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The user is often another piece of
software rather than human and we
consider what influence this may have on
the design of our software.

Iain S. Duff
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Abstract xv

Minimizing communication for incomplete factorizations and low-rank ap-
proximations on large scale computers

Abstract

The impact of the communication on the performance of numerical algorithms increases with the number
of cores. In the context of sparse linear systems of equations, solving Ax = b on a very large computer
with thousands of nodes requires the minimization of the communication to achieve very high efficiency
as well as low energy cost. The high level of sequentiality in the Incomplete LU factorization (ILU)
makes it difficult to parallelize. We first introduce in this manuscript a Communication-Avoiding ILU
preconditioner, denoted CA-ILU(k), that factors A in parallel and then is applied at each iteration of
a solver as GMRES, both steps without communication. Considering a row block of A, the key idea is
to gather all the required dependencies of the block so that the factorization and the application can be
done without communication. Experiments show that CA-ILU(k) preconditioner can be competitive with
respect to Block Jacobi and Restricted Additive Schwarz preconditioners. We then present a low-rank
algorithm named LU factorization with Column Row Tournament Pivoting (LU-CRTP). This algorithm
uses a tournament pivoting strategy to select a subset of columns of A that are used to compute the
block LU factorization of the permuted A as well as a good approximation of the singular values of A.
Extensive parallel and sequential tests show that LU-CRTP approximates the singular values with an
error close to that of the Rank Revealing QR factorization (RRQR), while the memory storage of the
factors in LU-CRTP is up to 200 times lower than of the factors in RRQR. In this context, we propose an
improvement of the tournament pivoting strategy that tends to reduce the number of Flops performed as
well as the communication. A column of A is discarded when this column is a linear combination of other
columns of A, with respect to a threshold τ . Extensive experiments show that this modification does
not degrade by much the accuracy of LU-CRTP. Moreover, compared to the Communication-Avoiding
variant of RRQR, our modification reduces the number of operations by a factor of up to 36.

Keywords: ilu factorization, low-rank approximation, preconditioner, reducing communication

Minimisation des commmunications lors de factorisations incomplètes et d’ap-
proximations de rang faible dans le contexte des grands supercalculateurs

Résumé

L’impact des communications sur les performances d’un code d’algèbre linéaire augmente avec le nombre
de processeurs. Dans le contexte de la résolution de systèmes d’équations linéaires creux, la résolution de
Ax = b, sur une machine composée de milliers de noeuds, nécessite la minimisation des communications
dans le but d’atteindre une grande efficacité tant en terme de calcul qu’en terme d’énergie consommée. La
factorisation LU, même incomplète, de la matrice A est connue pour être difficilement parallélisable. Ce
manuscrit présente CA-ILU(k), un nouveau préconditionneur qui minimise les communications autant
durant la phase de factorisation que durant son application à chaque itération d’un solveur tel que
GMRES. L’idée est de considérer un sous-ensemble de lignes de A et de lui adjoindre des données
de A tel que la factorisation du sous-ensemble, ainsi que l’application des facteurs obtenus, se fait sans
communication. Les expériences réalisées montre que CA-ILU(k) rivalise avec les préconditionneurs Block
Jacobi et Restricted Additive Schwarz en terme d’itérations. Nous présentons ensuite un algorithme
de rang faible appelé la factorisation LU couplée à une permutation des lignes et des colonnes, LU-
CRTP. Cet algorithme utilise une méthode par tournoi pour sélectionner un sous-ensemble de colonnes
de A, permettant la factorisation par bloc de la matrice A permutée, ainsi qu’une approximation des
valeurs singulières de A. Les test séquentiels puis parallèles ont permit de mettre en évidence que LU-
CRTP retourne une approximation des valeurs singulières avec une erreur proche de celle obtenue par
la factorisation QR révélant le rang de la matrice (RRQR). En outre, l’espace mémoire occupé par les
facteurs de LU-CRTP est jusqu’à 200 fois plus faible que dans le cas de RRQR. Toujours dans le cadre
d’une approximation de rang faible, nous proposons enfin une amélioration de la stratégie de pivotage
par tournoi qui réduit le nombre d’opérations effectuées ainsi que les communications. Une colonne
de A est retirée de la méthode si elle est une combinaison linéaire des autres colonnes de A, suivant
un critère τ . Des tests sur un grand nombre de matrices montrent que cette modification ne dégrade
pas significativement la précision de LU-CRTP. En outre, cette modification appliquée à la variante de
RRQR minimisant les communications réduit par un facteur de 36 le nombre d’opérations.

Mots clés : factorisation ilu, approximation de rang faible, préconditionneur, réduction des communi-
cationsLaboratoire Jacques-Louis Lions

4 place Jussieu – 75005 Paris – France
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Chapter 1
Introduction

Many applications from different scientific domains need accurate and efficient methods to solve
a system of linear equations or least square problems on large scale computers. In astrophysics,
researchers study large phenomena as the Cosmic Microwave Background (CMB) by creating ex-
periments that produce a large amount of data. For example, the replacement of satellites COBE
and WMAP by Planck increases the amount of data generated. The satellite uses concurrently
multiple detectors that scan the sky and record signals hundred times per second over many
years. The obtained result consists of 1013 − 1014 time samples which correspond to petabytes
of data (1015). One particular operation is the map-making step that compresses the initial
data into a smaller data set of size 106 to 108. This operation involves a significant amount
of memory, a large amount of computation, driven by significant data movements. Such data
transformation requires the solution of a generalized least squares problem, generally performed
by using the preconditioned Conjugate Gradient approach, (Szydlarski et al., 2014; Papez et al.,
2018). Obviously, future satellites will generate even more data that will require much more
storage and even more computation. Started in 2007, the International Thermonuclear Exper-
imental Reactor (ITER) project intends to create a stable tokamak nuclear fusion reactor. In
such magnetic fusion devices, the challenge goes through the understanding of the plasma tur-
bulence. Moreover, with the quality of the plasma determining the cost of a fusion reaction,
international research groups started developing codes. In particular, the Gysela 5D code, based
on a semi-Lagrangian scheme, models the electrostatic branch of the Ion Temperature Gradient
turbulence in tokamak plasmas. The use of more accurate models coupled with more physics is
bounded by the power of current computers. The results presented in (Grandgirard et al., 2016)
show that the code has a relative efficiency of 90.9% on 458k cores in the case of a weak scaling.
However, the relative efficiency drops from 89% on 16k cores to 60% on 64k cores, partly due to
the field solver. Therefore intensive works still require to improve the global performance of the
code. Climate modeling, global warming, forecast, etc., drive the development of codes towards
increasing accuracy, strongly linked to the mesh size of the grid used. In 1990, project AMIP1
was using a grid resolution of 64× 32× 10 that required a calendar year to complete a 10 years
integration. Twenty years later, the Community Climate System Model developed CCSM5, a
fully coupled atmosphere-ocean-sea-ice model that was able to complete 15 years per actual day,
on a grid of dimension 384× 320× 40. In 2011, the future global tropical cyclones activity was
simulated by using 5.5 million processor hours with a mesh grid of 25 kilometers. Later on, the
CAM5 model predicted a mean of 50 hurricanes per year while the observations were 47, between
1980 and 2005, (Zarzycki et al., 2016). The explicit resolution of cloud systems would require

1
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a mesh size of one kilometer, with an estimated 28 PFlops(1015 Floating point operations per
second), (Wehner et al., 2011). Other current scientific applications in the domains of biology as
genomic or data analytics require the solution of problems of very large size. All share the same
need of more computing power.

Starting in 1993, the top500 list records every six months the 500 most powerful supercom-
puters in the world (sorted following the score on the benchmark Linpack). In 2009, the first
petascale supercomputer, Cray Jaguar, performed 1.75 PFlops. Since then, a run towards the
exascale machine (1018 Flops) has been driving research. However, increasing the performance
of such supercomputers by three orders of magnitude is very challenging. First, the energy con-
sumption is a real issue. The current #1 supercomputer, named Summit, has a peak energy
consumption of about 15 megawatts, that is equivalent to the maximum output of two Avelia
Horizon high speed train (TGV), released in July 2018. Reaching the exascale would be equiva-
lent to 8 Summits with a consumption equivalent to 1/8 of a nuclear reactor; this is not feasible
in practice. In the past ten years, the power cost of data movement did not significantly improve
and still stands so that the cost in terms of energy to data movement is much higher than per-
forming a floating point operation (Yelick, 2018). Thus, the communication has a large impact
on the energy consumption as well as the global performance, and corresponds to the second is-
sue facing the exascale computation. Increasing the number of processors unit also increases the
communication cost. Although the system peak (#Flops) increases by three orders of magnitude
from a PetaFlop machine to an exaFlop machine, the latency of point-to-point communication
is expected to be only reduced by a factor of two.

Many scientific applications as presented above require the solution of linear systems of equa-
tions Ax = b, where A is a matrix of dimension m × n, x and b are n × 1 vectors. Depending
on the application, A can be either dense or sparse, i.e., with a large number of zero entries in
A. To solve such linear systems, we can use two different classes of solvers. On the one hand,
we have direct solvers that are based on the factorization of A as LU or QR that offer a good
accuracy but require a large amount of memory and computation. On the other hand, we can
use iterative methods that usually use much less memory, but may not converge to the solution.
Direct solvers are not highly scalable, the iterative solvers offer better scalability. As mentioned
above, the size of the computers increases to address the issues of large applications. Therefore,
in the context of numerical linear algebra, related algorithms need to be redesigned to reduce
the impact of communication on performance in order to achieve high performance computing.
This class of algorithm is usually referred to as CA that stands for Communication Avoiding
(J. W. Demmel, Grigori, M. Hoemmen, et al., 2008). For example, the redesign of the LU and
QR factorizations are CA-LU and CA-QR algorithms, respectively.

In this manuscript, we present our contribution to the numerical linear algebra domain. Its
content is split into three topics, first, a new preconditioner based on incomplete LU factorization,
second a low-rank decomposition based on LU factorization, third a library that has been used
to develop all parallel codes presented in this manuscript.

We start with Chapter 2 that recalls fundamental properties of some numerical algorithms
as LU and QR factorizations. We also give some details on the past and current supercomputers
with a brief historical overview.

Chapter 3 introduces a preconditioner named Communication Avoiding ILU(k) (CA-ILU(k)).
The purpose is to factor a sparse matrix A by blocks using incomplete LU (ILU) factorization
in parallel so that the resulted factors are similar to the sequential case. Moreover, when CA-
ILU(k) is used as a preconditioner in iterative solvers as GMRES, its application is performed
without communication. We compare CA-ILU(k) with Block Jacobi and Restricted Additive
Schwarz preconditioners. Although the memory consumption may be an issue, we observe that
CA-ILU(k) can be very competitive on large problems.
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Chapter 4 presents an LU factorization with Column Row Tournament Pivoting named LU-
CRTP. This novel algorithm computes a low-rank approximation of a sparse matrix A by using
a block LU factorization, where at each step, k selected columns of A are permuted and then
factored until the desired rank is reached. The selection of these k columns is performed by
the QR factorization with Tournament Pivoting (QRTP) that minimizes communication. The
results show that the method is highly parallel and is able to compute an approximation of the
singular values of A with a precision close to that of the QR factorization with Column Pivoting
algorithm. Our parallel implementation of QRTP shows that strong scaling on up to 2048 MPI
processes can be achieve.

Chapter 5 is dedicated to the improvement of the QR factorization with Tournament Pivoting
algorithm which performs unnecessary computation in the context of low-rank approximation.
We show that our contribution allows to bound the norm of the error and can be used to find a
better low-rank approximation at lower cost. Sequential results show the overall gain obtained in
LU-CRTP as well as the Communication-Avoiding variant of the Rank Reveling QR factorization
(CARRQR).

Chapter 6 presents C Parallel Linear Algebra Memory Management (CPaLAMeM), a library
developed during the thesis that was used to implement the codes presented in the following
chapters. This library is a collection of routines to manipulate the internal representation of
mathematical objects as sparse and dense matrices, and vectors. While offering basic operations
as loading data in parallel, permuting a matrix or extracting submatrices, CPaLAMeM provides
a collection of parallel routines in the domain of the linear algebra as a dot product, a sparse
matrix dense vector product or a tall and skinny QR factorization implementation. The purpose
of CPaLAMeM is to provide a library helping to develop parallel research codes, and having
some tools to track memory leaks, memory consumption, and a timer module.

We complete this manuscript with a general conclusion and an overview of the on-going and
future works in Chapter 7.



4 CHAPTER 1. Introduction

This thesis led to the following publications

Journal Paper

– L. Grigori, S. Cayrols, and J. Demmel. “Low Rank Approximation of a Sparse Matrix Based
on LU Factorization with Column and Row Tournament Pivoting”. In: SIAM Journal on
Scientific Computing 40.2 (2018), pp. C181–C209. eprint: https://doi.org/10.1137/
16M1074527

To be submitted

– S. Cayrols and L. Grigori. “CA-ILU(k): a Communication-Avoiding ILU(k) precondi-
tioner”. 2019

– S. Cayrols and L. Grigori. “Tournament pivoting based on τ − rank revealing for the
low-rank approximation of sparse and dense matrices”. 2019

https://doi.org/10.1137/16M1074527
https://doi.org/10.1137/16M1074527


Chapter 2
Preliminaries

Outline of the current chapter

2.1 Algebraic preconditioners 7
2.1.1 Additive Schwarz methods . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Incomplete LU preconditioners . . . . . . . . . . . . . . . . . . . . . 9

2.2 Rank revealing and low-rank approximation 12
2.2.1 Randomized algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Rank revealing factorizations . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Computer aspect 16
2.3.1 Half a century of processor improvement . . . . . . . . . . . . . . . . 16
2.3.2 The bottleneck of future architectures . . . . . . . . . . . . . . . . . 17

Many applications require the solution of the system

Ax = b, (2.1)

where A is a square matrix of dimension n, and b and x are vectors of size n. Equation (2.1) is
solved either by using direct methods and triangular solves based on LU , or by using iterative
methods as GMRES (Saad and Schultz, 1986), CG (Hestenes et al., 1952). The late methods are
projection methods that compute an approximate solution xm from an affine subspace x0 +Km
of dimension m, where the Petrov-Galerkin condition b−Axm ⊥ Lm is satisfied, with Lm being
another subspace of dimension m. The vector x0 is an arbitrary initial guess to the solution,
in the affine subspace. These methods are referred to as Krylov subspace methods when the
subspace Km is the Krylov subspace given by

Km(A, r0) = span{r0, Ar0, A
2r0, . . . , A

m−1r0}, (2.2)

where r0 = b − Ax0. The Krylov subspace methods differ depending on the choice of Lm. As
presented in (Saad, 2003), GMRES and CG are based on Lm = AKm, considering the Krylov
subspace defined as Km(A, r0/‖r0‖2), where ‖r0‖2 denotes the 2-norm of the residual. Some
others can use the transpose of A to span a Krylov subspace.

5
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Iterative methods build an approximate solution by computing at each iteration a new vector
of the Krylov basis. However, the methods may not converge to the solution, depending on the
matrix. That is, a matrix is considered as ill-conditioned, i.e. difficult to invert, if the ratio of
its largest singular value to its smallest, named its condition number, is large. This value is one
of the aspects that leads a Krylov subspace method to not converge (or to have a slow rate of
convergence). In order to improve the convergence, the system (2.1) is multiplied by a matrix
M , named a preconditioner. There are three methods to precondition a system :

1. Left preconditioning M−1Ax = M−1b,

2. Right preconditioning AM−1y = b, with y = Mx,

3. Split preconditioning M−1
1 AM−1

2 y = M−1
1 b, with y = M2x.

In each case, M is chosen so that the 2-norm of the product M−1A is close to 1. In other words,
M is a good approximation of A. In the case of right preconditioning, the Krylov subspace basis
presented in (2.2) is therefore rewritten as

Km(M,A, r0) = span{r0,M
−1Ar0, (M

−1A)2r0, . . . , (M
−1A)m−1r0}. (2.3)

The construction of a preconditioner must be cheap in terms of computation and communication.
Otherwise, the gain obtained from the reduction of the number of iterations may not balance
the overcost of its construction and its application. The cheapest and most easy preconditioner
to build is the diagonal of A, well-known as Jacobi preconditioner. Along with it, we can
list Gauss-Seidel, successive over-relaxation (SOR), and Symmetric successive over-relaxation
(SSOR). They are based on a decomposition of A into A = D − E − F , where E and F are
strictly lower and upper triangular matrices, respectively, and D is a diagonal matrix. These are
defined as

• Jacobi preconditioner: M = D,

• Gauss-Seidel: M = D − E or M = D − F ,

• SOR: M = 1
ΩD − E.

Another type of preconditioners are based on an approximation of the matrix A. These
preconditioners compute an incomplete factorization of A, as Incomplete LU (ILU) for general
matrices or Incomplete Cholesky (IC) for symmetric positive definite matrices. Both precondi-
tioners are built such that the residual matrix R = A−M has a 2-norm small enough to use M
as a preconditioner and the application of M is easy enough. The IC preconditioner is obtained
by factoring M = LLT using the incomplete Cholesky factorization, where the L factor is a
lower triangular matrix. This preconditioner takes advantage of the symmetry of the system by
storing only L in memory. On the other hand, the ILU preconditioner is obtained by computing
the incomplete LU factorization of A such that A = LU + R and M = LU , where the L factor
is a lower triangular matrix with diagonal of 1, and the U factor is an upper triangular matrix.
Note that when the 2-norm of R is 0, then the factorization is complete, and this corresponds to
a direct method. We give more details of the ILU preconditioner in Section 2.1.2.

The next class of preconditioners is based on a decomposition of the matrix A into submatri-
ces, where each submatrix is considered as a subsystem of (2.1). This approach is well-known as
the Schwarz Method, where the domain of the problem is decomposed into smaller subdomains.
The subdomains are processed concurrently and the computation of the global solution is en-
sured by a partition of unity. Two types of Additive Schwarz preconditioners are based on this
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approach: the Additive Schwarz Method (ASM) and the Restricted Additive Schwarz (RAS).
We give more details of both preconditioners in Section 2.1.1

The last type of preconditioners presented in this section is known as the SParse Approximate
Inverse (SPAI). The idea is to choose a matrix T ∈ S, such that it minimizes ‖I − TA‖F =
‖I−ATTT ‖F , where ‖.‖F is the Frobenius norm, I is the identity matrix, A comes from Equation

(2.1), and S is a set of sparse matrices. Since ‖I − AT‖F =
n∑
i=1

‖ei − AT (:, i)‖22, where ei is a

canonical vector, the construction of M−1 = T corresponds to solving n least square problems,

min
T∈S

(

n∑
i=1

‖ei −AT (:, i)‖22) =

n∑
i=1

(min
T∈S
‖ei −AT (:, i)‖22). (2.4)

There are other classes of preconditioners as algebraic multigrid preconditioners as AGMG (No-
tay, 2010), BoomerAMG (Henson et al., 2002), algebraic multilevel preconditioners as MSLR
(Xi et al., 2016), or deflation techniques (Nabben et al., 2006; Tang et al., 2010), that are not
presented in this thesis.

2.1 Algebraic preconditioners

In the following, we give details of algebraic preconditioners that are used in this thesis. We
start by presenting the block Jacobi and Additive Schwarz preconditioners, and then we present
the incomplete LU factorizations that are of importance in this manuscript.

As introduced above, the Jacobi preconditioner, defined as MJ = diag(A), is the simplest
preconditioner to build. Its application consists in computing the inverse of each coefficient of
MJ . A variant of Jacobi, named Block Jacobi (BJ), corresponds to inverting the diagonal blocks
of A. Considering p blocks in A, the Block Jacobi preconditioner is written as

MBJ =


A11

A22

. . .
App

 , (2.5)

where Aii is the i-th diagonal block of A. The usual application of BJ preconditioner to a vector
y = Ax0 is to factorize each diagonal block of MBJ by using an LU-type decomposition so that

M−1
BJy =


A11

A22

. . .
App


−1

y1

y2

...
yp

 (2.6)

=


L11U11

L22U22

. . .
LppUpp


−1

y1

y2

...
yp

 =


U−1

11 L
−1
11 y1

U−1
22 L

−1
22 y2

...
U−1
pp L

−1
pp yp

 (2.7)

Besides its natural implementation in parallel, this preconditioner is built and is performed
without communication. Unfortunately, when the number of blocks increases, the size of the
blocks decreases and so the quality of the BJacobi preconditioner decreases. By quality, we
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mean that the 2-norm of the residual matrix R = A−MBJ increases and the convergence of the
iterative method deteriorates.

2.1.1 Additive Schwarz methods

Additive Schwarz Method (ASM) is a domain decomposition method where the problem is par-
titioned into subproblems. The method solves the local subproblems and then glues together the
local solutions using a partition of unity. That is, the domain Ω associated with the problem
is partitioned into N subdomains Ωi, with 1 ≤ i ≤ N . Differently from Block Jacobi precondi-
tioner, ASM preconditioner defines overlapping subdomains along with a partition of unity. A
partition of unity relies on a matrix Ri that restricts Ω to Ωi, the matrix associated with the
subdomain Ωi, and a set of indices N split into N subsets such that

N =

N⋃
i=1

Ni. (2.8)

This partition leads to the following property

I =

N∑
i=1

RTi DiRi, (2.9)

where I is the identity matrix.
An overlapping decomposition of Ω is equivalent to a partition of a set of indices. In the

following, we focus our discussion on one level of overlap. Consider a partition that satisfies
Equation (2.8). Suppose that ∀i, j ∈ {1, . . . , N}, i 6= j,Ni ∩ Nj . That is, two subdomains Ωi
and Ωj are disjoint. Let N δ=1

i be the set of indices of the subdomain Ni with its direct neighbors,
corresponding to one level of overlap. The method then defines Ri as a restriction matrix from
N to N δ=1

i . It follows that the Additive Schwarz Method used as preconditioner is defined as

M−1
ASM =

N∑
i=1

RTi (RiAR
T
i )−1Ri. (2.10)

However, the overlapping techniques mean by definition that some indices ofN belong to more
than one subdomain. As a consequence, gluing together the indices may perturb the solution.
To solve this, the Restricted Additive Schwarz (RAS) method defines Di as the diagonal matrix
related to N δ=1

i . The coefficients of Di can be computed following mainly two strategies. The
first one can be seen as boolean, where the indices of Ni in Di are 1, and 0 otherwise. That is,
when the index belongs to a neighbor for the considered subdomain, its contribution into the
solution vector is discarded. The other strategy counts the number of subdomains that share the
same index in N . That is, for j ∈ N , mj = {∀i ∈ {1, . . . , N}, j ∈ Ni}. This leads to defining
Di as (Di)jj = 1/mj , with j ∈ Ni. It follows that the RAS preconditioner is defined as

M−1
RAS =

N∑
i=1

RTi Di(RiAR
T
i )−1Ri. (2.11)

In the previous explanation, δ = 1 corresponds to one level of overlap i.e., the direct neighbors
of the subdomain. It follows that δ+1 is the overlap given by δ and the neighbors of this overlap.
The performance of both versions of Additive Schwarz preconditioners is related to the size of
the overlap. Thus, when δ increases, the preconditioner tends to reduce the number of iterations
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to converge toward the solution. Note that the Block Jacobi preconditioner corresponds to the
special case of RAS with δ = 0, i.e. no overlap.

In the last few decades, optimized Schwarz methods (OSM) have been designed, as J. L.
Lions’ algorithms, where the transmission condition is more sophisticated. Instead of solving
a Dirichlet boundary value problem, OSM solves a Robin boundary value problem. For more
details, see (Lions et al., 1988; Dolean et al., 2015; Haferssas et al., 2017).

2.1.2 Incomplete LU preconditioners
The last type of preconditioner that we describe in this chapter is based on the Incomplete LU
factorization of A. This class of preconditioners is suitable for general matrices and its memory
consumption can be monitored in different ways. Therefore, variants of ILU preconditioners have
been developed based on how the fill-in during the factorization is handled. We first present the
LU decomposition in its most simple way, i.e. without permutation. Then we focus on the
variants ILU(0), ILU(k), ILU_TP and iterative ILU.

The LU factorization of a square matrix A of dimension n×n is a Gaussian elimination process
such that A = LU , where L is a unit lower triangular matrix, and U is an upper triangular matrix.
As presented in Algorithm 2.1, the complete factorization of the given A into LU is processed as
follows. Note that the MATLAB functions triu, tril, and diag (Lines 10, 11) return the upper
triangular part, lower triangular part, and diagonal elements of A, respectively. The main issues
in Algorithm 2.1 are the fill-in induced by the update in line 6, and the stability induced by the
division of a small pivot in line 4. The choice of a good pivot is the most important aspect in
LU factorization. However, in the following, we are interested in the fill-in aspect, that leads to
several variants of ILU preconditioners. Nevertheless, the factorization of A is performed in-place
so that the U factor is the upper triangular of the processed A, and the L factor is the lower
triangular part of the processed A with diagonal elements equal to 1.

Algorithm 2.1 LU_factorization(A)

Input: A ∈ Rn×n the square matrix to factor
Output: L the lower triangular matrix,

U the upper triangular matrix
1: Let n be the dimension of A
2: for i = 2 to n do
3: for k = 1 to i− 1 do
4: aik = aik/akk
5: for j = k + 1 to n do
6: aij = aij − aikakj
7: end for
8: end for
9: end for

10: U = triu(A)
11: L = tril(A)− diag(A) + I

When the matrix A is sparse, the fill-in that occurs in the factors L and U is evaluated as the
ratio nnz(L+U)/nnz(A), where nnz(A) is the number of non-zero coefficients in the matrix A.
The fill-in of the LU factorization depends on the structure of AT +A. This observation can lead
the factors to be so dense that they cannot fit in memory. The need of incomplete factorizations
has, therefore, appeared to address this issue. The first incomplete factorization is known as the
incomplete Cholesky factorization used as preconditioner in CG by J.A. Meijerink and H.A. Van
Der Vorst in (Meijerink et al., 1977).
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The Gaussian elimination algorithms are strongly sequential, by nature. As a consequence,
Algorithm 2.1 offers poor parallelization in practice. Many types of research and reformulations
tend to improve the parallelism, as SuperLU (Li, 2005). However, the communication aspect
is often neglected. Indeed, the cost of communication greatly exceeds the cost of arithmetic
operations on current and future architectures. Some communication avoiding algorithms address
this issue. One of the most efficient is the Communication-avoiding LU (CALU) developed by
L. Grigori et. al (Grigori, J. W. Demmel, et al., 2011), which performs the optimal amount of
communication to compute an LU decomposition with partial pivoting. The method splits the
matrix A into panels and iterates over them. At each iteration, the algorithm uses TSLU , a tall
and skinny LU factorization to find k pivots. The k pivots are factored and used to update the
trailing matrix. The TSLU algorithm is a communication optimal algorithm that uses a flat or
binary tree to perform a tournament pivoting and selects k pivots.

ILU(0) factorization

The simplest way to handle the fill-in in the factors is to discard all coefficients that were zero
in the given matrix A. That is, an additional test is added in Algorithm 2.1, in the most inner
loop. The update, line 6 is performed only if aij was already a non-zero in the given A. Thus,
the sparsity pattern of L + U is the same as A. However, the 2-norm of the residual matrix
R = A−LU defines how incomplete the factorization is, and shows that ILU(0) is the most basic
incomplete factorization.

ILU(k) factorization

An extension of ILU(0) consists in handling the fill-in, based on a geometrical aspect. This
variant is named ILU(k), where k corresponds to a distance in the graph associated with A. Let
G be the graph of A, and i and j be two vertices of G, which have a unique number, usually
the associated row index. During the update in Algorithm 2.1, line 6, the entry aij is added in
A if there exists a path from the vertex i to the vertex j going through vertices numbered lower
than both i and j. This condition replaces the test on the sparsity pattern of A introduced by
ILU(0). It follows that the factorization of A using ILU(k) splits into two phases for performance.
The first phase is named symbolic, where only the sparsity pattern of the L and U factors is
computed. Then the second phase, named the numerical one, computes the coefficients of both
factors. This offers the flexibility to determine the storage for L and U once only, based on the
sparsity pattern of A. It follows that when an application generates several matrices with the
same sparsity pattern, only the numerical phase is performed for each matrix. When the level
of fill increases, the fill-in increases and the norm of the residual matrix R = A− LU decreases.
Note that when k = n, the returned factors correspond to the factors returned by Algorithm 2.1.
Moreover, when k = 0, the algorithm is equivalent to the ILU(0) factorization presented above.

Dual-Threshold ILU factorization

Other variants of ILU are based on the numerical values of A. Saad introduces in (Saad, 1994)
a variant referred to as ILUT(p,τ) for Dual-threshold ILU factorization. The key idea is to drop
elements in L if they are less than a threshold, and to keep the p largest elements in both L and
U . The update of Algorithm 2.1 is presented in Algorithm 2.2.

Compared to the ILU(k) variant, the sparsity pattern of L and U cannot be predicted or
computed prior to the numerical phase. The behavior of this preconditioner depends on two
parameters that can be hard to tune. In practice, the parameter τ may vary in the range
{1e − 3, 1e − 6}. Although the 2-norm of the residual matrix R = A − LU is smaller than for
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ILU(k), experimental results have shown that the fill-in in the factors is so large that the time
to apply the preconditioner is not negligible.

Algorithm 2.2 ILUT_factorization(A, p, τ)

Input: A ∈ Rn×n the square matrix to factor,
p the maximum number of elements to store in a row of L and in a column of U ,
τ the threshold to apply on the element of L

Output: L the lower triangular matrix,
U the upper triangular matrix

1: Let n be the dimension of A
2: Let w a vector of 0 of size n
3: for i = 2 to n do
4: w ← A(i, 1 : n)
5: for k = 1 to i− 1 do
6: if aik 6= 0 then
7: Compute aik = aik/akk
8: Let τi = τ ∗ ‖A(:, i)‖2 be the threshold of i-th row of the given A.
9: if aik 6= 0 then

10: w(k + 1 : n) = w(k + 1 : n)− w(k) ∗ U(k, k + 1 : n)
11: end if
12: end if
13: end for
14: Keep in w the p largest coefficients
15: L(i, 1 : i− 1) = w(1 : i− 1)
16: U(i, i : n) = w(i : n)
17: Reset w to 0
18: end for
19: U = triu(A)
20: L = tril(A)− diag(A) + I

Asynchronous iterative method for ILU factorization

A recent new approach to compute the Incomplete LU factorization has been developed by E.
Chow in (Chow et al., 2015). The method is based on the following property, sustained by
Proposition 10.4 in (Saad, 2003):

(LU)ij = aij , (i, j) ∈ S, (2.12)

where (LU)ij is the entry (i, j) located in row i and column j of the incomplete LU factorization,
and S is a set of entries that define the sparsity pattern of the ILU factorization. The key idea
is to consider the problem of factorizing a matrix as a set of equations to solve. The Equation
(2.12) can be rewritten as a set of equations.

min(i,j)∑
k=1

likukj = aij , (i, j) ∈ S. (2.13)

The Equation (2.13) leads to solving |S| unknowns with |S| equations, where |S| denotes the
cardinality of S. These last non-linear equations can be solved by using a fixed-point iteration
such that, at iteration p, xp+1 = G(xp), where x is the unknown vector and G is the system
composed of these equations. Therefore, each component of xp+1 can be computed in parallel.
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The method is presented in Algorithm 2.3 that iterates over all entries in S, and computes the
next value of the coefficients of L and U . The sweep corresponds to the replacement of xp by
xp+1 in the fixed-point iteration. This approach offers a fined-grained parallelism since the set of
equations can be easily divided into subsets, well-balanced, and distributed over a large number
of workers. One of the most interesting aspects of the method is that it is based on the set S.
That is, the pattern of the L and U factors can be given by any methods. Thus, if the symbolic
phase of the ILU(k) approach is used to form S, the returning L and U factors are expected
to be similar to the ones returned by ILU(K). Furthermore, the threshold based ILU can also
be applied during the iterations. In fact, the algorithm offers enough flexibility to update the
solution between two sweeps. For much more details, see (Chow et al., 2015) and references
therein.

Algorithm 2.3 Fined-grained Parallel Incomplete LU factorization
1: for sweep = 1, 2 to convergence do
2: for (i, j) ∈ S do
3: if i > j then

4: lij =

(
aij −

j−1∑
k=1

likukj

)
/uij

5: else

6: uij =

(
aij −

j−1∑
k=1

likukj

)
7: end if
8: end for
9: end for

2.2 Rank revealing and low-rank approximation
From Principal Component Analysis (PCA) to Deep Neuronal Network (DDN), through precon-
ditioners, an increasing number of applications require a low-rank factorization. In this section,
we are interested in computing the rank of a matrix A as well as its low-rank approximation.
The rank k of a matrix A ∈ Rm×n is defined as the smallest integer such that A can be factored
as

A = XY, (2.14)

where X ∈ Rm×k, and Y ∈ Rk×n. From this definition, the low-rank approximation of a matrix
A, with an accuracy τ , is defined as any matrix B such that

‖A−B‖ ≤ τ, (2.15)

where ‖‖ can be any norm. In the special case of 2-norm, Equation (2.15) leads to that the optimal
rank-k approximation of A is given by the Singular Value Decomposition (SVD), (Eckart et al.,
1936). This decomposition can be written as

A = UΣV T =

n∑
i=1

σiuiv
T
i , (2.16)

where U =
[
u1, u2, . . . , un

]
and V =

[
v1, v2, . . . , vn

]
have orthonormal columns, and

Σ is a diagonal matrix whose coefficient, diag(Σ) =
[
σ1, σ2, . . . , σn

]
, are the singular values

of A sorted in a decreasing order. In the context of low-rank approximation, a truncated version
of the Singular Value Decomposition can be easily extracted from Equation (2.16). Thus, the
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truncated Singular Value Decomposition considers only the first k columns/rows of the factors
in Equation (2.16). That is, the matrix UkΣkV

T
k is the rank-k approximation of A returned by

the truncated SVD algorithm, so that

‖A− UkΣkV
T
k ‖2 = σk+1. (2.17)

Yet, this method is well-known to be costly and poorly parallel. Less expensive methods have then
been studied as Lanczos methods (Lanczos, 1950) or Rank Revealing QR and LU algorithms.
However, the Lanczos methods require too much communication. In the following, we first focus
on the improvement of the SVD algorithm by using Randomized approach. Then, we give details
of the Rank Revealing QR and LU algorithms.

2.2.1 Randomized algorithms

In the recent years, randomized methods were introduced to compute low-rank approximations
of dense and sparse matrices. These methods are designed for high performance computing on
modern architectures. The key idea is to multiply the matrix with a tall and skinny matrix so
that the dimension of the resulting matrix is much smaller than the dimension of the original
matrix. These methods rapidly became popular because of their ability to accelerate existing
costly algorithms (Woolfe et al., 2008; Rokhlin et al., 2010). In that context, the most accurate
algorithm to compute a low-rank approximation is the Singular Value Decomposition. The
proposed solution is to mix randomized methods with the truncated SVD. This corresponds to
generating a random matrix G, and then uses it to compute AG in order to reduce the size of the
problem. Then the truncated Singular Value Decomposition of this later matrix, as in Equation
2.17, is performed at a reduced cost compared to the original algorithm.

Algorithm 2.4 shows that this procedure is easy to implement, has a very efficient arithmetic
intensity, with a minimum communication. The algorithm takes as input the matrix A to fac-
torize, k the requested rank for the factorization, and p the number of additional columns to
generate in G. This algorithm returns the matrix B = (QUk)ΣkV

T
k . Halko et. al. have shown

in (Halko et al., 2011) that the matrix B can be obtained with a bound ‖A − B‖2 = O(σk+1),
associated with a failure probability of 5p−p.

Algorithm 2.4 RandomizedSampling(A, k, p)
Input: A a sparse matrix of dimension n× n,

k the required rank of the factorization,
p the number of additional columns to generate in G

Output: B = (QUk)ΣkV
T
k the singular value decomposition of A

1: Generate a random matrix G of dimension n× (k + p)
2: Compute QR = AG
3: Compute the Singular Value Decomposition of QTA
4: Compute UkΣkV

T
k , the truncated matrices obtained from Equation (2.16)

A better improvement of randomized algorithms is the Randomized power method, detailed
in (Gu, 2015). The update algorithm, presented in Algorithm 2.5, takes in addition to the
parameters of Algorithm 2.4, a parameter q corresponding to the number of products AAT that
are performed, line 2.
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Algorithm 2.5 RandomizedPowerMethod(A, k, p q)
Input: A a sparse matrix of dimension n× n,

k the required rank of the factorization,
p the number of additional columns to generate in G,
q the power for the method

Output: B = (QUk)ΣkV
T
k the singular value decomposition of A

1: Generate a random matrix G of dimension n× (k + p)
2: Compute QR = (AAT )qAG
3: Compute the Singular Value Decomposition of QTA
4: Compute UkΣkV

T
k , the truncated matrices obtained from Equation (2.16)

2.2.2 Rank revealing factorizations

Alternatively to the Singular Value Decomposition of a matrix A, rank revealing algorithms have
been targeted. This class of algorithms computes a rank-k factorization of A with a complexity of
O(mnk)� mn2 lower than the complexity of the SVD algorithm when k � n. In the following,
we give details of the most common rank revealing QR and LU factorization algorithms.

Rank Revealing QR

We first introduce the QR factorization with Column Permutations of a matrix A ∈ Rm×n of
the form

APc = QR = Q

[
R11 R12

R22

]
, (2.18)

where Q ∈ Rm×m is an orthogonal matrix, R11 ∈ Rk×k is an upper triangular matrix, R12 ∈
Rk×(n−k), and R22 ∈ R(m−k)×(n−k). This factorization is said rank revealing (Chandrasekaran
et al., 1994; Hong et al., 1992) if the following condition is satisfied

σmin(R11) ≤ σk(A)

p(k, n)
, σmax(R22) ≤ σk+j(A)p(n, k), (2.19)

where p(n, k) is a low degree polynomial in k and n. This algorithm can reveal the rank of A but
may not be stable enough because of the elements of R−1

11 R12. To address this problem, a strong
Rank Revealing QR factorization has been developed by M. Gu in (Gu and Eisenstat, 1996).

Theorem 1. (Gu and Eisenstat (Gu and Eisenstat, 1996)) Let A be an m × n matrix and let
1 ≤ k ≤ min(m,n). For any given parameter f > 1, there exists a permutation Pc such that

APc = QR = Q

[
R11 R12

R22

]
, (2.20)

where R11 is k × k and
(R−1

11 R12)2
i,j + ω2

i (R11)χ2
j (R22) ≤ f2, (2.21)

for any 1 ≤ i ≤ k and 1 ≤ j ≤ n − k, where χj(R22) denotes the 2-norm of the j-th column of
R22, and ωi(R11) denotes the 2-norm of the i-th row of R−1

11 .

The inequality (2.21) bounds the singular values of R11 and R22 as in a rank revealing
factorization, while it also bounds the absolute values of R−1

11 R12.
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Theorem 2. (Gu and Eisenstat (Gu and Eisenstat, 1996)) Let the factorization in Theorem 1
satisfy inequality (2.21). Then

1 ≤ σi(A)

σi(R11)
,
σj(R22)

σk+j(A)
≤
√

1 + f2k(n− k), (2.22)

for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m,n)− k.

In the parallel case, both algorithms are not communication optimal. Thus, the communica-
tion avoiding Rank Revealing QR factorization (CARRQR) has been introduced in (J. Demmel,
Grigori, Gu, et al., 2013) to compute a rank revealing factorization of a matrix A. This algorithm
is a block algorithm that selects k columns from A, permutes them to the leading positions, and
computes k steps of a QR factorization without pivoting. Then the algorithm iterates on the
trailing matrix. The k columns are selected by using a tournament pivoting called the QR factor-
ization with Tournament Pivoting (QRTP). Note that the communication optimality is handled
similarly as in CALU algorithm. The CARRQR factorization satisfies, for j = {1, . . . , n − k},
the following bound

χ2
j (R

−1
11 R12) + (χj(R22)/σmin(R11))2 ≤ F 2

TP , (2.23)

where χj is the norm of the j-th row of the given matrix. In this, FTP depends on k, f , n, the
type of the tree used in QRTP, and the number of iterations of CARRQR.

This leads to the following theorem.

Theorem 3. Assume that there exists a permutation Pc for which the QR factorization

APc = QR = Q

[
R11 R12

R22

]
, (2.24)

where R11 is k × k and satisfies (2.23). Then

1 ≤ σi(A)

σi(R11)
,
σj(R22)

σk+j(A)
≤
√

1 + F 2
TP (n− k), (2.25)

for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m,n)− k.

Rank Revealing LU

Factorizing a matrix A using the QR factorization is not efficient in terms of computation and
memory consumption in the sparse case. Since R is the Cholesky factor of ATA, it is expected
to be dense and even denser than the LU factorization. Thus using the Rank Revealing QR
algorithm is not suitable for sparse large matrices. In (Pan, 2000), C.-T. Pan has proved the
existence of a Rank Revealing LU factorization. He shows the Schur complement factorization is
equivalent to a Generalized LU(k) factorization assuming there always exist permutation matrices
Γ1 and Π1 for any matrix A11 ∈ Rk×k such that Γ1A11Π1 = L11U11. Its main result is presented
in the following theorem.

Theorem 4. (C.T Pan (Pan, 2000)) For a matrix A ∈ Rn×n and any integer k(1 6 k < n),
there exist permutation matrices Γ and Π such that

ΓTAΠ ≡
[
B11 B12

B21 B22

]
=

[
Ik 0
Z In−k

] [
B11 B12

0 U22

]
(2.26)
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where Z = B21B
−1
11 , U22 = B22 − ZB12 and

σk(A) > σmin(B11) >
1

k(n− k)µ2 + 1
σk(A) (2.27)

σk+1(A) 6 ‖U22‖2 6 (k(n− k)µ2 + 1)σk+1(A) (2.28)

Similarly to the Rank Revealing QR factorization, this algorithm is not communication opti-
mal. Thus a variant named Communication avoiding LU factorization with panel rank revealing
pivoting (CALU_PRRP) has been developed in (Khabou et al., 2013). This algorithm, based
on the Strong Rank Revealing QR factorization, is more stable, especially on pathological cases.
Moreover, it also uses a tournament pivoting strategy to minimize communication.

2.3 Computer aspect

2.3.1 Half a century of processor improvement

Moore stated in (Moore, 1965) that the number of components in a single silicon chip, i.e., a
processor, will be doubling every year. A consequence of increasing the number of components
in a chip was that the operating frequency could be increased while the power consumption stays
the same, leading to better performance. In early 1970, vector processors were introduced to
process several data at a time. The hyperthreading feature introduced by Intel 2002 tended to
use a core more efficiently so that two threads were executed "quasi-"simultaneously on it. The
Moore’s law held until 2005. At that time, the processors reached the energy wall, meaning that
increasing the frequency would correspond to a dissipative energy equivalent to a nuclear reactor.
The vendors then started increasing the number of cores on a chip instead of the frequency. This
brought many changes especially in the management of the memory and led to many different
architectures. The memory was then accessible either with constant time, denoted by Uniform
Memory Access (UMA), or by a non-uniform way, denoted by Non-Uniform Memory Access
(NUMA). In the latter case, the cores were gathered into an island, also known as a NUMA
node, where each core owns a small memory exclusively, and shares larger memory. Several
levels of memory, known as cache, were used to improve performance so that the access to the
levels 1 and 2 (L1 and L2) was faster than the access to the third level (L3) or the Random
Access Memory (RAM). In 2008, Intel introduced in the Advanced Vector eXtensions (AVX)
instruction set that manipulates registers of size 128 bits, where a single instruction is applied on
multiple data (SIMD), and was further improved with AVX2 (256bits) and then with AVX-512.
In 2011, the Fused Multiply-Add unit (FMA) was another improvement for the performance
of a core since the multiplication of two floats and one addition is performed per cycle. The
theoretical peak of performance, i.e., the number of floating point operations per seconds, of
a processor thus became a function of the frequency, the number of floats in a register, and
the number of FMA units. The Intel Pentium 4, released in 2004, had a base frequency of
3.46 GHz and had implemented SSE2 instruction set extensions that yield a theoretical peak of
3.46×2 = 6.92 GFlop/s in double precision. The Intel Xeon 8176, Skylake architecture, released
in 2017, consists of 2 NUMA nodes, 14 cores each, with a base frequency of 2.10 GHz (turbo
frequency up to 3.8GHz) and 2 FMA units. In (Intel, 2018), the frequency of the processor
depends on the number of active cores and the instructions set used. Thus, its theoretical peak
performance using AVX2 instructions set equals to 1.7× 2× 8× 14× 2 = 0.76 TFlop/s and up
to 1.16 TFlop/s using AVX-512, both in double precision.
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2.3.2 The bottleneck of future architectures
In the 90’s, a natural way to improve the performance of a machine was to gather processors
which are connected through a network. In the 2000’s, the machines became more complex with
the use of Graphic Processing Units (GPU) and Accelerators/co-processors. In 2007, only one
supercomputer having such nodes has been recorded in the top500 list. Ten years later, more than
100 machines on the list consist of heterogeneous nodes. Although the most powerful machines in
the world in June 1993 had a maximum of 2048 cores, we are now facing machines with more than
10 million cores. The current best machine, Summit hosted by Oak Ridge National Laboratory,
is composed of 4 608 nodes, for a total of 2 282 544 cores, where the nodes are connected through
a non-blocking fat-tree topology using dual-rail Mellanox EDR Infiniband. Several networking
communication standards as Ethernet, Omnipath, Fiber channel and Infiniband are used by
supercomputers to handle the communication between nodes. Third of the top 500 machines are
using Gigabit Ethernet standard, mainly led by industry segment. In that case, communication
cost is more important.

Although many efforts increased the Flops by a factor of 102 in 10 years (from Rpeak = 1.4
PFlop/s in 2008 to Rpeak = 187 PFlop/s in 2018), the communication is more and more a
bottleneck. Table 2.1 presents the factor of improvement between the Petascale machine in 2009
and the expected exascale machine. We notice that the memory latency is slightly improved
compared to the system peak. Unfortunately, the factor of improvement of the latency does
not scale as the system peak. In the last 50 years, several topologies have been designed for
mainly two purposes, first a low diameter and second a high path diversity. Table 2.2 presents
the diameter complexity of the common topologies used. For a comparison of the performance
of different topologies, see (Besta et al., 2014).

The machines becoming more and more complex with an increasing communication cost lead
the HPC community to redesign algorithms to minimize the communication as well as using new
paradigms of programning as task-based models.

Petascale systems Predicted exascale systems Factor of improvement

System peak 2× 1015 1018 ∼ 103

Node Memory bandwidth 25 GB/s 0.4-4 TB/s ∼ 10-100
Interconnect bandwidth 3.5 GB/s 100-400 GB/s ∼ 100
Memory latency 100 ns 50 ns ∼ 1
Interconnect latency 1µs 0.5µs ∼ 1

Table 2.1 – Evolution of the principal indicators between Petascale systems and the predicted exascale
systems, credit (Carson, 2017)

Topology Linear Array Ring Torus Binary tree Hypercube Fully connected
diameter N − 1 N/2

√
N log(N) log(N) 1

Table 2.2 – Complexity of different topologies with respect to the diameter of the network.
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We recall that many scientific problems require the solution of sparse linear systems of the form

Ax = b, (3.1)
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where A ∈ Rn×n is a general sparse matrix and b ∈ Rn is a vector. For very large systems,
iterative methods, as Conjugate Gradient (CG) (Hestenes et al., 1952) or as Generalized Mini-
mum Residual (GMRES) (Saad and Schultz, 1986), are widely used to solve Equation 3.1. The
efficiency of iterative methods is measured by the number of iterations performed to compute
the solution. The convergence of iterative methods depends on the condition number of A (J.
Demmel, 1997). To accelerate the convergence, instead of solving the original system Ax = b, it
is common to solve M−1Ax = M−1b, where M ∈ Rn×n is called a preconditioner. M is consid-
ered as a good preconditioner when M is an approximation of A, M−1A has a smaller condition
number than A, and Mx = b is easy to solve. Preconditioners fall in general in two categories:
geometric preconditioners that take into account properties of the problem, and algebraic precon-
ditioners that have no assumption on the problem. Among algebraic preconditioners, incomplete
factorizations of A such as Incomplete Cholesky for Symmetric Positive Definite matrices, or
Incomplete LU for general matrices, are common methods to compute M . In this chapter we
consider general matrices, and we focus on the incomplete LU factorization of A, denoted ILU,
such that M = LU , where L and U are lower and upper triangular factor of A, respectively.
We further refer the decomposition of the matrix M = LU to as an ILU-based preconditioner.
The simplest ILU is the so-called ILU(0) incomplete factorization, where L and U have the same
nonzero structure as the lower and upper triangular part of A, respectively. It means that during
the ILU(0) factorization of A, only existing entries of A are updated. However, this factorization
can lead to a poor gain for the iterative solver. Therefore, several variants have been designed
and can be grouped into two categories. The first category is composed of the incomplete LU
factorizations based on a numerical threshold as ILU(τ), where computed entries smaller than
τ are dropped during the factorization. The second category is composed of the incomplete LU
factorizations based on the structure of A as ILU(k), where k is the level of fill-in. There also
exist mixed approaches such as ILUT (Saad, 1994), an incomplete factorization which combines
a limitation of the fill-in and a numerical threshold criterion. Incomplete LU factorizations based
on numerical threshold are known to be more expensive than the incomplete factorizations based
on the structure of A. Similarly to the classical LU factorization, the incomplete LU factoriza-
tions are difficult to parallelize and are intensively studied (Li, 2005; Amestoy et al., 2001). For
distributed memory machines, communication cost and synchronization limit parallel efficiency
of such factorizations. To enhance efficiency, overlapping techniques are used in Restricted Ad-
ditive Schwarz (RAS) (Cai et al., 1999a) or s-step methods (Carson et al., 2013). The purpose
is to duplicate some data in order to reduce communication. A class of algorithms, called Com-
munication Avoiding, aims to redesign existing algorithms (J. W. Demmel, Grigori, Gu, et al.,
2015; J. W. Demmel, Grigori, and Xiang, 2008; J. W. Demmel, Grigori, M. Hoemmen, et al.,
2008). In this chapter, we propose a Communication-Avoiding ILU(k) preconditioner, denoted
as CA-ILU(k). Considering a block rows of A, we duplicate additional rows of A on the processor
that the block rows belong to, such that no communication occurs during the factorization of the
block row. The additional rows form the overlap of CA-ILU(k). Since the size of the overlap can
be large, we introduce a reordering of A to reduce the size of the overlap. We first present our
algorithm to perform the ILU(k) factorization of A in parallel without communication. Then we
study the algorithmic complexity of CA-ILU(k) used as a preconditioner and how its overlap can
be bounded in the case of limited memory. We further show that there is a relation of inclusion
between the overlap of RAS and the overlap of CA-ILU(k). In the experimental results section,
the parallel runtime and the convergence of CA-ILU(k) are compared with those of block Jacobi
and RAS preconditioners on several problems and for a number of processors increasing from 16
to 512. Moreover, we study the evolution of the overlap of CA-ILU(k) with respect to k.
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3.1 Notations
Given a square matrix A of dimension n×n, ai,j represents the element of A at row i and column
j, nnz(A) represents the number of nonzeros of the matrix A. Using MATLAB notation, A(:, j)
and A(i, :) represent the j’th column and i’th row of A, respectively. Given a vector e of size n,
e(i) is the i’th entry of the vector. The concatenation of two vectors e1 and e2 of size n1 and n2,
respectively, gives another vector e = [e1; e2] of size n1 + n2. The notation A(e1, e2) represents
the matrix obtained after the permutation of the rows of A using e1 and the permutation of
the columns of A using e2. If the size of a vector used to permute is smaller than the size of
the matrix to permute, then the vector also extracts the concerned rows or columns to permute.
Note that in the chapter, we use b, e, f , w, x, y and z to represent a vector. We define a set of
indices I = {i ∈ N} and two operations on I, max(I) and min(I) that return the largest index
and the smallest index in the set, respectively. The directed graph of A, denoted by G(A) is
defined as (E(G(A)), V (G(A))), where V (G(A)) = {vi | 1 ≤ i ≤ n} is the set of vertices that
correspond to the rows (or columns) of A, and E(G(A)) is a set of directed edges defined as

E(G(A)) = {(vi, vj) | 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j, ai,j 6= 0}.

Throughout the chapter, we denote by vi ∈ V (G(A)) the vertex, associated with the i’th row (or
column) in A, that belongs to the set of vertices of the graph of A. The number of elements in a
set α is noted |α| and thus |V (G(A))| = n. A value is associated with each edge of the graph. In
the case of the matrix A, we associate each edge (vi, vj) with the entry ai,j and so (vi, vj) ≡ ai,j .
Note that in the chapter, we also use t, u and v, to represent undistinct vertices that belong to
V (A). We use α, β, γ, δ, R, L and C to represent a set of vertices.

We next introduce some definitions.

Definition 5. Given a directed graph Ω, a subdomain Ωi of Ω is a graph defined as follows

V (Ωi) ⊆ V (Ω)

and
E(Ωi) = {(u, v) | u ∈ V (Ωi), v ∈ V (Ωi), (u, v) ∈ E(Ω)}.

Definition 6. Given a directed graph Ω and two subdomains Ω1 and Ω2 of Ω, the union of the
two subdomains denoted Ω1 ∪ Ω2 is defined as follows

V (Ω1 ∪ Ω2) = V (Ω1) ∪ V (Ω2) ⊆ V (Ω)

and

E(Ω1 ∪ Ω2) = E(Ω1) ∪ E(Ω2)

∪ {(u, v) | (u ∈ V (Ω1) ∧ v ∈ V (Ω2)) ∨ (u ∈ V (Ω2) ∧ v ∈ V (Ω1)), (u, v) ∈ E(Ω)}
(3.2)

Thus, if we have Ω1 = G(A(1 : 10, 1 : 10)) and Ω2 = G(A(11 : 20, 11 : 20)), then Ω1 ∪ Ω2 =
G(A(1 : 20, 1 : 20)).

Definition 7. Given a directed graph Ω and p subdomains Ωi of Ω (i = {0, . . . , p − 1}), the
set {V (Ω0), . . . , V (Ωp−1}} of disjoint subsets of V (Ω) is called a partition of Ω if ∀i, V (Ωi) 6= ∅
and

⋃
i V (Ωi) = V (Ω).

Definition 8. Given a graph Ω and a set of indices I (Ω) = {1, . . . , n} associated with Ω, each
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vertex u ∈ V (Ω) is numbered with an index of I (Ω) such that

∀v ∈ V (Ω), I (u) 6= I (v) =⇒ u 6= v.

The indices of I (Ω) in the definition above are given by the row indices of A. Let x(i) be
the entry at position i of a vector x, and u its associated vertex in A such that I (u) = i. The
action of reordering the vertex u in Ω consists of changing the value returned by I (u). From the
matrix point of view, it corresponds to changing the position of the entry x(i) from i to j and
so permuting the i’th row with the j’th row and the i’th column with the j’th column of A. As
an example, let Ω be a graph of a matrix A and I (Ω) = {1, 2}. Let u and v be two vertices of
V (Ω) with I (u) = 1 and I (v) = 2. Suppose that the reordering of vertices u and v such that u
is numbered with the highest index in I (Ω), we obtain I (u) = 2 and I (v) = 1. This reordering
corresponds to a permutation vector e = [2, 1] applied on the rows and columns of A, denoted
also as A(e, e).

Definition 9. Given a directed graph Ω, partitioned into p subdomains Ωi and the set of indices
I (Ω) associated with Ω, I (Ω) is partitioned into p disjoint subsets such that ∀Ωi, I (Ωi) 6= ∅ and

I (Ω0) ∪ I (Ω1) ∪ . . . ∪ I (Ωp−1) = I (Ω) .

Each subset of indices I (Ωi+1) (i > 0) is defined recursively as

I (Ωi+1) = {max(I (Ωi)) + 1, . . . , max(I (Ωi)) + |V (Ωi+1|}

where max(I (Ωi)) is the largest index of I (Ωi) and the base case I (Ω0) = {1, . . . , |V (Ω0)|}.
As a consequence of Definition 9, given two subdomains Ωi and Ωj with j > i, we have

∀l ∈ I (Ωj) , max (I (Ωi)) < l

A path in a graph is a sequence of edges (v1, v2), (v2, v3), . . . , (vm−1, vm), with m ≤ n, where
all edges and all vertices are distinct. The vertices v1 and vm are the initial vertex and the final
vertex, respectively, of this path. The number of edges m − 1 defines the length of the path.
Given a directed graph Ω and two vertices u, v ∈ V (Ω), vertex v is adjacent to vertex u if there
exists a path from u to v in Ω of length one ((u, v) ∈ E(Ω)). We denote the set of adjacent
vertices of u in Ω by N 1

Ω (u). The set of adjacent vertices of a set of vertices α ⊆ V (Ω) in Ω is

N 1
Ω (α) = {v ∈ V (Ω) \ α | ∀u ∈ α, (u, v) ∈ E(Ω)} (3.3)

where V (Ω) \ α is a set of vertices obtained by removing the vertices of α from V (Ω). Given a
directed graph Ω and two vertices u, v ∈ V (Ω), the vertex v is reachable from the vertex u if
there exists a path of length k in Ω from u to v, with k > 0.

