctuelle des solutions de l'équation de Vlasov dans un espace-temps de type trou noir. Nous excluons donc les méthodes basées sur des formules de représentations ou de l'analyse de Fourier et nous allons ainsi principalement utiliser des méthodes de champs de vecteurs, tant pour étudier la densité de particules f et l'équation de Vlasov que pour le champ électromagnétique F et les équations de Maxwell 7 . Le but de la section suivante est donc de présenter les principes de telles méthodes ainsi que certains résultats qu'elles ont permis d'établir.

Méthodes de champs de vecteurs 1.2.1 Grands principes et premières applications

Au cours du temps, diérentes méthodes ont été développées an de prouver qu'une solution de l'équation des ondes

u := -∂ 2 t u + 3 i=1 ∂ 2 i u = 0, (1.5) 
sous des hypothèses raisonnables sur les données initiales u(0, .) et ∂ t u(0, .), décroît. On peut notamment utiliser l'expression exacte de la solution ou de l'analyse de Fourier. Dans [START_REF] Klainerman | Uniform decay estimates and the Lorentz invariance of the classical wave equation[END_REF], Klainerman a utilisé un tout autre processus, aujourd'hui appelé méthode des champs de vecteurs, et qui est basé sur 1. des commutateurs, qui sont des champs de vecteurs reétant les symétries de l'équation étudiée.

• Dans le cas de l'équation des ondes (1.5), ces commutateurs sont les champs de Killing de l'espacetemps de Minkowski ainsi que le champ de vecteurs de changement d'échelle, qui est quant à lui Killing conforme. Plus précisément, on commute l'équation avec les éléments de K, qui sont les translations ∂ µ , 0 ≤ µ ≤ 3, les rotations

Ω ij = x i ∂ j -x j ∂ i , 1 ≤ i < j ≤ 3,
les rotations hyperboliques

Ω 0k = t∂ k + x k ∂ t , 1 ≤ k ≤ 3.
le champ de vecteurs de changement d'échelle S = t∂ t + r∂ r .

Pour tout Z ∈ K, on a Z(u) = 0. 7 Les démonstrations des résultats de décroissance pour des solutions de l'équation des ondes sur les espace-temps de Schwarzschild ou de Kerr reposent essentiellement sur des méthodes de champs de vecteurs.

2. Des inégalités d'énergies permettant de propager des normes L p à poids des solutions et de leurs dérivées.

• Pour notre exemple, on utilise tout simplement la conservation de la norme L 2 du gradient de u ∇ t,x u L 2 (R 3 ) (t) = ∇ t,x u L 2 (R 3 ) (0).

3. Des inégalités de Sobolev à poids an d'obtenir de la décroissance ponctuelle.

• Pour l'étude de l'équation des ondes, on utilise généralement l'inégalité fonctionelle suivante, dite de Klainerman-Sobolev, qui est |∇ t,x v|(t, x) 1

(1 + t + r)(1 + |t -r|)

1 2 Z β ∈K |β| |β|≤2 ∇ t,x Z β v L 2 (R 3 ) (t), (1.6) 
où Z β parcourt l'ensemble des dérivées d'ordre au plus 2 formées par les commutateurs de K.

En mettant tout ceci bout à bout, on obtient des informations sur le comportement asymptotique de u. En eet, si Z β ∈ K |β| on a par 1) que

Z β (u) = 0 et donc, par 2), que ∇ t,x Z β u L 2 (R 3 ) (t) = ∇ t,x Z β u L 2 (R 3 ) (0).
Par conséquent, en appliquant l'inégalité de Klainerman-Sobolev à u, on obtient |∇ t,x u|(t, x) 1

(1 + t + r)(1 + |t -r|)

1 2 Z β ∈K |β| |β|≤2 ∇ t,x Z β u L 2 (R 3 ) (t) = 1 (1 + t + r)(1 + |t -r|) 1 2 Z β ∈K |β| |β|≤2 ∇ t,x Z β u L 2 (R 3 ) (0).
Ce type de méthode, basé sur des lois de conservations approchées et des commutateurs, est particulièrement robustes et a permis de traiter nombre de problèmes non linéaires comme la stabilité de l'espace-temps de Minkowski pour les équations d'Einstein (voir [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF] et [START_REF] Lindblad | The global stability of Minkowski space-time in harmonic gauge[END_REF]). Des méthodes des champs de vecteurs s'avèrent aussi être ecace pour étudier les solutions de l'équation des ondes sur une variété lorentzienne courbe telle que Schwarzschild (voir [START_REF] Dafermos | The red-shift eect and radiation decay on black hole spacetimes[END_REF]) ou Kerr (voir [START_REF] Dafermos | Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case[END_REF]).

Nous allons maintenant énoncer quelques résultats sur le problème de l'existence globale pour certaines équations d'ondes semi-linéaires.

Theorem 1.2.1. Les solutions à données petites de u = |∂ t u| 2 , u(0, .), ∂ t u(0, .)

∈ C ∞ c (R d ) (1.7)
sont globales en dimensions d ≥ 4 mais peuvent exploser en temps ni en dimension 3.

Le résultat d'explosion en temps ni est dû à Fritz John (voir [START_REF] John | Blow-up for quasilinear wave equations in three space dimensions[END_REF]) tandis que le résultat d'existence globale, concernant les grandes dimensions, fut prouvé en utilisant la méthode des champs de vecteurs. Il est pertinent de comparer ce théorème avec le suivant.

Theorem 1.2.2. Les solutions à données petites de

u = |∂ t u| 2 - 3 i=1 |∂ i u| 2 , u(0, .), ∂ t u(0, .) ∈ C ∞ c (R 3 ) (1.8)
sont globales en dimension 3.

On dit qu'une telle non-linéarité satisfait la condition isotrope 8 . Klainerman dans son article [START_REF] Klainerman | The null condition and global existence to nonlinear wave equations[END_REF] a remarqué que le terme source de (1.8) se comportait mieux que, par exemple, celui de (1.7). Cela peut s'expliquer assez simplement et de manière géométrique si l'on introduit une base isotrope (L, L, e 1 , e 2 ), 8 Ou plus communément, the null condition.

où L = ∂ t + ∂ r , L = ∂ t -∂ r
et (e (1.9) Le fait que les dérivées classiques ∂ t,x nous donnent un gain de décroissance par rapport aux rotations, aux rotations hyperboliques et à S n'est pas étonnant compte-tenu des poids en x i et t présents dans ces derniers champs de vecteurs. Il est important de remarquer que ce gain dégénère près du cône de lumière pour ∂ t,x u et Lu mais pas pour Lu notamment. En exprimant nos deux non-linéarités dans la base isotrope, on peut voir que leur comportement asymptotique est donné par

|∂ t u| 2 ∼ |Lu| 2 , |∂ t u| 2 - 3 i=1 |∂ i u| 2 ∼ |Lu||Lu|,
ce qui explique pourquoi les solutions de (1.8) se comportent mieux que celles de (1.7). Pour de tels problèmes de stabilité, la dimension 3 constitue souvent un seuil critique dans le sens où il est plus simple de traiter les grandes dimensions (le taux de décroissance des solutions étant meilleur dû à la dispersion) et que la stabilité ne peut être prouvée en 3d que si les équations présentent une bonne structure à l'image de (1.8). Généralement, les équations provenant de la physique possèdent une forme de structure isotrope.

C'est notamment le cas pour les équations d'Einstein (voir [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF], [START_REF] Lindblad | The global stability of Minkowski space-time in harmonic gauge[END_REF]), de Maxwell [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF], de Yang-Mills [START_REF] Yang | Decay of solutions of Maxwell-Klein-Gordon equations with arbitrary Maxwell eld[END_REF], d'Einstein-Klein-Gordon [START_REF] Lefloch | The global nonlinear stability of Minkowski space for self-gravitating massive elds[END_REF] ou d'Einstein-Vlasov (voir [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF] et [START_REF] Lindblad | Global stability of Minkowski space for the EinsteinVlasov system in the harmonic gauge[END_REF]) par exemple.

Dans [START_REF] Lindblad | The global stability of Minkowski space-time in harmonic gauge[END_REF] est introduite la condition isotrope faible que l'on peut illustrer par l'exemple suivant. Proposition 1.2.3. Les solutions à données petites de u = 0, u(0, .), ∂ t u(0, .)

∈ C ∞ c (R 3 ), (1.10) 
v = |∂ t u| 2 , v(0, .), ∂ t v(0, .) ∈ C ∞ c (R 3 ) (1.11) 
sont globales en temps.

Pour le montrer, on résout tout d'abord la première équation, qui est une équation d'onde linéaire et on peut ensuite déterminer v (le terme source de (1.11) est déni sur R + × R 3 et a un bon comportement). On aurait pu considérer un exemple un peu plus compliqué en remplaçant (1.10) par

u = ∂ t u∂ t v - 3 i=1 ∂ i u∂ i v
et obtenir un résultat analogue. Cet exemple trivial permet d'illustrer que l'on peut avoir existence globale en temps pour les solutions à données petites d'un système d'équations d'ondes semi-linéaires qui ne satisfait pas la condition isotrope (la non-linéarité dans (1.11) est |∂ t u| 2 ). La stabilité de la solution triviale pour un tel système provient de l'existence d'une hiérarchie dans les équations. On peut dire, de façon schématique, qu'il est triangulaire.

Remark 1.2.4. Dans notre étude des solutions du système de Vlasov-Maxwell, nous allons également tirer prot de la structure des équations ainsi que de nombreuses hiérarchies entre les équations commutées.

La méthode des champs de vecteurs pour les équations de Maxwell

Les équations de Maxwell étant philosophiquement des équations d'ondes, il n'est pas étonnant que la méthode des champs de vecteurs ait pu être adaptée assez rapidement à l'étude de leurs solutions. Christodoulou et Klainerman ont ainsi démontré dans [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF] le résultat suivant.

Theorem 1.2.5. Soit F une solution des équations de Maxwell dans le vide

∇ µ F µν = 0 ∇ µ * F µν = 0, vériant E[F ] := |β|≤2 R 3
(1 + r) 2+|β| ∇ β t,x F (0, x)dx < +∞.

Alors, le comportement asymptotique des composantes isotropes de F est donné par (1 + t + r) 2 (1 + |t -r|)

1 2
On remarque en particulier que,

• en tant que solution d'une équation d'onde, il était attendu que le champ électromagnétique vérie

|F (t, x)| E[F ] (1 + t + r)(1 + |t -r|) 3 2 
.

• Certaines composantes isotropes du champ électromagnétique se comportent mieux que d'autres au niveau du cône de lumière t = r. Une base isotrope semble par conséquent être adaptée à l'étude du comportement asymptotique de F . Notons en revanche que ses composantes cartésiennes, autrement dit le champ électrique E et magnétique B, ne permettent pas d'observer de tels phénomènes car, en général,

E (t, x) ∼ B (t, x) ∼ |F |(t, x) ∼ |α|(t, x).
• C'est la structure, dite aussi isotrope, qui permet d'obtenir de meilleurs taux de décroissance qu'attendu sur certaines composantes du champs électromagnétique.

• La composante ρ (respectivement σ) correspond à la composante radiale du champ électrique xi r E i (respectivement à la composante radiale du champ magnétique xi r B i ).

Ce résultat nous sera notamment très utile en vue de contrôler des termes similaires à v µ F µ j ∂ v j f présents dans l'équation de transport (1.2) du système de Vlasov-Maxwell. Notons qu'il a aussi permis d'établir la stabilité de la solution triviale du système de Maxwell-Klein-Gordon (voir [START_REF] Lindblad | Global stability for charged-scalar elds on Minkowski space[END_REF]).

Méthode de champs de vecteurs pour les équations de transports cinétiques

Dans l'optique d'étudier des systèmes couplant une équation de Vlasov avec une (ou plusieurs) équation d'onde, Fajman-Joudioux-Smulevici ont adapté dans [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] la méthode des champs de vecteurs aux équations de transports cinétiques relativistes. An de montrer comment, nous allons prendre pour modèle l'étude des solutions (régulières) de

T m (f ) := v µ ∂ µ (f ) = 0, (1.12) 
où m = 1 et dans ce cas v 0 = 1 + |v| 2 (les particules sont massives) ou m = 0 et alors v 0 = |v| (les particules sont sans masse). Pour simplier la présentation on va supposer que l'on se trouve dans le premier cas m = 1.

Étant donné la motivation initiale, qui est d'étudier un couplage avec une équation d'onde, il sera important de remarquer que les commutateurs utilisés pour ces deux types d'équations sont compatibles. Remarquons tout d'abord que

T 1 (∂ µ f ) = [T 1 , ∂ µ ](f ) + ∂ µ (T 1 (f )) = 0 + 0 = 0, T 1 (Sf ) = [T 1 , S](f ) + S(T 1 (f )) = T 1 (f ) + 0 = 0. Par contre, [T 1 , Ω ij ] = v i ∂ j -v j ∂ i et [T 1 , Ω 0k ] = v 0 ∂ k + v k ∂ t ,
ce qui nous empêche de commuter (1.12) par les champs de vecteurs de K. Il est par contre montré dans [START_REF] Sarbach | The geometry of the tangent bundle and the relativistic kinetic theory of gases[END_REF], dans un cadre beaucoup plus général, que si X = X µ ∂ µ est un champ de Killing de l'espace-temps de Minkowski, alors son lift complet 9

X := X µ ∂ µ + v µ ∂ µ X λ ∂ v λ commute avec T 1 . On a ∂ µ = ∂ µ , 0 ≤ µ ≤ 3, Ω ij = x i ∂ j -x j ∂ i + v i ∂ v j -v j ∂ v i , 1 ≤ i < j ≤ 3 Ω 0k = x k ∂ t -t∂ k + v 0 ∂ v k , 1 ≤ k ≤ 3 S = t∂ t + x i ∂ i + v i ∂ v i
et peut vérier que l'on a bien

T 1 ( Ω ij f ) = 0 et T 1 ( Ω 0k f ) = 0.
Le champ de vecteurs S étant seulement conforme Killing, on a T 1 ( Sf ) = 0. Cependant, dans le cas où les particules sont sans masse, on a [T 0 , S] = 0. On choisit donc 1. comme commutateurs les éléments de

P 0 := {∂ µ , 0 ≤ µ ≤ 3} ∪ Ω ij , 1 ≤ i < j ≤ 3 ∪ Ω 0k , 1 ≤ k ≤ 3 ∪ {S}.
Bien que S ne soit pas un lift complet, on utilisera souvent Z pour désigner un champ de vecteurs de P 0 .

2. Comme inégalité d'énergie, on peut utiliser la loi de conservation approchée de la norme L 1 de toute solution susamment régulière de T 1 (g) = G, i.e.

∀ t ∈ [0, +∞[,

g L 1 x,v (t) = g L 1 x,v (0) + t 0 v∈R 3 |T 1 (g)| dv v 0 L 1 x (s)ds. 
(1.13) 3. Enn, en tant que solution d'une équation de transport, la norme L ∞ x,v de f est conservée au cours du temps et ne peut donc décroitre. Il est par contre bien connu que les moyennes en vitesse de f elles décroissent. Fajman-Joudioux-Smulevici ont donc généralisé l'inégalité de Klainerman-Sobolev L 2

x aux moyennes en vitesse dans [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] et ont prouvé que

∀ [0, T [×R 3 , v∈R 3 |g|(t, x, v)dv 1 (1 + t + r) 2 (1 + |t -r|) Z β ∈ P |β| 0 |β|≤3 Z β g L 1
x,v (t), (1.14) pour toute fonction susamment régulière g.

Remarque 1.2.1. L'inégalité (1.14) donne, tout comme (1.6), un taux de décroissance qui dégénère près du cône de lumière t = r. Le problème ici, contrairement au cas de l'équation des ondes, est que si f (0, ., .) est susamment régulière, alors 3 , où C f est une constant dépendant uniquement de f (0, ., .). Par contre, dans le cas où les particules sont sans masse, (1.14) fournit le taux de décroissance attendu.

∀ [0, T [×R 3 , v∈R 3 |f |(t, x, v)dv ≤ C f (1 + t + r)
Enn, l'utilisation des éléments de 9 Prendre le lift complet d'un champ de vecteur est une opération classique en géométrie diérentielle. Les informations présentées ici, dans un cas particulier, sont susantes pour le contenu de cette thèse.

k 1 := v µ v 0 , 0 ≤ µ ≤ 3 ∪ {x µ v ν -x ν v µ , 0 ≤ µ < ν ≤ 3} , k 0 := k 1 ∪ tv 0 -x i v i
pourra également s'avérer utile. Cela est lié aux propriété suivantes, valables pour tout m ∈ {0, 1},

∀ z ∈ k m , T m (z) = 0 et ∀ (z, Z) ∈ k m × P 0 , Z(v 0 z) ∈ v 0 k m ∪ {0}.
Par conséquent, si z ∈ k 1 , T 1 (zf ) = 0 et si f décroit susamment initialement, on a zf L 1 x,v (t) = zf L 1 x,v (0), ce qui nous permet de propager des normes à poids de f . On pourra en trouver une application dans le théorème 1.2.2 ci-dessous. Dans le cas où les particules sont sans masse, l'inégalité

1 + |t -r| ≤ z∈k0 |z|,
analogue à (1.9), illustre comment ces poids peuvent apporter de la décroissance.

1.2.4 Résultat : inégalité de décroissance pour une solution de T 1 (f ) = G

En raison de l'utilisation d'un feuilletage hyperbolique lors de leurs études des solutions à données petites des systèmes de Vlasov-Nordström et d'Einstein-Vlasov, Fajman-Joudioux-Smulevici n'ont pas eu à faire face au problème exposé dans la Remarque 1.2.1. L'analogue de (1.14) pour un tel feuilletage fournit un meilleur taux de décroissance mais le contrecoup de l'utilisation d'un tel procédé réside dans la nécessité de supposer que les données initiales sont à support compact en espace. An d'éviter une telle restriction, la première étape de cette thèse consista à prouver le résultat suivant, issu de [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF].

Théorème 1.2.2. Soit T > 0 et f : [0, T [×R 3 × R 3 → R une fonction susamment régulière. Alors, pour tout (t, x) ∈ [0, T [×R 3 ,

v∈R 3 |f |(t, x, v) dv (v 0 ) 2 1 (1 + t + r) 3 |β|≤3 z∈k z Z β f L 1 x,v (0) + t 0 v∈R 3 T 1 (z Z β f ) dv v 0 L 1
x (s)ds .

On peut alors formuler plusieurs remarques.

• Cette inégalité est spécique au cas massif. Si on considérait une masse m ∈ R * + quelconque, la constante cachée dans serait proportionnelle à m -2 .

• Le taux de décroissance est conforme à celui attendu pour une solution régulière de T 1 (f ) = 0 et meilleur que celui donné par l'inégalité de type .

• On a une perte de deux puissance de v 0 . De plus, contrairement à (1.14), ce n'est pas une inégalité de Sobolev au sens classique du terme car on utilise l'opérateur T 1 an de l'obtenir.

L'idée de la démonstration est de découper l'espace-temps en trois domaines.

1. Si t + |x| ≤ 1 ou |x| ≤ t 2 , on applique l'inégalité de type Klainerman-Sobolev (1.14) ainsi que l'inégalité d'énergie (1.13). Il sut ensuite de remarquer que dans cette région, 1 + t + r ≤ C(1 + |t -r|). 

|x| ≥ t ⇒ |x| 2v 0 ≤ |x| v 0 (v 0 + |v|) ≤ |x| -t |v| v 0 ≤ x -t v v 0 ≤ z∈k1 |z|
ainsi que 1 + t + r ≤ C|x| dans cette région.

3. Enn, pour la dernière région, on travaille sur des parties de R 3+1 composées d'une partie d'un hyperboloïde ainsi que d'une partie d'une hypersurface du type t = constant. On mélange ainsi les techniques usuellement utilisées pour de tels problèmes.

1.3 Étude des solutions à données petites pour des systèmes de Vlasov

Le système de Vlasov-Poisson

Le premier résultat fut obtenu par Bardos et Degond dans [START_REF] Bardos | Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data[END_REF]. Sous une hypothèse de petitesse, ils ont prouvé que l'unique solution du système de Vlasov-Poisson est globale en temps et que

v∈R 3
f dv 1 (1 + t) 3 .

Ils ont aussi pu estimer la vitesse de décroissance du champ électrique ainsi que de ses dérivées d'ordre 1 et 2 mais n'ont par contre pas obtenu d'informations sur les dérivées d'ordres supérieurs. Il a fallu attendre attendre les travaux [START_REF] Hwang | Optimal gradient estimates and asymptotic behaviour for the Vlasov-Poisson system with small initial data[END_REF] de Hwang, Rendall et Velàzquez pour que les taux de décroissance optimaux

∂ β t,x v∈R 3 f dv 1 (1 + t) 3+|β|
soient obtenus. Notons que tant pour [START_REF] Bardos | Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data[END_REF] que pour [START_REF] Hwang | Optimal gradient estimates and asymptotic behaviour for the Vlasov-Poisson system with small initial data[END_REF], le c÷ur de la démonstration consiste à contrôler le plus précisément possible les caractéristiques de l'équation de Vlasov.

Récemment, Smulevici a prouvé dans [START_REF] Smulevici | Small data solutions of the Vlasov-Poisson system and the vector eld method[END_REF] un résultat similaire en utilisant des méthodes de champs de vecteurs. Comme les équations ne sont pas relativistes, les rotations hyperboliques (ou leur lift complet) ont été remplacées par t∂ i (ou t∂ i + ∂ v i ). La méthode employée a notamment permis d'obtenir la décroissance en espace-temps, i.e.

∀ (t, x) ∈ R + × R 3 , ∂ β t,x v∈R 3 f (t, x, v)dv 1 (1 + t + |x|) 3+|β| .
Un élément crucial de la démonstration, propre à la dimension 3, fut de modier légèrement les commutateurs Γ de l'opérateur de transport classique ∂ t + v i ∂ i en raison de termes sources non intégrables. L'idée générale est de considérer des champs de vecteurs de la forme Γ + Φ ν ∂ ν , où les coecients Φ ν dépendent de la solution elle-même et sont dénis par une équation de transport an de compenser les pires termes d'erreurs dans les formules de commutations. Nous verrons ci-dessous qu'un procédé similaire sera utilisé pour étudier d'autres systèmes de Vlasov.

Système de Vlasov-Nordström

Dans leur article fondateur [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], David Fajman, Jérémie Joudioux et Jacques Smulevici ont utilisé la méthode des champs de vecteurs qu'ils ont développée an d'étudier les solutions à données petites du système de Vlasov-Nordström dans le cas massif pour les dimensions d ≥ 4 et dans le cas sans masse pour les dimensions d ≥ 3. Ce système est donné par

v µ ∂ µ f -(v µ v i ∂ µ φ + δ m 1 ∂ i φ)∂ v i f = 4δ m 1 f v µ ∂ µ φ φ = δ m 1 v∈R 3 f dv v 0 ,
où m ∈ {0, 1} est la masse des particules et δ le symbole de Kronecker. On peut ainsi voir que le cas sans masse m = 0 est relativement simple à traiter étant donné que l'équation d'onde se résume à φ = 0. Néanmoins, en dimension 3, exploiter la structure isotrope de l'équation de Vlasov s'est avérée être cruciale an d'obtenir le taux de décroissance optimale de la densité de particules. Plus précisément, à l'image de Lφ (voir (1.9)), v µ ∂ µ φ décroit plus rapidement que prévu proche du cône de lumière. Pour le cas massif, l'étude est plus compliquée et est pour cela restreinte aux grandes dimensions d ≥ 4. Bien que les solutions aient des taux de décroissance plus importants qu'en dimension 3, la méthode utilisée a tout de même nécessité d'exploiter une partie de la structure isotrope du système 10 . Remarquons également que Fajman-Joudioux-Smulevici utilisent un feuilletage hyperbolique pour étudier les solutions, ce qui, comme mentionné dans la sous-section 1.2.4, implique de supposer que les données initiales sont à support compact en espace. Les solutions sont donc étudiées sur les hyperboloïdes

H ρ := {(t, x) ∈ R + × R 3 / ρ 2 = t 2 -|x| 2 }, ρ ≥ 1.
Pour ce faire, ils supposent qu'une énergie bien choisie de (f, φ) est nie initialement, i.e. qu'une certaine norme L 1 à poids de f et une certaine norme L 2 à poids de φ sont nies sur H 1 , et ils prouvent que cette énergie peut être propagée sur chaque hyperboloïde H ρ .

Un résultat similaire pour le système massif en tridimensionnel fut obtenu plus tard (voir [START_REF] Fajman | Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions[END_REF]). Étant donné le faible taux de décroissance des solutions comparé aux grandes dimensions, une meilleure compréhension de la structure isotrope du système fut nécessaire. La diérence majeure cependant fut de modier les commutateurs de l'opérateur de transport relativiste T 1 an de compenser les pires termes d'erreurs dans les formules de commutations du champ de Vlasov (comme [START_REF] Smulevici | Small data solutions of the Vlasov-Poisson system and the vector eld method[END_REF] l'a fait dans le cadre du système de Vlasov-Poisson). Ces champs de vecteurs sont dénis à partir des éléments Z ∈ P 0 et sont de la forme

Y = Z + Φ i Z X i , où 11 
X i := ∂ i + v i v 0 ∂ t et où les coecients Φ i
Z dépendent de la solution (f, φ) du système et sont dénis comme solutions d'équations de transport. Une des dicultés liées à l'utilisation des champs de vecteurs Y réside dans la réécriture de la formule de commutation pour l'équation d'onde. Schématiquement, on a

Zφ = v Zf dv v 0 = v Y f -Φ i X i (f ) dv v 0 .
Le problème causé par le terme Φ i X i (f ) vient de la croissance des coecients Φ, en √ ρ, où ρ désigne le temps hyperbolique. On transforme alors le terme source de la façon suivante,

Zφ = v Zf dv v 0 = v Y f dv v 0 - v X i (Φ i f ) dv v 0 + v X i (Φ i )f dv v 0 ,
et deux éléments sont alors importants pour pouvoir boucler les estimations d'énergie.

• On a, toujours en désignant par ρ le temps hyperbolique, |∂ t,x Φ i | ∼ √ log(ρ), ce qui permet de bien mieux contrôler

v X i (Φ i )f dv v 0 que v Φ i X i (f ) dv v 0 .
• Le champ de vecteur X i permet sous certaines conditions de gagner en décroissance. Cela est lié à la relation

tX i = t∂ i + t v i v 0 ∂ t = Ω 0i + t v i v 0 -x i ∂ t , (1.15) 
où t v i v 0 -x i ∈ k 1 . Cela nous indique donc que l'on pourra mieux contrôler

v X i (Φ i f ) dv v 0 que v Φ i X i (f ) dv v 0 .
La formule (1.15) suggère pourquoi il a fallu considérer des modications de la forme Z + Φ i X i et non simplement de la forme Z + Φ ν ∂ ν . Il fut également nécessaire d'appliquer (1.15) à φ an de boucler les estimations d'énergie pour le champ de Vlasov f . Du fait de la présence des poids z ∈ k 1 , diérentes hiérarchies dans les équations commutées ont ainsi dû être considérées, évoquant notamment [START_REF] Lindblad | The global stability of Minkowski space-time in harmonic gauge[END_REF] et la proposition 1.2.3.

Le système d'Einstein-Vlasov

L'objectif initial de Fajman-Joudioux-Smulevici lorsqu'ils ont commencé à développer une méthode de champ de vecteurs pour les équations de Vlasov était de prouver la stabilité de l'espace-temps de Minkowski pour le système d'Einstein-Vlasov, dont les équations de Vlasov-Nordström en sont un modèle simplié. Leur résultat établi dans [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF] constitue donc en quelque sorte l'aboutissement de leurs travaux et prouve que 11 En réalité les translations ∂µ sont remplacées par ∂µ -∂µφv i ∂ v i et les champs de vecteurs X i sont modiés en conséquence.

• la solution triviale du système d'Einstein-Vlasov est asymptotiquement stable. Plus précisément, étant donné des données initiales coïncidant avec les données initiales d'un espace-temps de Schwarzschild en dehors d'un compact et susamment proche de celles de l'espace-temps de Minkowski, alors l'unique solution (g, f ) du système est globale en temps. De plus,

• le taux de décroissance du champ de Vlasov f et de ses dérivées est presque optimal. Il existe une petite constante δ > 0 tel que pour tout (t, x) dans le futur de l'hyperboloïde H 1 , ∀ |β| ≤ N -3,

v∈R 3 |∂ β t,x f |v 0 dv ρ δ (1 + t) 3 , ρ = t 2 -|x| 2 .
• La déviation de la métrique g de la métrique de l'espace-temps de Minkowski η vérie, pour tout (t, x) dans le futur de l'hyperboloïde H 1 ,

∀ |β| ≤ N -3, |g -η| (t, x) √ ρ D 1 2 1 + t , D > 0.
Notons que

• l'utilisation d'un feuilletage hyperbolique impose de supposer que les données initiales coïncident avec les données initiales d'un espace-temps de Schwarzschild en dehors d'un compact.

• Cela implique en particulier que le champ de Vlasov est initialement à support compact.

De nombreux ingrédients de la démonstration sont analogues à ceux utilisés dans [START_REF] Fajman | Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions[END_REF] pour le système de Vlasov-Nordström. En particulier,

• les commutateurs de l'opérateur de transport relativiste T 1 sont modiés an de compenser les pires termes sources dans l'équation de Vlasov commutée.

• Plusieurs hiérarchies entre diérentes normes de f et g sont exploitées pour boucler les estimations d'énergie.

• Comprendre et exploiter la sructure isotrope du système d'Einstein-Vlasov, plus complexe que celle des équations de Vlasov-Nordström, constitue un élément clé de la démonstration.

Un résultat similaire fut indépendamment obtenu par Lindblad et Taylor en utilisant aussi des méthodes de champs de vecteurs (voir [START_REF] Lindblad | Global stability of Minkowski space for the EinsteinVlasov system in the harmonic gauge[END_REF]). Notons que 1. les commutateurs pour l'équation de Vlasov sont construits à partir des éléments de P 0 d'une tout autre manière que dans [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF].

2. Une des étapes de la démonstration consiste à contrôler les dérivées des caractéristiques de l'équation de Vlasov.

3. La densité de particules est initialement à support compact en espace et en vitesse.

Enn, mentionnons aussi le travail de Taylor [START_REF] Taylor | The global nonlinear stability of Minkowski space for the massless Einstein-Vlasov system[END_REF] qui a prouvé la stabilité de l'espace-temps de Minkowski pour le système d'Einstein-Vlasov sans masse sous une contrainte de support compact en espace et en vitesse pour la densité de particules.

1.4 Derniers prérequis et présentation de la structure isotrope du système de Vlasov-Maxwell Soit (v L , v L , v e1 , v e2 ) les composantes isotropes du vecteur vitesse v. Elles vérient

v = v L L + v L L + v A e A , où v A = v e A ,
et on a en particulier

v L = 1 2 v 0 + x i r v i , v L = 1 2 v 0 - x i r v i .
Selon le contexte (étude de particules massives ou sans masse), nous utiliserons la notation R 3 v pour dénoter R 3 ou R 3 \ {0}. Enn, pour (t, r) ∈ R + × R * + , nous désignerons l'hypersurface t × R 3 par Σ t .

Aspect général des normes utilisées

Dans la suite nous allons propager des normes L 1 à poids sur la densité de particules et ses dérivées ainsi que des normes L 2 à poids sur le champ électromagnétique et ses dérivées. Pour f ,

• les dérivées seront toutes de la forme Z β f , où Z β ∈ P |β| 0 , sauf pour le résultat de la sous-section 1. 5.3 où on modiera les commutateurs de l'opérateur T 1 .

• Les poids proviendront soit de Z β ou seront de la forme |z| a , où a ≥ 0 et z ∈ k 1 ou z ∈ k 0 .

• Un exemple simple d'une telle norme est

0≤k≤10 Z β ∈ P k 0 z∈k1 Σt R 3 v z Z β f dvdx.
Pour F ,

• les dérivées seront de la forme L Z γ (F ), avec Z γ ∈ K |γ| , L Z γ := L Z γ 1 ...L Z γ |γ| et où L Z γ i désigne la dérivée de Lie selon le champ de vecteur Z γi .

• Les poids proviendront soit de Z γ ou seront des puissances de τ + := 1 + (t + r) 2 ∼ 1 + t + r ou τ -:= 1 + (t -r) 2 ∼ 1 + |t -r|.

• Par exemple, nous utiliserons régulièrement une norme similaire à

0≤k≤8 Z γ ∈ P k 0 Σt τ 2 + |α(L Z γ (F ))| 2 + τ 2 -|α(L Z γ (F ))| 2 + (τ 2 + + τ 2 -)(|ρ(L Z γ (F ))| 2 + |σ(L Z γ (F ))| 2 )dx.

Commutation des équations et conservation de la structure

An d'utiliser des méthodes de champs de vecteurs, nous serons amenés à commuter les équations (1.2)- (1.4) par les éléments de K ou P 0 . Fixons pour le reste de cette section un champ de vecteur 12 Z ∈ K \ {S} et désignons par Z son lift complet. Bien que Z commute avec T 1 ou T 0 , nous allons voir que la situation est légèrement diérente pour l'opérateur T F . Si (f, F ) est une solution du système de Vlasov-Maxwell

(1.2)-(1.4), alors

T F ( Zf ) = -L Z (F )(v, ∇ v f ) (1.16) ∇ µ L Z (F ) µν = R 3 v v ν v 0 Zf dv (1.17)
∇ µ * L Z (F ) µν = 0.

(1.18)

On voit donc que

• l'équation de transport commutée (1.16) comporte un terme d'erreur. Cependant, ce dernier a la même structure que la non linéarité F (v, ∇ v f ) présente dans T F (f ) = 0. 12 Le cas du champ de vecteur S est légèrement diérent mais se traite de manière similaire et sans aucune diculté supplémentaire.

• Le champ L Z (F ) est solution des équations de Maxwell, dont le terme source est donné par le courant

R 3 v v ν v 0 Zf dv.
Notons que le terme source

R 3 v v ν v 0 f dv,
associé au champ électromagnétique F a une forme analogue.

Au vu de ces observations, on peut ainsi dire que la structure du système de Vlasov-Maxwell est conservée par commutation. Il semble donc pertinent de s'y intéresser de plus près. 1.4.4 La charge totale du plasma La densité de charge du plasma étant donnée par R 3 v f dv, sa charge totale, qui est une quantité conservée au cours du temps, est donnée par

R 3 x R 3 v f dvdx.
Le théorème de la divergence nous donne alors, pour S 2 t,r la sphère de centre 0 et de rayon r sur Σ t , -

S 2 t,r ρ(G)dS 2 t,r = S 2 t,r x i r F 0i dS 2 t,r = R 3 x R 3 v f (t, x, v)dvdx = R 3 x R 3 v f (0, x, v)dvdx.
On dénit ainsi plus généralement la charge

Q G d'une 2-forme G par Q G (t) := - S 2 t,r
ρ(G)dS 2 t,r .

Dans le cas où Q G (0) = 0, G(0, .) ne peut décroitre plus vite que (1 + r) -2 et l'énergie R 3

(1 + r)|G(0, x)| 2 dx est innie. Dans le contexte du système de Vlasov-Maxwell, une charge totale non nulle nous empêcherait de propager certaines normes à poids du champ électromagnétique et notamment celle permettant d'appliquer le théorème 1.2.5. Ce problème peut être évité en supposant le plasma électriquement neutre ou si la propagation de normes L 2 à faibles poids susent à établir l'existence globale des solutions. Toutefois, dans le résultat majeur de cette thèse, de telles conditions ne sont pas réunies. Le principe consiste alors à décomposer le champ électromagnétique en deux parties F + F , avec

F (t, x) := χ(t -r) Q F 4πr 2 x i r dx i ∧ dt, F := F -F et χ une fonction vériant ∀ s ≤ -2, χ(s) = 1
and ∀ s ≥ -1, χ(s) = 0.

On remarque alors que la charge de F est nulle, i.e.

∀ t, Q

F (t) = 0 et Q F (t) = Q F .
Il est par conséquent cohérent de supposer que R 3

(1 + r)| F (0, x)| 2 dx < +∞, ce qui nous permettra de propager des normes L 2 sur F avec des poids en t + r et en t -r, fournissant ainsi de forts taux de décroissance sur les composantes isotropes de F . Bien que l'on ne puisse pas appliquer ce raisonnement à F , on utilise sa forme explicite pour obtenir son comportement asymptotique et ainsi en déduire celui de F . 1.4.5 Contrôler les grandes vitesses en exploitant la structure isotrope du système Nous considérons ici uniquement des particules massives, i.e. v 0 = 1 + |v| 2 , bien que le cas sans masse présente bien des similarités. Les démonstrations de nos résultats sont toutes basées sur le principe de continuité, décrit plus en détail dans la sous-section 1.5.1, et consiste à améliorer des inégalités d'énergie. Or, en utilisant (1.16), on a la loi de conservation approchée suivante

Zf

L 1 v L 1 (Σt) Zf L 1 v L 1 (Σ0) + t 0 Σs R 3 v |L Z (F )(v, ∇ v f )| dv v 0 dxds.
(1. [START_REF] Georgiev | Decay estimates for the Klein-Gordon equation[END_REF] Le but sera alors de montrer que l'intégrale dans le terme de droite de (1.19) peut être bornée indépendamment du temps t par une constante susamment petite.

Étude d'un problème plus simple

An de nous focaliser ici sur les dicultés causées par les particules ayant une grande vitesse, nous allons considérer g : R

+ × R 3 x × R 3 v → R et G une 2-forme, toutes deux susamment régulières, vériant v µ ∂ µ (g) = T 1 (g) = 0 ∇ µ G µν = 0 ∇ µ * G µν = 0
et montrons que (1 + t + r) 2 (1 + |t -r|)

I := +∞ t=0 Σt R 3 v |G(v, ∇ v g)| dv v 0 dxdt < +∞.
1 2
|σ(G)|(t, x) := |G e1e2 |(t, x) 1

(1 + t + r) 2 (1 + |t -r|)

1 2
et que la décroissance initiale de g assure que

g L 1 v L 1 (Σt) + Γ∈ P0 Γg L 1 v L 1 (Σt) = g L 1 v L 1 (Σ0) + Γ∈ P0 Γg L 1 v L 1 (Σ0) < +∞.
Remarque 1.4.1. En fait, le raisonnement qui suit permet de borner

+∞ t=0 Σt R 3 v |G(v, ∇ v g)| dvdxdt.
Néanmoins, la présence du facteur 1 v 0 dans I s'avèrera être d'une importance capitale car les solutions du système de Vlasov-Maxwell que l'on considèrera ne se comporteront pas toujours aussi bien que g et G.

Majoration naïve et étude du cas où les données initiales sont à support compact

Commençons dans un premier temps par majorer G(v, ∇ v g) sans tenir compte de sa structure. Remarquons que ∂ v i ne fait pas partie des commutateurs de l'opérateur T 1 et que

∂ v i g = 1 v 0 Ω 0i g - t v 0 ∂ i - x i v 0 ∂ t , d'où ∂ v i g ∼ t + r v 0 ∂ t,x g.
On voit ainsi que les dérivées en vitesse se comportent mal car elles causent une perte de l'ordre de t + r.

Par conséquent, comme |G|(t, x) 1

(1 + t + r)(1 + |t -r|) 3 2 
, on a |G(v, ∇ v g)| ∼ (t + r)|G||∂ t,x g| 1

(1 + |t -r|)

3 2
|∂ t,x g|.

(1.21)

Le problème ici est que

(1 + |t -r|) -3 2 L ∞ (Σt) = 1,
et donc que (1.21) ne nous permet pas de prouver (1.20) :

I +∞ t=0 (1 + |t -r|) -3 2 L ∞ (Σt) R 3 v |∂ t,x g|dv L 1 (Σt) ds = +∞ t=0 R 3 v |∂ t,x g|dv L 1 (Σ0) ds = +∞.
Idéalement, il faudrait être en mesure de transformer la décroissance en t -r dans (1.21) en une décroissance en t. Essayons maintenant de comprendre comment s'en sont sortis Glassey-Strauss dans [START_REF] Glassey | Absence of shocks in an initially dilute collisionless plasma[END_REF]. Bien que les méthodes qu'ils ont employées soient diérentes des nôtres, notre exemple permet tout de même de voir en quoi avoir des solutions à support compact apporte des simplications notables. En utilisant la méthode des caractéristiques, on a 

∀ (t, x, v) ∈ R + × R 3 x × R 3 v , g(t, x, v) = g 0, x - v v 0 t

Nécessité d'exploiter la structure isotrope

Lorsque les données initiales ne sont pas à support compact 13 , les particules peuvent avoir une vitesse arbitrairement proche de la vitesse de la lumière et (1.22) n'est plus vériée. Nous allons donc utiliser la structure isotrope de G(v, ∇ v g) an d'améliorer la majoration (1.21). Cela consiste à 1. transformer de la décroissance en t -r en de la décroissance en t + r.

2. Transformer une perte en t + r en une perte en t -r.

3. Tirer prot de la décroissance en t -r. 13 Rappelons qu'un de nos objectifs principaux consiste à éliminer toute restriction liée au support des données initiales.

Au vu des taux de décroissance des bonnes composantes isotropes du champ électromagnétique G, développer G(v, ∇ v g) dans une base isotrope semble être un bon point de départ. Cela nous amène ainsi à étudier les composantes isotropes de ∇ v g et du vecteur vitesse v. Remarquons tout d'abord que

(∇ v g) L = -(∇ v g) L = x i r ∂ v i g = x i v 0 r Ω 0i g - x i v 0 r x i ∂ t g + x i v 0 r t∂ i g = x i v 0 r Ω 0i g - 1 v 0 Sg + t -r v 0 Lg, d'où (∇ v g) L = -(∇ v g) L ∼
|t -r| v 0 |∂ t,x g|.

(1.23)

En exprimant G(v, ∇ v g) dans une base isotrope 14 , nous sommes amenés à borner les termes suivants,

• v L ρ(G) (∇ v g) L , v L ρ(G) (∇ v g) L (1.24) • v L α A (∇ v g) A , v A α A (∇ v g) L (1.25) • v B ε BA σ (∇ v g) A , v L α A (∇ v g) A , v A α A (∇ v g) L .
(1.26)

Nous nous contenterons de majorer un seul terme pour chacun des groupes (1.24), (1.25) 

v L ρ(G) (∇ v g) L v L 1 (1 + t + r) 2 (1 + |t -r|) -1 2 |t -r| v 0 |∂ t,x g| 1 (1 + t + r) 3 2
|∂ t,x g|.

(1.27)

En utilisant cette fois le fort taux de décroissance de |α(G)|(t, x)

(1 + t + r) -5 2 , il vient v L α A (∇ v g) A v L 1 (1 + t + r) -5 2 t + r v 0 |∂ t,x g| 1 (1 + t + r) 3 2
|∂ t,x g|.

(1.28)

On peut donc observer que pour les termes des groupes (1.24) et (1.25), le taux de décroissance obtenu est bien meilleur au niveau du cône de lumière que celui obtenu par une majoration naïve, à savoir (1.21).

Concentrons-nous dorénavant sur le dernier groupe de termes (1.26). On a 15 

v L α A (∇ v g) A v L 1 (1 + t + r)(1 + |t -r|) -3 2 t + r v 0 |∂ t,x g| 1 (1 + |t -r|) 3 2 v L v 0 |∂ t,
C u := {(t, x) ∈ R + × R 3 / t -|x| = u}. C u r = 0 t r t -r = u 14 Dans (1.2), la non linéarité F (v, ∇vf ) = v µ Fµ j ∂ v j f
est développée en coordonnées cartésiennes. 15 La majoration des autres termes s'eectue légèrement diéremment. On peut notamment utiliser que

|v A | √ v 0 v L .
La propriété qui nous sera utile est que t -r est constant sur chacun de ces cônes. Le changement de variables (u, u) = (t + r, t -r) donne, avec dC u = r 2 dS 2 du,

+∞ t=0 Σt R 3 v 1 (1 + |t -r|) 3 2 v L v 0 |∂ t,x g| dv v 0 dxds = 1 2 +∞ u=-∞ Cu R 3 v 1 (1 + |u|) 3 2 v L v 0 |∂ t,x g| dv v 0 dC u du ≤ +∞ u=-∞ 1 (1 + |u|) 3 2 Cu R 3 v v L v 0 |∂ t,x g| dv v 0 dC u du ≤ +∞ u=-∞ du (1 + |u|) 3 2 sup u∈R Cu R 3 v v L v 0 |∂ t,x g| dv v 0 dC u ≤ sup u∈R Cu R 3 v v L v 0 |∂ t,x g| dv v 0 dC u .
(1.29)

La dernière étape consiste donc à borner (1.29) et c'est ici que la présence de la composante v L s'avère être cruciale. En eet, le théorème de la divergence, appliqué à

R 3 |f | v µ v 0 dv dans le domaine {(t, x) ∈ R + × R 3 / t -|x| ≤ u}, u ∈ R, nous permet d'obtenir, comme T 1 (∂ t,x g) = 0, Cu R 3 v v L v 0 |∂ t,x g|dvdC u ≤ |x|≥-u R 3 v |∂ t,x g|(0, x, v)dvdx - |x|≥t-u R 3 v |∂ t,x g|(t, x, v)dvdx ≤ R 3 v |∂ t,x g|dv L 1 (Σ0)
.

En combinant cela avec (1.27) et (1.28), on peut nalement prouver (1.20), i.e. I < +∞.

Plus généralement (et notamment dans le cadre du système de Vlasov-Maxwell), lorsque les supports des solutions ne sont pas compacts, la structure isotrope est ce qui permet de prouver des bornes uniformes en temps sur certaines normes des solutions.

Résultats : système de Vlasov-Maxwell massif

Dans toute la suite, nous dirons que (f 0 , F 0 ) constitue des données initiales pour le système de Vlasov-Maxwell si f 0 : R 3 x × R 3 v → T et F 0 sont susamment régulières et vérient les équations de contraintes 

∇ i (F 0 ) i0 = - R 3 v f 0 dv et ∇ i ( * F 0 ) i0 = 0.
dA = F, i.e. ∂ µ A ν -∂ ν A µ = F µν , et ∂ µ A µ = 0.
Notre résultat obtenu dans [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] et présenté dans le chapitre 2 de cette thèse s'énonce ainsi.

Theorem 1.5.1. Considérons n ≥ 4 et N ≥ 5 2 n + 1. Soit (f 0 , F 0 ) des données initiales pour le système de Vlasov-Maxwell massif et (f, F ) l'unique solution classique du système vériant (f, F )(t = 0) = (f 0 , F 0 ). Soit également A un potentiel satisfaisant la jauge de Lorenz. Il existe > 0 tel que, si 16

E N [A](0) ≤ , E N [F ](0) ≤ , E 2 N +n,1 [f ](0) ≤ ,
alors (f, F ) est une solution globale en temps et vérie les propriétés suivantes. 16 Les normes considérées ici sont analogues à celles présentées dans la sous-section 1.4.2. De plus, une hypothèse de petitesse sur F assure que E N [A](0) ≤ (voir [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] pour plus de détails).

• Propagation de normes de F et f :

∀ t ∈ R + , E N [F ](t) log 3 (3 + t), E 2 N [f ](t) et E 2 N,1 [f ](t) log 1 2 (3 + t).
• Décroissance ponctuelle pour les composantes isotropes de

L Z β (F ): ∀ |β| ≤ N -n, (t, x) ∈ R + × R n , |α(L Z β F )| √ log 2 (3 + t)τ -n+2 2 + , |α(L Z β F )| √ log 2 (3 + t)τ -n-1 2 + τ -3 2 -, |ρ(L Z β F )| √ log 2 (3 + t)τ -n+1 2 + τ -1 2 -, |σ(L Z β F )| √ log 2 (3 + t)τ -n+1 2 + τ -1 2 -.
• Décroissance ponctuelle pour

v∈R n | Z β f |dv: ∀ |β| ≤ N - 3n + 2 2 , (t, x) ∈ R + × R n , v∈R n | Z β f |(t, x, v)dv τ n + .
Décrivons maintenant le principe de la démonstration ainsi que les arguments clés. 

E N [F ](t) ≤ C log 3 (3 + t)(t), E 2 N [f ](t) ≤ C et E 2 N,1 [f ](t) ≤ C log 1 2 (3 + t).
Le but est alors de montrer qu'on a en fait, pour assez petit et C susamment grande, 

E N [F ](t) ≤ C 2 χ(t), E 2 N [f ](t) ≤ C 2 et E 2 N,1 [f ](t) ≤ C 2 χ 1 6 (t), pour tout t ∈ [0, T * [.
T [F ] µν := F µλ F ν λ - 1 4 η µν F λξ F λξ par le multiplicateur de Morawetz K := (t + r) 2 2 L + (t -r) 2 2 L,
qui est un champ de vecteur conforme Killing de l'espace-temps de Minkowski. Si F est solution des équations de Maxwell dans le vide, on a

∇ µ T [F ] µν K ν = 3 -n 2 tF λξ F λξ (1.30)
et on voit que la dimension 3 est un cas particulier permettant de propager aisément la norme

R 3 T [F ] 0ν K ν +T [F ] 00 dx ≥ R 3 (1+t+r) 2 |α(F )| 2 + |ρ(F )| 2 + |σ(F )| 2 +(1+|t-r|) 2 |α(F )| 2 dx. (1.31)
An de contourner cette diculté en dimension n ≥ 4, nous étudions le système de Vlasov-Maxwell dans la jauge de Lorenz. En considérant

P µ := T [F ] µν K ν -(n -3) tA β ∂ µ A β - 1 2 ∂ µ (t)A β A β -tA β ∂ β A µ -A 0 A µ ,
on a (rappelons que pour simplier, F est ici solution des équations de Maxwell dans le vide),

∇ µ P µ = (n -3)tA λ A λ = 0.
En appliquant le théorème de la divergence puis en eectuant quelques manipulations algébriques sur P 0 , nous pouvons alors contrôler la norme (1.31) au cours du temps.

Remarque 1.5.2. Ce procédé n'est pas sans rappeler celui employé an d'utiliser le champ de vecteur de Morawetz comme multiplicateur pour l'étude de solutions de l'équation des ondes. Le potentiel A permet ici de compenser le mauvais terme obtenu dans (1.30), au prix d'un terme ayant un bon comportement, (n -3)tA λ A λ .

Remarquons que, comme [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] pour le système de Vlasov-Nordström,

• nous avons eu besoin d'utiliser (une partie de) la structure isotrope des équations.

• Le fort taux de décroissance des solutions nous a permis d'éviter de modier les commutateurs de l'opérateur T 1 .

1.5.2 Étude des solutions à l'extérieur d'un cône de lumière en dimension 3 • Comparé à notre résultat ci-dessous concernant l'espace entier, les hypothèses sur la décroissance initiale du champ électromagnétique sont bien plus faibles. Plus précisément, on impose que

Du fait que l'extérieur d'un cône V b := {(t, x) ∈ R + × R 3 / r > t -b}, pour disons b ≤ -
R 3 |F | 2 (0, x)dx
soit petit alors que dans le théorème 1.5.3 nous aurons besoin de propager des normes nécessitant que

R 3 (1 + r)|F | 2 (0, x)dx ≤ .
Notons en particulier que cela nous évite certaines dicultés apparaissant lorsque la charge totale du plasma est non nulle (voir la sous-section 1.4.4).

• La démonstration est bien plus simple que celle du théorème 1.5.3 traitant le même problème dans l'espace-temps entier. Soulignons notamment qu'aucune modication des commutateurs de T 1 , i.e. des éléments de P 0 , n'est nécessaire.

• Cette approche permet de compléter une étude des solutions basée sur un feuilletage hyperbolique. En particulier, adapter ce résultat au système de Vlasov-Nordström et le combiner avec [START_REF] Fajman | Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions[END_REF] permettrait d'éviter toute hypothèse de support compact sur les données initiales et d'obtenir le comportement asymptotique des solutions dans tout l'espace-temps.

Le chapitre 5 est consacré à la démonstration du résulat suivant, établi dans [START_REF] Bigorgne | Asymptotic properties of the solutions to the Vlasov-Maxwell system in the exterior of a light cone[END_REF].

Theorem

1.5.2. Soit N ≥ 8, b ≤ -1, 0 < η < 1 16N , > 0, (f 0 , F 0 ) des données initiales pour les équations de Vlasov-Maxwell (1.2)-(1.4) satisfaisant |β|+|κ|≤N +3 |x|≥b v∈R 3 (1 + |x|) N +14+|β| 2 (1 + |v|) |κ| ∂ β x ∂ κ v f 0 dvdx ≤ |γ|≤N +2 |x|≥b (1 + |x|) 2|γ| ∇ ∂ γ x F 0 2 dx ≤ et (f, F ) l'unique solution classique du système vériant f (t = 0) = f 0 et F (t = 0) = F 0 . Il existe alors C > 0 et 0 > 0, ne dépendant que de N et η, tels que, si 0 ≤ ≤ 0 , (f, F ) est dénie sur V b = {(t, x) ∈ R + × R 3 /
r > t -b} et vérie les propriétés suivantes.

• Bornes L 2 pour le champ électromagnétique F :

∀ t ∈ R + , 0≤k≤N Z γ ∈K k |x|≥t-b |L Z γ (F )(t, x)| 2 dx ≤ C ,
• Décroissance ponctuelle pour les composantes isotropes de

L Z γ (F ): ∀ |γ| ≤ N -2, (t, x) ∈ V b , |α (L Z γ (F ))| (t, x) √ τ 3 2 + |ρ (L Z γ (F ))| (t, x) + |α (L Z γ (F ))| (t, x) + |σ (L Z γ (F ))| (t, x) √ τ + τ 1 2
-.

• Bornes L 1 sur la densité de particules:

∀ t ∈ R + , 0≤k≤N Z β ∈ P k 0 |x|≥t-b v∈R 3 Z β f (t, x, v)dvdx ≤ C (1 + t) (N +1)η .
• Décroissance ponctuelle pour les moyennes en vitesse de

Z β f : ∀ |β| ≤ N -3, (t, x) ∈ V b , ∀ a ∈ 0, 9 2 , v∈R 3 Z β f (t, x, v) dv (v 0 ) 2a τ 2+a-(N +1)η + τ - .
Remarque 1.5.3. Ce résultat permet d'obtenir des informations sur les solutions classiques à grandes données dans un domaine du type V b , pour b ≤ -1 susamment petit.

De la même façon que pour le théorème 1.5.1, la démonstration consiste à améliorer des estimations portant sur normes L 1 ou L 2 à poids des solutions. Pour ce faire, trois éléments se sont montrés être déterminants.

1. Le fort taux de décroissance de v |f |dv à l'extérieur du cône de lumière. Les solutions de l'équation de Vlasov ont un meilleur comportement dans la région V 0 , i.e. pour |x| ≥ t, qu'à l'intérieur du cône de lumière. Pour illustrer cela, considérons une solution susamment régulière de T 1 (g) = v µ ∂ µ (g) = 0.

Alors, • L'un des pires termes sources de T F ( Zf ), où Z est le lift complet du champ de Killing Z, est borné

∀ |x| ≥ t, R 3 v |g|(t, x, v)dv |β|≤3 (v 0 ) 2k (1 + r) |β|+k+q ∂ β t,x g L 1 x,v (t = 0) (1 + t + r) 2+k (1 + |t -r|) 1+q (1.32) ∀ |x| ≤ t, R 3 v |g|(t, x, v)dv |β|≤3 (v 0 ) 2k (1 + r) |β|+k ∂ β t,x g L 1 x,v (t = 0) (1 + t + r) 2+k (1 + |t -r|)
par (1 + t + r) v L v 0 |L Z (F )||∂ t,x f |.
• Or |L Z (F )| décroit seulement, au vu de nos hypothèses sur F 0 , comme (1

+ t + r) -1 (1 + |t -r|) -1 2 .
An d'obtenir un taux de décroissance presque intégrable, on utilise alors l'inégalité 1 + |t -r| z∈k1 |z|, valide à l'extérieur du cône de lumière, de sorte que

(1 + t + r) v L v 0 |L Z (F )||∂ t,x f | 1 1 + |t -r| v L v 0 |z||∂ t,x f |. • On obtient ainsi Zf L 1 x,v (t) |z|∂ t,x f L 1
x,v (t) log(3 + t), ce qui nous amène à considérer des normes de la forme 17 |z|

N -β P 2 Z β f L 1 x,v
où β P est le nombre de champs de vecteurs homogènes 18 composant Z β .

Remarque 1.5.4. On ne peut pas, avec notre raisonnement, considérer des normes du type

z N -β P Z β f L 1 x,v
et ainsi gagner plus de décroissance par l'inégalité 1 + |t -r| z∈k1 |z|. En eet, lorsque β P = 0 nous ne pouvons pas utiliser l'inégalité précédente 19 et nous sommes même amenés pour certains termes d'erreurs à majorer

|z| N 2 par √ 1 + t + r|z| N -1 2 .
Une perte supplémentaire en t + r nous empêcherait de boucler nos estimations d'énergie. 

(f, F )(t = 0) = (f 0 , F 0 ). Si |β|+|κ|≤N +3 R 3 x R 3 v (1 + |x|) 2N +3 (1 + |v|) |κ| ∂ β x ∂ κ v f 0 dvdx + |γ|≤N +2 R 3 x (1 + |x|) 2|γ|+1 ∇ γ x F 0 2 dx ≤ ,
il existe C > 0, M ∈ N et 0 > 0 ne dépendant que de N tels que, si ≤ 0 , alors (f, F ) est une solution globale du système de Vlasov-Maxwell et vérie les propriétés suivantes.

• Bornes L 2 pour la partie électriquement neutre de F :

∀ t ∈ R + , Z γ ∈K |γ| |γ|≤N |x|≥t τ + |α(L Z γ ( F ))| 2 + |ρ(L Z γ ( F ))| 2 + |σ(L Z γ ( F ))| 2 + τ -|α(L Z γ ( F ))| 2 dx ≤ C , Z γ ∈K |γ| |γ|≤N |x|≤t τ + |α (L Z γ (F ))| 2 + |ρ (L Z γ (F ))| 2 + |σ (L Z γ (F ))| 2 + τ -|α (L Z γ (F ))| 2 dx ≤ C log 2M (3 + t).
• Décroissance ponctuelle pour les composantes isotropes de

L Z γ (F ): ∀ |γ| ≤ N -5, (t, x) ∈ R + × R 3 , |α(L Z γ (F ))|(t, x) √ log(3 + t) τ 2 + , |α(L Z γ (F ))|(t, x) √ log(3 + t) τ + τ - , |ρ(L Z γ (F ))|(t, x) √ log(3 + t) τ 3 2 + τ 1 2 - , |σ(L Z γ (F ))|(t, x) √ log(3 + t) τ 3 2 + τ 1 2

-

. 17 En réalité nous considérerons des normes légèrement diérentes en raison de certains autres termes d'erreurs. 18 Cela revient à compter le nombre de champs de vecteurs qui ne sont pas des translations. 19 Le gain de décroissance en t -r provient alors du champ électromagnétique, qui a été dérivé au moins une fois par une translation, et de la proposition 1.9.

• Bornes L 1 pour le champ de Vlasov:

∀ t ∈ R + , Y β ∈Y |β| |β|≤N x∈R 3 v∈R 3 Y β f dvdx ≤ C .
• Décroissance ponctuelle pour les moyennes en vitesse de

Y β f : ∀ |β| ≤ N -3, (t, x) ∈ R + × R 3 , v∈R 3 Y β f dv τ 2 + τ - et v∈R 3 Y β f dv (v 0 ) 2 1 τ 3 + 1 t≥|x| + log 2 (3 + t) τ 3 + τ - 1 |x|≥t
.

Discutons maintenant des principales dicultés de la preuve (qui consiste ici aussi à améliorer des inégalités d'énergie).

1. La structure isotrope du système. La discussion menée dans la sous-section 1.4.5 donne les grandes lignes de ce point majeur de la démonstration.

2. Le champ électromagnétique et la non neutralité du plasma. On utilise ici la stratégie décrite dans la sous-section 1.4.4.

3. Les champs de vecteurs modiés. En dimension 3, la moyenne en vitesse du champ de Vlasov ne peut décroitre plus vite que (1 + t + r) -3 à l'intérieur du cône de lumière. Cela nous empêche de propager une norme L 2 de F contenant des poids de l'ordre de (t + r) 

√ (1 + t + r)(1 + |t -r|) .
En reprenant le cheminement de la sous-section 1.4.5 et en supposant que l'on ait une parfaite compréhension de la structure isotrope du système 20 , on obtiendrait alors

Zf L 1 v L 1 (Σt) -Zf L 1 v L 1 (Σ0) ≤ t 0 Σs R 3 v |L Z (F )(v, ∇ v f )| dv v 0 dxds Γ∈ P0 t 0 (1 + t + r)L Z (F ) L ∞ (Σs) R 3 v Γf dv v 0 L 1 (Σs) ds Γ∈ P0 t 0 √ 1 + s R 3 v Γf L 1 (Σs)
ds.

Le taux de décroissance non intégrable (1 + s) -1 entraîne une croissance logarithmique de Zf L 

Y = Z + Φ i Z X i , Z ∈ P 0 , X i = ∂ i + v i v 0 ∂ t .
Les coecients Φ i Z sont dénis comme solutions d'équations de transport, dépendent de la solution (f, F ) du système et permettent de compenser les pires termes sources de T F ( Z β f ). Précisons que l'on ne modie pas les translations, i.e. Φ i ∂t,x = 0.

• Les pires termes sources de l'équation de transport vériée par Y f sont de la forme tX i (F µν )∂ t,x f .

• En utilisant la bonne structure du champ de vecteurs X i (voir (1.15)), on a

|(t + r)X i (F µν )∂ t,x f | Z∈K |∇ Z F | z∈k |z∂ t,x f |. • On obtient donc que Y f L 1 x,v
est bornée uniformément en temps sous réserve que z∂ t,x f L 1

x,v ne croisse pas trop vite. On considérera donc des normes de la forme

|β|≤N z N0-β P Y β f L 1 v L 1 (Σt) ,
où β P dénombre les champs de vecteurs composant Y β qui ne sont pas des translations. • Si β P = 0, nous devons contrôler des termes d'erreurs de la forme tz N0 ∂ γ t,x (F µν )∂ β t,x f et nous utiliserons cette fois la proposition 1.9 pour gagner de la décroissance en t -r grâce à ∂ γ t,x .

Résultats : système de Vlasov-Maxwell sans masse

Intéressons-nous maintenant aux plasmas avec des particules sans masse, qui ne correspondent à aucun modèle physique étant donné qu'aucune particule chargée sans masse n'est connue. Néanmoins, d'un point de vue mathématique, l'étude d'un tel système est intéressant car

• pour les grandes vitesses, 1 + |v| 2 ∼ |v|. On peut donc s'attendre à ce que les solutions de T 1 (g) = 0 et de T 0 (g) = 0 aient un comportement comparable pour |v| → +∞.

• L'étude du comportement asymptotique des solutions du système de Vlasov-Maxwell sans masse est plus simple et moins technique que le cas massif en dimension 3. Les idées clés de la démonstration ainsi que la structure isotrope des équations apparaissent ainsi plus clairement.

• Le système de Vlasov-Maxwell sans masse peut être vu comme un modèle simplié du système d'Einstein-Vlasov sans masse, qui est quant à lui utilisé en physique.

Un des avantages des méthodes de champs de vecteurs est que les démonstrations de nos résultats sur le système de Vlasov-Maxwell massif peuvent être adaptées au cas sans masse, ce qui n'est pas le cas des preuves de Glassey-Strauss [START_REF] Glassey | Absence of shocks in an initially dilute collisionless plasma[END_REF], Schaeer [START_REF] Schaeer | A small data theorem for collisionless plasma that includes high velocity particles[END_REF] et Wang [START_REF] Wang | Propagation of regularity and long time behavior of the 3D massive relativistic transport equation II: Vlasov-Maxwell system[END_REF]. Cependant, nous devons faire face à deux nouvelles dicultés spéciques aux particules sans masse.

• Soit g et h deux fonctions susamment régulières telles que T 1 (g) = 0 et T 0 (h) = 0. Alors, avec C g (respectivement C h ) une constante ne dépendant que de g(0, ., .) (respectivement h(0, ., .)), on a, pour tout (t,

x) ∈ R + × R 3 , R 3 v |g|(t, x, v)dv C g (1 + t + r) 3 et R 3 v |h|(t, x, v)dv C h (1 + t + r) 2 .
Les taux de décroissance en t + r donnés ici sont optimaux (on peut par contre améliorer la décroissance en t -r pour v |h|dv) et on voit donc qu'à ce niveau, un champ de Vlasov massif a un meilleur comportement.

• Les petites vitesses posent des problèmes de régularité pour les solutions du système de Vlasov-Maxwell sans masse. La sous-section suivante contient plus de détails à ce propos. An de compenser le manque de décroissance en t + r, il est crucial de remarquer que le taux de décroissance de solutions d'équations de Vlasov sans masse peut être amélioré dans les directions isotropes. Par exemple, si h vérie T 0 (h) = 0, alors

∀ (t, x) ∈ R + × R 3 , R 3 v v L |v| p v A |v| k v L |v| q |h|(t, x, v)dv |β|≤3 (1 + r) |β|+p+k+q ∂ β x h L 1 x,v (t = 0) (1 + t + r) 2+k+q (1 + |t -r|) 1+p . (1.34)
Ces gains de décroissance fournis par les composantes isotropes du vecteur vitesse sont à comparer à ceux donnés par les dérivées isotropes pour une solution d'une équation d'onde (voir proposition 1.9). Cela est lié aux poids préservés par le ot de T 0 :

(1 + t + r) v A |v| + (1 + t + r) v L |v| + (1 + |t -r|) v L |v| z∈k0 |z|.
Pour l'ensemble de cette section, v 0 désignera |v|. 

v entre T 0 = v µ ∂ µ et F (v, ∇ v )
, couplé au fait que v 0 = |v| ne soit pas minoré par une constante strictement positive. La partie vitesse V des caractéristiques de l'équation de Vlasov

∂ t f + v i |v| ∂ i f + v µ |v| F µ j ∂ v j f = 0 est solution de l'équation diérentielle V j = V µ |V | F µ j ,
et peut donc atteindre la valeur V = 0 en temps ni.

Remarque 1.6.1. Aucune diculté de cette nature n'est présente dans l'étude du système Einstein-Vlasov. En eet, l'équation de Vlasov peut être écrite, pour une métrique g, sous la forme

v ν g νµ ∂ µ f - 1 2 v µ v ν ∂ i g µν ∂ vi f = 0,
de telle sorte que l'homogénéité en v de la non linéarité est la même que celle de T 0 . Ces deux situations peuvent être comparées aux deux équations diérentielles 

ẏ = 1 et ẏ = -y.
Zf L 1 v L 1 (Σt) -Zf L 1 v L 1 (Σ0) ≤ t 0 Σs R 3 v |L Z (F )(v, ∇ v f )| dv v 0 dxds. En utilisant la relation v 0 ∂ v i f = Ω 0i -t∂ i -x i ∂ t , on obtient Zf L 1 (Σt) -Zf L 1 (Σ0) Γ∈ P0 t 0 (1 + t + r)L Z (F ) L ∞ (Σs) R 3 v Γg dv v 0 L 1 (Σs)
ds et on voit qu'une borne sur |v| -1 Zf L 1 semble nécessaire an d'améliorer celle sur Zf L 1 . An d'éviter un tel problème, nous allons supposer que f est initialement nulle dans un voisinage de v = 0 et une étape importante de la démonstration consistera à montrer qu'une telle propriété reste vraie au cours du temps.

Enn, mentionnons notre résultat obtenu dans [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] qui implique qu'une telle hypothèse semble être nécessaire.

Proposition 1.6.2. Il existe des données initiales régulières 22 telles que le système de Vlasov-Maxwell sans masse n'admette pas de solution locale de classe C 1 .

Le cas des grandes dimensions

Les normes considérées ici sont analogues à celles présentées dans la sous-section 1.4.2. Notre résultat, présenté plus en détail au chapitre 2, concernant les dimensions n ≥ 4 obtenu dans [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] s'énonce ainsi.

Theorem 1.6.1. Soit n ≥ 4, N ≥ 6n + 3, 0 < η < 1 2 et (f 0 , F 0 ) des données initiales pour le système de Vlasov-Maxwell sans masse. Soit (f, F ) l'unique solution classique du système et A un potentiel du champ électromagnétique satisfaisant la jauge de Lorenz. Il existe > 0 tel que si

E N [A](0) ≤ , E N [F ](0) ≤ , E N +n,1 [f ](0) ≤ et supp(f 0 ) ⊂ {(x, v) ∈ R n x × R n v \ {0} / |v| ≥ 2},
alors (f, F ) est une solution globale et vérie les propriétés suivantes. 22 Pour l'ensemble des données initiales considérées, le champ de Vlasov est non nul sur un voisinage de v = 0.

• La densité de particules f s'annule pour les petites vitesses :

supp(f ) ⊂ {(t, x, v) ∈ R + × R n x × R n v \ {0} / |v| ≥ 1} . • Propagation de normes L 2 pour F et L 1 pour f : ∀ t ∈ R + , E N [F ](t) (1 + t) 1+η , E N [f ](t) log(3 + t), E N -n,1 [f ](t) .
• Décroissance ponctuelle pour les composantes isotropes de

L Z β (F ) : ∀ |β| ≤ N -5n+4 2 , (t, x) ∈ R + ×R n , |α(L Z β F )| √ τ -n+1 2 + , |α(L Z β F )| √ τ -n-1 2 + τ -1 -, |ρ(L Z β F )| √ τ -n 2 + τ -1 2 -, |σ(L Z β F )| √ τ -n 2 + τ -1 2 -.
• Décroissance ponctuelle pour v∈R n \{0} |z Z β f |dv :

∀ |β| ≤ N -2n, z ∈ k 0 , (t, x) ∈ R + × R n , v∈R n \{0} |z Z β f |dv τ n-1 + τ - .
Les trois principales dicultés rencontrées lors de la démonstration ont déjà été évoquées.

1. Le manque de décroissance en t -r des solutions. 

|V (t = 0)| ≥ 2 ⇒ inf t∈R+ |V (t)| ≥ 1.
3. Les équations de Maxwell ne sont pas conformément invariantes en dimension n = 3. On procède alors de la même façon que pour le cas massif.

Le cas 3d

Contrairement au cas massif, l'étude des solutions ne nécessite pas de travailler avec des modications des champs de vecteurs de P 0 . Notre résultat obtenu dans [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF] et exposé au chapitre 3 est le suivant.

Theorem 1.6.2. Soit N ≥ 10, > 0 et (f 0 , F 0 ) des données initiales pour le système de Vlasov-Maxwell sans masse (1.2)-(1.4) satisfaisant l'hypothèse de petitesse

|β|+|κ|≤N +3 R 3 x R 3 v (1 + |x|) |β|+2 (1 + |v|) |κ| ∂ β x ∂ κ v f 0 dvdx + |γ|≤N +2 R 3 x (1 + |x|) 2|γ|+2 ∇ ∂ γ x F 0 2 dx ≤ ,
la propriété de neutralité

x∈R 3 v∈R 3 f 0 dvdx = 0
et qui s'annule pour les petites vitesses

∀ 0 < |v| ≤ 3, f 0 (., v) = 0.
Il existe C > 0 et 0 > 0 ne dépendant que de N tels que si 0 ≤ ≤ 0 , alors l'unique solution classique (f, F ) du système satisfaisant f (t = 0) = f 0 et F (t = 0) = F 0 est globale en temps et vérie les propriétés suivantes.

• Bornes L 2 pour le champ électromagnétique F :

∀ t ∈ R + , Z γ ∈K |γ| |γ|≤N Σt τ 2 + |α (L Z γ (F ))| 2 + |ρ (L Z γ (F ))| 2 + |σ (L Z γ (F ))| 2 + τ 2 -|α (L Z γ (F ))| 2 dx ≤ C log 4 (3 + t).
• Décroissance ponctuelle pour les composantes isotropes de

L Z γ (F ): ∀ |γ| ≤ N -2, (t, x) ∈ R + × R 3 , |ρ (L Z γ (F ))| (t, x) √ log 2 (3 + t) τ 2 + τ 1 2 - , |α (L Z γ (F ))| (t, x) √ log 2 (3 + t) τ 5 2 + , |σ (L Z γ (F ))| (t, x) √ log 2 (3 + t) τ 2 + τ 1 2 - , |α (L Z γ (F ))| (t, x) √ log 5 2 (1 + τ -) τ + τ 3 2 - . • Bornes L 1 pour le champ de Vlasov f : ∀ t ∈ R + , Z β ∈ P |β| 0 |β|≤N z∈k0 x∈R 3 v∈R 3 z Z β f (t, x, v)dvdx ≤ C log(3 + t).
• La densité de particules s'annule pour les petites vitesses :

∀ (t, x, v) ∈ R + × R 3 × R 3 \ {0} , |v| ≤ 1 ⇒ f (t, x, v) = 0.
• Décroissance optimale pour les moyennes en vitesse de

Z β f : ∀ |β| ≤ N -5, z ∈ k 0 , ∀ (t, x) ∈ R + × R 3 , v∈R 3 z 2 Z β f dv τ 2 + τ - .
Les deux ingrédients clés de la démonstration sont 1. l'exploitation de la structure isotrope des équations. Le principe est ici le même que pour les grandes dimensions. Mentionnons tout de même que le faible taux de décroissance des solutions nous a amenés à eectuer une étude bien plus ne de cette structure.

2. Prouver que la densité de particules s'annule pour les petites vitesses. Le point de départ est le même que pour les grandes dimensions et consiste à étudier la partie vitesse des caractéristiques de l'équation de Vlasov. Néanmoins, le taux de décroissance en t + r du champ électromagnétique, qui est non intégrable en temps, rend caduc le reste du raisonnement eectué lors de la preuve du théorème 1.6.1.

On force alors l'apparition de la composante isotrope ρ(F ) dans l'équation diérentielle satisfaite par

|V | 2 , d dt |V | 2 = V i F 0i = |V | X i |X| F 0i + |V | V i |V | - X i |X| F 0i = |V |ρ(F ) + |V | V i |V | - X i |X| F 0i .
On peut alors utiliser le fort taux de décroissance en t + r de ρ(F ) et le reste de la démonstration consiste à majorer convenablement 

V i |V | - X i |X| (1.
P := (x, v) ∈ T M * / g -1 x (v, v) = -m
P x := {v / (x, v) ∈ P}
et désignons par Ric(g) (respectivement R(g)) la courbure de Ricci (respectivement la courbure scalaire) de M. Plaçons nous dans un système de coordonnées (x 0 , ..., x 3 ), de sorte que v = v µ dx µ , et paramétrisons P x par 23 (v 1 , v 2 , v 3 ). La métrique g et la fonction de distribution f sont alors solutions de

Ric(g) µν - 1 2 R(g)g µν = T µν [f ], T µν [f ](x) := Px f (x, v)v µ v ν |det(g x )| v 0 dv 1 dv 2 dv 3 , v µ ∂ x µ f - 1 2 v ν v λ ∂ x i g νλ • ∂ vi f = 0, où v λ = v σ g σλ .
En coordonnées d'onde, i.e. dans un système de coordonnées vériant, pour 0 ≤ µ ≤ 3,

g x µ = 0, avec g = 1 |det(g)| ∂ x λ g λν |det(g)|∂ x ν ,
et en introduisant h = g -η, où η est la métrique de l'espace-temps de Minkowski, les équations d'Einstein prennent la forme suivante : • G(h)(∂h, ∂h) est une forme quadratique en ∂h dont les coecients dépendent de h de façon lisse et telle que G(0)(∂h, ∂h) = 0.

g h µν = P µν (∂h, ∂h) + Q µν (∂h, ∂h) + G(h)(∂h, ∂h) -2T µν [f ] - Px f g µν |det(g x )| v 0 dv 1 dv 2 dv 3 , (1.36) où • Q µν (ξ, ζ)
• P µν est une combinaison de formes quadratiques ne satisfaisant pas la condition isotrope mais ayant tout de même une structure particulière, permettant à (1.36) de vérier la condition isotrope faible (voir la proposition 1.2.3).

On voit donc que l'on a aaire, comme pour les équations de Vlasov-Maxwell, à un système ondes/équation de transport relativiste. Cependant, une nouvelle diculté propre à ce système réside dans le fait que v 0 et v µ , pour 0 ≤ µ ≤ 3, dépendent de la métrique g, ce qui engendre de nombreux termes d'erreurs dans les formules de commutations.

On pourrait commencer par étudier le cas où les particules sont sans masse an de bien comprendre la structure isotrope du système car on s'attend, au vu de nos résultats sur les équation de Vlasov-Maxwell, que l'étude soit plus simple que pour le cas massif. En particulier, un objectif pourrait être de s'astreindre à ne pas modier les champs de vecteurs de P 0 an d'éviter de nombreux calculs et d'avoir une démonstration aussi accessible que possible. Dans un second temps, on pourrait considérer des particules massives et ainsi généraliser les travaux de [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF] et [START_REF] Lindblad | Global stability of Minkowski space for the EinsteinVlasov system in the harmonic gauge[END_REF]. Une éventuelle piste pourrait être d'étudier uniquement les solutions en dehors d'un cône de lumière et de combiner les estimations obtenues sur la solution avec celles de [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF] an de couvrir tout l'espace-temps.

Une toute autre direction possible pour de futures recherches pourrait être d'étudier des équations de Vlasov sur des variétés courbes tel que l'espace-temps de Schwarzschild. Par exemple, dans l'esprit de [START_REF] Dafermos | The red-shift eect and radiation decay on black hole spacetimes[END_REF] pour l'équation des ondes, il serait intéressant de prouver que les moyennes en vitesse des solutions de l'équation de transport relativiste décroissent pour des particules sans masse sur un trou noir de type Schwarzschild.

Finalement, la structure isotrope du système de Vlasov-Maxwell semblant être nécessaire an de prouver l'existence globale de ses solutions à données petites, on peut s'attendre à des résultats d'explosion en temps 23 On utilise pour cela que

v 0 = -(g 00 ) -1 (g 0j v j -(g 0j v j ) 2 -g 00 (1 + g ij v i v j )).
ni pour des systèmes couplant une équation d'onde à une équation cinétique et où une telle structure est absente. On pourrait par exemple s'intéresser à un système de la forme

T 1 (f ) + ∂ t u • ∂ v 1 f = 0, u = R 3 v f dv, f (0, •, •) = g, g ∈ C ∞ c (R 3 x × R 3 v , R), u (0, •) = v, v ∈ C ∞ c (R 3 , R), ∂ t u (0, •) = w, w ∈ C ∞ c (R 3 , R),
et essayer de prouver que

∀ > 0, ∃ T > 0, R 3 v f dv L ∞ ([0,T [×R 3 x ) + u L ∞ ([0,T [×R 3 x ) = +∞.
On aurait alors une situation analogue à celle des équations d'onde semi-linéaires (voir les théorèmes 1.2.1 et 1.2.2 ci-dessus ainsi que le résultat de Fritz John [START_REF] John | Blow-up for quasilinear wave equations in three space dimensions[END_REF]).

Introduction

In this paper, we study the asymptotic properties of the small data solutions of the Vlasov-Maxwell system in dimensions n ≥ 4. For K species, this system is given by1 

m 2 k + |v| 2 ∂ t f k + v i ∂ i f k + e k v µ F µ j ∂ v j f k = 0, (2.1) 
∇ µ F µν = e k J(f k ) ν , (2.2) 
∇ µ * F µα1...αn-2 = 0, (2.3) 
with initial data,

f k (0, ., .) = f 0k , (2.4) 
F (0, .) = F 0 .

(2.5)

This is a classical model in plasma physics and we refer to [START_REF] Glassey | The Cauchy problem in kinetic theory[END_REF] for an introduction to its analysis. Here,

• m k ∈ R + and e k ∈ R * are the mass and the charge of the particles of the species k ∈ 1, K . The function f k (t, x, v) is their velocity distribution, which is a non-negative function.

• The Maxwell eld is described in geometric form by the 2-form F (t, x) and its Hodge dual * F (t, x).

• The (n + 1)-current J(f k ) ν in equation (2) is given by J(f k ) ν (t, x) = v∈R n v ν v 0 k f k (t, x, v)dv, where v 0 k := m 2 k + |v| 2 .
• The variable t will be taken in R + , x will be taken in R n and for the species k, v will be taken either

in R n , if m k = 0, or in R n \ {0}, if m k = 0.
In the 3 dimensional case, we can express the system in terms of the electric and the magnetic vector elds through the relations

E i = F 0i and B i = - * F 0i
so that the Vlasov-Maxwell equations take the familiar form

m 2 k + |v| 2 ∂ t f k + v i ∂ i f k + e k (E + v × B) • ∇ v f k = 0, ∇ • E = e k J(f k ) 0 , ∂ t E j = (∇ × B) j -e k J(f k ) j , ∇ • B = 0, ∂ t B = -∇ × E.

Global in time solutions for the Vlasov-Maxwell system

The global existence for classical solutions to the Vlasov-Maxwell system is still an open problem. They are known to be global in certain particular cases such as under a translation symmetry hypothesis on the initial data in one of the space variables. The pioneer works on this two and one half dimensional case originated from Glassey-Schaeer in [START_REF] Glassey | The two and one-half-dimensional relativistic Vlasov Maxwell system[END_REF] and required a compact support assumption in v. The result obtained recently by Luk-Strain allows data with non-compact velocity support [START_REF] Luk | Strichartz estimates and moment bounds for the relativistic Vlasov-Maxwell system[END_REF]. The solutions to the Vlasov-Maxwell system also appear to be global when they arise from pertubation of spherically symmetric initial data 2 (see [START_REF] Rein | Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics[END_REF]).

For the general case, several continuation criteria are known. The rst one, obtained by Glassey and

Strauss in [START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF] (see also [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF] and [START_REF] Klainerman | A new approach to study the Vlasov-Maxwell system[END_REF] for alternative proofs), expresses that C 1 solutions to the Vlasov-Maxwell system arising from compactly initial data do not develop singularities as long as the velocity supports of the particle densities f k remain bounded. An improved continuation criteria requires the niteness of

1 + |v| 2 θ f k L ∞ ([0,T * [,L q x L 1 v ) , (2.6) 
for a certain q and θ, in order to extend the solution beyond T * > 0. Let us mention [START_REF] Pallard | On the boundedness of the momentum support of solutions to the relativistic Vlasov-Maxwell system[END_REF] for the cases 6 ≤ q ≤ ∞ and θ > 4 q , [START_REF] Sospedra-Alfonso | Classical solvability of the relativistic Vlasov-Maxwell system with bounded spatial density[END_REF] for q = +∞ and θ = 0 as well as [START_REF] Pallard | A rened existence criterion for the relativistic Vlasov-Maxwell system[END_REF] for q = 6 and θ = 0. Earlier results of Glassey-Strauss required the boundedness of (2.6) for q = ∞ and θ = 1 and cover data with non-compact support in v (see [START_REF] Glassey | Large velocities in the relativistic Vlasov-Maxwell equations[END_REF]). Recently, Luk-Strain removed in [START_REF] Luk | Strichartz estimates and moment bounds for the relativistic Vlasov-Maxwell system[END_REF] all compact support assumptions and extend the continuation criteria (2.6) for 2 < q ≤ +∞ and θ > 2 q .

Previous work on small data solutions of the Vlasov-Maxwell system

Global existence for small data in dimension 3 was rst established by Glassey-Strauss in [START_REF] Glassey | Absence of shocks in an initially dilute collisionless plasma[END_REF] under a compact support assumption (in x and in v). In particular they proved v f dv 1 (1+t) 3 , coinciding with the linear decay, but they did not control ∂ µ1 ...∂ µp v f dv. They also proved decay estimates for the electromagnetic eld and its derivatives of rst order, but not for the derivatives of higher order. A similar result was proved in [START_REF] Glassey | Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data[END_REF] for the nearly neutral case, i.e.

k e k m 3 k f 0k (x, m k v)
has to be small and not the individual particle densities. The result established by Schaeer in [START_REF] Schaeer | A small data theorem for collisionless plasma that includes high velocity particles[END_REF] allowed particles with high velocity but still requires the data to be compactly supported in space 3 . Finally, let us also mention the earlier result of Bardos-Degond for the more classical Vlasov-Poisson system [START_REF] Bardos | Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data[END_REF]. Under a smallness assumption, they established that the solution of the system is global in time and proved that v f dv 1 (1+t) 3 but they did not obtain informations on the derivatives of f . They also proved decay estimates for the electric eld up to second order.

Optimal gradient estimates for Vlasov systems

Due to the linearity of the Maxwell equations and the elliptic nature of the Poisson equation or a nonresonant phenomenon 4 , the previous results are established without essentially commuting the Vlasov equation and 2 Recall that for spherically symmetric solutions, the Vlasov-Maxwell system reduces to the relativistic Vlasov-Poisson system. 3 Note also that when the Vlasov eld is not compactly supported (in v), the decay estimate obtained in [START_REF] Schaeer | A small data theorem for collisionless plasma that includes high velocity particles[END_REF] for its velocity average contains a loss. 4 According to [START_REF] Bouchut | Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system[END_REF], the velocity averages of the solutions of a system coupling a linear wave equation with a transport equation are such that the velocity averages are more regular than expected if the speed of propagation of the wave equation is strictly larger than the speed of the particles governed by the transport equation. controlling higher derivatives of the solutions. For the Vlasov-Poisson system with small data, the sharp time decay estimates v ∂ µ1 ...∂ µp f dv 1 (1+t) 3+p was proved 5 in [START_REF] Hwang | Optimal gradient estimates and asymptotic behaviour for the Vlasov-Poisson system with small initial data[END_REF]. A similar result was obtained in [START_REF] Smulevici | Small data solutions of the Vlasov-Poisson system and the vector eld method[END_REF] using a vector eld method which led to global bounds for the solution and optimal space and time decay rates for the velocity averages. In the same spirit, optimal decay estimates was proved for the derivatives of the solutions of the Vlasov-Nordström system in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] and [START_REF] Fajman | Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions[END_REF]. The stability of the Minkowski space for the Einstein-Vlasov system was recently, and independently, proved in [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF] and [START_REF] Lindblad | Global stability of Minkowski space for the EinsteinVlasov system in the harmonic gauge[END_REF]. For both of them, vector eld methods was a crucial point in the proof and led in particular to almost optimal decay rates for the derivatives of the solutions.

The goal of this paper is to prove almost optimal decay for the small data solutions and their derivatives of the Vlasov-Maxwell system in dimension n ≥ 4 without any compact support assumption on the initial data.

The vector eld method for Vlasov elds

In this paper, we will use vector eld methods to derive decay estimates for both the electromagnetic eld and the Vlasov eld. The vector eld method was originally developped by Klainerman in [START_REF] Klainerman | Uniform decay estimates and the Lorentz invariance of the classical wave equation[END_REF] to study wave equations and was adapted to cover the Maxwell equations (and the spin 2 equations) in 3d in [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF]. More recently, the method was extended for the free relativistic transport equation in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF].

As in [START_REF] Klainerman | Uniform decay estimates and the Lorentz invariance of the classical wave equation[END_REF], these methods are based on energy estimates, commutation vector elds and weighted Sobolev inequalities. For the transport operator v µ ∂ µ , the set P 0 of commutation vector elds used in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] is composed of the scaling vector eld S = x µ ∂ µ and the complete lifts of the generators of the Poincaré group, that is to say the transalations

∂ µ , 0 ≤ µ ≤ n,
the complete lifts of the rotations

Ω ij = x i ∂ j -x j ∂ i + v i ∂ v j -v j ∂ v i , 1 ≤ i < j ≤ n
and the complete lifts of the Lorentz boosts

Ω 0k = t∂ k + x k ∂ t + v 0 ∂ v k , 1 ≤ k ≤ n.
In [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], vector eld methods are applied to derive the behavior of the solutions to the Vlasov-Nordström system in the future the hyperboloid 6 t 2 -r 2 = 1. However, without any compact support assumption, one cannot reduce the study of a solution in the future of a t = constant slice to its study in the future of a hyperboloidal slice (see for instance [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], Appendix A, for more details). In order to remove all compact support assumption on the data, one of the goal of this paper is to start from a t = 0 slice and adapt the vector eld method for transport equations to the more common foliation ({t} × R n ) t≥0 . Note that [START_REF] Fajman | Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions[END_REF] (respectively [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF]) use slight modications of the commutation vector elds 7 of the operator v µ ∂ µ in order to study the small data solutions of the Vlasov-Nordström (respectively Einstein-Vlasov) system in 3d. They also use a hyperboloidal foliation and restrict the study of the solutions to the future of a hyperboloid.

The Lorenz gauge

Recall that a 1-form A is a potential of the electromagnetic eld

F if F = dA (or F µν = ∂ µ A ν -∂ ν A µ ). If moreover ∂ µ A µ = 0,
we say that A satises the Lorenz gauge condition. As the energy momentum tensor of F is not traceless in dimension n ≥ 4 and the Morawetz vector eld K 0 := (t 2 + r 2 )∂ t + 2tr∂ r is merely a conformal Killing vector eld, we encounter the same diculty in using it as for the wave equation in 3d (see [START_REF] Sogge | Lectures on nonlinear wave equations[END_REF], Chapter II for more details). To circumvent this diculty, we will consider in this paper the Vlasov-Maxwell system in the Lorenz gauge. A µ will then satisfy the equation

A µ = e k v v µ v 0 f k dv. (2.7)
We also make fundamental use of the Lorenz gauge to establish the optimal decay rate on the component α of the null decomposition of the electromagnetic eld, as the method used in [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF] cannot be reproduced in dimension n = 3.

5 A similar result is established in [START_REF] Choi | Dispersion estimates for the two-dimensional Vlasov-Yukawa system with small data[END_REF], using the same techniques, for the Vlasov-Yukawa system in dimension 2. 6 The use of a hyperboloidal foliation in order to establish decay estimates was introduced in [START_REF] Klainerman | Remark on the asymptotic behavior of the Klein-Gordon equation in R n+1[END_REF] in the context of the Klein-Gordon equation. 7 The modied vector elds are built in order to compensate the worst source terms in the commuted transport equations.

2.1.6 Results for the massive Vlasov-Maxwell system

We will consider weighted L 2 norms to control A and F such as 8

E N [A] = n µ=0 |β|≤1 |γ|≤N Z β L Z γ (A) µ 2 L 2 (R n )
as well as weighted L 1 norms for the Vlasov eld, such as

E q N [g](t) = |β|≤N R n x R n v (v 0 ) q | Z β g|dvdx + Cu(t) R n v (v 0 ) q-1 v L | Z β g|dvdC u (t), where C u (t) := {(s, y) ∈ R + × R n / s ≤ t, s -|y| = u}.
For the Vlasov eld, we also use extra norms with the additional weights v µ , x i v j -x j v i or tv i -x i v 0 . See Denitions 2.3.2, 2.3.20 and Section 2.2.4 for an introduction to the other norms and the weights.

We are now ready to present our main result for the massive Vlasov-Maxwell system (for a detailled version, see Theorem 2.6.1).

Theorem 2.1.1. Let n ≥ 4, K ≥ 2, and N ≥ 5 2 n + 1. Let (f 0 , F 0 ) be an initial data set for the massive Vlasov-Maxwell system with K species. Let (f, F ) be the unique classical solution to the system and let A be a potential in the Lorenz gauge. There exists > 0 such that 9 , if

E N [A](0) + E N [F ](0) + K k=1 E 2 N +n,1 [f k ](0) ≤ ,
then (f, F ) exists globally in time and veries the following estimates.

• Energy bounds for A, F and f k such as

E 2 N [f k ] on R + .
• Sharp pointwise decay estimates on the null decomposition of L Z β (F ) and for the velocity average of f k and its derivatives. For instance,

∀ |β| ≤ N - 3n + 2 2 , (t, x) ∈ R + × R n , v∈R n | Z β f k |dv (1 + t + |x|) n .
Remark 2.1.2. Since we suppose that the initial energy on F is nite, we are necessarily in the neutral case 10 when the dimension is n = 4. On the other hand, when the total charge is non zero, Gauss's law implies that the energy E N [F ] is innite. We refer to [START_REF] Bieri | Asymptotic properties of solutions of the Maxwell Klein Gordon equation with small data[END_REF] and [START_REF] Yang | Decay of solutions of Maxwell-Klein-Gordon equations with arbitrary Maxwell eld[END_REF] for a study of the Maxwell-Klein-Gordon system with a non-zero total charge.

Remark 2.1.3. Thanks to the vector eld method and in view of the denition of our norms, we do not need any compact support assumption on the initial data. We also automatically obtain improved decay rates for the derivatives of both the electromagnetic eld and the velocity averages of the particle densities. For instance, for all |β| ≤ N -3n+2 2 and (t,

x) ∈ R + × R n , ∂ β t,x v∈R n f k dv (1 + t + |x|) n (1 + |t -|x||) |β|
and (see Section 2.5.4), assuming more decay on the initial data,

∂ β t,x v∈R n f k dv (1 + t + |x|) n+|β| .
Remark 2.1.4. Notice that in dimension n = 4, it is sucient for Z β f k to initially decay faster than (1 + |v|) -6-δ (1 + |x|) -5-δ , with δ > 0, for our theorem to apply. In [START_REF] Schaeer | A small data theorem for collisionless plasma that includes high velocity particles[END_REF], which concerns the 3d case, the main result requires the initial particle densities to be compactly supported in x and to decay faster than (1 + |v|) -q , with q > 60 + 12 √ 17.

8 For a tensor G and a multi-index β = (β 1 , ..., βp),

L Z β G = L Z β 1 ...L Z βp G, while ZL Z β (G)µ = Z[L Z β (G)µ].
9 A smallness condition on F , which implies E N [A](0) ≤ , is given in Proposition 2.2.20. 10 In other words, the total charge veries

e k x∈R n v∈R n f 0k dvdx = 0.

Results for the massless Vlasov-Maxwell system

We now present an elusive version of our main result for massless particles (we refer to Theorem 2.7.1 for more details). Theorem 2.1.5. Let n ≥ 4, K ≥ 2, N ≥ 6n + 3 and R > 0. Let (f 0 , F 0 ) be an initial data set for the massless Vlasov-Maxwell system with K species, (f, F ) be the unique classical solution to the system and A be a potential in the Lorenz gauge. There exists > 0 and R > 0 such that, if

E N [A](0) + E N [F ](0) + K k=1 E 0 N +n,1 [f k ](0) ≤ , ∀ 1 ≤ k ≤ K, supp(f 0k ) ⊂ {(x, v) ∈ R n x × R n v \ {0} / |v| ≥ R},
then (f, F ) exists globally in time and veries the following properties.

• f k (., ., v) vanishes for all |v| ≤ R 2 .

• Energy bounds are propagated for F and

f k . For instance, if n = 4, E N -8 [F ](t) (1 + t) for all t ∈ [0, T ].
• Pointwise decay estimates on the null decomposition of L Z β (F ) and for the velocity average of f and its derivatives. For instance,

∀ |β| ≤ N -2n, (t, x) ∈ R + × R n , v∈R n \{0} | Z β f k |dv τ n-1 + τ - .
Remark 2.1.6. The hypotheses on the velocity supports of the particle densities appear to be necessary (see Section 2.8).

Remark 2.1.7. We are not able to obtain optimal decay estimates for the electromagnetic eld in dimension n = 4 with our reasoning since the velocity average of the Vlasov eld has a weaker decay rate near the light cone when the mass is zero (this is related to the estimate (2.10) mentionned below, which only applies to massive particles).

The main diculties and ingredients of our proof

High velocities and null properties of the system As we use vector eld methods, we are brought to commute the equations and prove global bounds on the solutions through energy estimates. After commuting the Vlasov equation once, we are led to estimate terms that could be written schematically as

t 0 x v |vL Z (F )∂ v f |dvdxds.
Unfortunately, ∂ v i , for 1 ≤ i ≤ n, is not part of the commutation vector elds for the transport equation. We rewrite them in terms of the elements of P 0 as 

∂ v i f k = 1 v 0 ( Ω 0i f k -t∂ i f k -x i ∂ t f k ), (2.8 
|L Z (F )| (1 + s + |x|) -n-1 2 (1 + |s -|x||) -3
which, combined with the support properties of f , leads to

x v (s + |x|)|L Z (F )∂f |dvdx (1 + s) -n 2
and (2.9) is then uniformly bounded in dimensions 11 n ≥ 4.

