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Abstract 

The South China Block is composed of two distinct tectonic domains: the Yangtze and 

Cathaysia blocks. The Jiangnan Orogenic Belt, marking the Neoproterozoic northeast–trending 

collisional suture of the Cathaysia Block with the Yangtze Block, is located at the southeastern 

margin of the Yangtze Block and separated from the Cathaysia Block to the southeast by the 

Jiangshan-Shaoxing fault zone. 

    In the Jiangnan Orogenic Belt, some geological facts are well recognised by geologists. An 

ophiolitic belt is exposed in the Dexing-Shexian area, the eastern Jiangnan region, named the 

northeast Jiangxi ophiolite, with an age cluster of 1.0-0.85 Ga. It is mainly composed of 

harzburgites, gabbros, blueschists and spilites. Besides, some mafic and intermediate rocks are 

indentified in the Jiangnan region with apparent age cluster of 900-850 Ma. Moreover, 

peraluminous granitic plutons are sporadically exposed along the Jiangnan Orogenic Belt. In the 

Jiangnan Orogenic Belt, the oldest exposed strata belong to the Sibao group (equivalent to the 

Fanjingshan, Lengjiaxi, lower Shuangqiaoshan, Shangxi and Shuangxiwu groups), which is 

unconformably covered by the Danzhou group (equivalent to the Xiajiang, Banxi, upper 

Shuangqiaoshan, Likou and Heshangzhen groups). 

However, since Guo et al. (1984) firstly established the subduction mechanism in the 

Proterozoic and proposed the Jiangnan arc-basin system, there is no agreement on the tectonic 

evolution of the Jiangnan Orogenic Belt in the Neoproterozoic period. Over the past decades, 

advancements in research on the Jiangnan Orogenic Belt and Cathaysia Block led to the proposal 

of several tectonic models which also led to new controversies on the evolution of these two 

regions, as well as the timing of the collision of the Yangtze and Cathaysia blocks. There are 

mainly three kinds of hypotheses proposed by researchers. 

Several geodynamic models 

1. Li et al. (2002) suggested that the orogeny occurred at ca. 1.0, and was followed by a 

mantle plume activity ca. 825 Ma, on the basis of their geochronological and geochemical restults. 

An ancient metamorphism in the South China Block was proposed with the consideration of 

1300-1000 Ma zircon overgrowths and 1007±14 Ma granitic gneiss of the samples from the 

Cathaysia Block, thus it was interpreted that a Grenvillian continental collision between the 
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Yangtze and Cathaysia blocks, which was named the Sibao Orogeny (equals to the Jiangnan 

Orogeny). Together with the muscovite 
40

Ar/
39

Ar results of the Tianli schists with ages ranging 

between 1042±7 Ma and 1015±4 Ma, it was proposed that the depositional age of the protolith of 

Tianli schist was older than 1042 Ma, as well as the Sibao Orogeny was older than the 1.0 Ga. 

Abundant granitoids and mafic-ultramafic intrusions were reported in the South China Block. The 

two major phases of widespread bimodal magmatism during the Neoproterozoic were dated at 

830-795 Ma and 780-745 Ma. Geochemical studies of the mafic rocks display high ɛNd(T) values 

of 3.3 to 5.3, therefore it was suggested that these magmatic rocks were derived from a mantle 

source. As a consequence, it was proposed that the South China Block was formed owing to the 

Sibao orogeny which brought the Yangtze and Cathaysia blocks together at ca. 1.0 Ga, and it 

subsequently underwent extensive continental rifting related to mantle plume or superplume 

activities beneath Rodinia since ca. 825 Ma. 

2. However, another tectonic evolution model was proposed by Zhou et al. (2004). The 

authors mainly focused on the derivation of the mafic rocks in the Jiangnan Orogenic Belt and the 

depositional age of the Sibao group. A large amount of mafic rocks with high-Mg geochemical 

features, dated at ca. 830 Ma, was reported in the Jiangnan Orogenic Belt. Some researchers 

thought that they were generated from the mantle source, whereas, Zhou et al. (2004, 2009) 

pointed out that they were not related to the mantle plume but displayed arc-like geochemical 

features. Thus, the mafic rocks were thought to be the products of magmatism at a convergent 

plate boundary rather than derived from mantle plume. Another episode of the Neoproterozoic 

mafic magmatism was identified at 770-750 Ma, with the ɛHf(t) values of 2.6-6.7, suggesting a 

post-collision extension event, only on the geochemical bases. Besides, typical S-type granite with 

high ACNK value (1.10-1.87) was dated at ca. 825 Ma. This magmatism was interpreted as the 

result of the collision between the Yangtze and Cathaysia blocks (Wang et al., 2006). Additionally, 

the dating of detrital zircons suggested a maximum depositional age of the Sibao group (and its 

equivalents), and Danzhou group (and its equivalents) at ca. 872 Ma and ca. 800 Ma, respectively, 

which indicates that the orogeny should be finished before ca. 800 Ma. As a consequence, the 

Early Neoproterozoic tectonic evolution of the Jiangnan Orogenic Belt suggested that: (1) the 

Neoproterozoic pillow lava and komatitic basalt were formed during the island arc magmatism (ca. 

878–822 Ma) coeval with the sedimentation of the Sibao group; (2) the northwest-ward 
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subduction of the oceanic crust (before ca. 866–835Ma) with a peak at 866 Ma; (3) the 

sedimentation in the back-arc basin was at ca. 872–835Ma); (4) the collision between the Yangtze 

and Cathaysia blocks took place at ca. 835–820 Ma; (5) the post-collision extension occurred after 

ca. 820 Ma. 

3. Meanwhile, another group hold divergent perspectives, due to numerous investigations on 

the detrital zircon, intermediate-mafic rocks, metamorphism, S-type granites and A-type granites 

carried out by Yao et al. (2017) The detrital zircon age spectra analysis on the Dengshan group 

(equals to the Sibao group) shows an age cluster at 1000-820 Ma with a peak at 850 Ma. Besides, 

the works on the intermediate-mafic rocks, e.g., Longsheng gabbro and diabase, Daolinshan 

dolerite and andesite, Shijiao diorite and gabbro, yielded apparent age of 880-860 Ma, which were 

interpreted as subduction-related products. Moreover, a metamorphic event was revealed by the 

Wanyuan paragneiss with a concordant weighted age of 860 Ma (zircon metamorphic rim, U-Pb 

method). The S-type granites in the Yuanbaoshan display the average of 830 Ma, indicating a 

collision event between the Yangtze and Cathaysia blocks. Whereas the A-type granites in the 

eastern Jiangnan Orogenic Belt give the crystallization age of 790 Ma, which complies with the 

Nanhua rifting event in the South China Block. Integrating the previous studies on the ca. 1.0 Ga 

ophiolites in the NE Jiangxi province, these authors proposed a tectonic evolution of the Jiangnan 

Orogenic Belt as following. The subduction of the Paleo South China Ocean occurred during the 

1000-860 Ma, afterwards, the assembly of the Yangtze and Cathaysia blocks resulted in the 

Jiangnan Orogeny at ca. 860–800 Ma. Subsequently, the Jiangnan region was in a rifting setting 

since 800 Ma. 

Existing problems 

In spite of the various scenario proposed to explain the Neoproterozoic tectonic evolution of 

the Jiangnan Orogeny,there are still some problems to be clarified. 

I) What is the geological meaning and the depositional age of the Sibao group? In the 

above mentioned tectonic evolution models, a few authors paid attention to the geological 

significance of the Sibao group. People essentially focused on the ages and source affinities of the 

mafic rocks, but ignored the geological meaning of the Sibao sediments. As it was coeval with the 

subduction of the Paleo-South China Ocean and the collision of the Yangtze and Cathaysia blocks, 

the Sibao group probably records the entire processes of the oceanic crust subduction and 
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Jiangnan Orogeny. If this assumption is accepted, the Sibao group should be initially deposited 

from ca. 1.0 Ga, however, Wang et al. (2007) and Zhou et al. (2009) used the youngest zircon 

grains to constrain the maximum depositional age of the Sibao group between 872 Ma and 860 Ma. 

Nevertheless, the meaning of the analysed samples is questionable. According to the stratigraphic 

columns of the Sibao group, the sampling localities for the oldest Sibao stratra are more than 2.5 

kilometers above the apparent bottom of the Sibao group, thus, these rocks cannot be utilized for 

determining the depositional age of the earliest (and lowermost part) of the Sibao group.  

II) When did the Jiangnan Orogeny took place? Many perspectives have been studied on 

this subject. Li et al. (2002) proposed that the orogeny took place in the Mesoproterozoic 

according to the 1.3-1.0 Ga zircon overgrowth rims, and ca. 1.0 Ga metamorphic rocks in the 

Sichuan and Hainan, respectively. However, the results are not convincing, as Sichuan was located 

in the western margin of the Yangtze Block, those samples probably were not involved within the 

Jiangnan Orogeny, which is located in the southeastern margin of the Yangtze Block. Meanwhile, 

the Hainan block was recognised as an independent block, away from the Cathaysia Block (Wang 

et al., 2015), therefore, it had no relationship with the assembly of the Yangtze and Cathaysia 

blocks. The Neoproterozoic angular unconformities are thought as the marks of the orogeny. 

Recently, the detrital zircon analysis showed that the maximum age of the Danzhou group (the 

strata above the unconformity) is around 800 Ma, thus it was suggested as the upper limit of the 

Jiangnan Orogeny. With the consideration of the ca. 860-825 Ma mafic rocks and 830 Ma S-type 

granites, some researchers hold the view that the subduction was ongoing during the 860-830 Ma 

and the orogeny occurred at 830-800 Ma. However, there are some queries for this kind of model. 

(1) The angular unconformitie can certainly be recognised as the consequence of the orogeny, we 

can qualitatively estimate that the orogeny finished before the sedimentation of the conglomerates, 

but the upper limit of the orogeny have to be further constrained by other evidence; (2) How can 

the subduction related mafic rocks at 860-825 Ma be coeval with the continental reworked 

peraluminous granites at 830 Ma? This is a paradox in the tectonic evolution model. According to 

the indentification of the Cathodoluminescence (CL) images of the zircons from the mafic rocks, 

we found that some authors confused the acidic magma zircons as those observed in the mafic 

magmas. The mafic magma zircon should display broad band features rather than the clear 

oscillatory zoning as the granitic ones. Furthermore, the ɛHf(t) values of the mafic zircons are 
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negative which is not the case for those zircons. Therefore, we should revisit the previously 

recognised 860-825 Ma mafic rocks and make a new interpretation of the Jiangnan Orogeny. 

III) What is the emplacement mechanism of the post collisional granitic plutons? As the 

S-type granite is generally recognized as produced by partial melting and crystallization of crustal 

rocks, and it is commonly accepted as a syn- to late orogenic product. Peraluminous plutonism is 

recognised as the indication of the ending of the orogeny. However, so far, nobody paid attention 

to the emplacement mechanism of the peraluminous magma, which can provide another vision on 

the evolution of the orogeny. Therefore, to study the emplacement mechanism of the 

Neoproterozoic peraluminous magma in the Jiangnan region would be benificial to understand the 

Jiangnan Orogeny. 

IV) What is the geological evolution of the Jiangnan Belt after the collision? Usually, it 

was accepted that the South China underwent a rifting episode, called the Nanhua rift, during the 

800-750 Ma period. After the Nanhua rifting, the entire South China was in a depositional setting 

until to 460 Ma, since then the Cathysia block experienced an intraplate tectonic event, 

represented by N (or NW)-ward continental subduction, but the Yangtze block was in a stable 

depositional environment. The heterogeneity of the two blocks might probably be due to the 

difference in the rigidity of the Paleo- to Mesoproterozoic basement. Moreover, how the posterior 

tectonic events affected the Jiangnan Orogenic Belt deserves investigations. 

In order to solve these problems, we choose the Neoproterozoic unconformity and S-type 

granite as targets to give a more precise and comprehensive understanding of the evolution of the 

Jiangnan Orogenic Belt from Neoproterozoic to Triassic. 

Time constraints on the closure of the Paleo–South China Ocean and the 

Neoproterozoic assembly of the Yangtze and Cathaysia blocks: insight from detrital 

zircon analyses 

The Early Neoproterozoic angular unconformity is well developed in the Jiangnan Orogenic 

Belt, but poorly exposed. We have visited almost all of the exposure of the Sibao and Danzhou 

groups (and their equivalents) in the western part of the Jiangnan Orogenic Belt, and then choose 

the best outcropped unconformities as study targets. We collected sandstone samples from four 

localities: Fanjingshan, Guizhou Province, Sanfang, Guangxi Province, Madiyi, Hunan Province 

and Yueyang, Hunan Province. The Danzhou group (and its equivalents) unconformably covered 
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on the Sibao group (and its equivalents), with distinct differences in deformation style. The Sibao 

group and its equivalents are deformed with N-S and NE-SW trending fold axes. Tight folds with 

vertical axes are also common at the outcrop scale. On the contrary to the Sibao group, the 

Danzhou group and its equivalents display gentle folds. 

Thirteen representative samples were collected for the major and trace element analyses. In 

the Hf–La/Th plot, most samples of the Sibao group and its equivalents cluster around the average 

compositions of andesite, TTG, felsic volcanic rock and granite, which are the source provider for 

the Sibao group and its equivalents. In the plot of tectonic setting discriminant, all samples of the 

Sibao group and its equivalents drop in the active continental margin field, suggesting that the 

Sibao group and its equivalents were more likely deposited in an active continental margin. The 

prominent trace and rare earth elements characters of the Sibao group and its equivalents show 

distinct enrichment in light rare earth elements (LREE) with respect to heavy rare earth elements 

(HREE), and yield strong negative Ba, Sr and Nb anomalies. These features suggest that the top 

sequence of the Sibao group sediments was derived from an upper crustal source. The results yield 

that the bottom sequence of the Danzhou group inherited the bulk geochemical signature of the 

Sibao group and its equivalents, which indicates that the Sibao sediments supplied the material 

deposited in the Danzhou group. 

We have collected a set of samples from the Sibao and Danzhou groups (and equivalents) 

from above and below the unconformity surface of the Fanjingshan, Sanfang and Madiyi areas for 

the detrital zircon age spectra analysis. The results of the six samples indicate that there are both 

similarity and dissimilarity between their detrital zircon spectra. 

The age spectra among the Sibao group and its equivalents are consistent, with an age cluster 

at 1000-830 Ma, and display a distinct peak at ca. 855 Ma. The age spectra of the Danzhou group 

are also comparable, the data mostly range between 1000-780 Ma with at least two peaks, at 850 

Ma and 790 Ma. Concerning the comparison between two different strata sequence, the Sibao and 

the Danzhou groups have a high similarity, showing that their detrital zircon ages are mostly 

concentrated within 1000 Ma. Moreover, in the interval of 1000-830 Ma, these two groups are 

particularly matched, not only with consistent steps, but also with the same age peak at 850 Ma. 

However, when comparing the spectra among the individual sample with same period, we 

find that the sample of Danzhou group in the Sanfang area shows a distinct difference with other 
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two samples in the other areas. Apart from the two peaks at 850 Ma and 790 Ma as the others, it 

additionally displays a minor peak at 997 Ma, and shows the age marks at 2.5 Ga and ca. 1.8-1.6 

Ga. Furthermore, comparing the age spectra of different groups, the Danzhou group and 

equivalents record more detrital zircon age information of 2.5 Ga and 2.0-1.5 Ga, moreover, the 

information of 800-780 Ma was only recorded in the Danzhou group, but not in the Sibao group, 

with a significant peak at 795 Ma. 

The comparison of the detrital zircon age spectra of the Sibao and the Danzhou groups 

indicates that a magmatism occurred at a peak of 850 Ma and lasted until 820 Ma. However, 

during the period of 820-800 Ma, magmatism was rare in the Jiangnan region. Since 800 Ma, the 

magmatism in the Jiangnan region became active again, which is generally considered as related 

with the Nanhua Rifting. 

Furthermore, in order to trace the detrital zircon age spectra information of the Yangtze 

block, Jiangnan Orogenic Belt, and the Cathaysia block, we have collected nearly 10,000 groups 

of data from previous studies, to carry out a statistical analysis of detrital zircon age distribution of 

these three regions. The detrital zircons are mainly collected from the following areas: Yangtze 

block (northern Guizhou, northern Hunan and Hubei), Jiangnan Orogenic Belt (Anhui, Jiangxi, 

Hunan, northwestern Guangxi, northeastern Guizhou) and Cathaysia block (Fujian, Guangdong), 

southeastern Hunan and southeastern Guangxi). The analytic results yield that the detrital zircon 

age spectrum of the Jiangnan Orogenic Belt is quite similar to that of the Yangtze block, but 

significantly different from that of the Cathaysia block. In the age spectra of the Yangtze Block 

and the Jiangnan Orogenic Belt, the ages are mainly distributed between 1000-820 Ma, with a 

peak range of 850-830 Ma. However, the spectrum of the Cathaysia Block is quite different from 

the other two, it clearly shows the age cluster of 1.5-1.0 Ga, which is missing in the Yangtze Block 

and the Jiangnan Orogenic Belt. In the range of 1000-820 Ma, the Cathaysia Block presents 

multiple peaks, including 970, 960, 930 and 840 Ma, which makes differences from the other two. 

Therefore, we can qualitatively determine that the Cathaysia Block was independent from the 

Yangtze Block at ca. 1.0 Ga. 

The regional geological data show that the 1.0-0.88 Ga mafic rocks are sporadically 

outcropped in the Jiangnan region, and they are recognised as oceanic crust fragments and 

island-arc magmatic rocks, which indicate that the Paleo South China Ocean was in the 
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subduction. The age spectrum of detrital zircon can also be used for tracing the evolution of the 

Jiangnan region. Since ca. 1.0 Ga, the age trace of detrital zircon spectra of the Yangtze and 

Jiangnan regions has been increasingly changed, reflecting the magmatism acceleration in the 

Jiangnan region. However, such feature is not seen in the spectrum of the Cathaysia Block, 

indicating that the Cathaysia Block was still not close to the subduction zone at that time. By the 

comparison of the detrital zircon age spectra of the Yangtze, Jiangnan and Cathaysia regions, it is 

obvious that the age spectra of detrital zircon in these regions have a synchronous and rapid 

increase since 865 Ma, with peaks at around 840 Ma. And, it is worth noting that during the period 

of 865-820 Ma, the amount of detrital zircons in the Jiangnan region is approximately equal to the 

sum of those of the Yangtze and Cathaysia regions. Concerning the regional geological facts, 

850-820 Ma S-type granites are distributed along the Jiangnan orogenic belt. Such granites are 

generally considered as the products of orogeny. Therefore, we suggest that the collision between 

the Yangtze and the Cathaysia blocks started at 865 Ma and ended at 820 Ma. During this period, 

an orogeny occurred throughout the whole Jiangnan area, volumes of peraluminum crustal 

granites were produced with a peak of magmatism at ca. 840-820 Ma. Due to the orogeny, the 

Jiangnan region uplifted, and it is the reason why many zircon information on 865-820 Ma can be 

recorded on both sides of the Yangtze and Cathaysia blocks. 

Consequently, using the detrital zircon age spectrum analysis method to compare different 

strata in the same area, and comparing the contemporaneous strata in different regions, as well as 

combined with reliable geological evidence, we propose that the subduction of the Paleo South 

China Ocean initially occured at ca. 1.0 Ga and lasted until ca. 865 Ma. Afterwards, the Yangtze 

and Cathaysia blocks collided to form the Jiangnan Orogenic Belt, and the Jiangnan orogeny 

lasted to 820 Ma. Afterwards, the Jiangnan Orogenic Belt was in a tectonic quiescence, without 

significant magmatism. Since 800 Ma, , the Jiangnan region began to break owing to the Nanhua 

rifting. During the Neoproterozoic tectonic evolution of Jiangnan region, the sedimentation of the 

Sibao group can be divided into two stages, namely the oceanic crust subduction stage and the 

continent-continent collision one. Shortly after the beginning of the Nanhua rifting, the Jiangnan 

region entered into the sedimentary stage and the Danzhou group was formed. 

The construction mechanism of the Sanfang-Yuanbaoshan granite plutons: 

insights from the Geological observation, Geochronology, AMS and Bouger gravity 
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modelling 

Magmatic rock is an important constituent part of the continent crust, and magmatic activity 

plays a significant role in the recycling of crustal material and crust-mantle interaction. Therefore, 

it is essential to study the magmatism in order to obtain a better understanding of the magmatic 

process and the crustal evolution. Several aspects, such as: i) magma generation, ii) differentiation, 

iii) transport and ascent, and iv) emplacement, must be distinguished in the magmatic evolution. 

The magma emplacement is the last but an essential stage of the process. During the emplacement, 

some features documented both in the pluton and its country rocks reflect the interaction between 

the magma and the country rocks as well as the space needed for the magma emplacement. S-type 

granite is considered as a kind of granite produced by partial melting and crystallization of Al-rich 

rocks, such as crustal orthogneiss and pelitic sediments forming the lower to middle continental 

crust. It is commonly accepted that peraluminous magma is a syn- to post-orogenic product 

formed by the melting of the thickened orogenic root. However, S-type granite may also emplace 

in an intracontinental setting (e.g., most of the post-orogenic plutons in the Early Paleozoic orogen 

of SE China), and also in an active continental margin (for instance in the central Andes). In the 

Jiangnan Orogenic Belt, the peraluminous granite plutons crop out sporadically from east to west. 

In order to better constrain the Neoproterozoic evolution of the Jiangnan Orogeny, studies on the 

emplacement of the Neoproterozoic granite plutons along the Jiangnan Orogenic Belt as well as 

the detailed consideration of the pluton construction, syn-magmatic and syn (post)-tectonic events 

are necessary. Consequently, we choose the Sanfang and Yuanbaoshan plutons, located in the 

weastern part of the Jiangnan Orogenic Belt, as the study target to decipher the late stage of the 

evolution of the Jiangnan orogeny. We have carried out field observations, microscopic 

observations, geochronology, isotopy, rock magnetic investigations and gravity modelling 

methods to obtain a good understanding of the evolution processes of the plutons. The Sanfang 

pluton stands at a varying elevation ranging from ca. 200 meters to ca. 1800 meters, however, the 

elevation of the Yuanbao pluton attains to ca. 2000 meters. The granitic rocks of these two plutons 

mainly consist of quartz, plagioclase, K-feldspar, biotite and muscovite, thus they belong to a 

porphyritic monzogranite. According to the field observation, the granite plutons can be generally 

divided into two parts, namely, undeformed and deformed ones. The elevation of ca. 700 meters 

seems like the separatrix of the undeformed and deformed granites. Below the 700 meters, the 
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granites are visually isotropic and massive, but above the separatrix, the quartz and feldspar are 

deformed to augen, original magmatic structures are modified to gneissic structures. The 

deformation increases with the elevation. Neoproterozoic strata are well exposed in the 

Sanfang-Yuanbaoshan area, including the Sibao group, Danzhou group and Sinian strata. 

Generally, the Sinian strata and Danzhou group display broad and gentle folds. However, the 

Sibao group shows tight folds. Based on our field observations and thin-section investigations, the 

degrees of the metamorphism and deformation of the Sibao group are positively correlated to the 

elevation, this is comparable to the deformation of the granites. 

In order to reveal the crystallization age and source of the magma, two samples were 

collected from the Sanfang and Yuanbaoshan plutons, respectively. Most of the data indicate U-Pb 

ages comprised between 820 to 850 Ma, with an average of 830±2 Ma and 830±5 Ma, 

respectively. More than half of the U–Pb dated zircons from the Sanfang granite were chosen for 

in–situ Hf isotopic analysis. The results show negative εHf (t) values, ranging from -1.89 to -11.15, 

with an average of -4.63. Correspondingly, on the εHf (t) versus U–Pb age plot, the two model 

ages (TDM2) mainly concentrate on 1828–2143 Ma. These results indicate that the analyzed 

granitic rock was derived from the partial melting of Paleoproterozoic continental basement rocks, 

the involvement of a mantle component in the granitic magma was negligible. 

Nine samples from the Sanfang pluton were selected for magnetic mineralogical analysis. 

This study reveals that magnetic susceptibility carriers in the Sanfang granite pluton are composed 

of ferromagnetic minerals, such as (titano) magnetite in multidomaine and hematite, with 

paramagnetic minerals, such as biotite, muscovite and feldspar. The magnetic fabrics of these 

minerals are comparable to the petrographic ones. Therefore, the Anisotropy of Magnetic 

Susceptibility (AMS) measurements will be an effective way to obtain the information of the 

petrofabrics of granite as well as the knowledge on the pluton emplacement. A total of 352 granitic 

oriented cores from 55 sites (35 and 20 for the Sanfang and Yuanbaoshan plutons, respectively) 

were sampled for the AMS study. According to the anisotropy degree (PJ), these two plutons can 

be grouped into two units, namely, magmatic and post-solidus ones, which correspond to the 

undeformed and deformed granites, respectively. For the magmatic one, the granites are "nearly 

isotropic". The microscopic observations show that the quartz grains are euhedral with very 

slightly undulose extinction. The biotites in the granites are magmatic without any post-solidus 
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deformation. These evidence suggests that the granite did not experienced a post-solidus 

deformation. Furthermore, 96% of the PJ values are lower than 1.1, which indicates that the 

magnetic fabrics are probably acquired during the magma crystalization, in agreement with the 

macroscopic and microscopic observations presented above. Therefore, we propose that the 

magnetic fabrics in this domain are primary, i.e. without any post-solidus overprint of posterior 

geological events. Therefore, they can be utilized for the interpretation of the magma flow and 

emplacement process. 

In the western part of the Sanfang pluton, the magmatic foliations are consistently dipping to 

the E with steep angles (31-60 degrees), even near vertical angles (61-90°) for 2 sites. It is worthy 

to note that this general N-S oriented strike of foliations is consistent with the orientation of fold 

axes of the country rocks, i.e. the Sibao group. According to the magmatic lineations, this zone 

can be divided into two units, i.e., the lineations in the southern one mainly plunging in the E-W 

with steep angle, and those in the northern one mostly plunging in the N-S with gentle angles 

(0-30°). It may reflect that the magmatic lineations in the southern part are mainly dominanted by 

the vertical and E-W directions, while those of the northern unit by the horizontal and meridional 

directions. In the central-southern part of the Sanfang pluton, the westward dipping magmatic 

foliations with steep angles and mainly W-dipping lineation possibly imply that the magma 

dominantly flowed steeply and accreted in the E-W direction. In the central-southern and a small 

fraction of northern parts of the Yuanbaoshan pluton, the strikes of the magmatic foliations are 

almost N-S directed with steep and even vertical angles, whereas the magmatic lineations are 

consistently N-S directed with gentle angles, suggesting that the magma might vertically ascend 

and gently or horizontally flow in the N-S direction (present coordinates). In addition, the shape 

parameter plot shows the ratio of about 1:1 between the oblate and prolate shapes, indicating the 

magmatic foliations and lineations were developed at a weak stress field, and thus we can 

speculate that the migration of magma. Moreover, the residual Bouguer gravity anomaly data 

show that the roots of the Sanfang and Yuanbaoshan plutons are located in their southern and 

central parts, respectively. The interpreted profiles suggest that these two plutons are constructed 

by the E-W lateral accumulation of N-S oriented dykes and the shape of two plutons are both N-S 

elongated tangue- or sill-like, their thicknesses decrease northwards. 

Consequently, we propose that the magma: (1) intruded into probably pre-existing 
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tectonically weak zones in the Sibao group; (2) ascended with steep to vertical angle and E-W 

laterally accumulated by N-S oriented dykes; (3) dominantly flowed from south to north with 

gentle angle to form the tongue- and/or sill-shpaed plutons. 

Early Paleozoic to Triassic geological events in the Sanfang-Yuanbaoshan area: 

insights from Argon isotopic records 

By integrating the field observations, microscopic investigations and AMS studies, we find 

that the upper part (ca. 700 m above sea level) of the Sanfang-Yuanbaoshan plutons has 

experienced a post-solidus deformation, probably due to a posterior tectonic event, with foliations 

consistently dipping to the W in both of the granites and country rocks, and coherent lineations 

directed in the sub E-W. All of the kinematic indicators, i.e., shear band, augen structure, mica fish, 

S-C fabric and pressure shadows, reveal a top-to-the-W sense of shear. However, the timing of this 

ductile shearing is poorly constrained. As the muscovite and biotite are common in the plutons, we 

collect micas from two plutons for argon isotopic analysis, including both of deformed and 

undeformed muscovite and biotite. 

The 
40

Ar/
39

Ar geochronological technique has significantly contributed to the study of crustal 

deformation, and was proved to be efficient to date deformed rocks by potassium-bearing minerals, 

e.g., muscovite, biotite, sericite and amphibole. Six samples have been selected for the argon 

isotopic analysis, including the deformed granites (muscovite and biotite), undeformed granites 

(biotite) and one mylonite (biotite) sample from country rocks. The argon isotopic analyses on the 

biotite and muscovite put high resolution 
40

Ar/
39

Ar time-constraints using both conventional step 

heating and in-situ UV laser techniques. Six single grains (125-250μ m) were analysed by 

40
Ar/

39
Ar step heating, including three granite biotite, two muscovite and one mylonite biotite. All 

the samples show well defined plateau ages with more than 70% of 
39

Ar released, which provide 

the ages ranging from 413 to 392 Ma. As to the in-situ method, all of the analyses were on the 

sample of A37, collected from the Sanfang pluton. The sample targets were made as rock-chips 

and biotite aggregations. The biotites show a broad age range from 420 Ma to 240 Ma, with 

staircase shaped and decreasing trend. However, the muscovite mostly yield a flat release pattern 

at ca. 420 Ma, whereas only a small fraction of ages display the spectrum like the staircase with 

the maximum age of 450 Ma. 

Many works on 
40

Ar/
39

Ar have been done across the SE South China Block in the 
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continental scale, including the Wuyi, Yunkai, Jiuling and Xuefengshan areas and yielded two 

significant age ranges, i.e., 450-390 Ma and 240-190 Ma. The early Paleozoic 
40

Ar/
39

Ar age range 

has been defined by previous study in ductile décollements and shear zones in the Cathaysia block, 

which were interpreted as the consequence of the Early Paleozoic intracontinental orogeny. Due to 

undeformed and unmetamorphosed Cambrian and Ordovician strata, many authors considered that 

the Jiangnan Orogenic Belt region has not been effected by the Silurian tectonic event. 

Nevertheless, Xu et al. (2015) and Li et al. (2016) recently reported the early Paleozoic age of 

micas (449-429 Ma) in the Neoproterozoic strata in the eastern Jiangnan region, i.e., the NE 

Jiangxi fault belt and eastern Jiuling area. In our study, the older age range of 450-400 Ma from 

the muscovite located in the shear band plays a first-order importance in both number and quality 

of our Ar-Ar dating. Our results is comparable with previous ones in the Cathaysia and eastern 

Jiangnan regions. Therefore, it is reasonable to assume that the muscovite (in our study region, the 

western Jiangnan Orogenic Belt) were deformed during the same period as those in the Cathaysia 

and eastern Jiangnan regions. This challenges the idea that the Jiangnan Orogenic Belt has 

escaped the Early Paleozoic tectonic event. 

However, how to match this Paleozoic age with the undeformed Cambrian and Ordivician 

sedimentary sequence? Many researchers have investigated the rigidity of the Jiangnan Orogenic 

Belt and Cathaysia block, and reached an agreement that the Cathaysia block was made up by 

several sub-unit blocks with relatively weak rigidity. It seems that the case is different for the 

Jiangnan Orogenic Belt. Geophysical investigations show that the Jiangnan Orogenic Belt is 

underlain by the relatively homogeneous and rigid Yangtze basement. That is probably why we 

observe rarely the highly metamorphic and strongly deformed rocks in the Jiangnan Orogenic Belt 

but the 420 Ma 
40

Ar/
39

Ar results cover almost all the Cathaysia block. Meanwhile, all Ar-Ar data 

showing ca. 420 Ma ages within Proterozoic rocks are located along the Jiangnan Orogenic 

structures. This possibly indicate that the Jiangnan Orogenic Belt has been modified by the 

Paleozoic orogenic event, but locally instead of pervasively. In other words, the Paleozoic 

deformation is just localised in the limited zones, probably the old structures. 

The alternative way to explain the age range at about 420 Ma by Ar-Ar dating may consider 

that this age concerns just a thermal phenomenon instead of deformation one, as the deformation 

of this age is still rarely observed in the Jiangnan Orogenic Belt, moreover, these observed ages 
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respectively, which are comparable to those of the biotite aggregations. Such progressive 

decreasing apparent age spectra indicate that the study area was exhumed with a so low rate that 

this exhumation does not like to be produced by tectonic events since 420 Ma. Hence, it is 

suggested that the heat was almost sourced from geothermal. According to the slow cooling rates, 

therefore, we can furthermore infer that the exhumation of the crust was quite slow accommodated 

by isostatic re-equilibration due to erosion with an average rate interval of 16.7-33.3 meters per 

million years. 

Through the 
40

Ar/
39

Ar analyses on the both deformed and undeformed muscovite and biotite 

from the Sanfang-Yuanbaoshan plutons, the early Paleozoic to Triassic geological events in this 

area can be concluded as following: (1) The 420 Ma 
40

Ar/
39

Ar age imply that: i) the shearing band 

on the upper part of plutons and their roof may be the consequence of the reactivation of 

Proterozoic structures reactivated by the Paleozoic orogeny; or ii) the exhumation of the study 

areas by the Paleozoic orogeny; (2) During the 420 Ma to 240 Ma period, the study areas have 

experienced a slow rate of exhumation which may correspond to the isostatic crustal 

re-equilibration. 

Summary 

Accordingly, the major conclusions of this thesis can be summarized as four points:  

(1) In the regional view, the subduction of the Paleo–South China Ocean started at ca. 1000 

Ma and ended at ca. 865 Ma. Afterwards, the Jiangnan Orogenic Belt was built up due to the 

assembly of the Yangtze and Cathaysia blocks between ca. 865 and 820 Ma;  

(2) The 830 Ma granitic magma intruded into the pre-existing folds and faults in the Sibao 

group, the tongue- and/or sill-shaped plutons were constructed by an E-W lateral accumulation of 

N-S oriented dykes with a dominantly northward horizontal magma flow from south to north;  

(3) A top-to-the-W ductile shearing event has been identified at the top of the plutons and 

their sedimentary roof. A coherent mica age of ca. 420 Ma has been obtained from the deformed 

muscovites of the Sanfang plutons by Ar-Ar dating. Two hypotheses are proposed: i) The shearing 

band on the upper part of plutons and their roof may be formed during the Early Paleozoic; or ii) 

The exhumation of the study areas by the Paleozoic orogeny;  

(4) During the 420 Ma to 240 Ma period, the study area has experienced a slow rate of 

exhumation which may correspond to the isostatic crustal re-equilibration. 
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Our study provides a new look on the Neoproterozoic tectonic evolution of the Jiangnan 

Orogenic Belt, and a knowledge of the emplacement of the peraluminous magma, furthermore, it 

firstly detect the early Paleozoic-Mesozoic thermal events in the Sanfang and Yuanbaoshan areas. 

All of these will contribute to the advance in the understanding of the tectonic evolution of the 

Jiangnan Orogenic Belt. 

Perspectives 

In order to better constrain the tectonic evolution of the western Jiangnan Orogenic Belt or 

even the whole Jiangnan region, more details need to be clarified. Such as the depositional history 

of the Sibao group and its equivalents, what were the source of the sediments and how the source 

transported and then deposited? These answers are of great importance for us to have a bulk 

understanding of the subduction of the Paleo-South China Ocean. Besides, the metamorphism 

study of the sedimentary rocks, including the Sibao and Danzhou groups and their equivalents, 

and Sinian strata, would provide a new vision on exploring the significance of the ductile shearing 

event. Of course, to visit the eastern part of the Jiangnan Orogenic Belt is necessary if we want to 

have a bulk understanding of the tectonic evolution history of the whole Jiangnan Orogenic Belt. 

 

Keywords: Jiangnan Orogenic Belt; Neoproterozoic unconformity; Sibao group; Danzhou 

group; S-type granite; Anisotropy of Magnetic Susceptibility; Gravity modelling; Magma 

emplacement mechanism; Ar-Ar isotopic dating. 
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Chapter 1. General introduction  

1.1 Research status in the Jiangnan Orogenic Belt 

        1.1.1 Introduction of the Jiangnan Orogenic Belt 

The South China Block is composed of two distinct tectonic domains: the Yangtze 

and Cathaysia blocks. The Jiangnan Orogenic Belt, marking the Neoproterozoic 

northeast–trending collisional suture of the Cathaysia Block with the Yangtze Block, 

is located at the southeastern margin of the Yangtze Block and separated from the 

Cathaysia Block to the southeast by the Jiangshan-Shaoxing fault zone (Figure 1-1; 

Shu, 2012; Zhao & Cawood, 2012).  

In the Jiangnan Orogenic Belt, some geological facts are well accepted by the 

geologists. An ophiolitic belt is exposed in the Dexing-Shexian area, eastern Jiangnan 

region, named the northeast Jiangxi ophiolite, with an age cluster of 1.0-0.9 Ga (Shu 

et al., 1993; Xin et al., 2007). It is mainly composed of harzburgites, gabbros, 

blueschists and spilites. Besides, some mafic and intermediate rocks are indentified in 

the Jiangnan region with two apparent age clusters of 900-860 Ma and 800-750 Ma, 

respectively (Chen et al., 2009, 2018; Yao et al., 2014a, b). Moreover, peraluminous 

granitic plutons are sporadically exposed along the Jiangnan Orogenic Belt. In the 

Jiangnan Orogenic Belt, the oldest exposed strata belong to the Sibao group 

(equivalent to the Fanjingshan, Lengjiaxi, Shuangqiaoshan, Shangxi and Shuangxiwu 

groups), which is unconformably covered by the Danzhou group (equivalent to the 

Xiajiang, Banxi, Dengshan, Likou and Heshangzhen groups). 

However, there is no agreement on the tectonic evolution of the Jiangnan 

Orogenic Belt in the Neoproterozoic period. Over the past decades, advancements in 

research on the Jiangnan Orogenic Belt and Cathaysia Block led to the proposal of 

several tectonic models which also led to new controversies on the evolution of these 

two regions, as well as the timing of the collision of the Yangtze and Cathaysia blocks 
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(e.g. Li et al., 2007, 2008a, b; Shu, 2006, 2012; Wang et al., 2006, 2007; Yao et al., 

2012, 2013, 2014a, b). 

 

Figure 1-1. Simplified geological map of the South China showing the Yangtze and 

Cathaysia blocks seperated by the Jiangnan Orogenic Belt. 

        1.1.2 Previous study results: several tectonic evolution models of the 

Early Neoproterozoic period 

    Many works have been carried out in the Jiangnan Orogenic Belt by several 

research teams, the most representative models are as follows (details are quoted in 

Table1-1): 

            1.1.2.1 The ca. 1.0 Ga Jiangnan Orogeny and ca. 825 Ma mantle 

plume activity 

An ancient metamorphism in the South China Block was proposed by Li et al. 

(2002), with the consideration of 1300-1000 Ma zircon overgrowths and 1007±14 Ma 
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granitic gneiss of the samples from the Cathaysia Block, thus it was interpreted that a 

Grenvillian continental collision between the Yangtze and Cathaysia blocks, which 

was named the Sibao Orogeny (equals to the Jiangnan Orogeny). Together with the 

muscovite 
40

Ar/
39

Ar results of the Tianli schists with ages ranging between 1042±7 

Ma and 1015±4 Ma (Li et al., 2007), it was proposed that the depositional age of the 

protolith of Tianli schist was older than 1042 Ma, as well as the Sibao Orogeny was 

older than the 1.0 Ga. However, Ye et al. (2007) suggested that the timing of the Sibao 

Orogeny should be constrained at 1.0-0.9 Ga, by considering the geological facts of 

~1.0 Ga ophiolites and ~0.97 Ga adakitic rocks from the northeastern Jiangxi. 

Comparing the Sibao Orogeny with other Meso- to Neoproterozoic orogenic belts, it 

was believed that the Sibao Orogen could be one of the Grenvillian sutures that 

brought Australia, Yangtze, Cathaysia and Laurentia together at ca. 1.0 Ga (Greentree 

et al., 2006). 

