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Titre: Aspects de l’efficacité dans des problèmes sélectionnés pour des
calculs sur les graphes de grande taille

Résumé:
Cette thèse présente trois travaux liés à la conception d’algorithmes efficaces ap-

plicables à des graphes de grande taille.
Dans le premier travail, nous nous plaçons dans le cadre du calcul centralisé,

et ainsi la question de la généralisation des décompositions modulaires et de la
conception d’un algorithme efficace pour ce problème. La décomposition modulaire
et la détection de module, sont des moyens de révéler et d’analyser les propriétés
modulaires de données structurées. Comme la décomposition modulaire classique
est bien étudiée et possède un algorithme de temps linéaire optimal, nous étudions
d’abord les généralisations de ces concepts en hypergraphes. C’est un sujet peu
étudié mais qui permet de trouver de nouvelles structurations dans les familles de
parties. Nous présentons ici des résultats positifs obtenus pour trois définitions de la
décomposition modulaire dans les hypergraphes de la littérature. Nous considérons
également la généralisation en permettant des erreurs dans les modules de graphes
classiques et présentons des résultats négatifs pour deux telles définitions.

Le deuxième travail est sur des requêtes de données dans un graphe. Ici, le modèle
diffère des scénarios classiques dans le sens que nous ne concevons pas d’algorithmes
pour résoudre un problème original, mais nous supposons qu’il existe un oracle four-
nissant des informations partielles sur la solution de problème initial, où les oracle
ont une consommation de temps ou de ressources de requête que nous modélisons en
tant que coûts, et nous avons besoin d’un algorithme décidant comment interroger
efficacement l’oracle pour obtenir la solution exacte au problème initial. L’efficacité
ici concerne le coût de la requête. Nous étudions un problème de la méthode de di-
chotomie généralisée pour lequel nous calculons une stratégie d’interrogation efficace
afin de trouver une cible cachée dans le graphe. Nous présentons les résultats de
nos travaux sur l’approximation de la stratégie optimale de recherche en dichotomie
généralisée sur les arbres pondérés.

Notre troisième travail est sur la question de l’efficacité de la mémoire. La config-
uration dans laquelle nous étudions sont des calculs distribués et avec la limitation en
mémoire. Plus précisément, chaque nœud stocke ses données locales en échangeant
des données par transmission de messages et est en mesure de procéder à des calculs
locaux. Ceci est similaire au modèle LOCAL / CONGEST en calcul distribué, mais
notre modèle requiert en outre que chaque nœud ne puisse stocker qu’un nombre
constant de variables w.r.t. son degré. Ce modèle peut également décrire des al-
gorithmes naturels. Nous implémentons une procédure existante de repondération
multiplicative pour approximer le problème de flux maximal sur ce modèle.

D’un point de vue méthodologique, les trois types d’efficacité que nous avons
étudiées correspondent aux trois types de scénarios suivants:

– Le premier est le plus classique. Considérant un problème, nous essayons de
concevoir à la main l’algorithme le plus efficace.

– Dans le second, l’efficacité est considérée comme un objectif. Nous mod-
élisons les coûts de requête comme une fonction objectif, et utilisons des techniques
d’algorithme d’approximation pour obtenir la conception d’une stratégie efficace.
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– Dans le troisième, l’efficacité est en fait posée comme une contrainte de mémoire
et nous concevons un algorithme sous cette contrainte.

Mots clefs : graphes de grande taille, décomposition modulaire, hypergraphes,
problème de recherche, requête de données, algorithme distribué, problème de flux
maximal
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Title: Aspects of Efficiency in Selected Problems of Computation on
Large Graphs

Abstract: This thesis presents three works on different aspects of efficiency of
algorithm design for large scale graph computations.

In the first work, we consider a setting of classical centralized computing, and we
consider the question of generalizing modular decompositions and designing time-
efficient algorithm for this problem. Modular decomposition, and more broadly
module detection, are ways to reveal and analyze modular properties in structured
data. As the classical modular decomposition is well studied and have an optimal
linear-time algorithm, we firstly study the generalizations of these concepts to hy-
pergraphs and present here positive results obtained for three definitions of modular
decomposition in hypergraphs from the literature. We also consider the generaliza-
tion of allowing errors in classical graph modules and present negative results for
two this kind of definitions.

The second work focuses on graph data query scenarios. Here the model differs
from classical computing scenarios in that we are not designing algorithms to solve
an original problem, but we assume that there is an oracle which provides partial
information about the solution to the original problem, where oracle queries have
time or resource consumption, which we model as costs, and we need to have an
algorithm deciding how to efficiently query the oracle to get the exact solution to
the original problem, thus here the efficiency is addressing to the query costs. We
study the generalized binary search problem for which we compute an efficient query
strategy to find a hidden target in graphs. We present the results of our work on
approximating the optimal strategy of generalized binary search on weighted trees.

Our third work draws attention to the question of memory efficiency. The setup
in which we perform our computations is distributed and memory-restricted. Specif-
ically, every node stores its local data, exchanging data by message passing, and
is able to proceed local computations. This is similar to the LOCAL/CONGEST
model in distributed computing, but our model additionally requires that every node
can only store a constant number of variables w.r.t. its degree. This model can also
describe natural algorithms. We implement an existing procedure of multiplicative
reweighting for approximating the maximum s–t flow problem on this model, this
type of methodology may potentially provide new opportunities for the field of local
or natural algorithms.

From a methodological point of view, the three types of efficiency concerns cor-
respond to the following types of scenarios: the first one is the most classical one
– given the problem, we try to design by hand the more efficient algorithm; the
second one, the efficiency is regarded as an objective function – where we model
query costs as an objective function, and using approximation algorithm techniques
to get a good design of efficient strategy; the third one, the efficiency is in fact posed
as a constraint of memory and we design algorithm under this constraint.

Keywords : large graphs, modular decomposition, hypergraphs, search problem,
data query, distributed algorithm, max-flow problem
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Chapter 1

Introduction

1.1 Overview
In nowadays real applications, as the scale of data growing rapidly, we are usually
required to deal with huge amount of data and large structures. The efficiency of
algorithm draws very often a crucial point in problem-solving in these scenarios, and
moreover, new aspects of efficiency, extending the classical measure with which we
call “efficient algorithms” when they are in polynomial time, raise and come more
and more frequently into our attentions. In this thesis, we study the algorithm
design for different problems in three different aspects of efficiency requirements.

This thesis presents three works on different aspects of efficiency of algorithm
design for large scale graph computations.

In the first work, we consider a setting of classical centralized computing, and we
consider the question of generalizing modular decompositions and designing time-
efficient algorithm for this problem. Modular decomposition, and more broadly
module detection, are ways to reveal and analyze modular properties in structured
data. As the classical modular decomposition is well studied and have an optimal
linear-time algorithm [45], we firstly study the generalizations of these concepts to
hypergraphs, of which the new ones are more complicated to analyze and provide us
with new structures in organized datas. We present here positive results obtained for
three definitions of modular decomposition in hypergraphs from the literature[73,
13, 26], as well as our works on their polynomial time decomposition algorithms.
We also consider the generalization of allowing errors in classical graph modules
and present negative results for two definitions of allowing errors in graph modules
that does not satisfy the unique decomposition theorem. We present this work in
Chapter 2.

The second work focuses on large scale graph data query scenarios. Here the
model differs from classical computing scenarios in that we are not designing algo-
rithms to solve an original problem, but we assume that there is an oracle which
provides partial information about the solution to the original problem, where oracle
queries have time or resource consumption, which we model as costs, and we need
to have an algorithm deciding how to efficiently query the oracle to get the exact
solution to the original problem, thus here the efficiency is addressing to the query
costs. We study one problem in data querying, i.e. the generalized binary search
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problem [37] for which we compute an efficient query strategy to find a hidden target
in graphs. We present the results of our work on approximating the optimal strategy
of generalized binary search on weighted trees. Details of this work are contained in
Chapter 3.

Our third work draws attention to the question of memory efficiency. The setup
in which we perform our computations is distributed and memory-restricted. Specif-
ically, every node stores its local data, exchanging data by message passing, and
is able to proceed local computations. This is similar to the LOCAL/CONGEST
model in distributed computing, but our model additionally requires that every node
can only store a constant number of variables w.r.t. its degree, which prohibits a gen-
eral framework of algorithm design in LOCAL/CONGEST model (such as gathering
the local information of all nodes into one node, then performing computations on
this specific node). This model can also describe natural algorithms (computations
performed by biological agents, such as the recently studied Physarum dynamics[5]
). We design the distributed algorithm for approximating the maximum s � t flow
problem on this model by implementing the ideas of an algorithm based on solving
Laplacian systems [20], where they provide an algorithm design framework from the
view of iterative optimization and variants of gradient descent method, the specific
results of the thesis make use of the procedure of multiplicative reweighting in [20],
this type of methodology forms a bridge between classical algorithms and contempo-
rary Machine Learning approaches, and may potentially provide new opportunities
for the field of local or natural algorithms. This work is explained in Chapter 4.

From a methodological point of view, the three types of efficiency concerns cor-
respond to the following types of scenarios: the first one is the most classical one
– given the problem, we try to design by hand the more efficient algorithm; the
second one, the efficiency is regarded as an objective function – where we model
query costs as an objective function, and using approximation algorithm techniques
to get a good design of efficient strategy; the third one, the efficiency is in fact posed
as a constraint of memory and we design algorithm under this constraint.

In what follows, Section 1.2, 1.3 and 1.4 , each section introduces a work consti-
tuting the thesis. Section 1.5 lists the publications associated to works presenting
in this thesis.

1.2 Modular Decomposition and Generalizations

1.2.1 Modular Decomposition in Graphs
Modules and modular decomposition are introduced in [41] by Gallai in 1967 initially
to analyze the structure of comparability graphs, then has been used and defined in
many areas of discrete mathematics, including for graphs, 2-structures, set systems,
hypergraphs, clutters, boolean functions, etc.

Briefly speaking, modules describe a character that elements of a module behave
exactly the same with respect to the outside of the module in a given structure. In a
graph, module is defined as a set of vertices that have the same set of neighborhood
outside of the module. Precisely, for an undirected graph G = (V, E), a module
M ✓ V (G) satisfies: 8x, y 2 M , N(x) \ M = N(y) \ M , where N(v) denotes the
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neighborhood of v. In other words, M ✓ V (G) is a module if and only if for all
u 2 V (G) \M , either u adjacent to all elements of M or no element of M . Given a
subset of vertices C 2 V (G), if there exists u 2 V (G) \ C, and x, y 2 C, such that
ux 2 E(G) but uy /2 E(G) then u is called a splitter for C.

Figure 1.1: M1 (vertices in the circle) is a module, while M2 and M3 are not.

Then we introduce the modular decomposition. A strong module is a module
that does not overlap with other modules, here we say two non-empty sets A and B
overlap if A \B 6= ;, A \B 6= ;, and B \ A 6= ;.

Definition 1.2.1. A modular decomposition tree is defined as follows [13]:

(a) tree nodes are strong modules;

(b) parent relation is the containment relation of sets represented by tree nodes;

(c) each internal nodes is labeled as

• complete if the union of any subset of its children is a module;
• prime if each of its children is a module while no other union of a proper

subset of its children is a module.

If a node has only two children, to define this node to be prime or complete
is equivalent, we take the convention here that a node has only two children is
complete. We give an example of a graph with its modular decomposition tree 1 :

Figure 1.2: Left : A graph with its strong modules grouped. Right: The corre-
sponding modular decomposition tree.

1
The left example is taken from the teaching materials of Michel HABIB.
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From a series of theorems of partitive family and decomposition [41, 19] that we
will present in Chapter 2, it is well-known that the family of modules in a graph
corresponds to an unique decomposition tree, and modular decomposition is the
procedure to build this decomposition tree.

Modular decomposition in graphs derives several parameters and graph classes to
measure the structure of a graph. For example, a graph is totally decomposable (or
cograph, P4-free graph) if there is no prime node in the decomposition tree. Cographs
form a well studied graph class where many classical NP -hard problems such as
maximum clique, maximum independent set, Hamiltonicity become tractable [25].
Modular decomposition has been used in fixed parameter tractable (FPT) algorithms
studies, like Cluster editing [47] or modular width, a graph parameter defined with
a similar decomposition procedure following the idea of modular decomposition [40].

The algorithm for modular decomposition is the basic building-block for above
applications, and for graphs, it is known to have linear-time algorithms to compute
a modular decomposition tree [47, 87].

Besides the study of modules in discrete structures, study of modules have ap-
peared recently in networks in social sciences [83], and biology [35, 34], where a
module is considered as a regularity or a community that has to be detected and
understood.

1.2.2 Generalization of Modules
We consider here generalizing the idea of modules and modular decomposition in
order to help characterize and analyze more structures in organized data. For this
purpose, we are trying to find out these questions:

• How could we generalize the definition? What structures they characterize?

• Are these generalizations well-defined? (i.e. lead to an unique decomposition?)

• Could we compute generalized modular decomposition efficiently? What is
the time complexity?

We then present the basic elements that decide these questions.

Partitive. Partitive is the essential property required by a valid definition for
generalization of modules, because it leads to the unique decomposition. A family
of subsets F over a ground set V is partitive if it satisfies the following properties
[19]:

(i) ;, V and all singletons {x} for x 2 V belong to F .

(ii) 8A,B 2 F that overlap, A \ B,A [ B,A \ B and A�B 2 F . (� denote the
symmetric difference operation)

From [19], every partitive family has a unique decomposition tree. In our work, it’s
essential to check if the generalizations are partitive.
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Decomposition algorithm. If the definition is valid, then we turn to the question
that if there exists an efficient algorithm for decomposition. Here the algorithm
takes the input (in our work it is a graph or a hypergraph), and outputs a tree-
structure such that every node is a strong module w.r.t. the definition, and is
labelled with either “prime” or “complete” (indicating the prime/complete node in
Definition 1.2.1).

Compared to other works in this thesis, here the decomposition algorithm runs
in the classical and centralized scenario and the efficiency is measured by time com-
plexity, where we’d like to have polynomial-time algorithm. Note that even if the
family has a unique decomposition tree, the unique decomposition theorem does
not guarantee that the decomposition tree could be found in polynomial time, so we
need to look into the definition for each generalization.

1.2.3 Related works
For graphs, the only known valid generalization is for module in directed graphs
[70], they obtained a linear-time algorithm for modular decomposition in directed
graphs.

For hypergraphs, we found three variations of modules: the standard modules
[73], the k-subset modules [13] and the Courcelle’s modules [26], each one of them
leads to a unique decomposition. Only Courcelle’s module is known to have linear-
time decomposition algorithm [18]. For the standard module, the only known previ-
ous work is the existence of a polynomial time decomposition algorithm for clutters
(a class of hypergraphs) based on its O(n4m3) modular closure algorithm [74]. For
k-subset module, the best known algorithm is not polynomial w.r.t. n and m, and
is in O(n3k�5) time [13] where k denotes the maximal size of an edge.

1.2.4 Outline of Our Work
For graphs, we have looked at ✏-module and ✏-splitter module for graphs, and ob-
tained negative results of them. For hypergraphs, we developed O(n3

· l) algorithms
for the standard module and the k-subset module, improving the previous known
O(n4m3) algorithm in [74] and O(n3k�5) algorithm in [13] respectively. Note that
the results for k-subset module also conclude the decomposition of k-subset module
in hypargraphs is in P .

Generalization in graphs. In graphs, we consider two generalizations: ✏-module
and ✏-splitter module, ✏-module generalizes graph modules in tolerating ✏ edges of
errors per node outside the ✏-module (not ✏ errors per module), while ✏-splitter
module tolerates errors on nodes.

Definition 1.2.2. A subset M ✓ V (G) is an ✏-module if 8x 2 V (G) \ M , either
|M \N(x)|  ✏ or |M \N(x)| � |M |� ✏

Definition 1.2.3. A subset M ✓ V (G) is an ✏-splitter module if there are at most
✏ splitters in V (G) \M .
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We conclude in Chapter 2 that these two definitions are not partitive and one-
step of parallel decomposition for ✏-module with ✏ = 1 is NP-hard.

Generalization in hypergraphs. We found in the literature three variations of
modules defined in the hypergarphs or similar structures: the (we-called) standard
modules defined in [73], the k-subset modules defined in [13] and the Courcelle’s
modules defined in [26]. And we list these three different definitions here:

Definition 1.2.4. (standard hypergraph module [74, 73]) Given a hypergraph
H, a standard module M ✓ V (H) satisfies: 8A,B 2 E(H) s.t. A \ M 6= ;,
B \M 6= ; then (A \M) [ (B \M) 2 E(H).

Definition 1.2.5. (k-subset module [13]) Given a hypergraph H, we call k-subset
module M ✓ V (H) satisfies: 8A,B ✓ V (H) s.t. 2  |A|, |B|  k and A \M 6= ;,
B \M 6= ; and A \M = B \M 6= ; then A 2 E(H), B 2 E(H).

Definition 1.2.6. (Courcelle’s module [26]) Given a hypergraph H, we call
Courcelle’s module a subset M ✓ V (H) that satisfies 8A 2 E(H), A \M = ; or
A \M = ;, or M \ A = ;.

In Chapter 2 we will see that each of these three different definitions of module
leads to a unique decomposition theorem via the properities of partitive families
[19].

We then developed a general algorithmic scheme following the idea of a work
of modular decomposition for graphs [52], generalize it for standard hypergraph
module and k-subset module. The algorithmic scheme assumes we know comput-
ing a function Minmodule({x, y}), 8x, y 2 V , that is, the smallest module that
contains vertices x and y, and builds the decomposition tree based on calls to
Minmodule({x, y}), 8x, y 2 V .

Theorem 1.2.1. For every partitive family F over a ground set V , its decomposition
tree can be computed using O(|V |

2) calls to Minmodule({x, y}), with x, y 2 V .

So if computing the function Minmodule({x, y}) can be done in O(p(n))time,
then the computation of the decomposition tree can be done in O(n2

· p(n)). We
then showed that for standard hypergraph module and k-subset module, we can
compute Minmodule({x, y}) both in O(n · l) time, where l is l the sum of the size
of the edges.

Lemma 1.2.1. For a simple hypergraph H and A ( V (H), there is an algorithm
computes the minimal standard module that contains A in O(n · l) time.

Lemma 1.2.2. For a simple hypergraph H and A ( V (H), there is an algorithm,
s.t. for any input integer k  |V (H)| it can compute the minimal k-subset module
that contains A in O(n · l) time.

Combine these results, we get O(n3
· l) algorithms for modular decomposition of

standard module and k-subset module.

Theorem 1.2.2. For a simple hypergraph H, the modular decomposition for stan-
dard module and k-subset module could be computed in O(n3

· l) time.
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1.2.5 Contribution
We studied the generalization of modular decomposition, including two for graphs
and three variations of definition of modules for hypergraphs.

For ✏-module in graphs, we showed that ✏-module and ✏-splitter module are not
partitive and one-step parallel decomposition of ✏-module with ✏ = 1 is NP-hard.

For hypergraphs,

1. We found three variations of modules in the literature: the standard modules
[73], the k-subset modules [13] and the Courcelle’s modules [26], each one of
them leads to a unique decomposition.

2. We developed a general algorithmic scheme following the idea in [52], to com-
pute the decomposition tree of a partitive family on ground set V using O(|V |

2)
calls to Minmodule({x, y}), with x, y 2 V .

3. We proved that Minmodule({x, y}) of standard module and k-subset module
could be computed both in O(n · l) time, which result in O(n3

· l) algorithm for
modular decomposition of standard module and k-subset module, improving
the previous result based on a O(n4m3) algorithm [74] and O(n3k�5) algo-
rithm [13] respectively, also conclude the decomposition of k-subset module in
hypergraphs is in P .

1.3 Generalized Binary Search Problem
In large graph applications, it happens quite often that we are usually operating
with distributively stored information, the access of datas is realized by querying
to a storage that we call them oracles. One factor influencing the efficiency is the
time of queries, for example, when we request for information from a remote server,
there will be time delay for receiving the responses. Here we study search problem,
a kind of modelization for information exploration.

1.3.1 Search Problem
The search problem is to locate a “hidden” target node in a graph by asking queries
to a given oracle. Assume we have a graph G = (V,E,w) with weight function
w : V ! R+ and a target node x, each time we selects a vertex v in the graph, ask
to the oracle the partial information of x related to vertex v, which we call a “query”,
and after time w(v), we receive the information of x, and w(v) is regarded as the
cost of the query.

Many applications have the similar oracles that provide partial information, for
example, locating an element in tree-organized data like XML, oracles may only
reply “if the target is a child of node v?” for a given v. Also, in classification
problem, where every element has some attributes, and we want to classify them
into several classes, we are not able to know which class the element belongs to at a
single step, but we perform tests as “is the first attribute of the element satisfies the
v-th class?” and so on. More over, in these applications, the cost of query may not
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be restricted to the real response time, but also could be the computation resource
consumption, etc.

Depend on different query model, ways to design search strategies are different.
We present firstly the formalization of search strategies, then our generalized binary
search model.

Search strategy. A search strategy A for a graph G = (V,E,w) is an adap-
tive algorithm which defines successive queries to the graph, based on responses to
previous queries, with the objective of locating the target vertex in a finite number
of steps.

A search strategy could be described by QA(G, x) the time-ordering (sequence) of
queries performed by strategy A on graph G to find a target vertex x, with QA,i(G, x)
denoting the i-th queried vertex in this time ordering, 1  i  |QA(G, x)|.

Cost of a strategy. We denote by COSTA(T, x) =
P

|QA(T,x)|
i=1 w(QA,i(T, x)) the sum

of weights of all vertices queried by A with x being the target node, i.e., the time
after which A finishes. Let

COSTA(T ) = max
x2V

COSTA(T, x)

be the cost of A. We define the cost of T to be

OPT(T ) = min{COSTA(T )
��A is a search strategy for T}.

The goal is to design a search strategy that locates the target node and minimizes
the search time in the worst case. We say that a search strategy is optimal for T
if its cost equals OPT(T ). For given T , we say that a search strategy A is a (1 + ")-
approximation of the optimal solution if COSTA(T )  (1 + ")OPT(T ).

1.3.2 Generalized Binary Search
The generalized binary search model, as its name suggests, is generalized from the
binary search: considering searching for an element in a sorted array, this could be
seen as a problem of searching for a target node in a path, each query selects a node,
and the oracle replies which ‘side’ (or sub-path) of the queried node the target node
belongs to. When we generalize the structure of path to graphs, this coincides with
the generalized binary search model. We give a precise description here.

Generalized Binary Search model. In generalized binary search model, each
query selects a node v in the graph and after the time w(v), the oracle gives a
reply: the reply is either true which implies that v is the target node and thus
the search terminates or it returns a neighbor u of v which lies closer to the target
x than v ( equivalent to a neighbor that belongs to the shortest path between x
and v). In a general graph, this node may not be unique and we assume that the
oracle may reply any one of these nodes. If the graph is a tree, such a neighbor u
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Figure 1.3: An example of searching a target node (assumed f) in a tree with a
generalized binary search query model.

is unique and is equivalently described as the unique neighbor of v belonging to the
same connected component of T \ {v} as x.

By tuning several settings, there are variations of generalized binary search
model, we list here the main variations: reliable/unreliable oracle, edge/mode query
oracle.

Variation: reliable/unreliable oracles. The oracle is reliable if it always replies
the correct information to the query, but there are also studies on oracles that doesn’t
always reply correct answers. The generalized binary search with an oracle whose
answer to a query is correct with some probability p > 1

2 is studied in [8, 37, 38, 53].
And a model in which a fixed number of queries can be answered incorrectly during
a binary search is studied in [79]. The model with an adversarial error rate bounded
by a constant r  1/2 is studied in [32].

Variation: edge/vertex queries. We could also consider the version that each
query is on an edge, and the oracle reply one of the incident vertex that is closer to
the target. In fact, the edge-query variant can be reduced to vertex-query model by
first assigning a ‘large’ weight to each vertex of G (for example, one plus the sum
of the weights of all edges in the graph) and then subdivide each edge e of G giving
to the new node the weight of the original edge, w(e). So the vertex-query model is
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more general than the edge-query model. However, in history, the edge variant of
trees has been more studied [60, 72, 29, 28, 24, 23].

In the following of this thesis, when we say “search problem”, we assume that we
are restricting to the search problem with classical (reliable, node-query) generalized
binary search model, except otherwise stated.

Different graph types. There are also many studies on different type of graphs
on edge or vertex query model. From a structural aspect, there are mainly on paths
[23], trees [76, 81, 31], directed or undirected general graphs [37] and partial orders
[17, 29, 76]. From an quantitive aspect, there is difference between weighted or
unweighted graph (meaning the uniform or non-uniform query costs), the difference
is discussed in some of the works listed, and we will present it more detailed nextly
in Section 1.3.3.

1.3.3 Related Works

In this thesis, we study the generalized binary search with reliable oracles and vertex-
queries. As the existence of reduction of edge-query to vertex-query, we don’t need
to state for edge-query model and the results for vertex-query naturally apply for
edge-query model.

We list here the complexity results for different type of graphs.

Table 1.1: Computational complexity of the search problem in different graph
classes, including our results for weighted trees. Completeness results refer to the
decision version of the problem.

Graph class Unweighted Weighted

Paths: exact in O(n) time exact in O(n2) time [23]

Trees: exact in O(n) time [76, 81] strongly NP-complete [31]

Undirected:
exact in n

O(logn)
time [37] PSPACE-complete [37]

O(log n)-approx. in poly-time [37] O(log n)-approx. in poly-time [37]

Directed: PSPACE-complete [37] PSPACE-complete [37]

An optimal search strategy can be computed in linear-time for an unweighted
tree [76, 81]. The number of queries performed in the worst case may vary from
being constant (for a star one query is enough) to being at most log2 n for any tree
[76] (by always querying a node that halves the search space). Several following
results have been obtained in [37]. First, it turns out that log2 n queries are always
sufficient for general simple graphs and this implies a O(mlog2 nn2 log n)-time optimal
algorithm for arbitrary graphs. The algorithm which performs log2 n queries also
serves as a O(log n)-approximation algorithm, also for the weighted version of the
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problem. On the other hand, it has been proven that optimal algorithm with a run-
ning time of O(no(logn)) is in contradiction with the Exponential-Time-Hypothesis,
and for " > 0, O(m(1�") logn) is in contradiction with the Strong Exponential-Time-
Hypothesis. When non-uniform query times are considered, the problem becomes
PSPACE-complete. Also, a generalization to directed graphs also turns out to be
PSPACE-complete.

1.3.4 Outline of Our Work

We study the generalized binary search problem in weighted trees. Given a node-
weighted rooted tree T = (V,E,w) with weight function w : V ! R+, we would like
to have good strategies to find the unknown target node x with generalized binary
search oracle. As designing an optimal strategy for a weighted tree search instance
is known to be strongly NP-hard [31], we aim at computing an approximation of
the optimal strategy.

In order to apply classical approximation techniques to this problem, following
the idea in [28], we model in Section 3.3.2 any search strategy as a consistent
schedule, where each node is associated with a job that has a fixed processing
time set to the weight of node, and jobs need to satisfy the consistent constraints.
We then see that we have a description similar to scheduling problems, but with
non-classical constraints. With this model, we are able to apply techniques in ap-
proximation algorithm for scheduling problems as rounding [88].

In Section 3.4.1 and 3.4.2, we apply rounding techniques to both the cost func-
tion and starting times of the jobs in a schedule, and finally created the aligned
schedule, such that any optimal strategy could be turned into an aligned consis-
tent schedule whose modified cost function is a (1+")-approximation of the optimal
strategy. Then if we could enumerate all aligned consistent schedules, we are able
to obtain the optimal aligned schedule, and a (1 + ")-approximation of cost of the
optimal strategy.

In section 3.4.3, we propose a dynamic programming algorithm to enumerate
aligned consistent schedules, and runs in quasi-polynomial time. Then in sec-
tion 3.4.4, we explain how to extract the search strategy from the optimal aligned
consistent schedule, together with 3.4.5 this procedure adds no more than "OPT(T )
to the cost, so the obtained search strategy is a (1+")-approximation of the optimal,
and our algorithm computing the strategy runs in quasi-polynomial time, thus the
QPTAS of the generalized binary search problem in weighted trees, and we get our
first theorem on generalized binary search problem in weighted trees:

Theorem 1.3.1. There exists an algorithm running in nO( logn
"2 ) time, providing a

(1 + ")-approximation solution to the generalized binary search problem in weighted
trees.

Based on our QPTAS, we could also build a polynomial time approximation al-
gorithm. In Section 3.5, following the general idea from [24], we apply a recursively
partition method, whose objective is to partition the tree into small subtrees, such
that the sizes of these subtrees are small enough then we could solve the problem
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on these subtrees with our QPTAS in polynomial time with respect to |T |, so com-
bining solutions of these subtrees, we get a O(

p
log n)-approximation algorithm in

polynomial time:

Theorem 1.3.2. There is a O(
p
log n)-approximation polynomial time algorithm

for the generalized binary search problem in weighted trees.

1.3.5 Contribution
We work on the generalized binary search problem in weighted trees, show that:

1. The problem admits a quasi-polynomial time approximation scheme: for any
" > 0, there exists a (1+")-approximation strategy with a computation time of
nO(logn/"2). Thus, the problem is not APX-hard, unless NP ✓ DTIME(nO(logn)).

2. By applying a generic reduction, we obtain as a corollary that the studied
problem admits a polynomial-time O(

p
log n)-approximation. This improves

previous Ô(log n)-approximation approaches, where the Ô-notation disregards
O(poly log log n)-factors.

1.4 Pure-LOCAL Model and Max-flow Problem
Here we present the model we work on in distributed computing environment, and
build the approximation algorithm for maximum s� t flow problem on it.

We first introduce the basic settings in distributed computing and present our
model.

Distributed Computing In the classical configuration of distributed comput-
ing, machines are organized into a graph G = (V,E), where each vertex (or node)
has an unique identifier and represents a machine that has computation ability and
resources, and each edge (u, v) 2 E represents a communication link between ma-
chines u, v, meaning u and v could send messages (a number of bits) to each other
directly. We could assume here that the graph is undirected, connected and simple.
We call u, v are neighbors if (u, v) 2 E, and denote N(u) as all the neighbors of
u 2 V .

Every vertex and edge could be associated with a label, the state of the labels
of all vertices and edges constitutes a configuration. In distributed computing, an
input is a configuration set to the graph, and an output is the configuration after
some operations (or the execution of an algorithm) on the graph.

An algorithm here is called a distributed algorithm, compared to classical al-
gorithms, here we could have two extra operations, send and receive messages.
A send operation could send messages to its selected neighbors (could be any one,
some or all). A receive operation, symmetrically, could receive messages from its
selected neighbors, but only receive in success if the selected neighbor had sent to
it.

In the study of distributed algorithms, being different than some other disciplines
of distributed computing, we are not focusing on the synchronization problem. Here
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we assume all the machines are synchronized with rounds, in a round, each machine
can receive messages from its neighbors, do its local computation, and send messages
to its neighbors.

The complexity measure of a distributed algorithm is thus the number of rounds
from getting the input to get the output. And depend on different models, there
might be other measure or constraints on computing resources or graph structures,
in the next section we present our model.

