
HAL Id: tel-02437183
https://theses.hal.science/tel-02437183v1

Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward Automatic Fact-Checking of Statistic Claims
Tien Duc Cao

To cite this version:
Tien Duc Cao. Toward Automatic Fact-Checking of Statistic Claims. Computation and Language
[cs.CL]. Université Paris Saclay (COmUE), 2019. English. �NNT : 2019SACLX051�. �tel-02437183�

https://theses.hal.science/tel-02437183v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

A
C

LX
05

1

Toward Automatic Fact-Checking of
Statistic Claims

Thèse de doctorat de l’Université Paris-Saclay
préparée à l’École Polytechnique

École doctorale n◦580 Sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 26.09.2019, par

TIEN-DUC CAO

Composition du Jury :

Philippe Pucheral
Professeur, UVSQ et Inria Président du jury

Nathalie Aussenac-Gilles
Directrice de recherche, IRIT Rapporteur

Paolo Papotti
Maı̂tre de Conférences, EURECOM Rapporteur

Julien Leblay
Chercheur, AIST, Japon Examinateur

Philippe Lamarre
Professeur, ENSA Lyon Examinateur

Ioana Manolescu
Directrice de recherche, Inria et Ecole Polytechnique Directeur de thèse

Xavier Tannier
Professeur, Paris Sorbonne Universités Co-directeur de thèse

2

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Contributions and outline . 8

2 Preliminaries 11
2.1 Resource Description Framework . 11
2.2 Information extraction . 12

2.2.1 Information extraction tasks . 12
2.2.2 Machine learning for information extraction 13
2.2.3 Deep learning for information extraction 14
2.2.4 Metrics for evaluating information extraction quality 15
2.2.5 Text representation . 17

2.3 Conclusion . 18

3 State of the art of computational fact checking 19
3.1 Claim extraction . 21

3.1.1 Unsupervised approaches . 21
3.1.2 Supervised methods . 22

3.2 Reference source search . 26
3.3 Related datasets . 26
3.4 Claim accuracy assessment . 27

3.4.1 Using external sources . 27
3.4.2 Using a knowledge graph . 30
3.4.3 Using linguistic features . 32
3.4.4 Using user input . 34

3.5 Fact checking challenges . 37
3.5.1 Fake news challenge . 37
3.5.2 Fact Extraction and VERification . 37
3.5.3 Check worthiness . 38

3.6 Automated end-to-end fact checking systems 38
3.7 Conclusion . 40

4 Extracting linked data from statistic spreadsheets 43
4.1 Introduction . 43
4.2 Reference statistic data . 44

4.2.1 INSEE data sources . 44
4.2.2 Conceptual data model . 46

4.3 Spreadsheet data extraction . 48

3

4 CONTENTS

4.3.1 Data cell identification . 48
4.3.1.1 The leftmost data location 48
4.3.1.2 Row signature . 49
4.3.1.3 Collect additional data cells 49

4.3.2 Identification and extraction of header cells 49
4.3.2.1 The horizontal border . 49
4.3.2.2 Cell borders . 50
4.3.2.3 Collect header cells . 50

4.3.3 Populating the data model . 50
4.4 Linked data vocabulary . 51
4.5 Evaluation . 51
4.6 Implementation . 52
4.7 Related works . 52
4.8 Conclusion and future works . 53

5 Searching for truth in a database of statistics 55
5.1 Introduction . 55
5.2 Search problem and algorithm . 56

5.2.1 Dataset search . 57
5.2.2 Text processing . 57
5.2.3 Word-dataset score . 57
5.2.4 Relevance score function . 58

5.2.4.1 Content-based relevance score function 59
5.2.4.2 Location-aware score components 59
5.2.4.3 Content- and location-aware relevance score 60

5.2.5 Data cell search . 60
5.3 Evaluation . 61

5.3.1 Datasets and queries . 61
5.3.2 Experiments . 62

5.3.2.1 Evaluation metric . 62
5.3.2.2 Parameter estimation and results 62
5.3.2.3 Running time . 63
5.3.2.4 Comparison against baselines 64

5.3.3 Web application for online statistic search 65
5.4 Implementation . 65
5.5 Related works . 66
5.6 Conclusion and future works . 67

6 Statistical mentions from textual claims 69
6.1 Introduction . 69
6.2 Statistical claim extraction outline . 69
6.3 Entity, relation and value extraction . 72

6.3.1 Statistical entities . 72
6.3.2 Relevant verbs and measurement units 73
6.3.3 Bootstrapping approach . 74
6.3.4 Extraction rules . 74

6.4 Evaluation . 76
6.4.1 Evaluation of the extraction rules . 76

CONTENTS 5

6.4.2 Evaluation of the end-to-end system 76
6.5 Implementation . 77
6.6 Related works . 77
6.7 Conclusion and future works . 78

7 Topics exploration and classification 81
7.1 Corpus construction . 82
7.2 Topic extraction . 83
7.3 Topic classification . 84

7.3.1 Preliminaries . 84
7.3.2 Model training . 85
7.3.3 Evaluation . 86

7.4 Conclusion . 86

8 Conclusion 87
8.1 Summary . 87
8.2 Perspectives . 88

Bibliography 91

6 CONTENTS

Chapter 1

Introduction

1.1 Motivation

The development of widespread popular information production and sharing infrastructure has
lead to any individual having access to information quickly and easily through various means:
social networks, forums, blogs, newspapers, etc. Anyone with access to the Internet is thus
potentially a digital content producer. Although information is easy to access, it has become
increasingly difficult for information consumers to assess the credibility of content found on-
line. A fake news article with an eye-catching title or fake images could be shared instantly
to thousands of people who may redistribute it, without verifying its misleading content. As a
consequence, misinformation travels fast, and it may lead to dramatical consequences in real
life1.

Verifying the truthness of information is hard, even for professionals like journalists. This
process could be considered as consisting of three tasks:

1. Extracting claims (“a statement that something is true or is a fact”2) from the pub-
lished information: this is necessary, because not all the published content can be
checked, even if infinite manpower was available. In particular, text stating sentiment,
stance, emotion etc. is by definition not worth checking. In our work, we focus on statis-
tic claims (Chapter 6), i.e., sentences containing relationship between a statistic entity,
e.g., GDP (Gross Domestic Product), with a statistic value, e.g., 5%. We believe that this
type of claim enable us to to tackle more complex claims in the future.

2. Searching for relevant trustworthy data against which to check the claims. We focus
on the statistic spreadsheets and HTML tables since these data sources haven’t been re-
ceiving much attention in the literature (see Section 3.2) but they contain highly relevant
data for the fact-checking task. The difficulty of extracting meaningful information is the
creativity of content providers, i.e, they can organize data as they see fit. Other type of
data sources which have been well studied in the literature are search engine, knowledge
base, Wikipedia, fact-checked claims (Section 3.2).

1As a high-profile example, the “Pizzagate” false rumour (https://en.wikipedia.org/wiki/
Pizzagate_conspiracy_theory) has lead some outraged individual to actually open fire to revenge sup-
posed victims of a (non-existent) child molester ring.

2https://dictionary.cambridge.org/dictionary/english/claim

7

https://en.wikipedia.org/wiki/Pizzagate_conspiracy_theory
https://en.wikipedia.org/wiki/Pizzagate_conspiracy_theory
https://dictionary.cambridge.org/dictionary/english/claim

8 CHAPTER 1. INTRODUCTION

3. Assessing claim truthfulness by comparing the claim with the reference data. There
are many approaches to assess the truthfulness of claim in the literature (Section 3.4).
We decided to let professional (e.g., journalist, fact-checker) perform this task with the
relevant data that provide to them from the above task. From our point of view, it is really
difficult to develop an automatic system because even human are not good enough at this
task yet.

Sample reference data may come from statistic corpora established by trustworthy institutions,
scientific publications, etc. The relevant data could be found in structured data in databases or
unstructured data such as texts, images, etc.

We make the following observation here. Research efforts have been invested toward automat-
ically computing a “reference database”, such as a knowledge graph, by compiling a very large
number of data sources and assigning them some credibility scores. In this thesis, guided by
our discussions with fact-checking journalists from the Le Monde journal, we take a different
approach. We make the assumption that journalists know what sources are to be trusted, based
on their professional training for what constitutes a reliable source, as well as the professional
experience they acquire. Thus, throughout this thesis, we consider that the reference data is
known, and work in this “closed-world” model, focusing on the best exploitation possible of
the available reference data.

Manually extracting claims, identifying relevant reference data sources and assessing claim
truthfulness is very time consuming.

The starting point of the work performed in this thesis is the observation that content manage-
ment techniques (database management, information retrieval, knowledge bases management,
and natural language processing) have the potential to (at least partially) automate the pro-
cess. This was the assumption underlying the ANR project ContentCheck3, which provided the
framework of the present thesis. Its goal has been to develop tools toward automatizing such
fact-checking pipelines.

Specifically, focused on the following problems:

1. Improving the accessibility and usability of reference data sources.

2. Identifying facts from textual content, e.g., newspapers, that need to be checked.

3. Querying the relevant data from the database to verify a given fact in an efficient manner.

1.2 Contributions and outline

The manuscript is organized as follows.

Chapter 2 introduces a set of preliminary notions we build upon: the Resource Description
Framework (RDF), and a set of notions pertinent to the area of Information Extraction.

Chapter 3 presents the state of the art in the fact-checking tasks which are: claim extraction,
claim accuracy assessment, and reference source search. A set of related datasets, fact-checking
challenges, and some end-to-end fact-checking systems are also presented.

3http://contentcheck.inria.fr/

http://contentcheck.inria.fr/

1.2. CONTRIBUTIONS AND OUTLINE 9

In Chapter 4, we discuss in details our algorithm to extract RDF data from statistic spread-
sheets. The task is challenging as spreadsheets do not have an homogeneous layout; further,
the extraction needs to preserve the structural relations between cells in a table (e.g., a given
cell corresponds to a given line header and a given column header). This is complicated by the
frequent presence of merged header cells in statistic spreadsheets. Our contributions are:

• an algorithm to extract header and data cells from spreadsheets (Excel files), and

• an RDF corpus of the extracted data, which we release as Linked Open Data.

In Chapter 5, we develop a search algorithm to retrieve the relevant datasets with respect to
a user query. The challenges are quantifying the relevance of datasets and identifying, within
these datasets, the most relevant data snippets. Our contributions are:

• an efficient search algorithm;

• an evaluation against baselines confirming its interest, and

• a prototype available online for end users.

Chapter 6 presents our approach to identify statistical mentions from claims, and generate
queries to be solved by the search algorithm presented in Chapter 5. We develop algorithms to
identify whether a sentence contains a statistical claim and then extract the necessary informa-
tion to formulate it. Our contributions are:

• an unsupervised approach for claim extraction, as well as

• the integration with the works described above, into an end-to-end system that identifies
the reference information most relevant for a given claim found in an input text such as a
media article or interview. For textual content from social networks (e.g., tweets), some
more pre-processing steps should be performed to filter out the abbreviations, emoticons,
etc.

In the above chapters, some related works specific to the techniques introduced in each chapter,
but which did not pertain to the state of the art presented in Chapter 3, are included next to the
most relevant material.

In a related project to fact-checking task, we developed a system which extracts topics from a
text corpus (consisting of tweets and news articles), and classifies each text according to these
emergent topics (Chapter 7). This system does not require labeled data for training; however,
it obtains high performance in term of classification accuracy.

We conclude the thesis in Chapter 8. All the algorithms devised during this thesis are distributed
as open source software.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

In this chapter we present the notions of the Resource Description Framework (Section 2.1)
and Information Extraction (Section 2.2). We conclude the chapter with the reason why we
chose these techniques to solve our problems (Section 2.3).

2.1 Resource Description Framework

RDF (Resource Description Framework) is a framework for describing resources on the web.
It is a W3C Recommendation from February 10th, 2004 [W3C, 2004].

The following concepts are used to define resources:

• URI (Uniform Resource Identifier) [Berners-Lee et al., 1998] is an unambiguous string
that identifies a resource.

• Literal is used to identify values such as text or number.

• Blank node represents a resource for which an URI or literal is not given.

An RDF triple has three components: the subject which is an URI or a blank node; the pred-
icate which is an URI that describes a binary relation between subject and object; the object
which is an URI, a literal or a blank node. It is presented as (subject, predicate,
object). An RDF graph is a set of RDF triples.

A standard URI part of the RDF format allow to describe the type of RDF resources. For exam-
ple, to specify that a macbook belongs to Computer class, we use the following statement

ex:macbook rdf:type ex:Computer .

RDFS (RDF Schema) provides a small set of standard URIs which can be used to state re-
lationships between classes and/or properties. For instance, the RDFS rdfs:subclassOf
URI can be used to specify specialization relationships, for instance:

ex:Macbook rdfs:subclassOf ex:Computer .

Similarly, RDFS provides the rdfs:subpropertyOf URI for stating that a property is a
specialization (particular case of) another, for example ex:isCapitalOf rdfs:subpropertyOf
ex:isCityOf . Finally, rdfs:domain allows stating that any resource having a certain

11

12 CHAPTER 2. PRELIMINARIES

PREFIX ex : <h t t p : / / example . com / exampleOnto logy#>
SELECT ? c i t y
WHERE
{

? x ex : c i t y n a m e ? c i t y ;
ex : i s C i t y O f ? y .

? y ex : count ryname ex : F r an c e .
}

Figure 2.1: Sample SPARQL query.

property is of a certain type (called a domain of that property), and similarly rdfs:range
can be used to state that any value of a certain property belongs to a certain type (called range
of the property). For example, ex:City is the domain of property ex:isCapitalOf and
ex:Country is its range.

Open-World Assumption (OWA) It is important to understand that RDFS constraints are to
be interpreted following an Open-World Assumption (they lead to implicit knowledge that was
not explicitly present in the original RDF graph), not in a Closed-World Assumption (where all
the data that holds is assumed to be part of the database). Under the Closed-World Assumption,
a subtype constraint could be seen as “violated” if a resource of type c1 was not also stated to
be of type c2, where c2 is a supertype of c1. In contrast, using RDFS constraints, there is never a
“violation” or “inconsistency” (the constraint language is not expressive enough); RDFS rules
only lead to more (entailed) triples.

SPARQL (SPARQL Protocol and RDF Query Language) [Prud’hommeaux and Seaborne,
2008] is an RDF query language. It is a declarative query language (like SQL) that could
manipulate and retrieve RDF data. The sample SPARQL query in Figure 2.1 returns all cities
(?city variable) of France. Using the concept of basic graph pattern (an RDF graph which
has subject, predicate, or object replaced by a variable), SPARQL answer the SELECT query
by returning a mapping of variables in the query with URIs and literals from the queried RDF
graph.

2.2 Information extraction

2.2.1 Information extraction tasks

Web scraping or web data extraction is the process of fetching web pages and extracting
from them certain kind of information. For instance, one can be interested in extracting from
Web pages that show real estate ads, the kind of property being shown (a house, a flat etc.) and
its other characteristics, such as surface, price etc. The extracted data is stored in a structured
data format, e.g., JSON (Javascript Object Notation), CSV (comma-separated values), etc. or
in a database for future use.

Given a query q (a string of characters) and a collection D of documents (where a document
could be either a structured data collection, or non-structured data such as a text), document
ranking is the task of finding the subset Dq documents of documents relevant to the query

2.2. INFORMATION EXTRACTION 13

q, and rank them in the descending order given by a relevance score function. For instance,
given the query “age of Emmanuel Macron”, and considering the set of Web pages indexed
by a search engine as D, document ranking consists of finding the k (whose typical values are
around 10 or so), which are most relevant for the given search terms. The principles, main data
structures and algorithms for solving this task are described in textbooks such as [Frakes and
Baeza-Yates, 1992].

Focused information retrieval is the task of locating relevant pieces of information in a docu-
ment, in order to to answer a query. For instance, given the query “age of Emmanuel Macron”,
instead of a ranked list of Web pages, focused information retrieval would try to return a text
snippet such as “Emmanuel Macron turned 40”, found within a document.

Entity extraction (also known as named-entity recognition, entity identification, or entity
chunking) is the process of identifying and classifying elements from text into pre-defined
categories. For example, identifying all politician names from a collection of newspapers.

Text classification is the task of classifying a text unit (sentence, paragraph, article, etc.) into
appropriate categories. An example of this task could be classifying newspapers’ content into
economy, politics, technology, etc. Fake news detection task is a text classification task which
aims to classify whether a given text from newspaper is fake or not.

Stance detection is the task of detecting the semantic relationship (stance) between two pieces
of text. E.g., the text “I could not focus well because of the notifications from Facebook”
expresses a support stance toward the following text “The usage of social network reduces our
concentration”. Some works is covered in these sections 3.1, 3.4, 3.6.

2.2.2 Machine learning for information extraction

Recent years have seen an explosive adoption of machine learning techniques in the Informa-
tion Extraction area. We distinguish the following family of techniques:

• Supervised learning designates a family of machine learning methods that map an input
data point, i.e., a text representation (Section 2.2.5) of text unit (e.g., a phrase, a sentence,
a paragraph or an article), to an output, after learning the input-output correspondence
on a labeled dataset. A standard practice is dividing the labeled dataset into three parts:
the training set of labeled examples is used to learn (“train”) the statistical model, the
development set (also called “dev set”, in short) is used to tune the model’s parameters,
finally the test set is used to evaluate the model’s performance. The advantage of super-
vised learning methods is that they are based on “gold standard” points (usually provided
by humans); however, this is also their weakness, as human labor is generally expensive.
Another weakness is the quality of gold standard because two humans could easily give
two different labels to the same data point. Examples of supervised learning are

– Linear Support Vector Machines (Linear SVM) [Cortes and Vapnik, 1995]

– Gaussian Naı̈ve Bayes [Friedman et al., 1997]

– Random Forests [Breiman, 2001]

– Logistic Regression [Cramer, 2002]

– Gradient Boosted Decision Tree [Friedman, 2000]

14 CHAPTER 2. PRELIMINARIES

• Unsupervised learning is a class of machine learning methods that do not require labeled
data; this is an advantage given that they are no longer dependent on the availability of
costly human-labeled examples. These methods try to learn from the data distribution
in order to discover the interesting structures or semantic characteristics of the data. For
example, given a dataset of news articles, a classifier following an unsupervised approach
could group together similar articles thanks to the similarity of their semantic represen-
tations. Some examples of unsupervised learning are

– k-Nearest Neighbour Classifiers [Cunningham and Delany, 2007]

– Autoencoder [Rumelhart et al., 1986]

– Local outlier factor [Breunig et al., 2000]

• Semi-supervised learning is a hybrid between supervised and unsupervised learning.
Given a set of labeled data L and another (bigger) set of unlabeled data U , the semi-
supervised learning methods try to combine the useful information from both sets in
order to improve over the performance of supervised models trained on only L. Further,
by relying both on L and on U , semi-supervised learning reduces the dependency on
a large set of labeled examples. An example of this approach is Transductive SVM
[Joachims, 1999].

• Another approach to overcome the difficulty of creating large labeled datasets is distant
supervision, which leverages knowledge from a knowledge base to generate the training
data. However, this method faces the challenge on handling potentially noisy labeled
(training) data thus obtained. This learning paradigm was proposed in [Mintz et al.,
2009].

• Data programming is an approach proposed by [Ratner et al., 2016] that could create
labeled data from user’s labeling functions using heuristics, patterns, etc. to express weak
supervision signals. For example, on the task of extracting the relation isSpouseOf from
text, a user could write the labeling function: “If two people who have the same child then
they might be husband and wife” in order to return a label 1 (a positive training example)
for the relation (A. Nguyen, isSpouseOf, B. Tran) from the sentence “C. Nguyen is the
child of A. Nguyen and B. Tran”. The authors implemented a system called Snorkel [Rat-
ner et al., 2017] which learns from the agreements and disagreements of all the provided
labeling functions to generate probabilistic label for every unlabeled data example. Their
system analyzes the relationships of labeling functions to decide when to simply apply
majority vote and when to infer the label from all the labeling functions. Finally, a super-
vised machine learning model is trained to minimize a loss function of the probabilistic
labels. The authors develop connectors to popular machine learning libraries to let end-
users have a wide range of platform choices.

The predecessor of Snorkel is DeepDive [Zhang, 2015]. This system relies on heuristic
rules and distant supervision to obtain the training data. Multiple labels for the same data
example are resolved by majority vote.

2.2.3 Deep learning for information extraction

We recall here basic terminology and most frequently recurring deep learning models to which
this manuscript will refer in the sequel.

2.2. INFORMATION EXTRACTION 15

A neuron is the basic unit (a node) of a neural network. A neuron receives its inputs consisting
of a vector of numerical values {x1, x2, . . . , xn}, a vector of weights {w1, w2, . . . , wn} that
reflects the importance of each xi, and a bias vector b. The output of neuron Y is computed by
a non-linear activation function f :

Y = f(
∑

1≤i≤n

wi × xi + b)

The purpose of f is learning the non linear representations of the input data.

The most simple neural network is a feed-forward neural network that consists of multiple
layers. Each layer is a collection of neurons. There are edges connecting neurons from two
adjacent layers. Each edge contains weight that has been discussed previously. Layers could
be classified into three types: input layer that represents the input data, hidden layer that trans-
forms the data from the input layer to the output layer, output layer that represents the expected
output data. A feed-forward neural network with more than one hidden layers is called multi
layer perceptron.

There are more sophisticated neural network architectures. Convolutional neural networks
(CNNs) [LeCun and Bengio, 1998] are designed to classify images. A CNN uses convolu-
tional layers to learn the representations of local regions (e.g., a pixel and its eight surrounding
pixels) from the input image. Each convolutional layer learns a specific visual feature. All
these extracted features are sent to the output layer for the classification task. To handle text
data, a local region is considered as n contiguous words. Specific linguistic feature is learnt in
each convolutional layer. CNNs have been applied in text classification [Kim, 2014], relation
extraction [Zeng et al., 2014], etc.

Recurrent neural networks (RNNs) are designed to process sequence data, e.g., text as a
sequence of words. In the standard feed-forward neural network, neurons in the hidden layer
are only connected to neurons from the previous layers. RNN allows the connection between
two adjacent neurons in the hidden layer. This modification makes the network learn from the
history of the sequence encoded in the hidden layer. The effectiveness of RNNs has been shown
in many tasks such as text classification, time series prediction, etc. RNN variants such as Long
Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997], Bidirectional LSTM (Bi-
LSTM) [Schuster and Paliwal, 1997] are more popular than the vanilla RNN in practice.

2.2.4 Metrics for evaluating information extraction quality

It is often the case that we need to evaluate the quality of an information extraction process, in
order to get a quantitative grasp of the trust which can be put in its output.

To evaluate the quality, a gold standard of answers considered correct (typically provided by
humans) is usually assumed available. The gold standard is in some cases a set, e.g., objects
which are sure to belong to a certain class (in a classification problem), or the set of all mentions
of humans which an information extraction algorithm must identify in a text. In other cases,
the gold standard is a list, for instance, when the problem is to return a ranked list of answers
from the most relevant to the least relevant, and a ranked list of relevant answers is specified
by a human. Based on such a gold standard, for a given information extraction method which
returns a certain set of answers to a given task, a set of popular metrics are:

16 CHAPTER 2. PRELIMINARIES

• Precision, denoted p, is the fraction of the returned results that are part of the gold stan-
dard. Precision can be seen as reflecting the usefulness of a method, i.e., how many of
the correct results are returned.

• Recall, denoted r, is the fraction of the gold standard that is part of the returned results.
Recall can be seen as reflecting the completeness of the method. Precision indicates the
usefulness while recall indicates the completeness.

• There is a natural tension between precision and recall; returning more results cannot
decrease precision, but it can decrease recall, and vice versa. Thus, a single metric in-
cluding both is the F1-score, defined as the harmonic mean of the two previous metrics:
F1 = 2× pr

p+ r
.

• The above discussion is based on a “binary” setting where a result can be either be part of
the gold standard (e.g., be “relevant”) or not. In a more general setting, e.g., classification
with more than two classes, two variants of the F1-score can be defined, respectively, are
macro-average and micro-average. The macro-averaged F1-score is the average of the
F1-score of all classes. The micro-averaged F1-score is the weighted average of the
classes’ F1-scores, which takes into account the contribution of all classes.

• ROC curve (receiver operating characteristic curve) is a plot of the two metrics of a classi-
fication model: recall on the vertical axis, and FPR (False Positive Rate) in the horizontal
axis. FPR is calculated as FPR = False Positive / (False Positive + True Negative) where
False Positive refers to the situation when a binary classifier incorrectly predicts the pos-
itive class and True Negative refers to the case when a binary classifier correctly predicts
the negative class. The curve is constructed from all pairs (recall, FPR) correspond-
ing to all classification thresholds, i.e., a float value to compare with the binary model’s
probability in order to classify an example as positive or negative class.
Area Under the ROC Curve (AUC) is the area below the ROC curve which indicates
the probability that a random positive example could be ranked higher than a random
negative example.

The above metrics apply to a set (or unordered list) of results. For the context where the order of
the retrieved results is important, for example web search results, we have to use the following
metrics:

• Precision at k (P@k) is the precision computed based on the top-k retrieved results.

• Average precision at k is defined as as
1

min(m, k)

k∑
i=1

P@i × rel(i) where m is the

number of actual relevant results, rel(i) indicates if the ith result is relevant (rel(i) = 1)
or not (rel(i) = 0).

• Mean average precision at k (MAP@k) is the average of n average precision at k. For
example we execute n = 100 different queries against a search engine, compute the
average precision at k = 10 for each query, and then compute MAP@k to evaluate the
performance of this system.

2.2. INFORMATION EXTRACTION 17

2.2.5 Text representation

In order to apply machine learning techniques (Section 2.2.2) on plain text, the latter first needs
to be represented as numerical vectors.

A language model computes the probability of words that could appear in a fixed length se-
quence. An n-gram, is a contiguous sequence of n words. For example the sentence “Machine
Learning for Information Extraction” is represented by the following sequence of 2-grams:
“Machine Learning”, “Learning for”, “for Information”, “Information Extraction”. A unigram
and a bigram are n-grams where n equals to 1 and 2 respectively. An n-gram language model
uses the sequence of n previous words in order to predict the next word.

In recent years, Natural Language Processing in general and Information Extraction in partic-
ular widely take advantage of word embeddings which is a family of techniques capable of
computing, starting from words/phrases, vectorial (multidimensional) representations thereof,
in a numerical space. These techniques are based on the distributional hypothesis “a word is
characterized by the company it keeps” (popularized by [Firth, 1957]), and they produce dense
vectors (many non-zero components), whereas BoW produces sparse vectors (also called “one-
hot”, with one or few non-zero components). A method representative of the word embeddings
class is word2vec [Mikolov et al., 2013]. The interest of word embeddings is that once a text
can be reduced to such a numerical representation, proximity (or similarity) between two texts
can be computed easily, e.g., by means of a scalar product of the two. Word embeddings
are typically learned from large, unlabeled text corpora. There are two variants of word2vec:
Common Bag Of Words (CBOW) and skip-gram. CBOW predicts the target word w in a given
sequence, e.g., “Have a w evening!”, using the context of w (“Have a ... evening!”) of w as
input. On the contrary, skip-gram predicts the context using a given word as input. Both of
these variants are based on training a neural network on text corpora. According to [Mikolov
et al., 2013], skip-gram works well with small amounts of the training data, and represents
well words or phrases which are rare, while CBOW is several times faster to train than the
skip-gram, and has slightly better accuracy for the frequent words.

The success of word2vec inspired NLP (Natural Language Processing) researchers to come up
with more powerful models such as

• Glove [Pennington et al., 2014] computes the embeddings from the statistics of word
co-occurrences in a given corpus.

• fastText [Joulin et al., 2016] learns the embeddings from n-gram of characters, e.g., char-
acter 3-grams of the word “fast” are “fas” and “ast”. This approach helps to deal with
out-of-vocabulary words better.

