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Abstract

The ability to model molecular systems on a computer has become a crucial

tool for chemists. Indeed molecular simulations have helped to understand

and predict properties of nanoscopic world, and during the last decades have

had large impact on domains like biology, electronic or materials develop-

ment. Particle simulation is a classical method of molecular dynamic. In

particle simulation, molecules are split into atoms, their inter-atomic inter-

actions are computed, and their time trajectories are derived step by step.

Unfortunately, inter-atomic interactions computation costs prevent large

systems to be modeled in a reasonable time. In this context, our research

team looks for new accurate and efficient molecular simulation models. One

of our team’s focus is the search and elimination of useless calculus in dy-

namical simulations. Hence has been proposed a new adaptively restrained

dynamical model in which the slowest particles movement is frozen, com-

putational time is saved if the interaction calculus method do not compute

again interactions between static atoms. The team also developed several

interaction models that benefit from a restrained dynamical model, they of-

ten updates interactions incrementally using the previous time step results

and the knowledge of which particle have moved.

In the wake of our team’s work, we propose in this thesis an incremental

First-principles interaction models. Precisely, we have developed an incre-

mental Orbital-Free Density Functional Theory method that benefits from

an adaptively restrained dynamical model. The new OF-DFT model keeps

computation in Real-Space, so can adaptively focus computations where

they are necessary. The method is first proof-tested, then we show its abil-

ity to speed up computations when a majority of particle are static and

with a restrained particle dynamic model. This work is a first step to-

ward a combination of incremental First-principle interaction models and

adaptively restrained particle dynamic models.



Résumé

L’informatique est devenue un outil incontournable de la chimie. En effet la

capacité de simuler des molécules sur ordinateur a aidé à la compréhension

du monde nanoscopic et à la prédiction de ses propriétés. La simulation

moléculaire a eu ces dernières décennies un impact scientifique énorme en

biologie, en électronique, en science des matériaux . . . La simulation de

particules est une des méthodes classiques de dynamique moléculaire, les

molécules y sont divisées en atomes, leurs interactions relatives calculées

et leurs trajectoires déduites pas à pas. Malheureusement un calcul précis

des interactions entre atomes demande énormément d’opérations et donc de

temps, ce qui limite la portée de la simulation moléculaire à des systèmes

de taille raisonnable. C’est dans ce contexte que notre équipe recherche de

nouveaux modèles de simulation moléculaire rapide et précis. Un des angles

de recherche est l’élimination des calculs inutiles des simulations. L’équipe

a ainsi proposé un modèle de dynamique moléculaire dite restreinte de

manière adaptative dans lequel le mouvement des particules les plus lentes

est bloqué. Si la simulation ne recalcule pas les interactions inchangées entre

atomes bloqués, le calcul des interactions est plus rapide. L’équipe a aussi

développé plusieurs modèles d’interactions plus efficaces pour des modèles

de dynamique restreinte de particules, ils mettent à jour les interactions de

façon incrémentale en utilisant les résultats du pas de temps précédent et

la liste des particules mobiles.

Dans le sillage des travaux de notre équipe de recherche, nous proposons

dans cette thèse une méthode incrémentale pour calculer des interactions

interatomique basées sur les modèles de Théorie de la Fonctionnelle de la

Densité Sans Orbitale. La nouvelle méthode garde les calculs dans l’espace

réel et peut ainsi concentrer les calculs où cela est nécessaire. Dans ce

manuscrit nous vérifions cette méthode, puis nous évaluons les gains de

vitesse lorsqu’une majorité de particule est bloquée, avec un modèle de dy-

namique restreinte. Ces travaux sont un pas vers la l’intégration de modèles

d’interactions Premier-principes pour des modèles dynamiques restreint de

manière adaptative.
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Introduction

1.1 Molecular Simulation

With the arrival of computers and the development of computer sciences, chemistry,

cosmology, meteorology and several other research domains have found a new tool to

understand matter and life. By modeling and simulating ”in silico” a system, whether

a molecule, a galaxy or a wind flow, one could, with good models, predict its operation,

its affinity with environments and its evolution in time without the difficulties of real

experiments. Computer sciences have brought a new tool to understand domains of

all scales, and in particular microscopic scale. Indeed, as small objects like molecules,

proteins or crystals are hardly observable, the ability to model their shapes and simulate

their reactions is crucial.

Modeling a molecular system can be done by numerous methods, we will focus on the

most usual one: particle simulation. In particle simulation the molecular system is split

into particles, often the atoms, the interactions between them are computed and a time

evolution of the particle positions is derived from the interactions. Hence molecules

and their reactions are seen on computer. The reality is that interactions between

particles are often too complex to be calculated precisely and have to be approximated,

so ”in silico” molecules are only approximations of the real ones. Even approximated,

the computation of interactions is the computational bottleneck of particle simulation,

hence the research for accurate and efficient interaction models is the core of particle

simulation.

The ideal interaction model would use exact forces derived from quantum physics.
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1. INTRODUCTION

Unfortunately the calculation of a molecule’s electronic wave function is a complex

problem. A family of methods was developed to approximate the result and have

interactions computed from quantum physics, the first-principles methods. Density

Functional Theory (DFT) is the most popular one but is still very slow compared to

more simple pairwise interaction models. This thesis focuses on the development of a

DFT method efficient enough to perform dynamical simulations.

We will introduce in this first chapter some principles of particle simulation. First

why we can approximate atoms as ball-particles following Newton’s law of movements,

then how from particle interactions we simulate their trajectories, a rapid look of meth-

ods to compute particle interactions. At last we introduce some common methods to

speed up simulations.

1.2 Laws of particles movement

1.2.1 Time-dependent Schrödinger equation

The precise simulation of particles – nuclei and electrons – movement starts with quan-

tum mechanics. At a quantum level, a system of N particles is described by a state

vector Ψ(t) , and the time evolution of this state vector is given by the time-dependent

Schrödinger equation :

i~
∂

∂t
|Ψ(t)〉 = H |Ψ(t)〉 (1.1)

with ~ the reduced Planck constant ~ = h
2π and H the observable linked to the

system’s energy : the Hamiltonian operator. The most common way to represent a

particles system state Ψ(t) is with its position space wave function Ψ(r, t), a complex-

valued function of two variables: the time t and the vector of particles positions r.

Other representations are possible like the momenta space wave function Ψ(p, t), p the

vector of particles momenta, but we will keep the position space wave function. Ψ(r, t)

contains all information on the particles system, the density probabilities of positions

are given by the position observable 〈r|, in position space it identifies with the identity

function : ρ(r, t) = 〈Ψ(r, t)|r|Ψ(r, t)〉 = |Ψ(r, t)|2, the density probabilities of momentum

by the momentum observable 〈p| : Ψ(p, t) = 〈p|Ψ〉 and the other features like spin,

magnetic moment etc ... by their own observable.
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1.2 Laws of particles movement

The Schrödinger equation (SE) has proven itself to be impressively precise, being

able to compute the shape of atomic orbitals(1), their energy with band separation

or the energy of some particles with great precision, here the energy of the helium

atom with a 40 digit precision(2). This precision comes with a cost, the Schrödinger

equation can be analytically resolved only for the simplest systems, one particle in a

simple electric potential. Errors appear if energies of particles are high enough to create

relativistic behaviors, the relativistic Schrödinger equation (3) has to be used.

The quantum interactions between two particles make the Schrödinger equation

impossible to solve, approximations and computers have to be used. Even with ap-

proximations, computations are too time consuming to hope having a large scale sim-

ulation, so we use a drastic approximation, heavy particles shall be considered as balls

and behave as such, with the classical mechanics.

1.2.2 Classical limit

Before the work of Louis De Broglie on the wave-particle duality, atoms were considered

as balls following Newton-like mechanics. The introduction of wave functions and

quantum mechanics to describe the movement of particles has been a revolution in the

understanding of matter, but has also made the calculations much more complex and

so atomic simulations more difficult. Hence the classical limit approximation that aims

to explain how and under which conditions classical mechanics can be recovered from

quantum mechanics.

In contrary of a ball particle following Newton mechanics, a wave particle has no

well defined position neither momentum, but distributed probabilities of positions and

momenta, and the forces applied on the particle take into account this dispersion. The

classical limit considers a model in which the reduced Planck constant ~ tends to zero,

or at least in which the characteristic actions of the elements of the model are greater

than ~ with several orders of magnitude. In this model the positions and momenta

distributions tend to Dirac functions, so their dispersion tends to zero. For a particle

in position q:

|Ψ(r)|2 −−−→
~→0

δ(r− q) (1.2)
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with δ the Dirac delta function (4). With the positions and momenta being well

defined, Erhenfest theorem states that Newtonian mechanics can be applied (5).

But that is the ideal approximation, and the emergence of classical mechanics from

Schrödinger equation is still not entirely solved (6). Indeed, even with small ~, nothing

prevents wave particles from spreading with time.

It is nonetheless possible to recover Newton laws of movement without having nar-

row wave packets with Bohmian method. Let us consider a wave particle defined in the

polar form Ψ = Re
i
~S and a Hamiltonian expanded: H = − ~2

2m∇
2+V . The Schrödinger

equation 1.1 is now:

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ+ V Ψ (1.3)

With ρ = R2 the particle density, S the action in the Lagrangian equation(7) and

so ∇S the particle momentum, the imaginary part gives the continuity equation:

∂R2

∂t
+∇

[
∇S
m
R2

]
= 0 (1.4)

and the real part a modified Hamilton-Jacobi equation:

∂S

∂t
+

(∇S)2

2m
+ V − ~2

2m

∇2R

R
= 0 (1.5)

In which the three first terms are the classical Hamilton-Jacobi equation and the last

one is an additional term called the quantum potential U = − ~2

2m
∇2R
R . The quantum

potential can be seen as a measure of the shift between the classical and quantum

mechanics, and as U −−−→
~→0

0, the wave particle follows the Newtonian mechanics when

~→ 0. Bohmian method concludes only on the Newton mechanics approximation and

not on the dispersion of wave packets.

Actually, the dispersion of positions is not negligible, for example an aluminum atom

at room temperature (T = 300K) has a characteristic wavelength of roughly λ = 0.3

Å for an inter-atomic distance of 3 Å. At atomic scale, the ball particle model is not

obviously supported by quantum theory. Nonetheless the model is wildly used because

of its simplicity and the satisfactory results it can give in practice. First-principles

models rely at the same time on a wave function model with quantum mechanics and

a ball particle model with Hamiltonian mechanics.
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1.3 Particle Dynamics

1.3 Particle Dynamics

1.3.1 Hamiltonian mechanics

In the Hamiltonian formalism, particles are characterized by their mass, positions and

momenta. Let us take N particles of masses (m1,m2, . . . ,mN ), q = (q1, . . . ,qN) the

vector of all their positions and p = (p1, . . . ,pN) the vector of all their momenta. The

total energy of this system is given by its Hamiltonian H, function of q and p, and the

time evolution of the positions and momenta is by Hamilton’s equations (8):

{
q̇(t) = ∇pH(q(t),p(t))
ṗ(t) = −∇qH(q(t),p(t))

(1.6)

with (q(0),p(0)) the initial state.

In classical mechanics, the total energy is the sum of the system’s kinetic energy K

and potential energy V :

H(q,p) = K(q,p) + V (q,p) (1.7)

And in its widely-used form, the classical Hamiltonian is separable(9) :

H(q,p) = K(p) + V (q) (1.8)

The total kinetic energy is the sum of all particle’s kinetic energy :

K(p) =

N∑
i=1

p2
i

2mi
(1.9)

which is written more formally :

K(p) =
1

2
pTM−1p (1.10)

with M the diagonal matrix of masses. In the next chapter 1.3.3 we will use another

kinetic energy function to modify the movements of particles.

The potential energy V (q) describes the interactions between particles. Depending

on the physical model chosen for the simulation, V (q) can take different forms. They

vary from a sum of pairwise interactions to more global considerations, we describe the

main kinds in chapter 1.4. From the above equations 1.6 and 1.8 and from Newton

second law :
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1. INTRODUCTION

−∇qV (q) = −∇qH(q,p) = ṗ(t) = f (1.11)

with f = (f1, . . . , fN) the vector of forces undergone by each particle. Hence the

name of force-field for V (p).

With a separable Hamiltonian, and classical kinetic energy, motion equations are

simplified and we retrieve Newtonian mechanics:{
q̇(t) = ∇pK(p(t)) = p/m
ṗ(t) = −∇qV (q(t)) = f

(1.12)

1.3.2 Discretization of Dynamics

Except for simple motions, the equations of movement cannot be solved analytically, so

the time continuum t and the continuous state trajectory
(
q(t),p(t)

)
are discretized.

Let us note the time step ∆t, the continuous state trajectory
(
q(t),p(t)

)
becomes a

sequence of states
(
qn,pn

)
, approximating the states of

(
q(t),p(t)

)
at times n∆t :(

qn,pn
)
≈
(
q(n∆t),p(n∆t)

)
. To create this sequence, we integrate those equations,

the simplest integrator is the Euler one:

{
qn+1 = ∇pH(qn,pn)

pn+1 = −∇qH(qn,pn)
(1.13)

And one of the most common is the velocity Verlet integrator that has an error of

second order with respect to the time step size ∇t:


pn+1/2 = pn −∆V (qn)

∆t

2

qn+1 = qn +∆K(pn+1/2)∆t

pn+1 = pn+1/2 −∆V (qn+1)
∆t

2

(1.14)

This integrator has a second order error because it modifies the positions with the

momenta between two time steps – pn+1/2 –, nevertheless, the integrator still needs only

one computation of forces ∆V (q) per time step. The computation of forces being very

often the bottleneck of simulation, this makes the velocity Verlet integrator commonly

used. Other integrators of higher order can be found in the literature (10)
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1.3 Particle Dynamics

1.3.3 Adaptively Restrained Particle Simulation

The NANO-D team has recently developed a new particle dynamics designed to speed

up simulations: ARPS for Adaptively Restrained Particles Simulations(11, 12). ARPS

freeze the slowest particles movements so that the number of moved particles at each

time step decreases. Precisely, ARPS modify the kinetic energy function of the Hamil-

tonian by a function that vanishes for the small values of momenta. If one refers to

the integrators 1.13 and 1.14, or even to the Hamilton’s equation of motion 1.6 with a

separable Hamiltonian, one observes that if the kinetic energy of a particle is null on

an interval, its kinetic energy gradient is null too, and the particle is motionless: q̇ = 0.

In the ARPS method, the Hamiltonian is modified with a new kinetic energy function:

HAR(q,p) = KAR(p) + V (q) (1.15)

with

KAR(p) =
N∑
i=1

k(pi) (1.16)

k manages the behavior of particles by using their kinetic energy K and 2 thresholds:

εr, the fully-restrained threshold, and εf , the full-dynamic threshold. If K ≤ εr the

particle is inactive and its movement is totally restrained, if K ≥ εf the particle is active

and moves freely. Between those two thresholds, when εr < K < εf , a C2 function, s,

permits a smooth transition between the two states (active and inactive) 1.17.

k(pi) =



0 if
p2
i

2mi
≤ εr

p2
i

2mi
if

p2
i

2mi
≥ εf

s

(
p2
i

2mi

)
if

p2
i

2mi
∈ [εr, εf ]

(1.17)

For details and mathematical explanations, we refer the reader to (11, 12). The

consequences on macroscopic quantities of this restrained adaptive dynamics have been

studied in (13, 14).

The goal of freezing the movements of particles is to speed up the computation of

∆V (q), the bottleneck of particle simulations. If few particles have moved, qn+1 ≈ qn,
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∆V (qn+1) could be easier to update from ∆V (qn) than to compute from scratch. The

NANO-D team has already modified several classical force fields to benefit from this

new dynamical method. The scheme often consists in comparing the differences between

two consecutive time steps and in adapting the computation of forces in consequence

to avoid useless calculus.

For example, for pairwise interaction models like Lennard-Jones potential, ARPD

allows to update fewer forces. For other interaction model, incremental methods, that

compare the differences between two consecutive time steps and adapt the computa-

tion of forces in consequence, can benefit from a reduction of the number of active

particles. The NANO-D team has developed several incremental methods to com-

pute first-principles interactions(15, 16) or electrostatic interactions (17). Other sim-

ulation methods that do not update the positions of all particles, like Monte-Carlo

simulations(7), also benefit from incremental computation of forces and energies.

1.4 Particle Interactions

Having determined how particles move, we have now to calculate what force makes

them move. We have simplified here the interactions between particles in two dis-

tinct types: empirical interactions and first-principles interactions. Basically, empirical

force-field are simple interaction schemes whose parameterization is based on the obser-

vation of matter macro-properties –top-down approach–, and first-principles force-field

are based on quantum physics and the resolution, or approximation, of Schrödinger

equation –bottom-up approach–. In practice a lot of force-fields, and most of used

”first-principles” method, are in between those two types, using quantum physics to

define the shape of their interaction functions and macro-properties to tune some of

those functions parameters.

1.4.1 Empirical force fields

For empirical force-fields, the strong bindings called covalent bonds between atoms do

not emerge from the interaction model, they have to be modeled explicitly. Hence this

general kind of potential energy that splits apart the interactions created by bonds from

the rest, the rest containing other inter-atomic interactions plus an external potential:

8



1.4 Particle Interactions

V (q) = Vbonds(q) + VIA(q) + Vext(q) (1.18)

With more complex particles, other properties could be added, for example the

polarization of water particles. We will stay brief for the introduction.

1.4.1.1 Liquids and Gases

For systems without bonds, like simply modeled gases and liquids, and without any

external potential, we keep only inter-atomic interactions VIA(q) often being a sum of

pairwise interactions that depending only on the distance between the two particles

concerned:

VIA(q) =
N∑

1≤j≤i
vpot(|qi − qj |) (1.19)

With vpot(r) a function of the distance between two particles r = |qi − qj |.
When particles are charged, the electric interaction is generally preponderant on all

the others, and the interaction between two particles i and j of charges Qi and Qj is

written

v(r) =
1

4πε0

QiQj
r

(1.20)

If particles are not charged, weaker interactions become noticeable. Among them,

van der Waals forces gather permanent and induced dipole interactions, they are at-

tractive forces with a shorter characteristic interaction distance. A classical way to

represent them simply is the Lennard-Jones potential (18). The LJ potential also adds

a very-short range repulsive energy to prevent particles to be too close, an easy way to

insert the Pauli exclusion. The potential describes the interaction between two particles

vLJ(r).

vLJ(r) = 4E0

[(r
d

)−12
−
(r
d

)−6]
(1.21)

In which E0 and d depend on the particle type, some formulas allow to calculate

interactions between two different particles(18).

The time for direct computation of those potentials scale as O(N2) because of the

double sum. The efficient method depends on the potential, for short range potentials,

like Lennard-Jones, cell lists to store a particle neighbor are common. For the electrical

9



1. INTRODUCTION

force-field, the interactions are often solved by computing the electric potential on

the whole domain by solving the associated Poisson equation. We will see that we

can reduce again the computation times in dynamical simulations by using restrained

dynamics.

