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The ability to model molecular systems on a computer has become a crucial tool for chemists. Indeed molecular simulations have helped to understand and predict properties of nanoscopic world, and during the last decades have had large impact on domains like biology, electronic or materials development. Particle simulation is a classical method of molecular dynamic. In particle simulation, molecules are split into atoms, their inter-atomic interactions are computed, and their time trajectories are derived step by step.

Unfortunately, inter-atomic interactions computation costs prevent large systems to be modeled in a reasonable time. In this context, our research team looks for new accurate and efficient molecular simulation models. One of our team's focus is the search and elimination of useless calculus in dynamical simulations. Hence has been proposed a new adaptively restrained dynamical model in which the slowest particles movement is frozen, computational time is saved if the interaction calculus method do not compute again interactions between static atoms. The team also developed several interaction models that benefit from a restrained dynamical model, they often updates interactions incrementally using the previous time step results and the knowledge of which particle have moved.

In the wake of our team's work, we propose in this thesis an incremental First-principles interaction models. Precisely, we have developed an incremental Orbital-Free Density Functional Theory method that benefits from an adaptively restrained dynamical model. The new OF-DFT model keeps computation in Real-Space, so can adaptively focus computations where they are necessary. The method is first proof-tested, then we show its ability to speed up computations when a majority of particle are static and with a restrained particle dynamic model. This work is a first step toward a combination of incremental First-principle interaction models and adaptively restrained particle dynamic models.

Résumé

L'informatique est devenue un outil incontournable de la chimie. En effet la capacité de simuler des molécules sur ordinateur a aidé à la compréhension du monde nanoscopic et à la prédiction de ses propriétés. La simulation moléculaire a eu ces dernières décennies un impact scientifique énorme en biologie, en électronique, en science des matériaux . . . La simulation de particules est une des méthodes classiques de dynamique moléculaire, les molécules y sont divisées en atomes, leurs interactions relatives calculées et leurs trajectoires déduites pas à pas. Malheureusement un calcul précis des interactions entre atomes demande énormément d'opérations et donc de temps, ce qui limite la portée de la simulation moléculaire à des systèmes de taille raisonnable. C'est dans ce contexte que notre équipe recherche de nouveaux modèles de simulation moléculaire rapide et précis. Un des angles de recherche est l'élimination des calculs inutiles des simulations. L'équipe a ainsi proposé un modèle de dynamique moléculaire dite restreinte de manière adaptative dans lequel le mouvement des particules les plus lentes est bloqué. Si la simulation ne recalcule pas les interactions inchangées entre atomes bloqués, le calcul des interactions est plus rapide. L'équipe a aussi développé plusieurs modèles d'interactions plus efficaces pour des modèles de dynamique restreinte de particules, ils mettent à jour les interactions de façon incrémentale en utilisant les résultats du pas de temps précédent et la liste des particules mobiles.

Dans le sillage des travaux de notre équipe de recherche, nous proposons dans cette thèse une méthode incrémentale pour calculer des interactions interatomique basées sur les modèles de Théorie de la Fonctionnelle de la Densité Sans Orbitale. La nouvelle méthode garde les calculs dans l'espace réel et peut ainsi concentrer les calculs où cela est nécessaire. Dans ce manuscrit nous vérifions cette méthode, puis nous évaluons les gains de vitesse lorsqu'une majorité de particule est bloquée, avec un modèle de dynamique restreinte. Ces travaux sont un pas vers la l'intégration de modèles d'interactions Premier-principes pour des modèles dynamiques restreint de manière adaptative. I would like to express my deep gratitude to the jury members for their presence at my defense and for their questions during the very interesting discussions that followed. Defending in front of them has been deeply instructive. I extend this gratitude to the reviewers for carefully reading my thesis manuscript and for all their essential comments. I must acknowledge the European Research Council and INRIA for funding my thesis project.
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And at last a warm thank to my family, I know how lucky I am to have you. understand matter and life. By modeling and simulating "in silico" a system, whether a molecule, a galaxy or a wind flow, one could, with good models, predict its operation, its affinity with environments and its evolution in time without the difficulties of real experiments. Computer sciences have brought a new tool to understand domains of all scales, and in particular microscopic scale. Indeed, as small objects like molecules, proteins or crystals are hardly observable, the ability to model their shapes and simulate their reactions is crucial.

Modeling a molecular system can be done by numerous methods, we will focus on the most usual one: particle simulation. In particle simulation the molecular system is split into particles, often the atoms, the interactions between them are computed and a time evolution of the particle positions is derived from the interactions. Hence molecules and their reactions are seen on computer. The reality is that interactions between particles are often too complex to be calculated precisely and have to be approximated, so "in silico" molecules are only approximations of the real ones. Even approximated, the computation of interactions is the computational bottleneck of particle simulation, hence the research for accurate and efficient interaction models is the core of particle simulation.

The ideal interaction model would use exact forces derived from quantum physics.
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Unfortunately the calculation of a molecule's electronic wave function is a complex problem. A family of methods was developed to approximate the result and have interactions computed from quantum physics, the first-principles methods. Density Functional Theory (DFT) is the most popular one but is still very slow compared to more simple pairwise interaction models. This thesis focuses on the development of a DFT method efficient enough to perform dynamical simulations.

We will introduce in this first chapter some principles of particle simulation. First why we can approximate atoms as ball-particles following Newton's law of movements, then how from particle interactions we simulate their trajectories, a rapid look of methods to compute particle interactions. At last we introduce some common methods to speed up simulations.

Laws of particles movement 1.2.1 Time-dependent Schrödinger equation

The precise simulation of particles -nuclei and electrons -movement starts with quantum mechanics. At a quantum level, a system of N particles is described by a state vector Ψ(t) , and the time evolution of this state vector is given by the time-dependent Schrödinger equation :

i ∂ ∂t |Ψ(t) = H |Ψ(t) (1.1)
with the reduced Planck constant = h 2π and H the observable linked to the system's energy : the Hamiltonian operator. The most common way to represent a particles system state Ψ(t) is with its position space wave function Ψ(r, t), a complexvalued function of two variables: the time t and the vector of particles positions r.

Other representations are possible like the momenta space wave function Ψ(p, t), p the vector of particles momenta, but we will keep the position space wave function. Ψ(r, t) contains all information on the particles system, the density probabilities of positions are given by the position observable r|, in position space it identifies with the identity function : ρ(r, t) = Ψ(r, t)|r|Ψ(r, t) = |Ψ(r, t)| 2 , the density probabilities of momentum by the momentum observable p| : Ψ(p, t) = p|Ψ and the other features like spin, magnetic moment etc ... by their own observable.

Laws of particles movement

The Schrödinger equation (SE) has proven itself to be impressively precise, being able to compute the shape of atomic orbitals(1), their energy with band separation or the energy of some particles with great precision, here the energy of the helium atom with a 40 digit precision(2). This precision comes with a cost, the Schrödinger equation can be analytically resolved only for the simplest systems, one particle in a simple electric potential. Errors appear if energies of particles are high enough to create relativistic behaviors, the relativistic Schrödinger equation (3) has to be used.

The quantum interactions between two particles make the Schrödinger equation impossible to solve, approximations and computers have to be used. Even with approximations, computations are too time consuming to hope having a large scale simulation, so we use a drastic approximation, heavy particles shall be considered as balls and behave as such, with the classical mechanics.

Classical limit

Before the work of Louis De Broglie on the wave-particle duality, atoms were considered as balls following Newton-like mechanics. The introduction of wave functions and quantum mechanics to describe the movement of particles has been a revolution in the understanding of matter, but has also made the calculations much more complex and so atomic simulations more difficult. Hence the classical limit approximation that aims to explain how and under which conditions classical mechanics can be recovered from quantum mechanics.

In contrary of a ball particle following Newton mechanics, a wave particle has no well defined position neither momentum, but distributed probabilities of positions and momenta, and the forces applied on the particle take into account this dispersion. The classical limit considers a model in which the reduced Planck constant tends to zero, or at least in which the characteristic actions of the elements of the model are greater than with several orders of magnitude. In this model the positions and momenta distributions tend to Dirac functions, so their dispersion tends to zero. For a particle in position q:

|Ψ(r)| 2 ---→ →0 δ(r -q) (1.2) 1. INTRODUCTION
with δ the Dirac delta function (4). With the positions and momenta being well defined, Erhenfest theorem states that Newtonian mechanics can be applied (5).

But that is the ideal approximation, and the emergence of classical mechanics from Schrödinger equation is still not entirely solved (6). Indeed, even with small , nothing prevents wave particles from spreading with time.

It is nonetheless possible to recover Newton laws of movement without having narrow wave packets with Bohmian method. Let us consider a wave particle defined in the polar form Ψ = Re i S and a Hamiltonian expanded:

H = - 2 2m ∇ 2 +V . The Schrödinger equation 1.1 is now: i ∂Ψ ∂t = - 2 2m ∇ 2 Ψ + V Ψ (1.3)
With ρ = R 2 the particle density, S the action in the Lagrangian equation( 7) and so ∇S the particle momentum, the imaginary part gives the continuity equation:

∂R 2 ∂t + ∇ ∇S m R 2 = 0 (1.4)
and the real part a modified Hamilton-Jacobi equation:

∂S ∂t + (∇S) 2 2m + V - 2 2m ∇ 2 R R = 0 (1.5)
In which the three first terms are the classical Hamilton-Jacobi equation and the last one is an additional term called the quantum potential U = -

2 2m ∇ 2 R R .
The quantum potential can be seen as a measure of the shift between the classical and quantum mechanics, and as U ---→ →0 0, the wave particle follows the Newtonian mechanics when → 0. Bohmian method concludes only on the Newton mechanics approximation and not on the dispersion of wave packets.

Actually, the dispersion of positions is not negligible, for example an aluminum atom at room temperature (T = 300K) has a characteristic wavelength of roughly λ = 0.3 Å for an inter-atomic distance of 3 Å. At atomic scale, the ball particle model is not obviously supported by quantum theory. Nonetheless the model is wildly used because of its simplicity and the satisfactory results it can give in practice. First-principles models rely at the same time on a wave function model with quantum mechanics and a ball particle model with Hamiltonian mechanics. In the Hamiltonian formalism, particles are characterized by their mass, positions and momenta. Let us take N particles of masses (m 1 , m 2 , . . . , m N ), q = (q 1 , . . . , q N ) the vector of all their positions and p = (p 1 , . . . , p N ) the vector of all their momenta. The total energy of this system is given by its Hamiltonian H, function of q and p, and the time evolution of the positions and momenta is by Hamilton's equations [START_REF] Igorevich Arnol'd | Mathematical methods of classical mechanics[END_REF]:

q(t) = ∇ p H(q(t), p(t)) ṗ(t) = -∇ q H(q(t), p(t)) (1.6)
with (q(0), p(0)) the initial state.

In classical mechanics, the total energy is the sum of the system's kinetic energy K and potential energy V :

H(q, p) = K(q, p) + V (q, p) (1.7) 
And in its widely-used form, the classical Hamiltonian is separable(9) :

H(q, p) = K(p) + V (q) (1.8)
The total kinetic energy is the sum of all particle's kinetic energy :

K(p) = N i=1 p 2 i 2m i (1.9)
which is written more formally :

K(p) = 1 2 p T M -1 p (1.10)
with M the diagonal matrix of masses. In the next chapter 1.3.3 we will use another kinetic energy function to modify the movements of particles.

The potential energy V (q) describes the interactions between particles. Depending on the physical model chosen for the simulation, V (q) can take different forms. They vary from a sum of pairwise interactions to more global considerations, we describe the main kinds in chapter 1.4. From the above equations 1.6 and 1.8 and from Newton second law :

1. INTRODUCTION -∇ q V (q) = -∇ q H(q, p) = ṗ(t) = f (1.11)
with f = (f 1 , . . . , f N ) the vector of forces undergone by each particle. Hence the name of force-field for V (p).

With a separable Hamiltonian, and classical kinetic energy, motion equations are simplified and we retrieve Newtonian mechanics:

q(t) = ∇ p K(p(t)) = p/m ṗ(t) = -∇ q V (q(t)) = f (1.12)

Discretization of Dynamics

Except for simple motions, the equations of movement cannot be solved analytically, so the time continuum t and the continuous state trajectory q(t), p(t) are discretized.

Let us note the time step ∆t, the continuous state trajectory q(t), p(t) becomes a sequence of states q n , p n , approximating the states of q(t), p(t) at times n∆t :

q n , p n ≈ q(n∆t), p(n∆t) . To create this sequence, we integrate those equations, the simplest integrator is the Euler one:

q n+1 = ∇ p H(q n , p n ) p n+1 = -∇ q H(q n , p n ) (1.13)
And one of the most common is the velocity Verlet integrator that has an error of second order with respect to the time step size ∇t:

           p n+1/2 = p n -∆V (q n ) ∆t 2 q n+1 = q n + ∆K(p n+1/2 )∆t p n+1 = p n+1/2 -∆V (q n+1 ) ∆t 2 (1.14)
This integrator has a second order error because it modifies the positions with the momenta between two time steps -p n+1/2 -, nevertheless, the integrator still needs only one computation of forces ∆V (q) per time step. The computation of forces being very often the bottleneck of simulation, this makes the velocity Verlet integrator commonly used. Other integrators of higher order can be found in the literature (10)

Particle Dynamics

Adaptively Restrained Particle Simulation

The NANO-D team has recently developed a new particle dynamics designed to speed up simulations: ARPS for Adaptively Restrained Particles Simulations [START_REF] Artemova | Adaptively Restrained Particle Simulations[END_REF][START_REF] Artemova | Adaptive algorithms for molecular simulation[END_REF]. ARPS freeze the slowest particles movements so that the number of moved particles at each time step decreases. Precisely, ARPS modify the kinetic energy function of the Hamiltonian by a function that vanishes for the small values of momenta. If one refers to the integrators 1.13 and 1.14, or even to the Hamilton's equation of motion 1.6 with a separable Hamiltonian, one observes that if the kinetic energy of a particle is null on an interval, its kinetic energy gradient is null too, and the particle is motionless: q = 0.

In the ARPS method, the Hamiltonian is modified with a new kinetic energy function:

H AR (q, p) = K AR (p) + V (q) (1.15) with K AR (p) = N i=1 k(p i ) (1.16)
k manages the behavior of particles by using their kinetic energy K and 2 thresholds:

ε r , the fully-restrained threshold, and ε f , the full-dynamic threshold. If K ≤ ε r the particle is inactive and its movement is totally restrained, if K ≥ ε f the particle is active and moves freely. Between those two thresholds, when ε r < K < ε f , a C 2 function, s, permits a smooth transition between the two states (active and inactive) 1.17.

k(p i ) =                  0 if p 2 i 2m i ≤ ε r p 2 i 2m i if p 2 i 2m i ≥ ε f s p 2 i 2m i if p 2 i 2m i ∈ [ε r , ε f ] (1.17)
For details and mathematical explanations, we refer the reader to [START_REF] Artemova | Adaptively Restrained Particle Simulations[END_REF][START_REF] Artemova | Adaptive algorithms for molecular simulation[END_REF]. The consequences on macroscopic quantities of this restrained adaptive dynamics have been studied in (13,[START_REF] Trstanova | Mathematical and Algorithmic Analysis of Modified Langevin Dynamics[END_REF].

The goal of freezing the movements of particles is to speed up the computation of ∆V (q), the bottleneck of particle simulations. If few particles have moved, q n+1 ≈ q n ,
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∆V (q n+1 ) could be easier to update from ∆V (q n ) than to compute from scratch. The NANO-D team has already modified several classical force fields to benefit from this new dynamical method. The scheme often consists in comparing the differences between two consecutive time steps and in adapting the computation of forces in consequence to avoid useless calculus.

For example, for pairwise interaction models like Lennard-Jones potential, ARPD allows to update fewer forces. For other interaction model, incremental methods, that compare the differences between two consecutive time steps and adapt the computation of forces in consequence, can benefit from a reduction of the number of active particles. The NANO-D team has developed several incremental methods to compute first-principles interactions [START_REF] Bosson | Interactive quantum chemistry: A divide-and-conquer ASED-MO method[END_REF][START_REF] Bosson | Block-Adaptive Quantum Mechanics: An Adaptive Divide-and-Conquer Approach to Interactive Quantum Chemistry[END_REF] or electrostatic interactions [START_REF] Prince | Incremental update of electrostatic interactions in adaptively restrained particle simulations[END_REF]. Other simulation methods that do not update the positions of all particles, like Monte-Carlo simulations(7), also benefit from incremental computation of forces and energies.

Particle Interactions

Having determined how particles move, we have now to calculate what force makes them move. We have simplified here the interactions between particles in two distinct types: empirical interactions and first-principles interactions. Basically, empirical force-field are simple interaction schemes whose parameterization is based on the observation of matter macro-properties -top-down approach-, and first-principles force-field are based on quantum physics and the resolution, or approximation, of Schrödinger equation -bottom-up approach-. In practice a lot of force-fields, and most of used "first-principles" method, are in between those two types, using quantum physics to define the shape of their interaction functions and macro-properties to tune some of those functions parameters.

Empirical force fields

For empirical force-fields, the strong bindings called covalent bonds between atoms do not emerge from the interaction model, they have to be modeled explicitly. Hence this general kind of potential energy that splits apart the interactions created by bonds from the rest, the rest containing other inter-atomic interactions plus an external potential:

1.4 Particle Interactions V (q) = V bonds (q) + V IA (q) + V ext (q) (1.18)
With more complex particles, other properties could be added, for example the polarization of water particles. We will stay brief for the introduction.

Liquids and Gases

For systems without bonds, like simply modeled gases and liquids, and without any external potential, we keep only inter-atomic interactions V IA (q) often being a sum of pairwise interactions that depending only on the distance between the two particles concerned:

V IA (q) = N 1≤j≤i v pot (|q i -q j |) (1.19) 
With v pot (r) a function of the distance between two particles r = |q i -q j |.

When particles are charged, the electric interaction is generally preponderant on all the others, and the interaction between two particles i and j of charges

Q i and Q j is written v(r) = 1 4πε 0 Q i Q j r (1.20)
If particles are not charged, weaker interactions become noticeable. Among them, van der Waals forces gather permanent and induced dipole interactions, they are attractive forces with a shorter characteristic interaction distance. A classical way to represent them simply is the Lennard-Jones potential [START_REF] Joseph O Hirschfelder | Molecular theory of gases and liquids[END_REF]. The LJ potential also adds a very-short range repulsive energy to prevent particles to be too close, an easy way to insert the Pauli exclusion. The potential describes the interaction between two particles

v LJ (r). v LJ (r) = 4E 0 r d -12 - r d -6
(1.21)

In which E 0 and d depend on the particle type, some formulas allow to calculate interactions between two different particles [START_REF] Joseph O Hirschfelder | Molecular theory of gases and liquids[END_REF].