• ELMo [Peters et al., 2018] introduces contextualized embeddings, i.e., the same word
would have different vectors in different contexts.

• ULMFiT [Howard and Ruder, 2018] introduces a fine-tuning technique to obtain the
meaningful text representation with each specific task such as text classification.

• BERT [Devlin et al., 2018] introduces the “masked language modeling” technique to take
into account both left and right contexts simultaneously.

They also proposed similar techniques for representing phrases and sentences in a multidimen-
sional space, including for instance Doc2Vec [Le and Mikolov, 2014].

18 CHAPTER 2. PRELIMINARIES

In our work, we rely on word2vec in order to obtain a list of words that are semantically similar
to a given keyword. This list helps our search engine (see Chapter 5) to obtain more informative
matches instead of exact matches.

2.3 Conclusion

One problem that we solve in this thesis is retrieving relevant statistic data with respect to a
factual claim from text. The data comes from spread files which contains relationship between
numerical data cell and its corresponding pair of header cells. There is also the parent-child
relationship between a pair of header cell. The RDF framework allows us to easily model these
relationships.

We implemented Information Extraction techniques in order to retrieve relevant data from text.
Inspired by the success of Deep Learning in these recent years, we experimented with it as
described in Section 8.1. The empirical results were not good as we expected and we decided to
adopt “white-box” approaches, i.e., computing relevant score function of a dataset (Chapter 5)
and defining extraction rules from a given sentence (Chapter 6).

Chapter 3

State of the art of computational fact
checking

Journalists have been cooperating with professionals from other fields such as computer science
and statistics to process numerical data, produce and distribute information. Data journalism
[Gray et al., 2012] is the term to refers to that cooperation. With more and more digital contents
produced, people encounter the rise of fake news which is the false, made-up, or misleading
information with the aim of spreading to large (online) audiences. These news make use of
the appealing imagery to attract more readers while presenting untrustworthy and unreliable
sources [Machado et al., 2019].

The combat against fake news also attracts the attention of many researchers on the task of
posteriori fact checking which is defined by [Cazalens et al., 2018] as the process of:

1. extracting claims from some discourse,

2. searching for the facts the claims are based on,

3. assessing the accuracy of the claim with regards to those backing facts, and

4. providing perspective to claims for which there is no straightforward settlement.

This process is illustrated in Figure 3.1. In another study, [Graves, 2018] defined the automated
fact checking process as a loop of three sub-tasks: identification, verification, and correction
(Figure 3.2). Fact checking is normally performed by trained fact checkers by evaluating pre-
vious speeches, debates, legislation and published figures or known facts [Thorne and Vlachos,
2018]. [Rivas, 2019] propose that fact checking could be done using less resources with crowd-
sourcing: the crowd present different arguments and evidence to verify a claim and a group of
moderators will aggregate all the provided information to provide the final fact-check. How-
ever the time consuming steps such as argument classification and stance detection should be
automated. Finally, fact-checks should be published in order to correct the spread of fake news
and untrustworthy claims [Graves, 2018].

In this chapter, we will firstly consider different methods for extracting claims (section 3.1).
In Sections 3.2, 3.3, we will explore which data sources could be used for performing the
fact-checking task. The different techniques to verify the truthfulness of a given claim are
presented in Section 3.4. Some fact checking related challenges are mentioned in Section 3.5.
Finally, we will mention some representatives of automated end-to-end fact checking systems

19

20 CHAPTER 3. STATE OF THE ART OF COMPUTATIONAL FACT CHECKING

Claim accuracy
assessmentClaim

Reference sources

Reference
source search

Reference source analysis
and integration

Claim extraction
Fact checking

outputMedia

Putting claims
into perspective

Publishing
and sharing

Figure 3.1: Fact checking tasks [Cazalens et al., 2018]

Figure 3.2: Core elements of automated fact-checking [Graves, 2018]

3.1. CLAIM EXTRACTION 21

in Section 3.6 and end this chapter with a conclusion in Section 3.7.

3.1 Claim extraction

Two broad classes of methods can be used for this problem. Unsupervised methods are based
on topic modeling algorithms, or sentence ranking; we discuss such methods in Section 3.1.1.

In a supervised setting, claim extraction is framed as text classification task, for example clas-
sifying the given text (a sentence, an article) as “claim” (e.g., “The president claimed that the
unemployment rate of France has been going down in these three years.”) or “not claim” (e.g.,
“The weather is nice today.”). It relies on labeled data, usually obtained through crowdsourc-
ing. A supervised machine learning model is then trained using a set of appropriate features or
input representation. We cover these techniques in Section 3.1.2).

3.1.1 Unsupervised approaches

Pattern matching In [Levy et al., 2017], claims are extracted from Wikipedia using pattern
matching with an automatically generated lexicon, and developing a ranking score on the
matched sentences. We detail this below.

Firstly, the authors manually identify a list of debate topics (main concepts), denoted MC.
Each of these topics is a concept, e.g., “doping in sport”, “boxing” etc. From Wikipedia, the
authors extract a corpus of 1.86 millions sentences that contain these topics.

A sentence which has the structure “... that ... MC ...” is a candidate in which they search for
a claim, e.g., “The president claimed that his government has reduced the unemployment rate
to 5%.” The corpus is divided into two sets: c1 which contains the above structure and c2
which does not. They define a sentence suffix as the part of the sentence that follows a topic
from MC. Then, for each word w in the vocabulary obtained from all sentences, they compute
Psuff (c1|w) = n1/(n1 + n2), where n1 is the number of sentences in c1 that contain w in
the sentence suffix, and n2 is the number of sentences in c2 that contain w. If Psuff (c1|w) >
|c1|

|c1|+ |c2|
, then w belongs to the set of words called Claim Lexicon (LC).

To rank a sentence s that matches the pattern “... that ... MC ... cl ...”, where cl is a word in CL
(if there are more than one word from CL that appears in s after MC, the first one is selected),
they take the average of two following scores:

• w2v: for each word w in s following the first ‘that’, they find the best cosine similar-
ity between the word2vec representation of w and that of each word in MC, and then
average the obtained scores;

• slop: this is number of tokens between the word ‘that’ and cl.

In the above,w2v is an average of two cosine similarities (thus, it is between 0 and 1) while slop
is a natural number, thus it can go above 1. Averaging them amounts to (strongly) penalizing
high slop values.

From a highly ranked sentence, a claim is extracted as being the words appearing after the
word ‘that’, and until the end of sentence. In the sample sentence: “The president claimed that

22 CHAPTER 3. STATE OF THE ART OF COMPUTATIONAL FACT CHECKING

his government has reduced the unemployment rate to 5%.”, the extracted claim would be “his
government has reduced the unemployment rate to 5%”.

Their system reports a P@5 (precision at 5, recall Section 2.2.4) score of 0.31 on the develop-
ment set, and 0.32 on the test set. While these figures are quite low, the authors show that they
improve over those of prior supervised extraction approach [Levy et al., 2014].

Topic modeling and topic extraction Another unsupervised approach to extract claim uses
topic modeling algorithms to characterize the text that potentially contains a claim. [Ferrara
et al., 2017] relies on Hierarchical Dirichlet Processes [Teh et al., 2004] in order to find the
optimal number of topics from a text corpus. From the generated topics distribution, they
compute a score called attraction score and then use it to classify sentences into four categories:
claim which states that something is the case without any further proof, premise which is the
proof to support or attack a claim, major claim which is the claim present in the beginning
(introduction) of a document in order to express the main semantics of the whole document,
and non-argumentative which is text that does not belong to the previous three categories. They
report an accuracy of 0.3, which outperforms the accuracy of 0.1 of a random baseline. This
choice of the baseline can be questioned; the reported accuracy of this method is quite low.
In the error analysis, the authors gave an example of non-argumentative sentence “Why do
some parents not think their kids can attain?” which has been labeled as premise by the model.
They attempt to solve this problem in future work by studying the dependency relations among
sentences in text.

Similarly, [Sobhani et al., 2015] use Non-Negative Matrix Factorization (NMF) [Lee and Se-
ung, 2000] to extract topics from a text corpus which is a collection of 1,063 comments on 8
articles discussing breast cancer screening. Each topic is represented by a list of keywords, e.g.,
the topic “Mammo can cause cancer by its radiation” is represented by “radiation, lumpectomy,
expose, need, colonoscopy, surgery, chemo, cause, radiologist, machine, treatment, exposure,
safe, thermography” [Sobhani et al., 2015]. Annotators attach to each of these topics some
arguments from a predefined list, such as “Mammo may cause cancer”, “Financial benefit of
mammo for medical industry”, etc.

On a corpus of 781 comments on news articles, they report an F1-score of 0.49 for the topic clas-
sification task (classifying the arguments to which a comment belong). Finally, on the stance
classification task (classifying each comment as for or against the comment’s arguments), they
train an SVM model using:

• TF-IDF [Jones, 1972] features: each comment is transformed into a TF-IDF word count
vector;

• the predicted topic topics from NMF

which lead them to an F1-score of 0.77.

3.1.2 Supervised methods

SVM classification The authors of [Liebeck et al., 2016] seek to annotate a corpus with three
categories:

3.1. CLAIM EXTRACTION 23

1. major position, which is a citizen suggestion (e.g., “We should build a playground with
a sandbox.”),

2. claim, which expresses a “for” or “against” stance toward a major position (e.g., “I dislike
your suggestion.”), and

3. premise, which is a reason to attack or support a major position (e.g., “This would allow
us to save money.”).

Each sentence is also annotated as argumentative (containing argument components) or non-
argumentative. Finally, they obtain a dataset that consists of 548 major positions, 378 claims,
and 1,244 premises. The authors observe that comment writers use different tenses and sentence
structures for each category, e.g., claims are often stated with “I agree!”, as in: for “I agree!
Building the airport would create more jobs”. Based on this observation, they use the frequency
of POS1 tags and dependencies in the TIGER annotation scheme [Brants et al., 2004] as features
of the SVM classifier. They also use the unigrams and bigrams of the sentences as binary
features (values of 1 or 0 if the unigram/bigram appears or does not appear respectively in the
given sentence).

On the subtask of classifying sentences as argumentative or non-argumentative, they obtained
a macro-averaged F1-score of 0.69. On the subtask of classifying sentences into the three
categories (major position, claim, premise), they got a macro-averaged F1-score of 0.68.

SVM is also used by [Lippi and Torroni, 2016] to detect claims from political speeches. They
extract the audio features using the RastaMat library2 and combine them with standard text
features: unigrams, bigrams, part-of-speech tags3, and lemmas4 sentences.

On three datasets of 122, 104, and 160 audio samples, respectively, they report the 10-fold
cross validation macro-averaged F1-score of 0.52, 0.52, and 0.31 respectively.

Logistic regression [Konstantinovskiy et al., 2018] rely on InferSent [Conneau et al., 2017]
which takes word order into account to represent the input sentence. In this collaborative work
with Full Fact5, they define seven categories to annotate input sentences:

• personal experience (e.g., “I can’t save for a deposit.”),

• quantity in the past or present (e.g., “The Coalition Government has created 1,000 jobs
for every day it’s been in offic”,

• correlation or causation (e.g., “Tetanus vaccine causes infertility”),

• current laws or rules of operation (e.g., “The UK allows a single adult to care for fewer
children than other European countries.”),

• prediction (e.g., “Indeed, the IFS says that school funding will have fallen by 5% in real
terms by 2019 as a result of government policies.”),

• other type of claim (e.g., “The party promised free childcare”),

• not a claim (e.g., “Questions to the Prime Minister!”).

1the category of words such as noun, adjective, verb, etc.
2http://labrosa.ee.columbia.edu/matlab/rastamat
3the category of words such as noun, adjective, verb, etc.
4the canonical form of a set of words, e.g. work is the lemma of work, works, worked, working.
5https://fullfact.org

http://labrosa.ee.columbia.edu/matlab/rastamat
https://fullfact.org

24 CHAPTER 3. STATE OF THE ART OF COMPUTATIONAL FACT CHECKING

According to Full Fact’s experience, these categories are sufficient to cover texts from political
TV shows. Then 80 volunteers were recruited from Full Fact’s newsletter to annotate a dataset
consisting of 6,304 sentences using Prodigy6. They consolidate these through a majority vote,
to obtain a set of 4,777 annotated sentences where at least three out of five annotators agree on
a sentence label. They expand the dataset by adding a set of annotated claims from Full Fact’s
database. The final dataset has 5,571 sentences.

After obtaining the sentence embeddings from InferSent, they concatenate it with the count of
parts of speech and named entities found in each sentence to create the feature vector. They feed
these vectors into standard supervised classifiers including Logistic Regression, Linear SVM,
Gaussian Naı̈ve Bayes, and Random Forests. Through their experiments of classifying a given
text into “claim” and “not claim” categories, Logistic Regression has the highest performance
in term of F1-score (0.83). This score is higher than those of ClaimBuster [Hassan et al., 2017]
(0.79) and ClaimRank (0.77) [Gencheva et al., 2017]. The authors believe that ClaimBuster has
the caveat of having to select a cut-off score to determine whether a given text is claim or not.
The text representation in ClaimBuster is TF-IDF which is less informative in compared with
the sentence embeddings representation in this work. They also discover that the POS/NER
features do not contribute to their model’s performance.

On the task of classifying claims into the seven predefined categories, their model achieves
a micro-averaged F1-score of 0.7 and a macro-averaged F1-score of 0.48. The low macro-
averaged score is explained by small number of examples of classes like “Current laws” and
“Correlation or causation”.

Recurrent neural network The approach proposed in [Hansen et al., 2019] is to develop
a neural network for the task of finding check-worthy sentences, which takes advantage of
large amounts of unlabeled data. Each word is represented by word embeddings to capture its
semantics and by syntactic dependency tag7 to capture its role, for example being the subject of
its sentence. By using the syntactic dependency tags, they aim to discover the discriminative
sentence structures for the check-worthy sentences. Given a pair of sentences s1 and s2, let

• W be the set of words that appear in both s1 and s2

• t(w, s) be the syntactic dependency tag of the word w in the sentence s

• overlap(w, s1, s2) = 1 if t(w, s1) equals to t(w, s2) otherwise overlap(w, s1, s2) = 0

They define the overlap of the syntactic dependency tags of s1 and s2 as:

O(s1, s2) =
∑
w∈W

overlap(w, s1, s2)

From three types of sentences: check-worthy sentences, non check-worthy sentences, and
mixed of both, they sample randomly 10 pairs from each type and then compute the aver-
age O(s1, s2). After repeating this experiment 1,000 times, they obtain the highest average
overlap from the pairs of check-worthy sentences and conclude that syntactic dependencies
could help to distinguish between check-worthy sentences and non check-worthy ones. The
word representation consisting of word embeddings and syntactic dependencies is sent to a re-
current neural network. They use the attention mechanism [Bahdanau et al., 2015] in order to

6https://prodi.gy/
7https://spacy.io

https://prodi.gy/
https://spacy.io

3.1. CLAIM EXTRACTION 25

Figure 3.3: Model’s prediction (Ỹ) vs. ground truth labels (Y) [Hansen et al., 2019]. The
intensity of the color increases with the relevance of the highlighted text.

identify the relevance of words/phrases with respect to model’s prediction result. They propose
a visualization of the model’s prediction result, as illustrated in Figure 3.3.

The evaluation dataset E of [Hansen et al., 2019] consists of 2,602 sentences with check-
worthiness annotations at sentence level. They further divide E into a training set TrainE and
a test set TestE . The weakly labeled dataset W consists of 37,732 sentences from the public
speeches of Hillary Clinton and Donald Trump during the 2016 U.S. election. They use the
ClaimBuster [Hassan et al., 2017] API8 to obtain a check-worthiness score s (a value between
0 and 1) for each sentence. Let f be the percentage of check-worthy sentences from TrainE ,
they find a threshold τ such that the percentage of sentences from W that have score s ≥ τ is
f . Sentences from W whose score s ≥ τ are labeled 1 (check-worthy); the others are labeled
0 (non check-worthy). Using the labels thus obtained, they can train their neural network with
a large amounts of data without labelling them manually.

15,059 documents9 related to all U.S. elections (such as speeches, press releases, etc.) are used
to train domain specific word embeddings. Using MAP, P@5, P@10, P@20 (see Section 2.2.4),
and P@R (where R is the number of check-worthy sentences in the evaluation dataset) as
evaluation metrics, the authors report significant higher scores (from 9 to 28%) compared to
the following systems: ClaimBuster [Hassan et al., 2017], TATHYA [Patwari et al., 2017],
ClaimRank [Gencheva et al., 2017] and the systems of [Zuo et al., 2018] (see Section 3.5),
[Konstantinovskiy et al., 2018]. Incorporating the weakly labeled dataset W as an additional

8https://idir-server2.uta.edu/claimbuster/
9https://web.archive.org/web/20170606011755 and /http://www.presidency.

ucsb.edu/

https://idir-server2.uta.edu/claimbuster/
https://web.archive.org/web/20170606011755
/http://www.presidency.ucsb.edu/
/http://www.presidency.ucsb.edu/

26 CHAPTER 3. STATE OF THE ART OF COMPUTATIONAL FACT CHECKING

source of training data further raises all the scores.

3.2 Reference source search

For a given claim, a fact checking system searches for relevant reference sources from different
sources. Below, we list the main categories of reference sources, and outline how the most
relevant data for a given claim is found.

• Search engine such as Google, Bing. The claim could be issued directly against the
search engine [Zhi et al., 2017]. Or it could be converted into search query by retain-
ing only its verbs, nouns and adjectives [Nadeem et al., 2019, Karadzhov et al., 2017].
Named entities, e.g., location, person’s names, etc. could also be added to the query
issued to the search engine [Karadzhov et al., 2017, Wang et al., 2018].

• Knowledge bases such as DBpedia [Lehmann et al., 2015] and SemMedDB [Kilicoglu
et al., 2012] can be leveraged to find the most probable paths in the knowledge base
that connect the subject and object of a claim given in a triple format subject, predicate,
object [Shi and Weninger, 2016]. The evidence facts related to a given claim could also
be extracted from knowledge bases [Ahmadi et al., 2019].

• Wikipedia pages could be used to support or refute a given claim [Thorne et al., 2018].
A subset of sentences from these pages could also be retrieved to give specific evidence
to explain the systems’ decision.

• Previously fact checked claims could be compared with the given claim to find out
whether a fact check for this claim already exists [Hassan et al., 2017, Lotan et al., 2013].
Such a comparison can be made based on a text similarity measure between the claim
and the previously fact-checked claims.

• Social media content has been used as background (reference) information in [Goasdoué
et al., 2013]: social media content is archived, then person names are used as search terms
in order to identify the posts from a given actor.

• Table cells could be aligned with textual mentions of quantities in [Ibrahim et al., 2019].

3.3 Related datasets

We list below a set of datasets released by different organizations and/or research teams having
worked in the above-mentioned areas.

• Wang [Wang, 2017] released a dataset10 consisting of 12,836 human labeled short state-
ments from the API of politifact.com11. Each data point includes a statement in plain text,
a label which expresses the truthfulness of statement (“pants on fire”, “false”, “barely
true”, “half-true”, “mostly-true”, and “true”), the speaker (a politician) name and some

10https://www.cs.ucsb.edu/˜william/data/liar_dataset.zip
11http://static.politifact.com/api/v2apidoc.html

https://www.cs.ucsb.edu/~william/data/liar_dataset.zip
http://static.politifact.com/api/v2apidoc.html

3.4. CLAIM ACCURACY ASSESSMENT 27

meta-data (job title, party affiliation, state, and “credit history”, which counts the differ-
ent labels assigned to past statements of this speaker), and a context (venue/location of
the statement, e.g. TV debate, social network, etc).

• The Fake News Challenge [Pomerleau and Rao, 2017] provided a dataset of 49,972
triples12 of the form: news article’s headline, news article’s body text, and stance of
the body relative to headline.

• The FEVER challenge [Thorne et al., 2018] introduced a dataset of 185,445 claims car-
rying a label among Supported, Refuted or NotEnoughInfo. For the first two labels, they
also provided the combination of sentences as evidence to support or refute the claim.

• Datacommons.org released a dataset13 which follow the ClaimReview14 standard. It con-
tains 12,545 fact checking articles, authored by human writers, as well as a set of extra
information for each of them: details about the claim, the URL of fact checking article,
the fact checker, the truthfulness rating, and the published date.

• [Popat et al., 2017] provided a dataset15 of 4,856 claims from the Snopes website16 to-
gether with their labels (true or false). They also provided the set of relevant articles
collected from Google’s search results for the given claims.

• [Mukherjee and Weikum, 2015] introduced the NewsTrust17 dataset18, consisting of 47,565
news articles from sources like New York Times, TruthDig, etc. Overall, the articles
come from 5.6K distinct sources. Each article contains at least one review and rating
from community members who are professional journalists and content experts. Com-
munity member profiles containing their occupation, expertise, demographics, reviews,
and ratings are also included in this dataset.

3.4 Claim accuracy assessment

In order to verify a given claim, external sources could be retrieved to obtain more relevant data
(Section 3.4.1). When the data is structured as a knowledge graph, claim accuracy assessment
is related to the problem of link prediction or reasoning on logic rules (Section 3.4.2). Some
other researchers rely on linguistic features of text to assess claim truthfulness (Section 3.4.3)
or user inputs to verify a claim’s credibility (Section 3.4.4).

3.4.1 Using external sources

[Karadzhov et al., 2017] use search engine results in order to verify the truthfulness of a claim
expressed in natural language.

12https://github.com/FakeNewsChallenge/fnc-1
13https://www.datacommons.org/static/fact_checks_20190315.txt.gz
14http://schema.org/ClaimReview
15http://resources.mpi-inf.mpg.de/impact/web_credibility_analysis/Snopes.

tar.gz
16snopes.com
17newstrust.net
18http://resources.mpi-inf.mpg.de/impact/credibilityanalysis/data.tar.gz

https://github.com/FakeNewsChallenge/fnc-1
https://www.datacommons.org/static/fact_checks_20190315.txt.gz
http://schema.org/ClaimReview
http://resources.mpi-inf.mpg.de/impact/web_credibility_analysis/Snopes.tar.gz
http://resources.mpi-inf.mpg.de/impact/web_credibility_analysis/Snopes.tar.gz
snopes.com
newstrust.net
http://resources.mpi-inf.mpg.de/impact/credibilityanalysis/data.tar.gz

28 CHAPTER 3. STATE OF THE ART OF COMPUTATIONAL FACT CHECKING

Given a claim in plain text, they rank its words by TF-IDF [Jones, 1972]. Only verbs, nouns
and adjectives are kept. They also detect named entities, e.g., location, person names etc.
using IBM’s Alchemy API19. For example, from the original claim “Texas, teenager Ahmed
Mohamed was arrested and accused of creating a hoax bomb after bringing a home-assembled
clock to school”, they generate a query “Texas, Ahmed Mohamed, hoax, bomb, clock, arrested,
accused”. The aforementioned approach to generate queries from claims is also adopted by
[Nadeem et al., 2019]. But apart from the relevant documents identified through a search engine
call, they also collect those from Apache Lucene20 on the 2017 Wikipedia dump. Finally, a re-
ranking model [Lee et al., 2018] is applied to obtain the top-k relevant documents.

The search query is executed against search engines (Google and Bing) and the ten first web
pages returned by each of these are kept as supporting documents. From each such document,
each sequence of three consecutive sentences is compared with the claim through a similarity
function. The sequence most similar to the claim is called the best-matching snippet.

To generate a vector representation of a text, they transform the text into the average of the
Glove embeddings (Section 2.2.5) of its words, which they subsequently pass to Bi-LSTM
(Section 2.2.3). Five different texts are used to generate the vector representation of a given
claim: the claim itself, Google supporting documents, Bing supporting documents, Google
best-matching snippets, and Bing best-matching snippets. The similarity scores (cosine simi-
larity of the embeddings vectors) between the claim and a snippet, or the claim and a web page
are added to the concatenation of these vectors to form the final text representation. They pass
this representation to a binary classifier to classify the claim as true or false.

On a dataset consisting of 761 claims from snopes.com, the above mentioned model achieves
an F1-score of 0.772 on the test set.

Similarly, given a fact-checking article, [Wang et al., 2018] retrieves related documents using a
search engine. Then a binary classifier is trained to predict the relevance of a document with re-
spect with the given claim in the article. They train a model to classify the relevant document’s
stance (contradicting or supporting) with respect to the claim. To obtain the training data, they
build a corpus of fact-checking articles containing exactly one ClaimReview21 markup. They
retain only articles from the highly reputed fact checking communities; this leads to a corpus
of 14,731 articles.

To generate the relevant documents, they issue search queries to Google and collect the top-100
results. Queries of a claim are generated from:

1. The title of the fact-checking article and the claim of the ClaimReview markup.

2. The entities extracted from title and claim text using entity resolution [Mendes et al.,
2011]. For example, given the claim “A video documents that the shootings at Sandy
Hook Elementary School were a staged hoax”, the extracted entities are video, docu-
ments, shootings, Sandy Hook Elementary school, and hoax. A confidence score is also
given for each entity. This step is performed to retain only the important words in the
query.

3. The 50 most popular search queries that led to clicks on the fact-checking article.

19www.ibm.com/watson/alchemy-api.html
20https://lucene.apache.org
21https://schema.org/ClaimReview

www.ibm.com/watson/alchemy-api.html
https://lucene.apache.org
https://schema.org/ClaimReview

3.4. CLAIM ACCURACY ASSESSMENT 29

This approach has a recall of 80%.

Through crowdsourcing, they obtain a labeled corpus of 8,000 (fact-checking article, related
document) pairs. The features of this model consisting of:

1. Text similarity: Each piece of text is represented by the weighted sum of word2vec
embeddings over its words and phrases. They denote sim(t1, t2) the cosine similarity of
the text representations of two texts t1 and t2. A set of similarity scores are computed as
following:

• sim(claim, document title)

• sim(claim, document headline)

• max sim(claim, each sentence from the document)

• max sim(claim, each paragraph from the document)

• max sim(sa, sd) where sa is a sentence from the article title, article headline, or from
the article’s sentences such that sim(claim, sa) is above a pre-defined threshold θ and
sd is a sentence from the document

• sim(claim, document)

• sim(claim, article)

2. Entity similarity: From the list of the extracted entities from the article and the docu-
ment, they build an entity confidence score vector {c1, c2, . . . , ck} where ci is the confi-
dence score of the extracted entity ei if ei appears in both sides, and ci is 0 if ei is found
in only one side.

3. Publication order: The publication dates of the article and the document are collected.
This information is collected since it is assumed that fact-checking articles are published
around the same publication time of the claim.

Based on these features, they build a gradient boosted decision tree model to determine the
relevance of a related document toward the fact-checking article. Their system got an accuracy
of 81.7%.

Their idea for building the stance classifier is to identify within a documents, the elements that
are contradictory to the claim. A contradiction vocabulary is collected for this purpose. Then
they collect key texts including title, headline and important sentences whose similarity score
with the claim is above a certain threshold. They call key component the concatenation of a
key text, the sentence preceding it and the sentence after it. Finally, they extract unigrams and
bigrams from key components and output a weighted n-grams vector over the contradiction
vocabulary as feature of the gradient boosted decision tree model. On a labeled dataset of
8,422 examples, they obtained the accuracy of 91.6% on test set.

[Zhi et al., 2017] also rely on relevant news articles from Google search to verify a given claim
from snopes.com. The sources credibility of these articles is taken into account. They imple-
mented a system consisting of four modules: stance extraction, stance classification, article
classification, and source credibility assessment, as follows:

• The stance extraction module retrieves articles relevant for the given claim through
Google search (they retrieve the top 30 web pages). They generate snippet candidates by

30 CHAPTER 3. STATE OF THE ART OF COMPUTATIONAL FACT CHECKING

removing sentences of less than K words, and combining each L consecutive sentences
into a snippet. Through empirical studies, they find the optimal values K = L = 3. Then
they compute the Doc2vec cosine similarity between the claim and each snippet, to retain
the candidate snippets having a similarity higher than 0.55.