1.4.1.2 Bonded systems

For systems with covalent bonds, present in domains like biology, crystallography, or-

ganic chemistry etc . . . , covalent bonds have a capital contribution to energy, hence

the very common ”balls and sticks” molecular representations. To model non-reactive

systems, in which no covalent bond breaks or appears, an easy way to model bindings

is to associate to bonds an elastic energy. Lengths, angles and torsions are maintained

around equilibrium values, l0, θ0 and φ0, by an elastic potential. If qij = qi−qj is the

vector from atom i to atom j and i, j, k and l are four consecutive and linked atoms:

Vl = kl (|qij | − l0)2 (1.22)

Va = ka
(
q̂ji,qjk − θ0

)2
(1.23)

Vt = kt
(
φqji,qkl − φ0

)2
(1.24)

φqji,qkl the torsion angle between qji and qkl. For example, in crystallography, the

Keating model (19) associates a crystal to the energy

V (q) = α
∑
bonds

(
q2
ij − l20

)2
+ β

∑
bond angles

(
qij .qik +

1

3
l20

)2

(1.25)

A more general version can be found here (20).

1.4.1.3 Reactive force fields

But chemical reactions are mainly about creations and breaks of bonds and models and

simulation have to deal with those. The Morse potential models elastic bonds that can

break:

V (qij) = De

(
1− e−a(|qij |−l0)

)2
(1.26)

10
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In which De is the binding energy and l0 the equilibrium bond length. The potential

shape is similar to the Lennard-Jones potential shape. The important differences are

the binding energy involved (De) and the quadratic shape of the Morse potential around

the equilibrium length that gives the energy functional the desired spring behavior.

1.4.1.4 Universal force-field

The Universal Force-Field, or UFF, gathered all those interactions. In the original

paper(21), the systems energy is written

E = ER + Eθ + Eφ + Eω + EvdW + Eel (1.27)

with

• ER the bond stretch energy, a Morse potential.

• Eθ the bond angle energy.

• Eφ the bond torsion energy.

• Eω the inversion term accounting for planar angles.

• EvdW the van der Waals interactions energy, a Lennard-Jones potential.

• Eel the electrostatic interactions energy, a Coulomb repulsion term.

The formulas of those energy functionals may be different for computational effi-

ciency. All those energies depend on the atoms involved, and UFF rests on long tables

of atom-dependent coefficients, and not only the different elements of the periodic ta-

ble, each element is sorted in several types. For example, in the 1992 version of UFF,

carbon has four types, C3 for tetrahedral, C2 and CR for triangular, C1 for planar

conformations. All the coefficients are tuned to fit sets of molecules.

One also can have more accurate force-fields that are specialized in one kind of

system, for example:

• GROMOS(22)(for Groningen Molecular Simulation), implemented in GROMACS(23),

is specialized for protein and their ligands.

11
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• Brenner force-field (24) is specialized in the simulation of hydrocarbon molecules,

graphene, graphite and diamond.

The parameters of all those force-fields are tuned to fit experiments or theoretical

results.

1.4.1.5 Learned Force-Field

A new kind of force-fields has emerged with the increase of computational power. Those

force-fields parameters are learned automatically from sets of molecule examples and

not fitted from experiments. Learning abilities have been enhanced with the new ad-

vances in machine learning and the increase in computational power. With neural

networks, that method creates a pure empirical force-field, a black box whose coeffi-

cients are not understood, they have been learned (25, 26). As deep-learning methods

require a lot of examples to learn to model a property, classical database of molecules

are not sufficient, so the methods often use already existing and precise force-fields to

create large datasets of examples on which to learn, the first-principles force-fields, slow

and accurate, are the standard choice.

1.4.2 First-Principles Methods

The aim of ”first-principles” methods is to simulate the physic of particles behind

chemistry: the behavior of the electrons and nuclei that creates and breaks the bonds,

shape the molecules and make them interact. Empirical methods are in general simple,

and so fast and able to model large systems, but because they are tuned on existing

set of molecules they might not be able to predict behaviors that are unknown, rare or

just not ”obvious”. The angle of the ammonia molecule NH3 is 109, 5◦, see figure 1.1,

whereas a spring model trying to maximize angles would have given a flat molecule with

120◦ angles. Empirical models do not predict those shapes, they have to be hard coded

in the model, as they are in UFF (21). First-principles models, by starting from the

physic behind those shapes, should be able to model everything, and predict unknown

molecules shapes.

We will spend more time to develop how a first-principles force-field is built in the

next chapter, when explaining the equations of Orbital-Free Density Functional The-

ory 2. Briefly, they use quantum physics to model chemical properties. The Schrödinger
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1.4 Particle Interactions

Figure 1.1: Ammonia molecule, NH3 - For the NH3 molecule, a simple spring model

would have given a flat triangular molecule, with 120◦ bond angles. To model properly

the ammonia molecule with an empirical force field, the equilibrium bond has to be hard

coded in the force-field. Another option is a first-principles force-field that can model the

reason for this angle: the non-binding electrons pair of nitrogen.

equation 1.1 that models how particles move in an electric field, and in particular how

electrons move in the electric field created by nuclei is solved, or approximately solved.

That allows to find where electrons rest to minimize a nuclei system’s energy, and then

deduce the shapes and dynamics of molecules. And to model the interaction between

two atoms, the Schrödinger equation is solved for electrons in the electric potential cre-

ated by the two nuclei. In figure 1.2, we drew the dihydrogen bond modeled with one

first-principles method, the linear combination of atomic orbitals (LCAO). For first-

principles methods, the energies and shape of molecules are determined ideally on the

sole quantum physic.

But this perfect simulation method comes with a great computational cost. The

calculus of a bond energy went from a simple function 1.26 to the resolution of the

Schrödinger equation, an eigenvalue problem. That is why first-principles methods

have kept focus on small systems. Moreover, SE is a complex equation to solve, mainly

because the interaction between two electrons cannot be computed precisely in the

general case. The equation can be solved analytically for systems with one electron

because the interaction between electrons disappears, for example the hydrogen atomic

orbitals 2.1 and their energy are solved analytically. For the electrons of the helium

atom, computational methods are required (2). For multi-atomic systems, more ap-

proximations have to be used. A first one is to consider the solutions of the Schrödinger
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Figure 1.2: Electron density of the σ-bond of dihydrogen - To create a bond, two

atoms share electrons. Here we have used a linear combination of atomic orbitals (LCAO)

to model the binding molecular orbital: the 1s-orbitals of each hydrogen, |ψa〉 and |ψb〉,
merge into a σ-bond orbital |ψσ〉 = αa |ψa〉+ αb |ψb〉.

equation, or the molecular orbitals, are linear combinations of atomic orbitals (LCAO).

LCAO are good approximations of molecular orbitals and are used in Hartree-Fock

(HF) methods and even DFT as ”Slater-type Orbitals” (STO), but still reduces the

search space of solutions, and so the precision. Finally, as the reduction of molecular

orbitals search-space with LCAO does not permit to model moderately large systems,

the next approximation is more drastic: the Density Functional Theory (DFT) does not

try to compute eigenvectors of SE, but instead computes directly the electron density

corresponding to the useful eigenvectors. DFT reduces a problem of dimension 3N ,

N the number of electrons in the system, to a problem of dimension 3, the electronic

density function.

As this work is centered on computations for a DFT method, we will develop more

explicitly first-principles methods in the next chapter.

1.5 Efficient molecular simulations

Many macroscopic properties of materials can only be explained with simulations in-

volving a lot of particles, several thousands to billions. For example classical proteins

contain thousands of atoms, and as their behavior depends on the solvent in which it

evolves, often water, the solvent has to be simulated too (23). A living or pseudo-living

organism like a virus contains at least hundreds of proteins. The size of simulation re-

quired to model those macroscopic objects become too much for a computer or even a
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super calculator to manage. To improve the speed of calculations, new algorithms have

emerged. They often search for ways to reduce the number of dimensions to explore.

1.5.1 Periodic Boundary Conditions

To multiply artificially the number of particles simulated, the use of Periodic Boundary

Conditions (PBC) is common. In PBC the computational domain is folded on itself:

particles close to a border feel the interactions with particles on the other side through

the border, see figure 1.3. PBC permits to model virtually infinite systems with a finite

number of particles, besides some efficient function basis like plane-waves are periodic

so PBC is well adapted for them.

Figure 1.3: Periodic Boundary Conditions simulation - In Periodic Boundary Con-

ditions (PBC), the computational domain is copied an infinity of times in every directions,

so that with only a finite number of simulated particles, an infinite particle system is

modeled.

1.5.2 Coarse-grained models

In a more general way, reducing the computational cost of algorithms often starts by

identifying the dimensions of the search space the less useful and find representations

of the system that do not include them, hence with less dimensions. For example in

computational biology, atoms can be grouped by molecules or by molecule parts that

become rigid objects. The coarse grains model restrains movement of particles and

reduces the system’s dimensions. For proteins, an all-atom model can be turned into a

amino-acid model or even a chain model, see 1.4.

15



1. INTRODUCTION

Figure 1.4: From all atom to chain model simulation - To reduce computation time

of a protein simulation, the full protein is considered as a chain whose links are for example

the alpha carbons. The interesting properties of amino acids like mass, hydrophobia,

hydrogen binding abilities etc . . . are still represented, but are now properties of the chain

links.

1.5.3 Restrained Dynamics and incremental algorithms

Adaptively Restrained Dynamics Simulations are in the same spirit, they aim at reduc-

ing the number of dimensions a dynamical model can explore at each time step. The

movements of some particles are stopped, the space they explore at each time space is

reduced. But to benefit from the reduction of movements, the interaction model of the

simulation has to be adapted. We describe below several interaction models that do

not compute the energy and forces from scratch at each time step, but that try to use

a maximum of information from the precedent time step. We classified them here as

”incremental algorithms”.

1.5.3.1 Short-range interactions

For short-range interactions like Lennard-Jones or Morse potentials, the first classical

improvement for an efficient simulation consists in computing interactions only between

neighbor particles, other interactions being negligible. The neighbor grid algorithm, in

which the domain is paved in cubic sub-domain with a side size corresponding to the

length of the interaction limit in order to find easily the neighbor particles, is a famous

method to manage the which interactions are to compute. Other and more specific

methods to store or compute neighbor lists exist (27), the grid-based stays a very

classic one.
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1.5 Efficient molecular simulations

In (11, 28) is shown that a restrained dynamic can increase again the speed of

computation without losing simulation’s features. As the interactions are pairwise and

depends only on the inter-atomic distance |qi − qj |, if a pair of atoms does not move,

the interaction between those two atoms stays the same at the next time step and

does not need to be computed again. Freezing some particles movement decreases the

number of forces to compute and reduce the quantity of computation required. More

complex methods allows massively parallel simulations with ARPS (29, 30, 31).

1.5.3.2 Long-range interactions

Because of their long-range characteristic, in a charged particle system, all particles feel

the interactions of all particles, so reducing the computation of forces to neighbors does

not make sense. For efficiency reasons, the energy and the interactions of a long-range

interactions model are solved through the corresponding Poisson equation. If we call φ

the potential created by all charges, we have for punctual charges:

φ(q, x) =
1

4πε0

∑
1≤j≤N

Qj
|x− qj |

(1.28)

that can be computed with its corresponding Poisson equation:

∆φ(q, x) = − 1

ε0

∑
1≤j≤N

Qjδqj (x) (1.29)

δq(x) the Dirac distribution in q. The total electrostatic energy can be written

from 1.19

E(q) =
1

2

∑
1≤i≤N

Qiδqi(x)φ(q, x) (1.30)

The Fourier transform allows, with the Fast Fourier Transform, to compute φ in an

O(N ln(N)), N a measure of the system linked to the number of particles, and not in

O(N2). Multi-grid algorithms have the same scaling. In (17, 32), multi-grid algorithms

have been modified to benefit from a restrained simulation.
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1.5.3.3 First-Principle interactions

There is still no first-principles interaction model that has been adapted to benefit

from a restrained dynamic. There is however a version of Atom Superposition and

Electron Delocalization Molecular Orbital (ASED-MO) theory, that uses small LCAO

functional basis and a simplified Hamiltonian, on the model of Extended Hückel Molec-

ular Orbital (EHMO) has been developed to improve geometry relaxation by freezing

particles movement. By dividing the molecular system in disjoint blocks, this version of

ASED-MO updates only parts the electronic structure at each geometry optimization

step(15, 16, 33).

Our work is in the continuation of those incremental algorithms that are modifica-

tions of classical interaction models to benefit from a restrained dynamic. We use this

time a first-principles force-field: Orbital-Free Density Functional Theory.

1.6 SAMSON

In the wake of computational chemistry, hundreds of softwares and programs have

emerged to design, model and simulate molecules. Most of them are specialized, either

in crystallography, protein design, particle simulation or another domain. Yet we see

nano-systems that cross those different domains, like a glucose detector made with the

combination of proteins and a graphene sheet(34). From this finding and from the

need for more efficient simulation methods, the NANO-D team of INRIA developed

SAMSON, for Software for Adaptive Modelisation and Simulation of Nano System, a

new software designed as an app-store: a simple, mandatory core, and tens of modules,

called elements, all specialized in their own task (visualization, computation of interac-

tions, computation of dynamics or all other properties), so that every type of molecular

simulation could be made (protein design, crystallography, chemical reaction predic-

tion, molecular dynamics, structural relaxation etc . . . ). SAMSON also comes with a

graphical interface and a software development kit to implement new elements. For

those reasons and to benefit from the dynamical models already implemented (particle

dynamics, energy relaxation etc . . . ), the methods presented in this thesis have been

implemented and tested in this software, and all the pictures are taken from it.

In order to be able to benefit from the work of other developers, molecular simula-

tions are split in two steps
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1.7 Contributions

• Dynamic models that control particles movements

• Interaction models that compute the system’s energy and the forces atoms un-

dergo

So that a user can use a specific interaction models with dynamical models already

existing or vice versa, and a developer can test its new dynamical model (respectively

interaction model) with already existing interaction models (respectively dynamical

model).

1.7 Contributions

The aim of this thesis is the development of algorithms that fasten the dynamical

simulation of particle systems with a first-principles interaction model, Orbital-Free

DFT. We chose to adapt OF-DFT computation methods in order to benefit from a

restrained dynamical method like ARPS. That led to the contributions described below

and in this manuscript.

• The development of a new interaction model has required the development of

numerous tools to test the ideas and compare them to state of the art. Several

of those tools were efficient enough to also serve other purposes. Indeed, all the

ideas developed in this thesis have been tested with the help of SAMSON 1.6.

The software is equipped with everything to model particle systems, several dy-

namical models to minimize energies or run dynamical simulations, the restrained

dynamical models we intends to benefit from, proper visualization tools, and a

SDK, allowing an easy implementation of new models. Nonetheless, SAMSON is

still not equipped like a complete molecular simulation software and misses func-

tionality we needed. So to create benchmarks easily, to display properties clearly

or to measure them on the fly, we have developed several SAMSON elements.

– An element to generate and manipulate crystals. The goal was at first only

a way to generate easily Face-Centered Cubic (FCC) aluminum crystals,

the main benchmark we have used. We have extended it first to be able

to write and generate any crystal, then to read .cif format files. cif, for

Crystallographic Information Files, is one classical format of crystal systems.

The element is now on sale and has found clients.
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– Several elements in cooperation with our INRIA team, NANO-D, and a CEA

research group for the study of defects in a graphene sheet that led to two

publications (35, 36). Among them elements to evaluate and draw Radial

Distribution Functions and Angle Distribution Functions during simulations

and an element for the visualization of deformation in covalent crystal.

– Other elements to help me testing algorithms and for the communication of

my results. I have implemented a Restrained Energy Minimization scheme,

a manual modification of particle speed or momenta, and a tool for the

visualization of particle position shift, movement or velocity.

• The aim of this thesis is to link a first-principles method and adaptively restrained

dynamics. To do so we had to develop another implementation of Orbital-Free

Density Functional Theory that could benefit from a restrained dynamic. In

Chapter 2 we recall the theory behind OF-DFT. We highlight the advantages of

the method, the drawbacks still present and the efforts to address them. We then

list several OF-DFT softwares we took inspiration from.

• We produce in Chapter 3 our new program of energy computation based on

OF-DFT. We explain our choice for a Real-Space Finite-Differences method, our

choice for the optimization algorithm then our choice for the pseudo-potential.

At last, after evaluating the accuracy of our method by comparing the energy

value computed with another implementation, plane-wave based, PROFESS. We

then measure and compare the efficiency of our program with PROFESS.

• The Chapter 4 has been mostly published in a paper in Journal of Computational

Chemistry. We make the link between the Adaptively Restrained Particle Dy-

namic and our OF-DFT method. To show the performance of the combination,

we simulated a implantation of aluminum in a two thousands Aluminum atom

plate arranged in FCC crystal, then use a saddle search algorithm, Nudge Elas-

tic Band or NEB, to simulate a displacement of a defect in an Aluminum FCC

crystal.
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2

Orbital-Free Density Functional

Theory

Density Functional Theory is a method to solve efficiently Schrödinger equation and

compute particles systems properties with quantum mechanics. As DFT has a good

trade-off between predictions and computational costs, the method has been widely

used and a lot of variants have been developed using different basis sets: plane wave,

Gaussian Type Orbitals, Slater Types Orbital, or others like PAW. Orbital-Free Density

Functional Theory is one variant of DFT among others with a very low computational

cost, hence the ability to simulate large clusters of atoms.

We describe in this chapter how Orbital-Free DFT emerges from the basics of quan-

tum physic. We finish by a list of several methods and implementations of OF-DFT

that were crucial for my work.

2.1 Schrödinger equation

We saw in section 1.2.1 that first-principles simulations start with the non relativistic

time-dependent Schrödinger equation, here written in position space:

i~
∂

∂t
|Ψ(r, t)〉 = H |Ψ(r, t)〉 (2.1)

We consider here and for all the equations afterward only spinless particles because

all the equations we need are the same. The Hamiltonian operator H is, like in classical

21



2. ORBITAL-FREE DENSITY FUNCTIONAL THEORY

Hamiltonian mechanics, a measure of energy, and can be decomposed in a kinetic energy

operator and a potential energy one :

H |Ψ(r, t)〉 = − ~2

2m
∇2 |Ψ(r, t)〉+ V (r, t) |Ψ(r, t)〉 (2.2)

As all the operators are linear, all linear combinations of solutions are also a solution.

Thus we look at a basis of solutions, the eigenvectors of the operator H, or the solutions

of the time-independent Schrödinger equation:

H |Ψ(r)〉 = E |Ψ(r)〉 (2.3)

Here, r is not only a position vector, it also takes into account the spin of particles:

r = {ri} with ri = (xi, yi, zi, si).