1.4.1 Pure-LOCAL Model

We consider a model with limited memory per node, specifically every node can only
store a constant number of variables per degree:

Pure-LOCAL. We define our Pure-LOCAL model as following: (i) The network
is represented as a graph G = (V,E), where edges represent the bidirectional com-
munication link, and each node only knows and can communicate with its neighbors.
(ii) Communications are synchronized, this means each node can proceed one receive
and one send operation from/to each neighbor during one round, and we measure
the time complexity by number of rounds. (iii) A node can only store and one send
operation could only send a constant number of variables for each of its neighbors.

If the degree of a vertex u is deg(u), then it implies the node could store O(deg(u))
variables. Here if we assume real variables are stored in constant number of bits, it
implies a limited size of memory of O(� log n) bits per node and O(log n) message
size, where � is the maximum degree of all nodes in the graph.

The motivation to study this model is to impose the memory efficiency and local-
ity of computation. The classical LOCAL model [63, 77] does not bound computing
power per node and the CONGEST model [77] put a restriction on LOCAL model
with O(log n) bits of message size, but no constraints on computing resource per
node. These two classical model both admit a general framework of gathering all
the information on one node and launch computations on this node, and this kind of
framework is applied in a lot of scenes of algorithm design on LOCAL/CONGEST
model.

Although the two models support well the study on locality and in situations
that the computing power of a single machine is not an important concern than
communication costs, the assumption of unbounded computing power on machines
is less realistic in some scenarios. For example, in the network of low energy devices,
like wearable or medical devices, smart domestic systems, the execution of complex
or high complexity algorithms could be difficult. Another example is the natural
algorithms, which studies the algorithms on biological objects, as animals, microbes
and chemicals, it seems less natural to assume their behaviors are following complex
algorithmic rules.

Our model could be seen as a classical CONGEST model with a limit of memory
size on each node, and naturally being more constrained than CONGEST model.
This is a memory-efficient assumption but also reflects the requirement of simplicity
of algorithm on each machine.
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In our work, we study the algorithm design for maximum s� t flow problem on
this model.

1.4.2 Maximum s� t Flow Problem

The maximum s�t flow problem is well known in combinatorial optimization [82, 1]
and has many application in logistics, transportation and industry engineering [2],
and its dual problem, the minimum s � t cut, has also a application of the famous
graph cut method [16] which receives recent attentions in image segmentations, and
is implemented by solving the maximum s� t flow problem.

The problem could be stated as following:
Let G = (V,E) be an undirected graph, with n vertices and m edges, among

which there are two special vertices, a source s and a sink t. Every edge is assigned
with a positive integral capacity Ue 2 Z+. Let A be the adjacency matrix of G

Definition 1.4.1. An s-t flow is a function f : E ! R obeying the flow-conservation
constraints

X

e2N(v)

f(e) = 0, for all v 2 V \ {s, t}

The value of flow |f | is defined by |f | :=
P

e2N(s) f(e) and is equal to
P

e2N(t) f(e)
by flow-conservation.

Here Ue is the edge capacity and we assume that is polynomial w.r.t. n. An
s-t flow is feasible for capacities Ue if 8e 2 E, |f(e)|  Ue. The maximum s-t flow
problem is to find a feasible s-t flow with maximum value.

In centralized settings, many polynomial combinatorial algorithms have been
proposed to solve maximum s � t flow problem in history, including the Ford-
Fulkerson algorithm [39], Edmonds-Karp algorithm [36], push-relabel algorithm [44],
etc. And recently, another series of study is raised on using continuous optimization
method to compute (1 + ") approximation of maximum s� t flow [20, 61, 68] their
basic framework is to regard the maximum s � t flow problem as an optimization
problem defined by a Laplacian system (which is equivalent to the description of
the electrical flow in circuits) and optimize with a Laplacian solver [55], where two
main optimization techniques are adopted to approximate the optimal solution: the
multiplicative weights update method [4, 20] and gradient descent based method
[61]. Our work is based on one of these works [20] based on multiplicative weights
update method and electrical flow and we will present basics in later sections.

Solving this problem in classical distributed configurations has also been studied,
and algorithms are basically designed by implementing one or a combination of
classical centralized algorithms to an distributed version. The push-relabel algorithm
[44] could be naturally implemented in Pure-LOCAL model and runs in O(V 2E)
time. In [42] authors proposed an (1+o(1))-approximation algorithm on CONGEST
model in (D +

p
n)no(1) rounds, which their method depend on gradient descent

method and hard to implement in Pure-LOCAL model.
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Although the push-relabel algorithm could fits the local computation, we are
now interested in the question that whether non-combinatorial algorithms for Max-
flow problem could be implemented in Pure-LOCAL model. And we study the
algorithm of [20] by Christiano, Kelner, Mądry, Spielman and Teng. The reason
to study this category of algorithms in Pure-LOCAL model is that the general
optimization techniques they use could be applied to many other problems, for
example, the work on Physarum dynamics [5] also suggests a similar procedure
combining electrical flow and re-weighting, and we wish that our method could also
be applied to implementing these procedures in Pure-LOCAL model.

1.4.3 Approximating Max-flow by Multiplicative Weights Up-
date

An algorithm approximating Max-flow by solving electrical flow with weights updat-
ing is presented in [20]. Intuitively, one can think the setting of Max-flow is quite
similar to electrical flow, but with a different objective function. Can we adjust
resistances in an electrical circuit such that the electrical flow tends to the max-flow
in this graph?

In [20], Mądry et al utilize the electrical flow connection and iteratively choose
resistances in an constant current source electrical network, such that the average
of electrical flow they get among all rounds tends to the max-flow if the source
flow value is close to the max-flow value. In fact they are considering the decision
problem of approximating maximum s� t flow problem.

Decision problem of approximating Max-flow problem. The decision prob-
lem of (1+") approximation of Max-flow is that, given a graph G = (V,E) with edge
capacity Ue, e 2 E and a value F , we’d like to check if F exceed the (1 + O(")) of
the maximum flow and otherwise returns an s� t flow f̄ such that |f̄ | � (1�O("))F
and for every e 2 E, f̄e  Ue.

If there is an algorithm solves the (1+") decision problem of Max-flow, we could
compute a (1+O(")) approximation of the Max-flow by launching a binary search on
value F , i.e. set F = 1 and run the algorithm, then multiply F by (1+ ") each time
until there returned an “no”. Then the previous value is a (1+O(")) approximation,
and this binary search procedure brings an log(1+") Fmax factor to the running time.

Multiplicative weight update method for Max-flow. In [20], Mądry et al
proposed the following weight-updating method for a given test-value F :
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Where Ue is the edge capacity and conge(f) =
fe
Ue

is the congestion of an edge,
⇢ is a parameter. They showed if F is a (1 + O(")) approximation of Max-flow,
then an (1� ") factor of the average of these electrical flow computed in all rounds
satisfy the edge capacity constraints and is an (1 + O(")) approximation of Max-
flow, and can return “NO” if F not. In fact, they also show that the computation of
the electrical flow does not need to be exactly, i.e. an approximate solution of the
electrical network is enough.

Challenges of implementation in Pure-LOCAL model. To implement the
Algorithm 1.1 in Pure-LOCAL model, there are two main challenges:

1. How to compute k
w(t)k

1
m the average of weights ? It’s not trivial because��w(t)

��
1

is a global quantity and is changing between iterations.

2. How to compute the electrical flow induced by r(t) and F ? Computing an
electrical flow could be reduced to solve a Laplacian system as we will present in
Section 4.2.1, but there is no known general Laplacian solver in Pure-LOCAL
model with weight-updating.

1.4.4 Outline of Our Work
We study the design of algorithm in [20], by Mądry et al in Pure-LOCAL model.

As in the above section, we have two challenges in turning Mądry et al’s algorithm
in Pure-LOCAL model: estimating the average of weights and approximating the
electrical flow. We propose to solve these two challenges by matrix computations
from the idea of random walk.

We are going to show that, the simple random walk in a graph could ap-
proximate the average of weights, and the weighted random walk with edge
conductances could approximate the flow of an electrical network. To handle the
issue that weights are changing with iterations, we design the “slow down” parame-
ters, such that the weights do not change too much before we get an approximation
that has an error small enough of the quantities we need.

In Section 4.2.2 we present the connection of Max-flow problem and electrical
flow and the idea of approximating Max-flow by optimization technique and solving
electrical networks. In Section 4.2.1 we present the preliminary connection of elec-
trical flow and graph Laplacian that compute an electrical flow could be reduced to
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solve a Laplacian system. In Section 4.2.3 we introduce the basics of random walk,
and the idea to approximate intended quantities in our algorithm.

In Section 4.3 we describe our algorithm both in dynamical system way and Pure-
LOCAL distributed algorithm way. In Section 4.4.2 and Section 4.4.1 we show that
the re-weighting process in our algorithm provide a vector approximating (1+O("))
Max-flow if there could be an (1 + ")-energe approximation of electrical flow. In
Section 4.4.3 we show that our algorithm build an (1 + ")-energe approximation of
electrical flow.

We need to precise that, our approximation algorithm in Pure-LOCAL model
does not provide a solution to the original decision problem but a weaker version:

Weaker decision problem of Max-flow approximation. Our algorithm solve
a weaker decision problem of (1 + ") approximation of Max-flow: given a graph
G = (V,E) with edge capacity Ue, e 2 E and a value F , if F does not exceed the
maximum flow, we will return “YES” . And if we return “NO” then F must exceed the
maximum flow. More precisely, let F ⇤ be the max-flow value, we will compute a vec-
tor f̄ , such that if F  F ⇤ then conge(f̄)  1, and if conge(f̄) > (1+")2

(1�")2 then F > F ⇤.

This weakness compared to the centralized algorithm in [20], is that the ap-
proximated electrical flow that our algorithm produces may have an error on flow-
conservation constraints, thus we are not able to ensure the vector f̄ is an s� t flow
and lead to this one-side result.

1.4.5 Contribution
We studied the implementation of an multiplicative weights update algorithm ap-
proximating Max-flow problem in Pure-LOCAL model.

1. We design the way in Pure-LOCAL model to approximate the global quantity
of average weight in a weight-varying iterative algorithm.

2. We implement in Pure-LOCAL model the computation to solving an electrical
network with resistances changing in iterations. As we know, this is the first
algorithm approximating the electrical flow in a weight-varying environment.

3. We show that our algorithm solves a weaker version of Max-flow approximation
decision problem in polynomial time.

Perspective We’d like to apply our method to implement other weight-update
based algorithm in Pure-LOCAL model, i.e. the Physarum dynamics [5] that com-
putes the shortest path, etc.
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Chapter 2

Generalization of Modular

Decompositions

This chapter considers the generalization of modular decomposition and its efficient
algorithms. We study two type of generalizations: (1)Modular decomposition in
hypergraphs; (2)Allowing errors in modules of graphs. We present both positive
and negative (hardness) results.

We first present the hypergraph modular decomposition. In the literature we
find three different definitions of modules, namely: the standard one [73], the k-
subset modules [13] and the Courcelle’s one [26]. They all lead to partitive families,
and thus each accepts an unique decomposition tree. For Courcelle’s module an
linear-time decomposition algorithm is already known [18], and we study designing
efficient algorithms for the standard and the k-subset modular decomposition of
hypergraphs.

When allowing errors in graph modules, we look at two definitions: ✏-module
and ✏-splitter module, we conclude that they are not partitive thus do not satisfy
the condition of the unique modular decomposition theorem. More over, testing of
one-step parallel decomposition ✏-module for ✏ = 1 is already NP-hard.

2.1 Preliminaries and Definitions

2.1.1 Classical Modular Decomposition

Let G be a simple, loop-free, undirected graph, with vertex set V (G) and edge set
E(G), n = |V (G)| and m = |E(G)| are the number of vertices and edges of G re-
spectively. N(v) denotes the neighbourhood of v and N(v) the non-neighbourhood,
this notation could also be generalized to set of vertices, i.e. N(X) (resp. N(X)) ,
for X ✓ V (G), are vertices who have (resp. haven’t) a neighbour in X.

Definition 2.1.1. For an undirected graph G, M ✓ V (G) is a module if and only
if: 8x, y 2M , N(x) \M = N(y) \M .

In other words, V (G) \M is partitioned into X, Y such that there is a complete
bipartite between M and X, and no edge between M and Y . For convenience let
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us denote X (resp. Y ) by N(M) (resp. N(M)). For x, y 2 V , we call them false-
twins if N(x) = N(y) and true-twins if N(x)[ {x} = N(y)[ {y}. It’s easy to see
that all vertices within a module are at least false twins.

Here we give an example of a graph with a partition by strong modules. 1

Figure 2.1: Strong modules in G are: {1}, {2,3,4},{5},{6,7}, {8,9,10,11}

A single vertex {v} and V are always modules, and called trivial modules. A
graph that only has trivial modules as induced subgraphs is called a prime graph.
Two non-empty sets A and B overlap if A \ B 6= ;, A \ B 6= ;, and B \ A 6= ;. A
strong module is a module that does not overlap with other modules.

Definition 2.1.2. A modular decomposition tree is defined as follows [13]:

(a) tree nodes are strong modules;

(b) parent relation is the containment relation of tree nodes;

(c) each internal node with only two children is labeled as complete and each other
internal node is labeled as

• complete if the union of any subset of its children is a module;

• prime if each of its children is a module while no other union of a proper
subset of its children is a module.

In the case of graphs, in fact complete nodes could also be distinguished by two
types of operations: parallel (disjoint union) and series (connect every pair of nodes
in disjoint sets X and Y ).

By the Modular Decomposition Theorem [41], any graph accepts a unique mod-
ular decomposition tree. A graph is totally decomposable if there is no prime
node in the decomposition tree. Totally decomposable graphs with respect to mod-
ular decomposition are also known as cographs in the literatture, or P4-free graphs.

1
This example is taken from the teaching materials of Michel HABIB.
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Cographs form a well studied graph class where many classical NP -hard prob-
lems such as maximum clique, maximum independent set, Hamiltonicity become
tractable, see for instance [25].

Sets that do not overlap are said to be orthogonal, which is denoted by A ? B.
Let F be a family of subsets of a ground set V . A set S 2 F is called strong if
8S 0
6= S 2 F : S ? S

0.

Definition 2.1.3. [19] A family of subsets F over a ground set V is partitive if
it satisfies the following properties:

(i) ;, V and all singletons {x} for x 2 V belong to F .

(ii) 8A,B 2 F that overlap, A\B,A[B,A \B and A�B 2 F , here � denote the
symmetric difference operation.

The study on partitive families extends the results of [41], in [19] they show
every partitive family admits a unique decomposition tree, with the two types of
nodes as in Definition 2.1.2. In this decomposition tree, every node corresponds to
a set of the elements of the ground set V of F , and the leaves of the tree are single
elements of V , strong elements of F form a tree ordered by the inclusion relation.
For a complete (resp. prime) node, every union of its child nodes (res. no union of
its child nodes other than itself) belongs to the partitive family.

The uniqueness of decomposition tree for partitive families provides us the foun-
dation to study the generalization of modular decomposition upon families that are
partitive.

2.1.2 Hypergraphs

Following Berge’s definition of hypergraphs [9], a hypergraph H over a finite ground
set V (H) is made by a family of subsets of V (H), denoted by E(H) such that (i)
8e 2 E(H), e 6= ; and (ii) [e2E(H)e = V (H). We assume here also a hypergraph
admits no empty edge and no isolated vertex.

When analyzing algorithms, we use the standard notations: |V (H)| = n, |E(H)| =
m and l = ⌃e2E(H)|e|. For every edge e 2 E(H), we denote by H(e) = {x 2 V (H)
such that x 2 e}, and for every vertex x 2 V (H), we denote by N(x) = {e 2 E(H)
such that x 2 H(e)}.

To each hypergraph one can associate a bipartite graph G, namely its incidence
bipartite graph, such that: V (G) = V (H) [ E(H) and E(G) = {xe with x 2 V (H)
and e 2 E(H) such that x 2 H(e)}.

A hypergraph is simple if all its edges are different. In this case E(H) ✓ 2V (H).
For a hypergraph H and a subset M ✓ V (H), let H(M) denote the hypergraph

induced by M , where V (H(M)) = M and EH(M) = {e\M 2 E(H), for e\M 6= ;}.
Similarly, let HM denote the reduced hypergraph where V (HM) = (V \M) [ {m})
with m /2 V , and E(HM) = {e 2 E(H) with e \M = ;} [ {(e \ M) [ {m} with
e 2 E(H) and e\M 6= ;}. By convention in case of multiple occurences of a similar
edge, only one edge is kept and so HM is a simple hypergraph.
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2.2 Variant Definitions of Hypergraph Modules

2.2.1 Standard Modules
In the literature three variations of modules defined in the hypergraphs, and we first
introduce the one defined in [73] that we called a standard module.

Definition 2.2.1 (Hypergraph Module). Given a hypergraph H, a standard mod-
ule M ✓ V (H) satisfies: 8A,B 2 E(H) s.t. A \ M 6= ;, B \ M 6= ; then
(A \M) [ (B \M) 2 E(H).

The reason we name it as standard is that this definition relates to the following
hypergraph substitution operation.

Hypergraph substitution: Substitution in general is the action of replacing
a vertex v in a graph G by a graph H(V 0, E 0) while preserving the same nerigh-
bourhood properties. To apply this concept to hypergraphs, we use the definition
presented in [74, 73]:

Definition 2.2.2. Given two hypergraphs H,H1, and a vertex v 2 V (H) we can
define another hypergraph H 0 obtained by substituting in H the vertex v by the hy-
pergraph H1, and denoted by H 0 = HH1

v which satisfies V (H 0) = {V \ v} [ V (H1),
and E(H 0) = {e 2 E(H) s.t. v /2 e} [ {f \ v [ e1 s.t. f 2 E(H) and v 2 f and
e1 2 E(H1)}.

Note that even if H,H1 are undirected graphs, the substitution operation may
create edges of size 3, and therefore the resulting hypergraph H 0 is no longer a graph.

Proposition 2.2.1. The class of simple hypergraphs is closed under substitution.

When M is a module of H then H = (HM)H(M)
m . On the previous example: let

us take A,B 2 E (resp. 1st and 6th columns of H 0) then (A \ M) [ B \M = 2nd

column of H 0 and therefore belongs to E .
Let’s consider the example below where hypergraphs are described using their

incidence matrices. In this example, we substitute vertex v3 in H by the hypergraph
H1 to create H 0:

If M is a module of H then 8e 2 E(HM), the edges of H that strictly contain e
and are not included in M are the same. In other words, all edges in E(HM) behave
the same with respect to the outside, which is an equivalence relation between edges.

Proposition 2.2.2. [74] The family of all standard modules of a simple hypergraph
H yields a partitive family on |V (H)|.

Proof. Of course every singleton of V (H) is a module and V (H) itself is also a
module.

Let us consider two modules A,B that overlap. Using the above definition via an
equivalence relation between edges, it is clear that A\B is also a module. Similarly
as there exists at least one edge in EA\B since H is simple, by transitivity of this
relation A [B is also a module.
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a 0 1 1

b 0 1 1

c 1 0 1

H1

v1 1 0 1 1

v2 1 0 0 0

v3 1 0 1 0

v4 1 1 0 0

H

v1 (u1) 1 1 1 0 1 1 1 1

v2 (u2) 1 1 1 0 0 0 0 0

a (u3) 0 1 1 0 0 1 1 0

b (u4) 0 1 1 0 0 1 1 0

c (u5) 1 0 1 0 1 0 1 0

v4 (u6) 1 1 1 1 0 0 0 0

H 0 = HH1
v3

prime

u1 u2

complete

complete

u3 u4

u5

u6

e1 e2 e3 e4 e5 e6 e7 e8

v1 v2 v3 v4 v5 v6

Figure 2.2: An example of substitution, its decomposition tree, and its incidence
bipartite graph. {u3, u4, u5} is a module, but only u3, u4 are false twins in the
incidence bipartite.

A \ B the only case to check if the following: F, F 0
2 E(H(A \ B)) such that

F [ C 2 E(H) with C ✓ A \ B. Since B is an module, necessarily F 0
[ C 2 E(H).

Therefore A \B is also a module of H.
Similarly, let F 2 E(H(A\B)) such that F[C 2 E(H) with C ✓ A\B. Now if we

consider F 0
2 E(H(B \A)), using the fact that B is a module and C, F 0

2 E(H(B))
then F [F 0

2 E(H). But then since A is a module and F,C 2 E(H(A)) necessarily
C [ F 0

2 E(H). Thus, A�B is a module of H.

Remark: if we use the following variant definition for hypergraphs :
Given a hypergraph H, a module M ✓ V (H) satisfies: 8A,B 2 E(H) s.t.

A \M 6= ;, A \M 6= ;, B \M 6= ;, B \M 6= ; then (A \M) [ (B \M) 2 E(H).

Unfortunately this definition does not lead to a partitive family. Simply because
using this definition, any set of size |V |�1 is a module, because any edge overlapping
outside connects the same vertex. Then any set of size |V |� 2 is a module because
it is the intersection of two sets of size |V | � 1. By induction we could have that
any set is a module if the definition is partitive. However it could not be true. So
the intersection property may fail.

Since every partitive family has a unique decomposition tree [19], it follows that
the family of the modules of a simple hypergraph admits a uniqueness decomposition
theorem and a unique hypermodular decomposition tree.

Consider the graph in Figure 2.3 which represents the incidence bipartite of the
hypergraph H 0 constructed in the previous example, together with a renumbering
of the vertices. As one can see, {v3, v4, v5} is a module. But only v3, v4 are false
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v1 1 1 0 1 0 0 0 0

v2 1 0 1 1 0 0 0 0

v3 0 0 0 0 1 0 1 1

v4 0 0 0 0 1 1 0 1

v5 0 0 0 0 0 1 1 1

v6 0 1 1 1 0 0 0 0

e1 e2 e3 e4 e5 e6 e7 e8

v1 v2 v3 v4 v5 v6

complete

complete

v1 v2 v6

complete

v3 v4 v5

Figure 2.3: A hypergraph H given by its incidence bipartite and its modular de-
composition tree

twins in the associated bipartite graph.
Modular decomposition of bipartite graphs just leads to the computation of sets

of false twins in the bipartite graphs. So hypergraph modules are not always set of
twins of the associated incidence bipartite.

Some authors [10, 11] defined clutters hypergraphs, in which no edge is included
into another one. In this case, clutters modules are called committees [10]. Trivial
clutters are closed under hypergraph substitution. The committees of a simple clut-
ter also yields a partitive family which implies a uniqueness decomposition theorem.
From this one can recover a well-known Shapley’s theorem on the modular decom-
position of monotone boolean functions. It should be noted however that finding the
modular decomposition of a boolean function is NP-hard [12]. It was shown in [15],
that computing clutters in linear time would contradict the SETH conjecture.

e1 e2 e3 e4 e5

v1 v2 v3 v4 v5 v6

Figure 2.4: An example of a module M = {v2, v3, v4, v5}

An Application of Standard Module. If we consider that a bipartite graph
is the incidence bipartite of some hypergraph then we could apply the modular
decomposition of hypergraphs to decompose the bipartite graph, as can be seen in
the examples of Figures 2.3, 2.4.

32



2.2.2 The k-subset and Courcelle’s Modules
Often when generalizing graph concepts to hypergraphs there are several potential
generalizations. In fact we found in the literature two variations on the hypergraph
module definition: the k-subset modules defined in [13] and the Courcelle’s modules
defined in [26]. In this section we will first recall them and study their relationships
to the standard one (Definition 2.2.1).

Definition 2.2.3. (k-subset module [13]) Given a hypergraph H, we call k-subset
module M ✓ V (H) satisfies: 8A,B ✓ V (H) s.t. 2  |A|, |B|  k and A \M 6= ;,
B \M 6= ; and A \M = B \M 6= ; then A 2 E(H), B 2 E(H).

If H is a 2-uniform hypergraph (i.e., an undirected graph) the 2-subset modules
are simply the usual graph modules. Families of k-subset modules also yield a
partitive family. It is easy to check since the proof is fairly similar to that of
standard modules. An example of a 3-subset module is given in Figure 2.5:

e1 e2 e3 e4 e5 e6

v1 v2 v3 v4 v5

Figure 2.5: An example of a 3-subset module M={v3, v4, v5}

Proposition 2.2.3. If M is a |V (H)|-subset module then M is a standard module.
But the converse is false.

Proof. 8A,B 2 E(H) s.t. A \M 6= ;, B \M 6= ; let A0 = (A \ M) [ (B \M),
we have A0

\ M 6= ;, and A \ M = A0
\ M 6= ;, so A 2 E(H) will imply A0 =

(A \M) [ (B \M) 2 E(H).
We now exhibit a hypergraph H that admits a standard module which is not an

|V (H)|-subset module.

e1 e2

v1 v2 v3 v4

The subset {v3, v4} is a standard module, but not a |V (H)|-subset module since
{v1, v2, v3, v4} /2 E(H)
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Definition 2.2.4. (Courcelle’s module [26]) Given a hypergraph H, we call
Courcelle’s module M ✓ V (H) satisfies: 8A 2 E(H), A ?M .

We denote by F
? the family of subsets of V which are orthogonal to every

element of F . then Courcelle’s modules correspond to E(H)?.
This notion seems to be far from the standard hypergraph module definition [74,

73], this is why we called them Courcelle’s modules. Indeed, applied to graphs, the
orthogonal of the edge-set is the connected components (plus the vertex-set and
the singletons) of the graph, not the modules. There could be a O(l) algorithm
computing Courcelle’s modular decomposition tree by McConnell in [69] using as a
blackbox Dahlhaus algorithm [27] plus some post-treatment and has been largely
simplified by [18]. Thus this is not the main focus definition in our work but we just
present the related results here.

2.2.3 Basic Facts on these Module Definitions
Proposition 2.2.4. Let H be an hypergraph and G be its incidence bipartite, if a, b
are false twins in G then {a, b} is a standard and Courcelle’s module.

Proof. Suppose there exists an edge e 2 E(H) with a 2 H(e) and b 2 H(e). So
there exists an edge ae in G and therefore since they are twins also an edge be in
G, a contradiction. This says that no edge strictly overlaps {a, b}, which is thus a
Courcelle’s module.

We also notice that for k-subset modules, this property is only always true for
k = 2.

2.3 A General Decomposition Scheme for Partitive
Families

Definition 2.3.1. For a partitive family F on a ground set V , using the closure by
intersection of partitive families, we can define for every A ✓ V , Minmodule(A) as
the smallest element of F that contains A. In particular, let us denote by Mx,y the
family of all Minmodule({x, y}) and 8x, y 2 V .

Although Mx,y does not contain all F , simply because |F| can be exponentiel
in |V | while |Mx,y| is always quadratic. In this section we propose an algorithm
scheme to compute the decomposition tree of a partitive family if the only access to
the family is a call of a function that computes: for every A ✓ V , Minmodule(A).
The goal is to minimize the total number of calls. We will now show a simple way
to extract the decomposition tree, i.e., the strong elements from of Mx,y.

According to the definition, if a node has only two children, this node is con-
ventionally defined to be complete. In our algorithm these nodes will be labelled
as prime in this case. After constructing the tree, we can easily transform it into
another convention just by labeling all nodes with only two children as complete
nodes.
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Theorem 2.3.1. For every partitive family F over a ground set V , its decomposition
tree can be computed using O(|V |

2) calls to Minmodule({x, y}), with x, y 2 V .

Proof. To this aim, let us choose an initial vertex x0 and compute Minmodule({x0, x}, 8x 6=
x0 2 V and add them to a set M. Then we add all singletons to M. Let µ the
unique path from x0 to the root in the decomposition tree.
Claim 1: Every prime node of µ, belongs to M.

Proof. Consider a prime strong element A 2 µ, it corresponds to some node of the
tree which admits children A0, A1, . . . Ak, with k � 1 in the decomposition tree.
If x0 2 A0, and take y 2 A1, then Minmodule({x0, y} = A, since A is the least
common ancestor in the decomposition tree.

Claim 2: For every complete node A 2 µ, with children A0, A1, . . . Ak, if x0 2 A0,
then

(i) for every 1  i  k the set A0 [ Ai belongs to M

(ii) when the elements of M are sorted by their size, then A0 [ Ai appear con-
secutively.

Proof. (i) In fact for every y 2 Ai, Minmodule({x0, y}) = A0 [ Ai. Note that it
may be possible that A0 = {x0}.

(ii) If there exists a prime node P such that 9i, j such that |A0 [ Ai| < |P | <
|A0 [Aj|. Since x0 2 P and x0 2 A0 then P must overlap with A0 [Ai or A0 [Aj,
which contradicts the fact that P is a prime node that overlaps no other element in
the family.

The above arguments also show that any Minmodule({x0, y}) corresponds to
either a prime node, or the union of two children of a complete node. So the family
M is made up with prime nodes that overlap no other subsets and some daisies,
and they all contain x0. Daysies are these subsets A0 [ Ai, all containing A0, the
Ai’s being the petals of the daisy and A0 its center. Note that a daisy is a simple
particular case of overlap component.
Now to find the decomposition tree we can apply the following algorithm:

1. Sort by size M. In this step eliminate multiple occurencies of a subset in M.

2. Scan this list in increasing order and checking if the new subset considered
overlaps the previous, else merge it to the previous it with complete (label
both the two as complete) and continue. After the iteration, mark every
unlabelled set is with the label prime.

This provides the path from x0 to the root of the modular decomposition tree,
namely: µ = [{x0} = X0, X1, . . . , Xh = V ].

3. We repeat this procedure for vertices haven’t been computed and attach its
path to the tree.

Claim 3: Every node constructed is a strong module.
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Proof. Assume node X, x0 2 X overlapping with some module X 0. We take any
element x0

2 X 0
\X, then X�X 0 is a module and thus Minmodule(x0, x0) ✓ X�X 0,

which overlaps with X. Thus Minmodule(x0, x0) must have been merged into X,
contradiction.

The validity of the claim directly follows from Claims 1 to 3.
For Step 1 we can use any linear sorting by value algorithm, since the size of the

subsets are bounded by n = |V |. Clearly Step 2 can be done linear time in the size
of M. So the bottleneck of complexity is the number of calls of Minmodule({x, y}),
which is bounded by n2.

Consequently, if computing the function Minimal of a given partitive family can
be done O(p(n))time, then the computation of the decomposition tree can be done
in O(n2

· p(n)). Such an approach was already used for graphs in [52] to obtain
the first polynomial algorithm for modular decomposition. Let us now consider
how to compute this function for the three variations of hypergaph modules defined
previously.

2.4 Computing Minimal-modules for Hypergraphs
For undirected graphs, computing Minimal-modules can be done via a graph search
and is linear time. We will generalize this to hypergraphs for two out of the three
definitions of modules, namely the standard one and the Courcelle’s one.

For purpose of efficient algorithmic design, we will represent our hypergraphs
using for each vertex x a list to represent N(x) i.e., the edges its belongs to and
symmetrically for each edge e a list to represent H(e) i.e., the vertices it contains.
For a hypergraph this yields a representation using O(n + m + l) memory. If the
hypergraph is simple one can notice that O(n+m+ l) = O(l).