• The stance classification module trains a Random Forests classifier on the embeddings of
candidate snippets and the labels from the fact database. This module outputs two stance
scores, as the probability of having a snippet support or refute a claim.

• The article classification module trains a classifier (also using Random Forests) to de-
termine whether an article supports or refutes a claim by using the three snippets with
the highest stance scores. These scores help them to further divide an article into three
categories: fully supportive, completely refuting, and a mixture of the former stances.
Similar to [Nakashole and Mitchell, 2014], they capture the text subjectivity to detect
high confidence stances. Some linguistic features are taken into account for this purpose:
(1) factive verbs such as know, realize, etc. (2) assertive verbs such as think, believe, etc.
(3) mitigating words such as about, apparently, etc. (4) report verbs such as admit, agree,
etc. (5) discourse markers such as could, maybe, etc. (6) subjective/bias words such as
accept, abuse, etc. These features are encoded into one-hot feature vectors.

• The source credibility assessment module measures the reliability of article’s source.
They obtain this assessment by using Web of Trust (WOT)22. In another study, [Nadeem
et al., 2019] use the Media Bias/Fact Check website23 to assess the credibility of media
sources. They obtain the three labels high or very high, low and low questionable, and
mixed for 2,500 news websites.

Finally, the truthfulness of a given claim is measured as a weighted sum of the stance scores
provided by the article classifier and the WOT score. On a test set of 105 claims, the authors
report an accuracy of 83.63% for the stance classifier and an accuracy of 85.25% for the task
of predicting claim truthfulness.

3.4.2 Using a knowledge graph

Given a statement that is described as an RDF triple (subject, predicate, object), e.g., (Chicago,
isCapitalOf, Illinois), [Shi and Weninger, 2016] first determine the type of the subject, in this
occurrence city, and that of the object, in this example state. Then they collect the set T+

of node pairs of the form (instance of type city, instance of type state) that are connected
by any path in the knowledge graph. Similarly, they collect the set T− of node pairs of the
form (instance of type city, instance of type state) that are not connected by any path in the
knowledge graph. The set of predicates that connect node pairs in T+ and T− is called meta
path. Meta paths obtained from T+ and T− lead to the positive and negative training examples,
respectively. They prune meta paths considered irrelevant by calculating the information gain
of each path and retaining the top-k ones. Information gain is calculated with the following
formula:

IG(Xj, y) =
∑

xij∈Xj

∑
yi∈y

p(xij|yi) log
p(xij|yi)
p(xij)p(yi)

22https://mywot.com/wiki/API
23https://mediabiasfactcheck.com/

https://mywot.com/wiki/API
https://mediabiasfactcheck.com/

3.4. CLAIM ACCURACY ASSESSMENT 31

where:

• X is the training dataset consisting of n training examples x1, x2, . . . , xn. Each training
example xi is an m-dimensional vector representing the meta path (pi1 , pi2 , . . . , pim). xij
is the number of node pairs connected by the predicate pij ;

• Xj = (x1j, x2j, . . . , xnj) is the j-th column in X;

• yi ∈ {0, 1} is the label of the ith training example;

• y is the set of all labels;

• p(xij) =
xij∑
i,j xij

is the relative importance of xij , the number of pairs connected by

predicate pij , among all the elements of the X matrix;

• p(xij|yi) =
xij∑

k∈{1,2,...,n}:yk=yi
xkj

is the relative importance of xij among the elements

in the column Xj having the label yi

• p(yi) =

∑
k∈{1,2,...,n}:yk=yi

1

n
is the frequency of the label yi within the training set.

Intuitively, the information gain reflects the relevance of a feature (a column of X) with respect
to the target y. Removing irrelevant features result a better training set.

These top-k meta paths are used to train a binary logistic regression and to explain the predicted
link between subject and object of the given statement.

Thus, in this work, truthfulness is assessed with the help of a link prediction approach, which
intuitively states how likely the given triple is, by comparing with how frequent (likely) similar
triples hold for similar (subject, object) pairs. This approach requires that the subject and
object be typed; further, if one or both had several types, some extension to this method would
be needed.

The authors present experiments carried on two large knowledge bases DBpedia [Lehmann
et al., 2015] and SemMedDB [Kilicoglu et al., 2012]. When comparing against six other link
prediction models, one fact checking model and an association rule mining model, they report
the highest area-under-curve (AUC) on 5 out of 7 link-prediction tasks.

This work also provides human-interpretable, intuitive explanations of their prediction, by
showing the most probable paths in the knowledge graph that connect the type of subject and
object. A sample explanation when checking the above sample triple is: “a US city is likely to
be the capital of a US state if an state agency with jurisdiction in that state has its headquarters
in that city”.

[Ahmadi et al., 2019] uses rules and evidence from knowledge graph (KG) in order to explain
fact-checking outputs. A KG contains facts as RDF triples of the first p(s, o) where p is a
predicate connecting a subject s and an object o. For example, the claim “William Durant was
the founder of Chevrolet” is true because of the two triples keyPerson(Durant, Chevrolet)
and foundedBy(Durant, Chevrolet). The following claim “Elon Musk was the founder of
Chevrolet” is false because of these three triples foundingY ear(Chevrolet, a), birthY ear(Musk, b),
greater(b, a). In a nutshell, the authors mine rules from the KG; to fact-check a claim repre-
sented as an RDF triple, they collect the evidence under the form of facts from the KG and

32 CHAPTER 3. STATE OF THE ART OF COMPUTATIONAL FACT CHECKING

Web documents. Finally, they apply an answer set programming technique to determine the
truthfulness of the claim. Below we give more details on these steps.

They adopt RUDIK [Ortona et al., 2017] to generate rules for each predicate in KG. A rule r is
denoted r : h(x, y)← B1(z1, z2) ∧B2(z3, z4) ∧Bn(z2n−1, z2n) where h is the head of the rule
and all Bi triples form its body. The head of a rule is considered true (correct) when all triples
in its body are true. An example is spouse(a, b) ← child(a, c) ∧ child(b, c). This rule reads:
“a and b have the same child c, thusa and b participate in a spouse relation”. They also add
a rule to ensure that a claim and its contradiction cannot be true at the same time, and another
rule to make sure that a claim can have only one object value.

Given a claim p(s, o) and a rule r, they generate evidence for the claim by substituting x, y to
all triples Bi (i ∈ {1, 2, . . . , n}), then collect triples that satisfy r in KG.

The authors observe that one can not always rely solely on KG facts, since it may be incomplete.
For example if we have a rule r : p(x, y)← A(x, z) ∧ B(y, z) and only A(x, z) is found from
KG then we need to find the fact B(y, z) from other sources. To solve this problem, they apply
CredEye [Popat et al., 2016] to harvest the missing facts from Web documents. Each fact has
a confidence score, indicating whether the fact is true. They collect facts that have confidence
scores greater than 0.5.

Given a claim c, a set of rules and a set of evidence, they apply probabilistic answer set pro-
gramming [Lee and Wang, 2016] to output a subset of the rules R and a subset of the evidence
E. By substituting triples from E into the bodies of rules from R, we could derive either c
or the negation of c in the head of one rule r∗ from R to conclude the claim is true or false
respectively. They use r∗ as the explanation for the fact-check result of c. If R and E are empty
sets, they could not fact-check c.

They evaluate their system’s performance on 4 predicates for a total of 2,400 claims. Compared
with three baselines, their system have significant higher F1-scores for three predicates (0.88,
0.83, and 0.87).

3.4.3 Using linguistic features

[Nakashole and Mitchell, 2014] aim to determine the truthfulness of a fact such as “Einstein
died in Princeton” by analyzing the presence of language’s level of objectivity.

They use crowdsourcing to analyze the correlation between the objectivity of language and the
trustworthiness of news articles. For each article, they ask workers to label it as subjective /
objective and trustworthy / untrustworthy. An example of objective sentence is “Theories allege
that Obama’s published birth certificate is a forgery, that his actual birthplace is not Hawaii but
Kenya”. An example of subjective sentence is “Well, I think Obama was born in Kenya because
his grandma who lives in Kenya said he was born there.”. On a dataset of 420 articles, they
report that 74% of the untrustworthy articles are also found subjective. On the other hand, 64%
of trustworthy articles were labeled as objective. Thus, they form a hypothesis objective text is
more trustworthy than subjective one.

To train an objectivity detector, they crowdsource a labeled dataset and reuse another dataset
from prior work on subjectivity detection [Pang and Lee, 2004]. The final dataset consists
of 4,600 documents. They train a binary classifier with five sets of features: (1) subjectivity
lexicon of strong and weak subjective words, (2) sentiment lexicon of positive and negative

3.4. CLAIM ACCURACY ASSESSMENT 33

Figure 3.4: Discourse-level hierarchical representation of a document using dependency tree
parsing [Karimi and Tang, 2019]

words, (3) Wikipedia-derived bias lexicon, (4) part-of-speech, (5) frequent bi-grams. They
report a precision of 78.14%. The probability that the learned model assigns to the objective
label is call objectivity of a document. The feature sets (1) and (2) are also adopted by [Nadeem
et al., 2019] in a similar effort to analyze the language used in relevant documents of a claim.
A new feature set Wiki-bias lexicon, bias cues and controversial words such as abortion and
execute, are also introduced by [Nadeem et al., 2019].

A fact candidate is a piece of evidence connected to a claim. It can appear in one or more
sources, where a source is a collection of documents such as the set of articles in a newspaper,
or Wikipedia. A fact candidate is represented as a RDF triple (subject, verbal phrase, object).

Using the objectivity of a document, they compute the two following scores for a fact candidate:

• objectivity score to ensure that a fact candidate mentioned in 10 sources with 0.9 objec-
tivity should be given more faith than a fact candidate stated in 1 source of 0.9 objectivity.

• co-mention score to gives “boost” to the fact candidate that is co-mentioned in the same
source(s) with another fact candidate that has high objectivity score.

Finally they compute a believability score for each fact candidate which is a weighted sum of
the two previous mentioned scores. The believability score is used to determine whether a fact
candidate is true or false. High accuracy scores are reported on three different datasets:

• KB dataset provided by [Carlson et al., 2010] consisting of 190 fact candidates about
company acquisitions, book authors, movie directors, and athlete teams.

• Wikipedia dataset consisting of 54 fact candidates about US politicians. They created
this dataset manually.

• General Knowledge Quiz dataset consisting of 18 fact candidates collected from a gen-
eral knowledge quiz24.

[Karimi and Tang, 2019] develop a new approach to detect fake news based on the observation
of hierarchical structure (e.g., a tree data structure) of discourse units (e.g., sentences)
could provide important insight of document’s truthfulness.

Their system consists of three components: Discourse-level Hierarchical Structure Learning,
Document-level Structural Representation, and Fake News Classification.

24http://www.indiabix.com/general-knowledge/

http://www.indiabix.com/general-knowledge/

34 CHAPTER 3. STATE OF THE ART OF COMPUTATIONAL FACT CHECKING

• The first component learns the semantic dependencies between discourse units. These
dependencies are illustrated in Figure 3.4. The output of this task is a tree where each
node is a sentence of the document and the child node depends semantically on its parent
node. They use Bi-LSTM (Section 2.2.3) to represent discourse units. Then a matrix
A is constructed where A(m,n) denotes the probability that sentence m is the parent
sentence of sentence n. This matrix also helps computing the probability of being root
node for each sentence. Finally, they build a dependency tree of all sentences using a
greedy algorithm.

• The second component adopts the approach of [Liu and Lapata, 2018] to compute a
structural representation of the document, as follows. Each sentence of the document is
represented as the concatenation of its parent/child nodes’ vector representation in the
dependency tree and the vector representation of the sentence itself. The representation
of the document is the average of its sentences’ representations.

• The last component is a binary document classifier into fake, respectively, non fake,
applied on the document representation built by the previous component.

On a dataset of 3,360 fake and 3,360 real documents, they obtained an accuracy of 82.19%
on the test set. Furthermore, they discover that the degree of coherence of real documents
is higher than those of fake ones. This is determined using three properties calculated from
the discourse-level hierarchical structure: the number of leaf nodes, the parent-child distance,
and the preorder difference which is a normalized positional difference between the preorder
traversal of a document’s discourse dependency tree and its original sentential sequential order.

3.4.4 Using user input

[Lim et al., 2017] propose iFact, an approach to verify claims’ credibility which incorporates
users’ inputs. This approach collects evidence from web search, then assign to a claim the
probability that it is credible, not credible, or inconclusive. Observing that a claim’s credibility
could be dependent on the credibilities of others, they detect the dependencies among claims
and adjust the aforementioned probabilities with first order logic rules. Users can review and
decide the credibility of claims with an interactive GUI (graphical user interface).

They extract claims from tweets using their ClaimFinder framework [Lim et al., 2016]. Each
claim is represented in tuple format (Subject, Predicate) where Subject is a set of nouns and
proper names, and Predicate is a set of verbs. For example, from the tweet “Unconfirmed re-
ports suggest flight MS804 landed. Not sure how true...”, the extracted tuple is ({flight ms804},
{land}).

The web search is performed with the union of words from Subject and Predicate. In the
previous example, the search query would be “flight ms804 land”. Each web search result
(WSR) consists of a source URL, its text title and snippet (the summary text of each URL).
They extract the following features for each WSR:

1. Results is the number of results returned from the search engine.

2. Doubt is the fraction of top-k WSRs containing a question mark or some doubt words.
They collect doubt words manually from a set of rumours from snopes.com and
truthorfiction.com. Some examples are “gossip, incorrect, mislead, scam, etc.”.

snopes.com
truthorfiction.com

3.4. CLAIM ACCURACY ASSESSMENT 35

3. Reputable is the fraction of top-k WSRs coming from reputable sources. They con-
sider a source reputable if it comes from a pre-defined list of well-known sites such as
reuteurs.com, bbc.co.uk. The trust score25 is also taken into account to deter-
mine the reputation of a source.

4. Reputable doubt is the intersection of the Doubt and Reputable features.

5. Trust score is the average trust score of sources from top-k WSRs.

6. Doubt score is the average trust score of sources from top-k WSRs express doubt.

After manually labeling claims as credible, not credible, or inconclusive, they train a supervised
learning model with the above features to obtain the probabilities of each class. The obtained
precision, recall, and F1-score outperform the scores of the same model training with tweet-
based features [Castillo et al., 2011] that focus on tweet’s linguistic features and Twitter user’s
information.

They consider two types of dependencies between two claims that refer to a similar subject:
direct dependency if the two have the same credibility, and inverse dependency if one claim
is credible and the other is not credible. For instance, a direct dependency occurs when the
two claims’ predicates are synonyms. An inverse dependency occurs when the two claims’
predicates are antonyms.

The similarity of two subjects is measured by the cosine similarity between their vector repre-
sentations, using Doc2Vec.

Using Probabilistic Soft Logic [Bach et al., 2017], they formulate first order logic rules to
assign the same class to the two claims with a direct dependency, and assign opposite classes
to the two claims with an inverse dependency.

The iFact system takes into account inputs from users, by providing a GUI that allow users to
decide whether a WSR is relevant to a given claim. The GUI also lets users change the type of
dependency among the claims. Finally, iFact recomputes the credibility of claims with the new
inputs from users.

[Nguyen et al., 2019] propose a method to verify the credibility of claims by making an efficient
use of user inputs. To explain their approach, we recall a set of notations they introduce. D is a
set of documents, where a document can be a tweet , a news item, or a forum posting, etc.; S is
a set of data sources, where a source can be, for example, a web site, or a news provider; C is
a set of claims; P is probabilistic model, where P (c = 1) refers to the probability that a given
claim c ∈ C is credible. They define a probabilistic fact database Q = (S,D,C, P).

They perform the following steps to validate claims:

1. selecting a claim c from C using an user guidance approach that will be described below,

2. getting user input to confirm the credibility of the claim (label the claim as 1 for “credi-
ble” or 0 for “non-credible”),

3. updating the probabilistic credibility model P ,

4. deciding whether the claim is credible, then go back to step 1.

25https://www.mywot.com/

reuteurs.com
bbc.co.uk
https://www.mywot.com/

36 CHAPTER 3. STATE OF THE ART OF COMPUTATIONAL FACT CHECKING

This process is iterated until an effort budget (the maximum number of iterations) or a valida-
tion goal such as a certain threshold of P ’s precision is matched.

They perform step 3 using iCRF, an implementation they propose for the CRF [Lafferty et al.,
2001] model, which does not need to re-compute P and the model parameters after each iter-
ation. iCRF takes D and S feature vectors as input to compute P . The construction of these
feature vectors is not clearly explained in [Nguyen et al., 2019]26.

The core of their approach is the user guidance that tries to reduce the uncertainty of Q by
selecting the “best” claim c for the user to validate. They present three methods for selecting
the next claim for which to solicit user guidance:

1. The information-driven approach starts by quantifying the uncertainty of Q and ap-
proximating it in linear time as follows:

HC(Q) = −
∑
c∈C

(Pr(c) logPr(c) + (1 − Pr(c)) log (1− Pr(c))) where Pr(c) is the

probability that the claim c is credible. This probability is obtained from iCRF for unla-
beled claims, or from user input for labeled claims. This can be seen as a form of active
learning.

The claim to select is the one that maximizes its information gain. This is computed as:
IGC(c) = HC(Q) − Pr(c)HC(Q+) − (1 − Pr(c))HC(Q−) where Q+ and Q− are the
subsets of Q inferred by iCRF (based on user input) as holding the credible and non-
credible claims, respectively.

2. The source-driven approach aggregates the credible claims from a source to assess that
source’s credibility. The likelihood that a source s is trustworthy, Pr(s), is computed as
the fraction of its claims that are considered credible.

The uncertainty of source trustworthiness is measured by

HS(Q) = −
∑
s∈S

(Pr(s) logPr(s) + (1− Pr(s)) log (1− Pr(s)))

Similarly to the information-driven approach, we select the claim maximizing informa-
tion gain:

IGS(c) = HS(Q)− Pr(s)HS(Q+)− (1− Pr(s))HS(Q−)

3. A hybrid approach combines the information- and source-driven methods. In each itera-
tion, they compute a score from the ratio of untrustworthy sources and the credible prob-
ability of claims to decide whether to choose the information-driven or source-driven for
the next iteration.

To evaluate their method, they simulate the user inputs with labeled claims from the Snopes
dataset [Popat et al., 2017]. Their approach achieves a precision > 0.9 after using only 31% of
the claims. Other baselines require at least 67% of the claims to obtain the same precision.

26“We abstract from the specific nature of these features, but take into account that the trustworthiness of a
source and the language quality of a document have a strong influence on the credibility of the claims.”

3.5. FACT CHECKING CHALLENGES 37

3.5 Fact checking challenges

A number of challenges has been organized to tackle the tasks of stance detection (Section 3.5.1),
fact extraction and verification (Section 3.5.2), and check worthiness (Section 3.5.3).

3.5.1 Fake news challenge

The Fake News Challenge [Pomerleau and Rao, 2017] focuses on the stance detection task,
which consists of classifying a news article among four classes: “agree”, “disagree”, “discuss”,
and “unrelated” with respect to a given headline (or claim). The winning solution [Baird et al.,
2017] is an ensemble of gradient-boosted decision trees (GBDT) model and convolutional neu-
ral networks (CNNs). The authors published their source code on GitHub27.

Their GBDT model was trained on the following features: (1) the number overlapping words
between the headline and the article body text; (2) the similarities measured between their word
counts, 2-grams and 3-grams; and (3) similarities measured after transforming these counts
with TF-IDF [Jones, 1972] weighting and Singular Value Decomposition (SVD) [Klema and
Laub, 1980]. Features based on word2vec and sentiment analysis are also said to have been
used, but the details are not mentioned in their blog post.

For the CNN model, firstly they represent the headline and article body at word level using
pre-trained word2vec vectors. For each training example, the representations of the headline
and the body are concatenated to form a vector. These vectors are inputs of CNN layers,
regularized using Dropout [Srivastava et al., 2014]. The output is then sent to a multilayer
perceptron (MLP) [Hornik et al., 1989], which determines the relationship between the news
article body and the headline.

3.5.2 Fact Extraction and VERification

The FEVER challenge [Thorne et al., 2018] asks participant systems to verify an input claim (a
sentence) against a corpus of 5 million Wikipedia documents. This challenge provides a large
scale benchmark for developing new document retrieval systems. In the fact-checking context,
it helps to retrieve factual data from text. These systems are also asked to provide the evidential
sentences from the corpus in order to label the claim as “supports”, “refutes”, or “not enough
info”. Each system usually consists of three sub-systems to solve three tasks:

1. document retrieval to select the relevant documents with respect to the given claim,

2. sentence selection to select the evidential sentences,

3. claim verification to label the input claim.

The winners of this challenge are [Nie et al., 2019]. They introduced a neural network architec-
ture called Neural Semantic Matching Network to tackle the three sub-tasks as a similar textual
semantic matching problem. This network outputs a relatedness score between two pieces of
text. For the first sub-task, they compute the semantic relatedness between the input claim and
the representation of the concatenation of the title and the first sentence of a document. They

27https://github.com/Cisco-Talos/fnc-1/

https://github.com/Cisco-Talos/fnc-1/

38 CHAPTER 3. STATE OF THE ART OF COMPUTATIONAL FACT CHECKING

apply keyword matching to reduce the amount of candidate documents. Similarly, the sentence
selection sub-task is handled by computing the relatedness score between the claim and every
sentence from the documents retrieved from the first sub-task. Finally, they use the related-
ness scores of the set of evidential sentences and the claim, and some additional features (from
WordNet and the previous two sub-tasks) to output the probabilities for each of three labels.

3.5.3 Check worthiness

The CLEF-2018 CheckThat! Task 1: Check-Worthiness [Barrón-Cedeño et al., 2018] asks
to predict if a given claim from a political debate should be prioritized for fact checking.

[Zuo et al., 2018] was ranked first on this task. Their system is a multilayer perceptron (MLP),
based on the following features characterizing each input sentence:

• sentence embedding: the average of the embeddings of the words in the sentence

• stylometric features such as; the number of words; the number of words in past, present,
and future tenses; the number of negations; the number of words within each clause and
phrase generated by the constituency parse tree of the input sentence;

• semantic features consisting of the number of named entities; the number of named enti-
ties of the type PERSON.

• sentiment features using Connotation WordNet [Kang et al., 2014] and sentiment score
[Pang et al., 2002]. They also capture the subjectivity of words using the lexicon from
[Wilson et al., 2005].

• metadata features to indicate if the speaker’s opponent is mentioned, the moderator is
the speaker, or the sentence is followed immediately by a sentence from the moderator
of the debate.

• discourse features such as the relative position of a sentence within its segment, where a
segment is a set of consecutive sentences from the same speaker.

3.6 Automated end-to-end fact checking systems

ClaimBuster [Hassan et al., 2017] claimed to be the first end-to-end fact checking system. Their
system architecture is illustrated in Figure 3.5. It performs fact-checking automatically using
the following components:

1. The claim monitor continuously retrieves texts from different sources such as broadcast
media, social media, and websites in order to discover factual claims.

2. The claim spotter gives a score between 0.0 and 1.0 to a given sentence, to indicate its
check-worthiness. They report recall and precision of this component of 74% and 79%
respectively.

3. The claim matcher searches the best matching fact-checks curated from various fact
checking websites to a given claim. To determine the ranking order, they combine token

3.6. AUTOMATED END-TO-END FACT CHECKING SYSTEMS 39

Figure 3.5: ClaimBuster’s system architecture [Hassan et al., 2017]

similarity from an Elastic search28 server and semantic similarity from Semilar toolkit
[Rus et al., 2013].

4. The claim checker uses a question generation tool [Heilman and Smith, 2009] to generate
questions from the claim. Then, they pick the most suitable ones to send to the question
answering engine Wolfram Alpha29 and to the Google search engine.

5. The fact-check reporter delivers outputs of the previous components to the end-users.
Their Twitter account have been tweeting 13K check-worthy factual claims from politi-
cians and organizations. They also created a public ClaimBuster API to help developers
develop fact checking applications.

[Nadeem et al., 2019] present the end-to-end FAKTA fact checking system30 as the integration
of various components: document retrieval, stance detection, evidence extraction, and linguistic
analysis.

The stance detection is handled by the state-of-the-art system on the Fake News Challenge [Pomer-
leau and Rao, 2017] developed by [Xu et al., 2019]. The model outputs a stance score for a
document with respect to a claim. They also improve the model by using an adversarial domain
adaptation technique which helps it overcome the limited size of labeled data when training
through different domains.

The rationale of their model are explained by the stance score for each sentence in the relevant
documents to the given claim. These sentences are highlighted and color coded in a web in-
terface in order to help end-user spot these important information more easily. The frequency
of each lexicon type (sentiment cues [Riloff and Wiebe, 2003], subjectivity lexicon [Liu et al.,
2005], and Wiki-bias lexicon [Recasens et al., 2013]) is taken into account in order to provide
lexicon-specific word clouds and lexicon-specific scores as a radar chart for the end-user. An
illustration of the FAKTA system is presented in Figure 3.6.

28https://github.com/elastic/elasticsearch
29http://products.wolframalpha.com/api
30http://fakta.mit.edu/

https://github.com/elastic/elasticsearch
http://products.wolframalpha.com/api
http://fakta.mit.edu/

40 CHAPTER 3. STATE OF THE ART OF COMPUTATIONAL FACT CHECKING

Figure 3.6: A document retrieved for the claim “ISIS infiltrates the United States” [Nadeem
et al., 2019]

Chequeado31 is a system similar to ClaimBuster [Hassan et al., 2017]. As of 2018, the program
could monitor the presidential speeches and articles from 30 Argentine media outlets to detect
check-worthy claims [Graves, 2018]. They work closely with fact-checkers to improve their
algorithm. They are developing automated verification methods for a given claim, based on
previous fact-checks and official statistics. Unfortunately, details of their methods are currently
not available.

FullFact’s Live platform32 detects claims in TV’s subtitles and then propose the relevant arti-
cles. In case the detected claim has not been fact-checked, the system could create fact-checks
on the spot using reliable data.

3.7 Conclusion

The literature provides us many approaches to leverage external data, e.g., Wikipedia, knowl-
edge graph, etc. and linguistic features to tackle the fact-checking task. The availability of
datasets and benchmarks let researchers to try their new ideas more easily. We also see some
end-to-end systems indicating that computational fact-checking is feasible.

There are also some limitations of the existing systems. Firstly most of these works focus only
in English language. In order to apply these existing approaches to a new language, we have
to build new tools to work with the new language. We also notice the lack of attention on
spreadsheet/tabular data which is really helpful in practice for fact-checking statistic claims.

31https://chequeado.com/
32https://fullfact.org/

https://chequeado.com/
https://fullfact.org/

3.7. CONCLUSION 41

In our work, we develop our algorithms and software from scratch as we focus on spreadsheet
data and French language.

42 CHAPTER 3. STATE OF THE ART OF COMPUTATIONAL FACT CHECKING

Chapter 4

Extracting linked data from statistic
spreadsheets

4.1 Introduction

The tremendous value of Big Data has been noticed of late also by the media. While data of
some form is a natural ingredient of all reporting, the increasing volumes of available digital
data as well as its increasing complexity lead to a qualitative jump, where technical skills for
working with data are stringently needed in journalism teams.

A class of data sources of particularly high value is that comprised into government statistics.
Such data has been painstakingly collected by state administrations which sometimes have very
significant human and technology means at their disposal. This makes the data oftentimes of
high quality. Another important quality of such data is that it logically falls into the open data
category, since it is paid for with taxpayer money.

Such high-quality statistic data is a very good background information to be used when trying
to assess the truthfulness of a claim. A fact-checking scenario typically has several steps: first,
a claim is made. Second, journalists or other fact-checkers look up reference sources providing
relevant statistics for the assessment of the claim; Third, some post-processing may be applied
to compute from the reference source values, the value corresponding to the claim. This post-
processing may involve elaborate steps.