The set of reachable vertices from u in Ω through paths of length at most k is referred to as
N k

Ω (u). Similarly, the set of reachable vertices through paths of length at most k from a subset
of vertices α ∈ V (Ω) in Ω is

∀k ≥ 2, N k
Ω (α) = N 1

Ω

(
N k−1

Ω (α)
)
∪N k−1

Ω (α) . (3.4)

It follows that we have the next relation of inclusion for α ⊆ V (Ω)

∀k ≥ 1, N 1
Ω (α) ⊆ N k

Ω (α) ⊆ N∞Ω (α) (3.5)

where N∞Ω (α) corresponds to the set of vertices reachable through a path of any length.
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Furthermore, we define the set of reachable subdomains from the vertices of a subdomain
Ωi. Given Ω the graph of a matrix A, partitioned into p subdomains, as in Definition 7, each
subdomain Ωi has a set of reachable subdomains in Ω defined as follow

N∞Ω (Ωi) = {Ωj | j ∈ {0, . . . , p− 1}, j 6= i, u ∈ V (Ωi), v ∈ V (Ωj), v ∈ N∞Ω (u)}. (3.6)

As a consequence, N 1
Ω (Ωi) denotes the set of the subdomains which have at least one vertex

adjacent to a vertex of V (Ωi) in Ω.

Definition 10. Given a directed graph Ω, it can be split in two subgraphs Ω+ and Ω− such that

V (Ω+) = V (Ω−) = V (Ω),

E(Ω+) = {(u, v) | u, v ∈ V (Ω), I (u) < I (v)},

E(Ω−) = {(u, v) | u, v ∈ V (Ω), I (u) > I (v)}.

Consider a matrix A of dimension n × n and its ILU(k) factorization C = L + U − In×n,
where In×n is the identity matrix of size n × n. We denote as Ω̂ the graph of the matrix C,
where Ω̂ ≡ G(C).

Definition 11. Consider the graph Ω of a matrix A and the graph Ω̂ of its ILU(k) factor C.
Given the partition π of Ω into p subdomains as in Definition 7, Ω̂ is partitioned using π such
that for a subdomain Ω̂i we have

V (Ω̂i) = V (Ωi),

E(Ωi) ⊆ E(Ω̂i),

I(Ω̂i) = I (Ωi) .

We denote as Fk the symbolic factor matrix returned by the symbolic ILU(k) factorization
step of A. Fk stores the pattern of L+U . Each element fij represents the length of the shortest
path in G(A) from vertex vi to vertex vj going through vertices numbered lower than both I (vi)
and I (vj). Thus the value associated with the edge (vi, vj) is equal to the shortest path from
vi to vj . The value of each edge in E(Fk) corresponds to the associated entry in Fk. From
Definition 10, G(Fk)+ is the graph of the upper triangular part of Fk, which corresponds to the
factor U , that contains only edges (vi, vj) with I (vi) < I (vj) and G(Fk)− is the graph of the
lower triangular part of Fk, the factor L, that contains the remaining edges of G(Fk).

3.2 CA-ILU(k) factorization
The purpose of CA-ILU(k) preconditioner is to compute the ILU(k) factorization of a matrix
A in parallel and to apply it without communication. LU -typed factorizations are known to be
poorly parallelizable. In the row-oriented version of the ILU(0) factorization of A, the update of
row i depends on the previous rows j such that ∀j < i, ai,j 6= 0.

In parallel, the computation of the entry x(i) in Ax = b involves communication with proces-
sors where the rows associated with the adjacent vertices of vi belong to. This communication
impacts the performance of both the factorization and the application of the preconditioner. We
propose to solve this problem by gathering on the same processor the row i of A and all the
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rows j that row i depends on. This raises the problem that the size of the gathered data can
be arbitrarily large. As we show further on a 5-point stencil problem using a natural ordering,
the size of the data can be equal to the number of vertices of A. To handle this problem, we
propose to reorder A such that this size is reduced and even bounded under some criteria that
we present further.

To solve Ax = b, GMRES computes at each iteration a new vector yi+1 of the Krylov basis
by multiplying A with the previous vector yi and then by orthogonalizing it against all previous
vectors. This method is referred to as the matrix powers kernel {x,Ax,A2x, . . . , Amx} presented
in (J. Demmel, M. Hoemmen, et al., 2008). Applying a preconditioner modifies the matrix
powers kernel such that at iteration i+ 1, we compute w = M−1Ayi. The preconditioned matrix
powers kernel is presented in Algorithm 3.1. Since the orthogonalization is not relevant here, we
omit it in the algorithm.

Algorithm 3.1 preconditionedMPK(A, yi, M)
This function computes the next Krylov basis vector yi+1 by computing Ayi and then applying an
ILU -based preconditioner M .
Input: A ∈ Rn×n,

yi the i’th Krylov basis vector,
M = LU the ILU -based preconditioner, where L ∈ Rn×n and U ∈ Rn×n

1: Compute f ← Ayi /* SpMv */
2: Solve f = Lz /* Forward substitution */
3: Solve z = Uw /* Backward substitution */
Output: The vector w = U−1L−1Ayi.

Here, w is obtained by a Sparse Matrix-Vector product (SpMv), a forward and a backward
substitution required by the application of the preconditioner. The preconditioned matrix powers
kernel is parallelizable by distributing A, L and U over p processors. Solving the entry z(i)
or w(i) in the forward or the backward substitution, respectively, requires unknowns usually
distributed among other processors. Based on Theorem I in (Parter, 1961), Gilbert et al. show
in (Gilbert and Peierls, 1988) that the nonzeros of U(:, i) correspond to the reachable vertices
from vi, I (vi) = i, in G(A). This set can be found using a depth-first search or a breadth-
first search starting with vi in the graph of A. It follows that when all reachable vertices
from a set of vertices are gathered on one processor, the factorization of the set can be done
without communication. The parallel version involves communication in the three steps. Even
if communication is overlapped with computation, synchronizations occur and the efficiency of
the algorithm degrades in practice.

To call the matrix powers kernel on each subdomain without communication, we next outline
the data involved in the three steps. Looking at Algorithm 3.1 from the bottom, it starts by
solving z = Uw. To compute the entry w(i), the backward substitution needs the rows of U
corresponding to the reachable vertices of the vertex vi in Ω̂+, denoted

N∞
Ω̂+ (vi) .

The next step solves f = Lz. Similarly, the reachable vertices of the vertex vi in Ω̂− are those
whose index is lower than i, equal to N∞

Ω̂−
(vi). In addition to the computation of z(i), the

algorithm has to compute the entries of the vector z that correspond to the reachable vertices
of vi in Ω̂+. Therefore, the required data that allows us to solve w(i) from both f = Lz and
z = Uw is

N∞
Ω̂−

(
vi ∪N∞Ω̂+ (vi)

)
.
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Definition 12. Given a matrix A of size n × n, a matrix M = LU , a vector yi and the three
equations of the preconditioned matrix powers kernel f = Ayi f = Lz and z = Uw, the required
data to compute w(i), i ∈ {1, . . . , n}, is defined as the CA-ILU(k) overlap of vi and is equal to

OCAILUk (vi) = N∞
Ω̂+ (vi)

⋃
N∞

Ω̂−

(
vi ∪N∞Ω̂+ (vi)

)
.

Furthermore, the CA-ILU(k) overlap of a set of vertices α ⊆ V (A) is given by

OCAILUk (α) = N∞
Ω̂+ (α)

⋃
N∞

Ω̂−

(
α ∪N∞

Ω̂+ (α)
)
. (3.7)

In the case of removing the communication during the product Ayi, the entry f(i) needs the
adjacent vertices of vi in Ω to be computed without communication. This means the adjacent
vertices of the required data of the forward substitution step need to be added to the CA-ILU(k)
overlap. It follows that the computation of vi requires in addition to OCAILUk (α)

N 1
G(A)

(
vi ∪N∞G(L) (vi) ∪N∞G(L)

(
N∞G(U) (vi)

))
.

Definition 13. Given Ω the graph of a matrix A, partitioned into p subdomains, as in Definition
7, and the three equations of the preconditioned matrix powers kernel presented above, each
subdomain Ωi has a set of dependency subdomains denoted D (Ωi) and defined as

D (Ωi) = {Ωj | u ∈ V (Ωi), v ∈ OCAILUk (V (Ωi)) , v ∈ V (Ωj), j 6= i}

Consider the graph Ω of a matrix A and a subset of vertices α ∈ V (Ω). Consider the
LU factorization of A(I (α) , :). Gilbert shows in (Gilbert, 1994) that the required vertices to
factor the i’th row of a matrix A are the reachable vertices from the vertex associated with this
row in Ω−. Therefore, to factor A(I (α) , :) requires the set of vertices given by ω = N∞Ω− (α).
The overlap of CA-ILU(k) as presented in Definition 12 contains the required vertices to factor
A(I (α) , :) since N∞Ω− (ω) ⊆ OCAILUk (α).

We present in Algorithm 3.2 how CA-ILU(k) factors a matrix A in parallel. It takes as
input, the matrix A stored on processor 0, k the ILU parameter, π the partition of G(A) (for
example given by k-way partitioning) and ordering a boolean used to reorder each subdomain.
It returns Li and Ui the lower and upper triangular factors of A, respectively, that are stored
on processor i. The algorithm is based on two main steps that allow us to perform the same
factorization as in sequential. First, in line 5, each subdomain Ωj , returned by the partition π
applied on G(A), is reordered using CAILU_reorderDomain, Algorithm 3.5, which returns a
permutation vector ej of size equal to |V (Ωj)|. Then, the global permutation vector e, built
by the concatenation of the permutation vectors of each subdomain (e = [e0; e1; . . . ; ep−i]), is
used to permute both rows and columns of A, line 8. The reordering of each subdomain aims
to decrease the number of redundant operations performed during the numerical factorization
of the subdomain. It also reduces the memory consumption on each processor. In line 9, the
algorithm performs the symbolic factorization of A, in sequential and returns the symbolic factor
matrix Fk. This routine predicts the pattern of the L and U factors returned by the ILU(k)
algorithm. The second step calls the subroutine CAILU_addOverlap on each subdomain Ωj
which returns γj , the set of required vertices of V (Ωj) used to both factor the matrix and
apply the preconditioner locally without communication. We detail further in the chapter how
γj is obtained. Then from γj , a larger subdomain Ω̃j is created such that V (Ω̃j) = γj and
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E(Ω̃j) = {(u, v) ∈ E(Ω) | u ∈ γj , v ∈ γj}. Note that Ωj ⊆ Ω̃j . The associated matrix Ai of Ω̃i is
sent to processor i, ∀i ∈ {1, . . . , p− 1}. Therefore the numerical factorization of the associated
matrix of Ω̃i is performed locally without communication (line 20). The algorithm returns Li
and Ui the lower and upper triangular factors, respectively, on processor i. Note that their size
depends on the size of the subdomain Ωi and the size of the requested data to be computed
without communication.

Algorithm 3.2 CAILU_factorize (A, k, π, ordering)
This function computes the ILU(k) factorization of A by first reordering each subdomain Ωi, then getting their
overlap to send both to processor i and finally each processor factorizes their own local part without communica-
tion.
Input: A the whole matrix,

k the ILU parameter,
π the partitionning of A, of size p,
ordering the way that each subdomain is reordered

1: Let i be my processor rank
2: Let Ωj , j ∈ {0, . . . , p− 1} the subdomains obtained after the application of π on the graph of A
3: if i = 0 then
4: for all Ωj do
5: ej ← CAILU_reorderDomain (Ωj , Ω, k, ordering)
6: end for
7: e← [e0; e1; . . . ; ep−1] /* Concatenate vectors ej , j = 0 : p− 1 */
8: A ← A(e, e) /* Permute the matrix with e */
9: Fk ← ILU_FactorSymbolic(A, k) /* Sequential symbolic factorization */
10: for all Ωj do
11: γj ← CAILU_addOverlap (V (Ωj), G(Fk))
12: if j 6= i then
13: Let Aj be the row block submatrix of A formed by the rows whose vertices belong to γj
14: Send Aj to processor j
15: end if
16: end for
17: else
18: Receive row block Ai from processor 0
19: end if
20: [Li, Ui] ← ILU_FactorNumeric(Ai) /* Parallel numerical factorization */
Output: Li and Ui, the local lower and upper factors ,respectively, owned by processor i.

Algorithm 3.2 introduces two steps that we describe further. We first present the search of
the overlap of V (Ωi) in G(Fk) and we show through an example that the size of the overlap
can be as large as the whole domain. We then present a reordering algorithm that allows us to
reduce the size of the overlap for each subdomain.

3.2.1 Search the dependencies of a subdomain in Ω̂

In (Parter, 1961), Parter shows in Theorem I that for a linear system Ax = b, upon elimination
of the entry x(i) from the subset of equations, the new graph obtained from Ω is contained in
Ω. This results from the removal of the associated vertex vi ∈ V (Ω) to x(i) and a pair-wise
connection to all vertices which were connected to vi in Ω (see the demonstration in the paper).
Considering the case of LU factorization of A, in (Gilbert and Peierls, 1988) Gilbert et al. show
that solving the i’th equation in the graph of U requires in addition the solution of the equations
corresponding to the reachable vertices of vi in Ω̂+, N∞

Ω̂+
(vi). Then, solving the equations

associated with the set of reachable vertices of N∞
Ω̂+

(vi) in Ω̂− leads to solving the equations
of N∞

Ω̂+
(vi) in the graph of L and therefore allows us to solve the i’th equation in the graph of

L. Thus, all vertices reachable from a subdomain Ωi in a graph compose its dependencies, also
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referred to as overlap. Since we aim to make subdomains independent, CA-ILU(k) factorization
has a dependency search step on each subdomain to be fully parallel. Algorithm 3.3 presents the
procedure to get the overlap of Ωi.

Algorithm 3.3 CAILU_addOverlap (V (Ωi), Ω̂)
This function returns the union of the vertices of Ωi with its overlap, the data
needed to apply the preconditioned matrix powers kernel algorithm without communica-
tion.
Input: V (Ωi) : the vertices of the i’th subdomain of Ω,

Ω̂ : the graph of C, the factored matrix A
1: βi ← N∞Ω̂+ (V (Ωi)) ∪ V (Ωi)
2: γi ← N∞Ω̂− (βi) ∪ βi
Output: γi : the union of CA-ILU(k) overlap of Ωi with V (Ωi).

The reachable vertices of V (Ωi) in Ω̂+ are N∞
Ω̂+

(V (Ωi)) (line 1). Then, in the forward
substitution, γi is the set of reachable vertices of βi in Ω̂− union to βi (line 2). This construction
implies V (Ωi) ⊆ βi ⊆ γi.

To illustrate the application of Algorithm 3.3, we use the same example as presented in
(Grigori and Moufawad, 2015a). Consider the graph Ω of a 2D five-point stencil matrix A of size
200×200 displayed in Figures 3.1a and 3.1b. Ω is partitioned into 4 subdomains as in Definition
7, where each subdomain Ωi has a set of indices I (Ωi) as in Definition 9. Each subdomain owns
a quarter of the vertices of Ω and each vertex vj is represented by its index I (vj) ∈ I (Ω). In
both figures, the edges in E(Ω) have an implicit representation. Each vertex is connected to
its neighbors. For example, edges (v1, v2) and (v1, v11) belong to E(Ω) since vertices v2 and
v11 are neighbors of vertex v1. The difference between both figures is the numbering of the
vertices in each subdomain. In Figure 3.1a, the vertices of each subdomain are numbered using
a natural ordering whereas the same vertices in Figure 3.1b are numbered in a different way
that we present later. Figure 3.1a aims to show that the natural ordering is not appropriate
and that the vertices of each subdomain have to be reordered. We focus on Figure 3.1a and its
subdomain Ω0 represented by the solid rectangular. Consider the case of no fill-in occurs during
the symbolic factorization of A and so E(Ω̂) = E(Ω). Thus we have Ω̂ = Ω. Calling Algorithm
3.3 on vertex v50 of Ω0 proceeds as follows for computing N∞

Ω̂+
(v50) in the first step:

• it starts with N 1
Ω̂+

(v50), the search of the adjacent vertices of v50 in Ω̂+ and gets v91 and
v110.

• it restarts with v91 and v110 and searches their adjacent vertices in Ω̂+ that are not already
visited.

• it iterates until no vertex can be added.

Thus, v50 reaches in Ω1 vertices {v91, v92, . . . , v100}. Also, it reaches in Ω3 the vertices
{v110, v120, . . . , v150} and all vertices in subdomain Ω2. Finally, the vertices of Ω0 reach the
vertices of all other subdomains in Ω̂+. In this example where the vertices of each subdomain
are numbered in natural ordering, we lose all gain of the parallelization.

Consider a different ordering applied on the vertices of each subdomain as in Figure 3.1b,
where, in each subdomain, the vertices adjacent to other subdomains are numbered with the
highest indices of the subdomain and their adjacent vertices in the subdomain are numbered with
the smallest indices on the subdomain. The set of reachable vertices of v50 in Ω̂+ is N∞

Ω̂+
(v50) =
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{100, 150, 200}. The hashed rectangular in Figure 3.1b represents β0 = N∞
Ω̂+

(Ω0)∪V (Ω0) whose
size is much smaller than in the natural ordering case. Therefore, to solve this problem, we
propose to reorder each domain, taking into account the structure and properties of U and L.

     1     2     3     4     5     6     7     8     9   10   51   52   53   54   55   56   57   58   59   60
   11   12   13   14   15   16   17   18   19   20   61   62   63   64   65   66   67   68   69   70
   21   22   23   24   25   26   27   28   29   30   71   72   73   74   75   76   77   78   79   80
   31   32   33   34   35   36   37   38   39   40   81   82   83   84   85   86   87   88   89   90
   41   42   43   44   45   46   47   48   49   50   91   92   93   94   95   96   97   98   99 100
 101 102 103 104 105 106 107 108 109 110 151 152 153 154 155 156 157 158 159 160
 111 112 113 114 115 116 117 118 119 120 161 162 163 164 165 166 167 168 169 170
 121 122 123 124 125 126 127 128 129 130 171 172 173 174 175 176 177 178 179 180
 131 132 133 134 135 136 137 138 139 140 181 182 183 184 185 186 187 188 189 190
 141 142 143 144 145 146 147 148 149 150 191 192 193 194 195 196 197 198 199 200

         + ghost data for 
backward substitution

         + ghost data for 
forward substitution

(a) Natural Ordering

  13   14   15   16   17   18   19   20     2   47   97   52   63   64   65   66   67   68   69   70
  21   22   23   24   25   26   27   28     3   48   98   53   71   72   73   74   75   76   77   78
  29   30   31   32   33   34   35   36     4   49   99   54   79   80   81   82   83   84   85   86
    5     6     7     8     9   10   11   12     1   46   96   51   55   56   57   58   59   60   61   62
  38   39   40   41   42   43   44   45   37   50 100   87   88   89   90   91   92   93   94   95
138 139 140 141 142 143 144 145 137 150 200 187 188 189 190 191 192 193 194 195
105 106 107 108 109 110 111 112 101 146 196 151 155 156 157 158 159 160 161 162
113 114 115 116 117 118 119 120 102 147 197 152 163 164 165 166 167 168 169 170
121 122 123 124 125 126 127 128 103 148 198 153 171 172 173 174 175 176 177 178 
129 130 131 132 133 134 135 136 104 149 199 154 179 180 181 182 183 184 185 186

         + ghost data for 
backward substitution

         + ghost data for 
forward substitution

(b) Reordering layers with k = 0

Figure 3.1 – Difference of dependency size between the original matrix (3.1a) and the reordered matrix
(3.1b)

3.2.2 The reordering applied on each subdomain reduces the size of
the overlap

ILU(k) algorithm applied on A introduces entries in the factor matrix Fk, i.e. edges in E(G(Fk)),
following the condition that if there is a path of length at most k+1 from u to v through vertices
numbered lower than both, then fI(u),I(v) becomes a nonzero element of Fk, equal to the shortest
path from u to v, and (u, v) ∈ E(G(Fk)).

We introduce some notations. The vertices of a subdomain Ωi can be split into two subsets.
The first subset is composed of vertices that are adjacent to vertices of other subdomains. We
call it the boundary layer of Ωi, defined as

Li0 = {v | (u, v) ∈ E(Ω), u ∈ V (Ω) \ V (Ωi), v ∈ V (Ωi)}, (3.8)

where the subscript 0 represents the boundary layer. It can be rewritten as the union of adjacent
sets of vertices from other subdomains in Ωi as

Li0 =
⋃

j 6=i, j={0, ..., p−1}

N 1
Ωi∪Ωj (V (Ωj)) . (3.9)

The second subset contains the interior vertices of the subdomain. In other words, a vertex v
of a subdomain Ωi which is not in Li0, can be reached from other subdomains only through its
boundary layer. The adjacent set of vertices of the boundary layer of Ωi in Ωi forms a layer
defined as Li1 = N 1

Ωi

(
Li0
)
. Recursively, we define the k’th layer as

∀k ≥ 1, Lik+1 = N 1
Ωi

(
Lik
)
\

⋃
j={0, ..., k−1}

Lij . (3.10)

Consider the graph Ω of a matrix A, partitioned into p subdomains as in Definition 7. Let
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Ωi and Ωj be two subgraphs of Ω, with i 6= j. We note that the only way to reach a vertex
v ∈ V (Ωj) from a vertex u ∈ V (Ωi) is through a path from u to v that traverses the vertices of
the boundary layer Lj0, in Ωj . Hence, we have N 1

Ω+ (V (Ωi)) ⊆
⋃
j={i+1, ..., p−1} L

j
0.

Lemma 14. Consider the graph of a matrix A partitioned into p subdomains Ωi, as in Definition
7, where each subdomain has a set of indices I (Ωi) in the sense of Definition 9 and the vertices
of Li0 are numbered with the highest indices in I (Ωi). Consider a vertex u ∈ V (Ωi) and a vertex
v ∈ V (Ωj) \ Lj0, with j 6= i, then there is no path from u to v in the graph of A that goes through
vertices which are numbered lower than both I (u) and I (v).

Proof. Let u ∈ V (Ωi) and v ∈ V (Ωj) \ Lj0 with j 6= i be two vertices. Suppose there exists a
path from u to v in the graph of A. The numbering of the vertices of each boundary layer yields
that v is numbered lower than all vertices of Lj0. From the definition of a boundary layer, the
path from u to v goes through Lj0. Therefore, the path from u to v contains at least one vertex
numbered higher than v.

Lemma 15. Consider the graph Ω of a matrix A partitioned into p subdomains Ωi as in Def-
inition 7. Each subdomain Ωi has associated a set of indices I (Ωi) as defined in Definition 9.
Consider the graph Ω̂ of the factor matrix C defined as in Definition 11. If the vertices of Li0 of
each subdomain Ωi are numbered with the highest indices of I (Ωi) then

∀i, 0 ≤ i < p, N∞Ω+ (V (Ωi)) ⊆
⋃
j>i

Lj0 (3.11)

and so
∀i, 0 ≤ i < p, N∞

Ω̂+ (V (Ωi)) ⊆
⋃
j>i

Lj0. (3.12)

Proof. Consider a subdomain Ωi, for which all vertices of Li0 are numbered with the highest
indices in I (Ωi). Therefore, in each subdomain Ωi, the interior vertices that belong to V (Ωi)\Li0
are numbered with indices lower than I

(
Li0
)
.

We first prove the relation (3.11). The definition of a boundary layer implies thatN 1
Ω+ (V (Ωi)) ⊆⋃

j>i L
j
0. To determine the set of reachable vertices from Lj0 in Ω+, consider first Ωj

+ and then
the graph defined as Ω̃ = (V (Ω), E(Ω) \ E(Ωj)). In each subdomain Ωj , the vertices in Ωj

+

are reachable from Lj0 if and only if they are numbered higher than at least one vertex of Lj0.
But there is no vertex numbered from I (Ωj) \ I

(
Lj0
)

higher than min(I
(
Lj0
)

). Therefore,

N∞
Ωj+

(
N 1

Ω+ (V (Ωi))
)

= ∅. Now consider the vertices reachable from Lj0, j > i in Ω̃+. The
numbering of the vertices of Li0 with the highest indices of I (Ωi) allows us to apply Lemma 14.
Therefore, the reachable vertices from Lj0 in Ω̃+ are included in

⋃
m>j Lm0 . Hence, N∞Ω+ (V (Ωi)),

the set of reachable vertices of V (Ωi) in Ω+, is included in
⋃
j>i L

j
0.

Now we prove the relation (3.12) concerning Ω̂. In the definition of Ω̂, we have V (Ωi) = V (Ω̂i).
The incomplete factorization of A does not change the definition of the boundary layer. Also, as
shown in Lemma 14 it does not change the consequence that interior vertices of each subdomain
are not reached from any vertices in the boundary layer in Ω̂+. Therefore, similarly to the proof
of Relation (3.11), it can be shown that N∞

Ω̂+
(V (Ωi)) ⊆

⋃
j>i L

j
0.

When the vertices of the boundary layer of Ωi are numbered with the highest indices of I (Ωi),
the reachable vertices from Li0 in Ωi are numbered lower than the vertices that belong to Li0.
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The numbering of the vertices v ∈ V (Ωi) \ Li0 can have an impact on the number of vertices
reachable from Li0 in Ωi. To illustrate this, we consider a matrix of size 20 and its directed
graph Ω partitioned into 2 subdomains as in Definition 7 where |V (Ω0)| = |V (Ω1)| = 10. Let
I (Ω0) = {1, .., 10} and I (Ω1) = {11, .., 20} be the set of indices of each subdomain and the
boundary layer of each subdomain is numbered with their highest indices. Consider the LU
factorization of A. Assume the boundary layer of Ω1 is the vertex 20. We study two numbering
of the reachable vertices of vertex 20 in Ω1. In Subfigure 3.2a, the vertices are numbered randomly
whereas, in Subfigure 3.2b, the vertices are numbered such that the vertex at distance 3 from 20
has the highest index in I (Ω1) \ {20} and the remaining vertices are then numbered randomly.

edge in Ω = Ω0 ∪ Ω1

edge from ILU(1)

5
20

Ω0 Ω1

17

I (Ω0) = {1, .., 10} I (Ω1) = {11, .., 20}

19
13

16

(a) A random numbering of vertices in V (Ω1) \ L1
0.

edge in Ω = Ω0 ∪ Ω1

edge from ILU(1)

5
20

Ω0 Ω1

16

17

I (Ω0) = {1, .., 10} I (Ω1) = {11, .., 20}

13
19

(b) A numbering of vertices in V (Ω1) \L1
0 such that the

vertex at distance 3 from vertex v20 has the highest index
in I (Ω1) \ I

(
L1

0

)
.

Figure 3.2 – Impact of the numbering of the vertices in subdomain Ω1 on the CA-ILU(k) overlap with
k = 1. A vertex is represented by a point and an oriented edge by an arrow. The number above each
vertex is its index in I (Ω). Consider a matrix A of size 20 and its associated graph Ω partitioned into
2 subdomains Ω0 and Ω1 having a set of indices I (Ω0) and I (Ω1), respectively. Subdomain Ω1 has
L1

0 = {v20} numbered with the highest number in I (Ω1). Subfigures differ in the way they number the
vertex at distance 3 from the boundary layer. In 3.2a, this vertex is not numbered with the highest
index of I (Ω1) \ I

(
L1

0

)
. In 3.2b, this vertex has the highest number of I (Ω1) \ I

(
L1

0

)
.

We apply in both cases Algorithm 3.3. Since only L1
0 is reached from V (Ω0) in Ω̂+, β0 is

equal to {v5, v20}. The second step computes γ0 = N∞
Ω̂−

(β0). For simplicity, we consider only the
search in Ω̂1 which leads to computing α = N∞

Ω̂−1

(
L1

0

)
. In Subfigure 3.2a, α = {v13, v19, v16, v17}

whereas in Subfigure 3.2b, α = {v16, v13}. The fact that the vertex at distance 3 from v20 in Ω̂1

is numbered with the highest index in I (Ω1) \ I
(
L1

0

)
allows us to reduce the size of α from 4 to

2.

Lemma 16. Consider the graph Ω of a matrix A partitioned into p subdomains Ωi, as in Def-
inition 7. Each subdomain Ωi has associated a set of indices I (Ωi) as in Definition 9, and
a boundary layer Li0 whose vertices are numbered with the highest indices in I (Ωi). Consider
the graph Ω̂ of the factor matrix C of ILU(k) factorization of A defined as in Definition 11.
If the vertices of the layer Lik+2 of the subdomain Ωi are numbered with the highest indices of
I (Ωi) \ I

(
Li0
)
, then

N∞Ωi−
(
Li0
)
⊆

k+1⋃
m=1

Lim,
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and

N∞
Ω̂−i

(
Li0
)
⊆

k+1⋃
m=1

Lim.

Proof. A vertex v ∈ V (Ωi) \ Li0 has an index lower than all vertices that belong to Li0. Thus the
set of adjacent vertices of Li0 in Ωi

− is included in Li1. Suppose the vertices of the layer Lik+2 are
numbered with the highest indices in I (Ωi) \ I

(
Li0
)
. Therefore, these vertices are not reachable

from Lik+1 in Ωi
−. Hence only the vertices of Lij (j ∈ {1, . . . , k + 1}) are reachable from Li0 in

Ωi
−.
Now we consider the matrix C. The ILU(k) factorization of A adds an edge (u, v) in E(Ω̂)

if there exists a path in Ω of length at most k + 1 from a vertex u ∈ V (Ω) to a vertex v ∈ V (Ω)
going through vertices numbered lower than both I (u) and I (v). Therefore, if the vertices of
Li2 are numbered higher than max(I

(
Li1
)
) then there exists an edge (u, v) ∈ E(Ω̂) where u ∈ Li0

and v ∈ Li2. Consider the layer Lik+2 of the subdomain and its vertices, numbered with the
highest indices in I (Ωi) \ I

(
Li0
)
. The length of the shortest path from a vertex u ∈ Li0 to a

vertex v ∈ Lik+2 in Ω is k+2, and hence, there is no edge (u, v) in E(Ω̂). Hence, only the vertices
of Lij (j ∈ {1, . . . , k + 1}) are reachable from Li0 in Ω̂−i .

Theorem 17. Consider a matrix A and its ILU(k) factorization that returns C = L+U−In×n,
where In×n is the identity matrix of size n. Let Ω be the graph of A, partitioned into p subdo-
mains Ωi, as in Definition 7. Each subdomain Ωi has associated a set of indices I (Ωi) as
in Definition 9, and a boundary layer Li0 whose vertices are numbered with the highest in-
dices of I (Ωi). Let the vertices of the layer Lik+2 = N 1

Ωi

(
Lik+1

)
\ Lik be numbered with the

highest indices in I (Ωi) \ I
(
Li0
)
. Consider the CA-ILU(k) overlap of Ωi, OCAILUk (V (Ωi)) =

N∞
Ω̂+

(V (Ωi))
⋃
N∞

Ω̂−

(
V (Ωi) ∪N∞Ω̂+

(V (Ωi))
)
, as in Definition 12. The set of vertices OCAILUk (Ωi)∩

V (Ωj), with Ωj ∈ D (Ωi) is included in
⋃
m∈{0, ..., k+1} Ljm.

Proof. Consider a subdomain Ωi, its reachable subdomains Ωj ∈ D (Ωi), with j 6= i and the CA-
ILU(k) overlap of Ωi, OCAILUk (Ωi), as in Definition 12. Let Ω̂ be the graph of C = L+U−In×n,
where L and U are the factors of the ILU(k) factorization of A. Lemma 14 ensures that the only
way to reach a vertex v ∈ V (Ωj) from a vertex u ∈ V (Ωi) in Ω is through at least a vertex that
belongs to Lj0. Therefore in each subdomain Ωj ∈ D (Ωi), at least one vertex of the boundary
layer Lj0 is reached from a vertex that belongs to V (Ωi). From Lemma 15, the set of reachable
vertices of V (Ωi) in Ω̂+, N∞

Ω̂+
(V (Ωi)), is included in

⋃
j>i L

j
0. Thus the boundary layer Lj0 of

each subdomain Ωj ∈ D (Ωi), j > i is involved in the construction of OCAILUk (Ωi).
Let βi = V (Ωi) ∪N∞Ω̂+

(V (Ωi)). The set of reachable vertices of βi in Ω̂− is

N∞
Ω̂−

(
V (Ωi) ∪N∞Ω̂+

(V (Ωi))
)
that can be split into N∞

Ω̂−
(V (Ωi)) ∪ N∞Ω̂−

(
N∞

Ω̂+
(V (Ωi))

)
which

is included into N∞
Ω̂−

(V (Ωi)) ∪ N∞Ω̂−
(⋃

j>i L
j
0

)
. By definition of the boundary layer, we have

N 1
Ω− (V (Ωi)) = N 1

Ω̂−
(V (Ωi)) ⊆

⋃
j<i L

j
0 where Ωj ∈ D (Ωi). Therefore the set of reachable

vertices of βi in Ω̂− is included into N∞
Ω̂−

(⋃
j 6=i L

j
0

)
∪
⋃
j 6=i L

j
0, with Ωj ∈ D (Ωi). Lemma 16

ensures that N∞
Ω̂−j

(
Lj0
)
⊆
⋃k+1
m=1 Ljm. Therefore, a subdomain Ωj ∈ D (Ωi) has at most its first

k + 2 layers involved in the CA-ILU(k) overlap of Ωi.



32 CHAPTER 3. CA-ILU(k)

Theorem 17 shows that if the boundary layer and the layer Lik+2 are numbered with the
highest indices of Ωi, then the size of OCAILUk (Ωi) is bounded. We denote the k + 1 layers
between these two layers as the inner layers. As discussed in the proof of Lemma 16, the indices
of the vertices that belong to inner layers introduce new entries in Fk. The way these vertices
are numbered is expected to impact the fill-in during the factorization.

Through an example, we next present two reordering of the vertices of the inner layers and
the influence on the fill-in. Consider Ω the graph of a matrix A partitioned into 2 subdomains
Ω0 and Ω1 as in Definition 7. Consider the layers of Ω1 and the vertex numbered 5 in Ω0. We
discuss the case of ILU(1) factorization of A. Assume Theorem 17 is verified. We study two
ways of reordering the inner layers L1

1 and L1
2 and give a general definition for any subdomain

Ωi. The first approach, called Decreasing Layers Numbering, and denoted hereafter as DLN,
numbers the vertices of the inner layers in a decreasing order, such that

∀j ∈ {1, . . . , k}, max(Lij) > min(Lij+1). (3.13)

The second one, called Increasing Layers Numbering, referred further as ILN, starts by numbering
Li1 with the lowest indices of Ωi and then

∀j ∈ {1, . . . , k}, max(L1
j ) < min(L1

j+1). (3.14)

edge in Ω = Ω0 ∪ Ω1

edge from ILU(1)

5

Ω0 Ω1

I (Ω0) = {1, .., 10} I (Ω1) = {11, .., 20}

L1
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L1
4

L1
0
L1

1

L1
3

(a) Decreasing Layer Numbering

edge in Ω = Ω0 ∪ Ω1

edge from ILU(1)

5

Ω0 Ω1

I (Ω0) = {1, .., 10} I (Ω1) = {11, .., 20}

L1
2

L1
4

L1
0
L1

1

L1
3

(b) Increasing Layer Numbering

Figure 3.3 – Comparison of methods to reorder inner layers (L1
1 and L1

2) of subdomain Ω1. Layers are
represented by dots, edges between one vertex from a layer to a vertex from another layer by an arrow,
and dot lines represent additional edges induced by ILU(1) algorithm in Ω1.

Figure 3.3 illustrates the impact of reordering proposed for k = 1, where, in each subfigure,
Theorem 17 is verified. Layers are represented by dots, arrows are the edges from a vertex
in a layer to a vertex that belongs to another layer and dot lines represent additional edges
introduced by ILU(1) factorization. In each subfigure, the set of reachable vertices of Ω0 in
Ω̂+

1 is β0 = N∞
Ω̂+

1

(V (Ω0)) ⊆ L1
0, the boundary layer of Ω1. Then the set of reachable vertices

of β0 in Ω̂−1 is a subset of the vertices of each inner layer of Ω1. The difference between these
two approaches is the edges added by the factorization. In Subfigure 3.3a, the DLN approach
involves edges from vertices that belong to V (L1

1) to vertices in V (L1
3). These edges exist in

E(G(F1)) but not in G(F1)−. On the other hand, the ILN approach induces edges which are in
G(F1)−. This leads the third layer to be part of the adjacent vertices of the boundary layer in
Ω1. Therefore, the search of the reachable vertices is expected to be faster using ILN.

Back to the 2D five-point stencil problem from Figure 3.1a, we consider k = 0. In that case,
DLN is strictly equivalent to ILN (compare 3.3a with 3.3b by removing inner layers on both).



3.2. CA-ILU(k) factorization 33

Therefore, we apply one of the reordering approaches. Consider the construction of the set of
reachable vertices of V (Ω0) in Ω̂+ i.e. the solid rectangular in Figure 3.1b. The reordering of
the first two layers of each subdomain reduces the size of β0 compared to the original ordering
in Figure 3.1a. β0 is a subset of the union of V (Ω0) with L1

0, L3
0 and v200 which belongs to Ω2.

Then γ0 = N∞Ω− (β0) is a subset of the union of β0 with L1
1, L2

1 and the reachable vertices in Ω2.
Consider a graph Ω partitioned into p subdomains as in Definition 7. Suppose each subdomain

Ωi is composed of m layers and is reordered such that Theorem 17 is verified. Therefore, the set
of reachable vertices of a subdomain Ωj in Ω+, restrained to V (Ωi) is N∞Ω+ (V (Ωj))∩V (Ωi) ⊆ Li0
for any value of k. Consider the DLN and ILN orderings. We aim to compare the CA-ILU(k)
overlap size and especially the number of inner layers involved by each ordering. We focus the
comparison on the set of reachable vertices of Li0 in Ωi

−. First, the DLN ordering is applied to
Ωi. From Equation (3.13), there exists a vertex u ∈ Lil that reaches at least one vertex of Lil+1

in Ωi
−, ∀l ∈ {0, . . . , m − 1}. Therefore, the vertices of all inner layers Lil (l ∈ {1, . . . , m − 1})

can be reached from the vertices of Li0 and this for all values of k (even for k = 0). On the other
hand, applying ILN ordering on these m layers implies that only the vertices of the first k + 1
inner layers of the subdomain are reachable from the vertices of Li0 in Ωi

−. Therefore, the size of
the set of reachable vertices depends on k. Hence, ILN ordering offers more flexibility to factor
the subdomain with a value of k varying from 0 to m− 2. This ordering is particularly useful in
the case of memory limitation that we discuss further.

To illustrate this comparison, we consider a subdomain Ωi with m = 9 layers reordered
using DLN in Subfigure 3.4a and reordered using ILN in Subfigure 3.4b. Consider the ILU(6)
factorization of a matrix A associated with Ω. Edges of Ωi are represented by arrows whereas
dot arrows are the edges added by the factorization. In Subfigure 3.4a, the vertices of the 7 inner
layers are reached from the boundary layer. Assume that k is reduced to 3, still, the vertices
of the 7 layers are reached from the boundary layer. The only way to reduce the number of
inner layers involved here is to number the 5’th layer with the highest indices in I (Ωi) \ I

(
Li0
)
.

On the other hand, in Subfigure 3.4b, when k = 3, only the first 4 inner layers are involved.
It follows that numbering the vertices of V (Ωi) using ILN allows us to compute the incomplete
factorization of A with a parameter 0 ≥ k ≥ m − 2 without the need of reordering Ωi using a
different k.

edge in Ωi

edge from ILU(6)

Li2
Li4

Li0

Li3
Li5 Li6 Li7 Li8

Li1

Ωi

(a) Decreasing Layer Numbering

edge in Ωi

edge from ILU(6)

Li2
Li4

Li0
Li1

Li3
Li5 Li6 Li7 Li8

Ωi

(b) Increasing Layer Numbering

Figure 3.4 – Comparison of the number of inner layers L1
l , l ∈ {1, . . . , k + 1} involved during the

search of N∞Ω1
−
(
L1

0

)
for both DLN and ILN ordering methods.
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Reordering inside a layer helps to reduce the size of the overlap

In Figure 3.1b, consider the lower right part of the graph denoted Ω2. Let k = 0 so that Ω = Ω̂.
We focus on the search of the set of reachable vertices of V (Ω0) in Ω̂+. Let u ∈ V (Ω2) be adjacent
to two vertices, one belonging to Ω1 and the other one belonging to Ω3, and be the upper left
vertex in the figure. The reordering proposed in Figure 3.1b numbers u with 200, the largest
index in I (Ω2). Hence u is the only reachable vertex from V (Ω0) in Ω̂+. However, it exists a
numbering of these vertices that leads to reaching them all. Consider the pathological case in
which the vertices are numbered larger than I (u). This ordering proceeds recursively such that
the adjacent vertices αj+1 = N 1

G (αj) of the set αj in G = (L2
0, {(u, v) ∈ E(Ω) | u ∈ L2

0, v ∈ L2
0})

are numbered higher than max(I (αj)), with α0 = {u}. Therefore, computing N∞
G(L2

0)+ (u) leads
to reach all vertices of L2

0.
We now consider the case ILU(1). In Figure 3.1b, the lowest index in I

(
L2

0

)
leads to reach

v187 during the computation of N∞Ω+ (V (Ω0)). We focus on the computation of N∞
Ω2

+ (v187). The
vertices vi, i ∈ {188, . . . , 199} are added to N∞Ω+ (V (Ω0)). To avoid that, interchanging the index
of v189 with v190 and the index of v198 with v199 allows us to bound the reachable vertices from
v187 in G(L2

0) to v199 and v190. As a consequence, N∞
G(L2

0)+ (v187) = {188, 189, 196, 197, 198}.
Note that the proposed renumbering respects the concept of reordering in Theorem 17. Hence
reordering the layers with respect to each other is not sufficient. For the first k+ 2 layers of each
subdomain Ωi, we propose to reorder also the vertices inside each layer. It is not necessary to
reorder the vertices of Lik+3 since the computation of γ0 involves only the adjacent vertices of γ0

in G(A). We first define a corner that belongs to a boundary layer and then derive the definition
of an inner layer. We then present Algorithm 3.4 that reorders a layer.

Definition 18. Given Ω the graph of a matrix A partitioned into p subdomains as in Definition
7, a corner u ∈ Li0 of a subdomain Ωi is an adjacent vertex of at least two vertices that belong
to two different subdomains Ωj and Ωm with i 6= j 6= m.

From Equation (3.9), a boundary layer is the set of vertices in Ωi that are adjacent to vertices
that belong to other subdomains. The corner of Li0 is defined as

Ci0 = {u ∈ Li0 | (v, u) ∈ E(Ω), (t, u) ∈ E(Ω), v ∈ V (Ωj), t ∈ V (Ωm), i 6= j 6= m}. (3.15)

Ci0 is a subset of Li0 whose vertices are connected to at least two distinct subdomains, different
from Ωi. As a consequence of this definition, a corner is potentially reachable more often than
other vertices. Vertex v46 reaches vertices v96 and v99. Next, v96 reaches v100 which belongs to
C1

0 by Definition 18. Finally, v200 is added into β0 = N∞
Ω̂+

(v46). Hence the index of each vertex
of Ci0 in Li0 has to be chosen carefully.

Similarly to the boundary layer renumbering, we propose to number all vertices of Ci0 with
the highest number of I

(
Li0
)
. It follows that when a corner is reached in Ω+, it allows us to

continue the search in a subdomain where one of its adjacent vertices in Ω̂+ belongs to. Also it
stops the search in the boundary layer it belongs to. Analogously, we can apply Theorem 17 on
the vertices of the boundary layer. Therefore, numbering the vertices of the boundary layer that
are at a maximum distance of k + 2 from a corner with the highest indices in I

(
Li0
)
\ I
(
Ci0
)

limits the search in the layer.
Going further, we can compute the corners of the layer Lil (l > 0) as

Cil = {u ∈ Lil | (v, u) ∈ E(Ωi), (t, u) ∈ E(Ωi), v ∈ N l
Ωj∪Ωi (V (Ωj)) ∩ Lil−1,

t ∈ N l
Ωm∪Ωi (V (Ωm)) ∩ Lil−1, i 6= j 6= m}. (3.16)
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Algorithm 3.4 presents the procedure that renumbers the vertices of a layer Lij . This routine
takes as input the layer to reorder Lij , its subdomain Ωi, the associated corners Cij , the ILU
parameter k and the ordering method (ILN or DLN). The algorithm starts by getting the adjacent
vertices of the set of corners α0 (line 2). Then, it iterates to get the adjacent vertices αj of
the union of the corners with the previous sets αm (m ∈ {0, . . . , j − 1}). According to the
ordering flag, it creates a global permutation vector e by concatenating the indices of the sets
αm (m ∈ {0, . . . , k + 1}) with the indices of the remaining vertices and the indices of the
corners (lines 7, 9). We are using the term global permutation to make clear that the returned
permutation cannot be applied directly on a subdomain without modification since the indices
in Ωi are global.

Algorithm 3.4 CAILU_reorderLayer (Lij , Ωi, Cij , k, ordering)

Input: Li
j the j’th layer to reorder which belongs to subdomain Ωi,

Ωi the i’th subdomain of Ω,
Cij the corners of the layer Li

j ,
k the ILU parameter,
ordering either ILN or DLN, one of the two ordering algorithms used to number the vertices of a
layer

1: Let G ⊆ Ωi be the subgraph with V (G) = Li
j and E(G) = {(u, v) ∈ E(Ωi) | u, v ∈ Li

j}
2: α0 ← N 1

G

(
Cij
)

3: for j = 1 to k + 1 do
4: αj ← N 1

G (αj−1) \ (
⋃j−1

m=0 αm ∪ Cij)
5: end for
αr ← Li

j \ (
⋃k+1

m=0 αm ∪ Cij)
6: if ordering = DLN then
7: e ← [I (αk+1) ; I (αk) ; . . . ; I (α0) ; I (αr) ; I

(
Cij
)
]

8: else
9: e ← [I (α0) ; I (α1) ; . . . ; I (αk+1) ; I (αr) ; I

(
Cij
)
]

10: end if
Output: e the permutation vector that reorders the vertices of Li

j

This algorithm is equivalent to a breadth first search and its complexity depends on k and
on the graph of A. In the worse case, the algorithm reorders all vertices of the layer.

Using Algorithm 3.4, we present in Algorithm 3.5 CAILU_reorderDomain routine that re-
orders a subdomain Ωi in order to reduce the size of the reachable vertices during the computation
of the CA-ILU(k) overlap from Definition 12. Algorithm 3.5 takes as input the subdomain Ωi to
renumber, the domain Ω, the ILU parameter k and ordering (either ILN or DLN), the way the
layers are numbered. Lines 1 and 2, the algorithm starts by computing the boundary layer Li0 of
Ωi and its associated corner set Ci0. Using Algorithm 3.4, it obtains e0, the permutation vector
associated with the boundary layer. Then, the algorithm iterates over j, k+ 1 times, computing
Lij , Cij and getting the permutation vector ej that reorders the current layer. The algorithm
returns a permutation vector pi associated with Ωi. It is constructed by the concatenation of the
ej permutation vectors, according to the ordering flag, with the indices of the remaining vertices
of V (Ωi) not already ordered and the permutation vector of the boundary layer. To obtain the
boundary layer, the algorithm uses Equations (3.8) and (3.15). The cost to obtain Li0 is equal to
the sum of the nonzeros in the block column A(I (Ω)\I (Ωi) , I (V (Ωi))). This cost corresponds
to the number of edges in the graph associated with this block column. To obtain an inner layer
and its associated corners, the algorithm uses Equations (3.10) and (3.16). The associated cost
to get Lij and Cij is equal to the number of edges traversed from Lij−1 in Ωi. The global cost of
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Algorithm 3.5 is equal to the sum of the cost to obtain the boundary layer, the cost to obtain
the inner layers and the cost to reorder each layer.

Algorithm 3.5 CAILU_reorderDomain (Ωi, Ω, k, ordering)
This function reorders the subdomain Ωi by reordering k + 3 layers and reordering the vertices of the
first k + 2 layers of the subdomain.
Input: Ωi the i’th subdomain of Ω,

Ω the graph partitioned into p subdomains as in Definition 7
k the ILU parameter,
ordering the ordering algorithm used to number layers

1: Compute Li
0 as in Equation (3.8)

2: Compute Ci0 as in Equation (3.15)
3: e0 ← CAILU_reorderLayer (Li

0,Ωi, Ci0, k, ordering) /* Algorithm 3.4 */
4: for j = 1 to k + 1 do
5: Compute Li

j as in Equation (3.10)
6: Compute Cij as in Equation (3.16)
7: ej ← CAILU_reorderLayer (Li

j ,Ωi, Cij , k, ordering) /* Algorithm 3.4 */
8: end for
αr ← V (Ωi) \

⋃k+1
m=0 L

i
m /* Remaining vertices not treated */

9: if ordering = DLN then
10: pi ← [ek+1; ek; . . . ; e1; I (αr) ; e0]
11: else
12: pi ← [e1; e2; . . . ; ek+1; I (αr) ; e0]
13: end if
Output: pi : the permutation vector associated with the subdomain Ωi.

3.3 CA-ILU(k) preconditioner

3.3.1 Complexity of CA-ILU(k) factorization

Here, we present the algorithmic complexity of the construction of CA-ILU(k). Given a sparse
matrix A, the construction of CA-ILU(k) preconditioner is strongly related to the number of
non-zeros of A. Let G(A) be the graph associated with A, partitioned into p subdomains as
in Definition 7 and α be a set of vertices such that α ⊆ V (G(A)). Getting an adjacent layer
and reordering inside a layer have a similar behavior. They search the adjacent vertices of a
set of vertices by going through edges in the graph of A. Table 3.1 presents the complexity of
the main subroutines used during the construction of the preconditioner. CAILU_reorderLayer,
Algorithm 3.4, routine aims to reorder a layer. CAILU_reorderDomain, Algorithm 3.5, uses
it to reorder a subdomain and CAILU_addOverlap, Algorithm 3.3, searches the overlap of a
subdomain and concatenates it to its subdomain.

Algorithm Edges visited

CAILU_reorderLayer CostL
(
Lij
)

= |E
(
G

(
A

(
I
(
Cij ∪

k⋃
m=0

αm

)
, I
(
Lij
))))

|

CAILU_reorderDomain CostD (Ωi) = |E (G (A (I (Ω) \ I (Ωi) , I (Ωi)))) + E

(
G

(
A

(
I
(

k∑
m=0
Lim
)
, I (Ωi)

)))
|+

k+1∑
m=0

CostL
(
Lim
)

CAILU_addOverlap |E (Fk (I (γi) , :)) |

Table 3.1 – Complexity of main algorithms used to construct CA-ILU(k).

The first algorithm in Table 3.1 performs a breadth first search-like algorithm and starts
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by getting the adjacent vertices of Cij in G(A(I
(
Cij
)
, I
(
Lij \ Cij

)
)). This graph is associated

with a submatrix formed by the subset of rows of A corresponding to the indices of the ver-
tices that belong to Cij and from the subset of columns of A corresponding to the indices of
the vertices of Lij \ Cij . Then the algorithm iterates to get the next k + 1 set of vertices. The
total cost of this first algorithm is equal to the sum of the non-zeros of rows associated with
each vertex in αm ⊆ Lij (m ∈ {0, . . . , k}) and in Cij , where αm is the adjacent set of vertices

of αm−1 in the graph G(A(I (αm−1) , I
(
Lij
)
\ I
(
Cij ∪

m−1⋃
l=0

αl

)
)), and α0 is the set of adjacent

vertices of Cij in Ωi. The second algorithm obtains its first k + 2 layers and reorders them by
calling CAILU_reorderLayer routine. The first term, E (G (A (I (Ω) \ I (Ωi) , I (Ωi)))), corre-
sponds to the vertices visited to get the boundary layer of the subdomain. The second term,

E

(
G

(
A

(
I
(

k∑
m=0
Lim
)
, I (Ωi)

)))
, searches the next k+1 layers of the subdomain. Similarly

to CAILU_reorderLayer, this algorithm starts by getting the set of adjacent vertices of Li0 in the
subgraph G(A(I

(
Li0
)
, I (Ωi) \ I

(
Li0
)
)). Finally, reordering this k + 2 layers has an additional

cost equal to k + 2 times the cost to reorder a layer,
k+1∑
m=0

CostL
(
Lim
)
. Note that the cost to

obtain the remaining vertices and the corners, as presented in Algorithm 3.5, is equal to |V (Ωi)|.
The third algorithm, in Table 3.1, searches the overlap of a subdomain Ωi and concatenates it
to γi. Its cost is equal to the number of non-zeros of Fk(γi, :), where Fk is obtained from the
ILU(k) factorization of A. The search of the CA-ILU(k) overlap is similar to the breadth-first
search algorithm, whose cost is related to the number of vertices reached. Therefore, the over-
head cost of our algorithm induced by our reordering and the search of the overlap is equal to∑p−1
i=0 CostD (Ωi).
After getting a subdomain and its associated overlap, each processor computes the numer-

ical factorization of A(I (γi) , I (γi)). The overlap involves an extra cost during this step. In
the general scheme, the factorization of a submatrix A(I (V (Ωi)) , I (V (Ωi))) has a cost which
depends on the number of non-zeros of the subdomain and the pattern of the submatrix. In
our case, the overlap γi \ V (Ωi) yields to do more flops during the factorization. Therefore the
cost of our algorithm is the sum of the cost to reorder each subdomain, the cost to compute
the symbolic factorization, the cost to get the overlap of each subdomain and the cost to factor
locally A(I (γi) , I (γi)). Note that the cost to obtain Fk is not presented here.

3.3.2 Overlap of CA-ILU(k) in details

Algorithm 3.2 computes the overlap of each subdomain Ωi in order to avoid the communication
during the factorization of A and the application of the ILU(k) preconditioner. To do so, this
data is duplicated on each processor i that owns the associated subdomain Ωi and leads to
some redundant computation during both the numerical factorization and the application of the
preconditioner. Theorem 17 ensures that the vertices of Lik+2 are reordered such that all vertices
of the subdomain not included in Lim, m ∈ {0, . . . , k + 1}, are not reached. The first k + 2
layers are potentially part of the overlap and thus the overlap depends on k. Here, we detail the
CA-ILU(k) overlap of a subdomain Ωi and study how it behaves with respect to p.

To study the scalability of Relation (3.7) is difficult without assumptions on the matrix.
Given the case of a five-point stencil matrix as in Figure 3.1a, we can compute precisely the
overlap of a subdomain Ωi. Each subdomain has a rectangular shape of size H×h where H ≥ h.
These sizes depend on p such that the larger size H is divided in two when p is doubled. Since
the shape of all subdomains is rectangular, the size of αj0 = N 1

Ωi∪Ωj
(V (Ωi)) is equal either to



38 CHAPTER 3. CA-ILU(k)

H or h, for i ∈ {0, . . . , p − 1}, i 6= j. Thus, the size of the set of adjacent vertices of αj0 in Ωj ,
αj1 = N 1

Ωj

(
αj0

)
, is equal to the size of αj0. Recursively, we obtain that the size of N 1

Ωj

(
αjl

)
is

equal to the size of αjl , either H with l ∈ {0, . . . , h− 1}, or h with l ∈ {0, . . . , H − 1}. Equation
(3.7) applied on this problem gives

OCAILUk (Ωi) =
∑

j|Ωj∈N 1
Ω(Ωi)

(αj0 + αj1 + ...αjk+1) + g(k) (3.17)

=
∑

j|Ωj∈N 1
Ω(Ωi)

(
(k + 2)αj0

)
+ g(k), (3.18)

where g(k) contains the remaining vertices of the overlap and whose size is constant if k <
min(H,h). Supposing that a subdomain has at most 4 neighboring subdomains, due to the
structure of the matrix, Equation (3.18) becomes OCAILUk (Ωi) = 2(k + 2) (H + h) + g(k).

When the number of subdomains is doubled, the size of the subdomain is reduced such that
H is divided by two. The variation of the overlap of the subdomain Ωi between p subdomains
and 2p subdomains is

2(k + 2)(H/2 + h) + g(k)− 2(k + 2)(H + h)− g(k) (3.19)
2(k + 2)(H/2 + h−H − h) (3.20)
− (k + 2)H. (3.21)

On general matrices, if the number of adjacent layers from one subdomain into another one
is smaller than k + 2, then the number of subdomains reached is expected to grow. Even if
those conditions are verified, the size of the overlap can be so large that it does not fit in the
local memory. Therefore, there exists a limit on the size of the overlap and also a limit on the
scalability of CA-ILU(k).

Bounding the size of the overlap in memory

In addition to the reduction of k to fit in memory, we propose to limit the size of the overlap
to η. Given p processors, a subdomain Ωi and a parameter τ which is equal to the number of
subdomains that can be duplicated in the memory of Ωi, η = τ × n

p , where
n
p is the average

number of vertices of a subdomain. Since CAILU_addOverlap algorithm traverses Ω̂+ and Ω̂−,
η has to be split into two parts such that at most half of the memory is dedicated to the search
in Ω̂+, whereas the remaining is dedicated to the search in Ω̂−. The size of γi is given by
|γi| = η−min(|βi|, η/2). Algorithm 3.3 is rewritten as Algorithm 3.6. It takes as input the same
parameters as the original algorithm and the extra parameter η. It starts by getting the adjacent
vertices, denoted αadj line 2, of V (Ωi) in Ω̂+. Then the loop, line 4, iterates until reaching either
all vertices needed or the limit of η/2. The second part of the algorithm does the same as for
V (Ωi), but for βi in Ω̂−. The stopping criterion is the same as for the first loop except the limit
is now η = η − |βi|. This algorithm uses as subroutine getBoundAdjacentLayer which takes as
input the set of initial vertices, a set of vertices already visited, the graph where to search and a
maximum number of vertices η to return. The subroutine returns the set of adjacent vertices of
the initial vertices. We do not provide the code to compute the bounded set of adjacent vertices
from a set of vertices since we further present an improved version of it (Algorithm 3.8).

