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Résumé 
Les grandes quantités de sédiments transportés en suspension dans les rivières alpines 

sont associées à des problématiques socio-économiques et environnementales telles 

que le transport de polluants, la dégradation des milieux aquatiques ou l’envasement 

des retenues hydroélectriques. Pour faire face à ces enjeux, il est important de mieux 

comprendre le rôle joué par le lit des rivières alpines sur la dynamique de ce transport. 

Dans ce but, la première partie de cette thèse rapporte une étude à l’échelle régionale. 

A partir de larges bases de données issues de la littérature et de nouvelles mesures de 

terrain, elle étudie i) l’influence de la configuration des sources sédimentaires sur la 

variabilité du transport solide par suspension (via l’analyse des hystérésis entre débits et 

concentrations), ii) l’estimation de la quantité et de la disponibilité des particules fines 

stockées dans le lit des rivières Alpines et iii) l’analyse de la relation entre transport 

solide par suspension et mobilité du lit de ces rivières. Ces analyses montrent que la 

configuration du bassin versant en amont du point d’observation, i.e. la capacité à 

produire des flux versus la capacité à stocker temporairement ces flux, contrôle 

significativement la dynamique du transport solide par suspension observée en aval. Ce 

travail montre également que de grandes quantités de sédiments fins sont stockées 

dans le lit de certaines rivières Alpines. Pour ces rivières et pour des gammes de débits 

élevées, il est possible de prédire une partie significative des flux en suspension à partir 

d’une modélisation de la mobilité du lit. 

La seconde partie de la thèse teste ces résultats à une échelle locale. Pour cela, une 

campagne de mesures a été réalisée durant une saison complète de fonte sur un cours 

d’eau Alpin, la Séveraisse. Un large panel de mesures directes (échantillonnage des 

flux, relevés topographiques et granulométriques, traçage sédimentaire, mesure de 

concentration en particules fines dans la matrice graveleuse) et indirectes (capteurs 

sismiques, turbidimètres, imagerie aérienne et au sol) a été mis en œuvre pour mesurer 

la suspension, le charriage et les évolutions topographiques sur un tronçon de 3.5 km. 

Ces mesures confirment que les particules fines transportées par suspension 

interagissent fortement avec le lit dans ce type de tronçon morphodynamiquement actif. 

Ce dernier peut être perçu comme une zone tampon intermédiaire contrôlée par le 

forçage amont sédiments-débit liquide ainsi que par la mobilité du lit et sa morphologie. 

Nous montrons également dans cette partie l’intérêt de combiner des mesures 

continues indirectes des flux en suspension (turbidimètre) et de la mobilité du lit (capteur 

sismique) pour détecter les interactions entre sédiments fins et grossiers et identifier la 

source des particules en suspension. 



 
 

 
 

ABSTRACT 
The large quantities of sediment transported as suspension in Alpine rivers are 

associated with important socio-economic and environmental issues such as pollutant 

transfer, aquatic habitat degradation or dam siltation. To address these issues, it is 

required to better understand the role of Alpine river beds on the dynamics of this 

transport. 

 To this end, the first part of the manuscript reports a regional study in which large 

datasets from the literature and new field measurements are used to investigate i) the 

influence of sediment sources configuration on suspended load variability (through the 

analysis of hysteresis between flow rate and suspended sediment concentration), ii) the 

quantity and availability of fine particles stored in Alpine river beds and iii) the relation 

between suspended load and river bed mobility. These analyses show that the 

catchment configuration upstream the observation point, i.e. the capacity to produce 

upstream suspended sediment versus the capacity to buffer these fluxes can 

significantly control the suspended load dynamics observed downstream. This first part 

also shows that large quantities of fine particles can be stored in certain Alpine rivers. 

For these rivers and for high flow rates ranges, it was possible to predict a significant 

part of suspended load by using riverbed mobility modeling. 

The second part of the thesis tests these results at a local scale. To do so, an important 

field campaign was performed during the entire melting season of a typical Alpine river, 

the Séveraisse. A large panel of direct (fluxes samplers, topographic and grain size 

surveys, particle tracking, gravel matrix fine particle concentration sampling) and indirect 

measurements (seismic and turbidity sensors, aerial and ground based imagery) was 

used to measure suspended load, bedload and topographic changes on a 3.5-km reach. 

These measurements confirm that suspended particles strongly interact with the river 

bed of that kind of morphodynamically active streams. The latter can be considered as 

an intermediate buffer controlled by the upstream hydro-sedimentary forcing (suspended 

sediment concentration and water discharge) and by the river bed mobility and 

morphology. We also show in this part the interest to combine continuous indirect 

measurements of suspended load (turbidity sensor) and bed mobility (seismic sensor) to 

detect fine-coarse sediment interactions and unravel suspended load sources. 
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Introduction 

0. 1 MOTIVATIONS 
Rivers transport sediments from the mountains to the oceans. The coarser fraction of 

sediments (from boulder to sand size) is transported at the bottom of the river bed when 

forces exerted by the water flow are sufficient to initiate sliding, rolling or saltating of 

these particles. This mode of transport is called bedload. The finer fraction of sediments 

(from sand to clay size) is transported in the water column when the flow turbulence is 

high enough to keep these particles in suspension. This mode of transport is called 

suspended load. In most rivers, suspended load represents a significant part if not the 

majority of sediment fluxes (Figure 0.1). Thus suspended load is an important 

component of river system functioning. This is particularly true in Alpine rivers on which 

this manuscript is focused. Indeed, mountainous environments have been shown to 

generate high suspended fluxes [Mano et al., 2009; Meybeck et al., 2003; Navratil et al., 

2012; Sadaoui et al., 2016; Vanmaercke et al., 2011].  

While the finest fraction of particles transported as suspension are a vector of nutriments 

essential for estuarine ecosystems [Le Pape et al., 2013; Ludwig and Probst, 1998], 

river managers and practitioners often have to deal with issues associated with this fine 

particle transport. Water resources can be affected by pollutant such as PCB or heavy 

metal carried by fines and stored in the river bed or in flood plains [Estrany et al., 2011; 

Karickhoff et al., 1979; Owens et al., 2005; Walling et al., 2003]. In Alpine rivers, 

hydropower plants reservoirs are commonly flushed to prevent siltation [Camenen et al., 

2013; Legout et al., 2018]. Other anthropogenic activities (construction work in the river 

bed or mining activities) and natural functioning of Alpine watersheds (floods, debris 

flows and landslides) can also release important quantities of fine particles in the river 

system. These suspended load pulses can lead to river bed clogging (Figure 0.2) which 

often generate a subsequent degradation of aquatic habitats [Armstrong et al., 2003; 

Mathers et al., 2017; Owens et al., 2005; Sear, 1993; Waters, 1995].  
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Figure 0.1: Long term measurements of suspended load fraction (suspended load 
versus total sediment load) in 82 gravel bed rivers worldwide using the dataset collected 
by Turowski et al. (2010). 

 

Figure 0.2: Example of clogged river bed in the Arc River (French Alps). 
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Fine particles delivered to the river system can also impact the long term riverbed 

morphology. Observations in the field and in flume experiments have for instance shown 

that increasing the presence of cohesive material mainly in the clay-silt range (<63µm) 

leads to an increase in the flow conditions needed to initiate river bed mobilization in 

gravel bedded streams [Barzilai et al., 2013; Perret et al., 2018] leading to gravel bar 

stabilization. Perret et al. (2018) reported a 12% increase of the critical shear stress in 

their flume experiment while Barzilai et al. (2013) reported a critical value twice larger in 

the presence of cohesive material in the Nahal Eshtemoa River. On the other way 

around, it has been observed that adding fine particles in the sand size range can lead 

to an increase of riverbed mobility [Dudill et al., 2017; Hill et al., 2017; Perret et al., 

2018]. Fine particles deposits can also enhance vegetation growth in the active corridor 

of rivers. This can lead to safety issues due to gravel bars fixation, channel narrowing or 

increase of river bed roughness [Asaeda and Rashid, 2012]. Such long term morphology 

stabilization is a particular important issue in Alpine rivers that have recalibrated beds, 

impacted hydrological regimes and high fine sediment supply [Claude et al., 2018; 

Jourdain, 2017].  

Finally, the transport of fine particles is often associated with the siltation of dams and 

reservoirs. Siltation worldwide has been estimated in 2004 to be equivalent of 0.5% of 

storage capacity lost per year which suggests that half the total storage capacity will be 

lost in 2100 ignoring new dams created after 2004 [Kondolf et al., 2014; Sumi et al., 

2004]. Annandale (2013) estimated that despite new dams are built every year, the 

effective storage capacity is decreasing since 1995. A typical example of dam siltation 

problem in the French Alps is shown in Figure 0.3. 

 

Figure 0.3: Example of siltation on the Escale Dam on the Durance river in the south of 
France (44° 05′ 08″ N, 6° 00′ 42″ E) built between 1959 and 1963. Aerial photograph 
were obtained from the IGN website (http://remonterletemps.ign.fr/). 

The above mentioned issues show that studying the transport of fine particles is crucial 

for an environmentally friendly, economically viable and safe river management. 

Practitioners typically need to estimate the flux of fine particles from instantaneous to 

annual time scales in watersheds for which suspended load measurements are not 

necessarily available. As mentioned previously, this is particularly true for Alpine 

catchments characterized by high suspended loads associated with important socio-

economic and environmental issues. These basins generally have large alluvial streams 

and highly active hillslopes sources [Navratil et al., 2012]. It is consequently often 

http://remonterletemps.ign.fr/


0 Introduction 

15 
 

difficult in that context to identify the origin of fine sediments and their interactions with 

the river bed. This information is however fundamental for suspended load modeling and 

consequently for long term catchments and rivers management in the Alps. In the 

following manuscript we investigate the role of riverbed on suspended sediment 

transport dynamics in Alpine catchments.  

0. 2 SCIENTIFIC CONTEXT 

0.2.1 SUSPENDED LOAD PARTITIONING 

As introduced previously, sediment transport was conceptually partitioned into bedload 

and suspended load. However, Einstein et al. (1940) observed in the Enoree river that 

the finer fraction of suspended load was independent from the water discharge and 

could not be found in appreciable quantities (<10%) at the surface of the riverbed. On 

the contrary, the coarser fraction of suspended load co-varied with the flow rate and 

could be found at the riverbed surface. They consequently proposed that the finer 

fraction of suspension not found in appreciable quantities on the river bed surface was 

produced from an upstream source and was washed through the system without 

interacting with the river bed. This suspended load fraction was called wash load. 

Following this concept, Partheniade (1977) proposed that a part of suspended load 

called suspended-bed material load could have a bedload function (being a function of 

flow capacity) while wash load (being a function of sediment supply) couldn’t. 

Partheniade proposed a critical sediment size of 0.06mm for this partition. A third 

distinction between the two suspended fractions was based on the concentration profile 

in the cross section that can be described by the Rouse number (𝑅𝑜) [Rouse, 1937] 

which balances the settling velocity and the turbulence suspending fine particles: 

𝑅𝑜 =
𝑤𝑠
𝜅𝑢∗

 (0.1) 

in which, 𝑤𝑠 (m s-1) is the settling velocity for suspended particles considered, 𝜅 (-) is the 

Von Karman constant equal to 0.4 and 𝑢∗ (m s-1) the friction velocity at the bottom of the 

river bed. For instance, Belperio (1979) observed on the Burdekin River that clay and silt 

particles (low Rouse numbers) were homogeneously distributed in the cross section 

while sand particles (higher Rouse numbers) were more concentrated near the bottom 

of the bed. A critical Rouse number of 0.06 was proposed by Wang and Dittrich (1992) 

for this partition. More recently, Hill et al. (2017) investigated the criteria defining wash 

load using flume experiments. They used a flume at equilibrium fed with coarse particles 

in which they added a second equivalent load composed of a finer material. They 

changed the size ratio between initial and added load from 1/1 to 1/150. For size ratio 

close to one, the river bed slope increased because higher shear stresses were needed 
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to transport the additional load. For intermediate a size ratio when the fine load could not 

freely percolate in the gravel matrix and strongly interact with coarsest particles at the 

bed surface, the river bed slope decreased. They considered it as a lubrication regime. 

When an even finer load was added, the river bed slope did not significantly changed 

and the load added, deeply infiltrated in the subsurface of the gravel matrix was 

considered as wash load. Hill et al. (2017) observed that the transition between 

lubrication and wash load occurred for sediment size ratios (D*, Eq.0.2) between bed 

particles (𝐷𝑏𝑒𝑑 , m) and suspended particles (𝐷𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 , m) larger than 30, Rouse 

numbers for suspended material (Ro, Eq.0.1) lower than 0.8 and supply (𝑞𝑠𝑠𝑢𝑝𝑝𝑙𝑦, m² s-1) 

versus transport capacity (𝑞𝑠𝑠𝑢𝑝𝑝𝑙𝑦, m² s-1) ratios for suspended material (qs*, Eq.0.3) 

lower than 0.05. 

𝐷∗ =
𝐷𝑏𝑒𝑑

𝐷𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛
 (0.2) 

𝑞𝑠∗ =
𝑞𝑠𝑠𝑢𝑝𝑝𝑙𝑦

𝑞𝑠𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 (0.3) 

All these observations and concepts led to the general idea that the finest fraction of 

sediment is transported efficiently with limited interactions with the river bed in natural 

rivers. However, in the past few decades, several studies questioned about the 

relevance of the wash load concept and its definition. In Alpine rivers having large 

alluvial streams [Navratil et al., 2010] and shallow turbulent flows strongly interacting 

with the river bed [Legout et al., 2018] the relevance of this concept was questioned by 

several field observations [Navratil et al., 2012]. Indeed, while fine particles are 

sometimes absent from the river bed surface, flume and field observations show that 

large quantities of this finest material can be stored in the subsurface of gravel bedded 

streams especially when pore spaces are initially empty [Camenen et al., 2015; Diplas, 

1994; Frostick et al., 1984; Gibson et al., 2009]. Such subsurface storage of fines can be 

observed in most Alpine gravel bedded rivers (Figure 0.4): 
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Figure 0.4: Fine particles stored in subsurface under a poorly mobile armor layer in the 
Asse and Drac Rivers. 

At the catchment scale, several studies in various contexts have shown that the quantity 

of these fine particles stored in the river bed can be equivalent to the annual fluxes 

[Collins and Walling, 2007a; Estrany et al., 2011; H. Marttila and Kløve, 2014; Navratil et 

al., 2010]. The infiltration and capture of fines into the gravel matrix was found to occur 

even for conditions attributed to wash load considering all the above mentioned criteria 

[Mooneyham and Strom, 2018]. Several studies have also shown by using sediment 

budget approach [Guillon et al., 2018; Marteau et al., 2018; Navratil et al., 2012; Orwin 

and Smart, 2004b] or by measuring simultaneously suspended load and bedload 

transport [Meunier et al., 2006; Turowski et al., 2010] that even the finest fraction of 

suspension interacts with the river bed. All of the mentioned studies show that 

suspended load is a complex process. Alpine catchments are often characterized by 

large active riverbeds composed of poorly sorted gravel bedded streams connected to 

highly active primary hillslope sources (Figure 0.5). Consequently, in that context, the 

degree to which suspended load interact with the riverbed is uncertain which makes it 

difficult to be understood and modelled. 
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Figure 0.5: Typical Alpine catchment configuration with highly active hillslope sources 
connected to large alluvial gravel bed river (Asse catchment, Southern French Alps). 

0.2.2 MODELLING STRATEGIES  

A large variety of modeling approaches have been developed for suspended load in the 

last decades. This diversity of approaches resulted from the range of application, the 

variety of conceptual descriptions, the complexity and the availability of suspended load 

data.  
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Physically based approaches 

Similarly to bedload, bed-material suspended load has been modeled by semi-

theoretical laws based on flume or field data [Bagnold, 1966; Camenen and Larson, 

2008; Celik and Rodi, 1991; Engelund and Hansen, 1967; Van Rijn, 1984]. These 

equations generally relate local flow conditions such as flow velocity (U), Shield number 

(𝜏∗, Eq.0.4) or stream power (P, Eq.0.5) with a capacity to transport a certain flux of 

suspended material (𝑞𝑠, m² s-1). 

𝜏∗ =
𝜏

(𝜌𝑠 − 𝜌)𝑔𝐷
 (0.4) 

𝑃 = 𝜌𝑔𝑄𝑆 (0.5) 

In these equations, 𝜏 (Pa) is the shear stress at the bottom of the river bed, 𝜌𝑠 (kg m-3) 

the sediment density, 𝜌 (kg m-3) the water density, 𝑔 (m s-2) the gravity acceleration, 𝐷 

(m) the sediment diameter considered, 𝑄 (m3 s-1) the water discharge and 𝑆 (-) the river 

bed slope. The energetic approach initially proposed by Bagnold (1966, Eq.0.6) 

considers that the river dissipates a certain quantity of energy to transport some 

particles as bedload and to maintain others in suspension: 

𝑞𝑠 = 𝑒𝑠(1 − 𝑒𝑏)
𝑃

(𝜌𝑠 − 𝜌)𝑔𝑊
×
𝑈

𝑤𝑠
 (0.6) 

in which 𝑊 (m) is the width of the river, 𝑒𝑏 (-) and 𝑒𝑠 (-) are respectively the bedload and 

suspended load transport efficiency. These efficiency coefficients are ratios between the 

bedload work rate or suspended load work rate and the stream power. Mechanistic 

approaches such as the ones of Van Rijn (1984) or Camenen and Larson (2008) rely on 

a detailed description of flow velocity (U) and suspended sediment concentration (SSC) 

profiles. Suspended load is then derived by integrating the product of these two profiles 

over the water depth, between the water surface (z = d) and the top of the bedload layer 

(z = a): 

𝑞𝑠 = ∫ 𝑆𝑆𝐶(
𝑑

𝑧=𝑎

𝑧)𝑈(𝑧)𝑑𝑧 (0.7) 

One of the main difficulties of such approach is to define the bedload layer height a and 

the bottom concentration 𝑆𝑆𝐶(𝑎)  which is often considered a function of bedload 

transport. 
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These physically based approaches were mainly built using flume or field measurements 

in lowland sandy rivers. They implicitly consider that the availability of fine particles is 

infinite at the riverbed surface and that particles are progressively extracted from the 

bedload layer when forces exerted by the flow are increasing. These models provide a 

good understanding of the local physical processes and can be used with limited data. 

However, their reliability is usually limited and their applications should be restricted to 

cases for which the equations were built. In particular, these approaches exclude the 

transport of suspended particles over a coarse and poorly mobile armor layer typically 

found in Alpine gravel bedded rivers (Figure 0.4). In these armored river beds, fine 

particles are generally absent at the bed surface. Consequently, their availability is likely 

to be finite and could depend on the armor layer mobility. 

For the finest suspended load fraction that cannot be modeled by capacity functions, an 

approach widely used in numerical models is to solve advection-dispersion equations 

with source terms representing erosion and deposition [Guertault et al., 2018; Launay et 

al., 2019]. Deposition fluxes (D, Eq.0.8) are represented by the Krone (1962) equation 

for shear stresses lower than a critical value for deposition (𝜏𝑐,𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, Pa). 

D = 𝑤𝑠 × 𝑆𝑆𝐶 × (1 −
𝜏
𝜏𝑐,𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛⁄ ) (0.8) 

Erosion fluxes (E, Eq.0.9) are resented by the Partheniade (1977) equation for shear 

stresses higher than a critical value for erosion (𝜏𝑐,𝑒𝑟𝑜𝑠𝑖𝑜𝑛, Pa): 

E = 𝐾 × (𝜏 𝜏𝑐,𝑒𝑟𝑜𝑠𝑖𝑜𝑛⁄ − 1) (0.9) 

These erosion and deposition relations were both derived from flume experiments with 

fine material alone. Consequently, one can expect they are relevant in case of transport 

over a riverbed mainly composed of uniform fine particles that can be considered more 

or less impervious. However, in case of a permeable river bed typically found in gravel 

bedded Alpine streams these relations might be dramatically different as was observed 

by Mooneyham and Strom (2018) or by Krishnappan and Engel (2006).  Also in Alpine 

rivers, fine particles can have cohesive properties which are difficult to quantify [Legout 

et al., 2018]. This generates aggregation-disaggregation processes [Grangeon et al., 

2014] so that suspension deviates substantially from the non-cohesive laws previously 

mentioned [Wendling et al., 2015] which makes it even more complex to model in that 

context. 
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Data driven approaches 

Due to the complexity and variety of process to consider, other types of modeling 

approach have been proposed based on a large availability of suspended load 

measurements. This data driven approach includes empirical, statistical and conceptual 

models that were used for both suspended-bed material load and wash load. 

Empirical models based on hydro-meteorological and land use data have for instance 

been proposed to estimate annual suspended load [Ludwig and Probst, 1998; 

Wischmeier and Smith, 1978] or suspended yield at the event scale [Duvert et al., 2012]. 

These approaches can be useful and provide information on the main drivers of 

suspended load for large spatial analysis. They however remain limited for detailed local 

studies or for shorter time scales analysis. Several conceptual models having 

conceptual reservoirs and functions to produce, store and transfer fine sediments have 

been proposed to reproduce and predict suspended load on a daily basis or at the event 

scale [Asselman, 1999; Doomen et al., 2008; Mano, 2008; Picouet et al., 2009]. In 

recent works, Park and Hunt (2018) and Park et al. (2019) developed a conceptual 

model to reproduce storage and release of fine particles depending on the river bed 

mobility in gravel bed rivers. Based on observations made in 38 rivers and a literature 

review, their model considers that fine particles infiltrate in the gravel river bed during 

low flow conditions until there is no more available space in the river bed. Then, when a 

critical flow rate corresponding to gravel mobilization is exceeded, their conceptual 

model considers that fine particles stored in the river bed are resuspended.  

Purely statistical models have also been widely used to predict suspended load. The 

simplest one is a power law regression between suspended sediment concentration 

(SSC) and the water discharge (Q). It is often used to predict suspended load using 

continuous Q measurements (rating curve technique): 

SSC = 𝑘1𝑄
𝑘2 (0.10) 

While widely used such approach usually leads to low accuracy as the relation between 

SSC  and Q  is often highly variable through time [Walling and Webb, 1988] and 

particularly in Alpine catchments [Mano et al., 2009]. More complex statistical models 

using multiple regression techniques [Mano et al., 2009], stepwise regression [Gellis, 

2013] or data mining models and artificial neuronal network [Boukhrissa et al., 2013; 

Chen and Chau, 2016; Khosravi et al., 2018] were also used to increase significantly the 

accuracy of predictions for practical studies. While these conceptual and statistical 

models can give reliable predictions even at short time scales, it is difficult to use them 

to better understand the physical processes involved, especially when purely statistical 

models are used. Also these approaches intrinsically need long term measurements as 

they need to be calibrated for each site.  
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This wide variety of modeling approach developed in the last past decades show the 

large range of possible applications and the variety of physical processes considered as 

suspended load. Consequently, one key question for practical studies is to determine 

which processes control the dynamic of suspended load and what are the main sources 

of fine particles. Also for all modeling strategies, including those based on a detailed 

physical description, measurements are the base of any model development. Some of 

the commonly used field measurement techniques are presented in the following 

section. 

0.2.3 FIELD MEASUREMENT TECHNIQUES  

a) Fluxes measurements 

Suspended load fluxes are usually measured in the field by direct water sampling to 

determine the suspended sediment concentration. Automatic pumping samplers are 

often used when the SSC concentration can be considered homogeneous in the cross 

section. Because suspended load can be highly variable in time, especially in 

mountainous and mediterranean catchments [Mano et al., 2009; Williams, 1989] these 

direct sampling are often coupled with continuous water turbidity measurement (Figure 

0.6) to allow interpolation through time [Guillon et al., 2018; McDonald and Lamoureux, 

2009; Navratil et al., 2011; Smith and Dragovich, 2009]. Turbidity sensors generally 

have a detector aligned with a certain angle to a beam and record the scattered light 

which is function of the concentration of fine particles in the flow. 

By assuming a homogeneous concentration over the cross section and by measuring 

the water discharge (through continuous water pressure sensor and gauging) at the 

same station, suspended sediment load (SSL, g s-1) can be calculated by multiplying 

SSC (g l-1) and Q (m3 s-1): 

𝑆𝑆𝐿 = 𝑆𝑆𝐶 × 𝑄 (0.11) 

While turbidity is a function of SSC, it is also influenced by several other parameters and 

particularly by the suspended sediment size [Landers and Sturm, 2013]. Consequently, 

turbidity cannot be used alone to accurately estimate SSL. It can however be used as a 

proxy to capture the temporal dynamic of both SSC and suspended sediment size 

changes. When the SSC cannot be considered homogeneous over the cross section, 

which can for instance be the case for sand suspension in large rivers having not well 

mixed flows, isokinetic depth integrating samplers can be used [Thomas, 1985]. These 

measurements are however time consuming and do not provide a continuous 

measurement though time. Indirect techniques using for instance the intensity of 

backscattered sound of acoustic Doppler current profilers (ADCP) to measure the cross 



0 Introduction 

23 
 

section distribution of SSC are consequently under development [Baranya and Józsa, 

2013].  

 

Figure 0.6: Typical monitoring station used to measure suspended sediment load by 
coupling direct automatic samples, continuous turbidity measurements and water 
pressure sensor.  

b) Stocks measurements 

In addition to measuring the fluxes of fine particles, it is often of interest to estimate their 

stocks in the river bed. Lambert and walling (1988) were the first to apply a simple field 

protocol to estimate the concentration of fine particles in the Exe riverbed, a gravel 

bedded river in the UK. This technique is based on a resuspension of fine sediment 

stored under water in a cylinder. Several degrees of bed disturbance are used to make a 

difference between surface deposits and subsurface storage. While associated with 

large uncertainties [Duerdoth et al., 2015] this method have been widely used in various 

environments to quantify temporal changes in bed storage and to perform sediment 

budget approach at the catchment scale [Buendia et al., 2016; Collins and Walling, 
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2007a; Marteau et al., 2018; Naden et al., 2016; Piqué et al., 2014]. Compare to frozen 

cores which can be considered a reference, the Lambert and Walling protocol is much 

faster and less expensive which permits to perform many measurements and cover the 

large spatial variability [Duerdoth et al., 2015]. However, this protocol can only be used 

for underwater storage. For mountainous rivers having large active width and large 

potential stocks stored in dry areas, the protocol was adapted by Navratil et al. (2010). 

0.2.4 STATE OF THE ART OF FIELD OBSERVATIONS 

The way we conceptualize and understand suspended load should necessary be 

compared with available field observations to test and validate hypothesis. Some of 

these field observations are reported in the following section. 

a) Variability and hysteresis of the SSC-Q relation 

 

Figure 0.7: Relation between suspended sediment concentration (SSC) and the water 
discharge (Q) in the Galabre Catchment (22km²) in the southern French Alps (2007-
2013, 10-min time step). 

In many field studies, the relation between flow rate (Q) and suspended sediment 

concentration (SSC) has been analyzed using high frequency measurement techniques. 

This SSC-Q relation was found to be highly variable between catchments. Vaughan et 

al. (2017) have observed that this variability was controlled by the near channel 

environments for moderate to high flow rates while SSC dynamic during low to moderate 
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flow rates was controlled by the catchment land use. This SSC-Q relation is also highly 

variable though time in a given catchment which makes it difficult to predict suspended 

load [Walling and Webb, 1988]. An example of the temporal variability of the SSC-Q 

relation observed on the Galabre catchment in the Alps [Esteves et al., 2018; Legout et 

al., 2013; Navratil et al., 2012] is shown in Figure 0.7.  

This temporal variability is often characterized by hysteresis phenomena that are 

observed at various time scales [Aguilera and Melack, 2018; Andermann et al., 2012; 

Mao and Carrillo, 2016; Sun et al., 2016]. At the event scale, these hysteresis loops 

have been first classified by Williams (1989). A simplified classification based on the one 

of Williams is shown in Figure 0.8. 

 

Figure 0.8: Simplified SSC-Q hysteresis classification proposed by Williams (1989). 
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Many explanations have been proposed to qualitatively interpret these phenomena  

[Gellis, 2013]. Amongst the large variety of interpretations proposed, the contribution of 

various sediment sources is often considered as the main explanation of these loops. 

Clockwise hysteresis are often considered as the result of close source contribution 

(riverbed network) while counterclockwise loops are considered as the result of more 

distant sources (hillslopes) [Baca, 2010; Klein, 1984; Hannu Marttila and Kløve, 2010; 

Navratil et al., 2012; Park and Hunt, 2017; Williams, 1989]. No-hysteresis is often 

interpreted as an unlimited sediment supply [Nistor and Church, 2005; Williams, 1989]. 

Complex loops such as “figure 8” hysteresis being the result of several processes 

combination can also be observed. While having information on the origin of fine 

particles is useful to understand suspended load, a direct link between sources and 

SSC-Q hysteresis has not yet been confirmed with a quantitative analysis. 

b) Fine particles storage in the river network: relative contribution to 

total fluxes, temporal variability and control parameters 

To better understand the way fine particles transit in catchments or because of aquatic 

habitat quality issues, many studies have focused on fine particles stored in the riverbed. 

They were mainly based on the Lambert and Walling technique. Depending on the study 

site, local in-channel fine particle storage was found to be controlled to various degrees 

by land use [Naden et al., 2016]. The later report recently that stream power (P) 

calculated for the bankfull discharge significantly explains these local stocks in 230 

agricultural streams in the UK. Studying a reservoir release, Petticrew et al. (2007) 

observed that local storage of fine particles in a trap was controlled by the local Froude 

number ( 𝐹𝑟 = 𝑈 √𝑔𝑑⁄ ). Similar observation was made by Marteau et al. (2018) 

observing that pools stored much more fines than riffles or plane beds. In an Alpine 

environment, Navratil et al. (2010) observed that the quantity of fine particles stored in a 

braided river reach depends mainly on the facies considered. They observed low local 

stocks in the main channel and in naked gravel bars while secondary channels and 

vegetated bars contained high quantities. These studies suggest that in addition to 

particle size criteria [Frostick et al., 1984], local hydraulic conditions seem to significantly 

control the quantity of fine particles found in the river bed. Using that kind of local stock 

measurements integrated over the entire river network, several authors have estimated 

the fraction of annual load stored in river beds (Table 0.1). 
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Study River Location Riverbed storage vs annual load 
(%) 

Collins et al. (2007) Frome UK 11-39 
Collins et al. (2007) Piddle UK 29-97 
Owens et al. (1999) Tweed UK 4+40(a) 
Walling et al. (1998) Ouse UK 10+39(a) 
Walling et al. (1998) Warfe UK 9+49(a) 
Lambert and Walling (1988) Exe UK 40-70(b), 60-100(c), 110-160(d) 
Piqué et al. (2014) Isábena Spain 10 
Estrany et al. (2011) Borges Mallorca 87 
Marttila and Kløve (2014) Sanginjoki Finland 13-116 
Navratil et al. (2010) Bès France 80(e) 

Table 0.1: Ratios of riverbed stocks versus annual suspended load obtained in several 
studies. Two values separated with a dash indicate time variability. (a) Includes the 
floodplain storage. (b) (c) (d) correspond to different degree of riverbed disturbance: water 
agitation, water and bed surface agitation, water and subsurface riverbed material 
agitation. (e) Includes in-channel dry facies storage. 

Table 0.1 indicates that the ratio between riverbed storage and annual suspended load 

is highly variable between catchments as it ranges from nearly 0 to more than 100 %. It 

can also vary in time as riverbed stocks can dramatically change [Buendia et al., 2016; 

Collins and Walling, 2007b; Marteau et al., 2018; Piqué et al., 2014; Walling et al., 

2003].  

This temporal variability is for instance highlighted by the repeated measurements of 

river bed stocks performed before and after flood events by Buendia et al. (2016) in the 

Isábena River (Figure 0.9). Storage values were found to increase after the flood event 

for peak discharges lower than 10m3/s while they decrease for larger peak flow rates 

suggesting a control of fine particle storage and release by this variable. Most of these 

studies were performed in lowland or agricultural catchments or focused mainly on 

under-water storage. Except the study of Navratil et al. (2010) few data are available for 

Alpine rivers concerning that specific topic. This raises questions about the potential 

contribution of Alpine riverbed stocks to total load and the way fine particles are stored 

to better understand their transfer.  
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Figure 0.9: Ratio between in-channel stock after and before of flood event as a function 
of the peak discharge observed in the Isábena river using the data of Buendia et al. 
(2016). 

c) Current observation of the relation between suspended load and 

river bed mobility  

The previously detailed field observations suggest that the interactions between fine 

particles and the river bed can be significant in mountainous rivers. It is obvious that 

these interactions are difficult to capture in the field. Consequently, only few studies 

managed to report some interesting observations. By measuring input and output 

suspended load in proglacial streams, Orwin et al. (2004) and Guillon et al. (2018) 

observed significant buffering effects in the river reach at the season and at the event 

scale. The latter conclude that the buffering property was controlled by variations of 

transport capacity, a function of the river bed slope, water discharge and upstream 

suspended sediment concentration. By measuring simultaneously bedload and 

suspended load transport in an alpine braided reach, Meunier et al. (2006) were able to 

observe a relation between both variables which they attributed to a release of fine 

particles due to riverbed mobilization. Later Turowski et al. (2010) collected 

simultaneous bedload and suspended measurements in the literature and also observed 

such relation between both fluxes. These observations suggest that in armored alpine 

rivers, the riverbed mobility and bedload fluxes could be a good proxy of suspended load 

in case of a significant riverbed release of fine particles. 
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0. 3 SCIENTIFIC QUESTIONS 
Based on the previous description of our current observations and knowledge the 

present manuscript focuses on the following specific questions concerning the transport 

of fine particles in Alpines Rivers: 

- How fine particles eroded on hillslopes are transferred downstream? 

- When are erosion and deposition of fine particles in the river bed significant? 

- How do fine particles interact with the coarse ones and the riverbed mobility? 

Two simplified hypothesis can be formulated to answer these questions (Figure 0.10). 

Assuming first an efficient and direct transfer from the hillslopes to a given target with 

limited riverbed interactions, the suspended load dynamics would be mainly driven by 

erosion processes on hillslopes. An alternative hypothesis is to consider that significant 

deposition and remobilization could occur in the river bed. In that second case, a 

significant part of the suspended load dynamic would be controlled by the interactions 

between suspended fine particles and the riverbed. We hypothesized that the riverbed 

mobility could be a good proxy of these interactions in Alpine rivers.   

To investigate these questions, the approaches synthetized in Figure 0.10 have been 

used. We first performed a macroscale study using catchment scale analysis (chapters 

1, 2 and 3). In the first chapter, we analyzed long term measurements of suspended 

load in a dozen of contrasted alpine catchments to assess to which extent SSC-Q 

hysteresis could be linked to the catchment geomorphological characteristics. We then 

completed this first analysis by an estimation of river bed stocks of fine particles in 7 of 

these catchments in chapter 2. This was used to quantify whether alpine river beds 

contained significant stocks of fine particles. To estimate the conditions and the quantity 

of fine particles that could be released when these river bed stocks were mobilized, we 

gathered in chapter 3 simultaneous bedload and suspended load measurements 

performed in 56 gravel bedded rivers worldwide. We used these data to investigate the 

impact of riverbed mobility on suspension.  

The second part of this manuscript reports detailed observations of suspended load-river 

bed interactions at the reach scale (chapters 4, 5 and 6). It allowed us to study the 

mechanisms associated to the assumptions of riverbed-suspension interactions derived 

from the broader scale approaches presented in the first part of the manuscript. The 

fourth chapter reports observations of bedload transport and its interactions with the 

reach morphodynamics using multi-physical measurements. Then, these observations 

were used in chapter 5 to interpret the sediment budget and erosion/deposition of fine 

particles in the reach. Finally, we showed in the sixth chapter how indirect and 
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continuous suspended load and bed mobility measurements could evidence 

suspension-river bed interactions. 

 

Figure 0.10: Schematic description of the manuscript content and the main questions 
addressed. Q, SSC and t denote respectively the water discharge, the suspended 
sediment concentration and the time. 
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  Chapter 1
An attempt to link suspended load 

hysteresis patterns and sediment 

sources configuration in alpine 

catchments 

This first chapter presents an analysis of hysteresis phenomena between suspended 

load and flow rate which are often considered the result of various sediment sources 

contributions. These phenomena are widely used to interpret fine particles transport 

dynamic in catchments while a direct link with sediment source has not been yet 

demonstrated. Such relation is investigated in the following article accepted in Journal of 

Hydrology, by Misset C., Recking A., Legout C., Poirel A., Cazihlac M., Esteves M., and 

Bertrand M. (doi: 10.1016/j.jhydrol.2019.06.039). 

      

 

Ce premier chapitre présente une analyse des phénomènes d’hystérésis entre transport 

solide par suspension et débit liquide, très souvent considérés comme le résultat de la 

contribution de différentes sources sédimentaires. Ces phénomènes sont largement 

utilisés pour interpréter la dynamique de transport de sédiments fins dans les bassins 

versants. Un lien direct entre hystérésis et contribution de sources sédimentaires n’a 

cependant pas été démontré. Cette relation est étudiée dans l’article suivant accepté 

dans journal of Hydrology par Misset C., Recking A., Legout C., Poirel A., Cazihlac M., 

Esteves M., and Bertrand M. (doi: 10.1016/j.jhydrol.2019.06.039). 
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1.1. ABSTRACT 
A large part of total solid flux is transported as suspension in mountainous rivers. It is 

crucial for water resource management and for environmental issues to be able to model 

and to understand these fluxes. However, suspended load is known to be highly variable 

in time and space, as fine sediments can originate from various erosion processes and 

from various sources. Among the different methodologies available for analyzing the 

suspended sediment flux dynamics, hysteretic loops in discharge and suspended load 

signals are commonly used to assess sediment sources and production processes. 

However, the shape of these loops is often analyzed qualitatively for a single or a small 

number of catchments. Hence it is still unclear how the geomorphological catchment 

properties influence the variability of the flow rate - suspended sediment concentration 

relationship through the hysteresis effects. This is particularly true in mountainous 

catchments where important sources of fine sediments may originate from the river bed 

in addition to hillslopes. 

In this study we analyzed quantitatively ten long-term series of high-frequency 

observations of suspended sediment load measured in contrasted alpine catchments. 

Hysteresis effects were analyzed in a high number of automated sampled events and 

the dominant response for each catchment was sought. This was done by using a 

normalized hysteresis index developed by Lloyd et al. (2016), which we weighted by the 

mass transported during each event. The various catchments were characterized with a 

normalized geomorphological index expressing the relative importance of sediment 

sources originating from the river bed or from eroded areas as a function of the distance 

to the outlet of the catchment.  

The dominant hysteresis response of the ten alpine catchments studied was found to be 

greatly linked to their geomorphological index. These results suggest that the sediment 

source configuration upstream of a measuring station drive hysteresis effects and thus 

the variability of the flow rate-suspended sediment concentration relationship. 

1.2. INTRODUCTION 
Suspended sediment load (SSL) assessment is essential for water resource 

management and for many environmental issues. Whereas fine sediments transported 

by rivers are a vector of nutrients that are essential for estuarine ecosystems [Le Pape 

et al., 2013; Ludwig and Probst, 1998], they are also associated with socio-economic 

issues due to reservoir siltation or contaminant transport [Vercruysse et al., 2017; 

Walling et al., 2003]. 

SSL is known to be highly variable in time and space especially in mountainous areas 

given that fine sediments can originate either from the main fluvial system or from 

external sources in similar proportions [Guillon et al., 2018; Navratil et al., 2010; Orwin 
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and Smart, 2004b]. According to the concept proposed by Bogen (1980) and the 

conceptual models used by Picouet (2009)  or Park and Hunt (2017), the first type of 

production consists of sediment resuspension from the river bed. This part of 

suspension is believed to be related to flow rate, shear stress, or stream power [Park 

and Hunt, 2017]. In this case, fine sediments are produced by resuspension of deposited 

fine particles on bars, in secondary channels, when the armor layer is mobilized [Navratil 

et al., 2010] or when bank erosion occurs [Lefrançois et al., 2007]. The second type 

concerns erosion processes that take place in the catchment and that may not be 

directly related to the flow rate measured in the main channel. Fine particles are 

produced by rainfall or runoff detachment on eroded areas, in first-order tributaries or by 

mass movement. 

The coexistence of these two kinds of fine sediment production processes often 

generates a huge variability in the flow rate (Q)–suspended sediment concentration 

(SSC) relationship. As observed in many field studies at the event, inter-event, or 

seasonal time scale, the same flow solicitation does not lead to the same sediment 

response of the watershed [Aich et al., 2014; Andermann et al., 2012; Mao and Carrillo, 

2016; Sun et al., 2016]. This non-unique relation between Q and SSC is often 

highlighted through hysteresis loop observations. These phenomena have been widely 

analyzed in the past few decades and in various environments [Aguilera and Melack, 

2018; Baca, 2010; Bogen, 1980; Gharari and Razavi, 2018; Klein, 1984; Smith and 

Dragovich, 2009; Tananaev, 2015; Zuecco et al., 2016]. The first classification of 

hysteresis loops was proposed by Williams (1989). Five classes were distinguished: 

single-valued line, clockwise loops, counterclockwise loops, single line plus a loop, and 

figure-of-eight loop. This classification was then re-used and completed with more 

complex figures by various authors such as Nistor and Church (2005), Tananaev (2015), 

Duvert  et al. (2010) or Hamshaw et al. (2018). In a literature review, Gellis (2013) 

highlights that a given hysteresis effect observed at a measuring station can be 

explained by various erosion and physical processes. 

However, at the event scale, distant sediment sources were found to generate mainly 

counterclockwise loops [Baca, 2010; Klein, 1984; Williams, 1989]. Suspended 

sediments are transported more or less at the mean flow velocity, which is lower than 

the flood wave celerity. This means that if the travelling distance and the relative 

difference between the celerity of the two waves is high enough, a time delay will be 

observed between the two signals generating a counterclockwise loop [Klein, 1984; 

Nistor and Church, 2005; Williams, 1989]. By contrast, depletion in the SSC during the 

falling limb of the flood or an SSC peak prior to a Q peak will generate a clockwise loop. 

This is usually attributed to a mobilization of relatively close and supply limited sources 

[Marttila and Kløve, 2010; Park and Hunt, 2017], dilution due to base flow increase 

during the falling limb [Baca, 2010], or rainfall close to the catchment outlet  [Jansson, 
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2002]. Many other processes could generate hysteresis between SSC and Q such as 

the contribution of upstream tributaries [Asselman, 1999], bank erosion [Smith and 

Dragovich, 2009], or hysteresis effects in the SSC–turbidity calibration curve [Landers 

and Sturm, 2013]. In some cases, the SSC and Q curve are synchronized, leading to no 

hysteresis pattern. Such situations were often interpreted as an unlimited sediment 

supply [Nistor and Church, 2005; Williams, 1989]. Finally, complex patterns can be 

observed for multi-peak events or when several processes described previously occur at 

the same time in the catchment. 

Given the high number of processes leading to Q–SSC hysteresis, it is doubtful to infer 

even qualitatively the major erosion processes acting in a unique catchment with this 

single information especially when measurements are conducted for short time periods 

[Esteves et al., 2018]. On the other hand, using measurements made on several 

contrasted watersheds at regional scale could help to assess to which extent the 

sediment sources configuration may control the shape of these hysteresis and thus to 

better understand the spatial variability in the Q–SSC relation. During the last decades, 

there has been a growing interest in sediment sources characterization [Parsons et al., 

2015; Wohl, 2017] as sediment contributing areas have been shown to control sediment 

yield in alpine catchments [de Vente et al., 2006; Haas et al., 2011]. Despite the 

respective contribution of each sediment sources are often highly variable in time and 

space [Legout et al., 2013], several methods have been proposed to quantify sediment 

connectivity in catchments [Borselli et al., 2008; Heckmann et al., 2018; Heckmann and 

Schwanghart, 2013]. Most of these methods conceptually consider an upslope 

(contributing area) and a downslope (source to sink) component to spatially describe the 

capacity of the catchment to export sediments [Borselli et al., 2008; Cavalli et al., 2013; 

Heckmann and Schwanghart, 2013]. While this separation in two components in 

connectivity indexes (i.e. upslope and downslope) is similar to the conceptual distinction 

in two sediment sources (hillslope vs riverbed production) often depicted as the main 

controlling factor of discharge-suspended sediment concentration hysteresis, no study 

reported any attempt to quantify the potential links between hysteresis and conceptual 

description of sediment sources.  

This study attempts to fill this gap by analyzing long-term series with high-frequency 

observations of SSL made in ten contrasted mountainous catchments in the French 

Alps. The main objectives were (i) to describe the dominant hysteresis patterns, (ii) to 

propose a method describing fine sediment source configuration at the catchment scale, 

and (iii) to analyze the link between dominant hysteresis patterns and sediment source 

configuration.  
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1.3. MATERIAL AND METHODS  

1.3.1. HYDRO-GEOMORPHOLOGICAL CHARACTERISTICS OF 

THE CATCHMENTS 

Four of the ten catchments studied (Asse, Bléone, Galabre, and Bès) are located in the 

southern part of the French Alps, and four others (Romanche, Arvan, Glandon, and Arc) 

are in the northern part (Figure 1.1). Two basins (Drac and Buëch) have intermediate 

positions. The ten catchments belong to the long-term observatory networks of two 

French research infrastructures (OZCAR and RZA) or from the monitoring network of 

Electricité de France Company (EDF). 