In this chapter, we focus on the extraction of reference sources. Ideally, these are available
to fact-checkers in a format and organized according to a model that they understand well.
For instance, in [Wu et al., 2014], unemployment data is assumed available in a temporal
database relation. In reality, however, most fact-checking actors only have access to the data
through publication by the institute. This raises the question of the format and organization
of the data. While the W3C’s best practices argue for the usage of RDF in publishing open
data [The World Wide Web Consortium (W3C), 2014], in practice open data may be published
in Excel, HTML or PDF; in the latter formats, statistic data is typically shown as tables or
charts. In the particular case of the INSEE1, the national French social and economic statistics
institute, while searching for some hot topics in the current French political debate (youth
unemployment, immigrant population etc.) we found many very useful datasets in Excel and/or

1https://insee.fr

43

https://insee.fr

44 CHAPTER 4. EXTRACTING LINKED DATA FROM STATISTIC SPREADSHEETS

HTML, sometimes accompanied by a PDF report explaining and commenting the data, but we
did not find the data in a structured, machine-readable format.

Motivated by this limitation, we propose an approach for extracting Linked Open Data from
INSEE Excel tables. The two main contributions of our work are:

1. a conceptual data model (and concrete RDF implementation) for statistic data such as
published by INSEE and other similar institutions,

2. and an extraction algorithm which populates this model based on about 11, 000 pages
including 20, 743 Excel files published by INSEE.

Below, we describe the data sources we work with and the model for the extracted data (Sec-
tion 4.2) and our extraction method (Section 4.3). The RDF vocabulary we use in the extracted
data is outlined in Section 4.4. Finally we present an evaluation of our extraction process (Sec-
tion 4.5) as well as the implementation details (Section 4.6). We mention the related works
(Section 4.7) before concluding (Section 4.8).

We were aware of some APIs from INSEE. The Sirene API 2 focuses on enterprise’ informa-
tion. The Nomenclatures API 3 was available from July 2019 and we worked on this project
in 2016 and 2017. INSEE also provides data access in RDF format 4. Time series data are
provided via SDMX API 5. All of the aforementioned APIs provide sub-sets of INSEE data
grouped by theme such as enterprise, time series, etc. Our work focuses on extracting all
INSEE data and store them in a unified data format for further access.

The content of this chapter was presented in a publication in the International Workshop on
Semantic Big Data 2017 [Cao et al., 2017].

4.2 Reference statistic data

We present the input INSEE statistics (Section 4.2.1), then describe our conceptual model for
this data (Section 4.2.2).

4.2.1 INSEE data sources

INSEE publishes a variety of datasets in many different formats. In particular, we performed
a crawl of the INSEE web site under the categories Data/Key figures (Données/Chiffres-clés),
Data/Detailed figures (Données/Chiffres-détaillés), Data/Databases (Données/Base de données),
and Publications/Wide-audience publications (Publications/Publications grand public) , which
has lead to about 11,000 web pages including 20,743 Excel files (with total size of 36GB) and
20,116 HTML tables. In this work, we focused on the set of Excel files; we believe our tech-
niques could be quite easily adapted to HTML tables in the future. Also, while we targeted

2https://api.insee.fr/catalogue/site/themes/wso2/subthemes/insee/pages/
item-info.jag?name=Sirene&version=V3&provider=insee

3https://api.insee.fr/catalogue/site/themes/wso2/subthemes/insee/pages/
item-info.jag?name=Nomenclatures&version=v1&provider=insee

4http://rdf.insee.fr/index.html
5https://www.insee.fr/en/information/2868055

https://api.insee.fr/catalogue/site/themes/wso2/subthemes/insee/pages/item-info.jag?name=Sirene&version=V3&provider=insee
https://api.insee.fr/catalogue/site/themes/wso2/subthemes/insee/pages/item-info.jag?name=Sirene&version=V3&provider=insee
https://api.insee.fr/catalogue/site/themes/wso2/subthemes/insee/pages/item-info.jag?name=Nomenclatures&version=v1&provider=insee
https://api.insee.fr/catalogue/site/themes/wso2/subthemes/insee/pages/item-info.jag?name=Nomenclatures&version=v1&provider=insee
http://rdf.insee.fr/index.html
https://www.insee.fr/en/information/2868055

4.2. REFERENCE STATISTIC DATA 45

INSEE in this work, we found similar-structure files published in other Open Data government
servers in the UK6 and the US7.

HHH
HHHl

c
1 2 3 4 5 6 7 8 9 10

1 The data reflects children born alive in 2015...
2
3 Mother’s age at the time of the birth
4 Age below 30 Age above 31
5 Region Department 16-20 21-25 26-30 31-35 36-40 41-45 46-50
6

Île-de-France
Essonne 215 1230 5643 4320 3120 1514 673

7 Val-de-Marne 175 987 4325 3156 2989 1740 566
8 .
9

Rhône-Alpes
Ain 76 1103 3677 2897 1976 1464

10 Ardèche 45 954 2865 2761 1752 1653 523
11 .
. .

Figure 4.1: Outline of a sample statistics table in an INSEE dataset.

We view each spreadsheet file as a collection of data sheets D1, D2, . . . Each data sheet D has
a title D.t and optionally an outline D.o. The title and outline are given by the statisticians
producing the spreadsheets in order to facilitate their understanding by human users, such as
the media and general public. The title is a short nominal phrase stating what D contains,
e.g., “Average mothers’ age at the birth of their child per department in 2015”. The outline,
when present, is a short paragraph which may be found on a Web page from where the file
enclosing D can be downloaded. The outline extends the title, for instance to state that the
mothers’ ages are rounded to the closest smaller integers, that only the births of live (not still-
born) children are accounted for etc.

In a majority of cases (about two thirds in our estimation), each data sheet D comprises one
statistics table, which is typically a two-dimensional aggregate table. Data is aggregated since
statistics institutes such as INSEE are concerned with building such global measures of society
or economy phenomena, and the aggregate tends to be bidimensional since they are meant to
be laid out in a format easy for humans to read. For instance, Figure 4.1 illustrates a data sheet
for the birth statistic dataset mentioned above. In this example, the two dimensions are the
mother’s age interval, e.g., “16-20”, “21-25”, “26-30” etc. and her geographic area, specified
as a department, e.g., “Essonne”, “Val-de-Marne” etc. For a given age interval and region,
the table includes the number of women which were first-time mothers in France in 2015, in
that age interval and department. In Figure 4.1, we have included a top row and column on
a gray background, in order to refer to the row and column numbers of the cells in the sheet.
We will use the shorthand Dr,c to denote the cell at row r and column c in D. We see that
the table contains data cells, such as D6,3, D6,4, which hold data values, etc. and header cells,
e.g., “Region”, “Age below 30” etc., which (i) characterize (provide context for) the data values,
and (ii) may occupy several cells in the spreadsheet, as is the case of the latter.

The basic kind of two-dimensional aggregate in a data sheet is (close to) the result of a group-by
query, as illustrated in Figure 4.1. However, we also found cases where the data sheet contains a
data cube [Gray et al., 2007], that is: the result of a group-by, enhanced with partial sums along

6http://www.ic.nhs.uk/catalogue/PUB08694/ifs-uk-2010-chap1-tab.xls
7http://www.eia.gov/totalenergy/data/monthly/query/mer_data_excel.asp?

table=T02.01

http://www.ic.nhs.uk/catalogue/PUB08694/ifs-uk-2010-chap1-tab.xls
http://www.eia.gov/totalenergy/data/monthly/query/mer_data_excel.asp?table=T02.01
http://www.eia.gov/totalenergy/data/monthly/query/mer_data_excel.asp?table=T02.01

46 CHAPTER 4. EXTRACTING LINKED DATA FROM STATISTIC SPREADSHEETS

some of the group-by dimensions. For instance, in the above example, the table may contain a
row for every region labeled “Region total” which sums up the numbers for all departments of
the region, for each age interval8.

Dimension hierarchies are often present in the data. For instance, the dimension values “16-
20”, “21-25”, “26-30” are shown in Figure 4.1 as subdivisions of “Age below 30”, while the
next four intervals may be presented as part of “Age above 31”. The age dimension hierarchy
is shown in magenta in Figure 4.1, while the geographical dimension hierarchy is shown in
blue. In those cases, the lower-granularity dimension values appear in the table close close
to the finer-granularity dimension values which they aggregate, as exemplified in Figure 4.1.
Cell fusion is used in this case to give a visual cue of the finer-granularity dimension values
corresponding to the lower-granularity dimension value which aggregates them.

A few more rules govern data organization in the spreadsheet:

1. D1,1 (and in some cases, more cells on row 1, or the first few rows of D) contain the
outlineD.o, as illustrated in Figure 4.1; here, the outline is a long text, thus a spreadsheet
editor would show it over several cells. One or several fully empty rows separate the
outline from the topmost cells of the data table; in our example, this is the case of row 2.
Observe that due to the way data is spatially laid out in the sheet, these topmost cells are
related to the lowest granularity (top of the hierarchy) of one dimension of the aggregate.
For instance, in Figure 4.1, this concerns the cell at line 3 and columns 3 to 9, containing
Mother’s age at the time of the birth.

2. Sometimes, the content of a header cell (that is, a value of an aggregation dimension)
is not human-understandable, but it is the name of a variable or measure, consistently
used in all INSEE publications to refer to a given concept. Exactly in these cases, the
file containing D has a sheet immediately after D, where the variable (or measure) name
is mapped to the natural-language description explaining its meaning. For example, we
translate SEXE1 AGEPYR10189 into Male from 18 to 24 years old using the table below:

Variable Meaning
SEXE Sex
1 Male
2 Female
AGEPYR10 Age group
00 Less than 3 years old
03 3 to 5 years old
06 6 to 10 years old
11 11 to 17 years old
.
80 80 years and older

4.2.2 Conceptual data model

From the above description of the INSEE statistic datasets, we extract a conceptual data model
shown in Figure 4.2. Entities are shown as boxes while attributes appear in oval shapes. We

8https://www.insee.fr/fr/statistiques/fichier/2383936/ARA_CD_2016_action_
sociale_1-Population_selon_l_age.xls

9https://www.insee.fr/fr/statistiques/fichier/2045005/BTX_TD_POP1A_2013.
zip

https://www.insee.fr/fr/statistiques/fichier/2383936/ARA_CD_2016_action_sociale_1-Population_selon_l_age.xls
https://www.insee.fr/fr/statistiques/fichier/2383936/ARA_CD_2016_action_sociale_1-Population_selon_l_age.xls
https://www.insee.fr/fr/statistiques/fichier/2045005/BTX_TD_POP1A_2013.zip
https://www.insee.fr/fr/statistiques/fichier/2045005/BTX_TD_POP1A_2013.zip

4.2. REFERENCE STATISTIC DATA 47

simplified the notation to depict relationships as directed arrows, labeled with the relationship
name. Data cells and header cells each have an attribute indicating their value (content); by
definition, any data or header cell has a non-empty content. Moreover, a data cell has one
associated location, i.e., (row number, column number), while a header cell may occupy one
or several (adjacent) locations. Each data cell has a closest header cell on its column, and
another one on its line; these capture the dimension values corresponding to a data cell. For
instance, the closest column header cell for the data cell at D7,4 is D5,4, while the closest
column header cell is D7,2. Further, the header cells are organized in an aggregation hierarchy
materialized by the respective relation “aggregated by”. For instance, D5,4 is aggregated by
D4,3, which is aggregated by D3,3. In each sheet, we identify the top dimension values as those
which are not aggregated by any other values: in our example, the top dimension values appear
in D3,3, D6,1 and D9,1. Note that such top dimension values are sometimes dimensions names,
e.g., Region, and other times dimensions values, e.g., Île-de-France. Statistics in a sheet are
not always organized exactly as predicted by the relational aggregate query models, even if
they are often close.

Data cell value

Header cell value

C
lo

se
st

he
ad

er
ce

ll
(r

ow
)

C
lo

se
st

he
ad

er
ce

ll
(c

ol
)

aggregated by

Location

row

col

position

po
sit

ion

Sheet

title outline

Top dim. value (row)

Top dim. value (col)

Dataset

name description

source

co
ns

is
ts

of

Figure 4.2: Conceptual data model.

We chose not to define precise types, e.g., population, economic growth, etc., for each spread-
sheet because in the next chapter (Chapter 5) we will develop a search engine based on textual
content in each dataset. The design of the conceptual data model allows us to query quickly
necessary facts since it captures the hierarchy of headers and the data cell corresponding to a
pair of headers. We also decided not to apply supervised machine learning because it requires
labeled data which is time consuming to create. In our settings, the rule-based approach to
extract data from spreadsheets is more appropriate.

Finally, note that our current data model does not account for data cubes, that is: we do not
model the cases when some data cells are aggregations over the values of other data cells. Thus,
our current extraction algorithm (described below) would extract data from such cubes as if they
were result of a plain aggregation query. This clearly introduces some loss of information; we

48 CHAPTER 4. EXTRACTING LINKED DATA FROM STATISTIC SPREADSHEETS

are working to improve it in a future version.

4.3 Spreadsheet data extraction

We developed a tool for extracting data from spreadsheet files so as to populate an instance
of our conceptual data model; it uses the Python library xlrd10 for converting Excel file to a
matrix of rows and columns. Below, we present the extraction procedure as a rule-based system
aiming at framing the data cell range (Section 4.3.1) and extracting the headers (Section 4.3.2)
around these data cells. Finally, we populate the data model with the extracted information
(Section 4.3.3).

4.3.1 Data cell identification

For each sheet, the first task is to identify the data cells. In our corpus, these cells contain
numeric information, that is: integers or real numbers, but also interval specifications such as
“20+” (standing for “at least 20”), special null tokens such as “n.s.” for “not specified”. Our
approach is to identify the rectangular area containing the main table (of data cells), then
build data cells out of the (row, column) locations found in this area. Note that the area may
also contain empty locations, corresponding to the real-life situation when an information is
not available or for some reason not reported, as is the case for D9,9 in Figure 4.1. This process
proceeds in several steps as illustrated in Figure 4.3.

HH
HHHHl

c
1 2 3 4 5 6 7 8 9 10

1 The data reflects children born alive in 2015...
2
3 Mother’s age at the time of the birth
4 Age below 30 Age above 31
5 Region Department 16-20 21-25 26-30 31-35 36-40 41-45 46-50
6 Essonne 215 1230 5643 4320 3120 1514 673
7 Val-de-Marne 175 987 4325 3156 2989 1740 566
8

Île-de-France
. .

9 Ain 76 1103 3677 2897 1976 1464
10 Ardèche 45 954 2865 2761 1752 1653 523
11

Rhône-Alpes
. .

. .

Figure 4.3: Data cells extraction with leftmost data location (column 3, in brown), data table
seed from row signatures (rows 6-10, in red), and additional data cells (row 9)

4.3.1.1 The leftmost data location

We identify the leftmost data location (ldl) on each row: this is the first location encountered
from left to right which

1. follows at least one location containing text (such locations will be interpreted as being
part of header cells),

10https://pypi.python.org/pypi/xlrd

https://pypi.python.org/pypi/xlrd

4.3. SPREADSHEET DATA EXTRACTION 49

2. and has a non-empty content that is compatible with a data cell (as specified above).

We store the column numbers of all such leftmost data locations in an array called ldl; for
instance, ldl[1] = −1 (no data cell detected on row 1) and the same holds for rows 2 to 5, while
ldl[i] = 3 for i = 6, 7 etc.

4.3.1.2 Row signature

For each row i where ldl[i] 6= −1, we compute a row signature sig[i] which is counts the non-
empty locations of various types found on the row. For instance, sig[6] = {string : 2, num : 7}
because the row has 2 string-valued cells (“Île-de-France” and “Essonne”) and 7 numerical
cells. For each signature thus obtained, we count the number of rows (with data cells) having
exactly that signature; the largest row set is termed the data table seed. Note that the rows
in the data table seed are not necessarily contiguous. This reflects the observation that slightly
different-structured rows are sometimes found within the data table; for instance,D9,9 is empty,
therefore row 9 is not part of the seed, which in this example, consists of the rows {6, 7, 8, 10}
and possibly other rows (not shown) below.

4.3.1.3 Collect additional data cells

We “grow” the data table seed it by adding every row at distance 1 or at most 2 above and
below the data table seed, and which contains at least a data cell. We do this repeatedly until
no such rows can be found. In our example, this process adds row 9, despite the fact that it does
not have the same signature as the others. We repeat this step in an inflationary fashion until
no row adjacent to the current data table qualifies. The goal of this stage is to make sure we do
not miss interesting data cells by being overly strict w.r.t. the structure of the rows containing
data cells.

At this point, all the data cells are known, and their values and coordinates can be extracted.

4.3.2 Identification and extraction of header cells

We first look for those organized in rows, e.g., rows 3, 4 and 5 in our example. The process is
illustrated in Figure 4.4.

4.3.2.1 The horizontal border

We attempt to exploit the visual layout of the file, by looking for a horizontal border which
separates the first header row of the (usually empty) row above it.

• When such a border exists (which represents a majority but not all the cases), it is a good
indicator that header cells are to be found in the rows between the border and going down
until (and before) the first data row. (Note that the data rows are already known by now.)
In our example, this corresponds to the rectangular area whose corners are D3,1 and D4,9.

• When the border does not exist, we inspect the rows starting immediately above the first
data row and moving up, as follows. In each row i, we examine the locations starting at

50 CHAPTER 4. EXTRACTING LINKED DATA FROM STATISTIC SPREADSHEETS

HH
HHHHl

c
1 2 3 4 5 6 7 8 9 10

1 The data reflects children born alive in 2015...
2
3 Mother’s age at the time of the birth
4 Age below 30 Age above 31
5 Region Department 16-20 21-25 26-30 31-35 36-40 41-45 46-50
6 Essonne 215 1230 5643 4320 3120 1514 673
7 Val-de-Marne 175 987 4325 3156 2989 1740 566
8

Île-de-France
. .

9 Ain 76 1103 3677 2897 1976 1464
10 Ardèche 45 954 2865 2761 1752 1653 523
11

Rhône-Alpes
. .

. .

Figure 4.4: Header cells extraction with rows to extract header cells (rows 3-4, in brown) and
columns to extract header cells (columns 1-2, in orange)

the column ldl[i] (if this is greater than 0). If the row doesn’t contain empty locations, we
consider that it is part of the header area. Intuitively, this is because no data cell can lack
a value along one of the dimensions, and header cells carry exactly dimension values. An
empty header cell would correspond precisely to such a missing dimension value.

4.3.2.2 Cell borders

Once the header area is known, we look for conceptual header cells. The task is complicated
by the fact that such a cell may be spread over several locations: typically, a short text is spread
from the top to the bottom over locations situated one on top of the other. This can also happen
between locations in the same row (not in the same column), which are fused: this is the case of
D3,3 toD3,9 in our example. The locations holding a single dimension value are sometimes (but
not always) fused in the spreadsheet; sometimes, empty locations are enclosed within the same
border as some locations holding text, to obtain a visually pleasing aspect where the dimension
value “stands out well”. We detect such groups by tracking visible cell borders, and create one
conceptual header cell out of each area border-enclosed area.

4.3.2.3 Collect header cells

We identify and extract header cells organized in columns, e.g., columns 1 and 2 in our ex-
ample. This is done by traversing all the data rows in the data area, and collecting from each
row i, the cells that are at the left of the leftmost data cell ldl[i].

4.3.3 Populating the data model

We populate the instance of the data model with the remaining relationships we need. We
connect: each data and header cell to its respective locations; each data cell with its closest
header cell on the same column, and with its closest header cell on the same row; each row
(respectively, column) header cell to its closest header cell above (respectively, at left) through
the relation aggregated by.

4.4. LINKED DATA VOCABULARY 51

<http://inseeXtr.excel:File0>
rdf:type <http://inseeXtr.excel:Dataset>;
inseeXtr:source ”http://insee.fr/.../Age Mèrexls”;
inseeXtr:name ”Age Mèrexls”;
inseeXtr:description ”The data reflects children...” .

<http://inseeXtr.excel:Sheet0>
rdf:type <http://inseeXtr.excel:Sheet>;
inseeXtr:title ”sheet title”;
inseeXtr:belongsTo <http://inseeXtr.excel:File0> .

<http://inseeXtr.excel:HeaderCellY0> inseeXtr:value ”x1”;
rdf:type <http://inseeXtr.excel:HeaderCellY>;
inseeXtr:YHierarchy <http://inseeXtr.excel:Sheet0> .

<http://inseeXtr.excel:HeaderCellX2> inseeXtr:value ”a1”;
rdf:type <http://inseeXtr.excel:HeaderCellX>;
inseeXtr:aggregatedBy <http://inseeXtr.excel:HeaderCellX3>;
inseeXtr:XHierarchy <http://inseeXtr.excel:Sheet0> .

<http://inseeXtr.excel:DataCell0> inseeXtr:value “1”;
rdf:type <http://inseeXtr.excel:DataCell>;
inseeXtr:location <http://inseeXtr.excel:Location0>;
inseeXtr:closestXCell <http://inseeXtr.excel:HeaderCellX2>;
inseeXtr:closestYCell <http://inseeXtr.excel:HeaderCellY0>.

<http://inseeXtr.excel:Location0>
rdf:type <http://inseeXtr.excel:DataCell>;
inseeXtr:Row “2”;
inseeXtr:Col “3” .

Figure 4.5: Sample extracted RDF triples.

4.4 Linked data vocabulary

To represent the extracted data in RDF, we created an RDF class for each entity, and assigned
an URI to each entity instance; the properties and their typing follow directly from the entity
attributes and relationships shown in Figure 4.2.

Some sample triples resulting from the extraction are shown in Figure 4.5. We use the names-
pace inseeXtr.excel: for classes and properties we introduce in our extraction from
INSEE Excel tables, and the namespace rdf: to denote the standard namespace associated to
the W3C’s type property. The snippet in Figure 4.5 corresponds to one Excel file, one sheet in
the file, a row header cell, a column header cell, a data cell associated to them, and the location
of the data cell.

4.5 Evaluation

From 20,743 Excel files collected, we selected at random 100 unseen files to evaluate the
reliability of the extraction process; these files contained a total of 2,432 tables. To avoid
very similar files in our evaluation, e.g., tables showing the same metric for distinct years, we

52 CHAPTER 4. EXTRACTING LINKED DATA FROM STATISTIC SPREADSHEETS

required the first three letters in the name of each newly selected file, to be different from the
first three letters in the names of all the files previously selected to be included in the test batch.
Given the naming convention at INSEE, this step reduces redundancy in the test set.

For these 100 files, we visually identified the header cells, data cells and header hierarchy,
which we compared with those obtained from our extractor. We consider a table is “correctly
extracted” when all these are pairwise equal; otherwise, the table is “incorrectly extracted”. We
recorded 91% (or 2,214) tables extracted correctly, and 9% (or 218) incorrectly extracted. Most
of the incorrect extractions were due to sheets with several tables (not just one).

Overall, the extraction produced 2.68 · 106 row header cells, 122 · 106 column header cells, and
2.24 · 109 data cells; the extraction algorithm ran for 5 hours.

4.6 Implementation

The Excel files are collected with insee-crawler11. The crawler relies on Scrapy frame-
work12 to identify the downloadable links from https://insee.fr.

The main source code is written in Python 2 and it is open-sourced at https://gitlab.
inria.fr/cedar/excel-extractor. All of the necessary libraries are specified in
requirements.txt. The most important modules of this project are:

• boundary finder.py: the algorithm to identify the boundary between multiple tables that
appear in the same sheet.

• data model.py: all the data structures used by other Python files.

• data provider.py: extracts cells, rows, and columns from Sheet data structure.

• table extractor.py: the extraction algorithm mentioned in Section 4.3.

• test extractor.sh: runs the unit-test.

4.7 Related works

Closest to our work, [Chen and Cafarella, 2013] automatically extracts relational data from
spreadsheets. Their system used conditional random field (CRF) [Lafferty et al., 2001] to
identify data frames: such a frame is a value region which contains numeric cells, top attributes
and left attributes corresponding to header cells and their hierarchies. From a collection of
410,554 Excel files collected from the Web, they selected randomly 100 files, labeled 27,531
non-empty rows (as title, header, data or footnote) manually by human experts, then used this
dataset for training and evaluation. They obtained significant better precision and recall metrics
when taking into account both textual and layout features for CRF. SVM was applied on header
cells to learn about their hierarchies. The model achieved a precision of 0.921 for top headers,
and 0.852 for left headers. However, these numbers should not be compared with our results,
because the datasets are different (tables encountered on the Web vs. government statistics),

11https://gitlab.inria.fr/cedar/insee-crawler
12https://scrapy.org/

https://insee.fr
https://gitlab.inria.fr/cedar/excel-extractor
https://gitlab.inria.fr/cedar/excel-extractor
https://gitlab.inria.fr/cedar/insee-crawler
https://scrapy.org/

4.8. CONCLUSION AND FUTURE WORKS 53

as well as the evaluation metrics (cell-by-cell assessment in [Chen and Cafarella, 2013] vs.
binary assessment over the entire sheet extraction in our case). Overall, their method is more
involved, whereas our method has the advantage of not requiring manual labeling. We may
also experiment with learning-based approaches in the future. [Ahsan et al., 2016] describes an
extractor to automatically identify in spreadsheets entities like location and time.

Data extraction from tables encoded as HTML lists has been addressed e.g., in [Elmele-
egy et al., 2011]. Structured fact extraction from text Web pages has lead to the construc-
tion of knowledge bases such as Yago [Mahdisoltani et al., 2015] and Google’s Knowledge
Graph [Dong et al., 2014]. Our work has a related but different focus as we focus on high-
value, high-confidence, fine-granularity, somehow-structured data such as government-issue
statistics; this calls for different technical methods.

4.8 Conclusion and future works

We have described an effort to extract Linked Open Data from data tables produced by the
INSEE statistics institute, and shared by them under the form of Excel tables. We do this as
part of our work in the ContentCheck R&D project, which aims at investigating content man-
agement techniques (from databases, knowledge management, natural language processing,
information extraction and data mining) to provide tools toward automating and supporting
fact-checker journalists’ efforts. The goal is to use the RDF data thus extracted as reference
information, when trying to determine the degree of truthfulness of a claim.

We plan to experiment to spreadsheets from other sources to verify the generalization of our
algorithm.

54 CHAPTER 4. EXTRACTING LINKED DATA FROM STATISTIC SPREADSHEETS

Chapter 5

Searching for truth in a database of
statistics

5.1 Introduction

Statistic information available on the Web are not always easy to find. Some sites allow finding
a dataset by keyword search; these sites’ search engines are not always effective. Some sites
invite users to navigate in a predefined hierarchy of categories in order to find the datasets; this
works well when the users think in terms of these categories, but this is not always the case.
Different organizations publish their datasets on Web sites structured differently; the structure
of a given Web site may change with time etc. In Chapter 4, we have devised an approach to
extract from high-quality, statistic Open Data in the “tables + text description” frequently used
nowadays, Linked Open Data in RDF format.

In this chapter, we introduce novel algorithms for searching for answers to keyword queries in
a database of statistics, organized in RDF graphs such as those we produced. First, we describe
a dataset search algorithm, which given a set of user keywords, identifies the datasets (statistic
table and surrounding presentations) most likely to be useful for answering the query. Second,
we devised an answer search algorithm which, building on the above algorithm, attempts to
answer queries, such as “unemployment rate in Paris in 2016”, with values extracted from
the statistics dataset, together with a contextualization quickly enabling the user to visually
check the correctness of the extraction and the result relevance. In some cases, there is no
single number known in the database, but several semantically close ones. In such cases, our
algorithm returns the set of numbers, again together with context enabling its interpretation.