In our work, we do not make any compact support assumption. Instead, we make crucial use of null properties of the Vlasov-Mawxell system 12 to deal with the high velocities. More precisely, certain null components of the velocity vector v, the derivatives of the electromagnetic eld (as L Z (F )) or the vector (0, ∂ v 1 f, ..., ∂ v n f ) behave better than others and the structure of the system is such that there is no product involving only terms with a bad behavior. Taking advantage of the null structure allows us either

• to transform a t -r decay in a t + r one. For instance,

|ρ(L Z (F ))| = x i r L Z (F ) i0 (1 + s + |x|) -n+1 2 (1 + |s -|x||) -1 2 .
• To transform a t + r loss in a t -r loss using

x i r ∂ v i f ∼ (t -r)∂f .
• Or to exploit the t -r decay. For instance, we will control

Cu(t) v∈R n v L v 0 |∂f |dvdC u (t) ≤ E[f ](t),
so that, by the change of variables (u, u) = (s + r, s -r),

t 0 x 1 (1 + |s -|x||) 2 v v L v 0 |∂f |dvdxds ≤ t u=-∞ E[f ](t) (1 + |u|) 2 du.

Improved decay estimates

• For massive particles. In [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], two Klainerman-Sobolev inequalities for velocity averages of Vlasov elds were obtained. They imply in particular that, for g a solution to v µ ∂ µ (g) = 0,

∀ (t, x) ∈ R + × R n , R n v |g|(t, x, v)dv Z β ∈ P k 0 |β|≤3 R n y R n v | Z β g|(0, y, v)dvdy (1 + t + |x|) n-1 (1 + |t -|x||) , ∀ (t, x) ∈ R + × R n , t 2 -|x| 2 ≥ 1, R n v |g|(t, x, v)dv 1 (1 + t) n Z β ∈ P k 0 |β|≤3 R n y R n v | Z β g|( 1 + |y| 2 , y, v) dvdy 1 + |y| 2 .
The rst one has the advantage to be based on the foliation ({t} × R n ) t≥0 but provides a weak estimate near the light cone. The second one gives a stronger decay rate near the light cone but is based on a hyperboloidal foliation. In this paper, in order to remove all compact support assumption on the data and start from a t = 0 slice, we will prove and use a rened version of the Klainerman-Sobolev inequalities of [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF]. Our estimate will imply that, for g a solution to v µ ∂ µ (g) = 0 and for all (t,

x) ∈ R + × R n , R n v |g|(t, x, v)dv Z β ∈ P k 0 |β|≤3 R n y R n v |v 0 | 2 (1 + |y|)| Z β g|(0, y, v)dvdy (1 + t + |x|) n .
(2.10)

Compared to the Klainerman-Sobolev inequalities proved in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], (2.10) cumulates the advantages of giving a strong decay in the whole spacetime and being adapted to the foliation ({t} × R n ) t≥0 . On the other hand, our estimate is not a pure Sobolev inequality (we used the transport equation satised by g to establish it). 11 Note that our proof would lead to a √ t-loss in dimension 3 which is not sucient to prove the uniform boundedness of (2.9). 12 The null structure of the Vlasov-Nordström system is also a main ingredient of the proof of [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] for the dimension n = 4.

Remark 2.1.8. In the exterior of the light cone (where t ≤ |x|), one can in fact obtain arbitrary decay provided we consider additional decay on the initial data (see Section 2.5.3).

• For massless particles. Unfortunately, (2.10) does not apply to massless particles. Instead, we use weights z ∈ k 0 preserved by the relativistic transport operator |v|∂ t + v i ∂ i in order to gain additional decay. More precisely, in the same spirit as the derivative ∂ t + ∂ r (respectively ∂ t -∂ r ) provides an extra decay in t + r (respectively t -r) for, say, a solution to u = 0, one has

v 0 - x i r v i ≤ |v| 1 + t + r z∈k0 |z| and v 0 + x i r v i ≤ |v| 1 + |t -r| z∈k0 |z|.
The problem of the small velocities For the massless Vlasov-Maxwell system, another problem arises from the small velocities since v 0 = |v| is not bounded by below. The velocity part V of the characteristics of

∂ t f + v i |v| ∂ i f + v µ |v| F µ j ∂ v j f = 0
solves the ordinary dierential equation

V j = V µ |V | F µ j ,
which can lead to V = 0 in nite time 13 . More precisely, we prove in Section 2.8 that there exists smooth initial data such that the particle densities f k do not vanish for small velocities and for which the massless Vlasov-Maxwell system does not even admit a local classical solution.

An important step of the proof of Theorem 2.1.5 then consists in proving that the velocity supports of f k remain bounded by below. For this, we make crucial use of the smallness of assumption on the electromagnetic eld as well as its strong decay rate 14

The perspective of the three dimensional case Nevertheless, even in making use of the null properties of the system, our proof does not work in dimension 3. One way to treat the 3d massive case would be to use modied vector elds in the spirit of [START_REF] Smulevici | Small data solutions of the Vlasov-Poisson system and the vector eld method[END_REF] for the Vlasov-Poisson system and [START_REF] Fajman | Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions[END_REF] for the Vlasov-Nordström system. This method led to the proof of the stability of the Minkowski space for the Einstein-Vlasov system (cf [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF], [START_REF] Lindblad | Global stability of Minkowski space for the EinsteinVlasov system in the harmonic gauge[END_REF]), providing sharp estimates on both the Vlasov eld and the metric.

Structure of the paper

In section 2.2 we introduce the notations used in the paper, the commutation vector elds and the Vlasov-Maxwell system. In Section 2.3 we establish various energy estimates for solutions to the relativistic transport equation or the Maxwell equations. Section 2.4 contains an integral estimate, some ways to estimate the v derivatives and the tools to prove pointwise decay estimates for the electromagnetic eld. Section 2.5 is devoted to our new decay estimate for the solution of a massive relativistic transport equation. In Section 2.6 (respectively 2.7), we prove the global existence and the asymptotic properties of the small data solutions of the massive (respectively massless) Vlasov-Maxwell system, which is Theorem 2.1.1 (respectively Theorem 2.1.5). In Section 2.8, we prove that there exists smooth initial data which do not vanish for small velocities and for which the massless Vlasov-Maxwell system do not admit a local classical solution.
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dimension n ≥ 4, F L ∞ x (1 + t) -3
L = ∂ t + ∂ r , L = ∂ t -∂ r ,
and we designate by (e B , e C , e D , ...) an orthonormal basis on the spheres (t, r) = constant. We will use the weights

τ 2 + = 1 + u 2 and τ 2 -= 1 + u 2 .
For a 2-form F µν , its Hodge dual is denoted by * F , with *

F λ1...λn-1 = 1 2 F µν ε µνλ1...λn-1 , (2.11) 
where ε λ1...λn+1 is the Levi-Civita symbol. As in [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF], we consider its null-decomposition given by

α B (F ) = F BL , α B (F ) = F BL , ρ(F ) = 1 2 F LL , σ BD (F ) = F BD .
We also associate to a 2-form F its energy-momentum tensor

T [F ] µν = F µβ F ν β - 1 4 η µν F ρσ F ρσ .
We use Greek letters to denote spacetime indices and Latin letters for space indices. The velociy vector (v β ) 0≤β≤n is parametrized by (v i ) 1≤i≤n and v 0 = m 2 + |v| 2 . When we study massive particles, we often take m = 1 for simplicty so that v 0 = 1 + |v| 2 . On the other hand, for massless particles v 0 = |v|.

We designate the null components of the velocity vector

(v β ) 0≤β≤n by (v L , v L , v B , ...), i.e. v = v L L + v L L + v B e B .
In particular,

v L = v 0 + v r 2 and v L = v 0 -v r 2 .
We now introduce several subsets of R + × R n depending on t ∈ R + or u ∈ R. Let Σ t , C u (t) and V u (t) be dened as

Σ t := {t} × R n , C u (t) := {(s, y) ∈ R + × R n / s ≤ t, s -|y| = u} and V u (t) := {(s, y) ∈ R + × R n / s ≤ t, s -|y| ≤ u}.
The volum form on C u (t) is given by dC u (t) = √ 2r n-1 dudS n-1 , where dS n-1 is the standard volume form on the n -1 dimensional unit sphere. 15 The letter A will be reserved for the potential of the electromagnetic.

The sets

Σ t , C u (t) and V u (t) Σ t Σ 0 C u (t) V u (t) r = 0 t r
We will use the notation Q 1 Q 2 for an inequality of the form Q 1 ≤ CQ 2 , where C > 0 is a positive constant independent of the solutions but which could depend on N ∈ N, the maximal order of commutation, or xed parameters. Finally we will raise and lower indices with respect to the Minkowski metric η. For instance, F µ j = η jν F µν so that F µ j = F µj for all 1 ≤ j ≤ n.

The relativistic transport operator

For m > 0, we use the notation T m to refer to the operator dened, for all v ∈ R n , by

T m = v 0 ∂ t + v i ∂ i , with v 0 = m 2 + |v| 2 .
For the massless case (m = 0), the relativistic transport operator T 0 is only dened for all v ∈ R n \ {0} and we have

T m = v 0 ∂ t + v i ∂ i , with v 0 = |v|.
To simplify the notation, we will most of the time take either m = 1 or m = 0 and we will only use T 1 and T 0 .

Vector elds

The conformal isometries and their complete lifts Let us consider the set K composed by the generators of the isometries group of Minkowski spacetime and by the scaling vector eld. K contains the translations 16

∂ µ , 0 ≤ µ ≤ n, the rotations Ω ij = x i ∂ j -x j ∂ i , 1 ≤ i < j ≤ n, the hyperbolic rotations Ω 0k = t∂ k + x k ∂ t , 1 ≤ k ≤ n, the scaling S = x µ ∂ µ .
Sometimes we will only use the Poincaré group P := K \ {S} or the set of the generators of the rotation group, O (composed of the Ω ij ). These vector elds will be used as commutators whereas ∂ t , S and the vector eld K 0 , dened by

K 0 = K 0 + ∂ t = 1 2 τ 2 -L + 1 2 τ 2 + L,
will be used as multipliers as in [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF].

These vector elds are well known to commute with the wave operator, i.e. if a smooth function u satises u = 0, then, ∀ Z ∈ K, Zu = 0.

We will use them to commute the Maxwell equations. However, as in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], we use another set of vector elds to study the Vlasov equation. For this, we use the complete lift of a vector eld, a classical operation in dierential geometry (see [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], Appendix C for more details). For us, the following denition in coordinates will be sucient.

Denition 2.2.1. Let Γ be a vector eld of the form Γ β ∂ β . Then, the complete lift Γ of Γ is dened by

Γ = Γ β ∂ β + v γ ∂Γ i ∂x γ ∂ v i .
We then consider P the set of the complete lifts of P given by

P = { Z/ Z ∈ P}.
The last set of vector elds required is the following

P 0 = P ∪ {S}.
We can list the complete lifts that we will manipulate.

Lemma 2.2.2. For 0 ≤ µ ≤ n,

∂ µ = ∂ µ .
For 1 ≤ i < j ≤ n,

Ω ij = x i ∂ j -x j ∂ i + v i ∂ v j -v j ∂ v i .
Finally, for 1 ≤ k ≤ n,

Ω 0k = t∂ k + x k ∂ t + v 0 ∂ v k .
The following lemma is used in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] to prove a Klainerman-Sobolev inequality. We consider an ordering on each of the following sets of vector elds : O, P, K, P and P 0 . For simplicity, we introduce L which represents one of those sets. We can suppose that

L = {L i / 1 ≤ i ≤ |L|}.
Let β ∈ {1, ..., |L|} r , with r ∈ N * . Then we will denote the dierential operator Z β1 ...Z βr by Z β . For a vector eld Y , we will denote by L Y the Lie derivative with respect to Y and if Z γ ∈ K q , we will write L Z γ for L Z γ 1 ...L Z γq . We can suppose that the orderings are such that if

P = {Z i / 1 ≤ i ≤ |P|}, then P = { Z i /1 ≤ i ≤ |P|} and P 0 = { Z i /1 ≤ i ≤ |P| + 1}, with Z |P|+1 = S.
Note that even if the scaling is not a complete lift, we will for simplicity denote any vector eld of P 0 by Z.

We now introduce some pointwise norms. Denition 2.2.5. Let U be a smooth p-covariant tensor eld dened in R n or in R 1+n . For k ∈ N, the pointwise norm of U with respect to O, of order k, is dened by

|U | O,k =   |β|≤k |L Z β U | 2   1 2
, with Z β ∈ O |β| and where

|L Z β U | 2 = λ1,...,λp |L Z β (U ) λ1...λp | 2 , with L Z β (U ) λ1...λp the Cartesian components of L Z β (U ).

Commutation properties

We have the following commutation relations : Lemma 2.2.6. Let L be either O, P, K, P or P 0 . Then

∀ L, L ∈ L, ∃C LL Γ ∈ R, such that [L, L ] = Γ∈L C LL Γ Γ.
The commutation relations between the vector elds of P 0 and the massive transport operator T 1 (or the massless relativistic transport operator) are similar to those between the vector elds of K and the wave operator.

Lemma 2.2.7. We have, for m ∈ {0, 1},

∀ Z ∈ P, [T m , Z] = 0 and [T m , S] = T m .
Proof. This follows easily from Lemma 2.2.2 and the denition of the relativistic transport operator.

Weights preserved by the ow

We dene, as in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], the two following sets of weights

k 1 = v µ v 0 / 0 ≤ µ ≤ n ∪ x µ v ν v 0 -x ν v µ v 0 / µ = ν , k 0 = k 1 ∪ x µ v µ v 0 .
These weights are solutions to the free transport equation, i.e.

∀ z ∈ k 0 , T 0 (z) = 0,

and

∀ z ∈ k 1 , T 1 (z) = 0. (2.13) Thus, if f is a regular function and if z ∈ k 1 , then T 1 (zf ) = zT 1 (f ).
Moreover, these weights have also good interactions with the vector elds of P 0 .

Lemma 2.2.8. If Z ∈ P 0 , m ∈ {0, 1} and z ∈ k m , then either

Z(v 0 z) = 0 or Z(v 0 z) ∈ v 0 k m . This leads to ∀ Z ∈ P 0 , z ∈ k m , | Z(|z|)| ≤ z∈km |z|.

Proof.

Consider for instance Ω 01 and x 1 v 2 -x 2 v 1 or x 2 v 3 -x 3 v 2 . We have

Ω 01 (x 1 v 2 -x 2 v 1 ) = tv 2 -x 2 v 0 as well as Ω 01 (x 2 v 3 -x 3 v 2 ) = 0.
All the other cases are similar.

The next proposition shows how these weights can be used to provide us extra decay (at least in the massless case). Proposition 2.2.9. Denoting x µ v µ by s and x ν v µ -x µ v ν by z µν , we have

2(t -r)v L = - x i r z 0i -s,
and

2(t + r)v L = x i r z 0i -s.
We also have

|v B | v 0 1 τ + z∈k1 |z|, |v B | √ v L v L and m 2 4v 0 ≤ v L .
Remark 2.2.10. This result should be compared with the identities

(t -r)L = S - x i r Ω 0i , (t + r)L = S + x i r Ω 0i ,
and

re B = 1≤i<j≤n C i,j B Ω ij ,
where C i,j B are bounded functions on the sphere. Proof.

Let us start by the rst two equations. On the one hand,

(t 2 -r 2 )v 0 = -x i z 0i -ts.
On the other hand, (t 2 -r 2 )v r = -t

x i r z 0i -rs.

It only remains to take the sum and the dierence of these two equations. For the third one, use |v B | ≤ v 0 and that rv B = C i,j B z ij , which implies

|v B | v 0 r 1≤i<j≤n |z ij | = v 0 tr 1≤i<j≤n x i v j v 0 t -x j + x j -x j v i v 0 t -x i + x i v 0 t n q=1 |z 0q |.
The fourth inequality ensues from rv B = C i,j B z ij and

4r 2 v L v L = m 2 r 2 + r 2 |v| 2 -|x i | 2 |v i | 2 -2 1≤k<l≤n x k x l v k v l = m 2 r 2 + 1≤k<l≤n |z kl | 2 , since v 0 = m 2 + |v| 2 .
Finally, using the Cauchy-Schwarz inequality,

2v L = v 0 - x i r v i ≥ m 2 v 0 + |v| ≥ m 2 2v 0 .
As for the sets of vector elds, we consider an ordering on k 0 with x µ vµ v 0 being the last weight. 

∂ µ Z β u(t, .) L 2 (R n ) , with Z β ∈ K |β| . Let f : [0, T [×R n x × P → R be a smooth function, with P = R n v or P = R n v \ {0}. For k ∈ N, we dene for all t ∈ [0, T [, f P0,k (t) := |β|≤k Z β f (t, ., .) L 1 x,v ,
with Z β ∈ P |β| 0 . We also dene, for q ∈ N and m ∈ {0, 1},

f P0,k,q,m (t) := |β|≤k |γ|≤q z γ Z β f (t, ., .) L 1 x,v , with Z β ∈ P |β| 0 and z γ ∈ k |γ| m .
Note that u K,0 corresponds to the energy

n µ=0 ∂ µ u L 2 (R n ) .

Decay estimates for the velocity averages

Recall the Klainerman-Sobolev inequality (see [START_REF] Sogge | Lectures on nonlinear wave equations[END_REF], Chapter II). For u a suciently regular function such that for all t ∈ [0, T [, u K, n+2 2 (t) < +∞, we have

∀ (t, x) ∈ [0, T [×R n , |∇ t,x u(t, x)| u K, n+2 2 (t) 
(1 + t + |x|) n-1 2 (1 + |t -|x||) 1 2 
.

(2.14)

In particular, if

u = 0 then u K, n+2 2 
is constant, as (even for the free transport equation T 1 (f ) = 0 or T 0 (f ) = 0). It is only the velocity averages of f , such as v f dv, that decay. For instance, we have the following classical estimate.

Z β u = 0 for all Z β ∈ K |β| .
Lemma 2.2.12. Let f be the solution of T 1 (f ) = 0 which satises f (0, ., .) = f 0 , with f 0 a smooth function compactly supported in v. Then, if R is such that f 0 (., v) = 0 for all |v| ≥ R,

∀ (t, x) ∈ R + × R n , v∈R n |f (t, x, v)|dv ≤ √ 1 + R 2 n+2 t n f 0 L 1 x L ∞ v .
Proof. We x (t, x) ∈ R + × R n . By the method of characteristics, we obtain that

∀ v ∈ R n , f (t, x, v) = f 0 x - v v 0 t, v . We now use the change of variables y = v v 0 . Then, v∈R n |f (t, x, v)|dv = |y|<1 |f 0 (x -ty, y 1 -|y| 2 )| 1 1 -|y| 2 n+2 dy.
Using the hypothesis on the support of f 0 , we have

v∈R n |f (t, x, v)|dv ≤ 1 + R 2 n+2 |y|< R √ 1+R 2 f 0 (x -ty, .) L ∞ v dy.
A last change of variables (z = x -ty) gives the result.

Klainerman-Sobolev inequalities for velocity averages

As we can expect decay on the velocity average of a solution of a relativistic transport equation (and not on the solution itself ), we will then use the following Klainerman-Sobolev inequalities.

Theorem 2.2.13. Let T > 0 and f be a smooth function dened on

[0, T [×R n x ×R n v or [0, T [×R n x ×(R n v \{0}).
Then

∀ (t, x) ∈ [0, T [×R n , v∈R n |f (t, x, v)|dv f P0,n (t) τ n-1 + τ - .
A proof of this inequality can be found in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] (see Theorem 7). We then deduce the following result.

Corollary 2.2.14. Let T > 0, q ∈ N, m ∈ {0, 1} and f be a smooth function dened on [0, Remark 2.2.15. All the results of this section are true if we add a v 0 -weight (we can for instance study

T [×R n x × R n v or [0, T [×R n x × (R n v \ {0}). Then ∀ |γ| ≤ q, (t, x) ∈ [0, T [×R n , v∈R n |z γ f (t, x, v)|dv f P0,n,q,m (t) τ n-1 + τ - , with z γ ∈ k |γ| m . Proof. Let |β| ≤ n, |γ| ≤ q, Z β ∈ P |β| 0 and z γ ∈ k |γ| m . By Lemma 2.2.8, we have | Z β (z γ f )| |β0|≤|β| |γ0|≤|γ| |w γ0 Γ β0 f |,
v∈R n (v 0 ) k |f |dv, for k ∈ Z).
We just need to modify the norms in the same way. For instance,

∀ (t, x) ∈ [0, T [×R n , v∈R n (v 0 ) k |f |dv |β|≤n (v 0 ) k Z β f (t, ., .) L 1 x,v τ n-1 + τ - .

The Vlasov-Maxwell system Presentation

In order to introduce the Vlasov-Maxwell system, we abusively use the notation

∇ v f =      0 ∂f ∂v 1 . . . ∂f ∂v n     
.

For a suciently regular function f , we recall that

(J(f ) ν ) 0≤ν≤n =      v f dv v f v 1 v 0 dv . . . v f v n v 0 dv      , with v 0 = m 2 + |v| 2 ,
where the mass m depends on the species considered. Let K ∈ N * . The equation [START_REF] Andersson | Hidden symmetries and decay for the Vlasov equation on the Kerr spacetime[END_REF] of the Vlasov-Maxwell system, for the species k, can be rewritten as

T m k (f k ) + e k F (v, ∇ v f k ) = 0.
(2.16)

Note that the initial data needs to satisfy ∇ i (F 0 ) i0 = e k J(f 0k ) 0 and ∇ i ( * F 0 ) iα1...αn-30 = 0.

It is well known that in 3d the electric eld and the magnetic eld are solutions to a wave equation. In dimension n and in the context of the Vlasov-Maxwell system (and more precisely, with equations (2.2) and (2.3)), we have

∀ 1 ≤ i ≤ n, E i = K k=1 e k v∈R n ∂ i f k + v i m 2 k + |v| 2 ∂ t f k dv, (2.17) 
with E i = F 0i , and 17

∀ 1 ≤ i < j ≤ n, F ij = K k=1 e k v∈R n v j m 2 k + |v| 2 ∂ i f k - v i m 2 k + |v| 2 ∂ j f k dv.
(2.18)

We end this subsection by the following proposition, which gives an alternative form of the Maxwell equation.

Proposition 2.2.16. The Maxwell equations

∇ µ G µν =M ν ∇ µ * G µα1...αn-2 = 0,
for a 2-form G and a 1-form M , are equivalent to

∇ [λ G µν] = 0 ∇ [λ * G α1...αn-1] =(-1) n+1 (n-1)! 2 ε λα1...αn M αn , Proof.
That ensues from straightforward calculations. Let us consider the equation ∇ i G i0 = M 0 . For 1 ≤ i ≤ n, we denote by (m i j ) 1≤j≤n-1 the n -1 integers of 1, n \ {i} ranked in ascending order. We have, without any summation, *

G m i 1 ...m i n-1 = G 0i ε 0im i 1 ...m i n-1 = G i0 ε im i 1 ...m i n-1 .
Hence,

∇ i G i0 = n i=1 ε im i 1 ...m i n-1 ∇ i * G m i 1 ...m i n-1 = 2 (n -1)! ∇ [1 * G 2...n] .
It only remains to remark that

M 0 = (-1) n+1 ε 1...n0 M 0 .
For the equation ∇ µ * G µ3...n = 0, we note that *

G 03...n = G 12 , * G 13...n = G 02 , * G 2...n = G 10 . So ∇ µ * G µ3...n = ∇ 0 G 21 + ∇ 1 G 02 + ∇ 2 G 10 .
It then comes that

∇ [0 G 12] = 0.
The remaining equations can be treated similarly.

For the remaining of this section, we consider the maximal smooth solution (f := (f 1 , .., f K ), F ) to the Vlasov-Maxwell system, dened on [0, T [, arising from initial data (f 0 , F 0 ), so that f is a vector valued eld (f 1 , .., f K ). However, to lighten the notations, we will often denote (by a small abuse of notation) by f only one of the f i and we will suppose, without loss of generality for the results establish below, that the charge of the species associated to f is equal to 1. 17 In dimension n > 3, the magnetic eld is a 2-form dened by B ij = -F ij but we make the choice to work with F ij .

The electromagnetic potential

In order to establish energy estimates for the electromagnetic eld, it is useful to introduce a potential in the Lorenz gauge. Denition 2.2.17. A 1-form A is said to be a potential of the electromagnetic eld F if

F = dA or, in coordinates, F µν = ∂ µ A ν -∂ ν A µ .
A satises the Lorenz gauge condition if moreover

∂ µ A µ = 0.
Every electromagnetic eld F dened on R n+1 , which is contractible, has a potential since dF = 0. Furthermore, if A is a potential then, for χ a regular function, A + dχ is also a potential. In particular, if A is a potential and χ solves χ = -∂ µ A µ then A + dχ is a new potential satisfying the Lorenz gauge. The following lemma will be useful to study the derivatives of F in the Lorenz gauge.

Lemma 2.2.18. If A is a potential satisfying the Lorenz gauge for an electromagnetic eld G, i.e.

dA = G and ∂ µ A µ = 0, then, for all Z ∈ K, dL Z (A) = L Z G and ∂ µ L Z (A) µ = 0.
Let us mention the wave equation satised by the potential in the Lorenz gauge.

Proposition 2.2.19. Let (f, F ) be a solution to the Vlasov-Maxwell system and A be a potential of the electromagnetic eld F which satises the Lorenz gauge. Then, for all Z β ∈ K |β| and 0 ≤ µ ≤ n, there exists constants C µ γ such that

L Z β A µ = |γ|≤|β| C µ γ e k v∈R n v µ v 0 Z γ f k dv, with Z γ ∈ P |γ| 0 . Proof. As F µν = ∂ µ A ν -∂ ν A µ and ∂ µ A µ = 0, we have for 0 ≤ ν ≤ n ∂ µ ∂ µ A ν = ∇ µ F µν .
It remains to apply this to L Z β A (see Lemma 2.2.18) and to use Proposition 2.2.30 below.

The following proposition shows how we can construct a potential in the Lorenz gauge which is initially controled by the energy (at the time 0) of the electromagnetic eld.

Proposition 2.2.20. We suppose here that n ≥ 4. Let N ∈ N and let F be a closed 2-form such that all the norms considered below are nite and F (0, .)

∈ L 2 (R n ).
Then, there exists a potential A in the Lorenz gauge such that, for all |β| ≤ N ,

L Z β A L 2 (R n ) (0) |γ|≤N -1 1≤i≤n (1 + |x|) |γ|+1 ∂ γ F 0i (0, .) L 2 (R n ) + |γ|≤N 1≤i≤n (1 + |x|) |γ| ∂ γ ∂ j F ji (0, .) L 2 x + (1 + |x|) |γ|+1 ∂ γ ∂ j F ji (0, .) L 1 x , with Z β ∈ K |β| .
We start by a technical lemma.

Lemma 2.2.21. Let G such that

(1 + |x|)G L 1 (R n ) + G L 2 (R n ) < +∞ and R n Gdx = 0.
Then, denoting by F the Fourier transform (in x),

F -1 -1 |ξ| 2 F(G) L 2 (R n ) (1 + |x|)G L 1 (R n ) + G L 2 (R n ) .
Proof. We have

F -1 -1 |ξ| 2 F(G) L 2 (R n ) = 1 |ξ| 2 F(G) L 2 (R n ) F(G) L 2 (|ξ|≥1) + 1 |ξ| 4 F(G) 2 1 2 L 1 (|ξ|≤1) . Note now that F(G) L 2 (|ξ|≥1) ≤ G L 2 (R n ) . Finally, as (1 + |x|)G L 1 (R n ) is nite, F(G) is of class C 1
and vanishes at 0, so, using the mean value theorem,

F(G) |ξ| 4 1 2 L 1 (|ξ|≤1) ∇ ξ F(G) L ∞ ξ 1 |ξ| 3 1 2 L 1 (|ξ|≤1) |x|G L 1 (R n ) , since F (g) L ∞ ξ ≤ g L 1 x
for any L 1 function g.

The rst step of the construction of the suitable potential is contained in the following lemma.

Lemma 2.2.22. There exists a potential A of the electromagnetic eld F satisfying the Lorenz gauge and such that

A 0 (0, .) = 0, ∂ t A 0 (0, .) = 0,
and

∀ 1 ≤ k ≤ n, A k H 2 (R n ) (0) ≤ ∂ j F jk (0, .) L 2 x + (1 + |x|)∂ j F jk (0, .) L 1 x .
This implies in particular that

∀ 1 ≤ k ≤ n, ∂ t A k (0, .) = F 0k (0, .
) and ∆A k (0, .) = ∂ i F ik (0, .).

(2. [START_REF] Georgiev | Decay estimates for the Klein-Gordon equation[END_REF] Proof.

Suppose that A exists. As ∂ t A 0 (0.) = 0 and ∂ µ A µ = 0, we have

∂ i A i (0.) = 0. Combined with ∂ µ A ν - ∂ ν A µ = F µν and A 0 (0, .) = 0, it comes that at t = 0, ∀ 1 ≤ k ≤ n, ∂ t A k = F 0k and ∆A k = ∂ i F ik .
(2.20) Moreover, recall from the proof of Proposition 2.2.19 that

∀ 0 ≤ ν ≤ n, A ν = ∇ µ F µν .
(2.21)

We then dene A ν as the solution of the wave equation (2.21) such that A 0 (0, .) = 0, ∂ t A 0 (0, .) = 0 and, for all 1 ≤ k ≤ n,

∂ t A k (0, .) = F 0k (0, .) and A k (0, .) = F -1 -1 |ξ| 2 F(∂ j F jk ) (0, .).
Consequently, according to Lemma 2.2.21, ∆A k (0, .) = ∂ j F jk and

A k L 2 (R n ) (0) ≤ ∂ j F jk (0, .) L 2 x + (1 + |x|)∂ j F jk (0, .) L 1 x .
From classical elliptic equations theory, we have

∇ 2 A k L 2 (R n ) = ∂ j F jk L 2 (R n ) and ∇A k ∈ L 2 (R n ), with ∇A k L 2 (R n ) A k L 2 (R n ) + ∇ 2 A k L 2 (R n ) ,
which concludes the proof.

Proof. [Proof of Proposition 2.2.20] We consider the potential A constructed in Lemma 2.2. [START_REF] Glassey | Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data[END_REF]. In what follows, we omit to specify that all the quantities are considered at t = 0. Since, for instance,

∀ 1 ≤ i, j ≤ n, Ω 0i Ω 0j A = x i ∂ j A + x i x j ∂ t ∂ t A,
we have (and it is sucient) to estimate x β ∂ γ t,x A L 2 (R n ) , with |β| ≤ |γ| ≤ N , in order to control

Z ξ ∈K |ξ| |ξ|≤N L Z ξ A L 2 (R n ) (0).
Note that, as ∂ µ A µ = 0,

x β ∂ γ t,x ∂ t A 0 L 2 (R n ) ≤ n k=1 x β ∂ γ t,x ∂ k A k L 2 (R n ) ,
so that, since A 0 = 0, we only have to bound

x β ∂ γ t,x A k L 2 (R n ) , for all 1 ≤ k ≤ n. Let 1 ≤ k ≤ n, |γ| ≤ N -1 and |β| ≤ |γ| + 1. Then, since ∂ t A k = F 0k (see Lemma 2.2.22), x β ∂ γ t,x ∂ t A k = x β ∂ γ t,x F 0k , so x β ∂ γ t,x ∂ t A k L 2 x (1 + |x|) |γ|+1 ∂ γ F 0k L 2 x .
The remaining case, where there are only spatial translations, is treated in the following lemma.

Lemma 2.2.23. For all 1 ≤ k ≤ n, |γ| ≤ N and |β| ≤ |γ|,

x β ∂ γ A k L 2 (R n ) |β0|≤|γ0|≤N x β0 ∂ γ0 ∂ j F jk L 2 x + (1 + |x|)x β0 ∂ γ0 ∂ j F jk L 1 x , where γ, β ∈ N n , x β = x β1 1 ...x βn n and ∂ γ = ∂ γ1 1 .
..∂ γn n , so there are no time derivatives. Proof. We x 1 ≤ k ≤ n and we proceed by induction on |β|. As ∆A k = ∂ j F jk , we have, for all |γ| ≤ N -2,

∀ 1 ≤ k ≤ n, ∆∂ γ A k = ∂ γ ∂ j F jk So, by classical elliptic equations theory, ∀ |γ| ≤ N -2, ∇ 2 ∂ γ A k L 2 (R n ) = ∂ γ ∂ j F jk L 2 (R n ) ,
implying the result for |β| = 0 (the case of the lower order derivatives is treated in Lemma 2.2.22). Let 1 ≤ |β| ≤ N . We suppose that for all |δ| ≤ |γ| ≤ N and |δ| ≤ |β| -1,

x δ ∂ γ A k L 2 (R n ) |β0|≤|γ0|≤N x β0 ∂ γ0 ∂ j F jk L 2 x + (1 + |x|)x β0 ∂ γ0 ∂ j F jk L 1 x .
Let γ be a multi-index such that |β| ≤ |γ| ≤ N . We have

∆x β ∂ γ A k = ∆(x β )∂ γ A k + 2∂ j (x β )∂ j ∂ γ A k + x β ∂ γ ∂ j F jk . (2.22)
The rst two terms of the right hand side are equal to zero or can be rewritten as a linear combination of terms like

∂ γ2 (x δ ∂ γ1 A k ), (2.23) with |γ 2 | = 2, |γ 1 | ≤ |γ| -1 and |δ| ≤ |γ 1 |. For instance, 2∂ j (x q 1 )∂ j ∂ q 2 A k = 2q∂ 1 ∂ 2 (x q-1 1 ∂ q-1 2 A k ) -2q(q -1)∂ 2 2 (x q-2 1 ∂ q-2 2 A k ).
Let B be the right hand side of (2.22) and G = x β ∂ γ ∂ j F jk . G satises the hypothesis of Lemma 2.2.21 and B -G is a linear combination of terms such as (2.23), which implies

F -1 -1 |ξ| 2 F(B -G) L 2 (R n ) |γ1|≤|γ|-1 |δ|≤|γ1| x δ ∂ γ1 A k L 2 (R n ) .
So we only have to prove that

x β ∂ γ A k = F -1 -1 |ξ| 2 F(B) , (2.24) 
or (it is equivalent) that x β ∂ γ A k is the L 2 solution of ∆ϕ = B. Recall that the dierence of two solutions of this equation is an harmonic polynomial, so that there exists exactly one L 2 solution, given by the right hand side of (2.24). Consequently, there exists Q k,β,γ ∈ L 2 (R n ) and P k,β,γ an harmonic polynomial function such that

x β ∂ γ A k = Q k,β,γ + P k,β,γ .
By the induction hypothesis,

x δ ∂ γ A k ∈ L 2 (R n ) for all |δ| = |β| -1, so P k,β,γ 1 + |x| = x β 1 + |x| ∂ γ A k - 1 1 + |x| Q k,β,γ ∈ L 2 (R n ).
As the dimension is n ≥ 4 > 1, P k,β,γ is necessarily zero.

If the dimension n is at least 5, we can do better.

Proposition 2.2.24. We suppose here that n ≥ 5. Let N ∈ N and let F be a 2-form such that all the norms considered below are nite. There exists a potential in the Lorenz gauge such that, for all |β| ≤ N ,

L Z β A L 2 (R n ) (0) |γ|≤N -1 1≤i≤n (1 + |x|) |γ|+1 ∂ γ F 0i (0, .) L 2 (R n ) + |γ|≤N 1≤i≤n (1 + |x|) |γ| ∂ γ ∂ j F ji (0, .) L 2 (R n ) + (1 + |x|) |γ| ∂ γ ∂ j F ji (0, .) L 1 (R n ) , with Z β ∈ K |β| .
Proof.

The proof is similar to the previous one. The dierence comes from the fact ξ → 1 |ξ| 4 is integrable around 0 in R n , with n ≥ 5, which allows us to lower the hypothesis of Lemma 2.2.21.

Commutation properties

Commutation of the transport equation

We x the mass m ∈ R + and we denote by T F the operator 18T F : g → T m (g) + F (v, ∇ v g), so that T F (f ) = 0. We are now interested by the nature of the source terms of the equation T F ( Zf ) = G.

Lemma 2.2.25. If Z ∈ P, then

T F ( Zf ) = -L Z (F )(v, ∇ v f ).
For the scaling, we have

T F (Sf ) = 2F (v, ∇ v f ) -L S (F )(v, ∇ v f ).
Proof.

First of all, let us consider the scaling. According to Lemma 2.2.7,

T m (Sf ) = -S(F (v, ∇ v f )) + T m (f ). But, S(F (v, ∇ v f )) = L S (F )(v, ∇ v f ) + F ([S, v], ∇ v f ) + F (v, [S, ∇ v f ]). Since [S, v] = -v and [S, ∇ v f ] = ∇ v S(f ) -∇ v f, we obtain T F (Sf ) = 2F (v, ∇ v f ) -L S (F )(v, ∇ v f ). Now, let Z ∈ P and consider Z v = Z -Z. According to lemma 2.2.7, T m ( Zf ) = -Z(F (v, ∇ v f )) -Z v (F (v, ∇ v f )).
On the one hand, we have

Z v (F (v, ∇ v f )) = F (Z v (v), ∇ v f ) + F (v, Z v (∇ v f )).
On the other hand we have

Z(F (v, ∇ v f )) = L Z (F )(v, ∇ v f ) + F ([Z, v], ∇ v f ) + F (v, [Z, ∇ v f ]). As [Z, v] = -Z v (v), F (Z v (v), ∇ v f ) and F ([Z, v], ∇ v f ) cancel. If Z is a translation (we denote it by ∂), then Z v = 0 and [Z, ∇ v f ] = ∇ v ∂(f ). Thus T F (∂f ) = -L ∂ (F )(v, ∇ v f ). If Z = Ω ij , then Z v (∇ v f ) = ∇ v Z v (f ) + ∂ v i f ∂ j -∂ v j f ∂ i and [Z, ∇ v f ] = ∇ v Z(f ) -∂ v i f ∂ j + ∂ v j f ∂ i . Therefore T F ( Ω ij f ) = -L Ωij (F )(v, ∇ v f ). Finally, if Z = Ω 0i , then Z v (∇ v f ) = ∇ v Z v (f ) -∂ v i f v k v 0 ∂ k and [Z, ∇ v f ] = ∇ v Z(f ) -∂ v i f ∂ 0 . It comes that T F ( Ω 0i f ) = -L Ω0i (F )(v, ∇ v f ) + ∂ v i f v 0 F (v, v). It remains to remark that F (v, v) = 0 for all v ∈ R n , as F is a 2-form.
Iterating the above, one obtains Corollary 2.2.26. If β ∈ {1, ..., | P 0 |} r , with r ≥ 0, there exist integers C β γ,δ such that

T F ( Z β f ) = |γ|+|δ|≤r |δ|≤r-1 C β γ,δ L Z γ (F )(v, ∇ v Z δ (f )),
with Z β ∈ P r 0 , Z δ ∈ P |δ| 0 and Z γ ∈ K |γ| . Remark 2.2.27. If there is a source term G (such that T F (f ) = G), then we need to add a linear combination of terms such as Z β G, with | β| ≤ r, on the right hand side.

Commutation of the Maxwell equations

Before studying specically the Vlasov-Maxwell system, we recall the following general result. Proposition 2.2.28. Let M ν be a smooth 1-form and G µν a 2-form satisfying

∇ µ G µν =M ν ∇ µ * G µα1...αn-2 = 0.
Then, for all Z ∈ P,

∇ µ L Z (G) µν =L Z (M ) ν ∇ µ * L Z (G) µα1...αn-2 = 0.
For the scaling, we have

∇ µ L S (G) µν =L S (M ) ν + 2M ν ∇ µ * L S (G) µα1...αn-2 = 0.
In the Vlasov-Maxwell system, the source term is e k J(f k ) ν (see (2.2)), with

(J(f k ) ν ) 0≤ν≤3 =      v f k dv v f k v 1 v 0 dv . . . v f k v n v 0 dv     
, so we need to compute L Z (J(f )), with Z ∈ K and f a regular function.

Proposition 2.2.29. For all Z ∈ P,

L Z (J(f ) ν ) = J( Zf ) ν .
For the scaling, we have

L S (J(f ) ν ) = J(Sf ) ν + J(f ) ν . Proof. Let Z ∈ K, L Z J(f ) ν = ZJ(f ) ν + J(f ) µ ∂Z µ ∂x ν . So L ∂ J(f ) = J(∂f ), L S J(f ) = J(Sf ) + J(f ). If Z is a Lorentz boost, say x 1 ∂ t + t∂ 1 , then, as v v 0 ∂ v 1 f dv = - v f v 1 v 0 dv = -J(f ) 1 , v v 0 v i v 0 ∂ v 1 f dv = -δ 1,i v f dv = δ 1,i J(f ) 0 and J(f ) µ Ω µ 01 ∂x ν = J(f ) 1 δ ν,0 + J(f ) 0 δ ν,1 , it comes that L Ω01 J(f ) = J( Ω 01 f ).
The case where Z is a rotation is similar.

Iterating the above, we obtain the following proposition.

Proposition 2.2.30. Let (f, F ) be a smooth solution of the Vlasov-Maxwell system. For all β ∈ {1, ..., |K|} r , with r ∈ N, there exist integers C β γ such that

∇ µ L Z β (F ) µν = e k J( Z β f k ) ν + |γ|≤|β|-1 C β γ e k J( Z γ f k ) ν , ∇ µ * L Z β (F ) µα1...αn-2 = 0,
with Z β ∈ K r and Z γ ∈ P |γ| 0 .

Energy estimates for the Vlasov-Maxwell system

For all this section, we consider a suciently regular solution (f, F ), on [0, T [, to the Vlasov-Maxwell system arising from smooth initial data (f 0 , F 0 ).

Energy estimates for the transport equation

We treat here the massless and the massive case together. As the set {v = 0} is of measure zero, we write v∈R n hdv, or merely v hdv, even when the function h is not dened for v = 0. We start by introducing the vector eld N µ (g) dened by, for a function g

: [0, T [×R n x × R n v → R, N µ (g) := v∈R n gv µ dv v 0 .
We have the following energy estimates.

Proposition 2.3.1. Let g and H be two smooth functions dened on

[0, T [× R n x × R n v such that T F (g) = H and k ∈ Z. Then, for all t ∈ [0, T [, Σt R n v |g|dvdx + √ 2 sup u≤t Cu(t) R n v |g| v L v 0 dvdC u (t) ≤ 2 Σ0 R n v |g|dvdx + 2 t 0 Σs R n v |H| dv v 0 dxds.
Proof. First, let us compute the (euclidian) divergence of N µ (|g|). Start by noticing that, in W 1,1 ,

T m (|g|) = v µ ∂ µ |g| = g |g| H -F (v, ∇ v |g|).
By integrations by parts and using F jj = 0 as well as

v i v j F ij = 0 (recall that F is a 2-form), we have v F (v, ∇ v |g|) dv v 0 = v v µ v 0 F µ j ∂ v j |g|dv = v v i v j (v 0 ) 3 F ij |g|dv = 0. Consequently, ∂ µ N µ (|g|) = v∈R n g |g| H -F (v, ∇ v |g|) dv v 0 = v∈R n g |g| H dv v 0 .
(2.25)

We now apply the divergence theorem to

N µ (|g|) in several region. Applied to [0, t] × R n , it gives Σt v |g|dvdx ≤ Σ0 v |g|dvdx + t 0 Σs v |H| dv v 0 dxds.
Applied to V u (t) and using that 1

√ 2 (∂ t -∂ r ) is the outward pointing unit normal eld to C u (t), it gives √ 2 Cu(t) v∈R n |g| v L v 0 dvdC u (t) ≤ Σ0 v |g|dvdx + t 0 Σs v |H| dv v 0 dxds.
The estimate then ensues from the combination of the two inequalities.

This estimate invites us to consider the following energies.

Denition 2.3.2. For N ∈ N and k ∈ Z, we dene, for g a suciently regular function,

E k N [g](t) = Z β ∈ P |β| 0 |β|≤N (v 0 ) k Z β g L 1 x,v (t) + sup u∈R Cu(t) R n | Z β g|(v 0 ) k v L v 0 dvdC u (t).
We also need the following norms. For q ∈ N and m ∈ {0, 1},

E k N,q,m [g](t) = Z β ∈ P |β| 0 |β|≤N z γ ∈k |γ| m |γ|≤q (v 0 ) k z γ Z β g L 1 x,v (t) + Z β ∈ P |β| 0 |β|≤N z γ ∈k |γ| m |γ|≤q sup u∈R Cu(t) v∈R n |z γ Z β g| v L v 0 (v 0 ) k dvdC u (t).
When k = 0, we drop the dependance in k of the energy norm. For instance,

E 0 N [g] is denoted by E N [g].
The following energy estimates hold.

Proposition 2.3.3. Let g and H be such that T F (g) = H. Then, assuming that g and H are suciently regular, we have for all N ∈ N and for all t ∈ [0, T [,

E N [g](t) -2E N [g](0) |β|≤N t 0 1 v 0 Z β H L 1 x,v (s)ds 
+ |γ|+|δ|≤N |δ|≤N -1 t 0 L Z γ (F ) v v 0 , ∇ v Z δ (g) L 1 x,v (s)ds 
and We also have an energy estimates which implies the weights transported by the ow. Proposition 2.3.5. Let g and H be two suciently regular functions such that T F (g) = H. For all N ∈ N, m ∈ {0, 1} and t ∈ [0, T [, we have

E 2 N [g](t) -2E 2 N [g](0) |β|≤N t 0 v 0 Z β H L 1 x,v (s) + v i F i0 Z β g L 1 x,v (s)ds + |γ|+|δ|≤N |δ|≤N -1 t 0 L Z γ (F )(v, ∇ v Z δ (g))v 0 L 1 x,v ( 
T F (v 0 ) 2 = F v, ∇ v (v 0 ) 2 = 2v µ v i F µi = -2v µ v 0 F µ0 = -2v i v 0 F i0 .
E N,1,m [g](t) -2E N,1,m [g](0) z∈km |β|≤N t 0 z v 0 Z β H L 1 x,v (s)ds + z∈km |β|≤N t 0 F v v 0 , ∇ v z Z β g L 1 x,v (s)ds 
+ z∈km |γ|+|δ|≤N |δ|≤N -1 t 0 zL Z γ (F ) v v 0 , ∇ v Z δ g L 1 x,v
(s)ds and

E 2 N,1,m [g](t) -2E 2 N,1,m [g](0) z∈km |β|≤N t 0 v 0 z Z β H L 1 x,v (s)ds 
+ z∈km |β|≤N t 0 zv i F i0 Z β g L 1 x,v (s) + v 0 F (v, ∇ v z) Z β g L 1 x,v (s)ds + z∈km |γ|+|δ|≤N |δ|≤N -1 t 0 v 0 zL Z γ (F )(v, ∇ v Z δ g) L 1 x,v (s)ds,
with Z δ ∈ P |δ| 0 , Z β ∈ P |β| 0 and Z γ ∈ K |γ| . Proof. Note that, for z ∈ k m and according to equations (2.12) and (2.13),

T F z Z β g = zT F Z β g + T F (z) Z β g = zT F Z β g + F (v, ∇ v z) Z β g.
The remaining of the proof is then similar to the one of Proposition 2.3.3.

Energy estimates for the wave equation

Recall that a potential A in the Lorenz gauge satises the wave equation 2.7. In order to bound its L 2 norm, we recall here a classical energy estimates for the wave equation using the vector eld K 0 . We mostly follow [START_REF] Sogge | Lectures on nonlinear wave equations[END_REF], Chapter II.

During this subsection, we consider u : [0, T [×R n → R a smooth function such that

u L 2 (R n ) (0) + Z∈K Zu L 2 (R n ) (0) < +∞.
We also introduce its energy momentum tensor

T µν [u] = ∂ µ u∂ ν u - 1 2 η µν η σρ ∂ σ u∂ ρ u.
Since K 0 is merely a conformal Killing vector eld and as

T µν [u] is not traceless, T µν [u]K ν 0 is not divergence free when u = 0. In fact ∇ µ (T µν [u]K ν 0 ) = uK 0 u + 1 2 T µν [u]π µν , with π µν = ∂ µ K ν 0 + ∂ ν K µ 0 . Since K 0 is a conformal vector eld of conformal factor 4t, π µν = 4tη µν . So ∇ µ (T µν [u]K ν 0 ) = uK 0 u + (1 -n)t∂ µ u∂ µ u.
The equality

t∂ µ u∂ µ u = ∂ µ (tu∂ µ u) -∂ µ (t)u∂ µ u -tu u = ∂ µ tu∂ µ u - 1 2 u 2 ∂ µ t -tu u,
suggests us to introduce the 1-form | u||K 0 u + (n -1)tu|dΣ s ds.

P µ = T µν [u]K ν 0 + (n -1)tu∂ µ u - n -1 2 u 2 ∂ µ t.
The rst thing to verify is that Σt P 0 dΣ t can be compared with the L 2 norm of u (and of its derivatives).

Proposition 2.3.7. We suppose that n ≥ 3. We have, for all t ∈ [0, T [,

|β|≤1 Z β u 2 L 2 (R n ) (t) Σt P 0 dΣ t |β|≤1 Z β u 2 L 2 (R n ) (t).
Proof.

Let us rst remark that

P 0 = 1 2 (1 + |x| 2 + t 2 )|∇ t,x u| 2 + 2tx i ∂ i u∂ t u + (n -1)tu∂ t u - n -1 2 u 2 .
Moreover,

(1 + |x| 2 + t 2 )|∇ t,x u| 2 + 4tx i ∂ i u∂ t u = |∇ t,x u| 2 + |Su| 2 + 0≤µ<ν≤n |Ω µν u| 2 together with R n 2tu∂ t udx = R n 2uSu -x i ∂ i (u 2 )dx = R n 2uSu + nu 2 dx (2.26)
gives

Σt P 0 dΣ t = 1 2 Σt |∇ t,x u| 2 + |Su + (n -1)u| 2 + 0≤µ<ν≤n |Ω µν u| 2 dΣ t . (2.27) 
This proves the second inequality and reduces the rst one to

u 2 L 2 (R n ) (t) + Su 2 L 2 (R n ) (t) Σt P 0 dΣ t .
In order to transform R n 2tu∂ t udx in an alternative expression, we remark that

2u∂ t u = 2u 1 r Ω 0r u - t r 2 x i ∂ i (u 2 ), with Ω 0r = x i r Ω 0i .
So, by integration by parts,

R n 2tu∂ t udx = R n 2 t r uΩ 0r u + (n -2) t 2 r 2 u 2 dx.
Combined with equation (2.26), we get

R n 2(n -1)tu∂ t u -(n -1)u 2 dx = 2n -3 2 R n 2uSu + nu 2 dx + 1 2 R n 2 t r uΩ 0r u + (n -2) t 2 r 2 u 2 dx -(n -1) R n u 2 dx.
It then comes that (2.28)

The integral in (2.28) is nonnegative since

|Ω 0r u| 2 = x i r Ω 0i u 2 ≤ n i=1 |Ω 0i u| 2 and |Ω 0r u| 2 + t r uΩ 0r u + (n -2) t 2 2r 2 u 2 = Ω 0r u + t 2r u 2 + (2n -5) t 2 4r 2 u 2 .
Consequently,

u 2 L 2 (R n ) (t) + Su 2 L 2 (R n ) (t) Σt P 0 dΣ t comes from |Su| 2 + 2 2n -3 2 uSu + 2n 2 -5n + 2 2 u 2 = Su + 2n -3 2 u 2 + 2n -5 4 u 2 
and from

|Su| 2 + 2 2n -3 2 uSu + 2n 2 -5n + 2 2 u 2 = 2n -3 √ 4n 2 -10n + 4 Su + n 2 - 5 2 n + 1 1 2 u 2 + 2n -5 4n 2 -10n + 4 |Su| 2 .
Remark 2.3.8. We also proved that

Σt t 2 r 2 u 2 dΣ t Σt P 0 dΣ t .
Finally, we obtain the expected estimate.

Proposition 2.3.9. We have, for all t ∈ [0, T [,

|β|≤1 Z β u 2 L 2 (R n ) (t) |β|≤1 Z β u 2 L 2 (R n ) (0) + |β|≤1 t 0 Σs |Z β u||τ + u|dxds, with Z β ∈ K if |β| = 1, leading to, for all t ∈ [0, T [, |β|≤1 Z β u L 2 (R n ) (t) |β|≤1 Z β u L 2 (R n ) (0) + t 0 τ + u L 2 (R n ) ds.
Proof.

We have, according to Propositions 2.3.6 and 2.3.7,

|β|≤1 Z β u 2 L 2 (R n ) (t) |β|≤1 Z β u 2 L 2 (R n ) (0) + t 0 Σs | u||K 0 u + (n -1)tu|dxds.
The result then follows from Remark 2.2.10, which gives us

|K 0 u| τ 2 + |Lu| + τ 2 -|Lu| τ + Z∈K |Zu|.
We now apply this to the electromagnetic potential in the Lorenz gauge. Since we will need to estimate 

S (L Z β (A)) L 2 (R n ) in
E N [A](t) = n µ=0 |β|≤1 |γ|≤N Z β (L Z γ (A) µ ) 2 L 2 (R n ) (t).
Remark 2.3.11. Note that

n µ=0 |β|≤N +1 Z β A µ 2 L 2 (R n ) E N [A] n µ=0 |β|≤N +1 Z β A µ 2 L 2 (R n ) .
We work with E N [A] as we will apply Proposition 2.3.9 to L Z β (A) µ .

Using Proposition 2.3.9, we get the following result.

Proposition 2.3.12. Let N ∈ N and A µ be a suciently regular 1-form, dened on [0, T [×R n , such that

E N [A](0) < +∞. Then, ∀ t ∈ [0, T [, E N [A](t) E N [A](0) + n µ=0 |γ|≤N t 0 τ + L Z γ (A) µ L 2 (Σs) ds.

Energy estimates for the Maxwell equations

We prove three conservation laws for the Maxwell equations, using each time a dierent multiplier (∂ t , K 0 or S). In the study of the massive case, we will mostly use the one associated to the Morawetz vector eld.

For the remaining of this section, we consider a 2-form G and a current J, suciently regular and dened on [0, T [, such that

∇ µ G µν =J ν ∇ µ * G µλ1...λn-2 = 0.
The following lemmas hold. Lemma 2.3.13. We have, for all 0 ≤ ν ≤ n,

∇ µ T [G] µν = G νρ J ρ .

Proof.

According to Proposition 2.2.16,

G µρ ∇ µ G ν ρ = G µρ ∇ µ G νρ = 1 2 G µρ (∇ µ G νρ -∇ ρ G νµ ) = 1 2 G µρ ∇ ν G µρ = 1 4 ∇ ν (G µρ G µρ ). So, ∇ µ T [G] µν = ∇ µ (G µρ )G ν ρ + 1 4 ∇ ν (G µρ G µρ ) - 1 4 η µν ∇ µ (G σρ G σρ ) = G νρ J ρ .
Lemma 2.3.14. We have, denoting by (α, α, ρ, σ) the null decomposition of G,

T [G] LL = |α| 2 , T [G] LL = |α| 2 and T [G] LL = |ρ| 2 + |σ| 2 .
Using 

|α| 2 + |ρ| 2 + |σ| 2 dC u (t) ≤ Σ0 |α| 2 + |α| 2 + 2|ρ| 2 + 2|σ| 2 dx + 4 t 0 Σs |G 0µ J µ |dxds.
This explains the introduction of the following norms.

Denition 2.3.16. Let N ∈ N. We dene, for t ∈ [0, T [,

E 0 [G](t) = Σt |α| 2 + |α| 2 + 2|ρ| 2 + 2|σ| 2 dx + sup u≤t Cu(t) |α| 2 + |ρ| 2 + |σ| 2 dC u (t)
and

E 0 N [G](t) = |β|≤N E 0 N [L Z β (G)](t), with Z β ∈ K |β| .
Using the previous energy identities and commutation formula of Proposition 2.2.30, we obtain Proposition 2.3.17. For all N ∈ N and all t ∈ [0, T [, we have

E 0 N [F ](t) -2E 0 N [F ](0) |β|,|γ|≤N t 0 Σs |e k L Z β (F ) 0µ J( Z γ f k ) µ )|dxds, with Z β ∈ K |β| and Z γ ∈ P |γ| 0 . Using K 0 as a multiplier As T [G] is not traceless in dimension n ≥ 4, ∇ µ (T [G] µν K ν 0 )
does not necessarily vanishes when G solves the free Maxwell equations. We then consider, in the spirit of what is done for the wave equation, for A a suciently regular potential of G in the Lorenz gauge, the current

P µ = T [G] µν K ν + (n -3) tA β ∂ µ A β - 1 2 ∂ µ (t)A β A β -tA β ∂ β A µ + ∂ β (t)A β A µ .
In order to establish an energy estimate for the electromagnetic eld, we compute the divergence of P µ .

Lemma 2.3.18. We have

∇ µ P µ = G µν K ν 0 J µ + (n -3)tA β A β .
Proof. We have

∇ µ (T [G] µν K ν 0 ) = ∇ µ (T [G] µν )K ν 0 + T [G] µν ∇ µ K ν 0 . Since T [G] is symmetric, T [G] µν ∇ µ K ν 0 = 1 2 T [G] µν π µν , with π µν = ∇ µ K ν 0 + ∇ ν K µ 0 .
As K 0 is a conformal vector eld (of conformal factor 4t), we have

π µν = 4tη µν . Thus, T [G] µν ∇ µ K ν 0 = 2tT (G) µ µ = 3 -n 2 tG σρ G σρ .
Now, according to Lemma 2.3.13, we obtain that

∇ µ (T [G] µν K ν 0 ) = G νρ K ν 0 J ρ + 3 -n 2 tG σρ G σρ .
We now compute the divergence of

(n -3) tA β ∂ µ A β - 1 2 ∂ µ (t)A β A β -tA β ∂ β A µ + ∂ β (t)A β A µ . First, ∇ µ tA β ∂ µ A β = -A β ∂ 0 A β + t∂ µ A β ∂ µ A β + tA β A β .
Secondly,

∇ µ 1 2 ∂ µ (t)A β A β = A β ∂ 0 A β .
We also have, using in particular that in Lorenz gauge ∂ µ A µ = 0,

∇ µ tA β ∂ β A µ = -A β ∂ β A 0 + t∂ µ (A β )∂ β A µ + tA β ∂ β ∂ µ A µ = -A β ∂ β A 0 + t∂ µ (A β )∂ β A µ . Finally ∇ µ ∂ β (t)A β A µ = -∂ µ (A 0 )A µ -A 0 ∂ µ A µ = -∂ µ (A 0 )A µ .
Hence,

(n -3)∇ µ tA β ∂ µ A β - 1 2 ∂ µ (t)A β A β -tA β ∂ β A µ -∂ β (t)A β A µ = (n -3)tA β A β + (n -3)t(∂ µ A β ∂ µ A β -∂ µ A β ∂ β A µ ).
And, since

G µν = ∂ µ A ν -∂ ν A µ , 1 2 G µβ G µβ = ∂ µ A β ∂ µ A β -∂ µ A β ∂ β A µ ,
which gives us the result.

We are now ready to prove the following energy estimate.

Proposition 2.3.19. For all t ∈ [0, T [, Σt τ 2 + |α| 2 + τ 2 -|α| 2 + (τ 2 + + τ 2 -)(|ρ| 2 + |σ| 2 )dΣ t + (n -3) 2 n µ=0 A µ 2 L 2 (Σt) ≤ Σ0 (1 + r 2 )(|α| 2 + |α| 2 + |ρ| 2 + |σ| 2 )dΣ 0 + 4 t 0 Σs |K ν 0 G νµ J µ |dxds +(n -3) n µ=0 SA µ 2 L 2 (Σt) + 4(n -3) t 0 Σs s|A µ A µ |dxds.
Proof.

In order to apply the divergence theorem to

P µ in [0, t] × R n , we transform R n tA β ∂ t A β - 1 2 A β A β -tA β ∂ β A 0 -A 2 0 dx.
On the one hand, let us notice that

- 1 2 A β A β -A 2 0 = - 1 2 n β=0 A 2 β .
On the other hand, -t

R n A β ∂ β A 0 dx = -t R n A 0 ∂ 0 A 0 dx + t R n ∂ j (A j )A 0 dx = t∂ t R n A 2 0 dx, (2.29) since ∂ µ A µ = 0 in the Lorenz gauge. As t R n A β ∂ t A β dx = t 2 ∂ t R n A β A β dx, (2.30) 
we nally obtain that

R n tA β ∂ t A β - 1 2 A β A β -tA β ∂ β A 0 -A 2 0 dx = 1 2 n β=0 (t∂ t -1) A β 2 L 2 (R n ) .
The divergence theorem applied to P µ in [0, t] × R n gives, using Lemma 2.3.14 and 2.3.18,

Σt τ 2 + |α| 2 + τ 2 -|α| 2 + (τ 2 + + τ 2 -)(|ρ| 2 + |σ| 2 )dx ≤ 4 t 0 Σs |∇ µ P µ |dxds + Σ0 (1 + r 2 )(|α| 2 + |α| 2 + 2|ρ| 2 + 2|σ| 2 )dx + 2(n -3) n µ=0 Σt (1 -t∂ t )A 2 µ dx .
It only remains to use the last lemma and the inequality

-t∂ t Σt A 2 µ dx ≤ 1 -n 2 A µ 2 L 2 (Σt) + 1 2 SA µ 2 L 2 (Σt)
which ensues from (2.26).

This estimate justies the introduction of the following norms.

Denition 2.3.20. Let G be a 2-form dened on [0, T [ and N ∈ N. We dene, for all t ∈ [0, T [,

E[G](t) = Σt τ 2 + |α(G)| 2 + τ 2 -|α(G)| 2 + (τ 2 + + τ 2 -)(|ρ(G)| 2 + |σ(G)| 2 )dx and E N [G](t) = |β|≤N E[L Z β G](t), with Z β ∈ K |β| .
We then deduce, using Propositions 2.2.30, 2.3.19 and Lemma 2.2.18, an energy estimate for the electromagnetic eld F . Proposition 2.3.21. Let A be a suciently regular potential in the Lorenz gauge of F . We have, for all N ∈ N and all t ∈ [0, T [,

E N [F ](t) -E N [F ](0) -(n -3) |κ|≤N n µ=0 SL Z κ (A) µ 2 L 2 (Σt) + |κ|≤N t 0 Σs s|L Z κ (A) µ L Z κ (A) µ |dxds + |β|,|γ|≤N t 0 Σs |e k K ν 0 L Z β (F ) νµ J µ ( Z γ f k )|dxds with Z β ∈ K |β| , Z κ ∈ K |κ| and Z γ ∈ P |γ| 0 .
Using S as a multiplier

The main dierence with the previous case comes from the fact that the scaling is not a timelike vector eld.

Because of that we are not able to estimate all the null components of the electromagnetic eld with this energy estimate. We start by introducing, for A a potential of G satisfying the Lorenz gauge,

Q µ = T (G) µν S ν + n -3 2 (A β ∂ µ A β -A β ∂ β A µ ).
As the potential A satises the Lorenz gauge and since the conformal factor of the scaling is 2, we have

∇ µ Q µ = G µν S ν J µ + n -3 2 A β A β .
(2.31)

We can now state the energy estimate.

Proposition 2.3.22. For all t ∈ [0, T [,

Σt (t + r)|α| 2 + (t -r)|α| 2 + 2t(|ρ| 2 + |σ| 2 )dx + (n -3)∂ t n β=0 A β 2 L 2 (Σt) = 4 t 0 Σs ∇ µ Q µ dxds + Σ0 r(|α| 2 -|α| 2 )dx + (n -3)∂ t n β=0 A β 2 L 2 (Σ0) .
Proof.

Note rst that we proved, during the proof of Proposition 2.3.19 (see Equations (2.29) and (2.30)),

R n A β ∂ 0 A β -A β ∂ β A 0 dx = ∂ t 2 n β=0 A β 2 L 2 (R n ) .
It then remains to apply the divergence theorem to

Q µ on [0, T ] × R n (recall that 2S = (t + r)L + (t -r)L).
Note that (t -r)|α| 2 is not necessarily non negative, which invites us to transform the equality in the following estimate.

Proposition 2.3.23. For all t ∈ [0, T ],

Σt

(1 + |t -r|)|α| 2 dx ≤ Σ0 (1 + r)(|α| 2 + |α| 2 ) + 2|ρ| 2 + 2|σ| 2 dx +(n -3)(n + 2) E 0 [A](0) + 2 1 + t E[F ](t) + (n -3)(n + 2) 2 E 0 [A](t) +4 t 0 Σs |G 0µ J µ | + |S ν G µν J µ |dxds + 2(n -3) t 0 Σs |A µ A µ |dxds.
Proof. Adding the energy identities of Propositions 2.3.22 and 2.3.15, we can obtain,

Σt (1 + |t -r|)|α| 2 dx ≤ Σ0 (1 + r)(|α| 2 + |α| 2 ) + 2|ρ| 2 + 2|σ| 2 dx + Σt (t + r)|α| 2 + 2t(|ρ| 2 + |σ| 2 )dx + 4 t 0 Σs |G 0µ J µ | + |∇ µ Q µ |dxds +(n -3) ∂ t n β=0 A β 2 L 2 (R n ) (0) -A β 2 L 2 (R n ) (t) .
The result then ensues from the three following inequalities. Using Denition 2.3.20, one has

(1 + t) Σt (t + r)|α| 2 + 2t(|ρ| 2 + |σ| 2 )dx ≤ 2E[F ](t).
According to (2.31), we have

t 0 Σs |∇ µ Q µ |dxds ≤ t 0 Σs |S ν G µν J µ | + (n -3) 2 |A µ A µ |dxds.
Finally, Equation (2.26) gives us

(1 + t) ∂ t A µ 2 L 2 (Σs) ≤ SA µ 2 L 2 (Σs) + ∂ t A µ 2 L 2 (Σs) + (n + 2) A µ 2 L 2 (Σs) .
Let us introduce the following norms.

Denition 2.3.24. We dene, for N ∈ N and t ∈ [0, T [,

E S N [F ](t) = Z β ∈K |β| |β|≤N Σt τ -|α(L Z β (F ))| 2 dx.
Commuting the equation satised by the electromagnetic eld F and using the previous energy estimate, we get the following proposition (see the commutation formulas of Proposition 2.2.30 and Lemma 2.2.18).

Proposition 2.3.25. Let A a suciently regular potential of the the electromagnetic eld F in the Lorenz gauge. Then, for N ∈ N, we have, for all t ∈ [0, T [,

E S N [F ](t) -E N [F ](0) E N [A](0) + 1 1 + t E N [A](t) + E N [F ](t) + |β|,|γ|≤N |e k | t 0 Σs |L Z β (F ) 0µ J µ ( Z γ f k )| + |S ν L Z β (F ) νµ J µ ( Z γ f k )|dxds + |β|≤N t 0 Σs |L Z β (A) µ L Z β (A) µ |dxds, with Z β ∈ K |β| and Z γ ∈ P |γ| 0 .
Later, we will have, in the 4 dimensional massless case, a strong loss on E N [F ] which will lead to a poor pointwise decay estimate on |α|. With this inequality, we will avoid the τ + -loss and we will have an extra τ --decay (which is not given by Proposition 2.3.17).

Some technical results

An integral estimate

The following lemma is useful so as to estimate a quantity like

t 0 R n |u(s, x)| v |f (s, x, v)|dvdxds,
where we already have a bound on u(s, .) L 2 and a pointwise decay estimate on v |f (s, x, v)|dv. Then

∃ C a,b,m > 0, ∀ t ∈ R + +∞ 0 r m-1 τ a + τ b - dr ≤ C a,b,m 1 + t b-1 1 + t a+b-m .
A proof of this estimate can be found in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], Appendix B.

The null coordinates of

∇ v f Let f : [0, T [×R n × R n be a smooth function. We designate by ((∇ v f ) L , (∇ v f ) L , (∇ v f ) B , .
..) the null components of ∇ v f . Later, we will have to transform the v-derivatives in combinations of P 0 -derivatives. If we only use the relation

v 0 ∂ v k = Ω 0k -t∂ k -x k ∂ t , (2.32) we get that (∇ v f ) L , (∇ v f ) L , (∇ v f ) B ≤ τ + v 0 Z∈ P0 | Zf |, (2.33) 
which will not be good enough to close the energy estimates (for the Vlasov-Maxwell system).

We then use the following lemma.

Lemma 2.4.2. Let f be a smooth function. We have

(∇ v f ) L , (∇ v f ) L ≤ τ - v 0 Z∈ P0 | Zf |.
Proof.

Since (∇ v f ) 0 = 0 (by denition),

(∇ v f ) L = x i r ∂ v i f. Now, we use ∂ v i = 1 v 0 ( Ω 0i -t∂ i -x i ∂ t ). As x i rv 0 (t∂ i + x i ∂ t ) = 1 v 0 (t∂ r + r∂ t ) = 1 v 0 (S + (r -t)L),
we have

(∇ v f ) L = x i rv 0 Ω 0i f - 1 v 0 Sf + t -r v 0 Lf. It only remains to notice that (∇ v f ) L = -(∇ v f ) L , since (∇ v f ) 0 = 0.
We are now interested in (∇ v f )

B

. During the study of the Vlasov equation, each time that (2.33) is not sucient to close the estimates, (∇ v f ) B is multiplied by v L , which reects the null structure of the system. This leads us to study v

L (∇ v f ) B . Lemma 2.4.3. For 1 ≤ i ≤ n, we have 2v L x i r = v 0 x i r -v i + z ij x j r 2 ,
where

z µν = x ν v µ -x µ v ν . Remark 2.4.4. If µ = ν, zµν v 0 ∈ k 1 and if µ = ν, then z µµ = 0. Proof.
For simplicity, we take i = 1. We have

2v L x 1 r = x 1 v 0 r - x 1 r 2 x i v i = x 1 v 0 r -v 1 + z 1j x j r 2 .
And we obtain Corollary 2.4.5. Let i, j ∈ 1, n such that i = j. We have

2v L x i r ∂ v j - x j r ∂ v i = x i r + z ik x k v 0 r 2 Ω 0j - x j r + z jk x k v 0 r 2 Ω 0i -Ω ij - x i (t -r) r + tx k z ik r 2 v 0 ∂ j + x j (t -r) r + tx k z jk r 2 v 0 ∂ i - z ij v 0 ∂ t .
Proof. By the previous lemma,

2v L x i r ∂ v j - x j r ∂ v i = v 0 x i r + z ik x k r 2 ∂ v j - v 0 x j r + z jk x k r 2 ∂ v i -Ω ij + x i ∂ j -x j ∂ i . Now, using the relation v 0 ∂ v k = Ω 0k -t∂ k -x k ∂ t , we have 2v L x i r ∂ v j - x j r ∂ v i = x i r + z ik x k v 0 r 2 Ω 0j - x j r + z jk x k v 0 r 2 Ω 0i -Ω ij +x i ∂ j -x j ∂ i - t v 0 v 0 x i r + z ik x k r 2 ∂ j + t v 0 v 0 x j r + z jk x k r 2 ∂ i - z ij v 0 ∂ t . It remains to remark that t v 0 x i r -v 0 x i = v 0 x i r (t -r).
The naive estimation gave us

v L (∇ v f ) B |x||∂ t f | + n k=1 | Ω 0k f | + t|∂ k f | ,
whereas, with this lemma and the fact that

(∇ v f ) B is a combination with bounded coecients of x i r ∂ v j f - x j r ∂ v i f 1≤i<j≤n , we have v L (∇ v f ) B Z∈ P | Zf | + 1≤i<j≤n |z ij | v 0 |∂ t f | + n k=1 (τ -+ t n i=1 |z ki | rv 0 )|∂ k f |.
(2.34)

Therefore, with the last corollary, we transform a t-loss (and a |x|-loss) in a τ --loss and a t r -loss (thanks, among others, to the weights transported by the ow). It is particularly useful when we look for an estimate of

v |v L (∇ v Z β f ) B |dv L 2
x and we already have an estimate of v v 0 |z Z δ f |dv. We can then use Lemma 2.4.1.

One can also transform the t r -loss.

Lemma 2.4.6. For 1 ≤ j ≤ n,

x j (t -r) r + tx k z jk r 2 v 0 τ - z∈k1 |z|.
Proof. We obviously have τ -1 -

x j (t-r) r ≤ v 0 v 0 .
For the second term, we need to study dierent cases.

If r ≤ 1, then τ -1 - tx k z jk r 2 v 0 = t τ - x k r x k v j -x j v k rv 0 1 v 0 n i=1 |v i |.
Otherwise, r ≥ 1, and

τ -1 - tx k z jk r 2 v 0 ≤ t τ -r x k r |z jk | v 0 . It remains to note that if r ≤ t 2 , τ -≥ t 2 and if r ≥ t 2 , then t r ≤ 2.
One then obtains the following result.

Proposition 2.4.7. We have

v L (∇ v f ) B τ - Z∈ P z∈k1 |z Zf |.
Note that later, in Sections 2.6.6 and 2.7.6, when we will establish an estimate on

v | Z β f |dv L 2 x , we
will not be able to apply Propositions 2.4.7 or 2.4.2. A vector X will contain various derivatives of f and we will split it in two vectors H + G such that

T F (H) = 0, with H(0) = X(0), and T F (G) = T F (X), with G(0) = 0. Note yet that, for instance, if X µ is ∂ µ f and X S is S(f ), we have x µ X µ = X S whereas we do not necessarily have x µ G µ = G S .

Some Sobolev inequalities

The following results come from [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF] and in order to be self-sucient, we also recall their proof. We will use them to prove pointwise decay estimate for the electromagnetic eld.

We rst recall two classical Sobolev inequalities.

Lemma 2.4.8. Let u : R n → R be a suciently regular function. We have

∀ x ∈ R n , |u(x)| |β|≤ n+2 2 ∂ β u L 2 y (|y-x|≤1) .
Let v : S n-1 → R a suciently regular function (where S n-1 is the unit sphere in R n ). We have

∀ ξ ∈ S n-1 , |v(ξ)| |β|≤ n 2 ∇ Z β v L 2 (S n-1 ) , with Z β ∈ O |β| .
In order to treat the interior of the light cone (or rather the domain in which |x| ≤ 1 + 1 2 t), we will use.

Lemma 2.4.9. Let U be a smooth tensor eld dened in the Euclidian space R n . Then,

∀ t ∈ R + , sup |x|≤1+ t 2 |U (x)| 1 (1 + t) n 2 n+2 2 k=0 (1 + t) k ∇ k U L 2 ({|y|≤3+ 3 4 t}) .
Proof.

As it suces to prove the result for each component of the tensor, we assume that U is a scalar function.

Let t ∈ R + and |x| ≤ 1 + 1 2 t. If t ≤ 1, then |x| ≤ 2, so, according to Lemma 2.4.8, |U (x)| |β|≤ n+2 2 ∇ β U L 2 y (|y|≤3) . Now, if t ≥ 1, we apply Lemma 2.4.8 to y → U (x + t 4 y). It comes that (after a change of variables) |U (x)| t 4 -n 2 |β|≤ n+2 2 t 4 |β| ∇ β U L 2 y (|y-x|≤ t 4 )
.

It remains to observe that |y -x| ≤ t 4 imply |y| ≤ 1 + 3 4 t.

For the other region (|x| ≥ 1 + 1 2 t), we have the following inequality.

Lemma 2.4.10. Let U be a suciently regular tensor eld, which in particular vanishes at ∞, dened in the euclidian space R n . Then, for t ∈ R + ,

∀ x = 0, |U (x)| 1 |x| n-1 2 τ 1 2 - |y|≥|x| |U (y)| 2 O, n 2 + τ 2 -|∇ ∂r U (y)| 2 O, n 2 dy 1 2
.

Proof.

As

|β|≤k |∇ Z β U | 2 |U | 2 O,k , for Z β ∈ O |β| ,
we only have to prove the result for each component of U and we can assume that U is a scalar function.

Let x = 0 such that x = rξ, with r = |x| and ξ ∈

S n-1 . Since ∂ r ( √ τ -U ) 2 = 2 √ τ -U ∂ r ( √ τ -U ), τ -|U (rξ)| 2 r -(n-1) +∞ r | √ τ -U (λξ)|∂ r ( √ τ -U )(λξ)|λ n-1 dλ.
Therefore, an integration over S n-1 and the inequality 2|ab| ≤ a 2 + b 2 gives us

U (rξ) L 2 ξ (S n-1 ) r -n-1 2 τ -1 2 - |y|≥r |U (y)| 2 + τ 2 -|∂ r U (y)| 2 dy 1 2
.

As every vector eld of O commute with ∂ r , we obtain, using Lemma 2.4.8,

|U (x)| r -n-1 2 τ -1 2 - |y|≥r |U (y)| 2 O, n 2 + τ 2 -|∂ r U (y)| 2 O, n 2 dy 1 2 
.

Pointwise decay estimate for the null decomposition of the electromagnetic eld

In this section, we recall some inequalities coming from [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF] between quantites linked to the null decomposition of a 2-form (see Section 2.2.1 for its denition) and we then prove pointwise decay estimates on it. However, we cannot adapt the method used in [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF] to establish, in dimension 3, the optimal decay estimate on the null component α. To circomvent this dicuty, we make crucial use of an electromagnetic potential satisfying the Lorenz gauge. We rst introduce some notations.

Denition 2.4.11. Let F be a 2-form. We dene its pointwise norm |F | # by

|F | # = τ 2 + |α| 2 + τ 2 -|α| 2 + (τ 2 -+ τ 2 + )(|ρ| 2 + |σ| 2 ), which is also equal to 4T [F ](K 0 , ∂ t ).
We also dene, for

L = O or L = K and k ∈ N, |F | # L,k = |β|≤k (|L Z β F | # ) 2 , with Z β ∈ L |β| .
Similarly, we dene

|F | = |α| 2 + |α| 2 + 2(|ρ| 2 + |σ| 2 )
and

|F | L,k = Z β ∈L |β| |β|≤k |L Z β F | 2 .
Remark 2.4.12. By denition of

|F | # , it comes that τ -|F | ≤ |F | # .
We have the following inequality (cf Remark 2.2.10).

Lemma 2.4.13. Let F be a 2-form and k a non-negative integer. Then

∀ |β| = k, |∇ β F | # τ -k -|F | # K,k .
We also have, according to [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF].

Lemma 2.4.14. Let F be a 2-form and (α, α, ρ, σ) its null decomposition. Then, for all k ∈ N,

k l=0 i+j=l τ 2i -r 2j |∇ i L ∇ j L α| 2 O,k-i-j + |∇ i L ∇ j L α| 2 O,k-i-j + |∇ i L ∇ j L ρ| 2 O,k-i-j + |∇ i L ∇ j L σ| 2 O,k-i-j |F | 2 K,k and k l=0 i+j=l τ 2i -r 2j τ 2 -|∇ i L ∇ j L α| 2 O,k-i-j + r 2 (|∇ i L ∇ j L α| 2 O,k-i-j + |∇ i L ∇ j L ρ| 2 O,k-i-j + |∇ i L ∇ j L σ| 2 O,k-i-j ) |F | # K,k 2 .
The rst inequality is not proved in [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF] but can be treated similarly as the second one.

The following corollary will be useful, particularly for the massless case in dimension 4, to obtain an extra decay on α away from the light cone.

Corollary 2.4.15. Using the same notations as in the previous lemma, we have, for F a 2-form,

| √ τ -α| 2 O,k + τ 2 -|∇ r ( √ τ -α)| 2 O,k-1 τ -|F | 2 K,k .
Proof. One only has to use that

|∇ r √ τ -| ≤ τ -1 2 -, 2∇ r = L -L
and the previous lemma.

Let us show how to establish pointwise decay estimates on the null decomposition of the electromagnetic eld with these inequalities.

Proposition 2.4.16. Let G be a 2-form and J be a 1-form, both dened on [0, T [×R n , such that

∇ µ G µν = J ν , ∇ µ * G µλ1...λn-2 = 0.
If G and J are suciently regular, we have, for all

(t, x) ∈ [0, T [×R n , |α(G)|(t, x), |ρ(G)|(t, x), |σ(G)|(t, x) E n+2 2 [G](t) τ n+1 2 + τ 1 2 - , |α(G)|(t, x) E n+2 2 [G](t) τ n-1 2 + τ 3 2 - (2.35)
and

|α(G)|(t, x) E n+2 2 [G](t) 1+t + E S n+2 2 [G](t) τ n-1 2 + τ - . (2.36)
Remark 2.4.17. When we will study the massless Vlasov-Maxwell system in dimension n = 4, a strong t-loss on E n+2

2

[G] will lead to a strong τ + -loss on the pointwise estimate (2.35). Since we will not need all the τdecay rate of (2.35), we will rather use (2.36).

Proof.

Let us denote the null decomposition of G by (α, α, ρ, σ).

Let (t, x) ∈ [0, T [×R n . First, we consider the case |x| ≤ 1 + 1 2 t. As Σt |G| # K, n+2 2 2 dx E n+2 2 [G](t),
Lemma 2.4.13 and Remark 2.4.12 give us

|β|≤ n+2 2 Σt τ 2|β|+2 - |∇ β G| 2 dx E n+2 2 [G](t).
Moreover,

∀ (t, y) ∈ [0, T [×R n such that |y| ≤ 3 + 3 4 t, τ -(t, y) 1 + t.
Hence,

|β|≤ n+2 2 |y|≤3+ 3 4 t (1 + t) 2|β|+2 |∇ β G| 2 dy E n+2 2 [G](t).
Using Lemma 2.4.9, we obtain

|G(t, x)| E n+2 2 [G](t) (1 + t) n+2 2 
.

We consider now the case |x| ≥ 1 + 1 2 t.

According to Lemma 2.4.14,

1 l=0 i+j=l |y|≥1+ 1 2 t τ 2i -r 2j τ 2 -|∇ i L ∇ j L α| 2 O, n+2 2 -i-j + r 2 (|∇ i L ∇ j L α| 2 O, n+2 2 -i-j +|∇ i L ∇ j L ρ| 2 O, n+2 2 -i-j + |∇ i L ∇ j L σ| 2 O, n+2 2 -i-j ) dy E n+2 2 [G](t).
Let w be either rα, rρ, rσ or τ -α.

Since ∂ r = L-L 2 and |∂ r (τ -)| ≤ 1, we have |y|≥1+ 1 2 t |w| 2 O, n+2 2 + τ 2 -|∇ ∂r w| 2 O, n 2 dy E n+2 2 [G](t).
Lemma 2.4.10 then gives us

|w(t, x)| E n+2 2 [G](t) |x| n-1 2 τ 1 2 - . Thus, |α(t, x)|, |ρ(t, x)|, |σ(t, x)| E n+2 2 [G](t) |x| n+1 2 τ 1 2 - and |α(t, x)| E n+2 2 [G](t) |x| n-1 2 τ 3 2 - .
We now prove (2.36). Using Corollary 2.4.15, we have

|y|≥1+ 1 2 t | √ τ -α| 2 O, n+2 2 + τ 2 -|∇ ∂r ( √ τ -α)| 2 O, n 2 dy |β|≤ n+2 2 Σt τ -|α(L Z β G)| 2 + |α(L Z β G)| 2 + |ρ(L Z β G)| 2 + |σ(L Z β G)| 2 dx.
As, by Denition 2.3.20,

|β|≤ n+2 2 Σt τ -|α(L Z β G)| 2 + |ρ(L Z β G)| 2 + |σ(L Z β G)| 2 dx E n+2 2 [G](t) 1 + t
and, by Denition 2.3.24

|β|≤ n+2 2 Σt τ -|α(L Z β G)| 2 dx E S n+2 2 [G](t),
we obtain, again by Lemma 2.4.10

|α(t, x)| E n+2 2 [G](t) 1+t + E S n+2 2 [G](t) |x| n-1 2 τ - .
Our goal now is to show how to improve the decay estimate on α, in the Lorenz gauge, near the light cone (we cannot reproduce the method used by [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF] to treat the 3d case). We start by the following lemma. Lemma 2.4.18. Let A be a suciently regular current, dened on [0, T ] × R n , such that

∂ µ A µ = 0 and ∀ t ∈ [0, T ], E n+2 2 [A](t) ≤ E(t), with E : [0, T ] → R + an increasing function. Then |A L |(t, x), |A B |(t, x) E(t) τ n-1 2 + τ 1 2 - and |A L |(t, x) E(t) τ n 2 + . Proof. Using a classical L 2 -Klainerman-Sobolev inequality, we have, ∀ |γ| ≤ 1, 1 ≤ µ ≤ n, (t, x) ∈ [0, T ]×R n , |Z γ A µ |(t, x) E n+2 2 [A](t) τ n-1 2 + τ 1 2 - .
We then have

|(Z γ A) L |, |(Z γ A) L |, |(Z γ A) B | E(t) τ n-1 2 + τ 1 2 - . (2.37) 
It then remains to improve the decay estimate on A L near the light cone. Since,

∂ µ A µ = 0, (∇ L A) L + (∇ L A) L + (∇ B A) B = 0. So, as ∇ L L = 0, -∇ L A L -(∇ L A) L + (∇ B A) B = 0.
(2.38)

If r ≤ t 2 or r ≥ t 2 and t ≤ 1, the result comes from (2.37). For the remaining case, r ≥ t 2 and t ≥ 1, note rst that

|L(A L )| E(t) τ n-1 2 + τ 1 2 -r E(t) τ n+1 2 + τ 1 2 - .
Indeed, using Remark 2.2.10 and (2.37), we have

|(∇ L A) L |(t, x), |(∇ B A) B |(t, x) E(t) τ n-1 2 + τ 1 2
-r so that (using (2.38)), L(A L ) satises also this decay rate. As for a suciently regular function g,

g(t, r) = g(0, t + r) + t-r u=-t-r L(g)du,
and since E is a increasing function, we have

|A L |(t, r) ≤ |A L |(0, t + r) + t-r u=-t-r |L(A L )|du E(0) τ n 2 + + E(t) τ n+1 2 + t-r u=-t-r τ -1 2 -du E(t) τ n 2 +
.

Finally, we obtain the following pointwise decay on α.

Proposition 2.4.19. Let G and J be a suciently regular 2-form and 1-form (respectively), dened on

[0, T ] × R n , such that ∇ µ G µν = J ν , ∇ µ * G µλ1...λn-2 = 0.
Let A be a potential of G in the Lorenz gauge such that E n+4
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[A](t) ≤ E(t). We suppose that

|J|(t, x) θ(t) τ n-1 + τ -
and that E and θ are increasing functions. Then,

∀ (t, x) ∈ [0, T ] × R n , |α(G)|(t, x) E(t) τ n+2 2 + + θ(t) log(τ -) τ n-1 + .
Remark 2.4.20. the functions E and θ will later be of the form

t → (1 + t) a or t → log k (1 + t).
Proof. We consider a spherical variable B. We have

α B (G) = (∂ µ A ν -∂ ν A µ ) BL = e B (A) L -L(A) B = L e B (A) L - 1 r A B -L(A) B , since e B (A) L = L e B (A) L -1 r A B .
Indeed, as e B can be written as a linear combination of rescaled rotations (namely Ωij r ), we only have to prove

Ω ij (A) L = L Ωij (A) L - 1 r A Ωij for all 1 ≤ i < j ≤ n.
Consider for instance Ω 12 . As

Ω 12 = x 1 ∂ 2 -x 2 ∂ 1 , we have L Ω12 (A) 1 = Ω 12 A 1 + A 2 , L Ω12 (A) 2 = Ω 12 A 2 -A 1 and L Ω12 (A) k = Ω 12 A k if k ≥ 3, so that L Ω12 (A) L = Ω 12 (A) L + 1 r A Ω12 .
As 4τ -≥ τ + if t ≥ 2r or t + r ≤ 2, we only have to consider the case 19 where 2r ≥ t and t + r ≥ 2, so that 3r ≥ τ + . Recall from Lemma 2.2.18 that

∀ Ω ∈ O, ∂ µ L Ω A µ = 0.
So, using Lemma 2.4.18 and that e B can be written as a linear combination of rescaled rotations, we have

|L e B (A) L |(t, x) E(t) rτ n 2 + E(t) τ n+2 2 + .
For the remaining term, rewritting the wave equation (2.7) satised by A in null coordinates, we have,

for 0 ≤ µ ≤ n, -LLA µ + ∇ C ∇ C A µ + 1 r LA µ - 1 r LA µ = J µ . Hence L L + 1 r A µ = ∇ C ∇ C A µ + 1 r LA µ + L 1 r A µ -J µ .
19 When 4τ -≥ τ + , the result comes from Proposition 2.4.16 or from

|∂A| τ -n-1 2 + τ -3 2 - Z∈K |ZA| (cf Remark 2.2.10).
Now, note that, using a classical L 2 Klainerman-Sobolev inequality and Remark 2.2.10,

|L 1 r A µ |, |∇ C ∇ C A µ | E(t) r 2 τ n-1 2 + τ 1 2 - , | 1 r LA µ | E(t) rτ n+1 2 + τ 1 2 - , |J µ | θ(t) τ n-1 + τ - so that, as 3r ≥ τ + , L L + 1 r A µ E(t) τ n+3 2 + τ 1 2 - + θ(t) τ n-1 + τ - .
Hence, as for a suciently regular function g,

g(t, r) = g(0, t + r) + t-r u=-t-r L(g)du,
we have (using that E and θ are increasing functions)

L + 1 r A µ (t, x) E(0) τ n+2 2 + + E(t) τ n+3 2 + t-r -t-r 1 τ 1 2 - du + θ(t) τ n-1 + t-r -t-r 1 τ - du E(t) τ n+2 2 + + θ(t) log(τ -) τ n-1 + , implying 1 r A B + L(A) B (t, x) E(t) τ n+2 2 + + θ(t) log(τ -) τ n-1 + .
Remark 2.4.21. In the context of the Vlasov-Maxwell system, using the null component v B of the velocity vector, we have a better pointwise estimate on the component J B of the source term, as

J B is a linear combination of the terms v v B v 0 Z β f dv.
Since the dimension n is such that n ≥ 4, we do not need this extra decay (and we then worked with the Cartesian components of the source term in the proof of the previous proposition).

A Grönwall inequality

Later, when we will study the velocity support of the scalar eld in the massless case, we will need the following variant of Grönwall's lemma. Lemma 2.4.22. Let T > 0, f and g two continuous nonnegatives functions dened on [0, T ] and

C ≥ 0. If ∀t ∈ [0, T ], f (t) ≤ C + 2 t 0 g(s) f (s)ds, then ∀t ∈ [0, T ], f (t) ≤ √ C + t 0 g(s)ds 2 .
Proof.

First, we suppose that C > 0.

Let F : t → C + 2 t 0 g(s) f (s)ds. We have F (t) ≤ 2g(t) F (t).
Since C > 0, F is nonnegative and we can divide by 2 F (t). Integrating the above, we obtain

F (t) ≤ √ C + t 0 g(s)ds, which implies the result. If C = 0, then, for all > 0, ∀t ∈ [0, T ], f (t) ≤ + 2 t 0 g(s) f (s)ds.
It only remains to apply the inequality in the case C = 0 and let tends to zero.

Decay estimate for the massive case

Recall that, as we study massive particles in this section, v 0 = 1 + |v| 2 . We will use the commutation vector elds of P 0 and the weights of k 1 preserved by the operator T 1 (see Subsections 2.2.3 and 2.2.4 for their denitions). We x for all this section a suciently regular 2-form F dened on [0, T * [×R n and we recall that we dened T F as the operator

T F : g → v µ ∂ µ g + F (v, ∇ v g) and that ∇ v g = (0, ∂ v 1 g, ..., ∂ v n g).
The main result of this section is the following estimate.

Theorem 2.5.1. Let T * > 0 and f : [0, T * [×R n

x × R n v → R be a suciently regular function such that

z∈k1 |β|≤n Σ0 R n v z Z β f dvdx < +∞,
Then, for all

(t, x) ∈ [0, T * [×R n , R n v |f (t, x, v)| dv (v 0 ) 2 1 τ n + z∈k1 |β|≤n Σ0 R n v z Z β f dvdx + t 0 Σs R n v T F z Z β f dv v 0 dxds .
Remark 2.5.2. Compared to Theorem 8 in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], the advantage is that the L 1 norms on the right hand side are taken on {t} × R n (or {0} × R n ) and not on a hyperboloid. On the other hand, our estimate is not a pure Sobolev inequality (we applied the operator T F to Z β f to establish it).

Remark 2.5.3. To simplify the notation, we took the mass to be 1, but the estimate is true as long as the mass is strictly positive (the constant hidden in is however proportional to 1 m 2 ). Remark 2.5.4. As we will need an estimate on v |f |dv in this article, we will apply Theorem 2.5.1 to (v 0 ) 2 f . Note that, since T 1 ((v 0 ) 2 z) = 0, the spacetime integral given by Theorem 2.5.1 can be bounded, in that case, by

t 0 Σs R n v v 0 zT F Z β f + v 0 F (v, ∇ v z) Z β f + zv i F i0 Z β f dvdxds.
One can then use commutation formula of Proposition 2.2.26 in order to compute T F ( Z β f ).

The proof is based on a partition of the spacetime. In the interior (|x| ≤ t 2 ) and the exterior (t ≤ |x|)

of the light cone, the proof relies on the Klainerman-Sobolev inequality of Theorem 2.2.13. In the exterior region, the lack of decay is compensated by using the weights (x i -t v i v 0 ) ∈ k 1 dened in Section 2.2.4. For the remaining region, we work on subsets of R n+1 composed of a piece of an hyperboloid and a piece of a slice t = constant as [START_REF] Georgiev | Decay estimates for the Klein-Gordon equation[END_REF] for the Klein-Gordon equation, mixing what is usually done for such problems.

D a (T ) T Σ 0 a r = 0
The set D a (T ) and its boundary

Sobolev inequalities

We start by a Sobolev inequality independent of time.

Lemma 2.5.5. Let g : R n

x × R n v → R be a suciently regular function. Then, for all x ∈ R n ,

|x| n v∈R n |g(x, v)|dv |β|≤n-1 j≤1 v∈R n (r∂ r ) j (| Ω β g|)(y, v)dv L 1 (|y|≤|x|)
,

where

Ω β ∈ O |β| .
During the proof of this lemma, we will use many time the following one dimensional Sobolev inequality.

For w ∈ W 1,1 , we have, for all a ∈ R and all δ ≥ η > 0,

|w(a)| ≤ C η ( w(y) L 1 (a-δ≤y≤a) + w (y) L 1 (a-δ≤y≤a) ),
with C η a positive constant depending only on η.

Proof. As there is nothing to prove when x = 0, we suppose x = 0. We start by introducing spherical coordinates. A point y ∈ R n has for coordinates (r, θ), with r = |y| and θ ∈ S n-1 . We denote by (|x|, ω) the spherical coordinates of x and by (θ 1 , ..., θ n-1 ) a local coordinate map in a neighbourhood of ω ∈ S n-1 (by the symmetry of the sphere, we can suppose that the θ i take their values in an interval of a size independent of ω). Let h be the function dened by h(r, θ, v) = g(|x|rθ, v). By a one dimensional Sobolev inequality,

v∈R n |h(1, ω, v)|dv θ1 v∈R n |h|(1, ω 1 + θ 1 , ω 2 , ..., ω n , v)dv + ∂ θ1 v∈R n |h|(1, ω 1 + θ 1 , ω 2 , ..., ω n , v)dv dθ 1 .
As ∂ θ1 is a linear combination of the rotation vector elds, Remark 2.2.4 gives us

∂ θ1 v∈R n |h|(1, ω 1 + θ 1 , ω 2 , ..., ω n , v)dv Ω∈O v∈R n | Ωh|(1, ω 1 + θ 1 , ω 2 , ..., ω n , v)dv.
Thus,

v∈R n |h(1, ω, v)|dv Ω β ∈O |β| |β|≤1 θ1 v∈R n | Ω β h|(1, ω 1 + θ 1 , ω 2 , ..., ω n , v)dvdθ 1 .
Using the same argument for the variables θ 2 , ..., θ n-2 and θ n-1 , it comes

v∈R n |h(1, ω, v)|dv Ω β ∈O |β| |β|≤n-1 θ∈S n-1 v∈R n | Ω β h|(1, θ, v)dvdθ.
The one dimensional Sobolev inequality, applied this time to the rst variable, gives

v∈R n |h(1, ω, v)|dv j≤1 Ω β ∈O |β| |β|≤n-1 1 1 2 ∂ j r θ∈S n-1 v∈R n | Ω β h|(r, θ, v)dvdθ dr.
Hence, as 1 2 ≤ r,

v∈R n |h(1, ω, v)|dv j≤1 Ω β ∈O |β| |β|≤n-1 1 1 2 θ∈S n-1 (r∂ r ) j v∈R n | Ω β h|(r, θ, v)dv dθr n-1 dr, which implies v∈R n |g(x, v)|dv j≤1,|β|≤n-1 v∈R n (r∂ r ) j (| Ω β (g(|x|y, v))|)dv L 1 (|y|≤1)

,

It only remains to remark that, as r∂ r and Ω are homogeneous vector elds,

(r∂ r ) j | Ω β (g(|x|y, v)) | = (r∂ r ) j | Ω β g| (|x|y, v)
and to make the change of variables y = |x|y.

