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1. INTRODUCTION

1 Introduction

This dissertation is part of the SCAVENGE project, a project supported by a Marie
Sk lodowska-Curie action. It deals with sustainable next generation of mobile networks,
5G. The main concern in the SCAVENGE project is energy and the use of renewable
sources and in this dissertation, there is a focus on security issues. 5G networks will
support Internet of Things (IoT) networks. Its deployment is envisioned in futuristic
scenarios and international efforts have already been made to create worldwide standards
to bring these networks to reality. There is a major concern with the current world wide
use of environment detrimental energy sources and EH equipment constitute a viable,
alternative choice to power all the electronic equipment that is required for mobile phones
and IoT devices to work properly in the same ecosystem. However as it will be shown,
significant security concerns are raised for these networks, along side with the energetic
ones. This dissertation is about the study of these two vital aspects.

This section describes more in depth the project and the futuristic scenarios, ex-
plaining the importance of the advancements in the standards and giving an overview
of the global energy production current situation and future forecast. It also provides
the reader with an overview of the issues that will be discussed by describing a list of
problems and contributions in this dissertation.

Sec. 2 provides a more in depth overview about all the aspects approached in this
dissertation. The considered communication scenarios of 5G and IoT networks are
described as well as their security related aspects. Special attention is given to MTC
communication scenarios and their critical issues. MTC networks rely on low power
radios and they are also addressed in the section along with their relevant security
aspects. Finally, as a fundamental part of this dissertation, an overview of the state
of the art of EH is presented. In this dissertation, several dynamic programming and
machine learning methods are used to solve modeled problems. These methods require
proper introduction and detailing. This is addressed in Sec. 3. Sec. 4 describes a state
of the art survey that is connected to all the contributions presented in this work. The
contributions are presented in the following four sections and Sec. 4 addresses all the
work that was surveyed while developing these contributions. In Secs. 5, 6, 7 and 8, the
referred contributions are then presented. Final conclusion remarks are made in Sec.
9 that include notes on all the contributions presented and Sec. 10 provides possible
directions for future work, taking into account all the work developed in this thesis.

1.1 SCAVENGE

The SCAVENGE project was born from the idea of having a fully energetically sustain-
able 5G cellular network. Sustainable networks are based on the premise that environ-
mental energy can be harvested through the use of dedicated EH hardware installed on
the different network nodes that compose a 5G network and used to provide energy to
power those nodes, namely Base Stations (BS) and the end devices. End devices are
divided in this work in two main groups. They can be UEs or they can be any other
network node that fits the category of Machine to Machine (M2M) Communications.

Filipe CONCEIÇÃO 1
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For the latter category, it is often seen in the literature the reference to MTC device
or IoT device. In this dissertation, both terminologies are used and there should be
no technological difference whether the term MTC or IoT device is used. IoT devices
include sensors and all kinds of machines capable of wireless communications but they
differ from UEs due to the latter’s ability of making voice calls and being generally
carried around in the physical environment by a person.

1.2 Smart Cities

The projected sustainable networks are envisioned to be in place in the years to come,
applied to a broader spectrum of futuristic telecommunications scenarios such as Smart
Cities (SC) and Public Protection and Disaster Relief (PPDR) scenarios. The SC
paradigm is a way to manage the a city’s infrastructures, its services and generally
speaking, all its aspects. One key enabler technology for the concept of SC is the
IoT because a significant number of different objects connected to the internet can be
deployed virtually anywhere due to their small size and be used for sensing, actuating,
computing or simply routing of information.

One of the main concerns of applications in SC is the limited amount of resources for
the citizens, whether they relate to transportation, energy, food or any other commodity
that is part of the daily life in a city. SC aim at optimizing these limited resources,
providing effective and sustainable infrastructure and services while reducing natural
energy resources consumption. It demands considering complex development of several
areas such as governance, mobility, environment, people, economy and living in order to
satisfy need of the city and of its citizens. A brief explanation of some of these concepts
is necessary to understand the requirements in terms of communications.

Smart Governance is about using technology to facilitate and support better planning
and decision making, empowering citizens to connect with government in new ways,
through the use of social media, mobile apps, big data analytics and mash-up technologies
[11].

The concept of Smart Mobility represents the improvement strategies for all citizen
mobility aspects including the organization of public transportation systems, car shar-
ing and use of alternative transportation means such as bicycles. To implement these
strategies, the usage of applications to collect, store and process data, information and
general knowledge is foreseen as the main instrument. The aim is to be able to plan,
implement and evaluate integrated initiatives and policies of Smart Mobility.

Smart Environments are physical environments with devices capable of pervasive
sensing, actuating and computing, and connected through networks for data collection,
in order to enable various applications and services [12]. Typically considered Smart En-
vironments are Smart Homes, Smart Offices, Smart Farms or Smart Hospitals amongst
others. It is a sophisticated human-centric way of integrating hardware instrumentation
with computational intelligence, for improved user-experience [13]. Smart Environment
development requires wireless sensor networks to have cognitive capabilities and ac-
tivity context awareness in order to efficiently optimize application performance and
constrained resource usage of the sensor network [12].

Filipe CONCEIÇÃO 2
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There are also several examples of how the IoT can enable modern applications that
can be of great usefulness to people, without being human-centric. One good example of
this is Structural Health Monitoring (SHM), which is the process of detecting damage
and location of the damage in engineering structures. SHM can be applied to monitor
a great variety of structures, including many other than civil structures. For example,
a bridge’s structural health can be monitored in just the same way as an aircraft’s
structure.

All the described areas of smart development were described from a broad point of
view. There is no need to detail further the scenarios and applications. It suffices to
understand that SC make use of huge amounts of information to beneficially transform
operations, work, and the life of citizens. The IoT represents an integrated smart system
architecture of sensors, software, networks, and corresponding interfaces that holds the
promise to be able to do just that. IoT systems can provide real-time awareness and
integrate people, processes, and knowledge to enable collective intelligence for smart
decision-making [14]. To be effective, smart systems need to be interconnected and
intelligent, to enable the collection of timely high-quality data through embedded sensors
that communicate over wireless or wired networks [14].

Still on the context of SC, a new paradigm for communications in emergency scenar-
ios has been created. The concept of PPDR anticipates special communication needs for
law enforcement, fire fighting, emergency medical staff and any other disaster recovery
services, in the event of any emergency situation in public life, for these groups to bet-
ter coordinate their operations in the disaster area. One key technology that has great
potential for PPDR scenarios is Proximity Services (ProSe). ProSe consists of two
main elements: 1) network assisted discovery of users who wish to communicate and that
are in close physical proximity and 2) the communication between those users through
direct communication (Device-to-Device (D2D)) and with or without supervision from
the network. The data exchanged can also be voice data. The ProSe communication
mode can be especially useful in remote areas not covered by terrestrial networks or
when a backup transmission link is necessary such as in an event where the network is
not available. Even when there is sattellite coverage, the high propagation delay makes
call setup times longer and induces delayed data acknowledgement [15].

The role of the IoT in this context could be significant in providing information
to build and maintaining the databases used by PPDR services, ranging from Envi-
ronment monitoring, e.g. in floodings or earthquakes, Infrastructure monitoring with
predictive alarms for maintenance in all kinds of civil structures, accidents localization
and alarming, traffic information for optimization of routes in cases of emergency or video
information from surveillance cameras. The IoT in PPDR also offers a feasible method
to allow network connectivity in areas where terrestrial networks fail such as in under-
ground caves or tunnels or any other difficult terrain so that during an incident there
is a usable communications network where it would not otherwise be possible without
existing emergency infrastructure in place. It can therefore provide enhanced network
coverage in planned or unplanned events whereby terrestrial networks are unavailable or
compromised.
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Although its definition has changed during the past years [16–19], it has been shown
that the interconnection of all the city related aspects are of great importance for the
citizens of a SC [20]. Perhaps the most encompassing definition is that a SC is a
city in which the city dwellers may access smart services regardless of time or place
[21]. The role of communications is then obvious and Information and Communications
Technology (ICT) becomes an essential part of the realization of that vision.

Naturally, there are some requirements for the connected IoT objects used in these
applications that become obvious to be mandatory [22]. They are:

� EH capabilities for continuous available power;

� Long battery durability due to the difficulty of battery charging or replacement;

� Remotely manageable for security purposes and so that reconfigurations can occur;

� Sufficient memory and bandwidth for handling large amounts of sensing data;

� Resistant and very compact to be able to be mounted in small equipment;

� Open Source Operating System (OS) to allow customization for application;

This set of requirements is very difficult to suffice. As it will be explored, EH
capabilities with small hardware, long battery durability and continuous connectivity
are contradictory and strategies to respect all requirements need to be developed.

1.3 Communication Standards

The 3rd Generation Partnership Project (3GPP) is the body responsible for the devel-
opment and management of the internationally used standards that define all technical
aspects related to Radio Access Networks (RAN), Services and Systems Aspects (SA)
and Core Network and Terminals (CNT). It becomes therefore essential to address these
standards while designing solutions for future 5G networks.

When looking at these standards, one finds that the UE is usually regarded only
as a 5G network node that communicates with the network infrastructure, the BS and
Core Network (CN) elements, and with other UEs. The latter case is denoted as a
ProSe network. This may however represent an under usage of its capabilities. Most
UEs nowadays have numerous sensors. They can gather with those sensors a wealth
of information about a user’s context. For example, most modern smartphones and
tablets can collect information related to geo-location, device orientation, mobility or
light conditions. They are also equipped with several connectivity options such as Near
Field Communications (NFC), Bluetooth, Wi-Fi and Cellular interfaces, giving them
the ability to connect directly to a number of IoT devices. These capabilities and the
fact they are carried by humans give them mobility attributes and make them excellent
candidates to be a part of the IoT ecosystem, using D2D connections. Strategies can
therefore be explored for D2D connections between UEs and IoT devices.
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1.4 Global Energy Overview

The described futuristic scenarios are predicted to have billions of devices, all connected
to the Internet and constantly generating low-rate monitoring, measurement, or au-
tomation data that many end-users and applications will frequently request [14]. The
5G technology will support 1000 times more capacity per unit area than the previous
mobile networks generation, for more than 100 billion devices with typical user rates of
10 Gb/s, with requirements for significantly lower latency and higher reliability.

The Digital Power Group released a report in 2013 detailing trends in the ICT
ecosystems and the world’s energy generation, consumption and needs.

Figure 1: Global Mobile Data Traffic [1]

Fig. 1 shows the yearly global tendency in terms of mobile data traffic, portraying
an exponential increase in world wide data traffic.

In Fig. 2, the monthly data needs are depicted taking into account the device type.
It shows a clear trend of increased data requirements for UEs, tablets and machines, i.e.,
objects in the IoT. It is worth noting that the forecast for the IoT ecosystem is that
it would have, in 2017, more than double of the data needs for smartphones in 2014.
It is also worth noting that the data needs for UEs, tablets and machines have a much
higher growth rate than that of laptops and desktop computers.

The higher capacity demanding human-centric communications will be achieved by
the enormous expected growth in the number of IoT devices and access points. This will
lead to an equally large growth in the carbon footprint of the ICT. The world’s ICT
ecosystem already consumes about 1000 TWh of electric energy annually, approaching
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Figure 2: Yearly data needs per device type [1]

10% of the world electricity generation [1]. These numbers call for the urgent develop-
ment of power saving and increased energy efficiency strategies to reduce the impact of
ICT in the global energy consumption as well as to reduce its carbon footprint.

And because the carbon footprint is also a global concern, it is also worth analyzing
the global electricity generation in terms of the energy sources used to produce that
electricity. Fig. 3 shows different curves for the predictions for the global electricity
production per energy source type. Coal and gas are two sources for electricity generation
that when burned, are well known for being extremely polluting agents and sources of
carbon into the atmosphere. It is foreseen that in the year 2035, these will still be the two
main sources of energy worldwide. The presented figures showing increased tendencies
call for solutions for the ICT using renewable sources of energy. In the case of the end
devices, dedicated EH hardware installed on the devices is an alternative solution as an
energy supply.

But it is not just the energy sources that are problematic and it is not enough to
just use dedicated EH hardware to supply power to end devices. The general energy
consumption from end devices is also shown to be a problem due to the contribution
of ICT to the world’s energy consumption. Moreover on the end device side, there are
many devices which are considered to be resource constrained. The resource constraints
do not only apply to memory and processing capabilities, but also to the low-power radio
standards utilized that further constrain the network interfaces in terms of, amongst oth-
ers, transmission distances. Therefore, on the end device side, the design of cooperation
and device assisted networking schemes raise significant interest with respect to energy
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Figure 3: World’s energy generation per energy type [1]

saving where D2D connections can be explored due to the fact that interactions take
place in proximity having therefore a great deal of potential for that they communicate
at a lower transmission power.

Despite the potential for savings, the exploration of cooperation schemes significantly
increases networking between devices, raising security concerns. Trust relations between
nodes need to be established and data protection needs to be assured. All nodes partic-
ipating in cooperation schemes have security requirements that need to be fulfilled such
as entity and data authentication, information confidentiality and integrity protection
and these requirements need to be accounted for in all the interactions that the network
devices participate in. The increase in usage of security mechanisms also has an obvious
associated energy consumption. Security and energy are therefore the two main topics
addressed in this work.

1.5 Problem Statement

This work addresses secure cooperation strategies between all end device types in 5G
networks, exploring D2D connections as a means to reduce energy consumption while
still providing secure communications. It also addresses the security-energy relation and
trade off with the goal to achieve higher energy efficiency in this communication mode.

It is the understanding that both security and energy are important constituents
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of telecommunications. The focus of security is to address and provide protection to
systems, networks, programs and data from digital attacks. The predicted expansion
of the number of communicating devices also expands the number of new systems to
require this protection. Especially in the case of the IoT, where many of those devices are
resources constrained, security solutions need to be investigated because the applicability
of existing methods is not feasible or guaranteed due to their computational complexity
and high energy consumption.

On the other hand, energy is a fundamental asset because without it, no network or
device can operate. Along with the increase in the number of communication devices,
data exchanged in 5G networks is also expected to grow by significant numbers, and also
contributing to the previously mentioned expected increase in energy consumption from
ICT worldwide. The application of EH hardware as local power sources in network nodes
contrasts with the energetically sustainable 5G networks. Not due to its application
itself but because the state of the art EH hardware that fits the requirements for end
devices, especially in terms of size, is underdeveloped making these energy sources to be
characterized as insufficient, erratic or intermittent.

The referred points composes the rationale for study of the security-energy relation
for a good understanding of the impact of security on energy consumption, the study of
secure cooperation strategies with the goal of reducing energy consumption as well as
the study of the security-energy trade off to account for the cases where the available
energy is not sufficient for normal device and network operation.

1.6 Contributions

This dissertation exposes and discusses the research motivation for the topics addressed
on the relation between energy and security in D2D communications. The topics covered
in this thesis cover a broad range of thematics connected to this relation and to the
benefits attained from the cooperation strategies and the security-energy trade off. More
precisely, the topics addressed are:

� D2D communications are regularly seen as UE-UE or IoT-IoT. In this work, UE-
IoT connections are also addressed;

� the main security phases related to D2D communications, 1) security establish-
ment and 2) secure communications, i.e., the data protection after a secure channel
is established;

� the energy consumption of security primitives used for security establishment and
secure communications;

� cooperation between devices in tasks such as routing data

The main contributions of this thesis relate to at least one of the mentioned covered
topics. These contributions are:
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� An energy model for IoT devices is introduced. The model enhances the state of
the art as it is suitable for networking scenarios and it is based on security mecha-
nisms, allowing for longer term conclusions on their impact on energy consumption
of security establishment and secure communications phases and therefore enhanc-
ing the knowledge about the security-energy relation;

� A proposal for a lightweight security establishment protocol that can implicitly
create secure D2D routes between an IoT device, a virtually unlimited number of
UEs and the CN. The protocol introduces the idea of direct UE-IoT connections,
exploring D2D to enhance aspects such as coverage increase, latency reduction
and contributing to a generalized power saving potential;

� The introduction of the idea of making energy aware security decisions on the
secure communications phase and the idea of eliminating energy consumption from
some security features in that phase as an effective power saving strategy;

� A proposal for improvements directly in the 5G standards to allow for real time se-
curity context changes in the ProSe communications mode and that enables UEs
to make energy aware security decisions in real time, as opposed to the fixed secu-
rity policies enforced by the 5G standards for the secure communications phase;

� The application of a dynamic programming method to solve a communications
model where, given limited available energy, energy aware security decisions are
made to protect as much as possible transmitted packets in the secure communica-
tions phase while extending device battery durability and increasing data reliability
as much as the available energy permits;

� The application of several Reinforcement Learning (RL) algorithms to the same
communications model to study their applicability and performance in terms of
battery durability, data reliability, provided security and learning speed;

� The application of Deep Reinforcement Learning (DRL) approaches to the same
model to achieve faster learning, reduced memory requirements and more stability
in the decision making during the learning process;

The modeling algorithms and tools used to achieve these contributions are mainly re-
lated to machine learning techniques. Their background and fundamentals are described
in Sec. 3.
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2 Background

The previous section depicted the futuristic scenarios where the sustainable 5G networks,
powered by EH are envisioned to be deployed. The need for cooperation strategies and
the security and energy concerns were also outlined. It is therefore very important to
discuss important security aspects of end device communications and to discuss the
state of the art of EH hardware. It is also imperative to discuss the state of the art
related to the contributions in this thesis. They relate to energy consumption models and
authentication protocols for the IoT, the 5G standards in relation to security policies
and energy aware security decision making. A thorough investigation on the security
aspects of 5G and low power radios was also carried via the study of the respective
standards. All these aspects and tools are discussed in the following sections.

2.1 Security Overview

Security and energy in D2D wireless communications for end devices in 5G are the
main topics of this dissertation. Therefore security is addressed in this work always in
relation to its energy consumption. Obviously, security mechanisms are also addressed
in terms of their functionality or purpose due to their role in offering data protection
but the main goal of addressing security systems or mechanisms is in their relation to
their energy consumption because of their regular usage in networking scenarios and the
energy concerns also addressed. Hence, although cyber security can be addressed purely
from the point of view of its functionality, the particular interest is in the security-energy
relation in this work.

The key security concepts addressed also deeply relate with wireless networks and
especially the type of networks addressed in this work such as IoT and ProSe networks.
They are therefore related to key management, establishment and agreement, entity
authentication and some security features that can be provided after a secure channel
is established, namely confidentiality, integrity protection and data authentication. In
this work, any different combination of these features in use while in communications,
i.e., after security is established, is referred to as a security context.

Just like any other network functionality, the use of cyber security features or mecha-
nisms will result in some related energy consumption. A thorough review of the available
literature that evaluates energy consumption of security schemes or primitives reveals a
common pattern of setting up testbeds with different communications devices, testing
different primitives under the same conditions and recording the cost of the singular
operations tested. Works presented in [7,23–29] are of this examples. Some of the values
found in these works are presented in Tab. 1.

There are inherent problems with the quantification of energy consumed by security
mechanisms found in the literature. The security mechanisms under evaluation mutate
with time and newer versions of the mechanism keep being published and used in real
systems. Then, new tests need to be performed to keep the literature up to date.
Another difficulty relates to the platforms used for testing. It has been shown that the
same mechanism being executed in different equipments will produce different results,
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Table 1: Energetic cost of different AES modes of operation [7]

Key Size
Key Setup

(µJ)
ECB

(µJ/B)
CBC

(µJ/B)
CFB

(µJ/B)
OFB

(µJ/B)

128 b 7.83 1.21 1.62 1.91 1.62

192 b 7.87 1.42 2.08 2.30 1.83

256 b 9.92 1.64 2.29 2.31 2.05

sometimes with a big gap between them [7,27]. Given the variety of end devices available
and the low utility/effort ratio of performing experiments on all available equipments,
the data found in the literature has to be considered as being merely indicative. Finally,
although interesting to have this type of data available, it gives little information about
the impact of security in a long term, after security mechanisms being executed several
times due to the interaction with other network nodes.

2.2 5G Communication Scenarios and Security Related Architecture

In this section, the 5G communications scenarios are introduced and security aspects,
including the security related architecture is discussed. The 5G security related archi-
tecture defines the key network elements that perform a role in securing the network.
In this work, the particular interest is the security of end devices and therefore, in this
section, this architecture is described from the functional point of view of providing
security to D2D communications, and for both IoT and ProSe networks.

Fig. 4 depicts the considered end devices, UEs and MTC devices, and several
options for direct D2D connections between them as well as the CN elements responsible
for providing security for this communications mode, according to the 5G and MTC
standards [3, 30]. The illustrated scenario shows the key elements in the CN and radio
side. On the CN side, the MTC server is the element responsible for the security of
MTC devices [30] and the ProSe Function is the element responsible for the general
security rules and policies of ProSe communications [31]. The ProSe Key Management
Function (PKMF) is responsible for the key management for ProSe communications
[31] and is connected to the ProSe Function. For simplicity purposes, MTC devices
and the MTC server are also sometimes denoted as MTCd and MTCs, respectively.

These end devices can be accessed from the radio network side through a BS. The
BS provides coverage to a particular area within a certain radius. This area is considered
to be in radio coverage. The area outside of this radius is considered to be outside radio
coverage.