Abundant granitoids and mafic-ultramafic intrusions were reported in the South 

China Block. The two major phases of widespread bimodal magmatism during the 

Neoproterozoic were dated at 830-795 Ma and 780-745 Ma, respectively (Li, 1999; Li 

et al., 2003a, b, 2005; Wang et al., 2009; Yang et al., 2015). Geochemical studies of 

the mafic rocks display high ɛNd(T) value of 3.3 to 5.3 and OIB-like features (Zhou et 

al., 2007), and it was suggested as derived from mantle source. 

Therefore, it was proposed that the South China Block was formed owing to the 

Sibao orogeny which brought the Yangtze and Cathaysia blocks together at ca. 1.0 Ga, 

and it subsequently underwent extensive continental rifting, called the Nanhua rifting, 

related to mantle plume or superplume activities beneath Rodinia since ca. 825 Ma. 

            1.1.2.2 The ca. 880-835 Ma subduction and ca. 830-800 Ma collision 

However, a totally different tectonic evolution model was proposed by Zhou et al. 

(2004) and Wang et al. (2007). The authors mainly focused on the derivation of the 

mafic rocks in the Jiangnan Orogenic Belt and the depositional age of the Sibao 
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group. 

A quantity of mafic rocks at ca. 830 Ma was reported in the Jiangnan Orogenic 

Belt with high-Mg geochemical features, some researchers thought they were 

generated from the mantle source, whereas, Zhou et al. (2004, 2009) pointed out that 

they were not related to the mantle plume but display arc-like geochemical features. 

Thus the mafic rocks were thought to be the products of magmatism at a convergent 

plate boundary rather than derived from mantle plume. Another episode of 

Neoproterozoic mafic magmatism was identified at 770-750 Ma (Chen et al., 2018), 

with the ɛHf(t) values of 2.6-6.7, suggesting a post-collision extension event, only on 

the geochemical bases. Besides, typical S-type granite with high ACNK value 

(1.10-1.87) was dated at ca. 825 Ma (Wang et al., 2006). This magmatism was 

interpreted as the result of the collision between the Yangtze and Cathaysia blocks. 

Additionally, the dating of detrital zircons suggested a maximum depositional age of 

the Sibao group (and its equivalents), and Danzhou group (and its equivalents) at ca. 

872 Ma and ca. 800 Ma, respectively (Wang et al., 2007; Zhou et al., 2009), which 

indicates that the orogeny should be finished before at ca. 800 Ma. 

As a consequence, the Early Neoproterozoic tectonic evolution of the Jiangnan 

Orogenic Belt suggested that: (1) the Neoproterozoic pillow lava and komatitic basalt 

were formed during the island arc magmatism (ca. 878–822 Ma) coeval with the 

sedimentation of the Sibao group; (2) northwest-ward subduction of the oceanic crust 

(before ca. 866–835Ma) with a peak at 866 Ma; (3) sedimentation in the back-arc 

basin was at ca. 872–835Ma); (4) collision between the Yangtze and Cathaysia blocks 

took place at ca. 835–820 Ma; (5) post-collision extension occurred after ca. 820 Ma. 

            1.1.2.3 The ca. 1000-860 Ma subduction and ca. 860-800 Ma collision 

Meanwhile, another group hold divergent perspectives. Numerous investigations 

on the detrital zircon, intermediate-mafic rocks, metamorphism, S-type granites and 

A-type granites have been carried out by Yao et al. (2012, 2013, 2014a, b, c, 2015, 
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2016a, b, 2017). The detrital zircon age spetra analysis on the Dengshan group (equals 

to the Sibao group) shows an age cluster at 1000-820 Ma with a peak at 850 Ma. 

Besides, the works on the intermediate-mafic rocks, e.g., Longsheng gabbro and 

diabase, Daolinshan dolerite and andesite, Shijiao diorite and gabbro, with the 

apparent age of 880-860 Ma, which are interpreted as subduction related products. 

Moreover, a metamorphism event is revealed by the Wanyuan paragneiss with a 

concordant weighted age of 860 Ma (zircon metamorphic rim, U-Pb method). The 

S-type granites in the Yuanbaoshan display the average of 830 Ma, indicating a 

collision event between the Yangtze and Cathaysia blocks. Whereas the A-type 

granites in the eastern Jiangnan Orogenic Belt give the crystallization age of 790 Ma, 

which complies with the Nanhua rifting event in the South China Block. 

Accompanied with the previous studies on the ca. 1.0 Ga ophiolites in the NE 

Jiangxi province, the authors proposed a tectonic evolution of the Jiangnan Orogenic 

Belt as following. The subduction of the Paleo South China Ocean occurred during 

the 1000-860 Ma, afterwards, the assembly of the Yangtze and Cathaysia blocks 

resulted in the Jiangnan Orogeny at ca. 860–800 Ma. Subsequently, the Jiangnan 

region was in a rifting setting since 800 Ma. 



Oct. 2018                        Chapter 1 

6 

 

Table 1-1.  Representative models for the tectonic evolution of the Jiangnan Orogenic Belt 

Publications Locations Results and perspectives Conclusions 

The ca. 1.0 Ga Jiangnan orogeny and ca. 825 Ma mantle plume activity 

Li, X.H., 1999, P.R. 
Northern 

Guangxi 

Sanfang and Yuanbaoshan granites with ASI of [1.18, 1.29] and  low initial 

ɛNd values of [−4.8, −7.6], are dated at 826±10Ma and 824±4Ma, 

respectively. 

Together with previous age determinations of ophiolites, the Neoproterozoic orogeny took place 

between 1.0 and 0.80 Ga, and likely ended at 0.82 Ga. 

Li, Z.X., et al., 

2002, Geology. 

Hainan; 

Sichuan 

The 1300–1000 Ma zircon overgrowths in sample collected from Hainan; 

The detrital zircon age spectra can be compared to those of Cathaysia block; 

The 1007 ±14 Ma granitic gneiss is interpreted formed in a foreland 

fold-and-thrust-belt setting. 

Sibao orogen could be one of the Grenvillian sutures that brought Australia, Yangtze, and 

Cathaysia-Laurentia together by ca. 1000 Ma. 

Li, X.H., et al., 

2003a, P.R. 
South China 

The granitoids were essentially coeval with ∼825 Ma mafic/ultramafic 

intrusions in South China 

The 825–820 Ma granitoids were formed by extensive crustal anatexis resulting from underplating and 

intrusion of basaltic magma caused by a mantle plume beneath South China at ∼825 Ma. 

Li, Z.X., et al., 

2003b, P.R. 
South China 

Two major phases of widespread bimodal magmatism during the 

Neoproterozoic, i.e., ca. 830-795 Ma and ca. 780-745 Ma. 

These magmatism as results of a mantle superplume beneath Rodinia, which was responsible for the 

breakup of the supercontinent during the Neoproterozoic. 

Li, W.X., et al., 

2005, P.R. 
Zhejiang 

SHRIMP U–Pb zircon data indicates that the Mamianshan bimodal volcanic 

rocks were formed at 818±9 Ma. They were derived from an OIB-like mantle 

source with variable crustal contamination. 

A coherent South China Craton was formed during the ca. 1.0 Ga Sibao Orogeny, and it subsequently 

underwent extensive continental rifting related to mantle plume or superplume activities beneath 

Rodinia since ca. 825 Ma. 

M.R., Greentree, et 

al., 2006, P.R. 
Yunnan 

A tuff within the Laowushan Formation yielded a SHRIMP U–Pb zircon age 

of 1142±16 Ma; 

Depositional age of the Kunyang Group is ca. 1000-960 Ma. 

The Laowushan Formation and the Kunyang Group were deposited during separate basin-forming 

events.; 

The peak of Sibao Orogeny is ca. 1000-960 Ma. 
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Li, Z.X., et al., 

2007, P.R. 
Jiangxi 

In situ UV laser 40Ar/39Ar results of the muscovites from  the Tianli Schists 

give the ages of  1042±7 Ma to 1015±4 Ma; 

Muscovite/biotite cooling ages of ca. 968±4 and 942±8Ma are recorded by 

deformed and recrystallised muscovite and biotite, respectively. 

The depositional age of the protolith of Tianli schist is older than 1042 Ma; 

The Sibao Orogeny was diachronous: ≥1000 Ma in the western Sibao Orogen (Jiangnan Orogrn) and ca. 

900 Ma in the eastern part. 

Ye, M.F., et al., 

2007, P.R. 
Zhejiang 

The Taohong and Xiqiu tonalite–granodiorite stocks dated at 913±15 Ma and 

905±14 Ma. 

The timing of the Sibao orogenesis is thus believed to be between ∼1.0 and ∼0.9 Ga in its eastern 

segment. 

Zhou, J.B., et al., 

2007, P.R. 

Guangxi and 

Hunan 

The mafic igneous rocks are dated at ∼765 Ma; 

Geochemical study shows high εNd(T) value of 3.3 to 5.3 and OIB-type 

features. 

The ∼765 Ma mafic magmatic rocks were formed in a single continental rift setting related to the plume 

activities during the breakup of Rodinia. 

Wang, X.C., et al., 

2009, G.R. 
South China 

Widespread Neoproterozoic igneous rocks in South China are dated at ca. 

825–760 Ma. 
The 825-760 Ma igneous rocks are all related with the mantle plume. 

Yang, C., et al., 

2015, P.R. 

Northern 

Guangxi 

The zircons from the Sibao and Danzhou groups are of the similar Hf-O 

isotopic features. 

The regional angular unconformity, separating the Sibao and Danzhou groups, may be related to the 

mantle plume at ca. 825 Ma. 

The ca. 880-835 Ma subduction and ca. 830-800 Ma collision 

Wang, X.L., et al., 

2004，P.R. 

Northern 

Hunan 

Basalts from Nanqiao are 1272±2Ma (Zhou et al., 2003), represent the 

fragments of the oceanic crust;  

Adesitic rocks in 814±1Ma (Wang et al., 2003) from Baolinchong, with 

strong depletions of Nb, Ti and enrichment of LILEs, are arc related; 

Granites from NE Hunan are post-collisional magmatism products. 

Jiangnan orogen formed at 870-820 Ma;  

The granites are post-collisional products related to the slab breakoff, not to the superplume activities; 

Zhou, J.C., et al., 

2004，Geoc.J. 

Northern 

Guangxi 

Neoproterozoic mafic-ultramafic rocks 828±7Ma (Li, 1999) show mainly 

calc-alkaline features. 

The mafic-ultramafic rocks are thought to be the products of  magmatism of convergent plate boundary 

rather than derived from mantle plume. 
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Wang, X.L., et al., 

2006，P.R. 

Northern 

Guangxi 

Typical S-type granites with high ACNK values (1.10–1.87), and are 

generally plotted in the collision-related areas in the tectonic discrimination 

diagrams. 

The collision peak between the Yangtze and Cathaysia blocks happened in ca. 870–850 Ma. The 

835–800 Ma granitoids and mafic rocks in Northern Guangxi are post- collisional. 

Wang, X.L., et al., 

2007a，P.R. 

Northern 

Guangxi 

The maximum depositional age of the Sibao and Danzhou groups are 860 and 

800 Ma, respectively. 
Jiangnan orogeny took place at 860–800 Ma 

Wang, X.L., et al., 

2008，G.R. 

Northern 

Jiangxi 

Depositional age for the Shuangqiaoshan Group is ca. 880 Ma; 

The ca. 800 Ma gabbros display arc-like geochemical features.   

The gabbros may generate from the partial melting of juvenile crustal materials resulting from the early 

subduction 

Zhou, J.C., et al., 

2009，P.R. 

Northern 

Guizhou 

872±3Ma is considered as the maximum depositional age of Sibao group in 

the Fanjingshan. 

(a) northwest-ward subduction of the oceanic crust (before ca. 866–835Ma); (b) sedimentation in the 

back-arc foreland basin (ca. 872–835Ma); (c) arcmagmatism (ca. 878–822 Ma); (d) collision between 

the Yangtze and Cathaysia Blocks (ca. 835–820 Ma); (e) post-collision (after ca. 820Ma). 

Chen, X., et al., 

2014，Lithos. 

Northern 

Guangxi 

High-Mg diorites (MgO = 6.7–8.9 wt%) were discovered in the southern part 

of the ca. 830 Ma Dongma Pluton 

The existence of subduction-related metasomatism in the western part of the Jiangnan orogen at ca. 830 

Ma. 

Wang, X.L., et al., 

2014，P.R. 

Whole 

Jiangnan 

Detrital zircon ages give all of the basement sequences in the Jiangnan 

Orogen formed within the time span 860–825 Ma, in a tectonic setting that 

developed from back-arc basin to retro-arc foreland basin. 

Final amalgamation of the Yangtze and Cathaysia blocks occurred no older than ca 825 Ma.  

Li, J.Y., et al., 

2016b，P.R. 

Northern 

Jiangxi 

The Anlelin and Xiushui formations were constrained to form in the periods 

of ca. 845–836 Ma and ca. 835–815 Ma, respectively. 

An age gap of about 10 Myr or less between the Neoproterozoic basement sequences and the cover 

rifting-related sequences in the eastern Jiangnan Orogen 

Chen, X., et al., 

2018，P.R. 

Northern 

Guangxi 

Two episodes of Neoproterozoic mafic magmatism are indentified, namely, 

830 Ma in the Baotan and 770 Ma in the Longsheng, which show the ɛHf(t) 

values of  [-6.3, -2.0] and [2.6, 6.7], respectively. 

The two episodes of Neoproterozoic mafic magmatism imply the transition from a subduction regime to 

a post-orogenic extensional regime in the western segment of the Jiangnan Orogen 
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The ca. 1000-860 Ma subduction and ca. 860-800 Ma collision 

Yao, J.L., et al., 

2012，P.R. 
Zhejiang 

The granodiorite display two peaks at 847±10Ma and 827±8Ma with positive 

ɛHf(t). 
It is the imprint of the breakup of the Rodinia supercontinent in the Yangtze block. 

Yao, J.L., et al., 

2013，JAES. 

Jiangxi; 

Zhejiang 

The dirtrital zircon age spectrum of Dengshan group (equals to Sibao group) 

shows a peak at ca. 850 Ma. 

The collision occurred at 860-800 Ma; 

The Yangtze and Cathaysia blocks assembled since 800 Ma. 

Yao, J.L., et al., 

2014a，JGSL. 
Zhejiang 

Zircons from the hornblende gneiss yielded weighted mean 206Pb/238U ages of 

879 ± 10 Ma. 
The assembly of the Yangtze and Cathaysia blocks was later than the 879 Ma. 

Yao, J.L., et al., 

2014b，P.R. 
Guangxi 

The intrusive gabbro is dated at 855±6Ma, whereas the S-type granite display 

the ages of 823±6Ma, 831±5Ma, 824±6Ma and 833±6Ma. 
The subduction is interpreted during the 1000-860 Ma, and the collision is constrained at 850-800 Ma. 

Yao, J.L., et al., 

2014c，P.R. 
Zhejiang 

The A-type granite in Daolinshan display the age of 790±6Ma, and arc type 

dolerite is dated at 863±7Ma. 

The subduction is constrained during the 1000-860 Ma, afterwards, the Jiangnan region was in a rifting 

setting since 790 Ma. 

Yao, J.L., et al., 

2015，P.R. 
Jiangxi 

The andesites yield weighted mean ages of 871-864Ma, whereas the detrital 

zircons from the conglomerate yield a major age population of 863–810 Ma. 

The subduction shoule be occurred during the 1000-860 Ma, and the collision is interpreted at 860-810 

Ma. 

Yao, J.L., et al., 

2016a，J.G. 
Guangxi 

U-Pb zircon age data from the Longsheng gabbros and diabases yield 

crystallization ages of 869±9Ma, 867±10Ma and 863±8Ma, with positive 

εHf(t) values. 

The mafic rocks occur as exotic blocks derived from the subducting oceanic plate. 

Yao, J.L., et al., 

2016b，P.R. 
Zhejiang 

Zircons from quartz diorite and gabbro from the fault zone at Shijiao yield 

ages of 860-850 Ma, with positive εHf(t) values. 
The ca. 860–850 Ma rock suites were generated in a convergent plate margin. 
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Yao, J.L., et al., 

2017，P.R. 
Jiangxi 

Detrital zircon grains from the Wanyuan paragneiss display metamorphic 

rims that yield concordant weighted average 206Pb/238U ages of 860±6 Ma. 
The metamorphism event indicates that the collision should take place at 860±6 Ma. 
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        1.1.3 The existing problems 

    Many researchers proposed various scenario to explain the Neoproterozoic 

tectonic evolution of the Jiangnan Orogeny event, however, there are still some 

problems to be clarified. 

            1.1.3.1 What is the geological meaning and the depositional age of 

the Sibao group? 

In the above mentioned tectonic evolution models, few authors paid attention to 

the geological signification of the Sibao group. People essentially focused on the ages 

and source affinities of the mafic rocks but ignored the geological meaning of the 

Sibao sediments. As it was coeval with the subduction of the Paleo-South China 

Ocean and the collision, the Sibao group probably records the entire processes of the 

oceanic crust subduction and Jiangnan Orogeny collision. 

If this assumption is accepted, the Sibao group should be initially deposited from 

ca. 1.0 Ga, however, Wang et al. (2007) and Zhou et al. (2009) used the youngest 

zircon grain to constrain the maximum depositional age of the Sibao group as 860 Ma 

and 872 Ma, respectively. Nevertheless, the meaning of the analysed samples is 

questionable. According to the stratigraphic columns of the Sibao group strata, quoted 

in the references, the sampling localities are more than 2.5 kilometers far away from 

the base of the Sibao group, these rocks cannot be utilized for delimiting the initial 

depositional age of the Sibao group. 

            1.1.3.2 When did the Jiangnan Orogeny took place? 

Many perspectives have been suggested for the timing of the Jiangnan Orogeny. 

Li et al. (2002) proposed that the orogeny took place in the Mesoproterozoic 

according to the 1.3-1.0 Ga zircon overgrowth rims, and ca. 1.0 Ga metamorphic 

rocks in the Sichuan and Hainan, respectively. However, the results are not 

convincing, as Sichuan was located in the western margin of the Yangtze Block, those 

samples probably were not associated with the Jiangnan Orogeny in the southeastern 
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margin of the Yangtze Block. Meanwhile, the Hainan block was recognised as an 

independent block away from the Cathaysia Block (Wang et al., 2015), therefore, it 

had no relationship with the assembly of the Yangtze and Cathaysia blocks. 

The Neoproterozoic angular unconformities are thought as the marks of the 

orogeny. Recently, the detrital zircon analysis showed that the maximum age of the 

Danzhou group (the strata above the unconformity) is around 800 Ma (Wang et al., 

2007; Yao et al., 2013), thus it was suggested as the upper limit of the Jiangnan 

Orogeny. With the consideration of the ca. 860-825 Ma mafic rocks and 830 Ma 

S-type granites, some researchers hold the view that the subduction was ongoing 

during the 860-830 Ma and the orogeny occurred at 830-800 Ma. 

However, there are some queries for this kind of model. (1) The angular 

unconformities can certainly be recognised as the products of the orogeny, we can 

qualitatively estimate that the orogeny finished before the sedimentation of the 

conglomerates, but the upper limit of the orogeny should be further constrained by the 

other evidence; (2) How can the subduction related mafic rocks at 860-825 Ma be 

coeval with the continental reworked peraluminous granites at 830 Ma? This is a 

paradox in the tectonic evolution model. According to the indentification of the 

Cathodoluminescence (CL) images of the zircons from the mafic rocks, we found that 

some authors confused the acidic magma zircons as those observed in the mafic 

magmas. The mafic magma zircon should display broad band features rather than the 

clear oscillatory zoning as the granitic ones (Wu & Zheng, 2004). Furthermore, the 

ɛHf(t) values of the mafic zircons are negative which is not the case for those zircons 

(Chen et al., 2018). 

Therefore, we should revisit the previously recognised 860-825 Ma mafic rocks 

and make a new interpretation of the Jiangnan Orogeny. 
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            1.1.3.3 What is the emplacement mechanism of the post collisional 

granitic plutons? 

As the S-type granite is generally recognized as produced by partial melting and 

crystallization of crustal rocks, and it is commonly accepted as a product of the post 

orogeny (Chappell and White, 2001). It can be recognised as the indication of the 

ending of the orogeny. However, so far, nobody paid attention to the emplacement 

mechanism of the peraluminous magma, which can provide another vision on the 

evolution of the orogeny. Therefore, to study the emplacement mechanism of the 

Neoproterozoic peraluminous magma in the Jiangnan region would be benificial to 

understand the Jiangnan Orogeny. 

            1.1.3.4 What is the geological evolution of the Jiangnan Belt after 

the collision? 

Usually, it was accepted that the South China underwent a rifting episode, called 

the Nanhua rift, during the 800-750 Ma period (Shu, 2012; Yan et al., 2017). After 

Nanhua rifting, the entire South China was in a depositional setting until to 460 Ma, 

since then the Cathysia block experienced extensive and strong intraplate tectonic 

event, but the Yangtze block was in a stable depositional environment. The 

heterogeneity of the two blocks might probably be due to the difference in the rigidity 

of the Paleo- to Mesoproterozoic basement (Liu, 2017; Shu, 2012). Moreover, how 

the posterior tectonic events affect the Jiangnan Orogenic Belt is interesting to make 

investigations. 

Moreover, how the posterior tectonic events affect the Jiangnan Orogenic Belt is 

interesting to make investigations. 

1.2 Overview of the study 

        1.2.1 Research purpose and contents 

As the Jiangnan Orogenic Belt plays a key role in the tectonic framework of the 

South China Block. Over the past decades, advances in research on the Jiangnan 
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Orogen led authors to propose several controversial tectonic models. Therefore, some 

issues remain to be clarified, including the timing of the orogeny, the signification of 

the Sibao group, the emplacement mechanism of the post orogeny magma and the 

modification of the Jiangnan Orogenic Belt by posterior tectonic events. 

The Sibao group is unconformably covered by the Danzhou group in the 

Jiangnan region. We have visited almost all of the exposure of the Sibao and Danzhou 

groups in the western part of the Jiangnan Orogenic Belt, and then choose the best 

outcropped unconformities as study targets. 

Meanwhile, the S-type granites are not well exposed except in the Sanfang and 

Yuanbaoshan areas, the plutons seem like two brothers, with an area of ca. 1000 km
2
 

and ca. 300 km
2
, respectively. So they are good targets for the magma emplacement 

study. 

Furthermore, the micas are common in the granites, and we have collected some 

samples for the argon isotopic analysis to see the undiscovered informations. 

        1.2.2 Research methodology 

Since we have chosen unconformities and S-type granite plutons as the targets, 

in order to decipher the unclarified scientific problems, some methods have been 

utilized as following: 

(1) Detailed field observations in four areas, including Fanjingshan, Sanfang, 

Madiyi and Yueyang, from west to east, to get an overview of the Jiangnan Orogenic 

Belt, and investigate the similarities and differences of the unconformities in different 

geological units among these areas; 

(2) The studies of mineral composition, deformation and metamorphism on the 

Sibao and Danzhou groups and their equivalents, to recognize their differences; 

(3) Geochemical investigation of the Sibao and Danzhou groups , aiming to 

reveal their protolith source and tectonic setting; 



Oct. 2018                        Chapter 1 

15 

 

(4) Cathodoluminescence imaging of zircons, to identify their origin; 

(5) Detrital zircon age spectra analysis from the Sibao and Danzhou groups, to 

reveal their differences in detritic source. And age spectra comparison among three 

tectonic units, namely, the Yangtze, Jiangnan and Cathaysia, to understand the 

subduction and collision processes; 

(6) Geochronological and hafnium isotopic investigation on the Sanfang and 

Yuanbaoshan granitic plutons, to reveal the crystallization age and source of the 

magma; 

(7) Magnetic minerals analysis on the granites, to identify carriers of magnetic 

susceptibility; 

(8) Measurement of the Anisotropy of Magnetic Susceptibility (AMS), to 

determine the magma flow behaviors and the tectonic setting of pluton emplacement; 

(9) Gravity modelling, to reveal the deep structures of the plutons; 

(10) Ar-Ar isotopic analysis on the micas, to investigate the possible tectonic 

events posterior to the pluton emplacement. 

        1.2.3 Workload of the study 

    Detailed workload can be referred to Table 1-2. 

        1.2.4 Major findings and innovations 

Based on the previous studies, the major findings and innovations in this study 

are summarized as following: 

(1) The subduction of the Paleo–South China Ocean started at ca. 1000 Ma and 

ended at ca. 865 Ma. Afterwards, the Jiangnan Orogenic Belt was built up due to the 

assembly of the Yangtze and Cathaysia blocks between ca. 865 and 820 Ma; 

(2) The deposition environment of the Early Neoproterozoic Sibao group and its 

equivalents can be divided into two stages. Firstly, they were deposited in an active 
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continental margin in the period of ca. 1000–865 Ma. Then, their upper part was 

accumulated in a collisional setting in the period of ca. 865–820 Ma;  

(3) The Danzhou group and its equivalents began to deposit since ca. 780 Ma after 

the Jiangnan Orogeny; 

(4) The magnetic fabrics of the Sanfang and Yuanbaoshan plutons can be 

characterized the primary magmatic fabric and secondary post-solidus one, indicating 

that the plutons have probably experienced polyphased tectonic events; 

(5) The magma of the plutons was derived from crust materials and crystallized 

at 830 Ma, and intruded probably along pre-existing N-S oriented tectonic (fold/fault) 

structures in a relatively weak extensional setting.  

(6) The gravity anomaly modeling suggests that the plutons might be constructed 

by an E-W lateral accumulation of N-S oriented dykes, and the magma might flow 

from south to north horizontally to build tongue- or sill-shaped plutons; 

(7) A top-to-the-W ductile shearing event took place after the magma 

emplacement, however, the timing of it is unclear; 

(8) Ar-Ar results of the muscovites and biotites reveal that the ductile shearing 

event possibly took place during the magma emplacement or at ca. 420 Ma, 

afterwards, the crust cooled down slowly during the 420 Ma to 240 Ma, probably due 

to the slow uplift of the crust in the Sanfang-Yuanbaoshan area.
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Table 1-2. Workload of the study 

Content Unit Number Notes 

Field observation 

zone 4 Fanjingshan, Sanfang-Yuanbaoshan, Madiyi and Yueyang 

day >120 More than 120 days, in seven times 

Photos piece >700 Unconformity, fold, foliation, lineation, kinematic, deformed and undeformed granite, etc. 

Thin section piece 160 Including the orientated and non-orientated samples of Sibao and Danzhou groups, and granites 

Major and trace element sample 12 Including the samples of Sibao and Danzhou groups 

Cathodoluminescence  grain >400 Including the detrital zircons for the Sibao and Danzhou groups, and magmatic zircons for the granites 

Zircon U-Pb age sample 6 Including the detrital zircons for the Sibao and Danzhou groups, and magmatic zircons for the granites 

Hafnium isotopic sample 1 19 spots on the zircons from the Sanfang pluton 

AMS measurment site (core) 
55 

(352) 
35 (228) and 20 (124) samples for the Sanfang and Yuanbaoshan plutons, respectively 

Magnetic mineralogical 

analysis 
sample 9 Hysteresis loop curve (3), IRM (4), Thermo-magnetic (2), and EPMA (1) 

Density measurment sample 64 Including the Sibao group, Danzhou group, Sinian strata and Sanfang-Yuanbaoshan granites 

Gravity modeling profile 5 2 E-W directed profiles and 3 N-S profiles across the two plutons 

Ar-Ar sample 17 Including the deformed and undeformed granites, as well as muscovite and biotite 
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Chapter 2. Regional pre-Mesozoic geological setting of the South 

China 

2.1 Tectonic units in the South China Block 

        2.1.1 The Yangzte Block 

The Yangtze Block is limited to the North China Craton by the Qinlin–Dabie 

orogen. To the northwest, the Yangtze Block is separated from the Songpan–Ganzi by 

the Triassic Longmenshan Belt that contains a Proterozoic basement (Figure 2-1; 

Zhao & Cawood, 2012; Xue et al., 2017). The Sedimentary cover is well developed in 

the central part of the Yangtze Block. It is mainly composed of sandstone, 

conglomerate and tillite in the lower Sinian strata, and carbonate rocks, Cambrian 

argillaceous shale and graptolite shale in the upper Sinian and Ordovician strata. In 

the Devonian to Middle Triassic strata, a suit of marine sedimentary structure is 

developed with carbonate (Bai & Zhu, 1996). However, the ancient rocks are exposed 

along the tectonic boundary of the Yangtze Block. The Archean basement beneath the 

Yangtze Block is revealed based on the geochronology and Hf isotope composition of 

xenocrystic zircons (Zhang et al., 2006; Zheng et al., 2006). Paleoproterozoic 

metamorphism is recorded by the meta-sedimentary rocks of the Kongling complex 

(Zhang et al., 2006). Paleo- to Mesoproterozoic strata mainly exposed in the western 

Yangtze Block, being represented by the ∼1.7 Ga Dongchuan and ∼1.0 Ga Huili 

Groups (Sun et al., 2009). 

        2.1.2 The Jiangnan Orogenic Belt 

The Jiangnan Orogenic Belt locates in the southeastern margin of the Yangtze 

Block, tracing the northwestward subduction of the Paleo–South China Ocean and the 

collision between the Yangtze and Cathaysia blocks (e.g., Charvet, 2013; Guo & Gao, 

2017; Guo et al., 1989; Li et al., 2007; Shu, 2012; Shu et al., 1995, 2014, 2015; Wang et 

al., 2007; Yan et al., 2015; Yao et al., 2014a; Zhao & Cawood, 2012). The Paleo–South 

China Ocean subducted beneath the Yangtze Block since ca. 1000 Ma (Wang et al., 
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2007, 2008; Yao et al., 2014b), and the final closure of the Paleo–South China Ocean 

resulted in the collision between the Jiangnan magmatic arc and the Cathaysia Block 

(Shu, 2012; Wang et al., 2012b). Numerous ultramafic, mafic magmatic (gabbro, 

diorite), and volcanic rocks, interpreted as ophiolites, dated from ca. 1000 Ma to ca. 870 

Ma, distribute along the suture zone (BGMRAH, 1982; BGMRJX, 1984; BGMRZJ, 

1989; Xia et al., 2018). In the Dexing–Shexian area of the eastern part of the Jiangnan 

belt, blueschists are dated at 866±14 Ma by K-Ar on glaucophane (Shu et al, 1994; Shu 

& Charvet, 1996). The collision led to the important deformation of the Sibao group 

and its equivalents (see Section 2.2; BGMRGX, 1985; BGMRHN, 1988). Afterwards, 

the Jiangnan Orogenic Belt was intruded by peraluminous granite plutons dated at ca. 

850-830 Ma (e.g., Xucun pluton, Jiuling pluton, Yuanbaoshan pluton, Sanfang pluton; 

Figure 2-1) along the Jiangnan Orogen (Guo et al., 1989; Xin et al., 2017; Yao et al., 

2014b; Zhang et al., 2013 ; Zhou et al., 2009). After the formation of the South China 

Block, this continent started to rift probably reworking the pre–existing faults related to 

the Jiangnan Orogeny. The NE-SW striking Nanhua rifting was coeval with the 

generation of ca. 800 Ma–750 Ma bimodal igneous rocks (Li et al., 2018; Wang & Li, 

2003; Xia et al., 2018; Zhang et al., 2018). 

However, previous study show the Early Paleozoic tectono-thermal event is not 

developed in the Jiangnan Orogenic Belt where the Early Paleozoic strata did not 

experience any significant metamorphism, and only underwent slight brittle 

deformation, together with weak magmatism (Yan et al., 2017). 

        2.1.3 The Cathaysia Block 

Compared to the Jiangnan Orogenic Belt, the Cathaysia block displays distinct 

geological features that are characterized by large scaled middle–high–grade 

metamorphic rocks and several Paleoproterozoic plutons (Figure 2-1; Xu et al., 2007; 

Yu et al., 2009). Recent studies suggest that the Cathaysia Block experienced 

poly–phase tectonic and magmatic events, corresponding to the assembly and breakup 

of the Proterozoic supercontinents Columbia, Rodinia and Gondwana (Li, 1997; Li et 
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al., 2002, 2003a, b, 2005; Shu, 2012; Shu et al., 2008; Zhao & Cawood, 2012). 

Among three major Proterozoic distinct tectonic domains in the Cathaysia Block, it 

exists in the Wuyi domain a Paleo–Mesoproterozoic continental core that is composed 

of migmatites, gneisses, granitic gneisses, schists, leptynites and leptites, along with 

minor Neoproterozoic clastic rocks, spilites and basalts (Shu, 2006), whereas the 

Nanling and Yunkai domains develop Neoproterozoic slates, phyllites, spilites, basalts, 

rhyolites and clastic rocks (Yu et al., 2009). 

 

Figure 2-1. Tectonic outline of China and geological sketch map of the Yangtze and 

Cathaysia blocks. 

During the Silurian, extensive folding, thrusting, metamorphism and anatexis 

developed. The early Paleozoic intracontinental tectono–thermal event in the 

Cathaysia block (Charvet et al., 2010; Faure et al., 2009; Shu et al., 2014) resulted in 

large–scale granitic magmatism, strong folding–ductile deformation dated at 440–400 
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Ma and a regional scale middle Devonian angular unconformity (Shu, 2012; Shu et al., 

2008). These features are well recorded in the Wuyi, Jinggang, Nanling and Yunkai 

areas (Figure 2-1). The maximum shortening can reach up to 67% in the Jinggang and 

Wuyi belts (Charvet et al., 2010; Shu, 2012; Shu et al., 2008, 2015). Fold axes 

dominantly strike in the E–W direction. The kinematic analysis in the Jinggang and 

Wuyi domains shows that the ductile shearing was directed to the S or SE, however, a 

northwestward vergence may develop in the northwestern part of the belt. 
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Figure 2-2. Geological sketch maps and cross–sections with sampling locations for (A) 

the Fanjingshan, (B) Sanfang, (C) Madiyi and (D) Yueyang areas. 
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2.2 Neoproterozoic stratigraphic sequences of the South China Block 

In South China, the early Neoproterozoic strata (contemporary with the Sibao 

group) distributes geographically in three parts. One part that crops out in the northern 

and western boundaries of the Yangtze Block (Figures 2-1 and 2-2) mainly consists of 

sandstone and mudstone (Wang & Li, 2003). The second part, exposed within the 

Jiangnan Orogen, is characterized by greywacke, sandstone, mudstone enclosing mafic 

and ultramafic blocks. This part is generally interpreted as the result of the assembly of 

the Paleo–South China Ocean and the Yangzte Block (Shu et al., 2014; Yao et al., 2014b; 

Wang et al., 2012a; Zhou et al., 2009). The third part is sporadically exposed in the 

Cathaysia Block, particularly in the north of the Fujian province. It involves terrigenous 

clastic rocks interlayered with volcanic rocks (BGMRFJ, 1985; Xu et al., 2010). 

During the middle Neoproterozoic rifting of the unified South China Block, more 

than 5 km-thick terrigenous and volcano-clastic series were deposited. Although the 

formation names, such as Banxi, Danzhou and Xiajiang groups, vary depending on the 

Provinces, they are petrographically and structurally equivalent (BGMRGX, 1985; 

BGMRGZ, 1984; BGMRHN, 1988). According to sedimentology, at that time, a 

littoral-neritic depositional environment characterized the whole South China Block 

(Shu, 2012). However, the water depth in the Jiangnan region was deeper than that in 

the Yangtze and Cathaysia regions (Wang & Li, 2003; Xu et al., 2010). The middle 

Neoproterozoic strata are mainly composed of fine grain conglomerate, sandstone and 

siltstone, and widely exposed in the Jiangnan and the Cathaysia regions but rarely 

revealed in the Yangtze region (Zhao & Cawood, 2012). 

2.3 Regional angular unconformity in the Jiangnan Orogenic Belt 

The Early Neoproterozoic angular unconformity is well developed in the 

Jiangnan Orogenic Belt, but poorly exposed. The representative outcrops can be 

traced in Lantian, Anhui province; Yiyang, Jiangxi province; Yueyang and Madiyi, 

Hunan province; Sibao, Guangxi province; and Fanjingshan, Guizhou province, from 



Oct. 2018                        Chapter 2 

25 

 

the eastern Jiangnan Orogenic Belt to the western part. The Danzhou group (and its 

equivalents) unconformably covered on the Sibao group (and its equivalents), with 

distinct differences in the lithology and deformation style (Figure 2-3). 

 

Figure 2-3. Representative field photos and geologic sketchs. (A) Unconformity 

between the Fanjingshan group and the Xiajiang group in the Fanjingshan area; (A’) 

Geologic sketch map of A with the unconformity contact relationship; (B) 

Conglomerate of the Xiajiang group; (C) Unconformity between the Sibao group and 

Danzhou group in the Sanfang area; (C’) Geologic sketch of C with the unconformity 

contact relationship; (D, E) Conglomerate of the Danzhou group; (F) Unconformity 

between the Lengjiaxi group and Banxi group in the Madiyi area; (F’) Geologic sketch 

of F with the unconformity contact relationship; (G) Tight fold in the Lengjiaxi group; 

(H) Conglomerate of the Banxi group; (I) Unconformity between the Lengjiaxi group 

and the Banxi group in the Yueyang area; (I’) Geologic sketch of I with the 

unconformity contact relationship; (J) Unconformity contact between the Lengjiaxi 

group and Banxi group; (K) Conglomerate of the Banxi group. 
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2.4 Comparison of the Sibao group (Pt3sb, and its equivalents) and Danzhou 

group (Pt3dz, and its equivalents) in the Jiangnan Orogenic Belt 

The early Neoproterozoic and middle Neoproterozoic strata have different names 

in various places, e.g., the Sibao group, Fanjingshan group, Lengjiaxi group, 

Shuangqiaoshan group, Shangxi group and Shuangxiwu group of the early 

Neoproterozoic strata were named in the Guangxi province, Guizhou province, Hunan 

province, Jiangxi province, Anhui province and Zhejiang province, respectively, where 

the middle Neoproterozoic strata were named the Danzhou group, Xiajiang group, 

Banxi group, Dengshan group, Likou group and Heshangzhen group, correspondingly 

(BGMRAH, 1982; BGMRGX, 1985; BGMRGZ, 1984; BGMRHN, 1988; BGMRJX, 

1984; BGMRZJ, 1989). 

 

Figure 2-4. Representative thin-section photos of samples. (A) Sample 1932 

(blastopsammite) in the Xiajiang group from the Fanjingshan area; (B) Sample 1933 

(sandy slate) in the Fanjingshan group from the Fanjingshan area; (C) Sample 1714–1 

(blastopsammite) in the Danzhou group from the Sanfang area; (D) Sample 1714 

(phyllite) in the Sibao group from the Sanfang area; (E) Sample 1399 (blastopsammite) 

in the Banxi group from the Madiyi area; (F) Sample 1400 (sandy slate) in the 

Lengjiaxi group from the Madiyi area; (G) Sample 1371–1 (quartz sandstone) in the 

Banxi group from the Yueyang area; (H) Sample 1371 (sandy slate) in the Lengjiaxi 

group from the Yueyang area. 
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The Sibao group and its equivalents are deformed by N-S and NE-SW trending 

fold axes (Figure 2-3). Tight folds with vertical axes are also common at the outcrop 

scale (Shu, 2012). The deformation is coeval with a low-grade regional metamorphism 

represented by low greenschist facies metamorphic rocks, such as slate, phyllite, and 

meta-volcanic rocks. Locally, garnet-biotite micaschist and amphibole schist are 

observed (Charvet, 2013; Yan et al., 2015; Zhang et al., 2013). These strata were 

unconformably covered by basal conglomerates of the Middle Neoproterozoic 

Danzhou group and its equivalents (Figure 2-3; Wang & Li, 2003; Wang et al., 2007). 

On the contrary to the Sibao group, the Danzhou group and its equivalents display 

gentle folds and a very low grade metamorphism, or even no metamorphism (Figure 

2-4). The Sibao group and its equivalents contain ultramafic and mafic magmatic rocks, 

and siliceous sedimentary rocks interpreted as olistoliths (Yao et al., 2016). 

2.5 Ophiolitic mélange and magmatic events in the Jiangnan Orogenic Belt 

Two ophiolitic mélanges in the eastern part of Jiangnan Orogenic Belt are 

generally accepted by researchers. One is in the NE Jiangxi province, another is located 

near the Pingxiang–Jiangshan–Shaoxing fault, both of them are thought to be formed in 

an accretionary complex defining the ophiolitic suture of the Paleo–South China Ocean. 