The time for direct computation of those potentials scale as O(N 2 ) because of the double sum. The efficient method depends on the potential, for short range potentials, like Lennard-Jones, cell lists to store a particle neighbor are common. For the electrical
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force-field, the interactions are often solved by computing the electric potential on the whole domain by solving the associated Poisson equation. We will see that we can reduce again the computation times in dynamical simulations by using restrained dynamics.

Bonded systems

For systems with covalent bonds, present in domains like biology, crystallography, organic chemistry etc . . . , covalent bonds have a capital contribution to energy, hence the very common "balls and sticks" molecular representations. To model non-reactive systems, in which no covalent bond breaks or appears, an easy way to model bindings is to associate to bonds an elastic energy. Lengths, angles and torsions are maintained around equilibrium values, l 0 , θ 0 and φ 0 , by an elastic potential. If q ij = q i -q j is the vector from atom i to atom j and i, j, k and l are four consecutive and linked atoms:

V l = k l (|q ij | -l 0 ) 2 (1.22)
V a = k a q ji , q jk -θ 0 2

(1.23)

V t = k t φ q ji ,q kl -φ 0 2 (1.24)
φ q ji ,q kl the torsion angle between q ji and q kl . For example, in crystallography, the Keating model [START_REF] Keating | Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure[END_REF] associates a crystal to the energy

V (q) = α bonds q 2 ij -l 2 0 2 + β bond angles q ij .q ik + 1 3 l 2 0 2 (1.25) 
A more general version can be found here [START_REF] Skov | Surface relaxation by the keating model: A comparison with ab-initio calculations aind x-ray diffraction experiments[END_REF].

Reactive force fields

But chemical reactions are mainly about creations and breaks of bonds and models and simulation have to deal with those. The Morse potential models elastic bonds that can break:

V (q ij ) = D e 1 -e -a(|q ij |-l 0 ) 2 (1.26)

Particle Interactions

In which D e is the binding energy and l 0 the equilibrium bond length. The potential shape is similar to the Lennard-Jones potential shape. The important differences are the binding energy involved (D e ) and the quadratic shape of the Morse potential around the equilibrium length that gives the energy functional the desired spring behavior.

Universal force-field

The Universal Force-Field, or UFF, gathered all those interactions. In the original paper [START_REF] Anthony K Rappé | UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[END_REF], the systems energy is written

E = E R + E θ + E φ + E ω + E vdW + E el (1.27)
with

• E R the bond stretch energy, a Morse potential.

• E θ the bond angle energy.

• E φ the bond torsion energy.

• E ω the inversion term accounting for planar angles.

• E vdW the van der Waals interactions energy, a Lennard-Jones potential.

• E el the electrostatic interactions energy, a Coulomb repulsion term.

The formulas of those energy functionals may be different for computational efficiency. All those energies depend on the atoms involved, and UFF rests on long tables of atom-dependent coefficients, and not only the different elements of the periodic table, each element is sorted in several types. For example, in the 1992 version of UFF, carbon has four types, C 3 for tetrahedral, C 2 and C R for triangular, C 1 for planar conformations. All the coefficients are tuned to fit sets of molecules.

One also can have more accurate force-fields that are specialized in one kind of system, for example:

• GROMOS(22)(for Groningen Molecular Simulation), implemented in GROMACS [START_REF] Van | GROMACS: fast, flexible, and free[END_REF], is specialized for protein and their ligands.
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• Brenner force-field [START_REF] Brenner | Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films[END_REF] is specialized in the simulation of hydrocarbon molecules, graphene, graphite and diamond.

The parameters of all those force-fields are tuned to fit experiments or theoretical results.

Learned Force-Field

A new kind of force-fields has emerged with the increase of computational power. 

First-Principles Methods

The aim of "first-principles" methods is to simulate the physic of particles behind chemistry: the behavior of the electrons and nuclei that creates and breaks the bonds, shape the molecules and make them interact. Empirical methods are in general simple, and so fast and able to model large systems, but because they are tuned on existing set of molecules they might not be able to predict behaviors that are unknown, rare or just not "obvious". The angle of the ammonia molecule NH 3 is 109, 5 That allows to find where electrons rest to minimize a nuclei system's energy, and then deduce the shapes and dynamics of molecules. And to model the interaction between two atoms, the Schrödinger equation is solved for electrons in the electric potential created by the two nuclei. In figure 1.2, we drew the dihydrogen bond modeled with one first-principles method, the linear combination of atomic orbitals (LCAO). For firstprinciples methods, the energies and shape of molecules are determined ideally on the sole quantum physic.

But this perfect simulation method comes with a great computational cost. The calculus of a bond energy went from a simple function 1.26 to the resolution of the Schrödinger equation, an eigenvalue problem. That is why first-principles methods have kept focus on small systems. Moreover, SE is a complex equation to solve, mainly because the interaction between two electrons cannot be computed precisely in the general case. The equation can be solved analytically for systems with one electron because the interaction between electrons disappears, for example the hydrogen atomic orbitals 2.1 and their energy are solved analytically. For the electrons of the helium atom, computational methods are required (2). For multi-atomic systems, more approximations have to be used. A first one is to consider the solutions of the Schrödinger equation, or the molecular orbitals, are linear combinations of atomic orbitals (LCAO).

LCAO are good approximations of molecular orbitals and are used in Hartree-Fock (HF) methods and even DFT as "Slater-type Orbitals" (STO), but still reduces the search space of solutions, and so the precision. Finally, as the reduction of molecular orbitals search-space with LCAO does not permit to model moderately large systems, the next approximation is more drastic: the Density Functional Theory (DFT) does not try to compute eigenvectors of SE, but instead computes directly the electron density corresponding to the useful eigenvectors. DFT reduces a problem of dimension 3N , N the number of electrons in the system, to a problem of dimension 3, the electronic density function.

As this work is centered on computations for a DFT method, we will develop more explicitly first-principles methods in the next chapter.

Efficient molecular simulations

Many macroscopic properties of materials can only be explained with simulations involving a lot of particles, several thousands to billions. For example classical proteins contain thousands of atoms, and as their behavior depends on the solvent in which it evolves, often water, the solvent has to be simulated too [START_REF] Van | GROMACS: fast, flexible, and free[END_REF]. A living or pseudo-living organism like a virus contains at least hundreds of proteins. The size of simulation required to model those macroscopic objects become too much for a computer or even a 1.5 Efficient molecular simulations super calculator to manage. To improve the speed of calculations, new algorithms have emerged. They often search for ways to reduce the number of dimensions to explore.

Periodic Boundary Conditions

To multiply artificially the number of particles simulated, the use of Periodic Boundary Conditions (PBC) is common. In PBC the computational domain is folded on itself:

particles close to a border feel the interactions with particles on the other side through the border, see figure 1.3. PBC permits to model virtually infinite systems with a finite number of particles, besides some efficient function basis like plane-waves are periodic so PBC is well adapted for them. , the computational domain is copied an infinity of times in every directions, so that with only a finite number of simulated particles, an infinite particle system is modeled.

Coarse-grained models

In a more general way, reducing the computational cost of algorithms often starts by identifying the dimensions of the search space the less useful and find representations of the system that do not include them, hence with less dimensions. For example in computational biology, atoms can be grouped by molecules or by molecule parts that become rigid objects. The coarse grains model restrains movement of particles and reduces the system's dimensions. For proteins, an all-atom model can be turned into a amino-acid model or even a chain model, see 1.4.
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Figure 1.4: From all atom to chain model simulation -To reduce computation time of a protein simulation, the full protein is considered as a chain whose links are for example the alpha carbons. The interesting properties of amino acids like mass, hydrophobia, hydrogen binding abilities etc . . . are still represented, but are now properties of the chain links.

Restrained Dynamics and incremental algorithms

Adaptively Restrained Dynamics Simulations are in the same spirit, they aim at reducing the number of dimensions a dynamical model can explore at each time step. The movements of some particles are stopped, the space they explore at each time space is reduced. But to benefit from the reduction of movements, the interaction model of the simulation has to be adapted. We describe below several interaction models that do not compute the energy and forces from scratch at each time step, but that try to use a maximum of information from the precedent time step. We classified them here as "incremental algorithms".

Short-range interactions

For short-range interactions like Lennard-Jones or Morse potentials, the first classical improvement for an efficient simulation consists in computing interactions only between neighbor particles, other interactions being negligible. The neighbor grid algorithm, in which the domain is paved in cubic sub-domain with a side size corresponding to the length of the interaction limit in order to find easily the neighbor particles, is a famous method to manage the which interactions are to compute. Other and more specific methods to store or compute neighbor lists exist [START_REF] Artemova | A comparison of neighbor search algorithms for large rigid molecules[END_REF], the grid-based stays a very classic one.

Efficient molecular simulations

In [START_REF] Artemova | Adaptively Restrained Particle Simulations[END_REF][START_REF] Manteaux | Exploring the Use of Adaptively Restrained Particles for Graphics Simulations[END_REF] is shown that a restrained dynamic can increase again the speed of computation without losing simulation's features. As the interactions are pairwise and depends only on the inter-atomic distance |q i -q j |, if a pair of atoms does not move, the interaction between those two atoms stays the same at the next time step and does not need to be computed again. Freezing some particles movement decreases the number of forces to compute and reduce the quantity of computation required. More complex methods allows massively parallel simulations with ARPS [START_REF] Singh | Parallel Adaptively Restrained Molecular Dynamics[END_REF][START_REF] Kant | Single-pass Incremental Force Updates for Adaptively Restrained Molecular Dynamics[END_REF][START_REF] Kant | Adaptively Restrained Molecular Dynamics in LAMMPS[END_REF].

Long-range interactions

Because of their long-range characteristic, in a charged particle system, all particles feel the interactions of all particles, so reducing the computation of forces to neighbors does not make sense. For efficiency reasons, the energy and the interactions of a long-range interactions model are solved through the corresponding Poisson equation. If we call φ the potential created by all charges, we have for punctual charges:

φ(q, x) = 1 4π 0 1≤j≤N Q j |x -q j | (1.28)
that can be computed with its corresponding Poisson equation:

∆φ(q, x) = - 1 0 1≤j≤N Q j δ q j (x) (1.29)
δ q (x) the Dirac distribution in q. The total electrostatic energy can be written from 1.19

E(q) = 1 2 1≤i≤N Q i δ q i (x)φ(q, x) (1.30)
The Fourier transform allows, with the Fast Fourier Transform, to compute φ in an O(N ln(N )), N a measure of the system linked to the number of particles, and not in O(N 2 ). Multi-grid algorithms have the same scaling. In [START_REF] Prince | Incremental update of electrostatic interactions in adaptively restrained particle simulations[END_REF]32), multi-grid algorithms have been modified to benefit from a restrained simulation.
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There is still no first-principles interaction model that has been adapted to benefit from a restrained dynamic. There is however a version of Atom Superposition and Electron Delocalization Molecular Orbital (ASED-MO) theory, that uses small LCAO functional basis and a simplified Hamiltonian, on the model of Extended Hückel Molecular Orbital (EHMO) has been developed to improve geometry relaxation by freezing particles movement. By dividing the molecular system in disjoint blocks, this version of ASED-MO updates only parts the electronic structure at each geometry optimization step [START_REF] Bosson | Interactive quantum chemistry: A divide-and-conquer ASED-MO method[END_REF][START_REF] Bosson | Block-Adaptive Quantum Mechanics: An Adaptive Divide-and-Conquer Approach to Interactive Quantum Chemistry[END_REF][START_REF] Bosson | Adaptive algorithms for computational chemistry and interactive modeling[END_REF].

Our work is in the continuation of those incremental algorithms that are modifications of classical interaction models to benefit from a restrained dynamic. We use this time a first-principles force-field: Orbital-Free Density Functional Theory.

SAMSON

In the wake of computational chemistry, hundreds of softwares and programs have emerged to design, model and simulate molecules. Most of them are specialized, either in crystallography, protein design, particle simulation or another domain. Yet we see nano-systems that cross those different domains, like a glucose detector made with the combination of proteins and a graphene sheet [START_REF] Viswanathan | Graphene-protein field effect biosensors: glucose sensing[END_REF]. From this finding and from the need for more efficient simulation methods, the NANO-D team of INRIA developed SAMSON, for Software for Adaptive Modelisation and Simulation of Nano System, a new software designed as an app-store: a simple, mandatory core, and tens of modules, called elements, all specialized in their own task (visualization, computation of interactions, computation of dynamics or all other properties), so that every type of molecular simulation could be made (protein design, crystallography, chemical reaction prediction, molecular dynamics, structural relaxation etc . . . ). SAMSON also comes with a graphical interface and a software development kit to implement new elements. For those reasons and to benefit from the dynamical models already implemented (particle dynamics, energy relaxation etc . . . ), the methods presented in this thesis have been implemented and tested in this software, and all the pictures are taken from it.

In order to be able to benefit from the work of other developers, molecular simulations are split in two steps

Contributions

• Dynamic models that control particles movements

• Interaction models that compute the system's energy and the forces atoms undergo So that a user can use a specific interaction models with dynamical models already existing or vice versa, and a developer can test its new dynamical model (respectively interaction model) with already existing interaction models (respectively dynamical model).

Contributions

The aim of this thesis is the development of algorithms that fasten the dynamical simulation of particle systems with a first-principles interaction model, Orbital-Free DFT. We chose to adapt OF-DFT computation methods in order to benefit from a restrained dynamical method like ARPS. That led to the contributions described below and in this manuscript.

• The development of a new interaction model has required the development of numerous tools to test the ideas and compare them to state of the art. Several of those tools were efficient enough to also serve other purposes. Indeed, all the ideas developed in this thesis have been tested with the help of SAMSON 1.6.

The software is equipped with everything to model particle systems, several dynamical models to minimize energies or run dynamical simulations, the restrained dynamical models we intends to benefit from, proper visualization tools, and a SDK, allowing an easy implementation of new models. Nonetheless, SAMSON is still not equipped like a complete molecular simulation software and misses functionality we needed. So to create benchmarks easily, to display properties clearly or to measure them on the fly, we have developed several SAMSON elements.

-An element to generate and manipulate crystals. The goal was at first only a way to generate easily Face-Centered Cubic (FCC) aluminum crystals, the main benchmark we have used. We have extended it first to be able to write and generate any crystal, then to read .cif format files. cif, for Crystallographic Information Files, is one classical format of crystal systems.

The element is now on sale and has found clients.
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-Several elements in cooperation with our INRIA team, NANO-D, and a CEA research group for the study of defects in a graphene sheet that led to two publications [START_REF] Guedj | Atomistic Modelling and Simulation of Transmission Electron Microscopy Images: Application to Intrinsic Defects of Graphene[END_REF][START_REF] Guedj | Impact of Hydrogen on Graphene-based Materials: Atomistic Modeling and Simulation of HRSTEM Images[END_REF]. Among them elements to evaluate and draw Radial Distribution Functions and Angle Distribution Functions during simulations and an element for the visualization of deformation in covalent crystal.

-Other elements to help me testing algorithms and for the communication of my results. I have implemented a Restrained Energy Minimization scheme, a manual modification of particle speed or momenta, and a tool for the visualization of particle position shift, movement or velocity.

• The aim of this thesis is to link a first-principles method and adaptively restrained dynamics. To do so we had to develop another implementation of Orbital-Free Density Functional Theory that could benefit from a restrained dynamic. In Chapter 2 we recall the theory behind OF-DFT. We highlight the advantages of the method, the drawbacks still present and the efforts to address them. We then list several OF-DFT softwares we took inspiration from.

• We produce in Chapter 3 our new program of energy computation based on OF-DFT. We explain our choice for a Real-Space Finite-Differences method, our choice for the optimization algorithm then our choice for the pseudo-potential.

At last, after evaluating the accuracy of our method by comparing the energy value computed with another implementation, plane-wave based, PROFESS. We then measure and compare the efficiency of our program with PROFESS.

• The Chapter 4 has been mostly published in a paper in Journal of Computational Chemistry. We make the link between the Adaptively Restrained Particle Dynamic and our OF-DFT method. To show the performance of the combination, we simulated a implantation of aluminum in a two thousands Aluminum atom plate arranged in FCC crystal, then use a saddle search algorithm, Nudge Elastic Band or NEB, to simulate a displacement of a defect in an Aluminum FCC crystal.

Orbital-Free Density Functional Theory

Density Functional Theory is a method to solve efficiently Schrödinger equation and compute particles systems properties with quantum mechanics. As DFT has a good trade-off between predictions and computational costs, the method has been widely used and a lot of variants have been developed using different basis sets: plane wave, Gaussian Type Orbitals, Slater Types Orbital, or others like PAW. Orbital-Free Density Functional Theory is one variant of DFT among others with a very low computational cost, hence the ability to simulate large clusters of atoms.

We describe in this chapter how Orbital-Free DFT emerges from the basics of quantum physic. We finish by a list of several methods and implementations of OF-DFT that were crucial for my work.

Schrödinger equation

We saw in section 1.2.1 that first-principles simulations start with the non relativistic time-dependent Schrödinger equation, here written in position space:

i ∂ ∂t |Ψ(r, t) = H |Ψ(r, t) (2.1)
We consider here and for all the equations afterward only spinless particles because all the equations we need are the same. The Hamiltonian operator H is, like in classical
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Hamiltonian mechanics, a measure of energy, and can be decomposed in a kinetic energy operator and a potential energy one :

H |Ψ(r, t) = - 2 2m ∇ 2 |Ψ(r, t) + V (r, t) |Ψ(r, t) (2.2)
As all the operators are linear, all linear combinations of solutions are also a solution.

Thus we look at a basis of solutions, the eigenvectors of the operator H, or the solutions of the time-independent Schrödinger equation:

H |Ψ(r) = E |Ψ(r) (2.3)
Here, r is not only a position vector, it also takes into account the spin of particles:

r = {r i } with r i = (x i , y i , z i , s i ).
In simple cases, this equation can be solved. For one particle in a flat potential V (q, t) = cste, q a position in the 3D space, the solutions are traveling waves. For one particle in a Coulomb Potential V (q, t) = Q |q| , the eigenfunctions are the so called "hydrogen-like atomic orbitals", a combination of a radial function R nl (r) and spherical harmonics Y l,m (θ, ϕ). They are, with the approximation of a fixed nucleus, the orbitals of the hydrogen atom. In this case the solutions are analytically solvable, we drew one in figure 2.1, the 3p hydrogen orbital. Those solutions are more than toy models for they are a start to function basis of several DFT methods.