In simple cases, this equation can be solved. For one particle in a flat potential

V (q, t) = cste, q a position in the 3D space, the solutions are traveling waves. For

one particle in a Coulomb Potential V (q, t) = Q
|q| , the eigenfunctions are the so called

”hydrogen-like atomic orbitals”, a combination of a radial function Rnl(r) and spherical

harmonics Yl,m(θ, ϕ). They are, with the approximation of a fixed nucleus, the orbitals

of the hydrogen atom. In this case the solutions are analytically solvable, we drew one

in figure 2.1, the 3p hydrogen orbital.

Figure 2.1: Real part of a 3p atomic orbital - Solving the Schrödinger equation

with one electron in a Coulomb potential V (r) = 1
4πε0

Q
r gives a set of wave functions of

increasing energies.

Those solutions are more than toy models for they are a start to function basis of

several DFT methods.
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2.2 Born-Oppenheimer dynamics

2.2 Born-Oppenheimer dynamics

To find more solutions, we will need several approximations. Let us go back to the

time-dependent Schrödinger equation 2.1. We first split the particles depending on

their mass: the nuclei on one side, electrons on the other.

We will now consider a particle system composed of N electrons, of mass me, charge

e and positions r = {ri}i and of M nuclei, of masses MI , charges QIe and positions

R = {RI}I

HΨ(r,R, t) = EΨ(r,R, t) (2.4)

In the international System of Unit, SI, and without any external electrostatic field,

the Hamiltonian can be written:

H = −
∑
I

~2

2MI
∇2
I−
∑
i

~2

2me
∇2
i+

1

4πε0

∑
i<j

e2

|ri − rj |
− 1

4πε0

∑
I,i

e2ZI
|RI − ri|

+
1

4πε0

∑
I<J

e2ZIZJ
|RI −RJ |

(2.5)

with ε0 the vacuum permittivity and the five terms being respectively :

1. the kinetic energy of the nuclei

2. the kinetic energy of the electrons

3. the electric interaction between electrons

4. the electric interaction between nuclei and electrons

5. the electric interaction between nuclei

And from here we simplify the computation of particles movement by decoupling

the interactions undergone by electrons and nuclei.

• First we introduce the electronic Hamiltonian He, a clamped version of the total

Hamiltonian:

He = −
∑
i

h2

2me
∇2
i+

1

4πε0

∑
i<j

e2

|ri − rj |
− 1

4πε0

∑
I,i

e2ZI
|RI − ri|

+
1

4πε0

∑
I<J

e2ZIZJ
|RI −RJ |

(2.6)
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2. ORBITAL-FREE DENSITY FUNCTIONAL THEORY

For each fixed nuclei positions, we can compute with He an electrons energy,

electronic wave functions and electron movements.

The decoupling of nuclei and electron movement: due to the difference of mass be-

tween electrons and nuclei, we dissociate their movements, Ψ(r,R, t) = χ(R, t)ψ(r, t),

χ(R and t)ψ(r, t) respectively the nuclei wave function and electrons wave func-

tion. If nuclei are fixed, electrons move on their own, their movement dictated

by the electronic Hamiltonian i the field of the nuclei:

Ψ(r,R, t) =
∞∑
l=0

χl(R, t)ψl(r, t) (2.7)

• Then we use the adiabatic approximation(37): we consider nuclei move without

interfering with the electrons quantum state. They are slow enough to let the

electronic wave function relax without changing state. That means we can decou-

ple the total wave function Ψ(r,R, t) into the product of a nuclei wave function

χ(R, t) and an electron wave function ψ(r, t).

Ψ(r,R, t) = χ(R, t)ψ(r, t) (2.8)

• At last, we introduce the classical limit approximation(38) for the nuclei: we

consider the positions and momentum wave functions of nuclei are close enough

from Dirac distributions they can be seen as a ball-particles. Their position

probability density can be written as a sum of Dirac distributions centered on

{RI}1..N , the nuclei positions:

∫
χ∗(R)χ(R)dR =

N∑
0

QIδRI
(2.9)

and hence can be considered as a set of point-positions {RI}1..N . We have already

shown 1.2.2 how heavy particles can be seen as ball-particles moving according

to Newton’s laws of mechanics.

With those approximations we manipulate systems composed of electrons wave

functions that moves according to He and ball-particles nuclei that that moves accord-

ing to classical mechanics. Several methods were proposed to mix the two dynamics.
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2.3 Atomic units system

Ehrenfest dynamics (38) propose to compute the movement of electrons with the time-

dependent Schrödinger equation 2.1 and nuclei movement with the current electrons

wave function:  i~
∂ψ

∂t
= Heψ

MIR̈I = −∇I 〈Ψ|He|Ψ〉
(2.10)

But this scheme requires scaling the time steps on the electrons movements and

hence makes the nuclei movement computations slow. Car-Parrinello dynamics (38, 39)

avoid the problem by using a modified version of Lagrangian mechanics. We will use

Born-Oppenheimer (BO) dynamic, in which the time-independent Schrödinger equation

(TISE) is solved at each nuclei time step. If we use the electrons ground-state Ψ0 for

dynamic, BO dynamic is:

{
E0Ψ0 = HeΨ0

MIR̈I = −∇I 〈Ψ0|He|Ψ0〉
(2.11)

If the ground-state is used more often, others electrons states can be used. This

scheme allows the dynamic to use larger time steps, scaled on nuclei movement, but it

requires efficient method to compute the solution of TISE. Once again, we refer to the

book (38) for a complete description and explanation of the different approximations

and dynamics we have cited.

2.3 Atomic units system

We open a small parenthesis to explain the unit system we will use for the rest of this

work. When working with atomic physic, the International Unit System (SI) is not

adapted to the orders of magnitude. Hence we have worked in Hartree atomic units.

This system is based on those four physical constant:

• Electron mass me

• Electron charge e

• Coulomb constant ke = 1
4πε0

• Reduced Plank constant ~ = h
2π
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2. ORBITAL-FREE DENSITY FUNCTIONAL THEORY

whose values are by definition one. The energy is measured in Hartree Eh and the

distances in Bohr a0:

• 1Eh = 27.2114 eV

• 1a0 = 0.529 Å

Hence, in Hartree atomic units, the kinetic energy and electrical repulsion energy

observables change:

− ~2

2me
∇2 becomes − 1

2
∇2 (2.12)

e2

4πε0r2
becomes

1

r2
(2.13)

And the electronic Hamiltonian 2.6 becomes:

He = −1

2

∑
i

∇2
i +

∑
i<j

1

|ri − rj |
−
∑
I,i

ZI
|RI − ri|

+
∑
I<J

ZIZJ
|RI −RJ |

(2.14)

From now, when writing about electrons energy and distances, we will use mostly

Hartree atomic units, the energies will be in Hartree (Eh) and the distances in Bohr

(ae).

2.4 Hohenberg-Kohn theorems

All the Density Functional Theory is based on the Hohenberg-Kohn theorems(40).

Those theorems transforms the problem of several interacting electrons into a problem

of one electron density, reducing drastically the complexity, from a 3N dimensions to

a 3 dimensions problem. The first theorem is a uniqueness property, the second a

variational one.

First H-K theorem The first Hohenberg-Kohn theorem states that if N interacting

electrons move in an external potential Vext(r), the ground-state energy is a unique

functional of the density ρ(r). Thus the ground state electron density is sufficient

to construct the full Hamilton operator and hence to calculate - in principle - any
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2.5 Kohn-Sham DFT

ground state property of the system without the knowledge of the many-electrons wave

function. This means that any ground state property can be expressed in terms of the

ground state electron density ρ(r). There is an energy functional E such as for the

ground-state wave function Φ0 and its corresponding electronic density ρ0:

E[ρ0] = 〈Φ0|He|Φ0〉 (2.15)

Second H-K theorem The ground state energy can be obtained by energy mini-

mization: for an equal number of electrons, the functional E that delivers the ground

state energy of the system, gives the lowest energy if and only if the input density is

the true ground state density.

∀ρ,E[ρ0] ≤ E[ρ] (2.16)

Thus the challenge is no more to find a whole many-body wave function, but a one

dimension function: the electron density. The whole Density Functional Theory rests

on those two theorems.

That makes the Hohenberg-Kohn theorems crucial to electronic structure calcula-

tion, but does not solve the problem entirely .

2.5 Kohn-Sham DFT

Walter Kohn and Lu Jeu Sham have introduced a method to compute the ground state

electron density based on the Hohenberg-Kohn theorems (41). To do so, they do not

consider that the ground state density is the result of a N-electrons wave function, but

of N one-electron wave functions that do not interact directly with each other.

2.5.1 Kohn-Sham energy functionals

The Kohn-Sham energy functional separates the computations into four energy func-

tionals:

EKS [ρ,R] = Eext[ρ,R] + EH [ρ] + EXC [ρ] + Ts[ρ] (2.17)

with ρ the electron density : a functional of the 3D space (ρ(r) with r a 3D position)

always positive and accounting for the probability position of N electrons :
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2. ORBITAL-FREE DENSITY FUNCTIONAL THEORY

ρ(r) ≥ 0 (2.18)∫
ρ(r)dr = N (2.19)

The Kohn Sham functional replaces the Hamiltonian operator and the Hohenberg-

Kohn theorems implies if EKS [ρ0,R] = 〈Ψ0|H|Ψ0〉 for the electron ground state, ρ0 is

the electron density that minimizes EKS [ρ,R].

2.5.1.1 Electrostatic Energy

The first energy term driving the electron density is its interaction with the external

electrostatic potential Vext. In most application, Vext is only created by nuclei:

Eext[ρ] = −
∫
Vext(r)ρ(r)dr (2.20)

where Vext(r) is the potential created by all nuclei indexed by I ∈ J1,MK, at posi-

tions RI .

Vext(r) = −
∑
I

ZI
|RI − r|

(2.21)

2.5.1.2 Hartree Electronic Repulsion Energy

Another term is the electronic interaction which pushes away the electrons from one

another. In KS-DFT, a simple Coulomb repulsion is used, since all the quantum effects

of electron-electron interactions are hidden in the Exchange-Correlation term. Hence,

the electronic interaction EH [ρ] is defined such that:

EH [ρ] =
1

2

∫ ∫
ρ(r′)ρ(r)

|r− r′|
dr′dr (2.22)

Let us introduce the Hartree Potential VH , representing the electric potential cre-

ated by electrons:

VH(r) =

∫
ρ(r′)

|r− r′|
dr′ (2.23)

Then, the Hartree Energy term can be rewritten as the interaction energy between

the electrons and the electric potential they create:

EH [ρ] =
1

2

∫
VH(r)ρ(r)dr (2.24)
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2.5 Kohn-Sham DFT

2.5.1.3 Kinetic Energy Density Functional

In KS-DFT, the exact kinetic energy of a N-electrons wave function is approximated

by the exact kinetic energy of N one-electron non-interacting wave functions, plus a

correction calculated in the Exchange-Correlation Energy. The numerical value of the

non-interacting kinetic energy is not calculated directly from the density itself with

Ts[ρ], but by introducing a set of N one-electron wave functions orbitals :

Ts[ρ] = TKS [{φi}] =

occ∑
i

〈
φi

∣∣∣∣−1

2
∇2

∣∣∣∣φi〉 (2.25)

The set of orthogonal orbitals {φi}i is required to respect the electron density:

Single-Slater determinant :

ρ(r) =
∑
i

φ∗i (r)φi(r) =
∑
i

|φi(r)|2 (2.26)

2.5.1.4 Exchange-Correlation Energy

The exchange correlation (XC) energy is the term that holds all the quantum effects

not described in the other functionals. EXC can be formally defined by:

EXC [ρ] = T [ρ]− Ts[ρ] + Eee[ρ]− EH [ρ] (2.27)

where T [ρ] is the exact electronic kinetic energy and Eee the exact electron-electron

interaction energy. Unfortunately, the exact exchange correlation energy form is un-

known, so we have to rely on approximations. In KS-DFT, the XC energy is the gathers

all the approximations of the electron energy functional, if EXC is exact, E[ρ] is exact

and the errors only would come from the basis functions used. That is the reason why a

lot of research has been done on the development of accurate XC energy functional. A

whole C++ library is dedicated to the exchange-correlation energy functionals, Libxc

(42).

The more classical approximation for KS-DFT and so OF-DFT is the Local Density

Approximation (LDA) that uses a local computation. EXC is written as:
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2. ORBITAL-FREE DENSITY FUNCTIONAL THEORY

ELDAXC [ρ] =

∫
[εX(ρ(r)) + εC(ρ(r))]ρ(r)dr (2.28)

where

εX(r) = −3

4

(
3

π
ρ(r)

) 1
3

(2.29)

εC(r) =


a ln(rs) + b+ crs ln(rs) + drs, rs < 1

γ

1 + β1
√
rs + β2rs

, rs ≥ 1
(2.30)

rs(ρ(r)) =
(

3
4πρ

) 1
3

is the Wigner–Seitz radius, the radius of the sphere containing

one electron at density ρ(r). This measure of electron density is a classical parameter

in condensed matter physics. We choose a classical set of parameters used by Perdew

and Zunger(43): a = 0.0310907, b = −0.048, c = 0.002, d = −0.0116, γ = −0.1423,

β1 = 1.0529 and β2 = 0.3334.

More complex approximations have been developed, among them the Generalized

Gradient Approximation (GGA). GGA is a semi local functional, meaning it uses the

density value and its spatial derivatives. Those precise XC energy functional are also

useful for OF-DFT for new OF-KEDF appear that can approximate very accurately

the non-interacting KEDF of specific systems. We here describe one GGA functional,

the PDE, for Perdew Burke and Ernzerhof (44), XC energy functional:

EGGAXC [ρ] = EGGAC [ρ] + EGGAX [ρ] (2.31)

with

EGGAX [ρ] =

∫
[εX(ρ(r))ρ(r)FXdr (2.32)
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εX(ρ(r)) = −3kF
4π

(2.33)

kF = (3π2ρ(r))
1
3 (2.34)

FX = 1 + κ− κ

1 + µs2

κ

(2.35)

s =
|∇ρ(r)|
2kFρ(r)

(2.36)

κ = 0.804 (2.37)

µ =
βπ2

3
(2.38)

(2.39)

and

EGGAC [ρ] =

∫
[H + εC(ρ(r))]ρ(r)dr (2.40)

εC = −2a(1 + α1rs) ln

[
1 +

1

ζ

]
(2.41)

ζ = 2a(β1r
1
2
s + β2rs + β3r

3
2
s + β4r

2
s) (2.42)

rs =

[
3

4πρ(r)

] 1
3

(2.43)

H = γ ln

[
1 +

β

γ
t2
(

1 +At2

1 +At2 +A2t4

)]
(2.44)

A =
β

γ
[e
−εC
γ − 1]−1 (2.45)

t =
|∇ρ(r)|
2ksρ(r)

(2.46)

ks =

√
4kF
π

(2.47)

γ =
1− ln 2

π2
(2.48)

and all this with α1 = 0.21370, β1 = 7.5957, β2 = 3.5876, β3 = 1.6382, β4 = 0.49294

and β = 0.066725.

A lot of more XC energy functional exists, often more precise, because the accuracy

of Kohn-Sham DFT depends on this functional, so many resources have been spend
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on developing a perfect XC functional. We can cite meta GGA EmGGAXC that uses

second derivative of electron density ∇2ρ and the local non-interacting kinetic energy

Ts(r), the exact-exchange functionals EEXXXC , and all the hybrid XC functional EhGGAXC

that are linear combinations of the others. We refer again at Libxc, the C++ library

dedicated to XC functionals for precisions (42).

2.5.2 Coupled Kohn-Sham equation

The introduction of non-interacting one-electron orbitals allows the equation to be

modified into N coupled KS equations. EKS [ρ] becomes EKS [{φi}i] and the constraint

on the number of electrons
∫
ρ = N becomes constraint on the KS orbitals being

orthonormal: 〈φi|φj〉 = δij . Which leads to the Lagrangian:

LKS [{φi}i, {εi}i] = EKS [{φi}i] +
∑

λij (δij − 〈φi|φj〉) (2.49)

The minimum with respect to the constraints is reached when
δ

δφi
LKS [{φi}i, {λij}ij ] = 0

δ

δλij
LKS [{φi}i, {λij}ij ] = 0

(2.50)


δ

δφi
EKS [{φi}i] =

∑
j

λijφj

〈φi|φj〉 = δij

(2.51)

And if we write EKS as an observable :

EKS [{φi}i] = 〈φi| −
1

2
∇2 + Veff (r)|φi〉 (2.52)

Let us call Veff the effective potential, the potential with whom all electrons inter-

act:

Veff (r) = Vext + VH + VXC =
δ

δρ
(Eext + EH + EXC) (2.53)

The coupled KS equations are:

[
−1

2
∇2 + Veff (r)

]
φi(r) = εiφi(r) (2.54)

with the KS orbitals constrained to be orthogonal:

32



2.5 Kohn-Sham DFT

〈φi|φj〉 = δij (2.55)

and satisfying the total electron density:

ρ(r) =
∑
i

|φi(r)|2 (2.56)

In these equations, the orbitals interact with each other only through the effective

potential Veff , through the repulsion term VH and the XC term that integrates the

interacting part of the kinetic energy T − Ts.

2.5.3 Iterative resolution

The Hamiltonian in the Kohn-Sham equations is dependent of the electron density

ρ, and so of the equations variables. That implies the equations cannot be resolved

directly and an iterative process has to be used. A density is computed with a fixed

Hamiltonian, the Hamiltonian is then modified to integrate the potential generated by

the density, and a new density is computed from the new Hamiltonian, until the density

is consistent with the potential used to compute it, see schema 2.2. In KS-DFT, the

convergence of Self-Consistent Field (SCF) iterations is not guaranteed, explanations

can be found here(45).

2.5.4 Basis functions

The last approximation is the basis in which the Kohn-Sham wave functions {φi}i are

numerically represented. The basis on which are written wave functions is the main

criteria that distinguish KS-DFT methods and they are often named after their function

basis. We name those basis functions {χ(r)}i :

φi(r) =
∑
k

αi,kχi,k(r) (2.57)

And we can cite among the most used basis for wave functions:

• Hydrogen-like atomic orbitals χ(r)nlm = Rnl(r)Y
m
l (θ, φ), the orbitals of the hy-

drogen. Rnl(r) the product of a polynomial of degree n and an exponential e−ζr.

• Slater type orbitals χ(r)nlm = rn−1e−ζrY m
l (r). They have the same exponential

decrease than hydrogen-like orbitals, but their polynomial part is node-less.
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2. ORBITAL-FREE DENSITY FUNCTIONAL THEORY

Initial electron density

E

Ko

Ne

NO

Figure 2.2: Scheme of iterative resolution of Kohn-Sham equations - The Hamil-

tonian and the electron density are computed alternately until convergence of ρ. If the

effective potential field VS gives the same electron density it was computed from, the field

is considered self-coherent and the iterations stop.
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2.5 Kohn-Sham DFT

• Gaussian type orbitals χ(r)nlm = rn−1e−αr
2
Y m
l (r) easier to compute than STO.