The NE Jiangxi ophiolitic rocks yielded Sm–Nd isochron ages of 1034±24 Ma (Chen et 

al., 1991), and 1024±30 Ma (Zhou et al., 1989), and SHRIMP zircon U–Pb age of 

970±21 Ma (Gao et al., 2009), and 968±23 Ma (Li et al., 1994). Recently, Yao et al. 

(2016) dated a gabbroic block enclosed in an ophiolitic mélange at 869±9 Ma (zircon, 

LA-ICP-MS) in the Longsheng area, in the western part of the Jiangnan Orogenic Belt 

(Figure 2-1). 

Previous studies indicate that the subduction related rocks are relatively well 

exposed in the eastern Jiangnan Orogen: plagiogranite (970±21 Ma, zircon SHRIMP 

U–Pb, NE Jiangxi, Gao et al., 2009; 905±14 Ma, zircon SHRIMP U–Pb, Zhejiang, Ye 

et al., 2007), andestic rocks (926±15 Ma, zircon SHRIMP U–Pb, Zhejiang, Li et al., 

2009), tonalite (913±15 Ma, zircon SHRIMP U–Pb, Zhejiang, Ye et al., 2007), basalt 
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(904±8 Ma, zircon SHRIMP U–Pb, Zhejiang, Chen et al., 2009), rhyolite (891±12 Ma, 

zircon SHRIMP U–Pb, Zhejiang, Li et al., 2009), tuff (879±6 Ma, zircon LA–ICP–MS 

U–Pb, Jiangxi, Wang et al., 2008), gabbro (875±8 Ma, zircon LA–ICP–MS U–Pb, 

Jiangxi, Zhang et al., 2013). However, mafic rocks crop out rarely in the western 

Jiangnan Orogen: gabbro (869±9 Ma, zircon LA–ICP–MS U–Pb, Guangxi, Yao et al., 

2016). 

Several peraluminous granitic plutons crop out along the Jiangnan Orogenic Belt 

(Figure 2-1), most of them are dated in the range of 852–825 Ma (e.g., Miaohou at 

828±4 Ma, Zhejiang, Xia et al., 2015; Xucun at 852±6, Anhui, Xue et al., 2010; 

Xiuning at 825±7, Anhui, Wu et al., 2006; Jiuling at 828±8, Jiangxi, Zhong et al., 2005; 

Yuanbaoshan at 833±6, Guangxi, Yao et al., 2014a; Sanfang at 834±8, Guangxi, Zhao 

et al., 2013; Nage at 852±5, Guizhou, Wu et al., 2018; Fanjingshan at 838±2, Guizhou, 

Wang et al., 2011). These granitoids are interpreted as late- to post-collisional plutons. 

2.6 Nanhua rift 

A-type granites and contemporaneous mafic intrusions range from 805 Ma to 761 

Ma (Ge et al., 2001; Li et al., 2008b; Wang et al., 2012b). The geochemistry of these 

rocks is in agreement with an extensional setting of the South China block since the 

middle Neoproterozoic. A ca. 800–750 Ma bimodal magmatism composed of basalts 

and rhyolites has been well defined in the Jiangnan and Cathaysia regions. 
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Chapter 3. Time constraints on the closure of the Paleo–South China 

Ocean and the Neoproterozoic assembly of the Yangtze and Cathaysia 

blocks: insight from new detrital zircon analyses  

3.1 Introduction 

The Jiangnan Orogen plays a key role in the tectonic framework of the South 

China Block, making the Neoproterozoic northeast–trending collision between the 

Cathaysia and Yangtze blocks. Over the past decades, advances in research on the 

Jiangnan Orogen led authors to propose several controversial tectonic models. The 

presence of remnants of oceanic crust and the well–defined suture zones make the 

eastern sector of the Jiangnan orogen commonly acknowledged as a collision belt (e.g., 

Charvet, 2013; Li et al., 2007; Shu et al., 2014; Zhao & Cawood, 2012; Figure 2-1). 

However, in the western part of the Jiangnan Orogen, some issues remain to be 

clarified. 

One of the most debated questions is the timing of the collision between the 

Yangtze and Cathaysia blocks. Some researchers proposed that this collision took place 

at 1.2-1.0 Ga in the western part, but later in the eastern part at 1.0-0.96 Ga according to 

the tuff and basin study (Greentree et al., 2006). Li et al. (2007) proposed that the 

Jiangnan Orogen was related to the assembly of the Rodinia supercontinent during 

1041-1015 Ma by the insight of mica 
40

Ar/
39

Ar dating of the Tianli schist in the Jiangxi 

Province. While some authors hold the view that the collision between the two blocks 

should be constrained at 1.0-0.86 Ga owing to the insights of ophiolites, and arc related 

rocks (Li et al., 2008a, 2009, 2014; Shu & Charvet 1996; Ye et al., 2007; Zheng et al., 

2008). Meanwhile, considering the peak of detrital zircon of the Sibao group (Pt3sb, 

and its equivalents) as well as the peraluminous granites distributed along the Jiangnan 

Orogenic Belt, a school of researchers suggested that the collision of the Yangtze and 

Cathaysia blocks should take place at 850-800 Ma (Wang et al., 2007, 2008; Yao et al., 

2014a, 2014b). Recently, more and more mafic rocks dated at 850-820 Ma, have been 
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reported in the Jiangnan Orogen (Liu et al., 2015; Sun et al., 2017; Xia et al., 2015; 

Zhang et al., 2016). These rocks are interpreted as magmatic arc-related, consequently, 

the authors considered that the collision of the Yangtze and Cathaysia blocks did not 

started until 820 Ma. However, some authors emphasized the hiatus in sedimentation, 

and the unconformity between the Sibao group (and its equivalents) and Danzhou 

group (Pt3dz, and its equivalents), which resulted from the Jiangnan Orogeny, and 

proposed that the collision should occur at ca. 830-800 Ma (Su et al., 2008; Zhao & 

Cawood, 2012).  

In order to advance the debate on this topic, we have carried out a detrital zircon 

dating near the Neoproterozoic unconformity in three distinct localities, and 

synthesized similar studies by integrating the new and previous data from the Jiangnan 

Orogen, the Yangtze and Cathaysia blocks, to improve the understanding of the 

Neoproterozoic tectonic evolution of the Jiangnan Orogenic Belt. 

3.2 Geological setting 

    Detailed geological setting can be referred to the Chapter 2. 

3.3 Samples collection and analytical procedures 

        3.3.1 Sample collection 

We collected sandstone samples from both series below and above the 

unconformity in three localities: Fanjingshan, Guizhou Province, Sanfang, Guangxi 

Province and Madiyi, Hunan Province (Figures 2-1, 2-2 and 2-3). GPS locations are 

provided in the Table 3-1. 

        3.3.2 Analytical procedures 

Whole–rock major element contents were analyzed by ARL–9900 X–ray 

fluorescence spectrometer (XRF) at the Testing Center of Shandong Bureau of China 

Metallurgical Geology Bureau. The uncertainties reported in this study are 2% for 

major elements. Trace elements and rare earth elements (REE) were measured by 

ICP–MS (Finnigan Element II) at the Testing Center of Shandong Bureau of China 
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Metallurgical Geology Bureau. International standards were used to define the 

analytical precision and accuracy throughout the analytical processes for ICP–MS. The 

uncertainties are 5% for trace elements. 

Zircons were separated from the crushed rocks using heavy liquid and magnetic 

techniques and then handpicked under a binocular microscope. The zircon grains were 

mounted in epoxy resin, and then polished and coated with gold. 

Cathodoluminescence (CL) images of the zircons were obtained using a JEOL 

JXA8230 electron probe microanalyzer at the Testing Center of Shandong Bureau of 

China Metallurgical Geology Bureau. 

 

Figure 3-1. (A) Source rock discrimination diagrams for the samples on Hf versus 

La/Th (modified after (Floyd & Leveridge, 1987)) and (B) Plot of discriminant scores 

along Function I versus II for various samples (modified after Bhatia, 1983) 

The laser ablation (LA)–ICP–MS analysis of zircon U–Pb isotopic compositions 

was performed at the Testing Center of Shandong Bureau of China Metallurgical 

Geology Bureau, using a ThermoX2 ICP–MS connected to a GeoLas Pro 193 nm 

laser ablation system. All analyses were carried out with a spot size of 30 μm or 20μm 

and a laser frequency of 10 Hz. Helium was used as the carrier gas to transport the 

ablated material. The detailed analytical procedure is described in Liu et al. (2010). 

All measurements were performed using zircon 91500 as the external standard with a 

206
Pb/

238
U age of 1065.4±0.6 Ma (Wiedenbeck et al., 1995). We calibrated elemental 
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contents with NIST610 as the external standard and 
29

Si as the internal standard. The 

U–Pb ages were calculated from the raw signal data using the software 

ICPMSDataCal (ver.8.4). On account of the 
204

Pb could not be measured owing to 

low signal and interference from 
204

Hg in the gas supply, common lead correction was 

carried out using the EXCEL program common Pb correction (Andersen, 2002). For 

zircons older than 1000 Ma, because of large amounts of radiogenic Pb, the 

207
Pb/

206
Pb age is more reliable than 

206
Pb/

238
U, whereas for zircons younger than 

1000 Ma, as a result of the low content of radiogenic Pb and uncertainty of common 

Pb correction, the 
206

Pb/
238

U age is more reliable. 

Table 3-1. GPS locations of samples and petrological description 

Samples Area GPS locations Period of strata  Rock type 

1932 

Fanjingshan 

N27°54.523'，E108°48.073' Pt3xj Blastopsammite 

1933 N27°54.524'，E108°48.070' Pt3fj Sandy slate 

1934 N27°55.011'，E108°48.252' Pt3xj Blastopsammite 

1936 N27°59.141'，E108°47.219' Pt3fj Sandy slate 

1942 

Sanfang 

N25°14.122'，E109°07.432' Pt3dz Sandy slate 

1943 N25°14.876'，E109°06.790' Pt3dz Sandy slate 

1944 N25°17.053'，E109°07.491' Pt3sb Muddy phyllite 

1945 N25°20.017'，E109°05.961' Pt3sb Muddy phyllite 

1952 N25°12.566'，E109°09.349' Pt3dz Blastopsammite 

1714-1 N25°00.741'，E108°52.674' Pt3dz Blastopsammite 

1714 N25°00.741'，E108°52.673' Pt3sb Phyllite 

1399 
Madiyi 

N28°25.482'，E110°39.877' Pt3bx Blastopsammite 

1400 N28°25.481'，E110°39.878' Pt3lj Sandy slate 

1371-1 
Yueyang 

N29°43.875'，E113°17.449' Pt3bx Quartz sandstone 

1371 N29°43.885'，E113°17.447' Pt3lj Sandy slate 

3.4 Analytical results 

        3.4.1 Major and trace elements 

The analytical results of major and trace elements of 13 representative samples 

are given in Table 3-2. Slate and phyllite of the Sibao group and its equivalents show 

high SiO2 (72.2–79.8 wt%), intermediate Al2O3 (6.2–13.1 wt%). However, sandstone, 

blastopsammite and slate of the Danzhou group and its equivalents yield lower SiO2 

(66.2–77.1 wt%) and higher Al2O3 (7.3–16.0 wt%). These two suites of strata have 
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similar content in Fe2O3, MgO and K2O. The most intuitive character of all samples 

analyzed for geochemistry is that they display similar chondrite–normalized steep rare 

earth element (REE) patterns revealing obvious enrichment in light rare earth element 

(LREE) with respect to heavy rare earth element (HREE; Figure 3-2A). LREE/HREE 

values range from 6.15 to 16.28, and (La/Yb)N vary from 3.26 to 14.20 with an average 

of 8.18. All the samples reveal distinct negative Eu anomalies (Eu/Eu* value of 

0.31–0.70, with an average of 0.53). On the upper crust normalized spidergrams 

(Figure 3-2B), all samples exhibit strong negative Ba, Sr and Nb anomalies and the 

enrichment of Rb, Th and U, suggesting that the sedimentary rocks were derived from 

the upper crustal source (Sun & McDonough, 1989; Taylor & McLennan, 1981). 

 

Figure 3-2. Distribution of (A) rare earth elements and (B) trace elements for the 

samples derived from the Jiangnan Orogen. The normalization values for (A) and (B) 

are taken from Sun & McDonough (1989) and McDonough & Sun (1995), 

respectively. 

        3.4.2 Zircon cathodoluminescence images 

Representative cathodoluminescence (CL) images of detrital zircons of the six 

samples are shown in Figure 3-3. In majority, the zircon grains are subhedral and 

euhedral, revealing that they are near source accumulation. Most of zircon grains 

display clear oscillatory zoning with granitic zircon feature, while three of them show 

broad banded structure with mafic zircon characters (1933–12, 1933–32, 1714–32). 

Some zircon grains reveal thin luminescent overgrowth rims that appear bright in the 

CL images. Interestingly such a phenomenon is found with older cores (2529–946 Ma) 
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and younger overgrowth rims (865–852 Ma). 

        3.4.3 Detrital zircon U–Pb ages 

            3.4.3.1 Sibao group and its equivalents 

Two hundreds and sixty-one zircon data yield good concordance (Figure 3-4 and 

Table 3-3). The Sibao group and its equivalents reveal one significant peak at 853 Ma, 

one minor peak cluster ranging from 1900 Ma to 1500 Ma and one inconspicuous peak 

at ca. 2450 Ma, with the youngest age at 832 Ma (Figure 3-5). 

Regarding each sample separately, the one collected in Fanjingshan (1933) yields 

ages in the range of 2176–834 Ma with an obvious peak at 849 Ma. The ages of samples 

collected in Madiyi (1400) and Sanfang (1714) range between 2645–832 Ma, and 

3038–838 Ma, with distinct peaks at 861 Ma and 856 Ma, respectively. The peak 

clusters ranging from ca. 1000 Ma to ca. 870 look like a shoulder, lying behind the 

prominent peaks, and are remarkable in all of the three plots (Figure 3-4). 
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Figure 3-3. Representative cathodo–luminescence images of zircons of the samples 

from the Jiangnan Orogen, attached with analyzed locations and U–Pb ages. 

            3.4.3.2 Danzhou group and its equivalents 

Totally, we got 227 zircon ages for the Danzhou group and its equivalents, most of 

them are concordant (Figure 3-4). In general, the age spectrum shows two obvious 

peaks at 850 Ma and 795 Ma, one minor peak clusters at ca. 1900–1500 Ma, and one 

minor peak at 2500 Ma as a whole, the relative probability plot reveals a good similarity 

with that of the Sibao group and its equivalents except one significant peak at 795 Ma 

(Figure 3-5). Moreover, there is no detrital zircon age ranging from ca. 832 Ma to ca. 

803 Ma recorded in the Danzhou group and its equivalents (Figure 3-5B). 
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Figure 3-4. U–Pb age concordia plots and histograms and relative probability plots for 

the zircon of six samples from the Jiangnan Orogen. 

Individually, the sample collected in Fanjingshan (1932) yields ages in the range 

of 2803–779 Ma. As for the sample collected in Madiyi (1399) and Sanfang (1714–1), 

they show ages ranging in 2997–783 Ma and 2562–796 Ma intervals, respectively. Two 

distinct peaks, ca. 850 Ma and ca. 795 Ma, are displayed in the relative probability plot 

of the sample collected from Fanjingshan and Madiyi (Figure 3-4). However, the plot 

of the sample collected from Sanfang reveals a different pattern and presents a 

significant age cluster at 903–850 Ma, two prominent peaks at 997 Ma and 796 Ma, one 

minor peak clusters at 1790–1617 Ma and one minor peak at 2507 Ma (Figure 3-4).
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Table 3-2. Major and Trace elements data for representative samples from the western Jiangnan Orogen 

Analysis Fanjingshan Sanfang Madiyi 

 
1932 1933 1934 1936 1942 1943 1944 1945 1952 1714-1 1714 1399 1400 

  Pt3xj Pt3fj Pt3xj Pt3fj Pt3dz Pt3dz Pt3sb Pt3sb Pt3dz Pt3dz Pt3sb Pt3bx Pt3lj 

SiO2 66.22  72.27  67.83  73.66  70.40  77.17  75.97  77.02  84.35  70.55  72.85  71.18  79.82  

TiO2 0.86  0.70  0.89  0.47  0.43  0.32  0.47  0.45  0.23  0.79  0.67  0.44  0.55  

Al2O3 16.88  12.70  15.98  6.24  14.53  11.49  10.84  12.14  7.34  13.84  13.08  11.62  9.29  

Fe2O3
t 6.27  6.13  6.52  3.71  3.52  3.64  3.70  2.75  2.41  6.56  5.49  2.51  3.33  

MnO 0.07  0.02  0.05  0.19  0.09  0.05  0.22  0.04  0.07  0.07  0.10  0.07  0.05  

MgO 1.36  0.93  1.33  1.87  0.91  1.12  0.89  0.99  0.96  1.31  1.05  1.64  1.23  

CaO 0.10  0.16  0.12  4.44  0.90  0.09  2.98  0.16  0.05  0.05  0.05  2.42  0.42  

Na2O 1.38  0.25  1.10  0.23  4.24  0.69  1.80  1.56  0.09  0.09  0.11  2.31  1.81  

K2O 3.42  3.46  3.18  1.62  1.96  2.81  1.08  2.58  1.37  3.64  3.52  2.69  1.37  

P2O5 0.07  0.11  0.05  0.09  0.06  0.06  0.10  0.08  0.02  0.04  0.05  0.07  0.13  

LOI 3.25  2.72  2.85  7.22  2.54  2.21  1.33  1.98  2.26  2.96  2.77  4.69  1.51  

Total 99.88  99.45  99.91  99.74  99.59  99.65  99.38  99.75  99.15  99.90  99.74  99.64  99.51  

Na2O+K2O 4.80  3.71  4.28  1.85  6.20  3.50  2.88  4.14  1.46  3.73  3.63  5.00  3.18  

 La 29.90  32.40  35.20  27.80  39.00  12.50  17.60  27.10  29.10  34.00  10.60  20.60  47.30  

Ce 60.80  75.90  62.80  63.90  66.00  32.00  38.60  47.40  40.00  85.80  24.00  46.10  99.10  

Pr 7.60  8.53  8.52  7.02  9.43  3.91  5.24  6.66  6.76  8.16  3.63  5.30  10.40  

Nd 29.20  32.70  31.50  26.20  36.30  15.30  21.20  25.00  24.60  30.60  14.50  20.10  37.60  

Sm 5.66  6.28  5.67  4.76  6.97  3.59  5.08  4.66  4.38  5.98  3.00  3.94  6.85  

Eu 1.01  1.09  1.03  0.90  0.80  0.35  1.15  0.76  0.58  1.14  0.51  0.85  0.82  

Gd 5.02  5.18  5.13  4.17  5.80  3.16  4.80  3.95  3.52  5.27  2.76  3.59  6.12  

Tb 0.82  0.79  0.85  0.61  0.91  0.58  0.90  0.62  0.47  0.78  0.52  0.58  0.88  

Dy 4.75  4.46  5.09  3.28  5.12  3.81  5.51  3.51  2.37  4.30  3.20  3.43  4.80  

Ho 0.98  0.92  1.09  0.65  1.01  0.85  1.09  0.73  0.48  0.87  0.65  0.71  0.96  

Er 2.92  2.78  3.35  1.96  3.04  2.67  3.19  2.23  1.45  2.64  1.89  2.18  2.89  

Tm 0.45  0.43  0.52  0.28  0.43  0.42  0.47  0.35  0.22  0.39  0.29  0.33  0.43  

Yb 2.96  2.83  3.40  1.83  2.85  2.75  3.02  2.23  1.47  2.67  1.89  2.19  2.72  

Lu 0.47  0.43  0.53  0.29  0.44  0.44  0.47  0.36  0.23  0.42  0.30  0.35  0.41  

Hf 6.01  5.94  6.77  4.33  7.40  3.11  5.67  6.38  2.54  5.37  5.01  5.04  8.13  

ΣREE 152.54  174.72  164.68  143.65  178.10  82.33  108.32  125.56  115.63  183.02  67.74  110.25  221.28  

LREE/HREE 10.43  12.82  10.10  15.14  11.91  6.15  6.39  11.52  16.28  14.16  6.75  10.28  15.90  

(La/Yb)N 7.25  8.21  7.43  10.90  9.82  3.26  4.18  8.72  14.20  9.13  4.02  6.75  12.47  

δEu 0.57  0.57  0.57  0.60  0.37  0.31  0.70  0.53  0.44  0.61  0.53  0.68  0.38  

 Li 63.70  33.00  73.80  21.90  10.80  31.30  9.61  13.10  32.40  48.20  42.40  19.50  25.10  

Be 2.37  2.15  2.29  1.23  2.07  2.18  1.44  1.70  1.10  2.34  2.39  1.29  1.43  

Sc 10.50  11.10  12.90  7.47  4.07  8.67  4.34  5.25  5.29  13.00  16.20  7.04  8.21  

Ti 4971.0  4003.0  5061.0  2573.0  2496.0  1797.0  2648.0  2504.0  1251.0  4505.0  3795.0  2485.0  3090.0  
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V 105.00  94.40  102.00  60.60  37.00  39.10  45.00  42.70  26.40  107.00  258.00  38.20  41.90  

Cr 84.30  62.50  99.40  37.00  32.80  34.50  36.20  32.40  24.60  65.20  59.40  22.20  45.00  

Mn 441.0  120.0  330.0  1285.0  614.0  318.0  1481.0  293.0  443.0  422.0  526.0  457.0  297.0  

Co 16.00  18.40  14.40  6.63  5.65  4.08  5.56  5.77  2.12  6.48  11.30  4.32  7.55  

Ni 30.00  33.90  35.10  19.10  14.10  14.30  14.40  14.00  11.90  25.80  17.00  7.66  16.60  

Cu 24.00  10.20  29.10  21.90  12.60  7.74  53.20  3.49  13.20  123.00  44.90  9.11  13.20  

Zn 98.60  98.60  103.00  75.60  37.90  83.50  124.00  31.90  71.80  98.10  64.50  38.60  37.30  

Ga 20.10  17.40  20.00  9.45  14.10  16.70  11.50  15.60  10.60  19.10  16.90  13.80  11.20  

Rb 160.00  207.00  157.00  85.20  67.20  110.00  46.20  104.00  50.70  205.00  157.00  78.60  79.70  

Sr 51.50  31.90  39.30  25.50  113.00  50.70  231.00  26.80  11.90  15.20  11.00  151.00  55.90  

Y 24.60  24.00  27.10  18.30  26.30  23.50  32.00  18.80  12.10  20.00  15.10  20.30  26.50  

Zr 209.00  206.00  236.00  144.00  260.00  91.70  200.00  229.00  65.40  172.00  161.00  191.00  307.00  

Nb 13.30  11.50  13.90  7.70  15.90  9.75  9.67  10.00  6.43  11.70  9.14  7.37  11.40  

Mo 0.08  0.08  0.07  0.29  0.48  0.06  0.09  0.03  0.05  0.04  0.06  0.20  0.28  

Cd 0.01  0.03  0.04  0.94  0.04  0.04  0.27  0.05  0.04  0.02  0.04  0.09  0.05  

Sn 3.32  2.76  3.21  1.61  2.03  2.01  54.30  2.08  1.24  3.07  3.02  1.16  1.67  

Cs 15.90  24.20  12.80  5.18  8.27  11.50  13.30  3.27  5.90  15.10  13.90  2.35  3.86  

Ba 431.00  488.00  405.00  313.00  499.00  865.00  196.00  544.00  551.00  413.00  303.00  776.00  607.00  

Ta 1.07  0.96  1.13  0.63  1.17  0.57  0.77  0.79  0.43  1.03  0.89  0.51  0.99  

W 2.62  1.75  2.90  1.27  0.66  0.81  0.56  2.73  0.34  5.62  9.90  0.27  1.00  

Pb 10.20  5.13  15.30  15.00  19.10  12.30  70.70  4.48  5.40  33.90  57.00  9.04  16.40  

Bi 0.14  0.27  0.19  0.29  0.11  0.16  31.00  0.07  0.20  0.37  1.08  0.10  0.13  

Th 10.30  13.10  12.20  9.09  9.83  6.29  10.20  8.85  5.46  13.10  7.05  5.56  24.80  

U 1.91  2.49  2.36  1.60  1.55  1.62  1.54  1.37  0.52  2.19  1.53  0.96  3.46  

ACNK=Al2O3/( Na2O+K2O+CaO)Mol; Eu/Eu*=Eu/(0.5(Sm+Gd))n; The chondrite normalization values are from Sun S S et al.(1989), and the primitive mantle normalization values are 

from McDonough et al. (1992) 
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3.5 Discussion 

        3.5.1 Comparison of the age spectra between the Sibao and Danzhou 

groups and geological significance of the detrital zircon ages 

The detrital zircon U–Pb age spectra of the Sibao and Danzhou groups and their 

equivalents are given in Figures 3-4 and 3-5. In general, the age spectrum of the Sibao 

group and its equivalents yields a distinct peak at 853 Ma and an obvious peak cluster 

ranges in 1000–870 Ma as a shoulder, with two minor peaks at 1700 Ma and 2500 Ma 

(Figure 3-5). The age spectrum of rocks from the Danzhou group and its equivalents 

inherits the features of those of the Sibao group and its equivalents, but also contains a 

younger peak at 795 Ma. 

Independently, the detrital zircon age spectra of the top sequence of the Sibao 

group and its equivalents collected from three localities display a good comparability 

with a significant peak at ca. 855 Ma and an obvious peak cluster ranging in 1000–870 

Ma. The ages ranging from ca. 1500 Ma to ca. 1000 Ma are rarely recorded except for 

that of the sample collected from the Sanfang area (Figure 3-4). In terms of the bottom 

of the Danzhou group and its equivalents, the samples collected from Fanjingshan and 

Madiyi present two similar peaks at ca. 850 Ma and ca. 795 Ma. However, the sample 

collected in the Sanfang area presents a more complicated pattern that reveals a main 

peak cluster ranging around 903–850 Ma with two peaks at 997 Ma and 796 Ma as 

shoulders. The spectra from all three areas also show prominent age peaks ranging in 

1790–1617 Ma and at ~2507 Ma. It is worth noting that the zircon age distribution 

pattern of the sample collected from the Danzhou group in the Sanfang area is different 

with those of the other two samples collected from Fanjingshan and Madiyi as the 

detrital zircon spectrum of the Danzhou group of the Sanfang area displays multiple 

peaks with respect to those of Fanjingshan and Madiyi. The zircon age distribution 

pattern of the Sanfang sample can be traced in the detrital zircon spectrum of the 

Cathaysia Block (Figure 3-6C). In the geographical point of view, the Sanfang area is 

closer to the collision boundary than the Fanjinshan and Madiyi ones (Figure 2-1), 
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therefore, we may infer that the detritus in the Danzhou group of the Sanfang area was 

partly supplied by the Cathaysia Block. 

The various detrital zircon ages have different geological significances. Although 

no igneous rocks around 2500 Ma was reported in the Yangtze Block, some xenocrystic 

zircons dated at 2600–2500 Ma in the lamprophyric and basaltic rocks have been found 

in Hunan, Hubei and Guizhou provinces, in the eastern Yangtze Block (Wang et al., 

2012b; Zheng et al., 2006). Detrital zircons with similar ages have been reported in the 

areas of Wuyi, southern Jiangxi and northern Guangdong provinces, Cathaysia Block 

(Gan et al., 1996; Yu et al., 2006, 2009). The minority of detrital zircons dated at ca. 

2500 Ma in this study might correspond to the period of global continental growth at 

the end Archean–early Paleoproterozoic, which was already proposed by Yao et al. 

(2011). Similarly, the detrital zircon ages at ca. 1900–1500 Ma are interpreted to be 

linked with the Columbia supercontinent (Rogers & Santosh, 2002; Zhao et al., 2002). 

The detrital zircons ranging from 1500 Ma to 1000 Ma are abundant in the Cathaysia 

Block but rare in the Yangtze Block, which can be related to the Rodinia supercontinent 

and Grenville orogeny (Li et al., 2002). However, the detrital zircon spectra of the 

Yangtze Block and Jiangnan Orogen show a distinct differentiation across the time 

point at 1000 Ma (Figure 3-6), suggesting that a strong magmatism should have 

occurred after that time. Besides, igneous rocks dated at ca. 1000–870 Ma are widely 

reported in the Jiangnan Orogenic Belt (Xin et al., 2017 and references therein), 

indicating that the Jiangnan region was an active magmatic zone. Based on the 

geological facts and the analysis of detrital zircon age spectra in this study, we suggest 

that the Paleo–South China Ocean started to subduct at ca. 1000 Ma (Figure 3-7). In 

this study, few zircons with core–rim structure are observed (Figure 3-3), the light 

luminescence rims suggest a hydrothermal event (Dubińska et al., 2004; Hoskin & 

Schaltegger, 2003), in the range of 865–852 Ma, which are produced by a low grade 

metamorphism and related to the collision of the Yangtze and Cathaysia blocks. The 

emplacement of numerous S–type granite plutons, dated at 850–830 Ma along the 
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Jiangnan Orogen, formed by the melting of a continental crust, implies the ending of 

the orogeny. Afterwards, the absence of a magmatic activity during the interval of the 

830–803 Ma may suggest that the Jiangnan Orogen was in a tectonic quiet period. The 

newly formed South China block began to rift around 800-780 Ma, marked by the 

abundant bimodal magmatism (Wang et al., 2007). The youngest zircon, dated at 779 

Ma, in the bottom of the Danzhou group may record the starting time of the deposition 

of the Danzhou group in the Jiangnan region.  

 

Figure 3-5. Comparison of the U–Pb age histograms and relative probability plots 

between the Sibao group and its equivalents and Danzhou group and its equivalents 

derived from the Jiangnan Orogen. 

        3.5.2 Comparison of the detrital zircon age spectra of the Neoproterozoic 

strata in the South China Block 

In order to characterize the detrital zircon age spectra originated from the 

Neoproterozoic strata of the Yangtze Block, Jiangnan Orogen and Cathaysia Block, we 

collected thousands of available detrital zircon age data from early Neoproterozoic 
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(Sibao group and its equivalents), middle Neoproterozoic (Danzhou group and its 

equivalents) and late Neoproterozoic strata (Sinian and its equivalents) in three regions, 

mainly including the eastern Yangtze Block (northern Guizhou, northern Hunan and 

western Hubei provinces), whole Jiangnan Orogen (Anhui, Jiangxi, Hunan, northern 

Guangxi and eatern Guizhou provinces) and Cathaysia Block (Fujian, Guangdong, 

southeastern Hunan and southeastern Guangxi provinces). 

As shown in Figure 3-6, the pattern of the detrital zircon age spectrum of the 

Jiangnan Orogen is almost consistent with that of the Yangtze Block, but significantly 

different from that of the Cathaysia Block (Figures 3-6A, 3-6B and 3-6C). The most 

prominent peaks clustering from 1000 to 820 Ma displayed in the Yangtze Block and 

Jiangnan Orogen share the similar peak at ca. 840 Ma, with an increasing trend in the 

relative probability plot since 1000 Ma (Figure 3-6E and 3-6F). However, the 

contemporaneous peak cluster in the Cathaysia Block seems quite different from the 

former two (Figure 3-6G). Consequently, we may qualitatively infer that the Cathaysia 

Block was not in contact with the Yangtze Block at ca. 1000 Ma (Figure 3-7). 

S-type granites, dated at 840–820 Ma, are widely distributed in the Jiangnan 

Orogenic Belt (Shu, 2012; Xin et al., 2017; Yao et al., 2014b, and references therein). 

Since no contemporaneous magmatic event is known in both the Yangtze and Cathaysia 

blocks, these plutons formed through the melting of a continental crust emplaced at the 

end of the Jiangnan collision. Nevertheless, we notice the zircon age peaks at ca. 850 

Ma and ca. 840 Ma in the terrigenous formations of the Yangtze and Cathaysia blocks, 

respectively (Figures 3-6E and 3-6G). A possible interpretation is that the Jiangnan 

Orogen supplied the material to the Yangtze and Cathaysia blocks. S-type granite 

indicates the end of the Jiangnan orogeny, thus the collision between the Yangtze and 

Cathaysia blocks should have occurred before 850 Ma. Furthermore, the relative 

probability plots of zircon age distribution from the Yangtze Block, Jiangnan Orogen 

and Cathaysia Block show that the proportion of the Jiangnan Orogen is approximately 

equal to the sum of those of the Yangtze and Cathaysia blocks in the range of 865–820 



Oct. 2018                        Chapter 3 

43 

 

Ma (Figures 3-6D and 3-6H). This result can be interpreted as the Jiangnan Orogen was 

the unique source provider for the eastern Yangtze Block and western Cathaysia Block 

in the period from 865 to 820 Ma. In other words, we propose that the collision between 

the Yangtze and Cathaysia blocks probably started at 865 Ma and ended at 820 Ma. 

Such a 45 Myr orogenic duration is comparable with some well known orogenic belts, 

such as the Variscan and Himalayas. (e.g. Charles et al., 2009; Chung et al., 2005; Faure 

et al., 2008; Martinez-Catalan et al., 2014). 

Nevertheless, some researchers proposed that the collision took place after ca. 830 

Ma, owing to the geochronology result of gabbro and diorite (850-830 Ma) in both the 

eastern and western parts of the Jiangnan Orogen (Liu et al., 2015; Sun et al., 2017; Xia 

et al., 2015; Zhou et al., 2009). However, the CL images of the dated zircons show 

broad bands rather than an oscillatory zoning (Wu & Zheng, 2004), consequently, these 

zircons cannot be considered as magmatic ones and were probably captured, as 

xenocrysts from the late to post-orogenic peraluminous granites, which are widely 

distributed along the Jiangnan orogenic belt, during the mafic magmatism in the 

Neoproterozoic Nanhua rifting period. 

        3.5.3 Significance of the geochemistry and sedimentation record of the 

Sibao group 

The Sibao group and its equivalents are mainly composed of phyllite, slate, 

greywacke, and low mature arkose. However, the Danzhou and its equivalents, 

unconformably covering the Sibao group and its equivalents, consist mainly of a suite 

of conglomerate, slate, sandstone and carbonate (BGMRAH, 1982; BGMRGX, 1985; 

BGMRHN, 1988; BGMRJX, 1984). Although the weathering and metamorphism may 

affect the geochemical character of the source rocks, the immobile elements can be still 

traced as provenance indicator (Singh, 2009; Wang et al., 2012a). In the Hf–La/Th plot 

(Figure 3-1A), most samples of the Sibao group and its equivalents cluster around the 

average compositions of andesite, TTG, felsic volcanic rock and granite, which are the 

source provider for the Sibao group and its equivalents (Floyd & Leveridge, 1987). The 
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tonalite–trondhjemite–granite (TTG) crust has been acknowledged as formed in a 

subduction zone (Hoffmann et al., 2012; Senshu et al., 2009; Zhang & Zhai, 2012). In 

the plot of tectonic setting discriminant, all the samples of the Sibao group and its 

equivalents drop in the active continental margin field (Figure 3-1B), suggesting that 

the Sibao group and its equivalents were more likely deposited in an active continental 

margin (Bhatia, 1983). The prominent trace and rare earth elements characters of the 

Sibao group and its equivalents show distinct enrichment in light rare earth element 

(LREE) with respect to heavy rare earth element (HREE), and yield strong negative Ba, 

Sr and Nb anomalies (Figure 3-2). These features suggest that the top sequence of the 

Sibao group sediments was derived from an upper crustal source. The bottom sequence 

of the Danzhou group was supplied from the top sequence of the Sibao group of which 

it inherited its geochemical features. 

Considering the sedimentary process of the Sibao group and its equivalents, there 

are some controversial issues, such as the time span of the depositional process and the 

tectonic setting during the accumulation of the Sibao group and its equivalents. 

The majority of researchers acknowledged that the upper limit of the Sibao group 

and its equivalents ranges around 835 Ma to 815 Ma (Su et al., 2018; Wang et al., 2010a, 

2012a; Yao et al., 2014a; Zhang et al., 2013; Zhao & Cawood, 2012). However, there is 

no general agreement on the initial time of the sedimentation of the Sibao group and its 

equivalents. A school of researchers suggested that the Sibao group and its equivalents 

initiate to deposit at around 1.0 Ga according to detrital zircon trace of the Sibao group 

and its equivalents (Shu, 2012; Yao et al., 2014a; Zhao & Cawood, 2012). Nevertheless, 

some authors pointed out that the maximum depositional age of the Sibao group and 

equivalents is ca. 870 Ma (Su et al., 2018; Wang et al., 2007; Zhou et al., 2009) by using 

of the youngest detrital zircon age of the “bottom” sequence of the Sibao group. 

However, the sampling sites are about 2000 meters above the bottom according to their 

stratigraphic column. It could be a workable way to trace the bottom depositional age of 

the Sibao group and equivalents by analyzing the detrital zircon spectrum. In this study, 
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we propose that the maximum depositional age of the Sibao group is at ca. 1000 Ma, 

when the detrital zircon spectra become distinct (Figures 3-4, 3-5 and 3-6B). 

Concerning the sedimentation setting of the Sibao group and its equivalents, most 

of the researchers hold the view that the Sibao group and its equivalents were 

accumulated in a back-arc basin (Shu, 2012; Wang et al., 2010a, 2012a; Yao et al., 

2014b; Zhang & Wang, 2016), while some others proposed that they were deposited in 

a foreland basin (Wang et al., 2007; Zhou et al., 2009). In all these tectonic 

interpretations, they suggested that the collision of the Yangtze and Cathaysia blocks 

(i.e. the Jiangnan Orogeny) took place after the end of the sedimentation of the Sibao 

group and its equivalents. 

However, in this study, we propose some new perspectives. As a great number of 

arc related magmatic rocks are exposed along the Jiangnan Orogen, we argue that the 

Paleo–South China Ocean started to subduct northwestwards (present coordinate) 

beneath the Yangtze Block since around 1000 Ma. Combined with the zircon spectra 

analysis of the Sibao group and its equivalents, we suggest that the Sibao group and its 

equivalents were formed along with the subduction of the Paleo–South China Ocean. 

Some oceanic crust relics were scratched and involved into the Sibao deposits during 

the subduction ongoing. Thus, the Sibao group is considered as an accretionary 

complex. Meanwhile, the mafic rocks related with arc magmatism intruded into the 

Sibao group and its equivalents (Chen et al., 2009; Yao et al., 2014b, 2016; Zhou et al., 

1989; Zhang et al., 2013; Figure 2-1). Associated with the analysis of the geochemistry, 

we proposed that in the subduction period from 1.0 Ga to 865 Ma (see Sections 5.1 and 

5.2), the Sibao group and its equivalents were deposited in an active continental margin 

zone (Figure 3-7). 

The youngest detrital zircon is dated around 832 Ma in the Sibao group and its 

equivalents (Su et al., 2018, and this study), which is consistent with the geological fact 

that the Sibao group and its equivalents are intruded by the 830±10 Ma granitic plutons 

in the Jiangnan Orogen. 
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Therefore, we suggest that the tectonic setting of the sedimentation of the Sibao 

group and its equivalents can be divided into two stages. Firstly, at 1000–865 Ma, the 

rocks were deposited in an active continental margin. Secondly, around 865-832 Ma, 

after the collision of the Yangtze and Cathaysia blocks, the Sibao group and its 

equivalents were accumulated during the crustal thickening. By an ɛHf(t) study in the 

Anleilin and Xiushui formations (equivalent to the Sibao group), Li et al. (2016) 

showed that the negative ɛHf(t) values increase along the stratigraphic sequence from 

the bottom to the top, indicating that the Sibao group and its equivalents received more 

and more crustal derived materials during its deposition in the early Neoproterozoic, 

which implies that the Sibao group and its equivalents had experienced a tectonic 

setting transition from an active continental margin to continental collision. In other 

words, the Sibao group and its equivalents have recorded both the subduction and 

collision events. 