Born-Oppenheimer dynamics

Born-Oppenheimer dynamics

To find more solutions, we will need several approximations. Let us go back to the time-dependent Schrödinger equation 2.1. We first split the particles depending on their mass: the nuclei on one side, electrons on the other.

We will now consider a particle system composed of N electrons, of mass m e , charge e and positions r = {r i } i and of M nuclei, of masses M I , charges Q I e and positions

R = {R I } I HΨ(r, R, t) = EΨ(r, R, t) (2.4)
In the international System of Unit, SI, and without any external electrostatic field, the Hamiltonian can be written:

H = - I 2 2M I ∇ 2 I - i 2 2m e ∇ 2 i + 1 4πε 0 i<j e 2 |r i -r j | - 1 4πε 0 I,i e 2 Z I |R I -r i | + 1 4πε 0 I<J e 2 Z I Z J |R I -R J | (2.5)
with ε 0 the vacuum permittivity and the five terms being respectively :

1. the kinetic energy of the nuclei 2. the kinetic energy of the electrons 3. the electric interaction between electrons 4. the electric interaction between nuclei and electrons

the electric interaction between nuclei

And from here we simplify the computation of particles movement by decoupling the interactions undergone by electrons and nuclei.

• First we introduce the electronic Hamiltonian H e , a clamped version of the total

Hamiltonian:

H e = - i h 2 2m e ∇ 2 i + 1 4πε 0 i<j e 2 |r i -r j | - 1 4πε 0 I,i e 2 Z I |R I -r i | + 1 4πε 0 I<J e 2 Z I Z J |R I -R J | (2.6)
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For each fixed nuclei positions, we can compute with H e an electrons energy, electronic wave functions and electron movements.

The decoupling of nuclei and electron movement: due to the difference of mass between electrons and nuclei, we dissociate their movements, Ψ(r, R, t) = χ(R, t)ψ(r, t), χ(R and t)ψ(r, t) respectively the nuclei wave function and electrons wave function. If nuclei are fixed, electrons move on their own, their movement dictated by the electronic Hamiltonian i the field of the nuclei:

Ψ(r, R, t) = ∞ l=0 χ l (R, t)ψ l (r, t)
(2.7)

• Then we use the adiabatic approximation(37): we consider nuclei move without interfering with the electrons quantum state. They are slow enough to let the electronic wave function relax without changing state. That means we can decouple the total wave function Ψ(r, R, t) into the product of a nuclei wave function χ(R, t) and an electron wave function ψ(r, t).

Ψ(r, R, t) = χ(R, t)ψ(r, t) (2.8)
• At last, we introduce the classical limit approximation [START_REF] Marx | Ab initio molecular dynamics: basic theory and advanced methods[END_REF] for the nuclei: we consider the positions and momentum wave functions of nuclei are close enough from Dirac distributions they can be seen as a ball-particles. Their position probability density can be written as a sum of Dirac distributions centered on

{R I } 1.
.N , the nuclei positions:

χ * (R)χ(R)dR = N 0 Q I δ R I (2.9)
and hence can be considered as a set of point-positions {R I } 1..N . We have already shown 1.2.2 how heavy particles can be seen as ball-particles moving according to Newton's laws of mechanics.

With those approximations we manipulate systems composed of electrons wave functions that moves according to H e and ball-particles nuclei that that moves according to classical mechanics. Several methods were proposed to mix the two dynamics.

Atomic units system

Ehrenfest dynamics [START_REF] Marx | Ab initio molecular dynamics: basic theory and advanced methods[END_REF] propose to compute the movement of electrons with the timedependent Schrödinger equation 2.1 and nuclei movement with the current electrons wave function:

   i ∂ψ ∂t = H e ψ M I RI = -∇ I Ψ|H e |Ψ
(2.10)

But this scheme requires scaling the time steps on the electrons movements and hence makes the nuclei movement computations slow. Car-Parrinello dynamics [START_REF] Marx | Ab initio molecular dynamics: basic theory and advanced methods[END_REF][START_REF] Douglas A Gibson | A comparison of Car-Parrinello and Born-Oppenheimer generalized valence bond molecular dynamics[END_REF] avoid the problem by using a modified version of Lagrangian mechanics. We will use Born-Oppenheimer (BO) dynamic, in which the time-independent Schrödinger equation (TISE) is solved at each nuclei time step. If we use the electrons ground-state Ψ 0 for dynamic, BO dynamic is:

E 0 Ψ 0 = H e Ψ 0 M I RI = -∇ I Ψ 0 |H e |Ψ 0 (2.11)
If the ground-state is used more often, others electrons states can be used. This scheme allows the dynamic to use larger time steps, scaled on nuclei movement, but it requires efficient method to compute the solution of TISE. Once again, we refer to the book (38) for a complete description and explanation of the different approximations and dynamics we have cited.

Atomic units system

We open a small parenthesis to explain the unit system we will use for the rest of this work. When working with atomic physic, the International Unit System (SI) is not adapted to the orders of magnitude. Hence we have worked in Hartree atomic units.

This system is based on those four physical constant: -

• Electron mass m e • Electron charge e • Coulomb constant k e = 1 4πε 0 • Reduced Plank constant = h
2 2m e ∇ 2 becomes - 1 2 ∇ 2 (2.12) e 2 4πε 0 r 2 becomes 1 r 2 (2.13)
And the electronic Hamiltonian 2.6 becomes:

H e = - 1 2 i ∇ 2 i + i<j 1 |r i -r j | - I,i Z I |R I -r i | + I<J Z I Z J |R I -R J | (2.14)
From now, when writing about electrons energy and distances, we will use mostly Hartree atomic units, the energies will be in Hartree (E h ) and the distances in Bohr (a e ).

Hohenberg-Kohn theorems

All the Density Functional Theory is based on the Hohenberg-Kohn theorems [START_REF] Hohenberg | Inhomogeneous Electron Gas[END_REF].

Those theorems transforms the problem of several interacting electrons into a problem of one electron density, reducing drastically the complexity, from a 3N dimensions to a 3 dimensions problem. The first theorem is a uniqueness property, the second a variational one.

First H-K theorem The first Hohenberg-Kohn theorem states that if N interacting electrons move in an external potential V ext (r), the ground-state energy is a unique functional of the density ρ(r). Thus the ground state electron density is sufficient to construct the full Hamilton operator and hence to calculate -in principle -any 2.5 Kohn-Sham DFT ground state property of the system without the knowledge of the many-electrons wave function. This means that any ground state property can be expressed in terms of the ground state electron density ρ(r). There is an energy functional E such as for the ground-state wave function Φ 0 and its corresponding electronic density ρ 0 :

E[ρ 0 ] = Φ 0 |H e |Φ 0 (2.15)
Second H-K theorem The ground state energy can be obtained by energy minimization: for an equal number of electrons, the functional E that delivers the ground state energy of the system, gives the lowest energy if and only if the input density is the true ground state density.

∀ρ,

E[ρ 0 ] ≤ E[ρ] (2.16)
Thus the challenge is no more to find a whole many-body wave function, but a one dimension function: the electron density. The whole Density Functional Theory rests on those two theorems.

That makes the Hohenberg-Kohn theorems crucial to electronic structure calculation, but does not solve the problem entirely .

Kohn-Sham DFT

Walter Kohn and Lu Jeu Sham have introduced a method to compute the ground state electron density based on the Hohenberg-Kohn theorems (41). To do so, they do not consider that the ground state density is the result of a N-electrons wave function, but of N one-electron wave functions that do not interact directly with each other.

Kohn-Sham energy functionals

The Kohn-Sham energy functional separates the computations into four energy functionals:

E KS [ρ, R] = E ext [ρ, R] + E H [ρ] + E XC [ρ] + T s [ρ] (2.17)
with ρ the electron density : a functional of the 3D space (ρ(r) with r a 3D position) always positive and accounting for the probability position of N electrons :

2. ORBITAL-FREE DENSITY FUNCTIONAL THEORY ρ(r) ≥ 0 (2.18) ρ(r)dr = N (2.19)
The Kohn Sham functional replaces the Hamiltonian operator and the Hohenberg-

Kohn theorems implies if E KS [ρ 0 , R] = Ψ 0 |H|Ψ 0 for the electron ground state, ρ 0 is the electron density that minimizes E KS [ρ, R].

Electrostatic Energy

The first energy term driving the electron density is its interaction with the external electrostatic potential V ext . In most application, V ext is only created by nuclei:

E ext [ρ] = -V ext (r)ρ(r)dr (2.20)
where V ext (r) is the potential created by all nuclei indexed by I ∈ J1, M K, at positions R I .

V ext (r) = -

I Z I |R I -r|
(2.21)

Hartree Electronic Repulsion Energy

Another term is the electronic interaction which pushes away the electrons from one another. In KS-DFT, a simple Coulomb repulsion is used, since all the quantum effects of electron-electron interactions are hidden in the Exchange-Correlation term. Hence, the electronic interaction E H [ρ] is defined such that:

E H [ρ] = 1 2 ρ(r )ρ(r) |r -r | dr dr (2.22)
Let us introduce the Hartree Potential V H , representing the electric potential created by electrons:

V H (r) = ρ(r ) |r -r | dr (2.23)
Then, the Hartree Energy term can be rewritten as the interaction energy between the electrons and the electric potential they create:

E H [ρ] = 1 2 V H (r)ρ(r)dr (2.24)
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Kinetic Energy Density Functional

In KS-DFT, the exact kinetic energy of a N-electrons wave function is approximated by the exact kinetic energy of N one-electron non-interacting wave functions, plus a correction calculated in the Exchange-Correlation Energy. The numerical value of the non-interacting kinetic energy is not calculated directly from the density itself with

T s [ρ]
, but by introducing a set of N one-electron wave functions orbitals :

T s [ρ] = T KS [{φ i }] = occ i φ i - 1 2 ∇ 2 φ i (2.25)
The set of orthogonal orbitals {φ i } i is required to respect the electron density:

Single-Slater determinant :

ρ(r) = i φ * i (r)φ i (r) = i |φ i (r)| 2 (2.26)

Exchange-Correlation Energy

The exchange correlation (XC) energy is the term that holds all the quantum effects not described in the other functionals. E XC can be formally defined by:

E XC [ρ] = T [ρ] -T s [ρ] + E ee [ρ] -E H [ρ] (2.27)
where T [ρ] is the exact electronic kinetic energy and E ee the exact electron-electron interaction energy. Unfortunately, the exact exchange correlation energy form is unknown, so we have to rely on approximations. In KS-DFT, the XC energy is the gathers all the approximations of the electron energy functional, if

E XC is exact, E[ρ] is exact
and the errors only would come from the basis functions used. That is the reason why a lot of research has been done on the development of accurate XC energy functional. A whole C++ library is dedicated to the exchange-correlation energy functionals, Libxc [START_REF] Miguel | Libxc: A library of exchange and correlation functionals for density functional theory[END_REF].

The more classical approximation for KS-DFT and so OF-DFT is the Local Density Approximation (LDA) that uses a local computation. E XC is written as:

2. ORBITAL-FREE DENSITY FUNCTIONAL THEORY E LDA XC [ρ] = [ε X (ρ(r)) + ε C (ρ(r))]ρ(r)dr (2.28)
where

ε X (r) = - 3 4 3 π ρ(r) 1 3 
(2.29) 

ε C (r) =    a ln(r s ) + b + cr s ln(r s ) + dr s , r s < 1 γ 1 + β 1 √ r s + β 2 r s , r s ≥ 1 (2.30) r s (ρ(r)) = 3

More complex approximations have been developed, among them the Generalized

Gradient Approximation (GGA). GGA is a semi local functional, meaning it uses the density value and its spatial derivatives. Those precise XC energy functional are also useful for OF-DFT for new OF-KEDF appear that can approximate very accurately the non-interacting KEDF of specific systems. We here describe one GGA functional, the PDE, for Perdew Burke and Ernzerhof [START_REF] John P Perdew | Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[END_REF], XC energy functional:

E GGA XC [ρ] = E GGA C [ρ] + E GGA X [ρ] (2.31) with E GGA X [ρ] = [ε X (ρ(r))ρ(r)F X dr (2.32) 2.5 Kohn-Sham DFT ε X (ρ(r)) = - 3k F 4π (2.33) k F = (3π 2 ρ(r)) 1 3 
(2.34)

F X = 1 + κ - κ 1 + µs 2 κ (2.35) s = |∇ρ(r)| 2k F ρ(r) (2.36) κ = 0.804 (2.37) µ = βπ 2 3 (2.38) (2.39)
and

E GGA C [ρ] = [H + ε C (ρ(r))]ρ(r)dr (2.40) ε C = -2a(1 + α 1 r s ) ln 1 + 1 ζ (2.41) ζ = 2a(β 1 r 1 2 s + β 2 r s + β 3 r 3 2 s + β 4 r 2 s ) (2.42)
r s = 3 4πρ(r) 1 3
(2.43)

H = γ ln 1 + β γ t 2 1 + At 2 1 + At 2 + A 2 t 4
(2.44)

A = β γ [e -ε C γ -1] -1 (2.45) t = |∇ρ(r)| 2k s ρ(r) (2.46) k s = 4k F π (2.47) γ = 1 -ln 2 π 2 (2.48)
and all this with α 1 = 0.21370, β 1 = 7.5957, β 2 = 3.5876, β 3 = 1.6382, β 4 = 0.49294 and β = 0.066725.

A lot of more XC energy functional exists, often more precise, because the accuracy of Kohn-Sham DFT depends on this functional, so many resources have been spend
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on developing a perfect XC functional. We can cite meta GGA E mGGA XC that uses second derivative of electron density ∇ 2 ρ and the local non-interacting kinetic energy T s (r), the exact-exchange functionals E EXX XC , and all the hybrid XC functional E hGGA XC that are linear combinations of the others. We refer again at Libxc, the C++ library dedicated to XC functionals for precisions [START_REF] Miguel | Libxc: A library of exchange and correlation functionals for density functional theory[END_REF].

Coupled Kohn-Sham equation

The introduction of non-interacting one-electron orbitals allows the equation to be

modified into N coupled KS equations. E KS [ρ] becomes E KS [{φ i } i ]
and the constraint on the number of electrons ρ = N becomes constraint on the KS orbitals being orthonormal: φ i |φ j = δ ij . Which leads to the Lagrangian:

L KS [{φ i } i , {ε i } i ] = E KS [{φ i } i ] + λ ij (δ ij -φ i |φ j ) (2.49)
The minimum with respect to the constraints is reached when

       δ δφ i L KS [{φ i } i , {λ ij } ij ] = 0 δ δλ ij L KS [{φ i } i , {λ ij } ij ] = 0 (2.50)      δ δφ i E KS [{φ i } i ] = j λ ij φ j φ i |φ j = δ ij (2.51)
And if we write E KS as an observable :

E KS [{φ i } i ] = φ i | - 1 2 ∇ 2 + V ef f (r)|φ i (2.52)
Let us call V ef f the effective potential, the potential with whom all electrons interact:

V ef f (r) = V ext + V H + V XC = δ δρ (E ext + E H + E XC ) (2.53)
The coupled KS equations are:

- 1 2 ∇ 2 + V ef f (r) φ i (r) = ε i φ i (r) (2.54)
with the KS orbitals constrained to be orthogonal:

2.5 Kohn-Sham DFT

φ i |φ j = δ ij (2.55)
and satisfying the total electron density:

ρ(r) = i |φ i (r)| 2 (2.56)
In these equations, the orbitals interact with each other only through the effective potential V ef f , through the repulsion term V H and the XC term that integrates the interacting part of the kinetic energy T -T s .

Iterative resolution

The Hamiltonian in the Kohn-Sham equations is dependent of the electron density ρ, and so of the equations variables. That implies the equations cannot be resolved directly and an iterative process has to be used. A density is computed with a fixed

Hamiltonian, the Hamiltonian is then modified to integrate the potential generated by the density, and a new density is computed from the new Hamiltonian, until the density is consistent with the potential used to compute it, see schema 2.2. In KS-DFT, the convergence of Self-Consistent Field (SCF) iterations is not guaranteed, explanations can be found here (45).

Basis functions

The last approximation is the basis in which the Kohn-Sham wave functions {φ i } i are numerically represented. The basis on which are written wave functions is the main criteria that distinguish KS-DFT methods and they are often named after their function basis. We name those basis functions {χ(r)} i :

φ i (r) = k α i,k χ i,k (r) (2.57)
And we can cite among the most used basis for wave functions:

• Hydrogen-like atomic orbitals χ(r) nlm = R nl (r)Y m l (θ, φ), the orbitals of the hydrogen. R nl (r) the product of a polynomial of degree n and an exponential e -ζr .

• Slater type orbitals χ(r) nlm = r n-1 e -ζr Y m l (r). They have the same exponential decrease than hydrogen-like orbitals, but their polynomial part is node-less. 
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• Gaussian type orbitals χ(r) nlm = r n-1 e -αr 2 Y m l (r) easier to compute than STO.

• Plane wave basis χ(r) k = e ik.r .

• Bloch wave basis χ(r) k = u(r)e ik.r , specialized for periodic systems, u(r) has the same periodicity.

• Wavelet basis χ(r) n,m = 1 √ a 3m χ( r-nb a m
) with χ(t) the mother wavelet.

• LAPW -LMTO for Linear Augmented Planed Waves and Linear Muffin-Tin Orbitals (46).

• PAW for Projected Augmented Waves. A mix of several basis functions described above (47,[START_REF] Peter E Blöchl | Projector augmented wave method: ab initio molecular dynamics with full wave functions[END_REF].

They all have families of molecular systems on which they perform better, local basis-functions like STO or GTO are better suited for molecules, periodic functions like PAW or Bloch waves work better on systems with long-range interaction or periodic characteristic like crystals. PAW basis-function methods try to gather advantages of all the basis-functions families.