• Plane wave basis χ(r)k = eik.r.

• Bloch wave basis χ(r)k = u(r)eik.r, specialized for periodic systems, u(r) has the

same periodicity.

• Wavelet basis χ(r)n,m = 1√
a3m

χ(r−nbam ) with χ(t) the mother wavelet.

• LAPW - LMTO for Linear Augmented Planed Waves and Linear Muffin-Tin

Orbitals (46).

• PAW for Projected Augmented Waves. A mix of several basis functions described

above (47, 48).

They all have families of molecular systems on which they perform better, local

basis-functions like STO or GTO are better suited for molecules, periodic functions like

PAW or Bloch waves work better on systems with long-range interaction or periodic

characteristic like crystals. PAW basis-function methods try to gather advantages of

all the basis-functions families.

2.5.5 Orthogonalization of wave functions

In the iterative resolution of Kohn-Sham DFT 2.2, finding the KS orbitals is an eigen-

value problem. Even in for symmetric matrices, an eigenvalues computation generally

scales in O(n3), and the process has to be repeated at each KS iteration. The computa-

tional cost of the kinetic energy functional of KS-DFT, that requires orthogonal orbitals

and so an eigenvalue computation, restrains the KS-DFT to model large systems. To

cope with this issue, the Orbital-Free DFT modifies the kinetic energy functional so that

it depends only on the electron density. The computational time gain is considerable

but the loss of accuracy is significant.
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2. ORBITAL-FREE DENSITY FUNCTIONAL THEORY

2.6 Orbital-Free DFT

2.6.1 OF-DFT Energy functional

Kohn-Sham-DFT requires the use of wave functions to evaluate the electronic kinetic

energy (41). This usually involves a process of orbital orthogonalization to compute

Kohn-Sham orbitals (38), which corresponds to a computational time scaling in O(n3),

if n is the number of orbitals involved. On the contrary, OF-DFT scheme approximates

E[ρ] based only on electron density (49). To describe the OF-DFT energy functionals

and their derivatives, we use the names and notations from the Carter group(50). For a

system of N nuclei at positions R = {Ri}i=1..N , the total electronic energy for OF-DFT

is evaluated just as in KS-DFT:

E[ρ,R] = Ts[ρ] + EH [ρ] + Eext[ρ,R] + EXC [ρ] (2.58)

with

• Eext, the electron interaction with the external electrostatic potential Vext.

• EH , the electrons repulsion energy or the interaction of electron with the electron

potential they create VH .

• Ts, the non-interacting electronic kinetic energy.

• EXC , the exchange-correlation energy.

All those terms are describing the exact same contribution to the electron energy

than in KS-DFT 2.5.1.

2.6.2 OF Kinetic Energy Density Functional

The KEDF term Ts is the one that distinguishes OF-DFT from KS-DFT. Whereas the

KS-KEDF term takes wave functions φ as input, the OF-KEDF term is a functional

of the electron density ρ alone(50). A simple way to evaluate KEDF it to use a linear

combination of the two following terms:
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2.6 Orbital-Free DFT

• The Thomas-Fermi functional TTF , which corresponds to the energy of a uniform

electron gas (51):

TTF [ρ] = CTF

∫
ρ5/3(r)dr (2.59)

with CTF = 3
10(3π2)

2
3

• The von Weizsäcker functional TvW , exact for a single orbital system(52):

TvW [ρ] =

∫ √
ρ(r)

(
−1

2
∇2

)√
ρ(r)dr (2.60)

The classic scheme is a TF functional corrected by a vW functional, the TF −λvW
model of the form:

Ts = TTF + λTvW (2.61)

The aim of the OF-KEDF functional is to approximate the KS-KEDF, which is ex-

act in the case of non-interacting electrons. The rest of the kinetic energy is contained

in the Exchange-Correlation term, common to KS-DFT and OF-DFT.

2.6.3 Further kinetic energy functional

We come back here on the most challenging part of OF-DFT: an accurate Kinetic

method to compute kinetic energy from the electronic density only. We repeat KEDF

is the difference between KS-DFT and OF-DFT and the part that explains the gain

in computational speed and the loss in accuracy. The TF − λvW functional lacks of

precision, missing the shell structures, the exponential decay of densities(50) and fast

varying electronic densities like vacancies in metallic crystals(53). We describe here

four ideas aiming to improve the kinetic energy functional.

2.6.3.1 Correction of the TF kinetic energy functional

We cite for notice a local correction developed to compute accurately the ground state

kinetic energy of one atom (54). The functional is a TF−λvW kinetic with a correction

for the Thomas-Fermi part and λ = 1, hence is called a full von Weizsäcker correction:

Ts[ρ] = γ(N,Z)TTF [ρ] + TvW [ρ] (2.62)

Z the atomic number of the atom, N the electron number. Originally(54),
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2. ORBITAL-FREE DENSITY FUNCTIONAL THEORY

γ(N,Z) = 1− C

N
1
3

(2.63)

We also find (49)

γ(N,Z) =

(
1− 2

N

)(
1− C1

N
1
3

− C2

N
2
3

)
(2.64)

This functional gives precise energies for systems of one atom with Z ∈ J2, 55K, but

not with larger systems. The three next corrections are based on the addition of a third

term to the TF − λvW model:

Ts[ρ] = TTF [ρ] + λTvW [ρ] + T3[ρ] (2.65)

2.6.3.2 Gradient expansion of kinetic energy

The original correction is the theoretical correction of the Thomas-Fermi KEDF with

respect to the density(55, 56). Considering ρ fluctuates around a mean and constant

value ρ0, the conventional gradient expansion (CGE) approximates the non-interaction

kinetic energy as:

Ts[ρ] = T 0[ρ] + T 2[ρ] + T 4[ρ] + . . . (2.66)

T i the ith order correction. The CGE finds T 0 = TTF , the kinetic energy for a

uniform electron gas and T 2 = 1
9TvW , confirming the TF − λvW KEDF and making a

first proposition for the choice of λ. If λ = 1
9 is the value that comes out the gradient

expansion, it is not the only one and not always the best (50). Actually we mainly use

λ = 0.2 in this work.

The higher terms diverge easily and do not improve significantly the accuracy of

KEDF(56). Hence CGE is not a method of choice to work out accurate KEDF models

and we have to turn to other approximations. The best methods consist in enforcing a

characteristic of the non-interacting KEDF into the approximation.

2.6.3.3 Semi-local kinetic energies

A first idea is the addition of another semi-local term, id est based on spatial derivatives

of ρ like the vW KEDF:
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2.6 Orbital-Free DFT

T3[ρ] = Tsl[ρ,∇ρ,∇2ρ, . . . ] (2.67)

The question remaining is how to choose the parameters of this third term. The

results in (57, 58) show that focusing on other characteristics than only the absolute

value of Ts can be beneficial. The research teams took into account the homogeneity

of Ts under density scaling –Ts is homogeneous of degree k if Ts[ξρ] = ξkTs[ρ]– to fit

the third term’s parameters. In (58) they concluded a functional of this form:

Ts[ρ] = TTF [ρ] + c1TvW [ρ] + c2

∫
ρ

5
3

(
|∇ρ|
ρ

4
3

)n
dr (2.68)

with well chosen parameters c1, c2 and n bring improved the modeling binding for

a series of small molecules. This improvement is done at small computational cost,

the new functional is computed with a linear scaling with respect to the domain size,

but it does not close the gap significantly between TF − λvW KEDF and the proper

non-interacting kinetic energy of KS-DFT. A great description of the different classes

of semi-local KEDF is done in (59) and a long list of semi-local KEDF is provided in

the paper’s supplementary.

2.6.3.4 Non-local kinetic energies

A more precise way to evaluate OF-DFT KEDF was proposed by Wang and Teter (60),

they added a non-local third term to enforce the kinetic energy to respect the linear

response of an electron gas (61). The response of a homogeneous non-interacting Fermi

gas is known exactly(52), and gives the Fourier transform of the second functional

derivative of an uniform gas of density ρ0:

F̂

[
δ2Ts[ρ]

δρ(~r)δρ(~r′)

∣∣∣∣
ρ0

]
= − 1

χLind(q)
(2.69)

F̂[f ](k) being the Fourier transform of f(r): F̂[f ](k) =
∫
f(r)e−ikr and χLind(q)

the Lindhard susceptibility function:

χLind(q) = −kF
π2

[
1

2
+

1− q2

4q
ln

∣∣∣∣1 + q

1− q

∣∣∣∣] (2.70)
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2. ORBITAL-FREE DENSITY FUNCTIONAL THEORY

in which q = k
2kF

is a dimensionless momentum, variable of the Fourier space,

q = |q| its norm and kF =
(
3π2ρ0

) 1
3 is the Fermi wave vector, previously defined with

ρ0 the mean system’s electron density.

The Wang–Teter (WT) KEDF enforces this linear response by adding a third term

to the KEDF, the kernel energy TK :

Ts[ρ] = TTF [ρ] + TvW [ρ] + TK [ρ] (2.71)

TK having a general form:

TK [ρ] = 〈f(ρ(r))|K(|r− r′|)|g(ρ(r′))〉

=

∫
f(ρ(r))K(|r− r′|)g(ρ(r′))drdr′

(2.72)

with f(ρ(r)) and g(ρ(r)) two arbitrary functions we choose to satisfies some limits

of the exact non-interacting kinetic energy.

From equations 2.69 and 2.71 we have a condition on TK [ρ]:

F̂

[
δ2TK [ρ]

δρ(~r)δρ(~r′)

∣∣∣∣
ρ0

]
= − 1

χLind(q)
− F̂

[
δ2TTF [ρ]

δρ(~r)δρ(~r′)

∣∣∣∣
ρ0

]
− F̂

[
δ2TvW [ρ]

δρ(~r)δρ(~r′)

∣∣∣∣
ρ0

]
(2.73)

If we define K̂(q)

K̂(q) =
2kF
π2

f ′(ρ0)g
′(ρ0)K(q) =

kF
π2

F̂

[
δ2TK [ρ]

δρ(~r)δρ(~r′)

∣∣∣∣
ρ0

]
(2.74)

with the linear responses of TTF and TvW given in (62):

F̂

[
δ2TTF [ρ]

δρ(~r)δρ(~r′)

∣∣∣∣
ρ0

]
=
π2

kF
(2.75)

F̂

[
δ2TvW [ρ]

δρ(~r)δρ(~r′)

∣∣∣∣
ρ0

]
=
π2

kF
3q2 (2.76)

We come to:

K̂(q) = −kF
π2

1

χLind(q)
− 1− 3q2 (2.77)
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2.6 Orbital-Free DFT

Method name α β

Perrot(63) 1 1

Smargiassi-Maden(64) 1
2

1
2

Wang-Teter (60) 5
6

5
6

Wang-Govind-Carter(65) 5+
√
5

6
5−
√
5

6

Table 2.1: Parameters of different non-local kinetic energy functionals

For any choice of functions f and g. In most cases they are defined as f [ρ] = ρα

and g[ρ] = ρβ, α and β two parameters that depends on the kinetic energy functional

chosen, table 2.1 cites some known parameter sets of kinetic functional.

K is dependent of the parameters chosen, so from now we note Kα,β and

Tα,βK =

∫
ρ(r)αKα,β(|r− r′|)ρ(r′)βdrdr′ (2.78)

As described in (50), this functional is a convolution with the kernel Kα,β(r), and

so can be solved efficiently in Fourier space:

Tα,βK [ρ] =

∫
ρα(r)F̂−1

(
K̃α,β(q)ρβ(q)

)
(r)dr (2.79)

In which the real-space form of Kα,β is not needed, only its Fourier-space form:

K̃α,β(q). F̂−1 is the reverse Fourier transform. We will see in the next chapter how

Tα,βK can approximately computed in real-space with the method developed (66, 67).

The main problem with those kernels is that they constraint the electron density

to respect the Lindhard linear response only for one value of ρ, the mean ρ0. However

ρ varies on the computational domain, even the value of ρ0 can vary depending on

the computational domain’s definition. This issue is addressed by using a Density-

Dependent (DD) kernel, in equation 2.70, kF is replaced by a geometric mean of the

two Fermi vectors involved:

ξγ(r, r′) =

(
kγF (ρ(r)) + kγF (ρ(r′))

2

) 1
γ

(2.80)

with γ chosen depending on the system, see (50). Tα,βK becomes Tα,β,γK :

Tα,β,γK [ρ] =

∫
ρ(r)αKα,β,γ(ξγ(r, r′), |r− r′|)ρ(r′)βdrdr′ (2.81)
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2. ORBITAL-FREE DENSITY FUNCTIONAL THEORY

Density Dependent kernel also corrects instabilities of Density Independent (DI)

kernels for peaked densities(68). Nonetheless, it increases the complexity and is calcu-

lated by Taylor expansion around the density mean and the calculus of several Density

Independent kernels (50). With a non-local kinetic energy functional using Density De-

pendent kernels, OF-DFT achieves accuracies very close to KS-DFT method for specific

systems, but the computational cost can increase so much that the advantage of OF-

DFT compared to KS-DFT, computational time, disappears(69). Several kernels were

developed for different kind of systems, the Huang-Carter KEDF for semi-conductors

(69, 70), here (71) for systems with covalent bonds but none has the portability of

Kohn-Sham DFT.

For another overview of OF-DFT functionals, we refer to (49).

2.7 Existing methods

Several OF-DFT software have already been developed, each one of them showing

different strengths either in the variability of energy functionals, computational speed,

scalability or accuracy. The present work rests on those works, whether for the methods

developed or for the benchmarks used to check the accuracy of computed energies. We

present a quick description of some of them, sorted by their main basis used, Fourier

space or real-space. We also present the solution found for the computation of non-local

kinetic energy in real-space representations.

2.7.1 OF-DFT methods

2.7.1.1 Plane-wave method

PROFESS, for Princeton Orbital-Free Electronic Structure Software, is an open-source

program for OF-DFT, available on this day on their Princeton Website:

https://carter.princeton.edu/research/software/. The software and the work of the

PROFESS team has been central in this work because it has been the reference for all

measures of accuracy and computational time. They also are central in the whole field

of OF-DFT for their research covers all the scale of computational chemistry:

• New functionals to improve the accuracy of OF-DFT, in particular a family of

non-local kinetic energy, but also new local pseudo-potentials.
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• New computational methods for efficient simulation.

• Demonstration of OF-DFT use and large-scale material simulations.

Moreover, as said above, their software is open source.

PROFESS is a plane-wave based code, so using periodic computational domain,

and Fast Fourier Transform for every energy functional that could use one: Hartree

repulsion energy, non-local KEDF, and the ion-ion interaction that, because of the

periodic characteristic, becomes a major concern. The code can be parallelized. They

use the classical C++ libraries for FFT (fftw3, Lapack), XC energy computation (Libxc)

and parallelization (openmpi). The code provides several powerful non-local KEDF

they developed, all the XC energy functions of the library Libxc, and the team provides

also its own pseudo-potentials, specialized for bulk systems. Several dynamic schemes

are available for minimizing system geometry, PROFESS gives the ability to minimize

only the crystal cell or the atom position inside this cell, with the ability to restrain

particles.

2.7.1.2 Real-Space methods

We present first two Real-Space Finite-Differences schemes.

• ATLAS is an OF-DFT software based on Real-Space Finite-Differences, developed

in Jilin Univ (72). ATLAS computes electron density on a periodic domain,

so uses Fast Fourier Transform (FFT) to efficiently compute Hartree Potential

and non-local Kinetic energy (WT-KEDF, Density-Independent). They recently

showed the ability of their program to be massively parallelized MPI (Message

Passing Interface) and to process large-scale system: ”4 millions atoms on a 2048-

cores server in one hour” (73).

• In the same style, a RS-FD OF-DFT code developed in the Georgia Institute

of Technology (74). This one works with non-periodic domain and uses Poisson

equation solver for the Hartree potential. All charges, ions and valence electrons,

are here gathered in one neutral charge density function that eases the compu-

tation of total Coulomb energy. The KEDF is semi-local (TF − λvW KEDF).

The optimization algorithm is an Augmented Lagrangian close to ours and the

process is also parallelized but with MPI. Most of our benchmarks to verify the
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validity of our methods are inspired by this work.

A new version (66) brought several improvements, the major one being the use of

non-local KEDF on the model described by (67). On the contrary of the previous

one, this version works with periodic conditions.

Then two Real-Space Finite-Elements schemes.

• In (75) is described a non-periodic scheme with local KEDF using the finite-

elements mesh for multi-scale computations.

• Here (76) is a method non-periodic scheme with non-local KEDF. The non-local

part is also computed with the method developed by (67). This work studies of

the effect of the finite-elements mesh’s order on the energy accuracy and algorithm

convergence.

A important difference between those real-space method is whether or not their

KEDF has a non-local part. Computation of non-local KEDF in real-space is an issue

complex enough that some methods prefer to avoid it and stay with a pure local KEDF.

We cite below two methods that solve this issue.

2.7.2 Non-local KEDF for real-space OF-DFT methods

Non-local KEDF are more accurate than local ones but bring a large computational

cost surplus. Fourier space turns the convolutions like the non-local KEDF’s one into

a simple product, the computational cost is hence limited by the Fourier transform.

Moreover, the Lindhard linear response is defined in Fourier space. For methods that

stay in real-space, non-local KEDF becomes an issue. The simple solution is to use

Fourier space but that imposes all the issues solved by staying in real-space – bound-

ary conditions, parallelization, local computation etc . . . –. Direct computation is not

considered for computation costs.

• In (77), the Wang-Teter KEDF kernel is split in two part, a smooth one and a

singular one. The singular part is solved with the Poisson solver of the Hartree

potential, and the smooth one with a FFT, the Fourier representation being well

suited for a smooth function. This method is a major improvement but keeps

a Fourier-space part and is for now not extended to Density-Dependent KEDF

kernel, more accurate.
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• In (67), the Wang-Govind-Carter Density-Independent KEDF kernel is split into

an infinite series of real-space compatible kernel then approximated at its four

first terms. This method stays in real-space and is extended to the Wang-Govind-

Carter Density-Dependent kernel. It is already used in (66) and (76). We describe

the method in the next chapter and have used its Density-Independent version.