We have experimentally evaluated the efficiency and the effectiveness of our algorithms, and
demonstrated their practical interest to facilitate fact-checking work. In particular, while politi-
cal debates are broadcast live on radio or TV, fact-checkers can use such tools to quickly locate
reference numbers which may help them publish live fact-checking material.

In the sequel, Section 5.2 defines the search problem we address, and describes our search
algorithms. Section 5.3 presents our experimental evaluation. We briefly outline the software
we developed in Section 5.4, and the related works in Section 5.5, then conclude (Section 5.6).

The content of this chapter was presented in a publication in the International Workshop on the
Web and Databases 2018 [Cao et al., 2018b]. Together with the SBD 2017 work [Cao et al.,

55

56 CHAPTER 5. SEARCHING FOR TRUTH IN A DATABASE OF STATISTICS

2017], this has been informally published at BDA 2018 [Cao et al., 2018a].

5.2 Search problem and algorithm

Figure 5.1: Sample dataset on French youth unemployment.

Given a keyword-based query, we focus on returning a ranked list of candidate answers, ordered
in the decreasing likelihood that they contain (or can be used to compute) the query result. A
relevant candidate answer can be a data cell, a data row, column or even an entire dataset. For
example, consider the query “youth unemployment in France in August 2017”. An Eurostat
dataset1 is a good candidate answer to this query, since, as shown in Figure 5.1, it contains
one data cell, at the intersection of the France row with the Aug-2017 column. Now, if one
changes the query to ask for “youth unemployment in France in 2017”, no single data cell can
be returned; instead, all the cells on the France row qualify. Finally, a dataset containing 2017
French unemployment statistics over the general population (not just youth) meets some of the
search criteria (2017, France, unemployment) and thus may deserve to appear in the ranked list
of results, depending on the availability of better results.

This task requires the development of specific novel methods, borrowing ideas from traditional
information retrieval, but following a new methodology. This is because our task is very spe-
cific: we are searching for information not within text, but within tables, which moreover are
not flat, first normal form database relations (for which many keyword search algorithms have
been proposed since [Hristidis and Papakonstantinou, 2002]), but partially nested tables, in
particular due to the hierarchical nature of the headers, as we explained previously.

While most of the reasoning performed by our algorithm follows the two-dimensional layout
of data in columns and tables, bringing the data in RDF have two advantages:

1. it puts a set of interesting, high-value data sources within reach of developers

2. it allows us to query across nested headers using regular path queries expressed in SPARQL
(as we explain in Section 5.2.5)

We describe our algorithms for finding such answers below.

1http://ec.europa.eu/eurostat/statistics-explained/images/8/82/Extra_
tables_Statis- tics_explained-30-11-2017.xlsx

http://ec.europa.eu/eurostat/statistics-explained/images/8/82/Extra_tables_Statis-
http://ec.europa.eu/eurostat/statistics-explained/images/8/82/Extra_tables_Statis-
tics_explained-30-11-2017.xlsx

5.2. SEARCH PROBLEM AND ALGORITHM 57

5.2.1 Dataset search

The first problem we consider is: given a keyword query Q consisting of a set of keywords
u1,u2,. . .,um and an integer k, find the k datasets most relevant for the query (we explain how
we evaluate this relevance below).

We view each dataset as a table containing a title, possibly a comment, a set of header cells
(row header cells and column header cells) and a set of data cells, the latter containing numeric
data2. At query time, we transform the query Q into a set of of keywords W = w1, w2, . . . , wn

using the method described in Section 5.2.2. Offline, this method is also used to transform
each dataset’s text to words and we compute the score of each word with respect to a dataset, as
described in Section 5.2.3. Then, based on the word-dataset score andW , we estimate datasets’
relevance to the query as we explain in Section 5.2.4.

5.2.2 Text processing

Given a text t (appearing in a title, comment, or header cell of the dataset, or the text consisting
of the set of words in the queryQ), we convert it into a set of words using the following process:

• First, t is tokenized (separated into distinct words) using the KEA3 tokenizers. Subse-
quently, each multi-word French location found in t that is listed in Geonames4, is put
together in a single token.

• Each token (word) is converted to lowercase, stop words are removed, as well as French
accents which complicate matching.

• Each word is mapped into a word2vec vector, using the Gensim [Radim and Petr, 2010]
tool. Bigrams and trigrams are considered following [Mikolov et al., 2013]. We had
trained the word2vec model on a general-domain French news web page corpus (which
consists of one million web pages) as our queries come from French news articles. When
applying our system on a different context, e.g., tweets, we should find an appropriate
corpus to train the word2vec model.

5.2.3 Word-dataset score

For each dataset extracted from the statistic database, we compute a score characterizing its
semantic content. A first observation is that datasets should be returned not only when they
contain the exact words present in the query, but also if they contain very closely related ones.
For example, a dataset titled “Duration of marriage” could be a good match for the query
“Average time between marriage and divorce” because of the similarity between “duration”
and “time”. To this effect, we rely on word2vec which provides similar words for any word in

2This assumption is backed by an overwhelming majority of cases given the nature of statistic data.
We did encounter some counterexamples, e.g., http://ec.europa.eu/eurostat/cache/metadata/
Annexes/mips_sa_esms_an1.xls. However, these are very few and thus we do not take them into account
in our approach.

3https://github.com/boudinfl/kea
4http://www.geonames.org/

http://ec.europa.eu/eurostat/cache/metadata/Annexes/mips_sa_esms_an1.xls
http://ec.europa.eu/eurostat/cache/metadata/Annexes/mips_sa_esms_an1.xls
https://github.com/boudinfl/kea
http://www.geonames.org/

58 CHAPTER 5. SEARCHING FOR TRUTH IN A DATABASE OF STATISTICS

its vocabulary: if a word w appears in a dataset D, and w is similar to w′, we consider w′ also
appears in D.

The score score(w) of a dataset D w.r.t the query word w is 1 if w appears in D.

If w does not appear in D:

• If there exists a wordw′, from the list of top-50 similar words ofw according to word2vec,
which appears inD, then score(w) is the similarity betweenw andw′. If there are several
such w′, we consider the one most similar to w.

• If w is the name of a Geonames place we can’t apply the above scoring approach because
“comparable” places (e.g., cities such as Paris and London) will have high similarity in
the word2vec space. As the result, when user asks for “unemployment rate Paris”, the
data of London might be returned instead of Paris’s. Let p be the number of places that
Geonames’ hierarchy API5 returns for w (p is determined by Geonames and depends on
w). For instance, when querying the API with Paris, we obtain the list Île-de-France,
France, Europe. Let w′i be the place at position i, 1 ≤ i ≤ p in this list of returned places,
such that w′i appears inD. Then, we assign toD a score for w equal to (p+1−i)/(p+1),
that is, the most similar place according to Geonames has rank p/(p + 1), and the least
similar has the rank 1/(p+ 1). If D contains several of the places from the w’s hierarchy,
we assign to D a score for w corresponding to the highest-ranked such place.

• 0 otherwise.

Based on the notion of word similarity defined above, we will write w ≺ W to denote that the
word w from dataset D either belongs to the query set W , or is close to a word in W . Observe
that, by definition, for any w ≺ W , we have score(w) > 0.

We also keep track of the location(s) (title, header and/or comment) in which a word appears in
a dataset; this information will be used when answering queries, as described in Section 5.2.4.1.
In summary, for each dataset D and word w ∈ D such that w ≺ W , we compute and store
tuples of the form:

(w, score(w), location(w,D), D)

where location(w,D) ∈ {T, HR, HC, C} indicates where w appears in D: T denotes the title, HR
denotes a row header cell, HC denotes a column header cell, and C denotes an occurrence in a
comment.

These tuples are encoded in JSON and stored in a set of files; each file contains the scores for
one word (or bigram) w, and all the datasets.

5.2.4 Relevance score function

We now describe our score function, which relies on two sub-components: one content-based
(Section 5.2.4.1) and one reflecting the location (Section 5.2.4.2).

5http://www.geonames.org/export/place-hierarchy.html

http://www.geonames.org/export/place-hierarchy.html

5.2. SEARCH PROBLEM AND ALGORITHM 59

5.2.4.1 Content-based relevance score function

This function, denoted g1(D,W), quantifies the interest of dataset D for the word set W ; it is
computed based on the tuples (w, score(w), location(w,D), D) where w ≺ W .

We experimented with many score functions that give high ranking to datasets that have many
matching keywords (see details in Section 5.3.2.2). These functions are monotonic in the score
of D with respect to each individual word w. This enables us to apply Fagin’s threshold al-
gorithm (TA) [Fagin et al., 2003] to efficiently determine the k datasets having the highest g1
score for the query W .

5.2.4.2 Location-aware score components

The location – title (T), row or column headers (HR or HC), or comments (C) – where a keyword
occurs in a dataset can also be used to assess the dataset relevance. For example, a keyword
appearing in the title often signals a dataset more relevant for the search than if the keyword
appears in a comment. We exploit this observation to pre-filter the datasets for which we
compute exact scores, as follows.

We run the TA algorithm using the score function g1 to select r × k datasets, where r is an
integer larger than 1. For each dataset thus retrieved, we compute a second, refined score
function g2 (see below), which also accounts for the locations in which keywords appear in the
datasets; the answer to the query will consists of the top-k datasets according to g2.

The second score function g2(D,W) is computed as follows. Let w′ be a word appearing at
a location loc ∈ {T, HR, HC, C} such that w′ ≺ W . We denote by w′loc,D (or just w′loc when D
is clear from the context) the existence of one or several located occurrence of w′ in D in loc.
Thus, for instance, if “youth” appears twice in the title ofD and once in a row header, this leads
to two located occurrences, namely youthT,D and youthHR,D.

Then, for loc ∈ {T, HR, HC, C}we introduce a coefficient αloc allowing us to calibrate the weight
(importance) of keyword occurrences in location loc. To quantify D’s relevance for W due to
its loc occurrences, we define a location score component floc(D,W). In particular, we have
experimented with two floc functions:

• f sum
loc (D,W) = α

∑
w≺W score(wloc,D)

loc

• f count
loc (D,W) = α

count{w≺W}
loc

where for score(wloc,D) we use the value score(w), the score of D with respect to w (Sec-
tion 5.2.3). Thus, each floc “boosts” the relevance scores of all loc occurrences by a certain
exponential formula, whose relative importance is controlled by αloc.

Further, the relevance of a dataset increases if different query keywords appear in different
header locations, that is, some in HR (header rows) and some in HC (header columns). In
such cases, the data cells at the intersection of the respective rows and columns may provide
very precise answers to the query, as illustrated in Figure 5.1: here, “France” is present in HC

while “youth” and “17” appear in HR. To reflect this, we introduce another function fH(D,W)
computed on the scores of all unique located occurrences from row or column headers; we also
experimented with the two variants, f sum

H and f count
H introduced above.

60 CHAPTER 5. SEARCHING FOR TRUTH IN A DATABASE OF STATISTICS

5.2.4.3 Content- and location-aware relevance score

Putting it all together, we compute the content- and location-aware relevance score of a dataset
for W as:

g2(D,W) = g1(D,W) + Σloc∈{T,HR,HC,C}floc(D,W) + fH(D,W)

Finally, we also experimented with another function g∗(D,W) defined as:

g∗2(D,W) =

{
g2(D,W), if fT(D,W) > 0

0, otherwise

g∗2 discards datasets having no relevant keyword in the title. This is due to the observation that
statistic dataset titles are typically carefully chosen to describe the dataset; if no query keyword
can be connected to it, the dataset is very likely not relevant.

5.2.5 Data cell search

We now consider the problem of identifying the data cell(s) (or the data rows/columns) that can
give the most precise answer to the user query.

Such an answer may consist of exactly one data cell. For example, for the query “unemploy-
ment rate in Paris”, a very good answer would be a data cell Dr,c whose closest row header cell
contains “unemployment rate” and whose closest column header cell contains “Paris”. Alter-
natively, query keywords may occur not in the closest column header cell of Dr,c but in another
header cell that is its ancestor in D. For instance, in Figure 5.1, let Dr,c be the data cell at the
intersection of the Aug-17 column with the France row: the word “youth” occurs in an ancestor
of the Aug-17 header cell, and “youth” clearly characterizes Dr,c’s content. We say the closest
(row and column) header cells of Dr,c and all their ancestor header cells characterize Dr,c.

Another valid answer to the “unemployment rate in Paris” query would be a whole data row (or
a whole column) whose header contains “unemployment” and “Paris”. We consider this to be
less relevant than a single data cell answer, as it is less precise.

We term data cell answer an answer consisting of either a data cell, or a row or column; below,
we describe how we identify such answers.

We identify data cells answers from a given dataset D as follows. Recall that all located oc-
currences in D, and in particular those of the form wHR and wHC for w ≺ W , have been pre-
computed; each such occurrence corresponds either to a header row r or to a header column c.
For each data cell Dr,c, we define #(r, c) as the number of unique words w ≺ W occurring in
the header cells characterizing Dr,c. Data cells in D may be characterized by:

1. Some header cells containing HR occurrences (for some w ≺ W), and some others con-
taining HC occurrences;

2. Only header cells with HR occurrences (or only header cells with HC ones).

Observe that if D holds both cell answers (case 1) and row- or column answers (case 2), by
definition, they occur in different rows and columns. Our returned data cell answers from D
are:

5.3. EVALUATION 61

• If there are cells in case 1, then each of them is a data cell answer from D, and we return
cell(s) with highest #(r, c) values.

• Only if there are no such cells but there are some relevant rows or columns (case 2), we
return the one(s) with highest #(r, c) values. This is motivated by the intuition that if D
has a specific, one-cell answer, it is unlikely that D also holds a less specific, yet relevant
one.

Concretely, we compute the #(r, c) values based on the (word, score, location, dataset) tuples
we extract (Section 5.2.3). We rely on SPARQL 1.1 [W3C,] queries on the RDF representa-
tion of our datasets to identify the cell or row/column answer(s) from each D. SPARQL 1.1
features property paths, akin to regular expressions; we use them to identify all the header cells
characterizing a given Dr,c.

Note that this method yields only one element (cell, row or column) from each dataset D,
or several elements if they have the exact same score. An alternative would have been to al-
low returning several elements from each dataset; then, one needs to decide how to collate
(inter-rank) scores of different elements identified in different datasets. We consider that this
alternative would increase the complexity of our approach, for unclear benefits: the user expe-
rience is often better when results from the same dataset are aggregated together, rather than
considered as independent. Suggesting several data cells per dataset is then more a question of
result visualization than one pertaining to the search method.

5.3 Evaluation

This section describes our experimental evaluation. Section 5.3.1 describes the dataset and
query workload we used, which was split into a development set (on which we tuned our score
functions) and a test set (on which we measured the performance of our algorithms). It also
specifies how we built a “gold-standard” set of answers against which our algorithms were
evaluated. Section 5.3.2 details the choice of parameters for the score functions. Finally, we
present the prototype of our system in Section 5.3.3.

5.3.1 Datasets and queries

We collected all the articles published online by the fact-checking team “Les Décodeurs”,6 a
fact-checking and data journalism team of Le Monde, France’s leading national newspaper,
between March 10th and August 2nd, 2014; there were 3,041 articles. From these, we selected
75 articles whose fact-checks were backed by INSEE data; these all contain links to https:
//www.insee.fr. By reading these articles and visiting their referenced INSEE dataset,
we identified a set of 55 natural language queries which the journalists could have asked a
system like ours7. Actually this data collection approach does not provide us all the articles
that could be fact-checked by INSEE data. For example we could not spot the article about the
unemployment rate but the journalist chooses OECD 8 data for fact-check it.

We experimented with a total of 288 variants of the g2 function:

6http://www.lemonde.fr/les-decodeurs/
7This was not actually the case; our system was developed after these articles were written.
8https://www.oecd.org/

https://www.insee.fr
https://www.insee.fr
http://www.lemonde.fr/les-decodeurs/
https://www.oecd.org/

62 CHAPTER 5. SEARCHING FOR TRUTH IN A DATABASE OF STATISTICS

• g1 was either g1a, g1b or g1c;

• g2 relied either on f sum
loc or on f count

loc ; for each of these, we tried different value combina-
tions for the coefficients αT, αHC, αHR and αC;

• we used either the g2 formula, or its g∗2 variant.

We built a gold-standard reference to this query set as follows. We ran each query q through
our dataset search algorithm for each of the 288 g2 functions, asking for k = 20 most relevant
datasets. We built the union of all the answers thus obtained for q and assessed the relevance of
each dataset as either 0 (not relevant), 1 (“partially relevant” which means user could find some
related information to answer their query) or 2 (“highly relevant” which means user could find
the exact answer for their query); a Web front-end was built to facilitate this process.

5.3.2 Experiments

We specify our evaluation metric (Section 5.3.2.1), then describe how we tuned the parameters
of our score function, and the results of our experiments focused on the quality of the returned
results (Section 5.3.2.2). Last but not least, we put them into the perspective of a comparison
with the baselines which existed prior to our work: INSEE’s own search system, and plain
Google search (Section 5.3.2.4).

5.3.2.1 Evaluation metric

We evaluated the quality of the answers of our runs and of the baseline systems by their mean
average precision which is widely used for evaluating ranked lists of results.

MAP is traditionally defined based on a binary relevance judgment (relevant or irrelevant in
our case). We experimented with the two possibilities:

• MAPh is the mean average precision where only highly relevant datasets are considered
as relevant

• MAPp is the mean average precision where both partially and highly relevant datasets
are considered relevant.

5.3.2.2 Parameter estimation and results

We experimented with the following flavors of the g1 function :

• g1b(D,W) = 10

∑
w≺W

score(w)

• g1d(D,W) = 10count{w≺W}

• g1f (D,W) =
∑

w≺W
10score(w)

We also experimented with some modified variants that take into account the sum of matching
keywords:

• g1c(D,W) =
∑

w≺W
score(w) + g1b(D,W)

5.3. EVALUATION 63

Dev. set 29 queries Dev. set 17 queries
MAPp 0.82 0.83
MAPh 0.78 0.80

Table 5.1: Results on the first and second development set.

• g1e(D,W) =
∑

w≺W
score(w) + g1d(D,W)

• g1g(D,W) =
∑

w≺W
score(w) + g1f (D,W)

A randomly selected development set of 29 queries has been used to select the best values for
the 7 parameters of our system : αT, αC, αHR, αHC, αH, as well as the different versions of g1 and
g2. For this purpose, we ran a grid search with different values of these parameters, selected
among {3, 5, 7, 8, 10}, on the development query set, and applied the combination obtaining
the best MAP results on the test set (composed of the remaining 26 queries).

We found that a same score function has lead to the best MAPh and the best MAPp on the de-
velopment query set. In terms of the notations introduced in Section 5.2.4, this best-performing
score function is obtained by:

• Using g1,c;

• Using f sum and the coefficient values αT = 10, αC = 3, αHR = 5, αHC = 5 and αH = 7;

• Using the g∗2 variant, which discards datasets lacking matches in the title.

On the test set, this function has lead to MAPp = 0.76 and MAPh = 0.70 .

Given that our test query set was relatively small, we performed two more experiments aiming
at testing the robustness of the parameter selection on the development set:

• We used a randomly selected subset of 17 queries among the 29 development queries,
and used it as a new development set. The best score function for this new development
set was the same; further, the MAP results on the two development sets are very similar
(see Table 5.1).

• We computed the MAP scores obtained on the full development set for all 288 combina-
tions of parameters, and plotted them from the best to the worst (Figure 5.2; due to the
way we plot the data, two MAPh and MAPp values shown on the same vertical line may
not correspond to the same score function). The figure shows that the best-performing 15
combinations leads to scores higher than 0.80, indicating that any of these could be used
with pretty good results.

We acknowledge the dataset is quite small despite the time consuming nature of the evaluation
process. In the future work, we should spend more time to gather a bigger evaluation dataset in
order to have a more robust evaluation.

5.3.2.3 Running time

Processing and indexing the words (close to those) appearing in the datasets took approximately
three hours. We ran our experiments on a machine with 126GB RAM and 40 CPUs Intel(R)

64 CHAPTER 5. SEARCHING FOR TRUTH IN A DATABASE OF STATISTICS

Figure 5.2: MAP results on the development set for 288 variants of the score function.

Xeon(R) E5-2640 v4 @ 2.40GHz. The average query evaluation time over the 55 queries we
identified is 0.218 seconds.

5.3.2.4 Comparison against baselines

Our system INSEE search Google search
MAPp 0.76 0.57 0.76
MAPh 0.70 0.46 0.69

Table 5.2: Comparing our system against baselines.

To put our results into perspective, we also computed the MAP scores of our test query set on
the two baselines available prior to our work: INSEE’s own dataset search system9, and Google
search instructed to look only within the INSEE web site. Similarly to the evaluation process
of our system, for each query we selected the first 20 elements returned by these systems and
manually evaluated each dataset’s relevance to the given query. Table 5.2 depicts the MAP
results thus obtained, compared against those of our system. Google’s MAP is very close to
ours; while our work is obviously not placed as a rival of Google in general, we view this as
validating the quality of our results with (much!) smaller computational efforts. Further, our
work follows a white-box approach, whereas it is well known that the top results returned by
Google are increasingly due to other factors beyond the original PageRank [Brin and Page,
1998] information, and may vary in time and/or with result personalization, Google’s own A/B
testing etc.

We end this comparison with two remarks.
9Available at https://insee.fr

https://insee.fr

5.4. IMPLEMENTATION 65

Figure 5.3: INSEE-Search web app

1. Our evaluation was made on INSEE data alone due to the institute’s extensive database
on which fact-checking articles were written, from which we derived our test queries.
However, as stated before, our approach could be easily adapted to other statistic Web
sites, as we only need the ability to crawl the tables from the Web site. As is the case for
INSEE, this method may be more robust than using the category-driven navigation or the
search feature built in the Web site publishing the statistic information.

2. Our system, based on a fine-granularity modeling of the data from statistic tables, is the
only one capable of returning cell-level answers (Section 5.2.5). We show such answers
to the users together with the header cells characterizing them, so that users can immedi-
ately appreciate their accuracy (as in Figure 5.3).

5.3.3 Web application for online statistic search

We develop a web app (available at http://statsearch.inria.fr) to let users experi-
ence and evaluate our system. A simple account registration is asked before using the web app.
The app is illustrated in Figure 5.3:

• (a) is the text box to let user input their search query

• (b) is the rank of search results

• (c) contains the datasets’ title, the link of the original dataset and the location of the
extracted RDF data.

• (d) is the published date of the dataset

• (e) is the relevance score of each dataset

• (f) is the relevant data cells found in each dataset, the red and blue texts represent the
matched headers

• (g) is the section to let user evaluate the search result as not relevant, partially relevant,
and highly relevant.

5.4 Implementation

The source code is written in Python 3 and it is open-sourced at https://gitlab.inria.
fr/cedar/excel-search. We have developed our system in Python (61 classes and 4071

http://statsearch.inria.fr
https://gitlab.inria.fr/cedar/excel-search
https://gitlab.inria.fr/cedar/excel-search

66 CHAPTER 5. SEARCHING FOR TRUTH IN A DATABASE OF STATISTICS

lines). All of the necessary libraries are specified in requirements.txt. The following
list describes the most important modules:

• src/algorithm/fagin.py: implements the Fagin algorithm.

• src/algorithm/document ranking.py: implements the algorithm in Section 5.2.

• src/webapp/app.py: the Flask10 app which renders system’s web interface (Section 5.3.3).

• src/word document score.py: computes the word-dataset score (Section 5.2.3).

• src/test/ : contains the unit-test files.

5.5 Related works

In this chapter, we focused on improving the usability of statistic tables (HTML tables or
spreadsheets) as reference data sources against which claims can be fact-checked. Other works
focused on building textual reference data source from general claims [Levy et al., 2014, Bar-
Haim et al., 2017], congressional debates [Thomas et al., 2006] or tweets [Rajadesingan and
Liu, 2014].

Knowledge graphs comprising facts, e.g., “the capital of Germany is Berlin”, and semantic
rules, e.g., “the president of a country is also a citizen of that country”, can also be used as ref-
erence sources for fact-checking, as discussed in Section 3.2. Such knowledge graphs mostly
contain “general knowledge” and of textual and relational nature (entities and relations which
hold between them), whereas the statistics we focus on are mostly numerical. Thus, we view
our work as a useful complement to the construction of reference knowledge bases. Early
predecessors of Web-based knowledge base construction focused on extracting and integrat-
ing structured data from Web HTML tables and lists [Elmeleegy et al., 2009, Cafarella et al.,
2009], and our data extraction work (Chapter 4) performs a similar task. However, extraction
from statistic spreadsheets brings specific challenges in particular due to the frequent hierar-
chical headers. [Han et al., 2008] describes a tool for producing RDF graphs from Google
spreadsheets, with the help of a mapping specification where users describe the RDF structure
in which various spreadsheet cells should be exported. Our extraction is less flexible but at the
same time is easier to use as it requires zero input from users; if needed, one can restructure
the RDF we produce by means of RDF-specific tools. Finally, some work focused on building
a knowledge base or graph embeddings (with a representation similar to word2vec) [Ristoski
and Paulheim, 2016, Grover and Leskovec, 2016], but to the best of our knowledge, none of
them have represented jointly unstructured textual content and structured bases.

Some works focused on exploiting the data in HTML and spreadsheet tables found on the Web.
Tschirschnitz et al. [Tschirschnitz et al., 2017] focused on detecting the semantic relations that
hold between millions of Web tables, for instance detecting so-called inclusion dependencies
(when the values of a column in one table are included in the values of a column in another
table). Closest to our work, M. Kohlhase et al. [Kohlhase et al., 2013] built a search engine for
finding and accessing spreadsheets by their formulae. This is less of an issue for the tables we
focus on, as they contain plain numbers and not formulas.

10http://flask.pocoo.org/

http://flask.pocoo.org/

5.6. CONCLUSION AND FUTURE WORKS 67

Google’s Fusion Tables work [Gonzalez et al., 2010] focuses on storing, querying and visualiz-
ing tabular data, however, it does not tackle keyword search with a tabular semantics as we do,
nor is it concerned with keyword search. Google has also issued Google Tables as a working
product11. In March 2018, we tried to use it for some sample queries we addressed in this paper,
but the results we obtained were of lower quality (some were irrelevant). We believe this may
be due to Google’s focus on data available on the Web, whereas we focus on very high-quality
data curated by INSEE experts, but which needed our work to be easily searchable.

5.6 Conclusion and future works

We have presented an efficient search algorithm to retrieve, from the RDF corpus we build out
of INSEE data, the dataset (or, when possible, even the exact cell values) that are most pertinent
for a given keyword search. This improves the usability of this high-quality data. Our system
can be used to quickly get reference information with respect to a given claim.

Currently, our software is not capable of aggregating information, e.g., if one asks for un-
employed people from all departments within a region, we are not capable of summing these
numbers up into the number corresponding to the region. This could be addressed in future
work which could focus on applying OLAP-style operations of drill-down or roll-up to further
process the information we extract from the INSEE datasets.

11https://research.google.com/tables

https://research.google.com/tables

68 CHAPTER 5. SEARCHING FOR TRUTH IN A DATABASE OF STATISTICS

Chapter 6

Extracting statistical mentions from
textual claims to provide trusted content

6.1 Introduction

In this chapter, we describe the last missing step of our system: the extraction of claims re-
ferring to statistical mentions from text sources. This step allows to automatically formulate
the search queries which our system (Chapter 5) can solve against the RDF corpus we gathered
in Chapter 4. Our whole system can help fact-checking journalists as it automates the task
of finding checkable claims in massive text sources, and of bringing up the closest reference
data source value for the given claim. Based on these, the journalists can choose the truth la-
bel which seems most appropriate, write an interpretation of the result and share it with their
readers.

Beyond fact-checking textual Web sources, the application which motivated the work of this
thesis, the technique we describe also serves to link text data sources, at the fine granularity of
sentences, to statistical entities.