 

Figure 1.1: Catchment locations 

1.3.1.1. Spatial information used 

Data were collected for several characteristics of the basins (Table 1.1). Monthly 

average specific discharges were obtained from the French hydrometric agency 

(Banque Hydro: http://www.hydro.eaufrance.fr/) whereas spatial catchment properties 

were obtained thanks to a GIS analysis of several spatial databases (BD ORTHO®, BD 

ALTI®, Corine Land Cover®, GeoFLA®, IGN©). Active channel widths were digitalized 

manually on aerial orthophotographies and the fluvial corridor tool box [Roux et al., 

2015] was used in ARCGIS 10.3 to extract the active channel width at a regular step of 

20 m. The median active river bed width calculated over the first 10 km upstream the 
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station (W10). The mean riverbed slope was obtained from the French National Institute 

of Geography website (https://geodesie.ign.fr/fiches/) for approximately 10 km upstream 

of each measuring station (S10). A georeferenced dataset of polygonal features with the 

location of eroded areas in the Alps (https://journals.openedition.org/rga/3543#tocto2n6) 

was used for the Bléone, Asse, Bès, Galabre, Buëch, Drac, and Romanche catchments 

[Bertrand, 2014; Bertrand et al., 2017]. These areas can be easily recognized in alpine 

catchments on high-resolution orthophotos and manually digitized using classic GIS 

toolkits or using automatic extraction procedure as it have been done in several previous 

studies [Marden et al., 2005; Trustrum and Stephens, 1981; Vrieling, 2006]. Bertrand et 

al. (2017) obtained the eroded patches map used in this study by combining object-

based supervised classification models on infrared aerial orthophotographies (831 tiles, 

0.5 m resolution) and a pixel-based supervised classification model on Landsat 7 ETM+ 

images (three images, with 30 m resolution and offering a wider spectral range than 

aerial orthophotographies) to extract eroded areas in the southern part of the Alps. The 

training and validation datasets used are each constituted of 30 infrared aerial 

orthophotographies tiles (randomly sampled in the 831 tiles) automatically segmented 

into objects having homogeneous textures and manually classified into two categories: 

eroded areas and non-eroded areas. The final classification model is a weighted sum of 

these calibrated models (both object-based and pixel-based). They obtained a model 

sensitivity, specificity and overall classification score of respectively 0.81, 0.94 and 0.9. 

They also performed an expert classification on 500 randomly distributed points in the 

Bléone catchment and obtained similar results (0.74, 0.99 and 0.96 respectively) 

confirming the reliability of this method. For the Glandon, Arvan, and Arc basins, this 

map was not available and eroded areas were digitalized manually using 50-cm 

resolution aerial orthophotographies. In both cases, eroded patches are considered 

through the image analysis as exposed and unvegetated areas exhibiting erosion 

patterns or gullies. This eroded areas description is consistent with the fact that 

increasing bare soils cover increases suspended sediment yield [Douglas, 1967; Duvert 

et al., 2012]. 

1.3.1.2. Hydrological regimes 

Table 1.1 shows the contrasting characteristics of the ten catchments. Their areas range 

from 22 km² to nearly 900 km². The hydrology of the catchments located in the Southern 

Alps, including the Buëch basin, exhibits a high-flow period in winter and late autumn, 

separated by a low-flow period in summer (Figure 1.2). The northern catchments have 

higher specific water discharges. They are characterized by the presence of snow cover 

and glaciers resulting in a melting season generating high flows from late spring to mid-

summer and low-flow periods the rest of the time. The Drac catchment exhibits an 

intermediate discharge regime with a melting season in late spring followed by low-flow 

period in summer and another high-flow period in autumn due to widespread rainfall 

events. The northern catchments are higher in altitude (61% of mean area above 2,000 

https://journals.openedition.org/rga/3543#tocto2n6
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m) than southern ones (98% of mean area under 2,000 m), with the Drac exhibiting an 

intermediate situation (35% of catchment area above 2,000 m).  

 

Figure 1.2: Monthly average specific discharge for the ten Alpine catchments. Sources: 
http://www.hydro.eaufrance.fr/ 

1.3.1.3. Geomorphological characteristics  

Various land cover and lithologies are present on these catchments. Northern 

catchments, including the Drac basin, have large areas prone to erosion with zones 

having no or low vegetation cover ranging from 24% to 51% of their total area and rocks 

considered as non-resistant covering between 57% and 99% of their area. The Arvan, 

Glandon and Romanche catchments comprise mainly narrow mountain valleys with 

laterally constrained streams. Few alluvial reaches are included in the dominant step-

pool sections with mean river bed slopes on the first 10 km upstream the station (S10) 

comprised between 4% and 5.9% and median river bed active widths on the first 10 km 

upstream the station (W10) ranging between 8m and 22m. Having a larger catchment 

area, the Arc has a gentler river bed slope (S10=1.12%) and a wider river bed active 

width (W10=33m). It exhibits mainly plan bed sections with few gavel bars downstream 

active tributaries punctuated with narrow gorge sections. The Drac basin has poorly 

laterally constrained streams in its downstream part and a gentle slope (S10=1.01%) 

enabling the development of braiding sections on dozen of kilometers (W10=60m). 

Southern catchments, including the Buëch basin are also prone to erosion with a fraction 

http://www.hydro.eaufrance.fr/
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of their basin that has low or no vegetation cover ranging between 10% and 19% and 

non-resistant rocks cover ranging between 79% and 100%. Their valleys are wider than 

the northern catchments except for the Galabre catchment which is a small headwater 

stream (A=22km²) with constrained gorges and step-pool sections (W10=8m, S10=8.8%). 

The Bléone and Buëch exhibit braiding morphologies (W10 of respectively 162m and 

118m) with gentle slopes (S10 of respectively 0.82% and 0.81%). The Asse and Bès 

catchments also exhibit long alluvial and gentle sections which are punctuated with 

narrower sections in gorges or more constrained valleys (W10 of respectively 28m and 

20m, S10 of respectively 0.87% and 2.57%). Mano et al. (2009) reported specific 

suspended sediment fluxes around 500 t km-2 year-1 for the Asse, Bléone and 

Romanche catchment while Navratil et al. (2012) reported specific suspended sediment 

fluxes of respectively 330, 690, and 680 t km-2 year-1 for the Bléone, Bès and Galabre 

basins which can be classified as high according to the classification proposed by 

Meybec et al. (2003). These studies suggest that the studied catchments have highly 

active fine sediment sources. Also, all of these catchments have been chosen for their 

limited human impact, i.e. with limited presence of embankments or weirs in the rivers, 

limited urbanized areas and absence of large dams. Few small water intakes with limited 

storage capacity are however present (Glandon, Arvan, Drac, Romanche and Arc 

basins) but can be considered to have a negligible effect on the downstream suspended 

load transfer during the studied flood events. 

Basins 
names 

A 
[km²] 

No 
[%] 

Fo 
[%] 

Gl 
[%] 

SCR 
[%] 

HR 
[%] 

RR 
[%] 

W10 
[m] 

S10 
[%] 

q  
[l/s/km²] 

Period 

Arc 635 49 11 9 0 64 36 33 1.12 30 2012 - 2016 

Arvan 220 24 18 2 38 61 1 22 5.92 32 2011 - 2015 

Asse 375 10 41 0 9 70 21 28 0.87 12 2011 - 2016 

Bès 165 14 43 0 42 46 11 20 2.57 17 2007 - 2013 

Bléone 896 14 41 0 19 68 11 162 0.82 8 2007 - 2009 

Buech 723 12 47 0 83 1 12 118 0.81 19 2015 - 2017 

Drac 510 35 20 0 32 34 18 60 1.01 27 2007 - 2016 

Galabre 22 19 11 0 39 61 0 8 8.86 13 2007 - 2013 

Glandon 110 31 28 2 0 57 43 8 5.80 23 2011 - 2016 

Romanche 230 51 4 12 25 33 42 14 4.17 33 2007 - 2016 

Table 1.1: Main catchment characteristics. Catchment size (A), no/low vegetation cover 
(No), forest cover (Fo), glacier cover (Gl), soft coherent rocks (SCR), heterogeneous 
rocks (HR), resistant rocks (RR), mean annual specific discharge (q), median active 
channel width calculated for the first 10 km (W10), mean slope of the river bed 
calculated for approximately the first 10 km (S10). 

1.3.2. SUSPENDED LOAD TIME SERIES 

The available SSL time series range from 3 to 10 years (Table 1.1). For each catchment, 

the water discharges Q were calculated from automated measurements of the water 
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levels with a frequency of 1 h. Stage-discharge rating curves were obtained thanks to 

numerous technics (Acoustic Doppler Current Profiler, salt-dilution, current meters or 

Large Scale Particle Image Velocimetry techniques), regularly performed during the 

study period. The surrogate technique for SSC estimation (i.e., turbidity-meter), coupled 

with direct sampling of SSC for calibration was used as commonly done for such field 

monitoring [Mano et al., 2009; Navratil et al., 2011]. SSC was assumed to be uniform 

over the cross section owing to the high levels of turbulence in these rivers, generating 

well-mixed flows. SSL was computed by multiplying SSC and Q at a 1-h frequency. 

1.3.3. HYSTERESIS ANALYSIS TOOLS 

In order to determine the dominant hysteresis pattern for the ten alpine catchments, a 

database of runoff events was created. Individual events were selected considering both 

SSL and SSC. In a first step, the events having a maximum SSL below a given 

threshold were not considered. A SSL threshold value (SSL1%) was used, corresponding 

to the value below which 1% of the cumulated suspended sediment fluxes were 

transported (Figure 1.3).  A similar approach was adopted to remove events exhibiting 

SSC values below a threshold corresponding to 1% of the cumulated suspended 

sediment fluxes (SSC1%). 

 

Figure 1.3: Definition of SSL threshold (SSL1%) as SSL below which 1% of cumulated 
suspended fluxes are transported. 
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The normalized index (HILloyd) proposed by Lloyd et al. (2016) was used (Eq.1.3). This 

non-dimensional index is non-sensitive to the absolute value of SSC and Q, which 

makes it possible to do inter-event and inter-catchment comparison of hysteresis 

strength and direction. This index tends towards +1 for clockwise loops and towards -1 

for counterclockwise loops.  

To compute HILloyd for a given event, SSC and Q were normalized using their minimum 

and maximum values (Eq.1.1 and Eq.1.2) to obtain SSC* and Q*. The differences 

between SSC* monitored during the rising and the falling limb were then computed for 

each of the 100 values of Q* ranging between 0.01 and 1 (Figure 1.4). Finally, HILloyd 

corresponds to the mean of these differences (Eq.1.3). 

 

Figure 1.4: Calculation of the hysteresis index proposed by Lloyd et al. (2016). 

𝑆𝑆𝐶𝑖 
∗ =

𝑆𝑆𝐶𝑖 − 𝑆𝑆𝐶𝑚𝑖𝑛
𝑆𝑆𝐶𝑚𝑎𝑥 − 𝑆𝑆𝐶𝑚𝑖𝑛

 (1.1) 

𝑄𝑖 
∗ =

𝑄𝑖 −𝑄𝑚𝑖𝑛
𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛

 (1.2) 

𝐻𝐼𝐿𝑙𝑜𝑦𝑑 = 𝑚𝑒𝑎𝑛 [𝑆𝑆𝐶𝑖 
∗
𝑟𝑖𝑠𝑖𝑛𝑔

(𝑄𝑖
∗) − 𝑆𝑆𝐶𝑖 

∗
𝑓𝑎𝑙𝑙𝑖𝑛𝑔

(𝑄𝑖
∗)] 

 𝑖 ∈ [0.01,1] 

(1.3) 

For each catchment and each selected events, a HILloyd value was calculated. The 

median value was considered representative of the dominant hysteresis patterns 

(𝑚𝑒𝑑𝑖𝑎𝑛(𝐻𝐼𝐿𝑙𝑜𝑦𝑑)) . However, the most frequent hysteresis patterns might not 

necessarily be those that transport most of the fine sediments. Thus, a new index (𝐻𝐼𝑀𝑠) 

was introduced to investigate the “transport efficiency” associated to hysteresis. This 

was achieved by weighting each event by the transported mass (𝑀𝑠𝑖): 
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𝐻𝐼𝑀𝑠 =
∑(𝐻𝐼𝐿𝑙𝑜𝑦𝑑𝑖 ×𝑀𝑠𝑖)

∑𝑀𝑠𝑖
 (1.4) 

Whereas several HILloyd index are calculated (one for each event), only one HlMS index is 

calculated (for the series of events) and inform which HILloyd index is associated with the 

maximum transport.   

These two continuous indexes were completed with classic pattern classifications 

[Gellis, 2013; Williams, 1989]. Hysteresis patterns were arbitrarily considered as 

clockwise when at least 80% of positive differences were observed between 𝑆𝑆𝐶∗ during 

the rising and falling limb (𝑁𝑏𝑐𝑙). Counterclockwise loops were considered when at least 

80% of negative differences were obtained (𝑁𝑏𝑐𝑐𝑙). Otherwise, the flood was considered 

to have a complex hysteresis patterns or no hysteresis  (𝑁𝑏𝑐𝑜𝑚𝑝𝑙𝑒𝑥) . Finally, the 

percentages of the mass transported as clockwise hysteresis  (𝑀𝑠𝑐𝑙) , as 

counterclockwise hysteresis (𝑀𝑠𝑐𝑐𝑙), and as complex or no hysteresis (𝑀𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥) were 

calculated for each catchment. This classification permits a direct comparison between 

the number of events having a certain shape and the mass exported within this shape. 

1.3.4. SEDIMENT SOURCES CHARACTERIZATION 

An analysis of each catchment was performed following the conceptual sediment 

sources description (river bed vs hillslopes) proposed by Bogen (1980) and often 

considered for qualitative hysteresis interpretations at the catchment scale [Buendia et 

al., 2016; Guillon et al., 2018; Mao and Carrillo, 2016; Smith and Dragovich, 2009]. 

According to connectivity concepts developed by Borselli et al. (2008) and Cavalli et al. 

(2013), the area of eroded patches and the traveling distance needed to reach the outlet 

from these zones are important factors controlling the catchment connectivity. Also, 

according to numerous studies on fine sediments storage in the river network, the river 

width and the rived bed area are parameters that have a strong control on the quantity of 

fine particles that can be stored in the river bed [Collins and Walling, 2007b; Lambert 

and Walling, 1988; Navratil et al., 2010; Piqué et al., 2014]. These latter parameters may 

also be good proxies of the buffering capacity of the river bed and of its influence on fine 

sediments connectivity. Indeed, the exchanging surface between the flow and the river 

bed may have important control on fine particles infiltration in the gravel matrix [Frostick 

et al., 1984; Mooneyham and Strom, 2018]. Following these evidences, a simplified 

sediment sources characterization was developed. The surface occupied by the active 

river channel width was considered as the first type of sediment source, whereas eroded 

areas were considered as the second type (Figure 1.5). The erosion maps described in 

section 1.3.1 were used for eroded areas identification. 
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Figure 1.5: Example of sediment sources classification on the Asse River. (a) Ortho-
photograph classification of eroded area (red) and river bed area (blue). Pictures of 
typical eroded areas (b) and river bed (c) sediment sources. 

The distance needed by the water to reach the measuring station for each of these 

eroded area was estimated by using a digital elevation model with 25-m horizontal 

resolution and various algorithms of the Spatial Analyst toolbox of ARCGIS 10.3 (Fill, 

FlowLength, and FlowDirection). This water path from eroded areas to the outlet of the 

basin was calculated by considering the maximum slope for each grid of the digital 

elevation model. For a given location in the watershed, and considering the total area 

between this point and the measuring station downstream, we defined the cumulative 

eroded area as the sum of the eroded patches area (𝐴𝑒𝑟𝑜𝑑𝑒𝑑 𝑐𝑢𝑚) and the cumulative 

area of the river bed as the sum of the active channel area (𝐴𝑏𝑒𝑑 𝑐𝑢𝑚), which was 

extracted using the active channel width digitalization. These two cumulative areas as 

well as their ratio (𝐴𝑒𝑟𝑜𝑑𝑒𝑑 𝑐𝑢𝑚/𝐴𝑏𝑒𝑑 𝑐𝑢𝑚) were calculated for each distance x from the 

monitoring station, with an incremental spatial step of 20 m, from downstream to 

upstream. For each catchment, the most upstream point was arbitrarily defined by a 

drainage area threshold of 1 km². This point was located at a flow distance 𝐿 from the 

outlet. Finally, the Sources Configuration Index (𝑆𝐶𝐼𝑥) was defined as the mean of the 

ratios  (𝐴𝑒𝑟𝑜𝑑𝑒𝑑 𝑐𝑢𝑚/𝐴𝑏𝑒𝑑 𝑐𝑢𝑚) calculated for the first 𝑥 percent of the distance 𝐿: 
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𝑆𝐶𝐼𝑥 = 𝑚𝑒𝑎𝑛 (
𝐴𝑒𝑟𝑜𝑑𝑒𝑑 𝑐𝑢𝑚 (𝑖)

𝐴𝑏𝑒𝑑 𝑐𝑢𝑚 (𝑖)
) , 𝑖 ∈ [0 ; 𝑥] (1.5) 

This geomorphological index gives information on the relative importance of each type of 

sediment source depending on the distance from the measuring station. It is a simplified 

description developed to test the reliability of usual qualitative interpretation made for 

hysteresis patterns (hillslopes vs river bed). The slope is not explicitly taken into account 

even if it is often negatively correlated with the active river width. Likewise, local 

weighting factors (roughness or land use in Borselli et al. (2008) and Cavalli et al. 

(2013)) that could better describe the capacity to produce, transfer or store fine 

sediments were not considered as they were difficult to estimate “a posteriori” and more 

questionable for suspended load than for bedload or debris flow processes.  

This simple index permits to compare different spatial sources configuration (Figure 1.6). 

For instance, simplified conceptual cases (a) and (b) could probably lead to different 

hysteresis patterns at the outlet of the basin even if they have similar total cumulated 

bed and eroded area at the catchment scale. In case (a), eroded areas are located in 

the upper part of the basin whereas large storage zones of the river bed are located in 

the downstream part close to the monitoring station. Case (b) has the same bed 

configuration but eroded areas are located much closer to the outlet of the catchment 

(𝑑1 >> 𝑑2). In that case, the ratio (𝐴𝑒𝑟𝑜𝑑𝑒𝑑 𝑐𝑢𝑚/𝐴𝑏𝑒𝑑 𝑐𝑢𝑚) increases much closer to the 

outlet than in case (a). Calculating the mean value of this ratio on a given distance 

permits to discriminate between these two cases. They have the same 𝐴𝑒𝑟𝑜𝑑𝑒𝑑 𝑐𝑢𝑚/

𝐴𝑏𝑒𝑑 𝑐𝑢𝑚  ratio considering the total length (x=100%), but the mean of these ratios 

calculated for x between 0% and 100% (𝑆𝐶𝐼100 , average of the red curve in Figure 1.6) 

is much lower in case (a) than in case (b). Comparing conceptual cases (a) and (c) 

highlights the capacity of the index to compare different buffering effect played by the 

river bed. These cases have similar eroded areas located at the same distance from 

outlet (𝑑1) but the cumulative bed area is much lower in case (c). Eroded areas could be 

less buffered in case (c) than in case (a). The mean value of the 𝐴𝑒𝑟𝑜𝑑𝑒𝑑 𝑐𝑢𝑚/𝐴𝑏𝑒𝑑 𝑐𝑢𝑚 

ratio calculated for x between 0% and 100% (𝑆𝐶𝐼100) will be smaller in case (a) than in 

case (c). In order to discriminate the relative influence of hillslope sources and river bed 

on the hysteresis variability, an Eroded Area Index (𝐸𝐴𝐼𝑥) and a Bed Area Index (𝐵𝐴𝐼𝑥) 

were also defined and calculated for the ten catchments (Eq.1.6 and Eq.1.7).  

𝐸𝐴𝐼𝑥 =
𝑚𝑒𝑎𝑛(𝐴𝑒𝑟𝑜𝑑𝑒𝑑 𝑐𝑢𝑚 (𝑖))

max (𝐴𝑒𝑟𝑜𝑑𝑒𝑑 𝑐𝑢𝑚 )
, 𝑖 ∈ [0 ; 𝑥] (1.6) 

𝐵𝐴𝐼𝑥 =
𝑚𝑒𝑎𝑛(𝐴𝑏𝑒𝑑 𝑐𝑢𝑚 (𝑖))

max (𝐴𝑏𝑒𝑑 𝑐𝑢𝑚 )
, 𝑖 ∈ [0 ; 𝑥] (1.7) 
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Figure 1.6: Three different conceptual sediment source configurations; case (a) is the 
reference case with large active width close to the measuring station and eroded areas 
located far upstream, case (b) is similar to the reference case but has eroded areas 
much closer to the monitoring station (d2<<d1), and case (c) is similar to case (a) but 
the active width is twice as narrow. For each case, the area, cumulated area, and ratio 
of cumulated area of the riverbed and eroded areas as a function of the distance from 
the outlet of the catchment are plotted. Brown curves correspond to the riverbed, orange 
curves correspond to eroded areas, red curves correspond to the ratio of cumulative 
eroded area over cumulative riverbed area, and gray dotted curves correspond to 
previous case for a better comparison. 

1.4. RESULTS 

1.4.1. RUNOFF EVENT CHARACTERISTICS 

Following the event selection procedure (see Figure 1.3), the thresholds for SSL and 

SSC were calculated, and a dataset of events was created for each river (Table 1.2). 

More events were selected for northern catchments exhibiting daily floods during the 

melting season. While the observation periods were similar for the Glandon and the 

Asse, there were twice more selected events for the Glandon. Large differences were 
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also observed in SSL1% and SSC1% values, e.g., the Galabre and the Bès rivers have 

suspended fluxes transported for higher values of SSC in comparison with other rivers.  

River SSL1% [g/s] SSC1% [mg/l] texceed [h] number of event 
Arc 199 23 8 758 

Arvan 1252 330 8 1048 

Asse 1877 311 8 217 

Bès 2677 868 8 155 

Bleone 2000 181 12 104 

Buech 960 104 8 94 

Drac 125 14 12 1076 

Galabre 360 1215 4 179 

Glandon 50 21 8 561 

Romanche 125 26 6 1656 

Table 1.2: Runoff event characteristics. (SSL1%) corresponds to the threshold of SSL 

below which 1% of the cumulated suspended sediment fluxes were transported, 

(SSC1%) corresponds to the threshold of SSC below which 1% of the cumulated 

suspended sediment fluxes were transported, texceed corresponds to the minimum time 

step for which a valid SSL peak should exceed all following and preceding values. 

1.4.2. VARIABILITY OF DISCHARGE-CONCENTRATION 

HYSTERESIS IN ALPINE CATCHMENTS 

While the standard deviations of the HILloyd were rather high for all catchments, some 

consistent observations can be made on the basis of the median HILloyd (Table 1.3, 

Figure 1.7).  

 Mass transported Number of events Indexes 

River 
Mscl 

[%] 

Msccl 

[%] 

Msno/complex 

[%] 

Nbcl 

[%] 

Nbccl 

[%] 

Nbno/complex 

[%] 
median(HILloyd) Sd(HILloyd) 𝑯𝑰𝑴𝒔 

Arc 26 32 42 30 32 37 0.01 0.27 0.02 

Arvan 34 28 38 34 30 36 0.02 0.28 0.04 

Asse 58 11 31 23 31 47 -0.04 0.25 0.12 

Bès 58 4 38 38 15 47 0.02 0.26 0.19 

Bleone 84 2 14 60 11 30 0.15 0.24 0.22 

Buech 41 31 28 62 19 19 0.18 0.31 0.05 

Drac 41 24 35 43 16 41 0.12 0.26 0.10 

Galabre 53 21 26 37 41 22 -0.02 0.33 0.15 

Glandon 44 22 34 38 28 34 0.04 0.25 0.06 

Romanche 25 28 47 28 28 43 0.01 0.25 0.01 

Table 1.3: Results of hysteresis analysis between SSC and Q. The percentage of the 

mass transported with a given hysteresis shape (Ms), the percentage of events with a 

given shape (Nb), and the mean, standard deviation (sd) of the Lloyd hysteresis index 

(HILloyd) were calculated as well as the average mass weighted hysteresis index (𝑯𝑰𝑴𝒔). 

cl : clockwise hysteresis, ccl : counterclockwise hysteresis, no/complex : no or complex 

hysteresis. 
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Most rivers exhibited median values of HILloyd around zero, because this value was often 

the most frequent and also because high positive or negative values had similar 

frequencies. This suggests an absence of a dominant hysteresis trend (clockwise or 

counterclockwise) in terms of the frequency of events having a certain shape. However, 

mainly clockwise loops (median(HILloyd)>>0 ) were observed for the Buech, Drac, and 

Bléone catchments that have dominant braided bed morphology close to the monitoring 

stations, suggesting a more frequent contribution of the river bed sediment sources than 

in other catchments. 

 

Figure 1.7: Distributions of Lloyd hysteresis index on the ten alpine catchments. The 
median value of the Lloyd hysteresis index is indicated by a vertical blue line while the 
average mass weighted hysteresis index is indicated by a vertical red line. A difference 
in position of these two lines indicates a difference in transport efficiency depending on 
the type of hysteresis. 

Different conclusions can be drawn when comparing the HlMS index (most transporting) 

with the median (most frequent) HILloyd index for each catchment (Table 1.3 and Figure 

1.7). In northern catchments, median HILloyd and HIMs  values were similar (maximum 
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index difference of 0.02). However in the soutern catchments, larger differences were 

observed between the two hysteresis indexes with differences (median(HILloyd) minus 

HIMs) ranging between -0.13 and +0.16. Thus, the most frequent hysteresis shape was 

often not the most transport efficient one. For instance, 23% of events were classified as 

clockwise in the Asse and they contribute to 58% of the total SSL while 31% of events 

were classified as counterclockwise and contribute to only 11% of the total SSL. This 

suggests a higher transport efficiency of clockwise hysteresis patterns than 

counterclockwise ones. 

1.4.3. SEDIMENT SOURCES ANALYSIS 

Large differences in the relative location of river bed and eroded area sediment sources 

were observed between catchments. As shown in Figure 1.8-b, the Arvan exhibited 

large eroded areas close to the measuring station with a limited bed area leading to a 

ratio of 𝐴𝑒𝑟𝑜𝑑𝑒𝑑 𝑐𝑢𝑚/𝐴𝑏𝑒𝑑 𝑐𝑢𝑚 equal to one at a distance of roughly 7 km. By contrast, for 

the Bléone, the bed area is larger than the eroded areas in the first 50 km close to the 

monitoring station (Figure 1.8-a). The cumulative eroded areas exceeded the cumulative 

bed areas only after 55 km. 

 

Figure 1.8: Cumulated values of bed area and eroded area as a function of the distance 
from the outlet for a) the Bléone river and b) the Arvan river. The vertical blue arrow 
indicates equality between cumulative eroded and bed areas. 
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To quantitatively compare these differences between the ten basins we plot in Figure 

1.9: 

- 
𝐴𝑒𝑟𝑜𝑑𝑒𝑑 𝑐𝑢𝑚(𝑥)

max (𝐴𝑒𝑟𝑜𝑑𝑒𝑑 𝑐𝑢𝑚)
: the fraction of the total cumulative eroded area as a function of the 

distance from the outlet, 

- 
𝐴𝑏𝑒𝑑 𝑐𝑢𝑚(𝑥)

max (𝐴𝑏𝑒𝑑 𝑐𝑢𝑚)
: the fraction of the total cumulative bed area as a function of the 

distance from the outlet,  

- 𝑆𝐶𝐼𝑥: the average values of the ratios 𝐴𝑒𝑟𝑜𝑑𝑒𝑑 𝑐𝑢𝑚/𝐴𝑏𝑒𝑑 𝑐𝑢𝑚 calculated on a given 

distance upstream the outlet (0% to x%). 

For the ten catchments, the cumulative bed area exhibited a relative constant increase 

with increasing distance to the outlet (Figure 1.9-a). This suggests that bed areas were, 

as a first approximation, homogeneously distributed along the x distance. In comparison, 

the cumulative eroded area showed a more sudden increase with the increasing 

distance to the outlet (Figure 1.9-b). A small fraction of eroded area was located close to 

the monitoring stations as less than 50% of eroded areas are located for x distance 

smaller than 0.5 and less than 10% for x smaller than 0.2. Also, much more variability 

between the ten catchments was observed. For instance, the normalized cumulative 

eroded area of the Romanche basin starts to increase significantly for x around 0.5 while 

the Bléone basin showed a sudden increase for x larger than 0.8. This suggests that 

eroded areas were located more in the upstream part of the Bléone watershed than for 

the Romanche. Some catchments as the Arc basin exhibited a more smooth increase 

indicating a more homogeneous eroded patches distribution along the x distance. 
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Figure 1.9: (a) Normalized cumulative bed area (
𝑨𝒃𝒆𝒅 𝒄𝒖𝒎(𝒙)

𝐦𝐚𝐱 (𝑨𝒃𝒆𝒅 𝒄𝒖𝒎)
) as a function of the 

distance from outlet. (b) Normalized cumulative eroded area (
𝑨𝒆𝒓𝒐𝒅𝒆𝒅 𝒄𝒖𝒎(𝒙)

𝐦𝐚𝐱 (𝑨𝒆𝒓𝒐𝒅𝒆𝒅 𝒄𝒖𝒎)
) as a 

function of the distance from outlet. (c) Source configuration index (𝑺𝑪𝑰𝒙) as a function 
of the distance from outlet calculated with a x step of 0.1 for the 10 catchments. 

Finally, the source configuration index 𝑆𝐶𝐼𝑥 (Eq.1.5) shows for all rivers an increase in 

the relative importance of eroded areas as compared with bed areas when moving in the 

upstream direction (Figure 1.9-c). This confirms that river bed sources were closer to the 

measuring station than eroded areas sources. However, some small eroded tributaries 

could locally generate a high value of 𝑆𝐶𝐼𝑥 near the observation station, as was the case 
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for the Galabre River. 𝑆𝐶𝐼𝑥  were highly variable from one catchment to another. The 

shortest distance considered (x=10 %) to compute this index led to small differences 

between catchments whereas longer distances led to large differences. For instance, the 

two extreme cases, the Bléone and Arvan rivers, had the same 𝑆𝐶𝐼10 (0.1) but their 

𝑆𝐶𝐼100  values were very different (0.3 and 21.3, respectively). The sources indexes 

(𝑆𝐶𝐼𝑥, 𝐵𝐴𝐼𝑥, 𝐸𝐴𝐼𝑥) values calculated for x ranging from 10% to 100% with a x step of 

10% are provided as supplementary material for more details. 

1.4.4. RELATION BETWEEN SEDIMENT SOURCES 

CONFIGURATION AND DOMINANT HYSTERESIS PATTERNS  

The general catchment characteristics, the index describing the river bed area 

distribution (𝐵𝐴𝐼𝑥), the index describing the eroded area distribution (𝐸𝐴𝐼𝑥) and the index 

comparing river bed and eroded area distribution ( 𝑆𝐶𝐼𝑥 ) were compared with the 

dominant hysteresis pattern for each catchment (Table 1.4). While some significant 

correlations were found between general catchment characteristics and hysteresis 

indexes, the values remained rather low and did not exceed 0.63. Overall the Lloyd 

hysteresis index (HILoyd) exhibited only limited and small significant correlations with the 

three sediment sources indexes ( 𝑆𝐶𝐼𝑥 , 𝐵𝐴𝐼𝑥 , 𝐸𝐴𝐼𝑥 ), in comparison with the mass 

weighted hysteresis index (HIMS).  

General catchment 

characteristics 

River bed area 

configuration 

Eroded area 

configuration 

River bed and eroded 

area configuration 

 HIMS 
HILloyd 

median 
 HIMS 

HILloyd 

median 
 HIMS 

HILloyd 

median  
HIMS 

HILloyd 

median 

S10 -0.19 -0.44 𝑩𝑨𝑰𝟏𝟎 0.10 -0.45 𝑬𝑨𝑰𝟏𝟎 0.32 0.02 𝑺𝑪𝑰𝟏𝟎 -0.01 -0.35 

W10 0.12 0.56 𝑩𝑨𝑰𝟑𝟎 0.13 -0.13 𝑬𝑨𝑰𝟑𝟎 -0.26 -0.08 𝑺𝑪𝑰𝟑𝟎 -0.78 -0.14 

A -0.05 0.47 𝑩𝑨𝑰𝟓𝟎 0.38 -0.04 𝑬𝑨𝑰𝟓𝟎 -0.43 -0.14 𝑺𝑪𝑰𝟓𝟎 -0.94 -0.07 

No -0.63 -0.08 𝑩𝑨𝑰𝟕𝟎 0.37 0.25 𝑬𝑨𝑰𝟕𝟎 -0.71 -0.22 𝑺𝑪𝑰𝟕𝟎 -0.98 -0.13 

Fo 0.54 0.49 𝑩𝑨𝑰𝟗𝟎 0.35 0.22 𝑬𝑨𝑰𝟗𝟎 -0.71 -0.25 𝑺𝑪𝑰𝟗𝟎 -0.93 -0.10 

Table 1.4: Spearman correlation coefficients between hysteresis indexes considering 

the frequency of event with a given hysteresis (median value of the Lloyd index, HILloyd) 

or the mass transported with a given hysteresis (average mass weighted hysteresis 

index, HIMs) and catchment characteristics: S10 is the mean river bed slope calculated for 

the first 10 km, W10 is the median active width calculated for the first 10 km, A is the 

catchment size, No is the percentage of the catchment having no or low vegetation 

cover, and Fo is the forest cover, 𝑩𝑨𝑰𝒙 is the mean ratio of cumulated river bed area 

over total cumulated river bed area considering a length 𝒙 upstream of the station, 𝑬𝑨𝑰𝒙 

is the mean ratio of cumulated eroded area over total cumulated eroded area 

considering a length 𝒙 upstream of the station and 𝑺𝑪𝑰𝒙 is the mean ratio of cumulated 

eroded area over cumulated bed area considering a length 𝒙 upstream of the station. 

Bold values are significant with a confidence interval of 95% (pvalue<0.01). 
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Figure 1.10: Relation between dominant mass weighted hysteresis index (𝑯𝑰𝑴𝒔, red 
circles), median Lloyd hysteresis index (HILloyd, blue diamonds) and source configuration 
index considering 70% of the upstream the monitoring station for the ten alpine 

catchments (𝑺𝑪𝑰𝟕𝟎). 

Significant negative correlations (𝜌 < −0.98, 𝑝𝑣𝑎𝑙𝑢𝑒 <  0.01) were found between HIMS 

and the sediment sources index (𝑆𝐶𝐼𝑥, Figure 1.10 and Table 1.4). This result suggests 

that the part of the fluxes exported with clockwise loops decreases when the relative 

importance of the eroded areas relative to the bed areas increases. Lower but also 

significant negative correlations (𝜌 < −0.71, 𝑝𝑣𝑎𝑙𝑢𝑒 <  0.01) were obtained between the 

mass weighted hysteresis index (HIMS) and the eroded area distribution index (𝐸𝐴𝐼𝑥) 

while no significant correlations were obtained between HIMS and the bed area 

distribution index (𝐵𝐴𝐼𝑥). It indicates that the spatial distribution of eroded areas in the 

catchment is an important factor for explaining the hysteresis variability while river bed 

area distribution alone cannot explain this variability. However using both information 

(i.e. bed area distribution combined with eroded area distribution, 𝑆𝐶𝐼𝑥) permits a much 

better explanation of the hysteresis variability between catchments than considering 

eroded area distribution alone. 
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The correlation between the mass weighted hysteresis index HIMS and the sediment 

source configuration index  𝑺𝑪𝑰𝒙 (in a lesser extent with eroded area distribution index 

𝑬𝑨𝑰𝒙) was found to increase when averaging the values over increasing distance (𝒙) 

from the outlet. Both explanatory variables reached their maximum correlation value at a 

distance upstream of the monitoring station of approximately 70% (Table 1.4 and Figure 

1.10). The closest source configuration indexes were not found to explain the variability 

of hysteresis patterns between catchments, suggesting that close source configurations 

alone cannot explain the suspended load dynamics. 

1.5. DISCUSSION 

1.5.1. DOMINANT HYSTERESIS PATTERNS AND TRANSPORT 

EFFICIENCY  

Hysteresis effects are usually analyzed by counting the number of events having a 

certain shape [Aguilera and Melack, 2018; Aich et al., 2014; Buendia et al., 2016; 

Hamshaw et al., 2018; Navratil et al., 2010]. However, the comparison done in this study 

of ten contrasted alpine catchments highlighted that different results can be obtained by 

considering the fluxes transported with a given shape (Figure 1.7). From these results, 

two recommendations can be made, depending on the objective of the study. For those 

aiming at identifying the dominant sediment production processes for a given catchment, 

the hysteresis analysis should necessarily consider the intensity of each event, i.e., the 

average mass weighted hysteresis index. For studies aiming at understanding more in 

detail the hydro-sedimentary catchment functioning both in terms of occurrence and 

efficiency of the events transporting fine sediments, the analysis of hysteresis should be 

done simultaneously for both indexes. In our case, no relation was found between the 

median value of the Lloyd hysteresis index (HILloyd) considering the number of events 

and any sediment source index (𝑆𝐶𝐼𝑥 , 𝐸𝐴𝐼𝑥 , 𝐵𝐴𝐼𝑥 ) while significant correlations were 

found with the average mass weighted index. This suggests that the transport efficiency 

of hysteresis loops should be considered as a proxy of sediment production processes. 

Calculating the two indices also allowed us to observe distinct behaviors for the ten 

alpine catchments. The differences between the fluxes exported and the frequency of 

events having a certain hysteresis shape were much higher for the southern catchments 

including the Buëch River than for the northern ones (Figure 1.7). This could be due to 

differences in hydrological regimes (Figure 1.2). Indeed, the southern catchments 

exhibited a more pronounced seasonal variability of the hysteresis values than the 

northern ones (Figure 1.11). Counterclockwise patterns were mainly observed during 

summer, corresponding to dry periods associated to short and intense convective 

storms. Clockwise patterns were observed during wet periods characterized by low 

intensity but rather long precipitation events leading to larger rainfall amounts than 
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during summer. These results were consistent with those from Navratil et al. (2012) 

reporting that clockwise hysteresis loops exported the bulk of total suspended load 

during widespread flood events in the Bléone catchment. They observed marked 

counterclockwise loops during summer rainstorms in upper tributaries which generate 

suspended fluxes that were not efficiently transferred downstream. This might explain 

why large differences were observed between the frequency and the fluxes exported 

with a given hysteresis for these southern basins. Similar trends were observed by Soler 

et al. (2008) or Buendia et al. (2016) in Pyrenean catchments having similar hydrological 

regimes. In comparison, the northern catchments exhibited a much more constant 

export of fine sediments during the frequent daily flood events of the melting season. 

Many more flood events were observed for similar monitoring periods in the north than in 

the south (Table 1.2). Mano et al. (2009) reported that 90% of the suspended fluxes 

were transported in 5% and 7% of the time for the Bléone and Asse Rivers, respectively, 

while 25% of the time was needed for the Romanche River. 

 

Figure 1.11: Seasonal variability of Lloyd hysteresis index considering all the events for 
the northern (Arc, Arvan, Drac, Glandon and Romanche) or southern (Asse, Bès, 
Bléone, Buëch and Galabre) catchments. It should be stressed that catchments with 
longer time series have more weight in the boxplot. 
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1.5.2. INFLUENCE OF CATCHMENT GEOMORPHOLOGICAL 

CHARACTERISTICS 

The relation between the mass weighted hysteresis and catchment sources 

configuration (river bed vs. eroded areas) is consistent with previous findings and typical 

qualitative analyses of the hysteresis patterns which considers that a counterclockwise 

loops indicates a distant contribution while a clockwise loop results from a relatively 

close source mobilization [Bogen, 1980; Gellis, 2013; Guillon et al., 2018; Mao and 

Carrillo, 2016; Navratil et al., 2012; Navratil et al., 2010; Smith and Dragovich, 2009]. 

Influence of watershed characteristics on SSL hysteresis patterns was observed by 

Aguilera et al. (2018) in ten mountainous Californian catchments. Also, using a random 

forest model on 45 measuring stations, Vaughan  et al. (2017) showed that considering 

near-channel morphological characteristics in addition to land use contributes to a better 

explanation of the sediment rating curve parameters than using land use only. Their 

random forest model explained 38% and 43% of the hysteresis variance when 

considering respectively only watershed metrics or watershed plus near channel metrics. 

In our analysis, we also observed that both sources need to be considered. However our 

results show the importance to consider not only global catchments properties but the 

relative importance of these two types of sources (bed vs eroded areas) as well as their 

“travelling distance” to the monitoring station to explain hysteresis variability between 

catchments. Also, as was observed by Vaughan et al. (2017), we should stress that 

including the bed area information by considering the relative spatial distribution of 

eroded versus bed area (𝑆𝐶𝐼𝑥) and not the spatial distribution of eroded area (𝐸𝐴𝐼𝑥) 

alone, permits a much better explanation of the hysteresis variability and thus of the 

suspended load dynamics. This result is also consistent with several studies that 

reported a significant buffering effect played by the river bed which could be considered 

as a significant fine sediment source in mountainous catchments having relatively large 

and active alluvial reaches [Guillon et al., 2018; Navratil et al., 2012; Navratil et al., 

2010; Orwin and Smart, 2004b].  

The results obtained in this paper and in previous studies bring us to propose the 

following conceptual description of hysteresis and sediment configuration interactions 

(Figure 1.12). The dominant hysteresis effect observed at a given location in a 

catchment could depend on the upstream capacity to produce distant erosion and to 

buffer these upstream fluxes. If the remobilization of fine sediments from the river bed 

did not exist, mainly counterclockwise hysteresis should have been observed because of 

celerity differences between the flow rate and SSC waves [Klein, 1984]. Thus, the 

hysteresis patterns would depend on the location of the observation point for a given 

geomorphological scale (point A, B, C or D in Figure 1.12). Following the conceptual 

configuration in Figure 1.12, the fraction of SSL coming from the river bed and driven by 

the total flow rate could increase when moving to the downstream part of a catchment, 
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while SSL coming directly from primary hillslope sources and driven by rainfall or runoff 

could decrease. Such scale dependencies of hysteresis processes have been already 

noticed in hydrological studies [Gharari and Razavi, 2018]. For instance, Davies and 

Beven (2015) have shown by using a synthetic case that hysteresis between streamflow 

and catchment storage was changing with the catchment size considered. 

 

Figure 1.12: Conceptual catchment and evolution of hysteresis effects considering the 

flux exported (HIMs), sediment sources configuration (𝑺𝑪𝑰𝒙), cumulated riverbed area 
(Abed cum), cumulated eroded area (Aeroded cum) and fraction of suspended sediment load 
coming from the bed or from primary hillslope sources. A, B, C and D denote four 
different observation points. 

1.5.3. LIMITATIONS AND IMPLICATIONS 

Given the wide range of characteristics of the 10 studied alpine catchments, comprising 

various sizes, geologies, altitudes, hydrological and sedimentary regimes the proposed 

approach can be considered as relevant in other mountainous environments. However, 

its relevance should be tested in other contexts such as low-land, agricultural or arid 

environments. The analysis of the sediment sources might be improved to get a more 

detailed description of the catchment sources configuration to investigate its relation with 

suspended load at shorter spatial and temporal scales. For instance, the mechanical 

properties of rocks in eroded areas could be taken into account to give more importance 
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to soft rocks than to more resistant ones for catchments with contrasted lithologies. The 

local river bed slope could also be explicitly considered in addition to the active river 

width to get a proxy of the buffering capacity of the bed. This would probably give less 

importance to steep streams and more importance to gentle ones. These potential 

improvements might be tested in future work. 

However, while the approach used does not represent all the complexity of interactions 

between suspended load and sediment source configuration a significant part of the 

variability of SSL hysteresis can be explained by this simplified source description at a 

regional scale. This confirms the strong link between hysteresis processes and the 

variable sediment sources activation that have been qualitatively described for decades 

[Gellis, 2013; Gharari and Razavi, 2018; Williams, 1989]. Our results suggest that even 

for small catchments, fine sediment dynamics and hysteresis effects could be largely 

influenced by erosion and deposition processes occurring in the river bed. This might be 

the case in catchments where eroded areas are located far enough upstream so that the 

main channel can act as a buffering reservoir of fine sediments. However, larger 

catchments with well-developed fluvial systems could, conversely, be influenced in a 

non-negligible way by hillslope process production if some eroded areas are located at a 

short distance from the monitoring station. Both processes are probably inevitably 

linked. The fractions of SSL coming from the bed or from the hillslopes seem to change 

depending on the point considered in the catchment. The simple sediment sources 

analysis proposed in this study could be performed prior to the installation of a gauging 

station or prior to modeling effort in order to assess which kind of processes should be 

considered in a conceptual modeling approach. It could also be helpful to determine the 

dominant fine sediment production process for river or dam management at the 

catchment scale.  

1.6. CONCLUSIONS  
This study aimed at testing the links between Discharge-Suspended Sediment 

Concentrations (Q-SSC) hysteresis and the spatial configuration of sediment sources 

which have been qualitatively considered for decades without been quantitatively tested. 