We are now able to prove the following time dependent Sobolev inequality.

Lemma 2.5.6. Let g :

[0, T * [×R n x × R n v → R a suciently regular function. For all (t, x) ∈ [0, T * [×R n such that |x| ≤ t, we have |x| n v∈R n |g(t, x, v)|dv |β|≤n Z β g( |y| 2 + a 2 , y, v) L 1 (|y|≤|x|)L 1 v ,
with a 2 = t 2 -|x| 2 and Z β ∈ P |β| 0 (more precisely the vector elds involved are either rotations or Lorentz boosts).

Proof. Let (t, x) ∈ [0, T * [×R n such that |x| ≤ t and a 2 = t 2 -|x| 2 . We apply the previous lemma to

(y, v) → g( |y| 2 + a 2 , y, v) to get |x| n v∈R n |g(t, x, v)|dv j≤1,|β|≤n-1 v∈R n (r∂ r ) j | Ω β g|( |y| 2 + a 2 , y, v) dv L 1 (|y|≤|x|)
,

where we used that

Ω β g( |y| 2 + a 2 , y, v) = Ω β (g) ( |y| 2 + a 2 , y, v), since Ω( |y| 2 + a 2 ) = 0 for all Ω ∈ O. Now, we remark that r∂ r | Ω β g|( |y| 2 + a 2 , y, v) = Ω β g( |y| 2 + a 2 , y, v) | Ω β g|( |y| 2 + a 2 , y, v) y i |y| 2 + a 2 Ω 0i Ω β g( |y| 2 + a 2 , y, v).
Note also that, droping the dependance in ( |y| 2 + a 2 , y, v) of the functions considered,

v∈R n Ω β g | Ω β g| y i |y| 2 + a 2 v 0 ∂ v i Ω β gdv = - v∈R n v i v 0 y i |y| 2 + a 2 | Ω β g|dv.
It then comes that

|x| n v∈R n |g(t, x, v)|dv |β|≤n 1 + |y| |y| 2 + a 2 v∈R n | Z β g|( |y| 2 + a 2 , y, v)dv L 1 (|y|≤|x|)
, which allows us to deduce the result.

An energy estimate

Before starting the proof of Theorem 2.5.1, we establish the following lemma, which combined with our last Sobolev inequality, will give us the expected decay on the velocity average of the Vlasov eld for a spacetime region.

Lemma 2.5.

7. Let a > 0, T ∈]a, T * [ and g : [0, T * [×R 3 x × R 3 v → R be a suciently regular function. Then, |y|≤ √ T 2 -a 2 R n v |g( |y| 2 + a 2 , y, v)| dv (v 0 ) 2 dy ≤ 2 Σ0 R n v |g|dxdv + 2 T 0 Σs R n v |T F (g)| dv v 0 dxds.
Proof. We use again the vector eld N µ (g) :=

R n v g v µ v 0 dv and recall from (2.25) that ∂ µ N µ (|g|) = v∈R n g |g| T F (g) v 0 - g |g| F v v 0 , ∇ v g dv = v∈R n g |g| T F (g) dv v 0 .
We now introduce the following subset of R + × R n :

D a (T ) = {(s, y) ∈ R + × R n / a 2 ≥ s 2 -|y| 2 , 0 ≤ s ≤ T }.
Denoting by ν is the outward pointing unit normal eld to ∂D a (T ), the divergence theorem (in W 1,1 , for the euclidian space R n+1 ) gives us ∂Da(T )

ν µ N µ (|g|)d∂D a (T ) = Da(T ) v∈R n g |g| T F (g) dv v 0 dydD a (T ).
The boundary term is equal to

|y|≤ √ T 2 -a 2 v∈R n ν µ v µ v 0 |g|( |y| 2 + a 2 , y, v)dvdλ(y) + g L 1 x (|y|≥ √ T 2 -a 2 )L 1 v (T ) -g L 1 x L 1 v (0),
where dλ(y) is the surface measure on the hyperboloid {s 2 -|y| 2 = a 2 }. More precisely, on this hyperboloid 20 ,

dλ(y) = det I n + 1 |y| 2 + a 2 t yy dy = 2|y| 2 + a 2 |y| 2 + a 2 and ν(y) = 1 2|y| 2 + a 2 ( |y| 2 + a 2 , -y).
We then deduce, as

D a (T ) ⊂ [0, T ] × R n , |y|≤ √ T 2 -a 2 R n v |y| 2 + a 2 v 0 -y i v i |g|( |y| 2 + a 2 , y, v) dvdy v 0 |y| 2 + a 2 ≤ g L 1 x L 1 v (0) + T 0 Σs R n v |T F (g)| dv v 0 .
Finally, note that for s = |y| 2 + a 2 ≥ |y|,

sv 0 -y i v i s ≥ sv 0 -|y||v| s ≥ s (v 0 -|v|)(v 0 + |v|) s(v 0 + |v|) ≥ 1 2v 0 .
The result follows from a combination of the last two inequalities.

Remark 2.5.8. The lemma is also valid on the cone s = |y|, which means that the result is true for a = 0, but we already knew it with Proposition 2.3.1.

Proof of Theorem 2.5.1

We consider a partition of the spacetime into four regions.

• The bounded region, t + |x| ≤ 2, where a standard Sobolev inequality gives the result.

• The interior of the light cone, where |x| ≤ t 2 .

• The exterior of the light cone, where t ≤ |x| and |x| ≥ 1.

• The remaining region where t 2 ≤ |x| ≤ t and t ≥ 1.

The interior of the light cone

Let (t, x) ∈ [0, T * [×R n such that |x| ≤ t 2 .
Thus, τ -≥ 1 3 τ + and the Klainerman-Sobolev inequality of Theorem 2.2.13 gives

v∈R n |f (t, x, v)|dv 1 τ n + |β|≤n Z β f L 1 x,v ( 

t).

It only remains to apply Proposition 2.3.1, which gives us 20 Here, t y denotes the transpose of y.

Z β f L 1 x,v (t) Z β f L 1 x,v (0) 
+ t 0 Σs R n v T F Z β f dv v 0 dxds.
The exterior of the light cone

We use 

(x i -t v i v 0 ) ∈ k 1 , for 1 ≤ i ≤ n,
R n v x i -t v i v 0 |f |(t, x, v)dv 1 τ n-1 + z∈k1 |β|≤n z Z β f L 1 x,v (t). Since |xv 0 -tv| ≥ v 0 |x| -t|v| ≥ |x| 2v 0 , it comes |x| v |f |(t, x, v) dv (v 0 ) 2 v x -t v v 0 |f |(t, x, v)dv n i=1 v x i -t v i v 0 |f |(t, x, v)dv.
Hence, using that |x| τ + (recall that |x| ≥ 1 and t ≤ |x| in the region studied) and applying Proposition 2.3.1, we nally obtain

v |f |(t, x, v) dv (v 0 ) 2 1 |x|τ n-1 + z∈k1 |β|≤n z Z β f L 1 x,v (t) 1 τ n + |β|≤n z∈k1 z Z β f L 1 x,v (0) 
+ t 0 Σs v T F z Z β f dv v 0 dxds.

The remaining region

Let (t, x) ∈ [0, T * [×R n such that t 2 ≤ |x| ≤ t and t ≥ 1.
We start by applying Lemma 2.5.7 to Z β f , for all |β| ≤ n, with T = t and a 2 = t 2 -|x| 2 . We have

|β|≤n |y|≤|x| R n v | Z β f ( |y| 2 + a 2 , y, v)| dv (v 0 ) 2 dy |β|≤n Σ0 R n v Z β f dvdx + t 0 Σs R n v T F ( Z β f ) dv v 0 dxds . As | Z γ (v 0 ) -2 | (v 0 ) -2 , Lemma 2.5.
6 applied to g = (v 0 ) -2 f allows us to bound by below the left hand side of the previous inequality by

|x| n v |f |(t, x, v) dv (v 0 ) 2 . The result follows from |x| n τ n + (as |x| ≥ t 2 ≥ 1 2 ).

Improved decay for the derivatives of the velocity averages

Let us introduce the following vector elds.

Denition 2.5.9. For 1 ≤ i ≤ n and 1 ≤ k, l ≤ n, with k = l, we consider

X i = v i v 0 ∂ t + ∂ i and Y kl = v k v 0 ∂ l - v l v 0 ∂ k .
Proposition 2.5.10. The vector elds 1 v 0 T 1 , X i and Y kl are good derivatives (as the derivates tangential to the light cone L and e B , see Remark 2.2.10), which means that if W denotes one of them, we have, for a smooth function f ,

v W f dv 1 τ +   Z∈ P0 v Zf dv + z∈k1 v |z||∇ t,x f |dv   Proof. For T 1 , we remark that tT 1 = v 0 S + (tv i -x i v 0 )∂ i , rT 1 = tT 1 + (r -t)T 1 and that (r -t) v ∂f dv Z∈K v
Zf dv

Z β ∈ P |β| 0 |β|≤1 v Z β f dv .
For X i , that ensues from

tv 0 X i = v 0 Ω 0i + (tv i -x i v 0 )∂ t and rX i = tX i + (r -t)X i .
For Y kl , that follows from

tv 0 Y kl = v 0 Ω kl + (tv k -x k v 0 )∂ l -(tv l -x l v 0 )∂ k and rY kl = tY kl + (r -t)Y kl .
Finally, let us show how we can obtain extra decay on

∂ v f dv if f solves an equation such as T F (f ) = 0. Proposition 2.5.11. Let f : [0, T ] × R n x × R n v → R be a function such that ∀ Z ∈ P 0 , z ∈ k 1 , v (v 0 ) 2 z Zf dv τ -n + .
Then, for all 0 ≤ µ ≤ n,

∂ µ v f dv τ -n-1 + .
Proof. As

T 1 = v µ ∂ µ = v 0 ∂ t + v i X i - |v| 2 v 0 ∂ t = v i X i + 1 v 0 ∂ t ,
we have

∂ t = v 0 T 1 -v 0 v i X i .
Similarly

∂ i = (v 0 ) 2 X i -v i T 1 -v 0 v k Y ki .
Remark 2.5.12. We can prove a similar proposition for derivatives of higher orders.

2.6

The massive Vlasov-Maxwell equations

Global existence for small data

The aim of this section is to prove Theorem 2.1.1. We suppose that the dimension n is at least 4 and we consider the massive Vlasov-Maxwell system (2.1)-(2.

3) with at least two species, so that K ≥ 2. For simplicty, we suppose that m k = 1 for all 1 ≤ k ≤ K.

To simplify the notation, we denote during this chapter the energy norm E k M,q,1 , introduced previously in Denition 2.3.2, by E k M,q . We also introduce the function χ dened on R + by

χ(s) = log 3 (3 + s) if n = 4 and χ(s) = 1 if n ≥ 5.
This is a more precise version of Theorem 2.1.1.

Theorem 2.6.1. Let n ≥ 4, K ≥ 2 and N ≥ 5 2 n + 1. Let (f 0 , F 0 ) be an initial data set for the massive Vlasov-Maxwell system. Let (f, F ) be the unique classical solution to the system and let A be a potential in the Lorenz gauge. There exists > 0 such that 21 , if

E N [A](0) ≤ , E N [F ](0) ≤ and if, for all 1 ≤ k ≤ K, E 2 N +n,1 [f k ](0) ≤ ,
then (f, F ) exists globally in time and veries the following estimates.

• Energy bounds for A, F and

f k : ∀ 1 ≤ k ≤ K and ∀ t ∈ R + , E N [A](t) χ(t), E N [F ](t) χ(t), E 2 N [f k ](t)
and

E 2 N,1 [f k ](t) χ 1 6 (t).
• Pointwise decay for the null decomposition of

L Z β (F ): ∀ |β| ≤ N -n, (t, x) ∈ R + × R n , |α(L Z β F )| √ χ(t)τ -n+2 2 + , |α(L Z β F )| √ χ(t)τ -n-1 2 + τ -3 2 -, |ρ(L Z β F )| √ χ(t)τ -n+1 2 + τ -1 2 -, |σ(L Z β F )| √ χ(t)τ -n+1 2 + τ -1 2 -.
• Pointwise decay for

v∈R n | Z β f k |dv: ∀ |β| ≤ N - 3n + 2 2 , (t, x) ∈ R + × R n , v∈R n | Z β f k |dv τ n + . • Pointwise decay for v∈R n | Z β f k |(v 0 ) 2 dv and v∈R n |z Z β f k |(v 0 ) 2 dv: ∀ |β| ≤ N -n, (t, x) ∈ R + × R n , v∈R n | Z β f k |(v 0 ) 2 dv τ n-1 + τ - , ∀ |β| ≤ N - 3n + 2 2 , z ∈ k 1 , (t, x) ∈ R + × R n , v∈R n |z Z β f k |(v 0 ) 2 dv τ n-1 + τ - . • L 2 estimates on v∈R n | Z β f k |dv: ∀ |β| ≤ N, t ∈ R + , v∈R n | Z β f k |dv L 2 (Σt) χ 1 6 (t) (1 + t) n 2 .
Remark 2.6.2. In dimension 4, if N ≥ 14, we can take χ(t) = log 2 (3 + t) and avoid the log

1 2 (3 + t)-loss on the L 2 estimate on v | Z β f k |dv.

Structure and beginning of the proof

Let (f 0 , F 0 ) be an initial data set satisfying the assumptions of Theorem 2.6.1. By a standard local wellposedness argument, there exists a unique maximal solution (f, F ) of the massive Vlasov-Maxwell system dened on [0, T * [, with T * ∈ R * + ∪ {+∞}. We consider the following bootstrap assumptions. Let T be the largest time such that, ∀ 1

≤ k ≤ K and ∀ t ∈ [0, T ], E N [F ](t) ≤ 2C χ(t), E S N [F ](t) ≤ 2C , (2.39) 
E 2 N [f k ](t) ≤ 4 , E 2 
N -n+2 2 ,1 [f k ](t) ≤ 4 and E 2 N,1 [f k ](t) ≤ 4 χ 1.
First, using the bootstrap assumptions, we obtain decay estimates for the null decomposition of F (and its Lie derivatives) and for velocity averages of derivatives of f k .

2. Next, we improve the bounds on the Vlasov elds energies by means of the energy estimates proved in Propositions 2.3.3 and 2.3.5. To bound the right hand side in these energy estimates, we make fundamental use of the null structure of the system and the pointwise decay estimates on ρ, σ, α, α and v∈R n |z Z β f k |dv.

3. Then, using Theorem 2.5.1, we improve the decay estimate on v | Z β f k |dv near the light cone.

4. In order to improve the estimates on the electromagnetic eld energies, we establish an L 2

x estimate for the velocity averages of the Vlasov elds (and its derivatives). For this purpose, we follow [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] and we rewrite all the transport equations as an inhomogeneous system of transport equations. The velocity averages of the homogeneous part of the solution verify strong pointwise decay estimates (we use particularly the control that we have at our disposal on the initial data of f , for derivatives of order N + n or less). The inhomegeneous part is decomposed into a product of an integrable function and a pointwise decaying function which gives us the expected estimate.

5. Finally, we bound the energy of the electromagnetic potential (which satisfy the Lorenz gauge) and we improve the estimates on the electromagnetic eld energies with the energy estimates for the Maxwell equations (Propositions 2.3.21 and 2.3.25). We use again the null decomposition of F (and its Lie derivatives), which, combined by the estimates on

τ + R n | Z β f k |dv L 2
x , gives us the improvement.

Step 1: Decay estimates

Using the bootstrap assumption on E N [F ] and Proposition 2.4.16, one immediately obtains the following pointwise decay estimates on the electromagnetic eld.

Proposition 2.6.3. For all

t ∈ [0, T ], |β| ≤ N -n+2 2 , we have |α(L Z β F )| √ χ(t)τ -n+1 2 + τ -1 2 -, |α(L Z α F )| √ χ(t)τ -n-1 2 + τ -3 2 -, |ρ(L Z α F )| √ χ(t)τ -n+1 2 + τ -1 2 -, |σ(L Z α F )| √ χ(t)τ -n+1 2 + τ -1 2 -.
Remark 2.6.4. We will improve later the decay estimate on α(L Z β F ), for |β| ≤ N -n, near the light cone (see Section 2.6.7).

The pointwise decay estimates on the velocity averages of the Vlasov elds are given by Klainerman-Sobolev inequalities and the bootstrap assumptions on the f k energy norms. Using Theorem 2.2.13, we have that

∀ |β| ≤ N -n, (t, x) ∈ [0, T ] × R n , 1 ≤ k ≤ K R n | Z β f k |(v 0 ) 2 dv E 2 N [f k ](t) τ n-1 + τ - τ n-1 + τ - .
(2.41)

In the same spirit, using Corollary 2.2.14, we have that

∀ |β| ≤ N -3n+2 2 , z ∈ k 1 , (t, x) ∈ [0, T ] × R n , R n |z Z β f k |(v 0 ) 2 dv E 2 N -n+2 2 ,1 [f k ](t) τ n-1 + τ - τ n-1 + τ - , (2.42) 
2.6. [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] Step 2: Improving the energy estimates for the transport equation

We x, for this section,

1 ≤ k ≤ K. According to Proposition 2.3.3, E 2 N [f k ] ≤ 3 on [0, T ], for small enough, would follow if we prove t 0 Σs v∈R n |L Z β 1 (F )(v, ∇ v Z β2 f k )|v 0 dvdxds 3 2 , (2.43) for all |β 1 | + |β 2 | ≤ N , with |β 2 | ≤ N -1, and t 0 Σs v∈R n |v i F i0 Z β f k |dvdxds 3 2 ,
for all |β| ≤ N . The second integral is easy to bound. Using Proposition 2.6.3 and the bootstrap assumption on

E 2 N [f k ], we have t 0 Σs R n |v i F i0 Z β f k |dvdxds t 0 F L ∞ (Σs) E 2 N [f k ](s)ds 3 2 .
Similarly, according to Proposition 2.3.5,

E 2 N,1 [f k ] ≤ 3 χ 1 6 (t) on [0, T ], for small enough, would follow if we prove t 0 Σs v∈R n |zv 0 L Z β 1 (F )(v, ∇ v Z β2 f k )|dvdxds 3 2 χ 1 6 (t), (2.44) 
for all z ∈ k 1 and

|β 1 | + |β 2 | ≤ N , with |β 2 | ≤ N -1, t 0 Σs v∈R n |v 0 F (v, ∇ v z) Z β f k |dvdxds 3 2 χ 1 6 (t), (2.45) 
for all z ∈ k 1 , |β| ≤ N and t 0 Σs v∈R n |zv i F i0 Z β f k |dvdxds 3 2 ,
for all |β| ≤ N . Again, the last integral is easy to bound. We

x |β 1 | + |β 2 | ≤ N (with |β 2 | ≤ N -1), |β| ≤ N and z ∈ k 1 . We denote respectively ρ(L Z β 1 (F )), σ(L Z β 1 (F )), α(L Z β 1 (F )) and α(L Z β 1 (F )
) by ρ, σ, α and α. We denote also Z β2 f k by g and Z β f k by h.

To unify the study of the remaining integrals, we introduce b, which could be equal to 0 or 1, The good terms

z 0 = v 0 and z b = v 0 z. The null decomposition of L Z β 1 (F )(v, ∇ v g) (for (2.43) and (2.44)) or F (v, ∇ v z) (for (2.
z b v L ρ (∇ v g) L , v 0 v L hρ(F ) (∇ v z) L , (2.46) 
z b v L ρ (∇ v g) L , v 0 v L hρ(F ) (∇ v z) L , (2.47) 
z b v B σ BD (∇ v g) D , v 0 v B hσ(F ) BD (∇ v z) D , (2.48) 
z b v L α B (∇ v g) B , v 0 v L hα(F ) B (∇ v z) B , (2.49) 
z b v B α B (∇ v g) L , v 0 v B hα(F ) B (∇ v z) L , (2.50) 
and the bad terms

z b v L α B (∇ v g) B , v 0 v L hα(F ) B (∇ v z) B , (2.51) 
z b v B α B (∇ v g) L , v 0 v B hα(F ) B (∇ v z) L .
(2.52)

The study of E 2 N [f k ] corresponds to b = 0 and, in this case, we only have to estimate the spacetime integral of each of the rst terms of (2.46)-(2.52). The study of E

2 N,1 [f k ] corresponds to b = 1. For both of them, when |β 1 | ≤ N -n+2
2 we can use the pointwise decay estimates on the electromagnetic eld given by Proposition 2.6.

3. When |β 1 | > N -n+2 2 , |β 2 | ≤ N -3n+2 2 (since N ≥ 5 2 n + 1
), and we can then use the pointwise estimates (2.41) and (2.42) on the velocity averages of the Vlasov eld.

For the part where

|β 1 | ≤ N -n+2 2 , our proof leads also to E 2 N -n+2 2 ,1 [f k ] ≤ 3 , for small enough, on [0, T ].
Remark 2.6.5. To simplify the argument we will sometimes denote

E 2 N [f k ] by E 2 N,0 [f k ].
Estimating the v derivatives

To deal with the v derivatives of the Vlasov eld, which do not commute with the relativistic transport operator, we recall (2.33)

(∇ v ψ) L , (∇ v ψ) L , (∇ v ψ) B τ + v 0 Z∈ P0 | Zψ|.
(2.53)

We will also use

(∇ v ψ) L , (∇ v ψ) L τ - v 0 Z∈ P0 | Zψ| (2.54) and v L (∇ v ψ) B τ - Z∈ P z∈k1 |z Zψ|, (2.55) 
which come from Lemma 2.4.2 and Proposition 2.4.7. In order to reutilize certain estimates of this section, we will not use inequalities (2.54) and (2.55) in the case where we have a pointwise estimate on the electromagnetic eld. We make this choice because we do not identify such null structures in the equations studied in Section 2.6.6, where we will make similar computations as in Subsection 2.6.4.

If

|β 1 | ≤ N -n+2 2 
We start by treating the good terms. We use ζ to denote α, ρ or σ. Thus, according to Proposition 2.6.3,

|ζ| √ χ(t) τ n+1 2 + τ 1 2 - .
Using (2.53), we can bound by

Z∈ P0 τ + |ζ||z b Zg| each rst term of (2.46)-(2.50) so that their integrals on [0, t] × R n x × R n v are bounded by Z∈ P0 t 0 Σs τ + |ζ| v |z b Zg|dvdxds.
(2.56)

It remains to notice that 

t 0 Σs τ + |ζ| v |z b Zg|dvdxds t 0 √ log 3 2 (3 + s) (1 + s) 3 2 E 1 N,b [f k ](s)ds 3 2 , since E 1 N,b [f k ](s) ≤ E 2 N,1 [f k ](s) ≤ 4 log 1 2 (3 + s) for all s ∈ [0, T ].
τ + |ζ(F )| v v 0 |z h|dvdxds t 0 √ log 3 2 (3 + s) (1 + s) 3 2 E 1 N,1 [f k ](s)ds 3 2 
.

We now study the bad terms. Recall that, according to Proposition 2.6.3,

|α| √ χ(t) τ n-1 2 + τ 3 2 - . Using (2.53), Cu(t) v v L |z b Zg|dvdC u (t) ≤ E 2 N,b [f k ](t)
and the bootstrap assumption (2.40), we have,

t 0 Σs v |z b v L α B (∇ v g) B |dvdxds Z∈ P0 t 0 Σs τ + |α| v v L v 0 |z b Zg|dvdxds Z∈ P0 t u=-∞ Cu(t) τ + |α| v v L |z b Zg|dvdC u (t)du Z∈ P0 t u=-∞ 1 τ 3 2 - Cu(t) v v L |z b Zg|dvdC u (t)du 1 2 E 2 N,b [f k ](t) +∞ u=-∞ 1 τ 3 2 - du 3 2 if b = 0, 3 2 χ 1 6 (t) if b = 1.
Finally, for the rst term of (2.52), we use successively (2.53), the inequality |v B | v 0 v L (which ensues from Proposition 2.2.9) as well as the bootstrap assumptions (2.40) to get

t 0 Σs v |z b v B α B (∇ v g) L |dvdxds Z∈ P0 t 0 Σs v |α|v 0 v L τ + v 0 |z b Zg|dvdxds Z∈ P0 t u=-∞ Cu(t) τ + |α| v v L |z b Zg|dvdC u (t)du 1 2 t u=-∞ τ -3 2 -E 2 N,b [f k ](t)du 1 2 E 2 N,b [f k ](t).
The integrals of the second terms of (2.51) and (2.52) are treated similarly. For instance, as

Z∈ P0 | Z(z)| z ∈k1 |z |, we have t 0 Σs v |v 0 v B hα B (∇ v z) L |dvdxds Z∈ P0 t 0 Σs τ + |α| v √ v L v L |h Z(z)|dvdxds z ∈k1 t -∞ Cu(t) τ + |α| v v L v 0 |z h|dvdC u (t)du 1 2 E 2 N,1 [f k ](t).
If 

|β 1 | > N -n+2 2 
s ∈ [0, T ], Σs τ 2 + |ζ| 2 dx ≤ E N [F ](s) χ(s).
Recall that the integral of each rst term of (2.46)-(2.50) can be bounded by (2.56). Using the Cauchy-Schwarz inequality and 

v |z b Zg|dv 2 L 2 (Σs) 2 +∞ 0 r n-1 τ 2n-2 + τ 2 - dr 2 (1 + s) -(n-
τ + |ζ| v |z b Zg|dvdxds t 0 τ + ζ L 2 (Σs) v |z b Zg|dv L 2 (Σs) ds 3 2 .
In order to close the estimates for the bad terms, we use (2.54) or (2.55). The integral of the rst term of (2.52) is then bounded by

Z∈ P0 +∞ 0 τ -α L 2 (Σs) v v B v 0 z b Zg dv L 2 (Σs)
ds.

Now, using (2.42) and Lemma 2.4.1, we have

v v B v 0 z b Zg dv L 2 (Σs) v |z b Zg|dv L 2 (Σs) (1 + s) -3 2 . Since τ -α 2 L 2 (Σs) ≤ E N [F ](s) χ(t), t 0 Σs v |z b v B α B (∇ v g) L |dvdxds 3 2 .
For the remaining term,

z b v L α B (∇ v g) B , we treat the two cases separately. First, if b = 0, then t 0 Σs v v 0 v L |α B (∇ v g) B |dvdxds Z∈ P0 z ∈k1 +∞ 0 τ -α L 2 (Σs) v v 0 |z Zg|dv L 2 (Σs)
ds.

Now, using (2.42) and Lemma 2.4.1, we have

v v 0 |z Zg|dv 2 L 2 (Σs) 2 (1 + s) -(n-1) . Hence, as τ -α 2 L 2 (Σs) ≤ E N [F ](s) χ(t), we obtain t 0 Σs v v 0 v L |α B (∇ v g) B |dvdxds 3 2 .
Finally, if b = 1, we have, by (2.53),

t 0 Σs v v 0 v L |zα B (∇ v g) B |dvdxds Z∈ P0 t 0 Σs τ 1 2 - (1 + s) n-3 2 |α| τ + (1 + s) n-3 2 τ 1 2 - v v L |z Zg|dvdxds.
By the Cauchy-Schwarz inequality (in (s, x)), the right-hand side of the previous inequality is bounded by

t 0 √ τ -|α| 2 L 2 (Σs) (1 + s) n-3 ds 1 2 Z∈ P0 t 0 Σs τ n-1 + τ - v v L |z Zg|dv 2 dxds 1 2
.

(2.57) By the bootstrap assumption 22 (2.39),

√ τ -|α| 2 L 2 (Σs) , so t 0 √ τ -|α| 2 L 2 (Σs) (1 + s) n-3 ds χ 1 3 (t).
The second factor of (2.57) is bounded by 2 . Indeed, as, by (2.42),

τ n-1 + τ - v v L |z Zg|dv 2 τ 2 -v v L |z Zg|dv, we have t 0 Σs τ n-1 + τ - v v L |z Zg|dv 2 dxds t -∞ τ -2 - Cu(t) v v L |z Zg|dvdC u (t)du t u=-∞ τ -2 -E 2 N -n+2 2 ,1 [f k ](t)du 2 , since E 2 N -n+2 2 ,1 [f k ](t) ≤ 4 by the bootstrap assumption (2.40). Thus t 0 Σs v v 0 v L |zα B (∇ v g) B |dvdxds 2 χ 1 6 (t).
This concludes the improvement of the bootstrap assumption (2.40).

Step 3: Improved decay estimates for velocity averages

In this section, we improve the pointwise decay estimate on v | Z β f k |dv near the lightcone.

Proposition 2.6.6. We have, for all 1 ≤ k ≤ K,

∀ (t, x) ∈ [0, T ] × R n , |β| ≤ N - 3n + 2 2 , v∈R n | Z β f k |dv τ n + and ∀ (t, x) ∈ [0, T ] × R n , |β| ≤ N -n, v∈R n | Z β f k |dv χ 1 6 (t) τ n + .
Proof. This ensues from Theorem 2.5.1, Remark 2.5.4 and the estimations made in Section 2.6.4. The loss for the derivatives of higher order is linked to the loss on E 

τ + R n | Z β f k |dv L 2
x for all |β| ≤ N . The goal of this section is to prove the following proposition.

Proposition 2.6.7. We have, for all 1 ≤ k ≤ K, |β| ≤ N and for all t ∈ [0, T ],

τ + R n | Z β f k |dv L 2 (Σt) χ 1 6 (t) (1 + t) n 2 -1 .
The log Note that if |β| ≤ N -n, that ensues from Proposition 2.6.6 and Lemma 2.4.1. For the higher order derivatives, we follow the strategy used in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], in Section 4.5.7, to prove similar L 2 estimates. Let 23 

1 ≤ k ≤ K and M ∈ N such that 3n+4 2 ≤ M ≤ N -n + 1.
Let I 1 and I 2 be two sets dened as

I 1 = {β multi-index / M ≤ |β| ≤ N } and I 2 = {β multi-index / |β| ≤ M -1}. with |γ| ≤ N -n, 1 ≤ m ≤ n and 1 ≤ l ≤ |I 2 |. Note also, using Proposition 2.6.6, that v |Y | ∞ dv χ 1 6 (t) τ n + .
Proof.

Let |β| ≤ N . According to commutation formula of Lemma 2.2.26,

T F ( Z β f k ) is a linear combination of terms such as L Z γ (F )(v, ∇ v Z δ (f k )), with |γ| + |δ| ≤ |β| and |δ| ≤ |β| -1. Replacing each ∂ v i Z δ f k by 1 v 0 ( Ω 0i Z β f k -t∂ i Z β f k -x i ∂ t Z β f k )
, the matrices naturally appear. Now, we split X in G + H where G is the solution of the homogeneous system and H is the solution to the inhomogeneous system, T F (H) + AH = 0 , H(0, ., .) = X(0, ., .), T F (G) + AG = BY , G(0, ., .) = 0.

The goal now is to prove L 2 estimates on the velocity averages of H and G.

The homogeneous part

We start by the following commutation formula. Lemma 2.6.9. Let 1 ≤ i ≤ |I 1 | and consider Z δ ∈ P |δ| 0 , with |δ| ≤ n. Then, T F ( Z δ H i ) can be written as a linear combination of terms of the form

L Z γ (F )(v, W ),
where W is such that

∀ 0 ≤ µ ≤ n, |W µ | τ + v 0 |θ|≤n |I1| q=1 | Z θ H q |,
and where |γ| ≤ N -n+2 2 , so that the electromagnetic eld can be estimated pointwise. Proof. The proof is similar to the ones of Lemma 2.2.25 and Corollary 2.2.26.

We introduce the energy E[H] of H.

E[H] = |I1| i=1 E 2 n [H i ] + E 2 n,1 [H i ]
and we have the following lemma.

Lemma 2.6.10. If is small enough, we have, for all t ∈ [0, T ],

E[H](t) ≤ 8 and ∀ 1 ≤ i ≤ |I 1 |, v τ + |H i |dv L 2 (Σt) (1 + t) n-2 2 .
Proof. We follow here what we have done in Section 2.6.

4. Since E[H](0) ≤ 3 2 E 2 N +n [f k ](0)+ 3 2 E 2 N +n,1 [f k ](0) ≤ 3 for small enough, there exists 0 < T ≤ T such that ∀ t ∈ [0, T ], E[H](t) ≤ 8 .
To improve this bootstrap assumption, for small enough, we only have to use the previous lemma and to follow Section 2.6.4 (as we always estimated (∇ v w) L , (∇ v w) L and (∇ v w) B by τ+ v 0 Z∈ P0 | Zw|). We can then take T = T and obtain, as in Section 2.6.5, that

∀ 1 ≤ i ≤ |I 1 |, (t, x) ∈ [0, T ] × R n , v∈R n |H i (t, x, v)|dv τ n + .
The L 2 estimate then ensues from Lemma 2.4.1.

The inhomogeneous part

Let us introduce K, the solution of T F (K) + A 1 K + KA 2 = B which veries K(0, ., .) = 0, and the function

|KKY | ∞ = 1≤i≤|I1| 1≤j,p≤|I2| |K j i | 2 |Y p |.
KY and G are solutions of the same system,

T F (KY ) = T F (K)Y + KT F (Y ) = BY -A 1 KY -KA 2 Y + KA 2 Y = BY -A 1 KY.
As KY (0, ., .) = 0 and G(0, ., .

) = 0, it comes that KY = G. For 1 ≤ i ≤ |I 1 | and 1 ≤ j, p ≤ |I 2 |, |K j i | 2 Y q
sasties the equation

T F |K j i | 2 Y p = |K j i | 2 (A 2 ) q p Y q -2 (A 1 ) q i K j q + K q i (A 2 ) j q K j i Y p + 2B j i K j i Y p ,
which will allow us to estimate

E[|KKY | ∞ ] := E 0 0 [|KKY | ∞ ].
We will then be able to bound

τ + v∈R n |G|dv L 2 (Σt) thanks to the estimates on v∈R n |Y |dv and E[|KKY | ∞ ].
Lemma 2.6.11. We have,

∀ t ∈ [0, T ], E[|KKY | ∞ ] ≤ .
Proof. We use again the continuity method. Let T 0 be the largest time such that E[|KKY | ∞ ] ≤ 2 for all t ∈ [0, T 0 ] and let us prove, with the energy estimate of Proposition 2.3.1, that for small enough,

E[|KKY | ∞ ] ≤ on [0, T 0 ]. Let t ∈ [0, T 0 ].
As for the estimate of E[H] in the proof of Lemma 2.6.10, we have

t 0 Σs v 1 v 0 |K j i | 2 (A 2 ) q p Y q -2 (A 1 ) q i K j q + K q i (A 2 ) j q K j i Y p dvdxds 3 2
.

Next, we need to estimate the following integral,

t 0 Σs v 1 v 0 |B j i K j i Y p |dvdx.
(2.58)

The components of the matrix B involve terms in which the electromagnetic eld has too many derivatives to be estimated pointwise. Indeed, recall from Lemma 2.6.8 that

|B j i K j i Y p | n m=1 |γ|≤N τ + v µ v 0 L Z γ (F ) µm K j i Y p .
We x |γ| and we denote the null decomposition of L Z γ (F ) by (α, α, ρ, σ). In order to bound (2.58), we bound the integral of the ve following terms, given by the null decomposition of the velocity vector v and L Z γ (F ).

• The good terms

τ + |α| |KY | v 0 , τ + |ρ| |KY | v 0 and τ + |σ| |KY | v 0 .
• The bad terms

τ + v L (v 0 ) 2 |α||KY | and τ + |v B | (v 0 ) 2 |α||KY |.
We start by bounding the integral on Σ s × R n v of the good terms. We use ζ to denote either α, ρ or σ. Using twice the Cauchy-Schwarz inequality (in x and then in v), we have

Σs v τ + |ζ| |KY | v 0 dvdx τ + |ζ| L 2 (Σs) Σs v |KY |dv 2 dx 1 2 E N [F ](s) Σs v |Y |dv v |KKY | ∞ dvdx 1 2 E N [F ](s) v |Y |dv 1 2 L ∞ (Σs) E[|KKY | ∞ ] 1 2 .
Using the bootstrap assumptions, on

E N [F ] and E[|KKY | ∞ ],
and the pointwise estimate v |Y |dv log

1 2 (3 + t)τ -n
+ given in Lemma 2.6.8, we obtain

t 0 Σs v τ + |ζ| |KY | v 0 dvdxds t 0 3 2 log 2 (3 + t) (1 + s) 2 ds 3 2 .
To unify the study of the bad terms, we use

v to denote v L or v B . Using the Cauchy-Schwarz inequality (in (s, x)), the integral on [0, t] × Σ s × R n v of a bad term is bounded by t 0 Σs τ 2 -|α| 2 (1 + s) 3 2 dxds t 0 Σs τ 2 + (1 + s) 3 2 τ 2 - v v v 0 |KY |dv 2 dxds 1 2
.

(2.59)

As τ -|α| 2 L 2 (Σs) log 3 (3 + t), we have t 0 Σs τ 2 -|α| 2 (1 + s) 3 2

dxds .

For the second factor of the product in (2.59), we rst note that, by the Cauchy-Schwarz inequality,

v v v 0 |KY |dv 2 ≤ v |Y |dv v v v 0 2 |KKY | ∞ dv. Now, recall from Proposition 2.2.9 that |v B | √ v L v L so that v v 0 2 v L v 0 . Using the pointwise decay estimate v |Y |dv log 1 2 (3 + t)τ -n + , it comes v v v 0 |KY |dv 2 ≤ log 1 2 (3 + t) τ n + v v L v 0 |KKY | ∞ dv. As Cu(t) v v L v 0 |KKY | ∞ dC u (t)dv ≤ E[|KKY | ∞ ](t) ≤ 2 , we obtain t 0 Σs τ 2 + (1 + s) 3 2 τ 2 - v v v 0 |KY |dv 2 dxds 2 +∞ u=-∞ τ -2 -du 2 .
Hence, t

0 Σs v τ + | v| (v 0 ) 2 |α||KY |dvdxds
Remark 2.6.12. A naive estimation of the bad terms in the previous lemma would lead to a (1 + t) η -loss which would aect the electromagnetic energy.

We are now able to prove the expected L 2 estimate on v |G|dv. Lemma 2.6.13. If is small enough, we have,

∀ t ∈ [0, T ], 1 ≤ i ≤ |I 1 |, v τ + |G i |dv L 2 (Σt) χ 1 12 (t) (1 + t) n-2 2 . Proof. Let 1 ≤ i ≤ |I 1 |. The Cauchy-Schwarz inequality (in v) gives us τ + v |G i |dv L 2 (Σt) |I2| j=1 τ 2 + v |Y j |dv v |(K j i ) 2 Y j |dv 1 2 L 1 (Σt)
.

Thus, using once again that v |Y j |dv χ

1 6 (t)τ -n + , we obtain τ + v |G i |dv L 2 (Σt) χ 1 12 (t) (1 + t) n 2 -1 .
We can now conclude this section. Proof. 

1 ≤ i ≤ |I 1 | such that Z β f k = H i + G i , we have τ + v | Z β f k |dv L 2 (Σt) ≤ τ + v |H i |dv L 2 (Σt) + τ + v |G i |dv L 2 (Σt)
.

It then remains to use Lemmas 2.6.10 and 2.6.13.

Step 5: Improvement of the electromagnetic eld energy estimates

The bound on the potential energy According to the energy estimate given by Proposition 2.3.12 and the commutation formula of Proposition 2.2.19, we have, for all t ∈ [0, T ],

E N [A](t) E N [A](0) + |γ|≤N t 0 |e k | τ + R n | Z γ f k |dv L 2 (Σs)
ds.

Using the L 2 decay estimate of Proposition 2.6.7 and E N [A](0) ≤ , we obtain, for small enough and if the constant C is large enough, that

∀ t ∈ [0, T ], E N [A](t) ≤ C 2(n -3) log 3 (3 + t) if n = 4 and ∀ t ∈ [0, T ], E N [A](t) ≤ C 2(n -3) if n ≥ 5.
We are now able, using Proposition 2.4.19, to improve the pointwise decay estimate on α.

∀ |β| ≤ N -n, (t, x) ∈ [0, T ] × R n , |α(L Z β (F )|(t, x) √ χ(t) τ n+2 2 + .

Improvement of the electromagnetic eld energy estimates

Recall from Proposition 2.3.21 that

E N [F ](t) ≤ E N [F ](0) + (n -3) E N [A](t) + ϕ(t),
where ϕ(t) is a linear combination of terms such that 

t 0 Σs |K ν 0 L Z β (F ) µν J( Z γ f k ) µ |dxds and t 0 Σs s|L Z δ A µ L Z δ A µ |dxds
C is large enough, E N [F ] ≤ C χ(t) on [0, T ] since E N [F ](0) ≤ and (n -3) E N [A](t) ≤ C 2 χ(t).
We 

s|L Z δ A µ L Z δ A µ |dxds K k=1 |γ|≤|δ| t 0 E N [A](s) τ + v | Z γ f k |dv L 2 (Σs)
ds.

Using the L 2 estimate of Proposition 2.6.7 and that

E N [A](s) χ(s), it comes |δ|≤N t 0 Σs s|L Z δ A µ L Z δ A µ |dxds 3 2 t 0 log 2 (3 + s) (1 + s) n-2 2 ds 3 2 χ(t).
In order to estimate the remaining integrals of (2.60), we express

K ν 0 L Z β (F ) µν J( Z γ f k ) µ in null coordinates. Dropping the dependance in L Z β (F ) or Z γ f k , this
gives us the four following terms :

τ 2 + ρJ L , τ 2 -ρJ L , τ 2 + α B J B , and τ 2 -α B J B .
(2.61)

As

J L = v v L v 0 Z γ f k dv, J L = v v L v 0 Z γ f k dv and J B = v v B v 0 Z γ f k dv,
we have,

|J L |, |J L |, |J B | v∈R n | Z γ f k |dv. The integrals (on [0, T ] × R n x × R n v )
of each of the four terms of (2.61) are then bounded, using the Cauchy- Schwarz inequality, by

t 0 E N [F ](s) τ + v | Z γ f k |dv L 2 (Σs)
ds.

By Proposition 2.6.7 and the bootstrap assumption (2.39),

t 0 E N [F ](s) τ + v | Z γ f k |dv L 2 (Σs) ds t 0 χ(s) log 1 2 (3 + s) (1 + s) n-2 2 ds 3 2 χ(t). Hence, E N [F ](t) ≤ C χ(t) for all t ∈ [0, T ] if is small enough.
We can prove in the same way, using in particular the energy estimate of Proposition 2.3.25 and

v | Z β f k |dv L 2 (Σt) ≤ 1 1 + t τ + v | Z β f k |dv L 2 (Σt)
, 

that E S N [F ] ≤ C on [0, T ] if
E M [f ] ≤ E M,1 [f ].
We introduce the functions χ, dened on R + by

χ(s) = 1 + s if n = 4, χ(s) = log 2 (3 + s) if n = 5 and χ(s) = 1 if n ≥ 6,
and log * , dened on R + by

log * = log if n = 4 and log * = 1 if n ≥ 5.
We give a more precise version of Theorem 2.1.5.

Theorem 2.7.

1. Let n ≥ 4, K ≥ 2, N ≥ 6n + 2 if n is even and N ≥ 6n + 3 is n is odd, 0 < η < 1 2 if n = 4 and η = 0 if n ≥ 5 and R > 0.
Let (f 0 , F 0 ) be an initial data set for the massless Vlasov-Maxwell system. Let (f, F ) be the unique classical solution to the system and let A be a potential in the Lorenz gauge. There exists > 0 such that 25 , if

E N [A](0) ≤ , E N [F ](0) ≤ and if, for all 1 ≤ k ≤ K, supp(f 0k ) ⊂ {(x, v) ∈ R n x × R n v \ {0} / |v| ≥ R}, E N +n,1 [f k ](0) ≤ ,
then (f, F ) exists globally in time and veries the following estimates.

• Vanishing property for small velocities : for all

1 ≤ k ≤ K, supp(f k ) ⊂ (t, x, v) ∈ R + × R n x × R n v \ {0} / |v| ≥ R 2 .
• Energy bounds for F and

f k : ∀ 1 ≤ k ≤ K and ∀ t ∈ R + , E N [F ](t) χ(t)(1 + t) η , E N -2n [F ](t) χ(t), E N [f k ](t) log * (3 + t), E N -n,1 [f k ](t) .
• Pointwise decay for the null decomposition of

L Z β (F ) : ∀ |β| ≤ N -5n+4 2 , (t, x) ∈ R + × R n , |α(L Z β F )| χ(t)τ -n+2 2 + , |α(L Z β F )| χ(t)τ -n-1 2 + τ -3 2 -, |ρ(L Z β F )| χ(t)τ -n+1 2 + τ -1 2 -, |σ(L Z β F )| χ(t)τ -n+1 2 + τ -1 2 - and |α(L Z β F )| √ τ -n-1 2 +
τ -1 -. 24 We recall that we take K ≥ 2 since we suppose that the initial energy E[F ] is nite, which implies that the plasma is electrically neutral (see Remark 2.1.2 for more details). 25 We recall that a smallness condition on F , which implies E N [A](0) ≤ , is given in Proposition 2.2.20.

• Pointwise decay for v∈R n \{0} |z Z β f k |dv :

∀ |β| ≤ N -2n, z ∈ k 0 , (t, x) ∈ R + × R n , v |z Z β f k |dv τ n-1 + τ - . • L 2 estimates on v∈R n \{0} | Z β f k |dv : ∀ |β| ≤ N, t ∈ R + , v∈R n \{0} | Z β f k |dv L 2 (Σt) (1 + t) n-1-η 2 .
• Energy bound for a potential A satisfying the Lorenz gauge :

∀ t ∈ R + , E N [A](t) χ(t)(1 + t) η and E N -2n [A](t) χ(t).

Structure and beginning of the proof

Let (f 0 , F 0 ) be an initial data set satisfying the assumptions of Theorem 2.7.1. By a standard local wellposedness argument, there exists a unique maximal solution (f, F ) of the massless Vlasov-Maxwell system dened on [0, T * [, with T * ∈ R * + ∪ {+∞}. We consider the following bootstrap assumptions. Let T be the largest time such that, ∀ 1

≤ k ≤ K and ∀ t ∈ [0, T ], E N [F ](t) ≤ 2C χ(t)(1 + t) η , E N -2n [F ](t) ≤ 2C χ(t),
(2.62)

E 0 N [F ](t) ≤ 4 , E S N [F ](t) ≤ 2C (1 + t) η , E S N -2n [F ](t) ≤ 2C, (2.63) 
E N [A](t) ≤ 2C χ(t)(1 + t) η , E N -2n [A](t) ≤ 2C χ(t), (2.64) 
E N [f k ](t) ≤ 4 log * (3 + t) and E N -n,1 [f k ](t) ≤ 4 , (2.65) 
where C and C are positive constants which will be specied during the proof. Note that by continuity, T > 0. We now present our strategy to improve these bootstrap assumptions.

1. First, using the bootstrap assumptions, we obtain decay estimates for the null decomposition of F (and its Lie derivatives) and for velocity averages of derivatives of f k .

2. Then, we prove that 0 is not in the closure of the Vlasov elds v-support. This follows from the study of the characteristics of the transport equation.

3. Next, we improve the bounds on the Vlasov elds energies by means of the energy estimates proved in Propositions 2.3.3 and 2.3.5. To bound the right hand side in these energy estimates, we make fundamental use of the null structure of the system and the pointwise decay estimates on ρ, σ, α, α and

R n \{0} |z Z β f k |dv.
4. In order to improve the estimates on the electromagnetic eld energies, we establish an L 2

x estimate for the velocity averages of the Vlasov elds (and its derivatives). For this purpose, we follow [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] and we rewrite all the transport equations as an inhomogeneous system of transport equations. The velocity averages of the homogeneous part of the solution verify strong pointwise decay (we use particularly the control that we have at our disposal on the initial data of f k , for derivatives of order N + n or less). The inhomegeneous part is decomposed into a product of an integrable function and a pointwise decaying function which gives us the expected estimate.

5. Finally, we improve the estimates on the energies of the electromagnetic potential and the electromagnetic eld, with the energy estimate for the Maxwell equations (using in particular Propositions 2.3.21 and 2.3.25). We use the null decomposition of J( Z

γ f k ) µ L Z β (F ) µν K ν 0 , which, combined with L 2
x estimates on quantities such as 

R n | Z γ f k |dv,
∀ |β| ≤ N -n, (t, x) ∈ [0, T [×R n , 1 ≤ k ≤ K, v | Z β f k |dv E N [f k ](t) τ n-1 + τ - log * (3 + t) τ n-1 + τ - .
(2.66)

In the same spirit 26 , using Corollary 2.2.14, we have

∀ |β| ≤ N -2n, z ∈ k 0 , (t, x) ∈ [0, T ] × R n , v z Z β f k dv E N -n,1 [f k ](t) τ n-1 + τ - τ n-1 + τ - .
(2.67)

We have improved decay estimates for the null components of the current

M µ := v vµ v 0 Z β f k dv. For all |β| ≤ N -2n, we have v v L v 0 | Z β f k |dv τ n + τ - , (2.68) v v L v 0 | Z β f k |dv τ n-1 + τ 2 - (2.69) and v |v B | v 0 | Z β f k |dv τ n + τ - . (2.70)
This results from (see Proposition 2.2.9)

v L v 0 1 τ + z∈k0 |z|, v L v 0 1 τ -z∈k0 |z| and v B v 0 1 τ + z∈k0 |z|.
Using 

|α(L Z β F )| χ(t)(1 + t) η τ n+2 2 + , |α(L Z β F )| χ(t)(1 + t) η τ n-1 2 + τ 3 2 - , |ρ(L Z β F )| χ(t)(1 + t) η τ n+1 2 + τ 1 2 - , |σ(L Z β F )| χ(t)(1 + t) η τ n+1 2 + τ 1 2 - and |α(L Z γ F )| (1 + t) η τ n-1 2 + τ - . For all t ∈ [0, T ], |β| ≤ N -5n+2 2 , we have |α(L Z γ F )| √ τ -n-1 2 + τ -1 -, |α(L Z β F )| χ(t)τ -n-1 2 + τ -3 2 -, |ρ(L Z β F )| χ(t)τ -n+1 2 + τ -1 2 -, |σ(L Z β F )| χ(t)τ -n+1 2 + τ -1 2 -.
Finally, for all

t ∈ [0, T ], |β| ≤ N -5n+4 2 , |α(L Z γ F )| χ(t)τ -n+2 2 + .
Remark 2.7. 

∀ 1 ≤ i ≤ n, E i = F 0i ,
and that the transports equation of the Vlasov-Maxwell system can be rewritten

v µ ∂ µ f k + v 0 E i ∂ v i f k + v j F j i ∂ v i f k = 0.
We now x 1 ≤ k ≤ K and we prove, under the bootstrap assumption, that if

f k (t, x, v) = 0, with (t, x, v) ∈ [0, T ] × R n × R n \ {0}, then |v| ≥ R 2 .
During the argument, we will use various constants and we will all call them C for simplicity. These constants will not depend on or on T . Let x ∈ R n and |v| ≥ R. Let (X, V ) be the characteristics of the transport equation such that (X(0), V (0)) = (x, v). In particular

∀ 1 ≤ i ≤ n, dV i ds = E i (s, X) + V j V 0 F ji (s, X). It follows that d(|V | 2 ) ds = 2 E(s, X), V . So, |V (t)| 2 = |v| 2 + 2 t 0 E(s, X(s)), V (s) ds.
(2.71)

We denote |V (s)| 2 by g(s). By the Cauchy-Schwarz inequality, we have

g(t) ≤ |v| 2 + 2 t 0 |E(s, X(s))| g(s)ds.
We now use a Grönwall inequality (Lemma 2.4.22) and |E(s,

X(s))| ≤ C √ (1+s) n-1 2 
(which come from Proposition 2.7.2) to obtain

g(s) ≤ |v| + t 0 C √ ds (1 + s) 3 2 2 .
Thus,

|V (s)| ≤ |v| + C √ .
Returning to (2.71), we obtain

|V (s)| 2 ≥ |v| 2 -2 t 0 |E(s, X(s))||V (s)|ds.
Therefore, using again the pointwise estimate on E,

|V (s)| 2 ≥ |v| 2 -2C √ (|v| + C √ ).
Finally,

|V (s)| 2 ≥ |v|(|v| -C √ ) -C ≥ 1 4 |v| 2 , if is suciently small so that C ≤ R 4 and C √ ≤ R 2 . Then, if (x, v) is such that |v| ≥ R, (X, V ) is well dened on [0, T ] (X is also bounded since dX ds = 1) and |V | ≥ R 2 .
Consequently, we obtain. Lemma 2.7.5.

supp(f k|[0,T ] ) ⊂ {(t, x, v) ∈ [0, T ] × R n × R n \ {0} / |v| ≥ R 2 }.
In the remainder, we will then be able to use inequalities like

1 v 0 |f k (t, x, v)| |f k (t, x, v)|.
Sometimes, we will abusively use inequalities such that 

L Z β 1 (F ) v v 0 , ∇ v Z β2 f k dvdxds 3 2 log * (3 + t), for all |β 1 | + |β 2 | ≤ N , with |β 2 | ≤ N -1. Similarly, according to Proposition 2.3.5, E N -n,1 [f k ] ≤ 3 on [0, T ], for small enough, follows from t 0 Σs v |z| L Z β 1 (F ) v v 0 , ∇ v Z β2 f k dvdxds 3 2 ,
and t

0 Σs v F v v 0 , ∇ v z Z β f k dvdxds 3 2 , for all z ∈ k 0 , |β 1 | + |β 2 | ≤ N -n (with |β 2 | ≤ N -n -1) and |β| ≤ N -n.
To unify the study of

E N [f k ] and E N -n,1 [f k ],
we consider b, which could be equal to 0 or to 1,

N 0 = N and N 1 = N -n. Now, we x z ∈ k 0 , |β 1 | + |β 2 | ≤ N b (with |β 2 | ≤ N b -1) and |β| ≤ N -n. We denote ρ(L Z β 1 (F )), σ(L Z β 1 (F )), α(L Z β 1 (F )) and α(L Z β 1 (F )
) by ρ, σ, α and α (respesctively). We also denote Z β2 f k by g and Z β f k by h. The null decomposition of L Z β 1 (F )(v, ∇ v g) or F (v, ∇ v z) brings us to control the integral of the following terms, with z 0 = 1 and z 1 = z.

The terms involving

L or L components of ∇ v g or ∇ v z z b v L v 0 ρ (∇ v g) L , h v L v 0 ρ(F ) (∇ v z) L , (2.72) z b v L v 0 ρ (∇ v g) L , h v L v 0 ρ(F ) (∇ v z) L , (2.73) 
z b v B v 0 α B (∇ v g) L , h v B v 0 α B (F ) (∇ v z) L , (2.74) 
z b v B v 0 α B (∇ v g) L , h v B v 0 α B (F ) (∇ v z) L .
(2.75)

The terms involving angular components of

∇ v g or ∇ v z z b v L v 0 α B (∇ v g) B , h v L v 0 α B (F ) (∇ v z) B , (2.76) z b v B v 0 σ BD (∇ v g) D , h v B v 0 σ(F ) BD (∇ v z) D , (2.77) z b v L v 0 α B (∇ v g) B , h v L v 0 α B (F ) (∇ v z) B .
(2.78)

The study of E N [f k ] corresponds to b = 0. In this case, we only have to estimate the spacetime integral of each of the rst terms of (2.72)-(2.78), but we need to consider two cases. When |β 1 | ≤ N -n we can use the pointwise decay estimates on the electromagnetic eld given by Proposition 2.7.2. When

|β 1 | > N -n, |β 2 | ≤ N -2n (since N ≥ 6n + 2)
, and we can then use the pointwise decay estimates on the velocity averages of the Vlasov eld given in Section 2.7.3.

In the study of E N -n,1 [f k ] (which corresponds to b = 1 and where z can be any weights of k 0 ), we can always use a pointwise estimate on the electromagnetic eld (as |β 1 | ≤ N -n), but we need to estimate the spacetime integral of all the terms of (2.72)-(2.78).

Remark 2.7.6. To simplify the argument we will sometimes denote

E N [f k ] by E N0,0 [f k ] and E N -n,1 [f k ] by E N1,1 [f k ].

Estimating the v derivatives

In order to eliminate the v derivatives, we use, as in Section 2.6.4,

|∇ v w| τ + v 0 Z∈ P0 | Zw| (2.79)
and

(∇ v w) L , (∇ v w) L τ - v 0 Z∈ P0 | Zw|.
(2.80)

If |β 1 | ≤ N -n
We start by the terms involving L or L components of ∇ v g or ∇ v z. We use ζ to denote α, α or ρ. 

η 2 τ 3 2 + τ - . The integral on [0, t] × R n x × (R n v \ {0}) of
τ -|ζ| v |z b Zg|dvdxds t 0 √ (1 + s) -3-η 2 E N b ,b [f k ](s)ds 3 2 .
Similarly, the integrals of each of the second terms of (2.72)-(2.75) are bounded by

Z∈ P0 t 0 Σs τ -|ζ(F )| v |h Z(|z|)| dv v 0 dxds.
Using again the bootstrap assumption (2.65) and 1 v 0

1 on the support of h, one has

t 0 Σs τ -|ζ(F )| v |h Z(|z|)| dv v 0 dxds t 0 √ (1 + s) -3-η 2 E N1,1 [f k ](s)ds 3 2 , since | Z(|z|)| w∈k0 |w| by Lemma 2.2.8.
We now study the remaining terms. Using (2.79), the pointwise decay estimates of Proposition 2.7.2, that 1 v 0 1 on the support of g and the bootstrap assumption (2.65), we have

t 0 Σs v z b v L v 0 α B (∇ v g) B dvdxds Z∈ P0 t 0 Σs τ + |α| v |z b Zg|dvdxds √ t 0 (1 + s) -3-η 2 E N b ,b [f k ](s)ds 3 2 .
The second term of (2.76) can be treated similarly. For the second term of (2.77) (as the rst one can be treated in a similar way), we have, using (2.79), Lemma 2.2.8 and

|v B | √ v L v L (which comes from Proposition 2.2.9), t 0 Σs v h v B v 0 σ(F ) BD (∇ v |z|) D dvdxds z ∈k0 t 0 Σs τ + |σ(F )| v √ v L v L (v 0 ) 2 |z ||h|dvdxds. Since, by Proposition 2.7.2, |σ(F )| √ τ -2 + τ -1 2 -(1 + t) η 2
, one has, using the Cauchy-Schwarz inequality (in (s, x, v)), that the right hand side of the previous inequality is bounded by the product of

z ∈k0 √ t 0 (1 + s) -3-η 2 Σs v v L (v 0 ) 3 |z ||h|dvdxds 1 2 with z ∈k0 √ t u=-∞ τ -3-η 2 - Cu(t) v v L v 0 |z ||h|dvdC u (t)du 1 2
.

The rst factor is bounded by The same is true for the second factor since

3 4 since v L (v 0 ) 3
Cu(t) v v L v 0 |z ||h|dvdC u (t) ≤ E N -n,1 [f k ](t) ≤ 4 , still by the bootstrap assumption (2.65).
Finally, let us treat, for instance, the rst term of (2.78). Using the same ingredients as before, namely

(2.79), that 1 v 0
1 on the support of g and the bootstrap assumption (2.65), we have,

t 0 Σs v z b v L v 0 α B (∇ v g) B dsdxdv Z∈ P0 t 0 Σs τ + |α| v v L (v 0 ) 2 |z b Zg|dvdxds t u=-∞ τ + |α| L ∞ (Cu(t)) E N b ,b [f k ](t)du 3 2 +∞ -∞ 1 τ 3-η 2 - du(δ 1,b + δ 0,b log * (3 + t)).
Remark 

v L , v L or v B .
Using the pointwise decay estimate on v v v 0 Zg dv, given by (2.68), (2.69) or (2.70), and the Cauchy-Schwarz inequality (on the u = constant integrals), we have 27 Note that except for (2.76), we could bound all this terms without the log * (1 + t)-loss.

M t u=-∞ Cu(t) |ζ| 2 dx 1 2 Cu(t) 2 τ 2n-4 + τ 4 - dC u (t) 1 2 du t u=-∞ 3 2 τ 2 - 2t-u u=0 r n-1 τ 2n-4 + du 1 2 du 3 2 t u=-∞ log * (1 + 2t -u) τ 2 - du 3 2 log * (1 + t) +∞ u=-∞ τ - 3 2 
-du.

We now study the two remaining terms, which involve α. We start by (2.75). Using (2.80), we obtain that t

0 Σs v | v B v 0 α B (∇ v g) L |dvdxds is bounded by Z∈ P0 +∞ 0 τ -α L 2 (Σs) v v B (v 0 ) 2 Zg dv L 2 (Σs)
ds.

Using (2.70), Lemma 2.4.1 and that 1 v 0 1 on the support of Zg, we have

v v B (v 0 ) 2 Zg dv L 2 (Σs) (1 + s) n+1 2
.

By the bootstrap assumption 2.62, τ -α L 2 (Σs)

χ(t)(1 + t) η , so t 0 Σs v v B v 0 α B (∇ v g) L dvdxds 3 2 .
Finally,

t 0 Σs v v L v 0 α B (∇ v g) B dvdxds Z∈ P0 t 0 α L 2 (Σs) τ + v v L (v 0 ) 2 Zg dv L 2 (Σs)
ds. Now, using the pointwise estimates (2.68) and Lemma 2.4.1, we have 1) .

τ + v v L (v 0 ) 2 | Zg|dv 2 L 2 (Σs) 2 +∞ 0 r n-1 τ 2n-2 + τ 2 - dr (1 + s) -(n-
As, by the bootstrap assumption (2.63), α 2

L 2 (Σs) , t 0 Σs v v L v 0 α B (∇ v g) B dvdxds 3 2 .
This concludes the improvement of the bootstrap assumption (2.65).

Step 4: L 2 estimates for the velocity averages

As for the massive case, to close the energy estimates on the electromagnetic eld, we need enough decay on quantities such as

v | Z β f k |dv L 2 x for all |β| ≤ N . If |β| ≤ N -2n, strong L 2 decay estimates can already be obtained on v v L v 0 | Z β f k |dv, for instance, combining (2.
68) and Lemma 2.4.1. We x, for the remaining of this section, 1 ≤ k ≤ K. Following the strategy of [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] (see Section 4.5.7), for a similar problem, we introduce M ∈ N such that 7n+4 2 ≤ M ≤ N - 5 2 n. Let I 1 and I 2 be dened as

I 1 = {β multi-index / M ≤ |β| ≤ N } and I 2 = {β multi-index / |β| ≤ M -1}.
We consider an ordering on I i , for 

X j = Z β1,j f k and Y j = Z β2,j f k .
Proof.

Let |β| ≤ N . According to commutation formula of Lemma 2.2.26,

T F ( Z β f k ) is a linear combination of terms such as L Z γ (F )(v, ∇ v Z δ (f k )), with |γ| + |δ| ≤ |β| and |δ| ≤ |β| -1. Replacing each ∂ v i Z δ f k by 1 v 0 ( Ω 0i Z β f k -t∂ i Z β f k -x i ∂ t Z β f k )
, the matrices naturally appear. The decay estimates ensue from the denition of Y and (2.67). Now, we split X in G + H where G is the solution of the homogeneous system and H is the solution to the inhomogeneous system, T F (H) + AH = 0 , H(0, ., .) = X(0, ., .), T F (G) + AG = BY , G(0, ., .) = 0.

We will prove below that G = KY (with K a well chosen matrix), which implies, in view of the velocity support of X and Y , that H and G vanish if |v| ≤ R 2 .

The goal now is to prove L 2 estimates on the velocity averages of H and G.

The homogeneous part

As for the massive case, we have the following commutation formula. Lemma 2.7.9. Let 1 ≤ i ≤ |I 1 | and consider Z δ ∈ P |δ| 0 , with |δ| ≤ n. Then, T F ( Z δ H i ) can be written as a linear combination of terms of the form

L Z γ (F )(v, W ),
where W is such that

∀ 0 ≤ µ ≤ n, |W µ | τ + v 0 |θ|≤n |I1| q=1 | Z θ H q |,
and where |γ| ≤ N -5n+2 2 , so that we can use the sharpest estimates of Proposition 2.7.2, except for α.

We introduce the energy E 1 [H] dened by

E 1 [H] = |I1| q=1 E n,1 [H q ].
Note that for small enough,

E 1 [H](0) ≤ 2E N +n,1 [f ](0) ≤ 2 .
Lemma 2.7.10. If is small enough, we have

∀ t ∈ [0, T ], E 1 [H](t) ≤ 6 (1 + t) η 2 .
Moreover,

∀ 1 ≤ i ≤ |I 1 |, z ∈ k 0 , (t, x) ∈ [0, T ] × R n , v |zH i |dv (1 + t) η 2 τ n-1 + τ - .
Proof. We use again the continuity method. Since, for small enough, E 1 [H](0) ≤ 2 , there exists a larger

time 0 < T ≤ T such that ∀ t ∈ [0, T ], E 1 [H](t) ≤ 6 (1 + t) η 2 .
Following the argument of Section 2.7.5, we almost get that for small enough, E 1 [H] ≤ 5 (1 + t) η on [0, T ]. In fact, using Lemma 2.7.9, we have that T F (H β ) is a linear combination of terms like L Z γ (F )(v, W ), with |γ| ≤ N -5n+2 2 . Thus we can use the null decomposition of the velocity vector and the electromagnetic eld (and use its pointwises estimates) and then make similar computations as in Section 2.7.5. As we cannot use (2.80) (the algebraic relations between S Z β f and ∂ µ Z β f (µ ∈ 0, n ), for instance, are not necessarily conserved by the decomposition X = H + G), we need to reexamine the terms corresponding to (2.72)-(2.75). For instance, for the terms analogous to one of (2.75), we have to prove, for z ∈ k 0 ,

t 0 Σs v τ + |α| z v B (v 0 ) 2 Z θ H q dvdxds 3 2 (1 + t) η 2 .
(2.81) 

As |v B | |v L v L
τ n-3 + v z Z θ H q dvdxds 1 2 with t u=-∞ 1 τ 2 -Cu(t) v v L v L (v 0 ) 4 z Z θ H q dvdC u (t)du 1 2
.

The rst factor is bounded by

t 0 1 + s E 1 [H](s)ds 1 2 (1 + t) η 4 ,
and the other one, since

v L (v 0 ) 3 1 on the support of H, by E 1 [H](t) +∞ u=-∞ 1 τ 2 - du 1 2 √ (1 + t) η 4 .
The other terms are easier to bound. Let us study also the terms analogous to one of (2.73), as there are also the cause of the (1 + t)

η 2 -loss 28 . t 0 Σs v τ + |ρ| z v L (v 0 ) 2 Z θ H ξ dvdxds √ t 0 (1 + s) -n-2 2 E 1 [H](s)ds 3 2 (1 + t) η 2 .
The pointwise estimate on v |z||H i |dv then ensues from the Klainerman-Sobolev inequality of Corollary 2.2.14. 28 Note that we could use that √ τ + τ -|v B | v 0 z∈k 0 |z| in (2.75) to obtain a better bound in (2.81) for an other energy of H. On the other hand, the loss coming from (2.73) could not be avoided with such techniques.

The inhomogeneous part

As in the massive case, let us introduce K, the solution of T F (K)+A 1 K +KA 2 = B which veries K(0, ., .) = 0, and the function

|KKY | ∞ = 1≤i≤|I1| 1≤j,p≤|I2| |K j i | 2 |Y p |.
KY and G are solutions of the same system,

T F (KY ) = T F (K)Y + KT F (Y ) = BY -A 1 KY -KA 2 Y + KA 2 Y = BY -A 1 KY.
As KY (0, ., .) = 0 and G(0, ., .) = 0, it comes that KY = G.

For 1 ≤ i ≤ |I 1 | and 1 ≤ j, p ≤ |I 2 |, |K j i | 2 Y p sasties the equation T F |K j i | 2 Y p = |K j i | 2 (A 2 ) q p Y q -2 (A 1 ) q i K j q + K q i (A 2 ) j q K j i Y p + 2B j i K j i Y p ,
which will allow us to estimate

E[|KKY | ∞ ] := E 0,1 [|KKY | ∞ ].
We will then be able to prove L Lemma 2.7.11. We have, if is small enough,

∀ t ∈ [0, T ], E[|KKY | ∞ ] ≤ (1 + t) η . Proof. Let T > 0 be the largest time such that E[|KKY | ∞ ](t) ≤ 2 (1 + t) η for all t ∈ [0, T ] and let us prove, with Proposition 2.3.1, that for small enough, E[|KKY | ∞ ](t) ≤ (1 + t) η for all t ∈ [0, T ]. It will follow that T = T . As for the estimate of E 1 [H] in the proof of Lemma 2.7.10, t 0 Σs v |K j i | 2 (A 2 ) q p Y q -2 (A 1 ) q i K j q + K q i (A 2 ) j q K j i Y p |z| v 0 dvdxds 3 2 (1 + t) η and t 0 Σs v F v v 0 , ∇ v (|z|) |KKY | ∞ dvdxds 3 2 .
Next, we need to estimate the following integral,

t 0 Σs v |z| v 0 |B j i K j i Y p |dvdx.
(2.82)

Recall from Lemma 2.7.8 that

|B j i K j i Y p | n m=1 |γ|≤N τ + v µ v 0 L Z γ (F ) µm K j i Y p .
The components of the matrix B involve terms in which the electromagnetic eld has too many derivatives to be estimated pointwise. We x |γ| and we denote the null decomposition of L Z γ (F ) by (α, α, ρ, σ). In order to bound (2.82), we bound the integral of the ve following terms, given by the null decomposition of the velocity vector v and L Z γ (F ).

• The terms which do not involve α

τ + |α||z| |KY | v 0 , τ + |ρ||z| |KY | v 0 and τ + |σ||z| |KY | v 0 .
• The terms involving α

τ + |α| v L (v 0 ) 2 |z||KY | and τ + |α| |v B | (v 0 ) 2 |z||KY |.
We start by bounding the integral on Σ s × (R n v \ {0}) of the good terms. We use ζ to denote either α, ρ or σ. Using twice the Cauchy-Schwarz inequality (in x and then in v) and that 1 v 0 1 on the support of Y , we have

Σs v τ + |ζ| |zKY | v 0 dvdx τ + |ζ| L 2 (Σs) Σs v |zKY | dv 2 dx 1 2 E N [F ](s) Σs v |zY | dv v |zKKY | dvdx 1 2 E N [F ](s) v |zY | dv L ∞ (Σs) E[|KKY | ∞ ] 1 2 
.

Using the bootstrap assumptions, on

E N [F ] and E[|KKY | ∞ ],
and the pointwise decay estimate

v |zY | dv τ -n+1 + τ -1
given in Lemma 2.7.8, we obtain

t 0 Σs v τ + |ζ| |zKY | v 0 dvdxds t 0 3 2 χ(t) (1 + s) 3 2 -η ds 3 2 (1 + t) η .
As in the massive case, to unify the study of the terms involving α, we use v to denote v L or v B . Using the Cauchy-Schwarz inequality (in (s, x)), we have

t 0 Σs τ + |α| v | v| (v 0 ) 2 |z||KY |dvdxds t 0 Σs τ -|α| 2 (1 + s) n-3 dxds t 0 Σs τ 2 + (1 + s) n-3 τ - v vz (v 0 ) 2 KY dv 2 dxds 1 2 . (2.83)
As, by the bootstrap assumption 2.63,

√ τ -|α| 2 L 2 (Σs) (1 + s) η , we have t 0 Σs τ -|α| 2 (1 + s) n-3 dxds (1 + t) η .
For the second factor of the product in (2.83), we rst note that, by the Cauchy-Schwarz inequality and that

1 (v 0 ) 2 1 on the support of Y , v vz (v 0 ) 2 KY dv 2 ≤ v |zY | dv v v v 0 2 |z||KKY | ∞ dv. Now, recall from Proposition 2.2.9 that |v B | √ v L v L so that v v 0 2 v L v 0 . Using the pointwise estimate v |zY | dv τ -n+1 + τ -1 -, it comes v vz (v 0 ) 2 KY dv 2 τ n-1 + τ -v v L v 0 |z||KKY | ∞ dv. As Cu(t) v v L v 0 |z||KKY | ∞ dC u (t)dv ≤ E[|KKY | ∞ ](t) ≤ 2 (1 + t) η , we obtain t 0 Σs τ 2 + (1 + s) n-3 τ - v vz (v 0 ) 2 KY dv 2 dxds 2 (1 + t) η t u=-∞ τ -2 -du. Hence, t 0 Σs v τ + | v| (v 0 ) 2 |α||zKY |dvdxds 2 (1 + t) η
and the energy estimate of Proposition 2.3.1 gives that, for

small enough, E[|KKY | ∞ ] ≤ (1 + t) η on [0, T ].
The L 2 estimates

We start with the following proposition.

Proposition 2.7.12. We have,

∀ |β| ≤ N, t ∈ [0, T ], v∈R n \{0} | Z β f k |dv L 2 (Σt) (1 + t) n-1-η 2 and ∀ |β| ≤ N, t ∈ [0, T ], τ + v∈R n \{0} | Z β f k |dv L 2 (Σt) (1 + t) n-3-η 2
We can remove the 

(1 + t) η 2 -loss if |β| ≤ N -2n. Proof. Let 1 ≤ k ≤ K.
1 ≤ i ≤ |I 1 | such that Z β f k = H i + G i . For 1 ≤ i ≤ |I 1 |, Lemmas 2.7.10 and 2.4.1 imply τ + v |H i |dv L 2 (Σt) (1 + t) n-3-η 2
.

Moreover, as G = KY , we have, by the Cauchy-Schwarz inequality (in v),

τ + v |G i |dv L 2 (Σt) ≤ τ 2 + v |Y | ∞ dv v |K j i | 2 |Y j |dv 1 2 L 1 (Σt)
.

As, by Lemmas 2.7.8 and 2.7.11,

τ 2 + v |Y | ∞ dv L ∞ (Σt) (1 + t) n-3 and v |K j i | 2 |Y j |dv 1 2 L 1 (Σt) ≤ 1 2 (1 + t) η 2 ,
we have

τ + v |G i |dv L 2 (Σt) (1 + t) n-3-η 2
.

These inequalities will not be sucient to close the estimate on the energy E S N -n+2

2

[F ] in the next section.

This is why we prove the following proposition.

Proposition 2.7.13. For all |β| ≤ N and all t ∈ [0, T ], we have :

v v L v 0 | Z β f k |dv L 2 (Σt) (1 + t) n+1-η 2 , τ - τ + v v L v 0 | Z β f k |dv L 2 (Σt) (1 + t) n+1-η 2 , v v B v 0 Z β f k dv L 2 (Σt) (1 + t) n+1-η 2 .
We can remove the If |β| > N -2n, we prove in the same way that these inequalities are true if we replace Z β f k by H i , with 

(1 + t) η 2 -loss if |β| ≤ N -2n. Proof. If |β| ≤ N -2n,
1 ≤ i ≤ |I 1 | such that Z β f k = H i + G i . It
v L v 0 ≤ τ -1 + z∈k0 |z|, v L v 0 ≤ τ -1 - z∈k0 |z| and v |z||Y | ∞ dv τ n-1 + τ - .
Hence, using also G = KY , the Cauchy-Schwarz inequality

(in v) and E[|KKY | ∞ ](t) ≤ 2 (1 + t) η , we have v v L v 0 |G i |dv L 2 (Σt) v v L v 0 |Y | ∞ dv v v L v 0 |(K j i ) 2 Y j |dv 1 2 L 1 (Σt) z∈k0 τ -2 + v |z||Y | ∞ dv v |z||KKY | ∞ dv 1 2 L 1 (Σt) (1 + t) -n+1-η 2 , τ - τ + v v L v 0 |G i |dv L 2 (Σt) τ 2 - τ 2 + v v L v 0 |Y | ∞ dv v v L v 0 |(K j i ) 2 Y j |dv 1 2 L 1 (Σt) z∈k0 τ -2 + v |z||Y | ∞ dv v |z||KKY | ∞ dv 1 2 L 1 (1 + t) -n+1-η 2 .
The remaining estimate can be proved in a similar way, using |v 

E N [A](t) E N [A](0) + |γ|≤N t 0 τ + e k R n | Z γ f k |dv L 2 (R n ) ds. As E N [A](0) ≤ and τ + e k R n | Z γ f k |dv L 2 (R n ) (1 + t) -n-3-η 2
(see Proposition 2.7.12), we have, for small enough and if the constant C is large enough,

∀ t ∈ [0, T ], E N [A](t) ≤ C 2(n -3) χ(t)(1 + t) η , with χ such that χ(s) = 1 + s if n = 4, χ(s) = log 2 (3 + s) if n = 5 and χ(s) = 1 if n ≥ 6.
Similarly, using (2.66) and Lemma 2.4.1, we obtain

∀ t ∈ [0, T ], E N -2n [A](t) ≤ C 2(n -3) χ(t).
This concludes the improvement of the bootstrap assumption (2.64).

Improvement of the estimate on E 0

N [F ]
Recall from Proposition 2.3.17 that, for all t ∈ [0, T ],

E 0 N [F ](t) -2E 0 N [F ](0) |β|,|γ|≤N |e k | t 0 Σs |L Z β (F ) 0ν J( Z γ f k ) ν |dxds.
As, by the Cauchy-Schwarz inequality, the bootstrap assumption (2.63) and the L 2 estimates of Proposition 2.7.12,

t 0 Σs |L Z β (F ) 0ν J( Z γ f k ) ν |dxds t 0 L Z β (F ) L 2 (Σs) J( Z γ f k ) L 2 (Σs) ds t 0 E 0 N [F ](s) v | Zf k dv L 2 (Σs) ds t 0 1 2 (1 + s) n-1-η 2 ds 3 2 ,
we have, for

small enough, E 0 N [F ] ≤ 3 on [0, T ].
Improvement of the estimates on

E N [F ] and E N -2n [F ]
Recall from Proposition 2.3.21 that

E N [F ](t) ≤ E N [F ](0) + (n -3) E N [A](t) + ϕ(t),
where ϕ(t) is a linear combination of terms such that 

t 0 Σs |K ν 0 L Z β F µν J( Z γ f k ) µ |dxds and t 0 Σs s|L Z δ A µ L Z δ A µ |dxds, ( 2 
C large enough, E N [F ] ≤ C χ(t)(1 + t) η on [0, T ] since E N [F ](0) ≤ and (n -3) E N [A](t) ≤ C 2 χ(t)(1 + t) η .
Remark 2.7.14. We could estimate the integrals of (2.84) with a better bound (the computations are similar to those done below in Section 2.7.7, but this would not give us a better estimate on 

E N [F ] because of the χ(t)(1 + t) η -loss on E N [A].
s|L Z δ A µ L Z δ A µ |dxds K k=1 |γ|≤|δ| t 0 E N [A](s) τ + v | Z γ f k |dv L 2 (Σs)
ds.

Using the L 2 estimates of Proposition 2.7.12 and that E

N [A](s) χ(s)(1 + t) η , it comes |δ|≤N t 0 Σs s|L Z δ A µ L Z δ A µ |dxds 3 2 t 0 χ(s) (1 + s) n-3 2 -η ds 3 2 χ(t)(1 + t) η .
In order to estimate the remaining integrals of (2.84), we express

K ν 0 L Z β (F ) µν J( Z γ f k ) µ in null coordinates. Dropping the dependance in L Z β (F ) or Z γ f k , this
gives us the four following terms :

τ 2 + ρJ L , τ 2 -ρJ L , τ 2 + α B J B , and τ 2 -α B J B .
(2.85)

As

J L = v v L v 0 Z γ f k dv, J L = v v L v 0 Z γ f k dv and J B = v v B v 0 Z γ f k dv,
we have,

|J L |, |J L |, |J B | v | Z γ f k |dv. The integrals (on [0, T ] × R n x × (R n v \ {0}
)) of each of the four terms of (2.85) are then bounded, using the Cauchy-Schwarz inequality (in x), by

t 0 E N [F ](s) τ + v | Z γ f k |dv L 2 (Σs)

ds.

By Proposition 2.7.12 and the bootstrap assumption (2.62),

t 0 E N [F ](s) τ + v | Z γ f k |dv L 2 (Σs) ds t 0 χ(s) (1 + s) n-3 2 -η ds 3 2 χ(t)(1 + t) η .
Hence, E N [F ](t) ≤ C χ(t)(1 + t) η for all t ∈ [0, T ] if is small enough. We can prove exactly in the same way that E N -2n [F ](t) ≤ C χ(t) for all t ∈ [0, T ] if is small enough.

We then improve the bootstrap assumption (2.62).

Improvement of the estimates on E

S N [F ] and E S N -2n [F ]
Recall from Propositions 2.3.25 and 2.2.19 that, for all t ∈ [0, T ],

E S N [F ](t) ≤ E N [F ](0) + C n E N [A](0) + E N [A](t) 1 + t + E N [F ](t) 1 + t + ψ(t),
where C n is a positive constant and where ψ(t) is a linear combination of terms such as

t 0 Σs |L Z β (F ) 0µ J µ ( Z γ f k )| + |S ν L Z β (F ) νµ J µ ( Z γ f k )|dxds, (2.86) 
with |β|, |γ| ≤ N and 1 ≤ k ≤ K, and

t 0 Σs L Z β (A) µ v v µ v 0 Z γ f k dxds, (2.87) 
with |β|, |γ| ≤ N and 1 ≤ k ≤ K.

Let |β| + |γ| ≤ N and 1 ≤ k ≤ K. We denote the null decomposition of L Z β (F ) by (α, α, ρ, σ), Z γ f k by g and J( Z γ f k ) by J. Expressing L Z β (F ) 0µ J µ (g) and S ν L Z β (F ) νµ J µ (g) in null components, (2.86) would be bounded by .

By the Cauchy-Schwarz inequality,

t 0 Σs τ + |ρJ L |dxds t 0 τ + ρ L 2 (Σs) v v L v 0 |g|dv L 2 (Σs)
ds.

Since, by the bootstrap assumption (2.62), τ + ρ 2

L 2 (Σs) χ(s)(1 + s) η and, according to Proposition 2.7.13, v v L v 0 |g|dv L 2 (Σs) (1 + s) -n+1-η 2 , it comes that t 0 Σs τ 2 + |ρJ L |dxds 3 2 t 0 χ(t) (1 + s) n+1 2 -η ds 3 2 .
The other terms are treated similarly.

t 0 Σs τ -|ρJ L |dxds t 0 τ + ρ L 2 (Σs) τ - τ + v v L v 0 |g|dv L 2 (Σs) ds 3 2 , t 0 Σs τ + |α B J B |dxds t 0 τ + α L 2 (Σs) v v B v 0 |g|dv L 2 (Σs) ds 3 2 , t 0 Σs τ -|α B J B |dxds t 0 τ -α L 2 (Σs) v v B v 0 |g|dv L 2 (Σs) ds 3 2 .
Denoting L Z β (A) by B, (2.87) would be bounded by 

B L 2 (Σs) χ(s)(1 + t) η and J D L 2 (Σs) + J L L 2 (Σs) (1 + s) n-η 2 
.

Hence, by the Cauchy-Schwarz inequality,

t 0 Σs |B L J L | + |B D J D |dxds 3 2 t 0 χ(s) (1 + s) 2-η ds 3 2 .
For (2.88), we have

t 0 Σs |B L J L |dxds t 0 B L L 2 (Σs) v |g|dv L 2 (Σs) ds 3 2 t 0 χ(s) (1 + s) n-1 2 -η
ds. 

|B L J L |dxds t 0 B L L ∞ (Σs) g L 1 (Σs) ds 3 2 t 0 χ(s) log * (3 + s) (1 + s) n-η 2 ds 3 2 .
This concludes the improvement of the bootstrap assumption (2.63).

Non existence

We show in this chapter the following proposition. Let us denote (1, ..., 1) by u and we recall that E i = F 0i .

Proposition 2.8.1. Let the dimension n be such that n ≥ 2 and let χ : R → R + be a function of class C ∞ such that χ = 1 on ] -∞, 1] and χ = 0 on [3, +∞[. We suppose also that χ is decreasing on [START_REF] Andersson | Hidden symmetries and decay for the Vlasov equation on the Kerr spacetime[END_REF][START_REF] Bieri | Asymptotic properties of solutions of the Maxwell Klein Gordon equation with small data[END_REF]. Let also

M ∈ R + such that M -1 = v∈R n χ(|v| 2 )dv.
The Vlasov-Maxwell system (2.1)-(2.3), with two species (K = 2), e 1 = 1, e 2 = -1, m 1 = 0, m 2 ∈ R + and the initial data

E 0 : x → 10χ(2) -1 χ 2 r 2 n u, F 0ij = 0 for all 1 ≤ i, j ≤ n, f 01 = M div(E 0 ) + div(E 0 ) L ∞ (R n ) χ 2r 2 3n χ(|v| 2 ),
and

f 02 = M div(E 0 ) L ∞ (R n ) χ 2r 2 3n χ(|v| 2 ),
do not admit a C 1 local solution, provided 29 w → wχ (2w 2 ) is not constant on a neighborhood of 1.

Remark 2.8.2. Note that the initial data satisfy the constaint equations. Indeed,

v f 01 -f 02 dv = div(E 0 )χ 2r 2 3n
and x → χ 2r 2 3n is equal to 1 on the support of E 0 . The other ones, ∇ [i F 0jk] = 0, are obvious to check.

Remark 2.8.3. There is uniqueness for a such Cauchy problem in the class of the local C 1 functions. Indeed, let (f 1 , f 2 , F ) and (g 1 , g 2 , G) be two such solutions on [0, T ]. As f i and g i are the unique C 1 solution of T (-1) i+1 F (h) = 0 and T (-1) i+1 G (h) = 0 on [0, T ], respectively, we obtain with the method of characteristics that they both vanish for |x| ≥ 3

√ 2 √ n + T .
In view of the wave equations (2.17) and (2.18), the same is true for F and G. All the integrals considered below will then be nite. We have

T F (f q -g q ) = (G -F )(v, ∇ v g q ), ∇ µ (F -G) µν = e q J(f q -g q ), ∇ µ * (F -G) µα1...αn-2 = 0.
Using Propositions 2.3.17 and 2.3.1, we obtain

h(t) := 2 q=1 E 0 [f q -g q ](t) + E 0 0 [F -G](t) t 0 h(s) 1 + v |e k ∇ v g k |dv L 2 (Σs)
ds.

The Grönwall lemma gives us that h = 0 on [0, T ], implying (f, F ) = (g, G).

The strategy of the proof of Proposition 2.8.1 is to construct, for all T 0 > 0, a characteristic of the system such that its velocity part vanish in a time less than T 0 . For this, we make crucial use of the colinearity of y → E(t, y u) and u which is a corollary of the following subsection.

A symmetry property for the Vlasov-Maxwell system

To lighten the notations, we use x (ij) , if i = j, to denote (x 1 , ..., x i-1 , x j , x i+1 , ..., x j-1 , x i , x j+1 , ..., x n ). Proposition 2.8.4. We consider the n dimensional Vlasov-Maxwell system, with K species,

T mq (f q ) + e q v 0 E i ∂ v i f q + e q v i F i j ∂ v j f q = 0, ∇ µ F µν = e q J(f q ) ν , ∇ µ * F µλ1...λn-2 = 0,
with the initial smooth data f q (0, ., .) = f 0q , F (0, .) = F 0 . We suppose that the initial data satisfy the following symmetry relations

f q0 (x (ik) , v (ik) ) = f q0 (x, v), i = j, E i 0 (x (ik) ) = E k 0 (x), i = k, E i 0 (x (kl) ) = E i 0 (x), l = i, k = i. (F kl ) 0 (x (kl) ) = -(F kl ) 0 (x), (F kl ) 0 (x (ik) ) = (F il ) 0 (x), l = k, i, (F kl ) 0 (x (ij) ) = (F kl ) 0 (x), i = k, l, j = k, l.
If there is a unique classical solution (f 1 , ..., f K , F ) on [0, T [, then (f 1 (t, ., .), ..., f K (t, ., .), F (t, .)) satises also these symmetries.

Proof.

To simplify the notation, we suppose that K = 1, e q = 1 and we consider the transposition τ = (12). We denote (y 2 , y 1 , y 3 , ..., y n ) by y τ , m 1 by m and f 1 by f . Let g and G be dened by

g(t, x, v) := f (t, x τ , v τ ), G 02 (t, x) := E 1 (t, x τ ), G 01 (t, x) := E 2 (t, x τ ), G 0k (t, x) := E k (t, x τ ), k ≥ 3, G 12 (t, x) := -F 12 (t, x τ ), G 1k (t, x) := F 2k (t, x τ ), k = 1, k = 2, G 2k (t, x) := F 1k (t, x τ ), k = 1, k = 2, G kl (t, x) := F kl (t, x τ ), k, l ≥ 3
and let D k = G 0k . We want to prove that (g, G) = (f, F ). By assumption, this is true for t = 0 and, by uniqueness, it will be true for t < T if we can prove that (g, G) is solution to the same system as (f, F ).

Propagation of symmetry for the Maxwell equations

Let us prove rst that ∇ µ G µν = J(g) ν . As J(h

) ν = v v ν v 0 hdv, we have, by the change of variables v = v τ , J(g) 1 (t, x) = J(f ) 2 (t, x τ ), J(g) 2 (t, x) = J(f ) 1 (t, x τ ) and J(g) ν (t, x) = J(f ) ν (t, x τ ) if ν = 1, 2. The equation ∇ i G i0 = J(g) 0 then comes from ∂ 1 D 1 (t, x) = ∂ 2 E 2 (t, x τ ), ∂ 2 D 2 (t, x) = ∂ 1 E 1 (t, x τ ) and ∇ i E i = J(f ) 0 . As ∇ µ G µ1 (t, x) = -∂ t E 2 (t, x τ ) -∂ 2 (F 21 (t, x τ )) + n i=3 ∇ i (F i2 (t, x τ )) = -∂ t E 2 (t, x τ ) -∂ 1 F 21 (t, x τ ) + n i=3 ∇ i F i2 (t, x τ ) = ∇ µ F µ2 (t, x τ ), we have ∇ µ G µ1 = J(g) 1 .
The equation ∇ µ G µ2 (t, x) = J(g) 2 can be obtained similarly. The remaining equations are obtained from

∇ j G jk (t, x) = ∂ 1 (F 2k (t, x τ )) + ∂ 2 (F 1k (t, x τ )) + n i=3 ∇ i (F ik (t, x τ )) = ∂ 2 F 2k (t, x τ ) + ∂ 1 F 1k (t, x τ ) + n i=3 ∇ i F i2 (t, x τ ) = ∇ j F jk (t, x τ ) and ∂ t D k (t, x) = ∂ t E k (t, x τ ), for k ≥ 3.
For the other part of the Maxwell equations, recall from Proposition 2.2.16 that it is equivalent to prove

∇ [λ G µν] = 0. We have ∇ [1 G 23] (t, x) = ∂ 1 (F 13 (t, x τ )) + ∂ 2 (F 32 (t, x τ )) -∂ 3 (F 12 (t, x τ )) = ∂ 2 F 13 (t, x τ ) + ∂ 1 F 32 (t, x τ ) + ∂ 3 F 21 (t, x τ ) = ∇ [2 F 13] (t, x τ ) = 0.
The other equations can be obtained in the same way.

Propagation of symmetry for the Vlasov equation

We have

T m (g)(t, x, v) = v 1 ∂ 2 f (t, x τ , v τ ) + v 2 ∂ 1 f (t, x τ , v τ ) + n µ=0 µ =1,2 v µ ∂ µ f (t, x τ , v τ ) = T m (f )(t, x τ , v τ ).
Moreover, as

∂ v 1 g(t, x, v) = ∂ v 2 f (t, x τ , v τ ) and ∂ v 2 g(t, x, v) = ∂ v 1 f (t, x τ , v τ ), D i (t, x)∂ v i g(t, x, v) = E i (t, x τ )∂ v i f (t, x τ , v τ ). Finally, v k G k1 ∂ v 1 g (t, x, v) = -v 2 F 21 (t, x τ ) + n k=3 v k F k2 (t, x τ ) ∂ v 2 f (t, x τ , v τ ) = v k F k2 ∂ v 2 f (t, x τ , v τ ),
and more generally

v k G kj ∂ v j g (t, x, v) = v k F kτ (j) ∂ v τ (j) f (t, x τ , v τ ).
We then deduce,

T G (g) = 0, as T F (f )(t, x τ , v τ ) = 0.

The symmetries are propagated over time

We then proved that (g, G) satises the same system as (f, F ). As (f, F ) = (g, G) at t = 0, we have, by the uniqueness of the solution, that (f, F ) = (g, G) for all t ∈ [0, T [. Remark 2.8.5. More generally, from the above proof, (f, F ) → (g, G) maps C 1 solutions of the Vlasov-Maxwell system to C 1 solutions of the Vlasov-Maxwell system.

Proof of Proposition 2.8.1

Let us suppose that the system admits a local C 1 solution on [0, T ], with T > 0, which is then necessarily unique. We will reduce T later if necessary, but we already assume that T ≤ 1.

Some informations on the electromagnetic elds around u

We start by the study of the solution around u. Let us introduce M 0 := 20χ (2)

-1 and (B ij ) 1≤i,j≤n the 2-form dened by B ij = F ij .
Proposition 2.8.6. Reducing T if necessary, we have the following properties.

Local bounds on the eld:

∀ t ∈ [0, T ], ∀ |x| ≤ √ n + 2T, 1 ≤ i ≤ 3, 5 ≤ E i (t, x) ≤ M 0 , |∂ t E(t, x)| ≤ 1 and ∀ t ∈ [0, T ], |x -u| ≤ 2T, |B(t, x)| ≤ 1 4 . 
(2.90)

2. The eld is locally-Lipschitz:

∃ L > 0, ∀ t ∈ [0, T ], |x|, |y| ≤ √ n + 2T , |E(t, x) -E(t, y)| + |B(t, x) -B(t, y)| ≤ L|x -y|.
(2.91)

3. Specic behaviour along the u-direction:

∀ y ∈ R, t ∈ [0, T ], E(t, y u) = E 1 (t, y u) u and B(t, y u) = 0.
Proof. In view of the initial data, we have B(0, u) = 0 and

∀ |y| ≤ √ n, 1 ≤ i ≤ n, 10 ≤ E i (0, y) ≤ M 0 2 , ∂ t E(0, y) = 0.
The point 1 then ensues, taking T smaller if necessary, from the uniform continuity of the electromagnetic eld on every compact subset of [0, T ] × R n . The point 2 comes from the mean value theorem, as E and B are C 1 and the point 3 follows from Proposition 2.8.4.

The method of charateristics fails

Let us denote by (X(s, t, x, v), V (s, t, x, v)) the value at s of the characteristic, for the transport equation (2.1) satised by f 1 , which was equal to (x, v) at t. Let η ∈]0, T [ and X η : (s, t) → X(s, t, u, η u), V η : (s, t) → V (s, t, u, η u).

We 

dV j η (., t) ds (s) = E j (s, X η (s, t)) + V η i (s)F i j (s, X η (s, t)).
(2.93) Lemma 2.8.7. X η (., t), V η (., t) and E (along X η (., t)) stay collinear to u. We have, as long as

V η stay positive, X η (s, t) = 1 + 1 √ n (s -t) u and V η (s, t) = η u + s t E 1 s , 1 + 1 √ n (s -t) u ds u.
Proof. We start by a change of coordinates. We consider an orthonormal system (u i ) 1≤i≤n such that

u 1 = 1
√ n u and we denote by X i and V i the coordinates of X η (., t) and V η (., t) in this basis. Then, for all

1 ≤ i ≤ n, d X i ds (s) = V i (s) |V |(s)
and, for i ≥ 2, X i (0) = 0 and V i (0) = 0. We remark, using Proposition 2.8.6, that if X i = 0 for i ≥ 2, then E(s, X η (s, t)) = E 1 (s, X η (s, t)) u and B(s, X η (s, t)) = 0. Consider now the solution of the following system

dr ds = w |w| , dw ds = √ nE 1 s, r √ n , ..., r √ n ,
with the initial data r(t) = √ n and w(t) = η √ n. The solution exists as long long as w = 0 and we have

r(s) √ n = 1 - t -s √ n and w(s) √ n = η + s t E 1 s , 1 - t -s √ n , ..., 1 - t -s √ n ) ds .
By uniqueness of the solution of the system (2.92)-(2.93), we have ( X 1 , ..., X n , V 1 , ..., V n ) = (r, 0, ..., 0, w, , 0, ..., 0), which implies the result.

We now try to estimate the time when V η vanishes.