Afterwards, the Danzhou group and its equivalents began to accumulate at ca. 779 

Ma. The bottom sequence inherited the bulk geochemical signature of the Sibao group 

and its equivalents (Figures 3-1 and 3-2), except that the rocks from the Danzhou and 

its equivalents present higher Al2O3 and lower SiO2 contents than those from the Sibao 

group and its equivalents probably owing to the mechanical sorting and chemical 

changes related to transportation. (Fralick & Kronberg, 1997). 
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Figure 3-6. Comparison of the U–Pb age histograms and relative probability plots 
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derived from Neoproterozoic strata among the Yangtze Block, Jiangnan Orogen and 

Cathaysia Block. 

        3.5.4 Geodynamic evolution of the South China Block in the Early 

Neoproterozoic 

The Jiangnan Orogenic Belt was built up due to the convergence of the 

Paleo–South China Ocean and the collision between the Yangtze and Cathaysia blocks 

(Charvet, 2013; Shu, 2012), but its geodynamic evolution process is still debated. In 

this study, according to the geological evidence, zircon geochronology and whole rock 

geochemical study of the Sibao and Danzhou groups and their equivalents, a possible 

spatial and temporal tectonic evolution model of the Early Neoproterozoic geological 

events can be suggested in the following. 

As the detrital zircon spectra show a distinct differentiation across 1000 Ma 

(Figure 3-6), it may suggest that a significant magmatism should have occurred after 

that time. The gabbro in the ophiolite dated at ca. 1000 Ma in the eastern part of the 

Jiangnan Orogen indicates that the subduction of the Paleo–South China Ocean 

probably took place after that time (Zhou et al., 1989), and the mafic rocks dated at 935 

Ma together with the volcanic rocks ranging in 880–870 Ma are arc related, and 

indicate that the subduction of the Paleo–South China Ocean was ongoing during the ca. 

1000–870 Ma (Xin et al., 2017, and references therein; Yao et al., 2014b, and references 

therein). In addition, the spectra analysis of detrital zircon age in this study points out 

that the subduction of the Paleo–South China Ocean probably started at ca. 1000 Ma 

and ended at ca. 865 Ma. During this period, the Sibao group and its equivalents were 

accumulated in the active continental margin setting (Figure 3-7). 

Afterwards, the Yangtze and Cathaysia blocks began to collide, the changes in 

temperature and fluid property possibly resulted in the metamorphism in the zircon 

which are traced at 865–852 Ma in this study. Abundant 840–820 Ma peraluminous late 

orogenic granites indicate the ending of the Jiangnan orogeny. In the period of 865–820 

Ma, the upper part of the Sibao group and its equivalents were deposited in a 
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syn-collisional setting (Figure 3-7). 

 

Figure 3-7. Geodynamic evolution model for the Jiangnan region in the Early 

Neoproterozoic. (A) Subduction of the Paleo–South China Ocean and (B) Collision of 

the Yangtze and Cathaysia blocks. 

The fact that no magmatic imprint was traced in the 820–800 Ma period may 
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suggest that the Jiangnan Orogenic Belt was, at that time, probably situated in a 

tectonically quiet period. Then, in the 805–761 Ma period, the Nanhua rifting was 

accompanied by both A–type granites plutonism and mafic intrusive rocks (Li et al., 

2008b; Wang et al., 2012b). The unconformity between the Sibao group (and its 

equivalents) and Danzhou group (and its equivalents) marks the initial time of the 

Nanhua rifting in the Jiangnan Orogen area. The youngest zircon age dated at 779 Ma 

in the bottom sequence of the Danzhou group (and its equivalents) suggests that the 

Danzhou group and its equivalents started their deposition at that time. 

3.6 Conclusions 

Integrating the new results in the detrital zircon dating, geology and geochemistry 

from three localities in the western part of the Jiangnan Orogen and previous ones from 

the Cathaysia and Yangtze blocks, we can conclude this study as following: 

(1) The subduction of the Paleo–South China Ocean started at ca. 1000 Ma and 

ended at ca. 865 Ma; 

(2) The Jiangnan Orogenic Belt was built up due to the assembly of the Yangtze 

and Cathaysia blocks between 865 and 820 Ma; 

(3) The deposition environment of the Early Neoproterozoic Sibao group and its 

equivalents can be divided into two stages. Firstly, the lower part of the Sibao group 

was deposited in an active continental margin at ca. 1000–865 Ma. Secondly, the upper 

part of the Sibao group accumulated in a syn-collisional setting at ca. 865–820 Ma;  

(4) The Danzhou group and its equivalents began to deposit since ca. 780 Ma in 

the Jiangnan Orogen area.
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Table 3-3. U-Pb dating for six samples 

Analysis CORRECTED RATIOS CORRECTED AGES (Ma) 

Concordance 
 

207Pb/206Pb 

 

207Pb/235U 

 

206Pb/238U 

 

207Pb/206Pb  

 

207Pb/235U 

 

206Pb/238U 

 

    1σ   1σ   1σ   1σ   1σ   1σ 

Sample 1932 

1932-01 0.11731  0.00568  5.16051  0.20860  0.32068  0.01661  1916 89 1846 34 1793 81 97% 

1932-02 0.06823  0.00345  1.38066  0.07205  0.14492  0.00374  876 107 881 31 872 21 99% 

1932-03 0.09452  0.01621  3.50162  1.28729  0.26727  0.06555  1518 350 1528 290 1527 333 99% 

1932-04 0.12042  0.00385  6.03793  0.24432  0.35793  0.00983  1962 58 1981 35 1972 47 99% 

1932-05 0.10396  0.00504  3.66641  0.14856  0.25298  0.00783  1696 92 1564 32 1454 40 92% 

1932-06 0.11618  0.00497  5.48316  0.20595  0.34189  0.00801  1898 79 1898 32 1896 38 99% 

1932-07 0.11504  0.01260  5.16103  0.56234  0.32132  0.01377  1881 205 1846 93 1796 67 97% 

1932-08 0.07409  0.00248  1.46808  0.05399  0.14147  0.00283  1044 69 917 22 853 16 92% 

1932-09 0.07512  0.00271  1.47696  0.04999  0.14110  0.00387  1072 74 921 20 851 22 92% 

1932-10 0.07276  0.00573  1.47490  0.09475  0.14602  0.00592  1007 165 920 39 879 33 95% 

1932-11 0.12619  0.00402  5.97155  0.24065  0.33846  0.01393  2046 58 1972 35 1879 67 95% 

1932-12 0.07712  0.00395  2.01947  0.10055  0.18823  0.00370  1124 105 1122 34 1112 20 99% 

1932-13 0.06726  0.00413  1.31528  0.06213  0.14145  0.00735  846 131 852 27 853 42 99% 

1932-14 0.06839  0.00309  1.42194  0.07388  0.14922  0.00768  880 96 898 31 897 43 99% 

1932-15 0.13534  0.00454  7.44220  0.23975  0.39468  0.00635  2168 60 2166 29 2144 29 98% 

1932-16 0.08070  0.00200  2.13491  0.07258  0.18971  0.00314  1214 50 1160 24 1120 17 96% 

1932-17 0.12718  0.00353  6.69750  0.18765  0.37923  0.00727  2059 50 2072 25 2073 34 99% 

1932-19 0.16623  0.00490  10.93315  0.32278  0.47362  0.01335  2520 51 2517 27 2499 58 99% 

1932-20 0.10359  0.00422  4.35804  0.16564  0.30594  0.00932  1689 77 1704 31 1721 46 99% 

1932-21 0.19126  0.00565  14.25987  0.45337  0.53905  0.01127  2753 50 2767 30 2779 47 99% 

1932-22 0.06671  0.00313  1.29095  0.06145  0.13940  0.00281  829 100 842 27 841 16 99% 

1932-23 0.06702  0.00283  1.29844  0.06382  0.13878  0.00330  838 90 845 28 838 19 99% 

1932-24 0.12682  0.00371  6.59187  0.18242  0.37422  0.00916  2054 53 2058 24 2049 43 99% 

1932-25 0.06688  0.00481  1.27921  0.08879  0.13874  0.00458  834 155 837 40 838 26 99% 

1932-26 0.06981  0.00367  1.46507  0.07268  0.15121  0.00303  923 111 916 30 908 17 99% 

1932-27 0.06990  0.00263  1.56930  0.05988  0.16113  0.00422  925 79 958 24 963 23 99% 

1932-28 0.08376  0.00193  2.61070  0.10216  0.22204  0.00626  1287 46 1304 29 1293 33 99% 

1932-30 0.06933  0.00371  1.50390  0.08414  0.15526  0.00375  908 113 932 34 930 21 99% 

1932-31 0.08764  0.00328  2.91676  0.11448  0.23746  0.00568  1375 74 1386 30 1373 30 99% 

1932-32 0.06730  0.00226  1.30886  0.06397  0.13897  0.00885  847 72 850 28 839 50 98% 

1932-33 0.06457  0.00305  1.19312  0.06195  0.13154  0.00368  760 102 797 29 797 21 99% 

1932-34 0.10711  0.00684  4.86450  0.47341  0.32042  0.01659  1751 120 1796 82 1792 81 99% 

1932-35 0.06566  0.00274  1.20882  0.04276  0.13132  0.00241  796 90 805 20 795 14 98% 

1932-36 0.06509  0.00275  1.19087  0.04087  0.13031  0.00380  777 91 796 19 790 22 99% 

1932-37 0.08023  0.00307  2.14044  0.11783  0.18886  0.00419  1203 77 1162 38 1115 23 95% 

1932-38 0.06452  0.00199  1.19140  0.03970  0.13095  0.00293  759 67 797 18 793 17 99% 



Oct. 2018                        Chapter 3 

52 

 

1932-40 0.06534  0.00407  1.20681  0.07930  0.13040  0.00330  785 134 804 36 790 19 98% 

1932-41 0.08865  0.00302  2.95700  0.09796  0.23682  0.00446  1397 67 1397 25 1370 23 98% 

1932-42 0.19715  0.00597  15.46332  0.43792  0.55561  0.00984  2803 51 2844 27 2848 41 99% 

1932-43 0.06529  0.00239  1.19799  0.03722  0.13130  0.00331  784 79 800 17 795 19 99% 

1932-44 0.10139  0.00305  4.11281  0.12424  0.28827  0.00447  1650 57 1657 25 1633 22 98% 

1932-45 0.06670  0.00312  1.29532  0.06056  0.13890  0.00397  828 100 844 27 838 22 99% 

1932-46 0.07090  0.00392  1.57160  0.04420  0.15882  0.00963  954 116 959 17 950 54 99% 

1932-47 0.06857  0.00198  1.42739  0.04422  0.14906  0.00266  886 61 900 18 896 15 99% 

1932-48 0.06938  0.00241  1.47349  0.05492  0.15233  0.00297  910 73 920 23 914 17 99% 

1932-49 0.07488  0.00432  1.84196  0.10133  0.17805  0.00502  1065 119 1061 36 1056 27 99% 

1932-50 0.18164  0.00527  12.84945  0.40193  0.50923  0.00884  2668 49 2669 29 2653 38 99% 

1932-51 0.09313  0.00270  3.33154  0.10573  0.25826  0.00495  1491 56 1488 25 1481 25 99% 

1932-52 0.10740  0.00309  4.72624  0.15147  0.31748  0.00614  1756 54 1772 27 1777 30 99% 

1932-53 0.08543  0.00551  2.68817  0.16684  0.22685  0.00636  1325 128 1325 46 1318 33 99% 

1932-55 0.06866  0.00385  1.31699  0.07430  0.13986  0.00331  889 119 853 33 844 19 98% 

1932-56 0.06738  0.00384  1.36608  0.09822  0.14464  0.00443  850 122 874 42 871 25 99% 

1932-57 0.15877  0.01140  10.38989  0.74647  0.46750  0.00490  2443 125 2470 67 2473 22 99% 

1932-58 0.07404  0.00293  1.80777  0.07037  0.17540  0.00366  1043 82 1048 25 1042 20 99% 

1932-60 0.06627  0.00264  1.27416  0.04914  0.13812  0.00303  815 85 834 22 834 17 99% 

1932-61 0.11524  0.00503  5.36692  0.19676  0.33412  0.00817  1884 81 1880 31 1858 39 98% 

1932-62 0.08986  0.00291  3.13448  0.10706  0.24884  0.00538  1423 63 1441 26 1433 28 99% 

1932-63 0.06707  0.00494  1.37333  0.11672  0.14521  0.00543  840 158 878 50 874 31 99% 

1932-64 0.06850  0.00414  1.40990  0.08444  0.14732  0.00330  884 128 893 36 886 19 99% 

1932-65 0.08281  0.00357  2.40193  0.11787  0.20693  0.00755  1265 86 1243 35 1212 40 97% 

1932-66 0.06405  0.00259  1.14520  0.04254  0.12842  0.00288  743 87 775 20 779 16 99% 

1932-67 0.06511  0.01635  1.05716  0.19059  0.12980  0.01002  778 527 732 94 787 57 92% 

1932-69 0.09593  0.00565  3.60203  0.18360  0.27057  0.00871  1546 114 1550 41 1544 44 99% 

1932-70 0.06760  0.00281  1.33800  0.05737  0.14185  0.00337  856 89 862 25 855 19 99% 

1932-72 0.06520  0.00382  1.15371  0.06507  0.12942  0.00337  781 127 779 31 785 19 99% 

1932-74 0.13738  0.00483  7.58436  0.27023  0.39748  0.00833  2194 63 2183 32 2157 38 98% 

1932-75 0.08565  0.00554  2.82318  0.18019  0.23525  0.00779  1330 129 1362 48 1362 41 99% 

1932-76 0.06402  0.00300  1.15632  0.05396  0.13105  0.00286  742 102 780 25 794 16 98% 

1932-78 0.07146  0.00365  1.62161  0.07860  0.16334  0.00358  971 107 979 30 975 20 99% 

1932-79 0.17219  0.00667  11.82885  0.44531  0.49233  0.01004  2579 66 2591 35 2581 43 99% 

1932-80 0.15810  0.00613  10.42393  0.45412  0.47053  0.01103  2435 67 2473 40 2486 48 99% 

Sample 1933 

1933-01 0.06707  0.00224  1.28918  0.04133  0.13868  0.00232  840 71 841 18 837 13 99% 

1933-02 0.06753  0.00111  1.32671  0.02215  0.14129  0.00150  854 35 857 10 852 8 99% 

1933-03 0.06681  0.00189  1.28651  0.03685  0.13823  0.00175  832 60 840 16 835 10 99% 

1933-04 0.06628  0.00329  1.27793  0.07242  0.13812  0.00256  815 106 836 32 834 14 99% 

1933-05 0.06737  0.00173  1.30584  0.03029  0.13972  0.00204  849 55 848 13 843 12 99% 
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1933-06 0.06730  0.00123  1.33294  0.02391  0.14242  0.00171  847 39 860 10 858 10 99% 

1933-07 0.06669  0.00249  1.28129  0.04978  0.13813  0.00290  828 80 837 22 834 16 99% 

1933-08 0.06694  0.00446  1.28766  0.08321  0.13979  0.00650  836 143 840 37 843 37 99% 

1933-09 0.06709  0.00145  1.31855  0.02974  0.14145  0.00253  841 46 854 13 853 14 99% 

1933-10 0.06713  0.00157  1.30717  0.03373  0.13998  0.00200  842 50 849 15 845 11 99% 

1933-11 0.06745  0.00215  1.31183  0.04511  0.14164  0.00312  852 68 851 20 854 18 99% 

1933-12 0.08620  0.00207  2.75434  0.06665  0.23054  0.00303  1343 48 1343 18 1337 16 99% 

1933-13 0.06942  0.00233  1.49114  0.04031  0.15485  0.00385  911 71 927 16 928 22 99% 

1933-14 0.06936  0.00227  1.44574  0.04173  0.15076  0.00320  909 69 908 17 905 18 99% 

1933-15 0.06735  0.00179  1.29842  0.03293  0.14049  0.00285  849 57 845 15 847 16 99% 

1933-16 0.06689  0.00126  1.32304  0.02650  0.14231  0.00209  834 40 856 12 858 12 99% 

1933-17 0.06800  0.00205  1.37953  0.04264  0.14563  0.00223  868 64 880 18 876 13 99% 

1933-19 0.06744  0.00243  1.31401  0.04852  0.14057  0.00292  851 77 852 21 848 17 99% 

1933-20 0.07308  0.00532  1.72450  0.15062  0.16833  0.00310  1016 152 1018 56 1003 17 98% 

1933-21 0.06710  0.00319  1.30791  0.05978  0.14052  0.00344  841 102 849 26 848 19 99% 

1933-22 0.06603  0.00162  1.28664  0.03419  0.13965  0.00213  807 52 840 15 843 12 99% 

1933-23 0.06689  0.00147  1.29913  0.02807  0.13971  0.00219  834 47 845 12 843 12 99% 

1933-24 0.06755  0.00192  1.33372  0.04008  0.14163  0.00215  855 60 861 17 854 12 99% 

1933-25 0.07253  0.00171  1.73694  0.04334  0.17216  0.00252  1001 49 1022 16 1024 14 99% 

1933-26 0.06850  0.00300  1.34182  0.04800  0.14165  0.00404  884 93 864 21 854 23 98% 

1933-27 0.06684  0.00354  1.30177  0.06306  0.14050  0.00392  833 113 847 28 848 22 99% 

1933-29 0.06652  0.00178  1.31818  0.03850  0.14247  0.00272  823 57 854 17 859 15 99% 

1933-30 0.06748  0.00276  1.34601  0.06006  0.14255  0.00258  853 87 866 26 859 15 99% 

1933-31 0.06739  0.00231  1.32555  0.04242  0.14135  0.00277  850 73 857 19 852 16 99% 

1933-32 0.07407  0.00199  1.73279  0.09657  0.16927  0.00973  1044 56 1021 36 1008 54 98% 

1933-33 0.06742  0.00229  1.33002  0.04068  0.14183  0.00205  851 72 859 18 855 12 99% 

1933-34 0.06773  0.00135  1.35963  0.04885  0.14351  0.00412  860 42 872 21 865 23 99% 

1933-35 0.07009  0.00137  1.51269  0.06600  0.15679  0.00686  931 41 936 27 939 38 99% 

1933-36 0.07417  0.00117  1.83057  0.11687  0.17265  0.00964  1046 33 1056 42 1027 53 97% 

1933-37 0.06850  0.00152  1.36538  0.03102  0.14773  0.00414  884 47 874 13 888 23 98% 

1933-38 0.06747  0.00186  1.30732  0.03716  0.13959  0.00201  852 59 849 16 842 11 99% 

1933-39 0.11481  0.00145  5.43353  0.08223  0.34102  0.00390  1877 23 1890 13 1892 19 99% 

1933-40 0.09799  0.00224  3.74855  0.09064  0.27658  0.00515  1586 44 1582 19 1574 26 99% 

1933-41 0.07207  0.00138  1.64532  0.06751  0.16489  0.00528  988 40 988 26 984 29 99% 

1933-42 0.13668  0.00175  7.59934  0.11383  0.40148  0.00455  2186 23 2185 13 2176 21 99% 

1933-43 0.07082  0.00104  1.57376  0.07620  0.15974  0.00698  952 31 960 30 955 39 99% 

1933-44 0.06891  0.00116  1.41621  0.02326  0.14881  0.00170  896 35 896 10 894 10 99% 

1933-45 0.06759  0.00108  1.32214  0.02240  0.14150  0.00167  856 34 855 10 853 9 99% 

1933-46 0.06711  0.00135  1.30843  0.02492  0.14085  0.00175  841 43 849 11 849 10 99% 

1933-47 0.06828  0.00187  1.38055  0.03645  0.14618  0.00195  877 58 881 16 879 11 99% 

1933-48 0.06719  0.00777  1.33740  0.15808  0.14242  0.01078  844 252 862 69 858 61 99% 
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1933-49 0.08236  0.00149  2.35604  0.04498  0.20606  0.00264  1254 36 1229 14 1208 14 98% 

1933-50 0.09036  0.00274  2.66660  0.08394  0.21289  0.00702  1433 59 1319 23 1244 37 94% 

1933-51 0.06877  0.00167  1.43675  0.03649  0.14995  0.00208  892 51 904 15 901 12 99% 

1933-52 0.08682  0.00165  2.83481  0.06055  0.23529  0.00339  1356 38 1365 16 1362 18 99% 

1933-53 0.06744  0.00177  1.31970  0.03409  0.14119  0.00227  851 56 854 15 851 13 99% 

1933-55 0.06822  0.00148  1.35745  0.03703  0.14271  0.00213  875 46 871 16 860 12 98% 

1933-56 0.06660  0.00278  1.27370  0.05394  0.13815  0.00353  825 89 834 24 834 20 99% 

1933-57 0.06805  0.00184  1.36457  0.03267  0.14489  0.00221  870 58 874 14 872 12 99% 

1933-58 0.07217  0.00428  1.58803  0.10505  0.16448  0.00902  991 124 966 41 982 50 98% 

1933-59 0.11778  0.00215  5.61321  0.11459  0.34351  0.00514  1923 34 1918 18 1904 25 99% 

1933-60 0.07227  0.00457  1.49759  0.08267  0.15047  0.00448  994 132 929 34 904 25 97% 

1933-61 0.07059  0.00143  1.54109  0.04707  0.15783  0.00412  946 42 947 19 945 23 99% 

1933-62 0.09954  0.00441  3.98989  0.15531  0.29015  0.00865  1616 84 1632 32 1642 43 99% 

1933-63 0.06716  0.00170  1.29539  0.03104  0.13925  0.00149  843 54 844 14 840 8 99% 

1933-64 0.06639  0.00540  1.29760  0.12218  0.14042  0.00416  819 176 845 54 847 24 99% 

1933-65 0.07375  0.00112  1.76123  0.02618  0.17222  0.00165  1035 31 1031 10 1024 9 99% 

1933-66 0.07006  0.00226  1.52170  0.05654  0.15614  0.00273  930 68 939 23 935 15 99% 

1933-67 0.06746  0.00114  1.30227  0.02368  0.13934  0.00207  852 36 847 10 841 12 99% 

1933-68 0.10084  0.00196  3.99947  0.15228  0.28528  0.00952  1640 37 1634 31 1618 48 99% 

1933-70 0.07327  0.00136  1.80432  0.03537  0.17712  0.00230  1021 38 1047 13 1051 13 99% 

1933-71 0.07180  0.00476  1.68079  0.11763  0.16937  0.00425  980 139 1001 45 1009 23 99% 

1933-72 0.15967  0.00503  3.61488  0.17742  0.16219  0.00558  2452 55 1553 39 969 31 53% 

1933-73 0.06878  0.00206  1.42677  0.03982  0.15035  0.00253  892 63 900 17 903 14 99% 

1933-74 0.06710  0.00178  1.29785  0.03233  0.13976  0.00196  841 56 845 14 843 11 99% 

1933-75 0.10599  0.00199  4.55830  0.09008  0.30990  0.00377  1732 35 1742 16 1740 19 99% 

1933-76 0.11490  0.00494  5.63555  0.19137  0.35918  0.00810  1878 79 1922 29 1978 38 97% 

1933-78 0.06872  0.00345  1.41061  0.06251  0.14894  0.00458  890 106 893 26 895 26 99% 

1933-79 0.06781  0.00218  1.33751  0.04273  0.14283  0.00204  863 68 862 19 861 12 99% 

1933-80 0.07252  0.00531  1.76485  0.13547  0.17605  0.00712  1001 153 1033 50 1045 39 98% 

1933-81 0.06808  0.00322  1.32275  0.05796  0.13806  0.00304  871 101 856 25 834 17 97% 

1933-83 0.06801  0.00758  1.29398  0.12912  0.14234  0.00761  869 242 843 57 858 43 98% 

1933-84 0.09226  0.00337  3.31957  0.11466  0.25615  0.00504  1473 71 1486 27 1470 26 98% 

1933-85 0.09171  0.01082  3.07858  0.28600  0.25951  0.01139  1461 235 1427 71 1487 58 95% 

1933-86 0.09334  0.00365  3.29911  0.12349  0.25274  0.00638  1495 76 1481 29 1453 33 98% 

1933-87 0.07718  0.00695  2.01745  0.15689  0.19002  0.00668  1126 186 1121 53 1121 36 99% 

1933-88 0.07426  0.00320  1.90937  0.07560  0.18411  0.00455  1049 89 1084 26 1089 25 99% 

Sample 1714-1 

1714-1-01 0.07154  0.00178  1.61878  0.04321  0.16309  0.00254  973 52 978 17 974 14 99% 

1714-1-02 0.10637  0.00183  4.55423  0.08226  0.30863  0.00373  1738 32 1741 15 1734 18 99% 

1714-1-03 0.07263  0.00148  1.61866  0.03222  0.16076  0.00184  1004 42 977 12 961 10 98% 

1714-1-04 0.07213  0.00141  1.67095  0.03393  0.16746  0.00220  990 41 998 13 998 12 99% 
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1714-1-05 0.11075  0.00193  5.00524  0.08450  0.32612  0.00325  1812 32 1820 14 1820 16 99% 

1714-1-06 0.11083  0.00487  4.84952  0.20768  0.32047  0.00904  1813 82 1794 36 1792 44 99% 

1714-1-07 0.13839  0.00204  7.87486  0.12141  0.41011  0.00426  2207 26 2217 14 2215 19 99% 

1714-1-08 0.09393  0.00180  3.45752  0.06072  0.26479  0.00343  1507 37 1518 14 1514 18 99% 

1714-1-09 0.11642  0.00254  5.54820  0.12663  0.34330  0.00524  1902 40 1908 20 1903 25 99% 

1714-1-10 0.06935  0.00193  1.46627  0.03650  0.15291  0.00222  909 59 917 15 917 12 99% 

1714-1-11 0.06917  0.00296  1.45002  0.06358  0.15119  0.00320  904 90 910 26 908 18 99% 

1714-1-12 0.10754  0.00197  4.74606  0.08804  0.31793  0.00374  1758 34 1775 16 1780 18 99% 

1714-1-13 0.10561  0.00163  4.53011  0.07520  0.30856  0.00341  1725 29 1737 14 1734 17 99% 

1714-1-15 0.11013  0.00167  4.96748  0.07466  0.32484  0.00314  1801 28 1814 13 1813 15 99% 

1714-1-16 0.10715  0.00178  4.65163  0.07725  0.31317  0.00355  1752 31 1759 14 1756 17 99% 

1714-1-17 0.10862  0.00187  4.83633  0.08100  0.32060  0.00363  1776 32 1791 14 1793 18 99% 

1714-1-18 0.16514  0.00345  10.96670  0.25254  0.47872  0.00757  2509 36 2520 21 2522 33 99% 

1714-1-19 0.09902  0.00176  3.92371  0.07033  0.28502  0.00320  1606 34 1619 15 1617 16 99% 

1714-1-20 0.06779  0.00208  1.30200  0.03430  0.14026  0.00205  862 65 847 15 846 12 99% 

1714-1-21 0.09701  0.00179  3.73954  0.06732  0.27723  0.00310  1567 35 1580 14 1577 16 99% 

1714-1-22 0.10640  0.00218  4.50465  0.08922  0.30443  0.00308  1739 38 1732 16 1713 15 98% 

1714-1-24 0.09981  0.00207  3.92866  0.08100  0.28284  0.00362  1620 40 1620 17 1606 18 99% 

1714-1-25 0.16622  0.00256  11.12771  0.16162  0.48188  0.00486  2520 26 2534 14 2535 21 99% 

1714-1-26 0.06689  0.00163  1.22497  0.03404  0.13149  0.00238  834 52 812 16 796 14 98% 

1714-1-27 0.16481  0.00247  10.97470  0.16478  0.47874  0.00501  2506 26 2521 14 2522 22 99% 

1714-1-28 0.09773  0.00153  3.84900  0.06567  0.28256  0.00339  1581 30 1603 14 1604 17 99% 

1714-1-29 0.06718  0.00135  1.31618  0.02582  0.14075  0.00166  843 43 853 11 849 9 99% 

1714-1-30 0.10071  0.00199  4.11519  0.08588  0.29330  0.00421  1637 38 1657 17 1658 21 99% 

1714-1-31 0.16435  0.00324  10.93429  0.28865  0.47680  0.00967  2501 34 2518 25 2513 42 99% 

1714-1-32 0.16544  0.00301  11.05102  0.20105  0.48056  0.00677  2512 31 2527 17 2530 29 99% 

1714-1-33 0.11233  0.00411  5.12774  0.21026  0.32789  0.00535  1838 68 1841 35 1828 26 99% 

1714-1-34 0.09960  0.00393  3.88712  0.14221  0.28518  0.00755  1617 75 1611 30 1617 38 99% 

1714-1-35 0.06876  0.00235  1.44186  0.04899  0.15061  0.00276  891 72 906 20 904 15 99% 

1714-1-36 0.10937  0.00159  4.86004  0.07670  0.31913  0.00382  1789 27 1795 13 1785 19 99% 

1714-1-37 0.06903  0.00189  1.43067  0.03673  0.14982  0.00195  900 58 902 15 900 11 99% 

1714-1-38 0.07234  0.00145  1.72420  0.03858  0.17095  0.00206  996 42 1018 14 1017 11 99% 

1714-1-39 0.10577  0.00224  4.53483  0.09435  0.30866  0.00363  1728 40 1737 17 1734 18 99% 

1714-1-40 0.07327  0.00242  1.77411  0.05630  0.17437  0.00387  1021 68 1036 21 1036 21 99% 

1714-1-41 0.06908  0.00255  1.45712  0.05361  0.15212  0.00281  901 78 913 22 913 16 99% 

1714-1-42 0.07099  0.00298  1.55409  0.05707  0.15947  0.00273  957 88 952 23 954 15 99% 

1714-1-43 0.07544  0.00214  1.63911  0.05460  0.15603  0.00406  1080 58 985 21 935 23 94% 

1714-1-44 0.10363  0.00176  4.41396  0.10035  0.30589  0.00550  1690 32 1715 19 1720 27 99% 

1714-1-45 0.06563  0.00186  1.20482  0.04329  0.13199  0.00375  795 61 803 20 799 21 99% 

1714-1-46 0.06755  0.00146  1.34810  0.02850  0.14366  0.00150  855 46 867 12 865 8 99% 

1714-1-47 0.10412  0.00251  4.40754  0.10619  0.30450  0.00438  1699 45 1714 20 1714 22 99% 
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1714-1-48 0.07416  0.00186  1.91731  0.06741  0.18350  0.00346  1046 52 1087 23 1086 19 99% 

1714-1-49 0.07195  0.00269  1.64957  0.06023  0.16542  0.00362  985 78 989 23 987 20 99% 

1714-1-50 0.06837  0.00174  1.39266  0.03539  0.14692  0.00187  880 54 886 15 884 10 99% 

1714-1-51 0.06498  0.00287  1.18494  0.04805  0.13172  0.00276  774 95 794 22 798 16 99% 

1714-1-52 0.07236  0.00153  1.68397  0.03651  0.16771  0.00251  996 44 1002 14 999 14 99% 

1714-1-53 0.06560  0.00346  1.18368  0.07705  0.13151  0.00804  794 113 793 36 796 46 99% 

1714-1-54 0.10358  0.00211  4.36014  0.10120  0.30347  0.00580  1689 38 1705 19 1709 29 99% 

1714-1-55 0.10001  0.00186  3.99787  0.07343  0.28816  0.00309  1624 35 1634 15 1632 15 99% 

1714-1-56 0.10292  0.00188  4.27786  0.09022  0.29983  0.00487  1677 34 1689 17 1690 24 99% 

1714-1-57 0.06818  0.00136  1.37512  0.02546  0.14579  0.00161  874 42 878 11 877 9 99% 

1714-1-58 0.06934  0.00188  1.46847  0.03923  0.15246  0.00228  909 57 917 16 915 13 99% 

1714-1-59 0.06660  0.00159  1.27243  0.02957  0.13761  0.00193  825 51 833 13 831 11 99% 

1714-1-60 0.06810  0.00142  1.36723  0.02798  0.14472  0.00179  872 44 875 12 871 10 99% 

1714-1-61 0.06848  0.00266  1.40396  0.05136  0.14758  0.00224  883 82 891 22 887 13 99% 

1714-1-62 0.07194  0.00176  1.64300  0.04154  0.16424  0.00221  984 51 987 16 980 12 99% 

1714-1-63 0.10171  0.00265  4.17175  0.10939  0.29615  0.00424  1655 49 1668 21 1672 21 99% 

1714-1-64 0.10087  0.00280  4.08594  0.11511  0.29208  0.00484  1640 53 1651 23 1652 24 99% 

1714-1-65 0.06800  0.00162  1.37316  0.03154  0.14603  0.00195  869 51 878 13 879 11 99% 

1714-1-66 0.06722  0.00152  1.31522  0.04045  0.14022  0.00336  845 48 852 18 846 19 99% 

1714-1-67 0.06542  0.00286  1.19848  0.04931  0.13197  0.00301  788 94 800 23 799 17 99% 

1714-1-68 0.17041  0.00387  11.57207  0.24727  0.48959  0.00669  2562 39 2570 20 2569 29 99% 

1714-1-69 0.07303  0.00267  1.75584  0.06387  0.17327  0.00290  1015 76 1029 24 1030 16 99% 

1714-1-71 0.07283  0.00196  1.76881  0.05127  0.17377  0.00293  1009 56 1034 19 1033 16 99% 

1714-1-73 0.10419  0.00251  4.37509  0.09973  0.30239  0.00380  1700 45 1708 19 1703 19 99% 

1714-1-74 0.06869  0.00174  1.43370  0.03611  0.14993  0.00228  889 53 903 15 901 13 99% 

1714-1-75 0.11030  0.00206  5.06845  0.09288  0.32980  0.00365  1804 35 1831 16 1837 18 99% 

1714-1-76 0.06767  0.00139  1.33009  0.02651  0.14126  0.00161  859 44 859 12 852 9 99% 

1714-1-77 0.09760  0.00430  3.81377  0.17036  0.28025  0.00401  1579 85 1596 36 1593 20 99% 

1714-1-78 0.09591  0.00193  3.62594  0.09013  0.27111  0.00509  1546 39 1555 20 1546 26 99% 

1714-1-79 0.07521  0.00214  1.88673  0.04998  0.18092  0.00249  1074 59 1076 18 1072 14 99% 

1714-1-80 0.06943  0.00226  1.48889  0.04734  0.15441  0.00249  912 69 926 19 926 14 99% 

Sample 1714 

1714-01 0.06705  0.00215  1.33750  0.03982  0.14297  0.00216  839 68 862 17 861 12 99% 

1714-02 0.06729  0.00218  1.32006  0.04064  0.14168  0.00233  847 69 855 18 854 13 99% 

1714-03 0.06679  0.00302  1.33644  0.06058  0.14277  0.00282  831 97 862 26 860 16 99% 

1714-04 0.09477  0.00256  3.59590  0.09064  0.27161  0.00431  1523 52 1549 20 1549 22 99% 

1714-05 0.12198  0.00280  6.26301  0.13698  0.36614  0.00520  1985 42 2013 19 2011 25 99% 

1714-06 0.16716  0.00415  11.38092  0.26704  0.48590  0.00800  2529 43 2555 22 2553 35 99% 

1714-07 0.16884  0.00446  11.64512  0.30697  0.49069  0.00862  2546 45 2576 25 2574 37 99% 

1714-08 0.09482  0.00268  3.61416  0.09737  0.27107  0.00473  1524 55 1553 21 1546 24 99% 

1714-09 0.07367  0.00231  1.98579  0.18566  0.18824  0.01560  1032 65 1111 63 1112 85 99% 
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1714-10 0.08722  0.00400  2.84866  0.13349  0.23201  0.00642  1365 90 1368 35 1345 34 98% 

1714-11 0.06857  0.00424  1.43401  0.08903  0.14916  0.00503  886 132 903 37 896 28 99% 

1714-13 0.17719  0.00494  12.63911  0.32232  0.50961  0.00878  2627 47 2653 24 2655 38 99% 

1714-14 0.08172  0.00305  2.41132  0.08487  0.21267  0.00463  1239 75 1246 25 1243 25 99% 

1714-15 0.10603  0.00292  4.32377  0.10570  0.29200  0.00465  1732 52 1698 20 1652 23 97% 

1714-16 0.06701  0.00265  1.34225  0.05843  0.14269  0.00249  838 84 864 25 860 14 99% 

1714-17 0.10190  0.00213  4.08488  0.08795  0.28815  0.00419  1659 40 1651 18 1632 21 98% 

1714-18 0.10908  0.00269  4.83940  0.23650  0.31784  0.01366  1784 46 1792 41 1779 67 99% 

1714-19 0.10710  0.00220  4.63169  0.09171  0.31136  0.00450  1751 39 1755 17 1747 22 99% 

1714-21 0.06872  0.00252  1.41639  0.05692  0.14898  0.00346  890 78 896 24 895 19 99% 

1714-22 0.08146  0.00158  2.40280  0.05476  0.21255  0.00319  1233 39 1243 16 1242 17 99% 

1714-23 0.06695  0.00231  1.31648  0.04830  0.14157  0.00269  836 74 853 21 854 15 99% 

1714-24 0.06946  0.00139  1.47374  0.03826  0.15384  0.00368  912 42 920 16 922 21 99% 

1714-25 0.09913  0.00186  3.86354  0.08272  0.28151  0.00401  1608 36 1606 17 1599 20 99% 

1714-26 0.06737  0.00121  1.32085  0.02597  0.14152  0.00178  849 38 855 11 853 10 99% 

1714-27 0.10090  0.00244  4.07220  0.09647  0.29190  0.00454  1641 46 1649 19 1651 23 99% 

1714-28 0.08075  0.00145  2.33756  0.04336  0.20911  0.00250  1215 36 1224 13 1224 13 99% 

1714-29 0.06704  0.00235  1.28559  0.04304  0.13926  0.00348  839 75 839 19 840 20 99% 

1714-30 0.09552  0.00565  3.40922  0.15114  0.26217  0.00904  1538 114 1507 35 1501 46 99% 

1714-31 0.06836  0.00276  1.40001  0.05903  0.14787  0.00273  880 86 889 25 889 15 99% 

1714-32 0.06987  0.00185  1.47962  0.03888  0.15380  0.00292  924 56 922 16 922 16 99% 

1714-34 0.09501  0.00727  3.71007  0.41324  0.26624  0.00559  1528 149 1574 89 1522 28 96% 

1714-35 0.07095  0.00212  1.59036  0.04917  0.16209  0.00274  956 62 966 19 968 15 99% 

1714-36 0.06818  0.00249  1.37724  0.04767  0.14635  0.00261  874 77 879 20 880 15 99% 

1714-38 0.10469  0.00212  4.42844  0.11506  0.30455  0.00576  1709 38 1718 22 1714 28 99% 

1714-39 0.07280  0.00272  1.67902  0.07413  0.16764  0.00483  1008 78 1001 28 999 27 99% 

1714-40 0.06764  0.00248  1.34824  0.05463  0.14389  0.00322  858 78 867 24 867 18 99% 

1714-41 0.15694  0.00407  10.04995  0.26762  0.46222  0.00804  2423 45 2439 25 2449 35 99% 

1714-42 0.09373  0.00225  3.45187  0.09046  0.26570  0.00493  1503 46 1516 21 1519 25 99% 

1714-43 0.06809  0.00249  1.37290  0.05283  0.14556  0.00279  871 78 877 23 876 16 99% 

1714-44 0.12386  0.00262  6.32447  0.14668  0.36819  0.00621  2012 38 2022 20 2021 29 99% 

1714-45 0.09971  0.00270  3.99757  0.11172  0.28892  0.00474  1619 52 1634 23 1636 24 99% 

1714-46 0.10741  0.00263  4.71895  0.11675  0.31751  0.00509  1756 46 1771 21 1778 25 99% 

1714-47 0.07067  0.00250  1.55005  0.06402  0.15775  0.00381  948 74 951 25 944 21 99% 

1714-48 0.07171  0.00502  1.52822  0.09813  0.15737  0.00500  978 147 942 39 942 28 99% 

1714-49 0.07190  0.00244  1.66061  0.05689  0.16761  0.00285  983 71 994 22 999 16 99% 

1714-51 0.08174  0.00250  2.42479  0.10993  0.21221  0.00617  1239 61 1250 33 1241 33 99% 

1714-52 0.06952  0.00193  1.47602  0.03860  0.15285  0.00190  914 58 921 16 917 11 99% 

1714-53 0.07011  0.00185  1.52922  0.04126  0.15736  0.00277  932 55 942 17 942 15 99% 

1714-54 0.06784  0.00227  1.34185  0.04678  0.14240  0.00302  864 71 864 20 858 17 99% 