Firstly, we outline our approach in Section 6.2 and describe its details in Section 6.3. We
evaluate our algorithm in Section 6.4. The implementation of our system is presented in Sec-
tion 6.5. We present the related works in Section 6.6 following by conclusions and perspectives
(Section 6.7).

The content of this chapter was presented in a publication in the International Conference on
Applications of Natural Language to Information Systems 2019 [Cao et al., 2019c].

6.2 Statistical claim extraction outline

Figure 6.1 outlines the method we devised for identifying and extracting statistical claims from
text. The figure also shows how the three main contributions of this thesis hold together: at the
bottom, the red modules designate the result of the extraction described in Chapter 4, respec-
tively, the search algorithm outlined in Chapter 5.

From the publication context of statistic data (the text in header of statistics tables) we extract

69

70 CHAPTER 6. STATISTICAL MENTIONS FROM TEXTUAL CLAIMS

Figure 6.1: Main processing steps of our statistical claim extraction method.

6.2. STATISTICAL CLAIM EXTRACTION OUTLINE 71

a set of statistical entities (step (1) in the figure), those whose reference values are known in
the statistic dataset for some time periods and/or geographical area, such as “unemployment”,
“youth unemployment”, “unemployment in Aquitaine in 2015”, “gross domestic product”.
From 111,145 tables published by INSEE, we have obtained a total of 1,397 statistic entities,
as we detail in Section 6.3.1.

Then, we have built a text corpus which we selected with an interest in topics that INSEE
studies. We focused on news articles, and because most INSEE metrics refer to the economy
domain, we looked for articles on such topics. We collected news articles between 2010 and
2018 from the three following newspapers, using the NewsPlease software [Hamborg et al.,
2017]:

1. Articles from Le Monde and Le Figaro have explicit URIs which contain the broad
topic to which the article belongs. Thus, we required “economie”, “economie-francaise”
and/or “emploi” appear in the URIs of Le Monde articles, and similarly “flash-eco”,
“economie”, “emploi” for Le Figaro.

2. Articles from Les Echos do not have such an URI component and are by and large all on
economic topics. Thus, we selected the candidate articles by running the LDA (Latent
Dirichlet allocation) [Blei et al., 2003] topic modelling algorithm to generate 20 topics.
We then reviewed these topics manually and picked the most relevant ones1.

From these articles, we have extracted (step (2)) 322,873 sentences containing at least one
numerical value. From now on, we will refer to these sentences as S. From S, we extract (step
(3)) all the verbs which state a numerical value, e.g., “amounts to”, “is worth”, “decreases” etc.,
as well as all the measurement units, e.g., “people”, “euros”, “percentage”, “point” (sometimes
used as an alternative to “percentage”) etc.

Next, we identify among S sentences the candidate sentences which could claim a relationship
between a statistical entity and a value. This is done (step (4)) by selecting those S sentences
which mention statistic entities. From each candidate sentence, e.g., “France’s public debt fell
slightly, by 11.4 billion euros, between the second and third quarters of 2013”, we extract:

• a mention of statistical entity M , e.g., public debt;

• a location L, e.g., France, by extracting geographical places using the spaCy Named
Entity Recognition (NER) tool2; L may be missing from the sentence.

• a time period T , e.g., 2013, which is extracted using HeidelTime [Strötgen and Gertz,
2010]; T may also be missing;

• a relation R, e.g., fell, connecting M to V in the sentence. R may also be missing, e.g.,
in a phrase such as “France’s 60 million inhabitants...”;

• a statistical value V , e.g., “11.4 billion euros”.

The approach we devised to extract the components M , R and V is described in Section 6.3.
We present an evaluation of the performance of the extraction algorithm in Section 6.4.1.

1All topics and their keywords are available at https://gitlab.inria.fr/tcao/news-scraper/
blob/master/lesechos_topics_all.txt. The topics we selected for this work are those numbered 1,
2, 3, 7 as they contain many economic keywords

2https://spacy.io/models/fr#fr core news md

https://gitlab.inria.fr/tcao/news-scraper/blob/master/lesechos_topics_all.txt
https://gitlab.inria.fr/tcao/news-scraper/blob/master/lesechos_topics_all.txt

72 CHAPTER 6. STATISTICAL MENTIONS FROM TEXTUAL CLAIMS

For each (M,L, T,R, V) tuple extracted as above, the (M,L, T) query is generated (step (7))
and sent to our keyword search algorithm (Section 5.2). We omit R in the query since the
purpose of extracting R is to confirm the relationship between M and V . The search results are
evaluated in section 6.4.2.

6.3 Entity, relation and value extraction

In this section, we describe the details of our extraction approach. Section 6.3.1 outlines the
pre-processing steps we perform to obtain a list of statistical entities. Section 6.3.2 shows
how we collect a list of verbs and a list of measurement units that help identifying candidate
sentences. In Section 6.3.3, we describe an attempt to identify the relationship between M and
V using bootstrapping approach. Finally, Section 6.3.4 outlines the extraction rules which lead
to obtaining the relevant M , R and V components.

6.3.1 Statistical entities

We made a hypothesis of the existence of statistical entities in the headers of statistic tables.
For example, one header of table3 is “Taux de chômage au T1 2015” (“Unemployment rate
in the first quarter of 2015”). We apply the following text processing steps on the statistics
publication context (in our case, the statistic table headers):

• Pick only headers that contain measurement unit such as euro, %, etc. These headers are
usually noun phrases in format Entity + (Unit) such as “Unemployment rate in 2015 (in
%)”. We prefer to rely on table headers and not on table titles and comments, since the
latter are longer sentences that could (or could not) contain the entities, and customarily
do contain and much more irrelevant information. Further, we require that headers con-
tain a measurement unit because one is present in any statistical entity measure, thus we
can use that as an indicator of potentially interesting phrases.

• Filter out the measurement unit: in the above example, this leads to the snippet “Unem-
ployment rate in 2015”.

• Filter out possible date time values and the associated prepositions; this leaves us with
the statistical entity “Unemployment rate”.

• A final manual filtering allowed us to weed out some text snippets which do not in fact
comprise relevant entities.

Through the above process, we obtained 1,397 statistical entities, some of which are presented,
together with their frequencies from the statistics publication context, in Table 6.1. Note that
they are all related to quite hot topics in current public policy debates, in particular in Europe
and in the US, making them useful and interesting for fact-checking.

3https://www.insee.fr/fr/statistiques/1288156#tableau-Figure_2

https://www.insee.fr/fr/statistiques/1288156#tableau-Figure_2

6.3. ENTITY, RELATION AND VALUE EXTRACTION 73

Extracted statistical entities Frequency
intensité de la pauvreté (intensity of poverty) 190
nombre d’entreprises (number of companies) 176
taux de pauvreté au seuil de 60% (poverty rate at 60% me-
dian wages)

130

chômeurs (unemployed people) 104
taux de chômage (unemployment rate) 79
excédent brut d’exploitation 68

(Earnings before Interest, Taxes and Amortization)
PIB (gross domestic product, GDP) 54
taux de population en sous-emploi 54

(share of people working less than they would like)
solde migratoire (net migration) 44
taux de marge (margin rate) 28
taux de pauvreté (poverty rate) 21
taux de mortalité (mortality rate) 15
population en sous-emploi à temps partiel 12

(population working part-time, willing to work more)

Table 6.1: Sample extracted statistical entities.

Figure 6.2: Sample dependency tree built by spaCy.

6.3.2 Relevant verbs and measurement units

We use the annotation SI to refer to the candidate sentences that contain the word “insee”.
These sentences are likely to feature a relationship between a mention of statistical entity M as
a noun phrase (e.g., “unemployment rate”) and a statistical value V as a numerical value, op-
tionally followed by a measurement unit (e.g., “5%”). We use the spaCy parser [Honnibal and
Johnson, 2015] to build the dependency tree of sentence; Figure 6.2 illustrates one example.
On the line at the bottom, spaCy states the morphological (part-of-speech) category it recog-
nized for each word (token). Thus, NOUN designates nouns, VERB a verb, AUX an auxiliary
verb, NUM a number, ADJ an adjective etc. Sometimes, numerical values in French contain
whitespaces, e.g. 19 000, which the dependency tree represents as several nodes. We remove
these white spaces in order to have one single NUM (numerical token in spaCy parlance) node,
e.g., “19000”. The arrows between tokens trace their syntactic dependencies, e.g., the “euro”
adjective at the end of the phrase characterizes (depends on) the “zone” word preceding it.

A syntactical dependency path in SI of the form (w0:P0, d0, w1:P1, d1, w2:P2, . . .) where each
wm is a word in the sentence, Pm is the part-of-speech assigned to the word by spaCy and dm
is the label of an edge between Pm and Pm+1; a path can follow an edge either in its direction,
or in the opposite direction. For instance, (zone:NOUN, amod, euro:ADJ) is a path of length 1

74 CHAPTER 6. STATISTICAL MENTIONS FROM TEXTUAL CLAIMS

in Figure 6.2, so is its reverse (euro:ADJ, amod, zone:NOUN), whereas (établie:VERB, obl,
%:NOUN, nummod, 0,2:NUM) is a path of length 2.

We collected the syntactic dependency paths connecting M , R and V as follows. For each
NOUN node, we located the paths that connect it to a NUM node. We found many paths
that start with (NOUN, nsubj, VERB) (a noun is subject of a verb); we refer to them
as PathsI . In Figure 6.2, the path connecting “inflation” to “0,2” is (inflation:NOUN, nsubj,
établie:VERB, obl, %:NOUN, nummod, 0,2:NUM).

As the relation R of M and V is generally introduced by specific verbs, we collected all the
verbs associated with VERB nodes from PathsI . To make sure of the quality of the collected
verbs, we filtered manually from the original list to retain 129 relevant ones; in the sequel, we
denote them by I verbs.

Based on PathsI , we also gathered a set of measurement units by collecting all the NOUN
nodes connected to a NUM node via a nummod edge (numeric modifier). We call this list
I units.

6.3.3 Bootstrapping approach

If a dependency path p between M and V appears many times in different sentences, p could
be a good indicator to signal the relationship between the mention of statistical entities and the
statistical value. With that hypothesis, we collect the sentences that contain statistical entity
extracted from section 6.3.1. From these sentences, we identify the corresponding dependency
path p and then retain the paths that have the highest frequencies. Let’s call these paths PathsB.

Given the input sentence i, we search for the existence of any dependency path from PathsB.
If such path exists, we are able to locate the nodes that represent M and V respectively. This
approach, inspired by [Saha et al., 2017], has been evaluated but turned out to be less robust
than the extraction rules described below, with similar performance on development set but
much lower on test set.

6.3.4 Extraction rules

Given the input sentence i and a statistical entity e, we extract the mention of statistical entity
M , the statistical value V and their relation R. If there is no relationship between e and the
statistical value, or there is no statistical value in i, we return the value M = None.

Firstly we generate the dependency tree t(i) of i using spaCy, as illustrated in Figure 6.2. Then
we identify in this tree the statistical entity e and the numerical value(s), as follows.

1. We filter out the year values (e.g., 2018) since we only want to search for the relationship
of statistical entity and statistical value.

2. We define the distance d(n1, n2) of two nodes n1 and n2 in t(i) as the absolute value of
n1’s position - n2’s position. For instance, d(inflation, établie) = 3.

3. The distanceD(e, v) from e to a numerical value v is the minimum value of d(e’s first word, v)
and d(e’s last word, v). In case there are more than one numerical values, we select the
one that has the smallest D(e, v) as the statistical value of e.

6.3. ENTITY, RELATION AND VALUE EXTRACTION 75

4. We identify the dependency path p(i) that connects the first word of e (let’s call it s)
and e’s statistical value (if available), let’s call it n. With our sample dependency tree,
p(i) = nsubj, établie:VERB, obl, %:NOUN, nummod, 0,2:NUM)

5. We look for the node u directly connected to n (the last one before n) in p(i). If u is a
noun and there is a nummod edge between u and n, we returnM = None in the following
cases:

• u does not appear in I units.

• u appears in I units and in the input sentence, there is an article or a preposition
between s and u.

On the contrary, we extract the relevant nodes from:

(a) the first NOUN node s: we identify the nodes that connect to s via nmod and amod
(adjectival modifier) edges, then we collect subtree of these nodes.

For example, when the input i is “Il se poursuit avec le nombre de demandeurs
d’emplois de moins de 25 ans, qui a reculé de 2,6% en France métropolitaine sur
un mois en septembre.” (“It continues with the number of job seekers under the
age of 25, who fell by 2.6% in metropolitan France in September”), e is “nombre
de demandeurs d’emplois” (number of job seekers), s is “nombre” (number). We
identify the node “demandeurs” that connects to s via nmod edge. The nodes
extracted in this case are “nombre, de, demandeurs, de, emplois, de, moins, de, 25,
ans” (number of job seekers under the age of 25).

As a second example, consider the input sentence “Cette baisse qui intervient après
5 mois consécutifs de hausse permet de ramener l’inflation française en dessous de
la barre des 2 % en rythme annuel.” (“This decline, which comes after five consec-
utive months of increase, makes it possible to reduce French inflation below the 2%
mark on an annual basis.”). In this case both e and s are “inflation”; we identify
the node “française” that connects to s via amod edge. The nodes extracted in this
case are “inflation, française” (French inflation).

(b) the VERB node verb: the subtree of nodes that connect to verb via obl edge (a
nominal dependent of a verb). We impose the constraints of having verb appear
in I verbs and the leftmost node of the subtree must be a preposition among “en,
à, dans”. For example, let the input sentence be “En décembre, l’inflation s’est
établie à 0,2 % dans la zone euro, faisant courir à l’économie le risque de sombrer
dans l’atonie.” (“In December, inflation stood at 0.2% in the euro zone, putting the
economy at risk of falling into sluggishness.”), e and s are “inflation”. We identify
the node “zone” that connects to the VERB node “établir” through a obl edge.
The nodes extracted in this case are “inflation, dans, la, zone, euro” (inflation in
the euro zone).

If the nodes from these subtrees appear in p(i), we do not include them.

All the extracted nodes form the mention of statistical entity M . The statistical value V is
composed of n and u. The relation R is composed the nodes from p(i) which do not belong to
M and V .

76 CHAPTER 6. STATISTICAL MENTIONS FROM TEXTUAL CLAIMS

6.4 Evaluation

We evaluated our system at two levels. First, Section 6.4.1 evaluates the quality the extraction
rules and relevance of the search results. Second, Section 6.4.2 evaluates the performance of
the end-to-end system.

6.4.1 Evaluation of the extraction rules

We select some statistical entities [“taux de chômage” (unemployment rate), “nombre de de-
mandeurs d’emploi” (number of job seekers), “niveau de vie” (life’s quality), “consommation
des ménages” (household consumption), “PIB” (gross domestic product, GDP), “inflation”
(inflation), “SMIC” (minimum wages), “taux d’emploi” (employment rate)] from the list of
statistical entities (Section 6.3.1). For each entity e we pick randomly 50 sentences that con-
tain e then we split randomly 25 sentences for development set and 25 sentences for test set.
Finally there are 200 sentences for each set. If there is no relationship between e and the sta-
tistical value, or there is no statistical value in the given sentence, we assign a label NoStats.
Otherwise we annotate each sentence with e and the relevant phrases (we call these phrases
contexts of e) to form a mention of statistical entity.

For a given sentence, if the extraction rules return M = None and we have the NoStats label
from the annotated sentence then the extraction is an accurate one. On the contrary, we verify if
the extracted M contains e and one of its contexts. In that case, the extraction is also accurate.
We compute the accuracy of our extraction rules in both development set and test set and obtain
the scores of 71.35% and 69.63% respectively.

6.4.2 Evaluation of the end-to-end system

We selected randomly 38 sentences for the test set (from which 26 were considered as extracted
correctly at previous step – Section 6.4.1). We gave the corresponding generated queries q =
M + L+ T as input to the INSEE-Search system (Section 5.2).

We evaluated the accuracy of the system using the same metric from Section 5.3.2.1. Note
that there is no guarantee that any “highly relevant” element at all exists in the dataset for each
query.

The results are available in Table 6.2 and show that, given an arbitrary claim (related to statistic
entities), fine-grained and relevant information can be returned in the vast majority of the cases.
They also show that, as in all keyword-based search systems, building a perfect query is neither
necessary or sufficient for obtaining good results. Even if a good entity extraction improves the
results, we can still find highly or partially relevant information even if the entity extraction is
not perfectly achieved.

These findings are now to be confirmed by an evaluation on more claims, more databases and
based on a real-user study. We also showed in Section 5.2 that the performance of our query
system was similar to a document-level search engine such as Google, but with a much better
granularity of the information (data cell instead of web page).

6.5. IMPLEMENTATION 77

MAPh(10) MAPp(10)
Overall performance (38 sentences) 0.672 0.789
among which M extracted correctly (26) 0.725 0.829

M extracted incorrectly (12) 0.559 0.703

Table 6.2: Evaluation of INSEE-Search.

6.5 Implementation

The source code is written in Python 3 and it is open-sourced at https://gitlab.inria.
fr/cedar/statstical_mentions. The following list describes the most important
modules:

• data contains the annotated data

• candidate sentences.csv contains the candidate sentences

• Evaluation NLDB.ipynb contains the extraction rules and their evaluation

6.6 Related works

BONIE [Saha et al., 2017] claimed to be the first open numerical relation extractor. Given
the input sentence “Hongkong’s labour force is 3.5 million”, BONIE extracts the triple (Hong
Kong; has labour force of; 3.5 million). They create high precision patterns to extract seed
facts from input sentences. Seed fact has the following format (entity head-word, relation
head-word, quantity, unit). And then they apply bootstrapping to increase the number of seed
facts: searching for sentence from a text corpus that contain all words in a seed fact. The next
step is pattern learning. For each candidate sentence, they use placeholder {entity}, {relation},
{quantity} to represent the match of entity, relation, quantity + unit. Then they search for the
minimum path in the dependency tree that connect these 3 placeholders. All the paths are sorted
by frequency and the top-1000 paths were used to evaluate system’s performance. Finally they
have some rules to select which subtree in the dependency tree that they want to collect in order
to obtain the entity and relation. When trying their approach for our settings, we found that the
learnt pattern were sometimes too generic or too specific and they failed to capture the correct
dependency path in the new texts.

ClausIE [Corro and Gemulla, 2013] is an open information extraction system. It first detects
clauses in a sentence and then apply specific rules for each type of clause in order to extract
the entity of interest. ClausIE also relies on a hand-crafted dictionary of verbs to identify the
existence of relation in sentence. Compare to their approach, we have a “semi-automated”
solution to identify the list of verbs.

ClaimBuster [Hassan et al., 2017] was the first work on check-worthiness. They used annotated
sentences from US election debates to train a SVM classifier in order to determine whether or
not a sentence is a check-worthy claim. This is the common approach when having a large
amount of training data, which is not the case in French.

Platypus [Pellissier Tanon et al., 2018] receives natural language query as input and deliver its
answers from Wikidata. The system generates logical representations of the given input using

https://gitlab.inria.fr/cedar/statstical_mentions
https://gitlab.inria.fr/cedar/statstical_mentions

78 CHAPTER 6. STATISTICAL MENTIONS FROM TEXTUAL CLAIMS

a set of transformation rules or template based technique (which requires training data). The
transformation rules operate on the set of part-of-speech tags and dependency tags. E.g., the
dependency ”Where→ nsubj→ X” could be transform to {p|(X, locatedIn, p)}. Regarding
the template based technique, free variable of logical representation is annotated in natural
language questions. They use Conditional Random Fields algorithm to recognize entities in
the query and fill these entities into the logical representation. Finally Platypus ranks these
representations to retrieve the most relevant ones and execute SPARQL query on Wikidata to
retrieve the answer. Compare to them, we do not depend on predefined rules to identify the
connection between entities of interest.

AggerChecker [Jo et al., 2019] translates natural language claims to SQL queries. Firstly, a set
of keywords from relational tables is collected. For each standard SQL aggregation function,
such as COUNT, SUM, etc., they associate it with a set of keywords, e.g., “total”, “number”
for COUNT. They also collect keywords from table names and its columns. All of the collected
keywords are stored in an information retrieval engine 4 in order to retrieve the relevant matches
with respect to claims’ keywords. For each input text, they identify a set of keywords with some
simple heuristics rules. They also take into account users’ inputs in order to select relevant
keywords. Finally, they use an expectation maximization model to compute a distribution over
SQL queries for each claim. The inputs of this model are the queries constructed from the
matches of the information retrieval engine and the associated score of each match. This paper
is a very similar work to our end-to-end system which returns relevant datasets to answer to the
extracted claims from textual content. In their system, the quality of keyword extraction from
tables could pose a problem because people tend to use short words or even abbreviations to
name columns and table names. In our system, spreadsheets aim to serve the public audience
so they usually have meaningful names on their tables.

BriQ [Ibrahim et al., 2019] identifies the corresponding table cells of textual quantities mentions
appearing in the same document. They train a binary classifier to determine the alignment
of a pair of mention and cell. The results of this classifier provide a list of candidate pairs.
The aggregation appearing in mention, for example sum, average, etc., is detected by another
classifier in order to decide whether we should map a mention to a single cell or the aggregation
of several cells. As a human would tries to identify the correct pair by spotting neighboring
quantities in both text and tables, they build a graph to model the relationships of mentions
and cells. A random walk with restart algorithm [Lao et al., 2011] is applied on this graph to
compute the probability of having an alignment between a mention and a cell. This probability
and the confidence scores from the two previous classifiers form an overall score to determine
the alignment. This work focuses on identifying a pair of statistic value and the corresponding
value which appears in a table. In our work, we focus on finding a mention of statistic entity
and its relationship with a statistic value. BriQ and AggerChecker [Jo et al., 2019] bring us
some ideas for the future works of detecting the aggregation of statistic values.

6.7 Conclusion and future works

In this chapter we have presented an end-to-end system for identifying statistic claims and
finding in a statistic database the relevant statistic data for checking this claim. The main steps
for this system are:

4Apache Lucence https://lucene.apache.org/

https://lucene.apache.org/

6.7. CONCLUSION AND FUTURE WORKS 79

1. converting the statistic database into an RDF graph (Chapter 4),

2. identifying all statistic entities relevant for this database,

3. selecting the check-worthy claims mentioning these entities,

4. converting the claim into a set of keyword,

5. using an keyword search, focused algorithm to extract the relevant pieces of data (ideally,
table cells) relevant to the claim (Chapter 5).

To apply our system on a different statistic database, we only need reuse our extraction system
(Chapter 4) for step 1 and then pick the statistical entities as mentioned in Section 6.3.1 for step
2. The remaining steps remain unchanged. To make the RDF graph up-to-date, our crawler
works on a daily basis to collect the latest statistic tables. We also leave journalists state whether
the claim is ”true”, ”mostly true”, ”mostly false” etc. This is because they insist that translating
a relative error (difference between the reference and the stated value) into a truth judgment
depends on the context and the measure, and they absolutely want to make that call themselves.

A classic defect of these pipeline approaches in NLP systems is that errors accumulate at each
step. Nevertheless, our results show that we often manage to find useful information for the
user, which will make the human work of fact-checking easier and faster. For the future work,
we want to be able to identify the implicit statistical claims, for example “The unemployment
rate this year is higher than last year’s.”.

80 CHAPTER 6. STATISTICAL MENTIONS FROM TEXTUAL CLAIMS

Chapter 7

Topics exploration and classification from
newspapers and social media

This chapter describes an effort we made to build an interesting corpus for journalistic fact-
checking. Instead of consisting of statistic data, as was the case of the INSEE corpus on which
the work of Chapter 4, 5 and 6, this corpus is about facts, statements and beliefs, and it is orga-
nized as an RDF knowledge base. The classes and properties of the corpus have been defined
in another PhD work, also part of ContentCheck, that of Ludivine Duroyon (U. Rennes 1). The
effort carried as part of my thesis focused on extracting, from text and semistructured data,
information that can be used to fill in such a graph. This effort contributed to a joint demon-
stration co-authored with Ludivine and her advisors [Cao et al., 2019a, Cao et al., 2019b].

Background: a model for facts, statements and beliefs We recall here the model introduced
in [Duroyon et al., 2019], to model statements that different individuals and organizations make,
and capture their spread through time. The model defines a set of RDF classes and properties,
and specifies how they can be combined to describe a data graph. In this model, facts are
assumed to hold irrespectively of the actors’ viewpoints. In contrast, a belief is held by an actor
(individual or organization), and it has a subject, which can be positive (the agents believes
something; this is denoted by a plus sign +) or negative (the agent does not believe it, denoted
by a minus sign −). Facts, beliefs, and communications can be endowed with a begin and an
end time.

All these components of the model are illustrated in Figure 7.1, where for readability, we
omitted the property names (edges on the label). The data in Figure 7.1 is organized around
five central nodes: the facts F1 and F2, a belief B1, and two communications C1 and C2.
Their attached time information (begin and end) is encoded in the timestamp resources t0 to
t4, each of which has a beginning and an end. The fact F1 has a description d1, which states
that “Gilets Jaunes” protest against fuel prices in Bordeaux on Dec 1, 2018. Any kind of
nodes/resources may be used to describe a fact, depending on its nature. The statement “E.
Macron has believed from November 26th, 2018, to November 30th, 2018, that Yellow vests1

will not protest against fuel prices in Bordeaux, France; on December 1st, 2018.” is encoded
by the (negative) belief B1 of the agent (human user icon) “E. Macron”, whose subject is F1.
The fact F2 is an increase of minimum wages, announced by E. Macron; note that F2 is not is

1Name of a social movement started in France in November 2018, see https://en.wikipedia.org/
wiki/Yellow_vests_movement.

81

https://en.wikipedia.org/wiki/Yellow_vests_movement
https://en.wikipedia.org/wiki/Yellow_vests_movement

82 CHAPTER 7. TOPICS EXPLORATION AND CLASSIFICATION

Figure 7.1: Sample facts and beliefs

not recorded as certainly true (trusted by the database), but only as “according to” E. Macron.
Formally, [Duroyon et al., 2019] distinguishes a set of resources which are of type Record, that
is, believed (considered true) by the database; in Figure 7.1, these are the yellow nodes. Finally,
C1 and C2 are communications; specifically, C2 is a communication of Jean-Luc Mélenchon
stating that the communication C1 did not happen (note the − sign of C2).

The work described in this chapter focused on instantiating this model starting from real-world
data. Specifically:

1. We built a corpus of tweets and news articles as described in Section 7.1.

2. Then, we developed a topic extraction module (Section 7.2) to identify the topics present
in the tweets.

3. Finally, we developed a weakly supervised neural classifier (Section 7.3) to attach com-
munication (tweets) to their subjects (considered to be the topics identified by the previ-
ous topic extraction module), then conclude (Section 7.4).

7.1 Corpus construction

We collected 96,513 French tweets containing the words “gilets jaunes” (yellow vests) using the
Twint tool 2. We denote by Ct the corpus built from these tweets. From these, we extracted the
HTTP links they contained (omitting those that refer to social networks such as Facebook and
Youtube, as well as Wikipedia). We fed the links thus obtained to the NewsPlease [Hamborg
et al., 2017] news article crawler/extractor, leading to a set of 56,657 news articles.

2https://github.com/twintproject/twint

https://github.com/twintproject/twint

7.2. TOPIC EXTRACTION 83

On each article, we apply the previously developed source extractor3 module to extract the
source (name of individual or organization who makes a statement) in each sentence, when
this is possible. For example, in the sentence “M. Macron blames the violence of Yellow Vests
demonstrators”, source-extractor could identify “M. Macron” as a source. This leads to
a total of 76,566 sentences, which form a corpus we denote Cs.

7.2 Topic extraction

We rely on Scholar algorithm [Card et al., 2018] to extract a set of topics where each topic is
represented by a set of relevant keywords. The Scholar algorithm uses an autoencoding neural
network. An auto-encoder is a feed-forward neural network, whose last layer has as many
nodes as the input, and whose goal is to reconstruct its input. Specifically, an autoencoder has
two main parts:

• The encoder takes an input vector x from a space X and maps it into another space Z;
this is called the latent representation of x;

• The decoder takes the Z representation of an input x and maps it back into an x′ ∈ X .