2.4.1 Standard Modules
Definition 2.4.1. For a set C ( V (H), an edge A 2 E(H) is a edge-splitter for
C, if A \ C 6= ; and A \ C 6= ; and if there exists B 2 E(H) s.t. B \ C 6= ;, and
(A \ C) [ (B \ C) /2 E(H).

In other words, a set of vertices is a standard module iff it admits no edge-splitter.
Let us now consider how to incrementally compute Minmodule(W ) for every

subset W .

Proposition 2.4.1. If A 2 E(H) is a edge-splitter of C ✓ V (H) respect to B as
Definition 2.4.1. Let B0

2 E(H) be the edge such that B0
\ C = B \ C and with

|(B0
\ C)�(A \ C)| minimum. Let X 0 = (B0

\ C)�(A \ C), then there is no module
Y of H such that C ( Y but X 0 * Y .

Proof. Assume there exists a module Y such that C ( Y but X 0 * Y .
With the choice of X 0, A \ Y 6= ;, therefore A0 = (A \ Y ) [ (B0

\ Y ) 2 E(H).
(B0

\ C)�(A \ C) = ((B0�A) \ (Y \ C)) [ (B0
\ Y )�(A \ Y ))
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u1 1 1 1 1 1 1 0 1 1

u2 1 1 1 1 1 1 0 0 0

u3 0 1 1 0 1 1 0 0 0

u4 1 0 0 1 0 0 0 0 0

u5 1 0 1 1 0 1 0 0 0

u6 0 0 0 1 1 1 0 0 0

u7 0 0 0 0 0 0 1 1 1

u8 1 1 1 1 1 1 0 0 1

prime

u1

complete

u2

prime

u3 u4 u5

u6

u7 u8

x minimal module of x and others

u1 {u1, u2, u3, u4, u5, u6, u7, u8}

u2 {u2, u6}, {u2, u3, u4, u5}, {u1, u2, u3, u4, u5, u6, u7, u8}

u3 {u3, u4, u5}, {u2, u3, u4, u5}, {u3, u4, u5, u6}, {u1, u2, u3, u4, u5, u6, u7, u8}

u4 {u3, u4, u5}, {u2, u3, u4, u5}, {u3, u4, u5, u6}, {u1, u2, u3, u4, u5, u6, u7, u8}

u5 {u3, u4, u5}, {u2, u3, u4, u5}, {u3, u4, u5, u6}, {u1, u2, u3, u4, u5, u6, u7, u8}

u6 {u2, u6}, {u3, u4, u5, u6}, {u1, u2, u3, u4, u5, u6, u7, u8}

u7 {u1, u2, u3, u4, u5, u6, u7, u8}

u8 {u1, u2, u3, u4, u5, u6, u7, u8}

For u1:
prime

u1

For u2:
prime

u1

complete

u2 u6

u3, u4, u5

For u3:
prime

u1

complete

u2 u6

prime

u3

For u4, u5: same as u3

prime

u1

complete

u2 u6

prime

u3 u4 u5

For u6: same as u2

prime

u1

complete

u2 u6

prime

u3 u4 u5

For u7, u8: same as u1

prime

u1

complete

u2 u6

prime

u3 u4 u5

u7 u8

Figure 2.6: Computing modular decomposition tree based on minimal modules
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(A0
\ C)�(A \ C) = (B0�A) \ (Y \ C) ✓ (B0

\ C) \ (A \ C)
If (B0

\ Y )�(A \ Y ) = ; then X 0 = (B0
\ C)�(A \ C) ✓ Y a contradiction.

Else |(A0
\C)�(A \C)| < |(B0

\C) \ (A \C)|. Since A0
2 E(H) and C ( Y , then

A0
\C = B0

\C this yields a contradiction with the definition of B0, we should have
taken A0 instead of B0.

So in both cases a contradiction was found, therefore such a module Y cannot
exist.

Let us now turn these ideas into an algorithm, using lexicographic orderings of
the edges, % means comments in the following pseudo-code.

Algorithm 1 Modular-closure
1: procedure Modular-closure(H a simple hypergraph and W ( V (H))
2: ⌧  a lexicographic ordering of E(H) w.r.t an arbitrary ordering of V
3: C  W , X  W
4: Compute the induced hypergraph H(C)
5: for 1  i  |E(H(C))| do
6: Compute the ordered lists Li of the restriction to V (G) \ C of the edges

in E(H) that contain fi 2 E(H(C))
7: end for
8: Q(C) {L1, . . . , L|E(H(C))|} the ordered partition made up with these lists
9: if |Q(C)| = 1 then

10: C is a module, STOP
11: else
12: L First(Q(C)) // the first class in the ordered partition
13: end if
14: while Next(L) 6= NIL do // the next element of L in the ordered

partition
15: X  Comparison(L,Next(L))
16: if X = ; then
17: L Next(L)
18: else //if L has been split during the update we take its first part
19: C  C [X, update Q(C) via partition refinement with X,
20: L First(L)
21: end if
22: end while
23: RESULT  C //C is a minimal module that contains W
24: end procedure

Theorem 2.4.1. If H is a simple hypergraph, for every set W ✓ V (H), Algorithm
Modular-closure computes Minmodule(W ) in O(n · l). And its modular decomposi-
tion tree can be computed in O(n3

· l).

Proof. (i) Correctness: First we notice that C is a module of H iff all the lexico-
graphically sorted lists Li are equal. At each step of the lexicographic process a list
can only be cut into parts, no lists are merged. If at some step of the algorithm two
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Algorithm 2 Procedure Comparison
1: procedure Comparison(2 lists L0, L00 of the restriction to V (G) \ C of the

edges in E(H) that contain some f 2 E(H(C)). They are supposed to be
lexicographically increasingly ordered using ⌧)

2: if L0 = L00 then X  ;, STOP
3: else
4: Let e 2 L0 and f 2 L00 be the first lexicographically difference
5: end if
6: if (e <⌧ f)or(e 6= ; and f = ;) then // e /2 L00 is a edge-splitter
7: compute f 0

2 L00 that minimizes |h(e)�h(f 0)| with f 0
2 L00

8: X  h(e)�h(f 0)
9: else // (e >⌧ f)or(e = ; and f 6= ;), i.e. f /2 L0 is a edge-splitter

10: compute e0 2 L0 that minimizes |h(f)�h(e0)| with e0 2 L0

11: X  h(f)�h(e0)
12: end if // Note that e = ;, f 6= ; (resp. e 6= ;, f = ;) corresponds to

the case |L| < |Next(L)| (resp. |L| > |Next(L)|)
13: end procedure

lists Li, Lj are equal, and if afterwards they are cut into sublists via the refinement
process, equality between sublists is preserved since the refinement act similarly on
the lists. Thus the algorithm scan the lists form left to right using a single sweep
and the following invariant: at each step of the while loop all the lists before the
current list L are all equal to L.

Using the procedure Comparison either the lists are equal and then we proceed
else using Property 2.4.2 we know that we can add this set of vertices. At the end
of the algorithm either all lists are equals and C 6= V (H) and therefore C is the non
trivial minimal module containing W or C = V (H) and there is no other module
between W and V (H).

(ii) Complexity Analysis: To implement the first step (line 1) we can use an
ordered partition refinement technique on E(H) (see [46]) using the sets N(x) for
every x 2 V (H) as pivot sets. This provides a total ordering ⌧ of E(H). This can
be done in O(n+m+ l).

To compute Q(C), we can use the same ordered partition refinement technique
using the sets N(x) for every x 2 C as pivot sets we can compute the ordered
partition of E(H). Starting from the partition P0 = {E(H)}, we refine this partition
successively using N(xi) for every xi 2 C. Let us denote by Pf the partition obtained
after this round of refinements. Each part of Pf can be ordered using ⌧ , since
partition refinement can maintain an initial ordering of its elements within the same
complexity. So if we start with the initial ordering ⌧ in the unique part of P0. And
the parts are lexicographically ordered with respect to their intersection to C. This
can be done in O(|C|+ ⌃x2C |N(x)|).

In fact after line 6 we can ignore the vertices of C, a similar remark holds when
C is updated.

Now we have to check if all edges lists Li are identical or not and stop at the
first difference. Since the lists are ordered lexicographically using an ordering ⌧ of
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the vertices, a simple scan of these ordered lists is enough to compute (Comparison
procedure) of Algorithm 1.

When C and Q(C) are updated, the algorithm goes on with the first part of the
previous current list L. First means that if L has been split during the update we
take its first part. Therefore in the worst case some list can be analyzed several times
(at most n times) and therefore the overall complexity of the list scan is bounded
by O(n · l).

When a difference is found between two lists we have to search for an edge that
minimizes the symmetric distance with respect to the differentiating edge. Even
though it can be done several times for a given edge, but every time we launch this
search, at least one vertex will be added into C, thus at most search for n times. So
the overall complexity of these searches is O(n · l).

Therefore the whole process is in O(n+m+ l+ n · l) = O(n · l). Using Theorem
2.3.1 we obtain the decomposition tree in O(n3

· l).

Up to our knowledge, [74] states there is a polynomial time decomposition algo-
rithm for clutters based on its O(n4m3) modular closure algorithm without precising
the complexity, our algorithm is an improvement because our total decomposition
time is already smaller than O(n4m3).

Corollary 2.4.1. For every simple hypergraph H, its modular decomposition tree
can be computed in O(n3

· l).

Proof. We can use Algorithm 1 to compute in O(l) for a pair of vertices x, y
Minmodule({x, y}). Therefore the process described in Theorem 2.3.1 provides
a decomposition tree using n2 calls to this procedure. This leads to an algorithm
in O(n3

· l). To transform it into a hypergraph modular decomposition tree, it only
remains to precise the labels “complete” into series ou parallel, which can be done
easily by a test on the edges.

Remark: It could be possible that for simple hypergraphs, linear time modular
decomposition exists, i.e. in O(l) time, as is the case for graphs (for a survey on
graph algorithms see [47]).

2.4.2 Algorithms for the Courcelle’s Modules
Although we already have a linear time algorithm using orthogonality, it is worth
showing that this decomposition also fits in our general framework for partitive
families. Reformulating the Courcelle’s module definition we have:

Lemma 2.4.1. Given a set M ✓ V (H), a set X ✓ V (H)\M is a Courcelle-splitter
of M if there exists an edge e 2 E(H) such that: e overlaps M and X = H(e) \M .
A subset M is a Courcelle’s module if there is no Courcelle-splitter for M .

Using this lemma, we can apply to this decomposition the same framework we
developed for standard modules.

Theorem 2.4.2. The minimal Courcelle’s module Minmodule(A) that contains a
given set A ✓ V (H) can be computed in O(n+m+ l) time.
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Proof. The correctness of the algorithm comes from Lemma 2.4.1 We can still use
the structure of Algorithm 1, with a little change in the test of line 9-22 which must
be modified in the following way.

while there is an edge e that overlap with W do
X  H(e) \W , C  C [X

end while

This modification is easier to implement, and thus the complexity analysis of
complexity we gave in the previous section also holds here.

2.4.3 Decomposition into k-subset Modules
Let us now consider the k-subset modules as defined in [13]. For this specific defini-
tion of hypergraph modules, we need a to implement an efficient dynamic partition
refinement tool.

Definition 2.4.2. A subset X 6= ; is a k-splitter of the set M if there exist
A,B ✓ V s.t. 2  |A|, |B|  k and A\M 6= ;, B\M 6= ; and A\M = B\M = X,
A 2 E(H) but B /2 E(H).

Proposition 2.4.2. If X ✓ V (H) is a k-splitter of C ✓ V (H) respect to A,B as
above. then there is no module Y of H such that C ( Y but X * Y .

Proof. Assume there exists a module Y such that C ( Y but X 0 * Y .
We consider the edges A,B above.

Since C ( Y , then A \ Y 6= ;, B \ Y 6= ;
Since X * Y , then A \ Y = B \ Y = X \ Y 6= ;
Thus since Y a module A 2 E(H) implies B 2 E(H), a contradiction. Therefore
such a module Y cannot exist.

Lemma 2.4.2. Given a set M ✓ V (H), all k-subset splitters of M , if exist, are in
the form of H(e) \M for some e 2 E(H), |H(e)|  k.

Proof. If X is a k-subset splitter of M , take the edge A 2 E(H) in the definition of
k-splitter, then clearly X = h(A) \M .

Such an edge will be called an edge-splitter of M .
Let us define by D(k, h) = ⌃i=k

i=1 (hi ) for 1  k  h, where (hi ) denotes the usual
binomial coefficient, i.e. the number of subsets of size i in a set of size h. By
convention all values of D(k, h) strictly greater that |E(H)| will be fixed as Out-of-
Range, considered as a huge number.

Lemma 2.4.3. For a simple hypergraph H, given a set M ✓ V (H) and an edge
e 2 E(H) s.t. |H(e)|  k, e \M 6= ; and X = e \M 6= ;, let L be the list of edges
in E(H) with size  k and whose intersection with V (H) \ M are identical to X
and intersection with M is not empty, i.e. L = {e0 2 E(H) | e0 \M = X, e0 \M 6=
; and |H(e0)|  k}. If |L| < D(k � |X|, |M |) then e is an edge-splitter of M .
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Proof. It’s equivalent to check for such an e given above and X = e \M , whether
every non empty subset B of size  k � |X| in M has X [ B 2 E(H). Since H is
simple and there are no identical elements in L, a counting argument captures the
condition. Moreover, in this way the number of subsets checked is  |E(H)|.
Lemma 2.4.4. Given a pair of vertices x, y, we can compute in O(|E(H)|2) time
the minimal non trivial k-subset module that contains x and y.

Algorithm 3 k-subset modular-closure
1: procedure k-subset modular-closure(H a simple hypergraph, k an integer

such that 1  k  |V (H)| and W ( V (H))
2: Compute all D(k, h) for |W |  h  |V (H)|
3: C  W , X  W
4: while X 6= ; do
5: Compute the induced hypergraph H(V (G) \ C)
6: Compute a lexicographic ordering ⌧ of E(H) with respect to some ordering

of the vertices, s.t. priority of vertices in V (G) \ C are higher than in C
7: E

0
 {ei 2 E(H) overlap C, |H(ei)|  k}

8: for 1  i  |E
0(H(V (G) \ C))| do

9: Compute the ordered lists Li of the restriction to V (G) \ C of the
edges in E

0(H) that contain fi 2 E
0(H(V (G) \ C))

10: end for
11: if For some i, |Li| < D(k � |fi|, |C|) then
12: X  X [ (H(ei) \ C)
13: if V (G) = C[X then // there is no non-trivial module between

W and V (H)
14: RESULT  V (H), STOP
15: else // X is a splitter for C
16: C  C [X
17: end if
18: else
19: X  ;
20: end if
21: RESULT  C // C is a non trivial module containing W
22: end while
23: end procedure

Theorem 2.4.3. For a simple hypergraph H and A ( V (H), for any fixed integer
k  |V (H)|, algorithm 3 (k-subset modular-closure) can compute the minimal k-
subset module that contains A in O(n · l) time.
Proof. The correctness of the previous algorithm directly follows from Lemma 2.4.3.
The computation of the D(k, j)0s can be done in O(n2) using Pascal’s triangle and
does not require big numbers encoding using the symbol Out-of-Range.

The bottleneck of the complexity is in line 7-8, with the computation of the lists
Li. It can be done in O(l).

So the overall complexity is in O(n2 + n ·m+ n · l) = O(n · l).
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Corollary 2.4.2. For a simple hypergraph H and for any integer k  |V (H)|, its
k-subset modular decomposition tree can be computed in O(n3

· l).

Proof. We can use the complete framework introduced in this paper. Using the
algorithm proposed in Theorem 2.3.1 to compute the k-subset modular decompo-
sition tree. So we need to call n2 times the previous algorithm 2, which yields the
announced complexity.

It should be noticed that the computation of the D(k, j)0s can be done as a
preprocessing and costs O(n2) only once.

2.5 Two Negative Results: ✏-module and ✏-splitter
module

When working with modules, especially on graphs that rise from large networks, it is
natural to look for subsets of vertices that behave almost like a module. Suppose we
relax the constraint of exactly the same neighborhood in order to have a tolerance of
errors. Thus, instead of having X (resp. Y ) as a complete bipartite to a module M
(resp. no edges to M), we allow some bounded number of non-edges (resp. of edges).
This relaxed notion of modular decomposition has indeed been used in biology or
social science for weighted bipartite graphs [35, 34]. However, few theoretical results
have been showed, and results on a larger scope of graph classes also remain to be
explored.

Here we try to accept some errors of at most k edges, for some fixed integer k,
could be missing in the complete bipartite between M and N(M), and symmetrically
that at most k edges can exist between M and N(M). But doing so we loose most of
the nice algebraic properties of modules – in particular that overlapping modules are
closed under intersection, union and difference [19]. Furthermore most algorithms
for modular decomposition are based on these algebraic properties.

Another natural idea is to relax the condition on the complete bipartite between
M and N(M), for example asking for a graph that does not contain any 2K2. Unfor-
tunately as shown in [80] to test wether a given graph admits such a decomposition
is NP-complete. In fact they studied a generalized join decomposition solving a
question asked in [49] studying perfection. This is why the following generalization
of module defined for any integer ✏2, seems to be a good compromise:

Definition 2.5.1. A subset M ✓ V (G) is an ✏-module if 8x 2 V (G) \ M , either
|M \N(x)|  ✏ or |M \N(x)| � |M |� ✏

In other words, we tolerate ✏ edges of errors per node outside the ✏-module,
and not ✏ errors per module. It should be noticed that with ✏ = 0, we recover
the usual definition of modules [47], i.e., 8x 2 V (G) \M , either M \ N(x) = ; or
M \ N(x) = M . Necessarily we will only consider ✏ < |V (G)| � 1. We can easily
verify that V (G) and 8A ✓ V (G) such that |A|  2 · ✏ + 1 are always ✏-modules,
they are called trivial ✏-modules.

2
We use ✏ to denote small error, despite being greater than 1.
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Then we check if ✏-modules are partitive:

Proposition 2.5.1. Let A,B ✓ V (G) be two overlaping non trivial ✏-modules, then
there could be c = ⌦(min(|A|, |B|)), s.t. A [ B is not an ✏-module, for all ✏  c.

Proposition 2.5.2. Let A,B ✓ V (G) be two overlaping non trivial ✏-modules, then
there could be c = ⌦(n), s.t. A-B is not an ✏-module, for all ✏  c.

Figure 2.7: Example for Proposition 2.5.1 and 2.5.2

For standard modular decomposition the notion of strong modules as modules
that does not overlap with any other is central. For ✏-modular decomposition we
can observe that there is no strong modules other than V and {v}, v 2 V that are
strong ✏�modules. The reason is that, for ✏ � 1, any subset of vertices of size 2 is
a trivial ✏-module, then assume there is a classical strong module V1 6= V , |V1| > 1,
then take any vertex v 2 V1 and any vertex u 2 V \ V1, then {u, v} is a ✏-module
and overlapping with V1.

Figure 2.8: Two ways of 1-parallel decomposition of a graph

The decomposition tree is then not well-defined for ✏-module, the ways to de-
compose a graph could be non-unique, and we here show that even a weaker purpose
of decomposition for one step is still hard.

Definition 2.5.2. For a graph G with |V (G)| � 2✏ + 3, we say that G admits an
✏-series (resp. ✏-parallel) decomposition if there exists a partition of V (G), P =
{V1, . . . Vk} such that: 8i, 1  i  k, |Vi| � 2✏+ 1 and 8x 2 Vi and for every j 6= i,
x is adjacent (resp. non-adjacent) to all vertices of Vj with perhaps ✏ errors.

For ✏ = 1 the problem of recognizing if a graph admits an 1-parallel decomposi-
tion could be reduced to the matching cut-set problem that is known to be NP-hard
[21, 71, 14] and therefore we have:
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Theorem 2.5.1. Finding if a graph admits an 1-parallel decomposition is NP-hard.

Proof. Let G be a graph with minimum degree 3, and suppose that it admits an
1-parallel decomposition into V1, . . . , Vk. Necessarily 8i, |Vi| > 1, since there is no
pending vertex. Therefore {V1,[1<ikVi} is a matching cut set of G. So using [21],
deciding if a graph admits 1-parallel decomposition is NP-complete.

Let us now study an alternative way of defining approximate modules. For any
integer ✏ one can define:

Definition 2.5.3. A subset M ✓ V (G) is an ✏-splitter module if there are at most
✏ splitters in V (G) \M .

It should be noticed that with ✏ = 0 this definition gives back the usual module
definition [47], i.e., 8x 2 V (G) \ M , either M \ N(x) = ; or M \ N(x) = M .
8A ✓ V (G) such that |A|  1 or |A| � |V | � ✏ then A is an ✏-splitter module. We
call such a set A a trivial ✏-splitter module.

The family of ✏-splitter modules of a graph satisfies:

Proposition 2.5.3. Let A,B ✓ V (G) be two overlaping non trivial ✏-splitter mod-
ules s.t. A \ B 6= ; then: A \ B could be an 2✏-splitter module.

For this definition, it is not closed under intersection. Therefore we cannot easily
define a closure operator with this notion. Thus it is even harder (nearly impossible)
to define a decomposition notion on it.

2.6 Conclusions of Chapter
This chapter present our study the generalization of modular decompositions and
their time-efficient algorithms. First we recalled the basic concept of partitive fam-
ilies and the relationship with unique decomposition.

We then presented our work on modular decomposition in hypergraphs for three
definitions from the literature: the standard modules [73], the k-subset modules [13]
and the Courcelle’s modules [26]. We obtained positive results for the three as they
all lead to partitive families. We developed a general algorithmic scheme to compute
their modular decomposition following the idea in [52] for modules in graphs, by
implementing the appropriately functions in this scheme, we got a O(n3

·l) algorithm
for modular decomposition of standard module and k-subset module, improving the
previous result based on a O(n4m3) algorithm [74] for standard module and O(n3k�5)
algorithm [13] for k-subset module respectively, and conclude the decomposition of
k-subset module in hypargraphs is in P .

We also presented negative results for two generalization by allowing errors in
graph modules: ✏-module and ✏-splitter module, we conclude that they are not
partitive thus do not satisfy the condition of the unique modular decomposition
theorem. More over, testing of one-step parallel decomposition ✏-module for ✏ = 1
is already NP-hard. This shows that allowing errors in graph modules will destruct
the validity of a unique tree representation.
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Results of this chapter have been presented in:

• Michel Habib, Fabien de Montgolfier, Lalla Mouatadid, Mengchuan Zou:
A General Algorithmic Scheme for Modular Decompositions of Hypergraphs
and Applications. IWOCA 2019, invited to a special issue of Journal Theory
of Computing Systems

• Michel Habib, Lalla Mouatadid, Mengchuan Zou:
Approximating Modular Decomposition is Hard.
Accepted to The International Conference on Algorithms and Discrete Applied
Mathematics (CALDAM) 2020.

The second publication here presents also some positive results of enumerating
all minimal "-modules, which are not included in this thesis.

Perspective We are interested in the following future topics related to our work:

• Can we define graph classes based on these definition of modules in hyper-
graphs? What properties will they have?

• For graphs, is there other generalizations of modules that have good decom-
position properties? For ✏-module for ✏ = 1 we could define 1-cograph, how to
characterize its properties?
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Chapter 3

Strategy for Generalized Binary

Search in Weighted Trees

3.1 Introduction

3.1.1 The Problem
We present in this chapter the generalized binary search problem in weighted trees,
that is to locate a “hidden” target node in a weighted tree by asking queries with
costs to the generalized binary search oracle. The generalized binary search model
follows the idea of binary search, which is indeed equivalent to search for a target
node in a path, each query selects a node, and the oracle replies which ‘side’ (or
sub-path) of the queried node the target node belongs to. The model generalize the
binary search both for its searching space as a graph and also the non-uniform time
cost for queries. The problem can be stated as follows. Given a node-weighted input
tree T (in which the query time of a node is provided as its weight), design a search
strategy (sometimes called a decision tree) that locates a hidden target node x by
asking queries. Each query selects a node v in T and after the time that equals the
weight of the selected node, a reply is given: the reply is either ‘yes’ which implies
that v is the target node and thus the search terminates, or it is ‘no’ in which case
the search strategy receives the edge outgoing from v that belongs to the shortest
path between u and v. The goal is to design a search strategy that locates the target
node and minimizes the search time in the worst case.

3.1.2 Related Works
In this work we focus on the worst case search time for a given input graph and we
only remark that other optimization criteria has been also considered [22, 57, 56, 86].
For other closely related models and corresponding results see e.g. [3, 48, 59, 64, 85].

The node-query model. The vertex search problem is more general than its
‘edge variant’ that has been more extensively studied. In the latter problem one
selects an edge e of an edge-weighted tree T = (V,E,w) in a query and learns in
which of the two components of T � e the target node is located. Indeed, this edge
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variant can be reduced to our problem as follows: first assign a ‘large’ weight to each
node of T (for example, one plus the sum of the weights of all edges in the graph)
and then subdivide each edge e of T giving to the new node the weight of the original
edge, w(e). It is apparent that an optimal search strategy for the new node-weighted
tree should never query the nodes with large weights, thus immediately providing a
search strategy for the edge variant of T .

An optimal search strategy can be computed in linear-time for an unweighted
tree [76, 81]. The number of queries performed in the worst case may vary from
being constant (for a star one query is enough) to being at most log2 n for any tree
[76] (by always querying a node that halves the search space). Several following
results have been obtained in [37]. First, it turns out that log2 n queries are always
sufficient for general simple graphs and this implies a O(mlog2 nn2 log n)-time optimal
algorithm for arbitrary graphs. The algorithm which performs log2 n queries also
serves as a O(log n)-approximation algorithm, also for the weighted version of the
problem. On the other hand, it has been proven that optimal algorithm with a run-
ning time of O(no(logn)) is in contradiction with the Exponential-Time-Hypothesis,
and for " > 0, O(m(1�") logn) is in contradiction with the Strong Exponential-Time-
Hypothesis. When non-uniform query times are considered, the problem becomes
PSPACE-complete. Also, a generalization to directed graphs also turns out to be
PSPACE-complete.

We also refer the interested reader to further works that consider a probabilistic
version of the problem, where the answer to a query is correct with some probability
p > 1

2 [8, 37, 38, 53]. In particular, for any p > 1
2 and any undirected unweighted

graph, a search strategy can be computed that finds the target node with probability
1� � using (1� �) log2 n

1�H(p) +o(log n)+O(log2 1
� ) queries in expectation, where H(p) =

�p log2 p� (1� p) log2(1� p) is the entropy function. See [79] for a model in which
a fixed number of queries can be answered incorrectly during a binary search.

The edge-query model. In the case of unweighted trees, an optimal search strat-
egy can be computed in linear time [60, 72]. (See [29] for a correspondence between
edge rankings and the searching problem.) The problem of computational complex-
ity for weighted trees attracted a lot of attention. On the negative side, it has been
proved that it is strongly NP-hard to compute an optimal search strategy [28] for
bounded diameter trees, which has been improved by showing hardness for several
specific topologies: trees of diameter at most 6, trees of degree at most 3 [23] and
spiders [24] (trees having at most one node of degree greater than two). On the other
hand, polynomial-time algorithms exist for weighted trees of diameter at most 5 and
weighted paths [23]. We note that for weighted paths there exists a linear-time but
approximate solution given in [56]. For approximate polynomial-time solutions, a
simple O(log n)-approximation has been given in [28] and a O(log n/ log log log n)-
approximate solution is given in [23]. Then, the best known approximation ratio
has been further improved to O(log n/ log log n) in [24].

Some bounds on the number of queries for unweighted trees have been devel-
oped. Observe that an optimal search strategy needs to perform at least log2 n
queries in the worst case. However, there exist trees of maximum degree � that
require � log�+1 n queries [7]. On the other hand, ⇥(� log n) queries are always
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sufficient for each tree [7], which has been improved to (�+1) log� n [58], � log� n
[30] and 1 + ��1

log2(�+1)�1 log2 n [37].

We also point out that the considered problem, as well as the edge variant,
being quite fundamental, were historically introduced several times under different
names: minimum height elimination trees [78], ordered colourings [54], node and
edge rankings [50], tree-depth [75] or LIFO-search [43].

Table 3.1 summarizes the complexity status of both node- and edge-query models
(in case of unweighted paths in both cases the solution is the classical binary search
algorithm) and places our result in the general context.

Table 3.1: Computational complexity of the search problem in different graph
classes, including our results for weighted trees. Completeness results refer to the
decision version of the problem.

Graph class Unweighted Weighted

Paths: exact in O(n) time exact in O(n2) time [23]

Trees: exact in O(n) time [76, 81]

strongly NP-complete [31]

O(
p
log n)-approx. in poly-time (Thm. 3.4.1)

(1 + ")-approx. in n
O(logn/")

time (Thm. 3.5.1)

Undirected:
exact in n

O(logn)
time [37] PSPACE-complete [37]

O(log n)-approx. in poly-time [37] O(log n)-approx. in poly-time [37]

Directed: PSPACE-complete [37] PSPACE-complete [37]

Searching partial orders. The problem of searching a partial order with uniform
query times is NP-complete even for partial orders with maximum element and
bounded height Hasse diagram [17, 29]. For some algorithmic solutions for random
partial orders see [17]. For a given partial order P with maximum element, an
optimal solution can be obtained by computing a branching B (a directed spanning
tree with one target) of the directed graph representing P and then finding a search
strategy for the branching, as any search strategy for B also provides a feasible search
for P [29]. Since computing an optimal search strategy for B can be done efficiently
(through the equivalence to the edge-query model), finding the right branching is
a challenge. This approach has been used in [29] to obtain an O(log n/ log log n)-
approximation polynomial time algorithm for partial orders with maximum element.

We remark that searching a partial order with maximum element or with mini-
mum element are essentially quite different. For the latter case a linear-time algo-
rithm with additive error of 1 has been given in [76]. As observed in [29], the problem
of searching in tree-like partial orders with maximum element (which corresponds
to the edge-query model in trees) is equivalent to the edge ranking problem.
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3.1.3 Organization of the Chapter
Section 3.2 explains the necessary notation and a formal statement of the prob-
lem. For our analysis, Section 3.3 modelizes our problem into a model more similar
to combinatorial optimization problem than the natural description of strategies.
Precisely, Section 3.3.1 restates the problem in such a way that with each vertex
v of the input tree we associate a sequence of vertices that need to be iteratively
queried when v is the root of the current subtree that contains the target node. In
Section 3.3.2 we extend this approach by associating with each vertex a sequence of
not only vertices to be queried but also time points of the queries.

The latter problem formulation is suitable for a dynamic programming algorithm
provided in Section 3.4. In this section we introduce an auxiliary, slightly modified
measure of the cost of a search strategy. First we provide a quasi-polynomial time
dynamic programming scheme that provides an arbitrarily good approximation of
the output search strategy with respect to this modified cost (the analysis is deferred
to Section 3.4.3), and then we prove that the new measure is sufficiently close to
the original one (the analysis is deferred to Section 3.4.5). These two facts provide
the quasi-polynomial time scheme for the tree search problem, achieving a (1 + ")-
approximation with a computation time of nO(logn/"2), for any 0 < " < 1.