1714-55 0.06776  0.00137  1.34355  0.02616  0.14241  0.00152  861 43 865 11 858 9 99% 
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1714-56 0.16140  0.00246  10.63941  0.16318  0.47270  0.00478  2470 26 2492 14 2495 21 99% 

1714-57 0.08408  0.00160  2.64081  0.04771  0.22579  0.00257  1294 38 1312 13 1312 14 99% 

1714-58 0.10763  0.00171  4.76127  0.07868  0.31723  0.00367  1760 30 1778 14 1776 18 99% 

1714-59 0.09462  0.00207  3.51678  0.07804  0.26720  0.00365  1521 42 1531 18 1527 19 99% 

1714-60 0.06995  0.00237  1.49890  0.04640  0.15453  0.00308  927 71 930 19 926 17 99% 

1714-61 0.10181  0.00206  4.16121  0.09753  0.29233  0.00427  1657 38 1666 19 1653 21 99% 

1714-62 0.06729  0.00182  1.33047  0.03536  0.14212  0.00238  847 57 859 15 857 13 99% 

1714-63 0.06706  0.00196  1.28589  0.03425  0.13888  0.00190  840 62 839 15 838 11 99% 

1714-64 0.06792  0.00188  1.32237  0.04699  0.13933  0.00296  866 59 856 21 841 17 98% 

1714-65 0.06728  0.00131  1.33973  0.03684  0.14248  0.00254  846 42 863 16 859 14 99% 

1714-66 0.07279  0.00130  1.70383  0.03419  0.16898  0.00250  1008 37 1010 13 1006 14 99% 

1714-67 0.07991  0.00205  2.24080  0.06311  0.20125  0.00323  1195 52 1194 20 1182 17 99% 

1714-68 0.07342  0.00127  1.80532  0.03762  0.17674  0.00249  1025 36 1047 14 1049 14 99% 

1714-69 0.09807  0.00166  3.84654  0.07401  0.28230  0.00421  1588 32 1603 16 1603 21 99% 

1714-70 0.06929  0.00175  1.44490  0.03689  0.15103  0.00227  907 53 908 15 907 13 99% 

1714-71 0.13857  0.00233  7.87581  0.13829  0.41069  0.00543  2209 30 2217 16 2218 25 99% 

1714-72 0.07402  0.00252  1.71736  0.06068  0.17022  0.00451  1042 70 1015 23 1013 25 99% 

1714-73 0.06696  0.00119  1.29508  0.02706  0.13906  0.00214  836 38 844 12 839 12 99% 

1714-74 0.07091  0.00159  1.60677  0.03691  0.16284  0.00224  955 47 973 14 973 12 99% 

1714-75 0.22346  0.00485  18.69396  0.65106  0.60190  0.01812  3006 36 3026 34 3038 73 99% 

1714-76 0.06722  0.00156  1.31866  0.02948  0.14115  0.00195  845 49 854 13 851 11 99% 

1714-77 0.06698  0.00108  1.30041  0.02466  0.13953  0.00186  837 34 846 11 842 11 99% 

1714-78 0.06678  0.00224  1.30742  0.04489  0.14065  0.00240  831 72 849 20 848 14 99% 

1714-79 0.07066  0.00175  1.58797  0.03824  0.16163  0.00270  947 52 965 15 966 15 99% 

1714-80 0.06893  0.00113  1.44928  0.02364  0.15100  0.00161  897 35 910 10 907 9 99% 

1714-81 0.06747  0.00332  1.35845  0.07264  0.14271  0.00485  852 105 871 31 860 27 98% 

1714-82 0.16183  0.00584  10.11088  0.33341  0.44403  0.00923  2475 62 2445 30 2369 41 96% 

1714-83 0.16004  0.00520  10.46067  0.37266  0.46327  0.01145  2456 56 2476 33 2454 50 99% 

1714-84 0.11970  0.00516  5.49687  0.21507  0.32645  0.00710  1952 79 1900 34 1821 34 95% 

1714-85 0.12327  0.00533  6.35889  0.27083  0.36601  0.00911  2004 79 2027 37 2011 43 99% 

1714-86 0.11643  0.00638  5.88077  0.24194  0.36280  0.01070  1902 101 1958 36 1995 51 98% 

1714-87 0.07445  0.00457  1.83960  0.11597  0.17692  0.00480  1054 127 1060 41 1050 26 99% 

1714-88 0.06705  0.00733  1.34523  0.15398  0.14256  0.00570  839 238 865 67 859 32 99% 

Sample 1399 

1399-01 0.06799  0.00217  1.39189  0.05015  0.14671  0.00233  868 68 886 21 882 13 99% 

1399-02 0.07140  0.00430  1.59807  0.09124  0.16187  0.00440  969 126 969 36 967 24 99% 

1399-03 0.06828  0.00154  1.37106  0.03228  0.14461  0.00180  877 48 877 14 871 10 99% 

1399-04 0.06851  0.00148  1.39991  0.03334  0.14721  0.00224  884 46 889 14 885 13 99% 

1399-05 0.06442  0.00227  1.15890  0.04195  0.12960  0.00218  755 76 781 20 786 12 99% 

1399-06 0.06647  0.00257  1.21144  0.05247  0.13115  0.00357  821 83 806 24 794 20 98% 

1399-07 0.07099  0.00147  1.62611  0.03590  0.16511  0.00192  957 43 980 14 985 11 99% 
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1399-08 0.06689  0.00159  1.27862  0.03052  0.13824  0.00191  834 51 836 14 835 11 99% 

1399-09 0.06788  0.00167  1.34464  0.03116  0.14312  0.00169  865 52 865 13 862 10 99% 

1399-10 0.06793  0.00480  1.33784  0.08738  0.14376  0.00418  866 151 862 38 866 24 99% 

1399-11 0.06495  0.00296  1.16629  0.05420  0.12969  0.00291  773 98 785 25 786 17 99% 

1399-12 0.06879  0.00255  1.42890  0.05014  0.15029  0.00331  892 78 901 21 903 19 99% 

1399-13 0.06652  0.00131  1.27067  0.02708  0.13815  0.00199  823 42 833 12 834 11 99% 

1399-14 0.06594  0.00140  1.21145  0.02619  0.13265  0.00213  805 45 806 12 803 12 99% 

1399-15 0.06572  0.00205  1.18955  0.03213  0.13136  0.00268  797 67 796 15 796 15 99% 

1399-16 0.06549  0.00259  1.20191  0.04488  0.13249  0.00371  790 85 801 21 802 21 99% 

1399-17 0.06604  0.00142  1.21797  0.03160  0.13250  0.00170  808 46 809 14 802 10 99% 

1399-18 0.06523  0.00210  1.16436  0.03400  0.12914  0.00297  782 69 784 16 783 17 99% 

1399-19 0.06768  0.00131  1.32669  0.02687  0.14168  0.00181  859 41 857 12 854 10 99% 

1399-20 0.06668  0.00308  1.21988  0.05047  0.13236  0.00399  828 99 810 23 801 23 98% 

1399-21 0.06675  0.00177  1.22159  0.04138  0.13145  0.00240  830 56 811 19 796 14 98% 

1399-22 0.06524  0.00268  1.19045  0.04737  0.13225  0.00310  782 88 796 22 801 18 99% 

1399-23 0.06740  0.00137  1.32933  0.02892  0.14269  0.00208  850 43 859 13 860 12 99% 

1399-24 0.06517  0.00354  1.18706  0.06527  0.13100  0.00287  780 117 795 30 794 16 99% 

1399-25 0.06742  0.00128  1.31990  0.02759  0.14096  0.00188  851 40 854 12 850 11 99% 

1399-26 0.06664  0.00335  1.23254  0.06852  0.13264  0.00265  827 108 815 31 803 15 98% 

1399-27 0.06686  0.00131  1.28476  0.02568  0.13869  0.00190  833 42 839 11 837 11 99% 

1399-28 0.07182  0.00448  1.58211  0.08574  0.16099  0.00464  981 131 963 34 962 26 99% 

1399-29 0.06956  0.00345  1.47502  0.08087  0.15317  0.00463  915 105 920 33 919 26 99% 

1399-30 0.11587  0.00212  5.58581  0.11254  0.34575  0.00455  1893 34 1914 17 1914 22 99% 

1399-31 0.07012  0.00261  1.50997  0.05099  0.15563  0.00273  932 78 934 21 932 15 99% 

1399-32 0.07130  0.00187  1.60570  0.04098  0.16294  0.00224  966 55 972 16 973 12 99% 

1399-33 0.06942  0.00346  1.51326  0.08374  0.15622  0.00337  911 105 936 34 936 19 99% 

1399-34 0.06931  0.00184  1.45728  0.04158  0.15158  0.00245  908 56 913 17 910 14 99% 

1399-35 0.06868  0.00314  1.43852  0.07163  0.15058  0.00331  889 97 905 30 904 19 99% 

1399-36 0.06794  0.00175  1.35618  0.04014  0.14394  0.00252  867 55 870 17 867 14 99% 

1399-37 0.11222  0.00269  5.09496  0.13308  0.32763  0.00488  1836 45 1835 22 1827 24 99% 

1399-38 0.06735  0.00226  1.31937  0.04850  0.14132  0.00299  849 71 854 21 852 17 99% 

1399-39 0.07342  0.00297  1.69578  0.07264  0.16780  0.00386  1026 84 1007 27 1000 21 99% 

1399-40 0.07036  0.00291  1.51314  0.06083  0.15677  0.00415  939 87 936 25 939 23 99% 

1399-41 0.06979  0.00546  1.44111  0.10488  0.15162  0.00558  922 166 906 44 910 31 99% 

1399-42 0.06992  0.00265  1.50563  0.06107  0.15595  0.00417  926 80 933 25 934 23 99% 

1399-43 0.06721  0.00342  1.30583  0.06635  0.14069  0.00365  844 109 848 29 849 21 99% 

1399-44 0.06846  0.00303  1.38103  0.05922  0.14579  0.00466  883 94 881 25 877 26 99% 

1399-45 0.06789  0.00291  1.34516  0.05842  0.14318  0.00302  865 91 865 25 863 17 99% 

1399-46 0.06744  0.00192  1.32420  0.03924  0.14123  0.00206  851 60 856 17 852 12 99% 

1399-47 0.06848  0.00457  1.33008  0.08508  0.14180  0.00701  883 142 859 37 855 40 99% 

1399-48 0.06806  0.00308  1.36937  0.05369  0.14514  0.00337  870 96 876 23 874 19 99% 
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1399-49 0.06641  0.00229  1.27998  0.04150  0.13851  0.00226  819 74 837 18 836 13 99% 

1399-50 0.06883  0.00282  1.41768  0.05305  0.14816  0.00263  894 87 896 22 891 15 99% 

1399-51 0.06933  0.00293  1.45949  0.05673  0.15132  0.00365  909 89 914 23 908 20 99% 

1399-52 0.06516  0.00226  1.18446  0.03780  0.13110  0.00256  780 75 793 18 794 15 99% 

1399-53 0.06769  0.00379  1.31892  0.06968  0.14337  0.00406  859 119 854 31 864 23 98% 

1399-54 0.06757  0.00496  1.30490  0.08790  0.14098  0.00405  855 157 848 39 850 23 99% 

1399-55 0.06877  0.00227  1.41378  0.04580  0.14795  0.00279  892 70 895 19 889 16 99% 

1399-56 0.06712  0.00382  1.30268  0.07615  0.13977  0.00420  841 122 847 34 843 24 99% 

1399-57 0.06888  0.00298  1.38877  0.06157  0.14757  0.00415  895 91 884 26 887 23 99% 

1399-58 0.06716  0.00198  1.29235  0.03747  0.13941  0.00215  843 63 842 17 841 12 99% 

1399-59 0.06755  0.00452  1.34360  0.08606  0.14363  0.00301  855 143 865 37 865 17 99% 

1399-60 0.14992  0.00424  8.84926  0.24187  0.43096  0.00825  2345 49 2323 25 2310 37 99% 

1399-61 0.06556  0.00595  1.20400  0.10862  0.13209  0.00318  792 198 802 50 800 18 99% 

1399-62 0.06765  0.00349  1.33165  0.06248  0.14283  0.00314  858 110 860 27 861 18 99% 

1399-63 0.06610  0.00286  1.19903  0.04590  0.13189  0.00234  810 93 800 21 799 13 99% 

1399-64 0.06892  0.00207  1.42126  0.04447  0.14832  0.00214  896 63 898 19 892 12 99% 

1399-65 0.06995  0.00278  1.48149  0.04563  0.15327  0.00330  927 84 923 19 919 18 99% 

1399-66 0.22220  0.00359  18.57936  0.31601  0.60279  0.00755  2997 27 3020 16 3041 30 99% 

1399-67 0.06777  0.00403  1.35426  0.08245  0.14345  0.00322  862 127 869 36 864 18 99% 

1399-68 0.06826  0.00130  1.38111  0.02853  0.14542  0.00187  876 40 881 12 875 11 99% 

1399-69 0.06713  0.00189  1.29386  0.03699  0.13899  0.00220  842 60 843 16 839 12 99% 

1399-70 0.06708  0.00136  1.30816  0.02924  0.14002  0.00192  840 43 849 13 845 11 99% 

1399-71 0.06719  0.00183  1.30581  0.03567  0.13959  0.00218  844 58 848 16 842 12 99% 

1399-72 0.06724  0.00197  1.32313  0.04123  0.14140  0.00233  845 62 856 18 853 13 99% 

1399-73 0.06759  0.00127  1.36365  0.02546  0.14508  0.00203  856 40 873 11 873 11 99% 

1399-74 0.06597  0.00150  1.21697  0.03125  0.13219  0.00202  805 49 808 14 800 11 98% 

1399-75 0.06501  0.00340  1.20334  0.06851  0.13260  0.00313  775 113 802 32 803 18 99% 

1399-76 0.06876  0.00407  1.44776  0.10017  0.15027  0.00418  891 126 909 42 902 23 99% 

1399-77 0.06748  0.00168  1.33417  0.03323  0.14191  0.00165  853 53 861 14 855 9 99% 

1399-78 0.06792  0.00268  1.34041  0.05123  0.14456  0.00250  866 84 863 22 870 14 99% 

1399-79 0.06785  0.00151  1.39198  0.02897  0.14749  0.00180  864 47 886 12 887 10 99% 

1399-80 0.06740  0.00136  1.34778  0.02804  0.14317  0.00168  850 43 867 12 863 9 99% 

Sample 1400 

1400-01 0.06914  0.00320  1.45335  0.05742  0.15127  0.00287  903 98 911 24 908 16 99% 

1400-02 0.06766  0.00278  1.35130  0.05011  0.14328  0.00403  858 88 868 22 863 23 99% 

1400-03 0.16020  0.00508  10.40726  0.30550  0.46542  0.00863  2458 55 2472 27 2463 38 99% 

1400-04 0.06921  0.00207  1.46917  0.04442  0.15176  0.00348  905 63 918 18 911 19 99% 

1400-05 0.06747  0.00204  1.37245  0.04043  0.14563  0.00238  852 64 877 17 876 13 99% 

1400-06 0.06730  0.00272  1.34532  0.05537  0.14337  0.00340  847 86 866 24 864 19 99% 

1400-07 0.06988  0.00268  1.50421  0.06083  0.15427  0.00306  925 81 932 25 925 17 99% 

1400-08 0.11543  0.00352  5.32829  0.15256  0.33159  0.00684  1887 56 1873 24 1846 33 98% 
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1400-09 0.10023  0.00367  3.93478  0.15899  0.28188  0.00638  1628 70 1621 33 1601 32 98% 

1400-10 0.07947  0.00471  2.11889  0.11093  0.19195  0.00629  1184 120 1155 36 1132 34 97% 

1400-11 0.06702  0.00264  1.30086  0.05740  0.13978  0.00392  838 84 846 25 843 22 99% 

1400-12 0.07105  0.00348  1.61810  0.08996  0.16347  0.00220  959 103 977 35 976 12 99% 

1400-13 0.06787  0.00305  1.29956  0.04925  0.13848  0.00356  864 95 846 22 836 20 98% 

1400-14 0.06783  0.00328  1.33610  0.06902  0.14199  0.00460  863 103 862 30 856 26 99% 

1400-15 0.07013  0.00224  1.50873  0.04591  0.15514  0.00271  932 67 934 19 930 15 99% 

1400-16 0.07221  0.00170  1.60613  0.03834  0.16026  0.00223  992 49 973 15 958 12 98% 

1400-17 0.06809  0.00185  1.35935  0.03795  0.14338  0.00198  871 58 872 16 864 11 99% 

1400-18 0.16555  0.00342  11.23001  0.24387  0.48677  0.00717  2513 36 2542 20 2557 31 99% 

1400-19 0.06690  0.00293  1.27037  0.05091  0.13817  0.00278  835 94 833 23 834 16 99% 

1400-20 0.10448  0.00403  4.41733  0.15925  0.30388  0.00762  1705 73 1716 30 1711 38 99% 

1400-21 0.06651  0.00218  1.28428  0.03964  0.13854  0.00220  823 70 839 18 836 12 99% 

1400-22 0.17048  0.00399  11.14558  0.32487  0.47383  0.01415  2562 40 2535 27 2500 62 98% 

1400-23 0.10266  0.00297  4.24087  0.16517  0.29530  0.00900  1673 55 1682 32 1668 45 99% 

1400-24 0.06820  0.00451  1.32370  0.08551  0.14246  0.00408  875 141 856 37 859 23 99% 

1400-25 0.06635  0.00199  1.27839  0.03868  0.13812  0.00220  817 64 836 17 834 12 99% 

1400-26 0.06713  0.00463  1.34484  0.09825  0.14317  0.00333  842 148 865 43 863 19 99% 

1400-27 0.06715  0.00206  1.31693  0.03734  0.14145  0.00332  842 65 853 16 853 19 99% 

1400-28 0.06909  0.00274  1.44108  0.06162  0.14945  0.00272  901 84 906 26 898 15 99% 

1400-29 0.15777  0.00261  10.14962  0.17886  0.46093  0.00538  2432 29 2449 16 2444 24 99% 

1400-30 0.17317  0.00380  12.19365  0.27491  0.50728  0.00805  2589 37 2619 21 2645 34 99% 

1400-31 0.06653  0.00165  1.28398  0.03365  0.13864  0.00247  823 53 839 15 837 14 99% 

1400-32 0.06693  0.00204  1.30523  0.03478  0.14066  0.00239  836 65 848 15 848 13 99% 

1400-33 0.06779  0.00206  1.39139  0.04543  0.14719  0.00197  862 65 885 19 885 11 99% 

1400-34 0.15452  0.00243  9.72375  0.16557  0.45215  0.00478  2397 27 2409 16 2405 21 99% 

1400-35 0.07068  0.00146  1.59205  0.03219  0.16322  0.00211  948 43 967 13 975 12 99% 

1400-36 0.06984  0.00333  1.49148  0.06226  0.15477  0.00570  924 100 927 25 928 32 99% 

1400-37 0.07067  0.00255  1.50814  0.04569  0.15536  0.00240  948 76 934 18 931 13 99% 

1400-38 0.10961  0.00333  4.88774  0.17672  0.32126  0.00724  1793 57 1800 30 1796 35 99% 

1400-39 0.06839  0.00182  1.36767  0.04323  0.14414  0.00278  881 56 875 19 868 16 99% 

1400-40 0.06756  0.00209  1.30513  0.03766  0.14011  0.00255  855 66 848 17 845 14 99% 

1400-41 0.06769  0.00167  1.33974  0.03576  0.14324  0.00200  859 53 863 16 863 11 99% 

1400-42 0.07927  0.00205  2.26835  0.06419  0.20654  0.00288  1179 52 1203 20 1210 15 99% 

1400-43 0.06708  0.00280  1.28404  0.07522  0.13810  0.00640  840 89 839 33 834 36 99% 

1400-44 0.07470  0.00186  1.77121  0.04640  0.17119  0.00222  1061 51 1035 17 1019 12 98% 

1400-45 0.09705  0.00305  3.75007  0.13215  0.27922  0.00706  1568 60 1582 28 1587 36 99% 

1400-46 0.07103  0.00221  1.59339  0.05200  0.16175  0.00285  958 65 968 20 966 16 99% 

1400-47 0.08128  0.00327  2.24645  0.08931  0.19978  0.00428  1228 81 1196 28 1174 23 98% 

1400-48 0.09398  0.00220  3.48453  0.09916  0.26652  0.00676  1508 45 1524 22 1523 34 99% 

1400-49 0.08456  0.00308  2.54867  0.08482  0.21940  0.00369  1306 72 1286 24 1279 20 99% 
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1400-50 0.06894  0.00358  1.42175  0.06765  0.14851  0.00396  897 110 898 28 893 22 99% 

1400-51 0.06936  0.00247  1.45701  0.05645  0.15059  0.00381  909 75 913 23 904 21 99% 

1400-52 0.16564  0.00339  10.78816  0.22767  0.46627  0.00690  2514 35 2505 20 2467 30 98% 

1400-53 0.11243  0.00277  4.85816  0.11855  0.30975  0.00622  1839 46 1795 21 1739 31 96% 

1400-54 0.06723  0.00336  1.32268  0.04995  0.14247  0.00392  845 107 856 22 859 22 99% 

1400-56 0.06986  0.00275  1.49350  0.06258  0.15326  0.00370  924 83 928 25 919 21 99% 

1400-57 0.11007  0.00258  4.95601  0.12287  0.32333  0.00524  1801 44 1812 21 1806 26 99% 

1400-58 0.10501  0.00261  4.37816  0.10608  0.29970  0.00422  1715 47 1708 20 1690 21 98% 

1400-59 0.07058  0.00290  1.36641  0.07259  0.13812  0.00393  945 86 875 31 834 22 95% 

1400-60 0.06848  0.00408  1.40266  0.07934  0.14711  0.00335  883 127 890 34 885 19 99% 

1400-61 0.06898  0.00271  1.42549  0.05324  0.14870  0.00287  898 83 900 22 894 16 99% 

1400-62 0.07539  0.00278  1.89096  0.06562  0.18036  0.00298  1079 76 1078 23 1069 16 99% 

1400-63 0.07011  0.00253  1.54062  0.05488  0.15769  0.00347  932 76 947 22 944 19 99% 

1400-64 0.06740  0.00206  1.33959  0.03965  0.14250  0.00227  850 65 863 17 859 13 99% 

1400-65 0.06855  0.00211  1.40752  0.03831  0.14748  0.00252  885 65 892 16 887 14 99% 

1400-66 0.06870  0.00309  1.39418  0.07280  0.14474  0.00337  890 95 886 31 871 19 98% 

1400-67 0.11579  0.00264  5.45262  0.11789  0.33918  0.00454  1892 42 1893 19 1883 22 99% 

1400-68 0.07203  0.00151  1.66491  0.03495  0.16583  0.00210  987 44 995 13 989 12 99% 

1400-69 0.11018  0.00229  4.81230  0.10243  0.31282  0.00418  1802 39 1787 18 1755 21 98% 

1400-70 0.06858  0.00176  1.39058  0.03387  0.14620  0.00211  886 54 885 14 880 12 99% 

1400-71 0.06921  0.00288  1.45225  0.06636  0.15068  0.00380  905 88 911 27 905 21 99% 

1400-72 0.06790  0.00151  1.35130  0.02975  0.14272  0.00177  865 47 868 13 860 10 99% 

1400-73 0.06728  0.00130  1.34503  0.02829  0.14338  0.00206  846 41 865 12 864 12 99% 

1400-74 0.06730  0.00137  1.34457  0.02598  0.14380  0.00180  847 43 865 11 866 10 99% 

1400-75 0.06811  0.00229  1.34642  0.04491  0.14233  0.00260  872 71 866 19 858 15 99% 

1400-76 0.06755  0.00206  1.32918  0.04096  0.14147  0.00180  855 65 859 18 853 10 99% 

1400-77 0.07099  0.00294  1.52485  0.05860  0.15553  0.00281  957 87 940 24 932 16 99% 

1400-78 0.06742  0.00198  1.34263  0.03912  0.14334  0.00209  851 62 864 17 863 12 99% 

1400-79 0.06924  0.00186  1.42076  0.03408  0.14844  0.00177  906 57 898 14 892 10 99% 

1400-80 0.06724  0.00206  1.31723  0.03924  0.14166  0.00197  845 65 853 17 854 11 99% 

1400-81 0.14798  0.00658  9.24976  0.38216  0.44344  0.00896  2323 78 2363 38 2366 40 99% 

1400-82 0.10379  0.00453  4.32561  0.18317  0.29553  0.00601  1693 82 1698 35 1669 30 98% 

1400-83 0.06817  0.00299  1.36387  0.05840  0.14215  0.00321  874 93 874 25 857 18 98% 

1400-84 0.07493  0.00649  1.87987  0.19442  0.17557  0.00602  1067 180 1074 69 1043 33 97% 

1400-85 0.14236  0.00534  8.48009  0.30717  0.42374  0.00881  2256 66 2284 33 2277 40 99% 

1400-87 0.06798  0.00687  1.35949  0.13182  0.14369  0.00539  868 218 872 57 865 30 99% 

1400-88 0.06943  0.00389  1.54323  0.08897  0.15807  0.00516  911 119 948 36 946 29 99% 

1400-89 0.07252  0.00402  1.69964  0.09472  0.16906  0.00601  1001 116 1008 36 1007 33 99% 

1400-91 0.06645  0.00505  1.31174  0.10372  0.14325  0.00548  820 164 851 46 863 31 98% 

1400-92 0.06825  0.00669  1.33830  0.11747  0.14209  0.00578  876 211 862 51 856 33 99% 

1400-93 0.06692  0.00471  1.26485  0.08440  0.13783  0.00551  835 151 830 38 832 11 98% 
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1400-94 0.06759  0.00516  1.33331  0.09202  0.14223  0.00464  856 163 860 40 857 26 99% 

1400-95 0.09646  0.00596  3.68582  0.21780  0.27680  0.00873  1557 119 1568 47 1575 44 99% 

1400-96 0.09469  0.00473  3.89650  0.18405  0.29684  0.01093  1522 97 1613 38 1676 54 96% 

1400-97 0.06727  0.01016  1.28883  0.20443  0.14302  0.00860  846 335 841 91 862 49 97% 

1400-99 0.14944  0.00558  9.34571  0.34047  0.44412  0.01002  2340 65 2373 33 2369 45 99% 

1400-100 0.14594  0.00563  8.92821  0.34277  0.43502  0.01066  2299 68 2331 35 2328 48 99% 
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Chapter 4. The construction mechanism of the Neoproterozoic S-type 

Sanfang-Yuanbaoshan granite plutons in the Jiangnan Orogenic Belt, South 

China: insights from the Geological observation, Geochronology, AMS and 

Bouger gravity modelling 

4.1 Introduction of magmatisms of pluton emplacement and research objectives 

Magmatic rock is an important constituent part of the continent crust (e.g., de 

Saint-Blanquat et al., 2006; Paterson, 2009), and magmatic activity plays a significant role in 

the recycling of crustal material and crust-mantle interaction (e.g., Faure & Pons, 1991; Roman 

& Jaupart, 2016). Therefore, it is essential to study the magmatism in order to obtain a better 

understanding of the magmatic process and the crustal evolution. Several aspects, such as: i) 

magma generation, ii) differentiation, iii) transport and ascent, and iv) emplacement, must be 

distinguished in the magmatic evolution (e.g., Glazner & Bartley, 2006; Hutton, 1988; Pitcher, 

1979). The magma emplacement is the last but an essential stage of the process. During the 

emplacement, some features documented both in the pluton and its country rocks reflect the 

interaction between the magma and the country rocks as well as the space needed for the 

magma emplacement (e.g., Paterson et al., 2008; Stevenson et al., 2007). 

Previous studies showed that the features of the intrusive magma bodies are not only 

dominated by composition, temperature and pressure of magma, but also controlled by the 

rheology of the crust and synmagmatic regional tectonic setting (Caricchi, et al., 2007; Castro, 

1987; de Saint-Blanquat et al., 2006; Glazner & Bartley, 2006; Hutton, 1988; Moyen et al., 

2003; Wei et al., 2014, 2016). Consequently, deciphering the magma emplacement process, 

i.e., (1) the geometry of the pluton (Cruden, 1998; Cruden et al., 2017; Mathieu et al., 2008; 

O'Driscoll et al., 2006; Stevenson et al., 2007); (2) the style of magma channel (Clemens & 

Mawer, 1992; Paterson, 2009); (3) the deformation and thermal conditions of the granite and 

its country rocks (Byerly et al., 2017; de Saint-Blanquat et al., 2001, 2006; Paterson et al., 

1989; Žák et al., 2007), can help to determine the evolution of the granite pluton and the 
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continental crust. 

The magma emplacement has been long studied, and several models were proposed, i.e., 

diapirism (Paterson & Vernon, 1995), ballooning (Bateman, 1984), injection through dykes 

and sills (Burchardt, 2008; Gudmundsson, 1990, 2011; Morgan et al., 2017; Weinberg, 1999), 

stoping (Daly, 1903; Glazner et al., 2006, 2007; Paterson, 2008) and syntectonic magma 

emplacement (Allibon et al., 2011; de Saint Blanquat et al., 2011; Faure & Pons, 1991; Hutton, 

1988; Pitcher, 1979). Liu (2017) briefly summarized these models into two groups, namely 

the forceful and permissive, and proposed that both the magma property and the tectonics are 

widely thought to be the important factors to the magma emplacement and granite pluton 

construction. Features of different kinds of emplacement are presented in the Table 4-1. 

 

Table 4-1. A conclusive classification of different magma emplacement mechanisms and its 

associated features (Liu, 2017). 

S-type granite is considered as a kind of granite produced by partial melting and 

crystallization of Al-rich rocks, such as crustal orthogneiss and pelitic sediments forming the 

lower to middle continental crust. It is commonly accepted that peraluminous magma is a syn- 
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to post-orogenic product formed by the melting of the thickened orogenic root (Chappell & 

White, 2001). However, S-type granite may also emplace in a intracontinental setting (e.g., 

most of the post-orogenic plutons in the Early Paleozoic orogen of SE China), and also in an 

active continental margin (for instance in the central Andes). In the Jiangnan Orogenic Belt, 

the peraluminous granite plutons crop out sporadically from east to west, including the, 

Xucun, Jiuling, Yuanbaoshan, Sanfang and Fanjingshan plutons (Figure 4-1). In order to 

better constrain the Neoproterozoic evolution of the Jiangnan Orogeny, studies on the 

emplacement of the Neoproterozoic granite plutons along the Jiangnan Orogenic Belt as well 

as the detailed consideration of the pluton construction, syn-magmatic and syn (post)-tectonic 

events are necessary. Consequently, we choose the Sanfang-Yuanbaoshan plutons, located in 

the weastern part of the Jiangnan Orogenic Belt, as the study target to decipher the late stage 

of the evolution of the Jiangnan orogeny. 
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Figure 4-1. Tectonic outline of China and geological sketch map of the Yangtze and Cathaysia 

blocks. 

4.2 Geological setting 

        4.2.1 The Jiangnan Orogenic Belt 

The Jiangnan Orogenic Belt is an important tectonic unit in the South China Block, 

representing the Neoproterozoic NE–SW to E-W trending belt developed as a consequence of 

the collision between the Yangtze and Cathaysia blocks. The oceanic subduction of the 

Paleo–South China Ocean beneath the Yangtze Block since ca. 1000 Ma (Wang et al., 2007, 

2008; Yao et al., 2014b) and its final closure were responsible for the formation of the Jiangnan 

magmatic arc, followed by the collision (or continental subduction) of Cathaysia Block (Shu, 

2012; Wang et al., 2012b). Numerous ultramafic, mafic magmatic (gabbro, diorite), and 

volcanic rocks, interpreted as ophiolites, dated from ca. 1000 Ma to ca. 870 Ma, distribute along 

the suture zone (BGMRAH, 1982; BGMRJX, 1984; BGMRZJ, 1989; Xia et al., 2018).  

The Precambrian basement in the Jiangnan Orogenic Belt is composed of the Sibao 

group and its equivalents; the Danzhou group and its equivalents unconformably cover the 

deformed Sibao group (refer to Chapter 2 for detailed descriptions). The Danzhou group 

unconformity indicates that an orogenic event had taken place in the Jiangnan Orogenic Belt 

before the initial deposition of the Danzhou group. The collision related orogeny led to the 

distinct deformation but weak metamorphism (greenschist facies) of the Sibao group and its 

equivalents (BGMRGX, 1985; BGMRHN, 1988; Charvet, 2013; Shu, 2012). The strata of the 

Sibao group were folded owing to the northwestward subduction of the Paleo South China 

oceanic crust below the Yangtze Block and the collision between the Yangtze and Cathaysia 

blocks. Northeast and north trending tight folds are widely developed in the Sibao group and 

its equivalents in the western part of the Jiangnan Orogenic Belt (Figure 4-2). However, the 

primary structure of the Danzhou group was characterised by broad and gentle folds with 

quite weak metamorphism or even no metamorphsim (BGMRGX, 1985). 

The Jiangnan Orogenic Belt was intruded by peraluminous granite plutons dated at ca. 
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850-830 Ma (e.g., Xucun pluton, Jiuling pluton, Yuanbaoshan pluton, Sanfang pluton; Figure 

4-1) (Guo et al., 1989; Xin et al., 2017; Yao et al., 2014b; Zhang et al., 2013; Zhou et al., 2009). 

After the formation of the South China Block, this continent started to rift probably reworking 

some pre–existing faults related to the Jiangnan orogeny. The NE-SW striking Nanhua rifting at 

ca. 800 Ma–750 Ma was coeval with the generation of bimodal igneous rocks (Li et al., 2018; 

Wang & Li, 2003; Xia et al., 2018; Zhang et al., 2018). 

 

Figure 4-2. Geological sketch map and cross–section for the Sanfang-Yuanbaoshan area. For 

the cross-section, the contact relationships with the granite plutons and the country rocks are 

depicted according to the field observations, however, the deep structure of the profile is 
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inferred from the gravity modeling. 

        4.2.2 Sanfang-Yuanbaoshan granite plutons 

The Sanfang and Yuanbaoshan granite plutons are located in the western part of the 

Jiangnan Orogenic Belt (Figure 4-1), both of these two plutons have an elliptic shaped surface 

with an area of ca. 1000 km
2
 and ca. 300 km

2
, respectively (Figure 4-2). The exposure of 

these two plutons show an N-S elongated geometry with aspect ratio about 2:1. Elevation of 

the two plutons ranges from ca.200 meters to ca. 2000 meters.  

The two granite plutons both intrude into the Sibao group which is mainly composed of 

bathyal to abyssal terrigenous arenaceous-argillaceous metasediments with beded flysch 

(BGMRGX, 1985). Previous studies indicate that the crystallization age of the plutons varies 

from 823±5 Ma to 833±6 Ma with high Aluminum Saturation Index ranging in 1.15-1.40 (Yao 

et al., 2014b). Their geochemical feature indicates that the magma of Sanfang and 

Yuanbaoshan plutons were derived from supracrustal source rocks (Wang et al., 2007). The 

widespread tourmaline in the plutons (Li, 1999) reveals that the granites are highly evolved.  

As for the deformation, Li (1999) proposed that all the granitic intrusions were deformed 

to varying degrees showing foliation with gneissic texture. However, Yao et al. (2014b) 

suggested that the granite plutons show a massive structure without evidence of 

metamorphism and deformation.  

Faults are developed in the granite plutons as well as in the country rocks (Figure 4-2), 

mainly distributing in the NE-SW and N-S directions. Some kilometer to meter- scale mafic 

and ultramafic blocks enclosed in the mudstone-sandstone facies of the Sibao group crop out 

around the plutons. They are interpreted as olistoliths (BGMRGX, 1985).  

4.3 Field observations 

    The Sanfang and Yuanbaoshan grainte plutons are both shaped like N-S long and E-W 

narrow. These two plutons both intrude into the Sibao group which are unconformably 

covered by the Danzhou group. In the field, we have investigated the plutons and the country 

rocks, and found that some geological features are different with the descriptions of the 



Oct. 2018   Chapter 4 

71 

 

previous researches. Detailed field observations are presented in the following sections. 

        4.3.1 Granite plutons 

The Sanfang pluton stands at a varying elevation ranging from ca. 200 meters to ca. 1800 

meters, however, the elevation of the Yuanbao pluton attains to ca. 2000 meters. The granitic 

rocks of these two plutons mainly consist of quartz, plagioclase, K-feldspar, biotite and 

muscovite, thus they belong to a porphyritic monzogranite. However, the monzogranitic body 

is surrounded by a fine grain facies devoid of K-feldspar megacrysts but rich in 

tourmaline-plagioclase nodules. A small amount of tourmaline can be observed in some 

outcrops (B19, 1404; Figures 4-3C and 4-3S). We cover the two plutons as much as possible 

in order to obtain a good understanding of them, and according to the field observation, the 

granite plutons can be roughly divided into two parts, namely, undeformed and deformed 

ones. 

For the Sanfang pluton, the undeformed granites are mostly at the elevation below 750 

meters, with the magmatic texture (A51 (2065), A55; Figures 4-3A and 4-3B), distributing in 

the southern, southeastern, and western parts of the pluton. The quartz and feldspar are 

euhedral but are different in size as the elevation changed. In the northwestern part of the 

pluton, with the elevation of about 600 meters, the granites are massive and the quartz and 

feldspar grains are in the size of 1-3 millimeters (A51; Figures 4-3A). However, in the 

southern part of the pluton with a relative lower elevation of around 350 meters, the 

K-feldspar grains are in the size of 1-10 centimeters, with a preferred orientation of sub E-W 

(A55; Figures 4-3B). In the northeastern part of the Sanfang pluton (1404, altitude of 450 

meters), the tourmaline nodules are oriented in the E-W direction within the undeformed 

granite. As to the Yuanbaoshan pluton, the elvevation of ca. 700 meters seems like the 

separatrix of the undeformed and deformed granites. The undeformed ones are mainly 

distributed in the central to the southern part of the pluton. Similar to the features of the 

Sanfang granites, the grain sizes change from 1-10 centimeters to 3-5 millimeters when the 

elevation increases from ca. 200 to 600 meters. In the southeast, close to the east boundary 

between the granite and country rock, the granite is massive but the tourmaline grains are 
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orientated in the N-S direction (B19 ; Figures 4-3C).  

The deformed granites are located in the central and northern parts of the Sanfang pluton 

with the elevation above 750 meters (Figure 4-2). It can be recognized that the low angle 

(~30°) foliations are developed, dipping to the W and SW consistently. Augen structure, 

gneissy structure and shear band are common in this area. The mineral and stretching 

lineations developed by elongated quartz grains, biotite and muscovite aggregates, and 

pressure shadows around the K-feldspar megacrysts are trend in the E-W direction， with the 

top-to-the-W kinematics (A46; Figure 4-3D).  

However, in the Yuanbaoshan pluton, deformed granites are distributed in the 

central-northwestern part with the elevation higher than ca. 700 meters. The quartz and 

feldspar are deformed to augen, original magmatic structures are modified to gneissy 

structures (B08; Figure 4-3E). And the lineations are consistently directed in the sub E-W 

with gentle angle. Furthermore, in the northern part of the Yuanbaoshan pluton (2013, altitude 

of 2000 meters), the roof of the pluton is covered by the horizontal well-foliated Sibao group. 