Algorithm 3.6 presents a problem, it does not ensure that the overlap of CA-ILU(k) is included
in the overlap of CA-ILU(k+1). In addition, experiments have shown that the performance of
the preconditioner is degraded. Given a subdomain Ωi and its overlap for k = 0 and k = 1, we
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suppose that the size of the overlap for k = 0 is equal to η. It follows that the overlap for k = 1
cannot fit in memory. As presented in Algorithm 3.6, the construction of the overlap starts by
getting the reachable vertices, βi, in Ω̂+. Assuming that the size of βi is equal to η, the part of
the overlap coming from the search in Ω̂−, even for the overlap related to ILU(0), is not included
in γi. Thus, without including the set of reachable vertices resulting from the search in Ω̂−,
CA-ILU(k) does not even perform an ILU(0) factorization of Ωi.

Algorithm 3.6 CAILU_addBoundOverlap (V (Ωi), G(A), Ω̂, η)
This algorithm is a modification of Algorithm 3.3 where the size of βi and γi is bounded by η/2 and
η − |βi|, respectively, where η a parameter.
Input: V (Ωi) the i’th subdomain of Ω,

G(A) the graph of the matrix A,
Ω̂ the graph of the matrix F which stores the ILU(k) factor of A,
η the maximum number of vertices returned by the algorithm

1: Let βi and γi be two empty sets of vertices
2: Compute αadj , the set of adjacent vertices of V (Ωi) in Ω̂+ whom the size is bounded by η/2
3: βi ← βi ∪ αadj

4: while |αadj | > 0 and |βi| < η/2 do
5: Compute αadj , the set of adjacent vertices of the previous α, not already in βi ∪ V (Ωi) in Ω̂+

whom the size is bounded by η/2− |βi|
6: βi ← βi ∪ αadj

7: end while
8: η ← η − |βi|
9: βi ← βi ∪ V (Ωi)

10: Compute αadj , the set of adjacent vertices of βi in Ω̂− whom the size is bounded by η/2
11: γi ← γi ∪ αadj

12: while |αadj | > 0 and |γi| < η do
13: Compute αadj , the set of adjacent vertices of the previous α, not already in βi ∪ γi in Ω̂− whom

the size is bounded by η/2− |γi|
14: γi ← γi ∪ αadj

15: end while
16: γi ← γi ∪ βi
Output: βi the union of V (Ωi) with the set of reachable vertices of V (Ωi) in Ω̂+, γi the union of βi

with the set of reachable vertices of βi in Ω̂−.

To solve this problem, we propose to update Algorithm 3.6 by adding an outer loop from
j = 0 to k on each existing loop. The idea is to search the sets of reachable vertices of V (Ωi)
incrementally in the structure of Fj , the symbolic ILU(j) factor of A. The outer loop starts with
F0 and searches the vertices reachable through a path of length 1 in it. Using Fj corresponds to
adding vertices in βi that are reachable from V (Ωi) through a path of length at most j+ 1. This
method ensures that the reachable vertices corresponding to ILU(0) are found and added in βi,
before the others. Algorithm 3.7 presents the modifications described above.

Algorithm 3.7 has the same input as Algorithm 3.6 and the ILU parameter k. It iterates
twice over j from 0 to k to find the first set of adjacent vertices. Lines 2 and 10 of Algorithm 3.6
are updated, in Algorithm 3.7, to take into account the effect of the outer loop. Now, it searches
the set of adjacent vertices αadj from the union of V (Ωi) with βi and the union of βi with γi,
respectively. To get αadj , the algorithm calls at each iteration Algorithm 3.8, an implementation
of Definition 3.3 with the modification that the size of the set of adjacent vertices is bounded.
Algorithm 3.8 presents the modifications of the definition and the way the set of adjacent vertices
returned is bounded by the parameter η. This variant takes the set of initial vertices α, the set
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of vertices already visited αvisited, G the graph of a matrix Fk whose elements correspond to the
level returned by the ILU(k) factorization, and η the maximum number of vertices to return.
This algorithm checks whether the number of elements in αadj does not exceed η (line 2). Each
adjacent vertex v is added in αadj under the constraints that it is included neither in the initial
set nor in the set of vertices already visited, and the value of the edge (u, v) in E(G) is at most
k.

Algorithm 3.7 CAILU_addBoundOrderedOverlap (Ωi, G(A), Ω̂, η, k)
This algorithm is a modification of Algorithm 3.6 where the algorithm iterates over j with 0 ≤ j ≤ k and consider
edges having a level at most j (in the ILU level-based sense).
Input: Ωi the i’th subdomain of Ω,

G(A) the graph of the matrix A,
Ω̂ the graph of the matrix C, ILU(k) factor of A,
η the maximum number of vertices in the overlap, returned by the algorithm,
k the ILU parameter

1: Let βi and γi be two empty sets of vertices
2: j ← 0
3: while j ≤ k and |βi| < η/2 do
4: αadj ← getBoundOrderedAdjacentLayer (V (Ωi) ∪ βi, V (Ωi) ∪ βi, Ω̂+, η/2− |βi|, j)
5: βi ← βi ∪ αadj

6: while |αadj | > 0 and |βi| < η/2 do
7: αadj ← getBoundOrderedAdjacentLayer (αadj , V (Ωi) ∪ βi, Ω̂+, η/2− |βi|, j)
8: βi ← βi ∪ αadj

9: end while
10: j ← j + 1
11: end while
12: η ← η − |βi|
13: βi ← βi ∪ V (Ωi)
14: j ← 0
15: while j ≤ k and |γi| < η do
16: αadj ← getBoundOrderedAdjacentLayer (βi ∪ γi, βi ∪ γi, Ω̂−, η − |γi|, j)
17: γi ← γi ∪ αadj

18: while |αadj | > 0 and |γi| < η do
19: αadj ← getBoundOrderedAdjacentLayer (αadj , βi ∪ γi, Ω̂−, η − |γi|, j)
20: γi ← γi ∪ αadj

21: end while
22: j ← j + 1
23: end while
24: γi ← γi ∪ βi
Output: βi the union of V (Ωi) with the set of reachable vertices of V (Ωi) in Ω̂+, γi the union of βi with the set

of reachable vertices of βi in Ω̂−.
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Algorithm 3.8 getBoundOrderedAdjacentLayer (α, αvisited, G, η, k)
This algorithm searches the adjacent vertices of the set of initial vertices in the graph G and returns at most η
vertices. The output set of adjacent vertices αadj contains vertices whose edges between two vertices, one in each
subset, are added by the ILU(k) factorization of A.
Input: α the set of initial vertices,

αvisited the set of vertices already visited,
G the graph of a matrix,
η the maximum number of vertices returned by the algorithm,
k the ILU parameter

1: Let αadj be an empty set of vertices
2: for all v ∈ N 1

G (α) and |αadj | < η do
3: if (u, v) ≤ k and u ∈ α and v /∈ (α ∪ αvisited) then
4: αadj ← αadj ∪ {v}
5: end if
6: end for

Output: αadj the set of adjacent vertices of α in G.

Thus, applying Algorithm 3.7 on a subdomain Ωi allows to upper bound the memory con-
sumption and does not degrade the factorization between two successive values of k. To illustrate
the gain of using Algorithm 3.7, let’s take as example a subdomain Ωi of Ω and all its reachable
vertices for k = 2 represented in Figure 3.5. Each small circle represents a vertex and the value
inside corresponds to the level of fill-in, computed during the symbolic factorization, used to
reach the vertex from αi.
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Figure 3.5 – Graph of the reachable vertices of domain Ωi represented by the set α = V (Ωi). Each
numbered circle corresponds to a vertex, where the number is the level computed during the symbolic
factorization. The blue vertices selected by CAILU_addBoundOverlap with k = 1 and η = 10, while
the red one is selected by CAILU_addBoundOverlap with k = 0 and η = 10.

To ease the comprehension, we assume that the graph corresponds to Ω̂− but the following
explanation can also be applied on Ω̂+. Without loss of generality, we use only for the example
indistinctly the number of the vertex as the level of the edge. The description of Figure 3.5 always
starts with the vertex of level 2 and we traverse the graph following the clockwise rotation.

We use as the reference, the output of the case η =∞ for k = 0 and k = 1. We compare the
output of Algorithm 3.6 with Algorithm 3.7 for both values of k and η = 10 vertices. Table 3.2
summarizes the vertices found by each call of the getBoundAdjacentLayer algorithm.
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η ∞ ∞ 10 10
k 0 1 0 1
Algorithm

getBoundAdjacentLayer
1st call 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
2nd call 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
3rd call 0 1 1 0 1 0 -

getBoundOrderedAdjacentLayer
j = 0 1st call 0 0 0 0 0 0 0 0 0 0 0 0

2nd call 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3rd call 0 0 0 0

j ≤ 1 4th call - 1 1 1 1 1 - 1
5th call - 0 0 0 0 - -
6th call - 1 - -

Table 3.2 – Comparison of the set of vertices returned by each call of getBoundAdjacentLayer and
getBoundOrderedAdjacentLayer. When the maximum number of adjacent vertices, η, is equal to 10 and
k = 0, both methods return the same set. But for k = 1, the first method reaches 3 vertices of level
1 instead of 3 vertices of level 0, whereas the second method returns the set when k = 0 and only one
vertex of level 1.

In the case of k = 0 and η = 10, both algorithms return the same output as the reference.
The output of 9 vertices is not impacted by η. In the case k = 1, the output of Algorithm 3.6
differs from the reference. Using Figure 3.5, the algorithm adds the three blue vertices of level
1 in the set of adjacent vertices; the condition of the size being verified. As a consequence, the
two red vertices of level 0 cannot be added in the set. It leads to γki 6⊂ γ

k+1
i .

The interest of Algorithm 3.7 is related to the level of fill. The quality of the factorization
increases in general when k increases too. On the other hand, Algorithm 3.7, with k = 1, searches
the reachable vertices in F0 (edges of level 0 only) and adds the 9 vertices of the reference. Since
it remains one place, the value of j is incremented to search reachable vertices from the set,
union of the 9 vertices with αi, in F1 (edges of level 0 or 1 only). It follows that the added vertex
is of level 1 which is obvious since all reachable vertices of level 0 have been added previously.
Finally, the output of the algorithm for k = 1 contains the set for k = 0 and one extra vertex.

Hence, if the memory bound is reached for a given k, increasing k has no impact on the
set of reachable vertices. Moreover, it increases the cost of reordering each domain and the
symbolic/numeric factorization. Also, reordering more layers in each subdomain is expected to
decay the number of iterations of the solver.

Lemma 19. Consider a matrix A and the graph Ω̂ of C, the ILU(k) factorization of A, par-
titioned into p subdomains as in Definition 7. The construction of βi and γi in Algorithm 3.7
ensures that for all j ∈ {1, . . . , k},

if N∞G(Fj)+ (V (Ωi)) ⊆ βi then N∞G(Fj−1)+ (V (Ωi)) ⊆ βi, (3.22)

and
if N∞G(Fj)−

(V (Ωi)) ⊆ γi then N∞G(Fj−1)− (V (Ωi)) ⊆ γi. (3.23)

Proof. Since the proof is similar for both Equations (3.22) and (3.23), we focus on the proof of
Equation (3.22).

Suppose |βi ∪ N∞G(Fk)+ (V (Ωi)) | < η/2. Thus we have N∞G(Fk)+ (V (Ωi)) ⊆ βi where βi =

βi ∪ N∞G(Fk)+ (V (Ωi)). The construction considers the graph of Fk−1 before the graph of Fk.
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Since the limit η/2 is not reached, we have

N∞G(Fk−1)+ (V (Ωi)) ⊆ βi.

3.3.3 Relation between ILU(k) and RAS

Additive Schwarz methods behave similar to CA-ILU(k) only when a partition of unity is defined.
In this section, we present the relation between RAS and CA-ILU(k). We present the overlap
of RAS for a set of vertices α and then we show the relation of inclusion of the overlap of
RAS with a level k + 1 in the overlap of CA-ILU(k) factorization. Consider a matrix A and
its directed graph Ω. We remind that Fk is obtained from the symbolic factorization of A such
that V (G(Fk)) = V (Ω) and E(Ω) ⊆ E(G(Fk)). E(G(Fk)) is composed of the original edges
of A and the additional edges introduced by the incomplete factorization. It is known that
∀k > 0, E(G(Fk−1)) ⊆ E(G(Fk)).

From (Cai et al., 1999b), the overlap of RAS with a level of k, noted ORASδ=k , can be
expressed by induction as

∀k ≥ 1, ORASδ=k+1 (α) = N 1
Ω (ORASδ=k (α)) ∪ ORASδ=k (α) (3.24)

with the basic case
ORASδ=1 (α) = N 1

Ω (α) . (3.25)

Lemma 20. Consider a matrix A and its associated graph Ω partitioned into p subdomains as
in Definition 7. Let Ωi be a subdomain of Ω. For any positive k,

ORASδ=k+1 (Ωi) ⊆ OCAILUk (Ωi) . (3.26)

Proof. We prove it by induction on k.
We recall that the CA-ILU(k) overlap as in Definition 12 is

OCAILUk (Ωi) = N∞G(Fk)+ (V (Ωi)) ∪N∞G(Fk)−

(
V (Ωi) ∪N∞G(Fk)+ (V (Ωi))

)
. (3.27)

The first term of Equation (3.27) can be rewritten as

N∞G(Fk)+ (V (Ωi)) = N 1
G(Fk)+ (V (Ωi)) ∪N∞G(Fk)+

(
N 1
G(Fk)+ (V (Ωi))

)
. (3.28)

The second term of Equation (3.27) is split as

N∞G(Fk)−

(
V (Ωi) ∪N∞G(Fk)+ (V (Ωi))

)
= N∞G(Fk)− (V (Ωi))∪N∞G(Fk)−

(
N∞G(Fk)+ (V (Ωi))

)
. (3.29)

The first term of the union in Equation (3.29) can be rewritten as

N∞G(Fk)− (V (Ωi)) = N 1
G(Fk)− (V (Ωi)) ∪N∞G(Fk)−

(
N 1
G(Fk)− (V (Ωi))

)
. (3.30)

The initial step of the induction: we prove the inclusion for k = 0, ORASδ=1 (Ωi) ⊆ OCAILU0 (Ωi).
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The overlap of RAS with a level of 1 is the set of adjacent vertices of V (Ωi) in Ω written as

ORASδ=1 (Ωi) = N 1
Ω (V (Ωi)) , (3.31)

= N 1
Ω+ (V (Ωi)) ∪N 1

Ω− (V (Ωi)) . (3.32)

Since k = 0, we have that G(F0) = Ω and E(Ω) = E(F0) which leads to

N 1
Ω+ (V (Ωi)) = N 1

G(F0)+ (V (Ωi)) (3.33)

and
N 1

Ω− (V (Ωi)) = N 1
G(F0)− (V (Ωi)) . (3.34)

Thus N 1
Ω+ (V (Ωi)) ∪N 1

Ω− (V (Ωi)) ⊆ OCAILU0
(Ωi) and this proves the initial step of the proof.

We suppose that Equation (3.26) is verified for k and so we haveORASδ=k+1 (Ωi) ⊆ OCAILUk (Ωi).
We will prove the relation remains valid for k + 1, that is ORASδ=k+2 (Ωi) ⊆ OCAILUk+1

(Ωi).
Since ORASδ=k+2 (Ωi) = N 1

Ω (ORASδ=k+1 (Ωi)) ∪ ORASδ=k+1 (Ωi) and
ORASδ=k+1 (Ωi) ⊆ OCAILUk (Ωi) ⊆ OCAILUk+1

(Ωi), we need to show that

N 1
⊆ (ORASδ=k+1 (Ωi))OCAILUk+1

(Ωi) .

We have that

N 1
Ω (ORASδ=k+1 (Ωi)) = N 1

Ω+ (ORASδ=k+1 (Ωi)) ∪N 1
Ω− (ORASδ=k+1 (Ωi)) . (3.35)

Then, we prove that all adjacent vertices of any vertex included in the overlap of RAS with a
level of k, that are not already in the overlap of CA-ILU(k), are in the overlap of CA-ILU(k+1).
Let u be a vertex included in ORASδ=k+1 (Ωi) and so in OCAILUk (Ωi), by hypothesis. Let v be a
vertex that belongs to the set of adjacent vertices of u in Ω such that v ∈ N 1

Ω (u)\ORASδ=k (Ωi).
We study two cases.

• Consider u ∈ N∞G(Fk)+ (V (Ωi)). If I (u) > I (v) then we have v ∈ N 1
G(Fk)−

(
N∞G(Fk)+ (V (Ωi))

)
.

Otherwise, if I (u) < I (v) then v ∈ N∞G(Fk)+ (V (Ωi)). Hence, v ∈ OCAILUk (Ωi) ⊆
OCAILUk+1

(Ωi).

• Consider u ∈ N∞G(Fk)−

(
V (Ωi) ∪N∞G(Fk)+ (V (Ωi))

)
. If I (u) > I (v), then v belongs to the

same set of vertices as u, N∞G(Fk)−

(
V (Ωi) ∪N∞G(Fk)+ (V (Ωi))

)
. Otherwise, it remains the

case I (u) < I (v).

Now, we focus on the case when u is reached during the computation of
N∞G(Fk)−

(
V (Ωi) ∪N∞G(Fk)+ (V (Ωi))

)
and I (u) < I (v). Let th be the vertex with the highest

index among the vertices that are traversed by the path from a vertex that belongs to V (Ωi) to
the vertex u, and th 6= u. Thus u ∈ N∞G(Fk)− (th). If I (v) > I (th), then (th, v) ∈ E(G(Fk+1)).
Otherwise, there exists at least a vertex, in the path from th to u, having an index higher than
I (v). In this last case, we denote as t, the first vertex encounters from u to th, that is the
reverse path from th to u, such that I (t) > I (v). Thus the edge (t, v) belongs to E(G(Fk+1)).
Therefore, either through the edge (th, v) or the edge (t, v), v is reached from th and so v ∈
N∞G(Fk+1)− (th) ⊆ N∞G(Fk+1)−

(
V (Ωi) ∪N∞G(Fk+1)+ (V (Ωi))

)
. Therefore, v ∈ OCAILUk+1

(Ωi).
Hence ORASδ=k+2 (Ωi) ⊆ OCAILUk+1

(Ωi).
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3.4 Implementation of the preconditioner in parallel
The purpose of this section is to present the starting point of CA-ILU(k) preconditioner. In
(Grigori and Moufawad, 2015b), Moufawad et al. show results of iterative convergence for small
matrices. CA-ILU(0) is compared with Block Jacobi preconditioner, using MATLAB code. The
preliminary work is a parallel implementation of CA-ILU(0) in C. Then CA-ILU(0) is interfaced
in Petsc. Further, the code is modified to consider a larger k. We compare the implementation of
CA-ILU(k) preconditioner with Block Jacobi preconditioner, denoted hereafter as BJacobi, and
with Restricted Additive Schwarz, denoted as RAS. We will discuss the number of iterations, the
time to solve the preconditioned system, and the impact of the size of the overlap. In this section,
we present the details of implementation of CA-ILU(0). We detail the distribution of the matrix
A and the right-hand side b. Then we expose the construction of CA-ILU(0) preconditioner. We
later show that CA-ILU(0) is interfaced with Petsc and so its application on a vector is done
through Petsc.

Consider a matrix A of size n× n and the left preconditioned system to solve

M−1Ax = M−1b, (3.36)

where x ∈ Rn is the unknown vector, b ∈ Rn is the right-hand side and M is a preconditioner.
A is split into p block rows where p corresponds to the number of processors. Each block row,
Ai ∈ Rni×n, is indexed by processor i, where i ∈ {0, . . . , p − 1} and

∑
i ni = n. The vectors

x and b are split in order to respect the splitting of A. At each iteration, GMRES computes
a new Krylov basis vector yi+1 using the previous vector yi. In the case of CA-ILU(0), the
preconditioner, M = LU , is built from the Incomplete LU factorization of A (no fill-in).

3.4.1 Preparation of the distribution of the matrix and the right-hand
side

In parallel computation, the number of communication instances as well as the amount of data
exchanged impact the performance. The classical way to reduce it is to decrease the dependencies
between processors. It especially matters during the parallel computation of a matrix-vector
product. To do so, we use multilevel K-way partitioning algorithm introduced by Karypis et al.
in (Karypis et al., 1998). This routine takes as input the matrix and the number of partitions,
and returns a partition vector that aims to reduce the number of dependencies between the
blocks. The following algorithm presents the preparation of A and b in order to distribute them
in a block row layout.

Algorithm 3.9 prepareData(A, b, p)
This algorithm presents the preparation of the matrix and the right-hand
side.
Input: A ∈ Rn×n : the matrix,

b : the right-hand side,
p : the number of processors

1: Call KwayPartitioning(A, p) which returns e, the partition vector
2: Create a permutation matrix P from e
3: Compute A← PAPT

4: Compute b← Pb
5: Create a vector posB that stores the position of the first row of each partition in A permuted
Output: A and b permuted following Kway partitioning, posB the starting row index of each partition

in A permuted
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From the partitioning returned by k-way algorithm, A and b are permuted such that all
rows that belong to the partition i, (i ∈ {0, . . . , p − 1}) are gathered, starting with elements
of partition 0 moved at the beginning of A and b. In order to distribute A and b in block row
layout, Algorithm 3.9 creates a vector, denoted posB, that stores the position of the first row
of each partition. Each partition of A and b can, therefore, be distributed to the corresponding
processor using posB.

3.4.2 Implementation of the factorization of A in parallel

CA-ILU(0) aims to avoid the communication phase performed during the application of the
preconditioner. The key idea is to duplicate data as it is done in s-step methods (J. Demmel, M.
Hoemmen, et al., 2008) that performs s consecutive parallel Matrix-Vector product Asv, starting
with v, all without communication. In that case, the duplicated data corresponds to the rows
associated with the vertices adjacent to the considered subdomain. In the case of ILU(0), to
avoid communication is much more difficult than getting the adjacent vertices. As described in
Algorithm 3.3, it corresponds to gathering the overlap of a subdomain as in Equation (3.7). The
size of the overlap can reach the entire matrix. Therefore, in (Grigori and Moufawad, 2015b),
it is proposed to reorder A using Alternating Min-Max Layers algorithm, denoted further as
AMML. This purpose is to reduce the size of the overlap. This algorithm (or its variants)
decomposes each subdomain into layers, defined in Equations (3.8) and (3.10). In the case of
CA-ILU(0), we consider only the first two layers and the remaining vertices of the subdomain.
In each subdomain, we compute the boundary layer, i.e., the vertices that are adjacent to the
other blocks. Then, the second layer is composed of the adjacent vertices and corresponding
rows of the boundary layer of the block. Finally, the remaining vertices of the subdomain are
renumbered as the vertices of a layer. The vertices of these three sets are numbered alternatively
with maximum and minimum indices.

The description of the implementation of CA-ILU(0) is presented in Algorithm 3.10. Note
that lines 2 to 11 correspond to a sequential block of instructions. The efficiency of this section
of code can be improved. In the sequential section, the root processor reorders each block Ai.
It obtains the overlap of each subdomain and sends the block Ai and its overlap to processor i,
and its associated part of b. Then each processor factors its local matrix Ai.

We introduce a few modifications to the original algorithm. In the paper (Grigori and Mo-
ufawad, 2015a), the vertices of each layer are also reordered by applying AMML algorithm.
In our implementation, we replace this step by applying Nested Dissection algorithm (George,
1973). Although CA-ILU(0) is designed to be used with s-step GMRES, we use classical GM-
RES. Therefore, the computation of Ayi performed by GMRES involves communication. This
approach allows us to make a fair comparison with BJacobi and RAS, for which this communi-
cation step occurs.
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Algorithm 3.10 buildCAILU0(A)
This algorithm presents the main steps in our implementation of CA-ILU(0)
Input: A ∈ Rn×n : The matrix to factor,
1: Let id be the index of the processor and p be the number of processors
2: if id = 0 then
3: for i = 0 to p− 1 do
4: Reorder the layers of Ai using AMML and Nested Dissection algorithm
5: end for
6: Apply the same reordering to b
7: for i = 0 to p− 1 do
8: Compute the dependencies of Ai in order to apply Li and Ui locally without communication
9: Distribute Ai, its overlap and the corresponding part of b to processor i

10: end for
11: end if
12: Each processor factors its local block of A without communication
Output: Li and Ui the triangular factors of A on processor i.

3.4.3 Interfacing CA-ILU(0) with Petsc
Petsc library provides an interface that allows us to add a custom preconditioner that can be
called by a solver as GMRES. It also provides classical preconditioners as Block Jacobi and
Restricted Additive Schwarz. To add a new preconditioner, four basic routines are required by
Petsc to be called by the solver. First, we have PCCreate_CAILU0 routine that creates the
environment of our preconditioner and PCDestroy_CAILU0 to undo the creation. Second, we
have PCSetUp_CAILU0 routine that creates the preconditioner as in Algorithm 3.10. Petsc
handles the factorization on each processor using MatILUFactorSymbolic and then MatLUFac-
torNumeric to get the ILU(0) factored matrix C of A. Third, we create PCApply_CAILU0
routine that is called at each iteration by GMRES. Since this last routine is of importance,
we detail it in Algorithm 3.11. We also create an additional routine, PCPrepare_CAILU0, to
prepare the matrix as presented in Algorithm 3.9.

During the application of the preconditioner, GMRES calls the PCApply_CAILU0 routine,
presented in Algorithm 3.11. This routine takes a vector x = Ayi, the result of the sparse matrix
vector product. Since during the setup of the preconditioner, we compute some duplicated data,
we need to get the corresponding elements in x. For that, Petsc provides a useful structure called
VecScatter which handles the communication in order to get locally the duplicated data and the
local x into xup. This routine also uses the C matrix, the result of the incomplete factorization
of the block. This factored matrix in the sense of Petsc is given to MatSolve routine to perform
the classic backward and forward substitutions. Finally, only the non-duplicated elements of w
are returned to GMRES.

Algorithm 3.11 PCApply_CAILU0(C,f)
This algorithm presents the main steps during the application of CA-ILU(0) precondi-
tioner.
Input: C ∈ Rm×m : the factored matrix of A,
Input: f : the local vector, obtained by the computation of f = Ayi.
1: Let fup ∈ Rm be a larger vector than f
2: Gather in fup the required duplicated data /* Communication handled by Petsc */
3: Solve wup ← Cfup using Petsc routine MatSolve /* Performed without communication */
4: Keep in w, the subset of wup corresponding to the local part of f
Output: w the result of the application of the preconditioner
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3.5 Experimental results

3.5.1 Test environment

As described above, our implementation is a parallel C and MPI code that allows us to study
the scalability and to compare with two common preconditioners Block Jacobi, denoted further
BJacobi, and Restrictive Additive Schwarz, referred hereafter as RAS. All the tests are made on
a supercomputer called Poincare, an IBM supercomputer with 92 nodes, located at MDLS, CEA
Saclay. Each node is composed of 2 Sandy Bridge E5-2670 (2.60GHz, 8 cores per processor) with
32 GB of memory. The network is an Infiniband QLogic QDR, and the whole system is managed
by CentOS 6.5. This machine is used for our MPI tests. It provides the Intel compiler 15.0.090
and Intel-Mpi 5.0.1.035. The third libraries are mainly Petsc version 3.7.5 for the solving part
and metis 5.1.0 for the partitioning of the data.

Table 3.3 summarizes the test matrices. All matrices are related to 2D or 3D problems
starting with 145, 563 unknowns and up to 3, 375, 000 unknowns with 23, 490, 000 nnz for the
Skycraper problem labeled as 3DSKY150P1.

Matrix Size nnz(A) symmetric 2D/3D Problem

matvf2dAD400400 160 000 798 400 no 2D
Elasticity3D4001010 145 563 4 907 997 yes 3D Elasticity
parabolic_fem 525 825 2 100 225 yes 3D Diffusion-convection
3DSKY100P1 1 000 000 6 940 000 yes 3D Skycraper
SPE10 1 094 421 7 478 141 no 3D Reservoir
3DSKY150P1 3 375 000 23 490 000 yes 3D Skycraper

Table 3.3 – Matrices used for the parallel test

The Elasticity3D4001010 matrix arises from the linear elasticity problem with Dirichlet and
Neumann boundary conditions defined such as

div(σ(u)) + f = 0 on Ω (3.37)
u = 0 on ∂ΩD (3.38)

σ(u) · n = 0 on ∂ΩN (3.39)

where Ω is a unit square (2D) or cube (3D), ∂ΩD is the Dirichlet boundary, ∂ΩN is the Neumann
boundary, f is some body force, u is the unknown displacement field and σ(.) is the Cauchy stress
tensor. The latter is given by Hooke’s law and can be expressed in terms of Young’s Modulus E
and Poisson’s ration ν. The discretization uses a triangular mesh with 50×10×10 points on the
corresponding vertices. We consider discontinuous E and ν in 3D: (E1, ν1) = (2×1011, 0.25) and
(E2, ν2) = (107, 0.45). For a more detailed description of the problem see (Jolivet et al., 2013).

The SKY3D matrices come from boundary value problems of the diffusion equations:

−div(κ(x)∇u) = f on Ω (3.40)
u = 0 on ∂ΩD (3.41)

∂u

∂n
= 0 on ∂ΩN (3.42)

where Ω is a unit square (2D) or cube (3D). The tensor κ is a given coefficient of the partial
differential operator set to ∂ΩD = [0, 1]×{0, 1} in 2D and ∂ΩD = [0, 1]×{0, 1}× [0, 1] in 3D. In
both cases, ∂ΩN is chosen as ∂ΩN = ∂Ω \ ∂ΩD.
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The matrices SKY3D come from skyscraper problems where the domain contains many zones
of high permeability which are isolated from each other. More precisely κ is taken as:

κ(x) = 103 ∗ ([10 ∗ x2] + 1) if [10xi] is odd, i = {1, 2} (3.43)
κ(x) = 1 otherwise, (3.44)

where [x] is the integer value of x.
We compare the performance of the three methods on a set of matrices that are also used

in (Grigori, Moufawad, and Nataf, 2016; Achdou et al., 2007; Niu et al., 2010) where they are
described in more details. We compare CA-ILU(0) preconditioner with Block Jacobi and RAS
preconditioner and without preconditioner to study the stability, the number of iterations, the
residual and the runtime of the parallel version.

In all tests, we consider A as scaled. The scaling applied here is the common method used
in order to reduce the effect of possibly very high values on the diagonal. Therefore, for each
matrix A ∈ Rn×n, we compute DAD with

D =


1/
√

max(abs(a1,:)) . . . 0
... 1/

√
max(abs(a2,:))

. . .
0 1/

√
max(abs(an,:))

 (3.45)

where max(abs(ai,:)) is the largest absolute element on the i’th row of the matrix A.
The true solution vector xs is constructed such that xs = w/‖w‖2 with w(i) = 1, i ∈

{1, . . . , n}. The right-hand side b is given by the product Axs and then normalized. For
each preconditioner, the test starts loading the matrix, then scales it. Then all preconditioners
permute A by calling KwayPartitioning algorithm. Then A is distributed except in the case of
CA-ILU(0) where the distribution is handled by PCSetUp_CAILU0. GMRES solver is setup
using a maximum number of iterations of 1000, a restart of 200 and modified Gram-Schmidt
orthogonalization; except other mention, the relative tolerance is set to 1e−6. Finally KSPsolve
routine takes as input A and b, and returns x the computed solution.

3.5.2 Parallel results of CA-ILU(0)

In this section, we present the parallel results of CA-ILU(0) compared with BJacobi and RAS
with one and two levels of overlap. The number of subdomains, which is equal to the number
of processors, goes from 16 to 512, except for few cases where it stops at 256 subdomains. For
each problem, we first discuss the number of iterations to converge.

We first discuss the number of iterations to converge for each method that is summarized in
Table 3.4. For matvf2dAD400400 problem, RAS is close to 260 iterations when the number of
subdomains increases, whereas CA-ILU(0) increases from 276 to 326 iterations. Concerning the
elasticity3d4001010 problem, the number of iterations of BJacobi and RAS are almost the same
up to 256 subdomains. Their number of iterations starts roughly at 1300 iterations whereas CA-
ILU(0) needs almost 1700 iterations. On this problem particularly, CA-ILU(0) converges with
the largest number of iterations, and, this, for all subdomains. The number of iterations for all
methods on Parabolic_fem problem does not change when the number of subdomains increases.
BJacobi is slower with around 530 iterations whereas the others are close to 460. Note that for
512 subdomains, CA-ILU(0) converges in 407 iterations. For 3DSKY problems, the best results
are obtained by RAS with 300 iterations for the 100P1 problem and 350 iterations for the 150P1
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problem. BJacobi and CA-ILU(0) require a similar number of iterations, around 360 and 340,
respectively, for the 100P1 problem. For the 150P1 case, CA-ILU(0) is closer to RAS and for 256
and 512 subdomains CA-ILU(0) is faster. Therefore, in almost all cases, RAS preconditioner is
the fastest in terms of iterations. Except on elasticity3d4001010, CA-ILU(0) converges in fewer
iterations than BJacobi.

The elasticity3d4001010 problem is the densest among those presented in Table 3.3. It sug-
gests that the unknowns are more connected. As a consequence, the reordering of each subdomain
is expected to be more important. The reordering increases the number of iterations to converge.
Table A.2 presents the stability of the methods. In addition to the number of iterations, we have
the relative residual of the preconditioned system returned by GMRES, the relative residual of
the original system ‖b−Ax‖2/‖b‖2 where x is the computed solution vector. Since we generate
the exact solution xs, we compute the relative error on x. CA-ILU(0) reaches the same accuracy
as the other methods, but it requires more iterations for that. Table A.3 presents the impact of
the reordering on the number of iterations for BJacobi and RAS(2). We observe that for 16 sub-
domains the permutation leads to an increase of 281 and 389 iterations for BJacobi and RAS(2),
respectively. From 16 to 64 subdomains, RAS(2)_permuted and CA-ILU(0) perform exactly the
same number of iterations to converge. For a larger number of subdomains, CA-ILU(0) needs
slightly fewer iterations to converge compared to RAS(2)_permuted, clearly related to their
similar overlap. Note that the overlap of RAS does not suffer from any permutation.

Problem matvf2dAD400400 elasticity3d4001010 parabolic_fem 3DSKY100P1 SPE10 3DSKY150P1
Reference 1638 3000 2750 399 1683 399

np = 16 BJacobi 345 1273 537 364 512 440
CAILU(0) 276 1678 463 337 550 359

RAS(1) 264 1398 474 304 514 351
RAS(2) 261 1289 458 294 497 348

np = 32 BJacobi 348 1281 539 363 537 402
CAILU(0) 280 1967 461 336 572 360

RAS(1) 266 1449 476 305 547 352
RAS(2) 260 1526 456 295 521 352

np = 64 BJacobi 349 1589 532 363 566 439
CAILU(0) 286 2326 463 336 534 369

RAS(1) 268 1550 472 309 523 349
RAS(2) 264 1587 455 301 505 350

np = 128 BJacobi 354 1786 535 362 583 398
CAILU(0) 305 2197 455 342 545 372

RAS(1) 270 1730 481 337 543 347
RAS(2) 265 1874 463 308 513 350

np = 256 BJacobi 357 2105 516 372 654 399
CAILU(0) 326 2450 462 347 567 345

RAS(1) 275 1786 462 337 579 349
RAS(2) 267 1896 436 311 537 348

np = 512 BJacobi 2503 535 643 395
CAILU(0) 2521 407 615 347

RAS(1) 1994 476 650 351
RAS(2) 1977 471 581 348

Table 3.4 – Comparison of the number of GMRES iterations to converge using CA-ILU(0) with BJacobi
and RAS on our test problems for a number of partitions increasing from 16 to 512. GMRES is set with
a maximum of 3000 iterations, a restart of 200 and a relative tolerance of 1e− 6.

Table 3.5 presents the evolution of the overlap for CA-ILU(0), RAS(1) and RAS(2) with
respect to the number of subdomains. In addition to the size of each subdomain, the size of the
overlap is discussed in three columns, which are the average, the minimum and the maximum
size among all subdomains. The size of the overlap of RAS increases slowly until 64 to reach
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751 and 1530 for 1 level and 2 level of overlap, respectively. Then it drops to 334 and 816,
respectively, for 512 subdomains. On the other hand, CA-ILU(0) overlap size is the same in
average, minimum and maximum as RAS(2) for 16 and 32 subdomains but it becomes twice
the size of the overlap of RAS(2) for 64 subdomains. Further, the overlap reaches 14, 000 for
512 subdomains. For the maximum overlap, on 512 subdomains, CA-ILU(0) has an overlap 20
times larger than the largest overlap of RAS(2) (3.11× 104 for CA-ILU(0) against 1.42× 103 for
RAS(2)). In the case of RAS(2)_permuted, the overlap is the same for 16 and 32 subdomains
and close for 64 subdomains. This overlap leads to the same number of iterations. Therefore the
overlap of RAS is the same as CA-ILU(0), this corresponds to the relation of inclusion in section
3.3.3.

Concerning the parabolic_fem problem, Table A.4 presents the stability of CA-ILU(0), com-
pared with the other methods. As for elasticity3d4001010 problem, the behavior is the same.
The number of iterations of BJacobi is higher than the others with 100 iterations. CA-ILU(0) is
better than RAS(1) (or equal for 256 subdomains) and close to RAS(2). Moreover, CA-ILU(0)
requires fewer iterations for 128 and 512 subdomains. Note that this number is particularly low
for 512 subdomains (50 iterations less than the other subdomains). Focusing on the size of the
overlap in Table 3.6, RAS(2) and CA-ILU(0) are close to each other. Their size decreases when
the number of subdomains increases. The maximum size is 1470 for CA-ILU(0) versus 1410 for
RAS(2), and drops to 432 and 328 for CA-ILU(0) and RAS(2), respectively. Note that for all
subdomains, the size of RAS(2) overlap is smaller than the size of the overlap of CA-ILU(0).

Domain size Overlap size

PC mean min max mean min max

np = 16 CAILU(0) 9097 8838 9354 1.37e+03 7.32e+02 1.47e+03
RAS(1) - - - 6.83e+02 3.66e+02 7.35e+02
RAS(2) - - - 1.37e+03 7.32e+02 1.47e+03

np = 32 CAILU(0) 4548 4425 4683 1.42e+03 7.26e+02 1.51e+03
RAS(1) - - - 7.09e+02 3.63e+02 7.53e+02
RAS(2) - - - 1.42e+03 7.26e+02 1.51e+03

np = 64 CAILU(0) 2274 2208 2342 3.40e+03 7.74e+02 7.81e+03
RAS(1) - - - 7.51e+02 3.63e+02 8.37e+02
RAS(2) - - - 1.53e+03 7.26e+02 1.78e+03

np = 128 CAILU(0) 1137 1104 1171 9.07e+03 2.09e+03 2.22e+04
RAS(1) - - - 6.12e+02 3.42e+02 7.71e+02
RAS(2) - - - 1.33e+03 7.23e+02 1.69e+03

np = 256 CAILU(0) 568 552 585 1.09e+04 4.50e+03 2.27e+04
RAS(1) - - - 4.53e+02 2.84e+02 5.88e+02
RAS(2) - - - 1.05e+03 6.30e+02 1.34e+03

np = 512 CAILU(0) 284 276 292 1.40e+04 3.36e+03 3.11e+04
RAS(1) - - - 3.34e+02 1.77e+02 5.62e+02
RAS(2) - - - 8.16e+02 4.05e+02 1.42e+03

Table 3.5 – Comparison of the overlap of CA-ILU(0) with RAS on elasticity3D4001010 for different
number of partitions.
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Domain size Overlap size

PC mean min max mean min max

np = 16 CAILU(0) 32864 32845 32885 1.16e+03 6.43e+02 1.47e+03
RAS(1) - - - 5.66e+02 3.06e+02 7.05e+02
RAS(2) - - - 1.13e+03 6.13e+02 1.41e+03

np = 32 CAILU(0) 16432 16405 16451 9.09e+02 4.21e+02 1.23e+03
RAS(1) - - - 4.31e+02 2.03e+02 5.80e+02
RAS(2) - - - 8.65e+02 4.07e+02 1.17e+03

np = 64 CAILU(0) 8216 8176 8247 7.11e+02 2.96e+02 9.55e+02
RAS(1) - - - 3.30e+02 1.41e+02 4.53e+02
RAS(2) - - - 6.64e+02 2.83e+02 9.12e+02

np = 128 CAILU(0) 4108 4051 4152 5.40e+02 2.33e+02 7.27e+02
RAS(1) - - - 2.42e+02 1.06e+02 3.15e+02
RAS(2) - - - 4.89e+02 2.13e+02 6.36e+02

np = 256 CAILU(0) 2054 1994 2077 4.07e+02 1.70e+02 5.31e+02
RAS(1) - - - 1.74e+02 8.20e+01 2.21e+02
RAS(2) - - - 3.54e+02 1.65e+02 4.48e+02

np = 512 CAILU(0) 1027 997 1057 3.10e+02 1.04e+02 4.32e+02
RAS(1) - - - 1.25e+02 5.00e+01 1.61e+02
RAS(2) - - - 2.55e+02 1.01e+02 3.28e+02

Table 3.6 – Comparison of the overlap of CA-ILU(0) with RAS on parabolic_fem for different number
of partitions.

Parallel efficiency

In this section, we present the parallel efficiency of CA-ILU(0) compared with BJacobi and
RAS with one and two levels of overlap. We measure the time using MPI_Wtime to solve the
preconditioned system using GMRES of Petsc (v. 3.7.5). The number of subdomains, which
is equal to the number of processors, goes from 16 to 512, except for few cases where it stops
at 256 subdomains. For each problem, we first discuss the number of iterations to converge.
We consider the runtime of GMRES without preconditioner to converge as a reference, and we
use the runtime with 16 subdomains, i.e. 16 MPI processors, as a runtime reference. Then we
compute the ratio for each method with respect to the reference as follows

Ratio(method, p) = runtimereference/runtimemethod(p) (3.46)

where method corresponds to one of the preconditioners or GMRES without preconditioner, and
p is the number of subdomains.
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Figure 3.6 – Comparison of the runtime of CA-ILU(0), BJacobi, RAS(1) and RAS(2) with the reference,
GMRES without a preconditioner for the test matrices presented in Table 3.3. The number of subdomain,
which is equivalent to the number of partitions, increases from 16 to 512 (256 subdomains in two cases).
GMRES is set with a maximum of 3000 iterations, a restart of 200 and a relative tolerance of 1e − 6.
Higher ratio means better method.

We now focus on the runtime to compute the solution for each method. We are using as
reference GMRES without preconditioner, denoted in all subfigures of Figure 3.6, as Reference.
We choose as the reference time, the time for Reference to solve the system on 16 processors.
We plot in Figure 3.6 the ratio of the runtime of each method with respect to the reference time
as in Relation (3.46), for each test matrix presented in Table 3.3. At first, in Subfigure 3.6a,
BJacobi runtime is the largest of the preconditioned system. Its ratio of the runtime is around
4.5 for 16 subdomains whereas the other methods have a ratio of 6. CA-ILU(0) is close to the
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RAS versions but it never outperforms them. When the number of subdomains increases, the
performance of all methods decreases. CA-ILU(0) gets closer to BJacobi, which has a ratio of 3.
The maximum efficiency for this problem is obtained for 32 subdomains. The elasticity3d4001010
problem from Subfigure 3.6b leads to a poor efficiency for all methods. BJacobi is the fastest
preconditioner with a maximum ratio of 2.2 for 32 subdomains. It becomes less efficient when
the number of subdomains is larger than 256. From the overlap size study presented in Table
3.5, the performance of CA-ILU(0) is expected to be deteriorated with respect to the number
of subdomains. CA-ILU(0) has a maximum efficiency of 1.4. The reference has a better ratio,
starting with 64 subdomains. Parabolic_fem runtimes are presented in Subfigure 3.6c. BJacobi
has the lowest ratios for all subdomains, starting at 5 and reaching a maximum of 9.6 for 128
subdomains. Both RAS versions are close to CA-ILU(0) and RAS(2) is slightly faster for 32
subdomains. However, CA-ILU(0) is the fastest preconditioner with a maximum ratio of 11.5
for 128 subdomains. 3DSKY problems have a similar runtime. In the case of 3DSKY100P1, all
methods have an increasing ratio of runtime up to 64 subdomains. For a number of subdomains
larger than 64, the reference and CA-ILU(0) stagnate. The other methods still increase with a
lower coefficient. Note that BJacobi has an unexpected behavior for p = 128. In the case of
3DSKY150P1, the breaking line occurs for 256 subdomains. For SPE10 problem, Subfigure 3.6e,
CA-ILU(0) preconditioner is slower than the others. This is due to the size of the overlap. In
Table A.9, the largest overlap of CA-ILU(0) is 2.25 × 104 for 16 subdomains and decreases to
1.69 × 104 for 512 subdomains. In comparison, RAS(2) has a size of 1.32 × 104 for p = 16 and
drops to 2.45× 103 for p = 512.

Replacement of ILU(0) by LU in each diagonal block

In some cases, it is common for BJacobi and RAS to use LU instead of ILU(0) for the factorization
of each diagonal block. We study the behavior of CA-ILU(0) when each subdomain is factored
using LU with partial pivoting instead of ILU(0). The construction of the preconditioner is the
same as before, except for the numerical factorization. That is the reordering of each subdomain,
the search of the overlap for each subdomain is identical to CA-ILU(0). We further denote
this modification of our preconditioner as CA-ILU(0)-LU. CA-ILU(0)-LU is compared to RAS
and BJacobi also using LU to factor each subdomain, denoted RAS(*)-LU and BJacobi-LU,
respectively.

We perform the same tests as for the classical CA-ILU(0) algorithm on the problems presented
in Table 3.3. Previous results show that in the case of CA-ILU(0), a bigger overlap leads to more
FLOPS and so a degraded performance compared to the other preconditioners. From the overlap
point of view, the performance of CA-ILU(0)-LU is expected to be better and even to become
better than RAS. At first, we study SPE10 problem with 16 to 512 subdomains and we summarize
the convergence results in Table 3.7. We observe that BJacobi-LU needs at least 184 iterations
and up to 410 iterations for 512 subdomains. CA-ILU(0)-LU and RAS(2)-LU are quite close
starting with 69 and 71 iterations, respectively, for 16 subdomains and increasing until 151 and
174 iterations for 512 subdomains. For each number of subdomains, CA-ILU(0)-LU needs fewer
iterations than RAS(2)-LU to converge. RAS(1)-LU needs at least 30 more iterations than the
two most competitive preconditioners and the gap grows to 76 iterations for 512 cores. All these
methods are as stable as others with a relative residual of 1e−6, a relative error on the system of
1e−7 and an error on the solution close to 1e−7, with a slightly worse error of 1e−6 for BJacobi.
For all numbers of subdomains studied, CA-ILU(0)-LU needs fewer iterations to converge, and
this is due to the size of the overlap.

In Figure 3.7, we plot the overlap used by RAS(1)-LU, RAS(2)-LU and CA-ILU(0)-LU. As
a reminder, the size of the overlap is the number of vertices, i.e., the number of rows, composing



3.5. Experimental results 55

the overlap. The replacement of ILU by LU factorization on each diagonal block does not impact
the size of the overlap. Hence, the overlap size of RAS(1)-LU is strictly the same as RAS(1).
In Figure 3.7, bars correspond to the average overlap size of each method and for different
subdomains. Associated with each bar, the lower and higher lines represent the minimum and
maximum, respectively, of the overlap size. For a small number of subdomains, CA-ILU(0)-
LU overlap size is 1.5 times larger than RAS(2)-LU and almost 3 times the size of RAS(1)-LU
overlap. This gap should lead our method to have a better runtime than both versions of RAS.
Considering the size of each subdomain, the overlaps of all methods involve negligible number
of FLOPS until 128 subdomains. For 128 subdomains, the size of each subdomain is roughly
1e4 and the size of CA-ILU(0)-LU overlap is at most 1.8 × 104. Then, for a larger number of
subdomains, the maximum overlap size of CA-ILU(0)-LU is roughly identical. Thus our method
stops scaling in terms of redundant computations for 128 subdomains. This behavior points out
the fact that the size of the overlap and hence of redundant computation has to be related to
the size of each subdomain. When the ratio of the overlap size over the size of the subdomains
becomes large enough, the amount of redundant computation becomes too important and the
method stops scaling.

nsubdomain preconditioner niter relative residual ||b−Ax||2
||b||2

||x−xs||2
||xs||2

Reference 1683 9.99e-07 9.99e-07 1.95e-05

16 BJacobi-LU 184 3.47e-06 7.25e-07 5.66e-07
CAILU(0)-LU 69 3.32e-06 3.90e-07 2.79e-08
RAS(1)-LU 113 3.58e-06 4.68e-07 2.81e-07
RAS(2)-LU 71 3.37e-06 5.01e-07 2.92e-08

32 BJacobi-LU 280 3.12e-06 1.01e-06 1.54e-06
CAILU(0)-LU 107 3.09e-06 4.20e-07 4.39e-08
RAS(1)-LU 140 3.20e-06 4.00e-07 1.76e-07
RAS(2)-LU 110 3.38e-06 4.65e-07 6.46e-08

64 BJacobi-LU 301 3.02e-06 5.82e-07 1.49e-06
CAILU(0)-LU 108 2.91e-06 4.48e-07 4.09e-08
RAS(1)-LU 149 3.16e-06 3.85e-07 2.16e-07
RAS(2)-LU 116 3.29e-06 5.15e-07 5.54e-08

128 BJacobi-LU 342 2.85e-06 6.65e-07 1.38e-06
CAILU(0)-LU 115 3.25e-06 3.68e-07 1.54e-07
RAS(1)-LU 171 3.11e-06 4.40e-07 2.55e-07
RAS(2)-LU 121 3.24e-06 4.24e-07 1.61e-07

256 BJacobi-LU 367 2.68e-06 6.68e-07 1.30e-06
CAILU(0)-LU 128 3.09e-06 4.09e-07 1.30e-07
RAS(1)-LU 199 2.79e-06 4.97e-07 1.52e-07
RAS(2)-LU 142 2.84e-06 4.93e-07 7.15e-08

512 BJacobi-LU 410 2.54e-06 5.85e-07 2.58e-06
CAILU(0)-LU 151 2.89e-06 3.89e-07 1.35e-07
RAS(1)-LU 250 2.82e-06 4.27e-07 5.32e-07
RAS(2)-LU 174 2.93e-06 4.45e-07 1.84e-07

Table 3.7 – Comparison of CA-ILU(0)-LU with BJacobi-LU and RAS-LU, using LU on each diagonal
block, on the problem SPE10 for a number of subdomains increasing from 16 to 512. GMRES is set
with a maximum of 3000 iterations, a restart of 200 and a relative tolerance of 1e− 6.
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Figure 3.7 – Comparison of the overlap of CA-ILU(0) with RAS(1), RAS(2) on the problem SPE10
from 16 to 512 subdomains. GMRES is set with a maximum of 3000 iterations, a restart of 200 and a
relative tolerance of 1e− 6.
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Figure 3.8 – Comparison of runtime to solve SPE10 problem with CA-ILU(0)-LU, BJacobi-LU RAS(1)-
LU and RAS(2)-LU, on Poincare System. All methods use LU in each diagonal block. GMRES is set
with a maximum of 3000 iterations, a restart of 200 and a relative tolerance of 1e − 6. The number of
partitions is equal to the number of cores.

Now we compare the runtime to compute the solution for each preconditioner and we plot
the results in Figure 3.8. At first, BJacobi-LU and RAS-LU-like compute the solution in 60
seconds for 16 subdomains, compared to CA-ILU(0)-LU which converges in 10 seconds. The
runtimes decrease up to 128 subdomains. Finally, CA-ILU(0)-LU and RAS-LU-like need less
than 2 seconds to converge whereas BJacobi-LU and the reference converge in 3 seconds and
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10 seconds, respectively. As observed from the study of the overlap, CA-ILU(0)-LU does not
scale beyond 64 subdomains. Note that CA-ILU(0)-LU is only outperformed by RAS(2)-LU
when the number of subdomains is larger than 128. This result confirms that the size of the
overlap limits the performance of CA-ILU(0)-LU by inducing more FLOPS at each application
of the preconditioner. The efficiency of our method is strongly related to the size of the overlap
compared to the size of the subdomain.

We next perform the same study on 3DSKY150P1 problem. The numerical efficiency of
the three preconditioners is summarized in Table 3.8. Since the problem is larger than SPE10,
the number of subdomains increases from 32 to 512. The relative residual of the preconditioned
systems are slightly worse than the relative residual of the reference, varying from 1e−5 to 1e−6.
The error of the system is close to 1e−6 and the solution error is equal to 1e−5. The number of
iterations of RAS(2)-LU behaves similarly to the SPE10 case. RAS(2)-LU needs more iterations
to converge, increasing from 103 to 307 iterations when increasing the number of subdomains.
CA-ILU(0)-LU converges in 95 iterations for 32 subdomains and reaches 260 iterations for 512
subdomains. Our method is the fastest in term of iterations, except for 64 subdomains where
RAS(1)-LU converges with 13 less iterations. BJacobi-LU is the preconditioner suffering the
most when increasing the number of subdomains. To converge, BJacobi-LU requires at least 115
iterations and reaches 545 iterations for 256 subdomains. Moreover, comparing with BJacobi
using ILU(0) presented in Table A.7, BJacobi-LU requires more iterations when the number of
subdomains is 128 or higher.

nsubdomain preconditioner niter relative residual ||b−Ax||2
||b||2

||x−xs||2
||xs||2

Reference 399 9.94e-07 9.94e-07 1.50e-04

32 BJacobi-LU 115 4.38e-05 7.90e-06 1.45e-04
CAILU(0)-LU 95 5.18e-05 4.35e-06 6.41e-05
RAS(1)-LU 115 4.99e-05 5.57e-06 9.92e-05
RAS(2)-LU 103 4.81e-05 4.74e-06 6.35e-05

64 BJacobi-LU 138 2.86e-05 4.70e-06 1.50e-04
CAILU(0)-LU 138 3.71e- 05 3.05e-06 5.17e-05
RAS(1)-LU 125 3.92e-05 4.12e-06 9.05e-05
RAS(2)-LU 142 3.71e-05 2.91e-06 5.61e-05

128 BJacobi-LU 482 4.11e-06 6.63e-07 5.81e-05
CAILU(0)-LU 153 2.25e-05 2.36e-06 4.09e-05
RAS(1)-LU 194 1.67e-05 1.72e-06 6.08e-05
RAS(2)-LU 161 2.18e-05 2.36e-06 4.35e-05

256 BJacobi-LU 545 2.44e-06 3.82e-07 4.35e-05
CAILU(0)-LU 171 1.72e-05 1.67e-06 3.53e-05
RAS(1)-LU 326 4.06e-06 3.46e-07 1.60e-05
RAS(2)-LU 181 1.63e-05 1.60e-06 4.03e-05

512 BJacobi-LU 530 2.12e-06 3.54e-07 4.65e-05
CAILU(0)-LU 260 2.67e-06 1.84e-07 6.63e-06
RAS(1)-LU 344 2.40e-06 2.26e-07 8.83e-06
RAS(2)-LU 307 2.61e-06 2.34e-07 6.89e-06

Table 3.8 – Comparison of the number of iterations to converge for CA-ILU(0)-LU with BJacobi-LU
and RAS-LU, using LU in each diagonal block, on the problem 3DSKY150P1 for a number of subdomains
increasing from 16 to 512, and on Poincare system. GMRES is set with a maximum of 3000 iterations,
a restart of 200, and a relative tolerance of 1e− 6.
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In Figure 3.9, the number of iterations of BJacobi-LU drastically increases for 128 subdo-
mains. This unexpected behavior is not directly related to the preconditioner. For 32 and 64
subdomains, BJacobi-LU converges in less than 200 iterations, which corresponds to the GMRES
restart parameter. For 128 subdomains and higher, the preconditioned system requires at least
one restart. Figure 3.10 shows the evolution of the relative residual returned by GMRES at each
iteration for each method. Focusing on BJacobi-LU, we observe a peak at 200 iterations which
corresponds to the value of GMRES restart.
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Figure 3.9 – Comparison of the number of it-
erations of BJacobi-ILU(0) with BJacobi-LU on
3DSKY150P1 problem ; the number of subdomains
increases from 32 to 512.
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Figure 3.10 – Evolution of the relative residual
returned by GMRES after each iteration for each
preconditioner on 3DSKY150P1 problem, with 256
subdomains.
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Figure 3.11 – Comparison of CA-ILU(0)-LU with RAS(1)-LU, RAS(2)-LU on the problem
3DSKY150P1 from 32 to 512 subdomains, on Poincare system. GMRES is set with a maximum of
3000 iterations, a restart of 200, and a relative tolerance of 1e− 6.
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Figure 3.11 presents the size of the overlap of CA-ILU(0)-LU, RAS(1), and RAS(2). The
average of the CA-ILU(0)-LU overlap size decreases when the number of subdomains increases.
The maximum overlap is roughly the same for 32 and 64 subdomains, and then decreases from
5.4 × 104 to 2.3 × 104. Comparing with RAS(2), CA-ILU(0)-LU has in average 8 × 104 more
vertices for all number of subdomains. Taking into account the size of each subdomain, CA-
ILU(0)-LU has a maximum overlap size of 3.3× 104, larger than the block size of 2.6× 104, for
128 subdomains. Therefore the method factors twice the local size it should do. CA-ILU(0)-LU
reaches its limit of scalability for 128 subdomains. Note that this is not the case for CA-
ILU(0) since the incomplete factorization does not fill-in the subdomain. Thus, this limit is 256
subdomains as shown in Figure 3.6f. Figure 3.12 presents the runtime to solve 3DSKY150P1
problem by the three preconditioners from 32 to 512 subdomains. CA-ILU(0)-LU outperforms
the other preconditioners for all studied number of subdomains, except 512. But after that, RAS
becomes faster since we pay the price of a bigger overlap. As conjectured by the overlap curves,
CA-ILU(0)-LU does not scale beyond 128 subdomains. We note that the fastest method to solve
this problem is GMRES alone. Due to the small gap of iterations between GMRES alone and all
preconditioners, the overhead cost of applying locally LU is not absorbed by the reduction of the
number of iterations. Concerning CA-ILU(0)-LU, the preconditioner suffers from the reordering
compared to GMRES alone.
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Figure 3.12 – Comparison of runtime to solve 3DSKY150P1 problem with CA-ILU(0)-LU, BJacobi-
LU RAS(1)-LU and RAS(2)-LU, on Poincare system. All methods perform LU in each diagonal block.
GMRES is set with a maximum 3000 iterations, a restart of 200 and a relative tolerance of 1e− 6.