In Section 3.5 we observe how to use the above algorithm to derive a polynomial-
time O(

p
log n)-approximation algorithm for the tree search problem. This is done

by a divide and conquer approach: a sufficiently small subtree T ⇤ of the input tree T
is first computed so that the quasi-polynomial time algorithm runs in polynomial (in
the size of T ) time for T ⇤. This decomposes the problem: having a search strategy
for T ⇤, the search strategies for T � T ⇤ are computed recursively. Details of the
approach are provided in Section 3.5.2.

3.2 Preliminaries

3.2.1 Notation and Query Model
We now give a more formal description of the problem of searching of an unknown
target node x by performing queries on the vertices of a given node-weighted rooted
tree T = (V,E,w) with weight function w : V ! R+. Each query selects one vertex
v of T and after w(v) time units receives an answer: either the query returns true,
meaning that x = v, or it returns a neighbor u of v which lies closer to the target
x than v. Since we assume that the queried graph T is a tree, such a neighbor u is
unique and is equivalently described as the unique neighbor of v belonging to the
same connected component of T \ {v} as x.

All trees we consider are rooted. Given a tree T , the root is denoted by r(T ). For
a node v 2 V , we denote by Tv the subtree of T rooted at v. For any subset V 0

✓ V
(respectively, E 0

✓ E) we denote by T [V 0] (resp., T [E 0]) the minimal subtree of T
containing all nodes from V 0 (resp., all edges from E 0). For v 2 V , N(v) is the set
of neighbors of v in T .

For U ✓ V and a target node x /2 U , there exists a unique maximal subtree of
T \ U that contains x; we will denote this subtree by T hU, xi.
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We denote |V | = n. We will assume w.l.o.g. that the maximum weight of a vertex
is normalized to 1. (This normalization is immediately obtained by a proportional
scaling of all units of cost.) We will also assume w.l.o.g. that the weight function
satisfies the following star condition:

for all v 2 V , w(v) 
X

u2N(v)

w(u).

Observe that if this condition is not fulfilled, i.e., for some vertex v will have w(v) >P
u2N(v) w(u), then vertex v will never be queried by any optimal strategy in v, since

a query to v can then be replaced by a sequence of queries to all neighbors of v,
obtaining not less information at strictly smaller cost. In general, given an instance
which does not satisfy the star condition, we enforce it by performing all necessary
weight replacements w(v) min{w(v),

P
u2N(v) w(u)}, for v 2 V .

For a,! 2 R�0, we denote the rounding of a down (up) to the nearest multiple
of ! as bac! = !ba/!c and dae! = !da/!e, respectively.

3.2.2 Definition of a Search Strategy
A search strategy A for a rooted tree T = (V,E,w) is an adaptive algorithm which
defines successive queries to the tree, based on responses to previous queries, with
the objective of locating the target vertex in a finite number of steps. Note that
search strategies can be seen as decision trees in which each node represents a subset
of vertices of T that contains x, with leaves representing singletons consisting of x.

Let QA(T, x) be the time-ordering (sequence) of queries performed by strategy A

on tree T to find a target vertex x, with QA,i(T, x) denoting the i-th queried vertex
in this time ordering, 1  i  |QA(T, x)|.

We denote by

COSTA(T, x) =
|QA(T,x)|X

i=1

w(QA,i(T, x))

the sum of weights of all vertices queried by A with x being the target node, i.e.,
the time after which A finishes. Let

COSTA(T ) = max
x2V

COSTA(T, x)

be the cost of A. We define the cost of T to be

OPT(T ) = min{COSTA(T )
��A is a search strategy for T}.

We say that a search strategy is optimal for T if its cost equals OPT(T ).
As a consequence of normalization and the star condition, we have the following

bound.

Observation 3.2.1. For any tree T , we have 1  OPT(T )  dlog2 ne.

Proof. By the star condition, considering any vertex v 2 V as the target, we trivially
have

OPT(T ) � inf
A

COSTA(T, v) � inf
A

COSTA(T [{v} [N(v)], v) � w(v).
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Thus, OPT(T ) � maxv2V w(v) = 1, which gives the first inequality.
For the second inequality, we observe that applying to tree T the optimal search

strategy for unweighted trees, we can locate the target in at most dlog2 ne queries
(cf. e.g. [54, 76]). Since the cost of each query is at most 1, the claim follows.

We also introduce the following notation. If the first |U | queried vertices by a
search strategy A are exactly the vertices in U , U = {QA,i(T, x) : 1  i  |U |},
then we say that A reaches T hU, xi through U , and w(U) is the cost of reaching
T hU, xi by A. We also say that we receive an ‘up’ reply to a query to a vertex v if
the root of the tree remaining to be searched remains unchanged by the query, i.e.,
r(T hU, xi) = r(T hU [ {v}, xi), and we call the reply a ‘down’ reply when the root
of the remaining tree changes, i.e., r(T hU, xi) 6= r(T hU [ {v}, xi). Without loss of
generality, after having performed a sequence of queries U , we can assume that the
tree T hU, xi is known to the strategy.

3.3 Valid Strategies and its Characterization

3.3.1 Presentation of Valid Strategies

We call a search strategy polynomial-time if it can be implemented using a dynamic
(adaptive) algorithm which computes the next queried vertex in polynomial time.

We give most of our attention herein to search strategies in trees which admit
a natural (non-adaptive, polynomial-space) representation called a query sequence
assignment. Formally, for a rooted tree T , the query sequence assignment S is a
function S : V ! V ⇤, which assigns to each vertex v 2 V an ordered sequence of
vertices S(v), known as the query sequence of v. The query sequence assignment
directly induces a strategy AS, presented as Algorithm 4. Intuitively, the strategy
processes successive queries from the sequence S(v), where v is the root vertex of
the current search tree, v = r(T hU, xi), where U is the set of queries performed
so far. This processing is performed in such a way that the strategy iteratively
takes the first vertex in S(v) that belongs to T hU, xi and queries it. As soon as
the root of the search tree changes, the procedure starts processing queries from the
query sequence of the new root, which belong to the remaining search tree. The
procedure terminates as soon as T hU, xi has been reduced to a single vertex, which
is necessarily the target x.

In what follows, in order to show that our approximation strategies are polynomial-
time, we will confine ourselves to presenting a polynomial-time algorithm which
outputs an appropriate sequence assignment.

A sequence assignment is called stable if the replacement of line 9 in Algorithm 4
by any assignment of the form v  v00, where v00 is an arbitrary vertex which is
promised to lie on the path from r(T hU, xi) to the target x, always results in a
strategy which performs a (not necessarily strict) subsequence of the sequence of
queries performed by the original strategy AS. Sequence assignments computed on
trees with a bottom-up approach usually have the stability property; we provide a
proof of stability for one of our main routines in Section 3.4.3.
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Algorithm 4 Search strategy AS for a query sequence assignment S
1: v  r(T ) // stores current root

2: U  ;

3: while |T hU, xi| > 1 do
4: for u 2 S(v) do
5: if u 2 T hU, xi then // u is the first vertex in S(v) that belongs to T hU, xi

6: QueryVertex(u)

7: U  U [ {u}

8: if v 6= r(T hU, xi) then // query reply is ‘down’

9: v  r(T hU, xi)
10: break // for loop

11: end if
12: end if
13: end for
14: end while

Without loss of generality, we will also assume that if v 2 S(v), then v is the last
element of S(v). Indeed, when considering a subtree rooted at v, after a query to v,
if v was not the target, then the root of the considered subtree will change to one of
the children of v, hence any subsequent elements of S(v) may be removed without
changing the strategy.

3.3.2 Strategies Based on Consistent Schedules
Intuitively, we may represent search strategies by a schedule consisting of some
number of jobs, with each job being associated to querying a node in the tree (cf.
e.g. [51, 65, 66]). Each job has a fixed processing time, which is set to the weight of a
node. Formally, in this work we will refer to the schedule Ŝ only in the very precise
context of search strategies AS based on some query sequence assignment S. The
schedule assignment Ŝ is the following extension of the sequence assignment S, which
additionally encodes the starting time of search query job. If the query sequence S
of a node v is of the form S(v) = (v1, . . . , vk), k = |S(v)|, then the corresponding
schedule for v will be given as Ŝ(v) = ((v1, t1), . . . , (vk, tk)), with ti 2 R�0 denoting
the starting time of the query for vi. We will call Ŝ(v) the schedule of node v. We
will call a schedule assignment Ŝ consistent with respect to search in a given tree T
if the following conditions are fulfilled:

(i) No two jobs in the schedule of a node overlap: for all v 2 V , for two distinct
jobs (u1, t1), (u2, t2) 2 Ŝ(v), we have |[t1, t1 + w(u1)] \ [t2, t2 + w(u2)]| = 0.
Here |[a, b]| is the length of the interval, i.e. |[a, b]| = b� a.

(ii) If v is the parent of v0 in T and (u, t) 2 Ŝ(v0), then we either also have
(u, t) 2 Ŝ(v), or the job (v, tv) 2 Ŝ(v) completes before the start of job (u, t):
tv + w(v)  t.

It follows directly from the definition that a consistent schedule assignment (and the
underlying query sequence assignment) is uniquely determined by the collection of
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search for b:
Query c (the first item in Ŝ(a)); Reply: a (by oracle)
Query b (the second item of Ŝ(a), since replied a; ) Reply: yes.
search for h:
Query c (the first item in Ŝ(a)); Reply: f
Query f (the first item in Ŝ(f)); Reply: h
Query h (the first item in Ŝ(h)); Reply: yes.

Figure 3.1: a schedule assignment represented by intervals and two examples of
searching for b and h.

jobs {(v, tv) : (v, tv) 2 Ŝ(u), u 2 V }. Note that not every vertex has to contain a
query to itself in its schedule; we will occasionally write tv =? to denote that such
a job is missing. In this case, the jobs of all children of v have to be contained in
the schedule of node v.

By extension of notation for sequence assignments, we will denote a strategy fol-
lowing a consistent schedule assignment Ŝ (i.e., executing the query jobs of schedule
Ŝ at the prescribed times) as AŜ. We will then have:

COSTAŜ
(T ) = |Ŝ|,

where |Ŝ| is the duration of schedule assignment Ŝ, given as:

|Ŝ| = max
v2V

|Ŝ(v)|,

with:
|Ŝ(v)| = max

(u,t)2Ŝ(v)
(t+ w(u)).

We remark that there always exists an optimal search strategy which is based
on a consistent schedule. By a well-known characterization (cf. e.g. [28]), tree T
satisfies OPT(T ) = ⌧ 2 R if and only if there exists an assignment I : V ! I⌧ of
intervals of time to nodes before deadline ⌧ , I⌧ = {[a, b] : 0  a < b  ⌧}, such that
|I(v)| = w(v) and if |I(u) \ I(v)| > 0 for any pair of nodes u, v 2 V , then the u� v
path in T contains a separating vertex z such that max I(z)  min(I(u) [ I(v)).
The corresponding schedule assignment of duration ⌧ is obtained by adding, for each
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node u 2 V , the job (u,min I(u)) to the schedule of all nodes on the path from u
towards the root, until a node v such that max I(v)  min I(u) is encountered on
this path. The consistency and correctness of the obtained schedule is immediate
to verify.

Observation 3.3.1. For any tree T , there exists a query sequence assignment S
and a corresponding consistent schedule Ŝ on T such that |Ŝ| = OPT(T ).

3.4 (1 + ")-Approximation in nO(log n/"2) Time
We at first present an approximation scheme for the weighted tree search problem
with nO(logn) running time. The main difficulty consists in obtaining a constant
approximation ratio for the problem with this running time; we at once present this
approximation scheme with tuned parameters, so as to achieve (1+")-approximation
in nO(logn/"2) time.

Our construction consists of two main building blocks. First, we design an al-
gorithm based on a bottom-up (dynamic programming) approach, which considers
exhaustively feasible sequence assignments and query schedules over a carefully re-
stricted state space of size nO(logn) for each node. The output of the algorithm pro-
vides us both with a lower bound on OPT(T ), and with a sequence assignment-based
strategy AS for solving the tree search problem. The performance of this strategy
AS is closely linked to the performance of OPT(T ), however, there is one type of
query, namely a query on a vertex of small weight leading to a ‘down’ response,
due to whose repeated occurrence the eventual cost difference between COSTAS(T )
and OPT(T ) may eventually become arbitrarily large. To alleviate this difficulty, we
introduce an alternative measure of cost which compensates for the appearance of
the disadvantageous type of query.

3.4.1 Modified Costs
We start by introducing some additional notation. Let ! 2 R+, be an arbitrarily
fixed value of weight and let c 2 N. The choice of constant c 2 N will correspond to
an approximation ratio of (1 + ") of the designed scheme for " = 168/c.

We say that a query to a vertex v is a light down query in some strategy A if
w(v) < c! and x 2 V (Tv), i.e., it is also a ‘down’ query, where x is the target vertex.

For any strategy A, we denote by COST
(!,c)
A

(T, x) its modified cost of finding
target x, defined as follows. Let dx be the number of light down queries when
searching for x:

dx =
��{i : w(QA,i(T, x)) < c! and x 2 V (TQA,i(T,x))}

�� .

Then, the modified cost COST(!,c)
A

(T, x) is:

COST
(!,c)
A

(T, x) = COSTA(T, x)� (2c+ 1)!dx. (3.1)

and by a natural extension of notation:

COST
(!,c)
A

(T ) = max
x2V

COST
(!,c)
A

(T, x).
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The technical result which we will obtain in Subsection 3.4.3 may now be stated
as follows.
Proposition 3.4.1. For any c 2 N, L 2 N, there exists an algorithm running in
time (cn)O(L), which for any tree T constructs a stable sequence assignment S and
computes a value of ! such that !  1

LCOST
(!,c)
AS

(T ) and:

COST
(!,c)
AS

(T ) 

✓
1 +

12

c

◆
OPT(T ).

In order to convert the obtained strategy AS with a small value of COST(!,c) into
a strategy with small COST, we describe in Section 3.4.5 an appropriate strategy
conversion mechanism. The approach we adopt is applicable to any strategy based
on a stable sequence assignment and consists in concatenating, for each vertex v 2 V ,
a prefix to the query sequence S(v) in the form of a separately computed sequence
R(v), which does not depend on S(v). The considered query sequences are thus
of the form R(v) � S(v), where the symbol “�” represents sequence concatenation.
Intuitively, the sequences R, taken over the whole tree, reflect the structure of a
specific solution to the unweighted tree search problem on a contraction of tree T ,
in which each edge connecting a node to a child with weight at least c! is contracted.
We recall that the optimal number of queries to reach a target in an unweighted tree
is O(log n), and the goal of this conversion is to reduce the number of light down
queries in the combined strategy to at most O(log n).
Proposition 3.4.2. For any fixed ! > 0 there exists a polynomial-time algorithm
which for a tree T computes a sequence assignment R : V ! V ⇤, such that, for any
strategy AS based on a stable sequence assignment S, the sequence assignment S+,
given by S+(v) = R(v) � S(v) for each v 2 V , has the following property:

COSTAS+ (T )  COST
(!,c)
AS

(T ) + 4(2c+ 1)! log2 n.

The proof of Proposition 3.4.2 is provided in Section 3.4.5.
We are now ready to put together the two bounds. Combining the claims of

Proposition 3.4.1 for L = dc2 log2 ne (with !  1
LCOST

(!,c)
AS

(T ) 
COST

(!,c)
AS

(T )

c2 log2 n
) and

Proposition 3.4.2, we obtain:

COSTAS+ (T )  COST
(!,c)
AS

(T ) + 4(2c+ 1)! log2 n  COST
(!,c)
AS

(T ) + 12c! log2 n 

 COST
(!,c)
AS

(T ) + 12c log2 n
COST

(!,c)
AS

(T )

c2 log2 n


✓
1 +

12

c

◆
COST

(!,c)
AS

(T ) 



✓
1 +

12

c

◆2

OPT(T ) 

✓
1 +

168

c

◆
OPT(T ).

After putting " = 168
c and noting that in stating our result we can safely assume

c = O(poly(n)) (beyond this, the tree search problem can be trivially solved opti-
mally in O(nn) time using exhaustive search), we obtain the main theorem of the
Section.
Theorem 3.4.1. There exists an algorithm running in nO( logn

"2 ) time, providing a
(1 + ")-approximation solution to the weighted tree search problem.
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3.4.2 Preprocessing: Time Alignment in Schedules
We adopt here a method similar but arguably more refined than rounding tech-
niques in scheduling problems of combinatorial optimization, showing that we could
discretise the starting and finishing time of jobs, as well as weights of vertices, in a
way to restrict the size of state space for each node to nO(logn), without introducing
much error.

Fix c 2 N and ! = a
cn for some a 2 N. (In subsequent considerations, we will

have c = ⇥(1/"), a = O( n
logn) and ! = ⌦("/ log n).) Given a tree T = (V,E,w), let

T 0 = (V,E,w0) be a tree with the same topology as T but with weights rounded up
as follows:

w0(v) =

(
dw(v)e!, if w(v) > c!,

dw(v)e 1
cn
, otherwise.

(3.2)

We will informally refer to vertices with w(v) > c! (equivalently w0(v) > c!) as
heavy vertices and vertices with w(v)  c! (equivalently w0(v)  c!) as light ver-
tices. (Note that w(v)  c! if and only if w0(v)  c!.) When designing sched-
ules, we consider time divided into boxes of duration !, with the i-th box equal to
[i!, (i+ 1)!]. Each box is divided into a identical slots of length 1

cn .
In the tree T 0, the duration of a query to a heavy vertex is an integer number of

boxes, and the duration of a query to a light vertex is an integer number of slots.
We next show that, without affecting significantly the approximation ratio of the
strategy, we can align each query to a heavy vertex in the schedule so that it occupies
an interval of full adjacent boxes, and each query to a light vertex in the schedule
so that it occupies an interval of full adjacent slots (possibly contained in more than
one box).

We start by showing the relationship between the costs of optimal solutions for
trees T and T 0.

Lemma 3.4.1. OPT(T )  OPT(T 0)  (1 + 2
c )OPT(T ).

Proof. The inequality OPT(T )  OPT(T 0) follows directly from the monotonicity of
the cost of the solution with respect to vertex weights, since we have w0(v) � w(v),
for all v 2 V .

To show the second inequality, we note that by the definition of weights (3.2),
for any vertex v, w0(v)  (1 + 1

c )w(v) +
1
cn .

Consider an optimal strategy O for tree T and let QO(T, x) = (v1, . . . , vk) be the
time-ordering of queries performed by strategy O on tree T to find a target vertex
x. Let O

0 be the strategy which follows the same time-ordering of queries when
locating target x in T 0. We have:

COSTO0(T 0, x) =
kX

i=1

w0(vi) 
kX

i=1

✓✓
1 +

1

c

◆
w(v) +

1

cn

◆


1

c
+

✓
1 +

1

c

◆ kX

i=1

w(v) 



✓
1 +

2

c

◆
OPT(T ),

where we used the fact that, by Observation 3.2.1, OPT(T ) � 1. Since OPT(T 0) 
maxx2V COSTO0(T 0, x), the claim follows.
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Lemma 3.4.2. There exists a consistent schedule assignment Ŝ for tree T 0 such
that COSTAŜ

(T 0)  (1 + 3
c )OPT(T

0) and for all v 2 V we have that

• if w0(v) > c!, (v is heavy), then the starting time t of any job (v, t) in the
schedule Ŝ(u) of any u 2 V is an integer multiple of ! (aligned to a box),

• if w0(v)  c!, (v is light), then the starting time t of any query (v, t) in the
schedule Ŝ(u) of any u 2 V is an integer multiple of 1

cn (aligned to a slot).

Proof. We consider an optimal consistent schedule assignment ⌃̂ for tree T 0, |⌃̂| =
OPT(T 0). Fix u 2 V arbitrarily, and let (vu,i, tu,i) be the i-th query job in ⌃̂(u).
Consider now the schedule ⌃̂⇤(u) for T based on the same sequence assignment, in
which the job (vu,i, tu,i) is replaced by the job (vu,i, t⇤u,i) with t⇤u,i = (1 + 2

c )tu,i. We
have for any two consecutive jobs at u:

t⇤u,i+1 � t⇤u,i =

✓
1 +

2

c

◆
(tu,i+1 � tu,i) �

✓
1 +

2

c

◆
w(vu,i), (3.3)

where we assume by convention that for the last job index imax, tu,imax+1 = |⌃̂(u)|.
We now observe that schedule assignment ⌃̂⇤ on tree T can be directly converted
into schedule assignment Ŝ on tree T 0 as follows. The query sequence of each vertex
is preserved unchanged. If vu,i is a heavy vertex, then within time interval [t⇤u,i, t⇤u,i+1]
we allocate to vertex vu,i an interval of full boxes, starting at time dt⇤u,ie!. Indeed,
by (3.3) we have:

t⇤u,i+1 � dt
⇤

u,ie! > t⇤u,i+1 � t⇤u,i � ! >

✓
1 +

2

c

◆
w(vu,i)� ! > w(vu,i) + ! > w0(vu,i).

Since no two jobs overlap and the time transformation is performed identically for
all vertices, the validity and consistency of schedule assignment Ŝ for tree T 0 follows.
We also have |Ŝ|  (1 + 2

c )|⌃̂| = (1 + 2
c )OPT(T

0).
To obtain the second part of the claim (alignment for light vertices) it suffices to

round up the starting time of query times of all (light) vertices to an integer multiple
of 1

cn . Since all weights in T 0 are integer multiples of 1
cn , and so are the starting times

of queries to heavy vertices in Ŝ, the correctness and consistency of the obtained
schedule again follows directly. This final transformation increases the duration by
at most 1

c 
1
cOPT(T

0), and combining the bounds for both the transformations
finally gives the claim.

A schedule on tree T 0 satisfying the conditions of Lemma 3.4.2, and the resulting
search strategy, are called aligned. Subsequently, we will design an aligned strategy
on tree T 0, and compare the quality of the obtained solution to the best aligned
strategy for T 0.

The intuition between the separate treatment of heavy vertices (aligned to boxes)
and light vertices (aligned to slots) in aligned schedules is the following. Whereas
the time ordering of boxes is essential in the design of the correct strategy, in our
dynamic programming approach we will not be concerned about the order of slots
within a single box (i.e., the order of queries to light vertices placed in a single box).
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This allows us to reduce the state space of a node. Whereas the ordering of slots in
the box will eventually have to be repaired to provide a correct strategy, this will
not affect the quality of the overall solution too much (except for the issue of light
down queries pointed out earlier, which are handled separately in Section 3.4.5).

3.4.3 Dynamic Programming Routine for Fixed Box Size
Let the values of parameter c and box size ! be fixed as before. Additionally, let
L 2 N be a parameter representing the time limit for the duration of the considered
vertex schedules when measured in boxes, i.e., the longest schedule considered by
the procedure will be of length L! (we will eventually choose an appropriate value
of L = O(log n) as required when showing Theorem 3.4.1).

Before presenting formally the considered quasi-polynomial time procedure, we
start by outlining an (exponential time) algorithm which verifies if there exists an
aligned schedule assignment ⌃̂ for T 0 whose duration is at most L!. Notice that
since all weights in T 0 are integer multiples of 1

cn , the optimal aligned schedule
assignment will start and complete the execution of all queries at times which are
integer multiples of 1

cn ; thus, we may restrict the considered class of schedules to
those having this property. Any possible schedule of length at most L! at a vertex
v, which may appear in ⌃̂, will be represented in the form of the pair (�v, tv), where:

• �v is a Boolean array with L!cn entries, where �v[i] = 1 when time slot
[ i
cn ,

i+1
cn ] is occupied in the schedule at v, and �v[i] = 0 otherwise.

• tv 2 R represents the start time of the query to v in the schedule of v (we put
t =? if such a query does not appear in the schedule).

We now state some necessary conditions for a consistent schedule, known from the
analysis of the unweighted search problem (cf. e.g. [50, 76, 81]). The first observation
expresses formally the constraint that the same time slot cannot be used in the
schedules of two children of a node v, unless it is separated by an (earlier) query to
node v itself. All time slots before the starting time tv of job (v, tv) are free if and
only if the corresponding time slot is free for all of the children of v.
Observation 3.4.1. Assume that the tuple (�v, tv)v2V corresponds to a consistent
schedule. Let v 2 V be an arbitrarily chosen node with set of children {v1, . . . , vl}.
Let the completion time tvend of the query to v in the schedule of v be given as:

tvend =

(
tv + w0(v), if tv 6=?,
+1, if tv =?.

Then, for any time slot [ i
cn ,

i+1
cn ], we have:

�v[i] =
lX

j=1

�vj [i], when
i+ 1

cn
 tv,

�v[i] = 1 and
lX

j=1

�vj [i] = 0, when tv <
i+ 1

cn
 tvend,

�v[i] = 0, when
i+ 1

cn
> tvend.

9
>>>>>>>>>=

>>>>>>>>>;

(3.4)
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We remark that the last of the above conditions (3.4) follows from the w.l.o.g.
assumption we made when defining sequence assignments that whenever node v
appears in the schedule of v, it is the last node in the query sequence for v.

Moreover, any valid search strategy which locates a target vertex must eventually
query at least one of the endpoints of every edge of the tree T 0, since otherwise, it
will not be able to distinguish targets located at these two endpoints. We thus make
the following observation.

Observation 3.4.2. Assume that the tuple (�v, tv)v2V represents a consistent sched-
ule. Let v 2 V be an arbitrarily chosen node with set of children {v1, . . . , vl}. Then:

If tv =?, then tvj 6=?, for all 1  j  l. (3.5)

Conditions (3.4) and (3.5) provide us with necessary conditions which must be
satisfied by any consistent aligned schedule assignment.

In order to lower-bound the duration of the consistent aligned schedule assign-
ment with minimum cost, we perform an exhaustive bottom-up evaluation of aligned
schedules which satisfy the constraints of (3.5), and a slightly weaker form of the
constraints of (3.4). These weaker constraints are introduced to reduce the running
time of the algorithm. Instead of considering individual slots of a schedule which
may be empty or full, �v[i] 2 {0, 1}, we consider the load of each box in the same
schedule, defined as the proportion of occupied slots within the box. Formally, for
the p-th box, 0  p < L, the load sv[p] is given as:

sv[p] =
1

!cn

(p+1)!cn�1X

i=p·!cn

�v[i], sv[p] 2

⇢
0,

1

!cn
,

2

!cn
, . . . , 1

�
,

where we recall that !cn is an integer by the choice of !. We will call a box with
load sv[p] = 0 an empty box, a box with load sv[p] = 1 a full box, and a box with
load 0 < sv[p] < 1 a partially full box in the schedule of v.

By summing over all slots within each box, we obtain the following corollary
directly from Observation 3.4.1.

Corollary 3.4.1. Assume that the tuple (sv, tv)v2V corresponds to a consistent
schedule. Let v 2 V be an arbitrarily chosen node with set of children {v1, . . . , vl}
and completion time tvend of the query to v given as in Observation 3.4.1. Let ap be
the contribution to the load of the p-th box of the query job for vertex v, i.e.

ap =

(
1
! |[tv, t

v
end] \ [p!, (p+ 1)!]| if tv 6=?,

0 if tv =?.

Then, for any box [p!, (p+ 1)!], 0  p < L, we have:

sv[p] = ap +
lX

j=1

svj [p] 2 [0, 1], when tvend � (p+ 1)!,

sv[p] � ap, when p! < tvend < (p+ 1)!,
sv[p] = 0, when tvend  p!.

9
>>>>=

>>>>;

(3.6)
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Moreover, for any box [p!, (p+ 1)!], 0  p < L, we have:

For all 1  j  l, the following bound holds: svj [p] + ap  1. (3.7)

We remark that the statement of Corollary 3.4.1 treats specially one box, namely
the one which contains strictly within it the time moment tvend. For this box, we
are unable to make a precise statement about sv[p] based on the description of
the schedules of its children, and content ourselves with a (potentially) weak lower
bound sv[p] � ap = 1

! (t
v
end � p!). This is the direct reason for the slackness in our

subsequent estimation, which loses ! time per down query. However, we note that
by the definition of aligned schedule, a query to a heavy vertex will never begin
or end strictly inside a box, and will not lead to the appearance of this issue. We
remark that condition (3.7) additionally stipulates that within any box, it must be
possible to schedule the contribution of the query to v and the contribution of any
child vj to the load of the box in a non-overlapping way.

We now show that the shortest schedule assignments satisfying the set of con-
straints (3.5), (3.6), and (3.7) can be found in nO(logn) time. This is achieved using
a procedure BuildStrategy, presented in Algorithm 5, which returns for a node
v a non-empty set of schedules Ŝ[v], such that each sv 2 Ŝ[v] can be extended into
the sought assignment of schedules in its subtree, (su, tu)u2V (Tv). In the statement
of Algorithm 5, we recall that, given a tree T = (V,E,w), tree T 0 = (V,E,w0) is
the tree with weights rounded up to the nearest multiple of the length of a slot (see
Equation (3.2)).

The subsequent steps taken in procedure BuildStrategy can be informally
sketched as follows. The input tree T 0 is processed in a bottom-up manner and hence,
for an input vertex v, the recursive calls for its children v1, . . . , vl are first made,
providing schedule assignments for the children (see lines 3-4). Then, the rest of the
pseudocode is responsible for using these schedule assignments to obtain all valid
schedule assignments for v. Lines 11-15 merge the schedules of the children in such a
way that a set Ŝ⇤

i , i 2 {1, . . . , l}, contains all schedule assignments computed on the
basis of the schedules for the children v1, . . . , vi. Thus, the set Ŝ⇤

l is the final product
of this part of the procedure and is used in the remaining part. Note that a schedule
assignment in Ŝ⇤

l may not be valid since a query to v is not accommodated in it — the
rest of the pseudocode is responsible for taking each schedule s 2 Ŝ⇤

l and inserting
a query to v into s. More precisely, the subroutine InsertVertex is used to place
the query to v at all possible time points (depending whether v is heavy or light).
We note that the subroutine MergeSchedules, for each schedule s it produces,
sets a Boolean ‘flag’ s.must_contain_v that whenever equals false, indicates that
querying v is not necessary in s to obtain a valid schedule for v (this happens if s
queries all children of v). A detailed analysis of procedure BuildStrategy can be
found in the proof of Lemma 3.4.3.
Lemma 3.4.3. For fixed constants L, c 2 N, calling procedure BuildStrategy(r(T ),!),
where r(T ) is the root of the tree, determines if there exists a tuple (sv, tv)v2V which
satisfies constraints (3.5), (3.6), and (3.7), or returns an empty set otherwise.
Proof. The formulation of procedure BuildStrategy directly enforces that the
constraints (3.5), (3.6), and (3.7) are fulfilled at each level of the tree, in a bottom-
up manner.
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Algorithm 5 Dynamic programming routine BuildStrategy for a tree T 0. L, c 2
N are global parameters. Subroutines MergeSchedules and InsertVertex are
provided further on.
1: procedure BuildStrategy(vertex v, box size ! 2 R)

2: l number of children of v in T
0

// Denote by v1, . . . , vl the children of v.