Fastest methods, like PROFESS, use Fourier space. That is because the compu-

tational bottleneck of real-space implementations are the resolutions of the non-local

kinetic energy and of the Hartree potential that are faster to compute through Fourier

space. However, Fourier space basis functions are not fit to benefit from a restrained

dynamical model, thus, in our case, we chose a real-space method. A finite-elements

method would not be adapted to moving particles because that would require to update

the mesh at each time step. Hence we propose a new Real-Space and Finite-Differences

(RS-FD) OF-DFT method that is presented below.
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3

New implementation of

Orbital-Free Density Functional

Theory

We produce in this chapter our new OF-DFT code. Most of it has already been

presented in (78). After the description of the Real-Space Finite-Differences (RS-FD)

implementation, we assess the accuracy by comparison of computed electronic energies

with our reference program, PROFESS. We then study the convergence characteristics

of our program and measure on benchmarks the time taken to compute electronic

structure.

3.1 Augmented Lagrangian

The first step is to tackle constraints. For the local constraint, we can compel ρ ≥ 0

with a substitution, for example ρ = χ2. Other substitutions such as ρ = eχ or ρ = χ4

were tested and the conclusion was that ρ = χ2 is the most stable one(50), for the

von Weizsäcker functional does not diverge for small values of ρ. For consistency, we

also impose χ to stay positive to prevent the von Weizsäcker functional from taking

different values for the same density ρ. The global constraint
∫
ρ = Qe is handled

with an Augmented Lagrangian method (79). Augmented Lagrangian has already

been used for electron density computation (74), there is here a difference in the way

the Lagrangian multiplier is updated, the formula is taken from (50). We define the
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Augmented Lagrangian as

LA[χ, λ, µ] = E[χ] +
µ

2
c2Ω[χ,Qe]− λcΩ[χ,Qe] (3.1)

with cΩ[χ,Qe] =
∫
Ω χ2(r)dr − Qe the equality functional, µ the penalization pa-

rameter and λ the Lagrangian multiplier. The evaluation of λ is not done incrementally

with the classical Augmented Lagrangian formula for we have a more stable way to do

it: when stabilized,

∇χLA[χ, λ, µ] = 0 and Qe = 0 (3.2)

which leads to:

∇χE[χ] = λ∇χcΩ[χ,Qe] = 2λχ (3.3)

and

λ =
1

2Qe

∫
Ω
χ∇χE[χ]dr (3.4)

We consider the energy minimum is reached when the Augmented Lagrangian

derivative is below a tolerance threshold δ, when |∇χLA[χ, λ, µ]| < δ. At each op-

timization increment, the lagrangian multiplier is computed with formula 3.4, then a

step is done in the steepest descent direction of the Augmented Lagrangian, algorithm 1.

Algorithm 1: Augmented Lagrangian algorithm for OF-DFT

Input: Positions of M atoms

Output: an electron density with minimized energy ρm = argmin(E[ρ])

1 Initialization of the cell Ω

2 Computation of the external potential Vext on Ω

3 while |∇χLA[χ, λ, µ]| > δ do

4 VH(r)←
∫
Ω

χ2
k(r
′)

|r−r′| dr
′ : update of the Hartree Potential

5 λ = 1
2Qe

∫
Ω χ(r) δE[χ]

δχ dr : update of the Lagrangian multiplier

6 ∂χk ← ∇χLA[χ, λ, µ] : compute the Lagrangian gradient

7 χ′k+1 ← abs(χk − γ∂χk) : perform a steepest descent step and take the

absolute value of the result
8 end
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3.2 Real Space, Finite Difference implementation

3.2.1 Real Space scheme

The second step is the choice of the basis in which the calculations are performed.

Fastest OF-DFT schemes use the Fourier space to evaluate a system’s electronic en-

ergy and compute the electron density. Since in Fourier space OF-DFT functional

calculations scale linearly with the grid size, the global cost of an energy evaluation

comes from the Fourier transform. With the Fast Fourier Transform (FFT) this cost is

limited to [O(N ln(N)). Here, we do not use Fourier space since the basis functions have

a global impact of the electron density whereas we want to use local methods allowing

to take advantage of locally restrained particles. Hence we use a real space (RS) scheme

which also presents other advantages: RS is well adapted to isolated system, can use

arbitrary boundary conditions and makes computations easy to parallelize. Thus every

variables, ρ and Vext among them, are computed on a discrete cell Ω with cubic nodes

of side size h and volume vh = h3. We call Nx, Ny and Nz the number of nodes on

the x, y and z directions, they are chosen so that Ω is large enough to encompass all

the molecular system’s electrons. Those nodes are indexed by integers i ∈ J1, NK with

N = NxNyNz the total number of nodes. The functions ρ(r), χ(r), Vext(r) and VH(r)

become ρ(i), χ(i), Vext(i) and VH(i), the electron density, the external potential and

the Hartree potential of node i. Similarly, n(i) stands for the set of positions inside

node i and r(i) its center.

3.2.2 Discrete version of OF-DFT

In real space, with finite differences and with the new variable χ, our energy functionals

become:
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Eext[χ] =
∑

i∈J1,NK

−Vext(i)χ2(i)vh (3.5)

EH [χ] =
1

2

∑
i∈J1,NK

VH(i)χ2(i)vh (3.6)

TTF [χ] = CTF
∑

i∈J1,NK

χ10/3(i)vh (3.7)

TvW [χ] =
∑

i∈J1,NK

χ(i)

(
−1

2
∇2

)
χ(i)vh (3.8)

EXC [χ] =
∑

i∈J1,NK

χ2(i)(εX(χ2(i) + εC(χ2(i)))vh (3.9)

and, ∀i ∈ J1, NK, their derivatives with respect to χ can be written as:

∇χEext(i) = 2Vext(i)χ(i) (3.10)

∇χEH(i) = 2VH(i)χ(i) (3.11)

∇χTTF (i) = CTF
10

3
χ7/3(i) (3.12)

∇χTvW (i) = −∇2χ(i) (3.13)

∇χEXC(i) = µX(χ(i)) + µC(χ(i)) (3.14)

with

µX(χ(i)) = −
(

3

π
χ2(i)

) 1
3

(3.15)

µC(χ(i)) =

{
(b− 1

3a) + a ln(rs) + 1
3(2d− c)rs + 2

3crs ln(rs) , rs < 1
γ+ 7

6
γβ1
√
rs+

4
3
γβ2rs

(1+β1
√
rs+β2rs)2

, rs ≥ 1
(3.16)

rs(i) =

(
3

4πχ2(i)

) 1
3

. (3.17)

3.2.3 Hartree potential

The Hartree Potential VH is not directly derived from its definition, but from the

corresponding Poisson equation. Hence, equation 2.23 becomes

4πρ = −∆VH (3.18)
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with free boundary condition:

VH(r)→ 0 when |r| → +∞ (3.19)

The Poisson equation is solved with a conjugate gradient algorithm. To simulate the

free boundary conditions, two others cells are used: Ω2 and Ω3. Ω2 has the same center

than the cell Ω, but has nodes three times larger with the same number of nodes and

the same shape (same Nx, Ny and Nz), so is three times larger. Hence, a node of Ω2

has the same size than 27 nodes of Ω. Ω3 follows the same principle: same center

and shape, and nodes three times larger than Ω2. Thus we have three cells centered

at the same position, each one encompassing the precedent like three Russian nesting

dolls, see figure 3.1. VH is first solved on the largest and coarsest cell Ω3, with the

boundary condition VH(r) = Q0

|r−r0| , Q0 is the total valence electron charge and r0 its

barycenter. From this cell, the boundary conditions are extracted for the cell Ω2 with

a C1 interpolation and VH is solved on Ω2. The same procedure is done between Ω2

and Ω, see algorithm 2.

Algorithm 2: Electronic Hartree Potential Computation on Ω

Input: The Electronic Density ρ on Ω

Output: The Electronic Potential VH on Ω

1 Inject Electronic Density in Ω2

2 Inject Electronic Density in Ω3

3 Create Coulomb Boundary Conditions on Ω3’s border:

∀r ∈ ∂Ω3
, VH(r) = Q0

|r−r0|

4 Solve VH on Ω3

5 Extract VH boundary conditions for Ω2 from Ω3

6 Solve VH on Ω2

7 Extract VH boundary conditions for Ω from Ω2

8 Solve VH on Ω

3.2.4 Exchange-Correlation Potential

We have implemented in our code both the LDA functional with the Perdew and Zunger

(43) set of parameters and the PDE XC functional (44) described higher 2.5.1.4. We
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Figure 3.1: Hartree Potential Grids - Nesting of the three grid cells Ω, Ω2 and Ω3

that are used to compute the Hartree Potential on the thin cell Ω. Lengths are tripled

from Ω to Ω2 and from Ω2 to Ω3, but sizes stays equal, here 5 × 5 × 5. The grids used

to compute electron densities and their electric potentials are usually bigger for example

100× 100× 100.

will mainly use the LDA in the benchmarks because in OF-DFT with a simple KEDF,

the most significant parts of errors come from the pseudopotentials and the KEDF, so

using a precise XC functional does not improve much the accuracy of the whole electron

density calculus. In real space, both functionals are computed in a linear time.

3.2.5 Local Kinetic Energy

For the TF −λvW KEDF, several λ are proposed and justified in literature(80, 81, 82).

We have taken λ = 0.2 for energies are more accurate on isolated molecular systems

and it has already been chosen in another implementation we want to compare to(74).

For all the benchmarks, we have used a local kinetic energy, the principal reason is

the difficulties we have had to create a stable non-local KEDF in real space and that

could be updated in a local and incremental way, which was the aim of the thesis. We

describe nonetheless the implementation of the non-local kinetic energy in real-space.
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3.2.6 Non-local Kinetic Energy

To compute a non-local kinetic energy functional is not an easy task in real space. As

we want to stay in real space, we used the technique described in (67, 74) to implement

a density dependent kernel WGC functional (65).

We remind the non local part of the kinetic energy :

Tα,βK [ρ] =

∫
ρα(r)Kα,β(|r− r′|)ρβ(r′)drdr′ (3.20)

That we split :

Tα,βK [ρ] =

∫
ρα(r)

(∫
Kα,β(|r− r′|)ρβ(r′)dr′

)
dr (3.21)

to isolate a kind of kinetic potential VK [ρ]

VK [ρ](r) =

∫
Kα,β(|r− r′|)ρβ(r′)dr′ (3.22)

that we can approximate in real space by decomposing its Fourier space transform.

K̃(q) can be written:

K̃(q) =
N2q2 + · · ·+N2mq2m

D0 +D2q2 + · · ·+D2mq2m
(3.23)

Because of the high order term of K̃(q) 2.77 and because of its Taylor expansion

in 0 and ∞. Ni and Di are real coefficients. From there K̃(q) can then be decomposed

in partial fractions:

K̃(q) =
m∑
j=1

Pjq
2

q2 +Qj
(3.24)

The convolution of K(r) and f(r) becomes in Fourier space a multiplication, so

VK(q) in Fourier space is written:

VK(q) = K̃(q)f(q) =

m∑
j=1

Vi(q) (3.25)

with

Vi(q) =
Pjq

2

q2 +Qj
f(q) (3.26)
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j = 1 j = 3

Pj 0.026696 + i0.145493 −0.826696 + i0.691930

Qj −0.818245− i0.370856 0.343051− i0.689646

Table 3.1: Coefficients of the approximate partial fraction decomposition of the non-local

KEDF kernel

(q2 +Qj)Vi(q) = Pjq
2f(q)[

− 1

(2kF )2
∇2 +Qj

]
Vj(r) = − Pj

(2kF )2
∇2f(r)[

∇2 − (2kF )2Qi
]
Vj(r) = Pj∇2ρβ(r)

(3.27)

Each Vi(r) is the solution of a complex Helmholtz equation, the classical equation

of stationary waves. We solved it with a bi-conjugate gradient solver.

Derivative Functional :

δTα,βnl

δρ
(r) = αρα−1(r)

∫
Kα,β(|r− r′|)ρβ(r′)dr′ + βρβ−1(r)

∫
ρα(r′)Kα,β(|r− r′|)dr′

(3.28)

with ∫
Kα,β(|r− r′|)ρα(r′)dr′ = V α =

4∑
j=1

V α
j = 2 ∗ <(V α

1 + V α
3 ) (3.29)

∫
Kα,β(|r− r′|)ρβ(r′)dr′ = V β =

4∑
j=1

V β
j = 2 ∗ <(V β

1 + V β
3 ) (3.30)

(3.31)

So four complex tables to keep: V α
1 , V α

3 , V β
1 , V β

3

∇χEα,βnl (i) = 2χ(i)
(
αρα−1(i) ∗ 2 ∗ <(V α

1 (i) + V α
3 (i)) + βρβ−1(i) ∗ 2 ∗ <(V β

1 (i) + V β
3 (i))

)
(3.32)

3.3 Pseudo-potentials

Core electrons are not directly involved in the processes of atom binding. Hence, we

may reduce our potential to a pseudopotential, where ρ accounts only for the valence
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electrons, and Vext accounts for the potential created by the ions composed by nuclei

and core electrons. This model is called the frozen core approximation, the effect of core

electrons is present only in the shape of the pseudopotential that models the screening

effect. Most of the pseudopotentials were developed for orbital-bounds methods like KS-

DFT and so produce one potential per kind of electron to model, exactly per ”angular

momentum” l, they are non-local, and can be written:

Vps(r) =
∑
l

Vl(r) |l〉 〈l| (3.33)

with every angular momentum potential Vl being a radial function, hence the Vl(r).

In OF-DFT, because orbitals are not considered, the pseudopotential is local, and here

is only a radial function:

Vlps(r) = V (r) (3.34)

And the total potential created by the ions is of course the sum of the ions potentials:

Vext(r) =
∑
I

Vlps(|r−RI |) (3.35)

RI the position if the Ith ion. We cite here three important local pseudopotentials

(LPS).

3.3.1 Heine Abarenkov pseudopotentials

Heine-Abarenkov pseudopotentials are originally designed for spectroscopic energy levels(83,

84). In their local version, they are particularly simple for they are tuned with two

parameters, a core radius Rm and a core potential A. HA potential is defined as:

VHA(r) =

{
A r < Rm
−Ze

r r > Rm
(3.36)

For aluminum, we took for example Ze = 3 e, the charge of the ion, A = 0.11 V

and Rm = 1.16 ae. This pseudopotential is not continuous in r = Rm, see its radial

representation 3.2, and so produce a significant dependence to ion position in the grid

when used with a coarse grid mesh.
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3.3.2 Goodwin-Needs-Heine pseudopotentials

A standard local pseudopotential is the Goodwin-Needs-Heine, or GNH, pseudopoten-

tial. GNH pseudopotentials are obtained from HA-PS written in the Fourier space and

damped at high frequencies to remove the discontinuity (85). In the original paper,

HA-PS in Fourier space is given as:

VHA(q) = − 4π

Ωq2

[
(Z −AR) cos(Rq) +

A

q
sin(qR)

]
(3.37)

with q the Fourier space variable and Ω a normalization constant. And the damping

function a steep sigmoid function with its step in qc:

f(q) = e
−
(
q
qc

)6

(3.38)

(85) gives those parameters for aluminum: A = 0.1107, qc = 3.5 a−1e and Z = 3 E.

We find in (49) a real-space formulation:

VGNH(r) =
2

π

∫ ∞
0

sin(ru)

ru

(
(Z −AR) cos(Ru) +

A

u
sin(Ru)

)
e−(

u
Rc

)6du (3.39)

They also give parameter for Germanium and Arsenic element, but not for the

entire periodic table. Indeed the accuracy of a PP family depends a lot on the element.

For example, for Magnesium the ”Madden PP” (86) and for Silicon the ”Zhou PP”

(87).

3.3.3 Bulk-derived Local Pseudopotentials, BLPS

To fill the lack of local and transferable pseudo-potential for OF-DFT, the Carter

Group of Princeton computed another family of Pseudo-potential, especially derived

for OF-DFT and for bulk systems (69, 88, 89). They are built from KS-DFT solutions

on different crystal bulks (Simple Cubic, Bulk-Centered Cubic, Face-Centered Cubic,

Hexagonal Close Packed or Diamond etc . . . ) and the inversion of KS equations to

find the electric potential that can generate those solutions. They have shown that the

bulk characteristics (bulk moduli, bulk equilibrium volumes, bulk equilibrium energies,

vacancy energy ...) produced with their Bulk-Derived Local Pseudopotentials (BLPS)

are closer to KS-DFT values than with previous state of the art PP.
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We drew in 3.2 the three pseudopotential for aluminum described higher (HA, GNH

and BLPS) plus the corresponding Coulomb potential. They all expose a whole in the

center that models the screening effect.
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Figure 3.2: Pseudo-potentials for aluminum atoms - In purple the Bulk-Derived

Local Pseudo-potential, in blue the Goodwin-Needs-Heine pseudopotential, in green the

Heine-Abarenkov pseudopotential and in yellow the Coulomb potential of a ion of charge

Z = 3e.

In this work we chose the Bulk-derived Local Pseudo-potentials (BLPS). Besides

being more accurate, several elements are available and as they were computed with

the same method they form a coherent set of pseudopotentials.

3.3.4 Gauss-Legendre quature

We now have to compute the potential on the computational space. On a grid cell, the

potential value in one node V (i) is in theory :

V (i) =

∫
r∈n(i)

V (r)dr (3.40)

We remind n(i) is the set of positions inside node i. We use in practice the Gauss-

Legendre quadrature to estimate V (i). For a n-order Gauss-Legendre quadrature, if{
ωGLi

}
i

are the n weight coefficients and
{
xGLi

}
i

the positions of measure :

57



3. NEW IMPLEMENTATION OF ORBITAL-FREE DENSITY
FUNCTIONAL THEORY

∫ 1

−1
f(t)dt =

∑
i∈[1,n]

ωGLi f(xGLi ) (3.41)

We recall in the appendices the one-dimension coefficients (position and weight) of the

Gauss-Legendre quadrature(90, 91).

In three dimension in a cube of side size h and centered on r(i) the weights become

ωGLix,iy ,iz =
1

8
ωGLix ωGLiy ωGLiz /8 (3.42)

and the positions

rGLix,iy ,iz(i) = r(i) +
h

2
xGLix ~ex +

h

2
xGLiy ~ey +

h

2
xGLiz ~ez (3.43)

The ratio 8 in ωGLix,iy ,iz calculus is here because the coefficients are tuned for the

integration on the [−1, 1] segment, so the corresponding cube is of volume 8.

∫
r∈n(i)

V (r)dr =
∑

(ix,iy ,iz)∈[1,n]3
ωGLix,iy ,izV (rGLix,iy ,iz(i)) (3.44)

In figure 3.3 we have tested several the three pseudopotential with quadratures of

different degree on a simple particle system, one atom, because it produces the greatest

differences, less atoms means steeper potentials. We have chosen to compute Vext with

a Gauss-Legendre quadrature of degree three. For BLPS the precision does not improve

after n = 3.

Now that we have methods to compute the four energies from the electron density,

we can compute the electronic structure of our atomic system.