A quantitative analysis of sediment sources configuration and Q–SSC hysteresis was 

performed in ten contrasted alpine catchments. Hysteresis indexes were calculated on a 

high number of automated sampled events to extract the dominant hysteresis pattern for 

each catchment. Simple indexes were developed to describe the river bed and eroded 

patches area distribution as well as a “travelling distance to the outlet”. The main 

findings can be summarized as follows: 

(i) Considering the dominant SSL hysteresis in a given catchment as the most 

frequent pattern or as the most efficient in terms of transport can lead to 

different results. Our observations suggest that the transport efficiency of 
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hysteresis should be considered to infer the dominant sediment production 

process. This could be particularly true for catchments having most of their 

fluxes exported during few short events and exhibiting marked seasonal 

hysteresis variability. Thus an averaged mass weighted hysteresis index was 

proposed. 

(ii) A strong correlation was found between mass weighted hysteresis index and 

sediment sources configuration index (river bed vs eroded area) which 

confirms the qualitative interpretations often made for SSC-Q hysteresis 

processes. We also observed that the sources configuration should be 

considered on a long enough fraction of the catchment (at least 50% of the 

whole principal river network) upstream the observation point to explain the 

spatial hysteresis variability. This is consistent with the rather long travelled 

distances of suspended particles.  

(iii) In comparison to previous studies, these results show the importance to 

consider not only general catchment properties or sediment sources to 

understand SSL dynamics but their spatial distribution and connectivity. 

Furthermore, including bed related information increases significantly the 

explanatory power of the SSC-Q hysteresis variability than using only primary 

hillslope sources information. 

1.7. NOTATIONS 
The following symbols are used in this paper. 

𝑆𝑆𝐿 Suspended sediment load 

𝑆𝑆𝐶 Suspended sediment concentration 

𝑄 Flow rate  

𝐴 Catchment area 

𝑁𝑜 Fraction of catchment with low or no vegetation cover 

𝐹𝑜 Fraction of catchment forest cover 

𝐺𝑙 Fraction of catchment with glacier cover 

𝑆𝐶𝑅 Fraction of catchment with soft coherent rock cover 

𝐻𝑅 Fraction of catchment with heterogeneous rock cover 

𝑅𝑅 Fraction of catchment with resistant rock cover 

𝑊10 Median active width extracted on the first 10 km upstream the station 

𝑆10 Mean riverbed slope extracted on the first 10 km upstream the station 

𝑞 Mean annual specific discharge 

𝐻𝐼𝐿𝑙𝑜𝑦𝑑 Lloyd hysteresis index 

𝑆𝑆𝐶∗ Normalized suspended sediment concentration at the flood scale 

𝑄∗ Normalized flow rate at the flood scale 

𝐻𝐼𝑀𝑠 Mass weighted average hysteresis index 

𝑀𝑠𝑖 Mass of suspended sediment transported during the event i 

𝑁𝑏𝑐𝑙 Fraction of event having a clockwise hysteresis shape 

𝑁𝑏𝑐𝑐𝑙 Fraction of event having a counterclockwise hysteresis shape 
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𝑁𝑏𝑐𝑜𝑚𝑝𝑙𝑒𝑥 Fraction of event having complex or no hysteresis shape 

𝑀𝑠𝑐𝑙 Fraction of the mass exported with a clockwise hysteresis shape 

𝑀𝑠𝑐𝑐𝑙 Fraction of the mass exported with a counterclockwise hysteresis shape 

𝑀𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑥 Fraction of the mass exported with complex or no hysteresis hysteresis 

𝐴𝑒𝑟𝑜𝑑𝑒𝑑 𝑐𝑢𝑚 Cumulative eroded area at a given distance from the station 

𝐴𝑏𝑒𝑑 𝑐𝑢𝑚 Cumulative riverbed area at a given distance from the station 

𝑆𝐶𝐼𝑥 
Sources Configuration Index (mean ratio of cumulative eroded area over 
cumulative bed area calculated on the first x% of the main channel length) 

𝐸𝐴𝐼𝑥 
Eroded Area Index (mean cumulative eroded area over total eroded area 
on the first x% of the main channel length) 

𝐵𝐴𝐼𝑥 
Bed Area Index (mean cumulative bed area over total bed area on the first 
x% of the main channel length) 

𝐿 
Maximum distance used to compute the sediment source configuration 
index  

𝑆𝑆𝐿99% 
Threshold on SSL above which 99% of cumulated suspended fluxes are 
transported 

𝑆𝑆𝐶99% 
Threshold on SSC above which 99% of cumulated suspended fluxes are 
transported 

𝑡𝑒𝑥𝑐𝑒𝑒𝑑 
Minimum time step for which a SSL should exceed all following and 
preceding values for the event detection 
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1.9. APPENDIX 

1.9.1. SOURCE CONFIGURATION INDEX 

River 𝑺𝑪𝑰𝟏𝟎 𝑺𝑪𝑰𝟐𝟎 𝑺𝑪𝑰𝟑𝟎 𝑺𝑪𝑰𝟒𝟎 𝑺𝑪𝑰𝟓𝟎 𝑺𝑪𝑰𝟔𝟎 𝑺𝑪𝑰𝟕𝟎 𝑺𝑪𝑰𝟖𝟎 𝑺𝑪𝑰𝟗𝟎 𝑺𝑪𝑰𝟏𝟎𝟎 

Arc 0.1 1.2 3.0 5.0 6.9 8.0 8.9 9.8 10.7 11.5 

Arvan 0.1 0.3 0.8 1.6 2.8 4.4 7.3 11.6 16.6 21.3 

Asse 0.2 0.4 0.8 1.4 1.9 2.1 2.5 3.4 4.6 6.3 

Bès 0.4 0.3 0.2 0.2 0.2 0.5 1.2 2.1 2.9 3.9 

Bleone 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 

Buech 0.3 0.7 1.3 2.4 3.4 4.1 4.7 5.6 6.6 7.5 

Drac 0.3 0.8 1.1 1.7 2.3 2.6 3.0 3.2 3.5 3.8 

Galabre 1.3 1.1 1.0 1.0 1.0 1.1 1.3 1.4 1.6 1.7 

Glandon 0.0 0.6 1.5 2.5 3.7 4.6 5.4 6.3 6.7 6.7 

Romanche 0.9 1.2 1.8 2.7 3.9 6.2 8.4 10.2 11.5 12.2 

Table 1.5: 𝑆𝐶𝐼𝑥 index calculated for each river for x from 10% to 100% of the total length 

L. 𝑆𝐶𝐼𝑥  is the mean ratio between cumulated eroded area and cumulative bed area 

calculated on a given distance from the outlet of the catchment. 

 

1.9.2. ERODED AREA INDEX 

River 𝑬𝑨𝑰𝟏𝟎 𝑬𝑨𝑰𝟐𝟎 𝑬𝑨𝑰𝟑𝟎 𝑬𝑨𝑰𝟒𝟎 𝑬𝑨𝑰𝟓𝟎 𝑬𝑨𝑰𝟔𝟎 𝑬𝑨𝑰𝟕𝟎 𝑬𝑨𝑰𝟖𝟎 𝑬𝑨𝑰𝟗𝟎 𝑬𝑨𝑰𝟏𝟎𝟎 

Arc 0.00 0.01 0.04 0.08 0.12 0.17 0.22 0.27 0.33 0.39 

Arvan 0.00 0.00 0.00 0.01 0.02 0.04 0.07 0.13 0.20 0.27 

Asse 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.09 0.14 0.21 

Bès 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.11 0.16 0.24 

Bleone 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.03 0.04 0.11 

Buech 0.00 0.00 0.02 0.04 0.08 0.12 0.16 0.22 0.29 0.36 

Drac 0.00 0.01 0.02 0.04 0.07 0.10 0.14 0.18 0.22 0.29 

Galabre 0.02 0.03 0.05 0.07 0.09 0.13 0.19 0.25 0.32 0.38 

Glandon 0.00 0.00 0.02 0.03 0.07 0.11 0.16 0.22 0.30 0.37 

Romanche 0.00 0.01 0.02 0.03 0.06 0.11 0.20 0.28 0.36 0.42 

Table 1.6: 𝐸𝐴𝐼𝑥 index calculated for each river for x from 10% to 100% of the total length 

L. 𝐸𝐴𝐼𝑥 is the mean ratio between cumulated eroded area and total cumulative eroded 

area calculated on a given distance from the outlet of the catchment. 
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1.9.3. BED AREA INDEX 

River 𝑩𝑨𝑰𝟏𝟎 𝑩𝑨𝑰𝟐𝟎 𝑩𝑨𝑰𝟑𝟎 𝑩𝑨𝑰𝟒𝟎 𝑩𝑨𝑰𝟓𝟎 𝑩𝑨𝑰𝟔𝟎 𝑩𝑨𝑰𝟕𝟎 𝑩𝑨𝑰𝟖𝟎 𝑩𝑨𝑰𝟗𝟎 𝑩𝑨𝑰𝟏𝟎𝟎 

Arc 0.05 0.11 0.16 0.21 0.25 0.30 0.35 0.41 0.46 0.51 

Arvan 0.09 0.17 0.24 0.31 0.36 0.42 0.46 0.50 0.54 0.59 

Asse 0.05 0.09 0.13 0.17 0.22 0.28 0.36 0.42 0.49 0.54 

Bès 0.05 0.09 0.14 0.19 0.25 0.31 0.37 0.42 0.47 0.52 

Bleone 0.04 0.09 0.14 0.19 0.25 0.33 0.40 0.47 0.52 0.57 

Buech 0.02 0.07 0.14 0.19 0.25 0.32 0.39 0.46 0.51 0.56 

Drac 0.05 0.09 0.12 0.15 0.19 0.23 0.28 0.33 0.39 0.45 

Galabre 0.05 0.11 0.16 0.22 0.27 0.32 0.37 0.42 0.47 0.52 

Glandon 0.04 0.07 0.11 0.15 0.18 0.22 0.28 0.35 0.41 0.46 

Romanche 0.00 0.01 0.02 0.03 0.06 0.13 0.21 0.30 0.38 0.51 

Table 1.7: 𝐵𝐴𝐼𝑥  index calculated for each river for x from 10% to 100% of the total 

length L. 𝐵𝐴𝐼𝑥 is the mean ratio between cumulated bed area and total cumulative bed 

area calculated on a given distance from the outlet of the catchment.



 

 
 

  Chapter 2
Assessment of fine sediment river 

bed stocks in seven alpine 

catchments 

In alpine catchments, few data are available concerning the river bed stocks of fine 

sediments. Such information is however crucial to understand the role of river bed on 

fine particle transfer in that kind of watersheds. In other type of basins, many studies 

have shown that significant quantities of this finer material could be stored in the gravel 

matrix. This second chapter reports a field campaign performed in seven Alpine rivers to 

quantify their fine particle stocks and will be submitted in autumn 2019 to Hydrological 

Processes (contributors Misset C., Recking A., Legout C., Viana-Bandeira B., Poirel A. 

and Cazihlac M.). 

      

 

Dans les bassins versants alpins, peu de données relatives aux stocks de sédiments 

fins dans le lit des rivières sont disponibles. Cette information est cependant cruciale 

pour comprendre le rôle que joue le lit des rivières sur le transfert de particules fines 

dans ce type de bassin versant. De nombreuses études réalisées dans d’autres 

contextes ont montrées que d’importantes quantités de particules fines pouvaient être 

stockées dans des matrices graveleuses. Ce second chapitre rapport une campagne de 

terrain durant laquelle les stocks de sédiments fins dans le lit de sept rivières alpines ont 

été quantifiés. Ce chapitre sera soumis à l’automne 2019 dans Hydrological Processes 

(contributeurs Misset C., Recking A., Legout C., Viana-Bandeira B., Poirel A. and 

Cazihlac M.).  
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2.1. ABSTRACT 
While the finest fraction has long been considered to have limited interactions with the 

river bed, several recent studies based on flume and field observations raises questions 

about this hypothesis which is fundamental for suspended load modeling and river 

management. In this study, we report a large field campaign in which we quantified the 

river bed stocks of fine particles in 7 alpine catchments. Using a simple protocol, we 

performed more than 300 riverbed measurements of the local surface and subsurface 

stocks. Results indicate that even if the river bed surface contains no fine particles, 

significant quantities can be found in the subsurface layer which is in most cases the 

layer having the higher stocks. We also observed that stocks highly depend on the 

facies considered suggesting that storage processes are driven by local hydraulics and 

river bed characteristics. By integrating the local stocks existing in the first ten 

centimeters of the riverbed at the catchment scale we estimated that they could 

represent more than 50% of the mean annual suspended load in catchments with large 

braided rivers while they could be as small as 1% in highly eroded head water 

catchments. This suggests that the bed of large alluvial alpine rivers can be considered 

as a significant source of fine particles. These observations were confirmed by using a 

simplified scouring model to estimate conditions for these stocks to be released which 

however ask questions on the bed reworking processes modeling. Finally, these 

observations suggest that interactions between gravel beds and fine particles 

transported as suspension are far from being negligible processes in alpine catchments. 

2.2. INTRODUCTION 
A better understanding of suspended load dynamics in rivers is crucial as fine 

particles strongly affect the water quality, aquatic habitats and can also lead to siltation 

problems in hydropower plans [Kondolf et al., 2014; Mathers et al., 2017; Owens et al., 

2005; Vercruysse et al., 2017; Walling et al., 2003]. Suspended load is highly variable in 

time as fine particles can originate from various erosion processes. They can either be 

eroded on hillslopes or originate from the river bed [Collins and Walling, 2007b; Legout 

et al., 2013; Park and Hunt, 2017; Piqué et al., 2014; Walling and Collins, 2008]. In 

mountainous watersheds, characterized by high sediment yields [Vanmaercke et al., 

2011] some studies suggest that the river bed can be considered as a buffer controlling 

downstream fluxes from the event to the annual time scale [Guillon et al., 2018; Navratil 

et al., 2012; Navratil et al., 2010; Orwin and Smart, 2004b]. It is thus of importance to 

assess the quantity of fine sediments stored in the river bed of these catchments for 

instance to design a management plan aiming at reducing the fine sediments delivered. 

Such assessment is also required to calibrate predictive conceptual models of 

suspended load at the catchment scale such as the ones proposed by [Asselman, 1999; 

Park and Hunt, 2018; Picouet et al., 2009]. These models consider a conceptual storage 

reservoir which is often statistically calibrated and poorly documented introducing a 
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substantial uncertainty in the approach. It could also help to understand the complex 

interactions between fines particles and the gravel matrix [Hill et al., 2017; Mooneyham 

and Strom, 2018] and more generally the geomorphological factors and hydrological 

processes controlling fine sediment storage in mountainous rivers.     

Several studies already focused on fine particles stored in the river bed [Buendia et al., 

2016; Collins and Walling, 2007b; Duerdoth et al., 2015; Lambert and Walling, 1988; 

Marteau et al., 2018; Naden et al., 2016; Turley et al., 2017]. The ratios between the 

stocks of fine particles and the annual suspended sediment load were found to be highly 

variable depending on the catchment considered (ranging from 0 to100%). This ratio 

was also found to vary for a given catchment in time and space [Collins and Walling, 

2007b; Piqué et al., 2014]. However, most of these studies were conducted in lowland 

rivers and considered exclusively underwater storage. In mountainous rivers, fine 

particles stored in the whole active width, i.e. in dried facies could also contribute 

significantly to the downstream fluxes as the bed of these rivers is often highly mobile 

and exhibit large gavel bars during low water stages [Navratil et al., 2010]. Few studies 

such as the one of Navratil et al. (2010) proposed a method to quantify fine sediment 

stocks in mountainous rivers. Following this approach, this study aims to (i) estimate the 

local stocks of fine particles in the river beds of various alpine catchments and analyze 

their spatial variability and (ii) compare these stocks at the catchment scale with the 

suspended fluxes observed at the outlet to estimate the potential river bed contribution 

to total suspended load. 

2.3. MATERIAL AND METHODS  

2.3.1. STUDIED AREA 

Seven alpine catchments for which long term suspended load measurements are 

available were analyzed in this study (Figure 2.1). They ranged from 110 to 635km² and 

comprise a wide range of river bed morphologies (from steep and narrow step pools to 

wide braiding streams) and catchment characteristics. The approach developed to 

assess river bed fine sediment stocks in each of these seven catchments combined 

measurements of local stocks with aerial photography analysis. The local measurements 

were performed with two distinct protocols, for dried areas or in channel.  
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Figure 2.1 : Catchment location. 

2.3.2. SAMPLING PROTOCOL 

2.3.2.1. Dried areas sampling protocol 

A sampling technic adapted from the protocol proposed by Navratil et al. (2010) 

was used to measure local stocks of fine sediments in dried parts of the active width of 

the river. Two layers were distinguished. A first layer comprises fine sediments 

deposited on and into the armor layer denoted h1 in Figure 2.2. A second layer denoted 

h2 in Figure 2.2, under the first one and comprising fine sediments in the subsurface 

was considered. 

 

Figure 2.2: Definition of the two layers for dried storage areas. h1 is the depth of the 
surface layer; h2 is the depth of the subsurface layer. Case A): fine sediments deposited 
on the armor layer. Case B): apparent armor layer and fine sediment deposited in the 
pore spaces. 

The steps of this sampling technic are detailed in Figure 2.3. First, a rectangular area (𝐴, 

m²) of 28cm by 34 cm was sampled over the h1 depth and put in a container with 20 
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liters of water from the river (𝑉𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 1 , L). This area was found to be a good 

compromise between the time needed and the uncertainty associated to the surface 

considered. Approximatively ten minutes were needed to do one measurement with two 

operators.  

 

Figure 2.3: Steps of the sampling method used for dried areas. 𝐕𝐜𝐨𝐧𝐭𝐚𝐢𝐧𝐞𝐫 𝟏 is the volume 
of clear water in the container taken in the river before any sampling of turbid water, 

𝐒𝐒𝐂𝐬𝐜𝐨𝐧𝐭𝐚𝐢𝐧𝐞𝐫 𝟏 is the suspended sediment concentration in the container after adding the 
surface layer and subtracting suspended concentration of the river, 𝐕𝐜𝐨𝐧𝐭𝐚𝐢𝐧𝐞𝐫 𝟐 is the 

volume of water in the container after the first sampling of turbid water, 𝐒𝐒𝐂𝐬𝐜𝐨𝐧𝐭𝐚𝐢𝐧𝐞𝐫 𝟐 is 
the suspended sediment concentration in the container after the first sampling of turbid 
water and the adding of the subsurface layer. 

A shovel was then used to a shake the mixture and put fine sediments in suspension. 

This was done in a normalized way by the same operator which turned ten times the 

shovel in the bottom of the container. Then a 250 ml bottle was used to take a sample of 

the turbid water after waiting 4 seconds so that the sand particles were settled. This 

bottle was brought to the laboratory to measure its suspended sediment concentration 

(𝑆𝑆𝐶𝑠𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 1, g L-1) from which the suspended sediment concentration of the water 

coming from the river was subtracted. Finally the local stock of fine sediment for the 

surface layer (𝑠𝑡𝑠𝑢𝑟𝑓𝑎𝑐𝑒, g m-2 dm-1) could be estimated using Eq.2.1:  

𝑠𝑡𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
𝑆𝑆𝐶𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑟 1 × 𝑉𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 1

𝐴 × ℎ1
 (2.1) 
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The second step was to add sediments from the subsurface layer in the container 

without removing the first mixture and to repeat the procedure detailed above. The 

subsurface stock (𝑠𝑡𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒, g m-2 dm-1) was estimated using Eq.2.2: 

 𝑠𝑡𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
(𝑆𝑆𝐶𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 2−𝑆𝑆𝐶𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑟 1)×𝑉𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 2

𝐴×ℎ2
 (2.2) 

2.3.2.2. In channel sampling protocol 

The Lambert and Walling (1988) protocol described in many publications was used to 

estimate in channel storage of fine sediments [Collins and Walling, 2007a; Duerdoth et 

al., 2015; Piqué et al., 2014; D. E.  Walling et al., 1998]. A cylinder with a diameter of 29 

centimeters was pushed in the river bed to separate the sampling area from the flow. 

Then a trowel was used to disturb and agitate the bed before a turbid water sample was 

taken in a 250 ml bottle to estimate its concentration. No differences were made 

between surface and subsurface. The depth of bed disturbance (ℎ𝑏𝑒𝑑 disturbance , m) was 

estimated as well as the water depth in the cylinder (ℎ𝑤𝑎𝑡𝑒𝑟, m) to finally get the local 

stocks estimates: 

𝑠𝑡𝑤𝑎𝑡𝑒𝑟 =
𝑆𝑆𝐶𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 × ℎ𝑤𝑎𝑡𝑒𝑟

ℎ𝑏𝑒𝑑 disturbance 
 (2.3) 

2.3.3. LOCAL STOCKS INTEGRATION OVER THE CATCHMENT 

 

Figure 2.4: Example of the four storage facies on the drac river. MC = main channel, B 
= bar, DBC = dry braided channel, VB = vegetated bar. 

Two strategies were used to integrate the local stocks over all the river system. For large 

enough rivers (Arc, Asse, Buëch Drac and Romanche Rivers) the four storage facies 
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proposed by Navratil et al. (2010) were used (Figure 2.4). The main channel (MC) facies 

was defined as the wetted channel during base flow period. The dry braided channels 

(DBC) classification was used for secondary channels that flow rapidly when the water 

level increases. Vegetated bars (VB) and non-vegetated bars (B) were also 

distinguished. This classification was used because it allows in the field to distinguish 

these storage zones where physical processes leading to sedimentation could differ. 

Navratil et al. (2010) observed large differences of storage values on these facies. 

Sediments were also not mobilized in the same way and with the same frequency. The 

samples were taken on cross sections distributed along the river. The mean stock 

obtained for the facies i (𝑠𝑡𝑖̅̅̅̅ , g m-2 dm-1) was then multiplied by the surface of this facies 

(𝐴𝑖, m²). The mass stored in all the river bed for a given depth (𝑆𝑡𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡, t dm-1) was 

obtained by adding the integrated stocks for each storage facies: 

𝑆𝑡𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡 =∑𝑠𝑡𝑖̅̅̅̅ × 𝐴𝑖

4

𝑖=1

 (2.4) 

Aerial photographies with a 0.5 m resolution were used to estimate the surface occupied 

by each facies. An automated classification based on radiometry was performed with 

Arcgis 10.3 (Figure 2.5). The “Maximum Likelihood Classification” function was used 

after the active width was manually digitalized. As verified by Navratil et al. (2010), the 

surface occupied by each facies was assumed to be constant in time. Unfortunately for 

most photographies, it was not possible to distinguish the DBC from the B facies. Thus, 

the cross sections with facies delimitation (Figure 2.6) were used to roughly estimate the 

fraction of area detected as B facies while being a DBC facies (𝐴𝐷𝐵𝐶 (𝐴𝐷𝐵𝐶 + 𝐴𝐵)⁄ ). 

According to measurements in all the cross sections, an average value of 25% for this 

ratio was considered.  

For narrower rivers for which aerial photographies could not be used to estimate 

properly facies surfaces (Arvan and Glandon) the mean stock measured on a cross 

section i was integrated using Eq.2.5 considering an average storage value for all facies 

(𝑠𝑡𝑖̅̅̅̅ ) for a given active river bed area (𝐴𝑖). This was repeated for the n cross sections 

where measurements were made. The surface (𝐴𝑖) was defined as the surface of the 

active width between the middle of the distance between section i-1 and i and the middle 

of the distance between section i+1 and i. This surface was calculated using the active 

width digitalization with a 1m spatial step.  

𝑆𝑡𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡 = ∑ 𝑠𝑡𝑖̅̅̅̅ × 𝐴𝑖

𝑛𝑏 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑖=1

 (2.5) 
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Figure 2.5: Example of automated facies classification for the Drac River. 

2.3.4. ESTIMATE OF AVAILABLE STOCKS 

Additional measurements were made to roughly assess the flow stage needed to 

mobilize the fine sediments stored in different zones of the river bed and estimate the 

available stocks of fines particles for a given flow condition. As samples were taken 

along cross sections, the topography was measured using a DGPS or a total station 

having a centimetric precision. Localization of the samples as well as the types of facies 

were measured (Figure 2.6). We also qualified visually the fraction of fine particles cover 

at the bed surface for each samples. Those with less than 75% of fine cover was 

considered as type 1, more than 75% as type 3 and type 2 was considered for 

intermediate situations. 

 

Figure 2.6: Example of a cross section measured in the Asse River. The topography 
measurement was completed with facies delimitation and sample localization. 
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The slope of the water surface of each reach was measured as well as the surface grain 

size distribution using non-truncated Wolman count technic [Wolman, 1954]. These 

measurements were then used to estimate the mobilized zones for a given flood event. 

To do so the variable-power law equation for flow resistance proposed by Ferguson 

(2007) was applied in an iterative way considering several vertical panels to take into 

account lateral cross section variability. This friction law is well suited for low relative 

submergence and flow conditions found in the studied alpine rivers [Ferguson, 2010; 

Rickenmann and Recking, 2011]. The water level corresponding to a given flow rate was 

calculated using the measured slope (𝑆), the 84% percentile of the grain size distribution 

(𝐷84, m) and the cross section topography: 

𝑈

√𝑔𝑅ℎ𝑆
=  

2.5
𝑅ℎ
𝐷84

√1 + 0.15 (
𝑅ℎ
𝐷84

)
5/3

 
(2.6) 

in which U (m s-1) is the mean velocity, g the gravitational acceleration (m s-2) and Rh the 

hydraulic radius (m). It was then possible to estimate a local Shield number (1000 values 

equally spread over the cross section) with the local water depth (𝑑, m) for coarse 

sediments over the cross section assuming a constant slope for all the section: 

𝜏84
∗ =

𝜌𝑔𝑑𝑆

(𝜌𝑠 − 𝜌)𝑔𝐷84
 (2.7) 

in which 𝜌 is the water density (kg m-3) and 𝜌𝑠  is the sediment density (kg m-3). We 

estimated the vertical scouring depth when the armor layer was mobilized by using the 

probability model developed by Haschenburger (1999) based on field measurements in 

gravel bedded streams. The probability to observe scouring smaller than 𝛿 cm (𝑃(𝛿)) is 

defined by an exponential distribution with a parameter 𝜃 (cm-1): 

𝑃(𝛿) = {1 − 𝑒
−𝜃×𝛿  𝑓𝑜𝑟 𝛿 ≥ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.8) 

The 𝜃 parameter is empirically defined by Haschenburger as a function of the transport 

stage (
𝜏∗

𝜏𝑐∗
): 

𝜃 = 3.33𝑒
−1.52

𝜏∗
𝜏𝑐∗ (2.9) 

which was estimated considering the 𝐷84 in Eq.2.7 and a critical shield number (𝜏84𝑐
∗) 

function of the riverbed slope [Recking, 2009]: 

 𝜏84𝑐
∗ = 0.56 ∗ 𝑆 + 0.021 (2.10) 
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Because riverbed scouring is a stochastic process, we computed several scouring 

depths (𝛿) corresponding to non-exceedance probabilities equal to 5%, 50% and 95%: 

𝛿 = −
ln (1 − 𝑃(𝛿))

𝜃
 (2.11) 

Also, based on DeVries (2002) observations, we considered an upper limit for the 

possible scouring depth of 2D90. We considered and average stock per facies and 

between surface and subsurface for each cross section. Finally, the available river bed 

stock was computed by integrating the local stock and the local scouring depth over the 

cross section. This calculation was performed for each cross section where 

measurements were conducted to obtain a mass of fine particles released (𝑚𝑠𝑒𝑐𝑡𝑖𝑜𝑛, t m-

1) as a function of the peak flow rate: 

𝑚𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = ∫ 𝑠𝑡𝑙𝑜𝑐𝑎𝑙 𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑙) × 𝛿(𝑙)
𝑊

𝑙=0

× 𝑑𝑙 (2.12) 

in which 𝑠𝑡𝑙𝑜𝑐𝑎𝑙 𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑙) is the local average stock for the facies i (g m-2 dm-1), 𝛿(𝑙) the local 

scouring depth (dm) and W (m) the total width of the cross section considered. To take 

into account drainage area differences between the outlet of the basin and the cross 

section calculation, we used specific peak discharges detrended as a function of the 

catchment area as is often done in similar studies [Mueller, 2005; Piton and Recking, 

2017]. For a given scouring probability (5%, 50% and 95%), an average value of the 

mass released calculated for all cross sections was considered (𝑚𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑄𝑝𝑒𝑎𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , t m-1). It 

was then multiplied by the stream length considered representative of the storage 

system (𝐿𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 , m) based on the active width digitalization to get the total 

available riverbed stocks (𝑀𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡, t) at the catchment scale as a function of the peak 

discharge: 

𝑀𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡(𝑄𝑝𝑒𝑎𝑘) = 𝑚𝑠𝑒𝑐𝑡𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑄𝑝𝑒𝑎𝑘) × 𝐿𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑦𝑠𝑡𝑒𝑚  (2.13) 

Details about the parameters considered for the calculation can be found in the 

supplementary material. The calculation procedure is synthetized in Figure 2.7: 
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Figure 2.7: Synthesis of the algorithm used to compute the potential river bed stocks 
released. 

2.3.5. SUSPENDED SEDIMENT YIELD MEASUREMENTS 

Suspended sediment load (SSL, g s-1) was measured in the seven alpine catchment 

using high frequency (1h) turbidity and water level measurements as often done is such 

rivers [Mano et al., 2009; Navratil et al., 2011]. Rating curves between water level and 

flow rate (Q, m3 s-1) or between turbidity and suspended sediment concentration (SSC, g 

l-1) were built by using repeated flow rate gauging (salt dilution, ADCP, LSPIV and 

current meters) and SSC sampling (automated ISCO samplers). Suspended load was 

the calculated at each time step by considering a homogeneous concentration over the 

cross section: 

𝑆𝑆𝐿 = 𝑆𝑆𝐶 × 𝑄 (2.14) 

SSL was integrated over each year of measurement and divided by the catchment area 

to get the specific suspended sediment load (t km-2 year-1) and mean annual suspended 

load (t) for each catchment. When turbidity data were missing, a global rating curve fitted 

for all the available measurements was used to estimate missing SSC [Ferguson, 1986]. 

Because suspended yield is variable from on year to another, the mean and standard 

deviation of this value was considered. The stock of fine sediment estimate in the river 

bed could then be compared to the annual fluxes for each catchment. 
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2.4. RESULTS 

2.4.1. GENERAL OVERVIEW OF THE MEASUREMENTS 

In total, 339 measurements were conducted in the seven studied catchments between 

June and August 2017 (Table 2.1). More samples were performed in large braided rivers 

as the spatial variability was expected to be higher in these systems (Asse, Buech, Petit 

Buech and Drac). The sites were located along the main fluvial corridor to be the most 

representative as possible.  

 Arc Arvan Asse Buëch Petit Buëch Drac Glandon Romanche 

Number of sites 4 3 3 5 2 4 3 3 

Number of samples 20 9 122 71 29 63 9 16 

Table 2.1: Number of sites and measurements conducted in each catchment. Note: the 
Petit Buech is the main tributary in the Buech catchment. 

Because the objective of this approach was to compare stocks and fluxes, we had to 

estimate the sediment size representative of our measurements. A diameter of 100µm 

was considered as a first approximation, to be consistent with the upper limit of turbidity 

technics sensitivity [Lewis, 1996]. Our analysis shows that the two resuspension 

technics used were representative of the finest fraction of the fine river bed stocks as the 

fraction larger than 100µm ranged between 10% and 37% (Table 2.2). Similar results 

were obtained by Lambert and Walling (1988). We also characterized settling properties 

of surface deposits in five of the catchments (Arc, Drac, Asse, Buëch and Romanche) 

using an optic device called System Characterizing Aggregates and Flocs (SCAF) 

[Legout et al., 2018; Wendling et al., 2015]. These measurements are presented in 

appendix 2.8.2. Observed settling velocities (mean value per river) ranged between 10-4 

and 10-3 (m/s) which corresponds to particle diameters considering the Stokes law of 

approximately 10-35µm. Also, a significant part of these samples exhibited cohesive 

properties as aggregation processes were observed during settling. 

 Arc Arvan Asse Buëch 
Petit 

Buëch 
Drac Glandon Romanche 

Fraction larger 
than 100µm 

37%(1) - 10%(2) 14%(1) 24%(1) 33%(1) - 23%(1) 

Table 2.2: Fraction of the total mass sampled with a diameter larger than 100µm. (1) 
Indicates data obtained by sieving under water the total mass of samples obtained by 
using the two sampling protocols detailed in material and methods. (2) Indicates data 
obtained by comparing two masses of sieved samples with the two protocols detailed in 
material and methods. Note: the Petit Buech is the main tributary of the Buech 
catchment. 
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2.4.2. LOCAL STOCKS 

2.4.2.1. Stock per facies 

Considering average surface and subsurface stocks, several observations can be made. 

The local stocks were highly variables in a given catchment and between catchments 

(Figure 2.8, Table 2.3). For instance, the Arvan catchment had much higher local stocks 

(MC and B) than the other catchments. Also, these stocks covered at least two orders of 

magnitude considering the four facies and all catchments (Figure 2.8, Table 2.4). 

Despite this large variability, the four facies (main channel, bars, dry braided channel 

and vegetated bars) first identified by Navratil et al. (2010) exhibited well defined ranges 

of storage considering measurements in a given catchment  or all measurements 

together (Figure 2.8, Figure 2.9, Table 2.4). It indicates that the storage processes were 

different in these four zones. The main channel was the facies storing the less fine 

particles (median stock considering all river of 2 kg m-2 dm-1) probably because shear 

stresses were always too high so that large deposition could occur. The naked bars 

exhibited a bit higher median storage (2.8 kg m-2 dm-1) but it was not statistically 

significant (Mann-Whitney tests positive one-side test gives pvalue>0.05). The storage 

was much important in dry braided channels and in vegetated channels (respectively 5.4 

and 20 kg m-2 dm-1) as confirmed by Mann-Whitney tests (pvalues<0.001). Vegetated bars 

stored significantly more than dry braided channels (pvalues<0.001).  These storage 

differences could be due to differences in hydrodynamics and to the frequencies of 

submersion as discussed in the following sections. 

Rivers 

MC [kg/m²/dm] B [kg/m²/dm] DBC [kg/m²/dm] VB [kg/m²/dm] 

Av. Surf. Sub. Av. Surf. Sub. Av. Surf. Sub. Av. 

Arc 3.6 6.8 10.4 8.6 11.7 9.3 10.5 - - - 

Drac 6.0 4.4 6.6 5.5 13.2 21.5 17.4 24.5 82.4 53.4 

Romanche 2.6 3.9 4.5 4.2 8.2 24.9 16.5 15.2 26.1 20.7 

Asse 0.9 1.6 3.5 2.5 4.8 4.9 4.8 10.9 6.2 8.5 

Büech 2.1 1.4 5.2 3.3 22.3 42.4 32.4 35.1 149.8 92.5 

Arvan 7.5 10.8 20.7 15.7 - - - - - - 

Glandon 0.7 5.6 8.5 7.1 1.7 3.6 2.6 - - - 

Table 2.3: Average stock per storage facies for the seven alpine rivers. “-“ indicates that 
no measurements were performed in this facies. “Surf.” Indicates surface stocks, “Sub.” 
Indicates subsurface stocks, “Av.” indicate average stocks between surface and 
subsurface. MC = main channel, B = bars, DBC = dry braided channel, VB = vegetated 
channel. 
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Figure 2.8: Boxplots of average surface and subsurface stock measurements for each 
river and for each facies storage. 

 Average stock 
MC (kg/m²/dm) 

Average stock 
B (kg/m²/dm) 

Average stock 
DBC (kg/m²/dm) 

Average stock 
VB (kg/m²/dm) 

q5% 0.6 1.1 2.3 2.7 

q50% 2.0 2.8 5.4 19.9 

q95% 8.6 14.7 36.9 185.5 

Table 2.4: Statistical quantiles (5%, 50% and 95%) of the stock measurements 
distributions depending on the storage facies. All rivers are considered together. 
MC=main channel, B = bar, DBC = dry braided channel, VB=vegetated bar. 
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Figure 2.9: Average storage (surface and subsurface) considering all the rivers together 
as a function of the type of storage facies. MC=main channel, B = bar, DBC = dry 
braided channel, VB=vegetated bar. 

2.4.2.2. Surface versus subsurface 

The measurements conducted in dry facies (bars, dry braided channels and 

vegetated bars, Figure 2.4) allowed us to compare the stocks found in surface and 

subsurface (Figure 2.10). For the three facies, subsurface stocks were generally larger 

than surface stocks as confirmed by non-parametric Mann-Whitney tests (positive one-

side test): the distribution of subsurface versus surface stocks ratios was statistically 

larger than 2.23 for bars (pvalue<0.01), larger than 1.32 for dry braided channels 

(pvalue<0.01) and larger than 1.35 for vegetated bars (pvalue<0.01). This shows that a 

significant part of the river bed stock is found under a poorly mobile armor layer. The 

subsurface stocks release might thus be controlled by the armor layer mobility, 

especially for gravel bars. 
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Figure 2.10: Boxplot of the ratios of subsurface stock and surface stocks considering 
the bar facies (B), the dry braided channel facies (DBC) and the vegetated bar facies 
(VB). 

Considering the relation between surface and subsurface stocks without consideration of 

the storage facies in the seven alpine gravel bed rivers led to interesting observations 

(Figure 2.11). While really small surface stocks could be observed, a minimum value of 

subsurface stock approximately of 1kg m-2 dm-1 was measured.  Also, only 25% of 

measurements showed surface stocks higher than subsurface ones. Despite highly 

variable, the relation between surface and subsurface stocks can be fitted by a 2nd order 

polynomial relation, considering storage value in kg m-2 dm-1 (Eq.2.15, R²=0.76): 

𝑠𝑡𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 7. 10−5(𝑠𝑡𝑠𝑢𝑟𝑓𝑎𝑐𝑒)
2 − 0.023(𝑠𝑡𝑠𝑢𝑟𝑓𝑎𝑐𝑒) + 3000 (2.15) 

This best fit shows that for surface stocks below 3 or 4 kg m-2 dm-1 the subsurface 

stocks were quite constant around 3 kg m-2 dm-1. Beyond this threshold, subsurface 

stocks increased when increasing the surface storage. This suggests that below a value 

of 3 to 4 kg m-2 dm-1 in the surface, surface and subsurface storage are not dependent 

while above this threshold, surface and subsurface stock co-evolved.  
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Figure 2.11: Relation between subsurface and surface stocks considering 
measurements made in the seven rivers (b) or as a function of a visual classification 
base on the quantity of fine particle found at the bed surface (a). Type 1 corresponds to 
maximum 25% of fines at the bed surface, type 3 a minimum of 75% and type 2 is for 
intermediate situations. The horizontal dashed grey line represents a subsurface stock 
of 1kg/m²/dm. the dashed black line represent equality between surface and subsurface 
stocks. 

2.4.3. AERIAL PHOTO ANALYSIS 

The facies area obtained after the supervised classification analysis and active width 

digitalization revealed large differences in the total river bed area of the seven basins 

(Figure 2.12, Figure 2.13). The Glandon, Arvan and Romanche which exhibited mainly 

step pool and plane bed morphologies have relatively small river bed area (respectively 

2.0 105, 4.4 105 and 5.4 105 m²). The active width digitalization (Figure 2.13) shows that 

the morphologies of the Arvan and Glandon rivers were narrow (median active width of 

respectively 13.7 and 8.4 m) which limited the possibility to perform an automatic 

classification process. On the opposite, the Drac and Buech exhibited large river bed 

area related to their braided morphologies (respectively 2.9 106 and 4.2 106 m²). The 

Asse and Arc catchments had intermediate area (1.6 106 m² for both). For most rivers 

that were classified into facies (expect for the Romance river), the bars (including DBC) 

represented the major fraction, especially for the braided morphologies (respectively 

59% and 52% for the Drac and Buech). Vegetated bars often represented the smallest 

fraction.  
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Figure 2.12: Area of the three facies (main channel, bars and vegetated bars) obtained 
from a supervised classification of orthorectified photographies for the Arc, Drac, 
Romanche, Asse and Büech catchments.  

 

Figure 2.13: Active width of the Glandon and Arvan catchments used for the stock 
integration. 
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2.4.4. TOTAL STOCKS AND COMPARISON WITH ANNUAL 

FLUXES 

By considering a depth of 1 dm as often done in similar studies [Collins and Walling, 

2007a; Lambert and Walling, 1988; Navratil et al., 2010; Piqué et al., 2014] and 

combining the mean stocks obtained for each storage facies (Table 2.3) with the area of 

each facies (Figure 2.12Figure  and Figure 2.13) we estimated the total river bed stocks 

of fine particles using Eq.2.4 and Eq.2.5 (Figure 2.14-a). While braided rivers have 

relatively low local stocks compare to others, their large river bed area can store a large 

amount of fine particles (respectively 50 000 and 100 000 tons for the Drac and Buech). 

Also, while significant differences in river bed area were observed for the other 

catchments, quite similar total stocks values were obtained (range 5600 – 8200 tons) 

except for the Glandon which has much lower total stocks (1200 tons). Using the 

suspended load time series we could estimate the mean specific sediment yield of the 

seven catchments (Figure 2.14-b) and compare it with the river bed stocks (Figure 2.14-

c). The specific sediment yield was highly variable in a given catchment. Also the seven 

basins covered a large range between 130 and 2800 t km-2 year-1. The Arvan exhibited 

the highest fine sediments production (2800 t km-2 year-1) and the Asse the second (650 

t km-2 year-1). Other basins had specific sediment yield of nearly 200 t km-2 year-1 or 

below. The total stock versus mean annual suspended sediment yield ratios ranged 

between 1% and 64%. Despite the uncertainties associated to these values, the 

following observations can be made.  

Large braided rivers (Buech and Drac) had significant stocks compared to the mean 

annual suspended sediment loads suggesting that the river bed could be a significant 

sediment source with a significant buffering capacity. Other rivers with narrower 

morphologies and a medium specific sediment yield (Arc, Romanche and Glandon) had 

ratios around 10%. This suggest that these river beds had a lower buffering capacity 

than large braided rivers but that they can still be considered as a significant sediment 

source at shorter time scale. Finally, catchments with a high production of fine 

sediments (Arvan and Asse) exhibited limited river bed stocks compared to annual 

suspended sediment loads (1 to 2%). This suggests an efficient transfer of the fine 

particles produced on hillslopes. 
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Figure 2.14: a) River bed stocks estimated considering a depth of 1 dm in the seven 
alpine catchments. b) Mean specific suspended sediment load (SSL) for the seven 
studied catchments. Error bars indicate the standard deviation. c) Ratio of stock 
estimate in the river bed (depth of 1dm) versus mean annual suspended sediment load 
for the seven studied catchments. 
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2.4.5. ASSESSMENT OF AVAILABLE STOCKS 

The previous comparison of river bed stocks and annual suspended sediment loads in 

the seven catchments allowed to obtain a first estimate of the river bed contribution in 

the total flux of sediment exported from the catchments. However, the river bed 

contribution depends on the hydraulic conditions for which these stocks could be 

released in the flow. The simplified model based on a release of local river bed stocks 

due to vertical scouring (Figure 2.7) was applied on four of the rivers (Figure 2.15).  

 

Figure 2.15: Mass per event as a function of the peak discharge considering the 
measured data and the estimated available river bed stocks.  

The range of mass estimated to be available in the river bed as a function of the event 

peak discharge (blue line and polygon in Figure 2.15) was much lower than the 

measurements (red points and red line) for the Arvan catchment. Considering the 

measured median mass per event (red line) and the median available riverbed stock 

(dark blue line), a maximum ratio between both quantities of 7% was obtained for this 

catchment. Similar observations were made for the Asse basin while the available 

stocks represented a larger fraction of suspended fluxes (maximum 19% considering 
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median values). On the contrary, the Arc and Drac catchments exhibited available 

stocks similar to measured fluxes for small to moderate events (maximum stock versus 

flux ratio of around 100%). These results were consistent with the previous ones 

showing that the Arvan and Drac basins had respectively limited and high river bed 

stocks relative to fluxes. However, the use of the simplified model that takes into account 

hydraulics and variable scouring led to different observations than the analysis based on 

annual fluxes and constant depth for the Asse and particularly for the Arc catchments. 

Measured fluxes were systematically increasing much steeper than estimated available 

riverbed stocks for larger peak discharges. This could be due to the use of a simplified 

riverbed scouring modeling which might not include all riverbed mobilization process as 

discussed later.  

2.5. DISCUSSION 

2.5.1. SPATIAL VARIABILITY OF THE RIVER BED STOCKS 

The previous results showed the strong storage variability and the importance of 

subsurface stocks which were in most cases larger than surface ones (true for all 

facies). This suggests that a significant part of the river bed stocks release is controlled 

by the mobility of the poorly mobile armor layer. This is particularly true for the bar 

facies. While no relation was observed between surface and subsurface stocks for low 

surface storage (lower than 4 kg m-2 dm-1) both quantities co-evolved for larger surface 

storage. This relation was interpreted by the presence of a “base level” of storage in the 

subsurface (3 kg m-2 dm-1) and a vertical gradient of stocks resulting from an unimpeded 

static percolation of fines particles in the gravel matrix when the surface concentration 

increases [Gibson et al., 2009]. This would be consistent with the strong interactions 

between fine particles transported as suspension and the gravel matrix reported in 

several flume and field studies [Frostick et al., 1984; Hill et al., 2017; Mooneyham and 

Strom, 2018; Park and Hunt, 2017].  