3: for i = 1..l do
4: Ŝ[vi] BuildStrategy(vi, !);

5: end for
6: s 0L

7: s.max_child_load 0L

8: s.must_contain_v  false

9: Ŝ0  {s} // Ŝ0 contains the schedule with no queries.

10: // Inductively, Ŝ
⇤

i is based on merging schedules at v1, . . . , vi.

11: for i = 1..l do
12: Ŝ

⇤

i  ;

13: for each schedule s 2 Ŝ
⇤

i�1 do
14: for each schedule sadd 2 Ŝ[vi] do
15: Ŝ

⇤

i  Ŝ
⇤

i [ MergeSchedules(s, sadd, !);

16: end for
17: end for
18: end for
19: Ŝ[v] ;
20: for each s 2 Ŝ

⇤

l do
21: if w

0(v) > c! then // v is heavy

22: for p = 0..L� 1 do //attempt to insert (into s) query to v starting from

time-box p

23: Ŝ[v] Ŝ[v][ InsertVertex(s, v,!, p · !)

24: end for
25: else //v is light

26: for real t = 0..L · ! step 1
cn do

27: //attempt to insert (into s) query to v at a slot from time t

28: Ŝ[v] Ŝ[v][ InsertVertex(s, v,!, t)

29: end for
30: end if
31: if s.must_contain_v = false then
32: Ŝ[v] Ŝ[v][ InsertVertex(s, v,!,?)

33: end if
34: end for
35: return Ŝ[v]
36: end procedure
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Algorithm 6 Subroutines MergeSchedules and InsertVertex of procedure
BuildStrategy from Algorithm 5.
1: procedure MergeSchedules(schedule sorig, schedule sadd, box size ! 2 R)

2: s sorig // copy schedule and its properties to answer

3: for p = 0..L� 1 do // for each time-box add load of s1 and s2

4: s[p] sorig[p] + sadd[p]
5: if s[p] > 1 then
6: s[p] +1
7: end if
8: s.max_child_load[p] max{s.max_child_load[p], sadd[p]}
9: end for

10: if sadd.tv =? then
11: s.must_contain_v  true

12: end if
13: return s

14: end procedure
15:

16: procedure InsertVertex(schedule sorig, vertex v, box size ! 2 R, time t 2 R[{?})
17: s 0L // initialize empty schedule for answer

18: if t 6=? then
19: I  [t, t+ w

0(v)] // time interval into which query to v is being inserted

20: s.tv  t

21: t
v
end  t+ w

0(v)
22: else
23: I  ;

24: s.tv  ?

25: t
v
end  +1

26: end if
27: for p = 0..L� 1 do // for each time-box

28: ap  
1
! |I \ [p · !, (p+ 1) · !]| // contribution of query to v to load of box p

29: if s.max_child_load[p] + ap > 1 then
30: return ;
31: end if
32: if t

v
end � (p+ 1)! then

33: s[p] sorig[p] + ap // add load from children in box p

34: if s[p] > 1 then //insertion failed

35: return ;
36: end if
37: else
38: s[p] ap

39: end if
40: end for
41: return {s}

42: end procedure
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For each vertex v 2 V , we show by induction on the tree size that upon termi-
nation of procedure BuildStrategy(v,!), the returned variable Ŝ[v] is the set of
all minimal schedules (sv, tv) 2 Ŝ[v] which can be extended within the subtree Tv

to a data structure (su, tu)u2V (Tv), for some (su, tu) 2 Ŝ[u], u 2 V (Tv), in such a way
that the conditions (3.5), (3.6), and (3.7) hold within subtree Tv. Here, minimality
of a schedule is a trivial technical assumption, understood in the sense of the fol-
lowing very restrictive partial order: we say (sv, tv)  (s0v, t

0

v) if sv[p]  s0v[p] for all
0  p  L� 1 and tv = t0v. (In the pseudocode, rather than write (sv, tv) as a pair
variable, we include tv within the structure sv as its special field sv.tv.)

The algorithm proceeds to merge together exhaustively all possible choices of
schedules (svi , tvi) 2 Ŝ[vi] of all children vi of v, 1  i  l. The merge is performed
by computing, for any fixed choice (svi , tvi)1il, the combined load of each box in
the resultant schedule s:

s[p] 
lX

i=1

svi [p], (3.8)

where, as a technicality, we also put s[p] +1 whenever we obtain excessive load
in a box (s[p] > 1), as to avoid inflating the size of the state space and consequently,
the running time of the algorithm. In Algorithm 5, the computation of s[p] through
the sum (3.8) proceeds by a processing of successive children vi, 1  i  l, so that
a schedule s stored in the data structure Ŝ

⇤

i represents s[p] =
Pi

i=1 svj [p]. The
summation of load is performed within the subroutine MergeSchedules, which
merges a schedule sorig 2 Ŝ

⇤

i�1 with a schedule sadd 2 Ŝ[vi] to obtain the new schedule
s 2 Ŝ

⇤

i .
Eventually, the set of schedules Ŝ

⇤

l , obtained after merging the schedules of all
children of v, contains an element s satisfying (3.8). Next, we test all possible values
of tv 2 R[ {?}, which are feasible for an aligned schedule. These values depend on
whether vertex v is heavy or light, for which tv should represent the starting time of
a box or slot, respectively. Using procedure InsertVertex, we then set the load
of each box following (3.6):

sv[p] 

8
><

>:

ap +
Pl

j=1 svj [p], when tvend � (p+ 1)!,
ap, when p! < tvend < (p+ 1)!,
0, when tvend  p!,

(3.9)

where ap is defined as in (3.4). In the pseudocode of function InsertVertex,
for compactness we replace the second and third condition by equivalently setting
sv[p]  ap when the first condition does not hold. We additionally constrain in
procedures MergeSchedules and InsertVertex the possibility of the condi-
tion tv =? occurring by enforcing the constraints of (3.5) (corresponding of the
setting of parameter s.must_contain_v to false). Condition (3.7) is enforced
through procedures MergeSchedules and InsertVertex using the auxiliary
array s.max_child_load[p], 0  p  L�1, defined so that s.max_child_load[p] 
max1jl svj [p].

Since Ŝ[vi], for all 1  i  l, contains all minimal schedules satisfying (3.5),
(3.6), and (3.7), the same holds for Ŝ[v], which was constructed by enforcing only
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the required constraints. We remark that we obtain only the set of minimal (and
not all) schedules due to the slight difference between (3.9) and (3.6) in the second
condition: instead of requiring sv[p] � ap, we put sv[p]  ap, thus setting the p-th
coordinate of the schedule at its minimum possible value.

It follows directly from Lemma 3.4.3 that, for any value !⇤, tree T may only
admit an aligned schedule assignment of duration at most !⇤L if a call to pro-
cedure BuildStrategy(r(T ),!⇤) returns a non-empty set. Taking into account
Lemmas 3.4.1 and 3.4.2, we directly obtain the following lower bound on the length
of the shortest aligned schedule in tree T 0.

Lemma 3.4.4. If BuildStrategy(r(T ),!⇤) = ;, then:

!⇤L <

✓
1 +

3

c

◆
OPT(T 0) 

✓
1 +

3

c

◆✓
1 +

2

c

◆
OPT(T ) 

✓
1 +

11

c

◆
OPT(T ).

Finally, we bound the running time of procedure BuildStrategy.

Lemma 3.4.5. The running time of procedure BuildStrategy(r(T ),!) is at most
O((cn)�L), for some absolute constant � = O(1), for any !  n.

Proof. The procedure BuildStrategy is run recursively, and is executed once
for each node of the tree. The time of each execution is upper-bounded, up to
multiplicative factors polynomial in n, by the size of the largest of the schedule sets
named Ŝ[u], u 2 V , or Ŝ

⇤

i , appearing in the procedure. We further focus only on
bounding the size |Ŝ| of the state space of distinct possible schedules in the (sv, tv)
representation. The array sv has size L, with each entry sv[p], 0  p  L�1, taking
one of the values sv[p] 2 {0, 1

!cn ,
2

!cn , . . . , 1}, where the size of the set of possible
values is !cn+1 2 N. Additionally, in some of the auxiliary schedules, the additional
array field sv.max_child_load has length L, with each entry sv.max_child_load[p],
0  p  L � 1, likewise taking one of the values from the set {0, 1

!cn ,
2

!cn , . . . , 1}.
Finally, for the time tv, we have: tv 2 {0,!, 2!, . . . , (L� 1)!,?}, where the size of
the set of possible values is L+ 1.

Overall, we obtain:

|Ŝ|  (L+ 1) (!cn+ 1)L (!cn+ 1)L  (L+ 1)
�
cn2 + 1

�2L
< (cn)L�

0
,

where �0 > 0 is a suitably chosen absolute constant. Accommodating the earlier
omitted multiplicative O(poly(n)) factors in the running time of the algorithm, we
get the claim for some suitably chosen absolute constant � > �0.
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3.4.4 Sequence Assignment Algorithm with Small COST(!,c)

The procedure for computing a sequence assignment S which achieves a small value
of COST(!,c) is given in Algorithm 7.

Algorithm 7 Construction of sequence assignment S

1: !  
1
cn

2: while BuildStrategy(r(T ), !) = ; do
3: !  ! + 1

cn
4: end while
5: (sv, tv)v2V  schedule assignment of duration at most L!, satisfying constraints (3.5),

(3.6), and (3.7),

reconstructed by backtracking through the sets (Ŝ[v])v2V computed in the last call

to procedure BuildStrategy(r(T ), !).

6: for v 2 V do
7: C(v) ;
8: for u 2 V (Tv) do
9: if there is no vertex z 6= u on the path from v to u s.t. tz < btu + w

0(u)c! + !

then
10: C(v) C(v) [ {(btuc!, dtu + w

0(u)e!, u)}
11: end if
12: end for
13: S(v) sequence of vertices (third field) of C(v) sorted in non-decreasing

order, with tuples compared by first field, then second field, then third field.

14: end for
15: return (S(v))v2V

We start by observing in Algorithm 7 that if a node v is not queried (tv =?), then
all of the children of v belong to the schedules produced by procedure BuildStrategy
following condition (3.5), and thus they will also appear in S(v). This guarantees
the validity of the solution.

Lemma 3.4.6. Algorithm 7 returns a correct query sequence assignment S for tree
T .

For the purposes of analysis, we extend the notion of backtracking procedure
BuildStrategy in a natural way, so that, for every node v 2 V and box 0 
p  L � 1, we describe precisely the contribution cv[p, u] of each vertex u 2 V (Tv)
to the load sv[p]. (See Fig. 3.2 for an illustration.) Formally, for u = v we have
cv[p, v] ap = |[tv, tv +w0(v)]\ [p!, (p+1)!]| if tv 6=?, and cv[p, v] 0, otherwise.
Next, if u 6= v and u belongs to the subtree of child vi of v, we put:

cv[p, u] 

(
cvi [p, u], if tvend > p!,
0, otherwise,

where the insertion time tvend for v is defined as in Observation 3.4.1. Comparing
with (3.9), we have directly for all 0  p < L:

sv[p] =
X

u2V (Tv)

cv[p, u].
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Figure 3.2: Illustration of Algorithm 2 and 3. The depicted tree T 0 has vertex set

V = {a, b, c, d, e, f, g, h} and vertex weights: v a b c d e f g h
w0(v) 2
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(a) Tree T 0 with vertex weights.
(b) Sample schedule (sv, tv)v2V obtained by backtracking procedure BuildStrategy
with parameters c = 1, n = 8,! = 4

8 , (box size 4
8 , slot size 1

8 , 4 slots per box), L = 4.
Note that the schedules (sv)v2V may correspond to different starting times of jobs
within the prescribed box; the provided tv are an example.
(c) Contribution of load of vertex e to different vertices of the tree.
(d) Sequences S(v) computed by Algorithm 3 based on provided (sv, tv)v2V . Note
that vertex e does not appear in S(a) because of the query to c on the way.
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Let ps(u) and pf (u) be the indices of the starting and final box, respectively, to
which vertex u adds load, formally ps(u) = minPu and pf (u) = maxPu, where
Pu = {p : |[tu, tu+w0(u)]\ [p!, (p+1)!]| > 0}. From the statement of Algorithm 7,
we show immediately by inductive bottom-up argument that if u 2 S(v), then
!
Ppf (u)

p=ps(u)
cv[p, u] = w0(u).

Lemma 3.4.7. Let (sv, tv)v2T (V ) be a schedule assignment computed by BuildStrategy.
For any vertices u and z such that (u, tu) and (z, tz) belong to the schedule at v, if
either u or z is heavy, then |[tu, tu + w0(u)] \ [tz, tz + w0(z)]| = 0.
Proof. Note that procedure InsertVertex is called for a heavy input vertex with
its last parameter (insertion time) being a multiple of !, and the weight w0(u) is
a multiple of ! by definition. Thus, the interval [tu, tu + w0(u)] starts and ends
at the beginning and end of a box, respectively. Hence, Constraint (3.7) gives the
lemma.

As a consequence of Lemma 3.4.7, if these two jobs (u, tu) and (z, tz) overlap,
where u and z belong to the sequence assignment S(v), then both of the vertices u
and z must be light, thus:

tu > tz � w0(u)� ! = tz + w0(z)� w0(z)� w0(u)� ! � tz + w0(z)� (2c+ 1)!.

We now define the measure of progress M(x, i) of strategy AS when searching for
target x after i queries as follows. Let Qi be the set of the first i queried vertices.
Let vi be the current root of the tree, vi = r(T hQi, xi). Let Si(v) ✓ S(v) be the
subsequence (suffix) of S(v) consisting of those vertices which have not yet been
queried. Now, we define:

M(x, i) =

(
minu2Si(vi) ps(u), if Si(vi) 6= ;,

L, if Si(vi) = ;.

We have by definition, M(x, i) 2 {0, 1, . . . , L � 1, L}. We obtain the next Lemma
from a following straightforward analysis of the measure of progress: every time
following sequence S(v) we successively complete queries with an ‘up’ result with a
total duration of at least a boxes, since the queried vertices are ordered in the first
place according to minimum query time, and in the second place according to query
duration, the value of the minimum ps(u), for u 2 S(v) remaining to be queried,
advances by at least a boxes.
Lemma 3.4.8. The measure of progress M(x, i) has the following properties:

1. If the (i+ 1)-st query returns an ‘up’ result, then M(x, i+ 1) �M(x, i).

2. If the (i + 1)-st query returns a ‘down’ result, then M(x, i + 1) � M(x, i) �
(2c+ 1)!.

3. Suppose that between some two steps of the strategy, i2 > i1, each of the queries
(qi1+1, . . . , qi2) returns an ‘up’ result, and moreover, the total cost of queries
performed was at least a!, for some a 2 N:

i2X

j=i1+1

w0(qj) � a!,
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where qj = QAS ,j(T, x). Then, M(x, i2) �M(x, i1) + a.

Since the value of M(x, i) is bounded from above by L, we obtain from Lemma 3.4.8
that the strategy AS necessarily terminates when looking for target x with cost at
most L! + (2c+ 1)!dx,

COSTAS(T
0, x)  L! + (2c+ 1)!dx.

Thus, due to the definition of COST(!,c) in (3.1) and the monotonicity of of the cost
of a strategy with respect to vertex weights, we obtain the following:

Corollary 3.4.2. For the sequence assignment computed by Algorithm 7 it holds

COST
(!,c)
AS

(T )  COST
(!,c)
AS

(T 0)  !L.

To prove Proposition 3.4.1, it remains to show only the stability of the sequence
assignment S.

Lemma 3.4.9. The query sequence assignment S obtained by Algorithm 7 is stable.

Proof. We perform the proof by induction. Following the definition of stability,
assume that v is the root of the remaining subtree at some moment of executing
AS on T 0, and let u be a vertex such that u is a child of v lying on the path from v
to the target x. We will show that following S(u) always results in a subsequence
of the sequence of queries performed by following S(v).

Let S+(v) be the subsequence of vertices of S(v) which lie in Tu, and let S�(v)
be the subsequence of all remaining vertices of S(v). Note that x belongs to Tu and
hence any query to a node in S�(v) gives an ‘up’ reply.

We now observe the first (leftmost) difference v0 of the sequences S+(v) and S(u).
Suppose that before such a difference occurs, the common fragment of the sequences
contains a query to any vertex y on the path from u to x. Then, the root of both
trees moves to the same child of y, and the process continues identically regardless
of the initial root of the tree. Thus, such a vertex y cannot occur prior the difference
in sequences S+(v) and S(u).

Next, suppose that the first difference between the two sequences consists in the
appearance of vertex v in sequence S+(v), i.e., v0 = v. Then, the root of the tree
moves from v to u, and the two processes proceed identically as required. This also
implies that tv > tu.

Finally, we observe that no other first difference between the sequences S+(v)
and S(u) is possible by the formulation of Algorithm 7. In particular, if a triple
(btzc!, dtz +w0(z)e!, z) is added to C(u) in line 10, then the condition in line 9 and
tv > tu imply that the triple (btzc!, dtz + w0(z)e!, z) is added also to the set C(v).
Similarly, an insertion of a triple (btzc!, dtz + w0(z)e!, z) for z 2 V (Tu) into C(v)
implies that this triple also belongs to C(u). Due to the sorting performed in line 13
of Algorithm 7, S+(v) = S(u).

69



The eventual deterministic coupling, which is obtained in all cases for the strate-
gies starting at v and u, extends by induction to the execution of AS for trees rooted
at a vertex v and its arbitrary descendant u0 lying on the path from v to x, hence
the claim holds.

For the chosen value !, we can apply Lemma 3.4.4 with !⇤ = !� 1
cn , obtaining:

✓
! �

1

cn

◆
L = !⇤L <

✓
1 +

11

c

◆
OPT(T ),

thus, by Corollary 3.4.2,

COST
(!,c)
AS

(T ) 

✓
1 +

11

c

◆
OPT(T ) +

L

cn


✓
1 +

12

c

◆
OPT(T ),

where we took into account that trivially L  n and OPT(T ) � 1. We thus, by
Lemmas 3.4.6, and 3.4.9 obtain the claim of Proposition 3.4.1.

3.4.5 Reducing the Number of Down-Queries
We start with defining a function ` : V ! {1, . . . , dlog2 ne} which in the following
will be called a labeling of T and the value `(v) is called the label of v. We say that
a subset of nodes H ✓ V is an extended heavy part in T if H = {v} [H 0, where all
nodes in H 0 are heavy, no node in H 0 has a heavy neighbor in T that does not belong
to H 0 and v is the parent of some node in H 0. Let H1, . . . , Hl be all extended heavy
parts in T . Obtain a tree TC = (VC , EC) by contracting, in T , the subgraph Hi into
a node denoted by hi for each i 2 {1, . . . , l}. In the tree TC , we want to find its
labeling `0 : VC ! {1, . . . , dlog2 |VC |e} that satisfies the following condition: for each
two nodes u and v in VC with `0(u) = `0(v), the path between u and v has a node
z satisfying `0(z) < `0(u). One can obtain such a labeling by a following procedure
that takes a subtree T 0

C of TC and an integer i as an input. Find a central node v in
T 0

C , set `0(v) = i and call the procedure for each subtree T 00

C of T 0

C � v with input T 00

C

and i + 1. The procedure is initially called for input T and i = 1. We also remark
that, alternatively, such a labeling can be obtained via vertex rankings [50, 81].

Once the labeling `0 of TC is constructed, we extend it to a labeling ` of T in
such a way that for each node v of T we set `(v) = `0(v) if v /2 H1 [ · · · [ Hl and
`(v) = `0(hi) if v 2 Hi, i 2 {1, . . . , l}.

Having the labeling ` of T , we are ready to define a query sequence R(v) for
each node v 2 V . The R(v) contains all nodes u from Tv such that `(u) < `(v)
and each internal node z of the path connecting v and u in T satisfies `(z) > `(u).
Additionally, the nodes in R(v) are ordered by increasing values of their labels. See
Figure 3.3 for an example.

We start by making some simple observations regarding the sequence assignment
R.

Observation 3.4.3. For each v 2 V and for each u 2 R(v), w(u)  c!.

Observation 3.4.4. For each v 2 V , any two nodes in R(v) have different labels.
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Observation 3.4.5. The sequence assignment R can be computed in time O(n log n).

By x we refer to the target node in T . Fix S to be a stable sequence assignment
in the remaining part of this section and by R we refer to the sequence assignment
constructed above. Then, we fix S+ to be S+(v) = R(v) � S(v) for each v 2 V .
Denote by Ui the first i nodes queried by AS+ and let Ci = min `(T hUi�1, xi) for
each i � 1. For brevity we denote U0 = ; and C0 = 0; we also denote by ui the node
in Ui \ Ui�1, i � 1. A query made by AS+ to a node that belongs to R(v) for some
v 2 V is called an R-query ; otherwise it is an S-query.

Lemma 3.4.10. For each i � 0, the nodes in T hUi, xi with minimum label induce
a connected subtree.

The next two lemmas will be used to conclude that the number of light queries
performed by AS+ is bounded by 2 log2 n (see Lemma 3.4.13).

Lemma 3.4.11. If the i-th query of AS+ is an R-query resulting in an ‘up’ reply,
then Ci+1 � Ci + 1.

Proof. By construction, ui has the minimum label among all nodes in T hUi�1, xi.
By Lemma 3.4.10, either ui is the unique node with label `(ui) in the tree T hUi�1, xi
or there are more nodes with this label and they all belong to a single extended
heavy part in T hUi�1, xi with ui being closest to the root of T hUi�1, xi. In both
cases, since the reply is ‘up’, we obtain that T hUi, xi has no node with label `(u),
which proves the lemma.

Lemma 3.4.12. If the i-th query of AS+ is an R-query that results in a ‘down’
reply, then one of the two cases holds:

v1

v2
v3

v4 v5 v6

v7

v8

v9 v10

v11

v12 v13

H2

H1

H3

T : TC : v1

h1
h2

v6

v8

v9

h3

v11

1

2

2

3

4

3

3

3

R(v1) = (v6, v3, v2)

v2
R(v3) = (v6)

v4 v5 v6

v7

R(v8) = (v10)

v9 v10

v11

v12 v13

assignment R:

Figure 3.3: A tree T (on the left) has light vertices (marked as white nodes) and
heavy ones (dark circles); also heavy extended parts are marked. The tree TC (in
the middle) is used together with its labeling (integers are the labels) to obtain the
sequence assignment R (on the right); here we skip the sequence assignment for each
node v for which R(v) = ;.
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(i) if ui has no heavy child that belongs to T hUi, xi, then Ci+1 � Ci + 1,

(ii) if ui has a heavy child that belongs to T hUi, xi, then Ci+1 = Ci = `(ui) and for
each j > i such that Ci = Cj+1, all queries i+ 1, . . . , j are S-queries.

Proof. By Lemma 3.4.10, the nodes with label Ci induce a connected subtree in
T hUi�1, xi. This immediately implies i. By construction, if ui has a heavy child
u0 that is in T hUi, xi, then u0 = r(T hUi, xi) and the labels of ui and u0 are the
same. The latter is due to the fact that both ui and u0 belong to the same extended
heavy part in T . Suppose for a contradiction that the j-th query (performed say
on a node z) is an R-query and Cj+1 = Ci, j > i. This in particular implies that
z 2 R(r(T hUj�1, xi)). Due to Lemma 3.4.11, the reply to this query is ‘down’. By
i, z has a heavy child that belongs to T hUj, xi. By Observation 3.4.3, z is a light
node and therefore z along with some of its descendants and ui with some of its
descendants form two different extended heavy parts in T . Since z and ui have the
same label, there exists a light node u0

i in T on the path between ui and z with label
smaller than `(ui). Assume without loss of generality that no other node of this path
that lies between ui and u0

i has label smaller than `(u0

i). The above-mentioned path
is contained in T hUi�1, xi since both ui and z belong to this subtree. This however
implies that u0

i 2 R(v) because `(u0

i) < `(ui) and no node on the path between ui

and u0

i) has label smaller than `(u0

i). Moreover, u0

i precedes ui in R(v) meaning that
among one for the first i queries, u0

i must have been queried — a contradiction with
the fact that u0

i belongs to T hUi, xi.

Lemma 3.4.13. For each target node, the total number of R-queries made by AS+

is at most 2 log2 n.

Proof. It follows from Lemmas 3.4.11 and 3.4.12 that after any two subsequent R-
queries the value of parameter Ci increases by at least 1.

The next two lemmas will be used to bound the number of S-queries in S+

receiving a ‘down’ reply to be at most 2 log2 n.

Lemma 3.4.14. If all nodes in R(v) have been queried by AS+ after an i-th query
for some v 2 V and v is the root of T hUi, xi, then `(v) = Ci+1.

Proof. Suppose for a contradiction that `(v) 6= Ci+1. Since v belongs to T hUi, xi,
we have that `(v) > Ci+1. Thus, by construction, there exists a light node u in
T hUi, xi with `(u) = Ci+1 such that all internal nodes on the path between v and
u have labels larger than `(u). Therefore, u belongs to R(v) because v is the root
of T hUi, xi. This implies that u has been already queried — a contradiction with u
being in T hUi, xi.

Lemma 3.4.15. If the i-th query of AS+ is an S-query performed on a light node
and the reply is ‘down’, then T hUi, xi has no light node with label Ci.

Proof. Suppose that the i-th query is performed on a node u in S(v) for some v 2 V .
Clearly, v is the root of T hUi�1, xi. Since the considered query is an S-query, all
vertices in R(v) have been already queried. Thus, by Lemma 3.4.14, `(v) = Ci. By
construction, v is the only light node in this subtree having label Ci. Since the reply
to the i-th query is ‘down’, v does not belong to T hUi, xi.
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We are now ready to prove Proposition 3.4.2.
By Lemma 3.4.13, in AS+ , the total number of R-queries does not exceed 2 log2 n.

Note that since S is stable, for each target node x, the S-queries performed by AS+

are a subsequence of the queries performed by AS. Therefore, the potentially addi-
tional queries made by AS+ with respect to AS are R-queries. By Observation 3.4.3,
each R-query is made on a light node. By definition of function COST

(!,c) and Ob-
servation 3.4.3, any R-query increases the value of COST(!,c) of AS+ with respect to
the value of COST(!,c) of AS by at most (2c+ 1)!. Hence we have:

COST
(!,c)
AS+

(T )  COST
(!,c)
AS

(T ) + 2(2c+ 1)! log2 n.

By Lemmas 3.4.12 and 3.4.15,
the total number of queries in strategy AS+ to light nodes receiving ‘down’ replies

can be likewise bounded by 2 log2 n. Since each such query introduces a rounding
difference of at most (2c + 1)! when comparing cost functions COST and COST

(!,c),
we thus obtain:

COSTAS+ (T )  COST
(!,c)
AS+

(T ) + 2(2c+ 1)! log2 n.

Combining the above observations gives the claim of the Proposition.

3.5 O(
p
log n)-approximation algorithm

We now present the second main result of this work. By recursively applying the pre-
viously designed QPTAS (Theorem 3.4.1), we obtain a polynomial-time O(

p
log n)-

approximation algorithm for finding search strategy for an arbitrary weighted tree.
We start by informally sketching the algorithm — we follow here the general outline
of the idea from [24]. The algorithm is recursive and starts by finding a minimal
subtree T ⇤ of an input tree whose removal disconnects T into subtrees, each of size
bounded by n/2

p
logn. The tree T ⇤ will be processed by our optimal algorithm de-

scribed in Section 3.4. This results either in locating the target node, if it belongs
to T ⇤, or identifying the component of T � T ⇤ containing the target, in which case
the search continues recursively in the component. However, for the final algorithm
to have polynomial running time, the tree T ⇤ needs to be of size 2O(

p
logn). This is

obtained by contracting paths in T ⇤ (each vertex of the path has at most two neigh-
bors in T ⇤) into single nodes having appropriately chosen weights. Since T ⇤ has
2O(

p
logn) leaves, this narrows down the size of T ⇤ to the required level and we argue

that an optimal search strategy for the ‘contracted’ T ⇤ provides a search strategy
for the original T ⇤ that is within a constant factor from the cost of T ⇤.

A formal exposition and analysis of the obtained algorithm is provided in Sec-
tion 3.5.2.

Theorem 3.5.1. There is a O(
p
log n)-approximation polynomial time algorithm

for the weighted tree search problem.
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3.5.1 Partition of a Tree
We start with some notation. Given a tree T = (V,E,w) and a fixed value of
parameter ↵, we find a subtree T ⇤ = (V ⇤, E⇤) of the input tree T , called an ↵-
separating tree, that satisfies: r(T ⇤) = r(T ) and each connected component of T \V ⇤

has at most ↵ vertices. An ↵-separating tree T ⇤ is minimal if the removal of any leaf
from T ⇤ gives an induced tree that is not an ↵-separating tree. Then, for a target
node x 2 V , we introduce a recursive strategy R that takes the following steps:

1. R first applies strategy A
⇤ restricted to tree T ⇤ to locate the node x0 of T ⇤

which is closest to the target x.

2. Then, R queries x0, which either completes the search in case when x0 is the
target or provides a neighbor x00 of x0 that is closer to the target than x0.

3. If x0 is not the target, then the strategy calls itself recursively on the subtree
Tx00 of T \ {x0

} containing x. The latter strategy for Tx00 is denoted by Rx00 .
(Note that Tx00 is a connected component in T \ V ⇤.)

Such a search strategy R obtained from A
⇤ and strategies Rr(T 0) (constructed recur-

sively) for subtrees T 0 in T \ V ⇤ is called a (A⇤, {Rr(T 0)

�� T 0
2 C(T \ V ⇤)})-strategy,

where C(T \ V ⇤) is the set of connected components (subtrees) in T \ V ⇤.
The following bound on the cost of the strategy R follows directly from the

construction:

Lemma 3.5.1. For a (A⇤, {Rr(T 0)

�� T 0
2 C(T \ V ⇤)})-strategy R for T it holds

COSTR(T )  COSTA⇤(T ⇤) + max
x02V ⇤

w(x0) + max
T 02C(T\V ⇤)

COSTRr(T 0)(T
0).

We now formally describe and analyze the aforementioned contractions of sub-
paths in a tree. A maximal path with more than one node in a tree T that consists
only of vertices that have degree two in T is called a long chain in T . For each long
chain P , contract it into a single node vP with weight minu2V (P ) w(u), obtaining a
tree ⇠(T ). In what follows, the tree ⇠(T ) is called a chain-contraction of T .

Our first step is a remark that, at the cost of losing a multiplicative constant in
the final approximation ratio, we may restrict ourselves to trees that have no long
chains. This is due to the following observation.

Lemma 3.5.2. Let T be a tree. Given a p-approximate search strategy for ⇠(T ), a
(p+ 1)-approximate search strategy for T can be computed in polynomial time.

Proof. Let A0 be a search strategy for ⇠(T ). We obtain a search strategy A for T in
two stages. In the first stage we ‘mimic’ the behavior of A0: (i) if A0 queries a node
v that also belongs to T , then A also queries v; (ii) if A0 queries a node vP that
corresponds to some long chain P in T , then A queries, in T , a node with minimum
weight in P . Note that after the first stage, the search strategy either located the
target or determined that the target belongs to a subpath P 0 of some long chain P
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of T . Moreover, the total cost of all queries performed in the first stage is at most
COSTA0(⇠(T )).