Proposition 2.8.8. The exists 0 < η 0 < T such that for all η ∈]0, η 0 [, there exists T η such that if t < T η , (X η (., t), V η (., t)) is well dened on [0, t] and if T η ≤ t < T there exists τ η (t) ≤ t such that (X η (., t), V η (., t)) is well dened on ]t -τ η (t), t] and

lim s→(t-τη(t)) + V η (s, t) = 0, lim s→(t-τη(t)) + X η (s, t) = 1 - τ η (t) √ n u. Moreover, t → t -τ η (t) is in C 0 ([T η , T [) ∩ C 1 (]T η , T [),
vanishes at T η , and such that

∀ t ∈]T η , T [, 4 M 0 ≤ ∂(t -τ η ) ∂t (t) ≤ M 0 + 1 5 .
Proof.

We 

V i η (s, t) (for all 1 ≤ i ≤ n). For all t ∈]0, T [, g η (., t) stricly increases on [0, t], as E 1 > 0 by Proposition 2.8.6. As s t E 1 s , 1 - t -s √ n u ds = - t-s 0 E 1 t -s , 1 - s √ n u ds and ∂g η ∂t (s, t) = -E 1 s, 1 - t -s √ n u - t-s 0 ∂ t E 1 t -s , 1 - s √ n u
0 = g η (t 1 -τ η (t 1 ), t 1 ) > g η (t 1 -τ η (t 1 ), t 2 ), implying the existence of t 2 -τ η (t 2 ) and t 1 -τ η (t 1 ) < t 2 -τ η (t 2 ), since g η (t 1 -τ η (t 1 ), t 2 ) < 0 = g η (t 2 -τ η (t 2 ), t 2 ).
Hence, T η exists 30 

∂(t -τ η ) ∂t (t) = E 1 t -τ η , 1 - τη √ n u + τη 0 ∂ t E 1 t -s , 1 -s √ n u ds E 1 t -τ η , 1 - τη √ n u
, which, by Proposition 2.8.6, implies the last statement.

Remark 2.8.9. Note that, if 0 < η < η 0 , τ η (T η ) = T η and then g η (0, T η ) = 0.

Later, we will use again that g η (0, .) is strictly decreasing on [0, T [. 30 More precisely, Tη = sup{t ∈]0, T [ / gη(., t) > 0 on [0, t]}.

The contradiction

We x again η ∈]0, η 0 [. As V η (., t) is not dened on [0, t -τ η (t)] if t > T η , we cannot directly express f 1 (t, u, η u) in terms of f 01 by the method of the characteristics. If t ≥ T η , we extend X η (., t) and V η (., t) on [0, t -τ η (t)] by

X η (s, t) = 1 + t -s -2τ η (t) √ n u and V η (s, t) = η u + s t E(s , X η (s , t))ds . Remark 2.8.10. If t > t -τ η (t), dXη ds (s, t) = u √ n .
We extend X η (., t) on [0, t -τ η (t)] in order that

dX η ds (s, t) = - u √ n .
We then extend V η (., t) such that (2.93) remains true on [0, t -τ η (t)].

We have the following result.

Lemma 2.8.11.

∀ t ∈ [0, T [, f 1 (t, u, η u) = f 01 (X η (0, t), V η (0, t)).
(2.94)

Proof. If t < T η , this follows from the method of characteristics. In order to prove the result for t ≥ T η , we consider > 0, v = (0, ..., 0, ),

X η,t : s → X(s, t -τ η (t), X η (t -τ η (t), t), v ) and V η,t : t → V (s, t -τ η (t), X η (t -τ η (t), t), v ).
Proposition 2.8.6 gives us that X η,t and V η,t are well dened on [0, T [. Indeed, as, by (2.92),

|X η,t (s) -u| ≤ |X η,t (s) -X η (t -τ η (t), t)| + |X η (t -τ η (t), t) -u| ≤ 2T, it comes ∀ 1 ≤ i ≤ n, 5 ≤ E i (s, X η,t (s)) ≤ M 0 and |B(s, X η,t (s))| ≤ 1 4
, so that V η,t cannot vanish. Now, the method of characteristics gives us, for all t ∈ [0, T [,

f 1 (t, X η,t (t), V η,t (t)) = f 01 (X η,t (0), V η,t (0)).
Then, the result, for t ≥ T η , follows from the continuity of f 1 and the following proposition.

Proposition 2.8.12. We have

lim →0 X η (., t) -X η,t L ∞ ([0,t]) + V η (., t) -V η,t L ∞ ([0,t]) = 0.
Proof.

On the one hand, as

∀ v, w ∈ R n \ {0}, v |v| - w |w| ≤ 2 |w| |v -w|, (2.95) 
we have 

|X η (s, t) -X η,t (s)| ≤ s t-τη(t) 2 |V η,t (w)| |V η (w, t) -V η,t ( 
+ v i B i (s, x) -w i B i (s, y)| ≤ L|x -y| + | v -w||B(s, x)|.
Then, using (2.93), (2.95) and the bound (2.90) on the magnetic eld,

|V η (s, t) -V η,t (s)| ≤ + s t-τη(t) L|X η (w, t) -X η,t (w)| + 1 2|V η,t (w)| |V η (w, t) -V η,t (w)|dw .
Hence, by the Grönwall lemma, for all s ∈ [0, T [,

|X η (s, t) -X η,t (s)| + |V η (s, t) -V η,t (s)| ≤ exp s t-τη(t) L + 5 2|V η,t (w)|
dw .

(2.96)

We now prove that, ∃ a > 0, b > 5 2 such that ∀ w ∈ [0, T [, |V η,t (w)| ≥ a + b|t -τ η (t) -w|.
(2.97)

Recall that 5 ≤ E j ≤ M 0 and |B| ≤ 1 around u (see Proposition 2.8.6) and

V ,j η,t (w) = v j + w t-τη(t) E j (s, X η,t (s)) + V η,t i (s)B i j (s, X η,t (s))ds.
Hence, we have.

• If w ≥ t -τ η (t), V ,j η,t (w) ≥ δ j,n + (5 -1)(w -t + τ η (t)) so that |V η,t (w)| 2 ≥ 2 + n(5 -1) 2 (w -t + τ η (t)) 2 ≥ 1 2 ( + 4 √ n|w -t + τ η (t)|) 2 . • If t -τ η (t) -2(M0+1) ≤ w ≤ t -τ η (t), V ,j η,t (w) ≤ -(5 -1)(t -τ η (t) -w) for 1 ≤ j ≤ n -1 and V ,n η,t (w) ≥ 2 , so |V η,t (w)| 2 ≥ 2 4 + (n -1)(5 -1) 2 (t -τ η (t) -w) 2 ≥ 1 2 2 + 4 √ n -1|t -τ η (t) -w| 2 • If w ≤ t -τ η (t) -2(M0+1) , then, for 1 ≤ j ≤ n -1, V ,j η,t (w) ≤ -(5 -1)(t -τ η (t) -w) ≤ - 4 3 2(M 0 + 1) + 2(t -τ η (t) -w) . It comes, |V η,t (w)| 2 ≥ 16 9 (n -1) 2(M 0 + 1) + 2|t -τ η (t) -w| 2 .
Inequality (2.97) then holds with

a = min 1 2 √ 2 , 2 √ n -1 3(M 0 + 1) and b = 8 3 √ n -1.
We now prove that the right hand side of ( 

∂ t f 1 (t, u, η u) = n i=1 - 1 √ n ∂ i f 01 1 - t √ n u, V η (0, t) + dV i η dt (0, t)∂ v i f 01 1 - t √ n u, V η (0, t) .
Doing the same for t > T η gives 

∂ t f 1 (t, u, η u) = n i=1 dV i η dt (0, t)∂ v i f 01 1 + t -2τ η (t) √ n u, V η (0, t) + 1 √ n 2 ∂(t -τ η ) ∂t (t) -1 ∂ i f 01 1 + t -2τ η (t) √ n u, V η (0, t) .
∃C > 0, lim tn→Tη ∂(t -τ η ) ∂t (t n ) = C.
Using that f 1 and f 01 are C 1 and taking the limit t n → T η in the two last equations, we obtain

2C n i=1 ∂ i f 01 1 - T η √ n u, 0 = 0 and thus n i=1 ∂ i f 01 1 - T η √ n u, 0 = 0.
(2.98)

Finally, we need the following proposition.

Proposition 2.8.13. The function η → T η is dened on ]0, η 0 [, strictly increasing, continuous and such that

lim η→0 T η = 0.
Proof.

We recall (see Remark (2.8.9)) that T η is dened by the implicit equation

g η (0, T η ) = η - Tη 0 E 1 w, 1 - T η -w √ n u dw = 0. Let 0 < η 1 < η 2 < T . We have g η1 (0, T η2 ) < g η2 (0, T η2 ) = 0, so g η1 (0, T η2 ) < g η1 (0, T η1 ) = 0.
Since g η1 (0, .) strictly decreases (see again Remark (2.8.9), T η2 > T η1 , which means that η → T η is strictly increasing. As E 1 is bounded away from 0 on the domain of integration, T η tends to 0 as η → 0. The continuity ensues from the implicit function theorem.

Using Equation (2.98) and the last proposition, we can nd T * > 0 such that w → f 01 ((1 -w) u, 0) is constant on ]0, T * [. However, there exists C 0 > 0 and C 1 > 0 such that

f 01 ((1 -w) u, 0) = C 0 + C 1 (1 -w)χ 2(1 -w) 2
for all 0 < w < T * , and w → (1 -w)χ 2(1 -w) 2 is not constant around 0.

Introduction

This article is part of a series of works concerning the asymptotic behavior of small data solutions to the Vlasov-Maxwell equations. The system is a classical model for collisionless plasma and is given, for K species of particles, by 1

m 2 k + |v| 2 ∂ t f k + v i ∂ i f k + e k m 2 k + |v| 2 F 0 j + v q F q j ∂ v j f k = 0, ∇ µ F µν = K k=1 e k v∈R 3 v ν m 2 k + |v| 2 f k dv, ∇ µ * F µν = 0,
where • m k ≥ 0 is the mass of the particles of the species k and e k = 0 is their charge.

• The function f k (t, x, v) is the particle density of the species k, where (t,

x, v) ∈ R + × R 3 × R 3 \ {0} if m k = 0 and (t, x, v) ∈ R + × R 3 × R 3 otherwise.
• The 2-form F (t, x), with (t, x) ∈ R + × R 3 , is the electromagnetic eld and * F (t, x) is its Hodge dual.

In [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF], we studied the massless Vlasov-Maxwell system in high dimensions (n ≥ 4) and we proved that if the particle densities initially vanish for small velocities and if certain weighted L 1 and L 2 norms of the initial data are small enough, then the unique classical solution to the system exists globally in time. Moreover, as the smallness assumption only concerns L 1 and L 2 norms, no compact support assumport assumption in x or v was required. We also obtained optimal pointwise decay estimates on the velocity averages of f k and their derivatives as well as improved decay estimates on the null components of the electromagnetic eld and 1 We will, throughout this article, use the Einstein summation convention so that

v i ∂ i f = 3 i=1 v i ∂ i f .
A sum on latin letters starts from 1 whereas a sum on greek letters starts from 0. its derivatives. In the same article, we also proved that there exists smooth initial data such that the particle densities do not vanish for small velocities and for which (3.1)-(3.3) does not admit a local classical solution 2 .

Similar results for the massive Vlasov-Maxwell system in high dimensions are also obtained in [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF]. A main dierence however is that f k does not have to be supported away from v = 0. The 3d massive case requires a renement of our method and will be treated in [START_REF] Bigorgne | Sharp asymptotic behavior of solutions of the 3d vlasov-maxwell system with small data[END_REF]. We will also study the solutions of (3.1)-(3.3) in the exterior of a light cone. The strong decay satised by f k in such a region will allow us to lower the initial decay hypothesis on the electromagnetic eld and to obtain asymptotics on the solutions in a simpler way than for the whole spacetime. This will be done in [START_REF] Bigorgne | Asymptotic properties of the solutions to the Vlasov-Maxwell system in the exterior of a light cone[END_REF].

In this paper, we study the asymptotic properties of the small data solutions to the three-dimensional massless Vlasov-Maxwell, so that m k = 0. We start with optimal decay in v on the particle densities in the sense that we merely suppose f k (0, x, .) to be integrable in v, which is a necessary condition for the source term of the Maxwell equations to be well dened. In massive Vlasov systems, powers of |v| are often lost in order to gain time decay or to exploit null properties 3 . Our assumptions will force us to better understand the null structure of the equations. In fact, one of the goal of this article is to describe in full details the null structure of the system, which appears to be fundamental for proving integrability and controling the velocity support of the particle density.

In view of their physical meaning, the functions f k are usually supposed non negative. However, as their signs play no role in this paper and since we will consider neutral plasmas, we suppose for simplicity that K = 1 and we do not restrict the values of f 1 to R + . We also normalize the charge e 1 to 1 and we denote f 1 by f . The system can then be rewritten as

|v|∂ t f + v i ∂ i f + |v|F 0 j + v q F q j ∂ v j f = 0, (3.1) 
∇ µ F µν = J(f ) ν := v∈R 3 v ν |v| f dv, (3.2) 
∇ µ * F µν = 0.

(3.3)
Note that we can recover the more common form of the Vlasov-Maxwell system using the relations

E i = F 0i and B i = - * F 0i ,
so that the equations (3.1)-(3.3) can be rewritten as

|v|∂ t f + v i ∂ i f + (|v|E + v × B) • ∇ v f = 0, ∇ • E = v∈R 3 f dv, ∂ t E j = (∇ × B) j - v∈R 3 v j |v| f dv, ∇ • B = 0, ∂ t B = -∇ × E.
We choose to work with a neutral plasma to simplify the proof but the case of a non zero total charge will be covered in [START_REF] Bigorgne | Sharp asymptotic behavior of solutions of the 3d vlasov-maxwell system with small data[END_REF] and [START_REF] Bigorgne | Asymptotic properties of the solutions to the Vlasov-Maxwell system in the exterior of a light cone[END_REF].

Previous results on small data solutions for the massive Vlasov-Maxwell system

Global existence for small data in dimension 3 was rst established by Glassey-Strauss in [START_REF] Glassey | Absence of shocks in an initially dilute collisionless plasma[END_REF] under a compact support assumption (in space and in velocity). In [START_REF] Glassey | Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data[END_REF], a similar result is obtained for the nearly neutral case.

The compact support assumption in v is removed in [START_REF] Schaeer | A small data theorem for collisionless plasma that includes high velocity particles[END_REF] but the data still have to be compactly supported in space. Note that none of these results contain estimates on ∂ µ1 ...∂ µ k v f dv and the optimal decay rate on v f dv is not obtained by the method of [START_REF] Schaeer | A small data theorem for collisionless plasma that includes high velocity particles[END_REF]. They all proved decay estimates on the electromagnetic eld up to rst order derivatives.

In [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF], we used vector eld methods, developped in [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF] for the electromagnetic eld and [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] for the Vlasov eld, in order to remove all compact support assumptions for the dimensions n ≥ 4. We then derived (almost) optimal decay on the solutions of the system and their derivatives and we described precisely the behavior of the null components of F . Recently, Wang proved in [START_REF] Wang | Propagation of regularity and long time behavior of the 3D massive relativistic transport equation II: Vlasov-Maxwell system[END_REF] a similar result for the 3d case. Using both vector eld method and Fourier analysis, he replaced the compact support assumption by strong polynomial decay hypotheses in (x, v) on f and obtained optimal pointwise decay estimates on v f dv and its derivatives.

Previous works on Vlasov systems using vector eld methods

Properties of small data solutions of other Vlasov systems were obtained recently using vector eld methods.

First on the Vlasov-Nordström system, in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] and [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF], and the Vlasov-Poisson system (see [START_REF] Smulevici | Small data solutions of the Vlasov-Poisson system and the vector eld method[END_REF]). Vector eld methods led to a proof of the stability of the Minkowski spacetime for the Einstein-Vlasov system, obtained independently by [START_REF] Fajman | Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions[END_REF] and [START_REF] Lindblad | Global stability of Minkowski space for the EinsteinVlasov system in the harmonic gauge[END_REF].

Note that vector eld methods can also be used to derive integrated decay for solutions to the the massless Vlasov equation on curved background such as slowly rotating Kerr spacetime (see [START_REF] Andersson | Hidden symmetries and decay for the Vlasov equation on the Kerr spacetime[END_REF]).

Statement of the main result

The following theorem is the main result of this paper. For the notations not yet dened, see Section 3.2. 

(1 + |x|) |β|+2 (1 + |v|) |κ| ∂ β x ∂ κ v f 0 dvdx + |γ|≤N +2 x∈R 3 (1 + |x|) 2|γ|+2 ∇ ∂ γ x F 0 2 dx ≤ ,
the neutral hypothesis

x∈R 3 v∈R 3 f 0 dvdx = 0 (3.4)
and the support assumption

∀ 0 < |v| ≤ 3, f 0 (., v) = 0.
There exists C > 0 and 0 > 0 such that if 0 ≤ ≤ 0 , then the unique classical solution (f, F ) of the system which satises f (t = 0) = f 0 and F (t = 0) = F 0 is a global solution and veries the following estimates.

• Energy bound for the electromagnetic eld

F : ∀ t ∈ R + , Z γ ∈K |γ| |γ|≤N R 3 τ 2 + |α (L Z γ (F ))| 2 + |ρ (L Z γ (F ))| 2 + |σ (L Z γ (F ))| 2 + τ 2 -|α (L Z γ (F ))| 2 dx ≤ C log 4 (3 + t).
• Sharp pointwise decay estimates for the null components of

L Z γ (F ): ∀ |γ| ≤ N -2, (t, x) ∈ R + × R 3 , |ρ (L Z γ (F ))| (t, x) √ log 2 (3 + t) τ 2 + τ 1 2 - , |α (L Z γ (F ))| (t, x) √ log 2 (3 + t) τ 5 2 + , |σ (L Z γ (F ))| (t, x) √ log 2 (3 + t) τ 2 + τ 1 2 - , |α (L Z γ (F ))| (t, x) √ log 5 2 (1 + τ -) τ + τ 3 2 - .
• Energy bound for the particle density:

∀ t ∈ R + , Z β ∈ P |β| 0 |β|≤N z∈k0 x∈R 3 v∈R 3 z Z β f (t, x, v)dvdx ≤ C log(3 + t).
• Vanishing property for small velocities:

∀ (t, x, v) ∈ R + × R 3 × R 3 \ {0} , |v| ≤ 1 ⇒ f (t, x, v) = 0.
• Sharp pointwise decay estimates for the velocity averages of

Z β f : ∀ |β| ≤ N -5, z ∈ k 0 , ∀ (t, x) ∈ R + × R 3 , v∈R 3 z 2 Z β f dv τ 2 + τ - .
Remark 3.1.2. One can prove a similar result if f 0 vanishes for the velocties v such that |v| ≤ R, with R > 0 ( 0 would then also depends on R).

Remark 3.1.3. We say that (f 0 , F 0 ) is an initial data set for the Vlasov-Maxwell system if the function

f 0 : R 3 x × R 3
v \ {0} → R and F 0 are both suciently regular and satisfy the constraint equations

∇ i F 0 i0 = - v∈R 3 f 0 dv and ∇ i * F 0 i0 = 0.
Remark 3.1.4. The neutral hypothesis (3.4) is a necessary condition for R 3 (1 + r) 2 |F | 2 dx to be nite. This means that, for a suciently regular solution to the Vlasov-Maxwell system (f, F ), the total electromagnetic charge

Q(t) := lim r→+∞ St,r x i r F 0i dS t,r = x∈R 3 v∈R 3 f dvdx,
which is a conserved quantity in t, vanishes. More precisely, if

Q(0) = 0, then R 3 r ρ F 0 2 dx = +∞,
where ρ F 0 :=

x i r F 0 i0 .
We prove in Appendix 3.C that the derivatives of F are automatically chargeless, whether or not Q vanishes.

Strategy of the proof and main diculties

The proof of Theorem 

|v|∂ t g + v i ∂ i g = 0, ∀ (t, x) ∈ R + × R 3 , v∈R 3 v L |v| p v A |v| k v L |v| q |g|(t, x, v)dv |β|≤3 (1 + r) |β|+p+k+q ∂ β x g L 1 x,v (t = 0) (1 + t + r) 2+k+q (1 + |t -r|) 1+p . (3.5)
This strong decay is a key element of our proof. Without it, we would have to consider modications of the commutation vector elds of the free transport operator as in [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF], [START_REF] Smulevici | Small data solutions of the Vlasov-Poisson system and the vector eld method[END_REF], [START_REF] Fajman | Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions[END_REF] and [START_REF] Lindblad | Global stability of Minkowski space for the EinsteinVlasov system in the harmonic gauge[END_REF] for, respectively, the Vlasov-Nordström, the Vlasov-Poisson and the Einstein-Vlasov systems. As the particles are massless, the characteristics of the transport equation and those of the Maxwell equations have the same velocity 5 . The consequence is that, in a product such as L Z γ (F ). Z β f , we cannot transform a |t -r| decay in a t + r one as it is done, in view of support consideration, for the massive case with compactly supported initial data.

We are then led to carefully study the null structure of the equations, and in particular of the non linearities such as

v µ L Z γ (F ) µ i ∂ v i Z β f, (3.6) 
with Z a Killing vector eld and Z its complete lift 6 . The problem is that, for g solution to |v|∂ t + v i ∂ i g = 0, ∂ v g essentially behaves as (1 + t + r)∂ t,x g and the electromagnetic eld, as a solution of a wave equation, only decay with a rate of (1 + t + r) -1 in the t + r direction. However, from [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF], we know that certain null components of the Maxwell eld are expected to behave better than others. The same is true for the null components of the velocity vector v as it is suggested by (3.5). Moreover, we also know from [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] that v L allows us to take advantage of the t -r decay as it permits to estimate spacetime integrals by using a null foliation. Finally, the radial component of (0,

∂ v 1 Z β f, ∂ v 2 Z β f, ∂ v 3 Z β f ) costs a power of t -r instead of t + r.
The null structure of (3.6) is then studied in Lemma 3.4.1 and we can observe that each term contains at least one good component.

Another problem, specic to massless particles, arises from small velocities. We already observed in Section 8 of [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] that the velocity part V of the characteristics of

∂ t + v i |v| ∂ i f + F 0i + v j |v| F ji ∂ v i f = 0 (3.7)
can reach 0 in nite time. The consequence is that if f does not initially vanish for small velocities, the Vlasov-Maxwell system could not admit a local classical solution. This issue is reected in the energy estimates through, schematically,

Zf L 1 x,v (t) ≤ 2 Zf L 1 x,v (0) 
+ t 0 x∈R 3 v∈R 3 |ψ(t, x, v)| | Zf | |v| dvdxds,
where ψ is a homogeneous function of degree 0 in v. One cannot hope to close such an estimate using say

Grönwall inequality due to the factor of 1 |v| appearing in the error term on the right hand side. In [4], we take advantage of the strong decay rate of the electromagnetic eld, given by the high dimensions, to prove that the velocity support of f remains bounded away from 0 if initially true. The slow decay of F in dimension 3 forces us to exploit the null structure of the equations satised by the characteristics of (3.7) in order to recover this result. The strong decay rate satised by the radial component of the electric eld ρ(F ) plays a fundamental role here. We point out that this diculty is not present in the Einstein-Vlasov system as the Vlasov equation can be written, for a metric g and dened in terms of the cotangent variables, as

v µ g µν ∂ x ν f - 1 2 v µ v ν ∂ i g µν ∂ vi f.
One can observe that the homogeneity in v of the non linearity of the Vlasov equation is the same than the one of |v|∂ t + v i ∂ i , so that the velocity part of the characteristics cannot reach 0 in nite time time. 

Notations and preliminaries

Basic notations

In this paper we work on the 3 + 1 dimensionsal Minkowski spacetime (R 3+1 , η). We will use two sets of coordinates, the Cartesian (t, x 1 , x 2 , x 3 ), in which η = diag(-1, 1, 1, 1), and null coordinates (u, u, ω 1 , ω 2 ), where u = t + r, u = t -r and (ω 1 , ω 2 ) are spherical variables, which are spherical coordinates on the spheres (t, r) = constant. These coordinates are dened globally on R 3+1 apart from the usual degeneration of spherical coordinates and at r = 0. We will also use the following classical weights,

τ + := 1 + u 2 and τ -:= 1 + u 2 .
We denote by (e 1 , e 2 ) an orthonormal basis on the spheres and by / ∇ (respectively / div) the intrinsic covariant dierentiation (respectively divergence operator) on the spheres (t, r) = constant. Capital Latin indices (such as A or B) will always correspond to spherical variables. The null derivatives are dened by

L = ∂ t + ∂ r and L = ∂ t -∂ r , so that L(u) = 2, L(u) = 0, L(u) = 0 and L(u) = 2.
The velocity vector (v µ ) 0≤µ≤3 is parametrized by (v i ) 1≤i≤3 and v 0 = |v| since we study massless particles. We introduce T , the operator dened, for all suciently regular function f : [0, T [×R 3

x × R 3 v \ {0} , by

T : f → v µ ∂ µ f.
We will use the notation ∇ v g := (0, ∂ v 1 g, ∂ v 2 g, ∂ v 3 g) so that (3.1) can be rewritten

T F (f ) := v µ ∂ µ f + F (v, ∇ v f ) = 0.
Remark 3.2.1. As we study massless particles, the functions considered in this paper will not be dened for v = 0. However, for simplicity and since {v = 0} has Lebesgue measure 0, we will consider integrals over R 3 v . Moreover, the distribution function f will be supported away from v = 0 during the proof of Theorem 3.1.1.

We will use the notation D 1 D 2 for an inequality such as D 1 ≤ CD 2 , where C > 0 is a positive constant independent of the solutions but which could depend on N ∈ N, the maximal order of commutation. Finally we will raise and lower indices using the Minkowski metric η. For instance, v µ = v ν η νµ so that v 0 = -v 0 and v i = v i for all 1 ≤ i ≤ 3.

The problem of the small velocities

For technical reasons, we will use all along this paper a xed cuto function χ such that χ = 1 on [1, +∞[ and χ = 0 on ] -∞, 1 2 ]. We introduce the operator

T χ F : g → v µ ∂ µ g + χ(|v|)F (v, ∇g) . (3.8) 
As mentionned earlier, we proved in Section 8 of [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] that because of the small velocities, there exists initial data sets for which the Vlasov-Maxwell system does not admit a local classical solution. The main idea of the proof consists in studying characteristics such that their velocity part reaches 0 in nite time. This is why we suppose in Theorem 3.1.1 that the Vlasov eld vanishes initially for small velocities and one step of the proof will be to verify that this property remains true for all t ∈ R + . To circumvent diculties related to characteristics reaching v = 0, we will rather rst dene (f, F ) as the solution to (3.2) -(3.3) and T χ F (f ) = 0. Notice that none of the characteristics of the operator

T χ F reaches v = 0. Indeed, if (X, V ) is one of them,
we have

dV j dt (s) = χ (|V |(s)) V µ (s) |V |(s) F µ j (s, X(s)).
Consequently, if |V (s)| < 1 2 , then V (t) = V (s) for all t ≥ s. The goal will then to prove that if f (0, ., .) vanishes for all |v| ≤ 3, so does f (t, ., .) for all |v| ≤ 1, implying that T F (f ) = 0 and that (f, F ) is a solution to the Vlasov-Maxwell system (3.1)-(3.3).

Basic tools for the study of the electromagnetic eld

As we describe the electromagnetic eld in geometric form, it will be represented throughout this article by a 2-form. Let F be a 2-form dened on [0, T [×R 3

x . Its null decomposition (α(F ), α(F ), ρ(F ), σ(F )), introduced by [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF], is dened by

α A (F ) = F AL , α A (F ) = F AL , ρ(F ) = 1 2 F LL and σ(F ) = F 12 .
The Hodge dual * F of F is the 2-form given by *

F µν = 1 2 F λσ ε λσµν ,
where ε λσµν are the components of the Levi-Civita symbol, and its energy-momentum tensor is Lemma 3.2.2. Let G be a 2-form and J be a 1-form both suciently regular. Then,

T [F ] µν := F µβ F ν β - 1 4 η µν F ρσ F ρσ . Note that T [F ] µν
∇ µ G µν = J ν ∇ µ * G µν = 0 ⇔ ∇ [λ G µν] = 0 ∇ [λ * G µν] = ε λµνκ J κ ,
where

∇ [λ H µν] := ∇ λ H µν + ∇ µ H νλ + ∇ ν H λµ . Proof. Consider for instance ∇ µ G µ1 = J 1 and ∇ i * G i0 = 0. As G 01 = * G 23 ε 0123 = * G 23 , G 21 = * G 03 ε 2103 = * G 30 , G 31 = * G 02 ε 3102 = G 02 , * G 10 = G 23 ε 2310 = -G 23 , * G 20 = G 31 ε 3120 = -G 31 and * G 30 = G 12 ε 1230 = -G 12 ,
we have

∇ µ G µ1 = J 1 ⇔ ∇ 0 * G 23 + ∇ 2 * G 30 + ∇ 3 * G 02 = J 1 and ∇ i * G i0 = 0 ⇔ ∇ 1 G 23 + ∇ 2 G 31 + ∇ 3 G 12 = 0.
The equivalence of the two systems can be obtained by similar computations.

We can then compute the divergence of the energy momentum tensor of an electromagnetic eld.

Corollary 3.2.3. Let G and J be as in the previous lemma. Then,

∇ µ T [G] µν = G νλ J λ .
Proof. Using the previous lemma, we have

G µρ ∇ µ G ν ρ = G µρ ∇ µ G νρ = 1 2 G µρ (∇ µ G νρ -∇ ρ G νµ ) = 1 2 G µρ ∇ ν G µρ = 1 4 ∇ ν (G µρ G µρ ).
Hence,

∇ µ T [G] µν = ∇ µ (G µρ )G ν ρ + 1 4 ∇ ν (G µρ G µρ ) - 1 4 η µν ∇ µ (G σρ G σρ ) = G νρ J ρ .
Finally, the null components of the energy-momentum tensor of a 2-form G are given by

T [G] LL = |α(G)| 2 , T [G] L L = |α(G)| 2 and T [G] LL = |ρ(G)| 2 + |σ(G)| 2 .
(3.9)

The vector elds of the Poincaré group and their complete lifts

We present in this section the commutation vector elds for the Maxwell equations and those for the relativistic transport operator. Let P be the generators of the Poincaré algebra, i.e. the set containing the translations 7

∂ µ , 0 ≤ µ ≤ 3,
the rotations

Ω ij = x i ∂ j -x j ∂ i , 1 ≤ i < j ≤ 3,
the hyperbolic rotations

Ω 0k = t∂ k + x k ∂ t , 1 ≤ k ≤ 3.
We also consider K := P ∪ {S}, where S = x µ ∂ µ is the scaling vector eld and O := {Ω 12 , Ω 13 , Ω 23 }, the set of the rotational vector elds. The vector elds of K are well known for commuting with the wave and the Maxwell equations (see Proposition 3.2.8 below). However, to commute the operator T = v µ ∂ µ , one should consider, as in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], the complete lifts of the vector elds of P.

Denition 3.2.4. Let Γ be a vector eld of the form Γ β ∂ β . Then, the complete lift Γ of Γ is dened by

Γ = Γ β ∂ β + v γ ∂Γ i ∂x γ ∂ v i .
We then have

∂ µ = ∂ µ for all 0 ≤ µ ≤ 3, Ω ij = x i ∂ j -x j ∂ i + v i ∂ v j -v j ∂ v i , for 1 ≤ i < j ≤ 3,
and

Ω 0k = t∂ k + x k ∂ t + v 0 ∂ v k , for 1 ≤ k ≤ 3.
One can check that [T, Z] = 0 for all Z ∈ P. As we also have [T, S] = T , we consider

P 0 := { Z / Z ∈ P} ∪ {S}
and we will, for simplicity, denote by Z an arbitrary vector eld of P 0 , even if S is not a complete lift. These vector elds and the averaging in v almost commute in the following sense.

Lemma 3.2.5. Let f : [0, T [×R 3

x × R 3 v \ {0} → R be a suciently regular function. We have, almost everywhere,

∀ Z ∈ K, Z v∈R 3 |f |dv ≤ v∈R 3 |f |dv + Z∈ P0 v∈R 3 | Zf |dv.
Proof. Let us consider, for instance, the case where

Z = Ω 12 = x 1 ∂ 2 -x 2 ∂ 1 .
Then, integrating by parts in v, we have almost everywhere

Ω 12 v∈R 3 |f |dv = v∈R 3 Ω 12 (|f |) dv - v∈R 3 v 1 ∂ v 2 (|f |) -v 2 ∂ v 1 (|f |) dv = v∈R 3 f |f | Ω 12 (f ) dv + 0 ≤ v∈R 3 Ω 12 (f ) dv.
The vector space engendered by each of the sets dened in this section is an algebra.

Lemma 3.2.6. Let L be either P 0 , K, P or O. Then for all

(Z 1 , Z 2 ) ∈ L 2 , [Z 1 , Z 2 ]
is a linear combination of vector elds of L.

We consider an ordering on each of the sets O, P, K and P 0 . We take orderings such that, if

P = {Z i / 1 ≤ i ≤ |P|}, then K = {Z i / 1 ≤ i ≤ |K|}, with Z |K| = S, and P 0 = Z i / 1 ≤ i ≤ | P 0 | , with Z i 1≤i≤|P| = Z i 1≤i≤|P| and Z | P0| = S.
If L denotes O, P, K or P 0 , and β ∈ {1, ..., |L|} q , with q ∈ N * , we will denote the dierential operator Γ β1 ...Γ βr ∈ L |β| by Γ β . For a vector eld Y , we will denote by L Y the Lie derivative with respect to Y and if Z γ ∈ K q , we will write L Z γ for L Z γ 1 ...L Z γq .

Let us recall, by the following classical result, that the derivatives tangential to the cone behave better than others. Lemma 3.2.7. The following relations hold,

(t -r)L = S - x i r Ω 0i , (t + r)L = S + x i r Ω 0i and re A = 1≤i<j≤3 C i,j A Ω ij ,
where the C i,j A are uniformly bounded and depend only on spherical variables. We also have

(t -r)∂ t = t t + r S - x i t + r Ω 0i
and

(t -r)∂ i = t t + r Ω 0i - x i t + r S - x j t + r Ω ij .
Finally, we introduce the vector eld

K 0 := 1 2 τ 2 + L + 1 2 τ 2 -L,
which will be used as a multiplier.

Commutation of the Vlasov-Maxwell system

Let us start by proving the following result. For convenience, we extend the Kronecker symbol to vector elds, i.e. δ X,Y = 1 if X = Y and δ X,Y = 0 otherwise. Lemma 3.2.8. Let G be a 2-form and g a function, both suciently regular. For all Z ∈ P 0 ,

Z (G (v, ∇ v g)) = L Z (G) (v, ∇ v g) + G v, ∇ v Zg -2δ Z,S G (v, ∇ v g) .
If ∇ µ G µν = J(g) ν and ∇ µ * G µν = 0, then

∀ Z ∈ K, ∇ µ L Z (G) µν = J( Zg) ν + 3δ Z,S J(g) ν and ∇ µ * L Z (G) µν = 0.
Proof. Let Z ∈ P 0 and dene Z v := Z -Z. Then,

Z (G (v, ∇ v g)) = L Z (G) (v, ∇ v g) + G ([Z, v], ∇ v g) + G (v, [Z, ∇ v g]) + G (Z v (v), ∇ v g) + G (v, Z v (∇ v g)) .
Note now that

• S v = 0 and [S, v] = -v, • [Z, v] = -Z v (v) if Z ∈ P.
The rst identity is then implied by

• [∂, ∇ v g] = ∇ v ∂(g) and [S, ∇ v g] = ∇ v S(g) -∇ v g. • [Z, ∇ v g] + Z v (∇ v g) = ∇ v Z(g), if Z ∈ O. • [Z, ∇ v g] + Z v (∇ v g) = ∇ v Z(g) -v v 0 ∂ v i g and G(v, v) = 0, if Z = Ω 0i .
Recall now that if 8 Z ∈ K,

∇ µ L Z (G) µν = L Z (J(g)) ν + 2δ Z,S J(g) ν and ∇ µ * L Z (G) µν = 0.
One then only have to notice that L S (J(g)) = J(Sg) + J(g)

and

∀ Z ∈ P, L Z (J(g)) = J( Zg).
This follows from L Z (J(g)) ν = Z(J(g) ν ) + ∂ ν Z λ J(g) λ and integration by parts in v. For instance,

L Ω12 (J(g)) ν = v∈R 3 v ν v 0 Ω 12 -v 1 ∂ v 2 + v 2 ∂ v 1 gdv + δ 1,ν v∈R 3 v 2 v 0 gdv -δ 2,ν v∈R 3 v 1 v 0 gdv = J Ω 12 g + δ 2,ν v∈R 3 v 1 v 0 gdv -δ 1,ν v∈R 3 v 1 v 0 gdv + δ 1,ν v∈R 3 v 2 v 0 gdv -δ 2,ν v∈R 3 v 1 v 0 gdv.
Iterating Lemma 3.2.8, we can describe the form of the source terms of the commuted Vlasov-Maxwell equations.

Proposition 3.2.9. Let (f, F ) be a suciently regular solution to the Vlasov-Maxwell system (3.1)-(3.3) and Z β ∈ K |β| . There exists integers n β γ,κ and m β ξ such that

T F Z β f = |γ|+|κ|≤|β| |κ|≤|β|-1 n β γ,κ L Z γ (F ) v, ∇ v Z κ (f ) , ∇ µ L Z β (F ) µν = |ξ|≤|β| m β ξ J Z ξ f ν , ∇ µ * L Z β (F ) µν = 0.
The main observation is that the structure of the non-linearity F (v, ∇ v f ) is conserved after commutation, which is important since if the source terms of the Vlasov equation behaved as v 0 |F ||∂ v f |, we would not be able to close the energy estimates for the Vlasov eld. The other conserved structure is J(f ), which is also crucial since a source term behaving as v |f |dv would prevent us to close the energy estimates for the electromagnetic eld.

Weights preserved by the ow and null components of the velocity vector

We designate the null components of the velocity vector by

(v L , v L , v e1 , v e2 ), so that v = v L L + v L L + v e A e A , v L = v 0 + v r 2 and v L = v 0 -v r 2 .
For simplicity we will write v A instead of v e A . We introduce, as in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], the following set of weights

k 0 := v µ v 0 0 ≤ µ ≤ 3 ∪ x µ v ν v 0 -x ν v µ v 0 µ = ν ∪ x µ v µ v 0
and we will denote x µ v ν v 0 -x ν v µ v 0 by z µν and x µ vµ v 0 by s 0 . They are preserved by the ow of T and by the action of P 0 . More precisely, we have the following result. Lemma 3.2.10. Let z ∈ k 0 and Z ∈ P 0 . Then,

T (z) = 0, Z(v 0 z) ∈ v 0 k 0 ∪ {0}
and

Z(z) ≤ w∈k0 |w|.
Proof. The rst property ensues from straightforward computations. For the second one, let us consider for instance tv 1 -x 1 v 0 , x 1 v 2 -x 2 v 1 , Ω 12 and Ω 02 . We have

Ω 12 (tv 1 -x 1 v 0 ) = -tv 2 -x 2 v 0 , Ω 12 (x 1 v 2 -x 2 v 1 ) = 0, Ω 02 (tv 1 -x 1 v 0 ) = x 2 v 1 -x 1 v 2
and

Ω 02 (x 1 v 2 -x 2 v 1 ) = x 1 v 0 -tv 1 .
The other cases are similar and the third property follows directly from the second one.

The following inequalities, which should be compared to those of Lemma 3.2.7, suggest how we will use these weights.

Lemma 3.2.11. We have,

v L v 0 1 τ -z∈k0 |z|, v L v 0 + |v A | v 0 1 τ + z∈k0 |z| and |v A | √ v 0 v L .
Proof. Note rst that

2(t -r) v L v 0 = -s 0 - x i r z 0i , 2(t + r) v L v 0 = -s 0 + x i r z 0i and rv A = v 0 C i,j A z ij ,
where C i,j A are bounded functions depending only on the spherical variables such as re A = C i,j A Ω i,j . This gives the rst two estimates. For the last one, use also that 4r 2 v L v L = k<l |v 0 z kl | 2 , which comes from

4r 2 v L v L = (rv 0 ) 2 -x i v i 2 = 3 i=1 (r 2 -|x i | 2 )|v i | 2 -2 1≤k<l≤3 x k x l v k v l , 1≤k<l≤3 |v 0 z kl | 2 = 1≤k<l≤3 |x k | 2 |v l | 2 + |x l | 2 |v k | 2 -2x k x l v k v l = 3 i=1 j =i |x j | 2 |v i | 2 -2 1≤k<l≤n x k x l v k v l .
Remark 3.2.12. There are certain dierences with the massive case, where v 0 = m 2 + |v| 2 and m > 0.

• The inequality 1 v 0 v L does not hold.

• As x i v i -tv 0 does not commute with the massive relativistic transport operator, we rather consider the set of weights k 1 := k 0 \ {s 0 } in this context. Then, the estimate τ -v L + τ + v L v 0 z∈k1 |z| is merely satised in the exterior of the light cone.

Various subsets of the Minkowski spacetime

We introduce here several subsets of the Minkowski space depending on t ∈ R + , r ∈ R + , u ∈ R. Let S t,r , Σ t , C u (t) and V u (t), be the sets dened as

S t,r := {(s, y) ∈ R + × R 3 / (s, |y|) = (t, r)}, C u (t) := {(s, y) ∈ R + × R 3 / s ≤ t, s -|y| = u}, Σ t := {(s, y) ∈ R + × R 3 / s = t}, V u (t) := {(s, y) ∈ R + × R 3 / s ≤ t, s -|y| ≤ u}.
The volum form on C u (t) is given by dC u (t) = √ 2 -1 r 2 dudS 2 , where dS 2 is the standard metric on the 2 dimensional unit sphere. In view of applying the divergence theorem, we also introduce

Σ u t := {(s, y) ∈ R + × R 3 / s = t, |y| ≥ s -u}.
The sets

Σ t , C u (t) and V u (t) Σ t Σ 0 C u (t) V u (t) r = 0 -u t r
We also introduce a dyadic partition of R + by considering the sequence (t i ) i∈N and the functions (T i (t)) i∈N dened by

t 0 = 0, t i = 2 i if i ≥ 1,
and

T i (t) = t1 t≤ti (t) + t i 1 t>ti (t).
We then dene the troncated cones C i u (t) adapted to this partition by

C i u (t) := (s, y) ∈ R + × R 3 / t i ≤ s ≤ T i+1 (t), s -|y| = u = {(s, y) ∈ C u (t) / t i ≤ s ≤ T i+1 (t)} .
The following lemma will be used several times during this paper. It depicts that we can foliate [0, t] × R 3 by (Σ s ) 0≤s≤t , (C u (T )) u≤t or (C i u (T )) u≤t,i∈N .

Lemma 3.2.13. Let t > 0 and g ∈ L 1 ([0, t] × R 3 ). Then

t 0 Σs gdxds = t u=-∞ Cu(t) gdC u (t) du √ 2 = +∞ i=0 t u=-∞ C i u (t) gdC i u (t) du √ 2 .
Note that the sum over i is in fact nite. The second foliation is useful to take advantage of decay in the t -

r direction since τ -1 - L ∞ (Cu(t)) = τ -1 -, whereas τ -1 - L ∞ (Σs) = 1.
The last foliation will be used to take advantage of time decay on C u (t) as we merely have τ -1

+ L ∞ (Cu(t)) = τ -1 -, whereas τ -1 + L ∞ (C i u (t)) ≤ (1 + t i ) -1 ≤ 3(1 + t i+1 ) -1 .

Energy and pointwise decay estimates

In this section, we recall classical energy estimates for both the electromagnetic eld and the Vlasov eld and how obtain pointwise decay estimates from them.

Energy estimates

For the Vlasov eld, we will use the following energy estimate. x × R 3 v \ {0} → R and g 0 : R 3

x × R 3 v \ {0} → R be two suciently regular functions and F a suciently regular 2-form. Then, g, the unique classical solution of T F (g) = H g(0, ., .) = g 0 , satises, for all t ∈ [0, T [, the following estimates,

v∈R 3 |g|dv L 1 (Σt) + sup u≤t v∈R 3 v L v 0 |g|dv L 1 (Cu(t)) ≤ 2 v∈R 3 |g 0 |dv L 1 (Σ0) + 2 t 0 Σs v∈R 3 |H| dv v 0 dxds.
Proof. Note rst that as T (|g|) = g |g| H -g |g| F (v, ∇ v g) and since F is a 2-form, integration by parts in v

gives us

∂ µ v |g| v µ v 0 dv = v g |g| H v 0 - g |g| F v v 0 , ∇ v g dv = v g |g| H v 0 - v j v i (v 0 ) 3 F ji |g| dv = v g |g| H dv v 0 .
Hence, the divergence theorem applied to v |g| v µ v 0 dv in the regions [0, t] × R 3

x and V u (t), for all u ≤ t, gives

Σt v |g|dvdx ≤ Σ0 v |g|dvdx + t 0 Σs v g |g| H dv v 0 dxds, Σ u t v |g|dvdx + √ 2 Cu(t) v v L v 0 |g|dvdC u (t) ≤ Σ u 0 v |g|dvdx + t 0 Σ u s v g |g| H dv v 0 dxds,
which implies the result.

We then dene, for

(Q, q) ∈ N 2 , E[g](t) := v∈R 3 |g|dv L 1 (Σt) + sup u≤t v∈R 3 v L v 0 |g|dv L 1 (Cu(t)) , (3.10) 
E q Q [g](t) := Z β ∈ P |β| 0 |β|≤Q z∈k0 E z q Z β g (t). (3.11) 
We now introduce the energy norms, related to the electromagnetic eld, used in this paper. We consider, for the remaining of this section, G a suciently regular 2-form dened on [0, T [×R 3 and we denote by (α, α, ρ, σ) its null decomposition. We moreover suppose that G satises

∇ µ G µν = J ν ∇ µ * G µν = 0,
with J be a suciently regular 1-form dened on [0, T [×R 3 . Denition 3.3.2. Let k ∈ N. We dene, for t ∈ [0, T [,

E K0 [G](t) := 4 Σt T [G] 0ν K ν 0 dx + 2 sup u≤t Cu(t) T [G] Lν K ν 0 dC u (t) = Σt τ 2 + |α| 2 + τ 2 -|α| 2 + (τ 2 + + τ 2 -)(|ρ| 2 + |σ| 2 )dx + sup u≤t Cu(t) τ 2 + |α| 2 + τ 2 -(|ρ| 2 + |σ| 2 )dC u (t), E ∂t,k [G](t) = Σt τ 2 -log -k (1 + τ -) |α| 2 + |α| 2 + 2|ρ| 2 + 2|σ| 2 dx.
For N ∈ N * , we also introduce

E N [G] := Z γ ∈K |γ| |γ|≤N E K0 [L Z γ (G)]
and The second energy norm will then permit us to obtain the optimal decay rate in the t + r direction on α, which will be crucial for closing the energy estimates for the Vlasov eld.

E k N [G] := Z γ ∈K |γ| |γ|≤N E ∂t,k [L Z γ (G)].
The following energy estimates hold.

Proposition 3.3.4. We have, with C > 0 a constant depending on k, for all t ∈ [0, T [,

E K0 [G](t) ≤ 2E K0 [G](0) + 8 t 0 Σs |G µν J µ K ν 0 |dxds, E ∂t,k [G](t) ≤ CE K0 [G](0) + C t 0 Σs τ 2 - log k (1 + τ -) |G µ0 J µ |dxds + C sup 0≤s≤t log 1-k (2 + s)E K0 [G](s) .
Proof. Denoting T [G] by T and using Corollary 3.2.3, we have, as

∇ µ K ν 0 + ∇ ν K µ 0 = 4tη µν and T µ µ = 0, ∇ µ T µν K ν 0 = ∇ µ T µν K ν 0 + T µν ∇ µ K ν 0 = G νλ J λ K ν 0 + 1 2 T µν ∇ µ K ν 0 + ∇ ν K µ 0 = G νλ J λ K ν 0 .
Applying the divergence theorem in [0, t] × R 3 and in V u (t), for all u ≤ t, it comes

Σt T 0ν K ν 0 dx = Σ0 T 0ν K ν 0 dx - t 0 Σs G µν J µ K ν 0 dxds, (3.12 
)

Σ u t T 0ν K ν 0 dx + 1 √ 2 Cu(t) T Lν K ν 0 dC u (t) = Σ u 0 T 0ν K ν 0 dx - t 0 Σ u s G µν J µ K ν 0 dxds. (3.13)
Notice, using (3.9) and

2K 0 = τ 2 + L + τ 2 -L, that 4T 0ν K ν 0 = τ 2 + |α| + τ 2 -|α| + (τ 2 + + τ 2 -)(|ρ| + |σ|) and 2T Lν K ν 0 = τ 2 + |α| 2 + τ 2 -|ρ| 2 + τ 2 -|σ| 2 .
It then only remains, to obtain the rst estimate, to take the supremum over all u ≤ t in (3.13) and to combine it with (3.12). For the other one, note rst using Corollary 3.2.3 and (3.9) that

∇ µ τ 2 -log -k (1 + τ -)T µ0 = τ 2 -log -k (1 + τ -)∇ µ T µ0 - 1 2 L τ 2 -log -k (1 + τ -) T L0 = τ 2 -log -k (1 + τ -)∇ µ T µ0 -u log -k (1 + τ -) 2 - kτ - 1 + τ - log -1 (1 + τ -) T L0 τ 2 -log -k (1 + τ -) G 0λ J λ + τ 2 + τ + log k+1 (1 + τ + ) |α| 2 + |ρ| 2 + |σ| 2 .
Consequently, applying the divergence theorem in [0, t] × R 3 , we obtain

Σt τ 2 - log k (1 + τ -) T 00 dx Σ0 (1 + r) 2 T 00 dx + t 0 Σs τ 2 - log k (1 + τ -) |G 0ν J ν | dxds + t 0 E K0 [G](s) (1 + s) log k+1 (2 + s)
ds.

The result then follows from 4T 00 = |α| 2 + |α| 2 + 2|ρ| 2 + 2|σ| 2 and +∞ 0

(1 + s) -1 log -2 (2 + s)ds < +∞.

Decay estimates Decay estimates for velocity averages

We prove in this subsection an L ∞ -L 1 and an L 2 -L 1 Klainerman-Sobolev inequality for velocity averages. The L ∞ -L 1 one was originally proved in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] (see Theorem 6) and we propose here a shorter proof. Let us start with the following lemma.

Lemma 3.3.5. Let g :

S 2 × R 3 v \ {0} → R a suciently regular function. Then, with Ω β ∈ O |β| , v∈R 3 |g|dv L ∞ (S 2 ) |β|≤2 v∈R 3 Ω β g dv L 1 (S 2 )
,

v∈R 3 |g|dv L 2 (S 2 ) |β|≤1 v∈R 3 Ω β g dv L 1 (S 2 )
.

Proof. Let ω ∈ S 2 and (θ, ϕ) a local coordinate map in a neighborhood of w. By the symmetry of the sphere we can suppose that θ and ϕ take their values in an interval of a size independent of ω. Using a one dimensional Sobolev inequality, that |∂ θ u| Ω∈O |Ωu| and Lemma 3.2.5, we have,

v |g|(ω 1 , ω 2 , v)dv θ v |g|(θ, ω 2 , v)dv + ∂ θ v |g|(θ, ω 2 , v)dv dθ Ω κ ∈O |κ| |κ|≤1 θ v
| Ω κ g|(θ, ω 2 , v)dvdθ.

We obtain similarly that θ v

| Ω κ g|(θ, ω 2 , v)dvdθ

Ω γ ∈O |γ| |γ|≤1 θ ϕ v | Ω γ Ω κ g|(θ, ϕ, v)dvdϕdθ Ω β ∈O |β| |β|≤2 v Ω β g dv L 1 (S 2 )
, which implies the rst inequality. For the other one, by a standard L 2 -L 1 Sobolev inequality, one have

v∈R 3 |g|dv L 2 (S 2 ) v∈R 3 |g|dv L 1 (S 2 ) + ∂ θ v∈R 3 |g|dv L 1 (S 2 ) + ∂ ϕ v∈R 3 |g|dv L 1 (S 2 )
.

It then remains to apply Lemma 3.2.5 again.

Proposition 3.3.6. Let f : [0, T [×R 3 × R 3 v \ {0} be a suciently regular function, z ∈ k 0 and j ∈ N. Then,

∀ (t, x) ∈ [0, T [×R 3 , v∈R 3 |z j f |(t, x, v)dv (j + 1) 3 τ 2 + τ - Z β ∈ P |β| 0 |β|≤3 w∈k0 v∈R 3 w j Z β f dv L 1 (Σt)
.

Proof. Note rst that if j ≥ 1, the inequality follows from the case j = 0 as, using Lemma 3.2.10,

Z β z j f j |β| w∈k0 |κ|≤|β| w j Z κ f .
Suppose now that j = 0 and consider (t, x) = (t, |x|ω) ∈ [0, T [×R 3 .

• If 1 + t ≤ 2|x|, one have, using Lemmas 3.2.7 and 3.2.5,

|x| 2 τ - v |f |(t, |x|ω, v)dv = -|x| 2 +∞ r=|x| ∂ r τ - v |f |(t, rω, v)dv dr |x| 2 Z∈K +∞ r=|x| v |f |(t, rω, v)dv + Z v |f |(t, rω, v)dv dr Z∈ P0 +∞ r=|x| v |f |(t, rω, v)dv + v | Zf |(t, rω, v)dv r 2 dr.
It then remains to apply Lemma 3.3.5 and to remark that τ + r in the region considered.

• Otherwise 1 + t ≥ 2|x|, so that, with τ := 1 + t,

∀ |y| ≤ 1 4 , τ ≤ 10(1 + |t -|x + τ y||).
Thus, for all suciently regular function h, 1 ≤ i ≤ 3 and almost all |y| ≤ 1 4 , we have, using Lemmas 3.2.7 and then 3.2.5,

∂ y i v |h|(t, x + τ y, v)dv = τ v ∂ i |h| (t, x + τ y, v)dv (1 + |t -|x + τ y||) v ∂ i |h| (t, x + τ y, v)dv Z∈K v Z|h| (t, x + τ y, v)dv Z κ ∈ P |κ| 0 |κ|≤1 v Z κ h (t, x + τ y, v)dv. (3.14)
Hence, using alternatively three times a one dimensional Sobolev inequality and then (3.14), it comes,

v |f |(t, x, v)dv 1 n=0 |y 1 |≤ 1 4 √ 3 ∂ y 1 n v |f |(t, x 1 + τ y 1 , x 2 , x 3 , v)dv dy 1 |κ|≤1 |y 1 |≤ 1 4 √ 3 v | Z κ f |(t, x 1 + τ y 1 , x 2 , x 3 , v)dvdy 1 1 n=0 |κ|≤1 |y 1 |≤ 1 4 √ 3 |y 2 |≤ 1 4 √ 3 ∂ y 2 n v | Z κ f |(t, x + τ (y 1 , y 2 , 0), v)dv dy 2 dy 1 |κ|≤2 |y 1 |≤ 1 4 √ 3 |y 2 |≤ 1 4 √ 3 v | Z κ f |(t, x + τ (y 1 , y 2 , 0), v)dvdy 2 dy 1 1 n=0 |κ|≤2 |y|≤ 1 4 ∂ y 3 n v | Z κ f |(t, x + τ y, v)dv dy |κ|≤3 |y|≤ 1 4 v | Z κ f |(t, x + τ y, v)dvdy.
The result then follows from the change of variables z = τ y and that τ -≤ τ + τ in the region studied.

We now turn on the L 2 -L 1 Klainerman-Sobolev inequality.

Proposition 3.3.7. Let f : [0, T [×R 3 × R 3 v \ {0} be a suciently regular function, z ∈ k 0 and j ∈ N. Then,

∀ t ∈ [0, T [, τ + τ 1 2 - v∈R 3 |z j f |dv L 2 (Σt) (j + 1) 2 Z β ∈ P |β| 0 |β|≤2 w∈k0 v∈R 3 w j Z β f dv L 1 (Σt)
.

Proof. As previously, we can restrict the proof to the case j = 0. We introduce δ = 1 4 for convenience and we suppose rst that t ≥ 1. The idea is classical and consists in splitting Σ t into the three domains, |x| ≤ t 2 , |x| ≥ 3 2 t and 1 2 t ≤ |x| ≤ 3 2 t.

•

Step 1, the interior region. Applying a local two-dimensional L 2 -L 1 Sobolev inequality to the function

x → v |f |(t, tx, v)dv, we get |x|≤ 1 2 v |f |(t, tx, v)dv 2 dx 1 dx 2 dx 3 1 q=0 |x3|≤ 1 2 x 2 1 +x 2 2 ≤ 1 4 -x 2 3 +δ 2 v ((t∂ x1,x2 ) q |f |) (t, tx, v)dvdx 1 dx 2 2 dx 3 .
As t -|tx| ≥ 1 4 t on the domain of integration since |x| ≤ 1 2 + δ ≤ 3 4 , Lemmas 3.2.7 and 3.2.5 gives us

|x|≤ 1 2 v |f |(t, tx, v)dv 2 dx 1 dx 2 dx 3 |β|≤1 |x3|≤ 1 2 x 2 1 +x 2 2 ≤ 1 4 -x 2 3 +δ 2 v Z β f (t, tx, v)dvdx 1 dx 2 2 dx 3 .
Now, one can obtain similarly, using a one-dimensional L 2 -L 1 Sobolev inequality in the variable x 3 , that

|x|≤ 1 2 v |f |(t, tx, v)dv 2 dx 1 dx 2 dx 3 |β|≤2 |x3|≤ 1 2 +δ x 2 1 +x 2 2 ≤ 1 4 -x 2 3 +δ 2 v Z β f (t, tx, v)dvdx 1 dx 2 dx 3 2 .
Since τ 2 + τ -t 3 if |x| ≤ 1 2 t, we nally obtain, by the change of variables y = tx,

τ + τ 1 2 - v∈R 3 |f |(t, y, v)dv L 2 (|y|≤ 1 2 t) t 3 v∈R 3 |f |(t, tx, v)dv L 2 (|x|≤ 1 2 ) |β|≤2 v Z β f dv L 1 (Σt)
.

(3.15)

• Step 2, the exterior region. Let us introduce, for i ∈ N, the following sets 9

X i := y × Σ t / 3t × 2 i-1 ≤ |y| < 3t × 2 i ,
and

Y i := y × Σ t / 5t × 2 i ≤ 4|y| < 13t × 2 i .
In the domain considered here, where |x| ≥ 3 2 t, we have τ + |x| but we cannot follow exactly what we have done for the interior region as we cannot view |x| as a parameter. However, as for i ∈ N, 2 i t ∼ τ + on X i and

∀ 3 2 -δ ≤ |x| ≤ 3 + δ, |2 i tx| -t ≥ 2 i 5 4 -1 t ≥ 1 4 × 2 i t,
we can apply similar operations to x → v |f |(t, 2 i tx, v)dv as to x → v |f |(t, tx, v)dv previously and obtain

3 2 ≤|x|≤3 v |f |(t, 2 i tx, v)dv 2 dx |β|≤2 |x3|≤3+δ 9 4 -x 2 3 -δ 2 ≤x 2 1 +x 2 2 ≤9-x 2 3 +δ 2 v Z β g (t, 2 i tx, v)dvdx 2 |β|≤2 5 4 ≤|x|≤ 13 4 v Z β g (t, 2 i tx, v)dvdx 2 .
As τ 2 + τ -2 3i t 3 on X i , we nally obtain by the change of variables y = 2 i tx,

τ + τ 1 2 - v∈R 3 |f |dv L 2 (Xi)
2 3i t 3 v∈R 3 |f |(t, 2 i tx, v)dv L 2 ( 3 2 ≤|x|≤3) |β|≤2 v Z β f dv L 1 (Yi)
.

As Y i ∩ Y j = ∅ if |i -j| ≥ 2, X i ∩ X j = ∅ if i = j and since {y ∈ Σ t / |y| ≥ 3 2 t} = ∪ +∞ i=0 X i , we get τ + τ 1 2 - v∈R 3 |f |(t, y, v)dv L 2 (|y|≥ 3 2 t) |β|≤2 v Z β f dv L 1 (Σt)
.

(3.16)

•

Step 3, the remaining domain. We now focus on the region 1 2 t ≤ |x| ≤ 3 2 t. We will obtain the τ + integrated decay with the rotational vector elds through Sobolev inequalities on the spheres. To obtain the √ τ -decay, note rst that |u| ≤ 1 2 t in this region (recall that u = t -|x|). The idea to capture the decay in u will then be to devide the domain in the disjoint union of the sets

V i := {y ∈ Σ t / 2 -i-1 t < |t -|y|| ≤ 2 -i t}, i ∈ N * . Let ω ∈ S 2 . Applying a L 2 -L 1 Sobolev inequality to g : s → v |f |(t, t(1 -2 -i s)ω, v)dv, we obtain 1 2 ≤|s|≤1 v |f |(t, t(1 -2 -i s)ω, v)dv 2 ds 1 j=0 1 4 ≤|s|≤ 5 4 v t2 -i ∂ r |f | j (t, t(1 -2 -i s)ω, v)dv ds 2 . Since 1 4 2 -i t ≤ |t -|t -2 -i ts|| for all i ∈ N * and 1 4 ≤ |s| ≤ 5
4 , it comes, using Lemmas 3.2.7 and 3.2.5 that

1 2 ≤|s|≤1 v |f |(t, t(1 -2 -i s)ω, v)dv 2 ds |κ|≤1 1 4 ≤|s|≤ 5 4 v | Z κ f |(t, t(1 -2 -i s)ω, v)dv ds 2 .
The change of variables r = t(1 -2 -i s) gives t2 -i

2 -i-1 t≤|t-r|≤2 -i t v |f |(t, rω, v)dv 2 dr |κ|≤1 2 -i-2 t≤|t-r|≤5×2 -i-2 t v | Z κ f |(t, rω, v)dv dr 2 .
As previously with the domains X i and Y i , we take the sum over i ∈ N * and we get . 9 The contants hidden in in the upcoming computations will not depend on i.

By simpler operations, one can also obtain that t- 

Σ t = {y ∈ Σ t / |y| ≤ 2 -1 } ∪ ∪ +∞ i=0 {y ∈ Σ t / 2 i-1 ≤ |y| < 2 i } .

Pointwise Decay estimates for the electromagnetic eld

In this section, we follow mostly [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF]. We rst present certain identities and inequalities between quantities linked to the null decomposition of a 2-form (see Section 3.2.3 for its denition), then we recall Sobolev inequalities and, nally, we prove the desired pointwise decay estimates for the electromagnetic eld.

For the remaining of this section, we consider G a 2-form and J a 1-form, both suciently regular and dened on [0, T [×R 3 , such that

∇ µ G µν = J ν , ∇ µ * G µν = 0.
Aside from Lemma 3.3.10 and the estimate on α(G) in Proposition 3.3.13, all the result of this subsection apply to a general 2-form.

• Preparatory results.

To lighten the presentation, we prove the three upcoming lemmas in Appendix 3.D. Lemma 3.3.8. Let Ω ∈ O. Then, the operators L Ω and ∇ ∂r commute with the null decomposition of G as well as with each other, i.e., denoting by ζ any of the null component α, α, ρ or σ,

[L Ω , ∇ ∂r ]G = 0, L Ω (ζ(G)) = ζ(L Ω (G))
and

∇ ∂r (ζ(G)) = ζ(∇ ∂r (G)).
Similar results hold for L Ω and ∇ ∂t ,

∇ L or ∇ L . For instance, ∇ L (ζ(G)) = ζ(∇ L (G)).
We now give a more precise version of Lemma 3.3 of [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF].

Lemma 3.3.9. Denoting by ζ any of the null component α, α, ρ or σ, we have

τ -∇ L ζ(G) + τ + |∇ L ζ(G)| |γ|≤1 |ζ (L Z γ (G))| and (1 + r) / ∇ζ(G) |ζ(G)| + Ω∈O |ζ (L Ω (G))| .
The following equation will be useful in order to obtain a strong decay estimate on α(G).

Lemma 3.3.10. Denoting by (α, α, ρ, σ) the null decomposition of G, we have

∇ L α A - α A r + / ∇ e A ρ + ε BA / ∇ e B σ = J A . (3.18)
The following result will allow us to treat part of the interior of the light cone.

Lemma 3.3.11. Let U be a smooth tensor eld dened on [0, T [×R 3 . Then, 

∀ t ∈ [0, T [, sup |x|≤1+ t 2 |U (t, x)| 1 (1 + t) 5 2 |γ|≤2 τ -L Z γ (U )(t, y) L 2 (|y|≤2+
|U (t, x)| = |V (0)| |β|≤2 ∂ β x V L 2 y (|y|≤1) 1 + t 4 -3 2 |β|≤2 1 + t 4 |β| ∂ β x U (t, .) L 2 y (|y-x|≤ 1+t 4 )
.

Observe now that |y -x| ≤ 1+t 4 implies |y| ≤ 2 + 3 4 t and that 1 + t τ -on that domain. Consequently, using Lemma 3.2.7 and that [Z, ∂], for Z ∈ K, is either 0 or a translation, we have

(1 + t) |β|+1 ∂ β x U (t, .) L 2 y (|y-x|≤ 1+t 4 ) τ |β|+1 - ∂ β x U (t, .) L 2 y (|y|≤2+ 3 4 t) |γ|≤|β| τ -Z γ U (t, .) L 2 y (|y|≤2+ 3 4 t) .
We refer to Lemma 2.3 of [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF] for a proof of the following two Sobolev inequalities, which will permit us to deal with the remaining region.

Lemma 3.3.12. Let U be a suciently regular tensor eld dened on R 3 and denote

|β|≤k |L Ω β (U )| 2 ,
where

Ω β ∈ O |β| , by |U | 2 O,k .
There exists an absolute constant C > 0, independent of U , such that

∀ t ∈ R + , ∀ |x| ≥ 1 2 t + 1, |U (x)| ≤ C |x|τ 1 2 - |y|≥ 1 2 t+1 |U (y)| 2 O,2 + τ 2 -|∇ ∂r U (y)| 2 O,1 dy 1 2 
,

∀ x = 0, |U (x)| ≤ C |x| 3 2 |y|≥|x| |U (y)| 2 O,2 + |y| 2 |∇ ∂r U (y)| 2 O,1 dy 1 2 
.

• Decay estimates for G.

We are now ready to prove the pointwise decay estimates on the electromagnetic eld.

Proposition 3.3.13. Let k ∈ N * . Then, we have for all

(t, x) ∈ [0, T [×R 3 , |ρ|(t, x) + |σ|(t, x) E 2 [G](t) τ 2 + τ 1 2 - , |α|(t, x) E k 2 [G](t) log k 2 (1 + τ -) τ + τ 3 2 - , |α|(t, x) E 2 [G](t) + |κ|≤1 r 2 L Z κ (J) A L 2 (Σt) τ 5 2 + .
Proof. We x for all this proof (t, x) ∈ [0, T [×R 

|β|≤1 |γ|≤2 |y|≥ t 2 +1 r 2 |ζ(L Z γ (G)| 2 +τ 2 -r 2 |ζ(L Ω β (∇ ∂r G))| 2 dy.
As ∇ ∂r commute with L Ω as well as with the null decomposition (see Lemma 3.3.8), we have, using 2∂ r = L-L and Lemma 3.3.9,

|ζ(L Ω (∇ ∂r G))| + |ζ(∇ ∂r G)| |∇ L ζ(L Ω (G)| + |∇ L ζ(L Ω (G)| + |∇ L ζ(G)| + |∇ L ζ(G)| 1 τ -|γ|≤2 |ζ(L Z γ (G)|. (3.19)
Since τ + r ≤ τ + in the region considered, we nally obtain

τ 4 + τ -|ζ| 2 |γ|≤2 |y|≥ t 2 +1 τ 2 + |ζ(L Z γ (G)| 2 dx E 2 [G](t).
We improve now the estimate on α. As ∇ µ L Ω (G) µν = L Ω (J) ν and ∇ µ * L Ω (G) µν = 0 for all Ω ∈ O, we have according to (3.18) that

∀ |β| ≤ 1, ∇ L α(L Ω β (G)) A = 1 r α(L Ω β (G)) A -/ ∇ e A ρ(L Ω β (G)) + ε AB / ∇ e B σ(L Ω β (G)) + L Ω β (J) A .
Consequently, we get using Lemma 3.3.9 that for all Ω ∈ O,

|α(∇ ∂r G)| + |α(L Ω (∇ ∂r G))| |J A | + |L Ω (J) A | + 1 r |γ|≤2 |α(L Z γ (G)| + |ρ(L Z γ (G)| + |σ(L Z γ (G)|. (3.20)
Applying the second inequality of Lemma 3.3.12 and using this time (3.20) instead of (3.19), it comes

τ 5 + |α| 2 |x| 5 |α| 2 |y|≥|x| |rα| 2 O,2 + r 2 |∇ ∂r (rα)| 2 O,1 dy E 2 [G](t) + |κ|≤1 r 2 L Z κ (J) A 2 L 2 (Σt) .
Applying the rst inequality of Lemma 3.3.12 to τ -log -k 2 (1 + τ -)α and using the same arguments as previ- ously, one have

r 2 τ 3 - log k (1 + τ -) |α| 2 |y|≥ t 2 +1 τ - log k 2 (1 + τ -) α 2 O,2 + τ 2 -∇ ∂r τ - log k 2 (1 + τ -) α 2 O,1 dy E k 2 [G](t).

3.4

The null structure of the non linearity

L Z γ (F ) v, ∇ v Z β f
In order to take advantage of the null structure of the Vlasov equation, we will expand quantities such as L Z γ (F ) (v, ∇ v g), with g a regular function, in null coordinates. We then use the following lemma.

Lemma 3.4.1. Let G be a suciently regular 2-form, (α, α, ρ, σ) its null components and g a suciently regular function. Then,

|G (v, ∇ v g)| τ -|ρ| + τ + |α| + τ + |v A | v 0 |σ| + τ - |v A | v 0 |α| + τ + v L v 0 |α| Z∈ P0 Zg .
Proof. Expanding G(v, ∇ v g) with null components, we obtain

G(v, ∇ v g) = 2ρ v L (∇ v g) L -v L (∇ v g) L + v B ε BA σ (∇ v g) A -v L α A (∇ v g) A + v A α A (∇ v g) L -v L α A (∇ v g) A + v A α A (∇ v g) L .
(3.21)

We bound the angular components of ∇ v g by merely using v 0

∂ v i = Ω 0i -t∂ i -x i ∂ t . The radial component 10 have a better behavior since v 0 (∇ v g) r = x i r v 0 ∂ v i g = x i r Ω 0i g -Sg + (t -r)Lg. (3.22)
Remark 3.4.2. Let us explain how this lemma reects the null structure of the system. For this, we write

D 1 ≺ D 2 if D 2 is expected to behave better than D 1 .
Recall that we have the following hierarchies between the null components of G, v and ∇ v g.

• α ≺ ρ ∼ σ ≺ α, • v L ≺ v A ≺ v L , • (∇ v g) A ≺ (∇ v g)
r . We can then notice that α is hit by v L or v A (∇ v g) r , ρ by (∇ v g) r and σ by v A .

Bootstrap assumptions and strategy of the proof

Let N ≥ 10 and (f 0 , F 0 ) be an initial data set satisfying the assumptions of Theorem 3.1.1. Then, by a local well-posedness argument, there exists a unique maximal solution (f, F ) arising from this data to the system 11

T χ F (f ) = 0, ∇ µ F µν = J(f ) ν , ∇ µ * F µν = 0.
Applying Proposition 3.B.1 and considering possibly 1 = C 1 , with C 1 a constant depending only on N , we can suppose without loss of generality that E 2 N [f ](0) ≤ and E N [F ](0) ≤ . Let T * > 0 such that [0, T * [ is the maximum domain of (f, F ) and T ∈]0, T * [ be the largest time such that 12 , for all t ∈ [0, T ],

E 2 N -2 [f ](t) ≤ 4 , (3.23) 
E 1 N [f ](t) ≤ 4 log(3 + t), (3.24) 
|β|=N -1

r 2 v v A v 0 Z β f dv L 2 (Σt) ≤ √ log(3 + t), (3.25) 
E N [F ](t) ≤ 4 log 4 (3 + t), (3.26) 
E 5 N [F ](t) ≤ 2C , (3.27) 
where C > 0 is a positive constant which will be specied later. The third bootstrap assumption is here for convenience, we could avoid it but it would complicate the proof. Before presenting our strategy, let us write the immediate consequences of these bootstrap assumptions. Using the Klainerman-Sobolev inequality of Proposition 3.3.6 and the bootstrap assumption (3.23), one have

∀ (t, x) ∈ [0, T [×R 3 , z ∈ k 0 , |β| ≤ N -5, v z 2 Z β f dv τ 2 + τ - . (3.28) 
Applying the Klainerman-Sobolev inequality of Proposition 3.3.7, Lemma 3.2.11 and using (3.23) and (3.24), we get

∀ t ∈ [0, T [, |β|≤N -4 z∈k0 τ + √ τ - v z 2 Z β f dv L 2 (Σt) , |β|≤N -2 r 2 v v A v 0 Z β f dv L 2 (Σt)
log(3 + t). 

|ρ (L Z γ (F ))| (t, x) √ log 2 (3 + t) τ 2 + τ 1 2 - , |α (L Z γ (F ))| (t, x) √ log 2 (3 + t) τ 5 2 + , (3.30) 
|σ

(L Z γ (F ))| (t, x) √ log 2 (3 + t) τ 2 + τ 1 2 - , |α (L Z γ (F ))| (t, x) √ log 5 2 (1 + τ -) τ + τ 3 2 - . (3.31) 
Applying Proposition 3.A.1, one obtain that f vanishes for small velocities, i.e. 11 We refer to Subsection 3.2.2 for the reasons which bring us to dene (f, F ) as a solution to these equations rather than the Vlasov-Maxwell system.

∀ t ∈ [0, T [, x ∈ R 3 , 0 < |v| ≤ 1, f (t, x, v) = 0.
12 Notice that such a T > 0 exists by a standard continuity argument.

2. Then, in of view of improving (3.25), (3.26) and (3.27), the next step consists in proving L 2 estimates on quantities such as v |z Z β f |dv. To treat the higher order derivatives, we rewrite all transport equations as an inhomogeneous system of Vlasov equations. To handle the homogenous part, we take advantage of the smallness assumption on the N + 3 derivatives of f at t = 0, (3.30) and (3.31). The inhomogenous part G will be schematically decomposed as a product KY , with v |Y |dv a decaying function and |K| 2 Y an integrable function in (x, v).

3. Finally, we improve the bounds on the energy norms of the electromagnetic eld through Proposition 3.3.4. The null structure of the source terms of the Maxwell equations is fundamental for us here.

Improvement of the energy bound on the particle density

The purpose of this section is to improve the bootstrap assymptions (3.23) and (3.24). Note rst that 

∀ z ∈ k 0 , q ∈ {1, 2}, |β| ≤ N, T F (z q Z β f ) = T F (z q ) Z β f + z q T F ( Z β f ) = qz q-1 F (v, ∇ v z) Z β f + z q T F ( Z β f ) and recall from (3.32) that T F (f ) = 0 on [0, T [.
:= t 0 Σs v zF (v, ∇ v z) Z ζ f dv v 0 dxds 3 2 , K z,2 γ,ξ := t 0 Σs v z 2 L Z γ (F ) v, ∇ v Z ξ f dv v 0 dxds 3 2 .
Similarly, the following result implies, if

is small enough, that E 1 N [f ](t) ≤ 3 log(3 + t) for all t ∈ [0, T [. Proposition 3.6.2. Let z ∈ k 0 , |ζ| ≤ N , γ and ξ such that |γ| + |ξ| ≤ N and |ξ| ≤ N -1.
We have,

I z,1 ζ := t 0 Σs v F (v, ∇ v z) Z ζ f dv v 0 dxds 3 2 log(3 + t), K z,1 γ,ξ := t 0 Σs v zL Z γ (F ) v, ∇ v Z ξ f dv v 0 dxds 3 2 log(3 + t).
The proofs are based on the analysis, through Lemma 3.4.1, of quantities such as L Z γ (F ) v, ∇ v Z β f . We then prove the following preparatory lemma.

Lemma 3.6.3. Let |γ| ≤ N -2 and h : [0, T [×R 3

x × (R 3 v \ {0}) be a suciently regular function. Then,

|L Z γ (F ) (v, ∇ v h)| √ τ 5 4 + + √ v L τ 5 4 -v 0 Z∈ P0 Zh and |F (v, ∇ v z)| √ τ 5 4 + + √ v L τ 5 4 -v 0 w∈k0 |w|.
Proof. Let (α, α, ρ, σ) be the null decomposition of L Z γ (F ). Using Lemma 3.4.1, we have 

|L Z γ (F ) (v, ∇ v h)| Z∈ P0 τ -|ρ| + τ + |α| + τ + |v A | v 0 |σ| + τ - |v A | v 0 |α| + τ + v L v 0 |α| Zh .
+ , τ + v L v 0 |α| √ v L τ 5 4 -v 0 , |v A | v 0 (τ + |σ| + τ -|α|) √ √ v L τ 3 4 + τ 1 2 - √ v 0 √ τ 5 4 + + √ v L τ 5 4 -v 0 , (3.33) 
which implies the rst inequality. The second one follows directly since, by Lemma 3.2.10,

Z∈ P0 | Z(z)| w∈k0 |w|.
The remaining of the section is devoted to the proof of Propositions 3.6.1 and 3.6.2. 

I z,2 ζ + K z,2 γ,ξ |β|≤N -2 w∈k0 t 0 Σs v √ τ 5 4 + w 2 Z β f dv v 0 dxds + t 0 Σs v √ τ 5 4 - v L v 0 w 2 Z β f dv v 0 dxds |β|≤N -2 w∈k0 t 0 √ (1 + s) 5 4
Σs v -.

w 2 Z β f dvdxds + t u=-∞ Cu(t) v √ τ 5 4 - v L v 0 w 2 Z β f dvdC u (t)du √ |β|≤N -2 w∈k0 t 0 E[w 2 Z β f ](s) (1 + s) 5 4 ds + t u=-∞ 1 τ 5 4 - Cu(t) v v L v 0 w 2 Z β f dvdC u (t)du √ t 0 E 2 N -2 [f ](s) (1 + s) 5 4 ds + √ t u=-∞ 1 τ 5 4 - E 2 N -2 [f ](t)du
We then deduce that We now consider the cases where |γ| ≥ N -1, so that |ξ| ≤ 1. Let us denote the null decomposition of L Z γ (F ) by (α, α, ρ, σ). Using Lemma 3.4.1 and that 1 ≤ v 0 on the support of f , we are led to bound, for all |β| = |κ| + 1 ≤ 2, the following integrals, 

I z,2 ζ + K z,2 γ,ξ 3 
I z,1 ζ + K z,1 γ,ξ √ |β|≤N w∈k0 t 0 E[w Z β f ](s) (1 + s) 5 4 ds + t u=-∞ 1 τ 5 4 - Cu(t) v v L v 0 w Z β f dvdC u (t)du √ t 0 E 1 N [f ](s) (1 + s) 5 4 ds + √ t u=-∞ 1 τ 5 4 - E 1 N [f ](t)du
I F := t 0 Σs v τ -|ρ| + τ + |α| + τ + |σ| |v A | v 0 z Z β f dvdxds, I α := t 0 Σs v |α| τ -|v A | + τ + v L v 0 z Z β f dvdxds. Using τ + v L + τ + |v A | v 0 w∈k0 |w| (
I α w∈k0 t 0 |α| L 2 (Σs) v (w 2 + z 2 ) Z β f dv L 2 (Σs) ds t 0 E 5 N [F ](s) ds 1 + s 3 2 log(3 + t).
For I F , in order to apply Lemma 3.2.13, notice rst that we have by the estimate (3.28), for u ≤ t and i ∈ N,

v w 2 Z β f dv 2 L 2 (C i u (t)) C i u (t) 2 τ 4 + τ 2 - dC i u (t) 2 τ 9 4 -(1 + t i ) 1 4 2ti+1-u u=2ti-u r 2 τ 7 2 + du 2 τ 9 4 -(1 + 2 i ) 1 4 
.

Hence, using τ + |v A | v 0 w∈k0 |w|, the Cauchy-Schwarz inequality and the bootstrap assumption (3.26), it comes

I F = w∈k0 +∞ i=0 t u=-∞ C i u (t) (τ -|ρ| + τ + |α| + |σ|) v w 2 Z β f dvdC u (t) i du w∈k0 +∞ i=0 t u=-∞ τ -|ρ| + τ + |α| + |σ| L 2 (C i u (t)) v w 2 Z β f dv L 2 (C i u (t)) du +∞ i=0 t u=-∞ E N [F ](T i+1 (t)) τ 9 8 -(1 + 2 i ) 1 8 du 3 2 +∞ i=0 log 2 (3 + 2 i+1 ) (1 + 2 i ) 1 8 +∞ u=-∞ du τ 9 8 - 3 2 .
This concludes the proof and the improvement of the bootstrap assumptions (3.23) and (3.24).

L 2 estimates on the velocity averages of the Vlasov eld

In view of the energy estimate of Proposition 3.3.4, we have to prove L 2

x estimates on quantities such as

v |z Z β f |dv, for |β| ≤ N . If |β| ≤ N -2,
we can use a Klainerman-Sobolev inequality to obtain a sucient decay rate (see Proposition 3.7.9 below). The main part of this section then consists in deriving such estimates for |β| ≥ N -1. For this purpose, we follow the strategy used in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] (Section 4.5.7) and adapted in [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] for the Vlasov-Maxwell system. Contrary to [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF], we will have to keep more of the null structure of the system.

This will force us to add a new hierarchy on the functions studied here. Let us rst rewrite the system and then we will explain how we will proceed. Let I 1 and I 2 be the following ordered sets,

I 1 := {β multi-index / N -5 ≤ |β| ≤ N } = {β 1,1 , ..., β 1,|I1| }, I 2 := {β multi-index / |β| ≤ N -5} = {β 2,1 , ..., β 2,|I2| }.
Remark 3.7.1. Contrary to [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF], we have

I 1 ∩ I 2 = ∅.
We also consider, for N - 

5 ≤ k ≤ N , I k 1 := {β ∈ I 1 / |β| = k}
R i = Z β1,i f and W i = Z β2,i f.
We will sometimes abusively write i ∈ I k 1 instead of β 1,i ∈ I k 1 . Let us denote by V the module over the ring C 0 [0, T [×R 3

x × R 3 v \ {0} engendered by (∂ v l ) 1≤l≤3 . We now rewrite the Vlasov equations satised by R and W . Note also, using (3.28), that

Lemma 3.7.2. There exists three matrices valued functions

A : [0, T [×R 3 × R 3 v \ {0} → M |I1| (V), D : [0, T [×R 3 × R 3 v \ {0} → M |I2| (V) and B : [0, T [×R 3 × R 3 v \ {0} → M |I1|,|I2| (V) such that T F (R) + AR = BW and T F (W ) = DW. Moreover, if 1 ≤ i ≤ |I 1 |, A and B are such that T F (R i ) is a linear combination of L Z γ (F ) (v, ∇ v R j ) , with |β 1,j | < |β 1,i | and |γ| + |β 1,j | ≤ |β 1,i |, L Z ξ (F ) (v, ∇ v W j ) , with |β 2,j | ≤ N -6 and |ξ| ≤ N. Similarly, if 1 ≤ i ≤ I 2 , D is such that T F (W i ) is a linear combination of L Z γ (F ) (v, ∇ v W j ) ,
∀ (t, x) ∈ [0, T [×R 3 , z ∈ k 0 , 1 ≤ q ≤ |I 2 |, v |z 2 W q |dv τ 2 + τ - . Remark 3.7.3. Notice that if β 1,i ∈ I N -5 1
, then A q i = 0 for all 1 ≤ q ≤ |I 1 |. Note also that if p ≥ 1 and β 1,i ∈ I N -5+p , we have |γ| ≤ p.

Proof. One only has to apply the commutation formula of Proposition 3.2.9 to Z β1,i f or Z β2,i f and to replace each quantity such as Z κ f , for |κ| = N -5, by the corresponding component of R or W . If |κ| = N -5, we replace it by the corresponding component of R.

The goal is to obtain an L 2 estimate on R. For this, let us split it in R := H + G, where T χ F (H) + AH = 0 , H(0, ., .) = R(0, ., .), T χ F (G) + AG = BW , G(0, ., .) = 0 and then prove L 2 estimates on the velocity averages of H and G. To do it, we will schematically establish that G = KW , with K a matrix such that E[KKW ] do not growth too fast, and then use the pointwise decay estimates on v |z 2 W |dv to obtain the expected decay rate on v |G|dv L 2

x . For

v |H|dv L 2
x , we will make crucial use of Klainerman-Sobolev inequalities so that we will need to commute the transport equation satised by H and prove L 1 bounds such as we made in the proof of Proposition 3.6.1. Contrary to what we did in [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF], we keep the v derivatives in order to take advantage of the good behavior of radial component of ∇ v g. This is why we put the derivatives of order N -5 in both R and W . Remark 3.7.4. If we proceed as in [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF], we would not be able to use the estimate (∇ v g) r ∼ τ -Zg and an analogous result to Lemma 3.4.1 would give the term

τ + |α| |v A | v 0 | Zg|.
In our case (the three dimensional one), a lack of decay in the t + r direction prevents us to deal with it.

The homogeneous system

In order to obtain L ∞ , and then L 2 , estimates on v |H|dv, we will have to commute at least three times the transport equation satised by each component of H.

However, if β 1,i ∈ I k 1 , with k ≥ N -4, we need to control the L 1 norm of Z κ H j , with |κ| = 4 and j ∈ I k-1 1 , to bound Z ξ H i L 1 x,v
, with |ξ| = 3. We then consider the following energy norm

E H := z∈k0 5 k=0 |β|≤3+k i∈I N -k 1 E[z 2 Z β H i ].
We have the following commutation formula. Lemma 3.7.5. Let 0

≤ k ≤ 5, |β| ≤ 3 + k and i ∈ I N -k 1 . Then, if H vanishes for all |v| ≤ 1, T F ( Z β H i )
can be written as a linear combination of terms of the form

L Z γ (F ) v, ∇ v Z ξ H j , with |γ| ≤ 8 ≤ N -2, |ξ| ≤ |β|, |β 1,j | ≤ |β 1,i |, |ξ| + |β 1,j | < |β| + |β 1,i |.
Proof. If H vanishes for all |v| ≤ 1, we have T F (H) + AH = 0. Hence, according to Proposition 3.2.9, the source terms which arise from the commutator [T F , Z β ] are such as those described in this lemma, with j = i. The other ones come from Z β (T F (H i )) (use Lemma 3.7.2, Remark 3.7.3 and Lemma 3.2.8 to check that they are of the researched form).

As H(0, ., .) = R(0, ., .), it then comes that H(0, .v) = 0 for all |v| ≤ 3 and, applying Proposition13 3.B.2, that there exists C H > 0 such that E H (0) ≤ C H . Consequently, using Corollary 3.A.5 and following the proof of Proposition 3.6.1, one can prove that, for small enough,

∀ t ∈ [0, T [, E H (t) ≤ 3C H and ∀ (t, x) ∈ [0, T [×R 3 , 0 < |v| ≤ 1, H(t, x, v) = 0.
By Proposition 3.3.6, we then obtain, for 0 ≤ k ≤ 5,

∀ (t, x) ∈ [0, T [×R 3 , z ∈ k 0 , 1 ≤ j ≤ |I N -k 1 |, |β| ≤ k, v |z 2 Z β H j |dv τ 2 + τ - . (3.34) 
Remark 3.7.6. Proceeding as in Subsection 17.2 of [START_REF] Fajman | Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions[END_REF], we could avoid any hypothesis on the higher order derivatives of F 0 .

The inhomogenous system

Start by noticing that G vanishes for all |v| ≤ 1 since G = R -H. We then deduce from χ(|v|) = 1 for all |v| ≥ 1 that G satises T F (G) + AG = BW . To derive an L 2 estimate on G, we cannot commute the transport equation because B contains top order derivatives of the electromagnetic eld. Instead, we follow the methodology of [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] (see Subsection 4.5.7). We kept the v derivatives of G in the matrix A so that we could better use the null structure. In order to obtain L 1 bounds on quantities introduced below, we now need to rewrite these v derivatives. This is the purpose of the following lemma.

Lemma 3.7.7. There exists p ≥ 1, a vector valued eld Y of length p, which vanishes for |v| ≤ 1, and three matrices valued functions

A : [0, T [×R 3 × R 3 v \ {0} → M |I1| (R), B : [0, T [×R 3 × R 3 v \ {0} → M |I1|,p (R), D : [0, T [×R 3 × R 3 v \ {0} → M p (R) such that T F (G) + AG = BY, T F (Y ) = DY and z∈k0 v |z 2 Y |dv τ 2 + τ - .
Moreover, A and B are such that, if i ∈ 1, |I 1 | , T F (G i ) can be bounded by a linear combination of terms of the form,

τ -|ρ (L Z γ (F ))| + τ + |α (L Z γ (F ))| + τ + |v A | v 0 |σ (L Z γ (F ))| + τ -|v A | + τ + v L v 0 |α (L Z γ (F ))| |G j | and (τ -|ρ (L Z ξ (F ))| + τ + |α (L Z ξ (F ))| + |σ (L Z ξ (F ))| + |α (L Z ξ (F ))|) |zY q |, where j ∈ 1, |I 1 | , |γ| ≤ 5, q ∈ 1, p , |ξ| ≤ N and z ∈ V . Similarly, D is such that, if i ∈ 1, p , T F (Y i ) can
be bounded by a linear combination of terms of the form,

τ -|ρ (L Z γ (F ))| + τ + |α (L Z γ (F ))| + τ + |v A | v 0 |σ (L Z γ (F ))| + τ -|v A | + τ + v L v 0 |α (L Z γ (F ))| |Y j |,
where j ∈ 1, p and |γ| ≤ N -5.

Proof. The strategy of the proof is the following.

If ∂ v k G j appears in T F (G) + AG = BW , then, by Lemma 3.7.2, j ∈ I k 1 , with N -5 ≤ k ≤ N -1.
We then transform it with v 0 ∂ v k = Ω 0k -x k ∂ t -t∂ k and express it, with controlable error terms, as a combination of (G l ) l∈I k+1 1 . The other manipulations are similar to those made in Section 3.6 when we applied Lemma 3.4.1. Let us denote, for j ∈ I 1 \ I N 1 and Z ∈ P 0 , by j Z the index such that R j Z = Z Z β1,j f = ZR j . Hence, by (3.34) and since R = H + G, we have, for all j ∈ I 1 \ I

N 1 , ∀ (t, x) ∈ [0, T [×R 3 , (z, Z) ∈ k 0 × P 0 , v |z| 2 |G j Z -ZG j |dv = v |z| 2 |H j Z -ZH j |dv τ 2 + τ - . (3.35) Let p 0 := |I 2 | + |I 1 \ I N 1
| and Y 0 a vector valued eld 14 of length p 0 containing each component of W and each G j Z -ZG j , for j ∈ I 1 \ I N 1 . We order the components of Y 0 such as Y 0 • Those coming from BW , • Those coming from AW ,

j Z = G j Z -ZG j .
L Z ξ (F ) (v, ∇ v W j ) ,
L Z γ (F ) (v, ∇ v G j ) , with |β 1,j | < |β 1,i | and |γ| + |β 1,j | ≤ |β 1,i |.
Then, expand L Z γ (F ) (v, ∇ v G j ) in null components using formula (3.21). We now rewrite the angular

components of ∇ v G j using v 0 ∂ v k = Ω 0k -x k ∂ t -t∂ k , so that v 0 ∂ v k G j = G j Ω 0k -x k G j ∂ t -tG j ∂ k -Y 0 j Ω 0k + x k Y 0 j ∂ t + tY 0 j ∂ k .
14 Y 0 will be a subvector of the vector Y of the lemma.

For the radial component, use (3.22) to obtain

v 0 (∇ v G j ) r = x q r G j Ω 0q -Y 0 j Ω 0q -G j S + Y 0 j S + (t -r) G j ∂ t -Y 0 j ∂ t - x q r G j ∂q + x q r Y 0 j ∂q .
This concludes the construction of A, B. To obtain an equation on Y 0 , we will see that we need to consider a bigger vector than Y 0 . Let i ∈ 1, p 0 . If Y 0 i = W q , with q ∈ I 2 , we can build the line i of D using Lemmas 3.7.2 and 3.4.1. Otherwise, Y 0 i = ZH j -H j Z and by Lemma 3.7.5 we see that functions such as ∂ v ZH r , with |β 1,r | < |β 1,j |, appear in certain source terms of T F (Y 0 i ). We then consider the vector valued eld Y containing Y 0 and all the quantities Z κ H j such as β 1,j ∈ I N -5+k Consider now K satisfying T χ F (K) + χAK + χKD = χB and K(0, ., .) = 0. Hence, KY = G since they both initially vanish and T F (KY ) + AKY = BY in view of the velocity support of Y . The goal now is to control the energy

E G := |I1| i=0 p j=0 p q=0 E K j i 2 Y q .
We will then be naturally led to use that T 0 > 0. The remaining of the proof consists in improving this bootstrap assumption, which would imply the result. The computations will be similar as those of the proof of Proposition 3.6.2. Let i ∈ 1, |I 1 | and (j, q) ∈ 1, p2 . According to the energy estimate of Proposition 3.3.1 and (3.36), it suces to prove that 

T F |K j i | 2 Y q = |K j i | 2 D r q Y r -2 A r i K j r + K r i D j r K j i Y q + 2B j i K j i Y q . ( 3 
I A,D := t 0 Σs v |K j i | 2 D r q Y r -2 A r i K j r + K r i D j r K j i Y q dv v 0 dxds 3 2 log 2 (3 + t), (3.37) 
I B := t 0 Σs v B j i K j i Y q dv v 0 dxds
+ + √ v L τ 5 4 -v 0 |K| 2 |Y |dvdxds √ t 0 E G (s) (1 + s) 5 4 ds+ √ t u=-∞ E G (t) τ 5 4 - du 3 
2 log 2 (3+t).

We now turn on (3.38), where the electromagnetic eld is dierentiated too many times to be estimated pointwise. According to Proposition 3.7.7, 1 ≤ v 0 on the support of Y and using the Cauchy-Schwarz inequality in v, we can bound v |B j i K j i Y q | dv v 0 by a linear combination of terms of the form

• Φ ξ F := v |z 2 Y |dv v |K| 2 |Y |dv 1 2 (τ -|ρ ξ | + τ + |α ξ | + |σ ξ |) , • Φ ξ α := v |z 2 Y |dv v |K| 2 |Y |dv 1 2 α ξ ,
where |ξ| ≤ N and (α ξ , α ξ , ρ ξ , σ ξ ) is the null decomposition of L Z ξ (F ). Now, x |ξ| ≤ N . Using the Cauchy-Schwarz inequality in x, the bootstrap assumption (3.27) and E G (t) ≤ log 2 (3 + t), we have

t 0 Σs Φ ξ α dxds t 0 α ξ L 2 (Σs) v |z 2 Y |dv v |K| 2 |Y |dv 1 2
L 2 (Σs)

ds t 0 E 5 N [F ](s) v |z 2 Y |dv 1 2 L ∞ (Σs) v |K| 2 |Y |dv 1 2 L 1 (Σs) ds 3 2 t 0 E G (s) 1 + s ds By the inequality 2ab ≤ a 2 + b 2 and τ 2 + τ -v |z 2 Y |dv , one have Φ ξ F ≤ τ 5 4 + v |K| 2 |Y |dv + τ 3 4 + τ - (τ -|ρ ξ | + τ + |α ξ | + |σ ξ |) 2 ,
so that, by Lemma 3.2.13 and the bootstrap assumption (3.26)

t 0 Σs Φ ξ F dxds t 0 E G (s) (1 + s) 5 4 ds + +∞ i=0 t u=-∞ τ 5 4 - C i u (t) 1 √ τ + (τ -|ρ ξ | + τ + |α ξ | + |σ ξ |) 2 dC i u (t)du 3 2 + +∞ i=0 t -∞ E N [F ](T i+1 (t)) τ 5 4 - √ 1 + t i du 3 2 + 2 +∞ i=0 log 4 (1 + 2 i+1 ) √ 1 + 2 i +∞ -∞ du τ 5 4 - 3 2 .
This concludes the improvement of the bootstrap assumption on E G and then the proof.

The L 2 estimates

In order to improve the bound on the electromagnetic eld energy, we will use the following estimates.

Proposition 3.7.9. Let z ∈ k 0 and |β| ≤ N . Then,

∀ t ∈ [0, T [, τ + √ τ - v z Z β f dv L 2 (Σt) log(3 + t).
The logarithmical growth can be removed for |β| ≤ N -4.