The results from this study also confirmed the differences in storage processes that 

occur in the different zones (the four storage facies) of the river beds as previously 

observed by Navratil et al. (2010). Gravel bars and dry braided channels (DBC) may be 

submerged sufficiently often so that surface stocks are removed frequently and 

vegetation cannot develop. The differences between these two facies (DBC showed 

generally lower ratios between subsurface and surface stocks and larger overall stocks) 

could be attributed to the differences in hydrodynamics in these two zones. Bars were 

generally higher in altitude than dry braided channels where flows with low shear 

stresses and potentially high suspended sediment concentrations could be observed 

during local storm event (summer) or during the recession of the floods. This could lead 

to spatially concentrated deposition and partial clogging in these dry braided channels 
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(explaining the larger amount of fines and the larger surface stocks). For vegetated bars, 

located higher in altitude than bars, the submersion frequency is much lower. These 

zones are under water only for large events that generally submerge all the active 

channel width and are characterized by high suspended sediment concentration. For 

these conditions, shear stresses are generally low in VB as additional resistance is 

induced by the vegetation. This enable for massive depositions in these zones which 

exhibit the highest storage values. Depending on the time scale considered (few years), 

this facies can be considered as a sink as the fines particles stored here are much less 

frequently remobilized. Contrary to the other facies, one can expect that the 

remobilization of this facies might be mainly due to lateral channel migration as 

discussed in the next section. 

Most previous studies that aimed at identifying the river bed stocks significance 

focused principally on fine sediments stored in the main channel facies [Buendia et al., 

2016; Collins and Walling, 2007a; Duerdoth et al., 2015; Lambert and Walling, 1988; 

Marteau et al., 2018; H. Marttila and Kløve, 2014; Piqué et al., 2014]. Other dry facies 

were not considered except in Navratil et al. (2010). While estimating fine sediment 

stocks without considering the dry facies could be acceptable in lowland rivers that have 

a limited area occupied by bars, dry secondary channels of vegetated bars, our result 

show that such approach is more questionable in mountainous rivers. Considering only 

the main channel stocks would have led to much different conclusions in our studied 

catchments, where the main channel represented only a limited part of the sediment 

stocks (maximum 5% of the mean annual load, Figure 2.16). This suggests that future 

studies aiming at identifying the river bed contribution to the total suspended load in 

rivers exhibiting significant dry river bed areas should not only focus on underwater 

stocks. 

 

Figure 2.16: Ratio between main channel stock estimate and average annual 
suspended sediment load for the five catchments for which supervised classification was 
performed. 
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2.5.2. TEMPORAL VARIABILITY OF THE RIVER BED STOCKS 

 

Figure 2.17: Seasonal variability of river bed stocks for the Asse River considering the 
main channel (MC) and the dry braided channels (DBC) facies. Measurements were 
conducted in June 2017, Sept 2017 and March 2018. “n” denotes the number of 
samples, “Sub.” corresponds to surface stocks while “Sub.” corresponds to subsurface 
stocks. Note, the y axis is in log scale. Measurements were roughly performed at the 
same locations. 

Additional measurements conducted in the Asse river (September 2017 and March 

2018) were performed to discuss the results in regards to the seasonal variability of the 

stocks analyzed previously (Figure 2.17). A decrease between June and September and 

an increase from September to March of the surface DBC facies were observed 

(significant differences with a Wilcoxon test with pvalues<0.05). On the opposite the 

subsurface DBC facies showed an increase between June and September and a 

decrease from September to March (Wilcoxon test with pvalues<0.05). No significant 

differences were observed for the main channel facies (Wilcoxon test with pvalues>0.5). 

These observations are consistent with previous studies showing temporal variations 

can occur depending on the hydrological and sedimentary conditions [Buendia et al., 

2016; Marteau et al., 2018; Piqué et al., 2014]. These variations at the season scale also 

highlighted that even the dry facies can contribute to store and release fine particles at 

short time scales. Performing such seasonal analysis should be addressed in future 
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work, in various Alpine catchments to better understand periods and conditions for which 

the river bed stocks are flushed and then refilled. Also, this time variability associated to 

the suspended load variability at the annual and at the event scale (Figure 2.14-b and 

Figure 2.15) shows the difficulty to estimate the relative contribution of the river bed 

stocks to the total suspended fluxes as this contribution was probably changing through 

time (event, season and annual scale). 

2.5.3. AVAILABLE RIVER BED STOCKS SIGNIFICANCE 

The 339 stocks measurements conducted in seven Alpine gravel bed rivers showed that 

the subsurface often comprised a high quantity of fine particles stored under a poorly 

mobile armor layer. Even if the surface stocks were slightly smaller during our field 

campaigns, they might be more variable in time. The storage and remobilization of fine 

particles from the surface stock could be more frequent and mainly controlled by the 

submersion of the facies during runoff events, while the release of sediments from the 

subsurface would be more controlled by the mobilization of the gravel bed matrix, 

including lateral erosion of gravel bank matrix. This suggests that two distinct fine 

sediment release from the river bed should be considered. Also, this suggests that the 

release of fine particles from gravel bedded streams should not only be modeled by 

empirical laws such as the one proposed by Partheniades deduced from flume 

experiments on cohesive material transported above an impervious bed. Our 

measurements were in agreement with recent flume experiments on porous beds 

highlighting the large influence of a gravel matrix on the bed capture and release of fine 

particles [Mooneyham and Strom, 2018]. 

The previous analysis of bed stocks release using a simplified model at the catchment 

scale as a function of peak discharge raised several questions on this process. First the 

choice of the river bed longitudinal length to integrate the calculated bed release was 

uncertain and questions on the definition of the representative river bed area in a given 

catchment. Second, it showed that the mobilization depth was a key parameter which is 

difficult to estimate. Indeed, when analyzing in more details the simplified model results, 

we observe that the estimated bed production contribution to the total load always 

becomes negligible for high peak discharges (Figure 2.15). While the conceptual release 

of fine particles due to vertical scouring seems to be a relevant process for moderate to 

low floods, it is however not relevant for riverbed widening or lateral channel migration 

which are important bed reworking processes observed during large events [Bertoldi et 

al., 2010]. However, the estimation of the magnitude of this lateral erosion remains 

difficult in practice. Thus, our capacity to estimate the potential release of river bed 

stocks is in fact highly linked to our knowledge about river bed mobility. As recently 

suggested by Peirce et al. (2018), a valuable way to estimate such morphological 

changes could be to use reach scale morphodynamics such as stream power or bedload 

rate. 
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2.6. CONCLUSION 
Hundreds of measurements performed in seven alpine catchments revealed that 

significant quantities of fine particles could be stored in their river beds. These stocks 

were highly variable in space, depending on the type of facies (main channel, secondary 

channel, bars and vegetated bars) in which they were stored. This suggests that storing 

processes strongly depend on local hydraulics and bed configuration. The low quantity 

of fine particles found at the surface was interpreted in previous studies as the result of 

negligible interactions between this sediment fraction and the river bed. However, in the 

seven alpine studied catchments, large quantities of fine particles were observed in the 

subsurface (base level of 1-3 km m-2 dm-1) even if there were no significant stocks at the 

surface. A general trend was observed between both storage layers with generally 

higher amounts of fine particles in the subsurface which could result from a free 

percolation of fine particles in the gravel matrix. Thus a potential significant amount of 

fine particles could be released to the flow due to river bed mobility.  

By integrating these stocks at the catchment scale, we estimated that they could exceed 

50% of the mean annual suspended load for large braided rivers while they 

corresponded to 1% for highly eroded head water streams. While associated to 

uncertainties, these observations suggest that suspended load dynamic observed at a 

given point could be driven by the geomorphological configuration of the catchment as 

the river bed could act as a significant source. This catchment configuration could be 

conceptualized by the ratio between the capacity of hillslopes to produce suspended 

fluxes versus the capacity of the river bed to buffer these fluxes which raises question on 

the wash load concept in alpine rivers with large alluvial stocks. Finally, our analysis 

aiming at estimating the potential riverbed contribution to total load due to bed reworking 

shows that the mobilization depth was one of the most critical parameter. However, its 

estimation remains complex as lateral erosion and channel migration are difficult to 

model explicitly. A possibility to indirectly quantify the degree of bed reworking and the 

subsequent fine particle release would be to use reach-scale morphodynamics proxies 

integrating all riverbed mobilization processes. 

  



2.7 Notations 

88 
 

2.7. NOTATIONS 
The following symbols are used in this manuscript. 

𝑆𝑆𝐿 Suspended sediment load (g s-1) 

𝑆𝑆𝐶 Suspended sediment concentration (g l-1) 

𝑄 Flow rate (m3 s-1) 

𝑆 River bed slope (-) 

h1 Surface layer depth (m) 

h2 Subsurface layer depth (m) 

𝑉𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 1 Volume of water in the container during the first sampling (l) 

𝑉𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 2 Volume of water in the container during the second sampling (l) 

𝐴 Sampling area (m²) 

𝑆𝑆𝐶𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑟 1 
Suspended sediment concentration in the container during the first 

sampling (g l-1) 

𝑆𝑆𝐶𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑟 2 
Suspended sediment concentration in the container during the 

second sampling (g l-1) 

𝑠𝑡𝑠𝑢𝑟𝑓𝑎𝑐𝑒 Local stock of fine particles for the surface layer (g m-2 dm-1) 

𝑠𝑡𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 Local stock of fine particles for the subsurface layer (g m-2 dm-1) 

𝑆𝑆𝐶𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 
Suspended sediment concentration in the cylinder during underwater 

sampling(g l-1) 

ℎ𝑤𝑎𝑡𝑒𝑟 Water depth in the cylinder during under water sampling (m) 

ℎ𝑏𝑒𝑑 disturbance  River bed disturbance depth for under water sampling (m) 

𝑠𝑡𝑤𝑎𝑡𝑒𝑟 Local stock of fine particles for under water facies (g m-2 dm-1) 

𝑠𝑡𝑖̅̅̅̅  Average storage value for the facies i (g m-2 dm-1) 

𝐴𝑖 Area of the facies i (m²) 

𝑆𝑡𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡 Integrated fine particles storage at the catchment scale (t dm-1) 

𝐷50 
Sediment diameter of the bed such that 50% of the mixture is finer 

(𝑚) 

𝐷84 
Sediment diameter of the bed such that 84% of the mixture is finer 

(𝑚) 

𝐷 Sediment diameter (𝑚) 

𝜏∗ Shields number: dimensionless shear stress (-) 

𝜏84
∗  Shields number for 𝐷84 (-) 
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𝑄 Water discharge (𝑚3/𝑠) 

𝑈 Mean water velocity over the section (𝑚/𝑠) 

𝑢∗ Friction velocity (m/s) 

𝑊 Channel bed width (𝑚) 

𝑆 Channel bed slope (𝑚/𝑚) 

𝐴 Catchment area (𝑘𝑚²) 

𝜌 Water density (𝑘𝑔/𝑚3) 

𝜌𝑠 Sediment density (𝑘𝑔/𝑚3) 

𝑠 Relative density of sediment (-) 

𝑔 Gravitational acceleration (𝑚/𝑠2) 

𝑑 Mean water depth (𝑚) 

𝑅ℎ Hydraulic radius (m) 

𝛿 Scouring depth (dm) 

𝑃(𝛿) Non-exceedance probability to observe 𝛿 scouring depth (-) 
𝜃 Scouring exponential distribution parameter (cm-1) 

𝑚𝑠𝑒𝑐𝑡𝑖𝑜𝑛 
Mass of fine particles released per unit length for a given cross 

section (𝑚𝑠𝑒𝑐𝑡𝑖𝑜𝑛, t m-1) 
𝑠𝑡𝑙𝑜𝑐𝑎𝑙 𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅ Cross section averaged local stock for the facies i (g m-2 dm-1) 

𝑚𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑄𝑝𝑒𝑎𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
Average mass of fine particle released per unit length for all the 
cross section considered and for a given scouring probability (t m-1) 

𝐿𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 
Length of the active river bed representative of the storage system 
(m) 

𝑀𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡(𝑄𝑝𝑒𝑎𝑘) 
Mass of fine particles released at the catchment scale as a function 
of peak discharge and scouring probability (t) 

 

  



2.8 Appendix 

90 
 

2.8. APPENDIX 

2.8.1. PARAMETERS USED FOR RIVER BED STOCK 

ESTIMATE 

 Facies 

Main channel  
(105 m²) 

Bars (105 m²) Vegetated bars 
(105 m²) 

Arc 5.72 5.72 4.42 

Drac 6.52 17.1 5.35 

Romanche 1.95 1.49 1.95 

Asse 4.57 7.55 3.62 

Büech 12.6 22.2 7.56 

Table 2.5: Facies surface estimate using aerial photographies classification. 

  S1 S2 S3 S4 

Slope (%) 1.18 0.67 1.07 1.12 

D84 (mm) 153 89.52 109 106.3 

Ratio of cachement area 0.31 0.47 0.50 0.63 

𝐿𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑦𝑠𝑡𝑒𝑚(m) = 7000 m (active width  larger than 150 m) 

Table 2.6: Characteristics used to estimate the fine particle released from the river bed 
for the Drac catchment. 

  S1 S2 S3 

Slope (%) 1.05 1.74 2.06 

D84 (mm) 98 391 378 

Ratio of cachement area 0.38 1 1 

𝐿𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑦𝑠𝑡𝑒𝑚(m) = 8600 m (active width  larger than 50 m) 

Table 2.7: Characteristics used to estimate the fine particle released from the river bed 
for the Arc catchment. 
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  S1 S2 S3 

Slope (%) 2.27 3.07 3.32 

D84 (mm) 79 181 337 

Ratio of cachement area 0.3 0.5 1 

𝐿𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑦𝑠𝑡𝑒𝑚(m) = 2200 m (active width  larger than 30 m) 

Table 2.8: Characteristics used to estimate the fine particle released from the river bed 
for the Arvan catchment. 

  S1 S2  

Slope (%) 0.9 1.02  

D84 (mm) 79 66.5  

Ratio of cachement area 1 0.25  

𝐿𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑦𝑠𝑡𝑒𝑚(m) = 12000 m (active width  larger than 50 m) 

Table 2.9: Characteristics used to estimate the fine particle released from the river bed 
for the Asse catchment. Note five topographic cross sections and local stocks are used 
for the calculation. 

2.8.2. SETTLING VELOCITY AND FLOCCULATION 

PROPERTIES OF RIVERBED STOCKS 

We report here settling measurements performed on fine particle deposited in river beds 

using the System Characterizing Aggregates and Flocs (SCAF). A brief description is 

proposed in the following section and more details can be found in Wendling et al. 

(2015). The SCAF is a settling column (diameter 3.5 cm and 20 cm high) having 16 

infrared emitters and 16 photosensors installed every centimeter along the vertical. The 

device measures light attenuation (absorbance) through time along the vertical to derive 

the settling velocity distribution of the mixture. It also enables to detect flocculation 

process for the finest particles by comparing the settling velocity distribution measured 

at the top of the settling column and the one at bottom (e.g. bottom settling velocities are 

higher than surface ones when flocculation occurs). It is thus possible to define a 

flocculation index as follows: 

𝑓𝑙𝑜𝑐𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 =
𝑊𝑠,𝑏𝑜𝑡𝑡𝑜𝑚 −𝑊𝑠,𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑊𝑠,𝑠𝑢𝑟𝑓𝑎𝑐𝑒
 (2.16) 

in which 𝑊𝑠,𝑏𝑜𝑡𝑡𝑜𝑚 is the settling velocity (m/s) at the bottom of the column and 𝑊𝑠,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

at the surface (m/s). Non-cohesive material have flocculation index close to one while 

large positive values indicate cohesive properties [Wendling et al., 2015]. 
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Figure 2.18: Flocculation index as a function of the settling velocity obtained on surface 
deposits using the SCAF instrument on five of the seven rivers studied. Note: Romanche 
measurements were performed in-situ on resuspended sediments during the stock 
measurement protocol. 

Most of measurements show settling velocities ranging between 10-3 and 10-4 m s-1 and 

flocculation index increasing when settling velocity (particle size) decreases. 

 ws mean (m/s) deq [μm] 

Arc (n=7) 8.3×10-4 30 

Drac (n=12) 1.1×10-3 35 

Romanche (n=4, in-situ) 9.4×10-5 10 

Asse (n=7) 8.8×10-4 31 

Petit buech (n=10) 2.7×10-4 17 

Table 2.5: Average median settling velocity obtained on surface deposit using the Scaf 
instrument. deq denotes the diameters corresponding to the measured settling velocities 
using the Stokes law. 

  



 

 
 

  Chapter 3
Quantifying bed-related suspended 

load in gravel bed rivers through an 

analysis of the bedload-suspended 

load relationship 

Estimating suspended load and its fraction coming from the river bed is often 

challenging in mountainous gravel bed rivers. It is however often a prerequisite for river 

management studies. In that third chapter, we investigated the signal of river bed 

mobility on suspension to detect the river bed related fraction of suspended load. This 

work is published in Earth Surface Processes and Landforms, by Misset C., Recking A., 

Legout C., Poirel A., Cazihlac M., Briguet V. and Esteves M. (doi:10.1002/esp.4606). 

      

 

Estimer les flux en suspension et leur fraction provenant du lit est souvent difficile pour 

des rivières à graviers de montagne. Pourtant, cette estimation est souvent un prérequis 

à toute étude relative à la gestion de ces rivières. Dans ce troisième chapitre, nous 

avons analysé la signature de la mobilité du lit sur les flux en suspension pour détecter 

quelle fraction de ces flux provenait du lit. Ce travail est publié dans Earth Surface 

Processes and Landforms, par Misset C., Recking A., Legout C., Poirel A., Cazihlac M., 

Briguet V. and Esteves M. (doi:10.1002/esp.4606). 
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3.1. ABSTRACT 
Suspended load transport can strongly impact ecosystems, dam filling and water 

resources. However, contrary to bedload, the use of physically based predicting 

equations is very challenging because of the complexity of interactions between 

suspended load and the river system. Through the analysis of extensive data sets, we 

investigated extent to which one or several river bed or flow parameters could be used 

as a proxy for quantifying suspended fluxes in gravel bed rivers. For this purpose, we 

gathered in the literature nearly 2400 instantaneous field measurements collected in 56 

gravel bed rivers. Among all standard dimensionless parameters tested, the strongest 

correlation was observed between the suspended sediment concentration and the 

dimensionless bedload rate. An empirical relation between these two parameters was 

calibrated. Used with a reach average bedload transport formula, the approach allowed 

to successfully reproduce suspended fluxes measured during major flood events in 

seven gravel bed alpine rivers, morphodynamically active and distant from hillslope 

sources. These results are discussed in light of the complexity of the processes 

potentially influencing suspended load in a mountainous context. The approach 

proposed in this paper will never replace direct field measurements, which can be 

considered the only confident method to assess sediment fluxes in alpine streams; 

however, it can increment existing panel tools that help river managers to estimate even 

rough but not unrealistic suspended fluxes when measurements are totally absent. 

3.2. INTRODUCTION 
Suspended load is the fraction of the total solid load transported by flow turbulence over 

long distances. It differs from bedload, which is the fraction transported over short 

distances close to the bed by rolling and sliding. Suspended sediment transport is 

associated with important socioeconomic stakes, such as nutrient and pollutant transport 

included in fine aggregated particles, alteration of spawning habitat by riverbed clogging, 

main-channel obstruction by vegetation growth in calibrated rivers and reservoir siltation 

[Kondolf et al., 2014; Owens et al., 2005; Vercruysse et al., 2017; Walling et al., 2003]. 

Fine sediment transport from river to ocean is also essential in natural geochemical 

cycles and for costal or estuarine ecosystems [Le Pape et al., 2013; Ludwig and Probst, 

1998]. Therefore, its measurement and prediction has become crucial for water resource 

management and it would be useful to have tools available to compute even rough but 

reliable estimates of suspended load using section-averaged parameters, as is often 

done for bedload transport.  

It is often considered that suspended load is an inextricable question because of the 

diversity of sources of fine sediments, often treated as external inputs not necessarily 

related to the bed’s morphodynamics (washload). Yet, interactions with the bed exist 

and are far from negligible even for the finest fractions. Collins and Walling (2007) 
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reported values of in-channel fine sediment stocks ranging from 11% to 39% and from 

29% to 97% of the mean annual suspended loads in two catchments in the United 

Kingdom. In Finland, Marttila and Kløve (2014) found stocks ranging from 13% to 116% 

of the mean annual suspended load in a 400-km² catchment. On a 300-km² catchment 

located in Mallorca, Estrany et al. (2011) measured storage in the main channel system 

equivalent to 87% of the sediment input and concluded that fine particles accumulate 

over several hydrological years until a large enough event remobilizes these stocks. 

Similar observations were made at the reach scale in the Isabena catchment where 

changes in fine sediment stocks were correlated with the maximum flood discharge 

[Buendia et al., 2016]. Most of these field studies were conducted in lowland rivers or 

considered only fine sediments stored in the wetted channel. Navratil et al. (2010) 

estimated these stocks in a typical mountainous braided river by considering stocks in 

dried braided channels, bars and vegetated bars in addition to sediments stored in the 

wetted channel. They found that the stocks at the catchment scale were equivalent to 

approximately 80% of the mean annual fluxes and that the sediments stored in the 3.5-

km reach studied were equivalent to suspended yield for common floods. It is important 

to note that, even though it is often considered that only coarser materials interact with 

the bed, all of these field measurements used the Lambert and Walling or the Navratil 

technique and thus mainly concern the finest fraction (<63 µm) of fine sediments 

[Lambert and Walling, 1988; Navratil et al., 2010]. The strong interactions observed in 

these field studies between suspended load and the river bed were also demonstrated 

in several flume experiments [Glasbergen, 2014; Hamm et al., 2009; Krishnappan and 

Engel, 2006; Mooneyham and Strom, 2018]. 

All of these observations demonstrate that the buffering effect of the bed is far from 

negligible (illustrated in Figure 3.1) and that in some cases the river bed could even act 

as the main source of fine sediments at the catchment scale. This has motivated several 

authors to seek a relation between suspended load and bed mobility. Meunier et al. 

(2006) reported a correlation between suspended load and bedload for instantaneous 

measurements taken in a braided reach of the “torrent de St Pierre’’, a gravel bed river 

(GBR) in the French Alps. They suggested that this correlation was due to fine sediment 

release when the braided bed of the upstream reach was mobilized. A similar correlation 

was observed by Métivier et al. (2004) in a mountainous river in China. These 

observations led Turowski et al. (2010) to analyze the relation between the two modes of 

transport in a large data set of instantaneous field measurements (including 

approximately one-third of the literature data set used below) and to fit a two-trend 

power law to estimate bedload from suspended load measurements in a given cross-

section. Following these field evidences, Park and Hunt (2017) proposed a conceptual 

model for GBRs by considering an accumulation of fine sediments within the riverbed 

when the armor layer was stable and a release of fine sediments when this protective 

layer was broken. Their conceptual model was based on a changing trend observed in 
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the suspended load versus discharge relationships for 30 California GBRs. The 

transition between these two phases was found to be correlated with the initiation of 

gravel mobilization at the reach scale. They concluded that suspended load might be 

linked with the mobility of the armored layer in GBRs. More recently, Cook et al. (2018) 

used seismometers to study the bedload dynamics during a glacial lake outburst flood in 

a Himalayan river. During this large event, they observed that the daily suspended 

sediment concentration was much better correlated with the bedload seismic signal than 

with flow rate or daily precipitations.  

 

Figure 3.1: a) Picture of a typical gravel bar in a braided reach of the Aigues rivers.  A 
coarse armor layer in surface and large stocks of fine sediments in the subsurface can 
clearly be distinguished. The picture location is indicated on the right panel by a black 
star. b) Locations of the alpine catchments used for this study. Note: The Bouinenc, 
Brusquet, Duyes, Galabre, laval and Moulin catchments are small tributaries of the 
Bléone rivers. 

Following these studies, this paper aims to i) investigate if a macro-descriptor controlling 

the morphodynamics (such as flow, bedload rate and river bed parameters) could be 

used to describe suspended sediment concentration (SSC), ii) test such relations in 

Alpine rivers and iii) qualify situations for which this approach is relevant or not in the 

light of the complex processes of fine sediment sources activation. 
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3.3. MATERIAL AND METHODS 

3.3.1. DATA SETS 

3.3.1.1. Literature data set 

A first data set contains data from the literature to investigate which macro descriptors 

could be used to describe the SSC (Table 3.1). Nearly 2400 instantaneous 

measurements of bedload, suspended load and related flow and bed parameters 

measured in 56 rivers were gathered. The main criteria to select rivers was the 

availability of the following variables: riverbed slope (𝑆 ), channel width (𝑊 ), water-

discharge (𝑄), riverbed sediment diameters (𝐷50 and 𝐷84), instantaneous bedload (𝑄𝑏), 

suspended load (𝑄𝑠) and suspended sediment concentration (SSC) measurements. The 

grain size distribution of the suspended load was not available for most data, as is 

usually the case in practice. Only GBRs were analyzed in this paper and an arbitrary 

minimum value of 3 mm for the median sediment bed diameter was considered to 

exclude sand bed rivers. 

Sources 
Number of 
rivers 

Number of 
measurements 

Fowler and Wilson, 1995 1 11 

King et al., 2004 33 1793 

Smalley et al., 1994 1 25 

Williams and Rosgen, 1989 21 568 

Table 3.1: Sources of the literature data set 

Part of this data set, mainly composed of measurements published by Williams and 

Rosgen (1989), was already used by Turowski et al. (2010). It was completed with data 

from Idaho presented by King et al. (2004) and from the literature (Table 3.1). Bedload 

was most often measured with a pressure difference sampler (Helley-Smith bedload 

sampler). Suspended load was measured using a common isokinetic depth-integrating 

discharge-weighted sampler at several verticals, from the water surface to within 

approximately 8 cm of the streambed. These measurements, considered as 

instantaneous, represent an average value of sediment transport over the time needed 

to undertake several verticals over the cross section. The data set is presented further 

on-line as supplementary material and is summarized in Table 3.2.  
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Variables Min. 
1st 
Quartile 

Median Mean 
3rd 
Quartile 

Max. 

Q (m3 s-1) 0.01 0.99 4.2 164 54 3.8×103 
U (m s-1) 0.13 0.58 0.88 1.04 1.36 3.78 
d (m) 0.08 0.27 0.43 0.87 0.96 5.8 
S (-) 0.0001 0.004 0.010 0.018 0.024 0.19 
W (m) 0.71 6 11 39 41 772 
SSC (mg l-1) 0.1 5 11 178 42 9.9×103 
Qs (t d

-1) 0 0.7 4 9.0×103 118 8.7×105 
Qb (t d

-1) 0 0.20 1.3 317 21 2.1×104 
D50 (mm) 4.5 48 68 80 94 220 
D84 (mm) 20 100 141 173 207 558 
A (km²) 1.29 46 129 752 386 1.6×104 
D50surf/ 
D50sub

(a) 
2.5(a) 2.9(a) 4.9(a) 4.8(a) 6.0(a) 7.9(a) 

Table 3.2: Main characteristics of the literature data set: discharge (𝑄 ), mean flow 
velocity (𝑈), water depth (𝑑), river bed slope (𝑆), river width (𝑊), suspended sediment 
concentration (SSC), suspended load (𝑄𝑠), bedload (𝑄𝑏), river bed sediment diameter 
corresponding to 50th and 84th percentiles (𝐷50 and 𝐷84), watershed area (𝐴) and armor 
ratio (D50surf/ D50sub). 

(a) The armor ratio statistics are indicative as these measurements are available for only 
ten rivers of the dataset [King et al., 2004]. The grain size distributions measured using 
core samples are considered. 

3.3.1.2. Alpine data set 

A second data set comprising long-term measurements of suspended load in alpine 

GBRs was compared with the data from the literature. Seven long-term series of 

suspended sediment load measured in the French Alps by EDF (Electricity of France), 

IRSTEA (National Research Institute of Science and Technology for the Environment 

and Agriculture) and IGE (Institute for Geosciences and Environmental research) were 

used (Table 3.3). For each river, the following information was available: grain size 

distribution of the coarse sediments measured using the Wolman count technique, 

riverbed slope, base flow channel width, total active channel width, catchment size, 

instantaneous water discharge and suspended sediment concentration. The section and 

grain size parameters were measured in the nearest alluvial stream upstream from the 

station. For these alpine rivers, bedload transport was not available. All of these rivers 

have alluvial riverbeds that could be considered as a significant source of fine 

sediments. 
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River 
D50 

(mm) 
D84 

(mm) 
River bed 
slope (%) 

Base flow 
channel 

width (m) 

Total 
active 

width (m) 

Catchment 
area (km²) 

Period 
Number 
of data 
(×104) 

Arc 55 377 2.06 18 74 635 2012–2016 3.6 
Asse 53 113 1.02 20 100 375 2011–2016 4.0 
Bès 26 62 1.4 13 54 165 2007–2009 3.3 
Bléone 24 53 0.84 12 163 870 2007–2009 6.9 
Buëch 75 213 1.1 21 55 723 2015–2016 1.8 
Drac 50 89 0.67 24 150 510 2007–2016 7.7 
Romanche 45 138 1.3 12 20 230 2007–2016 7.1 

Table 3.3: Alpine data set composed of seven Alpine GBRs.  

3.3.2. DATA ANALYSIS 

A preliminary analysis of the published data set (Table 3.3) was performed to determine 

the best macro-descriptor of the SSC in alluvial GBRs. This was done by calculating the 

Pearson and Spearman rank correlation coefficient between the SSC and flow 

parameters (Q, q, U, d, P), bed parameters (S, W, D50, D84), catchment area (A) and 

bedload transport (Qb). The Spearman rank correlation was used to capture nonlinear 

relations in addition to Pearson’s correlation coefficients. Three dimensionless 

parameters were also used during this analysis: the Shields number calculated for the 

coarser sediments of the river bed (D84), a dimensionless flow rate (q*) and a 

dimensionless bedload rate (qb*) defined by the following equations: 

𝑞∗ =
𝑞

√𝑔𝑆𝐷84
3

 (3.1) 

𝑞𝑏
∗ =

𝑞𝑏

𝜌𝑠√𝑔(𝑠 − 1)𝐷84
3

 
(3.2) 

𝜏84
∗ =

𝜌𝑔𝑑𝑆

(𝜌𝑠 − 𝜌)𝑔𝐷84
 (3.3) 

In these equations, q is a unit flow rate (m2 s-1), g is the gravitational acceleration (m s-2), 

S is the riverbed slope (-), D84 is the sediment diameter of the bed such that 84% of the 

mixture is finer (m), qb is the unit bedload rate (kg s-1 m-1), ρs is the sediment density (kg 

m-3), ρ is the water density (kg m-3), s is the relative density of sediment and d the mean 

water depth (m). 
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A second step consisted in analyzing and calibrating a relation between the SSC and its 

best macro-descriptor for the published instantaneous measurements. A resampling 

technique was used to determine the uncertainty of the coefficients obtained during this 

fitting process. This relation was tested on the long-term series of the alpine data set 

(Table 3.3). The percentage of the ratio between computed and measured values that 

fell within a range [0.1-10] (E10), [0.2-5] (E5) and [0.5-2] (E2) was considered to evaluate 

the strength of the relation. These indicators have usually been used to evaluate 

sediment transport formulas for two reasons: sediment transport processes are 

associated with substantial natural variability and in situ measurements are associated 

with substantial uncertainties [Recking, 2010; Van Rijn, 1984a]. E10, E5 and E2 indicators 

were calculated for instantaneous values and for the suspended sediment yield (SSY) at 

the flood scale. The inter-annual error (IAE) corresponding to the mean of the relative 

error on the SSY calculated for each year (i) was also considered: 

𝐼𝐴𝐸 =
1

𝑛
×∑[

|𝑆𝑆𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑆𝑆𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|

𝑆𝑆𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
]
𝑖

𝑛

𝑖=1

  (3.4) 

where n corresponds to the number of years with suspended load measurements.  

3.4. RESULTS 

3.4.1. CORRELATION ANALYSIS 

Analyzing the literature data set showed that some relations exist between the SSC and 

other macro-descriptors for GBRs (Figure 3.2) even though high scattering was 

observed. No spurious correlation exits between the SSC and the other individual 

parameters given that the SSC was obtained from independent measurements. Both 

correlation coefficients (Table 3.4) were low or nonsignificant considering the bed 

parameters (S, W, D50 and D84). Similar results were obtained with hydraulic parameters 

(Q, q, d, P, τ84
∗) except with the mean flow velocity (U), dimensionless flow rate (q*) and 

runoff estimate (Q/A), which have slightly higher correlation coefficients. A much better 

correlation was observed considering the dimensionless bedload transport qb*. It 

suggests that qb* includes additional information explaining the SSC better than the flow 

parameters alone. In addition, using this type of dimensionless parameter makes it 

possible to be less dependent on the scale of the river considered. 
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 Q q U d S W D50 D84 A P Qb qb* q* τ84
* Q/A 

SSC 
(Spearman) 

0.41 0.52 0.57 0.41 -0.31 0.26 -0.27 -0.25 0.19 0.43 0.62 0.69 0.50 0.43 0.49 

SSC 
(Pearson) 

0.37 0.26 0.32 0.28 -0.17 0.52 -0.20 -0.19 0.23 0.26 0.52 0.67 0.57 0.16 0.57 

Table 3.4: Spearman and Pearson correlation coefficients between suspended 
sediment concentration (SSC) and other flow and bed parameters for the 56 gravel bed 

rivers of the literature data set: water discharge (𝑄), water discharge per unit width (𝑞), 
mean flow velocity (𝑈), mean water depth (𝑑), riverbed slope (S), river width (W), river 
bed sediment diameter corresponding to 50th and 84th percentiles (𝐷50  and 𝐷84 ), 
catchment area (A), stream power (𝑃), total bedload rate (𝑄𝑏), dimensionless bedload 

(𝑞𝑏
∗), dimensionless discharge (q*), Shields number (𝛕𝟖𝟒

∗) and runoff estimate (Q/A). 
Bold numbers correspond to significant correlations (p-values <0.05). 
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Figure 3.2: Suspended sediment concentration (SSC) as a function of discharge (𝑄), 
runoff estimate (Q/A), dimensionless discharge (q*), Shields number considering the D84 

(𝝉𝟖𝟒
∗), mean flow velocity (𝑈) and dimensionless bedload rate (𝒒𝒃

∗) for the literature data 
set. P corresponds to the Pearson correlation coefficient while Rho corresponds to the 
Spearman correlation coefficient. Note: data are plotted with log-log scales. 

3.4.2. CALIBRATION OF A RELATION EXPLAINING THE SSC 

As a clear changing trend, confirmed by a Davies test (p-value < 2.2×10-16) was 

observed, a piece-wise log-linear model was fitted on the dimensionless suspended 

sediment concentration (𝑆𝑆𝐶∗ = 𝑆𝑆𝐶 𝜌𝑠⁄ ) assuming a constant sediment density of 2650 

kg.m-3 and the dimensionless bedload rate 𝑞𝑏
∗ (Eq.3.2) from the literature data set: 

𝑆𝑆𝐶∗ = {
 𝑎1 × 𝑞𝑏

∗𝑏1  𝑖𝑓 𝑞𝑏
∗ < 𝑏𝑝

 𝑎2 × 𝑞𝑏
∗𝑏2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.5) 

One thousand random draws of 2000 values from the GBR data set were done and the 

1000 automatic adjustments obtained were used to obtain the range of parameters used 

in Eq.3.5 (Table 3.5Table ). 

 a1 (×10-5) a2 (×10-2) b1 (×10-1)  b2 (×10-1) bp (×10-6) 

2.5% percentile 3.32 7.00 1.75 8.21 7.26 
50% percentile 4.04 9.12 1.87 8.49 8.49 
97.5% percentile 4.92 11.73 2.01 8.76 10.02 

Table 3.5: Fit values for Eq.3.5. 

The breaking point (bp) obtained ranged between 7.10-6 and 10-5 considering a 95% 

interval. A steeper increase of the SSC* as a function of qb* was observed after the 
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breaking point with power law exponents changing from approximately 2 to 8. It was also 

observed that the correlation between these two variables was much higher for qb* 

values greater than bp. Pearson and Spearman correlation coefficients were 0.13 and 

0.41, respectively, for qb* lower than bp and 0.59 and 0.7, respectively, for qb* larger than 

bp (all significant with p-values<0.05). This suggests that dimensionless bedload could 

be a better proxy for the SSC* when qb* is larger than bp. However, the dimensionless 

bedload rate was still the best correlated parameter when qb* was lower than bp.  

 

Figure 3.3: Dimensionless suspended sediment concentration 𝑆𝑆𝐶∗  as a function of 

dimensionless bedload 𝑞𝑏
∗ . Eq.3.5 was plotted considering the median fit values 

obtained (black lines); vertical black line corresponds to the breaking point estimate (bp), 
vertical dashed grey lines correspond to its 95% confidence interval. Note: data are 
plotted with log-log scales. 

Using a reach average bedload formula (see details later and in the appendix) we back-

calculated the Shields number (for bed D50) associated with the breaking point of Figure 

3.3. The mean value obtained for the 56 GBRs was 0.046 (standard deviation, 0.04), 

which roughly corresponds to the threshold condition for mobility of coarse materials in 

GBRs [Meyer-Peter and Müller, 1948; Lamb et al., 2008; Recking, 2009]. This suggests 
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that the degree of release of fine sediments in GBRs may be closely related to bed 

mobility. The same conclusion was drawn by Park and Hunt (2017) from their study of 

30 California GBRs. 

3.4.3. SSC PREDICTION FOR THE ALPINE DATA SET 

Since bedload transport is most often not measured but computed, we tested the 

relevance of Eq.3.5 for long-term series of suspended load measured on seven alluvial 

alpine GBRs (Table 3.3), with bedload computed from the local bed information. 

Bedload was computed with a reach average bedload formula proposed by Recking 

(2013) and Recking et al. (2016) and validated on a large field data set (see 

http://www.bedloadweb.com/ and details in the appendix). For each time step, the 

dimensionless bedload rate (qb*) was calculated using the reach average bedload 

formula. The suspended sediment concentration was then deduced with Eq.3.5.  

 Instantaneous 25% Larger flood events Annual 

River E10 (%) E5 (%) E2 (%) E10 (%) E5 (%) E2 (%) IAE (%) 

Arc  89     85     47    94 85 52  68    
Asse  81     62     27    78 65 32  74    
Bès  29     24     13    75 59 42  43    
Bléone  54     30     13    91 73 50  54    
Buëch  48     36     16    90 80 30  53    
Drac  95     78     37    98 89 44  37    
Romanche  95     86     43    97 91 34  40    

Table 3.6: Prediction indexes obtained for the seven alpine GBRs. E10 is the percentage 
of values predicted in the range [0.1–10], E5 is the percentage of values predicted in the 
range [0.2–5] and E2 is the percentage of values predicted in the range [0.5–2]; 25% 
larger flood events were defined considering the peak discharge. IAE denotes 
interannual error on suspended fluxes. 

Figure 3.4 shows the comparison of the SSCs computed and measured values 

according to the flow rate Q. Using qb* as a proxy for the SSC made it possible to 

reconstruct the main trends of the suspended load fluxes of these alpine GBRs. Most of 

the binned data are within or not far from the E2 range, which can be considered very 

good considering the large uncertainties related to the hydrology, bedload computation 

(whose results depends not only on the equation itself, but also on the variability of the 

input data) and the availability of fine particles for transport. It is worth noting that no 

spurious correlation was possible here between the SSCs, obtained from independent 

measurements, and the bedload computation. 
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Figure 3.4: Comparison between Eq.3.5 and instantaneous suspended sediment 
concentration measurements (log scale) in the seven alpine GBRs. Measurements were 
binned using 20 ranges of equivalent flow rates. Small grey dots correspond to 
instantaneous measurements; boxplots correspond to binned data considering the 5%, 
25%, 75% and 95% percentiles for both flow rate and the suspended concentration; 
white dots correspond to medians for flow rate and the suspended sediment 
concentration; the black line corresponds to Eq.3.5 and dashed black lines correspond 
to its E2 and E5 range.  

The variability of suspended load and the differences between measured and predicted 

values using Eq.3.5 were found to decrease for all alpine GBRs when the magnitude of 

the events increased (Figure 3.5). Thus, using qb* to predict suspended load leads to a 

high percentage of accurately predicted values for all of the alpine GBRs when high flow 

rates were considered (Table 3.6). This suggests that a substantial proportion of fine 

particles come from the river bed mobilization rather than from upstream sediment 

sources during these large events as discussed in the next sections. These events cover 

a wide range of discharges and correspond to the majority of the total suspended fluxes 

observed during the measurement periods of the seven alpine GBRs (Table 3.7). Their 

maximum calculated dimensionless bedload rates were always larger than bp, which 

was also the case for most events in these seven GBRs, suggesting that these river 

beds were often mobilized. 
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Figure 3.5: Differences of accurately predicted values in a given range considering 25% 
smaller events and 25% larger events for the seven alpine GBRs. 

River 
Fraction of all 
events with 

qb*max > bp (%) 

Fraction of total fluxes 
corresponding to the 

25% smaller events (%) 

Fraction of total fluxes 
corresponding to the 
25% larger events (%) 

Range of peak 
discharges 

corresponding to the 
25% larger events (m

3
 s

-1
) 

Arc 80 2 77 19–177 
Asse 73 1.4 85 21–279 
Bès 100 1.8 79 8–171 
Bléone 100 1 69 36–503 
Buëch 78 0.43 57 31–265 
Drac 99 2 82 29–280 
Romanche 82 2.6 77 17–82 

Table 3.7: Fraction of total fluxes transported during 25% smaller or 25% larger events 
for seven alpine GBRs and fraction of all events with maximum dimensionless bedload 
rate (qb*max) higher than the breaking point (bp) observed in Figure 3.3. 

Finally, the average error on annual suspended fluxes (IAE) varied between 74% and 

37%. Using other parameters from the literature data set to describe SSCs led to poor 

results on these seven alpine GBRs. For instance, predictions using Q/A or q* can be 

found in the supplementary material. These parameters were not able to reproduce the 

general trend on the SSC, especially for large events. 
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3.5. DISCUSSION 

3.5.1. SEDIMENT TRANSPORT VARIABILITY 

Previous analysis revealed that suspended sediment fluxes and loads are highly 

variable (Figure 3.2 and Figure 3.3), especially in alpine catchments (Figure 3.4). This 

variability could be due to measurement uncertainties as well as sediment transport 

processes. Suspended load measurements are associated with large uncertainties even 

if turbidity meters are now widely used. It is commonly assumed that the SSC is 

homogeneous in the cross section, which is not always the case for sandy material. In 

addition, the SSC–turbidity relationship is highly variable because it depends on the type 

(i.e., mineralogy, color), shape and size of the sediments. Direct measurements (e.g., 

with automatic samplers) can also be associated with a grain-size selectivity 

misrepresenting the suspended concentration [Navratil et al., 2011]. For instance, Clark 

et al. (2009) reported 50% and 20% underestimation on the SSC when using automatic 

samplers for diameters of 500 µm and 100 µm, respectively. The computation of 

suspended fluxes with discharges introduces additional uncertainties as stage-discharge 

rating curves are often doubtful for low flows and floods, especially in mountain streams 

with unstable cross sections. In this type of stream, similar to those analyzed in this 

paper, Navratil et al. (2011) reported overall uncertainties on SSC measurements of 

20% on average (range, 1–30%) and 30% for suspended sediment yield at the flood 

scale (range, 20–50%) considering 20% uncertainties on discharges. These 

uncertainties have to be kept in mind when measurements are analyzed. 

3.5.2. SEDIMENT SOURCES IN ALPINE RIVERS 

Using qb* as a macro-descriptor to describe SSC dynamics does not represent all the 

complex interactions between fine particles and riverbed mobilization. Nevertheless, the 

dimensionless bedload rate was found to be the best available proxy for the SSC in 

alluvial GBRs. This relation should not be perceived as the capacity of the flow to 

maintain a certain quantity of fine particles in suspension but rather as the result of a 

certain availability of fine particles in the river bed for a given flow condition. Some cases 

might therefore exist where fine particles could be delivered to the flow from other 

upstream sources (catchment erosion due to rainfall or runoff, slopes destabilization 

during debris flows, mudflows or landslides) leading to much higher fluxes than fluxes 

solely due to bed mobilization. This situation can be observed in head water streams 

(HWSs) with a steep, narrow and poorly mobile river bed with limited stocks of fine 

sediments and highly eroded hillslope sources close to the measurement point. 

To test this hypothesis, Eq.3.5 was applied on long-term measurements conducted in 

eight alpine catchments considered as HWSs. Most of these HWSs exhibit a smaller 

catchment area and steeper slopes than the seven GBRs analyzed previously. Lower 
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predictions were obtained (Table 3.8). Even if few data were available for catchments 

with small areas (less than 50 km²), highly eroded areas (greater than 30%) and high 

bed slopes (higher than 5%), general trends were observed (Figure 3.6). The prediction 

errors at the annual time scale (IAE) were found to decrease as the catchment size and 

the riverbed slope decreased while it seems to increase as the percentage of eroded 

areas increased.  

River 
Catchment 
area (km²) 

Eroded 
area (%) 

Slope 
(%) 

Period IAE (%) 

Arvan 220 - 3.3 2011–2015 99 

Bouinenc 20 25 2.5 2008–2009 84 
Brusquet 1.08 13 3.8 2003–2006 99 

Duyes 124 9 1.38 2007–2009 87 

Galabre 22 8 2.91 2007–2009 98 

Glandon 110 - 5.5 2011–2016 94 

Laval 0.86 68 58 1985–2009 18543 

Moulin 0.089 54 30 1988–2009 2560 

Table 3.8: Validation results for eight alpine GBRs considered as HWS. 