We next summarize in Figure 3.13 the ratio of the runtime to compute the solution of the
system with respect to the reference runtime for each method and for each test matrix presented
in Table 3.3. The reference corresponds to the runtime of GMRES without preconditioner, on
16 cores.
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Figure 3.13 – Comparison of the runtime of CA-ILU(0)-LU, BJacobi-LU, RAS(1)-LU and RAS(2)-LU
with the reference, GMRES without a preconditioner, for the test matrices presented in Table 3.3. The
number of subdomain increases from 16 to 512 (256 subdomains in two cases). GMRES is set with a
maximum of 3000 iterations, a restart of 200, and a relative tolerance of 1e− 6.

First, on matvf2dAD400400 problem in Subfigure 3.13a, BJacobi-LU suffers from the small
size of the diagonal blocks. Compared to BJacobi-ILU(0), this version using LU goes from a
ratio of 4 to at least 10. RAS(2)-LU is the fastest preconditioner for all number of subdomains
studied. Its maximum ratio exceeds 80 for 64 subdomains. CA-ILU(0)-LU has a ratio of almost
30, same as RAS(1)-LU, and this ratio becomes closer to RAS(2)-LU, and it is equal for 128
and 256 subdomains. Using LU instead of ILU(0) offers better performance, especially when the
number of subdomains is large. As studied before, elasticity3d4001010 problem is a challenging
matrix. All methods except BJacobi suffer from having an overlap. In particular, CA-ILU(0)-
LU runtime is widely degraded for 32, 64, and 128 subdomains. Its size of the overlap for 256
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subdomains is close to its size of overlap of 128 subdomains, and so the ratio of CA-ILU(0)-LU
does not increase significantly. On Parabolic_fem problem, in Subfigure 3.6c, CA-ILU(0) is the
most efficient preconditioner. In Subfigure 3.13c, RAS(2)-LU outperforms CA-ILU(0)-LU, except
for 16 subdomains. Compared to the ILU(0) version of each preconditioner, BJacobi-LU and
RAS(1)-LU are far slower than the two others. Subfigure 3.13d shows the ratios of each method
for 3DSKY100P1. Similar to 3DSKY150P1 problem presented above, BJacobi-LU and RAS-
LU-like have a worse runtime compared to the reference. The gap is reduced when increasing
the number of subdomains, but only RAS(2)-LU outperforms the reference when the number of
subdomains is larger than 64. CA-ILU(0)-LU is close to the reference, outperforming it for 64
and 128 subdomains. Then our method has an overlap so large that the ratio decreases until
reaching almost the runtime of GMRES alone. The case of SPE10, studied above, is presented
in Subfigure 3.13e. We observe that CA-ILU(0)-LU is the fastest method to solve the system
until 128 subdomains. Then RAS(2)-LU is more efficient with a maximum ratio close to 50,
whereas CA-ILU(0)-LU reaches a ratio of 42. BJacobi-LU is slower. Its runtime is the same
as the other methods for 16 subdomains, except for CA-ILU(0)-LU with a ratio of 7. The last
problem, 3DSKY150P1, in Subfigure 3.13f, already detailed above, shows that CA-ILU(0)-LU is
the preconditioner having the largest ratio compared to the other preconditioners.

The performance of CA-ILU(0) is related to the size of the overlap and the renumbering
induced by the reordering of the subdomains. When the overlap becomes very large, we lose
the benefit of reducing the number of iterations. A possibility is to limit the maximum overlap
for CA-ILU(0). In that case, the number of iterations is expected to increase slightly, but the
runtime, dominated by the cost of the application of the preconditioner, should be reduced
enough such that a trade-off is reached. Another possibility is to reduce the renumbering of the
unknowns due to the reordering of A. Results also show that CA-ILU(0) and CA-ILU(0)-LU do
not succeed on the same problem. We next study the impact of a larger k on the efficiency of
CA-ILU(k).

3.5.3 Study the impact of a larger k over CA-ILU(0)

Convergence results in sequential: comparison of CA-ILU(1) with CA-ILU(0)

In this section, we study the behavior of CA-ILU(1) compared to CA-ILU(0) in sequential. For
that, we use a set of matrices of smaller dimensions, displayed in Table 3.9.

Matrix Size nnz(A) symmetric 2D/3D Problem

Elasticity3D501010 18513 618747 yes 3D Elasticity
matvf2dNH2D200200 40000 199200 yes 2D Non-homogenous

Table 3.9 – Matrices used for sequential test

First, we compare the stability of CA-ILU(0) with BJacobi and RAS on a challenging problem,
Elasticity3D501010, by looking at the number of iterations, the relative residual returned by
GMRES, the error on the solution, the condition number of the preconditioned system using
condest routine from MATLAB, the error of the factorization and the number of iterations.
The number of subdomains varies from 2 to 64. For each value, we call k-way partitioning
algorithm on A to get the permutation matrix Π. This permutation is applied on A such that
A = ΠAΠ>. Then, the obtained A is scaled using Relation (3.45). We further consider A as the
permuted scaled matrix of the original A. The solution vector xs is generated from a vector w
of one (wi = 1, i ∈ [0, .., n − 1], such that xs = w/‖w‖2. From it, we generate the right-hand
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side b = A × xs that we normalize. Finally, we solve the preconditioned system using GMRES
coupled with one of the preconditioners mentioned above. We set GMRES with a maximum
number of 1000 iterations without restart and a relative residual of 1e−8.

We use as reference GMRES alone, i.e., without a preconditioner, denoted No precond. To
emphasize the impact of the reordering on the factorization, we add GMRES with ILU(0) pre-
conditioner without permutation i.e., in a natural ordering, as a second reference. This reference
is denoted further as ILU(0)NatOrd where the original A is scaled only. We also compare
CA-ILU(0) with a sequential ILU(0) factorization on A, denoted ILU(0)Kway opposite to the
previous reference. Since the overlap of CA-ILU(0) corresponds to at least the first two layers in
each subdomain, we set RAS with 2 level of overlap. To be fair with CA-ILU(0), BJacobi and
RAS also use ILU(0) in each subdomain.

Table 3.10 displays the convergence of each preconditioner and compares it with the two
references, on Elasticity3D501010 problem. Solving it without preconditioner does not converge
after 1000 iterations whereas all preconditioners converge. Looking at the impact of reordering
on the number of iterations, we compare ILU(0)NatOrd with ILU(0)Kway. We observe that
permuting the system increases the number of iterations from 266 for the reference to 267 for 2
subdomains and reaches 330 for 64 subdomains. So permuting the system degrades the number
of iterations by up to 24% in the ILU(0) case. This is a well-known behavior (Duff et al., 1989).
Focusing on CA-ILU(0) and ILU(0)Kway, we observe that the number of iterations for CA-
ILU(0) increases by 20 iterations compared to ILU(0)Kway for 2 subdomains. This gap grows
up to 91 iterations for 16 subdomains. This shows that the number of iterations increases when
the unknowns are reordered with respect to the natural ordering. Moreover, when the number
of subdomains increases, the size of the domains decreases and the ratio of reordered unknowns
with respect to the unknowns ordered in natural order of each subdomain increases.

Definition 21. Given Ω the graph of a matrix A ∈ Rn×n, we call disorder the ratio of the
number of reordered vertices with respect to the total number of vertices.

In other words, the number of remaining vertices computed Line 8 in Algorithm 3.5 decreases
when the number of subdomains increases. Now comparing all preconditioners, the relative
residual is close to 1e−9 as the relative error of the system and as the relative error of the
solution in all cases. Focusing on the incomplete LU factorization, we compute the relative error
of the factorization. Because of our implementation of RAS, we are not able to compute the
error of the factorization for RAS. This table shows that the number of iterations is strongly
related to the quality of the factorization and so the condition number of M−1A. BJacobi
has the worst factorization error and is the preconditioner that requires the most iterations to
converge. This is a well-known observation on this method since it discards the dependencies
between subdomains. BJacobi needs at least 302 iterations to converge for 2 subdomains and up
to 573 iterations for 64 subdomains. RAS and CA-ILU(0) are close with 276 and 287 iterations,
respectively, for 2 subdomains, and need at most 387 and 402 iterations respectively to converge
for 64 subdomains. The number of iterations of CA-ILU(0) is between BJacobi and RAS. It is
never worse than BJacobi and never better than RAS for all numbers of subdomains on this
problem.
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nsubdomain preconditioner niter relative residual ||b−Ax||2
||b||2

||x−xs||2
||xs||2

cond(M−1A)
||A−LU||2
||A||2

References No precond 1000 4.3e-03 4.3e-03 9.2e-04 - -
ILU(0) NatOrd 266 8.4e-09 1.7e-09 8.9e-10 3.1e+06 1.1e-01

2 ILU(0) Kway 267 9.7e-09 2.2e-09 3.0e-10 3.1e+06 1.4e-01
CAILU(0) 287 9.5e-09 2.3e-09 4.6e-10 4.1e+06 1.9e-01
BJacobi-ILU(0) 302 7.2e-09 2.2e-09 6.8e-10 6.8e+06 3.2e-01
RAS(2)-ILU(0) 276 9.5e-09 2.6e-09 5.0e-10 3.1e+06 -

4 ILU(0) Kway 277 9.4e-09 2.1e-09 7.4e-10 4.4e+06 1.8e-01
CAILU(0) 330 8.3e-09 2.5e-09 5.4e-10 7.2e+06 2.3e-01
BJacobi-ILU(0) 342 8.3e-09 3.3e-09 1.7e-09 1.3e+07 3.3e-01
RAS(2)-ILU(0) 291 8.7e-09 2.5e-09 6.4e-10 4.4e+06 -

8 ILU(0) Kway 289 9.2e-09 2.3e-09 4.0e-10 8.2e+06 1.7e-01
CAILU(0) 378 7.4e-09 2.4e-09 8.2e-10 1.0e+07 2.2e-01
BJacobi-ILU(0) 397 8.7e-09 4.1e-09 9.2e-10 1.6e+07 3.4e-01
RAS(2)-ILU(0) 311 7.7e-09 2.6e-09 3.6e-10 8.2e+06 -

16 ILU(0) Kway 303 7.7e-09 1.9e-09 7.9e-10 1.9e-01
CAILU(0) 394 9.5e-09 3.2e-09 1.8e-10 1.0e+07 2.3e-01
BJacobi-ILU(0) 468 9.5e-09 5.0e-09 2.2e-09 2.1e+07 3.7e-01
RAS(2)-ILU(0) 338 8.0e-09 3.0e-09 1.3e-10 9.0e+06 -

32 ILU(0) Kway 313 7.5e-09 2.1e-09 1.4e-10 1.8e-01
CAILU(0) 400 9.4e-09 3.0e-09 2.1e-10 9.8e+06 2.3e-01
BJacobi-ILU(0) 505 8.9e-09 4.8e-09 1.7e-10 1.8e+07 3.5e-01
RAS(2)-ILU(0) 357 9.8e-09 3.8e-09 2.8e-10 6.3e+06 -

64 ILU(0) Kway 330 8.0e-09 2.3e-09 2.9e-10 1.9e-01
CAILU(0) 402 9.7e-09 3.0e-09 1.5e-10 9.6e+06 2.2e-01
BJacobi-ILU(0) 573 8.5e-09 5.0e-09 8.7e-10 9.2e+06 3.8e-01
RAS(2)-ILU(0) 387 8.2e-09 3.2e-09 1.6e-10 5.8e+06 -

Table 3.10 – Comparison of CA-ILU(0) with Bjacobi and RAS on Elasticity3D501010 problem for a
number of subdomains increasing from 2 to 64. As references, the system is solved without preconditioner
and with sequential ILU(0) preconditioner. A ∈ Rn×n is permuted using KwayPartitioning and scaled,
x is the computed solution returned by GMRES and xs is the real solution. GMRES is set with a
maximum of 1000 iterations, no restart and a relative tolerance of 1e− 8.

Considering the case k = 1, we perform the same tests as for k = 0 and we gather the results
in Table 3.11. As for k = 0, the application of k-way partitioning algorithm increases the number
of iterations of ILU(1)Kway compared to ILU(1)NatOrd from 135 to 136 for 2 subdomains and
up to 177 iterations. The relative residual and the relative solution of the system are close to 10−9

and the relative error of the solution varies from 10−9 to 10−11. CA-ILU(1) needs fewer iterations
than ILU(1)Kway, 15 for 2 subdomains and up to 64 for 8 subdomains. For 8 subdomains and
more, CA-ILU(1) converges in around 214 iterations. BJacobi converges in 189 iterations for 2
subdomains and the number of iterations increases with the number of subdomains, reaching 529
iterations for 64 subdomains. RAS has a range of iterations to converge from 142 to 244.

Figure 3.14 summarizes the evolution of the iterations with respect to the number of subdo-
mains in subfigure (3.14a) CA-ILU(0), BJacobi-ILU(0) and RAS-ILU(0) and in subfigure (3.14b)
CA-ILU(1), BJacobi-ILU(1) and RAS-ILU(1). In both subfigures, BJacobi is close to RAS and
CA-ILU(k) for 2 subdomains but has a significant increase in the number of iterations for larger
number of subdomains compared to the others. CA-ILU(0) tends to be as good as RAS for 64
subdomains and is expected to outperform RAS since the latter keeps increasing its number of
iterations to converge. In the case of CA-ILU(1), we observe that RAS needs the same number
of iterations to converge as CA-ILU(k) for 32 subdomains and then outperforms RAS for 64
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subdomains with 214 iterations versus 244 for RAS.

nsubdomain preconditioner niter relative residual ||b−Ax||2
||b||2

||x−xs||2
||xs||2

cond(M−1A)
||A−LU||2
||A||2

References No precond 1000 4.3e-03 4.3e-03 9.2e-04 - -
ILU(1) NatOrd 135 8.2e-09 1.3e-09 1.3e-10 6.4e+05 4.3e-02

2 ILU(1) Kway 136 6.e-09 1.1e-09 6.7e-11 1.2e+06 5.6e-02
CAILU(1) 151 5.6e-09 1.1e-09 1.5e-10 2.1e+06 8.5e-02
BJacobi-ILU(1) 189 8.7e-09 4.1e-09 2.3e-09 6.1e+06 3.2e-01
RAS(2)-ILU(1) 142 6.1e-09 1.9e-09 1.5e-10 1.2e+06 -

4 ILU(1) Kway 141 5.7e-09 1.0e-09 1.8e-10 2.0e+06 6.9e-02
CAILU(1) 182 9.7e-09 2.0e-09 1.2e-09 5.0e+06 1.0e-01
BJacobi-ILU(1) 249 9.1e-09 4.4e-09 2.9e-09 1.1e+07 3.2e-01
RAS(2)-ILU(1) 151 8.8e-09 2.9e-09 5.9e-10 2.2e+06 -

8 ILU(1) Kway 147 6.1e-09 1.2e-09 6.7e-11 2.6e+06 6.7e-02
CAILU(1) 211 8.9e-09 1.9e-09 3.5e-10 7.6e+06 1.1e-01
BJacobi-ILU(1) 321 9.1e-09 4.6e-09 1.2e-09 1.7e+07 3.4e-01
RAS(2)-ILU(1) 168 9.5e-09 3.8e-09 9.2e-11 3.2e+06 -

16 ILU(1) Kway 158 8.0e-09 1.5e-09 3.0e-10 5.2e+06 8.2e-02
CAILU(1) 214 9.3e-09 2.1e-09 5.6e-10 6.6e+06 1.1e-01
BJacobi-ILU(1) 410 9.3e-09 5.2e-09 3.6e-10 1.9e+07 3.8e-01
RAS(2)-ILU(1) 193 9.7e-09 4.0e-09 1.6e-10 5.1e+06 -

32 ILU(1) Kway 164 5.5e-09 1.2e-09 3.2e-10 4.6e+06 7.9e-02
CAILU(1) 214 9.3e-09 2.0e-09 2.0e-10 8.5e+06 1.1e-01
BJacobi-ILU(1) 453 8.2e-09 4.6e-09 8.3e-10 1.7e+07 3.6e-01
RAS(2)-ILU(1) 214 6.6e-09 2.8e-09 2.0e-10 3.6e+06 -

64 ILU(1) Kway 177 6.7e-09 1.3e-09 1.8e-10 1.0e+07 9.5e-02
CAILU(1) 214 7.8e-09 1.6e-09 8.2e-11 6.7e+06 1.2e-01
BJacobi-ILU(1) 529 9.9e-09 5.8e-09 4.8e-10 9.3e+06 3.8e-01
RAS(2)-ILU(1) 244 9.8e-09 4.2e-09 6.3e-10 5.0e+06 -

Table 3.11 – Comparison of CA-ILU(1) with Bjacobi and RAS on Elasticity3D501010 problem for a
number of subdomains increasing from 2 to 64. As references, the system is solved without preconditioner
and with sequential ILU(0) preconditioner. A ∈ Rn×n is permuted using KwayPartitioning and scaled,
x is the computed solution returned by GMRES and xs is the real solution. GMRES is set with a
maximum of 1000 iterations, no restart and a relative tolerance of 1e− 8.
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Figure 3.14 – Comparison of the number of iterations to solve the preconditioned system for differ-
ent k for CA-ILU(k), BJacobi and RAS on Elasticity3D501010 matrix with respect to the number of
subdomains. The number of partitions is equal to the number of cores.
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The runtime of CA-ILU(k) is strongly related to the size of the overlap. Table 3.12 summarizes
the size of the overlap of CA-ILU(0) and CA-ILU(1) according to the number of subdomains
(2i, i ∈ {1, . . . , 6}) for Elasticity3D501010 problem. In addition to the overlap, the size of each
subdomain is given as reference. Each size is split into three categories: its mean, its minimum
and its maximum over all subdomains for a given number of subdomains nsubdomain. The sizes
presented in Table 3.12 correspond to the number of vertices that compose either a subdomain
or the overlap of a subdomain.

subdomain size overlap size

nsubdomain k mean min max mean min max

2 0 9256 9192 9321 738 738 738
1 - - - 1104 1104 1104

4 0 4628 4554 4695 1092 726 1458
1 - - - 1637 1089 2184

8 0 2314 2262 2382 2313 726 4600
1 - - - 7464 1691 10775

16 0 1157 1123 1191 5143 1567 9386
1 - - - 7773 2978 13749

32 0 578 561 595 6056 3257 10440
1 - - - 10703 5979 17129

64 0 289 280 297 7717 2199 14384
1 - - - 9271 2879 15525

Table 3.12 – Evolution of the size of the CA-ILU(k) overlap in average, minimum, and maximum over
all subdomains for Elasticite3D501010.

First, the size of each subdomain, resulting from k-way partitioning algorithm, does not
vary much. When k = 0 and 2 subdomains, the average overlap size is 738. The resulting
augmented subdomains (a subdomain and its overlap) are composed of 9 930 and 10 059 vertices.
For 64 subdomains, the augmented subdomains are composed of 8 006 vertices on average. When
k = 1, the average size of the augmented subdomains is 10 360 vertices for 2 subdomains and
9 560 vertices for 64 subdomains. It means that the average size of the augmented subdomains
(which corresponds to the local memory consumption) is almost not decreasing when the number
of subdomains is increasing. However, the average data does not provide enough information on
the limitation of the method. Due to load balancing, the overall performance of the preconditioner
is more likely to be bound by the maximum overlap size. Figure 3.15 shows the evolution of the
minimum and maximum size of the augmented domains.

In the case of k = 0, the average size of the overlap increases slowly with respect to the number
of subdomains but the maximum size drastically increases after 16 subdomains. The limit of
scalability is related to the size of the overlap because the application of the preconditioner, even
in parallel, is a backward and forward substitutions. Therefore the size of the overlap impacts
the performance of the preconditioner. When the number of subdomains is larger than 16, the
runtime for solving the system is expected to be degraded whereas the number of iterations
remains the same. Even if the number of iterations remains almost the same, this does not lead
to a decrease in the runtime when the number of subdomains increases.

Similarly, when the number of subdomains is larger than 8, the size of the overlap for CA-
ILU(1) is larger than the size of the subdomains. In term of iterations, in Table 3.11, the



66 CHAPTER 3. CA-ILU(k)

stagnation of the number of iterations remains almost constant due to the fact that the size of
the overlap is almost the whole matrix. For 32 subdomains, the largest overlap is 17 129, which
is close to 18 513, the size of the matrix. The subdomain having the largest overlap factors has
an overlap which is almost the entire matrix. Therefore, at each iteration of GMRES, for this
subdomain, the application of the preconditioner corresponds to solving almost the entire system.
Thus, the system converges as ILU(1)Kway in a degraded form since A is fully reordered so that
perturbs the convergence. Thus a trade-off has to be found between the gain on the number of
iterations and the size of the overlap.
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Figure 3.15 – Comparison of the evolution of the overlap size for CA-ILU(0) and CA-ILU(1) with the
size of each diagonal blocks, on Elasticity3D501010 problem with respect to the number of subdomains.
The BlockSize represents the size of the diagonal blocks of Elasticity3D501010.

Figure 3.16 shows the evolution of the relative residual at each iteration of GMRES, on
Elasticity3D501010 for 64 subdomains, preconditioned either ILU(1), CA-ILU(1), BJacobi or
RAS, the last two also using ILU(1) on each subdomain. The curves show a slow convergence
of the residual until 10−1 and then the convergence becomes superlinear. The only difference
between ILU(1) and CA-ILU(1) is the ordering of A. However, ILU(1) is converging in 18% fewer
iterations than CA-ILU(1). Thus the ordering of A has an impact on the convergence. RAS is
directly impacted by the number of subdomains that reduces the data in each domain and the
size of its overlap.

Comparing k = 0 and k = 1, we observe as expected that all preconditioners using ILU(1)
in each diagonal blocks outperform the preconditioners using ILU(0). A bigger k enhances the
methods but with a less gain for BJacobi. For 2 subdomains, it needs 302 iterations for k = 0
and 189 for k = 1, so a gain of 38%. But for 64 subdomains, the gain falls to 8% comparing
573 and 529 iterations. On one hand, CA-ILU(1) has a gain of 47% for 2 subdomains compared
to CA-ILU(0) and 46% for 64 subdomains. On the other hand, RAS has a gain of 49% for 2
subdomains and drops to 37% for 64 subdomains.
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Figure 3.16 – Evolution of the relative residual during the iterations of GMRES to solve the precon-
ditioned system for k = 1 with CA-ILU(1), BJacobi and RAS on Elasticity3D501010 matrix and for 64
subdomains.

Similarly, we study matvf2dNH2D200200 problem, in Table 3.13, whose the associated matrix
is roughly 10 times sparser than Elasticity3D501010 problem.

k

nsubdomain method 0 1

No precond 350 350
ILU(k)NatOrd 142 100

2 ILU(k)Kway 161 109
CAILU(k) 180 120
BJacobi 196 142
RAS(2) - -

4 ILU(k)Kway 156 108
CAILU(k) 170 115
BJacobi 187 137
RAS(2) 161 118

8 ILU(k)Kway 166 108
CAILU(k) 181 122
BJacobi 203 148
RAS(2) 177 118

16 ILU(k)Kway 160 113
CAILU(k) 185 125
BJacobi 207 153
RAS(2) 177 122

Table 3.13 – Comparison of stability of CA-ILU(0) and CA-ILU(1) with BJacobi and RAS on
matvf2dNH200200 problem for a number of subdomains goes from 2 to 16. GMRES is set with a
maximum of 1000 iterations, without restart and a relative tolerance of 1e− 8.

We first consider k = 0. We observe that the permutation obtained by k-way partitioning
increases the number of iterations of ILU(0) by roughly 20. Compared to the elasticity problem,
the offset on the number of iterations stays constant with respect to the number of subdomains.
We note that for 4 subdomains, the number of iterations of ILU(0)Kway is lower than expected.
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The permutations obtained by k-way partitioning disturb less the system and so the convergence,
compared to the other number of subdomains. CA-ILU(0) decreases from 180 iterations to 170
iterations when the number of subdomains increases from 2 to 4. The reordering of Algorithm
3.5 increases the number of iterations to converge. However, this increasing is minor compared to
the benefit of the partitioning. We now consider k = 1. As for k = 0, the permutation obtained
by k-way partitioning increases the number of iterations by a constant number. ILU(1)Kway
varies from 109 to 113 for 16 subdomains. BJacobi needs at least 137 iterations whereas RAS
and CA-ILU(1) solves the system with a maximum of 122 and 125 iterations, respectively. For
each number of subdomains, these two latter preconditioners are close with a maximum gap of
4 iterations whereas BJacobi needs at least 12 more iterations.

subdomain size overlap size

nsubdomain k mean min max mean min max

2 0 20000 19997 20003 431 431 431
1 - - - 642 642 642

4 0 10000 9980 10012 427 399 448
1 - - - 1121 635 1850

8 0 5000 4996 5004 483 283 749
1 - - - 1176 720 1777

16 0 2500 2484 2527 585 243 919
1 - - - 2032 395 4764

Table 3.14 – Evolution of the size of the overlap in average, minimum and maximum over all subdomains
for matvf2dNH200200

In the case of CA-ILU(0), the size of the overlap is roughly stable, and varies from 431
vertices for 2 subdomains to 585 vertices (a maximum of 919) for 16 subdomains. When k = 1,
the overlap size is tripled when the number of subdomains is multiplied by a factor of 8. The size
varies from 642 vertices for 2 subdomains to 2032 vertices for 16 subdomains, with a maximum of
4764 vertices. This latter overlap size added to the largest domain gives 7291 vertices, surpassing
6783 vertices of the largest augmented domain for 8 subdomains.
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Figure 3.17 – Evolution of the overlap of CA-ILU(0) and CA-ILU(1) with respect to the number of
subdomains, on matvf2dNH200200 problem. The BlockSize represents the size of the diagonal blocks of
matvf2dNH2D200200.
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Plotting the evolution of the overlap size in Figure 3.17, we observe that the size reduces
with respect to the number of subdomains for k = 0 and for k = 1, except for 16 subdomains.
Therefore, in the case of CA-ILU(1), the overlap size does not decrease beyond 8 subdomains.

Parallel efficiency of CA-ILU(k)

We now study the impact of a larger k in parallel. Nested Dissection algorithm used in the
initial tests reorders more vertices than necessary. For that, in the remaining experimental tests,
we replace the call to Nested Dissection by a call to CAILU_reorderLayer, Algorithm 3.4. Our
experimental results show that it leads to a reduction of 10 iterations on average. In addition,
we modify our implementation of Algorithm 3.10 and present its updated version in Algorithm
3.12. We introduce two statements, lines 7, 8. Moving to k > 0, we need to compute the
symbolic factorization of A in order to get the dependencies of each subdomain. To avoid doing
the symbolic phase on each processor, we reuse the pattern of Fk. In Line 8, we replace the
pattern of A by the pattern of Fk and add a 0 for each additional entry. It means that for each
edge in (u, v) ∈ E(Ω̂) \E(Ω), we add explicitly aI(u),I(v) = 0 in the CSR format. Then, each Ai
and the related overlap can be factored in-place using ILU(0).

Algorithm 3.12 buildCAILUK(A, k)
This algorithm presents the main steps in our implementation of CA-ILU(k)
Input: A ∈ Rn×n: the matrix to factor,
Input: k: the ILU parameter
1: Let id be the index of the processor and p be the number of processors
2: if id = 0 then
3: for i = 0 to p− 1 do
4: Reorder the layers of Ai using Algorithm 3.5
5: end for
6: Apply the same reordering to b
7: Compute Fk, the symbolic ILU(k) factorization of A
8: Replace the pattern of A by the pattern of Fk and add explicitly 0 to each additional entry.
9: for i = 0 to p− 1 do

10: Compute the dependencies of Ai in order to apply Li and Ui locally without communication
11: Distribute Ai, its overlap and the corresponding part of b to processor i
12: end for
13: end if
14: Each processor uses ILU(0) to factor its local block of A without communication
Output: Li and Ui the triangular factors of A on processor i.

We first focus on the SPE10 problem of dimension 106 and the influence of k on the size of
the overlap. Figure 3.18 shows the evolution of CA-ILU(k) overlap with respect to the number
of subdomains and for k ∈ {0, . . . , 4}. Each bar represents the average size over all subdomains,
the lower and higher horizontal lines represent the minimum and maximum size, respectively.
As a reference, the size of the subdomains is given by the first bar for each group of bars. For
16 subdomains, CA-ILU(0) and CA-ILU(1) overlap sizes are close to the size of the subdomains,
with a maximum of twice the size of the subdomain for CA-ILU(1). In comparison, for k ≥ 2,
the overlap size is at least 6 times larger than the size of the subdomain. Especially, CA-ILU(4)
overlap reaches a size of 106. At that point, it corresponds to having on one processor almost
the entire matrix. Combined with k = 4, it does not fit in memory and so CA-ILU(4) cannot
be used for 16 subdomains. For all numbers of subdomains presented in the figure, the size
of the overlap of CA-ILU(3) and CA-ILU(4) does not reduce when the number of subdomains
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increases. Instead, the size increases until reaching the entire matrix as overlap. In the case
of CA-ILU(2), its maximum overlap size is close to 4 × 105 from 16 to 64 subdomains. The
size of its maximum overlap decreases by 30% for 128 subdomains and then slowly increases.
We next study the number of iterations of GMRES to converge, presented in Table 3.15. As
expected from the size of the overlap, CA-ILU(3) and CA-ILU(4) yield to killed jobs, caused by
a problem of memory. The number of iterations of CA-ILU(0) varies from 535 for 16 subdomains
to 595 for 512 subdomains, with a minimum of 518 iterations for 64 subdomains. Moving from
k = 0 to k = 1, these iterations are reduced by more than 200 iterations, with a minimum of
329 iterations for 16 subdomains, and a maximum of 370 iterations for 512 subdomains. This
reduction is due to the replacement of ILU(0) by ILU(1), involving a fill-in, and the size of
CA-ILU(1) overlap, being twice larger than CA-ILU(0). In the case of k = 2, for all numbers
of subdomains presented, the iterations mainly decrease by 100 iterations. In addition to the
number of iterations, Figure 3.19 shows the runtime to solve the system for each value of k.
CA-ILU(0) runtime decreases from 10.7 seconds to 4 seconds when the number of subdomains
increases from 16 to 256. With a number of iterations smaller, a larger k and a larger overlap,
CA-ILU(1) outperforms CA-ILU(0). The overhead induced by a larger overlap at each iteration
is absorbed by the reduction of the number of iterations. Unlike CA-ILU(1), CA-ILU(2) does
not reduce its number of iterations enough in comparison to the cost of one iteration. For 16
subdomains, the cost per iterations of CA-ILU(2) is 3 times higher than CA-ILU(0), with 0.06
and 0.02 seconds, respectively.

In conclusion, for this problem, using CA-ILU(1) is the best choice, compared to the other
versions. The cost per iteration is a major factor in the efficiency of CA-ILU(k). Comparing with
BJacobi-ILU(1), RAS(2)-ILU(1) and RAS(3)-ILU(1) in Figure A.7, CA-ILU(1) is better than
BJacobi but slightly outperformed by both versions of RAS. Table A.14 shows that CA-ILU(1)
converges with fewer iterations than other methods but the gap is not sufficient to be the fastest
for this problem.
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CA-ILU(k)

nsubdomain 0 1 2

16 535 329 227
32 552 343 245
64 518 350 266
128 529 361 269
256 546 365 284
512 595 370 305

Table 3.15 – Comparison of CA-ILU(k) for k ∈
{0, . . . , 2} on the problem of SPE10 for a number
of subdomains increasing from 16 to 512. GMRES
is set with a maximum of 3000 iterations, a restart
of 200 and a relative tolerance of 1e− 6.
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Figure 3.19 – Runtime to solve the system for
CA-ILU(k) with k ∈ {0, . . . , 2} on SPE10 problem.
GMRES is set with a maximum of 3000 iterations,
a restart of 200, and a relative tolerance of 1e− 6.

We next summarize the behavior of CA-ILU(k) for different problems. For matvf2dAD400400,
for k ∈ {0, . . . , 4} the overlap size decreases with respect to the number of subdomains. The
increasing of k does not drastically increase the size of CA-ILU(k) overlap. Note that for 16
subdomains, the maximum overlap size of CA-ILU(2) is 2.5 larger than the average size and the
size of the subdomain. Furthermore, the case k = 1 is worse compared to CA-ILU(2), whose
overlap is smaller in terms of both average and maximum. It means the pattern of the system,
after k-way partitioning is not in favor of the method. The associated runtimes for each value
of k are presented in Figure 3.21. We observe that the time to solve the system increases when
k increases, in the same time as the size of the overlap. The overhead per iteration caused by
the overlap is small enough and hence the method benefits from the reduction in the number of
iterations. Note that CA-ILU(3) and CA-ILU(4) have the same runtime. Therefore, using more
than k = 3 does not offer better performance. Similarly to matvf2dAD400400, the overlap size
for parabolic_fem problem decreases when the number of subdomains increases, in Figure 3.22.
Figure 3.21 presents the runtime for k = 1 to k = 4. Unlike CA-ILU(4), increasing k leads to
a decrease in the runtime up to 128 subdomains. Although CA-ILU(4) has a better scalability,
its overlap size limits its performance and so it does not outperform the others. Now, we focus
on 3DSKY100P1 problem in Figures 3.24 and 3.25. When k ≥ 3, the overlap size is too large
and is close to the size of the problem, 106. The same problem occurs as for SPE10; the jobs are
killed by the system because of lack of memory. CA-ILU(2) also has a very large overlap and
reaches almost the limit of the machine. The runtimes show that CA-ILU(2) is at least 5 times
slower than CA-ILU(0) and CA-ILU(1). Comparing these last two, their runtimes are similar.
Therefore, using CA-ILU(0) is a better solution since its memory consumption is smaller and its
runtime is the best.

The efficiency of CA-ILU(k) is strongly related to the size of the overlap. Increasing k leads to
a larger overlap and a larger overhead per iteration. If the reduction in the number of iterations
to converge is not significant enough, the runtime is degraded. Moreover, the memory usage can
prevent using CA-ILU(k). The best performance of CA-ILU(k) cannot be reached for a specific
value of k. In addition, the scalability of the preconditioner is obtained for a maximum number
of subdomains. Therefore, for a given problem, we need to study the behavior of CA-ILU(k) to
select the best k and the most appropriate number of subdomains.
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Figure 3.20 – Evolution of the overlap of CA-
ILU(k) with k ∈ {0, . . . , 4} for matvf2dAD400400
problem.
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Figure 3.21 – Runtime to solve the system for CA-
ILU(k) with k ∈ {1, . . . , 4} for matvf2dAD400400
problem.
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Figure 3.22 – Evolution of the overlap of CA-
ILU(k) with k ∈ {1, . . . , 5} for parabolic_fem
problem.
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Figure 3.23 – Runtime to solve the system for
CA-ILU(k) with k ∈ {1, . . . , 4} for parabolic_fem
problem.
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Figure 3.24 – Evolution of the overlap of CA-
ILU(k) with k ∈ {1, . . . , 4} for 3DSKY100P1 prob-
lem.
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Figure 3.25 – Runtime to solve the system for
CA-ILU(k) with k ∈ {0, . . . , 2} for 3DSKY100P1
problem.
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3.5.4 Reordering variants of CA-ILU(k) and overlap limitation

Impact of numberingLayer algorithms on the fill-in and on the number of iterations

Previous results show the importance of the reordering on the number of iterations. Algorithm
3.5 reorders a subdomain using either the decreasing layer numbering (DLN ) or the increasing
numbering layer (ILN ). In addition, the reordering of the vertices in a layer starts by number-
ing its corners and then the remaining vertices of the layer. This reordering inside the layers
aims to reduce the size of the CA-ILU(k) overlap. Therefore, we propose to study, for both
numberingLayer algorithms, the three cases of corner ordering. The first case considers the cor-
ners of all layers involved in the reordering of a subdomain, denoted AllCi and corresponds
to using all Cji of a subdomain Ωj . The second case reorders only the boundary layer of each
subdomain, referred to as OnlyC0. The last case ignores the reordering of the vertices in a layer,
denoted NoCorner. We discuss the impact of these reorderings on the size of the overlap of
CA-ILU(k), on the fill-in of Fk, the symbolic ILU(k) factor of A, and on the runtime to solve
the system.
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(a) Impact of ordering on the size of CA-ILU(1) overlap
for SPE10 problem.
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Figure 3.26 – Impact of different orderings on CA-ILU(1) for SPE10 problem. ’DLN’ and ’ILN’
correspond to decreasing and increasing layer numbering, respectively, ’AllCi’ considers the corners of
all layer involved, ’OnlyC0’ takes into account the corners of each boundary layer only and ’NoCorner’
avoids reordering inside the layers.

We first study the impact of the different reorderings on SPE10 problem. Subfigure 3.26a
presents the overlap size of CA-ILU(1) for each ordering and for a number of subdomains in-
creasing from 16 to 512. We observe that for both ILN and DLN, the corner ordering NoCorner
leads to a size of overlap larger than 5×104 in average, with an increasing size when the number
of subdomains is greater or equals 128. In particular, the maximum overlap size for both corner
orderings increases until it is close to 2.5 × 105 for 512 subdomains. In comparison, all other
corner orderings decrease when the number of subdomains increases, with a maximum overlap
size of 5×104. Comparing OnlyC0 with AllCi, the overlap size is almost the same for both. This
confirms the need for reordering inside a layer, considering at least the corners as in Definition
18. We now discuss the impact of these orderings on the fill-in of F1. We plot in Subfigure 3.26b
the ratio (nnz(F1) − nnz(A))/nnz(F1). For a small number of subdomains, the fill-in is stable
for all orderings. When the number of subdomains increases, the corner ordering AllCi fills-in
more than other orderings. For 512 subdomains, NoCorner is the corner ordering that adds the
fewest nonzeros to A. The fill-in induced by OnlyC0 corner ordering, for both numberingLayer
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algorithms, is located between the two other corner orderings. Comparing DLN and ILN, we ob-
serve that the fill-in increases faster using ILN than using DLN when the number of subdomains
increases. Especially, for 512 subdomains, the fill-in coming from DLN is 2 percent point smaller
than ILN. Since the complexity of our main subroutines is based on the number of non-zeros,
the time to determine the overlap for each subdomain and to factor each subdomain is expected
to be slightly better in the case of OnlyC0. In practice, we do not observe a significant overhead
in terms of runtime.

Table 3.16 presents the number of iterations to converge for each numberingLayer algorithm
and for all corner orderings. For most cases, NoCorner corner ordering needs fewer iterations to
converge than the others. More precisely, the combined DLN and NoCorner orderings require
fewer iterations when the number of subdomains is 32 or greater than 64. As expected, the fact
that the vertices of the layer are not reordered leads to a smaller number of iterations to converge,
for both DLN and ILN with NoCorner. We also note that the overhead of using the corners,
in term of iterations, is only a few iterations. In particular, we observe that for 16 subdomains
and DLN, the usage of corners leads to perform 232 iterations instead of 233, without taking
care of the corners. In the case of ILN, considering all corners reduces the number of iterations
compared to the version using NoCorner. Focusing on the runtime in Figure 3.27, there is no
runtime difference between DLN and ILN, except when the corners are ignored. The corner
ordering NoCorner for both DLN and ILN solves the system in more than 12 seconds for 512
subdomains, compared to the others which converge 3 times faster. This gap is due to the size
of the overlap presented in Subfigure 3.26a. The cost of applying the preconditioner increases
when the size of the overlap increases. Also, we remark no difference between OnlyC0 and AllCi
corner orderings in terms of runtime.
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Figure 3.27 – Impact of ordering on the runtime to solve the system using CA-ILU(1) for SPE10
problem. ’DLN’ and ’ILN’ correspond to decreasing and increasing layer numbering, respectively, ’AllCi’
considers the corners of all layers involved, ’OnlyC0’ takes into account the corners of each boundary
layer only, and ’NoCorner’ does not reorder inside the layers.
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DLN ILN

nsubdomain AllCi OnlyC0 NoCorner AllCi OnlyC0 NoCorner

16 232 233 233 232 231 231
32 244 244 243 246 246 248
64 270 358 261 267 249 247

128 258 262 258 263 266 264
256 275 279 270 275 279 275
512 290 295 288 289 298 296

Table 3.16 – Comparison of CA-ILU(1) with different ordering methods on SPE10 for a number of
subdomains increasing from 16 to 512. GMRES is set with a maximum of 3000 iterations, a restart of
200 and a relative tolerance of 1e− 6.
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(a) Impact of ordering on the size of CA-ILU(1) overlap
for matvf2dAD400400 problem.
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Figure 3.28 – Impact of different orderings on CA-ILU(1) for SPE10 problem. ’DLN’ and ’ILN’
correspond to decreasing and increasing layer numbering, respectively, ’AllCi’ considers the corners of
all layer involved, ’OnlyC0’ takes into account the corners of each boundary layer only and ’NoCorner’
avoids reordering inside the layers.

We now consider the matvf2dAD400400 problem and we also study the impact of these
orderings on the overlap, the fill-in and the runtime. Subfigure 3.28a compares the variation
of the size of CA-ILU(1) overlap for each ordering and for a number of subdomains increasing
from 16 to 256. First, we observe that for each number of subdomains considered, reordering all
corners of the layers also reduces the size of the overlap. The maximum overlap size decreases
until 64 subdomains and then remains the same, except for NoCorner corner ordering, where the
maximum overlap size reincreases for 256 subdomains. Subfigure 3.28b presents the evolution of
the fill-in for each ordering when the number of subdomains increases. OnlyC0 corner ordering
induces a larger fill-in than NoCorner corner ordering, but a smaller fill-in than AllCi. DLN
coupled with NoCorner has the most sparse F1. As observed for the SPE10 problem, the DLN
algorithm introduces fewer fill-in elements than ILN.

Studying the two numberingLayer algorithms on the test matrices presented in Table 3.3, we
conclude that using the Increasing Layer Numbering yields to more fill-in and hence a denser
Fk. As presented in Table 3.1, the complexity of our algorithm depends on the number of
edges traversed during the search of the overlap. Also, the cost to perform the symbolic ILU(k)
factorization of A is impacted by the fill-in. Furthermore, the comparison of the three corner
orderings presented here shows that at least the corners of the boundary layers have to be
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considered to avoid a too large overlap size (Subfigure 3.26a on SPE10 problem). Taking into
account the fill-in induced by each corner ordering, the corner ordering OnlyC0 should be selected,
a priori. However, the size of the overlap leads to select AllCi, a priori. A trade-off between
the fill-in and the size of the overlap leads to reducing the cost of applying CA-ILU(k).

Limitation of the memory

In the case of the problem 3DSKY100P1, the size of the overlap presented in Figure 3.24 allows
to perform CA-ILU(k) with k ∈ {0, . . . , 2}. For a larger k, the maximum size of the overlap
implies that the size of the local memory required is too large. As discussed in subsection 3.3.2,
we propose to bound the size of the overlap by a parameter η = τ × n

p , where n is the size of the
matrix, p is the number of subdomains and τ is the number of subdomains that can be duplicated
in memory. In this section, we present the impact of the limitation of the overlap on the number
of iterations to converge and on the runtime to solve the system. To limit the size of the overlap,
we apply Algorithm 3.6 instead of Algorithm 3.3. The runtimes are summarized in Subfigure
3.29a. Compared with Figure 3.25, we observe that we are able to run for k ∈ {0, . . . , 4} as
expected. The runtime of CA-ILU(0) is the fastest for all number of subdomains presented here,
except for 512 subdomains where CA-ILU(1) is 0.5 seconds faster. The runtime increases when
the value of k increases. CA-ILU(4) is twice slower than CA-ILU(0) for 16 subdomains. For this
problem, the size of the overlap is the limiting factor and increasing k does not lead to better
performance. This is due to the construction of the bounded overlap. The purpose of Algorithm
3.7 is to ensure that the CA-ILU(0) overlap is added before CA-ILU(1). Therefore, when the
bound is reached, the method performs an ILU(0) but with a larger overlap and a permutation
of the system corresponding to a larger k. Moving to the SPE10 problem in Subfigure 3.29b,
we compare the runtime of CA-ILU(k) with the same values of k. We observe that CA-ILU(1)
outperforms the other methods for all numbers of subdomains. Between 16 and 64 subdomains,
using k > 0 gives a faster runtime. CA-ILU(4) is the only method that becomes slower than
CA-ILU(0) when the number of subdomains is larger than 64. Choosing an arbitrary τ = 2 leads
to using CA-ILU(k), k > 2 in comparison with the classical CA-ILU(k) in Figure 3.19.
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(a) Impact of the bounded overlap size on the runtime
of CA-ILU(1) for 3DSKY100P1 problem.
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(b) Impact of the bounded overlap size on the runtime
of CA-ILU(1) for SPE10 problem.

Figure 3.29 – Comparison of the runtime of CA-ILU(1) when the overlap size is bounded by η = τ × n
p

where n is the size of the matrix, p the number of subdomains and τ = 2. The number of subdomain
increases from 16 to 512. GMRES is set with a maximum of 3000 iterations, a restart of 200, and a
relative tolerance of 1e− 6.
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3.6 Summary
This chapter presents CA-ILU(k) preconditioner, a communication avoiding preconditioner using
an overlapping technique. This preconditioner is used in Krylov iterative methods as GMRES
to solve the sparse linear system Ax = b. Algorithm 3.2 factors A in parallel by introducing two
additional steps to the standard symbolic and numerical factorization steps. The key idea is to
compute the CA-ILU(k) overlap of each subdomain that allows to factor the corresponding block
row and its overlap without communication, using Algorithm 3.3. In addition, a preliminary step
reorders each subdomain of A using Algorithm 3.5 in order to reduce the overlap of CA-ILU(k).
Parallel tests, made on problems presented in Table 3.3, show that CA-ILU(k) is a competitive
preconditioner. We first focus our experiments on CA-ILU(0) (no fill-in) compared with block
Jacobi and RAS, both also computing ILU(0) on each block. CA-ILU(0) outperforms block
Jacobi and is close to RAS, in term of the number of iterations to converge. Runtimes show
that CA-ILU(0) is the fastest of the preconditioners for only one problem (parabolic_fem). As
the size of the overlap of CA-ILU(0) is larger than for RAS, we replace ILU(0) factorization by
LU factorization on each subdomain and for all preconditioners. Convergence results show that
CA-ILU(0)-LU needs fewer iterations than block Jacobi and RAS to converge for all problems.
However, runtimes show that CA-ILU(0)-LU has the best runtime for half of the problems
considered. The size of the overlap of CA-ILU(0) coupled with LU leads to reduce the number of
iterations to converge compared to the classical CA-ILU(0). For the other half of the problems
studied, the cost of application of CA-ILU(0) with LU is larger than the gain on the number of
iterations. Moving forward, we compare CA-ILU(k) for different values of k ∈ {0, . . . , 4}. We
observe that when k increases, the size of the overlap increases and that the size of the overlap
can be too large so that the required memory for the factorization may not fit in memory.
Algorithm 3.7 aims to bound the size of the overlap. Bounding the size of the overlap has a
small impact on the number of iterations while in the meantime the runtime can be drastically
reduced. Therefore, depending on the machine and the problem considered, preliminary tests
are required to find the optimal value of k, the optimal number of subdomains and the maximum
size of the overlap allowed per subdomain.
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Chapter 4
LU-CRTP: computing the rank-k
approximation of a sparse matrix: algebra
and theoretical bounds
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4.3 Conclusion 106

Introduction
An increasing number of applications require the computation of a low-rank approximation of
a large sparse matrix. Ranging from data analytics problems such as Principal Component
Analysis (PCA) to scientific computing problems such as fast solvers for integral equations or
deep neuronal network (DNN), the low-rank approximation of a sparse matrix is a key component
for reducing the cost while keeping accuracy. The best rank-k decomposition is given by the
Singular Value Decomposition, that is expensive in practice. Less expensive alternatives have
then been studied such as Rank Revealing QR factorization (RRQR), or Lanczos algorithm.
More recently, randomized algorithms have been designed to address this problem. Those aim to

79
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reduce the cost while obtaining accurate results with high probability. In the context of sparse
matrices, the Rank Revealing QR factorization is a method returning factors that may be very
dense, and even so dense that they do not fit in memory. In this chapter, we propose to use
the LU factorization instead of QR to compute a truncated factorization that is effective in
revealing the singular values with good accuracy, compared to the SVD. Note that this chapter
corresponds to the content of (Grigori, Cayrols, et al., 2018). Since the R factor obtained from
the QR factorization is the Cholesky factorization of A>A, it is expected that the factors obtained
from a QR factorization are denser than the factors obtained from an LU factorization. In the
following, we consider the Rank Revealing QR factorizations.

Our method aims to reduce the computation and memory consumption compared to the
QR factorization, and also minimizing the communication cost. In (J. W. Demmel, Grigori,
M. Hoemmen, et al., 2008), the communication cost reveals to be one of the major limitations
on current and future architectures. Algorithms based on row and/or column permutation as
Rank Revealing QR factorizations are known to be sub-optimal in terms of communication.
Therefore, a communication avoiding Rank Revealing QR factorization, denoted CARRQR, has
been introduced in (J. Demmel, Grigori, Gu, et al., 2013). Although RRQR computes a rank-k
factorization with O(k log(p)) messages, CARRQR requires only O(log(p)) messages, modulo
polylogarithmic factors, where p is the number of processors. To do so, this factorization selects
k linearly independent columns using the QR factorization with Tournament Pivoting (QRTP).
Experimental results presented in (J. Demmel, Grigori, Gu, et al., 2013) show that QRTP with
a parameter k reveals the first k singular values of a matrix with an accuracy close to QR with
Column Pivoting (QRCP).

We focus on computing a low-rank approximation of a matrix A by using a truncated LU
factorization with column and row permutations, which has for a given k the form

A = PrAPc =

[
A11 A12

A21 A22

]
=

[
I

A21A
−1

11 I

] [
A11 A12

S(A11)

]
, (4.1)

S(A11) = A22 −A21A
−1

11 A12, (4.2)

where A ∈ Rm×n, A11 ∈ Rk×k, A22 ∈ R(m−k)×(n−k), and the rank-k approximated matrix is the
following product [

I

A21A
−1

11

] [
A11 A12

]
=

[
A11

A21

]
A
−1

11

[
A11 A12

]
(4.3)

The permutation matrices Pr and Pc are chosen so that A11 reveals the first k singular values
of A. By revealing, we mean that the ratio of the computed singular values obtained from A11 to
the singular values of A are bounded as in Equation 4.4. In practice, we consider that the singular
values are well approximated when this ratio is on average close to one and in the worse case
equal to a small constant. As shown later, the obtained factorization in Equation 4.1 satisfies
the following properties

1 ≤ σi(A)

σi(A11)
,
σj(S(A11))

σk+j(A)
≤ q(m,n, k), (4.4)

ρl(A21A
−1

11 ) ≤ FTP , (4.5)

for any 1 ≤ l ≤ m − k, 1 ≤ i ≤ k, and 1 ≤ j ≤ min(m,n) − k, where ρl(B) denotes the 2-norm
of the l-th row of B, and FTP is a quantity coming from the QR factorization with Tournament
Pivoting, presented in (J. Demmel, Grigori, Gu, et al., 2013).

The chapter is organized as follow. Section 4.1.1 presents the LU factorization with Column
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Row Tournament Pivoting when the desired rank k is given in parameter and we detail the
bounds presented above. Using this first algorithm as a building block, we present in Section
4.1.2 LU-CRTP where the rank K is unknown and determined by using a tolerance τ . We
introduce in Section 4.1.3 a cheaper version named LU-CTP, where the row permutation is not
computed using QRTP. Sequential and parallel experimental results presented in Section 4.2
show that LU-CRTP approximates well the singular values of a matrix A while the memory
consumption to store the low-rank approximation is smaller than QRCP.

4.1 LU-CRTP: A low-rank approximation method based on
Tournament Pivoting strategy

In this section we present the algebra of our block LU factorization with column and row tour-
nament pivoting strategy. We propose to study two cases, first the rank is fixed, second the
precision of the low-rank approximation is fixed. In the first case, we consider that the rank
k is already known. In the second case, a tolerance τ is used as a stopping criterion, and the
algorithm performs K/k iterations, where K is an overestimation of the rank. In both cases, we
discuss the numerical properties of our block LU factorization, and its backward stability. In
addition, we present bounds on the singular values of the obtained factors with respect to the
matrix A.

Notation

Through the chapter, we use the MATLAB notation. For consistency, we use the same notations
as in (Grigori, Cayrols, et al., 2018). Note that the notations can slightly differ from the previous
chapters. Given a matrix A of dimensionm×n, the element in row i and column j is noted A(i, j).
Similarly, a submatrix of A formed by the rows i to j and the columns l to k is referred to as
A(i : j, l : k). Given two matrices A ∈ Rm×n and B ∈ Rm×k, the matrix C ∈ Rm×(n+k) obtained
by horizontal concatenation of A and B is referred to as C = [A,B]. Also, given two matrices
A ∈ Rm×n and B ∈ Rk×n, the matrix C ∈ R(m+k)×n) obtained by vertical concatenation of A
and B is referred to as C = [A;B]. When A is partitioned into blocks, we provide to the reader
the dimension of a few blocks, and assume that the remaining dimensions are easily deduced
from them. Therefore, if A is partitioned into T + 1 block columns, the partitioning given by
A = [A00, . . . , AT,0] can be written as A0:T,0. We note the absolute values of the matrix A as
|A|, the max norm as ‖A‖max = maxi,j |A(i, j)|. The 2-norm of the j-th row of A is denoted as
ρj(A), the 2-norm of the j-th column of A is denoted as χj(A), and the 2-norm of the j-th row
of A−1 as ωj(A).

Rank Revealing QR factorizations

We first introduce the QR factorization with column permutations of a matrix A ∈ Rm×n of the
form

APc = QR = Q

[
R11 R12

R22

]
, (4.6)

where Q ∈ Rm×m is an orthogonal matrix, R11 ∈ Rk×k is an upper triangular matrix, R12 ∈
Rk×(n−k), and R22 ∈ R(m−k)×(n−k). This factorization is said to be rank revealing if the following
condition is satisfied, for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m,n)− k

1 ≤ σi(A)

σi(R11)
,
σj(R22)

σk+j(A)
≤ q(n, k), (4.7)
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where q(n, k) is a low degree polynomial in k and n. Note that the definition given above is valid
for any i and j, whereas the usual bounds as presented in (Chandrasekaran et al., 1994) and
(Hong et al., 1992) concern σmin(R11) and σmax(R22). We next recall the properties of a strong
Rank Revealing QR factorization, presented in (Gu and Eisenstat, 1996).

Theorem 22. (Gu and Eisenstat (Gu and Eisenstat, 1996)) Let A be an m× n matrix and let
1 ≤ k ≤ min(m,n). For any given parameter f > 1, there exists a permutation Pc such that

APc = QR = Q

[
R11 R12

R22

]
, (4.8)

where R11 is k × k and
(R−1

11 R12)2
i,j + ω2

i (R11)χ2
j (R22) ≤ f2, (4.9)

for any 1 ≤ i ≤ k and 1 ≤ j ≤ n− k.

The inequality (4.9) bounds the singular values of R11 and R22 as in a rank revealing factor-
ization, while also bounding the absolute value of R−1

11 R12.

Theorem 23. (Gu and Eisenstat (Gu and Eisenstat, 1996)) Let the factorization in Theorem
22 satisfy inequality (4.9). Then

1 ≤ σi(A)

σi(R11)
,
σj(R22)

σk+j(A)
≤
√

1 + f2k(n− k), (4.10)

for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m,n)− k.