Proof. The cases |β| ≤ N -4 ensue from (3.29). Suppose now that |β| ≥ N -3, so that there exists j ∈ 1, 

|I 1 | such that Z β f = H j + G j . It
G j = K q j Y q and use v |z 2 Y |dv τ -2
+ , which comes from Proposition 3.7.7, and the Cauchy-Schwarz inequality in v in order to obtain 

v |zG j | dv L 2 (Σt) = v |z| K q j Y q dv L 2 (Σt) v |zY | dv 1 2 L ∞ (Σt) v K q j 2 |Y q | dv 1 2 L 1 (Σt) √ 1 + t E G (t).

The energy bounds of the electromagnetic eld

The last part of the proof consists in improving the bootstrap assumptions (3.26) and (3.27). According to the energy estimate of Proposition 3.3.4, commutation formula of Proposition 3.2.9 and

E N [F ](0) ≤ , E N [F ](t) ≤ 3 log 4 (3 + t) and E 5 [F ](t) ≤ C for all t ∈ [0, T [ follow, if is small enough and C choosen large enough, from |γ|≤N |β|≤N t 0 Σs K µ 0 L Z γ (F ) µν v v ν v 0 Z β f dv dxds 3 2 log 4 (3 + t), |γ|≤N |β|≤N t 0 Σs τ 2 - log 5 (1 + τ -) L Z γ (F ) 0ν v v ν v 0 Z β f dv dxds 3 2 .
Fix |β| ≤ N , |γ| ≤ N , denote by (α, α, ρ, σ) the null decomposition of L Z γ (F ) and recall that K

L 0 = 1 2 τ 2 + and K L 0 = 1 2 τ 2 -. Expanding K µ 0 L Z γ (F ) µν J( Z β f ) ν and L Z γ (F ) 0ν J( Z β f ) ν in null coordinates,
we can observe that it suces to prove that,

I := t 0 Σs v τ 2 + |ρ| v L v 0 + τ 2 + |α| |v A | v 0 + τ 2 -|ρ| v L v 0 + τ 2 -|α| |v A | v 0 Z β f dvdxds 3 2 log 4 (3 + t), I 0 := t 0 Σs v τ 2 - log 5 (1 + τ -) |ρ| + |α| + |α| |v A | v 0 Z β f dvdxds
Using the Cauchy-Schwarz inequality in x, τ Lemmas 3.2.11), the bootstrap assumption (3.26) and Proposition 3.7.9, we have

+ v L + τ + |v A | + τ -v L v 0 w∈k0 |w| (see
I w∈k0 t 0 τ + |ρ| + τ + |α| + τ -α L 2 (Σs) v w Z β f dv L 2 (Σs) ds t 0 E N [F ](s) log(3 + s) 1 + s ds 3 2 t 0 log 3 (3 + s) 1 + s ds 3 2 log 4 (3 + t).
Similarly, using τ

+ |v A | + τ -v 0 v 0 w∈k0 |w|, we obtain I 0 w∈k0 t 0 τ + |ρ| + τ + |α| + τ -α L 2 (Σs) τ - τ + log 5 (1 + τ -) v w Z β f dv L 2 (Σs) ds t 0 E N [F ](s) τ + √ τ - τ 3 2 + v w Z β f dv L 2 (Σs) ds 3 2 t 0 log(3 + s) (1 + s) 3 2 ds 3 2 .
These two estimates allow us to improve the bootstrap assumptions (3.26) and (3.27) if is small enough, which concludes the proof.

3.A The Vlasov eld vanishes for small velocities

Let F be a smooth 2-form dened on [0, T [×R 3 which satises

∀ (t, x) ∈ [0, T [×R 3 , |F |(t, x) √ τ + τ - and |ρ(F )|(t, x) √ τ 3 2 + . (3.39)
The aim of this section is to prove the following result.

Proposition 3.A.1. Let f be a classical solution to T χ F (f ) = 0 such that f (0, ., v) = 0 for all |v| ≤ 3. Then if is small enough, we have

∀ (t, x, v) ∈ [0, T [×R 3 × (R 3 \ {0}), |v| ≤ 1 ⇒ f (t, x, v) = 0.
The proof is based on the study of the characteristics of the system. As f 0 (., v) = 0 for all |v| ≤ 3, we consider (x, v) ∈ R 3 × R 3 such that |v| ≥ 3 and (X, V ) the characteristic of the operator T χ F such that (X(0), V (0)) = (x, v). Our goal is to prove inf [0,T [ |V | ≥ 1, which would imply Proposition 3.A.1. Then, suppose that |V | reaches the value 1 and dene

t 1 := inf{s ∈ [0, T [ / |V (s)| = 1}, t 0 := sup{s ∈ [0, t 1 ] / |V (s)| = 2}.
As V is continuous, t 0 and t 1 are well dened. In view of the support of χ, (X, V ) satises the following system of ODE on [t 0 , t 1 ],

∀ 1 ≤ i ≤ 3, dX i ds (s) = V i (s) |V (s)| and dV i ds (s) = F 0i (s, X(s)) + V j (s) |V (s)| F ji (s, X(s)).
(3.40)

We then deduce, since

F is a 2-form, that d(|V | 2 ) ds = 2V i F 0i , which implies ∀ t 0 ≤ t ≤ t 1 , |V (t)| 2 ≥ |V (t 0 )| 2 -2 t t0 V i (s)F 0i (s, X(s)) ds. (3.41)
Before presenting the strategy of the proof, let us introduce certain subsets of [t 0 , t 1 ] and two constants. Note that if is small enough, we can suppose that 22 ≤ t 0 < t 1 . We can then introduce two constants δ > 0 and K > 0 independent of and satisfying

4δ ≤ 1 + δ ≤ K < π 4 √ 2 t 1 4 0 and 2 -5 2 K 2 -δ > 2δ. (3.42)
We also consider, for Q > 0, the following subsets of [t 0 , t 1 ],

A Q := {s ∈ [t 0 , t 1 ] / |s -|X(s)|| ≥ Qs 1 4 } and A Q := [t 0 , t 1 ] \ A Q .
Then, using (3.41) and sup [t0,t1] |V | ≤ 2, we have for all t ∈ [t 0 , t 1 ],

|V (t)| 2 ≥ 4 -4 A δ V i (s) |V (s)| F 0i (s, X(s)) ds -4 A δ V i (s) |V (s)| - X i (s) s |F 0i (s, X(s))| ds -4 A δ |X(s)| s X i (s) |X(s)| F 0i (s, X(s)) ds.
The result would ensue if we could bound the three integrals on the right hand side of the last inequality by C √ , with C > 0 a constant independant of T and (x, v). Indeed, we would then obtain, for < (2C) -2 ,

∀ t ∈ [t 0 , t 1 ], |V (t)| ≥ √ 2,
which would contradict |V (t 1 )| = 1. We can easily bound two of these integrals, using either the strong decay rate of F away from the light cone or the strong decay rate satised by the null component ρ and that |X(s)| s is bounded near the light cone. More precisely, using (3.39), the denition of A δ and t 0 ≥ 1, one have

A δ V i (s) |V (s)| F 0i (s, X(s)) ds +∞ 0 √ ds (1 + s)(1 + δs 1 4 ) √ , A δ |X(s)| s X i (s) |X(s)| F 0i (s, X(s)) ds A δ (1 + δ) |ρ(F )(s, X(s))| ds +∞ 0 √ (1 + s) 3 2 ds √ .
For the last integral, observe, in view of (3.39), that

I 1 := A δ V i (s) |V (s)| - X i (s) s |F 0i (s, X(s))| ds √ A δ V (s) |V (s)| - X(s) s 1 1 + |s -|X(s)|| ds 1 + s . (3.43)
As |s -|X(s)|| is small on A δ , the goal is to obtain enough decay from V (s)

|V (s)| -X(s)
s . The rough idea behind the following computations is the following. As |s -X(s)| is small, then, by (3.40

), s ∼ |X(s)| ∼ s 0 V (τ ) |V (τ )| dτ
and we almost have equality in the triangular inequality

s 0 V (τ ) |V (τ )| dτ ≤ s 0 V (τ ) |V (τ )| dτ = s. V |V | then almost keep a constant direction u, so that X(s) s ∼ 1 s s 0 V (τ ) |V (τ )| dτ ∼ u ∼ V |V | .
In order to bound (3.43), let us introduce, for Q > 0 and δ 0 > 0, the following subsets of [t 0 , t 1 ],

B Q := s ∈ [t 0 , t 1 ] / V (s) |V (s)| - X(s) s > Q s 1 4 , B Q := [t 0 , t 1 ] \ B Q and C δ0 Q := A δ0 ∩ B Q .
In view of the denition of C δ 4K and (3.43), I 1 √ would ensue if we prove

I := C δ 4K V i (s) |V (s)| - X i (s) s |F 0i (s, X(s))| ds √ . (3.44)
From now, we suppose that C δ 4K = ∅ as otherwise, I = 0. We start by the following two results. 

≤ V i (s) |V (s)| - X i (s) s ≤ V i (t) |V (t)| - X i (t) t + V i (s) |V (s)| - V i (t) |V (t)| + X i (s) s - X i (t) t .
By the mean value theorem applied to the function V |V | and using the estimate (3.39), we have

V i (s) |V (s)| - V i (t) |V (t)| ≤ C 1 sup τ ∈[s,t[ |F (τ, X(τ ))||t -s| ≤ C 0 √ 1 + s |t -s| ≤ C 0 √ s |t -s|.
Using |X(s)| ≤ s + δs 

X i (s) s - X i (t) t ≤ (t -s)|X i (s)| + s|X i (t) -X i (s)| ts ≤ 2 + δ t |t -s| ≤ 2 + δ s |t -s|.
∀ t ∈ [s, t * (s)], t -|X(t)| ≥ s -|X(s)| + K 2 √ t -K 2 √ s.
Proof. Let g :

t → t -|X(t)|, so that g (t) = 1 -V (t) |V (t)| , X(t) |X(t)| . Let us estimate θ ∈ [0, π[, the angle between V and X. For t ∈ [s, t * (s)[, we have • V (t) |V (t)| -X(t) |X(t)| ≤ |θ(t)| since V |V | and X |X| are unit vectors. • 2K t 1 4 ≤ V (t) |V (t)| -X(t) t as t ∈ B 2K and |X(t)| t -1 ≤ 2δ t 3 4 since t ∈ A 2δ .
We then obtain, using 4δ ≤ K, the trivial fact

X(t) t -X(t) |X(t)| = |X(t)|
t -1 and the triangle inequality, that

√ 2K t 1 4 ≤ 2K t 1 4 - 2δ t 3 4 ≤ V (t) |V (t)| - X(t) t - X(t) t - X(t) |X(t)| ≤ V (t) |V (t)| - X(t) |X(t)| ≤ |θ(t)|. Consequently, as 1 -1 4 φ 2 ≥ cos φ for φ ∈ [0, π 4 ] and since √ 2K ≤ π 4 t 1 4
0 , we obtain

g (t) = 1 -cos θ(t) ≥ 1 -cos √ 2K t 1 4 ≥ K 2 2 √ t and then g(t) ≥ g(0) + K 2 ( √ t - √ s).
The strategy now is to prove that C δ 4K is composed of pieces suciently well separated for (3.44) to holds. It is then convenient to consider a dyadic partition of [t 0 , t 1 ], which leads us to introduce, for all i ∈ N,

C i 4K := C δ 4K ∩ [2 i , 2 i+1 [ and, if C i 4K = ∅, s i = inf C i 4K and t i * = t * (s i ). Corollary 3.A.4. Let i ∈ N such that C i 4K = ∅. Then, C i 4K ⊂ [s i , min(t i * , 2 i+1 )]. Moreover, if |X(s i )| -s i > 0, t → t -|X(t)| is positive on [2 i+2 , t 1 ].
Proof. Let i ∈ N and suppose that C i 4K = ∅. We assume moreover that t i * < t 1 since there is nothing to prove otherwise and we introduce T i = min(t 1 , 2 i+2 ). We will use several times that s -|X(s

)| > 0, for s ∈ [t 0 , t 1 ], implies that t → t-|X(t)| is positive on [s, t 1 ] since it is an increasing function. As t i * ∈ A 2δ ∪B 2K
by denition, we have two cases to study.

• If t i * ∈ B 2K , then, by Lemma 3.A.2, t i * ≥ τ i := s i + |s i | 3 4
. Hence, using Lemma 3.A.3, it comes 15 We then necessarily have

τ i -|X(τ i )| ≥ s i -|X(s i )| + K 2 √ τ i -K 2 √ s i ≥ -δ s i 1 4 + K 2 √ s i 1 + |s i | -1 4 -1 . Since 4 √ 1 + h -4 ≥ h for all h ∈ [0, 1] and t → t -|X(t)| increases, we obtain, for all t ∈ [τ i , T i ], t -|X(t)| ≥ τ i -|X(τ i )| ≥ -δ2 i+2 4 + K 2 √ s i 1 4 |s i | -1 4 ≥ (2 -10 4 K 2 -δ)2 i+2 4 ≥ 2δ T i 1 4 ≥ 2δt 1 4 . (3.45) so that 15 [τ i , T i ] ⊂ A 2δ . As C i 4K ⊂ A δ and A 2δ ∩ A δ = ∅, we obtain C i 4K ⊂ [s i , τ i ] ⊂ [s i , t i * ]. Observe also that τ i -|X(τ i )| > 0, which implies that t → t -|X(t)| is positive on [τ i , t 1 ] ⊂ [2 i+2 , t 1 ].
τ i = t i * . using again that t → t -|X(t)| increases, it comes ∀ t ∈ [t i * , T i ], t -|X(t)| ≥ 2δ t i * 1 4 > δt 1 4 , as 2δ t i * 1 4 ≥ 2δ2 i 4 > δ2 i+2 4 .
We can then conclude that

[t i * , T i ] ⊂ A δ , implying that C i 4K ⊂ [s i , t i * ] since A δ ∩ C i 4K = ∅. We also proved that t → t -|X(t)| on [2 i+2 , t 1 ] as t i * -|X(t i * )| ≥ 0 and t i * ≤ 2 i+2 .
We are now able to bound I.

Let D := {i ∈ N / C i 4K = ∅}. Suppose rst that t ≥ |X(t)| for all t ∈ C δ 4K .
Then, using (3.39), Lemma 3.A.3 and Corollary 3.A.4,

I i∈D C i 4K √ (1 + s)(1 + |s -|X(s)||) ds i∈D 2 i+1 s i √ (1 + s)(1 + K 2 √ s -K 2 √ s i ) ds i∈D √ 2 i+1 s i 1 + √ s + √ s i (1 + s)(1 + s -s i ) ds +∞ i=0 √ 2 i 2 2 i+1 2 i 1 (1 + s -2 i ) ds √ +∞ i=0 log(1 + 2 i ) 2 i 2 √ .
Otherwise, with p = min D and according to Corollary 3.A.4, we have t ≥ |X(t)| for all t ≥ 2 p+2 and the result then follows from

√ C p 4K ∪C p+1 4K ds 1 + s ≤ √ 2 p+2 2 p ds 1 + s ≤ √ log (4) 
.

In order to apply this result in Subsection 3.7.1, we need to adapt it to an echeloned system of transport equations.

Corollary 3.A.5. Let k ∈ N * and, for all 1 ≤ j < i ≤ k and 1 ≤ q ≤ 3, let A q,j i be a suciently regular matrix valued function dened on [0, T [×R 3 × R 3 \ {0} . Consider g = (g 1 , ..., g k ), where each g i is a vector valued eld, a classical solution on [0, T [ to the system

T χ F (g 1 ) = 0, T χ F (g i ) = A q,j i ∂ v q g j 2 ≤ i ≤ k.
If g(0, ., v) = 0 for all |v| ≤ 3, then g(t, ., v) = 0 for all |v| ≤ 1.

Proof. Let (t, x, v) ∈ [0, T [×R 3 × R 3 \ {0} such that |v| < 1. We denote by (X s , V s ) the value in s of the characteristic of the operator T χ F which was equal to (x, v) in s = t. By Duhamel's formula, we have

g 1 (t, x, v) = g 1 (s, X s , V s ) = g 1 (0, X 0 , V 0 ), g i (t, x, v) = g i (0, X 0 , V 0 ) + t 0 A q,j i (s, X s , V s )∂ v q g j (s, X s , V s )ds for all 2 ≤ i ≤ k. (3.46)
According to the proof of Proposition 3.A.1,

|V 0 | < 3, so that ∀ 1 ≤ i ≤ k, g i (0, X 0 , V 0 ) = 0 (3.47)
since otherwise we would have |V t | = |v| ≥ 1. Fix now s ∈ [0, t] and consider w ∈ R 3 such that |w| < 1 2 |v|. We denote by (X w,s τ , V w,s τ ) the value in τ of the characteristic of T χ F which was equal to (X s , V s + w) in τ = s.

Then,

g 1 (s, X s , V s + w) = g 1 (0, X w,s 0 , V w,s 0 
).

By continous dependence on the initial condition of the solutions to

dX i ds (s) = V i (s) |V (s)| , dV i ds (s) = χ(|V (s)|)F 0i (s, X(s)) + V j (s) |V (s)| χ(|V (s)|)F ji (s, X(s)), 1 ≤ i ≤ 3,
and since |V 0 | < 3, there exists δ > 0 (depending on (t, s, x, v)) such that |V w,s

0 | < 3 for all |w| < δ. Hence, ∀ |w| < δ, g 1 (s, X s , V s + w) = 0, so that ∀ 1 ≤ q ≤ 3, ∂ v q g 1 (s, X s , V s ) = 0. (3.48)
Repeating the argument, one can obtain | < 3 for all |w| < δ, it comes, in view of the support of g 2 (0, ., .),

∀ |w| ≤ δ, ∀ τ ∈ [0, s], ∃δ > 0, ∀ |w| ≤ δ, g 1 (τ, X w,s τ , V w,s τ + w) = 0, which implies ∀ |w| ≤ δ, ∀ τ ∈ [0, s], ∀ 1 ≤ q ≤ 3, ∂ v q g 1 (τ, X w,s τ , V w,s τ ) = 0. ( 3 
∀ |w| < δ, g 2 (s, X s , V s + w) = g 2 (0, X w,s 0 , V w,s 0 ) + s 0 A q,j i (τ, X w,s τ , V w,s τ )∂ v q g 1 (τ, X w,s τ , V w,s τ )dτ = 0.
We then deduce that ∂ v q g 2 (s, X s , V s ) = 0 for all q ∈ 1, 3 and s ∈ [0, t], so that, by (3.46), g 3 (t, x, v) = 0.

We then proved the desired result if k = 3. The general case can be treated similarly, by a tedious induction.

3.B Bounding the initial norms

We consider in this section (f 0 , F 0 ) satisfying the hypotheses of Theorem 3. There exists a constant C 1 , depending only on N , such that

E N [F ](0) ≤ C 1 and E 2 N +3 [f ](0) ≤ C 1 .
The proof is a corollary of the following proposition and that, for all Z β ∈ P |β|

0 and Z ∈ K |γ| , | Z β f | |α2|+|α1|+p≤|β| τ |α1|+p + |v| |α2| |∂ p t ∂ α1 x ∂ α2 v f |, |L Z γ (F )| |κ|+q≤|γ| τ |κ|+q + |∇ q ∂t ∇ κ x F |.
Proposition 3.B.2. We have, for all

|α 2 | + |α 1 | + p ≤ N + 3 and |κ| + q ≤ N + 2, (1 + |x|) |α1|+p+2 |v| |α2| ∂ p t ∂ α1 x ∂ α2 v f L 1 v L 1 (Σ0)
, and

(1 + |x|) |κ|+q+1 ∇ q ∂t ∇ κ x F 2 L 2 (Σ0)
. (3.50) Proof. Note that τ 2 + = 1 + |x| 2 on Σ 0 . The proof consists in an induction on max(p, q). The result holds for max(p, q) = 0 in view of the hypotheses on (f 0 , F 0 ). Let r ∈ 1, N + 2 and suppose that (3.50) is satised for all p ≤ r and all q ≤ r. If r < N + 2, x |κ| ≤ N + 2 -(r + 1) and notice that, using (1.3) and Lemma

3.2.2,

∂ t F 0i = ∂ j F ji + v∈R 3 v i v 0 f dv and ∂ t F ij = ∂ i F 0j + ∂ j F i0 .
Then, by a standard L 2

x -L 1

x Sobolev inequality and using the induction hypothesis twice, we get

τ |κ|+r+2 + ∇ r+1 ∂t ∇ κ x F 2 L 2 (Σ0) ≤ 2 τ |κ|+r+2 + ∇ x ∇ r ∂t ∇ κ x F 2 L 2 (Σ0) + τ |κ|+r+2 + v ∂ r t ∂ κ x f dv 2 L 2 (Σ0) + |β|≤2 τ |κ|+r+2 + v ∂ β x ∂ r t ∂ κ x f dv 2 L 1 (Σ0) + 2 , since r + |κ| + |β| ≤ N + 3.
We now turn on the Vlasov eld and we do not suppose r < N + 2 anymore.

Start by xing α 1 and α 2 such that |α 

1 | + |α 2 | + r + 1 ≤ N + 3. Iterating the commutation formula T F (∂ µ f ) = -L ∂µ (F )(v, ∇ v f ) and using L ∂µ = ∇ ∂µ , it comes ∂ t ∂ r t ∂ α1 x f = - v i |v| ∂ i ∂ r t ∂ α1 x f + q+p=r |κ|+|β1|=|α1| p+|β1|≤r+|α1|-1 v µ |v| ∇ q ∂t ∇ κ x F µ j ∂ v j ∂ p t ∂ β1 x f.
τ |α1|+r+1+2 + |v| |α2| |∂ r+1 t ∂ α1 x ∂ α2 v f | ≤ |α3|+n=|α2| τ |α1|+1+r+2 + |v| |α2|-n |∂ x ∂ r t ∂ α1 x ∂ α3 v f | + (3.51) |κ|+|β1|=|α1| p+|β1|≤r+|α1|-1 q+p=r |α3|+n=|α2| τ |α1|+r+3 + |v| |α2|-n ∇ q ∂t ∇ κ x F ∂ v ∂ p t ∂ β1 x ∂ α3 v f . (3.52)
By the induction hypothesis, the L 1 v L 1 (Σ 0 ) norm of the terms of (3.51) are bounded by . Consider parameters such as in the sum in (3.52).

• If q + |κ| ≤ N , then, using a standard L ∞ -L 2 Sobolev inequality on τ q+|κ|+1 + ∇ q ∂t ∇ κ x F and that |v| ≥ 3 on the support of f 0 , we get

τ |α1|+r+3 + |v| |α2|-n ∇ q ∂t ∇ κ x F ∂ v ∂ p t ∂ β1 x ∂ α3 v f τ |β1|+p+2 + |v| |α3|+1 ∂ p t ∂ β1 x ∂ v ∂ α3 v f |γ|≤|κ|+2 τ |κ|+q+1 + ∇ q ∂t ∇ γ x F L 2 x .
The L 1 v L 1 (Σ 0 ) norm of the left hand side of the previous inequality is then bounded by 

τ |α1|+r+3 + |v| |α2|-n ∇ q ∂t ∇ κ x F ∂ v ∂ p t ∂ β1 x ∂ α3 v f L 1 v,x ≤ τ |κ|+q+1 + ∇ q ∂t ∇ κ x F L 2 x τ |β1|+p+2 + |v| |α3| ∂ p t ∂ β1 x ∂ v ∂ α3 v f L 1 v L 2 x .
The left hand side of the previous inequality can be bounded by 3 2 . Indeed, as |v| ≥ 3 on the support of f 0 and using a L 2

x -L 1

x Sobolev inequality 16 , it comes

τ |β1|+p+2 + |v| |α3| ∂ p t ∂ β1 x ∂ v ∂ α3 v f L 1 v L 2 (Σ0) |β|≤|β1|+2 τ |β1|+p+2 + |v| |α3|+1 ∂ p t ∂ β x ∂ v ∂ α3 v f L 1 v L 1 (Σ0)
.

It remains to use the induction hypothesis twice. This concludes the induction and then the proof.

3.C All derivatives of F are chargeless

The aim of this section is to prove the following result, which also applies to massive particles.

Proposition 3.C.1. Let N 0 ≥ 2 and (f, F ) be a suciently regular solution to the Vlasov-Maxwell system on [0, T ] such that

∀ t ∈ [0, T ], |β|≤N0 Σt v∈R 3 Z β f dvdx + |γ|≤N0 Σt |L Z γ (F )| 2 dx < +∞.
Then, for all 1 ≤ |γ| ≤ N 0 , L Z γ (F ) is chargeless, i.e.

-lim

r→+∞ S0,r ρ (L Z γ (F )) dS 0,r = 0.
This ensues from commutation formula of Proposition 3.2.9 and the following lemma.

Lemma 3.C.2. Fix p ≥ 1 and let H 0 , H 1 , ..., H p be suciently regular 2-forms dened on [0, T ] × R 3 and h 0 , h 1 , ..., h p be suciently regular functions dened on

[0, T ] × R 3 x × R 3 v such that ∇ µ (H 0 ) µν = J(h 0 ) ν and T (h 0 ) = 1≤i≤p H i (v, ∇ v h i ) .
Suppose moreover that

∀ t ∈ [0, T ], p λ=0 H λ L 2 x (t) + h λ L 1 x,v (t) + (1 + r)∇ t,x h λ L 1 x,v (t) + (1 + |v|)∇ v h λ L 1 x,v (t) < +∞.
Then, L Z (H 0 ) is chargeless for all Z ∈ K. 16 To deal with the lack of regularity of the absolute value of, say, v |g|dv one may apply rst a L 2 -L 1 Sobolev inequality in the variables (x 1 , x 2 ) and then in the variable x 3 , as we made in the proof of Proposition 3.3.7.

Remark 3.C.3. Note that in dimension n = 3, we merely have that L S (H 0 ) is chargeless if and only if H 0 is. Proof. To lighten the proof, we suppose that p = 1 and we denote (H 0 , h 0 ) by (G, g) and (h 1 , H 1 ) by (H, h).

Consider rst Z ∈ P. Then, by Lemma 3.2.8, ∇ µ L Z (G) µ0 = J( Zg) 0 so that, using the divergence theorem,

Q(t) := lim r→+∞ St,r ρ (L Z (G)) dS t,r = - x∈R 3 v∈R 3
Zgdvdx.

(3.53)

• If Z = Ω ∈ O is a rotational vector eld, the result does not depend of the source term of the Maxwell equations. Indeed, using Lemma 3.3.8 and the divergence theorem on S t,r , one have,

St,r ρ (L Ω (G)) dS t,r = St,r Ω (ρ(G)) dS t,r = St,r / div(Ω)ρ(G)dS t,r .
As Ω is tangential to S t,r , we have / div(Ω)(t, r, ω

1 , ω 2 ) = div R 3 (Ω)(t, r, ω 1 , ω 2 ) = 0, so that Q(t) = 0.
• If Z = ∂ i is a spatial translation, an integration by parts on the right hand side of (3.53) gives the result. 

• If Z = ∂ t , then, as ∂ t g = -v j v 0 ∂ j g + H v v 0 , ∇ v h ,
Q(t) = x∈R 3 v∈R 3 v i v 0 ∂ i g -H v v 0 , ∇ v h dvdx = x∈R 3 v∈R 3 v i v j (v 0 ) 3 H ij hdvdx = 0. (3.54)
• If Z = Ω 0i is a Lorentz boost, then an integration by parts in x on t∂ i g and in v on v 0 ∂ v i g gives

Q(t) = - x∈R 3 v∈R 3 t∂ i g + x i ∂ t g + v 0 ∂ v i g dvdx = x∈R 3 v∈R 3 v i v 0 gdvdx - x∈R 3 v∈R 3 x i ∂ t gdvdx. Using again ∂ t g = -v j v 0 ∂ j g + H v v 0 , ∇ v h
and integrating by parts, we have

x∈R 3 v∈R 3 x i ∂ t gdvdx = - v∈R 3 v j v 0 x∈R 3 x i ∂ j gdxdv + x∈R 3 x i v∈R 3 H v v 0 , ∇ v h dvdx = x∈R 3 v∈R 3 v i v 0 gdvdx - x∈R 3 v∈R 3 x i v k v j (v 0 ) 3 H kj hdvdx.
As H is a 2-form, we nally obtain that Q(t) = 0.

For the case of the scaling vector eld, note rst by Lemma 3.2.8 that ∇ µ L S (G) µ0 = J(Sg) 0 + 3J(g) 0 . Hence,

lim r→+∞ St,r ρ (L S (G)) dS t,r = - x∈R 3 v∈R 3 (x µ ∂ µ g + 3g) dvdx = -t x∈R 3 v∈R 3 ∂ t gdvdx.
Recall from (3.54) that the integral on the right hand side of the last equation is equal to 0. This concludes the proof.

3.D Proof of Lemmas 3.3.8, 3.3.9 and 3.3.10

Let G be a 2-form and J be a 1-form, both suciently regular and dened on [0, T [×R 3 , such that

∇ µ G µν = J ν , ∇ µ * G µν = 0.
Let us successively prove Lemmas 3.3.8, 3.3.9 and 3. 

[L Ω , ∇ ∂r ]G = 0, L Ω (ζ(G)) = ζ(L Ω (G))
and

∇ ∂r (ζ(G)) = ζ(∇ ∂r (G)).
Similar results hold for L Ω and ∇ ∂t ,

∇ L or ∇ L . For instance, ∇ L (ζ(G)) = ζ(∇ L (G)).
Proof. Let Ω ∈ O. The property [L Ω , ∇ ∂r ]G = 0 follows from [Ω, ∂ r ] = 0, straightforward computations and that, in cartesian coordinates and for a vector eld X, L Ω (H) = L Ω ( * H).

L X (G) µν = X(G µν ) + ∂ µ (X λ )G λν + ∂ ν (X λ )G µλ and ∇ X (G) µν = X(G µν ). (3.55) Aside from L Ω (σ(G)) = σ(L Ω (G)), the remaining identities ensue from [Ω, L] = [Ω, L] = ∇ ∂r L = ∇ ∂r L = ∇ ∂r e A = 0 since, for instance, 2∇ ∂r ρ(G) = (∇ ∂r G)(L, L) + G(∇ ∂r L, L) + G(L, ∇ ∂r L) and L Ω (α) = L Ω (G)(L, .) + G([Ω, L], .). Using that [Ω, e A ] = C B Ω (ω 1 , ω 2 )e B ,

It then comes

Ωσ(G) = -Ωρ( * G) = -ρ(L Ω ( * H)) = -ρ( * L Ω (G)) = σ(L Ω (G))).
For the results concerning the operator ∇ ∂t , use

∇ ∂t L = ∇ ∂t L = ∇ ∂t e A = 0. Finally, for ∇ L and ∇ L , recall that L = ∂ t + ∂ r and L = ∂ t -∂ r .
Lemma 3.D.2. Denoting by ζ any of the null component α, α, ρ or σ, we have

τ -∇ L ζ(G) + τ + |∇ L ζ(G)| |γ|≤1 |ζ (L Z γ (G))|
and

(1 + r) / ∇ζ(G) |ζ(G)| + Ω∈O |ζ (L Ω (G))| .
Proof. Let ζ ∈ {α, α, ρ, σ}. As ∇ L commute with the null decomposition (see the previous Lemma) and

(t -r)L = S -x i r Ω 0i (see Lemma 3.2.7), we have, (t -r)∇ L ζ (G) = ζ ∇ (t-r)L G = ζ ∇ S G - x i r ∇ Ω0i G = ζ (L S (G)) -2ζ(G) - x i r ζ (L Ω0i (G)) + x i r ζ H i , since L S (G) = ∇ S (G) + 2G
and where H i = L Ω0i (G) -∇ Ω0i (G). We have, using (3.55),

H i µν = 0 if µ, ν / ∈ {0, i} or µ, ν ∈ {0, i}. If ν / ∈ {0, i}, H i 0ν = G iν and H i iν = G 0ν .
(3.56)

Consequently, Recall that e A = 1≤k<l≤3 C k,l (ω 1 , ω 2 ) Ω kl r where C k,l are bounded functions on the sphere. As

x i r ρ H i = x i r H i r0 = x i r x j r G ji = 0, so that |Lρ(G)| 1 τ -|γ|≤1 |ρ(L Z γ (G)|.
x i H i Ω kl r , ∂ t = x i x k r H i l0 - x i x l r H i k0 = x i x k r G li - x i x l r G ki = rG Ω kl r , ∂ r , x i H i Ω kl r , ∂ r = x i x k x j r 2 H i lj - x i x l x j r 2 H i kj = x k x i x i -(x l ) 2 r 2 G l0 + x l x j r 2 G 0j - (x l ) 2 r 2 G 0l -x l x i x i -(x k ) 2 r 2 G k0 + x k x j r 2 G 0j - (x k ) 2 r 2 G 0k = rG Ω kl r , ∂ t , it comes |∇ L (α(G)) A | 1 τ -|γ|≤1 |α(L Z γ (G) A | and |∇ L (α(G)) A | 1 τ -|γ|≤1 |α(L Z γ (G) A |.
For the remaining case, ζ = σ, straightforward computations give

x i H i Ω kl r , Ω pq r = x k x p x i r 2 H i lq + x l x q x i r 2 H i kp - x k x q x i r 2 H i lp - x l x p x i r 2 H i kq = 0, so that x i H i AB = 0.
The proof for ∇ L is similar as it also commutes with the null decomposition and since (t + r)L = S + x i r Ω 0i . Finally, for the angular derivatives, use that L Ω commute with the null decomposition and that for a function u and a tensor U , 

∇ L α A - α A r + / ∇ e A ρ + ε BA / ∇ e B σ = J A .
Proof. Let us start by proving, for B = A,

(∇ e B G)(e B , e A ) = ε BA / ∇ e B σ - 1 2r α(e A ) + 1 2r
α(e A ). 

ε BA / ∇ e B σ = e 1 (G(e 1 , e 2 )) = (∇ e1 G)(e 1 , e 2 ) + G(∇ e1 e 1 , e 2 ) + G(e 1 , ∇ e1 e 2 ) = (∇ e1 G)(
∇ L L = ∇ L L = 0 and ∇ e A L = -∇ e A L = 1 r e A , ∇ [L G LA] = 0 ⇔ (∇ L G)(L, e A ) + (∇ L G)(e A , L) + (∇ e A G)(L, L) = 0 ⇔ -(∇ L α)(e A ) + (∇ L α)(e A ) + 2∇ e A ρ -G(∇ e A L, L) -G(L, ∇ e A L) = 0 ⇔ -(∇ L α)(e A ) + (∇ L α)(e A ) + 2 / ∇ e A ρ - 1 r α(e A ) - 1 r α(e A ) = 0. (3.58)
Similarly, taking ν = A in ∇ µ G µν = J ν , we obtain, using (3.57) and since

∇ L = -1 2 ∇ L and ∇ L = -1 2 ∇ L , ∇ µ G µA = J A ⇔ - 1 2 (∇ L G)(L, e A ) - 1 2 (∇ L G)(L, e A ) + (∇ e B G)(e B , e A ) = J A ⇔ 1 2 (∇ L α)(e A ) + 1 2 (∇ L α)(e A ) + ε BA / ∇ e B σ - 1 2r α(e A ) + 1 2r α(e A ) = J A . (3.59)
It remains to add half of (3.58) to (3.59).

Chapter 4 4.1 Introduction

This article is concerned with the asymptotic behavior of small data solutions to the three-dimensional Vlasov-Maxwell system. These equations, used to model collisionless plasma, describe, for one species of particles 1 , a distribution function f and an electromagnetic eld which will be reprensented by a two form F µν . The equations are given by 2

v 0 ∂ t f + v i ∂ i f + ev µ F µ j ∂ v j f = 0, (4.1) 
∇ µ F µν = eJ(f ) ν := e v∈R 3 v ν v 0 f dv, (4.2) ∇ µ * F µν = 0, (4.3) 
where v 0 = m 2 + |v| 2 , m > 0 is the mass of the particles and e ∈ R * their charge. For convenience, we will take m = 1 and e = 1 for the remaining of this paper. The particle density f is a non-negative 3 function of (t, x, v) ∈ R + × R 3 × R 3 , while the electromagnetic eld F and its Hodge dual * F are 2-forms depending on (t, x) ∈ R + × R 3 . We can recover the more common form of the Vlasov-Maxwell system using the relations

E i = F 0i and B i = - * F 0i ,
1 Our results can be extended without any additional diculty to several species of particles. 2 We will use all along this paper the Einstein summation convention so that, for instance,

v i ∂ i f = 3 i=1 v i ∂ i f and ∇ µ Fµν = 3 µ=0 ∇ µ Fµν .
The latin indices goes from 1 to 3 and the greek indices from 0 to 3. 3 In this article, the sign of f does not play any role.

so that the equations can be rewritten as

1 + |v| 2 ∂ t f + v i ∂ i f + ( 1 + |v| 2 E + v × B) • ∇ v f = 0, ∇ • E = v∈R 3 f dv, ∂ t E j = (∇ × B) j - v∈R 3 v j 1 + |v| 2 f dv, ∇ • B = 0, ∂ t B = -∇ × E.
We refer to [START_REF] Glassey | The Cauchy problem in kinetic theory[END_REF] for a detailed introduction to this system.

Small data results for the Vlasov-Maxwell system

The rst result on global existence with small data for the Vlasov-Maxwell system in 3d was obtained by Glassey-Strauss in [START_REF] Glassey | Absence of shocks in an initially dilute collisionless plasma[END_REF] and then extended to the nearly neutral case in [START_REF] Schaeer | A small data theorem for collisionless plasma that includes high velocity particles[END_REF]. This result required compactly supported data (in x and in v) and shows that v f dv (1+t) 3 , which coincides with the linear decay. They also obtain estimates for the electromagnetic eld and its derivatives of rst order, but they do not control higher order derivatives of the solutions. The result established by Schaeer in [START_REF] Schaeer | A small data theorem for collisionless plasma that includes high velocity particles[END_REF] allows particles with high velocity but still requires the data to be compactly supported in space 4 .

In [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF], using vector eld methods, we proved optimal decay estimates on small data solutions and their derivatives of the Vlasov-Maxwell system in high dimensions d ≥ 4 without any compact support assumption on the initial data. We also obtained that similar results hold when the particles are massless (m = 0) under the additional assumption that f vanishes for small velocities5 .

A better understanding of the null condition of the system led us in our recent work [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF] to an extension of these results to the massless 3d case. In our forthcoming paper [START_REF] Bigorgne | Asymptotic properties of the solutions to the Vlasov-Maxwell system in the exterior of a light cone[END_REF] we will study the asymptotic properties of solutions to the massive Vlasov-Maxwell in the exterior of a light cone for mildly decaying initial data. Due to the strong decay satised by the particle density in such a region we will be able to lower the initial decay hypothesis on the electromagnetic eld and then avoid any diculty related to the presence of a non-zero total charge.

The results of this paper establish sharp decay estimates on the small data solutions to the threedimensional Vlasov-Maxwell system. The hypotheses on the particle density in the variable v are optimal in the sense that we merely suppose f (as well as its derivatives) to be initially integrable in v, which is a necessary condition for the source term of the Maxwell equations to be well dened.

Recently, Wang proved independently in [START_REF] Wang | Propagation of regularity and long time behavior of the 3D massive relativistic transport equation II: Vlasov-Maxwell system[END_REF] a similar result for the 3d massive Vlasov-Maxwell system.

Using both vector eld methods and Fourier analysis, he does not require compact support assumptions on the initial data but strong polynomial decay hypotheses in (x, v) on f and obtained optimal pointwise decay estimates on v f dv and its derivatives.

Vector elds and modied vector elds for the Vlasov equations

The vector eld method of Klainerman was rst introduced in [START_REF] Klainerman | Uniform decay estimates and the Lorentz invariance of the classical wave equation[END_REF] for the study of nonlinear wave equations.

It relies on energy estimates, the algebra P of the Killing vector elds of the Minkowski space and conformal Killing vector elds, which are used as commutators and multipliers, and weighted functional inequalities now known as Klainerman-Sobolev inequalities.

In [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], the vector eld method was adapted to relativistic transport equations and applied to the small data solutions of the Vlasov-Nordström system in dimensions d ≥ 4. It provided sharp asymptotics on the solutions and their derivatives. Key to the extension of the method is the fact that even if Z ∈ P does not commute with the free transport operator T := v µ ∂ µ , its complete lift 6 Z does. The case of the dimension 3, studied in [START_REF] Fajman | Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions[END_REF], required to consider modications of the commutation vector elds of the form Y = Z + Φ ν ∂ ν , where Z is a complete lift of a Killing eld (and thus commute with the free transport operator) while the coecients Φ are constructed by solving a transport equation depending on the solution itself. In [START_REF] Smulevici | Small data solutions of the Vlasov-Poisson system and the vector eld method[END_REF], similar results was proved for the Vlasov-Poisson equations and, again, the three-dimensionsal case required to modify the set of commutation vector elds in order to compensate the worst source terms in the commuted transport equations. Vector eld methods led to a proof of the stability of the Minkowski spacetime for the Einstein-Vlasov system, obtained independently by [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF] and [START_REF] Lindblad | Global stability of Minkowski space for the EinsteinVlasov system in the harmonic gauge[END_REF].

Note that vector eld methods can also be used to derive integrated decay for solutions to the the massless Vlasov equation on curved background such as slowly rotating Kerr spacetime (see [START_REF] Andersson | Hidden symmetries and decay for the Vlasov equation on the Kerr spacetime[END_REF]).

Charged electromagnetic eld

In order to present our main result, we introduce in this subsection the pure charge part and the chargeless part of a 2-form.

Denition 4.1.1. Let G be a suciently regular 2-form dened on [0, T [×R 3 . The total charge Q G (t) of G is dened as

Q G (t) = lim r→+∞ St,r x i r G 0i dS t,r ,
where S t,r is the sphere of radius r of the hypersurface {t} × R 3 which is centered at the origin x = 0.

If (f, F ) is a suciently regular solution to the Vlasov-Maxwell system, Q F is a conserved quantity. More precisely,

∀ t ∈ [0, T [, Q F (t) = Q F (0) = x∈R 3 v∈R 3 f (0, x, v)dvdx.
Note that the derivatives of F are automatically chargeless (see Appendix C of [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF]). The presence of a non-zero charge implies R 3 r|F | 2 dx = +∞ and prevents us from propagating strong weighted L 2 norms on the electromagnetic eld. This leads us to decompose 2-forms into two parts. For this, let χ : R → [0, 1] be a cut-o function such that

∀ s ≤ -2, χ(s) = 1 and ∀ s ≥ -1, χ(s) = 0. Denition 4.1.2.
Let G be a suciently regular 2-form with total charge Q G . We dene the pure charge part G and the chargeless part G of G as

G(t, x) := χ(t -r) Q G (t) 4πr 2 x i r dt ∧ dx i and G := G -G. One can then verify that Q G = Q G and Q G = 0, so that the hypothesis R 3 r| G| 2 dx = +∞ is consistent. Notice moreover that G = G in the interior of the light cone.
The study of non linear systems with a presence of charge was initiated by [START_REF] Shu | Global existence of Maxwell-Higgs elds[END_REF] in the context of the Maxwell-Klein Gordon equations. The rst complete proof of such a result was given by Lindblad and Sterbenz in [START_REF] Lindblad | Global stability for charged-scalar elds on Minkowski space[END_REF] and improved later by Yang (see [START_REF] Yang | Decay of solutions of Maxwell-Klein-Gordon equations with arbitrary Maxwell eld[END_REF]). Let us also mention the work of [START_REF] Bieri | Asymptotic properties of solutions of the Maxwell Klein Gordon equation with small data[END_REF].

Statement of the main result

Denition 4.1.3. We say that (f 0 , F 0 ) is an initial data set for the Vlasov-Maxwell system if f 0 : R 3

x ×R 3 v →
R and the 2-form F 0 are both suciently regular and satisfy the constraint equations

∇ i (F 0 ) i0 = - v∈R 3 f 0 dv and ∇ i * (F 0 ) i0 = 0.
The main result of this article is the following theorem. 3)and (f, F ) be the unique classical solution to the system arising from (f 0 , F 0 ). If

|β|+|κ|≤N +3 x∈R 3 v∈R 3 (1 + |x|) 2N +3 (1 + |v|) |κ| ∂ β x ∂ κ v f 0 dvdx + |γ|≤N +2 x∈R 3 (1 + |x|) 2|γ|+1 ∇ γ x F 0 2 dx ≤ ,
then there exists C > 0, M ∈ N and 0 > 0 such that, if ≤ 0 , (f, F ) is a global solution to the Vlasov-Maxwell system and veries the following estimates.

• Energy bounds for the chargeless part of F :

∀ t ∈ R + , Z γ ∈K |γ| |γ|≤N |x|≥t τ + |α(L Z γ ( F ))| 2 + |ρ(L Z γ ( F ))| 2 + |σ(L Z γ ( F ))| 2 + τ -|α(L Z γ ( F ))| 2 dx ≤ C , Z γ ∈K |γ| |γ|≤N |x|≤t τ + |α (L Z γ (F ))| 2 + |ρ (L Z γ (F ))| 2 + |σ (L Z γ (F ))| 2 +τ -|α (L Z γ (F ))| 2 dx ≤ C log 2M (3+t).
• Pointwise decay estimates for the null components of 7 L Z γ (F ):

∀ |γ| ≤ N -5, (t, x) ∈ R + × R 3 , |α(L Z γ (F ))|(t, x) √ log(3 + t) τ 2 + , |α(L Z γ (F ))|(t, x) √ log(3 + t) τ + τ - , |ρ(L Z γ (F ))|(t, x) √ log(3 + t) τ 3 2 + τ 1 2 - , |σ(L Z γ (F ))|(t, x) √ log(3 + t) τ 3 2 + τ 1 2 - .
• Energy bounds for the Vlasov eld:

∀ t ∈ R + , Y β ∈Y |β| |β|≤N x∈R 3 v∈R 3 Y β f dvdx ≤ C .
• Pointwise decay estimates for the velocity averages of

Y β f : ∀ |β| ≤ N -3, (t, x) ∈ R + × R 3 , v∈R 3 Y β f dv τ 2 + τ - and v∈R 3 Y β f dv (v 0 ) 2 1 τ 3 + 1 t≥|x| + log 2 (3 + t) τ 3 + τ - 1 |x|≥t . Remark 4.1.5.
For the highest derivatives of f 0 , those of order at least N -2, we could save four powers of |x| in the condition on the initial norm and even more for those of order at least N + 1. We could also avoid any hypothesis on the derivatives of order N + 1 and N + 2 of F 0 (see Remark 4.9.9).

Remark 4.1.6. Assuming more decay on F and its derivatives at t = 0, we could use the Morawetz vector eld as a multiplier, propagate a stronger energy norm and obtain better decay estimates on its null components. In the exterior of the lightcone, we could recover the decay rates of the free Maxwell equations (see [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF]) on α(F ), α(F ) and σ(F ) and obtain that

|ρ(F )| √ τ -2
+ . We cannot obtain a better decay rate on ρ(F ) because of the presence of the charge. In the interior 8 , we could improve the estimates on ρ and σ up to a rate of

√ log(3 + t)τ -2
+ . With our approach, we cannot recover the sourceless behavior in this region because of the slow decay of v f dv. Under these hypotheses, one can check that the number of derivatives can be reduced to N = 9.

Key elements of the proof

Modied vector elds

In [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF], we observed that commuting (4.1) with the complete lift of a Killing vector eld gives problematic source terms. More precisely, if Z ∈ P,

[T F , Z]f = -v µ L Z (F ) µ j ∂ v j f, with T F = v µ ∂ µ + v µ F µ j ∂ v j . (4.4)
The diculty comes from the presence of ∂ v , which is not part of the commutation vector elds, since in the linear case (F = 0) ∂ v f essentially behaves as t∂ t,x f . However, one can see that the source term has the same form as the non-linearity v µ F µ j ∂ v j f . In [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF], we controlled the error terms by taking advantage of their null structure and the strong decay rates given by high dimensions. Unfortunately, our method does not apply in dimension 3 since even assuming a full understanding of the null structure of the system, we would face logarithmic divergences. The same problem arises for others Vlasov systems and were solved using modied vector elds in order to cancel the worst source terms in the commutation formula. Let us mention again the works of [START_REF] Fajman | Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions[END_REF] for the Vlasov-Nordström system, [START_REF] Smulevici | Small data solutions of the Vlasov-Poisson system and the vector eld method[END_REF] for the Vlasov-Poisson equations, [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF] and [START_REF] Lindblad | Global stability of Minkowski space for the EinsteinVlasov system in the harmonic gauge[END_REF] for the Einstein-Vlasov system. We will thus consider vector elds of the form Y = Z + Φ ν ∂ ν , where the coecients Φ ν are themselves solutions to transport equations, growing logarithmically. As a consequence, we will need to adapt the Klainerman-Sobolev inequalities for velocity averages and the result of Theorem 1.1 of [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] in order to replace the original vector elds by the modied ones. 7 If |x| ≥ t + 1, the log(3 + t)-loss can be removed. 8 The multiplier for this region would rather be (1 + |t -r| 2 ) -1 K 0 , where K 0 is the Morawetz vector eld.

The electromagnetic eld and the non-zero total charge

Because of the presence of a non-zero total charge, i.e. lim r→+∞ S0,r

x i r (F 0 ) 0i dS 0,r = 0, we have, at t = 0,

R 3 (1 + r) x i r F 0i 2 dx = R 3 (1 + r)|ρ(F )| 2 dx = +∞
and we cannot propagate L 2 bounds on R 3 (1 + t + r)|ρ(F )(t, x)| 2 dx. However, provided that we can control the ux of the electromagnetic eld on the light cone t = r, we can propagate weighted L 2 norms of F in the interior region. To deal with the exterior of the light cone, recall from Denition 4.1.2 the decomposition

F = F + F , with F (t, x) := χ(t -r) Q F 4πr 2 dr ∧ dt. (4.5)
The hypothesis

R 3 (1 + |x|)| F (0, .
)|dx < +∞ is consistent with the chargelessness of F and we can then propagate weighted energy norms of F and bound the ux of F on the light cone. On the other hand, we have at our disposal pointwise estimates on F and its derivatives through the explicit formula (4.5). These informations will allow us to deduce pointwise decay estimates on the null components of F in both the exterior and the interior regions.

An other problem arises from the source terms of the commuted Maxwell equations, which need to be written with our modied vector elds. This leads us, as [START_REF] Fajman | Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions[END_REF] and [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF], to rather consider them of the form

Y = Z +Φ i X i , where X i = ∂ i + v i v 0 ∂ t .
The X i vector elds enjoy a kind of null condition 9 and allow us to avoid a small growth on the electromagnetic eld norms which would prevent us to close our energy estimates 10 .

However, at the top order, a loss of derivative do not allow us to take advantage of them and creates a t η -loss, with η > 0 a small constant. A key step is to make sure that

|Y κ Φ| 2 Y f L 1 x,v
, for |κ| = N -1, does not grow faster than t η .

High velocities and null structure of the system

After commuting the transport equation satised by the coecients Φ i and in order to prove energy estimates, we are led to control integrals such as

t 0 R 3 v∈R 3 (s + |x|) |L Z (F )f | dvdxds.
If f vanishes for high velocities, the characteristics of the transport equations have velocities bounded away from 1. If f is moreover initially compactly supported in space, its spatial support is ultimately disjoint from the light cone and, assuming enough decay on the Maxwell eld, one can prove

|L Z (F )f | (1 + t + r) -1 (1 + |t -r|) -1 |f | (1 + t + r) -2 |f |, so that t 0 R 3 v∈R 3 (s + |x|) |L Z (F )f | dvdxds t 0 (1 + s) -1 ds, (4.6)
which is almost uniformly bounded in time 11 . As we do not make any compact support assumption on the initial data, we cannot expect f to vanish for high velocities and certain characteristics of the transport operator ultimately approach those of the Maxwell equations. We circumvent this diculty by taking advantage of the null structure of the error term given in (4.4), which, in some sense, allows us to transform decay in |t-r| into decay in t+r. The key is that certain null components of v, L Z (F ) and ∇ v f := (0,

∂ v 1 f, ∂ v 2 f, ∂ v 3 f )
behave better than others and we will see in Lemma 4.3.28 that no product of three bad components appear.

More precisely, noting c ≺ d if d is expected to behave better than c, we have,

v L ≺ v A , v L , α(L Z (F )) ≺ ρ(L Z (F )) ∼ σ(L Z (F )) ≺ α(L Z (F ))
and

(∇ v f ) A ≺ (∇ v f ) r .
In the exterior of the light cone (and for the massless relativistic transport operator), we have v A ≺ v L since v L permits to integrate along outgoing null cones 12 and they are both bounded by (1 + t + r) -1 v 0 z∈k1 |z|, 9 Note that they were also used in [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] to improve the decay estimate on ∂ v f ds. 10 We make similar manipulations to recover the standard decay rate on the modied Klainerman-Sobolev inequalities. 11 Dealing with these small growth is the next problem addressed. 12 The angular component v A can, in some sense, merely do half of it since

|v A | √ v 0 v L .
where k 1 is a set of weigths preserved by the free transport operator. In the interior region, the angular components still satises the same properties whereas v L merely satises the inequality

v L |t -r| 1 + t + r v 0 + v 0 1 + t + r z∈k |z| ( see Lemma 4.2.4). (4.7)
This inequality is crucial for us to close the energy estimates on the electromagnetic eld without assuming more initial decay in v on f . It gives a decay rate of (1 + t + r) -3 on v v L v 0 |f |dv by only using a Klainerman-Sobolev inequality (Theorem 4.4.9 and Proposition 4.4.10 would cost us two powers of v 0 ). As 1 v 0 v L for massive particles, we obtain, combining (4.7) and Theorem 4.4.9, for g a solution to v µ ∂ µ g = 0,

∀ t ≥ |x|, v∈R 3 |g|(t, x, v)dv (1 + |t -r|) k (1 + t + r) 3+k |β|≤3 (v 0 ) 2k+2 (1 + r) k Z β g L 1
x,v (t = 0).

In the exterior region, the estimate can be improved by removing the factor (1 + |t -r|) k (however one looses one power of r in the initial norm). This remarkable behavior reects that the particles do not reach the speed of light so that v∈R 3 |g|dv enjoys much better decay properties along null rays than along time-like directions and should be compared with solutions to the Klein-Gordon equation (see [START_REF] Klainerman | Remark on the asymptotic behavior of the Klein-Gordon equation in R n+1[END_REF]).

Hierarchy in the equations

Because of certains source terms of the commuted transport equation, we cannot avoid a small growth on certain L 1 norms as it is suggered by (4.6). In order to close the energy estimates, we then consider several hierarchies in the energy norms of the particle density, in the spirit of [START_REF] Lindblad | The global stability of Minkowski space-time in harmonic gauge[END_REF] for the Einstein equations or [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF] for the Einstein-Vlasov system. Let us show how a hierarchy related to the weights z ∈ k 1 preserved by the free massive transport operator (which are dened in Subsection 4.2.3) naturally appears.

• The worst source terms of the transport equation satised by Y f are of the form (t + r)X i (F µν )∂ t,x f .

• Using the improved decay properties given by X i (see (4.11)), we have

|(t + r)X i (F µν )∂ t,x f | Z∈K |∇ Z F | z∈k1 |z∂ t,x f |.
• Then, we can obtain a good bound on Y f L 1

x,v provided we have a satisfying one on z∂ t,x f L 1

x,v .

We will then work with energy norms controlling z N0-

β P Y β f L 1 x,v
, where β P is the number of nontranslations composing Y β .

• At the top order, we will have to deal with terms such as (t + r)z N0 ∂ γ t,x (F µν )∂ β t,x f and we will this time use the extra decay (1 + |t -r|) -1 given by the translations ∂ γ t,x .

Structure of the paper

In Section 4.2 we introduce the notations used in this article. Basic results on the electromagnetic eld as well as fundamental relations between the null components of the velocity vector v and the weights preserved by the free transport operator are also presented. Section 4.3 is devoted to the commutation vector elds.

The construction and basic properties of the modied vector elds are in particular presented. Section 4.4 contains the energy estimates and the pointwise decay estimates used to control both elds. Section 4.5 is devoted to properties satised by the pure charge part of the electromagnetic eld. In Section 4.6 we describe the main steps of the proof of Theorem 4.1.4 and present the bootstrap assumptions. In Section 4.7, we derive pointwise decay estimates on the solutions and the Φ coecients of the modied vector elds using only the bootstrap assumptions. Section 4.8 (respectively Section 4.10) concerns the improvement of the bootstrap assumptions on the norms of the particle density (respectively the electromagnetic eld). A key step consists in improving the estimates on the velocity averages near the light cone (cf. Proposition 4.8.11). In Section 4.9, we prove L 2 estimates for v |Y β f |dv in order to improve the energy estimates on the Maxwell eld.

We also have, if (α, α, ρ, σ) is the null decomposition of G,

∇ L α A - α A r + / ∇ e A ρ + ε BA / ∇ e B σ = J A .
We can then compute the divergence of the energy momentum tensor of a 2-form.

Corollary 4.2.2. Let G and J be as in the previous lemma. Then,

∇ µ T [G] µν = G νλ J λ .
Proof. Using the previous lemma, we have

G µρ ∇ µ G ν ρ = G µρ ∇ µ G νρ = 1 2 G µρ (∇ µ G νρ -∇ ρ G νµ ) = 1 2 G µρ ∇ ν G µρ = 1 4 ∇ ν (G µρ G µρ ).
Hence,

∇ µ T [G] µν = ∇ µ (G µρ )G ν ρ + 1 4 ∇ ν (G µρ G µρ ) - 1 4 η µν ∇ µ (G σρ G σρ ) = G νρ J ρ .
Finally, we recall the values of the null components of the energy-momentum tensor of a 2-form.

Lemma 4.2.3. Let G be 2-form. We have

T [G] LL = |α(G)| 2 , T [G] LL = |α(G)| 2
and

T [G] LL = |ρ(G)| 2 + |σ(G)| 2 .

Weights preserved by the ow and null components of the velocity vector

Let (v L , v L , v A , v B ) be the null components of the velocity vector, so that

v = v L L + v L L + v A e A , v L = v 0 + xi r v i 2 and v L = v 0 -xi r v i 2 .
As in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], we introduce the following set of weights, 13 T so we will not be able to take advantage of this inequality in this paper. In the following lemma, we try to recover (part of ) this extra decay. We also recall inequalities involving other null components of v, which will be used all along this paper.

k 1 := v µ v 0 / 0 ≤ µ ≤ 3 ∪ {z µν / µ = ν} , with z µν := x µ v ν v 0 -x ν v µ v 0 . Note that ∀ z ∈ k 1 , T (z) = 0. (4.8) Recall that if k 0 := k 1 ∪ {x µ v µ }, then v L τ -1 + w∈k0 |w|. Unfortunately, x µ v µ is not preserved by
Lemma 4.2.4. The following estimates holds,

1 ≤ 4v 0 v L , |v A | √ v L v L , |v A | v 0 τ + z∈k1 |z|,
and

v L τ - τ + v 0 + v 0 τ + z∈k1 |z|.
Proof. Note rst that, as

v 0 = 1 + |v| 2 , 4r 2 v L v L = r 2 + r 2 |v| 2 -|x i | 2 |v i | 2 -2 1≤k<l≤n x k x l v k v l = r 2 + 1≤k<l≤n |z kl | 2 .
It gives us the rst inequality since v L ≤ v 0 . For the second one, use also that rv A = v 0 C i,j A z ij , where C i,j A are bounded functions on the sphere such that re

A = C i,j A (x i ∂ j -x j ∂ i ). The third one follows from |v A | ≤ v 0 and |v A | v 0 r 1≤i<j≤3 |z ij | = v 0 tr 1≤i<j≤3 x i v j v 0 t -x j + x j -x j v i v 0 t -x i + x i v 0 t 3 q=1 |z 0q |.
For the last inequality, note rst that v L ≤ v 0 , which treats the case t + |x| ≤ 2. Otherwise, use

2tv L = tv 0 - x i r tv i = tv 0 -v 0 x i z 0i r -v 0 r = (t -r)v 0 - x i r z 0i v 0 and rv L = (r -t)v L + tv L . Remark 4.2.5. Note that v L v 0 τ+ z∈k1 |z| holds in the exterior region. Indeed, if r ≥ t, v 0 (r -t) ≤ v 0 |x| -|v|t ≤ |v 0 x -tv| ≤ 3 i=1 |v 0 x i -tv i | = v 0 3 i=1 |z 0i |.
We also point out that 1 v 0 v L is specic to massive particles.

Finally, we consider an ordering on k

1 such that k 1 = {z i / 1 ≤ i ≤ |k 1 |}. Denition 4.2.6. If κ ∈ 1, |k 1 | r , we dene z κ := z κ1 ...z κr .

Various subsets of the Minkowski spacetime

We now introduce several subsets of R

+ × R 3 depending on t ∈ R + , r ∈ R + or u ∈ R. Let Σ t , S t,r , C u (t)
and V u (t) be dened as

Σ t := {t} × R n , C u (t) := {(s, y) ∈ R + × R 3 / s ≤ t, s -|y| = u}, S t,r := {(s, y) ∈ R + × R 3 / (s, |y|) = (t, r)} and V u (t) := {(s, y) ∈ R + × R 3 / s ≤ t, s -|y| ≤ u}.
The volum form on C u (t) is given by dC u (t) = √ 2 -1 r 2 dudS 2 , where dS 2 is the standard metric on the 2 dimensional unit sphere.

The sets

Σ t , C u (t) and V u (t) Σ t Σ 0 C u (t) V u (t) r = 0 -u t r
We will use the following subsets, given for u ∈ R + , specically in the proof of Proposition 4.7.4,

V u (t) := {(s, y) ∈ R + × R 3 / s ≤ t, s + |y| ≤ u}. For b ≥ 0 and t ∈ R + , dene Σ b t and Σ b t as Σ b t := {t} × {x ∈ R 3 / |x| ≤ t -b} and Σ b t := {t} × {x ∈ R 3 / |x| ≥ t -b}.
Denition 4.3.1. Let Γ = Γ β ∂ β be a vector eld. Then, the complete lift Γ of Γ is dened by

Γ = Γ β ∂ β + v γ ∂Γ i ∂x γ ∂ v i .
We then have ∂ µ = ∂ µ for all 0 ≤ µ ≤ 3 and

Ω ij = x i ∂ j -x j ∂ i + v i ∂ v j -v j ∂ v i , for 1 ≤ i < j ≤ 3,
and

Ω 0k = t∂ k + x k ∂ t + v 0 ∂ v k , for 1 ≤ k ≤ 3.
One can check that [T, Z] = 0 for all Z ∈ P. Since [T, S] = T , we consider

P 0 := { Z / Z ∈ P} ∪ {S}
and we will, for simplicity, denote by Z an arbitrary vector eld of P 0 , even if S is not a complete lift. The weights introduced in Subsection 4.2.3 are, in a certain sense, preserved by the action of P 0 .

Lemma 4.3.2. Let z ∈ k 1 , Z ∈ P 0 and j ∈ N. Then

Z(v 0 z) ∈ v 0 k 1 ∪ {0}
and

Z(z j ) ≤ 3j w∈k1 |w| j .
Proof. Let us consider for instance tv 1 -

x 1 v 0 , x 1 v 2 -x 2 v 1
, Ω 01 and Ω 02 . We have

Ω 01 (x 1 v 2 -x 2 v 1 ) = tv 2 -x 2 v 0 , Ω 01 (tv 1 -x 1 v 0 ) = 0, Ω 02 (x 1 v 2 -x 2 v 1 ) = x 1 v 0 -tv 1
and

Ω 02 (tv 1 -x 1 v 0 ) = x 2 v 1 -x 1 v 2 .
The other cases are similar. Consequently,

Z(z j ) = Z 1 (v 0 ) j (v 0 z) j ≤ j|z| j + j (v 0 ) j Z v 0 z |v 0 z| j-1 ≤ j|z| j + j | Z(v 0 z)| j (v 0 ) j + j|z| j , since |w||z| a-1 ≤ |w| a + |z| a when a ≥ 1.
The vector elds introduced in this section and the averaging in v almost commute in the following sense (we refer to [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] or to Lemma 4.3.20 below for a proof ).

Lemma 4.3.3. Let f : [0, T [×R 3

x × R 3 v → R be a suciently regular function. We have, almost everywhere,

∀ Z ∈ K, Z v∈R 3 |f |dv Z β ∈ P |β| 0 |β|≤1 v∈R 3 | Z β f |dv.
Similar estimates hold for v∈R 3 (v 0 ) k |f |dv. For instance,

S v∈R 3 (v 0 ) -2 |f |dv v∈R 3 (v 0 ) -2 |Sf |dv.
The vector spaces engendered by each of the sets dened in this section are actually algebras.

Lemma 4.3.4. Let L be either K, P, O, T or P 0 . Then for all

(Z 1 , Z 2 ) ∈ L 2 , [Z 1 , Z 2 ]
is a linear combinations of vector elds of L. Note also that if

Z 2 = ∂ ∈ T, then [Z 1
, ∂] can be written as a linear combination of translations.

We consider an ordering on each of the sets O, P, K and P 0 . We take orderings such that, if

P = {Z i / 1 ≤ i ≤ |P|}, then K = {Z i / 1 ≤ i ≤ |K|}, with Z |K| = S, and 
P 0 = Z i / 1 ≤ i ≤ | P 0 | , with Z i 1≤i≤|P| = Z i 1≤i≤|P| and Z | P0| = S.
If L denotes O, P, K or P 0 , and β ∈ {1, ..., |L|} r , with r ∈ N * , we will denote the dierential operator Γ β1 ...Γ βr ∈ L |β| by Γ β . For a vector eld W , we denote the Lie derivative with respect to W by L W and if Z γ ∈ K r , we will write L Z γ for L Z γ 1 ...L Z γr . The following denition will be useful to lighten the notations in the presentation of commutation formulas.

Denition 4.3.5. We call good coecient c(t, x, v) any function c of (t, x, v) such that

∀ Q ∈ N, ∃ C Q > 0, ∀ |β| ≤ Q, (t, x, v) ∈ R + × R 3 x × R 3 v \ {0} × {0} × R 3 v , Z β (c(t, x, v)) ≤ C Q .
Similarly, we call good coecient c(v) any function c such that

∀ Q ∈ N, ∃ C Q > 0, ∀ |β| ≤ Q, v ∈ R 3 , Z β (c(v)) ≤ C Q .
Finally, we will say that B is a linear combination, with good coecients c(v), of (B i ) 1≤i≤M if there exists good coecients (c i (v)) 1≤i≤M such that B = c i B i . We dene similarly a linear combination with good coecients c(t, x, v).

The sets of functions introduced here are to be thinked as bounded functions which remain bounded when they are dierentiated (by P 0 derivatives) or multiplied between them. In the remaining of this paper, we will denote by c(t, x, v)

(or c Z (t, x, v), c i (t, x, v)) any such functions. Note that Z β (c(t, x, v)) is not necessarily dened on {0} × {0} × R 3 v as, for instance, c(t, x, v) = x 1 t+r v 2
v 0 satises these conditions. Typically, the good coecients c(v) will be of the form

Z γ v i v 0 .
Let us recall, by the following classical result, that the derivatives tangential to the cone behave better than others.

Lemma 4.3.6. The following relations hold,

(t -r)L = S - x i r Ω 0i , (t + r)L = S + x i r Ω 0i and re A = 1≤i<j≤3 C i,j A Ω ij ,
where the C i,j A are uniformly bounded and depends only on spherical variables. In the same spirit, we have

(t -r)∂ t = t t + r S - x i t + r Ω 0i and (t -r)∂ i = t t + r Ω 0i - x i t + r S - x j t + r Ω ij .
As mentionned in the introduction, we will crucially use the vector elds (X i ) 1≤i≤3 , dened by

X i := ∂ i + v i v 0 ∂ t . (4.9) 
They provide extra decay in particular cases since

X i = 1 t (Ω 0i + z 0i ∂ t ) . (4.10) 
We also have, using Lemma 4.3.6 and

(1 + t + r)X i = X i + 2tX i + (r -t)X i , that there exists good coecients c Z (t, x, v) such that (1 + t + r)X i = 2z 0i ∂ t + Z∈K c Z (t, x, v)Z. (4.11) 
By a slight abuse of notation, we will write L Xi (F ) for L ∂i (F ) + v i v 0 L ∂t (F ). We are now interested in the compatibility of these extra decay with the Lie derivative of a 2-form and its null decomposition. Proposition 4.3.7. Let G be a suciently regular 2-form. Then, with

z = t v i v 0 -x i if X = X i and ζ ∈ {α, α, ρ, σ}, we have |L ∂ (G)| 1 τ -Z∈K |∇ Z G| 1 τ -|γ|≤1 |L Z γ (G)| , (4.12) |L X (G)| 1 τ + |z||∇ ∂t G| + Z∈K |∇ Z G| , (4.13) 
τ -∇ L ζ + τ + |∇ L ζ| + (1 + r) / ∇ζ |γ|≤1 |ζ (L Z γ (G))| , (4.14) 
|ζ

(L ∂ (G))| |γ|≤1 1 τ - |ζ (L Z γ (G))| + 1 τ + |L Z γ (G)| . (4.15) 
Proof. To obtain the rst two identities, use Lemma 4.3.6 as well as (4.11) and then remark that if Γ is a translation or an homogeneous vector eld,

|∇ Γ (G)| |L Γ (G)| + |G|.
For (4.14), we refer to Lemma D.2 of [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF]. Finally, the last inequality comes from (4.12) if 2t ≤ max(r, 1) and from

∂ i = Ω 0i t - x i 2t L - x i 2t L and (4.14) 
if 2t ≥ max(r, 1).

Remark 4.3.8. We do not have, for instance,

|ρ (L ∂ k (G))| |γ|≤1 τ -1 -|ρ (L Z γ (G))|, for 1 ≤ k ≤ 3. Remark 4.3.9. If G solves the Maxwell equations ∇ µ G µν = J ν and ∇ µ * G µν = 0, a better estimate can be obtained on α(L ∂ (G)). Indeed, as |∇ ∂ α| ≤ |∇ L α| + |Lα| + | /
∇α|, (4.15) and Lemma 4.2.1 gives us,

∀ |x| ≥ 1+ t 2 , |α(L ∂ (G))|(t, x) |J A |+ 1 τ + |γ|≤1 |α(L Z γ (G))|(t, x)+|σ(L Z γ (G))|(t, x)+|ρ(L Z γ (G))|(t, x) .
We make the choice to work with (4.15) since it does not directly require a bound on the source term of the Maxwell equation, which lighten the proof of Theorem 4.1.4 (otherwise we would have, among others, to consider more bootstrap assumptions).

Modied vector eld and the rst order commutation formula

We start this section with the following commutation formula and we refer to Lemma 2.8 of [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF] for a proof 15 .

Lemma 4.3.10. If Z ∈ P 0 \ {S}, then

[T F , Z](f ) = -L Z (F )(v, ∇ v f ) and [T F , S](f ) = F (v, ∇ v f ) -L S (F )(v, ∇ v f ).
In order to estimate quantities such as L Z (F )(v, ∇ v f ), we rewrite ∇ v f in terms of the commutation vector elds (i.e. the elements of P 0 ). Schematically, if we neglect the null structure of the system, we have, since

v 0 ∂ v i = Ω 0i -t∂ i -x i ∂ t , |L Z (F )(v, ∇ v f )| v 0 |L Z (F )| |∂ v f | ∼ τ + |L Z (F )| |∂ t,x f | + l.o.t.,
so that the v derivatives engender a τ + -loss. The modied vector elds, constructed below, will allow us to absorb the worst terms in the commuted equations.

Denition 4.3.11. Let Y 0 be the set of vector elds dened by

Y 0 := { Z + Φ j Z X j / Z ∈ P 0 \ T}, where Φ j Z : [0, T ] × R n x × R n
v are smooth functions which will be specied below and the X j are dened in (4.9). We will denote Ω 0k + Φ j Ω 0k X j by Y 0k and, more generally, Z + Φ j Z X j by Y Z . We also introduce the sets

Y := Y 0 ∪ T and Y X := Y ∪ {X 1 , X 2 , X 3 }.
We consider an ordering on Y and Y X compatible with P 0 in the sense that if

Y = {Y i / 1 ≤ i ≤ |Y|}, then Y i = Z i + Φ k Z i X k or Y i = ∂ µ = Z i .
We suppose moreover that X j is the (|Y| + j) th element of Y X . Most of the time, for a vector eld Y ∈ Y 0 , we will simply write Y = Z + ΦX.

Let Z ∈ P 0 \ {S} and 1 ≤ k ≤ 3. Φ k Z and Φ k S are dened such as

T F (Φ k Z ) = -t v µ v 0 L Z (F ) µk , T F (Φ k S ) = t v µ v 0 (F µk -L S (F ) µk )
and Φ k Z (0, ., .) = Φ k S (0, ., .) = 0.

(4.16) 15 Note that a similar result is proved in Lemma 4.3.22 below.

As explained during the introduction, we consider the X i vector elds rather than translations in view of (4.11). We are then led to compute [T F , X i ].

Lemma 4.3.12. Let 1 ≤ i ≤ 3. We have

[T F , X i ] = -L Xi (F )(v, ∇ v ) + v µ v 0 F µXi ∂ t .
Proof. One juste has to notice that

[T F , X i ] = v i v 0 [T F , ∂ t ] + [T F , ∂ i ] + F v, ∇ v v i v 0 ∂ t and v µ v j F µj = -v µ v 0 F µ0 , as F is a 2-form.
Finally, we study the commutator between the transport operator and these modied vector elds. The following relation,

∂ v i = 1 v 0 Y 0i -Φ j Ω0i X j -tX i + z 0i ∂ t , (4.17) 
will be useful to express the v derivatives in terms of the commutation vector elds Proposition 4.3.13. Let Y ∈ Y 0 \{Y S }. we have, using (4.16)

[T F , Y ] = - v µ v 0 L Z (F ) µ j Y 0j -Φ k Ω0j X k + z 0j ∂ t -Φ j Z L Xj (F )(v, ∇ v ) + Φ j Z v µ v 0 F µXj ∂ t , [T F , Y S ] = v µ v 0 F µ j -L S (F ) µ j Y 0j -Φ k Ω0j X k + z 0j ∂ t -Φ j S L Xj (F )(v, ∇ v ) + Φ j S v µ v 0 F µXj ∂ t .
Proof. We only treat the case Y ∈ Y 0 \ {Y S } (the computations are similar for Y S ). Using Lemmas 4.3.10 and 4.3.12 as well as (4.17), we have

[T F , Y ] = [T F , Z] + [T F , Φ j Z X j ] = -L Z (F )(v, ∇ v ) + T F (Φ j Z )X j + Φ j Z [T F , X j ]. = -L Z (F )(v, ∇ v ) + T F (Φ j Z )X j -Φ j Z L Xj (F )(v, ∇ v ) + Φ j Z v µ v 0 F µXj ∂ t = - v µ v 0 L Z (F ) µ j Y 0j -Φ k Ω0j X k + z 0j ∂ t + t v µ v 0 L Z (F ) µ j + T F (Φ j Z ) X j -Φ j Z L Xj (F )(v, ∇ v ) + Φ j Z v µ v 0 F µXj ∂ t .
To conclude, recall from (4.16

) that t v µ v 0 L Z (F ) µ j + T F (Φ j Z ) = 0.
Remark 4.3.14. As we will have |Φ| log 2 (1 + τ + ), a good control on z 0j ∂ t f and in view of the improved decay given by X j (see Proposition 4.3.7), it holds schematically

|[T F , Y ](f )| log 2 (1 + τ + ) |L Z (F )| |Y f |, which is much better than [T F , Z](f ) τ + |L Z (F )| |∂ t,x f |.
Let us introduce some notations for the presentation of the higher order commutation formula.

Denition 4.3.15. Let Y β ∈ Y |β| . We denote by β T the number of translations composing Y β and by β P the number of modied vector elds (the elements of Y 0 ). Note that β T denote also the number of translations composing Z β and Z β and β P the number of elements of P 0 \ T or K \ T. We have

|β| = β T + β P and, for instance, if Y β = ∂ t Y 1 ∂ 3 , |β| = 3, β T = 2 and β P = 1. We dene similarly β X if Y β ∈ Y |β| X .
Denition 4.3.16. Let k = (k T , k P ) ∈ N 2 and p ∈ N. We will denote by P k,p (Φ) any linear combination of terms such as

p j=1 Y βj (Φ), with Y βj ∈ Y |βj | , p j=1 |β j | = |k|, p j=1 (β j ) P = k P
and where Φ denotes any of the Φ coecients. Note that p j=1 (β j ) T = k T . Finally, if min j |β j | ≥ 1, we will denote p j=1 Y βj (Φ) by P β (Φ), where β = (β 1 , ...β p ). Denition 4.3.17. Let k = (k T , k P , k X ) ∈ N 3 and p ∈ N. We will denote by P X k,p (Φ) any linear combination of terms such as

p j=1 Y βj (Φ), with Y βj ∈ Y |βj | , p j=1 |β j | = |k|, p j=1 (β j ) P = k P , p j=1 (β j ) X = k X and min 1≤j≤p (β j ) X ≥ 1.
We will also denote p j=1 Y βj (Φ) by P X β (Φ).

Remark 4.3.18. For convenience, if p = 0, we will take P k,p (Φ) = 1. Similarly, if |β| = 0, we will take

P β (Φ) = P X β (Φ) = 1.
In view of presenting the higher order commutation formulas, let us gather the source terms in dierent categories.

Proposition 4.3.19. Let Y ∈ Y \ T. In what follows, 0 ≤ ν ≤ 3.
The commutator [T F , Y ] can be written as a linear combination, with c(v) coecients, of terms such as (1 + τ + ). Then, we have, almost everywhere,

• v µ v 0 L Z γ (F ) µν Γ, where |γ| ≤ 1 and Γ ∈ Y 0 . • Φ v µ v 0 L Z γ (F ) µν ∂ t,x , where |γ| ≤ 1. • z v µ v 0 L Z γ (F ) µν ∂ t,x , where |γ| ≤ 1 and z ∈ k 1 . • ΦL X (F )(v, ∇ v ).
∀ Z ∈ K, Z v∈R 3 |f |dv Y ∈Y z∈k1 v∈R 3 |Y f | + |f | + |X(Φ)f | + log 7 (1 + τ + ) τ + (|z∂ t f | + |zf |) dv.
Proof. Consider, for instance, the rotation Ω 12 . We have by integration by parts, as

Ω 12 = Ω 12 -v 1 ∂ v 2 +v 2 ∂ v 1 , Ω 12 
v∈R 3 |f |dv = v∈R 3 Ω 12 (|f |)dv - v∈R 3 v 1 ∂ v 2 -v 2 ∂ v 1 (|f |)dv = v∈R 3 Ω 12 (|f |)dv.
This proves Lemma 4.3.3 for

Ω 12 since | Ω 12 (|f |)| = | f |f | Ω 12 (f )| ≤ | Ω 12 (f )|.
On the other hand,

v∈R 3 Ω 12 (|f |)dv = v∈R 3 Ω 12 + Φ k Ω12 X k -Φ k Ω12 X k (|f |)dv (4.18) = v∈R 3 f |f | Y Ω12 f dv + v∈R 3 X k Φ k Ω12 |f |dv - v∈R 3 X k Φ k Ω12 |f | dv. (4.19) (4.18) implies the result if t + r ≤ 1. Otherwise, if t ≥ r, note that by (4.10), v∈R 3 X k Φ k Ω12 |f | dv = 1 t v∈R 3 (Ω 0k + z 0k ∂ t ) Φ k Ω12 |f | dv = 1 t v∈R 3 Y 0k -v 0 ∂ v k -Φ q Ω 0k X q + z 0k ∂ t Φ k Ω12 |f | dv = 1 t v∈R 3 Y 0k + v k v 0 -Φ q Ω 0k X q + z 0k ∂ t Φ k Ω12 |f | dv.
Consequently, in view of the bounds on Y β Φ for |β| ≤ 1, 

v∈R 3 X k Φ k Ω12 |f | dv Y ∈Y z∈k1 v∈R 3 |Y f | + |f | + |z| log 7 (1 + t) t (|∂ t f | + |f |)
Z ∈ K, z ∈ k 1 and j ∈ N * , Z v |z j f |dv j |ξ|+|β|≤1 w∈k1 v |w j P X ξ (Φ)Y β f | + log 2 (3 + t)|w j-1 f | + log 7 (1 + τ + )|w| j+1 τ + (|∂ t f | + |f |) dv.
To prove this inequality, apply Lemma 4.3.20 to z j f and use the two following properties, It remains to apply Remark 4.2.5 in order to get

|Y (z j )| ≤ | Z(z j )| + |ΦX(z j )| j w∈k1 |w| j + log 2 (1 + τ + )|z| j-1
∀ |x| ≥ 1 + 2t, log 2 (1 + τ + )|z| j-1 log 2 (3 + r) r w∈k1 |wz j-1 | w∈k1 |w j |
and to note that log(1

+ τ + ) log(3 + t) if |x| ≤ 1 + 2t.

Higher order commutation formula

The following lemma will be useful for upcoming computations. 

Y (v µ G µν ) = v µ L Z (G) µν + n Z v µ G µν + Φv µ L X (G) µν + v µ G µ[Z,∂ν ] , Y (G (v, ∇ v g)) = L Z (G) (v, ∇ v g) + 2n Z G (v, ∇ v g) + ΦL X (G) (v, ∇ v g) + G v, ∇ v Zg + c(v)ΦG (v, ∇ v ∂g) .
For i ∈ 1, 3 , Y (v µ L Xi (G) µν ) can be written as a linear combination, with c(v) coecients, of terms of the form

Φ p v µ L XZ γ (G) µθ , with 0 ≤ θ ≤ 3 and max(p, |γ|) ≤ 1. Finally, Y (L Xi (G) (v, ∇ v g))
can be written as a linear combination, with c(v) coecients, of terms of the form

Φ p L XZ γ (G) v, ∇ Z κ g , with max(|γ| + |κ|, p + κ P ) ≤ 1. Proof. Let Z v = Z -Z so that Y = Z + Z v + ΦX.
We prove the second and the fourth properties (the rst and the third ones are easier). We have

Y (G (v, ∇ v g)) = L Z (G) (v, ∇ v g) + G ([Z, v], ∇ v g) + G (v, [Z, ∇ v g]) + G (Z v (v), ∇ v g) + G (v, Z v (∇ v g)) +ΦL X (G) (v, ∇ v g) + c(v)ΦG (v, ∇ v ∂g) .
Note now now that

• S v = 0 and [S, v] = -v, • [Z, v] = -Z v (v) if Z ∈ P.
The second identity is then implied by

• [∂, ∇ v g] = ∇ v ∂(g) and [S, ∇ v g] = ∇ v S(g) -∇ v g. • [Z, ∇ v g] + Z v (∇ v g) = ∇ v Z(g) if Z ∈ O. • [Ω 0i , ∇ v g] + (Ω 0i ) v (∇ v g) = ∇ v Z(g) -v v 0 ∂ v i and G(v, v) = 0 as G is a 2-form.
We now prove the fourth identity. We treat the case Y = Z + ΦX ∈ Y 0 \ {Y S } as the computations are similar for Y S . On the one hand, since [∂,

X i ] = 0 and X k = ∂ k + v k v 0 ∂ t , one can easily check that ΦX k (L Xi (G) (v, ∇ v g))
gives four terms of the expected form. On the other hand,

Z (L Xi (G) (v, ∇ v g)) = Z (L ∂i (G) (v, ∇ v g)) + Z v i v 0 L ∂t (G) (v, ∇ v g) .
Applying the second equality of this Lemma to L ∂ (G), g and Z (which is equal to Y when Φ = 0), we have

Z (L ∂i (G) (v, ∇ v g)) = L Z∂i (G) (v, ∇ v g) + L ∂i (G) v, ∇ v Zg Z v i v 0 L ∂t (G) (v, ∇ v g) = Z v i v 0 L ∂t (G) (v, ∇ v g) + v i v 0 L Z∂t (G) (v, ∇ v g) + v i v 0 L ∂t (G) v, ∇ v Zg
The sum of the last terms of these two identities is of the expected form. The same holds for the sum of the three other terms since

[Ω 0j , ∂ i ] + v i v 0 [Ω 0j , ∂ t ] + v 0 ∂ v j v i v 0 ∂ t = -δ i j ∂ t - v i v 0 ∂ j - v i v j (v 0 ) 2 ∂ t + δ i j ∂ t = - v i v 0 X j = c(v)X j , [Ω kj , ∂ i ] + v i v 0 [Ω kj , ∂ t ] + v k ∂ v j -v j ∂ v k v i v 0 ∂ t = δ i j ∂ k -δ i k ∂ j + v k δ i j -v j δ i k v 0 ∂ t = δ i j X k -δ i k X j , [S, ∂ i ] + v i v 0 [S, ∂ t ] = -∂ i - v i v 0 ∂ t = -X i .
We are now ready to present the higher order commutation formula. To lighten its presentation and facilitate its future usage, we introduce G := P 0 ∪ Y 0 , on which we consider an ordering. A combination of vector elds of G will always be denoted by Γ σ and we will also denote by σ T its number of translations and by σ P = |σ| -σ T its number of homogeneous vector elds. In Lemma 4.3.30 below, we will express Γ σ in terms of Φ coecients and Y vector elds.

Proposition 4.3.23. Let β be a multi-index. In what follows, ν ∈ 0, 3 . The commutator [T F , Y β ] can be written as a linear combination, with c(v) coecients, of the following terms.

• z d P k,p (Φ) v µ v 0 L Z γ (F ) µν Y σ , ( type 1-β) 
where

z ∈ k 1 , d ∈ {0, 1}, |σ| ≥ 1 max(|γ|, |k| + |γ|, |k| + |σ|) ≤ |β|, |k| + |γ| + |σ| ≤ |β| + 1 and p + k P + σ P + d ≤ β P . Note also that, as |σ| ≥ 1, |k| ≤ |β| -1. • P k,p (Φ)L XZ γ 0 (F ) (v, ∇ v Γ σ ) , ( type 2-β) 
where

|k| + |γ 0 | + |σ| ≤ |β| -1, p + k P + σ P ≤ β P and p ≥ 1. • P k,p (Φ)L ∂Z γ 0 (F ) (v, ∇ v Γ σ ) , ( type 3-β) 
where 

|k| + |γ 0 | + |σ| ≤ |β| -1, p + |γ 0 | ≤
[T F , Y Y β0 ] = Y [T F , Y β0 ] + [T F , Y ]Y β0 .
Let Q ∈ N and suppose that the commutation formula holds for all |β 0 | ≤ Q. We then x a multi-index

|β 0 | = Q, consider Y ∈ Y and denote the multi-index corresponding to Y Y β0 by β. Then, |β| = |β 0 | + 1.
Suppose rst that Y = ∂ is a translation so that β P = (β 0 ) P . Then, using Lemma 4.3.10, we have

[T F , ∂]Y β0 = -L ∂ (F )(v, ∇ v Y β0 ),
which is a term of (type 3-β) as |β 0 | = |β| -1 and (β 0 ) P = β P . Using the induction hypothesis, ∂[T F , Y β0 ] can be written as a linear combination with good coecients c(v) of terms of the form 16 16 We do not mention the c(v) coecients here since

∂ (c(v)) = 0. • ∂ z d P k,p (Φ) v µ v 0 L Z γ (F ) µν Y σ , with z ∈ k 1 , d ∈ {0, 1}, |σ| ≥ 1, max(|γ|, |k| + |γ|, |k| + |σ|) ≤ |β 0 |, |k| + |γ| + |σ| ≤ |β 0 | + 1 and p + k P + σ P + d ≤ (β 0 ) P .
This leads to the sum of the following terms.

∂(z

d )P k,p (Φ) v µ v 0 L Z γ (F ) µν Y σ , which is of (type 1-β) since ∂(z) = 0 or v λ v 0 . z d P (k T +1,k P ),p (Φ) v µ v 0 L Z γ (F ) µν Y σ +z d P k,p (Φ) v µ v 0 L ∂Z γ (F ) µν Y σ +z d P k,p (Φ) v µ v 0 L Z γ (F ) µν ∂Y σ
, which is the sum of terms of (type 1-β) (as, namely, k P does not increase and (σ 0

) P = σ P if Y σ0 = ∂Y σ ). • ∂ (P k,p (Φ)L ∂Z γ 0 (F ) (v, ∇ v Γ σ )), with |k|+|γ 0 |+|σ| ≤ |β 0 |-1, p+|γ 0 | ≤ |β 0 |-1 and p+k P +σ P ≤ (β 0 ) P .
We then obtain

P (k T +1,k P ),p (Φ)L ∂Z γ 0 (F ) (v, ∇ v Γ σ ) , P k,p (Φ)L ∂∂Z γ 0 (F ) (v, ∇ v Γ σ ) and P k,p (Φ)L ∂Z γ 0 (F ) (v, ∇ v ∂Γ σ ) ,
which are all of (type 3-β) since |k|

+ |γ 0 | + |σ| + 1 ≤ |β 0 | = |β| -1, p + |γ 0 | + 1 ≤ |β| -1 and, if Γ σ = ∂Γ σ , p + k P + σ P = p + k P + σ P ≤ (β 0 ) P = β P . • ∂ (P k,p (Φ)L XZ γ 0 (F ) (v, ∇ v Γ σ )), with |k| + |γ 0 | + |σ| ≤ |β 0 | -1, p + k P + σ P ≤ (β 0 ) P and p ≥ 1.
We then obtain, as [∂, X] = 0,

P (k T +1,k P ),p (Φ)L XZ γ 0 (F ) (v, ∇ v Γ σ ), P k,p (Φ)L X∂Z γ 0 (F ) (v, ∇ v Γ σ ) and P k,p (Φ)L XZ γ 0 (F ) (v, ∇ v ∂Γ σ ),
which are all of (type 2-β) since, for instance, |k|

+ |γ 0 | + |σ| + 1 ≤ |β 0 | = |β| -1.
We now suppose that Y ∈ Y\T, so that β P = (β 0 ) P +1. We will write schematically that Y = Z +ΦX. Using Proposition 4.3.19, we have that [T F , Y ]Y β0 can be written as a linear combination, with c(v) coecients, of the following terms.

• v µ v 0 L Z γ (F ) µν ΓY β0 , where |γ| ≤ 1 and Γ ∈ Y, which is of (type 1-β). • Φ 1-d z d v µ v 0 L Z γ (F ) µν ∂Y β0 , where |γ| ≤ 1, d ∈ {0, 1} and z ∈ k 1 , which is of (type 1-β) since, if ξ is the multi-index corresponding to ∂Y β0 , ξ P = (β 0 ) P < β P . • ΦL X (F )(v, ∇ v Y β0 ), which is of (type 2-β) since |β 0 | ≤ |β| -1 and 1 + (β 0 ) P ≤ β P . It then remains to compute Y [T F , Y β0 ].
Using the induction hypothesis, it can be written as a linear combination of terms of the form 

• Y c(v)z d P k,p (Φ) v µ v 0 L Z γ (F ) µν Y σ , with z ∈ k 1 , d ∈ {0, 1},
Y c(v) v 0 z d P k,p (Φ)v µ L Z γ (F ) µν Y σ , which is of (type 1-β) since Y c(v) v 0 = Z c(v) v 0 = c0(v) v 0 . c(v)Y z d P k,p (Φ) v µ v 0 L Z γ (F )Y σ , which is a linear combination of terms of (type 1-β) since, by Lemma 4.3.2, Y (z) = Z(z) + Φ i Z X i (z) = c 0 (v)z + z + Φ i Z c i (v)
, where z ∈ k 1 , and p + 1

+ k P + σ P + 1 ≤ β P . c(v)z d P (k T ,k P +1),p (Φ) v µ v 0 L Z γ (F ) µν Y σ + c(v)z d P k,p (Φ) v µ v 0 L Z γ (F ) µν Y Y σ , which is the sum of terms of (type 1-β), since p + k P + σ P + d + 1 ≤ (β 0 ) P + 1 = β P . c(v)z d P k,p+p0 (Φ) v µ v 0 L Z ξ Z γ (F ) µθ Y σ , with max(p 0 , |ξ|) ≤ 1,
which is given by the rst identity of Lemma 4.3.22. These terms are of (type 1-β) since |k|

+ |γ| + |ξ| + |σ| ≤ |β 0 | + 2 = |β| + 1 and |γ| + |ξ| ≤ |β|.
For the remaining terms, we suppose for simplicty that c(v) = 1, as we have just see that Y (c(v)) is a good coecient.

• Y P k,p (Φ)L XZ γ 0 (F ) (v, ∇ v Γ σ ) , with |k| + |γ 0 | + |σ| ≤ |β 0 | -1, p + k P + σ P ≤ (β 0 ) P and p ≥ 1. It gives us P (k T ,k P +1),p (Φ)L XZ γ 0 (F ) (v, ∇ v Γ σ ) ,
which is of (type 2-β) since, p + k P + 1 + σ P ≤ (β 0 ) P + 1 = β P . We also obtain, using the fourth identity of Lemma 4.3.22,

c(v)P k,p+p0 (Φ)L XZ δ Z γ 0 (F ) v, ∇ v Z ξ Γ σ , with max(|δ| + |ξ|, p 0 + ξ P ) ≤ 1.
They are all of (type 2-β) since |k|

+ |γ 0 | + |δ| + |σ| + |ξ| ≤ |β 0 | = |β| -1, p + p 0 + k P + σ P + ξ P ≤ (β 0 ) P + 1 = β P and p + p 0 ≥ p ≥ 1. • Y P k,p (Φ)L ∂Z γ 0 (F ) (v, ∇ v Γ σ ) , with |k|+|γ 0 |+|σ| ≤ |β 0 |-1, p+|γ 0 | ≤ |β 0 |-1 and p+k P +σ P ≤ (β 0 ) P .
We obtain

P (k T ,k P +1),p (Φ)L ∂Z γ 0 (F ) (v, ∇ v Γ σ ), clearly of (type 3-β),
and, using the second identity of Lemma 4.3.22,

P k,p+1 (Φ)L X∂Z γ 0 (F ) (v, ∇ v Γ σ ), which is of (type 2-β), and c(v)P k,p+p0 (Φ)L Z δ ∂Z γ 0 (F ) v, ∇ v Z ξ Γ σ , with |δ| + |ξ| ≤ 1, p 0 + |δ| ≤ 1 and p 0 + ξ P ≤ 1. As p + p 0 + |γ 0 | + |δ| ≤ p + |γ 0 | + 1 ≤ |β| -1, p + p 0 + k P + σ P + ξ P ≤ (β 0 ) P + 1 = β P and, if |δ| = 1, [Z δ , ∂] ∈ T ∪ {0}
, we can conclude that these terms are of (type 3-β).

Remark 4.3.24. To deal with the weight τ + in the terms of (type 2-β) and (type 3-β) (hidden by the v derivatives), we will take advantage of the extra decay given by the X vector elds or the translations ∂ µ through Proposition 4.3.7. To deal with the terms of (type 1-β), when d = 1, we will need to control the L 1 norm of w∈k1 |w| q+1 P k,p (Φ)Y σ f , with k P + σ P < β P , in order to control |z| q Y β f L 1

x,v .

As we will need to bound norms such as

P ξ (Φ)Y β f L 1 x,v
, we will apply Proposition 4.3.23 to Φ and we then need to compute the derivatives of T F (Φ). This is the purpose of the next proposition. Proposition 4.3.25. Let Y β ∈ Y |β| and Z γ1 ∈ K |γ1| (we will apply the result for |γ 1 | ≤ 1). Then,

Y β t v µ v 0 L Z γ 1 (F ) µζ
can be written as a linear combination, with c(v) coecients, of the following terms, with 0 ≤ θ, ν ≤ 3 and p ≤ |β|.

x θ v µ v 0 L Z γ Z γ 1 (F ) µν ,
where |γ| ≤ |β| and γ T = β T .

(family β -1)

P k,p (Φ) v µ v 0 L Z γ Z γ 1 (F ) µν ,
where |k| + |γ| ≤ |β| -1 and k P ≤ β P .

(family β -2)

x θ P k,p (Φ) v µ v 0 L XZ γ Z γ 1 (F ) µν ,
where |k| + |γ| ≤ |β| -1 and k P < β P .

(family β -3)

Proof. Let us prove this by induction on |β|. The result holds for |β| = 0. We then consider Y β = Y Y β0 ∈ Y |β| and we suppose that the Proposition holds for β 0 . Suppose rst that Y = ∂, so that β P = (β 0 ) P . Using the induction hypothesis, ∂Y β0 t v µ v 0 L Z γ 1 (F ) µν can be written as a linear combination, with good coecients c(v), of the following terms.

• ∂(x θ ) v µ v 0 L Z γ Z γ 1 (F ) µν , with |γ| ≤ |β 0 | < |β|, which is part of (family β -2). • x θ v µ v 0 L ∂Z γ Z γ 1 (F ) µν , with 1 + |γ| ≤ 1 + |β 0 | = |β|. Denoting ∂Z γ by Z ξ , we have ξ T = 1 + γ T = 1 + (β 0 ) T = β T and
this term is part of (family β -1).