The training objective of an autoencoding network is to minimize a reconstruction errorL(x, x′).
The latent representations are oftentimes more compact than the input, and can thus be seen as
compressed versions thereof.

Following this auto-encoder approach, [Card et al., 2018] use a neural network layer as the
latent representation; forL they rely on the Kullback–Leibler divergence [Kullback and Leibler,
1951], which is approximated with the Evidence Lower Bound formula [Kingma and Welling,
2014].

We introduce the basic notions and notations used in [Card et al., 2018], then explain the
encoder (inference model) and the decoder (generative model). Finally, we described the ex-
tracted topics.

Notions [Card et al., 2018] introduces the following notions:

• D is the collection of all documents, where each document is viewed as a collection of
words.

• V is the vocabulary of all words, denoted v1, v2, . . . , vN .

• K is the number of topics defined by users.

• freq(w) is the number of occurrences of the word w in D.

• w is a document from D, viewed as a list of words.

Inference model [Card et al., 2018] defines π = fe(x) where fe is a multi-layer perceptron
and x is a word-count vector over V in w.

Then, they compute µ and σ as linear transformations of π respectively.

The latent representation r is computed as r = µ + σ � ε where � denotes the element-wise
product operator and epsilon = N (0, 1) (a normal distribution).

3https://gitlab.eurecom.fr/asrael/source-extractor

https://gitlab.eurecom.fr/asrael/source-extractor

84 CHAPTER 7. TOPICS EXPLORATION AND CLASSIFICATION

Generative model They feed r to a softmax layer (a layer that applies softmax function4 on
output of the previous layer) to obtain the document representation θ. Then they pass θ to a
linear layer to obtain the topic-word distribution η = θTB + d, where

• BK×N is a weight matrix;

• dK×N is also a matrix, di = [log(freq(w1)), log(freq(w2)), . . . , log(freq(wN))] is a
vector which contains the log of the overall word frequency for i ∈ {1, . . . , K}

To extract the top-m relevant words with respect to a topic i, they collect the m words with
highest values from the ith row of η.

Topic extraction results An implementation of the algorithm proposed in [Card et al., 2018]
is released at https://github.com/dallascard/scholar. Running this algorithm
on the two corpora Cs, respectively Ct, with K = 20, results in 14 topics for Cs and 18 topics
for Ct

5. The keywords of these topics are available online6.

7.3 Topic classification

Training a supervised deep learning model is dependent on the availability of a large corpus
of labeled data. To work around the difficulty of building such a corpus manually, we rely on
the WESTClass (Weakly Supervised Neural Text Classification) method [Meng et al., 2018].
We introduce the notions and parameters of WESTClass and explain how to use the von Mises
Fisher distribution to represent a class (Section 7.3.1). Then, we describe the details of training
a WESTClass model (Section 7.3.2). Finally, we integrate it to our settings and report the
evaluation results (Section 7.3.3).

7.3.1 Preliminaries

[Meng et al., 2018] introduce the following notions and parameters:

• D is the corpus containing all the documents, each of which is a collection of words.

• m is the number of classes into which we want to classify the documents. The model
will output a probability distribution over m classes for each document.

• kj1, kj2, . . . are sets of seed keywords, supplied by users, to describe the semantics of a
class. For this purpose, we use the topics identified as explained in Section 7.2.

• V is the vocabulary that contains all the words available in D.

• freq(w) is the frequency of the word w in D.

• vw is the embedding of the word w.

• β is the number of documents that we want to generate for the class j.

4softmax(xt′) = ext′/
∑

t e
xt

5We reviewed the keywords associated with each topic to retain the relevant topics
6https://gitlab.inria.fr/tcao/westclass/blob/master/keywords/tweet_

keywords.txt

https://github.com/dallascard/scholar
https://gitlab.inria.fr/tcao/westclass/blob/master/keywords/tweet_keywords.txt
https://gitlab.inria.fr/tcao/westclass/blob/master/keywords/tweet_keywords.txt

7.3. TOPIC CLASSIFICATION 85

• α, a real number in the range (0, 1), is used to control the construction of pseudo docu-
ments and labels (see below).

• γ, an integer, is a parameter to control the construction of pseudo documents.

• t, an integer, is the number of keywords that represent a class.

They create m von Mises Fisher (vMF) [Banerjee et al., 2005, Gopal and Yang, 2014] distri-
butions for the m classes. They collect more seed keywords for each class j by computing
the average similarity between the embeddings of words from V and j’s seed keywords, then
choosing the most similar ones. After this process, each class j has t seed keywords out of
which to construct a vMF distribution vMFj that represents the relevant words with respect to
j.

Pseudo document and pseudo label They define the background distribution pb(w) of the
word w over V as:

pb(w) =
freq(w)∑

w∈D freq(w)

Each document vector di, i ∈ 1, 2, . . . , β is sampled from the distribution vMFj . Let Vdi be the
set of γ words whose embeddings are the most similar with di’s embeddings. They generate
each word w for the pseudo document D∗i with the following probability distribution:

p(w|di) =

{
αpb(w) if w 6∈ Vdi
αpb(w) + (1− α)

exp(dTi vw)∑
w′∈Vdi

exp(dTi vw′)
otherwise

They define the pseudo label lij , which is the probability that D∗i belongs to the class j. It is
computed using the formula:

lij =

{
(1− α) + αm if D∗i is generated from class j
α/m otherwise

7.3.2 Model training

Using pseudo documents and pseudo labels, they train a neural network that minimizes the
Kullback–Leibler divergence distance [Kullback and Leibler, 1951] (also called the relative
entropy) between the outputs of the network and the pseudo labels. Experiments in [Meng et al.,
2018] rely on two neural network architectures: CNN and Hierarchical Attention Network
(HAN) [Yang et al., 2016]. This step is called pre-training.

Since the pre-trained model is trained on the pseudo documents, it could not generalize well on
the real documents fromD. To tackle that issue, they perform another step called self-training.
The model predicts labels for documents from D. After each n iterations, it recomputes lij as
y2ij/fj∑
k y

2
ik/fk

where fk is the number of pseudo documents having their predicted label as k and

yij is the current predicted probability that D∗i belongs to the class j. The model’s weights are
updated to minimize the Kullback-Leiber divergence distance as mentioned preciously. The
model also compares current and predicted labels to compute the percentage of documents that
have their labels changed. If this percentage is smaller than a pre-defined threshold σ, the self-
training step could be stopped. If the σ threshold is not reached, the self-training process is
stopped after N iterations, where N is a pre-defined constant.

86 CHAPTER 7. TOPICS EXPLORATION AND CLASSIFICATION

F1, Dev F1, Test MAP@3, Dev MAP@3, Test
Cs 0.727 0.711 0.738 0.721
Ct 0.785 0.817 0.823 0.842

Table 7.1: Quality of the classification.

7.3.3 Evaluation

Using the topics (keyword sets) identified in Section 7.2 as inputs of WESTClass, we chose
the CNN architecture for pre-training and self-training. The performance is evaluated on two
datasets: 192 randomly chosen sentences from Cs and 162 randomly chosen tweets from Ct.
For each dataset, we use 50% of the data for development set and the remaining data for test
set. We perform grid search to find the best hyperparameters7 for CNN model and report the
best results in the Table 7.1.

7.4 Conclusion

We have described our approach to identify the relevant topics present in tweets data without
the need of large amount of training data. The identified topics are used to instantiate an RDF
model that captures the statements made by individuals and organizations and their spread
through time.

7available at https://gitlab.inria.fr/tcao/westclass

https://gitlab.inria.fr/tcao/westclass

Chapter 8

Conclusion

We present a summary of the thesis in Section 8.1 and discuss the perspectives in Section 8.2.

8.1 Summary

We developed an end-to-end system to identify factual information from textual content and
to provide relevant data. Our datasets and source code are available publicly. We also let
people try our system at https://statsearch.inria.fr/. This system contains three
modules:

1. an extractor that crawls statistic spreadsheets and transforms them to RDF datasets

2. a search engine that identifies relevant RDF datasets with respect to a user query

3. a claim detector that detects statistical claims from texts

The extractor leverages the visual and semantic cues of spreadsheets to identify locations of
header and data cells. Then extracted cells are populated in an RDF conceptual data model. As
the spreadsheets are issued from the official data sources, we believe that they are credible to
verify against misinformation.

The search engine quantifies the relevance of each dataset by its header cells’ content. The
location (title, headers, or comments) where a keyword occurs in a dataset is also taken into
account to compute the dataset relevance. We search the relevant datasets efficiently using
Fagin algorithm. To let users quickly analyzing a matched result, we identify the data cells that
contain the relevant data with respect to user’s query. The functionalities of this search engine
help to save a lot of time for end users since they have quick access to pertinent information.

The last module of our system, the claim detector, offers a solution to find statistical claims
using linguistic cues and extraction rules. The extracted claim is converted to an input of the
search engine. This module allows us to integrate with the two above-mentioned modules as
an end-to-end system for verifying information.

On a joint work, we develop a system with the capability of identifying popular topics on
social network. This system enable us to understand people’s viewpoints about current social
movements.

87

https://statsearch.inria.fr/

88 CHAPTER 8. CONCLUSION

During the thesis, we had tried some other research directions but their results were not promis-
ing. For the search engine, we computed a sentence embedding model of all sentences that con-
tain numerical values from INSEE. To retrieve the relevant sentences with respect to a given
sentence, we compute its embedding vector and obtain the vectors that are close to it in the
embeddings vector space. This approach produces a list of semantic relevant sentences but
it fails to retrieve statistical data to answer to the input query. We also tried some machine
learning approaches for the claim detector module. Firstly, we annotated statistical entities
and trained an Named Entity Recognition model. As the size of our training set was small,
the model failed to obtain a good accuracy. So we made use of crowdsourcing to enlarge our
dataset. This time we encountered the problem of low quality annotations. Our description for
the annotators was not well designed which led to the misunderstand of some annotators. After
reading the Snorkel paper [Ratner et al., 2017], we implemented some labeling functions to
generate training set. We did not obtain a reliable accuracy measurement on the validation set
even after seeking advice from the Snorkel team. Then we came back to the idea of building the
training set manually but this time we applied some active learning models in order to reduce
the training set’s size by selecting only the informative examples. The obtained results of these
experiments were not good as we expected.

8.2 Perspectives

Driven by the French journalism context which framed the work described in this thesis, we
focused on data sources of obvious fact-checking interest (notably INSEE statistics, as well
as tweets which were often mentioned as a source of interesting information by journalists
from Les Décodeurs). This has also driven the language processing and information extraction
part of this work to be devised for French. We view this as a strong point of our work, given
the relative scarcity of tools and linguistic techniques for non-English languages, in particular
French.

We consider to generalize our algorithms to other statistical data sources, for example OECD 1,
French public data 2, etc. We will need to verify the accuracy of our extraction system (Chap-
ter 4) on these new sources and make our extraction algorithm more flexible. We could also in-
vestigate the extraction of other data types (e.g., text or speech). For example we could perform
text analysis on government statements or reports in order to collect facts such as government
spending, inflation rate, etc. Finally, we should also try to implement our system with other
languages, for example English. This task involves specific customizations for each specific
language.

Currently, we identify claims in text using rule-based approach. In order to make our system
more efficient, we should consider to examine text’s check-worthiness, i.e., the task of classi-
fying whether a sentence is worthy to fact-check. We are collaborating with journalists at Le
Monde3 to develop a training dataset for this task. We could also try to build an Entity Recog-
nition model using an annotated corpus to see whether it could identify mentions of statistical
entities that do not appear in our pre-defined list. Our system currently can not detect these
mentions.

1https://data.oecd.org/
2https://www.data.gouv.fr/
3https://www.lemonde.fr/

https://data.oecd.org/
https://www.data.gouv.fr/
https://www.lemonde.fr/

8.2. PERSPECTIVES 89

We apply many linguistic tools on our system, for example syntactical dependency tree, named-
entity recognition, date time recognition. The integration of all these tools make the analysis
complex and prone to errors. If we improve the accuracy of each tool then the overall per-
formance of the whole system would be higher. We could also experiment with new tools
such as coreference resolution, i.e., finding the word/phrase that refer to the same entity across
sentences, in order to identify all instances of statistical mentions. With the success of transfer
learning techniques for NLP recently, we believe that these techniques could help us to improve
the accuracy of many downstream NLP tasks.

We should also look for other data sources that could be utilized for fact-checking task. An ex-
ample is the fact-checked articles from journalists which have been published under the Claim-
Review4 standard. We plan to build a system that matches these articles against a user query
such as “Has the government removed teacher jobs to fund supplementary police officers?”5.

Another interesting research direction is analyzing the temporal dimension of statistical data,
for example finding data to assess whether the unemployment rate has been rising in the last
three years. This task involves identifying the published time attribute from our RDF datasets
and organizing it efficiently in order to query the evolution of data through time.

Finally, the fact-checking results should be able to engage and entertain their audience. Some
possible approaches are live fact-check during political debate, interactive data visualization
that let users explore the relevant data. On another hand, the interaction from end-users could
provide us evaluation data and feedback to improve our system’s performance as well as devel-
oping new useful features.

4https://schema.org/ClaimReview
5https://www.lemonde.fr/les-decodeurs/article/2019/06/03/

le-gouvernement-a-t-il-supprime-des-postes-de-profs-pour-financer-des-policiers-supplementaires_
5470810_4355770.html

https://schema.org/ClaimReview
https://www.lemonde.fr/les-decodeurs/article/2019/06/03/le-gouvernement-a-t-il-supprime-des-postes-de-profs-pour-financer-des-policiers-supplementaires_5470810_4355770.html
https://www.lemonde.fr/les-decodeurs/article/2019/06/03/le-gouvernement-a-t-il-supprime-des-postes-de-profs-pour-financer-des-policiers-supplementaires_5470810_4355770.html
https://www.lemonde.fr/les-decodeurs/article/2019/06/03/le-gouvernement-a-t-il-supprime-des-postes-de-profs-pour-financer-des-policiers-supplementaires_5470810_4355770.html

90 CHAPTER 8. CONCLUSION

Bibliography

[Ahmadi et al., 2019] Ahmadi, N., Lee, J., Papotti, P., and Saeed, M. (2019). Explainable fact
checking with probabilistic answer set programming. CoRR, abs/1906.09198.

[Ahsan et al., 2016] Ahsan, R., Neamtu, R., and Rundensteiner, E. (2016). Towards spread-
sheet integration using entity identification driven by a spatial-temporal model. In ACM
SAC, pages 1083–1085, New York, NY, USA. ACM.

[Bach et al., 2017] Bach, S. H., Broecheler, M., Huang, B., and Getoor, L. (2017). Hinge-loss
markov random fields and probabilistic soft logic. J. Mach. Learn. Res., 18(1):3846–3912.

[Bahdanau et al., 2015] Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine trans-
lation by jointly learning to align and translate. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Pro-
ceedings.

[Baird et al., 2017] Baird, S., Sibley, D., and Pan, Y. (2017). Talos Targets Disinformation
with Fake News Challenge Victory.

[Banerjee et al., 2005] Banerjee, A., Dhillon, I. S., Ghosh, J., and Sra, S. (2005). Clustering
on the unit hypersphere using von mises-fisher distributions. J. Mach. Learn. Res., 6:1345–
1382.

[Bar-Haim et al., 2017] Bar-Haim, R., Bhattacharya, I., Dinuzzo, F., Saha, A., and Slonim, N.
(2017). Stance Classification of Context-Dependent Claims. In EACL, pages pages 251–
261.

[Barrón-Cedeño et al., 2018] Barrón-Cedeño, A., Elsayed, T., Suwaileh, R., Màrquez, L.,
Atanasova, P., Zaghouani, W., Kyuchukov, S., Da San Martino, G., and Nakov, P. (2018).
Overview of the CLEF-2018 CheckThat! Lab on Automatic Identification and Verification
of Political Claims. Task 1: Check-Worthiness. CEUR Workshop Proceedings, 2125.

[Berners-Lee et al., 1998] Berners-Lee, T., Fielding, R., and Masinter, L. (1998). Uniform
resource identifiers (uri): Generic syntax.

[Blei et al., 2003] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation.
J. Mach. Learn. Res., 3:993–1022.

[Brants et al., 2004] Brants, S., Dipper, S., Eisenberg, P., Hansen-Schirra, S., König, E., Lez-
ius, W., Rohrer, C., Smith, G., and Uszkoreit, H. (2004). Tiger: Linguistic interpretation of
a german corpus. Research on Language and Computation, 2(4):597–620.

[Breiman, 2001] Breiman, L. (2001). Random forests. Mach. Learn., 45(1):5–32.

91

92 BIBLIOGRAPHY

[Breunig et al., 2000] Breunig, M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000). Lof: Iden-
tifying density-based local outliers. In PROCEEDINGS OF THE 2000 ACM SIGMOD IN-
TERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, pages 93–104. ACM.

[Brin and Page, 1998] Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual
web search engine. Computer Networks, 30(1-7):107–117.

[Cafarella et al., 2009] Cafarella, M. J., Halevy, A. Y., and Khoussainova, N. (2009). Data
integration for the relational web. PVLDB, 2(1):1090–1101.

[Cao et al., 2019a] Cao, T. D., Duroyon, L., Goasdoué, F., Manolescu, I., and Tannier, X.
(2019a). BeLink: Querying Networks of Facts, Statements and Beliefs (demonstration). In
Bases de Données Avancées.

[Cao et al., 2019b] Cao, T. D., Duroyon, L., Goasdoué, F., Manolescu, I., and Tannier, X.
(2019b). BeLink: Querying Networks of Facts, Statements and Beliefs (demonstration). In
International Conference on Information and Knowledge Management.

[Cao et al., 2017] Cao, T. D., Manolescu, I., and Tannier, X. (2017). Extracting linked data
from statistic spreadsheets. In Proceedings of The International Workshop on Semantic Big
Data, SBD ’17, pages 5:1–5:5, New York, NY, USA. ACM.

[Cao et al., 2018a] Cao, T. D., Manolescu, I., and Tannier, X. (2018a). Extracting Linked Data
from statistic spreadsheets. In Bases de Données Avancées.

[Cao et al., 2018b] Cao, T.-D., Manolescu, I., and Tannier, X. (2018b). Searching for truth in
a database of statistics. In Proceedings of the 21st International Workshop on the Web and
Databases, WebDB’18, pages 4:1–4:6, New York, NY, USA. ACM.

[Cao et al., 2019c] Cao, T.-D., Manolescu, I., and Tannier, X. (2019c). Extracting statistical
mentions from textual claims to provide trusted content. In 24th International Conference
on Applications of Natural Language to Information Systems.

[Card et al., 2018] Card, D., Tan, C., and Smith, N. A. (2018). Neural Models for Documents
with Metadata. ACL.

[Carlson et al., 2010] Carlson, A., Betteridge, J., Wang, R. C., Hruschka, Jr., E. R., and
Mitchell, T. M. (2010). Coupled semi-supervised learning for information extraction. In
Proceedings of the Third ACM International Conference on Web Search and Data Mining,
WSDM ’10, pages 101–110, New York, NY, USA. ACM.

[Castillo et al., 2011] Castillo, C., Mendoza, M., and Poblete, B. (2011). Information credi-
bility on twitter. In Proceedings of the 20th International Conference on World Wide Web,
WWW ’11, pages 675–684, New York, NY, USA. ACM.

[Cazalens et al., 2018] Cazalens, S., Lamarre, P., Leblay, J., Manolescu, I., and Tannier, X.
(2018). A content management perspective on fact-checking. In WWW (Companion Vol-
ume), pages 565–574. ACM.

[Chen and Cafarella, 2013] Chen, Z. and Cafarella, M. (2013). Automatic web spreadsheet
data extraction. In Proceedings of the 3rd International Workshop on Semantic Search Over
the Web, Semantic Search, pages 1:1–1:8, New York, NY, USA. ACM.

[Conneau et al., 2017] Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and Bordes, A.
(2017). Supervised learning of universal sentence representations from natural language

BIBLIOGRAPHY 93

inference data. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 670–680, Copenhagen, Denmark. Association for Computa-
tional Linguistics.

[Corro and Gemulla, 2013] Corro, L. D. and Gemulla, R. (2013). ClausIE : Clause-Based
Open Information Extraction. In WWW 2013 - Proceedings of the 22nd International Con-
ference on World Wide Web, number i, pages 355–365.

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Ma-
chine Learning, 20(3):273–297.

[Cramer, 2002] Cramer, J. (2002). The Origins of Logistic Regression. Tinbergen Institute
Discussion Papers 02-119/4, Tinbergen Institute.

[Cunningham and Delany, 2007] Cunningham, P. and Delany, S. J. (2007). k-nearest neigh-
bour classifiers.

[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

[Dong et al., 2014] Dong, X. L., Gabrilovich, E., Heitz, G., Horn, W., Murphy, K., Sun, S.,
and Zhang, W. (2014). From data fusion to knowledge fusion. PVLDB, 7.

[Duroyon et al., 2019] Duroyon, L., Goasdoué, F., and Manolescu, I. (2019). A Linked Data
Model for Facts, Statements and Beliefs. In International Workshop on Misinformation,
Computational Fact-Checking and Credible Web, WWW ’19 Companion - Proceedings of
the 2019 World Wide Web Conference, San Francisco, United States.

[Elmeleegy et al., 2011] Elmeleegy, H., Madhavan, J., and Halevy, A. (2011). Harvesting re-
lational tables from lists on the web. The VLDB Journal, 20(2):209–226.

[Elmeleegy et al., 2009] Elmeleegy, H., Madhavan, J., and Halevy, A. Y. (2009). Harvesting
relational tables from lists on the web. PVLDB, 2(1):1078–1089.

[Fagin et al., 2003] Fagin, R., Lotem, A., and Naor, M. (2003). Optimal aggregation algo-
rithms for middleware. J. Comput. Syst. Sci., 66(4):pages 614–656.

[Ferrara et al., 2017] Ferrara, A., Montanelli, S., and Petasis, G. (2017). Unsupervised detec-
tion of argumentative units though topic modeling techniques. In Habernal, I., Gurevych, I.,
Ashley, K. D., Cardie, C., Green, N., Litman, D. J., Petasis, G., Reed, C., Slonim, N., and
Walker, V. R., editors, ArgMining@EMNLP, pages 97–107. Association for Computational
Linguistics.

[Firth, 1957] Firth, J. R. (1957). A synopsis of linguistic theory 1930-55. 1952-59:1–32.

[Frakes and Baeza-Yates, 1992] Frakes, W. B. and Baeza-Yates, R. (1992). Information Re-
trieval Data Structures & Algorithms. Prentice Hall, Englewood Cliffs, New Jersey.

[Friedman, 2000] Friedman, J. H. (2000). Greedy function approximation: A gradient boost-
ing machine. Annals of Statistics, 29:1189–1232.

[Friedman et al., 1997] Friedman, N., Geiger, D., and Goldszmidt, M. (1997). Bayesian net-
work classifiers. Mach. Learn., 29(2-3):131–163.

94 BIBLIOGRAPHY

[Gencheva et al., 2017] Gencheva, P., Nakov, P., Màrquez, L., Barrón-Cedeño, A., and Koy-
chev, I. (2017). A context-aware approach for detecting worth-checking claims in political
debates. In Proceedings of the International Conference Recent Advances in Natural Lan-
guage Processing, RANLP 2017, pages 267–276, Varna, Bulgaria. INCOMA Ltd.

[Goasdoué et al., 2013] Goasdoué, F., Karanasos, K., Katsis, Y., Leblay, J., Manolescu, I., and
Zampetakis, S. (2013). Fact checking and analyzing the web (demonstration). In ACM
SIGMOD.

[Gonzalez et al., 2010] Gonzalez, H., Halevy, A., Jensen, C., Langen, A., Madhavan, J., Shap-
ley, R., and Shen, W. (2010). Google fusion tables: Data management, integration, and
collaboration in the cloud. In SOCC.

[Gopal and Yang, 2014] Gopal, S. and Yang, Y. (2014). Von mises-fisher clustering models. In
Proceedings of the 31st International Conference on International Conference on Machine
Learning - Volume 32, ICML’14, pages I–154–I–162. JMLR.org.

[Graves, 2018] Graves, L. (2018). Understanding the Promise and Limits of Automated Fact-
Checking. Factsheet, (February):1–7.

[Gray et al., 2012] Gray, J., Chambers, L., and Bounegru, L. (2012). The Data Journalism
Handbook: How Journalists can Use Data to Improve the News. O’Reilly.

[Gray et al., 2007] Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venka-
trao, M., Pellow, F., and Pirahesh, H. (2007). Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. CoRR, abs/cs/0701155.

[Grover and Leskovec, 2016] Grover, A. and Leskovec, J. (2016). Node2Vec: Scalable Feature
Learning for Networks. In Proceedings of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16, pages 855–864, New York, NY, USA.
ACM.

[Hamborg et al., 2017] Hamborg, F., Meuschke, N., Breitinger, C., and Gipp, B. (2017). news-
please: A generic news crawler and extractor. In Gaede, M., Trkulja, V., and Petra, V.,
editors, Proceedings of the 15th International Symposium of Information Science, pages
218–223.

[Han et al., 2008] Han, L., Finin, T., Parr, C., Sachs, J., and Joshi, A. (2008). Rdf123: From
spreadsheets to rdf. In Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin,
T., and Thirunarayan, K., editors, International Semantic Web Conference (ISWC), pages
451–466, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Hansen et al., 2019] Hansen, C., Hansen, C., Alstrup, S., Simonsen, J. G., and Lioma, C.
(2019). Neural Check-Worthiness Ranking with Weak Supervision: Finding Sentences for
Fact-Checking. MisinfoWorkshop2019, 2.

[Hassan et al., 2017] Hassan, N., Zhang, G., Arslan, F., Caraballo, J., Jimenez, D., Gawsane,
S., Hasan, S., Joseph, M., Kulkarni, A., Nayak, A. K., Sable, V., Li, C., and Tremayne, M.
(2017). Claimbuster: The first-ever end-to-end fact-checking system. Proc. VLDB Endow.,
10(12):1945–1948.

[Heilman and Smith, 2009] Heilman, M. and Smith, N. A. (2009). Question generation via
overgenerating transformations and ranking. Technical Report CMU-LTI-09-013, Carnegie
Mellon University.

BIBLIOGRAPHY 95

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural Comput., 9(8):1735–1780.

[Honnibal and Johnson, 2015] Honnibal, M. and Johnson, M. (2015). An improved non-
monotonic transition system for dependency parsing. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 1373–1378, Lisbon, Portu-
gal. Association for Computational Linguistics.

[Hornik et al., 1989] Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedfor-
ward networks are universal approximators. Neural Netw., 2(5):359–366.

[Howard and Ruder, 2018] Howard, J. and Ruder, S. (2018). Fine-tuned language models for
text classification. CoRR, abs/1801.06146.

[Hristidis and Papakonstantinou, 2002] Hristidis, V. and Papakonstantinou, Y. (2002). DIS-
COVER: keyword search in relational databases. In Very Large Databases Conference
(VLDB), pages 670–681.

[Ibrahim et al., 2019] Ibrahim, Y., Riedewald, M., Weikum, G., and Zeinalipour-Yazti, D.
(2019). Bridging quantities in tables and text. Proceedings - International Conference
on Data Engineering, 2019-April:1010–1021.

[Jo et al., 2019] Jo, S., Trummer, I., Yu, W., Wang, X., Yu, C., Liu, D., and Mehta, N. (2019).
Verifying Text Summaries of Relational Data Sets. pages 299–316.

[Joachims, 1999] Joachims, T. (1999). Transductive inference for text classification using sup-
port vector machines. In Proceedings of the Sixteenth International Conference on Machine
Learning, ICML ’99, pages 200–209, San Francisco, CA, USA. Morgan Kaufmann Pub-
lishers Inc.