The communication avoiding Rank Revealing QR factorization (CARRQR) introduced in (J.
Demmel, Grigori, Gu, et al., 2013) computes a rank revealing factorization of a matrix A by
using a block algorithm that selects k columns from A, permutes them to the leading positions,
and computes k steps of a QR factorization without pivoting. Then the algorithm iterates on
the trailing matrix. The k columns are selected by using a tournament pivoting called the QR
factorization with Tournament Pivoting (QRTP). The CARRQR factorization satisfies

χ2
j (R

−1
11 R12) + (χ(R22)/σmin(R11))2 ≤ F 2

TP , (4.11)

for j = {1, . . . , n− k}. In this, FTP depends on k, f , n, the type of the tree used in QRTP, and
the number of iterations of CARRQR. This leads to the following theorem

Theorem 24. Assume that there exists a permutation Pc for which the QR factorization

APc = QR = Q

[
R11 R12

R22

]
, (4.12)

where R11 is k × k and satisfies (4.11). Then

1 ≤ σi(A)

σi(R11)
,
σj(R22)

σk+j(A)
≤
√

1 + F 2
TP (n− k), (4.13)

for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m,n)− k.
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Orthogonal matrices

We now consider the case of orthogonal matrices. Let Q be an orthogonal matrix partitioned as

Q =

[
Q11 Q12

Q21 Q22

]
, (4.14)

where Q11 ∈ Rk×k. The QR factorization with Tournament Pivoting of [Q11;Q21]> leads to

PrQ =

[
Q11 Q12

Q21 Q22

]
=

[
I

Q21Q
−1

11 I

] [
Q11 Q12

S(Q11)

]
, (4.15)

where S(Q11) = Q22 − Q21Q
−1

11 Q12 = Q
−>
22 (see (Pan, 2000), proof of Theorem 3.7). This

factorization satisfies the following bounds

ρj(Q21Q
−1

11 ) ≤ FTP , (4.16)

1

q2(k,m)
≤ σi(Q11) ≤ 1, (4.17)

for all 1 ≤ i ≤ k, 1 ≤ j ≤ m− k, where q2(k,m) =
√

1 + F 2
TP (m− k). All these previous results

lead us to present our contribution.

4.1.1 Rank-k approximation of a matrix A

Suppose the rank of an m × n matrix A is already known, and is equal to k. Thus the desired
factorization of A is of the form

A = PrAPc =

[
A11 A12

A21 A22

]
=

[
I

A21A
−1

11 I

] [
A11 A12

S(A11)

]
, (4.18)

where
S(A11) = A22 −A21A

−1

11 A12. (4.19)

The permutation matrices Pr and Pc are built such that the singular values of A11 and S(A11)
approximate well the largest k and the smallest n − k singular values of A, respectively. The
stability of the LU factorization of A depends on the ratio ||L̂||max||Û ||max/||A||max, where
L̂ and Û are the triangular factors of A. We assume that the product ||L̂||max||Û ||max ≈
||L||max||U ||max. It means the roundoff errors do not have a large impact on the norm of both
factors. We, therefore, focus on bounding the maximum norm of both factors. To do so, it
suffices to bound the elements of |A21A

−1

11 |, since the U factor from Equation (4.18) corresponds
to the first k rows of A.

Our algorithm selects the first k columns of A by using the QR factorization with Tournament
Pivoting on A,

APc = Q

[
R11 R12

R22

]
=

[
Q11 Q12

Q21 Q22

] [
R11 R12

R22

]
, (4.20)

where Q ∈ Rm×m, Q11, R11 ∈ Rk×k. This factorization gives that R11 and R22 reveal the largest
k and the smallest n− k singular values of A. However, we aim that A11 and S(A11) reveal the
singular values of A, in Equation (4.18). Thus, we select k rows from the first k columns of Q
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by using the QR factorization with Tournament pivoting on Q(:, 1 : k)>. This leads to

PrQ =

[
Q11 Q12

Q21 Q22

]
=

[
I

Q21Q
−1

11 I

] [
Q11 Q12

S(Q11)

]
, (4.21)

where
S(Q11) = Q22 −Q21Q

−1

11 Q12 = Q
−>
22 (4.22)

such that ρj(Q21Q
−1

11 ) = ρj(A21A
−1

11 ) ≤ FTP , for all 1 ≤ j ≤ m − k, is upper bounded as in
Equation (4.16), and the singular values of Q11 and Q22 are bounded as in Equation (4.17).

Applying both Pc and Pr on A, we obtain

PrAPc =

[
A11 A12

A21 A22

]
=

[
I

Q21Q
−1

11 I

] [
Q11 Q12

S(Q11)

] [
R11 R12

R22

]
=

[
I

A21A
−1

11 I

] [
A11 A12

S(A11)

]
, (4.23)

where
Q21Q

−1

11 = A21A
−1

11 , (4.24)

S(A11) = S(A11)R22 = Q
−>
22 R22. (4.25)

Note that in (Pan, 2000), Pan uses a similar derivation to prove the existence of a rank
revealing LU factorization. However, this derivation is not used in this chapter. We remark that
computing Pc by using QRCP like algorithms requires the computation of R22. This last factor
could be therefore used instead of computing an LU factorization and its Schur complement
S(A11). Moreover, the quantity ‖A21A11‖max, that is related to the numerical stability of LU,
is not bounded in (Pan, 2000).

In Algorithm 4.1, we present the LU factorization with Column Row Tournament Pivoting
(LU-CRTP), that takes as input an m × n matrix A, and the desired rank k. Line 1, the QR
factorization with Tournament Pivoting on A selects k columns that are then moved to the
leading positions of A. This factorization performs a strong Rank Revealing QR factorization of
subsets of 2k columns. Note that, compared to Equation 4.23, the QR factorization of A is not
performed until the end of the matrix. The k selected columns of A are factored by using QR.
Then, similarly to the k columns, k rows are selected by the QR factorization with Tournament
Pivoting on Q(:, 1 : k)>, line 3. The obtained permutations are applied to A and Q, line 4.

Line 5, the term L21 can be computed either using Q or A. Although the equality Q21Q
−1

11 =

A21A
−1

11 is verified in infinite precision, it might not be the case in finite precision. Due to
round-off error, using Q is more stable than using A. When A is sparse, the product Q21Q

−1

11

has more nonzeros than A21A
−1

11 . Q being denser than A, the additional nonzeros correspond to
exact cancellations and they are due to round-off errors. In our experimental results, we use a
heuristic to determine whether the computation of L21 is performed using A or Q. First, using A,
if ‖A21A

−1

11 ‖max‖ is larger than
√
n‖A‖max (which is the growth factor observed experimentally

for partial pivoting). Note that, in the case of CUR decomposition, the computation of L21 is
not performed.



4.1. LU-CRTP: A low-rank approximation method based on Tournament Pivoting strategy 85

Algorithm 4.1 LU-CRTP (A, k): rank-k truncated LU factorization with Column Row Tour-
nament Pivoting of a matrix A

Input: A ∈ Rm×n, k the desired rank
Output: permutation matrices Pr and Pc, rank-k truncated factorization LkUk, factor Rk, such

that (APc)(:, 1 : k) = QkRk,

PrAPc =

[
A11 A12

A21 A22

]
=

[
I

A21A
−1

11 I

] [
A11 A12

S(A11)

]
,

Lk =

[
I

A21A
−1

11

]
=

[
I
L21

]
, Uk =

[
A11 A12

]
,

where Lk ∈ Rm×k, Uk ∈ Rk×n, Rk ∈ Rk×k, and the remaining matrices have the correspond-
ing dimensions.
Note that S(A11) is not computed here.

1: Select k columns by using QR with tournament pivoting on A,

Pc ← QRTP (A, k)

2: Compute the thin QR factorization of the selected columns,

(APc)(:, 1 : k) = QkRk, where Qk ∈ Rm×k and Rk ∈ Rk×k

3: Select k rows by using QR with tournament pivoting on Q>k ,

Pr ← QRTP (Q>k , k)

4: Let

A = PrAPc =

[
A11 A12

A21 A22

]
, PrQk =

[
Q11

Q21

]
5: Compute

L21 = Q21Q
−1

11 = A21A
−1

11 (see discussion in the text )

We now prove that the factorization presented in Equation (4.18) reveals the singular values
of A, while it bounds the element growth in the LU factorization.

Theorem 25. (Grigori et al. (Grigori, Cayrols, et al., 2018)) Let A be an m× n matrix. The
LU-CRTP (A,k) factorization obtained by using Algorithm 4.1,

A = PrAPc =

[
A11 A12

A21 A22

]
=

[
I

Q21Q
−1

11 I

] [
A11 A12

S(A11)

]
, (4.26)

where
S(A11) = A22 −A21A

−1

11 A12 = A22 −Q21Q
−1

11 A12, (4.27)

satisfies the following properties

ρl(A21A
−1

11 ) = ρl(Q21Q
−1

11 ) ≤ FTP , (4.28)
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‖S(A11‖max ≤ min

(
(1 + FTP

√
k)‖A‖max, FTP

√
1 + F 2

TP (m− k)σk(A)

)
(4.29)

1 ≤ σi(A)

σi(A11)
,
σj(S(A11))

σk+j(A)
≤ q(m,n, k), (4.30)

for any 1 ≤ l ≤ m− k, 1 ≤ i ≤ k, and 1 ≤ j ≤ min(m,n)− k. Here FTP is the bound obtained
from QR with tournament pivoting, and q(m,n, k) =

√
(1 + F 2

TP (n− k))(1 + F 2
TP (m− k)).

Proof. See the proof in (Grigori, Cayrols, et al., 2018).

Considering the rank-k approximation of A from Algorithm 4.1, denoted Ãk, the inverse of
the ratio σi(A)

σi(Ãk)
can be bounded as follows.

Let

Ãk =

[
I

A21A
−1

11

] [
A11 A12

]
, (4.31)

and
A = Ãk +

[
0k

S(A11)

]
, (4.32)

where 0k is a zero matrix of size k × k. From Equation (4.30), we obtain

‖A− Ãk‖2 ≤ q(m,n, k)σk+1(A). (4.33)

Therefore, with respect to q(m,n, k), Ãk is the best low-rank approximation computed by the
Singular Value Decomposition. Using Corollary 8.6.2 from (G. H. Golub et al., 2013) in Equation
(4.32) leads to

|σi(A)− σi(Ãk)| ≤ ‖
[
0k

S(A11)

]
‖2, (4.34)

for any 1 ≤ i ≤ k. Using bound in (4.33), we obtain

|σi(A)− σi(Ãk)| ≤ σk+1(A) · q(m,n, k). (4.35)

Hence, we have the following relation between the singular values of A, Ãk, and S(A11),

1− σk+1(A)

σi(A)
· q(m,n, k) ≤ σi(A)

σi(Ãk)
≤ 1 +

σk+1(A)

σi(A)
· q(m,n, k), (4.36)

with 1 ≤ i ≤ k. This ratio is close to 1 when σk+1(A)
σi(A) ·q(m,n, k) is small. This case appears when

there is a large gap between σk(A) and σk+1(A).

4.1.2 Rank-K approximation, when K is unknown

We are now considering the case where the rank of the approximation needs to be determined
during the factorization. For that, we introduce in Algorithm 4.2, LU-CRTP (A, k, τ), an updated
version of LU-CRTP (A, k) which uses a stopping criterion τ . This algorithm uses Algorithm 4.1
as a subroutine and iterates until the condition using τ is satisfied. Since Algorithm 4.1 computes
an approximation of the first k singular values of its input matrix, Algorithm 4.2 determines an
overestimation of the rank K = t× k such that a subset of the K singular values are larger than
the tolerance τ , where t is the number of iterations. Therefore, the real rank of the approximation
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is between (t−1)×k and t×k. One alternative is based on detecting a gap between the singular
values. Although this approach is not discussed here, Algorithm 4.2 can be easily adapted.

Algorithm 4.2 proceeds as follow. The initial guess of the rank k is used by the subroutine
LU-CRTP (A, k) to compute one step of the block LU factorization with Column and Row
Tournament Pivoting, as described in the previous section. If the k approximated singular
values computed are larger than or equal to τ , then the factorization continues recursively on
the trailing matrix S(A11). After T iterations, we obtain the factorization of Equation (4.37)

Theorem 26. (Grigori et al. (Grigori, Cayrols, et al., 2018)) Suppose we have computed T
block steps of LU-CRTP (A, k, τ) factorization by using Algorithm 4.2, where A ∈ Rm×n and
K = Tk. We obtain the following factorization

PrAPc = LKUK (4.37)

=


I
L21 I
...

...
. . .

LT1 LT2 . . . I
LT+1,1 LT+1,2 . . . LT+1,T I




U11 U12 . . . U1T U1,T+1

U22 . . . U2T U2,T+1

. . .
...

...
UTT UT,T+1

UT+1,T+1

 ,

where Li+1,j and Uij are k × k for 1 ≤ i, j ≤ T , and UT+1,T+1 is (m − Tk) × (n − Tk). The
following properties are satisfied:

ρl(Li+1,j) ≤ FTP , (4.38)

‖UK‖max ≤ min
(

(1 + FTP
√
k)K/k‖A‖max, q2(m, k)q(m,n, k)K/k−1σK(A)

)
, (4.39)

1∏t−2
v=0 q(m− vk, n− vk, k)

≤
σ(t−1)k+i(A)

σi(Utt)
≤ q(m− (t− 1)k, n− (t− 1)k, k), (4.40)

1 ≤ σj(UT+1,T+1)

σK+j(A)
≤
K/k−1∏
v=0

q(m− vk, n− vk, k), (4.41)

for any 1 ≤ l ≤ k, 1 ≤ i ≤ k, 1 ≤ t ≤ T , and 1 ≤ j ≤ min(m,n) − K. Here FTP is
the bound obtained from QR with Tournament Pivoting, q2(m, k) =

√
1 + F 2

TP (m− k), and
q(m,n, k) =

√
(1 + F 2

TP (n− k))(1 + F 2
TP (m− k)).

Proof. See the proof of the Theorem 3.2 in (Grigori, Cayrols, et al., 2018).

Algorithm 4.2 presents the LU-CRTP (A, k, τ) factorization. As detailed above, this algorithm
can be used when the rank of the low-rank approximation needs to be determined. Using the
bounds of Theorems 25 and 26, it can easily be seen that the R factor obtained from the QR
factorization with Tournament Pivoting gives a slightly better estimation of the singular values
than the diagonal blocks of UK . Hence, we use the R factor to approximate the singular values
of A, and to determine the rank K of the low-rank approximation.
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Algorithm 4.2 LU-CRTP (A, k, τ): rank-K truncated LU factorization with Column Row
Tournament Pivoting of a matrix A, using tolerance τ to identify singular values large enough
to keep in the low-rank approximation

Input: A ∈ Rm×n, k, tolerance τ
Output: permutation matrices Pr and Pc, rank K, truncated factorization B = L̃KŨK such that

L̃K ∈ Rm×K , ŨK ∈ RK×n σ̃K−k(A) ≥ τ > σ̃K(A), where σ̃k(A) is the K-th singular value of A
approximated by the algorithm,

PrAPc = LKUK =


I
L21 I
...

...
. . .

LT1 LT2 . . . I
LT+1,1 LT+1,2 . . . LT+1,T I




U11 U12 . . . U1T U1,T+1

U22 . . . U2T U2,T+1

. . .
...

...
UTT UT,T+1

UT+1,T+1

 ,

L̃K = LK(:, 1 : K) ŨK = UK(1 : K, :)
Note that UT,T+1 is not updated during the last iteration.

1: A = A
2: for T = 1 to n/k do
3: j = (T − 1)k + 1, K = j + k − 1
4: Determine row/column permutations by using Algorithm 4.1,

[Prk , Pck , Lk, Uk, Rk]← LU − CRTP (A(j : m, j : n), k)

5: PrT =

[
I

Prk

]
, PcT =

[
I

Pck

]
, where I is (j − 1)× (j − 1)

6: A = PrAPc, LK = PrLKPc, UK = PrUKPc, Pr = PrT Pr, Pc = PcPcT

7: UK(j : K, j : n) = Uk, LK(j : m, j : K) = Lk

8: for i = 1, to k do
9: σ̃j+i−1(A) = σi(Rk)

10: end for
11: if σ̃K(A) < τ then
12: Return L̃K = LK(:, 1 : K), ŨK = UK(1 : K, :), Pr, Pc

13: else
14: Update the trailing matrix,

A(K + 1 : m,K + 1 : n) = A(K + 1 : m,K + 1 : n)− LkUk.
15: end if
16: end for

4.1.3 A less expensive LU factorization with Column Tournament Piv-
oting

In this section, we present a less expensive version of the LU factorization with Column Row
Tournament Pivoting that satisfies part of the bounds from Theorem 25. We only focus on one
step of the LU factorization, where the desired rank is k. However, the modifications presented
here are easily applicable to the case where the rank K > k.

The cheaper version of LU-CRTP (A, k, τ) corresponds to avoid computing the row permuta-
tion matrix Pr by using the QR factorization with Tournament Pivoting. Therefore, this version
also uses a cheaper version of LU-CRTP (A, k) in which the row permutation matrix Pr is ob-
tained from the LU factorization with partial pivoting. We refer to this modification in Algorithm
4.1 and 4.2 as LU factorization with Column Tournament Pivoting, denoted further as LU-CTP
(A, k) and LU-CTP (A, k, τ), respectively. Given an m×n matrix A, the LU factorization selects
k columns by using QR factorization with Tournament Pivoting on the matrix A. The obtained
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factorization is

APc =

[
Ac11 Ac12

Ac21 Ac22

]
= Q

[
R11 R12

R22

]
=

[
Q11 Q12

Q21 Q22

] [
R11 R12

R22

]
where Ac11 ∈ Rk×k, Q ∈ Rm×m, Q11, R11 ∈ Rk×k. Here the column permutation matrix Pc is
the same as the one computed in LU-CRTP (A, k). The row permutation matrix Pr is obtained
by using the LU factorization of the first k columns with partial pivoting of APc. Note that to
reduce the communication, LU factorization with Tournament Pivoting can be used to select the
k rows of APc(:, 1 : k). However, when the growth factor of L21 is too large, LU factorization
with Tournament Pivoting is applied on the first k columns of Q (Grigori, J. W. Demmel, et al.,
2011),

Pr

[
Ac11

Ac21

]
=

[
L11

L21

]
U11,

where L11, U11 are of dimension k × k. The obtained LU factorization

PrAPc =

[
A11 A12

A21 A22

]
=

[
L11

L21 I

] [
U11 U12

S(A11)

]
,

where S(A11) = A22 − L21U12. Note that this factorization does not lower bound the singular
values of Q11. As a consequence, we cannot bound in theory the singular values of A11 and
S(A11), with respect to the singular values of A. However, experimental results show that in
practice this factorization approximates well the singular values of A.

4.2 Performance results

In this section, we present extensive tests made on a sequential version of LU-CRTP. We show
that QRCP algorithm can be replaced by LU-CRTP to compute an approximation of the singular
values of a matrix A. The singular values computed by LU-CRTP are close to the singular values
returned by the Singular Value Decomposition algorithm (SVD). In addition, the factors L and U
of A returned by LU-CRTP are sparser than the factors Q and R computed by QRCP. Therefore,
LU-CRTP can factor matrices where QRCP requires too much memory. We study LU-CRTP
through three parameters, the accuracy of the singular values, the numerical stability of the block
LU factorization of A, and the fill-in of the factors. All tests are made on a local machine with
MATLAB 2015a, and on an SGI UV2000 supercomputer with MATLAB 2014b, named HPC2
and managed by the LJLL at UPMC. HPC2 has 32 nodes and a total memory space of 1 TB.
Each node is equipped with an Intel Xeon IvyBridge E5-4650 v2 processor (2.40GHz, 10 cores).
This machine is used for running tests that require larger memory.

4.2.1 Accuracy of the singular values computed by LU-CRTP

To study the accuracy of the singular values returned by LU-CRTP, we use the SVD algorithm as
the reference. We also compare our algorithm with the QR factorization with Column Pivoting
(QRCP). In (J. Demmel, Grigori, Gu, et al., 2013), Demmel et al. show that the absolute diagonal
elements of the R factor returned by QRCP approximate the singular values of a matrix A with
a maximum error of one order of magnitude. The error on the i’th singular value is defined as the
ratio σ̃i/σi, where σ̃i is the approximation of the i’th singular value, and σi is the i’th singular
value returned by the SVD algorithm. Although QRCP uses the diagonal elements of the R factor
to get an approximation of the singular values, we further study different methods to compute
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the singular values. We first use a set of 16 challenging matrices coming from different kind
of problems, and described in Table 4.1. All matrices of the set are generated using MATLAB
script, with a size of 256 × 256. As presented in Algorithm 4.1, our algorithm uses QRTP to
select the k columns of A. Thus, to study whether QRTP has an impact on the approximation of
the singular values, we introduce LU-CRQRCP, a variant of LU-CRTP, where QRTP is replaced
by QRCP. We call QRCP, LU-CRQRCP and LU-CRTP algorithms on each matrix to obtain an
approximation of each singular value. In the following tests, the panel size k, used as the desired
rank internally, is set to 16 and the number of singular values nSV varies from 64 to 256. Since
LU-CRTP is designed to return a low-rank approximation of a matrix A, we do not consider the
part of the spectrum where the singular values are smaller than ε, the machine-precision. To
avoid potential numerical issues when the singular values are smaller than ε, we replace them by
ε in all tests.

No. Matrix Description

1 Baart Discretization of the 1st kind Fredholm integral equation
2 Break1 Break 1 distribution, matrix with prescribed singular values
3 Break9 Break 9 distribution, matrix with prescribed singular values
4 Deriv2 Computation of second derivative
5 Devil The devil’s stairs, a matrix with gaps in its singular values
6 Exponential Exponential distribution, σ1 = 1, σi = αi−1(i = 2, ..., n),

α = 10
−1
11

7 Foxgood Severely ill-posed test problem of the 1st kind Fredholm
integral equation used by Fox and Goodwin

8 Gravity One-dimensional (1D) gravity surveying problem
9 Heat Inverse heat equation

10 Phillips Phillips’ famous test problem
11 Random Random matrix A = 2× rand(n)− 1
12 Shaw 1D image restoration model
13 Spikes Test problem with a "spiky" solution
14 Stewart Matrix A = UεV T + 0.1σm ∗ rand(n), where σm is

the smallest nonzero singular values
15 Ursell Integral equation with no square integrable solution
16 Wing Test problem with a discontinuous solution

Table 4.1 – Set of dense matrices
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(a) Exponential problem.
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Figure 4.1 – Evolution of the singular values computed by QRCP, LU-CRQRCP, and LU-CRTP,
compared to the SVD, for different problems.



4.2. Performance results 91

We first show the behavior of each algorithm by focusing on Exponential and Foxgood prob-
lems in Figures 4.1a and 4.1b. Both figures plot the full spectrum returned by each algorithm.
We observe that the spectra of LU-CRTP and LU-CRQRCP are close to the SVD, and that
LU-CRTP and LU-CRQRCP return the same approximation of the singular values. We remark
that after each update of the trailing matrix in LU-CRTP algorithm, the norm of few columns
slightly increases. This introduces a degradation of the accuracy of our method but as we will
show later, the error on the singular values does not reach two orders of magnitudes. In the
context of low-rank approximation, one may request a subset of the spectrum. We next study
the cases where only the first quarter or half the spectrum is needed.
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Figure 4.2 – Accuracy of the approximate singular values computed by QRCP, LU-CRQRCP and
LU-CRTP compared to the real singular values. Matrix size is 256, k = 16 and nSV = 64

We consider the first n/4 singular values, where n is the dimension of A, and we compare
the average ratio, its maximum and minimum for each method and each matrix. Figure 4.2
summarizes the accuracy of each method. The average ratio is close to 1 for all methods. More-
over, the largest maximum and smallest minimum are at most equal to one order of magnitude.
The largest and smallest singular values computed by LU-CRQRCP and LU-CRTP are similar.
It means that the replacement of QRCP by QRTP does not degrade the approximation of the
singular values. We now study the accuracy of each method for the first half of the spectrum,
and for the full spectrum, in Figure 4.3. The bars represent the ratios for the first n/2 singular
values and the red line corresponds to the ratios for 256 singular values. When nSV = 128, the
largest ratio of each method is still equal to one order of magnitude, at most. When nSV = 256,
although the maximum ratios increase up to 10 for QRCP, LU-CRQRCP and LU-CRTP have a
largest maximum ratio equal to 50. This increase comes from the update of the trailing matrix.
Take as an example the problems Phillips and Stewart whose spectrum is plotted in Figures 4.4a
and 4.4b, respectively. Focusing on the end of the spectrum, the singular values, computed by
the SVD, drastically decrease. However, the last k singular values returned by LU-CRTP have
a small offset and do not decrease as the real one. This explains the increase of the maximums
in Figure 4.3, when the number of singular values goes from n/2 to n. If we remove the last
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k singular values, we observe better ratios in Figure B.3, in the appendix. In summary, the
approximation of the singular values returned by LU-CRTP is equivalent to the ones returned
by LU-CRQRCP, and both variants are close to QRCP.
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Figure 4.3 – Accuracy of the approximate singular values computed by QRCP, LU-CRQRCP and
LU-CRTP, compared to the real singular values. Matrix size is 256, k = 16 and nSV = [128, 256]
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Figure 4.4 – Evolution of the singular values computed by QRCP, LU-CRQRCP, and LU-CRTP,
compared to the SVD, for different problems.

Impact of the panel size k on the accuracy of the estimation of the singular values
returned by LU-CRTP

We now discuss the impact of the parameter k, the number of columns selected by QRTP, on
the accuracy of the approximated singular values returned by LU-CRTP. We use the same 16
challenging problems and request first the leading 64 singular values of the spectrum in Figure
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4.5, and then the half and the full spectrum in Figure 4.6. We also consider the same ratios as
presented above, and k equals to 16, 32, and 64.
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Figure 4.5 – Influence of the parameter k on the accuracy of the approximate singular values returned
by LU-CRTP. Matrix size is 256 and nSV = 64.
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Figure 4.6 – Influence of the parameter k on the accuracy of the approximate singular values returned
by LU-CRTP. Matrix size is 256 and nSV ∈ {128, 256}.

In Figure 4.5, when k increases, the ratios are similar, except for Spike matrix (id 13).
However, when k is equal to the number of singular values requested, the ratios correspond to
the results of QRCP applied on the k columns returned by QRTP. Therefore, the largest ratio
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does not exceed one order of magnitude. In Figure 4.6, when the full spectrum is considered,
the largest maximum ratios tend to decrease when k increases. This is explained by the fact
that the number of update decreases when k increases. As discussed above, an update of the
trailing matrix yields to an increase of the norm of few columns and so a small degradation of the
ratio. Note that we observe few differences for matrix indices 8 and 13, which does not exceed a
maximum ratio of 10. Hence, the parameter k does not impact the accuracy even if it slightly
impacts the largest and smallest ratios.
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(b) nSV ∈ {128, 256}.

Figure 4.7 – Comparison of LU-CTP with LU-CRTP, and QRCP is used as the reference. Matrix size
is 256, k = 16.
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LU-CTP, a variant of LU-CRTP with a reduced cost

We now consider LU-CTP, a modification of LU-CRTP, where only the columns of A are per-
muted. This variant saves the computation of calling QRTP on the rows of Q. We compare
the accuracy of the singular values computed by LU-CTP with these computed by LU-CRTP.
In addition, QRCP is used as the reference and the column panel size is set to 16. Figure 4.7a
presents the average ratio, its maximum and minimum, of each matrix and for each method,
with nSV = 64. The maximum and minimum ratios of LU-CTP are equivalent to the ones of
LU-CRTP, except for matrix Break1 and Break9 (id 2 and 3). The maximum ratio of Break1
is larger for LU-CTP than for LU-CRTP whereas the maximum ratio of Break9 is smaller for
LU-CTP than for LU-CRTP. When we consider nSV = 128 and nSV = 256, in Figure 4.7b, the
maximum ratios of both LU-CTP and LU-CRTP are the same. Note that the matrix Break9,
id=3, has a maximum ratio slightly larger for LU-CTP than for LU-CRTP. This variant ap-
proximates the singular values of a matrix A as well as LU-CRTP does, for the 16 challenging
matrices presented above. To be more accurate, we have performed extensive tests on a larger
set of matrices.

4.2.2 Extensive tests on the estimation of singular values
In order to have more accurate results about the error on the singular values returned by LU-
CRTP, we have made larger tests on a bunch of 261 matrices coming from San Jose State
University (Foster, 2017). Compared to the challenging matrices presented in Table 4.1, these
matrices have less than 1024 rows and between 32 and 2048 columns, and are rank deficient. To
get them from MATLAB, we execute

idx = SJget;
ids = find(idx.nrows <= 1024 &...

idx.ncols <= 2048 & idx.ncols > 32);
[~, i] = sort(idx.numrank(ids));
ids = ids(i);

Since some applications require less than the real numerical rank like only half of the spectrum,
tests are made on two criteria. The first one is based on the numerical rank of the matrices
provided by the database. Therefore we approximate iteratively the singular values until reaching
the numerical rank of A noted rank(A). Figure 4.8 presents the maximum, minimum and average
of the ratios for each matrix of the collection where the x-axis is the index i of the matrix (which
means ids(i) in the MATLAB code). The top subgraph concerns QRCP whereas the middle one
presents the ratios for LU-CRQRCP and the bottom one is for LU-CRTP. Note that the matrices
are sorted by their numerical rank. So the first ratios are related to the matrix for which the
numerical rank is the lowest and the last ones correspond to the highest rank. As said earlier,
QRCP has a maximum of one order of magnitude and a minimum which does not drop under
three orders of magnitude. LU-CRQRCP and LU-CRTP use a panel size of 16 columns. They
both have roughly the same curves, except for few matrices. Thus for matrix 215, the maximum
ratio goes from 32.45 for LU-CRQRCP to 48.29 for LU-CRTP, and for matrix 261, from 67.25
to 84.91. For matrix 253, the maximum ratio decreases from 80.37 to 56.12, and for matrix 258,
from 64.44 to 30.62.

These two methods do not reach a maximum of two orders of magnitude and have the same
lowest ratio as QRCP. Moreover we observe that when the matrix index increases the maximum
ratio increases too. Again, this is due to the fact that when the numerical rank is much larger
than the panel size, updating the trailing matrix using L21 introduces an update of the norm.
As a consequence, the last matrices of the set, where the size is nearly 103, and rank(A) is close
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to its size, are expected to have a worse maximum compared to the first ones when their rank is
much smaller than their size. Therefore, the panel size has to be chosen by taking into account
the number of updates of A22 as well as the requested rank. Few matrices like the matrix of
index 80, the heat_100, have only one outlier value. Figure 4.9 shows the relation between
the ratios (top subfigure) with its spectrum (bottom subfigure). From it, all ratios but the last
one of LU-CRTP are lower than 10. Comparing with QRCP, the ratios are quite close and
only the last ratio of LU-CRQRCP (37.92) and LU-CRTP (44.25) exceed the 10. Now focusing
on the problem named dwt_1007, ids(261), we plot in Figure 4.10 the ratio evolution and the
spectrum of each method. The spectrum returned by the SVD algorithm slowly decreases by
a factor of 103 over 1000 values starting at 8.88. At first, all methods underestimate the real
singular values. After roughly 200 values, LU -based methods overestimate them whereas QRCP
starts to overestimating after 750 values. The LU -based methods totally cross the 10 limit after
900 values. Since the singular values of this matrix are locally quite close over 800 values, to
approximate them appears to be difficult and even more at the end. Here we see the impact
of the update of the trailing matrix coupled with the slow decrease of the singular values. All
methods slightly overestimate the singular values and the LU -based methods are slightly worse
than QRCP.
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Figure 4.8 – Comparison of the ratios |Ri,i|/σi with 1 ≤ i ≤ rank(A), where rank(A) is the numerical
rank, for QRCP (top), LU-CRQRCP (middle), and LU-CRTP (bottom) for a panel size of 16 on the 261
matrices. Each subgraph shows the minimum, average and maximum for each matrix where the x-axis
is the index of the matrix in the subset.

Since the panel size could be too small for larger matrices, the set of matrices is divided into
two. The first one is composed of the first 231 matrices whose rank is less than 500, and uses
a panel size of 16, and the second one uses a panel size of 64. Figure 4.11 shows the new ratios
computed with these two panel sizes. The vertical black dotted line explicitly splits the graph
according to rank(A) < 500 at left and the remaining matrices at right. The maxima for the
last matrices has drastically decreased from roughly 80 to 40. In Figure 4.12, we compare again
the ratios with the spectrum of dwt_1007 but with a panel size of 64. The largest ratio drops
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from 84.9 to 45.3. Thus decreasing the number of updates has reduced the error induced by the
factorization.
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Figure 4.9 – Comparison of the spectrum and the ratio |Ri,i|/σi for QRCP, LU-CRQRCP, and LU-
CRTP for the matrix heat_100, ids(80) of size 100 × 100 and rank(A) = 97. The top subfigure plots
the evolution of the ratio for each method where the ratio is |Ri,i|/σi related to the bottom subfigure
plotting the evolution of the singular values and their approximations.
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Figure 4.10 – Comparison of the spectrum and the ratio |Ri,i|/σi for QRCP, LU-CRQRCP, and LU-
CRTP for the matrix dwt_1007, ids(261) of size 1007 × 1007 and rank(A) = 1000 with a panel size of
16. The top subfigure plots the evolution of the ratio for each method where the ratio is |Ri,i|/σi related
to the bottom subfigure plotting the evolution of the singular values and their approximations.
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Figure 4.11 – Comparison of the ratios |Ri,i|/σi with 1 ≤ i ≤ rank(A), where rank(A) is the numerical
rank, for QRCP (top), LU-CRQRCP (middle), and LU-CRTP (bottom) on 261 matrices. The vertical
black dotted line splits the graph with at left the matrices having a numerical rank lower than 500, and
a panel size of 16, and at right the remaining matrices with a panel size of 64. Each subgraph shows
the minimum, average and maximum for each matrix where the x-axis is the index of the matrix in the
subset.

0 100 200 300 400 500 600 700 800 900 1000

|R
i,
i| 

/ 
σ

i

10
-1

10
0

10
1

10
2

QRCP

LU-CRQRCP

LU-CRTP

Index of singular values

0 100 200 300 400 500 600 700 800 900 1000

S
in

g
u

la
r 

v
a

lu
e

10
-4

10
-2

10
0

10
2

Evolution of the ratio dwt_1007

QRCP

LU-CRQRCP

LU-CRTP

SVD

Figure 4.12 – Comparison of the spectrum and the ratio |Ri,i|/σi for QRCP, LU-CRQRCP, and LU-
CRTP for the matrix dwt_1007, ids(261) of size 1007 × 1007 and rank(A) = 1000 with a panel size of
64. The top subfigure plots the evolution of the ratio for each method where the ratio is |Ri,i|/σi related
to the bottom subfigure plotting the evolution of the singular values and their approximations.
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Table 4.2 presents the largest of the maxima and the smallest of the minima observed in
Figure 4.8 for each method with a panel size of 16. The first set of data concerns the full
spectrum whereas the second one focuses on the rank which means the singular values index
goes from 1 to rank(A). Thus we take into account the singular values until reaching the rank
of each matrix. The smallest value obtained by matrix Ursell_1000, ids(260), is 4.169 ∗ 10−2

for all methods. This smallest value and the largest of QRCP are equal to the data presented
in (J. Demmel, Grigori, Gu, et al., 2013). The largest values of LU-CRQRCP and LU-CRTP,
8.037 ∗ 101 and 8.491 ∗ 101 respectively, are one order of magnitude worse than QRCP but do
not reach two orders of magnitudes, in absolute value.

Spectrum Method min max
matrix id ratio matrix id ratio

Full spectrum QRCP 106 3.011e-142 60 Inf
LU_CRQRCP 229 4.250e-308 72 4.233e+02

LU_CRTP 104 1.323e-263 95 1.209e+14

1 ≤ i ≤ rank(A) QRCP 260 4.169e-02 261 8.957e+00
LU_CRQRCP 260 4.169e-02 253 8.037e+01

LU_CRTP 260 4.169e-02 261 8.491e+01

Table 4.2 – Smallest minimum and largest maximum of the ratio |Ri,i|/σi of QRCP, LU-CRQRCP,
and LU-CRTP for the full spectrum and for 1 ≤ i ≤ rank(A), where rank(A) is the numerical rank
provided by the database for the all 261 matrices.

Considering the two subsets of matrices, we compute the same ratios and display the smallest
and largest values in Table 4.3. The first set uses a panel size of 16 and the second one of 64
as described above. For the first 231 matrices, the smallest value is slightly better than in the
previous table, equal to 4.24 ∗ 10−2. The largest ratio is 46 and 48.3 for LU-CRQRCP and
LU-CRTP respectively. When the panel size is 64, the smallest ratio is equal to the one in the
previous table and the largest decreases from 80.4 to 48.2 for LU-CRQRCP and from 84.9 to
45.3 for LU-CRTP. Moreover, for LU-CRTP, only 60 matrices exceed one order of magnitude.

k Method Min Max
matrix id ratio matrix id ratio

16 QRCP 45 4.24e-02 229 7.49e+00
LU_CRQRCP 45 4.24e-02 231 4.60e+01

LU_CRTP 45 4.24e-02 215 4.83e+01

64 QRCP 260 4.169e-02 261 8.96e+00
LU_CRQRCP 260 4.169e-02 252 4.82e+01

LU_CRTP 260 4.169e-02 261 4.53e+01

Table 4.3 – Smallest minimum and largest maximum of the ratio |Ri,i|/σi of QRCP LU-CRQRCP and
LU-CRTP for 1 ≤ i ≤ rank(A) where rank(A) is the numerical rank provided by the database for all
261 matrices, divided into two groups. The first group is composed of matrices 1 to 231 with k = 16,
and the second group is formed by matrices 232 to 261 with k = 64.

To conclude, LU-CRTP approximates the singular values of a matrix A with an error smaller
than two orders of magnitude. LU-CRTP can be replaced by LU-CTP without loss of accuracy
of the method. Both versions use the diagonal elements of R to approximate the singular values.
This variant replaces computing the Singular Value Decomposition of R, with a smaller cost. For
stability purpose, the update of the trailing matrix may use Q instead of A, depending on the
matrix. Looking at the update of A22, we have observed that L21 = A21A

−1
11 may be unstable.

If so, L21 is instead computed using Q21Q
−1
11 . Over these 261 matrices we have noticed that
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95 matrices update the trailing matrices using Q instead. The list of these matrices is given in
Table B.2 in the appendix. We next focus on the numerical stability of block LU factorization
performed in LU-CRTP.

4.2.3 Numerical Stability

As mentioned above, during the extensive tests, we have noticed that the LU factorization may
become unstable. For better understanding, we now focus on the numerical stability of the
block LU factorization in LU-CRTP. To study it, we compute the growth factor, defined as
maxi,j,k|a(k)

i,j |
maxi,j |ai,j | , where a

(k)
i,j denotes the entry in position (i, j) after k iterations. In addition, we

compute the 1_norm and the max norm of the factors L and U , the 1_norm of their inverse, the
max norm of A, and the backward error of the block LU factorization using the Frobenius norm
||PAE−LU ||F
||A||F . The set of matrices, presented in Table 4.1, is replaced by a set of larger sparse

matrices presented in Table 4.4 coming from the University of Florida sparse matrix collection
(Davis and Hu, 2011). These matrices arise from different problems, where their dimension
increases from a thousand to half million unknowns.

No. Matrix Size nnz Problem description

17 orani678 2 529 90 158 Economic
18 gemat11 4 929 33 108 Power network sequence
19 raefsky3 21 200 1 488 768 Computational fluid dynamics
20 wang3 26 064 177 168 Semiconductor device
21 onetone2 36 057 222 596 Frequency-domain circuit simulation
22 TSOPF_RS_b39_c30 60 098 1 079 986 Power network
23 RFdevice 74 104 365 580 Semiconductor device
24 ncvxqp3 75 000 499 964 Optimisation
25 mac_econ_fwd500 206 500 1 273 389 Economic
26 parabolic_fem 525 825 3 674 625 Computational fluid dynamics

Table 4.4 – Set of sparse matrices

For simplicity, we further denote the TSOPF_RS_b39_c30 problem as TSOPF_RS, and
the mac_econ_fwd500 problem as fwd500. We consider the case where an approximation of the
first K singular values of each problem is requested, and the panel size k varies (k is also the
number of selected columns returned by the QR factorization with Tournament Pivoting). To
do so, we call LU-CRTP (Algorithm 4.2) on each matrix of the set Table 4.4 with K = 1024,
a tolerance τ = 0, and the panel size k increasing from 16 to 128. All results are summarized
in Table B.1, in the appendix. Wilkinson introduces the observation that a small growth factor
leads to a more stable LU factorization. For all sparse matrices studied, the growth factor is
equal to 1, while the backward error varies from 10−16 to 10−24. Also, the value of k does not
impact the stability of LU-CRTP. The block LU factorization of LU-CRTP is stable for this set
of matrices. However, the extensive test has shown that a third of the 261 matrices switched the
manner L21 is computed, replacing A by Q for better stability. The LU factorization is stable
in general, and the different ways to compute L21 increase the stability.

4.2.4 Fill-in

One of the main reasons to develop LU-CRTP is the relation between the factorization and
the fill-in induced. In the following, we compare the fill-in of LU-CRTP, LU-CTP with QRCP.
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We also use LU with partial pivoting (denoted LUpp) as a reference to measure the impact
of the reordering of our method relative to it. In order to apply it, we first call Approximate
Minimum Degrees and Elimination tree algorithms to reduce the fill-in during the factorization.
The MATLAB code is presented in Algorithm B.1, in the appendix. To compare the fill-in of
each algorithm, we compare the sum of the number of non-zeros of the factors L and U , with the
sum of the number of non-zeros of the Householder vectors and the number of non-zeros of the
R factor. It means that the value presented in Table 4.5 for the methods LUpp, LU-CRTP and
LU-CTP is equal to nnz(L)+nnz(U), whereas, for QRCP, the value is equal to nnz(Y )+nnz(R),
where Y is the concatenation of the successive Householder vectors. All tests are made on the
set of sparse matrices presented in Table 4.4, and the number of singular values varies from 128
to 1024. Table 4.5 regroups the results. For each matrix, the number of non-zeros of its first
nSV columns is presented. This value corresponds to the number of non-zeros without fill-in.
As expected in theory, LU-CRTP yields to a smaller fill-in than QRCP for any problem and any
panel size, except for TSOPF_RS and a panel size greater than 128. We observe in particular
that for the last two matrices, LU-CRTP has the smallest fill-in, even smaller than LU with
partial pivoting. Comparing LU-CRTP with LU-CTP, their fill-in is close enough to say that
these are similar in terms of fill-in.

Name nSV nnz LUpp QRCP LU-CRTP LU-CRTP

orani678 128 7 901 8 457 498 255 27 885 27 942
512 55 711 33 817 1 851 058 299 325 295 004

1024 71 762 71 804 3 843 133 790 850 827 864
gemat11 128 1 232 1 450 6 916 3 257 2 988

512 4 895 7 218 60 622 18 559 17 903
1024 9 583 14 799 549 778 47 687 49 805

raefsky3 128 7 872 25 504 71 783 57 584 53 472
512 31 248 153 312 682 834 640 628 621 696

1024 63 552 254 960 1 786 735 1 678 028 1 772 704
wang3 128 896 4 638 29 161 9 672 9 004

512 3 536 35 420 213 916 72 546 57 474
1024 7 120 63 956 230 201 79 291 64 642

onetone2 128 4 328 1 724 174 236 4 840 4 840
512 9 700 11 140 863 686 11 748 11 748

1024 17 150 66 530 2 108 099 19 430 21 246
TSOPF_RS 128 4 027 3 328 16 267 6 323 5 468

512 5 563 13 441 27 109 32 456 29 876
1024 7 695 31 881 41 545 68 018 67 338

RFdevice 128 633 1 362 14 323 1 430 1 523
512 2 255 5 590 406 758 4 924 5 017

1024 4 681 11 006 1 995 648 9 631 9 966
ncvxqp3 128 1 263 2 081 7 259 2 526 2 526

512 5 067 10 027 35 464 10 138 10 138
1024 10 137 36 639 73 921 19 291 20 278

fwd500 128 384 4 195 - 1 408 1 408
512 1 535 29 448 - 5 631 5 631

1024 5 970 115 254 - 12 680 14 162
parabolic_fem 128 896 3 778 - 1 792 1 792

512 3 584 25 072 - 7 168 7 168
1024 7 168 62 734 - 13 952 14 336

Table 4.5 – Comparison of fill-in for different matrices and different methods
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To highlight the difference of fill-in, we compute two ratios. First, we consider the ratio of the
fill-in induced by QRCP divided by the fill-in induced by LU-CRTP, noted QRCP

LU−CRTP . The ratio
is at least of 1 but generally greater than 2, except for TSOPF_RS matrix. The ratio goes up to
200 for RFdevice matrix. As predicted, we observe that when the dimension of the matrix is too
large, QRCP cannot be used. Actual implementations of QRCP such as the subroutine dgeqp3
in LAPACK library requires the matrix A to be dense. In our case, the last matrices in Table 4.4
are too large to be stored in dense format (parabolic_fem would require 2.2TB of memory to be
stored). The second ratio shows the impact of the perturbation of our reordering on the fill-in
compared to the classical LU with partial pivoting. The ratio LU−CRTP

LUpp shows that for small
matrices, LUpp has the least fill-in for any number of singular values requested. When the size
of the matrix becomes large, we observe that LU-CRTP has a smaller fill-in than LUpp, for any
number of singular values required. In these cases, our algorithm leads to less fill-in than the LU
with partial pivoting factorization. We assume that the permutation obtained through QRTP is
better in term of fill-in than the classical combination of AMD plus elimination tree algorithms.
To check this, a simple test is performed and its results are presented in Table 4.7. We apply the
column permutation matrix Pc returned by LU-CRTP to A such that Ap = APc, and then we
call LUpp on Ap. Results confirm that the column permutation vector impacts the fill-in of the
LU with partial pivoting factorization. Finally, LU-CRTP and LU-CTP have a similar fill-in.
Therefore, LU-CTP should be used as an initial method but when the LU factorization becomes
unstable, LU-CRTP has to be used instead without increasing the fill-in.

Name nSV QRCP
LU−CRTP

LU−CRTP
LUpp

orani678 128 17.87 3.30
512 6.18 8.85

1024 4.86 11.01
gemat11 128 2.12 2.25

512 3.27 2.57
1024 11.53 3.22

raefsky3 128 1.25 2.26
512 1.07 4.18

1024 1.06 6.58
wang3 128 3.01 2.08

512 2.95 2.05
1024 2.90 1.24

onetone2 128 36 2.81
512 73.51 1.05

1024 108.5 0.29
TSOPF_RS 128 2.57 1.90

512 0.83 2.41
1024 0.61 2.13

RFdevice 128 10.02 1.05
512 82.61 0.88

1024 207.21 0.88
ncvxqp3 128 2.87 1.21

512 3.50 1.01
1024 3.83 0.53

fwd500 128 - 0.34
512 - 0.19

1024 - 0.11
parabolic_fem 128 - 0.47

512 - 0.29
1024 - 0.22

Table 4.6 – Comparison of fill-in of partial LU, QRCP, LU-CRTP and LU-CTP
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Name nSV nnz(A(:, 1:nSV)) LUpp (A) LUpp (Ap)

mac_econ_fwd500 128 384 4 195 1 408
512 1 535 29 448 5 631

1024 5 970 115 254 14 162
parabolic_fem 128 896 3 778 1 792

512 3 584 25 072 7 168
1024 7 168 62 734 14 336

Table 4.7 – Comparison of the fill-in induced by LU with Partial Pivoting applied on A with LU with
Partial Pivoting applied on Ap, where Ap is the matrix A permuted with the column permutation matrix
Pc obtained from LU-CRTP.

4.2.5 Parallel results using a 1D distribution of the matrix

In this section, we present the performance of our parallel implementation of the QR with
Tournament Pivoting algorithm (QRTP). As detailed in Algorithm 4.1 and in its description,
QRTP is one of the two costly steps of LU-CRTP (the second one being the update of the trailing
matrix). We first present the parallel implementation and then the experimental results.

Parallel implementation of QRTP

Our implementation of QRTP is presented in Algorithm 4.3. This takes as input the matrix A,
and k the number of columns to select from A. Since it is more convenient to have a 1D column
distribution of the data, the input matrix of dimension m × n is split into p column panels of
dimension m × n/p. For the purpose of the test, we are not using a cyclic distribution, but for
an optimal implementation, a 2D cyclic distribution may be considered. Also, we consider in our
tests that the input matrix is permuted using COLAMD and Elimination tree.

Algorithm 4.3 QRTP (A, k): returns a column permutation matrix of A where the selected k
columns are moved to the leading positions.

Input: A ∈ Rm×n,
k the number of columns moved to the leading position of A

Output: Pc the column permutation matrix
1: Let p be the number of processes
2: Let Ai be the column panel of size m/p× n, owned by process i, where i ∈ {1, . . . , p}
3: Select k columns from Ai without communication
4: Perform a global reduction on the selected k columns of Ai from the previous step, using a

binary tree. At each level of the tree, k columns from the concatenation of two matrices of
dimension m× k are selected until it remains only k columns.

5: Create the column permutation matrix Pc so that the k selected columns are moved to the
leading position of A.

Algorithm 4.3 is divided into two steps, the local step and the global step. The local step
corresponds to process i selecting k columns from Ai, with i ∈ {1, . . . , p}. To do so, there are
several approaches. The first idea is to apply the QR factorization with Column Pivoting on Ai
so that the first k columns of AiΠi = QiRi are selected for the next step, where Πi is the column
permutation matrix. This approach needs the use of dgeqp3 with the constraint that Ai is dense.
Yet, in practice, it is not possible on large matrices to do it. The second approach consists in
factoring Ai using a sparse algorithm (as SPQR from SuiteSparse (Davis, 2011b), or qr_mumps
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(Buttari, 2013)) so that an intermediate R̃i = Q̃>i Ai is computed, turned into a dense storage,
and finally factored using the first approach R̃iΠi = QiRi. This method presents the interest of
reducing the memory usage that stores the dense matrix to factor from mn/p to (n/p)2. On the
other hand, this needs a sparse factorization of Ai which is costly, mainly due to the update of
the entire trailing matrix. The last approach that we are using in our implementation of QRTP
is derived from the previous approach that reduces the impact of the update. To do so, we split
Ai into n/(p× 2k) column panels of size m× 2k, and we perform a reduction tree on them, what
leads to the k desired columns. Note that we assume for simplicity that n is a multiple of 2k and
p, but our explanation can be easily adapted to a general n. Each column panel is processed by
using a sparse QR factorization. The size of the trailing matrix is at most 2k − 1. We call this
third approach a local tournament pivoting that selects the k columns from Ai. This approach
presents two main interests. First, the memory consumption is reduced to 2k× 2k dense blocks,
and second, its parallelism is expected to be better compared to the sparse factorization of Ai.
Although the global reduction involves communication, the local tournament corresponds to no
communication between processes.

The global reduction based on a binary tree can be detailed as follow. The reduction starts
with the k selected columns from each Ai. At each level of the tree, k selected columns are sent
from one process to another. Then, the sparse QR factorization of a local matrix of dimension
m× 2k leads to creating a dense triangular factor R. This is factored using dgeqp3 so that the
first k columns of RΠ are selected for the next level. The cost of one level of the tree can be
estimated as O(Send)+O(sparse_qr)+O(QRCP ), where O(Send) = α+β∗nnz((RΠ)(:, 1 : k))
is the communication cost with α the latency of the network and β its bandwidth, O(sparse_qr)
is the sparse QR factorization cost, and O(QRCP ) is the cost to select the k columns. The non-
constant terms in this estimation are the number of values to send, and the cost of the sparse
QR factorization. As we will further this last term can greatly impact the global performance
of QRTP. When a good load balancing is achieved, we can consider the global cost as roughly
log(p) times the cost of one level of the tree.

Our environment of compilation is as follow :

Communication Intel MPI library 5.0.2.044
Sparse operation Sparse aspect handled by CPaLAMeM 0.1
Sparse operation Metis 4.0

Sparse kernel from SuiteSparse 4.4.6
Dense operation MKL from Intel Composer XE 2015.1.133

LAPACK 3.6.0

Parallel results of QRTP

In the following, we study the scalability of QRTP, and give more details on the inner steps
of the algorithm. The parallel tests are made on a supercomputer named Edison, managed by
NERSC. This machine has 5586 nodes. Each node is equipped with two 12-core Intel "Ivy Bridge"
processors at 2.4 GHz, and has 64 GB DDR3 1866 MHz of memory. The tests are made on a
set of larger sparse matrices coming from the Sparse Matrix Collection (Davis and Hu, 2011),
and presented in Table 4.8. We first study the strong scalability of QRTP by increasing the
number of MPI processes from 32 to 2048. We measure the execution time to select 256 columns
from each matrix, and present the results in Table 4.9. As expected, the results show that the
runtime decreases when the number of MPI processes increases. This is due to the reduction of
the number of columns of Ai, the local part of A. Since the number of MPI processes is doubled,
the number of columns is divided by a factor 2. The amount of computation during the local
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tournament is also expected to be reduced by 2. On the other hand, the global reduction tree has
one more level. Therefore, the variation of the cost between p and 2p MPI processes is composed
of the reduction of the local work, and the extra level in the reduction tree. However, in Table
4.9 we remark that the last value of rajat31 for 2048 processors is greater than for 1024. This
is due to the amount of work to perform the sparse QR factorization. The number of FLOPs
returned by SPQR for process 2041 is 1e10, whereas this value varies from 1e7 to 1e9 for the
others. The factorization is strongly related to the pattern of the matrix to factor, and greatly
impacts the runtime in that case.

No Name Size nnz problem

25 mac_econ_fwd500 206 500 1 273 389 economic problem
26 parabolic_fem 525 825 3 674 625 fluid dynamics
27 atmosmodd 1 270 432 8 814 880 fluid dynamics
28 circuit5M_dc 3 523 317 14 865 409 circuit simulation
29 rajat31 4 690 002 20 316 253 circuit simulation

Table 4.8 – Set of larger sparse matrices coming from SuiteSparse matrix collection.

Matrix #MPI process
32 64 128 256 512 1024 2048

mac_econ_fwd500 367 183 118 83 57 19 12
parabolic_fem 106 65 36 22 15 5 4
atmosmodd 488 269 163 83 52 29 18
circuit5M_dc 771 367 196 109 69 44 37
rajat31 - 802 489 296 210 172 175

Table 4.9 – Execution time in seconds of QRTP with k = 256 (SPQR + DGEQP3 and binary tree on
leaf + METIS ordering and preordered by COLAMD).

Matrix Name COLAMD +
etree

Panel of 2k columns Local sum on leaf Local sum on node
SPQR DGEQP3 SPQR DGEQP3 SPQR DGEQP3

0.06 0.01 180.97 0.33 0.00 0.00
mac_econ_fwd500 0.52 3.26 0.02 246.65 0.36 0.41 0.01

22.71 0.02 361.84 0.39 3.37 0.08
0.20 0.01 54.66 0.94 0.00 0.00

parabolic_fem 0.56 0.24 0.02 79.88 1.03 0.20 0.01
0.29 0.07 103.49 1.13 1.06 .0.07
0.48 0.01 183.36 2.17 0.00 0.00

atmosmodd 3.35 0.92 0.02 236.69 2.39 0.49 0.01
4.96 0.02 483.61 2.63 2.50 0.05
1.36 0.01 623.09 6.26 0.00 0.00

circuit5M_dc 4.18 1.59 0.02 664.68 6.85 1.38 0.02
1.84 0.03 749.20 7.99 7.15 0.08

Table 4.10 – Execution time in seconds of main steps of the algorithm for 32 MPI processes with
k=256, SPQR + DGEQP3 and binary tree on leaf + metis ordering and preordered by colamd+etree

We now study in details the kernels used in QRTP and consider for the test 32 processors
only. Table 4.10 presents the minimum, average and maximum time to factor a column panel of
size m× 2k. It also displays the cumulative time spent in the local part, denoted the leaf of the
tree, and in the global part, denoted the node of the tree. The average time is displayed in bold.
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The table also shows the time spent to reorder the matrix (COLAMD + elimination tree). We
first observe that the call to dgeqp3 on a triangular factor of size 2k× 2k is negligible compared
to the call to SPQR. Note that the runtimes can slightly vary due to machine usage (the runtime
of dgeqp3 varies from 0.1 to 0.7 for parabolic_fem). In the leaf step, the computation of the
sparse QR factorization is at least 100 times slower than for QRCP. Moreover, the time spent
in the node part is negligible compared to the time spent in the leaf part. This explains the
observation made on the strong scalability. The runtime of QRTP corresponds mainly to the
time spent in the sparse QR factorization during the selection of the k column of each Ai.

dgekqp3: a modified version of dgeqp3

To select the k columns from each Ai, we have detailed several approaches. One option is to
call SPQR on Ai and then dgeqp3 on the triangular factor. Suppose the dense triangular factor
can fit in memory, and k � n/p. However, the entire factorization is not requested, and a large
part of the computation could be avoided. We propose an alternative that is a truncated QR
factorization with Column Pivoting, denoted dgekqp3. To do so, we modify the source code in
LAPACK by adding a break in the outer loop to stop after computing i ∗ nb ≥ k Householder
vectors. Thus, the column permutation matrix has the k selected columns moved to the leading
position. To evaluate the impact on the performance, we compare dgekqp3 with dgeqp3 from
MKL. We take as example parabolic_fem with 32 processors and present the runtimes in Table
4.11. dgeqp3 factors Ai in 500 seconds, compared to dgekqp3 which needs less than 100 seconds.
This modification reduces the runtime by a factor 5.

Step dgekqp3 dgeqp3

91.74 413.29
Leaf 94.60 526.23

101.26 629.93

Table 4.11 – Comparison of execution times between LAPACK and MKL. Data is parabolic_fem
matrix on 32 processors using a full computation on the leaves.