The fraction of suspended load that was not explained by the river bed mobilization and 

attributed to a “global hillslope production” could also be estimated in both GBR and 

HWS (Table 3.9). The non-bed derived SSC was calculated by subtracting from the 

measured SSC the SSC predicted with Eq.3.5. The non-bed derived suspended load 

was then calculated by multiplying the non-bed derived SSC by the flow rate. Despite 

large uncertainties associated with these estimates, the following observations can be 

made: i) for the eight HWSs, the major part of the suspended load cannot be explained 

by the river bed mobilization (Eq.3.5), ii) for the seven alluvial GBRs, the fraction of 

suspended load not-explained by the river bed mobilization is always smaller for larger 

events than for smaller ones, iii) overall, the “global hillslope production” in the seven 

alpine GBRs range between 13% and 68% considering the larger flood events and 

between 23% and 73% considering all the measurements. 
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River 
25% smaller 

event 
(%) 

25% larger 
event 
(%) 

All data 
(instantaneous) 

(%) 
Type 

Arc 90 63 66 GBR 

Asse 99 68 73 GBR 

Bès 98 20 34 GBR 

Bléone 83 13 23 GBR 

Buëch 94 58 70 GBR 

Drac 68 50 51 GBR 

Romanche 85 54 59 GBR 

Arvan 99 99 99 HWS 

Bouinenc 96 85 86 HWS 

Brusquet 100 100 100 HWS 

Duyes 100 70 82 HWS 

Galabre 100 96 97 HWS 

Glandon 90 96 95 HWS 

Table 3.9: Supply estimate of non-bed derived suspended load during 25% smaller 
events, 25% larger events and for all the measurements using Eq.3.5 for fine particles 
availability in the river bed. Non-bed derived SSC was calculated by subtracting from the 
measured SSC the SSC predicted with Eq.3.5. The non-bed derived suspended load 
was then calculated by multiplying the non-bed derived SSC by the flow rate. Note: The 
Moulin and Laval catchments (A<1km², S>10%) are not considered. 

These results suggest that the availability of fine particles in HWSs could be mainly due 

to other processes than riverbed mobilization such as rainfall, runoff and snow melt 

eroding bare soils or terrain destabilization during exceptional events (debris flows, 

mudflows, landslides). For the seven GBRs, both processes could be significant but for 

different ranges of flow rate. Predictions using Eq.3.5 and thus, the suspended load 

fraction explained by the river bed mobilization, were always much better for the large 

events than for the small ones (Figure 3.5, Table 3.9). This could stem from a more 

significant availability of fine particles due to riverbed mobilization compared to hillslope 

erosion during large events than during small ones. This hypothesis is consistent with 

the conceptual models used by Park and Hunt (2018) and Picouet et al. (2009) and the 

conclusions drawn by Vaughan et al. (2017). In an analysis of 45 river gages in 

Minnesota, the latter reported that near channel morphology controls the steepness and 

the shape of the power law relating suspended load to discharge, suggesting that near 

channel morphology controls changes in the SSC when the flow increases. They also 

observed that land use was the main controlling factor of the SSC for low and moderate 

flows. The low predictions obtained in this study for catchments with high percentage of 

eroded areas (Figure 3.6), also suggests that using bedload as a proxy of SSC in 
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landscapes having large areas covered by bare soils, such as arid, semi-arid or large 

agricultural catchments might not be suitable. 

 

Figure 3.6: Errors using Eq.3.5 to estimate suspended annual fluxes as a function of 
catchment area, percentage of eroded area and riverbed slope for the alpine rivers 
presented in Table 3.3 and Table 3.8; IAE = interannual error. Note: data are plotted 
with log-log scales. 

3.5.3. RIVER BED MOBILITY 

The data used to obtain Eq.3.5 include bedload rates ranging from low (40% lower than 

1g s-1 m-1) to more intense transport (7% larger than 100 g s-1 m-1). These data are thus 

representative of the most common conditions (from transport of sand and fine gravel 

over a stable armor layer to partial transport during local armor destabilization and 

subsurface material release) found in GBRs. However, the prediction (annual or event 

scale) of suspended load assuming a riverbed mobilization in mountainous rivers could 

depend on the degree of stability of the river bed and the frequency of coarse particles 

mobilization. As observed previously, it seems that there is a more significant availability 

of fine particles in the river bed when qb* exceeds bp. This value of qb* will be attained 

depending on the streams and the hydrological forcing considered. If bp is rarely 

exceeded, low predictions are obtained using Eq.3.5 (Figure 3.7). This highlights the fact 

that in addition to depending on the proximity of active hillslope sources, using qb* as a 

macro-descriptor for fine particle availability could be relevant in morphologically active 

alluvial streams, where bedload is associated with frequent bed reworking. 
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Figure 3.7: Predictions using Eq.3.5 as a function of time for which the dimensionless 
bedload rate (qb*) exceeds the breaking point (bp) observed during the literature data set 
analysis. All alpine GBRs and HWSs were considered except the Bursquet, Laval and 
Moulin catchments which had very small areas (A≤1km²). 

3.5.4. ON THE ORIGIN OF FINE SEDIMENTS 

All the above results and analysis finally questions the origin of fine sediments in alpine 

streams. Only few studies such as the one of Navratil et al. (2010) focused on fine 

sediment stocks in mountainous rivers to better understand bed related suspended load. 

On the Bès river, the latter reported that during mainly low magnitude floods, suspended 

load was finer (7% of clay, 86% of silt and 7% of sand) than the surface deposits in a dry 

braided channel (2% of clay, 16% of silt and 82% of sand) suggesting a limited release 

of fine particles from these zones of the braided reach. However, it would be of interest 

to compare not only the surface but also the subsurface river bed particle types to the 

suspended load, not only in terms of grain size distributions but also in terms of their 

nature and origin (e.g. using fine sediments fingerprinting techniques). Making these 

comparisons for various flow conditions would help to quantify more precisely the 

suspended fraction resulting from the gravel bed mobilization and the related physical 

processes. The stocks of fine sediments in the river bed may be reconstructed due to 

infiltration of fine particles in the empty pore spaces of the gravel matrix, during the 

falling limb of the hydrographs or during low-flow periods, as suggested by Park and 

Hunt (2017). This hypothesis is consistent with observations made in several flume and 

field studies considering sand, silt or clay particle infiltration in porous beds [Frostick et 
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al., 1984; Glasbergen, 2014; Hamm et al., 2009; Harvey et al., 2012; Krishnappan and 

Engel, 2006; Mooneyham and Strom, 2018]. This infiltration process was found to occur 

even for very low Rouse numbers (~0.01), especially when pore spaces were empty 

[Khullar, 2007; Mooneyham and Strom, 2018]. These alternative infiltration and bed 

mobilization processes could induce a buffering behavior for fine particle transport in the 

river bed [Guillon et al., 2018; Orwin and Smart, 2004b]. However, the river bed could 

also be a zone in which fine particles are directly produced and not only temporarily 

stored. Coarse sediments at rest in the river bed are, for instance, degraded by repeated 

vibrations or abrasion during the transport of other particles, potentially generating fine 

sediments [Brewer et al., 1992; Schümm and Stevens, 1973]. Abrasion during bedload 

transport also generates a non-negligible amount of fine particles depending on the 

lithology considered [Attal and Lavé, 2009; Le Bouteiller et al., 2011]. For instance, 

during 18 flume experiments on 10-mm to 20-mm pebbles collected in the Buëch River 

(also analyzed in our study), Attal and Lavé (2009) observed a production of fine 

particles mainly in the clay-silt range. 

3.6. CONCLUSION 
In this paper, the flow and bed parameters that best correlate with suspended sediment 

concentration were investigated using a large data set comprising 2400 instantaneous 

measurements on 57 gravel bed rivers (GBRs) found in the literature. Among all the 

available parameters tested, the dimensionless bedload rate (qb*) was found to be the 

best correlated with the suspended sediment concentration (SSC) for these GBRs. A 

much higher increase of the SSC with qb* was observed when a certain value of qb* was 

exceeded. This breaking point seemed to occur approximately when the median river 

bed sediment is mobilized. An empirical relation was derived between these variables 

(qb* vs SSC). This relation used with a reach average bedload formula was able to 

reproduce the main trends of suspended load measurements made in alluvial rivers from 

the French Alps, especially for large events. This relation could be seen as a lower limit 

of suspended load because it could represent the availability of fine particles in the river 

bed for a given bed mobilization and not the capacity of the flow to maintain fine 

particles in suspension. Consequently, in cases where other upstream sources could 

feed the flow with fine particles, much higher fluxes could be measured. Our results 

suggest that the limitation of this approach mainly concerns small flood events or small 

headwater streams directly connected to active hillslope sources. The relative 

contribution of the bed mobilization of fine particles to total suspension yield also seems 

to depend on the frequency of coarse sediment mobility.  

Finally, we conclude that the dimensionless bedload transport rate qb* is a reliable 

macro-descriptor that could be useful for practitioners to get a suspended load estimate 

during large flood events when such measurements are not available. Because 

suspended load results from various complex processes at the catchment scale, the 
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inherent limitations of such simple approach should be carefully considered. Thus, its 

application should be restricted to morhodynamicaly active river reaches considered far 

enough from direct hillslope supply. This approach could also be useful to perform a 

rapid assessment of the relative contribution of the river bed and the watershed 

production when suspended load measurements are available. 

3.7. APPENDIX 

3.7.1. BED LOAD CALCULATION 

Many equations have been proposed in the literature and could be used to predict 

bedload. We chose to use the one proposed in Recking (2010), Recking (2013) and 

Recking et al. (2016) (Eq.3.6 to Eq.3.9) because it was specifically developed from field 

data for reach average computation and was validated with a large independent data 

set. The input parameters are 𝑄, 𝑊, 𝑆, 𝐷50 and 𝐷84.  

𝑞𝑏
∗ =

𝑞𝑏

𝜌𝑠√𝑔(𝑠 − 1)𝐷84
3

=
14𝜏∗2.5

1 + (
𝜏𝑚∗

𝜏∗ )
4  (3.6) 

𝜏84
∗ =

𝜌𝑔𝑑𝑆

(𝜌𝑠 − 𝜌)𝑔𝐷84
 (3.7) 

where 𝑞𝑏  (kg s-1 m-1) is the unit bedload transport per unit width, 𝑠= 
𝑠
/, 𝜌𝑠  is the 

sediment density, 𝜌 is the water density, and 𝑔 is the gravity acceleration. In Eq.3.6 the 

parameter 𝜏𝑚
∗  defines the transition between partial transport and full mobility. It 

depends on the morphology of the stream [Recking et al., 2016]. 

𝜏𝑚
∗ = {

(5𝑆 + 0.06)(
𝐷84
𝐷50

)4.4√𝑆−1.5 𝑓𝑜𝑟 𝑟𝑖𝑓𝑓𝑙𝑒 𝑝𝑜𝑜𝑙

1.5𝑆0.75  𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟 𝑚𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑦

 (3.8) 

The Shields number 𝜏∗ in Eq.3.7 was computed with a discharge measurement and with 

𝑑  deduced from Eq.3.9, which is an approximation of the flow resistance equation 

proposed by Rickenmann and Recking (2011) and valid for all flow regimes [Recking et 

al., 2016]. 

{
 
 

 
 𝑑 = 0.015𝐷84

𝑞∗2𝑝

𝑝2.5

𝑞∗ =
𝑞

√𝑔𝑆𝐷84
3

𝑝 = 0.24 𝑖𝑓 𝑞∗ < 100 𝑎𝑛𝑑 𝑝 = 0.31 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.9) 
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3.7.2. PREDICTION IN ALPINE RIVERS USING PROXIES 

DERIVED FROM THE FLOW RATE 
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Supplementary material 1: Comparison of instantaneous suspended sediment 
concentration measurements (log scale) in the seven alpine GBRs and a piece-wise log-
linear model fitted on the literature data set between the SSC and Q/A. Measurements 
were binned using 20 ranges of equivalent flow rates. Small grey dots correspond to 
instantaneous measurements; boxplots correspond to binned data considering the 5%, 
25%, 75% and 95% percentiles for both flow rate and the suspended concentration; 
white dots correspond to medians for flow rate and the suspended sediment 
concentration; the black line corresponds to the best fit between SSC and Q/A for the 
literature data set and dashed black lines correspond to its E2 and E5 range. 
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Supplementary material 2: Comparison of instantaneous suspended sediment 
concentration measurements (log scale) in the seven alpine GBRs and a peace-wise 
log-linear model fitted on the literature data set between the SSC and q*. Measurements 
were binned using 20 ranges of equivalent flow rates. Small grey dots correspond to 
instantaneous measurements; boxplots correspond to binned data considering the 5%, 
25%, 75% and 95% percentiles for both flow rate and the suspended concentration; 
white dots correspond to medians for flow rate and the suspended sediment 
concentration; black line corresponds to the best fit between the SSC and q* for the 
literature data set and dashed black lines correspond to its E2 and E5 range. 

3.8. NOTATIONS 
The following symbols are used in this paper. 

𝐷50 Sediment diameter of the bed such that 50% of the mixture is finer [𝑚] 
𝐷84 Sediment diameter of the bed such that 84% of the mixture is finer [𝑚] 
𝐷 Sediment diameter [𝑚] 

𝜏∗ Shields number: dimensionless shear stress [-] 

𝜏84
∗  Shields number for 𝐷84 [-] 
𝜏𝑚
∗  Dimensionless transition parameter between partial and full mobility [-] 

𝑄 Water discharge [𝑚3 𝑠−1] 
𝑈 Mean water velocity over the section [𝑚 𝑠−1] 
𝑢∗ Friction velocity [m/s] 

𝑊 Channel bed width [𝑚] 

𝑆 Channel bed slope [-] 

𝐴 Catchment area [𝑘𝑚²] 
𝜌 Water density [𝑘𝑔 𝑚−3] 

𝜌𝑠 Sediment density [𝑘𝑔 𝑚−3] 
𝑠 Relative density of sediment [-] 

𝑔 Gravitational acceleration [𝑚 𝑠−2] 
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𝑑 Mean water depth [𝑚] 

𝑝 
Dimensionless transition parameter between intermediate and high 
submersion [-] 

𝑞∗ Dimensionless water unit discharge [-] 

𝑞 Unit water discharge [𝑚3 𝑠−1 𝑚−1] 

𝑄𝑠 Suspended load [𝑡  𝑑−1] 
𝑄𝑏 Bedload [𝑡  𝑑−1] 
𝑞𝑠 Unit suspended load [𝑘𝑔 𝑠−1 𝑚−1] 

𝑞𝑏 Unit bedload [𝑘𝑔 𝑠−1 𝑚−1] 
𝑞𝑏

∗ Dimensionless bedload [-] 

𝑆𝑆𝐶 Suspended sediment concentration [𝑚𝑔 𝑙−1] 
𝑆𝑆𝐶∗ Dimensionless suspended sediment concentration [-] 

𝑃 Stream power [w] 
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  Chapter 4
Combining multi-physical 

measurements to quantify bedload 

transport and morphodynamics 

interactions in an Alpine braiding 

river reach 

This fourth chapter reports a detailed description of morphodynamic and bedload 

transport in a typical alpine braided river (La Séveraisse). This riverbed mobility 

description will then be used to interpret concomitant observations made on suspended 

load (next chapter). Strong interactions between bedload transport and morphological 

changes were observed using a wide range of direct and indirect technics showing the 

interest to combine multi-physical measurements. This work has been published in 

Geomorphology (DOI: 10.1016/j.geomorph.2019.106877) by Misset C., Recking A., 

Legout C., Bakker M., Bodereau N.,  Borgniet L., Cassel M., Geay T., Gimbert F., 

Navratil O., Piegay H., Valsangkar N., Cazilhac M.,  Poirel A. and Zanker S. 

     

 

Ce quatrième chapitre rapport des observations détaillées de la morphodynamique et du 

transport par charriage dans une rivière en tresse typique des Alpes (La Séveraisse). 

Cette description de la mobilité de la rivière est ensuite utilisée dans le chapitre suivant 

pour interpréter des observations concomitantes sur les flux en suspension. De fortes 

interactions entre charriage et changements morphologiques ont été observées à l’aide 

d’un large panel de mesures directes et indirectes montrant l’intérêt de combiner des 

mesures multi-physiques. Ce travail a été publié dans Geomorphology (DOI: 

10.1016/j.geomorph.2019.106877, contributeurs Misset C., Recking A., Legout C., 

Bakker M., Bodereau N.,  Borgniet L., Cassel M., Geay T., Gimbert F., Navratil O., 

Piegay H., Valsangkar N., Cazilhac M.,  Poirel A. and Zanker S.). 
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4.1. ABSTRACT 
Understanding the interactions between bedload transport and morpholdynamics in 

braided streams has important applications in river management and restoration. Direct 

field measurements addressing this question are however scarce as they are often 

challenging to perform. Here, we report an extensive two-month field campaign in an 

alpine braided reach (La Séveraisse river, French Alps) that experienced predictable 

daily peak discharge (48 events observed) generating significant bedload transport and 

morphological changes during the melting season. We monitored these processes using 

a wide range of direct and indirect techniques: bedload sampling, continuous seismic 

measurements, pebbles tracking, topographic surveys and remote sensing using ground 

control cameras and drone flights. Doing so, surrogate measurements allowed to extend 

temporally discrete manual bedload sampling, and to extend spatially local riverbed 

cross section measurements. These measurements provide unique complementary 

constraints on the targeted physics, at various spatial and temporal scales which 

enabled us to draw robust conclusions. Data showed a progressive decrease in bedload 

transport for a given flow rate along the two months period. Simultaneously, river 

morphology in the braided sections changed from an incised to a more distributed 

configuration which led to a decrease of local maxima in dimensionless shear stresses 

in the braided reach for similar flow conditions. This control of bedload transport by 

maximum local shear stresses was in line with tracked pebble surveys indicating that 

coarse bedload particles were mostly transported in the main active channel. At the 

reach scale, this transport was found to be more efficient in laterally constrained 

sections than in braided ones which has important implications in terms of bedload 

estimation in alternative constrained and braided rivers. Finally, this study highlight the 

interest to combine a large variety of traditional and innovative measurements 

techniques to better understand complex sediment transport processes in the field. 

4.2. INTRODUCTION 
In Alpine environments, sediment supplied from hillslopes is generally transferred 

through the river system via a complex cascade of processes. Sediment passes through 

successive types of riverbed morphologies [Montgomery and Buffington, 1997], each of 

which affecting transfer efficiency due to changes in river bed characteristics [Recking et 

al., 2016]. Among these, braiding river reaches play a key role due to their high capacity 

to store sediments in terraces, bars, and channels [Hoey, 1992; Lisle and Church, 2002; 

Wilkinson et al., 2006]. Braided rivers are characterized by multiple channels, separated 

by unstable bars, that interact with one another at to confluences and bifurcations of the 

flow [Ashmore, 1991]. Braided systems are present in various settings, from steep 

Alpine headwaters to piedmont rivers that emerge from mountain ranges. In addition, 

mountain systems often show alternating braiding and non-braiding reaches (Figure 

4.1). As a consequence, understanding the relation between bedload transport rates 
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and braiding morphology is a keystone for river management and restoration programs. 

The study of braided reaches is not only useful for the braided reaches themselves, but 

also further downstream, where river morphological development depends strongly on 

the upstream storage and release of sediment. 

 

Figure 4.1: Braided reaches (white lines) alternating with narrow constrained reaches 
(black lines) in the Séveraisse river (Google earth 2016). A water intake is located 
downstream the study area. 

Conditions for braiding are related to a high supply of bedload material, a high stream 

power, low bank resistance and limited in-channel riparian vegetation [Bertoldi et al., 

2011; Eaton et al., 2010; Gran and Paola, 2001]. Braided morphology observed at a 

given time results from complex interactions between the river morphology, the hydraulic 

conditions, and the solid flux. Thus, large fluctuations in bedload flux have been 

observed in flume experiments for constant water discharge [Gomez et al., 1989; 

Recking et al., 2009]. Average cross section hydraulic parameters (stream power or bed 

shear stress) are typically used for bedload transport modeling in single channel 

morphologies when there are no available measurements. However, this approach leads 

to large under-predictions of bedload fluxes in flume experiment of braiding 

morphologies [Bertoldi et al., 2009]. This is likely due to bedload transport being 

localized in narrow zones within the cross section where shear stresses are high 

[Warburton, 1992], which is not well captured by the averaged hydraulic parameters 

[Recking, 2013a]. Also, for braiding morphologies in the field, the choice of the cross 

section where bedload equations should be applied is poorly documented and may lead 

to large uncertainties in such streams [Recking et al., 2016]. In addition, it has been 

observed that depending on the upstream bedload fluxes, braided rivers may experience 

aggradational or degradational phases [Liebault et al., 2013]. During aggradation, a 

decrease in flow depth for a given flow rate reduces the capacity of the channel to export 

bed material while during degradation, the flow concentrates in incised channels, leading 

to increased transport capacity [Pryor et al., 2011]. These observations support the 

notion that there is no single relationship between the water discharge and transport 
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capacity in such streams and that morphological changes have strong and direct effects 

on bedload transport. 

Although the relation between bedload transport and braiding morphodynamics has 

been investigated for decades using flume experiments [Ashmore, 1982; Bertoldi et al., 

2009; Warburton and Davies, 1994] few field studies such as the one of Lane et al. 

(1996) reported simultaneous bedload transport and braiding morphodynamics 

measurements. This lack of field observation is largely due to difficulties associated with 

direct sampling being highly challenging in such highly dynamic streams with unstable 

bed morphology. This limitation led to the use of remote sensing technics such as 

photogrammetry [Bakker and Lane, 2017; Lane et al., 1996; Lane et al., 2003], lidar 

[Bertoldi et al., 2011; Lallias-Tacon et al., 2014; Milan et al., 2007] or ground-based 

imagery [Ashmore et al., 2011; Luchi et al., 2007] to specifically study morphological 

changes in braided streams. On the other hand, some studies have focused on the 

measurement of bedload transport in braiding rivers by using classical sampling 

methods when feasible [Meunier et al., 2006], indirect seismic measurements [A. Burtin 

et al., 2011] or pebble tracers to detect bedload particle path [Chapuis et al., 2015; 

Liébault et al., 2012]. Direct samplings give an estimate of transport and topography 

respectively, but with limited time and space resolution. Surrogate techniques give 

access to large temporal and spatial observations, but need calibration with local 

measurements. Thus combining direct (bedload sampling, topographic survey) and 

indirect techniques (seismic measurements, remote-sensing imagery, pebble tracking) 

permits to optimize field based measurements for a well-documented data set required 

to better understand the complexity of morphodynamics of braiding streams.  

In this paper, we present a comprehensive measurement campaign in an Alpine braided 

river reach (La Séveraisse, Ecrin Massif, SE French Alps). Daily floods of various 

magnitudes occur each year during a 2-month snowmelt season (May to June). Such 

regular seasonal and daily occurrence allow preparing the field campaigns to test a 

combination of techniques/approaches that can most of the time not be combined in the 

same field site, during the same period. Then traditional and novel techniques were 

used to conduct complementary hydrological and sediment transport measurements 

(bedload sampling, continuous seismic measurements, pebbles tracking, topographic 

surveys, remote sensing using ground control cameras and drone flights). Those 

measurements have been made at several key places throughout the reach and 

continuously over a 2-month long period during the snowmelt season (May to June). The 

objectives of the study were to: i) assess the interest of such multi-physical 

measurement approach and its application in future geomorphological studies; ii) to 

provide new insights into characterizing bedload transport and braided bed morphology 

dynamics during the course of a snow-melt season; and (iii) to analyze relations 



Chapter 4  
Combining multi-physical measurements to quantify bedload transport and morphodynamics interactions in an Alpine 

braiding river reach 

125 
 

between the various physical quantities, confronting them with laboratory-derived 

hydraulic / bedload formulas. 

4.3. STUDY AREA 
The Séveraisse catchment in the Ecrin Massif (SE French Alps) is well suited for this 

study because it has low-human impact (no dams or water intakes upstream the study 

area, limited embankments), it is well-accessible from the river banks, and it provides 

opportunities for direct bedload sampling from bridges (Figure 4.2). A pre-existing 

gauging station (managed by EDF, a French electric power company) provides water 

discharge measurements (at 10-min time-step) that recorded high daily flow events from 

the melt of the large snowpack that fell during the 2018 winter. At the gauging station, 

the drainage area is 130 km². The valley morphology is shaped by glacial erosion and 

the river is still fed by glaciers located in the upper parts of the catchment (maximum 

elevation of 3579 m a.s.l). The geology mainly comprises crystalline rocks (gneiss, 

granite) and few patches of softer rocks (marls). The upper part of the catchment is 

highly erosive and delivers large amounts of sediment via rock falls, debris flows [Helsen 

et al., 2002], and tributaries. These areas are well-connected with downstream river 

reaches, showing several sequences of well-developed braiding morphologies and 

straight (constrained) river channels in the more laterally-constrained sections of the 

valley. In this study we considered a constrained-braided-constrained sequence located 

few hundred meters upstream of the gauging station (Figure 4.2).  
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Figure 4.2 : Location of the instruments and measurements within the studied reach of 
the Séveraisse. S1 to S5 correspond to cross-section surveys located from upstream to 
downstream; (a) is the narrow and paved downstream section were flow rate 
measurements and bedload sampling were performed, (b) is a view of the braided 
reach, (c) is a picture taken from a time-lapse camera in the middle of the braided reach 
and (d) is a picture taken from a time-lapse camera in the upstream part of the braided 
reach. The five zones used to analyze tracking pebble surveys are indicated with 
different colors. These zones have different morphologies: zone 1 and 4 are narrow and 
constrained, zone 2 is the entrance of the braided reach, and zone 3 is the downstream 
part of the braided reach. Zone 5 is located downstream the gauging station few meters 
upstream the water intake and is the most downstream prospected zone. 

4.4. MATERIAL AND METHODS 

4.4.1. DIRECT BEDLOAD TRANSPORT SAMPLING 

Bedload fluxes were sampled downstream from the studied reach (S5 in Figure 4.2), on 

the bridge besides the gauging station managed by Electricité de France (EDF) which 

provided discharge measurements (repeated gauging using dilution, ADCP, velocity 

profilers techniques and coupled with continuous pressure level sensors at 10 min time-

interval). No change in the rating curve was observed as confirmed by daily bed 
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topography controls performed by the field team. A pressure difference sampler (Elwha 

20.7×12 centimeter) with a mesh size of 0.5 mm was deployed at approximately 1.5 m 

intervals across the channel width. The bedload flux was integrated over the cross 

section using Eq.4.1: 

𝑞𝑏 =
1

𝐿𝑡
∑

𝑄𝑏𝑒 𝑖
𝐿𝑒

𝑁

𝑖=1

𝐿𝑖   (4.1) 

in which 𝑞𝑏 is the bedload rate per unit width (g s-1 m-1), N is the number of samples, 

𝑄𝑏𝑒 𝑖 is the bedload rate for each sample (g s-1), 𝐿𝑡 is the cross section width (m), 𝐿𝑒 is 

the sampler width (m) and 𝐿𝑖  is the width considered representative for the sampling 

point i (m). The time of sampling (from 15 to 300 seconds) was adapted to bedload 

transport conditions to avoid trapping efficiency deceases. Between the 27th of April and 

the 26th of June, 60 measurements of the cross-sectional bedload flux (𝑞𝑏 ) were 

performed. These measurements were performed for a wide range of water discharges 

(9-25 m3/s), allowing us to elaborate rating curves and to observe temporal changes in 

bedload rates. A resampling technique detailed in appendix A was used to test the 

significance of temporal trend in bedload samples. This method is based on an analysis 

of the relation between time and residuals obtained from a power law fitted between 

bedload and the flow rate. 

The cross-sectional bedload grain-size distribution was measured for a subset of the 

samples (17 of the 60 samples). We mainly focused on samples collected in the central 

part of the cross section with the largest unit bedload rates. Bed load samples were 

sieved with 1.6mm, 10mm, 20mm, 32mm, 45mm, 64mm, 91mm, 128mm and 181mm 

mesh sizes. The 50th and 84th percentiles of the transported diameters in terms of mass 

could then be calculated (D50 and D84). 

4.4.2. INDIRECT BEDLOAD TRANSPORT MEASUREMENTS 

To complement the previous direct in-stream sampling, we thus performed 

continuous, indirect measurements based on seismic monitoring to assess the variability 

of bedload transport in time [A. Burtin et al., 2008; A. Burtin et al., 2011; Cook et al., 

2018]. In this study, we led two types of seismic measurements with geophones: (i) a 

complete and classical seismic measurement station similar to the one used by Cook et 

al. (2018) with high-frequency acquisition (we called Seismic1 at Figure 4.2) and (ii) a 

low-cost seismic measurement derived from debris-flows monitoring applications 

(Seismic2) and tested here to study its use for spatially extending seismic 

measurements [Bel et al., 2017; Navratil et al., 2013]. The geophones allow ground-

motion vibrations to be investigated within the range ca. 5-200 Hz which encompasses 

frequencies expected for bedload transport [Gimbert et al., 2019; Tsai et al., 2012] and 

flow turbulence [Gimbert et al., 2014]. At Seismic1, the classical seismic station, a PE-
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6/B geophone was installed on the river floodplain (25 m from the left channel bank, 

Figure 4.2) to monitor bedload-induced seismic vibrations. The data was recorded with a 

frequency of 400 Hz on a DiGOS DATA-CUBE3. Given that bedload-induced noise is 

thought to be of a higher frequency than turbulent-flow-induced noise [Cook et al., 2018; 

Gimbert et al., 2014] we calculate seismic power 𝑃𝑏 at relatively high frequencies. We 

evaluate 𝑃𝑏 in the 20-80 Hz frequency range allowing maximum sensitivity to bedload 

while minimizing the contribution of strong site effects (anthropogenic noise) at the very 

high frequencies (> 100 Hz). If primarily caused by bedload, seismic power 𝑃𝑏 is set by 

impact forces exerted by transported bed material on the river bed, and is expected to 

scale with bedload flux (𝑄𝑏) and transported grain diameter (𝐷) as [Tsai et al., 2012]: 

𝑃𝑏~𝑄𝑏 × 𝐷
3 (4.2) 

4.4.3. COARSE PARTICLES DISPLACEMENT 

To quantify the transport and mobility of coarse particles in the braiding stream, 29 

natural pebbles were equipped with active ultra‐high frequency transponders also known 

as a‐UHF tags [Cassel et al., 2017a]. Their average b-axis is 77mm, approximately twice 

the D50 value of the study site. The transponders were of the COIN-ID model, emitting a 

beacon signal at 433.92 MHz every 2.2s. The tags were placed into a 40mm diameter 

hole drilled in the pebbles and then filled with the mixture polyurethane resin and 

corundum [Cassel et al., 2017b]. Sediment tracers were injected on the 12th of June 

2018 at two locations on the study site. Fifteen tracers were injected in a narrow section 

located 500 meters upstream the entrance of the braided reach. Fourteen of them were 

injected from the embankment in the river bed a few meters upstream the entrance of 

the studied reach (Figure 4.2). Following tracer injection, 5 tracking-surveys were 

conducted within a period of 2 weeks (Table 4.1). The first three periods covered one 

water discharge peak and the following two a series of 4 and 6 peaks respectively. 
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 Injection Tracking 

Date 
12/06/18 

(Am) 

12/06/18 

(Pm) 

13/06/18 

(Day) 

14/06/18 

(Day) 

18/06/18 

(Day) 

25/06/18 

(Day) 

Prospected 

zones 
- 

Partial 

(Z1 and Z2) 
Full Full 

Partial 

(Z1 to Z4) 
Full 

Recovery rate 
29/29 

(100%) 

13/29 

(45%) 

21/29 

(72%) 

22/29 

(76%) 

23/29 

(79%) 

25/29 

(86%) 

Number of 

peaks discharge 
- 1 1 1 4 6 

Maximum peak 

dischage (m3/s) 
- 19.5 22.6 20 19.5 24.2 

Table 4.1: Synthesis of the pebbles tracking campaign. There were five prospection 
zones, Z1 to Z5 from upstream to downstream. Zones Z1 to Z4 are indicated in Figure 
4.2. 

The tracers were tracked using a reading system (composed of a Slender III antenna 

and SCIEL reader connected at laptop) and a GPS (Leica Zeno 20), carried by three 

operators, from the main channel bank (Figure 4.2-a). The antenna was moved and 

oriented such as to maximize the a‐UHF tag signal intensity by real-time visual 

monitoring of the received signal strength indication (so called RSSI). The main 

advantages of this method are its rapidity, allowing prospection of the entire study reach 

between two floods event, and its detection range, estimated at 10m for transponders 

immerged in 50cm of water. The tracer localization was performed in a single 

longitudinal profile along the river as proposed by Piégay et al. (2016), with an 

uncertainty of approximately 10m. Therefore, an uncertainty of 20m was considered for 

the tracers 1D travelled distance between surveys. The data of the travelled distance are 

analyzed with respect to the tracer injection locations, the zones of the study reach 

where tracers have been deposited or entrained and the duration between tracking 

surveys to determine virtual velocities, as well as the channel in which they traveled. 

4.4.4. QUANTIFYING MORPHOLOGICAL CHANGES 

Repeated topographical surveys were conducted along five cross-sections (S1 to S5; 

Figure 4.2) to quantify the morphological changes over the snow melting period. A 

topographic total station (Leica Geosystems) was used with fixed marks on both banks 

allowing accurate morphological comparison through time. Measurements were 

performed during low-flow periods for safety reasons. Vertical resolution of the 

measurements is limited to the size of the coarse bed-particles. It is estimated to be 

approximately ca.10 cm (twice the median surface particle size D50). Non-truncated 

Wolman pebble counts of surface grain-size were also performed at the beginning and 
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at the end of the campaign to detect potential grain-size changes associated with 

morphological changes. Each time, four hundred particles were sampled along four 

transects (two in the main channel and two on top bars) approximately located at the 

same positions.  

Three cameras, similar to the ones used by Benacchio et al. (2017) were installed to 

record local morphological changes at the upstream, middle, and downstream locations 

of the braided reach (Figure 4.2). Pictures were taken every 20 min from 6 AM to 10 PM. 

In addition, several pictures were taken (n=4) from a vantage point at the downstream 

end of the reach to qualitatively observe morphological changes (Figure 4.2-a). 

To characterize global morphological changes, two drone flights were performed before 

and after the melting season on respectively the 27th of April and 25th of July. We 

assume that morphological changes that occurred after the field campaign were limited 

in comparison to those occurring during this period as only one significant (Q=17m3/s) 

and three other lower intensity (Q<15m3/s) peak discharges were recorded in July. A 

drone-based camera (ILCE-7, focal length 35 mm, resolution 6000×4000) was used to 

take pictures (respectively 426 and 676 in April and July) with an overlap of minimum 

85%, enabling the reconstruction of orthorectified images with a 2cm-resolution. Images 

were aligned by using Structure from Motion photogrammetry software (Agisoft 

Photoscan) and c. 30 ground control points measured in the field using a differential 

GPS. GPS point’s accuracy (3D position) was on average 1.6 cm. The accuracy on 2D 

position (XY) of the orthorectified images obtained (estimated by the root mean squared 

errors of ground control points used in orthorectification) was respectively 10.3 and 10.1 

cm in April and July. A laserScan (Yellowscan) installed under the drone was also used 

to performed a scan of the river bed to construct digital elevation models (DEMs) and 

calculate the elevation differences between the two fights. An average point density of 

60 points/m² was obtained. DEMs were filtered, aligned and their elevation difference 

was calculated on a 1m-radius using Cloud Compare software considering a 25cm-limit 

of detection. 

4.4.5. HYDRAULIC CALCULATIONS 

To estimate the main hydraulic parameters (velocity, hydraulic radius and water depth) 

at the five surveyed cross sections (S1 to S5) from the measured discharge Q, we used 

the flow resistance equation proposed by Ferguson (2007) (detail in appendix A) by 

iteratively adjusting water level, assumed to be uniform over the cross section and using 

a mean reach slope and an average grain size distribution. We chose to use this flow 

resistance equation as it has been shown to be suitable for flow having small relative 

submergence [Ferguson, 2010; Rickenmann and Recking, 2011] as is the case in the 

braided gravel bedded stream studied. Because of high lateral variability in hydraulics, 

several homogeneous vertical panels were considered independently to compute locally 
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averaged parameters as proposed by Bertoldi et al. (2009) for braided morphology. This 

allowed us to estimate a local or average Shield parameter considering the 84th 

percentile of the grain size distribution (𝜏84
∗) in each cross-section and to compare this 

parameter with bedload transport rates (see appendix A for details on the calculation of 

𝜏84
∗). 

4.5. RESULTS 

4.5.1. OVERVIEW 

Figure 4.3 shows the time-series of all the measurements conducted during the field 

campaign. Water discharge varies between 8 and 26 m3 s-1 and exhibits daily peak 

discharge due to snowmelt, and sometimes due to rain events. The maximum 

instantaneous peak discharge measured corresponds to approximately a 2-year return 

period as calculated by the French hydrometric services (http://www.hydro.eaufrance.fr) 

based on 49 years of measurements. This suggests that our field campaign documents 

common flow conditions and exclude extreme events (5-year, 10-year and 20-year 

return period of 44, 56 and 68 m3/s respectively). Indirect, seismic measurements also 

exhibit daily fluctuation, varying about three orders of magnitude, suggesting that the 

flow rate exerts a significant control on bedload transport in this river. The temporal 

seismic variability is also consistent with direct bedload sampling measurements. 

 

Figure 4.3: Time series of flow rate (Q, m3/s), seismic power at seismic1 (Pb, m²/s²) (20-
80Hz)  and direct bedload sampling measurements (Qb, g/s). The dates of cross section 
survey, tag injection and tracking are indicated. 

http://www.hydro.eaufrance.fr/
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The main topographic and bed grain size distribution characteristics (detailed in the 

following sections) exhibit significant differences between the braided and the 

constrained sections (Table 4.2). The braided sections have wider active widths, gentler 

slopes, and finer bed materials which suggests a more active morphology in this area. 

 Slope 

(%) 

Bed D50 

range (mm) 

Bed D84 

range (mm) 

Total active 

width range (m) 

Braided sections (S1 to S4) 1.05 37-49 94-123 50-90 

Constrained section (S5) 1.2 110 303 12 

Table 4.2: General river bed characteristics of the studied reach for braided sections (S1 
to S4, located in Figure 4.2) and the constrained section (S5). Bed D50 and D84 range 
correspond to the 50th and 84th percentiles of nun-truncated wolman counts performed in 
early May and late June in both channel sides and top bars (details can be found in 
appendix C).  

4.5.2. BEDLOAD DYNAMIC 

Bedload transport rates range from 0.3 to 592 g s-1 m-1 (Figure 4.4) and are available as 

supplementary material. The general increase of unit bedload rate (qb) with flow rate (Q) 

exhibits a power law with an exponent of 5.3 by fitting a log linear model. We observe a 

variability in bedload transport flux of one order of magnitude at a given flow rate, as is 

often found in gravel bedded streams [Recking, 2013b]. Part of this variability is time-

dependent, as relatively larger transport rates occur at the beginning of the field 

campaign as confirmed by the resampling technique detailed in Appendix A.  

The average transported diameters are respectively 33 and 77 mm (n=17) for D50 and 

D84, which is similar to the bed material sampled in the main channel of the braided 

sections, where D50 was between 28 and 43 mm and D84 between 63 and 123 mm, 

considering the start and the end of the campaign (Figure 4.5-a). These measurements 

are available as supplementary material. On the opposite, the constrained section has a 

much coarser bed (D50=110 mm and D84=303mm), which suggests that bedload 

samples at S5 do not come from a local bed mobilization of this constrained section but 

from the material mobilized from the upstream braided sections. While the estimation of 

the coarsest transported diameter might be potentially underestimated due to the size of 

the sampler intake compare to bedload particles size, no significant trend is observed 

between the transported grain size and the flow rate even when only samples with small 

diameters are considered (Figure 4.5-b). The absence of such a relationship indicates a 

more or less equal mobility of bed material when delivered to the flow following local 

morphological changes such as bank failure or armor breakup. 
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Figure 4.4: Sampled unit bedload transport rates measured at the gauging station (S5) 
as a function of flow rate for the whole field campaign. The black line is the best log-
linear fit using all the data, dashed lines correspond to one order of magnitude around 
this best fit. 

For a given bedload transport rate, calculated Shields numbers in the upstream cross 

sections of the braided reach (S1 and S2) are similar although slightly larger than the 

ones in the more downstream (S4) cross section (Figure 4.5-c). On the contrary, much 

lower Shields numbers for equivalent bedload transport rates is observed in the narrow, 

paved and laterally constrained section where bedload sampling were conducted (S5).  
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Figure 4.5: (a) River bed and transported grain size distributions. (b) 84th percentile of 
the transported diameter as a function of flow rate depending, points color indicates the 
range of maximum diameter sampled. (c) Shields number in the main active channel 
calculated considering four cross sections (beginning of the campaign, location in Figure 
4.2) as a function of bedload fluxes measured.  

4.5.3. SEISMIC OBSERVATIONS 

We observe that seismic power at Seismic1 station is a power law function of flow 

discharge (Figure 4.6). Where grain size does not significantly vary with flow discharge 

(Figure 4.5), previous theory and laboratory experiments indicate that bedload-induced 

seismic power scales linearly with bedload flux (see Eq.4.2, Tsai et al. 2012 and Gimbert 

et al. (2018)), i.e. 𝑃𝑏  scales with Q with a similar exponent than 𝑞𝑏  does. For our 

measurements, best data fit with a log-linear model gives a power law exponent of 3.9, 

which is significantly larger than the 7/5 exponent theoretically expected for seismic 

power from turbulent flow (Gimbert et al., 2016), but is significantly lower than the 5.3 

exponent observed in this study between sediment transport flux and flow discharge 

(Figure 4.4). It is thus likely that a source other than turbulent flow generates significant 

ground seismic motion. Although the 3.9 power-law exponent is not quite as high as the 

5.3, this indicates bedload is a prominent source of the observed seismic signal in the 

20-80 Hz frequency range. Yet we cannot conclude whether the observed discrepancy 

in 𝑃𝑏  and 𝑞𝑏  versus Q exponents is due to turbulent flow or any other potential river 

source significantly contributing to seismic power or local site-effects that impact upon 

the seismic signal. 
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We also observe a temporal trend in the 𝑃𝑏 versus Q relationship with a decrease of the 

intercept along the two months highlighted by the two power laws fitted for the 10 first 

days of May and the 10 last days of June (Figure 4.6). Similar seasonal trend was 

previously observed in the Trisuli River in Nepal by Burtin et al. (2008). Time 

dependency has also been observed at shorter timescales in various river settings (Hsu 

et al., 2011, Roth et al., 2014, Diaz et al., 2014) and has often been attributed to 

bedload variability, although in these previous studies no independent direct 

measurements allowed confirming such an interpretation. Our present observations 

provide such a confirmation, since the temporal trend 𝑃𝑏 versus Q occurs concomitantly 

with the temporal shift of the relationship between  𝑞𝑏 and Q (Figure 4.4 and Figure 4.6). 

The decrease of the intercept through time could be indicative of a decrease in upstream 

sediment supply. Continuous observations from seismic signals may provide a unique 

mean to investigate the intra-seasonal activation and deactivation of upstream sediment 

sources. 

 

Figure 4.6: Seismic power at Seismic1 on a frequency range 20-80Hz as a function of 
the flow rate on a 10-minute basis. 
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4.5.4. BEDLOAD PARTICLE MOBILITY 

Pebble tracking surveys confirm the high bedload transport intensity during this field 

campaign. Following the tag tracers injection, most of the tracers were retrieved when 

the whole reach was prospected thanks to their active UHF signal (return rate between 

72% and 86%). This high recovery rate permits to be confident on the 

representativeness of these measurements. The pebbles were highly mobile with a 

maximum distance of nearly 2 km traveled over the course of one day (see T2, Figure 

4.7). Thus, after the second day, several tags might have moved beyond the prospected 

zone and their travel distances or velocities cannot be observed. Assuming that the 

second full prospection (13th of June) is representative of the pebble dispersion (not too 

much tags downstream the prospected zone), a mean velocity can be estimated for the 

upstream and downstream injection point of respectively 27 and 13 meters per hour. 

During the prospection, no pebbles were found in secondary channels or on bars 

indicating that these coarse grains were mainly transported through the main channel. It 

was also observed that the number of tracked pebbles detected may depend on the 

zones (1 to 4) of the reach considered (Figure 4.7). It appears that pebbles transit 

through the narrow constrained upstream and downstream parts of the reach (zone 1 

and 4) more quickly than through the braided parts of the reach (zone 2 and 3). 

Considering all tags, almost half of them (14/29) were still at the entrance of the braided 

reach (zone 2) after the last prospection while only few tags were still detected in other 

zones. However, different behavior was observed depending on the injection point. 78% 

of the tags injected few meters upstream of zone 2 (downstream injection) stayed at the 

entrance of the braided reach (zone 2) or traveled through the entire prospection zone. 