Then, it is important to describe the different communication modes considered in
the 5G D2D standards and the ones presented in Fig. 4. All communication possibilities
depicted in Fig. 4 are considered in this thesis. However, not all are considered in the
5G standards. In these standards, D2D communications are permitted between UEs
only, and they can be between two or a group of UEs. Communications between a MTC
device and a MTC server are also permitted. If a user needs to access data from one or
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Figure 4: 5G Communication Scenarios and Security Related Architecture

several MTC devices, it has to communicate directly with the MTC server, via a BS.
Apart from the 5G standards, the scientific literature generally considers direct IoT-

IoT communications. It can be therefore said that both the 5G standards and scientific
literature consider two distinct groups, UEs and MTC devices and that D2D communi-
cations are of them exclusives. However and as described in Sec. 1, the mobility aspects
and the radio interfaces present in UEs makes them excellent candidates to directly
connect UEs to the IoT. Therefore direct UE-IoT are also considered in Fig. 4.

It is worth noting that D2D communications can happen in unicast, multicast and
broadcast. In the 5G standards however they are referred to as 1:1, 1:M and M:M
communications, respectively. These communications are addressed in this dissertation
in the following way:

Scenario 1) represents direct communications between two UE nodes and it is
defined in 5G standards as ProSe. The contribution presented in Sec. 7 targets
primarily this D2D connection and the main idea from contribution from Sec. 8
can also be applied;

Scenario 2) is also defined in 5G standards and it is a network of two or more
UEs that communicate directly outside of coverage from a BS. This scenario is
envisioned to be useful in PPDR situations. The contribution presented in Sec.
7 also addresses 1:1 ProSe connections out of coverage and the main idea from
contribution from Sec. 8 can equally be applied;

Scenario 3) shows an UE inside radio coverage that is acting as a relay to other
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nodes outside coverage. The coverage extension is defined in the 5G standards as
a UE-to-Network relay but only for a UE-UE type connection. Sec. 6 proposes a
security solution for allowing UE-MTC 1:1 type communications;

� Scenario 4) and 5) similarly to Scenario 3), in coverage and outside of coverage
UE-MTC 1:1 type communications are addressed in Sec. 6;

� Scenario 6) is commonly found in the scientific literature but it is not addressed
in the 5G or MTC standards [3,31]. This D2D connection is addressed in Sec. 8.

Scenarios 1), 2) and 3) (for the UE-UE case) are described in the 5G standards and
their security is also well defined. In order to understand the contribution presented
in Sec. 7, it is important to understand the security definitions from the standards for
these scenarios.

2.3 ProSe security

Fig. 5 shows the signaling messages defined in the 5G standards to establish security
between two UEs. The objective is to establish a root key, KD, from which they derive
further keys to use to protect their exchanged data.

Figure 5: Signaling between UEs for KD establishment [2]

In message 1, the UE1 security capabilities are a list of algorithms that UE1 will
accept for this connection, to use in the Direct Authentication and Key establishment
procedures, and the most significant 8-bits of the KD−sess ID. These bits need be chosen
so that UE1 will be able to locally identify a security context that is created by this
procedure. After that, in message 3, the UE2 is sending the Direct Security Mode

Filipe CONCEIÇÃO 13
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Command to UE1. It includes the most significant bits of KDID. If a fresh KD

is generated, Nonce2 provides freshness to the session key being calculated and the
Chosen algs parameter indicates which security algorithms the UEs will use to protect
the data. The included bits of KDID have to uniquely identify the KD at UE2. UE2
shall also return the UE1 security capabilities to provide protection against bidding down
attacks. UE2 also includes the least significant 8-bits of KD−sess in the messages. This
bits have to be chosen so that UE2 will be able to locally identify a security context that
is created by this procedure. UE2 calculates KD−sess from KD, Nonce1 and Nonce2,
and then derives the confidentiality and integrity keys based on the chosen algorithms.

This procedure not only establishes security between the two UEs but also dictates
the security context to be used in subsequent communications because the security con-
text is always linked with a KDID [31]. This means that, in order to change the security
context, all these signaling messages need to be exchanged except for step 2, the Direct
Authentication and Key establishment procedures, that are optional after the first time
security is established [31]. This process is referred to as a rekeying process. This il-
lustrates that UEs in ProSe are required to engage in heavy signaling if they are to
change the security context that is currently in use. This signaling not only increases
the energy consumption due to security overhead but it is also impractical to be exe-
cuted very frequently, if the security contexts could be considered dynamic over a secure
communications channel.

2.4 MTC communication scenarios

In the scenarios 5) and 6) of Fig. 4, MTC devices communicate directly. In the MTC
standards however, communication where a user requires access to information from e.g.,
a sensor node, this communication is always done via an MTC server. This is depicted
in Fig. 6.

In the case where there is no user involved and MTC devices communicate directly,
this communication is done via the 5G network, as illustrated in Fig. 7. These com-
munication modes can cause problems. Some relate to having a group of MTC devices
providing information at the same time towards the CN, creating congestion issues.
Others relate to mobility and the small batteries installed on the end devices that can
create energy availability problems. Some of these problems are already predicted in the
MTC standards and an overview is given in the next section.

2.5 MTC communications critical issues

In many MTC applications, a large number of MTC devices can be linked with a single
MTC User, making the user affiliated with an MTC group. The MTC User associated
with the MTC Group owns a MTC Server which is connected to the CN of a network
operator via an Access Point Name (APN). The MTC devices in the MTC Group
should be scattered over the network in such a way that the data simultaneously sent
by the MTC devices in a particular cell is limited and will not cause a radio network
overload. However, when a high number of MTC devices are sending or receiving data
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Figure 6: User connection to an MTC devices [3]

Figure 7: MTC devices communicating directly [3]

simultaneously, data congestion may occur at BS and CN levels, where the data traffic
related to the MTC Group is aggregated [3].

In other applications, extra low power consumption is required. Several applications
are already identified as problematic in terms of energy in [3]. Applications such as
animal tracking require extra low power consumption because it is almost impossible
to replace the battery or recharge the battery of a MTC device for animal tracking
and using dedicated EH hardware is a possible solution. In applications such as cargo
tracking, the cargo with a tracking MTC device could move very fast such as on a
train and could stand still such as in a dock before loading or unloading. Extra low
power consumption is also required as it is not desirable to either change its battery or
replace battery during the transport period. Batteries of MTC devices for the tracking
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Table 2: Low Power Radios Comparison [8]

Range
(m)

Throughput
(kbps)

Power Energy/bit
TX

(mW )
RX

(mW )
TX

(nJ/bit)
RX

(nJ/bit)

802.11G 30-100 54000 2300 1900 42.59 35.19

Zigbee 75 250 46.44 33.30 185.76 133.20

NFC/RFID 0.2 424 60.00 60.00 141.51 141.51

BT 30 2100 99.90 67.50 47.57 32.14

BLE 5 1000 48.00 39.20 48.00 38.20

Nordic RF 5 1000 21.47 25.65 10.74 12.83

BAN 5 1000 2.60 0.73 2.60 0.73

of elder people who have memory problem, children or pets could be charged or replaced.
However, the worst case scenario is that they can go missing, requiring the MTC device
to have a long working battery time in order to find them in case of disappearance.
These are examples of high mobility applications.

For the low mobility case, extra low power consumption may be required for time
controlled MTC devices. Time controlled MTC devices send or receive data only at
certain pre-defined periods. MTC devices with this traffic pattern can be expected to
receive non-periodic messages, e.g., emergency messages or notifications for altering the
access periods. If the application requires the MTC device to send or receive data within
pre-defined periods and receive non-periodic messages outside these periods, operation
at the lowest possible power consumption level to extend battery life should be achieved.

Power saving strategies are presented in Sections 5, 6, 7 and 8 and the special case
of mobility is also addressed more in detail in Sec. 5.

2.6 Low Power Radios

MTC devices will operate with low power radio technologies. The energetic cost of
transmitting and receiving data has been reported to be the biggest source for energy
consumption in IoT devices [32, 33]. Table 2 shows a comparison between different
wireless standards currently developed and in use and that are aimed mostly at low power
applications such as the IoT. The compared wireless standards are WiFi, 802.11 G,
Bluetooth (BT), Bluetooth Low Energy (BLE), Zigbee, Radio Frequency Identification
(RFID), Body Area Networks (BAN) and Nordic Radio Frequency (RF), a 2.4 GHz
proprietary low powered radio.

The table shows that the numbers vary substantially for different standards. The
802.11G has transmission and reception power usage that is orders of magnitude higher
than the other standards due to the fact that this standard was designed for high speed
throughput and low latency, while the other standards in the table were designed for low
power budgets [8]. Nevertheless, when comparing energy per bit, 802.11G has the same
performance as BT. Zigbee has a rather high energy per bit requirement in order to
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achieve its range of about 75 m. When comparing BT with the BLE version, the power
consumption is much lower but at the expense of a lower throughput. This results in
virtually no change in energy per bit.

2.6.1 Remarks on the Low Power Radios

Results displayed in Table 2 were obtained for a single platform, just changing the radio
interface [8]. Changing the platform while studying the energy consumption of wireless
low power radio interfaces can change the measured consumption significantly. The table
demonstrates how difficult it is to obtain accurate energy consumption measurements
that can be generalized for several different device types. It is therefore necessary to
work and use values like the ones on Table 2 when quantifying energy consumption in
different scenarios, as indicators of the cost per bit of the listed low power radios.

2.7 Security Contexts in Low Power Radios

The latest standards for low power radio technologies consider the possibility that the
information being transmitted may not be fully protected all the time. For this, the
concept of security levels has been introduced where different levels are defined that
consider data protection via using or not different security features or mechanisms. In
IEEE 802.15.4 based radios, this can happen after security is established. In the case of
BLE, the security levels also consider the security establishment phase. In this section,
these concepts are reviewed.

2.7.1 IEEE 802.15.4

The latest IEEE 802.15.4 based radio standard introduces an Auxiliary Security Header
field on the Medium Access Control (MAC) frames with a variable length [9]. This field
specifies the information required for security, including how the frame is protected, by
means of a security level, and which keying material is used. There is also a Security
Enabled subfield that, if enabled, will contain the information on how the payload is
protected as defined by the security context selected for that frame [9]. Security contexts
are used when devices operate in a secure mode. They cover confidentiality, integrity
and data authentication and rely on AES security modes. Table 3 illustrates the valid
security contexts with the Message Integrity Code (MIC) size in Bytes.

2.7.2 Bluetooth

In BT and BLE technologies, the rationale of not having to fully protect transmitted
data is the same in BT and IEEE 802.15.4. However, security definitions differ in IEEE
802.15.4 and BLE, the considered standard in this work, presenting the concept of
security mode, security level and pairing. Pairing is a process that can happen before
communications take place between two devices and where all the security related aspects
of that communication are defined. The pairing is considered in the definition of different
security modes and levels in these standards [34].

Filipe CONCEIÇÃO 17
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Table 3: Security contexts defined in IEEE 802.15.4 [9]

Security
Level

Security Suite Confidentiality Integrity
Data

Authentication
(MIC Size)

0 None No No No

1 AES-CBC-MAC-32 No Yes Yes (MIC=4)

2 AES-CBC-MAC-64 No Yes Yes (MIC=8)

3 AES-CBC-MAC-128 No Yes Yes (MIC=16)

4 AES-CTR Yes No No

5 AES-CCM-32 Yes Yes Yes (MIC=4)

6 AES-CCM-64 Yes Yes Yes (MIC=8)

7 AES-CCM-128 Yes Yes Yes (MIC=16)

There are two Security Modes, Security Mode 1 and Security Mode 2. There are also
four security levels and each level can be associated with a Security Mode. Security Mode
1 represents data transmissions without signing the data. Security Mode 2 represents on
the other hand the signing of the transmitted data, including both paired and unpaired
communications.

The security levels are ordered from 1-4. Security Level 1 supports communication
without security at all and communications are unpaired. In Security Level 2 communi-
cations are also unpaired but encryption is supported. Security Level 3 requires pairing
and supports encryption. Security Level 4 also supports encryption and pairing, but
with the mandatory use of Elliptic-curve Diffie–Hellman (ECDH) as the key agreement
protocol [35].

2.7.3 Remarks on Security for Low Power Radios

The low power radio standards already foresee that some transmitted data may not re-
quire protection after security is established. Namely, the security features confidential-
ity, integrity protection and data authentication are emphasized. Providing protection
from these features to packets adds extra information to the frames just before the phys-
ical layer reducing the available space for user (or device) data, increasing the security
overhead and therefore, increasing the energy consumption due to security, after a secure
link is established. The recognition of this aspect in the standards is also a motivation
for looking at security from a different perspective and proposing that the use of security
features can be reduced as an effective power saving strategy.

2.8 Harvesters

Although EH are a very promising technology for solving the energy constraints of
traditional Wireless Sensor Networks (WSN), the power levels available from state-of-
the-art energy harvesting devices is in the order of tens to thousands of µW or several
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mW , corresponding to 1% to 20% of the required operating power which is not enough
to power a sensor node continuously [36]. In order to fit the requirements that an
energy harvester needs to have for its application on UEs or IoT devices, size is a very
important consideration as it was shown in Section 1. End devices are small in size
and therefore, there is a physical limit to the size of the EH hardware size that can be
on them mounted. Especially in the case of IoT devices that tend to be smaller than
UEs, size becomes a bigger consideration and being small becomes a bigger requirement.
Fig. 8 shows a small harvester developed by University of Michigan. It was specifically
designed to turn the cyclic motions of factory machines, i.e. vibrations, into electrical
energy to power WSN.

Figure 8: A small vibrational EH [4]

Although size is not a direct correlation to the amount of electrical energy an EH
can produce, being this small can give a very good sense that the energy production
cannot be very powerful. Note that the coin in Fig. 8 has a diameter of 19.05mm. It
was found that there are three main types of energy harvesters that can be used on end
devices based on fitting the size requirements and their research and development state.
They are Thermoelectric, Electromagnetic Radiation and Vibration EH.

2.8.1 Thermoelectric

Thermoelectric technology converts the heat into electricity by the Seebeck effects,
Peltier effect or Thomson effect [37]. Thermoelectric EH can be used to convert heat
from electronic devices or human bodies or medical devices including e.g. hearing aids
and cardiac pacemakers [38]. The power harvesting capabilities of these body-mounted
devices range from 5µW to 1W . The the main challenge of the thermoelectric power
generation is the low heat-to-electricity conversion efficiency and a number of research
efforts have been and continue to be undertaken to improve this aspect.
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2.8.2 Vibration

Power generation from mechanical vibration usually uses ambient vibration around the
harvesting device as an energy source and then converts it into electrical energy. The
mechanical vibration either applies a force to a transducer or displaces an electromagnetic
coil [36]. The harvesting method can be Piezoelectric, Electrostatic or Electromagnetic.

Vibrational EH are usually evaluated by their achievable power density. For an idea
about the power that can be harvested with these harvesters, Tab. 4 shows a comparison
between different EH types from [10].

Table 4: Power Density Comparison for Different EH Types [10]

Harvesting method Power Density

Solar Cells (Outdoors) 100 mW/cm3

Vibration (Piezoelectric/Electrostatic) 4µW/cm3

Vibration (Electromagnetic) 800µW/cm3

The inferior results shown in the table are mainly due to the fact that the resonant
frequency of the generator is often not matched with the frequency of ambient vibra-
tions or the frequency bandwidth of the generator is usually limited to a specific range
which cannot, at times, cover the random ambient vibration’s frequencies [39]. If the fre-
quency of ambient vibration deviates slightly from the resonant frequency of the energy
harvester, the resulting power output of harvesters is reduced drastically [40].

2.8.3 Electromagnetic Radiation

Electromagnetic (EM) harvesters have antennas that receive waves from RF radiation in
the environment and then convert it to usable energy by means of rectifier circuits. The
collected energy could originate from ambient radiation or from dedicated beam-forming
signals emitted by a known transmitter. This kind of energy is available in reasonable
quantities in urban environments, but can be scarce in sparse sub-urban environments.
The harvestable power levels may be as low as 10−7W for ambient sources, and the EM
radiation is unpredictable and uncontrollable unless the emitting source and receiving
antenna are static. It becomes therefore completely random and very difficult to model
if the receiver is moving [41].

2.8.4 Remarks on the EH

From the studied EH sources, it is clear that the ambient energy can be very abundant
but the harvesters are not yet mature enough to collect it in more significant numbers
due to their low efficiency. It is still however possible to power an IoT device and work is
ongoing to continue to improve the EH. Alongside with the efficiency, another concern
is the instability of the amount of energy that is converted to electrical energy that
the harvesters have, making the EH unpredictable as a power source. This aspect is
especially linked with the Electromagnetic Radiation and Vibration EH types. Finally,
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even if the EHs were more efficient, size is a limitation that does not allow them at times
to provide enough energy for normal operation.
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3 Modeling tools and Reinforcement Learning algorithms

In this section, the machine learning tools used in this dissertation are outlined. To
achieve the contributions in this thesis, a thorough investigation and application of a
dynamic programming method, Value Iteration, and several RL algorithms was made.
These algorithms were used as tools to solve the problem described in Sec. 8 and are
described in the following sections.

3.1 Markov Decision Processes

Markov Decision Process (MDP) are a formalization of sequential decision making where
a system is modeled through a set of states, a set of state transition probabilities, an
optional set of actions, a cost or a reward function and, for the case of infinite hori-
zon problems, a discount factor parameter denoted by γ. Infinite horizon systems are
systems that never reach a terminal state. If the model used has actions, the system
evolves from state to state depending on the action selected and the corresponding state-
action pair transition probability. After each transition, there is an immediate reward
observed. MDP are an excellent tool to model RL problems because it allows that
precise theoretical statements can be made [5]. The purpose of RL is to train an agent
that 1) observes the way the environment progresses in time and the collected rewards,
2) chooses the appropriate action for each state of the environment and 3) learns in time
how to make the best decision possible to maximize the cumulative rewards received.
The agent–environment interaction is depicted in Fig. 9.

Figure 9: The agent–environment interaction in a Markov decision process [5]

The environment’s progress is made in time slots and usually on episodic tasks, i.e,
a finite sequence S0, A0, R1, S1, A1, R2, S2, ... .

A state transition probability is defined as p(s′|s, a) = p(sn+1 = s′|sn = s, an), which
corresponds to the probability of arriving at state s′ knowing that the current state is s
and action an is performed in slot n. The expected rewards for a given state-action pair
are a function r : S ×A → R.
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3.2 Learning - Returns, Policies and Goal

Once a system is modeled via a MDP, the goal is to make the agent learn an optimal
policy that maximizes the cumulative rewards collected in an episode, i.e., the return.
A policy is a mapping of an actions to every system state. If the policy is deterministic,
after the learning is complete, the agent will always perform the same mapped action
for any given state. The return is defined as the sum of the discount collected rewards
during an episode as Gt =

∑∞
k=0 γ

kRt+k+1.

The action-value function is a mapping of real values to each state and the action-
value function following a certain policy π is defined as the expected return collected
following that policy, i.e., qπ(s, a) = Eπ[Gt|St = s,At = a]. The learned policy that
maximizes the action-value function is termed the optimal policy, π∗, and it is the best
possible choice of actions for each state that any agent can choose [5].

RL methods are algorithms for finding π∗ from experience from interacting the en-
vironment, i.e. choosing actions, that are mainly used when part of that environment
is not fully known. The unknown elements are usually the state transition probabil-
ities. Hence, RL algorithms are coined online learning methods. But if there is full
knowledge of the environment, the optimal policy can be attained by any Dynamic Pro-
gramming (DP) method [5]. In the contributions of this thesis, Value Iteration was
chosen as the Offline Learning algorithm.

3.3 Value Iteration for Offline Learning

Value Iteration updates the action-value function by iterating once over the state tran-
sition and reward matrices. DP methods are computationally expensive and can suffer
from scalability problems [5]. Although there exists no mathematical proof to attest
which algorithm is better for faster learning, Value Iteration is commonly regarded as
the best option [5]. Pseudo code for Value Iteration will be given in Sec. 8.

3.4 Reinforcement Learning Algorithms for Online Learning

In the next sub sections, the RL algorithms applied in this work are briefly introduced.
The used pseudo-code will also be depicted in Sec. 8. The reason for not exposing it in
this section is that the generic pseudo code can be adapted to any problem with minor
modifications.

These methods require a tradeoff between exploration and exploitation until con-
vergence is reached. Exploitation means forcing the agent to tend to choose the action
with the current highest immediate reward while in the learning process. Exploration on
the other hand, means allowing the agent to choose actions that have lower immediate
reward, so that it can arrive by itself to the conclusion of whether those actions are good
options for maximizing the sum of the discount collected rewards.

The learning process has the necessity of using random action selection to ensure all
state-action pairs are visited a theoretically infinite number of times to assure conver-
gence [5]. A common way to provide exploration ability is by using an ε-greedy action

Filipe CONCEIÇÃO 23
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selection strategy. An exploration parameter ε ∈ [0, 1] is thus used and actions are
selected with a probability 1 − ε + ε

|An(s)| for the action with the highest value and a

probability ε
|An(s)| for all the others. The term An(s) denotes the number of possible

actions for a given state in any given time slot.

A step parameter αTD is also used to limit the weight of single state-action pair
updates. This is commonly referred to as the learning rate. A discount-rate parameter
γTD is also used to be plugged in the sum of the discount collected rewards formula,
Gt =

∑∞
k=0 γ

kRt+k+1. Immediate rewards are denoted as R and will play a major role
in the update of the Q−value of a state. The Q−value is a value used for an estimation
of the action-value function during the learning process. In the following sections, that
update rule is outlined. The notation used follows already the one used to describe the
system model presented in Sec. 8 for easier consultation.