        4.3.2 Country rocks 

Neoproterozoic strata are well exposed in the Sanfang-Yuanbaoshan area, including the 

Sibao group, Danzhou group and Sinian strata. Generally, the Sinian strata and Danzhou 

group display broad and gentle folds with very low grade metamorphism or even no 

metamorphism (BGMRGX, 1985). However, the Sibao group shows tight folds with 

greenschist facies metamorphism (BGMRGX, 1985). Based on our field observations, we 

found that the degree of metamorphsim and deformation of the Sibao group varies greatly in 

different sub areas: 

(1) On the west of the Sanfang pluton, close to the granite body (distance less than 2 km), the 

Sibao group is not metamorphic but tightly folded by upright folds. The original bedding 

(S0-1) is nearly upright with 75-90°angle (1442; Figure 4-3F), however, the occurrence of 

the Sibao group becomes gentle when it is a little bit far away (distance greater than 2 km) 

from the pluton, the S0-1 dips to the W with an angle of 30-45°(1445; Figure 4-3G). 
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Hornfels is observed in the contact boundary between the granite and the country rock 

(1440; Figure 4-3H) with a width of 10 meters; 

(2) On the north of the Sanfang pluton, the Sibao group is metamorphosed to schist and its 

foliation S1 dips northwards with a gentle angle of 35-45°, the quartz vein interlayed in the 

foliated Sibao group indicates a top-to-the-N kinematic (1893; Figure 4-3I); 

(3) On the southwest of the Sanfang pluton, the foliation S1 of the Sibao group (1447) dips to 

the southwest with an angle of 45°, however, when the Sibao group is far away from the 

pluton, the bedding planes (S0-1) dip more gently to the southeast with an angle of 

20°(1713; Figure 4-3T); 

(4) The Sibao group between the Sanfang and Yuanbaoshan plutons shows higher degrees of 

the metamorphism and deformation. In general, the sediments were metamorphosed to 

phyllite and micaschist. Deformation style in this area is complex: (i) the Sibao strata with 

flysch sequences were deformed to recumbent folds, with the folds axis plunging to the N 

(2050; Figure 4-3J); (ii) the primary foliations S0-1 were again modified by the later 

penetrative foliations (S2), which are consistently dipping to the W with gentle angles of 

15-45°(1406; Figure 4-3K and 4-3K’). And the sigmoid quartz vein indicates a 

top-to-the-W kinematic (1407; Figure 4-3L); (iii) the lineations in the Sibao group are 

coherent with NW-SE and sub E-W directions (2051; Figure 4-3M); (iv) however, the 

rocks are weakly metamorphosed (1459; Figure 4-3U) at the elevation lower than 700 

meters, and the foliation S2 and lineation are unconspicuous; 

(5) On the west of the Yuanbaoshan pluton, the foliations S2 are dipping to the W, except the 

site on the SSW of the Peixiu village which may affected by the shape of the pluton, the 

lineations are sub E-W directed (Figure 4-2); 

(6) On the northeast of the Yuanbaoshan pluton, the foliation S0-1 is dipping northeastwards 

and the shear bands indicate the top-to-the NE kinematics, and the lineation is sub E-W 

directed (2015; Figure 4-3N); 

(7) On the south and southeast of the Yuanbaoshan pluton. The Sibao group is weakly 
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metamorphosed, the foliations S0-1 are turning with the geometry of the pluton with gentle 

angles of 20-45°, however, the lineations are not developed (2030; Figure 4-3O); 

(8) On the east of the Yuanbaoshan pluton, the protolith of the Sibao group was 

metamorphosed to phyllite, the foliations S0-1 are dipping to the E with angles of 30-50°, 

and the quartz veins indicate an eastward kinematics (2037, 1468; Figures 4-3P and 4-3Q), 

the lineations are close E-W directed consistently; 

(9) In the northern part of the Yuanbaoshan pluton, at the elevation of 1800 meters, the Sibao 

group above on the granite, with strongly deformed to the mylonite (2013; Figures 4-3R), 

the foliation S2 is horizontal with the E-W directed lineation. 

In summary, the degrees of the metamorphism and deformation of the Sibao group are 

positively related with the elevation, and can be divided to three parts according to the 

elevation: (i) The Sibao group at the elevation below 200 meters display no metamorphism, 

which mainly consists of sandstone and mudstone. Foliation and lineation are absent, while 

the bedding planes of the strata are dispersed; (ii) The degrees of the metamorphism and 

deformation of the Sibao group at the elevation of 200-700 meters are higher than those of 

below the 200 meters. In this part, the foliations (S1) of the Sibao group are the original 

sedimentary bedding (S0) and distributed disorderly, however, for those close to the plutons, 

they are controlled by the shape of the plutons. The lineations are much developed than those 

of the lower part, with a sub E-W direction; (iii) For the Sibao group at the altitude higher 

than 700 meters, the degrees of deformation and metamorphism are totally different with the 

lower parts (< 800m). The original beddings (S0) of the Sibao group are folded and even 

overturned as recumbent fold (S1), with the axis gently plunging to the north. Furthermore, 

the later foliations S2 penetrate the S0-1, consistently dipping to the W with angles of 15-45°. 

Besides, the lineations are well developed in the sub E-W direction. Moreover, mylonite of 

the Sibao group was found above the roof of the Yuanbaoshan pluton (~ 2000m), with 

horizontal foliation and E-W directed lineation.  
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Figure 4-3. Representative field photos in the Sanfang-Yuanbaoshan area, with the geographic 

localities in the sketch map. (A) Massive granite; (B) Massive granite with big feldspar; (C) 

N-S elongated tourmalin; (D) Deformed granite with the top-to-the-W kinematics; (E) Granite 

with augen structures; (F) Sibao group with vertical beddings; (G) Sibao group dips to the W 

with steep angle; (H) Hornfels between the granites and country rocks; (I) Quartz vein 

showing top-to-the-N kinematics; (J) Recumbent folds in the Sibao group; (K) The primary 

foliations S0-1 were modified by the later penetrative foliations S2 in the Sibao group; (K’) 

Sketch of the the K; (L) Sigmoid quartz vein indicates a top-to-the-W kinematic; (M) E-W 

directed lineations in the Sibao group; (N) Shear bands indicate the top-to-the NE kinematics 

to the NE of Yuanbaoshan pluton; (O) Weakly metamorphosed dipping to the S with steep 

angle; (P) Foliations S0-1 are dipping to the E to the E of Yuanbaoshan pluton; (Q) The quartz 

veins indicate an eastward kinematics to the E of Yuanbaoshan pluton; (R) Mylonite on the 

roof of the Yuanbaoshan pluton; (S) E-W elongated tourmalin; (T) Gentle bedding planes (S0-1) 

dipping to the southeast; (U) Weakly metamorphosed Sibao group. 

4.4 Microscopic observations 

    As different kinds of deformation styles are observed in the field, in order to decipher the 



Oct. 2018   Chapter 4 

76 

 

tectonic evolution of the Sanfang-Yuanbaoshan area, we have collected both the granites and 

country rocks for the microscopic study. 

        4.4.1 Granite plutons 

Tens of thin sections of the Sanfang and Yuanbaoshan granites have been investigated, 

and reveal that the granites are mainly composed of quartz, K-feldspar, plagioclase, biotite, 

muscovite and sericite (Figure 4-4). The undeformed granites from the western and southern 

parts of the Sanfang pluton and southern part of the Yuanbaoshan pluton display magmatic 

structures with euheral crystals of quartz, feldspars and micas. The quartz grains show a 

slightly undulose extinction (A48, A61, A65, A55, B14, B19; Figures 4-4A to 4-4F). However, 

in the weakly deformed granites, the quartz are mostly recrystallized as neograins with 

serrated boundaries (A41, B02; Figures 4-4G and 4-4H), showing the evidence of weak high 

temperature deformation. 

Moreover, in the highly deformed granites, the quartz and muscovite are totally 

recrystallized and show a preferred orientation. The myrmekites are within the feldspars (A44, 

A46) (Figures 4-4I and 4-4J), which indicates the granites have experienced strong dynamic 

metamorphism. Myrmekite is an exsolution of quartz and plagioclase due to fluid circulation 

during deformation And the mica fishes from the Sanfang and Yuanbaoshan plutons both 

indicate the top-to-the-W kinematics (A43, B20) (Figures 4-4K and 4-4L). 
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Figure 4-4. Microphotographs with the representative features in the granites and country 

rocks of the Sanfang-Yuanbaoshan area. (A-F): microphotographs in crossed polarized light 

of undeformed granites; (G-H): microphotographs in crossed polarized light of weakly 

deformed granites; (I-J): microphotographs in crossed polarized light of highly deformed 

granites showing orientated quartz and muscovite and interstitial myrmekite; (K-L): 

microphotographs in crossed polarized light of highly deformed granites showing 

top-to-the-W kinematics; (M-N): microphotographs in crossed polarized light and reflected 

light of the foliated country rocks of Sibao group; (O): microphotographs in crossed polarized 

light of top-to-the-E kinematic country rock on the east of the Yuanbaoshan pluton; (P-R): 

microphotographs in crossed polarized light and reflected light of the country rocks with 

top-to-the-W kinematics. 

        4.4.2 Country rocks 

The microphotographs of the samples at a relative low altitude of 500-700 meters show 

deformed structures with orientated quartz, biotite and sericite. The quartz grains are modified 

to elliptical shape with smooth boundaries, and the micas are well elongated in the E-W 

direction but without kinematic (1458, 2054) (Figures 4-4M and 4-4N). In the micro view of 

1468, on the east of the Sanfang pluton, the muscovite is altered to the sericite and strongly 

deformed, the pressure shadow indicates a top-to-the-E kinematic (Figure 4-4O). 

However, in the microphotographs of the samples at relative high altitude of >700 meters, 

the indicators (e.g., mica fish, shear band, sigma structure and pressure shadows) reveal 

strong deformation with top-to-the-W kinematics (Figures 4-4P to 4-4R). 

Therefore, the microscopic observations reinforce our field work, highlighting that the 

degrees of metamorphism and deformation in the granites and Sibao group in the 

Sanfang-Yuanbaoshan area, are positively related with the elevation. 

4.5 Magma crystallization age and Hafnium isotopic analysis 

The magma U-Pb crystallization age and geochemical features of the Sanfang and 

Yuanbaoshan plutons have been reported since the past twenty years (Li, 1999; Wang et al., 
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2007; Yao et al., 2014b), however, with the development of the testing accuracy, in order to 

better constrain the evolution of the granite plutons, we have collected two samples, A37 

(1403) and B13 (2024) (Figure 4-2), from the Sanfang and Yuanbaoshan plutons, respectively. 

        4.5.1 Zircon U-Pb age 

Zircons were separated from the crushed rocks using heavy liquid and magnetic 

techniques and then handpicked under a binocular microscope. The zircon grains were 

mounted in epoxy resin, and then polished and coated with gold. Cathodoluminescence (CL) 

images of the zircons were obtained using a JEOL JXA8230 electron probe microanalyzer at 

the Testing Center of Shandong Bureau of China Metallurgical Geology Bureau. The laser 

ablation (LA)–ICP–MS analysis of zircon U–Pb isotopic compositions was performed at the 

Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, using a 

ThermoX2 ICP–MS connected to a GeoLas Pro 193 nm laser ablation system. All analyses 

were carried out with a spot size of 30 μm or 20μm and a laser frequency of 10 Hz. Helium 

was used as the carrier gas to transport the ablated material. The detailed analytical procedure 

is described in Liu et al. (2010). All measurements were performed using zircon 91500 as the 

external standard with a 
206

Pb/
238

U age of 1065.4±0.6 Ma (Wiedenbeck et al., 1995). We 

calibrated elemental contents with NIST610 as the external standard and 
29

Si as the internal 

standard. The U–Pb ages were calculated from the raw signal data using the software 

ICPMSDataCal (ver. 8.4). On account of the 
204

Pb could not be measured owing to low signal 

and interference from 
204

Hg in the gas supply, a common lead correction was carried out using 

the EXCEL program common Pb correction (Andersen, 2002). For zircons older than 1000 

Ma, because of large amounts of radiogenic Pb, the 
207

Pb/
206

Pb age is more reliable than 

206
Pb/

238
U, whereas for zircons younger than 1000 Ma, as a result of the low content of 

radiogenic Pb and uncertainty of common Pb correction, the 
206

Pb/
238

U age is more reliable. 

Typical CL images of zircons are presented in Figures 4-5A and 4-5B. U–Pb results are 

listed in Table 4-2 and graphically illustrated in Figure 4-5. Zircons analyzed in this study range 

in length from 90 to 200 μm, with length/width ratio ranges from 2:1 to 3:1. All of zircon grains 

display oscillatory zoning (Figures 4-5A and 4-5B) and high Th/U values (average 0.35; Table 
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4-2), indicating their magmatic origin (Corfu et al., 2003; Hoskin and Schaltegger, 2003). 

Thirty seven zircon U-Pb ages are obtained for each granite pluton (Sanfang and 

Yuanbaoshan), which fall in the range of 814-1150 Ma and 827-2720 Ma, respectively 

(Figures 4-5D and 4-5G). However, most of the data indicate ages comprised between 820 to 

850 Ma (Figures 4-5E and 4-5H), with an average of 830±2 Ma and 830±5 Ma, respectively 

(Figures 4-5F and 4-5I). Some ages older than 2.0 Ga may indicate the existence of 

Paleoproterozoic rocks below the plutons. These grains are xenocrystals included in the 

granitic magma. 

        4.5.2 Zircon ɛ(Hf) analysis 

Zircon Hf isotopic composition was analyzed by Neptune MC–ICP–MS, which is a 

double focusing multi–collector ICP–MS and has the capability of high mass resolution 

measurements in a multiple collector mode. During laser ablation analyses, the isobaric 

interference of 
176

Lu on 
176

Hf is negligible due to the extremely low 
176

Lu/
177

Hf value in zircon 

(normally <0.002). However, the interference of 
176

Yb on 
176

Hf must be intensively corrected 

since the contribution of 
176

Yb to 
176

Hf. This method can provide an accurate correction of the 

176
Yb interference on 

176
Hf (Kemp et al., 2006). During analysis, an isotopic ratio of 

176
Yb/

172
Yb = 0.5887 was applied. Standard zircon 91500 was used for the external correction, 

with a 
176

Hf/
177

Hf value of 0.282300 ± 8 (2σ). The detailed analytical procedure is similar to the 

description by Yuan et al. (2008). Initial 
176

Hf/
177

Hf values were calculated based on Lu decay 

constant of 1.865x10
−11

 (Scherer et al., 2001). Model ages were calculated under the 

assumption that the 
176

Lu/
177

Hf of average crust is 0.015, and the 
176

Hf/
177

Hf and 
176

Lu/
177

Hf 

ratios of chondrite and depleted mantle at the present are 0.282772 and 0.0332, 0.28325 and 

0.0384, respectively (Blichert–Toft and Albarede, 1997). The model ages (TDM) provide only 

a minimum age for the source material of the magma from which the zircons crystallized. 

More than half of the U–Pb dated zircons from the Sanfang granite were chosen for 

in–situ Hf isotopic analysis. The Hf analyses were executed near the fields used for U–Pb 

dating spots. For purpose of discussing the Hf isotopic evolution history, the initial 
176

Hf/
177

Hf 

values and εHf (t) were calculated using the zircon 
206

Pb/
238

U ages. The results of the Hf 
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isotopic analyses are presented in Table 4-3, and the εHf (t) versus U–Pb age diagram is 

illustrated in Figure 4-5C. The sample of A37 (1403) show negative εHf (t) values, ranging 

from -1.89 to -11.15, with an average of -4.63. Correspondingly, on the εHf (t) versus U–Pb 

age plot, the two model ages (TDM2) mainly concentrate on 1828–2143 Ma, while separately 

project at 2418 Ma (Figure 4-5C). These results indicate that the analyzed granitic rock was 

derived from the partial melting of Paleoproterozoic continental basement rocks. In addition, all 

the isotopic data are plotted under the CHUR line and suggest that the involvement of a mantle 

component in the granitic magma was negligible.  

 

Figure 4-5. The Cathodoluminescence, U-Pb ages and epsilon Hf(t) results of the granite 

samples of A37 and B13 from the Sanfang and Yuanbaoshan plutons, respectively. A and B: 

representative cathodoluminescence images of zircons of the samples, attached with analyzed 
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locations and U–Pb ages; C: Plot of epsilon Hf(t) versus U–Pb age of zircons from the Sanfang 

pluton; D: U–Pb concordia plots for the zircons from Sanfang granite; E: Enlarged interval of 

the concentrated ages in the D; F: The average of the ages showed in the E; G: U–Pb 

concordia plots for the zircons from Yuanbaoshan granite; H: Enlarged interval of the 

concentrated ages in the G; I: The average of the ages showed in the H. 
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Table 4-2. U-Pb dating data 

Analysis CORRECTED RATIOS CORRECTED AGES (Ma) 

concordance 
Th/U 

ratios  
207Pb/206Pb 

 
207Pb/235U 

 
206Pb/238U 

 
207Pb/206Pb  

 
207Pb/235U 

 
206Pb/238U 

 
    1σ   1σ   1σ   1σ   1σ   1σ 

Sample 1403 (A37) 

1403-1 0.064170  0.003370  1.248450  0.071490  0.134730  0.003510  747 114 823 32 815 20 99% 0.94  

1403-2 0.066760  0.003550  1.296120  0.092800  0.134580  0.006090  830 114 844 41 814 35 96% 0.24  

1403-3 0.067440  0.003490  1.306550  0.077200  0.134610  0.003850  851 110 849 34 814 22 95% 0.27  

1403-4 0.075440  0.003150  1.773600  0.078940  0.164030  0.003350  1080 86 1036 29 979 19 94% 0.15  

1403-5 0.068760  0.002930  1.337000  0.059900  0.136220  0.003670  892 90 862 26 823 21 95% 0.37  

1403-6 0.079070  0.003050  2.212030  0.099380  0.195370  0.004880  1174 78 1185 31 1150 26 97% 0.56  

1403-7 0.065360  0.002550  1.264680  0.050930  0.136980  0.003010  786 84 830 23 828 17 99% 0.43  

1403-9 0.078520  0.003100  2.067010  0.087200  0.186330  0.004330  1160 80 1138 29 1101 24 96% 0.40  

1403-10 0.067610  0.003180  1.294370  0.061930  0.135810  0.003290  856 100 843 27 821 19 97% 0.43  

1403-11 0.066860  0.003240  1.283580  0.061330  0.137200  0.003550  833 103 838 27 829 20 98% 0.05  

1403-12 0.067490  0.003790  1.281600  0.071510  0.136250  0.003980  853 120 838 32 823 23 98% 0.23  

1403-13 0.069100  0.002910  1.331060  0.057840  0.138100  0.004430  902 89 859 25 834 25 96% 0.12  

1403-14 0.067310  0.002870  1.289490  0.054860  0.136940  0.004100  847 91 841 24 827 23 98% 0.10  

1403-15 0.071780  0.003150  1.362270  0.060410  0.137590  0.003940  980 92 873 26 831 22 95% 0.14  

1403-16 0.067260  0.003760  1.288130  0.069470  0.137630  0.004110  846 119 840 31 831 23 98% 0.13  

1403-17 0.067700  0.004320  1.298600  0.072250  0.138830  0.005520  859 136 845 32 838 31 99% 0.26  

1403-18 0.066130  0.002690  1.280030  0.061390  0.136630  0.004410  811 87 837 27 826 25 98% 0.09  

1403-19 0.068080  0.003100  1.317510  0.066380  0.137140  0.003870  871 97 853 29 828 22 97% 0.07  

1403-20 0.067920  0.003200  1.305320  0.061680  0.137340  0.004730  866 100 848 27 830 27 97% 0.35  

1403-21 0.075510  0.002170  1.759020  0.067910  0.166670  0.003440  1082 59 1030 25 994 19 96% 0.29  
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1403-22 0.066880  0.002100  1.280900  0.037410  0.138870  0.004890  834 67 837 17 838 28 99% 0.38  

1403-23 0.064280  0.001230  1.228120  0.025780  0.138060  0.001820  751 41 813 12 834 10 97% 0.16  

1403-24 0.066260  0.001240  1.264570  0.024970  0.137730  0.001430  814 40 830 11 832 8 99% 0.16  

1403-25 0.064920  0.001130  1.234900  0.023080  0.137450  0.001570  772 37 817 10 830 9 98% 0.28  

1403-26 0.066510  0.001570  1.263570  0.032670  0.136920  0.002160  823 50 830 15 827 12 99% 0.40  

1403-27 0.065110  0.001150  1.235710  0.023980  0.137220  0.001770  778 38 817 11 829 10 98% 0.27  

1403-28 0.068180  0.001240  1.297320  0.027110  0.137290  0.001830  874 38 845 12 829 10 98% 0.17  

1403-29 0.066420  0.001390  1.260180  0.026490  0.137220  0.001740  820 45 828 12 829 10 99% 0.35  

1403-30 0.066360  0.001400  1.263390  0.030910  0.137100  0.002120  818 45 829 14 828 12 99% 0.13  

1403-32 0.081160  0.001730  2.164630  0.065780  0.190400  0.003860  1225 43 1170 21 1124 21 95% 0.09  

1403-33 0.065520  0.001120  1.251830  0.022610  0.137720  0.001410  791 37 824 10 832 8 99% 0.20  

1403-34 0.067610  0.001640  1.291380  0.031480  0.138000  0.002000  857 52 842 14 833 11 98% 0.63  

1403-35 0.066110  0.001870  1.252750  0.034960  0.136620  0.002290  810 61 825 16 826 13 99% 0.16  

1403-36 0.082480  0.001110  1.993340  0.031100  0.173880  0.001790  1257 27 1113 11 1033 10 92% 0.21  

1403-38 0.066920  0.001180  1.276980  0.023200  0.137420  0.001390  835 38 836 10 830 8 99% 0.20  

1403-39 0.067410  0.001330  1.284140  0.027110  0.137860  0.001900  850 42 839 12 833 11 99% 0.24  

1403-40 0.066030  0.001230  1.266980  0.029430  0.137720  0.001930  807 40 831 13 832 11 99% 0.21  

Sample 2024 (B13) 

2024-1 0.065500  0.001820  1.261080  0.031570  0.137580  0.002020  790 60 828 14 831 11 99% 0.76  

2024-3 0.065550  0.001510  1.261460  0.026960  0.137480  0.001770  792 49 829 12 830 10 99% 0.67  

2024-4 0.073800  0.002260  1.639830  0.072270  0.157100  0.004300  1036 63 986 28 941 24 95% 0.43  

2024-5 0.065770  0.001710  1.267560  0.031720  0.137710  0.001680  799 56 831 14 832 10 99% 0.17  

2024-6 0.065610  0.001510  1.259910  0.028700  0.137160  0.001600  794 49 828 13 829 9 99% 0.10  

2024-7 0.192840  0.003750  14.152860  0.272140  0.524830  0.006440  2767 33 2760 18 2720 27 98% 0.58  

2024-8 0.125120  0.002920  6.523570  0.256130  0.369490  0.011220  2031 42 2049 35 2027 53 98% 0.15  
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2024-9 0.066640  0.002420  1.262060  0.033830  0.136860  0.003020  826 78 829 15 827 17 99% 0.95  

2024-10 0.064080  0.002440  1.226520  0.048880  0.137390  0.002520  744 82 813 22 830 14 97% 0.52  

2024-11 0.066140  0.001880  1.265900  0.036240  0.137420  0.001960  811 61 831 16 830 11 99% 0.75  

2024-12 0.065710  0.001680  1.256240  0.032880  0.137210  0.001760  797 55 826 15 829 10 99% 0.34  

2024-13 0.065450  0.002010  1.244370  0.040780  0.137260  0.003110  789 66 821 18 829 18 98% 0.23  

2024-14 0.091810  0.001810  3.232250  0.095010  0.251450  0.005490  1463 38 1465 23 1446 28 98% 0.51  

2024-15 0.187020  0.003180  13.625470  0.269200  0.522990  0.007150  2716 29 2724 19 2712 30 99% 0.50  

2024-16 0.065920  0.001250  1.258770  0.026960  0.137290  0.001960  804 41 827 12 829 11 99% 0.08  

2024-17 0.066710  0.001660  1.268090  0.031020  0.137130  0.001730  829 53 832 14 828 10 99% 1.35  

2024-18 0.067360  0.001430  1.282690  0.031340  0.137190  0.002020  849 45 838 14 829 11 98% 0.57  

2024-19 0.064720  0.001490  1.233740  0.029890  0.137480  0.001960  765 50 816 14 830 11 98% 0.12  

2024-20 0.065460  0.003630  1.233810  0.066950  0.137320  0.004120  789 120 816 30 829 23 98% 0.51  

2024-21 0.066630  0.001730  1.265260  0.031050  0.137180  0.001890  826 56 830 14 829 11 99% 0.05  

2024-22 0.074260  0.001500  1.810960  0.043730  0.175420  0.002570  1049 42 1049 16 1042 14 99% 0.55  

2024-23 0.066190  0.001590  1.261210  0.030780  0.137450  0.001900  812 51 828 14 830 11 99% 0.30  

2024-24 0.067000  0.001230  1.272010  0.026520  0.137150  0.002160  838 39 833 12 829 12 99% 0.25  

2024-25 0.102110  0.001800  3.584060  0.079520  0.252520  0.003850  1663 33 1546 18 1451 20 93% 0.37  

2024-26 0.064560  0.001480  1.226440  0.028060  0.137150  0.001550  760 50 813 13 829 9 98% 0.27  

2024-27 0.067460  0.001500  1.278110  0.027800  0.137070  0.001560  852 47 836 12 828 9 99% 0.99  

2024-28 0.091880  0.001830  3.249860  0.102580  0.249300  0.005470  1465 39 1469 25 1435 28 97% 0.30  

2024-29 0.066310  0.001830  1.262900  0.030630  0.137480  0.002490  816 59 829 14 830 14 99% 0.16  

2024-30 0.103270  0.002060  4.121880  0.093960  0.287030  0.004180  1684 38 1659 19 1627 21 98% 0.38  

2024-32 0.165130  0.002750  9.749940  0.164700  0.425100  0.004890  2509 29 2411 16 2284 22 94% 0.27  

2024-34 0.087950  0.001420  2.597700  0.041920  0.213070  0.002220  1381 32 1300 12 1245 12 95% 0.61  

2024-35 0.067390  0.001930  1.332540  0.039080  0.142400  0.001570  850 61 860 17 858 9 99% 0.32  

2024-36 0.073230  0.001920  1.663310  0.045930  0.163620  0.002090  1020 54 995 18 977 12 98% 0.13  
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2024-37 0.073210  0.001140  1.704990  0.038310  0.167600  0.003010  1020 32 1010 14 999 17 98% 0.74  

2024-38 0.070540  0.001670  1.341650  0.030980  0.137440  0.001650  944 50 864 13 830 9 96% 0.35  

2024-39 0.066290  0.001430  1.262510  0.028690  0.137480  0.001860  816 46 829 13 830 11 99% 0.48  

2024-40 0.069440  0.001550  1.318220  0.034040  0.136960  0.002750  912 47 854 15 827 16 96% 0.37  
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Table 4-3. Lu-Hf isotopic compositions  

Sample 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(t) εHf(0) Age(Ma) TDM1(Ma) TDM2(Ma) f(Lu/Hf) 

Sample A37 (1403) 

1403-01.xls 0.069465 0.001329 0.002551 0.000049 0.282182 0.000018 -4.26  -20.85  815 1573  1977  -0.92  

1403-02.xls 0.033276 0.002444 0.001317 0.000096 0.282133 0.000017 -5.35  -22.59  814 1591  2046  -0.96  

1403-03.xls 0.052056 0.000445 0.001897 0.000020 0.282240 0.000019 -1.89  -18.82  814 1464  1828  -0.94  

1403-05.xls 0.020281 0.000170 0.000823 0.000008 0.282080 0.000013 -6.79  -24.48  823 1645  2143  -0.98  

1403-07.xls 0.061695 0.001249 0.002307 0.000047 0.282159 0.000038 -4.69  -21.68  828 1597  2014  -0.93  

1403-10.xls 0.035740 0.000612 0.001399 0.000023 0.282159 0.000012 -4.33  -21.68  821 1558  1987  -0.96  

1403-11.xls 0.015152 0.000361 0.000611 0.000014 0.282152 0.000011 -3.99  -21.94  829 1536  1971  -0.98  

1403-12.xls 0.032853 0.000245 0.001274 0.000009 0.282167 0.000014 -3.95  -21.40  823 1542  1964  -0.96  

1403-13.xls 0.060701 0.001586 0.002274 0.000052 0.282210 0.000017 -2.74  -19.88  834 1522  1896  -0.93  

1403-14.xls 0.033084 0.001351 0.001302 0.000052 0.282124 0.000017 -5.39  -22.92  827 1603  2058  -0.96  

1403-16.xls 0.031782 0.000622 0.001255 0.000024 0.282096 0.000014 -6.26  -23.89  831 1640  2116  -0.96  

1403-17.xls 0.034896 0.000528 0.001431 0.000019 0.282118 0.000016 -5.43  -23.12  838 1617  2069  -0.96  

1403-18.xls 0.018821 0.001017 0.000813 0.000046 0.281955 0.000025 -11.15  -28.91  826 1817  2418  -0.98  

1403-19.xls 0.069655 0.001338 0.002645 0.000045 0.282206 0.000014 -3.22  -20.03  828 1544  1922  -0.92  

1403-20.xls 0.043510 0.000604 0.001756 0.000024 0.282195 0.000019 -3.07  -20.41  830 1522  1914  -0.95  

1403-22.xls 0.028666 0.000751 0.001136 0.000029 0.282155 0.000015 -3.96  -21.81  838 1553  1976  -0.97  

1403-23.xls 0.060435 0.001617 0.002269 0.000057 0.282119 0.000015 -5.96  -23.10  834 1653  2099  -0.93  

1403-24.xls 0.040540 0.001049 0.001561 0.000038 0.282197 0.000024 -2.84  -20.33  832 1511  1901  -0.95  

1403-26.xls 0.033645 0.000740 0.001340 0.000028 0.282199 0.000015 -2.74  -20.25  827 1499  1891  -0.96  
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4.6 Rock magnetic investigation and results 

        4.6.1 Field sampling 

A total of 352 cores from 55 sites were sampled for the AMS study, 35 and 20 for 

the Sanfang and Yuanbaoshan plutons, respectively (Figure 4-6). The sampling sites 

are expected to be homogeneously distributed in the plutons, and each site of fresh 

outcrop covers several tens of square meters. In the best case, the sampling sites are 

distanced at ~2 kilometers. For each site, at least six cores are drilled with an interval 

of 3 to 4 meters between each other. 

 

Figure 4-6. Sketch map with the sampling sites and AMS results for each sampling 

site. 

        4.6.2 Magnetic mineralogical analysis 

In order to define the carriers of our Anisotropy of Magnetic Susceptibility 

(AMS) analysis, i.e., diamagnetic, paramagnetic and ferromagnetic minerals, we have 
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performed some methods: (1) a magnetic hysteresis loop characterization by using a 

vibrating magnetometer in the Laboratoire de Paleomagnétisme of the Institue de 

Physique du Globe de Paris (IPGP); (2) an isothermal remanence magnetization 

characterization with an IM30 pulsed magnetizer and a JR5 spinner magnetometer at 

the Insititut des Sciences de la Terre d’Orléans (ISTO); (3) a thermomagnetic 

characterization by using a KLY3 kappabridge coupled with a CS3 furnace; and (4) 

scanning electron microscope (SEM) with the ZEISS MERLIN Compact for the 

minerals at the Insititut des Sciences de la Terre d’Orléans (ISTO). 

A total of nine samples from the Sanfang pluton were selected for magnetic 

mineral analysis, and the results are presented in the Figure 4-7. The hysteresis curves 

(Figure 4-7A) present similar S-shaped hysteresis loops for the three samples with 

significant difference between the corrected and uncorrected curves, which suggest 

that both the ferromagnetic and paramagnetic minerals can be considered as the main 

magnetic susceptibility carriers. Rapid saturation of the isothermal magnetic 

remanence at about 200 mT is characteristic for the sample of A46 (Figure 4-7B), 

indicating the existence of ferromagnetic minerals with low magnetic coercivity. 

However, for the sample A48, the gradual saturation until to 1 Tesla (Figure 4-7B) 

highlights that the the existance of ferromagnetic minerals with high magnetic 

coercivity. The rates of saturation of the samples of A65 and A67 are in-between the 

A46 and A48 (Figure 4-7B), which reveals that both the weak and high coercive 

ferromagnetic minerals are existed in the granites. The thermomagnetic measurements 

on the samples of A10 and A23 show a rapid drop of the magnetic susceptibility at 

about 580℃ (A10 in Figure 4-7C) and continuous drop until to 680°C (A23 in Figure 

4-7C), indicateing the presence of (titano) magnetite and hematite. However, these 

two samples show a strong continuous increase in susceptibility during the cooling 

(owing to oxidation reactions) revealing that a significant mineral transformation 

occurred during the heating, e.g. iron sulfide to iron oxide (Figure 4-7C). The SEM 

investigation reveals that the existence of titanomagnetite with the mass fraction of 
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the Ti02 ranged from 45.51% to 50.65%, and they are commonly intergrown or partly 

enclosed in biotite with the long axis parallel to the cleavage of biotite (Figure 4-7D). 

The Day-plot of hysteresis parameters are presented in the Figure 4-7E, revealing that 

(titano) magnetites of the samples are in the multidomain zone (e.g., Dunlop, 2002). It 

indicates that the major (elongated) axis of the magnetic susceptibility ellipsoid is 

concord to the major morphological axis of minerals (e.g., Borradaile & Henry, 1997). 

Consequently, the magnetic susceptibility carriers in the Sanfang granite pluton 

are composed of ferromagnetic minerals, such as (titano) magnetite in multidomaine 

and hematite, with paramagnetic minerals, such as biotite, muscovite and feldspar. 

According to Rochette et al. (1992), the magnetic fabrics of these minerals are 

comparable to the petrographic ones. Therefore, the AMS measurements will be an 

effective way to obtain the information of the petrofabrics of granite as well as the 

knowledge on the pluton emplacement (Martín-Hernández et al., 2004). 
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Figure 4-7. Magnetic mineralogic analyses (A-D) and Day-plot of hysteresis 

parameters (E) for the samples from the Sanfang pluton. SD: Single-Domain, PSD: 

Pseudo-Single-Domain, MD: Multidomain. Mrs: the saturation intensity of magnetic 

remanence, Ms: the saturation intensity of induced magnetization, Hcr: the coercivity 

of magnetic remanence, Hc: magnetic coercivity of the measured sample.  

        4.6.3 AMS parameters 

The AMS measurements were carried out with a KLY3 Kapprabridge at the 

Institut des Sciences de la Terre d’Orléans. A total of 352 (228 and 124 from the 

Sanfang and Yuanbaoshan, respectively) specimens from 55 sites were prepared.  

Detailed informations can be found in Table 4-4. The mean bulk magnetic 

susceptibility (Km) for each sampling site of the granites from the Sanfang and 

Yuanbaoshan plutons are varied from 27.5 to 133.0x10
-6

 SI and 32.7 to 197.0x10
-6

 SI, 

respectively (Figures 4-8A, 4-8B and 4-8D). The site-mean value of the degree of 

anisotropy (Pj) ranges in [1.017, 1.156] and [1.009, 1.172] for the Sanfang and 

Yuanbaoshan plutons, respectively (Figures 4-8B, 4-8C and 4-8E). The site-mean of 

shape parameter (T) ranges in [-0.384, 0.912] and [-0.384, 0.817] for the Sanfang and 

Yuanbaoshan, respectively (Figures 4-8C, and 4-8F). The degree of anisotropy and 

shape parameter are positively related (Figure 4-8C). Moreover, the degree of 

anisotropy and shape parameter are both increased with the rising of elevation 

(Figures 4-8E, and 4-8F). 
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Figure 4-8. Magnetic parameters of the Sanfang-Yuanbaoshan granite plutons. (A) 

Distribution of the bulk magnetic susceptibility; (B) Scatter plot of the bulk magnetic 

susceptibility and degree of anisotropy; (C) Scatter plot of the shape parameter and 

degree of anisotropy with a positive correlation; (D) Scatter plot of the bulk magnetic 

susceptibility and elevation with a positive correlation; (E) Scatter plot of the degree 

of anisotropy and elevation with a positive correlation; (F) Scatter plot of the shape 

parameter and elevation with a positive correlation. All the data are site-mean value 

for each sampling site.
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Table 4-4. Sampling site information and AMS site-mean results for the Sanfang-Yuanbaoshan plutons 

Site Geopraphic coordinates Elv.(m) n 
Km 

(10
-6

SI) 
PJ T 

AMS site-mean results 

K1 α95(max/min) K3 α95(max/min) 

Dec/Inc 

(°) (°) 

Dec/Inc 

(°) (°) 

Sanfang 

A02 N25°36.269′  E108°46.973′ 547 8 40.2  1.017  0.178  155.1/17.4 61.2/35.7 259.7/38.6 47.4/39.1 

A04 N25°35.191′  E108°46.424′ 680 6 27.5  1.074  0.007  159.2/10.1 28.2/15.6 263.1/53.5 17.6/12.7 

A15 N25°22.597′  E108°49.759′ 860 6 81.6  1.104  0.776  263.0/43.0 42/4.7 58.9/44.3 11.8/4.3 

A20 N25°24.531′  E108°46.455′ 1330 6 33.0  1.130  0.377  255.2/18.9 34.5/16.1 48.8/69.1 26.1/12.8 

A26 N25°17.328′  E108°44.369′ 402 6 76.9  1.083  0.000  223.2/61.7 8.7/5.4 56.9/27.6 16.5/6.2 

A31 N25°13.954′  E108°40.646′ 770 6 90.5  1.041  -0.155  83.9/42.4 29.7/15.0 292.0/44.0 36.5/12.5 

A33 N25°13′14.7"  E108°51′33.4" 293 8 47.9  1.117  0.054  304.4/0.9 62.3/32.7 34.8/24.3 54.2/25.3 

A34 N25°17′08.1"  E108°53′10.3" 263 6 52.5  1.022  -0.384  78.6/0.9 6.6/4.8 346.3/68.4 37.4/3.9 

A35 N25°17′24.0"  E108°52′26.8" 370 6 55.2  1.063  0.417  251.6/19.7 11.0/4.7 46.5/68.4 11.6/7.6 

A36 N25°17′44.6"  E108°51′38.9" 441 6 88.1  1.081  0.392  262.1/21.2 19.1/7.0 40.7/62.7 19/7.9 

A37 N25°18′45.8"  E108°50′34.5" 524 6 67.8  1.099  0.148  256.9/14.5 7.9/4.9 54.3/74.3 11.0/3.1 

A38 N25°26′07.7"  E108°48′50.7" 1153 7 42.6  1.140  0.737  263.9/36.6 14.7/4.9 86.4/53.4 10.1/4.7 

A40 N25°22′52.5"  E108°54′03.7" 772 7 48.9  1.071  0.649  289.5/13.2 23.2/5.3 58.1/69.4 6.9/4.1 

A41 N25°22′24.9"  E108°53′38.4" 674 6 46.9  1.059  0.569  264.2/20.8 17.3/2.6 44.9/63.9 7.3/2.6 

A42 N25°21′49.1"  E108°52′57.9" 636 6 57.5  1.071  0.722  216.8/26.1 26.6/7.7 33.1/63.9 10.4/7.7 

A43 N25°20′43.1"  E108°50′39.9" 993 7 99.5  1.083  0.562  265.4/23.0 16.4/4.5 76.2/66.7 6.7/4.4 

A44 N25°27′23.2"  E108°50′42.3" 1085 7 100.0  1.116  0.687  253.3/14.8 15.7/9.1 91.6/74.4 10.3/5.5 

A45 N25°28′15.0"  E108°51′27.9" 1001 6 109.0  1.156  0.912  224.1/1.4 37.8/3.7 30.7/88.6 7.4/0.6 
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A46 N25°23′25.3"  E108°49′03.4" 983 8 88.8  1.097  0.671  253.1/20.8 13.2/6.4 61.4/68.8 7.9/4.2 

A47 N25°25′51.6"  E108°44′30.3" 1196 7 93.3  1.071  0.776  210.7/53.0 27.3/5.8 95.3/17.9 8.0/4.1 

A48 N25°28′29.2"  E108°43′21.2" 788 8 46.6  1.042  -0.111  163.0/31.9 10.8/2.9 302.6/50.7 17.9/2.5 

A49 N25°29′45.9"  E108°43′24.5" 704 8 55.5  1.055  -0.221  173.5/19.8 4.6/2.1 276.5/32.1 12.2/4.0 

A51 N25°32′04.4"  E108°43′51.3" 566 6 50.3  1.067  -0.282  150.8/14.4 4.1/2.3 264.5/57.3 12.0/3.2 

A52 N25°31′10.6"  E108°43′39.7" 612 6 44.0  1.030  -0.065  3.5/10.2 9.4/4.4 261.2/49.8 18.0/5.1 

A53 N25°21′09.7"  E108°53′37.2" 677 6 41.9  1.066  0.725  166.0/32.7 19.9/9.0 355.4/56.9 10.1/3.7 

A54 N25°15′25.5"  E108°51′46.0" 296 6 74.4  1.022  0.193  306.7/6.9 67.3/6.6 45.8/52.6 13.8/7.0 

A55 N25°15′52.1"  E108°45′18.9" 317 6 124.0  1.062  0.413  245.2/36.5 22.3/6.8 87.8/51.3 8.0/6.9 

A56 N25°15′03.6"  E108°45′05.5" 353 6 66.8  1.037  0.161  304.1/26.4 35.2/9.9 89.6/58.9 14.8/11.8 

A57 N25°12′51.7"  E108°45′04.4" 630 5 57.3  1.042  0.071  292.5/42.4 16.1/7.1 91.9/45.7 16.2/7.1 

A58 N25°13′36.6"  E108°44′15.8" 426 6 91.6  1.043  -0.073  264.2/48.0 17.4/6.9 112.2/38.5 25.3/8.5 

A59 N25°17′32.8"  E108°43′37.6" 441 6 96.2  1.028  0.104  243.1/38.8 21.8/6.7 115.4/37.3 25.5/10.2 

A60 N25°19′20.4"  E108°41′58.6" 870 6 41.9  1.026  0.268  49.1/44.1 68.8/10.6 289.8/26.8 16.1/8.5 

A61 N25°20′23.1"  E108°42′24.2" 940 7 133.0  1.038  0.460  172.1/55.1 18.1/5.2 278.2/11.0 18.0/3.7 

A63 N25°16′04.1"  E108°41′01.9" 533 7 112.0  1.038  0.128  122.9/53.3 18.6/7.2 298.1/36.6 12.0/5.2 

A65 N25°14′17.1"  E108°40′46.5" 722 8 107.0  1.030  -0.178  161.9/42.6 67.4/11.4 310.7/43.0 17.9/11.2 

Yuanbaoshan 

B01 N25°24′11.4"  E109°06′22.4" 494 7 108.0  1.079  0.390  274.4/11.5 16.1/4.4 36.0/68.8 17.3/4.7 

B02 N25°24′00.0"  E109°06′18.9" 489 5 32.7  1.026  0.361  101.2/6.3 34.0/13.8 5.8/40.7 21.1/10.3 

B03 N25°24′30.1"  E109°06′51.7" 514 6 135.0  1.064  0.464  112.8/2.0 13.5/5.9 19.0/62.8 7.6/5.1 

B04 N25°25′09.4"  E109°07′23.8" 575 5 108.0  1.068  0.083  313.5/1.3 42.4/6.4 220.9/64.0 38.8/4.0 

B05 N25°25′43.0"  E109°08′29.0" 715 6 76.4  1.128  0.643  128.1/2.6 32.4/3.7 249.7/85.0 20.5/3.8 

B06 N25°26′11.6"  E109°08′24.6" 828 6 172.0  1.041  0.479  148.5/4.1 26.7/4.3 326.5/85.9 10.7/4.3 
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B07 N25°27′34.9"  E109°09′56.5" 986 7 112.0  1.150  0.775  318.9/2.9 15.4/1.6 71.1/82.3 3.7/1.5 

B08 N25°28′18.0"  E109°10′32.0" 802 6 197.0  1.168  0.817  336.0/3.2 24.0/9.5 114.9/85.7 10.9/3.7 

B09 N25°28′47.3"  E109°10′47.6" 622 6 82.9  1.078  -0.149  167.6/6.9 7.8/5.4 34.0/80.1 16.4/6.2 

B10 N25°29′41.9"  E109°12′03.7" 332 6 74.2  1.102  -0.384  333.0/7.4 7.3/1.7 71.6/48.7 22.7/6.8 

B11 N25°15′13.7"  E109°10′29.8" 173 6 79.7  1.009  0.166  255.3/58.8 58.1/18.9 159.5/3.2 46.7/18.8 

B12 N25°17′24.2"  E109°11′45.9" 202 8 167.0  1.016  -0.094  165.0/17.7 27.5/18.6 282.4/55.3 43.4/18.5 

B13 N25°18′06.9"  E109°11′52.2" 222 6 152.0  1.023  -0.325  155.9/23.4 16.9/12.4 262.5/33.4 48.7/15.3 

B14 N25°19′08.4"  E109°11′46.9" 234 6 135.0  1.034  -0.305  155.4/24.6 13/3.4 8.9/61.3 31.6/10.5 

B15 N25°20′35.0"  E109°12′26.6" 315 6 74.0  1.026  -0.094  165.5/12.6 14.0/3 258.8/14.4 26.7/6.8 

B16 N25°21′03.0"  E109°11′38.0" 523 5 85.9  1.038  0.534  181.2/30.4 19.7/11.8 70.5/31.1 21.4/6.6 

B17 N25°21′46.0"  E109°10′43.3" 837 8 76.3  1.056  0.127  182/28.5 26.1/6.5 78.5/23.2 33.7/6.8 

B18 N25°16′45.0"  E109°12′38.5" 175 6 83.6  1.022  -0.265  131.6/8.3 14.8/5.7 38.1/22.9 18.8/13.9 

B19 N25°18′12.6"  E109°13′29.7" 329 7 63.0  1.028  -0.235  184.9/27.2 18.1/5.7 42.5/57 8.8/4.8 

B20 N25°25′02.7"  E109°12′54.6" 585 6 79.3  1.172  0.636  269.7/36.4 10.5/4.1 94.4/53.5 5.9/1.2 

Note: Alt.: Altitude, n: number of specimens at sampling site, Km: bulk magnetic susceptibility PJ: degree of susceptibility anisotropy, T: shape parameter of the AMS ellipsoid, K1: 

Magnetic lineation, K3: The pole of the magnetic foliation, Inc.: Inclination, Dec.: Declination, α95 (max/min): the long and short axes of the confidence ellipsoid at 95% level. 
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        4.6.4 AMS results 

The AMS results for all sampling sites are given in Figure 4-6. And the 

distribution of the magnetic foliations and lineations are presented in Figure 4-9. 