Conversely, a smaller proportion of tags injected from the upstream point (in the 

constrained reach almost 500 meters upstream zone 2) stayed in zone 2. However, the 

entrance of the braided reach was still the zone in which most tags stayed until the end 

of the survey. It must also be highlighted that the entrance of the braided reach (zone 2) 

is only 200-meter-long compare to respectively 400, 400 and 500 meters for zone 1,3 

and 4.  
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Figure 4.7: (a) Tracers displacements during the five tracking surveys (T1 to T5) 
following the injection. (b) Number of tags detected in each zone of the studied reach 
considering all tags or upstream and downstream injection separately. Note that the 
following tags were still found in Zone 2 on the 30th of august: 8, 15, 17, 19, 20, 21, 23, 
24, 26, 28 and 29.  
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4.5.5. MORPHOLOGICAL CHANGES 

 

 

Figure 4.8: Diachronic analysis of the channels displacement between April and July 
using orthophotographs digitalisation and digital elevation model (DEM) of difference 
between April and july. Surveyed cross sections (S1 to S4) are indicated by red lines. 

Orthophotographs, repeated topographic surveys, ground-based pictures show that the 

braided reach experienced significant planar and elevational changes during the study 

period (Figure 4.8, Figure 4.9 and Figure 4.10). First, the entrance and the middle part of 

the braided reach (respectively zones a and b in Figure 4.8) exhibit high braiding 

intensity with complex multi-channel flows leading to several confluences and 

bifurcations. These zones are particularely active with bars formation or banks and bars 

erosion. Second, the entrance of the braided reach experienced significant 

morphological changes, as shown in cross section surveys and ground-based pictures 

(Figure 4.10, Figure 4.9Figure  a and b). In this area, net deposition was observed with 

bed aggradation of locally more than one meter (average depth change of respectively 

+11 cm and +13 cm for section 1 and 2). Morphological changes occurred from an 

incised channel configuration in May (one main channel on the left and one not well-
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connected secondary channel on the right) to a more distributed channel in June, 

associated with water being more evenly spread over the cross section (two main 

channels on the left and one active secondary channel on the right). Lateral channel 

migration took place near the entrance zone, amounting to 2.9 meters and 1.4 m of left 

bank erosion for section 1 and 2. Third, other cross sections (3 and 4) in the 

downstream active zone were more stable as no major bed elevation changes were 

detected (Figure 4.10-c and d) while bank erosion and lateral migration was significant 

for section 4 with almost 6 meters of right bank erosion. Lidar measurements on 

emerged top bars showed limited elevation changes for these zones suggesting that 

underwater areas were the most active zones in this braided reach. 

 

Figure 4.9: Morphological changes observed at the entrance of the downstream braided 
reach. Top view of the entrance of the downstream braided reach at the beginning (a) 
and at the end (b) of the campaign. View of the entrance of the downstream braided 
reach at the beginning (c) and at the end (d) of the campaign for the same discharge. 
Other ground-based pictures of the downstream part of the reach can be found in 
appendix B. 
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Figure 4.10: Topography evolution at the entrance of the downstream braided reach for 
section 1 (a), section 2 (b), section 3 (c) and section 4 (d).  

Surface grain size analysis of the braided reach show a decrease in D50 and D84 from 

respectively 49mm and 123 mm at the beginning of the campaign to 37 and 94 mm at 

the end of the campaign (Figure 4.12-a). Top bars exhibited more or less constant 

coarse grain size distribution while much less fine particles (<10mm) were observed in 

June. Conversely, in the main channel, the fine fraction was constant while a decrease 

in coarse grain size was observed. 
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Figure 4.11: Surface grain size distribution of the studied reach at the begenning and 
the end of the field campaign, considering the main channel side and top bars. 

4.5.6. HYDRAULIC CHANGES 

The variability of transport capacity was computed by considering the morphological 

changes observed previously. The morphological changes observed in the cross section 

2 lead to higher average Shields numbers as calculated (for a given flow rate) in early 

May compared to late June (Figure 4.12-c), despite the smaller grain size in June 

(Figure 4.11). Local Shields number distributions (𝜏84
∗, calculation detailed in appendix 

A) also showed differences over the whole cross section due to morphological changes 

(Figure 4.12-a, Figure 4.12-b). Shields numbers were more uniformly distributed around 

0.025 (for Q=10m3/s) in late June with fewer low and high values. A similar trend was 

observed at 20m3/s discharge. The decrease of high-percentile Shields numbers during 

the season was consistent with a decrease in bedload rate for similar flow rates, as 

observed in Figure 4.4. This suggests that high-percentile Shields numbers control the 

bedload fluxes exported from such braided reaches as observed in flume experiments 

by Bertoldi et al. (2009). It is also consistent with the fact that tracked pebbles were 

found only within the main active channel. 
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Figure 4.12: Probability density distribution of local Shield number calculated for a flow 
rate of (a) 10 m3/s and (b) 20 m3/s at the begenning and at the end of the campaign. (c) 
Averaged Shields number calculated in the main channel as a function of the flow rate, 
considering cross section 2 and grain size distribution at the beginning and at the end of 
the campaign.  

4.6. DISCUSSION 

4.6.1. ON THE INTEREST TO COMBINE MULTIPLE FIELD 

TECHNIQUES 

To quantify the interactions between bedload and morphology, both high spatial and 

temporal resolutions are required as bedload transport is highly variable at various time 

scales (instantaneous, event-based, or seasonal scale) and morphological changes 

have a large spatial extent. This field campaign on a particularly suitable site (high 

predictable flow and sediment transport variability during 2 months, accessible riverbed, 

feasible direct sampling) shows that the combination of novel, continuous indirect 

measurements (seismics), direct field measurements (bedload sampling, cross section 

survey, pebble tracking), and drone-based and ground-based remote sensing imagery 
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provides an informative set of observations on the dynamics of a complex braiding 

system. The combination of these measurements is a promising way to quantify bedload 

and morphology interactions. Indeed the joint measurements of bedload directly and 

seismic signals allowed us to detect unambiguous decrease through time over the two 

months period of the bedload activity which would have been difficult to conclude using 

only one of the two measurements. As direct measurements of bedload are time 

consuming and not always achievable, they are often sparse in time. Even though a 

rather high number of bedload direct measurement (60) could have been done during 

this field campaign given the good access facilities to the site and the presence of a field 

team on site, less measurements were available for example by the end of the June 

(Figure 4.4). The fact that the continuous seismic monitoring provided measurements at 

that period and showing the same trend, allowed us to be more confident on the 

decrease with time of the bedload activity. Conversely, while seismic monitoring is 

continuous, it cannot easily be inverted to estimate bedload flux and benefited from the 

comparison with direct measurements. Future studies should focus on using direct 

sampling to better understand the seismic signal so that this type of data can be properly 

inverted into bedload flux.  

Also, interesting perspectives were observed concerning the use of the low-cost 

geophone (Seismic2 station in Figure 4.2). This environmental monitoring station was 

installed with a solar panel power-supply and a vertical geophone GS20-DX Geospace® 

(8 Hz natural frequency). This low-cost and low-power consumption station has the 

advantage to allow seismic recording during long time-period in remote environmental 

conditions. Seism2 is installed close to the main channel, on the left river bank (few 

meters from the main channel, 40m upstream the gauging station, Figure 4.2). A three-

step signal conditioning was performed with an electronic interface (Navratil et al, 2013): 

i) the signal of the geophone is rectified; ii) a low-pass filter (from fc=0.5Hz to 80Hz) is 

applied; iii) the signal is amplified and finally recorded (5-Hz sampling frequency) with a 

Arduino Uno® open-source microcontroller. The signal amplitude (in mV) thus directly 

derived from the seismic energy integrated in the frequency band 0-80Hz. This low cost 

station also detected the decrease with time of bedload intensity (Figure 4.13). While the 

inversion of this signal needs future development, such low-cost device could for 

instance be used to develop a monitoring network at a larger spatial scale to detect 

when bedload occurs in the different branches of a catchment.  



4.6 Discussion 

144 
 

 

Figure 4.13: Low-cost geophone activity (Seismic2 in Figure 4.2) as a function of flow 
rate during the two-month field campaign. 

By combining complementary techniques such as pebble tracking, ground time-lapse 

cameras, direct cross section surveys, and drone imagery, we were able to quantify 

spatial morphological changes (bed mobility, lateral and vertical changes). Similarly to 

bedload measurements, we should stress that it would not have been possible to draw 

clear and robust conclusions by using only one of these techniques alone. Lidar data 

permitted to quantify elevation changes with a large spatial extent but were sparse in 

time (2 dates) and concerned only emerged bars excluding most changes in our case 

(Figure 4.8). Consequently, the repeated cross section surveys to quantify locally 

underwater elevation changes appeared to be essential as other remote measurements 

were not efficient in these zones considering our field campaign conditions: no signal 

return for Lidar, too high turbidity for any bathymetric estimation using SFM or 

colorimetry techniques. They were also essential to estimate hydraulic parameters 
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related to bedload transport. While ground-based camera is challenging to use as a 

quantitative measurement [Benacchio et al., 2017] such technique was really useful to 

qualitatively confirm the other observations with a high temporal resolution. Adding 

information of pebble tracking, a dynamic measurement of morphology changes, 

permitted to analyze the longitudinal dynamic and the location of bedload transport in 

the reach. It confirmed that the main channel was the most active area which 

corroborates that average hydraulic parameters related to bedload transport should 

preferentially be calculated in that zone. Future studies using similar tracking protocol 

should carefully consider the injection point as it could have a significant effect on the 

tags propagation. 

4.6.2. INTERACTION OF BRAIDED RIVER BED MORPHOLOGY 

WITH BEDLOAD FLUXES 

The whole set of results acquired during the field campaign suggests that bedload fluxes 

and morphological changes are co-evolving during the two months melting season. In 

this period, a significant decrease in the bedload rate for a given discharge was 

observed with both direct sampling and indirect seismic measurements. Simultaneously, 

the braided bed morphology evolved from an incised to a more homogeneous river bed 

configuration. Similar aggradation processes in braided reaches during melting season 

have already been observed in Switzerland by Warburton (1994) or on longer time scale 

in California by Pryor et al. (2011). In the studied reach, aggradation caused a decrease 

in flow depth and a subsequent decrease of the high percentiles of Shields numbers for 

a given flow rate. This simultaneous decrease in both bedload rate and high percentiles 

of shield numbers is consistent with observations made in flume experiments showing 

that, excluding extreme events, only few zones were actually active in braided streams 

[Bertoldi et al., 2009]. This is confirmed by the fact that during the a-UHF tags 

prospection, no pebbles were found in secondary channels or on bars indicating that 

coarse bedload was transported predominantly in the main channel and that average 

hydraulic parameters controlling bedload transport (Shield number, dimensionless 

stream power) should preferentially be calculated in that zone. Pebble tracing also 

suggested that the active braided zones may act as buffers and that pebbles are 

transferred efficiently between these buffer zones. 

All of these observations show that a strong link exits between bedload and 

morphological changes in braided streams, which is in agreement with previous field and 

flume studies [Bertoldi et al., 2009; Lane et al., 1996; Liebault et al., 2013]. Also, our 

study suggests that bedload rate and morphological changes are more closely related in 

the braiding sections (S1, S2, S4) than in the constrained ones (S5), in which bedload 

fluxes may not result from local bed mobilization. The following observations support this 

conclusion:  
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(i) No morphological changes were observed in the constrained section while 

large changes were observed in the braiding one, 

(ii) Tracked pebbles resided longer in the braiding section as compared to the 

constrained one, 

(iii) The average transported grain size distribution was similar to the bed grain 

size distribution found in the main channel side of the braided reach while the 

constrained section had a much coarser bed, 

(iv) Much lower Shields values for a given bedload rate were determined for the 

constrained section compare to the alluvial ones, 

 

Figure 4.14: Conceptual diagram illustrating the influence of braiding on bedload 
transfer in alternating constrained (transfer) and unconstrained (alluvial) reaches 
typically found in Alpine streams. The transfer reaches are for most floods non-active in 
terms of morphology and can efficiently transfer bedload material from upstream (supply 
limited). There is no relation between bedload fluxes and bed morphology changes. The 
alluvial reaches (here braiding) can adapt their morphology to hydraulics and upstream 
sediment fluxes resulting in a strong relation between morphological changes and 
bedload exported downstream (transport capacity limited). “Qb” denotes bedload fluxes; 
“Erosion/Dep.” denotes erosion and deposition processes leading to morphological 
changes. 
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Figure 4.14 shows a conceptual scheme, linking bedload and bed morphology in rivers 

with alternatively unconstrained and constrained sections. Alluvial reaches have bed 

morphology that may respond rapidly, through flow width, grain size distribution, etc., to 

local hydraulic forcing and upstream bedload fluxes. Such reaches could thus buffer 

upstream bedload fluxes and can be considered a source of sediment for downstream 

reaches: a strong link exists between morphological changes and bedload fluxes 

(morphological bedload, transport capacity limited). On the contrary, bed morphology in 

constrained reaches cannot adapt to local hydraulics and upstream bedload forcing 

under most conditions (extreme events excluded): upstream bedload fluxes are 

efficiently transferred without bed morphological changes according to the travelling 

bedload concept (supply limited) proposed for steep torrents, highly connected to 

hillslope sources [Piton and Recking, 2017]. 

4.6.3. IMPLICATIONS FOR REACH-AVERAGED BEDLOAD 

MODELING  

A noticeable interest of the complete data set acquired during this study is that it allows 

to build and run physically based and fully distributed numerical models to go further in 

the understanding of the bedload and morphology interactions and to test assumptions 

about the drivers of these interactions. This analysis will be conducted in the near future. 

Nevertheless, we should stress that our results also have general and immediate 

implications for the estimation of bedload rates in systems with alternating constrained 

and unconstrained sections for which direct bedload measurements are scarce. A key 

consideration is to choose where bedload calculation should be made to estimate 

bedload transport [Recking et al., 2016] as confirmed by the variability of Shields 

number associated with a given measured bedload transport rate (Figure 4.5-c). As 

discussed previously, bedload transport is better related to morphodynamics in the 

braided sections than in the constrained sampling cross section S5. We thus applied in 

both the braided and constrained sections the Recking bedload formula (presented in 

Appendix A) which is a relation between average Shield parameters and bedload 

transport rate (calibrated and validated on a large field dataset). Predictions were 

significantly improved when considering alluvial sections (S1, S2 and S4) compared to 

the constrained and paved one (S5) (Figure 4.15) which is consistent with a limited 

production of bed material in the transfer reach compared to in the studied upstream 

braiding reach. The seasonal variability of the cross section and grain size distribution 

was considered for cross section 2. This led to small differences in term of predictions, 

compare to spatial differences due to the choice of cross section. This shows that 

applying bedload formula in such system should preferably be done in alluvial, 

morphodynamically active zones.  
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Figure 4.15: Predictions obtained with the Recking bedload formula depending on the 
cross section and date considered. To quantify the goodness of predictions, we 
calculated the percentages of ratios 𝑸𝒃,   𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅 𝑸𝒃,   𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅⁄  that fell in the ranges 

[0.1-10], [0.2-5] and [0.5-2].  S1, S2 and S4 correspond to alluvial cross sections (in the 
braided reach) while S5 is the cross section where bedload fluxes were measured 
(constrained and paved reach).  

4.7. CONCLUSION  
In this paper we analyzed the relation between bedload transport and morphodynamic in 

a typical Alpine braided river by combining multi-physical measurements. We show that 

such approach combining both traditional direct measurements with novel indirect 

techniques permits a much deeper understanding of the physical processes often 

difficult to capture in the field with a single instrument. This study also highlights the 

interest to measure simultaneously bedload transport processes and river bed 

morphology changes. This is particularly relevant in braided river: strong interactions 

were observed between bedload transport and morphodynamics on the study site. 

These detailed observations confirm flume-derived hypothesizes stating that bedload 

particles in braided rivers are mostly transported in concentrated zones where shear 

stresses are high. Our observations showing that aggradationnal or degradationnal 

phases exert a significant control on bedload fluxes exported downstream are also in 

line with longer-term field observations. Finally, these results have been shown to have 

important implications for modeling bedload in braiding rivers in the field. 
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While consistent observations were made in this study, braided rivers morphodynamic 

and bedload transport stay highly complex processes. For this reason, we think that 

future research should continue to combine such a large panel of techniques. For 

instance, this could consist of inverting the seismic signal by using direct sampling or 

combining high-frequency imagery, pebble tracking, and a seismic array to localize with 

a high temporal resolution bedload transport path and intensity. 
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4.9. NOTATIONS 
The following symbols are used in this paper. 

𝐷50 Sediment diameter of the bed such that 50% of the mixture is finer [𝑚] 

𝐷84 Sediment diameter of the bed such that 84% of the mixture is finer [𝑚] 

𝐷 Sediment diameter [𝑚] 

𝜏∗ Shields number: dimensionless shear stress [-] 

𝜏84
∗  Shields number for 𝐷84 [-] 

𝜏𝑚
∗  Dimensionless transition parameter between partial and full mobility [-] 

𝑄 Water discharge [𝑚3/𝑠] 

𝑈 Mean water velocity over the section [𝑚/𝑠] 

𝑢∗ Friction velocity [m/s] 

𝑊 Channel bed width [𝑚] 

𝑆 Channel bed slope [𝑚/𝑚] 

𝜌 Water density [𝑘𝑔/𝑚3] 

𝜌𝑠 Sediment density [𝑘𝑔/𝑚3] 

𝑠 Relative density of sediment [-] 

𝑔 Gravitational acceleration [𝑚/𝑠2] 
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𝑑 Mean water depth [𝑚] 

𝑞 Unit water discharge [𝑚3/𝑠/𝑚] 

𝑄𝑏 Bedload [𝑘𝑔/𝑠] 

𝑞𝑏 Unit bedload [𝑘𝑔/𝑠/𝑚] 

𝑞𝑏
∗ Dimensionless bedload [-] 

𝑃𝑏 Seismic power [m²/s²] 

𝐿𝑡 Cross section width [m] 

𝐿𝑖 Width considered representative for the sampling point I [m] 

𝐿𝑒 Sampler width [m] 

𝑄𝑏𝑒 𝑖 Bedload rate for each sample [g/s] 

4.10. APPENDIX A 

4.10.1. HYDRAULICS CALCULATION 

To estimate the main hydraulics parameters (velocity, hydraulic radius and water depth) 

at a given cross section from the measured discharge Q, we used the Ferguson (2007) 

flow resistance equation in an iterative way: 

𝑈

√𝑔𝑅ℎ𝑆
=  

2.5
𝑅ℎ
𝐷84

√1 + 0.15 (
𝑅ℎ
𝐷84

)
5/3

 
(4.3) 

Where 𝑆  (-) is the river bed slope, 𝐷84  (m) the 84% percentile of the grain size 

distribution, 𝑅ℎ (m) the hydraulic radius, 𝑈 (m s-1) the mean flow velocity and 𝑔 (m s-2) 

the gravity acceleration. 

It was then possible to estimate a local or an average Shield number ( 𝜏84
∗ ) with 

respectively the local water depth (𝑑) in the cross section or an averaged hydraulic 

radius (𝑅ℎ) in the main channel: 

𝜏84
∗ =

𝜌𝑔𝑑𝑆

(𝜌𝑠 − 𝜌)𝑔𝐷84
 (4.4) 



Chapter 4  
Combining multi-physical measurements to quantify bedload transport and morphodynamics interactions in an Alpine 

braiding river reach 

151 
 

where  𝜌 is the water density, 𝜌𝑠  is the sediment density. This method was used to 

compare the bed mobility associated to morphological changes between the beginning 

and the end of the campaign. 

4.10.2. BED LOAD CALCULATION  

Many equations have been proposed in the literature and could be used to predict 

bedload. To test where bedload calculation should be used in alternatively braiding and 

constrained sections, we choose to test the one proposed in Recking (2010), Recking 

(2013) and Recking et al. (2016), Eq.(4.5) and Eq.(4.6). It was specifically developed 

from field data for reach average computation and was validated with a large 

independent data set. The input parameters are 𝑄, 𝑊, 𝑆, 𝐷50 and 𝐷84.  

𝑞𝑏
∗ =

𝑞𝑏

𝜌𝑠√𝑔(𝑠 − 1)𝐷84
3

=
14𝜏∗2.5

1 + (
𝜏𝑚∗

𝜏∗ )
4  (4.5) 

where 𝑞𝑏  (kg s-1 m-1) is the unit bedload transport per unit width, 𝑠= 
𝑠
/, 𝜌𝑠  is the 

sediment density, 𝜌 is the water density, and 𝑔 is the gravity acceleration. In Eq.4.5  the 

parameter 𝜏𝑚
∗  defines the transition between partial transport and full mobility. It 

depends on the morphology of the stream [Recking et al., 2016] and was calculated 

using the following equation: 

𝜏𝑚
∗ = 1.5𝑆0.75 (4.6) 

This formula was used with the averaged hydraulics parameters in the main active 

channel (calculations were made on the website: www.bedloadweb.com). The 

percentages of well predicted values that fell in a given range were calculated 

considering a range [0.1-10] (E10), [0.2-5] (E5) and [0.5-2] (E2) as often done to 

evaluate sediment transport formula.  

4.10.3. RESAMPLING TECHNIQUE TO DETECT TEMPORAL 

TREND ON BEDLOAD SAMPLING 

To test the significance of a temporal trend in bedload transport flux, the following 

resampling procedure was adopted on the bedload samples (N=60):  

i) 5000 selections of Nr random samples are performed (Nr<N), 

ii) For each random selection, a log-linear model is fitted between the Nr bedload 

rates and flow rates, 

iii) For each regression, a linear model is fitted between the residuals and the 

time, 

http://www.bedloadweb.com/
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iv) The significance of this relation of residuals through time is analyzed through 

its pvalue. The temporal trend is considered significant if the 5000 pvalues 

obtained are lower than 0.05, 

v) These steps are repeated by varying Nr from 59 to 40. 

4.11. APPENDIX B 

4.11.1. GROUND-BASED CAMERA OBSERVATIONS 
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Figure 4.B.1: Ground-based camera pictures of the middle of the braided reach, (c) in 
Figure 4.2.  
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Figure 4.B.2: Ground-based camera pictures of the outlet of the braided reach. 
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4.12. APPENDIX C 

4.12.1. BED LOAD MEASUREMENT 

Date (UTC+1) h (m) Q station (m3/s) Qb (g/s) 

30/04/2018 18:00 0.87 13.20 1327 

02/05/2018 14:20 0.72 8.99 264 

02/05/2018 15:10 0.72 9.03 57 

02/05/2018 16:10 0.72 8.96 5 

06/05/2018 17:10 1.03 16.63 2568 

07/05/2018 16:00 1.04 17.34 4098 

07/05/2018 18:50 1.07 18.05 3415 

09/05/2018 11:00 1.02 16.44 7897 

09/05/2018 18:30 1.08 18.82 4458 

14/05/2018 16:50 0.92 13.92 159 

14/05/2018 19:20 0.92 13.69 378 

14/05/2018 13:30 0.92 13.55 832 

14/05/2018 14:10 0.92 13.81 925 

14/05/2018 15:20 0.92 13.69 903 

14/05/2018 15:50 0.93 14.30 1180 

15/05/2018 14:50 0.87 11.71 161 

15/05/2018 15:40 0.87 12.08 86 

15/05/2018 16:10 0.87 12.05 117 

15/05/2018 16:50 0.87 12.22 253 

15/05/2018 17:30 0.87 12.14 232 

15/05/2018 18:20 0.87 12.43 223 

30/05/2018 08:45 1.08 18.65 4883 

30/05/2018 09:10 1.08 18.99 1857 

30/05/2018 09:32 1.09 18.22 6031 

30/05/2018 14:39 1.03 18.05 1290 

30/05/2018 15:00 1.03 17.07 3837 

31/05/2018 08:32 1.02 16.78 994 

31/05/2018 09:00 1.02 17.00 1140 
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31/05/2018 13:10 0.99 15.91 1661 

31/05/2018 16:20 1.03 16.72 2535 

31/05/2018 16:55 1.02 16.85 6208 

01/06/2018 07:48 0.96 15.37 391 

01/06/2018 08:13 0.96 15.49 770 

04/06/2018 17:00 1.02 17.76 2081 

04/06/2018 17:30 1.02 17.86 2715 

04/06/2018 18:10 1.04 18.25 5985 

04/06/2018 18:30 1.04 17.53 4004 

05/06/2018 13:26 1 16.04 1215 

05/06/2018 13:45 1 16.50 863 

06/06/2018 09:18 1.02 17.82 897 

06/06/2018 10:25 1.03 17.37 3013 

06/06/2018 09:52 1.02 18.09 417 

06/06/2018 11:30 1.03 16.88 1093 

06/06/2018 12:00 1.01 17.30 1145 

07/06/2018 09:02 0.94 15.49 903 

07/06/2018 09:35 0.97 16.10 548 

07/06/2018 10:15 0.98 15.67 709 

07/06/2018 20:12 1.18 22.23 1251 

11/06/2018 13:42 1.27 25.15 3183 

11/06/2018 14:08 1.27 24.07 7856 

13/06/2018 09:00 1.13 20.47 2051 

13/06/2018 09:43 1.13 20.23 3651 

13/06/2018 10:30 1.1 19.92 921 

13/06/2018 11:18 1.13 19.81 830 

14/06/2018 14:20 0.97 16.85 569 

14/06/2018 15:15 1.05 17.69 243 

26/06/2018 10:08 0.87 12.05 33 

28/06/2018 09:00 0.88 12.08 144 

28/06/2018 09:00 0.88 12.08 152 

27/06/2018 11:00 0.87 12.08 43 
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Table C.1: Direct bedload transport measurement 

Time (UTC+1) Q(m3/s) Qs (g/s/m) D50(mm) D84(mm) % Sand (<1.6mm) 

06/05/2018 17:15 17.6 192.4 12 32 27.9% 

07/05/2018 16:30 17.8 307.0 40 70 4.2% 

07/05/2018 19:00 18.2 255.8 22 59 13.5% 

09/05/2018 11:00 16.9 591.5 42 85 1.5% 

09/05/2018 19:00 18.8 333.9 22 54 13.5% 

14/05/2018 16:20 13.9 88.4 55 80 0.9% 

14/05/2018 14:20 18.8 333.9 11 51 11.1% 

30/05/2018 9:32 18.0 451.8 23 66 18.9% 

31/05/2018 16:20 17.0 189.9 17 32 5.8% 

04/06/2018 17:00 16.9 155.9 40 97 13.1% 

04/06/2018 17:50 17.5 203.4 62 87 8.2% 

05/06/2018 14:00 16.6 64.7 71 110 7.4% 

06/06/2018 10:25 17.5 225.7 54 77 1.0% 

07/06/2018 9:00 17.0 85.8 62 87 4.3% 

11/06/2018 14:08 24.8 588.5 21 71 11.7% 

14/06/2018 14:20 17.3 42.6 9 54 25.0% 

13/06/2018 9:43 19.6 273.5 23 59 12.2% 

Table C.2: Transported diameter measured. 

4.12.2. BED GRAIN SIZE DISTRIBUTION 

Early May Percent finer than 

D (mm) Gravel bars Channel side total 

4 0.18 0.25 0.21 

8 0.23 0.26 0.24 

11 0.25 0.29 0.27 

16 0.29 0.32 0.31 

22 0.31 0.38 0.34 

32 0.37 0.42 0.39 

45 0.43 0.52 0.47 

64 0.55 0.64 0.60 
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91 0.71 0.75 0.73 

128 0.86 0.86 0.86 

181 0.96 0.93 0.94 

280 1.00 0.99 0.99 

340 1.00 1.00 1.00 

Table C.3: Bed grain size distribution measured using Wolman count technique in early 
May in the braided reach (more than 400 pebbles). These measurements were 
conducted along four lines, two along the main active channel side and two along higher 
gravel bars. 

Late June Percent finer than 

D (mm) Gravel bars Channel side total 

4 0.03 0.17 0.10 

8 0.04 0.20 0.12 

11 0.07 0.25 0.16 

16 0.12 0.35 0.24 

22 0.22 0.42 0.32 

32 0.34 0.56 0.45 

45 0.43 0.72 0.58 

64 0.56 0.85 0.70 

91 0.72 0.94 0.83 

128 0.89 0.98 0.94 

181 0.96 0.99 0.98 

280 0.98 1.00 0.99 

340 0.99 1.00 1.00 

560 1.00 1.00 1.00 

Table C.4: Bed grain size distribution measured using Wolman count technique in late 
June in the braided reach (more than 400 pebbles). These measurements were 
conducted along four lines, two along the main active channel side and two along higher 
gravel bars. 

  



 

 
 

  Chapter 5
Quantifying erosion and deposition 

of fine sediments in a typical alpine 

river 

This fifth chapter reports a detailed description of fine particles transport and 

intermediate storage at the event scale in a typical alpine braided river reach (La 

Séveraisse). The occurrence of interactions between suspended particles and the river 

bed has been measured and confronted with riverbed mobility and morphodynamic 

changes. This work has been published in Water Resources Research (DOI: 

10.1029/2019WR025222) by Misset C., Recking A., Legout C., Valsangkar N., 

Bodereau N., Zanker S., Poirel A. and Borgniet L. 

      

 

Ce cinquième chapitre présente une description détaillée du transport et du stockage 

intermédiaire de particules fines à l’échelle de l’évènement dans une rivière en tresse 

typique des Alpes (La séveraisse). L’occurrence d’interactions entre particules 

transportées par suspension et le lit de la rivière a été mesurée et confrontée aux 

changements de mobilité et de morphodynamique du lit. Ce travail a été publié dans 

Water Resources Research (DOI: 10.1029/2019WR025222, contributeurs Misset C., 

Recking A., Legout C., Valsangkar N., Bodereau N., Zanker S., Poirel A. and Borgniet 

L). 
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5.1. ABSTRACT 
The transport of fine particles as suspension is associated with important social, 

economic and environmental issues, especially in mountainous rivers. It is still unclear, 

however, how fine particles eroded on hillslopes are transferred downstream through the 

river system. Whereas the finest fraction has long been considered as washload, with 

limited interactions with the river bed, recent field and flume studies have demonstrated 

that in gravel bedded streams, large quantities of these fine materials can be found in 

the bed matrix, suggesting the opposite. Both the quantification of these interactions and 

control parameters remain poorly known. In this study, we aimed to investigate these 

processes by applying a sediment budget approach to a typical 3.5-km-long alpine 

braided reach located in the French Alps. Using high-frequency suspended load 

measurements combined with Monte Carlo simulations for uncertainty propagation, we 

showed that the buffering behavior of the braided reach studied was non-negligible at 

various time scales. Thirty-three of the 48 events observed during the 2 months of the 

campaign showed significant differences between upstream and downstream 

suspended sediment yield (SSY) even if the reach studied was short compared to the 

upstream drainage area (130 km²). These differences at the event scale varied between 

a net erosion equivalent to 51% of upstream SSY and a net deposition equivalent to 

71%. At a nearly instantaneous time scale, the flow rates and sediment concentrations 

were found to control deposition and remobilization of fine sediments in a different way: 

the erosion fluxes increased as the water discharge increased until a given suspended 

sediment concentration from which deposition fluxes increased as the concentration 

rose, whatever the discharge. Finally, coarse particle mobility and morphological 

changes in the braided reach appeared to have a strong influence on the conditions 

allowing erosion or deposition of fine particles. These observations have important 

implications for our understanding of the transfer of fine particles in gravel bedded 

streams. 

5.2. INTRODUCTION 
Suspended sediment loads in rivers have been widely studied in the last decades given 

that they are associated with important socioeconomic and environmental issues 

[Kondolf et al., 2014; Vercruysse et al., 2017; Walling et al., 2003]. This is particularly 

true in mountainous and Mediterranean catchments where high suspended sediment 

yields (SSYs) are generally observed [Vanmaercke et al., 2011]. The transport of the 

finest particles has long been considered as washload, i.e., the fraction of the load 

transported by the flow over long distances without interacting with the river bed. 

However, this concept has been largely questioned in the recent literature with several 

studies demonstrating that suspension can strongly interact with the bed, even for the 

finest fractions. Unraveling the relative significance of washload in fine sediment 

dynamics is very important because it has strong implications for modeling suspended 
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load transport. It also conditions our capacity to plan what could be the real impacts of 

sediment release in the river network, such as during dam flushing operations. This 

question has motivated this work, which is based on a detailed description of fine 

sediment dynamics at the reach scale of a typical alpine stream, the Severaisse River in 

France. 

The washload concept is based on a very comprehensive analysis of several material 

and hydrodynamic properties, such as the percentage of fines at the bed surface 

[Einstein et al., 1940], the critical Rouse number [Wang and Dittrich, 1992; Wang et al., 

2007], the absolute particle size [Partheniades, 1977], a critical size ratio (bed material 

vs washload material) or the balance between sediment supply and transport capacity 

[Hill et al., 2017]. However, recent field and flume studies have demonstrated that even 

the finest particles are present in large quantities in the bed sediment matrix of gravel 

bed rivers [Hill et al., 2017; Mooneyham and Strom, 2018; Navratil et al., 2010]. Of 

course part of this material could result from local production (mechanical and chemical 

alteration of the coarser particle in place or organic matter degradation), but it also 

questions the real dynamics of fine sediments transported in presence of a coarse 

material mixture, especially in alpine streams, where very turbulent shallow flows 

strongly interact with the bed [Legout et al., 2018]. Therefore, questions arise as to the 

real interactions with the local morphology (deposition/remobilization) and the related 

grain processes (infiltration, kinetic sorting). Direct field observations of such interactions 

are still needed to quantify these processes, especially in a mountainous context.  

Most field investigations were conducted at the catchment scale considering the outlet of 

the catchment and the main tributaries [Navratil et al., 2012; Piqué et al., 2014; Smith et 

al., 2003]. Fewer approaches were applied on smaller reaches to understand the 

mechanisms controlling deposition and resuspension. Most of them were conducted in a 

small proglacial area for glacial denudation rate estimation [Guillon et al., 2018; Orwin 

and Smart, 2004b]. This approach was also used downstream of a small tributary 

reconnection in northwest England [Marteau et al., 2018]. All of these studies reported a 

significant contribution of the reach studied in the sediment budget for an annual or a 

seasonal time scale. Guillon et al. (2018) concluded that the reach studied acted as a 

buffer for suspended fluxes while Orwin et al. (2004) concluded that the proglacial reach 

studied controlled the fluxes exported in that it delivered 80% of downstream fluxes 

during the 2 months of their field study. This type of information is still missing in 

mountainous alluvial rivers. Therefore, the objectives of the present study were to i) 

analyze the dynamics of fine sediments passing through a typical braided river reach 

characterized by its morphology, hydrology and bed mobility, ii) assess the extent to 

which erosion and deposition of fine sediments could be demonstrated and iii) isolate 

parameters controlling erosion and deposition of fine particles and their relation with the 

general morphodynamics. This was done by measuring, during a 2-month melting 
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season, transport rates, erosion and deposition of fine particles in a representative 

alpine braided reach using a sediment budget approach considering the local 

morphology changes and bedload transport coupled with an uncertainty analysis based 

on Monte Carlo simulations. 

5.3. AREA STUDIED 
The Séveraisse catchment located in the southeast French Alps in the Ecrins massif 

was chosen to investigate the importance of erosion and deposition processes of fine 

particles (Figure 5.1). The downstream station has a 130-km² catchment area 

characterized by a low human impact (no dams or water intakes) and highly active 

sediment sources on the upstream part of the catchment [Helsen et al., 2002]. The river 

has alternative braiding and more constrained sections with a slope between 1% and 

2%. Some glaciers are located on the upper part of the basin (maximum altitude, 3579 

m NGF). The hydrology is characterized by a melting period (May–June), which was 

chosen for the field campaign to ensure high flow variability. The reach studied, nearly 

3.5 km long, comprises two braiding sections connected by a narrower constrained 

reach. 

 

Figure 5.1: Catchment location 
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5.4. MATERIAL AND METHODS  

5.4.1. FINE SEDIMENT BUDGET FRAMEWORK 

The following framework was applied to the Séveraisse reach. Upstream (𝑆𝑆𝐿𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚) 

and downstream ( 𝑆𝑆𝐿𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 ) suspended sediment loads were measured to 

investigate erosion fluxes (𝐸) and deposition (𝐷) fluxes occurring in the reach (red stars 

in Figure 5.1). Of course this approach is valid if no or negligible intermediate sources of 

fine sediments are present. Small lateral tributaries were monitored with time lapse 

cameras (one picture every 20 min) to be sure that they were not active during the field 

campaign. 

 

Figure 5.2: Sediment budget approach. 

It was then possible to apply the sediment budget approach presented in Figure 5.2 and 

in the following equations: 

𝑆𝑆𝐿𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 + 𝐸 = 𝑆𝑆𝐿𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 + 𝐷  (5.1) 

𝑆𝑆𝐿𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 − 𝑆𝑆𝐿𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 = 𝐸 − 𝐷 (5.2) 

𝑆𝑆𝐿𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚
𝑆𝑆𝐿𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚

=
𝐸 − 𝐷

𝑆𝑆𝐿𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚
+ 1 

 

(5.3) 

According to Eq.5.2 and Eq.5.3, dominant erosion generates a positive difference 

between exiting and incoming fluxes as well as a ratio between these fluxes higher than 

1, while deposition generates a negative difference and a ratio lower than 1. If the 

system is at equilibrium, a ratio of 1 and a difference equal to 0 will be observed. 

  



Chapter 5  
Quantifying erosion and deposition of fine sediments in a typical alpine river 

165 
 

5.4.2. SUSPENDED LOAD MEASUREMENT 

Two suspended load stations were installed upstream and downstream of the reach to 

measure 𝑆𝑆𝐿𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚  and 𝑆𝑆𝐿𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚  (red stars in Figure 5.1). The suspended 

sediment concentration (SSC) was measured using turbidimeters (Hach Lange Solitax) 

coupled with sequential samplers (ISCO 3700W) containing 24 1-L bottles. An average 

value of turbidity measured for 1 min was recorded every 10 min. Sequential samplers 

took water samples every 2 h during flood events spread over the field campaign 

(hundreds of samples covering a wide range of suspended concentrations). The water 

samples were filtered using preweighed 0.7-µm fiberglass filters dried at 100°C for 

approximately 5 h so that all the water contained in the sample was removed. A 

calibration curve between turbidity and the SSC was then built, as often done in such 

field work [Lewis, 1996; Mano et al., 2009; Navratil et al., 2011]. The turbidimeters and 

sequential sampler’s water intakes were fixed at the same location in the cross section, 

approximately 50 cm above the bottom of the river bed. We assumed that SSC was 

homogenous over the cross section due to well-mixed and highly turbulent flows and 

that our SSC measurements were representative of the average SSC over the cross 

section. This assumption was confirmed by water samples taken twice at three locations 

in the cross sections, indicating a 6% coefficient of variation (average value over 

standard deviation) for the SSC in the cross section. However, larger uncertainties 

associated with the representativeness of the sampling point in the cross section were 

considered (detailed in the following sections). The suspended sediment load for time 

step i (𝑆𝑆𝐿𝑖, kg s-1) was thus computed by multiplying the average SSC (𝑆𝑆𝐶𝑖, g L-1) by 

the flow rate (𝑄𝑖, m
3 s-1) at that time step using the following equation: 

𝑆𝑆𝐿𝑖 = 𝑆𝑆𝐶𝑖 × 𝑄𝑖  (5.4) 

Downstream flow discharges were provided by Electricité de France (EDF) while the 

upstream station was maintained during the 2-month campaign by a field team. For both 

stations, water pressure sensors with 10-min instantaneous measurement frequencies 

were coupled with several flow rate gauging performed during the field campaign to 

obtain flow rate time series. Several techniques including salt dilution, the acoustic 

Doppler current profiler (ADCP), large-scale particle image velocimetry (LSPIV) and 

current meters were used to measure the flow rates. Rating curves between water levels 

and flow rates were built. Potential changes in the rating curve due to riverbed mobility 

were verified daily by local bed topography control.  

Suspended load grain size distribution (GSD) was estimated at the upstream station on 

sediments collected during the field survey with a trap of 10L installed 70 cm above the 

water intake sampler and the turbidity sensor. The trap intake (5mm²) was positioned 

vertically and started to capture fine sediments for flow rates exceeding approximately 

14m3/s. At the end of the field campaign, a fraction of these sediments were sieved (566 
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g) using the following mesh sizes: 40µm, 63µm 100µm, 250µm, 400µm, 500µm, 800µm, 

1250µm and 2000µm.  

5.4.3. UNCERTAINTY ANALYSIS FOR SUSPENDED FLUXES 

Uncertainties associated with suspended load measurements were quantified and 

propagated using Monte Carlo simulations similar to those used by Navratil et al. (2011) 

and detailed in Appendix 5.9.1. A turbidity fluctuation signal with a 6% coefficient of 

variation (average value over standard deviation) was measured for the range of 

turbidity measurements. Concerning the SSC measurements obtained by sampling the 

turbid water, conservative uncertainties found in the literature (a short review can be 

found in Appendix 5.9.1) were considered: a ±15% standard deviation due to the 

representativeness of the sampling point, a ±20% standard deviation due to technical 

problems with the sampling procedure in the field and a ±3% standard deviation due to 

laboratory analysis errors. Finally, summing these uncertainties (√15%² + 20%² + 3%²) 

leads to a conservative uncertainty of ± 25% for the SSC samples. We should stress 

that this uncertainty does not include the errors related to the regression curve used 

between turbidity and SSC samples. Using these uncertainty terms on SSC sampling 

and turbidity measurements, statistical distributions describing the global SSC 

uncertainties were derived from a first set of Monte Carlo simulations following a 

procedure presented in Appendix 5.9.1. These distributions (gamma distributions fitted 

for each turbidity unit and presented in Appendix 5.9.1) account for uncertainties related 

to the turbidity measurements, the SSC sampling procedure (representativeness of the 

sampling point, technical problems and laboratory analysis errors) and the regression 

curve used between turbidity and SSC. They were used to propagate uncertainties 

associated with SSC measurements on the suspended load at each time step. 

Concerning flow rate measurements, a ±3.5-cm standard deviation on the water level 

was estimated for the two stations. This corresponds to water level fluctuation over 1 

min and to the sensor uncertainty. Errors associated with individual gauging (95% 

interval) varied from ±15% for LSPIV [Jodeau et al., 2017] to ±5% for the other 

techniques used [Di Baldassarre and Montanari, 2009]. Using these uncertainty terms 

on Q and water level measurements, statistical distributions describing the global Q 

uncertainties were derived from a second set of Monte Carlo simulations following a 

procedure presented in Appendix 5.9.1. These distributions (logistic distributions fitted 

every centimeter for the water level and presented in Appendix 5.9.1) account for 

uncertainties related to the water level measurements, the gauging procedure and the 

regression curve used between flow rate and water level measurements. To extrapolate 

the rating curve when no gauging was available, the Ferguson (2007) variable power 

friction law equation (detailed in Appendix 5.9.1) was used with the local grain size 

distribution, the local river bed slope and the local bathymetry. This equation was 
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chosen because it is adapted to steep streams with low relative submersion and large 

bed roughness [Ferguson, 2007; Rickenmann and Recking, 2011]. A ±25% uncertainty 

on the mean flow velocity calculated was considered. This was based on the analysis of 

the errors associated with this equation detailed in Rickenmann and Recking (2011) for 

the local conditions of our sites. These distributions were then used to propagate 

uncertainties associated with flow rate measurements on suspended load at each time 

step. Also, before applying any flux analysis, it was verified that upstream and 

downstream flow rates were consistent together. No trend (increasing or decreasing) on 

their differences was observed during the 2 months of the field campaign. On average 

this flow rate difference was 2.1 m3 s-1, which is consistent with the 14-km² intermediate 

drainage area and several flow rate gauging performed on small tributaries draining the 

alluvial aquifer. 

 

Figure 5.3: Probability density functions of upstream and downstream suspended 
sediment yield (SSY) obtained after the Monte Carlo procedures for a significant (a) and 
a nonsignificant (b) difference between upstream and downstream SSY: (a) and (b) 
correspond to event number 7, which occurred on 11/05/2018 and event number 32, 
which occurred on 09/06/2018, respectively. 

Using the above statistical distributions that describe the global uncertainties on SSC 

and flow rate, a third set of Monte Carlo simulations was conducted to propagate 

uncertainties on suspended load (detailed in Appendix 5.9.1). At each time step, 

statistical models were used to build samples comprising 2000 values of upstream and 

downstream suspended load, from which we deduced statistical distributions of the 

upstream and downstream SSY (after integration of the suspended sediment load over a 

given time period). For each event, this allowed us to build a statistical distribution of 

differences between upstream and downstream SSY. Upstream and downstream SSY 



5.4 Material and Methods 

168 
 

were considered to be significantly different if the statistical distribution of differences 

was different from 0 (the distribution of differences is significantly positive or negative). 

The criterion considered was that the quantiles 2.5% and 97.5% of the statistical 

distribution of differences had the same sign. Otherwise the difference was considered 

nonsignificant. Examples of distributions of the upstream and downstream SSY for one 

significant and one nonsignificant event are presented in Figure 5.3. 