3.4.1 SARSA

SARSA is an on-policy method, i.e., it follows a policy and uses that policy to update
the Q-values on every time slot based on the pair sn+1, an+1 where the action for the
next state is chosen based on the policy being followed. The Q-value update is thus
defined as:

Q(sn, an) = Q(sn, an) + αTD[R+ γQ(sn+1, an+1)−Q(sn, an)]

3.4.2 Expected SARSA

Expected SARSA is a variant from SARSA with a slightly different Q-value update rule.
It takes into account the expected value of the action in state sn+1. The expected value is
calculated based on the action selection probability, P (a|sn+1), that in this work comes
from an ε-greedy approach. Follows that the update rule is given by:

Q(sn, an) = Q(sn, an) + αTD[R+ γ
∑
a

P (a|sn+1)Q(sn+1, a)−Q(sn, an)]

By making updates based on the expected value, the variance of those updates is
reduced and thus, in many cases, Expected SARSA tends to perform better achieving
faster convergence.

3.4.3 n-step SARSA

The first version of online learning through experience was coined Monte Carlo method
[5]. These methods make updates to the Q-values at the end of each episode based on
knowledge stored during an agent’s interaction with the environment. Keeping record of
all the state transitions, actions taken and rewards collected results in a big increase in
memory requirements. Furthermore, the same state-action pair can be visited multiple
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times during the same episode which can easily result in a slow learning, due to the
fact that the Q-value for that state-action pair is not immediately updated, which could
result in choosing an under optimal action. For that reason, Temporal-Difference (TD)
methods are widely regarded as faster learning methods [5]. In between these two ideas,
n-step SARSA introduces a step parameter for evaluating Q-value updates n time slots
in the future. In this way, updates are not calculated every time slot. Instead, the agent
stores a small amount of information related to the experience, i.e., the states, actions
and rewards observed during n time slots, and the update is calculated in future, delayed
by the number of steps defined with n. This results in bigger memory requirements but
it often shows faster learning results [5].

The Q-value update rule for n-step SARSA is given by:

G←
min(τ+n,N)∑

i=τ+1

γi−τ−1Ri

Q(sτ )← Q(sτ ) + αTD[G−Q(sτ )],

where G is the return and τ is the current time slot.

3.4.4 Q-learning

The Q-learning algorithm also accounts for the immediate reward and the current state-
action pair. However, its updates differ in which they find the action tha maximizes the
value of the next state, i.e. a greedier action. The Q-learning update rule is given by:

Q(sn, an) = Q(sn, an) + αTD[R+ γmax
an+1

Q(sn+1, an+1)−Q(sn, an)]

Q-learning is one of the most widely used RL methods due to its simplicity and good
results in different research areas.

3.4.5 Double Q-learning

Double Q-learning’s principle is similar to that of Q-learning. However, this variant
requires two action-value function, Q1 and Q2 and requires as well two Q tables to store
its values. Their update rules are:

Q1(s, a) = Q1(s, a) + αTD[R+ γQ2(s′, arg max
a∈A

Q1(s′, a)−Q(s, a)]

Q2(s, a) = Q2(s, a) + αTD[R+ γQ1(s′, arg max
a∈A

Q2(s′, a)−Q(s, a)]
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3.4.6 Remarks on RL methods

The presented RL methods are fundamentally used with the same purpose which is to
attain an optimal policy. It is possible for certain problems that more than one optimal
policy exists [5]. However, any of those policies can be used and the sum of the discount
collected rewards obtained in an episode shall be the same. The main difference in the
presented RL methods are in respect to their learning speed and as a consequence, in
their performance. A method that learns slower will have a lower performance during
the learning phase because it will make less good action choices. There is no theoretical
proof in the scientific literature to show which one of these methods is more suitable
to use on different problems. Therefore, a comparison between them is also useful in
stochastic control optimization problems.

3.5 Deep Learning

The dynamic programming methods are proven to converge to optimal solutions in
stochastic control problems and these methods are guaranteed to find an optimal policy
in polynomial time [5]. Therefore, a dynamic programming method is exponentially
faster than any direct search in policy space could be, because direct search would have
to exhaustively examine each policy to provide the same guarantee. They can suffer
however from memory related constraints due to the fact that the number of states
often grows exponentially with the number of state variables, i.e. the characteristics
of a state for a given system model, and due to the fact that many problems require a
substantial state space in order to be a realistic model. The method presented in Sec. 3.3
requires that the transition probabilities and the reward or cost function are described
in matrices and then operations are performed on those matrices to attain the optimal
action for each state. As the number of states grow, the size of the matrices grows as well.
As shown in Sec. 3.3, computational operations need to be executed. Several swipes
over these matrices are required which can render these methods as either impractical
or not suitable to simulate realistic systems.

On the case the RL methods, those computational swipes over the matrices are not
required. In fact, these methods require only to have a table, the so called Q-table, that
stores the current values for each state-action pair. As the learning is done online, only
one entry of the matrices are updated at each learning step. This simplifies the computa-
tional effort while learning and reduces as well the memory requirements in comparison
with dynamic programming methods. Despite the reduction of the requirements, there
are IoT devices that can be severely resource constrained. Examples are Class 0 devices
that can participate in Internet communications only with the help of larger devices
acting as proxies, gateways, or servers [42].

DRL methods are a class of methods that further minimize the memory requirements
for application of machine learning methods. That is because the Q-table is replaced
by a function representation that requires less memory to be stored. The representation
is the application of a function approximation technique that given an input, can give
a good approximation of the corresponding Q-table value. There are different ways so
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that the function approximation can be achieved. With linear methods, features are
built so that the state space can be represented as a combination of state related values.
Within non linear methods, Artificial Neural Networks (ANN) are often used and the
latest advances in training deeply-layered ANNs are responsible for some of the most
impressive abilities of machine learning systems [5].

An MLP is a a type of ANN that has interconnected units that have some of the
properties of neurons, the main components of the human nervous systems. Hence,
those units are called neurons as well. Figure 33 shows a generic feedforward ANN. It
represents only one type of ANN that is used in this dissertation. There are however
other types of networks that can be used for function approximation. There are no
loops in the network, meaning that there are no paths within the network by which a
neuron’s output can influence its input. The network in the figure has an output layer
consisting of seven output neurons, an input layer with two input neurons, and for which
the number of layers of neurons in between can be variable. These are called hidden
layers. The presented ANN is also fully connected, i.e., each neuron from the input layer
has one connection to each of the neurons of the next layer, the first hidden layer. Then
again each neuron of the first hidden layer has one connection to each neuron of the
second hidden layer and so on, until the output layer is reached. A real-valued weight
is associated with each of these links. The weights are a rough representation of the
efficacy of a synaptic connection in a real human neural network [5].

Figure 10: MLP model

The neurons compute a weighted sum of their input values and then apply to the
result a nonlinear function, called the activation function, to produce the neuron’s out-
put, or activation. The functions used to calculate this results are therefore referred
to as activation functions. There are several types of activation functions and there is
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no theoretical support for the choice of function for better network performance while
training. But typically, the Sigmoid, the Hyperbolic Tangent (tanh) and the Rectifier
Linear Unit (ReLU) functions are among the most commonly used. The activation of
each output neuron of a feedforward ANN is a nonlinear function of all the activation
results over the connected neurons, starting from the input layer and moving towards
the output layer, one layer at the time. It results therefore that the function that is
being approximated is parameterized by the connection weights of the ANN and the
weights are an effective way to represent the functions that are the object of the approx-
imation via its features. Typically, the function being approximated is a state value or
action-value function. In the latter case, it is denoted by Q̂(s, a,w) ≈ Qπ(s, a).

Training the hidden layers of an ANN is a means to adjust the network’s weights. It
is therefore a way to automatically create features appropriate for a given problem and
therefore result in the desired function approximation. ANNs usually learn by stochastic
gradient methods. With these methods, each weight is adjusted in a direction aimed at
improving the ANN’s overall performance as measured by an objective function to be
either minimized or maximized. When used in RL, ANNs can use the TD errors to
learn an action-value function. The TD error is used as the expected correct value in the
output layer and the difference between that value and the actual obtained value from
feeding an input to the input layer and calculating all the weighted sums in a feedforward
logic until the output layer. Then in each training round, it is necessary to estimate how
a change in each connection weight influences the ANN’s overall performance, i.e., it is
necessary to estimate the partial derivative of an objective function with respect to each
weight, given the current values of all the ANN’s weights. The gradient is a vector of
these partial derivatives.

The process of then adjusting the weights is a backpropagation algorithm, which
consists of alternating forward and backward passes through the network. In the forward
pass, the weighted sums are calculated to achieve the current value of the output neurons
given the current w, i.e., Q̂(s, a,w). A backward pass computes a partial derivative for
each weight. Each partial derivative is then used to adjust each of the corresponding
weights until w stabilizes. At this point, the training stage is finished. As ANN can only
approximate the action-value function, the policy attained at the end of the training is
sub optimal. Nevertheless, results obtained by this methodology are often good enough
considering the sub optimality and the attained benefits in terms of memory and learning
speed [43].

The input layer is usually chosen to represent a state and the output layer is chosen, in
case of control problems, to represent an action value. Given a state, the output values
yield the value for each possible action. While learning or training is still ongoing,
an action can be selected based on an exploration rule or a greedy one. Usually an
exploration strategy is to choose an action randomly, but with the highest probability
being to choose the action that yields the highest preference value. If the strategy is
greedy, then the action selected is always the one that yields the highest preference value.
In this case, the Deep Learning approach is Deep Q-Learning (DQL).

When dimensioning an ANN, some practical considerations are important. If the
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ANN has a large number of weights, overfitting can happen. Overfitting is the problem
of failing to generalize correctly to cases on which the network has not been trained [5]
and to have more features than what the function actually requires [43]. If on the other
hand the ANN has too few weights, then undefitting can occur. Underfitting is the
problem of not having a minimum enough number of features that the function requires
to be approximated. Moreover, the backpropagation algorithm does not work well in
ANNs with a big number of hidden layers because the partial derivatives computed
in the backward passes either decay or grow rapidly towards the input layer of the
network, making the weight adjustment in the deep layers extremely slow or unstable,
respectively [43].

There are no theoretical theorems quantifying how to choose the number of hidden
layers and the number of neurons on those layers. It is therefore always necessary to
perform some manual tuning of these parameters while testing a real code implemented
solution.
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4 Related Work

This section presents related work linked with all the contributions presented in Secs.
5, 6, 7 and 8. The contributions related respectively to Energy Models, Authentication
Protocols, 5G standards for security policies and Energy Aware Security Decisions. The
work reported in the next sections represents the state of the art investigated when the
contributions were made.

4.0.1 Energy Models

One fundamental tool for understanding the energy consumption of an IoT device is
an energy model. The available models in the literature focus on dividing a device
into different blocks, usually hardware blocks, quantifying the energy of each block and
summing it to obtain the device’s total energy consumption. Examples of this approach
are presented in [44], [45] and [46], where the models presented quantify the acquisition
of data by means of transducers in the sensing block, the processing of that data in a
processing block and the cost of sending and receiving information in the network in a
communications block. The quantification of energy in these blocks is then summed up,
quantifying the device’s total energy consumption.

Quantifying energy consumption via hardware blocks disregards the basic charac-
teristics of networking because no matter with how many and how much a device is
interacting with other network elements, the energetic quantification is always the total
for a given device. In other words, the calculated energy consumption is agnostic in
relation to the network connections. This methodology is not helpful in the design of
energy saving strategies when networking. Moreover, security is not considered in these
models and therefore no conclusions can be extracted or made from the relation between
energy and security.

A contribution on energy models is presented in Sec. 5.

4.0.2 Authentication Protocols

The coverage extension possibilities opened by the ProSe standard are not well explored.
ProSe offers a way to offload some communications away from the BS. As for UE, the
standard is clear now but MTC communications are still not well defined and have
room for improvements. Although there are many solutions for resource constrained
devices for key establishment in IoT environments [46], they do not involve the ProSe
standard in 5G and hence, they do not involve the UE. The cooperation schemes
for coverage extension in 5G are not abundant either. The works mentioned in this
section all relate to 5G, establishing D2D security or simply authenticating Machine
Type Communications device (MTCd) to the Core Network. However, they all differ
from our solution presented in section 6 that provides security establishment for the
UE-IoT direct communications case.

Authors of [47] propose a protocol for coverage extension where there are UE in
coverage of a BS that serve as anchors to MTCd to send their data. A set of key
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indexes are advertised by UE to devices outside coverage expecting that the receivers
share at least one key with the sender. If there is no shared key, connection is not
established. In this sense, this scheme is defined as a probabilistic key establishment
scheme. Reference [47] proposes a cooperation scheme that allows for coverage extension
based on a coalition of UE that cooperate and decide whether to accept or not to start
a direct link connection with another device. This proposal relies on certificates and an
asymmetric cryptosystem, generally considered computationally expensive for resource
constrained MTCd. Work reported in [48] addresses authenticating MTCd towards
Machine Type Communications server (MTCs) and provides mutual authentication
between MTCd and MTCs. However, this solution does not consider the possibility
of expanding coverage or direct communication with the MTCd. It needs 6 messages
to authenticate devices with LTE radio capabilities and requires grouping the MTCd
together by means of sharing a group key.

A contribution on authentication protocols is presented in Sec. 6.

4.0.3 Energy Aware Security Decisions

Authors of [49] propose a new research field coined Green-Aware Security. The purpose
of the field would be both to evaluate actual security mechanisms considering their en-
ergy cost and effectiveness, and to build new security mechanisms that consider energy
efficiency at their design stages. These approaches are discussed from a networking per-
spective in the broad sense, which therefore also apply to the IoT. The work points out
that the modeling of security systems and mechanisms in terms of energy consumption
is a largely unexplored field. The authors claim their work is a manifesto calling for
amongst other things for 1) developing future generation security mechanisms optimised
both in energy and efficacy and 2) defining new security solutions able to adapt their
behavior based on security properties and energy consumption.

The work presented in this report is a perfect fit in this manifesto. In this section, we
present related work that would also fit this manifesto idea. We intend to show however
that these works address the topic of energy efficiency by improving existing mechanisms
whereas we intend to go a step further by eliminating energy consumption from security
mechanisms to zero under the assumption of no security threat present.

Work presented in [50] points out energy inefficiencies in key management schemes
on ad-hoc networks. It shows that information on physical location of nodes can be
used for energy-efficient key distribution schemes. The authors use a K-means approach
to propose an energy-aware key distribution scheme and demonstrate higher energy
efficiency. However, these findings are constrained to key management aspects which
represent only a fraction of the overhead caused by security.

In [51], an energy aware authentication scheme is suggested to address energy con-
strained IoT devices. This approach is limited to security establishment.

In [52, 53], the authors propose an algorithm for route selection based on energy
and security. In the first, authors define eight security levels, where the higher the
level, the higher the energy consumption. The security levels are then combined with
node residual energy for optimal path selection. Although this work addresses energy
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efficiency, the security levels are defined to always provide security features, but reducing
energy consumption by choice of security algorithms and key sizes. In the second, a
multipath approach is proposed where two nodes alternate their communicating path
based on security and energy metrics.

Works presented in [54–56] present energy models built based on security mech-
anisms. The first draws conclusions on the impact of security on D2D and routing
path selection. The second proposes to create an objective function for a global power
optimization problem, assuring secure communications. The latter proposes an actual
optimization problem, with the goal to minimise energy consumed in D2D connections
taking into account energy consumed by security mechanisms both due to computations
and radio transmissions. These works are interesting references that call for energy ef-
ficiency increase and point the impact of security on energy consumption at the radio
interface.

In [57], an energy-aware trust derivation scheme for WSN is proposed that uses game
theory to minimize energy consumption in the network. This minimisation is however
under the constraint of security assurance.

In [58], the authors present a trust and energy aware routing protocol using a dis-
tributed trust model for the detection and isolation of misbehaving and faulty nodes,
and for route selection. The route selection is based on trust, nodes’ residual-energy,
and hop count, providing some results on reduced energy consumption and therefore
increased network lifetime.

Work in [59] surveys energy efficient security mechanisms. All surveyed works on
adaptive security rely on choosing energetically less expensive security mechanisms or
protocols to adjust to the energetic status of a device or a network.

Contribution made on energy aware security are presented in Secs. 7 and 8.
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5 A Security based Energy Model for the IoT

5.1 Introduction

The limitations and constraints of devices in the IoT and M2M networks are a major
concern in research. Numerous articles can be found in the literature studying the topic
and aiming at providing mechanisms for energy saving and increased energy efficiency.
This results in less energy consumed by devices and by consequence, by their networks.

The referred limitations are usually connected to device’s hardware. Memory, CPU
clock, transceiver range and battery capacity are common limited features of devices in
these networks. Hence, the effort in research to overcome these limitations is important.
In the particular case of the battery, recent works show that for some applications,
batteries can be replaced by energy harvesters and still maintain a device connected
and operating properly throughout its life time. But in order for this to work, the
device’s energy consumption is a must know. This information can then be used for
several purposes like battery or energy harvester dimensioning, task scheduling or for
the any type of energy efficient strategies design. Works presented in [60] and [61]
are examples of these strategies. In both, routing mechanisms are designed to achieve
minimum power cost during data relaying from a source node to a destination. Both aim
at maximizing the network lifetime by trying to keep a balanced distribution of residual
energy of the network nodes. The needed balance can be understood in a 1-hop relaying
for example. If there is one relay node that frequently or constantly offers to the source
the best relaying cost, it will also be used constantly and its energy will be depleted
faster, affecting the network life time dramatically [60]. This means however that these
mechanisms do not always achieve maximum energy efficient as sometimes the best path
(less costly) between source and destination is not chosen because it contains a node with
its energy level under a certain minimum threshold. In the context of networks with
energy harvesting capabilities, rejecting a path may not be the correct decision. Two
major factors can alter the decision making: energy harvesting predictions and energy
consumption due to networking tasks in several domains at the same time. The focus
on this section is on the latter.

One fundamental tool for understanding an IoT device’s energy consumption is an
energy model. The models found follow a common behavioral pattern: acquiring data
by means of transducers, data processing in a controller unit, sending and receiving
information in the network and internal processes of the Operating System (OS) [62].
This leads to the quantification of energy in the identified consuming parts that, summed
up, quantify the device’s total energy consumption.

Although the energy consumption can be quantified in this way, it disregards the
basic characteristic of networking. No matter with how many and how much a device
is interacting with other network elements, the energetic quantification is always the
total for a given device. This methodology is not helpful in the design of energy saving
strategies when networking. Therefore, in this section, the idea of quantifying energy
consumption based on its networking tasks is introduced. Acknowledging that a network
node can have several connections in parallel with other network elements, quantifying
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them separately is proposed. By summing each individual connection’s contribution, the
device’s total energy consumption is quantified.

When starting a new connection, a procedure to establish a security context (e.g.,
session keys) is executed. This context is very important to be established as it can
secure communications in different ways. An established security context is mandatory
for authentication purposes for example, so that unauthorized access to the network
(or free riders) can be prevented through entity or message authentication. For data
integrity purposes which should be guaranteed not only against malicious alterations
of data but also against passive threats originated by noisy channels that are subject
to transmission errors and also for confidentiality, to guarantee only the intended or
authorized parties can access information.

Obviously, these spend energy to be executed. And although the energetic cost of
these operations may be relatively low in the case of symmetric cryptography, the cost of
asymmetric techniques is not [7]. And especially after some networking time, when they
are executed often enough, the amount of energy spent by them becomes significant.
After a security context is established between two devices, other security related costs
can occur. Message encryption and/or message authentication keep consuming energy
during the life span of a device, while networking. Works presenting energy costs of the
corresponding cryptography primitives show that they are not negligible [7], [29]. Yet,
none of these aspects are considered in the existing energy models.

In the available radio technologies for proximity communications in IoT, Bluetooth
Low Energy (BLE) and IEEE 802.15.4 based radios are at this point the dominating
technologies. When evaluating the energy consumption of cryptographic algorithms,
available works in the literature focus on quantifying single operations. Although these
works are important, they are not enough to present a long term view of the implications
that security has in networking and energy cost.

Due to these considerations, an energy model for IoT devices is proposed that slices
the energy consumed by a device on each parallel connection it may have with other
network nodes. The contributions presented in this section are as follows. 1) An energy
model for IoT devices is presented that is suitable for networking scenarios, 2) The
model slices the energy spent by each connection and maps it into the hardware blocks
of the available models, 3) The model provides an energetic quantification method for the
establishment, maintenance and termination of a connection with another network node,
via the cost of cryptographic algorithms, 4) The model provides a quantification method
for the cost of each connection while it is active, 5) The model provides a quantification
method for security algorithms executed while a connection is active, 6) Some simulation
results from networking scenarios in IoT are presented using the chosen cryptographic
algorithms used in BLE.

5.2 Energy Model

The proposed energy model could be suitable for networking by considering all the
possible interactions with all other network elements. Any node in a network can have
several connections at the same time and this proposal is to quantify each one of them.
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At a point in time, summing the energy consumption of all the n active connections,
EC(x), x ∈ 1, 2, ...n, with the energy spent by the OS in its routine tasks, EOS , equals
the total energy consumption of the device. This relation is given by Eq. 1.

EIoTd =
n∑
i=1

EC(n) + EOS (1)

Sensing and actuation, processing and networking are common energy consuming
blocks in related works. A mathematical model to all, or to some of these blocks is
presented in [45,63,64]. In this section, the same energy consuming blocks are considered
but each active connection is mapped to them. Eq. 2a expresses this relation. Sensing
and actuation, processing and networking blocks are represented as ESA, EP and ENet.

Each connection between 2 devices comprises 3 phases. First, for security reasons,
the establishment of security contexts for subsequent communication is performed. With
the security context established, the connection is in the active phase and the devices
now exchange data. While the connection is active, it can happen that the keys in use
are renewed or the connection itself is no longer needed, and they are revoked. The
energy consumed by connection establishment, maintenance and termination is denoted
as ECEM . The energy consumed in the secure, active phase is denoted as ESC . Each
connection added can increase the energy consumption due to application related tasks.
This is denoted as EApp. Eq. 2b summarizes the energy consumed for each connection
n.