 

Figure 4-9. Distibution of the site-mean magmatic foliations and magnetic lineations 

for the Sanfang (SF) and Yuanbaoshan (YBS) plutons, with the density diagrams of 
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poles of magnetic foliations and magnetic lineations for these two plutons. 

Generally, the main strikes of the magnetic foliations are NW-SE and N-S 

directed for the Sanfang pluton. And the predominant direction of the magnetic 

lineations is NEE-SWW, with a subordinate direction of the NNW-SSE. However, for 

the Yuanbaoshan pluton, the main strikes of the magnetic foliations are sub N-S and 

NW-SE, and the magnetic lineations are mainly N-S and NW-SE directed (Figure 

4-9). 

Considering the magnetic foliation and lineation, degree of anisotropy and shape 

parameter, the studied areas in the Sanfang-Yuanbaoshan plutons can be divided to six 

sub zones (Figure 4-10). 

In the western part of the Sanfang pluton, the magnetic foliations consistently dip 

to the E with the inclination ranged from 33 to 79 degrees, but the magnetic lineations 

are mainly E-W and N-S. Almost all the specimens with PJ value lower than 1.1, 

which suggests that the magnetic fabric is a magmatic one (Borradaile and Henry, 

1997), and with an even shape parameters between oblate (T>0) and prolate (T<0) 

(Zone 1). In the southern part of the Sanfang pluton, the magnetic foliations dip to the 

W with the inclination from 31 to 63 degrees, and the magnetic lineations are nearly 

E-W directed. 94% of the specimens have the Pj value lower than 1.1 and the ratio 

between the oblate and prolate is about 2:1 (Zone 2). However, in the 

central-northeastern part of the Sanfang pluton, the Pj value, with the range from 

1.041 to 1.187, is much higher than other zones in the Sanfang pluton. 37% of the 

specimens with the Pj value higher than 1.1, suggesting that the magnetic fabric could 

be modifed in the post-solidus state (Tarling and Hrouda, 1993). The magnetic 

foliations gently dip to the SW, with coherent NEE-SWW directed magnetic 

lineations. More than 95% of the shape parameters of the specimens are greater than 

zero, i.e., prolate shape (Zone 3). The remained part of the Sanfang pluton displays 
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the gentle magnetic foliations with dispersed magnetic lineations. All the Pj values are 

lower than 1.1 and the ratio of shape parameter between the oblate and prolate is 

about 2:1 (Zone 4). 

As to the Yuanbaoshan pluton, the central-northwestern part is similar to Zone 3 

of the Sanfang pluton, highlighting higher Pj value ranging from 1.017 to 1.183 and 

57% of sites in this zone are higher than 1.1, with a positive value of shape parameter 

for almost all sites. It shows moderate magnetic foliations dipping ranging from 4 to 

27°, with consistent NW-SE directed magnetic lineations (Zone 5). In the 

central-southern part and a fraction of the northern part, the strikes of the magnetic 

foliations are sub N-S with relative steep inclinations of 35 to 76°, and the magnetic 

lineations are always north- and southward. Most of the Pj values are lower than 1.1, 

and the ratio between the oblate and prolate shapes is about 1:1 (Zone 6). However, 

some localities close to the boundary between the granite plutons and country rocks, 

i.e., A33 and B11 in Figure 4-10, are quite different with others, suggesting that they 

were probably affected by the country rocks during the magma emplacement. 

According to the anisotropy degree (PJ), these six zones can be, moreover, 

subgrouped into two units, namely, zone with magmatic fabrics and zone with 

tectonic ones (Figure 4-10), which correspond to the undeformed and deformed 

granites, respectively. 
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Figure 4-10. Six sub-zones for the Sanfang-Yuanbaoshan plutons defined by the 

degree of anisotropy, magnetic foliation and magnetic lineation, with representative 

macroscopic and microscopic pictures. 

4.7 Gravity modeling 

The regional gravity anomaly reflects the density architecture of the underground, 

hence, the proper decipherment of the gravity anomaly data can help to reveal the 

construction of the geological units in the deep (e.g., Martelet et al., 2013). Especially 

for the intrusive geological bodies which are usually in large density contrast with 

respect to the country rocks. Consequently, the gravity modeling method is applied to 

deduce the Sanfang and Yuanbaoshan pluton shapes within the Sibao strata. The 

1:200,000 original Bouguer gravity anomaly map for the Sanfang-Yuanbaoshan area 
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is from the Chinese Bouguer gravity anomaly database which covers the Sanfang and 

Yuanbaoshan plutons exposure and their surrounding areas. The Digital Elevation 

Model (DEM) for the Sanfang-Yuanbaoshan area, with a resolution of 90 m at the 

equator, is downloaded from the website of http://srtm.csi.cgiar.org/. 

We collected both the granites and country rocks for the measurement of their 

density. They were measured at the University of Nanjing by using the Matsuhaku 

Electronic Densimeter GH-300. For each sample, we measured twice and take the 

average value at a precision of 0.001g/cm³. Detailed density data for the samples from 

the granites, Sibao group, Danzhou group and Sinian strata can be referred in Table 

4-5. As the post Sinian strata is poorly exposed, so we take it as same as the density of 

the Sinian strata. Besides, the density of the mafic-ultramafic block is referred to the 

geological survey of the Guangxi province (BGMRGX, 1985) (Figure 4-12). 

In the original Bouguer gravity data, both the regional and long wavelength 

signals are involved, which reflect the surface and deep signatures, respectively. Thus 

the long wavelength signals need to be removed in order to get suitable gravity 

anomaly information just produced by the sub-surface geological body. After 

removing the long wavelength signals from the original gravity anomaly data, the rest 

normally is residual gravity anomaly data. Several low-pass Butterworth filters are 

tested for removing the long wavelength signals with cutoff wavelengths of 10 km, 20 

km, 30 km… to 130 km, 140 km and 150 km. Through the comparation between the 

residual gravity anomaly data and geological boundaries, the residual gravity anomaly 

data with the cutoff of wavelength of 130 km is the most suitable one, which matches 

best with surface geological features (Figure 4-11). 

The residual Bouguer gravity anomaly map shows two obvious negative 

anomaly centers in the southern and central parts of the Sanfang and Yuanbaoshan 

plutons, respectively (Figure 4-11). The negative anomaly regions for these two 

http://srtm.csi.cgiar.org/
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plutons are both N-S directed, which are concur with the geometry of the two plutons. 

According to the residual Bouguer gravity anomaly data and regional tectonic features, 

five profiles of gravity modeling are performed: two of them are perpendicular to the 

regional tectonic line (WE 1 and WE 2), and three are parallel with the regional 

structures (NS 1, NS 2 and NS 3). 

 

Figure 4-11. The residual Bouguer gravity anomaly of the Sanfang and Yuanbaoshan 

plutons and their surrounding areas. 

Five interpreted profiles are presented in Figure 4-12. The contact relationships 

between the granite plutons and the country rocks are depicted accroding to the field 

observations and geological maps, however, the deep structures of profiles are 

modelized with the gravity data. According to the residual Bouguer gravity anomaly 

modeling along these profiles, we can characterize these two plutons as following (1) 
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Negative gravity anomalies are N-S orientated within the Sibao group; (2) The roots 

of the granite plutons are presented in a N-S orientated dyke shape; (3) In the E-W 

direction, two plutons are in a tongue shape; (4) For the Sanfang pluton, the deepest 

root of ca. 5.3 km (dyke) is located in its soutern part, the depth is progressively 

decreased northwards with the shallowest depth of ca. 0.5-1 km in the northern part; (5) 

For the Yuanbaoshan pluton, the deepest part is ca. 5.3 km (dyke), the thickness in the 

N-S direction does not change significantly; (6) The Sanfang and Yuanbaoshan plutons 

seem to be connected in the deep. 

 

Figure 4-12. Interpreted profiles of the residual Bouguer gravity anomaly of the 

Sanfang and Yuanbaoshan plutons and their surrounding areas. The contact 

relationships between the granite plutons and the country rocks are depicted according 

to the field observations anf geological maps. 
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Table 4-5. The density of the Sanfang-Yuanbaoshan granites and country rocks 

Strata/Rock Lithology 
Sampling 

number  

Density of 

each 

sample 

(g/cm
3
) 

Average of 

measured 

density 

(g/cm
3
) 

Standard 

derivation 

γ2 Sanfang Granite 

1404 2.630  

2.606  0.0425  

A35 2.534  

A37 2.586  

A38 2.601  

A39 2.663  

A40 2.549  

A42 2.559  

A45 2.670  

A46 2.671  

A48 2.592  

A49 2.615  

A51 2.591  

A52 2.622  

A55 2.673  

A57 2.576  

A58 2.648  

A59 2.534  

A62 2.582  

A63 2.631  

A65 2.602  

A66 2.587  

γ2 
Yuanbaoshan 

Granite 

B07 2.597  

2.606  0.0129  

B09 2.594  

B02 2.621  

B05 2.623  

B19 2.591  

B20 2.612  

Sibao Group 

Slate 1406 2.741  

2.678  0.0577  

Slate 1415 2.673  

Slate 1419 2.664  

Slate 1422 2.757  

Slate 1425 2.740  

Sandstone 1427 2.648  
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Sandstone 1429 2.684  

Slate 1439 2.706  

Slate 1447 2.679  

Slate 1451 2.622  

Sandstone 1453 2.763  

Sandstone 1458 2.568  

Slate 1459 2.763  

Slate 1460 2.681  

Slate 1468a 2.692  

Slate 1469 2.754  

Slate 2002 2.696  

Slate 2003 2.601  

Sandstone 2004 2.671  

Sandstone 2006 2.545  

Sandstone 2007 2.655  

Sandstone 2020 2.628  

Slate 2031 2.678  

Slate 2051 2.584  

Slate 2052 2.700  

Slate 2054 2.722  

Slate 2055 2.685  

Danzhou 

Group 

Sandstone 1420 2.756  

2.686  0.0851  

Sandstone 1461 2.734  

Sandstone 2000-1 2.528  

Sandstone 2001 2.738  

Sandstone 2064 2.704  

Blastopsammite 2066 2.585  

Sandstone 2067 2.759  

Sinian Sandstone 

2040 2.715  

2.710  0.0066  2040-1 2.714  

2040-2 2.701  
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4.8 Discussion on the construction process of the Sanfang-Yuanbaoshan plutons 

    In order to have a comprehensive understanding of the construction process of 

the Sanfang and Yuanbaoshan plutons, several scientific problems are discussed in the 

following section: (1) The origin of the magma and its crystallization age; (2) The 

origin of the magnetic fabrics of two plutons; (3) the emplacement mecahism of the 

granitic plutons through the 3-D pluton reconstruction; and (4) records of the 

post-orogenic tectonic event. 

        4.8.1 Origin of the magma and its crystallization age 

A number of studies have addressed the origin and petrogenesis of the 

Neoproterozoic granites in the Jiangnan Orogenic Belt (e.g., Li, 1999; Wang et al., 

2007; Wu et al., 2006; Xue et al., 2010; Yao et al., 2014b; Zhong et al., 2005). The 

granites in the western part of Jiangnan Orogenic Belt (i.e., Sanfang and Yuanbaoshan 

plutons) perform high Aluminum Saturation Index (ASI) ranging in 1.15-1.40 (Yao et 

al., 2014b) and low initial ɛNd values of -4.8 to -7.6 with high enrichment in Rb, K 

and Th and relatively low Zr, Hf and higher rare earth elements (Li, 1999). All the 

geochemical features indicate that the granites were derived from supracrustal source 

rocks (Wang et al., 2007). All the granites show the zircon U-Pb crystallization ages in 

the range of 850 to 820 Ma, with a peak at 830 Ma. Thus, it was proposed that the 

granites in Sanfang and Yuanbaoshan were generated by the upper crustal materials 

during the post orogenic event at around 830 Ma. 

In this study, the new zircon results from the Sanfang and Yuanbaoshan granites 

indicate that the mean ages of these two plutons are at 830±2 Ma and 830±5 Ma, 

respectively (Figures 4-5F and 4-5I). However, few zircon grains give ages older than 

2.0 Ga (Figure 4-5G), indicating that a Paleoproterozoic basement is probably existed 

below the supracrust in this area, and the zircons were captured during the magma 

ascent. The cathodoluminescence (CL) images (Figures 4-5A and 4-5B) show the 

zircons with clear oscillatory zoning, revealing the typical feature of the zircon from 
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the acidic magma. 

The geochemincal results of this study indicate that the samples collected from 

the Sanfang and Yuanbaoshan plutons support crustal sources for the genesis of the 

granitic magma. Petrologically, the granite samples are K-feldspar megacryst riched 

(Figure 4-3B). Isotopically, all 19 isotopic results from the Sanfang granite are under 

the CHUR line (Figure 4-5C), which is compatible with the melting of a continental 

basement with little or no input of juvenile crust. Two-stage continental crust model 

ages of the analyzed zircon grains show a group of age at ca. 1800–2400 Ma ages, 

suggesing the possible existence of Paleoproterozoic rocks probably beneath the 

Jiangnan Orogenic Belt. Furthermore, the relatively homogeneous lithological 

features of the granites plutons may suggest that the source of magma chamber was 

derived from a mono-component chamber. 

        4.8.2 Origins of magnetic fabrics and its tectonic implications 

According to magnetic investigation and macro-microscopic observations, the 

investigated areas in the Sanfang and Yuanbaoshan plutons can be divided into two 

fabric domains, namely, the magmatic and post-solidus ones. We roughly constrain 

the transition zone between the magmatic and post-solidus fabric units at the elevation 

range of 700-800 meters. 

The magmatic domain concerns the zone with the elevation below 700 meters. In 

this domain, the granites are "nearly isotropic" (Figure 4-10, zones 1, 2, 4 and 6), 

though relatively coherent fabrics have been evidenced in this domain by AMS 

studies. The microscopic study shows that the quartz grains are euhedral with very 

slightly undulose extinction (Figure 4-4). The biotites in the granites are magmatic 

without any post-solidus deformation. These evidence suggest that the granite did not 

suffer a post-solidus deformation. Furthermore, 96% of the Pj values lower than 1.1, 

which indicates that the magnetic fabrics are acquired during the magma 

crystalization (Borradaile and Henry, 1997), in agreement with the macroscopic and 

microscopic studies presented above. Therefore, we propose that the magnetic fabrics 
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in these domain are primary ones, i.e. without any post-solidus overprint of posterior 

geological events. The shape parameters indicate both oblate and prolate shapes with 

equivalent proportion, which indicates that the magnetic foliation and lineation 

developed almost equally, and thus we can propose that the original magma probably 

flowed in a weak stress field. 

On the contrary, in the post-solidus domains (Zones 5 and 6 in Figure 4-10) at 

altitudes above 800 meters, the granites are well foliated with augen gneissic 

structures, and shear bands. Microscopic studies reveal that the quartz grains are 

mostly recrystallized as neograins with serrated boundaries, showing the evidence of 

high temperature and high strain rate deformation. A top-to-the-W kinematics is 

indicated macroscopically by the sigmoidal augen structure and shear bands, and 

microscopically by mica fish and pressure shadows. In addition, the Pj values of these 

two zones are higher than 1.1, i.e., higher than other four zones of the magmatic 

domain, suggesting that the magnetic fabrics are acquired after the magma 

cristalization which may be related to a posterior tectonic event (Tarling and Hrouda, 

1993). Thus, the evidence above reveal that the magnetic fabrics of this domain are 

secondary ones and the synmagmatic ones are overprinted. These post-solidus fabrics 

might have been developed during the ending stage of the magma emplacement and 

crystallization and/or during a regional tectonic events that post-dated the plutons 

emplacement. Moreover, it is worthy to note that almost all the shape parameters for 

the specimens in this domain are greater than zero (Figure 4-10), indicating the planar 

magnetic fabric is more developed than the linear magnetic ones probably due to a 

tectonic event. 

        4.8.3 Space creation and the mechanism of the magma emplacement 

The Jiangnan Orogeny took place at 850-830 Ma (see Chapter 3), resulted in the 

deformation of the Sibao group with N-S trending tight folds, and probably N-S and 

NE-SW directed faults (Figure 4-2) (BGMRGX, 1985; BGMRHN, 1988; Yan et al., 

2015). The field investigation shows that the granite plutons have a N-S elongated 
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shape with a ratio of 2:1 (Figure 4-2). The gravity modeling displays that these two 

plutons are also N-S elongated at depth (Figures 4-12 and 4-13). Consequently, we 

propose that the magma were generated from the crustal materials and then intruded 

into the well-folded Sibao group, ascending probably along the previously existing 

tectonic weak zones, i.e., the fault planes, and fold hinges. However, the depth of 

emplacement is unclear (Figure 4-13B). 

The AMS study indicates that the magnetic fabrics are magmatic ones for the 

samples collected in zones 1, 2, 4, and 6 observed at altitudes below ca. 700 meters 

(Figures 4-9 and 4-10), therefore, they can be utilized for the interpretation of the 

magma flow and emplacement process (Tarling and Hrouda, 1993). In Zone 1, the 

magmatic foliations are consistently dipping to the E with steep angles (31-60 

degrees), even near vertical angles (61-90°) for 2 sites. However, the magmatic 

lineations in this zone can be divided into two units, i.e., the southern one mainly 

plunging in the E-W with steep angle, and the northern one mostly plunging in the 

N-S with gentle angles (0-30°) (Figure 4-9). It may reflect that the magmatic 

lineations in the southern part are mainly dominanted by the vertical and E-W vectors, 

while those of the northern unit by the horizontal and meridional vectors. In Zone 2, 

about five kilometers east to Zone 1, the westward dipping magmatic foliations with 

steep angles and mainly W-dipping lineation may imply that the magma dominantly 

flowed steeply and accreted in the E-W direction. In Zone 6 of the Yuanbaoshan 

pluton, the strikes of the magmatic foliations are almost N-S directed with steep and 

even vertical angles, whereas the magmatic lineations are consistently N-S directed 

with gentle angles (Figure 4-9), suggesting that the magma might vertically ascend 

and gently or horizontally flow in the N-S direction (present coordinates). In addition, 

the shape parameter plot shows the ratio between the oblate and prolate shaps is about 

1:1, indicating the magmatic foliations and lineations were developed at a weak stress 

field, and thus we can speculate that the magma migrated equally in the vertical and 

horizontal (N-S) directions. Moreover, the residual Bouguer gravity anomaly data 
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show that the roots of the Sanfang and Yuanbaoshan plutons are located in their 

southern and central parts, respectively (Figure 4-11). The interpreted profiles suggest 

that the roots of the two plutons are constructed by some dykes and the shape of two 

plutons are both oblate in the E-W but are prolate in the N-S. For both of these two 

plutons, the thickest part of granite pluton is in the south and gradually decreases 

northward, which seems like tongues and sills (Figures 4-12 and 4-13). 

Consequently, we propose that the magma: (1) intruded into probably 

pre-existing tectonically weak zones in the Sibao group; (2) ascended with steep to 

vertical angle and E-W laterally accumulated by N-S oriented dykes; (3) dominantly 

flowed from south to north with gentle angle to form the tongue- and/or sill-shpaed 

plutons (present coordinates) (Figure 4-13B). 

        4.8.4 A top-to-the-W tectonic event 

In the post-solidus fabric domain (Zones 3 and 5 in Figure 4-10), the degrees of 

metamorphism and deformation of the granites and country rocks are positively 

related with the elevation in the Sanfang and Yuanbaoshan areas (Figure 4-2). 

These granites change from the massif body (elevation at ca. 200-700 m) 

(Figures 4-3A and 4-3B) to the gneissic one (elevation at ca. 800-1600 m) (Figures 

4-3D and 4-3E). Equivalently, in the microscopic view, the quartz and micas are 

transformed from euhedral to anhedral (Figures 4-4A to 4-4L), indicating that these 

granites have suffered high temperature deformation. Moreover, the myrmekite as 

those found in samples A44 and A46 (Figures 4-4I and 4-4J), typically occurs in 

the metamorphic orthogneisses, forming under metasomatic conditions (Castle and 

Lindsley, 1993; Garcia et al., 1996). Therefore, it is usually recognised as the products 

of progressive fluid-assisted deformation in molten rocks (Simpson and Wintsch, 

1989). Furthermore, the AMS results also indicate that the fabrics of these granites 

were overprinted by a tectonic event (Figure 4-10). 

However, the lithology of the Sibao group varies from weakly metamorphosed 
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rocks (elevation below ca. 700 m) (sandstone, slate) to relative highly metamorphosed 

ones (elevation above ca. 800 m) (phyllite, micaschist) (Figure 4-2). The sandstone 

and slate are located at the lower altitude preserve primary stratigraphic dispersed 

bedding (S0-1) (Figures 4-3F, 4-3G, 4-3O, 4-3T and 4-3U). Nervertheless, the phyllite 

and micaschist at the higher eleation display complex deformation styles. Recumbent 

folds with subhorizontal N-S axes are developed in the rhythmic bedding of turbidite 

(S0-1) (Figure 4-3J). The primary surface (S0-1) is folded by a secondary one (S2) 

which dips to the W and axial planar to these folds (Figure 4-3K). In the 

monzogranite, augen orthogneiss exhibits an E-W striking mineral and stretching 

lineation (Figures 4-3L and 4-3M). The microscopic study of these rocks show the 

quartz grains and micas are consistently orientated in the E-W direction (Figures 4-4N, 

4-4P and 4-4Q). Moreover, the mylonite is observed on the roof and the western 

margin of the Yuanbaoshan pluton (Figure 4-3R), with strongly deformed feldspar and 

biotite E-W orientated. 

By integrating the field observations and microscopic investigations, we 

conclude that the foliations consistently dip to the W in both of the granites and 

country rocks, with coherent lineations directed in the sub E-W. All of the kinematic 

indicators, i.e., shear band, augen structure, mica fish, S-C fabric and pressure 

shadows (Figures 4-3D, 4-3L, 4-4K, 4-4Q and 4-4R), reveal the top-to-the-W sense of 

shear. Consequently, we propose that a ductile shearing event took place within the 

posterior fabric domain in the Sanfang-Yuanbaoshan area, with a thickness of at least 

1.5 km (Figure 4-13C). However, the timing of this ductile shearing event is poorly 

constrained. Our Ar-Ar measurements of muscovite from the Sanfang and 

Yuanbaoshan plutons show an age cluster at 440-400 Ma (see Chapter 5), indicating 

that the ductile shearing event should, at least, be not younger than this period. 

Therefore, we can deduce that the ductile shearing event took place in a time interval 

comprised between 830-400 Ma. Under this premise, we propose two possible 

interpretations. 
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1) The ductile shearing event took place at the end of the Jiangnan orogeny 

shortly after the plutons emplacement. Late to post-orogenic collapse might be the 

driving mechanism. However, evidence of crustal thickening in this part of the 

Jiangnan orogen is not documented neither by structural nor metamorphic features. 

Furthermore, the Sanfang-Yuanbaoshan area was located in the upper plate of the 

orogen, that is to say, in a region where crustal thickening should be limited. In this 

interpretation, it is also necessary to assume that the plutons and their country rocks 

remain buried at depth, or where reheated in the Middle Paleozoic.  

2) The ductile shearing event took place in the 440-400 Ma period. This period 

correspond to the late stage of the intracontinental Early Paleozoic orogeny of SE 

China (e.g., Charvet, 2013; Faure et al., 2009; Shu et al., 2008). Although crustal 

melting represented by numerous ca 400 Ma plutons and migmatites, from Zhejiang 

to NE Vietnam, N-directed structures that might account for the reworking of the 

Neoproterozoic rocks are rare all along the Early Paleozoic belt. N or NW dipping 

foliations have been documentd near Chongren in Jiangxi Province, (e.g., Faure et al., 

2009). However, in particular such a NW-directed ductile shearing of ca 400 Ma age 

that would rework the Jiangan Orogenic Belt has never been recognized before.. 
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Figure 4-13. 3-D sketch models of the magma emplacement (A), regional ductile 

shearing event (C), and current geological features (E) for the Sanfang and 

Yuanbaoshan plutons; (B) Detail 3-D modeling of the magma emplacement in the 

E-W and N-S directions; (D) Sketch map of the ductile shearing in the granite plutons 

and country rocks; (F) Sketch map of the current geological signatures of the Sanfang 

and Yuanbaoshan plutons and country rocks. All of the models are in the present 

coordinate. 
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4.9 Conclusions 

Through multidisciplinary studies, the formation and evolution of the 

Neoproterozoic S-type Sanfang-Yuanbaoshan granite plutons in the Jiangnan 

Orogenic Belt can be concluded as following:  

(1) The magma source of the plutons is derived from the melting of crustal 

material and crystallized at 830 Ma; 

(2) The magnetic fabrics can be divided into two groups, namely, an early 

primary magmatic fabric developed in a magmatic stage during the plutons 

emplacement, and secondary post-solidus one related to the development of planar 

and linear fabrics; 

(3) The magma intruded into the tectonic weak zones in the Sibao group, with 

E-W lateral accumulated by N-S oriented dykes, and dominantly flowed from south to 

north horizontally to construct the tongue- and/or sill-shaped plutons; 

(4) A top-to-the-W ductile shearing event took place after the magmatic 

emplacement, however, the timing of this event is unclear. 
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Chapter 5. Early Paleozoic to Triassic geological events in the 

Sanfang-Yuanbaoshan, western Jiangnan region: the Argon isotopic 

record 

5.1 Introduction 

The western Jiangnan Orogenic Belt is considered as the product of the collision 

of the Yangtze and Cathaysia blocks at ca. 865 Ma and this orogeny is ended at ca. 

830 Ma as suggested by the emplacement of late orogenic peraluminous magma. The 

field observation shows that the upper part of the S-type granite of the 

Sanfang-Yuanbaoshan plutons have been well deformed, even mylonitized, however, 

its lower part keeps its magmatic state (see Chapter 4). As this evident post-solidus 

deformation did not attract any attention before, the study area was regarded as 

without obvious deformation by the tectonic event since Nanhua rifting and 

subsequent Early Paleozoic and Triassic orogenies. Therefore, it naturally leads us to 

wonder about the age of this post-solidus deformation. Consequently, we take the 

advantage of Argon-Argon thermochronology method. 

The 
40

Ar/
39

Ar geochronological technique has significantly contributed to the 

study of crustal deformation (Kelley, 2002; Scaillet, 1996), and was proved to be an 

efficient one to date the deformed rocks by potassium-bearing minerals, e.g., 

muscovite, biotite, sericite and amphibole (Mcdougall & Harrison). 
40

Ar/
39

Ar dating 

relies on neutron irradiation from a nuclear reactor to convert a stable potassium (
39

K) 

into the radioactive 
39

Ar. As long as a standard sample of known age is co-irradiated 

with unknown samples, it is possible to use a single measurement of argon isotopes to 

calculate the 
40

K/
40

Ar* ratio, and thus to calculate the age of the unknown 

sample. 
40

Ar* refers to the radiogenic 
40

Ar, i.e. the 
40

Ar produced from radioactive 

decay of 
40

K. 
40

Ar* does not include atmospheric argon adsorbed to the surface or 

inherited through diffusion and its calculated value is derived from measuring the
 36

Ar 

(which is assumed to be of atmospheric origin) and assuming that 
40

Ar is found in a 
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constant ratio to 
36

Ar in atmospheric gases (Scaillet, 1998). 
40

Ar/
39

Ar geochronology 

assumes that a rock retains all of its 
40

Ar after cooling past the closing temperature. 

The closure temperature concept (Dodson, 1973) is based on the volume circulation 

of a diffusing chemical element in the host mineral and temperature, for fixed realistic 

cooling rate and mineral grain-size. This concept is defined as a transitional 

temperature range, at which the diffusion of a daughter isotope evolved from fully 

open state (continuous equilibrium) to virtually closed behaviour (frozen equilibrium). 

Different minerals have different closure temperatures, like the biotite, muscovite 

and hornblende, with the ranges of 260-350℃ , 360-420℃  and 450-550℃ , 

respectively (Chiaradia et al., 2013). Consequently, it can be used for estimating the 

thermal history of the rocks. 

5.2 Geological setting (Late Proterozoic to Triassic)  

After the Neoproterozoic Orogeny, the whole South China Block entered into a 

rifting period at 800-750 Ma (Shu, 2012), and then the sediments were deposited in a 

marine environment over a long period until the Silurian. The Phanerozoic tectonic 

evolution of South China is characterized by two distinct orogenic cycles, including 

early Paleozoic and Triassic orogenies, respectively (Charvet, 2013; Li et al., 2016a; 

Shu, 2012). 

As recognized since 1920’s (Grabau, 1924), the fact that the Middle Devonian 

terrigenous rocks unconformably cover Early Paleozoic folded rocks and granitoids 

document an Early Paleozoic tectono–magmatic event widespread in the Cathaysia 

Block. The Early Paleozoic orogeny is characterized by: i) the regional absence of 

Silurian strata, ii) the unconformity between the middle Devonian terrigenous 

(conglomerate, sandstone) and limestone sequences and Ordovician terrigenous 

deposits, iii) a greenschist to amphibolite facies metamorphism coeval with a ductile 

deformation, iv) a decollement layer between an underlying metamorphic unit and an 

overlying fold-and-thrust belt unit; and v) the occurrence of migmatites, and numerous 



Oct. 2018                        Chapter 5 

115 

 

S–type granitic plutons (Faure et al., 2009). From a geodynamic point of view, the 

Early Paleozoic orogeny of the South China Block was interpreted as the consequence 

of the rift closure in the Late Ordovician to Early Silurian. Therefore, the orogeny 

corresponds to an intracontinental event accommodated by the continental subduction 

of the southern part of the rift below its northern one. During the exhumation, the 

metamorphic rocks experienced retrogression and partial melting at ca. 444–420 Ma 

represented by migmatite and granitoid (Faure et al., 2009). However, it was widely 

accepted that the Early Paleozoic intracontinental orogeny was not well developed in 

the Jiangnan region, and the Cambrian and Ordovician strata are not metamorphosed, 

only showing brittle deformation (Shu, 2012). 

The Triassic deformation is widespread in the entire South China. A middle 

Triassic orogeny (called indosinian) was originally defined by a late Triassic 

unconformity in Vietnam (e.g., Deprat, 1914; Fromaget, 1932). Geodynamically, the 

indosinian orogeny results from the continental collision of the South China block 

with the Indochina Block. Furthermore, other triassic belts such as the Xuefengshan, 

Longmenshan, Dabashan, recognized in the South China Block (Figure 5-1) are 

intracontinental orogens. The link between the Indosinian collision and the 

intracontinental orogens is unclear yet (see for instance Faure et al., 2016). The 

Triassic Deformation is well recognized in the entire South China (Figure 5-1), 

including the Triassic plutonism, ductile shearing, thrusting, folding, and 

greenschist-facies metamorphism (e.g., Wang et al., 2005, 2007b, c; Lin et al., 2008; 

Shu et al., 2009; Zhang and Cai, 2009; Xu et al., 2011). The Triassic orogeny resulted 

in important intracontinental deformation with intensiv folds and thrusts in the South 

China block (Figure 5-1), especially in the areas of Wuyi, Nanling, Yunkai and 

Xuefengshan (Chu et al., 2012; Lin et al., 2008; Wang et al., 2005, 2007b; Figure 5-1). 

The current agreement is that these events occurred within an intracontinental setting 

(Chu et al., 2012; Wang et al., 2005; Shu et al., 2015). Whereas, several competing 

models have been proposed to describe the mechanics of Triassic intracontinental 
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structures, for example the flat subduction of the Paleo-Pacific plate (Li and Li, 2007) 

or continental subduction (Chu et al., 2012) . 

 

Figure 5-1. Sketch map of South China delineating the distributions of Paleozoic and 

Triassic structures, igneous rocks, and Neoproterozoic strata. The red bodies in the 

square are Sanfang (left) and Yuanbaoshan (right) plutons, respectively (modified 

after Li et al., 2016a). 

5.3 Sample collection, description and analytical procedures 

        5.3.1 Sample collection 

A great volume of granite is exposed in the Sanfang and Yuanbaoshan plutons, 

therefore, they are suitable targets for probing into the thermal history of the plutons. 

Besides, the plutons possibly divided into sub-solidus magmatic and post-solidus 

deformation (see Chapter 4). Moreover, the Sibao group located between the  

Sanfang and Yuanbaoshan plutons was strongly deformed, even mylonitized, and 

metamorphosed with a higher grade than in the west or south of Sanfang. 
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Figure 5-2. Sketch map of the Sanfang and Yuanbaoshan plutons with sampling 

localities.  

In the Yuanbaoshan pluton, we have collected fresh granite samples at altitudes 

from ca. 200 m to ca. 900 m, including the deformed and undeformed ones (Figure 

5-2). As mentioned in Chapter 4, the transition zone between the deformed and 

undeformed granites is at the altitude of 500-700 meters. In the Sanfang pluton, we 

have collected one sample (A37, at an altitude of 560 m) in the transition zone 

between deformed and undeformed granite. Furthermore, a mylonite of country rocks 

(2013) with fresh biotite was also targeted for the analysis. Details are provided in 

Table 5-1.  
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Table 5-1. Sample list for the Ar-Ar age analysis on the micas from SF and YBS 

Sample GPS 
Num. 

run 

Num. 

analysis 
Petrology Mineral 

El. 

(m) 
Age (Ma) 

In situ UV laser 

A37 
N 

25°18′45ƎE108°50′35Ǝ 

N71 126 

Slightly deformed 

granite 

Bio 

560 

R: [240, 420] 

N86 23 Bio R: [240, 420] 

N86 45 Mus R: [400, 450] 

N87 28 Bio R: [290, 420] 

N88 16 Bio R: [330, 420] 

N89 12 Bio R: [310, 420] 

Step heating 

B08 
N 

25°28′18ƎE109°10′32Ǝ 

N121 17 

Deformed granite 

Mus 

803 

   PA: 413.0±1.2 

N122 25 Bio TGA: 409.6±5.1 

B05 
N 

25°25′43ƎE109°08′29Ǝ 
N123 17 Deformed granite Mus 688    PA: 406.6±1.1 

B13 
N 

25°18′06ƎE109°11′52Ǝ 
N125 19 

Undeformed 

granite 
Bio 222    PA: 392.2±0.8 

B20 
N 

25°25′03ƎE109°12′54Ǝ 
N144 16 Deformed granite Bio 585    PA: 404.4±0.8 

2013 
N 

25°27′03ƎE108°09′33Ǝ 
N141 14 

Mylonite, country 

rock 
Bio 1112    PA: 407.8±0.9 

Note: El. (m): elevation; R: age range; TGA: total gas age; PA: plateau age; Bio: biotite; Mus: muscovite 

        5.3.2 Sample description 

Six samples have been selected for the argon isotopic analysis, including the 

deformed granites, undeformed granites and one mylonite sample from country rocks. 