Then, in the second stage we compute (in O(n2)-time) an optimal search strat-
egy AP 0 for P 0 [23]. Due to the monotonicity of the cost over taking subgraphs,
COSTAP 0 (P

0) = OPT(P 0)  OPT(T ).
Both stages provide us with a search strategy for T with cost at most COSTA0(⇠(T ))+

OPT(T ). Since, OPT(⇠(T ))  OPT(T ) and COSTA0(⇠(T ))  p · OPT(⇠(T )), the lemma
follows.

Note that it is straightforward to verify whether any vertex v of T is a leaf in
the ↵-separating tree of T and hence we obtain the following.

Observation 3.5.1. Given a tree T with no long chain and ↵, a minimal ↵-
separating tree of T can be computed in polynomial-time.

Using Lemma 3.5.2 and choosing appropriately the value of ↵, one can obtain
an ↵-separating tree of T having at most t = 2O(

p
logn) vertices.

Lemma 3.5.3. Let T be any tree and let ↵ be selected arbitrarily. If T ⇤ is a minimal
↵-separating tree of T , then ⇠(T ⇤) has at most 4

⌃
n
↵

⌥
vertices.

Proof. By definition, for each leaf v of T ⇤, the subtree Tv has more than ↵ nodes.
Since these trees are node-disjoint, we obtain that there are at most dn↵e leaves in
T ⇤. We denote the leaves of T ⇤ by v1, v2, . . . , vl, l 

⌃
n
↵

⌥
; note that ⇠(T ⇤) has the

same leaves as T ⇤.
Let V (⇠(T ⇤)) be the vertex set of ⇠(T ⇤). Then, we claim that |V (⇠(T ⇤))| =

O(dn↵e) by counting the number of nodes with different degrees in ⇠(T ⇤). Clearly,
we have

��{v 2 V (⇠(T ⇤))
�� deg(v) > 2}

��  dn↵e. Since the tree ⇠(T ⇤) contains no long
chains, the parent (if exists) of every node with degree exactly 2 must have degree
at least 3. Thus,
��{v 2 V (⇠(T ⇤))

�� deg(v) = 2}
�� 

��{v 2 V (⇠(T ⇤))
�� deg(v) > 2}

��+ 1 
ln
↵

m
+ 1.

Hence we get |V (⇠(T ⇤))|  4
⌃
n
↵

⌥
.

3.5.2 Recursive Execution of Strategy
With Lemmas 3.5.2, 3.5.3 and Observation 3.5.1 we are now ready to obtain the
efficient recursive decomposition of the problem:

Lemma 3.5.4. If there is a O(1)-approximation algorithm running in nO(logn) time
for any input tree, then one can obtain a O(

p
log n)-approximation algorithm with

polynomial running time for any input tree.

Proof. Suppose Solve is a given constant-factor approximation algorithm running
in time nO(logn) that, for any input tree T , outputs a search strategy for T . We then
design a polynomial-time procedure Rec as shown in Algorithm 8, which outputs a
search strategy R for an input tree T .
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Algorithm 8 O(
p
log n))-approximation procedure Rec based on nO(logn)-time con-

stant approximation algorithm Solve
1: procedure Rec(tree T = (V,E,w))
2: n |V |

3: if n  2
p
logn then

4: return Solve(T )
5: else
6: ↵ n/2

p
logn

7: T ⇤
 a minimal ↵-separating tree of T with vertex set V ⇤

8: A
⇤
 Solve(⇠(T ⇤))

9: AT ⇤  search strategy for T ⇤ obtained from A
⇤ as described in proof of

Lemma 3.5.2
10: for each T 0 in C(T \ V ⇤) do
11: Rr(T 0)  Rec(T 0);
12: end for
13: return (AT ⇤ , {Rr(T 0)

�� T 0
2 C(T \ V ⇤)})-strategy for T

14: end if
15: end procedure

Each call to Solve in line 4 has running time (2
p
logn)O(log(2

p
logn)), which is a

polynomial in n. The same holds for each call call in line 8 because, by Lemma 3.5.3,
⇠(T ⇤) has at most 4

⌃
n
↵

⌥
= O(2

p
logn) vertices. Thus, procedure Rec has polynomial

running time and it remains to bound the cost of the search strategy R computed
by Rec.

To bound the recursion depth of Rec, note that each time a recursive call is
made, the size of instance (input tree) decreases 2

p
logn times. Thus, the depth is

bounded by log(2
p

logn) n =
p
log n. In the search strategy computed by procedure

Rec, at each level of the recursion we execute the search strategy computed by one
call to Solve and one vertex of the (n/2

p
n)-separating tree is queried. This follows

from the definition of (AT ⇤ , {Rr(T 0)

�� T 0
2 C(T \ V ⇤)})-strategy. By Lemma 3.5.2,

COSTAT⇤ (T
⇤)  c0 · OPT(T ⇤)

for some constant c0. By Lemma 3.5.1 and since OPT(T ⇤)  OPT(T ), the cost of R
at each recursion level is bounded by (c0 + 1)OPT(T ). This gives that COSTR(T ) 
c0
p
log n · OPT(T ) as required.

Noting that the existence of a constant-approximation procedure with nO(logn)

running time follows from Theorem 3.4.1 (by taking " = 1), the claim of Theo-
rem 3.5.1 follows directly from Lemma 3.5.4.

3.6 Conclusions of Chapter
We consider the generalization of the binary search problem. A search strategy is
required to locate an unknown target node t in a given tree T . Upon querying a
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node v of the tree, the strategy receives as a reply an indication of the connected
component of T \ {v} containing the target t. The cost of querying each node is
given by a known non-negative weight function, and the considered objective is to
minimize the total query cost for a worst-case choice of the target. Designing an
optimal strategy for a weighted tree search instance is known to be strongly NP-hard.

And we have the following results on weighted tree search problem:

(1) A quasi-polynomial time approximation scheme: for any 0 < " < 1, there exists
a (1 + ")-approximation strategy with a computation time of nO(logn/"2). Thus,
the problem is not APX-hard, unless NP ✓ DTIME(nO(logn)).

(2) By applying a generic reduction, we obtain as a corollary that the studied
problem admits a polynomial-time O(

p
log n)-approximation. This improves

previous Ô(log n)-approximation approaches, where the Ô-notation disregards
O(poly log log n)-factors.

Results of this work have been presented in:

• Dariusz Dereniowski, Adrian Kosowski, Przemyslaw Uznanski, Mengchuan Zou
Approximation Strategies for Generalized Binary Search in Weighted Trees.
International Colloquium on Automata, Languages, and Programming (ICALP),
2017
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Chapter 4

Pure-LOCAL Weight Update

Algorithm Approximating Max-flow

In this chapter we study the design of Pure-LOCAL algorithm, we implement a
multiplicative weights update algorithm [20] by Mądry et al that computes a (1+")-
approximation for Max-flow problem in Pure-LOCAL model. We show that our
algorithm solves a weaker version of Max-flow (1+")-approximation decision problem
in polynomial time (Theorem 4.4.1).

4.1 Introduction: The Maximum s-t Flow Problem
Let G = (V,E) be an undirected graph, with n vertices and m edges, among which
there are two special vertices, a source s and a sink t. Every edge is assigned with a
positive integral capacity Ue 2 Z+. Let A be the adjacency matrix of G, for u 2 V
we denote N(u) = {v 2 V |uv 2 E}, and for e 2 E, we denote e ⇠ u if e is incident
to u, i.e. e = uv 2 E, for some v 2 V .

Definition 4.1.1. An s-t flow is a function f : E ! R obeying the flow-conservation
constraints

X

e⇠u

f(e) = 0, for all u 2 V \ {s, t}

The value of flow |f | is defined by |f | :=
P

e⇠s f(e) and is naturally equal toP
e⇠t f(e) by flow-conservation.

Here Ue is the edge capacity and we assume that is polynomial w.r.t. n. We
denote the congestion of an edge by conge(f) = |fe|

Ue
, an s-t flow is feasible for

capacities Ue if 8e 2 E, |f(e)|  Ue, or conge(f)  1. The maximum s-t flow
problem(or max-flow problem for short) is to find a feasible s-t flow with maximum
value. Without loss of generality we assume that the source and sink are always the
node 1 and n in our work.

Recently, a series of studies are raised on using continuous optimization method
to compute (1 + ") approximation of maximum s � t flow [20, 61, 68] their basic
framework is to regard the maximum s� t flow problem as an optimization problem
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defined by a Laplacian system (which is equivalent to the description of the elec-
trical flow in circuits) and optimize with a Laplacian solver [55], where two main
optimization techniques are adopted to approximate the optimal solution: the mul-
tiplicative weights update method [4, 20] and gradient descent based method [61].
Our work is based on one of these works [20] based on multiplicative weights update
method and electrical flow and we will present basics in next section.

A small but in need reminder of the notation is that we assume all vectors in
this chapter are row vectors.

4.2 Preliminaries

4.2.1 Electrical Flow and Graph Laplacian
Definition 4.2.1. We associate graph G = (V,E) with resistances, namely a vector
r 2 Rm, by assigning re > 0 to each e 2 E. An electrical flow is an s-t flow that
accepts a vector of potentials � 2 Rn, such that, for e = (u, v)

f(e) =
�(u)� �(v)

re

For a given s-t flow f , the energy of f is defined by

E(f) :=
X

e2E

r(e)f 2(e)

An electrical flow of value F is also the flow that minimizes E(f) among all s-t
flows of value F .

We call the vector C 2 Rm s.t. cuv = 1
re

, e = uv the conductance vector of
G. Denote A 2 Rn⇥n to be the weighted adjacency matrix of G, s.t. Auv = cuv if
uv 2 E, and 0 otherwise. Let D 2 Rn⇥n, duu =

P
uv2E cuv and 0 for duv, u 6= v.

Then P = D�1A is the transition matrix, e.g. Puv =
cuvP

v2N(u) cuv
.

Then we introduce the definition of the Laplacian matrix.

Definition 4.2.2. Given an simple (no loop, no multiple edges) undirected weighted
graph G = (V,E, c) where cuv is the weight for uv 2 E, let A be the weighted
adjacency matrix, i.e. Auv = cuv if uv 2 E and 0 otherwise. The volume of a vertex
u is vol(u) =

P
v2N(u) cuv. And let D be a diagonal matrix Duu = vol(u), u 2 V .

Then the Laplacian matrix L 2 Rn⇥n of G is defined by L = D �A or explicitly:

Luv =

8
>>><

>>>:

� cuv uv 2 E
X

v2N(u)

cuv u = v

0 otherwise

(4.1)

A well-known correspondence between electrical flow and graph laplacian is that,
for b 2 Rn and a constant F 2 R, such that bs = F , bt = �F and bu = 0, u 2
V \ {s, t}, then the solution h of the Laplacian system

Lh> = b> (4.2)
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is a potential vector of the electrical flow of value F induced by resistances r (or con-
ductances C). This is from the definitions and basic circuit law and a computations
is provided in [20].

That means, given an electrical network with constant current source of value
F , let r be the resistances and C the conductances associated to r, to compute a
potential vector of this electrical network, we compute: A 2 Rn⇥n, Auv = cuv if
uv 2 E, and 0 otherwise. D 2 Rn⇥n, duu =

P
uv2E cuv and 0 for duv, u 6= v, and

L = D�A, then if we could solve the Laplacian system Lh> = b> then we can get
a potential vector of the electrical network. By Definition 4.2.1 we can also compute
the electrical flow of this network.

We haven seen the relationship of solving an electrical network and solving the
associated laplacian system. Then we explain the use of solving electrical networks
in the recent studies of solving max-flow problem by continuous optimization.

4.2.2 Electrical Flow and Max-flow Problem

We consider the decision problem of maximum s� t flow, i.e. given G = (V,E) and
edge capacities Ue, e 2 E, and a value Ftest, we’d like to know if there is a feasible
s-t flow f , such that |f |  Ftest. If we could solve the decision problem, we could
compute the value of the max-flow by a binary search on value Ftest.

This decision problem is related to the following linear system:

minimize max
e

(conge(f))
X

v2N(u),e=uv

f(e) = 0, for all u 2 V \ {s, t}

X

v2N(u),e=uv

f(e) = F u = source

f(e) � 0, 8e 2 E

(4.3)

Then Ftest could be a feasible value of a s-t flow if and only if the solution of
the linear program is less than 1. Thus the decision problem of maximum s � t
flow, is equivalent to this special case of the minimization problem on the maximum
congestion.

However, solving the linear program may not be easier than the original program,
but optimization techniques could be applied here to get faster (1+")-approximation
algorithms. In [20] authors provide an (1 + ")-approximation algorithm in nearly-
linear time (linear time with polylog factors) by solving a sequence of electrical flow
problems. Our work is based on this algorithm and we briefly introduce their idea
here.

Remember that an electrical flow of value F is the flow that minimizes E(f)
among all s-t flows of value F , in other words, let f̃ denote the electrical flow of the
given G, r and F , then f̃ is exactly the optimal solution of the following quadratic
program:
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minimize
X

e

(f 2(e) · re)

X

v2N(u),e=uv

f(e) = 0, for all u 2 V \ {s, t}

X

v2N(u),e=uv

f(e) = F u = source

f(e) � 0, 8e 2 E

(4.4)

If we set re be proportional to 1
U2
e
, then the objective function of Program 4.4

is proportional to
P

e(
f(e)
U2
e
) =

P
e cong

2
e(f), if we could choose re such that the

solution of Program 4.4 close to the minimization of maximum congestion, then it
can approximately solve the decision problem. Notice that in Section 4.2.2 we know
that electrical network could be solved by solving a Laplacian system, so the solution
of Program 4.4 could be also computed by solving the Laplacian system.

In [20], authors proposed an algorithm iteratively choosing re to make the solu-
tion of electrical network approaching the minimization of maximum congestion by
a framework of Multiplicative Weights Update Method [4]. In fact they proved that
the following procedure of adaptively choosing r :

w(0)
e = 1, 8e 2 E

r(t)e =
1

U2
e

 
(w(t)

e +
"
��w(t)

��
1

3m

!

f (t)
e = electrical flow induced by r(t) and F

cong(f (t)
e ) =

f (t)
e

Ue

w(t)
e =

�
w(t�1)

e

�✓
1 +

"

⇢
conge(f

(t�1))

◆

(4.5)

will have a good guarantee on the maximum congestion, such that the average
congestion of a sequence of electrical flow computed is bounded by 1+O("). Here ⇢
is a parameter of the upper bound of congestions over the iterations of the algorithm,
which influences the number of iterations needed, and is going to be set later. In
fact, [20] shows that here we don’t need to compute the electrical flow exactly, and
could be an approximate solution of the electrical network (Laplacian system). Our
work has implemented this framework to Pure-LOCAL model and we provide a
proof inspired in its general outline by the framework of [20] in Section 4.4.2.

Challenges of implementing in Pure-LOCAL model. To implement the Al-
gorithm 4.5 in Pure-LOCAL model, there are two main challenges:

1. How to compute k
w(t)k

1
m ? It’s not trivial because

��w(t)
��
1

is a global quantity
and is changing between iterations.

2. How to compute the electrical flow induced by r(t) and F ? There is no known
general Laplacian solver in Pure-LOCAL model.
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Our work provides the approach to approximate the above two quantities in
Pure-LOCAL model. The idea of the approach makes use of the application of
properties of random walks on graphs. We present the basics in the next section.

4.2.3 Connection to Random Walk
In the previous sections we presented the connections between the Max-flow problem,
electrical flows and the Laplacian system, and [20] showed that Max-flow could be
approximated by solving the electrical network (equivalent to solve the associated
Laplacian system). Finally, the question remains of how to solve the electrical flow
Laplacian system in Pure-LOCAL.

In centralized scenarios, works based on electrical flows [20, 61, 68] have nearly
all used an Laplacian solver by Koutis et al [55], which is developed from the well-
known work of Spielman and Teng [84]. However, this method is quite sophisticated
and hard to implement in distributed settings. In our work, we use the matrix
powers from the idea of random walks to ensure local computations.

Random Walk

Given a graph G = (V,E), a random walk on G is a discrete time Markov chain
X(1), X(2), ..., X(k), ... on the set of vertices V with transition matrix P that defines
the probability from a node to arrive another node in one step, i.e. a move generated
from a start vertex by selecting an edge, traversing the edge to a new vertex, and
repeating the process, such that at vertex x, the probability of next vertex being
y 2 V is P (x, y).

Mixing time

Given a discrete time Markov chain X(1), X(2), ..., X(k), ... on a state space X with
transition matrix P , i.e. a move such that for a given state x 2 X , the probability
of next state being y 2 X is decided by P (x, y), let ⇡(k) a row vector denote the dis-
tribution of the random variable X(k), we call the distribution ⇡ on X a stationary
distribution [62] if

⇡ = ⇡P (4.6)

The uniqueness and convergence to a stationary distribution for Markov chains
are well-studied.

A Markov chain is irreducible if for any x, y 2 X , the probability of arriving
at y from x at some step is positive. It is known that an irreducible Markov chain
has a unique stationary distribution ⇡ [62].

For T (x) = {t � 1 : P (t)(x, x) > 0} the set of times when the probability of a
chain starting at x go back to x is positive, the period of state x is gcd(T (x)). A
Markov chain is aperiodic if for every x, the period of x is 1.

It is well-known that Convergence Theorem (Theorem 4.9 of [62]) shows that a
finite irreducible aperiodic Markov chain converge to the unique stationary distri-
bution, and we could define mixing time for the Markov chain.
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Definition 4.2.3. The mixing time of the Markov chain of transition matrix P with
stationary distribution ⇡ started from state x is

mix(P, x) = min{k : ||⇡(k0)
� ⇡||1  1/3, 8k0

� k} (4.7)

The mixing time of the Markov chain P with stationary distribution ⇡ is

mix(P ) = max
x2X

{mix(P, x)} (4.8)

Then the mixing time of a Markov chain depends only on its transition matrix
P and does not depend on the initial distribution.

Scaling of the error parameter. In fact in Definition 4.2.3 the constant 1/3
could be any constant less than 1/2, we could also define the "-mixing time mix"(P )
by replacing the constant 1/3 by ", scaling the error parameter will bring an loga-
rithmic factor to the mixing time of a Markov chain. From Section 4.5 of [62], we
have the following proposition:

Proposition 4.2.1. For any 0 < " < 1/2, we have

mix"(P ) = dlog2 "
�1
e ·mix(P ) (4.9)

In our further analysis of our algorithm, we will regard the mixing time as a
parameter of a given transition matrix of a graph.

Our work brings the results from studies on two random walks, namely the
simple random walk on graphs [67, 62] and the weighted random walk with edge
conductances [62].

Simple random walk on graphs

Definition 4.2.4. A simple random walk is a random walk on G with transition
matrix P defined by

P (x, y) =

8
<

:

1

deg(x)
if (x, y) 2 E

0 otherwise
(4.10)

So when at vertex x, the probability of choosing to move to any neighbor is the
same.

We denote p(k) as the distribution of the random walk at time k, we know
from [67] that for every non bipartite graph G, the simple random walk on G has
polynomial mixing time and tends to a unique stationary distribution.

⇡(x) =
deg(x)

2|E|
8x 2 V (4.11)

This random walk brings to us the idea of computing k
w(t)k

1
m with local computa-

tions, let every node sum up the w(t)
e of its incident edges, i.e. let ⇠(t)u = 1

2

P
e⇠u w

(t)
e ,
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then launch the same number of simple random walks as the sum, we know the
total number of random walks on this graph is equal to

P
u2V ⇠(t)u =

��w(t)
��
1
, and

since the single random walk towards to a distribution of deg(u)
2|E|

for node u, the ex-

pectation of walks on node u is then
deg(u)kw(t)k

1
2|E|

, then let every node multiply this

quantity by 2
deg(u) , and k

w(t)k
1

m is computed in every node. In the implementation
we don’t need to use random walks since all we need is to compute the expectation
so matrix multiplication is enough as in our Algorithm described in Formula 4.12
and Algorithm 9.

Weighted random walk with edge conductances

Given weights cuv, (u, v) 2 E to G = (V,E), let C(v) =
P

u2N(v) cuv, we could obtain
a random walk by setting transition probability puv from u to v into puv =

cuv
C(v) . Let

s and t be two vertices of the graph, it is well-known that the probability of a walk
starting at s arriving u before arriving t is equal to the potential of u in the electrical
network with C and source potential of value 1 [33].

By this connection, we could develop a fractional token diffusion process: we
deliver C(s) tokens at s following the random walk defined above, and let t be an
absorbing vertex: any token arriving at t will be absorbed, in [6] authors showed that
the number of tokens on each node converges to a constant factor of the potential of
the node. We adopted the similar process in our algorithm, and provide the proof
based on [6] in Section 4.4.3.

Time-varying issue

We explained our basic blocks for solving an electrical network by processes inspired
from the random walk, but another question is that we are in an iterative algorithm
(cf. the procedure given in Figure 1 and 2 in [20]) and quantities are changing in
each round, however the two processes need time to converge. To resolve this issue,
we used two "slow down" factor ensuring that the variables does not change much
before the above two processes converging, i.e. w(t) does not change too much before
getting a good approximation of k

w(t)k
1

m and r(t) neither before we getting a good
approximation of potentials of the electrical network.

4.3 Algorithm

In this section we present our Pure-LOCAL algorithm for the weaker decision prob-
lem of (1 + ") of Max-flow, i.e. given a graph G = (V,E) with edge capacity Ue,
e 2 E and a value F , assume F ⇤ is the max-flow value, we will compute a vector f̄ ,
such that if F  F ⇤ then conge(f̄)  1, and if conge(f̄) > (1+")2

(1�")2 then F > F ⇤.
We first describe our algorithm in a dynamic system, where we denote A for a

matrix obtained by putting the last row and column of A by zeros.
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Initialization:

w(0)
e = 1, 8e 2 E

bsource = F, bu = 0, u 6= source

other variables set to 0.

Parameters:

" : the input of approximation error requirement

⇢ =

r
15m

"
Tintl : initialization time, to fix in Section 4.4.3
�,↵ : slow down factor, to fix in Section 4.4.3

Tmax = Tintl +
2⇢ lnm

↵"2

The algorithm:

y(t) = y(t�1)P (t�1) + b

�(t)
u =

1
P

v02N(u) c
(t)
uv0

y(t)u

f (t)
uv =

��(�(t)
u � �(t)

v )c(t)uv

��

f̂ (t)
uv = f̂ (t�1)

uv + f (t)
uv

cong(t)e =
|f (t)

e |

Ue

w(t)
e =

�
w(t�1)

e

�✓
1 +

↵"

⇢
conge(f

(t�1))

◆
if t � Tintl

denote ⇠(t)u =
1

2

X

e⇠u

w(t)
e

z(t) = (1� �)z(t�1)B + �⇠(t�1)
u

⌧ (t)e =
2(z(t))u
deg(u)

, e 2 E, u any vertex incident to e

r(t)e =
1

U2
e

(w(t)
e +

"

3
⌧ (t)e )

c(t)e =
1

r(t)e

P (t)
e=uv =

c(t)e
P

v02N(u) c
(t)
uv0

(4.12)

Finalization: for t > Tmax, let f̄e  
(1�")2

(1+") f̂
(t)
e /(Tmax � Tintl) if f̄e > (1+")2

(1�")2ue for
some e 2 E, return NO; otherwise return YES. The result of the algorithm is YES
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if all nodes return YES, and NO if any node returns NO.

Then we describe the implementation in Pure-LOCAL model, notice that here
for simplicity of understanding, we describe with two “send” and “receive” operations
per round, but in fact it could be just combined in one operation each.

Here the Step 2 in Algorithm 9 (mainly z(t) = (1 � �)z(t�1)B + �⇠(t�1)
u in For-

mula 4.12) is served for approximating k
w(t)k

1
m with the idea of simulating simple

random walk described in Section 4.2.3, precisely, we will show in Section 4.4.3 that
⌧ (t)e approximates k

w(t)k
1

m .
And the Step 1 in Algorithm 9 (equivalently, y(t) = y(t�1)P (t�1) + b in For-

mula 4.12) is for approximating the solution of the electrical network simulating the
token diffusion process explained in in Section 4.2.3 and we will show in Section 4.4.3
that �(t)

u approximates the potential of u in the electrical network with resistances
r(t) and electrical flow value F .

The re-weighting step, i.e. the w(t)
e =

⇣
w(t�1)

e

⌘⇣
1 + ↵"

⇢ conge(f
(t�1))

⌘
and r(t)e =

1
U2
e
(w(t)

e + "
3⌧

(t)
e ) corresponds to the multiplicative weight update method by [20]

described in Formula 4.5. We will show that this iteratively choose of r(t) will lead
to conge(f̄)  1 if F does not exceed the maximum flow.

4.4 Proof
This section we present the proof of our algorithm. First we show that if we could
get a good approximation of the average weight k

⇠(t)k
1

m and an approximation of the
electrical flow such that the energy is not far from the exact electrical flow, then if
if F is a good approximation we could have a vector of congestion bounded by 1.

4.4.1 Weighted-average Congestion Bounded Flow
Here we assume that we could get a good approximation of the average weight and
the electrical flow and show a characterization that implies a flow value F could
not be a feasible value for Max-flow. On the other hand, if F is feasible, we could
ensure the weighted-average of congestions is bounded. We will show in 4.4.3 that
our algorithm provides the approximation assumed in this section.

Given a flow f and resistances r, denote the energy of f by Er(f) =
P

e2E ref(e)2.

Lemma 4.4.1. Given a value F , let f̃ (t) the electrical flow associated to F and r(t).
Let f (t) be the flow computed in our algorithm in time t. Assume the solution of
Max-flow is F ⇤. For our system, suppose that for "en � 0 and �⌧ � 0, there exists
Tintl such that 8t > Tintl,

(1) (1� "en)Er(t)(f̃
(t))  Er(t)(f

(t))  (1 + "en)Er(t)(f̃
(t))

(2) (1� �⌧ )
k⇠(t)k

1
m  ⌧ (t)e  (1 + �⌧ )

k⇠(t)k
1

m
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Algorithm 9 Approximate Flow Decision Algorithm for node u

1: procedure Diffusion( Input: F )

2: if t=0 then
3: initialize all variables to 0
4: w(u, v) 1
5: end if
6: ⇠(u) 1

2

P
v2N(u)w(u, v)

7: //Step 1

8: if id(u) == source then
9: y(u) y(u) + F

10: end if
11: if id(u) == sink then
12: y(u) 0
13: end if
14: for every neighbor v of u do
15: send y(u) ⇤ P (u, v) to v

16: end for
17: for every neighbor v of u do
18: �uv  value received from v

19: f(u, v) |�uv � y(u) ⇤ P (u, v)|
20: fsum(u, v) fsum(u, v) + f(u, v)
21: y(u) y(u) + �uv

22: conguv  f(u, v)/Uuv

23: if t � Tintl then
24: w(u, v) w(u, v)(1 + ↵

"
⇢conguv)

25: end if
26: end for
27: //Step 2

28: for every neighbor v of u do
29: send z(u)/deg(u) to v

30: end for
31: for every neighbor v of u do
32: �u  sum of value received from v

33: Z(u) (1� �)�u + �w(u, v)

34: ⌧uv  
2(z(t))u
deg(u)

35: ruv  
1

u2
uv
(wuv +

"
3⌧uv)

36: cuv  
1

ruv
37: end for
38: P (u, v) cuvP

v2N(u) cuv

39: t t+ 1
40: if t > Tmax then
41: f̄uv  

(1�")2

(1+") fsum(u, v)/(Tmax � Tintl)

42: if f̄uv >
(1+")2

(1�")2Uuv then return NO

43: else return YES

44: end if
45: end if
46: end procedure
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then if F  F ⇤ we have

(a)
P

e2E w(t)
e conge(f (t)) 

p
(1 + "en)(1 +

"
3(1 + �⌧ ))kw(t)

k1 and

(b) conge(f (t))  (1 + "en)
q

1
1��⌧

(1 + "
3(1 + �⌧ )) ·

q
3m
" .

Proof. Assume f ⇤ is the maximum flow with value F ⇤, then

Er(t)(f
⇤) =

X

e2E

r(t)e f ⇤(e)2

=
X

e2E

(w(t)
e +

"

3
⌧ (t)e )

f ⇤(e)2

u2
e

=
X

e2E

(w(t)
e +

"

3
⌧ (t)e )cong2e(f

⇤)



X

e2E

(w(t)
e +

"

3
⌧ (t)e )

= kw(t)
k1 +

"

3
k⌧ (t)

k1

Because for 8t � Tintl, (1� �⌧ )
k⇠(t)k

1
m  ⌧ (t)e  (1 + �⌧ )

k⇠(t)k
1

m , then

Er(t)(f
⇤)  kw(t)

k1 +
"

3
(1 + �⌧ )

��⇠(t)
��
1

Since
��⇠(t)

��
1
= kw(t)

k1,

Er(t)(f
⇤)  (1 +

"

3
(1 + �⌧ ))kw

(t)
k1

since given re, e 2 E the electric flow minimizes the energy among all s� t flows
of value F ⇤, this is an upper bound of the energy of any electrical flow of value
F  F ⇤, thus Er(t)(f̃

(t))  (1 + "
3(1 + �⌧ ))kw(t)

k1.

Thus Er(t)(f̃
(t)) > (1 + "

3(1 + �⌧ ))kw(t)
k1 implies F > F ⇤. Since we assumed

Er(t)(f
(t))  (1+"en)Er(t)(f̃

(t)), if 1
(1+"en)

Er(t)(f
(t)) > (1+ "

3(1+ �⌧ ))kw(t)
k1 then F >

F ⇤.

Claim 4.4.1. If 1
(1+"en)

Er(t)(f
(t)) > (1 + "

3(1 + �⌧ ))kw(t)
k1 then F > F ⇤.

In the following we assume F  F ⇤ to show the property for F  F ⇤. We com-
pute the energy of f (t), the flow of our algorithm at time t regarding the resistance
r(t), since we have (1� "en)Er(t)(f̃

(t))  Er(t)(f
(t))  (1 + "en)Er(t)(f̃

(t)), then
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Er(t)(f
(t)) =

X

e2E

r(t)e

�
f (t)(e)

�2

Er(t)(f
(t))  (1 + "en)(1 +

"

3
(1 + �⌧ ))kw

(t)
k1

By the definition Er(f) =
P

e2E ref(e)2 and r(t)e = 1
U2
e
(w(t)

e + "
3⌧

(t)
e ), thus

X

e2E

1

U2
e

(w(t)
e +

"

3
⌧ (t)e )

�
f (t)(e)

�2
 (1 + "en)(1 +

"

3
(1 + �⌧ ))kw

(t)
k1

we have

X

e2E

w(t)
e

�
conge(f

(t))
�2
 (1 + "en)(1 +

"

3
(1 + �⌧ ))kw

(t)
k1 (4.13)

and

X

e2E

"

3
⌧ (t)e

�
conge(f

(t))
�2
 (1 + "en)(1 +

"

3
(1 + �⌧ ))kw

(t)
k1 (4.14)

By Cauchy-Schwarz inequality,

 
X

e2E

w(t)
e conge(f

(t))

!2

 kw(t)
k1

 
X

e2E

w(t)
e

�
conge(f

(t))
�2
!