EC(x) = ESA(x) + EP (x) + ENet(x) (2a)

EC(x) = ECEM (x) + ESC(x) + EApp(x) (2b)

5.3 Mapping of the consuming blocks

The relation between Eqs. 2a and 2b is now addressed. Mapping the elements of these
equations allows to connect the vision of a networking energy model with the hardware
components of an IoT device described in the literature. In a device’s architecture,
sensing, processing and communication are commonly used energy consuming blocks
[45,63,64]. In the proposed model, they are kept as the main consuming blocks but they
are adapted to the introduced connection perspective.

Sensing and actuation tasks can be connection dependent and they affect only the
sensing and actuation block. The total cost is the sum of the energy consumed by both
tasks. and is given in Eq. 3.

ESA(x) = ES(x) + EA(x) (3)

In the Processing block, energy is consumed by the computations executed by active
sessions. ECEM , ESC , EApp and EOS are the energy consuming elements mapped to
this block.

Filipe CONCEIÇÃO 35
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The communications block comprises the energy consumed by transceivers. The
volume of data and radio interface can be connection dependent and may use differ-
ent power levels. We therefore distinguish between energetic cost at transmission and
reception, ETx and ERx respectively. Eq. 4 defines the cost of communications.

ECom(x) = ETx(x) + ERx(x) (4)

5.4 The role of security

As a fundamental part in all 3 phases of a connection, security plays a very important
role in this model. The energy consumption of security algorithms is usually negligible
when compared directly with radio communications for example. Nevertheless, it is
important to quantify security costs because as time passes and networking interactions
take place, the cost of security becomes not negligible anymore.

To account for the mentioned 3 stages of a connection, it is further defined that the
connection establishment, maintenance and termination cost is the sum of asymmetric or
symmetric connection establishment procedures, EACE and ESCE , with the maintenance
cost, EKM . Termination cost is considered to be part of EKM as it is usually a memory
deletion operation with a very low energy cost. Procedures like public key verification
are part of EACE to reflect the timing at which this procedure is usually done. Eq. 5
reflects this cost for each connection.

ECEM (x) =
n∑
i=1

EACE(x) + ESCE(x) + EKM (x) (5)

On the active phase of the connection, the volume of data encrypted and decrypted is
denoted BDec and BEnc. This data is encrypted and decrypted at the cost EEnc and
EDec per byte [7, 29]. Integrity protection and data source authentication, e.g., using a
MIC or a digital signatures and their verification are also considered and denoted by
EInt and EDAuth respectively. Entity authentication costs, if they exist in the active
phase, are included in EKM . Eq. 6 summarizes the cost of the active phase.

ESC(x) =
n∑
i=1

EEnc(x).BEnc(x)+

EDec(x).BDec(x) + EInt(x) + EDAuth(x)

(6)

5.5 Networking Simulations

In this section we present results from simulations obtained with well known software.
We try to reproduce different cooperation scenarios in IoT networks that can be strate-
gies for energy saving like in [60, 61] or to increase other network performance aspects
like Packet Reception Rate (PRR). The devices are heterogeneous, i.e., both MTC
devices and UEs, and in order to increase network performance and energy efficiency,
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cooperation can happen between all devices, including direct MTC-UE, like introduced
in [65]. The goal is to show that the weight of the security procedures on establishing and
during a connection will impact in time the energy consumption of the overall network
and should not be neglected. Results achieved are discussed in each subsection.

Fig. 11a shows different cooperation scenarios. All MTC devices are performing
Periodic Updates (PU), i.e., MTC devices transmit updates to a GW on a regular basis
with constant frequency and data size, as defined in [66] and illustrated in Fig. 11b. A
frequency of 1 minute between data sending is used. Each minute is divided in 60 time
slots (1s each). The first 5s are used to transmit and receive information, as well as
performing tasks like sensing, actuation or any computations needed. After 5s and until
the next PU, the device’s state changes to an Idle state. The daily energy consumption
in the presented scenarios is then monitored.

The general IoT node OS’ scheduling policy, each time slot is divided into smaller
slots. Each of the smaller slots are reserved to the tasks that need to be executed
concurrently, according to a given priority. Due to this policy, devices may appear to be
multitasking but in reality, it is only true if we look at the completed tasks at the end
of one complete time slot. For this reason, there is some freedom on the choice of time
slot value. One second is chosen for simplicity but time slots can be changed to smaller
values without changing the system’s behavior or the achieved numerical results. The
cost of a secure connection establishment, when it exists, is part of the cost of the first
time slot for each PU.

(a)

(b)

Figure 11: (a) General scenario system model.
(b) Periodic Updates representation.

In the simulations, EApp(x) = ESA(x) = EOS = 0. These values will vary between
devices and although they would change the daily consumed energy, they are not relevant
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Table 5: Simulations’ parameters

Parameter Value (Units)

BTx/BRx 2(bytes/timeslot)
ESCE/EACE 78.3× 10−7/276.70× 10−3(J)
Eenc = Edec 1.21× 10−6(J/Byte)

GW → ETx = ERx 9× 10−6(J/bit)
R1 → ETx = ERx N ∼ (2× 10−6; 0.3× 10−7)(J/bit)
R2 → ETx = ERx N ∼ ([3, 12]× 10−6; 0.3× 10−6)(J/bit)
R3 → ETx = ERx N ∼ (2× 10−6; 0.4× 10−6)(J/bit)

R4 → ETx = ERx(1%) N ∼ (8.5× 10−6; (0.028)× 10−6)(J/bit)
R4 → ETx = ERx(5%) N ∼ (8.5× 10−6; (0.14)× 10−6)(J/bit)
R4 → ETx = ERx(10%) N ∼ (8.5× 10−6; (0.28)× 10−6)(J/bit)

BTx/BRx- Data Tx/Rx in each time slot (bytes).
ESCE/EACE- Cost of key establishment via

symmetric/asymmetric algorithms (J).
Eenc/Edec- Cost of encryption/decryption of data (J/Byte).

ETx/ERxEnergy consumed to Tx/Rx data (J/bit).

for the security and networking interactions remarks we aim at showing. MTC devices
establish a security context with the GW and use authenticated encryption and decryp-
tion of data in the active phase of a connection using Advanced Encryption Algorithm
in Cipher-based Message Authentication Code (AES-CMAC). An AES key generation
cost from [7] is used for context establishment. MTC devices establish connections with
relays in the same manner and AES-CMAC is also used for ciphering. In case an asym-
metric key agreement takes place, ECDH is considered. The cost of ECDH operations
is taken from [67]. This choice of protocol and algorithm matches Security Mode 1 Level
4 of BLE security, that enforces an authenticated device pairing with authenticated en-
cryption and is the recommended to be used by the National Institute of Standards and
Technology (NIST) [34].

Table 5 lists the non zero parameters used in Eqs. 4, 5 and 6 in each of the scenarios
presented in the following subsections.

5.6 Blind relay

MTC1 in Fig. 11a performs PUs towards the GW. In addition, it relays data from
a neighbor node, MTC4, to the same GW every time it is requested, through link
R1. Channel conditions between devices and GW are assumed static and therefore,
ETx/ERx are fixed. MTC1 daily energy consumption is observed based on how often
MTC4 requests data relaying. This cost is compared with the cost of the PU, without
relaying data for MTC4, represented by the direct GW reference line. In Fig. 12 both
energy consumption trends are plotted against the frequency of the relay requests.
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Figure 12: Energy consumption with and without relaying

The direct GW reference line is constant because it does not change with the fre-
quency of the relaying requests. The cost of relaying data with no security context
establishment, considering AES-CMAC only and both ECDH and AES-CMAC is also
shown. As expected, the less often MTC1 relays data, the less energy it consumes. But
the plot shows different energy efficiency zones where 1 minute deviation in the frequency
of the relay requests greatly impacts the energy consumed but after the 15 minutes fre-
quency, the impact becomes smaller until it is almost negligible at 60 minutes. This
idea can be extended to multiple MTC devices requesting relaying service at the same
time, cause that the relaying load of MTC1 oscillates. This may alter its decision on
offering relaying service, causing it to advertise as a relay despite a low battery level.
If the MTC device has energy harvesting capabilities then either load balancing can be
improved using different energy efficiency frequencies or it might not be the best strategy
to keep the distribution of residual node energy balanced. It can also help a node to
understand when to be available to act as a relay.

5.7 The impact of security on a probable new relay

Despite the available strategies to routing information, relays are not always available
to relay data. When they are, the probability of their availability changes for different
applications, networking scenarios, energy levels, etc. In a smart city context, mobility
of users is a characteristic of the networking scenario causing the probability of having
relay UE available to change. In MTC networks with energy harvesting capabilities,
MTC devices have at times full battery and active capability to harvest more energy
and at others, low battery levels and no possibility to harvest energy. In this section, 3
different probabilities for MTC2 to have a new relay available through R2 are evaluated,
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10%, 50% and 90%. MTC2 will make the decision to relay the data block by evaluating
the radio channel immediately before instant t1, adding the cost of security due to a new
secure connection establishment, comparing it with its GW link cost and choosing the
lower cost.

The plot in Fig. 13a shows that even with a reduced probability for relay availability
like 10%, energy savings of around 7% are achieved that may impact the life time of
a constrained device. In all 3 cases, AES-CMAC connection establishment has a very
small impact on the energy consumption. ECDH however has a noticeable impact. In
this section only, the value of EACE (cost of ECDH) was 10 times the cost of ESCE ,
instead of the one listed in table 5. Using the value in the table, ECEM would be so
high, that the device would never relay packets. MTC2 would still decide to relay data
establishing connections with ECDH key agreement with a cost of direct GW commu-
nications much higher due to a higher cost for the radio channel. But the parameters
for the simulation were selected to fit resource constrained MTC devices and they show
clearly that protocols like ECDH for key agreement can be energetically unaffordable
for them.

With (90%) relay availability, the energy savings are up to roughly 60%. However,
if load balancing techniques are applied like in [61], the energy savings will be partially
lost because MTC2 will at times refrain from relaying data. The plot also points out
what is the difference in the radio link cost when using ECDH in the three cases, giving
good insights on the budget for the use of asymmetric mechanisms.

Fig. 13b shows that in these conditions and decision method, the device benefits from
using a value for R2 slightly higher than the direct GW link, due to radio uncertainty
in link R2.

5.8 Concurrent transmissions

In this section, the energy consumed with PUs through the GW is seen as an energy
budget that should not be exceeded. MTC3 has 5 devices who offer better radio channel
conditions (see table 5). The values used for R3 are a simulation of a smart city scenario
where often people (UEs) concentrate close to MTC devices and they leave after a while,
e.g., public transportation stops. Instead of choosing the cheapest energy option, MTC3

tries to maximize the number of relays to which it will send its data concurrently, without
exceeding the energy budget.

Concurrent transmissions of data in a wireless network reduces the negative impact
of packet loss [68]. However, transmission of concurrent data can severely affect the
lifetime of a MTC device. In case a node’s battery is depleted, the lifetime of the other
network elements is severely affected [69].

Immediately before t1, MTC3 checks and evaluates the radio channel of the available
relays. Starting from the relay with the lowest cost and increasing, MTC3 will transmit
the PU to as many relays as possible, given that the cost of the transmissions plus ECEM
does not exceed the energy budget.

Fig. 14 plots histograms quantifying how many times one or more relays were used
to transmit data daily. If more than one was used, the remaining carried redundant
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Figure 13: Energy savings due to relaying
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data. Figs. 14a, 14b and 14c plot histograms for 2, 10 and 20 bytes of data sent.
Work presented in [70] shows simulation results with the PRR as a function of the

number of concurrent transmissions. This result is used in the plots to link the PRR to
the number of relays used by MTC3.

When only an AES-CMAC key establishment is considered for 2 bytes per time
slot, the maximum number of relays used by MTC3 varies between 3 and 5. However,
if ECDH key agreement takes place as well, only 1 relay is used, showing that the
weight of an ECDH key agreement has a clear impact on the effort of increasing PRR.
However, as the amount of transmitted data increases, increasing ESC , the concurrent
transmissions increase as well. This means that ECEM has a different impact on the
PRR depending on the value of ESC . Therefore, relations can be made between the cost
of the active phase and the establishment of a connection. PRR can be improved based
on reducing ECEM , increasing ESC or this can be used to calculate the energy budget
for security in some IoT applications.

5.9 Remarks on the Energy Model

A new energy model for IoT devices has been introduced in this chapter. The model
serves as a tool to quantify the energy cost of establishing connections and of their active
phase. It quantifies as well the cost of all modern cryptography algorithms executed
for all connections. The model allowed to conclude aspects related to relaying and
concurrent transmissions decisions. Techniques like load balancing or constraints like
minimum thresholds for battery level are shown not to be the best strategy all the time.
Presented results consider BLE security protocols and algorithms, demonstrating that
it is not affordable for all devices.
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(a) 2 bytes Tx per time slot
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(b) 10 bytes Tx per time slot
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(c) 20 bytes Tx per time slot

Figure 14: Histograms - Daily number of occurrences for different concurrent transmis-
sions
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6 Security Establishment for IoT Environments in 5G

6.1 Introduction

In [71], a projection related to 5G and the IoT predicts 29 billion connected devices
by 2022. Fom this number, 18 billion will be related to the IoT. Connected devices
include cars, machines, meters, sensors, point-of-sales terminals, consumer electronics
and wearables. By the same year, a worldwide total of 6.2 billion (all different) mobile
subscribers will hold a total of 9 billion subscriptions. With these predictions for IoT
devices and subscribers, the connections between devices is expected to increase within
IoT networks or in interaction with other types of equipment.

For direct connections between UEs, 3GPP has standardized D2D communications
naming them ProSe [2]. For MTC, it has released the recommendations for security
mechanisms [3]. In the MTC category, the architectural model consists of a client, the
MTC device (MTCd), and a MTC Server (MTCs) that is responsible for the security
of a group of MTCd. The MTCs can also store particular information sent from each
MTCd under its control [3]. This operational mode doesn’t account for volatile data or
actions that don’t need to be recorded and increases, in a general way, the latency. It
compels a user who needs information from a group of MTCd or wants to interact with
them, to run a security procedure with MTCs to get needed data, through a BS. MTCd
are expected to authenticate to a MTCs and send their data or receive commands from
it. In parallel, a user carrying a UE and authorized to interact with certain MTCd,
also needs to authenticate to MTCs. After this procedure is complete, the interaction
between MTCd and UEs runs through the MTCs, rather than directly, in a D2D fashion.
The MTCs is a participant in the user plane (UP) data flow, which adds energy and
bandwidth consumption. As an example, using the simplified path-loss model [72] with
a reference distance d0 = 10m, constant L = 4.38 × 10−8 and γ = 3, and comparing
losses for communication distances, e.g., 20m for D2D and 300m for a cellular link, we
see that a D2D link has a loss roughly 3425 times inferior than a cellular link.

In the 3GPP architecture the MTC UP data is required to flow through a server
beyond the BS to reach back to an UE. There is always a direct connection between
the MTCd or a GW to a BS, without room for cooperation schemes that could allow
for reduced power transmissions and bigger coverage area. If we equate mobility of the
MTCd, as in any moving vehicles, devices installed in moving parts or even wearables,
we see that MTCd communicating directly with a BS can have a very high cost in terms
of power. Some devices will simply suffer from power depletion. However, if they could
directly connect to another device for their routine interactions, the power saved could
be significant.

Therefore we see an opportunity to shorten communication distance, using the po-
tential of the ProSe functionality. We look at the numbers estimated for the IoT, mobile
subscriptions and scenarios in smart cities and PPDR use cases and foresee a bigger
number of interactions UE-MTCd, many times higher than the number of deployed de-
vices. These connections need to be secure, even if just to guarantee the integrity of the
messages exchanged. Therefore the number of end-to-end pairwise keys is, regardless of
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the technique used, bigger than the number of users interacting with other devices.

Therefore, in this section, the focus is on the key establishment for connections be-
tween UEs and MTCd aiming at reducing the communication costs of these connections
by taking advantage of proximity and the ProSe standard (that cannot be used with
resource constrained devices), and a lightweight key distribution scheme is presented.
Service authorization and authentication of all participating devices is accounted for,
i.e. MTCd, UEs or GWs. Specifically, the proposal in this section is of a protocol for
mutual authentication of a MTCd and a MTCs using an UE as a relay. At the same
time, the MTCd and the UE establish a symmetric master key. This allows them to
communicate directly, making it possible for the MTCs not to participate in the UP data
flow. A cooperation scheme is also presented that is based on the proposed protocol that
extends 5G coverage towards MTCd. The main contributions of this section are: 1) a
method to distribute a shared secret between each MTCd and an UE that wishes to
communicate with them is provided. The key pair is symmetric, respecting the resource
constrained nature of MTCd. 2) The method provides authentication and authorization
services of all participating devices. 3) The proposed solution is able to resist to known
attacks. The automatic protocol formal verification tool ProVerif was used to prove our
protocol’s security. 4) The presented solution limits the communication range of MTCd
or a GW to an UE in proximity, rather than a BS. It also removes the MTCs from the
UP data flow to save energy in the MTCd, the UEs and in the overall 5G network.

6.2 System model

In the envisioned system model, UE, MTCd, GW and MTCs coexist in radio range
and can initiate communications with all surrounding nodes as depicted in Fig. 15.
The considered network elements can be part of the 3GPP network or not [3]. This is
an important consideration, e.g., for the roaming cases where any of the elements may
belong to another network and still be allowed to connect directly.

Figure 15: System Model

The UE is considered to be any device that has, amongst others, 5G and LTE radio
interfaces and is usually held and controlled by a person. The MTCd are devices with
low power radio technologies like the ones based on IEEE 802.15.4, Wi-Fi, Bluetooth,
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etc., and may have 5G and LTE radio interfaces. Regardless of their embedded radio
interfaces, they are considered here as to be resource constrained in terms of computa-
tional capabilities, memory space and battery capacity and to be equipped with Machine
Type Communication capabilities [3]. GWs are devices that can serve as a radio GW
for a cluster of MTCd in their vicinity. The GW role is to receive information from
MTCd, and send the information through a more powerful, longer range LTE or 5G
radio channel, to a BS. The MTCs is the element that is assigned a number of MTCd,
and that is responsible for the security of these devices and/or storing their data.

6.3 Authentication Protocol

The proposal for a protocol to directly connect UEs and MTCd is now detailed, including
its messages and their content, as well security features of the proposed solution. The
notation used is shown in table 6. The protocol has both an initialization and key
exchange phases and it is used for an IoT coverage extension, using the ProSe standard.

Table 6: Notation used

Abbreviation Definition

PSKey Pre shared key

DMKey Derived Master key

MIC Message Integrity Code

MTCdMIC MIC calculated by MTC device

MTCsMIC MIC calculated by MTC Server

MTCdID MTC device’s ID

MTCsID MTC server’s ID

UEID UE ID

GWID GW ID

MTCdNonce Nonce generated by MTC device

MTCsNonce Nonce generated by MTC server

KDF Key Derivation Function

MTCdInfo Information used by the device

MTCsInfo Information used by the server

|| Concatenation

6.4 Initialization phase

The initialization phase consists of a set of pre-determined conditions representing the
assumptions made during the design of the protocol and are mandatory for it to run
properly. Namely, the following is considered:

� Each MTCd has at least one MTCs responsible for security material distribution,
authentication and authorization of the MTCd assigned to it [3];
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� Each MTCd has a pre-shared secret key that is only known to itself and to the
MTCs it is assigned to;

� Each MTCd is assigned with an unique ID inside its own MTCs cluster and knows
its MTCs IDs [3];

� The UEs have access through a secure channel to the MTCs under the 3GPP
system responsibility [3];

� In UE-UE or UE-GW direct links, the communications use a secure channel es-
tablished according to ProSe [73] [3].

It is also assumed that an MTCd can start communication with another device and
indicate that its radio channel evaluation is out of the scope of this work. It is important
to note that all the assumptions made are part of the 3GPP MTC standards [3], exception
being the pre-shared key assumption, that is in any way a reasonable and widely used
assumption in the design of security protocols.

6.5 Key exchange phase

In the key exchange phase, the protocol is simply composed of 4 messages. These
messages are represented in Fig. 16 and a description of their content and purpose
follows.

Message 1: MTCd generates MTCdNonce (for freshness of the message) and uses
it with PSKey, MTCdInfo and the IDs of the participants in the protocol to calculate
MTCdMIC keyed with PSKey. In this way, the IDs of all participants in the routing
path are binded to mitigate the risk of spoofing attacks.