4.3 Conclusion
In this chapter, we have presented the LU factorization with Column Row Tournament Pivoting,
denoted LU-CRTP, a new method that computes a sparse low-rank approximation of a matrix A,
and returns an approximation of its singular values. Based on a truncated LU factorization, this
method proceeds by block and selects k columns at each iteration by using the QR factorization
with Tournament Pivoting (QRTP). These k columns are factored and used to update the trailing
matrix until the condition on the low-rank approximation is satisfied. By condition, we mean
that either the rank K of A or a tolerance on the low-rank is requested. To validate the method,
we have done extensive tests that reveal the stability of LU-CRTP. First, we have compared
LU-CRTP with the QR factorization with Column Pivoting (QRCP) and the Singular Value
Decomposition (SVD). The singular values returned by LU-CRTP are close to those of QRCP,
and never reach two orders of magnitude compared to the SVD. Experimental results have shown
that the factors L and U are up to 200 times sparser than the factors Q and R of QRCP. Our
parallel implementation of QRTP have shown a good scalability of QRTP, tested up to 2048 cores.
The performance of QRTP is strongly related to the performance of the sparse QR factorization.
Therefore, having an efficient truncated sparse QR factorization with Column Pivoting would
give much better performance of QRTP, and so on LU-CRTP.
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In the last chapter, we were interested in computing the rank-k approximation of a matrix
A ∈ Rm×n. This type of problem is named fixed-rank problem. Along with it, the fixed-
precision problem exists. It aims to compute a low-rank approximation of a matrix A such
that its approximation is less than a tolerance. For example, in the case of rank revealing
factorizations, the tolerance is set to the precision machine, i.e., ε. Revealing the rank of A
can be performed by using the Singular Value Decomposition of A. However, the computation
of the Singular Value Decomposition of A is known to be costly both in terms of memory
consumption and computation cost. Cheaper approaches are used to estimate the rank of A,
and to approximate the singular values of A. The randomized algorithms aim to reduce the size
of the problem by a projection of A onto an orthogonal basis, formed by random columns. The
smaller matrix can then be decomposed using the Singular Value Decomposition. Alternatively,
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the Communication Avoiding Rank Revealing QR factorization (CARRQR), presented in (J.
Demmel, Grigori, Gu, et al., 2013), approximates well the singular values of A, and addresses at
the same time the problem of communication encountered with parallel architectures. Yet, the
factors of the QR factorization of A are expected to be dense, and even denser than the factors of
the LU decomposition. Therefore, the LU factorization with Column Row Tournament Pivoting,
presented in Chapter 4 and introduced in (Grigori, Cayrols, et al., 2018), is a good alternative
to CARRQR. Both algorithms are block algorithms where k pivots are chosen such that the
singular values of A are well approximated. The selection of the pivots is performed by the QR
factorization with Tournament Pivoting, a divide and conquer algorithm. The costly part of both
algorithms is thus the update of the trailing matrix, as in block algorithms, and the selection of
the pivots at each iteration.

In this chapter, we focus on fixed-precision problems. We propose to detect the subset of k
columns of A, denoted A1, whose smallest singular value is close to the k-th singular value of
A. These columns do not bring new information and should not be taken into account. We thus
propose to modify the QR factorization with Tournament Pivoting so that these columns are
detected. We will show that our modification has a small overhead (O(k) FLOPS), where k is a
small integer, generally smaller than 100. In addition, we propose a modification of CARRQR
and LU-CRTP to save computation. The organization of the chapter is the following. After the
introduction of some notations, we present how to use the properties of the QR factorization
with Column Pivoting to discard some columns of A, and the integration in the QR factorization
with Tournament Pivoting. In Section 5.4, we present the theoretical bounds which validate the
action of discarding columns of A. In Section 5.5, experimental results will show the accuracy
of the modified LU-CRTP and CARRQR to approximate the singular values of A. Moreover,
the results present the gain of using the modified version of the tournament. Finally, we choose
several different tolerance values and compare the obtained low-rank approximation with the
theoretical bounds.

5.1 Notations

Given a matrix A ∈ Rm×n, ai,j represents the element of A at row i and column j, with
i ∈ {1, . . . , m} and j ∈ {1, . . . , n}, and nnz(A) represents the number of nonzeros of the matrix
A. Using MATLAB notation, A(:, j) and A(i, :) represent the j-th column and i-th row of A,
respectively. Given a vector e of size n, e(i) is the i-th entry of the vector. The concatenation
of two vectors e1 and e2 of size n1 and n2, respectively, gives another vector e = [e1; e2] of size
n1 +n2. The notation A(e1, e2) represents the matrix obtained after the permutation of the rows
of A using e1 and the permutation of the columns of A using e2. If the size of a permutation vector
is smaller than the size of the matrix to permute, then the vector also extracts the corresponding
rows or columns to permute. The max norm is defined as ‖A‖max = maxi,j |ai,j |. We refer to
the 2-norm of the j-th row of A as ρj(A), the 2-norm of the j-th column of A as χj(A), and the
2-norm of the j-th row of A−1 as ωj(A).

A k-ary tree is a rooted tree where each node has at most k children. A reduction tree aims
at applying a reduction operation from the leaves to the root of the tree. A reduction operation
generally reduces the size of a set of data. For example, the computation of the sum of all
elements in an array of size n can be performed by using a reduction tree. The array is split into
p chunks of size n/p. Let T be a k-ary tree, and sum be a reduction operation. Each leaf of T is
set up with a chunk of the array, and the reduction operation is applied on the elements of the
chunk to obtain the local sum. Each node stores the local sum of its children and then, applies
the reduction operation. This reduction tree ends when the root computes the last local sum,
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which is the sum of all elements in the original array. Therefore, the reduction tree performs
n − 1 operations in logk(p) steps. Throughout the chapter, we assume for simplicity that the
number of columns of A is a multiple of k, and we limit our study to the special case of binary
reduction tree. In that context, the matrix A is split into n/(2k) subsets of columns so that
A = [A0,0, A1,0, A2,0, . . . , An/(2k)−1,0], and Ai,0 ∈ Rm×2k with 0 ≤ i < n/(2k). The second
subscript 0 refers to the level in the reduction tree. The picture below is taken from (Grigori,
Cayrols, et al., 2018), and represents the binary reduction tree of a matrix A which is partitioned
into 4 subsets, and where a reduction operation f is applied on each subset and then on each
node of the tree.

A0,0 A2,0A1,0 A3,0

f (A1,0) f (A2,0) f (A3,0)

f (A0,1) f (A1,1)

f (A0,0)

f (A0,2)

5.2 Reducing the cost of tournament pivoting

In (J. Demmel, Grigori, Gu, et al., 2013), the authors present the QR factorization with Tour-
nament Pivoting algorithm, denoted QRTP. Using a reduction tree, the algorithm selects the k
linearly independent columns of a matrix A ∈ Rm×n, and returns a column permutation matrix
Π that permutes the selected columns to the leading positions of A. The algorithm proceeds
as follows. The input matrix A is split into n/(2k) subsets of columns. From each subset, the
algorithm selects k columns by using (strong) Rank Revealing QR factorization. At each node of
the tree, the selected k columns of the children of the node are adjoint next to each other. Then,
the algorithm selects again k columns from the formed matrix by using (strong) Rank Revealing
QR factorization. At the root of the tree, the selected k columns are permuted to the leading
positions of A. As shown in Chapter 4 and in (J. Demmel, Grigori, and Cayrols, 2016), this
algorithm is used as a subroutine in LU-CRTP to find the k columns that approximate well the
first k singular values of A, but also to get a better stability of the truncated LU factorization.
QR factorization with Tournament Pivoting is also used in the Communication Avoiding variant
of the Rank Revealing QR factorization, denoted CARRQR, introduced in (J. Demmel, Grigori,
Gu, et al., 2013). CARRQR algorithm calls the QR factorization with Tournament Pivoting on
a matrix A, and permutes the selected k columns to the leading positions of A. Then, it factors
the first k columns of the permuted A by using the QR factorization. If the rank is not revealed,
the trailing matrix is updated as in block QR algorithm (G. H. Golub et al., 2013), and the
updated trailing matrix is used as input for the next iteration. In both CARRQR and LU-CRTP
algorithms, the runtime is mainly dominated by the call to QRTP algorithm and by the update
of the trailing matrix.

For the purpose of the chapter, we introduce the notion of a τ_rank matrix, and present the
implication for the columns of a τ_rank matrix A.

Definition 27. A matrix A ∈ Rm×n is a τ_rank matrix if

σk(A) > µ ≥ σk+1(A), (5.1)

where µ = τ‖A‖2, and 1 ≤ k < n.
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Hence, the τ_rank of A is equal to k, also noted τ_rank(A) = k.

We want to partition A into two subsets of columns so that the smallest singular value of
the first subset A1 formed by k columns of A is close to σk of A. As a consequence, we refer
to the remaining columns of A, denoted A2, as the discarded columns of A with respect to our
τ_rank criterion. Note that, considering τ = 0, the matrix A is rank deficient with a rank k
if σk(A) > 0 = σk+1(A). In the following, we consider a τ_rank matrix (or a rank deficient
matrix) A ∈ Rm×n, and we focus on how to detect the subset A1 of columns of A.

5.2.1 Formulation with the QR factorization with Column Pivoting

Given a matrix A ∈ Rm×n, with m ≥ n, we consider the QR factorization with Column Pivoting
of the form

AΠ = QR = Q

[
R11 R12

R22

]
, (5.2)

where Q ∈ Rm×m is orthogonal, R11 ∈ Rk×k is an upper triangular matrix, R12 ∈ Rk×(n−k),
R22 ∈ R(m−k)×(n−k), and Π is a column permutation matrix chosen such that it reveals the linear
dependent columns of A (Gu and Eisenstat, 1996). Note that this factorization is considered
as partial if R22 is not upper triangular. However, the factorization (5.2) is named the Rank
Revealing QR factorization, denoted RRQR, if it verifies

σmin(R11) ≥ σk(A)

p(k, n)
and σmax(R22) ≤ σk+1(A)p(k, n), (5.3)

where p(k, n) is a low-degree polynomial in k and n.
The Householder QR factorization of a matrix A ∈ Rm×n, presented in (G. H. Golub et al.,

2013), proceeds as follow. Considering one iteration of the algorithm, it computes PA(:, 1) =
∓‖A(:, 1)‖2e1, and then updates the trailing matrix A(:, 2 : n), where P = (I − βvv>) is a
Householder reflection, with β = 2

v>v
, and v is the Householder vector. Thus, the k-th diagonal

element of R in Equation (5.2) is equal to the norm of the first column of the k-th trailing
matrix AΠ(k : m, k : n). The column permutation matrix Π returned by the QR factorization
with Column Pivoting is built such that the column with the largest norm is moved to the
leading position of the trailing matrix, and so the diagonal elements of R in absolute value in
Equation (5.2) are decreasing. Let A ∈ Rm×n be a rank deficient matrix, factored by using
the QR factorization with Column Pivoting, as in Equation (5.2). If rk,k > 0 = rk+1,k+1, with
1 ≤ k < n, then the (k + 1)-th corresponding column of AΠ is a linear combination of the first
k columns of AΠ. Furthermore, the n− k last columns of AΠ are linearly dependent to the first
k columns of AΠ. Therefore, σmax(R22) = 0 and the rank of A is equal to k.

Now, let A ∈ Rm×n be a τ_rank matrix as in Definition 27, factored by using the QR
factorization with Column Pivoting, as in Equation (5.2).

Lemma 28. Suppose a threshold µ and a matrix A ∈ Rm×n factored using QR factorization
with Column Pivoting as follows

AΠ = Q

[
R11 R12

R22

]
, (5.4)

where R11 ∈ Rk×k and R22 ∈ R(n−k)×(n−k). If we have

σmin(R11) ≥ µ and σmax(R22) ≤ µ, (5.5)
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then A has a τ_rank equal to k.

Proof. Using the interlacing property of the singular values (G. H. Golub et al., 2013), the QRCP
factorization of A satisfies

σi(R11) ≤ σi(A), σk+j(A) ≤ σj(R22), (5.6)

for 1 ≤ i ≤ k and 1 ≤ j ≤ n− k. Especially, if i = k and j = 1, we have

σmin(R11) ≤ σk(A), σk+1(A) ≤ σmax(R22). (5.7)

If there exists a threshold µ such that µ < σmin(R11) and σmax(R22) ≤ µ, then A has a τ_rank
equal to k.

It follows that AΠ, from Equation (5.4), can be split into two panels A1 = Q

[
R11

]
, A1 ∈

Rm×k and A2 = Q

[
R12

R22

]
, A2 ∈ Rm×n−k. Therefore, the QR factorization with Column Pivoting

can be used to detect the columns of A that are of interest for our purpose. In (G. Golub et
al., 1976), Golub et al. compare the Singular Value Decomposition with the QR factorization
with Column Pivoting. Both approaches are able to extract independent columns of a matrix
A ∈ Rm×n. Also, the diagonal elements of the R factor in Equation (5.4) can be used as a
cheaper approach to detect the independent columns of A. This observation allows us to replace
the Singular Value Decomposition of the R factor by its QR factorization with Column Pivoting.
Although, our theory is based on the strong Rank Revealing QR factorization, in practice, we
use the QR factorization with Column Pivoting.

5.3 Application to the QR factorization with Tournament
Pivoting

For large matrices, both the Singular Value Decomposition and the QR factorization with Col-
umn Pivoting become costly to select b linearly independent columns from A. Instead, the QR
factorization with Tournament Pivoting (QRTP), designed to identify b pivots, i.e., b linearly
independent columns, is communication optimal and can be easily parallelized. In QRTP algo-
rithm, if the input matrix A ∈ Rm×n is rank deficient with a rank k, the last n − k columns of
AΠ that are linearly dependent to the first k columns of AΠ are kept in the procedure. They are
updated during the update of the trailing matrix, and reused in the next call of the tournament
pivoting, in both LU-CRTP and CARRQR. In case of fixed precision problems, we consider a
matrix A as a τ_rank matrix in the sense of Definition 27. By fixed precision, we mean that the
error of the approximation is smaller than a fixed value. The fixed precision is usually a relative
tolerance that we refer hereafter to as τ . Suppose its actual rank is k, the number of columns
that are of interest is smaller than k. The detection of these columns can save computation if
the cost to detect them is smaller than the gain obtained from removing them during the com-
putation of the low-rank approximation of A. We propose in Algorithm 5.1 a modification of the
QR factorization with Tournament Pivoting algorithm which identifies columns of A to discard
with respect to our τ_rank criterion. At each node of the tree, the modified algorithm splits
the columns of the node such that the interesting columns are kept in the procedure whereas
the remaining columns of the node are discarded from the procedure. We further show that
the modification proposed here does not lead to significant overhead in terms of computation
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whereas it can drastically reduce the cost of the QR factorization with Tournament Pivoting,
and the cost of the update of the trailing matrix. Moreover, this modification does not involve
extra memory consumption.
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k < τ_rank < 2k

τ_rank ≤ k

Ai,j ∈ Rm×2k

Ai,j is not τ_rank

(K) Columns kept
(S) Selected columns for the next level

(R) Discarded columns of Ai,j with respect to our τ_rank criterion

Ai,jΠi,j = or or

Figure 5.1 – Splitting of the columns of Ai,j ∈ Rm×2k into at most 3 subsets, where Ai,j is the i-th
node of the j-th level of the tree. The first subset, in blue, contains the selected columns of Ai,j for
the next level of the tree. The second subset, in cyan, contains the remaining columns of Ai,j that are
of interest. The remaining columns, in hashed light blue, are discarded with respect to our τ_rank
criterion.

Our modification of QRTP algorithm corresponds to post-processing Ri,j = Q>i,jAi,jΠi,j , that
is obtained by the QR factorization with Column Pivoting of Ai,j in the reduction tree, that
is the i-th node of the j-th level of the tree. We determine whether Ai,j is a τ_rank matrix
as in Definition 27, by using the singular values of Ri,j . The columns of Ai,j are split as in
the original algorithm, that is the first k columns of Ai,jΠi,j are passed to the next level of the
tree. Otherwise, the returned τ_rank = r of Ai,j is used to split the columns of Ai,jΠi,j into
two subsets. The first subset contains the r columns that are of interest. The second subset
contains the (2k − r) remaining columns of Ai,jΠi,j , that are discarded, with respect to our
τ_rank criterion. Only the first subset of columns is of interest for the purpose of the algorithm,
and the second subset should be discarded. Thus, removing the columns of the second subset
saves computation. At each level of the reduction tree, the original algorithm selects k linearly
independent columns from Ai,j to be used in the next level of the tree. When r is larger than k,
the first subset is again split into two parts. The first part contains the first k columns that are
the most linearly independent columns of Ai,j . The second part contains the remaining r − k
columns. However, if the τ_rank is smaller than k, our modification of the original algorithm
selects only the first r columns of Ai,jΠi,j that are then used in the next level of the tree.
Therefore, the columns of Ai,j are split at most into 3 subsets. All of these cases are summarized
in Figure 5.1. Note that, in practice, the (strong) Rank Revealing QR factorization is replaced
by the QRCP algorithm as in the QRTP algorithm presented in (J. W. Demmel, Grigori, Gu,
et al., 2015). The experimental results will show that the usage of QRCP is sufficient for the
purpose of this chapter.
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The QR factorization with Column Pivoting can fail to isolate independent columns when the
Singular Value Decomposition does. However, as discussed in (G. Golub et al., 1976), this case
is an unusual phenomenon. Hence, we choose to use the diagonal elements of Ri,j to split the
columns of Ai,j . This choice reduces the cost of the modification, even if the cost to compute the
Singular Value Decomposition of Ri,j could be negligible, with respect to the size of Ri,j (which
is expected to be small). This modification of QRTP algorithm involves O(k) extra Flops for
both the test and the splitting. Algorithm 5.1 presents QRTP_reduction, our modified version
of QRTP, where some columns of a matrix A ∈ Rm×n are discarded, with respect to our τ_rank
criterion, at each node of the tree are removed. We consider, for simplicity, that the number of
columns of A is a multiple of k. The algorithm takes as input a matrix A ∈ Rm×n, a panel size k,
which is also the upper bound on the number of columns to select at each node, and a tolerance
τ , usually smaller than 1. Since a column of A is not compared to all the others, the modification
of the QR factorization with Tournament Pivoting fails to reveal the exact τ_rank of A. Hence,
the algorithm returns an overestimation of the τ_rank of A, and perm the column permutation
vector that moves at most k columns of A to its leading positions. Compared to the original
algorithm, we introduce two modifications, the first is located from lines 11 to 15, and the second
is located at line 26. The first modification aims to determine the τ_rank of Ai,j so that columns
are split in at most 3 subsets. The second modification changes the construction of the column
permutation vector of A. Thus, to select at most k columns of A, the matrix is split into n/(2k)
subsets of columns. Each submatrix Ai,0 has a size m × 2k. The column index array, denoted
colInd, stores the indices of the columns of A which are either selected from the previous level
or all columns of A, that is {1, . . . , n}. At level j of the tree, the QR factorization with Column
Pivoting is applied on Ai,j = A(:, panelInd), where panelInd is the i-th subset of 2k indices
of colInd. When j ≥ 1, colInd is the concatenation of the selected columns from the level
j − 1 of the tree. The factorization of Ai,j computes Ai,j(:, e) = Qi,jRi,j , and returns the upper
triangular factor Ri,j of size 2k×2k, and the vector e of size 2k. e is a column permutation vector

so that Πi,j =

[
I2k×2k(:, e)

0

]
is the column permutation matrix. Hence, the array panelInd is

permuted with e. To split the columns of Ai,j , we apply the threshold µ = τ‖A‖2 on the diagonal
elements of Ri,j (line 11) to get the τ_rank of Ai,j (line 11). As discussed above, the columns
of Ai,j are therefore split at most into 3 subsets. The first subset is added into S that contains
the indices of the columns that are selected for the next level. The second subset is added into K
that records the indices of the columns which are potentially interesting, and not already in the
first subset. The last subset is added into R that saves the indices of the remaining columns of
A that are neither in S nor in K. If the τ_rank of Ai,j is smaller than 2k, then the last 2k − r
columns of Ai,j(:, e) are added into R. In addition, the first b = min(k, τ_rank) columns are
added into S, for the next level of the tree, and the (τ_rank − b) remaining columns are added
into K, if (τ_rank− b) > 0. At the end of the while loop, the indices in S overwrite the content
of the array colInd, and then S is reset to an empty set at the beginning of the next iteration.
The algorithm returns n − |R|, an estimation of the τ_rank of A, where n is the number of
columns of A, and |R| is the number of discarded columns with respect to our τ_rank criterion.

Algorithm 5.1 is designed for dense matrices. However, a single modification allows us to
apply it on sparse matrices. Line 9, the submatrix Ai,j is factored using QRCP algorithm. Since
Ai,j is of dimension m × 2k, with m � k, its dense representation may not fit in memory. For
sparse matrices, the call to QRCP is thus replaced by two consecutive calls. First, the QR
factorization of the sparse matrix Ai,j is computed, which returns the sparse upper triangular
factor, denoted Ri,j . Then, QRCP algorithm is called on the dense representation of Ri,j . Since
the QR factorization conserves the norms of the columns, the resulted Ri,j is the same as the
upper triangular factor returned by QRCP applied on the dense representation of Ai,j . Therefore,
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with this approach only the dense representation of Ri,j has to be stored, of size 2k × 2k.

Algorithm 5.1 QRTP_reduction (A, k, µ)
This function returns an overestimation of the τ_rank of A, and a column permutation
vector that permutes the k most linearly independent columns of A to the leading posi-
tions.
Input: A the matrix of dimension m× n,

k the largest number of columns to select from A,
µ the threshold used to discard columns of A

1: nsubset = ceil(n/(2k))
2: K = {∅}, R = {∅}
3: colInd = {1 : n}
4: j = 0
5: while nsubset > 1 do
6: S = {∅}
7: for i = 1 to (nsubset− nsubset%2), step = 2 do
8: panelInd = colInd(1 + (i− 1)k : (i+ 1)k)
9: [ ˜ , Ri,j , e] = QRCP (A(:, panelInd))

10: panelInd = panelInd(:, e)
11: τ_rank = arg max

i
(|rii| > µ) /*where R = (rij)1≤i,j≤n*/

12: b = min(τ_rank, k)
13: S = [S, panelInd(1 : b)]
14: K = [K, panelInd(b+ 1 : τ_rank)]
15: R = [R, panelInd(τ_rank + 1 : 2k)]
16: end for
17: if nsubset%2 = 1 then
18: colInd = [S, colInd(1 + (nsubset− 1) ∗ k : n))]
19: else
20: colInd = S
21: end if
22: n = |colInd|
23: nsubset = ceil(n/(2k))
24: j = j + 1
25: end while
26: perm = S ∪ K ∪R
Output: perm the vector of column indices where the k most linearly independent columns of A are

on leading position,
n− |R| the estimation of the τ_rank of A

5.3.1 Computing a good threshold to detect the columns to discard

We now discuss the threshold µ used to detect the τ_rank of a matrix. In practice, to reveal the
rank of a deficient matrix, a standard threshold is ε‖A‖2, where ε is the precision machine. For
computing a low-rank approximation, the threshold can be set up to 1e − 3‖A‖2, for example.
In both cases, the threshold is relative to the 2-norm of A. From Equation (5.4), the error of the
low-rank approximation of a matrix A is given by

‖A−Q
[
R11 R12

]
‖2 = ‖R22‖2 ≤ τ‖A‖2, (5.8)

where τ is a tolerance. In the previous examples, τ is either ε or 1e − 3. In Algorithm 5.1, the
threshold µ is provided as input and is defined as µ = τ‖A‖2. The computation of the 2-norm
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of A using the Singular Value Decomposition is known to be costly. However, this norm can be
approximated. We present, in the following, one approach to approximate the 2-norm of A, and
we discuss the impact on the algorithm.
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Figure 5.2 – Comparison of the number of columns of a matrix A ∈ R430×430 that are of interest,
using different thresholds. A is the matrix Sandia/oscil_dcop_17, and comes from the San Jose State
University database. The spectrum of A, represented by blue crosses, is cut by three vertical lines. The
blue line represents the number of singular values of A larger than µ = τ‖A‖2, where σi > τ‖A‖2 > σi+1.
The red and green lines represent the case µ̂ = 10τ‖A‖2 and µ̂ = 10−2τ‖A‖2, respectively.

The QR factorization with Column Pivoting algorithm applied on A starts by computing the
maximum column 2-norm of A. Precisely, the absolute value of the first diagonal element of
the R factor is equal to max1≤i≤n χi(A). Moreover, Demmel et al. have shown in (J. Demmel,
Grigori, Gu, et al., 2013) that CARRQR approximates the singular values of A with a maximum
error of one order of magnitude, and a minimum error of two orders of magnitude. Thus, the
ratio of the maximum column 2-norm of A with respect to the 2-norm of A is at most equal to
10. Although the cost of the Singular Value Decomposition of A ∈ Rm×2k is 8m2k− 32k3/3, the
cost of this approximation is 2m2k. Hence, we propose a first approximation of the 2-norm of
A that computes the largest 2-norm of the columns of A. This approximation may impact the
number of columns discarded with respect to our τ_rank criterion. Consider the threshold µ
and its approximated threshold µ̂ using the maximum column 2-norm such that

10−2τ‖A‖2 ≤ µ̂ ≤ 10τ‖A‖2 (5.9)

If µ̂ = 10τ‖A‖2, then the τ_rank computed at line 11 in Algorithm 5.1 is smaller than the real
τ_rank, and so the number of discarded columns increases. As a consequence, some columns
are discarded, whereas they should not be. Therefore, the error of the low-rank approximation
is larger than requested. If µ̂ = 10−2τ‖A‖2, then the number of kept columns increases. This
estimation of the threshold µ̂ leads to more computation, but it does not degrade the low-rank
approximation. Figure 5.2 illustrates the impact of using an approximation of the 2-norm of
A in our algorithm. The figure displays the spectrum of the matrix Sandia/oscil_dcop_17
of size 430 × 430, coming from the San Jose State University database (Foster, 2017). We set
the tolerance τ = 1e − 8 so that 10−10 ≤ µ̂/‖A‖2 ≤ 10−7. Using the exact 2-norm of A in
Algorithm 5.1 leads to having τ_rank = 344, whereas using 10τ‖A‖2 or 10−2τ‖A‖2 leads to
a τ_rank equal to 313 or 400, respectively. In the worst case, we count 31 missing columns
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of A, and so that the low-rank approximation is one order of magnitude larger in this example
(σ313 = 0.2217, σ344 = 0.0204). When the 2-norm of A is underestimated, 400 columns are kept
in the algorithm. In fact, 56 columns out of 400 are not of interest. Therefore, the extra 56
columns yield to more computation and so the gain obtained by using an underestimated 2-norm
of A is not maximal.

In the parallel case, A is distributed over p processors so that the local part of A is of
dimension m×n/p. The computation of the maximum column 2-norm of A involves a reduction
operation over processors, and a broadcast of the result. A variant of our approximation considers
the parallel case and computes locally the maximum column 2-norm. Each processor uses this
(under)estimated maximum column 2-norm to compute µ. Since an underestimation of the 2-
norm of A decreases µ̂, and so increases the amount of computation, the local maximum 2-norm
should be updated through the tree. The update of the approximation is performed by computing
the maximum column 2-norm of the received columns and comparing with the current value.
Using a butterfly communication scheme, processors exchange all selected columns so that all
processors have the same selected columns of A without extra communication. At the final level
of the tree, the first diagonal element of the final upper triangular factor corresponds to the
largest norm over all columns of A. This value is then used when the QR factorization with
Tournament Pivoting is recalled on the trailing matrix as in LU-CRTP or CARRQR. However,
experimental results will show that the update of the approximated 2-norm of A through the
tree is not required in practice.

5.3.2 Saving computation

The purpose of the modification of QRTP algorithm is to save unnecessary operations. To do
so, we introduce a comparison step, line 11, to detect the τ_rank of Ai,j . The test leads to
selecting the columns that are added to the subset R. In the following, we show that discarding
these columns saves operations in both the update of the trailing matrix and a next call of
QRTP_reduction algorithm.

Consider a matrix A ∈ Rm×n split into 4 subsets of columns, as in Figure 5.3, and the
application of QRTP_reduction on A to select k columns of A. Suppose a tolerance τ , and
a threshold µ used as input for QRTP_reduction. Figure 5.3 illustrates the application of
QRTP_reduction algorithm on A. We discuss the impact of the τ_rank through the tree. In
the figure, the blue rectangle represents the columns of A selected for the next level of the tree,
i.e., the indices of these columns are in colInd in Algorithm 5.1. The cyan rectangle contains
the columns of A that are added into K, whereas the hashed rectangle contains the columns of A
that are discarded, with respect to our τ_rank criterion. The first subset of columns of A0,0 has
a τ_rank equal to k. The columns of the hashed rectangle do not need to be kept in the process.
It means that these columns should not be updated during the update of the trailing matrix.
We observe that all the columns of A0,1 are linearly independent. These non-selected columns
can potentially be selected during a further call of QRTP_reduction. Although k columns are
selected from A0,2, A0,3 has a τ_rank smaller than k. It follows that A1,1 is formed by the
concatenation of the selected k columns from A0,2 with the selected columns from A0,3. The
factorization of A1,1 is thus cheaper. Finally, the columns represented by the cyan rectangles
need to be further updated, and the columns from the hashed rectangles represent the columns
that are not updated and this leads to saving computation.
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(K) Columns kept
(R) Discarded columns of A with respect to our τ_rank criterion

(S) Selected columns for the next level

A =

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1

A2,0

Figure 5.3 – Selection of k columns of A using QRTP_reduction Algorithm based on a binary reduction
tree. The matrix A is split into 8 column panels. At each node, QRCP is applied, and the columns,
represented by a hashed rectangle, are discarded, with respect to our τ_rank criterion. The selected
columns, displayed by blue rectangles, form the array colInd of the next level. The remaining columns,
shown in cyan rectangles, are added to the subset K.

The first gain of our modification comes from the reduction of the size of S, compared to
the original algorithm. Compared to the original version where at each node, strictly k columns
are selected from Ai,j for the next level, here only min(τ_rank(Ai,j), k) columns are selected.
The number of columns that participate in the tournament can be divided by more than two
between two levels of the tree, and so the structure of the tree must be adapted in consequence.
An adaptive tree presents some interests. Mainly, it is expected to reduce the number of nodes
of the tree, and even the number of levels. Since the cost of the QRTP_reduction algorithm is
related to the number of columns factored, we consider here the difference between the number
of columns at a level j of the tree between the original algorithm and the modified algorithm.
Therefore, the amount of saved computation is proportional to the number of columns removed.
That is,

nsubsetj∑
i=0

k −min(τ_rank(Ai,j), k), (5.10)

where 0 ≤ j < log(n/(2k)).
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k
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Discarded columns of A with respect to our τ_rank criterion

A=

Figure 5.4 – Example of execution of a block algorithm, where QRTP_reduction is used to find the
pivot columns at each iteration of the algorithm. The i’th call to QRTP_reduction returns the set Si of
size k and the discarded columns with respect to our τ_rank criterion, in cyan. Therefore, the update
of the trailing matrix is not performed on the colored part of the trailing matrix.

Furthermore, the action of removing the columns of A, with respect to our τ_rank criterion,
has an impact on the cost of updating the trailing matrix. Usually, updating the trailing matrix
in a block algorithm dominates the cost. Figure 5.4 shows an example of the detected linear
columns of A by QRTP_reduction, at each iteration of the block algorithm. For example, the
update of the first trailing matrix is classically performed on n− k columns of A, the estimated
τ_rank returned by QRTP_reduction allows us to update only τ_rank − k columns of the
trailing matrix.

Algorithm 5.2 LU-CRTP_adaptive (A, k, τ)
This function computes the LU decomposition of the low-rank approximation of A, and returns an approximation
of the singular values of A.
Input: A the matrix to factor, of dimension m× n,

k the column panel size
1: Compute µ using either τ‖A‖2, or an approximation of the 2-norm of A times τ
2: while τ_rank > k do
3: [e, τ_rank] = QRTP_reduction(A, k, µ)
4: A = A(:, e(1 : τ_rank))
5: Do the same treatment as in the original LU-CRTP algorithm
6: end while

Output: L,U, P,E, and asv the same returned data as in the original LU-CRTP excepted for U and E which
are of size m× τ_rank(A),

To illustrate the usage of QRTP_reduction, we present two algorithms, Algorithm 5.2 is a
modification of LU-CRTP algorithm, and Algorithm 5.3 is a modified version of CARRQR algo-
rithm. Since the modifications of LU-CRTP are equivalent as well as the explanations, we focus
on Algorithm 5.2. However, the description is easily applied to Algorithm 5.3. Algorithm 5.2,
named LU-CRTP_adaptive, replaces QRTP algorithm by QRTP_reduction algorithm. Along
with this replacement, we add line 1 the computation of µ, and line 4 where we discard the
columns of A. Firstly, the threshold µ is computed using either the 2-norm of A or an ap-
proximation of it, as discussed in 5.3.1. At the end of each iteration, the τ_rank returned by
QRTP_reduction is used to check whether there are columns in A to discard. Secondly, in line
4, the columns of A are truncated according to τ_rank. In the worst case, the number of current
columns of A does not decrease. However, for τ_rank matrices, we save computation during the
update of the trailing matrix, since its size decreases from R(m−k)×(n−k) to R(m−k)×(τ_rank−k).
Since the update for LU-CRTP is a matrix matrix multiplication and a matrix sum, the Flops
saved by the first call to QRTP_reduction are equal to m × (n − τ_rank) × (n + 1), where
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n− τ_rank is the number of discarded columns.

Algorithm 5.3 CARRQR_adaptive (A, k, τ)
This function computes the QR factorization of the low-rank approximation of A, and returns an approximation
of the singular values of A.
Input: A the matrix to factor, of dimension m× n,

k the column panel size
1: Computing µ using either τ‖A‖2, or an approximation of the 2-norm of A times τ
2: while τ_rank > k do
3: [e, τ_rank] = QRTP_reduction(A, k, µ)
4: A = A(:, e(1 : τ_rank))
5: Do the same treatment as in the original CARRQR algorithm
6: end while

Output: Q,R, P,E, and asv the same returned data as in the original CARRQR excepted for R and E which
are of size m× τ_rank(A),

5.4 Theoretical bounds
In this section, we present theoretical bounds obtained by applying the threshold µ on the singular
values of Ri,j factor for selecting at most k columns of a matrix A. We recall that the 2-norm
of the j-th column of A is given by γj(A), and the 2-norm of the j-th row of A−1 corresponds to
ωj(A). We also recall in Theorem 29 the bounds of the Strong Rank Revealing QR factorization.

Theorem 29. (Gu and Eisenstat (Gu and Eisenstat, 1996)) Let A be an m× n matrix and let
1 ≤ k ≤ min(m,n). For any given parameter f > 1, there exists a permutation Π such that

AΠ = Q

[
R11 R12

R22

]
where R11 is k × k and

(R−1
11 R12)2

i,j + ω2
i (R11)γ2

j (R22) ≤ f2 (5.11)

The quantity (R−1
11 R12)2

i,j , that is in position (i, j) of the product, can be very large without an
appropriate column permutation. Therefore, in the case of a strong rank revealing factorization
Equation (5.11) bounds (R−1

11 R12)i,j by a constant f . In (J. Demmel, Grigori, Gu, et al., 2013), a
different bound of the Strong Rank Revealing QR factorization is derived that is used to establish
a bound for the Communication Avoiding variant of the RRQR algorithm. We recall this bound
in the following theorem.

Theorem 30. Theorem 2.4 (J. Demmel, Grigori, Gu, et al., 2013) Assume that there exists a
permutation Π for which the QR factorization

AΠ = Q

[
R11 R12

R22

]
where R11 is k × k satisfies√

γ2
j (R−1

11 R12) + (γj(R22)/σmin(R11))2 ≤ F for j = 1, ..., n− k (5.12)

Then
1 ≤ σi(A)

σi(R11)
,
σj(R22)

σk+j(A)
≤
√

1 + F 2(n− k) (5.13)
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for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m,n)− k.

Lemma 31. Assume that there exists a permutation Π for which the QR factorization

AΠ = Q

[
R11 R12

R22

]
where R11 is k × k satisfies√

γ2
j (R−1

11 R12) + (γj(R22)/σmin(R11))2 ≤ F for j = {1, . . . , n− k}. (5.14)

If there exist a µ and an integer r < k such that

σmin(R11) ≤ µ < σr(R11), (5.15)

then √
γ2
j (R−1

11 R12) + (γj(R22)/σr(R11))2 < Fµ ≤ F, (5.16)

where Fµ =
√
γ2
j (R−1

11 R12) + (γj(R22)/µ)2.

Proof. Equation (5.16) is a direct consequence of Equation (5.15).

As discussed earlier, the QR factorization with Tournament Pivoting selects k columns of a
matrix A by using tournament pivoting. This algorithm is costly for large matrices with a small
rank. Moreover, in the case of the computation of a low-rank approximation of A, the number
of columns used to approximate A is even smaller than its rank. In this section, we establish
the bound of one reduction step in QRTP_reduction, i.e., the concatenation of two subsets of
selected columns of A from the previous level in the tree. We show that the bound of Theorem
29 can be applied for the purpose of this chapter. We also show that our bound, in the worst
case, is equal to the bound presented in Lemma 2.5 of (J. Demmel, Grigori, Gu, et al., 2013)
for one step of tournament pivoting. Then, we present the bound on the upper triangular factor
R22, in Equation 5.4.

One reduction step in QRTP_reduction

Let B̃ =
[
A0,l A1,l

]
be the concatenation of A0,l and A1,l from the level l of the reduction

tree, both of size m× 2k, and τ be a tolerance. Note that the columns of A0,l+1 are part of the
columns of B̃. Assume that the goal is to detect its τ_rank such that

‖A0,l+1 −A0,j+1Π0,l+1(:, 1 : τ_rank)‖2 ≤ τ‖A0,l+1‖2.

In the following, we use the same reasoning as in (J. Demmel, Grigori, Gu, et al., 2013) and we
adapt it to τ_rank matrices. We consider that A0,l and A1,l are τ_rank matrices and their
factorization satisfies Lemma 28. For simplicity, we denote their factorization as

A0,lΠ0,l = Q0,lR0,l = Q

[
R11 R12

R22

]
, (5.17)

and

A1,lΠ1,l = Q1,lR1,l = Q̂

[
R̂11 R̂12

R̂22

]
, (5.18)
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where Π0,l and Π1,l are permutation matrices, R11 ∈ Rb×b and R̂11 ∈ Rb̂×b̂ are upper triangular
matrices, 1 ≤ b ≤ k and 1 ≤ b̂ ≤ k. We also assume that the factorization of A0,l and A1,l

satisfies

γ2
j (N) + γ2

j (R22)/σ2
min(R11) ≤ F 2, γ2

j (N̂) + γ2
j (R̂22)/σ2

min(R̂11) ≤ F̂ 2, (5.19)

where N = R−1
11 R12 and N̂ = R̂−1

11 R̂12. From Theorem 29, we can choose the same f for both
factorizations and so F = f

√
b and F̂ = f

√
b̂.

Next, we combine Q
[
R11

]
from A0,l with Q

[
R̂11

]
from A1,l into A0,l+1, that is factored

such that

A0,l+1Π0,l+1
def
=

[
Q

[
R11

]
, Q̂

[
R̂11

]]
Π0,l+1 = Q̃

[
R̃11 R̄12

R̄22

]
, (5.20)

with R̃11 ∈ Rb̃×b̃, and where

(R̃−1
11 R̄12)2

i,j + ω2
i (R̃11)γ2

j (R̄22) ≤ f2 (5.21)

for all 1 ≤ i ≤ b̃, 1 ≤ j ≤ b+ b̂− b̃. Let

Π̃ =

[
Π0,l

Π1,l

]
I

I
I

I

[Π0,l+1

I

]

be the concatenation of all previous permutations. Then we can write B̃ as

B̃Π̃ =

[
Q̃

[
R̃11 R̄12

R̄22

]
, Q

[
R12

R22

]
, Q̂

[
R̂12

R̂22

]]
(5.22)

= Q̃

[[
R̃11 R̄12

R̄22

]
, Q̃TQ

[
R12

R22

]
, Q̃T Q̂

[
R̂12

R̂22

]]
(5.23)

def
= Q̃

[
R̃11 R̃12

R̃22

]
(5.24)

In the following, we establish a bound equivalent to Equation (5.12) in Theorem 30, and
present Lemma 32, similar to Lemma 2.5 in (J. Demmel, Grigori, Gu, et al., 2013). To do so,
we need to identify R̃12 and R̃22. Note that the following equations that identify both R̃12 and
R̃22 come from (J. Demmel, Grigori, Gu, et al., 2013). We develop the following expression

Q̃TQ

[
R12

R22

]
= Q̃TQ

[
R11N
R22

]
= Q̃TQ

[
R11N

]
+ Q̃TQ

[
R22

]
. (5.25)

We next express the components of Q
[
R11

]
permuted by the factorization (5.20) such that

Q

[
R11

]
= Q̃

[
R̃11N
C

]
, (5.26)
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where N ∈ Rb̃×b and C ∈ R(m−b̃)×b. The construction of N and C is directly related to the

construction of the factorization (5.20). For each column t of Q
[
R11

]
corresponds to a column

s of the resulted factorization. Thus for each column t (1 ≤ t ≤ b), if s ≤ b̃ then C(:, t) = 0 and
N (:, t) = es, else
C(:, t) = R̄22(:, s− b̃) and N (:, t) = R̃−1

11 R̄12(:, s− b̃), where es is a canonical vector. This leads to

(N 2)i,j + ω2
i (R̃11)γ2

j (C) ≤ f2, (5.27)

for 1 ≤ i ≤ b̃, and 1 ≤ j ≤ b.
We also introduce the notation

Q̃TQ

[
R22

]
def
=

[
C1

C2

]
which allows us to rewrite (5.25) such as

Q̃TQ

[
R12

R22

]
=

[
R̃11N
C

]
N + Q̃TQ

[
R22

]
=

[
R̃11(NN + R̃−1

11 C1)
CN + C2

]
(5.28)

Similarly, we can define N̂ , Ĉ, N̂ , Ĉ1 and Ĉ2 and get

Q̃T Q̂

[
R̂12

R̂22

]
=

[
R̃11N̂
Ĉ

]
N̂ + Q̃T Q̂

[
R̂22

]
=

[
R̃11(N̂ N̂ + R̃−1

11 Ĉ1)

ĈN̂ + Ĉ2

]

Finally, we can regroup these terms to identify R̃12 and R̃22

R̃12 =
[
R̄12 R̃11(NN + R̃−1

11 C1) R̃11(N̂ N̂ + R̃−1
11 Ĉ1)

]
(5.29)

R̃22 =
[
R̄22 CN + C2 ĈN̂ + Ĉ2

]
(5.30)

Now we can derive the bound for Equation (5.24) studying the three terms of

[
R̃12

R̃22

]
. First

according to Theorem 29 we have inequality (5.21). Second and third terms are similar except
for the number of columns selected, b and b̂, respectively. Therefore, it suffices to study one of
the last two terms.

We have that

γ2
j (NN + R̃−1

11 C1) + γ2
j (CN + C2)/σ2

min(R̃11) (5.31)

=γ2
j

([
NN

CN/σmin(R̃11)

]
+

[
R̃−1

11 C1

C2/σmin(R̃11)

])

≤2

(
γ2
j

([
NN

CN/σmin(R̃11)

])
+ γ2

j

([
R̃−1

11 C1

C2/σmin(R̃11)

]))

≤2

(∣∣∣∣∣∣∣∣[ N
C/σmin(R̃11)

]∣∣∣∣∣∣∣∣2
F

γ2
j (N) + γ2

j

([
C1

C2

])
/σ2

min(R̃11)

)
(5.32)
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From inequality (5.27), we have∣∣∣∣∣∣∣∣[ N
C/σmin(R̃11)

]∣∣∣∣∣∣∣∣2
F

≤ bb̃f2. (5.33)

Using Equation (5.33) in (5.32), we obtain

2

(∣∣∣∣∣∣∣∣[ N
C/σmin(R̃11)

]∣∣∣∣∣∣∣∣2
F

γ2
j (N) + γ2

j

([
C1

C2

])
/σ2

min(R̃11)

)
(5.34)

≤2bb̃f2

(
γ2
j (N) + γ2

j

([
C1

C2

])
/σ2

min(R̃11)

)
. (5.35)

Also from Equation (5.26), it follows

RT11R11 = N T R̃T11R̃11N + CTC

which implies from Theorem 3.3.16 in (Horn et al., 1986)

σ2
i (R11) ≤ σ2

i (R̃11)‖N‖22 + ‖C‖22 (5.36)

where 1 ≤ i ≤ min(b, b̃). If b ≥ b̃, we have σ2
b̃
(R11) ≥ σ2

b (R11) = σ2
min(R11) and Equation (5.36)

becomes with i = b̃

σ2
b̃
(R11) ≤ σ2

min(R̃11)‖N‖22 + ‖C‖22

σ2
min(R11) ≤ σ2

min(R̃11)

(∣∣∣∣∣∣∣∣[ N
C/σmin(R̃11)

]∣∣∣∣∣∣∣∣2
F

)
≤ bb̃f2σ2

min(R̃11) (5.37)

Using all these bounds in (5.32), the upper bound of Equation (5.31) is now

γ2
j (NN + R̃−1

11 C1) + γ2
j (CN + C2)/σmin(R̃11) ≤ 2bb̃f2(γ2

j (N) + γ2
j (R22)/σ2

min(R11))

≤ 2bb̃f2F 2

Otherwise, when b < b̃, by construction, we have σ2
min(R̃11) ≥ µ that leads to bounding Equation

(5.35) as follow.

2bb̃f2

(
γ2
j (N) + γ2

j

([
C1

C2

])
/σ2

min(R̃11)

)
, (5.38)

≤2bb̃f2

(
γ2
j (N) + γ2

j

([
C1

C2

])
/µ2

)
, (5.39)

≤2bb̃f2F 2
µ , (5.40)

where, from Lemma 31,
√
γ2
j (R−1

11 R12) + (γj(R22)/µ)2 = Fµ ≤ F .
Therefore, we have

γ2
j (NN + R̃−1

11 C1) + γ2
j (CN + C2)/σmin(R̃11) ≤ 2bb̃f2F 2. (5.41)
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Similarly, we obtain the following upper bounds concerning the third term

γ2
j (N̂ N̂ + R̃−1

11 Ĉ1) + γ2
j (ĈN̂ + Ĉ2)/σmin(R̃11) ≤ 2b̂b̃f2F̂ 2. (5.42)

All these bounds lead to the following lemma

Lemma 32. Suppose given two rank revealing QR factorizations of two matrices B and B̂ as in
(5.17) and (5.18), that reveal their τ_rank b and b̂, respectively. Suppose we perform another
rank revealing QR factorization of the concatenation of the b selected columns of B with the b̂
selected columns of B̂. Then the b̃ columns selected by this last QR factorization leads to perform
a QR factorization of B̃ = [B, B̂], as described in (5.24), that reveals the τ_rank of B̃ with the
bound √

γ2
j (R̃−1

11 R̃12) + γ2
j (R̃22)/σ2

min(R̃11) ≤
√

2b̃f max(
√
bF,
√
b̂F̂ ) (5.43)

As a consequence, Equation (5.43) is bounded by
√

2fkmax(F, F̂ ) that is the same bound
as in Lemma 2.5 in (J. Demmel, Grigori, Gu, et al., 2013). The following theorem holds in our
case where we select at most k columns from a panel.

Theorem 33. ((J. Demmel, Grigori, Gu, et al., 2013)) Let A ∈ Rm×n with m ≥ n, and assume
for simplicity that k divides n. Suppose that we do QR factorization with tournament pivoting
on A n/k times, each time selecting k columns to pivot to the left of the remaining matrix. Then
for ranks K that are multiples of k, this yields a rank revealing QR factorization of A in the
sense of Theorem 30, with

F =


(
1 +
√
k + nc1

) (
1 + 1√

2

(√
2fk

)log2(n/k)
)n/k

for binary tree,

e4
(
1 +
√
k + nc1

) (
1/
√

2
)n/k (√

2fk
)n/k(n/k+1)/2

for flat tree.

5.4.1 An upper bound on the discarded columns of A

As introduced earlier, the modifications of QRTP algorithm leads to detect the columns of a
matrix A that are of interest, and to remove the remaining columns of A from the algorithm.
In the following, we consider that the matrix A0,l+1, in Equation (5.20), is τ_rank, and we
establish an upper bound on R22 from Equation (5.4) that ensures that these remaining columns
are discarded. To do so, we start with Equation (5.30) obtained by identification

R̃22 =
[
R̄22 CN + C2 ĈN̂ + Ĉ2

]
. (5.44)

We can bound each term of Equation (5.44) as follows. The threshold µ applied on the upper
triangular factor R0,l+1 of A0,l+1 leads to

‖R̄22‖2 ≤ µ. (5.45)

Moreover, by construction we have

C(:, t) =

{
0
R̄22(:, s− b) and N = R−1

11 R12, (5.46)



5.4. Theoretical bounds 125

and by definition we have

C2 = Q̃TQ

[
R22

]
. (5.47)

Therefore, we obtain the last two bounds

‖C2‖22 ≤ ‖R22‖22 ≤ µ2. (5.48)

‖CN‖22 ≤ µ2, (5.49)

which lead to

‖CN + C2‖22 ≤ ‖C2‖22 + ‖CN‖22,
≤ µ2(F 2 + 1). (5.50)

Similarly with B̂, we have the bound

‖ĈN̂ + Ĉ2‖22 ≤ µ2(F̂ 2 + 1). (5.51)

Combining all these relations to bound R̃22, we have

‖R̃22‖22 ≤ µ2(1 + max(F 2, F̂ 2)) (5.52)

The bound (5.52) is a product of the threshold µ with a value that can be chosen to be
small enough. This theoretical bound allows us to discard some the columns with respect to our
τ_rank criterion.

Theorem 34. Let A be a matrix of dimension m × n with m ≥ n, split into n/k subsets of
columns. Consider a binary reduction tree, where the leaves are A = [A0,0, A1,0, . . . , An/k−1,0].
Suppose that we perform the strong Rank Revealing QR factorization on each node of the tree.
On each node, a threshold µ = τ‖A‖2 is applied on the Ri,j factor to select b columns, with b ≤ k,
where Ri,j is the upper triangular factor of the i-th subset of the j-th level of the tree. Let R22

be the lower right factor from the decomposition of AΠ = Q

[
R11 R12

R22

]
, where Π is the column

permutation returned at the end of the reduction tree, as in Algorithm 5.1. The norm of R22 is
bounded by

‖R22‖22 ≤ 2τ2‖A‖22Fmax, (5.53)

where Fmax is the maximum among all the F obtained during the QRTP_reduction algorithm.

Proof. The bound presented in Equation (5.52) is equivalent to splitting A into two subsets,
referred to as the basic case. Consider now A is split into four subsets, where the selected columns

from the first set are Q̃
[
R̃11

0

]
, and the selected columns from the second set are Q̃′

[
R̃′11

0

]
. Let

R be the upper triangular factor of the concatenation of the previous selected columns, so that
R is also the upper triangular factor of A, by definition. Let F and F̂ be related to the first set
and F ′ and F̂ ′ be related to the second set. Let Fmax be the maximum over all F . The only
difference with the basic case is the bound of Equation 5.48, which is rewritten using (5.52) such
that

‖C2‖22 ≤ ‖R22‖22 ≤ µ2(1 + max(F 2, F̂ 2)). (5.54)
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Therefore, from R =

[
R11 R12

R22

]
, the bound of R22 is

‖R22‖22 ≤ µ2(max(F 2, F̂ 2) + max(F ′2, F̂ ′
2
)). (5.55)

By induction, the relation (5.55) can be generalized to a larger reduction tree, and so we have

‖R22‖22 ≤ 2τ2‖Ã‖22Fmax. (5.56)

5.5 Experimental results

In this section, we study the impact of using QRTP_reduction on the approximation of the
singular values returned by LU-CRTP_adaptive. Although QRTP_reduction is expected to
reduce the number of operations, it should not degrade the performance of the method. We
make tests on a set of 261 deficient matrices coming from San Jose State University database
(Foster, 2017). For each matrix, the database provides the rank that we further use as a reference.
These challenging matrices, used in (J. Demmel, Grigori, Gu, et al., 2013) have less than 1024
rows and between 32 and 2048 columns. To obtain the matrices in MATLAB, we use

idx = SJget;
ids = find(idx.nrows <= 1024 &...

idx.ncols <= 2048 & idx.ncols > 32);
[~, i] = sort(idx.numrank(ids));
ids = ids(i);

QRTP_reduction algorithm is designed to return an estimation of the rank of the matrix.
We further study whether the returned rank is a good estimation of the real one, which is pro-
vided by the database. Experimental results will show that the first call of QRTP_reduction
in LU-CRTP_adaptive gives a significant gain when matrices have a small τ_rank (A ∈ Rm×n
and τ_rank � n). Unless it is mentioned, we approximate the norm of ‖A‖2 by using
max1≤i≤n χi(A), in the computation of the threshold µ, that is applied on the diagonal ele-
ments of Ri,j in QRTP_reduction. In addition, we focus our experiments on the impact of using
different approaches for approximating the norm of ‖A‖2.

5.5.1 Revealing the rank of a matrix A using τ = ε

We consider first the case of revealing the rank of a matrix A ∈ Rm×n, which corresponds to
setting up the tolerance to ε. In (J. Demmel, Grigori, Gu, et al., 2013), it is shown experimentally
that QRCP algorithm computes an approximation of the singular values of A with a maximum
error of one order of magnitude. As already introduced in Chapter 4, we use an intermediate
algorithm denoted by LU-CRQRCP, that uses QRCP algorithm instead of QRTP_reduction to
find the best columns at each iteration. Hence, QRCP is used as a reference, and LU-CRQRCP is
used for comparing the impact of QRTP_reduction on LU-CRTP. Thus, since QRTP_reduction
removes deficient columns of A, we compare the approximation of the singular values returned by
LU-CRTP_adaptive with QRCP and LU-CRQRCP in Figure 5.5. For each method, we compute
the ratio |Ri,i|/σi where |Ri,i| is the i’th absolute diagonal element of the R factor and σi is the
i’th singular value of the matrix A, returned by the SVD algorithm. For each matrix and each



5.5. Experimental results 127

method, we compute the average ratio, the largest and smallest ratios which are summarized
in Figure 5.5. The matrices, represented by their index, are sorted by their rank, provided
by the database. The first 231 matrices have a rank smaller than 500. The accuracy of the
approximations returned by LU-CRTP depends on the number of calls to tournament pivoting,
that is the number of columns in a panel of the block factorization. Thus, the set of matrices is
split into two groups. The first group, composed of the first 231 matrices, uses a column panel
size of 16 whereas the second group uses a column panel size of 64. In Figure 5.5, the vertical
black hashed line separates the two groups.
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Figure 5.5 – Comparison of the largest and the smallest ratios Ri,i/σi of LU-CRTP_adaptive with
LU-CRQRCP and QRCP algorithms. The vertical dotted line splits the set such that the left part uses
a panel size of 16, whereas the second part uses 64.

k Method Min Max
matrix id ratio matrix id ratio

16 QRCP 45 4.237e-02 229 7.494e+00
LU-CRQRCP 45 4.237e-02 231 4.595e+01
LU-CRTP_adaptive 45 4.237e-02 112 3.937e+01

64 QRCP 260 4.169e-02 261 8.957e+00
LU-CRQRCP 260 4.169e-02 252 4.816e+01
LU-CRTP_adaptive 260 4.169e-02 239 4.859e+01

Table 5.1 – Smallest minimum and largest maximum of the ratio |Ri,i|/σi of QRCP, LU-CRQRCP,
and LU-CRTP_adaptive, with 1 ≤ i ≤ rank(A), where rank(A) is the numerical rank provided by the
database. The 261 studied matrices are split into two groups. The first group is composed of matrix
indices 1 to 231 and uses a column panel size of k = 16. The second group, i.e., matrix indices 232 to
261, uses a column panel size of k = 64.

We observe that the three curves of LU-CRTP_adaptive are similar to the curves of LU-
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CRQRCP. The reduction of the number of columns of A, induced by QRTP_reduction during
the rank revealing factorization of A does not degrade the approximation of the singular values.
The maximum ratios of LU-CRTP_adaptive are slightly better than those of LU-CRQRCP
for the first group of matrices. Table 5.1 presents the maximum and the minimum ratios for
each method and for each group. We observe that the largest and the smallest ratios of QRCP
are the same as presented in (J. Demmel, Grigori, Gu, et al., 2013). For the first group, LU-
CRTP_adaptive has the largest ratio of 39, that is smaller than LU-CRQRCP, with the largest
ratio of 46. Similarly to LU-CRTP, the largest ratio of LU-CRTP_adaptive does not exceed two
orders of magnitude. Moreover, the second group of matrices has the largest ratio of 48, which
is close to LU-CRQRCP. Note that the smallest ratio is the same for all methods.
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Figure 5.6 – Comparison of the estimated rank after the first call to QRTP_reduction, referred to as
rankTP , with the rank given by the database, referred to as rank(A). Here b = 16 for the first 231
matrices and b = 64 for the remaining matrices.

We now study the impact of using QRTP_reduction to estimate the rank of the 261 rank
deficient matrices. We first compare the rank returned by LU-CRTP_adaptive, denoted hereafter
as rankTP, with the rank given by the database, denoted rank(A). Figure 5.6 displays both ranks
and shows that the estimated rank is the same as the one given by the database, except for seven
matrices ( ids([5, 6, 7, 8, 222, 223, 241]) ). Notice that the rank returned by LU-CRTP_adaptive
for the matrix fs_760_2 ids(178) is 410 whereas the rank given by the database is 411. This is
the only case where the method underestimates the rank. We focus our attention on the behavior
of the methods in this case. Figure 5.7 plots both the spectrum returned by the three methods
and a zoom on the end of the spectrum. We observe a maximum ratio of maxi(|Ri,i|/σi) of
2.64 for both LU-CRTP_adaptive and LU-CRQRCP, while for QRCP this maximum ratio is
1.63. Focusing on the end of the spectrum in Figure 5.7, we observe that the singular values
and their approximations are close. Moreover, the approximation of the 411’th singular value of
LU-CRTP_adaptive slightly underestimates the singular value returned by the Singular Value
Decomposition. Since the estimation of the rank is based on the approximation of the singular
values, this explains the difference between rankTP and rank(A). From these observations, we
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can conclude that LU-CRTP_adaptive estimates well the rank of deficient matrices.
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Figure 5.7 – Part of the spectrum computed by LU-CRTP_adaptive with b = 16 for the matrix
fs_760_2 ids(178) A ∈ R760×760, and the whole evolution of the ratios max1≤i≤760(|Ri,i|/σi).