Orthogonalization of wave functions

In the iterative resolution of Kohn-Sham DFT 2.2, finding the KS orbitals is an eigenvalue problem. Even in for symmetric matrices, an eigenvalues computation generally scales in O(n 3 ), and the process has to be repeated at each KS iteration. The computational cost of the kinetic energy functional of KS-DFT, that requires orthogonal orbitals and so an eigenvalue computation, restrains the KS-DFT to model large systems. To cope with this issue, the Orbital-Free DFT modifies the kinetic energy functional so that it depends only on the electron density. The computational time gain is considerable but the loss of accuracy is significant.
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2.6 Orbital-Free DFT 2.6.1 OF-DFT Energy functional

Kohn-Sham-DFT requires the use of wave functions to evaluate the electronic kinetic energy [START_REF] Kohn | Self-Consistent Equations Including Exchange and Correlation Effects[END_REF]. This usually involves a process of orbital orthogonalization to compute Kohn-Sham orbitals [START_REF] Marx | Ab initio molecular dynamics: basic theory and advanced methods[END_REF], which corresponds to a computational time scaling in O(n 3 ),

if n is the number of orbitals involved. On the contrary, OF-DFT scheme approximates

E[ρ]
based only on electron density [START_REF] Chen | Orbital-free density functional theory for molecular structure calculations[END_REF]. To describe the OF-DFT energy functionals and their derivatives, we use the names and notations from the Carter group(50). For a system of N nuclei at positions R = {R i } i=1..N , the total electronic energy for OF-DFT is evaluated just as in KS-DFT:

E[ρ, R] = T s [ρ] + E H [ρ] + E ext [ρ, R] + E XC [ρ] (2.58) 
with

• E ext , the electron interaction with the external electrostatic potential V ext .

• E H , the electrons repulsion energy or the interaction of electron with the electron potential they create V H .

• T s , the non-interacting electronic kinetic energy.

• E XC , the exchange-correlation energy.

All those terms are describing the exact same contribution to the electron energy than in KS-DFT 2.5.1.

OF Kinetic Energy Density Functional

The KEDF term T s is the one that distinguishes OF-DFT from KS-DFT. Whereas the KS-KEDF term takes wave functions φ as input, the OF-KEDF term is a functional of the electron density ρ alone [START_REF] Ho | Introducing PROFESS: A new program for orbital-free density functional theory calculations[END_REF]. A simple way to evaluate KEDF it to use a linear combination of the two following terms:
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• The Thomas-Fermi functional T T F , which corresponds to the energy of a uniform electron gas (51):

T T F [ρ] = C T F ρ 5/3 (r)dr (2.59) with C T F = 3 10 (3π 2 ) 2 3
• The von Weizsäcker functional T vW , exact for a single orbital system(52):

T vW [ρ] = ρ(r) - 1 2 ∇ 2 ρ(r)dr (2.60)
The classic scheme is a TF functional corrected by a vW functional, the T F -λvW model of the form:

T s = T T F + λT vW (2.61)
The aim of the OF-KEDF functional is to approximate the KS-KEDF, which is exact in the case of non-interacting electrons. The rest of the kinetic energy is contained in the Exchange-Correlation term, common to KS-DFT and OF-DFT.

Further kinetic energy functional

We come back here on the most challenging part of OF-DFT: an accurate Kinetic method to compute kinetic energy from the electronic density only. We repeat KEDF is the difference between KS-DFT and OF-DFT and the part that explains the gain in computational speed and the loss in accuracy. The T F -λvW functional lacks of precision, missing the shell structures, the exponential decay of densities [START_REF] Ho | Introducing PROFESS: A new program for orbital-free density functional theory calculations[END_REF] and fast varying electronic densities like vacancies in metallic crystals [START_REF] Radhakrishnan | Effect of cell size on the energetics of vacancies in aluminum studied via orbital-free density functional theory[END_REF]. We describe here four ideas aiming to improve the kinetic energy functional.

Correction of the T F kinetic energy functional

We cite for notice a local correction developed to compute accurately the ground state kinetic energy of one atom [START_REF] Prabhat K Acharya | An atomic kinetic energy functional with full Weizsacker correction[END_REF]. The functional is a T F -λvW kinetic with a correction for the Thomas-Fermi part and λ = 1, hence is called a full von Weizsäcker correction:

T s [ρ] = γ(N, Z)T T F [ρ] + T vW [ρ] (2.62)
Z the atomic number of the atom, N the electron number. Originally [START_REF] Prabhat K Acharya | An atomic kinetic energy functional with full Weizsacker correction[END_REF],

2. ORBITAL-FREE DENSITY FUNCTIONAL THEORY γ(N, Z) = 1 - C N 1 3
(2.63)

We also find ( 49)

γ(N, Z) = 1 - 2 N 1 - C 1 N 1 3 - C 2 N 2 3
(2.64)

This functional gives precise energies for systems of one atom with Z ∈ J2, 55K, but not with larger systems. The three next corrections are based on the addition of a third term to the T F -λvW model:

T s [ρ] = T T F [ρ] + λT vW [ρ] + T 3 [ρ]
(2.65)

Gradient expansion of kinetic energy

The original correction is the theoretical correction of the Thomas-Fermi KEDF with respect to the density [START_REF] Da Kirzhnits | Quantum corrections to the Thomas-Fermi equation[END_REF][START_REF] Yip | Handbook of materials modeling[END_REF]. Considering ρ fluctuates around a mean and constant value ρ 0 , the conventional gradient expansion (CGE) approximates the non-interaction kinetic energy as:

T s [ρ] = T 0 [ρ] + T 2 [ρ] + T 4 [ρ] + . . . (2.

66)

T i the i th order correction. The CGE finds T 0 = T T F , the kinetic energy for a uniform electron gas and T 2 = 1 9 T vW , confirming the T F -λvW KEDF and making a first proposition for the choice of λ. If λ = 1 9 is the value that comes out the gradient expansion, it is not the only one and not always the best [START_REF] Ho | Introducing PROFESS: A new program for orbital-free density functional theory calculations[END_REF]. Actually we mainly use λ = 0.2 in this work.

The higher terms diverge easily and do not improve significantly the accuracy of KEDF [START_REF] Yip | Handbook of materials modeling[END_REF]. Hence CGE is not a method of choice to work out accurate KEDF models and we have to turn to other approximations. The best methods consist in enforcing a characteristic of the non-interacting KEDF into the approximation.

Semi-local kinetic energies

A first idea is the addition of another semi-local term, id est based on spatial derivatives of ρ like the vW KEDF:

2.6 Orbital-Free DFT T 3 [ρ] = T sl [ρ, ∇ρ, ∇ 2 ρ, . . . ]
(2.67)

The question remaining is how to choose the parameters of this third term. The results in [START_REF] Borgoo | Density scaling of noninteracting kinetic energy functionals[END_REF][START_REF] Borgoo | Molecular binding in post-Kohn-Sham orbital-free DFT[END_REF] show that focusing on other characteristics than only the absolute value of T s can be beneficial. The research teams took into account the homogeneity of T s under density scaling -T s is homogeneous of degree

k if T s [ξρ] = ξ k T s [ρ]-to fit
the third term's parameters. In [START_REF] Borgoo | Molecular binding in post-Kohn-Sham orbital-free DFT[END_REF] they concluded a functional of this form:

T s [ρ] = T T F [ρ] + c 1 T vW [ρ] + c 2 ρ 5 3 |∇ρ| ρ 4 3 n dr (2.68)
with well chosen parameters c 1 , c 2 and n bring improved the modeling binding for a series of small molecules. This improvement is done at small computational cost, the new functional is computed with a linear scaling with respect to the domain size, but it does not close the gap significantly between T F -λvW KEDF and the proper non-interacting kinetic energy of KS-DFT. A great description of the different classes of semi-local KEDF is done in (59) and a long list of semi-local KEDF is provided in the paper's supplementary.

Non-local kinetic energies

A more precise way to evaluate OF-DFT KEDF was proposed by Wang and Teter (60), they added a non-local third term to enforce the kinetic energy to respect the linear response of an electron gas [START_REF] Lindhard | On the properties of a gas of charged particles[END_REF]. The response of a homogeneous non-interacting Fermi gas is known exactly [START_REF] Cf V Weizsäcker | Zur theorie der kernmassen[END_REF], and gives the Fourier transform of the second functional derivative of an uniform gas of density ρ 0 :

F δ 2 T s [ρ] δρ( r)δρ( r ) ρ 0 = - 1 χ Lind (q) (2.69) F[f ](k) being the Fourier transform of f (r): F[f ](k) = f (r)e -ikr and χ Lind (q)
the Lindhard susceptibility function:

χ Lind (q) = - k F π 2 1 2 + 1 -q 2 4q ln 1 + q 1 -q (2.70)
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in which q = k 2k F is a dimensionless momentum, variable of the Fourier space, q = |q| its norm and k F = 3π 2 ρ 0 1 3 is the Fermi wave vector, previously defined with ρ 0 the mean system's electron density.

The Wang-Teter (WT) KEDF enforces this linear response by adding a third term to the KEDF, the kernel energy T K :

T s [ρ] = T T F [ρ] + T vW [ρ] + T K [ρ]
(2.71)

T K having a general form:

T K [ρ] = f (ρ(r))|K(|r -r |)|g(ρ(r )) = f (ρ(r))K(|r -r |)g(ρ(r ))drdr (2.72)
with f (ρ(r)) and g(ρ(r)) two arbitrary functions we choose to satisfies some limits of the exact non-interacting kinetic energy.

From equations 2.69 and 2.71 we have a condition on T K [ρ]:

F δ 2 T K [ρ] δρ( r)δρ( r ) ρ 0 = - 1 χ Lind (q) -F δ 2 T T F [ρ] δρ( r)δρ( r ) ρ 0 -F δ 2 T vW [ρ] δρ( r)δρ( r ) ρ 0 (2.73) If we define K(q) K(q) = 2k F π 2 f (ρ 0 )g (ρ 0 )K(q) = k F π 2 F δ 2 T K [ρ] δρ( r)δρ( r ) ρ 0 (2.74)
with the linear responses of T T F and T vW given in (62):

F δ 2 T T F [ρ] δρ( r)δρ( r ) ρ 0 = π 2 k F (2.75) F δ 2 T vW [ρ] δρ( r)δρ( r ) ρ 0 = π 2 k F 3q 2 (2.76)
We come to:

K(q) = - k F π 2 1 χ Lind (q) -1 -3q 2 (2.77) 2.6 Orbital-Free DFT Method name α β Perrot(63) 1 1 Smargiassi-Maden(64) 1 2 1 2
Wang-Teter (60) For any choice of functions f and g. In most cases they are defined as f [ρ] = ρ α and g[ρ] = ρ β , α and β two parameters that depends on the kinetic energy functional chosen, table 2.1 cites some known parameter sets of kinetic functional.

K is dependent of the parameters chosen, so from now we note K α,β and

T α,β K = ρ(r) α K α,β (|r -r |)ρ(r ) β drdr (2.78)
As described in [START_REF] Ho | Introducing PROFESS: A new program for orbital-free density functional theory calculations[END_REF], this functional is a convolution with the kernel K α,β (r), and so can be solved efficiently in Fourier space:

T α,β K [ρ] = ρ α (r) F-1 Kα,β (q)ρ β (q) (r)dr (2.79)
In which the real-space form of K α,β is not needed, only its Fourier-space form: Kα,β (q). F-1 is the reverse Fourier transform. We will see in the next chapter how T α,β K can approximately computed in real-space with the method developed [START_REF] Ghosh | Higherorder finite-difference formulation of periodic Orbital-free Density Functional Theory[END_REF][START_REF] Choly | Kinetic energy density functionals for non-periodic systems[END_REF].

The main problem with those kernels is that they constraint the electron density to respect the Lindhard linear response only for one value of ρ, the mean ρ 0 . However ρ varies on the computational domain, even the value of ρ 0 can vary depending on the computational domain's definition. This issue is addressed by using a Density-Dependent (DD) kernel, in equation 2.70, k F is replaced by a geometric mean of the two Fermi vectors involved:

ξ γ (r, r ) = k γ F (ρ(r)) + k γ F (ρ(r )) 2 1 γ (2.80)
with γ chosen depending on the system, see [START_REF] Ho | Introducing PROFESS: A new program for orbital-free density functional theory calculations[END_REF]. T α,β K becomes T α,β,γ K :

T α,β,γ K [ρ] = ρ(r) α K α,β,γ (ξ γ (r, r ), |r -r |)ρ(r ) β drdr (2.81)
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Density Dependent kernel also corrects instabilities of Density Independent (DI) kernels for peaked densities [START_REF] Blanc | Nonlinear instability of density-independent orbital-free kineticenergy functionals[END_REF]. Nonetheless, it increases the complexity and is calculated by Taylor expansion around the density mean and the calculus of several Density Independent kernels [START_REF] Ho | Introducing PROFESS: A new program for orbital-free density functional theory calculations[END_REF]. With a non-local kinetic energy functional using Density Dependent kernels, OF-DFT achieves accuracies very close to KS-DFT method for specific systems, but the computational cost can increase so much that the advantage of OF-DFT compared to KS-DFT, computational time, disappears [START_REF] Huang | Nonlocal orbitalfree kinetic energy density functional for semiconductors[END_REF]. Several kernels were developed for different kind of systems, the Huang-Carter KEDF for semi-conductors [START_REF] Huang | Nonlocal orbitalfree kinetic energy density functional for semiconductors[END_REF][START_REF] Shin | Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors[END_REF], here (71) for systems with covalent bonds but none has the portability of Kohn-Sham DFT.

For another overview of OF-DFT functionals, we refer to [START_REF] Chen | Orbital-free density functional theory for molecular structure calculations[END_REF].

Existing methods

Several OF-DFT software have already been developed, each one of them showing different strengths either in the variability of energy functionals, computational speed, scalability or accuracy. The present work rests on those works, whether for the methods developed or for the benchmarks used to check the accuracy of computed energies. We present a quick description of some of them, sorted by their main basis used, Fourier space or real-space. We also present the solution found for the computation of non-local kinetic energy in real-space representations. • New functionals to improve the accuracy of OF-DFT, in particular a family of non-local kinetic energy, but also new local pseudo-potentials.

OF-DFT methods

Existing methods

• New computational methods for efficient simulation.

• Demonstration of OF-DFT use and large-scale material simulations.

Moreover, as said above, their software is open source.

PROFESS is a plane-wave based code, so using periodic computational domain, and Fast Fourier Transform for every energy functional that could use one: Hartree repulsion energy, non-local KEDF, and the ion-ion interaction that, because of the periodic characteristic, becomes a major concern. The code can be parallelized. They use the classical C++ libraries for FFT (fftw3, Lapack), XC energy computation (Libxc)

and parallelization (openmpi). The code provides several powerful non-local KEDF they developed, all the XC energy functions of the library Libxc, and the team provides also its own pseudo-potentials, specialized for bulk systems. Several dynamic schemes are available for minimizing system geometry, PROFESS gives the ability to minimize only the crystal cell or the atom position inside this cell, with the ability to restrain particles.

Real-Space methods

We present first two Real-Space Finite-Differences schemes.

• ATLAS is an OF-DFT software based on Real-Space Finite-Differences, developed in Jilin Univ [START_REF] Mi | ATLAS: A realspace finite-difference implementation of orbitalfree density functional theory[END_REF]. ATLAS computes electron density on a periodic domain, so uses Fast Fourier Transform (FFT) to efficiently compute Hartree Potential and non-local Kinetic energy (WT-KEDF, Density-Independent). They recently showed the ability of their program to be massively parallelized MPI (Message Passing Interface) and to process large-scale system: "4 millions atoms on a 2048cores server in one hour" [START_REF] Shao | Large-scale ab initio simulations for periodic system[END_REF].

• In the same style, a RS-FD OF-DFT code developed in the Georgia Institute of Technology [START_REF] Suryanarayana | Augmented Lagrangian formulation of orbital-free density functional theory[END_REF]. This one works with non-periodic domain and uses Poisson equation solver for the Hartree potential. All charges, ions and valence electrons, are here gathered in one neutral charge density function that eases the computation of total Coulomb energy. The KEDF is semi-local (T F -λvW KEDF).

The optimization algorithm is an Augmented Lagrangian close to ours and the process is also parallelized but with MPI. Most of our benchmarks to verify the
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validity of our methods are inspired by this work.

A new version (66) brought several improvements, the major one being the use of non-local KEDF on the model described by [START_REF] Choly | Kinetic energy density functionals for non-periodic systems[END_REF]. On the contrary of the previous one, this version works with periodic conditions.

Then two Real-Space Finite-Elements schemes.

• In ( 75) is described a non-periodic scheme with local KEDF using the finiteelements mesh for multi-scale computations.

• Here ( 76) is a method non-periodic scheme with non-local KEDF. The non-local part is also computed with the method developed by [START_REF] Choly | Kinetic energy density functionals for non-periodic systems[END_REF]. This work studies of the effect of the finite-elements mesh's order on the energy accuracy and algorithm convergence.

A important difference between those real-space method is whether or not their KEDF has a non-local part. Computation of non-local KEDF in real-space is an issue complex enough that some methods prefer to avoid it and stay with a pure local KEDF.

We cite below two methods that solve this issue.

Non-local KEDF for real-space OF-DFT methods

Non-local KEDF are more accurate than local ones but bring a large computational cost surplus. Fourier space turns the convolutions like the non-local KEDF's one into a simple product, the computational cost is hence limited by the Fourier transform.

Moreover, the Lindhard linear response is defined in Fourier space. For methods that stay in real-space, non-local KEDF becomes an issue. The simple solution is to use Fourier space but that imposes all the issues solved by staying in real-space -boundary conditions, parallelization, local computation etc . . . -. Direct computation is not considered for computation costs.

• In (77), the Wang-Teter KEDF kernel is split in two part, a smooth one and a singular one. The singular part is solved with the Poisson solver of the Hartree potential, and the smooth one with a FFT, the Fourier representation being well suited for a smooth function. This method is a major improvement but keeps a Fourier-space part and is for now not extended to Density-Dependent KEDF kernel, more accurate.

Existing methods

• In (67), the Wang-Govind-Carter Density-Independent KEDF kernel is split into an infinite series of real-space compatible kernel then approximated at its four first terms. This method stays in real-space and is extended to the Wang-Govind-Carter Density-Dependent kernel. It is already used in ( 66) and [START_REF] Motamarri | Higher-order adaptive finiteelement methods for orbital-free density functional theory[END_REF]. We describe the method in the next chapter and have used its Density-Independent version.

Fastest methods, like PROFESS, use Fourier space. That is because the computational bottleneck of real-space implementations are the resolutions of the non-local kinetic energy and of the Hartree potential that are faster to compute through Fourier space. However, Fourier space basis functions are not fit to benefit from a restrained dynamical model, thus, in our case, we chose a real-space method. A finite-elements method would not be adapted to moving particles because that would require to update the mesh at each time step. Hence we propose a new Real-Space and Finite-Differences (RS-FD) OF-DFT method that is presented below.