3.4 Results

In this section, we validate our OF-DFT implementation by comparing its predictions

with those of a Fourier space implementation: PROFESS(50). Most of the tests are

inspired by two other implementations, a Real-space Finite-Differences one(74) and a

Real-Space Finite-Element one(75). Different aluminum clusters energy are compared

with the one found by PROFESS, depending on the calculus, we might compare the

electronic energy E, the total energy ETot = E +Eii, the total energy per atom Eat =

ETot/M or the binding energy Eb = (ETot−
∑
Ej)/M with Ej the energy of the isolated
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Figure 3.3: Effect of quadrature on electronic energy - For the three main local

pseudopotentials (BLPS, GNH and HA), the effect of the order of the Gauss-Legendre

quadrature on the electronic energy calculation of one aluminum atom. For the slowly-

varying pseudopotentials, BLPS and GNH, a second order quadrature is sufficient to ap-

proximate their effect on a grid. On the contrary, HA pseudopotentials are harder to

approximate because of its fast variations.
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jth atom. We then measure the method’s performance and the speedup gained by an

incremental update compared to a global update. At last we test our method on a

simulation of aluminum implantation. For coherent comparisons, we have chosen TF-

vW kinetic energy with λ = 0.2 and the BLPS given by PROFESS. The values found

by PROFESS are slightly different in this work and in (74) for the pseudopotentials

used are different: Goodwin-Needs-Heine (GNH) pseudopotentials instead of BLPS.

Before measuring any computational time, we need to ensure our implementation

gives proper results. To do so we compute the electronic structures and energies of

different aluminum compounds like dimer Al2, trimer Al3, tetramer Al4 and Faces

Centered Cubic (FCC) crystals of different sizes and lattice constants. First, we study

the dependencies of parameters like the margin size of the computational domain, the

spatial discretization and the Laplacian order used for the computation of Hartree

potential and vW kinetic energy. This will allow to choose a proper set of parameters.

3.4.1 Parameterization

We want a computational domain that contains all the electrons. We build the domain

as a box surrounding all the ions, plus a margin that needs to be defined large enough

to encompass all the electrons. We choose to consider 10−10 electrons per cubic Bohrs

as a null electron density. As one can see in figure 3.4, if we take a thin node size

h = 0.2ae and a high order (10th) Laplacian operator, our OF-DFT implementation

computes an electron cloud of a single aluminum ion that vanishes at 12.2ae from the

nucleus. From such a result, we set a margin of 15ae for all our tests, assuming this

margin is sufficient to do not degrade the quality of the results. As simple examples,

the domain for a single atom is a cube with 30ae edges, and the one for a 6 × 6 × 6

FCC bulk with 8ae as lattice parameter is a cube with 5× 8 + 2× 15 = 70ae edges.

Then we choose a node size h and a Laplacian derivative order n. Here, again,

the goal is to find the best trade-offs between precision and efficiency. To do so, we

compute the binding energy of a 5× 5× 5 FCC aluminum cluster of lattice parameter

a = 8.0ae for different h and n. Results are presented in figure 3.5. As one can see,

the binding energies computed with a 2nd order Laplacian are largely dependent on h.

However, this dependency disappears when a Laplacian of order 6 or higher, is used.

To choose a proper node size, we look at the energy per atom of our aluminum bulk,

computed with a 6th order Laplacian and different node sizes: figure 3.6 presents the
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Figure 3.4: Radial electron density - Electron density distribution around a single

aluminum ion and its decimal logarithm. The density vanishes below 10−10 e/Bohr3 for

r = 12.2ae.

results. We observe that the relative error falls below 2% at h = 0.5ae, although Eat

largely depends on h even for small h. Since having a smaller h would drastically

increase the computational costs, we consider h = 0.5ae as value sufficient to obtain

a satisfying accuracy. Hence, for the validation of our method, computations will use

a 6th order Laplacian and a node size h = 0.5ae, as in (74). For other tests involving

more computations, bigger step sizes will also considered (h = 0.7ae and h = 1ae).

3.4.2 Evaluation of accuracy

From the parameters proposed earlier, we show that our implementation computes

correct energies. We first try to isolate one source of error, the discretization of the

computational domain, with the example of the hydrogen atom. Then we work on

aluminum clusters to compare our implementation with others.

3.4.2.1 Hydrogen atom

The hydrogen atom presents a particular case. First because the exact solution is

known. Second we can retrieve the exact solution with OF-DFT by using only the

external potential energy and the von Weizsäcker kinetic energy. Indeed, the hydrogen’s
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Figure 3.6: Electronic energy of a single aluminum atom - On the left, Eel for

M = 1 with respect to the grid node size h and a polynomial regression Eel = Eel,C + hp

that gives an asymptotic value of Eel,C = −57.308. On the right the log error compared

to Eel,C .
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electron is a one-particle system, hence the electrons interaction energy is null, and as

we have a system with only one orbital, the von Weizsäcker kinetic energy is exact 2.6.2.

In the OF-DFT functionals, the Exchange-Correlation energy is the correction of the

electrons kinetic energy and electrons interaction energy approximations 2.5.1.4, is

this system in which the electron interaction is null and the kinetic energy exact, the

Exchange-Correlation energy is useless.

The hydrogen’s electron is in an electric potential V (r) = − 1
|r| . The time-independent

Schrödinger equation gives the exact form of the energy ground state, the 1s hydrogen

orbital (n = l = m = 0):

ψ(r) =
1√
π
e−|r| (3.45)

And the values of the potential and kinetic parts of the electron energy:

〈ψ|V |ψ〉 = − 1

π

∫
1

|r|
e−2|r|dr = −1 (3.46)

〈ψ| − 1

2
∇2|ψ〉 = − 1

2π

∫
e−|r|∇2e−|r|dr = 0.5 (3.47)

And so :

〈ψ|H|ψ〉 = −0.5 (3.48)

All the energy values are in Hartree.

For the OF-DFT, as we saw the Hartree repulsion was null, the Kinetic energy

perfectly described by TvW and so the XC energy useless, we can simplify the OF-DFT

energy equation 2.58 to:

Eel[ρ,R] = Eext[ρ,R] + Ts[ρ] (3.49)

with this time

Ts[ρ] = T [ρ] = TvW [ρ] (3.50)

Using our variable, the square-root of the electron density, the exact solution is the

same:

χ(r) =
1√
π
e−|r| (3.51)
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We computed the 1s orbital using OF-DFT with a computational domain of side

size 10 ae centered around the hydrogen atom, a 4th Gauss-Legendre quadrature to

avoid the singularity in 0 and different node grid node sizes to link the discretization

to the accuracy.
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Figure 3.7: Errors of electron’s hydrogen energies - The electron’s energy are

computed with different grid node sizes and compared to their theoretical values: Eext =

−1, T = 0.5 and Eel = −0.5, in Hartree. As the functionals used are exact, errors are here

only due to the computational domain characteristics, size and discretization.

In Figure 3.7 we plot the relative errors of external potential energy, kinetic energy

and total electron energy for several grid node sizes. As our method over-evaluates the

kinetic energy and under-evaluates the nucleus-electron interaction under-evaluated,

the total energy relative error is smaller than its two components. We can achieve

arbitrary precision by reducing the grid node size.

Figure 3.7 clarifies that the errors are condensed around the singularity, where the

external potential is steep. For systems with fast varying potentials, among them all-

electrons systems with Coulomb potentials, adaptive grids like Finite-Elements methods

(76) are more adapted because the mesh can be refined where the external potential is

the steepest. Unfortunately, in a dynamical simulation this mesh has to be updated at

each time step to follow nuclei. That is a reason why we have chosen a fixed mesh.

64



3.4 Results

0 2 4 6 8

0
2

4
6

8
10

P
ot

en
tia

l, 
V

V = Q.|r|−1

h = 0.4 ae

h = 0.2 ae

h = 0.1 ae

h = 0.05ae

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Radial Distance, r (Bohr)

E
le

ct
ro

n 
de

ns
ity

, ρ

χ = π−0.5e−|r|

h = 0.4 ae

h = 0.2 ae

h = 0.1 ae

h = 0.05ae

0 2 4 6 8

−
10

−
8

−
6

−
4

−
2

0

P
ot

en
tia

l e
rr

or
, l

og
10

(∆
V

)

h = 0.2 ae

h = 0.2 ae

h = 0.1 ae

h = 0.05ae

0 2 4 6 8

−
5

−
4

−
3

−
2

−
1

Radial Distance, r (Bohr)

E
le

ct
ro

n 
de

ns
ity

 e
rr

or
, l

og
10

(∆
ρ)

h = 0.4 ae

h = 0.2 ae

h = 0.1 ae

h = 0.05ae

Figure 3.8: Electric potential and Electron density of the hydrogen atom - On

the left the nucleus electric potential and the electron density, the theoretical values and

the computed values with different discretizations. On the right the errors in log scale,

of the computed values compared with the theoretical ones. For the computed values, we

used a computational domain of side 20 ae and grid node sizes of h = 0.4, 0.2, 0.1, 0.05 ae.
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3.4.2.2 Aluminum clusters

We use the same methodology as the one proposed in (74): The energies and equilibrium

bond lengths of different aluminum clusters are computed and compared with the ones

found with PROFESS.

First, we compute binding energies of aluminum dimers, trimers and tetramers,

arranged respectively in line, triangle and tetrahedron, with different bond lengths,

figure 3.9 exposes the energy curves. We have derived from those curves the equilibrium

binding energy and the equilibrium bond length of those three compounds that we can

compare with the results found by PROFESS. The results are presented in Table 3.2.

With the parameters used, we have a relative error below 2% for the binding energy

and around 1% for the bond length.
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Figure 3.9: Binding Energies of small aluminum clusters - Binding Energy of the

three smallest aluminum clusters (Al2, Al3 and Al4), with respect to the bond length.

To show the density of the electron cloud that our method computes, we provide in

figure 3.10 the heat map of the electron density of an aluminum dimer at equilibrium
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Cluster
εb(eV/at)

error(%)
Re(Bohr)

error(%)
RS-FD PROFESS RS-FD PROFESS

Al2 -0.382 -0.384 0.52 5.09 5.06 0.39

Al3 -0.644 -0.649 0.77 5.25 5.18 1.3

Al4 -0.843 -0.851 0.94 5.35 5.27 1.5

Table 3.2: Binding Energy εb and equilibrium bond length Re for Al2, Al3 and Al4

(d = 5.09 ae).
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Figure 3.10: Aluminum dimer electron density - Electron density of an aluminum

dimer. The scale is in electron per cubic bohr

We then compute binding energies of bigger aluminum clusters: m ×m ×m faces

centered cubic (FCC) crystals with m being between one and seven, so with a number

of atoms of M = 14, 63, 172, 365, 666, 1099 and 1688 atoms. Their binding energy

is computed for seven lattices between a = 7.2 ae and a = 8.4 ae, figure 3.11 exposes

the energy curves of the biggest crystals with their cubic regression. We have used this

cubic regression to derived the crystals equilibrium binding energy and equilibrium

bond length and have compared them with PROFESS results in table 3.3, we find a

relative error of about 1% for the binding energies and for the equilibrium lattice.
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Figure 3.11: Binding Energies of aluminum crystals - Binding Energy of different

aluminum FCC crystals of different sizes, so different atomic number M , with respect to

the lattice constant. We also have drawn their cubic polynomial interpolation.

Figure 3.12: Electron density of an aluminum cluster - 3D representation of the

electron density computed for a M = 666 FCC aluminum crystal of lattice a = 8 ae with

a grid node size h = 0.5 ae.
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M
εb(eV/at)

error(%)
ae(Bohr)

error(%)
RS-FD PROFESS RS-FD PROFESS

14 -1.344 -1.357 0.96 7.616 7.528 1.17

172 -1.970 -1.988 0.91 7.777 7.706 0.92

365 -2.075 -2.092 0.81 7.816 7.733 1.07

666 -2.140 -2.157 0.79 7.849 7.750 1.28

1099 -2.182 -2.202 0.91 7.868 7.762 1.37

1688 -2.211 -2.236 1.12 7.861 7.771 1.16

Table 3.3: Binding energy (εb) and equilibrium lattice constant (ae) for FCC clusters of

M aluminum atoms

3.4.2.3 Aluminum bulk energy

Finally, we have derived the bulk cohesive energy Ecoh of FCC aluminum with a lattice

parameters a = 8 ae from the binding energies of finite crystals of increasing size

(M = 14, 63, 172, 666, 1099, 1688, and 2457). The binding energy of a finite crystal

equals the binding energy of the full periodic crystal – the bulk cohesive energy – plus

shifts due to the atoms on the sides, the edges, and the corners of the crystal. Hence,

the binding energy Eb can be approximated as:

Eb = Ecoh + asidesM
− 1

3 + aedgeM
− 2

3 + acornerM
−1 (3.52)

In figure 3.13 we show Eb(M
− 1

3 ) and its linear extrapolation. With our implementa-

tion, we find Ecoh = −2.437 eV/atom, like the value given by PROFESS for a periodic

FCC crystal.

Our implementation computes structures predicted by OF-DFT properly, with er-

rors around 1% for energies and bond lengths. Now we investigate the speed the electron

density is computed and updated.

3.4.3 Non-local Kinetic Energy

We have implemented a Density-Dependent WGC kinetic energy with the method

described in (67, 76) and also in the above section 3.2.6. As explained in (68), non-

local kinetic energy functionals with a Density-Dependent kernel create instabilities for

systems with high variations of electron density ρ because of the differences between

the reference density used for the kernel ρ0 and the local densities ρ(r). We have
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3 = 0, the periodic FCC crystal.

experienced these instabilities in our method and have not pushed to implement a

Density-Independent kernel. A Density-Independent kernel in Real-Space would have

had a computational cost several times larger than in Fourier space like for PROFESS

and even in the case of restrained dynamic we did find solutions to reduce computation

significantly.

Nonetheless, to illustrate the shape of the WGC Density-Dependent kernel, we have

drawn in figure 3.14 the shape of the two parts used to create a kind of potential. We

take the equation 3.20, the kernel kinetic energy is described as

Tα,βK [ρ] =

∫
ρα(r)V α(r)dr (3.53)

and as described in the former chapter, V α(r) is the sum of solvable potential:

V α(r) =

∞∑
1

V α
i (3.54)

Each V α
i the solution of a Helmholtz equation. The four first terms are sufficient to

describe V α, and because V α is purely real, each part of the sum has its exact conjugate

in the sum, we have V α
1 = V α

2 and V α
3 = V α

4 . Figure 3.14 shows a cross section of the

two potentials V α
1 and V α

3 computed for a thin Gaussian electron density.
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Figure 3.14: Two parts of the non-local kinetic potentials created by a thin

Gaussian electron density. - To compute the kernel energy in real space, a kinetic

potential V α is computed. To calculate it in Real Space, we approximate V α by an infinite

sum of potentials that can each be solved using Helmholtz equations, a Partial Differential

Equation usually used for wave equations. The four first terms of the infinite sum are

sufficient to model properly the kinetic potential, and only two need to be solved. We have

drawn their cross section here.
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3.5 Convergence characteristics

Well parameterized, the Augmented Lagrangian produces good convergence charac-

teristics. We show in Figure 3.15 the evolutions of the Lagrangian norm, energy and

Lagrangian multiplier for the electron density computation of an aluminum atom. In

this figure, the converged values are for the energy Eat,c = −2.0809 Hartree and for the

Lagrangian multiplier λc = 0.106457. The straight lines in an log scale figure exposes

that the algorithm has an exponential convergence.
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Figure 3.15: Convergence of Augmented Lagrangian Algorithm for one alu-

minum atom - On the left, |∇χLA[χ, λ, µ]| with respect to the optimization step, the

convergence criteria is based on this values. In the middle the corresponding atomic en-

ergy Eat[χ], and on the right the corresponding Lagrangian multiplier λ.

For an aluminum FCC cluster of M = 666 atoms, convergence is the same, but

slower. Figure 3.16 shows the 500 first steps of the electron density computation for

this system. Here, Eat,c = −2.1592 Hartree and λc = 0.117584.

3.6 Computation time

We made series of measurements to present characteristic computational times of our

OF-DFT method. Real-Space methods are not the fastest (74) for OF-DFT, but it

has the advantage to be easily and efficiently parallelized (66, 73). We first measure

computational times with respect to the number of cores used and the domain size,
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Figure 3.16: Convergence of Augmented Lagrangian Algorithm for an alu-

minum FCC cluster - On the left, |∇χLA[χ, λ, µ]| with respect to the optimization step,

the convergence criteria is based on this values. In the middle the corresponding atomic

energy Eat[χ], and on the right the corresponding Lagrangian multiplier λ.
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Figure 3.17: Augmented Lagrangian - Convergence of Energy - Electronic Energy

Eel[χ] for several coefficient steps γ during the forty first steps of the electronic density

computation of one aluminum atom. The converged value here is Eel,c = −2.0809 Hartree.
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Figure 3.18: Augmented Lagrangian - Convergence of Lagrangian norm - Gra-

dient norm of the Augmented Lagrangian |LA[χ, λ, µ]| for several coefficient steps γ during

the forty first steps of the electronic density computation of one aluminum atom. The con-

vergence criteria is based on these values: the electronic density is considered converged

when |∇χLA[χ, λ, µ]| ≤ δ

then measures with respect to only the computational domain size and with a fixed

machine: 20 Inter Xeon E5-2680 2.80 GHz bi-core processors.

3.6.1 Effect of parallelization

The computation of energies are parallelized. We tested to make cores work on different

energy calculations (core 1 on Eext, core 2 on Ts etc ...) but if the system is big enough

(more than 10.000 nodes), to make all cores work on energy functionals one after the

other is faster. Moreover, it is much more adapted to the computation of functionals

with different complexity. Indeed, depending on the system size, the proportion of

computational time dedicated to each energy evaluation varies, and the prediction of

the optimal number of cores to associate with each energy functional is hazardous.

We have used the interface openMP(92) and have split statically the domain in p

(number of cores available) compact sub-domains of same size to compute each energy.
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3.6.1.1 Hartree Potential computation time

To be able to simulate free boundary conditions, and because we have decided to stay

in real space, we compute the Hartree potential with a method inspired by adaptive

multi-grid algorithms(93) coupled with a conjugate-gradient relaxation. As explained

in (94), a full multi-grid method has a complexity in O(N), a conjugate-gradient (CG)

typically in O(N
5
4 ), and a method coupling both would have a complexity in between.

In figure 3.19, we have drawn the computational time of the resolution of the Poisson

equation of the same density, a Gaussian curve, with different grid precision N = n3.

The convergence condition here is |er|2 < 10−8. When using one core, we observe the

quasi linear complexity of CG method. For more cores, the trend looks more linear

because parallel computation overhead contribution is reduced with the size of our

domain. The computation time does not scale like efficient Poisson solvers, FFT or

block-cycle reduction(95, 96) but those methods are not suited to handle efficiently

free boundary conditions.