MTCdMIC =

MIC(PSKey,MTCdID,MTCsID,UEID,MTCdNonce,MTCdInfo)

MTCdInfo may contain information about the UE/GW ID connecting to MTCd, con-
textual information (e.g., location) or any other that the MTCd needs to send to MTCs,
as for example related to the cryptographic algorithms supported (e.g., MIC algorithm,
KDF function) or its current status (e.g., battery level). No particular algorithm for
MTCdMIC calculation is particularly advocated although the the recommended algo-
rithms in [74,75] are strongly suggested. MTCd then computes and sends to the UE:

M1 = MTCdID||MTCsID||MTCdNonce||UEID||[MTCdInfo]||MTCdMIC

Message 2: When the UE receives M1, it simply forwards it to the MTCs with identity
MTCsID.
Message 3: Upon reception of M2, MTCs can check the UE’s service authorization
with the Core Network. Therefore, mutual authentication between MTCs and UE can
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Figure 16: Authentication protocol

take place (e.g., using TLS/SSL). Then, it verifies MTCdMIC using the PSKey and the
elements in M2. If the challenge was correctly answered by the MTCd, its authenti-
cation in MTCs is completed. It then generates MTCsNonce and calculates its own MIC:

MTCsMIC = MIC(MTCdID,MTCsID,MTCdNonce,MTCsNonce,

UEID,MTCdInfo,MTCsInfo, PSKey)

MTCsNonce and IDs are used again for the novelty of M3 and to bind IDs. MTCs then
generates DMKey:

DMKey = KDF (MTCdID,MTCsID,MTCdNonce,MTCsNonce, UEID,PSKey)

MTCs then computes and sends to the UE:
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M3 =
MTCsID||MTCdID||MTCsNonce||UEID||[MTCsInfo]||MTCsMIC||DMKey

MTCsInfo can be useful if the MTCs wants to select a particular KDF, or to limit the
actions of a user towards the specific MTCd in terms of usage type, duration and DMKey
expiration/revocation. This is left as an open topic for MTC server’s policy.

No specific KDF is advocated except that general security good practices should be
followed. Therefore, the MTCs should be able to select the best option for the related
MTCd but the KDF recommendations in [76] are strongly suggested to be followed.
Message 4: When the UE receives M3 from MTCs it extracts, stores and deletes
DMKey from the message. By receiving DMKey, the UE has the implicit indication
that the MTCd has been successfully authenticated. It then sends to the MTCd:

M4 = MTCsID||MTCdID||MTCsNonce||UEID||[MTCsInfo]||MTCsMIC

Upon reception, the MTCd uses these elements to verify MTCsMIC. If the verification
is successful, the MTCd authenticates the MTCs and the mutual authentication process
is complete. It then computes DMkey:

DMKey = KDF (MTCdID,MTCsID,MTCdNonce,MTCsNonce, UEID,PSKey)

After the protocol is executed, the MTCd also implicitly authenticates UEs as they now
both share a DMKey, a shared secret key that can be used to derive further confidentiality
or integrity protection keys. This solution can act as the underlying mechanism for
ProSe, using the methods described in [73] to derive further keys.

6.6 Authentication Protocol Extension

In the considered scenario, another UE in proximity of a group of MTCd or a GW is
now added. A user needing to connect to one or more MTCd can request the connection
establishment to their ProSe links, UEs or GWs. If it doesn’t have any ProSe pair,
ProSe discovery request can start as defined in [31]. It is advocated that ProSe Direct
Discovery and Direct Communication concepts [31] can be used between an UE and
a GW for cooperation and coverage extension. After this connection is established,
the UE/GW tries to access the MTCd the user requested. If it succeeds, the protocol
proposed in the previous section can be executed, with one more actor, the second UE
or a GW. Fig. 17 illustrates the extended version of the protocol. In addition to the
messages defined and explained in section 6.3, we now add two more messages, M2
and M6. They are however the same as described before, only the new UE or GW is
forwarding them to the correct destination. This is a simple protocol extension proposal
but yet, it can be extremely effective. Links can be created involving several UE or
GW nodes, creating longer routing paths and exploring then the full potential of D2D
connections, including the use of the ProSe standard to leverage the coverage of the 5G
network.
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Figure 17: Extended authentication protocol

6.7 Security evaluation and analysis

In this section, the security properties of the presented solution are evaluated. This
security analysis is built based on Dolev-Yao threat model. The proposed protocol is
fully compliant with all the security requirements of 3GPP [73]. A trust relation is built
between all elements as the protocol runs.

ProVerif [77] was used to test the authentication and secrecy properties of the pro-
tocol. After representing it with this tool, the secrecy of DMkey was queried, as well as
the authentication of the MTCd by the MTCs and vice versa. Positive results for all 3
queries were obtained. The secrecy and mutual authentication properties of this solution
were therefore proved. The metrics for security evaluation are symmetry of the keys, if
the scheme is probabilistic or deterministic and if it is server assisted. Confidentiality
and integrity of the messages, authentication, authorization, freshness of messages and
resilience to attacks are also evaluated. This solution uses a symmetric key scheme to
account for limitations of MTCd. It is deterministic by design and relies on the MTCs
to assist the key establishment. Messages exchanged can have confidentiality and in-
tegrity by means of the shared DMKey. The authentication is mutual and explicit for
the MTCd-MTCs pair by verification of the MICs. It is mutual for the pairs UE-MTCs.
They trust each other as their secure channel was previously established by the 3GPP
system. It is mutual and implicit for MTCd-UE pair, the moment their symmetric keys
are established, because when MTCd verifies MTCsMIC, it means the MTCs trusted the
UE. Authorization can be checked for all participants. MTCs is responsible for autho-
rizing MTCd as per its own policy and to check with the Core Network if the UEs and
GWs are authorized to establish the connections. MTCdNonce and MTCsNonce miti-
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gate replay attacks. Finally, this solution is resilient to attacks due to the use of pairwise
keys and therefore compromising one node does not compromise the whole network.

6.8 Performance

The security metrics and performance of this solution are now evaluated and they are
compared with works presented in [47,48,78]. The works are evaluated as deterministic
or probabilistic for key establishment procedures. In [47], a probabilistic scheme is
proposed and probabilities for key establishment are presented. The authentication is
via a coalition of UEs in [48] and in both [48] and [47] servers are not involved. In [47],
the server is also not required for communication establishment. In this sense, these
proposals are described in this section as providing implicit authentication. In both the
presented solution and in [78], there is support for authorization and explicit mutual
authentication between MTCd and MTCs. In this proposal, MTCdInfo and MTCsInfo
are reserved to use to limit the access for certain data or application type, access time,
or any other information that suits their needs or policies. Finally, it is shown that the
Server is a necessary actor in the proposal presented both in this section and in [78] so
that the MTCd are authenticated and the protocols executed. Table 7 summarizes the
qualitative comparison assessment of the security features.

Table 7: Security metrics comparison

Key esta-
blishment

Authentication
Authori-

sation
Server

assistance

[48]
Deter-

ministic

Coalition of devices
implicitly autheticates

the new member.

Not
specified

Not
needed

[47]
Proba-
bilistic

Implicit authentication
by having a common key

Not
specified

Not
needed

[78]
Deter-

ministic
Explicit and mutual

for MTCd-GW
Supported Needed

Sec.6
Deter-

ministic

Explicit and mutual
for MTCd-MTCs

Implicit and mutual
for MTCd-GW

Supported Needed

Performance is evaluated in terms of number of messages necessary for key distribu-
tion, computational effort required to run it and memory requirements. This proposal
needs four messages to be executed. The cooperation scheme adds two more messages,
but they are simply forwarded from one UE to another UE/GW, without extra computa-
tions. The MICs and nonces provide explicit mutual authentication and mitigate replay
attacks. MTCsInfo allows MTCs to be able to choose a suitable KDF and to restrict the
usage of the MTCd, as per its policy. Therefore, it is concluded that the elements in the
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messages are the minimum possible to guarantee these security properties. Symmetric
key cryptosystems are well suited for resource constrained MTCd. The KDF executed
in the server side and the key delivered to the UE, eliminates the need for the latter to
make computations. The MICs are calculated in a standard, recommended way [74,75]
and therefore, the computational cost is normal. The MTCs can choose the KDF from
the recommended ones in MTCsInfo.

Table 8: Performance comparison

CPU usage Memory usage Messages Tx/Rx

[48]
High

Assymetric
cryptosystem

High
Use of certificates

Messages exchan-
ged on demand:

minimum 3

[47]

Low
Symmetric

cryptosystem
(Computes key

verification)

High
use of key rings

(higher the number
of keys, higher
the probability)

Messages sent
periodically:
every 10ms

[78]

Low Symmetric
cryptosystem
(Computes

MICs and KDFs)

Low: 1 PSKey,
1 Group Key,

1 Derived Key (per
pair MTCd-server)

Messages
exchanged

on demand: 4

Our

Low Symmetric
cryptosystem
(Computes

MICs and KDFs)

Low: 1 PSKey,
1 Derived Key (per

pair MTCd-UE)

Messages
exchanged

on demand: 2

This can be very useful for the MTCd as the MTCs can, for example, select a suitable
KDF to generate DMKey. Therefore, it is concluded that the computational costs and
computing power as minimum to guarantee robust security features.
As for memory, some bytes are needed to store keys. The nonces require some more bytes
to store previously used values but in very constrained MTCd, they can be replaced by
counters. The MTCs needs to maintain a database linking MTCd IDs with the PSKey,
DMKey and nonces but memory shouldn’t be a problem at a server level. The power
consumed in communications can be reduced after the D2D connection is established.
It can reduce congestion risk if the interaction is with several MTCd at the same time.
The scalability may be affected for a big number of MTCd but as the protocol relies on
proximity, this is not foreseen as a problem.
This proposal is compared with the works mentioned in Sec. 4. The performance is
evaluated in terms of the main energy spending contributors: CPU usage, memory us-
age and numbers of messages Tx/Rx. The proposed protocol requires less messages
exchanged, provides all the modern security features and complies with 3GPP stan-
dards [73]. To better demonstrate the benefits for MTCd in power savings, both after
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the D2D connection is built and during its establishment, these metrics are regarded
from the point of view of the MTCd. It is worth to mention that, to the best of my
knowledge, no other proposal for direct MTCd-UE communications was found in the
scientific literature. In [78], a protocol to authenticate a group of MTCd is proposed.
To make a proper comparison, it is assumed their protocol is authenticating one MTCd
only. Table 8 summarizes the comparison of the four proposals in terms of the mentioned
performance.

6.9 Remarks on the Security Protocol

In this section, a protocol for authentication and establishment of secure sessions between
UEs and MTC devices without any prior trust relation was proposed. All cryptographic
systems used are lightweight to account for resource constraint devices. The solution
has great potential for energy, bandwidth and latency benefits. It also introduces means
for coverage extension taking advantage of the users’ mobility, having ProSe as an
underlying mechanism and providing therefore, an extension to existing standards.
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LIST OF FIGURES

7 Real Time Dynamic Security for ProSe in 5G

7.1 Introduction

Device-to-device (D2D) communications have been studied for some years now due to
their potential on improving network functions and performance such the potential to
an increased throughput, energy savings and efficiency or the potential to reduce delays.
In cellular networks, 3GPP has been developing the standard that defines direct UE
communications, the ProSe standard.

ProSe is expected to bring many new services, features and applications. The new
applications to come can be essentially divided into 2 main categories, Public Safety
& Critical Communications and Commercial Communications. Public Safety & Critical
Communications have the goal of providing reliable communications in PPDR scenarios.
In these, the network may not be available either for a short time due to some unex-
pected problem or for a longer time (maybe even permanently), in areas where seamless
connectivity is difficult to provide, either in land or sea. This standard was first intro-
duced with the objective of replacing old emergency communication systems for police,
firefighters and medical personal like 3GPP’s Terrestrial Trunked Radio (TETRA), a
very old emergency communications system. On the other hand, commercial applica-
tions may relate to many aspects of daily life. Proximity social networking, interaction
with smart cities or vehicle-to-everything would all fit the commercial use cases.

One of the objectives of operating without network supervision (or outside coverage)
was achieving seamless communications in PPDR scenarios while under supervision, the
main goal was first to offload communications away from macro BS, releasing resources
for other users and saving energy at the BS level. The two factors were the starting point
for ProSe’s development but at the present day, researchers and industry see many other
advantages of using it, mainly due to the envisioned possible applications. Therefore,
several application areas for D2D are under study. They include vehicular networks,
autonomous machines, the IoT, Public Safety communications and the proposed direct
MTC-UE communications.

There are different possible security operating modes for UEs in ProSe [31] depending
on its network coverage status, its role as a Public Safety UE (PSUE) or interaction type.
UEs can interact in direct One-to-One (1:1) or One-to-Many (1:M) communications both
types have different security mechanisms and rules during the establishment, active phase
and termination of a connection. The rules and mechanisms include requirements in
terms of cryptographic objectives, signaling procedures, key management, cryptosystems
and cryptographic primitives. This results in a complex combination of possibilities for
UEs in terms of security contexts. ProSe does not deal with by not specifying how to
implement security policies. A very modest attempt is done with the inclusion of a key
ID in the header of each Packet Data Convergence Protocol (PDCP) packet sent so that
from it, the receiving UE can locally identify a root and derive further cryptographic
keys. Although this is enough for cryptographic algorithms to work, it does not provide
any information to UEs on security contexts and policies, which raises several problems,
such as:
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� ProSe UEs don’t have a set of security rules (a context or a policy) designed and
administered by the Core Network (CN), making ProSe networks generally less
secure. UEs without policies can promote changes in security settings, leaving
connections vulnerable to malicious devices that can try to enforce lower security
levels or even no security (downgrading attacks);

� UEs that unexpectedly loose network coverage are automatically unable of starting
new ProSe communications

� Keys for group communications are provided with expiry timers. Not provisioning
PSUEs or UEs may lead to expiry of all provisioned keys in extreme PPDR scenar-
ios or long missions, possibly disabling UEs from communicating, stopping them
from delivering emergency support as well as from providing coverage, routing or
backhauling services;

� The security context of a connection cannot be changed unless heavy signaling
messages are exchanged (1:1 case) or root keys expire (1:M case) [79]. As a conse-
quence, connections either require extra signaling or they always need to maintain
the same security;

Therefore the need for a solid security bootstrapping mechanism id identified where
the mechanism can solve these problems and provide security policy information to the
UEs and PSUEs, anticipating any new connection establishment, temporary or longer
loss of coverage like PPDR scenarios.

There is also the need to allow for changes in the security settings of a connection, but
the required signaling between UEs or from UEs to the CN increases energy consumption
and can create bottlenecks. Changing a security context make ProSe networks and
connections less rigid, more intelligent and allow for security to adapt dynamically to
different conditions. There are different reasons that call for the introduction of dynamic
changes in security of a connection, as opposed to an established, fixed context. Namely:

� UEs that use energy harvesting hardware may have a surplus of energy due to
having a full battery at the same time energy can be harvested. More security
services may be executed not to waste the surplus energy while increasing network
security.

� An Intrusion Detection Systems (IDS) monitors the network and can send alerts
so that UEs increase security measures in their connections. On the contrary, if
trust levels are higher, the IDS may reduce the applied measures;

� There are different types of data transmitted in a network. For e.g., some data can
be more sensitive due to containing users’ personal information or requiring 100%
accuracy on the data transmitted. To protect it, different security mechanisms are
needed;

� Executing less security mechanisms might be an effective way to implement an
energy saving strategy;
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Therefore in this section, the presented problems are addressed taking into account
the ProSe standard and the benefits related to dynamic security. Specifically, the pre-
sented contributions are 1) the specification of security levels based on cryptographic
services, 2) mapping of those levels based on the different operation modes and packet
types in ProSe, 3) the introduction of a security context change method with minimal
cost and overhead and 4) the design of a list of security parameters and their provisioning
to UEs, including its inclusion in Multimedia Internet Keying (MIKEY) protocol. To
the best of my knowledge, this is one of the first approaches available in the literature
for dynamic security and the first one in ProSe.

7.2 ProSe

In this section an overview over the ProSe standard is presented. At its core, ProSe
defines the rules and procedures for the D2D communications between UEs with or
without network supervision.

7.3 Scenarios

Fig. 18 depicts different communication possibilities. UEs can use ProSe in coverage of a
BS as marked with labels 1 and 2, or out of coverage, signaled with labels 3 and 4. In 5,
a UE provides relay service extending coverage to remote UEs. This mode of operation
is called UE-to-Network relay. D2D links can be exclusive between 2 UEs or 1:1 type
(labels 1, 4 and 5), or between a group of UEs or 1:M type, where packets are sent in
multicast (labels 2 and 3). Outside coverage, only PSUEs are able use ProSe, subject
to CN authorization. In there, the ProSe Function (PF) is responsible the manager of
all the security related information. The element responsible for the key management is
the ProSe Key Management Function (PKMF).

7.4 Communication phases

The interface between UEs is called PC5. Before any communication in PC5, UEs must
be aware of their neighbor nodes. This is accomplished by Discovery messages of model
A or model B. In the first case, UEs announce their presence in a ”I am here” model. In
the latter, requests are sent in ”who is there?” and/or ”are you there?” model [31]. The
latter, where a specific user is targeted to be found is an example of privacy leakage risk.
Target UE’s information like its ID, regular location, services used and other private
information can be extracted from Discovery messages, imposing the need to apply
different security measures on different messages. With the discovery process complete
and after security is established, UEs communicate directly. All messages that serve call
management purposes are Control Plane (CP) messages. Authentication procedures
or link control messages are CP examples. The actual data that users exchange is
User Plane (UP) data. The security requirements for these three main groups are quite
different. They differ on message type, network status of a UE (in or out of coverage and
relay) and on communication type (1:1 or 1:M). For example, UP data can be encrypted
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Figure 18: Overview of ProSe

or not but it shall not be integrity protected. In all cases, the security services associated
with a message are configurable options. However, due to the key management policy in
ProSe, the configuration is rigid and changing security context is in some cases impossible
or requires extra signaling. This is detailed in the next subsection.

7.5 Key management

A security context is the set of security services for a ProSe 1:1, for a group or for UE-
to-NW relay links. In all cases, the security context is linked to a root key from which
further layers of keys may be derived for cryptographic purposes. Upon authorization
request to the CN to use ProSe and consequent approval (Discovery, 1:1, 1:M and UE-
to-NW modes), all root keys are transported to the UEs except in the 1:1 case, where
UEs reach key agreement using one of several asymmetric methods.

Discovery messages are protected using directly the keys that were provisioned. If
the PKMF does not deliver a key, e.g. encryption key, it means that specific service
is not meant to be used. In case there is a need to change security context for any of
the reasons mentioned in section 7.1, extra signaling is needed so that the UE has an
encryption key delivered as shown previously in Sec. 2.

In 1:M, root keys with different expiry timers are transported via MIKEY protocol
to UEs and only the one with the earliest expiry time is valid. From the root key, further
layers of keys are derived. In this case, as the UE always uses the key that expires first
before changing, in case there is a need to change security context like mentioned in
section 7.1 it will not be possible before the associated earliest timer expires.
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In 1:1, a root key is agreed after an asymmetric direct authentication procedure.
From the root, one key is derived in the next layer. The ID of this key is sent in the
PDCP header of all packets sent and is used to identify a security context on the receiver
side. As there can only be one key in the second layer of keys, and in case there is a need
to change security context, a rekeying process is necessary along with renegotiation of
capabilities and possibly a new, energy expensive mutual authentication procedure.

In UE-to-NW, keys are also transported to both relays and remote UEs via a ProSe
protocol instead of mutual authentication and key agreement, while both are still in
coverage. But although the root key establishment procedure is different, the remaining
of the security is the same as in the 1:1 case and therefore, so are the problems.

Excluding the 1:M case, where the security context may change via timer expiry,
rekeying is mandatory to make changes in a set of security rules. The result is generally
increased signaling and security overhead or the penalty of having a static context (not
being able to efficiently use energy from harvesters, to respond to IDS systems and to
protect certain types of data). It results as well in an inability from the CN to impose
security policies on UEs. Not having means to implement and enforce a security policy on
ProSe UEs creates a general exposure to downgrading attacks because UEs are basically
allowed to negotiate security capabilities at will. This vulnerability can affect both 1:1
and group communications and therefore, it can compromise a big number of devices
in the network at the same time. To address these problems, in the next sections, a
structured organization for security levels with different security services, a method to
change the security of a connection reducing general signaling and another to provision
and enforce a security policy on UEs are all presented.

7.6 Security levels

Four security levels are defined based on cryptographic services. Table 12 depicts the
services used at each level.

Table 9: Allowed security levels per message type

(a) Security services

Security level
Data

Authentication
Integrity Confidentiality

Level 4 X X X
Level 3 X X
Level 2 X
Level 1

(b) Allowed security levels

Network status Packet type Allowed Levels

Out of coverage/
UE-to-Network/

In Coverage

Discovery Lv1 - Lv4
CP Lv1 - Lv4
UP Lv1 - Lv2
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Hence in level 1, no security service is provided. In level 2, only confidentiality is
used. In levels 3 and 4, both data authentication and integrity protection are used. The
property results from the allowed integrity protection algorithms in 3GPP systems that
tare all keyed. Level 4 provides confidentiality as well.

After in depth inspection of the security requirements in [73], different policies can
be inferred for each network status and packet type. They are valid for both 1:1 and
1:M communications. Table 9b summarizes the allowed levels for each combination [73].

7.7 Security context change

In order to change a security context, UEs do not need to start a rekeying process.
Instead, a UE initiating the context change process selects the NW status that wishes
to change. It can be the current status only or all the three options (because of e.g. loss
of coverage predicted). For each NW status that will be updated, Discovery, CP and
UP security levels and algorithms used in each security service need to be updated. As
there are 3 NW status and 4 levels, 2 bits are enough to represent each. One extra byte
is included to inform the algorithms used. Figure 19 depicts the information element
(IE) needed to change security context and its size.

Figure 19: Security context change Information Element

As a result, the security overhead for this operation is between 2 and 4 bytes, vary-
ing on how many contexts the UE is trying to change. This IE can be sent over a
pair Security Mode Command and Security Mode Complete, not deviating from ProSe
standard and previous cellular networks standards, where this pair is also used for se-
curity purposes. The first message informs about the context update while the second
serves as confirmation or rejection of that context. Rejection may come, e.g. due to non
compliance with PF policy. This is discussed in the next section.