New implementation of Orbital-Free Density Functional Theory

We produce in this chapter our new OF-DFT code. Most of it has already been presented in [START_REF] Franc | Incremental solver for orbital-free density functional theory[END_REF]. After the description of the Real-Space Finite-Differences (RS-FD) implementation, we assess the accuracy by comparison of computed electronic energies with our reference program, PROFESS. We then study the convergence characteristics of our program and measure on benchmarks the time taken to compute electronic structure.

Augmented Lagrangian

The first step is to tackle constraints. For the local constraint, we can compel ρ ≥ 0 with a substitution, for example ρ = χ 2 . Other substitutions such as ρ = e χ or ρ = χ 4

were tested and the conclusion was that ρ = χ 2 is the most stable one(50), for the von Weizsäcker functional does not diverge for small values of ρ. For consistency, we also impose χ to stay positive to prevent the von Weizsäcker functional from taking different values for the same density ρ. The global constraint ρ = Q e is handled with an Augmented Lagrangian method [START_REF] Wright | Numerical optimization[END_REF]. Augmented Lagrangian has already been used for electron density computation [START_REF] Suryanarayana | Augmented Lagrangian formulation of orbital-free density functional theory[END_REF], there is here a difference in the way the Lagrangian multiplier is updated, the formula is taken from [START_REF] Ho | Introducing PROFESS: A new program for orbital-free density functional theory calculations[END_REF]. We define the
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Augmented Lagrangian as

L A [χ, λ, µ] = E[χ] + µ 2 c 2 Ω [χ, Q e ] -λc Ω [χ, Q e ] (3.1) 
with c Ω [χ, Q e ] = Ω χ 2 (r)dr -Q e the equality functional, µ the penalization parameter and λ the Lagrangian multiplier. The evaluation of λ is not done incrementally with the classical Augmented Lagrangian formula for we have a more stable way to do it: when stabilized,

∇ χ L A [χ, λ, µ] = 0 and Q e = 0 (3.2)
which leads to:

∇ χ E[χ] = λ∇ χ c Ω [χ, Q e ] = 2λχ (3.3) 
and

λ = 1 2Q e Ω χ∇ χ E[χ]dr (3.4) 
We consider the energy minimum is reached when the Augmented Lagrangian derivative is below a tolerance threshold δ, when |∇ χ L A [χ, λ, µ]| < δ. At each optimization increment, the lagrangian multiplier is computed with formula 3.4, then a step is done in the steepest descent direction of the Augmented Lagrangian, algorithm 1.

Algorithm 1: Augmented Lagrangian algorithm for OF-DFT Input: Positions of M atoms Output: an electron density with minimized energy ρ m = argmin(E[ρ])

1 Initialization of the cell Ω 2 Computation of the external potential V ext on Ω 3 while |∇ χ L A [χ, λ, µ]| > δ do 4 V H (r) ← Ω χ 2 k (r )
|r-r | dr : update of the Hartree Potential 

Real Space scheme

The second step is the choice of the basis in which the calculations are performed.

Fastest OF-DFT schemes use the Fourier space to evaluate a system's electronic energy and compute the electron density. Since in Fourier space OF-DFT functional calculations scale linearly with the grid size, the global cost of an energy evaluation comes from the Fourier transform. With the Fast Fourier Transform (FFT) this cost is limited to [O(N ln(N )). Here, we do not use Fourier space since the basis functions have a global impact of the electron density whereas we want to use local methods allowing to take advantage of locally restrained particles. Hence we use a real space (RS) scheme which also presents other advantages: RS is well adapted to isolated system, can use arbitrary boundary conditions and makes computations easy to parallelize. Thus every variables, ρ and V ext among them, are computed on a discrete cell Ω with cubic nodes of side size h and volume v h = h 3 . We call N x , N y and N z the number of nodes on the x, y and z directions, they are chosen so that Ω is large enough to encompass all the molecular system's electrons. Those nodes are indexed by integers i ∈ J1, N K with N = N x N y N z the total number of nodes. The functions ρ(r), χ(r), V ext (r) and V H (r) become ρ(i), χ(i), V ext (i) and V H (i), the electron density, the external potential and the Hartree potential of node i. Similarly, n(i) stands for the set of positions inside node i and r(i) its center.

Discrete version of OF-DFT

In real space, with finite differences and with the new variable χ, our energy functionals become:
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E ext [χ] = i∈J1,N K -V ext (i)χ 2 (i)v h (3.5) E H [χ] = 1 2 i∈J1,N K V H (i)χ 2 (i)v h (3.6) T T F [χ] = C T F i∈J1,N K χ 10/3 (i)v h (3.7) T vW [χ] = i∈J1,N K χ(i) - 1 2 ∇ 2 χ(i)v h (3.8) E XC [χ] = i∈J1,N K χ 2 (i)(ε X (χ 2 (i) + ε C (χ 2 (i)))v h (3.9)
and, ∀i ∈ J1, N K, their derivatives with respect to χ can be written as:

∇ χ E ext (i) = 2V ext (i)χ(i) (3.10) ∇ χ E H (i) = 2V H (i)χ(i) (3.11) 
∇ χ T T F (i) = C T F 10 3 χ 7/3 (i) (3.12) ∇ χ T vW (i) = -∇ 2 χ(i) (3.13) ∇ χ E XC (i) = µ X (χ(i)) + µ C (χ(i)) (3.14) with µ X (χ(i)) = - 3 π χ 2 (i) 1 3 
(3.15)

µ C (χ(i)) = (b -1 3 a) + a ln(r s ) + 1 3 (2d -c)r s + 2 3 cr s ln(r s ) , r s < 1 γ+ 7 6 γβ 1 √ rs+ 4 3 γβ 2 rs (1+β 1 √ rs+β 2 rs) 2 , r s ≥ 1 (3.16) r s (i) = 3 4πχ 2 (i) 1 3
.

(3.17)

Hartree potential

The Hartree Potential V H is not directly derived from its definition, but from the corresponding Poisson equation. Hence, equation 2.23 becomes 4πρ = -∆V H (3.18)

Real Space, Finite Difference implementation

with free boundary condition:

V H (r) → 0 when |r| → +∞ (3.19)
The Poisson equation is solved with a conjugate gradient algorithm. To simulate the free boundary conditions, two others cells are used: Ω 2 and Ω 3 . Ω 2 has the same center than the cell Ω, but has nodes three times larger with the same number of nodes and the same shape (same N x , N y and N z ), so is three times larger. Hence, a node of Ω 2 has the same size than 27 nodes of Ω. Ω 3 follows the same principle: same center and shape, and nodes three times larger than Ω 2 . Thus we have three cells centered at the same position, each one encompassing the precedent like three Russian nesting dolls, see figure 3.1. V H is first solved on the largest and coarsest cell Ω 3 , with the boundary condition V H (r) = Q 0 |r-r 0 | , Q 0 is the total valence electron charge and r 0 its barycenter. From this cell, the boundary conditions are extracted for the cell Ω 2 with a C1 interpolation and V H is solved on Ω 2 . The same procedure is done between Ω 2 and Ω, see algorithm 2. 

∈ ∂ Ω 3 , V H (r) = Q 0 |r-r 0 | 4 Solve V H on Ω 3 5 Extract V H boundary conditions for Ω 2 from Ω 3 6 Solve V H on Ω 2 7 Extract V H boundary conditions for Ω from Ω 2 8 Solve V H on Ω

Exchange-Correlation Potential

We have implemented in our code both the LDA functional with the Perdew and Zunger (43) set of parameters and the PDE XC functional (44) described higher 2.5.1.4. We will mainly use the LDA in the benchmarks because in OF-DFT with a simple KEDF, the most significant parts of errors come from the pseudopotentials and the KEDF, so using a precise XC functional does not improve much the accuracy of the whole electron density calculus. In real space, both functionals are computed in a linear time.
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Local Kinetic Energy

For the T F -λvW KEDF, several λ are proposed and justified in literature [START_REF] Yang | Gradient correction in Thomas-Fermi theory[END_REF]81,[START_REF] Govind | Totalenergy calculations using a gradient-expanded kinetic-energy functional[END_REF].

We have taken λ = 0.2 for energies are more accurate on isolated molecular systems and it has already been chosen in another implementation we want to compare to [START_REF] Suryanarayana | Augmented Lagrangian formulation of orbital-free density functional theory[END_REF].

For all the benchmarks, we have used a local kinetic energy, the principal reason is the difficulties we have had to create a stable non-local KEDF in real space and that could be updated in a local and incremental way, which was the aim of the thesis. We describe nonetheless the implementation of the non-local kinetic energy in real-space.

Pseudo-potentials

electrons, and V ext accounts for the potential created by the ions composed by nuclei and core electrons. This model is called the frozen core approximation, the effect of core electrons is present only in the shape of the pseudopotential that models the screening effect. Most of the pseudopotentials were developed for orbital-bounds methods like KS-

DFT and so produce one potential per kind of electron to model, exactly per "angular momentum" l, they are non-local, and can be written:

V ps (r) = l V l (r) |l l| (3.33)
with every angular momentum potential V l being a radial function, hence the V l (r).

In OF-DFT, because orbitals are not considered, the pseudopotential is local, and here is only a radial function:

V lps (r) = V (r) (3.34)
And the total potential created by the ions is of course the sum of the ions potentials:

V ext (r) = I V lps (|r -R I |) (3.35)
R I the position if the I th ion. We cite here three important local pseudopotentials (LPS).

Heine Abarenkov pseudopotentials

Heine-Abarenkov pseudopotentials are originally designed for spectroscopic energy levels [START_REF] Heine | A new method for the electronic structure of metals[END_REF][START_REF] Iv Abarenkov | The model potential for positive ions[END_REF]. In their local version, they are particularly simple for they are tuned with two parameters, a core radius R m and a core potential A. HA potential is defined as:

V HA (r) = A r < R m -Ze r r > R m (3.36)
For aluminum, we took for example Z e = 3 e, the charge of the ion, A = 0.11 V and R m = 1.16 a e . This pseudopotential is not continuous in r = R m , see its radial representation 3.2, and so produce a significant dependence to ion position in the grid when used with a coarse grid mesh.
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Goodwin-Needs-Heine pseudopotentials

A standard local pseudopotential is the Goodwin-Needs-Heine, or GNH, pseudopotential. GNH pseudopotentials are obtained from HA-PS written in the Fourier space and damped at high frequencies to remove the discontinuity [START_REF] Goodwin | A pseudopotential total energy study of impurity-promoted intergranular embrittlement[END_REF]. In the original paper, HA-PS in Fourier space is given as:

V HA (q) = - 4π Ωq 2 (Z -AR) cos(Rq) + A q sin(qR) (3.37)
with q the Fourier space variable and Ω a normalization constant. And the damping function a steep sigmoid function with its step in q c : ) gives those parameters for aluminum: A = 0.1107, q c = 3.5 a -1 e and Z = 3 E. We find in (49) a real-space formulation:

f (q) = e -q qc 6 (3.38) (85 
V GN H (r) = 2 π ∞ 0 sin(ru) ru (Z -AR) cos(Ru) + A u sin(Ru) e -( u Rc ) 6 du (3.39)
They also give parameter for Germanium and Arsenic element, but not for the entire periodic table. Indeed the accuracy of a PP family depends a lot on the element.

For example, for Magnesium the "Madden PP" [START_REF] Watson | Ab initiopseudopotentials for orbital-free density functionals[END_REF] and for Silicon the "Zhou PP" (87).

Bulk-derived Local Pseudopotentials, BLPS

To fill the lack of local and transferable pseudo-potential for OF-DFT, the Carter Group of Princeton computed another family of Pseudo-potential, especially derived for OF-DFT and for bulk systems [START_REF] Huang | Nonlocal orbitalfree kinetic energy density functional for semiconductors[END_REF][START_REF] Huang | Transferable local pseudopotentials for magnesium, aluminum and silicon[END_REF][START_REF] Xia | Can orbital-free density functional theory simulate molecules[END_REF]. They are built from KS-DFT solutions on different crystal bulks (Simple Cubic, Bulk-Centered Cubic, Face-Centered Cubic, Hexagonal Close Packed or Diamond etc . . . ) and the inversion of KS equations to find the electric potential that can generate those solutions. They have shown that the bulk characteristics (bulk moduli, bulk equilibrium volumes, bulk equilibrium energies, vacancy energy ...) produced with their Bulk-Derived Local Pseudopotentials (BLPS) are closer to KS-DFT values than with previous state of the art PP.

Pseudo-potentials

We drew in 3.2 the three pseudopotential for aluminum described higher (HA, GNH and BLPS) plus the corresponding Coulomb potential. They all expose a whole in the center that models the screening effect. In this work we chose the Bulk-derived Local Pseudo-potentials (BLPS). Besides being more accurate, several elements are available and as they were computed with the same method they form a coherent set of pseudopotentials.

Gauss-Legendre quature

We now have to compute the potential on the computational space. On a grid cell, the potential value in one node V (i) is in theory :

V (i) = r∈n(i) V (r)dr (3.40)
We remind n(i) is the set of positions inside node i. We use in practice the Gauss-Legendre quadrature to estimate V (i). For a n-order Gauss-Legendre quadrature, if ω GL i i are the n weight coefficients and x GL i i the positions of measure :
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1

-1 f (t)dt = i∈[1,n] ω GL i f (x GL i ) (3.41)
We recall in the appendices the one-dimension coefficients (position and weight) of the Gauss-Legendre quadrature [START_REF] Gene | Calculation of Gauss quadrature rules[END_REF][START_REF] Viot | Méthode d'analyse numérique[END_REF].

In three dimension in a cube of side size h and centered on r(i) the weights become

ω GL ix,iy,iz = 1 8 ω GL ix ω GL iy ω GL iz /8 (3.42)
and the positions

r GL ix,iy,iz (i) = r(i) + h 2 x GL ix e x + h 2 x GL iy e y + h 2 x GL iz e z (3.43)
The ratio 8 in ω GL ix,iy,iz calculus is here because the coefficients are tuned for the integration on the [-1, 1] segment, so the corresponding cube is of volume 8.

r∈n(i) V (r)dr = (ix,iy,iz)∈[1,n] 3 ω GL ix,iy,iz V (r GL ix,iy,iz (i)) (3.44)
In figure 3.3 we have tested several the three pseudopotential with quadratures of different degree on a simple particle system, one atom, because it produces the greatest differences, less atoms means steeper potentials. We have chosen to compute V ext with a Gauss-Legendre quadrature of degree three. For BLPS the precision does not improve after n = 3. Now that we have methods to compute the four energies from the electron density, we can compute the electronic structure of our atomic system.

Results

In this section, we validate our OF-DFT implementation by comparing its predictions with those of a Fourier space implementation: PROFESS [START_REF] Ho | Introducing PROFESS: A new program for orbital-free density functional theory calculations[END_REF]. Most of the tests are inspired by two other implementations, a Real-space Finite-Differences one(74) and a

Real-Space Finite-Element one [START_REF] Gavini | Non-periodic finite-element formulation of orbital-free density functional theory[END_REF]. Different aluminum clusters energy are compared with the one found by PROFESS, depending on the calculus, we might compare the electronic energy E, the total energy E T ot = E + E ii , the total energy per atom E at = E T ot /M or the binding energy E b = (E T ot -E j )/M with E j the energy of the isolated 3: Effect of quadrature on electronic energy -For the three main local pseudopotentials (BLPS, GNH and HA), the effect of the order of the Gauss-Legendre quadrature on the electronic energy calculation of one aluminum atom. For the slowlyvarying pseudopotentials, BLPS and GNH, a second order quadrature is sufficient to approximate their effect on a grid. On the contrary, HA pseudopotentials are harder to approximate because of its fast variations.
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j th atom. We then measure the method's performance and the speedup gained by an incremental update compared to a global update. At last we test our method on a simulation of aluminum implantation. For coherent comparisons, we have chosen TF-vW kinetic energy with λ = 0.2 and the BLPS given by PROFESS. The values found by PROFESS are slightly different in this work and in [START_REF] Suryanarayana | Augmented Lagrangian formulation of orbital-free density functional theory[END_REF] for the pseudopotentials used are different: Goodwin-Needs-Heine (GNH) pseudopotentials instead of BLPS.

Before measuring any computational time, we need to ensure our implementation gives proper results. To do so we compute the electronic structures and energies of different aluminum compounds like dimer Al 2 , trimer Al 3 , tetramer Al 4 and Faces Centered Cubic (FCC) crystals of different sizes and lattice constants. First, we study the dependencies of parameters like the margin size of the computational domain, the spatial discretization and the Laplacian order used for the computation of Hartree potential and vW kinetic energy. This will allow to choose a proper set of parameters.

Parameterization

We want a computational domain that contains all the electrons. We build the domain as a box surrounding all the ions, plus a margin that needs to be defined large enough to encompass all the electrons. We choose to consider 10 -10 electrons per cubic Bohrs as a null electron density. As one can see in figure 3.4, if we take a thin node size h = 0.2a e and a high order (10 th ) Laplacian operator, our OF-DFT implementation computes an electron cloud of a single aluminum ion that vanishes at 12.2a e from the nucleus. From such a result, we set a margin of 15a e for all our tests, assuming this margin is sufficient to do not degrade the quality of the results. As simple examples, the domain for a single atom is a cube with 30a e edges, and the one for a 6 × 6 × 6 FCC bulk with 8a e as lattice parameter is a cube with 5 × 8 + 2 × 15 = 70a e edges.

Then we choose a node size h and a Laplacian derivative order n. Here, again, the goal is to find the best trade-offs between precision and efficiency. To do so, we compute the binding energy of a 5 × 5 × 5 FCC aluminum cluster of lattice parameter a = 8.0a e for different h and n. Results are presented in figure 3.5. As one can see, the binding energies computed with a 2 nd order Laplacian are largely dependent on h.

However, this dependency disappears when a Laplacian of order 6 or higher, is used.

To choose a proper node size, we look at the energy per atom of our aluminum bulk, computed with a 6 th order Laplacian and different node sizes: figure 3.6 presents the results. We observe that the relative error falls below 2% at h = 0.5a e , although E at largely depends on h even for small h. Since having a smaller h would drastically increase the computational costs, we consider h = 0.5a e as value sufficient to obtain a satisfying accuracy. Hence, for the validation of our method, computations will use a 6 th order Laplacian and a node size h = 0.5a e , as in [START_REF] Suryanarayana | Augmented Lagrangian formulation of orbital-free density functional theory[END_REF]. For other tests involving more computations, bigger step sizes will also considered (h = 0.7a e and h = 1a e ).