• P (k T +1,k P ),p (Φ) v µ v 0 L Z γ Z γ 1 (F ) µν , with |k| + 1 + |γ| ≤ |β| -1 + 1 = |β| -1 and k P ≤ (β 0 ) P = β P , which is part of (family β -2). • P k,p (Φ) v µ v 0 L ∂Z γ Z γ 1 (F ) µν , with |k| + |γ| + 1 ≤ |β 0 | -1 + 1 = |β| -1 and k P ≤ (β 0 ) P = β P , which is part of (family β -2). • ∂(x θ )P k,p (Φ) v µ v 0 L XZ γ Z γ 1 (F ) µν , with |k| + |γ| ≤ |β 0 | -1 ≤ |β| - 2 
and k P < (β 0 ) P = β P , which is then equal to 0 or part of (family β -2).

• x θ P (k T +1,k P ),p (Φ) v µ v 0 L XZ γ Z γ 1 (F ) µν , with |k| + 1 + |γ| ≤ |β 0 | -1 + 1 = |β| -1 and k P < (β 0 ) P = β P , which is then part of (family β -3). • x θ P k,p (Φ) v µ v 0 L ∂XZ γ Z γ 1 (F ) µν , with |k| + |γ| + 1 ≤ |β| -1 and k P < β P , which is part of (family β -3), as [∂, X] = 0. 4.3.4 The null structure of G(v, ∇ v g)
In this subsection, we consider G, a 2-form dened on [0, T [×R 3 , and g, a function dened on [0, T [×R 3

x × R 3 v , both suciently regular. We investigate in this subsection the null structure of G(v, ∇ v g) in view of studying the error terms obtained in Proposition 4.3.23. Let us denote by (α, α, ρ, σ) the null decomposition of G.

Then, expressing G (v, ∇ v g) in null coordinates, we obtain a linear combination of the following terms.

• The terms with the radial component of

∇ v g (remark that (∇ v g) L = -(∇ v g) L = (∇ v g) r ), v L ρ (∇ v g) L , v L ρ (∇ v g) L , v A α A (∇ v g) L and v A α A (∇ v g) L .
(4.21)

• The terms with an angular component of ∇g,

ε BA v B σ (∇ v g) A , v L α A (∇ v g) A and v L α A (∇ v g) A . (4.22) 
We are then led to bound the null components of ∇ v g. A naive estimate, using

v 0 ∂ v k = Y k -ΦX -t∂ k -x k ∂ t , gives (∇ v g) L , (∇ v g) L , (∇ v g) A ≤ |∇ v g| τ + + |Φ| v 0 |∇ t,x g| + 1 v 0 Y ∈Y |Y g|. (4.23) 
With these inequalities, using our schematic notations c ≺

d if d is expectected to behave better than c, we have v L ρ (∇ v g) L ≺ ε BA v B σ (∇ v g) A , since v L ≺ v B and ρ ∼ σ.
The purpose of the following result is to improve (4.23) for the radial component in order to have a better control on v L ρ (∇ v g) L .

Lemma 4.3.27. Let g be a suciently regular function, z ∈ k 1 and j ∈ N * . We have

|(∇ v g) r | τ -+ |Φ| v 0 |∇ t,x g| + 1 v 0 Y ∈Y |Y g| and ∇ v z j r τ - v 0 |z| j-1 + 1 v 0 w∈k1 |w| j .
Proof. We have

(∇ v g) r = x i r ∂ v i g and x i rv 0 (t∂ i + x i ∂ t ) = 1 v 0 (t∂ r + r∂ t ) = 1 v 0 (S + (r -t)L), so that, using ∂ v i = 1 v 0 ( Ω 0i -t∂ i -x i ∂ t ), (∇ v g) r = x i rv 0 Ω 0i (g) - 1 v 0 S (g) + t -r v 0 L (g) . (4.24) 
To prove the rst inequality, it only remains to write schematically that Ω 0i = Y 0i -ΦX, S = Y S -ΦX and to use the triangle inequality. To complete the proof of the second inequality, apply (4.24) to g = z j , recall from Lemma 4.3.2 that Z z j z∈k1 |w| j and use that L z j |z| j-1 .

For the terms containing an angular component, note that they are also composed by either α, the better null component of the electromagnetic eld, v A or v L . The following lemma is fundamental for us to estimate the energy norms of the Vlasov eld.

Lemma 4.3.28. We can bound |G(v, ∇ v g)| either by

(|ρ| + |α|) Y ∈Y |Y (g)| + τ -+ |Φ| + w∈k1 |w| |∇ t,x g| + |α| + v L v 0 |σ| Y ∈Y |Y (g)| + (τ + + |Φ|)|∇ t,x g|
or by

|α| + |ρ| + v L v 0 |σ| + v L v 0 |α| Y ∈Y |Y (g)| + (τ + + |Φ|) |∇ t,x g|
Proof. The proof consists in bounding the terms given in (4.21) and (4.22). By Lemma 4.3.27 and

|v A | √ v 0 v L , one has v L ρ (∇ v g) L -v L ρ (∇ v g) L + v A α A (∇ v g) L |ρ| + v L v 0 |α| Y ∈Y |Y (g)| + (τ -+ |Φ|) |∇ t,x g| . As v 0 ∂ v i = Y i -ΦX -x i ∂ t -t∂ i and |v B | √ v 0 v L , we obtain v L α A (∇ v g) A + v A α A (∇ v g) L + v B σ BA (∇ v g) A |α| + v L v 0 |σ| Y ∈Y |Y (g)| + (τ + + Φ|)|∇ t,x g| . Finally, using v 0 ∂ v i = Y i -ΦX -x i ∂ t -t∂ i and Lemma 4.2.4 (for the rst inequality), it comes v L α A (∇ v g) A |α| Y ∈Y |Y (g)| + τ -+ |Φ| + w∈k1 |w| |∇ t,x g| v L α A (∇ v g) A v L v 0 |α| Y ∈Y |Y (g)| + (τ + + |Φ|) |∇ t,x g| .
Remark 4.3.29. The second inequality will be used in extremal cases of the hierarchies considered, where we will not be able to take advantage of the weights 

Q a xed integer, z Q-ξ P -β P P ξ (Φ)Y β f L 1 x,v
. In order to estimate them, we compute in this subsection the source term of T F (z j P ξ (Φ)Y β f ). We start by the following technical result.

Lemma 4.3.30. Let h : [0, T [×R 3

x × R 3 v → R be a suciently regular function and Γ σ ∈ G |σ| . Then,

Γ σ h = |g|+|σ|≤|σ| |g|≤|σ|-1 r+g P +σ P ≤σ P c g,r σ (v)P g,r (Φ)Y σ h, |∂ v i (Γ σ h)| 1 δ=0 |g|+|σ|≤|σ|+1 |g|≤|σ| r+g P +σ P +δ≤σ P +1 τ δ + P g,r (Φ)Y σ h .
Proof. The rst formula can be proved by induction on |σ|, using that Z = Y -ΦX for each Z composing Γ σ . The inequality then follows using

v 0 ∂ v i = Y i -ΦX -t∂ i -x i ∂ t . Proposition 4.3.31. Let N ∈ N and N 0 ≥ N . Consider ζ 0 and β multi-indices such that |ζ 0 | + |β| ≤ N and |ζ 0 | ≤ N -1. Let also z ∈ k 1 and j ≤ N 0 -ζ 0 P -β P . Then, T F (z j P ζ 0 (Φ)Y β f
) can be bounded by a linear combination of the following terms, where |γ|

+ |ζ| ≤ |ζ 0 | + |β|. • F v, ∇ v z j P ζ 0 (Φ)Y β f . (category 0) • |∇ Z γ F | + τ + τ - |α (L Z γ (F ))| + τ + τ - v L v 0 |σ (L Z γ (F ))| |Φ| n w i P ζ (Φ)Y κ f , ( category 1) 
where

n ≤ 2N , w ∈ k 1 , |ζ| + |γ| + |κ| ≤ |ζ 0 | + |β| + 1, i ≤ N 0 -ζ P -κ P , max(|γ|, |ζ| + |κ|) ≤ |ζ 0 | + |β| and |ζ| ≤ N -1. • τ + τ - |ρ (L Z γ (F )) | z j-1 P ζ (Φ)Y σ f and τ + τ - v L v 0 |α (L Z γ (F ))| z i P ζ (Φ)Y κ f , ( category 2) 
where |ζ|

+ |γ| + |κ| ≤ |ζ 0 | + |β| + 1, j -1, i = N 0 -ζ P -κ P , max(|γ|, |ζ| + |κ|) ≤ |ζ 0 | + |β| and |ζ| ≤ N -1. Morevover, we have i ≤ j. • τ + v µ v 0 L Z γ (F ) µθ z j P ζ (Φ)Y β f , ( category 3) 
with |ζ| < |ζ 0 |, ζ T + γ T = ζ 0 T , ζ P ≤ ζ 0 P , and |ζ| + |γ| ≤ |ζ 0 | + 1.
This implies j ≤ N 0 -ζ P -β P . Note that the terms of (category 2) only appears when j = N 0 -k P -β P and the ones of (category 3) when

|ζ 0 | ≥ 1.
Proof. The rst thing to remark is that

T F (z j P ζ 0 (Φ)Y β f ) = F v, ∇ v z j P ζ 0 (Φ)Y β f + z j T F (P ζ 0 (Φ))Y β f + z j P ζ 0 (Φ)T F (Y β f ).
We immediately obtain the terms of (category 0). Let us then consider z j P ζ 0 (Φ)T F (Y β f ). Using Proposition 4.3.23, it can be written as a linear combination of terms of (type 1-β), (type 2-β) or (type 3-β) (applied to f ), multiplied by z j P ζ 0 (Φ). Consequently, |z j P ζ 0 (Φ)T F (Y β f )| can be bounded by a linear combination of

• |z| j w d Z γ (F µν ) P k,p (Φ)P ζ 0 (Φ)Y κ f , with d ∈ {0, 1}, w ∈ k 1 , |σ| ≥ 1, max(|γ|, |k| + |γ|, |k| + |κ|, |k| + 1) ≤ |β|, |k| + |γ| + |κ| ≤ |β| + 1 and p + k P + κ P + d ≤ β P . Now, note that ∃ n, ζ such that P k,p (Φ)P ζ 0 (Φ) = Φ n P ζ (Φ), n ≤ |β|, ζ T = k T + ζ 0 T and ζ P = k P + ζ 0 P . Consequently, |ζ| = |k| + |ζ 0 | ≤ |ζ 0 | + |β| -1 ≤ N -1, |ζ| + |γ| = |k| + |ζ 0 | + |γ| ≤ |ζ 0 | + |β|, |ζ| + |κ| = |k| + |ζ 0 | + |κ| ≤ |ζ 0 | + |β| and |ζ| + |γ| + |κ| ≤ |k| + |ζ 0 | + |γ| + |κ| ≤ |ζ 0 | + |β| + 1. Since k P + κ P + d ≤ β P and ζ P = k P + ζ 0 P , we have j + d ≤ N 0 -ζ P -κ P .
Finally, as |z j w d | ≤ |z| j+d + |w| j+d , we obtain terms of (category 1).

• |z| j P k,p (Φ)L XZ γ 0 (F ) (v, ∇ v (Γ σ f )) P ζ 0 (Φ) , with |k| + |γ 0 | + |σ| ≤ |β| -1, p + k P + σ P ≤ β P and p ≥ 1.
Then, apply Lemma 4.3.30 in order to get

|∇ v (Γ σ f )| 1 δ=0 |g|+|σ|≤|σ|+1 |g|≤|σ| r+g P +σ P +δ≤σ P +1 τ δ + P g,r (Φ)Y σ f .
Fix parameters (δ, g, r, σ) as in the right hand side of the previous inequality and consider rst the case δ = 0. Then, |z| j |L XZ γ 0 (F )| P k,p (Φ)P g,r (Φ)P ζ 0 (Φ)Y σ f can be bounded by terms such as 

|z| j |Z γ (F µν )| Φ n P ζ (Φ)Y σ f , with |γ| ≤ |γ 0 | + 1, n ≤ p + r, ζ T = k T + g T + ζ 0 T , ζ P = k P + g P + ζ 0 P . We then have n ≤ 2|β|, |ζ| + |γ| + |σ| ≤ |k| + |g| + |ζ 0 | + |γ 0 | + 1 + |σ| ≤ |ζ 0 | + |β| + 1, |ζ| + |σ| ≤ |ζ 0 | + |β| and |ζ| ≤ |ζ 0 | + |β| -1. As ζ P + σ P = k P + g P + ζ 0 P + σ P ≤ k P + σ P + 1 + ζ 0 P ≤ ζ 0 P + β P , we have j ≤ N 0 -ζ P -σ P . If δ = 1,
ζ P + σ P = k P + g P + ζ 0 P + σ P ≤ k P + σ P + 1 -δ + ζ 0 P ≤ ζ 0 P + β P -1, so that j + 1 ≤ N 0 -ζ P -β P .
In both cases, we then have terms of (category 1).

• |z|

j P k,p (Φ)L ∂Z γ 0 (F ) v, ∇ v Γ σ 0 f P ζ0 (Φ) , with |k| + |γ 0 | + |σ 0 | ≤ |β| -1, p + |γ 0 | ≤ |β| -1 and
p+k P +σ 0 P ≤ β P , which arises from a term of (type 3-β). Applying Lemma 4.3.30, we can schematically suppose that

Γ σ 0 = c(v)Φ r P χ (Φ)Y κ with |χ| + |κ| ≤ |σ 0 |, |χ| ≤ |σ 0 | -1 and r + r χ + χ P + κ P ≤ σ 0 P ,
where r χ is the number of Φ coecients in P χ (Φ). As Y (c(v)) is a good coecient, c(v) does not play any role in what follows and we then suppose for simplicity that c(v) = 1. We suppose moreover, in order to not have a weight in excess, that

j + k P + χ P + κ P < N 0 -ζ 0 P (4.25)
and we will treat the remaining cases below. Using the rst inequality of Lemma 4.3.28 and denoting by (α, α, ρ, σ) the null decomposition of L ∂Z γ 0 (F ), we can bound the quantity considered here by the sum of the three following terms

|z| j |P k,p (Φ)P ζ0 (Φ)| |α| + |ρ| + v L v 0 |σ| + |α| Y ∈Y0 |Y (Φ r P χ (Φ)Y κ f )| , (4.26) 
|z| j |P k,p (Φ)P ζ0 (Φ)| (|ρ| + |α|) τ -+ |Φ| + w∈k1 |w| |∇ t,x (Φ r P χ (Φ)Y κ f )| , (4.27) 
|z| j |P k,p (Φ)P ζ0 (Φ)| (τ + + |Φ|) |α| + v L v 0 |σ| |∇ t,x (Φ r P χ (Φ)Y κ f )| . (4.28) 
Let us start by (4.26). We have schematically, for

Y ∈ Y 0 , Y κ 1 = Y κ and Y κ 2 = Y Y κ , P k,p (Φ)P ζ 0 (Φ)Y (Φ r P χ (Φ)Y κ f ) = Φ n1 P ζ 1 (Φ)Y κ 1 f + Φ n2 P ζ 2 (Φ)Y κ 2 f, with |n i | ≤ p + r, |ζ i | = |k| + |ζ 0 | + |χ| + δ i 1 and ζ i P = k P + ζ 0 P + χ P + δ i 1 .
We have, according to (4.25),

j + ζ i P + κ i P = ζ 0 P + j + k P + χ P + κ P + 1 ≤ N 0 .
Consequently, as

|α| + |ρ| + v L v 0 |σ| + |α| |L ∂Z γ (F )| |γ|≤|γ0|+1 |∇ Z γ F | and |ζ i | + |γ| + |κ i | ≤ |β| + |ζ 0 | + 1, (4.29) 
we obtain terms of (category 1) (the other conditions are easy to check).

Let us focus now on (4.27) and (4.28). Dening Y κ 3 = Y κ and Y κ 4 = ∂Y κ , we have schematically

P k,p (Φ)P ζ 0 (Φ)∂ (Φ r P χ (Φ)Y κ f ) = Φ n3 P ζ 3 (Φ)Y σ 3 f + Φ n4 P ζ 4 (Φ)Y κ 4 f, with |n i | ≤ p + r ≤ 2|β| -2, |ζ i | = |k| + |ζ 0 | + |χ| + δ 3 i and ζ i P = k P + ζ 0 P + χ P .
This time, one obtains j + 1 ≤ N 0 -ζ i P -κ i P . As, by inequality (4.15) of Proposition 4.3.7,

(|ρ| + |α|) 1 τ -|γ|≤|γ0|+1 |∇ Z γ F | , |α| |γ|≤|γ0|+1 1 τ - |α(L Z γ (F ))| + 1 τ + |∇ Z γ F | , |σ| |γ|≤|γ0|+1 1 τ - |σ(L Z γ (F ))| + 1 τ + |∇ Z γ F | and |z j w| ≤ |z| j+1 + |w| j+1 , (4.27 
) and (4.28) also give us terms of (category 1).

• We now treat the remaining terms arising from those of (type 3-β), for which

j + k P + χ P + κ P = N 0 -ζ 0 P .
This equality can only occur if j = N 0 -ζ 0 P -β P and k P + χ P + κ P = β P . It implies p + r + r χ = 0

and we then have to study terms of the form

|z| j L ∂Z γ 0 (F ) (v, ∇ v (Y κ f )) P ζ 0 (Φ) , with |γ 0 | + |κ| ≤ |β| -1.
Using the second inequality of Lemma 4.3.28, and denoting again the null decomposition of L ∂Z γ 0 (F ) by (α, α, ρ, σ), we can bound it by quantities such as |Φ| |L ∂Z γ 0 (F )| z j P ζ 0 (Φ)∂Y κ f , leading to terms of (category 1),

|ρ| P ζ 0 (Φ) τ + |z| j-1 |Y Y σ f | + τ -|z| j |∂Y κ f | , with Y ∈ Y 0 , and (4.30) 
|α|

+ v L v 0 |σ| + v L v 0 |α| P ζ 0 (Φ) τ + |z| j-1 |Y Y κ f | + τ + |z| j |∂Y κ f | , with Y ∈ Y 0 . (4.31) If Y Y κ = Y χ 1 and ∂Y κ = Y χ 2
, we have

|ζ 0 | + |χ i | ≤ |k| + |β|, j -1 = N 0 -ζ 0 P -χ 1 P and j = N 0 -ζ 0 P -χ 2 P .
Thus, (4.30) and (4.31) give terms of (category 1) and (category 2) since we have, according to inequality (4.15) of Proposition 4.3.7 and for ϕ ∈ {α, α, ρ, σ},

|ϕ| |γ|≤|γ0|+1 τ -1 -|ϕ (L Z γ (F ))| + τ -1 + |∇ Z γ F | . It then remains to bound T F (P ζ 0 (Φ))z j Y β f . If |ζ 0 | ≥ 1, there exists 1 ≤ p ≤ |ζ 0 | and ξ i 1≤i≤p such that P ζ 0 (Φ) = p i=1 Y ξ i Φ, min 1≤i≤p |ξ i | ≥ 1, p i=1 |ξ i | = |k| and p i=1 (ξ i ) T = k T . Then, T F (P ζ0 (Φ)) = p i=1 T F (Y ξ i Φ) j =i Y ξ j Φ and let us, for instance, bound T F (Y ξ 1 Φ)Y β f p j=2 Y ξ j Φ.
To lighten the notation, we dene χ such that

P χ (Φ) = p j=2 Y ξ j Φ, so that (χ T , χ P ) = ζ 0 T -ξ 1 T , ζ 0 P -ξ 1 P .
Using Propositions 4.3.23 and 4.3.25 (with |γ 1 | ≤ 1), T F (Y ξ1 Φ)P χ (Φ)Y β f can be written as a linear combination of terms of (type 1 -ξ 1 ), (type 2 -ξ 1 ), (type 3 -ξ 1 ) (applied to Φ), (f amily 1 -ξ 1 ), (f amily 2 -ξ 1 ) and (f amily 3 -ξ 1 ), multiplied by P χ (Φ)Y β f . The treatment of the rst three type of terms is similar to those which arise from z j P ζ 0 (Φ)T F (Y β f ), so we only give details for the rst one. We then have to bound

• |z| j |Z γ (F µν )| w d P k,p (Φ)Y κ ΦP χ (Φ)Y β f , with d ∈ {0, 1}, w ∈ k 1 , |κ| ≥ 1 max(|γ|, |k| + |γ|, |k| + |κ|) ≤ |ξ 1 |, |k| + |γ| + |κ| ≤ |ξ 1 | + 1 and p + k P + κ P + d ≤ ξ 1 P . Note now that P k,p (Φ)Y κ ΦP χ (Φ) = Φ n P ζ (Φ), with n ≤ p ≤ |ξ 1 |, ζ T = k T + κ T + χ T and ζ P = k P + κ P + χ P . Note moreover that |ζ| + |γ| + |β| = |k| + |γ| + |κ| + |χ| + |β| ≤ |ξ 1 | + |χ| + |β| + 1 = |ζ 0 | + |β| + 1, |ζ| + |β| ≤ |ζ 0 | + |β|
and ζ P + β P + d = k P + κ P + d + χ P + β P ≤ ξ 1 P + χ P + β P = ζ 0 P + β P , which proves that this is a term of (category 1).

• τ + |z| j v µ v 0 L Z γ (F ) µθ P χ (Φ)Y β f , with |γ| ≤ |ξ 1 | + 1 and γ T = ξ 1 T . It is part of (category 3) as |χ| < |k|, χ T + γ T = χ T + ξ 1 T = ζ 0 T , χ P ≤ ζ 0 P and |χ| + |γ| ≤ |χ| + |ξ 1 | + 1 = |ζ 0 | + 1. • |Z γ (F µν )| z j P k,p (Φ)P χ (Φ)Y β f , with |k| + |γ| ≤ |ξ 1 | -1, k P ≤ ξ 1 P and p ≤ |ξ 1 |
, which is part of (category 1). Indeed, we can write

P k,p (Φ)P χ (Φ) = Φ r P ζ (Φ), with r ≤ p ≤ |ξ 1 |, (ζ T , ζ P ) = (k T + χ T , k P + χ P )
and we then have |ζ|

+ |γ| = |k| + |γ| + |χ| ≤ |ξ 1 | + |χ| ≤ |ζ 0 |, |ζ| + |γ| + |β| ≤ |ξ 1 | + |χ| + |β| ≤ |ζ 0 | + |β| and ζ P + β P ≤ ξ 1 P + χ P + β P = ζ 0 P + β P • τ + |L XZ γ 0 (F )| z j P k,p (Φ)P χ (Φ)Y β f , with |k| + |γ 0 | ≤ |ξ 1 | -1, k P < ξ 1 P and p ≤ |ξ 1 |. By inequality (4.13) of Proposition 4.3.7 ∃ w ∈ k 1 , τ + |L XZ γ 0 (F )| (1 + |w|) |γ|≤|γ0|+1 |∇ Z γ F | .
Note moreover that k P + χ P + β P ≤ ξ 1 P -1 + χ P + β P < ζ 0 P + β P , as 17 k P < ξ 1 P . We then have j+1 ≤ N 0 -k P -χ P -β P and we obtain, using |z j w| ≤ |z| j+1 +|w| j+1 and writting again P k,p (Φ)P χ (Φ) = Φ r P ζ (Φ), terms which are in (category 1) (the other conditions can be checked as previously).

Remark 4.3.32. There is three types of terms which bring us to consider a hierarchy on the quantities of the form z j P ξ (Φ)Y β f .

• Those of (category 0), as ∇ v z j creates (at least) a τ --loss and since τ -F ∼ τ -1 + .

• The rst ones of (category 2). Indeed, we will have

|ρ| τ -3 2 + τ -1 2
-, so, using 18 1

√ v 0 v L , τ + τ - |ρ| v 0 τ + + v L τ 3 - . v L τ -3
-will give an integrable term, as the component v L will allow us to use the foliation

(u, C u (t)) of [0, t] × R 3
x . However, v 0 τ -1 + will create a logarithmical growth. • The ones of (category 3), because of the τ + weight and the fact that even the better component of L Z γ (F ) will not have a better decay rate than τ -2 + . We will then classify them by |ξ| + |β| and j, as one of these quantities is lowered in each of these terms. 

i | + |β| ≤ N , |ζ 1 | ≤ N -1 and N 0 ≥ 2N -1.
We can adapt the previous proposition to T F z j P ζ1 (Φ)P ζ2 (Φ)Y β f . One just has

• to add the factor P ζ2 (Φ) (or P ζ1 (Φ)) in the terms of each categories and

• to replace conditions such as j ≤ N 0 -ζ P -σ P by j ≤ N 0 -ζ P -ζ 2 P -σ P (or j ≤ N 0 -ζ P -ζ 1 P -σ P ).
The worst terms are those of (category 3) as they are responsible for the stronger growth of the top order energy norms. However, as suggested by the following proposition, we will have better estimates on

z j P X ξ (Φ)Y β L 1 x,v . Proposition 4.3.34. Let N ∈ N, z ∈ k 1 , N 0 ≥ N , ξ 0 , β and j ∈ N be such that |ξ 0 | ≤ N -1, |ξ 0 | + |β| ≤ N and j ≤ N 0 -ξ 0 P -β P . Then, T F (z j P X ξ 0 (Φ)Y β f
) can be bounded by a linear combination of terms of (category 0), (category 1), (category 2) and

τ + τ - v µ v 0 L Z γ (F ) µν w j P X ξ (Φ)Y β f , (category 3 -X) with ξ X < ξ 0 X , ξ T ≤ ξ 0 T , ξ P ≤ ξ 0 P , |ξ| + |γ| + |β| ≤ |ξ| + |β| + 1, |γ| ≤ |ξ| + 1, w ∈ k 1 and j = N 0 -ζ P -β P .
Note that the terms of (category 2) only appear when j = N 0 -ξ 0 P -β P and those of (category 3 -X) if j = N 0 -ξ 0 P -β P and |ξ 0 | ≥ 1. Proof. Proposition 4.3.23 also holds for Y β ∈ Y X in view of Lemma 4.3.12 and the fact that X can be considered as c(v)∂. Then, one only has to follow the proof of the previous proposition and to apply Proposition 4.3.26 where we used Proposition 4.3.25. Hence, instead of terms of (category 3), we obtain

τ + v µ v 0 L XZ γ (F ) µν z j P X χ (Φ)Y β f , with |γ| ≤ |ξ 1 |, χ X < ξ 0 X , χ T ≤ ξ 0 T and χ P ≤ ξ 0 P .
Apply now the second and then the rst inequality of Proposition 4.3.7 to obtain that

τ + v µ v 0 L XZ γ (F ) µθ z j P X χ (Φ)Y β f P X χ (Φ)Y β f |δ|≤|ξ1|+1 w∈k1 |w| j+1 τ - v µ v 0 L Z δ (F ) µθ + |z| j |L Z δ (F )|
which leads to terms of (category 3 -X) (if j = N 0 -χ P -β P ) and (category 1) (as P X χ (Φ) can be bounded by a linear combination of P χ 0 (Φ) with χ 0 T = χ T + χ X and χ 0 P ≤ χ P ).

Remark 4.3.35. As we will mostly apply this commutation formula with a lower N 0 than for our utilizations of Proposition 4.3.31 or for |ξ 0 | = 0, we will have to deal with terms of (category 3 -X) only once (for (4.76)). 18 We will be able to lose one power of v 0 as it is suggested by the energy estimate of Proposition 4.4.1.

• v vν v 0 (XΦ) j Y κ 0 P X ξ (Φ)Y κ f dv, with j +|κ 0 | ≤ 1 and |ξ|+|κ| ≤ R-1. It leads to v vν v 0 P X ξ (Φ)Y κ f dv, v v ν v 0 X(Φ)P X ξ (Φ)Y κ f dv, v v ν v 0 Y P X ξ (Φ) Y κ f dv and v v ν v 0 P X ξ (Φ)Y κ 0 Y κ f dv, which are all of (type 1 -R) since Y P X ξ (Φ) = P X ζ (Φ), with |ζ| = |ξ| + 1, and |ξ| + 1 + |κ| ≤ R. • v c(v) (XΦ) j Y κ 0 z τ+ c(t, x, v)P k,p (Φ)Y κ f dv, with j + |κ 0 | ≤ 1, z ∈ k 1 , p + |k| + |κ| ≤ 3R -3 and |k| + |κ| ≤ R -1. For simplicity, we suppose c(v) = 1. As Y 1 τ + c(t, x, v) = 1 τ + c 1 (t, x, v) + 1 τ + c 2 (t, x, v)Φ,
we obtain, dropping the dependance in (t, x, v) of the good coecients, the following terms (with the rst one corresponding to j = 1 and the other ones to j = 0).

1 τ + v czP (k T +1,k P ),p+1 (Φ)Y κ f dv, 1 τ + v (c + c 1 )zP k,p (Φ)Y κ f dv, 1 τ + v c 2 zP k,p+1 (Φ)Y κ f dv, 1 τ + v czP (k T +κ 0 T ,k P +κ 0 P ),p (Φ)Y κ f dv, 1 τ + v cY (z)P k,p (Φ)Y κ f dv, 1 τ + v czP k,p (Φ)Y κ 0 Y κ f dv.
It is now easy to check that all these terms are of (type 2 -R) (for the before last term, recall in particular (4.32)). For instance, for the rst one, we have

(p + 1) + (|k| + 1) + |κ| = (p + |k| + |κ|) + 2 ≤ 3R -1 ≤ 3R and (|k| + 1) + |κ| ≤ (|k| + |κ|) + 1 ≤ R. • 1 τ+ v zP k 0 ,p 0 (Φ)Y κ 0 P X ξ (Φ)Y κ f dv, with p 0 + |k 0 | + |κ 0 | ≤ 3, |k 0 | + |κ 0 | ≤ 1 and |ξ| + |κ| ≤ R -1.
According to (4.33), we can suppose without loss of generality that P

X ξ (Φ) = c(v)P ζ (Φ), with |ζ| ≤ |ξ|. If |k 0 | = 1, we obtain 1 τ + v c(v)zP (ζ T +k 0 T ,ζ P +k 0 P ),r (Φ)Y κ f dv, with r ≤ |ζ| + p 0 , which is of (type 2 -R) since (|ζ| + p 0 ) + (|ζ| + |k 0 |) + |κ| ≤ (p 0 + |k 0 |) + 2(|ξ| + |κ|) ≤ 2R + 1 ≤ 3R and (|ζ| + |k 0 |) + |κ| ≤ R. If |k 0 | = 0, we obtain, with r ≤ |ζ| + p 0 and since Y κ0 (c(v)) = c 1 (v), 1 τ + v (c + c 1 )(v)zP (ζ T ,ζ P ),r (Φ)Y κ f dv, 1 τ + v c(v)zP (ζ T ,ζ P ),r (Φ)Y κ 0 Y κ f dv and 1 τ + v c(v)zP (ζ T +κ 0 T ,ζ P +κ 0 P ),r (Φ)Y κ f dv, which are of (type 2 -R) since |ζ| + 1 + |κ| ≤ R and |ζ| + p 0 + |ζ| + |κ 0 | + |κ| ≤ 3 + 2R -2 ≤ 3R. • 1 τ+ v wP k 0 ,p 0 (Φ)Y κ 0 z τ+ c(t, x, v)P k,p (Φ)Y κ f dv, with (w, z) ∈ k 2 1 , p 0 + |k 0 | + |κ 0 | ≤ 3, |k 0 | + |κ 0 | ≤ 1, p + |k| + |κ| ≤ 3R -3 and |k| + |κ| ≤ R -1. If |k 0 | = 1, we obtain the term 1 τ + v c 0 (t, x, v)wP k+k 0 ,p+p 0 (Φ)Y σ f dv, where c 0 (t, x, v) := c(t, x, v) z τ + , which is of (type 2 -R) since |k + k 0 | + (p + p 0 ) + |κ| ≤ (p + |k| + |κ|) + (p 0 + |k 0 |) ≤ 3R and |k + k 0 | + |κ| = (|k| + |κ|) + 1 ≤ R. If |k 0 | = 0, using that z τ + c(t, x, v) + Y κ 0 z τ + c(t, x, v) = c 3 (t, x, v) + c 4 (t, x, v)Φ,
we obtain the following terms of (type 2 -R),

1 τ + v c 3 (t, x, v)P k,p+p 0 (Φ) + c 4 (t, x, v)P k,p+p 0 +1 (Φ) wY κ f dv, 1 τ + v c 0 (t, x, v)wP k,p+p 0 (Φ)Y κ 0 Y κ f dv and 1 τ + v c 0 (t, x, v)wP (k T ,κ 0 T ,k P +κ 0 P ),p+p 0 (Φ)Y κ f.
Recall from the transport equation satised by the Φ coecients that, in order to estimate Y γ Φ, we need to control L Z β (F ) with |β| = |γ| + 1. Consequently, at the top order, we will rather use the following commutation formula. Proposition 4.3.40. Let Z β ∈ K |β| . Then,

∇ µ L Z β (F ) µν = |q|+|κ|≤|β| |q|≤|β|-1 p≤q X +κ T J c k,q κ (v)P q,p (Φ)Y κ f ,
where P q,p (Φ) can contain Y X , and not merely Y, derivatives of Φ. We then denote by q X its number of X derivatives.

Proof. Iterating Lemma 4.3.36, we have

∇ µ L Z β (F ) µν = |γ|≤|β| C β γ J Z γ f . (4.34) 
The result then follows from an induction on |γ|. Indeed, write Z γ = Z Z γ0 and suppose that

Z γ0 f = |q|+|κ|≤|γ0| |q|≤|γ0|-1 p≤q X +κ T c k,q κ (v)P q,p (Φ)Y κ f. (4.35) If Z = ∂ ∈ T, then Z γ f = |q|+|κ|≤|γ0| |q|≤|γ0|-1 p≤q X +κ T c k,q κ (v)P (q T +1,q P ,q X ),p (Φ)Y κ f + c k,q κ (v)P q,p (Φ)∂Y κ f = |q|+|κ|≤|γ| |q|≤|γ|-1 p≤q X +κ T c k,q κ (v)P q,p (Φ)Y κ f. Otherwise γ P = (γ 0 ) P + 1 and write Z = Y -ΦX with Y ∈ Y 0 . It comes, using XY κ f = c(v)∂Y κ f , Z γ f = |q|+|κ|≤|γ0| |q|≤|γ0|-1 p≤q X +κ T Y c k,q κ (v) P q,p (Φ)Y κ f + c k,q κ (v)P (q T ,q P +1,q X ),p (Φ)Y κ f + c k,q κ (v)P q,p (Φ)Y Y κ f +c k,q κ (v)P (q T ,q P ,q X +1),p+1 (Φ)Y κ f + c k,q κ (v)P (q T ,q P ,q X ),p+1 (Φ)c(v)∂Y κ |q|+|κ|≤|γ| |q|≤|γ|-1 p≤q X +κ T c k,q κ (v)P q,p (Φ)Y κ f.

Energy and pointwise decay estimates

In this section, we recall classical energy estimates for both the electromagnetic eld and the Vlasov eld and how to obtain pointwise decay estimates from them. For that purpose, we need to prove Klainerman-Sobolev inequalities for velocity averages, similar to Theorem 8 of [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] or Theorem 1.1 of [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF], adapted to modied vector elds.

Energy estimates

For the particle density, we will use the following approximate conservation law.

Proposition 4.4.1. Let H : [0, T [×R 3

x × R 3 v → R and g 0 : R 3

x × R 3 v → R be two suciently regular functions and F a suciently regular 2-form dened on [0, T [×R 3 . Then, g, the unique classical solution of T F (g) = H g(0, ., .) = g 0 , satises the following estimate,

∀ t ∈ [0, T [, g L 1 x,v (t) + sup u∈R v L v 0 g L 1 (Cu(t))L 1 v ≤ 2 g 0 L 1 x,v + 2 t 0 Σs v |H| dv v 0 dxds.
Proof. The estimate follows from the divergence theorem, applied to v

v µ v 0 |f |dv in [0, t] × R 3 and V u (t)
, for all u ≤ t. We refer to Proposition 3.1 of [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF] for more details.

We consider, for the remaining of this section, a 2-form G and a 1-form J, both dened on [0, T [×R 3 and suciently regular, such that

∇ µ G µν = J ν ∇ µ * G µν = 0.
We denote by (α, α, ρ, σ) the null decomposition of G. As Σ0 rρ(G)|(0, x)dx = +∞ when the total charge is non-zero, we cannot control norms such as √ τ + ρ L 2 (Σt) and we then separate the study of the electromagnetic in two parts.

• The exterior of the light cone, where we propagate L 2 norms on the chargeless part F of F (introduced, as F , in Denition 4.1.2), which has a nite initial weighted energy norm. The pure charge part F is given by an explicit formula, which describes directly its asymptotic behavior. As F = F + F , we are then able to obtain pointwise decay estimates on the null components of F .

• The interior of the light cone, where we can propagate L 2 weighted norms of F since we control its ux on C 0 (t) with the bounds obtained on F in the exterior region.

We then introduce the following energy norms. 

|α| 2 + |ρ| 2 + |σ| 2 dC u (t), E 0 N [G](t) := Z γ ∈K |γ| |γ|≤N E 0 N [L Z γ (G)](t), E S,u≥0 [G](t) := Σ 0 t τ + |α| 2 + |ρ| 2 + |σ| 2 + τ -|α|dx + sup 0≤u≤t Cu(t) τ + |α| 2 + τ -|ρ| 2 + |σ| 2 dC u (t). E N [G](t) := Z γ ∈K |γ| |γ|≤N E S,u≥0 N [L Z γ (G)](t) E S,u≤0 [G](t) := Σ 0 t τ + |α| 2 + |ρ| 2 + |σ| 2 + τ -|α|dx + sup u≤0 Cu(t) τ + |α| 2 + τ -|ρ| 2 + |σ| 2 dC u (t) E Ext N [G](t) := Z γ ∈K |γ| |γ|≤N E S,u≤0 N [L Z γ (G)](t).
The following estimates hold.

Proposition 4.4.3. Let S := S + ∂ t 1 u>0 + 2τ -∂ t 1 u≤0 . For all t ∈ [0, T [,

E 0 [G](t) ≤ 2E 0 [G](0) + 8 t 0 Σs |G µ0 J µ |dxds E S,u≤0 [G](t) ≤ 6E S,u≤0 [G](0) + 8 t 0 Σ 0 s S ν G νµ J µ dxds E S,u≥0 [G](t) ≤ 3E S,u≤0 [ G](t) + 8 t 0 Σ 0 s S ν G νµ J µ dxds.
Proof. For the rst inequality, apply the divergence theorem to T µ0 [G] in [0, t] × R 3 and V u (t), for all u ≤ t.

Let us give more details for the other ones. Denoting T [G] by T and using Lemma 4.2.3, we have, if u ≤ 0,

∇ µ (τ -T µ0 ) = τ -∇ µ T µ0 - 1 2 L (τ -) T L0 = τ -∇ µ T µ0 - u 2τ - |α| 2 + |ρ| 2 + |σ| 2 ≥ τ -∇ µ T µ0 .
Consequently, applying Corollary 4.2.2 and the divergence theorem in V u0 (t), for u 0 ≤ 0, we obtain

Σ u 0 t τ -T 00 dx + 1 √ 2 Cu 0 (t) τ -T L0 dC u0 (t) ≤ Σ u 0 0 1 + r 2 T 00 dx - t 0 Σ u 0 s τ -G 0ν J ν dxds. (4.36)
On the other hand, as ∇ µ S ν + ∇ ν S µ = 2η µν and T µ µ = 0, we have

∇ µ (T µν S ν ) = ∇ µ T µν S ν + T µν ∇ µ S ν = G νλ J λ S ν + 1 2 T µν (∇ µ S ν + ∇ ν S µ ) = G νλ J λ S ν .
Applying again the divergence theorem in V u0 (t), for all u 0 ≤ 0, it comes Recall that ∇ µ T µν G = G νλ J λ and ∇ µ (T µν S ν ) = G νλ J λ S ν . Hence, by the divergence theorem applied in [0, t] × R 3 \ V 0 (t), we obtain 

Σ u 0 t T 0ν S ν dx + 1 √ 2 Cu 0 (t) T Lν S ν dC u0 (t) = Σ u 0 0 T 0ν S ν dx - t 0 Σ u 0 s G µν J µ S ν dxds. ( 4 
Σ 0 t (T 00 + T 0ν S ν ) dx = 1 √ 2 C0(t) (T L0 + T Lν S ν ) dC 0 (t) - t 0 Σ 0 s G 0ν J ν + S ν G νµ J µ dxds. ( 4 
4T 00 + 4T 0ν S ν ≥ τ + |α| 2 + τ -|α| 2 + τ + |ρ| 2 + τ + |σ| 2 ≥ 0 on Σ 0 t . (4.39)
Consequently, the divergence theorem applied in 

V u (t) \ V 0 (t), for 0 ≤ u ≤ t, gives 1 √ 2 Cu(t) (T L0 + T Lν S ν ) dC u (t) ≤ 1 √ 2 C0(t) (T L0 + T Lν S ν ) dC 0 (t) - Vu(t)\V0(t) (G 0ν J ν + S ν G νµ J µ ) . ( 4 

Pointwise decay estimates

Decay estimates for velocity averages

As the set of our commutation vector elds is not P 0 , we need to modify the following standard Klainerman-Sobolev inequality, which was proved in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] (see Theorem 8).

Proposition 4.4.4. Let g be a suciently regular function dened on [0, T [×R 3

x × R 3 v . Then, for all (t, x) ∈ [0, T [×R 3 ,

∀ (t, x) ∈ [0, T [×R 3 , v∈R 3 |g(t, x, v)|dv 1 τ 2 + τ - Z β ∈ P |β| 0 |β|≤3 Z β g L 1
x,v (t).

We need to rewrite it using the modied vector elds. For the remaining of this section, g will be a suciently regular function dened on [0, T [×R 3

x × R 3 v . We also consider F , a regular 2-form, so that we can consider the Φ coecients introduced in Denition 4.3.11 and we suppose that they satisfy the following pointwise estimates, with M 1 ≥ 7 a xed integer. For all (t, x, v)

∈ [0, T [×R 3 × R 3 , |Y Φ|(t, x, v) log 7 2 (1 + τ + ), |Φ|(t, x, v) log 2 (1 + τ + ) and |κ|≤3 |Y κ Φ|(t, x, v) log M1 (1 + τ + ).
Proposition 4.4.5. For all (t, x) ∈ [0, T [×R 3 , 

τ 2 + τ - v∈R 3 |g(t, x, v)|dv |ξ|+|β|≤3 P X ξ (Φ)Y β g L 1 x,v (t) + |κ|≤min(2+κ T ,3) z∈k1 log 6M1 (3 + t) 1 + t zY κ g L 1 x,v (t) 
d=0 |ξ|+|β|≤3-d log 2d (3 + t) w j-d P X ξ (Φ)Y β g L 1 x,v (t) 
+ log 6M1 (3 + t) 1 + t |κ|≤min(2+κ T ,3) w j+1 Y κ f L 1 x,v (t) . 
Proof. One only has to follow the proof of Proposition 4. A weaker version of this inequality will be used in Subsection 4.9.1.

Corollary 4.4.8. Let z ∈ k 1 and j ∈ N. Then, for all (t, x) ∈ [0, T [×R 3 ,

v∈R n |z| j |g(t, x, v)|dv 1 τ 2 + τ -w∈k1 min(3,j) d=0 |β|≤3-d log 2d+M1 (3 + t) w j-d Y β g L 1 x,v (t) + log 6M1 (3 + t) 1 + t |κ|≤min(2+κ T ,3) w j+1 Y κ f L 1 x,v (t) . 
Proof. Start by applying Corollary 4.4.7. It remains to bound the terms of the form

w j-d P X ξ (Φ)Y β g L 1 v L 1 (Σt) , with d ≤ min(3, j), |ξ| + |β| ≤ 3 -d and |ξ| ≥ 1.
For this, we divide Σ t in two regions, the one where r ≤ 1+2t and its complement. As |P X ξ (Φ)| log M1 (1+τ + ) and τ + 1 + t if r ≤ 1 + 2t, we have

w j-d P X ξ (Φ)Y β g L 1 v L 1 (|y|≤2t) log M1 (3 + t) w j-d Y β g L 1 v L 1 (Σt) . Now recall from Remark 4.2.5 that 1 + r z0∈k1 |z 0 | and |P X ξ (Φ)|(1 + r) -1 log M 1 (3+t) 1+t if r ≥ 1 + 2t, so that w j-d P X ξ (Φ)Y β g L 1 v L 1 (|y|≥2t) log M1 (3 + t) 1 + t z0∈k1 z j+1 0 Y β g L 1 v L 1 (Σt)
.

The result follows from |β| ≤ 2 -d ≤ 2 + β T .

We are now interested in adapting Theorem 1.1 of [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] to the modied vector elds.

Theorem 4.4.9. Suppose that

|κ|≤3 Y κ Φ L ∞ x,v (0) 1. Let H : [0, T [×R 3 x ×R 3 v → R and h 0 : R 3 x ×R 3 v → R
be two suciently regular functions and h the unique classical solution of

T F (h) = H h(0, ., .) = h 0 .
Consider also z ∈ k 1 and j ∈ N. Then, for all (t, x) ∈ [0, T [×R 3 such that t ≥ |x|,

τ 3 + v |z j h|(t, x, v) dv (v 0 ) 2 |β|≤3 (1 + r) |β|+j ∂ β t,x h L 1 x L 1 v (0) + |ξ|+|β|≤3 w∈k1 0≤d≤3 δ∈{0,1} log 2d (3 + t) √ 1 + t δ t 0 Σs v T F w j-d+δ P X ξ (Φ)Y β h dv v 0 dxds,
where |ξ| = 0 and |β| ≤ min(2 + β T , 3) if δ = 1.

Proof. If |x| ≤ t 2 , the result follows from Corollary 4.4.7 and the energy estimate of Proposition 4.4.1. If t 2 ≤ |x| ≤ t, we refer to Section 5 of [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF], where Lemma 5.2 can be rewritten in the same spirit as we rewrite Proposition 4.4.4 with modied vector eld.

To deal with the exterior, we use the following result. Proposition 4.4.10. For all (t, x) ∈ [0, T [×R 3 such that |x| ≥ t, we have

v |g|(t, x, v) dv (v 0 ) 2 1 τ + w∈k1 v |w||g|(t, x, v)dv.
Proof. Let |x| ≥ t. If |x| ≤ 1, τ + ≤ 3 and the estimate holds. Otherwise, τ + ≤ 3|x| so, as

x i -t v i v 0 ∈ k 1 and x -t v v 0 ≥ |x|-t |v| v 0 ≥ |x| (v 0 ) 2 -|v| 2 v 0 (v 0 + |v|) ≥ |x| 2(v 0 ) 2 , we have v |g|(t, x, v) dv (v 0 ) 2 1 |x| w∈k v |w||g|(t, x, v)dv.
Remark 4.4.11. Using 1 v 0 v L and Lemma 4.2.4, we can obtain a similar inequality for the interior of the light cone, at the cost of a τ --loss. Note however that because of the presence of the weights w ∈ k 1 , this estimate, combined with Corollary 4.4.7, is slightly weaker than Theorem 4.4.9. During the proof, this dierence will lead to a slower decay rate insucient to close the energy estimates.

Decay estimates for the electromagnetic eld

We start by presenting weighted Sobolev inequalities for general tensor eld. Then we will use them in order to obtain improved decay estimates for the null components of a 2-form 19 . In order to treat the interior of the light cone (or rather the domain in which |x| ≤ 1 + 1 2 t), we will use the following result.

Lemma 4.4.12. Let U be a smooth tensor eld dened on [0, T [×R 3 . Then, τ

∀ t ∈ [0, T [, sup |x|≤1+ t 2 |U (t, x)| 1 (1 + t) 2 |γ|≤2 √ τ -L Z γ (U )(t, y) L 2 (|y|≤2+
|β|+ 1 2 - ∂ β x U (t, .) L 2 y (|y|≤2+ 3 4 t) |γ|≤|β| √ τ -Z γ U (t, .) L 2 y (|y|≤2+ 3 4 t) .
For the remaining region, we have the two following inequalities, coming from Lemma 2.3 (or rather from its proof for the second estimate) of [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF].

Lemma 4.4.13. Let U be a suciently regular tensor eld dened on R 3 . Then, for t ∈ R + ,

∀ |x| ≥ t 2 + 1, |U (x)| 1 |x|τ 1 2 - |y|≥ t 2 +1 |U (y)| 2 O,2 + τ 2 -|∇ ∂r U (y)| 2 O,1 dy 1 2 , ∀ |x| > t, |U (x)| 1 |x|τ 1 2 - |y|≥t |U (y)| 2 O,2 + τ 2 -|∇ ∂r U (y)| 2 O,1 dy 1 2 
,

∀ x = 0, |U (x)| 1 |x| 3 2 |y|≥|x| |U (y)| 2 O,2 + |y| 2 |∇ ∂r U (y)| 2 O,1 dy 1 2 
.

Recall that G and J satisfy

∇ µ G µν = J ν ∇ µ * G µν = 0
and that (α, α, ρ, σ) denotes the null decomposition of G. Before proving pointwise decay estimates on the components of G, we recall the following classical result and we refer, for instance, to Lemma D. 

[L Ω , ∇ ∂r ]G = 0, L Ω (ζ(G)) = ζ(L Ω (G))
and

∇ ∂r (ζ(G)) = ζ(∇ ∂r (G)).
Similar results hold for L Ω and ∇ ∂t ,

∇ L or ∇ L . For instance, ∇ L (ζ(G)) = ζ(∇ L (G))
. 19 Note hower that our estimate on the component α require the 2-form G to satisfy ∇ µ * Gµν = 0.

Proposition 4.4.15. We have, for all

(t, x) ∈ R + × R 3 , |ρ|(t, x), |σ|(t, x) E 2 [G](t) + E Ext 2 [G](t) τ 3 2 + τ 1 2 - , |α|(t, x) E 2 [G](t) + +E Ext 2 [G](t) + |κ|≤1 r 3 2 L Z κ (J) A L 2 (Σt) τ 2 + |α|(t, x) min E 2 [G](t) + E Ext 2 [G](t) τ + τ - , E 0 2 [G](t) τ + τ 1 2 - .
Moreover, if |x| ≥ max(t, 1), the term involving E 2 [G](t) on the right hand side of each of these three estimates can be removed.

Remark 4.4.16. As we will have a small loss on E 2 [F ] and not on E 0 2 [F ], the second estimate on α is here for certain situations, where we will need a decay rate of degree at least 1 in the t + r direction. 

Proof. Let (t, x) ∈ [0, T [×R 3 . If |x| ≤ 1+
|ζ(L Ω (∇ ∂r G))| + |ζ(∇ ∂r G)| |∇ ∂r ζ(L Ω (G)| + |∇ ∂r ζ(G)| 1 τ -|γ|≤2 |ζ(L Z γ (G)|. (4.42) 
As τ + r ≤ τ + in the region considered, it nally comes [G](t).

τ 3 + τ -|ζ| 2 |γ|≤2 |y|≥ t 2 +1 τ + |ζ(L Z γ (G)| 2 dx E 2 [G](t) + E Ext
Let us improve now the estimate on α. As, by Lemma 4.3.36, ∇ µ L Ω (G) µν = L Ω (J) ν and ∇ µ * L Ω (G) µν = 0 for all Ω ∈ O, we have according to Lemma 4.2.1 that

∀ |β| ≤ 1, ∇ L α(L Ω β (G)) A = 1 r α(L Ω β (G)) A -/ ∇ e A ρ(L Ω β (G)) + ε AB / ∇ e B σ(L Ω β (G)) + L Ω β (J) A .
Thus, using (4.14), we obtain, for all Ω ∈ O,

|α(∇ ∂r G)| + |α(L Ω (∇ ∂r G))| |J A | + |L Ω (J) A | + 1 r |γ|≤2 |α(L Z γ (G)| + |ρ(L Z γ (G)| + |σ(L Z γ (G)|. (4.43)
Hence, utilizing this time the third inequality of Lemma 4.4.13 and (4.43) instead of (4.42), it comes

τ 4 + |α| 2 r 4 |α| 2 |y|≥|x| | √ rα| 2 O,2 + r 2 |∇ ∂r ( √ rα)| 2 O,1 dy E 2 [G](t) + E Ext 2 [G](t) + |κ|≤1 r 3 2 L Z κ (J) A 2 L 2 (Σt) .
Using the same arguments as previously, one has

|y|≥ t 2 +1 |α| 2 O,2 + τ 2 -|∇ ∂r α| 2 O,1 dy E 0 2 [G](t), |y|≥ t 2 +1 √ τ -α 2 O,2 + τ 2 -∇ ∂r √ τ -α 2 O,1 dy E 2 [G](t) + E Ext 2 [G](t)
and a last application of Lemma 4.4.13 gives us the result. The estimates for the region |x| ≥ max(t, 1) can be obtained similarly, using the second inequality of Lemma 4.4.13 instead of the rst one.

4.5 The pure charge part of the electromagnetic eld As we will consider an electromagnetic eld with a non-zero total charge, R 3 r|ρ(F )|dx will be innite and we will not be able to apply the results of the previous section to F and its derivatives. As mentioned earlier, we will split F in F + F , where F and F are introduced in Denition 4.1.2. We will then apply the results of the previous section to the chargeless eld F , which will allow us to derive pointwise estimates on F since the eld F is completely determined. More precisely, we will use the following properties of the pure charge part F of F . Proposition 4.5.1. Let F be a 2-form with a constant total charge Q F and F its pure charge part

F (t, x) := χ(t -r) Q F 4πr 2 x i r dt ∧ dx i .
Then, 1. F is supported in ∪ t≥0 V -1 (t) and F is chargeless.

2. ρ(F )(t, x) = -Q F 4πr 2 χ(t -r), α(F ) = 0, α(F ) = 0 and σ(F ) = 0. 3. ∀ Z γ ∈ K |γ| , ∃ C γ > 0, |L Z γ (F )| ≤ C γ |Q F |τ -2 + .
4. F satises the Maxwell equations ∇ µ F µν = J ν and ∇ µ * F µν = 0, with J such that

J 0 (t, x) = Q F 4πr 2 χ (t -r) and J i (t, x) = - Q F 4πr 2 x i r χ (t -r).
J is then supported in {(s, y) ∈ R + × R 3 / -2 ≤ t -|y| ≤ -1} and its derivatives satisfy

∀ Z γ ∈ K |γ| , ∃ C γ > 0, |L Z γ (J) L | + τ + |L Z γ (J) A | + τ 2 + |L Z γ (J) L | ≤ C γ |Q F | τ 2 + .
Proof. The rst point follows from the denitions of F , χ and

Q F (t) = Q F -Q F (t) = Q F -lim r→+∞ St,r x i r F 0i dS t,r = Q F - Q F 4πr 2 
St,r dS t,r = 0.

The second point is straightforward and depicts that F has a vanishing magnetic part and a radial electric part. The third point can be obtained using that,

• for a 2-form G and a vector eld Γ,

L Γ (G) µν = Γ(G µν ) + ∂ µ (Γ λ )G λν + ∂ ν (Γ λ )G µλ .
• For all Z ∈ K, Z is either a translation or a homogeneous vector eld.

• For a function χ 0 : u → χ 0 (u), we have Ω ij (χ 0 (u)) = 0,

∂ t (χ 0 (u)) = χ 0 (u), ∂ i (χ 0 (u)) = - x i r χ 0 (u), S(χ 0 (u)) = uχ 0 (u), Ω 0i (χ(u)) = - x i r uχ 0 (u).
• 1 + t ≤ τ + r on the support of F and |u| ≤ τ -≤ √ 5 on the support of χ .

Consequently, one has

∀ Z ξ ∈ K |ξ| , Z ξ x i r 3 χ(t -r) ≤ C ξ,χ τ -2 + and L Z γ (F ) |κ|≤|γ| 3 µ=0 3 ν=0 Z κ (F µν ) C γ τ 2 + .
The equations ∇ µ * F µν , equivalent to ∇ [λ F µν] = 0 by Lemma 4.2.1, follow from F ij = 0 and that the electric part of F is radial, so that ∇ i F 0j -∇ j F 0i = 0. The other ones ensue from straightforward computations,

∇ i F i0 = - Q F 4π ∂ i x i r 3 χ(t -r) = - Q F 4π 3 r 3 -3 x i x i r 5 χ(t -r) - x i r 3 × x i r χ (t -r) = Q F 4πr 2 χ (t -r), ∇ µ F µi = -∂ t F 0i = - Q F 4π x i r 3 χ (t -r).
For the estimates on the derivatives of J, we refer to [START_REF] Lindblad | Global stability for charged-scalar elds on Minkowski space[END_REF] (equations (3.52a) -(3.52c)).

Bootstrap assumptions and strategy of the proof

Let, for the remaining of this article, N ∈ N such that N ≥ 11 and M ∈ N which will be xed during the proof. Let also 0 < η < 1 16 and (f 0 , F 0 ) be an initial data set satisfying the assumptions of Theorem 4.1.4. By a standard local well-posedness argument, there exists a unique maximal solution (f, F ) of the Vlasov-Maxwell system dened on [0, T * [, with T * ∈ R * + ∪ {+∞}. Let us now introduce the energy norms used for the analysis of the particle density.

Denition 4.6.1. Let Q ≤ N , q ∈ N and a = M + 1. For g a suciently regular function, we dene the following energy norms,

E[g](t) := g L 1 x,v (t) + Cu(t) v v L v 0 |g| dvdC u (t), E q Q [g](t) := 1≤i≤2 z∈k1 |ξ i |+|β|≤Q |ξ i |≤Q-1 2N -1+q-ξ 1 P -ξ 2 P -β P j=0 log -(j+|ξ 1 |+|ξ 2 |+|β|)a (3 + t)E z j P ξ 1 (Φ)P ξ 2 (Φ)Y β f (t), E N [g](t) := 1≤i≤2 z∈k1 |ξ i |+|β|≤Q |ξ i |≤Q-1 2N -1-ξ 1 P -ξ 2 P -β P j=0 log -aj (3 + t)E z j P ξ 1 (Φ)P ξ 2 (Φ)Y β f (t), E X N -1 [f ](t) := 1≤i≤2 z∈k1 |ζ i |+|β|≤N -1 2N -2-ζ 1 P -ζ 2 P -β P j=0 log -2j (3 + t)E z j P X ζ 1 (Φ)P X ζ 2 (Φ)Y β f (t), E X N [f ](t) := z∈k1 |ζ|+|β|≤N |ζ|≤N -1 2N -2-ζ P -β P j=0 log -2j (3 + t)E z j P X ζ (Φ)Y β f (t).
To understand the presence of the logarithmical weights, see Remark 4.3.32.

In order to control the derivatives of the Φ coecients and E N [f ] at t = 0, we prove the following result.

Proposition 4.6.2. Let |β| ≤ N -1 a multi index and Y β ∈ Y |β| . Then, at t = 0,

max |Y β Φ|, | Z β Φ| 1 + r 2 v 0 |γ|≤|β|-1 |L Z γ (F )| √ v 0 .
Proof. Note that the second inequality ensues from |γ|≤N -2

L Z γ (F ) L ∞ (Σ0) √ 1 + r 2 , (4.44) 
which comes from Proposition 4.4.15. Let us now prove the rst inequality. Without mention of the opposite (as in (4.48)), all functions considered here will be evaluated at t = 0. As Φ(0, ., .) = 0, the result holds for |β| = 0. Let 1 ≤ |β| ≤ N -1 and suppose that the result holds for all |σ| < |β|. Note that, for instance,

Y 2 Y 1 Φ = Z 2 Z 1 Φ + ΦX Z 1 Φ + Y 2 (Φ)XΦ + Φ Z 2 XΦ + ΦΦXXΦ.
More generally, we have, Consequently, using the induction hypothesis, we only have to prove the result for Z β Φ. Indeed, as |k| < |β|, by (4.44), 

Y β Φ p≤|k|+|σ|≤|β| k<|β| P k,p (Φ) Z σ Φ.
|P k,p (Φ) Z σ (Φ)| | Z σ (Φ)| 1 + r 2 v 0 p |γ|≤N -2 |L Z γ (F )| p | Z σ (Φ)|. ( 4 
Z = S. Remark that | Z β Φ| |α2|+|α1|+q≤|β| (1 + |x|) |α1|+q (v 0 ) |α2| |∂ α2 v ∂ α1 x ∂ q t Φ|
and let us prove by induction on q that

∀ |α 2 | + |α 1 | + q ≤ |β|, (1 + |x|) |α1|+q (v 0 ) |α2| |∂ α2 v ∂ α1 x ∂ q t Φ| 1 + r 2 v 0 |γ|≤|β|-1 |L Z γ (F )| . (4.47)
Recall that for t ∈ [0, T * [,

T F (Φ) = v µ ∂ µ Φ + F (v, ∇ v Φ) = -t v µ v 0 L Z (F ) µk . (4.48) 
As Φ(0, ., .) = 0 and v

0 ∂ t Φ = -v i ∂ i Φ -F (v, ∇ v Φ)
, implying ∂ t Φ(0, ., .) = 0, (4.47) holds for q ≤ 1. Let 2 ≤ q ≤ |β| and suppose that (4.47) is satised for all q 0 < q. Let |α 2 |+|α 1 | ≤ |β|-q. Using the commutation formula given by Lemma 4.3.10, we have (at t = 0),

v 0 ∂ α1 x ∂ q t Φ = -v i ∂ i ∂ α1 x ∂ q-1 t Φ - v µ v 0 L ∂ α 1 x ∂ q-2 t Z (F ) µk + |γ1|+q1+|γ2|=|α1|+q-1 C 1 γ1,γ2 L ∂ γ 2 (F )(v, ∇ v ∂ γ1 x ∂ q1 t Φ),
Dividing the previous equality by v 0 , taking the ∂ α2 v derivatives of each side and using Lemma 4.3.6, we obtain

|∂ α2 v ∂ α1 x ∂ q t Φ| |α3|≤|α2| (v 0 ) -|α2|+|α3| |∂ α3 v ∂ x ∂ α1 x ∂ q-1 t Φ| + |γ|≤|α1|+q-2 1 (v 0 ) 1+|α2| (1 + r) |α1|+q-2 |L Z γ Z (F )| + |γ1|+q1+n=|α1|+q-1 1≤|α4|≤|α2|+1 |γ2|≤n 1 (v 0 ) |α2|-|α4|+1 (1 + r) n |L Z γ 2 (F )| |∂ α4 v ∂ γ1 x ∂ q1 t Φ|.
It then remains to multiply both side of the inequality by (v 0 ) |α2| (1 + r) |α1|+q and

• To bound (v 0 ) |α2| (1 + r) |α1|+q (v 0 ) -|α2|+|α3| |∂ α3 v ∂ x ∂ α1 x ∂ q-1 t
Φ| with the induction hypothesis.

• To remark that (v 0 ) |α2| (1 + r) |α1|+q • To note that, using |γ 1 | + q 1 + 1 = |α 1 | + q -n and the induction hypothesis,

(v 0 ) |α2| (1 + r) |α1|+q (v 0 ) |α2|-|α4|+1 (1 + r) n |∂ α4 v ∂ γ1 x ∂ q1 t Φ| |L Z γ 2 (F )| = 1 + r v 0 (v 0 ) |α4| (1 + r) |γ1|+q1 |∂ α4 v ∂ γ1 x ∂ q1 t Φ| |L Z γ 2 (F )| 1 + r v 0 |L Z γ 2 (F )| |ζ|≤|α4|+|γ1|+q1-1 (1 + r) 2 v 0 |L Z ζ (F )| |ζ|≤|α2|+|α1|+q-1 (1 + r) 2 v 0 |L Z ζ (F )| , since |L Z γ 2 (F )| (1 + r) -2 , as |γ 2 | ≤ |α 1 | + q -1 ≤ |β| -1 ≤ N -2.
This concludes the proof of the Proposition.

Corollary 4.6.3. There exists C > 0 a constant depending only on N such that E 4 N [f ](0) ≤ C = . Without loss of generality and in order to lighten the notations, we suppose that E 4 N [f ](0) ≤ . Proof. All the functions considered here are evaluated at t = 0. Consider multi-indices ξ 1 , ξ 2 and β such that, for i ∈ {1, 2}, max(|ξ i | + 1, |ξ i | + |β|) ≤ N and j ≤ 2N + 3 -ξ 1 P -ξ 2 P -β P . Then,

z j P ξ 1 (Φ)P ξ 2 (Φ)Y β f ≤ z j P ξ 1 (Φ)P ξ 2 (Φ) Z β f + |k|+|κ|≤|β| |k|≤|β|-1 p+k P +κ P <β P z j P ξ 1 (Φ)P ξ 2 (Φ)P k,p (Φ) Z κ f .
Using the previous proposition and the assumptions on f 0 , it comes that, with C 1 > 0 a constant,

E 4 N [f ](0) ≤ (1 + C 1 √ ) Z β ∈ P |β| 0 |β|≤N z 2N +3-β P Z β f L 1 x,v (0) 
.

By similar computations than in Appendix B of [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF], we can bound the right hand side of the last inequality by C using the smallness hypothesis on (f 0 , F 0 ).

By a continuity argument and the previous corollary, there exists a largest time T ∈]0, T * [ such that, for all t ∈ [0, T [,

E 4 N -3 [f ](t) ≤ 4 , (4.49) 
E 0 N -1 [f ](t) ≤ 4 , (4.50) 
E The remaining of the proof will then consist in improving our bootstrap assumptions, which will prove that (f, F ) is a global solution to the 3d massive Vlasov-Maxwell system. The other points of the theorem will be obtained during the proof, which is divided in four main parts.

N [f ](t) ≤ 4 (1 + t) η , (4.51) |β|≤N -2 r 3 2 v v A v 0 Z β f dv L 2 (Σt) ≤ √ , ( 4 
1. First, we will obtain pointwise decay estimates on the particle density, the electromagnetic eld and then on the derivatives of the Φ coecients, using the bootstrap assumptions. 

Immediate consequences of the bootstrap assumptions

In this section, we prove pointwise estimates on the Maxwell eld, the Φ coecients and the Vlasov eld.

We start with the electromagnetic eld.

Proposition 4.7.1. We have, for all |γ| ≤ N -3 and

(t, x) ∈ [0, T [×R 3 , |α(L Z γ (F ))|(t, x) √ log M (3 + t) τ 2 + , |α(L Z γ (F ))|(t, x) √ min 1 τ + τ 1 2 - , log M (3 + t) τ + τ - , |σ(L Z γ (F ))|(t, x) √ log M (3 + t) τ 3 2 + τ 1 2 - , |ρ(L Z γ (F ))|(t, x) √ log M (3 + t) τ 3 2 + τ 1 2 - . Moreover, if |x| ≥ t, |α(L Z γ (F ))|(t, x) √ τ 2 + , |α(L Z γ (F ))|(t, x) √ τ + τ - , |σ(L Z γ (F ))|(t, x) √ τ 3 2 + τ 1 2 - , |ρ(L Z γ (F ))|(t, x) √ τ 3 2 + τ 1 2 - . With δ = ∂(t) ∈ {0, 1}, one has ∂ t v µ v 0 L Z (F ) µk = δ v µ v 0 L Z (F ) µk + t v µ v 0 L ∂Z (F ) µk .
Using succesively the inequality (4.15), the pointwise decay estimates 21 given by Remark 4.7.2 and the inequalities 1

√ v 0 v L , 2ab ≤ a 2 + b 2 , it comes t v µ v 0 L ∂Z (F ) µk τ + |α(L ∂Z (F ))| + |ρ(L ∂Z (F ))| + |σ(L ∂Z (F ))| + v L v 0 |α(L ∂Z (F ))| τ + τ - √ v 0 v L |β|≤2 τ - τ + |L Z β (F )| + |α(L Z β (F ))| + |ρ(L Z β (F ))| + |σ(L Z β (F ))| + v L v 0 |α(L Z β (F ))| √ v 0 v L √ log(3 + t) τ 1 2 + τ 3 2 - + v L τ + τ - √ τ + τ 1 2 - √ v 0 τ + log 1 2 (3 + t) + √ v L τ 3 2 - log 3 2 (3 + t). (4.61)
Similarly,

v µ v 0 L Z (F ) µk |α(L Z (F ))| + |ρ(L Z (F ))| + |σ(L Z (F ))| + v L v 0 |α(L Z (F ))| √ log(3 + t) τ 3 2 + τ 1 2 - + v L √ τ + τ 1 2 - √ v 0 τ 5 4 + + √ v L τ 5 4
-.

(4.62)

Expressing L ∂ (F )(v, ∇ v Φ) in null components, denoting by (α, α, ρ, σ) the null decomposition of L ∂ (F ) and using the inequalities 

|v A | √ v 0 v L , 1 √ v 0 v L (see Lemma 4.2.4), one has |L ∂ (F )(v, ∇ v Φ)| √ v 0 v L |ρ| |(∇ v Φ) r | + √ v 0 v L |α| + v L |α| + v L |σ| |∇ v Φ| .
|(∇ v Φ) r | Y ∈Y0 |Y Φ| + |Φ||X(Φ)| + τ -|∇ t,x Φ| C √ log 7 2 (1 + τ + ) + C √ τ -log 3 2 (1 + τ + ), |∇ v Φ| Y ∈Y0 |Y Φ| + |Φ||X(Φ)| + τ + |∇ t,x Φ| C √ log 7 2 (1 + τ + ) + C √ τ + log 3 2 (1 + τ + ).
We then deduce, by (4.15) and the pointwise estimates given by Remark 4.7.2,

√ v 0 v L |ρ| |(∇ v Φ) r | + √ v 0 v L |α| |∇ v Φ| C √ v 0 v L τ + τ - log 5 2 (1 + τ + ) C v 0 τ 3 2 + + C v L τ 2 - , v L |α| + v L |σ| |∇ v Φ| C v L τ 3 2 - log 3 2 (1 + τ + ).
Combining these two last estimates with (4.61) and (4.62), we get

|T F (∂Φ)| ( √ + C ) v 0 τ + log 1 2 (1 + τ + ) + ( √ + C ) v L τ 5 4 - log 3 2 (1 + τ + ).
We then split ∂Φ in three functions ψ + ψ 1 + ψ 2 such that ψ 1 (0, ., .) = ψ 2 (0, ., .) = 0, ψ(0, ., .) = ∂Φ(0, ., .),

T F (ψ 1 ) = ( √ + C ) v 0 τ + log 1 2 (1 + τ + ), T F (ψ 2 ) = ( √ + C ) v L τ 5 4 - log 3 2 (1 + τ + )
and T F ( ψ) = 0.

21 Note that we use the estimate

|α| √ τ -1 + τ -1 2 -
here in order to obtain a decay rate of τ -1 + in the t + r direction.

According to Proposition 4.6.2, we have ψ L ∞ t,x,v = ∂Φ(0, ., .

) L ∞ x,v √ . Fix now (s, y, v) ∈ V u (T 0 ) × R 3 v
and let (z, z, ω 1 , ω 2 ) be the coordinates of (s, y) in the null frame. Keeping the notations used previously in this proof, we have 

|ψ 1 |(s, y, v) ( √ + C ) s 0 log 1 2 (1 + τ + (t, X(t))) τ + (t, X(t)) dt ( √ + C ) s 0 log 1 2 (3 + t) 1 + t dt ( √ + C ) log
∀ (s, y, v) ∈ V u (T 0 ) × R 3 v , |∇ t,x Φ|(s, y, v) ≤ C 1 ( √ + C ) log 3 
v µ v 0 L Z (F ) µk Y Φ , τ + v µ v 0 L Z (F ) µk ∂ t,x Φ , |ΦL ∂ (F )(v, ∇ v Φ)| and Y t v µ v 0 L Z (F ) µk .
Using the bootstrap assumption (4.60) in order to estimate |Y Φ| and reasoning as for (4.62), one obtains

v µ v 0 L Z (F ) µk Y Φ C v 0 τ 5 4 + + C v L τ 5 4 
-.

Bounding |∂ t,x Φ| with the bootstrap assumption (4.60) and using the inequality (4.58), it comes

τ + v µ v 0 L Z (F ) µk ∂Φ C v 0 τ + log 5 2 (1 + τ + ) + C v L τ - log 5 2 (1 + τ + ).
As |Φ| √ log 2 (1 + τ + ), we get, using the bound obtained on the left hand side of (4.63),

ΦL ∂ (F )(v, ∇ v Φ) C v 0 τ 3 2 + log 2 (1 + τ + ) + C v L τ 3 2 - log 7 
2 (1 + τ + ).

For the remaining term, one has schematically, by the rst equality of Lemma 4.3.22,

Y t v µ v 0 L Z (F ) µk (τ + + |Φ|) v µ v 0 L Z (F ) µθ + τ + v µ v 0 L ZZ (F ) µk + τ + |Φ| v µ v 0 L ∂Z (F ) µk .
Using |Φ| log 2 (1 + τ + ) ≤ τ + and following (4.58), we get

(τ + + |Φ|) v µ v 0 L Z (F ) µθ + τ + v µ v 0 L ZZ (F ) µk √ v 0 τ + log(1 + τ + ) + √ v L τ - log(1 + τ + ).
Combining (4.61) with |Φ| log 2 (1 + τ + ), we obtain

τ + |Φ| v µ v 0 L ∂Z (F ) µk √ v 0 τ + log 5 2 (1 + τ + ) + √ v L τ 3 2 - log 7 2 (1 + τ + ).
Consequently, it comes

|T F (Y Φ)| ( √ + C ) v 0 τ + log 5 2 (1 + τ + ) + ( √ + C ) v L τ 5 4 - log 7 2 (1 + τ + ) + ( √ + C ) v L τ - log 5 2 (1 + τ + ).
One can then split Y Φ in three functions ς, ς 1 and ς 2 dened as ψ, ψ 1 and ψ 2 previously. We have ς L (1 + τ + ) by similar computations as those of (4.64), (4.65) and (4.59). So, taking C large enough and small enough, we can improve the bootstrap assumption on Y Φ and conclude the proof.

∞ t,x,v √ since Y Φ L ∞ x,v (0) 
For the higher order derivatives, we have the following result. Proposition 4.7.5. For all

(Q 1 , Q 2 ) ∈ 0, N -4 2 satisfying Q 2 ≤ Q 1 , there exists R(Q 1 , Q 2 ) ∈ N such that ∀ |β| ≤ N -4, (t, x) ∈ [0, T [×R 3 , Y β Φ (t, x) √ log R(|β|,β P ) (1 + τ + ). Note that R(Q 1 , Q 2 ) is independent of M if Q 1 ≤ N -6.
Proof. The proof is similar to the previous one and we only sketch it. We process by induction on Q 1 and, at Q 1 xed, we make an induction on Q 2 . Let |β| ≤ N -4 and suppose that the result holds for all Q 1 ≤ |β| and Q 2 ≤ β P satisfying Q 1 < |β| or Q 2 < β P . Let 0 < T 0 < T and u > 0 be such that

∀ (t, x, v) ∈ V u (T 0 ) × R 3 v , |Y β Φ|(t, x, v) ≤ C √ log R(|β|,β P ) (1 + τ + ),
with C > 0 a constant suciently large. We now sketch the improvement of this bootstrap assumption, which will imply the desired result. The source terms of T F (Y β Φ), given by Propositions 4.3.23 and 4.3.25, can be gathered in two categories.

• The ones where there is no Φ coecient derived more than |β| -1 times, which can then be bounded by the induction hypothesis and give logarithmical growths, as in the proof of the previous Proposition.

We then choose R(|β|, β P ) suciently large to t with these growths.

• The ones where a Φ coecient is derived |β| times. Note then that they all come from Proposition 4.3.23, when |σ| = |β| for the quantities of (type 1-β) and when |σ| = |β| -1 for the other ones.

We then focus on the most problematic ones (with a τ + or τ -weight, which can come from a weight z ∈ k 1 for the terms of (type 1-β)), leading us to integrate along the characteristics of T F the following expressions. 

τ + v µ v 0 L Z γ (F ) µν Y κ Φ , with |γ| ≤ N -3, |κ| = |β| and κ P < β P , (4.66) 
|Φ p L ∂Z γ 0 (F ) (v, Γ κ Φ)| , with |γ 0 | ≤ N -4, |κ| =
τ -|ρ| + τ + |α| + τ + v L v 0 (|σ| + |α|) Φ p ∂ t,x P q,n (Φ)Y ζ Φ .
Then, note that there is no derivatives of order |β| in Φ p ∂ t,x (P q,n (Φ)) Y ζ Φ so that these terms can be handled using the induction hypothesis. It then remains to study the terms related to P q,n+p (Φ)∂ As the improvement of all the energy bounds concerning f are similar, we unify them as much as possible.

Hence, let us consider

• Q ∈ {N -3, N -1, N }, n N -3 = 4, n N -1 = 0 and n N = 0.
• Multi-indices β 0 , ξ 0 and ξ 2 such that max(|ξ

0 | + |β 0 |, 1 + |ξ 0 |) ≤ Q and max(|ξ 2 | + |β 0 |, 1 + |ξ 2 |) ≤ Q. • A weight z 0 ∈ k 1 and q ≤ 2N -1 + n Q -ξ 0 P -ξ 2 P -β 0 P .
According to the energy estimate of Propostion 4.4. For that purpose, we will bound the spacetime integral of the terms given by Proposition 4.3.31, applied to z q 0 P ξ 0 (Φ)Y β 0 f . We start, in Subsection 4.8.1, by covering the term of (category 0). 

T F z q 0 P ξ 0 (Φ)Y β 0 f P ξ 2 (Φ) dv v 0 dxds 3 2 (1 + t) η log aq (3 + t) if Q = N,

The terms of (category 0)

The purpose of this Subsection is to prove the following proposition. Proposition 4.8.1. Let ξ 1 , ξ 2 and β such that max(1

+ |ξ i |, |ξ i | + |β|) ≤ N for i ∈ {1, 2}. Consider also z ∈ k 1 , r ∈ N * , 0 ≤ κ ≤ η, 0 < j ≤ 2N + 3 -ξ 1 -ξ 2
P -β P and suppose that,

∀ t ∈ [0, T [, E z j P ξ 1 (Φ)P ξ 2 (Φ)Y β f (t) + log 2 (3 + t)E z j-1 P ξ 1 (Φ)P ξ 2 (Φ)Y β f (t) (1 + t) κ log r (3 + t).
Then,

t 0 Σs v F v, ∇ v z j P ξ 1 (Φ)P ξ 2 (Φ)Y β f dv v 0 dxds 3 2 (1 + t) κ log r (3 + t).
Proof. To lighten the notations, we denote P ξ 1 (Φ)P ξ 2 (Φ)Y β f by h and, for d ∈ {0, 1}, E z j-d h by H j-d , so that

H j-d (t) = z j-d h L 1 x,v (t) + sup u∈R Cu(t) v v L v 0 |z j-d h|dvdC u (t) (1 + t) κ log r-2d (3 + t).
Using Lemmas 4.2.4 and 4.3.27, we have

∇ v z j L , ∇ v z j L , |v A | + v L v 0 ∇ v z j A τ - v 0 |z| j-1 + 1 v 0 w∈k1 |w| j .
Hence, the decomposition of F v, ∇ v |z| j in our null frame brings us to control the integral, over [0

, T ] × R 3 x × R 3 v , of 22 τ -|w| j-1 + |w| j (|ρ(F )| + |α(F )| + |σ(F )| + |α(F )|) |h| v 0 and τ + |w| j-1 + |w| j |α(F )| |h| v 0 .
According to Remark 4.7.2 and using 1

√ v 0 v L (see Lemma 4.2.4), we have τ -(|ρ(F )|+|σ(F )|+|α(F )|)+τ + |α(F )| √ log(3 + t) τ + , |ρ(F )|+|σ(F )|+|α(F )|+|α(F )| √ v 0 τ 3 2 + + √ v L τ 3 2
-. 22 The second term comes from α(F ) A v L ∇v|z| j A .

The result is then implied by the following two estimates,

t 0 Σs v √ |h| |w| j-1 1 + s log(3 + s) + |w| j (1 + s) 3 2 dvdxds √ t 0 log(3 + s) 1 + s H j-1 (s)ds + t 0 H j (s) (1 + s) 3 2 ds 3 2 t 0 log r-1 (3 + t) (1 + s) 1-κ + log r (3 + t) (1 + s) 5 4 -κ ds 3 2 (1 + t) κ log r (3 + t), t 0 Σs √ τ 3 2 - v v L v 0 w j h dvdxds = t u=-∞ √ τ 3 2 - Cu(t) v v L v 0 w j h dvdC u (t)du √ H j (t) +∞ u=-∞ du τ 3 2 - 3 2 (1 + t) κ log r (3 + t).

Bounds on several spacetime integrals

We estimate in this subsection the spacetime integral of the source terms of (category 1)-(category 3) of T F (z q 0 P ξ 0 (Φ)Y β 0 f ), multiplied by (v 0 ) -1 P ξ 2 (Φ), where the electromagnetic eld is derived less than N -3 time. We then x, for the remaining of the subsection,

• multi-indices γ, β and ξ 1 such that

|γ| ≤ N -3, |ξ 1 | + |γ| + |β| ≤ Q + 1, |β| ≤ |β 0 |, |ξ 1 | + |β| ≤ |ξ 0 | + |β 0 | ≤ Q and |ξ 1 | ≤ Q -1. • n ≤ 2N , z ∈ k 1 and j ∈ N such that j ≤ 2N -1 + n Q -ξ 1 P -ξ 2 P -β P .
• We will make more restrictive hypotheses for the study of the terms of (category 2) and (category 3).

For instance, for the last ones, we will take |ξ 1 | < |ξ 0 | and j = q. This has to do with their properties described in Proposition 4.3.31.

Note that |ξ 2 | + |β| ≤ Q. To lighten the notations, we introduce h := z j P ξ 1 (Φ)P ξ 2 (Φ)Y β f.

We start by treating the terms of (category 1).

Proposition 4.8.2. Under the bootstrap assumptions (4.49)-(4.51), we have,

I 1 := t 0 Σs v |Φ| n |∇ Z γ F | + τ + τ - |α (L Z γ (F ))| + τ + τ - v L v 0 |σ (L Z γ (F ))| |h| dv v 0 dxds 3 2 .
Proof. According to Propositions 4.7.4, 4.7.1 and 1

√ v 0 v L , we have |Φ| n |∇ Z γ F | + |Φ| n τ + τ - |α (L Z γ (F ))| + |Φ| n τ + τ - v L v 0 |σ (L Z γ (F ))| √ log 4N +M (3 + t) √ v 0 v L τ + τ - + v L τ 1 2 + τ 3 2 - √ v 0 τ 5 4 + + √ v L τ 1 4 + τ 3 2 - .
Then, and

I 1 t 0 Σs √ τ 5 4 + v |h|dvdxds + t 0 Σs √ τ 1 4 + τ 3 2 - v v L v 0 |h|dvdxds √ t 0 E[h](s) (1 + s) 5 4 ds + √ t u=-∞ Cu(t) 1 τ 1 4 + τ 3 2 - v v L v 0 |h|dvdC u (t)du.
sup u∈R C i u (t) v v 0 v L |h|dvdC i u (t) (1 + T i+1 (t)) 2η (1 + t i+1 ) 1 8 
, so that, using also 23 

+ τ 3 2 - v v L v 0 |h|dvdC u (t)du = √ t u=-∞ +∞ i=0 C i u (t) 1 τ 1 4 + τ 3 2 - v v L v 0 |h|dvdC i u (t)du √ t u=-∞ 1 τ 3 2 - +∞ i=0 1 (1 + t i ) 1 4 C i u (t) v v L v 0 |h|dvdC i u (t)du 3 2 t u=-∞ du τ 3 2 - +∞ i=0 (1 + t i+1 ) 1 8 
(1 + t i+1 )

1 4 3 2 +∞ u=-∞ du τ 3 2 - +∞ i=0 2 -i 8 3
2 .

We now start to bound the problematic terms.

Proposition 4.8.3. We study here the terms of (category 2). If, for κ ≥ 0 and r ∈ N, The extra log a (3 + t)-growth on I 2 3 , compared to I 1 3 , will not avoid us to close the energy estimates in view of the hierarchies in the energy norms. Indeed, we have j = q -1 (in I 2

E[h](t) = h L 1 x,v (t) + sup u∈R Cu(t) v v L v 0 |h|dvdC u (t) (1 + s) κ log r (3 + t), then (4.71) 
I 1 3 := t 0 Σs τ + τ - |α (L Z γ (F ))| v v L v 0 |h| dv v 0 dxds
3 ) according to the properties of the terms of (category 2) (in I 1 3 , we merely have j ≤ q). Proof. Recall rst from Lemma 4.2.4 that 1+|v A | √ v 0 v L . Then, using Proposition 4.7.1 and the inequality

2CD ≤ C 2 + D 2 , one obtains v L v 0 τ + τ - |α (L Z γ (F ))| √ v L τ 3 2 - and τ + τ - |ρ (L Z γ (F ))| √ log M (3 + t) v 0 τ + + √ log M (3 + t) v L τ 3 - .
We then have, as a = M + 1,

I 1 3 t u=-∞ √ τ 3 2 - Cu(t) v v L v 0 |h|dvdC u (t)du 3 2 E[h](t) +∞ u=-∞ du τ 3 2 - 3 2 (1 + s) κ log r (3 + t), I 2 3 √ t 0 Σs log M (3 + s) τ + v |h|dvdxds + √ log M (3 + t) t u=-∞ √ τ 3 2 - Cu(t) v v L v 0 |h|dvdC u (t)du √ t 0 log r+M (3 + s) (1 + s) 1-κ ds + 3 2 (1 + t) κ log r+M (3 + t) 3 2 (1 + t) κ log r+M +1 (3 + t).
23 Note that the sum over i is actually nite as

C i u (t) = ∅ for i ≥ log 2 (1 + t).
• multi-indices γ, β and ξ

1 such that N -2 ≤ |γ| ≤ N , |γ| + |ξ 1 | ≤ Q, |ξ 1 | + |γ| + |β| ≤ Q + 1, |β| ≤ |β 0 |, |ξ 1 | + |β| ≤ |ξ 0 | + |β 0 | ≤ Q and |ξ 1 | ≤ Q -1.
• n ≤ 2N , z ∈ k 1 and j ∈ N such that j ≤ 2N -1 -ξ 1 P -ξ 2 P -β P .

• Consistently with Proposition 4.3.31, we will, in certain cases, make more assumptions on ξ 1 or j, such as j ≤ q for the terms of (category 2).

Note that |ξ 2 | + |β| ≤ Q and that there exists i 1 and i 2 such as

i 1 + i 2 = 2j, i 1 ≤ 2N -1 -2ξ 1 P -β P and i 2 ≤ 2N -1 -2ξ 2 P -β P .
To lighten the notations, we introduce The following estimates holds,

h := z j P ξ 1 (Φ)P ξ 2 (Φ)Y β f, h 1 := z i1 P ξ 1 (Φ) 2 Y β f and h 2 := z i2 P ξ 2 (Φ) 2 Y β f, so that |h| = |h 1 h 2 |. As |γ| ≥ N -2, we have |ξ 1 | ≤ 2 ≤ N -7 and 2|ξ 1 | + |β| ≤ 5 ≤ N -6.
τ 3 + v |h 1 | dv (v 0 ) 2 + τ 2 + τ - v |h 1 |dv v τ 3 + v L v 0 + τ 2 + τ -|h 1 |dv log (4+i1+2|ξ
∀ |x| ≥ t, τ 3 + τ - v |h 1 | dv (v 0 ) 2 τ 3 + τ - v v L v 0 |h 1 |dv log (4+i1+2|ξ 1 |+|β|)a (3 + t).
I 1 1 := t 0 Σs v |Φ| n |∇ Z γ F | |h| dv v 0 dxds 3 2 , I 2 
1 := t 0 Σs v |Φ| n τ + τ - v L v 0 |σ (L Z γ (F ))| |h| dv v 0 dxds 3 2
and

I 3 1 := t 0 Σs v |Φ| n τ + τ - |α (L Z γ (F ))| |h| dv v 0 dxds 3 2 .
Proof. Using the Cauchy-Schwarz inequality twice (in x and then in v),

∇ Z γ F 2 L 2 (Σt) E 0 N [F ](t) ≤ 4 , |Φ| √ log 2 (1 + τ + ), E N [f ](t)
(1 + t) η and (4.72), we have

I 1 1 t 0 ∇ Z γ F L 2 (Σs) v |Φ| n |h| dv v 0 L 2 (Σs) ds √ t 0 log 8N (1 + τ + ) v |h 1 | dv (v 0 ) 2 v |h 2 |dv 1 2 L 1 (Σs) ds √ t 0 log 8N (1 + τ + ) v |h 1 | dv (v 0 ) 2 1 2 L ∞ (Σs) E[h 2 ](s)ds t 0 log 4N +3N a (3 + s) (1 + s) 3 2 log ai2 (3 + s)E N [f ](s)ds 3 2 .
For the second one, recall from the bootstrap assumptions (4.53) and (4.51) that for all t ∈ [0, T [ and i ∈ N,

C i u (t) |σ| 2 dC i u (t) ≤ E 0 N [F ](t i+1 (t)) and sup u∈R C i u (t) v v L v 0 |h 2 | dvdC i u (t) E[h 2 ](T i+1 (t)) (1 + t i+1 ) 2η .
Hence, using this time a null foliation, one has

I 2 1 +∞ i=0 t u=-∞ 1 τ -C i u (t) |σ (L Z γ (F )) | 2 dC i u (t) C i u (t) τ 2 + v |Φ| n v L v 0 |h| dv v 0 2 dC i u (t) 1 2 du √ +∞ i=0 t u=-∞ 1 τ -C i u (t) τ 2 + log 8N (1 + τ + ) v |h 1 | dv (v 0 ) 2 v v L v 0 |h 2 | dvdC i u (t) 1 2 du √ +∞ i=0 t u=-∞ 1 τ -C i u (t) 1 τ 3 4 + v v L v 0 |h 2 | dvdC i u (t) 1 2 du 3 2 +∞ u=-∞ du τ 9 8 - +∞ i=0 (1 + t i+1 ) η (1 + t i ) 1 4 3 2 
.

For the last one, use rst that F = F + F to get

I 3 1 = I F 1 + I F 1 := t 0 Σs v |Φ| n τ + τ - α L Z γ ( F ) |h| dv v 0 dxds + t 0 Σs v |Φ| n τ + τ - α L Z γ (F ) |h| dv v 0 dxds. By Proposition 4.7.1, we have |L Z γ (F )| τ -2 + . Hence, using |Φ| log 2 (1 + τ + ) and 1 √ v 0 v L , we have |Φ| n τ + τ - α L Z γ (F ) √ v 0 v L √ v 0 τ 3 4 + τ - ≤ v 0 τ 5 4 + + v L τ 1 4
+ τ 2 

C i u (t) τ + α L Z γ ( F ) 2 dC i u (t) E N [F ](T i+1 (t)) + E Ext N [ F ](T i+1 (t)) (1 + t i+1 ) η .
It then comes, using 1

√ v 0 v L , 16η < 1 and v |Φ| n |h 1 |dv τ -3 2 + τ -1 -, that I F 1 +∞ i=0 t u=-∞ 1 τ -C i u (t) τ + |α (L Z γ (F ))| 2 dC i u (t) C i u (t) τ + v |Φ| n v L v 0 |h|dv 2 dC i u (t) 1 2 du √ +∞ i=0 (1 + t i+1 ) η t u=-∞ 1 τ -C i u (t) τ + v |Φ| n |h 1 | dv v v L v 0 |h 2 | dvdC i u (t) 1 2 du √ +∞ i=0 (1 + t i+1 ) 2η (1 + t i ) 1 4 +∞ u=-∞ 1 τ 3 2 - 3 2 +∞ i=0 2 -i 4 (1-8η) 3 2 
.

We now turn on the problematic terms.

Proposition 4.8.8. If |ξ 2 | ≤ N -2, we have

I 1 3 = t 0 Σs τ + τ - |α (L Z γ (F ))| v v L v 0 |h| dv v 0 dxds 3 2 log (3+j+|ξ1|+|ξ2|+|β|)a (3 + t) and I 2 3 = t 0 Σs τ + τ - |ρ (L Z γ (F ))| v |h| dv v 0 dxds 3 2 log (2+j+|ξ1|+|ξ2|+|β|)a (3 + t).
Otherwise, |ξ 2 | = N -1 and I 

| + |β 0 | ≥ N -2.
Moreover, by the properties of the terms of (category 2), j ≤ q. We then have, as N ≥ 8,

j + 3 + |ξ 1 | + |ξ 2 | + |β| ≤ q + |ξ 0 | + |ξ 2 | + |β 0 |.
Proof. Throughout this proof, we will use (4.72) and the bootstrap assumption (4.53), which implies

α (L Z γ (F )) L 2 (Σt) + sup u∈R ρ (L Z γ (F )) L 2 (Cu(t)) E 0 N [F ](t) 1 2 
.

Applying the Cauchy-Schwarz inequality twice (in (t, x) and then in v), we get

I 1 3 t 0 α (L Z γ (F )) L 2 (Σs) 1 + s ds t u=-∞ Cu(t) τ 3 + τ 2 - v v L v 0 |h| dv v 0 2 dC u (t)du 1 2 1 2 log 1 2 (1 + t) t u=-∞ 1 τ 2 -Cu(t) v v L v 0 |h 2 | dvdC u (t)du 1 2 sup u∈R τ 3 + v |h 1 | dv (v 0 ) 2 1 2 L ∞ (Cu(t)) log 1 2 + a 2 (4+i1+2|ξ| 1 +|β|) (3 + t) E[h 2 ](t).
Using 1

√

v 0 v L and the Cauchy-Schwarz inequality (this time in (u, ω 1 , ω 2 ) and then in v), we obtain

I 2 3 t u=-∞ ρ (L Z γ (F )) L 2 (Cu(t)) Cu(t) τ 2 + τ 2 - v v L v 0 |h| dv 2 dC u (t) 1 2 du 1 2 t u=-∞ 1 τ 3 2 - τ 2 + τ - v |h 1 |dv 1 2 L ∞ (Cu(t)) Cu(t) v v L v 0 |h 2 | dvdC u (t) 1 2 du log a 2 (4+i1+2|ξ| 1 +|β|) E[h 2 ](t).
It then remains to remark that, by the bootstrap assumptions (4.50) and (4.51),

•

E[h 2 ](t) ≤ log (i2+2|ξ2|+|β|)a (3 + t)E 0 N -1 [f ](t) log (i2+2|ξ2|+|β|)a (3 + t), if |ξ 2 | ≤ N -2, or • E[h 2 ](t) ≤ log ai2 (3 + t)E N [f ](t) (1 + t) η log ai2 (3 + t), if |ξ 2 | = N -1.
Let us move now on the expressions of (category 3). The ones where |γ| = N are the more critical terms and will be treated later.

Proposition 4.8.10. Suppose that

N -2 ≤ |γ| ≤ N -1. Then, if |ξ 2 | ≤ N -2, I 4 = t 0 Σs v τ + v µ v 0 L Z γ (F ) µν |h| dv v 0 dxds 3 2 log (3+j+|ξ1|+|ξ2|+|β|)a (3 + t)
and I 4 For similar reasons as those given in Remark 4.8.9, these bounds are sucient to close the energy estimates

on E N [f ] and E 0 N -1 [f ].
Proof. Denoting by (α, α, ρ, σ) the null decomposition of L Z γ ( F ) and using |v

A | √ v 0 v L , we have v µ v 0 L Z γ (F ) µν |α(L Z γ (F ))| + |σ(L Z γ (F ))| + |ρ(L Z γ (F ))| + v L v 0 |α(L Z γ (F ))| |α| + |ρ| + |σ| + v L v 0 |α| + L Z γ (F ) .
and we can then bound I 4 by I α,σ,ρ + I α + I F (these quantities will be clearly dened below). Note now that

√ τ + |α| + √ τ + |ρ| + √ τ + |σ| 2 L 2 (Σs) + √ τ -|α| 2 L 2 (Σs) E Ext N [ F ](s)+E N -1 [F ](s) log 2M (3+s). (4.74)
Then, using the Cauchy-Schwarz inequality twice (in (t, x) and then in v), the estimates (4.72) and (4.73) as well as a = M + 1, we get

I α := t 0 Σs τ + |α| v v L v 0 |h| dv v 0 dxds t 0 √ τ -|α| 2 L 2 (Σs) 1 + s ds t u=-∞ Cu(t) τ 2 + (1 + s) τ - v v L v 0 |h| dv v 0 2 dC u (t)du 1 2 √ log M + 1 2 (3 + t) t u=-∞ 1 τ - τ 2 + (1 + s) v |h 1 | dv (v 0 ) 2 L ∞ (Cu(t)) Cu(t) v v L v 0 |h 2 |dvdC u (t)du 1 2 3 2 log -1 2 + a 2 (5+i1+2|ξ 1 |+|β|) (3 + t) E[h 2 ](t) 0 u=-∞ du τ 3 2 - + t u=0 du τ - 1 2 3 2 log a 2 (6+i1+2|ξ 1 |+|β|) (3 + t) E[h 2 ](t).
Similarly, one has

I α,ρ,σ := t 0 Σs τ + (|α| + |ρ| + |σ|) v |h| dv v 0 dxds t 0 √ τ + |α| + √ τ + |ρ| + √ τ + |σ| L 2 (Σs) √ τ + v |h| dv v 0 L 2 (Σs) ds t 0 √ log M (3 + s) τ + v |h 1 | dv (v 0 ) 2 1 2 L ∞ (Σs) v |h 2 |dv 1 2 L 1 (Σs) ds log a 2 (6+i1+2|ξ 1 |+|β|) (3 + t) E[h 2 ] 1 2 
L ∞ ([0,t]) .