Compared with ProSe’s root key rekeying process [73], the security overhead and the
transmissions needed are substantially reduced for the 1:1 and UE-to-NW relay cases.
In 1:1, the rekeying involves four steps. A Direct Rekey Request message followed by
an entity authentication procedure with subsequent key agreement and a pair Security
Mode Command and Security Mode Complete. In these messages, several parameters
related to the rekeying and sent by UEs. In table 10, a comparison is made between
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our proposal and a rekeying process for a security context change in terms of number of
messages and IE data size.

Table 10: Messages and IE size comparison

1:1 1:M UE-to-NW
Msgs IE Msgs IE Msgs IE

ProSe
Rekeying

3+Auth
11+Auth
(bytes)

N/A NA 5/6
15

(bytes)

Context
change

2
2-4

(bytes)
2

2-4
(bytes)

2
2-4

(bytes)

In the UE-to-NW relay case, if the remote UE triggers the rekey of the root key, five
messages are needed. If the relay triggers it, six messages are needed. These include
messages to the CN. The IE data size is also shown in table 10. For 1:M, there is no
rekeying process defined and therefore, it is not possible to make a direct comparison.
However and for this case, this proposal offers a solution for the rekeying problem.

In the table, neither IEs exchanged with the CN nor authentication data size are
accounted for in order to compare only the direct impact on the security overhead
on the UEs and because there are different authentication methods that can be used.
As shown, this proposal introduces significant benefits by reducing communications,
security overhead while allowing a faster change in security context as well as the reasons
mentioned in section 7.1. However, just like in the rekeying process, signaling to the CN
is needed so that PF policies can be enforced and UEs operate in accordance to them.
Therefore, to complete the solution, a method for bootstrapping security parameters is
detailed in the next section.

7.8 Bootstraping ProSe

In order to provide means to the PF to have security policies enforced on UEs, informa-
tion related to it needs to be provided to UEs. A method to bootstrap it is proposed
before any kind of communication takes place. The purpose is to provide information to
UEs so that security contexts can change according to the proposal from the previous
section, with reduced signaling and security overhead and always under the policies de-
fined by the PF. To that purpose, a list of parameters to bootstrap in UEs is presented
and the bootstrapping timing for 1:1 and UE-to-NW cases is detailed. In the case of
1:M, a bootstrapping method for MIKEY is also detailed.

7.9 Parameters

The list was designed to address ProSe’s requirements, restrictions and modes of oper-
ation described in [73] and is presented in table 11.

First parameter signals authorization to work as a Public Safety UE (PSUE). This
functionality needs to be signaled to UEs and may be extremely important enabling non
PSUEs e.g., in PPDR emergency scenarios, which cannot be achieved by any hardcoded
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Table 11: Parameters bootstrapped in UEs

Type Parameter

0 Public Safety UE authorization

1 UE-to-NW relay authorization

2 ProSe Out of Coverage authorization

3 UEs authorized in Restricted Discovery

4 Min. Sec. Level override flag for ProSe

5 Allowed Sec. Levels for Disc

6 Allowed Sec. Levels for CP

7 Allowed Sec. Levels for UP

8 Allowed Algs. for Disc. messages

9 Allowed Algs. for CP messages

10 Allowed Algs. for UP messages

method. Parameter 1 authorizes a UE to act as a relay extending coverage to remote
UEs. The value used provides information to the UE if it can be a remote UE only,
a relay UE only or both. Parameter 2 authorizes (or not) a UE to use ProSe when
out of coverage. As the UE is being provisioned for ProSe, it is already authorized to
directly connect while in coverage. In the special case of Restricted Discovery, not all
UEs are allowed to be discovered by a discoverer UE. A list of UE IDS or other elements
that can identify discovered UEs is therefore transmitted via Parameter 3. Parameter
4 is a flag that indicates whether the security levels being used can be overridden.
This may be a fundamental functionality for PSUEs as a communications enabler in
PPDR scenarios, where incompatible security capabilities that block communications
can exceptionally be surpassed. It can also be used to bypass security as an extreme
energy saving strategy. Parameters 5 to 7 define the security levels the PF allows for each
message type (i.e. its security policy for security services). This helps preventing against
downgrading attacks and keeps some freedom of choice to UEs to manage the security of
their connections dynamically but always inside the imposed limits by the PF. Finally,
Parameters 8 to 10 define a list of allowed algorithms to be used for entity and data
source authentication, confidentiality and integrity protection. In the list, that should
be kept open to further additions, should figure at least 3GPP standard algorithms like
the EIA and EEA families.

7.10 Bootstrapping phase

Whether it is 1:1, 1:M or UE-to-NW type communications a UE will use, authorization is
the first and fundamental part of the process. In 1:1 and UE-to-NW types, immediately
after authorization is granted, parameters are provisioned from the PF to the UE. In
these cases, the bootstrapping of the proposed parameters happens at this moment.

For the 1:M case, if a UE is authorized to use ProSe, MIKEY protocol is executed
between the UE and the PF so that root keys and their expiry timers are delivered to
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UEs. Due to the use of MIKEY for group communications, it is proposed to include the
bootstrapping parameters in the MIKEY messages. In MIKEY specifications, several
payloads are defined so that MIKEY itself can be integrated with other protocols. In
the case of security, a specific payload is defined in defined in [6] and it is depicted in
Fig. 20.

Figure 20: Security Policy Payload [6]

From it, the relevant parameters to be detailed are Prot type and Policy param.
The first defines the target security protocol which will use the parameters transported
by MIKEY. At the time of writing this work, only two protocols are defined in the
standard using values 0 and 1. ProSe would use value 2. The Policy param is further
built up by a set of Type/Length/Value (TLV) payloads. The parameters provided in
table 11 are included here. It is important to note that these parameters are of variable
size, depending on each protocol’s needs. Therefore, the parameter definition and the
presented solution is fully compliant with MIKEY.

With the presented bootstrapping mechanism, UEs can be provisioned with a security
policy defined and maintained at CN level. From the three presented processes, the
one that occurs first can be used to provision all information, further reducing the
information amount sent during provisioning UEs when compared to sending information
in three different occasions, provisioning for 1:1, 1:M and UE-to-NW. It also solves the
problem of reaching UEs that can be suddenly out of coverage for a short period or in
PPDR situation, that might take much longer.

7.11 Benefits of the solution

The benefits of the proposal in this work are now discussed. Starting with the intro-
duction of different security levels has several advantages. Common security levels are
standardized for all connections. This facilitates the introduction and the tasks of IDSs
by giving it a tool to change security settings in real time for specific communications,
i.e. specific UEs, groups, applications, domains or geographical areas, e.g. under specific
BSs. It allows for flexible security mechanisms where specific cryptographic primitives
can be applied to certain message types only. It allows for the adoption of energy saving
strategies on the UE side and in case of energy surplus due to the presence of energy
harvesting hardware, it provides means to increase network security.
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The use of the pair Security Mode Command and Security Mode Complete, which
comes from previous 3GPP releases and is also used in ProSe, proves to be enough to
change the security context with minimal security overhead, minimal number of messages
and requiring no signaling to the CN and thus, using no resources beyond the BS. Our
solution carries a maximum of 4 bytes and requires only an acknowledge as a response.
The numerical details are in table 10. In the case of 1:M, it provides a solution for the
context change problem.

Bootstrapping the parameters in UEs has also several advantages. It provisions the
UEs with a set of levels of security, allowed tasks and algorithms for different call proce-
dures defined in [31]. Hence, connections change their security levels only according to
the PF policy which mitigates the risk of downgrading attacks. It allows network oper-
ators means to set security policies to all connections represented in Fig. 18. For all the
communication types, UEs participating in calls are informed about the security policies.
Consequently, deviations from allowed security behavior can be more easily observed and
reported, improving the system’s monitoring and intrusion detection abilities, making it
more secure in a general way. It can be useful as well for solving incompatibility issues.
If a UE is not able to execute a more recent version of e.g. an encryption algorithm, will
still be able to participate in a group call by negotiating inside the list of the allowed
ones, with no need for further requests to the CN. This is especially important in the
out of coverage cases. Finally, UEs in PPDR scenarios need to have security information
bootstrapped while in coverage under the penalty that they won’t be able to use ProSe,
or cannot offer relaying and backhauling services.

7.12 Remarks on Real Time Dynamic Security

In this section the concept of dynamic security levels based on security services for ProSe
communications was introduced, an inexpensive method for security context change in
real time and a proposal for bootstrapping security parameters in UEs, totally compliant
with ProSe standard and MIKEY protocol. The concept creates a common structure
for all UEs and it allows for efficient energy saving and security increasing strategies.
The offres a solution for the problem of out of coverage UEs enabling ProSe even in long
time PPDR scenarios.
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8 Optimal Security Context Selection in IoT Radio Links

8.1 Introduction

One of the most highly underestimated sources of energy consumption in wireless net-
works is cyber security. There is no shortage of works in the literature studying the
consumption of security primitives and protocols in particular devices, quantifying this
energy consumption [7, 8, 23–28, 80, 81]. Several works that are referred to in the next
section are also found studying collaborative approaches or mechanism improving strate-
gies for security that aim at reducing energy consumption or computational complexity.
Although some of these approaches have proven to reduce energy consumption, their
contribution to reduce it is limited to the extent that they aim at still maintaining the
security functionalities.

One of the most challenging problems to address in 5G networks is indeed energy
related. The predicted exponential growth of the number of communicating devices
and data [71] is predicted to increase energy consumption to unprecedented values [82].
In contrast with this demand, the hardware trend is to reduce battery capacity and
introduce EH hardware, further limiting batteries’ role as energy storage units or even
replacing them completely, if energetically viable [83] [39] [84]. Therefore, increasing
energy efficiency and ensuring network survival becomes a major challenge, particularly
in the case of the IoT, where the number of resource constrained devices connected to
5G networks is also expected to grow dramatically [71].

The very definition of network lifetime in sensor networks kept mutating over the
years. Work presented in [85] surveys eleven different definitions for network lifetime.
Different metrics are used to build all eleven definitions but it is clear that they all relate
to the energy depletion of one, several or all the nodes in the network. These works also
show that network lifetime starts to decrease more rapidly after the energetic death of
one node [61], which underlines the importance of addressing the energetic survival of
single nodes.

Enabling security features induces energy consumption mainly due to security over-
head data sent in the air interface and processing tasks. Works in the literature profiling
energy consumption of wireless devices with constrained resources show that the energy
consumption of the communications module in a device can be as high as 14 times that
of the processing tasks [46], indicating the transmission module as the main source of
energy consumption, and with a big gap in relation to other device components such as
sensing and processing blocks.

In standards that run on top of IEEE 802.15.4 based radios like e.g. Zigbee, security
features can be provided at the application, network and data link layers. [86, 87] The
use of security features in each of these layers creates security overhead that is appended
to payloads as they descend towards the physical layer, where the energy consumption
is measured. Considering merely two of the most widely used security features, confi-
dentiality and data authentication, the security overhead at the physical layer can be up
to 63 Bytes in a frame of 127 Bytes size, the maximum size defined in IEEE 802.15.4
standard. This represents a tremendous energy burden on communicating devices.
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On the other hand, IoT networks today rely on security features to try to guarantee
normal operation under the threat of possible malicious actions making them fundamen-
tal features for normal operation, if malicious actions are ongoing which only happens
on very small time windows and specifically targeted networks. One can argue therefore
that with no such threat present, the energy consumed with cyber security contributes
immensely to degrade the energy efficiency of a network and after quantifying it like was
just done, it is concluded that constitutes a very underestimated consumption source.

The reasons found that motivate exploring the trade-off between security and energy
are summarized below, considering data authentication and confidentiality as security
features:

� recent developments in IDS and Intrusion Prevention Systems (IPS) in particular,
provide good means of malicious action detection and deflection (e.g. with honey-
pot technique), creating an additional protection layer that can assure with a high
level of confidence whether a cyber threat is active or not; [88, 89]

� in applications where data reliability is the main concern, packets sent without
security features are more important than discarded packets due to insufficient
energy;

� some of the data circulating in a network holds little to no value of being accessed.
A simple example is temperature readings from sensor networks installed in street
light bulbs, reducing the importance of providing confidentiality;

� in very difficult to access or very isolated physical perimeters, the importance of
data authentication is reduced due to diminished radio range to perform, e.g.,
spoofing attempts;

� securing all layers in a protocol stack provides maximum protection but trading
security for energy in one or two layers does still provide data protection;

� nodes routing traffic that decrease security usage make part of an E2E link more
fragile, but only in a segment of that link.

In this section, the aim is to address this very challenging trade-off security/energy
after recognizing security features as for being both important for normal network op-
eration and protect against malicious actions and for being a critical source of energy
consumption. The predictions for ICT energy consumption worldwide [82] call for ef-
ficient energy reduction mechanisms. The problem is addressed by applying machine
learning techniques to learn optimal strategies that target at maximizing both aspects
of the tradeoff. To the best of my knowledge, this work is the first attempt to discard
security measurements as a mechanism to ensure device and network survival and the
first work implementing energy aware security features in D2D communications.
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8.2 System model

A MTC device is considered to be communicating with another network element where
the communication channel used is discretised into time slots of equal duration. At each
time slot n, a packet arrives at the Data Link Layer from upper layers and needs to be
transmitted by the MTC device to their intended receiver. The transmission of each
packet has an associated energy consumption. The energy required for the transmission
is taken from a battery installed on the device. The device is equipped with an energy
harvesting hardware that collects energy from the environment, converts it into electrical
energy and stores that energy in the battery. The packets are then assigned with security
features to protect them and transmitted.

8.3 Battery model

The MTC device has a battery of size bmax and is divided in equal size parts where
each of those parts is defined as an energy quanta. At any time slot, the battery level is
bn ∈ {0, .., bmax}, where bn represents the amount of energy available in the battery at
the beginning of time slot n, measured in energy quanta units.

8.4 Energy harvester model

The energy harvester supplies a value of hn energy units to the battery during time slot
n, each of those units corresponding to an energy quanta. At the end of time slot n, if
the energy harvested plus the energy available in the battery is greater than what the
battery can store, the extra energy is lost, i.e., if bn + hn ≥ bmax then bn + hn = bmax or
bn+1 = bmax.

The energy harvested in time slot n is governed by a random variable (r.v.) Hn,
where hn indicates the actual amount of energy that is harvested in time slot n. The
harvested energy is assumed to be i.i.d. across time slots and to be governed by the
probability mass function (pmf) pH(hn) = Prob[Hn = hn] with hn ∈ {0, 1, . . . , hmax}.

8.5 Security features

At the beginning of each time slot n, a security context is chosen and applied to the
active communication session and used during that slot. It is assumed that the commu-
nicating devices are already authenticated and share cryptographic keys that allow to
communicate over a secure channel. In this work, a security context refers to a combina-
tion of security features or services that will be used to protect the data transmitted by
the device. The considered security features are confidentiality, integrity protection and
message authentication. Most of the latest, recommended and widely used algorithms
that provide integrity protection are keyed [90], i.e., a pre-agreed or pre-distributed
cryptographic key is used as input for the algorithm and therefore, when integrity pro-
tection of a packet is provided, message authentication is also provided. This results in
four considered security contexts and a security level is attributed to each one. Table 12
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Table 12: Security context per level

Security
level

Data
Authentication

Integrity
Protection

Confidentiality

Lv4 X X X
Lv3 X X
Lv2 X
Lv1

summarizes the security features considered for each context/level as well as the security
overhead they require, discussed below in sub-section 8.7.

The considered set of security contexts is sufficient to describe and cover all possi-
bilities in terms of the two considered security features in this work, that are used after
security establishment takes place between two communicating devices.

The set of contexts presented is compliant with the one defined in IEEE 802.15.4
standard. There, the considered security features are the same as considered in this work,
only that the standard allows for the use of different cryptographic key sizes, forming
a set of eight security levels instead. For compatibility with the standard reasons, it is
considered that the mentioned features to be provided at the MAC Layer.

8.6 Packet arrivals and transmissions

The packets arriving at the MAC layer are encapsulated and become the MAC payload.
They are considered to have variable size and denote that as dn Bytes. A MAC header
of variable size and a MAC footer will be appended to the payload that will then be
transferred to the physical layer before the actual transmission.

8.7 Energy consumption

One security context will always be in use during each time slot and will influence the
energy consumed for the transmission of each packet. Packet size in this work refers to
the payload size that arrive at the MAC layer and is denoted by dn. The security level
applied to the packet dictates the energy consumption of the transmission of that packet
due to the extra Bytes related to security features that are appended to this payload,
increasing its size. These extra Bytes constitute the transmitted security overhead,
denoted by ζ.

The security context/level adopted in time slot n is denoted as cn and taken from a
fixed set, i.e., cn ∈ {1, 2, 3, 4}, where the value of cn corresponds to the security level with
the same number. Fig. 21 illustrates the security overhead associated with each security
level. It is considered in this work that packets are never fragmented and therefore, for
that to be true in IEEE 802.15.4 based radios, the maximum packet size of the payload
is dnmax = 80 Bytes [87] and dn ∈ {0, 1, ..., 80} Bytes.

There are several possibilities for the overhead size ζ that derive from several pos-
sibilities for security feature algorithm and cryptographic key size choice. The worst
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Figure 21: Security overhead for each security level

case scenario in terms of energy consumption is considered. While in Level 1 there is no
security overhead associated, encrypting a packet results in a fixed appended quantity
that is denoted by ζconf for frame counter and key control and that according to the
standard is ζconf = 5Bytes [87]. Using data authentication adds an overhead denoted
by ζauth that could be variable and relates to the MIC size used. The possible values are
ζauth ∈ {4; 8; 16} Bytes [87], although it is not recommended by the National Institute of
Standards and Technology (NIST) to use a MIC size inferior to 8 Bytes [91]. The total
security overhead is then given by the relation ζ = ζauth + ζconf , illustrated in Fig. 21
and the values considered in this work appended in Tab. 12.

The packet size dn is governed by a further r.v. Dn (also i.i.d. across time slots),
with pmf pD(dn) = Prob[Dn = dn], where dn = 0, 1, . . . , dmax.

The energy consumption due to the choice of a particular security level cn within
time slot n on a packet of size dn is thus obtained as

e′(cn, dn) = d (dn + ζ)

88Bytes
∗ 100e; (7)

where the quantity 88 Bytes is the result of adding a MAC footer and header to the
MAC payload, resulting in the maximum size allowed for these three elements together
to be passed to the physical layer without causing packet fragmentation. The quantity
e′(cn, dn) is the energy consumption associated with transmitting a packet of size dn
using security level cn. Note that e′(cn, dn) is also expressed in terms of energy quanta
and takes values in e′(cn, dn) ∈ {0, 1, . . . , e′max}, with e′max ≤ bmax.

Considering the harvested energy and the energy consumed for packet transmission,
battery evolution from time slot n to slot n+ 1 is governed by:

bn+1 = max{0,min{bn + hn+1 − e(cn, dn), bmax}} . (8)

which means that when level cn is used in time slot n, there is an energy expenditure
computed as e′(cn, dn), basically decreasing the battery level in an amount equal to

Filipe CONCEIÇÃO 68
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e′(cn, dn) and increasing it due to an harvested energy amount hn. The system state at
time n is sn = (bn, cn).

8.8 Problem formulation

There are various objectives in this work. If the MTC device has a low battery level,
either due to the harvester not being able to collect enough energy from the environment
or due to high energy consumption, battery durability should be prioritized to ensure
the device’s energetic survival. On the other hand whenever available, the harvested
energy shall be used to increase as much as possible the security features applied to
the communications. In this context, as much as possible means that whenever there
is enough energy to secure packets, the device shall maximise security. The assumption
that there is always enough energy is not valid for resource constrained devices in the IoT
and as shown in the previous section, security features represent a significant burden in
terms of energy consumption. It is therefore a very big challenge to try to ensure security
features are applied to communications when there is not enough energy to do so. The
optimisation of the energy-security tradeoff is one of the main goals of this work.

It is assumed that the energy harvester is chosen to suit the device’s energy needs
and will therefore provide enough energy most of the time. If the energy arrival is not
enough, the presented system has the objective to reduce energy spending to prolong
the battery lifetime while keeping security features active. In more extreme cases, the
harvested energy may not be enough to suffice the consumption needs, not even if no
security is applied. In this case it is considered that packets are discarded and the
consumed energy in that particular time slot is zero to ensure energy survival.

Another important aspects that needs to be considered is the fact that data authen-
tication and encryption serve two distinct purposes and cannot be compared directly.
Therefore, the tradeoff between these features also needs to be considered, in parallel
with the security and energy balance.

8.9 Markov Decision Process

MDP in an infinite horizon context are an adequate tool to model this communication
scenario. Infinite horizon MDPs are fully defined by the tuple 〈S,A,P,R, γ〉 which
correspond to the set of states S, set of actions A, state transition probabilities P,
reward function R and discount factor γ, respectively. These elements are defined in the
following subsections.

8.9.1 State space

The state space S is the set of sn = (bn, cn) where bn ∈ {0, 1, . . . , bmax} is the number
of energy units in the battery at the beginning of slot n, and cn is the current security
context, i.e., the one utilized for the whole time slot n. The maximum number of elements
in the state space is therefore |cn| × |B + 1|.
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8.9.2 Action Space

The action space is the set of all possible security level transitions an that includes
decreasing three, two or one level, keeping the same level and increasing one, two or
three levels, denoted respectively as an ∈ A = {−3,−2,−1, 0, 1, 2, 3}.