Evaluation of accuracy

From the parameters proposed earlier, we show that our implementation computes correct energies. We first try to isolate one source of error, the discretization of the computational domain, with the example of the hydrogen atom. Then we work on aluminum clusters to compare our implementation with others.

Hydrogen atom

The hydrogen atom presents a particular case. First because the exact solution is known. Second we can retrieve the exact solution with OF-DFT by using only the external potential energy and the von Weizsäcker kinetic energy. Indeed, the hydrogen's Grid node size, h (Bohr)

Atomic energy error, log scale: log10

   Eat,0-Eat Eat,0   
2 nd order Laplacian 6 th order Laplacian 10 th order Laplacian Figure 3.5: Binding Energy of a 666 atoms aluminum cluster -E b for M = 666 with respect to the spatial discretization h and the Laplacian order used for the computation of system's kinetic energy and Hartree potential. With a 2 nd order Laplacian, the purple circle, the binding energy varies too much with h, hence the choice of a 6th order Laplacian for the method. 

Results

electron is a one-particle system, hence the electrons interaction energy is null, and as we have a system with only one orbital, the von Weizsäcker kinetic energy is exact 2.6.2.

In the OF-DFT functionals, the Exchange-Correlation energy is the correction of the electrons kinetic energy and electrons interaction energy approximations 2.5.1.4, is this system in which the electron interaction is null and the kinetic energy exact, the Exchange-Correlation energy is useless.

The hydrogen's electron is in an electric potential V (r) = -1 |r| . The time-independent Schrödinger equation gives the exact form of the energy ground state, the 1s hydrogen orbital (n = l = m = 0):

ψ(r) = 1 √ π e -|r| (3.45)
And the values of the potential and kinetic parts of the electron energy: All the energy values are in Hartree.

ψ|V |ψ = - 1 π 1 |r| e -2|r| dr = -1 (3.46) ψ| - 1 2 ∇ 2 |ψ = - 1 
For the OF-DFT, as we saw the Hartree repulsion was null, the Kinetic energy perfectly described by T vW and so the XC energy useless, we can simplify the OF-DFT energy equation 2.58 to:

E el [ρ, R] = E ext [ρ, R] + T s [ρ] (3.49)
with this time

T s [ρ] = T [ρ] = T vW [ρ] (3.50)
Using our variable, the square-root of the electron density, the exact solution is the same:

χ(r) = 1 √ π e -|r| (3.51)
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We computed the 1s orbital using OF-DFT with a computational domain of side size 10 a e centered around the hydrogen atom, a 4 th Gauss-Legendre quadrature to avoid the singularity in 0 and different node grid node sizes to link the discretization to the accuracy. In Figure 3.7 we plot the relative errors of external potential energy, kinetic energy and total electron energy for several grid node sizes. As our method over-evaluates the kinetic energy and under-evaluates the nucleus-electron interaction under-evaluated, the total energy relative error is smaller than its two components. We can achieve arbitrary precision by reducing the grid node size. 

NEW IMPLEMENTATION OF ORBITAL-FREE DENSITY FUNCTIONAL THEORY

Aluminum clusters

We use the same methodology as the one proposed in (74): The energies and equilibrium bond lengths of different aluminum clusters are computed and compared with the ones found with PROFESS.

First, we compute binding energies of aluminum dimers, trimers and tetramers, arranged respectively in line, triangle and tetrahedron, with different bond lengths, figure 3.9 exposes the energy curves. We have derived from those curves the equilibrium binding energy and the equilibrium bond length of those three compounds that we can compare with the results found by PROFESS. The results are presented in Table 3.2.

With the parameters used, we have a relative error below 2% for the binding energy and around 1% for the bond length. To show the density of the electron cloud that our method computes, we provide in figure 3.10 the heat map of the electron density of an aluminum dimer at equilibrium the energy curves of the biggest crystals with their cubic regression. We have used this cubic regression to derived the crystals equilibrium binding energy and equilibrium bond length and have compared them with PROFESS results in table 3.3, we find a relative error of about 1% for the binding energies and for the equilibrium lattice. 

Aluminum bulk energy

Finally, we have derived the bulk cohesive energy E coh of FCC aluminum with a lattice parameters a = 8 a e from the binding energies of finite crystals of increasing size (M = 14, 63, 172, 666, 1099, 1688, and 2457). The binding energy of a finite crystal equals the binding energy of the full periodic crystal -the bulk cohesive energy -plus shifts due to the atoms on the sides, the edges, and the corners of the crystal. Hence, the binding energy E b can be approximated as:

E b = E coh + a sides M -1 3 + a edge M -2 3 + a corner M -1 (3.52) 
In figure 3.13 we show E b (M -1 3 ) and its linear extrapolation. With our implementation, we find E coh = -2.437 eV/atom, like the value given by PROFESS for a periodic FCC crystal.

Our implementation computes structures predicted by OF-DFT properly, with errors around 1% for energies and bond lengths. Now we investigate the speed the electron density is computed and updated.

Non-local Kinetic Energy

We have implemented a Density-Dependent WGC kinetic energy with the method described in [START_REF] Choly | Kinetic energy density functionals for non-periodic systems[END_REF][START_REF] Motamarri | Higher-order adaptive finiteelement methods for orbital-free density functional theory[END_REF] and also in the above section 3.2.6. As explained in [START_REF] Blanc | Nonlinear instability of density-independent orbital-free kineticenergy functionals[END_REF], nonlocal kinetic energy functionals with a Density-Dependent kernel create instabilities for systems with high variations of electron density ρ because of the differences between the reference density used for the kernel ρ 0 and the local densities ρ(r). We have , and the extrapolation with a linear regression to M -1 3 = 0, the periodic FCC crystal.

experienced these instabilities in our method and have not pushed to implement a Density-Independent kernel. A Density-Independent kernel in Real-Space would have had a computational cost several times larger than in Fourier space like for PROFESS and even in the case of restrained dynamic we did find solutions to reduce computation significantly.

Nonetheless, to illustrate the shape of the WGC Density-Dependent kernel, we have drawn in figure 3.14 the shape of the two parts used to create a kind of potential. We take the equation 3.20, the kernel kinetic energy is described as

T α,β K [ρ] = ρ α (r)V α (r)dr (3.53) 
and as described in the former chapter, V α (r) is the sum of solvable potential:

V α (r) = ∞ 1 V α i (3.54)
Each V α i the solution of a Helmholtz equation. The four first terms are sufficient to describe V α , and because V α is purely real, each part of the sum has its exact conjugate in the sum, we have V α 1 = V α 2 and V α 3 = V α 4 . Figure 3.14 shows a cross section of the two potentials V α 1 and V α 3 computed for a thin Gaussian electron density.

Results

x (Bohrs) -To compute the kernel energy in real space, a kinetic potential V α is computed. To calculate it in Real Space, we approximate V α by an infinite sum of potentials that can each be solved using Helmholtz equations, a Partial Differential Equation usually used for wave equations. The four first terms of the infinite sum are sufficient to model properly the kinetic potential, and only two need to be solved. We have drawn their cross section here.

y (Bohrs) -5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5 ℜ(V 1 α ) x (Bohrs) -5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5 ℜ(V 3 α ) -6 -5 -4 -3 -2 -1 0 1 
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Convergence characteristics

Well parameterized, the Augmented Lagrangian produces good convergence characteristics. We show in Figure 3. For an aluminum FCC cluster of M = 666 atoms, convergence is the same, but slower. Figure 3.16 shows the 500 first steps of the electron density computation for this system. Here, E at,c = -2.1592 Hartree and λ c = 0.117584.

Computation time

We made series of measurements to present characteristic computational times of our OF-DFT method. Real-Space methods are not the fastest (74) for OF-DFT, but it has the advantage to be easily and efficiently parallelized [START_REF] Ghosh | Higherorder finite-difference formulation of periodic Orbital-free Density Functional Theory[END_REF][START_REF] Shao | Large-scale ab initio simulations for periodic system[END_REF]. We first measure computational times with respect to the number of cores used and the domain size, 

Effect of parallelization

The computation of energies are parallelized. We tested to make cores work on different energy calculations (core 1 on E ext , core 2 on T s etc ...) but if the system is big enough (more than 10.000 nodes), to make all cores work on energy functionals one after the other is faster. Moreover, it is much more adapted to the computation of functionals with different complexity. Indeed, depending on the system size, the proportion of computational time dedicated to each energy evaluation varies, and the prediction of the optimal number of cores to associate with each energy functional is hazardous.

We have used the interface openMP [START_REF] Dagum | OpenMP: an industry standard API for shared-memory programming[END_REF] and have split statically the domain in p (number of cores available) compact sub-domains of same size to compute each energy. The convergence condition here is |e r | 2 < 10 -8 . When using one core, we observe the quasi linear complexity of CG method. For more cores, the trend looks more linear because parallel computation overhead contribution is reduced with the size of our domain. The computation time does not scale like efficient Poisson solvers, FFT or block-cycle reduction [START_REF] Temperton | Direct methods for the solution of the discrete Poisson equation: some comparisons[END_REF][START_REF] Gander | Cyclic reduction-history and applications[END_REF] but those methods are not suited to handle efficiently free boundary conditions.

Though our pseudo multi-grid -Conjugate-Gradient method does not provide the best performance, it allows to solve the free boundary conditions Poisson equation in an incremental and local way, with an electron density represented directly on a mesh, with a correct scalability with the domain size and a good scalability with the number of cores used. Faster ways exist to solve the free boundary condition Poisson equation that deserve to be tested and compared with ours, for example the work(97) is certainly more efficient and hence could be the next step of this work, maybe with an adaptation for small electron density increments.

Aluminum electron density computation time

We use a single aluminum atom, the simplest of benchmarks, to evaluate how parallelization affects the calculation times. We compute the atom's electron density in a computational domain of 30 a e side size and different grid sizes to increase the number of grid nodes with our RS-FD code and with PROFESS. For each computation, we use one, four or twenty cores. The wall-clock times are drawn in figure 3.20, on the left our RS-FD program and on the right PROFESS, the scales are not the same.

For our RS-FD program, we use the same optimization step constant γ to focus on the effect of parallelization. With a bigger optimization step constant, the computation 3.6 Computation time is faster for small grids, but grow unstable on big grids. With the optimization process fixed, the computation time scales linearly, using four cores divides the computational time by three on average, and using twenty cores by nine on average. 

Dependence on the domain size

The scalings of computation time with respect to each parameter taken separately are quasi linear, but we usually have to vary several parameters at the same time in practical modeling. When the number of atoms to model increases, the size of the domain increases too, and so the number of nodes. We have only studied the scaling between the number of nodes and the computation time. There is also a dependency with the number of atoms because an increase of the number of atoms leads to an equal increase of the number of electrons and so an increase of the average values of electric potential they create, which makes the Hartree Potential longer to compute and the optimization algorithm less stable. A growth of the computational domain with the corresponding number of atoms is hence worse what we observe when only one parameters were growing, and tends to a sub quadratic scaling. We draw in figure 3.21 the scaling of the computational time with respect to this "useful" growth of the domain size.

Computational time analysis

As Real-Space and Plane-Wave methods compute energy functionals differently, they do not use the same portion of resources for each part of the optimization process. In figure 3.22 we show how computational time is divided between energy functionals for our Real-Space method and PROFESS, and depending on the Kinetic energy used. The analysis has been done on a small system but is relevant whatever the system size [START_REF] Ho | Introducing PROFESS: A new program for orbital-free density functional theory calculations[END_REF].

For our Real-Space method, when using a semi-local kinetic energy, the T F -λvW kinetic energy, the computational bottleneck is the Hartree potential computation.

Indeed, around 95 % of computational time is spend in the Poisson solver, like another RS-DF code [START_REF] Suryanarayana | Augmented Lagrangian formulation of orbital-free density functional theory[END_REF]. In comparison with a plane-wave method, for PROFESS the Hartree potential takes around 10 % of the computation time for the electronic energy [START_REF] Ho | Introducing PROFESS: A new program for orbital-free density functional theory calculations[END_REF].

Using a Density-Independent Kernel for a non-local, the proportion of time spent on KEDF rise from less than 1 % to around 70 % for our RS method, and from 35 to 65 % for PROFESS.

The conclusion is that for Real-Space implementations and without non-local KEDF term, most of the computational time is lost for the resolution of the Hartree potential.

We see in the next chapter how to break the computational bottleneck in dynamical simulations. Use of computational time for OF-DFT -On the left for our RS-FD method, on the right for the reference plane-wave method PROFESS. For our RS-FD method, the XC potential computation is too fast to appear. The rest of optimization includes the external energy, the optimization algorithm and the projections on the constraints. Let us keep in mind those are percentages and not absolute times, T F -λvW KEDF are several times faster than W T and W GC KEDF and PROFESS is several times faster than our RS-DF method.

Computation time

4

Incremental Orbital Free DFT

We saw that to compute from scratch an OF-DFT energy, reciprocal-space methods like PROFESS are more precise and efficient than finite-differences real-space ones.

The purpose of our method is not to compute efficiently a solution from scratch, but to update one from a previous time step in a dynamical simulation. A real-space implementation allows to focus computations on specific parts of the domain, so in the case of restrained dynamical simulations, in which only the active particle moves at each time step, our method can update the electron density only where it matters:

around the active particles. We show in this part that the computation time of our method scales almost as the number of particle moved, then we demonstrate the use and efficiency of such a method on a restrained dynamical simulation: an aluminum implantation.

Global Update

We consider a system of M particles indexed by I ∈ J1, M K, at positions R I , of which we know ρ 0 the electron density at time t 0 given by OF-DFT. Lets imagine that from this system, the position of particle i changes by a small displacement d. The simple approach to update the electron density is to modify the external potential V ext created by this new set of positions:

V ext,t 1 (r) = V ext,t 0 (r) -V BLP S (|r -R i |) + V BLP S (|r -R i + d|) (4.1)

INCREMENTAL ORBITAL FREE DFT

then optimize again the electron density on the whole space Ω, computing the Hartree potential V H on Ω at each optimization increment. To sum up the classical density update:

1. update of external potential V ext (r)

2. update of electron density ρ on the whole cell Ω 4.2 Incremental Update

Incremental update pipeline

To speed up the computation, instead of computing ρ directly on all Ω, we first compute an approximation of ρ only on a relevant part of Ω, a restrained area around the particle i called ω, then compute ρ on all Ω to erase the errors. Hence the incremental pipeline:

1. update of external potential V ext (r)

2. restrained update of electron density on ω, a part of Ω

update of electron density on the whole cell Ω

We explain the new step, the restrained update, below.

Restrained Update

To perform the second step, the restrained update, we take into account that beyond a distance r ω from the particle, the displacement is not felt and electron density does not change. In our model, this feature comes from the shapes of the two main potentials:

for |r| ≥ r ω , V ext and V H are Coulomb potentials:

∀r | |r -R i | > r ω : V ext (r) Q i |r -R i | and V H (r) - Q i |r -R i | (4.2)
with Q i the ionic charge, the amount of valence electrons, of the particle i, and so the total electric potential is unchanged at the next time step:

∀r | |r -R i | > r ω : V ext,t 1 (r) + V H,t 1 (r) V ext,t 0 (r) + V H,t 0 (r) (4.3)

Incremental Update

and the electron density stays the same. Hence, to update the electron density with a minimum of computation, the space Ω is split in two complementary areas, see figure 4.1:

1. ω, the loose density sub-area on which everything is updated, close from the moved particle.

2. the complementary of ω, Ω\ω, on which the electron density is frozen and we update only the electric potentials V H and V ext . To discriminate between those two areas, we take our loose sub-area radius r ω , and define ω as a ball of radius r ω centered on the particle i and ∂ω as the border between the two areas:

ω = {r | r ∈ B(R i , r ω )} (4.4) ∂ω = {r | r ∈ S(R i , r ω )} (4.5)
If, instead of one, P particles have moved at time t 1 , the sub-area ω is the union of balls of radius r ω centered on the moved particles, and ∂ω its frontier in Ω:

4. INCREMENTAL ORBITAL FREE DFT w =    r | r ∈ I∈J1,P K B(R I , r ω )    (4.6)
Before we update ρ on ω, the Hartree potential is updated approximately on the whole space. To do so, we take an approximation V app H (r) so that we can have

V H,t 1 (r) = V H,t 0 (r) -V app H (|r -R I |) + V app H (|r -R I + d|) (4.7)
With V H,t1 an approximation of the Hartree potential at time t 1 . At long distance, for |r -R I | ≥ r ω , Hartree potential must equal the Coulomb potential. We chose the simplest V app H : a "chopped Coulomb potential", cut at a distance r H from the center:

V app H (r) =      - Q I r for r > r H - Q I r H for r ≤ r H (4.8) 
A small r H , for example 2a e like the characteristic size of the electron cloud, would be a better approximation of the final result with a fully relaxed electron density, but letting the Hartree potential follow the actual relaxing electron density is faster. Hence we choose a r H slightly smaller than r ω , so V app H (r) = -Q I r for r ≥ r ω . Thus, V H,t1 is a precise approximation of V H outside ω, and a wrong one inside.

Once V ext and V H have been respectively fully and partially updated, ρ and V H are computed inside ω with Dirichlet boundary conditions on ∂ω.

We call

• Q ω = ω ρ * (r)dr the electron quantity inside ω.

• C ω = {χ : R 3 → R | ω χ 2 (r)dr = Q ω } the space of functions having Q ω electrons inside ω • ω d the discrete version of ω, the set of indexes of nodes inside ω: i ∈ ω d ⇐⇒ r(i) ∈ ω • Γ ω = {χ : N → R | i∈ω d χ 2 (i)v h = Q ω } the discrete version of C ω
To describe fully the incremental update: algorithm 3.

To update V H (r)| ω the Conjugate-Gradient would have required to work with tables of size N so we use the Gauss-Seidel method that allows to work with a table of size We have a loose density sub-area ω whose volume depends on particles movedtheir number p and their positions R I -and the radius r ω . One of the goals of the following section will be to show that the computational time to update the electron density on ω increases with the sub-area's volume and the number of particles moved.

Computation time

This section is divided in two parts. We first look at the efficiency of the second step of the incremental update, the restrained update. We then measure the speedup gained with the entire incremental update.