(4.13) implies

 
X

e2E

w(t)
e conge(f

(t))

!2

 kw(t)
k1(1 + "en)(1 +

"

3
(1 + �⌧ ))kw

(t0)k1

 kw(t)
k1 · (1 + "en)(1 +

"

3
(1 + �⌧ ))kw

(t)
k1

 (1 + "en)(1 +
"

3
(1 + �⌧ ))kw

(t)
k
2
1

X

e2E

w(t)
e conge(f

(t)) 

r
(1 + "en)(1 +

"

3
(1 + �⌧ ))kw

(t)
k1

From Formula (4.14), we have 8e,
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"

3
⌧ (t)e

�
conge(f

(t))
�2
 (1 + "en)(1 +

"

3
(1 + �⌧ ))kw

(t)
k1

"

3
(1� �⌧ )

��⇠(t)
��
1

m

�
conge(f

(t))
�2
 (1 + "en)(1 +

"

3
(1 + �⌧ ))kw

(t)
k1

"

3
(1� �⌧ )

��w(t)
��
1

m

�
conge(f

(t))
�2
 (1 + "en)(1 +

"

3
(1 + �⌧ ))kw

(t)
k1

�
conge(f

(t))
�2


3m

"

1

(1� �⌧ )
(1 + "en)(1 +

"

3
(1 + �⌧ ))

conge(f
(t))  (1 + "en)

r
1

1� �⌧
(1 +

"

3
(1 + �⌧ )) ·

r
3m

"

If we fix "en to be " with 0  "  1/2 and �⌧ to be 1
5 , we could get the following

corollary.

Corollary 4.4.1. For our system, assume that for "en � 0 and �⌧ � 0, there exists
Tintl such that 8t > Tintl,

(1) (1� ")Er(t)(f̃
(t))  Er(t)(f

(t))  (1 + ")Er(t)(f̃
(t))

(2) (1� 1
5)
k⇠(t)k

1
m  ⌧ (t)e  (1 + 1

5)
k⇠(t)k

1
m

then if 1
(1+")Er(t)(f

(t)) > (1 + "
2)kw

(t)
k1 then F > F ⇤, and if F  F ⇤ we have

(a)
P

e2E w(t)
e conge(f (t)) 

q
(1 + ")(1 + "

3(1 +
1
5))kw

(t)
k1  (1 + ")kw(t)

k1 and

(b) conge(f (t))  (1 + ")
q

1
1� 1

5

(1 + "
3(1 +

1
5)) ·

q
3m
" 

q
15m
" .

4.4.2 Analysis of Weights Updating
Then we show that from Corollary 4.4.1, if F is feasible then we could have a vector
of congestion bounded by 1.

Lemma 4.4.2. For our system, for ↵, " � 0, assume there exists ⇢, Tintl, such that

(1) for t � Tintl,
P

e w
(t)
e conge(f (t))  (1 + ")kw(t)

k1

(2) ↵ · conge(f (t))  ⇢, for all t

Then for f̄ = (1�")2

(1+")
1

(N�Tintl)

PN
k=Tintl

f (k), if F  F ⇤ then conge(f̄)  1. And if
conge(f̄) >

(1+")2

(1�")2 then F > F ⇤.
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Proof.

w(t)
e =

�
w(t�1)

e

�1��
✓
1 +

↵"

⇢
conge(f

(t�1))

◆

For t � Tintl, we have w(t)
e =

Qt
k=Tintl

(1+ ↵"
⇢ conge(f

(k))), because ↵·conge(f (k)) 
⇢ and 8", x 2 [0, 1], (1 + "x) � exp((1� ")"x) then

w(t)
e �

tY

k=Tintl

exp(
(1� ")↵"

⇢
conge(f

(k)))

= exp(
tX

k=Tintl

(1� ")↵"

⇢
conge(f

(k)))

= exp(
(1� ")↵"

⇢

tX

k=Tintl

conge(f
(k)))

For t = N , let favg
e = 1

(N�Tintl)

PN
k=Tintl

f (k)

w(N)
e � exp(

(1� ")↵"

⇢

NX

k=Tintl

conge(f
(k)))

= exp(
(1� ")↵"(N � Tintl)

⇢
conge(f

avg
e ))

Then we bound kw(N)
k1

For t > Tintl,

kw(t)
k1 =

X

e

w(t�1)
e

✓
1 +

↵"

⇢
conge(f

(t�1))

◆

=
X

e

w(t�1)
e +

X

e

w(t�1)
e

↵"

⇢
conge(f

(t�1))

= kw(t�1)
k1 +

X

e

w(t�1)
e

↵"

⇢
conge(f

(t�1))

 kw(t�1)
k1 +

↵"

⇢
(1 + ")kw(t�1)

k1

= (1 +
↵"

⇢
(1 + "))kw(t�1)

k1

 kw(t�1)
k1 exp

✓
↵"

⇢
(1 + ")

◆
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Thus as kw(Tintl)k1 = m

kw(N)
k1  m exp

✓
(N � Tintl)

↵"

⇢
(1 + ")

◆

Since we have w(t)
e  kw(t0)k1,

exp

✓
(1� ")↵"(N � Tintl)

⇢
conge(f

avg
e )

◆
 w(N)

e  kw(N)
k1  m exp

✓
(N � Tintl)

↵"

⇢
(1 + "en)

◆

(1� ")↵"(N � Tintl)

⇢
conge(f

avg
e )  lnm+ (N � Tintl)

↵"

⇢
(1 + ")

Then for N = Tmax = Tintl +
2⇢ lnm
↵"2 , (N � Tintl) =

2⇢ lnm
↵"2

conge(f
avg
e ) 

⇢

(1� ")↵"(N � Tintl)
lnm+ (N � Tintl)

↵"

⇢
(1 + "en)

⇢

(1� ")↵"(N � Tintl)

=
⇢

(1� ")↵"(N � Tintl)
lnm+

(1 + ")

(1� ")

=
"

2(1� ")
+

(1 + ")

(1� ")

Then

(1� ")2

(1 + ")
conge(f

avg
e ) 

"(1� ")

2(1 + ")
+ (1� ")


"(1� ")

2(1 + ")
+ (1� ")

 1

Denote f̄ = (1�")2

(1+") f
avg, then if F  F ⇤, conge(f̄)  1 8e 2 E .

And if conge(f̄) > (1+")2

(1�")2 then there must be some time k,
P

e w
(k)
e

↵"
⇢

(1+")
(1�")2 conge(f

(k)) >

(1 + ")↵"⇢
(1+")2

(1�")2kw
(k)
k1, meaning
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1

(1 + ")

X

e

w(k)
e conge(f

(k)) > (1 + ")kw(k)
k1

1

(1 + ")2
kw(k)

k1

X

e

w(k)
e cong2e(f

(k)) > (1 + ")2kw(k)
k
2
1

1

(1 + ")2

X

e

w(k)
e cong2e(f

(k)) > (1 + ")2kw(k)
k1

Because 1
(1+")Er(t)(f

(t)) � 1
(1+")2

P
e w

(k)
e cong2e(f

(k)),

1

(1 + ")
Er(k)(f

(k)) > (1 + ")2kw(k)
k

from Corollary 4.4.1, F > F ⇤.

4.4.3 Approximating the Electrical Flow

We have seen the property for F when we have a good approximation of average
weight and the electrical flow, this section presents the results to approximate these
quantities.

We start with the following Lemma, which follows directly from the definition
of ⇠(t) and ⇠⇤(t).

Lemma 4.4.3. Given k � 0 and w(k)
e , e 2 E, let ⇠(k)u = 1

2

P
e⇠u w

(k)
e , u 2 V and

⇠⇤(k)u =
deg(u)k⇠(t)k

1
2m , u 2 V . If for t0, t, we know (1��w)w(t)

 w(t0)  w(t) for some
�w > 0, then we have (1� �w)⇠(t)  ⇠(t0)  ⇠(t), and (1� �w)⇠⇤(t)  ⇠⇤(t0)  ⇠⇤(t).

Analysis of ⇠

⇠ represents the quantity that every nodes collects the sum of weights of incident
edges (and divide by 2), and we are going to show that ⇠(t)Bi is approximating ⇠⇤(t),
which is a factor of the average of weights.

Lemma 4.4.4. Let ⇠(t) and B be defined as in our system 4.12, denote

⇠⇤(t)u =
deg(u)

��⇠(t)
��
1

2m

given � � 0, let mix�(P ) be the �-mixing time of the simple random walk on G as
in Definition 4.2.4, then for i � mix�(P ), we have

��⇠(t)Bi
� ⇠⇤(t)

��
1
 �.
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Proof. This follows from the simple random walk on G and its mixing time.
Consider the simple random walk on G starting with initial distribution

⇡(0) =
⇠(t)

k⇠(t)k1

since B is equal to the transition matrix of simple random walk in Definition 4.2.4,
according to the definition of random walk, the distribution of this random walk at
time i is

⇡(i) =
⇠(t)Bi

k⇠(t)k1

Then according to the definition of �-mixing time in Definition 4.2.3, we have that
the stationary distribution of this random walk is ⇡u = deg(u)

2m , then for i � mix�(P ),

��⇡(i)
� ⇡

��
1

= max
u2V

✓
(⇠(t)Bi)u
k⇠(t)k1

�
deg(u)

2m

◆
 �

then

��⇠(t)Bi
� ⇠⇤(t)

��
1

= max
u2V

 
�
⇠(t)Bi

�
u
�

deg(u)
��⇠(t)

��
1

2m

!

=
��⇠(t)

��
1
max
u2V

✓
(⇠(t)Bi)u
k⇠(t)k1

�
deg(u)

2m

◆

 �
��⇠(t)

��
1

From Proposition 4.2.1 we know that the error parameter brings a logarithmic
factor to the mixing time, and we could have the following corollary.

Corollary 4.4.2. Let ⇠(t) , ⇠⇤(t) and B be defined as above, let mix(B) = mix1/3(B)
then for any 0 < �⇠ <

1
2 , for all i � dlog2 (2m�⇠ )e ·mix(B),

��⇠(t)Bi
� ⇠⇤(t)

��
1
 �⇠

��⇠(t)
��
1

2m
.

and ��⇠(t)Bi
� ⇠⇤(t)

��  �⇠ · ⇠
⇤(t).

Analysis of z

Then we analyze z(t+1) = (1� �)z(t)B + �⇠(t)u in our system 4.12. z(t) is the variable
approximating the average of weights with varying weights, here we we assume
that weights does not vary a lot (within a (1 + �w) factor) before z being a good
approximation. � is the factor to make the ancient and very recent weights be small
enough in iterations so that z(t) counts only the portion that is a good approximation.
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Lemma 4.4.5. For our system, given �w, �⇠ � 0, let tmix(B) = dlog2 (
2m
�⇠
)e · mix(B),

Tz = (2m ·
� ln �⇠

�⇠
+1) ·tmix(B), let � = 1��

1
Tz
⇠ . Assume 8t � Tz+tmix(B), 8t�Tz�1 

t0  t, we have (1� �w)w(t)
 w(t0)  w(t), then 8t � Tz + tmix(B),

(1� 3�⇠)(1� �w)⇠
⇤(t)
 z(t)  (1 + 5�⇠)⇠

⇤(t).

Proof. Firstly we remind that from Corollary 4.4.2 we know for i � tmix(B), there
must be

��⇠(t)Bi
� ⇠⇤(t)

��  �⇠ · ⇠⇤(t).

By recursively developping z we get:

z(t) = (1� �)z(t�1)B + �⇠(t�1)

= (1� �)tz(0)Bt + �
t�1X

k=0

(1� �)t�k�1⇠(k)Bt�k�1

since z(0) = 0,

z(t) =�
t�1X

k=0

(1� �)t�k�1⇠(k)Bt�k�1

=�
t0�1X

k=0

(1� �)t�k�1⇠(k)Bt�k�1 + �

t�tmix(B)�1X

k=t0

(1� �)t�k�1⇠(k)Bt�k�1+

�
t�1X

k=t�tmix(B)

(1� �)t�k�1⇠(k)Bt�k�1

Denote t0 = t� Tz � 1,

SUM1 = �
t0�1X

k=0

(1� �)t�k�1⇠(k)Bt�k�1

SUM2 = �

t�tmix(B)�1X

k=t0

(1� �)t�k�1⇠(k)Bt�k�1

SUM3 = �
t�1X

k=t�tmix(B)

(1� �)t�k�1⇠(k)Bt�k�1

Then z(t) = SUM1 + SUM2 + SUM3 and we analyze each sum here.

(1) In the sum of SUM1 = �
Pt0�1

k=0 (1��)
t�k�1⇠(k)Bt�k�1, always t�k�1 � tmix(B),

then from Lemma 4.4.4 and since ⇠⇤(t)u increases along t, we have:
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SUM1 = �
t0�1X

k=0

(1� �)t�k�1⇠(k)Bt�k�1

 �
t0�1X

k=0

(1� �)t�k�1(1 + �⇠)⇠
⇤(k)

= (1 + �⇠)�
t0�1X

k=0

(1� �)t�k�1⇠⇤(t0)

= (1 + �⇠) · � · (1� �)t�t0 ·
1� (1� �)t0

1� (1� �)
· ⇠⇤(t0)

 (1 + �⇠) · � · (1� �)t�t0 ·
1

�
· ⇠⇤(t0)

= (1 + �⇠)(1� �)t�t0⇠⇤(t0)

because t� t0 = Tz + 1, then for � � 1� �
1
Tz
⇠ we have (1� �)t�t0  �⇠ and

SUM1  (1 + �⇠)(1� �)t�t0�1⇠⇤(t0)

 �⇠(1 + �⇠)⇠
⇤(t0)

(4.15)

(2) For the third sum SUM3 = �
Pt�1

k=t�tmix(B)
(1��)t�k�1⇠(k)Bt�k�1, note that B is

a stochastic matrix and then ⇠(k)Bi

��⇠(k)

��
1
·1 for all i > 0, and ⇠⇤(t)u increases

along t, then

SUM3  �
t�1X

k=t�tmix(B)

(1� �)t�k�1
��⇠(t)

��
1
· 1

 �
1� (1� �)tmix(B)

1� (1� �)

��⇠(t)
��
1
· 1


�
1� (1� �)tmix(B)

� ��⇠(t)
��
1
· 1

(4.16)

For � = 1��
1
Tz
⇠ , Tz = (2m·

� ln �⇠
�⇠

+1)·tmix(B), since ln(1�x)  �x for 0 < x < 1,

we know that � �⇠
2m � ln (1� �⇠

2m) and �n ln (�⇠)
�⇠
�

ln (�⇠)

ln (1�
�⇠
2m )

then we have

Tz �
ln (�⇠)

ln (1� �⇠
2m)

· tmix(B)

Then

tmix(B) ln (�⇠) � Tz · ln (1�
�⇠
2m

)

1� �
1
Tz
⇠  1�

✓
1�

�⇠
2m

◆ 1
tmix(B)
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Notice that � = 1� �
1
Tz
⇠ ,

�  1�

✓
1�

�⇠
2m

◆ 1
tmix(B)

(1� �) �

✓
1�

�⇠
2m

◆ 1
tmix(B)

(1� �)tmix(B) � 1�
�⇠
2m

(4.17)

then

�
1� (1� �)tmix(B)

�
· 2m  �⇠ (4.18)

since minu deg(u) � 1, then

�
1� (1� �)tmix(B)

�
·

2m

minu deg(u)
 �⇠ (4.19)

From Formula 4.16 we know that

SUM3 
�
1� (1� �)tmix(B)

� ��⇠(t)
��
1
· 1 (4.20)

and by definition of ⇠⇤(t)u =
deg(u)k⇠(t)k

1
2m , we know

��⇠(t)
��
1
· 1  2m

minu deg(u)⇠
⇤(t).

Combine Formula 4.19 and Formula 4.20 we get

SUM3  �⇠ · ⇠
⇤(t) (4.21)

(3) For the sum SUM2 = �
Pt�tmix(B)�1

k=t0
(1 � �)t�k�1⇠(k)Bt�k�1, we have also that

t� k � 1 � mix(B) and ⇠⇤(k) increases along with k, then

�

t�tmix(B)�1X

k=t0

(1� �)t�k�1(1� �⇠)⇠
⇤(k)
 SUM2  �

t�tmix(B)�1X

k=t0

(1� �)t�k�1(1 + �⇠)⇠
⇤(k)

(1� �⇠)�

t�tmix(B)�1X

k=t0

(1� �)t�k�1⇠⇤(t0)  SUM2  (1 + �⇠)�

t�tmix(B)�1X

k=t0

(1� �)t�k�1⇠⇤(t)
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From Formula 4.18 we know �
Pt�1

k=t�tmix(B)
(1��)t�k�1 = (1� (1� �)tmix(B))  �⇠

2m ,

and �
Pt�1

k=t0
(1� �)t�k�1

� �⇠  �
Pt�tmix(B)�1

k=t0
(1� �)t�k�1, then we have

(1� �⇠)

 
�

t�1X

k=t0

(1� �)t�k�1
� �⇠

!
⇠⇤(t0)  SUM2  (1 + �⇠)

 
�

t�1X

k=t0

(1� �)t�k�1

!
⇠⇤(t)

(1� �⇠)
�
1� (1� �)t�t0�1

� �⇠
�
⇠⇤(t0)  SUM2  (1 + �⇠)(1� (1� �)t�t0�1)⇠⇤(t)

since � = 1� �
1
Tz
⇠ , (1� �)t�t0�1

 �⇠ then

(1� �⇠)(1� �⇠ � �⇠)⇠
⇤(t0)  SUM2  (1 + �⇠)⇠

⇤(t)

(1� �⇠)(1� 2�⇠)⇠
⇤(t0)  SUM2  (1 + �⇠)⇠

⇤(t)
(4.22)

Combine Formula 4.15, Formula 4.22 and Formula 4.21, for z(t) = SUM1 +
SUM2 + SUM3,

0 + (1� �⇠)(1� 2�⇠)⇠
⇤(t0) + 0  z(t)  (1 + �⇠)�⇠⇠

⇤(t0) + (1 + �⇠)⇠
⇤(t) + �⇠⇠

⇤(t)

(1� �⇠)(1� 2�⇠)⇠
⇤(t0)  z(t)  (1 + �⇠)�⇠⇠

⇤(t0) + (1 + �⇠)⇠
⇤(t) + �⇠⇠

⇤(t)

since ⇠(t)u = 1
2

P
e⇠u w

(t)
e and (1� �w)w(t)

 w(t0)  w(t)

we have (1 � �w)⇠(t)  ⇠(t0)  ⇠(t), and since ⇠⇤(i)u =
deg(u)k⇠(i)k

1
2m then (1 �

�w)⇠⇤(t)  ⇠⇤(t0)  ⇠⇤(t), then by changing ⇠⇤(t0) to ⇠⇤(t) in the above inequalities, we
get:

(1� �⇠)(1� 2�⇠)⇠
⇤(t0)  z(t)  (1 + �⇠)�⇠⇠

⇤(t0) + (1 + �⇠)⇠
⇤(t) + �⇠⇠

⇤(t)

(1� �⇠)(1� 2�⇠)(1� �w)⇠
⇤(t)
 z(t)  (1 + �⇠)�⇠⇠

⇤(t) + (1 + �⇠)⇠
⇤(t) + �⇠⇠

⇤(t)

(1� 3�⇠)(1� �w)⇠
⇤(t)
 z(t)  (1 + 5�⇠)⇠

⇤(t)

We set �⇠ =
1
30 we could get the following corollary:

Corollary 4.4.3. For our system, given 0  �w 
1
2 , let tmix(B) = dlog2 (60m)e · mix(B),

Tz = (2 ln(30m) + 1) · tmix(B). If 8t � Tz + tmix(B), 8t � Tz � 1  t0  t, we have
(1� �w)w(t)

 w(t0)  w(t), then 8t� Tz  t0  t,

(1�
1

5
)⇠⇤(t)  z(t)  (1 +

1

5
)⇠⇤(t).

then because ⇠⇤(t)u =
deg(u)k⇠(t)k

1
2m , for ⌧ (t)e = 2z

(t)
u

deg(u) , e 2 E, u any vertex incident
to e, we have

(1�
1

5
)

��⇠(i)
��
1

m
 ⌧ (t)e  (1 +

1

5
)

��⇠(i)
��
1

m
.
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Lemma 4.4.6. For our system, given 0  �⇠, �w 
1
2 , let tmix(B) = dlog2 (

2m
�⇠
)e · mix(B),

Tz = (2m ·
� ln �⇠

�⇠
+ 1) · tmix(B). Assume there is Tconv > Tz, 8t0 � Tr =

ln( 1
12m �w)
ln �⇠

Tz,
8tnow that 8tnow�Tconv  t0  tnow, we have (1� �w)w(tnow)

 w(t0)  w(t), and let
� = 1� �

1
Tz
⇠ then 8t0 � Tr =

ln( 1
12m �w)
ln �⇠

Tz, 8tnow � Tconv  t0  tnow,

(1� 2�w)⇠
⇤(tnow)

 z(t0)  (1 + 2�w)⇠
⇤(tnow)

Proof. Given tnow, t0, for z(t) = (1� �)z(t�1)B + �⇠(t�1), since z(0) = 0

z(t) = (1� �)tz(0)Bt + �
t�1X

k=0

(1� �)t�k�1⇠(k)Bt�k�1

= �
t�1X

k=0

(1� �)t�k�1⇠(k)Bt�k�1

= �
tX

k=0

(1� �)k⇠(t�k�1)Bk

z(tnow) = �
tnowX

k=0

(1� �)k⇠(tnow�k�1)Bk

= �
t0X

k=0

(1� �)k⇠(tnow�k�1)Bk + �
tnowX

k=t0+1

(1� �)k⇠(tnow�k�1)Bk

z(t0) = �
t0X

k=0

(1� �)k⇠(t0�k�1)Bk

z(tnow)
� z(t0) = �

t0X

k=0

(1� �)k
�
⇠(tnow�k�1)Bk

� ⇠(t0�k�1)Bk
�
+ �

tnowX

k=t0+1

(1� �)k⇠(tnow�k�1)Bk

= �
t0X

k=0

(1� �)k
�
⇠(tnow�k�1)Bk

� ⇠(t0�k�1)Bk
�
+ �

tnowX

k=t0+1

(1� �)k⇠(tnow�k�1)Bk

= �
t0X

k=0

(1� �)k
�
⇠(tnow�k�1)

� ⇠(t0�k�1)
�
Bk + �

tnowX

k=t0+1

(1� �)k⇠(tnow�k�1)Bk

(tnow � k� 1)� Tintl  (t0� k� 1)  (tnow � k� 1), then (1� �w)⇠⇤(tnow�k�1)


⇠⇤(t0�k�1)
 ⇠⇤(tnow�k�1),

0  ⇠(tnow�k�1)
� ⇠(t0�k�1)

 �w⇠
⇤(tnow�k�1)

Then
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�
t0X

k=0

(1� �)k
�
⇠(tnow�k�1)Bk

� ⇠(t0�k�1)Bk
�
 �wz(tnow) (4.23)

�
tnowX

k=t0+1

(1� �)k  (1� �)t0

Because � = 1� �
1
Tz
⇠ ,

�
tnowX

k=t0+1

(1� �)k  (�
t0
Tz
⇠ )

If

t0
Tz
�

ln
�

1
12m�w

�

ln �⇠

then

�
tnowX

k=t0+1

(1� �)k 
1

12m
�w

Because b is a stochastic matrix and
��⇠(t)

��
1
increasing along time t, then

��⇠(tnow�k�1)Bk
��
1
��⇠(tnow�k�1)

��
1

��⇠(tnow)

��
1
.

�
tnowX

k=t0+1

(1� �)k⇠(tnow�k�1)Bk


1

12m
�w
��⇠(tnow)

��
1
· 1

We know from Lemma 4.4.5, that for tnow � Tz, (1 � 3�⇠)(1 � �w)⇠⇤(t)  z(t) 

(1 + 5�⇠)⇠⇤(t), and ⇠⇤(t)u =
deg(u)k⇠(t)k

1
2m , and since �⇠, �w 

1
2 we know

��⇠(tnow)
��
1


2m

(1� 3�⇠)(1� �w)
z(tnow)

��⇠(tnow)
��
1
 12mz(tnow)

Then for

t0 �
ln
�

1
12m�w

�

ln �⇠
Tz

�
tnowX

k=t0+1

(1� �)k⇠(tnow�k�1)Bk
 �wz(tnow)

Combine Formula 4.23 and 4.4.3, we get

0  z(tnow)
� z(t0)  2�wz(tnow)

It means
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(1� 2�w)z(tnow)
 z(t0)  (1 + 2�w)z(tnow)

We set �⇠ =
1
30 we could get the following corollary:

Corollary 4.4.4. For our system, given 0  �⇠, �w 
1
2 , let tmix(B) = dlog2 (60m)e · mix(B),

Tz = (2 ln(30m) + 1) · tmix(B),

if there is Tconv � Tz, 8t0 � Tr =
ln( 1

12m �w)
ln �⇠

Tz, 8tnow that 8tnow � Tconv  t0 

tnow, we have (1��w)w(tnow)
 w(t0)  w(t), then 8t0 � Tr, 8tnow�Tconv  t0  tnow,

(1� 2�w)z(tnow)
 z(t0)  (1 + 2�w)z(tnow)

Analysis of r

r(t)e is the resistance of edge e 2 E in time t.

Lemma 4.4.7. For our system, assume for �w, �z � 0, there exists Tintl and Tconv �

Tintl such that 8t > Tintl, there is

(1) (1� �z)⇠⇤(t)  z(t)  (1 + �z)⇠⇤(t) and

(2) 8k, t  k  t+ Tconv, we have (1� �z)w(k)
 w(t)

 w(k) .

Then for any 8t0 � Tintl, 8tnow that tnow � Tconv  t0  tnow ,

(1� �z)2

(1 + �z)2
r(tnow)
e  r(t0)e 

(1 + �z)2

(1� �z)2
r(tnow)
e , 8e 2 E.

Proof. Firstly we prove a small fact: for tnow � Tintl + Tconv, 8t0 that tnow � T 
t0  tnow, there is

(1� �z)

(1 + �z)
z(t0)  z(tnow)


(1 + �z)

(1� �z)2
z(t0). (4.24)

From tnow � Tconv  t0  tnow we know t0  tnow  t0 + Tconv, then by the
assumption, (1� �z)w(tnow)

 w(t0)  w(tnow).
since t0 � tnow � Tconv � Tintl, by assumption there is

(1� �z)⇠
⇤(t0)  z(t0)  (1 + �z)⇠

⇤(t0). (4.25)

By Lemma 4.4.3 we know (1� �z)⇠⇤(tnow)
 ⇠⇤(t0)  ⇠⇤(tnow)

(1� �z)
2⇠⇤(tnow)

 z(t0)  (1 + �z)⇠
⇤(tnow). (4.26)

since tnow � Tintl, by assumption there is

(1� �z)⇠
⇤(tnow)

 z(tnow)
 (1 + �z)⇠

⇤(tnow). (4.27)

By Formula 4.26,
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(1� �z)2

(1 + �z)
z(tnow)

 z(t0) 
(1 + �z)

(1� �z)
z(tnow) (4.28)

Then we bound ⌧ (t)e , because in the definition ⌧ (t)e = 2z
(t)
u

deg(u) , e 2 E, u any vertex
incident to e,

(1� �z)2

(1 + �z)

2z(tnow)
u

deg(u)
 ⌧ (t0)e 

(1 + �z)

(1� �z)

2z(tnow)
u

deg(u)

(1� �z)2

(1 + �z)
⌧ (tnow)
e  ⌧ (t0)e 

(1 + �z)

(1� �z)
⌧ (tnow)
e

(1� �z)2

(1 + �z)
⌧ (tnow)
e  ⌧ (t0)e 

(1 + �z)2

(1� �z)
⌧ (tnow)
e

then

r(t0)e =
1

U2
e

(w(t0)
e +

"

3
⌧ (t0)e )

1

U2
e

✓
(1� �z)w

(tnow)
e +

"

3

(1� �z)2

(1 + �z)
⌧ (tnow)
e

◆
 r(t0)e 

1

U2
e

✓
w(tnow)

e +
"

3

(1 + �z)2

(1� �z)
⌧ (tnow)
e

◆

1

U2
e

(1� �z)2

(1 + �z)2

⇣
w(t0)

e +
"

3
⌧ (tnow)
e

⌘
 r(tnow)

e 
1

U2
e

(1 + �z)2

(1� �z)2

⇣
w(tnow)

e +
"

3
⌧ (tnow)
e

⌘

equivalently,

(1� �z)2

(1 + �z)2
r(tnow)
e  r(t0)e 

(1 + �z)2

(1� �z)2
r(tnow)
e

As a result, given "r  1, if �z 
1
8"r, then (1��z)2

(1+�z)2
 (1 � 8�z) and (1+�z)2

(1��z)2


(1 + 8�z)

(1� 8�z)  r(t0)e  (1 + 8�z)r
(tnow)
e

(1� "r)  r(t0)e  (1 + "r)r
(tnow)
e .
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Analysis of P

Here we remind that in our system,

c(t)e =
1

r(t)e

P (t)
e=uv =

c(t)e
P

v02N(u) c
(t)
uv0

P (t) serves as the transition matrix of time t.

Lemma 4.4.8. For our system, assume for "r � 0, there are Tintl, Tconv, such that
tnow � Tintl + Tconv, 8t0 that tnow � Tconv  t0  tnow we know (1 � "r)r

(tnow)
e 

r(t0)e  (1 + "r)r
(tnow)
e , then for tnow � Tintl + Tconv, 8t0 that tnow � Tconv  t0  tnow

(1� "r)

(1 + "r)
P (tnow)
e  P (t0)

e 
(1 + "r)

(1� "r)
P (tnow)
e , 8e 2 E.

Proof. By definition c(t)e = 1

r
(t)
e

, for tnow � Tintl + Tconv, 8t0 that tnow � Tconv  t0 

tnow from the assumption (1� "r)r
(tnow)
e  r(t0)e  (1 + "r)r

(tnow)
e , we know

1

(1 + "r)
c(tnow)
e  c(t0)e 

1

(1� "r)
c(tnow)
e

For any e = uv 2 E, P (t0)
uv = c

(t0)
uvP

v02N(u) c
(t0)

uv0

(1� "r)c
(tnow)
uv

(1 + "r)
P

v02N(u) c
(t0)
uv0

 P (t0)
uv 

(1 + "r)c
(tnow)
uv

(1� "r)
P

v02N(u) c
(t0)
uv0

which means

(1� "r)

(1 + "r)
P (tnow)
e  P (t0)

e 
(1 + "r)

(1� "r)
P (tnow)
e

In the proof above, given �P  1, if "r  1
3�P , then

(1� �P )P
(tnow)
e  P (t0)

e  (1 + �P )P
(tnow)
e
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which means
��P (t0)

e � P (tnow)
e

��
1
 �PP

(tnow)
e

Analysis of y

y(t) counts the number of fractional tokens on every node at time t.