Though our pseudo multi-grid - Conjugate-Gradient method does not provide the

best performance, it allows to solve the free boundary conditions Poisson equation in

an incremental and local way, with an electron density represented directly on a mesh,

with a correct scalability with the domain size and a good scalability with the number

of cores used. Faster ways exist to solve the free boundary condition Poisson equation

that deserve to be tested and compared with ours, for example the work(97) is certainly

more efficient and hence could be the next step of this work, maybe with an adaptation

for small electron density increments.

3.6.1.2 Aluminum electron density computation time

We use a single aluminum atom, the simplest of benchmarks, to evaluate how paral-

lelization affects the calculation times. We compute the atom’s electron density in a

computational domain of 30 ae side size and different grid sizes to increase the number

of grid nodes with our RS-FD code and with PROFESS. For each computation, we use

one, four or twenty cores. The wall-clock times are drawn in figure 3.20, on the left our

RS-FD program and on the right PROFESS, the scales are not the same.

For our RS-FD program, we use the same optimization step constant γ to focus on

the effect of parallelization. With a bigger optimization step constant, the computation
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Figure 3.20: Wall clock time of electronic density computation of an single

aluminum atom - On the left for our Real-Space Finite-Differences implementation and

on on the right for PROFESS, a plane-wave based OF-DFT software, depending to the

number of nodes of the grid and the number of cores used.
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is faster for small grids, but grow unstable on big grids. With the optimization process

fixed, the computation time scales linearly, using four cores divides the computational

time by three on average, and using twenty cores by nine on average.

For PROFESS calculations, the discretization is determined by the plane-wave en-

ergy cutoff, Ecut. We used cutoffs of Ecut = 200, 600, 1200 , 1800 , 2400 and 3800 eV ,

from left to right on figure 3.20. They are not always vertically aligned because PRO-

FESS can increase the number of nodes in some directions to use efficiently a parallel

FFT.

Figure 3.20 also shows that our program, like other Real-Space implementations(74),

does not compare with plane-wave implementation like PROFESS in term of compu-

tational time from simple initial density guesses.

3.6.2 Dependence on the domain size

The scalings of computation time with respect to each parameter taken separately

are quasi linear, but we usually have to vary several parameters at the same time in

practical modeling. When the number of atoms to model increases, the size of the

domain increases too, and so the number of nodes. We have only studied the scaling

between the number of nodes and the computation time. There is also a dependency

with the number of atoms because an increase of the number of atoms leads to an

equal increase of the number of electrons and so an increase of the average values of

electric potential they create, which makes the Hartree Potential longer to compute and

the optimization algorithm less stable. A growth of the computational domain with

the corresponding number of atoms is hence worse what we observe when only one

parameters were growing, and tends to a sub quadratic scaling. We draw in figure 3.21

the scaling of the computational time with respect to this ”useful” growth of the domain

size.

3.6.3 Computational time analysis

As Real-Space and Plane-Wave methods compute energy functionals differently, they

do not use the same portion of resources for each part of the optimization process. In

figure 3.22 we show how computational time is divided between energy functionals for

our Real-Space method and PROFESS, and depending on the Kinetic energy used.
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Figure 3.21: Wall clock time of electronic density computation - depending to

the number of nodes of the grid when the grid is expended because the number of atoms

increases. Due to the addition of several causes, increase of the number of electrons and

increase of the number of nodes, the quasi-linear scaling is degraded and tends to a sub

quadratic scaling.

The analysis has been done on a small system but is relevant whatever the system

size(50).

For our Real-Space method, when using a semi-local kinetic energy, the TF −λvW
kinetic energy, the computational bottleneck is the Hartree potential computation.

Indeed, around 95 % of computational time is spend in the Poisson solver, like another

RS-DF code (74). In comparison with a plane-wave method, for PROFESS the Hartree

potential takes around 10 % of the computation time for the electronic energy (50).

Using a Density-Independent Kernel for a non-local, the proportion of time spent on

KEDF rise from less than 1 % to around 70 % for our RS method, and from 35 to 65

% for PROFESS.

The conclusion is that for Real-Space implementations and without non-local KEDF

term, most of the computational time is lost for the resolution of the Hartree potential.

We see in the next chapter how to break the computational bottleneck in dynamical

simulations.
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Figure 3.22: Use of computational time for OF-DFT - On the left for our RS-

FD method, on the right for the reference plane-wave method PROFESS. For our RS-FD

method, the XC potential computation is too fast to appear. The rest of optimization

includes the external energy, the optimization algorithm and the projections on the con-

straints. Let us keep in mind those are percentages and not absolute times, TF − λvW
KEDF are several times faster than WT and WGC KEDF and PROFESS is several times

faster than our RS-DF method.
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4

Incremental Orbital Free DFT

We saw that to compute from scratch an OF-DFT energy, reciprocal-space methods

like PROFESS are more precise and efficient than finite-differences real-space ones.

The purpose of our method is not to compute efficiently a solution from scratch, but

to update one from a previous time step in a dynamical simulation. A real-space

implementation allows to focus computations on specific parts of the domain, so in

the case of restrained dynamical simulations, in which only the active particle moves

at each time step, our method can update the electron density only where it matters:

around the active particles. We show in this part that the computation time of our

method scales almost as the number of particle moved, then we demonstrate the use

and efficiency of such a method on a restrained dynamical simulation: an aluminum

implantation.

4.1 Global Update

We consider a system of M particles indexed by I ∈ J1,MK, at positions RI , of which

we know ρ0 the electron density at time t0 given by OF-DFT. Lets imagine that from

this system, the position of particle i changes by a small displacement d. The simple

approach to update the electron density is to modify the external potential Vext created

by this new set of positions:

Vext,t1(r) = Vext,t0(r)− VBLPS(|r−Ri|) + VBLPS(|r−Ri + d|) (4.1)
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4. INCREMENTAL ORBITAL FREE DFT

then optimize again the electron density on the whole space Ω, computing the

Hartree potential VH on Ω at each optimization increment. To sum up the classical

density update:

1. update of external potential Vext(r)

2. update of electron density ρ on the whole cell Ω

4.2 Incremental Update

4.2.1 Incremental update pipeline

To speed up the computation, instead of computing ρ directly on all Ω, we first compute

an approximation of ρ only on a relevant part of Ω, a restrained area around the particle

i called ω, then compute ρ on all Ω to erase the errors. Hence the incremental pipeline:

1. update of external potential Vext(r)

2. restrained update of electron density on ω, a part of Ω

3. update of electron density on the whole cell Ω

We explain the new step, the restrained update, below.

4.2.2 Restrained Update

To perform the second step, the restrained update, we take into account that beyond a

distance rω from the particle, the displacement is not felt and electron density does not

change. In our model, this feature comes from the shapes of the two main potentials:

for |r| ≥ rω, Vext and VH are Coulomb potentials:

∀r | |r−Ri| > rω : Vext(r) ' Qi
|r−Ri|

and VH(r) ' − Qi
|r−Ri|

(4.2)

with Qi the ionic charge, the amount of valence electrons, of the particle i, and so

the total electric potential is unchanged at the next time step:

∀r | |r−Ri| > rω : Vext,t1(r) + VH,t1(r) ' Vext,t0(r) + VH,t0(r) (4.3)
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and the electron density stays the same. Hence, to update the electron density with

a minimum of computation, the space Ω is split in two complementary areas, see figure

4.1:

1. ω, the loose density sub-area on which everything is updated, close from the

moved particle.

2. the complementary of ω, Ω\ω, on which the electron density is frozen and we

update only the electric potentials VH and Vext.

Figure 4.1: Creation of ω, the loose-density area - The loose density area is the

union of all balls of radius rω centered around all active particles. This area is computed

at each time step.

To discriminate between those two areas, we take our loose sub-area radius rω, and

define ω as a ball of radius rω centered on the particle i and ∂ω as the border between

the two areas:

ω = {r | r ∈ B(Ri, rω)} (4.4)

∂ω = {r | r ∈ S(Ri, rω)} (4.5)

If, instead of one, P particles have moved at time t1, the sub-area ω is the union of

balls of radius rω centered on the moved particles, and ∂ω its frontier in Ω:
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4. INCREMENTAL ORBITAL FREE DFT

w =

r | r ∈
⋃

I∈J1,P K

B(RI , rω)

 (4.6)

Before we update ρ on ω, the Hartree potential is updated approximately on the

whole space. To do so, we take an approximation V app
H (r) so that we can have

VH,t1(r) = VH,t0(r)− V app
H (|r−RI |) + V app

H (|r−RI + d|) (4.7)

With VH,t1 an approximation of the Hartree potential at time t1. At long distance,

for |r −RI | ≥ rω, Hartree potential must equal the Coulomb potential. We chose the

simplest V app
H : a ”chopped Coulomb potential”, cut at a distance rH from the center:

V app
H (r) =


−QI
r

for r > rH

−QI
rH

for r ≤ rH
(4.8)

A small rH , for example 2ae like the characteristic size of the electron cloud, would

be a better approximation of the final result with a fully relaxed electron density, but

letting the Hartree potential follow the actual relaxing electron density is faster. Hence

we choose a rH slightly smaller than rω, so V app
H (r) = −QI

r for r ≥ rω. Thus, VH,t1 is

a precise approximation of VH outside ω, and a wrong one inside.

Once Vext and VH have been respectively fully and partially updated, ρ and VH are

computed inside ω with Dirichlet boundary conditions on ∂ω.

We call

• Qω =
∫
ω ρ
∗(r)dr the electron quantity inside ω.

• Cω = {χ : R3 → R |
∫
ω χ

2(r)dr = Qω} the space of functions having Qω electrons

inside ω

• ωd the discrete version of ω, the set of indexes of nodes inside ω: i ∈ ωd ⇐⇒
r(i) ∈ ω

• Γω = {χ : N→ R |
∑

i∈ωd χ
2(i)vh = Qω} the discrete version of Cω

To describe fully the incremental update: algorithm 3.

To update VH(r)|ω the Conjugate-Gradient would have required to work with tables

of size N so we use the Gauss-Seidel method that allows to work with a table of size
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4.2 Incremental Update

Algorithm 3: Incremental OF-DFT update

Input: p atoms moved, the electron density at the previous step

Output: an electron density with minimized energy at the current step

1 Update of the external potential Vext on Ω;

2 Rough update of the Hartree potential Vext on Ω;

/* Restrained Update */

3 while |∇χLA[χ, λ, µ]|ω| > δω do

4 VH(r)|ω ←
∫
ω

χ2
k(r
′)

|r−r′| dr
′ : update the Hartree Potential on ω with

border conditions on ∂ω;

5 λω ← 1
2Qω

∫
ω χ(r) δE[χ]

δχ dr : update the local Lagrangian multiplier ;

6 ∂χk|ω ← ∇χLA[χ, λω, µ]|ω : compute the Lagrangian gradient on ω;

7 χ′k+1|ω ← abs(χk|ω − a∂χk|ω) : compute a new increment and project on

χ ≥ 0 on ω;

8 end

/* Global Update */

9 while |∇χLA[χ, λ, µ]| > δ do

10 VH(r)←
∫
Ω

χ2
k(r
′)

|r−r′| dr
′ : update the Hartree Potential on Ω ;

11 λ← 1
2Q

∫
Ω χ(r) δE[χ]

δχ dr : update the local Lagrangian multiplier ;

12 ∂χk ← ∇χLA[χ, λω, µ]|ω : compute the Lagrangian gradient on Ω;

13 χ′k+1 ← abs(χk − a∂χk) : compute a new increment and project on χ ≥ 0

on Ω ;

14 end
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4. INCREMENTAL ORBITAL FREE DFT

|Γω|. At equal size, the performance is decreased, but we aim at system where |ω| is

much smaller than Ω.

We have a loose density sub-area ω whose volume depends on particles moved –

their number p and their positions RI – and the radius rω. One of the goals of the

following section will be to show that the computational time to update the electron

density on ω increases with the sub-area’s volume and the number of particles moved.

4.2.3 Computation time

This section is divided in two parts. We first look at the efficiency of the second step of

the incremental update, the restrained update. We then measure the speedup gained

with the entire incremental update.

For this, we first compute the electronic structure of a 6 × 6 × 6 FCC aluminum

crystal (M = 1099) with a margin of 15 ae and a node size of 0.7 ae then move p atoms,

randomly chosen, of 0.3 Å in a random direction. Thus we have a ”shaken” crystal

whose electron density needs to be updated. Two different updates are performed:

a global one done in a time t0, and an incremental one in a time t1. Both gives an

atomic energy E0
at. During the incremental update, we pause computations between the

restrained update and the global one to record the atomic energy E2
at and the compu-

tational time t2. For this experiment p ∈ {1, 10, 100, 1000} and rω ∈ {4, 6, 8, 10, 12, 15},
in Bohrs, and for each combination of p and rω is tested five times, with different atoms

moved, to have statistically significant measures of the errors and computational times.

We first look at the restrained update errors and update time differences, we com-

pare E2
at to E0

at and t2 to t0. After the second step, ρ has been updated only inside ω

and VH has been approximately updated outside ω.

Figure 4.2 shows the evolution of relative errors ∆E2
at =

E0
at−E2

at

E0
at

when the loose

density area radius rω increases. At rω = 4ae the errors reach 0.5% and for rω ≥ 8ae

they do not exceed 0.03%. The radial distribution of a lone aluminum atom’s electron

cloud is also drawn to emphasize that this limit of 8ae corresponds roughly to the

distance from the nucleus at which the atom’s effect on the global electron density

vanishes.

In figures 4.3 and 4.4 are drawn the speedups t0
t2

with respect to rω and to the

relative volume of the loose density area used for the incremental update v = |ω|
|Ω| ,

|ω| and |Ω| being the volumes of respectively the loose density area and of the whole
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Figure 4.2: Errors of the restrained update - Relative error of a restrained update

with respect to the loose density area radius rω, in Angström, and in grey the radial

electron density of a lone aluminum atom.

area. On this example, we have a maximum 700-fold speedup for (p, rω) = (1, 4), then

the speedup decreases as p or rω increases, until descending below a speedup of one:

figure 4.3. A proper measure to estimate the update speed is the relative volume of the

loose area: v = |ω|
|Ω| . The linear regression between the relative restrained update time

t2
t0

and the relative loose area volume v gives t2
t0

= 2.01 × v − 0.05 with a correlation

coefficient of R2 = 0.942, showing the relative computational time is directly linked

to the volume of the updated area. We have drawn in figure 4.4 the data from our

simulations and the linear regression of the relation between speedup and v. For a

relative volume above 0.5, a speedup cannot be guaranteed anymore.

We now study the computational time of the total incremental update. Speedup

is represented in 4.5, the dots are the five tests means and the vertical bars their

standard deviations. For rω ≤ 6 ae, the speedup of the restrained update, figure 4.4, is

lost because, as the errors were important, figure 4.3, the correction is long. For rω ≥ 10

only few optimization increments are required to correct errors and we find almost the

same speedup than with only the restrained update. Hence these bell-shaped curves

with maxima for rω = 8 ae or rω = 10 ae depending on the number of atoms moved.

We here have a maximum 20-fold speedup.
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Figure 4.3: Restrained update speedup with respect to lose sub-area radius -

Speedup, log scale, brought by a restrained update with respect to the loose density area

radius rω, the colors are the number of atoms moved p.
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Figure 4.4: Restrained update speedup with respect to updated volume -

Speedup, log scale, brought by a restrained update with respect to the updated area’s

volume ratio, v = |ω|
|Ω| , the colors are the number of atoms moved p. Also drawn in black

the linear regression of the inverse of the speedup and the Speedup ≥ 1 line, below which

the restrained update is already slower than the global update. The time gained by the

restrained update, compared to the global update, is inversely proportional to the volume

updated.
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Figure 4.5: Incremental Update Speedup - Speedup brought by an incremental

update – the three steps – compared to the global update, with respect to the loose density

area radius, rω, in color, the number of atoms moved, p. The points are the means of the

five measures, and the vertical bar their standard deviations. Also drawn the line below

which the incremental update is slower than the global update.

By splitting the update in three stages – potentials update, restrained update then

global update – we break the long process of moving the electron density increment by

increment and updating the corresponding Hartree potential on the whole computa-

tional domain at each increment. The restrained update gives a proper approximation

of ρ with a correct loose-density radius, and is fast when the domain is small, so when

few particles have moved. The global update corrects efficiently the small errors left

by the restrained update.

4.3 Aluminum impact simulation

In this section we demonstrate the efficiency of the incremental density update with a

restrained dynamical model for particle simulations.

We simulate an atom implantation on an aluminum plate, we aim to be represen-

tative of doping by ion implantation (98): atoms are thrown toward a plate, cross

several layers before being stopped and disrupt the crystal organization on their paths.

The plate is an aluminum FCC crystal of 1944 atoms (9 × 6 × 9) and the impactor
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4. INCREMENTAL ORBITAL FREE DFT

an aluminum atom placed 5 Å above the plate and thrown vertically toward it at 40

pm/fs. We chose a grid node size h = 1 ae and margins of 15 ae around the complex

plate-impactor. Before the simulation starts, the plate geometry is relaxed to be at

equilibrium. The implantation simulation is run with time steps ∂t = 0.1 fs and four

sets of restraining parameters (εr and εf ) to pinpoint their effect on the accuracy and

speed of the simulation. To check if the simulation diverged from the reference, we fol-

low the system’s kinetic and OF-DFT energies during the whole implantation. During

the simulation, the electron density is updated by an incremental OF-DFT algorithm

with rω = 10. The computer used for the simulation is a 20 Intel Xeon E5-2680 2.80

GHz bi-core processors, 32 GB of RAM, Windows 10 64-bits OS. Every computational

step of the method has been parallelized with openMP(92).

We want restraining parameters to freeze efficiently the plate at the beginning of the

simulation, for speedup, and to free all particles when the kinetic energy of the impactor

will have dissipated into the plate, for accuracy. As the impactor initial kinetic energy

is around 230 eV and we have a bit less than 2000 atoms, we count 0.1 eV per atom if

the energy is equitably shared. We will test full-dynamics threshold of εf = 5.10−1 eV,

εf = 5.10−2 eV, εf = 5.10−3 eV and εf = 5.10−5 eV with restrained-dynamic threshold

εr = 0.8εf . We compare energies and computational times of those three runs with the

reference, a full-dynamic simulation: εr = εf = 0 eV.

In figure 4.6 are shown five frames of the full-dynamic simulation, with εf = εr = 0

eV . They are colored with their displacement from the initial position, and the system

is cut in the middle to make the relevant displacements appear. We see the propagation

of the impact on five layers before the particle is stopped and its energy dissipated into

other particles. That is the reference simulation, slow and ”exact” in the sense that

no error comes from a restrained dynamic. On full-dynamic and with our twenty cores

computer, this simulation takes about two and a half days, 1600 steps of 130 seconds

each, mainly for the update of electric potentials.

We then drew those five same frames but with restrained simulations, figure 4.7.