The granite sample (A37) from the Sanfang pluton is in transition zone between 

deformed and undeformed granites. In the hand sample, the biotite and muscovite  

surround the sigmoidal feldspar (Figure 5-3A), with the top-to-the-W kinematic. 

However, another one, the biotite is euhedral, with self-structured quartz and feldspar 
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(Figure 5-3B).  

The deformed granites collected in the Yuanbaoshan pluton show that the mica, 

quartz and feldspar are elongated in a preferred E-W orientation, with well developed 

foliations, indicating that they have experienced a ductile shearing deformation. 

Meanwhile, the indicators, e.g., mica fish and augen structure, yield the top-to-the-W 

kinematics (Figures 5-3C, D, E and F).  

In the undeformed sample (B13) picked in the south part of the Yuanbaoshan 

pluton, the granite is massive, and the biotite, quartz, and feldspar are all euhedral 

(Figures 5-3G and H). 

Moreover, in the mylonite sample from country rocks and collected on the roof 

of the Yuanbaoshan pluton, the biotites and feldspars are strongly stretched in the E-W 

direction, however, the kinematic is not obvious (Figures 5-3I).  
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Figure 5-3. Photos of hand-sample and thin-section of the samples collected from the 

Sanfang, Yuanbaoshan plutons and the country rocks. (A) Hand-sample of the granite 

from the Sanfang pluton, with sigmoid feldspar and stretched biotite and muscovites; 

(B) Hand-sample of the granite from the Sanfang pluton, with euhedral biotite 

aggregate; (C) Foliated granite from the Yuanbaoshan pluton, with top-to-the-W 

kinematics (D) thin-section in crossed polarized light of the B08 sample, the stretched 

micas and sigmoidal k-feldspar indicate top-to-the-W kinematics (E) Gneissic granite 

with top-to-the-W kinematic; (F) thin-section in crossed polarized light of the B20 

sample, recrystallized quartz and stretched muscovite are distributed along the 

foliation, with the top-to-the-W kinematics; (G) Massive granite of B13; (H) 

Thin-section of the massif granite in the crossed polarized light of B13, with 

undeformed biotite; (I) Mylonite sample from the country rocks on the roof of the 

Yuanbaoshan pluton, with strongly stretched biotite and feldspar, but unclear 

kinematic sense. 

        5.3.2 Analytical procedure 

The 
40

Ar/
39

Ar dating approach combines both conventional CO2 laser 

step-heating technique on biotite and muscovite single grains, and in situ analyses on 

biotite and muscovite from rock-chips by high-resolution UV laser technique. Biotite 

grains were extracted by gently crushing the samples and hand-picking the coarsest 

produced fraction. They were firstly imaged using a high-resolution (×20 to ×60) 

binocular microscope to screen out suspect (altered or broken) specimens. All grain 

sizes were between 0.125-0.25 mm. For in situ analyses, microstructures were drilled 

on samples, cut and polished to obtain 1.0-1.5 mm×10 mm circular rock-chips. 

Rock-chips and separated single grains were then washed in acetone, ethanol and 

de-ionised water in ultrasonic bath, dried at 50 °C in oven, weighted and finally 

microscopically analysed and photographed. After weighing using a high-precision (± 

0.001 mg) micro-balance, the individual samples and rock chips were wrapped in 

aluminium foil and coaxially stacked in an irradiation package about 2.5 cm and 4.5 cm 
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long, respectively, along with sanidine standard FCS (28.02 ± 0.28 Ma, Renne et al., 

1998). The batch was irradiated for 10 hours in CLICIT (Corvallis irradiation center, 

OSU, USA). Afterwards, the samples were analysed at the Argon Geochronology 

Laboratory, Orléans University (France). 
40

Ar/
39

Ar geochronology of biotite and 

muscovite were conducted by Helix SFT™ Split Flight Tube Noble Gas Mass 

Spectrometry combining continuous-wave CO2 (10.6 µm) lasers with very-low 

background extraction systems at the 
40

Ar/
39

Ar Lab housed at Institut des Sciences de la 

Terre d’Orléans (ISTO), France. After about 100 days of post-irradiation cooling, the 

single grains were loaded into a differentially-pumped sample holder connected to the 

ultra-high vacuum extraction and purification system and baked out at 180 °C for 48 

hours. 

Laser spot analyses were performed on single grains of biotite and muscovite 

using a continuous carbon dioxide laser beam. They were individually step-heated 

with a nominal step increase of 0.5 % of the total output laser power until total fusion 

(single-grain analysis). Each measurement included one blank every consecutive 

sample extraction step. Purification prior to expansion into the MS consisted in 6 min 

static exposure to a cold trap (-127 °C) and two hot (250 °C) GP-50 St-101 SAES 

getters, followed by static MS peak-hopping of the five argon isotopes plus 
35

Cl (blank: 

5 peak-hopping cycles; sample: 10 cycles). Raw blanks for each isotope were fitted 

using a 3
rd

 to 4
th

-order polynomial across the daily session, and each assigned a 

respective error corresponding to the empirical mean average deviation from the best fit 

trend. Typical blank values were 510
-1

, 710
-3

, 210
-3

, 210
-2

, 710
-3

 fA at m/e = 40, 39, 

38, 37, 36, respectively. Corrections applied include (1) static blanks, (2) mass-bias and 

isobaric interferences, (3) post-irradiation 
39

Ar, 
37

Ar, and 
36

Cl decay, (4) neutron-flux 

gradient and monitoring, and (5) K, Ca, and Cl isotopic interferences following Scaillet 

(2000). Ages were calculated using isotopic constants quoted in McDougall & 

Harrison (1999). TGA refers to total-gas ages calculated by summing all volumes of 

gaz (i.e., Ar beam intensity) extracted for each isotope till fusion with an error derived 
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by quadratic error propagation of all individual error terms involved in the age 

calculation. This corresponds to a formal K-Ar age. WMA are weighted-mean ages 

calculated by pooling and inverse-variance weighing the 
40

Ar*/
39

Ar ratios included in 

the mean, with a final error corresponding to the maximum-likelihood estimate (MLE) 

of the error of the mean (
40

Ar* = radiogenic 
40

Ar). WMA errors basically differ from 

TGA errors by the effect of the 1/N error-reduction rule typical of pooled MLE. PA are 

plateau ages calculated as the WMA, but for which the empirical MSWD score 

(MSWD = Mean Square Weighted Deviation) fall in the fiducial interval for the 

corresponding degrees of freedom according to CHI-2 statistics. 

Whereas, in situ ablation analyses on rock chips were performed using a pulsed 

UV laser beam. After laser spot analysis, the gas was extracted into the tranfer line, 

and the next steps were same to those of step heating as described above. 

5.4 Analytical results 

The argon isotopic analyses on the biotite and muscovite put high resolution 

40
Ar/

39
Ar time-constraints using both conventional step heating and in situ UV laser 

techniques. 

        5.4.1 Step heating 

Six single grains were analysed by 
40

Ar/
39

Ar step heating, including three granite 

biotite, two muscovite and one mylonite biotite (Figure 5-4, Table5-1). All the 

samples show well defined plateau ages with more than 70% of 
39

Ar released, except 

one biotite grain, B08, which yield no plateau age (PA), however, the total gas age 

(TGA) spectrum is flat with small fluctuation, hence, we can regard the TGA as a 

reliable one (Laurent et al., 2017). All of the six ages are distributed in the range of 

414-392 Ma. The sample of B08 analysed for both of the muscovite and biotite 

displays the ages of 413.8±1.2 Ma and 409.6±5.1 Ma, respectively. The sample of 

B05 yields an age of 406.6±1.0 Ma with 10/17 (valid steps/total steps) steps. However, 

the results of samples B13 and B20 are more convincing, with more than 90% of 
39

Ar 
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released gas. Furthermore, the mylonite sample (2013), collected from the country 

rocks on the roof of the Yuanbaoshan pluton, yield the biotite age of 407.8±0.9 Ma 

with high precision. 

 

Figure 5-4. 
40

Ar/
39

Ar age spectra obtained on single grain from samples of the 

Yuanbaoshan granites and mylonite (2013) of the Sibao group. PA: plateau age; TGA: 

total gas age. 

        5.4.2 In situ UV laser 

Six runs have been carried on the rock-chips and biotite aggregations of the 

sample A37 collected from the Sanfang pluton, including the deformed and 

undeformed micas (Figure 5-5A). 

126 data of the undeformed biotites have been acquired from the rock-chip N71, 

which yield a broad staircase-shaped age cluster, ranging from 420 Ma to 240 Ma, 
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with a steady declining trend (Figure 5-5B). Quite similarly, the deformed biotite of 

the rock-chip N86 indicate a same age range of 420-240 Ma, and the decreasing 

behaviour of the age is almost coincident with that of N71. However, the stretched 

muscovite (45 data) yield a relative narrow age range of 450-400 Ma, with a flat age 

interval between 420 Ma and 400 Ma (Figure 5-5B). Meanwhile, the biotite 

aggregations (N87 and N88) and rock-chip N89 yield a similar age range of ca. 

420-300 Ma with analogous declining trend (Figure 5-5B). 

 

Figure 5-5.
 40

Ar/
39

Ar analyses for the sample of A37, from Sanfang pluton, by in situ 

UV laser ablation technique. (A) Photos of rock-chips and biotite aggregations. The 

samples are all undeformed except the chip N86. The yellow spots means the analyses 

on the biotite, while the red spots on the muscovite; (B) Results of the analyses on 

each samples. 

5.5 Discussion 

Sampling was designed as to explore the behaviour of the 
40

Ar/
39

Ar system at 

two different scales: (1) a nearly one kilometre vertical thickness shows the 

distribution of ages across the upper part of Yuanbaoshan pluton by the single mica 

grains; (2) millimetre-scale shear zones and euhedral crystals were examined with the 
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in situ UV laser method on rock-chips and biotite aggregations. Totally, we got six 

results from step heating and six others from in situ analyse. Based on the geological 

setting and previous studies, we can discuss the significance of these Ar isotopic data 

as following: 

        5.5.1 Comparison of 
40

Ar/
39

Ar ages from the biotite and muscovite 

In total, we have got 12 groups of ages, by two analytical techniques, namely, the 

step heating and in situ UV laser ablation methods. Both biotite and muscovite were 

analysed by each method.  

For the sample of B08 from the Yuanbaoshan pluton, both of the muscovite and 

biotite grains (125-250μm) were analysed by step heating technique, and yield 

apparent 
40

Ar/
39

Ar ages of 413.8±1.2 Ma and 409.6±5.1 Ma, respectively (Figure 5-4). 

The age of the muscovite is obviously, but slightly, older than that of the biotite in the 

same sample. The samples of B05, B13, B20 and 2013 yield well defined apparent 

ages of 406.6±1.0 Ma, 392.2±0.8 Ma, 404.4±0.8 Ma and 407.8±0.9 Ma, respectively 

(Figure 5-4). 

As to the in situ method, all of the analyses were on the sample of A37, collected 

from the Sanfang pluton. The sample targets were made as rock-chips and biotite 

aggregations. Five runs were carried on the biotite, whereas one run was conducted in 

the stretched muscovite (Figure 5-5A). The biotite shows the broad age ranges from 

420 Ma to ca. 300 Ma (N87, N88, N89) and 240 Ma (N71, N86), with staircase 

shaped decreasing trend. However, the muscovite mostly yield a flat release pattern at 

ca. 420 Ma, whereas only a small fraction of ages display the spectrum like the 

staircase with the maximum age of 450 Ma (Figure 5-5B). Moreover, the maximum 

age of the biotite is as same as the most frequency ages of the muscovites at 420 Ma. 

This also indicates that the muscovite is always older than the biotite in the same 

sample. 
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        5.5.2 Comparison of the results with previous 
40

Ar/
39

Ar 

thermochronological studies 

Many works on 
40

Ar/
39

Ar have been done across the SE South China Block in 

the continental scale, including the Wuyi, Yunkai, Jiuling and Xuefengshan areas 

(Figure 5-6). The details can be referred to Table 5-2. 
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Figure 5-6. (A) Previous studies and this study on the 
40

Ar/
39

Ar results in the Jiangnan 

and Cathaysia regions; (B) Sampling localities with detailed 
40

Ar/
39

Ar results of this 

study. 
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In the previous studies, the argon isotopic thermochronological method has been 

utilized to the micaschist, gneiss and mylonite, and yield two significant age ranges, 

i.e., 450-390 Ma and 238-194 Ma (Figure 5-6). It was widely accepted that these two 

groups of 
40

Ar/
39

Ar thermochronological data are related with the Silurian 

intracontinental orogeny and Triassic intracontinental tectonic events in the SE South 

China (Cathaysia Block) (e.g., Faure et al. 2009; Li et al., 2016a; Shu et al., 1999, 

2008; Wang et al., 2007b; Xu et al., 2011, 2015). However, it was commonly believed 

that the western Jiangnan region (this study areas) was not affected by the early 

Paleozoic intracontinental event. The influence of the Triassic tectonic event in this 

area is still debated. Some researchers proposed the intraplate deformation event was 

well developed in the Xuefengshan, western Jiangnan region (Chu et al., 2012). 

Whereas, some people hold the view that the Phanerozoic sedimentary sequences are 

not ductilely deformed, and therefore proposed that the Triassic intraplate event did 

not affect at least this study area (Wang et al., 2007b). 

However we traced the 
40

Ar/
39

Ar information of the Paleozoic and Mesozoic 

ages. By comparison, we found the 
40

Ar/
39

Ar ages of the muscovite in the shear band 

(N86) yield similar ages with the previous results (Figure 5-7). The distinct difference 

is that our results show the flat release pattern at ca. 420 Ma, while the previous 

results reveal the most flat distribution at ca. 430 Ma (Figure 5-7). Moreover, both of 

our and previous studies yield quite similar decreasing trend from 450 Ma to 390 Ma. 

Nevertheless, the biotite rock-chips and aggregations display complex age distribution 

patterns, which reveal two groups of staircase shaped age spectra, i.e., the 420-ca. 390 

Ma and 420-240 Ma. The decreasing patterns are smooth without sudden break. 

Besides, it is apparent to note that the minimum age of our biotite is coeval with the 

maximum age of the Mesozoic aged mica (Figure 5-7). Furthermore, the previous 

Mesozoic aged 
40

Ar/
39

Ar data display a smooth and flat spectum which is quite 

different with biotite behavior in our study.  
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Figure 5-7. Comparison of the 
40

Ar/
39

Ar results between this study and previous 

studies. Note that, the results of this study are distributed according to the 
39

Ar 

released, however, the previous studies results are discrete samples which are 

equispaced arranged.
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Table 5-2. Previous studies on the 40Ar/39Ar results in the Jiangnan and Cathaysia regions 

Region Rock type Age (Ma) Mineral Method Reference 

Early Paleozoic 

Zhenghe-Dapu Fault Marble 391.4±3.0 Muscovite Step heating Shu et al., 1999 

Jiangshan-Shaoxing Fault Mylonitic granite 421.3±7.8 Muscovite Step heating Shu et al., 1999 

Nanfeng-Yintang shear zone Mylonite 427.7±3.7 Muscovite Step heating Wang et al., 2007a 

Ductile décollements Micaschist 405.0±4.0 Muscovite Step heating Faure et al., 2009 

Ductile décollements Micaschist 397.0±4.0 Biolite Step heating Faure et al., 2009 

Jiuling Mylonite 468.0±12.0 Muscovite Step heating Chu et al., 2014 

Jiuling Mylonite 379.0±4.0 Muscovite Step heating Chu et al., 2014 

Jiuling Mylonite 386.0±6.0 Biolite Step heating Chu et al., 2014 

Jiuling Mylonite 382.0±2.0 Biolite Step heating Chu et al., 2014 

Northeast Jiangxi Fault Micaschist 449.3±4.4 Sericite Step heating Xu et al., 2015 

Northeast Jiangxi Fault Micaschist 429.0±3.4 Sericite Step heating Xu et al., 2015 

Eastern Jiuling Mylonite 447.0±3.0 Muscovite Step heating Li et al., 2016a 

Eastern Jiuling Mylonite 439.0±2.0 Muscovite Step heating Li et al., 2016a 

Eastern Jiuling Mylonite 435.0±4.0 Muscovite Step heating Li et al., 2016a 

Eastern Jiuling Mylonitic gneiss 449.0±3.0 Biolite Step heating Li et al., 2016a 

Eastern Jiuling Mylonitic granite 434.0±1.0 Muscovite Step heating Li et al., 2016a 

Mesozoic 

Mylonite in SW Zhejiang Mylonite 221.0±10.0 K-feldspar Step heating Zhu et al., 1997 

Mylonite in SW Zhejiang Mylonite 237.6±1.3 Muscovite Step heating Zhu et al., 1997 

Xuefengshan tectonic belt Mylonite 194.7±0.3 Whole rock Step heating Wang et al., 2005 

Xuefengshan tectonic belt Mylonite 216.9±0.3 Biolite Step heating Wang et al., 2005 

Xuefengshan tectonic belt Mylonite 215.3±0.8 Muscovite Step heating Wang et al., 2005 

Xuefengshan tectonic belt Mylonite 213.5±0.2 Sericite Step heating Wang et al., 2005 

Xuefengshan tectonic belt Mylonite 207.2±0.2 Sericite Step heating Wang et al., 2005 

Yunkai tectonic belt Mylonite 229.9±0.5 Biolite Step heating Wang et al., 2007b 

Yunkai tectonic belt Mylonite 227.9±0.3 Biolite Step heating Wang et al., 2007b 

Yunkai tectonic belt Mylonite 225.4±0.3 Biolite Step heating Wang et al., 2007b 

Yunkai tectonic belt Mylonite 224.7±0.4 Biolite Step heating Wang et al., 2007b 

Yunkai tectonic belt Mylonite 221.8±0.4 Biolite Step heating Wang et al., 2007b 

Yunkai tectonic belt Mylonite 218.4±0.3 Biolite Step heating Wang et al., 2007b 

Yunkai tectonic belt Mylonite 216.9±0.3 Biolite Step heating Wang et al., 2007b 

Yunkai tectonic belt Mylonite 214.2±0.4 Biolite Step heating Wang et al., 2007b 

Yunkai tectonic belt Mylonite 211.5±0.5 Biolite Step heating Wang et al., 2007b 

Yunkai tectonic belt Mylonite 211.1±0.2 Biolite Step heating Wang et al., 2007b 

Yunkai tectonic belt Mylonite 209.0±0.2 Sericite Step heating Wang et al., 2007b 

Yunkai tectonic belt Mylonite 208.9±1.4 Sericite Step heating Wang et al., 2007b 

Yunkai tectonic belt Mylonite 207.8±0.2 Biolite Step heating Wang et al., 2007b 

Hepu-Hetai shear zone Mylonite 198.9±1.2 Muscovite Step heating Zhang and Cai, 2009 

Hepu-Hetai shear zone Mylonite 195.2±1.3 Muscovite Step heating Zhang and Cai, 2009 
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Hepu-Hetai shear zone Mylonite 213.0±4.0 Muscovite Step heating Zhang and Cai, 2009 

Hepu-Hetai shear zone Mylonite 211.6±3.4 Muscovite Step heating Zhang and Cai, 2009 

Ductile shear zone in Wuping Mylonite 238.5±2.8 Muscovite Step heating Xu et al., 2011 

Ductile shear zone in Wuping Mylonite 235.3±2.8 Biolite Step heating Xu et al., 2011 
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        5.5.3 Significance of the 
40

Ar/
39

Ar thermochronology: two stage events 

In metamorphic rocks, the transport of radiogenic 
40

Ar is mainly conducted by 

four physicochemical mechanisms: (1) solid-state volume circulation; (2) 

recrystallization enhanced by deformation and fluid diffusion; (3) fluid advection; and 

(4) grain-boundary flow and diffusion (Scaillet, 1998). Consequently, 
40

Ar/
39

Ar ages 

are often regarded as cooling ages following the closure temperature Dodson (1973). 

Also, they can be interpreted as crystallization ages constrained by different 

tectonometamorphic events, or intermediate mixed ages reflecting the interaction of 

all these mechanisms (e.g., Agard et al., 2002; Forster and Lister, 2016; Laurent, 2017; 

Lister and Baldwin, 1996; Ruffet et al., 1997; Scaillet et al., 1992; Scaillet, 1998; 

Villa, 1998; Wijbrans et al., 1990). The biotite and muscovite hold different closure 

temperatures with the ranges of 260-350℃ and 360-420℃, respectively (Chiaradia et 

al., 2013). Therefore, they can be applied to estimate the thermal history, and even the 

tectonic stories of the rocks. In this study, the muscovite and biotite display 

significantly different age spectra, they should correspond to distinct geological 

events, the reasonable interpretations are given as following: 

            5.5.3.1 Stage I: ductile shearing or crustal uplift in the Early 

Paleozoic 

The older age range of 450-400 Ma from the muscovite located in the shear band 

plays a first-order importance in both number and quality of our Ar-Ar dating though 

it is not over the entire rock-chip (Figure 5-7). Such age range has been also defined 

by previous study in ductile décollements and shear zones in the Cathaysia block (see 

Table 5-2), which were interpreted as the consequence of the Early Paleozoic 

intracontinental orogeny. Figure 5-7 shows the good compatibility of our results with 

previous ones in the Cathaysia block and eastern Jiangnan region. Therefore, it is 

reasonable to assume that the muscovite (in our study region, the western Jiangnan 

Orogenic Belt) were deformed during the same period as those in the Cathaysia block 

and eastern Jiangnan region. However, up to now, few people in favour of this 

perspective due to undeformed and unmetamorphosed Cambrian and Ordovician 
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strata, these authors reject the idea that the Jiangnan Orogenic Belt region has been 

reactivated by the Silurian tectonic event (Wang et al., 2007b). 

Nevertheless, Xu et al., (2015) and Li et al., (2016) recently reported the early 

Paleozoic aged micas (449-429 Ma) in the Neoproterozoic strata in the eastern 

Jiangnan region, e.g., the NE Jiangxi fault belt and eastern Jiuling area. This 

challenges the idea that the Jiangnan Orogenic Belt has escaped the Early Paleozoic 

tectonic event . 

To consider our results, the ductilely deformed muscovite yield apparent 

40
Ar/

39
Ar ages of 450-400 Ma, with a distinct flat pattern at 420 Ma (Figure 5-7). As 

previous study showed, the deformation can reduce the effective grain-size and favour 

the mobility of argon, which increase the kinetics of recrystallization, facilitating  

new grains formation (recrystallization) and to resetting of the K/Ar isotopic system 

(Scaillet, 1998). Besides, the fluid circulation can be possibly channelized within 

major tectonic structures, it can significantly influence the open vs. closed behaviour 

of the argon system (Proyer, 2003). Therefore, in this way, we propose that the 420 

Ma age may be considered as an important period for ductile shearing partly 

superimposed on the neoproterozoic structures. 

However, how to match this Paleozoic age with the undeformed Cambrian and 

Ordivician sedimentary sequence? 

Many researchers have investigated the rigidity of the Jiangnan Orogenic Belt 

and Cathaysia block (e.g., Liu, 2017; Shu, 2012; Yu et al., 2009), and reached an 

agreement that the Cathaysia block was made up by several sub-unit blocks with 

relatively weak rigidity, this is the reason why the 420 Ma Ar-Ar results cover almost 

all Cathaysia block. It seems that the case is different for the Jiangnan Orogenic Belt. 

Geophysical investigations show that the Jiangnan Orogenic Belt is underlain by the 

relatively homogeneous and rigid Yangtze basement (Deng et al., 2014). That is 

probably why we observe rarely the highly metamorphic and strongly deformed rocks 
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in the Jiangnan Orogenic Belt. All Ar-Ar data showing ca. 420 Ma ages within 

Proterozoic rocks are located along the Jiangnan Orogenic structures (Figure 5-6). 

This may indicate that the Jiangnan Orogenic Belt has been modified by the Paleozoic 

orogenic event, but locally instead of pervasively. In other words, the Paleozoic 

deformation is just localised in the limited zones, probably the old structures.  

The alternative way to explain the age range at about 420 Ma by Ar-Ar dating 

may consider that this age concerns just a thermal phenomenon instead of 

deformation one. As the deformation of this age is still rarely observed in the Jiangnan 

Orogenic Belt, moreover, these observed ages are from or near the Proterozoic 

plutons. The deformation is quasi localised around or in the plutons. One of scenario 

may be proposed as following. During the emplacement of these post-orogenic 

plutons, the upwelling magma may push the already crystallised granite and/or the 

country rocks away to create the space. This may evoke a relative movement within 

plutons as well as in the country rocks, and produce a shearing band(s) near or on the 

top of the pluton. All of this may take place in a depth where the temperature is higher 

than the mica closure ones. The later Paleozoic orogenic event exhumed plutons (why 

not also all the Jiangnan Orogenic Belt), and consequently the age of ca. 420 Ma was 

recorded by mica when they passed their closure temperature (Figures 5-9A and 5-9B). 

In other words, the deformation of the shearing band was produced during the 

construction of the plutons, i.e., the syn-emplacement deformation. This hypothesis 

may be tested by more Ar-Ar investigations in different tectonic and geological units.  

            5.5.3.2 Stage II: slow exhumation after the Early Paleozoic 

However, to consider our in-situ biotite results (one sample), intermediate 

40
Ar/

39
Ar ages are progressively distributed between 420 and 240 Ma (Figure 5-8A). 

They probably imply the mixed signature of partial inheritance and partial thermal 

overprint of mica As the results showed, the progressively decreasing ages of biotite 

go down until to the range of 330-240 Ma (Figure 5-8A). Generally, the closure 

temperatures of the biotite range from 350-260℃ (Chiaradia et al., 2013), with a 
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90-degree interval. Assuming that the argon isotopic system in biotite was reset 

during the period of isobaric cooling, then we can quantitatively estimate the cooling 

rate of biotite. Using the interval of cooling temperatures (90℃) divided by the age 

differences (90 and 180 Ma, respectively), we can get the cooling rates of 1.00℃/Ma 

and 0.50℃/Ma, respectively. 

Moreover, the step heating of single mica grains (different samples) yield a 

positive correlation between the 
40

Ar/
39

Ar age and elevation. Assuming that the 

closure temperature of the micas were completely induced by the geothermal, and 

therefore we can make an estimation of cooling rate by the formula with a constant 

geothermal gradient value of 30℃/Km:                              
where the ∆Height is the height difference, while the ∆Age is the difference of the 
40

Ar/
39

Ar age. In this way, we get the cooling rates of the biotite and muscovite at 

0.97℃/Ma and 0.58℃/Ma (Figure 5-8B), respectively, which are comparable to those 

of the biotite aggregations. 
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Figure 5-8. (A) Distribution of the biotite ages analyzed by the in-situ UV laser 

technique, with qualitative cooling rates of the biotite. (B) Distribution of both 

muscovite and biotite single grain ages analyzed by the step heating method, versus 

the elevation plot, with cooling rates of the muscovite and biotite. 

Such progressive decreasing apparent age spectra indicate that the study area was  

exhumed with a so low rate that this exhumation doesn’t like to be produced by 

tectonic events since 420 Ma. As the tectonism was negligible, we can ignore the 
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influence by the tectonic event and active fluid diffusion, hence, it is suggested that 

the heat was almost sourced from geothermal. According to the slow cooling rates, 

therefore, we can furthermore infer that the exhumation of the crust was quite slow 

accommodated by isostatic re-equilibration due to erosion with an average rate 

interval of 16.7-33.3 meters per million years (Figures 5-9C to 5-9F; Fitzgerald et al., 

1995).  

Nevertheless, the geological significance of the mica 
40

Ar/
39

Ar ages are still not 

well constrained by (1) the intrinsic parameters controlling argon transport kinetics in 

nature (volume diffusion, thermal-pressure-compositional effects), and (2) the effects 

of deformation and fluid circulation on crystal-scale
 40

Ar distributions. 

 

Figure 5-9. (A): 3-D sketch model of the early Paleozoic ductile shearing event in the 

Sanfang and Yuanbaoshan areas; (B): Sketch map of the ductile shearing in the granite 

plutons and country rocks; (C): 3-D sketch model of the upper crust in the Sanfang 

and Yuanbaoshan areas during the 420-240 Ma; (D): Sketch map of the crust when it 

exhumed during the 420-240 Ma; (E) and (F): Sketch sections of the slow exhumation 
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during the 420-240 Ma. 

5.6 Conclusions 

Through the 
40

Ar/
39

Ar analyses on the both deformed and undeformed muscovite 

and biotite from the Sanfang-Yuanbaoshan plutons, the early Paleozoic to Triassic 

geological events in this area can be concluded as following: 

(1) Ar-Ar dating provides a signification age range at ca. 420 Ma from the 

Sanfang-Yuanbaoshan plutons and their roof. This age may imply that (1) the shearing 

band on the upper part of plutons and their roof may be the consequence of the 

reactivation of Proterozoic structures reactivated by the Paleozoic orogeny or (2) the 

exhumation of the study areas by the Paleozoic orogeny; 

(2) During the 420 Ma to 240 Ma period, the study areas have experienced a 

slow rate of exhumation which may correspond to the isostatic crustal 

re-equilibration. 
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Chapter 6. Conclusions and perspectives  

6.1 Conclusions: tectonic evolution of the western Jiangnan Orogenic Belt 

The Jiangnan Orogenic Belt locates in the southeastern margin of the Yangtze 

Block, tracing the northwestward subduction of the Paleo–South China Ocean and the 

collision between the Yangtze and Cathaysia blocks. This study focuses on the western 

part of Jiangnan region, where Neoproterozoic unconformity and S-type granite 

plutons are exposed. Depending on the significant geological facts, we have carried 

out: i) an overview of the Jiangnan Orogenic Belt with detailed field investigation; ii) 

the detrital zircon age spectra analyses between the Neoproterozoic strata on both 

sides of the unconformity, as well as the detrital zircon age spectra analyses of the 

Neoproterozoic strata among the Yangtze, Jiangnan and Cathaysia regions; iii) the 

geochronology, geochemistry, structural analysis, anisotropy of magnetic 

susceptibility and gravity measurements on the Sanfang and Yuanbaoshan plutons; 

and iv) argon isotopic analyses on the micas from the Sanfang and Yuanbaoshan 

plutons. Here, we outline the conclusive results of our studies and propose a tentative 

model from the subduction to collision and then the construction mechanism of the 

granite plutons as well as the tectonic events posterior to the peraluminous magma 

emplacement, that can adequately answer most of the geological phenomena. 

(1) In the regional view, the subduction of the Paleo–South China Ocean started at 

ca. 1000 Ma and ended at ca. 865 Ma (Figure. 6-1A). Afterwards, the Jiangnan 

Orogenic Belt was built up due to the assembly of the Yangtze and Cathaysia blocks 

between ca. 865 and 820 Ma (Figure. 6-1B). During the subduction-collision period, 

the deposition environment of the early Neoproterozoic Sibao group and its equivalents 

can be divided into two stages. Firstly, the lower part of the series deposited in an 

active continental margin in the period of ca. 1000–865 Ma. Then, the upper part was 

accumulated in a collisional setting in the period of ca. 865–820 Ma. After the 

Neoproterozoic orogeny, the Danzhou group and its equivalents began to deposit since 
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ca. 780 Ma in the western Jiangnan region; 

 

Figure 6-1. Geodynamic evolution model for the Jiangnan region in the Early 

Neoproterozoic. (A) Subduction of the Paleo–South China Ocean; and (B) Collision of 

the Yangtze and Cathaysia blocks. 

(2) The parental magma of the Sanfang and Yuanbaoshan plutons was derived 
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from the melting of crustal material, and crystallized at ca. 830 Ma, which indicates 

the ending of the Jiangnan Orogeny (Figure 6-2A). According to the field, 

microscope-scale texture, AMS and gravity studies, the granitic fabrics can be divided 

into two groups, the first one is a magmatic fabric developed in a subsolidus stage 

during the plutons emplacement. The second one is post-solidus one developed after 

the crystalisation of granite. According to multidisciplinary results, it seems that the 

granitic magma intruded into the pre-existing tectonic fold/fault structures in the 

Sibao group, the tongue- and/or sill-shaped plutons were constructed by an E-W 

lateral accumulation of N-S oriented dykes with a dominantly northward horizontal 

magma flow from south to north (Figure 6-2B); 

(3) A top-to-the-W ductile shearing event (Figures 6-2C and 6-2D) has been 

identified at the top of the plutons and their sedimentary roof by the macro and 

microscopic scales kinematic studies and the secondary post-solidus magnetic fabric 

related to the development of planar and linear fabrics. Moreover, a coherent mica age 

of ca. 420 Ma has been obtained from the deformed muscovites of the Sanfang 

plutons by Ar-Ar dating. Two hypotheses may be proposed to explain these new 

results. a) The emplacement of pluton occurred at a deeper depth where the 

temperature is higher than the mica closure ones. The ductile deformation took place 

locally during the emplacement. During the Paleozoic orogeny, the study area is 

uplifted and the mica passed their closure temperature and record this event; b) The 

ductile shearing took place after the magmatic emplacement by the Paleozoic orogeny 

along the ancient structures in the study area. 

(4) Afterwards, the rather slow cooling process revealed from Ar-Ar dating of 

biotite and muscovite from both Sanfang-Yuanbaoshan plutons during the 420-240 

Ma period in this area (Figures 6-2E and 6-2F), which may correspond to the isostatic 

crustal re-equilibration. The final uplift and erosion of this part of the South China 

crust led to the present exposures (Figures 6-2G and 6-2H). 
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Figure 6-2. Tectonic evolution model of the Sanfang and Yuanbaoshan areas since the 

end of the orogeny. (A) 3-D model of the granite plutons intruded into the Sibao group 

and crystallized at 830 Ma; (B) Emplacement mechanism of the peraluminous magma 

of the Yuanbaoshan pluton; (C) A top-to-the-W ductile shearing event took place at ca. 

420 Ma in the Sanfang-Yuanbaoshan area; (D) Sketch section of the ductile shearing 
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in the granite plutons and country rocks; (E) 3-D sketch model of the upper crust in 

the Sanfang and Yuanbaoshan areas during the 420-240 Ma; (F): Sketch section of the 

crust when it uplifted during the 420-240 Ma; (G) 3-D model of the current shape of 

the Sanfang and Yuanbaoshan plutons with the country rocks; (H) Current geological 

cross section of the two granite plutons and their country rocks in the Sanfang and 

Yuanbaoshan areas. 

6.2 Perspectives 

    In order to better constrain the tectonic evolution of the western Jiangnan 

Orogenic Belt or even the whole Jiangnan region, more details need to be clarified. 

Such as the depositional history of the Sibao group and its equivalents, what were the 

source of the sediments and how the sediments were transported and then deposited? 

These answers are of great importance to get a bulk understanding of the subduction 

of the Paleo-South China Ocean. Besides, the metamorphic study of the sedimentary 

rocks, including the Sibao and Danzhou groups and their equivalents, and Sinian 

strata, would provide a more comprehensive vision on exploring the significance of 

the ductile shearing event. Of course, to visit the eastern part of the Jiangnan Orogenic 

Belt is necessary if we want to have a bulk understanding of the tectonic evolution 

history of the whole Jiangnan Orogenic Belt. 
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Evolution tectonique Néoproterozoïque de la chaîne de Jiangnan Occidental  

et sa réactivation au Paléozoïque inférieur-Mésozoïque  

La chaîne de collision d'âge néoprotérozoïque de Jiangnan, orientée NE-SW, marque la limite entre les blocs du Yangtze et de 

Cathaysia. Son évolution tectonique reste encore débattue. Une des questions les plus controversées est l'âge de la collision entre 

les deux blocs. Afin d'acquérir une meilleure compréhension de ce problème, nous avons collecté des échantillons dans les 

couches sédimentaires situées au dessus et au dessous de la discordance dans le but de comparer les spectres d'âge des zircons 

détritiques et aussi de les confronter à ceux décrits dans les séries néoprotérozoïques des régions du Yangtze, Jiangnan et 

Cathaysia. En outre, nous nous sommes intéressés aux plutons granitiques d'âge  néoproterozoïque de Sanfang et Yuanbaoshan, 

de type-S, situés dans la partie occidentale de la chaîne de Jiangnan afin de tracer l'évolution tectonique de la région depuis 830 

Ma par la mise en œuvre de méthodes pluridisciplinaires: géologie structurale, géochronologie U-Pb, AMS, modélisation 

gravimétrique et thermochronologie Argon. 

Notre étude montre les résultats suivants: (i) La chaîne de Jiangnan s'est formée par la collision des blocs de Yangtze et Cathaysia 

entre ca. 865 and 830 Ma; (ii) Les intrusions granitiques de 830 Ma se sont mises en place dans des formations encaissantes du 

groupe Sibao plissées et faillées. Les plutons ont été construits par accumulation latérale E-W de filons N-S, avec un écoulement 

horizontal du magma du sud vers le nord; (iii) Un cisaillement ductile du haut vers l'Ouest a été reconnu dans la partie supérieure 

des plutons. Des âges Ar/Ar vers 420 Ma obtenus sur plusieurs grains de muscovite et biotite déformés impliquent que le 

cisaillement ductile peut être: a) formé pendant l'orogenèse du Paléozoïque inférieur de Chine du Sud, ou b) pendant la mise en 

place des plutons au Néoprotérozoïque dans une croûte chaude, sous la température de fermeture du chronomètre argon, puis lors 

de l'orogenèse du Paléozoïque inférieur, ce domaine crustal de Chine du Sud est passé au dessous de 350°C; (iv) Durant la 

période 420-240 Ma, la région de Sanfang-Yuanbaoshan a connu un refroidissement lent qui pourrait correspondre au 

ré-équilibrage isostatique de la croûte. 

Mots clés: Orogène de Jiangnan, Discordance Néoproterozoîque; granite de type S; AMS; Modélisation gravimétrique; datation 

Ar-Ar. 

 

The Neoproterozoic tectonic evolution of the western Jiangnan Orogenic 

 Belt and its early Paleozoic-Mesozoic tectonic reworking 

The Jiangnan Orogenic Belt is a NE-SW trending Neoproterozoic collisional suture, marking the boundary between the Yangtze 

Block and the Cathaysia Block. Its tectonic evolution is still debated. One of the most controversial questions is the timing of the 

collision between the Yangtze and Cathaysia blocks. In order to have a better understanding of this problem, we have collected 

the sedimentary rocks from the strata both overlying and underlying the Neoproterozoic unconformities to compare the detrital 

zircon age spectra between them, as well as to compare the detrital zircon spectra of Neoproterozoic sequences among the 

Yangtze, Jiangnan and Cathaysia regions. Moreover, we paid attention to the Neoproterozoic S-type granite plutons located in the 

western Jiangnan region in order to trace the crustal evolution in the Sanfang-Yuanbaoshan area since 830 Ma by 

multidisciplinary methods, including structural geology, geochronology, AMS, gravity modelling and Argon isotopic dating. 

Our study shows that: (i) The Jiangnan Orogenic Belt was built up due to the assembly of the Yangtze and Cathaysia blocks 

between ca. 865 and 830 Ma; (ii) The 830 Ma granitic magma intruded into the pre-existing folds and faults in the Sibao group, 

the tongue- and/or sill-shaped plutons were constructed by an E-W lateral accumulation of N-S oriented dykes with a dominantly 

northward horizontal magma flow from south to north; (iii) A top-to-the-W ductile shear band has been identified on the top of 

plutons, (iv) the coherent mica Ar-Ar age of ca. 420 Ma, obtained from the deformed muscovite, implies that this shearing may 

be formed either a) during the Early Paleozoic orogeny, or b) during the Neoproterozoic plutons emplacement, then the plutons 

were exhumed by the Paleozoic orogeny; (iv) During the 420-240 Ma period, the Sanfang-Yuanbaoshan area has experienced a 

slow cooling rate, which may correspond to the isostatic re-equilibration of the crust. 

Keywords: Jiangnan Orogenic Belt, Neoproterozoic unconformity; S-type granite; AMS; Gravity modelling; Ar-Ar dating 

 

Institut des Sciences de la Terre d'Orléans 

1A, rue de la Férollerie – 45071 Orléans Cedex 2 

School of Earth Sciences and Engineering, Nanjing University 

163, Xianlin Avenue – 210046 Nanjing, Chine 


	空白页面
	空白页面
	空白页面
	空白页面
	空白页面
	空白页面
	空白页面