We next focus on the estimation returned by the first call of QRTP_reduction in LU-
CRTP_adaptive. This estimation is directly related to the number of columns that will not
be updated from A. After one call of QRTP_reduction, we expect saving the most of compu-
tations. Figure 5.8 compares the estimated rank returned by QRTP_reduction with the rank
of each matrix given by the database. The graph shows that the first estimation of the rank is
close to the real one, for 30 matrices out of 261. Among these 231 matrices, only 9 matrices have
an error on the rank larger than 100 columns and 142 matrices have an error smaller than 10
columns. This result shows that the first call of QRTP_reduction has a large impact on saving
computations. This observation leads to comparing the consequences of using different methods
to compute the approximation of the norm of A.

We now compare the estimated rank returned by QRTP_reduction using three different
methods. The first method is the one used until now, i.e., the norm of A is approximated by the
maximum column 2-norm over all columns of A. The second method, denoted as RankTP-SVD,
uses the real norm returned by the SVD algorithm. The third one, referred to as RankTP_L
computes the local maximum column norm of each column panel, and uses it as an initial guess
for the norm of A. The estimation of the rank of all matrices and for all methods is plotted
in Figure 5.8. The method RankTP-SVD overestimates the rank of 222 matrices. However, it
also underestimates the rank of 4 matrices. As a consequence, at most two linearly independent
columns of A are removed. The method RankTP_L overestimates the rank of 231 and returns a
larger estimation of the rank than RankTP for 17 matrices. Especially, the matrix of index 88 has
an estimated rank of 725, whereas its real rank is 117. This error is due to the local estimation
of the norm. This matrix has much less linearly independent columns than estimated, and so,
in this particular case, RankTP_L should be replaced by RankTP. In summary, the version using
the maximum column norm is efficient enough.
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Index of the matrix
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Figure 5.8 – Comparison of the estimated rank after the first call of QRTP_reduction with the rank
given by the database. Here, rankTP curve uses the maximum column norm as threshold, rankTP-SVD
uses the same criterium as the database and rankTP_L computes a local maximum column norm

5.5.2 Low-rank approximation of a matrix A, with different tolerance
In this section, we study the accuracy of the low-rank approximation obtained with
LU-CRTP_adaptive with different tolerance τ ∈ {10−3, 10−6, 10−9}. The tests are made on
the 261 matrices presented above. The matrices are split into two groups according to their
rank. Thus, the first 231 matrices are approximated using a column panel size of 16. The
remaining matrices are approximated using a column panel size of 64. We show that the relative
error on the low-rank approximation is always under the bound of Theorem 34. To study the
accuracy of Algorithm 5.2, we compute the low-rank approximation of a matrix A such that
‖A(P,E) − LU‖2 ≤ τ‖A‖2, where E and P are permutation matrices, and L and U are the
lower and upper triangular factors of A, respectively. Then, we compare the error of the LU
factorization with the upper bound 2τ2‖A‖22Fmax, presented in Theorem 34. For simplicity, we
suppose that Fmax =

√
b. In practice, this ideal upper bound is never reached. The database

computes the rank of a matrix using the formula max(M,N)× τ × ‖A‖2, where A ∈ RM×N .
For the purpose of this section, this formula leads to a criterion that is too large, especially

when τ is equal to either M or N . For example, in the dataset, the matrices of dimension 103

have a criterion equal to the norm of A (103×10−3‖A‖2). Therefore, only the first singular value
is considered and the low-rank is strictly equivalent to a rank-1 approximation. As discussed in
the previous section, we approximate the norm of A by using the maximum columns 2-norm of A.
Hence, the threshold used by QRTP_reduction algorithm is τ×max1≤i≤n χi(A). We first set up
the tolerance to 10−3, and we plot the relative error on the low-rank approximation, the relative
upper bound and the tolerance in Figure 5.9a. We observe that the relative error of the low-rank
approximation is smaller than the tolerance, 10−3, except for 22 matrices. However, these 22
matrices have a relative error that does not reach the upper bound of Theorem 34. The remove
of some columns of A, with respect to our τ_rank criterion, does not degrade the low-rank
approximation. Figures 5.9b and 5.9c show the same results as for 10−3, which is that the upper
bound is never reached. It means the removed columns do not contribute to the approximation.
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Figure 5.9 – Comparison of the relative norm of the low-rank approximation of A returned by LU-
CRTP_adaptive, for different relative thresholds. The red hashed line shows the required low-rank. The
crossed symbol represents the upper bound of Theorem 34.
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We now discuss the impact of using QRTP_reduction in CARRQR_adaptive algorithm on
the accuracy and on the performed computations. The set of matrices is composed of the 261
matrices presented above, and splits into two groups. The first 231 matrices use a column
panel size of 16 whereas the second group uses a column panel size of 64. The tolerance is set
to 10−3. The approximated singular values returned by CARRQR_adaptive are compared to
the approximations returned by CARRQR and QRCP. To evaluate the accuracy, we compute
the ratio |Ri,i|/σi, where |Ri,i| is the absolute diagonal element of the R factor, and σi is the
i’th singular value computed by the SVD. Figure 5.10 shows the average ratio, the minimum
and maximum ratios for all matrices. We observe that the modified version of CARRQR does
not degrade the accuracy compared to the original algorithm. Moreover, both communication
avoiding versions have similar minimum and maximum ratios to QRCP.
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Figure 5.10 – Comparison of the error of QRCP (top), CARRQR (middle), and CARRQR_adaptive
(bottom) on the singular values for 261 matrices. The set of matrices is divided into two subsets, where
the first subset uses a column panel size of 16, and the second uses a column panel size of 64.

We next focus the discussion on the gain obtained by replacing QRTP with QRTP_reduction
in CARRQR_adaptive. In Section 5.3.2, we explained that using QRTP_reduction is expected
to reduce the number of operations during the tournament pivoting, and also reduce the cost of
updating the trailing matrix. On the one hand, Figure 5.11 presents the total number of FLOPS
to compute both the QR factorizations and the QR factorizations with Column Pivoting during
the whole procedure, for CARRQR and CARRQR_adaptive. As expected in theory, we observe
that the usage of QRTP_reduction reduces the total number of FLOPS, by a factor up to 6.
On the other hand, Figure 5.12 shows the number of FLOPS performed by CARRQR_adaptive
and by CARRQR, during the update of the trailing matrix. Although the gain obtained from
QRTP_reduction on QR is noticeable for a few matrices, the number of FLOPS performed
during the update is significantly reduced for the first half of the matrices. For the remaining
matrices, the rank is closer to the dimension of the matrices so that, the number of discarded
columns is fewer than with the matrices of the first half. To quantify the gain obtained from
the update, we plot the ratio of the number of FLOPS performed by CARRQR to update over
the number of FLOPS performed by CARRQR_adaptive to update, in Figure 5.13. We observe
that the ratio is, at least, equal to one, and, a quarter of the matrices have a ratio larger than one
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but smaller than 10. A few matrices have a ratio larger than 10, but we notice a maximum ratio
of 32 for one matrix. These observations confirm that using QRTP_reduction has a significant
impact on the number of FLOPS for the two costly steps of the algorithm. Discarding columns of
A does not degrade the approximation of the singular values. Hence, with a negligible overhead,
the modification of QRTP keeps the properties of accuracy of LU-CRTP and CARRQR.
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Figure 5.11 – Comparison of the total number of FLOPS performed by both QR and QRCP algorithm
in the tournament pivoting algorithm, between CARRQR and CARRQR_adaptive.
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matrix index
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RQR_adaptive.

5.6 Conclusion
This chapter shows that the modification of the QR factorization with Tournament Pivoting,
in Algorithm 5.1, does not degrade the approximation of the singular values computed by both
CARRQR and LU-CRTP. This modified QRTP algorithm is able to approximate well the τ_rank
of a matrix. We note that the first call to it can even a good estimate of the τ_rank and so save
computation. The purpose of these modifications was to reduce the cost to select k pivots, and
to update the trailing matrix in a block algorithm. Although, its overhead is negligible, O(k)
FLOPS, where k is a small integer, the gain in these two steps is much larger. Experimental
results, made on a set of 261 matrices, present for CARRQR a maximum gain of a factor of 6 for
selecting k pivot columns by Tournament Pivoting (QRTP), and a gain of a factor up to 32 for
update the trailing matrix. In addition, we have made tests where the tolerance τ varies from
1e − 3 to 1e − 9. The results show that the theoretical bound on R22 is never reached. All the
results validate that our modification of the QR factorization with Tournament Pivoting can be
reliable to compute a low-rank approximation as well as to approximate the singular values, with
an unchanged error on the approximation of the singular values.

As future work, we have to make a parallel code to test on larger matrices the impact of
approximating the 2-norm of A, and to obtain larger speedups. Also, the fixed-precision approach
can be used to improve the performance when a fixed-rank is requested by the user. Consider
that the discarded columns are sorted such that the columns that are nearly dependent are
moved to the leading positions of these columns. For example, these columns could be grouped
in two subsets so that the first subset contains columns that lead to have τ ∈ [10−1, 10−3],
and the remaining columns in another subset, where τ < 10−3. Thus, the algorithm defines a
first tolerance τ = 10−1, and factors A using it. If the fixed-rank is not reached, the tolerance
is decreased so that the columns in the first subset are updated as they should have been if
they were kept in the trailing matrix. Then the main algorithm resumes until the condition of
fixed-rank is reached. This approach is expected to give good performance.
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Introduction
In Linear Algebra, matrices and vectors are the most basics elements. In Computer Science, their
representation depends on many aspects such that their purpose or their properties. For example,
a sparse matrix is managed differently from a dense matrix. In the case of parallel execution, the
distribution of the data impacts the performance of the execution. From a mathematical point
of view, it is more convenient to use a higher level of abstraction. This allows us to be closer
to the algorithm instead of taking care of some software and hardware aspects as pointers and
storage. The purpose of this library is to provide a user-friendly interface that helps to develop
a parallel code.

This library contains all the materials used to develop the parallel codes that are presented
in this thesis. Note that the codes presented in Chapter 3 to 5 are gathered into another library
named preAlps. The construction of the library follows some constraints. The source code is
written in C and is independent of external packages, except MPI library. The installation of
the library uses a bash script and generates makefiles. Therefore, the only requirement to use it
is to have a C compiler, bash, Makefile, and an MPI library. The management of the memory in
C is well known to easily generate errors. We have designed a small module, named MemCheck,
that aims to reduce these errors. Linear algebra operations complete the purpose of the library
and leads to having a C Parallel Linear Algebra Memory M anagement library. We present, in
the first section, the datatypes that represent matrices and vectors. To deal with problems of
memory allocations, the second section describes the creation of these datatypes. In addition,
we present the module MemCheck. Its purpose is to register all allocations and deallocations
of the memory and warns the user for unexpected behavior as a not freed block of memory,
for example. Then, we detail basic routines that manipulate the mathematical objects that we
consider in the library. For a specific purpose, we design a customized collective communication
module that is used in our implementation of TSQR. In addition, linear algebra routines, already
well optimized in LAPACK or MKL, are wrapped and presented in the next section. These
routines are considered here as kernels for developing parallel routines as TSQR or Cholesky
QR for instance, but also a parallel Sparse Matrix dense Matrix multiplication. The last section
presents interfaces that we use to call external packages from the library.

6.1 Representation of mathematical objects
The library proposes a basic representation of a vector and of a matrix. On the one hand, sparse
and dense matrices are considered separately with their associated routines. On the other hand,
vectors that contain integer are distinct from the vectors of real. These two types of matrices
and two types of vectors are flexible enough to be used in parallel as well as in sequential. Except
for few routines, the library considers the mathematical objects from their local point of view.
It means for example that there is no global vector and so no global consistency of the size as
in Petsc. Instead, we manipulate locally part of the vector. We warn the reader that we only
consider real matrices, and integer or real vectors for the moment. We use the 0_based index
for arrays unless otherwise mentioned and provide conversion routines for external use.

6.1.1 Mathematical object: matrix representation

In this section, we present two datatypes of matrices. At first, we focus on dense matrices where
all elements are involved in the computation. Then, we present our implementation of a sparse
matrix, based on Compressed Sparse Row format, denoted hereafter as CSR. By definition, a
sparse matrix is a matrix where a large part of its elements are zeros. For performance, sparse
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matrices have to be treated differently. In that case, sparse matrix representation saves memory
consumption and floating point operations. For the purpose of this section, we consider a general
real matrix A ∈ Rm×n where aij in A corresponds to the entry at the intersection of row i and
column j of the matrix.

MatDense: the dense matrix representation

To manipulate dense matrices, we define a datatype mat_dense_t that we further call MatDense.
This datatype is composed of a 1D_array and a set of data that stores information relative to
the matrix. The 1D array contains all entries of the represented matrix. The set of data,
denoted Info_Dense_t, is a structure that stores the dimension and the number of entries in the
matrix. In the parallel case, a MatDense matrix is considered as part of a distributed matrix.
To record it, Info_Dense_t also contains global dimensions. Elements in the 1D array are either
an ordered column concatenation that corresponds to the standard column major, or an ordered
row concatenation which corresponds to the standard row major. This representation requires
to provide a leading dimension array which allows us to reach from an entry ai,j either the
entry in the next column ai,(j+1) or the entry in the next row a(i+1),j , by adding the leading
dimension to the current position of ai,j in the 1D array, depending on the major used. Therefore,
Info_Dense_t contains, in addition, the major and its relative leading dimension.

In Listing 6.1, we present our implementation of a dense matrix. This representation allows
us easily to interface with dense linear algebra libraries like LAPACK (Anderson et al., 1990).

typedef struct {
double* val;
Info_Dense_t info;

} Mat_Dense_t;

typedef struct {
int M; /*Global number of rows*/
int N; /*Global number of cols*/
int m; /*Local number of rows*/
int n; /*Local number of cols*/
int lda; /*Leading dimension of the matrix*/
int nval; /*m*n*/
storage_type_t stor_type; /*Row Major or Column Major storage*/

} Info_Dense_t;

Listing 6.1 – Extract from mat_dense.h

MatCSR: the CSR sparse matrix representation

When a matrix has many zeros, it is more efficient to consider a sparse storage. For that, several
sparse storages exist. Among all existing storages, we present the three most common. The
first storage considers the coordinate of the nonzero entry in A. This format, denoted COO,
for coordinate, stores each nonzero as a tuple (i, j, v), where i is the row index, j is the column
index and v is the value of the entry aij in A. The second storage is the Compressed Sparse
Row, denoted CSR. It stores only the nonzero entries and compresses the information on the
row. This storage is composed of three arrays: rowPtr, colInd and val. The array rowPtr, of size
m+ 1, indexes the position of the first nonzero entry of each row in both arrays colInd and val.
Thus, the first element in the array rowPtr is 0, since we use 0_based indexing, and the last
element of the array rowPtr is equal to the number of non-zeros in A. The array colInd stores the
column index of each nonzero whereas the array val stores the corresponding entry, both of size
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nnz. The last storage is the Compressed Sparse Column, denoted CSC. Its purpose is similar to
the CSR format. Although the CSR format compresses the row, the CSC format compresses the
columns. The three arrays representing the matrix are colPtr, rowInd and val. Both compressed
storage aims to remove redundant indexes in rowPtr and colPtr, respectively. All these storages
present advantages and disadvantages depending on which operation we would perform. Among
these storages, the library only considers the CSR format. Each nonzero entry in a matrix A
is added into the CSR format such that for each entry in row i, its associated column index is
added into the array ColInd, its value is added into the array val and the (i + 1)’th entry in
rowPtr is equal to the i’th entry plus the number of non-zeros entry in row i.

In Listing 6.2, we present our implementation of the CSR storage. We define a datatype
mat_CSR_t, denoted further as MatCSR, that contains the three arrays detailed above and a
set of data, similar to mat_dense_t and denoted Info_t. This last set contains the dimension
of the matrix m× n and its number of non-zeros lnnz. Similar to our representation of a dense
matrix, we record the global dimension of the global matrix, M×N , its total number of nonzero,
nnz. In addition, we keep in the structure whether the matrix is symmetric or not, and if the
matrix is stored in block CSR, denoted further as BCSR, then the size of the block. Since our
representation is standard, we can easily interface it in third-party libraries like SPQR from
SuiteSparse (Davis, 2011a), Petsc (Balay et al., 2016), or even MKL (with few modifications like
1_based index if needed).

typedef struct {
Info_t info;
int* rowPtr; /*A pointer to an array of size M+1 or m+1*/
int* colInd; /*A pointer to an array of size nnz or lnnz*/
double* val; /*A pointer to an array of size nnz or lnnz*/

} Mat_CSR_t;

typedef struct{
int M; /*Global number of rows*/
int N; /*Global number of cols*/
int nnz; /*Global non-zero entries*/
int m; /*Local number of rows*/
int n; /*Local number of cols*/
int lnnz; /*Local non-zero entries*/
int blockSize; /*Local block size*/
Mat_CSR_format_t format; /*Local storage format : block or not*/
Struct_Type structure; /*Local symmetric or non symmetric pattern*/

} Info_t;

Listing 6.2 – Extract from mat_CSR.h

Remark 35. Block CSR. Some applications have a pattern including small dense matrices
(for example coupled unknowns). In that case, we can use a block representation. The matrix
is still sparse but the nonzero entry in the BCSR storage corresponds to a small dense matrix.
Note that we do not provide routines to be used with a block CSR storage.

Remark 36. Symmetric structure Concerning the symmetry of the structure of A, we manage
symmetric matrices as unsymmetric. Note that in the case of the construction of the communi-
cation dependency pattern in a matrix vector product, we avoid an initial communication step.
The communication dependency pattern is deduced from the local pattern.

6.1.2 Vectors: two types of representation
When solving, for example, a linear system Ax = b, or computing the residual r = Ax − b
in iterative methods, a representation of the vectors x and b with real values is required. In
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addition, permuting a matrix, getting a list of neighbors like in RAS, getting a subset of rows to
distribute require a representation of vectors with integer values. From these observations, we
choose to design two types of vectors: IVector_t and DVector_t for integer and double values,
respectively.

typedef struct{
double *val;
int nval;

} DVector_t;

Listing 6.3 – Extract from DVector.h

typedef struct{
int *val;
int nval;
int size;

} IVector_t;

Listing 6.4 – Extract from IVector.h

DVector: a simple representation of a real vector

Here we summarize our definition of DVector. Its structure, presented in Listing 6.3, is composed
of a 1D array of doubles, referred to as val, and its number of elements, referred to as nval. This
representation simplifies its use and also it aims to solve some problems of segmentation fault or
buffer overflow. To ensure that, we provide a list of routines that we present in the following.

IVector: a double use of integer space

Integer arrays allow us to store different types of data as permutation matrices, list of adjacent
vertices. Their use is wide enough and we propose to use it for two different purposes. Thus the
IVector can be used as usual since val is a 1D array and nval the number of its elements. For a
different purpose like getting adjacent vertices of several set of vertices, we offer the possibility
to use IVector_t as workspace. To do that, we add a third parameter called size. The behavior
is the same as a standard IVector and even DVector but we can change nval without loosing the
amount of the space we have in the vector. For example, in Listing 6.5,

// Declaration and initialization
Mat_CSR_t A = MatCSRNULL (); // Sparse matrix
IVector_t isAdjacent = IVectorNULL ();//A boolean vector
IVector_t adjacent = IVectorNULL ();//Seen as a workspace
int nvertex = 10;

IVectorCalloc (& isAdjacent , nvertex); // Calloc the memory space
IVectorMalloc (&adjacent , nvertex); // Malloc the memory space

// Assuming this creates a random sparse matrix A
bar(&A, nvertex);

for(int block = 0; block < nblock; block ++)
{

// Function that fills the isAdjacent array
foo(block , &A, &isAdjacent);

adjacent.nval = 0; //Here the size is still 10
for(int i = 0; i < isAdjacent.nval; i++)
{

if(isAdjacent.val[i] > 0)
{

adjacent.val[adjacent.nval ++] = i;
isAdjacent.val[i] = 0;

}
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}
printf("Block %d has %d adjacent vertices in A\n",

block ,
adjacent.nval);

IVectorPrintf("Adjacent list :", &adjacent);
}

Listing 6.5 – Use IVector as workspace

the vector adjacent is seen as a workspace allocated only once. Then at each iteration, its
number of values is reset to 0 and so it can be easily reused.

Remark 37. Moving from a standard IVector to a workspace use, in Listing 6.5, involves only
few modifications but allows better performance by obviously reducing the number of allocations.
Also, for the moment there is no similar use of DVector but it can be easily done if needed.

The four datatypes presented here represent the basic datatypes of this library. We then
provide routines to allocate and manage them.

6.2 Memory management and code development
In this section, we focus on one of the two main aspects of the library: memory management.
Using C language requires using mechanisms of allocation of the memory as malloc. This can
also lead to some problems like out-of-bound of the memory space, memory leak, double-freed
corruption. To avoid such problems, the four datatypes of the library have creation and destruc-
tion routines used to record the state of the datatypes. We first present these routines, also
aiming to simplify the development of a code, and then we detail a tool called MemCheck to
track down several unexpected behaviors.

6.2.1 Creation, visualization, and destruction of objects
One of the most important aspects concerns the allocation/deallocation of the memory. For
that, we provide two main ways of creations of objects. The most basic routine creates an object
by allocating the memory space needed and copying the content therein. To do it, we provide
wrappers of each basic allocation: malloc, calloc, realloc. In addition, we also wrap the free
routine. Thus the allocation of a MatDense is performed by MatDenseMalloc and the memory
is freed by calling the MatDenseFree. We will show later that from these we can track part of
the problems listed above. The library can manipulate data structures coming from an external
library. To do so, the routines named XXXCreateFromPtr create the object XXX but does not
allocate the memory. Instead, it points to the block memory space given as a parameter of the
function. The only constraint is to use the same storage. For example, the storage of a CSR
matrix uses three arrays. Any other storage may not be compatible with it. Point to a block
leads to manipulating the data that we do not own and applying one or several of our routines
on it. It offers the flexibility to avoid two copies: one to get the data to treat it and eventually
another copy to get back the data. Note that in the remaining part of this chapter, we denote
XXX as one of the four datatypes used in the library.

In order to visualize the content of the memory, the routines of the form XXXPrint display
the data in a convenient way. For example, calling MatCSRPrint displays a MatCSR in its CSR
format (each of the three arrays) whereas MatCSRPrint2D displays the content as a dense matrix
by adding to the output explicit zeros. Another example is about IVector that can be seen as
a classical vector of integer or as a workspace of integers. The routine IVectorPrint displays
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the first nval elements. The routine IVectorPrintWork displays the content of the memory
associated with the IVector, without taking into account the number of elements in it. Since for
some applications the datasize can be large, these routines display a subset of the content of the
object which is for instance the first and the last 10 values (defined at compile time). Obviously,
explicit full printable versions exist like IVectorPrintFull and IVectorPrintFullWork. Moreover,
since it is convenient to join a message when the variable is displayed, an ’f’ version of these
routines exists ( MatCSRPrintf, IVectorPrintfWork, ...).

6.2.2 MemCheck: module of memory tracking

We propose a light tool to track the memory use of the library and is general enough to be used
elsewhere. This tool allows us to check at the end of the execution if all memory blocks allocated
by the library are freed. It also tracks an object from creation to its destruction. To do so, we
define a MemBlock_t structure, denoted after as MemBlock, that stores useful information for
different uses and is presented in Listing 6.6.

typedef struct memBlock{
char *p; /*Pointer to the memory allocated*/
const char *varName; /*Name of the variable or NULL*/
const char *file; /*File where the function calls the allocation*/
int line; /*Line in the file where the allocation is called*/
size_t size; /*Size in bytes of the current allocation*/
struct memBlock *next;

#ifdef MPIACTIVATE
double time; /*Current time when the memory allocation is called*/
double time_free; /*Current time when the memory free is called*/

#else
time_t time; /*Current time when the memory allocation is called*/
time_t time_free; /*Current time when the memory free is called*/

#endif
size_t total_size; /*Total memory size in bytes allocated*/
size_t total_size_free; /*Total memory size in bytes freed*/
char *stackCurState; /*The current stack trace state*/

} MemBlock_t;

Listing 6.6 – Extract from cpalamem_instrumentation.h

In MemBlock, we store the pointer relative to the block and its size. We also record when
and where this block is created. Along with the time of creation denoted time, we store the
amount of memory used at that time by the library in total_size and from which file and at
which line this creation is requested. For further use, we store the clock when this block is freed
and what the current amount of memory allocated is at that time. To complete the description,
we save the list of caller routines, as a stack trace in Java or Python, that leads to this call of
creation/destruction, in stackCurState. Note that for parallel codes, we have a test of using
MPI library represented by #ifdef MPIACTIVATE. If CPaLAMeM is compiled with MPI, which
is the standard case, we use MPI_Wtime routine to get the time. We also offer the possibility
to use it without MPI by replacing this routine by time from time.h.

MemBlock is constructed as a stack and we iterate over it to find a specific block referenced
by the pointer address or insert a new block on top of it. All malloc and calloc operations are
wrapped by a CPALAMEM_malloc and CPALAMEM_calloc, respectively. These wrappers
create a new MemBlock, allocate the memory space required by the initial call and set all related
information to the block.
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Figure 6.1 – Snapshot of the MemBlock structure related to a code that creates a variable called A of
1024 bytes at line 105, then requests a block of 64 bytes labeled v at line 117 and then goes to getPerm
routine to creates at line 17 of the same file (main.c) a perm of size 40. Additional information in the
structure is represented by the ’...’ line.

As shown here, there is no precision if it is a calloc or a malloc call. The only interesting
aspects here are the memory use and a way to track these blocks from their creation to their
destruction. When a realloc, wrapped with CPALAMEM_realloc, is requested, we choose to
create a new entry in the MemBlock and considered the block to realloc as a free of it and a
malloc of a new one. CPALAMEM_free wraps the classical free routine. To illustrate the internal
behavior, consider the instruction free(ptr); written in a code. It is replaced by the routine
CPALAMEM_free(ptr, __FILE__, __LINE__, NULL);. This routine searches ptr in the stack of
MemBlock. If it is included, ptr is freed by calling the basic routine. Then the corresponding
MemBlock field p and ptr are set to NULL. The amount of memory used is reduced by the lSize
of the MemBlock and we record the clock when free is requested. Otherwise, an error message
is displayed to warn the user that he tries to free a block ptr in the file __FILE__ at line
__LINE__ that is not recorded. Note that in the second case, the file and line information
displayed are relative to the call of the free and not to the location of the creation of any block.

At the end of the execution, a routine can be called to iterate over all elements of the stack
MemBlock and prints a warning message for each element of the stack whose p is not null. This
mechanism catches all memory leaks relative to CPaLAMeM we can have in the code.

Remark 38. This module is designed to be generic such that it can be used in other codes. For
that, it suffices to include cpalamem_intrumentation.h header in every file where the memory
has to be tracked. Note that this module is activated only if the file is compiled with the macros
MEMCHECK and MEMCHECKCONSUMPTION.

Weak pointers and workspace

As in LAPACK library, we sometimes prefer to use a workspace for better performance. A
workspace is a standard memory space allocated for several different goals. It allows us to allocate
only once the memory. Unfortunately, this technique may lead to overlapping two memory spaces
sharing the same workspace. These memory spaces are represented by two variables, one stores
the size and another one points to the first element. We introduce the definition of a shallow
pointer

Definition 39. A shallow pointer is a C pointer which does not own the memory space that it
points to.

Thus it should not be used to free the memory space pointed to. Extending this definition, we
further call shallow any data structure that uses a shallow pointer that points to it. To illustrate,
we use in our implementation of TSQR (in its rank-revealing form) several shallow pointers for
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the permutation, the Householder vectors, the different tolerances associated. Therefore, the
permutation vector represented by an IVector is seen internally as a shallow IVector.

To handle the overlapping problem, we develop a small module. It tracks each shallow pointer
related to a workspace and checks if overlap occurs. For that, we define a recording structure
ShallowElem_t of shallow pointer presented in Listing 6.7 and referred hereafter as ShallowElem
where name labels the shallow pointer, lSize stores the size of the memory space occupied, and
p points to it, seen as a void pointer.

typedef struct{
const char *name;
size_t lSize;
void **p;

}ShallowElem_t;

Listing 6.7 – Extract from shallow.h

To simplify the use of the module, we provide a few routines. First, we create the module
environment Shallow_t with the routine ShallowCreate taking as parameter the initial number
of ShallowElem recorded. This routine creates an array of ShallowElem. The memory space
considered is set up using ShallowInitRef routine. This routine takes as input a name, used as
a label, the size and the address of the memory space. These last two parameters define the limit
of the memory space considered and are used for tests. To attach shallow pointers to the memory
space, we call ShallowAdd routine. This routine takes as input the number of shallow pointers to
add in the array and for each, three variables to set up each ShallowElem_t element in the same
order as the definition given in Listing 6.7. Then the array is sorted according to the address of
the shallow pointer. When the module is set with all shallow pointers, the test routines are called
to check whether overlaps or out of bounds occur. Note that for general purpose, a ShallowElem
uses size_t and void ** types. In other words, for a shallow MatDense, lSize has to be set to
nval * sizeof(double). Also, each shallow pointer is cast into a void **. It follows that if
a shallow pointer, attached into a Shallow_t, points to another memory space, we are still able
to determine if it overlaps another memory space. However, we choose to not track a change of
size in the memory space pointed by the shallow pointer. At that point, the environment of the
module is set.

To test overlap, we are calling ShallowIsOverlapped. This checks for each pi if pi + lSize >
pi+1 and prints whether the subspaces overlap in the workspace. The sorted list involves
O(n) comparisons where n is the number of shallow pointers recorded. To test out of bounds,
ShallowIsOutOfBound routine can be used. This routine checks for each shallow pointer whether
the first or the last byte is outside bounds of the workspace. Also, the workspace and its shallow
pointers can be displayed by using ShallowPrintState routine.

6.3 Basic routines to manipulate datatypes

In this section, we describe the basic routines that can be used to manipulate matrices and
vectors. These routines offer an easy interface and intend to be optimized enough. We first focus
on the MatCSR object and present routines that are grouped into three different groups. The
first group is composed of routines that create objects like loading a matrix or extracting a block
from a matrix. The second group contains routines that operate on the object like copying or
copying. The last group addresses the communication aspects.
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6.3.1 Parallel distribution with the extraction of blocks

Since a matrix is generally distributed in a 1D row layout, a 1D column layout and even a 2D
(cyclic), it is important to understand how this is taken into account in the library. Note that for
the following description we ignore the 2D-cyclic case and we mention that the presentation of
the column layout distribution is similar to the row layout distribution, modulo a transposition.
We consider the problem of distributing a matrix A ∈ Rm×n over p processors using 1D row
layout. We split the rows into blocks having roughly the same number of rows and store the
position of the first row of each block in an array of size p+1, denoted pos, represented hereafter
by an IVector. The vector pos has its first element equal to 0 its last element equal to m (n, in
the column layout case). For a 2D distribution, we can create two IVector posR and posC. Note
that for a symmetric distribution of a matrix, only one vector, as pos, is required.

posC

posR

m

0 n

MatCSRGetColPanel

MatCSRGetRowPanel

MatCSRGetDiagBlock

MatCSRGetSubMatrix

MatCSRGetSubBlock

Figure 6.2 – 2D distribution of a matrix A over p processors. Here posR is a IVector indexing the
beginning of each row block and posC the beginning of each column block.

Load the matrix

In this library, we provide several ways to load a sparse matrix stored in different formats. One
of the common storages is the Matrix Market storage (Boisvert et al., 1996) (.mtx extension files)
where only the nonzeros are stored using the COO format. As a remark, each .mtx file has a
banner where it is written in particular if the matrix is symmetric or general. We do not deal
with symmetric matrices. Thus a symmetric matrix is converted into a general one. We provide
the following three routines to load a matrix.

• LoadMatrixMarket loads a matrix on a single core. It takes only the filename and returns
the loaded matrix. This routine reads the file in .mtx format and converts it into a MatCSR
datatype. In the case of symmetric matrices, for each element ai,j read from the file, the
routine also adds the symmetric element aj,i into the structure.

• LoadMatrixMM1D loads a matrix in parallel and distributes it using 1D layout. It takes
the filename that stores the matrix, a constant char to set the distribution (’R’ for row
layout or ’C’ for the column layout) and a communicator. This routine does not assume
the .mtx file is sorted. Therefore the file is read by a single processor and the data is split
into blocks of size nnz/p. Every block is then sent to another processor. In that way, the
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processor reading data stores at most two blocks. Then processors sort their own data,
identify which data has to be sent and then a global communication phase exchanges data.
This leads to gathering on each processor their own part of the matrix. Note that here, the
distribution is first well-balanced in term of number of nonzeros and then in term of rows
per processor (columns if ’C’ is given as a parameter). This function returns a distributed
MatCSR where A is its local representation.

• LoadMatrixMM2D loads a matrix in parallel with a 2D distribution scheme on a pr×pc grid
of processors. It takes as input the filename where the matrix is stored. The number of
processors is deduced from the communicator, also given as a parameter. The dimensions
of the grid of processors pr × pc are also provided as parameters of the routine. Here the
number of processors pr for rows and pc for columns are required. From the communicator
and these two parameters, the routine first creates sub-communicators for rows and columns
that are returned at the end. Secondly, the routine uses the 1D version as a subroutine
with a column distribution. Finally, each column panel is split into pr pieces and Ai, the
local part of the loaded matrix is returned to processor i.

In the parallel case, each processor deduces the pos, posR or posC IVector which describe the
distribution of A.

Extract part of the matrix

Loading a matrix is performed either in parallel or in sequential. However, it can be convenient
to have a split matrix. The user may impose the splitting using a vector pos, as for distribution.
One can call the k-way partitioning routine (Karypis et al., 1999). Our library provides an
interface to call k-way partitioning that returns a partitioning vector (further detailed). This
vector can be converted into a permutation vector or used to distribute the matrix. We assume
that a vector pos that describes the splitting of the matrix is given. Based on pos, we provide
several routines to extract part of a MatCSR. First, we consider the extraction of a row panel
(a set of consecutive rows from A) using MatCSRGetRowPanel. This takes as parameter the
matrix A, the vector pos which is the splitting of the rows of the matrix and the index of the
panel to extract from (starting with 0). Note that, at least pos has to be an array with the
first row index and the last one +1, and the panel index is 0 in that case. We also have the
equivalent routine: MatCSRGetColPanel. This uses the same input as the row version plus one
extra parameter referred to as colPos.

To improve performance, we use a vector colPos variable. Its purpose is to index the beginning
of each column block for each row. In other words, colPos is a rowPtr array, defined by the
CSR format, with inserted values between the original ones. We call it a dilution of rowPtr. In
a sense, rowPtr indexes the column block 0. Let A be a 3× 3 matrix split into two blocks and
consider its CSR representation,

A =

1 0 2
1 −2 1
0 4 1.5

 ACSR =

 rowPtr = [0, 2, 5, 7]
colInd = [0, 2, 0, 1, 2, 1, 2]
val = [1, 2, 1,−2, 1, 4, 1.5]

We create two column blocks, where the first two columns form the first block and hence
pos = [0, 2, 3]. In that case, the colPos associated with it is [0, 1, 2, 4, 5, 6, 7] where all underlined
numbers are inserted into the original rowPtr array. Thus to get the second block, the routine
uses the underlined elements of the vector colPos as starting index in the matrix, for each row.
Thus, using colPos avoids tests on the values in colInd to determine the beginning and the end of
the block for the current row. All this procedure is in MatCSRGetColBlockPos routine that takes



146 CHAPTER 6. CPaLAMeM

as input A, a MatCSR variable, and pos, the splitting of the columns of A, and returns colPos
indexing the whole A. Note that for a slightly different purpose, we also provide a partial version
called MatCSRGetPartialColBlockPos, where here colPos indexes only a part of A. This routine
takes as input the matrix A and the vector pos, here denoted posC. In addition, it also needs the
splitting of the rows of A and the index of the row block considered, to return a partial colPos.
This variable is important to extract part of a MatCSR. Following the same idea of optimization,
we have a routine to get an array indexing the diagonal elements of A: MatCSRGetDiagInd.
Along with this routine, we have a partial version named MatCSRGetDiagIndOfPanel which
takes pos, the splitting of the rows of A, colPos and a row block index. This is useful for
example when we have a local row panel like the blue one in 6.2 and we need to get the lower
part.

In order to get a block of a MatCSR, we also have MatCSRGetDiagBlock to extract the di-
agonal block. And more generally, to get a particular block located in position (i, j), intersection
of the i’th row panel and the j’th column panel, we have two routines MatCSRGetSubMatrix
and MatCSRGetSubBlock. They only differ from the column distribution. On one hand, the
first routine requires pos, colPos and the indexes i and j. It also assumes that the column
distribution is equal to the row distribution if colPos is not set. In that case, this routine should
be used for symmetric splitting. On the other hand, the second routine takes explicitly posR and
posC and creates internally the colPos associated using the partial representation and then it is
destroyed. Note that these routines may need a workspace and if given in parameter, it avoids
internal allocation.

Finally, the routines presented above assume the data is contiguous. We also propose routines
to extract a MatCSR from sets of indices as even rows and odd columns. To do so, we provide two
routines. The MatCSRGetSubFromVector routine takes as input the matrix A and an IVector as
a selector of rows, and returns the row block that contains the concatenation of the row indices in
the IVector. The second version, MatCSRGetSubFromVectors, takes as input the matrix A and
two IVector: one for the rows and one for the columns. This routine returns the corresponding
subset of rows and columns, from the indices of the two IVector given as parameter, respectively.

6.3.2 Operations on MatCSR

In this section, we consider the matrix is in memory. During development, it may be useful to
compare two matrices, to extract or to check some properties of a matrix. For that purpose, we
provide routines to make equality tests using either MatCSRIsEqual or MatCSRIsAbsEqual. In
addition, we can check if a matrix is symmetric or at least if the pattern is symmetric. More
generally, we provide a list of routines to perform some operations on A:

• MatCSRUnsymStruct transforms a symmetric matrix, stored with only half of the entries,
into a matrix that can be treated as a general matrix.

• MatCSRSymStruct takes as input a non-symmetric matrix and returns AT +A−2D, where
D is the diagonal of A. This routine is used for calling k-way partitioning routine, from
Metis.

• MatCSRPermute needs as parameters a MatCSR and two vectors rowPerm and colPerm.
The first one concerns the row permutation and the second one the column permutation.
It also offers the possibility to permute only the pattern in order to reduce the cost of the
routine. The algorithm starts by permuting the rows using rowPerm, then permuting each
line using the invert of colPerm and finally sorts colInd line by line. Note that for further
performance we decide to sort the column indices, but it is not a requirement in general.
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• MatCSRAddExplicitZeros adds explicit zeros to a matrix A. In some cases, it is more
convenient to have an augmented pattern and just to perform some numerical operations
as LU algorithm. This routine takes a matrix A and an augmented pattern filled-in with
zeros, and copies all values of A into the new pattern.

• MatCSRGetLUFactors uses a diagonal index array (returned by MatCSRGetDiagInd) to
extract L and U from a matrix A.

• MatCSRCopy copies the entire matrix into a new one.

• MatCSRSave saves into a .mtx file the local part of the matrix given as parameter.

Without going into details, we also have routines to convert a MatCSR into a DVector or a
MatDense and vice-versa.

6.3.3 Communication
To ease the manipulation of a matrix in MatCSR format, we first define a specific datatype
derived from MatCSR which is used to reduce the communication. Based on MPI, we create
two MPI_datatypes: one for MatCSR and one for MatDense. Thus a matrix is sent using
MatCSRSend and received through MatCSRRecv. The matrix communication scheme is split
into two steps: send the information Info_t of the matrix and then send the data. The receiver
reads the content and allocates using MatCSRMalloc if needed and then is ready to receive
the three arrays. To illustrate, we present Listing 6.8 where the matrix A is loaded on one
processor, then Kway algorithm is called on it and the matrix is distributed according to the
Kway algorithm.

int main(int argc , char** argv)
{

Mat_CSR_t matCSR = MatCSRNULL ();
int rank = 0;
int size = 1;
int ierr = 0;
char matrixFileName []= "../ TestDir/cage4.mtx";

CPALAMEM_Init (&argc , &argv);

MPI_Comm_size(MPI_COMM_WORLD , &size);
MPI_Comm_rank(MPI_COMM_WORLD , &rank);

/*Load on first process*/
if (rank == 0)
{

Mat_CSR_t matCSRPermute = MatCSRNULL ();
Mat_CSR_t rowPanel = MatCSRNULL ();
IVector_t posB = IVectorNULL ();
IVector_t perm = IVectorNULL ();
int nblock = size;

ierr = LoadMatrixMarket(matrixFileName ,
&matCSR);CHKERR(ierr);

ierr = metisKwayOrdering (&matCSR , &perm , nblock , &posB);CHKERR(ierr);

ierr = MatCSRPermute (&matCSR , &matCSRPermute ,
perm.val , perm.val , PERMUTE);CHKERR(ierr);
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MatCSRFree (& matCSR);
matCSR = matCSRPermute;

/*Send submatrices as row panel layout*/
for(int dest = 1; dest < size; dest ++)
{

ierr = MatCSRGetRowPanel (&matCSR , &rowPanel , &posB , dest);CHKERR(ierr);
ierr = MatCSRSend (&rowPanel , dest , MPI_COMM_WORLD);checkMPIERR(ierr ,"Send

rowPanel");
}

MatCSRFree (& rowPanel);
IVectorFree (&posB);
IVectorFree (&perm);

}
else /*other MPI processes received their own submatrix*/
{

ierr = MatCSRRecv (&matCSR ,0, MPI_COMM_WORLD);CHKERR(ierr);
}

MatCSRPrintf2D("Local rowPanel", &matCSR);

MatCSRFree (& matCSR);

CPALAMEM_Finalize ();

return 0;
}

Listing 6.8 – Extract from loadMatrixUsingKway.c example

For some purposes, it could be useful to have the communication dependencies, especially
for a matrix multiplication operation. For that, we develop the MatCSRGetCommDep routine.
This takes in parameter colPos, the number of rows, the number of blocks, and the index of the
block concerned. In return, we have an array containing the list of dependencies for the block,
which is usually the diagonal one.

6.4 Customized collective communications

In this section, we present a customized collective communication module that we are using in
our implementation of TSQR for instance. At first, the idea is to provide a general tool to
handle trees and to be general enough such that it can be used elsewhere. The construction of
the tree is deterministic, which means that the pattern used is reproducible and so it is helpful
for debugging.

We denote this module AbstractTree. Note that we also have a simpler version of it called
simpleAbstractTree but we do not refer to it in this document. The module mainly manages the
communication. Therefore it requires routines to send and receive and two kernel functions ap-
plied either before sending the data or after receiving it. The sketch of development is to provide
both fsend and frecv routines with the signature (void*,int,int,MPI_Comm). These routines
take a void pointer to the data that the developer wants to manipulate, the destination/source
and the tag of communication, and end with the communicator.

Remark 40. In the current version of abstractTree, the tag parameter is all the time 0. It may
be convenient to change it for further applications.
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Then the developer may provide a fkernel of signature (void*). This routine takes the same
void pointer to the data as fsend and frecv. With these routines, we can call any tree by just
focusing on the way to send and to receive and what operations to do so.

Going into the details, we first present the internal structure of the module named TreeVoid_t
in code 6.9 and then the routines to manipulate the tree. The structure is split in three parts.
First, it contains the real data to manipulate, provided by the developer, here denoted as
userData. The second part takes care of the communication aspects by storing a list of processor
indexes in src and dest and their size nlvl. This is related to the communication scheme used like
a binary tree. Then the MPI variables handle the non-blocking communication with requests and
status for both send and receive aspects. The last part stores the function pointers: an fsend and
an frecv function plus two kernel functions. The first kernel kernelS is used before sending data
and the other kernel kernelR is called after receiving data. The last variable commScheme is
a function pointer of prototype (*fcommScheme) (int,int,int**,int**,int*). This routine
takes as input the rank of the processor and the size. It returns two arrays src and dest plus
their size assimilated to the number of levels in the tree nlvl. We provide few fcommScheme
routines to construct a binary tree with binCommunication or a binary butterfly tree with
butterflyCommunication.

typedef struct{
/*DATA*/
void *userData; /*This variable is set by the user*/

/*DATA COMMUNICATION */
int *src;
int *dest;
int nlvl;
int nrequestR;
int nrequestS;
MPI_Comm comm;
MPI_Request *requestS;
MPI_Request *requestR;
MPI_Status *statusS;
MPI_Status *statusR;

/* FUNCTIONS */
fsend send; /*To send data*/
frecv recv; /*To receive data*/
fkernel kernelS; /*Called on data at each node/leaf of the tree before send*/
fkernel kernelR; /*Called on data at each node/leaf of the tree after recv*/
fcommScheme commScheme; /*Defines the tree scheme of communication*/

} TreeVoid_t;

Listing 6.9 – Extract from AbstractTree.h

We next provide routines to handle easily the tree. Initialized, the tree is created using
TreeCallCreate(). This routine takes as parameter the tree to create with a fcommScheme
function and a communicator. In case we need to change afterward the communication scheme,
TreeCallSetCommScheme applies a new fcommScheme function to the tree. Next to set up the
function pointers requested by the tree, we call TreeCallRoutines providing a fsend, a frecv
and two fkernel functions. Then to call the tree we use the TreeCall routine. When the tree is
not required anymore, we call TreeCallDestroy to free the memory.

The algorithm of TreeCall is presented in 6.1. This algorithm iterates L times. At each level
k of the tree, if the k’th destination is not the processor index, then it eventually calls kernelS to
operate on data and then calls the fsend send routine to send information to the k’th dest. We
deliberately omit the test on kernelS but in practice, the developer can provide a null pointer
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and so the step 3 is skipped. The symmetric scheme is applied on the k’th source. Note that
the algorithm does not take into account how the information is exchanged and which part of
data is required. All this part remains to the developer. To prevent some problems, we add in
the implementation at the end of the algorithm an MPI_Waitall routine to handle non-blocking
communication routines.

Algorithm 6.1 TreeCall
This function iterates over a tree already set up and calls kernels at each level of the
tree.
Input: data the userData,

L the level of the tree,
i the processor index,
src the list of processor indexes which send data to i,
dest the list of processor indexes which receive data from i

1: for k = 0 to L do
2: if dest(k) 6= i then
3: Call the kernelS routine on data
4: Call the send routine to send information to dest(k)
5: end if
6: if src(k) 6= i then
7: Call the recv routine to get information from src(k) into data
8: Call the kernelR routine on data
9: end if

10: end for

Furthermore, one can provide its own communication scheme. The tree calls it to get the list
of senders and receivers. A processor is considered as idle at iteration k if the k’th value in src
or dest is equal to its index. To illustrate, assume a binary tree for 4 processors represented here
by src and dest arrays which are returned by binCommunication routine. Then we have

processor id src dest nlvl

0 [1,2] [0,0] 2
1 [1,1] [0,1] 2
2 [3,2] [2,0] 2
3 [3,3] [2,3] 2

Table 6.1 – Values of arrays src and dest returned by binCommunication routine for a binary tree
representation with 4 processors.

Here, the processor 3 has nothing to receive and sends just once to the processor 2 and then
is idle until the end. In the meantime, the processor 0 has nothing to send, and receives data
from the processor 1, and then from the processor 2.

6.5 Performance and linear algebra routines

Linear algebra operations are highly used and hence they are well studied. Our purpose is not to
reimplement linear algebra routines that are already well optimized in libraries as LAPACK or
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MKL. These libraries are sequential, multi-threaded and offer simple interfaces but with many
parameters. In this section we present the linear algebra part of our library. Since linear algebra
libraries already exist, we first develop our own wrappers to interface our datatypes with these
libraries. These wrappers, denoted hereafter as kernels, are gathered in kernels.c file. Based on
our kernel routines, we develop parallel routines that are presented in this thesis.

6.5.1 Kernels of the library

We select routines that correspond to our needs, create a wrapper which interfaces our datatypes
and hides the long list of parameters. For example, QR on a dense matrix is performed by dgeqrf
(in its double non-blocked version) in Lapack library. Although this routine takes precisely 6
parameters, our wrapper, named MatDenseDgeqrf, takes only 2 parameters, the MatDense A
and tau. With the same approach, we interface the MKL Pardiso solvers. Handling the full
iparam array is done internally and it suffices to call the specific wrapper providing MatCSR and
MatDense variables. We also provide two kernels for sparse matrix dense matrix multiplications
(SpMM). These functions are based on mkl_dcsrmm routine where 15 parameters are requested.
This allows us to reduce the number of parameters :

• MatCSRKernelMatDenseMult computes αAB + βC where A is a MatCSR and B and C
are MatDense. Scalars α and β ∈ R are represented with double. Note that this routine
is not optimized for successive calls. Therefore, this routine should be used occasionally
to perform the multiplication. Indeed, the MKL routine requires a CSR matrix stored
with 1_based index. Hence, to perform the multiplication, A is converted temporarily into
1_based index, then it is multiplied with B and is added to C. Finally, A is restored to
its 0_based indexing.

• MatCSRKernelGenMatDenseMult performs the same computation as the previous routine.
But this function is one level deeper. It assumes that A is already 1_based index and it is
not given to the function as a MatCSR. To respect the constraint of the MKL routine, the
parameters are the colInd and val array, the number of rows and columns. Furthermore,
it requests two rowPtr arrays, denoted rowPtrB, indexing the beginning of each row, and
rowPtrE, indexing the end of each row. In that way, we can multiply a block of the matrix
without extraction. This routine is seen as a build-in block of a more general routine.

We next present our implementation of the parallel Sparse Matrix Matrix multiplication.

6.5.2 Cholesky QR implementation in parallel

For some purposes, using Cholesky to compute a QR factorization is sufficient in term of
accuracy. Using our matrix multiplication kernel presented above, we can easily implement
MatDenseCholQR, the Cholesky QR referred hereafter as CholeskyQR. We first describe the al-
gebra of CholeskyQR and then present the implemented algorithm.

Let A be a matrix of dimensions m × n that we want to factorize to get Q an approximate
orthogonal matrix of size m×n and an upper triangular factor R of size n×n such that A = QR.
We first symmetrize A by computing A>A which allows to factorize it using Cholesky algorithm.
Hence C = A>A leads to

C = R>R, (6.1)

and so,
Q = AR−1. (6.2)
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In parallel, the computation of C is performed by first computing, on each processor, the
local part Ci and then a global communication sums all Ci. Assuming that A is distributed over
p processors using block row layout Ai and Ai is stored on processor i, where i < p, we have

A>A =
(
A>0 A>1 . . . A>p−1

)


A0

A1

...
Ap−1

 =

p−1∑
i=0

A>i Ai =

p−1∑
i=

Ci. (6.3)

Algorithm 6.2 presents the implementation of CholeskyQR. It starts with the computation of
C = A>A, where C ∈ Rn×n, then its Cholesky factorization C = R>R is computed, and finally
Q = AR−1. Note that the weakness of this algorithm is its accuracy since it relies on A>A.

Algorithm 6.2 CholeskyQR(A)
This function computes in parallel the QR factorization of a matrix A ∈ Rm×n with m >> n
using Cholesky.
Input: i ∈ Π: processor index that belongs to Π, the set of processor indices,

Ai local block row of A owned by processor i
1: Compute Ci = A>i Ai
2: Perform an all reduction communication of Ci to get C =

∑
j∈Π Cj

3: Decompose C using Cholesky factorization C = R>R on each processor
4: Compute Qi = AiR

−1 using a triangular solve
Output: R: the R factor of A is duplicated on all processors,

Q: the orthogonal matrix, distributed as A

Its arithmetic complexity is the cost of a dense matrix dense matrix multiplication mn2

p +

O(mn/p) flops plus an allreduction phase of cost O(mn). Adding the Cholesky factorization of
C leads to n3/3 +O(n2) flops. Finally, the triangular solve involves mn2

p +O(mn/p) flops. Thus
the complexity of CholeskyQR is 2mn2/p+ n3/3 +O(mn/p).

6.5.3 Sparse and dense Tall and Skinny QR factorization and its rank
revealing version

We discuss in this section the parallel implementation of the QR factorization of a sparse or dense
matrix. The sequential algorithm already exists and is available for example in LAPACK for the
dense case and in SuiteSparse for the sparse case. In the dense case, some parallel implementa-
tions as in scaLAPACK (Blackford et al., 1997) perform QR with O(nlog(p)) messages, which
is suboptimal in terms of communication. Therefore, we decide to implement a parallel version
of TSQR presented in (J. Demmel, Grigori, M. F. Hoemmen, et al., 2008) which is optimal in
terms of communication and requires O(logP ) messages exchanged. We also offer the possibility
to reconstruct Q from the successive Householder vectors computed during the factorization. We
first present the algebra of TSQR and then we describe the parallel algorithm. Next, we provide
some details of our implementation of TSQR and finally describe the modifications required for
sparse matrices.
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TSQR algebra

We first introduce some notations. Let A ∈ Rm×n be a matrix distributed over p processors
in block row layout. Thus, a block row Ai owned by processor i is of size m/p × n. Its QR
factorization leads to Qi0Ri0 = qr(Ai). The subscript 0 denotes the stage 0 of the tree used by
the algorithm.

For example, given a matrix A distributed over 4 processors

A =


A0

A1

A2

A3

 , (6.4)

the factorization of each row block independently leads to
A0

A1

A2

A3

 =


Q00R00

Q10R10

Q20R20

Q30R30

 . (6.5)

Equation (6.5) can be rewritten as
A0

A1

A2

A3

 =


Q00

Q10

Q20

Q30



R00

R10

R20

R30

 . (6.6)

The next stage groups two successive R factors such as Ci0 =

(
Ri0

R(i+1)0

)
where i is an even

processor index. The factorization of each block Qi1Ri1 = qr(Ci0) leads to
R00

R10

R20

R30

 =

(
Q01R01

Q21R21

)
=

(
Q01

Q21

)(
R01

R21

)
. (6.7)

Reaching the root of the reduction tree, we have the final expression of A

A =


Q00

Q10

Q20

Q30

( Q01

Q21

)
Q02R02, (6.8)

where R02 is stored on processor 0 and the first three matrices are distributed over all processors.
R02 is the R factor of A = QR, and the product of the first three matrices is the orthogonal
matrix Q.

Focusing on the construction of the R factor, TSQR uses a binary tree to get R02. It applies
on each node of the tree an operation of factorization. Getting R corresponds to performing a
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reduction tree as represented in (6.9).
R00

R10

R20

R30

→ (
R01

R21

)
→ R02. (6.9)

TSQR algorithm

Algorithm 6.3 describes the parallel TSQR factorization using a general reduction tree and its
application to a tall and skinny matrix A ∈ Rm×n, where m � n. We assume A is distributed
in block row layout over p processors, and each processor stores m/p � n rows locally. The
first call to QR on the local Ai gives the first R factor of processor i denoted Ri,0 in Algorithm
6.3, line 1. Then at iteration k, all processors involved in this step exchange their local Ri,k−1

with their neighbors Ni. On each processor i, ∀j 6= i and j ∈ Ni, the Rj,k−1 factors received
are stacked by order of processor index with the local Ri,k−1 into a matrix Ci,k, line 5. This
matrix of size qn× n, where q is the number of neighbors, is factored using QR and returns the
next Ri,k. Note that to avoid deadlock between send and receive operations, the algorithm uses
non-blocking communication that involves a waiting step before the next factorization, line 6.

Algorithm 6.3 TSQR(A)
This function computes in parallel the QR factorization of a tall and skinny matrix A ∈ Rm×n
with m� n and returns the R factor only. Here the communication scheme is q_butterfly tree
of depth L = log(p).
Input: i ∈ Π: processor index,

Ai local block row layout of A owned by processor i,
1: Compute [Yi,0, Ri,0] := qr(Ai)
2: for k = 1 to L do
3: Send Ri,k−1 to its neighbors in the tree using non-blocking communication
4: Receive Rj,k−1 from its neighbors in the tree using non-blocking communication
5: Stack R∗,k−1 by order of processor index into Ci,k ∈ Rqn×n where q is the number of

neighbors
6: Wait until all send and receive operations initiated by processor i are done
7: Compute [Yi,k, Ri,k] := qr(C)
8: end for
Output: Ri,L the R factor of A, for i ∈ Π,

Q in its implicit representation: Yi,k where i ∈ Π and k ∈ {1, 2, ..., L}

The Householder vectors Y are stored in memory instead of reconstructing Q. The complexity
in parallel is 2mn2

p + 2n3

3 log(p) flop, log(p) messages, and n2

2 log(p) words.
This algorithm uses generally either a standard binary tree or a binary butterfly tree. Figure

6.3 shows the communication patterns for both schemes when performing TSQR on a matrix A
distributed over 4 processors. At each level of the tree, on each node, the matrix C is factored
using QR and the R factor is returned with the corresponding Householder vectors, denoted
Y . The R factors represented by blue triangles correspond to the R factors computed and sent
when the communication scheme is based on a binary tree. Processor 0 owns the final R and if
required, the reconstruction of Q starts with it. This reconstruction detailed in (Ballard et al.,
2013) involves communication in parallel. The general scheme starts with an identity matrix
stacked on top of a 0 matrix on processor 0. It applies on it the Householder vectors denoted
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Y0,2 in the figure. Then it gets an inner Q which is split into two pieces and its lower part is sent.
The communication scheme to reconstruct Q can be seen as a reverse binary tree. It follows that
the lower part is sent to processor 2 in the figure. Again, both apply their Householder vectors
from level 1 on this inner lower/upper Q and get a new inner Q which is also split until reaching
the leaves of the tree. At that point, the local final Q is constructed using Y∗,0.