[Jones, 1972] Jones, K. S. (1972). A statistical interpretation of term specificity and its appli-
cation in retrieval. Journal of Documentation, 28:11–21.

[Joulin et al., 2016] Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., and
Mikolov, T. (2016). Fasttext.zip: Compressing text classification models. arXiv preprint
arXiv:1612.03651.

[Kang et al., 2014] Kang, J. S., Feng, S., Akoglu, L., and Choi, Y. (2014). ConnotationWord-
Net: Learning connotation over the Word+Sense network. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1544–1554, Baltimore, Maryland. Association for Computational Linguistics.

[Karadzhov et al., 2017] Karadzhov, G., Nakov, P., Marquez, L., Barron-Cedeno, A., and Koy-
chev, I. (2017). Fully Automated Fact Checking Using External Sources. In Proceedings
of the International Conference Recent Advances in Natural Language Processing, RANLP
2017.

[Karimi and Tang, 2019] Karimi, H. and Tang, J. (2019). Learning Hierarchical Discourse-
level Structure for Fake News Detection. NAACL.

[Kilicoglu et al., 2012] Kilicoglu, H., Shin, D., Fiszman, M., Rosemblat, G., and Rindflesch,
T. C. (2012). Semmeddb: a pubmed-scale repository of biomedical semantic predications.
Bioinformatics, 28(23):3158–3160.

96 BIBLIOGRAPHY

[Kim, 2014] Kim, Y. (2014). Convolutional neural networks for sentence classification. CoRR,
abs/1408.5882.

[Kingma and Welling, 2014] Kingma, D. P. and Welling, M. (2014). Auto-Encoding Varia-
tional Bayes. ICLR, (Ml):1–14.

[Klema and Laub, 1980] Klema, V. and Laub, A. (1980). The singular value decomposition:
Its computation and some applications. IEEE Transactions on Automatic Control, 25:164–
176.

[Kohlhase et al., 2013] Kohlhase, M., Prodescu, C., and Liguda, C. (2013). Xlsearch: A search
engine for spreadsheets. EuSpRIG.

[Konstantinovskiy et al., 2018] Konstantinovskiy, L., Price, O., Babakar, M., and Zubiaga, A.
(2018). Towards Automated Factchecking: Developing an Annotation Schema and Bench-
mark for Consistent Automated Claim Detection. EMNLP, pages 1–18.

[Kullback and Leibler, 1951] Kullback, S. and Leibler, R. A. (1951). On information and suf-
ficiency. Ann. Math. Statist., 22(1):79–86.

[Lafferty et al., 2001] Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional
random fields: Probabilistic models for segmenting and labeling sequence data. In Proceed-
ings of the Eighteenth International Conference on Machine Learning, ICML ’01, pages
282–289, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Lao et al., 2011] Lao, N., Mitchell, T., and Cohen, W. W. (2011). Random walk inference and
learning in a large scale knowledge base. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP ’11, pages 529–539, Stroudsburg, PA,
USA. Association for Computational Linguistics.

[Le and Mikolov, 2014] Le, Q. and Mikolov, T. (2014). Distributed representations of sen-
tences and documents. In Proceedings of the 31st International Conference on Interna-
tional Conference on Machine Learning - Volume 32, ICML’14, pages II–1188–II–1196.
JMLR.org.

[LeCun and Bengio, 1998] LeCun, Y. and Bengio, Y. (1998). The handbook of brain theory
and neural networks. chapter Convolutional Networks for Images, Speech, and Time Series,
pages 255–258. MIT Press, Cambridge, MA, USA.

[Lee and Seung, 2000] Lee, D. D. and Seung, H. S. (2000). Algorithms for non-negative ma-
trix factorization. In Proceedings of the 13th International Conference on Neural Informa-
tion Processing Systems, NIPS’00, pages 535–541, Cambridge, MA, USA. MIT Press.

[Lee and Wang, 2016] Lee, J. and Wang, Y. (2016). Weighted rules under the stable model se-
mantics. In Proceedings of the Fifteenth International Conference on Principles of Knowl-
edge Representation and Reasoning, KR’16, pages 145–154. AAAI Press.

[Lee et al., 2018] Lee, N., Wu, C.-S., and Fung, P. (2018). Improving large-scale fact-checking
using decomposable attention models and lexical tagging. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, pages 1133–1138, Brussels,
Belgium. Association for Computational Linguistics.

[Lehmann et al., 2015] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D.,
Mendes, P. N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., and Bizer, C. (2015).

BIBLIOGRAPHY 97

DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semantic
Web Journal, 6(2):167–195.

[Levy et al., 2014] Levy, R., Bilu, Y., Hershcovich, D., Aharoni, E., and Slonim, N. (2014).
Context Dependent Claim Detection. pages pages 1489–1500.

[Levy et al., 2017] Levy, R., Gretz, S., Sznajder, B., Hummel, S., Aharonov, R., and Slonim,
N. (2017). Unsupervised corpus–wide claim detection. Proceedings of the 4th Workshop on
Argument Mining, pages 79–84.

[Liebeck et al., 2016] Liebeck, M., Esau, K., and Conrad, S. (2016). What to do with an
airport? mining arguments in the german online participation project tempelhofer feld. In
Proceedings of the Third Workshop on Argument Mining (ArgMining2016), pages 144–153.
Association for Computational Linguistics.

[Lim et al., 2016] Lim, W. Y., Lee, M. L., and Hsu, W. (2016). ClaimFinder: A Framework for
Identifying Claims in Microblogs. WWWWorkshop on Making Sense of Microposts, 1691.

[Lim et al., 2017] Lim, W. Y., Lee, M. L., and Hsu, W. (2017). iFACT : An Interactive Frame-
work to Assess Claims from Tweets. CIKM.

[Lippi and Torroni, 2016] Lippi, M. and Torroni, P. (2016). Argument Mining from Speech:
Detecting Claims in Political Debates. Proceedings of the AAAI, pages 2979–2985.

[Liu et al., 2005] Liu, B., Hu, M., and Cheng, J. (2005). Opinion observer: Analyzing and
comparing opinions on the web. In Proceedings of the 14th International Conference on
World Wide Web, WWW ’05, pages 342–351, New York, NY, USA. ACM.

[Liu and Lapata, 2018] Liu, Y. and Lapata, M. (2018). Learning structured text representa-
tions. Transactions of the Association for Computational Linguistics, 6:63–75.

[Lotan et al., 2013] Lotan, A., Stern, A., and Dagan, I. (2013). Truthteller: Annotating predi-
cate truth. In Proceedings of the 2013 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pages 752–757,
Atlanta, Georgia. Association for Computational Linguistics.

[Machado et al., 2019] Machado, C., Kira, B., and Howard, P. N. (2019). A Study of Misin-
formation in WhatsApp groups with a focus on the Brazilian Presidential Elections. Misin-
foWorkshop2019, pages 1013–1019.

[Mahdisoltani et al., 2015] Mahdisoltani, F., Biega, J., and Suchanek, F. M. (2015). YAGO3:
A knowledge base from multilingual Wikipedias. In CIDR.

[Mendes et al., 2011] Mendes, P. N., Jakob, M., Garcı́a-Silva, A., and Bizer, C. (2011). Dbpe-
dia spotlight: Shedding light on the web of documents. In Proceedings of the 7th Interna-
tional Conference on Semantic Systems, I-Semantics ’11, pages 1–8, New York, NY, USA.
ACM.

[Meng et al., 2018] Meng, Y., Shen, J., Zhang, C., and Han, J. (2018). Weakly-Supervised
Neural Text Classification. CIKM, page 10.

[Mikolov et al., 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013).
Distributed representations of words and phrases and their compositionality. In Proceedings
of the 26th International Conference on Neural Information Processing Systems - Volume 2,
NIPS’13, pages 3111–3119, USA. Curran Associates Inc.

98 BIBLIOGRAPHY

[Mintz et al., 2009] Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). Distant supervision
for relation extraction without labeled data. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 2 - Volume 2, ACL ’09, pages 1003–1011,
Stroudsburg, PA, USA. Association for Computational Linguistics.

[Mukherjee and Weikum, 2015] Mukherjee, S. and Weikum, G. (2015). Leveraging joint in-
teractions for credibility analysis in news communities. In Proceedings of the 24th ACM
International Conference on Information and Knowledge Management (CIKM 2015).

[Nadeem et al., 2019] Nadeem, M., Fang, W., Xu, B., Mohtarami, M., and Glass, J. (2019).
FAKTA : An Automatic End-to-End Fact Checking System. NAACL.

[Nakashole and Mitchell, 2014] Nakashole, N. and Mitchell, T. M. (2014). Language-Aware
Truth Assessment of Fact Candidates. ACL, pages 1009–1019.

[Nguyen et al., 2019] Nguyen, T., Thanh Tam, N., Weidlich, M., Yin, H., Zheng, B., Quoc
Viet Hung, N., and Stantic, B. (2019). User Guidance for Efficient Fact Checking. VLDB.

[Nie et al., 2019] Nie, Y., Chen, H., and Bansal, M. (2019). Combining Fact Extraction and
Verification with Neural Semantic Matching Networks. AAAI.

[Ortona et al., 2017] Ortona, S., Meduri, V., and Papotti, P. (2017). Robust discovery of posi-
tive and negative rules in knowledge-bases. Technical Report EURECOM+5321, Eurecom.

[Pang and Lee, 2004] Pang, B. and Lee, L. (2004). A sentimental education: Sentiment anal-
ysis using subjectivity summarization based on minimum cuts. In Proceedings of the Asso-
ciation for Computational Linguistics (ACL), pages 271–278.

[Pang et al., 2002] Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs up?: Sentiment
classification using machine learning techniques. In Proceedings of the ACL-02 Conference
on Empirical Methods in Natural Language Processing - Volume 10, EMNLP ’02, pages
79–86, Stroudsburg, PA, USA. Association for Computational Linguistics.

[Patwari et al., 2017] Patwari, A., Goldwasser, D., and Bagchi, S. (2017). Tathya: A multi-
classifier system for detecting check-worthy statements in political debates. In Proceedings
of the 2017 ACM on Conference on Information and Knowledge Management, CIKM ’17,
pages 2259–2262, New York, NY, USA. ACM.

[Pellissier Tanon et al., 2018] Pellissier Tanon, T., Dias De Assuncao, M., Caron, E., and
Suchanek, F. M. (2018). Demoing Platypus – A Multilingual Question Answering Platform
for Wikidata. In ESWC 2018 - Extended Semantic Web Conference, pages 1–5, Heracklion,
Greece.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. D. (2014). Glove:
Global vectors for word representation. In In EMNLP.

[Peters et al., 2018] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K.,
and Zettlemoyer, L. (2018). Deep contextualized word representations. In Proc. of NAACL.

[Pomerleau and Rao, 2017] Pomerleau, D. and Rao, D. (2017). Fake News Challenge.
fakenewschallenge.org.

[Popat et al., 2016] Popat, K., Mukherjee, S., Strötgen, J., and Weikum, G. (2016). Credibility
assessment of textual claims on the web. In Proceedings of the 25th ACM International

fakenewschallenge.org

BIBLIOGRAPHY 99

on Conference on Information and Knowledge Management, CIKM ’16, pages 2173–2178,
New York, NY, USA. ACM.

[Popat et al., 2017] Popat, K., Mukherjee, S., Strötgen, J., and Weikum, G. (2017). Where the
truth lies: Explaining the credibility of emerging claims on the web and social media. In Pro-
ceedings of the 26th International Conference on World Wide Web Companion, WWW ’17
Companion, pages 1003–1012, Republic and Canton of Geneva, Switzerland. International
World Wide Web Conferences Steering Committee.

[Prud’hommeaux and Seaborne, 2008] Prud’hommeaux, E. and Seaborne, A. (2008).
SPARQL Query Language for RDF. W3C Recommendation. http://www.w3.org/
TR/rdf-sparql-query/.

[Radim and Petr, 2010] Radim, Ř. and Petr, S. (2010). Software Framework for Topic Mod-
elling with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, pages pages 45–50.

[Rajadesingan and Liu, 2014] Rajadesingan, A. and Liu, H. (2014). Identifying Users with
Opposing Opinions in Twitter Debates. In International Conference on Social Computing,
Behavioral-Cultural Modeling and Prediction, pages pages 153–160.

[Ratner et al., 2017] Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., and Ré, C.
(2017). Snorkel: Rapid Training Data Creation with Weak Supervision. Proceedings of
the VLDB Endowment, 11(3):269–282.

[Ratner et al., 2016] Ratner, A., De Sa, C., Wu, S., Selsam, D., and Ré, C. (2016). Data
Programming: Creating Large Training Sets, Quickly. NIPS, pages 1–27.

[Recasens et al., 2013] Recasens, M., Danescu-Niculescu-Mizil, C., and Jurafsky, D. (2013).
Linguistic models for analyzing and detecting biased language. In Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1650–1659, Sofia, Bulgaria. Association for Computational Linguistics.

[Riloff and Wiebe, 2003] Riloff, E. and Wiebe, J. (2003). Learning extraction patterns for sub-
jective expressions. In Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing, EMNLP ’03, pages 105–112, Stroudsburg, PA, USA. Association for
Computational Linguistics.

[Ristoski and Paulheim, 2016] Ristoski, P. and Paulheim, H. (2016). RDF2Vec: RDF Graph
Embeddings for Data Mining, pages 498–514. Springer International Publishing.

[Rivas, 2019] Rivas, J. A. S. (2019). Examining the Roles of Automation , Crowds and Pro-
fessionals Towards Sustainable Fact-checking. MisinfoWorkshop2019, pages 1001–1006.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Paral-
lel distributed processing: Explorations in the microstructure of cognition, vol. 1. chapter
Learning Internal Representations by Error Propagation, pages 318–362. MIT Press, Cam-
bridge, MA, USA.

[Rus et al., 2013] Rus, V., Lintean, M. C., Banjade, R., Niraula, N. B., and Stefanescu, D.
(2013). Semilar: The semantic similarity toolkit. In ACL (Conference System Demonstra-
tions), pages 163–168. The Association for Computer Linguistics.

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

100 BIBLIOGRAPHY

[Saha et al., 2017] Saha, S., Pal, H., and Mausam (2017). Bootstrapping for Numerical Open
IE. Proceedings of the 55th Annual Meeting of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 317–323.

[Schuster and Paliwal, 1997] Schuster, M. and Paliwal, K. (1997). Bidirectional recurrent neu-
ral networks. Trans. Sig. Proc., 45(11):2673–2681.

[Shi and Weninger, 2016] Shi, B. and Weninger, T. (2016). Fact checking in heterogeneous
information networks. In Proceedings of the 25th International Conference Companion on
World Wide Web, WWW ’16 Companion, pages 101–102, Republic and Canton of Geneva,
Switzerland. International World Wide Web Conferences Steering Committee.

[Sobhani et al., 2015] Sobhani, P., Inkpen, D., and Matwin, S. (2015). From Argumentation
Mining to Stance Classification. Proceedings of the 2nd Workshop on Argumentation Min-
ing, pages 67–77.

[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhut-
dinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. J.
Mach. Learn. Res., 15(1):1929–1958.

[Strötgen and Gertz, 2010] Strötgen, J. and Gertz, M. (2010). Heideltime: High quality rule-
based extraction and normalization of temporal expressions. In Proceedings of the 5th Inter-
national Workshop on Semantic Evaluation, pages 321–324, Uppsala, Sweden. Association
for Computational Linguistics.

[Teh et al., 2004] Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2004). Hierarchical
dirichlet processes. Journal of the American Statistical Association, 101.

[The World Wide Web Consortium (W3C), 2014] The World Wide Web Consortium (W3C)
(2014). Best practices for publishing linked data. Available at: https://www.w3.org/
TR/ld-bp/.

[Thomas et al., 2006] Thomas, M., Pang, B., and Lee, L. (2006). Get out the vote: Determin-
ing support or opposition from congressional floor-debate transcripts. In EMNLP, pages
327–335.

[Thorne and Vlachos, 2018] Thorne, J. and Vlachos, A. (2018). Automated Fact Checking:
Task formulations, methods and future directions. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 3346–3359.

[Thorne et al., 2018] Thorne, J., Vlachos, A., Christodoulopoulos, C., and Mittal, A. (2018).
FEVER: a large-scale dataset for Fact Extraction and VERification. EMNLP.

[Tschirschnitz et al., 2017] Tschirschnitz, F., Papenbrock, T., and Naumann, F. (2017). Detect-
ing inclusion dependencies on very many tables. ACM Trans. Database Syst., pages pages
18:1–18:29.

[W3C,] W3C. SPARQL protocol and RDF query language. http://www.w3.org/TR/
rdf-sparql-query.

[W3C, 2004] W3C (2004). Resource Description Framework (RDF): Concepts and Abstract
Syntax.

[Wang, 2017] Wang, W. Y. (2017). “liar, liar pants on fire”: A new benchmark dataset for fake
news detection. In Proceedings of the 55th Annual Meeting of the Association for Computa-

https://www.w3.org/TR/ld-bp/
https://www.w3.org/TR/ld-bp/
http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/TR/rdf-sparql-query

BIBLIOGRAPHY 101

tional Linguistics (Volume 2: Short Papers), pages 422–426. Association for Computational
Linguistics.

[Wang et al., 2018] Wang, X., Yu, C., Baumgartner, S., and Korn, F. (2018). Relevant Docu-
ment Discovery for Fact-Checking Articles. Companion of the The Web Conference 2018
on The Web Conference 2018 - WWW ’18, pages 525–533.

[Wilson et al., 2005] Wilson, T., Wiebe, J., and Hoffmann, P. (2005). Recognizing contextual
polarity in phrase-level sentiment analysis. In Proceedings of the Conference on Human
Language Technology and Empirical Methods in Natural Language Processing, HLT ’05,
pages 347–354, Stroudsburg, PA, USA. Association for Computational Linguistics.

[Wu et al., 2014] Wu, Y., Agarwal, P. K., Li, C., Yang, J., and Yu, C. (2014). Toward compu-
tational fact-checking. PVLDB, 7(7):589–600.

[Xu et al., 2019] Xu, B., Mohtarami, M., and Glass, J. (2019). Adversarial domain adaptation
for stance detection. CoRR, abs/1902.02401.

[Yang et al., 2016] Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., and Hovy, E. (2016).
Hierarchical attention networks for document classification. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 1480–1489, San Diego, California. Association
for Computational Linguistics.

[Zeng et al., 2014] Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J., et al. (2014). Relation classi-
fication via convolutional deep neural network. In COLING, pages 2335–2344.

[Zhang, 2015] Zhang, C. (2015). DeepDive: A Data Management System for Automatic
Knowledge Base Construction. PhD thesis.

[Zhi et al., 2017] Zhi, S., Sun, Y., Liu, J., Zhang, C., and Han, J. (2017). ClaimVerif: A
Real-time Claim Verification System Using the Web and Fact Databases. Proceedings
of the 26th ACM International Conference on Information and Knowledge Management,
(3):2555–2558.

[Zuo et al., 2018] Zuo, C., Karakas, A. I., and Banerjee, R. (2018). A Hybrid Recognition Sys-
tem for Check-worthy Claims Using Heuristics and Supervised Learning. CEUR Workshop
Proceedings.

Titre : Vers une vérification automatique des affirmations statistiques

Mots clés : Traitement Automatique du Langage naturel, Vérification des faits, RDF

Résumé : Toute personne ayant accès à Internet est
potentiellement un producteur de contenu numérique.
Bien que l’information soit facile d’accès, il est de-
venu de plus en plus difficile pour les consomma-
teurs d’informations d’évaluer la crédibilité du contenu
trouvé sur Internet. Un article d’actualité pourrait être
partagé instantanément à des milliers de personnes
qui peuvent ensuite le redistribuer, sans vérifier
son contenu. En conséquence, la désinformation se
déplace rapidement et peut avoir des conséquences
dramatiques dans la vie réelle.
Il est difficile de vérifier la véracité des informations,
même pour les professionnels comme les journa-
listes. Le journalisme de données et la vérification
des faits sont des domaines d’intérêt croissant au
sein de la communauté journalistique ainsi que dans
l’audience en général, compte tenu de l’intérêt récent
suscité par la désinformation, la manipulation par les
médias et les efforts journalistiques visant à prévenir
et dévoiler de telles tentatives.
Cette thèse a été développée dans le cadre d’une col-
laboration entre plusieurs laboratoires de recherche
(Inria, LIMSI/CNRS and Université Paris Saclay, Uni-
versité Rennes 1, Université Lyon 1) et Les
Décodeurs, l’équipe de vérification des faits du journal
Le Monde. La thèse proposait une approche de bout
en bout pour la vérification automatisée des affirma-
tions statistiques sur un sujet couvert par une base de
données de référence.
Plus précisément, nous avons tout d’abord mis au
point une méthode d’extraction des données ou-
vertes liées à partir des publications Web de l’IN-
SEE (institut national de la statistique et des études
économiques), le premier institut de statistiques
français. Nous croyons que les données statistiques
officielles constituent une très bonne information de
base à utiliser pour évaluer la véracité d’une affir-
mation. Deuxièmement, nous avons développé un al-
gorithme de recherche original qui, étant donné un
ensemble de mots-clés tels que ”taux de chômage
France 2018”, est capable de renvoyer les jeux de

données (et, si possible, les valeurs exactes dans les
jeux de données) jugés les plus pertinents par rapport
aux mots-clés de l’utilisateur. Les défis consistent à
quantifier la pertinence des jeux de données et à iden-
tifier correctement les extraits de données les plus
pertinents. Troisièmement, nous avons développé
une approche pour identifier automatiquement, dans
un texte rédigé en français, les mentions d’entités sta-
tistiques, ainsi que les valeurs associées par le texte
à ces entités, ainsi que d’autres termes de contexte
(par exemple, heure ou lieu) attachés à l’affirmation
statistique.
Ensemble, ces approches permettent un pipeline
semi-automatisé de vérification des affirmations sta-
tistiques, tandis que les affirmations sont extraites au-
tomatiquement du texte et une requête est envoyée
à notre algorithme d’extraction de données, qui ren-
voie les informations de référence les plus proches
de la requête donnée. Un utilisateur, par exemple un
journaliste, peut ensuite comparer les données à la
valeur déclarée afin de les interpréter dans un travail
de vérification des faits.
Dans un projet connexe à la vérification des faits, nous
avons développé un système qui extrait des thèmes
d’un corpus de texte (comprenant des tweets et des
articles de nouvelles) et classe chaque texte en fonc-
tion de ces thèmes émergents. Il obtient des perfor-
mances élevées en termes de précision de la classi-
fication. Ce système nous permet de comprendre les
points de vue sur les mouvements sociaux actuels.
Nous envisageons de généraliser nos algorithmes
à d’autres sources de données statistiques, par
exemple la plateforme ouverte des données publiques
françaises. Nous rechercherons également d’autres
sources de données pouvant être utilisées pour la
tâche de vérification des faits.
Cette thèse a été menée dans le cadre du projet ANR
ContentCheck axé sur les modèles, les algorithmes
et les outils pour le journalisme de données et la
vérification des faits (http://contentcheck.inria.fr/).

Title : Toward Automatic Fact-Checking of Statistic Claims

Keywords : Natural Language Processing, Fact-checking, RDF

Abstract : Anyone with access to the Internet is
potentially a producer of digital content. Although in-
formation is easy to access, it has become increa-
singly difficult for consumers of information to as-
sess the credibility of content found on the Internet. A
news article could be instantly shared to thousands of
people who can then redistribute it, without checking
its content. As a result, misinformation moves quickly
and can have dramatic consequences in real life.
It is difficult to verify the veracity of the information,
even for professionals such as journalists. Data jour-
nalism and fact-checking are areas of growing inter-
est within the journalism community and also in the
audience at large, given the recent interest in misin-
formation, manipulation through the media, and jour-
nalistic efforts to prevent and debunk such attempts.
This thesis has been developed within a collaboration
between several research laboratories (Inria, LIMSI /
CNRS and University Paris Saclay, University Rennes
1, University Lyon 1) and Les Décodeurs, the fact-
checking team of Le Monde newspaper. The thesis
proposed an end-to-end approach toward the auto-
mated fact-checking of statistic claims on a topic co-
vered by a reference database.
Specifically, we have first devised an approach for
extracting Linked Open Data from the Web publica-
tions of INSEE (National Institute of Statistics and
Economic Studies), the leading French statistic ins-
titute. We believe that official statistical data is a very
good background information to assess the truth of a
claim. Second, we developed an original search algo-
rithm which, given a set of keywords such as ”unem-
ployment rate France 2018”, is capable of returning

the datasets (and, if possible, the exact values within
the datasets) deemed most relevant to the user key-
words. Challenges include quantifying the relevance
of the datasets and correctly identifying the most rele-
vant data snippets. Third, we have developed an ap-
proach for automatically identifying, in a text written in
French, mentions of statistic entities, together with the
values associated by the text to these entities, and
other context terms (e.g., time or place) attached to
the statistic claim.
Together, these approaches enable a semi-automated
statistic claim verification pipeline, whereas claims are
extracted automatically from text and a query is sent
to our data retrival algorithm, which returns the refe-
rence information closest to the given query. A human
user, e.g., a journalist, can then compare the data
to the claimed value in order to interpret it in a fact-
checking work.
In a related fact-checking project, we developed a sys-
tem that extracts topics from text (including tweets and
news articles) and classifies each text according to
these emerging topics. It gets high performance in
terms of classification accuracy. This system allows
us to understand the points of view on current social
movements.
We plan to generalize our algorithms to other sources
of statistical data, for example the open platform of
French public data. We will also look for other sources
of data that can be used for the fact-checking task.
This thesis has been carried on within the ANR
ContentCheck project focused on models, algorithms
and tools for data journalism and journalistic fact-
checking (http://contentcheck.inria.fr/).

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Introduction
	Motivation
	Contributions and outline

	Preliminaries
	Resource Description Framework
	Information extraction
	Information extraction tasks
	Machine learning for information extraction
	Deep learning for information extraction
	Metrics for evaluating information extraction quality
	Text representation

	Conclusion

	State of the art of computational fact checking
	Claim extraction
	Unsupervised approaches
	Supervised methods

	Reference source search
	Related datasets
	Claim accuracy assessment
	Using external sources
	Using a knowledge graph
	Using linguistic features
	Using user input

	Fact checking challenges
	Fake news challenge
	Fact Extraction and VERification
	Check worthiness

	Automated end-to-end fact checking systems
	Conclusion

	Extracting linked data from statistic spreadsheets
	Introduction
	Reference statistic data
	INSEE data sources
	Conceptual data model

	Spreadsheet data extraction
	Data cell identification
	The leftmost data location
	Row signature
	Collect additional data cells

	Identification and extraction of header cells
	The horizontal border
	Cell borders
	Collect header cells

	Populating the data model

	Linked data vocabulary
	Evaluation
	Implementation
	Related works
	Conclusion and future works

	Searching for truth in a database of statistics
	Introduction
	Search problem and algorithm
	Dataset search
	Text processing
	Word-dataset score
	Relevance score function
	Content-based relevance score function
	Location-aware score components
	Content- and location-aware relevance score

	Data cell search

	Evaluation
	Datasets and queries
	Experiments
	Evaluation metric
	Parameter estimation and results
	Running time
	Comparison against baselines

	Web application for online statistic search

	Implementation
	Related works
	Conclusion and future works

	Statistical mentions from textual claims
	Introduction
	Statistical claim extraction outline
	Entity, relation and value extraction
	Statistical entities
	Relevant verbs and measurement units
	Bootstrapping approach
	Extraction rules

	Evaluation
	Evaluation of the extraction rules
	Evaluation of the end-to-end system

	Implementation
	Related works
	Conclusion and future works

	Topics exploration and classification
	Corpus construction
	Topic extraction
	Topic classification
	Preliminaries
	Model training
	Evaluation

	Conclusion

	Conclusion
	Summary
	Perspectives

	Bibliography