8.9.3 State transitions

A state transition probability is defined as p(s′|s, a) = p(sn+1 = s′|sn = s, an), which
corresponds to the probability of arriving at state s′ = (b′, c′) knowing that the current
state is s = (b, c) and action an is performed in slot n. Given an, the security context
in slot n is cn+1 = cn + an, where the action set at time slot n, An, becomes bounded
so that cn is a valid security level. The battery evolution depends on the security level
chosen in slot n (i.e., the action an), the packet size dn, the battery level at the beginning
of slot n (bn), and the harvested energy in slot n+ 1, hn+1. Defining δ = bn+1 − bn, for
any δ ∈ {−bmax,−bmax + 1, . . . , 0, 1, . . . , bmax}, it holds that:

Prob[bn+1 − bn = δ|an] = Prob[Hn − e(cn, Dn) = δ]

=
∑
dn

pD(dn)
∑
hn

pH(hn)1{hn = e(cn, dn) + δ} , (9)

where 1{x} is the indicator function, being one if x holds true and zero otherwise.
The transition probability p(s′|s, a) = p(sn+1 = s′|sn = s, an) is readily computed using
(9), by plugging the right values of bn+1, bn and cn.

8.9.4 Reward function

As previously described, both tradeoffs authentication/confidentiality and energy/security
need to be considered. For the first challenge, a weight parameter α ∈ [0, 1] is defined.
It works as a preference parameter for integrity protection and data authentication, as
opposed to encryption. The weight is mapped to the security levels that provide these
features and contributes to shaping the system’s reward for its security performance at
time slot n, that is computed according to the security level in that time slot, following:

f(cn, α) =


1 cn = 4

α cn = 3

1− α cn = 2

0 cn = 1

(10)

Function f(cn, α) is therefore defined in [0, 1] and encodes the security performance
that is perceived by a designer, depending on their own preferences.

To address the energy/security tradeoff, another weight parameter β ∈ [0, 1] is de-
fined that works as a preference parameter this time for battery durability and it is
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considered together with the energy available in the battery in time slot n + 1. A
function F (cn, bn), the reward function is then defined as follows:

F (cn, bn) = (1− β)f(cn, α) + β

(
bn+1

bmax

)
, (11)

where β balances the importance of security services (first term) and battery durability
(second term).

The tuning of parameters α and β is by itself a big challenge. Collaborative traffic
routes, packet types, applications are just example factors that can influence the im-
portance of one security feature over the other. On the other hand, harvester type and
environmental conditions, network topology and data reliability are examples of factors
that shape the importance of battery durability. It is out of the scope of this work to
dwell into these factors and they are considered designer’s preferences.

8.10 Markov Decision Process Model

The presented system model can then be formulated in a Markov Decision Process where
the objective is to solve the Bellman optimality equation, defined as:

J∗(s) = max
an∈An

{
J ′
}
, (12)

J ′ =
∑
sn+1

p(sn+1|sn, an)[F (cn, bn) + γJ(sn+1)]

where q∗(s, a) is the optimal state-action pair, An only contains values for each state
that result in a valid cn. The goal is to train an agent to learn an optimal policy, i.e., one
that chooses the best action for each of the MDP states and solves Eq. 12. In case the
chosen action results in e(cn, dn) < bn, the packet is transmitted. If e(cn, dn) ≥ bn, then
a reward of zero is given to the agent and no transmission occurs. As a rule, transmitting
a packet is only possible when e(1, dn) ≥ bn.

For any given fixed values of α and β, the Bellman’s optimality equation can be solved
by any dynamic programming method. The presented problem and system model have
been solved using Value Iteration, i.e., an optimal policy π∗ has been attained for the
best possible choice of security level for each packet, at each time slot. An algorithm
parameter φ is used to control the number of iterations Value Iteration will update J(s)
for all states until all updates are smaller than φ. At that moment, it is considered that
convergence occurred. The pseudo code for the algorithm used is described in Alg. 1

8.11 Numerical Results

In this section, numerical results obtained from solving the described problem are pre-
sented. The relevant simulation parameters used are presented in Tab. 13. The learned
optimal policy is compared with three different benchmarks. First, a fixed policy where
Lv4 is always chosen is considered. This policy represents the state of the art in most
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Algorithm 1 Value Iteration Algorithm

1: Initialisation:
set value update threshold φ = 0.001
Randomly set J(s) ∈]0, 1],∀s ∈ S

2: while J(s) update > φ,∀s ∈ S do
For each state s ∈ S compute
J(s)← max

an∈An

∑
dnhn

pDpH [F (cn, bn) + γJ(sn+1)]

check if J(s) update < φ
3: end while
4: Output π∗ = arg max

an∈An

∑
dnhn

pDpH [F (cn, bn) + γJ(sn+1)]

communicating systems. Then two other more elaborate policies were designed that is
referred to as Smart Policy 1 (SP1) and Smart Policy 2 (SP2). Both these policies
explore past knowledge the energy income and packet size. As in time slot n+ 1, both
hn+1 and dn+1 cannot be predicted, the policies use the last values of energy income and
packet size, hn and dn, to verify if a packet can be transmitted. SP1 verifies if the high-
est security level can be attributed to the next packet and if not, lower levels are verified
until the packet is discarded, if the predicted available energy is not sufficient not even
for sending the packet unprotected, considering that hn+1 = hn and dn+1 = dn. SP2
behaves similarly, but if it accesses that a packet can be sent with a Lv3 security, then
it randomly selects Lv2 or Lv3 based on the security features parameter α. Flowcharts
illustrating how SP1 and SP2 work are depicted in Figs. 22a and 22b.

There are three main goals in this section. First, the aim is to show how the choice
of the tunable parameters α and β affects the authentication/confidentiality and en-
ergy/security tradeoffs. Tuning α dictates how authentication is preferred over confi-
dentiality. Tuning β dictates how battery performance is more or less important than
data security performance.

As these parameters tend to extremes on their possible values, predictable behavior
occurs testing the resulting optimal policies. Low values of α cleverly result in a learned
policy that behaves almost like a fixed policy on Lv2. If due to the designer’s choice,
confidentiality is the most important feature, then the learned policy avoids spending
extra energy choosing Lv4 as this feature is provided with in Lv2 as well. A value α = 0
reflects this behavior to perfection. In the opposite sense, a value α = 1 tells the learning
process that authentication is the only feature required. Therefore, the learned policy
behaves like a fixed Lv3 policy, as soon as there is enough energy to do so. In the
case of parameter β, lower values result in a tendency to ignore the battery durability.
The extreme case of β = 0 will therefore result in a complete ramp up of the security
level assigned and the battery performance will become neglected. On the other hand,
β = 1 results in learning a policy that focus on transmitting packets without any feature
assigned, i.e., in security Lv1, maximizing the battery performance and assuring that
the biggest number of packets possible is transmitted. For these reasons, the extreme
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(a) Smart policy 1 (b) Smart policy 2

Figure 22: Smart policies

cases from the results obtained are omitted.

Fig. 23 and Fig. 24 show results for how the tunable parameters α and β influence the
average number of authenticated packets and the average available battery, respectively.
Results in Fig. 23 are obtained by sweeping parameter α for different lower values of β,
obtaining an optimal policy and simulating it in runtime. Results in Fig. 24 are obtained
similarly, but sweeping this time β for different values of α.

As a second goal, the aim is at showing the benefits of learning optimal policies for
this problem in terms of available energy in the battery and data reliability while still
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LIST OF FIGURES

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
vg

 P
ro

te
ct

ed
 P

ac
ke

ts Lv2 =0.1
Lv2 =0.2
Lv2 =0.3
Lv2 =0.4
Lv3 =0.1
Lv3 =0.2
Lv3 =0.3
Lv3 =0.4
Lv4 =0.1
Lv4 =0.2
Lv4 =0.3
Lv4 =0.4

Figure 23: α control over Authenticated packets
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providing and maximising as much as possible data authentication and confidentiality
protection, even though the energy income is not enough for normal, fully secure op-
eration. The metrics considered are the average available battery and the number of
discarded packets. Results obtained are illustrated in Fig. 25 and Fig. 26 and are ob-
tained by arriving at the optimal policy for each value of the mean of Hn and comparing
that with the benchmarks behavior for the same energy income, which also applies to
Fig. 27, Fig. 28 and Fig. 29.
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Figure 25: Average battery against energy income

The mean of Hn was normalised to the value that would be required to provide Lv4
protection to each packet, for easier reading of the benefits. The energy stored in the
battery is normalised to bmax. The number of discarded packets is normalised to the
total number of packets in the simulation (or the number of time slots as one packet
per time slot is simulated). With around as much as 73% of the EH energy required
for full protection, the energy available in the battery is already greater than any other
policy. With around 90% of the same required EH energy, the energy performance is
much superior than any other policy. At the same landmark values for the EH energy,
the average discarded packets are very close to zero and zero.

The third goal is to show that packets can still be protected as much as possible,
even with the very significant gains shown in Fig. 25 and Fig. 26. The security related
metrics are the number authenticated packets, i.e., packets transmitted on Lv3 or Lv4,
the number of packets protected for confidentiality, i.e., packets transmitted on Lv2 or
Lv4 and finally, the number of packets sent with no security feature or with a security
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Figure 26: Average discarded packets against energy income

context Lv1. The results obtained for these metrics are illustrated respectively in Fig. 27,
Fig. 28 and Fig. 29.

Table 13: Simulation parameters

Parameter Value

Simulation Control Offline Online Online Deep Learning (DL)

bmax 84 84 384 384

α {0.6; 0.8} 0.8 0.8 0.8

β {0.1; 0.4} 0.3 0.3 0.6

Hn(µ, σ) ({63;65},1) ({43;69},1) ({43;69},1) See plots

Dn(µ, σ) (40,1) (40,1) (40,1) See plots

Avg rounds 5000

Episodes N/A 500 100

N 200 50

αTD 0.1

γTD 0.9

Results show the number of authenticated packets by the optimal policy is far supe-
rior to all other policies, especially when compared to a fixed Lv4 policy. The optimal
policy under performs in some regions in number of encrypted packets (protected for
confidentiality) compared to other policies. This is not a concern as parameters have
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Figure 27: Authenticated packets against energy income
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Figure 28: Confidential packets against energy income
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Figure 29: Packets sent unsecured against energy income

been set as α = 0.8 and β = 0.3 and therefore emphasis is being given on data authen-
tication and on battery available as well. It will be shown in Sec. 8.18 that the non
optimal policies severely degrade their performance with changes in parameter β and
that they never perform better considering all tradeoffs. This is also complemented with
what is observed in Fig. 29, where the optimal policies protect all packets whereas SP1
and SP2 do neglect security.

8.12 Online learning

In the previous section, a completely modeled environment was described and its solution
outlined via Value Iteration. The MDP was solved and then the benefits and gains
achieved were shown using various different metrics. Despite all the gains, in this section
there is a move from offline to consider online learning methods due to various reasons.
First, dynamic programming methods require high computational effort [5], which can
be unfeasible for resource constrained devices. Computing an optimal policy requires
several iterations over the transition probabilities and reward matrices. The number of
matrices grows linearly with the number of actions and their size grows exponentially
with the number of states. This leads to severe scalability problems that prevent from
simulating and obtaining optimal policies for large state spaces [5]. The scalability issue
is therefore, directly linked with the computational complexity of finding the solution.

To tackle this problem, the benefits of online learning methods were studied. Several
of these algorithms are available in the literature but there is no formal proof of perfor-
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mance prediction in terms of computational complexity and resource requirements and
especially, in terms of speed of convergence. In fact, it has be shown in the literature
that online algorithms perform differently depending on the problem where they are ap-
plied [5]. Therefore a comparative study becomes necessary to attain which algorithms
would perform better.

To achieve this goal, several TD learning methods have been implemented and ap-
plied to this problem. TD methods are on-line methods that learn through experience
in real time. In these methods, there is a table of Q-values where the value of each state-
action pair, i.e., the action value function Q(s, a), is stored. The learning process is
divided in episodes. An episode is composed of a finite sequence of time slots n ∈ [0, N ],
where N is the length of the episode. An update to the Q-value corresponding to each
visited state-action pair is made every time slot. This allows to perceive immediately
that the learning process is much lighter in computational terms. Thus, an increase in
the state space is affordable and more realistic models can be simulated and studied.

A downside to these approaches though is that the Q-values need to be stored. As
the tendency is to study models with bigger state spaces, the memory requirements for
these methods increase. For these reasons, a comparison between computational and
memory resources needed for offline and online methods is required.

In the next sub sections, the algorithms applied in this work are briefly introduced
and the used pseudo-code is depicted. These methods require a tradeoff between ex-
ploration and exploitation until convergence is reached. The learning process has the
necessity of using random action selection to ensure all state-action pairs are visited a
theoretically infinite number of times to assure convergence. A common way to provide
exploration ability is by using ε-greedy action selection. An exploration parameter ε is
thus used and actions are selected with a probability 1−ε+ ε

|An(s)| for the action with the

highest value and a probability ε
|An(s)| for all the others. A step parameter αTD is also

used to limit the weight of single state-action pair updates. This is commonly referred
to as the learning rate. A discount-rate parameter γTD is also used. Immediate rewards
are denoted as R. In the following sections, that update rule and complete algorithm
pseudo-code are detailed.

8.13 SARSA

SARSA is an on-policy method, i.e., it follows a policy and uses that policy to update
the Q-values on every time slot based on the pair sn+1, an+1 where the action for the
next state is chosen based on the policy being followed. The Q-value update is thus
defined as:

Q(sn, an) = Q(sn, an) + αTD[R+ γQ(sn+1, an+1)−Q(sn, an)] (13)

A complete pseudo-code is given in the Alg. 2 box.
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Algorithm 2 SARSA algorithm

1: Initialisation:
Set αTD ∈]0, 1]
Set γTD ∈]0, 1]
Randomly set Q(s, a) ∈]0, 1], ∀s ∈ S, ∀a ∈ A

2: while Episode<number of Episodes do
bn ← bmax (start with a full battery)
cn ← Lv4 (start with maximum security)

3: while n<N do
Select random an and an+1 based on ε
Take action an and transit to sn+1

SARSA update - Eq. 13
n← n+ 1

4: end while
5: end while
6: Output π∗(s) = arg max

an∈Ansn∈S
{Q(sn, an)} ,∀s ∈ S

8.14 Expected SARSA

Expected SARSA is a variant from SARSA with a slightly different Q-value update rule.
It that takes into account the expected value of the action in state sn+1. The expected
value is calculated based on the action selection probability, P (a|sn+1), that in this work
comes from an ε-greedy approach. Follows that the update rule is given by:

Q(sn, an) = Q(sn, an) + αTD[R+ γ
∑
a

P (a|sn+1)Q(sn+1, a)−Q(sn, an)]

A complete pseudo-code is given in the Alg. 3 box.
By making updates based on the expected value, the variance of those updates is

reduced and thus, in many cases, Expected SARSA tends to perform better achieving
faster convergence.

8.15 n-step SARSA

The first version of online learning through experience was coined Monte Carlo method
[5]. These methods make updates to the Q-values at the end of each episode based on
knowledge stored during an agent’s interaction with the environment. Keeping record of
all the state transitions, actions taken and rewards collected results in a big increase in
memory requirements. Furthermore, the same state-action pair can be visited multiple
times during the same episode which can easily result in a slow learning, due to the fact
that the Q-value for that state-action pair is not immediately updated, which could result
in choosing an under optimal action. For that reason, TD methods are widely regarded
as faster learning methods [5]. In between these two ideas, n-step SARSA introduces a
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Algorithm 3 Expected SARSA algorithm

1: Initialisation:
Set αTD ∈]0, 1]
Set γTD ∈]0, 1]
Randomly set Q(s, a) ∈]0, 1], ∀s ∈ S, ∀a ∈ A

2: while Episode<number of Episodes do
bn ← bmax (start with a full battery)
cn ← Lv4 (start with maximum security)

3: while n<N do
Select random an based on ε
Take action an and transit to sn+1

E-SARSA update - Eq. 14
n← n+ 1

4: end while
5: end while
6: Output π∗(s) = arg max

an∈Ansn∈S
{Q(sn, an)} ,∀s ∈ S

step parameter for evaluating Q-value updates n time slots in the future. In this way,
updates are not calculated every time slot. Instead, the agent stores information related
to the experience, i.e., the states, actions and rewards observed during n time slots, and
the update is calculated in future, delayed by the number of steps defined with n. This
results in bigger memory requirements but it often shows faster learning results [5].

The Q-value update rule for n-step SARSA is given by:

G←
min(τ+n,N)∑

i=τ+1

γi−τ−1Ri (14)

Q(sτ )← Q(sτ ) + αTD[G−Q(sτ )],

where G is the return and τ is the current time slot. A complete pseudo-code is given
in the Alg. 4 box.

8.16 Q-learning

The Q-learning algorithm also accounts for the immediate reward and the current state-
action pair. However, its updates differ in which they find the action tha maximizes the
value of the next state. The Q-learning update rule is given by:

Q(sn, an) = Q(sn, an) + αTD[R+ γmax
an+1

Q(sn+1, an+1)−Q(sn, an)]

A complete pseudo-code is given in the Alg. 5 box.
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Algorithm 4 n-Step SARSA algorithm

1: Initialisation:
Set αTD ∈]0, 1]
Set γTD ∈]0, 1]
Set 1 ≤ n-step < N
Randomly set Q(s, a) ∈]0, 1], ∀s ∈ S, ∀a ∈ A

2: while Episode<number of Episodes do
bn ← bmax (start with a full battery)
cn ← Lv4 (start with maximum security)
Select random a ∼ ε-greedy policy

3: while n<N do
Select random an and an+1 based on ε
Take action an and transit to sn+1

τ ← n− n-step+ 1

4: if τ ≥ 0 then update G
5: if τ + n-step < N then

G← G+ γn−stepQ(sτ , aτ )
6: end if
7: end if
8: make ε-greedy π wrt Q(s, a)
n← n+ 1

9: end while
10: end while
11: Output π∗(s) = arg max

an∈Ansn∈S
{Q(sn, an)} ,∀s ∈ S

8.17 Double Q-learning

Double Q-learning Its update rules:

Q1(s, a) = Q1(s, a) + αTD[R+ γQ2(s′, arg max
a∈A

Q1(s′, a)−Q(s, a)] (15)

Q2(s, a) = Q2(s, a) + αTD[R+ γQ1(s′, arg max
a∈A

Q2(s′, a)−Q(s, a)] (16)

A complete pseudo-code is given in the Alg. 6 box.

8.18 Online learning numerical results

In this section, numerical results are presented for the study of online TD methods.
The relevant simulation parameters are presented in Tab. 13. The first analysis relates
to n-step SARSA. There is no analytic method to prove what is the optimal value for
the step parameter and therefore, a comparison between different values is required.
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Algorithm 5 Q-learning algorithm

1: Initialisation:
small step parameter αTD ∈]0, 1]
Randomly set Q(s, a) ∈]0, 1], ∀s ∈ S, ∀a ∈ A

2: while Episode<number of Episodes do
bn ← bmax
cn ← Lv4

3: while n<N do
Select random an ∼ ε-greedy policy
Take action an
Q(sn, an)← Q(sn, an) + αTD[R+ γ max

an+1∈An+1

Q(sn+1, an+1)−Q(sn, an)]

Transit to sn+1

n← n+ 1
4: end while
5: end while
6: Output π∗ = arg max

an∈Ansn∈S
{Q(sn, an)}

The best value is the one that allows the algorithm to achieve the highest reward value
with the lowest experience time. Fig. 30 plots results from an incremental step increase,
where the learning process is evaluated through its achieved reward after one episodic
task, defined by N = 200 time slots.

It was found that the performance of different steps is similar in terms of achieving
higher reward faster, although n-step values higher than three showed learning instability,
i.e., the collected cumulative rewards while learning showed often a big decrease only to
increase again a few episodes later. This unstable behavior can be seen as well for the
results for 3-step SARSA. For visual simplicity reasons, Fig. 30 plots the best performing
step values only and the step value of two is chosen as the step size that achieves the
highest reward value with the lowest experience time while maintaining learning stability.
A comparison is presented in Fig. 31 between 2-step SARSA, the remaining algorithms
presented in the previous section, the previously described benchmarks, SP1, SP2 and
a fixed policy for maximum security.

The results show very similar performance between all SARSA variants, slightly
better performance for Q-learning and Double Q-learning by far outperforming all al-
gorithms, achieving high reward levels much faster. Nevertheless, all the algorithms
simulated outperform SP1 and SP2, whose cumulative reward values can be seen on
the right axis in Fig. 31, and a Fixed Policy Lv4 that achieved an average cumulative
reward G = 0.05082, that it was chosen not to plot due to visual considerations.

To ensure the Online RL approach completely outperforms the state of the art fixed
policy, SP1 and SP2, a further comparison is needed evaluating their performance for
all values of average energy income, µ from the Gaussian distribution Hn, that under
feed the device energetically. This comparison is illustrated in Fig. 32.
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Algorithm 6 Double Q-learning algorithm

1: Initialisation:
small step parameter αTD ∈]0, 1]
Randomly set Q1(s, a), Q2(s, a) ∈]0, 1],∀s ∈ S,∀a ∈ A

2: while Episode<number of Episodes do
b← bmax
c← Lv4

3: while n<N do
Select random a ∼ ε-greedy policy wrt Q1 +Q2

Take action a
Update Q1(s, a) or Q2(s, a) with equal probabilty
Transit to sn+1

n← n+ 1
4: end while
5: end while
6: Output π∗ = arg max

a∈As∈S
{Q1(s, a) +Q2(s, a)}
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Figure 30: Comparison between different step values

Double Q-learning is used for the comparison as it was the best performing algorithm
from Fig. 31. SP1, SP2 and a fixed policy Lv4 are all policies that aggressively try to
maximise packet protection. Therefore, to attain a fair comparison, all four policies were
tested for low values of β, where the optimal policies give more importance to security
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Figure 31: Average reward during learning

rather than energy. Results achieved show that the RL approach is not affected by
variations of β values and completely outperforms the other policies that, as expected,
suffer from a performance degradation as the concern for battery durability increases.