From top to εf = 5.10−1, εf = 5.10−2 , εf = 5.10−3 and εf = 5.10−5 eV, they are col-

ored with their deviation from the reference position, the position of the same particle

in the full-dynamic simulation. We see the increase of errors when the restrained pa-
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4.3 Aluminum impact simulation

Figure 4.6: Aluminum Implantation Reference Simulation - Five frames of the

aluminum implantation simulation without restrained dynamics. The particles are colored

depending on their displacement from their initial position.

rameters become to big. For the restring parameters εf = 5.10−3 the whole simulation

took five hours, so a 10-fold speed up compared to the reference.

To clarify that the deviation increases with bigger restraining parameters, we dis-

play the maximum deviation ∆qMax and the root mean square deviation between

the restrained simulations and the reference one. Figure 4.8 exposes the evolution

of those measure of deviations during the simulations for five sets of restraining pa-

rameters, the four whose deviation were drawn in figure 4.7, plus a fifth one, smaller

(εf , εr) = (5.10−7, 4.10−7) eV. The figure reveals below (εf , εr) = (5.10−5, 4.10−5) eV

the deviations stagnates and we cannot recover the reference simulation by decreasing

the restrains.

In figure 4.9, we drew the representative energies of four simulations, the full-

dynamic one and three restrained-dynamic ones: on top the kinetic and below OF-DFT

energy curves. We observe the energy curves shift away from the reference sooner when

the restraining parameters are higher. Those curves show we can simulate properly this

implantation with a restrained dynamic and incremental density updates, as long as

restraining parameters are small enough (around εf ≤ 0.005 eV).

As we saw in the previous sections, the update is divided in three stages: the update

of the ions potential and the approximate update of the Hartree potential, scaling in

O(pN), the local density update, scaling in O(|ω|) and the global update scaling in

O(N). We hence record very fast step updates at the start of the simulation when p

and |ω| are still small, and slower step updates when the simulation goes on, as more
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Figure 4.7: Aluminum Implantation Restrained Simulations - Five frames of the

aluminum implantation simulation, with different restraining parameters and colored de-

pending on the position shift compared to the reference. We have used, from top to

bottom, (εf , εr) = (0.5, 0.4) eV, (εf , εr) = (0.05, 0.04) eV, (εf , εr) = (0.005, 0.004) eV and

(εf , εr) = (5.10−5, 4.10−5) eV.

92



4.3 Aluminum impact simulation

0 50 100 150

0
5

10
15

20
25

30
35

Simulation time (fs)

R
M

S
D

 (
pm

)

εf = 5.10−1 eV
εf = 5.10−2 eV
εf = 5.10−3 eV
εf = 5.10−5 eV
εf = 5.10−7 eV

0 50 100 150

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Simulation time (fs)

∆q
M

ax
 (

pm
)

εf = 5.10−1 eV
εf = 5.10−2 eV
εf = 5.10−3 eV
εf = 5.10−5 eV
εf = 5.10−7 eV

Figure 4.8: Deviations of a Restrained Simulation - The errors brought by a re-

strained dynamic simulations with OF-DFT, with different restraining parameters. On the

left the RMSD between particles of the restrained simulation and the reference simulation,

on the right the maximum shift between particles of restrained simulation and the reference

simulation. We have drawn, the errors for restraining parameters (εf , εr) = (0.5, 0.4) eV,

(εf , εr) = (0.05, 0.04) eV, (εf , εr) = (0.005, 0.004), eV(εf , εr) = (5.10−5, 4.10−5) eV and

(εf , εr) = (5.10−7, 4.10−7) eV.
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Figure 4.9: Aluminum Implantation Simulation Energies - Binding and Kinetic

energy curves recording the first 160 fs of the implantation simulation with different re-

straining parameters. On top are drawn the kinetic energies and below the system OF-DFT

energies. The black curves are the reference ones in which all particles are active. The red,

blue and green ones have restraining parameters increasing and so proportions of active

particle decreasing. We observe the energy curves splitting away from the reference sooner

for the bigger restraining parameters (εf , εr) = (0.05, 0.04) eV .
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particles get disrupted and become active. The computational times of each time step

have been recorded for the simulation with εf = 0.005 eV. They are drawn in figure 4.10

with respect to the simulation time, and in figure 4.11 with respect to the number of

active particles. The simulation starts with computational time step of five seconds,

with ∂t = 0.1 fs, it takes one minute to compute one femtosecond of simulation. At the

end of the simulation, t = 150 fs or p ≥ 200, computational time rose at 20 seconds

per time step. For this example with a full-dynamic simulation (εf = 0 eV) a time

step takes around 120 seconds, including 90 seconds for the update of potentials, and

around 20 minutes without using the incremental update.

50 100 150

0
5

10
15

20
25

30

Simulation Time (fs)

S
te

p 
C

om
pu

ta
tio

na
l T

im
e 

(s
)

Update Stages

Global Update

Restrained Update

Potentials Update

Figure 4.10: Evolution of Update Time with the advancement of simulation -

Time required to update electron density at a particle simulation time for the implantation

simulation with restraining parameters (εf , εr) = (0.005, 0.004) eV. The computational

times are decomposed in its three stages: update of potentials, restrained density update,

and global density update. We see the update time increases as the simulation goes on for

the number of active particles increases.

The overall update time achieved with this method is similar with what PROFESS

does with a plane-wave method. On the same computer using the 20 cores and a Linux

System, with a similar node size, here a kinetic energy cutoff of 200 eV, a similar

convergence criteria and the same OF-DFT functional, the update of electron density

of the first simulation, when only one particle has moved, step takes five seconds and
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Figure 4.11: Evolution of Update Time with the number of active particles -

Time required to update electron density depending on the number of active particles. The

computational times are decomposed in its three stages: update of potentials, restrained

density update, and global density update. We see the update time increases as the number

of active particles increases.

a full update, when all particles have moved, takes 15 seconds. It is important to first

take into account PROFESS relies on powerful C++ libraries like FFTW, LAPACK

and Libxc that increase computational speed, then to consider the dependency of the

speedup on the number of active particle: from the reference simulation εf = 0 eV, we

achieve a five-fold speedup when less than 20% of particles are active, and a 20-fold

speedup when less than 1% are.

By using our incremental update method and a restrained dynamic, we achieved a

computational speed comparable to PROFESS with the same restrained dynamics.

4.4 Minimum Energy Path

At last, we show we can use our OF-DFT method to compute Minimum Energy Paths

(MEP). Finding the MEP between two states in an energy landscape can be used in

chemistry for example to study the enthalpy energy of a reaction, its energy barrier and

its intermediate states. We compute here the displacement of a defect in an aluminum

cluster. The energy landscape will be our OF-DFT solver with its incremental method,

96



4.4 Minimum Energy Path

and the MEP will be computed with the Nudged Elastic Band (NEB) method (99).

NEB is an improvement of the Plain Elastic Band (PEB) method. In PEB, inter-

mediate states are generated between the two extreme states, often the simplest ones

along the strait line, then their geometry is relaxed with the energy function chosen

(here OF-DFT) and with an elastic potential that prevents the successive states from

getting away from each other. The extreme states are fixed and serve as anchors to the

band of intermediate states.

If we call {Ri}i the P + 1 states, with R0 the initial state and RP the final one,

and V (R) the energy landscape function, the PEB method minimizes the objective

function SPEB defined as:

SPEB(R1, . . . ,RP−1) =
P∑
i=0

V (Ri) +
P∑
i=1

Pk

2
(Ri −Ri−1)

2 (4.9)

k the spring constant, the P in the spring tension formula permits to compute paths

that do not depends on the number of intermediate states. As explained in (99), this

method has the disadvantages to cut inside the turns of the real MEP and, if there is a

saddle point, to move away the intermediate states from it. The Nudged Elastic Band

method corrects those two problems by projecting the two forces on different direction.

The elastic force on the state i, Fs
i is projected on the direction of the band so that

the path does not cut the turns. The energy functional force, −∇ETotRi, is projected

on the space orthonormal to the band to prevent the states to move away from saddle

points. At each optimization step, the force used is:

Fi = −∇V (Ri)|⊥ + Fs
i |‖ (4.10)

In this experiment, the landscape energy function is ETot(R), the energy function

that gives the OF-DFT ground-state energy of the particle system R.

We study the displacement of a defect in the [110] direction of a FCC aluminum

cluster. In a FCC crystal, [110] neighbors are the closest neighbors. The aluminum

cluster is a 7× 7× 7 FCC aluminum crystal, M = 1098 of lattice constant a = 7.8 ae.

For OF-DFT computations, the domain has grid nodes of size h = 0.7 ae and a margin

of 12 ae, a bit reduced because the surface atoms are not relevant here.

We create the initial state R0 with the defect in its initial position, freeze the

movement of surface atoms to simulate an infinite crystal and relax the inside geometry.
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4. INCREMENTAL ORBITAL FREE DFT

We do the same with the final state RP with the defect in its final position. We then

create 8 intermediate states as linear combination of the extreme states, so P = 9.

Those states relaxed with the formula 4.10 and a steepest descent method. We took

for this experiment a spring constant of k = 10 nN/pm.

Figure 4.12 shows the result of the optimization. The image has been cut orthogo-

nally to the [111] direction to see the particle’s movement and the shift of its neighbors.

We can see the hexagonal packing of a FCC crystal in the [111] direction. The images

are colored with respect to the deviation between their initial position, the linear com-

bination, and the final one, once the position stabilized. The particles on the way of

the moving particle are the one most affected.
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Figure 4.12: MEP of a defect displacement in aluminum FCC - The view is a

[111] cut of a FCC crystal with a defect displacement. The particles are colored depending

on the deviation from their initial position hat is a linear combination of the two extreme

states. The extreme states, 0 and 9, are not updated so are in gray.

This experiment is another possible use of our incremental RS-FD OF-DFT solver.

As the defect displacement involved a small area of a large crystal, computation costs

can be reduced by focusing the update of electron density on relevant parts of the do-
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main. We have shown that with a restrained dynamic and an incremental scheme for

OF-DFT, we can achieve computational efficiency comparable with plane-wave meth-

ods, the current state of the art in OF-DFT.
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Conclusion

5.1 Incremental RS-DF OF-DFT

We have demonstrated in this work that the computational speed of OF-DFT simula-

tions can be improved by using an adaptively restrained dynamical model. The OF-

DFT method chosen, RS-FD, is still several order of magnitude slower than plane-wave

OF-DFT methods, but has other advantages related to the adaptability of a RS-DF

computational domain: choice of boundary conditions, computational domain shape,

easy parallelization etc. . . Now we have shown that RS-DF OF-DFT can be as fast as

plane-wave OF-DFT with a modified dynamic and a system that make restrained dy-

namics efficient. As we were exposed to the limitations of a free boundary conditions

RS-DF scheme, no efficient non-local KEDF and slow Hartree potential, we have out-

performed plane-wave only on few systems examples. Other improvements are required

to make RS OF-DFT a reference.

5.2 Perspectives

We cite here several ideas to complete or improve RS OF-DFT methods we did not

have time to test.

Better KEDF in Real Space, non periodic system Without a proper Kinetic

energy functional, the prediction abilities of OF-DFT are greatly reduced compared to

KS-DFT, covalent bonds are not simulated so OF-DFT is limited to model materials

with metallic bonds. KE functionals that exhibits better properties already exist, we
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have seen some of them in chapter 2.6.2 and have exposed the difficulties brought by

implementing them in a RS-DE scheme in chapter 3.2.6. The solution could come from

accurate semi-local KEDF. A recent machine-learned KEDF functionals (59) surpasses

in accuracy all the other semi-local KEDF and improves their ability to model valence

and bonding electrons. Another semi-local KEDF (100) is tuned to equals in accuracy

some non-local KEDF on specific elements. Non-local KEDF accuracy is in general

still unmatched by semi-local KEDF, but for RS-schemes the computational cost of a

semi-local functionals is so small compared to non-local ones that they might be the

solution of efficient KEDF in OF-DFT.

More optimization algorithms The optimization method we have used, an aug-

mented Lagrangian backed by an efficient update of the Lagrangian multiplier, is

reasonably fast, see section 3.6. Nonetheless, the update of the whole Lagrangian

LA[χ, λ, µ] is done with a steepest descent method and has to be improved. The speed

up the optimization process will not be solved only by using a more efficient algorithm,

but first by improving the stability of the RS-FD energy functionals. Indeed, because

of the incremental methods we have used for computing the Hartree potential and the

non-local kinetic energy, and because the convergence threshold of those methods can

not be null, one electron density does not correspond to exactly one energy and one

energy derivative, and the solution found depends on the initial guess of the optimiza-

tion process. All the efficient minimization algorithms we have tested had difficulties

to converge with a ”noisy” OF-DFT energy functional.

Multilevel Grid A popular alternative to Fourier-space to compute electric repul-

sion, electrons or nuclei repulsion, is the multi-grid approach. The same method could

be tested with OF-DFT electron density calculations. The multi-grid methods use sev-

eral grids to represent a function, a density or a potential, to model but with different

thinness. Usually the first grid is a very coarse representation of each grid is twice as

thin as its predecessor. On one hand there is a gain in speed because the function to

compute is first approximated on the first grid, the coarser one, then the approxima-

tion is passed on the second grid, twice as thin, to have a result more precise. On a

second hand, it allows to update the function incrementally, either by selecting where

the update will focus of by having an clever update. In section 3.2.3, we have done
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something alike to compute the Hartree potential, with three grids having nodes three

times as thin as its predecessor, but with the same number of nodes, the aim was to

model a volume model large enough to have monopole boundary conditions.

Most interesting particle systems are not homogeneous, their electron density is

made of areas with fast-varying density, where high precision is required, and slow-

varying density. One could think of having an adaptive grid: thin where density vari-

ations are most important, coarser elsewhere.

Fast computation of nuclei repulsion energy In this model, the computation

of the nuclei repulsion energy EII =
∑

I<J
QIQJ
|rI−rI | is done by brute-force computation.

The complexity of a brute-force computation of EII is O(N2) so that will become

an issue in very large model or in periodic computational domains, but the focus of

this thesis was the OF-DFT part and we did not reach a number of atoms sufficient

for the nuclei repulsion energy to become the bottleneck of the computation efforts.

Nonetheless, several efficient algorithms can be found to compute efficiently EII . Some

use Fourier transform, others multi-grid methods and could fit with the second point

of the perspectives.

Wavelet scheme Another basis we aimed to try is a wavelet (101) basis. It would

have some of the advantages of a multi-grid method (adaptivity of the grid and speed)

and would focus the space function of search on relevant space. Like a plane-wave basis

that limits the scope of represented functions and hence allows a good representation

of smooth functions with fewer basis vectors, wavelets would model electronic densities

with the same accuracy but less basis vector. A Daubechies wavelet basis (102) is

already used for KS-DFT in the BigDFT code (103).

5.3 Deep learning in ab-initio simulations

We have seen that some parts of the DFT functional, here(59) the KEDF of OF-DFT,

can be improved by machine learning. In a more general way, deep learning methods

have reached ab-initio simulations. Neural Networks can now predict with precision

ground state energies of an electron in various electric potentials (104) or help to solve

Kohn-Sham equations (105). A emerging method is the use of DFT results as data
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set to train Neural Networks to model energy potentials (106) or directly forces(26).

Neural networks have produced incredible results in the recent years, from beating

humans at games humans were though unbeatable (107, 108) to solving the long last

standing problem of protein folding (109), there is little doubt they will produce results

in OF-DFT and in quantum physic modeling and simulations.
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Appendices

6.1 Gauss Legendre quadrature coefficients

To approximate the value of integrals, in particular to compute electrical potential on a

grid, we have used the Gauss-Legendre quadrature. The approximation of the integral

of f(t) on the segment [−1, 1] with a nth degree Gaussian quadrature is expressed as

∫ 1

−1
f(t)dt =

∑
i∈[1,n]

ωni f(xni ) (6.1)

with {xni }i the nodes and {ωni }i the weights of the quadrature.

For the Gauss-Legendre quadrature, the nodes are the roots of nth Legendre poly-

nomial Pn(x), and the weights are given by :

ωni =
2

(1− x2n,i)[P ′n(xn,i)]2
(6.2)

We recall one formula of the nth Legendre polynomial, the Rodrigues’ formula :

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n (6.3)

For the first coefficients, among them those of the 3rd order quadrature, we refer to

table 6.1.

6.2 Laplace’s Spherical Harmonic

In section 2.5.4 we have evoked the Spherical Harmonics basis function, noted Ylm(θ, φ).

They are a set of orthonormal functions defined on the 3D sphere :
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number of points n position, xi weight ωi

1 0 2

2 ±
√

1
3 1

3 0 8
9

±
√

3
5

5
9

4 ±
√

3
7 −

2
7

√
6
5

18+
√
30

36

±
√

3
7 + 2

7

√
6
5

18−
√
30

36

5 0 128
225

±1
3

√
5− 2

√
10
7

322+13
√
70

900

±1
3

√
5 + 2

√
10
7

322−13
√
70

900

Table 6.1: Coefficients of low-order Gauss Legendre quadratures

θ ∈ [0, π] (6.4)

φ ∈ [0, 2π] (6.5)

〈Ylm|Yl′m′〉 =

∫ π

θ=0

∫ 2π

φ=0
YlmYl′m′ sin θdθdφ = δll′δmm′ (6.6)

They appear as the non-radial part of the solution of Laplacian equation in Spherical

coordinates :

∆f(r, θ, φ) = 0 (6.7)

and in the solutions of the Schrödinger equation in a Coulomb potential V (r = −Q
r ),

the so-called ”hydrogen-like atomic orbitals”. For the details on the calculus of Hydro-

gen orbitals: (110).

Laplace’s Spherical Harmonics can be written with two integers m and l, m ∈ J−l, lK

Ylm(θ, φ) = Nlme
imφPml (cos(θ)) (6.8)
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m/l 0 1 2

-2 1
4

√
15
2π sin2 θe−i2φ

-1 1
2

√
3
2π sin θe−iφ 1

2

√
1
π sin θ cos θe−iφ

0 1
2

√
1
π

1
2

√
3
π cos θ 1

4

√
5
π (3 cos2 θ − 1)

1 −1
2

√
3
2π sin θeiφ −1

2

√
1
π sin θ cos θeiφ

2 1
4

√
15
2π sin2 θei2φ

Table 6.2: First Laplace’s Spherical Harmonics

with Nlm a normalization constant and Pml (x) the associated Legendre Polynomial,

a more general form of Legendre polynomials Pl(x) seen above 6.3. In particular, we

have P 0
l (x) = Pl(x).

We write here the associated Legendre polynomial Rodrigues’ formula, and note

that is not a proper polynomial when m is odd :

Pml (x) =
(−1)m

2ll!
(1− x2)

m
2
dl

dxl
(x2 − 1)l (6.9)

In table 6.2 are written in full the First Spherical Harmonics (l ≤ 2).
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