For the last integral, recall from Propositions 4.5.1 and 4.7.1 that F (t, x) vanishes for all t -|x| ≥ -1 and that |L Z γ (F )| τ -2 + . We are then led to bound

I F := t 0 |x|≥s+1 τ + |L Z γ (F )| v |h| dv v 0 dxds t 0 √ 1 + s Σs v |h 1 h 2 |dvdxds t 0 √ 1 + s Σs v |h 1 | dvdx Σs v |h 2 | dvdx 1 2 ds √ log(3 + t) E[h 1 ] 1 2 L ∞ ([0,t]) E[h 2 ] 1 2 L ∞ ([0,t]) . Thus, as E[h 1 ] L ∞ ([0,t]) log (i1+2|ξ1|+|β|)a (3 + t) and i 1 + i 2 = 2j, it comes • I 4 3 2 (1 + t) 3 4 η if |ξ 2 | = N -1, since E[h 2 ](t) ≤ log ai2 (3 + t)E N [f ](t) ≤ (1 + t) η log ai2 (3 + t), and 
• I 4 3 2 log (3+j+|ξ1|+|ξ2|+|β|)a (3 + t) otherwise, as E[h 2 ] ≤ log (i2+2|ξ 2 |+|β|)a (3 + t)E 0 N -1 [f ](t) .
A better pointwise decay estimate on v |h 1 |(v 0 ) -2 dv is requiered to bound suciently well I 4 when |γ| = N . We will then treat this case below, in the last part of this section. However, note that all the Propositions already proved in this section imply (4.70), for Q = N -1, and then E

0 N -1 [f ] ≤ 3 on [0, T [.

Estimates for E

X N -1 [f ], E X N [f ]
and obtention of optimal decay near the lightcone for velocity averages The purpose of this subsection is to establish that 25 

E X N -1 [f ], E X N [f ] ≤ 3 on [0,
T [ and then to deduce optimal pointwise decay estimates on the velocity averages of the particle density. Remark that, according 25 Note that we cannot unify these norms because of a lack of weights z ∈ k 1 . As we will apply Proposition 4.3.31 with N 0 = 2N -1, we cannot propagate more than 2N -2 weights and avoid in the same time the problematics terms.

to the energy estimate of Proposition 4.4.1,

X E N [f ] ≤ 3 follows, if is small enough, from t 0 Σs v T F z q P X ξ (Φ)Y β f dv v 0 dxds 3 2 log 2q (3 + t), (4.75) 
• for all multi-indices β and ξ such that max(|β| + |ξ|, |ξ| + 1) ≤ N and

• for all z ∈ k 1 and q ∈ N such that q ≤ 2N -2 -ξ P -β P .

Most of the work has already been done. Indeed, the commutation formula of Proposition 4.3.34 (applied with N 0 = 2N -1) leads us to bound only terms of (category 0) and (category 1) since q ≤ 2N -2 -ξ P -β P .

Note that we control quantities of the form

z j P ξ 1 (Φ)Y β 1 f, with |ξ 1 | + |β 1 | ≤ N, |ξ 1 | ≤ N -1 and j ≤ 2N -1 -ξ 1 P -β 1 P .
Consequently 

z j P ξ 1 (Φ)P ξ 2 (Φ)Y κ f, with max(|ξ 1 | + |κ|, |ξ 2 | + |κ|) ≤ N -1 and j ≤ 2N -1 -ξ 1 P -ξ 2 P -κ P .
Note that (4.75) also provides us, through Theorem 4.4.9, that, for all max(|ξ| + |β|,

1 + |ξ|) ≤ N -3, ∀ |x| ≤ t < T, z ∈ k 1 , j ≤ 2N -5 -ξ P -β P , v z j P X ξ (Φ)Y β f dv (v 0 ) 2 log 2j (3 + t) τ 3 + .
For the exterior region, use Proposition 4.4.10 and E

X N [f ] ≤ 3 to derive, for all max(|ξ| + |β|, |ξ| + 1) ≤ N -3, ∀ (t, x) ∈ V 0 (T ), z ∈ k 1 , j ≤ 2N -6 -ξ P -β P , v z j P X ξ (Φ)Y β f dv (v 0 ) 2 log 2(j+1) (3 + t) τ 3 + τ - .
We summerize all these results in the following proposition (the last estimate comes from Corollary 4.4.7).

Proposition 4.8.11. If is small enough, then 

E X N -1 [f ] ≤ 3 and E X N [f ] ≤ 3 hold on [0, T ]. Moreover, we have, for all max(|ξ| + |β|, |ξ| + 1) ≤ N -3, z ∈ k 1 and j ≤ 2N -6 -ξ P -β P , ∀ (t, x) ∈ [0, T [×R 3 , v z j P X ξ (Φ)Y β f dv (v 0 ) 2 log 2j (3 + t) τ 3 + 1 t≥|x| + log 2(j+1) (3 + t) τ 3 + τ - 1 |x|≥t , ∀ (t, x) ∈ [0, T [×R 3 , v z j P X ξ (Φ)Y β f dv log 2j (3 + t) τ 2 + τ - . 4 
P ξ 0 (Φ) = Y ξ 0 Φ, |ξ 0 | = N -1, |β 0 | ≤ 1, |ξ 1 | = 0, β = β 0 , γ T = ξ 0 T and j = q.
We are then led to prove 

I 4 = t 0 Σs v τ + v µ v 0 L Z γ (F ) µν z q P ξ 2 (Φ)Y β 0 f dv v 0 dxds 3 2 (1 + t) η log aq (3 + t). If γ T = ξ 0 T ≥ 1,
| √ v 0 v L in order to obtain τ + v µ v 0 L Z γ (F ) µν 1 + √ v L τ + √ v 0 τ -|γ0|≤N |∇ Z γ 0 F | + τ + τ -|γ0|≤N |α(L Z γ 0 (F ))| + |ρ(L Z γ 0 (F ))|
and then split I 4 in four parts and bound them by 

(F )| τ -2 + on [0, T [, that t 0 Σ 0 s v τ + v µ v 0 L Z γ (F ) µν z q P ξ 2 (Φ)Y β 0 f dv v 0 dxds 3 2 (1 + t) 3 4 η .
To lighten the notations, let us denote the null decomposition of L Z γ (F ) by (α, α, ρ, σ). Recall from Lemma 4.2.4 that τ

+ |v A | v 0 w∈k1 |w| and τ + v L τ -v 0 + v 0 w∈k1 |w|, so that τ + v µ v 0 L Z γ (F ) µν τ + (|α| + |ρ|) + τ + v L v 0 |α| + τ + |v A | v 0 (|σ| + |α|) (τ + |α| + τ + |ρ| + τ -|α|) + w∈k1 |w| (|σ| + |α|) .
We can then split the remaining part of I 

I 4 := t 0 Σ 0 s (τ + |α| + τ + |ρ| + τ -|α|) v z q P ξ 2 (Φ)Y β 0 f dv v 0 dxds t 0 E N [F ](s) √ τ + v z q P ξ 2 (Φ)Y β 0 f dv v 0 L 2 (Σ 0 s ) ds √ t 0 E N [F ](s) τ + v z i1 Y β 0 f dv (v 0 ) 2 1 2 L ∞ (Σ 0 s ) v z i2 P ξ 2 (Φ) 2 Y β 0 f dv 1 2 L 1 (Σ 0 s )
ds.

Using the bootstrap assumptions (4.51), (4.57) and the pointwise decay estimate on v z i1 Y β 0 f dv (v 0 ) 2 given in Proposition 4.8.11, we nally obtain

I 4 √ t 0 (1 + s) η 2 √ log i1 (3 + s) 1 + s √ (1 + s) η 2 log a 2 i2 (3 + s)ds 3 2 (1 + t) η log aq (3 + t),
which concludes the improvement of the bootstrap assumption (4.51).

Remark 4.8.12. In view of the computations made to estimate I 4 , note that.

• The use of Theorem 4.4.9, instead of (4.68) combined with 1 v 0 v L and Lemma 4.2.4, was necessary. Indeed, for the case q = 0, a decay rate of log 

2 (3 + t)τ -3 + on v Y β 0 f dv (v 0 ) 2 would
A[f ](t) := 2 i=1 |ξ i |+|β|≤N |ξ i |≤N -2 |ζ i |+|β|≤N |ζ i |≤N -1 E P ξ 1 (Φ)P ξ 2 (Φ)Y β f (t) + E P X ζ 1 (Φ)P X ζ 2 (Φ)Y β f (t) (1 + t)
√ τ -v |Y β f |dv L 2 x
, for all |β| ≤ N . Applying Proposition 4.8.11, we are already able to obtain such estimates if |β| ≤ N -3 (see Proposition 4.9.14 below). The aim of this section is then to treat the case of the higher order derivatives. For this, we follow the strategy used in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] (Section 4.5.7). Before exposing the proceding, let us rewrite the system. Let I 1 , I 2 and I q 1 , for N -5 ≤ q ≤ N , be the sets dened as 

I 1 := {β multi-index / N -5 ≤ |β| ≤ N } = {β 1 1 , β 1 2 , ..., β 1 |I1| }, I q 1 := {β ∈ I 1 / |β| = q} , I 2 := {β multi-index / |β| ≤ N -5} = {β 2 1 , β
R 1 j = Y β 1 j f and R 2 j = Y β 2 j f.
We will sometimes abusevely write j ∈ I i instead of β i j ∈ I i (and similarly for j ∈ I k 1 ). The goal now is to prove L 2 estimates on v |R 1 |dv. Finally, we denote by V the module over the ring C 0 ([0, T [×R 3

x × R 3 v ) engendred by (∂ v l ) 1≤l≤3 . In the following lemma, we apply the commutation formula of Proposition 4.3.23 in order to express T F (R 1 ) in terms of R 1 and R 2 and we use Lemma 4.3.30 for transforming the vector elds Γ σ ∈ G |σ| . Lemma 4.9.1. There exists two matrices functions

A : [0, T [×R 3 ×R 3 v → M |I1| (V) and B : [0, T [×R 3 ×R 3 v → M |I1|,|I2| (V) such that T F (R 1 ) + AR 1 = BR 2 . Furthermore, if 1 ≤ i ≤ |I 1 |, A and B are such that T F (R 1 i )
is a linear combination, with good coecients c(v), of the following terms, where r ∈ {1, 2} and β r j ∈ I r .

•

z d P k,p (Φ) v µ v 0 L Z γ (F ) µν R r j , ( type 1) 
where

z ∈ k 1 , d ∈ {0, 1}, max(|γ|, |k| + |β r j |) ≤ |β 1 i |, |k| ≤ |β 1 i | -1, |k| + |γ| + |β r j | ≤ |β 1 i | + 1 and p + k P + (β r j ) P + d ≤ (β 1 i ) P . • P k,p (Φ)L XZ γ 0 (F ) v, ∇ v c(v)P q,s (Φ)R r j , ( type 2) 
where

|k| + |q| + |γ 0 | + |β r j | ≤ |β 1 i | -1, |q| ≤ |β 1 i | -2, p + s + k P + q P + (β r j ) P ≤ (β 1 i ) P and p ≥ 1. • P k,p (Φ)L ∂Z γ 0 (F ) v, ∇ v c(v)P q,s (Φ)R r j , ( type 3) 
where

|k| + |q| + |γ 0 | + |β r j | ≤ |β 1 i | -1, |q| ≤ |β 1 i | -2, p + s + |γ 0 | ≤ |β 1
i | -1 and p + s + k P + q P + (β r j ) P ≤ (β 1 i ) P . We also impose that |β 2 j | ≤ N -6 on the terms of (type 2), (type 3) and that |β 1 j | ≥ N -4 on the terms of (type 1), which is possible since

β ∈ I 1 ∩ I 2 if |β| = N -5. Remark 4.9.2. Note that if β 1 i ∈ I N -5 1 , then A q i = 0 for all q ∈ 1, |I 1 | . If 1 ≤ n ≤ 5 and β 1 i ∈ I N -5+n 1 , then the terms composing A q i are such that max(|k| + 1, |γ|) ≤ n or |k| + |q| + |γ 0 | ≤ n -1.
Let us now write R = H + G, where H and G are the solutions to T F (H) + AH = 0 , H(0, ., .) = R(0, ., .), T F (G) + AG = BR 2 , G(0, ., .) = 0.

The goal now is to prove L 2 estimates on the velocity averages of H and G. As the derivatives of F and Φ composing the matrix A are of low order, we will be able to commute the transport equation satised by H and to bound the L 1 norm of its derivatives of order 3 by estimating pointwise the electromagnetic eld and the Φ coecients, as we proceeded in Subsection 4.8.2. The required L 2 estimates will then follow from Klainerman-Sobolev inequalities. Even if we will be lead to modify the form of the equation dening G, the idea is to nd a matrix K satisfying G = KR ). We would then have to work with an another commutation formula leading to terms such as x θ v µ v 0 ∂(F ) µν H j and would then need at least a decay rate of τ -3 2 + on ρ, in the t + r direction, in order to close the energy estimates on H. This could be obtained by assuming more decay on F initially in order to use the Morawetz vector eld K 0 or τ -b -K 0 as a multiplier. However, this creates two technical diculties compared to what we did in [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF]. The rst one concerns H and will lead us to consider a new hierarchy (see Subsection 4.9.1). The other one concerns G and we will circumvent it by modifying the source term of the transport equation dening it (see Subsecton 4.9.2). Remark 4.9.4. In Subsection 4.9.2, we will consider a matrix D such that T F (R 2 ) = DR 2 and we will need to estimate pointwise and independently of M , in order to improve the bootstrap assumption on E N -1 [F ], the derivatives of the electromagnetic eld of its components. It explains, in view of Remark 4.7.2, why we take I 2 such as |β 2 j | ≤ N -5.

The homogeneous part

The purpose of this subsection is to bound L 1 norms of components of H and their derivatives. We will then be able to obtain the desired L 2 estimates through Klainerman-Sobolev inequalities. For that, we will make use of the hierarchy between the components of H given by (β 1 i ) P . However, as, for N -4 ≤ q ≤ N and β 1 i ∈ I q 1 , we need informations on Z κ H j L 1

x,v

, with β 1 j ∈ I q-1 1 and |κ| = 4, in order to close the energy estimate on Z ξ H i , with |ξ| = 3, we will add a new hierarchy in our energy norms. This leads us to dene, for δ ∈ {0, 1}, 

E δ H (t) := z∈k1 5 q=0 |β|≤3+q i∈I N -q 1 2N +2+δ-β P -β 1 P j=0 log -j(δa+2) (3 + t)E z j Z β H i (t). Lemma 4.9.5. Let N ≥ N + 3, 0 ≤ q ≤ 5, i ∈ I N -q 1 , |β| ≤ 3 + q, z ∈ k 1 and j ≤ N -β P -(β 1 i ) P . Then, T F (z j Z β H i ) can
| ≤ |β 1 i |. • F v, ∇ v z j Y β H i . (category 0 -H) • |P k,p (Φ)| |w r Y κ H l | |∇ Z γ F | + τ + τ - |α (L Z γ (F ))| + τ + τ - v L v 0 |σ (L Z γ (F ))| , (category 1 -H) where w ∈ k 1 and r ≤ N -k P -κ P -(β 1 l ) P . • τ + τ - |ρ (L Z γ (F )) | z j-1 Y κ H l and τ + τ - v L v 0 |α (L Z γ (F ))| |z r Y κ H l | , (category 2 -H)
where j -1, r = N -κ P -(β 1 l ) P and r ≤ j. The terms of (category 2 -H) can only appear if j = N -β P -(β 1 i ) P . Proof. We merely sketch the proof as it is very similar to previous computations. One can express T F ( Z β H i ) using Lemma 4.9.1 and following what we did in the proof of Proposition 4.3.23. It then remains to copy the proof of Proposition 4.3.31 with |ζ 0 | = 0, which explains that we do not have terms of (category 3). Note that max(|k| + 1, |γ|) ≤ 8 comes from Remark 4.9.2 and the fact that |κ| can be equal to |β| + 1 ensues from the transformation of the v derivative in the terms obtained from those of (type 2) and (type 3). Remark 4.9.6. As |γ| ≤ 8 ≤ N -3, we have at our disposal pointwise decay estimates on the electromagnetic eld (see Proposition (4.7.1)). Similarly, as |k| ≤ 7 ≤ N -4, Remark 4.7.6 gives us |P k,p (Φ)| log M2 (1+τ + ).

We are now ready to bound E δ H and then to obtain estimates on v |z j H i |dv.

Proposition 4.9.7. We have E 1

H + E 0 H on [0, T [. Moreover, for 0 ≤ q ≤ 5 and |β| ≤ q, ∀ (t, x) ∈ [0, T [×R 3 , z ∈ k 1 , i ∈ I N -q 1 , j ≤ 2N -1 -β P -(β 1 i ) P , v |z j Y β H i |dv log 2j+M1 (3 + t) τ 2 + τ - .
Proof. In the same spirit as Corollary 4.6.3 and in view of commutation formula of Lemma 4.9.5 (applied with N = 2N + 3) as well as the assumptions on f 0 , there exists C H > 0 such that E 0 H (0) ≤ E 1 H (0) ≤ C H . We can prove that they both stay bounded by 3C H by the continuity method. As it is very similar to what we did previously, we only sketch the proof. Consider δ ∈ {0, 1}, 0 ≤ r ≤ 5, i ∈ I

N -r 1 , |β| ≤ 3 + r, z ∈ k 1 and j ≤ 2N + 2 + δ -β P -(β 1 i ) P . The goal is to prove that t 0 Σs v T F (z j H i ) dv v 0 dxds 3 2 log j(δa+2) (3 + t).
According to Lemma 4.9.5 (still applied with N = 2N + 3), it is sucient to obtain, if δ = 1, that the integral over 

[0, t] × R 3 x × R 3 v of
(3 + t)τ -2 + τ -1
-, could be proved in the previous proposition by controling a norm analogous to E X N [f ] but we do not need it to close the energy estimates on F . Remark 4.9.9. We could avoid any hypothesis on the derivatives of order N + 1 and N + 2 of F 0 (see Subsection 17.2 of [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF]).

The inhomogeneous part

As the matrix B in T F (G) + AG = BR 2 contains top order derivatives of the electromagnetic eld, we cannot commute the equation and prove L 1 estimates on ZG. Let us explain schematically how we will obtain an L 2 estimate on v |G|dv by recalling how we proceeded in [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF]. We did not work with modied vector eld and the matrices A and B did not hide v derivatives of G. Then we introduced K the solution of T F (K) + AK + KD = B which initially vanishes and where T F (R 2 ) = DR 2 . Thus G = KR 2 and we proved E[|K| 2 |R 2 |] ≤ so that the expected L 2 decay estimate followed from

v |G|dv L 2 x v |R 2 |dv 1 2 L ∞ x E[|K| 2 |R 2 |] 1 2 .
The goal now is to adapt this process to our situation. There are two obstacles.

• The v derivatives hidden in the matrix A will then be problematic and we need rst to transform them.

• The components of the (transformed) matrix A have to decay suciently fast. We then need to consider a larger vector valued eld than G by including components such as z j G i in order to take advantage of the hierarchies in the source terms already used before.

Recall from Denition 4.2.6 that we considered an ordering on k 1 and that, if κ is a multi-index, we have

z κ = |κ| i=1 z κi and |z κ | ≤ w∈k1 |w| |κ| .
In this section, we will sometimes have to work with quantities such as z κ rather than with z j , where j ∈ N.

Denition 4.9.10. Let I and I q , for N -5 ≤ q ≤ N , be the sets

I := {(κ, β) / N -5 ≤ |β| ≤ N and |κ| ≤ N -β P } = {(κ 1 , β 1 ), ..., (κ |I| , β |I| )}, I q := {(κ, β) ∈ I / |β| = q}.
Dene now L, the vector valued elds of length |I|, such that

L i = z κi G j , with β 1 j = β i ,
and

[i] I := |κ i |. Moreover, for Y ∈ Y, 1 ≤ j ≤ |I 1 | and 1 ≤ i ≤ |I|, we dene j Y and i Y the indices such that R 1 j Y = Y Y β 1 j f
and

L i Y = z κi Y G j Y .
The following result will be useful for transforming the v derivatives.

Lemma 4.9.11. Let Y ∈ Y and

β 1 i ∈ I 1 \ I N 1 . Then Y G i = G i Y + H i Y -Y H i . Proof. Recall that R = H + G and remark that Y R 1 i = Y Y β 1 i f = R 1 i Y .
We now describe the source terms of the equations satised by the components of L.

Proposition 4.9.12. There exists N 1 ∈ N * , a vector valued eld W and three matrices valued functions

A : [0, T [×R 3 × R 3 → M |I| (R), B : [0, T [×R 3 × R 3 → M |I|,N1 (R), D : [0, T [×R 3 × R 3 → M N1 (R) such that T F (L) + AL = BW, T F (W ) = DW and z∈k1 v |z 2 W |dv log 3N +M1 (3 + t) τ 2 + τ - .
In order to depict these matrices, we use the quantity [q] W , for 1 ≤ q ≤ N 1 , which will be dened during the construction of W in the proof. A and B are such that T F (L i ) can be bounded, for 1 ≤ i ≤ |I|, by a linear combination of the following terms, where |γ| ≤ 5, 1 ≤ j, q ≤ |I| and 1 ≤ r ≤ N 1 .

τ

-(|ρ(F )| + |σ(F )| + |α(F )|) + τ + |α(F )| |L j | , with [j] I = [i] I -1.
(category 0 -A)

log M1 (3 + t) |L j | |∇ Z γ F | + τ + τ - |α (L Z γ (F ))| + τ + τ - v L v 0 |σ (L Z γ (F ))| . (category 1 -A) τ + τ - |ρ (L Z γ (F )) | |L j | + τ + τ - v L v 0 |α (L Z γ (F ))| |L q | , with [j] I + 1, [q] I ≤ [i] I . (category 2 -A) |P k,p (Φ)| |W r | |∇ Z ζ F | + τ + τ - |α (L Z ζ (F ))| + τ + τ - v L v 0 |σ (L Z ζ (F ))| , (category 1 -B)
where p ≤ 2N , |k| ≤ N -1 and |k| + |ζ| ≤ N . Moreover, if |k| ≥ 6, there exists κ and β such that

W r = z κ Y β f , |k| + |β| ≤ N and |κ| ≤ N + 1 -k P -β P . The matrix D is such that, for 1 ≤ i ≤ N 1 , T F (W i )
is bounded by a linear combination of the following expressions, where |γ| ≤ N -5 and 1 ≤ j, q ≤ N 1 .

(τ -(|ρ(F )| + |σ(F )| + |α(F )|) + τ + |α(F )|) |W j | , with [j] W = [i] W -1. (category 0 -D) log M1 (3 + t) |W j | |∇ Z γ F | + τ + τ - |α (L Z γ (F ))| + τ + τ - v L v 0 |σ (L Z γ (F ))| . (category 1 -D) τ + τ - |ρ (L Z γ (F )) | |W j | + τ + τ - v L v 0 |α (L Z γ (F ))| |W q | , with [j] W + 1, [q] W ≤ [i] W . (category 2 -D)
Proof. The main idea is to transform the v derivatives in AG, following the proof of Lemma 4.3.28, and then to apply Lemma 4.9.11 in order to eliminate all derivatives of G in the source term of the equations.

We then dene W as the vector valued eld, and N 1 as its length, containing all the following quantities

• z j Y β f , with z ∈ k 1 , |β| ≤ N -5 and j ≤ N + 1 -β P , • z j (H i Y -Y H i ), with z ∈ k 1 , Y ∈ Y, β 1 i ∈ I 1 \ I N 1 and j ≤ N + 3 -β 1 i Y P . • z j Y β H i , with z ∈ k 1 , |β| + |β 1 i | ≤ N and j ≤ N + 3 -β P -(β 1 i ) P .
Let us make three remarks.

• If 1 ≤ i ≤ N 0 , we can dene, in each of the three cases, [i] W := j.

• Including the terms z N +1-β P Y β f and z

N +1-(β 1 i Y ) P (H i Y -Y H i )
in W allows us to avoid any term of category 2 related to B.

• The components such as z j Y β H i are here in order to obtain an equation of the form T F (W ) = DW .

The form of the matrix D then follows from Proposition 4.3.31 if Y i = z j Y β f and from Lemma 4.9.5, applied with N = N + 3, otherwise (we made an additional operation on the terms of category 0 which will be more detailed for the matrix A). Note that we use Remark 4.7.6 to estimate all quantities such as P k,p (Φ). The decay rate on v |z 2 W |dv follows from Proposition 4.8.11 and 4.9.7.

We now turn on the construction of the matrices A and B. Consider then 1 ≤ i ≤ |I| and 1

≤ q ≤ |I 1 | so that L i = z κi G q and |κ i | ≤ N -(β 1 q ) P . Observe that T F (L i ) = T F (z κi )G q + z κi T F (G q ) = F (v, ∇ v (z κi )) G q + z κi T F (G q ).
The rst term on the right hand side gives terms of (category 0 -A) and (category 1 -A) as, following the computations of Proposition 4.8.1, we have

∇ v   |κi| r=1 z r   = |κi| p=1 ∇ v (z p ) r =p z r , |F (v, ∇ v z p )| τ -(|ρ(F )| + |σ(F )| + |α(F )|) + τ + |α(F )| + w∈k1 |wF |.
The remaining quantity, z κi T F (G q ) = -z κi A r q G r + z κi B r q R 2 r , is described in Lemma 4.9.1. Express the terms given by z κi A r q G r in null components and transform the v derivatives 26 of G r using Lemma 4.9.11, so that, schematically (see (4.24)),

v 0 (∇ v G r ) r = Y G r + (t -r)∂G r = G r Y + H r Y -Y H r + (t -r)(G r ∂ + H r ∂ -∂H r ) and v 0 ∂ v b G r = Y 0b G r + x∂G r = G r Y 0b + H r Y 0b -Y 0b H r + x(G r ∂ + H r ∂ -∂H r ).
By Remark 4.9.2, the Φ coecients and the electromagnetic eld are both derived less than 5 times. We then obtain, with similar operations as those made in proof of Proposition 4.3.31, the matrix A and the columns of the matrix B hitting the component of W of the form z j (H l Y -Y H l ). For z κi B r q R 2 r , we refer to the proof of Proposition 4.3.31, where we already treated such terms.

To lighten the notations and since there will be no ambiguity, we drop the index

I (respectively W ) of [i] I for 1 ≤ i ≤ |I| (respectively [j] W for 1 ≤ j ≤ N 1 ). Let us introduce K the solution of T F (K) + AK + KD = B,
such as K(0, ., .) = 0. Then, KY = L since they are solution of the same system and they both initially vanish. The goal now is to control E

[|K| 2 |Y |]. As, for 1 ≤ i ≤ |I| and 1 ≤ j, p ≤ N 1 , T F |K j i | 2 W p = |K j i | 2 D q p W q -2 A q i K j q + K q i D j q K j i W p + 2B j i K j i W p , (4.77) 
we consider E L , the following hierarchied energy norm,

E L (t) := 1≤j,p≤N1 1≤i≤|I| log -4[i]-2[p]+4[j] (3 + t)E K j i 2 W p (t).
The sign in front of [j] is related to the fact that the hierarchy is inversed on the terms coming from KD. As T 0 > 0 by continuity (K vanishes initially), we would deduce that T 0 = T . We x for the remaining of the proof 1 ≤ i ≤ |I| and 1 ≤ j, p ≤ N 

I A,D := t 0 Σs v |K j i | 2 D q p W q -2 A k i K j k + K r i D j r K j i W p dv v 0 dxds 3 2 log M0+4[i]+2[p]-4[j] (3 + t), I B := t 0 Σs v B j i K j i W p dv v 0 dxds 3 2 .
26 Note that this is possible since ∂vGr can only appear if

β 1 r ∈ I 1 \ I N 1 .
Let us start by I A,D and note that in all the terms given by Proposition 4.9.12, the electromagnetic eld is derived less than N -5 times so that we can use the pointwise decay estimates given by Remark 4.7.2. The terms of (category 1 -A) and (category 1 -D) can be easily handled (as in Proposition 4.8.2). We then only treat the following cases, where |γ| ≤ N -5 (the other terms are similar).

D j r = τ -(|ρ(F )| + |σ(F )| + |α(F )|) + τ + |α(F )|, with [j] = [r] -1, A k i τ + √ v L τ - √ v 0 |α(L Z γ (F ))|, with [k] ≤ [i],
and

D q p τ + τ - |ρ(L Z γ (F ))|, with [q] < [p].
Without any summation on the indices r, k and q, we have, using Remark 4.7.2, 1 √ v 0 v L and the Cauchy-Schwarz inequality several times,

t 0 Σs v K r i D j r K j i W p dv v 0 dxds √ t 0 log(3 + s) 1 + s E |K r i | 2 W p (s) E K j i 2 W p (s) 1 2 ds 3 2 log 2+M0+4[i]+2[p]-2[r]-2[j] (3 + t) 3 2 log M0+4[i]+2[p]-4[j] (3 + t), t 0 Σs v A k i K j k K j i W p dv v 0 dxds √ t u=-∞ τ + τ + τ 3 2 - Cu(t) v v L v 0 K j k |W p | 1 2 K j i |W p | 1 2 dvdC u (t)du √ E K j k 2 W p (t) E K j i 2 W p (t) 1 2 +∞ u=-∞ du τ 3 2 - 3 2 log M0+2[k]+2[i]+2[p]-4[j] (3 + t) 3 2 log M0+4[i]+2[p]-4[j] (3 + t), t 0 Σs v K j i 2 D q p W q dv v 0 dxds √ t 0 Σs v log(3 + s) √ v L v 0 τ 1 2 + τ 3 2 - K j i 2 |W q | dv v 0 dxds √ t 0 log(3 + s) 1 + s ds + log(3 + t) +∞ -∞ du τ 3 - sup [0,t] E K j i 2 W q 3 2 log 2+M0+4[i]+2[q]-4[j] (3 + t) 3 2 log M0+4[i]+2[p]-4[j] (3 + t).
It remains to study I B . The form of B j i is given by Propoposition 4.9.12 and the computations are close to the ones of Proposition 4.8.7. We then only consider the following two cases,

B j i K j i W p log M1 (1 + τ + ) τ + √ v L τ - √ v 0 |σ(L Z ζ (F ))| K j i |W p |, with |ζ| ≤ N and B j i K j i W p |Φ r P ξ (Φ)||∇ Z γ F | K j i W p , with r ≤ 2N, |ξ| + |γ| ≤ N and 6 ≤ |ξ| ≤ N -1.
In the rst case, using the Cauchy-Schwarz inequality twice (in (t, x) and then in v), we get

I B t u=-∞ σ(L Z ζ (F )) L 2 (Cu(t)) Cu(t) log 2M1 (1 + τ + ) τ 2 + τ 2 - v v L v 0 K j i W p dv v 0 2 dC u (t) 1 2 du √ +∞ q=0 t u=-∞ 1 τ 5 4 - τ 11 4 + v |W p | dv (v 0 ) 2 1 2 L ∞ (C q u (t)) v v L v 0 K j i 2 |W p | dv 1 2 L 1 (C q u (t)) du 3 2 +∞ -∞ du τ 5 4 - +∞ q=0 log M 0 +4[i]+2[p]+3N +M 1 2 (3 + t q+1 ) (1 + t q ) 1 8 3 2 ,
using the bootstrap assumption on E L and v |W p | dv

(v 0 ) 2 v |W p | v L v 0 dv log 3N +M1 (3 + t)τ -3
+ , which comes from Proposition 4.9.12 and Lemma 4.3.2. For the remaining case, we have |γ| ≤ N -6 and we can then use the pointwise decay estimates on the electromagnetic eld given by Proposition 4.7.1. Moreover, by Proposition 4.9.12, we have that

W p = z κ Y β f, with |ξ| + |β| ≤ N and |κ| ≤ N + 1 -β P -ξ P . √ τ + v zP k,p (Φ)Y β f dv 2 L 2 (Σt) τ + log 4p (1 + τ + ) v P ξ (Φ) 2 Y β f dv v z 2 Y β f dv L 1 (Σt) τ + log 4p (1 + τ + ) v z 2 Y β f dv L ∞ (Σt) E N [f ](t) log 4p+6 (3 + t) 1 + t (1 + t) η 2 (1 + t) 3 4 
.

Otherwise, |β| ≥ N -2 so that |k| ≤ 2 and, according to Remark 4.7.6, P k,p (Φ) τ 1 8

+ . Moreover, as there

exists i ∈ 1, |I 1 | such that β = β 1 i , it comes τ 1 2 + v zP k,p (Φ)Y β dv L 2 (Σt) τ 5 8 + v |zH i | dv L 2 (Σt) + τ 5 8 + v |zG i | dv L 2 (Σt)
.

Applying Proposition 4.9.7, one has

τ 5 8 + v |zH i | dv 2 L 2 (Σt) τ 5 4 + v z 2 H i dv L ∞ (Σt) v |H i | dv L 1 (Σt) 2 (1 + t) 1 2 
.

As there exists q ∈ 1, |I| such that G i = L q = K j q W j , we have, using this time Proposition 4.9.13 and the decay estimate on v |z 2 W |dv given in Proposition 4.9.12,

τ 5 8 + v |zG i | dv 2 L 2 (Σt) = τ 5 8 + v zK j q W j dv 2 L 2 (Σt) N1 j=0 τ 5 4 + v z 2 W j dv L ∞ (Σt) v K j q 2 |W j | dv L 1 (Σt) log 3N +M1 (3 + t) (1 + t) 3 4 log 4[q] (3 + t)E L (t) 2 (1 + t) 1 2 
. 

r 3 2 v v A v 0 Z β f dv L 2 (Σt) z∈k1 p≤N -2 |q|+|κ|≤N -2 |q|≤N -3 √ r v |P q,p (Φ)Y κ f | dv L 2 (Σt)
.

It then only remains to apply the previous proposition.

The two following estimates are crucial as a weaker decay rate would prevent us to improve the bootstrap assumptions.

Proposition 4.9.16. Let β and ξ such that |ξ|

+ |β| ≤ N -1. Then, for all t ∈ [0, T [, √ τ - v P X ξ (Φ)Y β f dv L 2 (Σt) 1 1 + t if |β| ≤ N -3 log M (3 + t) 1 + t otherwise.
Proof. Suppose rst that |β| ≤ N -3. Then, by Proposition 4.8.11,

√ τ - v P X ξ (Φ)Y β f dv 2 L 2 (Σt) τ - v Y β f dv L ∞ (Σt) v P X ξ (Φ) 2 Y β f dv L 1 (Σt) (1 + t) 2 E X N -1 [f ](t) 1 + t 2 .
Otherwise,

• |β| ≥ N -2, so |ξ| ≤ 1 and then |P X ξ (Φ)| log • There exists i ∈ 1,

|I 1 | and q ∈ 1, |I| such that Y β f = H i + G i = H i + L q .
Using Proposition 4.9.7 (for the rst estimate) and Propositions 4.9.12, 4.9.13 (for the second one), we obtain

√ τ - v P X ξ (Φ)H i dv 2 L 2 (Σt) τ -log 3 (1 + τ + ) v |H i | dv L ∞ (Σt) v |H i | dv L 1 (Σt) τ -log 3+M1 (1 + τ + ) τ 2 + τ - L ∞ (Σt) E[H i ](t) 2 log 3+M1 (3 + t) (1 + t) 2 , √ τ - v P X ξ (Φ)L q dv 2 L 2 (Σt) = √ τ - v P X ξ (Φ)K j q W j dv 2 L 2 (Σt) N1 j=0 τ -log 3 (1 + τ + ) v |W j | dv L ∞ (Σt) v K j q 2 |W j |dv L 1 (Σt) log 3+3N +M1 (3 + t) (1 + t) 2 log M0+4[q] (3 + t) 2 log M0+M1+3N +3 (3 + t) (1 + t) 2 ,
since [q] = 0. This concludes the proof if M is choosen such that 27 2M ≥ M 0 + M 1 + 3N + 3. 27 Recall from Remark 4.7.6 that M 1 is independent of M .

The following estimates will be needed for the top order energy norm. As it will be used combined with Proposition 4.3.40, the quantity P q,p (Φ) will contain Y X derivatives of Φ.

Proposition 4.9.17. Let β, q and p be such as |q| + |β| ≤ N , |q| ≤ N -1 and p ≤ q X + β T . Then, for all

t ∈ [0, T [, √ τ - v P q,p (Φ)Y β f dv L 2 (Σ 0 t ) (1 + t) 1-η 2 .
Proof. We consider various cases and, excepted for the last one, the estimates are clearly not sharp. Let us suppose rst that |β| ≥ N -2. Then |q| ≤ 2 and |P q,p (Φ)| log M1 (3 + t) on Σ 0 t by Remark 4.7.6, so that, using Proposition 4.9.16,

√ τ - v P k,p (Φ)Y β f dv L 2 (Σ 0 t ) log M1 (3 + t) √ τ - v Y β f dv L 2 (Σ 0 t ) log M +M1 (3 + t) 1 + t .
Let us write P q,p (Φ) = Φ r P ξ (Φ) with r ≤ p and (ξ T , ξ P , ξ X ) = (q T , q P , q X ). 

√ τ - v P k,p (Φ)Y β f dv 2 L 2 (Σt) τ - v Φ 2r Y β f dv L ∞ (Σt) v P ξ (Φ) 2 Y β f dv L 1 (Σt) τ - log 4r (1 + τ + ) τ 2 + τ - L ∞ (Σt) A[f ](t) 2 log 8N (3 + t) (1 + t) 2-3 4 η .
The remaining case is the one where |q| = N -1 and |β| ≤ 1. Hence, p ≤ k X + 1.

• If p ≥ 2, we have k X ≥ 1 and then, schematically, P ξ (Φ) = P X ξ 1 (Φ)P ξ 2 (Φ), with |ξ 1 | ≥ 1 and |ξ 1 | + |ξ 2 | = N -1. If |ξ 2 | ≥ 1, we have min(|ξ 1 |, |ξ 2 |) ≤ N -1 2
≤ N -6 and one of the two factor can be estimated pointwise, which put us in the context of the case |k| ≤ N -2 and |β| ≤ N -3. Otherwise, P k,p (Φ) = Φ r P X ξ 1 (Φ) and, using again (4.76),

√ τ - v P k,p (Φ)Y β f dv 2 L 2 (Σt) τ - v Φ 2r Y β f dv L ∞ (Σt) v P X ξ 1 (Φ) 2 Y β f dv L 1 (Σt) τ - log 4r (1 + τ + ) τ 2 + τ - L ∞ (Σt) A[f ](t) 2 log 8N (3 + t) (1 + t) 2-3 4 η . • If p = 1, we have P k,p (Φ) = Y κ Φ and, using E N [f ](t) ≤ 4 (1 + s) η , √ τ - v P k,p (Φ)Y β f dv 2 L 2 (Σt) τ - v Y β f dv L ∞ (Σt) v |Y κ Φ| 2 Y β f dv L 1 (Σt) τ -τ 2 + τ -L ∞ (Σt) E |Y κ Φ| 2 Y β f (t) 2 (1 + t) η (1 + t) 2 .

Improvement of the energy estimates of the electromagnetic eld

In order to take advantage of the null structure of the system, we start this section by a preparatory lemma. 

|G 0ν J(g) ν | |ρ| v |g|dv + (|α A | + |α A |) v |v A | v 0 |g|dv |ρ| v |g|dv + 1 τ + w∈k1 (|α| + |α|) v |wg|dv, S µ G µν J(g) ν τ + |ρ| v v L v 0 |g|dv + τ -|ρ| v v L v 0 |g|dv + τ + |α| v |v A | v 0 |g|dv + τ -|α| v |v A | v 0 |g|dv |α| + |ρ| + τ - τ + |α| z∈k1 v |zg|dv if |x| ≥ t, |ρ| v τ -+ z∈k1 |z| |g|dv + |α| + τ - τ + |α| v z∈k1
|zg|dv otherwise.

We are now ready to improve the bootstrap assumptions concerning the electromagnetic eld. 

E 0 N [F ](t) -2E 0 N [F ](0) |γ|≤N p≤|k|+|β|≤N |k|≤N -1 t 0 Σs |L Z γ (F ) µ0 J(P k,p (Φ)Y β f ) µ |dxds. ( 4 
|L Z γ (F ) µ0 J(P k,p (Φ)Y β f ) µ |dxds t 0 Σs |ρ| v |g|dv + (|α| + |α|) w∈k1 1 τ + v |wg| dvdxds.
On the one hand, using Proposition 4.9.14,

w∈k1 t 0 Σs (|α| + |α|) v 1 τ + |wg| dvdxds w∈k1 t 0 E 0 N [F ](s) 1 τ + v |wg|dv L 2 (Σs) ds 3 2 .
On the other hand, as ρ = ρ(L Z γ ( F )) + ρ(L Z γ (F )) and ρ(L Z γ (F )) τ -2 + , we have, using Proposition 4.9.14 and the bootstrap assumptions (4.51), (4.54) and (4.57),

t 0 Σs |ρ| v |g|dvdxds t 0 √ τ + ρ(L Z γ ( F )) L 2 (Σs) 1 √ τ + v |g|dv L 2 (Σs) + Σs ρ(L Z γ (F )) v |g|dvdxds t 0 E Ext N [ F ](s) + E N [F ](s) (1 + s) 5 4 + (1 + s) 2 E[g](s)ds 3 2 
.

The right-hand side of (4.79) is then bounded by 

3 2 , implying that E 0 N [f ] ≤ 3 on [0, T [ if is small enough.
E Ext N [ F ](t) ≤ 6 + |γ|≤N t 0 Σ 0 s S µ L Z γ ( F ) µν ∇ λ L Z γ (F ) λ ν dxds + t 0 Σ 0 s S µ L Z γ ( F ) µν ∇ λ L Z γ (F ) λ ν dxds.
Let us x |γ| ≤ N and denote the null decomposition of L Z γ ( F ) by (α, α, ρ, σ). As previously, using Proposition 4.3.40, 

t 0 Σ 0 s S µ L Z γ ( F ) µν ∇ λ L Z γ (F ) λ ν dxds p≤|k|+|β|≤|γ| |k|≤|γ|-1 t 0 Σ 0 s |S µ L Z γ ( F ) µν J(P k,p (Φ)Y β f ) ν |dxds.
τ 2 + ∇ µ L Z γ (F ) µ L (t, x) + τ 4 + ∇ µ L Z γ (F ) µ L (t, x) + τ 3 + ∇ µ L Z γ (F ) µ A (t, x) |Q(F )|1 -2≤t-|x|≤-1 (t, x). Consequently, as |Q(F )| ≤ f 0 L 1 x,v ≤ , S L τ + and S L τ -, |S µ L Z γ ( F ) µν ∇ λ L Z γ (F ) λ ν | τ + |ρ| τ 4 + + τ -|ρ| τ 2 + + τ + |α| τ 3 + + τ -|α| τ 3 + 1 -2≤t-|x|≤-1 (t, x).
Note now that τ -1 -2≤t-|x|≤-1 ≤ √ 5, so that, using the bootstrap assumption (4.54) and the Cauchy-Schwarz inequality, 

t 0 Σ 0 s S µ L Z γ ( F ) µν ∇ λ L Z γ (F ) λ ν dxds t 0 (1 + s) 5 2 s+1≤|x|≤s+2 √ τ + |ρ| + √ τ + |α| + |α|dxds t 0 (1 + s) 5 2 E Ext N [ F ](s) s 2 + 1ds 3 
Q ∈ {N -3, N -1, N } and t ∈ [0, T [, E Q [F ](t) ≤ 24 + |γ|≤Q t 0 Σ 0 s S µ L Z γ (F ) µν ∇ λ L Z γ (F ) λ ν dxds, (4.80) 
since E Ext N [ F ] ≤ 8 on [0, T [ by the bootstrap assumption (4.54)). The remaining of this subsection is divided in two parts. We consider rst Q ∈ {N -3, N -1} and we end with Q = N as we need to use in that case a worst commutation formula in order to avoid derivatives of Φ of order N , which is the reason of the stronger loss on the top order energy norm.

The lower order energy norms

Let Q ∈ {N -3, N -1}. According to commutation formula of Proposition 4.3.39, we can bound the last term of (4.80) by a linear combination of the following ones. 

I 1 := t 0 |x|≤s S µ L Z γ (F ) µν v v ν v 0 P X ξ (Φ)Y β f
I 2 t 0 Σ 0 s (τ + |ρ| + τ + |α| + τ -|α|) v z τ + P k,p (Φ)Y β f dvdxds t 0 E N -1 [F ](s) 1 √ τ + v zP k,p (Φ)Y β f dv L 2 (Σs) ds 3 2 t 0 log M (3 + s) (1 + s)
S µ L Z γ (F ) µν v v ν v 0 P X ξ (Φ)Y β f dv τ -|ρ| v P X ξ (Φ)Y β f dv+ |ρ| + |α| + τ - τ + |α| w∈k1 v wP X ξ (Φ)Y β f dv.
Consequently, by the bootstrap assumption (4.56) and Proposition 4.9.14,

I 1 t 0 E Q [F ](s) √ τ - v P X ξ (Φ)Y β f dv L 2 (Σs) + w∈k1 1 √ τ + v wP X ξ (Φ)Y β f dv L 2 (Σs) ds 3 2 + t 0 E Q [F ](s) √ τ - v P X ξ (Φ)Y β f dv L 2 (Σs)
ds.

The last integral to estimate is the source of the small growth of E Q [F ]. We can bound it, using again the bootstrap assumptions (4.55), (4.56) and Proposition 4.9.16, by

• 3 2 log 2 (3 + t) if Q = N -3 and • 3 2 log 2M (3 + t) otherwise.
Hence, combining this with (4.80) we obtain, for small enough, that

• E N -3 [F ](t) ≤ 25 log 2 (3 + t) for all t ∈ [0, T [ and • E N -1 [F ](t) ≤ 25 log 2M (3 + t) for all t ∈ [0, T [.

The top order energy norm

We consider here the case Q = N and we then apply this time the commutation formula of Proposition 4.3.40, so that the last term of (4.80) can be bounded by a linear combination of terms of the form

I := t 0 Σ 0 s S µ L Z γ (F ) µν v v µ v 0 P q,p (Φ)Y β f dv dxds, with |γ| ≤ N , |q| + |β| ≤ N , |q| ≤ N -1 and p ≤ q X + β T .
Let us x such parameters. Following the computations made previously to estimate I 1 and using E N [F ](s)

√ (1 + s) η √ (1 + s) 1 8 
, we get

I 1 t 0 E N [F ](s) √ τ - v P q,p (Φ)Y β f dv L 2 (Σ 0 s ) + w∈k1 1 √ τ + v wP q,p (Φ)Y β f dv L 2 (Σs) ds 3 2 + √ t 0 (1 + s) η 2 √ τ - v P q,p (Φ)Y β f dv L 2 (Σ 0 s )
ds.

(4.83)

Applying now Proposition 4.9.17, we can bound (4.83) by (1 + t) η . Thus, if small enough, we obtain E N [F ](t) ≤ 25 (1 + t) η for all t ∈ [0, T [, which concludes the improvement of the boostrap assumption (4.57) and then the proof.

Statement of the main result

In order to present our main theorem, we call initial data set for the VM system any ordered pair (f 0 , F 0 ) where f 0 : R 3

x × R 3 v → R and F 0 are both suciently regular and satisfy the constraint equations ∇ i (F 0 ) i0 = - and (f, F ) be the unique classical solution of the system which satises f (t = 0) = f 0 and F (t = 0) = F 0 . Then, there exists C > 0 and 0 > 0, depending only on N and η, such that, if 0 ≤ ≤ 0 , (f, F ) is well dened in V b = {(t, x) ∈ R + × R 3 / r > t -b} and veries the following estimates.

• Energy bound for the electromagnetic eld F : ∀ t ∈ R + , Remark 5.1.4. Assuming more decay on the electromagnetic eld at t = 0, one could propagate a stronger energy norm as in [START_REF] Bigorgne | Sharp asymptotic behavior of solutions of the 3d vlasov-maxwell system with small data[END_REF] or [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF]. We then could assume less decay decay in x on f 0 and improve the decay rate of the null components of the electromagnetic eld. Note however that if the total electromagnetic charge which is a conserved quantity in t, is non zero, we cannot obtain a better decay rate than r -2 on ρ(F ) and assume that R 3 r|ρ(F )|dx is initially nite. We point out that our hypotheses on the electromagnetic eld are compatible with the presence of a non zero total charge. Remark 5.1.5. The results of [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], [START_REF] Fajman | Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions[END_REF] and [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF] are obtained using a hyperboloidal foliation and then require compactly supported initial data in space. These compact restrictions on the data could be removed by adapting the method used in this article to the Vlasov-Nordström and the Einstein-Vlasov systems. Proof. One only has to notice that there exists b ≤ -1 such that (f 0 , F 0 ) satises the hypotheses of Theorem 5.1.1.

Global existence in the whole Minkowski spacetime for classical solutions to the VM system with large data

still remains an open problem. For the weak solutions, the problem was solved in [START_REF] Diperna | Global weak solutions of Vlasov-Maxwell systems[END_REF] and revisited in [START_REF] Rein | Global weak solutions to the relativistic Vlasov-Maxwell system revisited[END_REF].

Main ingredients of the proof

The proof of the main result of this paper is based on vector eld methods and then essentially relies on bounding suciently well the spacetime integrals of the source terms of the commuted equations. In the exterior of the light cone V 0 , the solutions to the Vlasov equation behave better than in the interior region.

One can already see that with the following estimate (see Lemma 5.2.9), for g a solution to the free transport equation v µ ∂ µ g = 0,

∀ |x| ≥ t, v |g|(t, x, v)dv |β|≤3 (v 0 ) 2k (1 + r) |β|+k+q ∂ β g L 1 x,v (t = 0) (1 + t + r) 2+k (1 + |t -r|) 1+q
.

(5.4)

Contrary to [START_REF] Bigorgne | Sharp asymptotic behavior of solutions of the 3d vlasov-maxwell system with small data[END_REF], where we study solutions to the VM system in the whole Minkowski spacetime, this strong decay should allow us in principle to avoid the use of modied vector elds. This also allows us to assume less decay on the electromagnetic eld and to avoid any diculty due to the presence of a non zero total charge.

However, as we start with optimal decay in v, we cannot fully use (5.4). In particular, no extra decay in the t + r direction can be obtained in that way. Moreover, since the initial data are not compactly supported in v, a problem arises from large velocities, for which v 0 ∼ |v|, so that the characteristics of the transport equation ultimately approach those of the Maxwell equations. The consequence is that, in a product such as L Z γ (F ). Z β f , one cannot, in view of support considerations, transform a |t -r| decay in a t + r one anymore.

To circumvent this diculty, we take advantage of the null structure of the non linearities such as

v µ L Z γ (F ) µ i ∂ v i Z β f, (5.5) 
where Z is a Killing vector eld and Z its complete lift. The problem is that, for g solution to v µ ∂ µ g = 0, ∂ v g essentially behaves as (1 + t + r)∂ t,x g and the electromagnetic eld, as a solution of a wave equation, only decay with a rate of (1 + t + r) -1 in the t + r direction. However, from [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF] (respectively [START_REF] Bigorgne | Sharp asymptotic behavior of solutions of the 3d vlasov-maxwell system with small data[END_REF]), we know that certain null components of the Maxwell eld (respectively the velocity vector v) are expected to behave better than others. As we propagate a weaker energy norm on F than [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF], the null components ρ and σ do not decay faster than α but still have a better behavior. Indeed, they allow us to take advantage of the t -r decay as they permit us to estimate spacetime integrals by using a null foliation. For the velocity vector, the component v L allows us to integrate according to a null foliation and provides, as the angular components, an extra decay in 5 t + r at the cost of weights preserved by the ow of v µ ∂ µ (see Lemma 5.2.9). Finally, the radial component of (0,

∂ v 1 Z β f, ∂ v 2 Z β f, ∂ v 3 Z β f
) costs a power of t -r instead of t + r. The null structure of (5.5) is fully depicted in Lemma 5.4.1 and we can observe that each term contains either the better null component α of the electromagnetic eld, the better null component v L of the velocity vector or at least two good components.

Finally, the weak decay assumptions on the electromagnetic eld force us to consider several hierarchies in the energy norms of the Vlasov eld in order to close the energy estimates. Let us illustrate how appears such a hierarchy by an example.

• One of the worst source term of the transport equation satised by Zf , where Z is the complete lift of the Killing vector eld Z, is bounded by (1 + t + r) v L v 0 |L Z (F )||∂ t,x f |.

• As |L Z (F )| merely decay as (1 + t + r) -1 (1 + |t -r|) -1 2 , we obtain an (almost) integrable decay rate through the utilization of the inequality 1 + |t -r| z, where z is a combination of weights preserved by v µ ∂ µ , so that

(1 + t + r) v L v 0 |L Z (F )||∂ t,x f | 1 1 + |t -r| v L v 0 √ z|∂ t,x f |.
• Thus, we schematically have Zf L 1 x,v (t) √ z∂ t,x f L 1 x,v (t) log(3+t). This leads us to consider energy norms controlling quantities such as 6 z

N -β P 2 Z β f L 1 x,v
where β P is the number of homogeneous vector elds composing Z β . 

Preliminaries

Basic notations

In this article we work on the 3 + 1 dimensionsal Minkowski spacetime (R 3+1 , η) and we will use two sets of coordinates. The Cartesian coordinates (x 0 = t, x 1 , x 2 , x 3 ) and null coordinates (u, u, ω 1 , ω 2 ), where u = t + r, u = t -r and (ω 1 , ω 2 ) are spherical variables, which are spherical coordinates on the spheres (t, r) = constant. Apart from r = 0 and the usual degeneration of spherical coordinates, these coordinates are dened globally on the Minkowski space. We will also use the following classical weights, τ + := 1 + u 2 and τ -:= 1 + u 2 .

Remark 5.2.1. In this paper, we exclusively work in regions where 1 + t ≤ τ + (t, x) |x|.

We denote by / ∇ the intrinsic covariant dierentiation on the spheres (t, r) = constant and by (e 1 , e 2 ) an orthonormal basis on them. Capital Roman indices such as A or B will always correspond to spherical variables. The null derivatives are dened by L = ∂ t + ∂ r and L = ∂ t -∂ r , so that L(u) = 2, L(u) = 0, L(u) = 0 and L(u) = 2.

The velocity vector (v µ ) 0≤µ≤3 is parametrized by (v i ) 1≤i≤3 and v 0 = 1 + |v| 2 since we normalize the mass of the particles to m = 1. Let T be the operator dened by T : f → v µ ∂ µ f, 6 Actually, because of other source terms, we will consider slightly dierent energy norms.

for all suciently regular function f : [0, T [×R 3

x × R 3 v . We will raise and lower indices using the metric η. For instance, v 0 = v µ η µ0 = -v 0 and x 1 = x µ η µ1 = x 1 . Finally, we will use the notation Q R for an inequality of the form Q ≤ CR, where C > 0 is a constant independent of the solutions but which could depend on N , the maximal number of derivatives, or on xed parameters (δ and η).

A null foliation

We start by presenting various subsets of the Minkowski space which depends on t ∈ R + , r ∈ R + , u ∈ R or b ∈ R. Let S t,r , Σ b t , C u (t) and V u (t), be the sets dened as gdC u (T ) du √ 2 .

We will use the second foliation in order to take advantage of decay in the t -r direction as τ -1 -

L 1 (Cu(t)) = τ -1 -whereas τ -1 - L ∞ (Σ b s ) ≥ (1 + b 2 ) -1 2 .

The commutation vector elds

The aim of this subsection is to introduce the commutation vector elds for the Maxwell equations, those for the relativistic transport operator and certain of their basic properties. Let P be the generators of the Poincaré algebra, i.e. the set containing

• the translations ∂ µ := ∂ x µ , 0 ≤ µ ≤ 3.

• the rotations Ω ij = x i ∂ j -x j ∂ i , 1 ≤ i < j ≤ 3.

• the Lorentz boosts

Ω 0k = t∂ k + x k ∂ t , 1 ≤ k ≤ 3.
Let also O := {Ω 12 , Ω 13 , Ω 23 } be the set of the rotational vector elds and K := P ∪ {S}, where S = x µ ∂ µ is the scaling vector eld. We will use the vector elds of K for commuting the Maxwell equations. To commute the operator T = v µ ∂ µ , we will rather use the complete lifts of the vector elds of P.

Denition 5.2.3. Let Γ be a vector eld of the form Γ β ∂ β . Then, the complete lift Γ of Γ is dened by

Γ = Γ β ∂ β + v γ ∂Γ i ∂x γ ∂ v i .
• Either β P < κ P

• or β P = κ P and γ T ≥ 1.

Note that the structure of the non-linearity F (v, ∇ v f ) as well as the one of J(f ) is preserved by commutation, which reects the null properties of the system. This is crucial for us since, as mentioned earlier, if the source terms of the Vlasov equation (respectively the Maxwell equations) behaved as v 0 |F ||∂ v f | (respectively v |f |dv), we would not be able to close the energy estimates for the Vlasov eld (respectively the electromagnetic eld).

Remark 5.2.7. Let us explain why we count the number of the homogeneous vector elds in the source terms of the Vlasov equation. As ∂ v f ∼ τ + ∂ t,x f + Zf , the decay rate of the solutions will not be strong enough for us to close the energy estimates without using a hierarchy on the derivatives of f . If γ T ≥ 1, Lemma 5.2.4 will give us an extra decay in the u direction. Otherwise, the worst source terms to control in order to bound

Z κ f L 1
x,v will only involve Z β f , with β P < κ P .

5.2.4

The null components of the velocity vector and the weights preserved by T We denote by (v L , v L , v e1 , v e2 ) the null components of the velocity vector v, so that

v = v L L + v L L + v e A e A , v L = v 0 + v r 2 and v L = v 0 -v r 2 .
If there is no ambiguity, we will write v A for v e A . Let k 1 and z be dened as Because of regularity issues, we will rather work with z than with the elements of k 1 . Two fundamental properties of these weights is that they are preserved by the ow of T and by the action of P 0 . Indeed, considering for instance tv 1 -x 1 v 0 , x 1 v 2 -x 2 v 1 , Ω 12 and S, we have

k 1 := v µ v 0 0 ≤ µ ≤ 3 ∪ z µν µ = ν , where z µν := x µ v ν v 0 -x ν v µ v 0 ,
Ω 12 (tv 1 -x 1 v 0 ) = -tv 2 -x 2 v 0 , Ω 12 (x 1 v 2 -x 2 v 1 ) = 0, S(tv 1 -x 1 v 0 ) = tv 1 -x 1 v 0 and S(x 1 v 2 -x 2 v 1 ) = x 1 v 2 -x 2 v 1 .
Then, Recall that if k 0 := k 1 ∪ {x µ v µ }, then τ -v L + τ + v L w∈k0 |w|. Unfortunately, the weight x µ v µ is not preserved by 7 T so we will not be able to take advantage of this inequality during this paper. In the following lemma, which reects the good behavior of the components v L and v A of the velocity vector, we prove a similar inequality specic to the exterior of the lightcone and adapted to the study of massive particles.

T(z) =

Lemma 5.2.9. We have, for all |x| ≥ t,

1 ≤ 4v 0 v L , |v A | √ v 0 v L and τ -+ (1 + r) v L v 0 + (1 + r) |v A | v 0 z.
Proof. Note rst that 4r 2 v L v L ≥ r 2 + k<l |v 0 z kl | 2 . Indeed, as we study massive particles, we have v 0 = 1 + |v| 2 , so that

4r 2 v L v L = (rv 0 ) 2 -x i v i 2 = r 2 + 3 i=1 (r 2 -|x i | 2 )|v i | 2 -2 1≤k<l≤3 x k x l v k v l , 1≤k<l≤3 |v 0 z kl | 2 = 1≤k<l≤3 |x k | 2 |v l | 2 + |x l | 2 |v k | 2 -2x k x l v k v l = 3 i=1 j =i |x j | 2 |v i | 2 -2 1≤k<l≤n x k x l v k v l .
The rst inequality then comes from v L ≤ v 0 . The second one and (1 + r) |v A | v 0 z then ensue from rv A = v 0 C i,j A z ij , where C i,j A are bounded functions depending only on the spherical variables such as re A = C i,j A Ω ij . The last part of the third inequality is specic to the exterior of the light cone. Recall that x i -t v i v 0 ∈ k 1 . Then, τ -z follows from 1 ≤ z and

(r -t) ≤ r -t |v| v 0 ≤ x -t v v 0 ≤ 3 i=1 x i -t v i v 0 = 3 i=1 |z 0i | ≤ z.
(5.6)

Finally, remark rst that v L ≤ v 0 , which treats the case |x| ≤ 1. If |x| ≥ max(t, 1), note that

2rv L = rv 0 -r x i r v i = rv 0 + (t -r) x i r v i - x i r v 0 t v i v 0 -x i -rv 0 = (t -r)v i
x i r -v 0 x i r z 0i and use (5.6).

The null decomposition of the electromagnetic eld

In order to capture its geometric properties, the electromagnetic eld will be represented all along this paper by a 2-form. Let G be a 2-form dened on [0, T [×R 3

x . Its Hodge dual * G is the 2-form given by *

G µν = 1 2 G λσ ε λσµν ,
where ε is the Levi-Civita symbol, and its energy-momentum tensor is (5.7)

For a proof of the following classical results, we refer to [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF] or to [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF] (Subsection 2.3 and Lemma D.3).

Lemma 5.2.10. Let G be a 2-form and J be a 1-form both suciently regular and such that

∇ µ G µν = J ν ∇ µ * G µν = 0.
Then, ∇ µ T [G] µν = G νλ J λ and, denoting by (α, α, ρ, σ) the null decomposition of G,

∇ L α A - α A r + / ∇ e A ρ + ε BA / ∇ e B σ = J A .

Energy and pointwise decay estimates

We recall here classical energy estimates for both the Vlasov eld and the electromagnetic eld and how obtain pointwise decay estimates from them. For all this section, we dene T > 0 and b ≤ -1. The energies dened below are adapted to the study of the Vlasov-Maxwell system in the exterior of the light cone u ≥ b.

Estimates for velocity averages

For the Vlasov eld, we will use the following approximate conservation law. v → R be two suciently regular functions and F a suciently regular 2-form. Then, g, the unique classical solution of T F (g) = H g(0, ., .) = g 0 , satises, for all t ∈ [0, T [, the following estimates, Proof. As T(|g|) = g |g| H -g |g| F (v, ∇ v g) and since F is a 2-form, integration by parts in v gives us

∂ µ v |g| v µ v 0 dv = v g |g| H v 0 - g |g| F v v 0 , ∇ v g dv = v g |g| H v 0 - v j v i (v 0 ) 3 F ji |g| dv = v g |g| H dv v 0 .
Apply now the divergence theorem to v |g| v µ v 0 dv in the region V u (t), for u < b, in order to get (1 + t) -β P λ E b [ √ z q-(1-2λ)β P Z β f ](t).

Σ u t v |g|dvdx + √ 2 Cu(t) v v L v 0 |g|dvdC u (t) =
(5.9) Remark 5.3.2. As z ≥ 1, we have E[

√ z a Z β f ](t) ≤ (1 + t) β P λ E q,λ Q,b [f ](t)
for all 0 ≤ a ≤ q -(1 -2λ)β P .

The remaining of this subsection is devoted to the proof of a Klainerman-Sobolev type inequality. The constants hidden by will here depend on a. We start with a commutation property between the vector elds of K and the averaging in v. It then remains to apply the previous lemma and to recall that τ + r in V b (T ).

We can improve the decay rate in the u direction if we pay the price in terms of weights in v 0 and z. More precisely, by Lemma 5.2.9, we have |v 0 | -a |v L | a |v 0 z| a , so that ∀ (t, x) ∈ V b (T ),

v∈R 3 |f (t, x, v)| dv (v 0 ) 2a 1 τ 2+a + τ -0≤k≤3 Z β ∈ P k 0 v∈R 3 z a Z β f dv L 1 (Σ b t )
.

Estimates for the electromagnetic eld

In this subsection, we introduce rst the energy norm used in this paper to study the electromagnetic eld and, secondly, we derive pointwise decay estimates from it through Klainerman-Sobolev inequalities. We consider, for the remaining of this section, G a suciently regular 2-form dened on V b (T ) and we denote by (α, α, ρ, σ) its null decomposition. We suppose that G satises ∇ µ G µν = J ν ∇ µ * G µν = 0, with J a suciently regular 1-form dened on V b (T ). In order to prove pointwise decay estimates on G, we will use the following three Lemmas. The rst one, which is proved in Appendix D of [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF], extends the results of Lemma 5.2.4 for the null components of a 2-form. The following result, also proved in Appendix D of [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF], presents commutation properties between L Ω , ∇ ∂r , ∇ L or ∇ L and the null decomposition of G. .

Proof. The rst inequality is proved in Lemma 2.3 of [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF] and the second one can be proved similarly as inequality (ii) of Lemma 2.3 of [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF].

We now prove the pointwise decay estimates used in this article. Proof. Let (t, x) ∈ V b (T ). In this proof, Ω β will always be in O |β| and Z γ in K |γ| . Let ζ be either ρ, σ or α.

As ∇ ∂r and L Ω commute with the null decomposition (see Lemma 5.3.9), Lemma 5. We now turn on α. As ∇ µ L Ω (G) µν = L Ω (J) ν and ∇ µ * L Ω (G) µν = 0 for all Ω ∈ O, Lemma 5.2.10 gives

∀ |β| ≤ 1, ∇ L α(L Ω β (G)) A = 1 r α(L Ω β (G)) A -/ ∇ e A ρ(L Ω β (G)) + ε AB / ∇ e B σ(L Ω β (G)) + L Ω β (J) A .
Consequently, we get using Lemma 5. 

Null properties of the Vlasov equation

In order to take advantage of the null structure of the commuted transport equation, we will expand quantities such as L Z γ (F ) (v, ∇ v g), with g a regular function, in null coordinates. We will then use the following lemma.

Lemma 5.4.1. Let G be a suciently regular 2-form, (α, α, ρ, σ) its null components and g a suciently regular function. Then,

|G (v, ∇ v g)| |ρ| + |v A | v 0 |α|   τ -|∇ t,x g| + Z∈ P0 Zg   + |α| + |v A | v 0 |σ| + v L v 0 |α|   τ + |∇ t,x g| + Z∈ P0 Zg   .
Proof. Expanding G(v, ∇ v g) with null components, we get

G(v, ∇ v g) = 2ρ v L (∇ v g) L -v L (∇ v g) L + v B ε BA σ (∇ v g) A -v L α A (∇ v g) A + v A α A (∇ v g) L -v L α A (∇ v g) A + v A α A (∇ v g) L .
(5.12)

We bound the angular components of ∇ v g using v 0 ∂ v i = Ω 0i -t∂ i -x i ∂ t . The radial component (∇ v g) r = 2 (∇ v g) L = -2 (∇ v g) L has a better behavior since

v 0 (∇ v g) r = x i r v 0 ∂ v i g = x i
r Ω 0i g -Sg + (t -r)Lg.

(5.13)

5.6 Improvement of the energy bound on the particle density

The aim of this section is to prove that, for small enough, E N +9,η

N

[f ] ≤ 3 (1 + t) η for all t ∈ [0, T [ (we will sketch the improvement of the estimate on E N +13,δ N -2

[f ] as it is very similar and simpler). For this, recall that E N +9,η

N

[f ](0) ≤ and let us prove that

∀ |κ| ≤ N, ∀ t ∈ [0, T [, E[ √ z N +9-(1-2η)κ P Z κ f ](t)-2E[ √ z N +9-(1-2η)κ P Z κ f ](0)
32 (1+t) (κ P +1)η .

We then x |κ| ≤ N and we denote 1 2 (N + 9 -(1 -2η)κ P ) by a. Note, by Lemma 5.2.8, that T F (z a Z κ f ) = F (v, ∇ v z a ) Z κ f + z a T F ( Z κ f ). (1 + t) (κ P +1)η .

The remaining of the section is divided in four parts. The rst two ones are devoted to the proof of (5.22) and Proposition 5.6.1. Then, we explain briey how to improve the bound on E N +13,δ N -2

[f ]. Finally, we prove an L 2 estimate on v z| Z β f |dv which will be useful for Section 5.7.

5.6.1 Proof of inequality (5.22) Note rst that we have |∇ t,x z| ≤ 1 and, using Lemma 5.2.8, Zz z. Applying Lemma 5.4.1 with (G, g) = (F, z), we can then observe that it suces to prove that (1 + t) (κ P +1)η .

Recall, from Lemma 5.2.9 the inequalities 1

√ v 0 v L , 1 τ -1 -z and v L + |v A | τ -1 + v 0 z, so that 1 √ v 0 v L v 0 z √ τ + τ - and |v A | + v L v 0 z τ + .
Hence, according to (5.20), it comes In order to close the energy estimates, we will have to pay attention to the hierarchy discussed in Remark 5.2.7. For the remaining of this subsection, we x Γ ∈ P 0 and we denote by (α, α, ρ, σ) the null decomposition of L Z γ (F ). The proof is divided in two parts. First, we treat the case where the electromagnetic eld can be estimated pointwise (|γ| ≤ N -2). (1 + t) (κ P +1)η .

Using again (5.20) as well as 1 

√ v 0 v L , 1 τ -1 2 +η -
v v L τ + τ 1-2η - v 0 z a+ 1 2 -η ∇ t,x Z β f dv v √ τ 1-η + + √ v L τ 1-η -v 0 z a+ 1 2 -η ∇ t,x Z β f dv, τ + (|σ (L Z γ (F ))| + |α (L Z γ (F ))|) v |v A | + v L v 0 z a ∇ t,x Z β f dv v 0 v √ v L τ 1-η -v 0 z a+ 1 2 -η ∇ t,x Z β f dv.
In order to lighten the notations, we denote z a+ 1 2 -η ∇ t,x Z β f by g. We then have

I ρ,α + I σ,α t 0 √ (1 + s) 1-η Σ b s v |g| dvdxds + t 0 Σ b s √ τ 1-η - v v L v 0 |g| dvdxds.
To deal with the second integral, we split V b (t) as follows,

V b (t) = {(s, x) ∈ V b (t) / s -|x| ≤ -t} ∪ {(s, x) ∈ V b (t) / -t ≤ s -|x| ≤ b} := V 1 ∪ V 2 .
Note that if s ≤ t, then s -|x| ≤ -t implies |x| ≥ 2s so that τ + τ -on V 1 . Consequently, using V 1 ⊂ V b (t), E[g](t) (1 + t) (β P +1)η (see (5.23)) and Lemma 5. We suppose now that β P = κ P , so that γ T ≥ 1. Since, for Z ∈ K and 0 ≤ µ ≤ 3, [Z, ∂ µ ] is either equal to 0 or ±∂ ν for ν ∈ 0, 3 , we can assume that Z γ = ∂Z γ0 with |γ 0 | = |γ| -1. Note also that (5.23) does not hold in that case. The bootstrap assumption (5.15) 

(F ))| + √ v 0 v L τ + τ - |α (L Z ξ (F ))| √ τ + + v 0 v L τ + τ 2 - √ v 0 τ + + √ v L τ 2 - , τ + (|σ (L Z γ (F ))| + |α (L Z γ (F ))|) |v A | + v L v 0 |ξ|≤|γ| v L τ + τ - (|σ (L Z ξ (F ))| + |α (L Z ξ (F ))|) √ v L τ 3 2 - , τ 1 2 -η + |L Z γ (F )| √ √ v 0 v L τ 1 2 +η + τ 3 2 - √ v 0 τ 1+η + + √ v L τ η + τ 3 - .
(5.25)

We then have, using Lemma 5.2.2, (5.24) and β P = κ P , (1 + t) (κ P +1)η .

I ρ,α + I σ,α t 0 √ 1 + s Σ b s v z a ∇ t,x Z β f dvdxds + t 0 Σ b s √ τ 3 2 - v v L v 0 z a ∇ t,x Z β f dvdxds √ t 0 E[z a ∇ t,x Z β f ](s) 1 + s ds + b u=-∞ √ τ 3 2 - Cu(t) v v L v 0 z a ∇ t,x Z β f dvdC u (t)du
Finally, as z a ≤ 2τ v L v 0 z a-1 2 +η Γ Z β f dvdxds.

To deal with the remaining integral, let us introduce, for all u < b and i ∈ N, the following truncated cone C i u (t) := {(s, x) ∈ C u (t) /2 i -1 ≤ s ≤ T i+1 (t)}, where T i+1 (t) = min(t, 2 i+1 -1).

(5.26)

Notice that τ -η + L ∞ (C i u (t)) ≤ C2 -iη , with C > 0 a constant independant of i ∈ N, and

C i u (t) v v L v 0 z a-1 2 +η Γ Z β f dvdC i u (t) E[z a-1 2 +η Γ Z β f ](T i+1 (t)) ≤ 4 (1 + T i+1 (t)) (β P +2)η ≤ 8 2 i(β P +2)η .
Consequently, as V b (t) can be foliated by (C i u (t)) u<b, i≤log 2 (1+t) , (1 + t) .

t 0 Σ b s √ τ η + τ 3 -v v L v 0 z a-1 2 +η Γ Z β f dvdxds log 2 (1+t) i=0 1 2 iη b -∞ √ τ 3 -C i u (t) v v L v 0 z a-1 2 +η Γ Z β f dvdC i u (t)du √ log 2 (1+t) i=0 E[z a-1 2 +η Γ Z β f ](T i+1 (t)) 2 iη
Proof. The rst inequality ensues from r|v A | v 0 z (see Lemma 5.2.9). For the second one, we start by considering |β| ≤ N -3. Using successively the Cauchy-Schwarz inequality in v, the pointwise decay estimate (5.19) and the bootstrap assumption (5.15), we get

v z| Z β f |dv 2 L 2 (Σ b t ) v | Z β f |dv v z 2 | Z β f |dv L 1 (Σ b t ) v | Z β f |dv L ∞ (Σ b t ) v z 2 | Z β f |dv L 1 (Σ b t ) τ 2-(β P +4)η + τ -L ∞ (Σ b t )
(1 + t) β P η E N +9,η Similarly, using τ -z instead of τ + |v A | v 0 z (see also Lemma 5.2.9) and Lemma 5. This concludes the improvement of the bootstrap assumption (5.16).

5.8 L 2 estimates for the higher order derivatives of the Vlasov eld

In this last section, we complete the proof of Proposition 5.6.3. For this purpose, we slightly modify the strategy used in Section 4.5.7 of [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] in order to keep more of the null structure of the system. The rst

In order to describe the components of the matrix D, we use the quantity [j] which will be dened during the proof for all j ∈ 1, p . D is such that T F (Y i ) can be bounded, for 1 ≤ i ≤ p, by a linear combination of the following terms,

• √ v 0 τ 1-η + |Y k |, √ v 0 τ + |Y q |, √ v 0 τ 1+η + |Y j |, √ v L τ 1-η - |Y k |, √ v L τ 3 2 - |Y q |, √ v L τ η + τ 2 - |Y j |,
where k, q, j ∈ 1, p , [k] < [i], [q] = [i] and [j] = [i] + 1.

Proof. The key element of the proof will be to rewrite all terms of the form ∂ v k G j appearing in the equation T F (G) + AG = BW with the formula v 0 ∂ v k = Ω 0k -x k ∂ t -t∂ k . As j ∈ I \ I N by Lemma 5.8.2, we will express ZG j , by Lemma 5.8.6, as a combination of (G q ) q∈I , (H q ) q∈I and ZH j . This suggests us to take for Y the vector valued eld of length p composed by the following components Y i , where i ∈ 1, p .

• Y i = √ z N +2-(1-2η)β P Z β f , with |β| ≤ N -3. We then dene [i] := β P .

• 

Y i = √ z N +2-(1-
T F (L i ) = T F ( √ z N -(1-2η)β i P G i ) = √ z N -(1-2η)β i P -2 F (v, ∇ v z)G i + √ z N -(1-2η)β i P T F (G i ).
Following the computations of Subsection 5.6.1, we have where Γ ∈ P 0 . As ξ j P ≤ β i P , there exists κ 1 and κ 2 satisfying

F (v, ∇ v z) √ z N -(1-2η)β i P -2 G i √ v 0 τ + z √ z N -(1-2η)β i P -2 |G i | √ v 0 τ + |L i |.
Γ Z ξ j f = Z κ 1 f, |κ 1 | ≤ N -3, κ 1 P ≤ β i P + 1 and ∇ t,x Z ξ j f = Z κ 2 f, |κ 2 | ≤ N -3, κ 2 P ≤ β i P .
Consequently, there exists (j, q) ∈ 1, p such that √ z In order to rewrite the v derivatives of G, note that Lemma 5.8.6 gives, using v 0 ∂ v k = Ω 0k -x k ∂ t -t∂ k and

N -(1-2η)β i P Z κ 1 f ≤ √ z N +2-(1-2η)κ 1 P Z κ 1 f = |Y j | and √ z N +2-(1-2η)β i P Z κ 2 f ≤ |Y q |.
(5.13),

v 0 ∂ v k G j = G j Ω 0k -x k G j ∂ t -tG j ∂ k + H j Ω 0k -x k H j ∂ t -tH j ∂ k -Ω 0k H j + x k ∂ t H j + t∂ k H j , v 0 (∇ v G j ) r = x q r (G j Ω 0q + H j Ω 0q -Ω 0q H j ) -G j S -H j S + SH j +(t -r) G j ∂ t + H j ∂ t -∂ t H j -
x q r G j ∂q -x q r H j ∂q + x q r ∂ q H j .

In order to apply Proposition 5.3.1, remark that Without any sommation in k and by the Cauchy-Schwarz inequality in (u, ω, v),

T F |K j i | 2 Y q = |K j i | 2 D r q Y r -2 A r i K j r + K r i D j r K j i Y q + 2B j i K j i Y q . ( 5 
|K j i | 2 D r q Y r -2 A k i K j k + K r i D j r K j i Y q dv v 0 dxds
t 0 Σ b s v A k i K j k K j i Y q dv v 0 dxds b -∞ √ τ 3 2 - Cu(t) v v L v 0 |K j k | 2 |Y q |dvdC u (t) Cu(t) v v L v 0 |K j i | 2 |Y q |dvdC u (t) 1 2 du E[|K j k | 2 |Y q |](s)E[|K j i | 2 |Y q |](s) 0 u=-∞ du τ 3 2 - 3 2 
(1 + t) η(4N -2[j]+[q]+β i P +β k P ) = (1 + t) η(4N -[r]-[j]+2β i P +[q])+η ds 1 + s 3 2 (1 + t) η(4N -2[j]+2β i P +[q]) .

Recall now from (5.26) the denition of C i u (t) and T i+1 (t). Without any sommation in r and since [r] = [q]+1, 2 iη (1 + t) η(4N -2[j]+2β i P +[q]) .

t 0 Σ b s v |K j i | 2 D r q Y r dv v 0 dxds log 2 (1+t) i=0 b u=-∞ C i u (t) √ τ η + τ 2 -v v L v 0 |K j i | 2 |Y r |dvdC i u (t)du log 2 (1+t) i=0 b u=-∞ √ 2 iη τ 2 -C i u (t) v v L v 0 |K j i | 2 |Y r |dvdC i u (t)du √ log 2 (1+t) i=0 E[|K j i | 2 |Y r |](T i+1 (t)) 2 iη 0 u=-∞ du τ 2
Let us focus now on (5.37). According to Lemma 5.8.7, we have (5.39)

(|ρ| + |σ| + |α|) √ τ + τ 1 2 - v v L v 0 |K j i | 2 |Y q |dv 1 2 dxds t 0 √ 1 + s E N [F ](s)E |K j i | 2 Y q (s)
Using the null foliation (C u (t)) u<b of V b (t) and the Cauchy-Schwarz inequality in (u, ω), it comes

t 0 Σ b s |α| √ τ 3 2 - v v L v 0 |K j i | 2 |Y q |dv 1 2 dxds b -∞ √ τ 3 2 - Cu(t)
|α| 2 dC u (t) (1 + t) η(4N -2[j]+2β i P +[q]) .

Cu(t) v v L v 0 |K j i | 2 |Y q |dvdC u (t) 1 2 du √ E N [F ](t)E |K j i | 2 Y q (t)
This concludes the improvement of the bootstrap assumption and then the proof.

5.8.3 End of the proof of Proposition 5.6.3

Let i ∈ I. Using the Cauchy-Schwarz inequality in v, E H (t) (1 + t) η and the pointwise decay estimates (5.29), we have

v z|H i |dv 2 L 2 (Σ b t ) v |H i |dv L ∞ (Σ b t ) v z 2 |H i |dv L 1 (Σ b t ) τ 2-(N +4)η + τ -L ∞ (Σ b t )
(1 + t)

β i P η E H (t) 2 (1 + t) 2-(2N +5)η 2 (1 + t) 3 2 
.

As L i = K j i Y j , the Cauchy-Schwarz inequality in v, E G (t) (1 + t) (1 + t) η(-2[j]+2β i P +[j]) E L (t)

2 (1 + t) 2-8N η 2 (1 + t) 3 2 
.

To conclude the proof of Proposition 5.6.3, notice that for all N -2 ≤ |β| ≤ N , there exists i ∈ I verifying Z β f = H i + G i and that |G i | ≤ |L i |.

  ne sera imposée. Pour le troisième point, il est connu que pour une solution susamment régulière des équations de Maxwell dans le vide, certaines composantes du champ électromagnétique, telles que les composantes radiales xi r E i et xi r B i du champ électrique et du champ magnétique, décroissent plus rapidement que F lui-même. Notre but est donc de montrer que cela reste vrai pour les champs électromagnétiques d'un plasma susamment dilué. Pour le dernier point, rappelons tout d'abord les outils utilisés dans les preuves des résultats cités.

1. 4 . 1

 41 Quelques notationsOn ordonne les ensemble K et P 0 de sorte queK = {Z 1 , ..., Z |K| = S} et P 0 = { Z 1 , ..., Z |K|-1 , Z | P0| = S}.Étant donné un multi-indice β ∈ 1, |K| = | P 0 | p de longueur p ∈ N, on dénit Z β et Z β de la façon suivante : Z β := Z β1 ...Z βp et Z β := Z β1 ... Z βp .

(1. 20 ) 1 ( 1 + 1 ( 1 + t + r) 5 2 2 G

 20111122 Autrement dit, on considère une situation considérablement simpliée puisque g et G sont complètement indépendantes mais elle nous permettra de cerner les dicultés évoquées. Par susamment régulière, nous entendons ici que l'on peut appliquer le théorème 1.2.5 à G, i.e.|α(G)i |(t, x) := |G eiL |(t, x) t + r)(1 + |t -r|)3 2 |α(G) i |(t, x) := |G eiL |(t, x) |ρ(G)|(t, x) := 1 LL (t, x) 1

( 2 . 15 )

 215 with w γ0 ∈ k |γ0| m and Γ β0 ∈ P |β0| 0 . It only remains to apply Theorem 2.2.13. 

Remark 2 . 3 . 4 .

 234 Assuming enough decay on the data, similar inequalities holds for E k N [g].

Lemma 2 . 4 . 1 .

 241 Let m ∈ N * and let a, b ∈ R, such that a + b > m and b = 1.

  [START_REF] Shu | Global existence of Maxwell-Higgs elds[END_REF])) brings us to control the integral of the following terms.

1 2 2 or improved in a log 1 4

 121 (3 + t)-loss (specic to the dimension 4) can be removed for |β| ≤ N -3n+2 (3 + t)-loss for |β| ≥ N -n + 1.

1

  on the support of h and Σs v |z ||h|dvdx ≤ 4 by the bootstrap assumption 2.65.

  these inequalities are implied by the pointwise estimates (2.68), (2.69) and (2.70) and Lemma 2.4.1.

Theorem 3 . 1 . 1 .

 311 Let N ≥ 10, > 0 and (f 0 , F 0 ) an initial data set for the Vlasov-Maxwell equations (3.1)-(3.3) satisfying the smallness assumption 4 |β|+|κ|≤N +3 x∈R 3 v∈R 3

3. 1 . 5

 15 Structure of the paper Section 3.2 presents the notations used in this article, basic results on the electromagnetic eld and its null decomposition. The commutation vector elds are introduced in Subsection 3.2.4 and the source terms of the commuted equations are descibed in Subsection 3.2.5. Subsection 3.2.6 contains fundamental properties on the null components of the velocity vector. In Section 3.3, we introduce the norms used to study the Vlasov-Maxwell system and we present energy estimates in order to control them. We then exploit these energy norms to obtain pointwise decay estimates on both elds through Klainerman-Sobolev type inequalities. Lemma 3.4.1, proved in Section 3.4, is of fundamental importance in this work since it depicts the null structure of the non linearities of the transport equations. In section 3.5, we set up the bootstrap assumptions, discuss their immediate consequences and describe the main steps of the proof of Theorem 3.1.1. Sections 3.6 to 3.8 concern respectively the improvement of the bounds on the distribution function, the proof of L 2 estimates for the velocity averages of its higher order derivatives and the improvement of the estimates on the electromagnetic eld energies. In Appendix 3.A, we prove that the Vlasov eld vanishes for small velocities. In Appendix 3.B we expose how to bound the energy norms of f and F in terms of weighted L 1 and L 2 norms of the initial data. We prove in Appendix 3.C that the derivatives of F , for (f, F ) a suciently regular solution to the Vlasov-Maxwell system, are automatically chargeless. Finally, Appendix 3.D contains the proof of certain results concerning the null decomposition of the electromagnetic eld.3.1.6 AcknowledgementsThis article forms part of my Ph.D. thesis and I am grateful to my advisor Jacques Smulevici for his support and fruitful discussions. Part of this work was funded by the European Research Council under the European Union's Horizon 2020 research and innovation program (project GEOWAKI, grant agreement 714408).

  is symmetric and traceless, i.e. T [F ] µν = T [F ] νµ and T [F ] µ µ = 0. This last point is specic to the dimension 3 and engenders additional diculties in the analysis of the Maxwell equations in high dimensions (see Section 3.3.2 of[START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] for more details). We have an alternative form of the Maxwell equations.

Proposition 3 . 3 . 1 .

 331 Let H : [0, T [×R 3

Remark 3 . 3 . 3 .

 333 During the proof of Theorem 3.1.1, we will have a small growth on E N [G] and not on E k N [G].

(3. 29 )

 29 By Proposition 3.3.13, commutation formula of Proposition 3.2.9, the bootstrap assumptions (3.26), (3.27), (3.25) and the estimate (3.29), we obtain that, for all (t, x) ∈ [0, T [×R 3 and |γ| ≤ N -2,

(3. 32 )

 32 In view of the support of χ, we then obtain that T F (f ) = 0 on [0, T [, so that (f, F ) is the unique classical solution to the Vlasov-Maxwell system (3.1)-(3.3) on [0, T [. The remaining of the article is devoted to the improvement of the bootstrap assumptions (3.23)-(3.27), which will imply Theorem 3.1.1 as it will prove that T = T * and then T * = +∞. The proof is divided in three parts. 1. First, we improve the bootstrap assumptions (3.23) and (3.24) by using Proposition 3.3.1. To bound the spacetime integrals arising from this energy estimate, we make crucial use of the null structure of the non linearity L Z γ (F )(v, ∇ v Z β f ) as well as (3.30), (3.31) and (3.28).

According to the pointwise estimates ( 3 .

 3 [START_REF] Klainerman | The null condition and global existence to nonlinear wave equations[END_REF],(3.31) and the inequality |v A | √ v 0 v L (see Lemma 3.2.11), one have τ -|ρ| + τ + |α| √ τ 5 4

with |β 2

 2 ,j | ≤ N -6 and |γ| ≤ N -5.

with |β 2

 2 ,j | ≤ N -6 and |ξ| ≤ N, leading, by Lemma 3.4.1 and τ + v L + τ + |v A | v 0 w∈k0 (see Lemma 3.2.11), to the announced terms involving Y .

1 and |κ| + k ≤ 5 .

 15 It remains to use (3.34) and Lemmas 3.7.5, 3.4.1.

3 2 log 2 ( 3 +

 323 t).

(3. 38 )

 38 According to Proposition 3.7.7 and (3.33), one have, using E G (t) log 2 (3 + t) and 1 ≤ v 0 on the support of Y ,

1 4

 1 and |X(t) -X(s)| ≤ |t -s|, which comes from (3.40), we have

  1.1 and (f, F ) the unique classical solution of (3.1)-(3.3) arising from these data. Proposition 3.B.1.

3 2

 3 according to the induction hypothesis and p + q = r.• Otherwise |β 1 | + p ≤ 2 and, by the Cauchy-Schwarz inequality in x,

3 . 10 .

 310 Lemma 3.D.1. Let Ω ∈ O. Then, denoting by ζ any of the null component α, α, ρ or σ,

  where C B Ω are bounded functions on the sphere, we directly obtain |Ωσ(G)| |σ(L Ω (G))| + |σ(G)|, which is good enough for proving the following results of this appendix. To obtain Ω(σ(G)) = σ(L Ω (G)), one can check, with straightforward computations that, for a 2-form H, ρ( * H) = -σ(H) and *

  |∇ Ω U | |U | + Ω∈O |L Ω U | .Lemma 3.D.3. Denoting by (α, α, ρ, σ) the null decomposition of G, we have

( 3 .

 3 57) Suppose for instance that e B = e 1 and e A = e 2 . Then, as ∇ e C e D = / ∇ e C e D -δ C,D r ∇ ∂r ,

Theorem 4 . 1 . 4 .

 414 Let N ≥ 11, > 0, (f 0 , F 0 ) an initial data set for the Vlasov-Maxwell equations (4.1)-(4.

Finally, let us 3 x × R 3 v

 33 adapt Lemma 4.3.3 to our modied vector elds. Lemma 4.3.20. Let f : [0, T [×R → R be a suciently regular function and suppose that for all |β| ≤ 1, |Y β Φ| log 7 2

Lemma 4 . 3 . 22 . 3 x × R 3 v

 432233 Let G be a suciently regular 2-form and g a suciently regular function dened respectively on [0, T [×R 3 and [0, T [×R . Let also Y = Z + ΦX ∈ Y 0 and ν ∈ 0, 3 . We have, with n Z = 0 is Z ∈ P and n S = -1,

  |σ| ≥ 1, max(|γ|, |k| + |γ|, |k| + |σ|) ≤ |β 0 |, |k| + |γ| + |σ| ≤ |β 0 | + 1 and p + k P + σ P + d ≤ (β 0 ) P . It leads to the following error terms.

Remark 4 . 3 . 33 .

 4333 Let β and, for i ∈ {1, 2}, ζ i be multi-indices such that |ζ

4 . 5

 45 and to use Remark (4.3.21) instead of Lemma 4.3.20).

2

 2 

1 (v 0 ) 1+|α 2 |

 12 (1+r) |α 1 |+q-2 |L Z γ Z (F )| has the desired form.

2 . 2 . 3 .

 223 Then, we will improve the bootstrap assumptions (4.49), (4.50) and (4.51) by several applications of the energy estimate of Proposition 4.4.1 and the commutation formula of Proposition 4.3.31. The computations will also lead to optimal pointwise decay estimates on v |Y β f | dv (v 0 ) The next step consists in proving enough decay on the L 2 norms of v |zY β f |dv, which will permit us to improve the bootstrap assumption (4.52). 4. Finally, we will improve the bootstrap assumptions (4.53)-(4.57) by using the energy estimates of Proposition 4.4.3.

( 4 .

 4 63) Using Lemma 4.3.27, v 0 ∂ v i = Y i -ΦX -t∂ i -x i ∂ t and the bootstrap assumption on the Φ coecients (4.60), it comes

  exists C 1 > 0 such that

(4.69) 3 2

 3 log (q+|ξ 0 |+|ξ 2 |+|β 0 |)a (3 + t) otherwise. (4.70)

3 2 ( 1 + 3 2 ( 1 +

 3131 s) κ log r (3 + t) and s) κ log r+a (3 + t).

Remark 4 .

 4 8.4. 

- and we can bound I F 1 by 3 2

 3 as I 1 in Proposition 4.8.2. For I F 1 , remark rst that, by the bootstrap assumptions (4.54), (4.57) and since F = F in the interior of the light cone,

3 2 or 3 2

 3 (1 + t) 

3 2

 3 log M0 (3 + t).

3 2 ( 1 +

 31 τ + ) by Proposition 4.7.4.

4. 10 . 2

 102 The weighted norm for the exterior region Applying Proposition 4.4.3 and using E Ext N [ F ](0) ≤ as well as F = F -F , we have, for all t ∈ [0, T [,

v∈R 3 f 0 4 |β|+|κ|≤N +3 |x|≥b v∈R 3 ( 1 + |x|) N +14+|β| 2 ( 1 +

 043121 dv and ∇ i * (F 0 ) i0 = 0.We refer to Section 5.2 for the notations not yet dened.Theorem 5.1.1. Let N ≥ 8, b ≤ -1, 0 < η < 116N , > 0, (f 0 , F 0 ) an initial data set for the Vlasov-Maxwell equations (5.1)-(5.3) satisfying |v|) |κ| ∂ β x ∂ κ v f 0 dvdx + |γ|≤N +2 |x|≥b (1 + |x|) 2|γ| ∇ ∂ γ x F 0 2 dx ≤

√ τ + τ 1 2 -.• 0 |x|≥t-b v∈R 3 Z 3 Z β f dv τ 2 Remark 5 . 1 . 2 .

 20332512 0≤k≤N Z γ ∈K k |x|≥t-b |L Z γ (F )| 2 dx ≤ C ,• Pointwise decay estimates for the null components ofL Z γ (F ): ∀ |γ| ≤ N -2, (t, x) ∈ V b , |α (L Z γ (F ))| (t, x) Z γ (F ))| (t, x) + |α (L Z γ (F ))| (t, x) + |σ (L Z γ (F ))| (t, x)Energy bound for the particle density:∀ t ∈ R + , 0≤k≤N Z β ∈ P k β f dvdx ≤ C (1 + t) (N +1)η .• Pointwise decay estimates for the velocity averages ofZ β f : ∀ |β| ≤ N -3, (t, x) ∈ V b ,v∈R Note that we can study the solutions to the Vlasov-Maxwell equations in the exterior of a light cone, without any information on their behavior in the remaining part of the Minkowski space, by nite speed of propagation. Every inextendible past causal curves of such a region intersect the hypersurface t = 0 once and only once, i.e. the region is globally hyperbolic. Remark 5.1.3. By a time translation, one can prove a similar result for b ∈ R ( 0 would then also depends on b).

F

  0i dS t,r = -lim r→+∞ St,r ρ(F )dS t,r = x∈R 3 v∈R 3 f dxdv,

Theorem 5 . 3 ( 1 + |x|) N +14+|β| 2 ( 1 +( 1 +

 531211 1.1 immediately implies the following result, concerning solutions arising from large data. Corollary 5.1.6. Let N ≥ 8 and (f 0 , F 0 ) an initial data set for the Vlasov-Maxwell equations (5.1)-(5.3) satisfying|β|+|κ|≤N +3 x∈R 3 v∈R |v|) |κ| ∂ β x ∂ κ v f 0 dvdx + |γ|≤N x∈R |x|) 2|γ| |∇ ∂ γ x F 0 | 2 dx < +∞and (f, F ) be the unique local classical solution to the system which satises f (t = 0) = f 0 and F (t = 0) = F 0 . Then, there exists b ≤ -1 such that (f, F ) is well dened in V b and veries similar estimates as those presented in Theorem 5.1.1.