For this, we first compute the electronic structure of a 6 × 6 × 6 FCC aluminum crystal (M = 1099) with a margin of 15 a e and a node size of 0.7 a e then move p atoms, randomly chosen, of 0.3 Å in a random direction. Thus we have a "shaken" crystal whose electron density needs to be updated. Two different updates are performed: a global one done in a time t 0 , and an incremental one in a time t 1 . Both gives an atomic energy E 0 at . During the incremental update, we pause computations between the restrained update and the global one to record the atomic energy E 2 at and the computational time t 2 . For this experiment p ∈ {1, 10, 100, 1000} and r ω ∈ {4, 6, 8, 10, 12, 15}, in Bohrs, and for each combination of p and r ω is tested five times, with different atoms moved, to have statistically significant measures of the errors and computational times.

We first look at the restrained update errors and update time differences, we compare E 2 at to E 0 at and t 2 to t 0 . After the second step, ρ has been updated only inside ω and V H has been approximately updated outside ω. t 0 and the relative loose area volume v gives t 2 t 0 = 2.01 × v -0.05 with a correlation coefficient of R 2 = 0.942, showing the relative computational time is directly linked to the volume of the updated area. We have drawn in figure 4.4 the data from our simulations and the linear regression of the relation between speedup and v. For a relative volume above 0.5, a speedup cannot be guaranteed anymore. We now study the computational time of the total incremental update. Speedup is represented in 4.5, the dots are the five tests means and the vertical bars their standard deviations. For r ω ≤ 6 a e , the speedup of the restrained update, figure 4.4, is lost because, as the errors were important, figure 4.3, the correction is long. For r ω ≥ 10 only few optimization increments are required to correct errors and we find almost the same speedup than with only the restrained update. Hence these bell-shaped curves with maxima for r ω = 8 a e or r ω = 10 a e depending on the number of atoms moved.

We here have a maximum 20-fold speedup.
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an aluminum atom placed 5 Å above the plate and thrown vertically toward it at 40 pm/fs. We chose a grid node size h = 1 a e and margins of 15 a e around the complex plate-impactor. Before the simulation starts, the plate geometry is relaxed to be at equilibrium. The implantation simulation is run with time steps ∂t = 0.1 fs and four sets of restraining parameters (ε r and ε f ) to pinpoint their effect on the accuracy and speed of the simulation. To check if the simulation diverged from the reference, we follow the system's kinetic and OF-DFT energies during the whole implantation. During the simulation, the electron density is updated by an incremental OF-DFT algorithm with r ω = 10. The computer used for the simulation is a 20 Intel Xeon E5-2680 2.80 GHz bi-core processors, 32 GB of RAM, Windows 10 64-bits OS. Every computational step of the method has been parallelized with openMP [START_REF] Dagum | OpenMP: an industry standard API for shared-memory programming[END_REF].

We want restraining parameters to freeze efficiently the plate at the beginning of the simulation, for speedup, and to free all particles when the kinetic energy of the impactor will have dissipated into the plate, for accuracy. As the impactor initial kinetic energy is around 230 eV and we have a bit less than 2000 atoms, we count 0.1 eV per atom if the energy is equitably shared. We will test full-dynamics threshold of ε f = 5.10 -1 eV, ε f = 5.10 -2 eV, ε f = 5.10 -3 eV and ε f = 5.10 -5 eV with restrained-dynamic threshold ε r = 0.8ε f . We compare energies and computational times of those three runs with the reference, a full-dynamic simulation: ε r = ε f = 0 eV. In figure 4.6 are shown five frames of the full-dynamic simulation, with ε f = ε r = 0 eV . They are colored with their displacement from the initial position, and the system is cut in the middle to make the relevant displacements appear. We see the propagation of the impact on five layers before the particle is stopped and its energy dissipated into other particles. That is the reference simulation, slow and "exact" in the sense that no error comes from a restrained dynamic. On full-dynamic and with our twenty cores computer, this simulation takes about two and a half days, 1600 steps of 130 seconds each, mainly for the update of electric potentials.

We then drew those five same frames but with restrained simulations, figure 4.7.

From top to ε f = 5.10 -1 , ε f = 5.10 -2 , ε f = 5.10 -3 and ε f = 5.10 -5 eV, they are colored with their deviation from the reference position, the position of the same particle in the full-dynamic simulation. We see the increase of errors when the restrained pa- rameters become to big. For the restring parameters ε f = 5.10 -3 the whole simulation took five hours, so a 10-fold speed up compared to the reference.

Aluminum impact simulation

To clarify that the deviation increases with bigger restraining parameters, we display the maximum deviation ∆q M ax and the root mean square deviation between the restrained simulations and the reference one. In figure 4.9, we drew the representative energies of four simulations, the fulldynamic one and three restrained-dynamic ones: on top the kinetic and below OF-DFT energy curves. We observe the energy curves shift away from the reference sooner when the restraining parameters are higher. Those curves show we can simulate properly this implantation with a restrained dynamic and incremental density updates, as long as restraining parameters are small enough (around ε f ≤ 0.005 eV).

As we saw in the previous sections, the update is divided in three stages: the update of the ions potential and the approximate update of the Hartree potential, scaling in O(pN ), the local density update, scaling in O(|ω|) and the global update scaling in O(N ). We hence record very fast step updates at the start of the simulation when p and |ω| are still small, and slower step updates when the simulation goes on, as more On the left the RMSD between particles of the restrained simulation and the reference simulation, on the right the maximum shift between particles of restrained simulation and the reference simulation. We have drawn, the errors for restraining parameters (ε f , ε r ) = (0.5, 0.4) eV, (ε f , ε r ) = (0.05, 0.04) eV, (ε f , ε r ) = (0.005, 0.004), eV(ε f , ε r ) = (5.10 -5 , 4.10 -5 ) eV and (ε f , ε r ) = (5.10 -7 , 4.10 -7 ) eV. .9: Aluminum Implantation Simulation Energies -Binding and Kinetic energy curves recording the first 160 fs of the implantation simulation with different restraining parameters. On top are drawn the kinetic energies and below the system OF-DFT energies. The black curves are the reference ones in which all particles are active. The red, blue and green ones have restraining parameters increasing and so proportions of active particle decreasing. We observe the energy curves splitting away from the reference sooner for the bigger restraining parameters (ε f , ε r ) = (0.05, 0.04) eV . Step Computational Time (s) and Libxc that increase computational speed, then to consider the dependency of the speedup on the number of active particle: from the reference simulation ε f = 0 eV, we achieve a five-fold speedup when less than 20% of particles are active, and a 20-fold speedup when less than 1% are.
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By using our incremental update method and a restrained dynamic, we achieved a computational speed comparable to PROFESS with the same restrained dynamics.

Minimum Energy Path

At last, we show we can use our OF-DFT method to compute Minimum Energy Paths (MEP). Finding the MEP between two states in an energy landscape can be used in chemistry for example to study the enthalpy energy of a reaction, its energy barrier and its intermediate states. We compute here the displacement of a defect in an aluminum cluster. The energy landscape will be our OF-DFT solver with its incremental method,

Minimum Energy Path

and the MEP will be computed with the Nudged Elastic Band (NEB) method [START_REF] Jónsson | Nudged elastic band method for finding minimum energy paths of transitions[END_REF].

NEB is an improvement of the Plain Elastic Band (PEB) method. In PEB, intermediate states are generated between the two extreme states, often the simplest ones along the strait line, then their geometry is relaxed with the energy function chosen (here OF-DFT) and with an elastic potential that prevents the successive states from getting away from each other. The extreme states are fixed and serve as anchors to the band of intermediate states.

If we call {R i } i the P + 1 states, with R 0 the initial state and R P the final one, and V (R) the energy landscape function, the PEB method minimizes the objective function S P EB defined as:

S P EB (R 1 , . . . , R P -1 ) = P i=0 V (R i ) + P i=1 P k 2 (R i -R i-1
) 2 (4.9)

k the spring constant, the P in the spring tension formula permits to compute paths that do not depends on the number of intermediate states. As explained in [START_REF] Jónsson | Nudged elastic band method for finding minimum energy paths of transitions[END_REF], this method has the disadvantages to cut inside the turns of the real MEP and, if there is a saddle point, to move away the intermediate states from it. The Nudged Elastic Band method corrects those two problems by projecting the two forces on different direction.

The elastic force on the state i, F s i is projected on the direction of the band so that the path does not cut the turns. The energy functional force, -∇E T ot R i , is projected on the space orthonormal to the band to prevent the states to move away from saddle points. At each optimization step, the force used is:

F i = -∇V (R i )| ⊥ + F s i | (4.10)
In this experiment, the landscape energy function is E T ot (R), the energy function that gives the OF-DFT ground-state energy of the particle system R.

We study the displacement of a defect in the [110] direction of a FCC aluminum cluster. In a FCC crystal, [110] neighbors are the closest neighbors. The aluminum cluster is a 7 × 7 × 7 FCC aluminum crystal, M = 1098 of lattice constant a = 7.8 a e .

For OF-DFT computations, the domain has grid nodes of size h = 0.7 a e and a margin of 12 a e , a bit reduced because the surface atoms are not relevant here.

We create the initial state R 0 with the defect in its initial position, freeze the movement of surface atoms to simulate an infinite crystal and relax the inside geometry.

INCREMENTAL ORBITAL FREE DFT

We do the same with the final state R P with the defect in its final position. We then create 8 intermediate states as linear combination of the extreme states, so P = 9.

Those states relaxed with the formula 4.10 and a steepest descent method. We took for this experiment a spring constant of k = 10 nN/pm. This experiment is another possible use of our incremental RS-FD OF-DFT solver.

As the defect displacement involved a small area of a large crystal, computation costs can be reduced by focusing the update of electron density on relevant parts of the do-5 Conclusion

Incremental RS-DF OF-DFT

We have demonstrated in this work that the computational speed of OF-DFT simulations can be improved by using an adaptively restrained dynamical model. The OF-DFT method chosen, RS-FD, is still several order of magnitude slower than plane-wave OF-DFT methods, but has other advantages related to the adaptability of a RS-DF computational domain: choice of boundary conditions, computational domain shape, easy parallelization etc. . . Now we have shown that RS-DF OF-DFT can be as fast as plane-wave OF-DFT with a modified dynamic and a system that make restrained dynamics efficient. As we were exposed to the limitations of a free boundary conditions RS-DF scheme, no efficient non-local KEDF and slow Hartree potential, we have outperformed plane-wave only on few systems examples. Other improvements are required to make RS OF-DFT a reference.

Perspectives

We cite here several ideas to complete or improve RS OF-DFT methods we did not have time to test.

Better KEDF in Real Space, non periodic system Without a proper Kinetic energy functional, the prediction abilities of OF-DFT are greatly reduced compared to KS-DFT, covalent bonds are not simulated so OF-DFT is limited to model materials with metallic bonds. KE functionals that exhibits better properties already exist, we 

More optimization algorithms

The optimization method we have used, an augmented Lagrangian backed by an efficient update of the Lagrangian multiplier, is reasonably fast, see section 3.6. Nonetheless, the update of the whole Lagrangian L A [χ, λ, µ] is done with a steepest descent method and has to be improved. The speed up the optimization process will not be solved only by using a more efficient algorithm, but first by improving the stability of the RS-FD energy functionals. Indeed, because of the incremental methods we have used for computing the Hartree potential and the non-local kinetic energy, and because the convergence threshold of those methods can not be null, one electron density does not correspond to exactly one energy and one energy derivative, and the solution found depends on the initial guess of the optimization process. All the efficient minimization algorithms we have tested had difficulties to converge with a "noisy" OF-DFT energy functional.

Multilevel Grid A popular alternative to Fourier-space to compute electric repulsion, electrons or nuclei repulsion, is the multi-grid approach. The same method could be tested with OF-DFT electron density calculations. The multi-grid methods use several grids to represent a function, a density or a potential, to model but with different thinness. Usually the first grid is a very coarse representation of each grid is twice as thin as its predecessor. On one hand there is a gain in speed because the function to compute is first approximated on the first grid, the coarser one, then the approximation is passed on the second grid, twice as thin, to have a result more precise. On a second hand, it allows to update the function incrementally, either by selecting where the update will focus of by having an clever update. In section 3.2.3, we have done |r I -r I | is done by brute-force computation. The complexity of a brute-force computation of E II is O(N 2 ) so that will become an issue in very large model or in periodic computational domains, but the focus of this thesis was the OF-DFT part and we did not reach a number of atoms sufficient for the nuclei repulsion energy to become the bottleneck of the computation efforts.

Nonetheless, several efficient algorithms can be found to compute efficiently E II . Some use Fourier transform, others multi-grid methods and could fit with the second point of the perspectives.

Wavelet scheme Another basis we aimed to try is a wavelet (101) basis. It would have some of the advantages of a multi-grid method (adaptivity of the grid and speed) and would focus the space function of search on relevant space. Like a plane-wave basis that limits the scope of represented functions and hence allows a good representation of smooth functions with fewer basis vectors, wavelets would model electronic densities with the same accuracy but less basis vector. A Daubechies wavelet basis (102) is already used for KS-DFT in the BigDFT code [START_REF] Genovese | Daubechies wavelets for high performance electronic structure calculations: The BigDFT project[END_REF].

Deep learning in ab-initio simulations

We have seen that some parts of the DFT functional, here (59) the KEDF of OF-DFT, can be improved by machine learning. In a more general way, deep learning methods have reached ab-initio simulations. Neural Networks can now predict with precision ground state energies of an electron in various electric potentials [START_REF] Mills | Deep learning and the Schrödinger equation[END_REF] or help to solve Kohn-Sham equations [START_REF] Brockherde | Bypassing the Kohn-Sham equations with machine learning[END_REF]. A emerging method is the use of DFT results as data 6 Appendices

Gauss Legendre quadrature coefficients

To approximate the value of integrals, in particular to compute electrical potential on a grid, we have used the Gauss-Legendre quadrature. The approximation of the integral of f (t) on the segment [-1, 1] with a n th degree Gaussian quadrature is expressed as ω n i f (x n i ) (6.1) with {x n i } i the nodes and {ω n i } i the weights of the quadrature. For the Gauss-Legendre quadrature, the nodes are the roots of n th Legendre polynomial P n (x), and the weights are given by :

ω n i = 2 (1 -x 2 n,i )[P n (x n,i )] 2 (6.2)
We recall one formula of the n th Legendre polynomial, the Rodrigues' formula :

P n (x) = 1 2 n n! d n dx n (x 2 -1) n (6.3)
For the first coefficients, among them those of the 3 rd order quadrature, we refer to table 6.1.

Laplace's Spherical Harmonic

In section 2.5.4 we have evoked the Spherical Harmonics basis function, noted Y lm (θ, φ).

They are a set of orthonormal functions defined on the 3D sphere : with N lm a normalization constant and P m l (x) the associated Legendre Polynomial, a more general form of Legendre polynomials P l (x) seen above 6.3. In particular, we have P 0 l (x) = P l (x). We write here the associated Legendre polynomial Rodrigues' formula, and note that is not a proper polynomial when m is odd :

P m l (x) = (-1) m 2 l l! (1 -x 2 ) m 2
d l dx l (x 2 -1) l (6.9)

In table 6.2 are written in full the First Spherical Harmonics (l ≤ 2).
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 411 Figure 1.1: Ammonia molecule, NH 3 -For the NH 3 molecule, a simple spring model would have given a flat triangular molecule, with 120 • bond angles. To model properly the ammonia molecule with an empirical force field, the equilibrium bond has to be hard coded in the force-field. Another option is a first-principles force-field that can model the reason for this angle: the non-binding electrons pair of nitrogen.

Figure 1 . 2 :

 12 Figure 1.2: Electron density of the σ-bond of dihydrogen -To create a bond, two atoms share electrons. Here we have used a linear combination of atomic orbitals (LCAO) to model the binding molecular orbital: the 1s-orbitals of each hydrogen, |ψ a and |ψ b , merge into a σ-bond orbital |ψ σ = α a |ψ a + α b |ψ b .

Figure 1 . 3 :

 13 Figure1.3: Periodic Boundary Conditions simulation -In Periodic Boundary Conditions (PBC), the computational domain is copied an infinity of times in every directions, so that with only a finite number of simulated particles, an infinite particle system is modeled.

Figure 2 . 1 :

 21 Figure 2.1: Real part of a 3p atomic orbital -Solving the Schrödinger equation with one electron in a Coulomb potential V (r) = 1 4πε0

2π 2 .

 2 ORBITAL-FREE DENSITY FUNCTIONAL THEORY whose values are by definition one. The energy is measured in Hartree E h and the distances in Bohr a 0 : • 1E h = 27.2114 eV • 1a 0 = 0.529 Å Hence, in Hartree atomic units, the kinetic energy and electrical repulsion energy observables change:

4πρ 1 3

 1 is the Wigner-Seitz radius, the radius of the sphere containing one electron at density ρ(r). This measure of electron density is a classical parameter in condensed matter physics. We choose a classical set of parameters used by Perdew and Zunger(43): a = 0.0310907, b = -0.048, c = 0.002, d = -0.0116, γ = -0.1423, β 1 = 1.0529 and β 2 = 0.3334.

Figure 2

 2 Figure 2.2: Scheme of iterative resolution of Kohn-Sham equations -The Hamiltonian and the electron density are computed alternately until convergence of ρ. If the effective potential field V S gives the same electron density it was computed from, the field is considered self-coherent and the iterations stop.

2.7. 1 . 1

 11 Plane-wave method PROFESS, for Princeton Orbital-Free Electronic Structure Software, is an open-source program for OF-DFT, available on this day on their Princeton Website: https://carter.princeton.edu/research/software/. The software and the work of the PROFESS team has been central in this work because it has been the reference for all measures of accuracy and computational time. They also are central in the whole field of OF-DFT for their research covers all the scale of computational chemistry:

5 λ = 1 2Qe

 1 Ω χ(r) δE[χ] δχ dr : update of the Lagrangian multiplier 6 ∂χ k ← ∇ χ L A [χ, λ, µ] : compute the Lagrangian gradient 7 χ k+1 ← abs(χ k -γ∂χ k ) : perform a steepest descent step and take the absolute value of the result 8 end 3.2 Real Space, Finite Difference implementation 3.2 Real Space, Finite Difference implementation
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 31 Figure 3.1: Hartree Potential Grids -Nesting of the three grid cells Ω, Ω 2 and Ω 3 that are used to compute the Hartree Potential on the thin cell Ω. Lengths are tripled from Ω to Ω 2 and from Ω 2 to Ω 3 , but sizes stays equal, here 5 × 5 × 5. The grids used to compute electron densities and their electric potentials are usually bigger for example 100 × 100 × 100.
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 32 Figure 3.2: Pseudo-potentials for aluminum atoms -In purple the Bulk-Derived Local Pseudo-potential, in blue the Goodwin-Needs-Heine pseudopotential, in green the Heine-Abarenkov pseudopotential and in yellow the Coulomb potential of a ion of charge Z = 3e.