5.4.4. FINE SEDIMENT STOCK ESTIMATE 

To estimate the available river bed stocks of fine sediments in the reach (Figure 5.2), a 

sampling strategy proposed by Navratil et al. (2010) for that kind of river was used at the 

beginning of the campaign. The total stock estimates of each river bed sediment facies 

could then be compared with suspended sediment fluxes and their differences. This 

stock at the reach scale (𝑆𝑡𝑟𝑒𝑎𝑐ℎ) (t dm-1) was calculated by integrating the mean local 

stocks for a given storage facies i (𝑠𝑡𝑖̅̅̅̅ , kg m-2 dm-1) over their area (𝐴𝑖, m²) using the 

following equation: 

𝑆𝑡𝑟𝑒𝑎𝑐ℎ =∑𝑠𝑡𝑖̅̅̅̅ × 𝐴𝑖

4

𝑖=1

  (5.5) 

Four facies were identified in the reach studied. Dried zones were divided considering 

the percentage of area having a certain cover of fine particles. Type 1 was defined with 

a maximum 25% of the area covered by fines, type 3 with a minimum 75% of the area 

covered by fines and type 2 for intermediate situations (Figure 5.4). The fourth facies 

corresponded to wetted channels at the time of the field measurements. Local stocks for 

dried facies were measured using a resuspension technique in a container filled with 

clean water, while underwater stocks were estimated using the Lambert and Walling 

technique (further detail can be found in Appendix 0). The area occupied by each facies 

was determined for the downstream braided reach, which was assumed to be 

representative of both the braided reaches studied. To do so, we used orthophotography 

built with aerial photographs obtained with a drone flight performed at the beginning of 

the field campaign. Then the four facies areas were determined from a supervised 

classification using 115 manually classified samples and the ArcGIS 10.3 maximum 

likelihood classification toolbox. This stock was integrated on the two braided zones 

between the gauging stations (Figure 5.1).  

To estimate the GSD representative of these stocks measurements, all stocks samples 

were put together after being dried in the lab and sieved using the following mesh sizes: 

50µm, 100µm and 200µm. We also performed surface sampling and estimate the 

surface dispersed GSD using a laser diffraction sizer (Malvern, Mastersizer 2000) on 6 

randomly chosen samples in the reach studied. The dispersed GSD was obtained 
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following the protocol proposed by Grangeon et al. (2012), i.e. after 10 minutes of 

pumping, stirring and sonication at maximum level. 

 

Figure 5.4: Storage facies classification. 

5.4.5. BEDLOAD TRANSPORT MEASUREMENT 

To quantify the mobility of the river bed and the associated potential release of fine 

particles, bedload transport was measured at the downstream station during the field 

campaign (May–June). A pressure difference sampler (Elwah 20.7×12 cm) with a 0.5-

mm mesh size was deployed over eight verticals (approximately every 1.5 m) to sample 

the bedload flux passing through the cross section. The methodology was based on the 

SEWI method [Edwards and Glysson, 1999] with the sampling duration for each vertical 

adapted for each transport intensity. The total bedload rate 𝑄𝑏 (g s-1) was calculated 

using Eq.5.6 in which N is the number of verticals, 𝑄𝑏𝐸  𝑖 is the bedload rate for each 

measurement point (g s-1), L𝐸 is the sampler width (m) and Li is the width considered to 

be representative of the sampling point i (m): 

𝑄𝑏 =∑
𝑄𝑏𝐸 𝑖
𝐿𝐸

𝑁

𝑖=1

𝐿𝑖   (5.6) 

5.5. RESULTS 

5.5.1. RATING CURVES   

Discharge-water levels and SSC-turbidity rating curves were built for both stations 

including uncertainties obtained with the Monte Carlo simulations (Figure 5.5). For each 

of the two stations, a unique rating curve was used between SSC and turbidity since the 
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relation was stable over time, indicating a more or less constant diameter for suspended 

particles [Lewis, 1996]. One hundred nine and 105 samples spread over the study 

period were used for the upstream and downstream stations, respectively. Examples of 

the statistical distributions representing SSC uncertainties for the downstream station 

can be found in Appendix 0.  

A unique discharge rating curve (12 flow rate gauging used) was built for the 

downstream station for the whole study period given the high stability of the paved 

section. Three rating curves (total of flow rate 19 gauging used) were built for the 

upstream station because the cross section bathymetry changed twice during the field 

campaign. Transient periods with uncertain relations between flow rate and water level 

were not considered in further analysis (3.5 days corresponding to approximately 6% of 

the campaign period, shown in Figure 5.6). An example of the statistical distributions 

describing the flow rate uncertainties of the downstream station can be found in 

Appendix 0.  

 

Figure 5.5: Example of rating curve and associated uncertainties for the upstream 
station (a) between SSC and turbidity or (b) between Q and the water level (enlargement 
of the envelope corresponds to an increase in uncertainty with absence of data and the 
use of a friction law).  

5.5.2. HYDROSEDIMENTARY DYNAMICS  

During the 2-month period, high variability was observed for Q and SSC at the season 

and the event scales (Figure 5.6-a). For the downstream station, SSC ranged from 0.02 

g L-1 to nearly 1.2 g L-1 during the period while Q ranged from 8 m3/s to 26 m3 s-1. 

Fluctuations associated with daily snowmelt could be observed on both signals. SSC 

associated with a given Q was found to decrease as the season advanced. A clear rising 

and falling limb due to snowmelt could be observed on hydrographs every day. Minimum 

daily flow rate values were generally observed around 12 am while peak flow rates 

generally occurred around 10 pm. It was therefore easy to manually define the 
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beginning, the peak and the end of 48 events during this period (see Appendix 5.9.3 for 

the main characteristics of the 48 events). An average time delay of 90 min for peak 

discharge propagation was observed and used to propagate the start and the end of 

each event from upstream to downstream. 

 

Figure 5.6: (a) Time series of the flow rate (Q) and the suspended sediment 
concentration (SSC) measured during the field campaign on the downstream station 
every 10 min. (b) Ratio of downstream over upstream suspended sediment yield (SSY) 
for each of the 48 events identified. The blue line corresponds to the median value 
obtained with the Monte Carlo simulations; the light blue polygon indicates the 95% 
confidence interval (CI) obtained with the Monte Carlo simulations; the horizontal 
dashed line corresponds to equal upstream and downstream SSY. Light grey polygons 
indicate periods for which the sediment budget approach was not applied due to an 
uncertain flow rate rating on the upstream station.  
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5.5.3. SEDIMENT BUDGET 

A highly contrasted dynamic was observed considering the sediment budget of the 

reach (Figure 5.6-b). According to the estimated uncertainties, 33 of the 48 events 

observed during the field campaign were found to have significant differences between 

upstream and downstream SSY. For individual events we measured a net deposition 

accounting for up to 71% of the upstream SSY, while others exhibited net erosion 

accounting for up to 51% of the upstream SSY (considering median values of SSY 

obtained with Monte Carlo simulations). It was also observed that the suspended 

sediment yield ratios (
𝑆𝑆𝑌𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚

𝑆𝑆𝑌𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚
) were statistically larger during the rising limb than 

during the falling limb for the 48 events (Figure 5.7), as confirmed by a Mann-Whitney 

test (p-value<0.01). This indicates that the reach exported fine sediments more easily 

during the rising limbs while it stored these sediments more efficiently during the falling 

limb.  

 

Figure 5.7: SSY ratio (
𝑺𝑺𝒀𝒅𝒐𝒘𝒏𝒔𝒕𝒓𝒆𝒂𝒎

𝑺𝑺𝒀𝒖𝒑𝒔𝒕𝒓𝒆𝒂𝒎
) of the reach during the rising limb as a function of 

the flux ratio during the falling limb of the hydrograph for each of the 48 events. Dashed 
black line corresponds to equality. Data correspond to median SSY ratio obtained with 
the Monte Carlo simulations. 



Chapter 5  
Quantifying erosion and deposition of fine sediments in a typical alpine river 

173 
 

At the campaign scale (transient periods associated with an uncertain upstream 

discharge rating curve not considered, light grey polygons in Figure 5.6), the deposition 

events were equivalent to 11% of the upstream fluxes (1500 t) while erosion events 

were equivalent to 9% of the upstream fluxes (1200 t). This budget at the whole 

campaign scale is not complete as one major event (May 27th) and two other smaller 

events could not be included in this analysis (missing data or uncertain upstream flow 

rate measurements). However, the available data obtained at the event or at the season 

scale show that erosion and deposition of fine particles was non-negligible in such 

streams, even though a relatively short distance (3.5 km) was considered compared with 

the upstream drainage area (130 km²). In addition, the two braided reaches studied were 

relatively small: 600 m×80 m for the downstream reach and 700 m×80 m for the 

upstream reach.  

 

Figure 5.8: (a) Ortho-photograph of the downstream braided reach (27 April), (b) 
classification in four storage facies and (c) SSY as a function of the averaged flow rate 
during the 48 events of the field campaign. 

The sediment budgets were compared to the amounts of fine particles stored in the two 

braided reaches. Mean stocks (considering an average value of surface and subsurface 
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storage) of 3.3 kg m-2 dm-1 for type 1 storage (n=1), 6.3 kg m-2 dm-1 for type 2 storage 

(n=7), 10.3 kg m-2 dm-1 for type 3 storage (n=8) and 3.2 kg m-2 dm-1 for underwater 

storage (n=8) were observed in the two braided zones (Figure 5.8Figure -a and Figure 

5.8-b). The respective area occupied by each facies obtained from the supervised 

classification of ortho-photographs from the downstream reach were 42% (underwater), 

7% (type 1), 19% (type 2) and 32% (type 3). Considering the area of the two braided 

reaches (74,000 m²), an arbitrary depth of 10 cm, as often considered in other studies 

[Buendia et al., 2016; Collins and Walling, 2007a; Lambert and Walling, 1988; Navratil et 

al., 2010], and using Eq.5.5, we estimated a stock of 450 t dm-1 for the two braided 

reaches (Figure 5.8-c).  

After sieving all of the 16 stocks samples (350g) we obtained the following GSD: 23% 

finer than 50µm, 51% finer than 100µm and 90% finer than 200µm. Using the Stokes 

law to estimate the settling velocities, we considered that particles coarser than 250µm 

were not sampled by using this protocol as we waited 4s for coarse sand to settle 

(protocol details in appendix 5.9.2). Considering only the GSD below 250µm, we 

observed that the particles of the river bed stock were very similar to those from the 

trapped suspended sediment one: 36% finer than 40µm, 43% finer than 63µm and 52% 

finer than 100µm. This result shows that river bed stock measurements can reasonably 

be compared with suspended fluxes especially since river bed stocks are 

underestimated due to an upper limit for sampled grain size. We could also compare the 

non-truncated surface GSD obtained with the laser diffraction sizer for 6 samples with 

the non-truncated trapped suspended one (appendix 5.9.1). Surface samples showed a 

certain variability as median diameters (D50) ranged between 104 and 214 µm but were 

in the same range as trapped suspended median diameter (208µm) confirming that the 

river bed can deliver these fine particles. 

5.5.4. TEMPORAL CHANGES 

The hydrosedimentary behavior of the river reach was found to evolve during the 

season. At the event scale, larger averaged flow rates were required at the end of the 

campaign for the reach to export fine sediments (Figure 5.9-a). Events exhibiting net 

erosion occurred approximately at discharges higher than 13 m3 s-1 in May while they 

required 20 m3 s-1 in late June. Considering only events with no significant differences in 

terms of fluxes (the SSY difference distribution obtained from Monte Carlo simulations 

was not significantly positive or negative), Figure 5.9-b shows a statistically significant 

linear relation between averaged discharge and time (𝑅² = 0.86). It was then possible to 

estimate an equilibrium flow rate (Qeq) needed so that the upstream flux equal to the 

downstream flux at the event scale for a given time 𝑡 in the season: 
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𝑄𝑒𝑞(𝑡) = 𝑎𝑡 + 𝑏,
𝑆𝑆𝐿𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚
𝑆𝑆𝐿𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚

(𝑄𝑒𝑞(𝑡)) → 1 (5.7) 

 

Figure 5.9: (a) Relation between averaged flow rate and ratio between upstream and 
downstream fluxes at the event scale. (b) Averaged discharge corresponding to 
nonsignificant events in terms of suspended flux differences (Qeq) over time. (c) Bedload 
transport rate measured at the downstream station as a function of the flow rate. Red 
dots and red line correspond, respectively, to measurements in May and the best fitted 
power law for this period. Blue dots and blue line correspond, respectively, to 
measurements in late June and the best fitted power law for this period. (d) Topographic 
changes between early May and late June of cross section 2 in the downstream braided 
reach (location in Figure 5.8). Note: events were considered nonsignificant when the 
SSY difference distribution obtained from Monte Carlo simulations was not significantly 
positive or negative (more detail in the Methods and Appendix sections). 

These seasonal changes for the fine sediment reach budget dynamics were consistent 

with morphodynamic modifications observed in the reach. Significant morphological 

transformations were observed on the downstream braided reach. For instance, Figure 

5.9-d shows a significant aggradation of cross section 2 (location in Figure 5.8) between 

the start and the end of the campaign. Also, bedload measurements taken at the 
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downstream station show a decrease of the bedload intensity for a given flow rate 

throughout the campaign (Figure 5.9-c). This indicates that the bed mobility of the reach 

decreases for similar discharges between the start and the end of the campaign, which 

could explain that higher flow rates are needed to erode fine sediments from the reach. 

5.5.5. FACTORS CONTROLLING EROSION AND DEPOSITION 

PROCESSES 

Considering 2-h averaged values and an average time delay of 90 min for peak 

discharge propagation, interesting trends were observed (Figure 5.10): the flux ratio 

(
𝑆𝑆𝐿𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚

𝑆𝑆𝐿𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚
) increased with the normalized flow rate 𝑄𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 /𝑄𝑒𝑞  (Qeq given by 

Eq.5.7) until a given upstream concentration from which 
𝑆𝑆𝐿𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚

𝑆𝑆𝐿𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚
 decreased 

whatever the discharge.  

 

Figure 5.10: Ratio of downstream over upstream fluxes (SSLdownstream/SSLupstream) as a 
function of the downstream flow rate normalized by the flow rate for equilibrium at that 
time (Qdownstream/Qeq). Dots were colored according to the upstream suspended sediment 
concentration (SSCupstream) and 2-h averaged values were considered.  
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Considering a limit 𝑆𝑆𝐶𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 value of approximately 0.2 g L-1 to split data between the 

two phases observed in Figure 5.10, Spearman rank correlation tests confirmed these 

visual trends (Table 5.1). For 𝑆𝑆𝐶𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 smaller than 0.2 g L-1 (79% of the data), the 

flux ratio was highly positively correlated with the normalized flow rate (𝜌 = 0.83) while it 

was less correlated with the suspended sediment centration (𝜌 = 0.35). For 𝑆𝑆𝐶𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 

larger than 0.2 g L-1 (21% of the data), the flux ratio had a nonsignificant correlation with 

the normalized flow rate (𝑝𝑣𝑎𝑙𝑢𝑒 > 0.05) while it was highly and negatively correlated with 

the SSC (𝜌 = −0.72). These observations suggest that both the flow rate and SSC 

control erosion and deposition of fine particles at the reach scale, but in opposite ways.  

 𝑆𝑆𝐶𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 < 0.2𝑔 𝑙−1, 𝑛 = 474 𝑆𝑆𝐶𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 > 0.2𝑔  𝑙−1, 𝑛 = 123 

 𝑄𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 /𝑄𝑒𝑞 𝑆𝑆𝐶𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑄𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 /𝑄𝑒𝑞 𝑆𝑆𝐶𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 

𝑆𝑆𝐿𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚
𝑆𝑆𝐿𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚

 0.83 0.35 -0.13 -0.72 

Table 5.1: Spearman rank correlation coefficients between the flux ratio of downstream 

over upstream fluxes (
𝑺𝑺𝑳𝒅𝒐𝒘𝒏𝒔𝒕𝒓𝒆𝒂𝒎

𝑺𝑺𝑳𝒖𝒑𝒔𝒕𝒓𝒆𝒂𝒎
), the downstream flow rate normalized by the flow rate 

for equilibrium at that time (𝑸𝒅𝒐𝒘𝒏𝒔𝒕𝒓𝒆𝒂𝒎/𝑸𝒆𝒒) and the upstream SSC (𝑺𝑺𝑪𝒖𝒑𝒔𝒕𝒓𝒆𝒂𝒎). Data 

with 𝑺𝑺𝑪𝒖𝒑𝒔𝒕𝒓𝒆𝒂𝒎  higher or lower than 0.2 g L-1 were considered separately. n 

corresponds to the number of data for each case, bolt values are significant correlations 
with p-value <0.05. 

5.6. DISCUSSION 

5.6.1. IMPORTANCE OF EROSION AND DEPOSITION 

PROCESSES 

The sediment budget demonstrated that erosion and deposition processes of fine 

particles were far from negligible in this typical alpine gravel bedded reach. Most of the 

events analyzed showed significant differences between upstream and downstream 

fluxes and complex interactions with the bed controlled by both the SSC and flow rate. 

Larger events than those recorded during the period studied with potentially greater bed 

mobilization or short and highly erosive stormy events with a limited flow rate might lead 

to an even greater buffering effect of the river bed. In addition, one must keep in mind 

that all these observations concern a short 3.5-km braided reach. For longer streams 

and wider braiding morphologies, the cumulative effect might be substantial. 

Even if the stock of 450 t dm-1 of fine particles estimated for the two braided reaches is 

associated with large uncertainties and only corresponds to a measurement taken at a 

given moment, interesting conclusions can be drawn. The stock is rather high compared 
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to the fluxes exported during most individual events of the field campaign (Figure 5.8-c) 

and it is on the same order of magnitude as the range of both maximum individual event 

depositions of 317 tons (159–482 t with 95% confidence interval) and erosion of 157 t 

(62–248 t with 95% confidence interval). This means that the reach studied can act as a 

fine sediment buffer. Considering an equivalent average fine sediment storage in the 

river bed of 6 kg m-2 dm-1 and that the whole reach area is mobilized, the maximum 

remobilization event (157 t) might correspond to an approximate remobilization depth 

between 1.5 cm and 5.5 cm (considering only uncertainties on flux differences, 62–248 

t). Even though the mobilization of the sediment matrix might occur at some locations 

and not in the whole area of the braided zone, this order of magnitude is also consistent 

with the topographic changes observed.  

5.6.2. CONCEPTUAL DESCRIPTION OF THE PROCESSES 

INVOLVED 

Following the results detailed above, we could hypothesize that erosion and deposition 

processes occur simultaneously in the river bed in variable proportions at various 

locations depending on the hydrosedimentary forcing (Figure 5.11).  

(A) For low flow rates (Q) and low SSC, only limited zones of the main channel exhibit 

high shear stresses leading to a low erosion flux. Deposition fluxes occur in zones with 

low shear stresses such as secondary channels or main channel boundaries. In that 

case, the reach is globally storing fine particles. (B) For moderate flow rates associated 

with relatively low SSCs, the river bed is mobilized in the main channel and secondary 

channels leading to significant erosion fluxes. Deposition fluxes are low because they 

are limited in space and intensity. In that case, the reach is globally releasing fine 

particles. (C) For high flow rates associated with high SSCs, the river bed is actively 

mobilized with possible migration of the main channel and scouring of secondary 

channels leading to high erosion fluxes. Deposition fluxes are even larger because they 

have a large spatial extent (submersion of the entire cross section) and because they 

have a high intensity (high SSC). In that case, the reach is globally storing fine particles. 

This conceptual description highlights the impact of the bed morphology and bed 

mobility on both erosion and deposition of fine particles: (i) deposition controlled by the 

shear stress distribution in the cross section and (ii) erosion controlled by the bed 

(coarse particles) mobility. 
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Figure 5.11: Conceptual description of the erosion and deposition processes occurring 
in a cross section of the reach for various hydrosedimentary forcings. Q denotes the flow 

rate; SSC denotes the suspended sediment concentration; 
𝑺𝑺𝑳𝒅𝒐𝒘𝒏𝒔𝒕𝒓𝒆𝒂𝒎

𝑺𝑺𝑳𝒖𝒑𝒔𝒕𝒓𝒆𝒂𝒎
 corresponds to 

the flux ratio of downstream over upstream fluxes. Note: the nonlinearity of the relation 
SSC vs Q explains why it is possible to have (A) low Q with low SSC, (B) moderate Q 
with low SSC and (C) high Q with high SSC. 

5.6.3. IMPLICATION FOR SUSPENDED LOAD MODELING 

These observations suggest that models (conceptual, statistical and physically based) 

that attempt to reproduce or predict the suspended load transfer through gravel bedded 

streams might take into account such erosion and deposition processes. This could be 

particularly true for catchments with active river bed morphologies. The conceptual 

storage reservoir usually used in conceptual models to reproduce storage and release of 

fine particles [Asselman, 1999; Park and Hunt, 2018; Picouet et al., 2009] is for now 

poorly understood. To the best of the authors knowledge, Park and Hunt (2018) were 

the first to propose a simplified description of this storage and release behavior at the 

catchment scale, based on physical processes: gravel bed scouring and gravel matrix 

infiltration. They proposed that under a certain critical flow rate corresponding to gravel 

bed mobilization, fine particles infiltrate the gravel matrix if pore spaces are empty. For 
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higher flow rates, they considered that these stored particles were released in the flow 

depending on the scouring depth, which was defined as a function of the flow rate 

magnitude. This increase of the bed production of fine particles as the flow rate 

increases is supported by the measurements recorded in the alpine river reach studied 

(Figure 5.10). The conceptual model proposed by Park and Hunt also considers that 

during a flood event, fluxes at the outlet of the reach due to bed mobilization are larger 

during the rising limb than during the falling limb of the hydrograph. Then the previously 

flushed gravel matrix captures fine particles coming from upstream more easily. Such 

differences between rising limb and falling limb were also observed on the reach studied 

(Figure 5.7).  

Future research might focus on determining the buffering capacity of river reaches at 

various time scales (instantaneous, event, season and annual) and for a variety of 

gravel bedded streams. This will help to characterize both the river bed properties 

(morphology, coarse grain size distribution) and the upstream forcing properties (fine 

grain size distribution, hydrology and SSC range) that generally control the shape of the 

erosion and deposition functions.     

5.7. CONCLUSION 
To quantify the processes of erosion and deposition of fine particles in gravel bedded 

streams, a fine sediment budget approach was applied on a 3.5-km typical braided 

stream from the French Alps using high-frequency suspended load measurements taken 

over 2 months of the melting season. Monte Carlo simulations were used to propagate 

uncertainties and determine precisely if deposition or erosion occurs during each of the 

48 events identified. The results indicate that even over short distances (the reach 

considered was relatively small compared to the upstream catchment area) most events 

(33 out of 48) exhibited significant flux differences. These differences at the event scale 

ranged between net deposition equivalent to 71% of upstream suspended yield and net 

erosion equivalent to 51%. For most events, the reach tends to export fine sediments 

more easily during the rising limb than during the falling limb, which could result from a 

gravel matrix flushing process followed by fine particle entrapment in empty pore 

spaces. At a nearly instantaneous time scale, the fine sediment budget of the reach was 

found to be controlled by both flow rate and upstream SSC in a complex way: erosion 

fluxes increase as the water discharge increases, while deposition fluxes increase as 

SSC increases. Also, during the 2 months, the sediment budget equilibrium of the reach 

exhibited significant changes that occurred concomitantly with morphodynamic changes 

in the reach (topography and bedload transport). 

Finally, these field observations demonstrate that the dynamic of suspended load in this 

type of alluvial alpine river is complex and exhibits strong interactions with the gravel 

bed matrix. It raises questions about the relevance of the washload concept in gravel 



Chapter 5  
Quantifying erosion and deposition of fine sediments in a typical alpine river 

181 
 

bedded streams and suggests that modeling efforts at the catchment or the reach scale 

should necessarily take into account such interactions between fine particles and the 

gravel bed. 

5.8. NOTATIONS 
The following symbols are used in this paper. 

𝑆𝑆𝑌 Suspended sediment yield (t) 

𝑆𝑆𝐿 Suspended sediment load (kg/s) 

𝑆𝑆𝐶 Suspended sediment concentration (g/l) 

𝑄 Flow rate (m3/s) 

𝑋𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 Variable X for the upstream station 

𝑋𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 Variable X for the downstream station 

𝐸 Erosion flux  

𝐷 Deposition flux 

𝑆𝑡𝑟𝑒𝑎𝑐ℎ Fine sediment stock estimate of the reach (t/dm) 

𝑠𝑡𝑖̅̅̅̅  Average local stock for the storage facies I (kg/m²/dm) 

𝐴𝑖 Area of the storage facies I (m²) 

𝑡 Time 
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5.9. APPENDIX 

5.9.1. ERROR QUANTIFICATION FOR SUSPENDED LOAD 

MEASUREMENTS 

5.9.1.1. Uncertainties associated with SSC measurements 

Reference Type of study Observations 

[Horowitz et al., 
1992] 

Field 

SD: ±10%. Errors on SSC measurements and 
regression between turbidity and SSC using 
automated water sampler compared to 
isokinetic samplers (EDI/EWI). 
 

[Horowitz, 2008; 
Horowitz et al., 
2001] 

Field 
SD: ±10%. Errors concerning the reproducibility 
of isokinetic sampler (EDI/EWI) 
 

[Navratil et al., 
2011] 

Lab 

17% overall underestimation for SSC using 
automated water sampler. Uncertainty 
quantified as a function of the SSC (g/L): 

𝑆𝑑 =  0.23 ∗ 𝑆𝑆𝐶0.79 
 

[Clark et al., 2009] Field / Lab 

Underestimation on SSC of 20% and 50% for 
automated water sampler for particles of 100 
µm and 500 µm (d50), respectively. 
 

[Bossong et al., 
2006] 

Field / Lab 

SD: ±32% on SSC for field and lab errors for 
automated water sampler compared to 
isokinetic samplers (EDI/EWI). 
 

[Allen and 
Petersen, 1981] 

Field 

SD: ±8% on SSC for field and lab errors for 
automated water sampler compared to 
isokinetic samplers (EDI/EWI). 
 

Table 5.2: Short review of uncertainties associated with SSC sampling found in the 
literature. 

  



Chapter 5  
Quantifying erosion and deposition of fine sediments in a typical alpine river 

183 
 

5.9.1.2. Monte Carlo framework for suspended load uncertainty 

propagation 

 

Figure 5.12: Monte Carlo simulation used to propagate uncertainties on suspended 
load. Tumeasured corresponds to the turbidity measured, Tusim indicates the turbidity 
simulated after randomly adding its uncertainty corresponding to a Gaussian distribution 
with a 6% coefficient of variation, SSCsim indicates the SSC simulated after randomly 
sampling a value in the gamma distribution corresponding to Tusim. hmeasured corresponds 
to the water level measured, hsim to the water level simulated after randomly adding its 
uncertainty corresponding to a Gaussian distribution with a standard error of ± 3.5 cm, 
Qsim1 corresponds to the discharge calculated with the mean rating curve for hsim and 
Qsim2 indicates water discharge simulated after adding a randomly sampled error in the 
logistic distribution corresponding to Qsim1. SSLsim is the flux of suspended sediment 
simulated. 

  



5.9 Appendix 

184 
 

5.9.1.3. Suspended sediment concentration uncertainty propagations 

 

Figure 5.13: Framework used to propagate uncertainties on turbidity, SSC 
measurements and regression curve used between SSC and the turbidity 
measurements. This analysis was applied to all turbidity and water sample pairs for 
which SSC was measured. 1) For each turbidity and SSC pair, a random sampling in 
truncated (only positive values) normal distributions associated with turbidity (6% 
coefficient of variation) and SSC uncertainty (25% standard deviation). 2) a Box-Cox 
transformation is done on these first simulated values (Tusim1 and SSCsim1) to prevent 
heteroscedasticity. 3) A linear regression is done on these simulated and transformed 
turbidity and SSC pairs and homoscedasticity is checked. 4) For each turbidity unit, an 
SSC value predicted using the previously fitted regression curve is calculated. The 
regression error is added to this value to obtain SSCsim2 (using a random drawn in a 
Gaussian distribution associated with the standard error of the regression curve). 5) 
These steps are repeated 2000 times to obtain 2000 values of simulated SSC (that take 
into account turbidity, SSC and regression curve uncertainties) for each turbidity unit. 6) 
The data obtained are back-transformed and gamma distributions explaining simulated 
SSC (SSCsim2) are fitted for each turbidity unit. These gamma distributions can then be 
used in the Monte Carlo simulations (Figure 5.12). 
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To propagate uncertainties on SSC, gamma distributions were fitted to describe possible 

SSC values including uncertainties on turbidity measurements, SSC samples and the 

regression curve used between turbidity and SSC (framework detailed in Figure 5.13). 

Gamma distributions were used as they were found to be the best statistical distributions 

to represent these uncertainties. These distributions were fitted for each turbidity unit in 

the measurement range using the Anderson-Darling criteria and the R package 

“fitdistrplus” from Delignette-Muller and Dutang (2014). If the Anderson-Darling criterion 

was not fulfilled, the null hypothesis considering that empirical error distribution was 

similar to the fitted distribution was rejected. The fitted distributions were then used to 

propagate uncertainties associated with SSC measurements on suspended load at each 

time step. 

The probability density function of the gamma distribution used to propagate 

uncertainties on SSC values is defined by the following equation: 

𝑓(𝑥 | 𝑘, 𝛽) =
𝛽𝑘

𝛤(𝑘)
𝑥𝑘−1exp (−𝛽𝑥) (5.8) 

in which 𝑘 is a shape parameter (positive) and 𝛽 is a rate parameter (positive) fitted for 

each turbidity unit (Figure 5.14) after statistical analysis detailed in Figure 5.13. 

 

Figure 5.14: Examples of fitted shape and rate parameters of the gamma function used 
for the turbidity uncertainty propagation of the downstream station. 
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5.9.1.4. Flow rate uncertainty propagations 

 

Figure 5.15: Framework used to propagate uncertainties on water level, the flow rate 
measurements and regression curve used between the water level and the flow rate 
measurements. This analysis was applied on all water level and flow rate pairs for which 
gauging was performed. 1) For each water level and flow rate pair, random sampling in 
truncated (only positive values) normal distributions associated with water level 
(standard deviation, ± 3.5 cm) and Q uncertainty (standard deviation, 5–15% depending 
on the type of gauging). 2) A power law is fitted on these simulated water level and Q 
pairs and homoscedasticity is checked. 3) For each centimeter a Q value predicted 
using the previously fitted power law is calculated. The regression error is added to this 
value to obtain Qsim2 (using a random drawn in a Gaussian distribution associated with 
the standard error of the fitted power law). 4) These steps are repeated 2000 times to 
obtain 2000 values of simulated Q (that take into account water level, flow rate and 
regression curve uncertainties) every centimeter. 5) A power law is fitted on the 
averaged Qsim2 obtained every centimeter. Logistic distributions explaining the errors 
around this power law are fitted every centimeter. These logistic distributions can then 
be used in the Monte Carlo simulations (Figure 5.12). 
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Logistic distributions were fitted to describe uncertainties on flow rate values due to 

water level measurements, flow rate measurements and the regression curve used to 

relate flow rate and water level (framework detailed in Figure 5.15). Logistics 

distributions were used because they were found to be the best statistical distributions to 

represent these uncertainties. These distributions were fitted every centimeter in the 

measurement range using the Anderson-Darling criteria and the R package “fitdistrplus” 

from Delignette-Muller and Dutang (2014). These distributions were then used to 

propagate uncertainties on flow rate values used for suspended load calculation at each 

time step.  

The probability density function of the logistic distribution used for error distribution in 

flow rate uncertainty propagation is defined by the following equation: 

𝑓(𝑥 | 𝜇, 𝑠) =
exp (

−(𝑥 − 𝜇)
𝑠 )

𝑠 (1 + exp (
−(𝑥 − 𝜇)

𝑠 ))

2 (5.9) 

in which 𝜇  is the location parameter (equal to zero in our case) and 𝑠  the scale 

parameter (positive) fitted every centimeter (Figure 5.16) after the Monte Carlo 

simulations detailed in Figure 5.15. 

 

Figure 5.16: Example of fitted shape parameters of the logistic distributions used for 
flow rate uncertainty propagation for the downstream station. 
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5.9.2. FINE SEDIMENT STOCK ESTIMATE 

The sampling technique proposed by Navratil et al. (2010) was used to measure local 

stocks of fine sediments in dried storage facies. No distinction was made during the 

analysis between surface and subsurface stocks given that an average value was 

considered.  

Measurements consist of a first sampling of the bed material (area, 28×34 cm), which 

includes the gravel armor layer and all sediments deposited on this layer. These bed 

materials are then put in a container filled with 20 L of clear water and the mixture is 

agitated for 10 s using a shovel. After waiting 4s for coarse particles to settle, a turbid 

water sample (250 mL) is then taken at the container surface and brought to the lab to 

determine its suspended sediment concentration. All previous steps are repeated for the 

subsurface layer (approximately 10 cm deep). It is then possible to estimate a local 

value of fine particle storage using the following equations: 

𝑠𝑡𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
𝑆𝑆𝐶𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑟 1 × 𝑉𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 1

𝐴 × ℎ1
 (5.10) 

 

 𝑠𝑡𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
(𝑆𝑆𝐶𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 2−𝑆𝑆𝐶𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑟 1)×𝑉𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 2

𝐴×ℎ2
 (5.11) 

in which 𝑠𝑡𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is the local stock estimate in the surface (g m-2 dm-1), 𝑆𝑆𝐶𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑟 1 is 

the SSC in the first water sample (g L-1), 𝑉𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 1  is the volume of water in the 

container (L), 𝐴 is the surface of sampling (m²), ℎ1is the depth of the first sampling (dm), 

𝑠𝑡𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is the local stock estimate in the subsurface (g m-2 dm-1), 𝑆𝑆𝐶𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑟 2 is 

the SSC in the second water sample (g L-1), 𝑉𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 2 is the volume of water in the 

container after the first water sample was taken (L) and ℎ2 is the depth of the second 

sampling (dm). 

The Lambert and Walling (1988) protocol already used in several field studies was used 

to estimate underwater storage [Collins and Walling, 2007a; Duerdoth et al., 2015; Piqué 

et al., 2014; Walling et al., 1998]. A cylinder 29 cm in diameter (𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟, m) was pushed 

in the river bed to separate the sampling area from the flow. Then a trowel was used to 

disturb and agitate the bed before a turbid water sample was taken in a 250-mL bottle to 

estimate its concentration in the lab ( 𝑆𝑆𝐶𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 , g/L). No differences were made 

between the surface and subsurface. The depth of bed agitation (ℎ𝑏𝑒𝑑 𝑎𝑔𝑖𝑡𝑎𝑡𝑖𝑜𝑛, dm) was 

estimated as well as the water volume in the cylinder (𝑉𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟, L) to finally obtain the 

local stock estimates 𝑠𝑡𝑤𝑎𝑡𝑒𝑟 (g m-2 dm-1): 
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𝑠𝑡𝑤𝑎𝑡𝑒𝑟 =
𝑆𝑆𝐶𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 × 𝑉𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 × ℎ𝑏𝑒𝑑 𝑎𝑔𝑖𝑡𝑎𝑡𝑖𝑜𝑛
 (5.12) 

5.9.1. FINE PARTICLE GRAIN SIZE DISTRIBUTION  

In this section we report grain size distributions (GSD) of fine particles stored in the 

riverbed and transported in suspension. In Figure 5.17 measurements obtained with the 

laser diffraction sizer (Dep. 1 to 6) or by sample sieving are presented. The left panel 

shows truncated GSD of surface deposits (grey lines), river bed stocks (blue line, 

surface and subsurface are mixed) and trapped suspended sediments (red line). These 

GSD were relatively similar while some surface samples (Dep.1 to Dep.3) were a bit 

coarser and trapped suspended sediments exhibited a slightly higher fine content. The 

right panel shows non-truncated GSD of surface deposits and trapped suspended 

particles. These GSD were in the same range while the GSD of surface deposit were 

significantly variable.  

 

Figure 5.17: Truncated (left panel) and non-truncated (right panel) grain size distribution 
of suspended sediments captured in a trap (red lines), stored at the river bed surface 
(grey lines) or measured with the river bed stock resuspension protocol (blue line). 

5.9.2. FERGUSON EQUATION 

To extrapolate the rating curve obtained between water depth and flow rates, the 

variable power equation proposed by Ferguson (2007) was used in an iterative way. The 

parameters needed are the slope (𝑆) of the water surface (-), the coarser surface grain 

size distribution (𝐷84 , the 84% percentile, m) determined using the Wolman count 

technique [Wolman, 1954] and the cross section’s topography. The water level 

corresponding to a given flow rate was calculated using Eq.5.13: 
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𝑈

√𝑔𝑅ℎ𝑆
=  

2.5
𝑅ℎ
𝐷84

√1 + 0.15 (
𝑅ℎ
𝐷84

)
5/3

 
(5.13) 

5.9.3. MAIN EVENT CHARACTERISTICS  

Date of 
Peak 

Downstrea
m 

Upstream Upstream vs downstream 

SSYq50% (t) SSYq50% (t) ΔSSYq50% (t) 

𝑆𝑆𝑌𝑑𝑜𝑤𝑛 

𝑆𝑆𝑌𝑢𝑝
q50

% 

𝛥𝑆𝑆𝑌 

𝑆𝑆𝑌𝑢𝑝
 q50% Signif 

? 

05/05 01:10 203 221 -18 0.92 -8% No 
05/05 22:40 315 297 18 1.06 6% No 
06/05 21:50 965 1114 -149 0.87 -13% Yes 
07/05 20:20 779 932 -155 0.83 -16% Yes 
11/05 20:30 285 198 87 1.44 44% Yes 
12/05 23:40 360 239 122 1.52 51% Yes 
13/05 16:10 208 152 56 1.37 37% Yes 
15/05 19:00 32 50 -18 0.64 -36% Yes 
17/05 00:00 31 48 -17 0.65 -35% Yes 
17/05 21:00 50 61 -11 0.82 -18% Yes 
19/05 00:30 113 95 18 1.19 18% Yes 
19/05 20:30 88 84 4 1.05 5% No 
20/05 20:20 99 86 12 1.15 14% No 
21/05 22:10 109 95 14 1.14 14% No 
22/05 21:30 103 89 14 1.16 16% No 
23/05 21:40 121 101 20 1.21 20% Yes 
24/05 22:40 109 90 19 1.20 21% Yes 
25/05 22:40 379 253 125 1.50 49% Yes 
26/05 19:30 420 278 142 1.51 51% Yes 
28/05 18:50 1453 1769 -317 0.82 -18% Yes 
29/05 20:50 834 960 -125 0.87 -13% Yes 
30/05 23:00 422 418 5 1.01 1% No 
31/05 20:50 286 203 83 1.41 41% Yes 
01/06 22:30 225 149 76 1.51 51% Yes 
02/06 21:50 463 392 71 1.18 18% Yes 
04/06 00:00 275 215 61 1.28 28% Yes 
04/06 20:20 178 171 8 1.04 4% No 
06/06 00:00 229 192 38 1.19 19% Yes 
06/06 18:30 100 125 -25 0.80 -20% Yes 
07/06 22:30 422 352 69 1.19 19% Yes 
08/06 22:30 147 139 9 1.06 6% No 
09/06 21:00 180 185 -5 0.97 -3% No 
10/06 22:40 75 87 -12 0.87 -14% No 
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11/06 11:00 801 644 159 1.25 24% Yes 
12/06 23:20 297 277 20 1.07 7% No 
13/06 17:40 154 181 -26 0.86 -14% No 
14/06 20:20 127 177 -50 0.72 -28% Yes 
15/06 22:50 88 144 -56 0.61 -39% Yes 
16/06 20:00 75 141 -67 0.53 -47% Yes 
17/06 21:30 70 138 -68 0.51 -49% Yes 
18/06 22:30 116 175 -60 0.66 -34% Yes 
19/06 22:00 170 209 -39 0.81 -19% Yes 
20/06 23:10 364 394 -31 0.93 -7% No 
21/06 22:20 246 261 -15 0.94 -6% No 
22/06 21:10 131 189 -58 0.69 -31% Yes 
23/06 21:20 63 135 -72 0.47 -53% Yes 
24/06 22:00 29 96 -67 0.30 -70% Yes 
25/06 20:00 23 80 -57 0.29 -71% Yes 

Table 5.3: Main characteristics of the 48 events observed during the field campaign on 
upstream and downstream stations. SSYq50% corresponds to the median value obtained 
during Monte Carlo simulations for the SSY of each event. ΔSSYq50% corresponds to the 
median value obtained during Monte Carlo simulations for the difference between 

downstream and upstream SSY, 
𝑺𝑺𝒀𝒅𝒐𝒘𝒏 

𝑺𝑺𝑳𝒖𝒑
q50% indicates the median value obtained during 

Monte Carlo simulations for the suspended sediment yield ratio and 
𝜟𝑺𝑺𝒀 

𝑺𝑺𝒀𝒖𝒑
 q50% the 

median value obtained during Monte Carlo simulations for the relative SSY difference 
(with regard to the upstream SSY). “Signif” indicates that the upstream and downstream 
SSY distributions are significantly different considering the measurements uncertainties. 

  



 

 
 

  Chapter 6
Identifying bed-related suspended 

load by using continuous turbidity 

and seismic measurements in a 

gravel bedded alpine stream 

This sixth chapter presents the use of concomitant continuous seismic and turbidity 

measurements to identify interactions between fine suspended particles and the river 

bed mobility in a braided Alpine river (La Séveraisse). This work shows how the use of 

these two non-time-consuming continuous measurements opens up interesting 

opportunities concerning the understanding of suspended load dynamic and sediment 

source in the field. These measurements are consistent with previous local and large 

scale observations confirming that strong interactions exist between suspension and 

river bed mobility in Alpine gravel bed rivers. This chapter corresponds to an article in 

preparation by Misset C., Recking A., Legout C., Gimbert F., Geay T., Bakker M., 

Cazilhac M., Poirel A. and Zanker S. 

      

 

Ce sixième chapitre présente l’utilisation conjointe de mesures continues de turbidité et 

de vibrations sismiques afin d’identifier les interactions entre les sédiments fins et la 

mobilité du lit d’une rivière en tresse alpine (La Séveraisse). Ce travail montre que 

l’utilisation de ces deux mesures continues faciles à mettre en œuvre sur le terrain ouvre 

des opportunités intéressantes concernant la compréhension de la dynamique du 

transport par suspension et de l’activation de différentes sources sédimentaires. Ces 

mesures sont cohérentes avec les précédentes observations locales et à large échelle. 

Elles confirment les fortes interactions entre suspension et mobilité du lit des rivières à 

gravier alpines. Ce chapitre est un article en cours de préparation (contributeurs Misset 

C., Recking A., Legout C., Gimbert F., Geay T., Bakker M., Cazilhac M., Poirel A. and 

Zanker S.).  
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6.1. INTRODUCTION 
Studying sediment partitioning has been a major research topic for decades because 

this conceptual description is crucial for our understanding of sediment transport 

processes. Coarse particles (Boulder to sand sizes) are often considered to be 

transported as bedload by sliding, rolling or saltating with strong interactions with the 

river bed and its morphology. Finer particles (sand to clay size) are often considered to 

be transported as suspension in the water column. This fraction has been subdivided 

into bed-material suspended load and wash load depending on the occurrence of 

interactions that suspension has with the riverbed [Einstein et al., 1940]. This conceptual 

subdivision led to differences in the way these processes are modelled: bed-material 

suspended load is considered to be controlled by the flow capacity while wash load is 

considered to be a function of sediments availability in the watershed. Many theoretical 

and practical criteria have been proposed for partitioning suspension into wash load and 

bed-material suspended load. These are mostly based on the sediment size fraction 

absent from the river bed surface [Einstein et al., 1940], a critical particle size 

[Partheniades, 1977], a critical Rouse number [Wang and Dittrich, 1992; Wang et al., 

2007], a size ratio between bed and suspended material or a balance between transport 

capacity and sediment availability [Hill et al., 2017]. These criteria help to define the 

conditions for wash load but are mainly based on flume experiments or on punctual field 

measurements. Consequently, it is usually difficult in the field to conclude on interactions 

between suspended load and the river bed. This led to the use of a wide variety of 

variables describing both hillslope and river bed erosion to predict suspension in the 

past few decades such as rain, temperature or flow rate [Asselman, 1999; Buendia et 

al., 2016; Costa et al., 2018; Khosravi et al., 2018; Mano et al., 2009; Park and Hunt, 

2018; Picouet et al., 2009]. 

One valuable way to quantify the presence or absence of interactions between 

suspension and the river bed would be to measure concomitantly riverbed mobility and 

suspended load. Indeed, several studies suggest that in gravel bedded streams, the 

mobility of coarse particles exert a significant control on suspended load by controlling 

the storage and release of subsurface material [Mooneyham and Strom, 2018; Navratil 

et al., 2010; Park and Hunt, 2017] and a relation between bedload and suspended load 

transport has been observed in previous studies [Métivier et al., 2004; Meunier et al., 

2006; Misset et al., 2019; Turowski et al., 2010]. 

To study these interactions and better characterize the fraction of suspension related to 

the river bed mobilization, we propose to use continuous indirect measurements of the 

river bed mobility (seismic measurement) and suspended load (turbidity measurement). 

The main advantages of these measurement techniques are the high temporal 

resolution and limited field efforts. Thus, this work addresses the following questions: (i) 

can we use continuous indirect measurements to quantify interactions between coarse 
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particles mobility and fine particles dynamic? (ii) How do river bed and hillslope 

respectively contribute to the suspended load in gravel bedded alpine rivers? 