Lemma 4.4.9. Let y be a non-negative row vector, P 2 Rn⇥n a matrix s.t. 8k,
Pn

j=1 Pkj 

1, then ky · Pk1  kyk1.

Proof.

ky · Pk1 =
nX

j=1

 
nX

k=1

ykPkj

!

=
nX

k=1

 
yk

nX

j=1

Pkj

!



nX

k=1

yk

We remind that P for a matrix obtained by putting the last row and column of
P by zeros. We now consider the linear system: y(t+1) = y(t)P (t) + b

Lemma 4.4.10. For given "y , let Ty = 2n�Rratio ln(
2
p
n�Rratio

"y
), assume we have

Tintl and Tconv that Tconv � Ty, such that t � Tintl +Tconv, 8k that t�Tconv  k  t,���
⇣
P (k)
� P (t)

⌘���  �P · P (t) for some �P 
"y

2(Tconv)2
, then for t � Tintl + Tconv, 8t0

that t� Tconv  t0  t
�����y

(t)
� b

t�t0�1X

k=0

⇣
P (t)

⌘k
�����
1

 "y
��y(t)

��
1

Proof. Define

�(l, k) =

(
P (l)P (l+1)

· · · P (k�1) 0 < l < k

I k = l
(4.29)

then

y(t) = y(t0)�(t0, t) + b
tX

k=t0+1

�(k, t) (4.30)
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For t = t0 + T , we regard �(t0, t),

�(t0, t) = �(t0, t� 1)P (t�1)

= �(t0, t� 1)P (t) + �(t0, t� 1)
⇣
P (t�1)

� P (t)
⌘

= �(t0, t0)
⇣
P (t)

⌘t�t0
+

t�1X

k=t0

�(t0, k) ·
⇣
P (k)
� P (t)

⌘⇣
P (t)

⌘t�k�1

=
⇣
P (t)

⌘t�t0
+

t�1X

k=t0

�(t0, k) ·
⇣
P (k)
� P (t)

⌘⇣
P (t)

⌘t�k�1

Then

y(t0)�(t0, t) = y(t0)
⇣
P (t)

⌘t�t0
+ y(t0)

t�1X

k=t0

�(t0, k) ·
⇣
P (k)
� P (t)

⌘⇣
P (t)

⌘t�k�1

(4.31)

(1) We first analyze
⇣
P (t)

⌘t�t0
.

Because P (t) is a stochastic matrix and P (t) obtained by putting the last row
and column of P into zeros, then by (Lemma 4.3 of ) [6] , the spectral radius
⇢(P (t)) (the largest absolute value of its eigenvalues) of P (t) has ⇢(P (t)) < 1.
We denote vol(t)u =

P
v2N(u) c

(t)
uv , and vol(t)max vol(t)min the maximal/minimal vol(t)u

in u 2 V .

By the calculation in Section 3.1 of [6] ,
����
⇣
P (t)

⌘t�t0
����
2

could be bounded by:

����
⇣
P (t)

⌘t�t0
����
2



s
vol(t)max

vol(t)min

⇣
⇢(P (t))

⌘t�t0

and to upper bound ⇢(P (t)), the Theorem 4.9 and Theorem 4.11 of [6]) shows

⇢(P (t)) 

 
1�

�2(P
(t))

2nvol(t)max

X

u2V,u 6=sink

c(t)u,sink

c(t)u,sink + �2(P
(t))

!



 
1�

�2(P
(t))

2nvol(t)max

c(t)min

�2(P
(t))

!



 
1�

c(t)min

2nvol(t)max

!

(4.32)

We define

r(t)min = min
e2E

r(t)e , r(t)max = max
e2E

r(t)e
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Rmin = r(t)min, 8t, Rmax = r(t)max, 8t

and c(t)min, c
(t)
max, Cmin, Cmax respectively.

Let Rratio denote Rratio =
r
(t)
max

r
(t)
min

= c
(t)
max

c
(t)
min

, 8t, we could have the following inequali-
ties:

vol(t)max  �c(t)max

vol(t)min � c(t)min

c(t)min

vol(t)max
�

1

�Rratio

vol(t)max

vol(t)min

 �Rratio

In fact we could bound Rratio. For t � Tintl, r(t)max 
6
5

��w(t)
��
1

and r(t)max 

"
5mU2

max

��w(t)
��
1

so Rratio =
r
(t)
max

r
(t)
min

 6U2
max

m
" and c(t)max  U2

max. But let’s take the
notation Rratio to simplify the calculation.

⇢(P (t)) 

✓
1�

1

2n�Rratio

◆

����
⇣
P (t)

⌘t�t0
����
2



p
�Rratio

⇣
⇢(P (t))

⌘t�t0



p
�Rratio

✓
1�

1

2n�Rratio

◆t�t0

And
��y(t0)

��
2

��y(t0)

��
1

��y(t)

��
1
,

����y
(t0)
⇣
P (t)

⌘t�t0
����
2



p
�Rratio

✓
1�

1

2n�Rratio

◆t�t0 ��y(t)
��
1

given �y, let

Ty = 2n�Rratio ln(

p
n�Rratio

�y
) �

ln( �y
p
n�Rratio

)

ln(1� 1
2n�Rratio

)

then if t� t0 � Ty then
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����y
(t0)
⇣
P (t)

⌘t�t0
����
2


�y
p
n

��y(t)
��
1

����y
(t0)
⇣
P (t)

⌘t�t0
����
1

 �y
��y(t)

��
1

Let �y 
"y
2

then if t� t0 � Ty then

����y
(t0)
⇣
P (t)

⌘t�t0
����
1


"y
2

��y(t)
��
1

(2) Then we analyze y(t0)�(t0, t)� y(t0)
⇣
P (t)

⌘t�t0
and b

Pt
k=t0+1 �(k, t)

����y
(t0)�(t0, t)� y(t0)

⇣
P (t)

⌘t�t0
����
1

=

�����y
(t0)

t�1X

k=t0

�(t0, k) ·
⇣
P (k)
� P (t)

⌘⇣
P (t)

⌘t�k�1
�����
1

=

�����

t�1X

k=t0

y(t0)�(t0, k) ·
⇣
P (k)
� P (t)

⌘⇣
P (t)

⌘t�k�1
�����
1

From the assumption 8t0  k  t,
���
⇣
P (k)
� P (t)

⌘���  �P · P (t), so the sum of

every row of
⇣

1
�P

���P (k)
� P (t)

���
⌘

is less than 1.

And we know also P (t0), �(t0, k) and
⇣
P (t)

⌘t�k�1

are matrices such that the sum
of every row is less than 1, then from Lemma 4.4.9

��y(t0)�(t0, k)
��
1

��y(t0)

��
1
,

and we have

���y(t0)�(t0, k) ·
⇣
P (k)
� P (t)

⌘���
1


������P · y(t0)�(t0, k) ·

✓
1

�P

���P (k)
� P (t)

���
◆(t)

�����
1

 �P
��y(t0)

��
1

�����

t�1X

k=t0

y(t0)�(t0, k) ·
⇣
P (k)
� P (t)

⌘⇣
P (t)

⌘t�k�1
�����
1

 �P (t� t0)
��y(t0)

��
1
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Similarly, we do the same analysis for b · �(k, t), 8t0  k  t,

�(k, t) = �(k, t� 1)P (t�1)

= �(k, t� 1)P (t) + �(k, t� 1)(P (t�1)
� P (t))

=
⇣
P (t)

⌘t�k

+
t�1X

j=k

�(k, j) ·
⇣
P (j)
� P (t)

⌘⇣
P (t)

⌘t�j�1

Then

����b · �(k, t)� b
⇣
P (t)

⌘t�k
����
1

 �P (t� t0) kbk1
�����

tX

k=t0+1

b · �(k, t)�
tX

k=t0+1

b
⇣
P (t)

⌘t�k
�����
1

 �P (t� k)(t� t0) kbk1

 �P (t� t0)
2
kbk1

We know by definition that kbk1 
��y(t)

��
1

then for y(t) = y(t0)�(t0, t) +

b
Pt

k=t0+1 �(k, t), we get

�����y
(t)
� y(t0)

⇣
P (t)

⌘t�t0
� b

tX

k=t0+1

⇣
P (t)

⌘t�k
�����
1

 �P (t� t0)
��y(t)

��
1
+ �P (t� t0)

2
kbk1

 2�P (t� t0)
2
��y(t)

��
1

= 2�P (Ty)
2
��y(t)

��
1

if

�P 
"y

2(Tconv)2

for t� t0 = Ty

�����y
(t)
� y(t0)

⇣
P (t)

⌘t�t0
� b

tX

k=t0+1

⇣
P (t)

⌘t�k
�����
1


"y
2

��y(t)
��
1

and

����y
(t0)
⇣
P (t)

⌘t�t0
����
1


"y
2

��y(t)
��
1
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�����y
(t)
� b

tX

k=t0+1

⇣
P (t)

⌘t�k
�����
1



�����y
(t)
� y(t0)

⇣
P (t)

⌘t�t0
� b

tX

k=t0+1

⇣
P (t)

⌘t�k
�����
1

+

����y
(t0)
⇣
P (t)

⌘t�t0
����
1


"y
2

��y(t)
��
1
+

"y
2

��y(t)
��
1

 "y
��y(t)

��
1

Equivalently,

�����y
(t)
� b

t�t0�1X

k=0

⇣
P (t)

⌘k
�����
1

 "y
��y(t)

��
1

Analysis of �

We are going to show that �(t) = y(t)
�
D(t)

��1 is approximating the potentials.

Lemma 4.4.11. For given �� , let Th � 2n�Rratio ln
4n�2Rratioh

(1)
max

p
n�Rratio

��
, assume

we have Tintl and Tconv that Tconv � Th, such that t � Tintl+Tconv, 8t0 that t�Tconv 

t0  t�Th,
����y

(t)
� b

Pt�t0�1
k=0

⇣
P (t)

⌘k����
1

 "y
��y(t)

��
1
, for "y =

��

4�Rratio·nh
(1)
max

then for

tnow � Tintl + Tconv, let �(tnow) = y(tnow)
�
D(tnow)

��1, we have
����(tnow)

� h(1)(P (tnow), D(tnow))
���
1
 ��

where h(1)(P (tnow), D(tnow)) is the potential of electrical network with resistances r(t)
and current flow value F .

Proof. For tnow � Tintl + Tconv, tnow � Tconv  t0  tnow � Th, by assumption����y
(tnow)

� b
Ptnow�t0�1

k=0

⇣
P (tnow)

⌘k����
1

 "y
��y(tnow)

��
1
.

For all t � 0, consider the electrical network with resistors r(t) and constant
current source of current value F , we denote c(t)uv = 1

r
(t)
uv

are conductances.

We also denote A(t)
u,v = c(t)e=uv, D(t)

u,u =
P

v02N(u) c
(t)
uv0 , D

(t)
u,v = 0, u 6= v, L(t) = D(t)

�

A(t), vol(t)(u) = D(t)
u,u, P (t) is the same as our system and in fact, P (t) =

�
D(t)

��1
A(t)

and P (t) is a stochastic matrix. P (t) is obtained by putting the last row and column
of P into zeros, and ⇢(t) is the spectral radius of P (t).

By basic algebras we know that a vector � is potential vector induced by current
source of value 1 and r(t) if L(t)�> = b>.
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For any n⇥n matrices A,B such that limi!1 Ai = 0 and B invertible, given time
i we denote h(i)(A,B) = b

⇣Pi
k=0 (A)

k
⌘
(B)�1, and h(1)(A,B) = b

⇣P
1

k=0 (A)
k
⌘
(B)�1

note that since assumed limi!1 Ai = 0, the later sum exists and converges to
(I � A)�1B�1.

From [6] we know that

h(1)(P (tnow), D(tnow)) = b

 
1X

k=0

⇣
P (tnow)

⌘k
!
�
D(tnow)

��1

= b
⇣
I � P (tnow)

⌘�1 �
D(tnow)

��1

(1) We first show that h(1)(P (tnow), D(tnow)) is the the potential vector induced by

r(tnow), namely L(tnow)
⇣
h(1)(P (tnow), D(tnow))

⌘>
= b>.

Note that D(tnow)
� A(tnow) is a symmetric matrix, then

L(tnow)
⇣
h(1)(P (tnow), D(tnow))

⌘>
= L(tnow)

✓
b
⇣
I � P (tnow)

⌘�1 �
D(tnow)

��1
◆>

= L(tnow)

✓
b
⇣
D(tnow)

� A(tnow)
⌘�1
◆>

= L(tnow)

✓⇣
D(tnow)

� A(tnow)
⌘�1
◆>

b>

= L(tnow)
⇣
D(tnow)

� A(tnow)
⌘�1

b>

= L(tnow)
⇣
I � P (tnow)

⌘�1 �
D(tnow)

��1 b>

= b>

Which means h(1)(P (tnow), D(tnow)) is the exact potential induced by r(tnow). We
denote h(1)

max for
���h(1)(P (tnow), D(tnow))

���
1

in the following, and fact this value
corresponds to the potential of source node.

(2) Then we regard h(Th)(P (tnow), D(tnow)) = b
✓PTh

k=0

⇣
P (tnow)

⌘k◆�
D(tnow)

��1, and

bound the difference between h(1)(P (tnow), D(tnow)) and h(Th)(P (tnow), D(tnow)):
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h(1)(P (tnow), D(tnow))� h(Th)(P (tnow), D(tnow))

= b

 
1X

k=0

⇣
P (tnow)

⌘k
�

ThX

k=0

⇣
P (tnow)

⌘k
!
�
D(tnow)

��1

= b

 
1X

k=Th+1

⇣
P (tnow)

⌘k
!
�
D(tnow)

��1

From [6] the proof of theorem 4.4, we know

�����b
 

1X

k=Th+1

⇣
P (tnow)

⌘k
!
�
D(tnow)

��1

�����
2

 F ·

s
volmax(P

(tnow))

volmin(P
(tnow))

⇣
⇢(P (tnow))

⌘Th

(1� ⇢(P (tnow)))

1

volsource(P (tnow)))

where ⇢(P (tnow)) is the spectral radius (the largest absolute value of its eigenval-
ues) of P (tnow).

Because volmax(P (tnow))

volmin(P (tnow))
 �Rratio and

F

volsource(P (tnow)))
=

X

(source,v)2E

F · r(tnow)
source,v  �h(1)

max

we know

���h(1)(P (tnow), D(tnow))� h(Th)(P (tnow), D(tnow))
���
2

=

�����b
 

1X

k=Th+1

⇣
P (tnow)

⌘k
!
�
D(tnow)

��1

�����
2

 F ·

p
�Rratio

⇣
⇢(P (tnow))

⌘Th

(1� ⇢(P (tnow)))

1

volsource(P (tnow)))



p
�Rratio

⇣
⇢(P (tnow))

⌘Th

(1� ⇢(P (tnow)))
�h(1)

max

From Formula 4.32 we know

⇢(P (t)) 

✓
1�

1

2nvol(t)max

◆



✓
1�

1

2n�Rratio

◆
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Thus if Th � 2n�Rratio ln
2n�2Rratioh

(1)
max

p
n�Rratio

�h
we have

���h(1)(P (tnow), D(tnow))� h(Th)(P (tnow), D(tnow))
���
2


�h
p
n���h(1)(P (tnow), D(tnow))� h(Th)(P (tnow), D(tnow))

���
1
 �h

Let �h = ��
2 ,

���h(1)(P (tnow), D(tnow))� h(Th)(P (tnow), D(tnow))
���
1


��
2

(3) We then consider �(tnow) = y(tnow)
�
D(tnow)

��1.

Since
����y

(tnow)
� b

PTh
k=0

⇣
P (tnow)

⌘k����
1

 "y
��y(tnow)

��
1
, we know (1�"y)

��y(tnow)
��
1


����b
PTh

k=0

⇣
P (tnow)

⌘k����
1

,
��y(tnow)

��
1


1
(1�"y)

����b
PTh

k=0

⇣
P (tnow)

⌘k����
1

.

And b
PTh

k=0

⇣
P (tnow)

⌘k
= h(Th)(P (tnow)D(tnow)) ·D(tnow).

For �(tnow) = y(tnow)
�
D(tnow)

��1,

����(tnow)
� h(Th)(P (tnow), D(tnow))

���
1
=

�����y
(tnow)

�
D(tnow)

��1
�

ThX

k=0

⇣
P (tnow)

⌘k �
D(tnow)

��1

�����
1

=

�����

 
y(tnow)

� b
ThX

k=0

⇣
P (tnow)

⌘k
!
�
D(tnow)

��1

�����
1

 Rmax ·

�����

 
y(tnow)

� b
ThX

k=0

⇣
P (tnow)

⌘k
!�����

1

 Rmax · "y
��y(tnow)

��
1


"y

(1� "y)
Rmax

�����b
ThX

k=0

⇣
P (tnow)

⌘k
�����
1

(4.33)

�����b
ThX

k=0

⇣
P (tnow)

⌘k
�����
1



�����b
1X

k=0

⇣
P (tnow)

⌘k
�����
1

=
���h(1)(P (tnow), D(tnow))D(tnow)

���
1

 �Cmax

���h(1)(P (tnow), D(tnow))
���
1
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Note that h(1)(P (tnow), D(tnow)) are potentials induced by F and r(tnow),

���h(1)(P (tnow), D(tnow))
���
1
 n

���h(1)(P (tnow), D(tnow))
���
1

 nh(1)
max

�����b
ThX

k=0

⇣
P (tnow)

⌘k
�����
1

 �Cmax · nh
(1)
max

From Formula 4.33, when "y  1/2

����(tnow)
� h(Th)(P (tnow), D(tnow))

���
1


"y
(1� "y)

Rmax

�����b
ThX

k=0

⇣
P (tnow)

⌘k
�����
1


"y

(1� "y)
�Rratio · nh

(1)
max

 2"y�Rratio · nh
(1)
max

For "y =
��

4�Rratio·nh
(1)
max

,

����(tnow)
� h(Th)(P (tnow), D(tnow))

���
1


��
2

Then

����(tnow)
� h(1)(P (tnow), D(tnow))

���
1


����(tnow)
� h(Th)(P (tnow), D(tnow))

���
1
+

���h(1)(P (tnow), D(tnow))� h(Th)(P (tnow), D(tnow))
���
1


��
2

+
��
2

 ��

Because h(1)(P (tnow), D(tnow)) are potentials induced by r(tnow), �(tnow) is an ap-
proximation.
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Analysis of f

Let f̃ (t) be the exact the electrical flow induced by r(t) with constant current source
of current value F and h(1) are potentials associated, c(t)uv = 1

r
(t)
uv

are conductances.
Given an s� t flow f , the energy of f with r is defined by Er(f) =

P
e2E re(f 2

e ).

Lemma 4.4.12. For any "en � 0, if we can compute a vector of �(t), such that����(t)
� h(1)

���
1

 �� where �� = "enh
(1)
max

8mRratio
and let f (t) be defined by f (t)

uv =
���(�(t)

u � �(t)
v )c(t)uv

���,
then we have:

���Er(t)(f (t))� Er(t)(f̃ (t))
���  "en · Er(t)(f̃ (t))

Proof. By definition, f̃ (t)
uv =

���(h(1)
u � h(1)

v )c(t0)uv

��� and f (t)
uv =

���(�(t)
u � �(t)

v )c(t)uv

���, then we

look at the energy of f (t) and f̃ (t):

Er(t)(f (t)) =
X

uv2E

r(t)uv

�
f (t)
uv

�2
=
X

uv2E

(�(t)
u � �(t)

v )2c(t)uv

Er(t)(f̃ (t)) =
X

uv2E

r(t)uv

⇣
f̃ (t)
uv

⌘2
=
X

uv2E

(h(1)
u � h(1)

v )2c(t)uv

For e = uv 2 E,

��(�(t)
u � �(t)

v )2 � (h(1)
u � h(1)

v )2
�� =

��(�(t)
u � �(t)

v + h(1)
u � h(1)

v )(�(t)
u � �(t)

v � h(1)
u + h(1)

v )
��

=
��(�(t)

u � �(t)
v + h(1)

u � h(1)
v )

�� ·
��(�(t)

u � h(1)
u ) + (h(1)

v � �(t)
v )
��

we have
����(t)

� h(1)
���
1

 �� and h(1)
u , h(1)

v � 0, then

��(�(t)
u � �(t)

v ) + (h(1)
u � h(1)

v )
�� 

����(t)
u � �(t)

v

��+
��h(1)

u � h(1)
v

���


�
2
��h(1)

u � h(1)
v

��+ 2��
�

��(�(t)
u � �(t)

v )� (h(1)
u � h(1)

v )
�� =

��(�(t)
u � h(1)

u ) + (h(1)
v � �(t)

v )
��

 2��

��(�(t)
u � �(t)

v )2 � (h(1)
u � h(1)

v )2
�� 

�
2
��h(1)

u � h(1)
v

��+ 2��
�
· 2��

=
��h(1)

u � h(1)
v

�� · 4�� + 4�2�
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c(t)uv

��(�(t)
u � �(t)

v )2 � (h(1)
u � h(1)

v )2
��  c(t)uv

��h(1)
u � h(1)

v

�� · 4�� + 4�2�c
(t)
uv

= f̃ (t)
uv · 4�� + 4�2�c

(t)
uv

Note that f̃ (t)
uv  F because F is the flow value from the source,

���Er(t)(f (t))� Er(t)(f̃ (t))
��� =

X

uv2E

c(t)uv

��(�(t)
u � �(t)

v )2 � (h(1)
u � h(1)

v )2
��



X

uv2E

⇣
f̃ (t)
uv · 4�� + 4�2�c

(t)
uv

⌘

 4��mF + 4�2�mc(t)uv

Because from property of electrical circuit we know h(1)
max is exactly the potential

of the source and

Er(t)(f̃ (t)) = Fh(1)
max (4.34)

when �� 
"enh

(1)
max

8mRratio

���Er(t)(f (t))� Er(t)(f̃ (t))
��� 

"en
2
Fh(1)

max +
"en
2

�
h(1)
max

�2 1

mRmax


"en
2
Fh(1)

max +
"en
2
h(1)
maxF

 "en · Er(t)(f̃ (t))

Time Complexity

We now fix the parameters to see the time complexity.
We’d like to make the assumption for 4.4.1 hold, i.e. "en = ", �⌧ = 1

5 .
Remember that to make the assumptions of Lemma 4.4.3 to Lemma 4.4.12 to

be hold we need 8t � Tintl + Tconv, t � Tconv  t0  t time, we need to have
(1� �w)w(t)

 w(t0)  w(t).
Note that t  Tintl, since w(t) do not change, this holds trivially. For t � Tintl,

we know cong(f (t)
e )  ⇢ and so

w(t+1)
e  w(t)

e

✓
1 +

↵"

⇢
conge(f

(t))

◆

 w(t)
e (1 + ↵")

 w(t)
e exp (↵") , since 1 + x  ex for x � 0

For t � Tintl + Tconv, t� Tconv  t0  t,
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w(t)
e  w(t0)

e exp ((t� t0)↵")  exp (Tconv · ↵")

To have (1��w)w(t)
 w(t0), it means w(t)

 w(t0) 1
(1��w) , and w(t)

 w(t0)(1 + �w)could
imply this since (1 + �w) 

1
(1��w) , for �w  1.

Thus we need

exp (Tconv · ↵")  (1 + �w)

↵ 
ln(1 + �w)

Tconv · "

We recall that "r 
1
3�P , �z  1

8"r, �w 
1
5�z, then �w 

1
120�P .

↵ 
ln(1 + 1

120�P )

Tconv · "

↵  �P
240Tconv ·"

could imply the above.

We then give a bound of �P .
Let �� = "enh

(1)
max

8mRratio

Then �h = ��
2 = "enh

(1)
max

16mRratio

"y =
��

4�Rratio · nh
(1)
max

=
1

4�Rratio · nh
(1)
max

·
"enh

(1)
max

8mRratio

=
"en

32�nmR2
ratio

�y =
"y
2 = "en

64�nmR2
ratio

Ty = 2n�Rratio ln(

p
n�Rratio

�y
)

= 2n�Rratio ln(
p

n�Rratio
64�nmR2

ratio

"en
)

= 2n�Rratio ln(
64�

3
2n

3
2mR

5
2
ratio

"en
)
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Th = 2n�Rratio ln
2n�2Rratioh

(1)
max
p
n�Rratio

�h

= 2n�Rratio ln (2n�
2Rratioh

(1)
max

p
n�Rratio ·

16mRratio

"enh
(1)
max

)

= 2n�Rratio ln (
32�

5
2n

3
2mR

5
2
ratio

"en
)

For Tz = (2m ·
ln ��1

w
�w

+ 1) · tmix(B)

Tz = (2m ·
ln ��1

w

�w
+ 1) · tmix(B)

Remember tmix(B) = dlog2 (
2m
�⇠
)e · mix(B), Tz = (2m ·

� ln �⇠
�⇠

+ 1) · tmix(B),

8Tr =
ln( 1

12m �w)
ln �⇠

Tz.
For assumptions of Lemma 4.4.3 to Lemma 4.4.12 to be hold, we know there

need to be Tconv � tmix(B) + Tz +max (Th, Ty) and Tintl � Tr + Tconv.
Because Tz � tmix(B) and 2Ty � Th, let Tconv = 2Tz + 2Ty, then we need

�P 
"y

2(3Tr + 2Ty)2


"y
2(Tconv)2


"en

64�nmR2
ratio(Tconv)2

which means

↵ 
"en

510 · 32�nmR2
ratioT

3
conv · "

When we want to have an "-energy approximation, we set "en = "

↵ 
"

510 · 32�nmR2
ratioT

3
conv · "

=
1

510 · 32�nmR2
ratioT

3
conv

Then we fix Tconv. For �⇠ =
1
30 , tmix(B) = O(lnm)mix(B), Tz = O(m) · tmix(B) =

O(m lnm)mix(B),

Tconv = 2Tz + 2Ty = O((m lnm)mix(B) + n�Rratio ln(
�

3
2n

3
2mR

5
2
ratio

"en
))

= O(m · mix(B) + n�Rratio)polylog(nm/")

118



Tr = O(ln
1

�w
)Tz = O(m ln2 m) ln

1

�w
mix(B)

=
�nm2R2

ratio(Tconv)2mix(B)polylog(nm/")

"

=
�n3m4R4

ratiomix(B)3polylog(nm)

"

Tintl = Tr + Tconv = O(Tr) = O(�n3m4R4
ratiomix(B)3polylog(nm)

" ).

Because the re-weighting algorithm runs in Tintl+
2⇢ lnm
↵"2 time, the whole running

time is O(2⇢ lnm
"2 �nmR2

ratioT
3
conv +

�n3m4R4
ratiomix(B)3polylog(nm)

" ) time.
As Rratio = r

(t)
max

r
(t)
min

 6U2
max

m
" and we assume that the edge capacity Umax is

poly(n) and mix(B) is polynomial, then the running time is polynomial.

Let "en = ", �⌧ = 1
5 , combine Lemma 4.4.2, Corollary 4.4.1 and Lemma 4.4.12,

and we have the following theorem:

Theorem 4.4.1. Our algorithm solves the following problem in Pure-LOCAL model
in polynomial time:

Weaker decision problem of Max-flow approximation. For a graph G =
(V,E) with edge capacity Ue, e 2 E and a value F , if F does not exceed the (1+O("))
of the maximum flow, we will return “YES” . And if we return “NO” then F must
exceed the maximum flow.

More precisely, if F  F ⇤ then conge(f̄)  1, and if conge(f̄) > (1+")2

(1�")2 then
F > F ⇤.

The gap between 1 and (1+")2

(1�")2 is the case non-distinguishable by our Pure-LOCAL
algorithm compared to the centralized algorithm.

4.5 Conclusions of Chapter
We studied the implementation of an multiplicative weights update algorithm ap-
proximating Max-flow problem in Pure-LOCAL model.

1. We design the way in Pure-LOCAL model to approximate the global quantity
of average weight in a weight-varying iterative algorithm.

2. We implement in Pure-LOCAL model the computation to solving an electrical
network with resistances changing in iterations. As we know, this is the first
algorithm approximating the electrical flow in a weight-varying environment.

3. We show that our algorithm solves a weaker version of Max-flow approximation
decision problem in polynomial time.
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Chapter 5

Conclusion

We study three problems of different aspects of efficiency of algorithm design for
large scale graph computations.

Firstly, we consider the question of generalizing modular decompositions and
designing time-efficient algorithm for this problem. We present here positive results
obtained for three definitions of modular decomposition in hypergraphs from the
literature: the standard modules [73], the k-subset modules [13] and the Courcelle’s
modules [26]. We developed a general algorithmic scheme to compute their modular
decomposition following the idea in [52] for modules in graphs, by implementing the
appropriately functions in this scheme, we got a O(n3

· l) algorithm for modular
decomposition of standard module and k-subset module, improving the previous re-
sult based on a O(n4m3) algorithm [74] for standard module and O(n3k�5) algorithm
[13] for k-subset module respectively, and conclude the decomposition of k-subset
module in hypargraphs is in P . We also present negative results for two definitions
of modular decomposition, allowing errors in graph modules that does not lead to
a valid decomposition.

Another scenario we consider is the large scale graph data query. We study
the generalized binary search problem [37] for which we compute an efficient query
strategy to find a hidden target in graphs. We proposed a quasi-polynomial time
approximation scheme for computing the optimal strategy of generalized binary
search on weighted trees, which implies that the problem is not APX-hard, unless
NP ✓ DTIME(nO(logn)). By applying a generic reduction, we obtain as a corol-
lary that the studied problem admits a polynomial-time O(

p
log n)-approximation.

This improves previous Ô(log n)-approximation approaches, where the Ô-notation
disregards O(poly log log n)-factors.

Then we study the algorithm design on a distributed computing model with
memory efficiency constraint, i.e. the Pure-LOCAL model. We studied the imple-
mentation of an multiplicative weights update algorithm [20] approximating Max-
flow problem in Pure-LOCAL model. We design the way in Pure-LOCAL model
to approximate the global quantity of average weight and approximately solving an
electrical network in weight-varying iterations. To our knowledge, this is the first
implementation of a weight update algorithm in Pure-LOCAL model. We show that
our algorithm solves a weaker version of Max-flow (1 + ")-approximation decision
problem in polynomial time.
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From a methodological point of view, the three types of efficiency concerns cor-
respond to the following types of scenarios: the first one is the most classical one
– given the problem, we try to design by hand the more efficient algorithm; the
second one, the efficiency is regarded as an objective function – where we model
query costs as an objective function, and using approximation algorithm techniques
to get a good design of efficient strategy; the third one, the efficiency is in fact posed
as a constraint of memory and we design algorithm under this constraint.

In the future, we’d like to explore more computation models that impose time or
memory efficiency, and algorithm design on them. An interested question is: what
cannot be computed if there are time or memory limitations? Recently there has
been many studies on classical problems based on SETH conjecture, can we obtain
hardness of polynomial time for hypergraph modules detection of decomposition?
Can we build hardness results for memory limited computations in distributed model
like Pure-LOCAL? This thesis presents our works in algorithm design purpose, but
the complexity and hardness studies are also important and interesting for future
works.
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