Figure 3 .

 3 Figure 3.3: Effect of quadrature on electronic energy -For the three main local pseudopotentials (BLPS, GNH and HA), the effect of the order of the Gauss-Legendre quadrature on the electronic energy calculation of one aluminum atom. For the slowlyvarying pseudopotentials, BLPS and GNH, a second order quadrature is sufficient to approximate their effect on a grid. On the contrary, HA pseudopotentials are harder to approximate because of its fast variations.
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 34 Figure 3.4: Radial electron density -Electron density distribution around a single aluminum ion and its decimal logarithm. The density vanishes below 10 -10 e/Bohr 3 for r = 12.2a e .
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 36 Figure 3.6: Electronic energy of a single aluminum atom -On the left, E el for M = 1 with respect to the grid node size h and a polynomial regression E el = E el,C + h p that gives an asymptotic value of E el,C = -57.308. On the right the log error compared to E el,C .
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Figure 3 . 7 :

 37 Figure 3.7: Errors of electron's hydrogen energies -The electron's energy are computed with different grid node sizes and compared to their theoretical values: E ext = -1, T = 0.5 and E el = -0.5, in Hartree. As the functionals used are exact, errors are here only due to the computational domain characteristics, size and discretization.
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 3 Figure 3.7 clarifies that the errors are condensed around the singularity, where the external potential is steep. For systems with fast varying potentials, among them allelectrons systems with Coulomb potentials, adaptive grids like Finite-Elements methods (76) are more adapted because the mesh can be refined where the external potential is the steepest. Unfortunately, in a dynamical simulation this mesh has to be updated at each time step to follow nuclei. That is a reason why we have chosen a fixed mesh.

Figure 3 . 8 :

 38 Figure 3.8: Electric potential and Electron density of the hydrogen atom -On the left the nucleus electric potential and the electron density, the theoretical values and the computed values with different discretizations. On the right the errors in log scale, of the computed values compared with the theoretical ones. For the computed values, we used a computational domain of side 20 a e and grid node sizes of h = 0.4, 0.2, 0.1, 0.05 a e .
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 39 Figure 3.9: Binding Energies of small aluminum clusters -Binding Energy of the three smallest aluminum clusters (Al 2 , Al 3 and Al 4 ), with respect to the bond length.

Figure 3 . 10 :

 310 Figure 3.10: Aluminum dimer electron density -Electron density of an aluminum dimer. The scale is in electron per cubic bohr

Figure 3 . 11 :

 311 Figure 3.11: Binding Energies of aluminum crystals -Binding Energy of different aluminum FCC crystals of different sizes, so different atomic number M , with respect to the lattice constant. We also have drawn their cubic polynomial interpolation.

Figure 3 . 12 :

 312 Figure 3.12: Electron density of an aluminum cluster -3D representation of the electron density computed for a M = 666 FCC aluminum crystal of lattice a = 8 a e with a grid node size h = 0.5 a e .

Figure 3 .

 3 Figure 3.13: Extrapolation of Bulk Cohesive Energy -Binding Energy of aluminum FCC cluster of different sizes M , with respect to M -1 3, and the extrapolation with a linear regression to M -1 3 = 0, the periodic FCC crystal.

Figure 3 . 14 :

 314 Figure 3.14: Two parts of the non-local kinetic potentials created by a thin Gaussian electron density.-To compute the kernel energy in real space, a kinetic potential V α is computed. To calculate it in Real Space, we approximate V α by an infinite sum of potentials that can each be solved using Helmholtz equations, a Partial Differential Equation usually used for wave equations. The four first terms of the infinite sum are sufficient to model properly the kinetic potential, and only two need to be solved. We have drawn their cross section here.

  15 the evolutions of the Lagrangian norm, energy and Lagrangian multiplier for the electron density computation of an aluminum atom. In this figure, the converged values are for the energy E at,c = -2.0809 Hartree and for the Lagrangian multiplier λ c = 0.106457. The straight lines in an log scale figure exposes that the algorithm has an exponential convergence.

Figure 3 . 15 :

 315 Figure 3.15: Convergence of Augmented Lagrangian Algorithm for one aluminum atom -On the left, |∇ χ L A [χ, λ, µ]| with respect to the optimization step, the convergence criteria is based on this values. In the middle the corresponding atomic energy E at [χ], and on the right the corresponding Lagrangian multiplier λ.

Figure 3 . 16 :

 316 Figure 3.16: Convergence of Augmented Lagrangian Algorithm for an aluminum FCC cluster -On the left, |∇ χ L A [χ, λ, µ]| with respect to the optimization step, the convergence criteria is based on this values. In the middle the corresponding atomic energy E at [χ], and on the right the corresponding Lagrangian multiplier λ.

15 Figure 3 . 17 :

 15317 Figure 3.17: Augmented Lagrangian -Convergence of Energy -Electronic Energy E el [χ] for several coefficient steps γ during the forty first steps of the electronic density computation of one aluminum atom. The converged value here is E el,c = -2.0809 Hartree.

Figure 3 . 18 :

 318 Figure 3.18: Augmented Lagrangian -Convergence of Lagrangian norm -Gradient norm of the Augmented Lagrangian |L A [χ, λ, µ]| for several coefficient steps γ during the forty first steps of the electronic density computation of one aluminum atom. The convergence criteria is based on these values: the electronic density is considered converged when |∇ χ L A [χ, λ, µ]| ≤ δ

3. 6

 6 Computation time 3.6.1.1 Hartree Potential computation time To be able to simulate free boundary conditions, and because we have decided to stay in real space, we compute the Hartree potential with a method inspired by adaptive multi-grid algorithms(93) coupled with a conjugate-gradient relaxation. As explained in (94), a full multi-grid method has a complexity in O(N ), a conjugate-gradient (CG) typically in O(N 5 4 ), and a method coupling both would have a complexity in between. In figure 3.19, we have drawn the computational time of the resolution of the Poisson equation of the same density, a Gaussian curve, with different grid precision N = n 3 .

For

  PROFESS calculations, the discretization is determined by the plane-wave energy cutoff, E cut . We used cutoffs of E cut = 200, 600, 1200 , 1800 , 2400 and 3800 eV , from left to right on figure 3.20. They are not always vertically aligned because PRO-FESS can increase the number of nodes in some directions to use efficiently a parallel FFT.

Figure 3 .

 3 Figure 3.20 also shows that our program, like other Real-Space implementations(74), does not compare with plane-wave implementation like PROFESS in term of computational time from simple initial density guesses.

Figure 3 . 21 :

 321 Figure 3.21: Wall clock time of electronic density computation -depending to the number of nodes of the grid when the grid is expended because the number of atoms increases. Due to the addition of several causes, increase of the number of electrons and increase of the number of nodes, the quasi-linear scaling is degraded and tends to a sub quadratic scaling.

Figure 3 .

 3 Figure 3.22: Use of computational time for OF-DFT -On the left for our RS-FD method, on the right for the reference plane-wave method PROFESS. For our RS-FD method, the XC potential computation is too fast to appear. The rest of optimization includes the external energy, the optimization algorithm and the projections on the constraints. Let us keep in mind those are percentages and not absolute times, T F -λvW KEDF are several times faster than W T and W GC KEDF and PROFESS is several times faster than our RS-DF method.
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 41 Figure 4.1: Creation of ω, the loose-density area -The loose density area is the union of all balls of radius r ω centered around all active particles. This area is computed at each time step.

Figure 4 .Figure 4 . 2 :

 442 Figure 4.2 shows the evolution of relative errors ∆E 2 at = E 0 at -E 2 at E 0 at

Figure 4 .

 4 Figure 4.6: Aluminum Implantation Reference Simulation -Five frames of the aluminum implantation simulation without restrained dynamics. The particles are colored depending on their displacement from their initial position.

Figure 4 .

 4 8 exposes the evolution of those measure of deviations during the simulations for five sets of restraining parameters, the four whose deviation were drawn in figure4.7, plus a fifth one, smaller (ε f , ε r ) = (5.10 -7 , 4.10 -7 ) eV. The figure reveals below (ε f , ε r ) = (5.10 -5 , 4.10 -5 ) eV the deviations stagnates and we cannot recover the reference simulation by decreasing the restrains.

Figure 4 . 8 :

 48 Figure 4.8: Deviations of a Restrained Simulation -The errors brought by a restrained dynamic simulations with OF-DFT, with different restraining parameters. On the left the RMSD between particles of the restrained simulation and the reference simulation, on the right the maximum shift between particles of restrained simulation and the reference simulation. We have drawn, the errors for restraining parameters (ε f , ε r ) = (0.5, 0.4) eV, (ε f , ε r ) = (0.05, 0.04) eV, (ε f , ε r ) = (0.005, 0.004), eV(ε f , ε r ) = (5.10 -5 , 4.10 -5 ) eV and (ε f , ε r ) = (5.10 -7 , 4.10 -7 ) eV.

Figure 4

 4 Figure 4.9: Aluminum Implantation Simulation Energies -Binding and Kinetic energy curves recording the first 160 fs of the implantation simulation with different restraining parameters. On top are drawn the kinetic energies and below the system OF-DFT energies. The black curves are the reference ones in which all particles are active. The red, blue and green ones have restraining parameters increasing and so proportions of active particle decreasing. We observe the energy curves splitting away from the reference sooner for the bigger restraining parameters (ε f , ε r ) = (0.05, 0.04) eV .

4. 3

 3 Aluminum impact simulation particles get disrupted and become active. The computational times of each time step have been recorded for the simulation with ε f = 0.005 eV. They are drawn in figure 4.10 with respect to the simulation time, and in figure 4.11 with respect to the number of active particles. The simulation starts with computational time step of five seconds, with ∂t = 0.1 fs, it takes one minute to compute one femtosecond of simulation. At the end of the simulation, t = 150 fs or p ≥ 200, computational time rose at 20 seconds per time step. For this example with a full-dynamic simulation (ε f = 0 eV) a time step takes around 120 seconds, including 90 seconds for the update of potentials, and around 20 minutes without using the incremental update.

Figure 4 .

 4 Figure 4.12 shows the result of the optimization. The image has been cut orthogonally to the [111] direction to see the particle's movement and the shift of its neighbors. We can see the hexagonal packing of a FCC crystal in the [111] direction. The images are colored with respect to the deviation between their initial position, the linear combination, and the final one, once the position stabilized. The particles on the way of the moving particle are the one most affected.

Figure 4 . 12 :

 412 Figure 4.12: MEP of a defect displacement in aluminum FCC -The view is a [111] cut of a FCC crystal with a defect displacement. The particles are colored depending on the deviation from their initial position hat is a linear combination of the two extreme states. The extreme states, 0 and 9, are not updated so are in gray.

  of them in chapter 2.6.2 and have exposed the difficulties brought by implementing them in a RS-DE scheme in chapter 3.2.6. The solution could come from accurate semi-local KEDF. A recent machine-learned KEDF functionals(59) surpasses in accuracy all the other semi-local KEDF and improves their ability to model valence and bonding electrons. Another semi-local KEDF (100) is tuned to equals in accuracy some non-local KEDF on specific elements. Non-local KEDF accuracy is in general still unmatched by semi-local KEDF, but for RS-schemes the computational cost of a semi-local functionals is so small compared to non-local ones that they might be the solution of efficient KEDF in OF-DFT.

5. 3

 3 Deep learning in ab-initio simulations something alike to compute the Hartree potential, with three grids having nodes three times as thin as its predecessor, but with the same number of nodes, the aim was to model a volume model large enough to have monopole boundary conditions.Most interesting particle systems are not homogeneous, their electron density is made of areas with fast-varying density, where high precision is required, and slowvarying density. One could think of having an adaptive grid: thin where density variations are most important, coarser elsewhere.Fast computation of nuclei repulsion energy In this model, the computation of the nuclei repulsion energyE II = I<J Q I Q J

1 - 1 f

 11 (t)dt = i∈[1,n] 

1 :Y

 1 Coefficients of low-order Gauss Legendre quadratures θ ∈ [0, π] lm Y l m sin θdθdφ = δ ll δ mm (6.6) They appear as the non-radial part of the solution of Laplacian equation in Spherical coordinates :∆f (r, θ, φ) = 0 (6.7)and in the solutions of the Schrödinger equation in a Coulomb potential V (r = -Q r ), the so-called "hydrogen-like atomic orbitals". For the details on the calculus of Hydrogen orbitals: (110).Laplace's Spherical Harmonics can be written with two integers m and l, m ∈ J-l, lK Y lm (θ, φ) = N lm e imφ P m l (cos(θ)) (6.8)

sin θe iφ - 1 2 1 π sin θ cos θe iφ 2 1 4 152π

 114 sin 2 θe i2φ
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With the arrival of computers and the development of computer sciences, chemistry, cosmology, meteorology and several other research domains have found a new tool to

Table 2 . 1 :

 21 Parameters of different non-local kinetic energy functionals

  Table 3.2: Binding Energy ε b and equilibrium bond length R e for Al 2 , Al 3 and Al 4 (d = 5.09 a e ).

							3.4 Results
	Cluster	ε b (eV/at) RS-FD PROFESS	error(%)	R e (Bohr) RS-FD PROFESS	error(%)
	Al 2	-0.382	-0.384	0.52	5.09	5.06	0.39
	Al 3	-0.644	-0.649	0.77	5.25	5.18	1.3
	Al 4	-0.843	-0.851	0.94	5.35	5.27	1.5
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 33 Binding energy (ε b ) and equilibrium lattice constant (a e ) for FCC clusters of M aluminum atoms

  Incremental OF-DFT update Input: p atoms moved, the electron density at the previous step Output: an electron density with minimized energy at the current step 1 Update of the external potential V ext on Ω; 2 Rough update of the Hartree potential V ext on Ω; /* Restrained Update */ 3 while |∇ χ L A [χ, λ, µ]| ω | > δ ω do

	4. INCREMENTAL ORBITAL FREE DFT	4.2 Incremental Update
	|Γ ω |. At equal size, the performance is decreased, but we aim at system where |ω| is
	much smaller than Ω.	
	Algorithm 3: 4 V H (r)| ω ← ω	χ 2 k (r ) |r-r | dr	: update the Hartree Potential on ω with
		border conditions on ∂ω;
	5	λ ω ← 1 2Qω ω χ(r) δE[χ] δχ dr	: update the local Lagrangian multiplier ;
	8 end	
		/* Global Update	*/
		χ 2 k (r ) |r-r | dr	: update the Hartree Potential on Ω ;
		λ ← 1 2Q Ω χ(r) δE[χ] δχ dr	: update the local Lagrangian multiplier ;
		∂χ end	

6 ∂χ k | ω ← ∇ χ L A [χ, λ ω , µ]| ω

: compute the Lagrangian gradient on ω;

7 χ k+1 | ω ← abs(χ k | ω -a∂χ k | ω ) :

compute a new increment and project on χ ≥ 0 on ω;

9 while |∇ χ L A [χ, λ, µ]| > δ do V H (r) ← Ω k ← ∇ χ L A [χ, λ ω , µ]| ω

: compute the Lagrangian gradient on Ω; χ k+1 ← abs(χ k -a∂χ k ) : compute a new increment and project on χ ≥ 0 on Ω ;

  Evolution of Update Time with the advancement of simulation -Time required to update electron density at a particle simulation time for the implantation simulation with restraining parameters (ε f , ε r ) = (0.005, 0.004) eV. The computational times are decomposed in its three stages: update of potentials, restrained density update, and global density update. We see the update time increases as the simulation goes on for the number of active particles increases. Evolution of Update Time with the number of active particles -Time required to update electron density depending on the number of active particles. The computational times are decomposed in its three stages: update of potentials, restrained density update, and global density update. We see the update time increases as the number of active particles increases.
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	Figure 4.10: The overall update time achieved with this method is similar with what PROFESS
	does with a plane-wave method. On the same computer using the 20 cores and a Linux
	System, with a similar node size, here a kinetic energy cutoff of 200 eV, a similar
	convergence criteria and the same OF-DFT functional, the update of electron density
	of the first simulation, when only one particle has moved, step takes five seconds and

a full update, when all particles have moved, takes 15 seconds. It is important to first take into account PROFESS relies on powerful C++ libraries like FFTW, LAPACK

Table 6 .

 6 2: First Laplace's Spherical Harmonics
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3.2 Real Space, Finite Difference implementation

Non-local Kinetic Energy

To compute a non-local kinetic energy functional is not an easy task in real space. As we want to stay in real space, we used the technique described in [START_REF] Choly | Kinetic energy density functionals for non-periodic systems[END_REF][START_REF] Suryanarayana | Augmented Lagrangian formulation of orbital-free density functional theory[END_REF] to implement a density dependent kernel WGC functional [START_REF] Alexander | Orbital-free kinetic-energy functionals for the nearly free electron gas[END_REF].

We remind the non local part of the kinetic energy :

That we split :

to isolate a kind of kinetic potential

that we can approximate in real space by decomposing its Fourier space transform. K(q) can be written:

Because of the high order term of K(q) 2.77 and because of its Taylor expansion in 0 and ∞. N i and D i are real coefficients. From there K(q) can then be decomposed in partial fractions:

The convolution of K(r) and f (r) becomes in Fourier space a multiplication, so V K (q) in Fourier space is written: 

Each V i (r) is the solution of a complex Helmholtz equation, the classical equation of stationary waves. We solved it with a bi-conjugate gradient solver.

Derivative Functional :

So four complex tables to keep:

Pseudo-potentials

Core electrons are not directly involved in the processes of atom binding. Hence, we may reduce our potential to a pseudopotential, where ρ accounts only for the valence By splitting the update in three stages -potentials update, restrained update then global update -we break the long process of moving the electron density increment by increment and updating the corresponding Hartree potential on the whole computational domain at each increment. The restrained update gives a proper approximation of ρ with a correct loose-density radius, and is fast when the domain is small, so when few particles have moved. The global update corrects efficiently the small errors left by the restrained update.

Aluminum impact simulation

In this section we demonstrate the efficiency of the incremental density update with a restrained dynamical model for particle simulations.

We simulate an atom implantation on an aluminum plate, we aim to be representative of doping by ion implantation (98): atoms are thrown toward a plate, cross several layers before being stopped and disrupt the crystal organization on their paths.

The plate is an aluminum FCC crystal of 1944 atoms (9 × 6 × 9) and the impactor main. We have shown that with a restrained dynamic and an incremental scheme for OF-DFT, we can achieve computational efficiency comparable with plane-wave methods, the current state of the art in OF-DFT.