6.2. FIELD SITE AND METHODS 
These questions were addressed on an alpine river (La Séveraisse) located in the Ecrin 

massif in the French Alps (Figure 6.1) during the April-August period. At the monitoring 

station (red point in Figure 6.1) the drainage area is 130km² and comprises some 

glaciers located on the upper part of the basin (maximum altitude, 3579 m NGF). This 

catchment is characterized by a low human impact and active eroded areas on hillslopes 

(Figure 6.1-a) generating large quantities of sediments during debris flow [Helsen et al., 

2002] or rock fall events. The river bed in the downstream part of the valley has a slope 

between 1 and 2% and alternate between braiding with active width of approximatively 

100m (Figure 6.1-b) and narrower constrained sections 20m wide. The river bed grain 

size distribution (GSD) obtained from non-truncated Wolman counts (more than 1600 

particles performed in May and June) in the two braided sections upstream the 

measurements station has a median diameter of 37mm and a 84th percentile of 113mm. 

GSD of fine particles deposited at the riverbed surface has a median diameter ranging 

between 100 and 200µm (6 samples) which was found to be similar to fine particles 

transported as suspension and captured in a trap (median diameter around 200µm on 

500g sieved). River bed stock measurements (16 samples) and trapped suspended 

particles exhibit similar size distributions. The hydrology is influenced by snowmelt 

during the late spring to the beginning of summer and by the ice-melt and storms during 

the late summer and autumn. Low flow periods are observed when the basin has a snow 

cover in winter.  

A preexisting hydrometric station (red point in Figure 6.1) maintained by EDF (French 

hydro-electricity company) measured a 1-min average water level every 10-minutes 

using pressure sensor. Repeated gauging were performed using salt dilution, current 

meter or Acoustic Doppler Current Profiler techniques to build a rating curve between 

the water level (h) and the flow rate (Q): 

ℎ = 𝑓(𝑄) (6.1) 

A turbidity meter (Hach Lange Solitax) was installed approximately 50 cm above the 

bottom of the river bed near the water pressure sensor. Such sensor has a detector 

aligned at an angle to the beam to measure the scattered light. It also has an automatic 

cleaning system preventing the development of biofilm on the sensor which was also 

checked regularly by the field team. An average value of turbidity (Tu) measured for 1 

min was recorded every 10 min. Turbidity measurement is a function of suspended 

sediment concentration (SSC) and suspended particle size (Dsuspension) [Landers and 

Sturm, 2013; Lewis, 1996]: 
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𝑇𝑢 = 𝑓(𝑆𝑆𝐶, 𝐷𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛) (6.2) 

It is thus commonly used coupled with direct sampling to estimate suspended load 

[Landers and Sturm, 2013; Lewis, 1996; Mano et al., 2009; Navratil et al., 2011; Orwin 

and Smart, 2004a]. As direct sampling of SSC were only available from May to late 

June, it was not possible to ensure that the SSC-turbidity relationship was stable over 

the whole study period. Thus, we preferred to use the raw turbidity signal as a surrogate 

of SSC including possible particle size changes through time. According to observations 

conducted by Landers and Sturm (2013) for a given SSC a decrease in suspended 

sediment size will induce an increase of the measured turbidity.  

A seismic sensor (PE-6/B geophone) was installed 25 m from the left channel bank near 

the turbidity and water pressure sensors. This geophone records ground-motion 

vibration in the range ca. 5–200 Hz including frequencies expected for bedload transport 

[Gimbert et al., 2019; Tsai et al., 2012] and flow turbulence [Gimbert et al., 2014]. The 

data were recorded with a 400-Hz frequency on a DiGOS DATA-CUBE3. The raw 

seismic signal of vertical ground vibrations (m/s) calculated using geophone 

specifications and data logger settings was analyzed in the time frequency domain. 

Spectrograms with a 3s temporal resolution were obtained using Fast Fourier Transform 

and the method of Welch (1967) as in Burtin et al. (2016). The median value of this 

signal on a 10-min time step was used to remove anthropogenic noises. We then 

calculated the seismic power 𝑃𝑏 in the 20- to 80-Hz frequency range allowing maximum 

sensitivity to bedload while minimizing the contribution of strong site effects at higher 

frequencies and flow turbulence at lower frequencies [Cook et al., 2018; Gimbert et al., 

2014]. Seismic power caused by bedload transport (𝑃𝑏) results from impacts exerted by 

the transported material on the river bed. It is expected to be a function of the bedload 

flux (𝑄𝑏) and of the coarsest fraction of the transported material (𝐷𝑏𝑒𝑑𝑙𝑜𝑎𝑑) to the power 3 

[Tsai et al., 2012]: 

𝑃𝑏 = 𝑓(𝑄𝑏 × 𝐷𝑏𝑒𝑑𝑙𝑜𝑎𝑑
3) (6.3) 

Air temperature and rain data were also provided by EDF with a 6-min time step. These 

measurements were conducted on a station located approximately 5km upstream the 

outlet of the catchment (green point in Figure 6.1).   
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Figure 6.1: Presentation of the field site and the monitoring configuration. 
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6.3. RESULTS 
During the May-August period, the temperature ranged between 0 and nearly 30°C, the 

flow rate ranged between 5 and 41m3/s and rainfall attained a maximum of 

13.8mm/6min (Figure 6.2). Turbidity varied over more than two orders of magnitude (6-

600 FNU) and seismic power over nearly three (5.10-15-2.10-12 m²/s²). A first look at 

these data revealed that flow rate, turbidity and seismic signals exhibited daily 

fluctuations related to snowmelt or ice-melt. Two periods could be identified. During the 

melting period (May-June), the flow rate was rather high (>10m3/s), rainfall relatively 

limited and the turbidity evolved concomitantly with the seismic power. During the late 

season (July-August) the flow rate was on average lower except during storm events 

with intense rainfall that occurred mainly in late July to early August. Turbidity and 

seismic power evolved in a different way during this period as high turbidity could be 

observed while seismic power was relatively low.  

A more detailed analysis (Figure 6.3) indicates that the relation between turbidity and 

flow rate was highly variable, with two orders of magnitude being observed for a given 

flow rate. Tu values indicated a seasonal variation, with a Tu-Q relation decreasing from 

May to June. It then increased during the July-August period (Figure 6.3-a). While such 

high variability of turbidity time series has been observed in several previous studies 

[Guillon et al., 2018; Mano et al., 2009; Mao and Carrillo, 2016; Navratil et al., 2011], 

flow rate was often the only available variable that was used to interpret suspended load 

dynamic. 

The relation between seismic power and flow rate (Figure 6.3-b) shows a similar 

seasonal decreasing trend during the May-June period while Pb was relatively high (>10-

14 m²/s²). Pb-Q relation was more variable during the second period and high Pb could be 

observed for low Q. Considering the lower Pb values measured for a given flow rate, a 

breaking point is observed with a steeper increase of Pb for Q larger than approximately 

10 to 12m3/s. This might be explained by a predominant contribution of turbulence 

induced vibrations for the lower part and an initiation of bedload inducing additional 

ground vibrations for the upper part (Bakker et al. 2019 under review).  
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Figure 6.2: Time series of the measurements conducted in the Séveraisse catchment. 

When analyzing the relation Tu-Pb in Figure 6.3-c, two well defined behaviors could be 

observed. For high seismic power ( 𝑃𝑏 >1.5×10-14 m²/s² and Tu<1.07×1022 𝑃𝑏
1.5 ) 

associated with significant bed mobilization, Tu and Pb co-evolved and were well 

correlated (Spearman and Pearson correlation coefficient of respectively 0.8 and 0.7). 

This mainly concerns the melting period events (dark blue) including some 

measurements in early August during a large storm. For lower seismic power associated 

with limited bed mobilization (Tu>20 FNU and Tu>1.07×1022𝑃𝑏
1.5), a high variability of 

turbidity was observed. This mainly concerns the July-August period (light blue) 
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characterized by several storm events (Figure 6.2). Tu and Pb were much less 

correlated in that part of the scatter plot (Spearman and Pearson correlation coefficient 

of respectively 0.47 and 0.48).  

 

Figure 6.3: Relations between turbidity, flow rate and seismic power during the May-
August period. Point color is a function of time. The part considered as river bed 

production is defined by Pb>1.5×10-14 m²/s² and  𝑻𝒖 < 𝟏. 𝟎𝟕 × 𝟏𝟎𝟐𝟐𝑷𝒃
𝟏.𝟓 . The part 

considered as a global hillslope production is defined by Tu>20 FNU and 𝑻𝒖 > 𝟏. 𝟎𝟕 ×

𝟏𝟎𝟐𝟐𝑷𝒃
𝟏.𝟓. 

6.4. DISCUSSION 

6.4.1. EVOLUTION OF THE ORIGIN OF SUSPENDED 

PARTICLES DURING A 4 MONTH PERIOD 

As turbidity and seismic power exhibited different behaviors depending on the period 

(i.e. May-June and July August, Figure 6.3-c), we tested the assumption that this could 

be the signature of different production processes of fine particles. We interpreted Tu co-

evolving with Pb when Pb was high (𝑃𝑏>1.5×10-14 m²/s² and Tu<1.07×1022𝑃𝑏
1.5) as a 

production of fine particles mainly controlled by their release from the river bed. On the 

contrary, the high variability of Tu when Pb was low (Tu>20 FNU and Tu>1.07×1022𝑃𝑏
1.5)  

suggested a production of fine particles mainly controlled by a different source from the 

river reach measured with the seismic sensor. This production could be related to either 

the contribution of upstream river reaches or a global hillslope production. Because we 

did not have SSC measurements during the July-August period we could not conclude 

whether the higher turbidity for a given seismic power observed in that period was solely 

due to a much higher SSC or a to significant decrease in the suspended sediment GSD 

(Eq.6.2). However, both hypotheses support the above interpretation of two different 

dominant production processes.  
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Based on this partition, we could classify instantaneous measurements of 155 peak flow 

events observed during the 4-month campaign into “dominant river bed” and “dominant 

global hillslope” production of fine particles. Assuming that the SSC-Tu relation obtained 

in May-June was representative of the whole period, we could infer a dominant river bed 

production corresponding to 77% of the total fluxes while the dominant global hillslope 

production corresponded to 16% (7% undetermined when Tu and Pb were both really 

low). We should stress that the possible decrease of suspended particle size in the July-

August period would have led to a dominant global hillslope production representing an 

even smaller fraction of total fluxes.  

To test the relevance of this partition, we analyzed the hydro-meteorological conditions 

corresponding to each production processes. Results indicate that river bed production 

was generally characterized by relatively low cumulated rainfall, high average flow rate 

and limited flow variability (Figure 6.4). On the contrary, the global hillslope production 

was characterized by relatively higher cumulated rainfall, lower average flow rate and 

high flow variability. The temperature was only slightly higher for the global hillslope 

production. This analysis was consistent with the partition into two production processes 

obtained by using independent turbidity and seismic data: dominant river bed production 

was likely to govern suspension for high flow rates and low rainfall intensity while the 

dominant hillslope production was likely to govern suspension when the river bed was 

not mobilized and when erosion on hillslopes due to rainfall was maximal. We should 

also stress that during the first part of the measurement period (May-June) a significant 

part of hillslope sources were protected by a snow cover which progressively melted so 

that hillslope sources were unprotected during the second July-August period. 

 

Figure 6.4: Hydro-meteorological conditions corresponding to the two different fine 
particle production processes inferred using turbidity and seismic measurements to 
partition instantaneous measurements. 
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6.4.2. INTEREST OF THE COMBINED USE OF TURBIDITY AND 

SEISMIC MEASUREMENTS 

These results show the interest in terms of methodology to combine seismic 

measurements and commonly used flow rate and turbidity measurements. It allows to 

record with a high temporal resolution transport interactions between fine and coarse 

sediments and to detect various sediment sources activation in the field. Inverting 

seismic power into bedload flux is often challenging. The transported diameter is often 

unknown and seismic power associated to bedload is theoretically expect to scale with 

the coarsest fraction of transported material to the power 3 (Eq.6.3) [Tsai et al., 2012]. In 

fact, this high sensitivity of the method to the coarsest fraction could be considered as 

an opportunity to use seismic measurement as a relevant proxy of the global river bed 

mobility and subsurface material availability. 

These field observations have implications concerning our understanding of the 

sediment transport processes. Experiments of Mooneyham and Kyle (2018) among 

several others flume and field observations [Diplas, 1994; Frostick et al., 1984; 

Glasbergen, 2014; Krishnappan and Engel, 2006; Navratil et al., 2010] have shown that 

fine particles infiltrate in the gravel matrix even for very low Rouse number and stay in 

the subsurface until the surface coarse bed particles are mobilized. Our observations 

suggest that the degree of river bed mobility controls the release of these fine particles 

infiltrated in the subsurface of gravel bedded streams. While this process is often 

neglected for the finest fraction of suspension, it is consistent with the generally admitted 

idea that the armor layer mobility controls the availability of subsurface material in that 

kind of river [Lenzi et al., 1999; Misset et al., 2019; Park and Hunt, 2017; Pitlick et al., 

2008; Recking, 2013b]. It is also in-line with recent studies focused on the wash load 

concept concluding to strong interactions between that fraction and the river bed 

[Mooneyham and Strom, 2018; Navratil et al., 2010; Orwin and Smart, 2004b; Park and 

Hunt, 2017]. These studies and our observations question on the definition of the wash 

load concept. When referring to the recent multicriteria of Hill et al. (2017), the 

suspended load measured in our study should be considered as wash load (see 

appendix 6.6 for details) while it co-evolved with the river bed mobility for approximately 

half of the measurement period.  

6.5. CONCLUSIONS 
Continuous field measurements using turbidity and seismic sensors in a gravel bedded 

alpine river revealed strong interactions between suspended load and river bed mobility. 

This highlighted the significance of the release of fines particles when coarse particles of 

the river bed were mobilized, a sediment transport processes often neglected for the 

finest fraction of suspension in such mountainous context. This study shows that using 

continuous measurements such as turbidity combined with seismic or another proxy of 
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the river bed mobility (hydrophone, geophone plates) could be a valuable way to identify 

the river bed related suspended fraction with a high temporal resolution. It opens up 

some considerable opportunities to improve our understanding of complex interaction 

between the different modes of sediment transport. 

6.6. APPENDIX 
Theoretical partitioning into wash load and bed material load:  

To partition the suspended load measured into wash load and suspended bed material 

we used the recent criteria proposed by Hill et al. (2017). They observed during flume 

experiments that the transition between the lubrication regime (decrease of the river bed 

slope due to the ad of fine particles staying on the river bed surface) to the wash load 

regime (which they define as the addition of fine particles having no effect on the river 

bed slope in their flume) occurred when the three following criteria are fulfilled: sediment 

ratios between bed and suspended particle size (D*, Eq.6.4) larger than 30, Rouse 

numbers for suspended material (Ro, Eq.6.5) lower than 0.8 and supply versus transport 

capacity ratio for suspended material (qs*, Eq.6.6) lower than 0.05. 

𝐷∗ =
𝐷𝑏𝑒𝑑

𝐷𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛
 (6.4) 

𝑅𝑜 =
𝑤𝑠
𝜅𝑢∗

 (6.5) 

𝑞𝑠∗ =
𝑞𝑠𝑠𝑢𝑝𝑝𝑙𝑦

𝑞𝑠𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 (6.6) 

𝐷𝑏𝑒𝑑  (m) is the median river bed diameter, 𝐷𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛  (m) the median suspended 

diameter, 𝑤𝑠 (m/s) the fall velocity for suspended particles calculated using the method 

described in Ferguson and Church (2004) as in Hill et al. (2017), 𝜅 (-) is the Von Karman 

constant of 0.4, 𝑢∗ (m/s) the friction velocity estimated from the shear stress calculated 

in the main channel, 𝑞𝑠𝑠𝑢𝑝𝑝𝑙𝑦 (m²/s) the suspended load measured in the field estimated 

for a upper and a lower limit (Figure 6.5) and 𝑞𝑠𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (m²/s) the capacity of the flow to 

transport particles calculated by using the Engelund and Hansen (1967) formula (Eq.6.7) 

as was done by Hill et al. (2017): 

𝑞𝑠𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = √𝑔(𝑠 − 1)𝐷𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛
3 0.05

𝐶𝑓
(𝜏∗)5/2 (6.7) 
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In which, 𝑔 (m/s²) is the acceleration due to gravity, 𝑠 (-) the relative sediment density, 𝐶𝑓 

(-) the averaged friction coefficient in the main channel and 𝜏∗ (-) the averaged shield 

number in the main channel considering the suspended diameter. 

 

Figure 6.5: Suspended sediment supply measured and its upper and lower limit 
considered. 

 

Figure 6.6: Calculation of hill criteria for wash load regime definition varying the 
suspended sediment size and the flow rate. Note: qs*1 and qs*2 denote respectively the 
lower and upper supply (Figure 6.5). 
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Because the suspended sediment diameter was not continuously available and because 

flow rates were unsteady as it is often the case in the field we made calculations varying 

these two variables (Figure 6.6) to compare with critical values defining the wash load 

domain according to Hill et al. (2017). Criteria on Rouse number and D* indicate that 

whatever the flow rate, suspended load can be considered as wash load for Dsuspension 

smaller than approximately 500µm. The capacity vs supply criteria is more complex as it 

significantly varies with Dsuspension and Q. The supply is also changing through time with 

a lower limit mainly in the May-June period and an upper limit in the July-August period 

(Figure 6.5). The most critical condition is attained considering the upper supply (qs∗
1
 in 

Figure 6.6) observed for a maximum flow rate of approximatively 10m3/s (higher flow 

rates are not attained for that supply). For these conditions particles coarser than 200µm 

are not considered as wash load. The lower supply (red line in Figure 6.5) corresponds 

to a critical particle size of 400µm for wash load. Consequently, according to 

measurements of grain size distribution of trapped sediments (D50=200µm) that can be 

considered representative of the averaged size transported, our suspension should be 

considered as wash load in May-June period while it interact significantly with the river 

bed. On the contrary, in the July-August period, when limited bed mobility is observed 

suspended particle sizes are those that start to be considered as non-wash load. 

 

 



 

 
 

Conclusion and 

perspectives 

SYNTHESIS 

CONSISTENCY BETWEEN OBSERVATIONS MADE AT THE 

CATCHMENT AND AT THE REACH SCALE  

The two parts of this manuscript report observations and analysis performed at different 

scales. In the following section, the extent to which they are consistent is discussed. In 

part 1, we observed a link between suspended load hysteresis and sediment sources 

configuration. In the second part we observed at a local scale significant buffering 

processes in the Séveraisse. Figure 7.1 shows that this basin can be well described by 

the hysteresis-sediment source configuration relation obtained in part 1 (chapter 1).  

The Séveraisse catchment has a relatively low sediment source index of 3.7 

(considering 70% of the catchment) which is similar to the Drac catchment and which 

was interpreted as a significant capacity to produce distant fluxes and to buffer these 

fluxes in the main fluvial system. This interpretation of the hysteresis-sediment sources 

configuration relation is consistent with the observation of significant intermediate 

storage processes in the Séveraisse (chapter 5). 
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Figure 7.1: Relation between the mass weighted hysteresis index (HIms) and the 
sediment source configuration considering 70% of the catchment (SCI70%) for the 
studied basins of chapter 1 (blue points) and for the Séveraisse (red point). 

In the first part of the manuscript, we observed a relation between suspended sediment 

concentration and dimensionless bedload rate (chapter 3). Applying this relation to the 

Séveraisse with cross section parameters changing through time (detailed in chapter 4), 

led to reasonable estimations of the measured suspended fluxes and their dynamics 

(Figure 7.2). 12600 and 5500 tons were measured in May and June respectively while 

modeling using the cross section 1 and 2 defined in chapter 4 led on average to 13200 

and 6200 tons respectively. The decrease of suspended load was well reproduced by 

this model based on riverbed mobility even though June was characterized by higher 

flow rates and water volumes transported than during May (Qmax,May = 25.8m3/s, Qmax,June 

= 26.1 m3/s, Qmean,May = 15.3 m3/s, Qmean,June = 16.9 m3/s) and water volume transported 

8% lower in May. Independently from this analysis, continuous seismic and turbidity 

measurements also show a strong relation between fine and coarse particles transport 

in the Séveraisse (chapter 6) which makes the coarse and fine particle transport 

interactions consistent in the two parts of the manuscript. 
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Figure 7.2: Comparison between suspended fluxes measured in the Séveraisse during 
May and June (chapter 4 to 6) and suspended fluxes estimated using the relation 
between riverbed mobility and suspension (chapter 3). Increasing average flow rate 
during the period is also indicated (blue lines). 

MAIN CONCLUSIONS CONCERNING THE PROCESSES OBSERVED 

The main objective of this work was to understand the role of the river bed on 

suspended sediment transfer in Alpine catchments. This key question for both scientists 

and practitioners raised interrogations on how fine particles eroded on hillslopes are 

transferred downstream, on the conditions for which deposition and erosion of fine 

particles are significant and on how fine and coarse particles interact. All chapters of this 

manuscript are self-standing and focused on one of these specific questions. They have 

their own conclusions which are synthetized in the following section.  

Our observations show that suspended load can strongly interact with the river bed in 

alluvial Alpine rivers. Fine particles eroded on hillslopes are not necessarily directly 

transferred downstream. They can be stored in the fluvial system over longer time 

scales as suggested by the large quantities of fine particles found in alluvial Alpine 

streams. Even if they are absent at the bed surface, significant quantities can be found 

in the subsurface under a poorly mobile armored layer (Chapter 2). This shows that the 

buffering capacity of alluvial streams on fine particle transfer cannot be neglected in 
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Alpine rivers. Consequently, because of this river bed buffering capacity, the transfer of 

suspended particles eroded on hillslopes strongly depends on the geomorphological 

catchment configuration and thus on the location of the observation point considered 

along the drainage system. This suggests that the suspended load dynamics at a given 

point will be driven by both the relative capacity of the catchment to produce fine 

sediments on the slopes and the capacity to buffer these upstream fluxes in the fluvial 

system to cross. This conclusion is supported by the relation observed between 

suspended load hysteresis patterns and sediment sources configuration (chapter 1), by 

the river bed stocks measurements (chapter 2) and the relation observed between 

suspended load and bedload (chapter 3). It is also consistent with several recent studies 

[Mooneyham and Strom, 2018; Navratil et al., 2012; Park and Hunt, 2017]. It highlights 

that a wash load assumption is not always straightforward in Alpine catchments which 

has important implications for both scientists and practitioners.  

The analyses performed in this work suggest that erosion and deposition of fine particles 

are significant in large alluvial streams having gentle slopes (chapters 1, 2, 3 and 5). In 

these streams, deposition seems to preferentially occur in secondary channels and in 

vegetated bars (chapter 2). Also, the detailed measurements presented in chapter 5 

suggest that deposition could be more significant during the falling limb of flood events 

than during the rising limb due to more space availability in the gravel matrix which is in 

line with the conceptual model of Park and Hunt (2017, 2018). These measurements 

also show that the balance between erosion and deposition can be significantly 

influenced by the riverbed morphology, mobility and by the upstream hydro-sedimentary 

forcings (flow rate vs suspended sediment concentration). Indeed, we could derive a 

behavioral functioning for the studied Séveraisse reach. Below a threshold concentration 

the system releases more fine particles when increasing the flow rate while above this 

threshold concentration, the system stores fine particles when increasing the 

concentration. However, the transferability of these observations should be tested in 

other geomorphological and hydrosedimentary configurations and over longer time 

scales as discussed in the following sections. 

Finally, the data collected in this work show that coarse particles mobility can have a 

significant effect on suspended load dynamics. This was the case in alluvial Alpine rivers 

where large stocks of fine sediments were observed (Chapter 2) and whose availability 

was found to be controlled by the mobility of the surface armor layer (chapter 3). This 

was also confirmed at the reach scale by showing i) significant erosion and deposition of 

fine particles evolving with river bed morphology and coarse particle transport (Chapter 

5) and ii) a relation between continuous measurements of suspended load and river bed 

mobility (Chapter 6).  

The control exerted by coarse particles mobility on the availability of fine subsurface 

sediments was evidenced using reach scale morphodynamics such as the 
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dimensionless bedload rate (chapter 3) of the seismic power associated with bedload 

transport (chapter 6). Nevertheless, this process remains complex to measure and to 

model precisely at a local scale. The main challenge in modeling the proportion of fine 

particles released by the riverbed (chapter 2) remains the ability to estimate the 

mobilization depth as a function of flow conditions in Alpine streams. While highly 

uncertain to estimate, bed widening and lateral channel migration might be first orders 

bed reworking processes considering large events. Also, Chapter 4 shows how difficult 

are the measurements of underwater bed reworking in mountainous streams. Improving 

our understanding of this process could be archived by using new measurement 

techniques, by applying spatially distributed modeling on well constrained datasets or 

though experimental flume experiments as discussed later.  

PERSPECTIVES 

PRACTICAL APPLICATION 

Measurements or modeling approaches as well as observations made in this work could 

be useful in practice. Some potential applications and future challenges are discussed in 

the following section. 

Suspended load modeling – application and limitations in practice 

Simple geomorphological GIS-based indexes presented in the chapter 1 and used to 

identify the main contributing sources could be useful in Alpine environments prior to i) 

the installation and design of the sensors to equip a monitoring station, ii) the definition 

of a modeling strategy or iii) the planning of catchment management strategies. Also, 

while performing field measurements remains the most reliable way to estimate 

suspended load, they are often not available. In that case, the method presented in the 

chapter 3 could be useful to get an estimate of suspended load at some locations in 

alluvial streams distant from active hillslope sources. This can help for river 

management, hydraulic structure design of for environmental studies. However, such 

estimation remains difficult when no measurements are available in highly eroded and 

connected head water streams having limited alluvial sections. One possibility for 

practitioners would be to use empirical relations based on hillslopes properties such as 

the one of Duvert et al. (2012) using peak discharge and badland cover fraction. In 

future work, such relation could be improved in an Alpine context by integrating several 

contrasted catchments and morphometric indexes such as the ones of Cavalli et al. 

(2013), Heckmann and Schwanghart (2013) combined with those from chapter 1. 

When measurements are available, a simple and promising way to make predictions 

would be to use conceptual models calibrated on data as often done in hydrology for 

water discharge prediction. Several conceptual approaches have been already 
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developed in various contexts [Asselman, 1999; Mano, 2008; Park and Hunt, 2018; 

Picouet et al., 2009]. Amongst these approaches, the one developed by Park and Hunt 

(2018) is particularly promising as it considers the infiltration and release of fine particles 

in gravel bedded streams by using few statistically calibrated parameters. This model 

considers a critical flow rate under which fine particles resulting from the catchment 

erosion (a base level concentration function of the flow rate) infiltrate in the gravel matrix 

filling a conceptual storage reservoir. Above this critical flow rate, a certain quantity of 

fine particles is released in the flow due to bed disturbance and is added to the 

catchment production. These fine particles resuspended from the river bed are then 

removed from the conceptual storage reservoir and are thus not available until this stock 

has been reconstructed after further infiltration. As an example of future promising work 

that could be conducted, a modified version of this model (detailed in appendix page 

216) giving predictions at the event scale was applied in the Asse catchment (Figure 7.3, 

Table 7.1). Instead of using an exponential law as was initially proposed by Park and 

Hunt, we used a power law to model the river bed release function. Such formulation 

permitted a much better fit with our data and was also consistent with observations 

made in chapters 2 and 3. We also considered that the catchment production of fine 

particles had a seasonal trend while it was considered constant by Park and Hunt. Such 

seasonal trend was highly marked on our catchments, particularly during summers 

which were characterized by really high suspended sediment concentrations. Finally we 

considered that the quantity of fine sediment that could be released from the river bed 

was a function of the river bed stock reservoir filling. This means that for the same flow 

rate, it was easier to flush fine sediments when the river bed stock reservoir was full than 

when it was nearly empty. This conceptual model was calibrated on the 2011-2013 

period and validated on the 2014-2016 period. The quality of the model was evaluated 

using the following criteria: 

𝑅𝑆𝑅 =
√∑(𝑀𝑒𝑣𝑒𝑛𝑡, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 −𝑀𝑒𝑣𝑒𝑛𝑡, 𝑚𝑜𝑑𝑒𝑙𝑒𝑑)²

√∑(𝑀𝑒𝑣𝑒𝑛𝑡, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 −𝑀𝑒𝑣𝑒𝑛𝑡, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)²

 (7.1) 

𝑅 = |1 −
∑𝑀𝑒𝑣𝑒𝑛𝑡, 𝑚𝑜𝑑𝑒𝑙𝑒𝑑

∑𝑀𝑒𝑣𝑒𝑛𝑡, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
| (7.2) 

in which, 𝑀𝑒𝑣𝑒𝑛𝑡, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  is the event mass of suspended sediment observed and 

𝑀𝑒𝑣𝑒𝑛𝑡, 𝑚𝑜𝑑𝑒𝑙𝑒𝑑 the event mass modelled. A perfect model is characterized by a 0 value 

for all these indicators. Also, RSR values below 0.7 are considered acceptable [Moriasi 

et al., 2007]. To evaluate the interest of using such modelling approach, we compared it 

with a simple power law between peak discharge and the event mass of suspended 

sediment as proposed by Duvert et al. (2012). 
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 Calibration validation 

 
RSR R RSR R 

Conceptual model 0.41 0.00 0.61 0.00 
Power law 0.49 0.45 0.74 0.61 

Table 7.1: Models performance on the Asse catchment. 

 

Figure 7.3: Application of a modified version of the conceptual model of Park and Hunt 
(2018) on the Asse catchment. 

The conceptual model reproduces the mass measured with acceptable errors for both 

the calibration and validation period. It is also much more accurate than the power law 

model which shows lower predictability during the validation period. Such conceptual 

model gives information on riverbed stocks evolution through time which can be useful 

for river or dam management. In the future, such approach which only needs suspended 

load and flow rate input data should be tested in other Alpine catchments to determine if 
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it is widely applicable and to analyze how the model parameters are influenced by 

riverbed and catchment characteristics. 

Practical measurements opportunities  

A wide range of protocols and measurement techniques have been used in this work. 

Interesting potential operational applications are proposed below. We have seen that the 

combined analysis of various measurements is a valuable way to study complex 

sediment transport processes in the field. The use of continuous proxies of both 

suspended load (turbidity meter) and river bed mobility (hydrophone, seismic sensor) 

which are non-time consuming and provide high temporal resolution is particularly 

interesting (chapter 6). It could be used during dam flushing operations, targeted water 

releases to flush fine sediments [Loire et al., 2019] or more generally to improve the way 

water and fine sediments are managed in rivers. The methodology based on Monte 

Carlo simulations to propagate uncertainties and detect erosion and deposition of fine 

sediments at the reach scale (chapter 5) could also be useful in other contexts. It could 

for instance be applied on water intake channels, dams or reservoirs to quantify siltation 

and conditions favorable to erosion and deposition of fine sediments. This approach 

could also be transposed on calibrated indirect measurements of bedload transport 

(hydrophones or seismic sensors). 

 

Figure 7.4: Cumulated seismic power of upstream and downstream station on the 
Séveraisse stream during the 2018 campaign. Potential storages and erosion in the 
reach are indicated when both curves are not synchronized. Part of these data is 
presented in chapter 4 and in Bakker et al. (under review). 
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As an example, a sediment budget of coarse particles with a high temporal resolution 

could be applied on seismic data obtained on the Séveraisse reach (Figure 7.4). This 

opens up interesting opportunities for practical engineering works or river restauration. 

Finally, the fine particle storage method (chapter 2) could also be useful to quantify the 

impact of dam flushing, dragging operation or in-stream construction works on 

downstream river bed clogging 

FUTURE CHALLENGES 

Future studies aiming at understanding the role of the river bed on fine particle transfer 

could use measurement techniques that were not tested in this work. For instance 

identifying differences in term of fine sediment properties (color, chemistry, size) 

between those resuspended from the river bed and those directly transferred from the 

slopes could open up some considerable opportunities. Measuring settling velocities 

with a high temporal resolution could also help to better understand conditions leading to 

a direct transfer, to erosion or to deposition, as changes in suspended particle sizes 

significantly affect these processes. Moreover, using indirect geophysical techniques to 

integrate river bed stocks with a high spatial resolution would help to better understand 

interactions between fine sediments and river beds. A more precise quantification of 

riverbed reworking depth could be archived by using echosonders or active scouring 

chains as was done by Brousse et al. (2018). Also, from a general point of view, we 

think that future studies would stand to benefit from using a combination of 

measurements rather than a single observation. Such combination is a real opportunity 

to improve our knowledge in sediment transport science in which processes are 

generally complex to observed, highly variable in space and through time, but strongly 

interacting with each other. As an example, a measurement framework used in this work 

to quantify bedload transport and morphodynamics (chapter 4) is presented in Figure 

7.5: 
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Figure 7.5: Example of a multi-measurement framework to study bedload transport and 
morphodynamics interactions (Chapter 4). 

To continue this work and improve our understanding on fine particles-riverbed 

interactions as well as conditions leading to deposition or erosion of suspended 

sediments in Alpine rivers, field approaches similar to those used in chapter 5 and 6 

could be applied in other types of catchments. Actually, measurements performed on the 

Séveraisse river are representative of catchments having relatively low upstream 

suspended sediment yields, coarse suspended particles strongly interacting with the 

coarser ones and significant capacities to buffer hillslope fluxes. Consequently, it would 

be of interest to investigate if similar deposition/erosion processes could be observed in 

settings with finer suspended sediments, higher upstream suspended sediment yields 

and less active river bed morphologies. This could help to quantify more generally the 

conditions leading to deposition and erosion of suspended sediments in Alpine rivers. 

Also, it would be of interest to apply these approaches over longer time scales as 

significant seasonal and inter-annual variabilities are observed in suspended load 

dynamics. This could be particularly relevant in catchments having a Mediterranean 

hydrological regime such as the Asse, Bléone, Galabre or Bès characterized by rare and 

intense exports of suspended fluxes.  
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In order to understand at a local scale how the mobility of coarse particles controls the 

release of fine particles from the river bed, an interesting perspective for the near future 

would be to use the well documented dataset presented in chapter 4 to 6 to apply 

spatially distributed modeling. This could be useful to determine which local law 

(deposition, infiltration, erosion and release) could be used to reproduce the reach-scale 

behavior observed. The relevance of classical Partheniade and Krone formulations 

could be tested as well as more recent laws that specifically model infiltration of fine 

particles in gravel beds [Núñez-González, 2016]. This modeling approach could also be 

useful to test quantitative formulations describing at a local scale the release of fine 

particles when the gravel matrix starts to move. Such functions could be based on 

coarse river bed particles mobility criteria as was done in chapter 2 and 3, integrating 

lateral bars erosion and channel migrations. Moreover, while many flume studies have 

quantified the process of fine particles infiltration in gravel beds [Gibson et al., 2009; Hill 

et al., 2017; Krishnappan and Engel, 2006; Mooneyham and Strom, 2018; Núñez-

González, 2016] only few have qualitatively described the release phase [Diplas, 1994; 

Schalchli, 1992]. Consequently, an interesting perspective would be to perform new 

flume experiments specifically focused on that release phase quantification.  

Combining the previously mentioned flume, numerical and field approaches would 

probably be a comprehensive way to quantify the “stop and go" steps regarding the 

transfer of suspended particles in Alpine catchments, whose are often non-negligible as 

suggested by the present work. These steps should be taken into account when 

estimating the transit time of particulate contaminants or nutriments that could be stored 

in river beds over long time periods after their initial release in the fluvial system. In the 

same way, landscape denudation rates derived from short time flux measurements 

might be biased if these intermediate storage processes are neglected.  
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  Appendix 

CONCEPTUAL MODELLING 
This appendix presents a modified version of the conceptual model initially developed by 

Park and Hunt (2017-2018) and tested on the Asse catchment. This model is based on 

two main observations. The first one is that above a critical flow rate corresponding to 

initiation of gravel bed mobility, the relation between flow rate and suspended load is 

increasing steeper due to a fine particle release from the river bed (Figure 8.1). The 

second one is that during the recession limb of peak flow event, the suspended 

sediment concentration is asymptotically reaching a watershed base level concentration 

function of the flow rate (Figure 8.2). 

 

Figure 8.1: Relation between suspended load (SSL) and the flow rate in the Asse 
catchment. A clear braking point can be observed for flow rates around 10 m3/s. 
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Figure 8.2: Relation between suspended sediment concentration and flow rate during 
the recession limb of flood events in the Drac catchment. Each color corresponds to an 
event. The base level concentration (Cb) is indicated by a black line. 

The conceptual model considers three different phases: 

 

Figure 8.3: Conceptual model description. 

During the first phase when the flow rate is below a critical value (Q<Qc), the conceptual 

reservoir representing the mass of fine particles stored in the gravel bed (𝑀 ) is 

increased with the mass of fine particles infiltrated (𝑀𝑐𝑎𝑝𝑡(𝑡)): 
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𝑀(𝑡) = 𝑀(𝑡 − 1) + 𝑀𝑐𝑎𝑝𝑡(𝑡) (8.1) 

The mass captured is estimated as a function of the available storage space (1 −
𝑀(𝑡−1)

𝑀𝑚𝑎𝑥
), 

an infiltration parameter (𝛼) and the suspended sediment concentration in the flow, a 

linear function of the flow rate (𝑘1𝑄(𝑡)): 

𝑀(𝑡) = 𝑀(𝑡 − 1) + 𝛼𝑘1𝑄(𝑡) [1 −
𝑀(𝑡 − 1)

𝑀𝑚𝑎𝑥
] (8.2) 

Because we observed high seasonal variability in that base level concentration, the 

parameter 𝑘1  was defined as a function of the season (winter, spring, summer and 

autumn) instead of a constant value as initially proposed by Park and Hunt. 

The second phase starts when the flow rate exceeds a critical value (Q>Qc). The model 

estimates the quantity of fine particles released from the riverbed (𝑀𝑚𝑜𝑏) due to bed 

mobilization as a function of the peak discharge: 

𝑀(𝑡) = 𝑀(𝑡 − 1) − 𝑀𝑚𝑜𝑏(𝑡) (8.3) 

Based on the scouring model developed by Haschenburger (1999), Park and Hunt 

initially proposed to use and exponential function to compute the mass released. Based 

on a comparison with our data and observations made in chapter 2, 3 and 5 we 

preferred to use a power law formulation to estimate the representative mobilized layer 

(ℎ𝑚𝑜𝑏): 

𝑀𝑚𝑜𝑏(𝑄(𝑡)) = 𝑓 (ℎ𝑚𝑜𝑏(𝑄(𝑡))) = 𝑘2
′𝑄(𝑡)𝑘3 (8.4) 

in which 𝑘2
′
and 𝑘3 are power law coefficients. The maximum mass that can be released 

(𝑀𝑚𝑎𝑥) can then be estimated as follow: 

𝑀𝑚𝑎𝑥 = 𝑀𝑚𝑜𝑏(𝑄𝑚𝑎𝑥) = 𝑓(ℎ𝑚𝑜𝑏(𝑄𝑚𝑎𝑥)) = 𝑘2
′𝑄𝑚𝑎𝑥

𝑘3 (8.5) 

in which 𝑄𝑚𝑎𝑥  is the maximum observed peak discharge. We can then compute the 

relative mass mobilized:  

𝑀𝑚𝑜𝑏(𝑡)

𝑀𝑚𝑜𝑏(𝑄𝑚𝑎𝑥)
=
𝑀𝑚𝑜𝑏(𝑡)

𝑀𝑚𝑎𝑥
= (

𝑄(𝑡)

𝑄𝑚𝑎𝑥
)
𝑘3

 (8.6) 
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This formulation, similarly to the one proposed by Park and Hunt leads to an equivalent 

mass released independently to the filling of the storage reservoir (until the reservoir is 

empty). We made the assumption that the mass that could be released was also a linear 

function of the degree of storage filling (lower quantities are released when the river bed 

has been recently flushed even if it is not empty): 

𝑀𝑚𝑜𝑏(𝑡) = 𝑓 (𝑘2 (
𝑀(𝑡 − 1)

𝑀𝑚𝑎𝑥
)) (8.7) 

in which 𝑘2 is the linear coefficient. Combining Eq.8.6 and Eq.8.7 we obtain: 

𝑀𝑚𝑜𝑏(𝑡) = 𝑘2𝑀(𝑡 − 1) (
𝑄(𝑡)

𝑄𝑚𝑎𝑥
)

𝑘3

 (8.8) 

The third phase starts just after the peak discharge (Q<Qmax) when the flow rates are 

still higher than the critical value (Q>Qc). During that phase, fine particles infiltrate in the 

empty pore spaces created by the previous bed mobilization: 

𝑀(𝑡) = 𝑀(𝑡 − 1) + 𝑀𝑐𝑎𝑝𝑡(𝑡) (8.9) 

However, because the bed is still mobilized a part of the storage reservoir is not 

available. Available pore spaces (𝑀𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒) for fines particles to infiltrate depend on the 

layer mobilized (ℎ𝑚𝑜𝑏): 

𝑀𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑄) = 𝑓(ℎ𝑚𝑜𝑏(𝑄𝑚𝑎𝑥) − ℎ𝑚𝑜𝑏(𝑄)) (8.10) 

Using Eq.8.4, Eq.8.5 and Eq.8.8 we deduce: 

𝑀𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡) = 𝑘2
′
𝑄𝑚𝑎𝑥

𝑘3 − 𝑘2
′𝑄(𝑡)𝑘3 (8.11) 

𝑀𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡) = 𝑘2
′
𝑄𝑚𝑎𝑥

𝑘3 (1 − (
𝑄(𝑡)

𝑄𝑚𝑎𝑥
)
𝑘3

) (8.12) 

𝑀𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡) = 𝑀𝑚𝑎𝑥 (1 − (
𝑄(𝑡)

𝑄𝑚𝑎𝑥
)
𝑘3

) (8.13) 
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We then substitute the maximum available space (𝑀𝑚𝑎𝑥 ) in Eq.8.2 by the effective 

available space considering the still mobile river bed (𝑀𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒) during that phase to 

compute the mass captured into the river bed: 

𝑀(𝑡) = 𝑀(𝑡 − 1) + 𝛼𝑘1𝑄(𝑡) [1 −
𝑀(𝑡 − 1)

𝑀𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡)
] (8.14) 
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THE ROLE OF RIVERBED ON SUSPENDED SEDIMENT TRANSPORT DYNAMICS IN ALPINE CATCHMENTS 

Clément Misset 

Résumé : Les grandes quantités de sédiments transportés par suspension dans les rivières 

alpines sont associées à d’importantes problématiques socio-économiques et 
environnementales telles que le transport de polluants, la dégradation des milieux aquatiques ou 
l’envasement des retenues hydroélectriques. Pour faire face à ces enjeux, il est nécessaire de 
mieux comprendre le rôle joué par le lit des rivières alpines sur la dynamique de ce transport. A 
partir de larges bases de données issues de la littérature et de nouvelles mesures de terrain, la 
première partie de cette thèse propose une étude à une échelle régionale de i) l’influence de la 
configuration des sources sédimentaires sur la variabilité du transport solide par suspension, ii) 
l’estimation de la quantité et de la disponibilité des particules fines dans le lit des rivières alpines 
et iii) l’analyse de la relation entre transport solide par suspension et mobilité du lit de ces 
rivières. Ces analyses montrent que la configuration du bassin versant en amont du point 
d’observation contrôle significativement la dynamique du transport solide par suspension 
observée en aval. De grandes quantités de sédiments fins sont en effet stockées dans les 
rivières alpines alluviales et il est ainsi possible de prédire une partie significative de leurs flux 
en suspension pour les forts débits à partir d’une modélisation de la mobilité de leurs lits. La 
seconde partie de la thèse teste ces résultats à une échelle locale. Pour cela, une campagne de 
mesures a été réalisée durant une saison complète de fonte sur un cours d’eau alpin typique, la 
Séveraisse. Un large panel de mesures directes et indirectes a été mis en œuvre pour mesurer 
la suspension, le charriage et les évolutions topographiques sur un tronçon de 3.5 km. Ces 
mesures confirment que les particules fines transportées par suspension interagissent fortement 
avec le lit dans ce type de tronçon morphodynamiquement actif. Ce dernier peut être perçu 
comme une zone tampon intermédiaire contrôlée par le forçage amont sédiments-débit liquide 
ainsi que par la mobilité et la morphologie de son lit. 

 

 

Abstract: The large quantities of sediments transported as suspension in Alpine rivers are 

associated with important socio-economic and environmental issues such as pollutant transfer, 
aquatic habitat degradation or dam siltation. To address these issues, it is required to better 
understand the role of Alpine river beds on the dynamics of this transport. In the first part of this 
thesis, we use large datasets from the literature and new field measurements to investigate at a 
regional scale i) the influence of sediment sources configuration on suspended load variability, ii) 
the quantity and availability of fine particles in Alpine river beds and iii) the relation between 
suspended load and river bed mobility. These analyses show that the catchment configuration 
upstream the observation point can significantly control the suspended load dynamics observed 
downstream. This first part also shows that large quantities of fine particles can be stored in 
alluvial Alpine rivers. For these rivers and for high flow rates, it was possible to predict a 
significant part of suspended load based on riverbed mobility modeling. The second part of the 
thesis tests these results at a local scale. To do so, an important field campaign was performed 
during the entire melting season of a typical Alpine river, the Séveraisse. A large panel of direct 
and indirect measurements was used to measure suspended load, bedload and topographic 
changes on a 3.5-km reach. These measurements confirm that suspended particles strongly 
interact with the river bed of that kind of morphodynamically active streams. The latter can be 
considered as an intermediate buffer controlled by the upstream hydro-sedimentary forcing and 
by the river bed mobility and morphology. 
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