On the other hand, with the binary butterfly communication scheme referred hereafter as
butterfly scheme, the final R is duplicated on all processors. Moreover, each processor has all
Householder vectors needed to reconstruct its own part of Q. The mechanism is almost the
same as described for the binary tree but it does not involve any communication. Therefore the
butterfly scheme requires communications only for the construction of R.

Y2,0

R2,0

Y3,0

R3,0

R0,0

Y1,0

R1,0

Y0,0

R0,1 → R0,2

R2,1 → Y0,2

R1,1 → R1,2

R3,1 → Y1,2

R0,1 → R2,2

R2,1 → Y2,2

R1,1 → R3,2

R3,1 → Y3,2

R0,0 → R0,1

R1,0 → Y0,1

R0,0 → R1,1

R1,0 → Y1,1

R2,0 → R2,1

R3,0 → Y2,1

R2,0 → R3,1

R3,0 → Y3,1

Figure 6.3 – TSQR communication scheme of the 1D block row layout distribution of A over 4 proces-
sors. The blue highlighted part of the scheme corresponds to a standard binary tree whereas the whole
scheme is the binary butterfly communication scheme.

Example of use of our TSQR

Before going into the details of the implementation, we first show an example of use of TSQR
in Listing 6.10. We define a TSQR_t structure which stores the environment and is set with
TSQRCreate routine. Here, this environment needs the size of the block used by LAPACK, for
example, DGEQRT routine, and the type of communication tree with the MPI communicator.
If butterfly flag is set to 1 then the communication scheme is the butterfly, otherwise, the bi-
nary tree is used. At that point, the environment is set and the communication is built by
following the abstractTree module. Then we set at least the matrix A and the R variable using
TSQRSetMatrices. If Q is not null, then it is explicitly built from the Householder vectors.
Also, if the parameter of permutation of RRQR is provided, i.e. eRRQR.val variable is not null,
then TSQR performs QRCP on the factor R, using DGEQP3 routine and returns the result
in it. The last parameter is a workspace used by TSQR for optimization, with its size. Note
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that, we can let TSQR allocates the required workspace and obtains it as output of the function
along with its size. At this point, TSQR environment is set and we can call TSQR() routine to
perform the TSQR algorithm. In the case of several calls of TSQR, it suffices to call successively
TSQRSetMatrices and TSQR(). At the end, TSQR environment is destroyed using TSQRDestroy.

TSQR_t tsqr = TSQRNULL ();

ierr = TSQRCreate (&tsqr ,
nb ,
butterfly ,
MPI_COMM_WORLD);

ierr = TSQRSetMatrices( &tsqr ,
&A,
&R,
(computeQ) ? (( inplace) ? &A : &Q) : NULL ,
eRRQR.val ,
&work.val ,
&workSize
);CHKERR(ierr);

ierr = TSQR(&tsqr);CHKERR(ierr);

TSQRDestroy (&tsqr);

Listing 6.10 – Extract from callTSQR.c example

Note that in TSQRSetMatrices, if Q is requested, it is possible to built it inplace of A. Since
the first QR factorization is inplace, Ai is destroyed and we can reuse the memory space to store
Q.

Details of implementation

We are now using this example of TSQR to describe our implementation. First, we present in
Listing 6.11 the structure used in TSQR environment. Besides the variables already described,
two internal variables called treeDataR and treeDataQ of type TreeVoid_t are used. As pre-
sented above, TreeVoid_t variable refers to the abstractTree module. It stores the configuration
of the communication concerning the construction of R and Q. When TSQRCreate is called,
depending on the butterfly flag, the communication pattern is built. If butterfly is 1, then
only treeDataR is set. Otherwise, treeDataR handles the binary tree and treeDataQ handles
the reverse binary tree. Then TSQRSetMatrices sets variables of TSQR and allocates the re-
quired workspace. The size of the workspace depends on the number of columns, the block size,
the number of R factors received, and if Q is requested or not. This is handled internally by
TSQRGetWorkSizeNeeded routine.

typedef struct{
TreeVoid_t treeDataR;
TreeVoid_t treeDataQ;
Mat_Dense_t *A;
Mat_Dense_t *Q;
Mat_Dense_t *R;
IVector_t e;
double *work;
size_t workSize;

} TSQR_t;

Listing 6.11 – Extract from tsqr.h
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The workspace is shared between shallow pointers as presented in Figure 6.4. First, if Q is
requested, we set a space Qwork of size n2 used as a workspace when Q is rebuilt. It stores the
lower part of the inner Q and is sent in the binary tree case. We always reserve a space of size
nb × n for τ0 returned by the QR factorization of Ai. Then, we may compute QRCP on the
factor R. In that case, we store τRRQR in this space of size n. Next, we reserve the largest part of

the workspace to store the matrix C =

(
Rup
Rdown

)
and then the Householder vectors Y returned

by the factorization of C matrices. Its size is n2 times the number of R factors received. Note
that since the pattern of C is already known, the Householder vectors replace the Rdown part of
C. Since all QR factorizations generate a τ along with Y , we group them in a different place
represented in Figure 6.4 by the union of τi. Similarly, its size is nb× n times the number of R
factors received. When R is computed using the butterfly communication scheme, the algorithm
imposes that the R∗,k factors are stacked ordered. Thus, Rup and Rdown can be swapped. Next,
if Q is requested, the rebuilt follows an ordered scheme which is the same as the one used to
compute R. For this reason, we record in swap whenever we swap Rup and Rdown. Along with
that, we index in ptrY =

⋃L
i=1 @Yi the positions of the Householder vectors in the largest space

drawn in green in Figure 6.4.

⋃L
i=1 Yi, Rup, Rdownτ0 τRRQR

⋃L
i=1 τi swap

⋃L
i=1 @YiQwork

nrecvnb× n

n2 n n2 × (nrecv + 1) (nb× n)× nrecv nrecv

Figure 6.4 – TSQR workspace used internally to factorize a matrix A. Each name inside the rectangular
shape denotes a shallow pointer used by our implementation and the outer string indicates the size of
each block. The blue part corresponds to the computation of the final R whereas the explicit construction
of Q involves the red and the pink parts. The green part participates in both steps.

Algorithm 6.4 Implementation of TSQR
This sketch points out the main steps of our implementation of TSQR.
Input: i ∈ Π, the processor index,

Ai local block row layout of A owned by processor i,
nb, the block size for BLAS3 routines,
computeQ, the flag set to 1 when the reconstruction of Q is necessary

1: Call dgeqrt(Ai, nb) returns the QR factorization inplace of Ai and fills τ0
2: Copy of the upper triangular part of Ai, i.e. Ri,0, into Rup
3: Call TSQRInner(Rup, computeQ) to compute the final R and to reconstruct partially Q if
computeQ flag is set to 1.

4: if computeQ = 1 then
5: Copy Rup into Qi
6: Call dgemqrt(Ai, Qi, τ0) to overwrite Qi with the final Qi
7: end if
Output: Ri,L the final R factor of A,

Qi the local Q on processor i in its explicit form
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We now present the main steps of our implementation in Algorithm 6.4. As presented above,
we first compute the stage 0, i.e., Qi,0Ri,0 = qr(Ai) of the algorithm to get the first R factor.
The result is used as input by TSQRInner routine, at line 2. This inner routine computes QR on
each node of the tree and reconstructs partially Q if needed. The last operation to get the final
Q requires the Householder vectors computed at the leaves of the tree. As described earlier, its
reconstruction takes the upper part of the inner Q and applies Y on it. This sketch uses blocked
version of the routines to factorize and to get Q. We also have a non-blocked version where
dgeqrt is replaced by dgeqrf and dgemqrt by dormqr.

6.5.4 Performance of TSQR compared to CholeskyQR in parallel
In this section, we compare the performance of CholeskyQR and TSQR. To compare both meth-
ods, we perform a weak scaling from 2 to 1024 cores where the local dense matrix is of size
20, 000 × 256 and the block size used for TSQR is equal to the number of columns. Thus the
global A is of size (p× 20, 000)× 256.

Tests are made on an IBM supercomputer composed of 92 nodes. Each node has 32 GB of
RAM and 2 Sandy Bridge E5-2670 (2.60GHz). The network is an InfiniBand QLogic QDR. The
supercomputer is managed by a Linux CentOS 6.5. The library is compiled with Intel-15, Intel
MPI 5.0.1 and uses MKL version provided by composer_xe_2015.0.090.
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Figure 6.5 – Weak scaling

We display the performance of TSQR, CholeskyQR and CholeskyQR2 in Figure 6.5, where
the number of processors p increases from 2 to 1024. The y-axis represents the time in seconds
to factor A. The runtime of all methods increases from 2 to 16 processors, where the resources
of the node are fully used. When the number of processors is greater than 16, the runtime of
CholeskyQR and CholeskyQR2 remains almost the same, whereas the runtime of TSQR increases
with the number of processors used. CholeskyQR is more than twice faster than TSQR for 2
processors and it reaches an improvement of a factor of 3.5 for 1024 processors. When we use more
than one node, the communication scheme used in our implementation of TSQR degrades the
performance. The use of the abstractTree module is not efficient enough in comparison with the
allReduction communication scheme used by both CholeskyQR and CholeskyQR2. If we consider
the case of 2 processors, the communication is negligible compared to the communication. In
that case, TSQR is slower than the other methods. Especially, for better accuracy, one can
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call CholeskyQR twice (corresponding to CholeskyQR2) and the runtime of this variant is still
smaller than TSQR.

6.6 Interface to use external packages
To use our library as a third party library, we present some routines to convert external datatypes
into our datatypes, as well as the reverse approach. We have interfaces for several external
libraries. In this section we present these interfaces in details. We also interface libraries to call
external routines like Kway routine in Metis (Karypis et al., 1999).

We mentioned earlier that we wrapped for example the Pardiso solver from MKL and made
it available in kernels.c file. In addition, we need to interface PETSc library and SuiteSparse
package. It means that we can manipulate our matrices MatCSR and MatDense and interface
them with PETSc to call for example GMRes solver. SuiteSparse library is interfaced through
SpTSQR. In it, we are using several cholmod_sparse matrices and some routines to concatenate
or extract since this structure is a CSC format representation. The idea behind that is to keep
the code consistent.

6.6.1 PETSc interface
PETSc library offers the possibility to perform many different operations. To benefit from both
libraries, we design some routines to create PETSc matrices from our datatypes in sequential
and in parallel. We also provide routines to convert PETSc datatypes back into our datatypes.
We present a list of the main routines and the documentation of the software contains a full
description of each.

• petscCreateSeqMatFromMatCSR, petscCreateSeqMatFromMatDense routines transform se-
quential matrices into sequential PETSc matrices, both sparse and dense.

• petscCreateMatFromMatCSR, petscCreateMatFromMatDense routines have the same func-
tionality as the previous ones but consider parallel matrices.

• petscCreateMatCSR returns a MatCSR from a PETSc sparse matrix A.

• petscPrintMatCSR allows us to print a MatCSR using PETSc drawing interface.

• petscGetILUFactor factorizes a sparse matrix A using ILU(k) algorithm and returns F
that contains both factors.

• petscGetLUFactorization factorizes a sparse matrix A using the standard LU algorithm
with several parameters like τ or k that come from the PETSc interface and returns F
having both factors (see PETSc documentation for more details).

• petscGetLUFromMatCSR does the same factorization as the previous routine but on a
MatCSR.

• petscConvertFactorToMatCSR takes as input the F matrix that contains both L and U
and returns them as MatCSR matrices.

• petscMatLoad loads a sparse matrix from a .mtx file into a PETSc sparse matrix, all in
parallel using a communicator.

• petscMatGetScaling scales a matrix A using a vector V ec.



160 CHAPTER 6. CPaLAMeM

Additionally, we interface the SpMM of PETSc with petscMatCSRMatDenseMult taking as
parameter a PETSc sparse matrix A and a MatDense B, and returns a MatDense matrix C =
A ∗B.

6.6.2 SuiteSparse interface
SuiteSparse library allows us to manipulate sparse matrices stored in CSC format. Also, SuiteS-
parse routines are using SuiteSparse_long type. Then we provide routines to convert to SuiteS-
parse datatypes and from them to MatDense,MatCSR and IVector. We also wrap the spqr
routine which computes a QR factorization of a sparse matrix. So SPQR() routines take as pa-
rameter a sparse matrix A and return Q and R plus a column permutation vector e. All sparse
matrices are represented by cholmod_sparse datatype.

Moreover, since we need in SpTSQR to send and receive cholmod_sparse matrices, we have
routines that wrap MPI communication. Note that these routines end with ’_l’, denoting the
usage of long instead of integer. We first create an MPI_Datatype MPI_CHOLMOD to
reduce the number of messages sent when a communication involving a cholmod_sparse occurs.

• cholmodSendSparse_l takes the matrix to send A_in plus the destination dest, a tag of
communication tag and the communicator comm.

• cholmodSendPartialSparse_l is an improvement of the previous routine which can send
a subset of columns of A_in of size ncol starting at the column offset. The purpose of
this routine is to avoid to extract the column panel before sending it.

• cholmodRecvSparse_l routine takes the source src and the tag tag and receives in A_io
the sparse matrix using the communicator comm.

These routines allow us easily to apply the abstractTree concept on cholmod_sparse datatype.

Conclusion
In this chapter, we have presented CPaLAMeM, a library that is used to develop the codes pre-
sented in this thesis. The library offers a collection of routines that manipulate basic mathemati-
cal structures as matrices and vectors. The library is interfaced with external libraries as Petsc or
SuiteSparse. CPaLAMeM has been used to develop a parallel implementation of Enlarged GM-
RES (Al Daas et al., 2018) and Enlarged CG (Grigori and Tissot, 2017), that scale up to 8k and
16k, respectively. The library can be downloaded at https://github.com/cayrols/CPaLAMeM,
and is also part of the preAlps library, one of the main libraries developed by Alpines team.



Chapter 7
Conclusion

In this manuscript, we gave details of two methods that can be used in the context of a sparse
linear system of equations Ax = b. In Chapter 3, we presented CA-ILU(k), a communication
avoiding preconditioner based on the incomplete LU factorization that use an overlapping tech-
nique to factor the diagonal blocks of A, and to apply it at each GMRES iteration without
communication. The parallel experiments have shown that CA-ILU(k) outperforms, in general,
the Block Jacobi preconditioner, while the Restricted Additive Schwarz preconditioner is, how-
ever, the most efficient in term of number of iterations and time to solve on most of the problems.
The main issue here is that the value of k impacts drastically the size of the overlap and so the
overall performance of GMRES. On the other hand, the variant of CA-ILU(k) that computes
the LU factorization of the augmented block rows outperforms both other preconditioners on
half of the problems studied here. A future investigation is to reintroduce local communication
when the size of the overlap is too large. By local communication, we mean communication with
neighbors. That is, the overlapping data stored by the MPI process come from MPI processes
that are located far away from it, in the network sense. This approach would be promising if
the number of saved Flops is greater than the cost of this local communication. Instead of using
the distance as a metric, we could consider the minimization of the communication. We believe
that the best solution is using a mix of both metrics.

In Chapter 4, we introduced LU-CRTP, a low-rank approximation method based on a block
LU factorization of A. The key idea is to use QRTP, the QR factorization with Tournament
Pivoting that selects a subset of columns of A and A>. The experimental results enlighten
that along with the LU factorization, the algorithm is able to compute an approximation of the
singular values of A with a maximum relative error lower than two orders of magnitudes. Since
the QRTP algorithm is also a building block of the Communication-Avoiding Rank Revealing
QR factorization, we enhanced the algorithm in Chapter 5. Our purpose was to reduce the
number of redundant computations, performed at each iteration of LU-CRTP and CARRQR. To
do so, a mechanism selects a subset of the columns of A that are discarded with respect to our
τ_rank criterion. The extensive experiments show that for different values of τ , the low-rank
approximation is not degraded. Moreover, in comparison with CARRQR, our variant performs
up to 36 times fewer Flops during the update of the trailing matrix than CARRQR. The next
step would be to have a parallel implementation of this modification and to measure the speedup
obtained in real-world applications like neural networks.

Throughout this thesis, we have developed a library named CPaLAMeM. A C parallel library
that targets the development of research parallel codes in a convenient way. We observed that
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the library led to the short development of two codes Enlarged GMRES and Enlarged CG, which
scale up to 8k and 16k MPI processes, respectively. The library is also integrated into the preAlps
library, a collection of efficient communication avoiding solvers and preconditioners in parallel.
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A.1 Additional experimental results when k = 0

In this section, we present additional results about the parallel efficiency of CA-ILU(0) compared
with BJacobi and RAS with one and two levels of overlap.

nsubdomain preconditioner niter relative residual ||b−Ax||2
||b||2

||x−xs||2
||xs||2

Reference 1638 9.98e-07 9.98e-07 1.78e-06

np = 16 BJacobi 345 2.55e-06 4.71e-07 3.54e-07
CAILU(0) 276 2.57e-06 4.80e-07 4.79e-07

RAS(1) 264 2.56e-06 4.67e-07 2.29e-07
RAS(2) 261 2.58e-06 4.39e-07 2.13e-07

np = 32 BJacobi 348 2.51e-06 4.68e-07 3.60e-07
CAILU(0) 280 2.48e-06 4.69e-07 5.25e-07

RAS(1) 266 2.45e-06 4.58e-07 2.36e-07
RAS(2) 260 2.49e-06 4.17e-07 2.03e-07

np = 64 BJacobi 349 2.50e-06 4.94e-07 3.27e-07
CAILU(0) 286 2.49e-06 4.60e-07 6.78e-07

RAS(1) 268 2.57e-06 4.79e-07 2.75e-07
RAS(2) 264 2.48e-06 4.36e-07 2.26e-07

np = 128 BJacobi 354 2.48e-06 5.08e-07 3.73e-07
CAILU(0) 305 2.54e-06 4.56e-07 8.06e-07

RAS(1) 270 2.54e-06 4.81e-07 3.01e-07
RAS(2) 265 2.50e-06 4.43e-07 2.40e-07

np = 256 BJacobi 357 2.51e-06 5.43e-07 4.37e-07
CAILU(0) 326 2.50e-06 5.08e-07 6.52e-07

RAS(1) 275 2.52e-06 4.99e-07 4.05e-07
RAS(2) 267 2.51e-06 4.64e-07 2.56e-07

Table A.1 – Comparison of CA-ILU(0) with BJacobi and RAS on the problem of matvf2dAD400400
for a number of blocs goes from 16 to 256. GMRES is set with a maximum of 3000 iterations, a restart
of 200 and a relative tolerance of 1e− 6
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nsubdomain preconditioner niter relative residual ||b−Ax||2
||b||2

||x−xs||2
||xs||2

Reference 3000 4.70e-06 4.70e-06 2.15e-03

np = 16 BJacobi 1273 1.48e-06 2.19e-07 9.36e-04
CAILU(0) 1678 1.47e-06 2.11e-07 1.18e-03

RAS(1) 1398 1.48e-06 1.51e-07 1.01e-03
RAS(2) 1289 1.48e-06 1.46e-07 1.02e-03

np = 32 BJacobi 1281 1.45e-06 3.06e-07 8.97e-04
CAILU(0) 1967 1.43e-06 2.36e-07 1.31e-03

RAS(1) 1449 1.47e-06 1.55e-07 1.03e-03
RAS(2) 1526 1.46e-06 1.55e-07 1.05e-03

np = 64 BJacobi 1589 1.41e-06 3.78e-07 9.22e-04
CAILU(0) 2326 1.35e-06 2.58e-07 1.46e-03

RAS(1) 1550 1.43e-06 1.98e-07 1.10e-03
RAS(2) 1587 1.43e-06 1.66e-07 1.12e-03

np = 128 BJacobi 1786 1.38e-06 3.76e-07 1.01e-03
CAILU(0) 2197 1.33e-06 2.73e-07 1.54e-03

RAS(1) 1730 1.42e-06 2.14e-07 1.18e-03
RAS(2) 1874 1.42e-06 1.74e-07 1.21e-03

np = 256 BJacobi 2105 1.35e-06 3.62e-07 1.09e-03
CAILU(0) 2450 1.30e-06 2.67e-07 1.58e-03

RAS(1) 1786 1.39e-06 2.45e-07 1.25e-03
RAS(2) 1896 1.40e-06 2.01e-07 1.28e-03

np = 512 BJacobi 2503 1.33e-06 3.96e-07 1.14e-03
CAILU(0) 2521 1.30e-06 2.68e-07 1.61e-03

RAS(1) 1994 1.37e-06 2.08e-07 1.31e-03
RAS(2) 1977 1.37e-06 2.12e-07 1.35e-03

Table A.2 – Comparison of CA-ILU(0) with BJacobi and RAS on the problem Elasticity3D4001010
for a number of partitions goes from 16 to 512. GMRES is set with a maximum of 3000 iterations, a
restart of 200 and a relative tolerance of 1e− 6

nsubdomain preconditioner niter relative residual ||b−Ax||2
||b||2

||x−xs||2
||xs||2

Reference 3000 4.70e-06 4.70e-06 2.15e-03

np = 16 CAILU(0) 1678 1.47e-06 2.11e-07 1.18e-03
BJacobi_permuted 1554 1.47e-06 3.63e-07 1.08e-03
RAS(2)_permuted 1678 1.47e-06 2.11e-07 1.18e-03

np = 32 CAILU(0) 1967 1.43e-06 2.36e-07 1.31e-03
BJacobi_permuted 1817 1.43e-06 3.52e-07 1.12e-03
RAS(2)_permuted 1967 1.43e-06 2.36e-07 1.31e-03

np = 64 CAILU(0) 2326 1.35e-06 2.58e-07 1.46e-03
BJacobi_permuted 2474 1.35e-06 3.88e-07 1.23e-03
RAS(2)_permuted 2326 1.35e-06 2.59e-07 1.46e-03

np = 128 CAILU(0) 2197 1.33e-06 2.73e-07 1.54e-03
BJacobi_permuted 2229 1.32e-06 4.25e-07 1.30e-03
RAS(2)_permuted 2205 1.33e-06 2.77e-07 1.53e-03

np = 256 CAILU(0) 2450 1.30e-06 2.67e-07 1.58e-03
BJacobi_permuted 2016 1.29e-06 3.83e-07 1.33e-03
RAS(2)_permuted 2474 1.31e-06 2.70e-07 1.57e-03

np = 512 CAILU(0) 2521 1.30e-06 2.68e-07 1.61e-03
BJacobi_permuted 2385 1.27e-06 5.08e-07 1.33e-03
RAS(2)_permuted 2464 1.30e-06 2.76e-07 1.59e-03

Table A.3 – Comparison of CA-ILU(0) with BJacobi_permuted and RAS(2)_permuted, both using the
permutation computed by CA-ILU(0), on the problem Elasticity3D4001010 for a number of partitions
goes from 16 to 512. GMRES is set with a maximum of 3000 iterations, a restart of 200 and a relative
tolerance of 1e− 6
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nsubdomain preconditioner niter relative residual ||b−Ax||2
||b||2

||x−xs||2
||xs||2

Reference 2750 1.00e-06 1.00e-06 1.94e-06

np = 16 BJacobi 537 1.33e-06 3.67e-07 3.07e-07
CAILU(0) 463 1.34e-06 3.59e-07 2.88e-07

RAS(1) 474 1.35e-06 3.60e-07 2.92e-07
RAS(2) 458 1.34e-06 3.58e-07 2.99e-07

np = 32 BJacobi 539 1.34e-06 3.70e-07 3.33e-07
CAILU(0) 461 1.35e-06 3.63e-07 2.94e-07

RAS(1) 476 1.34e-06 3.58e-07 2.91e-07
RAS(2) 456 1.35e-06 3.58e-07 2.95e-07

np = 64 BJacobi 532 1.33e-06 3.74e-07 3.18e-07
CAILU(0) 463 1.34e-06 3.56e-07 2.94e-07

RAS(1) 472 1.34e-06 3.56e-07 2.65e-07
RAS(2) 455 1.34e-06 3.58e-07 2.68e-07

np = 128 BJacobi 535 1.34e-06 3.83e-07 3.30e-07
CAILU(0) 455 1.35e-06 3.57e-07 2.71e-07

RAS(1) 481 1.34e-06 3.58e-07 3.00e-07
RAS(2) 463 1.35e-06 3.58e-07 3.15e-07

np = 256 BJacobi 516 1.33e-06 3.83e-07 3.54e-07
CAILU(0) 462 1.35e-06 3.51e-07 3.11e-07

RAS(1) 462 1.34e-06 3.57e-07 2.81e-07
RAS(2) 436 1.34e-06 3.54e-07 2.62e-07

np = 512 BJacobi 535 1.32e-06 3.96e-07 3.49e-07
CAILU(0) 407 1.36e-06 3.46e-07 3.09e-07

RAS(1) 476 1.34e-06 3.56e-07 3.09e-07
RAS(2) 471 1.35e-06 3.55e-07 3.42e-07

Table A.4 – Comparison of CA-ILU(0) with BJacobi and RAS on the problem parabolic_fem for a
number of partitions goes from 16 to 512. GMRES is set with a maximum of 3000 iterations, a restart
of 200 and a relative tolerance of 1e− 6

nsubdomain preconditioner niter relative residual ||b−Ax||2
||b||2

||x−xs||2
||xs||2

Reference 1683 9.99e-07 9.99e-07 1.95e-05

np = 16 BJacobi 512 2.04e-06 3.24e-07 3.74e-06
CAILU(0) 550 2.02e-06 3.13e-07 4.14e-06

RAS(1) 514 2.05e-06 2.95e-07 3.64e-06
RAS(2) 497 2.04e-06 2.84e-07 3.46e-06

np = 32 BJacobi 537 2.01e-06 3.60e-07 4.21e-06
CAILU(0) 572 2.01e-06 3.35e-07 4.21e-06

RAS(1) 547 2.03e-06 2.91e-07 3.94e-06
RAS(2) 521 2.03e-06 3.00e-07 3.67e-06

np = 64 BJacobi 566 2.00e-06 3.94e-07 4.42e-06
CAILU(0) 534 2.00e-06 3.56e-07 4.45e-06

RAS(1) 523 2.04e-06 3.03e-07 3.83e-06
RAS(2) 505 2.04e-06 2.95e-07 3.60e-06

np = 128 BJacobi 583 1.95e-06 4.29e-07 4.43e-06
CAILU(0) 545 1.98e-06 3.69e-07 4.56e-06

RAS(1) 543 1.99e-06 3.04e-07 4.00e-06
RAS(2) 513 1.99e-06 3.01e-07 3.65e-06

np = 256 BJacobi 654 1.87e-06 4.42e-07 4.63e-06
CAILU(0) 567 2.02e-06 3.98e-07 4.73e-06

RAS(1) 579 1.97e-06 3.06e-07 3.82e-06
RAS(2) 537 1.98e-06 3.06e-07 3.92e-06

Table A.5 – Comparison of CA-ILU(0) with BJacobi and RAS on the problem of SPE10 for a number
of partitions goes from 16 to 512. GMRES is set with a maximum of 3000 iterations, a restart of 200
and a relative tolerance of 1e− 6
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nsubdomain preconditioner niter relative residual ||b−Ax||2
||b||2

||x−xs||2
||xs||2

Reference 399 9.94e-07 9.94e-07 2.13e-04

np = 16 BJacobi 364 1.31e-06 2.80e-07 6.62e-05
CAILU(0) 337 1.27e-06 2.95e-07 6.05e-05

RAS(1) 304 1.31e-06 2.71e-07 6.37e-05
RAS(2) 294 1.29e-06 2.69e-07 6.20e-05

np = 32 BJacobi 363 1.32e-06 2.96e-07 6.96e-05
CAILU(0) 336 1.31e-06 3.07e-07 6.52e-05

RAS(1) 305 1.32e-06 2.76e-07 6.47e-05
RAS(2) 295 1.33e-06 2.76e-07 6.50e-05

np = 64 BJacobi 363 1.30e-06 2.88e-07 6.80e-05
CAILU(0) 336 1.31e-06 2.99e-07 6.61e-05

RAS(1) 309 1.30e-06 2.67e-07 6.19e-05
RAS(2) 301 1.31e-06 2.73e-07 6.34e-05

np = 128 BJacobi 362 1.31e-06 3.12e-07 7.31e-05
CAILU(0) 342 1.29e-06 3.15e-07 6.73e-05

RAS(1) 337 1.30e-06 2.69e-07 6.08e-05
RAS(2) 308 1.33e-06 2.71e-07 6.40e-05

np = 256 BJacobi 372 1.27e-06 3.38e-07 8.09e-05
CAILU(0) 347 1.29e-06 3.31e-07 7.43e-05

RAS(1) 337 1.28e-06 2.87e-07 6.20e-05
RAS(2) 311 1.33e-06 2.81e-07 6.48e-05

Table A.6 – Comparison of CA-ILU(0) with BJacobi and RAS on the problem of 3DSKY100P1 for a
number of partitions goes from 16 to 256. GMRES is set with a maximum of 3000 iterations, a restart
of 200 and a relative tolerance of 1e− 6

nsubdomain preconditioner niter relative residual ||b−Ax||2
||b||2

||x−xs||2
||xs||2

Reference 399 9.94e-07 9.94e-07 1.50e-04

np = 16 BJacobi 440 1.32e-06 2.68e-07 7.37e-05
CAILU(0) 359 1.30e-06 2.76e-07 6.77e-05

RAS(1) 351 1.33e-06 2.59e-07 6.68e-05
RAS(2) 348 1.33e-06 2.47e-07 6.67e-05

np = 32 BJacobi 402 1.32e-06 2.74e-07 7.25e-05
CAILU(0) 360 1.32e-06 2.81e-07 7.00e-05

RAS(1) 352 1.32e-06 2.56e-07 6.69e-05
RAS(2) 352 1.32e-06 2.52e-07 6.69e-05

np = 64 BJacobi 439 1.32e-06 2.84e-07 7.50e-05
CAILU(0) 369 1.30e-06 2.86e-07 6.99e-05

RAS(1) 349 1.33e-06 2.58e-07 6.75e-05
RAS(2) 350 1.33e-06 2.53e-07 6.73e-05

np = 128 BJacobi 398 1.31e-06 2.95e-07 7.55e-05
CAILU(0) 372 1.31e-06 2.92e-07 7.22e-05

RAS(1) 347 1.32e-06 2.60e-07 6.79e-05
RAS(2) 350 1.32e-06 2.54e-07 6.71e-05

np = 256 BJacobi 399 1.31e-06 3.07e-07 7.69e-05
CAILU(0) 345 1.30e-06 3.01e-07 7.40e-05

RAS(1) 349 1.32e-06 2.63e-07 6.86e-05
RAS(2) 348 1.32e-06 2.58e-07 6.79e-05

np = 512 BJacobi 395 1.29e-06 3.21e-07 7.91e-05
CAILU(0) 347 1.29e-06 3.17e-07 7.53e-05

RAS(1) 351 1.32e-06 2.63e-07 6.96e-05
RAS(2) 348 1.32e-06 2.60e-07 6.80e-05

Table A.7 – Comparison of CA-ILU(0) with BJacobi and RAS on the problem of 3DSKY150P1 for a
number of partitions goes from 16 to 512. GMRES is set with a maximum of 3000 iterations, a restart
of 200 and a relative tolerance of 1e− 6
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Domain size Overlap size

PC mean min max mean min max

np = 16 CAILU(0) 10000 9979 10025 7.45e+02 4.71e+02 1.12e+03
RAS(1) - - - 3.29e+02 2.00e+02 4.62e+02
RAS(2) - - - 6.48e+02 3.99e+02 9.07e+02

np = 32 CAILU(0) 5000 4939 5044 6.17e+02 2.88e+02 9.65e+02
RAS(1) - - - 2.56e+02 1.41e+02 3.65e+02
RAS(2) - - - 5.08e+02 2.80e+02 7.23e+02

np = 64 CAILU(0) 2500 2473 2547 5.02e+02 2.05e+02 8.30e+02
RAS(1) - - - 1.91e+02 1.01e+02 2.45e+02
RAS(2) - - - 3.79e+02 2.00e+02 4.88e+02

np = 128 CAILU(0) 1250 1220 1287 3.84e+02 1.47e+02 5.77e+02
RAS(1) - - - 1.38e+02 7.20e+01 1.71e+02
RAS(2) - - - 2.75e+02 1.44e+02 3.39e+02

np = 256 CAILU(0) 625 606 643 2.92e+02 1.02e+02 5.07e+02
RAS(1) - - - 9.92e+01 5.00e+01 1.30e+02
RAS(2) - - - 2.00e+02 1.00e+02 2.62e+02

Table A.8 – Comparison of the overlap of CA-ILU(0) with RAS on matvf2dAD400400 for different
number of partitions.

Domain size Overlap size

PC mean min max mean min max

np = 16 CAILU(0) 68401 68385 68414 1.62e+04 1.17e+04 2.25e+04
RAS(1) - - - 5.49e+03 4.58e+03 6.51e+03
RAS(2) - - - 1.11e+04 9.27e+03 1.32e+04

np = 32 CAILU(0) 34200 34055 34244 1.25e+04 7.68e+03 1.80e+04
RAS(1) - - - 3.93e+03 2.65e+03 4.56e+03
RAS(2) - - - 8.01e+03 5.45e+03 9.33e+03

np = 64 CAILU(0) 17100 17021 17146 1.04e+04 4.55e+03 2.12e+04
RAS(1) - - - 2.81e+03 1.78e+03 3.89e+03
RAS(2) - - - 5.74e+03 3.59e+03 7.93e+03

np = 128 CAILU(0) 8550 8472 8665 8.63e+03 3.22e+03 1.82e+04
RAS(1) - - - 1.91e+03 1.15e+03 2.58e+03
RAS(2) - - - 3.93e+03 2.32e+03 5.30e+03

np = 256 CAILU(0) 4275 4202 4368 7.25e+03 2.37e+03 1.79e+04
RAS(1) - - - 1.28e+03 7.09e+02 1.76e+03
RAS(2) - - - 2.67e+03 1.47e+03 3.68e+03

np = 512 CAILU(0) 2137 2075 2201 6.80e+03 1.57e+03 1.69e+04
RAS(1) - - - 8.46e+02 4.21e+02 1.15e+03
RAS(2) - - - 1.79e+03 8.73e+02 2.45e+03

Table A.9 – Comparison of the overlap of CA-ILU(0) with RAS on SPE10 for different number of
partitions.
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Domain size Overlap size

PC mean min max mean min max

np = 16 CAILU(0) 62500 62487 62509 1.77e+04 9.74e+03 3.16e+04
RAS(1) - - - 6.09e+03 4.44e+03 8.11e+03
RAS(2) - - - 1.22e+04 8.92e+03 1.62e+04

np = 32 CAILU(0) 31250 31237 31268 1.57e+04 7.19e+03 2.87e+04
RAS(1) - - - 4.28e+03 2.80e+03 5.84e+03
RAS(2) - - - 8.65e+03 5.57e+03 1.19e+04

np = 64 CAILU(0) 15625 15612 15648 1.19e+04 4.66e+03 2.58e+04
RAS(1) - - - 2.80e+03 1.74e+03 3.76e+03
RAS(2) - - - 5.71e+03 3.52e+03 7.73e+03

np = 128 CAILU(0) 7812 7792 7842 1.11e+04 2.69e+03 2.48e+04
RAS(1) - - - 1.96e+03 1.16e+03 2.55e+03
RAS(2) - - - 4.01e+03 2.34e+03 5.25e+03

np = 256 CAILU(0) 3906 3881 3986 8.84e+03 2.38e+03 2.00e+04
RAS(1) - - - 1.30e+03 7.41e+02 1.68e+03
RAS(2) - - - 2.70e+03 1.51e+03 3.52e+03

Table A.10 – Comparison of the overlap of CA-ILU(0) with RAS on 3DSKY100P1 for different number
of partitions.

Domain size Overlap size

PC mean min max mean min max

np = 16 CAILU(0) 210937 210504 217276 3.56e+04 2.31e+04 5.25e+04
RAS(2) - - - 2.75e+04 2.03e+04 3.79e+04
RAS(1) - - - 1.37e+04 1.02e+04 1.90e+04

np = 32 CAILU(0) 105468 105458 105482 2.99e+04 1.50e+04 5.35e+04
RAS(2) - - - 1.94e+04 1.30e+04 2.63e+04
RAS(1) - - - 9.69e+03 6.51e+03 1.31e+04

np = 64 CAILU(0) 52734 52715 52763 2.16e+04 9.93e+03 3.70e+04
RAS(2) - - - 1.28e+04 7.96e+03 1.75e+04
RAS(1) - - - 6.37e+03 3.99e+03 8.61e+03

np = 128 CAILU(0) 26367 26337 26387 1.70e+04 6.55e+03 3.37e+04
RAS(2) - - - 8.89e+03 4.95e+03 1.15e+04
RAS(1) - - - 4.39e+03 2.48e+03 5.66e+03

np = 256 CAILU(0) 13183 13163 13205 1.47e+04 3.96e+03 2.74e+04
RAS(2) - - - 5.88e+03 3.15e+03 7.61e+03
RAS(1) - - - 2.88e+03 1.56e+03 3.68e+03

np = 512 CAILU(0) 6591 6564 6616 1.11e+04 3.29e+03 2.32e+04
RAS(2) - - - 3.88e+03 2.10e+03 5.00e+03
RAS(1) - - - 1.88e+03 1.03e+03 2.41e+03

Table A.11 – Comparison of the overlap of CA-ILU(0) with RAS on 3DSKY150P1 for different number
of partitions.
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Figure A.1 – Comparison of CA-ILU(0) with BJacobi, RAS(1), RAS(2) and without a preconditioner
(labeled Reference), on the problem matvf2dAD400400 from 16 to 256 partitions. GMRES is set with
a maximum of 3000 iterations, a restart of 200 and a relative tolerance of 1e− 6.
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Figure A.2 – Comparison of CA-ILU(0) with BJacobi, RAS(1), RAS(2) and without a preconditioner
(labeled Reference), on the problem Elasticity3D4001010 from 16 to 256 partitions. GMRES is set with
a maximum of 3000 iterations, a restart of 200 and a relative tolerance of 1e− 6.
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Figure A.3 – Comparison of CA-ILU(0) with BJacobi, RAS(1), RAS(2) and without a preconditioner
(labeled Reference), on the problem parabolic_fem from 16 to 512 partitions. GMRES is set with a
maximum of 3000 iterations, a restart of 200 and a relative tolerance of 1e− 6.
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Figure A.4 – Comparison of CA-ILU(0) with BJacobi, RAS(1), RAS(2) and without a preconditioner
(labeled Reference), on the problem 3DSKY100P1 from 16 to 512 partitions. GMRES is set with a
maximum of 3000 iterations, a restart of 200 and a relative tolerance of 1e− 6.
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Figure A.5 – Comparison of CA-ILU(0) with BJacobi, RAS(1), RAS(2) and without a preconditioner
(labeled Reference), on the problem SPE10 from 16 to 512 partitions. GMRES is set with a maximum
of 3000 iterations, a restart of 200 and a relative tolerance of 1e− 6.
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Figure A.6 – Comparison of CA-ILU(0) with BJacobi, RAS(1), RAS(2) and without a preconditioner
(labeled Reference), on the problem 3DSKY150P1 from 16 to 512 partitions. GMRES is set with a
maximum of 3000 iterations, a restart of 200 and a relative tolerance of 1e− 6.
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nsubdomain preconditioner niter relative residual ||b−Ax||2
||b||2

||x−xs||2
||xs||2

cond(M−1A)
||A−LU||2
||A||2

References No precond 350 9.8e-09 9.8e-09 3.6e-08 2.4e+04 0.0e+00
ILU(0) NatOrder 142 9.8e-09 1.9e-09 2.1e-07 3.4e+03 7.4e-02

np = 2 ILU(0) Kway 161 1.0e-08 1.8e-09 1.6e-07 1.4e+04 1.5e-01
CAILU(0) 180 1.0e-08 1.8e-09 3.6e-07 1.8e+04 2.0e-01
BJacobi-ilu(0) 196 9.8e-09 1.7e-09 3.6e-07 2.2e+04 2.2e-01

np = 4 ILU(0) Kway 156 9.3e-09 1.8e-09 2.0e-07 1.3e+04 1.5e-01
CAILU(0) 170 9.0e-09 2.0e-09 1.2e-07 2.3e+04 2.2e-01
BJacobi-ilu(0) 187 9.7e-09 2.1e-09 1.6e-07 2.4e+04 2.2e-01
RAS(2)-ilu(0) 161 9.8e-09 2.1e-09 2.6e-07 1.2e+04 -

np = 8 ILU(0) Kway 166 9.3e-09 2.0e-09 1.3e-07 1.6e+04 1.8e-01
CAILU(0) 181 9.1e-09 1.9e-09 1.6e-07 2.1e+04 2.2e-01
BJacobi-ilu(0) 203 9.8e-09 2.0e-09 1.9e-07 2.5e+04 2.6e-01
RAS(2)-ilu(0) 177 9.5e-09 2.1e-09 1.6e-07 1.5e+04 -

np = 16 ILU(0) Kway 160 1.0e-08 1.9e-09 1.3e-07 1.1e+04 1.5e-01
CAILU(0) 185 9.5e-09 2.0e-09 1.7e-07 2.1e+04 2.3e-01
BJacobi-ilu(0) 207 9.5e-09 2.1e-09 1.8e-07 2.4e+04 2.5e-01
RAS(2)-ilu(0) 177 9.3e-09 2.0e-09 1.9e-07 1.0e+04 -

Table A.12 – Comparison of the stability of CA-ILU(k) with BJacobi and RAS for k = 0 on the
problem of Non-homogeneous 2D 200x200 for different number of partitions np. As references, the
system is solved without preconditioner and with sequential ILU(0) preconditioner.

nsubdomain preconditioner niter relative residual ||b−Ax||2
||b||2

||x−xs||2
||xs||2

cond(M−1A)
||A−LU||2
||A||2

References No precond 350 9.8e-09 9.8e-09 3.6e-08 2.4e+04 0.0e+00
ILU(0) NatOrder 142 9.8e-09 1.9e-09 2.1e-07 3.4e+03 7.4e-02

np = 2 ILU(1) Kway 109 9.4e-09 8.1e-10 1.2e-07 1.4e+04 7.2e-02
CAILU(1) 120 8.6e-09 9.4e-10 8.4e-08 1.6e+04 7.7e-02
BJacobi-ilu(1) 142 9.5e-09 1.4e-09 9.5e-08 3.4e+04 2.1e-01

np = 4 ILU(1) Kway 108 9.6e-09 8.0e-10 2.0e-07 1.5e+04 7.4e-02
CAILU(1) 115 9.1e-09 8.6e-10 2.0e-07 1.8e+04 9.0e-02
BJacobi-ilu(1) 137 9.5e-09 1.1e-09 2.1e-07 3.6e+04 2.1e-01
RAS(2)-ilu(1) 118 9.8e-09 1.2e-09 1.5e-07 1.4e+04 -

np = 8 ILU(1) Kway 108 9.1e-09 1.1e-09 9.2e-08 1.3e+04 7.7e-02
CAILU(1) 122 9.6e-09 1.1e-09 1.4e-07 1.7e+04 9.2e-02
BJacobi-ilu(1) 148 9.4e-09 1.6e-09 9.2e-08 3.7e+04 2.5e-01
RAS(2)-ilu(1) 118 9.5e-09 1.2e-09 1.6e-07 1.4e+04 -

np = 16 ILU(1) Kway 113 9.2e-09 1.1e-09 9.4e-08 1.5e+04 8.4e-02
CAILU(1) 125 8.4e-09 1.1e-09 7.4e-08 1.6e+04 9.5e-02
BJacobi-ilu(1) 153 9.5e-09 1.7e-09 9.8e-08 3.6e+04 2.3e-01
RAS(2)-ilu(1) 122 8.1e-09 1.3e-09 8.6e-08 1.4e+04 -

Table A.13 – Comparison of the stability of CA-ILU(k) with BJacobi and RAS for k = 1 on the
problem of Non-homogeneous 2D 200x200 for different number of partitions np. As references, the
system is solved without preconditioner and with sequential ILU(1) preconditioner.
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nsubdomain preconditioner niter relative residual ||b−Ax||2
||b||2

||x−xs||2
||xs||2

Reference 1683 9.99e-07 9.99e-07 1.95e-05

n = 16 BJacobi 352 2.59e-06 3.23e-07 9.46e-07
CAILU(1) 329 2.64e-06 2.26e-07 1.08e-06

RAS(2) 321 2.63e-06 2.01e-07 1.15e-06
RAS(3) 316 2.56e-06 1.73e-07 1.21e-06

n = 32 BJacobi 366 2.53e-06 3.48e-07 9.81e-07
CAILU(1) 343 2.48e-06 2.44e-07 8.98e-07

RAS(2) 328 2.55e-06 2.24e-07 9.73e-07
RAS(3) 323 2.57e-06 2.02e-07 1.08e-06

n = 64 BJacobi 373 2.50e-06 4.05e-07 1.13e-06
CAILU(1) 350 2.63e-06 2.83e-07 9.42e-07

RAS(2) 335 2.56e-06 2.55e-07 8.99e-07
RAS(3) 327 2.56e-06 2.10e-07 1.00e-06

n = 128 BJacobi 382 2.46e-06 5.09e-07 2.01e-06
CAILU(1) 361 2.44e-06 2.99e-07 9.38e-07

RAS(2) 340 2.59e-06 2.61e-07 8.88e-07
RAS(3) 335 2.58e-06 2.28e-07 9.49e-07

n = 256 BJacobi 435 2.34e-06 4.39e-07 1.93e-06
CAILU(1) 365 2.41e-06 2.76e-07 8.79e-07

RAS(2) 350 2.56e-06 2.90e-07 8.25e-07
RAS(3) 340 2.52e-06 2.37e-07 9.08e-07

Table A.14 – Comparison of CA-ILU(1) with BJacobi and RAS on the problem of SPE10 for a number
of partitions increasing from 16 to 512. GMRES is set with a maximum of 3000 iterations, a restart of
200 and a relative tolerance of 1e− 6.
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Figure A.7 – Comparison of CA-ILU(0) with BJacobi-ilu(1), RAS(2)-ilu(1) and RAS(3)-ilu(1) on the
problem SPE10 from 16 to 512 partitions. GMRES is set with a maximum of 3000 iterations, a restart
of 200 and a relative tolerance of 1e− 6.
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B.1 Appendix
Impact of using the diagonal elements of R instead of computing the SVD of R

To obtain an approximation of the singular values of a matrix A, Algorithm 4.1 uses the absolute
diagonal elements of Ri,i, where Ri,i is the triangular factor returned by QRCP applied on the k
selected columns, at iteration i of the algorithm. In the following, we compare the accuracy of the
approximate singular values of LU-CRTP with variants of LU-CRTP that use a different way to
compute them. The first variant computes the singular values of Ri,i using the SVD algorithm,
and is denoted as SV D(Ri,i). The second variant computes the Singular Value Decomposition
of Ui,i whereas the third variant computes the Singular Value Decomposition of Li,iUi,i. The
last two variants are referred to as SV D(Ui,i) and SV D(Li,iUi,i), respectively. Figures B.1a
and B.1b compare the average ratios, its minimum and maximum, of each variant and for each
matrix, with LU-CRTP with DIAG(Ri,i), with k = 16 and nSV = 64. First, the computation of
the singular values of Ri,i reduces the error on the minimum ratios, compared to the minimum
ratios of LU-CRTP with DIAG(Ri,i). However, the maximum ratios are equivalent for both
methods. When considering Ui,i and Li,iUi,i instead of Ri,i, we observe that the minimum ratios
are degraded and are smaller than 10−1, and the maximum ratios are not enhanced. Figures
B.2a and B.2b present the results on the same tests as above, with nSV = 128 and nSV = 256.
As for nSV = 64, the smallest minimum ratios for SV D(Ri,i) do not reach 10−1 whereas, for few
matrices, LU-CRTP has an error that reaches this limit. However, the largest maximum ratios
for SV D(Ri,i) are worse than for LU-CRTP, for several matrices (id 5, 6, 11, 14). Again, the
smallest minimum ratios for SV D(Ui,i) and SV D(Li,iUi,i) are smaller than 10−1 and even closer
to 10−2, whereas these ratios are at most of 10−1 for LU-CRTP with DIAG(Ri,i). The largest
maximum ratios for these two last variants are the same as LU-CRTP. Therefore, LU-CRTP
using the diagonal elements of Ri,i to approximate the singular values does not degrade the
accuracy of the maximum ratios, in comparison with SV D(Ri,i). Moreover, the cost to obtain
them is just a copy of the diagonal elements instead of computing an SVD.
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Figure B.1 – Comparison of different methods used by LU-CRTP to compute the ASV. Matrix size is
256, k = 16 and nSV = 64.



B.1. Appendix 187

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
IA

G
(R

i,
i)

10 -1

10 0

10 1

Mean

Min

Max

n

Matrices
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
V

D
(R

i,
i)

10 -1

10 0

10 1

10 2

Mean

Min

Max

n

(a) Diagonal of R versus SVD of R.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
IA

G
(R

i,
i)

10 -1

10 0

10 1

Mean

Min

Max

n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
V

D
(U

i,
i)

10 -2

10 -1

10 0

10 1

Mean

Min

Max

n

Matrices
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
V

D
(L

i,
i*U

i,
i)

10 -2

10 -1

10 0

10 1

Mean

Min

Max

n

(b) Diagonal of R versus SVD of Ui,i versus SVD of Li,iUi,i.

Figure B.2 – Comparison of different methods used by LU-CRTP to compute the ASV. Matrix size is
256, k = 16 and nSV ∈ {128, 256}.
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Algorithm B.1 LUp(A,nSV )
This function computes the partial LU reducing
the fill-in of the factors
Input: A the matrix
Input: nSV The number of Singular values as reference
Output: fI The fill-in induced the factorization
p ← amd(A)
C ← spones(A)+spones(A′)
[∼ ,q] ← etree(C(p,p))
p ← p(q)
Ap ← A(p,p)
[L,U ] ← LU(Ap)
fI ← nnz(L(:, 1 : nSV ))+nnz(U(1 : nSV, :))

id matrix name id matrix name id matrix name

1 wing_100 3 wing_500 4 wing_1000
9 GD98_a 10 n3c6-b1 11 GD96_b
12 football 13 GD06_theory 19 bcsstm01
22 rel5 23 relat5 24 GD01_c
31 GD95_a 33 GD95_b 35 GlossGT
37 ch6-6-b1 38 n3c5-b2 39 i_laplace_500
40 ch7-6-b1 41 i_laplace_1000 43 mk10-b1
44 GD99_b 50 ch7-7-b1 54 wheel_5_1
55 mk11-b1 56 ch4-4-b2 57 GL7d11
59 GD97_c 60 GD99_c 62 bcsstm04
64 Sandi_authors 65 bcsstm03 67 GD96_d
73 GD98_b 77 SmallW 78 D_5
79 can_144 87 n4c5-b10 89 GL6_D_10
94 abb313 96 D_11 101 GD01_a
102 GD01_A 103 GL6_D_6 104 lock_700
106 Harvard500 107 Maragal_2 109 GD00_a
116 lpi_ex72a 117 lp_brandy 122 lpi_box1
125 GL6_D_9 127 lp_bore3d 128 dwt_245
129 Sandi_sandi 135 bcspwr04 137 n2c6-b9
141 cat_ears_4_1 142 GD00_c 143 lp_tuff
144 IG5-9 145 lpi_mondou2 146 GL6_D_7
148 D_10 149 GL6_D_8 150 D_6
153 lp_scorpion 154 lp_standgub 155 lp_ship04s
156 flower_7_1 157 dwt_419 158 model2
182 Erdos971 199 Erdos981 212 Erdos991
216 mbeause 217 mbeacxc 218 mbeaflw
219 beacxc 220 beause 221 beaflw
224 dwt_512 225 flower_8_1 227 D_9
229 dwt_992 233 IG5-10 234 lp_shell
241 heat_1000 242 lp_bnl1 244 lp_modszk1
245 dwt_758 247 dwg961a 249 lp_25fv47
252 dwt_869 257 Roget

Table B.2 – List of matrices where the maximum absolute element of L21 is greater than sqrt(n) where
n is the number of columns of the matrix or a NaN . Here id is the identifier of the matrix in ids shown
on the MATLAB code.
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Figure B.3 – Accuracy of the approximate singular values computed by QRCP, LU-CRQRCP and
LU-CRTP compared to the real singular values where the last k singular values have been removed.
Matrix size is 256, k = 16 and nSV = 256





Minimizing communication for incomplete factorizations and low-rank ap-
proximations on large scale computers

Abstract

The impact of the communication on the performance of numerical algorithms increases with the number
of cores. In the context of sparse linear systems of equations, solving Ax = b on a very large computer
with thousands of nodes requires the minimization of the communication to achieve very high efficiency
as well as low energy cost. The high level of sequentiality in the Incomplete LU factorization (ILU)
makes it difficult to parallelize. We first introduce in this manuscript a Communication-Avoiding ILU
preconditioner, denoted CA-ILU(k), that factors A in parallel and then is applied at each iteration of
a solver as GMRES, both steps without communication. Considering a row block of A, the key idea is
to gather all the required dependencies of the block so that the factorization and the application can be
done without communication. Experiments show that CA-ILU(k) preconditioner can be competitive with
respect to Block Jacobi and Restricted Additive Schwarz preconditioners. We then present a low-rank
algorithm named LU factorization with Column Row Tournament Pivoting (LU-CRTP). This algorithm
uses a tournament pivoting strategy to select a subset of columns of A that are used to compute the
block LU factorization of the permuted A as well as a good approximation of the singular values of A.
Extensive parallel and sequential tests show that LU-CRTP approximates the singular values with an
error close to that of the Rank Revealing QR factorization (RRQR), while the memory storage of the
factors in LU-CRTP is up to 200 times lower than of the factors in RRQR. In this context, we propose an
improvement of the tournament pivoting strategy that tends to reduce the number of Flops performed as
well as the communication. A column of A is discarded when this column is a linear combination of other
columns of A, with respect to a threshold τ . Extensive experiments show that this modification does
not degrade by much the accuracy of LU-CRTP. Moreover, compared to the Communication-Avoiding
variant of RRQR, our modification reduces the number of operations by a factor of up to 36.

Keywords: ilu factorization, low-rank approximation, preconditioner, reducing communication

Minimisation des commmunications lors de factorisations incomplètes et d’ap-
proximations de rang faible dans le contexte des grands supercalculateurs

Résumé

L’impact des communications sur les performances d’un code d’algèbre linéaire augmente avec le nombre
de processeurs. Dans le contexte de la résolution de systèmes d’équations linéaires creux, la résolution de
Ax = b, sur une machine composée de milliers de noeuds, nécessite la minimisation des communications
dans le but d’atteindre une grande efficacité tant en terme de calcul qu’en terme d’énergie consommée. La
factorisation LU, même incomplète, de la matrice A est connue pour être difficilement parallélisable. Ce
manuscrit présente CA-ILU(k), un nouveau préconditionneur qui minimise les communications autant
durant la phase de factorisation que durant son application à chaque itération d’un solveur tel que
GMRES. L’idée est de considérer un sous-ensemble de lignes de A et de lui adjoindre des données
de A tel que la factorisation du sous-ensemble, ainsi que l’application des facteurs obtenus, se fait sans
communication. Les expériences réalisées montre que CA-ILU(k) rivalise avec les préconditionneurs Block
Jacobi et Restricted Additive Schwarz en terme d’itérations. Nous présentons ensuite un algorithme
de rang faible appelé la factorisation LU couplée à une permutation des lignes et des colonnes, LU-
CRTP. Cet algorithme utilise une méthode par tournoi pour sélectionner un sous-ensemble de colonnes
de A, permettant la factorisation par bloc de la matrice A permutée, ainsi qu’une approximation des
valeurs singulières de A. Les test séquentiels puis parallèles ont permit de mettre en évidence que LU-
CRTP retourne une approximation des valeurs singulières avec une erreur proche de celle obtenue par
la factorisation QR révélant le rang de la matrice (RRQR). En outre, l’espace mémoire occupé par les
facteurs de LU-CRTP est jusqu’à 200 fois plus faible que dans le cas de RRQR. Toujours dans le cadre
d’une approximation de rang faible, nous proposons enfin une amélioration de la stratégie de pivotage
par tournoi qui réduit le nombre d’opérations effectuées ainsi que les communications. Une colonne
de A est retirée de la méthode si elle est une combinaison linéaire des autres colonnes de A, suivant
un critère τ . Des tests sur un grand nombre de matrices montrent que cette modification ne dégrade
pas significativement la précision de LU-CRTP. En outre, cette modification appliquée à la variante de
RRQR minimisant les communications réduit par un facteur de 36 le nombre d’opérations.

Mots clés : factorisation ilu, approximation de rang faible, préconditionneur, réduction des communi-
cationsLaboratoire Jacques-Louis Lions

4 place Jussieu – 75005 Paris – France
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