5. 1 . 5

 15 Structure of the paper Section 5.2 contains most of the notations used in this article. The vector elds used in this paper and the commuted equations are presented in Subsection 5.2.3. In Subsection 5.2.4, fundamental properties of the null components of the velocity vector are proved. The energy norms used to study the Vlasov-Maxwell system are introduced in Section 5.3. During this section, we also prove approximate conservation laws as well as Klainerman-Sobolev type inequalities in order to control these norms and derive pointwise decay estimates from them. Section 5.4 is devoted to the study of the null structure of the commuted Vlasov equations. In section 5.5, we set up the bootstrap assumptions, present their immediate consequences and describe the strategy of the proof of our main result. Sections 5.6 (respectively 5.7) concerns the improvement of the energy bounds on the particle density (respectively the electromagnetic eld). Finally, we prove in Section 5.8 L 2 estimates for the velocity averages of the higher order derivatives of the Vlasov eld.5.1.6 AcknowledgementsI would like to express my gratitude to my advisor Jacques Smulevici for suggesting me to study this problem and for his valuable comments. Part of this work was funded by the European Research Council under the European Union's Horizon 2020 research and innovation program (project GEOWAKI, grant agreement 714408).

S 2 - 1 r 2

 212 t,r := {(s, y) ∈ R + × R 3 / (s, |y|) = (t, r)}, C u (t) := {(s, y) ∈ R + × R 3 / s < t, s -|y| = u}, Σ b t := {(s, y) ∈ R + × R 3 / s = t, |y| > s -b}, V u (t) := {(s, y) ∈ R + × R 3 / s < t, s -|y| < u}.The volum form on C u (t) is given by dC u (t) = √ dudS 2 , where dS 2 is the standard metric on the 2 dimensional unit sphere.The sets Σ u t , C u (t) and V u (t)The following lemma illustrates that we can foliate V b (T ) by (Σ b s ) 0≤s<T or (C u (T )) u<b and will be used several times during this article. Lemma 5.2.2. Let T > 0, b ∈ R and g ∈ L 1 (V b (T )). Then V b (T ) gdV b (T ) =

Lemma 5 . 2 . 8 .

 528 For all Z ∈ P 0 and a ∈ R + , we have T(z) = 0 and Z(z a ) az a . Proof. Let w ∈ k 1 . By straightforward computations, one can prove that T(w) = 0 and Z(v 0 w) ∈ v 0 k 1 ∪ {0},

|w 0 |

 0 az a .

T 2 G

 2 [G] µν := G µβ G ν β -1 4 η µν G ρσ G ρσ . Note that T [G] µν is symmetric, i.e. T [G] µν = T [G] νµ . The null decomposition of G, (α(G), α(G), ρ(G), σ(G)),introduced by[START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF], is dened byα A (G) = G AL , α A (G) = G AL , ρ(G) = 1 LL and σ(G) = G e1e2 ,so that the null components of T [G] are then given byT [G] LL = |α(G)| 2 , T [G] L L = |α(G)| 2 and T [G] LL = |ρ(G)| 2 + |σ(G)| 2 .

Proposition 5 . 3 . 1 .

 531 Let H : V b (T ) × R 3 v → R and g 0 : Σ b 0 × R 3

3 |g|dvL 1

 31 which allows us to conclude the proof.In view of Remark 5.2.7 and the previous proposition, we then dene hierarchised energy norms. For (Q, λ) ∈ N × [0,1 2 ] and q∈ [Q, +∞[, let E b [g](t) := v∈R [f ](t) := 0≤k≤Q Z β ∈ P k 0

Lemma 5 . 3 . 3 . 3 z a |f |dv v∈R 3 z a |f |dv + v∈R 3 z 3 |z a f |dv = v∈R 3 Ω 3 v 0 3 Ω 3 z

 533333333033 Let f : V b (T ) × R 3 v → Rbe a suciently regular function and a ∈ R + . We have, almost everywhere,∀ Z ∈ K, Z v∈R a | Zf |dv.Proof. Consider for instance the case where Z = Ω 01 = t∂ 1 + x 1 ∂ t . We have, almost everywhere,Z v∈R 01 (|z a f |) dv -v∈R ∂ v 1 (|z a f |) dv = v∈R 3 z a f |z a f | Ω 01 (z a f ) dv + v∈R 3 v 1 v 0 |z a f |dv ≤ v∈R 01 (z a f ) dv + v |z a f | dv. It then remains to use | Ω 01 (z a ) | az a . Proposition 5.3.5. Let f : V b (T ) × R 3 v → Rbe a suciently regular function and a ∈ R + . Then,∀ (t, x) ∈ V b (T ), v∈R a |f |(t, x, v)dv 1 τ 2 + τ -0≤k≤3 Z β ∈ P k 0 |y|≥|x| v∈R 3 z a Z β f dvdx.Proof. Let (t, x) = (t, |x|ω) ∈ V b (T ). One has, using successively Lemmas 5.2.4 and 5.3.3,|x| 2 τ - v z a |f |(t, |x|ω, v)dv = -|x| 2 +∞ r=|x| ∂ r τ - v z a |f |(t, rω, v)dv dr |x| 2 Z∈K +∞ r=|x| v z a |f |(t, rω, v)dv + Z v z a |f |(t, rω, v)dv dr +∞ r=|x| vz a |f |(t, rω, v)dvr 2 dr + Z∈ P0 +∞ r=|x| v z a | Z κ f |(t, rω, v)dvr 2 dr.

Denition 5 .

 5 3.6. Let N ∈ N. We dene, for t ∈ [0, T [,E b [G](t) := Σ b t |α| 2 + |α| 2 + 2|ρ| 2 + 2|σ| 2 dx + sup u<b Cu(t) |α| 2 + |ρ| 2 + |σ| 2 dC u (t), E b N [G](t) := 0≤k≤N Z γ ∈K k E b [L Z γ (G)](t).

Proposition 5 . 3 . 7 . 1 √ 2

 53712 We have, for all t ∈ [0, T [,E b [G](t) ≤ 2E b [G](0|G µ0 J µ |dxds.Proof. Recall from Lemma 5.2.10 that ∇ µ T [G] µ0 = G 0ν J ν . Hence, applying the divergence theorem in V u (t), for u < b, we getΣ u t T [G] 00 dx + Cu(t) T [G] L0 dC u (t) = |G 0ν J ν | dxds.It then remains to add the previous two inequalities and to notice, using (5.7), that4T [G] 00 = |α| 2 + |α| 2 + 2|ρ| 2 + 2|σ|2 and 2T [G] L0 = |α| 2 + |ρ| 2 + |σ| 2 .

Lemma 5 . 3 . 8 .

 538 We have, denoting by ζ any of the null component α, α, ρ or σ,τ -∇ L ζ(G) + τ + |∇ L ζ(G)| |γ|≤1 |ζ (L Z γ (G))| , (1 + r) / ∇ζ(G) |ζ(G)| + Ω∈O |ζ (L Ω (G))| and, on V b (T ), ∀ µ ∈ 0, 3 , τ -|∇ ∂µ ζ(G)| ≤ τ -|∇ L ζ(G)|+τ -|∇ L ζ(G)|+τ -| / ∇ζ(G)| |γ|≤1 |ζ (L Z γ (G))| .

Lemma 5 . 3 . 9 . 2 O, 2 + 2 O,1 dy 1 2 . 2 -

 53922222 Let Ω ∈ O. Then, denoting by ζ any of the null component α, α, ρ or σ,[L Ω , ∇ ∂r ]G = 0, L Ω (ζ(G)) = ζ(L Ω (G))and∇ ∂r (ζ(G)) = ζ(∇ ∂r (G)).Similar results hold for L Ω and ∇ ∂t ,∇ L or ∇ L . For instance, ∇ L (ζ(G)) = ζ(∇ L (G)).We now recall the Sobolev inequalities which will be used to prove the pointwise decay estimates on the null components of the electromagnetic eld. For this, we introduce |U (y)| 2 O,k := |β|≤k |L Ω β (U )| 2 ,whereΩ β ∈ O |β| .Lemma 5.3.10. Let U be a suciently regular tensor eld dened on R 3 . Then, |y| 2 |∇ ∂r U (y)| If t ∈ R + and |x| ≥ t -b, we have ∀ x = 0, |U (x)| 1 |x|τ 1 |y|≥t-b |U (y)| 2 O,2 + τ 2 -|∇ ∂r U (y)| 2 O,1 dy 1 2

3 .10 gives us r 2 τ -|ζ| 2 |y|≥t-b |ζ| 2 O, 2 + τ 2 -

 322222 |∇ ∂r (ζ)| 2 O,1 dy |β|≤1 |γ|≤2 |y|≥t-b |ζ(L Z γ (G)| 2 + τ 2 -|ζ(L Ω β (∇ ∂r G))| 2 dy.Since ∇ ∂r commute with L Ω and the null decomposition (see Lemma 5.3.9), it comes, using 2∂ r = L -L and Lemma 5.3.8,|ζ(L Ω β (∇ ∂r G))| |∇ ∂r ζ(L Ω β (G)| |∇ L ζ(L Ω β (G)| + |∇ L ζ(L Ω β (G)| 1 τ -|γ|≤|β|+1 |ζ(L Z γ (G)|.

(5. 10 )

 10 As τ + r in V b (T ), we nally obtainτ 2 + τ -|ζ| 2 |γ|≤2 |y|≥t-b |ζ(L Z γ (G)| 2 dx E b 2 [G](t).

3 . 8 3 + |α| 2 |x| 3 |α| 2 |y|≥|x| |α| 2 O, 2 + r 2 2 O

 3832222 that for all Ω ∈ O,|α(∇ ∂r G)| + |α(L Ω (∇ ∂r G))| |J A | + |L Ω (J) A | + 1 r |γ|≤2 |α(L Z γ (G)| + |ρ(L Z γ (G)| + |σ(L Z γ (G)|. (5.11)Applying the rst inequality of Lemma 5.3.10 and using this time (5.11) instead of (5.10), we get τ |∇ ∂r (α)|

(5. 21 ) 1 F0 dxds 3 2 ( 1 +

 21131 Thus, in view of the energy estimate of Proposition 5.3.1 and commutation formula of Proposition 5.2.(v, ∇ v z) Z κ f dv v t) (κ P +1)η (5.22)and that the following proposition holds, where [γ] := max(0, 1 -γ T ).Proposition 5.6.1. Let γ and β be such that |γ| + |β| ≤ |κ|, |β| ≤ |κ| -1 andβ P + [γ] ≤ κ P . Then, L Z γ (F ) v, ∇ v Z β f dv v 0 dxds 3 2

0 dxds 3 2 ( 1 +I 2

 312 + z)|ρ(F )| + (τ + + z)|α(F )| z a-1 Z κ f dv v t) (κ P +1)η and + z) |v A | v 0 |σ(F )| + v L + |v A | v 0 |α(F )| z a-1 Z κ f dv v 0 dxds 3 2

(+ v z a Z κ f dvdxds √ t 0 E 0 ( 1 +

 001 τ -+ z)|ρ(F )|(s, x) + (τ + + z)|α(F )|(s, x) + (τ + + z) |v A | v 0 |σ(F )|(s, x) + v L + |v A | v 0 |α(F )|(s, x) [z a Z κ f ](s) 1 + s ds √ t s) κ P η 1 + s E N +9,η N [f ](s)ds

3 2 t 0 ( 1 + 3 2 ( 1 +

 0131 s) (κ P +1)η 1 + s ds 5.6.2 Proof of Proposition 5.6.1 Let γ and β satisfying |β| + |γ| ≤ |κ|, |β| ≤ |κ| -1 and β P + [γ] ≤ κ P . Using Lemma 5.4.1, we need to bound by t) (κ P +1)η , for all Γ ∈ P 0 , the following integrals, |ρ (L Z γ(F ))| + τ + |α (L Z γ (F ))|) v z a ∇ t,x Z β f dv v |σ (L Z γ (F ))| + |α (L Z γ (F ))|) v |v A | + v L v 0 z a ∇ t,x Z β f dv v 0 dxds.

(5. 23 ) 1 + , so I Γ t 0 √ 1 + s Σ b s v z a Γ Z β f dvdxds t 0 E

 231010 According to the pointwise decay estimates (5.20) we have|L Z γ (F )| √ τ -[z a Γ Z β f ](s) 1 + s ds

3 2 ( 1 +

 31 t) (β P +2)η

z 1 2

 1 -η and |v A | v 0 v L (see Lemma 5.2.9), we get

  (τ -|ρ (L Z γ (F ))| + τ + |α (L Z γ (F ))|) v z a ∇ t,x Z β f dv v 0

0 √( 1 + s) 1 v 0 |g| dvdV 2 √ t 0 E

 01120 2.2, it comesI ρ,α + I σ,α t [g](s) (1 + s) 1-η ds + b u=-t √ τ 1-η -Cu(t) v v L v 0 |g|dvdC u (t)du

3 2 ( 1 +

 31 t) (β P +2)η +

3 2 ( 1 +

 31 a ∇ t,x Z β f ](t) t) (β P +1)η + √ E[z a ∇ t,x Z β f ](t)

1 2v 0 z a- 1 2

 11 +η , we have by(5.25) and (5.24), +η Γ Z β f dvdxds

3 2 ( 1 +

 31 t) (β P +2-1)η +

b u=-∞ du τ 3 - 3 2 log 2

 3322 (1+t) i=0 2 i(β P +1)η

3 2 ( 1 + 3 2 ( 1 +

 3131 t) (β P +1)η and we then deduce that I Γ t) (κ P +1)η . Proposition 5.6.3. We have, for all t ∈ [0, T [,

N [f ](t) 2 ( 1 + 2 ( 1

 2121 t) 2-(2β P +5)η + t)

3 2 .L 2 .v 0 Z β f dvdxds 3 2 .

 3222 The cases N -2 ≤ |β| ≤ N are the purpose of Section 5.8.5.7 The energy bound on the electromagnetic eldAccording to the energy estimate of Proposition 5.3.7, commutation formula of Proposition 5.2.6 and sinceE N [F ](0) ≤ , we would obtain E N [F ] ≤ 3 on [0, T [ for small enough if we could prove Z γ (F ) 0ν v v ν v 0 Z β f dv dxds 3 We then x |β| ≤ N , |γ| ≤ N and we denote by (α, α, ρ, σ) the null decomposition of L Z γ (F ). Expanding L Z γ (F ) 0ν v v ν v 0 Z β f in null coordinates,we can observe that it suces to prove that I Using succesively the Cauchy-Schwarz inequality in (s, x), the bootstrap assumption (5.16), the inequality τ + |v A | v 0 z which comes from Lemma 5.2.9 and Proposition 5.6.3, we have I

30 )

 30 2η)β i P T F (G i ) can be written as a linear combination of the following terms.• Those coming from BW , √ z N -(1-2η)β i P L Z ζ (F ) (v, ∇ v W j ) ,with |ξ j | ≤ N -4, Let |ζ| ≤ N and (α, α, ρ, σ) be the null decomposition of L Z ζ (F ). Using Lemma 5.4.1, we can bound (5.30) by terms of the form|L Z ζ (F )| √ z N -(1-2η)β i P Γ Z ξ j f , τ -|ρ| + τ + |α| + τ + |v A | + v L v 0 (|σ| + |α|) √ z N -(1-2η)β i P ∇ t,x Z ξ j f ,(5.31)

(5. 32 )

 32 Then, combine (5.31) with(5.32) and use the inequality τ -v 0 + τ + |v A | + τ + v L z of Lemma 5.2.9 in order to obtain terms involving Y of the expected form.• Those coming from AW , √ z N -(1-2η)β i P L Z γ (F ) (v, ∇ v G j ) , with |β j | < |β i |,|γ| ≤ 3 and β j P + [γ] ≤ β i P .

3 2 ( 1 + 3 2 ( 1 ++ τ 3 -,

 31313 t) η(4N -2[j]+2β i P +[q]) , (5.36) t) η(4N -2[j]+2β i P +[q]) .(5.37) Let us start with(5.36). Since the computations are similar to those of Subsection 5.6.2, we only study certain terms of the integral (they are all descibed in Lemma 5.8.7). Fix 1 ≤ r ≤ p as well as 1 ≤ k ≤ |I| and suppose for instance that |A [r] = [q] + 1.

3 2 ( 1 +

 31 t) η(4N -2[j]+[q]+2β i P ) .Without any sommation in r and by the Cauchy-Schwarz inequality in (x, v) as well as -[r] + 1 ≤ -[j],

-

  

3 2 log 2

 322 (1+t) i=0 2 η(4N -2[j]+2β i P +[r])(i+1)

  Z γ (F ))| + |σ (L Z γ (F ))| + |α (L Z γ (F ))| + τ + τ - |α (L Z γ (F ))| ,where |γ| ≤ N.

By the bootstrap assumption ( 5 . 16 )

 516 and dropping the dependence of α, α, ρ and σ in L Z γ (F ), we have∀ s ∈ [0, T [, ∀ u < b, |ρ| + |σ| + |α| L 2 (Σ b s ) + Cu(s) |α| 2 dC u (s) ≤ E N [F ](s) ≤ 4 .Consequently, using the Cauchy-Schwarz inequality in v, v |Y |dv (1 + s) 2N η τ -2 + τ -1 -and 1 v 0 v L ,

(5. 38 )

 38 By the Cauchy-Schwarz inequality in x and E G (s)(1 + t) 4N η , we get

3 2 1 2

 31 (1 + t) η(2N -[j]+β i P + [q]) .

3 2 ( 1 + 1 2

 311 t) η(2N -[j]+β i P + [q]) .

(5. 40 ) 3 2 ( 1 +

 4031 Combining (5.38), (5.39) and (5.40), we nally obtain, since [j] ≤ N ,I B t) η(3N -[j]+β i P + 1 2 [q])

4N η and v z 2
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	Introduction
	1 Introduction
	1.1	
	L'objectif de cette introduction est de replacer dans leur contexte mathématique les résultats obtenus durant
	cette thèse, qui sont présentés dans la sous-section 1.2.4 ainsi que dans les sections 1.5 et 1.6.
	1.2.3	Méthode de champs de vecteurs pour les équations de transports cinétiques . . . . . .
	1.2.4 1.1 Présentation du système et le problème de l'existence globale
	des solutions

Le système de Vlasov-Maxwell est utilisé an de modéliser des plasmas où aucun choc ne se produit entre les particules. Ces dernières ne sont ainsi soumises qu'à la force électromagnétique de Lorentz E + v × B et la fonction de distribution f k de la k ème famille de particules, ayant pour masse m k et pour charge e k , est alors solution de l'équation de Vlasov

  Leur démonstration ne fournit par contre pas d'estimations sur les dérivées de v f k dv. Pour le champ électromagnétique, ils ont prouvé les inégalités | E|(t, x) + | B|(t, x) (1 + t)(1 + |t -|x|) , |∇ t,x E|(t, x) + |∇ t,x B|(t, x) log(3 + t + |x|) (1 + t)(1 + |t -|x|) 2 mais n'ont pas contrôlé les dérivées d'ordre supérieur.

  sur les densités de particules et il a également réussi à contrôler les dérivées d'ordres supérieurs du champ électromagnétique. Plus précisément il a montré que, pour tout (t, x) ∈ R + × R 3 ,

	∂ α t,x	v∈R 3	f (t, x, v)dv	(1 + t + |x|) 3+|α|
	|∇ α t,x E|(t, x) + |∇ α t,x B|(t, x)	(1 + t)(1 + |t -|x|) 1+|α| .

Soulignons que ces résultats ont été obtenus indépendamment de ceux de cette thèse et requièrent de fortes hypothèses de décroissance polynomiales en x et en v sur les données initiales.

Compte tenu des méthodes utilisées dans cette thèse, nous allons représenter le champ électromagnétique ( E, B) sous forme géométrique par une 2-forme F . Elle est dénie (en coordonnées cartésiennes), par

  1 , e 2 ) est une base orthonormale sur les sphères (t, r) = constante. Les dérivées tangentes au cône de lumière t = r d'une solution d'une équation d'onde se comportent mieux que la dérivée transverse. Plus précisément, on a les inégalités suivantes, valables pour toute fonction u susamment régulière,

	|Lu| ≤	1 1 + |t -r|	Z∈K	|Zu|	et	|Lu| + |e 1 u| + |e 2 u| ≤	1 1 + t + r

Z∈K

|Zu|.

  , v et donc si g est initialement à support compact en (x, v), son support spatial sera de la forme suivante :

		t			t = r
	Support de g		
	3 2	|∂ t,x g|	1 (1 + t)	2 3	|∂ t,x g|

x En particulier, la région où g est non nulle est située loin du cône de lumière, ce qui nous donne

1 (1 + |t -r|) (1.22)

et nous permet alors de prouver que I est une intégrale convergente.

  Comme pour de nombreux résultats de ce type, la démonstration est basée sur le principe de continuité. Par des arguments classiques, on peut montrer que le problème est bien posé et qu'il existe une unique solution maximale dénie sur [0, T 0 [, avec T 0 > 0. De plus, il existe une certaine constante C > 0 et un temps maximal T * > 0 tel que pour tout t ∈ [0, T

* [,

  ) so that ∂ v f essentially behaves like t∂ µ f , which is consistent with the behavior of solutions to the free

	transport equation. This leads us to estimate		
	t			
		(s + |x|)|L Z (F )∂f |dvdxds.			(2.9)
	0	x v		
	As a solution to a wave equation, L Z (F ) only decays near the light cone as	(1+t+|x|) 1	2 n-1	and we cannot
	prove by a naive estimate that, in dimensions n ≤ 5, (2.9) is uniformly bounded. However, if f is initially
	compactly supported, one can expect (for, say, suciently small data) the characteristics of the transport
	equation to have velocities bounded away from 1, and thus the Vlasov eld support (in x) to be ultimately
	remote from the light cone. Now, assuming enough initial decay on the Maxwell eld, one can prove that

  Throughout this article we work on the n + 1 dimensional Minkowski spacetime (R n+1 , η) and we consider two types of coordinates on it. The Cartesian coordinates (t, x), in which η = diag(-1, 1, ..., 1), and null

	2.2 Notations and preliminaries	
	2.2.1 Basic notations	
	coordinates which are dened by	
	u = t -r,	u = t + r,
	and spherical variables (B, C, D, ...) (always denoted by capital Latin letters

  It then gives an ordering on k 1 too. If k 0 = {z i / 1 ≤ i ≤ |k 0 |} and β ∈ {1, ..., |k 0 |} r with r ∈ N * , we denote z β1 ...z βr by z β . In view of the above denitions of the vector elds and weights, we are naturally brought to dene the following weighted L 1 and L 2 norms. Denition 2.2.11. Let u : [0, T [×R n → R be a smooth function. For k ∈ N, we dene for all t ∈ [0, T [,

	2.2.5 Decay estimates	
	Norms	
	With the vector eld method, the pointwise decay estimates are obtained through weighted Sobolev inequal-
	ities. u K,k (t) :=	n
		µ=0 |β|≤k

  rst estimate follows from Corollary 2.2.26, Remark 2.2.27 and Proposition 2.3.1, applied to Z β g for |β| ≤ N . For the second one, apply the same results to (v 0 ) 2 Z β g and note that

	s)ds,
	with Z δ ∈ P |δ| 0 , Z β ∈ P |β| 0 and Z γ ∈ K |γ| .
	Proof.

The

  order to bound the energy of the electromagnetic eld F (see Proposition 2.3.21 below), we consider the following norms. Denition 2.3.10. Let A be a suciently regular 1-form dened on [0, T [×R n . We dene, for N ∈ N and all t ∈ [0, T [,

  ∂ t as a multiplierAs we use here the multiplier ∂ t , we work with T [G] µ0 . Applying the divergence theorem to T [G] µ0 on [0, t] × R n and V u (t), we obtain the following result.

	Proposition 2.3.15. For all t ∈ [0, T [,
		t
			G 0µ J µ dxds
		0	Σs
	and	
	√	2 sup
		u≤t Cu(t)

Σt

|α| 2 + |α| 2 + 2|ρ| 2 + 2|σ| 2 dx = Σ0 |α| 2 + |α| 2 + 2|ρ| 2 + 2|σ| 2 dx + 4

  which are solutions to the homogeneous relativistic transport equation. Let (t, x) ∈ [0, T * [×R n such that t ≤ |x| and |x| ≥ 1. By Theorem 2.2.13, we have

  In this case we cannot use Proposition 2.6.3 anymore. As |β 2 | ≤ n 2 , we can however use the pointwise estimates on the velocity averages of v 0 z b Z β g given by(2.42). This time, we only have to bound the rst terms of (2.46)-(2.52).Again, we start by studying the good terms. Let us denote again α, ρ or σ by ζ . Then, according to Denition 2.3.20, for all

  [Proof of Proposition 2.6.7] As mentionned earlier, for |β| ≤ M -1, the estimate ensues from Proposition 2.6.6 and Lemma 2.4.1. If M ≤ |β| ≤ N , as there exists

  ,

	(2.60)
	with |β|, |γ|, |δ| ≤ N and 1 ≤ k ≤ K. Then, if we could prove that each integrals of (2.60) is bounded by
	3 2 χ(t), we would have, for small enough and if the constant

  start by bounding the integrals involving the potential. Using Proposition 2.2.19 and the Cauchy-Schwarz inequality, we have, for |δ| ≤ N ,

	t	
	0	Σs

  The massless Vlasov-Maxwell equations 2.7.1 Global existence for small data The aim of this section is to prove Theorem 2.1.5. We then consider the massless Vlasov-Maxwell system (2.1)-(2.3), with at least two species24 , in dimension n ≥ 4. This means that K ≥ 2 and m k = 0 for all 1 ≤ k ≤ K.To simplify the notation, we denote, during this chapter, E 0 M [f ] by E M [f ] and E 0 M,1,0 by E M,1 . In view of Denition 2.3.2 and 1 ∈ k 0 , we have

is small enough and the constant C is large enough. We then improve the bootstrap assumption (2.39).

2.7

  gives us the improvement.2.7.3 Step 1: Decay estimatesBy the Klainerman-Sobolev inequality of Theorem 2.2.13 and the bootstrap assumption (2.65), we have

  .7.[START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] Step 2: the Vlasov elds vanishes for small velocities

	We recall that

[START_REF] Bieri | Asymptotic properties of solutions of the Maxwell Klein Gordon equation with small data[END_REF]

. The alternative estimate on α is useful to avoid a τ + -loss when n ≤ 5 and is particularly used in Section 2.7.6. Remark 2.7.4. We also have pointwise decay estimates if |β| ≤ N -n+2 2 but the one on α is worse near the light cone (see Proposition 2.4.16).

2

  .7.5 Step 3: Improving the Energy estimates for the transport equations We x for all this section 1 ≤ k ≤ K. According to Proposition 2.3.3, E N [f k ] ≤ 3 log * (3 + t) on [0, T ], for

	small enough, follows from		
	t		
	0	Σs v	
		1 v 0	z∈k0	|z|

z∈k0 |z| because these quantities are always multiplied by Z β f k .

2

  each of the rst terms of (2.72)-(2.75) are bounded by

			t
				τ -|ζ|
		Z∈ P0	0	Σs
	where we use in particular (2.80) and the fact that	1 v 0	1 on the support of g. Using the bootstrap assumption
	(2.65), we obtain		
	t		
	0	Σs	

v |z b Zg|dvdxds,

  by Proposition 2.2.9 and as τ + |α|

				√
			n-3	, we have, by the Cauchy-Schwarz inequality
		τ	+	2	τ-
	(in (s, x, v)), that (2.81) is bounded by the product of		
	t			
	0	Σs		

  2 estimates for v∈R n |G|dv thanks to the estimates on v∈R n |Y |dv and on E[|KKY | ∞ ].

  The rst inequality ensues from the second one since 1 + t ≤ τ + . If |β| ≤ N -2n, we only have to use the pointwise estimate (2.66) and Lemma 2.4.1. If |β| > N -2n, recall that there exists

  then only remains to consider G i . Recall that by Proposition 2.2.9 and Lemma 2.7.8,

  Let us show (2.89) rst. Using Proposition 2.7.13 and the bound on E N [A], we have

					3 2 (1 + t) η if we prove that
		t		|B L J L |dxds	3 2 (1 + t) η ,		(2.88)
		0	Σs					
	t	|B L J L |dxds	3 2	and	t	|B D J D |dxds	3 2 .	(2.89)
	0	Σs			0	Σs		

  L and we keep J L in L 1 -norm. By Lemma 2.4.18, we have

		|B L (t, x)|	+ τ 2 χ(t)(1 + t) η n	,
	which implies		
	t		
	0	Σs	

3 2 (1 + t) η . Hence, if is small enough and C large enough, we have E S N [F ] ≤ C (1 + t) η for all t ∈ [0, T ]. In view of the above, E S N -2n [F ] ≤ C on [0, T ], for small enough, would follow if we improve the bound in (2.88) from 3 2 (1 + t) η to 3 2 , when |β| ≤ N -n+2 2 . To do this, we use a pointwise estimate on B

  now x t ∈ [0, T [. (X η (., t), V η (., t)) is well dened on a neighborhood of t and we have, denoting v

			|v| by
	v,		
	dX η (., t) ds	(s) = V η (s),	(2.92)

  x η ∈]0, T [. Noting, by(2.92), that|X η (s, t) -u| ≤ |t -s| ≤ T,we obtain by Proposition 2.8.6, as X η and u are collinear, that E(s, X η (s, t)) = E 1 (s, X η (s, t)) u. Hence, if t ∈ [0, T [, only two situations can occur. Either (X η (., t), V η (., t) is well dened on [0, t], or there exists τ η (t) < t such that lim

	t	s	E 1 s , 1 -	t -s √ n	u ds

s→(t-τη(t)) + V η (s, t) = 0,

and the characteristic is well dened on ]t -τ η (t), t]. Now, consider g η : (s, t) → η + so that, by Lemma 2.8.7, if t ∈]0, T [ and s is near to t, g η (s, t) is equal to

  ds , is small enough, there exists t ∈]0, T [ such that g η (., t) vanishes in t -τ η (t). Let t 1 be a such time and let t 2 > t 1 . We have

	we have	∂g η ∂t	(s, t) ≤ -4,

so that g η (s, .) is strictly decreasing on [s, T [. Moreover, by the bounds given on E 1 in Proposition 2.8.6, if t < η M0 , g η (., t) does not vanish on [0, t] and vanishes exactly one time, in t -τ η (t), if t ≥ η 5 . Then, if η

  and t → t -τ η (t) strictly increases on [T η , T [, vanishes in T η and tends to zero as t → T η . The fact that t → t -τ η (t) is in C 1 (]T η , T [) follows from the implicit function theorem, as g η (t -τ η (t), t) = 0 Furthermore, dropping the dependance in t of τ η ,

	and	∂gη ∂s (s, t) ≥ 5.

  w)|dw .

	On the other hand, note rst that for s < T and |x|, |y| ≤	√	n + 2T , we have, by the local Lipschitz
	property of the electromagnetic eld (2.91),		

|E(s, x) -E(s, y)

  2.96) tends uniformly to zero in s, on [0, t]. As, by (2.97),

		s t-τη(t)	5 2|V η,t (w)|	dw ≤	5 2b	log 1 +	b max(t -τ η (t), τ η (t)) a	,
	we have, since max(t -τ η (t), τ η (t)) ≤ t,							
	exp	s t-τη(t)	5 2|V η (w)|	dw ≤ exp	2b -5 2b	log( ) +	5 2b	log	+	bt a	.
		lim →0	max s∈[0,t]	exp	s t-τη(t)	L +	5 2|V η (w)|	dw = 0,

We then deduce, as 2b > 5, that which implies the result. Dierenciating (2.94) in t for t < T η gives us

  is dened on ]T η , T [ and takes its values in [ 4 M0 ,M0+1 5 ]. Hence, there exists a sequence (t n ), with t n → T η , such that,

	Recall from Proposition 2.8.8 that t →	∂(t-τη) ∂t	(t)

  3.1.1 is based on energy and vector eld methods and essentially relies on bounding suciently well the spacetime integrals of the commuted equations. The solutions of the massless Vlasov equation enjoy improved decay estimates in the null directions. More precisely, one can already see that with the following estimate (see Lemma 3.2.11 and Proposition 3.3.6), for g a solution to the free transport equation

  Integrating each side of these inequalities over S 2 and applying Proposition 3.3.5 to the right hand sides, we Finally, multiply both side of the inequality by t 2 and use τ + t ≤ 2r on the domain of integration in order The case t ≤ 1 can be treated similarly, repeating the arguments of Steps 1 and 2 since in that case τ 2

					2					
				|f |(t, rω, v)dv	dr				
		1 2 ≤r≤t+ 1 2	v			|κ|≤1	t-5 8 ≤r≤t+ 5 8		
	get									
					2					
		τ -		|f |(t, rω, vdv	dS 2 dr				| Z κ f |(t, rω, v)dv dS 2 dr
	1 2 t≤r≤ 3 2 t ω∈S 2		v			|κ|≤2	3 8 t≤r≤ 13 8 t ω∈S 2		v
	to obtain									
				2							2
	1 2 t≤r≤ 3 2 t ω∈S 2	τ 2 + τ -	v	|f |(t, rω, vdv	dS 2 r 2 dr	|κ|≤2	3 8 t≤r≤ 13 8 t ω∈S 2	v	| Z κ f |(t, rω, v)dv dS 2 r 2 dr	. (3.17)
	The result then follows from (3.15), (3.16) and (3.17).			

v | Z κ f |(t, rω, v)dv dr 2 . 2 . + τ -(1 + r) 3 and

  3 4 t) . |Z β (U µν )|, it suces to prove the result for each component of the tensor and we can assume that U is a scalar function. Let (t, x) ∈ [0, T [×R 3 such that |x| ≤ 1 + 1 2 t. Apply a standard L 2 Sobolev inequality to V : y → U (t, x + 1+t 4 y) and then make a change of variables to get

	Proof. As |L Z γ (U )|	|β|≤|γ|	µ,ν

  3 . If |x| ≤ 1 + 1 2 t, the result follows from Proposition 3.3.11. We then suppose |x| ≥ 1 + t 2 . During this proof, Ω β will always denote a combination of rotational vector elds, i.e. Ω β ∈ O |β| . Let ζ be either α, ρ or σ. As ∇ ∂r and L Ω commute with the null decomposition (see

	Lemma 3.3.8), Lemma 3.3.12 gives us
	r 4 τ -|ζ| 2	2 +1 |y|≥ t	|rζ| 2 O,2 +τ 2 -|∇ ∂r (rζ)| 2 O,1 dy

  3.6.1 Proof of Proposition 3.6.1 Let z ∈ k 0 , |ζ| ≤ N -2, |γ| ≤ N -2 and |ξ| ≤ N -3. Using successively Lemma 3.6.3, that 1 ≤ v 0 on the support of f (see (3.32)), that [0, t] × R 3 can be foliated by (C u (t)) u≤t (see Lemma 3.2.13) and E 2 N -2 [f ] ≤ 4 , which comes from the bootstrap assumption (3.23), we have,

  , and two vector valued elds R and W of respective length |I 1 | and |I 2 | such that

  Proof. Let T 0 ∈ [0, T [ the largest time such that E G (t) log 2 (3 + t) for all t ∈ [0, T 0 [. By continuity,

.36) Proposition 3.7.8. If is small enough, we have E G (t) log 2 (3 + t) for all t ∈ [0, T [.

  Thus, as s ≤ t ≤ s + s Lemma 3.A.3. Suppose that s ∈ C δ 4K and let t * (s) be equal to inf{t ∈ [s, t 1 ] / t /

				3 4 and 2K ≥ 2 + 2δ (see (3.42)), it comes, for small enough,	
	4K s 1 4	-	C 0	√	+ 2 + δ s	|t -s| ≥	4K -C 0 s √ 1 4	-2 -δ	>	2K 4 t 1	,	so that	t ∈ B 2K .
	and t * (s) = t 1 otherwise. Then,							∈ C 2δ 2K } if it is well dened

  .49) Combining (3.46), (3.47) and (3.48), we get g 2 (t, x, v) = 0. Using (3.49) and |V w,s

	0

  integrations by parts (in x and in v) gives us, as H is a 2-form,

  It remains to study x i ζ H i for ζ ∈ {α, α, σ}. Let us treat together the case of α and α by computing x i H i A0 and x i H i Ar .

  dv, and it remains to combine it with (4.19). When t ≤ r, one can use rX k = tX k + (r -t)X k and Lemma 4.3.6. Remark 4.3.21. If moreover |Φ| log 2 (1+τ + ), one can prove similarly that, for

  |β| -1 and p + k P + σ P ≤ β P . Proof. The result follows from an induction on |β|, Proposition 4.3.19 (which treat the case |β| = 1) and

  w ∈ k 1 in front of |∇ t,x g| and where the terms Y ∈Y0 |Y g| will force us to estimate a weight z ∈ k 1 by τ + (see Proposition 4.3.31 below).4.3.5 Source term of TF (z j P ξ (Φ)Y β f )In view of Remark 4.3.24, we will consider hierarchised energy norms controling, for

  use the inequality (4.13) of Proposition 4.3.7 to compensate the weight τ + . The only dierence is that it brings a weight w ∈ k 1 . To handle it, use |z j w| ≤ |z| j+1 +|w| j+1 and

  Denition 4.4.2. Let N ∈ N. We dene, for t ∈ [0, T [,

	E 0 [G](t) :=	|α| 2 + |α| 2 + 2|ρ| 2 + 2|σ| 2 dx + sup
	Σt	u≤t Cu(t)

  T 00 = τ -|α| 2 + |α| 2 + 2|ρ| 2 + 2|σ| 2 , 4T 0ν S ν = (t + r)|α| + (t -r)|α| + 2t(|ρ| + |σ|), 2τ -T L0 = τ -|α| 2 + |ρ| 2 + |σ| 2 , 2T Lν S ν = (t + r)|α| 2 + (t -r)|ρ| 2 + (t -r)|σ| 2 ,and then add twice (4.36) to (4.37). The second estimate then follows and we now turn on the last one.

	.37)
	Using Lemma 4.2.3 and 2S = (t + r)L + (t -r)L, notice that
	4τ -

  .38) By Lemma 4.2.3, we have 4T 00 = |α| 2 + |α| 2 + 2|ρ| 2 + 2|σ| 2 , so that

  .[START_REF] Patel | Three new results on continuation criteria for the 3d relativistic vlasov-maxwell system[END_REF])Not now that T L0 + T Lν S ν ≥ τ + |α| 2 + τ -|ρ| 2 + τ -|σ| 2 if u ≥ 0 since 2T L0 = |α| 2 + |ρ| 2 + |σ| 2 and 2T Lν S ν = (t + r)|α| 2 + (t -r)|ρ| 2 + (t -r)|σ| 2 .

	It then remains to take the sup over all 0 ≤ u ≤ t in (4.40), to combine it with (4.38), (4.39) and to remark
	that			
	2	T L0 + T Lν S ν dC 0 (t) ≤	|ρ| 2 + |σ| 2 dC 0 (t) +	τ + |α| 2 dC 0 (t)
	C0(t)	C0(t)	C0(t)	
		≤ E S,u≤0 [ G](t),	

since G = G on C 0 (t).

.

  Remark 4.4.6. This inequality is suitable for us since we will bound P X Moreover, observe that Y κ contains at least a translation if |κ| = 3, which is compatible with our hierarchy on the weights z ∈ k 1 (seeRemark 4.3.24).Proof. Let (t, x) ∈ [0, T [×R n . Consider rst the case |x| ≤ 1+t 2 , so that, with τ := 1 + t, Repeating the argument for y 2 and the functions v P X ξ (Φ)Y β gdv and v z∂ p t gdv, it comes, as |z| ≤ 2t in the region considered and dropping the dependence in (t, x + τ (y 1 , y 2 , 0), v) of the functions in the integral, Repeating again the argument for the variable y 3 , we nally obtain It then remains to remark that P X ζ (Φ) log 3M1 (3 + t) on the domain of integration and to make the change of variables z = τ y. Note now that one can prove similarly that, for a suciently regular function h, Then, since ∂ ω1 ( and ∂ ω2 ) can be written as a combination with bounded coecients of the rotational vector elds Ω ij , we can repeat the previous argument. Finally, let us suppose that 1+t 2 ≤ |x|. We have, using again Let z ∈ k 1 and j ∈ N. Then, for all (t, x) ∈ [0, T [×R 3 ,

	v	|g|(t, x, v)dv	|ξ|+|β|≤3	|ζ|+|κ|≤3	|y|≤ 1 4	v	|P X ξ (Φ)Y β g| +	log 21 (3 + t) 1 + t	|zP X ζ (Φ)Y κ g|dv(t, x + τ y)dy.
					z∈k1			|κ|≤2+κ T
	v	|h|(t, r, θ, φ)dv	|ξ|+|β|≤2	|κ|≤min(1+κ T ,2) S 2 v	|P X ξ (Φ)Y β h| +	log 14+2M1 (1 + τ + ) τ +	|zY κ h|dvdS 2 (t, r).
					z∈k1				
										(4.41)
	Indeed, by a one dimensional Sobolev inequality, we have
										1
					|f |(t, r, θ, φ, v)dv	(∂ ω1 )	r	|f |(t, r, θ + ω 1 , φ, v)dv dω 1 .
					v					r=0 ω1	v
	Lemmas 4.3.6 and 4.3.20,				
										+∞
	|x| 2 τ -	|g|(t, x, v)dv = -|x| 2	∂ r τ -	|g|(t, r, θ, φ, v)dv dr
	ξ (Φ)Y β g v |g|(t, r, θ, φ, v)dv r 2 dr L 1 without any growth x,v log 7 (3 + t) τ -∂ r |w∂ p t g| (t, r, θ, φ, v)dvr 2 dr. 1 + t , τ ≤ 10(1 + |t -|x + τ y||). v +∞ |g|(t, r, θ, φ, v)dvr 2 dr + |x| v |x| in t. ∀ |y| ≤ v +∞ |x| ≤ |ξ|+|β|≤1 +∞ 0 v |P X ξ (Φ)Y β g| + w∈k1 1 p≤1 4 For a suciently regular function h, we then have, using Lemmas 4.3.6 and then 4.3.20, It then remains to apply (4.41) to the functions P X ξ (Φ)Y β g and z∂ p t g and to remark that |z| ≤ 2τ + .
	∂ y i A similar, but more general, result holds. |h|(t, x + τ y, v)dv = τ ∂ i	|h|(t, x + τ y, v)dv
	v Corollary 4.4.7. v∈R n |z| j |g(t, x, v)|dv	v (1 + |t -|x + τ y||)∂ i Z |h|(t, x + τ y, v)dv v |h|(t, x + τ y, v)dv + τ -w∈k1 τ 2 1 min(3,j)
										Z∈K	v
										|ξ|+|β|≤1	z∈k1 v	|P X ξ (Φ)Y β h| +	log 7 (1 + τ + ) τ +	|z∂ p t h| (t, x + τ y, v)dv.
										p≤1
	Using a one dimensional Sobolev inequality, it comes, for δ = 1 4 √	3	(so that |y| ≤ 1 4 if |y i | ≤ δ for all 1 ≤ i ≤ 3),
					1				
			|g|(t, x, v)dv						∂ y 1	n	|g|(t, x + τ (y 1 , 0, 0), v)dv dy 1
	v			n=0 |y 1 |≤δ	v
					|ξ|+|β|≤1	|y 1 |≤δ v	|P X ξ (Φ)Y β g| +	log 7 (3 + t) 1 + t	|z∂ p t g| (t, x + τ (y 1 , 0, 0), v)dvdy 1 .
					p≤1	
					z∈k1	
	v	|g|(t, x, v)dv	|ξ|+|β|≤2	|ζ|+|κ|≤2	|y 1 |≤δ |y 2 |≤δ v	|P X ξ (Φ)Y β g| +	log 14 (3 + t) 1 + t	|zP X ζ (Φ)Y κ g|dvdy 1 dy 2 .
					z∈k1		|κ|≤1+κ T

  |Z β (U µν )|, we can restrict ourselves to the case of a scalar function. Let t ∈ R + and |x| ≤ 1 + 1 2 t. Apply a standard L 2 Sobolev inequality to V : y → U (t, x + 1+t 4 y) and then

									3 4 t) .
	Proof. As |L Z γ (U )| µ,ν make a change of variables to get |β|≤|γ|						
	|U (t, x)| = |V (0)|	|β|≤2	∂ β x V L 2 y (|y|≤1)	1 + t 4	-3 2	|β|≤2	1 + t 4	|β|	∂ β x U (t, .) L 2 y (|y-x|≤ 1+t 4 ) .
	Observe now that |y -x| ≤ 1+t 4 implies |y| ≤ 2 + 3 4 t and that 1 + t τ -on that domain. By Lemma 4.3.6
	and since [Z, ∂] ∈ T ∪ {0}, it comes						
	(1 + t) |β|+ 1 2 ∂ β x U (t, .) L 2 y (|y-x|≤ 1+t 4 )						

  1 of [6] for a proof. Concretely, it means that L Ω , for Ω ∈ O, ∇ ∂r , ∇ L and ∇ L commute with the null decomposition.Lemma 4.4.14. Let Ω ∈ O. Then, denoting by ζ any of the null component α, α, ρ or σ,

  1 2 t, τ -≤ τ + ≤ 2+2t so the result immediately follows from Lemma 4.4.12. We then focus on the case |x| ≥ 1 + t 2 . During this proof, Ω β will always denote a combination of rotational vector elds, i.e. Ω β ∈ O |β| . Let ζ be either α, ρ or σ. As, by Lemma 4.4.14, ∇ ∂r and L Ω commute with the null decomposition, we have, applying Lemma 4.4.13,r 3 τ -|ζ| 2 Z γ (G)| 2 + rτ 2 -|ζ(L Ω β (∇ ∂r G))| 2 dy. ∇ ∂r commute with L Ω and since ∇ ∂r commute with the null decomposition (see Lemma 4.4.14), we have, using 2∂ r = L -L and (4.14),

	|y|≥ t 2 +1	| √	rζ| 2 O,2 + τ 2 -|∇ ∂r (	√	rζ)| 2 O,1 dy	|γ|≤2	2 +1 |y|≥ t	r|ζ(L
						|β|≤1		

As

  .46) Combining(4.45) and (4.46), we would then obtain the inequality on |Y β Φ|, if we would have it on Z σ Φ for all |σ| ≤ |β|. Let us then prove that the result holds for Z β Φ and suppose, for simplicity, that Φ = Φ k

	Z	, with

  2 (1 + τ + (s, y)) and we can then improve the bootstrap assumption on ∇ t,x Φ if C is choosen large enough and small enough. It remains to study Y Φ with Y ∈ Y 0 . Using Lemma 4.3.19, T F (Y Φ) can be bounded by a linear combination of terms of the form

  √(see Proposition 4.6.2) and we can obtain|ς 1 | + |ς 2 | (

	√	+ C ) log	7 2

  |β| -1 and p + κ P ≤ β P .To deal with (4.66), use the induction hypothesis, as κ P < β P . For the other terms, recall from Lemma 4.3.30 that we can schematically suppose that Γ κ Φ = P q,n (Φ)Y ζ Φ, |q| ≤ |β| -2 and n + q P + ζ P = κ P . (4.67) in null coordinates and transforming the v derivatives with Lemma 4.3.27 or v 0 ∂ v i = Y i -ΦX -x i ∂ t -t∂ i , we obtain the following bad terms,

	(4.67)
	Expressing

with |q| + |ζ| ≤ |β| -1,

  t,x Y ζ Φ. If ζ P < β P , we can treat them using again the induction hypothesis. Otherwise p+n = 0 and we can follow the treatment of (4.63). Finally, the fact that R(|β|, β P ) is independent of M if |β| ≤ N -6 follows from Remark 4.7.2 and that we merely need pointwise estimates on the derivatives of F up to order N -5 in order to bound Y ξ Φ, with |ξ| ≤ N -6.Remark 4.7.6. There exist (M 1 , M 2 ) ∈ N 2 , with M 1 independent of M , such that, for all p ≤ 3N and(t, x, v) ∈ [0, T [×R 3 × R 3 ,We are now able to apply the Klainerman-Sobolev inequalities of Proposition 4.4.5 and Corollary 4.4.7. Combined with the bootstrap assumptions (4.49), (4.51) and the estimates on the Φ coecients, one immediately obtains that, for all (t, x) ∈ [0, T [×R 3 and z ∈ k 1 ,

	4.8 Improvement of the bootstrap assumptions (4.49), (4.50) and
	(4.51)		
	|P k,p (Φ)|(t, x, v) log M1 (1 + τ + )	and	|P k,p (Φ)|(t, x, v) log M2 (1 + τ + ).
	|k|≤N -6	|k|≤N -4	
			v)dv	log (j+|ξ|+|β|+3)a (3 + t) τ 2 + τ -	,
				(4.68)

∀ max(|ξ| + |β|, |ξ| + 1) ≤ N -6, j ≤ 2N -ξ P -β P , v |z j P ξ (Φ)Y β f |(t, x,

  1, Corollaray 4.6.3 and since ξ 0 and ξ 2 play a symmetric

	role, we could improve (4.49)-(4.51), for	small enough, if we prove that
	t	
	0	Σs v

  Subsection 4.8.2 (respectively 4.8.3) is devoted to the study of the expressions of the other categories for which the electromagnetic eld is derived less than N -3 times (respectively more than N -2 times). Finally, we treat the more critical terms in Subsection 4.8.5. In Subsection 4.8.4, we bound E X N [f ], E X N -1 [f ] and we improve the decay estimate of v (v 0 ) -2 |Y β f |dv near the light cone.

  Recall now the denition of (t i ) i∈N , (T i (t)) i∈N and C i u (t) from Subsection 4.2.4. By the bootstrap assumption (4.51) and 2η < 1

		8 , we have
	E[h](s)	(1 + s)	1 8

  1 + t i+1 ≤ 2(1 + t i ) and Lemma 4.2.7,

	√	t	E[h](s)
	0		(1 + s)

  Thus, by Lemma 4.2.4 and (4.68), we have, for all (t, x) ∈ [0, T [×R 3 ,

  1 |+|β|)a (3 + t).

	(4.72)
	Using Remark 4.2.5, we have,

  4.8.9. Note that these estimates are sucient to improve the bootstrap assumptions (4.50) and (4.51). Indeed, • the case |ξ 2 | = N -1 concerns only the study of E N [f ]. Even if the bound on I 2 3 + I 1 3 , when |ξ 2 | ≤ N -2 could seem to possess a factor log 3a (3 + t) in excess, one has to keep in mind that |γ| ≥ N -2, so |ξ 1 | + |β| ≤ 3 and |ξ 0

	1 3 + I 2 3	3 2 (1 + t)	3 4 η .

Remark

•

  , (4.75) ensues from Propositions 4.8.1, 4.8.2 and 4.8.7. E X N -1 [f ] can be estimated similarly since we also control quantities such as

  .8.5 The critical termsWe nally bound I 4 , dened in Proposition 4.8.10, when |γ| = N , which concerns only the improvement of the bound of the higher order energy norm E N [f ]. We keep the notations introduced in Subsection 4.8.3 and we start by precising them. Using the properties of the terms of (category 3), we remark that we necessary have

  one can use inequality (4.15) of Proposition 4.3.7 and |v A

  -β 0 P . Then, we divide [0, t] × R 3 in two parts, V 0 (t) and its complement. Following the proof of Proposition 4.8.10, one can prove, as E Ext N [ F ] and |L Z γ

3 4 η , as I 1 1 , I 3 1 , I 1 3 and I 2 3 in Propositions 4.8.7 and 4.8.8. Otherwise, ξ 0 P = N -1 and q ≤ N -ξ 2 P -β 0 P so that we take i 2 ≤ 2N -1 -2ξ 2 P -β 0 P and i 1 ≤ 1

  4 in two integrals. The one associated to w∈k1 |w|(|σ| + |α|) + |α| + τ + |ρ| + τ -|α|), I 4 , we have

	can be bounded by	3 2 as I 1 1 in Proposition 4.8.7 since i 1 + 1 ≤ 2N -1 -β 0 P . For the one associated to
	(τ	

  avoid us to close energy estimates on E N [F ] and overlineE N [f ].• Similarly, it was crucial to have a better bound on E Ext N [G](t) than (1 + t) η as the decay rate given by Proposition 4.8.11 on v Y β 0 f dv (v 0 ) 2 is weaker, in the t + r direction, outside the light cone.

	Note that Propositions 4.8.2, 4.8.3, 4.8.5, 4.8.7, 4.8.8 and 4.8.10 also prove that

  R 1 and R 2 be two vector valued elds, of respective length |I 1 | and |I 2 |, such that

	2 2 , ..., β 2 |I2| },

and

  2 , such that E[KKR 2 ] do not grow too fast, and then to take advantage of the pointwise decay estimates on v |R 2 |dv in order to obtain the expected decay rate

	on	v |G|dv L 2

x . Remark 4.9.3. As in

[START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF]

, we keep the v derivatives in the construction of H and G. It has the advantage of allowing us to use Lemma 4.3.27. If we had already transformed the v derivatives, as in

[START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF]

, we would have obtained terms such as x θ ∂g from (∇ v g) r . Indeed, Lemma 4.3.27 would have led us to derive coecients such as x k |x| and then to deal, for instance, with factor such as t 3 |x| 3 (apply three boost to x k |x|

  be bounded by a linear combination of the following terms, where

	p ≤ 3N,	max(|k| + 1, |γ|) ≤ 8,	|κ| ≤ |β| + 1,	|β 1 l | ≤ |β 1

i | and |κ| + |β 1 l

  all terms of (category 0 -H)-(category 2 -H) are bounded by δ = 0, we only have to deal with terms of (category 0 -H) and (category 1 -H) and to estimate their integrals by 3 2 log 2j (3+t). In view of Remark 4.9.6, we only have to apply (or rather follow the computations of ) Propositions 4.8.1, 4.8.2 and 4.8.3. The pointwise decay estimates then ensue from the Klainerman-Sobolev inequality of Corollary 4.4.8. Remark 4.9.8. A better decay rate, log 2j

	3 2 log j(a+2) (3 + t).

If

  It prevents us to expect a better estimate than E L (t) log 4N +12 (3 + t). Lemma 4.9.13. We have, for M 0 = 4N + 12 and if small enough, E L (t) log M0 (3 + t) for all t ∈ [0, T [. Proof. We use again the continuity method. Let T 0 ∈ [0, T [ be the largest time such that E L (t) ≤ 2 log M0 (3 + t) for all t ∈ [0, T 0 [ and let us prove that, if is small enough,

∀ t ∈ [0, T 0 [, E L (t)

  Corollary 4.9.15. For all t ∈ [0, T [, we have |β|≤N -2 r Using τ + |v A | v 0 z∈k1 |z| and rewritting Z β in terms of modied vector elds through the identity (4.35), one has

	This proposition allows us to improve the bootstrap assumption (4.52) if	is small enough. More precisely,
	the following result holds.				
	3 2	v	v A v 0 Z β f dv	L 2 (Σt)	.
	Proof. |β|≤N -2				

Let t ∈ [0, T [.

  If |β| ≤ N -3 and |q| ≤ N -2, then by the Cauchy-Schwarz inequality (in v), (4.76) as well as Propositions 4.7.4 and 4.8.11,

  Lemma 4.10.1. Let G be a 2-form and g a function, both suciently regular and recall that J(g) ν = -. Then, using several times Lemma 4.2.4 and Remark 4.2.5,

	v	v ν v 0 gdv, S

L τ + and S L τ

  Using Proposition 4.4.3 and commutation formula of Proposition 4.3.40, we have, for all t ∈ [0, T ],

	4.10.1 For E 0 N [F ]

  We x |k| + |β| ≤ N , p ≤ N and |γ| ≤ N and we denote again P k,p (Φ)Y β f by g. Using successively Lemma 4.10.1, the Cauchy-Schwarz inequality, the bootstrap assumption (4.54) and Proposition 4.9.14, it comes|S µ L Z γ ( F ) µν J(P k,p (Φ)Y β f ) ν |dxds

	0	t	Σ 0 s	0	t	Σs	|ρ| + |α| +	√ τ -√ τ +	|α|	w∈k1 v	|wg| dvdxds.
				w∈V		0	t	E Ext N [F ](s)	1 √ τ + v	|wg| dv	L 2 (Σs)	ds
				3 2		0	+∞	ds (1 + s)	4 5		3 2 .
	Using Proposition 4.5.1 and iterating commutation formula of Proposition 4.3.36, we have,

  dv dxds,

									with	|γ|, |ξ| + |β| ≤ Q,	(4.81)
	I 2 :=	0	t	|x|≤s	S	µ L Z γ (F ) µν	v	z τ +	P k,p (Φ)Y β f dv dxds,

with |γ|, |k| + |β| ≤ Q, z ∈ k 1 , (4.82)

0 ≤ ν ≤ 3 and p ≤ 3N . Fix |γ| ≤ Q and denote the null decomposition of L Z γ (F ) by (α, α, ρ, σ). We start by (4.82), which can be estimated independently of Q. Recall that S L τ + and S L τ -, so that, using Proposition 4.9.14 and the bootstrap assumption (4.56),

  We now turn on (4.81) and we then consider |ξ| + |β| ≤ Q. Start by noticing that, by Lemma 4.10.1,

	5	ds	3 2 .
	4		

  Proposition 5.3.11. For all (t, x) ∈ V b (T ), we have|ρ|(t, x) + |σ|(t, x) + |α|(t, x) [G](t) + |β|≤1 rL Z β (J) A L 2 (Σ b

	E b 2 [G](t) 1	,	and	|α|(t, x)	E b 2 t ) 3
	τ + τ	2 -				τ	2

+

.

  Otherwise we necessarily have |β| ≤ 1 and we can use the estimate(5.18) on the Vlasov eld.If |γ| ≤ N -2Suppose rst that β P < κ P , which implies a + 1 2 -η ≤ 1 2 (N -(1 -2η)β P ). The bootstrap assumption(5.15) then givesE[z a Γ Z β f ](t) (1 + t) (β P +2)η and E[z a+ 1 2 -η ∇ t,x Z β f ](t) (1 + t) (β P +1)η .

  merely gives usE[z a-1 2 +η Γ Z β f ](t) (1 + t) (β P +2)η and E[z a ∇ t,x Z β f ](t) (1 + t) (β P +1)η .Applying Lemma 5.3.8 and using again 1√ v 0 v L , |v A | √ v 0 v Las well as (5.20), we have τ -|ρ (L Z γ (F ))| + τ + |α (L Z γ (F ))|

	(5.24)

|ξ|≤|γ| |ρ (L Z ξ

  2η)(β P +β j P ) Z β H j , with |β| + |β 1 j | ≤ N . In that case, we dene [i] := β P + β j P . In view of (5.19) and (5.29), v z 2 |Y |dv satises the expected pointwise decay estimate. The construction of the matrix D is similar to the one of A detailled below and then sketched. To obtain it, apply Lemmas 5.2.6 and 5.8.4 and then make similar operations as those made in the proof of (5.22) and Proposition 5.6.1 (for the cases where |γ| ≤ N -2). We now turn on the construction of A and B. Fix i ∈ 1, |I| and note that

  .35) Proposition 5.8.8. If is small enough, we have E G (t) (1 + t) 4N η for all t ∈ [0, T [.Proof. We use again the continuity method. Let T 0 ∈]0, T ] be the largest time such that E G (t) (1 + t) 4N η for all t ∈ [0, T 0 [. Fix i ∈ 1, |I| and (j, q) ∈ 1, p 2 . According to the energy estimate of Proposition 5.3.1 and (5.35), we would improve the bootstrap assumption, for small enough, if we could prove that

	t		
	0	Σ b s	v

C'est à dire que ∂ β v f k dv se comporte comme ∂ β v gdv, où m 2 k + |v| 2 ∂tg + 3 i=1 v i ∂ i g = 0.

On utilise ici la convention de sommation d'Einstein. Par exemplev i ∂ i = 3 i=1 v i ∂ i et v µ ∂µ = 3 µ=0 v µ ∂µ.La variable muette de la somme décrira 1, 3 si c'est une lettre latine et 0, 3 si c'est une lettre grecque.

On montera et descendra les indices des tenseurs en utilisant la métrique de Minkowski η = diag(-, 1, 1, 1, 1). Ainsi F λσ = Fµν η λµ η σν .

En comparaison, nous n'avons pas besoin d'utiliser la condition isotrope pour prouver la proposition 1.8 en dimension 4.

Hiérarchies entre les diérentes normes de la densité de particules. An de prouver que Y β f L 1x,v reste bornée au cours du temps, certains termes sources des équations commutées requièrent un contrôle sur des normes L 1 de f qui, quant à elles, croissent. Pour boucler nos estimations d'énergie, nous aurons alors besoin d'identier plusieurs hiérarchies entre les normes considérées. Montrons comment de tels échelonnages apparaissent naturellement.[START_REF] Glassey | The two and one-half-dimensional relativistic Vlasov Maxwell system[END_REF] Autrement dit, que l'on sache transformer toute la décroissance en t -r en de la décroissance en t + r.[START_REF] Glassey | The Cauchy problem in kinetic theory[END_REF] Une perte sur l'énergie de la densité de particules se répercuterait sur celle du champ électromagnétique, ce qui n'était pas le cas dans la démonstration du théorème 1.5.2.

During this article, we will use the Einstein summation convention. For instance, e k J(f k )ν = K k=1 e k J(f k )ν . Roman indices goes from 1 to n and greek indices from 0 to n. Moreover, we raise and lower indices with respect to the Minkowski metric.

is time integrable.

In this paper, we will denote ∂ x i , for 1 ≤ i ≤ n, by ∂ i and sometimes ∂t by ∂ 0 .

Note that if the charge e of the species considered is not equal to 1, one just has to consider T eF (in other words, one just has to replace F by eF ).

[START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF] (t),(2.40) where C and C are positive constants which will be specied during the proof. Note that by continuity, T > 0. We now present our strategy to improve these bootstrap assumptions.

A smallness condition on F , which implies E N [A](0) ≤ , is given in Proposition 2.2.20.

Note that if we used the bound on τ -α L 2 (Σs) we would have in 4d an extra loss on E 2 N,1 [f k ] which would lead to a (1 + t) η -loss for the electromagnetic energy.

2and the energy estimate of Proposition 2.3.1 gives that, forsmall enough, E[|KKY | ∞ ] ≤ on [0, T 0 ].

Note that the pointwise decay estimate (2.67) implies (2.66) for the lower order derivatives, taking z = 1.

Note that such a function χ exists. Recall for instance the classical construction of cut-o functions

Note that this result holds for dimensions n ≥ 2.

See for instance[START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] for the Vlasov-Maxwell system, where we used the inequality 1 ≤

4v 0 v L in order to take advantage of decay in t -r.

We could avoid any hypotheses on the derivatives of order N + 1 and N + 2 of F 0 (see Remark 3.7.6 for more details).

Note that this is not the case for particles of mass m > 0 since the free transport operator is then m 2 + |v| 2 ∂t + v i ∂ i .

The expression of the complete lift of a vector eld of the Minkowski space is presented in Denition 3.2.4.

In this article, we will denote ∂ x i , for 1 ≤ i ≤ 3, by ∂ i and sometimes ∂t by ∂ 0 .

This can be obtained by straightforward computations in cartesian coordinates. We also refer to Proposition 3.3 of[START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF].123

Note that (∇vg) L = -(∇vg) L = (∇vg) r .

Strictly speaking, one cannot simply apply Proposition 3.B.2 since T F (H i ) = 0 if i ∈ I k 1 and k ≥ N -4. However, in view of Proposition 3.7.5, one can easily adapt it to our context.

log 2 (3 + t).

Note also that when the Vlasov eld is not compactly supported (in v), the decay estimate obtained in[START_REF] Schaeer | A small data theorem for collisionless plasma that includes high velocity particles[END_REF] on its velocity average contains a loss.

Note that there exists initial data violating this condition and such that the system does not admit a local classical solution (see Section 8 of[START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF]).

The expression of the complete lift of a vector eld of the Minkowski space is presented in Denition 4.3.1.

Note however that x µ vµ is preserved by |v|∂t + x i ∂ i , the massless relativistic transport operator.

We also consider T := {∂ t , ∂ 1 , ∂ 2 , ∂ 3 } and O := {Ω 12 , Ω 13 , Ω 23 }, the subsets of P containing respectively the translations and the rotational vector elds as well as K := P ∪ {S}, where S = x µ ∂ µ is the scaling vector eld. The set K is well known for commuting with the wave and the Maxwell equations (seeSubsection 4.3.6). However, to commute the operator T = v µ ∂ µ , one should consider the complete lifts of the elements of P.[START_REF] Dafermos | Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case[END_REF] In this article, we will denote ∂ x i , for 1 ≤ i ≤ 3, by ∂ i and sometimes ∂t by ∂ 0 .

P ≥ 1.

Note that T F = 2v L ∂u + 2v L ∂u + v A e A + F (v, ∇v)

We choose to lighten the notations by considering only one species since the presence of other ones does not complicate the analysis.

We will, throughout this article, use the Einstein summation convention so that v i ∂ i f =

i=1 v i ∂ i f . A sum on latin letters starts from 1 whereas a sum on greek letters starts from 0.

We could save three powers of x in the condition on the initial norm of f 0 with easy but cumbersome modications of our proof (mostly in Section

5.6.2 and Proposition 5.6.3). Note also that following the strategy used in Subsection 17.2 of[START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF] to derive L 2 estimates on the Vlasov eld, we could avoid any hypotheses on the derivatives of order N + 1 and N + 2 of F 0 .

Note that this property of v L is specic to the exterior of the light cone. In the whole spacetime, the extra decay is merely 1+t+r 1+|t-r| .

Note however that x µ vµ is preserved by the massless relativistic transport operator |v|∂t + v i ∂ i .

(1 + t) (κ P +1)η .
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Notations and preliminaries 4.2.1 Basic notations

In this paper we work on the 3 + 1 dimensionsal Minkowski spacetime (R 3+1 , η). We will use two sets of coordinates, the Cartesian (t, x 1 , x 2 , x 3 ), in which η = diag(-1, 1, 1, 1), and null coordinates (u, u, ω 1 , ω 2 ), where u = t + r, u = t -r and (ω 1 , ω 2 ) are spherical variables, which are spherical coordinates on the spheres (t, r) = constant. These coordinates are dened globally on R 3+1 apart from the usual degeneration of spherical coordinates and at r = 0. We will also use the following classical weights, τ + := 1 + u 2 and τ -:= 1 + u 2 .

We denote by (e 1 , e 2 ) an orthonormal basis on the spheres and by / ∇ the intrinsic covariant dierentiation on the spheres (t, r) = constant. Capital Latin indices (such as A or B) will always correspond to spherical variables. The null derivatives are dened by L = ∂ t + ∂ r and L = ∂ t -∂ r , so that L(u) = 2, L(u) = 0, L(u) = 0 and L(u) = 2.

The velocity vector (v µ ) 0≤µ≤3 is parametrized by (v i ) 1≤i≤3 and v 0 = 1 + |v| 2 since we take the mass to be 1. We introduce the operator

dened for all suciently regular function f : [0, T [×R 3

x × R 3 v , and we denote (0, ∂ v 1 g, ∂ v 2 g, ∂ v 3 g) by ∇ v g so that (4.1) can be rewritten

We will use the notation D 1 D 2 for an inequality such as D 1 ≤ CD 2 , where C > 0 is a positive constant independent of the solutions but which could depend on N ∈ N, the maximal order of commutation. Finally we will raise and lower indices using the Minkowski metric η. For instance, ∇ µ = η νµ ∇ ν so that ∇ ∂t = -∇ ∂t and ∇ ∂i = ∇ ∂i for all 1 ≤ i ≤ 3.

Basic tools for the study of the electromagnetic eld

As we describe the electromagnetic eld in geometric form, it will be represented, throughout this article, by a 2-form. Let F be a 2-form dened on [0, T [×R 3

x . Its Hodge dual * F is the 2-form given by *

where ε λσµν are the components of the Levi-Civita symbol. The null decomposition of F , introduced by [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF], is denoted by (α(F ), α(F ), ρ(F ), σ(F )), where

F LL and σ(F ) = F 12 .

Finally, the energy-momentum tensor of F is

Note that T [F ] µν is symmetric and traceless, i.e. T [F ] µν = T [F ] νµ and T [F ] µ µ = 0. This last point is specic to the dimension 3 and engenders additional diculties in the analysis of the Maxwell equations in high dimension (see Section 3.3.2 in [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] for more details).

We have the following alternative form of the Maxwell equations (for a proof, see [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF] or Lemmas 2.2 and D.3 of [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF]). Lemma 4.2.1. Let G be a 2-form and J be a 1-form both suciently regular and such that

We also introduce a dyadic partition of R + by considering the sequence (t i ) i∈N and the functions (T i (t)) i∈N dened by

and T i (t) = t1 t≤ti (t) + t i 1 t>ti (t).

We then dene the troncated cones C i u (t) adapted to this partition by

The following lemma will be used several times during this paper. It depicts that we can foliate [0, t] × R Note that the sum over i is in fact nite. The second foliation will allow us to exploit t -r decay since τ -1 -

The last foliation will be used to take advantage of time decay on C u (t) (the problem comes from τ -1

-). More precisely, let 0 < δ < a and suppose for instance that,

Then,

As δ -a < 0, we obtain a bound independent of T .

An integral estimate

A proof of the following inequality can be found in the appendix B of [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF]. Then

Vector elds and modied vector elds

For all this section, we consider F a suciently regular 2-form.

The vector elds of the Poincaré group and their complete lift

We present in this section the commutation vector elds of the Maxwell equations and those of the relativistic transport operator (we will modied them to study the Vlasov equation). Let P be the generators of Poincaré group of the Minkowski spacetime, i.e. the set containing

• the translations 14 ∂ µ , 0 ≤ µ ≤ 3,

• the rotations

• the hyperbolic rotations

Suppose now that Y = Z + ΦX ∈ Y 0 . We then have β P = (β 0 ) P + 1 and (β 0 ) T = β T . In the following, we will skip the case where Y hits c(v)(v 0 ) -1 and we suppose for simplicty that c(v) = 1. Note however that this case is straightforward since

Using again the induction hypothesis, Y Y β0 t v µ v 0 L Z γ 1 (F ) µζ can be written as a linear combination of the following terms.

•

This leads to terms of (family β -1) and (family β -2).

leading to terms of (family β -1), and

We then obtain terms of (family β -2), as |k|

and k P < (β 0 ) P , which, using (4.20), gives terms of (family β -2) and (family β -3). 

It gives us terms of (family β -3), as |k|

The worst terms are those of (family β -1). They do not appear in the source term of T F P X ζ (Φ) , which explains why our estimate on P

x,v will be better than the one on F ) µζ can be written as a linear combination of terms of (family β -2), (family β -3) and,

where |γ| ≤ |β| -1.

(family β -3 -bis)

Proof. The proof is similar to the previous one. The dierence comes from the fact a X vector eld necessarily have to hit a term of the rst family, giving either a term of the second family or of the third-bis family, where we we do not have the condition k P < β P since k P and β P could be both equal to 0.

Commutation of the Maxwell equations

We recall the following property (see Lemma 2.8 of [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF] for a proof ). Lemma 4.3.36. Let G and M be respectively a 2-form and a 1-form such that ∇ µ G µν = M ν . Then,

If g is a suciently regular function such that ∇ µ G µν = J(g) ν , then

We need to adapt this formula since we will control Y f and not Zf . We cannot close the estimates using only the formula

and since this small loss would prevent us to close the energy estimates. Proposition 4.3.37. Let Z ∈ K. Then, for 0 ≤ ν ≤ 3, ∇ µ L Z (F ) µν can be written as a linear combination of the following terms. 

) and, for Z ∈ K \ T (in the computations below, we consider Z = Ω 0i , but the other cases are similar), by integration by parts in v,

where dx µ is the dierential of x µ .

We are now ready to establish the higher order commutation formula.

Proposition 4.3.39. Let R ∈ N and Z β ∈ K R . Then, for all 0 ≤ ν ≤ 3, ∇ µ L Z β (F ) µν = L Z (F ) ν can be written as a linear combination of terms such as

Proof. We will use during the proof the following properties, arising from Lemma 4.3.2 and the denition of Let us suppose that the formula holds for all

and consider the multi-index β such that Z β = ZZ β0 . We x ν ∈ 0, 3 . By the rst order commutation formula, Remark 4.3.38 and the induction hypothesis, ∇ µ L Z β (F ) µν can be written as a linear combination of the following terms (to lighten the notations, we drop the good coecients c(t, x, v) in the integrands of the terms given by Proposition 4.3.37).

We also have x × R 3 v → R and ϕ 0 : R 3

x × R 3 v → R be four suciently regular functions such that |G| ≤ G 1 + G 2 . Let ϕ, ϕ, ϕ 1 and ϕ 2 be such that

and, for i ∈ {1, 2},

Then, on [0, T [×R 3

Proof. Denoting by X(s, t, x, v) and V (s, t, x, v) the characteristics of the transport operator, we have by

Proposition 4.7.4. We have,

Proof. We will obtain this result through the previous Lemma and by parameterizing the characteristics of the operator T F by t or by u. Let us start by Φ and recall that, schematically, T

Using the pointwise estimates given by Remark 4.7.2 as well as the inequalities 1

Consider now the functions ϕ 1 and ϕ 2 such that

and ϕ 1 (0, ., .) = ϕ 2 (0, ., .) = 0.

According to Lemma 4.7.3, we have |Φ|

In order to estimate ϕ 1 , we will parametrize the characteristics of the operator T F by t. More precisely, let (X s,y,v (t), V s,y,v (t)) be the value in t of the characteristic which is equal to (y, v) in t = s, with s < T . Dropping the indices s, y and w, we have

Duhamel's formula gives

For ϕ 2 , we parameterize the characteristics of T F by 20 u. For a point (s, y) ∈ [0, T [×R 3 , we will write its coordinates in the null fram as (z, z, ω

and

Note that u → 1 2 (u + U (u)) vanishes in a unique z 0 such that -z ≤ z 0 ≤ z, i.e. the characteristic reaches the hypersurface Σ 0 once and only once, at u = z 0 . This can be noticed on the following picture, representing a possible trajectory of (u, U (u)), which has to be in the backward light cone of (z, z) by nite time of propagation,

The trajectory of (u, U (u)) for u ≤ z.

which allows us to deduce that |Φ|(s, y, v)

We prove the other estimates by the continuity method. Let 0 < T 0 < T and u > 0 be the largest time and null ingoing coordinate such that

v and where the constant C > 0 will be specied below. The goal now is to improve the estimates of (4.60). Using the commutation formula of Lemma 4.3.10 and the denition of Φ, we have (in the case where Φ is not associated to the scaling vector eld), for ∂ ∈ T,

We nally end this subsection by the following estimate.

Proposition 4.8.5. We suppose here that max(|ξ

Then,

otherwise.

Remark 4.8.6. To understand the extra hypothesis made in this proposition, recall from the properties of the terms of (category 3) that we can assume |ξ 1 | < |ξ 0 |, β = β 0 and j = q. We then have

Proof. Let us denote by (α, α, ρ, σ) the null decomposition of L Z γ (F ).

As τ -∼ τ + away from the light cone (for, say 24 , u ≤ -t and u ≥ t

2 ), we nally obtain that 

and we can conclude the proof in that case. If

Using the bootstrap assumptions (4.50) and (4.51), we have

(1 + t) 

Completion of the bounds on the spacetime integrals

In this subsection, we bound the spacetime integrals considered previously when the electromagnetic eld is dierentiated too much time to be estimated pointwise. For this, we make crucial use of the pointwise decay estimates on the velocity averages of z j P ζ (Φ)Y β f which are given by (4.68). The terms studied here appear only if |ξ 0 | + |β 0 | ≥ N -2 since otherwise the electromagnetic eld would be dierentiated at most N -3 times. We then x, for the remaining of the subsection, Q ∈ {N -1, N },

Hence, we can obtain I B 

.

Otherwise, |κ| = 2N -β P -2ξ P so that ξ P = N -1, |β| ≤ 1 and |κ| = 2 -β P . We can then write z κ = zz κ0 and nd q ∈ 1, N 1 such that W q = z 2 z κ0 Y β f . It remains to follow the previous case after noticing that

L 2 estimates on the velocity averages of f

We nally end this section by proving several L 2 estimates. The rst one is clearly not sharp but is sucient for us to close the energy estimates for the electromagnetic eld.

Proposition 4.9.14.

Proof. The rst inequality ensues from 1 + t ≤ τ + on Σ t . For the other one, we start by the case |β| ≤ N -3.

Write P k,p (Φ) = Φ n P ξ (Φ) and notice that |Φ| n log 2p (1 + τ + ). Then, using the bootstrap assumption (4.51)

and Proposition 4.8.11, Chapter 5

Asymptotic properties of the solutions to the Vlasov-Maxwell system in the exterior of a light cone Abstract This paper is concerned with the asymptotic behavior of small data solutions to the three-dimensional Vlasov-Maxwell system in the exterior of a light cone. The plasma does not have to be neutral and no compact support assumptions are required on the data. In particular, the initial decay in the velocity variable of the particle density is optimal and we only require an L 2 bound on the electromagnetic eld with no additional weight.

We use vector eld methods to derive improved decay estimates in null directions for the electromagnetic eld, the particle density and their derivatives. In contrast with [START_REF] Bigorgne | Sharp asymptotic behavior of solutions of the 3d vlasov-maxwell system with small data[END_REF], where we studied the behavior of the solutions in the whole spacetime, the initial data have less decay and we do not need to modify the commutation vector elds of the relativistic transport operator. To control the solutions under these assumptions, we crucially use the strong decay satised by the particle density in the exterior of the light cone, null properties of the Vlasov equation and certain hierarchies in the energy norms.

Introduction

In this article, we study the asymptotic properties of small data solutions of the Vlasov-Maxwell (VM) system in the exterior of a light cone V b := {(t, x) ∈ R + × R 3 / |x| > t -b}, where, say, b ≤ -1. More precisely, our main goal is to derive sharp decay estimates. The system, which is of particular importance in plasma physics, is given for one species of particles by 1,2

where

m > 0 is the mass of the particles and e = 0 their charge. For the remaining of this paper, we take m = e = 1 and we denote 1 + |v| 2 by v 0 .

• The function f (t, x, v) is the particle density, the 2-form F (t, x) is the electromagnetic eld and * F (t, x)

is its Hodge dual.

Small data results for the VM system

The study of the small data solutions of the VM system has been initiated in [START_REF] Glassey | Absence of shocks in an initially dilute collisionless plasma[END_REF] by Glassey-Strauss. Under a compact support assumption in space and in velocity on the initial data, they proved global existence and obtained the optimal decay rate on v f dv. The compact support assumption in v is replaced by Schaeer in [START_REF] Schaeer | A small data theorem for collisionless plasma that includes high velocity particles[END_REF] by a polynomial decay but the data still have to be compactly supported in space. Moreover, the optimal decay rate on v f dv is not obtained by this method. None of these results contain estimates on the derivatives of v f dv nor on the higher order derivatives of the electromagnetic eld.

In [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF], we removed all compact support assumptions for the dimensions d ≥ 4. For this, we used vector eld methods, developped in [START_REF] Christodoulou | Asymptotic properties of linear eld equations in Minkowski space[END_REF] for the electromagnetic eld and [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] for relativistic transport equations.

We then obtained almost optimal decay on the solutions of the system and their derivatives and we described precisely the behavior each null component of the electromagnetic eld. We recently extended these results

to the 3d case and we also relaxed the assumptions on the initial data, allowing in particular the presence of a non zero total charge. A better understanding of the null structure of the VM system as well as the use of modied vector elds 3 were the key for dealing with the slower decay rates of the solutions. We splitted the electromagnetic eld into two parts. The chargeless one on which we could then propagate a weighted L 2 norm and the pure charge part, given by an explicit formula, which decays as r -2 despite of its innite energy.

We also investigate the case where the particles are massless (i.e. m = 0). First in [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] for the high dimensions, where we proved that similar results to the massive case hold provided that the velocity support of the the particle density is bounded away from 0. These extra hypothesis appears to be necessary since we also proved in [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] that the VM system do not admit a local classical solution for certain smooth initial data which do not vanish for small velocities. Secondly, in our recent work [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF], we proved sharp asymptotics on the small data solutions and their derivatives to the massless VM system in 3d. Contrary to the massive case, the proof does not require the use of modied vector elds but still necessitates a strong understanding of the null properties of the system.

In this article, we study the asymptotic properties of the solutions to the VM system in the exterior of a light cone under a smallness assumption but weaker decay near innity. We obtain in particular almost optimal pointwise decay estimates on the velocity average of the Vlasov eld as well as its derivatives. The hypotheses on the particle density in the variable v are optimal in the sense that we merely suppose f and its derivatives to be initially integrable in v, which is a necessary condition for the source term of the Maxwell equations (1.3) to be well dened. As f strongly decay in the domain studied, our proof merely requires the boundedness of the L 2 norm of the electromagnetic eld. This has to be compared with our proof in [START_REF] Bigorgne | Sharp asymptotic behavior of solutions of the 3d vlasov-maxwell system with small data[END_REF], where we study the same problem in the whole spacetime, which crucially relies on the propagation of a weighted energy norm of F . Another remarkable point, still related to the good behavior of f in the region V b , concerns the commutation vector elds used to study the Vlasov equation. Contrary to [START_REF] Bigorgne | Sharp asymptotic behavior of solutions of the 3d vlasov-maxwell system with small data[END_REF], we do not need to modify the commutation vector elds of the relativistic transport operator v µ ∂ µ in order to compensate the worst source terms of the commuted Vlasov equations and then close the energy estimates. This leads in particular to a much simpler proof.

Finally, let us mention the recent result [START_REF] Wang | Propagation of regularity and long time behavior of the 3D massive relativistic transport equation II: Vlasov-Maxwell system[END_REF] of Wang concerning the small data solutions of the massive 3d VM system. Using both vector eld methods and Fourier analysis, he proved optimal pointwise decay estimates on v f dv and its derivatives under strong polynomial decay hypotheses in (x, v) on f (t = 0). In particular, the initial data does not have to be compactly supported.

Previous works on Vlasov systems using vector eld methods

Results on the asymptotic behavior of solutions of several Vlasov systems were recently derived using vector eld methods. Let us mention the pioneer work [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] of Fajman-Joudioux-Smulevici on the Vlasov-Norström system (see also [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF]) as well as the results of [START_REF] Smulevici | Small data solutions of the Vlasov-Poisson system and the vector eld method[END_REF] on the Vlasov-Poisson system. The two dierent proofs, obtained independently by [START_REF] Fajman | Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions[END_REF] and [START_REF] Lindblad | Global stability of Minkowski space for the EinsteinVlasov system in the harmonic gauge[END_REF], of the stability of the Minkowski spacetime as a solution to the Einstein-Vlasov system constitute a culmination of these vector eld methods. 3 Modied Vector elds, which depend on the solution itself, were already used by [START_REF] Fajman | Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions[END_REF] (respectively [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF]) in the context of the Vlasov-Nordström (respectively the Einstein-Vlasov) system. They are built over the commutation vector elds of the relativistic transport operator v µ ∂µ in order to compensate the worst source terms of the commuted Vlasov equation.

Consequently, for all µ ∈ 0, 3 , 1 ≤ i < j ≤ 3 and k ∈ 1, 3 ,

and

Since [T, Z] = 0 for all Z ∈ P and [T, S] = T, we consider, as [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], the following set

For simplicity, we denote by Z an arbitrary vector eld of P 0 , even if S is not a complete lift. Note that the vectorial space engendered by each of these sets is an algebra. More precisely, if L is either K, P or O, then for all (Z 1 , Z 2 ) ∈ L 2 , [Z 1 , Z 2 ] is a linear combinations of vector elds of L. We also consider an ordering on each of the sets O, P, K and P 0 , such that, if P = {Z i / 1 ≤ i ≤ |P|}, then K = {Z i / 1 ≤ i ≤ |K|}, with Z |K| = S, and

If L denotes O, P, K or P 0 , and β ∈ {1, ..., |L|} q , with q ∈ N * , we will denote the dierential operator Γ β1 ...Γ βr ∈ L |β| by Γ β . For a vector eld X, we denote by L X the Lie derivative with respect to X and if Z γ ∈ K q , we will write L Z γ for L Z γ 1 ...L Z γq . We denote moreover the number of translations composing Γ β by β T and the number of homogeneous vector elds by β P , so that |β| = β T + β P .

Let us recall, by the following classical result, that the derivatives tangential to the cone behave better than others.

Lemma 5.2.4. The following relations hold,

where the C i,j A are uniformly bounded and depend only on spherical variables. Similarly, we have

We introduce now the notation ∇ v g := (0, ∂ v 1 g, ∂ v 2 g, ∂ v 3 g), so that (5.1) can be rewritten

In order to commute the Vlasov-Maxwell system, we recall the following result (see Lemma 2.8 of [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF] for a proof ) where the Kronecker symbol is extended to vector elds, i.e. δ X,Y = 1 if X = Y and δ X,Y = 0 otherwise.

Lemma 5.2.5. Let G be a 2-form and g a function both suciently regular. Then, for all Z ∈ P 0 ,

If G and g satisfy ∇ µ G µν = J(g) ν and ∇ µ * G µν = 0, then

We then deduce the form of the source terms of the commuted Vlasov-Maxwell equations.

Proposition 5.2.6. Let (f, F ) be a suciently regular solution to the VM system (5.1)-(5.3) and Z κ ∈ K |κ| . There exists integers n κ γ,β and m κ ξ such that

Moreover, the number of homogeneous vector elds β P of Z β satises the following condition.

Before presenting the Klainerman-Sobolev inequality used in this article, we prove the following estimate.

Lemma 5.3.4. Let g : S 2 × R 3 v → R be a suciently regular function and a ∈ R + . Then,

Let us explain how this result reects the null structure of the Vlasov equation. For this, we use the

Note now that each term given by the previous lemma contains either two good factors, α or v L .

Bootstrap assumptions and strategy of the proof

Let N ≥ 8, b ≤ -1 and (δ, η) ∈ R 2 + be two constants such that 0 < 5δ < η < 1 16N . From now, we drop the dependance in b of all the quantities dened previously (such as the energy norms E b and E q,λ Q,b dened in (5.8) and (5.9) or E b N ). Let (f 0 , F 0 ) be an initial data set satisfying the assumptions of Theorem 5.1.1. Then, by a local well-posedness argument, there exists a unique maximal solution to the Vlasov-Maxwell system dened in V b (T * ), with T * ∈ R * + ∪ {+∞}. Let T ∈]0, T * ] be the largest time such that 8 , for all t ∈ [0, T [,

(5.14)

(5.15)

(5.17)

We consider the last bootstrap assumption in order to simplify the proof. The remainder of this paper is devoted to the improvement of these inequalities which will prove that T = T * and then T * = +∞, 

By Proposition 5.3.11,(5.16) and (5.17), we obtain that, for all (t, x) ∈ V b (T ) and |γ| ≤ N -2,

The proof is organized as follows:

• We start by improving the bootstrap assumptions (5.14) and (5.15) by several applications of the approximate conservation law of Proposition 5.3.1. Exploiting the null structure of the non linearity

) is then fundamental in order to bound the spacetime integrals arising from the energy estimates.

• Then, we improve the bound on the energy norm of the electromagnetic eld (5.16). For this, we use the energy estimate of Proposition 5.3.7 and we make crucial use of the null structure of the source terms of the Maxwell equations.

• The last step consists in proving an estimate on

for |β| ≥ N -2. We then rewrite all Vlasov equations as an inhomogeneous system of transport equations. We deal with the homogenous part by taking advantage of the smallness assumption on the N + 3 derivatives of f at t = 0 as well as the pointwise decay estimates (5.20). We will decompose the inhomogeneous part as a product KY where

) and v |Y |dv is a decaying function. 8 Note that T > 0 by continuity. Remark also that, considering if necessary 1 = C 1 , with C 1 a constant depending only on N , we can suppose without loss of generality that the energy norms are initially smaller than . We refer to Appendix B of [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF] for the details of the computations for similar energy norms.

When |γ| ≥ N -1

In that case, we have |β| ≤ 1. Using rst the inequality

, coming from Lemma 5.2.9, as well as the Cauchy-Schwarz inequality in (t, x) and secondly the bootstrap assumption (5.16), we get v

.

(5.27)

Using this time Lemma 5.2.2, the inequality 1 τ 4 and the Cauchy-Schwarz inequality in (u, ω), it comes

du.

(5.28)

Now, by the Cauchy-Schwarz inequality in v and 1 v 0 v L , we have

.

The pointwise decay estimate (5.18) and the bootstrap assumption (5.14) then gives us

Combining the last inequality with (5.27) and (5.28), we nally deduce that I σ,α + I ρ,α 

The remaining energy norm

For the improvement of E N +13,δ N -2

[f ] ≤ 4 (1 + t) δ we have, in view of (5.21) as well as Propositions 5.3.1 and 5.2.6, to prove similar estimates than (5.22) and those of Proposition 5.6.1. More precisely, E N +13,δ 

Proof. One only has to follow Subsections 5.6.1 and, as |γ| ≤ N -2, 5.6.2 and to use the bootstrap assumption (5.14) instead of (5.15).

L 2 estimates on velocity averages

The following result improves the bootstrap assumption (5.17) if is small enough and will allow us to improve our estimate on E N [F ].

step of the proof consists in rewriting all transport equations as a hierarchised system. Let I and I be the following two ordered sets,

Remark 5.8.1. Even if it only remains us to estimate v z| Z β f |dv L 2 (Σ b t ) for all |β| ≥ N -2, we included the multi-indices of length N -3 in I. It will allow us to conserve the null structure of the Vlasov equations.

We also consider I k := {β ∈ I / |β| = k}, for N -3 ≤ k ≤ N , and two vector valued elds R and W of respective length |I| and |I| such that

For simplicity, we will sometimes abusively write i ∈ I k instead of β i ∈ I k . We denote by V the module over the ring C 0 (V b (T ) × R 3 v ) engendered by (∂ v l ) 1≤l≤3 and we recall that [γ] := max(0, 1 -γ T ). Let us now rewrite the Vlasov equations satised by the components of R.

Lemma 5.8.2. There exists two matrices valued functions

These two matrices are such that

Remark 5.8.3. Note that if β i ∈ I N -3 , then A q i = 0 for all 1 ≤ q ≤ |I|. If p ≥ 1 and β i ∈ I N -3+p , we have |γ| ≤ p. The condition β j P + [γ] ≤ β i P expresses that either Z γ is composed by a translation, and will then give an extra decay in the u direction, or that the number of homogeneous vector elds composing R j , β j P , is strictly lower than β i P . Proof. One only has to apply the commutation formula of Proposition 5.2.6 to Z β i f and to replace each quantity such as Z κ f , for |κ| = N -3, by the corresponding component of R or W . If |κ| = N -3, we replace it by the corresponding component of R.

In order to establish an L 2 estimate on the velocity average of R, we split it in R := H + G, where T F (H) + AH = 0 , H(0, ., .) = R(0, ., .), T F (G) + AG = BW , G(0, ., .) = 0 and then prove L 2 estimates on v |H|dv and v |G|dv. For the homogeneous part H, we will commute the transport equation and take advantage of the decaying properties of the matrix A in order to obtain boundedness on a certain L 1 norm as for f in Section 5.6. The L 2 estimate will then follow from a Klainerman-Sobolev inequality and the bound obtained on E[H]. The inhomogeneous part will be schematically decomposed as G = KW , with K a matrix such that E[|K| 2 |W |](t) ≤ (1 + t) 1 4 . The expected decay rate on v |G|dv L 2 x will then be obtained using the pointwise decay estimates satised by the components of W . Note that contrary to [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], we keep the v derivatives in the matrices A and B. This allows us to crucially exploit the good behavior of (∇ v g) r (see (5.13)) but it forces us to put the derivatives of order N -3 in both R and W .

The homogeneous system

With the aim of obtaining an L ∞ estimate on v |H|dv, we will have to commute at least three times the transport equation satised by each component of H. However, in order to control Z β H i L 1

x,v

, where |β| = 3, β i ∈ I k and k ≥ N -2, a bound on the L 1 norm of Z κ H j , with |κ| = 4 and j ∈ I k-1 , is required. This leads us to introduce the following energy norm

We have the following commutation formula.

Lemma 5.8.4. Let 0 ≤ k ≤ 3, |β| ≤ 3 + k and i ∈ I N -k . Then, T F ( Z β H i ) can be written as a linear combination of terms such as

• β j P + κ P < β i P + β P or

• β j P + κ P = β i P + β P and γ T ≥ 1. Proof. According to Proposition 5.2.6, the source terms coming from [T F , Z β ](H i ) are such as those described in this lemma, with j = i. The other ones arise from Z β (T F (H i )) and the result follows from Lemma 5.8.2 and |β| applications of Lemma 5.2.5.

Hence, as R(0, ., .) = H(0, ., .), there exists C 0 > 0 such that E H (0) ≤ C 0 . Following the proof of (5.22) and Proposition 5.6.1 (for the cases where |γ| ≤ N -2), one can prove, if small enough, that E H (t) ≤ 3C 0 (1+t) η for all t ∈ [0, T [. By Proposition 5.3.5, we then obtain, for 0 ≤ k ≤ 3,

(5.29)

The inhomogenous system

The purpose of this subsection is to prove an L 2 estimate on v |G|dv. We cannot proceed by commuting T F (G) + AG = BW since B contains top order derivatives of F and we then follow the strategy exposed earlier in this section. For this, in order to prove L 1 estimates on quantities related to G, we need

• to rewrite the v derivatives hidden in the matrix A.

• to ensure that the (transformed) matrix A decay suciently fast. We will then modify each component G i of G by z ai G i , with a well choosen exponent a i , in order to take advantage of similar hierarchies than those used in Section 5.6.

We start by introducing some notations and proving certain preparatory results.

Denition 5.8.5. Let L be the vector valued eld of length |I| such that, for i ∈ 1, |I| ,

For Z ∈ P 0 and i ∈ I \ I N , we dene i Z such that

We will transform the v derivatives by several applications of the following result.

Lemma 5.8.6. Let Z ∈ P 0 and i ∈ I \ I N . Then, as R = H + G and

The aim of the next lemma is to describe in details the transport equation satised by L.

Lemma 5.8.7. There exists p ≥ 1, a vector valued eld Y of length p and three matrices valued functions

The matrices A and B are such that T F (L i ) can be bounded, for 1 ≤ i ≤ |I|, by a linear combination of the following terms,

with |γ| ≤ N.

where k, q, j ∈ 1, |I| , β k P < β i P , β q P = β i P and β j P = β i P + 1.

We then have schematically

(5.34)

Denote by (α, α, ρ, σ) the null decomposition of L Z γ (F ) and expand L Z γ (F ) (v, ∇ v G j ) in null components using formula (5.12). As the computations are similar to those made in Subsection 5.6.2, we only bound certain terms given by (5.12). Consider for instance 

For the ones associated to G, suppose rst that β j P < β i P . By Lemma 5.2.9, we have |v B | v 0 v L as well as τ

which comes from (5.20), we get

by Lemma 5.3.8. We then have

We now treat the terms involving ρ, which can be estimated by |v 0 ρ (∇ v G j ) r |, and we use (5.33) to bound them. As β j P ≤ β i P and τ -z, the terms related to H can be estimated as follows

For the ones associated to G, start again by assuming β j P < β i P . As τ 

Otherwise,

by Lemma 5.3.8. We then have, using 1

As the other terms can be handled similarly, this concludes the construction of A and B.

Let K be the solution of T F (K) + AK + KD = B satisfying K(0, ., .) = 0. Note that KY satises T F (KY ) + AKY = BY and initially vanishes, so that KY = L. The goal now is to prove a suciently good estimate on the energy norm Title : Asymptotic properties of the small data solutions of the Vlasov-Maxwell system Keys words : Hyperbolic PDE, Vlasov-Maxwell system, non linear equations, wave and transport equations, vector eld methods, null structure.

Abstract : The purpose of this thesis is to study the asymptotic properties of the small data solutions of the Vlasov-Maxwell system using vector eld methods for both the electromagnetic eld and the particle density. No compact support asumption is required on the initial data. Instead, we make crucial use of the null structure of the equations in order to deal with a resonant phenomenon caused by the particles approaching the speed of propagation of the Maxwell equations. Due to the robustness of vector eld methods and contrary to previous works on this topic, we also study plasmas with massless particles.

We start by investigating the high dimensional cases (d ≥ 4) where dispersive eects allow us to derive strong decay rate on the solutions of the system and their derivatives. For that purpose, we proved a new decay estimate for solutions to massive relativistic transport equations. In order to obtain an analogous result for massless particles, we required the velocity support of the distribution function to be initially bounded away from 0 and we then proved that this assumption is actually necessary. The second part of this thesis is devoted to the three dimensional massless case, where a stronger understanding of the null structure of the Vlasov-Maxwell system is essential in order to derive the optimal decay rate of the null components of the electromagnetic eld, the velocity average of the particle density and their derivatives. We then focus on the asymptotic behavior of the small data solutions of the massive Vlasov-Maxwell system in 3d. Specic problems force us to modify the vector elds used previously to study the Vlasov eld in order to compensate the worst error terms in the commuted transport equations. Finally, still for the massive system in 3d, we restrict our study of the solutions to the exterior of a light cone. The strong decay properties satised by the velocity average of the particle density in such a region permit us to relax the hypothesis on the initial data and lead to a much simpler proof.