These implemented methods reduce significantly the computational effort but may
still be a burden for devices with limited memory. This issue is addressed in the next
section.

8.19 Online Deep Reinforcement learning

As previously discussed, online reinforcement learning methods have two major disad-
vantages. The need to store Q-values can be a burden in terms of memory, especially on
resource constrained devices, and the speed of convergence to the optimal solution can
be slow, causing that the learned policies on the training phase can be far from optimal-
ity which in turn can originate poor decision making. In a system model like the one
presented in this work, the unpredictability of EH income and packet size pose the risk
of poor decision making, leading to packet discarding, unsecured packet transmissions
or lower energy efficiency.

To address these issues, an online deep reinforcement learning approach is presented
in this section. To speed up the learning process, an actor-critic method [92] is used where
both the policy and the action value function are parameterised with a ANN. This will
also enable action value function approximation, eliminating the need for keeping Q-
values stored in memory. The learning process is done by an online stochastic gradient
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Figure 32: Cumulative Reward VS EH income

approach. The result is a stochastic policy where for each state s, an is selected based
on a certain probability.

In the previous sections it was assumed a certain stability in terms of EH income and
packet size, dn. The target is now studying the behavior of the learned policies under
extremely unstable conditions, where a stochastic policy is followed instead of a greedy,
deterministic one.

8.20 Actor-Critic network

To approximate the action value function, a MLP with two layers as in Fig. 33 is
considered. The input layer receives the state information, i.e., bn and cn and the
output layer has one neuron for each possible action an ∈ A. Each output neuron
represents therefore the action value for the corresponding state-action pair, Qw(s, a),
where w ∈ Rd is the vector that contains the weights that define the network and d is
its dimensionality. Actor-critic methods usually require two ANN where one is used to
parameterise the policy and the other is used to parameterise the action-value function.
However in this work, because each action is being represented as an output neuron, it
is considered that each of those neurons corresponds both to the approximated action-
value, Qw(s, a), and the approximated action preference, Han . This can be seen as a
network with two output layers, where one is used for the actor and the other for the
critic. However the set of weights connecting the last hidden and output layers is the
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same, getting updated depending on the output layer used for the training. Hence,
only one ANN is required because it can approximate both the actor and the critic, an
approach similar to the one used in [93].

Figure 33: MLP model

The activation function used for the hidden layers is the tanh. This activation
function has been used in several works and good training results have been shown using
it. Although it is a popular activation function, some literature states that it may suffer
from vanishing gradient problems. However in this work, it was found during training
that it performs better when compared to other functions, namely the more recently
widely used ReLU and both in the hidden and output layers.

8.21 Training

To train the network, the total loss at the output layer needs to be calculated and back-
propagated to the input layer, so that the parameterisation w can be adjusted. This
procedure is executed every time slot and it is achieved by calculating the total loss,
denoted as L and defined as the sum of the contributions of both the actor and critic
output layer losses.

The critic loss is denoted as LQw and the Mean Squared Error (MSE) function is
used for sampling the prediction error produced at each time slot n. The inputs for the
MSE function are the predicted action value Qw(sn, an) and the target value for time
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slot n, denoted as tn defined as

tn = F (cn, bn) + γQw(sn+1, an+1). (17)

The target provides a measurement of how wrong the action value prediction was.
However, an additional element is necessary to provide the gradient the direction needed
on the update. The TD error at time slot n, denoted by δn, is therefore defined as

δn = F (cn, bn) + γQw(sn+1, an+1)−Qw(sn, an). (18)

The choice of the action an+1 for state sn+1 is always greedy wrt to the action value
function, considering only values of Qw(sn+1, an+1) valid for A(sn+1). This makes this
approach a Deep Q-Network (DQN) approach [94] and despite the fact it is used to
show the next set of results, a more exploratory approach that randomly selects an+1

according to the current action preferences derived from the current set of weights w
was also tested, providing inferior results.

Combining all elements, the critic loss is obtained, defined as

LQw = MSE(Qw(s, a), tn)× δn (19)

The actor loss contribution used is given by the policy gradient theorem [95], denoted
as Lπw and defined as

Lπw = − log(π(an|sn,w))× δn. (20)

Note that − log(π(an|sn,w)) is evaluated only for the set of valid actions for each state,
A(s). Finally, the total loss L is defined as

L = LQw + Lπw . (21)

For the optimization of the weights from the value of L, the Adaptive Moment
Estimation (ADAM) is used as it has been shown to be computationally more efficient
than the other gradient descent variants [96]. Moreover, the learning rate is adapted
to each weight in w during training, speeding up the convergence. Even if there is not
enough training time, ADAM will converge faster to the best possible (lower) sample
error, even if given limited training time [43].

A complete pseudo-code is given in the algorithm box.

8.22 Numerical results

In this section, numerical results obtained with the DQN approach are presented. The
relevant simulation parameters are presented in Tab. 13. As previously mentioned,
the purpose of implementing a Deep Learning approach is to address heavy memory
requirements and confirm the expected better convergence properties [43]. Fig. 34 and
Fig. 35 show the results obtained for the average reward and data availability. Plots
were obtained by simulating the current policy after each episode and comparing the
DQN approach with SP1 and SP2.
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Algorithm 7 Actor-Critic algorithm

1: Initialisation:
small step parameter αTD ∈]0, 1]
Randomly set w

2: while Episode<number of Episodes do
Initialise s0 randomly

3: while n<N do
Sample and execute an ∼ π(a|s,w)
Observe s′, F (cn, bn)
Sample an+1 ∼ greedy wrt π(a|s,w)
Compute eqs. (17) to (21)
Update w
Transit to sn+1

n← n+ 1
4: end while
5: end while
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Figure 34: Learning stability analysis

Note the number of time slots per episode and the mean energy income were reduced
compared to the ones used in the previous section. The purpose is twofold: 1) test the
learning performance by reducing the learning time and by consequence, the number of
updates of w and 2) degrade data availability in case choices for security level are poor.
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Figure 35: Data reliability stability

Every 20 episodes, the deviation for both Hn and Dn changed to bring instability to
the sampled hn and dn. Results show the learned stochastic policies maintain good per-
formance even under difficult learning conditions, achieving higher cumulative rewards
and demonstrate a very high and stable level of data availability, indicating excellent
security level decision making.

8.23 Memory requirements

To address the issue of the memory requirements, we now present their quantification
for the different learning approaches used with eqs. (22) to (26).

MOFF = 2|A|(|cn||bmax + 1|)2 (22)

MONL = |cn||bmax + 1| (23)

MDoubleQL = 2|cn||bmax + 1| (24)

MnstepSARSA = |cn||bmax + 1|+ 3n-step (25)

MDL = 2 +Nl ×Nn + |A| (26)
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where MOFF and MONL are the memory requirements for, respectively, the offline ap-
proach presented in Sec. 8.9, the Online RL methods described in Sec. 8.12 with the
exception of two methods, Double Q-learning and n-step SARSA, to which the memory
requirements are denoted by MDoubleQL and MnstepSARSA, also respectively. Finally,
MDL denotes the requirements for the Online DL approach described in Sec. 8.19. The
number of hidden layers and the number of neurons in each of these layers in the network
defined by w is denoted by Nl and Nn.

Considering a 32 bit floating-point representation of the values involved and bmax =
384 for a fair comparison, the memory requirements are numerically quantified in Tab. 14.
There is a clear descendant profile in terms of these requirements between the approaches
tested, offline solved with Value Iteration (VI), online RL and online DL. Exception
made to the offline approach, the memory footprint needed by the methods seems very
reasonable considering the hardware of recent devices, even if resource constrained. How-
ever, considering bmax = 84 results in MOFF = 6, 4736 MB, which still is a reasonable
value.

Table 14: Memory Requirements for all tested methods

Approach Required Memory

MOFF 132,8096 MB

MONL 6,160 KB

MDoubleQL 12,320 KB

MnstepSARSA 6,184 KB

MDL 84 B

8.24 Remarks on the Optimization of the Security Context Selection

In this work, an approach for an security-energy tradeoff analysis has been presented.
Devices under-fed by energy harvesters make decisions on the choice of security level
to maximize protection of transmitted packets, data reliability and energy efficiency.
Several approaches for offline and online learning were presented with significant gains
achieved and the performance of the different methods was compared. Results from the
DQN approach also show significant stability properties under difficult learning condi-
tions followed by a study of the required memory requirements.

Filipe CONCEIÇÃO 91
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9 Conclusion

This dissertation addressed energetically sustainable 5G networks in futuristic smart
cities scenarios, with a focus on security and its energy consumption. First, the smart
cities scenarios were surveyed for an assessment of their main characteristics so that some
security requirements could be learned, envisioned and formulated. It was concluded
that smart cities are extremely connected to a city’s inhabitants and all the benefits are
projected to provide people with a better life quality and city experience. Mobility is
regarded as one of the main aspects in smart cities, including all the movements people
do on a daily basis. For that reason, the UE was almost immediately regarded as a tool
to extend coverage and reduce connection distances in 5G towards the IoT.

The application of a dense IoT environment with the support of 5G networks is a
mandatory component to the realization of this vision. It was found that this dense
environment is estimated to have a very significant impact on the world’s energy con-
sumption. Following the studies related to energy generation and needs for future mobile
and IoT networks, it is clear that the energy needs of the ICT ecosystems in general,
and the 5G in particular will increase.

The world’s electrical energy production still tends to rely immensely on sources
of energy that are known to have extremely detrimental impact on the environment
and contribute significantly for the carbon emissions. The available projections related
to the global electrical energy production in the years to come point to a continuous
and increased trend in relying on these detrimental sources such as coal. Dedicated EH
equipment installed on the 5G network elements is a perfectly viable alternative solution
to reduce the dependency of the energy generation on undesirable energy sources such as
coal. It was however found that simply equipping 5G network elements with dedicated
EH hardware is not enough to suffice the energy needs of end devices. Amongst others,
the high demand in energy required for these networks to operate and the underdeveloped
state of the latest small EH hardware solutions lead to the exploration of more energy
efficient device cooperation strategies that in turn raise significant security concerns.
These concerns are derived directly form the increased required interactions for the
cooperation strategies to work.

The state of the art energy efficient device cooperation strategies were then surveyed
and it was found that researchers focus on optimizing the selection of a routing path
so that a packet flows from a source to a destination, achieving minimum energetic
cost during that transmission. It was found that these approaches can be extended to
consider communicating nodes with EH capabilities and that they do not consider the
energy consumption due to the execution of security mechanisms, especially the cost of
security establishment, that in some cases can be prohibitive.

From the study that was conducted to access the impact of security mechanisms on
energy consumption, it was found that the available data in the literature has to be seen
as indicative of the order of magnitude. And because singular opearations are quantified
on all works surveyed, it was also found that this data is less useful for networking
scenarios.
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For these reasons, a new energy model for IoT devices has been introduced in Sec.
5. The model serves as a tool to quantify the energetic cost of establishing connections
and of their secure communications phase, mapping these costs into different blocks
commonly used in other energy models. It quantifies as well the cost of all modern cryp-
tography algorithms. These algorithms are constantly being executed while a networking
connection is established, active and then terminated. The results presented prove the
model can be very useful in diverse networking scenarios, mainly by allowing to quantify
the impact of single networking interactions or D2D connections to be clearly seen in a
device’s energy consumption. This visibility can be used in more complex IoT scenarios
where techniques like load balancing or constraints like minimum thresholds for battery
level have to be applied, due to the lack of visibility on the impact of single connections.
This was presented by graphically identifying different energy efficiency zones when a
device is advertising its availability to relay data for other network nodes. The presented
results considered BLE security protocols and algorithms, demonstrating that it is not
affordable for all devices, especially to constrained ones, to operate with the highest level
of security described in this standard, although it is the recommended by the NIST.

Several D2D communication scenarios have also been layed out in Sec. 2.2. From the
presented scenarios, some are already considered in the 5G and MTC, but some others
are proposed in this dissertation. They relate to the direct connection between an UE
and an IoT object. This proposal had as rationale the fact that modern smartphones
and tablets can collect various types of information from their embedded sensors and
they are also equipped with several connectivity options. Moreover, their mobility can
enable connectivity in physical places where network infrastructure may be difficult or
expensive to reach in terms of network coverage.

Based on this idea, a protocol for authentication and establishment of secure sessions
between UEs and MTC devices without any prior trust was presented in Sec. 6. It relies
on cryptographic systems that respect the nature of resource constrained MTC device
and yet guarantee important security features. This proposal eliminates the need of
MTC devices or Gateway (GW)s sending data to a server, saving significant amounts
of energy, bandwidth and reducing latency. To the best of my knowledge, this is the first
solution for this direct interaction in 5G and IoT. We introduce the ProSe standard to
enhance the coverage of 5G by means of interaction between two UEs, or one UE and a
GW and prove the security of the solution. This operating mode is therefore advocated
since it is extremely efficient for coverage extension, saves energy and bandwidth and
reduces communication distance. This solution is also very relevant and useful for PPDR
scenarios, where UEs may play a key role in maintaining communications, and smart
city scenarios where volatile type interactions often take place.

Security mechanisms have been addressed in this dissertation from the point of view
of their functionality but mainly in relation to its energy consumption. This was due to
the fact that the main concern in the SCAVENGE project is energy. The energetic con-
sumption of security mechanisms and protocols has been surveyed and it was found that
in the scientific literature, single executions on specific hardware are usually quantified.
It was also found that the energetic consumption can vary significantly for the different
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hardware platforms used for testing. This leads to the conclusion that the available val-
ues for energy consumption should be seen as indicative of the order of magnitude. This
survey and the results and conclusions obtained in Sec. 5 also allowed to understand
that the consumption due to the execution of security primitives may look residual when
executed once, but have considerable impact in a medium to long term due to their con-
tinuous execution. The profiling of the energy consumption in UEs and IoT devices
led to the conclusion that the transmissions are the main source of energy consump-
tion in end devices and especially of IoT devices that do not have a screen, which also
represents a significant consumption component in the case of UEs. After studying the
security definitions for low power radios, namely BT, BLE and 802.15.4, it was found
that the standards define security levels, based on the security establishment and the
security features confidentiality, data integrity and data authentication, after security is
established. These levels foresee already that some packets may not need full protec-
tion from these features. It was also found that protecting packets for confidentiality,
data authentication and integrity requires appending extra Bytes of information to the
protected packets so that it can be decrypted, and its data integrity and authenticity
can be validated on the receiver end. Linked with the fact that transmissions are the
main source of consumption on end devices, it became clear that security can have a
significant impact on the total energy consumption of IoT and ProSe networks.

Therefore in Sec. 7, the concept of dynamic security levels based on security services
for ProSe communications was introduced. Along with it, an inexpensive method for
security context change in real time and a proposal for bootstrapping security parameters
in UEs, totally compliant with ProSe standard and MIKEY protocol. The concept
standardizes a common structure for all UEs, facilitates different IDS tasks and it
allows for efficient energy saving and security increasing strategies. The context change
method greatly reduces the security overhead and signaling in general between UEs,
and completely to the CN. The bootstrapping of parameters mitigates the risk of
downgrading attacks and defines the PF as the security policy responsible. The solution
improves the visibility over malicious actions from the UE side and solves the problem of
out of coverage UEs, that cannot get access to the CN for security information, enabling
ProSe even in long time PPDR scenarios.

Finally, after realizing the impact that the security features of confidentiality, data
integrity and data authentication have on the energy consumption while communicating,
a need for a study of the security-energy tradeoff was required. The realization that both
energy and security are fundamental characteristics in communications led to the study
of this tradeoff. Particularly in this dissertation there is a major concern about the
constrained resource nature of IoT devices energetically fed by EH hardware. The
study of the state of the art small EH hardware to be suitable for mounting in also
small IoT devices showed that the electrical energy generation is also a concern because
of their limited energy generation capacity. If the EH hardware cannot produce enough
energy for normal operation, it was proposed that the application of security features can
be reduced as an effective power saving strategy. This is also backed up by the fact that
low power radio standards already define some form of security levels, based on the idea
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that not all packets require full protection. Recent developments in IDS also complement
the idea that the energy spent on security features can be a considerable waste when no
threat is present, which happens for most of the time in network operations, leading to
a very low energy efficiency in cyber security.

The low energy efficiency and the strong impact of confidentiality and data authenti-
cation on the energy consumption of wireless devices lead to the proposal of an approach
for an security-energy tradeoff analysis, presented in Sec. 8. A set of security levels was
derived and a communications model was built where devices under-fed by energy har-
vesters make intelligent decisions on the choice of security level to maximize protection
of transmitted packets, data reliability and energy efficiency. Three security features
and energetic survival are tunable using two weight parameters. Several approaches for
offline and online learning were presented to make the most suitable security level choice
for each packet. Significant gains are achieved for available energy and data reliabil-
ity while still providing security to packets. The proposed approach greatly increases
the energy efficiency of the considered security features as they are used most of time
without being needed. Several state of the art RL algorithms are compared, avoiding
further unnecessary implementations to test their performance. Results obtained with
DQN show very high stability properties under adverse learning conditions, showing it
is an approach suitable for applications with unstable EH, often the case of, e.g., vibra-
tional EH. A quantification of the memory footprint for all learning methods used was
also presented, validating the idea that they are feasible approaches in modern, even if
constrained devices.
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10 Future Work

In this section, some future work ideas are presented. They are based upon the analysis
of the proposed contributions with a focus on how they could be improved to continue
the work developed in this dissertation.

In Sec. 5, an energy model was presented and some conclusions were derived from
the simulations executed. It was concluded that mobility is an important aspect in smart
cities scenarios, especially with the introduced idea of direct UE-IoT communications.
The simulations presented in Sec. 5 showed that 1) mobility often introduces new nodes
in a network and therefore, security needs to be established with them if they are to be
part of routing path creation strategies. It was concluded that 2) establishing security
using asymmetric cryptographic schemes can have a significant energetic cost and that 3)
the networking load of an MTC device can greatly influence its ability to relay data for
other devices. Due to these aspects, it was also concluded that load balancing techniques
may not be the best strategy for routing path creation, especially if the network nodes
are energetically fed by EH hardware.

For these reasons, the work could be extended exactly by a) developing routing path
creation strategies that take the elements 1), 2) and 3) into account in order to further
optimize existing works, b) to account for networks comprised of nodes fed by EH
hardware and c) to eliminate the assumption made in the works surveyed that a trust
relation already exists between all nodes in the considered network because as it was
seen, the security establishment can be unaffordable for constrained devices, especially
if executed often.

In the same work, it was also found that a relation exists between the cost of the
active phase of a connection, ESC , and its establishment, ECEM . This relation could
be further studied to find optimal packet buffering strategies based on security estab-
lishment methods. In applications were security establishment requirements are strict,
the tradeoff between buffering time and the amount of data to be transmitted could
be studied in order to optimize the number of concurrent transmissions. On the other
hand, in applications were security establishment requirements are less strict, the trade-
off between the amount of data to be transmitted and the energy budget for security
establishment could also be studied, with the same goal as to optimize the number of
concurrent transmissions.

In Sec. 6, a protocol for authentication and establishment of secure sessions between
UEs and MTC devices without any prior trust was presented. The end result is a direct,
secure link between the two types of devices, duly authorized by the CN. This approach
has proven to be more cost efficient than other works surveyed in the literature. This
idea could be further extended to multiple MTC devices so that the UE could be capable
of authenticating them, having as an end result direct connection to a group of MTC
devices rather than just one.

In Sec. 7, the concept of dynamic security levels based on security services for ProSe
communications was introduced. Along with it, a method for security context change
in real time and a proposal for bootstrapping security parameters was also presented.
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It was seen that two UEs communicating would still have to spend some extra energy
on rekeying messages in order to change the current security level in use in real time.
If EH capabilities were added to the UEs, an interesting optimization problem could
be created in order to arrive at the best decision of security level and when to make
that decision of changing it. This could serve to optimize the UEs energy usage taking
into account their current battery and EH state, the cost of rekeying with a valid radio
model and the cost of securing packets with the different available levels.

The defined security levels also could be extended to be more than four by including,
e.g., the key size that serves as input to the security primitives in use at each level,
similarly to what happens in the IEEE 802.15.4 standard. They could also be extended
by including different security establishment methods (or no security establishment) as
defined in the BT and BLE standards. If this proposal was extended in this way, then the
bootstrapping of security parameters would also need to be changed so to account for the
expansion of the security levels. Extending the security levels would be meaningful from
a practical point of view and for completeness of the work, but it would probably have
a smaller importance from a research perspective, if considered only by itself. However,
if extended to be a part of the referred optimization problem, it would help to create an
interesting and more complex problem.

In Sec. 8, a security-energy tradeoff analysis was presented. The set of security levels
used was the same as in Sec. 7. Then, DP and RL approaches were applied to make
intelligent decisions on the choice of security level. This approach could be extended to
make the problem more complex and encompassing of needs and requirements that were
found to be essential for IoT and ProSe networks.

The mentioned extension of the security levels could make the system model pre-
sented in Sec. 8 more complex. Especially in the case more security levels were used,
it would make sense to define a constraint in the system model defined by a minimum
security level that could be used.

The model defines two devices communicating where the security level decision is
carried out by the transmitter node. This idea could be extended to a multipath rout-
ing where the residual energy of all potential participant nodes in the path would be
considered, rather than just one.
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